Images, stratégies perceptives et stratégies cognitives d'analyse
 Catherine Garbay

- To cite this version:

Catherine Garbay. Images, stratégies perceptives et stratégies cognitives d'analyse. Modélisation et simulation. Institut National Polytechnique de Grenoble - INPG; Université Joseph-Fourier - Grenoble I, 1986. tel-00320009

HAL Id: tel-00320009
https://theses.hal.science/tel-00320009
Submitted on 10 Sep 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

TTHIESE

présentée à

I'UNIVERSITE SCIENTIFIQUE, TECHNOLOGIQUE ET MEDICALE DE GRENOBLE

et à

I'INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE

pour obtenir le grade de DOCTEUR ES SCIENCES
"Mathématiques"
par
Catherine GARBAY

IMAGES, STRATEGIES PERCEPTIVES ET STRATEGIES COGNITIVES D'ANALYSE

Thèse soutenue le 23 juin 1986 devant la commission d'examen.

UNIVERSITE SCIENTIFIQUE ET MEDICALE DE GRENOBLE

Année universitaire 1982-1983

Président de l'Université : M. TANCHE

MEMBRES DU CORPS ENSEIGNANT DE L'U.S.M.G.
 (RANG A)
 SAUF ENSEIGNANTS EN MEDECINE ET PHARMACIE

PROFESSEURS DE 1ère CLASSE

aRNAUD Paul ARVIEU Robert AUBERT Guy AYANT Yves BARBIER Marie-Jeanne BARBIER Jean-Claude

BARJON Robert BARNOUD Fernand
BARRA Jean-René
BELORISKY Elie BENZAKEN Claude (M.) BERNARD Alain BERTRANDIAS Francoise BERTRANDIAS Jean-Paul BILLET Jean BONNIER Jean-Marie BOUCHEZ Robert BRAVARD Yves CARLIER Georges CAUQUIS Georges CHIBON Pierre COLIN DE VERDIERE Yves CRABBE Pierre (détaché) CYROT Michel DAUMAS Max DEBELMAS Jacques DEGRANGE Charles DELOBEL Claude (M.) DEPORTES Charles DESRE Pierre DOLIOUE Jean-Michel DUCROS Pierre FONTALNE Jean-Marc GAGNAIRE Didier

Chimie organique
Physique nucléaire I.S.N.
Physique C.N.R.S.
Physique approfondie
Electrochimie
Physique expérimentale C.N.R.S.
(labo de magnétisme)
Physique nucléaire I.S.N.
Biosynthèse de la cellulose-Biologie
Statistiques - Mathématiques appliquées
Physique
Mathématiques pures
Mathématiques pures
Mathématiques pures
Mathématiques pures
Géographie
Chimie générale
Physique nucléaire I.S.N.
Géographie
Biologie végétale
Chimie organique
Biologie animale
Mathématiques pures
C.E.R.M.O.

Physique du solide
Géographie
Géologie générale
Zoologie
M.I.A.G. Mathématiques appliquées

Chimie minérale
Electrochimie
Physique des plasmas
Cristallographie
Mathématiques pures
Chimie physique

GASTINEL Noël	Analyse numérique - Mathématiques appliquées
GERBER Robert	Mathématiques pures
GERMAIN Jean-Pierre	Mécanique
GIRAUD Pierre	Géologie
IDELMAN Simon	Physiologie animale
JANIN Bernard	Géographie
JOLY Jean-René	Mathématiques pures
JULLIEN Pierre	Mathématiques appliquées
KAHANE André (détaché DAFCO)	Physique
K AHANE Josette	Physique
KOSZUL Jean-Louis	Mathématiques pures
KRAK OWIAK Sacha	Mathématiques appliquées
KUPTA Yvon	Mathématiques pures
LACAZE Albert	Thermodynamique
LAJZEROWICZ Jeannine	Physique
LAJZEROWICZ Joseph	Physique
LAURENT Pierre	Mathématiques appliquées
DE LEIRIS Jö̈l	Biologie
LLIBOUTRY Louis	Géophysique
LOISEAUX Jean-Marie	Sciences nucléaires I.S.N.
LOUP Jean	Géographie
MACHE Régis	Physiologie végétale
MAYNARD Roger	Physique du solide
MICHEL Robert	Minéralogie et pétrographie (géologie)
MOZIERES Philippe	Spectrométrie - Physique
OMONT Alain	Astrophysique
OZENDA Paul	Botanique (biologie végétale)
PAYAN Jean-Jacques (détaché)	Mathématiques pures
PEBAY PEYROULA Jean-Claude	Physique
PERRIAUX Jacques	Géologie
PERRIER Guy	Géophysique
PIERRARD Jean-Marie	Mécanique
RASSAT André	Chimie systématique
RENARD Michel	Thermodynamique
RICHARD Lucien	Biologie végétale
RINAUDO Marguerite	Chimie CERMAV
SENGEL Philippe	Biologie animale
SERGERAERT Francis	Mathématiques pures
SOUTIF Michel	Physique
VAILLANT François	Zoologie
VALENTIN Jacques	Physique nucléaire I.S.N.
VAN CUTSEN Bernard	Mathématiques appliquées
VAUQUOIS Bernard	Mathématiques appliquées
VIALON Pierre	Géologie
PROFESSEURS DE 2ème CLASSE	
ADIBA Michel	Mathématiques pures
ARMAND Gilbert	Géographie

AURIAULT Jean-Louis	Mécanique
BEGUIN Claude (M.)	Chimie organique
BOEHLER Jean-Paul	Mécanique
BOITET Christian	Mathématiques appliquées
BORNAREL Jean	Physique
BRUN Gilbert	Biologie
CASTAING Bernard	Physique
CHARDON Michel	Géographie
COHENADDAD Jean-Pierre	Physique
DENEUVILLE Alain	Physique
DEPASSEL Roger	Mécanique des fluides
DOUCE Roland	Physiologie végétale
DUFRESNOY Alain	Mathématiques pures
GASPARD François	Physique
GAUTRON René	Chimie
GIDON Maurice	Géologie
GIGNOUX Claude (M.)	Sciences nucléaires I.S.N.
GUITTON Jacques	Chimie
HACQUES Gérard	Mathématiques appliquées
HERBIN Jacky	Géographie
HICTER Pierre	Chimie
JOSELEAU Jean-Paul	Biochimie
KERCKOVE Claude (M.)	Géologie
LE BRETON Alain	Mathématiques appliquées
LONGEQUEUE Nicole	Sciences nucléaires I.S.N.
LUCAS Robert	Physiques
LUNA Domingo	Mathématiques pures
MASCLE Georges	Géologie
NEMOZ Alain	Thermodynamique (CNRS - CRTBT)
OUDET Bruno	Mathématiques appliquées
PELMONT Jean	Biochimie
PERRIN Claude (M.)	Sciences nucléaires I.S.N.
PFISTER Jean-Claude (détaché)	Physique du solide
PIBOULE Michel	Géologie
PIERRE Jean-Louis	Chimie organique
RAYNAUD Hervé	Mathématiques appliquées
ROBERT Gilles	Mathématiques pures
ROBERT Jean-Bernard	Chimie physique
ROSSI André	Physiologie végétale
SAKAROVITCH Michel	Mathématiques appliquées
SARROT REYNAUD Jean	Géologie
SAXOD Raymond	Biologie animale
SOUTIF Jeanne	Physique
SCHOOL Pierre-Claude	Mathématiques appliquées
STUTZ Pierre	Mécanique
SUBRA Robert	Chimie
VIDAL Michel	Chimie organique
VIVIAN Robert	Géographie

INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE

Année universitaire 1982-1983

Président de l'Université : D. BLOCH

Vice-Président : René CARRE
 Hervé CHERADAME
 Marcel IVANES

PROFESSEURS DES UNIVERSITES :

ANCEAU François	E.N.S.I.M.A.G.
BARRAUD Alain	E.N.S.I.E.G.
BAUDELET Bernard	E.N.S.I.E.G.
BESSON Jean	E.N.S.E.E.G.
BLIMAN Samuel	E.N.S.E.R.G.
BLOCH Daniel	E.N.S.I.E.G.
BOIS Philippe	E.N.S.H.G.
BONNETAIN Lucien	E.N.S.E.E.G.
BONNIER Etienne	E.N.S.E.E.G.
BOUVARD Maurice	E.N.S.H.G.
BRISSONNEAU Pierre	E.N.S.I.E.G.
BUYLE BODIN Maurice	E.N.S.E.R.G.
CAVAIGNAC Jean-François	E.N.S.I.E.G.
CHARTIER Germain	E.N.S.I.E.G.
CHENEVIER Pierre	E.N.S.E.R.G.
CHERADAME Hervé	U.E.R.M.C.P.P.
CHERUY Arlette	E.N.S.I.E.G.
CHIAVERINA Jean	U.E.R.M.C.P.P.
COHEN Joseph	E.N.S.E.R.G.
COUMES André	E.N.S.E.R.G.
DURAND Francis	E.N.S.E.E.G.

DURAND Jean-Louis
E.N.S.I.E.G.

FELICI Noël
E.N.S.I.E.G.

FOULARD Claude
GENTIL Pierre
GUERIN Bernard
GUYOT Pierre
IVANES Marcel
E.N.S.I.E.G.
E.N.S.E.R.G.

JAUSSAUD Pierre
JOUBERT Jean Claude
JOURDAIN Geneviève
LACOUME Jean-Louis
LATOMBE Jean-Claude
E.N.S.E.R.G.
E.N.S.E.E.G.
E.N.S.I.E.G.
E.N.S.I.E.G.
E.N.S.I.E.G.
E.N.S.I.E.G.
E.N.S.I.E.G
E.N.S.I.M.A.G.

LESSIEUR Marcel	E.N.S.H.G.
LESPINARD Georges	E.N.S.H.G.
LONGEQUEUE Jean-Pierre	E.N.S.I.E.G.
MAZARE Guy	E.N.S.I.M.A.G.
MOREAU René	E.N.S.H.G.
MORET Roger	E.N.S.I.E.G.
MOSSIERE Jacques	E.N.S.I.M.A.G.
PARIAUD Jean-Charles	E.N.S.E.E.G.
PAUTHENET René	E.N.S.I.E.G.
PERRET René	E.N.S.I.E.G.
PERRET Robert	E.N.S.H.G.
PIAU Jean-Michel	E.N.S.I.E.G.
POLOUJADOFF Michel	E.N.S.E.R.G.
POUPOT Christian	E.N.S.E.E.G.
RAMEAU Jean-Jacques	U.E.R.M.C.P.P.
RENAUD Maurice	U.E.R.M.C.P.P.
ROBERT André	E.N.S.I.M.A.G.
ROBERT François	E.N.S.I.E.G.
SABONNADIERE Jean-Claude	E.N.S.I.M.A.G.
SAUCIER Gabrielle	E.N.S.I.E.G.
SCHLENKER Claire	E.N.S.I.E.G.
SCHLENKER Michel	E.N.S.E.R.G.
SERMET Pierre	U.E.R.M.C.P.P.
SILVY Jacques	E.N.S.E.E.G.
SOHM Jean-Claude	E.N.S.E.E.G.
SOUQUET Jean-Louis	E.N.S.I.M.A.G.
VEILLON Gérard	E.N.S.E.R.G.
ZADWORNY Francois	

PROFESSEURS ASSOCIES

BASTIN Georges	E.N.S.H.G.
BERRIL John	E.N.S.H.G.
CARREAU Pierre	E.N.S.H.G.
GANDINI Alessandro	U.E.R.M.C.P.P.
HAYASHI Hirashi	E.N.S.I.E.G.

PROFESSEURS UNIVERSITE DES SCIENCES SOCIALES (Grenoble II)
BOLLIET Louis
Chatelin Françoise
PROFESSEURS E.N.S. Mines de Saint-Etienne
RIEU Jean
SOUSTELLE Michel

CHERCHEURS DU C.N.R.S.

FRUCHART Robert	Directeur de Recherche
VACHAUD Georges	Directeur de Recherche

ALLIBERT Michel	Maître	de	Recherche
ANSARA Ibrahim	Maître	de	Recherche
ARMAND Michel	Maître	de	Recherche
BINDER Gilbert			
CARRE René	Maître	de	Recherche
DAVID René	Maître	de	Recherche
DEPORTES Jacques			
DRIOLE Jean	Maître	de	Recherche
GIGNOUX Damien			
GIVORD Dominique			
GUELIN Pierre	Maître	de	Recherche
HOPFINGER Emil	Maître	de	Recherche
JOUD Jean-Charles	Maître	de	Recherche
KAMARINOS Georges	Maître	de	Recherche
KLEITZ Michel	Maître	de	Recherche
LANDAU loan-Dore	Maître	de	Recherche
LASJAUNIAS J.C.			
MERMET Jean			
MUNIER Jacques			

CHERCHEURS du MINISTERE de la RECHERCHE et de la TECHNOLOGIRE (Directeurs et Maitres de Recherches, ENS Mines de St. Etienne)

LESBATS Pierre BISCONDI Michel KOBYLANSKI André LE COZE Jean LALAUZE René LANCELOT Francis THEVENOT François TRAN MINH Canh

Directeur de Recherche
Maître de Recherche
Maitre de Recherche
Maître de Recherche

PERSONNALITES HABILITEES à DIRIGER des TRAVAUX de RECHERCHE (Décision du Conseil Scientifique)

ALLIBERT Colette	E.N.S.E.E.G.
BERNARD Claude	E.N.S.E.E.G.
BONNET Rolland	E.N.S.E.E.G.
CAILLET Marcel	E.N.S.E.E.G.
CHATILLON Catherine	E.N.S.E.E.G.
CHATILLON Christian	E.N.S.E.E.G.
COULON Michel	E.N.S.E.E.G.
DIARD Jean-Paul	E.N.S.E.E.G.
EUSTAPOPOULOS Nicolas	E.N.S.E.E.G.
FOSTER Panayotis	E.N.S.E.E.G.

GALERIE Alain HAMMOU Abdelkader
MALMEJAC Yves
MARTIN GARIN Régina NGUYEN TRUONG Bernadette RAVAINE Denis SAINFORT SARRAZIN Pierre SIMON Jean-Paul TOUZAIN Philippe URBAIN Georges

GUILHOT Bernard THOMAS Gérard DRIVER Julien BARIBAUD Michel BOREL Joseph CHOVET Alain CHEHIKIAN Alain DOLMAZON Jean-Marc HERAULT Jeanny MONLLOR Christian BORNARD Guy DESCHIZEAU Pierre GLANGEAUD François KOFMAN Walter LEJEUNE Gérard MAZUER Jean PERARD Jacques REINISCH Raymond ALEMANY Antoine BOIS Daniel DARVE Félix MICHEL Jean-Marie OBLED Charles ROWE Alain VAUCLIN Michel WACK Bernard BERT Didier CALMET Jacques COURTIN Jacques COURTOIS Bernard DELLA DORA Jean FONLUPT Jean
SIFAKIS Joseph
CHARUEL Robert
CADET Jean
COEURE Philippe
E.N.S.E.E.G.
E.N.S.E.E.G.
E.N.S.E.E.G. (CENG)
E.N.S.E.E.G.
E.N.S.E.E.G.
E.N.S.E.E.G.
E.N.S.E.E.G. (CENG)
E.N.S.E.E.G.
E.N.S.E.E.G.
E.N.S.E.E.G.
E.N.S.E.E.G. (Laboratoire des
ultra-réfractaires ODEILLON)
E.N.S. Mines Saint Etienne
E.N.S. Mines Saint Etienne
E.N.S. Mines Saint Etienne
E.N.S.E.R.G.
E.N.S.E.R.G.
E.N.S.E.R.G.
E.N.S.E.R.G.
E.N.S.E.R.G.
E.N.S.E.R.G.
E.N.S.E.R.G.
E.N.S.I.E.G.
E.N.S.I.E.G.
E.N.S.I.E.G.
E.N.S.I.E.G.
E.N.S.I.E.G.
E.N.S.I.E.G.
E.N.S.I.E.G.
E.N.S.I.E.G.
E.N.S.H.G.
E.N.S.H.G.
E.N.S.H.G.
E.N.S.H.G.
E.N.S.H.G.
E.N.S.H.G.
E.N.S.H.G.
E.N.S.H.G.
E.N.S.I.M.A.G.
E.N.S.I.M.A.G.
E.N.S.I.M.A.G.
E.N.S.I.M.A.G.
E.N.S.I.M.A.G.
E.N.S.I.M.A.G.
E.N.S.I.M.A.G.
U.E.R.M.C.P.P.
C.E.N.G.
C.E.N.G. (LETI)

DELHAYE Jean-Marc	C.E.N.G. (STT)
DUPUY Michel	C.E.N.G. (LETI)
JOUVE Hubert	C.E.N.G. (LETI)
NICOLAU Yvan	C.E.N.G. (LETI)
NIFENECKER Hervé	C.E.N.G.
PERROUD Paul	C.E.N.G.
PEUZIN Jean-Claude	C.E.N.G. (LETI)
TAIEB Maurice	C.E.N.G.
VINCENDON Marc	C.E.N.G.
LABORATOIRES EXTERIEURS	
DEMOULIN Eric	C.N.E.T.
DEVINE	C.N.E.T. (R.A.B.)
GERBER Roland	C.N.E.T.
MERCKEL Gérard	C.N.E.T.
PAULEAU Yves	C.N.E.T.
GAUBERT C.	I.N.S.A. Lyon

AVANT PROPOS

Ce mémoire est le reflet des activités de recherche que j'ai menées tout au long de ces dix dernières années au sein de l'Equipe de Microscopie Quantitative. Mes travaux se sont ainsi déroulés dans un contexte scientifique particulièrement stimulant, et sont le fruit d'une collaboration étroite avec l'ensemble de mes collègues biologistes et informaticiens.

Je souhaite qu'ils trouvent ici la trace de nos efforts communs de recherche, et je tiens à leur adresser mes plus chaleureux remerciements pour le soutien amical qu'ils m'ont constamment apporté.

Ma reconnaissance la plus vive est adrẹssée à J.M. CHASSERY pour les travaux que nous avons menés ensemble, et pour les nombreuses discussions qui ont guidé et étayé cette recherche. Tant sa compétence, dont il m'a fait bénéficier avec la plus grande disponibilité, que l'appui indéfectible dont il m'a assuré, ont constitué pour moi le plus précieux des soutiens.

C'est à G. BRUGAL que je souhaite plus particulièrement dédier ce ménoire. A l'initiative de la création de notre équipe, dans les années 76, il en a depuis impulsé et valorisé la recherche avec compétence, tout en lui offrant un cadre matériel et scientifique que je crois unique.

Je lui suis redevable à bien des titres des travaux présentés dans ce mémoire et je souhaite qu'il y trouve l'écho de sa passion pour une recherche à vocation pluridisciplinaire, ainsi que la concrétisation de nos réflexions communes.

Je ne saurais oublier ces dix années de collaboration fructueuse et d'amitié, pour lesquelles je le remercie très chaleureusement.

Abstract

A C. BELLISSANT, qui a assumé la direction de cette thèse, je dois d'avoir pu mener à bien ces travaux. Il m'a assuré de son estime et de son amitié, tout au long de mon apprentissage du métier de chercheur, qui m'ont. été d'un soutien précieux. Je tiens particulièrement à le remercier pour la liberté et la confiance qu'il m'a accordées, tout au long de mes recherches, sans lesquelles je n'aurais pu aborder ce difficile travail de synthèse.

Je tiens à exprimer ma plus vive gratitude à G. STAMON, qui me fait 1'honneur de présider ce jury. L'intérêt qu'il a toujours porté à mon travail et les conseils qu'il a bien voulu me prodiguer ont été pour moi le plus précieux des encouragements. Il m'a apporté la garantie d'un soutien et d'une amitité indéfectible, et je le remercie chaleureusement pour tous les entretiens que nous avons pu avoir ensemble.

Je suis particulièrement reconnaissante à R. MOHR d'avoir accepté la lourde tâche de rapporteur. Sa compétence dans le domaine de l'Analyse d'Images est pour moi une référence et il me fait beaucoup d'honneur en acceptant de juger ce travail.

Je remercie très vivement J.C. LATOMBE et 0 . FAUGERAS de bien vouloir prendre un peu de leur temps pour participer à ce jury.

Les recherches qu'ils ont menées dans le domaine de l'Intelligence Artificielle et de la Vision par Ordinateur ont apporté une contribution essentielle, tant dans les domaines fondamentaux que dans ceux de l'application industrielle. Leur présence dans ce jury est pour moi un très grand honneur.

La publication de ce mémoire, enfin, n'aurait pas été possible sans le concours de P. SOUILLARD, qui en a assuré la frappe, et de J. CLEMENT-LACROIX et G. CHANCEL, qui ont réalisé les figures. Je tiens à les remercier très chalcureusement pour le dévouement avec lequel ils ont réalisé ce travail et pour toute la compétence et tout le soin qu'ils y ont apportés.

SOMMAIRE

INTRODUCTION 1
PARTIE I.
De l'image en cytologie et en histologie et des pnincipes de l'observation humaine. 7
INTRODUCTION 9
A. L'IMAGE MICROSCOPIQUE : PREPARATION ET OBSERVATION 11
I. Les organismes vivants 11
II. Préparation et coloration des échantillons microscopiques 14
III. Les enjeux de l'observation microscopique 17
B. CONTENU INFORMATIF DES IMAGES MICROSCOPIQUES 21
I. L'image cytologique 21
II. L'image histologique 25
C. DE LA PERCEPTION A l'INTERPRETATION DES IMAGES 31
I. Formation du message sensoriel 32
II. Percept et concept : des modes d'élaboration aux stratégies d'interprétation 43
D. MODES ET STRATEGIES D'INTERPRETATION DES IMAGES MICROSCOPIQUES 59
I. Percevoir et reconnaître les ensembles organisés 59
II. Modes d'élaboration d'un diagnostic 63
III. Diagnostic et stratégies 67
CONCLUSION 71
REFERENCES 73

PARTIE II

nes images et des principes de leun analyse thómatique 77
INTRODUCTION 79
A. DE L'INTERPRETATION THFMATIQUE DES IMAGES 81
I. Système formel de représentation thématique 81
ll. Description des entités 96
III. Interprétation des entités 105
B. OUITLS D'ANALYSE THEMATIQUE DES IMAGES 113

1. Les outils de base 113
II. Des améliorations possibles 121
III. Processus de haut niveau 129
C. DES STRATEGIES THEMATIQUES D'ANALYSE 137
2. Stratégies et formulations procédurales 138
II. Le problème du contrôle 142
III. Adaptation et focalisation 144
IV. Des systèmes autonomes de segmentation. 148
CONCLUSION 157
REFERENCES 159
PARIIE III
Des connaissances sur les images et de leuns stratégies d'exploitation 169
INTRODUCTION 171
a. des Connaissances Sur les images 173
I. Connaissances descriptives 174
II. Connaissances procédurales 182
III. Catégorisation des connaissances 191
B. STRATEGIES D'EXPLOITATION DES CONNAISSANCES 195
I. Stratégies directes 196
II. Stratégies indirectes 220
CONCLUSION 233
REFERENCES 235

PARTIE IV

Segmentation et interprétation d'images on cytologie et on histologie 241
INTRODUCTION 243
A. SEGMENTATION D'IMACES CYTOLOGIQUES 245
I. Segmentation par seuillage 246
II. Segmentation par agrégations successives 257
Ill. Elaboration d'un système autonome de segmentation. 265
B. INTERPRETATION D'IMAGES HISTOLOGIQUES 279
I. Position du problème 280
II. L'image histologique : structuration et integration des connaissances 289
III. Le diagnostic histologique : connaissances et mode de raisonnement. 299
CONCLUSION 315
REFERfinces 317
CONCLUSION 321
. 1.

$$
!
$$

:

L'objectif des recherches dans le domaine de l'Analyse d'Images est la conception de programmes ou systèmes informatiques susceptibles de traiter des images présentées sous forme numérique, c'est-à-dire d'en extraire certaines composantes ou prọpriétés, de les décrire, voire d'en fournir des éléments d'interprétation.

La nature et la complexité des outils qu'il convient de développer, dans ce cadre, dépend de la nature des composantes, du degré de caractérisation requis, et également de la nature de leur insertion contextuelle (éléments se recouvrant, ou difficilement distinguables).

L'orientation de ces recherches dépend en outre de l'importance et du rôle conférés à ces outils d'investigation, eu égard aux moyens humains d'appréciation qu'ils viennent remplacer ou suppléer. Des conceptions différentes président dans ce domaine, selon la nature des objectifs visés, parmi lesquels on peut citer :

- automatiser une tâche répétitive et en décharger l'observateur humain ;
- décharger l'observateur des tâches descriptives, en fournissant des éléments fiables et robustes d'appréciation, tout en lui réservant la responsabilité de la prise de décision ;
- fournir des éléments supplémentaires d'appréciation et multiplier les capacités humaines d'appréhension du phénomène observé par leur association ou confrontation avec les données habituellement disponibles.

L'explicitation claire du cadre de travail envisagé apparaît importante : elle permet d'identifier les modalités de la confrontation nécessaire entre les moyens humains et informatiques d'analyse ainsi que les formes éventuelles d'influence de l'expertise humaine sur les choix présidant à l'élaboration de ces derniers.

La nécessité d'une telle analyse dépend du domaine d'application considéré : elle s'avère particulièrement frappante dans le cas du domaine médical, qui constitue le cadre privilégié d'application de nos recherches.

Les possibilités d'application des techniques de l'analyse d'images à ce domaine ont été en effet examinées de façon précoce, selon des conceptions qui ont évolué progressivement.

La primaté a tout d'abord été donnée à l'automatisation des examens de laboratoire les plus courants (lecture de lames au microscope), du fait du caractère extrêmement fastidieux et routinier de ces tâches. La confrontation avec l'expertise humaine apparait dans ce cas au stade ultime de la justification des moyens mis en ouvre, selon les critères de coût et de performances atteintes.

L'échec relatif de ces tentatives ainsi que leur extension à la recherche biomédicale a conduit ensuite à focaliser la recherche sur les tâches descriptives, en réservant à l'expert humain la primauté de la prise de décision. L'emploi des techniques de l'analyse d'images est justifié dans ce cas par l'apport de descripteurs quantitatifs, fiables et robustes, et d'informations difficilement mesurables par le système visuel humain. Leur exploitation par l'expert humain implique néanmoins qu'une certaine forme de transposition, de leur forme numérique vers une forme sémantique, leur soit applicable.

L'accès à des problèmes plus complexes, enfin, induit la recherche d'un référenciel commun de représentation des "objets" manipulés et des actions envisagées : il s'agit en effet de rendre possible liexploitation simultanée d'informations issues de sources extrêmement diversesp telles que l'analyse d'images, l'observation humaine ou des techniques de marquage biochimique.

C'est ce concept de référenciel commun qui a constitué le fil directeur de nos recherches, depuis de nombreuses années : il nous a conduit à mener simultanément l'exploration des mode visuels et informatiques d'appréhension des images.

Dans cette optique, notre objectif est constamment demeuré non pas celui de la recherche d'une mesure ou d'une justification d'un système par rapport à l'autre, mais plutôt celui d'une tentative d'enrichissement de notre recherche par leur confrontation mutuelle.

La première partie de cette thèse est ainsi dédiée à la présentation du domaine d'application qui nous intéresse (la cytologie, étude des cellules, l'histologic, étude des cellules rassembées en tissus) et à
l'analyse des modalités perceptuelles et mentales d'appréhension des images qui lui sont associées.

L'accent est mis tout particulièrement sur l'explicitation de deux composantes fondamentales, qui sont :

- le savoir nécessaire à l'exploitation des données et ses formes possibles de représentation mentale ;
- les stratégies régissant l'intégration progressive des données, l'articulation des opérations élémentaires et les modalités d'exploration des éléments d'information disponibles (savoir, image).

La seconde partie est consacrée à la présentation des formes possibles de représentation et d'analyse informatique des images. Une image est représentée comme un ensemble d'objets (entités) caractérisés par une liste d'attributs ; cette description est susceptible d'être modifiée par l'activation d'opérations élémentaires (inférence, regroupement, décomposition).

Le problème particulier abordé dans cette partie est celui de la définition des séquences d'opération (algorithmes de segmentation) dont l'application sur un jeu de données primitives permet la délimitation des objets composant l'image, perçus comme entités au sens des références perceptuelles humaines.

Il convient dans ce but de préciser les contraintes définissant le concept d'entité : les connaissances introduites à cet égard sont relatives aux propriétés physico-perceptuelles des objets, exprimées dans le cadre de la théorie gestaltiste de l'organisation (propriétés de similarité, de continuité, de fermeture ...).

Tant les opérations à mettre en ocuvre que les attributs image qu'elles exploitent diffèrent enfin selon la nature de l'objet examiné et la forme de son insertion contextuelle : ceci conduit à définir les stratégies susceptibles de régir l'articulation et de contrôler l'exploitation de ces différents éléments.

La troisième partie concerne les formes possibles de représentation et d'exploitation de connaissances spécifiques du type d'image analysé, $c^{\prime} e s t-$-à-dire dépendant du domaine d'application.

La prise en compte de ces connaissances permet un meilleur contrôle des opérations élémentaires, en les contraignant de façon plus spécifique. File permet également le développement de stratégies d'analyse plus structurées et micux adaptées à l'exploitation de l'architecture même de 1.'image.

Les systèmes d'analyse ainsi obtenus apparaissent à la fois plus flexibles et plus performants $:$ ils sont par ailleurs susceptibles d'extension à la résolution d'une gamme beaucoup plus riche de problèmes, par les facultés d'interprétation dont ils disposent.

L'approfondissement de ces possibilités suggère la recherche d'un système de représentation des connaissances et des formes stratégiques de leur exploitation, commun aux domaines de l'analyse et de l'interprétation des images : les concopts propres au domaine des systèmes experts apparaissaient naturellement bien adaptés, dans ce cadre.

L'analyse se déroule ainsi dans le cadre d'un référenciel regroupant un ensemble de connaissances physiques, perceptuelles et sémantiques caractéristiques du phénomène observé : elle devient dès lors accessible à l'expert chargé de l'exploiter, et par là même susceptible d'enrichissement.

La quatrième partie est dédiée à l'application concrète de certaines de ces notions au domaine médical. La première application concerne la segmentation d'images cytologiques : la démarche consiste à développer un système autonome de segmentation, à partir d'outils procéduraux classiques (scuillage, agrégations successives).

Des stratégies particulières d'exploration de l'image et. d'exploitation des connaissances qui lui sont spécifiquement attachées sont développées à cet égard.

La seconde application concerne l'interprétation d'images histologiques (tissu mammare) : la démarche consiste à développer un système expert de diagnostic (cancer du sein), à partir d'une formulation de lexpertise humaine (connaissances perceptuelles et diagnostiques, stratégie d'exploration du tissu). L'objectif visé à terme est. l'enrichissement du systeme par la prise en compte de descripteurs quantitatifs, extraits par analyse de l'image.

PARTIE I

De l'image en cytologie et en histologie et des principes de l'observation humaine

INTRODUCTION

L'image, support concret et reflet mental de la pensée humaine, est la source de sollicitations complexes de l'activité neurale. Malgré ses modes parfois primaires de représentation du monde externe, sa perception par le système visuel éveille au sein du système nerveux central d'autres images, d'autres concepts, selon des activités structurées par lesquelles il est susceptible d'identification, d'interprétation, de reconstitution et d'évocation.

L'analyse du contenu informatif des images cellulaires et tissulaires et des principes de leur interprétation offre à cet égard un support signifiant d'investigation des modalités perceptuelles et mentales d'appréhension de l'image. Ces images, dont l'observation n'éveille chez le profane que la sensation d'une complexité harmonieuse, sont la représentation, quoique artificielle, d'unités vivantes capables d'échanges, de reproduction et d'expression, porteuses d'un passé et évocatrices d'un devenir.

L'appréhension exacte et l'identification précise des activités fonctionnelles, normales ou pathologiques, dont ces images sont le reflet, nécessite l'acquisition d'un savoir délimité et organisé. L'enjeu vital de ces observations implique enfin la formulation d'un diagnostic verbal, justifié par une démarche visuelle et mentale consciemment dirigée, objective et rigoureuse.

Les deux chapitres suivants sont dédiés à l'exploration du savoir spécifique, nécessaire à la compréhension des images de cellules et de tissus. Les principes essentiels de fonctionnement du système visuel, ainsi que les modalités d'intégration de l'information visuclle par le système nerveux central font l'objet du troisième chapitre. Le dernier chapitre, enfin, est relatif aux modes possibles d'articulation des activités perceptives et cognitives impliquées lors de l'observation microscopique.

A. L’IMAGE MICROSCOPIOUE : PREPARATION ET OBSERVATION.

L'étude des organismes vivants se fonde sur la synthèse d'un ensemble d'observations qui, pratiquées aux différents niveaux macroscopique, microscopique et moléculaire de l'organisation, visent à décrire les caractéristiques morphologiques, structurelles et fonctionnelles des unités observées, et à expliciter les relations de coopération et d'échange qui les unissent.

L'analyse pratiquée au niveau cellulaire est à cet égard particulièrement instructive : toute activité organique spontanée de l'être vivant est en effet l'expression globale de l'ensemble des transformations physiologiques et biochimiques subies par les cellules, transformations qui s'expriment par des altérations morphologiques et structurelles décelables bien avant leurs répercussions respectives aux niveaux supérieurs de l'organisation.

La qualité de l'observation microscopique est étroitement tributaire du soin apporté lors des étapes de préparation et de coloration des spécimens. Elle se fonde - en ce qui concerne l'observation au microscope optique de spécimens fixés - sur une représentation planaire et statique de l'organisation, dont la perception des constituants est facilitée par l'emploi de réactifs colorés.

Les retombées médicales de l'observation microscopique sont considérables. La plupart des diagnostics de maladies graves (notamment cancers) sont en effet formulés ou confirmés après examen microscopique, de même que les critères pronostiques de leur évolution, dont dépend la décision thérapeutique. Ce sont enfin les possibilités de dépistage précoce offertes par ces observations qui donnent la mesure de l'enjeu humain et socio-économique de cette application.

I. LES ORGANISMES VIVANTS

Un organisme est un ensemble d'unités fonctionnelles vivantes, dont la survie dépend de la qualité de ses échanges avec le milieu extérieur et dont la survivance est liée à ses facultés de reproduction et d'adaptation.

Un tel organisme est donc caractérisé par sa morphologie et son organisation (forme extéricure plus ou moins strictement définie, structure interne plus ou moins complexe), ainsi que par l'ensemble de ses activités métaboliques (absorption d'aliments, de sels minéraux, production de lumière ou de chaleur) et par ses modalités de reproduction et d'adaptation.

I. 1°) Morphologie et Organisation

Les notions de morphologie et d'organisation sont relatives au niveau d'observation auquel se pratique l'analyse d'un organisme. Leur expression est d'autant plus complexe que l'on s'adresse à un niveau plus général d'organisation.

La biosphère, par exemple, recouvre le niveau terrestre d'organisatión le plus élevé, en regroupant l'ensemble des êtres vivants qui peuplent la terre. L'organisation s'exprime ici comme la cohabitation dans les différents milicux géographiques de multiples espèces animales et végétales. Une telle organisation est représentative à un instant donné de l'ensemble des morphologies et des modes de vie propres aux différentes espèces, et également des relations d'interdépendance entre les différents individus. De ces relations, fondées sur l'exploitation des ressources naturelles, dépend l'équilibre de l'écosystème et donc la permanence de l'organisation.

Tout organisme vivant peut à son tour être décrit comme un ensemble d'unités, de morphologies et de fonctionnalités diverses, coopérant dans le maintien des fonctions vitales. L'unité peut être définie comme la plus petite structure vivante perceptible à un niveau d'observation donné ; son observation peut être effectuée au niveau macroscopique, microscopique ou moléculaire.

Une analyse pratiquée au niveau cellulaire se révèle dans ce cadre d'un intérêt particulier. Tout organisme est en effet constitué de cellules, qui sont les plus petites unités de substance vivante capables d'accomplir l'ensemble des fonctions nécessaires au maintien de l'état vivant. L'observation microscopique de ces cellules, qui mesurent quelques
microns, révèle la présence d'un certain nombre d'organites cellulaires (cytoplasme, noyau etc), dont l'organisation s'avère relativement constante d'un organisme à l'autre. La limite inférieure de l'observation microscopique est de quelques dizaines d'angströms (emploi du microscope électronique) et correspond à l'observation de constructions au niveau macro-moléculaire.

1.20) Métabolisme, reproduction et adaptation

Tout organisme vivant est susceptible de se transformer et de se reproduire. Il est également capable d'échanges de matière et d'énergie avec le milieu extéricur. Ces différentes propriétés peuvent être observées à différents niveaux d'organisation, et en particulier au niveau cellulaire. Toute activité d'échange présente au niveau d'un organisme est en effet l'expression globale de l'activité chimique des cellules (leur métabolisme). Cette activité est nécessaire pour que puissent être utilisés puis reproduits les plans génétiques de la cellule, codés au niveau des macromolécules d'ADN (acide désoxyribonucléĩque). C'est à partir de ces plans génétiques que pourront être réalisées les différentes opérations de l'activité cellulaire.

L'activité cellulaire fondamentale est l'activité de division cellulaire. Une division survient au terme d'un ensemble de transformations physiologiques et morphologiques complexes. Les transformations les plus notables consistent en la duplication du matériel génétique et en la production de deux cellules filles identiques à la première. Celles-ci pourront à leur tour s'engager dans un nouveau cycle de transformations (cycle cellulaire) ou s'engager dans une phase dite de "repos", au terme de laquelle certaines d'entre elles dégénèrent.

Les activités qui permettent l'expression de l'ensemble des propriétés cellulaires (génétiques et métaboliques) sont acquises au cours de processus dits de différenciation. La différenciation s'exprime au niveau cellulaire par l'acquisition de propriétés et de fonctionnalités nouvelles, au terme d'un ensemble de transformations dont la programmation est précise. L'aptitude à la différenciation cellulaire est une propriété générale fondamentale des êtres vivants. C'est cette capacité qui permet

.14.

Abstract

l'élaboration d'organismes pluricellulaires complexes à partir d'une cellule unique, l'oeuf, les différentes cellules qui en sont issues présentant des différences remarquables aussi bien sur le plan des structures cytologiques que sur celui des activités physiologiques.

La diversité génétique des individus d'une même population est elle-même maintenue grâce au mécanisme des mutations. Celles-ci se produisent à une échelle physique extrêmement réduite (monomère d'une molécule d'ADN) ; elles atteignent le matériel génétique lui-même, et sont donc transmises à la descendance.

D'autres transformations peuvent survenir, enfin, qui proviennent des capacités d'adaptation au milieu de tout être vivant. Une telle capacité est. le garant de la survie au sein d'un milieu changeant. Elle s'exprime comme une dualité entre une capacité à acquérir des caractères nouveaux, et la faculté de maintien de l'intégrité fonctionnelle des organismes, malgré les changements du milicu extérieur qui les pénètre.

Ainsi l'organisation biologique peut être perçue comme permanente, mais cette permanence est en fait l'expression de la coopération entre les processus de destruction, reproduction, et édification d'unités nouvelles qui visent à maintenir son intégrité structurelle et fonctionnelle.

II. PREPARATION ET COLORATION DES ECHANTILLONS MICROSCOPIQUES

Les progrès de la cytologie (étude des cellules) et de l'histologie (étude des céllules rassemblées en tissu) sont étroitement tributaires des possibilités d'observation offertes par les microscopes. La finesse de l'observation microscopique est elle-même tributaire du soin apporté à la préparation de l'échantillon.

Différentes techniques de prélèvement et d'étalement sont employées, qui visent à garantir la finesse de l'épaisseur du spécimen, tout en évitant au mieux la dégradation des cellules et des tissus. L'observation vitale est particulièrement délicate à cet égard, quoique fournissant des renseignements précieux sur l'activité cellulaire. L'observation d'échantillons fixés est plus couramment pratiquée, c'est elle qui retiendra par la suite notre attention.

Il est enfin nécessaire de colorer les échantillons, afin de faciliter l'observation visuelle en faisant apparaitre des contrastes entre les différents constituants.

II. 1°) Techniques de préparation

Les techniques de préparation dépendent essentiellement de la nature du prélèvement effectué : matériau solide (biopsie), ou liquide (suspension cellulaire).

Lorsque le matériau est liquide, un frottis est obtenu par étalement sur lame. Selon que le liquide est plus ou moins richement cellularisé, l'emploi de différentes techniques de dispersion ou de concentration cellulaires peut s'avérer nécessaire ; elles permettent de résoudre le compromis entre lisibilité et rapidité de la lecture des lames. Les étalements sont ensuite fixés puis colorés.

Lorsque le matériau est solide, on procède à une fixation qui permet de consolider les structures présentes. L'étape suivante consiste à obtenir des sections très fines de matériau. Une telle opération nécessite l'inclusion préalable dans une substance aux propriétés mécaniques convenables (paraffine par exemple). L'utilisation du microtome permet alors le clivage du bloc en sections de finesse convenable. Les échantillons ainsi obtenus sont ensuite colorés.

Des techniques complémentaires peuvent être utilisées, avant l'étape de fixation, qui permettent de révéler l'activité cellulaire. Ces techniques permettent de localiser les lieux d'incorporation d'une substance donnée (substance précurseur des synthèses biologiques, anticorps spécifique d'une protéine par exemple), de suivre la destinée de ces substances et les étapes de leur incorporation. On utilise à cette fin des procédés de marquage de ces substances, fondés par exemple sur l'utilisation d'isotopes radioactifs. Après fixation puis étalement, les coupes sont placées sur une lame recouverte d'une émulsion photographique, et maintenues dans l'obscurité pendant un temps suffisant. La préparation est alors traitée par un révélateur photographique ; il y a formation de grains d'argent aux lieux où se trouvent incorporés les précurseurs radioactifs.

II. $\mathbf{2}^{\circ}$) Techniques de coloration

Une fois la préparation obtenue, des techniques de coloration sont employées, qui permettent une augmentation de contraste entre les différents constituants cellulaires et tissulaires. Ces différentes structures présentent en effet des affinités sélectives pour divers colorants, selon leur nature biochimique. Les mécanismes de nombreuses colorations des tissus ne sont cependant pas complètement élucidés, et plusicurs interprétations sont proposées pour apporter une explication cohérente.

D'un point de vue chimique, il y aurait création de liaisons entre l'anion ou le cathion colorant, et les fonctions chimiques des structures tissulaires. Ceci permet d'expliquer la basophilie d'un constituant comme résultant de son affinité pour les colorants basiques des groupements acides, et l'acidophilie comme exprimant une affinité pour les colorants acides.

D'un point de vue physique, il y aurait un phénomène de précipitation, d'imbibition ou d'absorption des colorants au niveau des organites cellulaires.

11 convient de remarquer que les techniques de préparation et de coloration sont restées extrêmement empiriques jusqu'à l'avènement des appareils d'analyse automatique (vers 1960). En effet, ce sont les tentatives d'automatisation de la lecture des lames qui ont mis en évidence l'importance de la qualité et de la parfaite reproductibilité de ces étapes (différents appareils et automates ont été commercialisés depuis, qui permettent d'assurer la standardisation et la répétitivité de cette opération).

L'avènement de la photométrie à balayage (Mertz et Gray, 1934) a permis d'adjoindre aux techniques de l'observation visuelle des techniques de dosage des constituants cellulaires. En effet, la densité optique intégréc sur les différents points d'un objet mesure le pouvoir absorbant de celui-ci (loi de Lambert) : elle est proportionnclle à la concentration de substance absorbante présente dans lobjet examiné (loi de Beer).

L'utilisation de colorations complexes (telle que la coloration de Pappenheim) permet la mise en évidence simultanée de plusieurs constituants
cellulaires (ADN, ARN, protéines ...), dont la réaction au colorant conduit à des teintes apparentes différentes. La mesure des concentrations de ces différents constituants est obtenue par photométrie à plusieurs longueurs d'ondes (microspectrophotométrie). Les longueurs d'ondes sélectionnées sont celles pour lesquelles le constituant étudié présente le maximum d'absorption pour la coloration choisie.

Ceci a soulevé le problème de l'adéquation de la coloration utilisée, en particulier celui de sa variabilité, qui se manifeste non seulement par des variations d'intensité de la coloration d'une lame à l'autre, mais aussi par des variations an sein d'une même lame. Les mesures de type microspectrophotométrique, par la quantification des constituants cellulaires, ouvrent la voie de l'analyse automatique.

III. LES ENJEUX DE L'OBSERVATION MICROSCOPIQUE

La microscopie, à elle seule, est la plus grande activité d'observations d'images médicales. Au plan de la biologie fondamentale, le microscope (utilisé de façon directe, ou associé à des dispositifs particuliers pour la fluorescence ou le marquage autoradiographique) est l'instrument irremplaçable d'observation des tissus, des cellules et des ultrastructures. Mais c'est au plan de la biologie clinique que se révèle l'importance humaine et économique de l'imagerie microscopique. En effet, plus de 40 millions de préparations sont observées annucllement en France (frottis sanguins, cervico-vaginaux, biopsies diverses) et les interprétations tirées de ces examens. jouent un rôle décisif dans le comportement médical. Il convient en effet de remarquer que, à l'exception du domaine cardiologique et ncurologique, tous les diagnostics de maladie grave (notamment cancers) sont formulés ou confirmés après examen microscopique.

III.10) L'observation microscopique

Des examens microscopiques sont effectués quotidiennement dans les laboratoires d'analyse médicale. L'examen cytologique est extrêmement fastidieux, même pour un technicien entraîné ; sa qualité dépend étroitement de l'attention du technicien, du nombre de cellules examinées et de la qualité de l'échantillon.

Le technicien intègre mentalement la forme, la taille, la texture et la couleur de chaque cellule et de ses constituants, afin de reconnaitre son type d'appartenance, son état de maturation, et sa pathologie éventuclle. Il catalogue ainsi des milliers de cellules quotidiennement, et la qualité du diagnostic est étroitement liée à sa fatigue.

L'examen histologique, quant à lui, n'est jamais un examen de routine, les prélèvements (biopsies par exemple) n'étant effectués qu'en cas de suspicion particulière. L'accumulation des informations sur l'aspect cytologique des lésions et la corrélation de ces images avec l'histologie permet dans un nombre toujours plus grand de cas de poser un diagnostic précis. Dans les cas complexes, le diagnostic peut être confirmé par l'observation de plusicurs spécimens colorés de façons différentes, et représentant ainsi l'information recherchée sous des formes différentes.

Toute information clinique complémentaire joue bien sûr ici un rôle essentiel pour orienter le diagnostic, qu'il s'agisse de l'âge du patient, du volume de la tumeur, de la présence et du nombre de métastases, ou de divers facteurs iatrogéniques surajoutés (radiothérapie, chimiothérapie) qui modifient et compliquent l'interprétation microscopique.

III. 2°) Les enjeux

Plusicurs niveaux d'intervention peuvent être distingués dans l'activité du cytopathologiste.

Le dépistage est l'activité de routine la plus courante. Il est fondé sur le comptage des cellules présentes sur la lame et la reconnaissance de leur type (comptage différenticl). Le résultat premier de cette opération est de fournir une décision à caractère binaire sur la normalité ou l'anormalité du spécimen et peut se fonder sur un très petit nombre de cellules anormales.

Le diagnostic nécessite une observation plus approfondie de la lame. I1 consiste en l'identification de la pathologie la plus probable présentée par le spécimen anormal. 1l nécessite souvent la recherche d'une confirmation par l'observation histologique.

Le pronostic implique en outre la capacité du cytopathologiste à prévoir l'évolution de la maladie, selon la sévérité des altérations subies par le spécimen observé. Il implique de plus la prise en compte du passé du
malade, et particulièrement des diagnostics effectués à partir d'éventuelles observations microscopiques antéricures.

Le propre de la décision médicale est enfin de définir la meilleure conduite thérapeutique à tenir. Elle se fonde sur l'examen de l'ensemble des données contenues dans le dossier médical et sur l'analyse de la pertinence des décisions thérapeutiques précédentes. La gravité pronostique de la pathologie, qui est fonction à la fois de la rapidité d'évolution de la maladie et de l'efficacité apparente des différents traitements, détermine la lourdeur de l'intervention thérapeutique (emploi d'une chimiothérapie par exemple).

Les renseignements fournis par l'observation microscopique sont irremplaçables. Les altérations de la morphologie cellulaire, ainsi que les perturbations topographiques éventuelles de l'organisation tissulaire sont en effet l'expression et le reflet précurseur de la présence d'une pathologie, dont les effets se font plus tardivement sentir aux niveaux d'organisation supérieurs.

Malgré les moyens techniques actuellement mis en oeuvre pour faciliter l'observation microscopique, l'interprétation des échantillons demeure une tâche extrêmement complexe. Elle met en jeu en effet un ensemble de critères d'appréciation des morphologies et des topographies des différents constituants observés. Ces appréciations, pour être pertinentes, doivent intégrer l'ensemble de toutes les variations morphologiques et topographiques normales qui peuvent être observées à un instant donné, et qui sont le reflet de l'activité cellulaire normale, dont les mécanismes intimes sont pour la plupart incomplètement connus.

L'interprétation des spécimens microscopiques nécessite pour ces raisons une longue formation ; elle implique l'ensemble des activités perceptuelles d'appréciation et de discrimination des aspects morphologiques, elle implique également la faculté de mémorisation des configurations déjà rencontrées et des interprétations éventuelles qui s'y rattachent, elle met en jeu enfin la capacité à raisonner, c'est-à-dire essentiellement à établir des connexions logiques entre les différentes informations disponibles.

B. CONTENU INFORMATIF DES IMAGES MICROSCOPIQUES

Abstract

L'observation des images microscopiques de cellules et de tissus permet aux pathologistes d'accumuler une masse considérable d'informations.

Certaines d'entre elles sont issues de l'identification des divers constituants impliqués aux différents niveaux de l'organisation cellulaire et tissulaire (disparition de certains constituants spécifiques, apparition d'éléments étrangers au spécimen observé).

D'autres sont issues de l'observation des arrangements topographiques et de la vérification du respect des contraintes d'organisation propres à l'organe examiné.

Les dernières enfin sont relatives à l'aspect morphologique respectif de chaque constituant.

L'ensemble de ces informations permet l'analyse de l'état fonctionnel, pathologique ou non, de l'organe étudié. Leur représentativité dépend à un instant donné de la représentativité de l'échantillon examiné d'une part, et d'autre part de la spécificité des colorants employés, qui doivent permettre l'appréciation différentielle la plus complète possible des constituants susceptibles d'être atteints et de leur morphologie.

I. L'IMAGE CYTOLOGIQUE

La cytologie clinique est l^{\prime} étude des caractères morphologiques des cellules de l'organisme humain, étalées, fixées et colorées sur lame. L'examen des modifications de structure des principaux constituants cellulaires (noyau et cytoplasme) constitue le principe de la méthode cytologique.

Il convient de préciser tout d'abord la nature des constituants impliqués dans l'organisation cellulaire, avant d'examiner comment ils expriment, par des caractères morphologiques particuliers, leur état fonctionnel, dans le cadre d'une activité normale ou pathologique.
1.10) L'organisation cellulaire (tiré de Gompel, 1978)

Unc cellule est composée d'un noyau et d'un cytoplasme (fig. 1). Le noyau est limité par une enveloppe complexe. La substance nucléaire est riche en acide désoxyribonucléíque ($A D N$), qui se combine avec diverses protéines pour former la chromatine. Celle-ci baigne dans une suspension colloidale qui apparait au microscope comme un fond uniforme. Le noyau peut contenir un ou plusieurs nucléoles, qui apparaissent comme des formations intranucléaires rondes et basophiles (de couleur bleue), riches en acide ribonucléique (ARN).

Le cytoplasme est enveloppé d'une membrane, dite membrane cellulaire. Il représente un milieu fluide homogène soutenu par un cytosquelette autour duquel s'organisent les différents constituants, ou organites. Des vacuoles peuvent être observées, qui se présentent sous la forme de petites cavités remplies d'eau et de substances dissoutes.

Les différentes substances entrant dans la composition du cytoplasme sont responsables de ses affinités tinctoriales pour certains colorants (acidophilie ou basophilie). Elles peuvent également donner au cytoplasme un aspect granuleux (présence de macro-molécules d'A.R.N. ou de protéines par exemple).

I. 2°) Critères d'appréciation morphologique des cellules

Les critères d'appréciation morphologique des cellules portent sur les différentes structures cellulaires importantes : noyau, cytoplasme, nucléole et vacuole ; ils font intervenir les notions de nombre, taille, forme, couleur, opacité, texture et topographie : nombre et distribution des nucléoles au sein du noyau, forme du noyau et texture de la chromatine, position relative - excentrée ou non - du noyau au sein du cytoplasme, rapport nucléo-cytoplasmique des surfaces, couleur et granularité du cytoplasme.
11. convient de souligner l'importance particulière que revêt l'aspect de la chromatine nuc1éaire. Depuis 1980, en effet, un grand nombre de travaux conduisent à penser que toute activité cellulaire se traduit par

une organisation particulière de la chromatine nucléaire. Ainsi, une modification normale ou pathologique du programme génétique d'une cellule peut être révéléc par l'analyse d'une modification de l'arrangement de sa chromatine, parfaitement perceptible à l'échelle de la microscopie optique, et ce, avant même que les manifestations spécifiques du nouvean programme ne soient décelables.

L'ensemble des eritères morphologiques permet ainsi, non seulement lidentification du type de la cellule observée, mais également l'évaluation d'éventuelles modifications normales ou pathologiques.

Des renseignements supplémentaires, enfin, sont obtenus par la prise en compte de critères plus globaux, relatifs au spécimen étudié, tels le degré de cellularité, la disposition des cellules, le taux d'apparition des différents types cellulaires, et enfin la présence ou l'absence de types cellulaires particuliers.

I. 3°) Le diagnostic cytologique

Pour établir un diagnostic, outre les examens histologiques et les traitements ou informations cliniques qui leur sont associés, le cytopathologiste doit tenir compte de l'aspect morphologique des cellules, et de l'ensemble des éléments cellulaires présents dans le spécimen cxaminć. Il doit être capable d'apprécier le degré de variations particulières présentées par certaines caractéristiques, par rapport aux références habituelles.

Il est important de noter qu'il existe peu de critères morphologiques spécifiques d'une malignité (formation de corps de Russel, par exemple). Un simple écart de l'aspect morphologique par rapport aux variations normales est le plus souvent observé : augmentation du rapport nucléo-cytoplasmique, condensation de la chromatine nucléaire, vacuolisation du cytoplasme, par exemple ; cet écart, selon le degré de sévérité de la pathologie, est parfois à peine perceptible, et parfois tel qu'ill rend problématique, voire impossible, l'identification du type de la cellule concernée (leucémie myélo-monocytaire, leucémie à blastes indifférenciés).

Des perturbations plus globales sont par ailleurs souvent observées, qui affectent l'équilibre de la répartition cellulaire au sein du spécimen ;

Abstract

elles sont l'expression de la perte des mécanismes normaux contrôlant la multiplication harmonieuse des cellules (blocage de la différenciation, prolifération ou nécrose), ou proviennent de l'infiltration d'éléments cellulaires étrangers au spécimen examiné.

Le diagnostic cytologique, qui implique non seulement la détection, mais également l'identification et l'appréciation du degré de sévérité de la pathologie, est pour ces raisons extrêmement difficile à établir ; il peut nécessiter l'examen de plusieurs centaines de cellules par lame.

II. L'IMAGE HISTOLOGIQUE

L'histologie se fonde sur l'étude des cellules rassemblées en unités plus grandes et plus complexes, les tissus.

L'examen histologique, grâce à la perception des arrangements topographiques, fournit un facteur d'appréciation supplémentaire dans l'évaluation de la bénignité ou de la malignité d'une lésion. Il se fonde, outre les critères d'appréciation au niveau cytologique, sur des critères d'appréciation des architectures et des textures, qui sont extrêmement difficiles à expliciter.

II. 1°) L'organisation histologique

L'organisation histologique implique, selon l'organe étudié, un nombre plus ou moins important de constituants différents, associés selon des règles topographiques plus ou moins fortes, et apparaissant à un nombre plus ou moins élevé de niveaux d'organisation différents.

Quelques exemples dorganisations, parmi les plus courantes, sont présentés, qui illustrent la diversité des constitutions morphologiques possibles (fig. 2).
II. 1.1 ${ }^{\circ}$) Tissu conjonctif

Le tissu conjonctif est composé d'un nombre limité de constituants cellulaires différents (fibroblastes et lymphocytes, par exemple) baignant dans un milieu plus ou moins homogène constitué de substance fondamentale et de divers composants fibrillaires (collagène, réticuline, élastine).

Fig. 2 : Fxemples d'organisations histologiques.
a) Tissu conjonctif ; Ce : cellules ; F : éléments fibreux ;
b) Epithélium stratifié ;
c) Glande ; C : tissu conjonctif ; U : unité sécrétrice.

II.1.20) Epithélium

Abstract

Un épithélium comporte une ou plusieurs couches de cellules identiques juxtaposées (épithélium simple ou stratifié) ; l'ensemble de ces couches repose sur une membrane de soutien, la membrane basale.

II.1.30) Glande

Les glandes proviennent de la différenciation morphologique d'une classe particulière d'épithéliums. Elles sont constituées d'un ensemble d'unités sécrétrices séparées par du tissu conjonctif. Chaque unité sécrétrice est bordée par une ou plusieurs couches 'épithéliales différentes.

II. 2°) Critères d'appréciation morphologique des tissus

Il est extrêmement difficile de qualifier la morphologie d'un tissu. Une telle qualification suppose en effet la description des morphologies et des topographies des constituants perçus aux différents niveaux d'organisation. Une telle description est plus ou moins précise, selon que l'organisation est plus ou moins forte, et plus ou moins reproductible, du fait de l'incidence de l'orientation du plan de coupe sur l'aspect morphologique d'un constituant donné. Il convient de souligner à cet égard qu'une appréciation exacte de la morphologie tissulaire implique très souvent la faculté du cytopathologiste à reconstruire dans l'espace les volumes dont il ne peut percevoir qu'une section à un instant donné.

Quelques exemples de critères d'appréciation morphologiques sont présentés, relatifs à la description des organisations histologiques définies dans le paragraphe précédent.

II. 2.1°) Tissu conjonctif

La description d'un tissu conjonctif implique tout d'abord celle de ses constituants cellulaires : aspect fusiforme des fibrocytes, forme étojlée des cellules histiocytaires, forme géométrique des adipocytes. Les éléments fibreux sont décrits par leur coloration, et par la densité et
la régularité de leur arrangement : aspect ondulé, orienté ou non, dense ou lâche.

(1.2.20) Epithélium

Deux caractères morphologiques essentiels permettent de classer les épithéliums : la forme des cellules, observées sur des coupes perpendiculaires à la surface épithéliale, et le nombre de couches cellulaires.

Les cellules sont de forme cubique, cylindrique ou irrégulière (épithélium pavimenteux) et sont étroitement juxtaposées.

L'épithélium stratifié est caractérisé par un nombre variable d'assises cellulaires, dont les cellules subissent une évolution morphologique et fonctionnelle, depuis l'assise basale jusqu'aux couches superficielles les plus différenciées.

(I.2.30) Glande

Une glande, outre sa nature épithéliale, est essentiellement caractérisée par sa forme, par le degré de ramification de ses canaux (glande simple, composée, ramifiée, contournée) et la forme de ses cellules.

II. 3°) Le diagnostic histologique

Le diagnostic histologique se fonde sur la recherche d'une altération de l'aspect histologique, susceptible de s'exprimer à tous les niveaux de l'organisation tissulaire.

Les pathologies à caractère invasif se manifestent par un bouleversement plus ou moins remarquable de l'organisation tissulaire. Des éléments cellulaires étrangers ou anormaux sont observés, qui, par la préservation de certaines de leur caractéristiques fonctionnelles, se regroupent parfois pour constituer des éléments tissulaires plus ou moins spécifiques (regroupements en cordons, ou en massifs, par exemples).

Lorsque l'organisation tissulaire est relativement préservéc, divers degrés d'altérations morphologiques des constituants peuvent être observées: destruction ou nécrose des tissus, altération des formes glandulaires et de la stratification épithéliale, hypertrophies éventuelles.

Au niveau cytologique, enfin, diverses altérations peuvent survenir (atrophie, hypertrophie cellulaire par exemple) qui se traduisent par une désorganisation au niveau tissulaire : disparition d'un élément cellulaire particulier, disharmonie de l'aspect tissulaire résultant d'une forte variabilité des aspects morphologiques présentés par des cellules de même type.

Les images microscopiques, tant dans le domaine de la cytologie que dans celui de l'histologie, offrent une représentation planaire de l'organisation. La description de ces images implique l'élaboration de critères complexes d'appréciation des morphologies et des topographies, aux différents niveaux de l'organisation. La pertinence d'une telle description est étroitement tributaire, non seulement du soin apporté aux étapes de préparation et de coloration, qui conditionnent la qualité de la représentation finale, mais également des facultés du système perceptuel à discerner, discriminer et évaluer les aspects morphologiques, ces facultés étant acquises au terme d'un long apprentissage. L'interprétation, enfin, implique une large base de connaissances, plus ou moins directement liées au spécimen observé; la compréhension finale des phénomènes òbservés résulte d'une articulation complexe entre des processus successifs de perception et d'interprétation.

C. DE LA PERCEPTION A L’INTERPRETATION DES IMAGES

Le système nerveux central est un système doué de la double faculté d'ouverture et de fermeture. Il est en effet ouvert, car susceptible d'interagir avec le milieu extérieur, selon des modalités régies par des lois qui lui sont propres.

Outre ces capacités d'intégration, il fait preuve par ailleurs de capacité de transformations qui le conduisent à générer d'autrẹ éléments, susceptibles à leur tour d'analyse (capacité de fermeture) : ces propriétés lui confèrent ainsi une individualité absolue et spécifique (Bourguignon 85) .

11 est particulièrement intéressant, à cet égard, d'étudier les modes d'interaction et de communication entre les images du monde externe, considérées ici comme planaires et statiques, et le système nerveux central. Les images constituent en effet un support privilégié d'expérimentation du comportement cérébral, par la richesse des items ou des objets qu'elles représentent, par la variété de leurs combinaisons possibles, et enfin par les propriétés mêmes d'organisation et de cohérence des éléments dont elles sont le reflet.

Différentes données, tant neuro-anatomiques, que physiologiques ou psychoperceptuelles, sont regroupées ici, qui explicitent les modes successifs de transformation des stimuli externes, depuis leur intégration par le système oculaire, jusqu'à leur interprétation conceptuelle. L'examen des processus d'élaboration et de généralisation, mis en jeu à cet égard, révèle certaines caractéristiques essentielles du système nerveux central, qui sont une spécificité de réponse liée à une forte sensibilité contextuelle, ainsi qu'une capacité d'organisation reflétant l'ensemble des contraintes qui régissent l'abstraction progressive d'une information donnée. Des stratégies sont mises en oeuvre enfin pour guider ces processus, qui permettent de réduire l'exploration des données, de délimiter l'ensemble des connaissances appropriées au domaine, et d'intégrer l'information de façon synthétique et organisée au sein des connaissances.

I. FORMATION DU MESSAGE SENSORIFL

La perception d'une scène est issue de l'analyse d'un message sensoricl complexe, progressivement élaboré all cours de son cheminement le long des voies visuelles primaires, puis transmis aux espaces spécialisés du cerveau.

Le message sensoriel est un ensemble de signaux nerveux qui représentent à un instant donné les informations extraites de limage optique de la scène, formée initialement sur la rétine. La représentation de ces informations est tout d'abord discrète, de nature ponctuelle; elle est transformée au niveau du cortex en une représentation par primitives, de nature locale. C'est autour de ces deux niveaux fondamentaux de représentation que s'articule l'ensemble des transformations effectuées par les cellules nerveuses, impliquées aux différentes étapes du cheminement de l'information visuelle.

Ces transformations apparaissent regroupées en deux classes selon les deux pôles de spécialisation et d'abstraction du message sensoriel. Tout point, ou toute zone, du champ visuel est en effet analysé à un instant donné par plusieurs cellules nerveuses, activées en parallèle, et agissant comme des opérateurs spécialisés dans la détection de traits particuliers de l'image. L'influx nerveux, issu de l'activation d'un type donné de cellules nerveuses, opérant en parallèle sur l'ensemble du champ visuel, est lui-même progressivement intégré par un ensemble de cellules de même type, disposées en couches successives, ordonnées selon le diamètre croissant de leur champ récepteur.

Le message sensoriel est l'expression des facultés de spécialisation ct d'intégration du système visuel ; il est le support d'informations, relatives aux traits caractéristiques de l'image, dont les propriétés fondamentales sont le degré de spécificité et le niveau d'abstraction.

I.10) Cheminement de l'information visuelle

Le flux lumincux, issu d'une scène ou d'un objet en cours d'observation, constitue le stimulus externe ; ce stimulus est capté et
transformé par l'oeil qui, considéré comme un système optique évolué, effectue la projection de l'image optique réelle de la scène sur la rétine. Les cellules sensibles de la rétine, ou photorécepteurs, convertissent l'énergie lumineuse en signaux nerveux qui sont transmis au cerveau, et qui constituent le message sensoriel primaire. Ce message primaire est une représentation discrète de l'image optique, dont la résolution est plus fine au centre qu'à la périphérie. La distribution des photorécepteurs sur la rétine, en effet, n'est pas homogène, elle est plus dense dans une petite dépression située au centre de la rétine et appelée la fovéa. La scrutation d'un objet, détecté dans la zone visuelle périphérique, nécessite donc la commande d'un mouvement oculaire visant à centrer l'image de cet objet sur la fovéa.

Deux fonctions visuelles primaires peuvent ainsi être différenciées, qui sont les fonctions de scrutation et de détection. Le message sensoriel primaire emprunte à cet égard deux voies parallèles (Schneider, 1969) : la voie rétino-mésencéphalique et la voie rétino-géniculo-striée (fig. 3).

1.1.1 ${ }^{\circ}$ La voie rétino-mésencéphalique

La voie rétino-mésencéphalique implique la rétine, le colliculus supéricur, et le cortex. Le colliculus présente une organisation complexe qui comporte, outre des cellules sensorielles (visuelles, somatiques et auditives), des cellules motrices et sensori-motrices. Il constitue un noyau central de transmission et de concentration d'informations sensorielles diverses ; il joue un rôle important dans les fonctions d'orientation et de poursuite, et participe à la commande des mouvements oculaires.

(1.1.20) La voie rétino-géniculo striée

Alors qu'une certaine partie des fibres optiques issues de la rétine se projettent sur le colliculus supérieur, d'autres se dirigent vers les deux corps genouillés latéraux, qui constituent un relais sur le trajet des voies optiques, et se projettent eux-mêmes sur le cortex strié, ou aire visuelle primaire (aire 17).

L'aire 17 est chez tous les mamifères l'aire visuelle la plus importante ; elle est responsable de l'analyse de la majeure partie des informations provenant des corps genouillés, et particulièrement des informations issues de l'analyse fovéale, la fovéa se projetant exclusivement sur les corps genouillés latéraux.

L'aire 17 est un lieu critique de transformation du message sensoriel dont la représentation ponctuelle discrète est progressivement remplacée par une représentation plus abstraite, fondée sur la notion de primitive, issue de l'analyse des éléments morphologiques primaires de l'image (forme rudimentaire, élément de tex́ture, plage uniforme colorée ou non, etc...).

(.20) Spécialisation et parallélisme

A chaque étape de son cheminement le long des voies visuelles, le message sensoriel est transformé puis transmis par différents types de cellules neurales, massivement interconnectées, et regroupées en plusieurs couches, au sein de corps particuliers (rétine, corps genouillé latéral, cortex strié), qui correspondent à des étapes plus ou moins spécifiques du traitement de l'information. L'activité des cellules neurales obéit à un certain nómbre de règles générales, indépendamment de leur spécialisation particulière.

I. 2.1°) Les cellules neurales

Toute cellule neurale répond à un stimulus externe par une modification de son activité sensorielle. Elle réagit par "excitation" si ce taux d'activité est augmenté, et par "inhibition" dans le cas contraire. Une telle réaction n'est possible que si la position du stimulus coincide avec le domaine de sensibilité de la cellule, ou "champ récepteur". L'organisation du champ récepteur est spécifique de l'activité neurale : elle représente la façon dont les stimuli externes éventuels sont perçus et combinés. Une cellule neurale donnée est ainsi activée par un ensemble de stimuli dont la position, la forme, la taille, voire l'organisation, sont codés de façon précise par son champ récepteur.

Le parallélisme est une caractéristique fondamentale de l'analyse visuclle, qui résulte du principe de superposition spatiale des champs récepteurs des cellules neurales (Crettez, 1984). Un point, ou primitive, du champ visuel, est recouvert à un instant donné par les champs récepteurs de plusieurs cellules, de spécialisations différentes, organisés en couches successives.

L'ensemble des stimuli ponctuels issus du champ visuel sont eux-mêmes pris en compte, à un instant donné, par une couche de cellules neurales, dont les champs récepteurs sont répartis selon un maillage hexagonal...Ce maillage n'est pas un mallage régulier : la densité cellulaire, en effet, est plus forte au centre (zone fovéale) qu'à la périphérie.

L'analyse au niveau cortical est de type local : plusieurs points du champ visuel (voisinage local) sont recouverts par un champ récepteur "global", issu du recouvrement partiel des champs récepteurs des cellules corticales impliquées dans cette analyse.

Une représentation schématique de la structure neurale correspondante est présentée figure 4.

Il convient enfin de rappeler que l'ensemble de l'activité neurale, produite à un instant donné par une même couche de cellules neurales, est l'expression , non seulement des activités cellulaires individuelles mais également des activités d'interaction locale entre ces cellules. Toute cellule est en effet susceptible d'inhiber l'activité des cellules voisines avec une force proportionnelle à son taux d'excitation et inversement proportionnelle à sa distance. Cet effet d'inhibition latérale est linéaire et provoque un rehaussement des contrastes de l'image observée (Davidson, 1968).

1.2.30) Spécialisation

11 convient de distinguer deux étapes fondamentales dans le traitement de l'information visuelle : l'étape précorticale et l'étape corticale qui impliquent, l'une, des traitements à caractère ponctuel, et la seconde, des traitements à caractère local (fig. 5).

Espace cortical

Espace genouillé

Espace rétinien

Fig. 4 : L'analyse neurale et le parallélisme.
Les informations provenant de zones neurales différentes sont transmises en parallèle d'un espace visucl à un autre. Chacune d'entre elles est analysée simultanément, au niveau supérieur, par différents types de cellules neurales.

Fig. 5 : Champs récepteurs des cellules neurales.
a) Champs récepteurs des cellules de type X; (corps genouillé latéral) ;
b) Exemples de champs récepteurs de cellules corticales simples ;
c) Exemple de champ récepteur d'une cellule corticale complexe (tiré de Crettez 84).

I.2.3.1 ${ }^{\circ}$ L'étape pré-corticale

Le message sensoriel primaire, formé au niveau des photorécepteurs de la rétine, est traité en parallèle par trois populations séparées de cellules (cellules de type X, Y et W) et transmis au cortex selon trois voies d'analyse différentes, les cellules de type X se projetant principalement sur l'aire 17 , les cellules de type Y sur l'aire 18 , et les cellules de type W sur l'aire 19.

Les cellules de type X, dites "toniques", sont spécialisées dans l'analyse des détails en raison du faible diamètre de leur champ récepteur. Elles répondent par excitation ou inhibition (champ récepteur de type "centre-ON" ou "centre-OFF") et réalisent une sommation linéaire; leur champ récepteur est de type circulaire.

Les cellules de type y, dites "phasiques", sont sensibles au mouvement des objets. Elles possèdent un champ récepteur de type circulaire, de grand diamètre ; leur réponse est non-linéaire.

La classe des cellules de type W est hétérogène ; elle regroupe des cellules toniques et phasiques, et également des cellules à champs récepteurs non circulaires, semblables à des détecteurs de bords ou d'uniformités.

Ces trois classes de cellules ont pu être observées, aussi bien au sein des cellules ganglionnaires de la rétine, qu'au sein des cellules du corps genouillé latéral, celles-ci recevant, selon leur type, les efférences respectives des cellules ganglionnaires de type X, Y ou W (Crettez, 84).

I.2.3.20) L'étape corticale

Deux classes particulières de cellules, les cellules simples et les cellules complexes jouent un rôle fondamental dans l'analyse corticale. Il convient néanmoins de rappeler la présence à ce niveau de cellules à champ récepteur circulaire, de type centre-ON ou centre-OFF, sensibles à des bords lumineux colorés, insensibles à l'orientation ou au mouvement.

Le champ récepteur des cellules simples est constitué de plusieurs régions de même orientation, répondant chacune par excitation ou inhibition, et présentant un effet de sommation linéaire. Les cellules simples ont globalement un comportement linéaire, résultant d'un effet d'antagonisme entre les différentes régions. Leur activité peut ainsi être modélisée comme le résultat d'une transformation locale bidimensionnelle ;
cette activité est plus précisément spécifique des caractéristiques d'orientation et de fréquence spatiale des stimuli analysés. En effet, si les cellules du corps genouillé présentent un spectre circulaire centré, à bande limitée, les cellules corticales simples présentent un spectre délimitant une petite zone du domaine fréquenticl, caractérisée par les coordonnées polaires d'angle et de fréquence.

Une zone donnée du champ visuel, enfin, est analysée par un ensemble de cellules simples dont les champs récepteurs réalisent un échantillonnage régulier de l'espace de Fourier, cet échantillonnage étant d'autant plus fin que le champ récepteur de la cellule est plus grand (Crettez, 84).

Les cellules complexes présentent, comme les cellules simples, un comportement angulo-fréquentiel ; néanmoins celui-ci se différencie fondamentalement du comportement des cellules simples par son indépendance vis à vis de la phase du stimulus observé. La modélisation des champs récepteurs des cellules complexes se fonde en effet sur le principe de superposition, en tout point du champ récepteur, de sous-régions de polarité opposées (de type $O N$ et de type OFF) dont les réponses individuelles sont combinées par un circuit $0 U$. La réponse des cellules complexes est donc typiquement non-linéaire ; elle est la même pour une barre lumineuse ou pour une barre sombre.

Les cellules complexes agissent comme des opérateurs invariants en translation, elles pourraient être directement impliquées dans l'analyse des textures (Crettez, 84).

1. 3°) Hiérarchic et abstraction

L'étude des modes de transformation de l'influx nerveux révèle, tout au long de son cheminement dans les structures visuelles, la présence de deux voies parallèles d'analyse, correspondant à l'activation simultanée de cellules dont le comportement est respectivement de type linéaire ou non-linéaire. Cette étude révèle en outre la présence de deux niveaux successifs d'intégration de l'influx nerveux (fig. 4), correspondant à l'activation de cellules dont les champs récepteurs sont de complexités différentes (cellules pré-corticales et cellules corticales). C'est autour de cette observation que s'est construite la théorie de la structure hiérarchique du système visuel (Hubel et Wiesel, 1962).

I1. est important de rappeler à cet égard que tous les processus d'élaboration du message sensoriel possèdent la propriété fondamentale d'abstraction de l'information (fig. 6).

L'image d'une scène est perçue simultanément, au niveau rétinien, par un ensemble de cellules ganglionnaires disposées en couches, ordonnées selon le diamètre croissant de leurs champs récepteurs. Cette perception, progressivement plus grossière, du champ visuel, est transmise au cortex par le biais des cellules-relais du corps genouillé latéral, dont l'organisation est similaire ; une cellule ganglionnaire d'ordre i se projette en effet sur une cellule géniculée de même ordre. Les cellules corticales présentent des particularités similaires. Différents ordres de cellules simples peuvent être distingués, selon le diamètre de leurs champs récepteurs.

Le champ récepteur d'une cellule corticale simple de premier ordre recouvre plusieurs champs ganglionnaires adjacents, de même type et de même ordre. Le champ récepteur d'une cellule corticale simple d'ordre i recouvre plusieurs champs récepteurs de cellules corticales simples d'ordre i-1 et de même comportement angulo-fréquentiel.

Différents ordres de cellules complexes peuvent également être distingués. Les cellules complexes de ler ordre reçoivent les efférences de cellules genouillées de même type, de même ordre, mais de polarités différentes (centre-ON et centre-OFF). Les cellules complexes du second ordre reçoivent les efférences de cellules simples du premier ordre, de même caractéristiques angulo-fréquentielles, ainsi que les efférences de cellules genouillées. Plus généralement, les cellules complexes d'ordre i reçoivent les efférences de cellules simples d'ordre i-1, ainsi que les efférences directes des cellules du corps genouillé latéral.

Une telle présentation, volontairement très simplifiée, relève d'un double souci de synthèse et de focalisation sur le type de mécanismes présidant à la formation du message sensoriel. Par le caractère à la fois spécialisé et progressivement intégrateur de l'activité neurale, le système visuel procède à l'élaboration d'un véritable message, porteur à la fois des informations les plus précises et les plus abstraites, spécifiques des caractéristiques de couleur, de texture, d'orientation et de contraste des scènes observées.

II. PERCEPT ET CONCEPT : DES MODES D'ELABORATION AUX STRATEGIES D'INTERPRETATION

Abstract

L'intégration progressive du message sensoriel par"le système nerveux central implique la transformation de l'espace des représentations sensorielles et sa projection dans l'espace des représentations perceptuelles et conceptuelles. La distinction entre deux phases successives, impliquant la formation du percept d'une part, l'élaboration ou la découverte du concept associé d'autre part, semble principalement justifiée par souci de clarification méthodologique. Si un concept, en effet, est défini comme la représentation mentale, générale et abstraite d'un objet, le percept apparait simultanément comme la représentation synthétique ultime du message sensoriel, et comme la réalisation primaire d'un concept plus général. Le percept constitue ainsi le lieu virtuel de l'articulation entre sensations et connaissances.

Les activités essentielles qui président à la projection de l'espace des sensations dans celui des connaissances (ensemble de notions présentes à l'esprit en tant qu'objets analysés) sont des activités d'élaboration et de généralisation. L'élaboration d'un concept abstrait résulte de l'association d'éléments perceptuels ou conceptuels, la généralisation de ce même concept fait appel à l'ensemble des connaissances, elle procède par analogie entre un concept inconnu et une notion présente en mémoire.

L'ensemble de ces activités, enfin, s'articule selon des stratégies particulières d'exploration des données du monde extérieur (images) et des connaissances, qui visent à conduire l'analyse et l'intégration de ces données selon des principes de cohérence et d'organisation propres à l'ensemble du système nerveux central.

II.1) Percept et concept : les modes d'élaboration

Les activités d'abstraction qui président à la formation du message sensoriel correspondent à l'intégration progressive des signaux nerveux issus de la rétine par un ensemble de cellules neurales interconnectées en couches successives. L'extraction successive d'items de plus en plus spécifiques de l'image observée (éléments de texture, frontières orientées), résulte de l'association d'items plus élémentaires, association
régie par un ensemble de connexions synaptiques excitatrices et inhibitrices. Une perception progressivement plus globale de ces mêmes items résulte par ailleurs de leur intégration par des cellules de même type présentant des champs récepteurs de diamètres croissants. Tout item, ou élément primitif d'une image, est ainsi analysé par le système sensoriel selon deux modes simultanés, impliquant son intégration au sein d'un contexte progressivement plus étendu, et sa combinaison avec d'autres items, extraits de régions voisines de l'image.

Ces deux modes d'analyse, qui sont le reflet de lorganisation ncurale spécifique du système visuel, seraient une caractéristique commune à l'ensemble du système nerveux : ils permettent en effet de comprendre, au moins de façon parcellaire, les phénomènes physiologiques responsables d'un grand nombre d'activités psychoperceptuelles. A cet égard, toute perception est définie comme la résultante des différentes sensations de forme, de couleur, de mouvement et de profondeur, combinées de façon spécifique. Tout concept est de même défini comme une notion émergeant de l'association de concepts plus élémentaires. 1 ce principe d'association est ássocié un principe de généralisation, selon lequel toute sensation ou perception est considérée comme la réalisation d'un concept particulier, lui-même constituant une instance d'un concept plus général.

II. 1.1°) 人bstraction et phénomènes associatifs

Le problème, examiné sous l'angle psychoperceptuel, est celui de l'explicitation des lois possibles qui régissent à un instant donné l'association d'items élémentaires, présidant ainsi à l'émergence d'items plus abstraits. La théorie de la forme, fondée sur la théorie gestaltiste de l'organisation, offre à cet égard un cadre conceptuel d'explication de nombreux phénomènes perceptuels. Selon cette théorie, la perception globale d'un ensemble d'items résulte, non pas de la simple accumulation de leurs propriétés individuelles, mais également de l'analyse des relations qui unissent ces items. Toute activité de regroupement est ainsi régie par la vérification d'un ensemble de contraintes, telles que la proximité, la similarité, la continuité et la fermeture. Dans ce cadre, toute abstraction réalisée au niveau conceptuel serait issue de l'activation de processus similaires de catégorisation, fondés sur la recherche d'affinités entre concepts.

Percepts et concepts émergent ainsi de l'association de notions progressivement plus abstraites, ils constituent les noeuds d'une arborescence regroupant successivement des faisceaux de sensations, de perceptions, puis de concepts, selon un mode ascendant d'élaboration (fig. 7).

Ces phénomènes, mis en évidence par de nombreuses expériences psychoperceptuelles, sont le reflet des modes d'activité et d'organisation du système nerveux central. Ce dernier est en effet constitué de différents modules neuraux interconnectés et organisés de façon hiérarchique (Lecerf, 85). L'activité du système est potentiellement autorégulée par le développement de boucles de rétroaction internes responsables de la stabilisation du système autour d'un état d'équilibre (niveau d'excitation interne minimum). La perception par le système d'un événement extérieur se traduit par une première phase d'excitation (perturbation de l'état d'équilibre) suivie d'une phase plus ou moins longue de stabilisation, correspondant à l'apparition d'un nouvel équilibre métastable. Le retour à la phase d'équilibre est conditionné par lá stabilisation progressive des activités des modules neuraux qui sont régies par des principes similaires.

Minsi, toute activité de reconnaissance, c'est-à-dire d'intégration de notions ou d'items différents, s'appuie sur la recherche d'une structure ncurale adaptée, exprimant les liens ou regroupements possibles entre ces différentes informations sous la contrainte de minimalité de l'activité neurale. Il convient d'examiner les facteurs capables de faciliter ou d'inhiber l'expression neurale : tant les caractéristiques propres de l'objet examiné que la nature du contexte dans lequel il est situé interviennent à cet égard.

II.1.20) Facteurs conditionnant 1^{\prime} expression neurale

La facilité à identifier ou analyser un objet est liée de façon évidente à la complexité de sa forme et de sa structure. Elle est liée plus précisément à la possibilité d'analyser ses différentes caractéristiques comme des composantes séparées ou non. Tout objet est en effet décomposé par le système sensoriel selon un ensemble d'items participant aux sensations de forme et de couleur. Le principe de similarité, sur lequel s'appuie la recherche d'association entre objets, s'applique à un niveau
plus ou moins global d'analyse, selon que les items utilisés apparaissent plus ou moins étroitement intriqués, donc moins clairement décomposables. L'analyse effectuée au niveau global apparaît facilitée lorsque les caractéristiques des items élémentaires présentent des variations corrélées ; inversement l'analyse n'est pas affectée lorsque ces mêmes items participent de façon indépendante à l'organisation de la forme.

A un niveau plus génêral, de nombreuses expériences ont montré que notre capacité à analyser un objet est influencée par la forme et l'organisation du contexte dans lequel se trouve placé l'objet. La détection de ce dernier est une tâche plus aisée s'il est impliqué dans une structure générale perçue comme cohérente ; de plus, la perception d'une organisation globale cohérente ou au contraire conflictuelle, compte tenu des différentes morphologies et structures individuelles, est un facteur facilitant ou perturbant l'analyse. Une illustration de ces phénomènes est donnée dans la figure 8.

Une situation perceptuelle conflictuelle est le reflet des activités excitatrices conflictuelles de modules neuraux différents : les activités d'inhibition, régulatrices de l'activité neurale, ont pour effet de rehausser les items perçus comme "signifiants" à un instant donné ; la résolution des conflits - préalable nécessaire à la convergence vers un nouvel état d'équilibre exprimant l'intégration de ces items par le système - est un facteur pénalisant l'analyse.

[^0]

Tout élément prend donc sa force dans la cohérence du système dans lequel il est placé. Ceci révèle combien l'organisation est nécessaire à l'expression d'activités neurales structurées et à la mémorisation.

II.1.30) Abstraction et généralisation

Toute activité d'interprétation du percept ou de compréhension d'un concept nouveau implique leur intégration dans un réseau de connaissances. 11 convient donc d'examiner les modes possibles de représentation de ces différents éléments. Différentes théories se confrontent à cet égard : la plus plausible, d'un point de vue physiologique, repose sur l'idée d'une représentation par éléments caractéristiques, émise par Selfridge en 1959. La spécificité de réponse des cellules du cortex visuel est responsable de la décomposition du stimulus externe en items caractéristiques (frontières orientées, éléments de texture ...). L'extrapolation de cette capacité à l'ensemble des cellules neurales soutient l'hypothèse de la présence de cellules corticales spécifiques, puis hyperspécifiques, capables de répondre à des, combinaisons particulières de caractéristiques relatives à des notions plus ou moins abstraites. Percept et concept seraient ainsi "codés" sous la forme d'un ensemble de caractéristiques, par des cellules neurales spécialisées.

La mise en oeuvre des activités de généralisation implique par ailleurs que les éléments descriptifs sur lesquelles elles se fondent fournissent une définition suffisamment "généralisée" des composants, attributs et relations représentant un concept, ceci conditionnant la reconnaissance possible d'une notion ou sensation nouvelle comme réalisation de ce même concept. Il convient de rappeler à cet égard qu'un certain nombre d'éléments perceptuels apparaissent comme des invariants de l'activité de reconnaissance (Wyburn, 64) : il s'agit des caractéristiques de luminance, position, contexte (sous certaines conditions) et orientation. Le niveau d'attention requis dépend par contre des conditions particulières d'observation. Les éléments caractéristiques représentant un objet sont donc plutôt de type relationnel que de type absolu : le système visuel n'effectue pas de mesure, il procède par analogies et par associations, sclon les lois de régulation neurale.

Il convient finalement d'examiner les mécanismes par lesquels un événement, issu du milieu externe, peut être reconnu comme analogue à un concept présent en mémoire.

Ce concept, présent en mémoire comme un élément de pensée déjà analysé, est représenté par un réscau de neurones, spécifiques des différentes facettes de cètte connaissance. La forme des connexions synaptiques externes de chaque neurone est représentative de la forme spécifique sous laquelle une composante d'un événement externe est susceptible d'être reconnue ou non par celui-ci (augmentation ou inhibition du potenticl d'activité). La forme des interconnexions internes au réseau est représentative des relations liant les facettes de connaissance.

La perception par le réscau d'un événement externe perturbe l'état d'équilibre initial. Différentes formes d'activité neurale surgissent, qui s'articulent autour de deux phases principales de décomposition et d'intégration (Kohonen, 85). La première phase vise à localiser les unités neurales susceptibles de représenter les différentes composantes de l'événement, c'est-à-dire répondant par un taux d'activité maximum à l'intégration d'une composante donnée. La deuxième phase d'intégration globale de l'événement implique la mise en oeurre des activités de rétroaction qui visent à rchausser l'activité des cellules neurales impliquées dans l'intégration des composantes les plus robustes, au sens de leur consistance au sein du réseau. Ces activités sont régies par les lois de plasticité synaptique (lois de Hebb) qui conditionnent l'augmentation de l'efficacité synaptique à la conjonction des activités pré- et post-synaptiques (Ans, 85). Un nouvel état d'équilibre est atteint progressivement par stabilisation d'une nouvelle structure neurale, expression de l'événement perçu dans la base des facettes de connaissance initiales (fig. 9).

Apprentissage, reconnaissance et distinction s'appuient ainsi sur une dynamique unique, fondée sur le retour des structures neurales vers un état de moindre excitation (Lecerf, 85).

II. 2") Stratégies d'analyse et d'interprétation

L'exploration d'une image, guidée par la recherche plus ou moins consciente d'un certain nombre d'informations, met en jeu différents processus complexes d'analyse et d'interprétation intervenant tant au niveau perceptuel qu'au niveau conceptucl. Ces processus s'articulent dans 1.e ćadre de véritables stratégies qui définissent les modalités de scrutation, de mómorisation, de raisonnement et d'utilisation des connaissances.

Trois facteurs essentiels conditionnent ces stratégies, qui sont la forme et la structure de l'image observée, la variété et l'organisation des connaissances, et enfin la complexité de la tâche à accomplir. Les modes d'intégration des données perceptuelles et conceptuelles émanant du monde externe semblent néanmoins obéir à une logique intrinsèque, reflet des modalités de l'expression neurale.

II. 2.1°) Modes intrinsèques d'intégration des données perceptuelles et conceptuelles

De nombreuses expériences ont mis en évidence que l'intégration progressive des données perceptuelles émanant d'une image s'effectuc selon un mode descendant d'exploration. La perception première d'une image est. une perception globale reflétant son organisation et sa forme générale. L'application des règles gestaltistes de l'association semble ainsi intervenir à un stade précoce en privilégiant l'analyse des propriétés émergentes des ensembles organisés, plutôt que l'analyse de leurs détails (fig. 10).

Les mêmes phénomènes peuvent être décelés au niveau conceptucl, où l'effort d'analyse est précédé par un effort de catégorisation, impliquant d'abord les éléments caractéristiques les plus globaux.

Un tel processus hiérarchique descendant est couplé à un processus parallèle d'exploration latérale des éléments perçus à un niveau donné. Des expériences ont mis en évidence que ce type de tâche est facilité par la présence de groupes d'éléments appartenant à des catégories perceptuelles ou conceptuelles différentes : ceci confirme le caractère intrinsèque fondamental des modes "gestaltistes" d'intégration de ces données.

Ces phénomènes de catégorisation pourraient être le reflet des modes physiologiques de régulation de l'activité neurale : les effets de rétroaction impliqués à cet égard sembleraient mettre en jeu, en phase d'initialisation, des ncurones ou modules neuraux relativement éloignés, le noyau d'interaction se réduisant progressivement à un proche voisinage (Kohonen, 85). La primauté est ainsi donnée à une activité de recherche d'une cohérence globale, plutôt qu'à une activité de mise en correspondance de détails.

Ce type de stratégie, enfin, paraît essenticl aux fonctions de mémorisation : tant le contexte, que le contenu thématique ou sémantique d'une perception ou d'un concept, sont des facteurs clés, qui permettent l'élaboration de véritables structures de données mentales, capables d'organiser et d'intégrer les informations de détail. La force de la mémoire ne réside pas tant dans sa capacité à enregistrer des détails que dans sa capacité à utiliser jorganisation pour construire des représentations significatives d'images ou de concepts (Spoehr, 82).

11.2.20) Stratégies eit connaissances

Les facultés d'apprentissage du système nerveux lui permettent de constituer et de mémoriser de véritables cartes cognitives, résultant de la combinaison d'informations à la fois figuratives et propositionnelles (Spoehr, 82) (fig. 11).

Une image, ou un concept, est en effet stocké en mémoire de façon figurative sous la forme d'un ensemble de composantes élémentaires où l'information spatiale est organisée de façon hiérarchique. Des informations .propositionnelles sont susceptibles de se développer par apprentissage, qui déterminent les relations et propriétés autorisées pour différentes classes d'éléments, ainsi que les liens possibles entre les entités et catégories d'entités. Les modalités d'utilisation de ces différents types d'information sont extrêmement variables d'un observateur à un autre : si les facultés d'imagerie mentale illustrent de façon éclatante les capacités de mémorisation figurative, le propre de la mémoire propositionnelle réside dans la définition des contraintes du monde physique.

Fig. 11 : Cartes cognitives et stratégies d'exploration.
a) Représentation des informations figuratives et propositionnelles ;
b) Focalisation sur les données images (items et attributs) pertinentes à un niveau donné ;
c) Localisation des connaissances nécessaires.

Les plus usitées d'entre elles sont les contraintes de support, d'interposition, de probabilité d'occurrence, de position et de taille relative (Biederman, 81). Ces contraintes exercent une influence déterminante sur les modes d'exploration et d'intégration des données tant perceptuelles que conceptuelles. Ainsi, la détection d'une violation de contrainte est un facteur inhibant l'analyse, au même titre que la découverte d'un contexte inapproprié.

L'utilisation des connaissances propositionnelles, dans les autres cas, permet de réduire le niveau d'attention requis, par la mise en ocuvre de stratégies de prédiction-vérification. Flles permettent de réduire le nombre de caractéristiques nécessaires à l'interprétation en privilégiant, par le jeu des effets rétroactifs d'excitation ou d'inhibition, les attributs les plus significatifs. Elles permettent plus généralement de réduire l'exploration d'un élément, en focalisant l'analyse sur les zones les moins prédictibles, donc les plus informatives, une exploration partielle des autres composantes s'avérant suffisante. En phase de vérification, la connaissance a priori des caractéristiques nécessaires permet de contraindre les modules d'analyse, en limitant donc les activités de régulation. Elles permettent enfin de réduire les temps de recherche en mémoire, en délimitant l'ensemble des connaissances nécessaires à un instant donné.

II. 2.2°) Stratégies et mode de scrutation

Le niveau d'interprétation recherché conditionne de façon évidente le niveau d'attention requis sur l'image, de même qu'interviennent clairement la cohérence interne de la structure observée et son harmonie avec l'environnement d'une part, et l'expertise de l'observateur d'autre part.

Indépendemment de ces différents facteurs, la stratégie préférentielle est descendante, guidée par la vérification des contraintes globales d'organisation, attirée vers les objets à contenu informatif élevé : éléments d'interprétation recherchés, éléments peu prédictibles, éléments de ruptures ou de discontinuités.

Ce type de stratégie, applicable lorsque l'expertise est suffisante, constitue une première étape de détection automatique fondée sur un mode de traitement partiel. Cette tâche requiert peu de contrôle attentionnel et procède à un niveau donné en parallèle sur les différents éléments.

Lorsque l'expertise est insuffisante, ou que les principes de catégorisation ne peuvent s'appliquer, à un niveau donné, une stratégie différente est mise en oeuvre fondée sur une recherche systématique, effectuée en série, et impliquant un haut niveau de contrôle attentionnel.

Enfin, la résolution de conflits, ou d'ambiguîtés, est susceptible de nécessiter un effort de scrutation supplémentaire, fondée sur la recherche de détails discriminants. Une recherche ascendante peut également être mise en oeuvre, permettant par l'implication du contexte, une éventuelle ré-orientation de l'analyse.

Ces différents facteurs conditionnent les mouvements oculaires (fixations et saccades) par un effet de rétroaction impliquant la deuxième voie de traitement des informations sensorielles, et affectant donc le colliculus supérieur. Ils agissent comme des forces conductrices, capables de provoquer un changement de focalisation, pour résoudre une situation ambiguë, déterminer ou confirmer le concept le plus spécifique applicable à un instant donné, retrouver des détails de description.

L'ensemble des processus guidant l'émergence progressive des sensations, des perceptions et des concepts relatifs à une inage donnée s'exercent ainsi selon une stratégie ascendante de regroupements successifs. La mise en oeuvre de ces processus, liée de façon intrinsèque à la nature de l'image observée, est simultanément conditionnée au mode intrinsèque d'exercice de l'activité neurale elle-même, contraignant les regroupements de bas niveau à l'obtention d'une cohérence d'organisation globale, délimitée à un niveau supérieur.

Cet effort intrinsèque de structuration est par ailleurs sounis à un ensemble de contraintes extrinsèques, liant l'exploration de l'image à la nécessité, plus ou moins consciente, de son interprétation. L'ensemble des connaissances acquises est impliqué à cette étape, selon le jeu de processus projectifs réciproques. Si la projection, effectuée par analogie, d'une donnée dans l'espace des connaissances permet la formulation d'une hypothèse d'interprétation, celle-ci suscite la recherche dans l'image des éléments fils ayant présidé à son élaboration. L'exploration de l'image est dès lors contrainte selon un ensemble de prédictions définissant les objets et attributs les plus significatifs, nécessaires à la confirmation de 1'hypothèse.

Abstract

Ce schéma, volontairement très simplifié, délimite les caractéristiques essentielles des modalités d'échange entre les images du monde extcrne et le système nerveux central.

Il est révélateur de la capacité de ce dernier à impulser ses propres lois, sa propre dynamique, en affirmant son principe d'autonomie, c'est-à-dire de fermeture, tout au long de ses échanges avec l'environnement. Ninsi, "ce n'est pas l'environnement qui révèle le système nerveux, le sollicite ou le modèle ; au contraire c'est le sujet et son cerveau qui questionne l'environnement, qui vit en lui de plus en plus profondément et, finalement, s'en rend maitre" (Jeannerod, 83).

D. MODES ET STRATEGIES D’INTERPRETATION DES IMAGES MICROSCOPIQUES

L'image médicale offre un précieux support d'investigation des modalités de l'observation humaine : cette dernière doit conduire en effet à la formulation d'un diagnostic verbal, dont l'enjeu nécessite l'emploi d'une démarche motivée, justifiable et rigoureuse.

L'image médicale, et particulièrement l'image histologique, apparaît par ailleurs peu accessible au profane, tant par sa complexité thématique que par l'ésotérisme des dénominations verbales qui la décrivent.

Son interprétation nécessite l'acquisition d'un savoir spécifique, dont il est relativement aisé de délimiter l'étendue conceptuelle. Il devient dès lors possible d'en expliciter les composantes figuratives et propositionnelles, d'examiner leurs modes iconiques et sémantiques de représentation, d'analyser leurs formes d'organisation, et enfin de cerner leur influence sur les modalités visuelles et mentales de l'appréhension des images.

L'ébauche d'une telle analyse est proposée dans les paragraphes suivants : elle est développée tout d'abord dans le cadre d'une tâche de reconnaissance des composantes d'un tissu, puis dans le cadre d'une tâche plus élaborée d'interprétation diagnostique.

I. PERCEVOIR ET RECONNAITRE LES ENSEMBLES ORGANISES

L'image histologique, telle que nous l'avons décrite au paragraphe II.l, partie B, est caractérisée par la variété des constituants qu'elle implique, par la force des règles topographiques qui les unissent, et par la complexité de l'organisation qu'elle reflète.

La perception de l'ensemble des structures émergentes implique la recherche par l'observateur non averti de regroupements ou catégories thématiques, impliquant les facultés intrinsèques d'analyse du système visuel. La connaissance, acquise par apprentissage, des catégories et des relations fonctionnelles et sémantiques unissant les items perçus apporte à l'observatcur une perception rapide et immédiate des éléments d'organisation, en réduisant le niveau de contrôle attentionnel requis (fig. 12).

Fig. 12 : Percevoir et reconnaitre les ensembles organisés.
a) Perception thématique : l'amas cellulaire à droite apparait différent de celui de gauche ; son organisation est peu perceptible.
b) Perception cognitive : le lobule et les acini qui le composent apparaissent clairement.

(1.10) Analyse intrinsèque

L'analyse, effectuée dans un mode intrinsèque, est inconsciemment dirigée vers la recherche d'ensembles organisés, dont la perception des propriétés émergentes permet de guider l'analyse ultérieure des détails. La vérification des règles gestaltistes de l'organisation est nécessaire à l'aboutissement de ces recherches : celles-ci se fondent sur des tentatives de regroupement, effectuées selon les critères de proximité, de similarité, de fermeture et de continuité. L'application des principes de ségrégation peut également s'avérer utile, les critères de surface et de symétrie favorisant l'émergence en tant qu'ensemble organisé des éléments individuels qu'ils catégorisent.

L'organisation histologique est elle-même issue de l'association d'unités vivant en symbiose, selon des principes de coopération et d'échanges mutuels. Son image, observée au microscope, est ainsi le reflet des phénomènes d'attraction, de regroupement, de densification qui la - caractérisent. Des textures périodiques, ou orientées, apparaissent, qui délimitent des amas ou des éléments fibreux et dont les membranes de soutien qui les délimitent sont souvent peu perceptibles.

L'apparente redondance, enfin, des morphologies cellulaires est un facteur supplémentaire, conduisant les principes de similarité à inhiber les principes de ségrégation.

Ainsi, tant l'absence de régions intrinsèquement informatives sur lesquelles focaliser le regard que la difficulté à percevoir les principes d'organisation régissant l'image sont des facteurs d'accroissement du niveau de contrôle attentionnel nécessaire à l'observatcur non expérimenté.

I. 2°) Analyse extrinsèque

Une appréhension claire des diverses composantes de l'organisation histologique requiert l'apprentissage des modes d'expression morphologiques et topographiques, la compréhension des mécanismes fonctionnels élémentaires ainsi que la mémorisation des contraintes d'organisation et des correspondants sémantiques associés.

La connaissance des composants principaux de l'organisation histologique et l'apprentissage des formes variables de leur expression morphologique guide l'élaboration de relations entre attributs figuratifs
et sémantiques, ainsi que la structuration en mémoire des informations visuclles et verbales selon des catégories progressivement plus fines. 11 parait vraisemblable que ceci conduise à la construction en mémoire propositionnelle de règles de catégorisation/ségrégation, fondées sur la mise en évidence des attributs les plus représentatifs (invariants) et./ou Les plus discriminants.

La capacité à reconstruire la structure tridimensionnelle initiale, ainsi que la compréhension des relations fonctionnelles et topographiques présidant à cette organisation modifie par ailleurs l'appréhension des items et de leurs attributs : ceux-ci ne sont plus seulement perçus comme les éléments individuels d'une organisation, mais comme participant de façon intégrante à une logique fonctionnclle bien définie. les facteurs contextuels exercent dans ce cas une influence qui facilite la perception de catégories regroupant soit des items de formes corrélées, selon une logique thématique, soit des items de formes indépendantes, selon une logique sémantique.

Enfin, l'élaboration en mémoire des cartes cognitives regroupant l'ensemble des informations visuelles, verbales et propositionnelles relatives à un tissu donné, facilite l'émergence de stratégies d'exploration fondées sur l'exploitation des contraintes d'organisation. L'exploration, effectuée dans un mode descendant, est guidée par la prédiction des éléments d'organisation susceptibles d'apparaitre à un niveau donné. Cette prédiction, effectuée d'abord au niveau sémantique, puis au niveau figuratif, permet la mise en oeuvre d'une phase rapide de localisation des élćments principaux, agissant en parallèle sur l'image, suivie de phases successives de focalisation et de scrutations des éléments les plus complexes.

[^1]
II. MODES D'ELABORATION D'UN DIAGNOSTIC

Abstract

Le diagnostic, pratiqué au niveau histologique, est issu de la caractérisation sémantique de l'état fonctionnel de l'organe examiné. Son élaboration résulte de l'accumulation d'un grand nombre d'informations, plus ou moins consistantes ou conflictuelles ; elle implique la capacité à caractériser tant les morphologies individuelles que les arrangements topographiques ; elle nécessite la confrontation et la mise en relation de l'ensemble des diagnostics individuels ainsi obtenus (fig. 13).

II. 1°) Le diagnostic individuel

Tout constituant d'un organe est identifié par un terme générique exprimant son niveau d'intervention et son rôle : cellule, glande, tissu ... Des qualificatifs ou termes spécifiques lui sont associés, qui définissent de façon plus précise ses différents modes d'expression fonctionnelle (degré de différenciation) ou de réalisation morphologique (épithélium cubique, stratifié ...).

L'observation d'un constituant suscite ainsi l'émergence d'un ensemble d'interprétations possibless, susceptibles elles-mêmes de provoquer l'émergence d'autres interprétations, plus générales ou plus spécifiques, selon les relations conceptuelles qui les unissent.

L'identification du caractère normal, ou du type de pathologie affectant un constituant donné, est régie par des principes similaires. L'apprentissage des différents types de pathologie possibles, et des formes d'expression morphologiques et topographiques qui leur sont associées, conduit à l'acquisition d'un nombre croissant d'éléments sémantiques et - figuratifs d'appréciation, mais également à l'organisation progressive de ces données selon les règles de généralisation, d'analyse catégorielle, ou de particularisation.

Le choix du diagnostic le plus spécifique applicable à un instant donné dépend de façon évidente de l'objectif initial de l'analyse ; il est également influencé par les présomptions diverses obtenues au terme d'examens ou d'observations préalables. Sa validité est conditionnée, enfin, tant à l'objectivité de l'analyse visuelle, qu'à la représentativité du constituant observé et de sa forme. L'expression individuelle n'est que l'une des facettes de l'expression fonctionnelle de l'organe, dont

l'interprétation rigoureuse nécessite la confrontation d'un ensemble représentatif d'indications diagnostiques.

II. 2°) La confrontation diagnostique

Abstract

L'observation séparée d'un grand nombre d'items différents conduit à l'élaboration d'un ensemble de diagnostics élémentaires, considérés ici virtucllement comme émis de façon indépendante. Il convient d'examiner (1) les principes essentiels conduisant à l'émergence progressive d'un diagnostic unique, spécifiquement représentatif de cet ensemble, et (2) les facteurs facilitant ou inhibant son émission.

II. 2.1°) Principes d'élaboration

Si les règles gestaltistes d'association agissent au niveau visuel en facilitant la perception et la mémorisation de l'image en tant qu'ensemble organisé d'items élémentaires, des principes similaires agissent au niveau conceptucl qui, renforcent l'expression diagnostique.

Le diagnostic individuel est naturellement renforcé par la multiplicité de ses formulations, en des zones différentes de limage. Le regroupement de diagnostics différents s'effectue selon les principes de catégorisation et de continuité logique : l'acquisition en mémoire des cartes diagnostiques permet l'émission d'un diagnostic général, fédérateur des éléments diagnostiques qui convergent vers lui, et le renforcement des éléments en relation selon les critères de généralisation ou de particularisation. Tout diagnostic, enfin, émis simultanément comme issu d'une réalisation figurative et d'une réalisation conceptuclle, apparaît comme un élément informatif robuste.

L'application de ces principes d'élaboration et de renforcement de l'évidence diagnostique anène naturellement à résoudre les situations ambiguës par l'émission d'un diagnostic général fédérateur, qualifié par les différentes facettes probables de sa réalisation.
$11.2 .2^{\circ}$) Facteurs conditionnant l'expression diagnostique

L'expression diagnostique est conditionnée par des facteurs tant perceptucls que conceptucls. Comme nous l'avons déjà souligné, la cohérence de l'expression morphologique et topographique est importante à cet égard : si la perception de variations morphologiques corrélées facilite l'émergence de leurs caractéristiques intégrantes, la découverte d'une violation des contraintes d'organisation, pourtant porteuse d'une information diagnostique particulière, est susceptible d'inhiber la formulation diagnostique, en perturbant l'émergence d'une structuration figurative claire de l'image.

De façon similaire, si la cohérence des éléments conceptuels disponibles facilite leur expression verbale, l'émergence de concepts conflictuels est susceptible a contrario de l'inhiber, par la complexité des activités de régulation nécessaires. Le principe de majorité joue un rôle important à cet égard, qui vise à éliminer les éléments conflictuels les moins robustes.

Le propre de la décision médicale provient néanmoins de sa capacité à intégrer all sein d'une expression diagnostique ou pronostique cohérente tout élément porteur d'information, aussi parcellaire soit-elle. Il convient ainsi de considérer cette parcelle d'information comme l'une des facettes possibles de l'expression fonctionnelle, susceptible de représenter son devenir. L'examen des éléments diagnostiques que cette information suscite et la vérification des propriétés de continuité logique de la totalité des informations disponibles constituent dans ce cas la base d'une possible expression pronostique.

L'échec de ces recherches conduit enfin à remettre en cause tout ou partie des éléments d'information antérieurs, en amenant à définir des formes de catégorisations conceptuelles différentes, voire à observer à nouveau les items les plus sujets à caution.

La recherche d'une cohérence conceptuelle implique ainsi des mécanismes complexes de catégorisation, d'élaboration, d'interaction et de confrontation intervenant non seulement all niveau des modes d'intégration de l'information par le système nerveux, mais aussi dans les modalités de sa communication avec l'image. L'efficacité de ces processus dépend des modalités de leur articulation au sein des stratégies dexploitation des éléments perceptuels et conceptuels.

III. DIAGNOSTIC ET STRATEGIES

Abstract

L'acquisition progressive des connaissances propres all domaine de L'histopathologie correspond à l'élaboration mentale de cartes diagnostiques impliquant les liens logiques et analogiques qui les associent, ainsi que les facettes variées de leurs réalisations perceptuelles et sémantiques. L'appréhension mentale d'un phénomène externe s'exprime dans ce cadre par la délimitation du schéma mental le plus représentatif. L'appréhension même de ce schéma et des modes logiques de son insertion mentale est susceptible à son tour de susciter d'autres explorations du monde externe.

L'interprétation d'un phénomène complexe s'effectue ainsi selon une démarche structurée, fondée sur l'activation récursive de processus successifs d'acquisition et d'intégration des données externes. Les modalités de leur fonctionnement sont régies par les contraintes dualitaires issues de la découverte progressive des items image et de l'élaboration du schéma mental qui les représente. Des processus de contrôle sont impliqués à cet égard, capables d'évaluer la force informative d'un item, et la cohérence de son intégration mentale. Une illustration de ces différentes notions est proposée dans la figure 14.

III. 1°) Image et schéma mental : mode d'exploration et d'élaboration

Tant les modalités perceptuelles que les modalités mentales d'appréhension d'une image sont régies par le principe d'ordonnancement catégoriel. Ce principe préside en effet de façon essentielle à l'élaboration de représentations organisées et cohérentes du monde externe.

L'exploration de l'image histologique est ainsi conduite selon un mode descendant, le changement de grossissement all microscope permettant son observation à des résolutions progressivement plus fincs. La prise en compte d'items d'abord globaux (arrangements topographiques, structures de haut niveau) puis plus précis (éléments cellulaires) conduit à l'émergence de formulations diagnostiques d'abord catégorielles (caractère invasif ou non d'une pathologie) puis plus spécifiques. La focalisation mentale sur un diagnostic, émis à un niveau donné, et sur ses facettes possibles de réalisatiof au niveau inféricur, permet la formulation d'une ou plusieurs hypothèses, et la délimitation des faits nécessaires à leur confirmation. Cette analyse provoque ainsi une focalisation perceptuelle sur les items et attributs pertinents a cet égard.

Fig. 14 : Stratégies diagnostiques.
a) Nécanismes de focalisation mentale et perceptuelle ;
l'inéégration d'une donnée permet la formulation d'une hypothèse suscitant lat scoutation d'items particuliers dans l'image ;
b) Notions d'ouverture perceptuelle et mentale ;
la capacité d'ouverture perceptuclle permet la découverte d'items non prévisibles a priori. Leur intégration implique la capacité d'ouverture et d'adaptation mentale.
c) Notions de représentativité, d'ambiguité et de cohérence d'une donnée par rapport à un ensemble de faits déjà établis.

Cette procédure dualitaire de focalisation mentale et perceptuelle garantit l'émergence d'une démarche diagnostique structurée. La souplesse qui lui est nécessaire est issue des capacités d'adaptation mentale.

III. 2°) Modes d'exploitation des données visuelles et mentales

Malgré l'effort de focalisation perceptuelle induit par l'analyse mentale, le propre du système visuel est de demeurer ouvert sur le champ d'analyse, tout item devenant dès lors susceptible de jouer un rôle avertisseur. L'intégration nécessaire de tels items implique une capacité similaire d'ouverture mentale. Il convient de rappeler à cet égard que l'appréhension mentale d'un phénomène externe suscite, outre l'éveil de sa représentation spécifique, celui des items mentaux qui lui sont associés; elle implique ainsi l'ouverture de l'esprit à la sphère conceptuelle qui les regroupe (Hofstadter, 85).

A la capacité de focalisation mentale, formalisée par l'élaboration d'un schéma diagnostique, est associée la capacité d'ouverture à l'ensemble des sphères conceptuelles qui lui sont associées. Le schéma mental apparaît dans ce cadre comme un ensemble de facettes particularisées du fait de l'éclairage mental adopté à un instant donné.

Tout item conflictuel à l'égard de ce schéma est défini dans ce cadre comme un item dont l'intégration implique une modification globale ou partielle de cet éclairage.

Des mécanismes de contrôle, capables de juger de la pertinence d'une information et de la robustesse de son intégration, s'avèrent finalement nécessaires.

III. 3°) Evaluation et contrôle

La robustesse d'un schéma mental dépend de la force informative de ses éléments et de la cohérence de leur insertion logique ; l'évaluation de ces caractères respectifs est susceptible de provoquer la recherche de nouveaux attributs visucls (ouverture perceptuelle) ou de susciter une modification du schéma (fermeture mentale). Enfin, le caractère de complétude de ce schéma, c'est-à-dire d'analogic entre le niveau conceptuel atteint et le niveau requis est évalué pour décider de l'arrêt ou de la poursuite de l'exploration à un niveau inférieur.

En ce qui concerne tout d'abord la force informative d'une donnée, clle nous parait liée de façon essentielle ì sa représentativité mentale, ou capacité de facettisation robuste d'un concept. Toute facettisation réalisée à une distance conceptuelle trop élevée est ainsi facteur d'incertitude. L'ambiguité résulte de la facettisation simultanée de deux sphères conceptuclles différentes.

La cohérence d'une donnée est par ailleurs liée à sa prédictibilité par le schéma en cours d'élahoration, c'est-à-dire à son insertion au sein des sphères conceptuclles hypothétiques.

La stratégie diagnostique adoptée par l'histopathologie se caractérise ainsi par une démarche dualitaire et structurée d'exploitation des données visuclles et des connaissances. La focalisation perceptuelle et mentale induite par cette démarche permet la réduction des efforts de scrutation; Ia capacité d'ouverture qui lui est associée est le garant fondamental de sa souplesse. La notion de représentativité mentale, enfin, nous semble révéler combien la force informative d'une donnée est un caractère non pas intrinsèque à l'image, mais propre au système qui l'analyse, la modèle et 1'intègre.

CONCLUSION

L'appréhension mentale d'une image s'effectue selon une succession de transformations et de projections dans l'espace des sensations, des perceptions et des concepts, qui correspondent à des systèmes de représentation d'abstraction croissante. L'élaboration progressive des items s'effectue selon des principes d'association et d'analogie catégorielles. L'appréhension même de ces principes d'organisation est un facteur essentiel de régulation des activités perceptives et cognitives, et d'altération des facultés d'analyse et de mémorisation. Ces principes régissent ainsi les modalités d'exploitation des items visuels et cognitifs, en suscitant un démarche exploratoire structurée et descendante, dont les caractères principaux sont la focalisation et l'adaptation. Il apparait dans ce cadre que l'appréhension d'un item est facilitée par la cohérence du contexte dans lequel il est placé, et que sa force informative est liée à sa représentativité mentale.

L'appréhension informatique de l'image se fonde sur les étapes successives de délimitation, de description et d'interprétation des primitives images, selon des modèles définissant leur organisation, leur morphologie, et les dénominations sémantiques associées. L'efficacité d'une telle démarche ascendante est fondamentalement dépendante, néanmoins, de la force informative des items sur lesquels elle se fonde, c'est-à-dire de leur représentativité intrinsèque. Les modalités variées de vérification de ce principe, observées au sein d'une même image, imposent fréquemment la prise en compte des relations de voisinage ou d'inclusion au sein de groupes de morphologies caractéristiques. Il convient donc de définir les formes figuratives et propositionnelles des connaissances impliquées à cet égard, ainsi que les modalités de leur exploitation.

La prise en compte simultanée de ces contraintes analytiques, et des contraintes structurelles régissant l'image, permet l'élaboration d'une démarche structurée d'exploration. Des stratégies d'analyse, enfin, découlent de la prise en compte supplémentaire des contraintes interprétatives, fondées sur les principes de localisation, d'adaptation et de contrôle.

REFERENCES

(ANS 85)	B. Ans, J. Herault et C. Jutten : Architectures neuromimétiques adaptatives : détection de primitives. In : Actes du Colloque Scientifique "De l'intelligence artificielle aux biosciences", CESTA, Paris, 1985, pp. 593-597.
(biederman 81)	I. Biederman : On the semantics of a glance at a scene. In : "Perceptual organisation", (M. Kubovy and J.R. Pomerantz, Eds), Lawrence Erlbaum Associates, Hillsdale, N.J., 1981.
(BOURGUIGNON 85)	A. Bourguignon : Ouverture/ fermeture du système nerveux central et activité psychique. In : Actes du Colloque Scientifique "De l'intelligence artificielle aux biosciences", CESTA, Paris, 1985, pp. 801-809.
(buvat 70)	R. Buvat, G. Echalier, R. Gautheret, L. Hirth et Ph. Lhéritier : Biologie cellulaire. Armand Colin, Paris, 1970.
(CRETTEZ 84)	J.P. Crettez : Modélisation des voies perceptuclles primaires : premières étapes de la perception des formes. Thèse de Doctorat d'Etat, Université Pierre et Marie Curie, Paris, 1984.
(DAVIDSON 68)	M.L. Davidson : Perturbation approach to spatial brightness interaction in human vision. J. Opt. Soc. Am. 58, 1968, 1300-1308.
(GOMPEL 82)	C. Gompel : Atlas de Cytologie Clinique. Maloine, Paris, 1982.

(HOFSTADTER 85)	D.R. Hofstadter : Analogies, rôles et glissabilité : le transfert fluide de concepts d'un cadre à l'autre. In : Actes du colloque scientifique "De l'intelligence artificielle aux biosciences", CESTA, Paris, 1985, pp. 47.
(IIUBFLL 62)	D.II. Hubel and T.N. Wiesel : Receptive fields, binocular interaction and functionnal architecture in the cat's visual cortex. J. Physiol. 160, 1962, 106-154.
(JFANNEROD 83)	M. Jeannerod : Le cerveau machine. Physiologie de la volonté. Fayard, Paris, 1983.
(KOHONFN 85)	T. Kohonen : Représentation de l'information sensorielle par des cartes auto-organisatrices. In : Actes du colloque scientifique "De l'intelligence artificielle aux biosciences", CESTA, Paris, 1985, pp. 585-591.
(LECERF 85)	C. Lecerf : Un modèle incrémental et récursif des images mentales. In : Actes du colloque scientifique "De l'intelligence artificielle aux biosciences", CFSTA, Paris, 1985, pp. 745-749.
(MARR 82)	D. Marr : Vision. Freeman \& Co, San Francisco, 1982.
(MERTZ 34)	P. Mertz and F. Gray : Λ theory of scanning and its relation to the characteristics of the transmitted signal in telephotography and television. Bell Sys. Tech. I. 13, 1934, 464-473.
(SCHNEIDER 69)	$\begin{aligned} & \text { G.F. Schneider : Two visual systems. Science } 163, \\ & \text { 1969, } 895-902 . \end{aligned}$

(SELFRIDGE 59)	O.G. Selfridge : Pandemonium : a paradigm of learning. In : "The mechanization of thought processes", Her Majesty's stationery office, London, 1959.
(SPOEHR 82)	K.T. Spoehr and S.W. Lehmkühle : Visual Information Processing. Freeman \& Co, San Francisco, 1982.
(WHEATER 79)	P.R. Wheater, H.G. Burkitt et V.G. Daniels : Histologie fonctionnelle, manuel et atlas. MEDSI, Paris, 1979.
(WYBURN 64)	C. Wyburn, R. Pichford and R. Hirst : Human senses and perception. University of Toronto Press, 1964.

PARTIE II

Des images et des principes
de leur analyse thématique.

INTRODUCTION

Abstract

Aborder l'image sous un angle thématique signifie la considérer comme l'objet intrinsèque de l'activité d'analyse. L'image constitue dans ce cas la source unique d'informations susceptibles de guider les processus de perception et de discrimination des ensembles organisés (thèmes) qui la composent.

L'image, source unique de connaissance, est représentée au sein d'une base de faits comme une distribution spatiale de primitives, caractérisées par un ensemble d'attributs. L'objectif de l'analyse est d'introduire dans cette base des faits plus abstraits, appelés entités, représentatifs des ensembles organisés qui composent l'image. A cette base de faits est associée une base de règles, dont l'activation permet la généralisation de l'interprétation primitive et/ou l'élaboration d'ensembles plus abstraits par association de primitives. Faits et règles constituent une forme de représentation des connaissances déclaratives et procédurales attachées à l'image : une description formelle en est donnée dans le premier chapitre. Les principaux outils d'analyse des images sont ensuite présentés, selon la formulation proposée. Nous montrons particulièrement combien le souci d'aboutir à une segmentation "optimale" de l'image conduit à élargir tant la base de faits que la base de règles, et donc à définir des processus de complexité croissante.

L'introduction de stratégies d'analyse s'avère pour ces raisons nécessaire. Nous montrons, dans le troisième chapitre, quelles formes de méta-connaissances procédurales peuvent être introduites à cet égard, qui définissent les modes d'exploration de la base de faits, et les modes d'activation de la base de règles.

!
:

A. DE l'INTERPRETATION THEMATIQUE DES IMAGES

L'interprétation d'une image implique la détection des ensembles organisés qui la composent, et l'appréhension de leurs morphologies et degrés d'organisation respectifs.

Il convient, pour aboutir à ces objectifs, de disposer d'un référentiel unique (système de représentation) explicitant non seulement la forme et la nature des éléments de base sur lesquels fonder les opérations descriptives, mais également les règles et contraintes selon lesquelles ces éléments sont susceptibles d'être regroupés pour constituer des ensembles dits "organisés", au sens gestaltiste du terme (Marr 82).

La définition d'un tel système, susceptible de représenter l'image de façon générique, demeure l'une des pierres angulaires de la recherche en image, qu'il s'agisse de procéder à son analyse (Faugeras 84) ou à sa synthèse (Lucas 84). Le premier paragraphe est consacré aux modes formels de représentation et d'élaboration des ensembles organisés composant l'image. Des descripteurs de différents ordres sont ensuite introduits, qui sont l'expression plus ou moins abstraite des caractéristiques de morphologie et d'organisation, selon le niveau et la profondeur de la représentation associée à l'ensemble qu'ils décrivent. Nous abordons ensuite le problème de l'interprétation d'une image, décomposée selon divers ensembles organisés, sous deux angles différents : celui de la vérification de la robustesse et de la cohérence de cette décomposition d'une part, celui de l'appréhension différentielle de ces ensembles d'autres part.

I. SYSTEME FORMEL DE REPRESENTATION THEMATIQUE DES IMAGES

Abstract

L'élaboration d'un système formel de représentation thématique des images implique la définition des primitives, éléments de base de la représentation, eṭ des lois qui régissent leur association. L'objet de ce paragraphe est la présentation des modes principaux de caractérisation primitive des images et des entités qui les composent.

I. 1°) Primitives

L'image, dans sa représentation la plus élémentaire, est définie comme une distribution spatiale d'intensités luminenses ou de coulcurs. Une primitive, motée F_{i}, est une parcelle d'image constituće d'un ensemble de points de support S_{j}, la primitive la plus élémentaire étant le point image. Un ensemble d'attributs, notés :

$$
\Lambda_{i}^{T}-\left|\Lambda_{i}(1), \ldots, \Lambda_{i}(N)\right|
$$

Ini sont atiachés. Reux catégories d'attributs peuvent être distinguécs, selon qu'ils caractérisent le support de la primitive, ou la distribution d'intensités lumincuses ou de couleurs observée sur ce support.

Une classe particulière de primitives est formalisée par la donnée d'une on plusicurs contraintes opérant sur des attributs ou fonctions
 même degré d'uniformité sont ainsi définies.

Soit \uparrow une fonction des attributs (critère à évaluer) et a la valeur autorisée pour ce critère, la classe correspondante, $\mathrm{C}_{\mathrm{p}, \mathrm{a}}$ est définie par :

$$
C_{p, a} \cdot\left|r_{i} / \varphi\right|\left|n_{i}(m)\right||<a|
$$

-

Λ un critère p domé (critère de taille, par exemple) peuvent être associées plusicurs classes de primitives organisées hiérarchiquement selon 1a valcur croissante ou décroissante du paramètre α. Soient $\alpha(n-1), a(n)$ deux valcurs successives du paramètre a, nous avons :

$$
G_{p, a(n)} G_{p, a(n-1)} \cup\left\{P_{i} / \alpha(n-1)<p\left[\mid \Lambda_{i}(m)\right] \mid \leqslant \alpha(n)\right\}
$$

Les primitives ainsi introdnites sont notées $r_{i}^{\prime \prime}$, elles correspondent à Ia mise en couvre d'ume analyse à un niveau d'abstraction donné. La délimitation de primitives regroupant un large ensemble de points images correspond en effet it une perception grossière de celle-ci. De la même façon, la finesse d'me amalyse dépend du degré de précision apporté à la caractérisation primitive sur laquelle elle se fonde (figure l).

Différents niveaux de description peuvent par ailleurs être définis, selon que les attributs associés à une primitive P_{i} donnée la caractérisent de façon plus ou moins intrinsèque. Certains attributs peuvent en effet. être évalués par la prise en compte simultanée de la primitive P_{i} et d'un ensemble de primitives voisines. Ils conduisent à une expression différenticlle de la primitive P_{i}, selon le contexte dans lequel elle est placée et donnent ainsi accès à une large gamme d'informations supplémentaires dcaractérisation des points frontières par exemple) (figure $1)$.

1.20) Caractérisation primitive des images

Les formes possibles de caractérisation primitive des images sont extrêmement variées (levialdi 83). Quelques exemples en sont présentés dans les paragraphes qui suivent, choisis parmi les plus significatifs.

I. 2.1°) Caractérisation ponctuelle intrinsèque

Toute primitive ponctuelle est caractérisée par sa position (x,y), son niveau de gris G ou sa couleur C. Différents systèmes de représentation des coulcurs peuvent être définis (Pratt 78), qui se fondent sur l'utilisation directe des primaires de couleurs, ou sur des formes transformées de ces dernières. Les modèles perceptuels (Faugeras 76) ont suscité à cet égard un intérêt particulier : ils conduisent à l'expression d'une couleur en termes de luminance, de teinte et de saturation, et donc à une caractérisation primitive facilement interprétable (Garbay 79) (figure 2).

I.2.20) Caractérisation ponctuelle relative

Une caractérisation primitive relative est une caractérisation primitive représentant de façon synthétique les attributs associés à un ensemble de primitives voisines. L'approche la plus classique consiste à transformer l'image au moyen d'un opérateur de convolution.

Soient (α_{k}) les poids caractérisant lopérateur utilisé, dont le masque est de support S, soient S_{i} le support associé à la primitive P_{i} et $G_{i k}$ les niveaux de gris des primitives $P_{i k}$ observées sur ce support. De nouveaux attributs, notés Λ_{i}, sont associés à Γ_{i}, selon la relation suivante :
. 85.

$$
\Lambda_{i}=r_{i k} \sum_{i} \quad \alpha_{k} G_{i k}
$$

Ces transformations sont largement utilisées pour obtenir des attributs de nature différentielle, à valeur nulle sur des supports uniformes, à valeur élevée en cas de discontinuités. Ce sont ces attributs qui permettront de différencier les primitives de type "frontière" des primitives de type "région" (figure 3).

Crettez a particulièrement développé ce type d'approche (Crettez 84) en s'attachant à définir une caractérisation primitive proche de celle définie par les champs récepteurs des cellules complexes.

1.2.3 3° Caractérisation locale sous contrainte spatiale

De nombreuses caractérisations locales sont issues de la définition de contraintes délimitant la taille et la forme des supports des primitives ; il convient dans ce cas de définir le type de caractéristiques attaché à ces primitives.

L'approche la plus classique consiste à leur associer la valeur moyenne et la variance des attributs ponctuels des primitives point qu'elles regroupent (Rosenfeld 80).

Une caractérisation plus fine, fondée sur le calcul d'histogrammes locaux, est proposée par Lowitz (Lowitz 81) (figure 4).

Soit S_{i} le support associé à une primitive locale P_{i}. Soit $n \times n$ la taille du support, de forme carrée, soient $G_{i k}$ les niveaux de gris distribués sur S_{i}. L'objectif est de caractériser l'histogramme local H_{i} représentant la distribution des niveaux $G_{i k}$ par deux attributs : son module $\left\|H_{i}\right\|$ et sa phase $\phi\left(H_{i}\right)$.

Le module est défini comme la distance entre l'histogramme observé H_{i} et l'histogramme H_{0} d'entropie maximale :

$$
n_{0}=\left[\frac{n^{2}}{\mathrm{c}}, \ldots, \frac{\mathbf{n}^{2}}{\mathrm{c}}\right]
$$

. 87.

$$
\left[\begin{array}{rrr}
-3 & 5 & 5 \\
-3 & 0 & 5 \\
-3 & -3 & -3
\end{array}\right]
$$

a)
b)

10	12	12	11	11			
11	12	11	12	12	4	-2	-4
12	12	12	12	11	7	+2	5
12	11	10	11	11	-8	-2	-1
12	13	12	11	12			
Caractérisation							
initiale	Caractérisation						
résultante							

$\begin{array}{lllll}5 & 6 & 6 & 4 & 4\end{array}$
$\begin{array}{lllll}6 & 4 & 5 & 5 & 15\end{array}$
$\begin{array}{lllll}4 & 5 & 4 & 16 & 15\end{array}$
$\begin{array}{lllll}4 & 5 & 16 & 17 & 16\end{array}$
$\begin{array}{lllll}5 & 17 & 16 & 15 & 16\end{array}$
Caractérisation
initiale
Caractérisation résultante
c)

Fig. 3 : Caractérisation relative d'une image par un attribut différentiel.
a) Masque associé à l'opérateur de Kirsch ;
b) Caractérisation d'une image comportant une région ;
c) Caractérisation d'une image comportant une frontière.

Fig. 4 : Caractérisation d'une image par évaluation d'histogrammes locaux (tiré de Lowitz 81).
a) Calcul d'un histogramme local H_{i} sur le support S_{i} de la primitive $P_{i} ;$
b) Evaluation du module de H_{i} par sa distance à H_{0}, histogramme d'entropie maximale ;
c) Evaluation de la phase de H_{i} par recherche de l'histogramme H_{M}^{j} d'entropie nulle le plus "proche".
où G est le cardinal de l'ensemble des niveaux de gris possibles. Soit $n_{i k}$ le nombre de points du support de niveau de gris $G_{i k}$, le module $\left\|H_{i}\right\|$ est défini par :

$$
\begin{aligned}
& \left\|H_{i}\right\|=O\left(H_{i}, H_{0}\right) \\
& \left\|H_{i}\right\|=\sum_{S_{i}}\left[n_{i k}-\frac{\mathbf{n}^{2}}{\bar{G}}\right] \log n_{i k}
\end{aligned}
$$

Soit d'autre part \prod_{M}^{j} un histogramme d'entropie nulle, c'est-à-dire tel que :

$$
\begin{aligned}
& H_{M}^{j}(g)=0 \quad \forall g \neq j \\
& H_{M}^{j}(j)=n^{2}
\end{aligned}
$$

La phase ϕ est définie comme l'indice j caractérisant l'histogramme d'entropie nulle $H_{M}^{\mathbf{j}}$ le plus "proche" de H_{i}, au sens de la distance D :
$\phi\left(H_{i}\right)=j / D\left(H_{i}, H_{M}^{j}\right)=\operatorname{Min}_{g=1, \ldots, G} \quad D\left(H_{i}, H_{M}^{g}\right)$
L'évaluation de la phase permet ainsi la détection de la caractéristique primitive la plus représentative, sur le support S_{i}; la validité de cet indicateur dépend de la valeur de $\left\|H_{i}\right\|$ (il est non significatif pour un histogramme d'entropie nulle).

I. 2.4°) Caractérisation locale sous contrainte surfacique

L'objectif est de définir un découpage du support de l'image en primitives vérifiant une contrainte surfacique locale. La plupart des algorithmes invoqués à cet égard se fondent sur une représentation primitive initiale de type analytique, obtenue par approximation locale de l'image au moyen d'éléments de droites, de courbes, ou de plans (Pavlidis 77). Haralick a proposé dans cet esprit un modèle permettant la

représentation d'une image sous la forme de facettes planes (Haralick 81) (figure 5). Une contrainte spatiale est d'abord utilisée, qui associe à toute primitive ponctuelle P_{i} un ensemble de voisinages de support S_{i}^{k} la recouvrant.

A chaque support S_{i}^{k} est associé un élément de plan E_{i}^{k} de coefficients ($\alpha_{i}^{k}, \quad \beta_{i}^{k}, \quad \gamma_{i}^{k} \quad$). Ces coefficients sont calculés de façon à obtenir l'approximation au sens des moindres carrés de la distribution $\left\{G_{j}\right\}$ des niveaux de gris associée au support considéré ; ils sont tels que :

$$
\mathbf{P}_{\mathbf{j}}=\mathrm{S}_{\mathbf{i}}^{\mathbf{k}} \quad\left[\alpha_{\mathbf{i}}^{\mathbf{k}} \mathbf{x}_{\mathbf{j}}+\beta_{\mathbf{i}}^{\mathbf{k}} \mathbf{y}_{\mathbf{j}}+\gamma_{\mathbf{i}}^{\mathbf{k}}-\mathrm{G}_{\mathrm{j}}\right]^{2} \leqslant \varepsilon
$$

où $\left(X_{j}, y_{j}\right)$ sont les coordonnées des primitives points P_{j}. Après calcul de l'ensemble des plans E_{i}^{k} associés à \dot{P}_{i}, le plan E_{i} réalisant la meilleure approximation est finalement retenu, et les attributs ($\left.\alpha_{i}, \beta_{i}, \gamma_{i}\right)$ sont attachés à $\mathbf{P}_{\mathbf{i}}$.

Dans une deuxième phase, les facettes sont obtenues par regroupement de points voisins effectué sous une contrainte surfacique locale : deux points sont regroupés sous la condition de similarité de leurs attributs. La facette ainsi obtenue est finalement caractérisée par la valeur moyenne des attributs des points qu'elle associe. Elle est représentative d'une parcelle d'image présentant de faibles variations surfaciques.

I. 3°) Primitives et Entités

Une entité est définie comme un fragment d'image (région, contour, objet) regroupant un ensemble de primitives selon un jeu de règles donné. Des règles d'affectation ou d'association sont utilisées, selon que l'entité est considérée comme un ensemble de primitives partageant la même information prototypique, ou comme une association de primitives vérifiant une contrainte gestaltiste donnée (figure 6).

Fig. 6 : Primitives et entités.
a) Définition d'une entité comme un ensemble de primitives vérifiant une même contrainte prototypique ;
b) Définition d'une entité comme une association de primitives vérifiant une contrainte gestaltiste donnée.

I.3.1 ${ }^{\circ}$) Règles d'affectation

- La mise en oeuvre de règles d'affectation implique la représentation de l'entité étudiée, E_{k}, par une primitive prototypique P_{k} d'attributs connus. Une primitive inconnue P_{i} est alors attachée à E_{k} lorsque la contrainte de similarité $C\left(\mathbf{P}_{\mathbf{i}}, \mathbf{P}_{\mathbf{k}}\right)$ est vérifiée :

$$
\operatorname{si} C\left(P_{i}, P_{k}\right) \text { alors } P_{i} \in E_{k}
$$

Lorsque cette représentation prototypique est définie par une fonction φ d'attributs et par l'intervalle $\left[\alpha_{k-1}, \alpha_{k}\right]$ caractérisant les valeurs prises par φ, ceci s'écrit plus précisément sous la forme suivante :

$$
\text { si }\left[\alpha_{k-1} \leqslant \varphi\left[\left\{A_{i}(m)\right\}\right] \leqslant \alpha_{k}\right] \text { alors } P_{i} \in E_{k}
$$

L'entité E_{k}, obtenue après activation de ces règles, est telle que la propriété moyenne qui peut lui être associée vérifie également la clause condition de la règle d'affectation.

Ceci signifie, en d'autres termes, qu'entités et primitives partagent la même information conceptuelle, dont la réalisation peut être observée à des niveaux d'abstraction différents : frontières et points frontières, régions et taches, objet bleu et point bleu etc.

Il convient de remarquer que les critères introduits ici sont nécessairement des critères invariants en taille et en position.

L'efficience de ces règles dépend de l'adéquation du critère utilisé et de la qualité de l'apprentissage qui détermine pour chaque entité les valeurs de critères autorisées. Leur caractère déterministe peut être modulé par l'emploi d'une formulation probabiliste, fondée sur l'évaluation de la distance entre attributs et prototypes. Ceci conduit naturellement à conditionner l'interprétation (affectation) à un ensemble d'informations contextuelles susceptibles d'être associées à l'information primitive initiale.

I.3.20) Règles d'association

Les règles d'affectation se fondent sur la recherche d'une correspondance entre primitives et prototypes. L'activation de règles d'association, au contraire, nécessite la mise en correspondance des primitives entre elles :

Règle d'affectation :

$$
\operatorname{si} C\left\{P_{i}, P_{k}\right\} \quad \operatorname{alors} P_{i} \in E_{k}
$$

Règle d'association :

$$
\operatorname{si} C\left\{P_{i}, P_{j}\right\} \text { et } P_{i} \in E_{k} \text { alors } P_{j} \in E_{k}
$$

L'entité E_{k} obtenue par activation de règles d'association regroupe un ensemble de primitives considérées comme analogues au sens d'un certain critère, c'est-à-dire comme proches physiquement et/ou conceptuellement (Hofstadter 85).

Des règles d'association plus strictes peuvent être obtenues par l'adjonction de contraintes globales attachées à E_{k}, de la façon suivante :

Soit $\quad U_{i-1}=\bigcup_{j=1}^{i-1} P_{j}$, et $U_{i}=U_{i-1} \cup P_{i}$,
soit \mathcal{E}_{k} une entité prototypique représentative de la contrainte globale attachée à E_{k}, la règle s'écrit :
$\operatorname{si}\left[U_{i-1} \subset E_{k}\right]$ et $C\left\{U_{i}, \mathcal{E}_{k}\right\}$ alors $\left[P_{i} \in E_{k}\right]$ et $\left[U_{i} \subset E_{k}\right]$

Ceci signifie que les éléments primitifs (P_{j}) sont considérés comme analogues parce que leur réunion répond à un critère définissant le concept attaché à l'entité recherchée.

Les remarques que nous avons faites au paragraphe pécédent peuvent être reprises ici : la validité des associations effectuées dépend de la capacité à identifier les attributs pertinents des éléments à comparer et à les percevoir au niveau de généralité le plus convenable (Hofstadter 85).

I. 3.3°) Entités

A une image est associé un système de représentation explicitant la nature des éléments primitifs sur lesquels fonder l'analyse (contraintes et attributs primitifs). L'analyse de l'image sous ces contraintes conduit à l'élaboration d'un ensemble de faits initiaux.

L'activation des règles d'affectation et/ou association conduit à regrouper ces faits, selon des ensembles plus larges, appelés entités.

Toute entité E_{k} est ainsi définie comme un ensemble de primitives vérifiant certaines contraintes :
$\left\{\begin{array}{c}E_{k}=U P_{i} \\ C\left(P_{i}, P{ }_{k}\right) \\ C\left(P_{i}, P_{j}\right) \\ C\left(U P_{i}, \mathcal{E}_{\mathbf{k}}\right)\end{array}\right.$

Cet ensemble est maximal au regard de ces contraintes c'est-à-dire qu'il $n^{\prime} e x i s t e$ pas d'autre primitive image susceptible de vérifier l'ensemble des contraintes attachées à E_{k}. Lorsque les contraintes sont associées à la vérification de relations d'équivalence, E_{k} est défini de manière unique. Lorsque ce n'est pas le cas, par contre, la forme de E_{k} dépend de l'ordre de prise en compte des faits initiaux.

Des primitives de nature prototypiques différentes définissent des entités conceptuellement différentes, selon des règles d'élaboration spécifiques. Il convient particulièrement de distinguer les entités de type région, obtenues par regroupement de points ou de taches sous les contraintes de proximité et similarité, des entités de type frontière obtenues par regroupement de points ou éléments de frontières sous les contraintes de proximité, continuité et fermeture.

Ainsi, le choix d'un système de représentation dépend du ou des concepts que l'on s'attache à dégager de l'image. Il dépend également du niveau d'abstraction et de profondeur selon lequel on désire aborder l'analyse de ces concepts. Un niveau d'abstraction et de profondeur élevé sera atteint par l'utilisation d'un système hiérarchique de contraintes, opérant à des niveaux différents de représentations primitives et conduisant ainsi à une représentation arborescente des entités :

II. DFSCRIPTION DES ENTITES

Une entité peut être représentée par un ensemble de points (modèle de bas niveau) ou par un ensemble structuré de primitives de niveaux d'abstraction différents (modèle de haut niveau) (Rosenfeld 79).
la description d'une entité implique la description de la distribution spatiale et surfacique des primitives qui la composent, les outils impliqués à cet égard étant indépendants du mode particulier de représentation utilisé. La signification attachée à ces descripteurs dépend par contre de la signification attachée à la représentation primitive initiale : elle est d'autant plus abstraite que le niveau de représentation est plus élevé.

Des descripteurs de différents ordres peuvent être définis. Les descripteurs du ler ordre sont l'expression intrinsèque des caractéristiques primitives examinées ; les descripteurs du 2ème ordre sont issus de l'évaluation de relations entre des paires de primitives. Les descripteurs de haut niveau sont l'expression des caractéristiques de composition structurelles.

II.10) Descripteurs du ler ordre

La description la plus élémentaire d'une entité est issue du dénombrement des primitives qui la composent. Lorsque la représentation est effectuée au niveau ponctuel, les descripteurs ainsi obtenus sont nommés "surface" ou "périmètre", selon que l'entité est représentée par ses points intérieurs ou par ses points bords. Des descripteurs plus complexes sont issus de la prise en compte différenciée des attributs attachés aux primitives (figure 7).

Fig. 7 : Entité et descripteurs du ler ordre.
a) Exemple d'histogramme ;
b) Exemple d'histogramme bivarié.

11.1.1 ${ }^{\circ}$) L'histogramme

L'histogramme est représentatif de la distribution des valeurs d'un attribut au sein d'une population de primitives. Soit $\left\{P_{i}\right\}$ l'ensemble des primitives observécs, $\left\{\Lambda_{i}{ }^{T}\right\}$ l'ensemble des vecteurs d'attributs qui leur sont attachés, et m indice caractérisant un attribut particulier, l'histogramme H_{m} est défini par :

$$
H_{m}(a)-\frac{\operatorname{Card}\left\{\Lambda_{i}(m) \cdots a\right\}}{\operatorname{Card}\left\{P_{i}\right\}}
$$

Un tel histogramme peut être évalué pour tout attribut de taille, de niveau de gris ou d'orientation. La forme de l'histogramme est révélatrice du caractère uniforme de la distribution étudiée, ou au contraire de la prédominance d'un aspect primitif particulier : primitives de grande taille, de niveau de gris élevé Des descripteurs sont évalués à cet égard, dont les plus usités sont la moyenne, la variance, l'entropie, la raideur, la dissymétrie. La signification attachée à ces descripteurs (forme ou texture) dépend de la signification attachée aux attributs primitifs (taille, longueur, orientation, niveau de gris).

II. 1.2°) L'histogramme bivarié

L'histogramme bivarié est représentatif de la distribution jointe des valeurs de paires d'attributs, au sein d'une population de primitives. En utilisant les mêmes notations que précédemment, avec met les indices attachés aux deux attributs examinés, l'histogramme bivarié $H_{m, l}$ est défini par :

$$
H_{m, 1}(a, b)=\frac{\operatorname{Card}\left\{\Lambda_{i}(m)-a ; \Lambda_{i}(1)-b\right\}}{\operatorname{Card}\left\{P_{i}\right\}}
$$

L'évaluation du caractère aléatoire ou non de la distribution des valeurs au sein de l'histogramme bivarié permet de déceler la prédominance de certaines paires de valeurs, et donc la régularité de la structure ou de la texture présentée par l'entité (primitives de même taille et niveau de gris par exemple).

Cette approche a été particulièrement développée par Galloway (Galloway 75) et appliquée à l'analyse de textures représentées sous la forme de sections uniformes, caractérisées par leur longueur et leur niveau de gris.

II. 2°) Descripteurs du 2ème ordre

Les descripteurs du 2ème ordre sont issus de l'observation des caractéristiques jointes de paires ou groupes de primitives définis sous une contrainte donnée. Des descripteurs plus ou moins complexes sont définis selon qu'ils sont l'expression directe ou indirecte (relationnelle) des caractéristiques jointes examinées (figure 8).

II.2.1 ${ }^{\circ}$) Descripteurs relationnels

Ces descripteurs sont issus de l.'analyse d'une caractéristique relationnelle associée à une paire de primitives, considérées ici comme ponctuelles.

Deux primitives constituent une paire si elles sont situées à une distance D fixée a priori. A un tel couple de primitives est attachée la valeur de la différence de leurs niveaux de gris.

L'entité est alors décrite par l'histogramme de ces différences, pour tous les couples de primitives qui la composent (Weska 76). Si la distance est assez faible ($D=2$ par exemple), la présence d'un pic pour de faibles valeurs de différence sera révélateur d'une texture grossière, alors qu'une texture fine sera caractérisée par un pic associé à des valeurs de différence élevées (Davis 81a).

II. 2.2°) Matrices de cooccurrence

Le calcul des matrices de cooccurrence (Haralick 79) est issu de la prise en compte des caractéristiques jointes de paires de primitives, définies selon un critère de distance D et/ou d'orientation α. Soit m l'indice de l'attribut examiné, la matrice de cooccurrence $H_{D, \alpha}$ est définie par :

$$
H_{D, \alpha}\left(a_{1}, a_{2}\right)=\frac{\operatorname{Card}\left\{A_{i}(m)=a_{1} ; A_{j}(m)=a_{2}\right\}}{\operatorname{Card}\left\{P_{i}\right\}}
$$

Fig. 8 : Entités et descripteurs du 2nd ordre.
a) Sélection des couples $\left(P_{i}, P_{j}\right)$ de primitives examinés, selon un critère de distance D et d'orientation α;
b) Evaluation de l'histogramme des différences $H_{D, \alpha}^{1}$
c) Fvaluation de la matrice de cooccurrence $H_{n, \alpha}^{2}$

Si l) est choisi assez faible ($\mathrm{D}=2$), une texture grossière donnera lieu à des valeurs regroupées vers la diagonale de la matrice (niveaux similaires), une texture fine sera caractérisée au contraire par une matrice dont les valeurs élevées sont hors-diagonales.

Des descripteurs sont associés à ces matrices, qui sont représentatifs de ces différents modes de dispersion des valeurs (énergie, autocorrélation, covariance, inertie, contraste, entropie ...).

Haralick a généralisé cette approche à la caractérisation des textures représentées sous forme facettisée (Haralick 81). Des informations de type structural peuvent par ailleurs être dérivées de la prise en compte des caractéristiques de taille, de longueur ou de forme des primitives.

Davis a proposé une extension de la méthode à la caractérisation des textures représentées par éléments de frontières, l'analyse portant sur les attributs de contraste ou d'orientation. Les primitives sont regroupées par paires vérifiant un prédicat spatial impliquant leur proximité et leur "bonne" continuité (faible variation des orientations) (Davis 79).

II. 3°) Descripteurs de haut niveau

Un descripteur est dit "de haut niveau" dès lors qu'il implique des primitives images à fort niveau d'abstraction. Néanmoins, les descripteurs caractérisant la topographie et la structure hiérarchique d'une entité décomposée en primitives sont également considérés comme descripteurs de haut niveau (figure 9).

II.3.1 ${ }^{\circ}$) Descriptcurs topologiques

Les descripteurs topologiques les plus classiques (Gonzales 77 ; Yokoi 75) sont évalués sur des images binaires décomposées en composantes connexes (primitives images).

Soit l le support de l'image, \sum le support de l'entité E (points à 1) et $\sum_{i}^{\text {C }}$ le support du complémentaire de E dans I, noté E^{C}. Parmi les primitives de $\mathbb{E}^{\mathbb{C}}$, celles qui incluent des points du bord du support I sont dites primitives fond, les autres sont dites primitives trous.

Fig. 9 : Entités et descripteurs de haut niveau
a) Descripteur topologique (nombre d'Euler) ;
b) Descripteur topographique (graphe d'adjacence) ;
c) Descripteur structurel (arborescence).

Si C est le nombre de primitives composant E, H est le nombre de primitives trous composant $\mathbb{E}^{\mathbf{C}}$, le nombre d'Euler E est défini par :

$$
\mathrm{E}=\mathrm{C}-\mathrm{H}
$$

D'autres descripteurs permettent l'évaluation de la compacité d'une forme, considérée comme composée d'une entité simplement connexe. A cette forme E, de support Σ, est associée son enveloppe convexe, de support I. L'analyse se porte ici sur les primitives (concavités) présentes dans E^{c}. Des paramètres sont évalués, qui caractérisent la distribution des tailles de concavité (Chassery 84b).

Enfin, étant donnée une décomposition en sous ensembles convexes maximaux (Pavlidis 77), étant donnée une entité, son rectangle d'encadrement, et son complémentaire dans ce rectangle, il est possible d'évaluer les relations d'adjacence entre des triplets de primitives appartenant à l'une et à l'autre de ces composantes (Shapiro 81).

II. 3.2°) Descripteurs topographiques

Etant donnée une entité décomposée selon un ensemble de primitives, à un niveau donné, la description la plus complète de sa topographie est obtenue par l'évaluation du graphe d'adjacence de ces primitives.

Un graphe est composé d'un ensemble de noeuds et d'un ensemble d'arcs. Les noeuds représentent les primitives, et sont labellés par leurs attributs. Les arcs représentent les relations entre ces primitives, et sont labellés par le type et la valeur (degré d'adjacence, par exemple) de ces relations. Pour une relation donnée, un tel graphe est en général représenté par une matrice dont les lignes et les colonnes sont les noeuds et dont les valeurs sont les valeurs des relations qui les unissent.

Selon le niveau des primitives utilisées, des relations diverses telles que "adjacent à", "inclus dans", "proche de", "à gauche de" peuvent être utilisées. D'autres types de relations peuvent également être introduites, qui portent sur les attributs des primitives, telles que "similaire à", "inférieur à".

En ce qui concerne les propriétés topographiques, des descripteurs variés tels que le degré des primitives (nombre d'arcs incidents), la longueur du chemin séparant deux primitives, la présence de cycles peuvent être évalués. La présence d'isthmes ou de points d'articulation (arc ou
noeud dont la suppression provoque la déconnexion du graphe) est également un élément d'information important : un noeud d'articulation correspond à une primitive dont le support délimite deux régions, l'intérieur et l'extérieur, par exemple.

II. 3.3°) Descripteurs structurels

Les descripteurs structurels sont évalués soit par la prise en compte de l'ensemble des descripteurs caractérisant l'entité en ses différents niveaux de représentation, soit par l'analyse de l'arborescence représentant cette entité.

I1 s'agit dans le premier cas d'analyser 1'évolution d'un ou plusieurs descripteurs, évalués selon des bases primitives progressivement plus abstraites : la variation d'un paramètre de texture, par exemple, est plus ou moins rapide selon que la texture de l'entité est plutôt fine ou plutôt grossière. Cette approche a été particulièrement développée dans le cadre de l'application des concepts de la morphologie mathématique à l'analyse des textures (Serra 84).

Toute entité, décomposée de façon hiérarchique selon un ensemble de primitives intervenant à des niveaux d'abstraction différents peut par ailleurs être représentée par une arborescence. Une arborescence est un graphe orienté tel que (Miclet 84) :

- il ne contient pas de cycle ;
- tout sommet de cette aborescence peut être atteint par un chemin issu de la racine.

Une arborescence permet la mise en valeur des relations dinclusion plutôt que celle des relations d'adjacence ; elle est ordonnée selon une relation d'ordre partiel. L'arborescence est un graphe particulier, dont l'analyse est relativement plus simple. Cette forme de représentation est en général utilisée comme un descripteur intrinsèque, dont la comparaison à d'autres descripteurs de même ordre nécessite la mise en ocuvre d'algorithmes particuliers (Miclet 84).

III. INTERPRETATION DES ENTITES

Nous avons vu (paragraphe I) comment définir une entité comme un ensemble de primitives, ou "ensemble organisé" au sens gestaltiste du terme. Des descripteurs de différents ordres ont par ailleurs été introduits (paragraphe II). Il convient dès lors de poser le problème de façon réciproque, c'est-à-dire de définir les règles permettant d'interpréter la nature de l'entité, caractérisée par un ensemble de descripteurs donnés. Nous nous intéressons particulièrement ici aux notions de complexité et de cohérence de l'organisation, ainsi qu'aux modalités contextuelles d'insertion de l'entité au sein de l'image.

III.1) Modes intrinsèques d'interprétation

Etant donné une entité représentée par un ensemble de primitives, il convient de définir les descripteurs et modes d'interprétation de ces descripteurs, qui permettent la vérification des propriétés gestaltistes de cette entité : propriété de similarité, proximité, continuité, fermeture.

III.1.10) Propriétés de similarité et de proximité

Les descripteurs du ler ordre offrent une base suffisante d'évaluation du degré de similarité des primitives composant l'entité.

Soit m l'indice d'un attribut primitif particulier (en général niveau de gris), soient $A_{i}(m)$ les attributs associés aux différentes primitives P_{i} composant E, soit $\overline{A(m)}$ la valeur moyenne de ces attributs.

Le degré de similarité $\operatorname{SIM}(E)$ peut être évalué par :

$$
\operatorname{SIM}(E)=\sum_{P_{i} \in E}\left[A_{i}(m)-\overline{A(m)}\right] 2
$$

Une caractérisation plus fine est obtenue par analyse de l'histogramme : un histogramme unimodal est susceptible de représenter une entité uniforme. Dans le cas contraire, le nombre de modes composant cet histograme est indicatif du nombre de régions différentes susceptibles de composer E. Le degré de certitude attaché à une telle interprétation dépend de la variance des différents modes et de leurs surfaces respectives, selon des principes que nous reprendrons ultérieurement.
.106.

D'autres attributs, tels le gradient, sont susceptibles de révéler la présence d'une frontière au sein de l'entité. Ce type d'approche peut être généralisé par la prise en compte d'autres attributs, évalués à d'autres niveaux de représentation (facettisation par exemple), ou par la prise en compte simultanée de plusieurs attributs :

$$
\operatorname{SIM}(E)=\sum_{P_{i}} \sum_{E}\left[\Lambda_{i}-\bar{A}\right]^{T}\left[\Lambda_{i}-\bar{\Lambda}\right]
$$

Le degré de proximité des primitives composant une entité est évalué selon des principes similaires. Si l'on note (x_{i}, y_{i}) les coordonnées spatiales des primitives P_{i}, et (\bar{x}, \bar{y}) les coordonnées de leur barycentre, le degré de proximité PROX(E) est évalué par :

$$
\operatorname{rROX}(E)=\sum_{P_{i} \in E}\left[\left(x_{i}-\bar{x}\right)^{2}+\left(y_{i}-\bar{y}\right)^{2}\right]
$$

I1 convient d'envisager cette analyse différemment, lorsque l'on s'adresse à des entités de type contour, la notion associée est dans ce cas la notion de fermeture.

III.1.20) Continuité et fermeture

Les descripteurs de haut niveau (graphe d'adjacence) sont nécessaires à l'interprétation des propriétés de fermeture et de continuité. Cette analyse s'adresse à des entités de type contour, représentées par des segments de droite orientés, ou des segments de courbe auxquels sont associées les orientations des deux demi-tangentes aux extrémités.

Les propriétés topologiques de ces entités sont représentées par un graphe d'adjacence, que nous supposons ici constitué d'un chemin ou d'un cycle unique.

Le degré de continuité peut alors être évalué par l'analyse de l'histogramme des variations successives d'orientations, observées selon un
sens de parcours prédéfini du graphe. Des discontinuités fortes sont décelées par la présence de modes de valeurs moyennes élevées.

Lorsque le graphe d'adjacence de l'entité étudiée n'est pas un cycle, son degré de fermeture peut être évalué par la distance séparant les deux extrémités du chemin qui la représente.

III. 2°) Modes contextuels d'interprétation

- Il convient d'analyser la robustesse et la cohérence d'une représentation primitive selon un mode contextuel, c'est-à-dire en tenant compte de l'ensemble des représentations primitives associées aux différentes entités observées dans l'image. Il est par ailleurs pertinent d'étudier la distribution de leurs descripteurs, ainsi que leurs relations topographiques.

III.2.1 ${ }^{\circ}$) Robustesse et cohérence des représentations primitives

La robustesse d'une affectation primitive, comme nous l'avons déjà signalé, peut être évaluée en termes de probabilités, selon le degré de similarité observé entre les attributs primitifs et prototypiques associés à l'entité concernée.

Plus précisément, soit $\left\{E_{k}\right\}$ l'ensemble des entités susceptibles de composer l'image, soit $\left\{\mathrm{A}_{\mathrm{i}}(\mathrm{m})\right\} \quad$ l'ensemble des attributs des primitives images considérées, et soit $\left\{\bar{A}_{k}, \sigma_{k}\right\}$ les moyennes et variances de cet attribut, caractérisant chaque entité E_{k} de façon prototypique. Le degré de similarité entre la primitive P_{i} et le prototype P_{k} est évalué au moyen de la distance de Mahalanobis $d_{i k}$:

$$
d_{i k}=\frac{\left|A_{i}(m)-\bar{A}_{k}\right|}{\sigma_{k}}
$$

.108.

La probabilité ${\underset{i}{\prime}}^{(}(k)$, ou degré de certitude associé à l'assertion "P ${ }_{i}{ }^{\epsilon}$ $E_{k}{ }^{\prime \prime}$, est évalué par :

$$
\mathcal{P}_{i}(k)=\frac{1 / d_{i k}}{\sum_{k} 1 / d_{i k}}
$$

Ninsi l'assertion $" P_{i} \in E_{k}$ " peut s'avérer vaie $\left(P_{i}(k)=1\right)$, fausse $\left(\mathcal{P}_{\mathbf{i}}(k)\right.$ $=0$) ou plus ou moins sujette à caution. Ceci permet d'associer à E_{k} l'ensemble de ses primitives représentatives les plus robustes (au moyen d'un seuil, par exemple). D'autres primitives sont dites "d'affectation ambiguë", lorsque des degrés de certitude similaires sont attachés simultanément à plusieurs assertions différentes. Le degré d'ambiguité est évalué par un calcul d'entropie (Faugeras 79).

Il convient par ailleurs de moduler le degré de certitude attaché à une représentation primitive donnée par la prise en compte d'informations contextuelles. Selon les règles gestaltistes de l'organisation, en effet, (bonne continuité, similarité et proximité), toute affectation primitive devrait s'avérer compatible avec l'ensemble des affectations primitives réalisées sur des éléments proches.

La notion de contexte est abordée ici sous l'angle spatial ; il convient également de l'envisager sous l'angle hiérarchique, par la vérification des liens de compatibilité unissant des éléments primitifs, issus de niveaux d'abstraction différents. Le degré de certitude attaché à l'assertion " P_{i} est point frontière" est ainsi renforcé si d'autres éléments primitifs de même type sont décelés à des niveaux d'abstraction supéricurs, qui incluent le point P_{i} (Marr 82).

Ces différentes notions seront reprises et détaillées ultérieurement.

III.2.20) Interprétation contextuelle des entités

Les modes contextuels d'interprétation des entités impliquent tant les descripteurs intrinsèques à ces entités que les caractéristiques de leur distribution topographique. Une image est constituée d'entités présentant des morphologies et degrés d'organisation variés. Les propriétés émergentes de cette image sont issues de la présence d'entités de nature et/ou d'insertion topographique particulière (figure 10).
.109.

Entité majeure, noeud
d'articulation du graphe
d'adjacence.

Fig. 10 : Illustration de quelques notions attachées aux modes contextuels d'interprétation des entités.

Minsi, les critères de surface et d'uniformité caractérisent les éléments composant le "fond" de l'image. Les éléments plus petits, d'organisation plus complexes sont perçus comme les "objets" reposant sur le fond. L'évaluation du graphe d'adjacence des entités fournit par ailleurs une source pertinente d'informations. Il convient en effet de distinguer les entités à faible degré d'adjacence des entités à fort degré d'adjacence (le bord de l'image est considéré comme une entité particulière).

Les entités de degré 1 ("trous" au sens topologique du terme) sont. interprétées comme partie prenante d'une organisation plus complexe, dont elles sont l'une des feuilles. Ceci suggère de considérer l'ensemble constitué des entités de degré 1 et de l'entité qui leur est associée dans le graphe d'adjacence comme une entité apparaissant à un plus fort niveau d'abstraction.

Inversement, les entités de fort degré sont souvent considérées comme des entités majeures de l'image, dont elles constituent l'ossature. Il convient d'accorder une attention particulière aux entités majeures qui sont de plus noeuds d'articulation du graphe d'adjacence. Elles assurent en effet la subdivision du support de l'image selon des régions différentes, chacune constituant une entité pour le niveau d'abstraction considéré.

Enfin, les régions de transition sont des entités de faible degré associées à deux entités de fort degré d'adjacence (Pavlidis 77).

III.4) Facteurs conditionnant 1'interprétation

L'examen des indications que nous avons fournies concernant la notion de système de représentation et de description des entités composant une image suggère la formulation de deux remarques importantes.

La première remarque concerne le déséquilibre apparent entre la richesse des modes de représentation et description possibles et la simplicité des règles d'élaboration guidant le regroupement de primitives en entités. Ceci révèle l'importance des choix qui vont être faits : nature des éléments primitifs, mode de caractérisation, niveau de description etc.

Ceci nous amène à formuler la seconde remarque, qui concerne l'adaptabilité d'un système à une image donnée et plus particulièrement son adaptabilité différentielle aux différentes entités qui la composent. Le

-

Niveau 1 : forme primitive et règle d'agencement ;

Niveau 2 : forme primitive et règles d'agencement ;

Niveau 3 : forme primitive et règle d'agencement ;

Niveau 4 : forme primitive et règle d'agencement.

Fig. 11 : Variabilité des critères morphologiques et topographiques définissant les modes d'organisation d'une entité complexe (cf. figure 8, Partie I) .
problème de l'adaptation à l'image peut être assimilé à celui de l'adaptation aux objectifs poursuivis (type d'objet à extraire, niveau d'interprétation requis), du moins en première analyse : ceci met en jeu, de façon plus ou moins explicite, certaines connaissances sur le domaine d'application considéré. Celui de l'adaptation différentielle, qui n'est qu'une formulation plus précise du précédent, est d'une nature extrêmement. différente.

Le caractère synthétique de la présentation que nous avons effectuée suggère en effet l'existence d'un principe unique d'analyse de l'image, dont l'applicabilité implique l'existence d'un principe unique d'organisation de cette dernière. Les images vérifiant une telle assertion sont néanmoins extrêmement rares.

Tant les morphologies que les degrés d'organisation des entités sont en général extrêmement variables, les principes mêmes conduisant à l'émergence de ces entités en tant qu'ensemble organisé pouvant différer d'une entité à l'autre. La structure même d'une entité, enfin, peut s'avérer suffisamment complexe pour nécessiter l'adaptation du mode d'analyse au niveau d'abstraction considéré (figure 11).

B. Outils d'analyse thématique des images

Abstract

L'objectif de cette partie est la présentation des principaux outils d'analyse d'image, invoqués lors de l'étape dite de "segmentation". Segmenter une image signifie, selon la terminologie que nous avons employée précédemment, détecter les ensembles organisés qui la composent. Cela signifie plus précisément appliquer des règles d'affectation et/ou de regroupement à un ensemble de faits initiaux découverts dans l'image, selon les contraintes explicitées au sein du système de représentation.

Les outils les plus classiques sont présentés tout d'abord : il s'agit essentiellement, sur le plan algorithmique, des processus de seuillage et d'agrégation de régions, que nous formulons ici sous la forme de règles de production. Le manque d'efficacité de ces approches conduit à l'accroissement de leur complexité, par l'adjonction de faits et règles supplémentaires. Des processus de haut niveau sont finalement introduits, fondés sur l'activation séquentielle de processus de bas niveau et sur la complétion progressive et hiérarchique de la base de faits initiale.

I. LeS OUTILS DE bASE

I1 convient de définir ici les principes ou règles permettant l'obtention d'un ensemble de faits initiaux. Nous nous attachons ensuite aux processus algorithmiques par lesquels ces faits sont susceptibles d'être regroupés pour constituer des entités. Nous distinguons deux types de processus, selon qu'ils se fondent sur des règles d'affectation ou d'association.

I. 1°) Les faits initiaux

Les faits initiaux sont l'ensemble des primitives détectées dans l'image, selon des contraintes prédéfinies, ces primitives étant caractérisées par un ou plusieurs attributs.

Toute primitive image de support non ponctuel S_{i} peut être obtenue :

- par tessellation du plan image (Schachter 80) ;
- par partitionnement d'une primitive de support S_{j} plus étendu (Samet 80) ; S_{i} est tel que :
- par regroupement de primitives de supports $\mathrm{S}_{\mathbf{j}}$ (Brice 70); $\mathrm{S}_{\mathbf{i}}$ est tel que :

$$
S_{\mathbf{i}}=U S_{\mathbf{j}}
$$

Nous nous intéressons plus particulièrement ici aux processus de tessellation et de partitionnement (figure 12).

1.1.1 ${ }^{\circ}$) Tessellation

La tessellation d'une image dépend de la nature des contraintes spécifiant la forme des primitives ainsi que les règles de leur placement.

Les principes de tessellation les plus classiques conduisent à la représentation de l'image sous la forme d'une "mosaiqque" régulière, composée de triangles, carrés ou hexagones.

A ces tessellations régulières sont opposées les tessellations aléatoires obtenues par partitionnement du plan image selon des lignes (lignes de Poisson) ou des cellules (cellules de Dirichlet) dont les règles de placement sont aléatoires et qui définissent des polygones (polygones de Voronoí) ou des triangles (triangulation de Delaunay) (Ahuja 81).

I.1.2 ${ }^{\circ}$) Partitionnement

Les processus de partitionnement que nous introduisons ici sont des processus de tessellation itératifs régis par une contrainte d'uniformité surfacique. La méthode la plus classique à cet égard est fondée sur un partitionnement quaternaire des images (technique des "quadtree", Rosenfeld 80). Toute primitive, de forme carrée, est susceptible d'être subdivisée en quatre autres primitives, de forme également carrée. Le critère de partitionnement est un critère d'hétérogénéité : variance élevée des niveaux de gris, des couleurs (Garbay 82), gradient élevé, par exemple. Il s'applique, à une étape donnée, à un ensemble de primitives de même taille $k,\left\{P_{i}^{k}\right\}$, selon la règle suivante :
$S i-C\left(P_{i}^{k}, \quad P_{k}\right)$ alors partitionner $\left(P_{i}^{k}\right)$
La base de faits contient à l'étape initiale une primitive p^{K} dont 1 e support est l'image toute entière. la subdivision progressive de p^{K} conduit

Fig. 12 : Les différents modes de délimitation des primitives image.
a) Délimitation par tessellation ;
b) Délimitation par partitionnement.
à la mise à jour de la base de faits, selon une structuration arborescente. De nouveaux faits sont ainsi obtenus à l'étape ($K-k+1$), feuilles de taille k de l'arborescence, qui constituent la base instantanée d'activation possible de la règle.

Le processus s'arrête lorsqu'il n'existe plus de primitive vérifiant la clause condition de la règle. L'ensemble des feuilles de l'arborescence, caractérisées par un niveau de gris ou de couleur moyen, constitue la représentation primitive de l'image. la finesse de cette représentation (présence de primitives ponctuelles par exemple) dépend de la force de la contrainte introduite en clause condition de la règle.

I. 2°) Processus de seuillage

L'objectif est de regrouper les faits primitifs initiaux selon des ensembles plus larges, appelés entités. Il s'agit donc d'attacher à chaque primitive une nouvelle propriété, propriétẹ d'appartenance à une entité donnée. Les règles d'affectation impliquées à cet égard sont des règles d'inférence, dont la clause conclusion est une assertion logique de la forme ${ }^{P_{i}} \in E_{k}$ ", et dont la clause condition est une assertion logique de la forme $C\left(P_{i}, P_{k}\right)$:
si $C\left(P_{i}, P_{k}\right) \operatorname{alors}\left(P_{i} \in E_{k}\right)$
La constitution d'une telle base de règle implique la connaissance des représentations prototypiques des entités E_{k} susceptibles de composer l'image. Cette connaissance est acquise par analyse de l'image.

Nous supposons ici que nous disposons d'un ensemble de faits primitifs caractérisés par un attribut unique (niveau de gris). Il convient d'analyser la distribution de ces attributs, représentée par l'histogramme. Toute entité f_{k} est considérée comme représentée de façon prototypique par un mode particulier de cet histogramme, caractérisé par l'intervalle $\left[\alpha_{k}, \alpha_{k+1}\right]$ des valeurs de niveau de gris qu'il regroupe (figure 13).

Ceci permet la constitution d'une base de règles de la forme :
$\operatorname{si}\left(q_{k} \leqslant G_{i} \leqslant q_{k+1}\right)$ alors $\left(P_{i} \in E_{k}\right)$
pour $k=1, \ldots, k$ où K est le nombre de modes de l'histogramme.

Fig. 13 : Segmentation d'une image par seuillage.
a) Exemple d'histogramme ;
b) Détection de seuils délimitant les modes et caractérisation prototypique des entités.

Ces règles sont appliquées à l'ensemble des faits primitifs, selon un ordre de prise en compte indifférent.

L'approche présentée ici correspond à l'approche classique de segmentation par seuillage (Prewitt 66), dont l'application permet soit l'étiquetage différentiel des primitives selon les différentes régions composant l'image, soit la détection de primitives de type "frontière" (utilisation d'une caractérisation différentielle des primitives (Weska 78 ; Levialdi 81).

La faiblesse de cette approche est liée au manque de garantie quant à la validité "thématique" des entités ainsi élaborées. Le calcul de seuils "optimaux", eu égard à la vérification de contraintes de pertinence thématique permet une approche plus robuste.

La segmentation de l'image est considérée dans ce cadre comme pertinente dès lors que les caractéristiques des différentes entités sont suffisamment uniformes. Le critère évalué à cet égard est la somme des variances des caractéristiques observées sur les différentes entités (critère de Fisher). Il s'exprime de la façon suivante :

$$
\mathrm{w}=\sum_{\mathrm{k}} \sigma_{\mathrm{k}}
$$

Un algorithme, inspiré de la programmation dynamique, permet l'obtention de seuils garantissant la minimisation du critère W (Diday 82). Ce type d'approche a été largement utilisé (Chassery 84a ; Johannsen 82 ; Pun 80).

1. 3°) Processus d'agrégation

Il convient de distinguer deux classes de processus d'agrégation, selon qu'ils sont fondés sur l'activation de règles d'inférence (processus de croissance de régions ou "region growing") ou sur l'activation de règles de production, dont la clause conclusion est une action de fusion (processus de fusion de régions ou "merging") (figure 14). Le terme "région" est employé ici au sens large de "entité".

Fig. 14 : Segmentation d'une image par agrégations.
a) Processus de croissance de régions.
b) Processus de fusions de régions.
$1.3 .1^{\circ}$) Processus de croissance de régions

Les processus de croissance de régions permettent l'étiquetage progressif des primitives images par la mise en oeuvre de règles d'inférence qui sont des règles d'affectation particulières. Ces règles sont en effet de la forme :
$\operatorname{si}\left(P_{i} \in E_{k}\right)$ et $C\left(P_{i}, P_{j}\right)$ alors $\left(P_{j} \in E_{k}\right)$
ou, plus généralement :
si $\left(U_{i-1} \subset E_{k}\right)$ et $C\left(U_{i}, \mathcal{E}_{k}\right)$ alors $\left(P_{i} \in E_{k}\right)$
(cf. paragraphe I.3.2)

Les contraintes invoquées, comme nous l'avons signalé au paragraphe I.3.3., diffèrent selon la nature des primitives examinées (frontière ou région) (Chassery 84a). Selon la forme des règles, elles sont d'essence locale ou globale, l'utilisation de contraintes globales permettant un meilleur contrôle de la pertinence thématique de la segmentation obtenue (Garbay 86) .

La mise en oeuvre de ces processus implique l'activation d'un processus préliminaire permettant l'obtention d'un étiquetage parcellaire de l'image. Un processus de seuillage peut être utilisé à cet égard : les primitives ou groupes de primitives appartenant de façon significative (écart à la moyenne) aux différentes entités sont sélectionnés et étiquetés. Ils constituent les "germes" ou faits initiaux à partir desquels seront activées les règles d'inférence. Ces règles sont en général appliquées en parallèle sur les différents germes. Le processus s'arrête soit lorsque toutes les primitives ont été examinées, soit pour une entité donnée, lorsqu'il n'existe plus de primitives satisfaisant la clause condition de la règle.

L'un des problèmes centraux soulevé par cette approche est l'influence de la stratégie d'exploration de la base de fait sur la segmentation finale. Tant le choix des germes, en effet, que le choix de lordre d'exploration des primitives susceptibles de leur être associées, ont une influence déterminante.

I.3.2 ${ }^{\circ}$) Processus de fusion de régions

Les processus de fusion permettent la fusion progressive des primitives images par la mise en oeuvre de règles de production de la forme :

Si $C\left(P_{i}, P_{j}\right)$ alors fusionner $\left(P_{i}, P_{j}\right)$

L'intérêt de ces processus, par opposition aux précédents, apparaît dès lors que le niveau d'analyse auquel ils sont utilisés est suffisamment élevé (primitives de fort niveau d'abstraction). Des contraintes portant non seulement sur la texture, mais également sur la surface relative des primitives examinées, ou sur la forme de la primitive émergente qu'ils sont susceptibles de constituer deviennent en effet accessibles (Zucker 77, Gagalowicz 85).

Ils sont pour ces raisons le plus souvent appliqués en complément des précédents : ils opèrent sur une image représentée sous la forme de régions ou éléments de contour, décrite par un ensemble d'attributs intrinsèques et par le graphe d'adjacence de ces éléments.

II. DES AMELIORATIONS POSSIBLES

L'efficacité des processus élémentaires de segmentation que nous avons définis est étroitement dépendante de l'adéquation des critères utilisés pour définir les entités recherchées. Or, il apparaît que l'ensemble de ces processus repose sur un principe essentiel qui est celui de l'homogénéíté des entités : une région est définie comme un ensemble de primitives de niveaux de gris similaires, un contour est un ensemble de primitives de même niveau de contraste. Le peu d'efficacité de ces processus, lorsqu'ils sont appliqués à l'analyse d'images naturelles, conduit à affiner les critères associés à la notion d'entité. Cette recherche peut conduire à une augmentation des faits à prendre en compte, mais également à la dérivation de règles d'affectation et/ou d'association plus robustes.

H. 1°) Base de faits et règles d'affectation

L'approche la plus classique consiste à considérer les entités (régions) constituant l'image comme uniformes non plus seulement à l'égard de leurs niveaux de gris, mais également à l'égard de leurs couleurs, ou de leurs textures. Il convient dans ce cas d'élargir la base de faits par l'adjonction d'attributs primitifs supplémentaires, calculés selon un mode intrinsèque ou relatif, à un niveau ponctuel ou local (cf. A.I.2) (figure 15).

Lorsque les entités sont définies de façon prototypique, la définition de règles d'affectation robustes dépend étroitement de l'adéquation des fonctions de décision, ou représentants prototypiques choisis. Ces fonctions peuvent être obtenues par l'examen séparé des histogrammes relatifs aux différents attributs, et combinées sous la forme d'un arbre de décision. Ce type d'approche a été particulièrement envisagé dans le cadre de la segmentation d'images multispectrales (Ohlander 78, Garbay 81). L'examen simultané de l'ensemble des attributs implique la mise en oeuvre des techniques de classification (Coleman 79). Il convient néanmoins que la variabilité respective des différents attributs, observée au sein de chacune des entités, soit suffisamment faible. La prise en compte d'attributs locaux (Λ huja 80 , Schachter 78), sensibles aux variations locales de texture, implique pour ces raisons l'emploi de processus préalables de lissage (Davis 75).

Une autre approche consiste à définir une entité comme une région, homogène au sens d'un critère plus ou moins complexe, bordée par une frontière regroupant un ensemble de points de fort contraste (Ranade 80 ; Weska 79). Régions et frontières étant séparément obtenues, le problème revient à calculer le ou les seuils de décision permettant une correspondance optimale entre ces deux types d'entités.

L'inconvénient majeur de ces approches, dont le principe commun repose sur l'introduction d'attributs primitifs de complexité croissante, est leur coût élevé, associé à un risque d'accumulation des sources d'erreur (Garbay 86).

II. 2°) Base de faits et règles d'association

Lorsqu'une représentation vectorielle des attributs primitifs est envisagée, l'élaboration des règles d'association implique l'évaluation d'une distance sur cet espace. A tout couple de primitives (P_{i}, P_{j}) peut être associé un vecteur $\Lambda \Lambda_{i j}$, obtenu comme la différence des vecteurs respectifs Λ_{i} et Λ_{j}. La distance $D\left(P_{i}, P_{j}\right)$ est évaluée comme la norme cuclidienne du vecteur $\Delta \Lambda_{i j}$.

L'emploi d'une telle métrique a été proposé pour l'évaluation des distances dans l'espace des couleurs (llunt 67 ; Garbay 82) :

$$
D^{2}\left(P_{i}, r_{j}\right)=\left(\Delta L_{i j}\right)^{2}+\left(\Delta S_{i j}\right)^{2}+\left(\Delta H_{i j}\right)^{2}\left(\frac{S_{i}+S_{j}}{2}\right)^{2}
$$

où L, S, H représentent les attributs primitifs de luminance, de saturation et de teinte, et où chaque terme est normalisé, de façon à tenir compte des dynamiques respectives des différentes composantes. Le critère de similarité $\operatorname{SIM}\left(P_{i}, P_{j}\right)$ s'exprime alors de la façon suivante :
$\operatorname{SIM}\left(P_{i}, P_{j}\right)$ vrai $\Leftrightarrow D\left(P_{i}, P_{j}\right) \leqslant \varepsilon$
Il convient de souligner que l'utilisation d'une norme en valeur absolue peut s'avérer préférable, pour des raisons de complexité de calcul. (Asano 81).

Il peut par ailleurs apparaître pertinent de fonder l'analyse sur une acception plus globale de la notion de similarité, particulièrement dans le cas d'images bruitées : ceci est naturellement obtenu par la prise en compte de primitives à fort niveau d'abstraction.

Fig. 16 : Modes d'amélioration des processus
d'association.
a) Acception globale de la notion de similarité ;
b) Choix de la primitive de meilleur mérite ;
c) Contrainte et coopération région/frontière.

Une autre approche peut être envisagée : un voisinage de dimension k K étant associé à chaque primitive, deux primitives sont dites similaires si l'on peut trouver dans leur voisinage un nombre suffisant de primitives similaires simultanément à l'une et à l'autre (Haralick 85).

Il convient par ailleurs de contraindre soigneusement la mise en oeuvre des processus d'association, de façon à choisir à un instant donné la primitive de "meilleur mérite" au sens d'un certain critère. Il convient à cet égard de prendre en compte simultanément des critères locaux (niveau de gris) et globaux (forme résultante) (Rosenfeld 82 ; Garbay 86). Le choix est alors le reflet d'un compromis entre l'accroissement de l'hétérogénéité de la texture et la diminution de la complexité de la forme. Des règles de clauses conditions complexes sont définies, à partir par exemple des critères suivants, portant sur la primitive susceptible d'être fusionnée :

- homogénéité
- taille
- degré d'adjacence
- similarité
- forme résultante

L'adaptation nécessaire de ces règles, selon le cas examiné, suggère leur implémentation sous des formes légèrement différentes, selon la priorité donnée à tel ou tel critère, et donc l'analyse d'une stratégie possible d'activation (Nazif 85).

En suivant cet ordre d'idée, un principe essentiel est celui de la prise en compte simultanée de primitives de type région et de primitives de type frontière : deux primitives de type région ne peuvent être fusionnées si une primitive de type frontière les sépare. L'analyse alors procède en deux étapes. Une carte des frontières est dressée tout d'abord, par mise en oeuvre de processus spécifiques de détection et d'association. Les processus d'analyse de régions sont activés ensuite, qui utilisent un critère d'adjacence dont la vérification est conditionnée à l'absence de frontière (Haralick 75 ; Perkins 80). Ces notions sont illustrées dans la figure 16.
. 127.
II. 3°) Base de faits et interprétation

Toute image, avant d'être soumise à l'étape de "segmentation", est représentée par une base de faits, regroupant les primitives et attributs qui les décrivent. Une segmentation, obtenue par l'activation de règles particulières, permet de compléter la base de faits de façon dualitaire, par l'affectation de nouveaux attributs primitifs, ou "étiquettes", et par l'adjonction de nouvelles primitives, ou "entités", représentant les ensembles organisés qui composent l'image.

Le problème se pose alors d'évaluer la robustesse de cette interprétation, au sens du degré de certitude attaché à l'étiquetage primitif réalisé, et de la cohérence des ensembles obtenus. Certaines primitives peuvent s'avérer en effet d'interprétation incertaine, "ambiguë", ou peu compatible avec les interprétations voisines : ceci risque de nuire à la cohésion spatiale des ensembles organisés résultants. Il convient donc de définir des processus susceptibles de réduire l'ambiguîté et d'augmenter la compatibilité d'un étiquetage. L'étiquetage associé à la base de faits est défini à cette fin selon un mode stochastique : à chaque fait est associé un vecteur de probabilité \mathcal{P}_{i} exprimant le degré de certitude attaché aux interprétations possibles (cf. A.III.2.1) .

L'ambiguité attachée à ce vecteur de probabilité est mesurée par l'entropie H_{i} :

$$
H_{i}=1-\left\|P_{i}\right\|
$$

Réduire l'ambiguité d'un étiquetage équivaut à minimiser le critère C_{1} :

$$
C_{i}=\sum_{P_{i}} H_{i}
$$

évalué sur toute l'image.
Un étiquetage compatible, par ailleurs, est un étiquetage vérifiant :

$$
P_{i}(k)=\sum_{P_{j} \in S_{i}}^{\sum} \quad \sum_{j} \quad P_{j}(1) \quad P_{i j}(k / 1)
$$

où S_{i} est un voisinage centré autour de la primitive P_{i}, et où $\mathcal{P}_{i j}$ est une probabilité conditionnelle dont la valeur peut être estimée par apprentissage sur l'image. La compatibilité d'un vecteur \mathcal{P}_{i} est évaluée par sa distance ${ }^{D_{i}}$ à la valeur théorique définie précédemment. Augmenter la compatibilité d'un étiquetage équivaut à minimiser le critère C_{2} :

$$
\mathrm{C}_{2}=\sum_{\mathbf{P}_{\mathbf{i}}} \mathrm{D}_{\mathbf{i}}
$$

évalué sur toute l'image. n'où le critère global C à minimiser :

$$
C=C_{1}+(1-\alpha) C_{2}
$$

Les vecteurs de probabilité P_{i} sont modifiés itérativement, de façon à optimiser le critère (Faugeras 79 ; Berthod 81). Une autre approche consiste à modifier l'étiquetage en ne tenant compte que d'une contrainte locale de compatibilité (Rosenfeld 76).

L'application de ces processus à la segmentation d'images a été étudiée de façon intensive. Néanmoins, les résultats obtenus dépendent étroitement de l'étiquetage initial (Ranade 80) et de la nature des règles de mise à jour (Kitchen 80).

Différentes formes de coopération de primitives de type région et de primitives de type frontière peuvent être envisagées dans ce cadre. La première consiste à traiter de façon différentielle les primitives frontières, en interdisant leur prise en compte par les processus de relaxation (Eklundh 83). La seconde consiste à les prendre en compte simultanément et à les traiter au sein d'un processus unique de mise à jour (Bouakaz 86).

L'un des développements envisagé a concerné par ailleurs la définition de processus de relaxation hiérarchique (Davis 81b) : la robustesse d'un élément de frontière, par exemple, devrait se trouver renforcée par la présence de lignes de contraste, à des niveaux d'abstraction supérieurs (Marr 82). La complexité des processus mis en jeu a été néanmoins un facteur limitant ces recherches.

III. PROCESSUS DE HAUT NIVEAU

Abstract

Les processus dits de "haut niveau" sont des processus susceptibles d'analyser l'image à différents niveaux d'abstraction. Ils permettent la complétion progressive de la base de faits initiale, par activation de l'ensemble des règles du système selon des cycles successifs, chaque cycle correspondant au passage d'un niveau d'abstraction à un autre. Les règles utilisées sont des règles de partitionnement ou de fusion, elles sont invoquées selon une stratégie pré-déterminée, descendante, ascendante, ou mixte, correspondant au mode d'élaboration de la base de fait. Elles sont toujours appliquées "en parallèle" à l'ensemble des faits accessibles à un niveau donné. Certains de ces processus, enfin, se fondent sur la prise en compte successive de règles différentes, regroupées en modules spécifiques du niveau d'abstraction auquel elles sont attachées.

III.10) Processus ascendants

Les processus ascendants se fondent sur l'activation de cycles de fusion successifs, permettant l'émergence d'entités progressivement plus abstraites (figure 17).

L'image est représentée à l'étape initiale sous la forme d'un graphe d'adjacence (grille d'adjacence au niveau ponctuel) impliquant l'ensemble des primitives initiales (noeuds du graphe) et explicitant leurs relations d'adjacence (arcs du graphe). A chaque primitive est associé l'ensemble des attributs susceptibles d'être invoqués en clause condition des règles de fusion.

A chaque cycle est défini un nouveau graphe, obtenu par contraction du précédent : tout noyau de primitives en relation selon le graphe d'adjacence, qui vérifient le critère de similarité conditionnant l'application des règles de fusion, est remplacé par un noeud unique au sein du nouveau graphe (Rosenfeld 82). Les attributs caractéristiques de ce noeud sont évalués ; les arcs du graphe sont mis à jour en fin de cycle.

Fig. 17 : Processus de haut niveau : processus ascendant.
a) Opérations de fusion effectuées sur l'image ;
b) Opérations de contraction effectuée sur le graphe d'adjacence.

Afin d'éviter des calculs redondants, en phase de réévaluation des attributs, il convient d'employer des descripteurs d'expression récursive, c'est-à-dire tels que :

$$
A_{i j}(m)=f\left\{A_{i}(m), A_{j}(m)\right\}
$$

où $A_{i}(m), A_{j}(m)$ sont les attributs de deux primitives P_{i} et P_{j}, et où $A_{i j}(m)$ est l'attribut attaché à la primitive $P_{i j}$ obtenue par fusion de P_{i} et de P_{j} (Kropatsch 83).

Certains attributs, particulièrement les attributs de forme, s'avèrent pour ces raisons plus difficiles à introduire que des descripteurs tels que la surface, le niveau de gris moyen etc.
III. 2°) Processus decendants et mixtes

Les processus descendants se fondent sur l'activation de cycles de partitionnement successifs, permettant l'émergence de primitives images progressivement plus fines. L'image est représentée à l'étape initiale sous la forme d'une primitive unique, dont le support est celui de l'image toute entière. Les primitives sont progressivement subdivisées, selon des contraintes géométriques et surfaciques. L'image est représentée à l'étape finale sous une forme arborescente (cf. A.I.1.2.).

La segmentation obtenue par ces processus n'est en général pas satisfaisante, du fait que deux primitives adjacentes de l'image peuvent s'avérer de caractéristiques similaires. Il apparait pour ces raisons nécessaire de définir des processus mixtes, fondés sur l'articulation de processus d'analyse descendants et ascendants (Pavlidis 77) (figure 18).

Une première approche consiste à appliquer successivement un processus descendant puis un processus ascendant : ceci permet de fournir au processus de fusion, à l'étape initiale, une représentation déjà relativement abstraite de l'image. Une réduction des efforts de regroupement est obtenue, ainsi que l'accès à des critères de fusion de plus haut niveau (surface, degré d'adjacence ...) (Haralick 85).

Fig. 18 : Processus de haut niveau : processus mixte ;
a) Processus simple de partitionnement et fusion ;
b) Processus mixte complexe.

Une seconde approche, plus complexe, consiste à utiliser dans un premier temps l'arborescence quaternaire représentant l'image, puis le graphe d'adjacence des régions pour contraindre les processus d'analyse.

L'image est représentée à l'étape initiale sous la forme d'un ensemble de primitives blocs, noeuds de l'arborescence observés à un niveau donné l_{0}. Cette représentation initiale est modifiée par la mise en oeuvre de processus successifs de fusion et de partitionnement, opérant'le long de la structure arborescente déjà définie : seule la fusion de 4 blocs adjacents, issus d'un même noeud père est autorisée, la subdivision d'un bloc conduit à l'introduction de 4 blocs fils, selon les contraintes géométriques définissant l'arborescence.

Les primitives ainsi obtenues sont ensuite fusionnées par la mise en oeuvre de processus fondés sur l'examen de leur graphe d'adjacence. L'intérêt de cette phase d'analyse est d'être appliquée à une représentation de haut niveau de l'image, des critères sophistiqués de regroupement peuvent être appliqués, qui permettent l'élimination des régions de bruit, et l'obtention d'entités robustes, au sens des contraintes gestaltistes de l'organisation.
-
III. 3°) Les approches modulaires

La mise en oeuvre de processus de haut niveau permet la complétion progressive de la base de faits par l'élaboration d'entités progressivement plus robustes, au sens de leur signification thématique. Ces processus traitent l'image selon un mode hiérarchique, c'est-à-dire que les entités obtenues au terme de l'analyse sont représentées par l'arborescence des primitives participant à leur construction.

Les principes qui régissent une telle analyse sont en général issus de la définition d'un critère unique de similarité et d'adjacence. Or, nous avons défini une entité comme un ensemble organisé de primitives, regroupées selon des principes globaux variés, susceptibles d'impliquer des critères de forme ou de contraste (présence d'une frontière délimitant l'ensemble par rapport aux ensembles voisins). Nous avons vu par ailleurs que ces critères se formalisent facilement, dès lors qu'ils contraignent des primitives de haut niveau d'abstraction.

Des processus d'analyse puissants sont ainsi obtenus par la définition de bases de règles modulaires (figure 19). Chaque jeu de règles étant appliqué à un niveau particulier de l'analyse. Les modules de haut niveau sont obtenus par la "relaxation" progressive des contraintes de similarité et/ou proximité, au profit des contraintes de contraste, de compacité ou de continuité (Chassery 84a).

Ce type d'approche a été particulièrement approfondi par Gagalowitz et Monga (Gagalowitz 85). Un processus mixte d'analyse est tout d'abord appliqué, selon une représentation arborescente quaternaire de l'image (algorithme de "split and merge", (Pavlidis 77)). Un processus ascendant de fusion est ensuite mis en oeuvre, selon cinq étapes successives d'analyse. L'activation des règles de fusion invoquées lors des trois premières étapes est conditionnée par la vérification d'une contrainte d'uniformité rendue progressivement plus "lâche" : elle est successivement fondée sur l'évaluation de l'écart entre les extrema, de l'écart entre les moyennes, et enfin sur l'évaluation de la variance. La contrainté utilisée à l'étape suivante est une contrainte de contraste : toutes les paires de régions dont le gradient moyen à la frontière est suffisamment faible sont fusionnées. Enfin, la contrainte utilisée lors de la dernière étape est une contrainte surfacique : toute région de faible surface est fusionnée avec la région permettant la vérification optimale d'une contrainte définie par combinaison des deux précédentes.

C. DES STRATEGIES THEMATIQUES D'ANALYSE

Divers processus d'analyse d'une image peuvent être conçus, qui activent des opérations telles que l'étiquetage, la fusion, ou le partitionnement de primitives. L'adéquation de ces processus dépend étroitement de la pertinence du système de représentation utilisé : nature des primitives, type des attributs, forme des contraintes.

Or, la résolution d'un problème complexe de segmentation nécessite la prise en compte différentielle d'éléments de représentation spécifiques du niveau d'analyse atteint, à un instant donné. Elle implique également la mise en oeuvre différentielle des règles d'analyse, par l'activation de processus successifs, selon des stratégies d'analyse adaptées.

De telles stratégies sont le reflet de l'expertise humaine, acquise au terme de plusieurs étapes de sélection, d'évaluation et d'adaptation des traitements, pour le domaine d'application considéré. Elles expriment, sous forme procédurale, l'enchaînement "ad hoc" de processus permettant de résoudre le problème posé.

Le propre d'une stratégie est néanmoins de disposer de mécanismes de raisonnement, selon lesquels le choix de la meilleure action à entreprendre, à un instant donné, dépend de l'état de la situation courante (Shapiro 83).

Ainsi, la mise en oeuvre de règles particulières d'interprétation, permettant de juger du degré de robustesse d'une segmentation, ou du degré informatif d'une entité donnée, conduit à l'activation adaptative de telle ou telle règle d'analyse, et à leur focalisation prioritaire sur tel fait ou ensemble de faits images.

On perçoit ainsi l'intérêt de la formulation déclarative employée tout au long de ce chapitre: elle permet la représentation modulaire et indépendante des connaissances acquises sur l'image et de leurs règles d'analyse et d'interprétation ; elle permet l'élaboration d'un système autonome de segmentation, capable d'une analyse flexible, et fondé sur l'utilisation de'méta-connaissances.

I. STRATEGIES ET FORMULATIONS PROCEDURALES

La segmentation d'une image complexe est en général résolue par la mise en ocuvre d'une stratégie descendante d'analyse selon laquelle une segmentation initiale, considérée comme grossière, est progressivement raffinée. Ceci est réalisé soit par l'activation d'un processus unique, opérant sur des éléments de représentation successifs différents, soit par l'articulation de processus d'analyse progressivement plus complexes.

(.10) Activation d'un processus unique

Une première approche consiste à opérer à partir de niveaux de résolution différents, en analysant d'abord une représentation grossière de l'image, et en utilisant les résultats obtenus pour contrôler les processus opérant à haute résolution. Des processus variés peuvent être activés dans ce cadre : relaxation (Narayanan 83), fusion de régions (Tilton 84), scuillage (Parvin 84). Une représentation pyramidale de l'image est souvent utilisée (Rosenfeld 83), dont l'exploration descendante est assurée par l'activation itérative d'un processus d'analyse, contrôlée par la formulation d'un critère d'arrêt (Tilton 84).

Abstract

D'autres auteurs fondent également leur approche sur un principe itératif d'analyse, opérant cette fois-ci à un niveau unique de représentation de l'image, selon un niveau d'interprétation progressivement plus fin de l'image. L'image, puis les entités successivement obtenues, sont interprétées par l'évaluation de l'histogramme, un attribut primitif particulier ayant été sélectionné. Toute région dont l'histogramme est plurimodal est subdivisée par la recherche d'un ou plusieurs seuils "significatifs". Toute région dont l'histogramme est unimodal est considérée comme une entité, au sens gestaltiste du terme. La subdivision récursive de l'histogramme selon deux classes. est l'approche la plus fréquemment utilisée à cet égard (Parvin 84).

Enfin, il est également possible de définir des stratégies fondées sur l'activation d'un processus unique, opérant à un niveau unique de représentation de l'image, mais selon la prise en compte d'attributs successifs différents. L'adéquation de telles stratégies dépend

naturellement de l'expertise présidant au choix d'un séquencement particulier d'attributs. Celui-ci doit en effet permettre l'analyse descendante de l'image, par la prise en compte progressive de caractéristiques plus "fines" de l'image. Dans ce cadre, deux classes d'attributs sont en général distingués et successivement utilisés, qui sont les attributs de niveau de gris et de texture (Funakubo 84, Xu 84).

Ces notions sont résumées dans la figure 20.

1.20) Articulation de processus différents

C'est peut-être dans ce domaine que les modulations possibles de l'expertise humaine s'expriment de la façon la plus flagrante. Selon le domaine d'application visé, selon le matérieli ou les logiciels utilisés, des approches extrêmement variées, concernant le séquencement de processus, peuvent être rencontrées.

Ces différentes approches s'articulent néanmoins autour de la reconnaissance de deux principes fondamentaux, qui sont le principe de coopération et le principe de contrôle. la coopération de processus d'analyse de régions et d'analyse de frontières apparait en général comme une nécessité pour parfaire l'analyse. Un contrôle accru de ces processus est par ailleurs obtenu par la mise en oeuvre de stratégies descendantes, selon lesquelles les informations globales, obtenues en première approximation, sont susceptibles de contraindre les processus activés lors des étapes ultérieures d'analyse (Nagao 84). L'un des axes centraux de la recherche en image demeure en effet la résolution de ce paradoxe selon lequel toute primitive image ne peut être analysée tant que sa structure d'appartenance n'a pas été identifiée, alors que cette même identification ne peut être réalisée tant que les primitives images n'ont pas été traitées (Granlund 83).

Ces stratégies, exprimées de façon procédurale, résultent en général d'un effort complexe d'intrication de processus opérant à différents niveaux de résolution, sur des primitives de natures différentes, selon des contraintes d'association ou d'affectation ajustées de façon différentielle, et enfin par le séquencement de processus de complexités différentes, des processus de seuillage étant activés préalablement aux processus de fusion/partitionnement (Xu 84) (figure 21).
. 141 .

La première étape consiste fréquemment en l'élaboration d'une carte des frontières, par activation d'un processus de seuillage : l'information obtenue est utilisée pour contrôler les processus ultérieurs d'analyse des régions, processus de fusion (Ranft 82, Kropatsch 83), ou de relaxation (Fhlundh 83). Ce traitement est souvent itéré, de façon à garantir que toutes les régions obtenues vérifient un critère défini au préalable (Ranft 82, Tilton 84). Des traitements additionnels sont souvent mis en oeuvre pour parfaire la segmentation : fusion des petites régions, analyse fine des objets trop complexes (Ranft 82). La séquence de traitements dans son ensemble est répétée, lorsque l'image est analysée à des niveaux de représentation différents, des critères d'arrêt globaux étant invoqués pour contrôler cette séquence (Tiltion 84).

II. LF, PROBLEME DU CONTROLF

La notion de contrôle joue un rôle essentiel dans l'élaboration des stratégies d'analyse. Lorsque celles-ci sont exprimées de façon procédurale, ce contrôle est réalisé par la définition des critères d'arrêt, ou de convergence, explicitant les contraintes sur les formes des entités à obtenir. A ces critères doivent être associés des critères de pertinence, permettant de décider de l'acceptation ou du rejet de la segmentation. Enfin, des performances accrues sont obtenues par l'introduction de possibilités de reprise ("feedback processing").

II. i°) Critères d'arrêt et/ou de rejet

Un contrôle du caractère gestaltiste des entités obtenues est nécessaire pour décider de l'arrêt différentiel de la séquence de traitement, selon les entités, certaines émergeant plus rapidement de l'analyse que d'autres. Il convient donc d'introduire, parmi les contraintes d'analyse formulées au sein du système de représentation, des contraintes d'interprétation, telles que celles que nous avons évoquées au paragraphe A.III de ce chapitre.

La nature des ces contraintes ayant déjà été largement évoquée, rappelons simplement que les plus usitées sont des contraintes
d'homogénéíté (unimodalité de l'histogramme, faible variance). Des contraintes plus fortes sont obtenues par la prise en compte simultanée de critères d'uniformité et de discontinuité (absence de frontière traversant la région considérée). Quant aux contraintes utilisées lors de l'analyse des contours, elles font intervenir les critères de continuité et de fermeture. D'autres contraintes plus sophistiquées font intervenir la surface, la forme, le nombre de régions ou objets obtenus, ou leur degré d'adjacence.

Il nous paraît important de souligner qu'à l'effort de complexification des processus d'analyse est souvent associé un effort de sophistication des processus de contrôle. De ce fait, un glissement peut être observé, de l'utilisation de critères "purement" gestaltistes, indépendants du domaine d'application, vers la prise en compte plus ou moins explicite de critères liés au domaine, exprimant donc des connaissances sur l'image analysée.

II. 2°) Processus de reprise

La nature déterministe de stratégies fondées sur l'activation, en certaines étapes de l'analyse, de processus de contrôle décidant de l'acceptation ou du rejet de celle-ci est naturellement assouplie par l'adjonction de processus de reprise.

Cette approche a été particulièrement bien formulée pour la résolution de problèmes de "tracking" : analyse et agrégation séquentielle des éléments d'un objet, dont une primitive initiale est connue. Ceci s'exprime, dans le cas du suivi de contour, comme la recherche d'un chemin optimal dans un graphe, au sens d'une contrainte donnée, impliquant par exemple le contraste moyen des points de la courbe et sa courbure moyenne (Rosenfeld 82). Les différentes solutions possibles étant successivement envisagées, la solution finalement retenue est la solution optimale au sens de la contrainte (Montanari 71). Des heuristiques peuvent être introduites pour réduire la recherche (Martelli 76).

Une telle approche apparaît peu applicable à la recherche de régions, du fait du trop grand nombre de combinaisons envisageables. Des algorithmes
sous-optimaux ont néanmoins été proposés, fondés sur le choix instantané de la "meilleure" fusion réalisable (Gagalowicz 85). Une stratégie différente est mise en oeuvre en général, fondée sur la "reprise" de la segmentation obtenue au terme d'un certain nombre d'étapés par des processus d'analyse particuliers : il s'agit soit de subdiviser une région définie comme intrinsèquement trop complexe (Ranft 82), soit de vérifier la compatibilité locale des fusions réalisées (Tilton 84). Dans ce dernier cas, l'affectation d'une région à une entité donnée est susceptible d'être remise en question, lorsqu'elle apparait plus similaire à une région voisine, d'affectation différente.

L'approche qui nous parait néanmoins la plus robuste à cet égard consiste à associer à chaque manipulation de la base de faits un degré de certitude ou de confiance selon une problématique similaire à celle ayant présidé à l'élaboration des processus de relaxation (Faugeras 82). L'idée est.ici de réduire progressivement cette incertitude, au cours des traitements, par l'accumulation d'évidences provenant de sources différentes (Matsuyama 85).

L'évaluation d'un tel degré de certitude soulève néanmoins le problème évoqué au paragraphe précédent, qui est celui de disposer d'une référence pour juger de la pertinence des traitements, l'une des formes proposées étant une segmentation "idéale", obtenue manuellement (Nazif 84).

III. ADAPTATION ET FOCALISATION

Un contrôle accru des processus d'analyse est obtenu par la dérivation de stratégies modulaires, susceptibles de focalisation adaptative sur telle forme d'analyse, ou sur telle zone de l'image.

III.10) Vers une analyse adaptative

La mise en oeuvre de stratégies descendantes d'analyse des images suggère l'adaptation dynamique de l'analyse, selon la configuration particulière rencontrée à un instant donné.

La notion d'adaptation dynamique recouvre en principe des choix multiples impliquant la forme des primitives, la nature de attributs, le type de processus utilisé (affectation, fusion, partitionnement).

En ce qui concerne tout d'abord le choix d'une représentation optimale des données soumises à l'analyse, la présentation faite au paragraphe A de ce chapitre montre la multiplicité de leurs formes possibles. L'impossibilité pratique d'une résolution globale du problème impose l'introduction d'hypothèses simplificatrices visant à réduire le nombre de degrés de liberté. Il est ainsi possible de réserver le choix du meilleur attribut, ou bien de la taille optimale, ou de l'orientation optimale, pour poursuivre l'analyse (subdiviser une région par exemple). Une analyse approfondie de ces problèmes dépasse malheureusement le cadre de ce mémoire : il s'agit là néanmoins d'un axe de recherche essentiel, auquel peu d'éléments de solution ont pu être apportés.

En ce qui concerne ensuite le problème du choix du processus d'analyse adapté à une situation donnée, il se pose en termes plus simples, dans la mesure où les opérations élémentaires activables à un instant donné sont des opérations d'affectation, de fusion, ou de partitionnement. Les situations mêmes, selon lesquelles il conviendrait d'activer tel processus plutôt que tel autre, sont relativement faciles à recenser. De ce fait, il paraît plus pertinent d'associer au problème un ensemble de règles de la forme :

```
si (condition) alors (opération)
```

Une opération donnée sera activée dès lors que la situation courante est reconnue comme vérifiant la clause condition de la règle correspondante. Les critères présidant à l'activation de ces règles font appel à l'ensemble des contraintes gestaltistes : des exemples variés en ont été donnés, tout au long de notre présentation.

Ce type d'approche a été largement développé par Nazif et Levine (Nazịf 84).

III. 2°) Mécanismes de focalisation

Abstract

Nous avons vu comment développer des stratégies descendantes d'analyse fondées sur l'amélioration progressive d'une segmentation initiale grossière, par l'activation différentielle de tel ou tel processus, selon la situation rencontrée. Dans ce cadre, l'analyse à un niveau donné procède en "parallèle" sur l'ensemble des régions obtenues. La dérivation de stratégies particulières d'exploration de ces faits permetrait néanmoins de tirer parti, non seulement de l'information globale obtenue au niveau précédent, mais également de l'information contextuelle progressivement accumulée. La formulation complète d'une telle stratégie implique la définition d'un double mécanisme de sélection des régions d'une part, et de scrutation de ces régions, d'autre part (figure 22).

Les mécanismes de sélection des régions les plus usités répondent au principe de sélection de l'hypothèse la plus robuste. Les régions facilement interprétables, c'est-à-dire susceptibles de vérifier de façon robuste certains des critères invoqués au cours de l'analyse, sont analysées les premières (grandes régions uniformes, par exemple). La détection de ces régions est obtenue par l'invocation d'une séquence simple d'analyse, elle permet la restriction du champ d'activation des processus plus complexes aux zones qu'elles délimitent (Tucker 84, Reinhardt 82). Nazif et Levine (Nazif 84) se donnent par ailleurs la possibilité d'échapper à cette démarche logique (du plus simple au plus complexe, du plus sûr vers le plus incertain), en cas d'événements particuliers, tels que la rencontre d'une région à caractère hautement informatif (région traversée par une ligne de fort contraste, par exemple).

Des critères spatiaux peuvent être invoqués, en outre, dirigeant l'analyse vers la région de plus fort degré d'adjacence, ou la plus grande région voisine, par exemple (Nazif 84).

Enfin, des mécanismes de scrutation des régions sont souvent activés, préalablement à leur analyse, de façon à déceler la présence de certaines configurations particulières. Ceci peut permettre d'orienter l'analyse ultérieure (suspicion de discontinuités par exemple) ; l'utilisation la plus large de ces mécanismes se rencontre néanmoins lors de l'activation de

Fig. 22 : Stratégies thématiques d'analyse des images : mécanismes de focalisation.

Un double mécanisme de sélection et de scrutation des régions est susceptible d'être invoqué.
processus de fusion de régions. La robustesse de l'analyse effectuće par l'activation de tels processus dépend en effet largement de leur initialisation, c'est-à-dire du soin apporté dans la sélection des germes de fusion. De petits groupes de primitives de fort contraste ou de forte uniformité peuvent être sélectionnés à cet égard. Kropatsch (Kropatsch 83) propose la recherche de petites zones, lieux d'intersection de plusieurs régions (au moins 3). Des germes sont ainsi obtenus, pour détecter les frontières de l'image.

IV. Des Systemes autonomes de sfgmentation

L'objectif est ici l'étude d'un cadre conceptuel d'élaboration d'un système autonome de segmentation, susceptible de délimiter les ensembles organisés composant une image, indépendemment de toute connaissance spécifique au domaine d'application considéré. L'intérêt pratique d'une telle analyse peut paraitre discutable, du fait des limitations évidentes de son applicabilité. Elle implique néanmoins la synthèse et l'explicitation claire des éléments principaux et des lois fondamentales susceptibles de régir l'analyse de l'image, et nous paraît pour ces raisons extrêmement pertinente.

IV.10) Eléments de base du système

L'analyse de l'image, selon l'acception considérée ici, doit permettre la délimitation des ensembles organisés qui la composent, donc la production d'une certaine connaissance, à partir d'une connaissance initiale sur l'image, donnée sous la forme d'une distribution spatiale d'intensités lumineuses ou de couleurs. Le système (figure 23) permettant la mise en oeuvre d'une telle analyse comporte ainsi un ensemble de connaissances factuelles, qui sont les faits avérés et les faits à établir. 11 dispose par ailleurs de connaissances procédurales, qui permettent la modification dynamique de la base de faits. L'introduction de méta-connaissances, enfin, permet de doter le système de véritables stratégies d'analyse, guidant l'exploitation des connaissances.

IV.1.1 ${ }^{\circ}$) Connaissances factuelles

Les connaissances acquises sur l'image regroupent l'ensemble des primitives et entités progressivement délimitées et utilisées par le système (faits avérés). Chacun de ces éléments est susceptible d'être décrit par une liste d'attributs intrinsèques, caractérisant sa morphologie (forme, texture, couleur). La prise en compte de descripteurs relationnels et structurels permet la structuration de la base de faits, selon les relations d'adjacence et d'appartenance (graphe d'adjacence, arborescence).

Les connaissances à établir regroupent l'ensemble des contraintes attachées à la notion d'ensemble organisé, ces contraintes étant exprimées sous la forme d'assertions logiques ; un groupe de primitives est un ensemble de primitives en relation au sein du graphe d'adjacence :
"Tout groupe de primitives de même nature prototypique est constituant d'un ensemble organisé"
"Tout groupe de primitives en relation (similarité, continuité) est constituant d'un ensemble organisé"
"Un constituant maximal à l'égard de ces critères est un ensemble organisé"
"Un constituant vérifiant un critère global de forme ou de fermeture est un ensemble organisé".

Une signification beaucoup plus large peut par ailleurs être donnée à la notion d'ensemble organisé :
"Tout ensemble organisé qui est noeud d'articulation du graphe d'adjacence délimite plusieurs ensemble organisés différents"
"Tout ensemble organisé comportant des primitives de natures prototypiques différentes est constitué de plusieurs ensembles organisés différents"
"Tout ensemble organisé ne vérifiant pas l'une des critères de forme, de fermeture ou d'uniformité est constitué de plusieurs ensembles organisés différents"

Des assertions plus précises peuvent être définies, en différenciant par exemple les ensembles de type région et les ensembles de type frontière.

IV.1.2 2° Connaissances procédurales

Les connaissances procédurales permettent la modification dynamique de la base de faits, soit par l'adjonction de faits nouveaux, soit par l'établissement de relations entre des faits avérés, soit par l'établissement de relations entre des faits avérés et des faits à établir. L'obtention de faits nouveaux est liée à l'activation de processus plus ou moins complexes de détection, de partitionnement ou de fusion, alors que la mise en oeuvre des processus d'affectation permet l'établissement de relations d'appartenance entre des faits avérés.

L'activation même de ces processus est liée à la vérification de certaines conditions : les connaissances procédurales s'expriment ainsi sous la forme de règles d'inférence et de règles de production.

Une règle d'identification entre un fait avéré et un fait à établir est activée dès lors que l'une des assertions logiques qui le caractérisent est vérifiée :
si COND(E) alors "E est un ensemble organisé".

Il convient de rappeler que $\operatorname{COND}(E)$ est susceptible de faire intervenir des caractéristiques intrinsèques à E, mais également ses propriétés d'adjacence ou d'inclusion à l'égard à d'autres éléments.

Une règle d'affectation entre 2 faits avérés, P_{i} et E, est activée sous l'une des conditions suivantes (cf. A.I.3.2) :

$$
\begin{cases}\text { si } C\left(P_{i}, P\right) \text { alors } P_{i} \in E \\ \text { si } C\left(P_{i}, P_{j}\right) \text { et }\left(P_{j} \in E\right) \text { alors } P_{i} \in E \\ \text { si } C\left(U_{i}, \mathcal{E}\right) \text { et }\left(U_{i-1} \subset E\right) \text { alors } P_{i} \in E \\ \text { où } U_{i}=U_{i-1} \cup P_{i}\end{cases}
$$

selon le type d'assertion, prototypique, locale, ou globale attachée à la notion d'ensemble organisé.

L'activation de ces règles implique que J'on dispose d'une certaine connaissance sur l'entité E analysée, de nature prototypique ou parcellaire. Elles sont pour ces raisons en général mises en oeuvre dans un contexte procédiural.

La création d'une nouvelle entité (ou nouveau fait) est obtenue par la mise en ocuvre de processus de fusion ou de partitionnement :

```
\(\operatorname{si} C\left(P_{i}, P_{j}\right)\) alors fusionner \(\left(P_{i}, P_{j}\right)\)
si \(C(E) \quad\) alors partitionner (E)
```

Une opération de fusion implique la simple création d'une nouvelle entité à partir de 2 primitives ou entités présentes dans la base de faits. Unc opération de partitionnement correspond par contre à lactivation de processus différents, selon le contexte (nous ne reprenons pas ici le cas de partitionnements effectués sous contraintes géométriques, tels que le partitionnement quaternaire). Ainsi, la détection d'une ligne de fracture au sein d'une région ou de points critiques particuliers le long d'un contour suggère le fractionnement de l'entité le long de ces lignes de rupture : les sous entités résultantes sont délimitées dans ce cas sur des critères spatiaux. Des critères texturaux sont utilisés dans les autres cas, qui permettent l'obtention d'une connaissance de nature prototypique ou parcellaire sur les sous-entités susceptibles d'être créés, selon le degré de "séparabilité" de leurs attributs primitifs.

IV.20) Méta-connaissances et stratégies d'analyse

L'objectif est la définition de stratégies optimales d'exploitation des faits et règles du système, optimales signifiant "réduisant le risque d'erreur". Ces stratégies doivent par ailleurs être susceptibles d'adaptation dynamique, selon les configurations particulières, ou faits, décelés à un instant donné. Trois principes fondamentaux ont pu être dégagés à cet égard des analyses précédentes, qui sont :

- contrôler les processus par des connaissances globales sur l'image;
- activer les actions de "meilleure évidence" d'abord ;
- focaliser l'analyse sur les zones les plus informatives.
IV.2.10) Connaissances globales et contrôle

Une réponse au premier principe d'analyse est obtenue par la définition de stratégies descendantes d'exploration de l'image. Différentes étapes d'analyse sont définies, chacune correspondant à une représentation de l'image à un niveau de résolution particulier. Des techniques de compression ou de lissage sont utilisées à cet égard, la plus usitée reposant sur le principe de représentation pyramidale de l'image (Rosenthal 84).

La base de faits est ainsi progressivement documentée, de façon descendante, par mise à jour de l'arborescence et évaluation des graphes d'adjacence successifs. D'une étape à la suivante, un fait est susceptible d'être confirmé ou subdivisé.

Un fait confirmé à une étape peut être considéré comme un élément stable du système ; les primitives qui le constituent ne seront pas soumises à d'éventuelles analyses ultérieures. Il est par contre susceptible d'extension.

Un fait est subdivisé dès lors qu'il apparaît, à un niveau de résolution donné, comporter plusieurs ensembles organisés différents. Les faits ainsi obtenus sont ensuite examinés en vue de leur affectation éventuelle à d'autres ensembles voisins (possibilité de permutation ou "switching", Tilton 84).

L'analyse s'arrête dès lors que tous les faits demeurés "non stables" se trouvent confirmés, à une étape donnée.

IV.2.20) Enchaînement des actions

La délimitation des faits composant l'image, à l'étape initiale, est en général obtenue par la mise en oeuvre d'un processus de seuillage, permettant la détection des régions les plus importantes, et l'élaboration d'une carte des frontières (Nazif 84). Des processus additionnels de fusion permettent l'élimination des petites régions, ou des primitives frontières non consistantes (isolées).

Mux étapes suivantes, différentes actions sont possibles : partitionnement sur critère spatial (détection de fractures), sur critère prototypique (seuillage), accroissement par agrégations successives, ou fusion simple. En ce qui concerne les régions, les actions de meilleure évidence sont les actions de partitionnement sur critère prototypique ou spatial, elles sont en effet activées sous des contraintes mesurables et robustes. En ce qui concerne les frontières, par contre, des processus de fusions successives peuvent être employés, qui reposent sur des germes robustes (carte des frontières à basse résolution) et dont les contraintes de continuité et de fermeture s'expriment de façon simple. Ces notions pcuvent être formalisées par l'affectation dynamique de coefficients de priorité aux règles, selon le contexte rencontré (Nazif 84).

IV.2.3 ${ }^{\circ}$) Mécanismes de focalisation

I1 convient d'appréhender la notion de focalisation à 2 niveaux différents, en analysant le mode d'exploration des entités détectées au terme des traitements antérieurs d'une part, et le mode de prise en compte de sous-entités susceptibles de les constituer, d'autre part.

En ce qui concerne le premier point, les régions les plus informatives sont celles qui constituent apparemment l'ossature de l'image : grandes régions à fort degré d'adjacence, grandes lignes de contrastes. L'approche proposée par Nazif et Levine, à cet égard, (Nazif 84) consiste à chercher les entités de "meilleure" délimitation, au sens de leur correspondance avec les entités "idéales", obtenues lors d'une segmentation manuelle. Ceci permet un certain nombre de déduction sur le caractère organisé ou non des entités qui leur sont immédiatement adjacentes : entités en relation d'inclusion, par exemple.

Abstract

On privilégiera en outre l'analyse des entités d'apparence simple (régions d'histogramme plurimodal) de façon à privilégier l'activation des actions de meilleure évidence. Pour partitionner une région donnée, des mécanismes successifs de détection - focalisation seront employés : focalisation sur la sous-région la plus représentée et détection de ses composantes connexes, détection par complémentarité des autres composantes.

Lorsque l'activation de processus d'agrégation apparaît nécessaire, il convient de disposer de mécanismes particuliers, fondés sur la détection de germes robustes : germes situés à une certaine distance d'éléments de fractures, par exemple (Kropatsch 83).

Les éléments que nous avons regroupés ici constituent l'ébauche des composants principaux d'un système autonome de segmentation. Les principes fondamentaux que nous avons voulu mettre en évidence à cet égard sont les principes de focalisation, d'adaptation et de contrôle, vérifiés par l'emploi d'une démarche structurée et descendante d'exploration de l'image.

CONCLUSION

```
Les modes possibles de représentation, de description et d'interprétation des images sont d'une grande diversité ; ils dépendent en grande part du ou des niveaux de représentation choisis pour caractériser l'image.
```

Des outils variés d'analyse sont disponibles d'autre part, qui permettent l'abstraction des items image par leur généralisation, ou leur association, et qui permettent également l'appréhension d'informations plus précises, à partir d'une perception globale de l'image.

Notre objectif, tout au long de cette présentation, est demeuré celui de la synthèse des modes possibles de structuration et d'articulation de ces différents éléments. Nous avons insisté, dans cet esprit, sur les principes de focalisation, d'adaptation et de contrôle, qui impliquent le choix pertinent et dynamique des outils et des modes de caractérisation de l'image.

Le cadre thématique que nous avons conservé jusqu'ici rend cette analyse difficile, et bien des éléments sont demeurés dans l'ombre : la prise en compte explicite de connaissances sur l'image permet de développer et de préciser cette démarche.

REFERENCES

(Ahuja 80)	N. Ahuja, R.M. Haralick and A. Rosenfeld : Neighbor gray levels as features in pixel classification. Pattern Recog. 12, 1980, 251-260.
(Ahuja 81)	N. Ahuja and B.J. Schachter : Image models : Computing Surveys 13, 1981, 373-397.
(Asano 81)	T. Asano and N. Yokoya : Image segmentation schema for low-level computer vision. Pattern Recog. 14, 1981, 267-273.
(Berthod 81)	M. Berthod : Relaxation and optimization for stochastic labelings. In "Digital Image Processing" (J.C. Simon and R.M. Haralick, Eds), D. Reidel Publishing Company, 1981, pp. 245-257.
(Bouakaz 86)	S. Bouakaz. Thèse de doctorat, Grenoble, 1986. (en préparation).
(Brice 70)	C.R. Brice and C.C. Fennema : Scene analysis using regions. Artificial Intelligence 1, 1970, 205-226.
(Chassery 84a)	J.M. Chassery, C. Garbay et P. Cinquin : Segmentation d'images cytologiques. Etude de méthodes. Actes IV ${ }^{\text {ème }}$ congrès "Reconnaissance des Formes et Intelligence Artificielle", AFCET/INRIA, 1984, pp. 51-71.
(Chassery 84b)	J.M. Chassery : Représentation discrète, interprétation numérique et description des images : des concepts à l'application. Thèse de doctorat d'Etat. Grenoble, 1984.
(Coleman 79)	G.B. Coleman and H.C. Andrews : Image segmentation by clustering. Proc. IEEE 67, 1979, 773-785.

(Crettez 84) J.P. Crettez : Modélisation des voies visuelles primaires : premières étapes de la perception des formes. Thèse de doctorat d'Etat, Paris VI, 1984.
(Davis 75) L.S. Davis : Λ survey of edge detection techniques. Comp. Graph. Im. Proc. 4, 1975, 248-270.
(Davis 79) L.S. Davis, S. Johns and J.K. Aggarwal : Texture analysis using generalized cooccurrence matrices. IEFE Trans. on PAMI 1, 1979, 251-259.
(Davis 81a) L.S. Davis : Image texture analysis techniques - a survey. In "Digital Image Processing" (J.C. Simon and R.M. Haralick, Eds), D. Reidel Publishing Company, 1981, pp. 189-201
(Davis 81b) L.S. Davis and A. Rosenfeld : Cooperating processes for low-level vision : a survey. Artificial Intelligence 17, 1981, 245-263.
(Diday 82) E. Diday, J. Lemaire, J. Pouget et F. Testu : Eléments d'analyse de données, Dunod, 1982.
(Eklundh 83)
(Faugeras 76)
(Faugeras 79)
O.D. Faugeras : Application des modèles de vision au traitement numérique des images. Thèse de doctorat d'Etat, Paris, 1979.

(Faugeras 82)	0.D. Faugeras : Relaxation labeling and evidence gathering, Proc. of the $V I^{\text {th }}$ ICPR. IEEE Computer Society Press, 1982, pp. 405-412.
(Faugeras 84)	O.D. Faugeras : Vision par ordinateur et robotique : état de l'art, Proc. of the $I^{\text {st }}$ Image Symposium, CESTA, 1984, pp. 121-134.
(Funakubo 84)	N. Funakubo : Region segmentation of biomedical tissue image using color texture feature, Proc. of the vif ${ }^{\text {th }}$ ICPR, IEEE Computer Society Press, 1984, pp. 30-32.
(Gagalowicz 85)	A Gagalowicz et 0. Monga : Un algorithme de segmentation hiérarchique. Proc. $v^{\text {ème }}$ congrès "Reconnaissance des Formes et Intelligence Artificielle", AFCET/ADI/INRIA, 1985, pp. 163-177.
(Galloway 75)	M.D. Galloway : Texture analysis using gray level runlengths, Comp. Graph. Im. Proc. 4, 1975, 172-179.
(Garbay 79) -	Modélisation de la couleur dans le cadre de l'analyse d'images et de son application à la cytologie automatique. Thèse de Docteur - Ingénieur, Grenoble, 1979.
(Garbay 81)	C. Garbay, G. Brugal and C. Choquet : Application of colored image analysis to bone marrow cell recognition, Anal. Quant. Cytol. 3, 1981, 272-280.
(Garbay 82)	C. Garbay : A color metric as a tool for cytologic image analysis, Proc of the $1^{\text {st }}$ Int. Symp. on Medical Imaging and Image Interpretation, IEEE Computer Society Press, 1982, pp. 311-315.
(Garbay 86)	C. Garbay : Image structure representation and processing : discussion of some segmentation methods in cytology. IEEE trans. on PAMI 8(2), 1986.

(Gonzales 77)	R.C. Gonzales and P. Wintz : Digital Image Processing. Addison Wesley Publishing Company, 1977.
(Granlund 83)	G.H. Granlund : Hierarchical image processing. In : "Applications of Digital Image Processing", SPIE Proc. 397, 1983, pp. 362-371.
(Haralick 75)	R.M. Haralick and I. Dinstein : A spatial clustering procedure for multi-image data. IEEE Trans. on Circuits and Systems 22, 1975, 440-450.
(Haralick 81)	R.M. Haralick : A facet model for image data : regions, edges and texture. In "Digital Image Processing" (J.C. Simon and R.M. Haralick, Eds), D. Reidel Publishing Company, 1981, pp. 337-356.
(Haralick 85)	R.M. Haralick and L.G. Shapiro : Image segmentation techniques. Comp. Vis. Graph. Im. Proc. 29, 1985, 100-132.
(Hofstadter 85)	D.R. Hofstadter : Analogies, rôles et glissabilité : le transfert fluide de concepts d'un cadre à l'autre. Proc. COGNitiva 85, CESTA, 1985, pp. 47-48.
(Hunt 67)	R.W.G. Hunt : The reproduction of colour. Wiley, 1967.
(Johannsen 82)	G. Johannsen and J. Bille : A threshold selection method using information measures. Proc. of the VI ${ }^{\text {th }}$ ICPR, LEEE Computer Society Press, 1982, pp. 140-142.
(Kitchen 80)	L. Kitchen : Relaxation applied to matching quantitative relationnal structures. IEEF Trans. Sys. Man and Cyb. 10, 1980, 96-201.

(Kropatsch 83)	W. Kropatsch : Segmentation of digital images using a
	priori information about the expected image contents.
	In "Pictorial Data Analysis", (R.M. Haralick, Ed.),
	Springer Verlag, 1983, pp. 107-119.

(Nagao 84)	M. Nagao : Control strategies in pattern analysis. Pattern Recog. 17, 1984, 45-56.
(Narayanan 83)	K. A. Narayanan, D.P. O'Leary and Λ. Rosenfeld : Multi-resolution relaxation. Pattern Recog 16, 1983, pp. 223-230.
(Nazif 85)	A.M. Nazif and M.D. Levine : Low level image segmentation : an expert system. IEEE Trans. on PAMI 6, 1984, 555-577.
(Ohlander 78)	R. Ohlander, K. Price and D.R. Reddy : Picture segmentation using a recursive region splitting method. Comp. Grap. Im. Proc. 8, 1978, 313-333.
(Parvin 84)	B.A. Parvin : A split and merge algorithm for segmentation of natural scenes. Proc of the VII ${ }^{\text {th }}$ ICPR, IEEE Computer Society Press, 1984, pp. 294-295.
(Pavlidis 77)	T. Pavlidis : Structural Pattern Recognition, (G. Ecker et al., Eds), Springer Verlag, 1977.
(Perkins 80)	W.A Perkins : Area segmentation of images using edge points. IEEE Trans. on PAMI 2, 1980, 8-15.
(Pratt 78)	W.K. Pratt : Digital Image Processing, Wiley, 1978.
(Prewitt 66)	J.M.S. Prewitt and M.L. Mendelsohn : Analysis of cell images. Ann. N.Y. Acad. Sci. 128, 1966, 1036-1053.
(Pun 80)	T. Pun : A new method for gray-level picture thresholding using the entropy of the histogram. Signal Proc. 2, 1980, 223-237.
(Ranade 80)	S. Ranade and J.M.S. Prewitt : A comparaison of some segmentation algorithms for cytology. Proc of the $v^{\text {th }}$ ICPR, IEEF Computer Society Press, 1980, pp. 561-564.

(Ranft 82) | U. Ranft, J.M.S. Prewitt and K.S. Fu : Segmentation of | |
| :--- | :--- |
| | microscopic transverse section pictures of muscle |
| | tissue using a split-and-merge technique. Proc. of the |
| | VI ${ }^{\text {th }}$ ICPR, ICEE Computer Society Press, 1982, pp. |
| | $626-628$. |

(Reinhardt 82)	E.R. Reinhardt, W.E. Blanz et al. : Automated
	classification of cytological specimen based on
	multistage pattern recognition. Proc. of the VI ${ }^{\text {th }}$ ICPR,
	IEEE Computer Society Press, 1982, pp. 153-159.

(Rosenfeld 76) A. Rosenfeld, R.A. Hummel and S.T. Zucker : Scene labelling by relaxation operations. IEEE trans. on Sys. Man and Cyb. 6, 1976, pp. 420-433.
(Rosenfeld 79)
A. Rosenfeld and L.S. Davis : Image segmentation and image models. Proc. LEEE 67, 1979, 764-772.
(Rosenfeld 80) A. Rosenfeld : Quadtrees and pyramids for pattern recognition and image processing. Proc. of the $v^{\text {th }}$ ICPR, IEEE Computer Society Press, 1980, pp. 802-811.
(Rosenfeld 82)
A. Rosenfeld and A.C. Kak : Digital Picture Processing, Academic Press, 1982
(Rosenfeld 83) A. Rosenfeld : Quadtrees and pyramids : hierarchical representation of images. In "Pictorial Data Analysis", (R.M. Haralick, Ed.), Springer Verlag, 1983, pp. 29-42.
(Rosenthal 84)
D.A. Rosenthal and R. Bajesy : Visual and conceptual hierarchy : a paradigm for studies of automated generation of recognition strategies. IEEE Trans. on PAMI 6, 1984, 319-325.
(Samet 80)
H. Samet and A. Rosenfeld : Quadtree representation of binary images. Proc. of the $v^{\text {th }}$ ICPR, LEEE Computer Society Press, 1980, pp. 815-818.

(Schachter 78)	B.J. Schachter, L.S. Davis and A. Rosenfeld : Some experiments in image segmentation by clustering of local feature values. Pattern Recog. 11, 1978, 19-28.
(Schachter 80)	B.J. Schachter : Model based texture measures, IEEE Trans. on PAMI 2, 1980, 169-171.
(Serra 84)	J. Serra : Structures syntaxiques en morphologie mathématique. Proc. of the $\mathbb{I}^{\text {st }}$ Image Symposium, CESTA, 1984, pp. 393-402.
(Shapiro 81)	L.G. Shapiro : Structural shape description for two-dimensional and three-dimensional shapes. In "Digital Image Processing", (J.C. Simon and R.M. Haralick, Ed.), D. Reidel Publishing Company, 1981, pp. 311-326.
(Shapiro 83)	L.G. Shapiro : Computer vision systems : past, present, and future. In "Pictorial Data Analysis", (R.M. Haralick, Ed.), Springer Verlag, 1983, pp. 199-237.
(Tilton 84)	J.C. Tilton : Multiresolution spatially constrained clustering of remotely sensed data on the massively parallel processor. Proc. of the VII ${ }^{\text {th }}$ ICPR, ICEE Computer Society Press, 1984, pp. 1013-1015.
(Tucker 84)	L.W. Tucker : Model-guided segmentation using quadtrees. Proc. of the VII ${ }^{\text {th }}$ ICPR, IEEE Computer Society Press, 1984, pp. 216-219.
(Weska 76)	J.S. Weska, C. Dyer and A. Rosenfeld : A comparative study of texture measures for terrain classification. IEEE Trans. on Sys. Man and Cyb. 4, 1976, 269-285.

. 167.
(Weska 78) J.S. Weska : A survey of threshold selection techniques. Comp. Grap. Im. Proc. 7, 1978, 259-265.
(Weska 79) J.S Weska and A. Rosenfeld : Histogram modification for threshold selection. IEEE Trans. on Sys. Man and Cyb. 9, 1979, 38-52.
(Xu 84) G.Y. Xu and K.S. Fu : Natural scene segmentation based on multiple threshold and textural measurement. Proc. of the VII ${ }^{\text {th }}$ ICPR, IEEE Computer Society Press, 1984, pp. 1111-1113.
(Yokoi 75) S. Yokoi, J. Toriwaki and T. Fukumuta : An analysis of topological properties of digitized binary pictures using local features. Comp. Graph. Im. Proc. 4, 1975, 63-73.
(Zucker 77)
S.W. Zucker : Algorithms for image segmentation. In "Digital Image Processing and Analysis", (J.C. Simon and A. Rosenfeld, Eds), 1977, pp. 169-183.
. 169.

PARTIE III
Des connaissances sur les images et
de leurs stratégies d'exploitation

INTRODUCTION

Abstract

L'élaboration de processus robustes d'analyse thématique des images implique la recherche d'une démarche progressive et structurée d'analyse, fondée sur l'activation différentielle de procédures variées, contrôlée par la prise en compte des prịcipes thématiques d'organisation des images.

L'existence d'une véritable expertise procédurale a pu ainsi être mise en évidence, dont l'utilisation rationnelle nécessite l'explicitation formelle.

D'autres connaissances sont susceptibles par ailleurs d'être exploitées, qui regroupent l'ensemble des connaissances associées à l'image, considérée comme la réalisation d'une situation ou d'un événement connu. Leur représentation peut être envisagée sous deux formes duales, la forme figurative ou la forme propositionnelle; elles permettent un meilleur contrôle des procédures d'analyse et de leur séquencement.

La résolution d'un problème d'analyse, enfin, implique la recherche d'une mise en correspondance entre une connaissance et un ensemble de données initiales. Deux stratégies différentes de résolution peuvent être employées, selon que les données sont évaluées par abstractions et regroupements successifs (mode ascendant, stratégie directe) ou par spécialisations et décompositions successives (mode descendant, stratégie indirecte).

Nous avons cherché à développer ces notions au sein d'un cadre conceptuel robuste : certains concepts de l'intelligence artificielle ont été empruntés à cet égard. Leur approfondissement permet d'envisager l'élaboration de véritables "systèmes experts" d'analyse : leur double applicabilité à la résolution des problèmes de segmentation et d'interprétation d'images a été pour ces raisons abordée.

A. DES CONNAISSANCES SUR LES IMAGES

De nombreux auteurs se sont penchés sur la modélisation des connaissances utiles à la compréhension des images, et ont contribué au développement de systèmes de vision dans des domaines variés :

- analyse de scènes polyhédrales (Roberts 65, Guzman 68) ;
- analyse de scènes tri-dimensionnelles (Binford 71, Marr 77) ;
- analyse de scènes d'intérieur (Barrow 78) et de scènes naturelles (Hanson 78) ;
- analyse de scènes aériennes (Brooks 81, Nagao 79, Rosenthal 84, Matsuyama 85) ;
- analyse tri-dimensionnelle de scènes d'intérieur (Shapiro 83).

Abstract

La plupart de ces développements reposent sur l'acception commune de l'existence de deux niveaux de connaissances séparés, concernant les connaissances perceptuelles d'une part et les connaissances sémantiques d'autre part. Cette différenciation conduit à distinguer deux niveaux d'analyse différents : le bas niveau (segmentation de l'image) et le haut niveau (interprétation). Les opérateurs de bas niveau sont activés tout d'abord, de façon à obtenir une segmentation initiale de l'image, utilisée et éventuellement corrigée par les opérateurs de haut niveau. Les efforts de recherche, concernant particulièrement le développement de stratégies de contrôle (Nagao 84), ont été pour cette raison déportés vers l'analyse dite de haut niveau.

Nous avons plutôt centré notre réflexion sur le développement de systèmes de représentation centrés objet, regroupant autour d'un même objet les connaissances utiles à sa délimitation et à son interprétation, selon un formalisme unique, ces connaissances étant de nature tant descriptive que procédurale.

I. CONNAISSANCES DESCRIPTIVES

Les connaissances descriptives regroupent, sous une forme "figurative", (assertions, réseaux sémantiques) un ensemble d'informations décrivant les caractéristiques propres aux concepts examinés ainsi que leurs modes d'organisation et de regroupement. L'examen de ces divers éléments permet l'émergence d'une "typologie des connaissances", autour de laquelle s'accordent plusieurs auteurs (Granger 85). II convient ensuite d'évoquer la nature de ces connaissances : on s'attachera particulièrement à ses qualités de complétude et de certitude. Enfin, ces notions sont illustrées par leur application à la description des images.

I. 1°) Typologie des connaissances

A tout concept est attaché l'ensemble de ses propriétés, attributs, qualités ou contraintes qui définissent ses formes possibles de réalisation. Cette connaissance est qualifiée de prototypique (Tsotsos 82) ; un concept prototypique est en général identifié par une dénomination sémantique. Un concept inconnu est ainsi identifié par ses qualités de correspondance vis-à-vis d'un prototype particulier : il constitue une instance du concept associé.

A tout concept peut être ainsi attaché l'ensemble de ses instances, qui représentent différents aspects de sa réalisation.

Toute instance est héritière du concept associé, elle hérite par définition de l'ensemble des propriétés qui lui sont attachées.

Ce type de connaissance permet la mise en oeuvre d'une activité d'interprétation, par association d'un concept inconnu (donnée) à un concept connu (connaissance). Une autre forme d'interprétation est l'interprétation par généralisation (Bielick 84). Cette activité implique liz capacité à organiser les concepts selon leurs relations de généralisation/spécialisation, elle met en jeu l'ensemble des connaissances inductives.

De même que précédemment, tout concept hérite des propriétés attachées au concept plus abstrait qui lui correspond. Cet héritage est transitif et peut être multiple (Laurent 85). Il peut se produire en effet qu'un même concept apparaisse comme la spécialisation de plusieurs concepts abstraits de caractéristiques prototypiques "différentes".

D'autres axes d'organisation peuvent être définis qui, contrairement aux précédents, n'autorisent pas la mise en oeuvre des mécanismes d'héritage. Ils apparaissent néanmoins comme des axes centraux de structuration des connaissances : ce sont les axes de décomposition et d'association.

La mise en oeuvre d'une activité de décomposition d'un concept selon plusieurs sous-concepts implique un ensemble de connaissances dites structurelles.

Un concept, identifié comme partie d'un concept plus global, possède une identité, une individualité et une fonctionnalité propre. Il n'est a priori pas susceptible d'hériter des propriétés attachées au concept global.

La connaissance des liens structurels associant différents concepts permet par contre la mise en ocuvre des activités déductives, selon lesquelles la présence d'un concept global implique la présence de ses parties.

Les connaissances associatives, enfin, permettent l'établissement d'autres regroupements entre concepts, selon leur proximité physique, temporelle ou conceptuelle (analogie on similitude) (Hofstadter 85). La notion d'analogie conceptuelle apparait comme l'une des notions les plus difficiles à formaliser, alors que les critères de proximité spatiale ou de similarité, qui constituent les fondements de la théorie gestaltiste de l'organisation ont déjà été largement évoqués.

Ces connaissances permettent la mise en oeuvre d'activités déductives ou inductives variées, selon qu'elles expriment des contraintes d'organisation (contraintes topographiques, par exemple) ou de possibles analogies entre concepts.

Ces différentes notions sont illustrées dans la figure 1.

I. 2°) Nature des connaissances

La connaissance attachée à un concept peut être qualifiée de complète ou partielle, globale ou primitive, suffisante ou ambiguë. Elle peut également s'avérer certaine ou incertaine, précise ou imprécise (Kayser 85). Malgré le foisonnement des recherches dans ces domaines,
particulièrement dans la manipulation de l'incertain et de l'imprécis, les frontières entre ces différentes notions apparaissent extrêmement difficiles à délimiter de manière formelle (fig.2).

Tout item attaché à un concept ne peut être qualifié de connaissance sur ce concept que dans la mesure où l'attribut qu'il représente possède la propriété fondamentale d'invariance, pour le concept considéré ; il doit le caractériser, indépendemment des instances possibles de sa réalisation. Il peut ainsi se produire qu'un élément intervenant dans l'organisation structurelle d'un concept, ou qu'un attribut intervenant au niveau de sa caractérisation prototypique ne puisse être défini. La connaissance est alors dite partielle.

Les notions de globalité ou de primitivité de la connaissance sont également des notions intrinsèques au concept examiné, supposé ici susceptible de décomposition structurelle. La connaissance attachée à un concept est dite primitive dès lors que chacun des sous-concepts qui lui sont attachés sont connus de façon prototypique. L'analyse de leur seule individualité suffit dans ce cas à décider de leur relation structurelle vis à vis du concept général. Si la connaissance attachée à ce concept, par contre, est globale, elle définit une contrainte globale régissant l'association d'éventuels sous-concepts ; l'individualité n'est plus une caractéristique suffisante.

La notion d'ambiguité apparaît au contraire comme relative à l'ensemble des connaissances initialement disponibles. Elle exprime le fait qu'à une nême caractérisation prototypique puissent être associés plusieurs concepts de dénominations sémantiques différentes, ou que la mise en ocuvre des activités d'inférence (déduction ou induction) suscite l'émergence de plusieurs concepts différents. Un ensemble de connaissances sera dit insuffisant pour résoudre une situation donnée, dès lors qu'un concept inconnu, attaché à cette situation, ne pourra être identifié de façon univoque au terme d'un parcours du réseau sémantique représentant ces connaissances.

Une connaissance, enfin, peut être définie de façon plus ou moins précise. Cette notion est en général introduite de façon explicite dans les représentations de type "objets structurés", selon lesquelles différentes "facettes" sont associées à un attribut donné (Rechenmann 85). L'une de ces

facettes définit en effet le domaine de valeurs autorisé pour l'attribut en question, elle exprime donc le degré de précision de la connaissance. la mesure de l'imprécision attachée à une caractérisation plus symbolique apparait néanmoins beaucoup plus délicate (Kayser 85). Une dissertation complète, par ailleurs, pourraît être dédiće au problème de l'incertitude (Bonnet 84). La modélisation la plus classique se fonde sur une estimation Bayésienne de l'incertitude, selon laquelle un degré de vraisemblance ou de plausibilité est attaché à chacune des informations, et définissant leurs modes possibles de combinaison. Une autre approche, fondée sur la théorie des ensembles flous, a été particulièrement utilisée en médecine. Elle permet l'expression du degré de confiance d'une information, selon sa distance au sein de la sphère conceptuelle à laquelle elle est associée.

I. 3°) Images et connaissances (Garbay 85,86b)

Nous avons choisi d'exprimer les connaissances à l'aide des notations utilisées dans le cadre des représentations de type "objet structuré" (Rechenmann 85), pour leurs qualités de lisibilité et de complétude. Selon ces représentations, à chaque entité (E) ou primitive (P) de dénomination sémantique connue est attachée une liste d'attributs, eux-mêmes caractérisés par plusieurs facettes définissant leur valeur, valeur par défaut, domaine de valeurs autorisées, et également par des facettes définissant les modes possibles d'acquisition ou de calcul de ces valeurs, lorsque celles-ci ne sont connues que sous une forme symbolique.

I. 3.1°) Les différents types de connaissance

Connaissances prototypiques

Les connaissances prototypiques caractérisant une entité image décrivent sa forme et/ou sa texture, ces deux concepts étant pris ici selon leur acception lato sensu, c'est-à-dire comme décrivant des entités représentées respectivement sous une forme binaire ou numérique (niveau de gris, couleur, etc).
.180.

Entité	F_{k}			
	Forme :	convexe		
		degré de convexité	:	valeur : 1
				valeurs permi
		surface	:	valeur : 30
				valeurs permi
	Texture :	hétérogène		
		moyenne :		valeur : 100
		variance - gobale :		valeur : 20
		variance - locale .		valeur : 10

Lorsque la connaissance attachée à une entité est de type primitive, elle s'exprime par la présence d'un attribut particulier "père de" décrivant la forme ou la texture comme un ensemble de primitives, décrites elles-mêmes sous la forme d'objets structurés. Nous nous intéressons ici particulièrement à la caractérisation de primitives de texture de "bas niveau".

```
Primitive }\mp@subsup{P}{i}{
    Forme : carrée
    surface : valeur : 16
        Texture : homogène
    moyenne : valeur : gris foncé
        valeurs permises 0 S
        si-detect : S = f(Histo)
```

On voit apparaitre la facette "si-detect" définissant le mode de calcul du scuil S à partir de l'histogramme ; d'autres opérateurs de détection peuvent être attachés à un niveau plus global (opérateurs de détection de frontières, par exemple).

Connaissances inductives

Les connaissances inductives sont en général introduites sous la forme d'un attribut "sorte-de" attaché à l'entité :

Connaissances structurelles

Les connaissances structurelles sont introduites sous la forme d'attributs "fils-de" et/ou "père-de" attachés aux entités :

Entité cellule épithéliale fils-de : couche cellulaire épithéliale père-de : cytoplasme
noyau

Connaissances associatives

Nous nous intéressons particulièrement ici aux connaissances associatives à caractère spatial. Elles sont naturellement introduites de façon différentielle selon les différents niveaux de structuration des connaissances, sous la forme d'attributs attachés à l'objet père-de, lorsqu'elles adressent la distribution topographique d'une même sous-entité ou primitive :

Entité couche cellulaire épithéliale
père-de : cellule épithéliale
en-relation : adjacence

Elles sont dans tous les autres cas introduites au niveau même de la caractérisation de l'entité :

Entité noyau
fils-de : cellule
en-relation : avec : cytoplasme
type : imbrication

1.3.20) La nature des connaissances

Le fait qu'une connaissance soit complète ou partielle s'exprime plus aisément sous forme procédurale (règles d'inférence), all moyen des quantificateurs universels (\forall) ou au contraire existentiels (\exists; . Pour cette raison, les deux problènes essentiels qu'il convient d'adresser ici sont ceux de l'expression de l'imprécis et de l'incertain.

Dans le cadre de la représentation utilisée, l'imprécis est exprimé par une facette "valeurs-permises" et l'incertain par une facette "plausibilité", permettant d'attacher à toute assertion un coefficient de vraisemblance. Les problèmes soulevés par l'affectation de tel ou tel coefficient à telle ou telle assertion relèvent plus du domaine de l'expertise et de l'application considérée que du mode particulier d'analyse envisagé.

La mise en ocuvre d'un système susceptible de raisonnement dans un contexte incertain pose par contre des problèmes de nature différente, en impliquant la capacité à effectuer des inférences incertaines et à propager cette incertitude aux faits nouveaux progressivement obtenus.

II. CONNAISSANCES PROCEDURALES

I1 convient de distinguer deux types de connaissances procédurales. Les premières, responsables des activités d'inférence, regroupent, sous une forme "propositionnelle", (règles d'inférence, règles de production) un ensemble d'informations décrivant les liens de causalité entre les différents concepts connus et/ou susceptibles d'être introduits (instances). La forme de ces connaissances dépend des axes d'organisation qu'elles permettent de parcourir ; elles sont donc différenciées selon une typologie similaire à la précédente. Les secondes, responsables des activités de composition, sont illustrées par leur application à l'analyse de l'image.

II.10) Activités d'inférence

I1 convient de distinguer les activités d'interprétation des activités d'affectation. La mise en oeuvre des règles d'interprétation permet de compléter la connaissance attachée à un concept en lui associant un concept de dénomination sémantique plus abstraite, selon les axes d'instanciation et/ou généralisation. L'activation de ces règles implique, lorsqu'un concept est inconnu, son identification à un prototype particulier ; elle implique dans les autres cas l'identification des liens structurant la base de connaissances. L'inférence effectuée, enfin, peut être ambiguë (cas de spécialisation par héritage multiple).

Fig. 3 : Conditions de mise en oeuvre des activités d'inférence associant des entités \mathbb{E}^{n} et $\mathbb{E}^{\mathrm{n}-1}$ de niveaux (de composition ou généralisation) différents.
a) Inférence prototypique ;
b) Inférence relationnelle ;
c) Inférence structurelle.

Les règles d'affectation permettent d'associer à un concept donné le concept plus global dont il constitue une partie intégrante, selon l'axe de composition structurelle, ou l'ensemble des concepts plus parcellaires qui le constituent, selon l'axe de décomposition structurelle.

Ces règles apparaissent souvent, dans la pratique, de mise en ocuvre délicate, les conditions possibles de leur activation sont extrêmement variées. Elles peuvent impliquer en effet des contraintes sur la forme même du concept examiné, mais également des contraintes sur ses relations avec d'autres concepts connus, selon les axes d'associativité et/ou de composition structurelle (fig.3).

Ainsi, l'interprétation fine d'un concept est susceptible d'impliquer le contexte de son instanciation. Un ensemble de concepts différents, par exemple, seront associés à une voiture en mouvement dans une rue, ou arrêtée au milieu de cette rue (contexte temporel), ou arrêtée au milieu d'un champ (contexte spatial : violation des contraintes d'organisation). Dans le cadre du diagnostic médical, par ailleurs, un symptôme perçu isolément est porteur d'une faible signification diagnostique, alors qu'un diagnostic robuste est susceptible d'émerger de sa corrélation avec d'autres symptômes, issus d'une observation de l'organisme à un niveau plus général, ou plus spécifique (axe de composition structurelle).

Pour des raisons similaires, l'affectation d'un concept est susceptible d'impliquer les concepts en relation, selon les axes horizontaux et/ou verticaux de l'organisation des connaissances. Ainsi, un concept inconnu est susceptible d'être associé avec d'autres concepts, d'affectation connue, pour des raisons de similarité, d'analogie, ou de proximité spatiale (critère local) ou parce que leur réunion satisfait les contraintes définissant le concept plus général qu'ils participent à constituer (critère global).

Ces notions font intervenir l'influence descendante des contraintes gestaltistes de l'organisation, que nous avons déjà évoqués.

Par ailleurs, la notion d'affectation est susceptible de faire intervenir le principe d'inférence entre éléments de dénominations sémantiques connues, et à ce titre fait intervenir les notions associées au problème de l'interprétation.

Ainsi, malgré la redondance apparente entre la forme procédurale de ces connaissances et leur expression figurative, il nous parait pertinent de les exprimer de façon explicite. La structuration, autour de chaque concept, des modalités procédurales de son obtention apparaît en effet le garant d'un mode robuste de résolution de problèmes posés.

II. 2°) Activités de composition

Il nous parait important de distinguer deux types d'activités, qui sont les activités d'élaboration et de décomposition (fig. 4). L'objectif est comme précédemment d'associer à tout concept ("objet" de la base de connaissance) un certain nombre d'informations procédurales, permettant la mise en oeuvre de ces activités, indépendemment de toute considération contextuelle externe à l'objet, concernant par exemple les faits "avérés" précédemment obtenus.

Il paraît donc pertinent d'exprimer sous forme procédurale, et d'attacher à un concept donné, les méthodes de son élaboration possible, à partir d'un ensemble de sous-concepts. Les contraintes impliquées à cet égard peuvent êtres des contraintes de nature prototypique, locale ou globale. A des contraintes plus ou moins strictes d'association sont associées des possibilités d'imprécision différentes. Les attributs prototypiques attachés à ce même concept peuvent par ailleurs être considérés comme facette de contrôle des traitements.

A tout concept sont enfin attachées, sous forme procédurale, les méthodes de sa décomposition possible selon un ensemble de sous-concepts. A ce niveau interviennent particulièrement des connaissances heuristiques sur le choix du niveau de représentation adapté, et le choix des attributs permettant la discrimination optimale des sous-concepts impliqués. Cette connaissance est susceptible d'être transmise aux sous-concepts (notion de message), sous la forme par exemple d'une priorité donnée à certains attributs impliqués dans l'élaboration même de ces sous-concepts (aspect descendant du contrôle).

D'autres types de connaissances heuristiques, associécs à la notion de stratégie, interviennent par ailleurs dans la formulation des modes

Abstract

d'élaboration et de décomposition, qui définissent les modes optimaux d'exploration des concepts concernés. Un concept pourra ainsi être élaboré par focalisations puis associations autour de concepts de force informative particulière. il pourra également être obtenu par décomposition d'un concept plus global, selon des mécanismes de focalisation et de déduction à partir de sous-concepts particuliers ; ces dernières activités déterminent l'ćveil successif, par message, des sous-concepts concernés.

II. $\mathbf{3}^{\circ}$) Images et connaissances (Garbay 85,86b)

Nous donnons ici quelques exemples de connaissances procédurales définissant des modes possibles d'élaboration ou de décomposition d'entités de type image (régions).

Il.3.1 ${ }^{\circ}$) Elaboration d'entités

Deux modes différents d'élaboration interviennent, selon que la connaissance attachée à une entité est ou non de nature primitive (fig. 5).

Dans le premier cas, en effet, la sélection des sous-entités (ou primitives) impliquées est obtenue par un simple mécanisme de filtrage :
$\operatorname{si} C\left(P_{\mathbf{i}}^{\mathbf{0}}, \quad P_{\mathbf{k}}\right)$ alors $\mathbf{P}_{\mathbf{i}} \in \mathbf{E}_{\mathbf{k}}$
dont la mise en oeuvre est en général suivie de l'activation d'une procédure de regroupement, selon un ensemble de contraintes spatiales locales telles que la connexité. Les procédures activées ici sont des procédures particulières de filtrage, s'exprimant sous la forme d'algorithmes parallèles itératifs (Chassery 85).

Ces mécanismes simples de filtrage sont applicables à des entités considérées comme répétition d'un ou plusieurs motifs primitifs, selon certaines règles locales d'arrangement spatial.

Lorsque la forme des entités est plus complexe (texture aléatoire par exemple), des mécanismes différents doivent être activés, impliquant l'élaboration progressive de cette entité par agrégations successives autour d'un germe particulier.

Fig. 5 : Principes de la délimitation conceptuelle. Mécanismes d'élaboration.
a) Mécanismes de filtrage ;
b) Mécanismes d'agrégation.

Toute connaissance parcellaire apparaît ici extrêmement précieuse, qui permet, comme nous l'avons déjà souligné, l'initialisation robuste de ces processus.

L'agrégation d'une primitive inconnue, P_{j}, est en général conditionnée par une contrainte locale texturale (similarité, continuité) et spatiale (connexité, proximité), de la façon suivante :
$\operatorname{si}\left(P_{i} \in E_{k}\right)$ et $\operatorname{SIM}\left(P_{i}, P_{j}\right)$ et $R\left(P_{i}, P_{j}\right) \quad \operatorname{alors} P_{j} \in E_{k}$

Nous avons néanmoins souligné (Chassery 84, Garbay 86a) l'intérêt d'introduire des contraintes globales, issues de connaissances prototypiques définissant la forme de l'entité à délimiter. Ces contraintes sont introduites par exemple de la façon suivante :
$\operatorname{si}\left(U P_{j} \subset E_{k}\right)$ et Forme $\left(\left(\cup P_{j}\right) \cup P_{i}\right)$ alors $P_{i} \in E_{k}$

[I. 3.2°) Décomposition d'entités

Le problème de la décomposition peut être abordé sous deux angles différents, selon que l'objectif visé concerne l'obtention de descripteurs prototypiques optimaux, ou la délimitation des sous-entités constitutives.

Un grand nombre d'approches ont été proposées dans le premier. cas (Pavlidis 77), qui permettent la décomposition structurelle d'une forme selon des éléments de propriétés géométriques particulières (sous-ensembles convexes maximaux, blocs maximaux, segments de droite etc).

Nous nous intéressons plutôt au problème de la délimitation et plus exactement à celui de la définition d'heuristiques permettant un meilleur contrôle des processus de décomposition (fig. 6).

Lorsque chaque sous-entité est connue de façon primitive, le problème de la décomposition est perçu comme un problème de nature parallèle, les processus de délimitation mis en oeuvre étant de simples processus de filtrage. Une précision plus ou moins grande, néanmoins, peut être apportée à la caractérisation prototypique des différentes sous-entités. Ceci suggère l'introduction d'heuristiques, permettant l'activation différenciée

des processus de délimitation, selon certaines contraintes :

- précision prototypique ;
- force informative (surface, degré d'adjacence).

Lorsque les processus de délimitation invoqués sont de complexités différentes (filtrage et agrégation), il convient dintroduire des heuristiques permettant de réduire et d'assurer un meilleur contrôle des traitements. Dans ce contexte, la priorité est donnée à l'activation des processus simples, par opposition aux processus complexes. Une première délimitation des entités ou groupes d'entités complexes est alors obtenue par détection des composantes connexes définies sur le complémentaire du support, selon des processus simples de filtrage.

L'analyse différentielle de ces entités est obtenue par la mise en oeuvre de mécanismes d'inférence particuliers, que nous détaillerons ultérieurement.

III. CATEGORISATION DES CONNAISSANCES

Nous avons insisté, dans les paragraphes précédents, sur les problèmes de typologie et de nature des connaissances, et sur leur formalisation possible au moyen de représentations centrées objet structurées. L'étape suivante de l'analyse consiste en l'examen des modes possibles d'exploitation de ces connaissances. Il convient néanmoins d'approfondir au préalable deux notions qui nous paraissent importantes, et qui concernent la catégorisation des connaissances selon leur force informative (connaissances primaires ou secondaires) d'une part, et selon leur force analytique (eu égard à l'objectif de l'analyse) d'autre part (fig. 7).

III. 1°) Connaissances primaires et secondaires

Indépendemment des activités (inférence ou élaboration) conduites à un instant donné, indépendemment du niveau d'abstraction des concepts manipulés, la distinction entre items primaires et secondaires est fondamentale, qui permet de réduire la recherche, lors des activités de mise en correspondance, par l'utilisation d'heuristiques de prédiction (Lux 84).

Cette distinction peut être formalisée intrinsèquement par l'affectation de priorités à l'ensemble des attributs caractérisant un concept (attribut est pris ici au sens large de connaissance), ces priorités étant connues a priori. Un degré de certitude peut ainsi être associé aux faits que ces connaissances permettent d'établir, comme fonction du nombre de critères primaires et secondaires effectivement pris en compte (Baillet 85).

Elle permet par ailleurs le développement de mécanismes locaux de focalisation, agissant de façon dualitaire tant sur les modes d'exploitation des données images (focalisation des processus d'élaboration et de décomposition), que sur les modes d'exploration des connaissances (focalisation par prédiction sur certaines sphères conceptuelles puis vérification).

Ces critères sont enfin susceptibles de modifications dynamiques, effectuées selon le contexte instantané de l'analyse. Certains attributs, intervenant de façon primaire dans l'identification d'un concept, sont en effet susceptibles d'être inhibés, dès lors qu'il n'apparaissent plus indispensables à la résolution des ambiguîtés locales, alors que d'autres sont susceptibles de revêtir une importance particulière.

Ils sont enfin susceptibles de modifications dynamiques selon l'objectif même de l'analyse.

III. 2°) Connaissances et objectifs

Lorsque l'objectif est limité, par exemple à une tâche de délimitation (segmentation) des entités présentes dans une image, il convient de déterminer l'ensemble des connaissances nécessaires et suffisantes, eu égard à la réalisation de cet objectif. Les connaissances nécessaires sont l'expression des invariants morphologiques, topographiques et structurels associés à l'image, et des outils procéduraux dont la mise en ocuvre permet la délimitation des entités. Leur suffisance est une propriété dynamique, qui dépend étroitement des stratégies employées.

Le problème est plus complexe lorsque l'objectif est plus large, impliquant des tâches de détection et d'interprétation complexes. Il convient en effet dans ce cas de se doter de mécanismes de focalisation
permettant de limiter l'espace des connaissances accessibles à un instant donné.

Une solution à ce problème pourrait être la recherche d'une structuration modulaire des connaissances, selon différentes classes d'objectifs possibles (délimitation, identification, interprétation), sachant que les sphères conceptuelles attachées à ces objectifs sont susceptibles de recouvrement.

II conviendrait néanmoins d'approfondir la forme exacte de représentation adoptée à cet égard, de façon à tenter de résoudre le nécessaire compromis entre lisibilité de la représentation, fonctionnalité d'utilisation (rapidité d'accès à l'information) et synthétisme (certaines informations apparaissent ou non de façon redondante).

Le choix d'une représentation centrée sur chaque concept, possédant au niveau image une représentation propre, apparaît séduisant par son caractère synthétique, une facette particulière exprimant pour chaque attribut son niveau (objectif) d'utilisation.

L'information est ici centralisée, donc facile d'accès ; néanmoins les mécanismes d'inhibition (éclairage ou non de certaines sphères conceptuelles) apparaissent de mise en oeuvre assez lourde.

Une représentation plus répartie serait une représentation centrée "concept-objectif", où à chaque entité image sont associés plusieurs objets structurés, permettant des niveaux croissants d'interprétation. Cette représentation est moins synthétique (nécessité de redondance de l'information) ; l'accès différentiel à telle ou telle classe d'informations est néanmoins aisé (éveil ou inhibition de telle ou telle classe d'objet).

B. STRATEGIES D'EXPLOITATION DES CONNAISSANCES

L'ensemble des connaissances associécs à une image apparaît composé de deux classes distinctes, regroupant respectivement les connaissances descriptives et les connaissances procédurales.

Les connaissances descriptives explicitent, sous une forme figurative, les modes d'expression des formes et/ou concepts examinés, ainsi que leurs modes d'associations selon les axes fondamentaux de généralisation et de composition structurelle.

Les connaissances procédurales définissent, sous une forme propositionnelle, les moyens d'obtenir une nouvelle connaissance, plus spécifique ou plus générale, à partir d'un ensemble de faits déjà établis.

Etant donné un problème d'analyse (délimitation d'une entité) ou d'interprétation (détermination du concept le plus spécifique applicable à une situation donnée) à résoudre, une stratégie de résolution de ce problème consiste en la recherche d'un chemin entre les données initiales disponibles et le but associé (Bielick 84). Une telle stratégie est définie par le choix d'un mode particulier de développement de l'espace de recherche (Laurent 84). Elle correspond à l'établissement des plans d'actions successifs, selon lesquels le problème, décomposé en une séquence de sous-problèmes, sera progressivement résolu (Cordier 85).

Nous introduisons à cet égard deux types de stratégies : les stratégies directes et les stratégies indirectes.

Les stratégies directes sont de type ascendant ; elles procèdent par abstractions successives et sont caractérisées par une recherche de focalisation conceptuelle maximale.

Les stratégies indirectes sont de type mixte (descendant/ascendant) ; elles procèdent par focalisations successives et sont caractérisées par une recherche de réduction des efforts d'analyse.

I. STRATEGIES DIRECTES

Les problèmes que nous posons dans le cadre de cette étude sont des problèmes d'abstraction : étant donné un concept représenté sous une forme élémentaire, dite de "bas niveau" (une image représentée sous la forme d'une distribution de valeurs numériques, par exemple), il convient de lui associer une forme plus élaborée de représentation, dite de "haut niveau" (une image représentée sous la forme d'un ensemble de régions par exemple), et/ou une forme plus élaborée d'interprétation (dénomination du concept associé à l'image ou à l'une de ses composantes).

Les stratégies directes associées à la résolution de tels problèmes sont des stratégies ascendantes ; elles procèdent du particulier au global. Nous définissons tout d'abord les principes de mise en ocuvre de telles stratégies, puis nous envisageons leur application possible à la segmentation d'images. L'applicabilité de ces stratégies à la résolution de problèmes plus complexes est ensuite analysée.

I.10) Principes de mise ocuvre

L'analyse est ici envisagée dans le cadre d'un contexte simplifié selon lequel le but à atteindre est identifié comme un objet particulier de la base de connaissances : le problème à résoudre est par exemple celui de la délimitation des composantes d'une image vérifiant un concept donné.

Les étapes essentielles d'une telle analyse sont présentées, en examinant tout d'abord le cas d'une approche de "bas niveau" (un seul niveau de composition structurelle est à parcourir, au sein de la base de connaissances).

(.1.10) Analyse de bas niveau

Le concept à délimiter est supposé ici décomposable selon un ensemble d'items élémentaires dont les instances (réalisations) sont supposées présentes au scin de la base de faits initiale. Les étapes de l'analyse sont alors les suivantes :

- sélection et détection au sein de la base de faits d'un ensemble de faits élémentaires ;

- regroupement de ces faits élémentaires en un fait plus abstrait ;
- sélection des faits globaux associés au concept à délimiter.

La mise en oeuvre de ces actions est régie par les mécanismes opératoires (connaissances procédurales) décrits au sein de la base de connaissance.

La complexité des étapes initiales de sélection/détection et regroupement de faits élémentaires dépend de la nature des connaissances associées au concept à délimiter :

- lorsque la connaissance est de nature primitive, les opérations de sélection et de détection s'effectuent en parallèle sur la base de faits, des coefficients de certitude pouvant être simplement attachés à chaque déduction effectuée, selon le degré de vraisemblance des correspondances établies ;
- lorsque la connaissance est de nature globale, par contre, des mécanismes plus complexes de sélection et regroupement successifs interviennent. Ceux-ci se trouvent allégés lorsqu'une connaissance parcellaire de type primitive est disponible (cf. A.I. 3°).

Il convient ensuite de sélectionner les faits globaux associés au concept à délimiter, par l'évaluation des attributs qui le caractérisent. La complexité de cette étape depend de la nature prototypique ou non des contraintes régissant l'identification du concept à délimiter : celle-ci est en effet susceptible d'impliquer le contexte de son instanciation (cf. A.II.1).

La complétion de l'étape de sélection implique dans ce cas l'analyse de l'ensemble des faits globaux dont l'identification apparait nécessaire, ces analyses étant a priori conduites en parallèle.

Un meilleur contrôle peut néanmoins être obtenu, lorsque les mécanismes d'élaboration impliqués sont de complexités différentes (filtrage et agrégation) en focalisant d'abord l'analyse sur les concepts de meillcure évidence (connaissance primitive, degré de précision et de certitude élevé). Ces concepts étant délimités, une localisation approximative des concepts associés peut être obtenue par sélection de faits selon des contraintes d'association (faits en relation spatiale par exemple).

Ces notions sont illustrées dans la figure 8.

I.1.20) Analyse•de haut niveau

Le concept à délimiter est considéré ici comme un concept de haut niveau dont l'identification implique celle d'un ensemble de sous-concepts intervenant à différents niveaux de composition structurelle.

Le but à atteindre étant décomposé en sous-buts, le problème est résolu par la mise en oeuvre d'une séquence de processus élémentaires d'analyse, selon l'éveil successif des mécanismes procéduraux attachés aux différents sous-concepts impliqués (fig. 9).

Une première phase consiste donc en l'identification des sphères de connaissances utiles à l'analyse, et une deuxième phase en sa mise en ocuvre. Des heuristiques peuvent être utilisées, comme précédemment, pour focaliser l'analyse autour des concepts les plus faciles à délimiter.

La lourdeur d'une telle analyse dépend de l'efficacité des mécanismes de focalisation "perceptuelle", qui permettent la sélection des faits pertinents eu égard à l'objectif poursuivi. Dans ce but, les éléments les plus informatifs seront délimités tout d'abord : un concept informatif apparaît ici comme un composant structurel caractéristique du concept plus global à analyser.

Les mêmes remarques peuvent être faites lorsque les modes d'interprétation impliquent des contraintes contextuelles. Supposons en effet que l'identification d'un concept dépende de la réalisation, selon certaines règles d'association, d'un autre concept connu. La vérification de cette assertion peut être obtenue, selon les cas, par la simple délimitation parcellaire de ce deuxième concept. La priorité sera dans ce cas donnée à l'analyse du composant structurel considéré pour ces raisons comme informatif, c'est-à-dire dont la délimitation permettra la complétion de l'analyse envisagée au départ.
I. $\mathbf{2}^{\circ}$) Application à la segmentation d'images (Garbay 85, 86b)

Les principes de mise en ouvre des stratégies directes sont illustrés par leur application à la détection d'une entité E_{K}^{N} au sein d'une image, cette entité étant considérée comme entité de haut niveau. Nous présentons tout d'abord quelques critères permettant d'évaluer la complexité du

problème posé, puis les principes mêmes de délimitation de E_{K}^{N}; enfin nous envisageons quelques heuristiques permettant l'amélioration des stratégies directes d'analyse.

I.2.1 ${ }^{\circ}$) Complexité du problème

La complexité du problème dépend de la complexité des processus d'élaboration mis en ocuvre aux différentes étapes ; elle dépend également de la complexité des processus d'interprétation nécessaires à l'identification complète de l'entité (fig. 10).

Rappelons que les processus d'élaboration d'une entité $\mathrm{F}_{\mathrm{k}}^{\mathrm{n}}$, de niveau n, à partir d'un ensemble de sous-entités E_{j}^{n-1}, de niveau inférieur $n-1$, diffèrent selon que la connaissance attachée à E_{k}^{n} est de nature primitive ou globale. Ils impliquent dans le premier cas des connaissances intrinsèques aux E_{j}^{n-1} et sont dits simples; ils impliquent dans le second cas des connaissances associées à des groupes d'entités et sont dits complexes. Ils diffèrent fondamentalement par l'activation respective de l'une ou l'autre des règles suivantes :

$$
\begin{aligned}
& \text { si } \operatorname{COND}\left(E_{j}^{n-1}\right) \text { alors } E_{j}^{n-1} \subset E_{k}^{n} \\
& \text { si } \operatorname{RELCOND}\left(E_{j}^{n-1}, \cup E_{1}^{n-1}\right) \text { alors } E_{j}^{n-1} \subset E_{k}^{n} \\
& \left(\text { où } E_{1}^{n-1} \subset E_{k}^{n}\right)
\end{aligned}
$$

De la même façon, les processus d'interprétation attachés à une entité F_{k}^{n} diffèrent selon que la connaissance qui lui est associée est de nature intrinsèque ou contextuelle. Ils sont dits intrinsèques dans le premier cas, relationnels s'ils impliquent des contraintes de nature spatiale ou analogique entre entités de même niveau, et structurels s'ils impliquent des contraintes de nature structurelle (être composant d'une entité particulière, ou être constitué d'une sous-entité particulière). Ils different par l'activation de l'une ou l'autre des règles suivantes :

$$
\text { si CONI)(E) alors }\left(E=E_{k}^{n}\right)
$$

si RELCOND (E, E \mathbf{l}_{1}^{n}) alors $\left(E=E_{k}^{n}\right)$
si $\operatorname{STRCOND}\left(E, E_{1}^{m}\right)$ alors $\left(E=E_{k}^{n}\right)$

I. 2.2°) Principes de délimitation

\mathbb{E}_{K}^{N} étant l'entité à délimiter, elle est définie de façon récursive de la manière suivante :

$$
\mathrm{E}_{K}^{N}=U \mathrm{fils}\left(\mathrm{E}_{\mathrm{K}}^{\mathrm{N}}\right)
$$

où le symbole "union" recouvre des contraintes différentes selon la forme des connaissances attachées à E_{K}^{N} (contrainte de connexité, de forme ...).

A cette représentation figurative est associée une représentation propositionnelle du problème à résoudre sous la forme :

Détecter $\left[\mathrm{E}_{\mathrm{K}}^{\mathrm{N}}\right]=\operatorname{Regrouper}\left(\right.$ Détecter $\left[\operatorname{fils}\left(\mathrm{E}_{\mathrm{K}}^{N}\right)\right]$).

La résolution du problème est ainsi obtenue par l'activation d'un ensemble de cycles successifs de détection/regroupement. Chaque cycle est en général suivi d'un cycle de contrôle permettant la vérification de l'identité des composants obtenus (par analyse morphologique par exemple).

Les sous-problèmes "Détecter [fil(E)] " sont en principe considérés comme indépendants, et résolus en parallèle. Dans la pratique, il convient de privilégier la résolution des problèmes de type simple, lorsque c'est possible, ceci permettant un meilleur contrôle des problèmes complexes.

Supposons en effet que le sous-problème "Détecter [$\left.E_{i}\right]$ ", de type simple, ait été résolu. La résolution du problème complexe "Détecter [($\left.\left.\mathrm{E}_{\mathrm{j}}\right)\right]$ " peut être obtenue par l'activation préliminaire de règles du type :

$$
\operatorname{si}\left(P_{i} \in E_{i}\right) \text { et RELCOND }\left(P_{i}, P_{j}\right) \text { alors } P_{j} \in E_{j}
$$

(sous-délimitation de E_{j} par prédiction spatiale, par exemple).
. 204.

La mise en ocuvre des cycles de contrôle implique enfin l'évaluation d'attributs morphologiques caractérisant les entités à délimiter. Elle apparait néanmoins complexe dès lors que les processus d'interprétation associés sont de nature relationnelle ou structurelle (insertion au sein d'un contexte particulier). La résolution du problème "Détecter [\mathbb{E}_{K}^{N}] " implique dans ce cas la résolution des divers problèmes associés, celle-ci étant a priori effectuće en parallèle.

Un certain nombre d'heuristiques peuvent néanmoins être introduites, qui permettent de réduire la recherche.

1.2.3 ${ }^{\circ}$) Heuristigues de recherche

L'objectif est ici d'alléger l'analyse en réduisant la masse de données à traiter (focalisation perceptuelle). Des heuristiques sont introduites à cet égard, tout d'abord dans le cas de la résolution d'un problème intrinsèque, puis dans le cas d'un problème relationnel ou structurel (ces deux types de problèmes ne sont pas distingués par la suite) (fig. 11).

Résolution d'un problème intrinsèque

L'analyse mise en oeurre dans le cadre des stratégies directes progressant de façon ascendante, une véritable focalisation "perceptuelle" ne peut être obtenue qu'au terme d'un certain nombre d'étapes : , des informations globales sont alors extraites, qui permettent l'élimination des hypothèses de bas niveau jugées non pertinentes.

Il est possible de modifier cette approche en privilégiant, à certaines étapes "bien choisies", un parcours en "largeur" (technique de prédiction spatiale) plutôt qu'un parcours "en profondeur" de l'arborescence, en conditionnant mutuellement les problèmes à résoudre à cette étape.

II convient dans ce but d'identifier, parmi les sous-entités $\mathrm{E}_{\mathrm{k}}^{\mathrm{N}}$ qui constituent l'arborescence associée à E_{K}^{N}, celles qui apparaissent à la fois avec un fort degré de certitude et un faible degré d'ambiguité : ces sous-entités sont dites sous-entités primaires attachées à \mathbb{E}_{K}^{N}. Elles sont

Fig. 11 : Stratégies directes et heuristiques de recherche.
a) Résolution d'un problème intrinsèque : lors d'un parcours "en profondeur d'abord", les entités E_{1}, E_{2} et E_{3} sont délimitées en parallèle ; lors d'un parcours "en largeur d'abord", l'entité primaire Ef est délimitée tout d'abord; ceci permet la localisation des composantes de E_{2} et F_{3} par prédiction spatiale ;
b) Résolution d'un problème relationnel : la délimitation de l'entité contextuêlle $\mathrm{F}_{\mathrm{L}}^{\mathrm{N}}$ est ramenée à la délimitation de la sous-entité E_{1}^{N} et ${ }^{\text {a }}$ la vérification de ses relations d'association avec E_{k}^{n}.

```
telles que les clauses conclusion des règles :
```

$$
\begin{aligned}
& \operatorname{si}\left(E=E_{k}^{N}\right) \text { alors } E \subset E_{K}^{N} \\
& \text { si }\left(\dot{E}=E_{K}^{N}\right) \text { alors } E_{k}^{N} \subset E
\end{aligned}
$$

sont vérifiées avec un fort degré de certitude.

Le parcours ascendant de l'arborescence est dans ce cas modifié, de façon à privilégier la prise en compte des étäpes (niveaux d'analyse successifs) impliquant la détection d'une ou plusieurs entités primaires.

Les problèmes à résoudre à chacune de ces étapes "primaires" sont conditionnés mutuellement par l'adjonction de règles de prédiction spatiale telles que celles évoquées en $1.2 .2^{\circ}$). Ils sont résolus successivement selon un parcours "en largeur" de l'arborescence au niveau considéré.

Résolution d'un problème relationnel

Lorsque le problème est de type relationnel, la complétion de l'analyse nécessite de procéder à la résolution de l'ensemble des problèmes associés.

L'objectif est ici d'envisager dans quelle mesure une résolution partielle de ces problèmes peut suffire.

Soit \mathbb{E}_{K}^{N} l'entité à délimiter, et E_{L}^{N} une entité dont la délimitation est nécessaire à l'interprétation complète de $\mathbb{E}_{\mathrm{K}}^{\mathrm{N}}$; cette interprétation est obtenue par activation de la règle suivante :

$$
\text { si } \operatorname{COND}(E) \text { et RELCOND }\left(E, E_{L}^{N}\right) \text { alors } E=E_{K}^{N}
$$

Supposons qu'à $\mathrm{E}_{\mathrm{L}}^{\mathrm{N}}$ et $\mathrm{E}_{\mathrm{K}}^{\mathrm{N}}$ puissent $\hat{e} t r e$ associées une ou plusieurs sous-entités primaires notées respectivement E_{1}^{n} et F_{k}^{n}. Une réduction du problème peut être obtenue, dès lors que la vérification de $\operatorname{RELCOND}\left(\mathrm{E}_{\mathrm{k}}^{\mathrm{N}}, \mathrm{E}_{\mathrm{L}}^{\mathrm{N}}\right.$) peut être ramenće avec suffisamment de certitude à la vérification de contraintes relationnelles attachées à des couples du type (E_{k}^{n}, E_{1}^{n}), c'est-à-dire si l'on peut écrire :

```
si {RNLCOND( E N
```

La résolution du problème "Délimiter $\left[\mathbb{E}_{K}^{N}\right]$ " impliquait a priori la mise en oeuvre des activités suivantes :

> Détecter $\left[E_{K}^{N}\right] ;$
> Détecter $\left[E_{L}^{N}\right] ;$
> Vérifier $\left[\operatorname{RELCOND}\left(E_{K}^{N}, E_{L}^{N}\right)\right]$.

Elle peut être ramenée à la mise en ouvre des activités suivantes :

```
Détecter \(\left[\mathrm{E}_{\mathrm{K}}^{\mathrm{N}}\right]\);
Détecter \(\left[\mathrm{E}_{1}^{\mathrm{n}}\right]\);
Vérifier \(\left[\operatorname{RELCOND}\left(\mathbb{E}_{k}^{\mathrm{n}}, \mathrm{E}_{1}^{\mathrm{n}}\right)\right]\).
```


I. 3°) Résolution de problèmes complexes et stratégies de contrôle

Tant l'analyse que l'interprétation d'images ont été étudiées dans un mode déterministe, selon lequel le problème à résoudre, ainsi que l'ensemble des sous-problèmes qui le décomposent, sont déterminés de façon univoque. Cette simplification nous a permis d'expliciter les principes de mise en oeuvre des stratégies directes et de montrer comment l'ensemble des connaissances disponibles peut être utilisé, dans un mode descendant, pour contrôler les processus ascendants d'élaboration et d'interprétation.

L'applicabilité des stratégies directes à la résolution de problèmes plus complexes est ici envisagée : deux problèmes différents sont successivement étudiés, le premier relatif à la délimitation dentités présentant plusieurs formes possibles de réalisation, le second relatif à la recherche du concept le plus spécifique applicable à une entité de forme donnée (problème de diagnostic).

La résolution de ces problèmes implique la mise en oeuvre de stratégies de contrôle performantes : les grands principes de leur élaboration sont revus tout d'abord.

I. 3.1°) Stratégies de contrôle

Les principes d'élaboration des stratégies de contrôle sont tout d'abord examinés dans le cadre général de leur mise en oeuvre par des systèmes experts ; puis nous donnons quelques exemples de réalisation dans le cadre de systèmes de compréhension d'images.

Systèmes experts et contrôle

Etant donné un ensemble de faits (état) obtenus à une étape donnée de l'analyse, il convient de déterminer les transitions dont la mise en ouvre permet l'accès à un nouvel état courant du système : choisir une transition signifie choisir les couples (objet, action) à prendre en compte. En supposant qu'il existe des critères indépendants, présidant au choix respectif ©des objets et des actions, deux types de stratégies s'avèrent possibles (Laurent 84).

- détermination des objets susceptibles de transition ;
- sélection de certains d'entre eux ;
(1) - détermination des actions possibles ;
- sélection de certaines actions ;
- exécution.
- détermination des actions possibles ;
- sélection de certaines actions ;
(2) - détermination des ob.jets où cette action est possible ;
- sélection de certains objets ;
- exécution.

La priorité est donnée dans le premier cas aux objets, et dans le second cas aux actions. La nature des critères de choix dépend de la stratégie de résolution adoptée : celle-ci peut être guidée soit par les données (chaînage avant) soit par le but (chainage arrière). Dans le cas d'une stratégie guidée par les données, ces critères pourront impliquer le degré de confiance associé aux objets ainsi que la récence de leur obtention (stratégie en profondeur d'abord). Dans le cas d'une stratégie guidée par le but, la priorité sera donnée aux objets/actions permettant une focalisation de l'analyse vers la solution (Cordier 85).

Fig. 12 : Systèmes experts et stratégies de contrôle.
a) Etats, transitions et reprises ;
b) Stratégie de type Objet-Action ;
c) Stratégie de type Action-Objet.

Il ne convient pas, par ailleurs, que la progression de l'analyse s'effectuc selon un mode strictement linéaire, de l'état le plus récent vers un nouvel état, ce cheminement ne pouvant garantir dans tous les cas la convergence vers une solution. Des possibilités de reprise vers un état antérieur à l'état courant (backtrack) doivent donc être introduites. Les grandes étapes d'un cycle de contrôle deviennent alors les suivantes (Laurent. 84) :

- détermination des états activables ;
- choix d'un état ;
- détermination des transitions possibles ;
- choix des transitions ;
- exécution.

I1. convient dans la pratique de définir les critères selon lesquels une reprise apparait nécessaire : faiblesse dans la cohérence des éléments obtenus, ou faiblesse des possibilités de convergence vers une solution. Il convient également de définir les critères présidant au choix d'un état de reprise particulier : deux stratégies sont possibles à cette fin, qui implique l'une le principe de reprise systématique à l'état antérieur, et l'autre le principe de reprise sélective (sauvegarde des hypothèses possibles à certaines étapes, utilisation d'heuristiques ou de métarègles). Toute reprise "intelligente", par ailleurs, implique la capacité à exploiter les échecs rencontrés pour orienter la suite de la résolution (Cordier 85).

Ces notions sont illustrées dans la figure 12.

Systèmes de vision et contrôle

Dans le domaine de la compréhension d'images, les stratégies de résolution adoptées sont du type prédiction-vérification (stratégie mixte chainage avant/chaînage arrière) : une hypothèse est formulée au terme d'une analyse ascendante (guidée par les données), qui permet le contrôle, dans un mode descendant, de l'analyse ultérieure (guidée par le but).

L'échec possible de cette analyse implique la possibilité de reprise au stade des hypothèses, voire au stade initial de l'analyse lorsqu'aucune des hypothèses n'apparaît valide (Nagao 84).

La structure de contrôle de ces systèmes est en général du type objet-action (priorité au choix d'objet par rapport au choix d'action) ; à chaque cycle élémentaire sont associées les étapes suivantes :

- détermination des entités à analyser ;
- sćlection d'une entité ;
- détermination des interprétations possibles ;
- choix d'une interprétation.

Tant les modes de détermination que les critères de choix utilisés dépendent de la nature du cycle dans lequel se trouve engagé le système à un instant donné : génération ou vérification d'hypothèse.

En phase génération d'hypothèse, les approches diffèrent selon qu'une focalisation sur certains "indices visuels" est cherchée a priori (système PVV, Lux 84) ou selon que l'ensemble des entités, caractérisées au terme d'une phase initiale de description de l'image, sont fournies "en parallèle" à l'analyse (système VISIONS, Parma 81). les critères mêmes de focalisation utilisés peuvent être du type objet ou action : sélection des objets d'analyse simple, par exemple (système SIGMA, Matsuyama 85).

La phase vérification d'hypothèse est une phase complexe, susceptible d'impliquer plusieurs cycles successifs de prédiction/vérification, selon une stratégie guidée par le schéma ou plan d'action associé à l'hypothèse (système GARI, Descotte 81). Elle consiste en un ensemble de focalisations successives sur les entités et attributs pertinents à cet égard. Lorsqu'il n'y a pas eu de phase d'initialisation préalable, elle implique la mise en ocuvre des processus de délimitation et d'extraction, sous le contrôle du plan.

En ce qui concerne le contrôle global du déroulement de l'analyse, différentes approches apparaissent, qui se différencient par leurs recherches d'équilibre entre les phases de formulations d'hypothèses et de
vérifications de ces hypothèses. Il convient en effet de résoudre le compromis issu de la nécessité de guider au plus vite l'analyse et du risque concomitant d'engager cette même analyse dans une voie erronnée. Une solution à ce problème apparait dans l'élaboration de structures hiérarchiques de contrôle ainsi que dans l'application du principe de la propagation d'hypothèses (fig. 13).

L'élaboration de structures hiérarchiques de contrôle est liée à l'élaboration de structures hiérarchiques de représentation des objets manipulés, qui permettent de contraindre différemment l'interprétation d'un élément selon le niveau atteint par l'analyse (système ACRONYM, Brooks 81). Dans le système VPI (Shapiro 83), les objets sont regroupés en catégories caractérisćes par un profil spécifique : l'instanciation de ce profil permet une focalisation au sein du domaine d'hypothèses.

Un ensemble plus ou moins complet et plus ou moins précis d'informations (attributs, indices visuels ...) étant attachées à une entité, une hypothèse globale est formulée, dont la vérification nécessite l'extraction d!autres informations, l'élaboration d'autres hypothèses, selon le graphe délimitant l'espace de recherche associé au problème à résoudre.

En cas d'échec (faible plausibilité, non validation d'une hypothèse), il y a en général reprise à l'état antérieur de l'analyse, celui-ci étant modifié de façon à tenir compte des résultats obtenus (Lux 84).

L'analyse se déroule dans ce cas selon une stratégie "en profondeur" : sa validité dépend de la validité de l'hypothèse globale de départ. Or, cette hypothèse est formulée sur la base d'un ensemble partiel d'informations, d'une part, et en négligeant les éléments susceptibles d'être apportés par le contexte particulier environnant l'entité, d'autre part. Des contradictions risquent alors d'apparaitre, au terme de f'analyse, du fait de l'émergence, à ce stade, des informations plus globales de contexte (Nagao 79, Bunke 84). Le principe de la propagation d'hypothèses est souvent utilisé, pour pallier cet inconvénient. Cette approche consiste à modifier le réseau de faits et d'hypothèses, qui constitue l'état instantané du système, par la prise en compte explicite des dépendances mutuelles entre ces événements : relations de causalité logique, de compatibilité ou de non compatibilité, par exemple.

Fig. 13 : Systèmes de vision et stratégies de résolution.
a) Phases de génération et de vérification d'hypothèses ;
b) Introduction de structures hiérarchiques de contrôle ;
c) Le principe de la propagation d'hypothèses.

L'élaboration d'une telle structure de contrôle permet d'envisager la coopération de plusieurs processus d'analyse, progressant simultanément, chacun utilisant les résultats apportés par les autres et étant responsable d'une tâche spécifique : investigation d'une zone particulière de l'image (système TRIDENT, Masini 84) ou extraction d'un type particulier d'attribut (système VISIONS, Parma 81).

L'inconvénient majeur de ce type d'approche réside dans la complexité de mise en oeuvre des stratégies de reprise. Un défaut de cohérence étant décelé au sein du réseau d'hypothèses, il convient de revenir sur les éléments les plus sujets à caution, et donc de remettre en cause tous les faits dont ils ont provoqué l'émergence, selon des phénomènes plus ou moins directs de propagation.

Enfin, il convient de souligner qu'une utilisation optimale d'un tel système suggère l'emploi privilégié de stratégies "en largeur d'abord". L'état du système étant le reflet global de l'ensemble des faits extraits de l'image, il paraît naturel en effet de décider de poursuivre l'analyse à partir des plus vraisemblables d'entre eux, sans privilégier nécessairement la poursuite en profondeur de l'analyse effectuée à l'étape précédente (système SIGMn, Matsuyama 85).

I. 3.2°) Délimitation d'entités dans un contexte complexe

L'expression iconique d'un concept donné, lorsqu'elle existe, est susceptible de provoquer l'émergence de formes extrêmement variées, ces phénomènes étant particulièrement dépendants des conditions et modes d'observation de ce concept (angle d'observation d'un objet tri-dimensionnel, ou instant d'observation d'une unité vivante, par exemple). Notre objectif est d'examiner l'applicabilité des stratégies directes à la délimitation de ces concepts.

Les stratégies directes s'appliquent relativement "naturellement" à la délimitation de concepts dont les formes différentielles de réalisation s'expriment à des niveaux élevés d'abstractions : variations dans l'aspect ou les modes d'organisation de composants de haut niveau, dont les principes propres de délimitation apparaissent univoques. Les composants et
leurs attributs étant extraits, la résolution du problème implique l'élaboration de stratégies de mise en correspondance, le système fonctionnant en mode fermé.

Un fonctionnement en mode ouvert, impliquant la recherche de stratégies coopératives d'exploration des données image et des connaissances apparait par contre nécessaire dès lors que la nature différentielle de l'expression est susceptible d'affecter l'instance conceptuelle observée dans ses niveaux les plus bas de réalisation : non existence d'un principe unique de délimitation, possibilité d'expression particlle (faces cachées par exemple).

L'objectif est de guider l'analyse d'un tel concept par un plan d'action, généré de façon dynamique et selon un mode descendant, de façon à contraindre l'analyse à chaque étape par les informations contextuelles les plus globales possibles (fig. 14).

Il convient à cet égard de procéder à une décomposition dynamique du problème en sous-problèmes, selon l'expression récursive suivante (cf. 1.2.2 ${ }^{\circ}$)

$$
\begin{aligned}
\text { Détecter }\left[E_{K}^{N}\right]= & \operatorname{Regrouper} \text { (Détecter }\left[f i l s\left(E_{K}^{N}\right)\right] \\
& \text { Détecter } \left.\left[E_{K}^{N} \backslash i l s\left(E_{K}^{N}\right)\right]\right) .
\end{aligned}
$$

Chaque sous-problème est résolu par référence au contexte (état) courant, qui regroupe l'ensemble des faits et hypothèses disponibles à un instant donné ; cette résolution provoque la modification de l'état courant. Les sous-problèmes invoqués à une étape donnée sont résolus en séquence, de façon à utiliser leurs propriétés de dépendances mutuelles.

A chaque cycle de contrôle sont associées les étapes suivantes :

- sélection d'une hypothèse (focalisation "conceptuelle") ;
- analyse des faits images sous cette hypothèse (focalisation perceptuelle) ;
- propagation des faits obtenus ;

Plusieurs cycles successifs de sélection d'hypothèses (ou sous-buts) sont susceptibles d'être activés, tant que les faits images associés ne

sont pas disponibles. L'accès initial à la phase d'analyse est conditionné par l'accès à un composant "feuille" de l'arborescence.

Sélectionner une hypothèse signifie faire la supposition de la présence et/ou de l'apparence d'un composant image particulier. Les critères de choix peuvent être de type objet (composant d'existence ou d'apparence hautement probable), de type action (composant dont une délimitation, même partielle, est aisée), ou de type contexte (composant dont l'analyse est susceptible d'éclairer de façon significative l'état du système).

L'emploi de critères de type action peut s'avérer particulièrement utile, en cas d'hésitation entre plusicurs alternatives, pour éliminer rapidement certaines d'entre elles.

La phase d'analyse (ou vérification d'hypothèse) est mise en oeuvre dès lors que les faits images requis apparaissent accessibles. Elle est susceptible d'impliquer plusieurs phases de détection - regroupement, lorsque celles-ci ne sont pas entachées d'incertitudes.

La phase de propagation est mise en oeuvre dès qu'une vérification de l'hypothèse en cours a été obtenue. A l'état du système sont associées l'ensemble des hypothèses dont la vérification est nécessaire, eu égard à l'objectif global de l'analyse. La génération à un instant donné d'un ensemble de sous-buts définissant un plan d'action implique l'activation de certaines d'entre elles.

Les coefficients de plausibilité de ces hypothèses activées sont tout d'abord modifiés, selon une phase ascendante de propagation : ceci permet d'augmenter, ou au contraire de diminuer la vraisemblance globale du plan d'action en cours d'analyse.

Les coefficients de plausibilité de l'ensemble des hypothèses non activées sont ensuite modifiés, selon une phase descendante de propagation, de façon à privilégier la cohérence globale du réseau d'hypothèses.

Différentes stratégies de reprise sont possibles, selon les éléments obtenus au cours des différentes phases de propagation. Il y a en principe poursuite ou reprise à l'état antérieur selon que l'hypothèse courante a été confirmée ou infirmée.

Une modification plus ou moins importante du plan d'action peut égalẹment s'avérer nécessaire, lorsque le réseau associé des hypothèses activées apparait présenter une plausibilité localement ou globalement trop faible.

La stratégie descendante de propagation adoptée permet la restriction progressive du domaine des hypothèses. Elle permet d'envisager un mode plus rapide de résolution par déroutement du cycle normal d'analyse. Il se peut en effet qu'une hypothèse non activée apparaisse à une étape donnée présenter une force informative particulière.

L'inconvénient majeur de ce type de stratégie de contrôle réside dans le principe de conditionnement séquentiel des activités finales à l'activité initiale. Le choix d'un mode plus robuste de résolution dépend de la capacité à paralléliser les processus d'analyse et à définir les principes de leur synchronisation.

I.3.3 ${ }^{\circ}$) Détermination du concept le plus spécifique

Le problème est ici la détermination du concept le plus spécifique applicable à une image constituée d'entités de structures complexes dont la présence, la morphologie et les modes d'organisation sont l'expression même du concept à délimiter.

La résolution de ce problème par le biais des stratégies directes suppose l'association à chaque hypothèse possible d'un plan d'action impliquant la délimitation, la description et l'interprẹ́tation des entités qui la caractérisent. La mise en ocuvre de ces plans d'actions s'effectue dans le cadre de stratégies de contrôle similaires à celles que nous avons évoquées précédemment.

Le morcellement de chaque plan d'action selon deux phases successives d'analyse permet néanmoins la réduction des activités de recherche. La vérification d'une hypothèse étant conditionnée à la vérification prioritaire de certains faits (entités primaires), ceux-ci sont explorés dans le cadre d'une phase primaire d'analyse, dont l'issue peut permettre le rejet rapide de cette hypothèse.

La confirmation définitive de cette même hypothèse implique la mise en oeurre diune phase secondaire dans le cadre de laquelle s'effectue la recherche des entités secondaires associées à cette hypothèse.

Lorsqu'une décision définitive ne peut être prise, il convient de définir les modes de propagation des faits obtenus au terme de l'analyse d'une hypothèse donnée. Une telle propagation est en effet susceptible de restreindre l'espace de recherche associé à la vérification des hypothèses ultérieures.

L'exploitation des données images, envisagée dans le cadre de la mise en ocuvre de stratégies directes d'analyse, s'effectue selon un mode ascendant. Les informations les plus précises sont extraites tout d'abord, dont le regroupement et la confrontation progressive permet l'émergence de données plus abstraites. L'analyse est guidée par un plan d'action, élaboré selon un mode descendant, de façon à décomposer le problème à résoudre selon une succession de sous-problèmes. L'exploitation des dépendances mutuelles entre ces sous-problèmes (propagation des contraintes) permet la restriction progressive de l'espace des hypothèses.

Selon les principes mêmes qui ont présidé à l'élaboration de ces stratégies, la vérification d'une hypothèse de haut niveau n'est obtenue qu'au terme de la complétion des analyses de bas niveau qu'elle a participé à conditionner. Le fonctionnement d'un tel système apparaît donc caractérisé par la mise en oeuvre préalable d'une succession d'activités de fermeture, dont la cohérence ne peut être garantie que par la donnée a priori de contraintes fortes sur le problème à résoudre.

Le développement nécessaire de systèmes dont l'applicabilité potentielle ne se réduit pas à la seule résolution des problèmes simples conduit à développer d'autres stratégies : les stratégies indirectes.

II. STRATEGIFS INDIRECTES

L'objectif est de doter le système d'analyse de principes différents de décomposition d'un problème, fondés sur des modes différents d'exploitation des données qui lui sont associées. La mise en oeurre des stratégies indirectes, selon ces principes, permet dans certains cas d'aboutir à la résolution du problème posé, et dans les autres cas d'en obtenir une pré-structuration (restrictions sur l'espace de recherche associé). La prise en compte de cette pré-structuration, au cours de la phase ultérieure, et nécessaire, de mise en oeurre des stratégies directes, constitue l'un des garants de la robustesse de leur fonctionnement.

Les principes de mise en oeuvre de ces stratégies sont tout d'abord évoqués ; leur applicabilité aux tâches de délimitation et d'interprétation est ensuite envisagée.

II.1. Principes de mise en oeuvre

La représentation figurative des connaissances attachées à un ensemble de concepts implique leur organisation selon leurs relations de généralisation (resp. spécialisation), de composition structurelle (resp. appartenance structurelle) et d'analogie.

La connaissance des relations structurelles vérifiées par un concept donné permet de le considérer tour à tour comme constituant (fils) d'un concept plus global ou comme constitué (père) d'un ensemble de concepts locaux. A cette connaissance figurative est associée une connaissance propositionnelle explicitant les modes possibles de son élaboration selon des processus de regroupement (élaboration ascendante) ou de décomposition (élaboration descendante).

Le concept de stratégie indirecte repose sur le principe fondamental de délimitation d'un concept par décompositions et spécialisations successives, selon l'expression récursive suivante :

$$
\text { Délimiter } \left.\left[E^{N}\right]=\operatorname{Décomposer~(Délimiter~}\left[\operatorname{Père}\left(E^{N}\right)\right]\right)
$$

où F^{N} désigne l'instance du concept à délimiter.

L'intérêt majeur de ce type d'approche provient des possibilités offertes d'exploitation des modes contextuels d'expression du concept à délimiter. Des processus plus ou moins complexes d'analyse pourront ainsi être mis en ocuvre, selon la complexité de l'insertion contextuelle du concept ; ils seront par ailleurs susceptibles d'exploiter les contraintes globales issues des analyses antérieures

Une difficulté inhérente à l'application de tels principes d'analyse survient néanmoins du dilemme apparent posé par la nécessité d'accéder directement aux informations les plus abstraites, alors que seules des données de "bas niveau" sont a priori disponibles. La résolution de ce dilemme implique ainsi la capacité à analyser les données selon des regroupements catégoriels d'abord globaux, puis progressivement plus fins, et à identifier chacun de ces regroupements comme des instances de concepts connus.

Une alternative possible consiste à définir une hiérarchie de contraintes conditionnant les partitionnements successifs au niveau de résolution requis, et/ou à ordonnancer les attributs susceptibles de caractériser les données selon la hiérarchie des regroupements qu'ils permettent de délimiter.

L'exploitation des modes mêmes d'organisation et de structuration des concepts permet dans certains cas d'envisager une autre alternative. La mise en ocuvre des modes différents de décomposition que cette seconde démarche est susceptible d'offrir est conditionnée par l'existence, au niveau d'organisation concerné, d'au moins un concept de délimitation simple jouant un rôle privilégié au sein de la structure à analyser, concept central autour duquel s'organisent d'autres concepts ou groupes de concepts (noeud d'articulation du graphe associé). La délimitation de ce concept permet dans ce cas, par complémentarité et prise en compte des relations de connexité, le regroupement des données selon différentes catégories, indépendemment de leurs caractéristiques intrinsèques. L'interprétation de ces "catégories" comme instances de concepts implique leur caractérisation et leur mise en correspondance.

L'application de tels processus (fig. 15), lorsqu'elle ne permet pas une résolution complète du problème, permet la focalisation progressive de l'analyse (restriction de l'espace des données et/ou de l'espace des

hypothèses) ; elle est le garant d'une mise en oeuvre robuste des stratégies directes, qui s'avère alors nécessaire.

En ce qui concerne le contrôle de l'analyse, celle-ci est guidée par un plan d'action généré de façon descendante et dynamique, de la racine (concept "père") vers le but. A chaque cycle de contrôle sont associées les étapes suivantes :

- sélection d'un concept ;
- sélection d'un mode de décomposition de ce concept ;
- exécution.

Les critères de sélection diffèrent selon que le problème posé est un problème de segmentation ou d'interprétation, de même que les modes de génération et de propagation d'hypothèses.

II. 2°) Application à la segmentation d'images (Garbay 85, 86b)

Le problème de la détection d'une entité \mathbb{E}_{K}^{N} se formule, dans le cadre de la mise en ocurre des stratégies indirectes, selon l'expression récursive suivante :

Détecter $\left[\mathrm{E}_{\mathrm{K}}^{\mathrm{N}}\right]:$ Décomposer (Détecter $\left[\operatorname{Père}\left(\mathbb{E}_{\mathrm{K}}^{\mathrm{N}}\right)\right]$)

Deux phases successives d'analyse sont invoquées, relatives l'une à la sélection d'une entité susceptible d'être père de E_{K}^{N}, et l'autre relative à la sélection d'un mode de décomposition de cette entité et à la mise en ocuvre de cette décomposition (fig. 16).

II. 2.1°) Sélection d'entité

Soit n le niveau d'organisation atteint par l'analyse, à un instant donné ($n>N$) ; un certain nombre d'entités, notées \mathbb{E}_{j}^{n} ont été obtenues par décomposition, à ce niveau, l^{\prime} objectif est de sélectionner une entité, $\mathbb{E}_{\mathbf{k}}^{\mathbf{n}}$, telle que :

$$
E_{k}^{n} \quad \operatorname{Père}\left(E_{K}^{N}\right)
$$

(le concept de père étant pris ici dans son acception lato sensu).

Les critères de sélection sont de type intrinsèque lorsque l'évaluation d'attributs morphologiques globaux suffit à l'identification de E_{k}^{n}. La prise en compte de critères relationnels ou structurels peut néanmoins s'avérer nécessaire : elle implique la détection et/ou l'identification des entités E_{1}^{n} et E_{j}^{m}, où $E_{j}^{m}=$ fils $\left(E_{k}^{n}\right)$ (lato sensu) et où E_{j}^{m} est de délimitation simple. L'identification de E_{k}^{n} implique ainsi, selon les cas, l'invocation de règles de la forme :
si COND(E) alors $E=E_{k}^{n}$
si RELCOND (E, E_{1}^{n}) alors $E=E_{k}^{n}$;
si $\operatorname{STRCOND}\left(E, \mathbf{E}_{j}^{\mathbf{m}}\right.$) alors $E=E_{k}^{\mathbf{n}}$.

II. 2.2°) Décomposition d'entité

$\mathbb{E}_{\mathrm{k}}^{\mathrm{n}}$ ayant été délimitée, sa décomposition selon un ensemble d'entités filles E_{j}^{n-1} peut être obtenue soit de façon directe lorsqu'une connaissance de type primitive permet de les caractériser au niveau d'abstraction requis, soit de façon indirecte lorsque ce n'est pas le cas. Les règles fondamentales d'identification primitive sont ainsi, selon les cas, de la forme :

où P_{i}^{n-1} désigne les primitives analysées au niveau ($n-1$) et où \mathbb{E}_{k}^{n-1} désigne une entité de délimitation simple, noeud d'articulation du graphe d'adjacence des E_{j}^{n-1}. La délimitation complète des entités \mathbb{E}_{j}^{n-1} (ou respectivement des entités présentes dans $E_{k}^{n}, ~ E_{k}^{n-1}$) implique la prise en compte des relations spatiales (connexité) entre les P_{i}^{n-1}.

Le problème est résolu. de façon parallèle dans le premier cas, de façon séquentielle dans le second, par exploitation des dépendances mutuelles entre les sous-problèmes à résoudre.

IT.2. 3°) Recherche d'une sélection de type transition et contrôle

Les phases de sélection et décomposition d'entités ayant été considérées comme indépendantes, une structure de contrôle du type sélection d'objet/sélection d'action a été invoquée. Il convient de remarquer qu'une exploitation optimale des dépendances mutuelles entre les sous problèmes à résoudre serait obtenue par le choix d'un mode de sélection de type "transition". Selon ce mode, en effet, la décomposition d'une entité serait guidée par la génération d'un plan d'action visant à la délimitation finale de l'entité intéressante, donc définissant les entités successives à délimiter et à identifier.

L'intérêt des stratégies indirectes réside donc dans la possibilité de génération dynamique des plans d'actions successifs, selon le contexte rencontré, et de validation progressive des hypothèses qui ont présidé à leur élaboration.

L'analyse, au terme de chaque cycle de contrôle, est susceptible de se trouver dans l'une des phases suivantes:

- phase d'arrêt : le système entre dans cette phase dès lors qu'il y a eu complétion de l'analyse (délimitation de \mathbb{F}_{K}^{N}) ; il peut également se produire que, l'analyse ayant été validée, aucune décomposition ultérieure n'apparaisse possible : il convient dans ce cas d'envisager la mise en oeuvre de stratégies directes de délimitation de \mathbb{E}_{K}^{N};
- phaise de poursuite : il y a poursuite de l'analyse dès lors que les hypothèses en cours ont été validées avec suffisamment de certitude, et qu'une décomposition ultérieure apparait possible ;
- phase de reprise : il convient d'envisager l'entrée en phase de reprise dès lors que les hypothèses en cours n'ont pas été validées ; une reprise à l'état antérieur est possible dans la mesure où d'autres hypothèses, présidant à l'élaboration de plans de décomposition différents, apparaissent épploitables ; il convient, lorsque ce n'est pas le cas, de décider de l'abandon de l'analyse, ou de sa poursuite par le biais des stratégies directes.

L'analyse se poursuit en parallèle sur l'ensemble des entités susceptibles d'apporter une solution au problème (i.e. susceptibles d'être pères de E_{K}^{N}). Elle est sujette à poursuite ou à reprise de façon indépendante et différentielle, selon la forme individuelle d'expression de chaque entité, mais aussi selon la complexité du contexte au sein duquel chacune d'elle se trouve insérée.

II. 3°) Applićation à l'interprétation d'images

L'interprétation d'une image est une tâche complexe dans
l'accomplissement de laquelle l'observateur entrainé (ou "expert") se
distingue du novice par sa capacité à focaliser d'emblée son attention sur
des hypothèses qui, dans l'espace des solutions possibles, apparaissent
remarquablement proches de la bonne solution $:$ il possède plus précisément
la capacité à extraire rapidement, en un "premier coup d'oeil", les items
caractéristiques présidant à l'émergence de ces hypothèses (Chauvet 85).
ll convient d'examiner dans quelle mesure la mise en oeuvre des
stratégies indirectes permet l'obtention d'une telle pré-structuration du
problème à résoudre.
II. 3.1°) Principes d'exploration des concepts et entités images associées

L'image, sujet de l'analyse, constitue pour l'observateur une réalisation particulière et spécifique d'un événement ou d'une situation dont il possède a priori une représentation, sous la forme d'un concept plus ou moins vague : ce concept est le reflet du contexte temporel, visuel ou conceptuel au sein duquel se trouve placé l'observateur. L'exploitation des données image permet l'émergence du concept plus spécifique qui la caractérise, eu égard aux objectifs poursuivis.

Le mode descendant de délimitation de ce concept, impliqué par la mise en oeuvre des stratégies indirectes, est donc obtenu par un parcours descendant de la hiérarchie de généralisation/spécialisation issue du concept "père" initial.

Par ailleurs, l'émission d'un concept implique la vérification des formes iconiques de sa réalisation, c'est-à-dire l'extraction et la corrélation des items images associés. Dans ce cadre, le passage d'un concept à un concept plus spécialisé implique l'extraction d'attributs plus "précis", reflets de formes plus élémentaires d'organisation, mais aussi reflets plus fidèles de l'ensemble des formes d'organisation déjà perçues.

Minsi, si un premier niveau d'expression conceptuelle est susceptible d'être atteint au cours d'une exploration descendante de l'image (axe de décomposition structurelle), la complétion de l'analyse pourra impliquer, selon les cas, plusieurs explorations successives de l'image. Ces explorations, conduites selon un mode ascendant ou descendant (stratégie directe ou indirecte), permettent l'approfondissement progressif de l'analyse ; la nécessité de leur mise en ocuvre dépend de la complexité du problème à résoudre.

II.3.20) Pré-structuration du problème : phases d'analyse

Un certain niveau d'analyse ayant été atteint, à un instant donné, l'attention apparait focalisée sur un ensemble plus ou moins restreint d'hypothèses conceptuelles. La progression de l'analyse implique a priori la mise en oeuvre des phases successives de sélection d'hypothèse, de sélection d'un mode plus spécifique d'expression de cette hypothèse au niveau d'organisation inférieur, et d'évaluation.

Evaluer une hypothèse signifie extraire les attributs spécifiques de son mode iconique de réalisation, lorsqu'une caractérisation intrinsèque de celle-ci est possible, à ce niveau. Une évaluation en mode "indirect" peut également s'avérer pertinente : elle est possible lorsque la non-validation d'une autre hypothèse de délimitation simple, associée à l'extraction éventuelle d'un ensemble restreint d'attributs, permet l'inférence de l'hypothèse intéressante. Ceci s'exprime sous la forme simplifiée suivante :

$$
\operatorname{si}\left(\neg H_{i}\right) \text { et } \operatorname{COND}\left(E_{k}\right) \text { alors } H_{k}
$$

où H_{i} et H_{k} désignent deux hypothèses conceptuelles, H_{k} étant l'hypothèse à vérifier.

Pnfin, il convient de remarquer que la nécessité de restreindre l'ensemble des hypothèses courantes conduit à chercher une focalisation de l'analyse vers l'extraction d'attributs permettant de les "départager".

Pour ces raisons, la mise en ocuvre de structures de contrôle du type sélection de transition apparait préférable. Elle conduit à focaliser l'analyse, à chaque étape, sur les attributs image dont l'évaluation permet le partitionnement (émergence d'incompatibilités) et la restriction (élimination) du réseau des hypothèses courantes (fig. 17).

L'interprétation d'images apparait ainsi régie par des principes similaires à ceux de la segmentation, ces principes agissant de façon duale sur les hiérarchies d'abstraction et de composition structurelle.

II. 3.3°) Complétion de l'analyse et contrôle

La mise en ocuvre de la phase de pré-structuration, qui n'implique pas une scrutation approfondie de l'image, mais plutôt une focalisation sur un ensemble restreint d'attributs jugés "significatifs", ne permet pas la résolution définitive des problèmes les plus complexes.

Une ou plusieurs hypothèses conceptuelles apparaissant a priori valides, leur confirmation (resp. leur élimination) implique la recherche d'autres critères (critères secondaires), par scrutation d'entités images déjà explorées ; elle est susceptible également d'impliquer la délimitation d'autres entités (entités secondaires).

Une résolution rapide est en principe obtenue, dans le premier cas, par application des stratégies directes (problème bien contraint). La nécessité de procéder à de nouvelles explorations de l'image implique par contre la mise en ocuvre des stratégies indirectes.

Il convient néanmoins de souligner que l'applicabilité de ce second type de stratégie dépend des possibilités d'exploitation des contraintes d'organisation de l'image, d'une part, et de la qualité des modes respectifs d'émergence des entités, aux différents niveaux de l'organisation. Ainsi, le bouleversement éventuel des contraintes d'organisation, la complexité de l'intrication mutuelle des divers éléments sont des facteurs d'activation des stratégies directes, et donc d'inhibition de l'analyse.

Fig. 18 : Analyse et interprétation d'images :

Le principe d'alternance entre les mécanismes de focalisation perceptuelle et conceptuelle.

De nouvelles données sont extraites à chaque cycle, dont l'intégration est susceptible de modifier les plans d'exploration perceptuelle et mentale.

Les stratégies indirectes apparaissent en effet offrir un cadre conceptucl robuste à la résolution des problèmes complexes, par leur respect de l'alternance entre les mécanismes dualitaires de focalisation perceptuelle et de focalisation mentale (fig. 18). La priorité donnée à l'élaboration d'un schéma conceptuel global d'intégration des données permet la prise en compte des facultés humaines d'ouverture mentale ; la mise en ocuvre de phases successives d'exploration des données images, enfin, permet la prise en compte des facultés d'ouverture perceptuelle.

CONCLUSION

L'étude d'un système structuré de représentation des connaissances de type "image" a été abordée. Ce système regroupe, pour chaque entité, les informations figuratives qui la caractérisent, et les informations procédurales qui définissent les modalités de son obtention à partir d'entités "voisines" au sein de la hiérarchie associée à l'image.

Etant donné un objectif à atteindre (délimitation d'une entité), l'exploration des connaissances permet l'élaboration d'un plan d'action, c'est-à-dire d'une stratégie de résolution du problème posé.

Les stratégies directes apparaissent les plus "naturelles" à cet égard, selon lesquelles l'analyse de l'image s'effectue de façon ascendante, l'attention étant focalisée sur les connaissances directement associces aux items susceptibles de composer l'entité.

L'applicabilité de telles stratégies à la résolution de problèmes complexes apparait néanmoins discutable, du fait de leur incapacité intrinsèque à exploiter les informations globales indépendemment d'une perception précise des détails. L'analyse d'un problème mal contraint (variabilité possible des morphologies, des topographies) conduit pour ces raisons au développement de plans d'action issus de l'émission d'une succession d'hypothèses. Elle induit ainsi un mode perceptif irréaliste, selon lequel l'ouverture perceptuelle à l'image serait précédée d'une phase plus ou moins longue de fermeture mentale.

Nous avons donc cherché à développer une approche différente, en définissant des stratégies dites indirectes. Selon celles-ci, l'analyse s'effectue de façon descendante, l'attention étant a priori ouverte sur un large ensemble d'hypothèses, puis progressivement focalisée au fur et à mesure de leur vérification/élimination.

La mise en ouvre de ces stratégies implique la capacité à procéder à des regroupements catégoriels d'abord globaux, puis plus précis, des données disponibles. Deux modes possibles sont envisagés à cet égard : le mode "direct", selon lequel les données sont analysées directement au niveau de résolution requis, le mode "indirect", selon lequel ces regroupements sont perçus comme émergents, par opposition à des entités de délimitation simple.

.234.

Abstract

Leur application permet d'obtenir une pré-structuration du problème à résoudre (formulation d'un ensemble restreint d'hypothèses robustes), et donc d'envisager l'application ultéricure des stratégies directes, lorsque celle-ci s'avère nécessaire.

Flles introduisent enfin un mode perceptif plus réaliste, en préservant les possibilités d'ouverture mentale et perceptuelle indispensables à la résolution de problèmes complexes d'interprétation d'images.

REFERENCES

(Baillet 85) P. Baillet et D. Brosniz : Elaboration et exploitation d'une base de connaissances de type "image" en histologie. Rapport de projet ENSIMAG, Grenoble, 1985.
(Barrow 78) H.G. Barrow and J.M. Tenenbaum : Recovering intrinsic scene characteristics from images.
In : "Computer Vision Systems", (A.R. Hanson and E.M. Riseman, Eds), Academic Press, 1978, pp. 3-26.
(Biclick 84) A. Bielick : Representation of recognition strategies by use of active cognitive networks. Proc. of the $1^{\text {st }}$ Image symposium, CESTA, 1984, pp. 923-929.
(Binford 71) 0.T. Bindford : "Visual perception by computer". Proc. of the IEEE Conference on Systems and Control, 1971.
(Bonnet 84) A. Bonnet : L'intelligence artificielle - Promesses et réalités. Interéditions, 1984.
(Brooks 81) R.A. Brooks : Symbolic reasoning among 3-D models and 2-D images. Artificial Intelligence 17, 1981, 285-348.
(Bunke 84) H. Bunke and G. Sagerer : Use and representation of knowledge in image understanding based on semantic networks. Proc $V^{\text {th }}$ ICPR, IEEE Computer Society Press, 1984, pp. 1135-1137.
(Chassery 84) J.M. Chassery and C. Garbay : An iterative segmentation method based on a contextual color and shape criterion. 1EEE Trans. on PAMI 6, 1984, 794-800.
(Chassery 85) J.M. Chassery : Deux algorithmes orientés parallèlisme : courbes de niveau et étiquetage. Actes $v^{\text {ème }}$ Congrès "Reconnaissance des Formes et Intelligence Artificielle", AFCET/ADI/INRIA, 1985, pp. 541-548.
(Chauvet 85) J.M.C. Chauvet et A.T. Rappaport : Traitement symbolique de la connaissance : une étude en médecine. Proc. COGNITIVA 85, CESTA, 1985, pp. 763-768.
(Cordier 85) M.O. Cordier et M.C. Rousset : Le contrôle dans les moteurs d'inférence. Proc. of the $V^{\text {th }}$ Int. Workshop "Expert systems and their applications", ADI, 1985, pp. 227-259.
(Descotte 81) Y. Descotte : GARI : un système expert pour la conception de gammes d'usinage. Actes $I I I{ }^{\text {ème }}$ congrès "Reconnaissance des Formes et Intelligence Artificielle", AFCET, 1981, pp. 857-867.
(Garbay 85) C. Garbay : Segmentation d'images : connaissances et stratégies d'analyse. Actes $v{ }^{\text {ème }}$ Congrès "Reconnaissance des Formes et Intelligence Artificielle", AFCET/ADI/INRIA, 1985, pp. 615-629.
(Garbay 86a) C. Garbay : Image structure representation and processing : discussion of some segmentation methods in cytology, IEEE Trans. on PAMI, 8(2), 1986.
(Garbay 86b) G. Garbay : Knowledge and strategies for image segmentation. Proc. of the VIII ${ }^{\text {th }}$ ICPR, 1986, (accepté pour communication).
(Granger 85) C. Granger : Reconnaissance d'objets par mise en correspondance en vision par ordinateur. Thèse de doctorat, Nice, 1985.
(Guzman 68) A. Guzman : Computer recognition of three-dimensional objects in a visual scene. MAC - TR - 59, M.I.T., 1968.
(Hanson 78) A.R. Hanson and E.M. Riseman : VISIONS : a computer system for interpreting scenes.

In : Computer Vision Systems", (A.R. Hanson and E.M. Riseman, Eds), Academic Press, 1978, pp. 303-333.
. 237.
(Hofstadter 85) D.R. Hofstadter : Analogies, rôles et glissabilité : le © Cognitiva 85, CeSta, 1985, pp. 47-48.
(Kayser 85) D. Kayser : La représentation des connaissances : un cas typique de collaboration interdisciplinaire. Proc. Cognitiva 85, CeSta, 1985, 307-315.
(Laurent 84) J.P. Laurent : La structure de contrôle dans les systèmes experts. TSI 3, 1984, 161-177.
(Laurent 85) J.P. Laurent et C. Roche : LRO2 : Intelligence artificielle et langages orientés objets. Actes $v^{\text {ème }}$ Congrès "Reconnaissance des Formes et Intelligence Artificielle", AFCET/ADI/INRIA, 1985, pp. 1165-1177.
(Lux 84) A. Lux et V. Souvignier : PVV - Un système de vision appliquant une stratégie de prédiction - vérification. Actes IV ${ }^{\text {ème }}$ congrès "Reconnaissance des Formes et Intelligence Artificielle", afCet/adi/INRIA, 1984, pp. 223-234.
(Marr 77) D. Marr and H.K. Nishihara : Representation and recognition of the spatial organization of three-dimensional shapes. Proc. Roy. Soc. B. 200, 1977, 269-294.
(Masini 84) G. Masini et F. Zaroli : Présentation de Trident : un système d'interprétation d'images tridimensionnelles. Actes IV ${ }^{\text {ème }}$ Congrès "Reconnaissance des Formes et Intelligence Artificielle", afCET/ADI/INRIA, 1984, pp. 179-197.
(Matsuyama 85) T. Matsuyama and V. Hwang : SIGMA : a framework for image understanding - integration of bottom-up and top-down analysis. Proc. IJCAI 85, 1985, pp. 908-915.

(Nagao 79)	M. Nagao, T. Matsuyama and Y. Ikeda : Region extraction and shape analysis in acrial photographs. Comp. Graph. Im Proc. 10, 1979, pp. 195-225.
(Nagao 84)	M. Nagao : Control strategies in pattern analysis. Pattern Recog. 17, 1984, pp. 45-56.
(Parma 81)	C.C. Parma, M.R. Hanson and E.M. Riseman : Experiments in schema-driven intepretation of a natural scene. In : "Digital Image Processing", (J.C. Simon and R.M. Haralick, Eds), D. Reidel Publishing Company, 1981, pp 449-509.
(Pavlidis 77)	T. Pavlidis : Structural pattern recognition. (O. Fcker et al., Eds), Springer Verlag, 1977.
(Rechenmann 85)	F. Rechenmann : SHIRKA : mécanismes d'inférence sur une base de connaissances centrée-objet. Actes $\mathrm{v}^{\text {ème }}$ Congrès "Reconnaissance des Formes et Intelligence Artificielle", AFCET/ANT/INRIA, 1985, pp. 1243-1254.
(Roberts 65)	L.(G. Roberts : Machine perception of three-dimensional solids. In : "Optical and Electro-optical Information Processing", (I.T. Tippet, Ed.), MIT Press, 1965, pp. 159-197.
(Rosenthal 84)	n.^. Rosenthal and R. Bajesy : Visual and conceptual hierarchy : a paradigm for studies of automated generation of recognition strategies. IEEF Trans. on PAMI 6, 1984, .319-325.
(Shapiro 83)	L.(I. Shapiro : Computer vision systems ; past, present and future. III : Pictorial Data Analysis", (R.M. Haralick, Ed.), Springer Verlag, 1983, pp. 201-237.

(Tsotsos 82) J.K. Tsotsos : Knowledge of the visual process : content, form and use. Proc. $I V^{\text {th }}$ ICPR, IEEE Computer Society Press, 1982, pp. 654-669.

$$
!
$$

-

. 241 .

PARTIE IV
Segmentation et Interprétation
d'images en
cytologie et histologie

INTRODUCTION

Une illustration de certains des concepts introduits dans les paragraphes précédents est proposée dans cette partie, par leur application à l'analyse des images microscopiques, dans le domaine biomédical.

Son propos n'est pas une présentation exhaustive des problèmes qui nous ont été posés, ni de l'ensemble des modes de résolution qui ont été envisagés. Deux axes précis de recherche sont au contraire abordés ici, qui impliquent des images d'expressions différentes, les images cytologiques et les images histologiques, et dont la nature même des objectifs est différenciće : segmentation d'images d'une part, interprétation d'images d'autre part. Deux démarches différentes ont en outre été adoptées, la première se fondant sur l'exploitation de notre expertise procédurale, la seconde issue de la formalisation de l'expertise médicale.

Quelques travaux concernant la segmentation d'images cytologiques sont présentés dans la première partie. La recherche de solutions procédurales différentes ainsi qu'un effort d'exploitation des connaissances associées à l'image ont conduit dans ce cas à l'élaboration d'un système autonome de segmentation d'images.

La seconde partie est consacrée à la présentation d'un système expert d'interprétation des images histologiques.

Des efforts particuliers ont été consacrés, dans ce cas, à l'élaboration d'une base structurée de représentation de l'image et à la transposition de l'expertise et de la démarche médicale.

A. SEGMENTATION D'IMAGES CYTOLOGIQUES

Nos travaux dans le donaine de l'imagerie cytologique se sont orientés plus particulièrement vers l'analyse des cellules de la moelle osscuse humaine. Ces travaux ont été conduits en collaboration avec le Dr. Claudine Choquet, de l'Institut de Cancérologie et d'Immuno-Génétique de Villejuif, puis avec le Dr. Danicl Seigneurin, du Centre Hospitalier Universitaire de Grenoble (Garbay 81 ; Seigneurin 84).

L'examen des prélèvements de moelle osseuse, qui comporte notamment le comptage différentiel des cellules présentes sur la lame (plus de 30 types cellulaires différents), est l'une des tâches les plus fastidieuses de l'hématologie de routine. Sa qualité dépend étroitement, non seulement de la qualité de la préparation, mais également de la fatigue et des idiosyncrasies de l'observateur.

Ces considérations, ainsi que l'enjeu médical d'une telle application (notamment détection et documentation des cancers du sang), ont fait apparaître de façon précoce (dès les années 60) la nécessité d'automatiser ces tâches de routine. Les travaux conduits par notre équipe, dans ce cadre, ont permis le développement d'un système commercialisé d'analyse des images microscopiques, le système SAMBA 200 (Briugal 84). Ce système permet l'automatisation des phases d'acquisition, de segmentation, de paramétrisation et d'analyse des données.

Nos efforts de recherche se sont particulièrement concentrés sur l'amélioration de la phase de segmentation, dont la qualité conditionne celle des phases ultérieures de description et d'interprétation. lls ont concerné la mise en oeuvre des processus de seuillage (Garbay 81) et d'agrégations successives (Chassery 84b) ; le développement de processus de délimitation des frontières, à partir d'une approximation par fonctions splines dé l'image, a été étudié par Philippe. Cinquin (Chassery 84a) ; l'applicabilité des processus de relaxation, eu égard au développement de processus coopératifs d'exploitation de primitives de type région et de primitives de type frontière, a été analysée par Saîda Bouakaz (Bouakaz 86).

La nécessité d'aboutir à une automatisation contrôlée de la phase de segmentation, enfin, nous a conduit à élaborer un système autonome de segmentation d'images (Chassecy 84b, Garbay 86a).

i. sfobmentation par sfuillage.

Après un bref rappel des conditions "techniques" dans le cadre desquelles se sont déroulées nos expérimentations, ainsi que des problèmes particuliers posés par la segmentation des cellules de la moëlle osseuse humaine, nous discuterons de l'applicabilité des processus de seuillage, fondés successivement sur une représentation monochromatique, puis polychromatique, de l'image. .
1.10) Conditions d'analyse et problèmes posés

Les frotitis de moelle osseuse analysés sont colorés selon la coloration de Pappenheim ; leur examen au microscope optique (figure 1), permet d'observer la présence de cellules nucléées, ou leucocytes, et de cellules non nucléées, ou érythrocytes ; ces cellules reposent sur un fond clair et homogène, il convient néanmoins de noter la présence d'éventuels artéfacts (taches de colorants, débris cellulaires).

L'expression morphologique des érythrocytes est relativement uniforme, compte non tenu des variabilités possibles de colorations, observées au sein d'une même lame ; ces cellules constituent en effet le stade ultime de différenciation de l'ensemble des cellules de la lignée érythroblastique.

L'expression morphologique des leucocytes est par contre extrêmement variable : clle dépend de leur lignée d'appartenance, à laquelle s'attache une expression fonctionnelle spécifique, et de leur degré de différenciation all sein de cette lignée.

Plus d'une trentaine de types cellulaires différents sont ainsi susceptibles d'être identifiés, au sein d'une même lame.

Des images digitales de ces cellules sont acquises au moyen du système SAMBA 200, selon un protocole monochrome ou polychrome d'acquisition que nous avons défini dans le cadre de notre thèse de Docteur-Ingénieur (Garbay 79). Le système a par ailleurs été doté de deux voies d'analyse différentes, qui permettent l'analyse successive de la lame à basse puis à haute résolution, sans changement d'objectif au microscope, selon que l'image optique de la scène est dirigée vers l'un ou l'autre des deux capteurs qui le constituent (barrette de photodiodes/photomultiplicateur).

Les cellules intéressantes, eu égard aux objectifs de l'analyse (dans notre cas les leucocytes), sont ainsi localisées, au terme de la première phase, par l'évaluation rapide de quelques paramètres simples. Elles sont ensuite recentrées automatiquement sous l'objectif du microscope, en vue de leur analyse à haute résolution.

Quelques images digitales de leucocytes sont présentées dans la figure 2. Un leucocyte est centré dans le champ d'observation de chacune d'elles. Ces images sont de dimension 64×64; chaque valeur est codée sur 8 bits, elle est proportionnelle à l'intensité de la lumière issue du point image observé, ou à l'intensité d'une composante spectrale spécifique de cette lumière, selon le mode chromatique d'analyse adopté.

11 convient de remarquer la variété des organisations topographiques possibles (cellules isolées, agrégats cellulaires plus ou moins denses), ainsi que la variété des morphologies cytoplasmiques leucocytaires (présence de dépressions cytoplasmiques très pâles, de granulations, affinités tinctoriales de type basophile - couleur bleue - , ou acidophile couleur orangée).

1. 2°) Images monochromatiques et seuillage

Le protocole opératoire adopté est présenté tout d'abord ; les modalités de sa mise en ocuvre ainsi que son applicabilité sont discutées ensuite. Les principes en sont illustrés dans la figure 3.

I.2.10) Protocole opératoire

L'objectif est de parvenir à la délimitation du cytoplasme et du noyau du leucocyte présent dans l'image, par application de processus de seuillage. La résolution de ce problème par mise en ouvre de stratégies directes impliquerait, en principe, les phases d'analyse suivantes :

- délimitation des entités de type noyau ;
- délimitation des entités de type cytoplasme ;
-- regroupement des entités noyau et cytoplasme attachées à un leucocyte donné.

Fig. 3 : Processus de segmentation par seuillage.
a) Délimitation des objets cellulaires ;
b) Labellisation et sélection des objets de type leucocyte ;
c) Délimitation du noyau ; élimination des composantes non nucléées;
d,e) Délimitation du cytoplasme : en mode polychrome, la distinction cytoplasme/érythrocyte est susceptible d'être obtenue.

La mise en oeuvre d'un tel "plan d'action" suppose la capacité à caractériser les entités noyau (NL) et cytoplasme (CL) des leucocytes de façon primitive, c'est-à-dire à leur attacher une connaissance procédurale de la forme :

$$
\begin{aligned}
& \text { si } \operatorname{COND}_{N L}\left(P_{i}\right) \text { alors }\left(P_{i} \in N L\right) ; \\
& \text { si } \operatorname{COND}_{C L}\left(P_{i}\right) \operatorname{alors}\left(P_{i} \in C L\right) .
\end{aligned}
$$

Les problèmes rencontrés à cet égard nous ont conduits à envisager une stratégie de type indirecte qui comporte les phases d'analyse suivantes :

- délimitation d'une entité de type leucocyte ;
- délimitation du noyau du leucocyte ;
- délimitation du cytoplasme du leucocyte.

Délimiter une entité de type leucocyte signifie :

- délimiter les entités de type cellule ;
- sélectionner l'une d'entre elle.

La délimitation des entités de type cellule (CE) est obtenue par la mise en oeuvre d'un plan indirect de résolution, le fond (F) apparaissant comme une entité de délimitation simple. L'affectation primitive est donc réalisée par application de règles de la forme :
$\operatorname{si} \rightarrow \operatorname{COND}{ }_{F}\left(P_{i}\right)$ alors $\left(P_{i} \in C E\right)$.

Les objets cellulaires (CE_{k}) sont alors délimités par mise en oeurre d'un algorithme de labellisation des composantes connexes, et caractérisés par leur surface (Veillon 79). Le critère de sélection des entités de type leucocyte (L) est en effet ici un critère de surface :

$$
\text { si } \operatorname{SURF}\left(\mathrm{CE}_{k}\right) \text { alors }\left(\mathrm{CE}_{k}=\mathrm{L}\right)
$$

Les objets noyaux et cytoplasme, enfin, sont délimités par application des règles suivantes :

le noyau apparaissant comme une entité de délimitation simple.

L'évaluation de la surface $\operatorname{SURF}(N L)$ permet la confirmation ou le rejet de I'hypothèse ($C E_{k}=L$), et donc la poursuite ou la reprise de l'analyse sur une autre entité susceptible d'être un leucocyte (cas éventuel où plusieurs cellules apparaitraient, de façon isolée, dans le champ d'analyse).

1. 2.2°) Conditions pratiques de mise en oeurre et applicabilité

Dans la pratique, la mise en ocurre d'un tel processus de segmentation implique la connaissance des contraintes $\operatorname{COND} F_{F}\left(P_{i}\right), \operatorname{COND}_{N L}\left(P_{i}\right), \operatorname{SURF}\left(\operatorname{CE}_{k}\right)$ et $\operatorname{SURF}(N L)$.

Fixer une contrainte de surface $\operatorname{SURF}\left(\operatorname{CE}_{k}\right)$ signifie fixer un seuil en deçà duquel les objets cellulaires sont supposés être des érythrocytes (petites cellules) ou des artéfacts, et au delà duquel ils seront considérés comme leucocytes. Du fait de l'existence de la contrainte $\operatorname{SURF}(N L)$, et de la facilité de sa formulation (SURF(NL) $>\varepsilon$), le seuil, fixé par apprentissage, est sous-estimé. Ceci permet de garantir l'obtention d'une quantité nulle de faux négatifs (cellules rejetées à tort) et d'un faible taux de faux positifs (cellules conservées à tort).

La délimitation du seuil associé à la contrainte $\operatorname{COND}_{\mathrm{NL}}{ }^{\left(P_{i}\right)}$ est obtenue par analyse de l'histogramme des intensités lumineuses, évalué sur l'objet cellulaire en cours d'analyse, recherche du mode correspondant aux valeurs les plus faibles, et du minimum associé.

La délimitation du seuil associé à la contrainte $\operatorname{CONF}_{\mathrm{F}}\left(\mathrm{P}_{\mathrm{i}}\right)$ s'obtient en principe au terme d'un processus similaire. Des problèmes surviennent néanmoins, dûs au fait que les objets cellulaires ainsi obtenus apparaissent, selon les cas, correspondre à des cellules isolées, ou à des agrégats de cellules, ces agrégats impliquant le plus souvent un leucocyte entouré de plusieurs érythrocytes.

Or, la séparabilité de ces agrégats, dans l'espace des intensités lumineuses, dépend du type de leucocyte rencontré. Ceci conduit à procéder à une analyse en mode interactif, selon lequel le choix du seuil est laissé à l'utilisateur, qui dispose de moyens visuels de vérification de la segmentation obtenue, et de la possibilité de rejet de la cellule en cours d'observation de l'analyse ultérieure.

I. 3°) Images polychromatiques et seuillage

Les problèmes rencontrés lors de l'analyse précédente nous ont conduits à chercher une amélioration des modes de caractérisation primitive des images, et particulièrement à travailler en mode polychromatique.

I.3.1 ${ }^{\circ}$) Choix d'un mode polychromatique d'analyse

Les critères qui ont présidé au choix d'un mode d'analyse et de représentation des couleurs ont concerné simultanément les possibilités descriptives et interprétatives offertes par les différents modèles. Il convenait en effet de se doter d'un mode "figuratif" robuste de caractérisation des couleurs, et de définir simultanément les modes "propositionnels" d'exploitation des informations ainsi recueillies.

Un mode perceptuel d'analyse polychromatique des images a été choisi pour ces raisons, en opposition avec les approches de type microspectrophotométriques (analyse en bande étroite, pas de modèle précis d'exploitation) adoptées jusqu'alors dans le domaine de la cytologie (Garbay 79, Garbay 81).

Selon ce modèle, une caractérisation primitive des couleurs est obtenue, en termes de luminance, de saturation et de teinte (cf. figure 2, partie II).

1.3.20) Protocole opératoire

Le protocole opératoire adopté est, dans ses grandes lignes, similaire au précédent. Il s'en différencie par la recherche d'un mode plus élaboré d'extraction des entités de type cellule, susceptible en particulier de permettre la décomposition des agrégats éventuel̉s, selon les entités leucocytes et érythrocytes qui les composent.

Une affectation primitive grossière est obtenue par application de règles de la forme :

```
si}\neg\operatorname{COND}\mp@subsup{|}{F}{}(\mp@subsup{P}{i}{\prime})\quad\operatorname{alors}(\mp@subsup{P}{i}{\prime}\inCE)
si CONDNL
```

La recherche d'une affectation plus précise implique la dérivation de règles du type :

```
\(\operatorname{si}\left[\left(P_{i} \in C E\right)\right.\) et \(\left.\left(P_{i} \notin N L\right)\right]\) et \(\operatorname{COND}_{\mathbf{E}}\left(P_{i}\right)\) alors \(\left(P_{i} \in E\right)\) (érythrocyte)
```

ou
$\operatorname{si}\left[\left(P_{i} \in C E\right)\right.$ et $\left.\left(P_{i} \notin N L\right)\right]$ et $\operatorname{COND} \mathbf{C L}^{\left(P_{i}\right)}$ alors $\left(P_{i} \in C L\right)$.

Il convient donc de définir les contraintes chromatiques susceptibles de caractériser de façon primitive les entités de type érythrocyte (resp. entités de type leucocyte). Si une caractérisation primitive des érythrocytes apparaît envisageable, il n'en demeure pas moins que le risque d'erreur (risque de recouvrement entre entités érythrocytaires et leucocytaires) dépend du type de leucocyte observé. Ces remarques ont conduit au développement de contraintes chromatiques caractéristiques des entités leucocytaires.

```
L'emploi de stratégies descendantes permet ici la réduction des calculs, par évaluation de contraintes chromatiques sur les seules primitives objets. il permet par ailleurs une segmentation précise du noyau, après délimitation de l'enveloppe leucocytaire.
```


Fig. 4 : Applicabilité des processus monochromes et polychromes de segmentation des images.
a) Cas d'un leucocyte à cytoplasme basophile : une délimitation cytoplasmique correcte est obtenue ;
b) cas d'un leucocyte à cytoplasme éosinophile : des confusions cytoplasme/érythrocyte sont observées.

1.3.3) Conditions pratiques cn ocurre et applicabilité 。

Dans la pratique se pose la délimitation des contraintes con $\boldsymbol{p}_{\mathrm{F}}\left(\mathrm{P}_{\mathrm{i}}\right)$, Cond $\left(\mathrm{Cl}_{\mathrm{L}}\left(\mathrm{r}_{\mathbf{j}}\right)\right.$ et Conn $\mathrm{C}_{\mathrm{i}},\left(\mathrm{P}_{\mathbf{i}}\right)$, outre celles que nous avons déjà évoquées.

La caracterisation primitive des entités fond et noyau des leucocytes s'obtient par simple analyse de lhistogramme des luminances, les modes associés ì ces différentes entités apparaissant facilement détectables.

La recherche d'un mode automatique de délimitation de la contrainte CONH $\left.\mathrm{CL}^{(}{ }^{\prime}{ }_{\mathrm{i}}\right)$, par amalyse des histogrammes de teinte et de saluration, s'avc̀re par contre beaucour plus délicate. Il a été ainsi décidé, après de nombreuses expérimentations, de laisser à lutilisateur le choix des scuils de teinte et de saturation associés. ll s'agit en fait de déterminer 3 couples de scuils (SI, TI), (S2, T2), (S3, T3), délimitant 3 catégories d'expression morphologique lencocytaire possible : ce choix découle de la nécessité de prise en compte des variabilités de coloration, s'exprimant de façon différentielle et indépendante, selon le type de leucocyte observé.

Une longue phase d'apprentissage est donc nécessaire, préalablement à l'activation de l'analyse en routine d'une lame donnée, dont l'objectif est l'ajustement des seuils de'l'analyse.

L'introducion des contraintes chromatiques, all sein du processus de sefmentation, a permis une amélioration des résultats obtemus (figure 4): la contrepartic en est une certaine lourdeur de l'analyse, pour l'utilisateur: Cet inconvénient apparait la résultante directe des cheix procéduraux qui ont été faits (procédures de seullage), ces choix supposant l'apprentissage possible, ou l'introduction par l'utilisateur, d'une connaissance de type primitive sur les entités manipulées.

II. SEGMENTATION PAR AGREGATIONS SUCCESSIVES

L'effort s'étant porté tout d'abord sur la recherche d'une amélioration de la caractérisation primitive des images, il s'est porté ensuite sur la recherche de modes différents d'exploitation de ces données. Le problème qui se pose est celui de la délimitation d'une entité, susceptible d'une insertion contextuelle complexe (agrégats cellulaires), à laquelle une connaissance primitive ne peut être attachée, de façon robuste ; il s'avère par contre qu'une délimitation parcellaire de cette entité est possible (détection du noyau), par activation de processus simples.

Ces remarques induisent naturellement la recherche d'une solution procédurale du type "agrégations successives".

II. 1°) Distance chromatique et agrégations successives

L'objectif est de parvenir à l'élaboration progressive de l'entité à délimiter par mise en oeuvre d'une stratégie directe d'agrégations successives. La formulation de tels processus implique la définition d'un critère de similarité et d'un protocole particulier de propagation au sein de l'image.
II. 1.1°) Critère de similarité chromatique

La définition d'un critère de similarité chromatique implique la définition d'une distance sur l'espace chromatique. Selon le modèle perceptuel de représentation des couleurs que nous avons adopté, toute couleur est représentée au sein d'un espace "perceptuel" noté ($\Lambda, C 1, C 2$) par un point P dont les valeurs des coordonnées sont représentatives des caractéristiques de luminance (A) et de chrominance (C1, C2) associées à cette couleur.

Une métrique euclidienne peut être définie sur cet espace, qui conduit à l'expression suivante de la distance D entre deux couleurs :

$$
\mathrm{D}^{2}=(\Delta \mathrm{A})^{2}+\left(\Delta \mathrm{C}_{1}\right)^{2}+\left(\Delta \mathrm{C}_{2}\right)^{2}
$$

soit, en terme des coordonnées polaires (L,S,T) (luminance, saturation, teinte) :
$\left.\mathrm{D}^{2}=(\Delta \mathrm{L})^{2}+(\Delta \mathrm{S})^{2}\right)+\left(\frac{\mathrm{S}_{1}+\mathrm{S}_{2}}{2}\right)^{2}(\Delta \mathrm{~T})^{2}$.

Des facteurs de normalisation sont introduits, de façon à tenir compte des dynamiques respectives des différentes composantes (Garbay 82).

La notion de similarité entre 2 couleurs C_{P} et C_{Q}, représentées au sein de l'espace (Λ, Ci, C2) par 2 points P et Q est ainsi transcrite par l'évaluation de la distance entre ces points :

$$
\left(C_{P} \text { similaire à } C_{Q}\right) \Leftrightarrow(D(P, Q) \leqslant S)
$$

où S est un seuil fixé a priori.

II.1.20) Protocole de propagation

De façon à obtenir un meilleur contrôle du processus d'agrégation, la sélection d'un point en vue de son agrégation à l'ensemble en cours de construction est fondée sur la vérification d'un critère non pas seulement ponctuel (similarité entre 2 points), mais de nature plutôt locale (similarité entre le point observé et l'ensemble analysé).

Une couleur de référence, notée C_{R}, est ainsi calculée à chaque étape de l'analyse, qui représente la couleur moyenne de l'ensemble des points effectivement agrégés à cette étape ; ces ensembles successifs sont notés $\mathbf{R}^{(0)}, \ldots, \mathbf{R}^{(k)}, \mathbf{R}^{(k+1)}, \ldots$

Cette référence n'est par ailleurs considérée comme valide que si le cardinal de ces ensembles est suffisant (supérieur à un seuil préfixé N). Ceci implique une reprise éventuelle de l'analyse, lorsque ce n'est pas le cas : la contrainte de similarité est alors progressivement relâchée ($S=S$ $+\Delta S)$.

[^2]Etape
initiale

Etape k :

Etat courant

$$
\begin{aligned}
& R^{(k)}=R^{(k)} U \\
& \left|P / d\left(C_{P}, C_{R}\right) \leqslant S\right|
\end{aligned}
$$

Nouvel
état

Fig. 5 : Segmentation par agrégations successives et contraintes chromatiques : étapes principales.

Soient $E^{(0)}, \ldots, E^{(k)}, E^{(k+1)}, \ldots$ les entités construites à chaque étape, soient $\Sigma^{(0)}, \ldots, \Sigma^{(k)}, \Sigma^{(k+1)}$, ... les ensembles successifs de points susceptibles d'agrégation, ou points "libres" (points objets par exemple), le protocole adopté est le suivant :

Etape initiale

```
\(E^{(0)}=N L\);
\(\mathbf{R}^{(0)}=E^{(0)} ; C_{R}=C_{R}(0) ; S=S_{0} ;\)
\(\Sigma^{(0)}=\Sigma \backslash F ;\) où \(\Sigma\) est le support de l'image.
```


Etape k

```
\(R^{(k)}=\phi ;\)
Pour tout \(P \in \Sigma^{(k-1)}\) faire
    \(\mid \operatorname{si}\left(D\left(C_{P}, C_{R}\right) \leqslant S\right)\) alors \(R^{(k)}=R^{(k)} U P\)
    fin faire ;
    si (Card \(\left.\left[R^{(k)}\right] \leqslant N\right)\) alors
        \(S=S+\Delta S ;\)
        [Reprise Etape k] ;
    sinon (1)
        \(\left\lvert\, \begin{aligned} & C_{R}=C_{R}(k) ; S=S_{0} ; \\ & E^{(k)}=E^{(k-1)} \cup R^{(k)} ; \\ & \Sigma^{(k)}=\Sigma^{(k-1)} \backslash R^{(k)} ; \\ & k=k+1 ; ~[\text { Poursuite Etape } k+1] ;\end{aligned}\right.\)
    fin si ;
```

Le contrôle d'un tel processus d'agrégation implique la définition d'un critère d'arrêt, selon lequel une délimitation optimale de l'entité E cherchée est obtenue. La recherche d'un tel critère, autre que le simple critère $\Sigma^{(k)}=\phi$, a conduit à modifier le protocole de propagation, par la prise en compte de contraintes topographiques.

II. 2°) Contrôle de la convexité et agrégations successives

L'applicabilité du processus d'analyse que nous venons de décrire à la délimitation d'entités insérées au sein d'un contexte complexe implique la recherche d'un critère explicitant formellement la convergence de l'algorithme vers une segmentation "idéale".

Il convient plus précisément de se doter d'un prédicat dont la non-vérification soit significative d'une propagation à l'extérieur des frontières cellulaires. Le prédicat choisi est un prédicat de convexité (Chassery 83). Le calcul des enveloppes convexes successives des ensembles $E^{(0)}, \ldots, E^{(k)}, E^{(k+1)}, \ldots$ conduit par ailleurs à la dérivation d'un mode spatial de contrôle des processus de propagation.

II. 2.1°) Convexité et contrôle des processus de propagation

Du mode de propagation précédemment adopté est issu le risque de prise en compte de points extérieurs à l'enveloppe cellulaire, susceptibles d'altérer la représentativité de la couleur de référence dont ils participent à i'évaluation. Des contraintes spatiales ont pour ces raisons été introduites, fondées sur l'exploitation des enveloppes convexes calculées à chaque étape, et utilisées par ailleurs à des fins de vérification de la convergence (figure 6).

```
L'objectif est de sélectionner à chaque étape \(k\) certains points de l'ensemble \(R^{(k)}\) vérifiant des contraintes spatiales données. Cette sélection est effective dès lors que Card \(\left[R^{(k)}\right]\) est suffisant; elle s'effectue selon les étapes suivantes :
```


(1) :

$$
\begin{aligned}
& S=S_{0} ; \\
& E^{(k)}=E^{(k-1)} \cup \mid P \in R^{(k)} / P \text { connecté à } E^{(k-1)} \mid ; \\
& \text { Co } \left.\mid E^{(k)}\right]=\text { Enveloppe convexe }\left[E^{(k)}\right] ; \\
& \left.R^{(k)}=\left|P \in R^{(k)} / P \in C 0\right| E^{(k)}\right] \mid ; \\
& C_{R}=C_{R}^{(k)} ; \\
& E^{(k)}=E^{(k-1)} \cup R^{(k)} ; \\
& \Sigma^{(k)}=\Sigma^{(k-1)} \backslash R^{(k)} ; \\
& k=k+1 ;[\text { Poursuite Etape } k+1] ;
\end{aligned}
$$

Les seuls points éffectivement agrégés à une étape donnée sont ainsi les points vérifiant une contrainte locale de similarité chromatique et participant par ailleurs à une organisation topographique globale cohérente.

II. 2.2°) Convexité et contrôle de l'analyse

A chaque étape de l'analyse sont calculées les enveloppes convexes successives $\operatorname{CO}\left(E^{(k)}\right)$. Ces enveloppes impliquent, outre les points de $E^{(k)}$, points agrégés pour leur similarité chromatique, d'autres points dont l'ensemble est de cardinal variable, et qui ne vérifient pas la contrainte de similarité chromatique. Soit Diff ${ }^{(k)}$ cet ensemble de points :

$$
\operatorname{Diff}(k)=\operatorname{Co}\left[E^{(k)}\right] \backslash E^{(k)}
$$

De nombreuses expériences nous ont permis de constater que le cardinal de cet ensemble, qui demeure relativement faible tant que la propagation s'effectue à l'intérieur des limites cellulaires, subit un accroissement brusque en cas d'agrégation de points extérieurs (points d'érythrocytes), du fait de l'implication au sein de Diff ${ }^{(k)} d^{\prime}$ un nombre important de points du fond.

Le degré de convexité RCONV est donc évalué à chaque étape :

$$
\operatorname{RCONV}=\frac{\operatorname{Card}\left[\operatorname{Diff}^{(\mathrm{k})}\right] \times 100}{\operatorname{Card}\left[\mathrm{CO}\left(\mathrm{E}^{(\mathrm{k})}\right)\right]}
$$

Il y a arrêt de l'analyse dès que la valeur de RCONV dépasse un seuil RC fixé a priori. Le masque de segmentation finalement proposé est l'enveloppe co $\mid \mathrm{E}^{(\mathrm{k}-1)}$, obtenue à l'étape précédente.

Un contrôle de la validité de la segmentation proposée est finalement effectué, fondé sur l'évaluation du nombre de points du fond susceptibles d'être présents au sein de l'enveloppe $C 0\left[E^{(k-1)}\right]$. Il y a donc rejet éventuel du masque de segmentation, c'est-à-dire rejet de la cellule des étapes ultérieures de l'analyse, au terme de ce contrôle final.
II.2.3 ${ }^{\circ}$) Conditions pratiques de mise en oeuvre et applicabilité

La mise en oeuvre spécifique du processus d'agrégations successives implique la donnée de 3 paramètres, qui sont :

- le seuil S relatif à la contrainte de similarité chromatique ;
- le seuil RC relatif à la contrainte de convexité ;
- le seuil NF relatif à la contrainte d'homogénéité du masque final de segmentation.

Ces seuils sont fixés en début d'analyse (examen d'une lame) par l'utilisateur. Ils sont dépendants de l'application envisagée (type de spécimen à examiner), mais indépendants des conditions locales de préparation et de coloration susceptibles d'affecter les différents échantillons. Ainsi, leur valeur ayant été estimée pour une application donnée, leur réajustement à chaque nouvelle analyse ne s'est jamais avéré nécessaire.

L'applicabilité de ce processus de segmentation est apparue très satisfaisante (une estimation en sera donnée au terme de la partie suivante). L'analyse des erreurs conduit à observer que les jugements du type faux négatifs (cellules rejetées à tort) sont émis par le programme pour certains types de cellules présentant des cytoplasmes très pâles (confusion parcellaire entre une telle entité et une entité de type fond). Les jugements du type faux positifs (cellules acceptées à tort), au contraire, sont émis pour certaines cellules, de formes irrégulières, (risque de sous-estimation de l'enveloppe cytoplasmique) ; ils sont également susceptibles d'apparaître en présence d'agrégats cellulaires fortement denses (risque de sur-estimation de l'enveloppe cytoplasmique).

III. ELABORATION D'UN SYSTEME AUTONOME DE SEGMENTATION

Une expertise procédurale s'est ainsi développée, au cours de ces phases préliminaires d'évaluation, qui met en évidence l'applicabilité différentielle des processus et des stratégies de résolution invoqués (seuillage et stratégie indirecte d'une part, agrégations successives et stratégie directe d'autre part) selon la' nature des configurations topographiques présentes au sein de l'image observée (cellules isolées d'une part, agrégats cellulaires d'autre part).

Chacun de ces processus exploite par ailleurs, de façon spécifique, un certain nombre de connaissances figuratives.

Nos efforts se sont alors portés sur l'élaboration d'un système autonome de segmentation (Chassery 84b, Garbay 86a), capable d'exploiter l'ensemble des connaissances figuratives et procédurales disponibles, et susceptible d'apporter une solution optimale au problème, indépendemment des termes spécifiques selon lesquels il est posé.

Apporter une solution optimale signifie répondre aux contraintes de :

- réduction des données à traiter ;
- adaptation de la complexité des traitements à la complexité du problème posé ;
- adéquation et contrôle des résultats obtenus.

Ce système a été écrit en FORTRAN, sous une forme algorithmique "classique". Il nous paraît néanmoins pertinent de le présenter selon une formulation différente, issue des concepts présentés en partie III (Garbay 85, 86b). Cette formulation, en effet, quoique adoptée postéricurement à la conception même du système, permet l'explicitation claire des choix qui ont été progressivement effectués, au cours de nos expérimentations. Elle permet l'illustration, au moins parcellaire, de certains d'entre cux, dont elle a par ailleurs contribué à la formalisation, et dont elle permet. d'envisager l'applicabilité, plus large, à la résolution de problèmes plus complexes.

Nous présentons donc tout d'abord l'ensemble des connaissances qui ont été utilisées, puis les stratégies d'exploitation qui ont été adoptées, et qui ont permis la résolution du problème, selon les contraintes que nous avons fixées.
III. 1°) Images cytologiques, segmentation, et connaissances

Nous présentons tout d'abord certaines connaissances figuratives, portant sur l'expression morphologique des images cytologiques étudiées, et dont l'exploitation a paru nécessaire.

Puis nous explicitons les connaissances procédurales nécessaires à la délimitation des différentes entités cellulaires précédemment introduites.

III.1.10) Connaissances figuratives

L'analyse de l'image cytologique obtenue à partir des frottis de moelle osseuse humaine implique la prise en compte des entités de dénominations sémantiques suivantes :

```
Image ;
Fond - Objet cellulaire ;
ngrégat - Cellule ;
Erythrocyte - Leucocyte ;
Cytoplasme - Noyau ;
```

A certaines de ces entités sont attachées des connaissances prototypiques. Elles sont structurées selon différents types de liens hiérarchiques et relationnels (figure 7).

Connaissances prototypiques

Aux entités Fond et Noyau est attachée une connaissance primitive, qualifiant leur texture ; aux entités Agrégat et Cellule est attachée une connaissance globale, qualifiant leur forme. Ces connaissances s'expriment de la façon suivante :

Entité : Fond
Texture : homogène
Père de: P_{F}
en relation : connexité

Entité : Noyau
Texture : homogène
Père de : P_{N}
en relation : connexité.

Primitive: P_{F}
Forme : point
Texture : valeurs permises $\left[S_{F}, 255\right.$]
si-detect : $S_{F}=F($ Histo)

Primitive : P_{N}
Forme : point
Texture: valeurs permises $\left.10, S_{N}\right]$

$$
\text { si-detect : } S_{N}=N(\text { Histo })
$$

Entité : Agrégat

Forme : non convexe
degré de convexité : valeurs permises JRC, 100]

Entité : Cellule
Forme : convexe
degré de convexité : valeurs permises [0, RC]

Connaissances inductives

Les connaissances inductives associent les entités Cellule et Agrégat à l'entité Objet cellulaire ; elles associent les entités Erythrocyte et Leucocyte à l'entité Cellule.

Entité : Agrégat
sorte de : Objet cellulaire

Entité : Cellule
sorte de : Objet cellulaire

Entité : Erythrocyte
sorte de : Cellule

Entité : Leucocyte
sorte de : Cellule

Il convient de remarquer que les entités Erythrocyte et Leucocyte héritent des propriétés de convexité attachées à l'entité Cellule.

Connaissances structurelles

Des connaissances structurelles caractérisent les entités Image, Agrégat et Leucocyte :

Entité : Image
père de : Fond Objet cellulaire

Entité : Agrégat
père de : Cellule en relation : adjacence

Entité : Leucocyte
père de : Cytoplasme
Noyau

Connaissances associatives

Des relations spatiales particulières, relations d'imbrication, caractérisent l'organisation topographique des entités objet cellulaire et Noyau vis à vis des entités respectives Fond et Cytoplasme.

Les entités images apparaissent ainsi structurées selon la double hiérarchie de généralisation/spécialisation et de composition structurelle. Certaines d'entre elles présentent une organisation spatiale plus spécifique.

III.1.20) Connaissances procédurales

Parmi les connaissances procédurales susceptibles de permettre la délimitation des entités présentes dans l'image, ill convient de distinguer celles qui président aux activités d'inférence et celles qui président aux activités de construction.

Activités d'inférence

```
La mise en oeuvre des activités d'inférence permet le parcours de l'arborescence des entités selon la hiérarchie de généralisation/spécialisation ; elle est susceptible d'être conditionnée par des contraintes de nature prototypique, relationnelle ou structurelle. Ces connaissances sont attachées respectivement aux entités objet cellulaire et Cellule.
```


Inférence prototypique

Entité : Objet cellulaire
$\begin{aligned} \text { Type }: & \text { si }(D C>R C) \text { alors Agrégat ; } \\ & \text { si (} D C \leqslant R C) \text { alors Cellule ; }\end{aligned}$

DC : degré de convexité.

Inférence structurelle

Entité : Cellule
Type : si (père de (Noyau)) alors Leucocyte ;
si $\neg($ père de (Noyau)) alors Erythrocyte.

Activités de construction

La mise en ouvre des activités de construction permet le parcours de l'arborescence des entités selon la hiérarchie de composition structurelle. Il convient de distinguer les activités d'élaboration et les activités de décomposition.

Elaboration

La mise en oeuvre des activités d'élaboration permet la délimitation respective des entités Noyau et Leucocyte.

Entité : Noyau
Support : NL = Regrouper [Détecter ($\left.P_{N}, \Sigma\right)$]

Le support des entités Noyau est délimité comme ensemble connexe de primitives P_{N}, détectées au sein du support courant Σ.

Il convient de remarquer que toute activité s'effectue par référence à un contexte courant, représenté par le support Σ. Une délimitation plus ou moins précise sera ainsi obtenue selon la nature de l'effort de focalisation présidant à la définition de Σ : l'information portée par l'histogramme des intensités lumineuses, particulièrement, sera plus ou moins spécifique.

Entité : Leucocyte
$\underline{\text { Support }: L=A g r e ́ g e r ~(N o y a u, ~ L, ~ S, ~ R C, ~ N F, ~ I s e g m) ~}$

La variable Isegm est une variable de sortie de la procédure ; elle est affectée à vrai ou à faux selon que le support L proposé permet ou non la vérification de la contrainte NF. Elle peut être utilisée pour décider de l'abandon de l'analyse.

La mise en oeuvre des activités de décomposition permet la délimitation des entités Objet cellulaire. Elle n'est valide que dans un certain contexte, selon lequel le support courant est celui de l'image toute entière.

Entité : Image
Support : Σ
$\underline{\text { si-décomp }: ~} O C=\operatorname{Regrouper}\left\{\Sigma \backslash \operatorname{Détecter}\left(P_{F}, \Sigma\right) \mid\right.$

Le support des entités objet cellulaire (OC) est délimité comme ensemble connexe de primitives appartenant au complémentaire du support du Fond, dans Σ.

III. 2°) Images cytologiques et stratégie d'analyse.

Nous présentons tout d'abord les stratégies de résolution qui ont été adoptées, eu égard au problème posé, puis nous discutons des modalités pratiques de fonctionnement du système et des résultats obtenus.

III.2.1) Stratégie d'analyse

La résolution du problème "Délimiter Leucocyte" est susceptible
d'impliquer deux phases successives d'analyse : une phase de
pré-structuration, fondée sur la mise en oeuvre des stratégies indirectes,
et une phase de résolution, fondée sur la mise en oeuvre des stratégies
directes (figure 8).

Phase de pré-structuration

La recherche des leucocytes, selon le mode descendant d'analyse adopté, implique les deux étapes successives de :

- délimitation des Objets cellulaires ;
- sélection d'un Objet cellulaire.

Phase	Procédure invoquée	Objectif	Support courant	Descripteurs et critères
$\begin{gathered} \text { Pré- } \\ \text { structuration } \\ \text { (stratégie } \\ \text { indirecte) } \end{gathered}$	Seuillage	Décomposition de l'image en objets cellulaires	Image	$\begin{aligned} & \frac{\text { Primitif }}{\text { L, COND }} \mathrm{F} \\ & \frac{\text { Global }}{\text { SURF }} \end{aligned}$
	Seuillage $+$ Inférence Struct.	Sélection d'un objet comportant un leucocyte	objet	$\begin{aligned} & \frac{\text { Primitif }}{\text { L, COND }} \mathrm{NL} \\ & \frac{\text { Global }}{\text { SURF }} \end{aligned}$
	Inférence prototypique	Identification de 1'objet : cellule isolée ou agrégat	Enveloppe convexe CO (objet)	$\frac{\text { Global }}{\text { RCONV }}$
Résolution (stratégie directe)	Agrégations successives	Délimitation de 1'enveloppe cellulaire	$\begin{gathered} \Sigma^{(0)}= \\ \operatorname{Co(0bjet)} \end{gathered}$	$\begin{aligned} & \frac{\text { Local }}{D\left(C_{P}, C_{R}\right)} \\ & \frac{\text { Global }}{C O, R C O N V} \end{aligned}$
Contrôle	Inférence prototypique	Vérification de l'adéquation du masque proposé	$\operatorname{Co}\left[E^{(k-1)}\right]$	Global CO, NF

Fig. 8 : Système autonome de segmentation : phases d'analyse.
La complétion de l'analyse est susceptible d'être obtenue au terme de la phase de pré-structuration. La phase de contrôle permet de décider de l'acceptation ou du rejet du masque de segmentation finalement obtenu.

La délimitation des Objets cellulaires est obtenue par décomposition de l'image selon les modalités procédurales qui ont été définies. Le choix de ces modalités apparait guidé par le but (non délimitation explicite des entités Fond).

Il convient ensuite de sélectionner, parmi les objets obtenus, un objet susceptible de comporter un leucocyte (sélection guidée par le but). Ceci implique la recherche de la présence d'une composante nucléée au sein de chaque objet, c'est-à-dire l'analyse des histogrammes d'intensités lumineuses, évalués sur les supports respectifs de ces objets. D'autres critères, intrinsèques à l'entité objet cellulaire, auraient pu être utilisés : surface, position spatiale (centrée ou non).

La poursuite de l'analyse, enfin, nécessite l'identification de la forme spécifique de réalisation de l'entité objet cellulaire au sein de l'image (Agrégat ou Cellule). Le degré de convexité DC est pour ces raisons calculé, après évaluation de l'enveloppe convexe de l'objet considéré.

Si l'objet est une cellule, son enveloppe convexe est fournie comme masque de segmentation : la mise en oeurre de la seule phase de pré-structuration a permis la résolution du problème posé.

Phase de résolution

La phase de résolution est invoquée lorsque l'objet s'avère être un agrégat de cellules. Aucune modalité procédurale de décomposition n'a pu en effet être spécifiée pour les entités Agrégat.

Selon le mode ascendant d'analyse qui est alors adopté, deux étapes apparaissent nécessaires :

- délimitation du noyau ;
- délimitation du leucocyte par agrégations successives.

La focalisation obtenue par la délimitation préalable du support Σ de l'objet considéré permet ici la réduction des efforts de recherche (sélection des primitives Noyau, puis des primitives Cytoplasme).

L'évaluation de la variable Isegm (adéquation du masque de segmentation finalement obtenu) permet de décider de la poursuite de l'analyse, par calcul des descripteurs nucléaires et cytoplasmiques, ou de son abandon.

II.2.20) Modalités de fonctionnement et résultats

Le système de segmentation a été implémenté en Fortran sur un mini-ordinateur 16 bits (Nord 10/S, Matra Systems). L'ensemble des fonctionnalités dont il a été doté lui permet de répondre aux 3 contraintes de réduction, d'adaptation et d'adéquation que nous avions fixées (figure $9)$.

Réduction

Ll y a réduction des données à traiter grâce à la focalisation induite par l'emploi des stratégies indirectes.

Adaptation

Il y a adaptation dynamique des modalités de traitement selon la complexité des configurations topographiques rencontrées. Des temps de calcul variables (7 à 20s) sont observés, pour une image donnée, selon que le masque de segmentation est obtenu, ou non, au terme de la seule phase de pré-structuration.

Adéquation

Une évaluation croisée de la validité des masques de segmentation finalement proposés a été effectuée sur un lot de 700 images de cellules de la moëlle osseuse humaine, impliquant le jugement visuel d'un cytologiste d'une part, et le jugement propre du système d'autre part.

Les résultats de cette évaluation sont présentés dans le tableau I. Il nous parait important de souligner que seulement 2% des cellules sont considérées à tort comme correctement segmentées (jugements du type faux positifs).

Abstract

En conclusion, le système de segmentation finalement obtenu nous parait éclairer de façon significative certains des principaux concepts que nous nous sommes attachés à développer tout au long de cette thèse. Sa robustesse découle en effet non pas tant de la complexité des moyens algorithmiques mis en jeu, mais surtout d'un effort de coopération, de coordination entre différentes sources d'information, et différents moyens d'analyse.

Le regroupement et la structuration, au sein de bases de connaissances, de ces données tant figuratives que procédurales nous parait une condition nécessaire à la convergence de ces efforts. Le développement des stratégies possibles d'exploitation de ces connaissances en est une autre, qui définissent comment enchaîner les opérations possibles de construction, abstraction, association, ou décomposition pour résoudre le problème posé.

La notion de stratégie indirecte nous parait à cet égard particulièrement intéressante à approfondir, par les possibilités qu'elle offre de contrôle et d'adaptabilité contextuelle.

B. INTERPRETATION D’IMAGES HISTOLOGIQUES

Nous avons orienté récemment nos travaux, dans le domaine de la microscopie quantitative, vers l'analyse des images histologiques (cellules rassemblées en tissus). Ces images, d'expression morphologique complexe, permettent l'appréciation des formes topographiques de l'arrangement entre les éléments cellulaires, structurels et architecturaux intervenant aux différents niveaux de l'organisation.

Tant la démarche perceptuelle, qui conduit à l'appréhension différentielle des morphologies individuelles, que la démarche conceptuelle, qui conduit à l'interprétation diagnostique et pronostique de ces images, impliquent ici l'acquisition d'un savoir spécifique.

Par ailleurs, si l'interdépendance naturelle entre ces deux démarches a pu être négligée dans le cas de l'application cytologique (séparation entre les activités de délimitation, description, et d'interprétation), il n'apparaît pas réaliste de fonder l'approche de l'image histologique sur une telle impasse.

La robustesse de l'expression diagnostique dépend en effet des qualités de structuration respective et de coordination des activités de focalisation perceptuelle et mentale.

Il convenait pour ces raisons d'envisager une démarche différente de la précédente, en conditionnant l'activité perceptuelle (analyse de l'image) à l'activité diagnostique (interprétation de l'image).

Nous avons donc focalisé le travail entrepris dans ce domaine sur la modélisation de l'activité diagnostique, l'activité perceptuelle étant simulée grâce à un jeu de questions-réponses avec un observateur et commandée par le système.

L'élaboration d'un système expert de diagnostic a pu être envisagée grâce à la collaboration active du Professeur P. Couderc, du Laboratoire d'Anatomie-Pathologie (Centre Hospitalier Régional de Grenoble) et grâce aux efforts de Philippe Baillet et Didier Bronisz qui ont abordé ce travail dans le cadre d'un projet d'ingénieur ENSIMAG (Baillet 85a).

I. POSITION DU PROBLEME

Le travail que nous nous proposons de rapporter ici a concerné le développement d'un système expert d'interprétation d'images histologiques. Notre propos n'est pas de développer, ni d'approfondir, l'ensemble des principes et modes d'élaboration des systèmes experts ; il concerne plutôt la mise en évidence des formes spécifiques d'expression du problème que nous nous sommes posé, dans le cadre de sa résolution par un système expert.

Après le rappel de quelques notions générales sur les systèmes experts, nous présentons certains des problèmes spécifiques induits par leur application au diagnostic médical et à l'interprétation d'images.

1.10) Systèmes experts

Un système expert est conçu pour simuler l'exercice d'un savoir, dans un domaine précis. Il doit à ce titre remplir la triple mission de mémorisation, de transmission, et d'exploitation de ce savoir.

Mémoriser un savoir signifie représenter et regrouper, sous une forme organisée ou non, un ensemble de connaissances. Un savoir ne pouvant être exactement délimité, ni figé dans le temps, des fonctionnalités particulières doivent être introduites, qui permettent la mise à jour aisée de la base de connaissances. Il convient également, en retour, de faciliter l'accès à ces connaissances (mission de transmission), et particulièrement au savoir-faire acquis par le système.

Exploiter un savoir, enfin, signifie interpréter une situation précise, décrite par un ensemble de faits, en se référant aux connaissances acquises. Les mécanismes d'exploitation du savoir sont régis par la structure de contrôle du système, ou moteur d'inférence.

Un système expert comporte donc une base de faits, une base de connaissances, et un moteur d'inférence. Sa spécificité, par rapport aux systèmes procéduraux classiques, est issue de la séparation explicite entre les connaissances et les mécanismes d'exploitation de ces connaissances (Laurière, 82b).

Base de faits

La base de faits contient à l'étape initiale l'ensemble des données (énoncé) associées au problème à résoudre. Elle est ensuite modifiée, de façon dynamique, selon les déductions ou opérations diverses effectuées par le système. Elle contient alors, à tout instant, l'ensemble des faita déduits par le système. Ces faits constituant en eux-mêmes une parcelle de connaissance, la base de faits est souvent considérée comme partie intégrante de la base de connaissances.

Base de connaissances

Toute base de connaissance doit être élaborée, puis maintenue, en préservant la propriété fondamentale d'indépendance des éléments qui la composent : la difficulté réside ici dans la recherche d'une parcellisation adéquate de la connaissance.

Une trop grande fragmentarité des éléments est en effet un facteur d'alourdissement des tâches d'analyse, alors qu'une trop forte abstraction (dérivation d'éléments de connaissance complexes) est un facteur d'alourdissement des mécanismes d'exploitation.

Toute connaissance peut être introduite sous une forme factuelle ou déductive (figurative ou propositionnelle) selon le mode de représentation adopté (assertions ou règles de production) ; il convient ainsi, selon les cas, de distinguer les éléments de type Objet des éléments de type Action (Laurent 84).

Les éléments de type objet permettent la description du domaine d'application sous la forme des entités et des concepts qui lui sont associés, de leurs propriétés, de leur structure, et des relations qui les unissent.

Les éléments de type Action permettent la modification de la base de faits, en définissant les modalités de "passage" entre les différents objets. Ils permettent en particulier la formalisation du savoir-faire par l'introduction de stratégies, qui définissent les modalités d'analyse à envisager, dans telle ou telle situation précise (Laurière 82b).

Moteur d'inférence

Le rôle du moteur d'inférence est de contrôler et d'ordonnancer les déductions successives effectuées par le système. Chaque déduction implique la mise en oeuvre d'un cycle de base, séquençant les étapes successives de :

- détection : détermination des objets et actions susceptibles d'être considérés ;
- sélection : choix d'un objet et d'une action sur cet objet ;
- déduction : exécution de l'action et mise à jour de la base de faits.

Nous ne revenons pas sur les diverses formes possibles de contrôle, qui ont été abordées en partie III (A.I. 3°).
-

I.20) Diagnostic médical et interprétation d'images

Les années 70 ont vu la naissance d'une grande variété de systèmes experts, dans le domaine médical. Ces travaux ont joué un rôle moteur dans le développement des recherches en intelligence artificielle : s'ils diffèrent dans leurs modalités de représentation des connaissances, ou dans les formes de leurs stratégies d'exploitation, ils se sont développés dans un contexte humain et scientifique bien particulier (Shortliffe 84).

La recherche concernant l'automatisation de la prise de décision médicale a débuté dans les années 60 , en réponse à un souci d'efficacité. Le développement des techniques informatiques permettait en effet d'envisager le traitement statistique de grandes masses de données, l'emploi des techniques numériques en reconnaissance des formes, la modélisation des processus physiologiques ou l'automatisation de certaines tâches de routine. L'objectif présidant à ces recherches était l'obtention de résultats précis, fiables et reproductibles.

Des contraintes nouvelles sont apparues, dans les années 70, issues de la demande formulée par le corps médical de disposer d'outils plus accessibles, susceptibles de reproduire la démarche humaine et de justifier leurs résultats. Les recherches se sont ainsi orientées vers la compréhension et la modélisation du comportement de l'expert.

Ainsi ces travaux, qui sont essentiellement une réponse à un besoin (croissance accélérée et spécialisation de la connaissance médicale), sont susceptibles en retour de permettre une meilleure compréhension de la structure de la connaissance médicale et des processus de la prise de décision, dans ce domaine.

Parallèlement à ces recherches se sont développés des travaux concernant l'interprétation des images médicales. L'imagerie médicale a joué vis à vis de l'analyse d'images, à ses débuts du moins, un rôle similaire à celui joué par le diagnostic médical vis à vis des systèmes experts, en constituant un domaine clé d'investigation et d'application de ses méthodes.

En ce qui concerne la cytologie, l'interprétation des données image (paramètres cellulaires) est obtenue dans le cadre de leur analyse par des techniques statistiques. Le domaine de l'histologie demeure quant à lui abordé de façon très parcellaire, du fait de la complexité des formes iconiques qui le caractérisent.

L'application des systèmes experts à l'interprétation de ces images demeure ainsi un domaine de recherche très ouvert. Cet état de fait nous paraît significatif de la difficulté à confronter images et systèmes experts.

Un diagnostic, formulé par un système expert, est en effet obtenu au terme de 2 étapes successives :

- collection de symptômes ;
- analyse de ces "données" par le système expert.

La collection de symptômes est l'objet d'une tâche séparée, effectuée par l'expert.

Lorsque ces symptômes sont de forme iconique, deux problèmes surgissent, qui sont d'une part la difficulté intrinsèque de réalisation de la tâche de collection (extraction des données images), et d'autre part la complexité de l'intrication entre démarche de collection et démarche d'interprétation.

La dépendance naturelle entre démarche perceptuelle et interprétative, que nous avons déjà soulignée, suggère en effet la nécessité de développer des systèmes responsables eux-mêmes des tâches de collection.

Malgré ces contraintes, l'image nous parait un support significatif d'investigation des modes d'analyse invoqués par les systèmes experts. Par l'organisation naturelle qu'elle offre des objets et des concepts du domaine d'application, elle implique en effet une structuration particulière de la démarche interprétative humaine, que nous avons essayé de mettre en évidence en partie I.

Ces réflexions nous ont conduit à développer notre recherche en la simplifiant par un compromis : les tâches de collection, quoique contrôlées et commandées par le système, sont simulées sous la forme d'un dialogue avec l'expert, observant les images.

I. 3°) Histologie du sein et démarche diagnostique

I.3.1 ${ }^{\circ}$) Structure normale de la glande mammaire

La glande mammaire (figure 10) est constituée d'un réseau de canaux se ramifiant progressivement au sein de lobules, séparés par du tissu adipeux.

Au sein des lobules sont observés les canaux galactophores intra-lobulaires, ainsi que leurs ramifications ultimes, ou acini. Ces éléments sont bordés par le tissu conjonctif.

- La structure des canaux est similaire à celle des acini. Ils sont entourés d'une membrane externe hyaline (sans cellule), dite membrane basale, bordant un épithélium. Une lumière apparaît à l'intérieur du canal, au sein de laquelle transitent les sécrétions lactées.

L'épithélium comporte plusieurs assises cellulaires, parmi lesquelles il convient de distinguer la couche cellulaire myoépithéliale (couche externe), et la couche cellulaire épithéliale (couche interne).

Les cellules myoépithéliales présentent un cytoplasme clair et abondant ; la forme des cellules épithéliales est plus géométrique, et leur noyau plus dense.

Le tissu conjonctif est constitué de fibres de collagène séparant des lymphocytes et des fibrocytes qui se différencient par leur forme ronde ou fusiforme, l'ensemble étant inclus dans une substance fondamentale.

Le tissu adipeux contient des vaisseaux et des cellules adipeuses.
Les vaissaux, artérioles, veinules et capillaires comportent une membrane basale bordant un endothélium (couche de cellules endothéliales) délimitant une lumière.

Les cellules adipeuses sont claires, de forme géométrique, et comportent un noyau comprimé et peu visible.

I. 3.2°) Formes pathologiques

Nous nous sommes intéressés aux pathologies cancéreuses, parmi lesquelles nous avons distingué quatre formes différentes d'affection (figure 11) :

- cancer galactophorique in-situ ;
- cancer galactophorique invasif ;
- cancer lobulaire in-situ ;
- cancer lobulaire invasif.

Les formes de type in-situ se caractérisent par des altérations de la taille et de la forme des canaux, lobules et acini (hypertrophie, atrophie, distension de la membrane basale). Des altérations de structures sont susceptibles d'être observées : disparition de la couche cellulaire myoépithéliale, obstruction de la lumière par prolifération de cellules épithéliales.

Les formes invasives sont de moins bon pronostic. E1les se caractérisent par des altérations structurelles observées au plus haut niveau de l'organisation mammaire : rupture des membranes basales, invasion du tissu conjonctif par des cellules épithéliales qui demeurent isolées ou se regroupent en massifs, en cordons ou en amas. Les formes cellulaires mêmes sont altérées (modification de la chromatine, du rapport nucléo-cytoplasmique). La structure même du tissu conjonctif est .susceptible d'être modifiée (disparition des lymphocytes), alors que d'autres structures peuvent disparaitre (structure canalaire).

Cette typologie est à l'évidence extrêmement simplifiée : de nombreuses formes intermédiaires sont susceptibles d'apparaitre et de coéxister. De telles simplifications apparaissaient néanmoins nécessaires à la mise en route du travail, qui s'est focalisé sur le diagnostic des formes pathologiques du type lobulaire in-situ.

I. 3.3°) Démarche diagnostique

Nous ne reprenons ici que les grandes phases de la démarche diagnostique, détaillée en Partie I, D.

De façon générale, la formulation diagnostique dépend de la nature des éléments atteints (canaux ou lobules, par exemples) et de la forme de cette atteinte (altérations morphologiques observées).

I1 convient donc de procéder à la localisation des éléments susceptibles d'affection, et ceci induit la mise en oeuvre d'une stratégie particulière d'exploration de l'image. Celle-ci est conduite selon un mode descendant, par changement d'objectifs au microscope, couplé à un mode latéral de scrutation des éléments perçus à un niveau de résolution donné. Elle est guidée par la connaissance des formes structurelles et topographiques d'organisation de l'image.

[^3]
II. L'IMAGE HISTOLOGIQUE : STRUCTURATION ET INTEGRATION DES CONNAISSANCES

L'émission du diagnostic histologique représentatif d'une image donnée implique la collection des "symptômes" caractérisant cette image, et leur intégration au sein d'un schéma logique dont la cohérence structurelle est nécessaire à l'émergence d'une démarche diagnostique robuste.

Il convient tout d'abord de définir ce schéma, ou squelette de représentation des entités image, de leurs attributs et de leurs relations d'organisation. Ce schéma regroupe les connaissances figuratives attachées à l'image histologique. .

Il convient ensuite de définir les modalités d'exploration de l'image et de collection des symptômes histologiques, ces tâches nécessitant actuellement l'intervention de l'observateur humain. Certaines données pourront néanmoins être déduites par inférence, au cours de l'exploration. Ces modalités de collection et d'inférence sont définies par l'introduction de connaissances propositionnelles.

Il reste enfin à définir les modes d'intégration des données au sein de la base de connaissance. Un problème particulier se pose à cet égard, dû à la présence au sein de l'image de plusieurs formes de réalisation d'une même entité. Il est résolu par l'introduction de la notion de méta-entité.

II.1) Image histologique et connaissances figuratives.

Les connaissances figuratives attachées à l'image histologique sont la représentation synthétique des objets (entités) qui la composent, de leurs attributs et de leurs relations d'organisation (figure 12).

II.1.1 ${ }^{\circ}$ Entités et relations d'organisation

L'image histologique est perçue comme une arborescence d'entités, intervenant à différents niveaux d'organisation. A chaque entité est attaché un nom, NOM ENTITE, qui identifie le type générique de cette entité (lobule, acini, ...). Des représentants particuliers de ces types génériques seront obtenus lors de l'exploration de l'image.

Ces entités sont chaînées au sein de l'arbre des entités selon leurs relations de composition structurelle, par la propriété PERE.

A certaines de ces entités de type STRUCTURE sont chaînées des entités filles de type ATTRIBUT qui regroupent l'ensemble de leurs descripteurs ainsi que leurs modalités d'obtention. A toute entité de type STRUCTURE sont donc associées au sein de l'arbre des entités des entités filles de type STRUCTURE et/ou ATTRIBUT, par la propriété FILS.

II. 1. 2°) Entités et attributs

A toute entité de type ATTRIBUT sont chainées, par la propriété FILS, un ensemble d'entités de type QUESTION_REPONSE qui définissent, pour chaque attribut spécifique, ses modalités d'obtention ainsi que les domaines de valeurs autorisés.

Les domaines de valeurs sont représentés par :

- un intervalle numérique si la valeur attachée à l'attribut est de type numérique (nombre d'assises épithéliales, par exemple) ;
- une liste de valeurs possibles lorsque cette "valeur" est de nature symbolique (aspect hypertrophié, atrophié ou normal, par exemple ;
- quatre valeurs particulières \#, $\$,<$, ? ; qui permettent d'éluder temporairement ($\neq \boldsymbol{\prime}$) ou définitivement la question en considérant la valeur par défaut comme conforme (\$) ou non conforme ($<$), vis à vis des spécifications diagnostiques réclamées ultérieurement, ou qui permettent l'obtention d'une explication sur la signification diagnostique de cet attribut (?).

1I.1. 3°) Propriétés particulières

D'autres propriétés sont attachées aux entités, qui permettent l'obtention d'informations plus précises sur l'entité en cours d'analyse (niveau d'organisation, niveau de résolution), ou d'explications sur les questions posées.

Du fait de la structure particulière de l'arbre des entités, il est possible de demander plusieurs explications successives : des informations de plus en plus globales sur la stratégie en cours sont alors obtenues.

L'arbre des entités est ainsi une structure hiérarchique regroupant selon une forme unique de représentation l^{\prime} ensemble des constituants de 1'image, de leurs attributs et de leurs valeurs possibles.

A ces connaissances figuratives sont associées des connaissances propositionnelles, qui définissent les modalités d'instanciation et d'exploration de l'arbre des entités.

II. $\mathbf{2}^{\circ}$) Image histologique et connaissances propositionnelles

L'arbre des entités, tel que nous l'avons défini, constitue un squelette de représentation de l'image histologique. L'analyse d'une image particulière nécessite l'instanciation de cette forme générique de représentation, c'est-à-dire l'accès aux formes spécifiques d'expression de cette image.

Les connaissances propositionnelles permettent en particulier de définir les modalités de cet accès, qui peut être direct ("interrogation" de l'image) ou implicite (déduction implicite de certaines formes d'expression) (figure 13).

II. 2.1°) Modalités d'interrogation de l'image $^{\prime}$

A tout attribut spécifique d'un constituant de l'image (TAILLE_LOBULE par exemple) est associée une entité de type QUESTION_REPONSE. Une propriété particulière, la propriété SI_DEMANDE, est attachée à ces entités, qui définit la question (chaîne de caractères) à poser à l'utilisateur, ainsi que le domaine des réponses possibles.

Il convient par ailleurs de disposer d'un mécanisme permettant de "regrouper" l'ensemble des questions posées pour un constituant donné, c'est-à-dire de collecter simultanément les valeurs des attributs qui le décrivent.

La propriété SI_AJOUTE est attachée pour ces raisons aux entités de type STRUCTURE et ATTRIBUT, qui définit les modalités d'accès à leurs fils. Ainsi, l'accès à une entité de type STRUCTURE induit l'accès à l'entité ATTRIBUT qui lui est attachée et donc à l'ensemble des entités QUESTION_REPONSE dont "l'éveil." successif permet la caractérisation complète de l'entité STRUCTURF observée.

Nom	Entité	b) POP_CELL_EBITH	
POS	Positionnement		
COM	Commentaire	SI_AJOUTE	(PROG () (RESOUDRE 'CAR_POP_CELL_ EPITH) (RESOUDRE 'CELL_EPITH)
SI_DEMANDE	Question-Réponse		
SI_AJOUTE	Transitions		
EXPLIC	Explication		
META	Méta-entité	META	\$ACINI
PERE	Père	PERE	COUCHE_CELL_EPITH
FILS	Fils	FILS	(CAR POP CELL EPITH CELE_ EPITTH)
c) CAR_POP_CELL_EPITH		d) TAILLE	
POS	(CELLULE EPITHELIALE (X25))		
COM	'observation des cellules épithéliales'	SI_demande	('Indiquez la tendance générale de la taille des cellules épithéliales par rapport à la normale' (Normal Hypertrophié Atrophié))
SI_AJOUTE	(PROG Y) (RESOUDRE 'TAILLE) (RESOUDRE ' FORME) (RESOUDRE 'RAP_NC)		
		EXPLIC	'Hypertrophie = $\begin{gathered}\text { atteinte } \\ \text { tumorale }\end{gathered}$
META	\$ACINI	META	\$ACINI
PERE	POP_CELL_EPITH	PERE	CAR_POP_CELL_EPITH
FILS	(TAILLE FORME RAP_NC)		

Fig. 13 : Types d'entités et propriétés attachées..
a) Structure d'une entité ;
b) Entité de type STRUCTURE ;
c) Entité de type ATtRIbuT ;
d) Entité de type QUESTION_REPONSE.

La mise en oeuvre de cette procédure permet également le parcours de plusicurs entités STRUCTURE successives, jusqu'à la première entité ATTRIBUT rencontrée.

II.2.20) Passage de données implicites

La capacité à effectuer des inférences au sein même de la base de connaissances conditionne de manière fondamentale l'émergence de stratégies cohérentes d'exploration et d'interrogation de l'image.

La perception d'une modification des modes d'organisation, à un niveau donné, (absence de tel ou tel constituant, par exemple) est en effet susceptible d'induire une modification du squelette même de représentation de 1'image, aux niveaux inférieurs : la disparition d'une assise épithéliale, par exemple, induit la disparition des cellules qui la composent.

Il est possible par ailleurs, dans une certaine mesure, de déduire les formes d'expression de certains constituants à partir des caractères morphologiques des constituants de plus haut niveau dont ils sont issus : la perception d'un nombre anormalement élevé d'assises épithéliales, au sein d'un acini, induit par exemple l'obstruction, plus ou moins partielle, de sa lumière.

Ces mécanismes d'inférence sont assurés par l'adjonction de la propriété SI_AJOUTE aux entités de type QUESTION_REPONSE. Son accès permet le passage de valeurs implicites vers les attributs d'entités susceptibles d'inférence.

Ces attributs sont rendus non-significatifs, le cas échéant, par passage des valeurs $\$$ ou $<$.

II. 3°) La notion de méta-entité

L'exploration de l'image histologique a été présentée jusqu'ici comme conduite de façon extrêmement "linéaire", c'est-à-dire fondée sur l'observation, à chacun des niveaux d'organisation concernés, d'un représentant unique de chacun des types génériques d'entités susceptibles d'être présents.

La capacité nécessaire à exploiter les formes variées d'expression des différentes réalisations spatiales d'une même entité est introduite grâce à la notion de méta-entité.

II.3.10) L'arbre des méta-entités

Une méta-entité est le représentant générique d'une structure histologique donnée. Les méta-entités sont chaînées au sein d'un arbre, selon leurs relations de composition structurelle. L'accès à une méta-entité permet l'accès à un ensemble de symboles identifiant de façon univoque les différentes instances de cette méta-entité observées sur l'image.

A chaque identifieur de méta-entité (\$acini, par exemple) est associée en outre une valeur qui caractérise l'instance particulière en cours d'analyse. Cette valeur sera modifiée en cas de reprise sur une autre forme de réalisation de la structure histologique.

Lorsque ceci s'avère nécessaire, un nouveau symbole est généré, qui est chainé au symbole de l'entité père en cours d'observation. Un nouveau squelette de représentation est associé à la structure nouvellement observée, par génération d'une arborescence symbolique propre à cette dernière. Il y a ainsi duplication du sous-schéma logique d'intégration des données, chaque fois que ceci s'avère nécessaire (figure 14).

II. 3. 2°) Mode d'intégration des données

Une propriété particulière, la propriété META_ENTITE, est attachée à toutes les entités, qui permet l'accès au nom symbolique de la structure en cours d'observation.

Ainsi toute donnée, collectée lors de l'éveil d'une*entité de type QUESTION_REPONSE, est associée à cette entité sous la forme d'une valeur de propriété dont l'indicateur est le nom symbolique courant.

Plusieurs valeurs de propriétés sont ainsi susceptibles d'être attachées à une entité donnée (TAILLE_LOBULE par exemple), par le biais d'un jeu de noms symboliques différents (figure 15).

b)

Fig. 14 : L'arbre des méta-entités.
a) Structure générale ;
b) Exemple d'arborescence symbolique générée par les appels successifs CREER_ENTITE (\$SEIN) CREER_ENTITE (\$ACINI) ;
c) Etat courant résultant de l'arbre des méta-entités.

Fig. 15 : Méta-entités et mode d'intégration des données.
Deux acini (GEN2 et GEN6) sont observés, dont les propriétés morphologiques sont différentes : présence ou absence de l'assise myoépithéliale, présence ou obstruction de la lumière centrale.
——Entité de type Structure ;
\Longrightarrow Entité de type Attribut ;
——ntité de type Question réponse.

Une seule de ces valeurs n'est accessible pour le moteur d'inférence, à un instant donné, celle dont l'indicateur correspond au nom courant de structure observée, accessible par la propriété META_ENTITE.

Ainsi, on aboutit à une structure de données complexe, mais qui apparait totalement transparente du point de vue du moteur d'inférence dont l'accès aux données s'effectue de façon univoque. Ceci permet le respect de l'indépendance entre base de connaissances et mode de raisonnement.

Le système de représentation adopté apparaît ainsi à la fois extrêmement structuré et extrêmement souple. Structuré car il offre un schéma logique robuste d'intégration des données images, au sein de l'arbre des entités ; souple car il offre une possibilité de duplication virtuelle de ce schéma, à un niveau quelconque de l'arborescence, grâce à la notion de méta_entité. L'accès aux données par le biais des identificateurs symboliques permet à tout instant de décider de l'instance de schéma logique qu'il apparait pertinent d'exploiter.

Les possibilités d'exploitation d'une telle forme de représentation des connaissances nous paraissent extrêmement riches, et il convient d'en poursuivre l'investigation. Il conviendrait en particulier d'en envisager l'écriture en termes de représentations centrées objet ; l'écriture adoptée, qui fait intervenir essentiellement la notion de liste de propriétés, en LISP, ne facilite pas, en effet, l'expression de l'ensemble des fonctionnalités offertes par un tel système.

III. LE DIAGNOSTIC HISTOLOGIQUE : CONNAISSANCES ET MODE DE RAISONNEMENT

La formulation d'un diagnostic implique la capacité à associer un sous-ensemble local de symptômes avec le concept qui les caractérise; elle implique également la capacité à raisonner, c'est-à-dire à définir la stratégie optimale de collection et d'exploitation de l'ensemble des symptômes et concepts associés.

Ces deux activités essentielles, inférence et raisonnement, sont mises en oeuvre par l'activation respective des règles et méta-règles du système expert.

Ces deux formes de connaissance sont présentées tout d'abord ; puis nous revenons sur les modalités de leur activation et de son contrôle. L'ensemble des fonctionnalités du système sont rappelées brièvement ensuite.

III.1 ${ }^{\circ}$) Inférence et règles de production

L'activation des règles de production permet l'accès à un ensemble particulier de connaissances figuratives, qui regroupent l'ensemble des diagnostics élémentaires susceptibles d'être émis.

III.1.1 ${ }^{\circ}$) Connaissances figuratives

Quatre formes principales d'atteinte pathologique ont été considérées, qui sont :

- le cancer lobulaire in situ ;
- le cancer lobulaire invasif ;
- le cancer galactophorique in situ ;
- le cancer galactophorique invasif.

Une forme plus complexe d'atteinte est susceptible d'être envisagée en cours d'analyse, affectant simultanément les canaux galactophores et les lobules (GAL_INV_LOBULAIRE).

Chacune de ces formes pathologiques est susceptible ou non de s'exprimer aux différents niveaux de l'organisation histologique. Les niveaux architecturaux, structurels et cellulaires étant distingués
(structures \$SEIN, \$ACINI et \$CELL_EPITH), 3 variables regroupent l'ensemble des diagnostics observés à chacun de ces niveaux (\$HYPO, \$CONF et \$DIAG).

L'atteinte pathologique, observée à un niveau donné, peut être plus ou moins généralisée ; elle peut également s'exprimer avec plus ou moins de certitude. Λ tout diagnostic est pour ces raisons attaché un stade, de façon différentielle selon le niveau d'organisation observé, ces indications sont stockées dans les variables \$STHYPO, \$STCONF et \$STDIAG.

Au diagnostic LOBULAIRE_IN_SITU, émis par exemple au niveau cellulaire (variable \$DIAG), seront susceptibles d'être attachés les stades LO_IN_CELL_+, LO_IN_CELL_0, ou LO_IN_CELL_- (variable \$ST DIAG).

Il est nécessaire enfin, au terme de l'analyse, de corréler l'ensemble des diagnostics parcellaires obtenus et d'émettre un diagnostic final. Ceci conduit à introduire les deux variables supplémentaires \$FIN_DIAG et \$ST FIN_DIAG。

III.1.20) Règles de production

Chaque règle représente un fragment de connaissance propositionnelle : une règle est constituée d'un ensemble de clauses condition et d'un ensemble de clauses conclusion (figure 16):

```
Règle = (COND CONC).
```


Champ condition

Le champ condition des règles de production a la forme suivante :

```
COND = (ET list-cond)
    ou (N list_cond)
    ou (EXC N list_cond)
    ou (NON cond_simple)
    ou (cond_simple)
LIST_COND = (cond list_cond)
    ou (cond)
```


Fig. 16 : Règles et domaines de règles : exemples.
a) Le domaine CONF_LO_IN_SITU regroupe les règles permettant l'émission du diagnostic de type LO_IN_SITU au niveau CONF.
b) Parmi ces règles, la règle LO_IN_GENE_1 permet l'obtention du stade CO_IN_GENE_+ ; la règle LO_IN_GENE_4 donne le stade LO_IN_GENE_- ; elle permet l'émergence d'une nouvelle hypothèse : GALACT_INVASIF_LOBULAIRE.

Dans le cas d'une forme conditionnelle de type ET, il convient pour qu'elle soit vérifiée que toutes les assertions présentes dans list_cond soient vraies ; la vérification de au moins, ou exactement, N d'entre elles suffit dans le cas des formes de type \mathbb{N} ou EXC N.

Une condition simple implique des éléments observés au niveau perceptuel. ou conceptuel.

Au niveau perceptuel, elle renferme 3 champs et est de la forme :
cond_simple $=\left(\$ A T T R I B U T, \$ Q U E S T I O N _R E P O N S E, \$ D O M A I N E\right)$.
\$ATTRIBUT est le nom de l'entité de type ATTRIBUT associée à l'entité structurelle en cours d'observation. \$QUESTION_REPONSE indique l'attribut spécifique dont il convient de tester la valeur, et \$DOMAINE spécifie le domaine des valeurs autorisées ou à exclure (symbole $<>$) pour celui-ci.

Si la valeur n'a pas été collectée (indicateur de réponse non présent, ou indicateur $\#$ de réponse temporairement indisponible), le sous-arbre de racine $\$$ ATTRIBUT est parcouru, afin de remplir l'ensemble des champs descriptifs associés à l'entité histologique concernée.

Au niveau conceptuel, une condition simple renferme 2 champs, et est de la forme :

```
cond simple \(=(\) HYPO XX)
        ou (CONF XX)
        ou (DIAG XX)
```

sa vérification implique dans ce cas l'établissement du diagnostic $X X$ au niveau d'organisation indiqué par le premier champ (architectural, structurel ou cellulaire).

Champ conclusion

Le champ conclusion des règles de production a la forme suivante :

```
CONC = (list_conc)
LTST_CONC = list_conc (conc_simple)
    ou (conc_simple).
```

Une conclusion simple renferme deux champs ; elle permet l'établissement du diagnostic au niveau défini par le premier champ (HYPO, CONF ou DIAG) ainsi que la formulation du stade associé.

A ce niveau sont appelées des procédures particulières, qui permettent la résolution d'éventuels conflits. Elles seront présentées ultérieurement, ainsi que les règles permettant l'expression diagnostique finale, au terme de l'analyse.

Les domaines de règles

Toutes les règles de production ont le même type de conclusion : (Niveau $X X$) (Stade YY). A un même diagnostic $X X$, exprimé à un niveau donné, peuvent être associés différents stades, selon la nature des critères présents dans le champ condition de la règle.

Ceci conduit à associer plusieurs règles à l'établissement de chaque diagnostic (Niveau XX) ; ces groupes de règles constituent des modules, spécifiques d'un domaine particulier d'expression diagnostique.

20 domaines de règles ont été ainsi créés, qui correspondent aux 4 niveaux HYPO, CONF, DIAG et FIN_DIAG et aux 5 formes d'affections pathologiques possibles (domaine $=$ \$REGLE_CONF_LO_IN_SITU, par exemple).

Une solution plus élégante aurait néanmoins pu être adoptée, fondée sur l'association à un domaine donné d'une règle unique d'inférence, le champ condition de cette dernière regroupant l'ensemble des critères susceptibles d'autoriser son activation.

Parmi ces critères, certains sont essentiels à la formulation diagnostique (critères primaires), d'autres permettent d'en assurer la certitude (critères secondaires). Ces deux types de critères étant distingués, le stade $S T$ peut être évalué comme une fonction $f(P, S) d u$ nombre d'assertions effectivement vérifiées, dans chacune des deux catégories.

Ainsi, une valeur de P trop faible ($P<P_{0}$) ou suffisamment élevée (P $\geqslant P_{1}$) conduit au rejet, ou respectivement à l'acceptâíion définitive de l'hypothèse (Niveau XX), alors que des degrés intermédiaires de certitude sont obtenus dans les autres cas, dépendant en particulier de la valeur de S (Baillet 85).

III. 2°) Stratégie d'analyse et méta-règles

Nous rappelons tout d'abord les phases principales de la démarche analytique envisagée, puis nous présentons les méta-règles dont l'activation permet la mise en oeuvre de la stratégie d'analyse associée.

III.2.10) La démarche analytique

Toute "consultation" (figure 17) se déroule de la façon suivante :

- identification du patient ;
- collection et interprétation des symptômes ;
- formulation du diagnostic et du pronostic.

Phases d'analyse

La première phase a été introduite en vue d'un éventuel archivage, cas par cas, des diagnostics émis par le système et de leurs modalités d'obtention.

La seconde phase concerne la mise en ouvre des cycles d'analyse proprement dits. Le déroulement de cette phase implique l'exploration progressive de l'image au niveau architectural, structurel puis cellulaire de l'organisation histologique. Des faits perceptuels sont collectés puis interprétés à chaque niveau, par activation des règles d'inférence associées. Une étape finale est ensuite invoquée, dont l'objectif est la confrontation des stades obtenus pour chacun des diagnostics, et l'émission des diagnostics et stades diagnostics résultants (variables \$FIN_DIAG。et \$STFIN_DIAG).

La mise en oeuvre de la troisième phase permet la résolution des conflits ultimes (cas d'un double diagnostic, par exemple) ; tout conflit non soluble est signalé à l'utilisateur. Un cycle particulier d'analyse est par ailleurs invoqué au terme de cette phase, au cours duquel des données sont collectées au niveau structurel ou cellulaire, et dont l'interprétation permet la formulation d'un pronostic.

Fig. 17 : Déroulement d'une "consultation" : phases et cycles d'analyse, niveaux conceptuels et perceptuels atteints par le système, aux différentes étapes.
.306.

Cycles d'analyse

La seconde phase implique des cycles de natures différentes : un premier cycle de génération d'hypothèses, suivi d'un ou plusieurs cycles de vérification d'hypothèses.

Le cycle génération d'hypothèses implique la collection et l'interprétation des données perceptuelles au niveau architectural de l'organisåtion, selon une stratégie guidée par les données.

Le cycle vérification d'hypothèses implique la collection et l'interprétation de données au niveau structurel puis cellulaire, selon une stratégie guidée par le but. Chaque cycle implique le franchissement des étapes successives CONF, DIAG et FIN_DIAG. En cas d'échec à l'une quelconque de ces étapes, des règles particulières de reprise sont déclenchées, qui impliquent la recherche d'une focalisation sur des entités histologiques plus informatives.

De nouvelles hypothèses sont par ailleurs susceptibles d'être émises au cours de cette analyse : leur prise en compte implique la mise en oeuvre de nouveaux cycles de vérifications d'hypothèses.

III.2.20) Les méta-règles

Des méta-règles sont introduites, qui permettent l'explicitation formelle de la démarche analytique envisagée. Cette démarche correspond à la mise en oeuvre d'un plan d'actions, chacune des "méta-actions" invoquées étant susceptible à son tour d'impliquer le déroulement d'une séquence d'actions, selon un plan bien défini (figure 18).

```
Ces méta-règles ont la forme suivante :
```

```
META_REGLE = (COND CONC)
COND = (ET list_cond)
    ou (N list_cond)
    ou (? list_cond)
    ou (clause)
```

```
(SETQ META1 '(
    (ET
                    (INTERROGER)
                    (INIT \emptyset)
                    (DEDUIRE)
                            (PRINT2T ' ')
                            (PRINT2T 'HYP DEDUITES')
                            (PRINT $HYPO)
                            (PRINT2T ' ')
                            (EXPLIC 'HYPO)
                    (DIAGNOS)
                    ( ))
                                    ((CONSULTATION)) ))
(SETQ META3 '(?
            (1 (HYPO ?X))
                    ((DEDUIRE)) ))
(PUT 'meta3 'INST '((?X $TOUTESHYPO)) )
(SETQ META4 '(?
        (ET
                    (HYPO ?X)
                    (CONF ?X)
                    (diag ?X)
                            (FIN_DIAG ?X)
                            (PRINT (LIST 'DIAGNOSTIC 'ETABLI (QUOTE ?X)))
                    ((DIAGNOS)) ))
(PUT 'META4 'INST '((? X $HYPO)) )
```

Fig. 18 : Démarche analytique et méta-règles (exemples).
L'activation de la méta-règle CONSULTATION conduit au déclenchement de la méta-règle DEDUIRE (génération d'hypothèses) puis à celui de DIAGNOS (vérification des hypothèses contenues dans \$HYPO).

```
LIST_COND \(=(\) COND list_cond \()\)
    ou (cond)
CONC \(=\) (clause)
```

Ainsi une clause condition, étiquetant une action ou un appel de fonction, est susceptible d'apparaitre comme clause conclusion d'une autre méta-règle : ceci provoque le déclenchement "en cascade" des actions implíquées.

L'utilisation de la forme "?" permet par ailleurs la dérivation de méta-règles plus puissantes, dites méta-règles à instanciation. Cette forme permet la réitération de chaque action, pour des valeurs différentes de paramètres, le domaine des valeurs possibles étant indiqué dans la propriété INST attachée à la méta-règle. Cette forme sera particulièrement utile pour contrôler l'enchainement des actions en cycle génération et vérification d'hypothèses.

III. 3°) Structure et modalités de contrôle

Nous présentons tout d'abord la structure de contrôle du système, puis nous revenons sur certaines modalités particulières (résolution des conflits, règles de reprise etc.).
III.3.1 ${ }^{\circ}$ Structure de contrôle

La structure de contrôle adoptée est une structure de type Action-0bjet : le choix d'action, considéré comme prioritaire par rapport au choix d'objet, dépend par ailleurs des objectifs diagnostiques fixés, les contraintes différant selon que le cycle engagé est un cycle de génération ou vérification d'hypothèses. Ceci permet le conditionnement de la focalisation perceptuelle (choix d'objet) à la focalisation conceptuelle (expression diagnostique).

A chaque cycle de contrôle sont ainsi associées les étapes suivantes :

- sélection d'un module de règles (actions) ;
- sélection d'une règle ;
- évaluation des attributs requis (objets) ;
- sélection d'une entité image ;
- collection des données ;
- exécution.

Critères de sélection d'actions

Un ou plusieurs domaines de règles sont sélectionnés, selon la focalisation diagnostique qu'ils permettent d'obtenir.

En phase génération d'hypothèses, la contrainte est d'accéder à un certain niveau d'expression diagnostique : sont donc sélectionnés les modules de règles associés au niveau HYPO dans l'arborescence diagnostique.

En phase vérification d'hypothèses, la contrainte est d'accéder à un niveau et à un type donné d'expression diagnostique, selon les résultats obtenus à l'étape précédente.

Plusieurs modules, et au sein de chacun d'eux plusieurs règles, apparaissent ainsi activables à un instant donné : ces éléments sont pris en compte de façon séquentielle, selon leur ordre d'apparition dans le système. Des critères plus spécifiques de sélection n'ont en effet pas été introduits, à ce niveau.

Critères de sélection d'objets

La sélection d'un module de règles détermine la focalisation sur une méta-entité structurelle particulière ; de même, la sélection d'une règle détermine la nature des sous-entités à prendre en compte.

Dans ce contexte, le choix des instances image spécifiques est laissé à la liberté de l'utilisateur, les seules contraintes apparaissant en cas de reprise (instance jugée par le système comme non représentative).

Du fait de la structure particulière de l'arbre des entités, les données caractéristiques d'une entité sont collectées en bloc, indépendanment des besoins réels du système.
III. 3. 2°) Modalités particulières (figure 19)

Résolution des conflits

L'exécution d'un cycle de contrôle permet la transition vers un nouvel état du système, caractérisé par l'introduction éventuelle d'une nouvelle expression diagnostique et du stade de gravité/certitude associé.

Du fait de la structure de contrôle adoptée, il peut se produire que plusieurs stades différents soient associés à un même diagnostic.

Une procédure particulière (RESOUDRE_CONFLIT) est appelée pour ces raisons à chaque émission d'un nouveau stade diagnostique, et en cas de conflit. Le conflit est résolu par le choix du stade le plus sévère (resp. le plus certain). Une trace en est conservée (variable ETAT_CONFLIT_STADE) de façon à permettre son éventuelle exploitation ultérieure (vérification de la cohérence des mécani̊smes d'inférence, par exemple).

Règles finales

Des règles particulières sont activées, au terme de l'analyse, (modules \$FIN_DIAG e't \$EVOLUTION) dont le rôle est l'émission du diagnostic final et du pronostic.

Un stade final est évalué, en fonction des stades obtenus à chaque niveau. Lorsque plusieurs diagnostics différents subsistent, le diagnostic le plus "sévère" est conservé.

L'activation des règles pronostiques implique une ultime collection de données, au niveau structurel ou cellulaire.

Règles de reprise

Il convient de décider d'une reprise lorsqu'aucune règle d'un domaine donné n'a pu être activée. Des règles particulières sont appelées dans ce cas, dont le rôle est la création d'une nouvelle entité structurelle, et la mise en ocuvre d'une nouvelle tentative de résolution, au niveau où l'échec a été observé. L'hypothèse est définitivement abandonnée en cas d'échec de cette seconde tentative. Si aucune hypothèse n'a pu être déduite, en phase génération d'hypothèse, le spécimen est considéré comme normal.

11 convient également de décider d'une reprise en phase finale (FIN_DIAG), si le diagnostic obtenu parait trop incertain. la reprise s'effectue dans ce cas au niveau structurel de l'organisation histologique (CONF).

III.40) Fonctionnalités et discussion

Le système a été écrit en dialecte LISP (PSL : Portable Standard LISP) et implémenté sur un mini-ordinateur de la gamme APOLLO (DN 660). Il comporte actuellement 25 règles et une cinquantaine d'entités, son applicabilité se limitant au diagnostic des cancers lobulaires in situ; son évaluation est en cours.

De nombreux utilitaires ont été introduits, dont le rôle est de faciliter la mise à jour et l'extension du système.

Des efforts particuliers ont été consacrés, par ailleurs, à l'ergonomie du système (figure 20) : 1'interaction avec le système s'effectue en effet sous un mode multi-fenêtres, qui permet la présentation claire et simultanée des données fournies en entrée et des résultats obtenus. Des pahneaux différents sont ainsi dédiés à l'affichage de l'image en cours d'observation, aux commandes de modification d'images (changement de niveau de résolution et/ou de structure), à l'interaction proprement dite (questions/réponses), et à la visualisation de la progression du diagnostic, au cours des différentes étapes d'analyse (HYPO, CONF et DIAG). Un panneau supplémentaire est susceptible d'être superposé, à la demande, qui permet la lecture des explications fournies par le système.

En conclusion, il apparait que des efforts particuliers devraient être consacrés à la structuration des connaissances conceptuelles (expression diagnostique) et à leurs stratégies d'exploitation. Ces connaissances apparaissent en effet relaṭivement dispersées au sein du système et peu structurées, si ce n'est par référence à la structuration propre à l'image.

Leur stratégie d'exploitation demeure par ailleurs extrêmement linéaire : il conviendrait de considérer la phase de génération d'hypothèses comme une phase de pré-structuration, susceptible d'impliquer un parcours complet, quoique rapide, de l'organisation histologique, et de chercher un raffinement progressif du diagnostic lors de séquences

Fig. 20 : Fonctionnalités d'interaction du système.
a) Commandes de positionnement ;
b) Champ explication ;
c) Champ question-réponse ;
d) champ image ;
e) liste des hypothèses envisagées ;
f) et g) liste des hypothèses retenues aux niveaux CONF et DIAG.

314.
ultérieures d'exploration de l'image. Le problème des reprises devra également être revu, dans ce contexte.

Une étude a par ailleurs été engagée, qui concerne l'amélioration des modalités de description des images. Ces images sont en effet décrites de façon qualitative, actuellement, grâce à l'intervention d'un observateur humain. L'objectif est de compléter l'arbre des entités par l'ajout de procédures de description quantitative des structures (calcul de la surface, évaluation de la forme, de la texture, etc).

Du fait de la complexité des problèmes de segmentation qui se posent alors, une solution intermédiaire a été choisie, qui consiste à demander l'intervention de l'utilisateur pour délimiter les zones pertinentes, au sein de l'image, par un procédé d'interaction graphique.

CONCLUSION

Deux problèmes de natures différentes ont été abordés dans ce chapitre : un problème de segmentation d'images et un problème d'interprétation d'images. Les démarches analytiques que nous avons adoptées, pour définir leurs modalités de résolution, apparaissent elles-mêmes dissemblables.

Nous disposions dans le premier cas de données (procédures de segmentation) dont il convenait de définir les stratégies optimales d'exploitation. Dans le second cas, par contre, les stratégies d'exploration de l'image ont été définies a priori, et il convenait de définir la forme et la nature des données qu'elles étaient susceptibles d'exploiter.

Malgré ces différences, les deux approches nous ont permis d'ilustrer de façon convergente un certain nombre de principes fondamentaux autour desquels il nous paraît essentiel d'articuler et de poursuivre la recherche.

Le premier principe est le principe de structuration des connaissances iconiques, sous leur forme figurative et procédurale. La vérification de ce principe conditionne l'émergence de démarches structurées d'exploitation des données images, dont l'explicitation apparaît extrêmement "naturelle".

Le second principe est le principe de contrôle des modalités de l'exploration perceptuelle par la prise en compte du contexte perceptuel et conceptuel au sein duquel elle s'intègre. La vérification de ce principe implique la mise en oeuvre de stratégies indirectes d'exploitation des données images.

Le troisième principe est le principe de structuration des connaissances conceptuelles, sous leur forme figurative et procédurale. La vérification de ce principe conditionne l'émergence de démarches dualitaires d'exploitation des données conceptuelles et perceptuelles, fondées sur l'alternance entre les transitions conceptuelles (phases de pré-structuration, puis de spécialisations conceptuelles progressives) et les transitions perceptuelles nécessaires à l'expression conceptuelle (exploration de l'image).
.316.

I1 conviendrait néanmoins d'approfondir les formes exactes de représentation des connaissances les mieux adaptées à cet égard (représentation centralisée ou répartie, en particulier).

REFERENCES

(Baillet 85a)	P. Baillet et D. Brosniz : Elaboration et exploitation d'une base de connaissances de type "image" en histologie. Rapport de projet ENSIMAG, Grenoble, 1985.
(Baillet 85b)	P. Baillet : Etude bibliographique de l'élaboration et de l'exploitation d'une base de connaissances de type "image" en histologie. Rapport de DEA, Grenoble, 1985.
(Bouakaz 86)	Thèse de doctorat, Grenoble, 1986 (en préparation)
(Brugal 84)	G. Brugal : Image analysis of microscopic preparations. Meth. Achiev. Exp. Pathol. 11, 1984, 1-33.
(Chassery 83)	J.M. Chassery : Discrete convexity : definition, parametrisation, and compatibility with continuous convexity. Comp. Vis. Graph. Im. Proc. 21, 1983, 326-344.

(Chassery 84a) J.M. Chassery, C. Garbay et P. Cinquin : Segmentation d'images cytologiques : étude de méthodes. Actes IV ${ }^{\text {ème }}$ Congrès "Reconnaissance des Formes et Intelligence Artificielle", AFCET/ADI/INRIA, 1984, pp. 51-69.
(Chassery 84b) J.M. Chassery and C. Garbay : An iterative segmentation method based on a contextual color and shape criterion. IEEE Trans. on PAMI 6, 1984, 794-800.
(Garbay 79) C. Garbay : Modélisation de la couleur dans le cadre de l'analyse d'images et de son application à la cytologie automatique. Thèse de Docteur-Ingénieur, INPG, Grenoble, 1979.

(Garbay 81)	C. Garbay, G. Brugal and C. Choquet : Application of colored image analysis to bone marrow cell recognition. Anal. Quant. Cytol. 3, 1981, 272-280.
(Garbay 82)	C. Garbay : ^ color metric as a tool for cytologic image analysis. Proc. of the $1^{\text {st }}$ Int. Symp. on Medical Imaging and Image Interpretation, IEEE Computer Society Press, 1982, pp. 311-315.
(Garbay 85)	C. Garbay : Segmentation d'images : connaissances et stratégies d'analyse. Actes $v{ }^{\text {ème }}$ Congrès "Reconnaissance des Formes et Intelligence Artificielle", AFCET/ADI/INRIA, 1985, pp. 615-629.
(Garbay 86a)	C. Garbay : Image structure representation and processing : discussion of some segmentation methods in cytology. IEEE Trans. on PAMI, 8(2), 1986.
(Garbay 86b)	C. Garbay : Knowledge and strategies for image segmentation. Proc. of the VIII ${ }^{\text {th }}$ ICPR, 1986, (accepté pour communication).
(Laurent 84)	J.P. Laurent : La structure de contrôle dans les systèmes experts. TSI 3, 1984, 161-177.
(Laurière 82)	$\begin{aligned} & \text { J.L. Laurière : Représentation et utilisation des } \\ & \text { connaissances - Partie II. TSI 1, 1982, 109-133. } \end{aligned}$
(Seigneurin 84)	D. Seigneurin, C. Gauvain and G. Brugal : A quantitative analysis of the human bone marrow granulocytic cell lineage using the SAMBA 200 cell image processor - Part I : the normal maturation sequence. Anal. Quant. Cytol. 6, 1984, 168-178.

(Shortliffe 84) E.H. Shortliffe and W.J. Clancey : Medical artificial intelligence : anticipating the second decade.
In : "Readings in Medical Artificial Intelligence", (W.J. Chancey and E.H. Shortliffe, Eds), Addison-Wesley Publishing Company, 1984, pp. 463-473.
(Veillon 79)
F. Veillon : One pass computation of morphological and geometrical properties of objects in digital pictures. Signal Processing 1, 1979, 175-189.

$$
!
$$

-

.321.

Le thème central de cette thèse concerne l'approfondissement des modalités informatiques d'appréhension des images. Une analyse des moyens actuellement disponibles, de leurs limites et des améliorations envisageables a été proposée dans ce cadre et développée dans le contexte d'un point de vue particulier. Nos recherches, par leur application privilégiée au domaine médical, s'orientent en effet vers la conception de systèmes capables d'appréhender et de rendre accessibles des données numériques ou symboliques cohérentes vis à vis des références humaines d'appréciation des images.

Appréhender une image signifie en percevoir et en identifier les composantes dans leur forme propre, dans leur structure, et dans les relations qui les unissent. L'accomplissement d'une telle tâche implique la mise en oeuvre de processus perceptifs et cognitifs interagissant de façon complexe.

Les recherches dans le domaine de l'analyse informatique des images se sont tout d'abord développées dans le cadre d'une appréhension purement "perceptive" de leur contenu informatif. L'image peut en effet être considérée, dans sa représentation numérique, comme le support de traitements algorithmiques variés, dont la mise en oeuvre permet d'obtenir une description des entités thématiques qui la composent.

La perception, même purement thématique, d'une image implique néanmoins l'explicitation claire des contraintes définissant la notion d'entité et l'articulation correcte des processus susceptibles de les exploiter. Ces connaissances, à la fois factuelles et procédurales, constituent le fondement des systèmes d'analyse développés dans ce contexte.

Il paraît dès lors particulièrement pertinent d'en envisager l'exploitation par des systèmes de type expert. L'élaboration de tels systèmes implique en effet la délimitation de l'expertise disponible et l'approfondissement de ses formes possibles de représentation et d'utilisation : elle permet d'en cerner les limites et d'en percevoir les extensions nécessaires.

L'image est le vecteur d'informations perceptives et cognitives extrêmement riches, dont l'appréhension même en conditionne l'émergence. La lecture de l'image est ainsi guidée par la perception de sa structure et contrôlée par l'identification de ses composantes.

La représentation et l'exploitation de l'univers cognitif associé à l'image apparaissent ainsi essentiels au développement de systèmes robustes d'analyse : leur conception sous la forme de systèmes experts permet de percevoir cette démarche comme une extension naturelle de la précédente.

Les systèmes ainsi développés sont, à l'opposition des précédents, des systèmes spécialisés : ils exploitent en effet des connaissances propres au domaine d'application considéré.

Leurs potentialités analytiques apparaissent par contre multipliées : d'une pure perception thématique de l'image, il devient possible d'accéder à sa "compréhension", tant les structures de contrôle que les stratégies de résolution impliquées apparaissant indépendantes du degré d'abstraction des connaissances manipulées.

L'analyse des besoins, dans le domaine de l'interprétation des images médicales, nous a ainsi conduits à orienter nos recherches vers le développement de systèmes susceptibles d'exploiter et d'associer de façon cohérente l'expertise humaine développée dans ce domaine. Les limites actuelles des outils disponibles, dans le domaine de l'analyse d'image, conduisent à en développer les possibilités de contrôle et à en envisager l'exploitation par des systèmes d'obédience progressivement plus cognitive. L'aboutissement ultime de cette démarche est enfin l'analyse des modalités possibles de conception et de structuration de ces systèmes sous la forme de systèmes experts.

Il conviendrait d'approfondir cette analyse, dont nous n'avons pu qu'esquisser les fondements principaux, particulièrement en ce qui concerne la nature exacte et les modalités précises de représentation des connaissances factuelles et procédurales nécessaires.

Ses implications apparaissent néanmoins dès à présent, en ce qui concerne tant le domaine de l'Analyse d'Images que celui des Systèmes Experts.
.325.

La délimitation et l'explicitation de l'expertise procédurale actuelle conduisent en effet à développer une démarche robuste d'appréhension des problèmes posés, en analyse d'images ; l'approfondissement et la structuration de cette expertise permettent en outre d'en mieux percevoir les limites.

L'interprétation d'images constitue par ailleurs un domaine potentiel très riche d'application des systèmes experts : l'espace des connaissances qu'elle invoque et qu'elle suscite apparait comme un univers à la fois complexe et naturellement structuré, au sein duquel chaque élément possède la particularité d'être perceptible simultanément selon les dimensions spatiales et conceptuelles qui la caractérisent.

DEPNIERE PAGE DE LA THESE

AUTORISATION DE SOITENANCE

DOCTORAI D'ETAT

```
Vu les dispositions de l'article 5 de l'arręté du 16 avril 1974,
Vu les rapports de M. .Comille.bElluSSANT.
M. .Roger. Molja
M. . Seprefs.รT¢MỌ
```

M.adunc, Catherine. CARBAY est autoriséeà présenter une thèse en vue de l'obtention du grade de DOCTEUR D'ETAT ES SCIENCES.

Tioms mis arec
anis frow b le à derind de l'ustma
y-tle. 6 a pir 96

Fait à Grenoble, le - 9 Juhi :986

Le Président de l'U.S.M.G.

RESUME

Le thème central de cette thèse concerne l'approfondissement des méthodes de l'Analyse d'Images, en vue de leur application au domaine médical (images microscopiques de cellules et de tissus).

L'objectif est le développement de systèmes susceptibles d'appréhender et de rendre accessibles des données cohérentes vis à vis des références humaines d'appréciation des images.

Une présentation des formes iconiques d'expression des unités observées et de leur signification fonctionnelle est ainsi effectuée, et suivie d'une synthèse des modes humains de perception et d'interprétation des images.

Parallèlement à ceci, un chapitre est consacré à l'investigation des moyens informatiques de représentation et d'analyse des images, et à leurs limites.

La confrontation de ces différents éléments conduit à envisager la prise en compte de connaissances spécifiques du domaine d'application, à approfondir leur forme de représentation et à étudier les stratégies possibles de leur exploitation.

Les concepts introduits sont illustrés par leur application à la segmentation 'd'images cytologiques et à l'interprétation d'images histologiques (diagnostic du cancer du sein).

```
MOTS CLES : Analyse d'images - Expertise humaine - Connaissances et
    Stratégies - Diagnostic médical - Systèmes experts.
```


[^0]: La théorie gestaltiste de l'organisation délimite ainsi des règles conditionnant l'expression neurale. D'autres principes, plus globaux, agissent à cet égard, qui indiquent comment. séparer, ou organiser différentes formes les unes par rapport aux autres. Ce sont les principes de surface et de symétrie : lors de l'analyse d'éléments de tailles différentes, les plus petits sont perçus comme des objets reposant sur un fond, constitué des éléments les plus grands ; une forme symétrique est perçue comme fermée : des contours symétriques définissent ainsi une figure et l'isolent du fond.

[^1]: Ainsi, l'apprentissage progressif des formes d'expression morphologique et topographique, de leur signification sémantique et fonctionnelle, est essentiel à l'observation histologique : il permet l'émergence de stratégies descendantes de détection automatique, la réduction et l'adaptation du niveau de contrôle attentionnel selon la pertinence ou la complexité des éléments perçus.

[^2]: La prise en compte de l'ensemble de ces éléments conduit à l'élaboration d'un processus d'agrégation extrêmement simple, susceptible d'adaptation dynamique selon les variations chromatiques (mise à jour de C_{R}) et texturales (mise à jour de S) rencontrées localement lors de l'analyse de l'image (figure 5).

[^3]: Il convient par ailleurs d'intégrer et de corréler les données ("symptômes") recueillies au cours de l'exploration, et ceci induit la mise en oeuvre d'une stratégie particulière d'exploitation des faits obtenus.

 Si les faits obtenus en début d'exploration (analyse de l'architecture de l'image) permettent la formation d'hypothèses, celle-ci est guidée en retour vers la recherche d'autres éléments susceptibles de confirmer ous d'infirmer ces hypothèses (analyse des structures, puis des éléments cellulaires).

 L'obtention de symptômes peu significatifs ou contradictoires, à cet égard, suggère la reprise de l'analyse. Réciproquement, la perception de formes morphologiques inattendues est susceptible de provoquer l'émergence de nouvelles hypothèses.

