N

N
N

HAL

open science

Test des Systéemes hybrides
Tarik Nahhal

» To cite this version:

Tarik Nahhal. Test des Systémes hybrides. Informatique [cs]. Université Joseph-Fourier - Grenoble I,

2007. Francais. NNT: . tel-00320984

HAL Id: tel-00320984
https://theses.hal.science/tel-00320984

Submitted on 12 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00320984
https://hal.archives-ouvertes.fr

UNIVERSITE JOSEPH FOURIER ~ GRENOBLE 1

THESE

Pour obtenir le grade de
DOCTEUR DE L’UNIVERSITE JOSEPH FOURIER
Spécialité: INFORMATIQUE
Présentée et soutenue publiquement
par

Tarik NAHHAL
le 15 Octobre 2007

Test des Systémes hybrides

Préparée au Laboratoire Verimag
au sein de 'Ecole Doctorale Mathématiques, Sciences et

Technologies de l'Information

JURY
Thierry Jéron Président
Emilio Frazzoli Rapporteur
Thierry Jéron Rapporteur
Steven M. LaValle Examinateur
Thao Dang Directrice de these

Oded Maler Directeur de thése

UNIVERSITY JOSEPH FOURIER - GRENOBLE 1

THESIS

To obtain the grade of
UJF DOCTOR
Speciality: COMPUTER SCIENCE

Presented and Defended in public
by
Tarik NAHHAL

on Octobre, 15th 2007

Model-Based Testing of Hybrid Systems

Prepared in the Verimag Laboratory
within the Ecole Doctorale Mathématiques, Sciences et

Technologies de U'Information

JURY
Thierry Jéron President
Emilio Frazzoli Reviewer
Thierry Jéron Reviewer
Steven M. LaValle Examinator
Thao Dang Director

Oded Maler Director

Dedicace

(a mes parents)

Remerciements
Je tiens tout d’abord a remercier [’ensemble des membres du jury:

Thierry Jéron, Directeur de Recherche INRIA, pour avoir eu la
patience de lire soigneusement ce document, pour ces questions qui m’a

fournit en retour et pour sa présidence du jury.

Emilio Frazzoli, Professeur Assistant a ['Institut Massachusetts,
d’avoir accepté d’élre rapporteur de cette these.

Steven M. LaValle, Professeur Assistant a I’Université Illinois, de
m’avoir honoré en examinant ce travail.

Oded Maler, Directeur de recherche CNRS, pour son soutien pour
ce travail.

J’exprime ma plus sincére gratitude a Madame Thao Dang, ma
directrice de these, pour lintérét qu’elle a attribué a mon travail de
recherche, pour ces critiques toujours constructives et pour les nom-

breuses corrections qu’elle a apportées a toute ma production écrite.

Je tiens également a remercier ’ensemble des membres du laboratoire
Verimag et spécialement,

Nicolas Halbwachs, directeur de Verimag, pour m’avoir accueilli
dans son laboratoire et de m’avoir donné cette oportinuté de travailler

avec des chercheurs de grande qualité.

Abstract

Hybrid systems, that is, systems exhibiting both continuous and discrete
dynamics, have proven to be a useful mathematical model for various physical
phenomena and engineering systems. Much effort has been devoted to the
development of automatic analysis methods for such systems based on formal
verification. Nevertheless, the applicability of these methods is still limited
to small size systems due to the complexity of exhaustive analysis. Testing is
another validation approach, which can be used for much larger systems and
is a standard tool in industry, despite its limitations compared to algorithmic
and deductive verification. This thesis is concerned with model-based testing

of hybrid systems.

We proposed a formal framework for conformance testing of hybrid sys-
tems, which is defined according to the international standard for formal
conformance testing (FMCT). Besides the main concepts in the formal frame-
work, we addressed the problem of defining test coverage measures. We pro-
posed two novel coverage measures, which not only are useful as a criterion
to evaluate testing quality but also can be used to guide the test generation
process in order to produce test cases with good coverage. We then developed
a number of coverage-guided test generation algorithms for hybrid systems.
These algorithms are based on a combination of the ideas from robotic path
planning, equidistribution theory, algorithmic geometry, and numerical sim-
ulation. The algorithms have been implemented in a test generation tool for
hybrid systems, called HTG, which can handle high dimensional systems.
The tool has been successfully applied to treat a number of benchmarks in

control systems and analog and mixed signal circuits.

Résumé

Les systémes hybrides, systémes combinant & la fois une dynamique con-
tinue et discréte, s’avérent étre un modéle mathématique utile pour différents
phénomeénes physiques, technologiques, biologiques ou économiques. Beau-
coup d’efforts ont été consacrés a 1’élaboration de méthodes automatiques
d’analyse pour de tels systémes, basées sur la vérification formelle. Néan-
moins, 'applicabilité de ces méthodes est encore limitée aux systémes de
petite taille en raison de la complexité de 'analyse exhaustive. Le test est
une autre approche de validation, qui peut étre employée pour des systémes
beaucoup plus grands. En dépit de ses limitations comparées a la vérification

algorithmique et déductive, le test reste ’outil standard dans 'industrie.

Nous proposons dans cette thése une méthodologie formelle pour le test
de conformité des systémes hybrides, qui est définie selon la norme interna-
tionale pour le test formel de conformité (FMCT). Ensuite, nous abordons le
probléme de la définition de mesures de couverture de test. Pour cela, deux
mesures de couverture sont proposées, qui sont non seulement utiles comme
critére pour évaluer la qualité de test mais peuvent étre aussi employées pour
guider la génération de test vers une meilleur couverture. Des algorithmes
de génération de test guidés par les mesures de couverture sont proposés.
Ces algorithmes sont basés sur une combinaison des algorithmes de plani-
fication de trajectoires dans la robotique, de la théorie d’équidistribution,
de la géométrie algorithmique et de la simulation numérique. L’outil HTG
(Hybrid test generation) pour la génération de cas de test pour les systémes
hybrides implémente ces algorithmes, et a été appliqué avec succés pour
traiter plusieurs études de cas provenants de différentes domaines (circuits

analogiques et mixtes, systémes de commande, etc.).

Contents

Remerciements
Remerciements

1 Introduction
1.1 Problematics and our approach

1.2 Thesis outline

2 Modeling and conformance testing
2.1 Preliminaries L L
2.1.1 Discrete systems
2.1.2 Continuous systems
2.1.3 Hybridsystems
2.2 Hybrid automata
2.2.1 FExample: a thermostat
2.2.2 Hybrid trajectorieso
2.2.3 Reachability of hybrid automata
2.2.4 Other hybrid models
2.3 Conformance testing L.

231 Inputs

11

10
12

2.3.2 Observations 37

2.3.3 Conformance relation 38
2.3.4 Test cases and test executions 38

2.4 Related work Lo 40
3 Test coverage 43
3.1 Star discrepancy coverageo a o 44
3.1.1 Star discrepancyo 45
3.1.2 Test coverage measure 49
3.1.3 Star discrepancy estimation 51
3.14 Estimation error 93
3.1.5 Coverage estimation 95

3.2 Coverage measure using §-cover 55
3.2.1 J-cover notion 57
3.2.2 Disparity between two point sets 28
3.2.3 J-coverage measure oo ... e oL 60
3.2.4 Disparity estimation o000 65
3.2.5 Estimation erroro, 65

3.3 Summary and related worko 67
4 Test generation 69
4.1 Rapidly-Exploring Random Trees (RRTs) 69
4.1.1 Problem formulation 70
4.1.2 Abstract algorithm 72
4.1.3 Properties Lo 75

4.2 Test generation algorithm 7
4.2.1 Exploration tree construction 78

11

4.2.2 Test cases and verdicts 84

4.3 Reachability completeness 84
4.4 Related work and discussion 89
Coverage-guided generation 91
5.1 Goal state sampling L. 91
5.2 Motivating exampleso Lo 92
5.3 Coverage-guided sampling 98
5.3.1 Goal boxsampling 98
5.3.2 Reducing the lower bound 99
5.3.3 Reducing the upper bound 100
5.4 Combining with disparity-guided sampling 106
5.5 Summary and related worko 0L 110
Implementation 113
6.1 Datastructure oL 113
6.1.1 Construction of the a-tree 115
6.1.2 Addinganewpoint L. 117
6.1.3 Computing the box of aleaf 118
6.2 Main functions 119
6.2.1 Updating the coverage estimation 119
6.2.2 Sampling L 120
6.2.3 Neighborsearch 122
6.2.4 Continuous neighbor search 125
6.3 The hybrid test generation tool: HTG 128
Case studies 131
7.1 Linear systems 131

7.2 Aircraft collision L 133
7.3 Analog and mixed signal circuits 0oL 135
7.3.1 Tunnel diode circuit 137
7.3.2 Transistor amplifier 139
7.3.3 Voltage controlled oscillator 146
7.4 Delta-Sigma circuit oo 148
Conclusion 155
8.1 Contributions 155
82 Futureworko Lo 156

iv

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

2.9

3.1
3.2
3.3
3.4
3.5

3.6

A piecewise-continuous behavior. 17
A 2-state automaton. 18

A piecewise-constant behavior of the automaton in Figure 2.2 18

A set of continuous transitions starting from 23
Model of the thermostat. 25
Two different behaviors of the temperature starting at zp. . . 25
A 3-state hybrid automaton. 27
A set of hybrid trajectories (of the automaton in Figure 2.7)

starting from (q1, o). . . . - 27
Test architecture. o000 33
illustration of a sub-box J.. 45
Illustration of the boxes b~ and b™. 46
the star discrepancy notion. 47

Faure sequence of 100 points. Its star discrepancy value is 0.048. 48

Halton sequence of 100 points. The star discrepancy value is
0.05. . . . 49

C pseudo-random sequence of 100 points. The star discrep-

ancy valueis 0.1.o 50
1

LIST OF FIGURES

3.7 Thepointset P.
3.8 Theset PUQ.« . it

3.9 Disparity between the Faure and the Halton sequences is 0.06.
The points in the Faure sequence are drawn using the + sign

and those in the Halton sequence using the * sign.

3.10 Disparity between the Faure and C pseudo-random sequences
is 0.12. The points in the Faure sequence are drawn using the
+ sign and those in the C pseudo-random sequence using the

< 0

3.11 Disparity between Faure and a set P.. The points in the Faure

sequence are drawn using the 4+ sign.
3.12 A d-cover P, of the unit cube with 6 =0.12.

3.13 The set Py (drawn using *) with the §-cover reference P,. The
d-coverageof P is 0.25. L.

3.14 The set P» (drawn using *) with the J-cover reference P,. The
d-coverage of Pois 0.46. L.

3.15 Illustration of the W-zone of the box b

4.1 The RRT iteration.
4.2 Exploration by the RRT algorithm [66].

4.3 The result obtained by the simple randomized algorithm (left)
and the result obtained by the RRT algorithm (right). Each

tree contains 2000 vertices [67].

4.4 The evolution of the Voronoi diagram of a tree constructed by
the RRT algorithm [67].

4.5 Ilustration of average length of trajectory.

5.1 The hRRT generation expansion..

5.2 Coverage and disparity evolution of P* and G¥

61

LIST OF FIGURES 3

2.3
0.4
2.9
5.6
5.7
5.8
5.9

5.10
5.11

5.12

5.13

6.1
6.2
6.3

6.4
6.5
6.6
6.7

7.1
7.2

The vector field and the set of initial points. 96
Result obtained using hRRT algorithm. 97
Illustration of the boxes b~ and b™. 100
Test coverage evolution using hRRT and gRRT. 103
Result obtained using gRRT (left) and hRRT (right). 104
Result for the state spaces B (left) and B’ (right). 104
The evolution of the disparity between the set P* of visited

states and the set G¥ of goal states 105
Mlustration of the ‘controllability’ problem. 106

Test coverage of the result obtained using agRRT for Exam-

Test coverage results obtained using gRRT and agRRT for
Example 1.o 109

Result after k& = 50000 iterations, obtained using agRRT
(left: the set of visited states P¥, right: the set of goal states

GRY. 110
Data structure.o 114
A kd-tree example.o 115

A dynamic a-tree construction using midpoint splitting rule.
The result obtained for the Van der Pol system. 116

Mustration of the update of the star discrepancy estimation. . 120

Tllustration of the distance from a point to a box. 126
Incremental distance calculation technique 128
The modules of the tool. 129
Aircraft behavior in the three modes [75]. 133

System dynamics for the three modes. 134

7.3

7.4

7.5
7.6
7.7
7.8
7.9
7.10
7.11

7.12
7.13
7.14
7.15
7.16

7.17

7.18
7.19

LIST OF FIGURES

Eight-aircraft collision avoidance (50000 visited states, com-

putation time: 10 min. 135

The tunnel diode circuit (left) and the Tunnel diode charac-

teristic (right). L 137
Tunnel diode circuit phase portrait 138
Test generation results for the tunnel diode circuit 140
Transistor amplifier circuit [36]. 141
Schematic representation of a transistor. 141
The output signal voltage 144
Test generation result for the transistor amplifier. 145

Test, generation result for the transistor amplifier, zoom in the

first 0.03s. 146
Voltage controlled oscillator (VCO) circuit. 147
Automaton for an oscillation specification. 148
Variables v, and ve, projection (without perturbation). . . . 149
Variables v¢, and ve, projection. 149

A first order Delta-Sigma modulator and an example of an

input-output plot. Lo oo 150

Model of a third-order modulator: Saturation blocks model

saturation of the integrator. 151
A hybrid automaton model of the Delta-Sigma modulator. . . 152

Test generation result for the Delta-Sigma circuit. 153

List of Tables

7.1

7.2
7.3
7.4

Discrepancy results obtained for some linear systems using

gRRT and RRT. 132
Computation time of gRRT for some linear systems. 132
Equilibrium state values. 139
Technical parameters. 144

LIST OF TABLES

Chapter 1

Introduction

Hybrid systems, that is, systems exhibiting both continuous and discrete
dynamics, have proven to be a useful mathematical model for various phys-
ical phenomena and engineering systems. One typical example is a chem-
ical batch plant where a computer is used to supervise complex sequences
of chemical reactions, each of which is modeled as a continuous process.
In addition to discontinuities introduced by the computer, most physical
processes admit components (e.g. switches) and phenomena (e.g. collision)
whose most useful models are discrete. Hybrid system models arise in many
applications, such as chemical process control [69], avionics [93], robotics,
automobiles [12, 53, 13], manufacturing [83], and most recently in molecular
biology [9].

Due to the safety critical features of many such applications, formal anal-
ysis is a topic of particular interest. Recently, much effort has been devoted
to the development of automatic analysis methods and tools for hybrid sys-
tems, based on formal verification. This can be seen in a large number of
publications on the topic in the recent proceedings of HSCC Hybrid Systems:
Computation and Control, a major international conference of the domain.
The goal of formal verification is to prove that the (designed) system sat-
isfies a property. Due to the complexity and scale of real-life applications,

automatic analysis is very desirable. This is a motivation to adopt the algo-

7

8 CHAPTER 1. INTRODUCTION

rithmic approach which consists in building software tools that can analyze
automatically all the behaviors of a given system. Results in algorithmic
verification of hybrid systems resulted in a number of verification tools, such
as Coho[100] developed at University of British Columbia, Verdict [61] de-
veloped at University of Dortmund, CheckMate [30] developed at Univer-
sity of Carnegie Mellon, VeriShift [24] developed at University of Berkeley,
d/dt [15] developed at VERIMAG, MPT [63] developed at ETH Zurich,
HJB toolbox [76] developed at Stanford University. Although these meth-
ods and tools have been successfully applied to a number of interesting case
studies, their applicability is still limited to systems of small size due to the
complexity of exhaustive analysis, required by formal verification. It soon
became clear that for systems of industrial size, one needs more ‘light-weight’
methods.

Testing is another validation approach, which can be used for much larger
systems and is a standard tool in industry, despite its limitations compared
to algorithmic and deductive verification. Indeed, like simulation techniques,
testing can only reveal an error but does not permit proving the correctness of
the system. The success of the testing approaches in industry is perhaps due
to the fact that they suffer less from the problem of state explosion. Indeed,
the engineer can choose the degree of validation by changing the number of
tests. In fact, the larger number of tests are executed, the larger portion of
behaviors of the system is validated, and therefore the more confidence in
the correctness of the system we gain. This is different from the results of
the type ‘yes’ or ‘no’ provided by the formal verification methods. On the
other hand, testing can be applied to real systems, and not only on their

models.

Although testing has been well studied in the context of finite state ma-
chines, it has not been much investigated for continuous and hybrid systems.
Therefore, a question of great interest is to bridge the gap between the ver-
ification and testing approaches, by defining a formal framework for testing
of hybrid systems and developing methods and tools that help automate the

testing process, in particular test generation from specifications.

Before continuing, we discuss the relation of our work to the current re-
search in testing. Testing is obviously an activity that occupies a major
part in the development of industrial applications. The International Or-
ganization for Standardization defines the testing standards, for example
the language TTCN [54]. In research, testing is also the principal theme of
many international conferences and projects. Testing is a vast domain, the
approach we adopt in this thesis can be classified as a model-based approach,
which has been a very active research area recently. In particular, our work
addresses the problem of conformance testing with a focus on test genera-
tion using formal methods. Restricting attention to conformance testing as
opposed to testing in general means restricting consideration to functional
testing techniques (also referred to as behavioral testing, black box or specifi-
cation based testing). In functional testing, the systems under test is subject
to tests derived from the specifications only; no awareness of the structure

of the systems under test is assumed.

Let us now briefly review related work in model-based conformance testing.
The development of the first model-based testing frameworks was motivated
by digital circuit testing and is based on Mealy machines [68]. More recently,
frameworks based on other models, such as finite labeled transition systems,
were proposed (see for example [96]). These models are of asynchronous na-
ture which are appropriate for the applications in communication protocols.
Another important application area is software testing for which models,
such as flow graphs, and coverage techniques have been used [43]. Recently,
model-based testing has been extended to real-time systems. Timed au-
tomata have become a popular model for modeling and verifying real-time
systems during the past decade, and a number of methods for testing real-
time systems based on variants of this model or other similar models (such
as timed Petri nets) have been proposed (e.g., see [81, 88, 28, 81, 5, 21]).
Although the current practice of testing, especially in industry, is still em-
pirical and ad-hoc, this situation is changing, and formal testing has become
progressively accepted. This is, on one hand, due to the success of the for-
mal techniques in a number of domains (such as model-checking of digital

circuits) and, on the other hand, due to the development of commercial tools

10 CHAPTER 1. INTRODUCTION

for automatic test generation. Among these tools, we can mention: Telelogic
TestComposer (http://www.telelogic.com) for SDL models, Reactis Simulink
Tester (http://www.reactive-systems.com) for Simulink models, Conformiq
Test Generator (http://www.conformiq.com) for UML State-Chart models.

Concerning hybrid systems, model-based testing is still a new research do-
main. The paper [90] proposed a framework for generating test cases by
simulating hybrid models specified using the language CHARON. A proba-
bilistic test generation approach, similar to ours, was presented in [38]. We

devote a discussion on these approaches to Chapter 2

In the following we discuss the problematics of hybrid systems testing and

explain the main ideas of our approach.

1.1 Problematics and our approach

A number of special characteristics of hybrid systems make their testing

particularly challenging, in particular:

e Combination of the complexity in both discrete and contin-
uous aspects. While continuous systems have been well studied in
control theory and continuous mathematics, and discrete systems have
been investigated in computer science, the interaction between con-
tinuous and discrete dynamics leads to fundamental problems (such
as undecidability) which are not yet well understood or for which a

general solution is often impossible.

e Infiniteness of the state space of a hybrid system and of the
input space. In general, in order to test an open system, one first
needs to feed an input signal to the system and then check whether
the behavior of the system induced by this input signal is as expected.
When there is an infinite number of possible input signals, it is impor-
tant to choose the ones that lead to interesting scenarios (with respect

to the property/functionality to test).

1.1. PROBLEMATICS AND OUR APPROACH 11

To deal with these problematics, we take an approach that draws on ideas
from both domains, more precisely, the algorithmic analysis methodology
from computer science and methods from control theory. To model hybrid
systems, we use hybrid automata [48|. This model, which can be roughly
described as an extension of automata with continuous variables evolving
according to differential equations, is a mathematical model largely used by
computer scientists and control engineers to reason about problems related
to hybrid systems. In addition, this model is expressive enough to describe
complex hybrid phenomena arising in numerous applications, and its well-

defined semantics permits accurate interpretation of testing results.

Then, to address the hybrid systems testing problem, we propose an ap-

proach that can be summarized by the following elements:

e Formal framework for conformance testing using the hybrid
automaton model. This testing framework is defined following the
international standard "Formal Methods in Conformance Testing" (FMCT)
[95]. Tt includes the definitions of conformance relation, test cases, test

executions, etc.

e Novel test coverage measures. This is a challenging problem in
testing. Intuitively, test coverage is a way to characterize the relation
between the number and the type of tests to execute and the portion
of the system’s behavior effectively tested. The classical notions of
coverage, introduced mainly for software testing (such as statement
coverage, if-then-else branch coverage, path coverage) are unsuitable
for the behaviors of a hybrid system defined as solutions of some differ-
ential equations. We thus propose two novel coverage measures, which
on one hand reflect the testing objectives and, on the other hand, can

be efficiently computed.

e Test generation. We propose a test generation algorithm which is
based on the RRT (Rapidly-exploring Random Tree) algorithm [66, 67],
a probabilistic motion planning technique in robotics. This RRT al-

gorithm has been successful in finding feasible trajectories in motion

12 CHAPTER 1. INTRODUCTION

planning. The idea of applying RRTs to the verification of hybrid sys-
tems was previously explored, such as in |23, 59, 26]. Their relationship

with our work will be discussed in Chapter 4.

e Method for guiding the test generation process, based on the

above mentioned coverage measures.
e Development of a prototype test generation tool.

e Application of the tool to cases studies. In particular, besides
traditional applications of hybrid systems, we would like to explore a
new domain which is analog and mixed signal circuits. Indeed, hybrid
systems provide a mathematical model appropriate for the modeling
and analysis of these circuits. The choice of this application domain
is motivated by the need in automatic tools to facilitate the design
of these circuits which, for various reasons, is still lagging behind the

digital circuit design.

1.2 Thesis outline

In Chapter 2, we discuss hybrid automata 7], the modeling formalism we use
for hybrid systems. We then introduce our formal framework for conformance
testing, which includes the basic concepts (such as conformance relation, test
cases, test executions). The chapter contains the theoretical background

necessary for the subsequent developments.

Chapter 3 is concerned with the development of two test coverage mea-
sures. We are interested in test coverage measures that describe how well
the states visited during a test execution represent the reachable set. The
first coverage measure we propose is based on the star discrepancy notion,
and the second is based on the §-cover notion. We then present the methods

to compute these coverage measures.

In Chapter 4, we develop an algorithm for generating test cases from hybrid

automata. This algorithm is an extension of the RRT (Rapidly-exploring

1.2. THESIS OUTLINE 13

Random Tree) algorithm [65] to hybrid systems. An important property of

this algorithm, namely probabilistic completeness, is then discussed.

In Chapter 5, in order to rapidly achieve a good coverage quality, we de-
velop a method for guiding the test generation algorithm using the coverage

measures.

The goal of Chapter 6 is to show how to implement the abstract algo-
rithms introduced in the previous chapters. This can be seen as a concrete
realization of these algorithms. We also briefly present the prototype test
generation tool that we call HT'G. The tool provides automatic test gener-

ation from hybrid automata.

Chapter 7 is devoted to a number of case studies treated using the tool
HTG. These case studies come from control applications and analog and
mixed signal circuits. To illustrate the performance of our test generation
algorithms, some linear systems (with up to 100 continuous variables), which
are randomly generated, were treated. The experimental results shows the

applicability of our approach to high dimensional systems.

Each of the above chapters also includes a discussion of related work. The
concluding chapter summarizes the contributions of the thesis and suggests

future research directions.

For the best understanding of this thesis, the reader is encouraged to follow
chapter by chapter. In particular, Chapter 2 contains important definitions

and notations which are used throughout the thesis.

14

CHAPTER 1.

INTRODUCTION

Chapter 2

Modeling and conformance

testing

Hybrid systems are recognized as being appropriate high-level mathematical
models for describing physical systems and phenomena with mixed contin-
uous and discrete dynamics. By combining discrete event systems and con-
tinuous systems (defined by differential equations), they provide a powerful

modeling tool for a very wide variety of complex systems.

As an example of hybrid systems, consider a digital engine controller in a
car, which has to interact with the physical processes in the engine as well as
with the events generated by the driver. The second example, is the computer
controlled systems where a computer (which is fundamentally a finite discrete
state machine) is used to control a physical process (which often can be
modeled as continuous-time system). The increasing integration of such
controllers results in highly complex system involving both continuous and

discrete event dynamics.

The structure of this chapter is as follows. The first part gives some math-
ematical preliminaries in dynamical systems, which are useful for describing
the main components of hybrid systems. Next, we introduce hybrid au-
tomata, the model we use in this thesis. We also present the important

reachability notions, necessary for the development of our testing framework
15

16 CHAPTER 2. MODELING AND CONFORMANCE TESTING

and briefly review other hybrid models in the literature. The second part
of this chapter is devoted to conformance relation for hybrid automata and

important elements of conformance testing.

2.1 Preliminaries

We introduce in this section the basic definitions needed for describing be-
haviors of dynamical systems. Intuitively, a dynamical system describes the
evolution of a state over time. Based on the type of their state, dynami-
cal systems can be classified into: continuous systems, discrete systems and

hybrid systems.

Throughout this thesis we will use a time domain 7 = R*.

Definition 1 (Time interval sequence). A time interval sequence is a se-
quence of intervals {lo, I1, ..., IN}, finite or infinite (i.e. N can be 00), such
that

e Forallk < N, I, = [TkaTllJ where Tk”Tlé S

o For all k, 7, < 7, = Tp41 (that is, the right endpoint T]; of the interval
Iy, coincides with the left endpoint ;11 of the interval Iyyq.

o If N < oo, then either In = [Tn,TN] or IN = [Tn, TN)-
As we will see later, a time interval sequence will be used to define the
time horizon over which the state of a hybrid system evolves.

Definition 2 (Temporal behavior). A temporal behavior over a topological
space S is a partial function §: T — S whose domain of definition is an

interval [0,7) for some r € T U{oc0}.

We call r the metric length of 8 and [is said infinite if r = oco.

Definition 3 (Piecewise-continuous behavior). A temporal behavior [is
piecewise-continuous if it admits a time interval sequence {Io, I1, ..., In} such

that for every k < N, (8 is continuous on the interval Iy.

2.1. PRELIMINARIES 17

Figure 2.1 shows an example of piecewise-continuous behaviors. Note that
a piecewise-constant behavior is a special case of piecewise-continuous be-

haviors where (8 is constant on every time interval [j.

.

xr

t

Figure 2.1: A piecewise-continuous behavior.

2.1.1 Discrete systems

A discrete system is a dynamical system where its state takes values in a
countable or finite set @ = {q1,¢2,...}. We often use ¢ to denote the state
of such systems. For example, a light switch is a dynamical system the state
of which takes on two values, {ON,OFF}. In the following, we focus on
automata without input and output, a simple class of discrete systems which

can be used to describe the discrete structure of a hybrid system.

Definition 4 (Automaton). A finite automaton is M = (Q,) where

e () is a finite set of states.

e 0 C O x Q is a transition relation which describes how the system may

evolve.

An example of finite automaton with two states is given in Figure 2.2, and
the set of its states is Q = {q1,q2}.

18 CHAPTER 2. MODELING AND CONFORMANCE TESTING

q1 q2

Figure 2.2: A 2-state automaton.

Executions of an automaton. Given an initial state ¢ € @, an execution
of M is a sequence o : N — @ such that 0(0) = ¢ and for every k > 0,
olk+1)€d(o(k)).

Notice that the executions of such automata can be non-deterministic,
since the transition relation indicates a set of possible next states rather
than a unique state. Since the definition of executions of an automaton
does not involve real metric time, and thus the time lapses between the
states in an execution are not specified. Given an execution o, we can
associate with it an infinite number of piecewise-constant behaviors of the
form B :7 — Q. Figure 2.3 illustrates a piecewise-constant behavior of the

automaton in Figure 2.2.

q2 1 1

q1 — [‘	
Il Il

| |
| |
| |
| |
| |
1 1

t

Figure 2.3: A piecewise-constant behavior of the automaton in Figure 2.2

2.1. PRELIMINARIES 19

2.1.2 Continuous systems

A continuous system is a dynamical system the state of which take values in

R™ for some n > 0, and n is called the dimension of the system.

Definition 5 (Continuous system).

A continuous system is C = (X, f) where

o X =R" is the state space.

o f: X — R” is a continuous vector field.

The behavior of the system is governed by the following differential equa-

tion:

&(t) = f(x(t)) (2.1)

where x € X is the state of the system.

Trajectories of a continuous system. A trajectory of C starting from
x € X is a continuous behavior £, : 7 — X such that &, is the solution
of (2.1) with initial condition z(0) = z. Given two states z, 2’ € X, we say
that o’ is reachable from x in time ¢ < oo if 2/ = &,(t). We denote this by

13 /
r — XT.

We assume that f is globally Lipschitz in x, which guarantees the existence
and uniqueness of solutions to (2.1) for every initial condition in X' [52]. The
continuous system of Definition 5 is deterministic in the sense that from a

given state it generates a unique trajectory.

In addition to continuous systems without input, for testing purposes, we

are interested in continuous systems with input.

Definition 6 (Continuous system with input). A continuous system with
input is C,, = {X, U, f} where X C R" is the stale space of the system and
U C R™ is the input set. The behavior of the system is described by the

following differential equation:

2(t) = f(x(t), u(t)) (2.2)

20 CHAPTER 2. MODELING AND CONFORMANCE TESTING

where x € X s the state of the system and u € U is the input. We assume a
set U of admissible input functions consisting of measurable functions of the
formu:T — U.

Trajectories of a continuous system with input. A trajectory of C,
starting from a state € X under a given input u: 7 — U is a continuous
behavior &;,, : T — X such that &, ,,(t) is the solution of &(t) = f(z(t), u(t))

with the initial condition z(0) = x.

We assume that the vector field f is globally Lipschitz in x and continuous
in w. This assumption guarantees the existence and uniqueness of the solu-

tion of the differential equation (2.2) for a given input function u € U [45, 52].

Notice that the behavior of a continuous system with input is non-deterministic.
For a given initial condition z, each admissible input function u generates
a different solution to (2.2). As a consequence, under all admissible input

functions, the system produces a dense set of trajectories.

2.1.3 Hybrid systems

A hybrid system is a dynamical system where part of the state takes values
in R™ while the other part takes values in a finite set. For example, a
combination of an analog circuit and a switch is a hybrid system: one part
of the state (namely the state of the analog circuit) is continuous, while the
other part (namely the state of the switch) is discrete. In the following,
we describe hybrid automata [11, 47, 55|, the model that we use in this
work. The motivation for choosing this model is that this model and a
number of its variations have become the standard models, which are largely
used by the researchers in the hybrid systems community, for both control
design and verification purposes. Another reason is that this model is rich
enough to describe a wide class of hybrid systems and, moreover, it provides
a framework suitable for the conformance testing problem which we will

tackle in the next chapters.

2.2. HYBRID AUTOMATA 21

2.2 Hybrid automata

A hybrid automaton is an automaton augmented with continuous variables.

Definition 7 (Hybrid automaton). A hybrid automaton is a tuple
A= (X,Q,F,T,G,R) where

o X C R™ is the continuous state space. We denote by V(A) the set of

continuous variables of A.
e Q is a finite set of locations (or discrete states).
o FE is a set of transitions.

o FF={F, | q € Q} such that for each q € Q, F, = (fy,Uq, Wy) defines

a differential equation:

w(t) = fo(a(t), u(t), w)

where w € W, C R is the parameter vector, and u € U, is an ad-
missible input function of the form u : Rt — U, C R™. During the

evolution of the system, the parameter vector w is constant®.
o 7T ={7,CR" | g€ Q} is a set of staying conditions.

e G=1{G. | e € FE} isaset of guards such that for each discrete transition
ec I, G. C1I,.

e R ={Re | e € E} is a set of reset maps. For each e = (¢,¢') € E,

Re: Gy — 2l defines how x may change when A switches from q to
/

q.
A hybrid state is a pair (¢, x) where ¢ € @ and = € X. The hybrid state
space is § = @ x X. The initial state of the automaton is denoted by

(Sinit, Tinit)- A state (g, x) can change in two ways:

L As we will see in Chapter 7 where we treat a number of case studies, the parameters

are useful in many practical applications, such as electronic circuits.

22 CHAPTER 2. MODELING AND CONFORMANCE TESTING

e By continuous evolution: in location ¢ the continuous evolution of x is

governed by the differential equation &(t) = fq(x(t), u(t), w).

e By discrete evolution: if there exists a transition e = (¢,¢') € F and
x € Ge, then the transition e is enabled, the system can switch from
location ¢ to ¢’ and the continuous variables is assigned to a new value
' € Re(z).

It is important to note that this model allows to capture non-determinism in
both continuous and discrete dynamics. This non-determinism is useful for
describing disturbances from the environment and imprecision in modelling

and implementation.

We assume the existence and uniqueness of solutions of these differential
equations in the model. Let &; ., (-) be the solution of the differential equa-
tion at location ¢ with the initial condition x, parameter w and under the
input wu.

Definition 8 (Continuous transition). Given a positive real number h > 0

. . . -);h . .
and an admissible input function u(-) € Uy, (¢,) wl) (q,2') is a continuous
transition at the location q of the hybrid state from (q,x) to (q,2'), if and

only if o' = &g uw(h) and for all t € [0,h] : &4 yw(t) € Iy

In other words, 2/ is reached from z under the input u(-) after exactly
h time, and we say that u(-) is admissible starting at (g,x) for h time.
Figure 2.4 illustrates some continuous transitions, each of which results from

applying a different input for h time.

Definition 9 (Discrete transition). Given a transition e = (q,q¢') € E,

(q,7) 5 (¢',2') is a discrete transition iff x € G, and x' € Re(z).

We say that (¢, 2') is reachable from (g, z) and the discrete transition e is
admissible at (q,x). Unlike continuous transitions, discrete transitions are

instantaneous.

It is customary to represent graphically a hybrid automaton by a directed
graph whose vertices represent the locations and edges represent the transi-

tions. We write the staying conditions and the differential equations inside

2.2. HYBRID AUTOMATA 23

Figure 2.4: A set of continuous transitions starting from x.

the vertices. With the edges we associate the transition guards and the reset

maps.

2.2.1 Example: a thermostat

We use the well-known thermostat example in the hybrid system litera-
ture [11] to illustrate the above notions. The thermostat consists of a heater
and a thermometer which maintain the temperature of the room in some de-
sired temperature range. The lower and upper thresholds of the thermostat
system are set at x,, and z,s such that x,, < xp;. The heater is maintained
on as long as the room temperature is below zjs, and it is turned off when-
ever the thermometer detects that the temperature reaches xjps. Similarly,
the heater remains off if the temperature is above x,, and is switched on
whenever the temperature falls to z,,. In practical situations, exact thresh-
old detection is impossible due to sensor imprecision. Also, the reaction time
of the on/off switch is usually non-zero. The effect of these inaccuracies is
that we cannot guarantee switching exactly at the nominal values z,, and
xas- As we will see, this causes non-determinism in the discrete evolution of

the temperature.

Formally we can model the thermostat as a hybrid automaton shown in
Figure 2.5. The two operation modes of the thermostat are represented by
two location ‘on’ and ‘off’. The on/off switch is modeled by two discrete

transitions between the locations. The continuous variable z models the

24 CHAPTER 2. MODELING AND CONFORMANCE TESTING

temperature, which evolves according to the following equations.

e If the thermostat is on, the evolution of the temperature is described
by:
= fi(z,u)=—z+4+4+u

e When the thermostat is off, the temperature evolves according to the

following differential equation:
T = fo(x,u) = —x+u

The second source of non-determinism comes from the continuous dynamics.
The input signal u of the thermostat models the fluctuations in the outside
temperature which we cannot control. Figure 2.6 (left) shows this continuous
non-determinism. Starting from the initial temperature zg, the system can
generate a “tube” of infinite number of possible trajectories, each of which
corresponds to a different input signal u. To capture uncertainty of sensors,
we define the first guard condition of the transition from ‘on’ to ‘off’ as an
interval [zp; — €, xps + €] with € > 0. This means that when the temperature
enters this interval, the thermostat can either turn the heater off immediately
or keep it on for some time provided that z < xps + €. Figure 2.6 (right)
illustrates this kind of non-determinism. Likewise, we define the second
guard condition of the transition from ‘off’ to ‘on’ as the interval [z, —
€, Tm + €]. Notice that in the thermostat model, the temperature does not
change at the switching points, and the reset maps are thus the identity

functions.

Finally we define the two staying conditions of the ‘on’ and ‘oft” locations
as x < xp + € and © > =z, — € respectively, meaning that the system can

stay at a location while the corresponding staying conditions are satisfied.

2.2.2 Hybrid trajectories

We have defined the syntax of hybrid automata. Their semantics is ex-

pressed by the notion of hybrid trajectories that we discuss in the following.

2.2. HYBRID AUTOMATA 25

T €zpm —e,xpm+e
On M M Off
T = fi(z,u) T = folx,u)
T <zxp+e€ T > Ty — €
J T E [Tm —€,Tm + €

Figure 2.5: Model of the thermostat.

T te

Th
Tar—€

-

Figure 2.6: Two different behaviors of the temperature starting at xg.

26 CHAPTER 2. MODELING AND CONFORMANCE TESTING

Throughout this section, we consider a hybrid automaton as in Definition 7,
denoted by A.

Definition 10 (Hybrid trajectory). A hybrid trajectory of the hybrid au-
tomaton A starting from a state (qo,x0) is a triple (Z,q,x) consisting of a
time interval sequence T = {1y, I1,...,In} and a piecewise-constant behavior

q; : I; — Q and a piecewise-continuous behavior x; : I; — R™, such that :
o Initially, ;(0) = qo and x;(0) = xo

e Discrete evolution: for all i, e = (¢i(7]), ¢iv1(Tiv1)) € E, xi(7]) € Ge
and xiy1(Tip1) € Re(xi(7)))

o Continuous evolution: for all i and for all t € I;, ¢;(t) = q¢i(13) = ¢,
and x;(+) is a solution of the differential equation at the location q with
x(t) € Zy for all t € I;.

The number N of the time intervals is called the logical length of the
trajectory. Figure 2.7 shows another example of hybrid automata. This
example has 3 locations ¢i, ¢2, ¢3. From each location g; we have a discrete

transition (g;, ¢;) such that j # i.

Figure 2.8 shows a projection on the 2-dimensional space X C R? of some
hybrid trajectories of this hybrid automaton. We denote by G;; the guard
of the transition (g;,q;). The guards Gi2, Gi3, G2z and Gz; are the shaded
regions. All the locations have the same staying set which is the bounding
box. The solid lines show the continuous evolution and the dashed lines show

the discrete evolution.

As we can see from the figure, starting from the initial state (¢1,xo) the
system can generate a set of infinite number of hybrid trajectories. For
instance, we consider the hybrid trajectory starting from (q1, o). At (g3, x3),
this trajectory has taken two consecutive discrete transitions: (q1,¢2) and

(92,q3)-

We also introduce the notion of discrete paths which will be used later in
the definition of the distance between two hybrid states. For brevity, we

often say ‘path’ instead of ‘discrete path’.

2.2. HYBRID AUTOMATA 27

x € Gog/a' := Ras(x

Figure 2.7: A 3-state hybrid automaton.

i
X
T, Gz
I@*—"'" _______)
- !
: » ! T
I.’f Gia d ;
,:r P] Goy
s e It
5 T
Ga a3

Figure 2.8: A set of hybrid trajectories (of the automaton in Figure 2.7)

starting from (q1, xo).

28 CHAPTER 2. MODELING AND CONFORMANCE TESTING

Definition 11 (Path). We define a discrete path as a sequence of consecutive
discrete transitions {(qo,q1), (q1,42), -, (qn-1,9Nn)} such that for each i €
{0717" : aN_ 1}7 (Qi>Qi+1) €L

2.2.3 Reachability of hybrid automata

The reachable set from a given set Sy of initial states by the hybrid automa-
ton A can be defined as the set of all the states visited by the trajectories

starting from states in Sy. For clarity, we first define a reachable state.
Definition 12 (Reachable state). Let (q,2) be a hybrid state of the hybrid
automaton A. We say that the hybrid state (¢',2') is reachable from (q,x) if
there exists a hybrid trajectory (1,q,x) where T = {Iy, I1,...,IN} such that
e go =q and z9(0) = z, and
e Jie{l,2,....,.N}:qi=q N Ftel :zt)=2a"

In other words, (¢’,2') is reachable from (q,z) if there exists a hybrid

trajectory that starts at (¢,x) and visits the state (¢/,2’). We denote this
by (¢,2) — (¢, 2').

We now proceed to define a reachable set.

Definition 13 (Reachable set). e Given a state (q,x), the reachable set
of the hybrid automaton A from (q,x) is

Reach((q,2)) = {(d',2") € @ x X | (¢,z) — (¢, 2)}.

o Given a set F of states, the reachable set of the hybrid automaton A

from (q,x) is
Reach(F) ={(¢d,2") e Q x X | Iz € F: (¢,x) — (¢,2')}.
Blocking behaviors

The hybrid automaton model we are considering may have blocking trajec-

tories (which are impossible in physical systems in practice) In this work, we

2.2. HYBRID AUTOMATA 29

consider only blocking behaviors which are caused by discrete transitions.
A trajectory is blocking if it reaches a hybrid state (g, z) from which it is
impossible to continue neither by continuous dynamics (because the current
trajectory is going out of the staying set) nor by discrete dynamics (because
at the current state none of the transitions is enabled). This means that

x ¢ Iy and x ¢ Gg) for all ¢,¢" € Q.

To illustrate, again we use the thermostat example (see Figure 2.5) and
consider the following situation. Suppose that there is a trajectory that
reaches a hybrid state (on,zs) where x5 = xp + €, and from this state the
thermostat is turned off. However, due to some setup error by a careless
user, the threshold x,, — € > zj; + €, and the trajectory at (on,zs) cannot

continue further.

An automaton is non-blocking if from every (g, x) such that « € 7, there

are no blocking trajectories.

Zeno behaviors

A Zeno behavior is a piecewise-continuous behavior having an infinite logical
length and a bounded metric length. In other words, such a behavior can
make an infinite number of transitions in a bounded time interval. For
example of the thermostat model, if the thresholds z,, and s are chosen
such that the intervals [z, —€, z, +¢€] and [xyr —€, 257 +€] overlap, then from
the points in the intersection of these intervals the thermostat can make an

infinite number of switchings between the two modes in finite time.
An automaton is non-Zeno if it does not admit Zeno behaviors.

Properties of blocking and Zeno behaviors and conditions for their exis-
tence are important topics in hybrid systems reseach, and the article [37]

and reference therein can be used for further reading.

We emphasize that in the rest of the thesis, we assume that the hybrid

automata that we treat are non-Zeno and non-blocking.

30 CHAPTER 2. MODELING AND CONFORMANCE TESTING
2.2.4 Other hybrid models

Before continuing, we briefly review some other hybrid models.

A class of hybrid models, mostly developed by computer scientists, can
be seen as an extension of traditional finite-state automata with progres-
sively more complex continuous dynamics. Timed automata [10] can be
viewed as a very restricted class of hybrid automata in which the deriva-
tive of all continuous variables is 1. Models with more complex continuous
dynamics are phase-transition system [73]|, multirate timed automata [6],
piecewise-constant derivative systems PCD [14], integration graphs |58], and
rectangular hybrid automata [85] In these models, essentially, the guard and
staying sets are polyhedra and the vector fields are constant in every loca-
tion. A reason for focusing on these classes of hybrid automata is that the
verification problem for them are solvable or semi-solvable, which allows to
develop efficient tools, e.g. Kronos [102] and Uppaal [64] for timed automata,
HyTech [49] and PHAVer [41] for linear hybrid automata? (hybrid automata
where the continuous dynamics are described by constant derivative inclu-
sions of the form Az < b). In [6] it was shown that the reachability problem
for general hybrid automata is undecidable, i.e. there is no general algorithm

for any hybrid automaton.

For models with more complex continuous dynamics described by ordinary
differential equations, exact analysis is not possible, and approximations have
been used. The research along this line has led to a number of methods and
tools, such as Coho [100], CheckMate [30|, d/dt [15], VeriShift |24], HYSDEL
[94], MPT [63], HIB toolbox [76].

On the other hand, other hybrid models were developed by control theorists
in order to address their control design problems. Special cases of the hybrid
automata considered here include switched systems [77]|, complementarity
systems [97], mixed logic dynamic systems [46]. In addition, we can mention

some model which are more general than the hybrid automata considered:

2Linear hybrid automata should not be confused with hybrid automata where contin-

uous dynamics are described by linear differential equations.

2.3. CONFORMANCE TESTING 31

impulse differential inclusions [16] (which allow more general differential in-
clusions), General Hybrid Dynamical Systems [25] (where the continuous
state can take values in manifolds), and hybrid input/output automata 72|,

which, among other things, allow infinite dimensional continuous state.

2.3 Conformance testing

Conformance testing provides a means to assess the correctness of an im-
plementation with respect to a specification by performing experiments on
the implementation and observing its responses. When the specification is
described by a formal model, the emerging international standard "Formal
Methods in Conformance Testing" (FMCT) [95] provides a framework on
how to perform conformance testing, which includes terminology, abstract
concepts,such as conformance, test cases, test execution, test generation, and
the requirements on these concepts. A testing approach which is based on a

formal model is called a model-based testing approach.

Depending on the type of formal models, various frameworks can be de-
veloped for conformance testing. In this work, following the spirit of model-
based conformance testing, we are interested in developing a conformance
testing framework for continuous and hybrid systems, using the hybrid au-

tomaton model.

The rest of this section is structured as follows. In the first part of this
section, we define the main concepts of conformance testing and, in partic-
ular, the notions of inputs and observations. In the second part, we define

conformance relation, test cases and test executions.

Our testing goal is to make statements about the conformance relation
between the traces of an implementation or, more generally, a system under
test (SUT) and a specification. The specification is formal and, as mentioned
earlier, it is modeled by a hybrid automaton. The conformance will be
defined as a relation ~C = x HA where Z is a set of systems under test of
interest, and HA is a set of hybrid automata modeling the specifications of

interest. Notice that the systems under test are physical systems, but it can

32 CHAPTER 2. MODELING AND CONFORMANCE TESTING

be assumed that all the systems under test in = can be described by a class
of formal model, which is a set HA; of hybrid automata. It is important
to note that we assume that a model for each system under test in = exists
but do not assume that we know it. This assumption enables us to include
the system under test in our formal framework and to express formally the
conformance relation ~ between the models of the systems under test and
the specifications, that is ~ C HA; x HA. Note that here we use the same
notation & for the relation between the real SUT and the specification and
that between the model of the SUT and the specification.

A gystem under test Sy € = is said to conform to a specification A € HA
if and only if the model Ay € HAg of SUT is related to A by ~, that is,
As ~ A.

The system under test SUT often operates within some environment. In
our testing framework, a tester plays the role of the environment and it
performs experiments on the SUT in order to study the conformance relation
between the SUT and the specification. Such an experiment is called a test,
and its specification is called a test case. A set of test cases is called a test
suite, and the process of applying a test to a system under test is called a

test execution.

The tester works as follows (see Figure 2.9). It emits the control inputs to
the system under test and measures the observation sequences in order to
produce a verdict v € {P, F, I} where P means ‘pass’ (the observed trace is
allowed by the specification), F' means ‘fail’ (the observed trace is not allowed
by the specification), and I means ‘inconclusive’ (neither a ‘pass’ nor a ‘fail’
verdict can be assigned). We discuss the problem of how to perform test
executions and derive verdicts in the end of this section. We continue by

giving a detailed description of conformance relation.

As mentioned earlier, let the specification be modeled as a hybrid automa-
ton A4 and the system under test SUT by another hybrid automaton As.
In the following, for brevity, when the context is clear, we often say ‘the
system under test’ to mean the automaton Ag (which is a model of the real

system under test). To define the conformance relation, we need the notions

2.3. CONFORMANCE TESTING 33

C
Tester System Under Test
%)
ve{P F I}

Figure 2.9: Test architecture.

of inputs and observations.

2.3.1 Inputs

An input of the system which is controllable by the tester is called a control
imput; otherwise, it is called a disturbance input. We consider the following

inputs.

Continuous inputs

All the continuous inputs of the system are assumed to be controllable. Since
we want to implement the tester as a computer program, we are interested
in piecewise-constant continuous input functions (since a computer cannot
generate a function from reals to reals). Hence, a continuous control action
(tg, h), where 4, is the value of the input and h is the duration, specifies
that the system continues with the continuous dynamics at location ¢ under
the input u(t) = u, for exactly h time. We say that (ug, h) is admissible at
(g,) if the input function u(t) = u, for all t € [0, k] is admissible starting
at (¢, x) for h time.

Discrete inputs

The discrete transitions are partitioned into controllable and uncontrollable
discrete transitions. Those which are controllable correspond to discrete con-

trol actions, and the others to discrete disturbance actions. The tester emits

34 CHAPTER 2. MODELING AND CONFORMANCE TESTING

a discrete control action to specify whether the system should take a con-
trollable transition (among the enabled ones) or continue with the same con-
tinuous dynamics. In the latter case, it can also control the values assigned
to the continuous variables by the associated reset map. For simplicity of
explanation, we will not consider non-determinism caused by the reset maps.
Hence, we denote a discrete control action by the corresponding transition,

such as (q,¢").

In this work, we make the following two assumptions about the inputs:

e The discrete transitions are instantaneous, which means that their ex-

ecutions do not take time.

e Continuous control action are of higher priority than discrete actions.
This means that after a continuous control action (a4, h) is applied, no
discrete transitions can occur during h time, i.e. until the end of that
continuous control action. This assumption is not restrictive, from a
modeling point of view. As we shall see later, by considering all the
possible values of h we can capture the cases where a discrete transition

can occur before the termination of a continuous control action.

e When two or more discrete disturbance actions are enabled at the same

time, the order of their executions is non-deterministic.

Definition 14 (Admissible input sequence). For a state (q,x), a sequence
of input actions w = g, L1, ...,k 15 admissible at (q,x) if the following con-

ditions are satisfied:
e 1y is admissible at (q,x),
Li—1

o for eachi=1,... k, let (g;,x;) be the state such that (¢i—1,xi—1) —

(Gi,x;), then v; is admissible at (q;, ;).

The sequence (qo, o), - .., (qr,) s called the trace starting at (q,x) under
w and is denoted by 7((q,x),w).

2.3. CONFORMANCE TESTING 35

Recall that (gi—1,zi—1) e (gi, ©;) means that (g;,x;) is reached after
applying the input ¢;_; to the state (¢;_1,z;_1). We use the notation (¢, z) >

(¢',2") to indicate that (¢’,2’) is reachable from (¢, z) after w.

Example. We examine again the thermostat example, introduced in the
previous section. We now modify the meaning of the input u in the differ-
ential equations as follows: v models a continuous control input rather than
a disturbance from the environment. At some state s = (¢, z) a sequence of
two input actions w = ug,t; where 9 = (4, h), t2 =(on, off). Both of these
inputs are control actions. We suppose that ¢ =on and the temperature
x < xpr + €. Thus, the input action ¢ is admissible at (g, z) if during h
time, under the input u(t) = @, the temperature x does not reach zy; + €,
that is the staying condition of the location on is still satisfied, then we say
that the input action ¢¢ is admissible at (g, x). After ¢o, the new state of the

thermostat is 8’ = (on, 2’) with 2’ > z. At the state ¢/,

o if ' < xps — €, then the transition from the location on to off is not
enabled, which means that the discrete control action t2 =(on, off) is

not admissible.

o if ' > xp; — ¢, then the control action 1o =(on, off) is admissible at

s" and the sequence w is said to be admissible at s = (¢, x).

By the assumption about the inputs, uncontrollable discrete transitions
cannot occur during a continuous control action. However, they can occur
between control actions. Hence, the result of applying a control action is
non-deterministic. In the following, we define a set of all possible traces that
can be generated by applying a sequence of control actions. Again, since we
are only interested in non-blocking behaviors, we first define an admissible

sequence of control actions.

Given a state (q,z) and a control action ¢, let o be a disturbance input
sequence such that ¢ @ o, where @ is the concatenation operator, is an

admissible input sequence at (q,z). The sequence o is called a disturbance

36 CHAPTER 2. MODELING AND CONFORMANCE TESTING

input sequence admissible after the control action c. We denote by X(c, (¢, x))

the set of all such disturbance input sequences.

We now extend this notion to a sequence of control actions. To do so,
we need to know which disturbance inputs are admissible after each control
action. This means that we need to know the successors after each control

action. We first consider a sequence of two control actions w. = ¢gcy.

When taking into account the occurrences of all admissible disturbance
input sequences after the control action ¢y, the set of all possible successors

of (g, x) after applying cy is:
T(C(h (q7$)> = {(q/al‘/) | Jo € Z(607 (Qa l‘)) : (Qa l‘) % (q,ax/)}‘

We recall that (¢,2) = (¢/,2') indicates that (¢’,2') is reachable from
(¢, x) after the input sequence o. It should be noted that if the first ¢ is
admissible at (g, x) then Y(co, (¢,x)) is not empty.

We use the same notation X for the set of all disturbance input sequences

that can occur after the control action sequence w. = ¢y cy:

E(wc’ (qlv .13,)) = U E(Cla (qlv .’L’,))

(¢’ ")€Y (co,(g,x))

Therefore, we can now determine the set of all input sequences (containing
both control and disturbance actions) that can possibly occur when we apply
the control sequence w. = ¢oc1. We denote this set by X (we, (¢, z)) and call
it the set of all admissible input sequences corresponding to the execution of

we = ¢p c1 starting at (g,). This set can be defined as follows:

Y(we, (¢,2)) = {co © 00 D c1 ® o1 | 00 € Xco, (¢, 7))
A3, 2" € Y(co, (g, 7)) : o1 € Xer, (¢,2")}.

For a sequence w, of more than two control actions, the set ¥(we, (¢, x))
can be defined similarly.

Definition 15 (Admissible control action sequence). o A control action

sequence w,. is admissible starting at (q, z) iff X(we, (¢, x)) is not empty.

2.3. CONFORMANCE TESTING 37

o The set of traces starting at (q,x) after an admissible control action

sequence w 1s:
Tr((g;x),w) ={7((¢,%),0) | o € E(w, (¢;®))}.

Intuitively, this means that an admissible control action sequence, when
being applied to the automaton, does not cause it to be blocked. We denote
by Sc(A) the set of all admissible control action sequences for the hybrid
automaton A starting at an initial state (Gnit, Tinit). In the definition of the
conformance relation between a system under test A and a specification A,

we will assume that

e All the controllable inputs of the specification A are also the control-

lable inputs of the system under test As.

e The set of all admissible control action sequences of A is a subset of
that of Ajg, that is
Sc(.A) C Se (AS).

This assumption assures that the system under test can admit all the

control action sequences that are admissible by the specification.

2.3.2 Observations

We use the following assumptions about the observability of the hybrid au-
tomata A and As,:

e The locations of the hybrid automata A and A, are observable.

e We assume a subset V,(.A) and V,(As) of observable continuous vari-

ables of A and Ay respectively.

e V,(A) C V,(A,), which means that an observable continuous variable

of A is also an observable variable of Aj.

[| Since not all the continuous variables are observable, we need the following

projection operator. The projection of a continuous state x of A on the

38 CHAPTER 2. MODELING AND CONFORMANCE TESTING

observable variables V,(A) is denoted by m(z, V,(A)). We can also extend

this operator to a set of states.

Definition 16 (Observation). A pair (¢, m(z,V,(A)), where q is a location

and x is the continuous state of the automation A, is called an observation.

The projection can be then defined for a trace and a set of traces as follows.
Given a trace: 7 = (qo,0), (¢1, 1), (g2, x2) . . ., the projection of 7 on V,(A)
is

(7, Vo(A)) = (0, m(20, Vo(A))), (a1, m(21, Vo(A))), (g2, w(22, Vo(A))) .- ..

Definition 17 (Observation sequence). Let w be an admissible control ac-
tion sequence starting at an initial state (Qinit, Tinit) of A. The set of ob-

servation sequences associated with w is So(A,w) = {n(r,Vo(A)) | 7 €

Tr((Ginits Tinit),w) }-

The extension of the framework to a set of initial states will be discussed

later.

2.3.3 Conformance relation

We are now ready to define the conformance relation between the system

under test SUT and the specification.

Definition 18 (Conformance). The system under test As is conforms to the
specification A, denoted by A~ As, iff

Vw € Se(A) : m(So(As,w), Vo(A)) C So(A,w).

Note that we have assumed earlier that S¢(A) C Se(As), that is a control

action sequence which is admissible for A is also admissible for Aj.

2.3.4 Test cases and test executions

In our framework, a test case is represented by a tree where each node is asso-

ciated with an observation and each path from the root with an observation

2.3. CONFORMANCE TESTING 39

sequence. Each edge of the tree is associated with a control action. The
tester performs experiments on A; in order to study the relation between A

and As. A physical test ezecution can be described by the following points:

e The tester applies a test ¢ to the system under test S;.
e [t measures and records a number of observations.

e The observations are measured at the end of each continuous control

action and after each discrete (disturbance or control) action.

This procedure is denoted by exec((,Sy:) which leads to an observation
sequence, or a set of observation sequence if multiple runs of { are possible
in case non-determinism is present). In the following, we focus on the case

where each test execution involves a single run of a test case.

It is clear that the above test execution process uses a number of implicit

assumptions:

e Observation measurements take zero time, and in addition, no mea-

surement error is considered.

e The tester is able to realize exactly the continuous input functions

(which is often not possible in practice due to actuator imprecision).

The remaining question is how to interpret the observation sequences in
order to produce a verdict. Let 2 denote the observation sequence domain.
We thus define a verdict function: v : Q — { pass, fail, inconclusive }.

Note that an observation sequence must cause a unique verdict.

The observation sequences in €) are grouped into three disjoint sets: the
set O of observation sequences that cause a ‘pass’ verdict, the set O that
cause a ‘fail’ verdict, and the set O; that cause an ‘inconclusive’ verdict.
Therefore, saying "The system under test Sy; passes the test (" formally

means v(ezec((, Sy:)) =pass. This can then be extended to a test suite.

40 CHAPTER 2. MODELING AND CONFORMANCE TESTING

We now discuss some important requirements for a test suite. A test suite

Ts is called complete if for a given specification A € H A:
Sut & A <= S, passes T} (2.3)

This means that a complete test suite can distinguish exactly between all
conforming and non-conforming systems. In practice, it is generally impos-
sible to fulfil this requirement, which often involves executing an infinite test
suite. Another requirement is soundness. A test suite is sound if a system
does not pass the test suite, then the system is non-conforming. We can see
that this requirement is weaker than completeness, since it corresponds only

to the left-to-right implication in (2.3).

After defining all the important concepts, it now remains to tackle the
problem of generating test suites from a specification model. In particular,

we want the test suites to satisfy the soundness requirement.

A hybrid automaton might have an infinite number of infinite traces; how-
ever, the tester can only perform a finite number of test cases in finite time.
Therefore, we need to select a finite portion of the input space of A and
test the conformance of Ag with respect to this portion. The selection is
done using a coverage criterion that we formally define in the next chapter.
Hence, our testing problem is formulated as to automatically generate a set
of test cases from the specification hybrid automaton to satisfy this coverage

criterion.

2.4 Related work

In Chapter 1, we have presented a review of the model-based conformance
testing approaches for discrete and timed systems. Here we only discuss
related works along this line for hybrid systems. The paper [90] proposed
a framework for generating test cases by simulating hybrid models specified
using the language CHARON [8]. In this work, the test cases are generated
by restricting the behaviors of an environment automaton to yield a deter-

ministic testing automaton. A test suite can thus be defined as a finite set of

2.4. RELATED WORK 41

executions of the environment automaton. It is mentioned in the paper that
to achieve a desired coverage, non-determinism in the environment automa-
ton is resolved during the test generation using some randomized algorithm.
However, this coverage as well as the randomized algorithm were not de-
scribed in detail. Besides testing a real system, another goal of this work is

to apply tests to models, as an alternative verification method.

In [59], the testing problem is formulated as to find a piecewise constant
input that steers the system towards some set, which represents a set of bad

states of the systems.

To our knowledge, there is no other work in developing a formal frame-
work for conformance testing that follows the standards of FMCT (Formal

Methods in Conformance Testing) as closely as the framework we propose.

42 CHAPTER 2. MODELING AND CONFORMANCE TESTING

Chapter 3

Test coverage

A major problem with extending the ‘classic’ testing approach to hybrid
system is the infiniteness of the input signal space and of the state space.
Indeed, in practice it is only possible to test the system with a finite number
of input functions, for a bounded time horizon and, furthermore, the results
are only in form of a finite number of finite sequences of points on trajectories
of the system. In other words, a continuous/hybrid tester cannot produce
in practice the output signals which are functions from reals to reals but
only their approximation in discrete time. Given an analysis objective, such
as to verify a safety property, the arising question is thus how to choose

appropriate input signals so as fulfill the analysis objective as best as possible.

Since it is impossible to enumerate all the admissible external inputs to
the hybrid system in question, much effort has been invested in defining and
implementing notions of coverage that guarantee, to some extent, that the
finite set of input stimuli against which the system is tested is sufficient for
validating correctness. Test coverage criteria are indeed a way to evaluate
the testing quality, or the degree of fulfilling the desired analysis objective.
More precisely, it is a way to relate the number of simulations to carry out

with the fraction of the system’s behaviors effectively explored.

For discrete systems, specified using programming languages or hardware
design languages, some syntactic coverage measures can be defined, such as
43

44 CHAPTER 3. TEST COVERAGE

statement coverage and if-then-else branch coverage, path coverage, etc. In
this work, we treat continuous and hybrid systems that operate in a metric
space (typically R™) and where there is not much inspiration coming from
the syntax to the coverage issue. On the other hand, the metric nature of
the state space encourages more semantic notions of coverage, namely that
all system trajectories generated by the input test patterns form a kind of
dense network in the reachable state space without too many big unexplored

‘holes’.

Two main challenges in defining a test coverage measure are the following.
First, it should be meaningful to reflect testing quality with respect to a given
analysis objective. Second, one must be able to compute this measure. In
this work, with a focus on reachability and in particular safety properties, we
are interested in defining a test coverage measure which describes how well
the states visited by a test suite represent the reachable set. One way to do
so is to look at how well the states are equidistributed over the reachable set.
However, the reachable set is unknown, we can only consider the distribution
of the visited states over the state space (which can be thought of as the

potential reachable space).

We propose two new coverage measures. One is based on the star discrep-

ancy notion from statistics, and the other on the d-cover notion.

The chapter is organized in two parts, each of which is devoted to one of
the two coverage measures. We also show how to compute each measure
and discuss its properties. Before concluding, we discuss some related work.

Most of the results presented in this chapter was published in [79].

3.1 Star discrepancy coverage

Geometric discrepancy is often called the theory of ‘irregularities of distribu-
tion’, which is typically measured with respect to some underlying geometric

space.

Some arising questions are: In which way can n points be equidistributed

3.1. STAR DISCREPANCY COVERAGE 45

with respect to an underlying geometric space? How can we measure the

uniformity of a given set of points?

When the underlying space is a box, this leads to the so-called star-
discrepancy. The popularity of this measure is perhaps related to the well-
known Koksma-Hlawka inequality used in the quasi-Monte Carlo techniques
(see for example [19]). It shows that for multivariate integration, a low star
discrepancy sequences are desirable as well as the algorithms providing such

sequence.

3.1.1 Star discrepancy

In the following, we briefly review the star discrepancy notion and show why
it is suitable for describing a test coverage measure for continuous and hybrid

systems. We need to introduce first some notations.

Definition 19 (Sub-box). Given a n-dimensional box B = [l1, L1] X ... X
[ln, Ly], we define a sub-bozx of B as a box of the following form J = [[;_[li, Bi]
with 3; € Ui, Li].

Figure 3.1 shows an example to illustrate the definition. We also use the
notation J, to indicate a sub-box with x as its top-right vertex. Let I'g be
the set of all such sub-boxes of B.

B (L1, L2)

0(617 54)

A, 1)

Figure 3.1: illustration of a sub-box J.

46 CHAPTER 3. TEST COVERAGE

Definition 20 (Box partition). We define a boz partition of a box B as a
set of bozes T = {b',...,b™} such that U, b" = B and the interiors of
the bozes b' do not intersect with each other. Each such box is called an

elementary box.

B (L1, Lo)

b (B B4)
b
(a1, a)

(ll7 ZQ)

Figure 3.2: Illustration of the boxes b~ and b™.

Let IT be a box partition of the box B. With every elementary box b' =
[a1, B1] X ... X [am, Bn] in TI, we associate a pair of sub-boxes b" = [I1, 31] x
o X [ln, Br) and b~ = [l1, 1] X ... X [ln, o). Figure 3.2 gives an illustration

of these boxes.

As mentioned earlier, the star discrepancy is a measure for the irregularity
of set of points in a box. Let P be a set of k points within the box B, which
we call the bounding box, and J be a sub-box of B.

The local discrepancy of the set P with respect to the sub-box J is defined

as follows:
B |A(P, J) wol(J)

D(p, J) ko UOZ(B)|'

Definition 21 (Star discrepancy). The star discrepancy of a point set P
with respect to the box B is defined as:

D*(P,B) = supyery D(P, J). (3.1)

It is not hard to prove the following property of the star discrepancy [92].

3.1. STAR DISCREPANCY COVERAGE 47

Proposition 1. The star discrepancy of a point set P with respect to a box
B satisfies
0<D*(P,B)<1.

A large value of D*(P, B) means that the points in P are not much equidis-
tributed over B. When the region is a hyper-cube, the star discrepancy

measures how badly the point set estimate the volume of the box.

B (L1, Lo)

(B1, 52)

(l1,19)

Figure 3.3: the star discrepancy notion.

We now illustrate the star discrepancy notion with a simple example shown
in Figure 3.3. In this example, we have a set P of 6 points inside a two-
dimensional box B = [l1, L] X [l2, L2]. For any sub-box J with its bottom-left

vertex at (I1,l2) and its bottom-right vertex inside B we can determine:

e the number A(P,J) of points of the set P that lie inside the sub-box
J. In the example of Figure 3.3, A(P,J) = 3.

e the volume vol(J) of the rectangle J.

The local discrepancy associated with the sub-box J is the absolute difference
|A(P, J)/6 —vol(J)/vol(B)|. The star discrepancy D*(P, B) is equal to the
largest local discrepancy of all such sub-boxes J of B. If the set P is well

A(lg"]) and zzggég are not much

equidistributed over B, then the quantities
different for any sub-box J of B. Thus, the star discrepancy of a set of points
P is a measure that tells how far the distribution of P is from this perfect

situation.

48 CHAPTER 3. TEST COVERAGE

Example. To shown an intuitive meaning of the star discrepancy, we use
some sequences of 100 points inside the 2-dimensional unit cube with the
bottom-left vertex at the origin. The first example is the Faure sequence [39],

a well-known low-discrepancy sequence (see Figure 3.4).

091 r
0.8+ : + o
07f il : + 1 *

+ e *
06 =

0.4+ +

0.3

02

0.1 +

Figure 3.4: Faure sequence of 100 points. Its star discrepancy value is 0.048.

As we can observe from Figure 3.4, this set of points ‘covers well’ the cube,
in the sense that the points are well equidistributed over the box. Its star

discrepancy value is 0.048.

The second example is the Halton sequence [99], which is also a well-
known low discrepancy sequence. Figure3.5 shows 100 points of this sequence
within the same unit cube. The value of the star discrepancy of the Halton
sequence is about 0.050, meaning that the Faure sequence is slightly more

equidistributed than the Halton sequence.

The star discrepancy values of these two sequences are close and indeed
visually, it is hard to see from the figures which one of these two sequences are
better equidistributed. We now give another example which is a sequence of
100 points generated by a pseudo-random function provided by the C library

system. This sequence is shown in Figure 3.6) from which we can observe

3.1. STAR DISCREPANCY COVERAGE 49

s
* * *
* * o %
09 £ ¥ *
* * &
* *
0.8 * * g
* i *
07 - * # *
* * o %
* *
*
0.6 % - § *
c i i *
& *
* *
0.5 * ¥ ¥
* . %
* * *
* 5 *
0.4 %
* * iy
* * *
03 B g
*
* " * & %
g * * . *
0.2 £
*
* 3 * *
* £
0.1 ¥ ; oy *‘*
" *
* * * .

Figure 3.5: Halton sequence of 100 points. The star discrepancy value is
0.05.

that this sequence is less equidistributed over the box. This is confirmed by
its star discrepancy value 0.1, which is higher than that of the Faure and

Halton sequences.

Clearly, the star discrepancy is a meaningful measure that can characterize
the uniformity quality of point set distributions. This makes the star dis-
crepancy suitable to be a test coverage measures for continuous and hybrid

systems.

3.1.2 Test coverage measure

As a test coverage measure, we use the star discrepancy to describe how well
the states visited by a test suite are equidistributed over the state space of

the system.

Since the hybrid state space can be seen as a set of continuous spaces, we
define first the test coverage for each location and the hybrid test coverage

can then be defined as the average of the coverages of all the locations.

50 CHAPTER 3. TEST COVERAGE

09

08

0.6

0.5

04

0.3

02r

01

Figure 3.6: C pseudo-random sequence of 100 points. The star discrepancy

value is 0.1.

We denote a set of states of a hybrid automaton A as:

P={(gz)[qeQ N z €Ly} (3-2)

where @ is the set of locations of A and Z, is the staying condition associated

with the location q.

We assume that for every location ¢, the staying set Z, is a box that we
often call the bounding box of the location q. If a set Z, is not a box, we can
take the smallest oriented box that encloses it. Recall that the i** coordinate

of the point z is denoted by x;.

Definition 22 (Coverage at a location). For a given set P of states visited
by a test suite TS, the coverage of the test suite TS at location q is defined

as:

Cov(P,q) =1— D*(Py,1,) (3.3)

A large value of Cov(P, q) indicate a ‘good’ equidistribution of the set P,

over the box space Z,.

3.1. STAR DISCREPANCY COVERAGE 51

Definition 23 (Hybrid test coverage). The hybrid test coverage of the set
P of states visited by a test suite TS is defined as:

Cov(P) HQH ZCOU (P,q) (3.4)

where ||Q|| is the number of locations of the hybrid automaton A.

To compute this coverage measure, we need to compute the star discrep-
ancy in each location. The exact computation of the star discrepancy is not
easy (see for example [80, 33|). Many theoretical results for one-dimensional
point sets are not generalizable to higher dimensions, and among the fastest
algorithms we can mention the one proposed in [33] of time complexity
O(k'*%/2). In this work, in order to be able to handle high dimensional
systems, we do not try to compute the star discrepancy but approximate
it by estimating a lower and upper bound. These bounds are then used
to decide whether the box b has been ‘well explored’ or it needs to be ex-
plored more. This estimation is based on the method published by Eric
Thiémard [91, 92|, which we call the Thiemard method.

3.1.3 Star discrepancy estimation

In the following we present the T'hiemard method and its main properties.
Although in these results the box B is [0, 1]™, we have extended to the general

case where B can be any full-dimensional box.

Thiemard method

Given a bounding box B, let IT be a box partition of B and P a set of points
inside B.
For each box b € II we define two quantities:
AP, b vol(b™
pol) = AL el
k vol(B)
vol(b™) _AWPRbT)
vol(B) k

No(b) =

52 CHAPTER 3. TEST COVERAGE

We then denote by p,, the larger value of p. and p,:

pin (b) = max{pic(b), p1o(b) } (3.7)

We also denote:

o(b) = max{| 02 220

A(P,bT) wol(b™)
k. wol(B) 1}

(3.8)

The following theorem [92] shows a lower bound and an upper bound of

the star discrepancy.

Theorem 1 (Bounds on the star discrepancy [92]). Given a box partition 11
of the box B, the star discrepancy D*(P,B) of the point set P with respect
to B satisfies: C(P,I1) < D*(P,B) < B(P,II) where the upper and lower
bounds B(P,1I) and C(P,II) are:

B(p,1I) = Ill)leaﬁ(/im(b) (3.9)
C(pP1) = %leaﬁ(c(b) (3.10)

Proof. We observe that for a given b € Il and a point « € b we have

A(P,bT) wol(b™) wol(b*) A(P,b7)

D(P Jo) s masd === =< B @ k!

Thus, we obtain
D*(P,B) < max{um(b)}.
bell

Finally, it is easy to see that C(P,II) = maxpe{c(b)} is a lower bound of
the star discrepancy. O

#Pts(P,bT) wol(b™) wvol(bT) #Pts(P,b7)
k ~ wol(B) " wol(B) k }

D(P, J;) < Mazpenn max{

3.1. STAR DISCREPANCY COVERAGE 53

3.1.4 Estimation error

In the next section we discuss the imprecision of this approximation, which
is defined as the difference between the upper and lower bounds. Indeed,
a bound of this difference, which depends on the box partition II, can be

derived.

Definition 24 (Weight of a box). We define the weight W (b) of an elemen-
tary box b = [aq, B1] X ... X [ap, Bn] € IT as the difference in volume of the
two sub-bozes b = [I1,B1] X ... X [ln, Bn] and b~ = [l, 1] X ... X [,)
divided by the total volume of B

vol(b™) — vol(b™)

b) = A1
W) vol(B) (3:11)

and the weight W (II) of the partition II is
W (II) = max W (b) (3.12)

bell

< maxpegWeight(b) where Weight(b) = %&gl(b_)
In [92] the author proved that the interval of the star discrepancy bounds

cannot be larger than W (II).

Theorem 2 (Error bound [92]). Let B(P,II) and C(P,11) be the upper and
lower bounds in (3.9) and (3.10). Then,

B(P,1I) — C(P,1I) < W(II) (3.13)

Thus, to achieve a good estimation, one needs to find a partition II such
that the weight W (II) is small. Since the bound depends only on the par-
tition II, so the W(II) value can be a user-defined parameter to specify an

error tolerance.

This theorem expresses the worst estimation error of the star discrep-

ancy using Thiemard method. Since W(II) is independent of the point

54 CHAPTER 3. TEST COVERAGE

set, one may choose a small tolerance error § and construct a partition II
with W(II) < 6 to guarantee an interval of width at most ¢ containing the

exact value of the star discrepancy.

The algorithm [92] for constructing a low-weight box partition generates
a number of boxes exponential in the dimension. This makes the method
very time and memory consuming. Indeed, as we will show later, in our
coverage-guided test generation algorithm, we do not try to estimate the
star discrepancy precisely in each iteration, but to use the information from

an incremental estimation of the coverage in order to guide the exploration.

In the following we show an interesting property of the estimation. This
property involves the local error at each elementary box. This property will

be used in the method of guiding the test generation based on the coverage.

Lemma 2 (Local error). For any box b in the finite partition 11 of the

bounding box B, we have

pm (b) — c(b) < W(b) (3.14)

Proof. First we observe that for each b € 11, we have

o8) = W(b) + 22 - AEE) (3.15)

Combining the above with the definition of the local discrepancy D(P,b")

of b~ in (3.30) and after the straightforward calculations we obtain
po(b) < W(b)+ D(P,b") (3.16)

On the other hand, we have:

vol(b™) A(P,b™)
~ wol(B) + k

:uc(b) = W(b)

Likewise, combining the above with the definition of the local discrepancy
D(P,b") of bT in (3.30), we obtain

jo(b) < W(b) + D(P,b") (3.17)

3.2. COVERAGE MEASURE USING 6-COVER 55

Since the lower bound of the local discrepancy w.r.t. the box b

c(b) = max{D(P,b"), D(P,b")} (3.18)

Thus we obtain
pm (b) — ¢(b) < W(b) (3.19)
0

3.1.5 Coverage estimation

Given a location ¢ €), we can approximate the coverage at ¢ of the set P
of states as follows:

B(PQ7 Hq) + C(PQ’HQ)

Cov(P,q) =1— 5

(3.20)

where B(P,,11,) and C(Py,11,)) are respectively the values of the upper and
lower bounds of the star discrepancy of the set P, w.r.t. the staying set Z,.

We impose the following condition on the partitions of the locations. For

each pair of locations ¢, p € Q such that g # p, we have :
W (Il,) = W(IL,) (3.21)

Without this condition, the coverage estimation at two different locations
might give misleading information about which location is better explored
because their star discrepancy values are not estimated with the same pre-
cision. Since we want to use the coverage measure to guide the test case
generation, a large difference between the partition weights might wrongly

deviate the exploration.

3.2 Coverage measure using J-cover

In this section we introduce another coverage measure, which is defined us-

ing a comparison with a reference point set that forms a §-cover over the

56 CHAPTER 3. TEST COVERAGE

region of interest. In order to explain the motivation of introducing this
alternative coverage measure, we first illustrate the difference between the

star discrepancy and J-cover via some concrete examples.

We consider a set of two-dimensional points:
P ={(0.25,0.25), (0.5,0.5), (0.75,0.25), (0.25,0.75), (0.75,0.75) }

inside the bounding box B = [0, 1] x [0, 1], shown in Figure 3.7).

Figure 3.7: The point set P.

The estimation of the value of the star discrepancy of the set P w.r.t. B,
using the Thiemard method, gives: D*(P,B) ~ 0.347. An arising question is
how the star discrepancy changes when we add more points in P. We consider
a non-empty set @) of points inside B that does not contain any points of P.
The estimation results show that the star discrepancy D*(P U @, B) of the
union P U @ might be larger or smaller that that of P.

For example, for the following set @, shown in Figure 3.8,
@ = {(0.06,0.06), (0.12,0.12), (0.06,0.12), (0.12,0.06)

the value of D*(PUQ,B) ~ 0.493. Therefore, adding this set @ in P in-
creases the star discrepancy of P, which can be easily understood because
the set @ is not well equidistributed over the box B. However, from a ver-
ification point of view, the union P U @ provides more information about
the correctness of the system than the set P. Furthermore, geometrically
speaking, the set P U @ "covers more space" than the set P. This means
that the star discrepancy allows to compare the space coverage quality be-

tween the point sets of the same cardinality; it however may give misleading

3.2. COVERAGE MEASURE USING 6-COVER 57

comparison between the sets of different cardinalities. In the following, we
introduce another test coverage measure, which indeed does not suffer from
this problem. It is defined using the d-cover notion that we explain in the

following.

Figure 3.8: The set PU Q.

3.2.1 {-cover notion

We first briefly review the notion of d-covers. For a more detailed description
of this notion, the reader is referred to [74, 34, 51]. We remark that, like the
star discrepancy, the d-cover notion was also introduced in the study of the

worst case error of multivariate integration 35, 50, 74].

Again, we consider a box B C R", which we call the bounding box, and a
real number § > 0. The bottom-left vertex of B is denoted by bot(B). Given
two points z,y € R", we define a partial order between them as follows:
x=ziffforallie{l,..n}: x; <z

Definition 25 (d-covering box). A pair (z,z) of points in B forms a 6-

covering pair if the following conditions are satisfied:

The boxr with x and z as its bottom-left and top-right vertices, denoted by
O(x, 2), is called a 0-covering box.

58 CHAPTER 3. TEST COVERAGE

We recall that in the above definition, J, is a box that has the same
bottom-left vertex as B, and x is its top-right vertex; vol(.J,) is the volume
of J,.

Definition 26 (d-cover). A finite set P of points inside B is called a §-cover
of B if for every y € B there exist x,z € P Ubot(B) such that y € O(x, z)
and O(x, z) is a d-covering box. The number of points in P is called the

cardinality of the cover.

We recall that O(x, z) denotes the box with x as its bottom left vertex and

z its top right vertex.

Intuitively, for any point y in the box B, we can find a d-covering pair in
P such that the corresponding covering box contains y. It is easy to see that
if a point set P is a d-cover of a box B, then the set resulting from adding

points in P is also a J-cover of B.

Example. Let m be a strictly positive natural number. We consider a
regular grid of size 1/m over the box B = [0,1]". The resulting set of all
grid points {1/m,2/m,--- ,1}"™ is a d-cover of B, where m = [n/d§]. The
cardinality of this set of point is m”™. It is important to note that this -
cover is not minimal in the sense that there are other d-coverswith smaller

cardinalities.

This §-cover can be used as a reference point set to measure the coverage
of the point sets generated by the test suites. In the following we introduce
a notion to characterize how much the distributions of two point sets, which

we call the disparity between two point sets.

3.2.2 Disparity between two point sets

The notion of disparity between two point sets that we develop here is in-
spired by the star discrepancy definition. Indeed, by definition, the star
discrepancy of a set P w.r.t. the box B can be seen as a comparison between

P and an ‘ideal’ infinite set of points distributed all over B.

3.2. COVERAGE MEASURE USING 6-COVER 59

Given two sets P and @ of points inside B, the disparity between P and
Q is defined as follows. Let J be a sub-box of B, we define the local disparity
between P and () with respect to the sub-box J as:

AP AQ)
=T er ! (3.22)

where A(P,J) is the number of points of P inside J.

Y(P,Q,J)

Definition 27 (Disparity). The disparity between P and Q with respect to
the bounding box B is defined as:

’Y*(P,Q,B) = SupJEFB’Y(PaQ’J) (323)

The following result is a direct consequence of the above definition.

Proposition 3. The disparity between P and Q with respect to the bounding
box B satisfies
0<~"(PQ,B) <1

A small value v*(P, @, B) means that the distributions of the sets P and

Q over the box B are ‘similar’.

The exact computation of the disparity is as hard as the exact computation
of the star discrepancy, which is due to the infinite number of the sub-boxes.
In the section 3.2.4 we propose an estimation by the lower and upper bound

for this new measure.

Example. In order to illustrate our notion of disparity , let consider again
the three sequences of points. As mentioned earlier, the star discrepancy
values of the Faure and the Halton sequences are close to each other. In
Figure 3.9 we show the two sequences in the same frame to show illustrate
their disparity. The disparity between the two sets of this example is 0.06,
indicating that the Halton and the Faure sequences have a similar distribu-

tion.

Now, we compare the Faure sequence with the random sequence generated

by the C library. Figure 3.10 displays the two sequences, each of which has

60 CHAPTER 3. TEST COVERAGE

1w
£ + o ¥
. i * + . * +
* *
(] o % . * S ¥ oy +
4 *
% +
08 = s N *
.8 [s 2 iy " ¥ .
* *
¥ 3 +
07 + ¥ + +
* + y ® * +
* 23 % + *
L + X ; +
08 %y * s ¥ +
-3 o - * +
+ +
o5 + + * " .
). * * *
+ * +
4 *
3 + 3 * i+
04p+ * * i v ok -
¥ ¢
£ 4 + A l Ll
oig * + * ;W
* + * 5. + e
+ e o+ i+ ¥ 4
i +
02k + i *
* " % *
+ 2 B + * +
01p ok * st p = T
3 S £ o+ o df: *
+ + L o+ L &
o i | - i * i

Figure 3.9: Disparity between the Faure and the Halton sequences is 0.06.
The points in the Faure sequence are drawn using the 4 sign and those in

the Halton sequence using the * sign.

100 points. We have seen that the star discrepancy coverage of the Faure
sequence is much better than that of the C sequence, and in fact the disparity
between them (which is 0.12) is twice larger than that between the Faure

and Halton sequences.

The last example shown in Figure 3.11 a comparison between the Faure
sequence and a set of 100 points concentratred in some small rectangle of the
bounding box. We call the latter P,. The disparity between them (which is
0.54) is very large.

This leads us to the idea of using the disparity to express the coverage of
a point set by comparing it with a reference point set which is some §-cover.
3.2.3 J-coverage measure

We now combine the above d-cover and the disparity notions to define a new

coverage measure, which we call §-coverage . Again, we consider a bounding

3.2. COVERAGE MEASURE USING 6-COVER 61

Figure 3.10: Disparity between the Faure and C pseudo-random sequences
is 0.12. The points in the Faure sequence are drawn using the + sign and

those in the C pseudo-random sequence using the * sign.

Figure 3.11: Disparity between Faure and a set P.. The points in the Faure

sequence are drawn using the + sign.

62 CHAPTER 3. TEST COVERAGE

box B.

Definition 28 ((d,d)-cover). Let 6 > 0 and d > 0 are two positive real
numbers. We say a set P of k points inside B is a (d,d)-cover of B if there
exists a set QQ of points in B such that:

e (Q is a §-cover of B, and

hd ’Y*(P7Q7B) =d.

To define the §-coverage of a point set P, we first define a set @, which
is a d-cover of B with a reasonable value of §. We call @ the reference set.

Then, we compare P with @ by their disparity.

Definition 29 (d-coverage). Given a set P of k points inside B and a
reference d-cover P, in B, let d be the disparity between the set P and P,
that is v*(P, P.,B) = d. Then, we define the d-coverage of P as d + 9.

It is important to note that in this definition, we first fix some d-cover P,
with § reflecting a desired coverage and then measure how much the point

set P under study differs from P,.

Coverage measure as a termination criterion

As we have seen earlier, the star discrepancy allows to compare the equidis-
tribution quality of the point sets with the same cardinality. Nevertheless,
when the point sets have different cardinalities, this measure does not reflect
the coverage we want to express. Indeed, adding new states may increase
the star discrepancy, and thus the star discrepancy does not indicate how
close the current coverage value is to a desired one. Therefore, we do not
use the star discrepancy coverage measure to decide when the test genera-
tion algorithm can terminate. To this end, the d-coverage is suitable, since
it is monotonic in the cardinality of the point sets. Therefore, we can fix
a desired d-coverage value and stop the algorithm whenever the coverage of

the generated states reaches this value.

3.2. COVERAGE MEASURE USING 6-COVER 63

Example. To illustrate this notion of coverage, we consider first a reference
set P, of 287 points within a bounding box defined by the 2-dimensional
unit cube B with the bottom-left vertex at the origin. This reference set (see
Figure 3.12) is a d-cover of B with § = 0.12.

Figure 3.12: A d-cover P, of the unit cube with § = 0.12.

Now we illustrate the d-coverage of two sets of points P; and P using the
reference set P,. The first set P; is constructed from 287 points randomly
chosen within the bounding space B. Figure 3.13 shows this set together with
the reference set P.. We note that the two sets have the same number of
points and the disparity between them is 0.13. Thus combining the values of
0 and the disparity value, the value of §-coverage of P; is 0.1240.13 = 0.25.

Next, we consider a second set P» of 287 points randomly sampled within
the sub space S of B, defined as flows: S = {x € B | 1 > z2}. Figure 3.14
shows this set together with the reference set P.. The disparity between P
and P, is 0.34, and the value of §-coverage of P is 0.12+0.34 = 0.46. Using
the d-coverage values we can say that the first set P; has a better coverage
of the box B than the second set Ps.

64 CHAPTER 3. TEST COVERAGE

1 . * ¥
* *
*
. * B * * g * *i w . ¥
oS * g
;‘ * * g WK F o4 * ¥
. . 2 - R . . . G
o8k * He 4 # 3+ * Yy *'*i
= . v%k ¥ *~ 9‘?. *. W = *
* ¥+ % * *
07r T * *
¥ ¥ * o * 2
%o ok ' *
. e Ly o ca¥ A 2" SE
.6 * * *
il * ok oo . * % % " !
S A o f L . o e .
Hye ¥ Fx ¥ DRl " N
E * *
u.a& . % F o5 . Yo ¥ +*, k :
N §* * 3 * .
03f ¥ * = = * ¥ *
* * ® B %
. 7 * * o * 1 %
&* * " * % * * * %
02r . 5 ¥ *xe % e * 40 %
% ¥ L I T
* Fk * x
o S . oK . - . N g &
F ¥ * £
k% . R R o - E
u* Il I I * 1 ¥ 1 * Il Il * K| I
0 0.1 0.2 0.3 04 0.5 0.6 07 0.8 0.9 1

Figure 3.13: The set P; (drawn using %) with the d-cover reference P,. The
6-coverage of Py is 0.25.

09
08
071
06
051

04

02

Figure 3.14: The set P, (drawn using *) with the d-cover reference P,. The
d-coverage of Py is 0.46.

3.2. COVERAGE MEASURE USING 6-COVER 65

3.2.4 Disparity estimation

We proceed to present a method for estimating the disparity . This method
is similar to the method for estimating the star discrepancy. Let II be a box
partition of B. Let P, @ be two sets of points inside B. For each elementary
box b € Il we denote

4 (b) = max {4 (b). 1 (b)} (3.21)
o AP AQE) o AQbY) AP
where e(®) = == = e @ = e~ e ™
G APE) A@Qb) APBY | AQ.bY)
<) = max{| == = = T T e P G

Theorem 3. [Upper and lower bounds| An upper bound B'(P,Q,11) and a
lower bound C'(P,Q, 1) of the disparity between P and Q is:

B(P,Q1I) = max{,(b)} (3.26)
C'(P,Q,II) = %eaﬁ({c'(b)} (3.27)

Proof. Let Il be a box partition of B. We observe that for a given b € Il

and a point x € b we have

APbT) AQb7) AQ,bT) APb)
1P TRl 1Rl 1Pl

D(P,Q, J;) < max{ }

Thus, we obtain
D*(P,Q, B) < max{, (b)}
bell

Similarly, we can prove that C'(P,Q,II) = maxper{c/(b)} is a lower bound
of the disparity . O

3.2.5 Estimation error

We now give a bound on the error in the above estimation. We define the W-
zone, denoted by W(b), of an elementary box b = [aq, (1] X ... X [ay, O] € 11,
as follows:

W(b)=b"\b".

66 CHAPTER 3. TEST COVERAGE

We recall that b" = [I1, 51] X ... X [ln, 8] and b~ = [l1, 1] X ... X [ln, an].

The following lemma shows a local error bound at each elementary box in

Figure 3.15: Illustration of the W-zone of the box b .

II.

Lemma 4. |Box estimation error| For any box b in the finite partition II of

the bounding box B, we have:
A(P,W(b)) A(Q, W(b))
el el

where A(P, W(b)) is the number of points of P within the zone W(b).

i, (b) — ¢ (b) < max{ } (3.28)

Proof. First we observe that for each b € II, we can rewrite

AP,b™) A(Q,b7) AP, W(b))

He®) = = T Gl 17 (3.29)
and
/ _ A(va_) o A(P7 b_) A(va(b))
Holb) = 1] P el (3:30)
On the other hand, we have
AQbY) AP AP QD))
Ser T e er e) S P (33
Thus we obtain
w.(b) — '(b) < maX{A<P’W<b)> AQ@, W(b))} (3.32)

el el
O

3.3. SUMMARY AND RELATED WORK 67

Using Lemma 4 we obtain the following bound on the error of the estima-

tion, defined as the difference between the upper and lower bounds.

Theorem 4 (Error bounds). Let B'(P,Q,1I) and C'(P,Q,1II) be the upper

and lower bounds of the disparity between P and Q. Then,

(P, W(b)) A(Q, V(b))
1751 —]

B'(P,Q,1I) — C'(P,Q,TI) < Igleaﬁ(max{A o (3.33)

3.3 Summary and related work

In this chapter we have defined two test coverage measures for our testing
framework. Both of them are based on the equidistribution degree of a set
of states over the state space. The first measure is defined using the star

discrepancy notion and the second using the §-cover notion.

Concerning related work in test coverage for continuous and hybrid sys-
tems, we mention the work published in [38]. In this paper, the authors
proposed a coverage measure based on a discretized version of dispersion,
since the dispersion is very expensive to compute. (Roughly speaking, the
dispersion of a point set with respect to various classes of range spaces, such
as balls, is the area of the largest empty range). This measure is defined over
a set of grid points with a fixed size 6. The spacing s, of a grid point g is the
distance from ¢ to the nearest visited state by the test if it is smaller than
0, and s, = 0 otherwise. Let S be the sum of the spacings of all the grid
points. This means that the value of S is the largest when the set of visited
state is empty. Then, the coverage measure is defined in terms of how much
the vertices of the tree reduce the value of S. It is important to note that
in [38] this coverage measure is used only as a termination criterion. In our
work we use the coverage measures as a termination criterion as well as to

guide the exploration.

68

CHAPTER 3. TEST COVERAGE

Chapter 4

Test generation

In this chapter we develop an automatic test generation algorithm for hybrid

systems from specifications described by hybrid automata.

Finding the test cases that corresponds to the trajectories violating the
conformance relation in our testing problem can be seen as path planning
problem in robotic, where the goal is the find a feasible trajectories in some
environment that take robot from an initial point to a goal point. In this
work, we propose a test case generator algorithm based on the well-known
algorithm RRT (Rapidly-exploring Random Trees) [65], a probabilistic path

and motion planning technique with a good space-covering property.

This chapter will be organized as follows. The first part will be devoted to
RRT algorithm. In the second part we extend the RRT algorithm to treat
hybrid systems. Most of the results presented in this chapter were published
in [32, 78, 79].

4.1 Rapidly-Exploring Random Trees (RRTs)

In path and motion planning, Rapidly-exploring Random Trees (RRTs) are
a successful technique to find trajectories connecting a given set of points

in an environment with obstacles. In this section we recall the main con-

69

70 CHAPTER 4. TEST GENERATION

cepts of the classical RRT algorithm. By ‘classical RRT algorithm’, we mean
the basic algorithm without problem-specific optimization. More concretely,
we describe an abstract algorithm that summarizes the essential ideas of the
RRT algorithm for a continuous system in a bounded metric space. We often
say ‘the RRT algorithm’ to refer to this abstract algorithm. For a thorough
description of RRTs and their applications in various domains, the reader is

referred to a survey [65] and numerous articles in the RRT literature.

Before presenting the abstract RRT algorithm, we formally state the prob-

lem it addresses.

4.1.1 Problem formulation

A variety of problems in path and motion planning can be solved by the
RRT algorithms. In the following we focus only on a class of problems which
are close to the our test generation problem. The setting of these problems

is defined in terms of a dynamical system with the following elements:

1. A topological space X which is called the state space.

2. A set of differential constraints of the form:

[t x(t), (1), u(t)) = 0 (4.1)
where x denotes the state of the system and u the input.

3. A set U of admissible input functions of the form R™ — U where U is

the set of input values.

4. A function C : X — {true, false} determines for each state in X
whether it satisfies some algebraic constraints. This function thus cor-
responds to a subset of the state space X'. We call this subset the free
space and denote it by Xpce.

5. A metric p : X x X — R which defines the distance between two

states in X.

4.1. RAPIDLY-EXPLORING RANDOM TREES (RRTS) 71

6. An initial state 2, and a goal state xgoq.

Problem 1. Find a feasible trajectory connecting the initial state Tin; to

the goal state 404

In other words, we want to compute a trajectory ¢(¢) which is a solution
of the equation (4.1) with the initial condition ¢(0) = %jni such that

o 37> 0: ¢(T) = xgoa and,

e the trajectory segment in the time interval [0, T satisfies the algebraic
constraints, that is, V7 € [0,T] : ¢(7) € Xfree.

Computing such a trajectory ¢(t) also means finding an input function that
generates this trajectory. It is also possible to specify a set of initial and
goal states, and the problem can thus be stated as to construct a network of

feasible trajectories.

Variants of the above formulation can be derived to capture a number of
well-known problems in path and motion planning. For example, most basic
path planning problems can be seen as a search in the state space X of a
path connecting the initial state to the goal state. In these problems, a state
is often called a configuration consisting of the position and orientation of
a number of objects in a 2D or 3D environment with obstacles. The free
space is thus the part of the state space where these objects do not collide
with the obstacles. In these problems, the algebraic constraints arising from
the obstacles are often complex, and an explicit description of the free space
may not be available. In a basic holonomic path planning problem, the dif-
ferential constraints are given as a set of inputs which are the constraints on
the velocities of the objects of the form ||Z|| < ¢. In a nonholonomic path
planning problem, there are additionally integrable constraints on the veloc-
ities which can be described as in the equation (4.1). Note that from these
constraints (often called the equation of motion), we can derive a successor
function specifying the state resulting from applying an input u to a state x

over a time interval [0, h]. This successor function can also be provided as an

72 CHAPTER 4. TEST GENERATION

input of the problem in form of an incremental simulator that implements

some numerical integration scheme:
v =o(f z,u,h). (4.2)

In a kinodynamic path planning problem, the differential constraints involves
both the velocities and the accelerations; therefore, the accelerations are part

of the state vector.

4.1.2 Abstract algorithm

Essentially, the RRT algorithm constructs a tree 7, often called an RRT tree,
the vertices of which are states in Xf.... The root of the tree corresponds
to the initial state ;5. Each directed edge of the tree 7 is labeled with an
input selected from a set U of admissible input functions. Hence, an edge
labeled with w that connects from the vertex x to the vertex 2’ means that
the state 2’ is reached from x by applying the input u over a duration of
h time, called a time step. We assume that an incremental simulator, as

in (4.2), is provided.

The construction of the tree 7 is shown in Algorithm 1 where K is the
user-defined maximal number of iterations. We use the notation 7% to refer
to the tree constructed at the k'* iteration and Vertices(T*) denotes the
set of vertices of the RRT tree 7%. By abuse of notation, we often use the
notation of a vertex to refer to the state at that vertex. The root of the
tree is initialized with the initial state x;,;:. Fach iteration of the algorithm

consists of the following steps:

1. The function RANDOM _ STATE samples a goal state x40, from the free
space Xfree. We call it a goal state because it indicates the direction

towards which the tree is expected to evolve.

2. Then, in the function NEAREST NEIGHBOR, a neighbor state is deter-
mined as a state Z,¢q, in the tree that is closest to the goal state z 44,
according to the pre-defined metric p. This neighbor state is used as

the starting state for the next expansion of the tree.

4.1. RAPIDLY-EXPLORING RANDOM TREES (RRTS) 73

Algorithm 1 The abstract RRT algorithm
procedure RRT _TREE_ GENERATION(Zinit, Lgoal, KK)

TO Z’I’LZt(:L‘ant)
k=1

repeat

Zgoal = RANDOM _ STATE(Xfree);
Tnear = NEAREST NEIGHBOR(7, Tgoal);
(U, Tpew) = NEW_ STATE(Znear, Tgoals 1);
TE.ADD_VERTEX(Zyew);
TF.ADD EDGE(Znears Tnew, U);
k++;
until (K > knez) V Zgoar € Vertices(T)
end procedure

3. The function NEW STATE creates a trajectory from Z,eq, towards
the goal state x40, by applying an admissible input function u for
some time h. This input function can be determined such that the
resulting successor state Zpey is as close to x40q as possible, or it can
be chosen at random. It is important to emphasize that the procedure
NEW _STATE needs to assure that the trajectory segment from x,eqr

t0 Tnew stays in the free space.

4. Finally, a new vertex corresponding to Zneq, is added in the tree 7 with

an edge from Tpeqr t0 Tnew labeled with w.

Figure 4.1 illustrates one iteration of the algorithm. The algorithm termi-

nates after k4, iterations or until the goal state is reached.

Note that in most RRT algorithms, the sampling distribution of x4 is
uniform over the free space Xtyq., and the metric p is the Buclidian distance.
Different implementations of the functions in the abstract algorithm and
different choices of the metric and of the successor functions in the problem

formulation result in different versions of the RRT algorithm.

In the above algorithm we assume a fixed time step A in the computation

74 CHAPTER 4. TEST GENERATION

of the new states. It is worth emphasizing that this time step is not the
internal time step used by numerical integrators. In addition, detection of

discrete events is also done during the integration.

Figure 4.1: The RRT iteration.

Example. We illustrate the algorithm with a two-dimensional example
where the state space is the square X = [0, 100] x [0,100]. In this example,
there are no obstacles and hence X = Xt... The differential constraints are
described by: f(t,z) = u(t) where V¢t > 0: u(t) € U = {u € R? | ||u|| < 1}.
The initial state is x;ni = (50, 50) and the time step h = 1. Figure 5.1 shows
that the RRT tree rapidly explores all directions of the state space X.

N A T | e e € 4
: PO ,\}*{i b f\;{?{‘ﬁ A

Figure 4.2: Exploration by the RRT algorithm [66].

4.1. RAPIDLY-EXPLORING RANDOM TREES (RRTS) 75

4.1.3 Properties

In this section, we present some important properties of the RRT algorithm.
These properties indeed make this exploration technique very suitable for

our test generation problem.

Probabilistic completeness

Probabilistic completeness is an important property of the RRT algorithm,

which is stated as follows.

Theorem 5. If o feasible trajectory from the initial state T to the goal
state xgoq erists, then the probability that the RRT algorithm finds it tends

to 1 as the number k of iterations tends to infinity.

The proof of the theorem can be found in |62, 65]. Although the interest
of this theorem is mainly theoretical, since it is impossible in practice to
perform an infinite number of iterations, this result is a way to explain the
good space-covering property of the RRT algorithm, which we discuss in the

following.

Space-covering property

Although the main idea of the RRT algorithm is simple, the algorithm allows
to explore the state space efficiently. This technique has been successfully
used in solving practical path planning problems. It is however hard to
characterize the convergence rate of the algorithm for general cases. In the
following we give an intuitive explanation of the good space-covering prop-
erty of the algorithm. Some theoretical results on the convergence of the

algorithm for a number of special cases were published in [29].

Before continuing, we briefly recall the Voronoi diagram notion, since it
will be used in our explanation. The Voronoi diagram of a set V of points
in R™ is the partition of R™ into k polyhedral regions vocell(v) with v € V.

Each region vocell(v), called the Voronoi cell of v, is defined as the set of

76 CHAPTER 4. TEST GENERATION

points in R™ which are closer to v than to any other points in V', or more

precisely,
vocell(v) = {x e R" | Yw € V\ {v} : d(z,v) <d(z,w)}

where d is the Euclidean distance function. For more information on Voronoi

diagrams, the reader is referred to [40].

Let V = Vertices(T*) be the set of k vertices of the RRT tree 7% con-
structed in the k' iteration (which means that a new vertex is added to the

tree in each iteration). We consider the Voronoi diagram of the set V.

Since the goal states are uniformly sampled over the free space &Xtyec, the
probability that 4. is inside the Voronoi cell of a vertex v depends on
the volume of the intersection of vocell(v) and Xf,... Note that the tree
can evolve only in the free space Xf.... In addition, by the definition of
Voronoi diagrams, if 240, € vocell(v) then v is a closest neighbor of o4
Therefore, the larger the volume of the set vocell(v) N Xppee is, the greater
the probability that v is selected as the starting point for expansion is. Note
that during the first iterations of the algorithm, the region covered by the
tree is still small, and the vertices on the ‘boundary’ of the tree have larger
Voronoi cells. Therefore, the exploration is biased towards the large unvisited
regions surrounding the tree. Figure 4.4 shows the evolution of the Voronoi

diagrams of a tree incrementally constructed by the algorithm.

To give an intuitive explanation why the RRT algorithm is an efficient
search method, we compare it with a simple randomized algorithm which
incrementally constructs a tree as follows. In each iteration, it chooses at
random a vertex from the current tree and an input from the set of admissible
inputs. It then creates a new vertex using the successor function. Figure 4.3
shows the experimental result obtained by this algorithmn, compared to the
result for the same example obtained by the RRT algorithm. We can see
from the figure that the exploration of the RRT algorithm is spread over the
state space while the exploration of this simple algorithm is concentrated
within a small part of the state space around the initial point. This can be

explained as follows. If the vertex for expansion is uniformly chosen from the

4.2. TEST GENERATION ALGORITHM 7

Figure 4.3: The result obtained by the simple randomized algorithm (left)
and the result obtained by the RRT algorithm (right). Each tree contains
2000 vertices [67].

set of existing vertices, then the vertices in the already well-explored regions
have the same probability of being chosen as the vertices in the unexplored
regions. In the RRT algorithm, the exploration, in contrast, is biased towards

the large regions which are not yet visited.

4.2 Test generation algorithm

In this section we propose a test case generation algorithm, which we call
hRRT. This algorithm is based on an extension of the RRT algorithm to
hybrid systems. We defer a discussion on some previous work along this line
to the end of this chapter. Let A and A be two hybrid automata respectively
modeling the specification and the system under test SUT. Essentially, our

test generation algorithm consists of the following two steps:

e From the specification automaton A, generate an exploration tree using

an extension of the RRT algorithm.

e Determine the verdicts for the executions in the exploration tree, and

78 CHAPTER 4. TEST GENERATION

Figure 4.4: The evolution of the Voronoi diagram of a tree constructed by
the RRT algorithm [67].

P S ———
P

extract a set of test cases interesting with respect to the property to

verify.

In the following we describe these two steps. Since the test generation algo-
rithm operates on the specification automaton, for brevity we often simply

say ‘the hybrid automaton’ to refer to the specification automaton A.

4.2.1 Exploration tree construction

Extending the RRT algorithm to hybrid systems requires the ability to com-

pute the following basic functions of the algorithm for these systems.

e RANDOM STATE: Since the state space is hybrid, sampling a state
requires not only sampling a continuous state but also a discrete state.
In addition, as we will see later, instead of uniform sampling, we want
to guide the sampling process in order to achieve a good coverage of

the behaviors of interest.

e NEAREST NEIGHBOR: To determine a nearest neighbor of a state, we
need to define a distance between two hybrid states. In a continuous
setting where the state space is a subset of R", many distance metrics
exist and can be used in the RRT algorithms. Nevertheless, in a hybrid
setting defining a meaningful hybrid distance is a difficult problem.

4.2. TEST GENERATION ALGORITHM 79

In the following we propose a hybrid distance, which is not a metric
but proved to be appropriate for our purposes of developing guiding

strategies.

e NEwW STATE: The successor function for a hybrid system should com-
pute not only successors by continuous evolution but also successors

by discrete evolution.

Like the RRT algorithm, our test generation algorithm stores the visited
states in a tree 7 the root of which corresponds to the initial state, and each

edge of T is labeled with a control action.

The construction of an exploration tree from the specification automaton
A is summarized in Algorithm 2. We change the name of the basic functions
of the RRT algorithm to emphasize that in our algorithm there are important

modifications in these functions.

Algorithm 2 Test generation algorithm hRRT

TF.init(sinit) > Sinit: initial state
k=1
repeat
Sgoal = SAMPLING(S) > S: hybrid state space
Spear = NEIGHBOR(T®, 5% 1)

(wauﬂ ul;nea'r) = CONTINUOUSSUCC(SELCGT’
DiscRETESUCC(TF, sE.,.)
k++

until k£ > kaz

h) > h: time step

As in the function RANDOM _STATE, in the k' iteration the function

SAMPLING samples a hybrid state slgoal = (qsoal,x’;oal) to indicate the di-

rection towards which the tree is expected to evolve. Then, a starting state

k

koar = (€% our, TE o) for expansion is determined as a neighbor of s* . The

s goal®

definition of the distance between two hybrid states will be given later.

Expanding the tree from speqr towards sg0q; is done as follows:

80 CHAPTER 4. TEST GENERATION

e Next, the function CONTINUOUSSUCC tries to find the input u*

qnear
such that, after one time step h, the current continuous dynamics at
k

q~.,, takes the system from s¥__.

towards Sgoq, and this results is a new

k

continuous state z¥_ . A new edge from speqr to sF., = (¢F ., 2F..),

new-
labeled with the associated input u];near, is then added to the tree.To
find sF.,, when the set U is not finite it can be sampled, or one can

solve a local optimal control problem.

e Then, from sF,,, the function DISCRETESUCC computes its successors

by all possible discrete transitions and add them in the tree.

The algorithm terminates after some maximal number of iterations. Another
possible termination criterion is that a satisfactory coverage value is reached.
As mentioned in Chapter 3, the J-coverage is used for this purpose. The
function SAMPLING plays the role of guiding the exploration and is discussed
in detail in the next chapter. In the following, we show how to compute the

functions in the algorithm.

Hybrid distance and computation of neighbors

In most versions of RRT algorithms, where the state space is a subset of R",
the query of nearest neighbors often uses the Euclidian distance. Defining
a metric for the hybrid state space is difficult, due to the discrete compo-
nent of a hybrid state. In this section we propose an approximate distance
between two hybrid states, which will be used in the function NEIGHBOR of
Algorithm 2.

We recall that the topological space we are concerned with is a subset of
Q x R™,

Definition 30 (Metric). A metric is defined as a function p: X x X — R

where X is a topological space such that for any x1,x2,x3 € X:

o p(x1,22) = 0 (nonnegativity)

o p(x1,22) =0 iff &1 = xo (reflexivity)

4.2. TEST GENERATION ALGORITHM 81

o pla1,33) = p(az,a1) (symmetry)

o p(x1,22) < p(x1,3) + p(x3,2) (triangle inequality)

Given two hybrid states s = (¢,z) and s’ = (¢, 2'), if they have the same
discrete component, that is, ¢ = ¢/, we can use some usual metric in R,
such as the Euclidian metric. When ¢ # ¢/, it is natural to use the average
length of the trajectories from one to another. Note that this way, the hybrid
distance we define is not symmetric. We present first some definitions and

notation necessary for describing our hybrid distance.

Definition 31. Given two sets A and B in R, we define the average dis-
tance between A and B, denoted by d(A, B), as a distance between their

geometric centroids.

If a set A models a physical object with uniform density, then the geometric
centroid of a set A coincides with its center of mass. If the set A is a bounded
convex polyhedron, then the centroid of A can be defined as follows. Let
V ={v1,...,vs} be the set of vertices of A. Then the centroid of A is:

i

k‘ \

Definition 32 (Average length of a path). Given a path

v =(q1,92),(92,43); - - -, (Gm—1,qm))

in the hybrid automaton A, we define the average length of v, denoted by

len(v) as follows:

m—1

len(y Z (qz7Qz+l (qqul))’ g(fli+17q1‘+2))
=1

where d is the average distance between two sets. We recall that R

and Gy, g,.1)

with the transition from ¢; to gj+1.

qz',(h+1)
are respectively the reset function and the guard associated

82 CHAPTER 4. TEST GENERATION

Definition 33 (Average length of trajectories). Let v be a discrete path
from location q to ¢’ in the automaton A. Let s = (q,z) and s = (¢',2')
be two hybrid states. Then, we define the average length of trajectories from

s =(q,x) to s = (¢, 2") following the path ~ as:
leny(s,s') = d(z, fG(v)) + len(y) + d(2', IR(7))

where fG(v) = G(q.q1) denotes the first guard of v, and IR(v) = Rq,.¢(G(g.q))
denotes the set resulting from applying the reset map of the last transition to

its guard set.

Example. Figure 4.5 illustrates the above definitions. We consider a path

v = ey, ez where e; = (¢,¢1) and ez = (q1,¢)-

e The average length of the path « is simply the distance between the

image of the first guard G by the first reset function R, ,,) and

a.q1)
the second guard G(,, o). This distance is shown in the middle figure.

e The average length of trajectories from s = (¢, x) to s = (¢, 2’) follow-
ing the path ~ is the sum of three distances (shown in Figure 4.5 from
left to right): the distance between x and the first guard G,), the
average length of the path, and the distance between R, (G (q:,4))

and z’.

Figure 4.5: Nlustration of average length of trajectory.

4.2. TEST GENERATION ALGORITHM 83

Now we are ready to define the hybrid distance from s to s’. We denote by
I'(q,q") the set of all discrete paths from ¢ to ¢’ in the hybrid automaton A.

Definition 34 (Hybrid distance). Given two hybrid states s = (q,x) and
s’ = (¢',2'), the hybrid distance from s to s', denoted by dy (s, s'), is defined

as follows :

e Ifq=4¢, then dy(s,s’) = ||lx — &'|| where || - || is some metric for R™.
o If q+# ¢, there are two cases:

- IfT(q,q) # 0, then di(s,s’) = min leny(s,s’). The path v
vel(a,4")
that minimizes leny(s,s’) is called the shortest path from s to s'.

— Otherwise, dg(s,s’) = oo.

It is easy to see that the hybrid distance dy is only a pseudo metric since it
does not satisfy the symmetry requirement. Indeed, the underlying discrete
structure of a hybrid automaton is a directed graph. In the above definition,
we can use any metric for R”. In this work, we will use the Euclidian distance

and the notation || - || denotes this distance.

Then, in the k" iteration of Algorithm 2, the function NEIGHBOR can be

computed using this hybrid distance as follows:

Spear = argMingcyrdp (S, Sgoal)

where V¥ is the set of all the states stored at the vertices of the tree T%.

Computing continuous and discrete successors

We proceed to describe the function CONTINUOUSSUCC. If the states speqr
and sS40 have the same discrete location component, we want to expand
to tree from Zyeqr towards xgoq as closely as possible, using the continuous

dynamics at the location.

When the states speqr and sgoq are at different locations, let v be the path

from gpear t0 qgoat With the shortest average length. It is natural to make

84 CHAPTER 4. TEST GENERATION

the system follow this path. Therefore, we want to steer the system from

Tnear towards the first guard of ~.

In both of the two cases, one needs to solve an optimal control problem
with the objective of minimizing the distance to some target point. This
problem is difficult especially for systems with non-linear continuous dy-
namics. Thus, we can trade some optimality for computational efficiency.
When the input set U is not finite, we can sample a finite number of inputs
and pick from this set an optimal input. In addition, we can prove that
by appropriately sampling the input set, the completeness property of our

algorithm is preserved.

The computation of discrete successors in DISCRETESUCC, which involves
testing a guard condition and applying a reset map, is rather straightfor-
ward. Notice that it is important to consider all the discrete successors by

disturbance transitions since they are not controllable by the tester.

4.2.2 Test cases and verdicts

The tree constructed by Algorithm 2 can be used to extract a set of test
cases. In addition, when applying such test cases to the system under test,
the tree can be used to compare the observations from the real systems and
the expected observations in the tree. This allows a decision whether the

system satisfies the conformance relation.

4.3 Reachability completeness

As mentioned earlier, the probabilistic completeness is an important property
of the RRT algorithm. An arising question is whether our test generation
algorithm, built upon the RRT algorithm, preserves this property of our test

generation algorithm, which we prove in this section.

We first remark that in the path and motion planning context, the proofs
of the completeness of the RRT algorithms often assume that the whole free

configuration space is ‘controllable’ in the sense that it is possible to reach

4.3. REACHABILITY COMPLETENESS 85

any point in Xfyc. from the initial state x;n; (see for example [62]). In the
hybrid state space S = @ x X, generally, not all the points in S are reachable
from s;,;¢. Indeed, if this were true, the verification problem would be solved.
But we can still prove the completeness with respect to the computation of
the reachable set. We call this property the reachability completeness. The
proof of this result follows the idea of the proof in [29]. However, the lack
of the above-mentioned controllability assumption makes the proof more
complicated. We first introduce some definitions and intermediate results.

We use the notation Pr for probabilities.

Definition 35 (Full coverage sampling condition). For any set Y C S such
that the volume vol(Y') of Y 1is positive, if the probability that Sl,foaz ey
1§ strictly positive, then we say that the sampling process satisfies the full

coverage sampling condition.

It is easy to see that a simple uniform sampling method (that is, uniformly
sampling a location ¢ from the set @ of all locations and then uniformly
sampling a continuous state in the staying set of the location ¢) satisfies
this condition. As we will show later, the full coverage sampling condition is
sufficient to guarantee the completeness. In the remainder of the section, we
assume that the function SAMPLING in our test generation algorithm satisfies

this property, and additionally, the reachable set has a positive volume.

Definition 36 (Neighborhood). Given a state s = (q,z) € S and ¢ > 0, we
define the e-neighborhood of s as

N(s,e) ={s €8S |du(s,s) <e} (4.3)
For a set V of states in S, we denote

N(V,e) = N(s,e)

seV
and call the set N'(V,¢) the neighborhood of V.

Lemma 5. Let R be a set of states reachable in o finite time such that
vol(R) > 0. Then, there exists a time step h and a finite k such that

Jv e V¥ Prlv € R] > 0. (4.4)

86 CHAPTER 4. TEST GENERATION

where V¥ is the set of the vertices of T* at iteration k.

Proof. Let T4 be the smallest time such that at 7,4, all the trajectories
from the initial state s;,,;+ have already visited R. Let 7,,,;,, be the the smallest
time such that at any time t < 7, none of the trajectories from s;,;; has
reached R. We choose a time step h such that there exists a integer j > 0
such that jh € [Tmin, Tmaz)-

Then, let Kp = |™|. For k > 0, the time interval [(k — 1)h, kh] is
denoted by . We denote by RF the reachable set from s such that

Rf={s€S|3weQ:sc(smit,w) N T(simit,w) NR#DL. (4.5)

In the above definition, €2 is the set of all admissible control sequences and
71, (Sinit,w) is a segment the trajectory 7y, (sinit,w) in the time interval Ij.
Intuitively, R¥ contains all the states reachable during the time interval Iy,

by the trajectories from s;,;; that can reach R.

We assume that for all & > 0, vol(R¥) > 0. We first prove that for all
k>0
PrizF,, € R* > 0. (4.6)

new

We prove this by induction. At the first iteration £ = 1, it is always true
that s..,. = Sinit (because the tree contains only one vertex si;). Since
R! is reachable during the first time interval, then Pr[sl., € R'] > 0 (for
example, by choosing appropriately an input sequence as shown in (4.5));

therefore, the inequality (4.6) is true for k = 1.

We now need to prove that (4.6) is also true for k£ + 1, assuming that it is
true for k. Due to the full coverage sampling condition (i.e. any state in S has
a non-null probability of being sampled to be a goal state) and vol(RF) > 0,
we can assure that the probability Pr[sitl € RF] > 0. If s¥*1 ¢ RF and

near near

k < Kp, it then follows from (4.5) that Pr[sk%l € R¥1] > 0. Using the

new
formula for conditional probability, we have that (4.6) is true for k + 1.
Then, by the definition (4.5), we can find k£ < K such that all trajectories

from sk € RF reach R after at most h time. If so, this implies that

4.3. REACHABILITY COMPLETENESS 87

Pr[sk+l ¢ R] > 0. Furthemore, assuming that all s£,, are added to the

new

tree, the statement of the lemma is thus proved. O

Remark 6. The following conditions are sufficient for the validity of the
proof:

o (C1) There is a non-null probability that each state in V* is selected
to be sk

near -

e (C2) If R is a set of reachable states with positive volume, then for all
k>0 Pr[sk

new

€ R] > 0. Intuitively, this assumption means that there

15 a non-null probability that ‘each reachable direction’ is selected.

Indeed, the full coverage sampling condition and the assumption that Vk >

0 : volV¥ > 0 used in the proof imply the above conditions.

We proceed with the main result concerning the preservation of the com-

pleteness of our test generation algorithm.

Theorem 6 (Reachability completeness). Let V¥ be the set of states stored
at the vertices of the tree T*. Given ¢ > 0 and a reachable state s = (g, z),
the probability that there ewists a state s’ € V¥ such that s' is in the e-
neighborhood of s approaches 1 when k approaches infinity, that is

limg oo Pr[3s’ € VF . 5" € N(s,e)] = 1 (4.7)

Proof. We first remark that at each location, the reachable set is connected;

therefore, for any € > 0 the set
Bieach(s) = Reach N N (s, ¢€) (4.8)

(where Reach is the reachable set from s;,;;) has a positive volume. Hence,
using the full coverage sampling property, the probability Pr[s’; oal € Br(s)] >
0 for all £ > 0.

We define the distance from s = (¢, z) to V¥ as

d*(s) = mingcyrdy (s, s).

88 CHAPTER 4. TEST GENERATION

Initially, the tree contains only the initial state, that is, V9 = {s;nit}; hence
d’(s) = dy(sinit,s)- Note that dy(sim,s) < oo since s is reachable from
Sinit-

If at iteration k, the tree already contains a vertex inside Bjeqen(s), then (4.7)

is proved.

It remains to prove (4.7) for the case where all the states in V* are not in
Breach(s). We have seen that Pr[sgoal € Byeach(s)] > 0, and we suppose that
s’g“oal € Breach(8). Because the whole set By.gqen(s) is reachable, by Lemma 5,
there exists a finite k¥’ > k such that

38 e VF . Prs" € Breaen(s)] > 0.

Note that the fact V¥ contains a state in Bjeqen(s) implies that d* (s) <
d*(s), since we are considering the case where none of the states in V* is
in Breaen(s). From k In addition, d*(s) is non-increasing with respect to
k; therefore the expected value of the distance to s at iteration &’ must be
smaller than that at iteration k, that is E(d* (s)) < E(d*(s)). Therefore,
limy_.0o Pr[d*(s) < €] = 1, which means that

limp—ooPr[3s’ € V¥ : s € N(s,¢)] = 1.

Remark. The validity of the proof of the reachability completeness re-

quires the conditions (C1) and (C2). These assumptions guarantee that for

k+1

any reachable state s there is a non-null probability that the new vertex s; 7.

reduces the distance from s to the tree. In fact, the selection of slgg a1 controls
the growth of the tree by determining both the starting state s¥,,, and the
direction of the expansion in each iteration. Consequently, to preserve the
completeness it suffices to guarantee the satisfaction of the assumptions (C1)
and (C2). The following lemma shows a sufficient condition for (C2) to be

verified.

Lemma 7. If the control set U is finite and for each v € U Priuf =u] > 0,
then the condition (C2) is satisfied.

4.4. RELATED WORK AND DISCUSSION 89

In the classic RRT algorithms, the initial state for each iteration is a nearest
neighbor of the goal point, and the new vertex is then computed by solving
an optimal control problem (whose objective is to minimize the distance
to the current goal point). These two problems are difficult, especially for

non-linear systems in high dimensions.

It is important to note that even in a continuous setting, finding an exact
nearest neighbor is expensive, especially in high dimensions. We can exploit
the above remark to derive a variant of the RRT algorithm which has lower
complexity. Indeed, to determine the initial points we can use approrimate

nearest neighbors, provided that the two assumptions are satisfied.

4.4 Related work and discussion

In this chapter we have defined a test case generation algorithm for hybrid
systems. This algorithm is build upon the well-known RRT algorithm for

path and motion planning.

The RRT algorithm has been used to solve a variety of reachability-related
problems such as hybrid systems planning, control, verification and testing
(see for example [38, 23, 59, 26, 84| and references therein). In this section,
we only discuss a comparison of our approach with some existing RRT-based

approaches for the validation of continuous and hybrid systems.

Concerning the problem of defining a hybrid distance, our hybrid distance
is close to that proposed in [59]. The difference is that we use the centroids
of the guard sets to define the distance between these sets, while the author
of [59] uses the minimal clearance distance between these sets, which is harder
to compute. To overcome this difficulty, the author proposed to approximate
this clearance distance by the diameter of the state space. An advantage of
our hybrid distance is that it captures better the average cases, allowing not

to always favor the extreme cases.

Note also that our hybrid distance dg does not take account the system’s

dynamics. It is based on the spatial positions of the states. In [59] the author

90 CHAPTER 4. TEST GENERATION

proposed a time-based metric for two hybrid states, which can be seen as
an approximation of the minimal time required to reach from one state to
another, using the information on the derivatives of the variables. Another
distance proposed in [59] is called specification-based. This distance is typ-
ically defined with respect to some target set specifying some reachability
property. It can be however observed that for many systems, this ‘direct’

distance may mislead the exploration due to the controllability of the system.

In [38, 59] and in our hRRT algorithm, the problem of optimally steering
the system towards the goal states was not addressed. In other words, the
evolution of the tree is mainly determined by the selection of nearest neigh-
bors. In [23], the problem of computing optimal successors was considered
more carefully, and approximate solutions for linear dynamics as well as for

some particular cases of non-linear dynamics were proposed.

The authors of [84] proposed a search on a combination of the discrete
structure and the coarse-grained decomposition of the continuous state space
into regions, in order to determine search directions. This can be thought of

as a way to define a hybrid distance as well as a guiding heuristics.

In the next chapter, we tackle the problem of guiding the test generation
process, in order to quickly achieve a good coverage quality. In other words,
this can be seen as a way to speed up the convergence of the algorithm, in
terms of coverage. We will do so by guiding the goal states sampling instead

of using the uniform sampling.

Chapter 5

Coverage-guided generation

In this chapter we propose a tool for guiding the test generation algorithm
hRRTpresented in the previous chapter. This tool is based on the coverage
measure defined using the star discrepancy. The goal of guiding tool is
the guide the sampling process to bias the evolution of the tree towards
the interesting region of the state space, so that to rapidly achieve a good

coverage quality.

We propose two strategies for guiding hRRT, which results in two new
algorithms. The first one is called gRRT, and the second one called agRRT
which is an adaptive version of gRRT. Most of the results presented in this
chapter were published in [78, 79].

5.1 Goal state sampling

In the following, without loss of generality, we can assume that the free space
is the whole state space. Sampling a goal state Sgoqi = (Ggoals Tgoat) in the

hybrid state space S consists of the following two steps:

e Sample a goal location qgeq from the set @) of all the locations, accord-

ing to some probability distribution.

e Sample a continuous goal state x4 inside the staying set quoal of the

92 CHAPTER 5. COVERAGE-GUIDED GENERATION

location ggoq since when the automaton is at a location, its continuous

state can only evolve within the staying set of the location.

In our coverage-guided exploration we want to bias the goal state sampling
distribution according to the current coverage of the visited states. In each
iteration, if a location is not yet well explored, that is its coverage is low, we

give it a higher probability to be selected.
Let P ={(q,Fy) | ¢ € Q NP, C I,} be the current set of visited states.

We sample the goal location according to the following distribution:
B 1—Cov(P,q)
1QI = Xgreq Cov(P,¢')

Pr[ngal = Q] (51)
where Cov(P, q) is the current test coverage at the location ¢ and ||Q|] is

the number of locations.

We proceed to show how we bias the sampling of the goal continuous state
Tgoal- Suppose that we have sampled a discrete location ggoq = q. To give
geometric intuitions, we often call a continuous state a point. In addition,
we assume that all the staying sets are boxes, and we thus denote the staying
set Z, by the box B.

Before describing in detail our continuous state sampling method, we dis-

cuss the difficult of our problem and explain the motivation of our solution.

5.2 Motivating examples

Before describing in detail our continuous state sampling method, we discuss
the difficult of our problem and explain the motivation of our solution. For
illustration, we use two examples. The first one is the one shown in the
previous chapter for which the classical hRRT algorithm performs well,
and the second is an example for which the hRRT algorithm with uniform

sampling does not perform well.

The reason we choose these examples is that they differ in the reachability

property. In the first example, the system are ‘controllable’ in the sense

5.2. MOTIVATING EXAMPLES 93

that the whole state space is reachable from the initial state, but in the
second example the reachable set is only a small region in the state space.
A similar challenging example in motion planning was introduced in [101]

where hRRT with uniform sampling fail to quickly find the solution.

Indeed, these two examples will be used through this chapter to validate

the efficiency of the coverage-guided sampling method that we propose.

Example 1

We first recall the example.

Example 1. This example is a two-dimensional continuous system where
the state space X is a box B = [—3,—3] x [3,3]. The continuous dynamics
(or the differential constraint) is f(x,t) = u(t) where the input set is U =
{u € R?/||u|| < 0.2}.

o B=1[-3,-3]x 3,3

e i=uwhereuelU={ueR? | |jul| <0.2}

Indeed, when treating this example with the hRRT algorithm we use 100
input values resulting from a discretization of the set U. The initial state
is (—2.9,—2.9). The time step is 0.002. To evaluate the performance of
the algorithm in terms of coverage, we use the coverage measure defined
using the star discrepancy. It is important to emphasize that the hRRT
algorithm used here is the classical one that uses uniform sampling and the
Euclidian metric. The uniform sampling is implemented using the C++

pseudo-random function.

For the star discrepancy estimation we use a static partition IT such that
W(II) = 0.03.
Figure 5.1 illustrates how fast the hRRT algorithm covers the global state

space. Figure 5.2 shows the coverage after each iteration k of two sets of
states: the set P¥ of the visited states of the hRRT tree (solid curve in

94

CHAPTER 5. COVERAGE-GUIDED GENERATION

Figure 5.1: The hRRT generation expansion.

5.2. MOTIVATING EXAMPLES 95

Figure 5.2) and the set G* of sampled goal states(dashed curve in Figure 5.2).
Note that these sets have the same number of points. The figure also show
the disparity v*(P*, G*, B) between them.

From the figure, we can see that the coverage of the visited points P*
catches up with the coverage of the goal points G¥ until a saturation. The

disparity between the two sets is also shown in the figure.

0 0.5 il 1.5 2 2.5 3 3.5 4 45 5
Iterations

Figure 5.2: Coverage and disparity evolution of P* and G* .

Example 2

Example 2. This ezample is a linear system in R? with a stable focus at

the origin. Its dynamics is described by:

T o -1 -19 y T n Ul
g) 19 -1 y s
We let the dynamics be slightly perturbed by an additive input u. The state

space is the bounding box B = [—3,—3] x [3,3]. The input set U = {u €
B2 | Juf < 0.2}

96 CHAPTER 5. COVERAGE-GUIDED GENERATION

The phase portrait of the dynamics is shown in Figure 5.3. Again, we

SR A

~
T

. e R e e

Py
e A ST

St g RN 5
| .

AT e 7
B it

NN

&
)
o
~
@

Figure 5.3: The vector field and the set of initial points.

sample from this set 100 values to run with the classical hRRT algorithm.
In this example, we consider a set of initial states defined by the box [2, 2] x
[2.5,2.5]. We start the hRRT algorithm with a set of 100 initial points
uniformly sampled within the box. The time step is 0.002. For the coverage
estimation we use a static partition IT with W (II) = 0.03. Figure 5.4 shows
the results obtained after 50000 iterations.

We can see that the disparity between the set of goal states and the set of
visited states is large. This can be explained as follows. As mentioned earlier,
due to the uniform sampling of goal states, the RRT algorithm is biased by
the Voronoi diagram of the vertices of the tree. If the actual reachable set is
only a small fraction of the state space, the uniform sampling over the whole
state space leads to a strong bias in selection of the points on the boundary
of the tree, and the interior of the reachable set can only be explored after
a large number of iterations. Indeed, if the reachable was known, sampling
within the reachable set would produce better coverage results. In the next
sections, we describe two methods for guiding the sampling distribution to-

wards optimizing the coverage, using the coverage information of the current

5.2. MOTIVATING EXAMPLES 97

IR

.
« v 7 +

¥ ..
251 R T

[
el
2

05

-1.5 1 -0.5 0 0.5 1 1.5 2 25

g™

0.9

=——F—

0.8}
0.7 b

e |

051 gl

7*(P*,G", B) |

v’\.
L] A

0 I I I I I | L I
0 05 il 15 2 2.5 3 35 4 45 5

Iterations

Figure 5.4: Result obtained using hRRT algorithm.

98 CHAPTER 5. COVERAGE-GUIDED GENERATION

sets of visited states and goal states.

5.3 Coverage-guided sampling

The main idea of our coverage-guided exploration is to guide the goal state
sampling in order to achieve a good coverage of the visited states. In each
iteration, we use the information of the current coverage to improve it. In-
deed, the coverage estimation provides not only an approximate value of the
current coverage, but also the information about which regions need to be

explored more.

We recall that the coverage estimation is done using a box partition 1I
of the state space B. We have assumed that all the staying sets are boxes.
In what follows, we often call this box B the bounding box. Our method of
sampling of a continuous goal state consists of two steps. In the first step, we
sample an elementary box bgo from the partition II. In the second step, we

uniformly sample a point Tgoq; in byoa, as shown in Algorithm 3. Guiding is

Algorithm 3 Continuous goal state sampling
procedure SAMPLING()

bgoat = BOXSAMPLING(IT)
Tgoal = UNIFORMSAMPLING (bgoar)

return ,,q;

end procedure

thus done in the goal box sampling process. The next section is devoted to

this problem.

5.3.1 Goal box sampling

Let II be the box partition used in the coverage estimation, and we denote
by P the current set of visited states. The objective is to define a probability
distribution over the set of elementary boxes of II. This probability distribu-

tion is defined at each iteration of the test generation algorithm. Essentially,

5.3. COVERAGE-GUIDED SAMPLING 99

we favor the selection of a box if adding a new state in this box allows to
improve the coverage of the visited states. This is captured by a potential
influence function, which assigns to each elementary box b in the partition a
real number that reflects the change in the coverage if a new state is added
in b. The current coverage is given in form of a lower and an upper bound.
In order to improve the coverage, we aim at reducing both the lower and the

upper bounds.

5.3.2 Reducing the lower bound

We associate with each box b C II a number A*(b) such that
vol(J) A*(P,J)
vol(B) k

where vol denotes the volume of a set. Intuitively, A*(b) represents the
required number of points in the box b so that the ratio between the number
of points in b and the total number of points is exactly the ratio between

the volume of b and that of the bounding box.
Let A(P, b) be the number of points of P which are inside b. We denote

Aa(J) = A(P,J) — A*(P, J). (5.2)

The sign of A4(b) reflects a ‘lack’ or an ‘excess’ of points in the box b, and

its absolute value indicates how significant the lack or the excess is,

Now for a given elementary box b € II, we can rewrite the local lower
bound of the star discrepancy D*(P, B) of the point set P as

c(b) = 7 max{|Aa(b")] | Aa (b))

Hence, by Theorem 3 (in Chapter 3), the lower bound of the star discrepancy
D*(P,B) becomes

C(P,II) = rgleal_)[({c(b)}.

Our strategy to reduce the lower bound C(P,II) is based on the impact
of adding a new point in each box b on |A4(b")| and |A4(b7)| and thus on
C(P,1I).

100 CHAPTER 5. COVERAGE-GUIDED GENERATION

We observe that adding a point in b reduces |A4(b")] if As(b") < 0 and
increases |A4(bT)| otherwise. However, doing so does not affect A 4(b™) (see
Figure 5.5). Thus, we define a function reflecting the potential influence on
the lower bound as follows:
1= Au(b)/k

REVRIA >3

£(b)

and we favor the selection of b if the value £(b) is large. Note that for any
box b inside B, we have 1 — A4(b)/k > 0.

B (L1, L2)

bt (ﬁl:ﬂ?)

(a1, a2)

b |

(U1, 12) |

Figure 5.5: Illustration of the boxes b~ and b*.

The interpretation of the function ¢ is as follows. If A4 (bT) is negative
and its absolute value is large, the ‘lack’ of points in b™ is significant. In
this case, £(b) is large, meaning that the selection of b is favored. On the
other hand, if A4(b™) is negative and its absolute value is large, then £(b) is
small, because it is preferable not to select b in order to increase the chance

of adding new points in b™.

5.3.3 Reducing the upper bound

We can rewrite the definition of the upper bound given by (3.9) in Chapter 3

as follows:

B(P,TT) = ¢ mias i (0 (5.4)

5.3. COVERAGE-GUIDED SAMPLING 101

where i, (b) = max{uc(b), uo(b)}. Using (5.2), we can write
fe(b) = A(P, b+) - A*<b7)

and
1o(b) = A*(6%) — A(P.b).

Since the value of p,, is determined by comparing p. with p,. After
straightforward calculations, the inequality p.(b) — po(b) < 0 is equivalent
to

1e(B) — p1o(b) = Aa(P,b") + Aa(P,b7) <0,

Therefore,

MMM_{M@)ﬁAMW%HM®W§Q 5.5

| pe(d) otherwise.

Again, we observe that adding a point in b increases p.(b), but this does
not affect p1,(b). To reduce u,(b) we need to add points in b~. Hence, if b
is a box in IT that maximizes p. in (5.4), it is preferable not to add more
points in b but in the boxes where the values of % tm are much lower than

the current value of B(P,II), in particular those inside b™.

Using the same reasoning for each box b locally, the smaller |A4(P,b") +
A4(P,b7)| is, the smaller sampling probability we give to b. Indeed, as
mentionned earlier, if p;,(b) = pc(b), increasing u.(b) directly increases
tm (D). On the other hand, if p,;,(b) = uo(b), increasing p.(b) may make
it greater than p,(b) and thus increase p,,(b), because small |A4(P,b") +
A 4(P,b7)| implies that p.(b) is close to po(b).

We define two functions reflecting the global and local potential influences

on the upper bound:

tn (D)
k

fg(b) = B(P,TI) —

and
‘AA(P7 b+) + AA(P7 bi)’

k

ﬁl(b) = 5g(b)

102 CHAPTER 5. COVERAGE-GUIDED GENERATION

We can verify that §,(b) and (;(b) are always positive.

Finally, we combine these functions with £ in (5.3) (which describes the po-
tential influence on the lower bound) to obtain a potential influence function
on both of the bounds:

v(b) = rel(b) + £yl (b) + r151(b)

where k¢, kg, and k; are non-negative weights that can be user-defined pa-

rameters.

Box probability distribution. We are now ready to define a probability
distribution for the boxes in the box partition II. Let P* be a set of visited
states after the k' iteration, we define the probability of selecting b € II as
follows:
v(b)
Pribyoa = b = =——+.
9ot > berr V(b)

Let us summarized the developments so far. We have shown how to sample
a goal hybrid state. This sampling method is not uniform but biased in order
to achieve a good coverage of the visited states. From now on, Algorithm 2 in
which the function SAMPLING uses this coverage-guided method is called

the gRRT algorithm (which means "guided hRRT").

To demonstrate the performance of the gRRT algorithm, in the follow-
ing we present the results obtained using gRRT and hRRT for the two

examples, introduced in the beginning of the chapter.

Example 1. In Figure 5.6 where one can see the evolution of the coverage
of the states generated by gRRT and hRRT.

The dashed curve describes the coverage obtained using the hRRT-based
test generation algorithm with uniform sampling, and the solid one repre-
sents the result obtained by the algorithm gRRT. From the figure we can
see a better coverage result especially in convergence rate, compared to the

algorithm with uniform sampling.

5.3. COVERAGE-GUIDED SAMPLING 103

o
w0
T

o
©
T

o
~
T

o
)
T

Coverage
o o e o
~n (%] n (<.
T T T

e

Il Il Il Il Il
0 0.5 il 1.5 2 2.5 3 3.5 4 45 5
Iterations 4

o

Figure 5.6: Test coverage evolution using hRRT and gRRT.

Example 2. Figure 5.7 shows the results obtained by hRRT and gRRT
after 50000 iterations. Again, the gRRT algorithm has a better coverage

result.

Controllability issue

We observe from the experiments with Example 2 that the coverage perfor-
mance of gRRT is not satisfying when the reachable space is only a small
part of the whole state space. To illustrate this, we increase the state space
of the system from B = [-3,-3] x [3,3] to B = [-5,—5] x [5,5]. For the
larger state space, we observe a poorer coverage quality of the result(see
Figure 5.8). This can be explained as follows. There are boxes, such as
those near the lower corner on the right of the bounding box, which have
a high potential of reducing the bounds of the star discrepancy. Thus, the
sampler frequently selects the box b. However, this box is not reachable and

all attempts to reach this box do not expand the tree beyond the boundary

104 CHAPTER 5. COVERAGE-GUIDED GENERATION

of the reachable set. This results in a large number of points concentrated
near this part of the boundary, while other parts of the reachable set are not

well explored.

Figure 5.8: Result for the state spaces B (left) and B’ (right).

It is important to emphasize that this problem is not specific to gRRT. The
hRRT algorithm and, more generally, any algorithm that does not take into

account the controllability of the system, may suffer from this phenomenon.

This phenomenon can however be captured by the evolution of the dispar-

ity between the set of goal states and the set of visited states. When the

5.3. COVERAGE-GUIDED SAMPLING 105

disparity does not decrease after a certain number of iterations, this often
indicates that the system cannot approach the goal states, and it is better
not to favor an expansion towards the exterior, but favor a refinement, that

is an exploration in the interior of the already visited regions.

06 \

Disparity
o
&
T
-

0.4 ™ ™S N
AN
.

L L L
0 05 1 15 2 25 3 35 4 45 5
Iterations

Figure 5.9: The evolution of the disparity between the set P* of visited states
and the set G* of goal states

Figure 5.9 shows the evolution of the disparity between the set P of visited
states and the set G¥ of goal states for the two examples. We observe that
for the controlable system in Example 1 the visited states follow the goal
states, and thus the disparity decreases over time. However, in Example 2,
where the system cannot reach everywhere, the disparity does not decrease
for a long period of time during which most of the goal states indicate a

direction to which the tree cannot be expanded further.

Figure 5.10 provides an intuitive explanation of this phenomenon. It shows
the Voronoi diagram of the set of visited states. In this example, the bound-
ary of the reachable set can be seen as an ‘obstacle’ that prevents the system
from crossing it. Note that the Voronoi cells of the states on the boundary
are large. Hence, if the goal states are uniformly sampled within the whole

state space, these large Voronoi cells have higher probabilities of containing

106 CHAPTER 5. COVERAGE-GUIDED GENERATION

the goal states, and thus the exploration is ‘stuck’ near the boundary, while

the interior of the reachable set is not well explored.

In RRT literature we say that RRT is Voronoi-biased [70] since at each

iteration it tends to grow from the node with the largest Voronoi area.

Figure 5.10: Nlustration of the ‘controllability’ problem.

To tackle this problem, we propose to combine the coverage-guided sam-
pling method of gRRT with a disparity-based sampling method, in order
to better adapt to the controllability of the system. This is the topic of the

next section.

5.4 Combining with disparity-guided sampling

The essential idea of our disparity-based sampling method is to detect when
the controllability of the system does not allow the tree to expand towards
the goal states, and then to avoid such situations by favoring a refinement,

that is an exploration near the already visited states.

A simple way to bias the sampling towards the set P* of visited states
is to reduce the sampling space. Indeed, instead of sampling uniformly all

over the state space, we can make a bounding box of the set P* and give

5.4. COMBINING WITH DISPARITY-GUIDED SAMPLING 107

more probability of sampling inside this box than outside it. In addition,
another method is to guide the sampling using the disparity information. In

the following we briefly describe this method.

As we have seen in Chapter 3, the disparity between two point sets can
be estimated using a method similar to the one for estimating the star dis-
crepancy. The objective now is to reduce the disparity between the set G*

of goal states and the set PF of visited states.

To guide the generation to favor a refinement, we use the disparity measure
and, like the guiding method using the star discrepancy, we define for each
elementary box b of the partition a function n(b) reflecting the potential
for reduction of the lower and upper bounds of the disparity between P*
and G*. This means that we favor the selection of the boxes that make
the distribution of goal states G* approach that of the visited states PF.
Choosing such boxes can improve the quality of refinement. The formulation
of the potential influence function for the disparity-based sampling method

is similar to that for the coverage-guided sampling and is thus omitted here.

A combination of the coverage-guided and the disparity-guided sampling
methods is done as follows. We fix a time window T, and a threshold e.
When using the coverage-guide method, if the algorithm detects that the
disparity between the G* and P* does not decrease by e after T, time, it
switches to the disparity-guided method until the disparity is reduced more
significantly and switches back to the coverage-guide method. Note that a
non-decreasing evolution of the disparity is an indication of the inability of
the system to approach the goal states. In an interactive exploration mode,
it is possible to let the user to manually decide when to switch. We call
the resulting algorithm agRRT. The letter ‘a’ in this acronym stands for

‘adaptive’.

Example 1. Figure 5.11 shows the result obtained using agRRT for Ex-

ample 1.

The solid curve represents the coverage of P¥ and the dashed one the

coverage of G*. The Dash-dot curve represents the disparity between G*

108 CHAPTER 5. COVERAGE-GUIDED GENERATION

0.2 o
/ Tt YM(P%,G%,B)

Figure 5.11: Test coverage of the result obtained using agRRT for Exam-
ple 1.

5.4. COMBINING WITH DISPARITY-GUIDED SAMPLING 109

and P*. Figure 5.12 shows that the final result obtained using agRRT has
a better coverage than that obtained using gRRT.

Figure 5.12: Test coverage results obtained using gRRT and agRRT for
Example 1.

Example 2. The result obtained using agRRT For Example 2 is shown
in Figure 5.13. The figure on the right shows the set of generated goal
states. The states are drawn in dark color. In this example, we can observe
the adaptivity of the combination of gRRT and agRRT. Indeed, in the
beginning, the gRRT algorithm was used to rapidly expand the tree. After
some time, the goal states sampled from the outside of the exact reachable
space do not improve the coverage, since they only create more states near
the boundary of the reachable set. In this case, the disparity between P* and
G* does not decrease, and the agRRT is thus used to enable an exploration
in the interior of the reachable set. The interior thus has a higher density of
sampled goal states than the region outside the reachable set, as one can see

in the figure.

110 CHAPTER 5. COVERAGE-GUIDED GENERATION

Figure 5.13: Result after & = 50000 iterations, obtained using agRRT (left:
the set of visited states P¥, right: the set of goal states G*).

5.5 Summary and related work

In this chapter we have proposed a tool for guiding our RRT-based test gen-
eration algorithm, described in the previous chapter. The guiding tool uses
the star discrepancy coverage measure to guide the generation, by biasing
the goal state sampling. This results in the gRRT algorithm. In order to
account for the controllability of the system (which may prevents the al-
gorithm to explore well the interior of the reachable space), we proposed
to combine gRRT with a method that uses the information about the dis-
parity between the goal states and the visited states in order to steer the
exploration towards the area where the controllability of the system allows
to better improve the global coverage of the result. This combination results
in the agRRT algorithm.

We have also provided some examples to show the efficiency of this guid-
ing tool, in terms of coverage improvement. More experimental results are
presented in Chapter 7 where our coverage-guided test generation tool is ap-
plied to a number of benchmarks in control applications and in analog and

mixed-signal circuits.

Concerning related work along this line, sampling the configuration space

5.5. SUMMARY AND RELATED WORK 111

has been one of the fundamental issues in probabilistic motion planning.

Finally, our idea of guiding the simulation via the sampling process has
some similarity with the sampling domain control [101]. As mentionned
earlier, the RRT exploration is biased by the Voronoi diagram of the vertices
of the tree. If there are obstacles around such vertices, the expansion from
them is limited and choosing them frequently can slow down the exploration.
In the dynamic-domain RRT algorithm, the domains over which the goal
points are sampled need to reflect the geometric and differential constraints
of the system, and more generally, the controllability of the system. In [71],
another method for biasing the exploration was proposed. The main idea of
this method is to reduce the dispersion in an incremental manner. This idea
is thus very close to the idea of our guiding method in spirit; however, their
concrete realizations are different. This method tries to lower the dispersion
by using K samples in each iteration (instead of a single sample) and then
select from them a best sample by taking into account the feasibility of

growing the tree towards it.

Finally, we mention that a similar idea was used in [38| where the number

of successful iterations is used to define an adaptive biased sampling.

To sum up, the novelty in our guiding method is that we use the infor-
mation about the current coverage of the visited points in order to improve
it. Additionally, we combine this with controllability information (obtained

from the disparity estimation) to obtain a more efficient guiding strategy.

112 CHAPTER 5. COVERAGE-GUIDED GENERATION

Chapter 6
Implementation

In this chapter we describe an implementation of the algorithms developed
in the preceding chapters. More concretely, we show how to implement the

main functions in these algorithms.

6.1 Data structure

In addition to the tree that is used to store the explored executions, to facil-
itate the computation of the required geometric operations, such as finding

a neighbor, we store the visited states using the following data structure.

The data structure has two levels: the first level corresponding to the
discrete automaton of the hybrid system under study, and the second corre-
sponds to the continuous state spaces of the locations (see Figure 6.1). The
automaton level stores the discrete locations as nodes connected by edges
corresponding to the transitions. Each node of the automaton is associated
with the staying set of the location. The guard sets and the reset maps are

associated with the corresponding transitions.

Given a node g of the automaton, the continuous states are stored using
a data structure similar to a k-d tree [22]. We call this data structure a-

tree. This is a space-partitioning data structure for organizing points in a
113

114 CHAPTER 6. IMPLEMENTATION

Automata

= = = =

ORR0 R0 W“Llfﬂ
7 Hoog 0g bC]

kd-tree i l {

oo A

N L

ronts |6 @@ @ @] @ oejeje

Figure 6.1: Data structure.

k-dimensional space. Each node of the tree has exactly two children. Each
internal node is associated with the information about a partitioning plane:
its axis ¢ and position ¢, and the partitioning plane is thus z; = ¢ (where
z; is the i*" coordinate of x). Note that we use only splitting planes that
are perpendicular to one of the coordinate system axes. Indeed, this is
also appropriate to encode the box partition used for the estimation of the
coverage. The additional information associated with a leaf is a set of visited
points. Each node thus corresponds to a box resulting from a hierarchical
box-partition of the state space. The box of the root of the tree is the staying
set Z, of the location which is a the bounding box B. Each leaf of the tree
corresponding to an elementary box, and the set of all the boxes at the leaves

define a box partition of Z,.

The tree and the partition of a 2-dimensional example is shown in Fig-
ure 6.4, where the axes of the partitioning planes are specified by the hori-

zontal and vertical bars inside the nodes.

6.1. DATA STRUCTURE 115

6.1.1 Construction of the a-tree

Generally, a standard kd-tree is built for a fixed set of points. Figure 6.2

shows a standard kd-tree built from a set of 10 points.

— Ps . ? [P] [P] [P — [P [P [Pyd
3 ’ P[P [P:] [P

Figure 6.2: A kd-tree example.

Unlike the standard kd-trees, the construction of our a-tree is incremental
because of the evolution of the point sets we need to handle. The tree is

updated after a new state is generated.

We start with a rough box partition of the state space and refine it by split-
ting the elementary boxes, according to the density of points in the boxes
and the desired precision of coverage estimation as well as the performance
of the nearest neighbor search. The splitting operation is specified by an
axis perpendicular to the splitting hyperplane and a point defining the po-
sition of the hyperplane. In the following we discuss some the splitting rules

implemented in our tool.

Splitting rules. Let b denote the box at a leaf that we want to split and
S = {pp? ... ,pN} denote the current set of N points in b. The aspect
ratio of a box is defined as the ratio between its longest and shortest side
lengths. We define the spread [of S along a dimension 4, denoted by I(7, .S) as
the difference between the largest and smallest coordinate in this dimension,
that is,

1@ 5) = je{ml,?.}?N}p][l] a je{q}.l.?N}p][Z]'

116 CHAPTER 6. IMPLEMENTATION

where p[i] is the i*" coordinate of point p.

We use the following two splitting rules:

e Median rule: This is a standard kd-tree splitting rule. The splitting
dimension is the dimension of the maximum spread of S. The splitting
point is the median of the coordinates of S along this dimension. A
median partition of the points in S is then performed. This rule guar-
antees that all the boxes in the resulting partition have at least one

point and the inconvenient is the high weight of the partition.

e Midpoint rule: This rule defines a splitting hyperplane orthogonal to
the longest side of the box through its midpoint. This simple rule guar-
antees that all the resulting elementary boxes have a low aspect ratio
and thus a low weight partition. This is important for the precision
of the coverage estimation. A drawback of this rule is the existence of
empty boxes. Figure 6.3 shows the result of a dynamic construction

using this splitting rule.

"
R

uos
‘P‘:r
.

™
5
!\‘1

e s

e 5
A'\;_'- e

]

s B
B .
flagd
R i
=
P
P

Figure 6.3: A dynamic a-tree construction using midpoint splitting rule. The

result obtained for the Van der Pol system.

6.1. DATA STRUCTURE 117

6.1.2 Adding a new point

We denote by 7, the tree used to store the states visited at location ¢, and
by II, the box partition of the staying set Z,. Adding a new point z in
7, requires finding the elementary box in II, that contains a given point .
This can be done using Algorithm 4. Note that the information associated
with a node s consists of a partitioning axis k = s.axis() and a partitioning

position d = s.pos(), which define a partitioning plane x[k] = d.

Algorithm 4 Compute the box that contains z
procedure CONTAININGBOX((q, x))

s =root(1;), H=10
while (l1ISLEAF(7;, s)) do

k = s.azis(), d = s.pos() > k and d are the axis and the position of

the splitting hyperplane.
if (z[k] > d) then
$ = $.RIGHTCHILD(), 0 = —1
else
s = s.LEFTCHILD(), 0 = 1
end if
H=HU{H(k,d,o0)}
end while
b = constructBox(H), V = s.ptset()
return (s, b, V)
s is the leaf that contains the point z
b is the box at s
V' is the point set inside b

end procedure

Algorithm 4 traverses the tree from its root to a leaf whose box contains x;
this box is thus called the containing box of x. This procedure also collects all
the half-spaces defining the containing box b and the point set at the leaf. In
the algorithm, H(k, d, o) denotes the half-space defined as {x | ox[k] < od}
where k and d are the axis and the position of the splitting hyperplane

118 CHAPTER 6. IMPLEMENTATION

associated with the node s of the tree.

6.1.3 Computing the box of a leaf

To reduce memory usage, we do not store the coordinates of the elementary
boxes of the leaves but compute them only when necessary. Algorithm 5

shows how to do this.

Algorithm 5 Computing the box of a leaf vg
procedure GETBOX(vp)
| = BOTTOMVERTEX(Z,)
L = ToPVERTEX(Z,)
Dt ={1,2,...,n} > n: is the dimension of system
D~ ={1,2,...,n}
v = v, p = parent(vy)
while (11SROOT(7,v)) and (ISEMPTY(D~ UDV)) do
k = p.azis(), d = p.pos()

if (s == p.RIGHTCHILD()) then
D~ =D \{k}and l[k] =d

else
Dt =D\ {k} and L[k] = d

end if

v =p, p= parent(v)

end while
return (I, L) >l and L: bottom left and top right vertices

end procedure

It should be note that Algorithm 5 can be used to determine the box
associated with an internal node of the tree, by letting the input vy be this
node. In this algorithm, we traverse the tree from the leaf upwards until we

collect the constraints on all the dimensions (to define a bounded box).

6.2. MAIN FUNCTIONS 119

6.2 Main functions

For clarity, we first recall the test generation algorithm and then present the

implementation of the functions in this algorithm.

Algorithm 6 Test generation algorithm

T .anit(Sinit), j =1 > Sinit: initial state
repeat

UpPDATECOVERAGE(T)

Sgoal = SAMPLING(S) > S: hybrid state space

Snear = NEIGHBOR(T, Sgoal)
(Snew, Ugnear) = CONTINUOUSSTEP(Speqar, h) > h: time step
DISCRETESTEPS(T, Snew), J + +

until j > Jee

6.2.1 Updating the coverage estimation

For each location ¢ € Q, this function estimates the coverage of the visited
states at location g. This is done using the method described in Chapter 3.
The estimation involves computing a lower and upper bound of the star
discrepancy. To do so, for each elementary box in the partition II, of the
location g, we compute the number of points in the associated boxes b
and b~. The estimation of the coverage can also be done in an incremental

Imarnimner.

When a new point z is added in the tree, the estimation of the star dis-
crepancy needs to be updated. More concretely, we need to find all the
elementary boxes b such that the new point has increased the number of
points in the corresponding b~ and b*. These boxes are indeed those which
intersect with the box B, = [z1,L[1] X ... X [y, Ly]. In addition, if b is a
subset of B, the numbers of points in both the boxes b™ and b~ need to be
incremented; if b intersects with B, but is not entirely inside B,, only the

number of points in b" needs to be incremented.

Searching for all the elementary boxes that are affected by x can be done

120 CHAPTER 6. IMPLEMENTATION

by traversing the tree from the root and visiting all the nodes the boxes of
which intersect with B,. In the example of Figure 6.4, the box B, is the
dark rectangle, and the nodes of the trees visited in this search are drawn as
dark circles. This search is summarized in Algorithm 7. Indeed, we use the
idea of range search algorithms to perform this frequently used operation.
We start by initializing a queue S with the root of the tree 7,. This queue is
used to maintain all the nodes whose the associated box intersects with the
range box B;. From the root and at each internal node of the tree we check
this intersection between the range box and there associated childes. If the
box of the left child intersects with B,, we insert the two child node at the
end of the queue S, meaning that the box at the right child also intersects.
If only the box of right child intersects with B, we insert only the right
child node at the end S. The algorithm repeats this until all the nodes in

the queue S are leaves.

Vertical
axis

Hotizontal
anis

g u k&

i1

Figure 6.4: Mlustration of the update of the star discrepancy estimation.

6.2.2 Sampling

First, a location ggeq is sampled using the distribution defined in Chapter 5.
This distribution depends on the current coverages of the locations. Then,

a goal point x4, within the staying condition Z, of ggoar, by sampling

goal

an elementary box from the partition and then a goal point in the box.

6.2. MAIN FUNCTIONS 121

Algorithm 7 Range search

procedure RANGESEARCH((q, z))
§ = {root(T;)}
while (S contains a non-leaf node) do
s = POP(S)
if (!1SLEAF(7;, s)) then
k = s.azxis(), d = s.pos()
if (xz[k] > d) then > Only the box of the right child intersects

with By
S.append(s.RIGHTCHILD())
else > Both of the bozes at the right nodes intersect with B,
S.append(s.LEFTCHILD())
S.append(s.RIGHTCHILD())
end if
end if
end while

for all b € boxes(S) do
if x €b” then
(counter™, counter™)++
else
(counter™)++
end if
end for

end procedure

122 CHAPTER 6. IMPLEMENTATION

Note that sampling an elementary box is equivalent to sampling a leaf. The
sampling process is summarized in Algorithm 8. The computation of the
functions DISCRETESAMPLING, BIASEDDISTRIBUTION and BOXSAMPLING
are detailed in Chapter 5.

Algorithm 8 SAMPLING method
procedure SAMPLING()
dgoal = DISCRETESAMPLING(Q)

BIASEDDISTRIBUTION(I,, ;) > Iy, 0 box partition of qgoa
s = BoxSAMPLING(II,,, ;) > Sample a leaf
b = GETBOX(s)
Tgoal = UNIFORMSAMPLING(b)

return sg.. = (goal, Tgoal)

end procedure

6.2.3 Neighbor search

In this section we show how to find a neighbor Spear = (Gnear, Tnear) Of a
goal state Sgoal = (Ggoal, Tgoar) Using the hybrid distance dy(-,-) defined in
Chapter 4.

Algorithm 9 takes as input a goal state Sgoai = (Qgoal, Zgoar) and also the
elementary box that contains xg. (which are produced by the function

SAMPLING (see Algorithm 8).

We first recall some notations related to the hybrid distance. For a given
discrete path v = ¢,q1,...,qk, ¢ between two location ¢ and ¢/, fG(7) is
the guard of the first transition of v, and IR(y) = R, ¢)(G(g..q)) 15 the
set resulting from applying the reset map R, 4 of the guard of the last
transition. Since the centroids of these two sets are used as the starting and
ending points in the definition of the average path length, we denote them
by ~.Start and v.End.

In the algorithm, the function ISEMPTY(b) returns TRUE if the box b is
not yet visited, and it returns FALSE otherwise. The function ISEMPTY(q)

6.2. MAIN FUNCTIONS 123

Algorithm 9 NEIGHBOR method

procedure NEIGHBOR((qgoals Tgoals Dgoat))
d = 00 > Initialize the distance to be infinity
if (ISEMPTY(ggoa)) then > If Qgoal 15 already visited then find a
continuous neighbor
Tnear=CONTINUOUSNEIGHBOR(Ggoal, Tgoal)
d = [|ZTnear — Tgoalll, near = Ggoal, Tdir = Tgoal
end if > For all other locations that are already visited
for all g € 9\ {ggoar} do
if (IsEMPTY(q)) then
I'=GETALLPATHS(q, ¢goal)
for vy €eI' do
4=CONTINUOUSNEIGHBOR/(q, v.5tart)
dy = len(y)||x — v.Start|| + len(y) + ||v.End — xg0a1|
if (d, < d;,) then
Tnear = T, d = dy,qnear = q, ¢ = y.Start
end if
end for
end if
end for
if (d,,==0c0) then return (()
elsereturn (gnear; Tnear, €)
end if
end procedure

124 CHAPTER 6. IMPLEMENTATION

where ¢ is a location works similarly. The algorithm consists of two steps. In
the first step, we try to compute a continuous neighbor, that is a neighbor
that is at the same location as the goal state. In the second step, we try to
compute a hybrid neighbor using the hybrid distance. We then select one

that is has a shorter distance to the goal state.

e Step 1: If the goal location qguq is already visited, then we search
for a continuous neighbor in the staying set of the location, using the
function ContinuousNeighbor which is discussed in the next section.

This continuous neighbor has the distance d to xypq-

e Step 2: To find a hybrid neighbor, let @, be the set of all the locations
which are already visited. We consider the set I' of all the paths from a
location in @y, to ggoqr- Then, for each path v € I', where ¢ is its starting
location and c is centroid of its first guard, we determine from the tree
7, a neighbor z, of ¢, using the function ContinuousNeighbor. We
also compute the average length d, of the trajectories from (g, x) to
(dgoals Tgoar) With respect to the path v, using Definition 34. After
this computation, we have a set of neighbors (¢, z,), each of which
corresponds to a path v € I'. Finally, we choose among these neighbors
(g,x) the one that has the shortest length dy to be Zpeq,. We also
compare d- with the distance d of the continuous neighbor, computed

in the first step.

If a hybrid neighbor (gnear; Tnear) is chosen via the path ~, the algorithm
also returns the centroid c of the first guard of 7. Indeed, to approach the
goal state from this hybrid neighbor, the system needs to approach this guard
first.

Set of neighbor elements (gnear, Tnear) and a direction z4;, where the near
state have to explore. In the continuous setting of our test case generation
this direction is simply the goal state x40, but in the hybrid state space this
direction depend on the path that minimize our hybrid distance betwen s44q

and Speqr-

6.2. MAIN FUNCTIONS 125

6.2.4 Continuous neighbor search

In this section we describe the function CONTINUOUSNEIGHBOR in Algo-
rithm 9.

In most versions of the RRT algorithm, the initial point for each iteration
is a nearest neighbor of the goal point. Due to the high complexity of the
computation of an exact nearest neighbor, we resort to computing a neighbor
which may not be a nearest one but close to the xyoq. We call this an
approrimate nearest neighbor. The computation of such an approximate

nearest neighbor can be done as follows:

e First, we find the elementary box b with at least one visited point that
is closest to x40q;. Note that the goal box by, that contains x 44, may

not contain any visited points.

e Then, we find a point in the box b which is the closest to xgoq. It is
easy to see that b does not necessarily contain a nearest neighbor of

T goal, Which may indeed be in a neighboring box.

The remaining question now is to find a nearest box. Before continuing with
this, we remark that, besides the complexity reason, we use this approxima-
tion since the sampling distribution reflects the boxes we want to explore,
that is, the sampled goal box by, indicates the region we want to explore.
In addition, as we will show later, this neighbor approximation preserves the

completeness.

Computing a nearest box We define the distance between a point « and
a box b as follows. The box b can be written as the product of n intervals
of the form I; = [l;, L;].

We define the offset from z to b as a n-dimensional vector wy, where the

ith component is defined as follows:

wp[i] = minyer,|li] — yli]]

126 CHAPTER 6. IMPLEMENTATION

where the notation x[i] is used to denote the i*" coordinate of the point z.
It is easy to see that wp[i] is negative if g[i] is on the left of I;, zero if it is
inside I;, and positive if it is on the right of I;.

Then, we define the distance from z to b, denoted by d(z, b) as the sums

of the squares of these offsets.
1/2

d(z,b) = (=] |wsli]?)

In the above we use the Euclidian norm, but any Minknowski norm can also

be used.

Figure 6.5 illustres this notion. In this figure, the d(y,b) = 0 and d(z, b)

is the Euclidean distance between z and the bottom left vertex of the box b.

Figure 6.5: Tlustration of the distance from a point to a box.

The algorithm works as follows. The algorithm maintains a priority queue
S. Each element of S consists of a node v of the tree and a priority defined as
the inverse of the distance from x to the box at the node v, that is 1/d(z, b).
We start with the root of the tree. In each iteration, using the function
COMPUTEDISTANCE, we compute the distance between the query point x
and the boxes (denoted O(-) in Algorithm 10) at each child of the current
v and then insert the child in the queue S if it contains visited points. The
algorithm iterates over all the elements of the priority queue S until it reaches
a leaf node, and the box at this leaf is the nearest box of the query point z

(which contains at least one point).

In addition, the computation of the distance from a point to a box can be

6.2. MAIN FUNCTIONS 127

Algorithm 10 Compute an approximate neighbor of x4
procedure CONTINUOUSNEIGHBOR(q, x)
v="Tg.root, d = 0

repeat

if ('{EMPTY(v.LEFTCHILD()) then
d;=COMPUTEDISTANCE(d, z, O(v.LEFTCHILD))
S.insert(v.LEFTCHILD(), d;)

end if

if ('{EMPTY(v.RIGHCHILD()) then
d,=COMPUTEDISTANCE(d, z, O(v.RIGHTCHILD)
S.insert(v.LEFTCHILD(), d)

end if

(v,d)=S.POPHIGHPRIORITY()

until (ISLEAF(v))

end procedure

done in an incremental way as follows.

Incremental distance computation. When the algorithm descends the
tree from a node v to its children v; and wv,, it is possible to compute in-
crementally the distance from « to the two children boxes b; and b,.. Let k
denote the splitting dimension and let p denote the splitting value. We can
assume that b; is closer to x than b, is. The other case is handled similarly.

(see Figure 6.6)

Because b; is the closer box to x, its distance and offsets from x are the
same as the box b, at the parent node v. For b,, we observe that for each
dimension i # k, wp, [i] = wp, [i], since these coordinates are not affected by
the current splitting. Since this is the farther of the two children, it follows
that along the splitting dimension, the offset between = and b, is the distance

from x to the splitting value, that is, wp, [k] = z[k] — p.

To compute the distance between z and b,., we simply subtract the square

of the existing offset w,[k] and add the square of the new offset wp, [k]

128 CHAPTER 6. IMPLEMENTATION

d(z,by) = (d(w,by)? — wp, [K]* + wp, [K])'/2.

ICEORNG

Wy [l]

) W, [-‘)]

3
&
=

b4

A

Figure 6.6: Incremental distance calculation technique

6.3 The hybrid test generation tool: HTG

We have implemented the above algorithm in a tool, which we call HTG.
The implementation has a modular architecture (see Figure 6.7). The solid
boxes represent the algorithms that we implemented, and the other boxes
are the numerical integration tools RADAU [2] and SICONOS [4] that we

use.

The data module contains the implementations of all data structures and

the functions in the test generation algorithm.

6.3. THE HYBRID TEST GENERATION TOOL: HTG 129

Test Case

Figure 6.7: The modules of the tool.

130 CHAPTER 6. IMPLEMENTATION

Chapter 7

Case studies

In this chapter we treat a number of case studies to demonstrate the per-
formance of our test generation algorithm. These experimental results were
obtained using the prototype tool, called HT'G. All the results reported in
this chapter were obtained by running the tool on a 1.4 GHz Pentium III
using a GNU/Linux system.

We are concerned with demonstrating, on one hand, the performance of
our approach in terms of time and coverage efficiency and, on the other hand,
the applicability of our testing approach to the domain of analog and mixed
signal circuits. Indeed hybrid systems provide a suitable formal model for

describing the behaviors of such circuits.

7.1 Linear systems

To demonstrate the time efficiency of HT G, we use a set of examples of

linear systems in various dimensions
i=Ax+u

In this experiment, we did not exploit the linearity of the dynamics and
the tested systems were randomly generated: the matrix A is in Jordan

canonical form, each diagonal value of which is randomly chosen from [—3, 3]
131

132 CHAPTER 7. CASE STUDIES

dim n Lower bound Upper bound

gRRT | RRT gRRT | RRT
0.451 0.546 0.457 0.555
0.462 0.650 0.531 0.742
10 0.540 0.780 0.696 0.904

Table 7.1: Discrepancy results obtained for some linear systems using gRRT
and RRT.

dim n | Time (min)
5 1
10 3.5
20 7.3
50 24
100 71

Table 7.2: Computation time of gRRT for some linear systems.

and the input set U contains 100 values randomly chosen from [—0.5,0.5]".
We fix a maximal number K,,,, = 50000 of visited states. In terms of
coverage, the star discrepancy of the results obtained by gRRT and the
classic RRT algorithm are shown in Table 7.1, which indicates that our
algorithm achieved a better coverage quality. These discrepancy values were
computed for the final set of visited states, using a partition optimal w.r.t.
to the imprecision bound in (3.33). Note that in each iteration of our test
generation algorithm we do not compute such a partition because it is very
expensive. This is also the reason why we could not compare the coverage
for higher dimensional systems, since a precise coverage estimation using

optimal partitions is too expensive for such systems.

Table 7.2 shows the time efficiency of HT G for linear systems of dimen-
sions up to 100.

7.2. AIRCRAFT COLLISION 133

7.2 Aircraft collision

This case study is one of the well-known benchmarks in the hybrid systems
literature |75]. In this paper, the authors treated the problem of collision
avoidance of two aircraft. To show the scalability of our approach we consider

the same model with N aircraft.

As shown in Figure 7.1, all the aircraft are at a fixed altitude. Each aircraft
i has three states (z;,y;,0;) where x; and y; describe the position and 6; is
the relative heading of the aircraft. Each aircraft begins in straight flight at

a fixed relative heading (mode 1).

Mode 1 « Mode?2
k K s N
R
L
...... 7 L
A \n 4
XN 120° \.H ‘ﬁ - <
\\;m:,. // = "t"l o

Figure 7.1: Aircraft behavior in the three modes [75].

Then, as soon as two aircraft are within the distance R (km) between each
other, they enter mode 2. In this mode each aircraft makes an instantaneous
heading change of 90 degrees, and begins a circular flight for 7 time units.
After that, they switch to mode 3 and make another instantaneous heading

change of 90 degrees and resume their original headings from mode 1.

The dynamics of the system are shown in Figure 7.2. The guard transition
between mode 1 and mode 2 is given by D(i,7) < R which means that the
aircraft 7 is at R (km) distance from the aircraft j. The dynamics of each
aircraft is as follows: For an ideal situation without external disturbances,

we have:

134 CHAPTER 7. CASE STUDIES

&; = veos(0;) + dysin(0;) + dacos(6;),
v; = vsin(0;) — dycos(6;) + dasin(6;)
éi = w

0; =0

The continuous inputs are dx; and dx; describing the external disturbances
on the aircraft (such as wind):
dx; = dysin(0;) + dacos(0;),
dy; = —dicos(0;) + dasin(6;),

and —o § dl,dg S 0.

;= veos(0;) + dx;

x; = veos(0;) + dx; x; = veos(0;) + dx;
yi = vsin(0;) + dy; yi = vsin(0;) + dy; yi = vsin(0;) + dy;
0; = 0 0; = w 0; =0
=0 i=1 =0

Figure 7.2: System dynamics for the three modes.

Results. Thus for N aircraft, the system has 3N + 1 continuous variables

(one for modeling a clock). For the case of N = 2 aircraft, when the collision

7.3. ANALOG AND MIXED SIGNAL CIRCUITS 135

distance is 5 no collision was detected after visiting 10000 visited states, and
the computation time was 0.9 min. The result for N = 8 aircraft with the
disturbance bound § = 0.06 is shown in Figure 7.3. For this example, the
computation time for 50000 visited states was 10 min and a collision was
found. For a similar example with NV = 10 aircraft, the computation time
was 14 minutes and a collision was also found. In Figure 7.3 we show the

projected positions of the eight aircraft on a 2-dimensional space.

a0

el

[=18)

LTl o8

40

20

20 -

fle]

Figure 7.3: Eight-aircraft collision avoidance (50000 visited states, compu-

tation time: 10 min.

7.3 Analog and mixed signal circuits

The increasing need for analog and mixed-signal circuits has motivated the
development in design and test tools for these circuits. Analog and mixed
signal testing is considered to be a very difficult task. Even when the area
of the analog part in a mixed-signal circuit is small, the cost of its testing

covers a significant proportion of the global manufacturing cost.

136 CHAPTER 7. CASE STUDIES

In comparison with the digital counterpart, the specific difficulties of ana-
log and mixed-signal testing are the following. While digital testing can use
simple fault models (such as stuck-at-faults), fault models in analog designs
are often complex and reflect the process-related disturbances, such as pa-
rameter deviations or size changes which have an infinite domain of possible
values. In addition, the performance measures (such as transfer curves, fre-
quency characteristics) are more complex than patterns of 1’s and 0’s at the

outputs in a digital circuit.

In this work, we focus on the problem of automatic test generation, which
involves computing a set of input patterns that permit detecting a given
fault (for example, by comparing the differences in the outputs with some
predetermined tolerance thresholds). Test generation has been considered
for analog circuits such as in [44, 87, 86|, for mixed-signal circuits such
as in [17, 57, 20|, using a variety of techniques, such as static test gener-
ation [98], sensitivity computation [44]|, Monte-Carlo simulation [87|, and

optimization [27].

Concerning coverage, in circuit testing, fault coverage is an important con-
cern. A fault is said to be detected by a test input pattern if, when applying
the input pattern to the circuit, different output patterns can be observed,
for the reference (non-faulty) circuit and the faulty circuit. Generally, faults
can be categorized into catastrophic and parametric faults. Examples of
catastrophic faults include a change in the circuit topology, a global devi-
ation of the circuit behavior. Parametric faults refer to small changes in
the parameters that do not affect the circuit functionality. For example, a
band-pass filter which has a frequency response with the correct shape but
it passes a larger range of frequencies. It is often assumed that beyond a

deviation of 10% is considered to have caused faults.

In the following, we demonstrate the applications of our test generation
method for analog and mixed-signal circuits using hybrid system models.
Hybrid systems, combining discrete event systems and continuous systems,
can naturally describe the behaviors of these circuits. Formal verification

of these circuits using these models has been investigated in [31, 41]. The

7.3. ANALOG AND MIXED SIGNAL CIRCUITS 137

advantage of using hybrid system models is that the test generation is per-
formed within a unified framework without separation between the digital
and analog parts. In addition, the test generation process is guided by a
coverage measure which is suitable for circuit applications. We now show

the experimental results for three benchmark circuits:

e A tunnel diode circuit
e An amplifier transistor
e A voltage controlled oscillator (VCO)
e A Delta-Sigma modulator, a very popular circuit for analog to digital
conversion. This is a mixed signal circuit.
7.3.1 Tunnel diode circuit

This circuit is taken from [1] and its diagram is shown in Figure 7.4.

Figure 7.4: The tunnel diode circuit (left) and the Tunnel diode characteristic
(right).

Modeling. The state variables are (z1,x2) = (I, Vy) where I is the current
through the inductor and Vj is the voltage across the diode (see Figure 7.4).

Applying the Kirchhoff’s law, and after some mathematical calculations,

138 CHAPTER 7. CASE STUDIES

we obtain the flowing differential equations describing the behavior of the

circuit:

i1 = &(—u(z2) + 21)

i‘g = %(E — Rxl — .’IIQ)

The circuit has the following circuit parameters: C' = 2pF, L = 5nH,
E =1.2V, R = 1.5k). The tunnel diode characteristic, shown in Figure 7.4,
is described by the following equation

I = 1(Vy) = 17.76V; — 103.79V7 + 229.62V; — 226.31V;} + 83.72V7;.

The phase portrait of the dynamics is shown in Figure 7.5

i Cl(rnA)

V. (v)

L

Figure 7.5: Tunnel diode circuit phase portrait

The equilibrium states @)1 and @3 in Figure 7.5 are said to be asymp-
totically stable because all trajectories originating from points in a small
neighborhood of Q1 or Q3 tend to Q1 or Q3 as t — oo. In contrast, the equi-
librium state ()2 is said to be unstable because there exist points arbitrarily

close to Q2 whose trajectories diverge from Qo as t — o0.

In [1], the computation of the of the equilibrium states gives the following
results (see Table 7.3).
This tunnel diode circuit has been used as a computer memory, where

the equilibrium state)1 is associated with the binary state "0" and the

equilibrium state Q3 is associated with the binary state "1". We observe

7.3. ANALOG AND MIXED SIGNAL CIRCUITS 139

State | Vg(V) | Iz(mA)
01 | 006 | 076
Qs | 029 | 0.60
Qs | 088 | 0.20

Table 7.3: Equilibrium state values.

from the phase portrait in Figure 7.5 that triggering from Q1 to @3, or vice
versa, means applying a small triggering signal of sufficient duration which

allows the trajectory to move over to the other side of the separation curve.

We study the behavior of the circuit under two types of variations:

e the variation on the diode characteristic modeled by Iy = ¢«(Vy) + A,,

and

e the source voltage variation Ag.

In our testing framework, these variations (A,, Ag) can be considered as

control inputs that the tester can manipulate.

Results. We used the HTG tool to generate test cases for the circuit.
The state space is B = [-0.2,—0.2] x [1.2,1.2]. The range of variation is
[-0.12,—0.12] x [0.12,0.12]. The initial points are in a set of 100 points
randomly sampled in [0.20,0.59] x [0.3,0.61], a region near the unstable

equilibrium state.

Figure 7.6 shows the set of observations after 1 mn. We can see that, with
these disturbances, all the generated traces are still consistent with the phase

portrait.

7.3.2 Transistor amplifier

In this section we treat the transistor amplifier benchmark, taken from [36].

Its diagram is shown in Figure 7.8. The circuit equations are a system of

140 CHAPTER 7. CASE STUDIES

o7l

061

04r
0.3-

0.2r

0.1 i | i i i i i i i i

Figure 7.6: Test generation results for the tunnel diode circuit

7.3. ANALOG AND MIXED SIGNAL CIRCUITS 141

differential-algebraic equations DAEs of index 1 with 8 continuous variables.

Figure 7.7: Transistor amplifier circuit [36].

Modeling. In this circuit, U, is the input signal and Ug is the amplified
output voltage. The circuit contains two transistors of the form depicted in
Figure 7.8.

/ /Dr:n'rl
ra

\ Source
N

Figure 7.8: Schematic representation of a transistor.

As a simple model for the behavior of the transistors, we assume that the
currents through the gate, drain and source, denoted by Ig, Ip and Ig, are
given by:

Ic =(1—-a)g(Ug —Ug),

142 CHAPTER 7. CASE STUDIES

Ip = a.g(Ug — Ug),
Is = g(Ug — Us)

where Ug and Ug denote the voltage at the gate and source respectively, and

a = 0.99. The function g is given by:

g(x) = B.(eTF — 1)

where 8 = 107% and Ur = 0.026.

To formulate the circuit equations, Kirchhoff’s law is used in each num-
bered node. All currents passing through the circuit components can be
expressed in terms of the voltages Uy, - -- , Ug. Consider for instance node 1.

The current I, passing through capacitor C is given by
Io, = d (C1(Uy —Uy))
¢ = et 1

and the current I, passing through the resistor Ry by

U - Uy

Ig, o

Here, the currents are directed towards node 1 if the current is positive. We
pose
Ui=y;, vie{l, - 8}

and with the similar derivation for the other nodes gives the system:

dy
M- = f(t.y) (7.1)

where the matrix M is given by:

-C1 O 0 0 0 0
¢, -G 0 0 0 0
0 —Cs 0 0 0
0
0

o O O O o O
o O O O o o

o O O O o O
o O O O O

7.3. ANALOG AND MIXED SIGNAL CIRCUITS 143

and the function f is given by:

~Ue/Ro + y1/Ro
—Up/Ra + y2(1/R1 + 1/R2) — (e — 1)g(y2 — y3)

—9(y2 —y3) +y3/Rs

—Us/Rs + ys/Rs + ag(y2 — y3)

—Up/Re +y5(1/R5 + 1/R — 6) — (a — 1)g(y5 — ys)

—9(ys — ys) + ye/R7

—Up/Rs +y7/Rs + ag(ys — ys)

ys/Ro

A consistent initial state at t = 0 is

0 51.338775
Ub/(% +1) 51.338775
Ub/(%“"l) —Ub/((%"‘l)(CZRB))

—24.
y<0) = Ub/(g; +1) ’ y/<0) - —243:2;22; 7

Uy/(2e +1) Uy /(5% + 1)(Ca-Rr))

U, —10.00564453

0 —10.00564453

Numerical solution. To solve the differential algebraic system (7.1), we
use the numerical solver RADAU5. The integration method implemented
in RADAUS5 is an implicit Runge-Kutta method (RADAU IIA) of order 5
(see [2] for more detail about the method).

Figure 7.9 shows the numerical solution of the amplified voltage output
ys = Us (at node 8) obtained using RADAUS5, under the input signal

Ue(t) = 0.1sin(2007t)

The technical parameters are given in Table7.4:

Testing. We are interested in studying the influence of circuit parame-
ter uncertainty on the transient properties, such as overshoot, stabilization

time. The uncertainty we consider is indeed a perturbation in the function

144 CHAPTER 7. CASE STUDIES

¥(8)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04
Time

Figure 7.9: The output signal voltage

Parameter Value
Ry 1000
Ry 9000 (1 <k <9)
Cy k1076 (1 <k <5)
Uy 6
Ur 0.026
Q@ 0.99
Ié; 1076

Table 7.4: Technical parameters.

7.3. ANALOG AND MIXED SIGNAL CIRCUITS 145

describing the relation between the current through the source of the two

transistors and the voltages at the gate and source

Ug-Us

Is =g(Ug—Us)=p(e Ur —1)+e¢

with € € [€min, €maz] = [—De—5, 5e—5]. For testing purposes, € is considered

as an input controllable by the tester.

Results. We used the HT'G tool to generate test cases, which indicate the
presence of traces with overshoots. The acceptable interval of Ug in the non-
perturbed circuit is [—3.01,1.42] (see Figure 7.9). The result is presented
in Figures 7.10 and 7.11. In this figures we show the generated observation

sequences projected on the variable Ug over time.

Dq[ﬂ. LT L AT LR
1 EATHHHAE A HAE L Ak AT e
2}
-
0 it O R TR | L6 1 O | Y I O 0 | R I | Rt
MRCH R RIS | IR A N B (R O O R R O T B R LA S BN EREE O B RS
TR B s o SR R
% i i i i ; i i j
1] 0.os 01 01s .z 023 0.3 .35 0.4
Time

Figure 7.10: Test generation result for the transistor amplifier.

This result was obtained after 50000 iterations with 10 discretized control

input values. The computation time was about 3 mn.

146 CHAPTER 7. CASE STUDIES

Yig

0 0.005 0.01 0.015 0.0z 0.025 0.03
Time

Figure 7.11: Test generation result for the transistor amplifier, zoom in the
first 0.03s.

7.3.3 Voltage controlled oscillator

We examined in this section the voltage controlled oscillator (VCO). This
circuit is taken from [42], shown in Figure 7.12. The behavior of this circuit
can be represented by a system of differential-algebraic equations DAEs with
55 continuous variables. The input is modeled by an ideal voltage controlled
current which is mirrored by TN1, TP1, TN2, TP2, TN5 charging the
capacitance Cy. Assuming the output voltage ve, to be at Vpp, Cs is charged
up linearly by the input current through the switch TN3, T P3 controlled by
the inverter (TTN4, TP4). As vc, exceeds the positive threshold voltage of
the Schmitt trigger, determined by the resistors Ry and Ra, vc, changes to
Vsg. Consequently, C5 is discharged until the initial status is reached leading
to an oscillation. Figure 7.14 shows the oscillation projected on variables vc,

and vc, .

Testing. We are interested the oscillating frequency of the variables v¢,

and vc,. Indeed, this frequency is a linear function of the input voltage. We

7.3. ANALOG AND MIXED SIGNAL CIRCUITS 147

|_l

VN VN VN o
— H R,
TP1l4q p—TP2 —
— —
J . TP4
— >
pITP3 . |I—1

gv H fe— TN4
D k= TN3 H
I C2 RZ[C.‘==
_{I— —|| |I— I
ke TNG TNT 3 jeo TN2 - -
— Al [
v 7 A~ <~

Figure 7.12: Voltage controlled oscillator (VCO) circuit.

study the influence of a time-variant perturbation in C5 on the frequency.
This perturbation is modeled as an input signal. In this example we show
that, in addition to conformance relation, using this framework, we can test
a property of the input/output relation. More precisely, for a given input
sequence, we want compare the observation sequences of the specification A
and those of the system under test A,, with respect to a property. As an
example, the oscillating period T+ 6 of a variable 1 = v¢, can be expressed
using a simple automaton with one clock y in Figure 7.13 (similar to a
monitor automaton in [41]). The question is to know if given an oscillating
trace in A, its corresponding trace in Ay is also oscillates with the same
period. This additional automaton can be used to determine test verdicts
for the traces in the computed test cases. If we are additionally interested in
a property which states that all traces of the system under test oscillate with
the period T+ §. If an observation sequence corresponds to a path entering

the ‘Error’ location, then it causes a ‘fail’ verdict. Since we cannot use finite

148 CHAPTER 7. CASE STUDIES
traces to prove a safety property, the set of observation sequences that cause

a ‘pass’ verdict is empty, and therefore the remaining observation sequences

(that do not cause a ‘fail’ verdict) causes a ‘inconclusive’ verdict.

y>T+49
A x| <e

0
0

X1

Y
T—0<y<T+0 A |r1] <e¢
y:=0

Figure 7.13: Automaton for an oscillation specification.

Results. We consider a constant input voltage u;, = 1.7. The generated
test case shows that after the transient time, under a time-variant deviation
of Cy which ranges within £10% of the value of Cy = 0.1e — 4, the variables
vey and ve, oscillate with the period T' € [1.25,1.258]s (with ¢ = 2.8e —
4). This result is consistent with the result presented in [42]. Figure 7.15
shows the observation sequence projected on ve, and ve,. We note that the
number of generated states was 30000 with 5 sampled input values and the
computation time was 14mn. In this experiment, the coverage measure was
defined on the projection of the state space on ve, and vg,, and not on the

full-dimensional state space.

7.4 Delta-Sigma circuit

In this section we treat a mixed-signal circuit, which is a Delta-Sigma modu-
lator [3], This circuit is a very popular technique to perform analog to digital
conversion. The principles of Delta-Sigma modulation [18] can be described

by the following points:

7.4. DELTA-SIGMA CIRCUIT 149

0.06

000 ks ssannbon

W2
o

002k P - e e B s -

17 IOUUUURE SUUUUONY- SUUNURE JOUUUOND: SUPUNUE SUUTEUUE: SUUOUNOE SUUPUUON: SOUTURE: SRR

25 2 -15 -1 0.5 0 05 1 15 2 25
Vel

Figure 7.14: Variables ve, and ve, projection (without perturbation).

0.06

0.04

0.02

-0.02

-0.04

-0.06 : : :
25 -2 -15 -1 05 0 05 1 15 2 25
Vel

Figure 7.15: Variables v¢, and ve, projection.

150 CHAPTER 7. CASE STUDIES

i : sl N
LU" z-1 ALiJ

Input 1-bit Quantizer Qutput
(Oversampled Signal)

Figure 7.16: A first order Delta-Sigma modulator and an example of an

input-output plot.

Anti-aliasing: used to ensure that the signal band width lies within a

given range [— fp, fo],

Oversampling or sampling at a frequency greater than the Nyquist rate
2 X fb7

Noise shaping so that the quantization error is ‘pushed’ toward high

frequencies outside the bandwidth of interest,

Quantization, typically on few bits.

Figure 7.16 shows how the Delta-Sigma modulation works. When the input
sinusoid is positive and its value is less than 1, the output takes the +1
value more often and the quantization error which is the difference between
the input and the output of the quantizer is fed back with negative gain

and ‘accumulated’ in the integrator zi—l Then, when the accumulated error

7.4. DELTA-SIGMA CIRCUIT 151

‘%llnput
"

h 4

b b2 \¢f b3 7 b4 Nf

cl c2 c3
1 L 1 LA 2 oA vkL..
O = P o e o e
(k) x2(k} x3(k) y(K) Quantizer| Output

v(k)

Figure 7.17: Model of a third-order modulator: Saturation blocks model

saturation of the integrator.

reaches a certain threshold, the quantizer switches the value of the output

to —1 for some time, which reduces the mean of the quantization error.

A third-order Delta-Sigma modulator is modeled as a hybrid automaton,
shown in Figure 7.18. Tt is called third-order since it uses a third order filter

to process noise.

Higher-order modulators achieve better performance but induce stability
problems. A modulator is said to be stable if under a bounded input, the
states of its integrators are bounded. Stability analysis for such circuits is
still a challenging problem [3], due to the presence of two sources of non-
linearities: saturation and quantization. The discrete-time dynamics of the

system is as follows:

z(k+1)
y(k)

Az (k) + bu(k) — sign(y(k))a, (7.2)
Cg%g(k) + b4u(k‘), (73)

where matrix A, vectors a and b are constants depending on the various
gains of the model, z(k) € R? represents the integrator states, u(k) € R
is the input, y(k) € R is the input of the quantizer. Thus, its output is

v(k) = sign(y(k)), and one can see that whenever v remains constant, the

152 CHAPTER 7. CASE STUDIES

ey g 2 0
et
™ ““‘\
- ~ ~ |
(Quantizer Qutpul v{k) = -1 s Quantizer oulpul v(k) = +1 h
100 by ay 100 Iy ay
x = e 1 0 xpt b fued (o wpr = (e U 0)xet b fup—|as
| 0 o 1 by ay ! 0 e 1 by a))
\x_ T
e
gy +up < 0

Figure 7.18: A hybrid automaton model of the Delta-Sigma modulator.

system dynamics is affine continuous. A modulator is stable if under a

bounded input, the states of its integrators are bounded.

Results. We are intersted in testing the the stability property of the mod-
ulator. The test generation algorithm was performed for the initial state
x(0) € [-0.01,0.01]® and the input values u(k) € [~0.5,0.5]. After exploring
only 57 states, saturation was already detected. The computation time was
less than 1 second. Figure 7.19 shows the values of (sup z1(k))x as a function
of the number k of time steps. We can see that the sequence (supz1(k))x
leaves the safe interval [—z§% x5%] = [—0.2,0.2], which indicates the in-
stability of the circuit. This instability for a fixed finite horizon was also

detected in [31] using an optimization-based method.

7.4. DELTA-SIGMA CIRCUIT 153

0.25 T T

: ; Saturation Zone : 5 Jui]
. ; : -
0z : ; :

S %A)
N

) SNPGRS WPSIN. SUORSIS: SRR ¥ S SR PR S —

Figure 7.19: Test generation result for the Delta-Sigma circuit.

154 CHAPTER 7. CASE STUDIES

Chapter 8

Conclusion

8.1 Contributions

As we mentioned in the introduction of the thesis, model-based conformance
testing has not been much developed for hybrid systems. This thesis is
concerned with this problem and its main contributions can be summarized

as follows.

In this thesis, we proposed a formal framework for conformance testing
of hybrid systems. This framework uses the commonly-accepted hybrid au-
tomaton model. Furthermore, we developed a test generation algorithm,

which exploits the ideas from robotic path planning. Another

We have adapted the hybrid automata as formal model for describing the
system under test, believing that still the suitable language for modeling any

complex system combining continuous and discrete parts.

The main contributions of the thesis can be summarized as follows:

Conformance testing framework and test generation.

e We proposed a formal framework for conformance testing of hybrid
systems. This framework uses the commonly-accepted hybrid automa-

ton model. The framework is defined according to the international
155

156 CHAPTER 8. CONCLUSION

standard for formal conformance testing [95]. This framework allows,
on one hand, to formally reason about the conformance relation be-
tween a system under test and a specification, and on the other hand,

to develop test generation algorithms.

e Besides the main concepts in the framework of conformance testing,
we addressed the problem of defining test coverage measures. We pro-
posed two novel coverage measures, which not only are useful as a
criterion to evaluate testing quality but also can be used to guide the
test generation process in order to produce test cases with good cover-

age

o We developed a number of coverage-guided test generation algorithms
for hybrid systems. These algorithms are based on a combination of the
ideas from robotic path planning, equidistribution theory, algorithmic

geometry, and numerical simulation.

Tool development and applications. We have implemented a tool for
conformance testing of hybrid systems, called HTG. The input of our tool
is a hybrid automaton described using a textual language input. The core
of the tool is the implementation of the coverage-guided test case genera-
tion algorithm and the methods for estimating coverage measures. We have
treated a number of case studies from control applications as well as from
analog and mixed signal circuits. The experimental results obtained using
the tool HT'G show its applicability to systems with complex dynamics and

its scalability to high dimensional systems

8.2 Future work

The theoretical and practical results obtained in this thesis open a number

of promising directions for future research:

Testing.

8.2. FUTURE WORK 157

e First, we are interested in enriching our framework to capture partial

observability, sensor and actuator imprecision.

e Convergence rate of the exploration in the test generation algorithm
is another interesting theoretical problem to tackle. This problem is
particular hard especially in the verification context where the system

is subject to uncontrollable inputs.

Application to analog and mixed signal circuits. We intend to apply
the results of this research to validation of analog and mixed-signal circuits,
a domain where testing is a widely used technique. The current version of
the tool is not yet as a general purpose as we would like. A number of issues
remain to resolve in order to increase the applicability of the tool towards
industrial systems. First of all, an efficient and reliable simulation method is
key. The state-of-the-art SPICE simulator is prone to convergence problems
when the dynamics of the circuit has fast variations caused by components
with stiff characteristics. Currently, we are working in collaboration with
researchers at INRIA Rhone-Alpes, and a topic of our undergoing research
is to integrate in our test generation tool their simulation algorithms based on
the non-smooth approach [4]. The applications of these simulation algorithms
to mechanical systems have already been proved successful, and they are now
being adapted to electrical systems. On the other hand, we are also interested
in a tool for automatic generation of hybrid automata from commonly-used
circuit descriptions, such as SPICE netlists or MATLAB/Simulink.

Application to related problems. The test generation techniques de-
veloped in this thesis can also be applied to two related problems, which are

of particular interest:

e Systematic simulation [56]. This involves verifying that a given model
satisfies a property by performing a number of simulations guided by
some criteria, such as optimality, coverage. Systematic simulation can
be thought of as a special case of testing, where not only the inputs

of the systems but also the external disturbances are controllable by

158 CHAPTER 8. CONCLUSION

the simulation algorithms. This approach can be used as a good com-
promise between exhaustive verification (which suffers from the state
explosion problem and ad-hoc simulation which does not provide cov-

erage guarantee.

e Run-time verification (or monitoring) [89, 60, 103, 82]. This involves
observing the behavior of a real system during its execution and check
whether the behavior satisfies a given property. Monitoring is also a
special case of testing, where the tester is passive, that is it can only

observe the output of the system but cannot control the inputs.

We thus intend to include new functionalities in our test generation tool in

order to address the above problems.

Bibliography

1]

2]

3]

4]

[5]

L. O. Chua, C. A. Desoer, and E. S. Kuh. Linear and nonlinear cir-
cuits, chapter 7. McGraw-Hill Book Company, 1987.

Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential
Equations II. Stiff and Differential-Algebraic Problems., chapter IV.8.
Springer Series in Computational Mathematics 14, 1991.

B. Pérez-Verdi and F. Medeiro and A. Rodriguez-Vizquez. Top-
Down Design of High-Performance Sigma-Delta Modulators, chapter 2.
Kluwer Academic Publishers, 2001.

V. Acary and F. Pérignon. Siconos: A software platform for model-
ing, simulation, analysis and control of non smooth dynamical system.
In Proceedings of MATHMOD 2006, 5th Vienna Symposium on Math-
ematical Modelling, Vienna, 2006. ARGESIM Verlag, Vienna, 2006
ISBN 3-901608-30-3.

Thierry Jéron Ahmed Khoumsi and Hervé Marchand. Test cases gen-
eration for nondeterministic real-time systems. In Formal Approaches
to Software Testing, 2004.

R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems. Theoretical Computer Science, 138:3-34,

1995.
159

160

7]

[10]

[11]

[12]

[13]

[14]

[15]

BIBLIOGRAPHY

R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid
automata: an algorithmic approach to the specification and verifica-
tion of hybrid systems. In R.L. Grossman, A. Nerode, A.P. Ravn,
and H. Rischel, editors, Hybrid Systems, LNCS 736, pages 209-229.
Springer-Verlag, 1993.

R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivan, ¢ Kumar, I. Lee,
P. Mishra, G. Pappas, and O. Sokolsky. Hierarchical modeling and
analysis of embedded systems, 2002.

Rajeev Alur, Calin Belta, Vijay Kumar, Max Mintz, George J. Pappas,
Harvey Rubin, and Jonathan Schug. Biocomputation: modeling and

analyzing biomolecular networks. Comput. Sci. Eng., 4(1):20-31, 2002.

Rajeev Alur and David L. Dill. A theory of timed automata. Theoret-
ical Computer Science, 126(2):183-235, 1994.

Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. Automatic sym-
bolic verification of embedded systems. In IEEE Real-Time Systems
Symposium, pages 2—11, 1993.

Marco Antoniotti and Aleks Gollii. Shift and smart-ahs: a language for
hybrid system engineering modeling and simulation. In DSL’97: Pro-
ceedings of the Conference on Domain-Specific Languages on Confer-
ence on Domain-Specific Languages (DSL), 1997, pages 1414, Berke-
ley, CA, USA, 1997. USENIX Association.

Array. Automotive engine control and hybrid systems: Challenges and
opportunities. Proceedings of the IEEE, 88(7):888-912, July 2000.

E. Asarin, O. Maler, and A. Pnueli. Reachability analysis of dynamical
systems having piecewise-constant derivatives. Theoretical Computer
Science, 138:35-66, 1995.

Euene Asarin, Thao Dang, and Oded Maler. The d/dt tool for verifi-
cation of hybrid system, 2002.

BIBLIOGRAPHY 161

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

J.-P. Aubin, J. Lygeros, M. Quincampoix, S. Sastry, and N. Seube.
Impulse differential inclusions: a viability approach to hybrid systems.
IEEE Transactions on Automatic Control, 47:2-20, January 2002.

B. Ayari, N. Ben Hamida, and B. Kaminska. Automatic test vector
generation for mixed-signal circuits. In EDTC '95: Proceedings of the
1995 European conference on Design and Test, page 458, Washington,
DC, USA, 1995. IEEE Computer Society.

P. M. Aziz, H. V. Sorensen, and J. van der Spiegel. An overview of
sigma-delta converters. Signal Processing Magazine, IEEE, 13(1):61-
84, 1996.

J. Beck and W. W. L. Chen. Irregularities of distribution. In Acta
Arithmetica, UK, 1997. Cambridge University Press.

N. Ben-Hamida, K. Saab, D. Marche, and B. Kaminska. A pertur-
bation based fault modeling and simulation for mixed-signal circuits.
In ATS ’97: Proceedings of the 6th Asian Test Symposium, page 182,
Washington, DC, USA, 1997. IEEE Computer Society.

Saddek Bensalem, Marius Bozga, Moez Krichen, and Stavros Tripakis.
Testing conformance of real-time applications by automatic generation
of observers. Electr. Notes Theor. Comput. Sci., 113:23-43, 2005.

Jon Louis Bentley. Multidimensional binary search trees used for as-
sociative searching. Commun. ACM, 18(9):509-517, 1975.

Amit Bhatia and Emilio Frazzoli. Incremental search methods for
reachability analysis of continuous and hybrid systems. In HSCC, pages
142-156, 2004.

Oleg Botchkarev and Stavros Tripakis. Verification of hybrid systems
with linear differential inclusions using ellipsoidal approximations. In
HSCC ’00: Proceedings of the Third International Workshop on Hybrid
Systems: Computation and Control, pages 7388, London, UK, 2000.
Springer-Verlag.

162

[25]

[26]

[31]

[32]

[33]

BIBLIOGRAPHY

M. Branicky, V. Borkar, and S. Mitter. A unified framework for hybrid

control: model and optimal control theory, 1998.

Michael S. Branicky, Michael M. Curtiss, Joshua Levine, and Stuart
Morgan. Sampling-based reachability algorithms for control and veri-
fication of complex systems. In Thirteenth Yale Workshop on Adaptive
and Learning Systems, 2005.

Bernhard Burdiek. Generation of optimum test stimuli for nonlinear
analog circuits using nonlinear programming and time-domain sensi-

tivities.

Rachel Cardell-Oliver. Conformance test experiments for distributed
real-time systems. In ISSTA ’02: Proceedings of the 2002 ACM SIG-
SOFT international symposium on Software testing and analysis, pages

159-163, New York, NY, USA, 2002. ACM Press.

P. Cheng and S. LaValle. Resolution complete rapidly-exploring ran-
dom trees, 2002.

Alongkrit Chutinan and Bruce H. Krogh. Verification of polyhedral-
invariant hybrid automata using polygonal flow pipe approximations.
Lecture Notes in Computer Science, 1569:76-77, 1999.

Thao Dang, Alexandre Donzé, and Oded Maler. Verification of analog
and mixed-signal circuits using hybrid system techniques. In FMCAD,
pages 21-36, 2004.

Thao Dang and Tarik Nahhal. Randomized simulation of hybrid sys-
tems for circuit validation. In Forum on Specification and Design Lan-

guages, pages 9-14, 2006.

David Dobkin and David Eppstein. Computing the discrepancy. In
SCG ’93: Proceedings of the ninth annual symposium on Computa-
tional geometry, pages 47-52, New York, NY, USA, 1993. ACM Press.

BIBLIOGRAPHY 163

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Benjamin Doerr, Michael Gnewuch, and Anand Srivastav. Bounds and
constructions for the star-discrepancy via &+#948;-covers. J. Complez.,
21(5):691-709, 2005.

Michael Drmota and Robert F. Tichy. Sequences, discrepancies and
applications. Lecture Notes in Mathematics. 1651. Berlin: Springer.
xiii, 503 p. DM 126.00; 6S 919.80; sFr. 111.00 , 1997.

C. Lubich E. Hairer and M. Roche. The numerical solution of
differential-algebraic systems by runge kutta methods. In Lecture Notes
i Mathematics 1409. Springer-Verlag, 1989.

M. Egerstedt, K. Johansson, J. Lygeros, and S. Sastry. Behavior based

robotics using regularized hybrid automata, 1999.

J. Esposito, J. W. Kim, and V. Kumar. Adaptive RRTs for validating
hybrid robotic control systems. In Proceedings Workshop on Algorith-
mic Foundations of Robotics, Zeist, The Netherlands, July 2004.

Henri Faure. Discrepance de suites associees & un systéme de numer-
ation., 1978.

S Fortune. A sweepline algorithm for voronoi diagrams. In SCG '86:

Proceedings of the second annual symposium on Computational geom-
etry, pages 313-322, New York, NY, USA, 1986. ACM Press.

Goran Frehse, Bruce H. Krogh, Rob A. Rutenbar, and Oded Maler.
Time domain verification of oscillator circuit properties. Flectr. Notes
Theor. Comput. Sci., 153(3):9-22, 2006.

Darius Grabowski, Daniel Platte, Lars Hedrich, and Erich Barke. Time
constrained verification of analog circuits using model-checking algo-
rithms. Electr. Notes Theor. Comput. Sci., 153(3):37-52, 2006.

P. A. V. Hall H. Zhu and J. H. R. May. Software unit test cover-
age and adequacy. ACM Computing Surveys (CSUR), 29(4):366-427,
December 1997.

164

[44]

[54]

[55]

BIBLIOGRAPHY

Naim Ben Hamida, Khaled Saab, David Marche, Bozena Kaminska,
and Guy Quesnel. Limsoft: Automated tool for design and test inte-

gration of analog circuits. itc, 00:571, 1996.
P. Hartman. Ordinary Differential Equations. Wiley, 1964.

W. Heemels, B. De Schutter, and A. Bemporad. Equivalence of hybrid
dynamical models, 2001.

T. A. Henzinger. The theory of hybrid automata. In LICS ’96: Pro-
ceedings of the 11th Annual IEEE Symposium on Logic in Computer
Science, page 278, Washington, DC, USA, 1996. IEEE Computer So-
ciety.

T.A. Henzinger. Hybrid automata with finite bisimulations. In
F. Vaandrager and J. van Schuppen, editors, Proc. ICALP’95, LNCS
944, pages 324-335. Springer-Verlag, 1995.

T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker
for hybrid systems. Software Tools for Technology Transfer, 1:110-122,
1997.

F. Hickernell, I. Sloan, and G. Wasilkowski. On tractability of weighted

integration over bounded and unbounded regions in r, 2003.

Aicke Hinrichs. Covering numbers, vapnik-červonenkis classes
and bounds for the star-discrepancy. J. Complez., 20(4):477-483, 2004.

| M.W. Hirsch and S. Smale. Differential Equations, Dynamical Systems

and Linear Algebra. Academic Press, 1974.

R. Horowitz and P. Varaiya. Control design of an automated highway
system, 2000.

ISO/IEC.Transfer and Management for OSI. Framework: Formal

methods in conformance testing. 1996.

K. Johansson, J. Lygeros, S. Simic, and J. Zhang. Dynamical proper-
ties of hybrid automata, 2000.

BIBLIOGRAPHY 165

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Jim Kapinski, Bruce H. Krogh, Oded Maler, and Olaf Stursberg. On
systematic simulation of open continuous systems. In HSCC, pages
283-297, 2003.

H. Kerkhoff, R. Tangelder, H. Speek, and N. Engin. Mismatch: A basis
for semi-automatic functional mixed-signal test-pattern generation. In
IEEE Int. Conf. on Electronics, Circuits, and Systems, 1996.

Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Integration graphs, a
class of decidable hybrid systems. In P.J. Antsaklis, W. Kohn, M. Lem-
mon, A. Nerode, and S. Sastry, editors, Proc. of Workshop on Theory
of Hybrid Systems, LNCS 736, pages 179-208. Springer-Verlag, 1992.

Jongwoo Kim, Joel M. Esposito, and Vijay Kumar. Sampling-based
algorithm for testing and validating robot controllers. Int. J. Rob. Res.,
25(12):1257-1272; 2006.

Moonjoo Kim, Insup Lee, Usa Sammapun, Jangwoo Shin, and Oleg

Sokolsky. Monitoring, checking, and steering of real-time systems.

Stefan Kowalewski and Heinz Treseler. Verdict - a tool for model-based
verification of real-time logic process controllers. In WPDRTS '97:
Proceedings of the 1997 Joint Workshop on Parallel and Distributed
Real-Time Systems (WPDRTS / OORTS '97), page 217, Washington,
DC, USA, 1997. IEEE Computer Society.

J. Kuffner and S. LaValle. RRT-connect: An efficient approach to
single-query path planning. In Proc. IEEE Int’l Conf. on Robotics and
Automation (ICRA’2000), San Francisco, CA, April 2000.

M. Kvasnica, P. Grieder, and M. Baoti¢. Multi-Parametric Toolbox
(MPT), 2004.

K. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Software
Tools for Technology Transfert, 1(1), 1997.

166

[65]

72|

73]

[74]

BIBLIOGRAPHY

S. LaValle and J. Kuffner. Rapidly-exploring random trees: Progress
and prospects, 2000. In Workshop on the Algorithmic Foundations of
Robotics.

S. M. LaValle. Rapidly-exploring random trees: A new tool for path
planning. TR 98-11, Computer Science Dept., lowa State University,
Oct. 1998.

S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning.
International Journal of Robotics Research, 20(5):378-400, May 2001.

D. Lee and M. Yannakakis. Principles and methods of testing finite
state machines - A survey. In Proceedings of the IEEE, volume 84,
pages 1090-1126, 1996.

Bengt Lennartson, Michael Tittus, Bo Egardt, and Stefan Pettersson.

Hybrid systems in process control.

S. Lindemann and S. LaValle. Current issues in sampling-based motion

planning, 2004.

S. R. Lindemann and S. M. LaValle. Incrementally reducing dispersion
by increasing Voronoi bias in RRTs. In Proceedings IEEE International

Conference on Robotics and Automation, 2004.

Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. Hybrid
I/O automata. In 82, page 16. Centrum voor Wiskunde en Informatica
(CWI), ISSN 0169-118X, 31 1995.

O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems.
In J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg,
editors, Real-Time: Theory in Practice, volume 600, pages 447-484,
Mook, The Netherlands, 3-7 June 1991. Springer-Verlag.

H. N. Mhaskar. On the tractability of multivariate integration and
approximation by neural networks. J. Complex., 20(4):561-590, 2004.

BIBLIOGRAPHY 167

[75]

[76]

[77]

78]

[79]

[80]

[81]

[82]

Ian Mitchell and Claire Tomlin. Level set methods for computation in
hybrid systems. In HSCC ’00: Proceedings of the Third International
Workshop on Hybrid Systems: Computation and Control, pages 310—
323, London, UK, 2000. Springer-Verlag.

Tan M. Mitchell and Jeremy A. Templeton. A toolbox of hamilton-
jacobi solvers for analysis of nondeterministic continuous and hybrid
systems. In Hybrid Systems Computation and Control, pages 480-494.
Springer-Verlag, 2005.

A. Stephen Morse. Control Using Logic-Based Switching, chapter 69-
114. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1997.

Tarik Nahhal and Thao Dang. Guided randomized simulation. In
W. Damm and H. Hermanns, editors, International Conference on Hy-
brid Systems: Computation and Control (HSCC), volume 4416, pages
731-735, Berlin, Germany, 2007. Lecture Notes in Computer Science,
Springer-Verlag Heidelberg.

Tarik Nahhal and Thao Dang. Test coverage for continuous and hybrid
systems. In W. Damm and H. Hermanns, editors, International Con-
ference on Computer Aided Verification (CAV), volume 4590, pages
468-481, Berlin, Germany, 2007. Lecture Notes in Computer Science,
Springer-Verlag Heidelberg.

EH. Niederreiter. Discrepancy and convex programming. Ann. Mat.
Pura Appl, 93:89-97, 1972.

Brian Nielsen and Arne Skou. Automated test generation from timed
automata. In TACAS 2001: Proceedings of the 7th International Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 343-357, London, UK, 2001. Springer-Verlag.

D. Nickovic O. Maler. Monitoring temporal properties of continu-
ous signals. In FORMATS/FTRTF1T’04,, LNCS 3253, pages 152-166.
Springer, 2004.

168

[83]

[85]

[86]

[88]

[89]

[90]

[91]

BIBLIOGRAPHY

David L. Pepyne and Christos G. Cassandras. Modeling, analysis, and
optimal control of a class of hybridsystems. Discrete Fvent Dynamic
Systems, 8(2):175-201, 1998.

Erion Plaku, Lydia E. Kavraki, and Moshe Y. Vardi. Hybrid sys-
tems: From verification to falsification. In W. Damm and H. Her-
manns, editors, International Conference on Computer Aided Verifica-
tion (CAV), volume 4590, pages 468-481. Lecture Notes in Computer
Science, Springer-Verlag Heidelberg, Berlin, Germany, 2007.

A. Puri and P. Varaiya. Decidability of hybrid systems with rectangular
differential inclusions. In Computer Aided Verification, CAV’94, LNCS
816, pages b4-104. Springer-Verlag, 1994.

C.-J. Richard Shi and Michael W. Tian. Automatic test generation for
linear analog circuits under parameter variations. In ASP-DAC, pages
501-506, 1998.

S. J. Spinks, C. D. Chalk, I. M. Bell, and M. Zwolinski. Generation
and verification of tests for analog circuits subject to process parameter
deviations. J. Electron. Test., 20(1):11-23, 2004.

Jan Springintveld, Frits Vaandrager, and Pedro R. D’Argenio. Test-
ing timed automata. Theoretical Computer Science, 254(1-2):225-257,
2001.

L. Tan, J. Kim, and I. Lee. Testing and monitoring model-based gen-

erated program, 2003.

L. Tan, J. Kim, O. Sokolsky, and I. Lee. Model-based testing and
monitoring for hybrid embedded systems. In proceedings of IEEE In-

ternation Conference on Information Reuse and Integration (IR1°04),
2004.

E. Thiémard. Computing Bounds for the Star Discrepancy. Computing,
(65):169-186, 2000. PRO 2000.09.

BIBLIOGRAPHY 169

92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

Eric Thiémard. An algorithm to compute bounds for the star discrep-
ancy. J. Complexity, 17(4):850-880, 2001.

C. Tomlin, G. Pappas, and S. Sastry. Conflict resolution for air traffic
management : A study in muti-agent hybrid systems, 1998.

F. D. Torrisi and A. Bemporad. Hysdel-a tool for generating compu-
tational hybrid models for analysis and synthesis problems. Conitrol
Systems Technology, IEEE Transactions on, 12(2):235-249, 2004.

Jan Tretmans. A formal approach to conformance testing. In Proceed-
ings of the IFIP TC6/WG6.1 Sixth International Workshop on Pro-
tocol Test systems VI, pages 257-276, Amsterdam, The Netherlands,
The Netherlands, 1994. North-Holland Publishing Co.

Jan Tretmans. Testing concurrent systems: A formal approach. In
CONCUR ’99: Proceedings of the 10th International Conference on
Concurrency Theory, pages 46—65, London, UK, 1999. Springer-Verlag.

A. van der Schaft and J. Schumacher. Complementarity modeling of
hybrid systems, 1998.

W. Verhaegen, G. Van der Plas, and G. Gielen. Automated test pat-
tern generation for analog integrated circuits. In VTS ’97: Proceedings
of the 15th IEEE VLSI Test Symposium (VTS’97), page 296, Wash-
ington, DC, USA, 1997. IEEE Computer Society.

X. Wang and F. Hickernell. Randomized halton sequences, 2000.

Chao Yan. Coho: A Verification Tool for Circuit Verification by Reach-
ability Analysis. PhD thesis, University of British Columbia, 2003.

A. Yershova, L. Jaillet, T. eon, and S. LaValle. Dynamic-domain rrts:
Efficient exploration by controlling the sampling domain, 2005.

S. Yovine. Kronos: A verification tool for real-time systems. Software
Tools for Technology Transfer, 1(1):123-133, 1997.

170 BIBLIOGRAPHY

[103] Mohamed H. Zaki, Sofiéne Tahar, and Guy Bois. A practical approach
for monitoring analog circuits. In GLSVLSI ’06: Proceedings of the
16th ACM Great Lakes symposium on VLSI, pages 330-335, New York,
NY, USA, 2006. ACM Press.

