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INTRODUCTION

In many current information processing systems the measurements are very high di-
mensional: each measurement comprises many variables. Examples include:

• Systems which use a camera as a sensor, delivering images consisting of several
thousands or millions of pixels.

• Systems which process text documents, frequently represented as a vector indi-
cating for each of several thousands of words in a dictionary how often it occurs
in the document.

• Systems which analyze sound by measuring the energy in several hundreds of
frequency bands every few milliseconds.

By measuring many different variables a very rich representation is obtained, that can
be used for a wide variety of tasks. For example, images can be used to recognize the
different digits of a postal code written on an envelope, or to recognize a person from
an image of his face.

Information processing tasks where high dimensional data sets are common include
classification, regression and data visualization. In classification, the goal is to predict
the class of a new measurement on the basis of supervised examples. For example, we
may want to predict which digit is displayed in an image: does the image belong to
class 0, 1, . . . , 8 or 9? The supervised examples then consist of images of digits together
with a label indicating which digit is displayed. The supervised examples are used to
estimate a function that can be used to map new images from an unknown class to a
prediction of the class label. Regression is similar to classification, but the goal is to
predict some continuous quantity from the measurement rather than a discrete class
label. Visualization techniques are used to produce an insightful graphical display of
the data to assist a user in interpreting the data. For example, the results of image
database queries can be presented using a two dimensional visualization that displays
similar images near to each other. In this manner a user quickly gets an idea of what
kind of images were found.



2 INTRODUCTION

−2 −1 0 1 2

−2

−1

0

1

Figure 1.1: The points are given by a linear projection of the 1600 pixel values of images of a
face. The images trace-out a curve along which the pose of the face gradually changes. For

some points the corresponding image is plotted next to it.

Degrees of freedom and clusters. The high dimensional data can be thought of as a
set of points in a high dimensional data space ; the value of a measured variable gives
the coordinate on a corresponding dimension of this space. In many applications where
such high dimensional data is processed, the data is not distributed evenly over the data
space but exhibits some structure.

Often the dimensionality of the data space is much larger than the number of degrees
of freedom of the process from which the measurements are obtained. The degrees
of freedom are the manners in which the process that is monitored can vary. Since
the measurements are in a sense a function of the degrees of freedom, the number of
degrees of freedom also limits the number of ways in which the measurements can
vary. For example, consider 40 × 40 = 1600 pixel gray-scale images of a face that looks
in different directions, as depicted in Fig. 1.1. We may consider each image as a 1600
dimensional measurement, one dimension for the gray value of each pixel. However,
there is only one degree of freedom since the face changes only by turning from left
to right. If the direction in which the face looks changes, the values of many of the
1600 pixels will change. However, these changes will be highly correlated. Apart from
measuring many correlated variables, irrelevant variables may be measured as well:
variables that are not dependent on the degrees of freedom. If the sensor is noisy, the
value of an irrelevant variable does vary over the different measurements.
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If small changes in the degrees of freedom also lead to small changes in the measured
variables, then the value of the measured variables is a smooth function of the degrees
of freedom. An illustration is given in Fig. 1.1, where we plotted images of a face as
points in a two dimensional space, each coordinate is given by a linear combination
of the original pixel values. We see that the points are roughly distributed around a
smooth curve. By plotting for several points the corresponding image next to it, we see
that indeed the direction in which the face looks changes gradually along the curve.

If the number of degrees of freedom is larger than one, then the data lies on or near
surfaces —or in general manifolds— rather than curves. The degrees of freedom are re-
ferred to as latent variables underlying the data, and the number of degrees of freedom
is referred to as the intrinsic dimensionality of the data.

In addition, the data may exhibit a clustered structure: the data forms several discon-
nected clouds of points in the data space. For example, consider a collection of text
documents which contains articles about soccer and articles about religion. Suppose
that the documents are represented as suggested above, and that very common words
like ‘a’, ‘the’, ‘have’, ‘is’, etc., have been removed from the dictionary. It may be expected
that articles about the same topic have a lot of words in common. On the other hand,
two articles about different topics are expected to use rather different words. Thus, the
documents of the two topics form two separated clusters in the data space. There are
also situations where the data exhibits both a clustered structure and the data within
each cluster is distributed near a low dimensional manifold.

The curse of dimensionality. It is well known that for classification and regression the
amount of supervised examples required to reliably estimate a function with a given ac-
curacy grows exponentially with the dimensionality of the data. Therefore, already for
several tens of dimensions the number of required supervised examples becomes im-
practically large. This effect was termed ‘the curse of dimensionality’ by Bellman (Bell-
man, 1961). To illustrate this, consider a rather simplistic approach to classification and
regression where we partition each input dimension into m cells. For D input dimen-
sions, the total number of cells is then mD, and to estimate the function output of each
cell we would need at least mD supervised examples.

The set of classification or regression functions that is considered for a specific task
plays a crucial role here. If the set of functions is very small, then, regardless of the data
dimensionality, chances are high that already with relatively few supervised examples
we can determine which function gives the best predictions for future data. As the set
of functions becomes larger, more supervised examples are needed to identify the best
function among the many candidates. When processing high dimensional data, the
absence of prior knowledge to reduce the set of potentially useful functions often leads
to a very large set of functions that is considered.

High dimensional data is also problematic for data visualization, since the number of
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variables that can be displayed is inherently limited to two or three. With colors and
temporal effects, i.e. showing a movie rather than a still plot, it is possible to somewhat
increase the number of variables that can be displayed. However, the total number of
variables that can be displayed remains limited to about six.

Finding the relevant information. To avoid the curse of dimensionality and to visual-
ize high dimensional data, there is a need for methods which are able to detect clusters
and to identify the manifolds on which the data resides. The data can then be repre-
sented in terms of cluster membership and/or low dimensional coordinates on these
manifolds. In a sense, such methods find the relevant information in an overwhelming
amount of variables. In Chapter 2 we give a review of different types of clustering and
dimension reduction methods that have been proposed.

In most classification and regression applications it is time and/or money consuming
to generate supervised examples: for a set of measurements the class label or regression
variable has to be determined manually. Therefore the number of supervised exam-
ples is often limited. Unsupervised examples —lacking the class label or regression
variable— on the other hand, are often much easier to acquire. For example, when the
goal is to classify email messages as ‘spam’ or ‘not-spam’, it is easy to acquire thou-
sands or more email messages but quite cumbersome to determine the class label for
all these messages. Therefore, it is attractive to apply clustering or dimension reduction
techniques on a relatively large set of unsupervised data to recover a compact represen-
tation. A classification or regression function can then be estimated from a low dimen-
sional description of a smaller set of supervised data and / or from the supervised data
in each cluster separately. In this thesis we mainly focus on such unsupervised methods
for clustering and dimension reduction.

Among the best known clustering approaches are the k-means algorithm and the EM al-
gorithm to estimate Gaussian mixture densities. Both algorithms iterate two steps, and
both algorithms are guaranteed to converge and to increase some performance measure
after each iteration. The main drawback of these algorithms is that the resulting clus-
tering depends strongly on the initialization of the algorithm and is not guaranteed to
maximize the performance criterion. In Section 3.1 we introduce mixture densities and
the EM algorithm. Then in Section 3.2 and Section 3.3 we consider how to overcome the
drawbacks of the k-means algorithm and the EM algorithm for Gaussian mixtures. In
Section 3.4 we consider how the EM algorithm can be accelerated when applied to data
sets containing many points.

Dimension reduction methods can be divided into methods which are limited to finding
linear manifolds in the data space (lines, planes, etc.), and methods which also find
non-linear manifolds. The self-organizing map, introduced by Kohonen in the early
1980’s, is a non-linear dimension reduction method that has been used in many practical
applications. Nevertheless, there are several problematic issues with self-organizing
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maps. First, Kohonen’s parameter estimation algorithm is not guaranteed to converge.
Second, the self-organizing map was originally designed for dimension reduction of
real valued data. Extensions for data that are not specified as real numbers have been
proposed, but were rather ad-hoc and not derived from a general principle. The same
holds when there are data points with missing values; i.e. data points for which the
value of some variables is unknown. In Chapter 4 we present a dimension reduction
technique based on mixture densities, similar to Kohonen’s self-organizing map, that
resolves the mentioned problems.

In some applications it is not only desirable to have a mapping from the high dimen-
sional data space to a low dimensional representation, but also a mapping from the low
dimensional representation to the original high dimensional data space. Such a map-
ping allows us to reconstruct the high dimensional data from the low dimensional rep-
resentation. In the example of facial images given above, such a mapping would allow
us to generate the different facial images by specifying a single number: their location
along the curve. Linear dimension reduction methods, such as principal component
analysis, are widely used for data compression and reconstruction. Although linear
methods can be implemented very efficiently and provide a smooth two-way mapping,
they are limited to map to and from linear manifolds. Most non-linear dimension reduc-
tion methods do not provide a smooth two-way mapping or lack an efficient algorithm
for parameter estimation.

Several methods exist that combine clustering and linear dimension reduction. Such
methods have been applied to data which lies on or near a non-linear manifold in the
data space, i.e. like the images in Fig. 1.1 which lie along a non-linear curve. The data is
clustered in such a manner that the data within each cluster lies close to a linear mani-
fold; the curve is approximated by several linear segments. These methods find a sep-
arate low dimensional representation for the data in each cluster by projecting the data
onto the linear subspace associated with the cluster. Thus, there is no single —global—
low dimensional representation for the complete data set. In Chapter 5 we explore a
probabilistic approach to combine the several linear low dimensional representations
into a global non-linear one. This approach provides a smooth two-way mapping and
parameters can be estimated with an EM-like algorithm.

In Chapter 6, we summarize our conclusions from the preceding chapters and discuss
directions for further research.
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A REVIEW OF CLUSTERING AND
DIMENSION REDUCTION TECHNIQUES

In this chapter we introduce clustering and dimension reduction, which will be the main
topics of the rest of this thesis. We also give an overview of different types of techniques
that have been developed for these tasks. In the first section we consider clustering
techniques, after which we proceed to dimension reduction methods in Section 2.2.

2.1 Clustering

Clustering problems arise in many fields of (computer) science, in particular in com-
puter vision, pattern recognition, data mining and machine learning. The clustering
problem (Jain et al., 1999) is the problem of dividing a given set {x1, . . . ,xN} of N data
points into several non-overlapping homogenous groups. Each such group or cluster
should contain similar data items and data items from different groups should not be
similar. We refer to a clustering in k groups as a k-clustering.

Clustering techniques can be useful in explorative data analysis, e.g. a sales-company
might identify different types of customers based on a clustering of data about the pur-
chases that customers made. Clustering is also used as a preprocessing step for other
tasks. For example, in data visualization the data of widely separated clusters may be
visualized in a separate displays (Bishop and Tipping, 1998).

Many different approaches to the clustering problem have been developed. Some op-
erate on data represented by their coordinates in a feature space and others operate on
a matrix of pairwise similarities between data points. To give a, necessarily limited,
overview of the different types of methods, we categorize them in three groups:

1. Hierarchical clustering methods. These produce a hierarchy of clusters for the
data. The first level of the hierarchy contains all data and at each subsequent level
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of the hierarchy, one of the clusters of the previous level is split in two. The last
level contains all data in individual clusters. The hierarchy is based on pairwise
similarities between data points and is constructed either top-down or bottom-up.

2. Partitional clustering methods. These produce a single clustering with a fixed
and (often) specified number of clusters. Most partitional clustering algorithms
do not operate on the basis of pairwise similarities, but with data represented in
some feature space. Typically, these methods start with an initial k-clustering and
apply an iterative algorithm to improve upon the initial clustering according to
some criterion. Most partitional clustering methods make, sometimes implicitly,
assumptions on the distribution of data within each cluster.

3. Spectral clustering methods. These operate on a matrix with pairwise similarities
between the data points. The optimal clustering is defined as the clustering that
minimizes the ‘normalized cut’ criterion, that depends on the size of the clusters
and the total sum of the similarities between points that are assigned to different
clusters. Unfortunately, finding the clustering that minimizes the normalized cut
is an NP-complete problem. However, a relaxation of this optimization problem
can be efficiently solved, and the solution is given by an eigenvector of the nor-
malized similarity matrix. The solution of the relaxed problem is then further pro-
cessed to find an approximate solution for the original problem. The term ‘spectral
clustering’ refers to the eigenspectrum of the normalized similarity matrix which
can be used to assess the number of clusters in the data. Spectral methods are used
both to find hierarchical clusterings and k-clusterings for a given k. We treat them
separately since their working is quite different from the other approaches.

In following three sections we describe the three different types of clustering methods
in more detail, and we compare them in Section 2.1.4.

2.1.1 Hierarchical clustering

A hierarchy of clusters can be represented as a tree; the root node contains all data
and the two children of each node contain disjoint subsets of the data contained in
the parent. The leaves of the tree contain the individual data points. A hierarchy of
clusters, rather than a ‘flat’ clustering in k clusters, is desired in some applications. For
example, consider hierarchical clustering of newspaper articles: in the top-levels general
topics are found, such as politics, financial news and sports. At lower levels the sports
cluster might be further subdivided into articles on individual sports. Such a hierarchy
of clusters enables a user to quickly find articles of interest. This is because at each
level of the tree the user can discard large clusters of uninteresting articles and explore
further only the more promising clusters. See e.g. (Zhao and Karypis, 2002; Blei et al.,
2004) for work on hierarchical clustering of documents.

Hierarchical methods (Johnson, 1967) are either agglomerative or divisive. Agglomer-
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ative clustering is a ‘bottom-up’ approach; it starts by considering each data point as a
single cluster and proceeds by iteratively merging the two most similar clusters. Divi-
sive clustering algorithms are ‘top-down’ and start with one cluster containing all the
data and proceed by iteratively splitting the clusters into two disjoint subsets.

The agglomerative and divisive methods differ greatly in their computational demands.
Suppose we have N data points, then the number of possible mergers an agglomerative
algorithm has to consider in the first step is N(N − 1)/2 (any two data points can be
merged to form a cluster of size two). In total N − 1 mergers have to be made to con-
struct the complete cluster hierarchy, and in total O(N3) possible mergers have to be
considered. The number of possible splits a divisive algorithm has to consider in the
first step alone is already O(2N). Therefore, divisive algorithms that consider every pos-
sible split to find the optimal split will be intractable already for moderately sized data
sets. Agglomerative algorithms scale much better: ‘only’ cubic in the number of data
points. Because of the intractability of divisive methods we will from now on focus only
on agglomerative methods.

Agglomerative methods differ in the (dis)similarity measure that is used. Most dissim-
ilarity measures dAB between clusters A and B are defined in terms of a dissimilarity
measure dij between elements of the clusters. Well-known measures are:

dAB = min
i∈A,j∈B

dij (single link), (2.1)

dAB = max
i∈A,j∈B

dij (complete link). (2.2)

The single-link measure is based on the smallest distance between pairs of members of A
and B; clusters are similar if there is at least a ‘single link’ of similar data items between
them. The complete-link measure uses the largest distance between pairs of members,
thus clusters are similar if all pairs (i ∈ A, j ∈ B) are similar. The difference between
the single link and complete link method are illustrated in Fig. 2.1. There the result of
a hierarchical agglomerative clustering is given, using both single and complete link.
Only the 2-clustering of the hierarchy is indicated in the plot for clarity. In this example
the dissimilarity between data points is the squared Euclidean distance between the
data points: dij = ‖xi − xj‖2. Arguably, the 2-clustering found in this data using single-
link is better: it identifies the two horizontal bands.

Another distance measure between clusters for an agglomerative clustering is used in
Ward’s sum-of-squares method (Ward, 1963). Here, the aim is to minimize the total sum
of squared distances between data points and the mean of their associated cluster. For
a k-clustering into clusters A1, . . . , Ak, we denote by ni the number of data points in
cluster Ai and write the mean of the data in each cluster as:

µi =
1

ni

∑
n∈Ai

xn, (2.3)
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(a) (b)

Figure 2.1: Agglomerative clustering of 60 points in a 2-dimensional feature space, using (a)
single link and (b) complete link distance. Recovered clusters are indicated by plotting their

members with ‘x’ and ‘o’ respectively.

The sum-of-squares error is then given by:

ESoS =
k∑

i=1

∑
n∈Ai

‖xn − µi‖2. (2.4)

An agglomerative clustering algorithm based on the sum-of-squares error ESoS should
use as the dissimilarity between clusters i and j the increase in the error incurred if we
merge the i-th and the j-th cluster. This increase only depends on the data in these
clusters and can be written as:

dAiAj
=

∑
n∈(Ai∪Aj)

‖xn − µ(Ai∪Aj)
‖2 −

∑
n∈Ai

‖xn − µi‖2 −
∑
n∈Aj

‖xn − µj‖2 (2.5)

= ni‖µAi
‖2 + nj‖µAj

‖2 − n(Ai∪Aj)‖µ(Ai∪Aj)
‖2. (2.6)

However, the optimal (k − 1)-clustering is not necessarily obtained by merging two
clusters of the optimal k-clustering. Therefore the agglomerative method can yield sub-
optimal k-clusterings for the sum-of-squares criterion (Webb, 2002).

For many agglomerative clustering algorithms the cluster dissimilarities that are ob-
tained after a merge can be expressed as a function of the dissimilarities before the
merge. Thus after merging clusters i and j into a cluster (i ∪ j) the dissimilarities di∪j,k

between the new cluster and another cluster k, can be expressed in terms of dij , dik and
djk and dissimilarities between clusters not involved in the merge remain unchanged.
This is for example the case for the single-link, complete-link and sum-of-squares meth-
ods, see e.g. (Webb, 2002) for the update rules of the dissimilarity measures for these
and a number of other agglomerative clustering algorithms. If the dissimilarities can
be updated in this way the complexity of the algorithm drops to O(N2 log N), using a
sorted list to store the distances between the clusters. If after every merge we have to
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recompute all dissimilarities between the clusters the complexity is at least O(N3), since
in each step i (i = 0, . . . , N − 1) we need to compute O((N − i)2) distances.

For other agglomerative clustering methods, for example methods based on seeking the
mode of a density estimate (Cheng, 1995; Leung et al., 2000), distances between clusters
cannot be specified and the hierarchical clustering is obtained as the fixed point of an
algorithmic process applied to the data.

2.1.2 Partitional clustering

Partitional methods cluster the data in a specified number of groups. Their main at-
traction over the hierarchical methods is that partitional algorithms are generally much
more efficient. The main drawback is that assumptions on the shape of the clusters have
to be made in advance. Also a desired number of clusters has to be specified, which may
be known in some applications but not in others. Some work has been done on estimat-
ing the number of clusters from the data, see e.g. (Pelleg and Moore, 2000; Rasmussen,
2000; Fred and Jain, 2002). In general however this issue remains unresolved.

The k-means algorithm (Gersho and Gray, 1992) is one of the most frequently applied
partitional clustering algorithms. It is also known under a variety of other names: Gen-
eralized Lloyd algorithm, Lloyd Max algorithm, Forgy algorithm, or Linde-Buzo-Gray
algorithm. We consider this algorithm in detail in Section 3.3. Here we will briefly ex-
plain the algorithm, mention some of its properties, and consider how the principle of
the algorithm can be used for different error-functions.

Given an initial k-clustering the k-means algorithm adapts this clustering to reduce the
sum-of-squares criterion. The k-means algorithm alternates between two steps to im-
prove a given k-clustering. The idea is to treat ESoS in (2.4) as a function of both the
cluster centers µi and the assignment of data points to the clusters. In the first step we
fix the assignment of data to clusters and minimize the error with respect to the cluster
means µi. The optimal cluster centers are given by the mean of the data assigned to
each cluster. After this step the error (as function of both the assignments and cluster
means) equals ESoS as defined in (2.3) and (2.4). In the second step we fix the cluster
means µi and minimize the error with respect to the assignment of the data to the clus-
ters. This amounts to assigning every point xn to the cluster i = arg minj ‖xn − µj‖2.
After these two steps we obtain a new k-clustering for which ESoS cannot be larger than
for the previous k-clustering.

The algorithm is guaranteed to terminate after a finite number of steps since (i) there
are a finite number of k-clusterings and (ii) each step can not increase the sum-of-
squares error. However, the k-means algorithm does not necessarily terminate with the
k-clustering yielding the minimum sum-of-squares. The resulting k-clustering depends
strongly on the initial clustering. Therefore, in practice the k-means algorithm is started
from many (random) initial k-clusterings, and the best final clustering is retained.



12 A REVIEW OF CLUSTERING AND DIMENSION REDUCTION TECHNIQUES

The k-means algorithm is based on an implicit assumption that the data exhibits com-
pact spherical clusters. For the example data set used in Fig. 2.1, the assumption of
compact clusters is clearly violated since the ‘true’ clusters (the two horizontal bands)
are actually quite elongated. For this example data set the k-means algorithm will find
a 2-clustering similar to the clustering depicted in panel (b) found using the agglomer-
ative complete-link algorithm.

The idea of the k-means algorithm can be used for other error functions than sum-of-
squares. For example, (Dhillon et al., 2002) proposed a similar algorithm to cluster prob-
ability distributions based on an error function that sums Kullback-Leibler divergences
rather than squared Euclidean distances. In (Dhillon et al., 2002) the authors consider
clustering of documents based on the occurrence frequency of words in them. Each doc-
ument n is represented by a distribution pn(w) over the words w in the lexicon. Just as
above, each cluster is also represented in the same space as the data items, thus in this
case cluster i is represented by a distribution qi(w) over words. In order to cluster the
documents, the authors minimize the sum over all documents of the Kullback-Leibler
(KL) divergenceD(pn‖qi) between the distribution pn over words of document n and the
distribution over words of the cluster i associated with document n. The KL divergence
D(p‖q) measures how well distribution q matches distribution p and is defined as:

D(p‖q) =
∑

w

p(w) log
p(w)

q(w)
. (2.7)

The resulting clustering algorithm is completely analogous to the standard k-means
algorithm. The cluster distributions qi are set to the average distribution of assigned
documents, i.e. qi(w) = 1

ni

∑
n∈Ai

pn(w). The only difference is that we now assign a
document to the cluster with minimum Kullback-Leibler divergence rather than the one
with minimum Euclidean distance. See (Saul and Pereira, 1997) for a similar clustering
approach to estimate bigram language models.

Probabilistic mixture distributions are another important class of partitional clustering
methods. A mixture distribution is a distribution that is a weighted sum (weights are
positive and sum to one) of several component distributions. The components are re-
stricted to some parametric family. The fit of the model to the data is defined as the
likelihood of the data according to the model. Often the expectation-maximization (EM)
algorithm is used to adjust the parameters such that the likelihood is increased (Demp-
ster et al., 1977). The EM algorithm is reminiscent of the k-means algorithm: it also
iterates between a step assigning data to clusters and a step that optimizes parameters
that characterize the clusters. However, whereas the k-means algorithm assigns each
data point to a single cluster, the EM algorithm uses a ‘soft’ assignment: that is, each
data point is assigned to each cluster, but in a weighted manner.

The EM algorithm shares two important properties with the k-means algorithm: (i)
monotone decrease of the error: each iteration of EM algorithm is guaranteed not to
decrease the data likelihood, and (ii) local optima: if the EM algorithm terminates (the
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soft assignment does not change between two iterations), it is not guaranteed to have
found the parameters yielding the maximum possible likelihood. Such fixed points that
do not yield maximum likelihood can be shown to be local maxima of the likelihood as
function of the parameters of the mixture model (Neal and Hinton, 1998). In practice,
the standard approach to reduce the risk of finding only a poor locally optimal solution
is to start the EM algorithm with a number of different initial parameters. Finally, the
local optimum yielding the highest likelihood is retained.

Mixture models and the EM algorithm are tools we use in the rest of this thesis, both
will be introduced in detail in Chapter 3. In the same chapter we consider alternative
techniques to avoid poor local optima when clustering using Gaussian mixture distri-
butions (Section 3.2) and the k-means algorithm (Section 3.3). Both techniques use a
greedy strategy that ‘builds’ a k-clustering step by step. After initialization, which as-
signs all data to a single cluster, two steps are iterated: (i) adding a new cluster to the
existing (k − 1)-clustering to obtain a k-clustering and (ii) improving the current clus-
tering with the k-means or EM algorithm. We compare this greedy approach to the
standard method that starts the algorithms from many different initial parameters. Ex-
perimentally we show the greedy approach to yield considerably improved clusterings.

2.1.3 Spectral clustering

A relatively recent approach based on pairwise similarities is spectral clustering (Scott
and Longuet-Higgins, 1990; Weiss, 1999), which draws on results of spectral graph the-
ory (Chung, 1997). Spectral methods are attractive because they (i) make less severe
assumptions on the shape of the clusters than partitional algorithms and (ii) can be very
fast, depending on the sparsity of the similarity matrix. Furthermore, implementation
of most spectral clustering algorithms is quite easy since the main component is a pro-
cedure to find a few eigenvectors of a matrix: this is a well studied problem for which
highly optimized implementations are available.

Below we follow (Shi and Malik, 2000) in the presentation of the 2-clustering problem.
Extensions to general k-clustering exist, but we will not treat them here, see e.g. (Meilă
and Shi, 2001; Ng et al., 2002). Spectral clustering is based on viewing the data as a fully
connected graph G = (V, E) with a node vi ∈ V for each data point xi. With each edge
eij ∈ E between node vi and vj we associate a weight wij ≥ 0 representing the similarity
between xi and xj , with a large value indicating great similarity. The weights wij are
collected in the symmetric weight matrix W with an associated diagonal ‘degree matrix’
D with di =

∑
j wij in the i-th diagonal element and zero in all off-diagonal elements.

With a partitioning of V in disjoint subsets A and B we associate a ‘cut value’ cut(A, B):

cut(A, B) =
∑

i∈A,j∈B

wij, (2.8)
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which is the sum of all edge weights across the clustering, i.e. edges from A to B. If the
edge weights are binary, one for similar points and zero for dissimilar points, the cut
value counts the pairs of similar points that are separated by the clustering. At first it
might seem a good idea to define an optimal clustering as one that minimizes the cut
value. However, the cut value has the undesired property that it gives very low values
for when the partition separates a single point or just a few points from the rest, i.e. it
favors unbalanced clusterings.

The cut value fails to take into account the size of the clusters, which seems to be an
important notion to define the quality of a clustering. To formalize the notion of size,
we associate with a subset of the vertices A ⊆ V a ‘volume’ vol(A), which is the sum of
all edge weights connected to points in A:

vol(A) =
∑

i∈A,j∈V

wij =
∑
i∈A

di. (2.9)

The normalized cut (Ncut) measure to evaluate a clustering into sets A and B does take
into account the size of the clusters and is defined as:

Ncut(A, B) =
cut(A, B)

vol(A)
+

cut(A, B)

vol(B)
. (2.10)

Thus, we add for each cluster the ratio of (i) the total weight of edges that cross the
cluster boundary and (ii) the total weight of edges emanating from points in the cluster.
Due to normalization, Ncut favors clustering into clusters of similar size with a small
cut value. We can now define an optimal clustering as one that minimizes Ncut.

To analyze the minimization of Ncut, we assign to each data point xi a value yi:

yi =

{
2 if xi ∈ A

−2vol(A)/vol(B) if xi ∈ B
(2.11)

We can now write1 Ncut in terms of the yi, which we collect in a vector y of length N :

Ncut(A, B) =
y>(D−W)y

y>Dy
=

∑
i,j wij(yi − yj)

2∑
i diy2

i

. (2.12)

The minimization of Ncut is an NP-complete problem. However, if we relax the con-
straint that the yi can take only two values and allow the yi to take any real value, then
stationary points of (2.12) can be found as generalized eigenvectors:

(D−W)y = λDy, (2.13)

where λ is the value of the relaxed Ncut criterion corresponding to y. The vector y = 1 is
easily verified to be an eigenvector with eigenvalue zero, corresponding to a degenerate

1 See (Shi and Malik, 2000) for the derivation which we omit here.
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(a) (b) (c)

Figure 2.2: (a) Original weight matrix, larger values are plotted darker. (b) Weight permuted to
reveal clusters. (c) Entries in the second eigenvector, ordered as in panel (b).

cut which collects all points in a single cluster. Thus, neglecting this degenerate solution,
the minimizer of the relaxed Ncut problem is given by the eigenvector corresponding
to the second smallest eigenvalue.

A solution that minimizes the relaxed Ncut criterion assigns to each data point xi a real
value yi ∈ IR and not just either one of two possible values. Therefore such a solution
does not directly provide a clustering. However, in some cases it can be expected that
all the yi are close to either one of just two values. Suppose we order the data points
such that all points of the second cluster have a larger index than points of the first clus-
ter. Then, if the weight matrix is near block diagonal, the second smallest eigenvector
is expected to be nearly piecewise constant (see (Ng et al., 2002) for an analysis), and it
will be easy to transform the eigenvector into a crisp clustering. In general, some non-
trivial post-processing has to be performed on the extracted eigenvector to obtain a crisp
clustering. Different post-processing methods have been proposed, see e.g. (Ng et al.,
2002; Verma and Meilă, 2003) for overviews. However, often this post-processing em-
ploys clustering algorithms susceptible to local optima, e.g. k-means.2 As such, spectral
clustering methods can also be considered as a pre-processing step for other cluster-
ing techniques, i.e. a pre-processing that finds a representation for the data such that it
becomes easy to cluster.

In Fig. 2.2 we illustrate spectral clustering on the same data used to illustrate agglom-
erative hierarchical clustering. In panel (a) the weight matrix is shown, where we used
wij = exp(−‖xi − xj‖2/σ2) if i 6= j and wii = 0. Larger values are depicted darker.
The weight matrix has many entries that are close to zero and can be made sparse by
setting all values, say, smaller than 10−6 to zero. In panel (b) we permuted rows and
columns such that all points in the upper band come before those in the lower band.
The matrix is near block diagonal, indicating that all weights across the bands are near
zero and that the eigenvector with second smallest eigenvalue will be nearly piecewise

2 An exception is Brand and Huang’s alternating projection algorithm (Brand and Huang, 2003) that
does not need any post-processing.



16 A REVIEW OF CLUSTERING AND DIMENSION REDUCTION TECHNIQUES

constant. Panel (c) shows on the vertical axis the values yi corresponding to the data
points (ordered as in panel (b)) as found in the second eigenvector, which clearly reveal
the two clusters. Thus here spectral clustering yields the same clusters as agglomerative
clustering using the single link measure (depicted in panel (a) of Fig. 2.1).

2.1.4 Comparison of clustering methods

In this section we have reviewed the three main categories of clustering approaches and
illustrated them with popular algorithms in those categories. All three approaches have
their niche of applications where a particular approach is preferred. Below we compare
these approaches in terms of their scalability and the assumptions underlying them.

Scalability. The hierarchical methods are in general computationally quite demand-
ing, for N data points the agglomerative approach takes a time that is either O(N2 log N)
or O(N3), depending on whether or not after each merge all distances between all clus-
ters have to be computed.

Most of the partitional clustering algorithms take computation time of O(Nk) for k clus-
ters. This is the case for both the k-means algorithm and the EM algorithm for proba-
bilistic mixture models: in the assignment step each combination of data point and
cluster has to be considered to find the optimal assignments.

Spectral clustering approaches need the similarity for each of the N2 pairs of points and
thus take in principle at least N2 time to compute the similarity matrix. Depending
on the similarity measure, speed-ups might be possible. For example, one could use a
matrix in which an entry (i, j) is non-zero only if xi is among the q-nearest neighbors of
xj or vice-versa. Efficient techniques exist to find nearest neighbors among N points in
time O(N log N) for fixed q (Bentley, 1980; Karger and Ruhl, 2002). Often the similarity
matrix used in spectral clustering is sparse, i.e. each point has non-zero similarity to
only a few others. For such sparse matrices the eigenvectors can be efficiently computed
using the power-method (Horn and Johnson, 1985). The iterations of the power method
take an amount of time proportional to the number of non-zero entries in the similarity
matrix rather than N2 for a dense matrix.

Assumptions on clusters. For all clustering methods the distance or similarity mea-
sure that is used plays a crucial role. The measure impacts the clusters that will be
found and also determines the amount of computation needed for each distance calcu-
lation. The number of distance calculations that have to be performed depends on the
clustering algorithm that is used.

Probabilistic mixture models have the advantage that assumptions on the cluster shape
are made explicit by assuming the distribution of data within a cluster to be in a para-
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Figure 2.3: Data that is intuitively easy to cluster but the data distribution in the clusters does
not correspond to some parametric class.

metric class of distributions. The assumptions in other clustering methods are often less
explicit. In the rest of this thesis we will mainly focus on probabilistic mixture models
and their applications in dimension reduction techniques.

Although the assumptions in mixture models are clear, they are often incorrect. Fig. 2.3
gives an example of data that exhibits two clusters which are hard to discover using mix-
ture models since the data distribution in each cluster does not belong to any standard
parametric class of densities. However, the clusters are readily recovered with spectral
or single-link agglomerative clustering. Of course, for the latter methods one needs to
determine a suitable similarity measure; some interesting work has been done (Bach
and Jordan, 2004) on learning the similarity measure on the basis of several example
clusterings. Interestingly, the set of densities that can be implemented using standard
component classes can be increased by mapping the data to a space of much larger di-
mensionality where the new dimensions are (non-linear) functions of the original vari-
ables (Wang et al., 2003). Efficient parameter estimation of mixtures in the higher di-
mensional space is possible using the kernel trick which is discussed in the next section.

Further reading. The review provided here is limited in scope and merely gives a
flavor of the different types of clustering algorithms. More detailed and extensive
overviews can be found in (Jain and Dubes, 1988; Jain et al., 1999; Verma and Meilă,
2003) and in textbooks like (Bishop, 1995; Ripley, 1996; Hastie et al., 2001; Webb, 2002).

2.2 Dimension reduction

Clustering techniques provide a compact representation of the data by mapping each
data point to a discrete cluster index. In contrast, dimension reduction techniques
(DRTs) are used to find compact representation of data by mapping each point to a lower
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dimensional continuous vector. A representation of the data in fewer dimensions can
be advantageous for further processing of the data, as we discuss below. However, the
reduction of the number of dimensions should not result in loss of information relevant
to the task at hand. Thus, there is a trade-off between the advantages of the reduced
dimensionality and the loss of information incurred by the dimension reduction. DRTs
are either ‘supervised’ or ‘unsupervised’. Supervised techniques perform dimension
reduction in a manner that allows for optimal prediction of a variable of interest, e.g.
class membership, or some other response variable. Unsupervised techniques perform
dimension reduction to optimally predict the original data from the representation in
few dimensions or to optimally preserve some properties of the original data.

The most important applications of DRTs can be divided into three groups:

• Visualization of high-dimensional data for explorative data analysis. Reducing
the dimension of the data to two or three dimensions enables a data analyst to plot
the data on a computer screen.

• Data compression. Using fewer dimensions to express the data allows for more
compact storage of data and transmission of data using less bandwidth.

• Increasing efficiency and performance for subsequent data analysis. Dimension
reduction can increase the efficiency of the operation and training of automatic
classifiers and regression functions, which typically have an execution time and
training time at least linear in the number of dimensions of the data. Reducing
the dimensionality before training a classification or regression function may also
increase performance. This effect, which may be counterintuitive (why would it
help to discard information?), is also known as the ‘curse of dimensionality’. It
occurs since in a lower dimensional space fewer parameters have to be estimated
for the classification or regression function, thus with the same amount of data in
a lower dimensional space the parameters can be estimated more reliably.

DRTs can be divided into techniques for ‘feature extraction’ and ‘feature selection’.
Methods differ in how the new features are derived from the original features (what
is the class of functions mapping from original features to extracted features) and the
criterion that is used to identify appropriate features.

Feature selection is concerned with finding an appropriate subset of the original fea-
tures to represent the data. Different, application dependent, criteria exist to select
appropriate features and an appropriate number of features. An example of feature
selection is to find a subset of variables to be used by a classifier. Using fewer features
can be advantageous in situations where only a limited amount of data is present but
represented with a huge number of features. For example, in diagnostic use of gene
expression data, a classifier is used to determine the disease of a patient based on the
expression of thousands of genes. The classifier often has to be trained from data of only
several tens of patients (Tibshirani et al., 2002). In such cases it is crucial to determine
a small set of relevant variables so that reliable parameter estimates can be made. An-
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other advantage of identifying a small set of relevant features for a classification system
is that when the system is employed in practice only few features of the data have to be
computed. For example in (Viola and Jones, 2004) an algorithm is described to detect
faces in images on any possible location and over a variety of scales. The algorithm can
be applied to real-time video streams of 15 frames per second at a resolution of 384×288
pixels, which demands the classification of several tens of thousands of image windows
as being ‘face’ or ‘non-face’. It is possible to perform this huge number of classifications
because only a small relevant set of the possible features is selected using the AdaBoost
algorithm (Freund and Schapire, 1997).

The term feature extraction is used for techniques that find new features rather than a
subset of the original ones. In order to retain information present in the original fea-
tures, the new ‘extracted’ features are often smooth functions of the original features.
Feature extraction methods can be divided into linear and non-linear techniques. Lin-
ear techniques are restricted to yield features y that are given by a linear combination of
the original features x, i.e. y = x>w. Thus the features are completely specified by the
weighting coefficients of the original features, collected in the vector w. Linear feature
extraction finds a weight vector w that optimizes a criterion that indicates the quality of
the resulting feature.

Not all DRTs work by explicitly finding a mapping from original features to extracted
features. A number of techniques merely produce a low dimensional representation of
the given data. Of course, given the original data and the low dimensional representa-
tion one can find functions mapping between the two spaces. The advantage of doing
without an explicit mapping is that no (potentially incorrect) assumptions are made
about the data by choosing a specific class of functions. Depending on the application,
a function that maps the original data to the extracted features may be desired or not. If
only a low dimensional representation of a specific data set is needed (which does not
have to be generalized to new data later), an explicit function is superfluous. An exam-
ple of an application of feature extraction where such a function is not needed is found
in some image database searching systems. The images that best match a user query are
presented in a display where similar images are plotted nearby. This enables the user to
quickly select a subset of images that is of interest (Rubner et al., 1998). In cases where
dimension reduction has to be performed very fast in an on-line manner, as new data
arrives, it is often useful to have a fixed function perform the dimension reduction. An
appropriate function is then found in advance on the basis of a ‘training’ set of typical
data. Such applications can be found in some robotic systems that navigate on the basis
of images obtained from mounted cameras. The images typically contain thousands of
pixels (dimensions) and need to be mapped to a low dimensional vectors that are suf-
ficiently informative for navigation task but allow efficient further processing (Vlassis
et al., 2002; Porta et al., 2004).

Below, we review several feature extraction techniques. We limit ourselves here (and
throughout this thesis) to ‘unsupervised’ methods, i.e. methods that perform feature
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Figure 2.4: Example of PCA; data are plotted as circles, the principal component and the
direction with least variance are plotted respectively with a solid and dashed line.

extraction without specification of a task that has to be performed using the data in the
produced low dimensional representation. The techniques we describe can be divided
into three groups:

1. Principal components. Principal component analysis (PCA) is a linear technique
that minimizes the reconstruction error of the original data from the low dimen-
sional representation as measured by the squared Euclidean distance. We also
consider two approaches that extend PCA to extract non-linear features: kernel
PCA and principal curves.

2. Methods based on neural networks. Auto-encoder networks and self-organizing
maps are non-linear techniques from the neural-networks research field. We also
consider generative topographic mapping, which is a technique similar to self-
organizing maps but based on mixture density estimation.

3. Methods based on pairwise similarity. Most of the similarity based methods
produce only a low-dimensional representation of the data without a function
mapping the original features to the low dimensional space and optimization is
performed directly over the low dimensional coordinates for the data.

After we describe the different techniques, we compare them in Section 2.2.4.

2.2.1 Principal components and generalizations

Below, we first describe in detail principal component analysis and kernel principal
component analysis, a direct non-linear extension. Then, we consider principal curves;
another non-linear extension of principal component analysis.
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Principal component analysis. Principal component analysis (PCA) (Pearson, 1901;
Jolliffe, 1986) is a linear feature extraction technique that can be motivated from different
perspectives. Above, we mentioned that PCA minimizes the total squared distance
between the original data and its reconstruction from the extracted features. Here we
describe PCA as a method to find the linear feature with maximum variance of zero-
mean multivariate data. By projecting the data on the principal component, we discard
the dimensions of the data with less variance. If dimensions with little variance are
unimportant for the task at hand (i.e. in a supervised setting), one can preprocess the
data with a PCA projection to reduce the dimensionality. Fig. 2.4 illustrates PCA on a
data set with points in IR2.

Formally, let X be a N ×D matrix containing N measurements xn (n = 1, . . . , N), each
being a vector in IRD stacked as rows in X. Suppose that the data has zero mean; a non-
zero mean can be accommodated by first subtracting the mean from the data. Clearly,
any linear combination of the original features will also have zero mean. Let w ∈ IRD

be the vector that contains the coefficients of the linear combination that gives the new
feature. Let y = Xw be the vector of length N with the values of the new feature for our
data. Since y will also have zero mean, we can write its variance as:

1

N

N∑
n=1

y2
n = y>y/N = w>X>Xw/N = w>Cw. (2.14)

Thus the variance in y, which we seek to maximize, can be expressed in terms of w and
C = X>X/N – the covariance matrix of the zero mean data X. Note that by multiplying
w with a factor larger than one, we can enlarge the variance by any factor. To remove
this degeneracy, we impose the constraint that w should have norm one, i.e. w>w− 1 =
0. Now, we can use the theory of Lagrange multipliers, see e.g. (Bishop, 1995), to solve
this constrained maximization problem. Using the Lagrangian:

L(w, λ) = w>Cw − λ(w>w − 1). (2.15)

we find the critical points of the variance satisfying the constraint as vectors w for which
both ∂L/∂w = 0 and ∂L/∂λ = (w>w − 1) = 0. The first condition reads:

∂L/∂w = Cw − λw = 0 (2.16)
⇔

Cw = λw, (2.17)

thus w is an eigenvector of C. The second condition implies that the variance corre-
sponding to some eigenvector w is given by the corresponding eigenvalue λ. This can
be seen by multiplying both sides of (2.17) on the left with w>. Thus the linear feature
maximizing the variance of the projected data, known as the first principal component,
is given by the eigenvector with largest eigenvalue of the covariance matrix.
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The second principal component can now be defined as the vector w that maximizes the
variance, under the constraint of unit norm and being orthogonal to the first principal
component. The second principal component is given by the eigenvector of C with sec-
ond largest eigenvalue. The other principal components are defined analogously. The
eigenspectrum (the set of eigenvalues, ordered from large to small) can be used to select
a reasonable number of principal components on which one projects the data. The sum
of the eigenvalues equals the data variance, and one might select a number of princi-
pal components such that their cumulative variance is, say, 90% of the total variance.
Alternatively, one can plot the eigenspectrum and see if there is a point where there
is a considerable drop in the eigenvalues, i.e. a point before which the eigenvalues are
of reasonable size and after which the eigenvalues get very small. More sophisticated
techniques exist, see e.g. (Minka, 2001) and the discussion in Section 2.2.4.

It is not hard to show that the eigenvectors of C can also be obtained from the eigen-
vectors of the data inner product matrix T = XX>. If v is an eigenvector of T with
eigenvalue λ, then w = X>v is an eigenvector of C with eigenvalue λ/N . Note that w is
expressed as a linear combination of the data points, where xn is weighted by the n-th
element of v. Depending on whether N < D (or vice versa) it is computationally more
efficient to perform PCA based on T (or C). Methods based on T (or C) have runtime
at least O(DN2) (or O(ND2) ), needed to compute this matrix. If only few principal
components are needed, efficient iterative methods can be used that do not compute
C nor T. The run time per iteration and per principal component of the algorithms is
O(DN). Some methods are based on the expectation-maximization algorithm (Roweis,
1998; Tipping and Bishop, 1999), others on ideas from neural networks (Oja, 1982). Oja’s
work is closely related to a modified version of the power method (Golub and Van Loan,
1996). The FastMap algorithm (Faloutsos and Lin, 1995) finds approximate PCA projec-
tions: the projection on the first principal component is approximated by finding two
distant data points and projecting the data on the line passing through these data points.
Then, the distance metric is adjusted to neglect distances in the first projection direction
and the process is repeated to find other approximate principal components.

The linearity of PCA suggests using a linear map to reconstruct the original data from
the PCA projection. Let Y = XW be the N × d matrix having in row n the projection
of xn on the first d principal components, with W the D × d matrix with the corre-
sponding d eigenvectors of C as columns. The optimal reconstruction X̂ (in the sense
of minimum squared distance between original and reconstructed points) of X is given
by X̂ = YW> = XWW>.

Kernel PCA. Kernel PCA (Schölkopf et al., 1998) is an approach to extend PCA such
that it can find non-linear subspaces with high variance. The basic idea is to extend or
replace the original features with a (large) number of non-linear features and then to
apply linear PCA in the new feature space.
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If we increase the number of features, it quickly becomes unfeasible to perform PCA
via the data covariance matrix since its size grows quadratically with the number of
features. If we use the data inner product matrix T then the size of the matrix is con-
stant, but the time needed to compute the inner products will increase linearly with the
number of features. However, note that if the new features are (non-linear) functions
of the original features, then the inner product in the extended feature space is still a
function of the original features. It turns out that for some choices of new features, we
can express the resulting inner product as a function of the original features that can be
evaluated in a number of operations much smaller than the number of new features.

The function computing the inner product is called the ‘kernel function’ corresponding
to these features. Conversely, Mercer’s theorem (Schölkopf et al., 1998) provides the
conditions under which a function k(xi,xj) computes the inner product in some associ-
ated feature space. Using a kernel allows the representation of data in extremely high
dimensional spaces without explicitly mapping the data to this feature space and thus
avoiding the computational burden of using such rich representations. Some kernels
even have an associated feature space with an infinite number of dimensions, e.g. the
Gaussian kernel: k(xi,xj) = exp(− ‖ xi − xj ‖2 /(2σ2)), with σ2 > 0. The idea of using
kernels to compute inner products in high dimensional feature spaces has been pop-
ularized in the machine learning field by Vapnik’s work on support vector machines
(Vapnik, 1995; Schölkopf and Smola, 2002). Kernels have also been applied to define
non-linear counterparts for several other linear data analysis techniques, among which
are Fisher discriminant analysis (Mika et al., 2001), partial least squares regression (Rosi-
pal and Trejo, 2001), and independent component analysis (Bach and Jordan, 2002).

We now briefly discuss how we can use kernels to efficiently perform PCA in a high
dimensional feature space. Let φ(x) be the high dimensional feature vector correspond-
ing to x and k(·, ·) the corresponding kernel function, i.e. k(xi,xj) := φ(xi)

>φ(xj). PCA
computes the eigenvectors of the inner product matrix T of zero mean, or ‘centered’,
data. In general we do not know whether our data is centered in the feature space as-
sociated with a particular kernel. However, we can compute the inner products of the
centered data from the inner products of the non-centered data, collected in the N ×N
matrix K. Let µ = 1

N

∑
i φ(xi) denote the mean of the data in the feature space, then the

centered inner products tij are given by:

k̃(xi,xj) = (φ(xi)− µ)>(φ(xj)− µ) (2.18)

= k(xi,xj)−
1

N

∑
l

(k(xi,xl) + k(xj,xl)) +
1

N2

∑
l,m

k(xl,xm). (2.19)

Suppose v is an eigenvector of the centered inner product matrix, corresponding to a
principal component on which we want to project. We write vi for the i-th element of
v and v̄ for the average of its elements. Then, as mentioned in the previous section, the
principal component is given by w =

∑N
i=1 vi(φ(xi)− µ).
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Figure 2.5: The curve is the principal curve for the data plotted as circles.

To map a new data point x on the principal component in the feature space, we first
subtract the estimated mean in the feature space, µ, and then project it on the principal
component. Thus the mapping of x on the principal component is given by:

(φ(x)− µ)>w = (φ(x)− µ)>
N∑

i=1

vi(φ(xi)− µ) (2.20)

=
∑

i

k(x,xi)(vi − v̄)− 1

N

∑
i,j

k(xi,xj)(vi − v̄). (2.21)

Thus, the projection on the principal components can be computed directly from the
kernel without explicitly mapping to the feature space.

Summarizing, PCA can be extended to extract non-linear features by replacing the orig-
inal features with a new set of (non-linear) functions of the original features and then
performing linear PCA. By using a kernel function we can use many non-linear features
without the need to explicitly map the data to this feature space. The choice of kernel
function is crucial, since it determines the type of non-linearities that are considered.
Some authors (Seeger, 2000) considered the problem of automatically selecting the type
of kernel or its parameters, such as σ2 in the Gaussian kernel.

Principal curves. Principal curves are another approach to define a non-linear ana-
logue of the linear principal component. Intuitively, a principal curve ‘passes through
the middle of the (curved) data cloud’, as illustrated in Fig. 2.5. Several definitions of
principal curves have been proposed in the literature. The earliest definition (Hastie
and Stuetzle, 1989), is based on ‘self-consistency’ property of a curve with respect to a
density p on IRD. Let f(λ) be a smooth curve of finite length in IRD. The ‘projection
index’ λx ∈ IR of a point x ∈ IRD is the value of λ for which f(λ) is closest to x (or
the largest such λ if multiple exist). The curve f is called a principal curve with re-
spect to p if the expectation under p of points with projection index λ equals f(λ), i.e. if
Ep[x : λx = λ] = f(λ). Note that for finite data the principal curve is not well defined
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since for all but finitely many values of λ there will be no data with that projection in-
dex and thus E[x : λx = λ] is undefined. In general, conditions on the distribution that
guarantee existence of principal curves defined is this way are not well understood.

In (Hastie and Stuetzle, 1989) an iterative algorithm is proposed to find principal curves
for finite data sets. The authors use local averaging to overcome the above mentioned
problem with finite data sets. The algorithm is summarized as follows:

1. Initialize the curve, typically to a segment of the first principal component of the
data such that there is no data point that projects to either end point of the curve.
The initial curve is f0 and set i← 0.

2. Find for each xn in the data set its projection index on the curve λxn .

3. Set fi+1(λ) to be the average of data that has a projection index within some dis-
tance ε to λ. Re-parameterize the curve to unit speed.

4. If for all points xn in the data set f i+1(λxn) = f i(λxn) then the curve is consistent
and the algorithm is terminated. Otherwise, set i← i + 1 and return to step 2.

To make the algorithm practical, the curve is defined by joining a finite number of ‘sup-
port’ points to form a polygonal line. In step 3 only the support points are updated and
again joined to form a polygonal line that is then re-parameterized to be unit speed. The
number of support points and the value of ε influence the resulting curve. No proof is
known that shows the convergence of this algorithm.

Another approach (Kégl et al., 2000) is to define principal curves with respect to a length
constraint. A curve of length l is called a principal curve if it achieves the minimum
expected squared distance between points in IRD and the closest point on the curve
among all curves of length l. For this definition the existence of at least principal curves
is guaranteed if the distribution has finite second moments. Other approaches to define
and find principal curves can be found in (Tibshirani, 1992; Delicado and Huerta, 2003).

The principal curve algorithms mentioned above rely on iterative adaptation of an ini-
tial curve. Experimentally we observed that these algorithms can perform poorly if the
data lies along complex curves, e.g. a spiral which wraps around itself. In (Verbeek
et al., 2001; Verbeek et al., 2002a) we proposed an algorithm to find principal curves
that does not rely on iterative adaptation of a curve.3 Instead, the algorithm fits a set of
k separate line segments to the data, minimizing squared distance from the data points
to the segments. Then, in a second phase, the line segments are connected by k− 1 new
segments to form a polygonal line. A search is performed to find the polygonal line that
minimizes an error function that takes into account the total length of the curve as well
as the angles between subsequent segments. This approach is similar to the approach
considered in Chapter 5, but is based on optimizing a different objective function.

3 Because of limited space this work is not included in this thesis.
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input
extracted
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Figure 2.6: The architecture of a auto-encoder neural network with a bottleneck of two neurons.

2.2.2 Neural network based methods

In this section we discuss techniques that stem from the neural networks research com-
munity. Usually neural networks are used to model the relation between a set of input
vectors x ∈ X and output vectors y ∈ Y . A function f : X → Y is constructed by com-
bining several, possibly non-linear, basis functions gi. Each basis function, sometimes
called an ‘activation function’, models the input-output behavior of a neuron; the basis
function maps the input of a neuron to the output of a neuron. Each neuron acts as a
small computational unit and by connecting neurons (the output of one neuron acting
as the input for a second neuron) complex functions can be constructed.

Different network architectures have been studied, among which layered feed-forward
neural networks are the most well-known. In such networks the input of neurons in
one layer is a linear combination of the outputs of the neurons in the previous layer.
The output of the first layer of neurons in the network is set to the values of the input
variables, thus if x is a vector with D components then we have D neurons in the first
layer. The output of the neurons in the last layer give the final network output f(x).
The layers of neurons in between the input and output layers are often referred to as
‘hidden’ layers. Common choices for the basis functions are: linear gi(x) = x>wi + bi

and sigmoidal gi(x) = [1 + exp(x>wi + bi)]
−1. Given a set of input vectors xi and corre-

sponding desired output vectors yi, the parameters of the neural network are adjusted
to minimize the average of the error between f(xi) and yi. The error of the network as
a function of its parameters can then be minimized by methods based on the gradient
of the error w.r.t. the parameters, such as gradient descent, conjugate gradient, and the
Levenberg-Marquardt algorithm (Bishop, 1995).

Auto-encoder networks. Auto-encoder neural networks are feed-forward networks
used to find non-linear features of the data that allow good reconstruction of the data.
The layer in the network with the fewest neurons, say d, is called the ‘bottleneck’. The
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(a) (b) (c)

Figure 2.7: Panels (a)-(c): configurations of the SOM in the data space as training progresses on
data depicted as dots.

network maps an input vector in IRD to a vector in IRd, represented by the activations
of the bottleneck layer and the layers after the bottleneck map the low dimensional
representation in the bottleneck back to a vector in IRD. To find a network that allows for
good reconstructions we define the error of the network as the sum of squared distances
between the input vectors xi and their corresponding network outputs f(xi).

If all activation functions in the network are linear, then the function implemented by
the network is linear. As might be expected, it has been shown that the minimum error
is achieved if the network weights are such that the mapping of the input to bottleneck
layer is a projection on the space spanned by the first d principal components (Bourlard
and Kamp, 1988; Baldi and Hornik, 1989). Note that such linear networks with a bot-
tleneck are equivalent to linear networks with just three layers: input, bottleneck and
output. If we use a three layer network with non-linear activation functions in the hid-
den layer and linear activations in the output layer, then still the error is minimized if
the network weights are such that the output of the hidden layer is a projection of the
data on the PCA subspace. To find potentially better non-linear representations, the
auto-encoder network should have at least five layers, as illustrated in Fig. 2.6, where
the second and fourth layer have non-linear activation functions (Kramer, 1991; Oja,
1991). However, training auto-encoder neural networks with gradient based methods
is notoriously difficult due to the many local optima in the error surface (Ripley, 1996).

Self-organizing maps. The self-organizing map (SOM) (Kohonen, 2001) extends the
k-means clustering algorithm, discussed in Section 2.1.2, so it can be used for dimen-
sion reduction. Recall that in the k-means algorithm each cluster i (i = 1, . . . , k) is
represented by its center µi. In each iteration two steps are performed: (i) data points
are assigned to the cluster with the nearest center and (ii) cluster centers are updated as
the mean of the associated data.

In the SOM, each cluster i is additionally assigned a (fixed) location gi in a ‘latent’ space
(the space of reduced dimension). A ‘neighborhood’ function is used to measure prox-
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imity between clusters on the basis of their location in the latent space, where larger
values of the neighborhood function indicate greater proximity between the clusters. In
most applications of the SOM the clusters are configured in a square grid in the latent
space and the neighborhood function is taken to be:

hij = exp(−λ‖gi − gj‖2), (2.22)

where λ controls how fast the neighborhood function decays. The training algorithm of
the SOM forces clusters with great proximity hij to represent similar data.

The training algorithm for SOM cycles trough a given data set, processing one data
point after the other. The standard algorithm works on data in a IRD and each cluster is
represented by a vector µi in the data space. For each data point xn the best matching,
or ‘winning’, cluster i∗ is the cluster that minimizes some distance measure in the data
space, usually the Euclidean distance between the data point and µi. Then, each cluster
center µj is moved toward the data point by an amount proportional to the neighbor-
hood function evaluated at j and the winner, i.e. µj ← µj + αhi∗j(x − µj). Thus, not
only the center of the best matching cluster i∗ moves toward x, also the centers of clus-
ters near i∗ in the latent space move toward x. In this manner clusters nearby in the
latent space obtain similar cluster centers in the data space. Fig. 2.7 shows the config-
uration of the cluster centers in the data space during the training of the SOM on data
drawn from a uniform distribution on a square in IR2. The clusters are arranged on a
two dimensional rectangular grid in the latent space, and clusters neighboring in the
grid are connected in the figure.

To map the data to the latent space, i.e. to perform dimension reduction, a data point
is mapped to the location of its winning cluster gi∗ . In this manner, the SOM maps the
coordinates of a data point x non-linearly to coordinates in the latent space. The SOM is
said to provide a topographic data mapping since clusters nearby in the latent space will
represent similar data. In Chapter 4 we present a method based on probabilistic mixture
models, which is similar to Kohonen’s SOM but resolves some of its limitations.

Generative topographic mapping. Generative topographic mapping (Bishop et al.,
1998b) is a method similar to the self-organizing map but based on mixture density
estimation. As with the SOM, the clusters are typically arranged in a regular grid in the
latent space. In the data space each of the k clusters is represented as a Gaussian density.
The mixture density p is defined as a weighted sum of the cluster densities, and the goal
is to find parameters of the model p that yield maximum data log-likelihood L:

p(x) =
1

k

k∑
s=1

N (x; µs, σ
2I), (2.23)

L =
N∑

n=1

log p(xn). (2.24)
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Figure 2.8: A generalized linear function maps the latent space to a low dimensional,
non-linear, subspace of the data space. The means µs are constrained to this subspace.

In the above, N (x; µs, σ
2I) denotes a multivariate Gaussian density with mean µs and

covariance matrix σ2I. Since the covariance matrix is a multiple of the identity matrix
each mixture component assumes independence between all variables.

To obtain a topographic mapping of the data, the component means µs are constrained
to be smooth functions of their location gs in the latent space, thus µs = f(gs). The
vector valued function f is a weighted sum of a set of m fixed smooth non-linear basis
functions, i.e. a generalized linear function:

µs = f(gs) =
m∑

i=1

wiφi(gs). (2.25)

If the basis-functions are sufficiently smooth, components nearby in the latent space
will be mapped to nearby locations in the data space, as illustrated in Fig. 2.8. Since
the location of the components in the latent space and the basis functions are fixed, the
only parameters of the model are the parameters controlling f , i.e. the weight vectors
wi (i = 1, . . . ,m) and the variance of the Gaussian distributions: σ2. The model param-
eters can be iteratively re-estimated with the expectation-maximization algorithm (see
Section 3.1), which yields guaranteed improvement of the data likelihood in each step.

2.2.3 Similarity based methods

The last group of techniques we consider are methods that directly find low dimen-
sional coordinates (or an ‘embedding’) for the given high dimensional data, based on
pairwise similarities between data points. Rather than working with data represented
in a feature space, each data point is represented by comparing it against the other data
points. If the data are not directly observed in terms of their pairwise (dis)similarities,
we can construct a similarity matrix on the basis of a feature representation to apply
these techniques.
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We start our overview with multidimensional scaling, a technique dating back to the
1930’s (Young and Householder, 1938). Recently, a number of new similarity based
methods have been proposed. Most of these rely on finding for each point a set of
highly similar points, sometimes called ‘nearest neighbors’. The dimension reduction
is then based on global analysis of all local neighborhoods simultaneously. We describe
four recent DRTs based on nearest neighbors.

Multidimensional scaling. The term multidimensional scaling (MDS) (Cox and Cox,
1994) is used for a number of different techniques. A range of criteria exists that quantify
the quality of an embedding, and depending on the used criterion different techniques
are employed to optimize it. Below we discuss the three most popular of these criteria.

Given a set of points {x1, . . . ,xN} in IRD, it is trivial to construct the N ×N matrix with
all pairwise squared distances. Classical scaling is a method to achieve the inverse:
given the N × N matrix with pairwise squared distances, it finds a set of points in IRD

giving rise to exactly these distances. Of course, since squared distances are invariant
to global translation and orthonormal linear mappings, i.e. rotation and mirroring, the
points can only be recovered up to these operations.

The squared Euclidean distance between two data points xi and xj can be expressed in
terms of inner products between data points:

‖xi − xj‖2 = (xi − xj)
>(xi − xj) = tii + tij − 2tij, (2.26)

where we used tij = x>i xj . Reversely, if we let dij = ‖xi − xj‖2 (and assuming the data
have zero mean), we can find the inner products from the squared distances:

tij = − 1

2

(
dij − d̄i − d̄j + d̄

)
, (2.27)

d̄i =
1

N

N∑
j=1

dij, (2.28)

d̄ =
1

N2

N∑
i,j=1

dij. (2.29)

Given a symmetric matrix with dissimilarities dij we can construct in this way a sym-
metric matrix T with tij in the (i, j)-th entry, which is the inner product matrix of zero-
mean data if dij = ‖xi − xj‖2. Since T is symmetric, it has orthogonal eigenvectors and
eigendecomposition:

T = UΛU>, (2.30)

where the columns of U are the eigenvectors of T and Λ is the diagonal matrix with the
corresponding eigenvalues (Horn and Johnson, 1985). If all eigenvalues of T are non-
negative (which is the case if the dij were computed as squared Euclidean distances),
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then we can write T as:

T = YY>, (2.31)
Y = UΛ1/2, (2.32)

i.e. T is the inner product matrix of the set of vectors given by the rows of Y. It is
not hard to show that the constant vector is an eigenvector of T with eigenvalue zero.
This, together with the orthogonality of the eigenvectors, implies that the columns of Y,
as constructed above, are zero mean. Furthermore, assuming all eigenvalues are non-
negative, the variance of the recovered data in the different dimensions is given by the
corresponding eigenvalues.

In practice, the dij might be obtained directly as some measure of dissimilarity rather
than computed as squared Euclidean distances of a set of points. For example, the dij

could be estimates of the squared Euclidean distances. In such cases, T may have sev-
eral negative eigenvalues. If T has negative eigenvalues, there does not exist a set of
coordinates that will give rise to the given dij (and the derived tij) exactly. In such cases
one can proceed by setting all negative entries in Λ to zero an proceeding as before (Cox
and Cox, 1994). The justification for this procedure is that the Y constructed in this man-
ner minimizes the error function associated with classical scaling (Hastie et al., 2001):

ECS =
∑
i,j

(
tij − (yi − ȳ)>(yj − ȳ)

)2
, (2.33)

where ȳ = 1
N

∑
i yi is the mean of the rows yi of Y.

If we constrain the yi to be vectors of length, say k, then ECS is minimized by setting all
but the k largest eigenvalues to zero. In fact, if the dij are squared Euclidean distances,
this procedure to find a k dimensional representation of the data is equivalent to pro-
jecting the data on the k first principal components. Thus, classical scaling is equivalent
to PCA when the dij are obtained as squared Euclidian distances rather than obtained
directly as some measure of dissimilarity. Hence, classical scaling is an alternative for
PCA if our observations are (approximate) distances between points rather than coor-
dinates of points.

Several other optimality criteria are used for MDS, see (Cox and Cox, 1994) for an exten-
sive overview. Unlike classical scaling, these other criteria in general do not have ana-
lytic solutions. Typically, the criteria are minimized by non-linear optimization methods
based on the gradient of the criterion w.r.t. the coordinates yi. Below we briefly describe
two of these other criteria.

In ‘least-squares’ or ‘Kruskal-Shephard’ scaling distances (not squared distances) dij are
approximated rather than inner products and the following error function is minimized:

Els =
∑
i6=j

(dij− ‖ yi − yj ‖)2 . (2.34)
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Figure 2.9: Data points distributed along a spiral in IR2. Only if two points are nearby in the
IR2, i.e. the first point is within a small circle centered on the second point, this implies that they

are also nearby on the spiral. If two points are more distant, their distance in IR2 is not
indicative for their distance on the spiral; the two dashed lines are about the same length but

connect pairs of points with quite different distances an the spiral.

The Sammon mapping (Sammon, 1969) has a similar error function, but weights each
term in Els with a factor d−1

ij . This renders the approximation of small distances more
important. The error function is:

ESammon =
∑
i6=j

1

dij

(dij− ‖ yi − yj ‖)2 . (2.35)

The derivative of ESammon with respect to the coordinates yi is given by:

∂ESammon

∂yi

= −4
∑

j

(yj − yi)

[
1

dij

− 1

‖ yi − yj ‖

]
. (2.36)

Also several approaches exist that minimize the Sammon mapping error function but
constrain the xi to be a function (e.g. a feed-forward neural network or a radial basis
function network) of the original data (Webb, 1995; de Ridder and Duin, 1997).

The focus of Sammon’s mapping on preservation of small distances is best motivated
with an example. In Fig. 2.9 data is distributed around a spiral in IR2. Given these data
points, we want to ‘unroll’ the spiral and represent the data using the coordinates on
the spiral. Observe that only locally the distances along the spiral and the Euclidean
distances in IR2 will be similar. This observation motivates emphasis on preservation of
small distances. The idea of focussing on the preservation of small distances is a theme
that will reappear in the methods described below.

Stochastic neighbor embedding. The stochastic neighbor embedding (SNE) (Hinton
and Roweis, 2003) algorithm does not use the dissimilarities dij directly, but uses them
to define a transition matrix P. The i-th row of the N ×N transition matrix P contains a



2.2 DIMENSION REDUCTION 33

distribution pi, associated with the i-th data point, on the N data points. The transition
matrix P defines a random walk over the data points. Starting at a particular point, each
time we draw a next point according to the distribution in the row of P corresponding
to the current point. Each row of P defines in a stochastic manner the ‘neighbors’ of a
data point in the random walk. From the dissimilarities dij , the matrix P is constructed
by setting pii = 0 and for i 6= j:

pij =
exp(−dij/σ

2
i )∑

j′ 6=i exp(−dij′/σ2
i )

. (2.37)

Thus, with high probability subsequent points in the walk have small dissimilarity.
Note that the mapping of the dissimilarities to P retains only information of similar
points; large dissimilarities dij , relative to other dij′ , are all mapped close to zero in P.

When the original data are given as points in a Euclidean space, the authors propose to
set dij to the squared Euclidean distance between the points. The parameters σ2

i have to
be set and control how fast pij decays as a function of dij . The authors propose to set the
parameters σ2

i by using knowledge of what scale to expect neighbors if such knowledge
is available. If such knowledge is not available, they propose to set a desired number of
neighbors k, and set the σ2

i in such a way that the entropy of the distribution in the i-th
row, pi, equals that of a uniform distribution over k outcomes.4

The goal is to find an embedding y1, . . . ,yN in few dimensions that gives rise to similar
stochastic neighbors. With an embedding of the data we associate a second transition
matrix Q, which is based on squared Euclidean distances between the embedding coor-
dinates: qii = 0 and for i 6= j:

qij =
exp(− ‖ yi − yj ‖2)∑

j′ 6=i exp(− ‖ yi − y′j ‖2)
. (2.38)

Thus qij is large if and only if yi and yj are relatively nearby. We want the transition ma-
trices P and Q to contain similar distributions over neighbors. To this end, the error of
the embedding is defined as the sum of all Kullback-Leibler (KL) divergences between
the rows of P and the corresponding rows of Q:

ESNE =
N∑

i=1

D(pi ‖ qi) =
N∑

i=1

N∑
j=1

pij log
pij

qij

≥ 0. (2.39)

Since in general it is not possible to analytically solve for coordinates for which the
gradient is zero, optimization is based on the gradient, which is given by:

∂ESNE

∂yi

= −2
∑

j

(yj − yi)[(pij + pji)− (qij + qji)]. (2.40)

4 The value of σ2 such that pi has a certain entropy can not be found analytically. However, the entropy
is a monotone decreasing function of σ2, and a binary search can be performed to find the correct value.
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The j-th summand in the gradient can be interpreted as a force between yi and yj . This
force is repelling if the transitions between i and j are more likely according to Q than
according to P, i.e. if (qij + qji) > (pij + pji). The force is attractive if the transitions
between i and j are less likely according to Q than according to P.

Intuitively, SNE finds an embedding that keeps points with large pij nearby and at the
same time ensures that points with small pij are not nearby. This is a consequence of
the exponentiation in the mapping from ‖yi − yj‖2 to qij . The exact distance in the
embedding between points with small pij is relatively unimportant, as long as it is large,
since all large distances ‖yi−yj‖2 will mapped to a qij close to zero. Similarly, the exact
distance in the embedding for points with pij close to one is also not too important as
long as they are close, since all small distances ‖yi−yj‖2 are mapped to qij close to one.

In comparison, Sammon’s mapping weights the errors in the preservation of distances
by the inverse of the true distance. As a result (very) small errors in the preservation
of distances that were originally small will yield extremely large contributions to the
gradient. But also errors in the preservation of distances that were originally large will
yield a relatively large contribution to the gradient as compared with SNE.

Isomap. The isomap (isometric mapping) algorithm (Tenenbaum et al., 2000) is an
extension to classical scaling MDS. As noted before, PCA coincides with MDS if the
distance matrix was constructed from points in a Euclidean space. Now suppose the
data lies on or close to a low dimensional manifold embedded in the data space, like
the spiral of Fig. 2.9. While classical scaling is based on the Euclidean distances in the
data space, one can argue that the Euclidean distances are not of interest but rather the
geodesic distances on the manifold, i.e. the distance along the spiral. However, if we
are given only a set of points and not a description of the spiral, how do we measure
the distance between points along the spiral? The isomap algorithm first estimates the
geodesic distances and then uses these to apply classical scaling.

In order to estimate the geodesic distances for N data points xi (i = 1, . . . , N) a ‘neigh-
borhood graph’ with N vertices is constructed; data point xi corresponds to vertex vi.
Each node vi is connected by undirected edges to the k vertices that correspond to the k
nearest neighbors of xi in the data space. Alternatively, one can connect all pairs with
‖ xi− xj ‖< ε. In both cases, in the limit of infinite data sampled from the manifold, the
shortest graph distances can be proven to converge to the geodesic distances (Bernstein
et al., 2000). An edge between vi and vj is said to have a length that is equal to the
Euclidean distance between xi and xj . Once the graph is constructed, the geodesic dis-
tances are estimated as shortest paths through this graph; the length of a path is given
by the sum of the length of the edges on the path. To compute shortest paths between
all nodes in the graph either Dijkstra’s or Floyd’s algorithm (Brassard and Bratley, 1996)
can be used.

Given the squares of the estimated geodesic distances we can now apply classical scal-
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ing to find a low dimensional representation for the data. The parameters of the algo-
rithm which have to be set are (i) the connectivity of the neighborhood graph, i.e. k or ε
and (ii) the dimensionality of the low-dimensional representation. A choice of the latter
can be based on analysis of the eigenvalues computed in the MDS procedure, just as
with PCA. Sensitivity of the results for the size of the neighborhoods and the selection
of an appropriate size is discussed in (Balasubramanian et al., 2002).

Locally linear embedding. The locally linear embedding (LLE) algorithm (Roweis
and Saul, 2000) is similar to isomap in the sense that LLE also optimizes a convex er-
ror function constructed from a neighborhood graph of the data. LLE assumes that the
high dimensional data lies on (or near) a smooth low dimensional (non-linear) mani-
fold. If this is the case, then locally the mapping between the given high dimensional
data coordinates and coordinates on the low dimensional manifold should be linear.

In the first step of the LLE algorithm for each high dimensional point xi its k nearest
neighbors, as measured by Euclidean distance in the high dimensional space, are col-
lected in a set N(i). Then, for each point xi weights wij are found that optimally recon-
struct xi from its nearest neighbors. The weights are constrained to sum to one, which
makes the optimal weights invariant to translations of xi and its neighbors. Thus, for
each point xi we minimize the error:

ei = ‖xi −
∑

j∈N(i)

wijxj‖2. (2.41)

All wij not involved in this optimization are set to zero. Optimal weights are found by
solving a system of linear equations. The number of equations is equal to the number of
neighbors. If there are more neighbors than dimensions in the input space the optimal
weights are not unique. A unique solution can obtained by adding a regularization term
that prefers similar weights: ei ← ei +

∑
j∈N(i) w2

ij .

The optimal weights are invariant to three transformations:

1. Scaling. Multiplying all coordinates with a certain factor only scales the error ei,
and thus yields the same weights.

2. Orthonormal linear mappings. Distances are invariant to rotation and mirroring
and thus so is ei.

3. Translation. Since the weights are constrained to sum to one, an added offset to
all coordinates is immediately cancelled in ei.

Suppose the data points are sampled densely enough from a low dimensional manifold,
then locally —i.e. for each point xi and its neighbors in N(i)— there exists a linear map
consisting of translation, rotation and scaling that maps the high dimensional coordi-
nates to the coordinates on the manifold. Then, since the weights are invariant to these
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operations, the weights computed in the high dimensional space should also give good
reconstructions of the coordinates on the manifold. Since this should be the case for
all local neighborhoods simultaneously, we set up an optimization problem over low-
dimensional coordinates yi that aims to minimize the reconstruction error of all the yi

from yj with j ∈ N(i) using the weights wij computed in the high dimensional space.
In the second step of LLE we minimize the convex error function ELLE over the yi:

ELLE =
∑

i

‖yi −
∑

j∈N(i)

wijyj‖2 = Tr{Y>(I−W)>(I−W)Y} ≥ 0, (2.42)

where y>i is the i-th row of Y and the (i, j)-th entry of W is wij . This optimization is
similar to that in the first step, but here the weights are fixed and we optimize over the
coordinates where in the first step the coordinates were fixed and we optimized over
the weights.

Note that ELLE is invariant to translation and rotation of the yi for the same reasons as ei.
To obtain a unique solution, the yi are constrained to be zero mean and have a diagonal
covariance matrix. The error ELLE is not invariant to scaling, in fact any scaling of each
coordinate with a factor smaller than one will decrease the error, which means that the
optimal embedding is one where all yi are zero. To obtain non-degenerate solutions
with variance in the yi, the covariance matrix is further constrained to be identity. The
optimal embedding in d dimensions satisfying the constraints is found by computing
the (d+1) eigenvectors with smallest eigenvalues of the sparse matrix (I−W)>(I−W).
The constant vector is an eigenvector with the smallest eigenvalue, namely zero. The
remaining d eigenvectors are then concatenated to form the N × d matrix Y.

Recently a variant of the LLE algorithm was proposed (Donoho and Grimes, 2003),
based on local estimates of the Hessian of the manifold. This method has a better the-
oretical motivation and also seems to produce better results, however it also requires
more data than LLE to obtain sufficiently accurate estimates of the local Hessians.

Laplacian eigenmaps. The Laplacian eigenmaps (LEM) algorithm (Belkin and Niyogi,
2002; Belkin and Niyogi, 2003) is, like isomap and LLE, based on a neighborhood graph
of the data. LEM is also closely related to spectral clustering, discussed in Section 2.1.3.

The first step is to build a neighborhood graph of the data by connecting each point to
its nearest neighbors. Again, two options are available either we connect each point to
the k nearest other points or we connect each point xi to all points that have distance
smaller than ε to xi. In (Belkin and Niyogi, 2002) the authors propose two alternatives
to set weights on the edges of the graph: either we simply set them all to one or we set
them to exp(− ‖ xi−xj ‖2 /σ2) which has a theoretical justification. With pairs of points
(i, j) not connected in the neighborhood graph we associate a weight wij = 0.

The goal is to find embedding coordinates yi (i = 1, . . . , N) that minimize the sum
of pairwise squared distances between the embedded points, weighted by their edge
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weight in the neighborhood graph. Let W be the matrix with the (i, j)-th entry wij and
let D be the associated ‘degree matrix’, i.e. D is diagonal and the (i, i)-th entry is

∑
j wij .

The error function can be written as:

ELEM =
1

2

∑
i,j

wij ‖ yi − yj ‖2= Tr{Y>(D−W)Y}. (2.43)

Like the LLE error function, this error function is invariant to translation and rotation
and a scale of the coordinates has to be fixed. This is achieved by constraining the
solutions to satisfy: Y>DY = I. The optimal embedding coordinates in d dimensions
are then found through the (d + 1) eigenvectors v with smallest eigenvalues λ given by:

(D−W)v = λDv. (2.44)

The constant vector is an eigenvector with eigenvalue zero, which corresponds to map-
ping all points in the same coordinate. Just as with LLE we discard the smallest eigen-
vector and embedding coordinates are the rows of the d × N matrix Y formed by the
remaining d eigenvectors.

Note that the LLE error function can also be written in terms of the LEM error function.
We use WLLE to denote the LLE weight matrix, and let:

W = WLLE + W>
LLE −W>

LLEWLLE. (2.45)

This matrix W has row sums equal to one and thus that the corresponding degree ma-
trix equals identity. We then have that ELEM = ELLE . Furthermore, note that the relaxed
Ncut problem used in spectral clustering is exactly the minimization of the error func-
tion of LEM for an embedding on the real line. See (Brand, 2004) for more details on
the relation between LLE, LEM, and other related linear and non-linear methods such
as (Brand, 2003; He and Niyogi, 2004).

2.2.4 Comparison of dimension reduction methods

Below we compare the different DRTs we described above using a number of different
criteria. After this comparison we conclude the chapter with some general observations.

(Non)-linearity. The most obvious division of DRTs is based on whether they yield a
linear or non-linear projection of the original data. In our review we have discussed
two Linear techniques: PCA and classical scaling if applied to a distance matrix ob-
tained by computing Euclidean distances for points in IRD. All other DRTs we consid-
ered can yield non-linear projections. The ability to produce non-linear projections is
in general an advantage, unless we specifically want to find a linear projection. Most
non-linear techniques introduce a parameter that regulates the smoothness of the non-
linear projection: e.g. the kernel in kernel PCA, the number of clusters in SOM and
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generative topographic mapping (GTM), the number of basis functions in auto-encoder
networks and GTM, the number of neighbors in LLE, isomap and LEM. In general these
parameters have to be set by hand, although some methods for automatic determina-
tion of these parameters have been proposed (Seeger, 2000; Balasubramanian et al., 2002;
de Ridder and Duin, 2002).

Estimation of intrinsic dimensionality. Another parameter of DRTs is the number of
dimensions of the low dimensional representation, although in some applications the
desired number of dimensions may be known a-priori. For the methods based on the
computation of eigenvectors with largest eigenvalues, the eigenspectrum can be used
to determine an appropriate number of dimensions. For PCA, classical scaling, and
isomap the dimensionality of the data can be estimated by looking for an ‘elbow’ in the
decrease of the error, i.e. an eigenvalue after which the eigenspectrum error decreases
much slower than before that point (Tenenbaum et al., 2000).

For LLE a similar technique could be used: find the number of dimensions after which
the error ELLE , c.f. (2.42), starts to increase significantly. However, in (Saul and Roweis,
2003) it has been reported that this method only seems to work for contrived examples
and fails for many real data sets. The authors propose to use other techniques that esti-
mate the local dimensionality of data manifold in the original high dimensional space.
It is possible to look at the (average) eigenspectrum of the covariance matrix of each
local neighborhood (a point and its k neighbors), this however requires to fix a number
of neighbors which impacts the spectra (Verveer and Duin, 1995). Other methods are
based on measuring how the number of points that are within a distance ε of a point xi

grows as a function of ε, c.f. (Brand, 2003; Kégl, 2003). Whitney’s theorem (Lee, 2003)
states that if the intrinsic dimension of the manifold is d then it can be embedded with-
out self-intersections in IR2d+1, and thus gives us an upper bound on the number of
required dimensions.

Optimization and computational aspects. An important characteristic of DRTs is the
type of error function that is used. The error function, which depends on the given
(high-dimensional) data, maps a low-dimensional representation of the data to a real
value. The low dimensional representation that minimizes this error function is defined
to be the optimal low-dimensional representation. For example the error function of
PCA is the negative variance of a linear projection of the given data, which depends
both on the given data and the linear projection.

A crucial property is whether or not this error function is convex. A function f(x) is
convex if for any x1 and x2 and 0 ≤ λ ≤ 1 it holds that:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2). (2.46)

If a function f is convex, then all local minima of f are also global minima. Thus, to find
a minimizer x of a convex function f(x), it suffices to find a local minimum of f , which
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is relatively easy. To find local minima, gradient based methods can be used, or more
sophisticated methods if the function has additional properties that can be exploited.
If, on the other hand, a function is not convex then a local minimum does not have to
be the global minimum. Therefore, it does not suffice to find a local minimum, which
makes the minimization considerably harder. Using a well-known quote: ”... the great
watershed in optimization isn’t between linearity and nonlinearity, but convexity and
nonconvexity.” (Rockafellar, 1993).

In our review we have encountered several techniques based on convex error func-
tions: PCA, kernel PCA, classical scaling, isomap, LLE, and LEM. These methods all
use quadratic error functions with additional constraints for which we can find the min-
imizers as eigenvectors of a matrix associated with the error function. We also encoun-
tered techniques that do not have convex error-functions: principal curves, SOM, GTM,
auto-encoder networks, least-squares scaling, Sammon’s mapping, and SNE.

Although one can argue which DRT has the most appropriate error function for a spe-
cific application, methods based on convex error function come with the significant
advantage that their optimization is relatively easy. Non-convex error functions, on the
other hand, may be great at quantifying the quality of dimension reduction, but come
with potentially insurmountable optimization problems which prevent us from finding
the optimal dimension reduction according to the error function.

A further distinction can be made in the group of techniques for which solutions are
found as eigenvectors of a matrix: is the matrix sparse? If so, and we know some-
thing about the eigenvalues corresponding to the solution eigenvectors (e.g. we want
the smallest, largest, or values closest to a particular number), then efficient techniques
can be used to find them. These methods generally involve multiplications Mv of vec-
tors v with a N ×N matrix M. For a dense matrix the multiplications cost O(N2) com-
putations, but for sparse matrices the number of computations is O(Nr), where r is the
average number of non-zero elements in each row. Both LLE and LEM use such sparse
matrices. Note that methods based on nearest neighbors (isomap, LLE, and LEM) can
benefit from the same efficient nearest-neighbor finding algorithms as mentioned in
Section 2.1.4 in the context of spectral clustering methods.

Observations. In this section we have reviewed DRTs that are ‘unsupervised’ in that
they do not take into account tasks to be performed with the output of the dimen-
sion reduction technique. Consequently, there are situations where the use of unsuper-
vised techniques to perform dimension reduction as pre-processing for another task can
severely impact performance of the latter task. A simple example is given in Fig. 2.10,
where data from two classes is plotted with open and closed circles respectively. The
dimension with the smallest variance is optimal for classification of the data. However,
preprocessing the data with PCA to obtain a one-dimensional representation would
yield a representation that is uninformative for prediction of the class for new data.
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Figure 2.10: An example where the maximum variance direction (solid line) is not relevant for
class discrimination. The classes (open circles vs. closed circles) are best separated by projecting

on the direction with least variance (dashed line).

Thus, if dimension reduction is needed as a preprocessing step before further processing
of the data ideally one should use supervised techniques that have optimality criteria
that take into account the later stages of processing. Unsupervised techniques as pre-
processing for another (supervised) task may be useful in situations where (i) the task
is not yet known when dimension reduction has to be performed or (ii) appropriate
supervised DRTs are computationally too demanding. If, unsupervised techniques are
used a preprocessing for later task, to reduce the risk of losing relevant information, is
a good idea not to choose an extremely low-dimensional representation.

For more extensive reviews of DRTs we refer to (Carreira-Perpiñán, 1997; Fodor, 2002)
and chapter 14 of (Hastie et al., 2001).



3

MIXTURE DENSITY ESTIMATION

In this chapter we consider mixture densities, the main building block for the dimen-
sion reduction techniques described in the following chapters. In the first section we
introduce mixture densities and the expectation-maximization (EM) algorithm to esti-
mate their parameters from data. The EM algorithm finds, from an initial parameter
estimate, a sequence of parameter estimates that yield increasingly higher data log-
likelihood. The algorithm is guaranteed to converge to a local maximum of the data
log-likelihood as function of the parameters. However, this local maximum may yield
significantly lower log-likelihood than the globally optimal parameter estimate.

The first contribution we present is a technique that is empirically found to avoid many
of the poor local maxima found when using random initial parameter estimates. Our
technique finds an initial parameter estimate by starting with a one-component mix-
ture and adding components to the mixture one-by-one. In Section 3.2 we apply this
technique to mixtures of Gaussian densities and in Section 3.3 to k-means clustering.

Each iteration of the EM algorithm requires a number of computations that scales lin-
early with the product of the number of data points and the number of mixture compo-
nents, this limits its applicability in large scale applications with many data points and
mixture components. In Section 3.4, we present a technique to speed-up the estimation
of mixture models from large quantities of data where the amount of computation can
be traded against accuracy of the algorithm. However, for any preferred accuracy the al-
gorithm is in each step guaranteed to increase a lower bound on the data log-likelihood.

3.1 The EM algorithm and Gaussian mixture densities

In this section we describe the expectation-maximization (EM) algorithm for estimating
the parameters of mixture densities. Parameter estimation algorithms are sometimes
also referred to as ‘learning algorithms’ since the machinery that implements the algo-
rithm, in a sense, ‘learns’ about the data by estimating the parameters. Mixture models,
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a weighted sum of finitely many elements of some parametric class of component densi-
ties, form an expressive class of models for density estimation. Due to the development
of automated procedures to estimate mixture models from data, applications in a wide
range of fields have emerged in recent decades. Examples are density estimation, clus-
tering, and estimating class-conditional densities in supervised learning settings. Using
the EM algorithm it is relatively straightforward to apply density estimation techniques
in cases where some data is missing. The missing data could be the class labels of some
objects in partially supervised classification problems or the value of some features that
describe the objects for which we try to find a density estimate.

3.1.1 Mixture densities

A mixture density (McLachlan and Peel, 2000) is defined as a weighted sum of, say k,
component densities. The component densities are restricted to a particular parametric
class of densities that is assumed to be appropriate for the data at hand or attractive
for computational reasons. Let us denote by p(x; θs) the s-th component density, where
θs are the component parameters. We use πs to denote the weighing factor of the s-th
component in the mixture. The weights must satisfy two constraints: (i) non-negativity:
πs ≥ 0 and (ii) partition of unity:

∑k
s=1 πs = 1. The weights πs are also known as ‘mixing

proportions’ or ‘mixing weights’ and can be thought of as the probability p(s) that a
data sample will be drawn from mixture component s. A k component mixture density
is then defined as:

p(x) ≡
k∑

s=1

πsp(x; θs). (3.1)

For a mixture we collectively denote all parameters with θ = {θ1, . . . ,θk, π1, . . . , πk}.
Throughout this thesis we assume that all data are identically and independently dis-
tributed (i.i.d.), and hence that the likelihood of a set of data vectors is just the product
of the individual likelihoods.

One can think of a mixture density as modelling a process where first a ‘source’ s is
selected according to the multinomial distribution {π1, . . . , πk} and then a sample is
drawn from the corresponding component density p(x; θs). Thus, the probability of
selecting source s and datum x is πsp(x; θs). The marginal probability of selecting datum
x is then given by (3.1). We can think of the source that generated a data vector x as
‘missing information’: we only observe x and do not know the generating source. The
expectation-maximization algorithm, presented in the next section, can be understood
in terms of iteratively estimating this missing information.

An important derived quantity is the ’posterior probability’ on a mixture component
given a data vector. One can think of this distribution as a distribution on which mixture
component generated a particular data vector, i.e. “Which component density was this
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data vector drawn from?” or “to which cluster does this data vector belong?”. The
posterior distribution on the mixture components is defined using Bayes rule:

p(s|x) ≡ πsp(x; θs)

p(x)
=

πsp(x; θs)∑
s′ πs′p(x; θs′)

. (3.2)

The expectation-maximization algorithm to estimate the parameters of a mixture model
from data makes essential use of these posterior probabilities.

Mixture modelling is also known as semi-parametric density estimation and it can be
placed in between two extremes: parametric and non-parametric density estimation.
Parametric density estimation assumes the data is drawn from a density in a parametric
class, say the class of Gaussian densities. The estimation problem then reduces to find-
ing the parameters of the Gaussian that fits the data best. The assumption underlying
parametric density estimation is often unrealistic but allows for very efficient parameter
estimation. At the other extreme, non-parametric methods do not assume a particular
form of the density from which the data is drawn. Non-parametric estimates typically
take a form of a mixture density with a mixture component for every data point in the
data set. The components, often referred to as ‘kernels’. A well known non-parametric
density estimator is the Parzen estimator (Parzen, 1962) which uses Gaussian compo-
nents with mean equal to the corresponding data point and small isotropic covariance.
Non-parametric estimates can implement a large class of densities. The price we have
to pay is that for the evaluation of the estimator at a new point we have to evaluate
all the kernels, which is computationally demanding if the estimate is based on a large
data set. Mixture modelling strikes a balance between these extremes: a large class of
densities can be implemented and we can evaluate the density efficiently, since only
relatively few density functions have to be evaluated.

3.1.2 Parameter estimation with the EM algorithm

The first step when using a mixture model is to determine its architecture: a proper class
of component densities and the number of component densities in the mixture. We will
discuss these issues in Section 3.1.3. After these design choices have been made, we
estimate the free parameters in the mixture model such that the model ‘fits’ our data as
good as possible. The expectation-maximization algorithm is the most popular method
to estimate the parameters of mixture models to a given data set.

We define “fits the data as good as possible” as “assigns maximum likelihood to the
data”. Hence, fitting the model to given data becomes searching for the maximum-
likelihood parameters for our data in the set of probabilistic models defined by the cho-
sen architecture. Since the logarithm is a monotone increasing function, the maximum
likelihood criterion is equivalent to a maximum log-likelihood criterion and these crite-
ria are often interchanged. Due to the i.i.d. assumption, the log-likelihood of a data set
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XN = {x1, . . . ,xN} can be written as:

L(XN , θ) = log p(XN ; θ) = log
N∏

n=1

p(xn; θ) =
N∑

n=1

log p(xn; θ). (3.3)

When no confusion arises, the dependence of the log-likelihood on XN is not made
explicit and we simply write L(θ).

Finding the maximum likelihood parameters for a single component density is easy
for a wide range of component densities and can often be done in closed-form. This
is for example the case for Gaussian mixture components. However, if the probabilis-
tic model is a mixture, the estimation often becomes considerably harder because the
(log-)likelihood as a function of the parameters may have many local optima. Hence,
some non-trivial optimization is needed to obtain good parameter estimates.

The expectation-maximization (EM) algorithm (Dempster et al., 1977) finds parameters
at the local optima of the log-likelihood function given some initial parameter values.
In our exposition we follow the generalized view on EM of (Neal and Hinton, 1998).
The greatest advantages of the EM algorithm over other methods are (i) no parameters
have to be set that influence the optimization algorithm, like e.g. the step-size for gra-
dient based algorithms, and (ii) its ease of implementation. The biggest drawback is,
as for all local-optimization methods, the sensitivity of the found solution to the ini-
tial parameter values. This sensitivity can be partially resolved by either (i) performing
several runs from different initial parameter values and keeping the best, or (ii) finding
the mixture parameters in a ’greedy’ manner by starting with a single component mix-
ture and adding new components one at a time (this is the topic of Section 3.2). Other
parameter estimation techniques are gradient and sampling based methods, however
these are not treated within this thesis.

Intuitively, the idea of the EM algorithm is to make estimates on the ‘missing informa-
tion’ mentioned in the previous section: to which mixture component do we ascribe
each data vector? The EM algorithm proceeds by (E-step) estimating to which compo-
nent each data point belongs and (M-step) re-estimating the parameters on the basis of
this estimation. This sounds like a chicken-and-egg problem: given the assignment of
data to components we can re-estimate the components and given the components we
can re-assign the data to the components. Indeed, this is a chicken-and-egg problem and
we simply either start with initial parameters or with an initial assignment. However,
after each iteration of EM, we are guaranteed that the re-estimated parameters give at
least as high a log-likelihood as the previous parameter values.

Technically, the idea of EM is to iteratively define a lower bound on the log-likelihood
and to maximize this lower bound. The lower bound is obtained by subtracting from
the log-likelihood a non-negative quantity known as Kullback-Leibler (KL) divergence.
KL divergence is an asymmetric dissimilarity measure between two probability distri-
butions p and q from the field of information theory (Cover and Thomas, 1991), it is
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defined for discrete distributions p and q with domain {1, . . . , k} as:

D(q‖p) ≡
k∑

s=1

q(s) log
q(s)

p(s)
= −H(q)−

k∑
s=1

q(s) log p(s) > 0, (3.4)

where H(·) denotes the entropy of a distribution, an information theoretic measure of
the ‘uncertainty’ or ‘information’ in a distribution. The KL divergence is defined analo-
gously for probability density functions by replacing the sum over the domain with an
integral over the domain. The KL divergence is zero if and only if the two distributions
p and q are identical. We will use the KL divergence to measure, for each data point,
how well the true posterior distribution p(s|x) matches an approximating distribution q
for this data point.

Since the KL-divergence is non-negative we can bound each of the terms log p(xn) in the
log-likelihood (3.3) from below by subtracting the KL-divergence D(qn‖p(s|xn)). Note
that this bound holds for any distribution qn and becomes tight if and only if qn =
p(s|xn). We will use q to denote the set of distributions {q1, . . . , qN}. Combining the
bounds on the individual log-likelihoods log p(xn), the complete log-likelihood (3.3) can
be bounded by:

L(θ) =
N∑

n=1

log p(xn) ≥ F(θ, q) =
N∑

n=1

[log p(xn; θ)−D(qn‖p(s|xn))] (3.5)

=
N∑

n=1

[H(qn) + Eqn log πsp(xn; θs)] . (3.6)

Now that we have the two forms (3.5) and (3.6), iterative maximization of the lower
bound F on the log-likelihood becomes easy. In (3.5) the only term dependent on qn is
the KL divergence D(qn‖p(s|xn)). To maximize F , recall that the KL divergence is zero
if and only if its two arguments are identical. Therefore, to maximize F w.r.t. the qn we
should set them as the posteriors: qn ← p(·|xn). In this case the lower bound equals the
data log-likelihood: F = L.

To maximize F w.r.t. θ, only the second term of (3.6) is of interest. The maximization is
often easy since now we have to maximize a sum of single component log-likelihoods
instead of a sum of mixture model log-likelihoods. Let us use the compact notation qns

for qn(s), then if we consider optimizing the parameters of a single component s the
only relevant terms in (3.6) are:

N∑
n=1

qns[log πs + log p(xn; θs)]. (3.7)

For many component densities from the exponential family the maximization of (3.7)
w.r.t. the parameters θs can be done in closed form.
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Summarizing, the EM algorithm consists of iteratively maximizingF , in the E-step w.r.t.
q and in the M-step w.r.t. θ. Intuitively, we can see the E-step as fixing a probabilistic
assignment of every data vector to mixture components. The M-step then optimizes the
mixture parameters given this assignment. Since after each E-step, we have F = L and
both the E-step and the M-step do not decrease F we immediately have that iterative
application of these steps can not decrease L.

The qns are often referred to as ‘responsibilities’, since they indicate for each data point
which mixture component models it. With every data vector xn we associate a random
variable sn which can take values in {1, . . . , k}, indicating which component generated
xn. These variables are often called ‘hidden’ or ‘unobserved’ variables since we have
no direct access to them. EM treats the mixture density log-likelihood maximization
problem as a problem of dealing with missing data. Similar approaches can be taken to
fit (mixture) density models to data where there truly is missing data in the sense that
certain values are missing in the input vector x.

Generalized and variational EM. The EM algorithm presented above can be modified
in two interesting ways, which both give-up maximization of F and settle for increase
of F . The concession can be made either in the M-step (generalized EM) or in the E-step
(variational EM). These modifications are useful when computational requirements of
either step of the algorithm become intractable.

For some models it may be difficult to maximize F w.r.t. θ but relatively easy to find
values for θ that increase F . For example, it might be easy to maximize F w.r.t. either
one of the elements of θ but not to maximize w.r.t. all of them simultaneously. However,
the convergence to local optima (or saddle points) can still be guaranteed when only
increasing instead of maximizing F in the M-step, algorithms that do so are known as
‘generalized EM’ algorithms.

Above, due to the independence assumption on the data vectors it was possible to con-
struct the EM lower bound by bounding each of the individual log-likelihoods log p(xn).
This iterative bound optimization strategy can also be applied to other settings with
unobserved variables. However, in some cases hidden variables are dependent on each
other given the observed data. If we have N hidden variables with k possible values
each, then in principle the distribution over hidden variables is characterized by kN

numbers. In such cases, the number of summands in the expected joint log-likelihood
we have to optimize in the M-step also equals kN . In this case tractability can be ob-
tained if we do not allow for general distributions q over the hidden variables, but only
those from a class Q which gives us a tractable number of summands in the expected
joint log-likelihood. For example, we can use distributions over the hidden variables
that factor over the different hidden variables. EM algorithms using a restricted classQ
are known as ‘variational EM’ algorithms. The term refers to the ‘variational parame-
ters’ that characterize the distributions q ∈ Q. The variational parameters are optimized
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in the E-step of the variational EM algorithm. Most often the variational approach is
used to decouple dependencies present in the true distribution over hidden variables
which give rise to intractability. An example of a variational EM algorithm is the mean-
field algorithm used in hidden Markov random fields, which are applied to image seg-
mentation problems (Celeux et al., 2003).

When using a variational EM algorithm we can no longer guarantee that F equals the
log-likelihood after the E-step, since we cannot guarantee that the true posterior is in
Q. Therefore, it is also not guaranteed that the log-likelihood will increase after each
EM iteration. However, we can at least still guarantee that the lower bound on the
log-likelihood F will increase after each EM iteration. By restricting the q to a specific
class of distributions Q, we effectively augment the log-likelihood objective of the opti-
mization algorithm with a penalty term —the generally non-zero KL divergence— that
measures how close the true distribution over the hidden variables is to Q. Thus vari-
ational EM parameter estimation algorithms have a bias towards parameters that yield
posterior distributions over the hidden variables similar to a member of Q.

3.1.3 Model selection

To apply mixture models, two model selection issues have to be resolved: (i) how many
components should be used and (ii) which class of component densities should be used.
These two factors together determine the ‘model structure’. These type of design choices
can be compared with the selection of the number and type of hidden nodes in feed-
forward neural networks. A trade-off has to be made when choosing the class of models
that is used. More complex models (e.g. more mixture components) allow for modelling
of more properties of the data, and in general lead to a better fit to the data. However,
when using more complex models spurious artifacts of the data due to a noisy mea-
surement system can also be captured by the model. Capturing accidental properties of
the data may degrades the estimates, an effect known as ‘overfitting’. Less complexity
allows for more robust identification of the best model within the selected complexity
class and yields a smaller risk of overfitting the data.

Throughout the previous decades several criteria have been proposed to resolve the
model selection problem. However, the problem of model selection seems far from
being solved. Methods for model selection can be roughly divided into four groups:

1. Methods using concepts from statistical learning theory, e.g. structural risk min-
imization (Vapnik, 1995). Most of these methods use worst-case guarantees of
performance on future data which are derived by a statistical analysis.

2. Information theoretical methods, such as the minimum description length (MDL)
principle (Rissanen, 1989). These methods are based on a data compression prin-
ciple: a model is selected that allows for maximal compression of the data, where
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the rate of compression is measured by the total number of bits required to encode
both the model and the data (using the model).

3. Bayesian methods that use a prior distribution on model structures and parame-
ters together with a distribution on data given models to define a posterior dis-
tribution p(model structure|data). To compute the required probabilities several
approximation techniques have been proposed, e.g. Bayesian information crite-
rion (Schwarz, 1978), variational Bayesian learning (Beal and Ghahramani, 2003),
and a number of sampling techniques (Andrieu et al., 2003).

4. Holdout methods that keep part of the data to assess performance of models
learned on the rest of the data, e.g. cross-validation (Webb, 2002).

Note that holdout methods are applicable only in cases where there is abundant data,
and one can afford to ignore a part of the data for parameter estimation in order to
obtain an independent test-set.

Bayesian techniques are attractive because they allow for unified treatment of model
selection and parameter estimation. The application of compression based methods
like MDL is sometimes problematic because the so called ‘two-part’ MDL code requires
a particular coding scheme and it is not always clear which coding scheme should be
used (Verbeek, 2000). Methods based on worst-case analysis are known to give very
conservative guarantees, which limits their use.

In general, to apply a particular model selection criterion, parameter estimation has to
be performed for models with different numbers of components. The algorithm for es-
timating the parameters of a Gaussian mixture model we present in Section 3.2 finds a
parameter estimate of a k-component mixture by iteratively adding components, start-
ing from a single Gaussian. Thus, this algorithm is particularly useful when the number
of components has to be determined, since the model selection criterion can be applied
to mixtures with 1, . . . , k components as components are added to the mixture.

3.1.4 Gaussian mixture models

In this section we discuss the EM algorithm for Mixtures of Gaussian densities (MoG).
Recall that we already saw one example of a MoG: generative topographic mapping in
Section 2.2.2. We also present a hierarchy of shapes the covariance matrices can take.
In the hierarchy, increasingly stringent constraints are placed on the form of the covari-
ance matrix. Then, we discuss how some of the shapes for covariance matrices can be
interpreted as linear latent variable models.

Gaussian densities are probably the most commonly used densities to model continuous
valued data. The first reason for this popularity is that maximum likelihood parameter
estimation can be done in closed form and only requires computation of the data mean
and covariance. The second reason is that of all densities with a particular variance, the
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Gaussian density has the largest entropy and therefore is the most ‘vague’ density in this
sense. This last property motivates the use of the Gaussian as a default density when
there are no reasons to assume that some other parametric density is more appropriate
to model the data at hand.

A Gaussian density in a D-dimensional space, characterized by its mean µ ∈ IRD and
D ×D covariance matrix Σ, is defined as:

N (x; θ) ≡ (2π)−D/2|Σ|−1/2 exp

[
−1

2
(x− µ)>Σ−1(x− µ)

]
, (3.8)

where θ denotes the parameters µ and Σ and |Σ| denotes the determinant of Σ. In order
for (3.8) to be a proper density, it is necessary and sufficient that the covariance matrix
be positive definite. Throughout this thesis we implicitly assume that the likelihood
is bounded, e.g. by restricting the parameter space such that the determinant of the
covariance matrices is bounded, and hence the maximum likelihood estimator is known
to exist (Lindsay, 1983). Alternatively, the imperfect precision of each measurement can
be taken into account by treating each data point as a Gaussian density centered on
the data point and with small but non-zero variance. We then maximize the expected
log-likelihood, which is bounded by construction.

The EM algorithm for mixture of Gaussian densities. In the E-step of the EM algo-
rithm for a MoG we compute the posterior probabilities p(s|x) according to (3.2) and set
qns ← p(s|xn). In the M-step we maximize F w.r.t. θ, by setting the partial derivatives of
F w.r.t. the elements of θ to zero and taking the constraints on the πs into account, and
find the updates:

πs ←
1

N

N∑
n=1

qns, (3.9)

µs ←
1

Nπs

N∑
n=1

qnsxn, (3.10)

Σs ←
1

Nπs

N∑
n=1

qns(xn − µs)(xn − µs)
>. (3.11)

The update of the mean uses the new mixing weight and the update of the covariance
matrix uses the new mean and mixing weight.

In many practical applications of MoGs for clustering and density estimation no con-
straints are imposed on the covariance matrix. Using an unconstrained covariance ma-
trix, the number of parameters of a Gaussian density grows quadratically with the data
dimensionality. For example, using 16× 16 = 256 pixel gray-valued images of an object
as data (treating an image as a 256 dimensional vector), we would need to estimate over
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32.000 parameters! To reduce the number of parameters in the covariance matrix, it can
be constrained to have a form that involves fewer parameters. In some applications a
constrained covariance matrix can be appropriate to reflect certain assumptions about
the data generating process. See the discussion below on latent variable models.

Next, we discuss several frequently used ways to constrain the covariance matrix. We
will use I to denote the identity matrix, Ψ to denote a diagonal matrix, and Λ to denote
a D × d matrix, with d < D.

Type 1: factor analysis. The covariance matrices in factor analysis (FA) are constrained
to be of the form:

Σ = Ψ + ΛΛ>. (3.12)

The d columns of Λ are often referred to as the ‘factor loadings’. Each column of Λ can be
associated with a latent variable (see the discussion on latent variable models below). In
the diagonal matrix Ψ the variance of each data coordinate is modelled separately, and
additional variance is added in the directions spanned by the columns of Λ. The number
of parameters to specify the covariance matrix is O(Dd). In (Ghahramani and Hinton,
1996) the EM algorithm for mixtures of factor analyzers is given. The determinant and
the inverse of the covariance matrix can be efficiently computed using two identities:

|A + BC| = |A| × |I + CA−1B|, (3.13)
(A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1. (3.14)

Using these identities we only need to compute inverses and determinants of d× d and
diagonal matrices, rather than of full D ×D matrices:

|Ψ + ΛΛ>| = |Ψ| × |I + Λ>Ψ−1Λ|, (3.15)
(Ψ + ΛΛ>)−1 = Ψ−1 −Ψ−1Λ(I + Λ>Ψ−1Λ)−1Λ>Ψ−1. (3.16)

Type 2: principal component analysis. Here the constraints are similar to those of FA,
but the matrix Ψ is further constrained to be a multiple of the identity matrix:

Σ = σ2I + ΛΛ> with σ > 0. (3.17)

A MoG where the covariance matrices are of this type is termed a ‘mixture of proba-
bilistic principal component analyzers’ (Tipping and Bishop, 1999).

Principal component analysis (Jolliffe, 1986) (PCA) appears as a limiting case if we use
just one mixture component and let the variance approach zero: σ2 → 0 (Roweis, 1998).
Let U be the D × d matrix with the eigenvectors of the data covariance matrix with the
d largest eigenvalues, and V the diagonal matrix with the corresponding eigenvalues
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on it diagonal. Then, the maximum likelihood estimate of Λ is given by Λ = UV
1
2 . For

probabilistic PCA the number of parameters is also O(Dd), as for FA.

To see the difference between PCA and FA note the following. Using PCA we can arbi-
trarily rotate the original basis of our space: the covariance matrix that is obtained for
the variables corresponding to the new basis is still of the PCA type. Thus the class of
PCA models is closed under rotations, which is not the case for FA. On the other hand,
if some of the data dimensions are scaled, the scaled FA covariance matrix is still of
the FA type. Thus the class of FA models is closed under non-uniform scaling of the
variables, which is not the case for PCA. Hence if the relative scale of the variables is
not considered meaningful, then an FA model may be preferred over a PCA model, and
vice versa if relative scale is important.

Type 3: k-subspaces. Here, we further restrict the covariance matrix such that the
norm of all columns of Λ is equal:

Σ = σ2I + ΛΛ> with Λ>Λ = ρ2I and σ, ρ > 0. (3.18)

This type of covariance matrix was used in (Verbeek et al., 2002b), for non-linear di-
mension reduction technique similar to the one described in Chapter 5. The number of
parameters is again O(Dd).

If we train a MoG with this type of covariance matrix with EM, then this results in an
algorithm known as k-subspaces (Kambhatla and Leen, 1994; de Ridder, 2001) under
the following conditions: (i) all mixing weights are equal, πs = 1/k, and (ii) the σs and
ρs are equal for all mixture components: σs = σ and ρs = ρ. Then, if we take the limit
as σ → 0, we obtain k-subspaces. The term k-subspaces refers to the k linear subspaces
spanned by the columns of the Λs. The k-subspaces algorithm, a variation on the k-
means algorithm (see Section 2.1.2), iterates two steps:

1. Assign each data point to the subspace which reconstructs the data vector the best
(in terms of squared distance between the data point and the projection of the data
point on the subspace).

2. For every subspace compute the PCA subspace of the assigned data to get the
updated subspace.

Type 4: isotropic. This shape of the covariance matrix is the most restricted:

Σ = σ2I with σ > 0. (3.19)

This model is referred to as isotropic or spherical variance since the variance is equal in
all directions. It involves just the single parameter σ.

If all components share the same variance σ2 and letting it approach zero, the posterior
on the components for a given data vector tends to put all mass on the component
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closest in Euclidean distance to the data vector (Bishop, 1995). This means that the E-
step reduces to finding the closest component for all data vectors. The expectation in
(3.6) then just counts the term for the closest component. This means for the M-step that
the centers µs of the components are found by simply averaging all the data vectors for
which it is the closest. This simple case of the EM algorithm coincides exactly with the
k-means algorithm.

Taking Σ diagonal, and thus letting all variables be independently distributed, is also
a popular constraint yielding O(d) parameters, however it is not used by any of the
techniques discussed in this thesis.

Linear latent variable models. Three types of covariance matrix (FA, PCA and k-
subspaces) can be interpreted as linear latent variable models. The idea is that the data
can be thought of as being generated in a low dimensional latent space, which is linearly
embedded in the higher dimensional data space. Some noise may make the observed
data deviate from the embedded linear subspace.

For these models it is conceptually convenient to introduce a new, hidden variable g for
every data vector. This variable represents the (unknown) d-dimensional latent coordi-
nate of the data vector. Using this variable we can write the density for the data vectors
by marginalizing over the hidden variable:

p(g) = N (g; 0, I) (3.20)
p(x|g) = N (x; µ + Λg,Ψ) (3.21)

p(x) =

∫
p(x|g)p(g)dg = N (x; µ,Ψ + ΛΛ>) (3.22)

It is not necessary to introduce g to formulate the model, but it may be convenient to
use g for computational reasons. For example, in (Roweis, 1998) this view is adopted
to compute PCA subspaces without computing the data covariance matrix or the data
inner-product matrix. The cost to compute these matrices is, respectively, O(ND2) and
O(DN2). By treating the latent coordinates as hidden variables one can perform PCA
with an EM algorithm that has a cost of O(dDN) per iteration to find the d principal
components. This EM algorithm for PCA involves computing the posterior distribution
on g given x, which is given by:

p(g|x) = N (g;m(x),C), (3.23)
m(x) = CΛ>Ψ−1(x− µ), (3.24)
C−1 = I + Λ>Ψ−1Λ. (3.25)

We can use linear latent variable models to reduce the dimensionality of the data by
inferring the d-dimensional latent coordinates from the D-dimensional data vectors and
using the found latent coordinates for further processing of the data. Another option
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is to use these models for clustering if there is reason to expect that the clusters show
significant variation only in a few dimensions and very small variation in all others.

3.2 Efficient greedy learning of Gaussian mixtures

The EM algorithm is known to converge to local maxima of the data log-likelihood w.r.t.
the parameter vector. However, convergence to a global maximum is not guaranteed.
The data log-likelihood under the mixture distribution returned by the EM algorithm is
highly dependent on the initial parameter vector used by the EM algorithm. The stan-
dard procedure to overcome this initialization dependence is to start the EM algorithm
from several random initializations and retain the best obtained result.

In this section we present a greedy EM algorithm to learn mixtures of Gaussian densi-
ties, designed to overcome the sensitivity of the normal EM algorithm to initialization
of the parameters.1 Our approach is motivated by an approximation result (Li and Bar-
ron, 2000). This result states that we can ‘quickly’ approximate any target density with
a finite mixture model, as compared to the best we can do with any mixture from the
same component class. The result also holds if we learn the mixture models in a greedy
manner: start with one component and optimally add new components one after the
other. The learning algorithm alternates between optimization of the current mixture
model and adding a new component to the mixture after convergence.

To determine the optimal new component to insert, the parameters yielding the global
maximum of a two-component mixture log-likelihood have to be found, which is again
non-trivial. We propose a search heuristic to locate the global maximum. Our search
procedure selects the best element from a set of candidate new components. Since the
greedy algorithm generates a sequence of mixtures with an increasing number of com-
ponents, it can be particularly useful when the optimal number of mixture components
has to be found automatically.

The rest of this section is organized as follows: Section 3.2.1 discusses greedy learning
of a MoG. Our component insertion procedure is discussed in Section 3.2.2. Related
work is discussed in Section 3.2.3, and in Section 3.2.4 we present experimental results
comparing our method with alternative methods. We draw conclusions in Section 3.2.5.

3.2.1 Greedy learning of Gaussian mixtures

The basic idea of greedy mixture learning is simple: instead of starting with a (ran-
dom) configuration of all components and improving upon this configuration with the

1 The material of this section is largely drawn from (Verbeek et al., 2003c).
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(a) (b)

(c) (d)

Figure 3.1: Panels (a)-(d) illustrate the construction of a 4-component mixture distribution.

EM algorithm, we build the mixture component-wise. We start with the optimal one-
component mixture, whose parameters are trivially computed, then we start repeating
two steps until a stopping criterion is met. The steps are: (i) insert a new component
and (ii) apply the EM algorithm until convergence. The stopping criterion can imple-
ment one of the model selection criteria mentioned in Section 3.1.3, or the algorithm is
terminated when a specified number of components is reached. An example of greedy
mixture learning is given in Fig. 3.1, which depicts the evolution of a solution for data
point plotted as ‘+’-signs. Mixtures with one up to four components are depicted, and
each component is shown as an ellipse which has the eigenvectors of the covariance
matrix as axes and radii of twice the square root of the corresponding eigenvalue.

The motivation for the greedy approach is that the optimal component insertion prob-
lem involves a factor k fewer parameters than the original problem of finding a near
optimal starting configuration, and we therefore expect it to be an easier problem. The
intuitive idea is that we can find the optimal (with respect to log-likelihood) (k + 1)-
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component mixture by local search if we start from the mixture obtained by inserting
optimally a new component in the optimal k-component mixture. A recent theoreti-
cal result provides complementary motivation. Recall the Kullback-Leibler (KL) diver-
gence between two densities p and q, defined as:

D(p‖q) =

∫
Ω

p(x) log [p(x)/q(x)] dx, (3.26)

where Ω is the domain of the densities p and q. In this section we will use φ to indicate
a component density of a mixture and use pk to refer to a mixture of k components,
i.e. pk(x) =

∑k
s=1 πsφ(x; θs). In (Li and Barron, 2000) it is shown that for an arbitrary

probability density function p there exists a sequence {pi} of finite mixtures such that pk

achieves KL divergenceD(p‖pk) ≤ D(p‖pf )+c/k for every (possibly non-finite) mixture
pf =

∫
φ(x; θ)f(θ)dθ, with f a density over the parameter space. Hence, the difference

in KL divergence achievable by k-component mixtures and the KL divergence achiev-
able by any mixture from the same family of components tends to zero with a rate of c/k,
where c is a constant not dependent on k but only on the component family. Further-
more, it is shown in (Li and Barron, 2000) that this bound is achievable by employing
the greedy scheme discussed above. This tells us that we can ‘quickly’ approximate any
density by the greedy procedure. Therefore, we might expect the results of the greedy
procedure, as compared to methods that initialize all-at-once, to differ more when fit-
ting mixtures with many components.

The sequence of mixtures generated by the greedy learning method can conveniently
be used to guide a model selection process in the case of an unknown number of com-
ponents. We can use the k-component mixture, for k ∈ {1, . . . , kmax}, as an estimate of
the maximum-likelihood estimator with k components and combine this with the other
factors of the model selection criterion that is employed. When using a non-greedy ap-
proach, we would have to fit a k-component mixture for each k ∈ {1, . . . , kmax} from
scratch. This would be computationally unattractive, since for each k we would need to
do several runs of the EM algorithm starting from different initial parameters.

A general scheme for greedy learning of mixtures. Let L(XN , pk) =
∑N

n=1 log pk(xn)
(we will just write Lk if no confusion arises) denote the log-likelihood of the data set Xn

under the k-component mixture pk. The greedy learning procedure outlined above can
be summarized as follows:

1. Compute the maximum likelihood one-component mixture p1. Set k ← 1.

2. Find the optimal new component φ(x; θ∗) and mixing weight α∗:

{θ∗, α∗} = arg max
{θ,α}

N∑
n=1

log [(1− α)pk(xn) + αφ(xn; θ)]. (3.27)

Set pk+1(·)← (1− α∗)pk(·) + α∗φ(·; θ∗) and k ← k + 1;
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3. (optional) Update pk with the EM algorithm until it converges.

4. If a stopping criterion is met then quit, else go to step 2.

The crucial step is component insertion (step 2). In the next section we describe several
possibilities to implement this step. Note that step 3 can be implemented by other al-
gorithms than EM. Moreover, step 3 is not needed to obtain the approximation result of
(Li and Barron, 2000), but improves practical results dramatically.

3.2.2 Efficient search for new components

Suppose we have obtained a k-component mixture pk. In step 2 of the above greedy
algorithm the component characterized by equation (3.27) has to be found. We refer to
this component as the ‘optimal’ component and to problem of finding it as the ‘insertion
problem’. It is easily shown that if we fix pk and θ then Lk+1 is concave as function of α
only, allowing efficient optimization. However, as function of θ, Lk+1 can have multiple
local maxima and no constructive method is known to identify the optimal component.
Hence, a search has to be performed to identify the optimal component.

In (Li, 1999) it is proposed to quantize the parameter space to locate the global maxi-
mum, but this is infeasible when learning mixtures with high dimensional parameter
spaces since the number of required quantization cells quickly becomes too large. We
developed our search procedure for the optimal component as an improvement upon
the insertion procedure proposed in (Vlassis and Likas, 2002) (we will from now on re-
fer to the latter procedure as VL). Below, we will discuss the VL procedure and identify
its drawbacks. Then, we present our improved search procedure. Both methods are
based on using a set of candidate components. The best candidate is identified as the
candidate component φ(x; θ̂) that maximizes the likelihood when mixed into the previ-
ous mixture by a factor α̂ as in (3.27). Then, in step 3 of the general algorithm, instead
of the (unknown) optimal parameter pair (θ∗, α∗) we use (θ̂, α̂).

The VL insertion procedure. The VL procedure uses N candidate components. Every
data point is the mean of a corresponding candidate. All candidates have the same
covariance matrix σ2I, where σ is set in an automatic manner. The value of σ depends on
the data dimensionality and the number of data points and is based on a non-parametric
density estimation procedure (Wand, 1994). For each candidate component, the mixing
weight α is set to the mixing weight maximizing the second order Taylor approximation
of Lk+1 around α = 1/2. The candidate yielding highest log-likelihood when inserted in
the existing mixture pk is selected. The selected component is then updated using partial
EM steps before it is actually inserted into pk to give pk+1. With partial EM steps, we
mean EM steps in which only the new component is updated rather than the complete
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mixture. These partial EM steps can be performed in time that is not dependent on the
number of components in the current mixture.

The VL has two drawbacks. First, using N candidates in each step results in a time
complexity O(N2) for the search which is unacceptable in many applications. O(N2)
computations are needed since the likelihood of every data point under every candidate
component has to be evaluated. Second, we found experimentally that by using only
candidates with covariance matrix σ2I and small σ, the method keeps inserting small
components in high density areas. Components with other covariance matrices that
give greater improvement of the mixture log-likelihood are not among the candidates,
nor are they found by the EM updates in step 3 following the component insertion.

An improved insertion procedure. Based on our experience with the VL method, we
propose a new search heuristic for finding the optimal new mixture component. Two
observations motivate the new search method. First, the size (i.e. the determinant of the
covariance matrix) of the new component should in general be smaller than the size of
the components in the current mixture. Second, as the existing mixture pk contains more
components, the search for the optimal new component should become more thorough.
In our search strategy we account for both observations by (i) initializing the candidates
based on a subset of the data that is currently captured by a single component and (ii)
increasing the number of candidates linearly with k. In the next section we present
experimental results that indicate that our new search procedure is faster and yields
better results that the VL procedure. This is possible because the small set of candidates
that is considered is tailored to the current mixture.

For each insertion problem, our method constructs m candidate components per exist-
ing mixture component. Based on the posterior distributions, we partition the data set
XN in k disjoint subsets A1, . . . Ak, with Ai = {x ∈ XN : i = arg maxs p(s|x)}. If EM or a
gradient based method is used in step 3 of the scheme given above, then the posteriors
p(s|x) are already available. From each set Ai m candidate components are constructed.
In our experiments we used m = 10, but more candidates can be used at the expense
of extra computation. Following (Smola and Schölkopf, 2000), the choice of m can be
based on a confidence bound by specifying δ and ε: ”With probability at least 1 − δ the
best split among m uniformly randomly selected splits is among the best ε fraction of
all splits, if m ≥ dlog δ/ log (1− ε)e.”

We want the candidate components to capture a subset of the data currently captured
by one of the components in the mixture fitted so far. To this end we generate new
candidates from Ai by selecting uniformly at random two data points xl and xr in Ai.
Then, we partition Ai into two disjoint subsets Ail and Air, where Ail contains the ele-
ments of Ai that are closer to xl than to xr and Air contains the remaining elements. The
mean and covariance of the sets Ail and Air are used as parameters for the two candi-
date components. The initial mixing weights for candidates generated from Ai are set
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to πi/2. This process is repeated until the desired number of candidates is obtained.

The initial candidates can be replaced easily by candidates that yield higher likelihood if
they are included in the existing mixture. To obtain these better candidates we perform
partial EM searches, starting from the initial candidates. These partial EM searches can
be regarded as a lookahead, so we can judge the components on the log-likelihood that
is achievable if we insert a candidate rather than on the log-likelihood that is achieved
immediately after the insertion. Each iteration of the km partial updates takes O(Nmk)
computations, since we have to evaluate the likelihood of each datum under each of
the mk candidate components. Below we discuss how we can reduce the amount of
computations needed by a factor k. We stop the partial updates if the change in log-
likelihood of the resulting (k + 1)-component mixtures drops below some threshold or
if some maximal number of iterations is reached.

Speeding up the partial EM searches. In the partial EM steps we have to maximize
the log-likelihood function of a two component mixture pk+1 = (1−α)pk + αφ. The first
component is the mixture pk which we keep fixed and the second component is the new
component φ which has a mixing weight α. In order to achieve O(mN) time complex-
ity for the partial EM searches initiated at the km initial candidates, we constrain the
responsibilities used in the partial EM steps. When doing partial EM steps for a compo-
nent originating from existing component i we constrain the responsibility of the new
component for points x 6∈ Ai to be zero.

The usual EM update equations for a MoG (3.11) can now be simplified when updating
a candidate generated from Ai. Since we are in a two-component mixture case, we write
the responsibility for the new component as qn and the responsibility for the old mixture
is thus (1− qn). The simplified updates are:

qn ←
αφ(xn; µ,Σ)

(1− α)pk(xn) + αφ(xn; µ,Σ)
, (3.28)

α← 1

N

∑
xn∈Ai

qn, (3.29)

µ← 1

αN

∑
xn∈Ai

qnxn, (3.30)

Σ← 1

αN

∑
xn∈Ai

qn(xn − µ)(xn − µ)>. (3.31)

Note that these updates only involve the data in Ai. Thus the computational cost of
updating a candidate is now proportional to the number of points in Ai rather than N .
Therefore, we can update k candidates, one based on each Ai, in time proportional to N
rather than kN .
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Using the constrained responsibilities, the partial EM steps optimize a lower bound on
the data log-likelihood. The constrained responsibilities for points outside Ai will not
match the posterior on the new component in general, thus after the E-step the EM
lower bound corresponding to the partial EM algorithm will not equal the data log-
likelihood. If we use p(k + 1|x) to denote the posterior on the new component, then
after the E-step the lower bound on the data log-likelihood Lk+1 can be written as:

Lk+1 ≥ Lk+1 +
∑
x6∈Ai

log(1− p(k + 1|x)) =
∑
x6∈Ai

log pk(x) +
∑
x∈Ai

log pk+1(x). (3.32)

The lower bound becomes tight when, for data outside Ai, the posterior on the new
component approaches zero. Thus, for data sets containing several widely separated
clusters the speed-up is not expected to impact the obtained results.

Time Complexity Analysis. The total runtime of the algorithm is O(k2N) (or O(kmN)
if k < m). This is due to the updates of the mixtures pi, which cost O(Ni) computations
each if we use the EM algorithm for these updates. Summing over all mixtures we
obtain O(k2N). This is a factor k slower than the standard EM procedure. The runtime
measurements in our experiments confirm this analysis. The new method performed
on average about k/2 times slower than the standard EM algorithm. However, if we
use a single run of the normal EM to learn mixtures consisting of 1, . . . , k components,
e.g. for determining the number of components that should be used according to some
model selection criterion, then the runtime would also be O(nk2). Note that if we do
not use the aforementioned speed-up, the runtime would become O(k2mn) since in that
case the component allocation step for the i-th mixture component would cost O(imn).
This is a factor m more than the preceding EM steps, hence the total runtime increases
by a factor m.

3.2.3 Related work

Several other approaches to mixture modelling that fit in the general greedy learning
scheme of Section 3.2.1 have been proposed (Böhning, 1995; DerSimonian, 1986; Lind-
say, 1983; Wu, 1978). The Vertex Direction Method (VDM) (Lindsay, 1983; Wu, 1978) is
similar to our method, although VDM does not perform the intermediate complete mix-
ture updates of step 3 of the greedy learning scheme. VDM makes use of the directional
derivative Dpk

(φ) of the data log-likelihood for the current mixture pk, where

Dpk
(φ) = lim

α→0
[L(Xn, (1− α)pk + αφ)− L(Xn, pk)]/α.

VDM proceeds by selecting φ∗ = arg maxφ Dpk
(φ) and inserting this in the mixture with

a factor α∗ such that α∗ = arg maxα{L(Xn, (1−α)pk +αφ∗}. Using the directional deriva-
tive at the current mixture can be seen as an instantiation of step 2 of the general scheme.
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The optimization over both φ and α is replaced by (i) an optimization over Dpk
(φ) fol-

lowed by (ii) an optimization over α. Finding the maximizer of the directional deriva-
tive φ∗ is typically implemented by gridding the parameter space, which becomes in-
feasible for high dimensional spaces. Note that by moving in the direction of maximum
Dpk

(φ) does not guarantee that we move in the direction of maximum improvement of
log-likelihood if we optimize over α subsequently.

The split-and-merge EM (SMEM) algorithm (Ueda et al., 2000) applies split and merge
operations to locally optimal mixtures found by the EM algorithm. In each split and
merge operation three mixture components, r, s and t, are replaced by new compo-
nents, r′, s′ and t′. Components r and s are merged into r′ by letting the responsibilities
for each data point of r′ be the sum of the responsibilities of r and s. Component t is
split by initializing the parameters of s′ and t′ with slight random perturbations of the
parameters of t. The split and merge operations constitute jumps in the parameter space
that allow the algorithm to jump from one local optimum to a region in the parameter
space where the EM algorithm will converge to a different local optimum. By again
applying the EM algorithm a potentially better optimum is found.

SMEM and our greedy approach can be combined. Split and merge operations can be
incorporated in the greedy algorithm by checking after each component insertion (re-
garded as a split) whether some component s can be removed (regarded as a merge)
such that the resulting log-likelihood is greater than the likelihood before the inser-
tion. If so, component s is removed and the algorithm continues, having performed a
split-and-merge step. If not, the algorithm just proceeds as usual having performed an
insertion step. However, in experimental studies on synthetic data we found that this
combination gave hardly any improvement over the individual methods. An important
benefit of our method over SMEM is that our algorithm produces a sequence of mixtures
that can be used to perform model complexity selection as the mixtures are learned. We
also note that our algorithm executes faster than SMEM, which has a runtime of O(nk3).
In our experiments we found SMEM to execute 2 to 8 times slower than our algorithm.

Bayesian methods are also used to learn a MoG. These methods approximate the pos-
terior distribution over mixture models given the data. The posterior is defined using a
prior distribution p(θ) over the mixture models, i.e. the parameters, and Bayes rule.

Methods in a sense opposite to the greedy approach to mixture learning are proposed in
(Brand, 1999; Figueiredo and Jain, 2002). The idea is to start with a large number of mix-
ture components and to successively remove components with small mixing weights.
In both cases the ‘pruning’ criterion is based on the introduction of a prior distribu-
tion p(θ) on the mixing weights of the components; a Dirichlet prior in (Figueiredo and
Jain, 2002) and an prior favoring mixing proportions with low entropy in (Brand, 1999).
The pruning criterion can be included in an EM algorithm now aiming at maximizing
p(XN |θ)p(θ) rather than just p(XN |θ), yielding different update rules for the mixing
proportions only. Comparing the greedy approach with the pruning approach, we note
that the greedy approach does not need an initialization scheme since the optimal one-
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component mixture can be found analytically. Furthermore, in most EM iterations the
pruning approaches need to update the parameters of many components (more than
the final number). The greedy approach, however, updates in most EM iterations fewer
components than the final number, and thus requires fewer updates in total.

In (Richardson and Green, 1997) the posterior over mixture models is approximated by
a repeated sampling using a reversible jump Markov Chain Monte Carlo (RJMCMC)
method (Green, 1995). In the limit of an infinite sample, the obtained sample corre-
sponds to a sample from the true posterior. The RJMCMC method allows jumps be-
tween parameter spaces of different dimensionality, i.e. parameter spaces for mixtures
consisting of differing number of components). However, the experimental results re-
ported in (Richardson and Green, 1997) indicate that such sampling methods are rather
slow as compared to constructive maximum likelihood algorithms. It is reported that
about 160 ‘sweeps’ (sampling of all model parameters) per second are performed on a
SUN Sparc4 workstation. The experiments involve 200.000 sweeps, which yields about
20 minutes runtime. Although it is remarked that the 200.000 sweeps are not needed
for reliable results, this contrasts sharply with the 2.8 seconds and 5.7 seconds runtime
(allowing respectively about 480 and 960 sweeps) of the standard EM and our greedy
EM in a similar experimental setting also performed on a SUN Sparc4 workstation.

Simulated annealing techniques can be used to find the (global) maximum a-posteriori
mixture model if an appropriate cooling schedule is used (Kirkpatrick et al., 1983).
However, cooling schedules for which theoretical results guarantee convergence to the
global optimum are impractically slow (Geman and Geman, 1984). Alternatively, faster
deterministic annealing methods (Rose, 1998) can be used but these are not guaranteed
to identify the global optimum.

The variational Baysian (VB) learning scheme (Beal and Ghahramani, 2003) also approx-
imates the posterior distribution over parameters, but does so with analytic rather than
sample-based approximations. The analytic approximation is computationally much
more attractive than sample based approximations. In fact, the VB algorithm requires
hardly more computation than the standard EM algorithm. In (Ghahramani and Beal,
2000) the authors combine their VB algorithm with a greedy algorithm to learn MoG and
use the results of the VB algorithm to select the number of mixture components and the
structure of the covariance matrices in the MoG. The component insertion procedure
used is this work is similar to ours. Since we encountered this work only recently we do
not have experimental results comparing these methods. However, we expect similar
performance due to the similarity of the approaches.

3.2.4 Experimental results

In this section we present results of two experiments. The experiments compare the
performance of our new greedy approach with k-means initialized EM, the VL method,
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and SMEM. To initialize the EM algorithm with k-means, we initialize the cluster cen-
ters with randomly selected data points and then apply the k-means algorithm until
convergence. The means and covariance matrices of the clusters found by k-means are
then used to initialize the parameters of the MoG. The mixing weights are initialized as
the fraction of the data in each cluster. The SMEM algorithm was also initialized with
the k-means algorithm.

We present the results of two experiments. In the first experiment we apply the different
algorithms to data generated from MoGs. This allows us to asses how the performance
differences depend on several characteristics of the generated data. In the second ex-
periment we used 50 dimensional data derived from images of textured surfaces. In
this experiment the data is in reality probably not Gaussian distributed, so using this
data set we can see how the performance of the algorithms differs on realistic data as
encountered in practice.

Synthetic data. In this experiment we generated data sets of 400 points in IRD for
D ∈ {2, 5}. The data was drawn from MoGs with k ∈ {4, 6, 8, 10} components and
separation c ∈ {1, 2, 3, 4}. The separation c of a MoG is defined as (Dasgupta, 1999):

∀i6=j : ‖µi − µj‖2 ≥ c ·max (Tr{Σi}, Tr{Σj}) . (3.33)

For each mixture configuration we generated 50 data sets. We allowed a maximum
eccentricity, defined as the ratio between the largest and the smallest singular value of
the covariance matrix, of 15 for each component. Also, for each generated mixture, we
generated a test set of 200 points not presented to the mixture learning algorithm. In the
comparison below, we evaluate the difference in log-likelihood of the test sets under the
mixtures estimated with the different methods.

In Figure 3.2 we present experimental results comparing our greedy approach to VL,
SMEM, and several runs of normal EM initialized with k-means. The average of the
difference in log-likelihood on the test set is given for different characteristics of the
generating mixture. The results show that the greedy algorithm performs comparable
to SMEM and generally outperforms VL. Both greedy methods and SMEM outperform
the k-means initialization.

Texture clustering. In this experiment the task is to cluster a set of image patches of
16×16 = 256 pixels. The patches are extracted from Brodatz texture images of 256×256
pixels, four of these textures are shown in Figure 3.3. The patches extracted from the
different textures are quite different and therefore can be expected to constitute clusters
in the 256 dimensional space of possible patches. Since different patches from the same
texture differ, roughly speaking, from each other only in a limited number of degrees
of freedom (translation, rotation, scaling and brightness), the clusters in the patch-space
are also assumed to be confined to a low dimensional subspace that is spanned by these
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Vlassis & Likas
D=2 c=1 2 3 4
k=4 0.03 0.00 0.01 0.01

6 0.01 0.03 0.05 0.02
8 0.00 0.04 0.06 0.03

10 0.01 0.06 0.07 0.03

D=5 c=1 2 3 4
k=4 0.05 0.02 -0.01 0.04

6 0.04 0.04 0.13 0.13
8 0.03 0.07 0.13 0.04

10 0.04 0.05 0.11 0.16

Best of k runs of k-means initialized EM
D=2 c=1 2 3 4
k=4 0.03 0.14 0.13 0.43

6 0.03 0.16 0.34 0.52
8 0.02 0.23 0.38 0.55

10 0.06 0.27 0.45 0.62

D=5 c=1 2 3 4
k=4 0.02 0.28 0.36 0.37

6 0.09 0.35 0.48 0.54
8 0.12 0.45 0.75 0.82

10 0.13 0.49 0.75 0.83

SMEM
D=2 c=1 2 3 4
k=4 -0.01 0.00 0.00 0.00

6 -0.02 0.00 0.02 0.02
8 -0.02 0.00 0.00 0.03

10 -0.00 0.00 0.03 0.04

D=5 c=1 2 3 4
k=4 -0.02 0.01 0.00 0.00

6 -0.06 -0.01 -0.01 0.00
8 -0.05 -0.04 0.00 0.02

10 -0.01 0.04 0.01 0.05

Distance to generating mixture

D=2 c=1 2 3 4
k=4 0.04 0.03 0.03 0.02

6 0.07 0.06 0.05 0.04
8 0.10 0.07 0.07 0.09

10 0.13 0.12 0.10 0.12

D=5 c=1 2 3 4
k=4 0.16 0.13 0.14 0.11

6 0.28 0.22 0.19 0.18
8 0.45 0.33 0.32 0.42

10 0.58 0.50 0.45 0.51

Figure 3.2: Detailed exposition of log-likelihood differences. The upper three tables give the
log-likelihood of a method subtracted from the log-likelihood obtained using our greedy

approach. The bottom table gives averages of the log-likelihood under the generating mixture
minus the log-likelihood given by our method.



64 MIXTURE DENSITY ESTIMATION

Figure 3.3: Several Brodatz textures. The white squares indicate the patch size.

degrees of freedom. Of course, the changes in the images as a result of making a small
change in one of the underlying degrees of freedom should be sufficiently small in order
for the patches of a single texture to form a compact cluster in the patch space.

Note that our aim is not to present MoGs as the appropriate approach for texture clus-
tering. Methods based on image analysis techniques probably attain better results. We
merely use the texture clustering problem as test case to compare the algorithms on a
natural data set where the true clusters are probably not Gaussian distributed.

We conducted experiments where the number of textures from which patches were ex-
tracted ranged from k = 2, . . . , 6. For each value of k, we created 100 data sets of 500k
patches each by uniformly selecting at random 500 patches from each of k uniformly
random selected textures. On each data set we fitted a MoG with as many components
as different textures collected in the data set. We compared our greedy approach to the
same methods as in the previous experiment.

To speed-up the experiment and to reduce the number of parameters that had to be
estimated, we projected the data into a linear subspace with principal component anal-
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k 2 3 4 5 6

greedy 0.20 0.34 0.48 0.53 0.61
k-means init 0.19 0.46 0.74 0.80 0.94
SMEM 0.21 0.22 0.36 0.56 0.68
VL 0.93 1.52 2.00 2.29 2.58
uniform 1 1.59 2 2.32 2.58

Figure 3.4: Average conditional entropy for different values of k for the greedy approach,
k-means initialized EM and SMEM and VL. The bottom line gives the conditional entropy if the

clusters are totally uninformative. Bold face is used to identify the method with minimum
conditional entropy for each k.

ysis. We used the smallest number of principal components that could account for at
least 80% of the data variance, but fixed the maximum number of dimensions to 50.
Once the mixture model was learned, we clustered the patches by assigning each patch
to the mixture component having the highest posterior probability for this patch. This
yields a confusion matrix between the clusters and the textures. To evaluate the qual-
ity of the clusterings discovered by the different learning methods, we considered how
informative the clusterings are on the texture label; we measured how predictable the
texture label of a patch is, given the cluster of the class. This can be done using the con-
ditional entropy (Cover and Thomas, 1991) of the texture label given the cluster label.
The conditional entropy for two variables X and Y is defined as:

H(X|Y ) = −
∑

y

p(Y = y)
∑

x

p(X = x|Y = y) log p(X = x|Y = y), (3.34)

and measures the uncertainty in X (texture label) given the value of Y (cluster label).
The joint probability p(X, Y ) is estimated from the confusion matrix.

In Figure 3.4 the conditional entropies (averaged over 50 experiments) are given.2 The
results of the greedy method and SMEM are roughly comparable, although the greedy
approach was on average about four times faster. Both provide generally more informa-
tive segmentations than using the k-means initialization. Note that VL fails to produce
informative clusters in this experiment. This is probably due to the high dimensionality
of the data that renders candidate components with isotropic covariance rather unfit.

3.2.5 Conclusions

We proposed an efficient greedy method to learn mixtures of Gaussian densities that
has runtime O(k2N +kmN) for N data points, a final number of k mixture components,
and m candidates per component.

2 The logarithm with base 2 was used to compute these entropies.
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Our experiments have shown that our greedy algorithm generally outperforms the k-
means initialized EM. Both on synthetic and natural data, SMEM performs comparably
to our new method. An important benefit of the greedy method, both compared to
SMEM and the standard EM algorithm, is the production of a sequence of mixtures.
This obviates the need for initialization and facilitates model selection. As compared
to VL we note: (i) The O(N2k2) time complexity has been reduced by a factor N . (ii)
The somewhat arbitrary choice of spherical candidate components with fixed variance
has been replaced by a search for candidate components that depends on the data and
the current mixture. (iii) Experiments suggest that if the methods yield different perfor-
mance, then the new method generally outperforms VL.

3.3 A greedy approach to k-means clustering

In this section we propose a greedy approach to k-means clustering similar to the greedy
approach for MoG learning presented in the previous section. The proposed clustering
method is tested on well-known data sets and compares favorably to the k-means algo-
rithm with random restarts.3

In the previous chapter we already discussed the k-means algorithm, one of the most
popular clustering algorithms. Suppose we are given a data set XN = {x1, . . . ,xN},
xn ∈ IRD. The k-clustering problem aims at partitioning this data set into k disjoint
subsets (clusters) A1, . . . , Ak, such that a clustering criterion is optimized. The most
widely used clustering criterion is the sum of the squared Euclidean distances between
each data point xn and the centroid µs (cluster center) of the subset As which contains
xn. This criterion is called clustering error and depends on the cluster centers µ1, . . . ,µk:

E(µ1, . . . ,µk) =
k∑

s=1

∑
xn∈As

‖xn − µs‖2. (3.35)

Given some initialization of the µs, the k-means algorithm iterates between two steps
analogous to the E-step and M-step of the EM algorithm. In the first step (E) each data
point xn is assigned to the cluster s given by s = arg mins ‖xn − µs‖2. The second
step (M) updates the cluster centers as the average of the associated data vectors: µs ←

1
|As|
∑

xn∈As
xn. It is easy to see that the iterations of these steps can not increase the error

in (3.35). However, one can not guarantee that the k-means algorithm will converge to
the optimal clustering. The main disadvantage of the method thus lies in its sensitivity
to initial positions of the cluster centers (Pena et al., 1999). Therefore, in order to obtain
near optimal solutions using the k-means algorithm, several runs must be scheduled
differing in the initial positions of the cluster centers.

3 The material of this section is largely drawn from (Likas et al., 2003).
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Other approaches to deal with this problem have been developed that are based on
stochastic global optimization methods, e.g. simulated annealing (Banddyopadhyay
et al., 2001), genetic algorithms (Krishna and Murty, 1999), or eigenvector analysis of
the data inner-product matrix (Zha et al., 2002). However, these techniques have not
gained wide acceptance and in many practical applications the clustering method that
is used is the k-means algorithm with multiple restarts (Jain et al., 1999). In this section
we present the global k-means algorithm, a deterministic algorithm designed to reduce
the sensitivity to initialization.

In the next subsection we present the global k-means algorithm and propose heuris-
tics to reduce the computation time in Section 3.3.2. Experimental results comparing
the global k-means algorithm to the normal k-means algorithm are presented in Sec-
tion 3.3.3. Conclusions will be drawn in Section 3.3.4.

3.3.1 The global k-means algorithm

The global k-means clustering algorithm is a deterministic method that does not de-
pend on initial parameter values and employs the k-means algorithm as a local search
procedure. Instead of randomly selecting initial values for all cluster centers as is the
case with most global clustering algorithms, the proposed technique proceeds in an in-
cremental way attempting to optimally add one new cluster center at each stage.

More specifically, to solve a clustering problem with kmax clusters the method proceeds
as follows. We start with one cluster, k = 1, and find its optimal position which corre-
sponds to the centroid of the data set. In order to solve the problem with two clusters
(k = 2) we perform N executions of the k-means algorithm from the following initial
positions of the cluster centers: the first cluster center is always placed at the optimal po-
sition for the problem with k = 1, while the second center at execution n is placed at the
position of the data point xn (n = 1, . . . , N ). The best solution obtained after the N exe-
cutions of the k-means algorithm is considered as the solution to the 2-clustering prob-
lem. Let (µ1(k), . . . ,µk(k)) denote the final solution to the k-clustering problem. Once
we have found the solution to the k-clustering problem, we try to find the solution to
the (k + 1)-clustering problem as follows: we perform N runs of the k-means algorithm
with (k + 1) clusters where each run n starts from the initial state (µ1(k), . . . ,µk(k),xn).
The best solution obtained from the N runs is considered as the solution to the (k + 1)-
clustering problem. By repeating this procedure we finally obtain a solution with kmax

clusters having also found solutions to all k-clustering problems with 1 ≤ k < kmax.

The latter characteristic can be advantageous in many applications where the aim is
also to discover the ‘correct’ number of clusters. To achieve this, one has to solve the k-
clustering problem for various numbers of clusters and then employ appropriate criteria
for selecting the most suitable value of k (Milligan and Cooper, 1985). In this case the
proposed method directly provides clustering solutions for all intermediate values of k,
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thus requiring no additional computational effort.

The method requires N executions of the k-means algorithm for each value of k (k =
1, . . . , kmax), resulting in a total runtime of O(k2

maxN
2). Depending on the available re-

sources and the values of N and kmax, the algorithm may be an attractive approach,
since, as experimental results indicate, the performance of the method is excellent.
Moreover, as we will show later, there are several modifications that can be applied
in order to reduce the computational load.

An implicit assumption seems to underly the algorithm: an optimal clustering solution
with k clusters can be obtained by applying the k-means algorithm initialized with opti-
mal positions for the (k− 1)-clustering problem and the remaining k-th center placed at
an appropriate position to be discovered. Although this assumption may seem valid at
first glance, it was recently shown (Hansen et al., 2002) that in general this assumption
does not hold for kmax ≥ 3. Despite this negative result we find near optimal perfor-
mance in our experiments; the solution obtained by the proposed method was at least
as good as that obtained using numerous random restarts of the k-means algorithm.

3.3.2 Speeding up execution of global k-means

In this section we propose two heuristics to reduce the computational load of the global
k-means algorithm without significantly affecting the quality of the solution. These
heuristics can be used separately from each other or together.

The fast global k-means algorithm. The fast global k-means algorithm constitutes a
straightforward method to accelerate the global k-means algorithm. The difference lies
in the way a solution for the k-clustering problem is obtained, given the solution of the
(k−1)-clustering problem. For each of the N initial states (µ1(k−1), . . . ,µ(k−1)(k−1),xn)
we do not execute the k-means algorithm until convergence to obtain the final clustering
error. Instead, we compute the clustering error En that is obtained when only a single
assignment step is performed after xn is added to the set of cluster means. Clearly, this
is an upper bound on the clustering error if we would continue the k-means algorithm
until convergence. The difference between the clustering error E(k−1) before inserting
xn and the clustering error En after the first assignment step is given by:

E(k−1) − En =
N∑

i=1

max(di
k−1 − ‖xn − xi‖2, 0), (3.36)

where di
k−1 is the squared distance between xi and the closest center among the k − 1

cluster centers obtained so far. We then initialize the position of the new cluster center
at xn that minimizes En, or equivalently that maximizes (3.36), and execute the k-means
algorithm to obtain the solution with k clusters. Experimental results presented in the
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next section suggest that using the data point that minimizes this bound leads to results
almost as good as those provided by the global k-means algorithm.

Initialization with kd-trees. A second possibility to reduce the amount of computa-
tion needed by global k-means is to use a small set of appropriately selected potential
insertion positions rather than to consider all data points as potential insertion locations.
Below, we discuss using a kd-tree to select such a small set of insertion locations.

A kd-tree (Bentley, 1975; Sproull, 1991) is a multi-dimensional generalization of the stan-
dard one-dimensional binary search tree that facilitates storage and search over multi-
dimensional data sets. A kd-tree defines a recursive partitioning of the data space into
half-spaces. To each node of the tree corresponds a half-space of the original data space
and the subset of the data contained in this half-space. Each non-terminal node has
two successors, each of them associated with one of the two half-spaces obtained from
the partitioning of the parent half-space using a cutting hyper-plane. The kd-tree struc-
ture was originally used for speeding up distance-based search operations like nearest
neighbors queries, range queries, etc. Below we use a variation of the original kd-tree
proposed in (Sproull, 1991). There, the cutting hyper-plane is defined as the plane that
is perpendicular to the direction of the principal component of the data points corre-
sponding to each node.

In principle the leaves of the tree contains single points. However, for practical purposes
the recursion is usually terminated if a node (called a bucket) is created containing less
than a pre-specified number of points b (called the bucket size) or if a pre-specified
number of buckets have been created. It turns out that the buckets of the kd-tree are
very useful to determine potential insertion locations. The idea is to use the bucket
centers, which are fewer in number than the data points if a bucket size b > 1 is used,
as potential insertion locations for the (fast) global k-means algorithm.

From experiments we learned that restricting the insertion locations for the (fast) global
k-means to those given by the kd-tree (instead of using all data points) does not signifi-
cantly degrade performance if we consider a sufficiently large number of buckets in the
kd-tree. In general, using more buckets than the final number of clusters gave results
comparable to using all data points as insertion locations.

3.3.3 Experimental results

We have tested the proposed clustering algorithms on several well-known data sets,
namely the iris data set (Blake and Merz, 1998), the synthetic data set from (Ripley,
1996), and the image segmentation data set from (Blake and Merz, 1998). In all data sets
we conducted experiments for the clustering problems obtained by considering only
feature vectors and ignoring class labels. The iris data set contains 150 four dimensional
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Figure 3.5: Performance results for the iris data set.

data points, the synthetic data set contains 250 two dimensional data points. The im-
age segmentation data set contains 210 six dimensional data points obtained through a
PCA projection of the original 18-dimensional data points. The quality of the obtained
solutions was evaluated in terms of the values of the final clustering error.

For each data set we conducted the following experiments:

• one run of the global k-means algorithm for k = 15.

• one run of the fast global k-means algorithm for k = 15.

• the k-means algorithm for k = 1, . . . , 15. For each value of k, the k-means algo-
rithm was executed N times (where N is the number of data points) starting from
random initial positions for the k centers. We compute the minimum and average
clustering error as well as its standard deviation.

For each of the three data sets the experimental results are displayed in Figures 3.5, 3.6
and 3.7 respectively. Each figure displays the clustering error as a function of the num-
ber of clusters. It is clear that the global k-means algorithm is very effective, providing
in all cases solutions of equal or better quality with respect to the k-means algorithm.
The fast version of the algorithm also provides solutions comparable to those obtained
by the original method while executing significantly faster.
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Figure 3.6: Performance results for the synthetic data set.

2 4 6 8 10 12 14 16
0

50

100

150

200

250

300

350

400

number of clusters k

cl
us

te
rin

g 
er

ro
r

global k−means
fast global k−means
k−means
min k−means

Figure 3.7: Performance results for the image segmentation data set.
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Figure 3.8: Example data sets with k = 5, D = 2 and separation (left to right) 1
2 , 3

4 , and 1.

Synthetic data. Here we provide more extensive comparative experimental results us-
ing artificially created data sets. The purpose is to compare the randomly initialized
k-means algorithm with the fast global k-means algorithm that uses the top 2k nodes of
the corresponding kd-tree as candidate insertion locations.

The data have been drawn from randomly generated Gaussian mixtures. We varied the
number of mixture components k, the dimensionality D of the data space and the sepa-
ration c, as defined in (3.33), between the sources of the mixture. In our experiments we
considered mixtures having a separation in the interval [1

2
, 1], these values correspond

to clusters that overlap to a large extent. The number of data points in each data set was
50k, where k is the number of sources. Some example data sets are shown in Fig. 3.8.

We considered 120 problems corresponding to all combinations of the following values:
k = {2, 7, 12, 17, 22}, D = {2, 4, 6, 8}, c = {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. For each problem 10
data sets were created. On every data set, the ‘greedy’ (i.e. fast global k-means with kd-
tree initialization) algorithm was applied first. Then the randomly initialized k-means
algorithm was applied as many times as possible in the runtime of the greedy algorithm.
To evaluate the quality of the solutions found for a specific data set, first the mean
clustering error Ē is computed for the runs performed using the k-means algorithm.
The results are displayed in Fig. 3.9 and Fig. 3.10.

Both the minimum clustering error value encountered during the runs with the k-means
algorithm and the error obtained with the greedy algorithm are given relative to the
mean error Ē. The minimum error among the k-means runs is given in the ‘min.’
columns as (1 − min /Ē) × 100, thus this value says how much better the minimum
error is as a percentage of the mean error. The standard deviation σ of the errors is
given in the σ column as σ/Ē × 100. The ‘gr.’ column provides the clustering error
Egr obtained with the greedy algorithm as: (1− Egr/Ē)× 100, this number shows how
much better Egr was than Ē. Finally, the ‘trials’ column indicates how many runs of
the k-means algorithm were allowed in the runtime of the greedy algorithm. Each row
of the table displays the averaged results over 10 data sets constructed for the specific



3.3 A GREEDY APPROACH TO K-MEANS CLUSTERING 73

D = 2 D = 4

k c gr. min. trials gr. min. trials
2 0.5 0.8 1.0 4.3 1.6 2.2 3.4
2 0.6 1.1 1.4 2.7 0.4 0.7 2.9
2 0.7 -0.8 0.1 3.5 -0.6 0.2 2.7
2 0.8 0.2 0.5 2.9 0.5 0.5 2.9
2 0.9 0.3 0.5 3.4 1.2 2.1 3.0
2 1.0 -0.5 0.3 3.9 0.5 0.7 3.2
7 0.5 2.7 2.1 3.6 2.3 2.7 3.9
7 0.6 16.9 14.7 4.3 1.7 2.3 4.1
7 0.7 3.8 3.7 3.4 5.3 5.3 4.1
7 0.8 11.2 9.9 4.2 4.9 4.7 4.3
7 0.9 17.1 15.9 4.5 6.6 6.3 3.7
7 1.0 9.9 8.1 4.4 7.6 7.2 4.1
12 0.5 8.5 5.9 4.3 3.3 2.4 4.4
12 0.6 14.5 12.2 4.5 4.1 2.8 4.3
12 0.7 15.7 13.4 4.5 12.7 7.1 4.4
12 0.8 25.1 15.4 4.6 11.1 8.5 4.9
12 0.9 20.6 14.2 4.6 16.4 12.3 4.6
12 1.0 24.9 18.1 4.1 20.8 15.8 5.8
17 0.5 16.4 11.1 4.1 5.3 3.6 4.3
17 0.6 17.5 12.6 4.1 4.4 3.6 4.2
17 0.7 25.4 18.7 4.9 8.5 6.3 4.4
17 0.8 24.2 17.6 5.0 10.7 6.3 4.9
17 0.9 46.9 29.0 5.4 16.8 10.7 5.0
17 1.0 53.2 37.2 5.8 25.0 19.1 5.6
22 0.5 23.8 18.5 4.7 4.8 3.5 4.6
22 0.6 23.9 14.3 5.1 10.0 6.3 4.9
22 0.7 29.1 18.6 5.1 12.5 8.9 5.1
22 0.8 41.6 29.0 5.2 8.5 5.1 5.2
22 0.9 42.4 30.5 5.9 23.0 14.4 5.2
22 1.0 47.7 34.7 5.8 26.3 16.7 5.3

Figure 3.9: Experimental results on synthetic data sets with D = 2 and D = 4.
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D = 6 D = 8

k c gr. min. trials gr. min. time
2 0.5 0.5 0.9 3.2 0.1 0.6 2.7
2 0.6 0.4 0.5 3.3 1.5 1.5 3.2
2 0.7 0.9 0.4 2.5 2.2 2.6 2.6
2 0.8 0.5 0.6 3.0 1.8 1.8 3.7
2 0.9 0.3 0.3 3.1 -0.0 0.1 2.6
2 1.0 0.8 0.9 5.1 0.7 1.1 3.3
7 0.5 2.3 2.4 3.8 3.4 3.1 3.9
7 0.6 4.4 3.5 4.4 2.9 2.3 3.5
7 0.7 4.9 3.9 3.9 3.8 3.3 4.1
7 0.8 5.7 5.5 4.6 5.0 4.6 5.2
7 0.9 4.6 4.3 4.3 6.9 7.3 4.3
7 1.0 6.9 7.3 4.7 9.2 8.6 4.9
12 0.5 3.6 2.9 4.1 2.5 1.6 3.8
12 0.6 4.8 3.0 4.0 5.7 3.1 4.4
12 0.7 5.1 2.7 4.3 4.5 2.7 4.1
12 0.8 5.3 4.2 4.4 5.7 4.8 5.0
12 0.9 8.6 6.7 4.2 10.0 7.5 5.1
12 1.0 12.3 8.1 5.3 9.2 6.2 5.5
17 0.6 5.0 2.8 3.9 4.9 3.8 4.2
17 0.7 5.4 3.2 4.9 6.3 3.4 5.1
17 0.8 8.8 5.2 5.0 8.4 5.6 5.1
17 0.9 11.6 7.0 5.2 14.4 8.8 5.6
17 1.0 22.2 12.6 5.9 15.9 8.7 5.6
22 0.5 2.8 1.8 4.7 2.2 1.2 4.3
22 0.6 4.8 2.5 4.7 3.0 2.0 4.8
22 0.7 9.3 4.6 4.9 9.3 6.2 5.5
22 0.8 13.0 7.4 5.5 11.5 7.2 5.3
22 0.9 14.7 7.1 5.4 19.5 11.2 6.1
22 1.0 21.6 12.6 5.8 16.2 9.4 5.3

Figure 3.10: Experimental results on synthetic data sets with D = 6 and D = 8.
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values of k, D and c. We used bold values in the tables to indicate whether the cluster-
ing error of the greedy algorithm or the minimum error achieved for the runs with the
k-means algorithm was the smallest.

The results show that the benefit of the greedy method becomes larger if there are more
clusters, the separation becomes larger, or the dimensionality gets smaller. In almost all
cases the greedy algorithm gives better results. In cases where the greedy method is not
superior, both methods yield results relatively close to the average k-means result. It is
interesting that the number of trials allowed for the random k-means algorithm grows
only slowly as the number of clusters increases.

3.3.4 Conclusions

We have presented the global k-means clustering algorithm, a deterministic clustering
method providing excellent results in terms of the clustering error criterion. The method
is independent of any starting conditions and compares favorably to the k-means algo-
rithm with multiple random restarts. The deterministic nature of the method is par-
ticularly useful in cases where the clustering method is used either to specify initial
parameter values for other methods (for example training of radial basis function net-
works (Webb, 2002)) or as a module in a more complex system. In such cases other parts
of the system can be designed and tested while there is no risk of obtaining bad results
due to occasional aberrant behavior of the clustering module. Another advantage of the
proposed technique is that in order to solve the k-clustering problem, all intermediate
l-clustering problems are also solved for l < k. This may prove useful in applications
where we seek the actual number of clusters and the k-clustering problem needs to be
solved for several values of k. We also proposed two modifications of the method that
reduce the computational load without significantly affecting solution quality.

3.4 Accelerating the EM algorithm for large data sets

In the previous sections we considered the EM algorithm for Gaussian mixtures and
the k-means algorithm. The run-time per iteration of both algorithms is O(Nk) for N
data items and k clusters, this limits their usefulness in large scale applications with
many data points and many clusters. Recently several authors (Moore, 1999; Moore
and Pelleg, 1999; Kanungo et al., 2002; Alsabti et al., 1998) proposed speed-ups of these
algorithms based on analysis of sufficient statistics of large chunks of data. The idea is
to use geometrical reasoning to determine that for chunks of data a particular prototype
is the closest (k-means) or the posterior on mixture components hardly varies in the
chunk of data (EM for MoG). Cached sufficient statistics are then used to perform the
update step of the algorithms.
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In this section we present a constrained EM algorithm that can be used to speed-up
large-scale Gaussian mixture modelling. Contrary to related work, our algorithm is in
each step guaranteed to increase a lower bound on the data log-likelihood. We derive
closed-form and efficiently computable optimal assignments of chunks of data to mix-
ture components (E-step) and parameter estimate update equations (M-step). In our
algorithm sufficient statistics of chunks of data are stored in the nodes of a kd-tree. The
computational cost of the EM steps is independent of the number of data points and
is linear in the number of outer nodes of the tree since both steps only use the suffi-
cient statistics stored in these nodes. Furthermore, our algorithm allows for arbitrary
partitions, while existing techniques were limited to use relatively fine partitions of the
data to ensure stability of the algorithms. Thus the proposed framework allows more
freedom in designing new speed-up algorithms. We present experimental results that
illustrate the validity of our approach.4

The rest of this section is organized as follows: in Section 3.4.1 we present our acceler-
ated EM algorithm. Then, in Section 3.4.2 we compare our work with related work. In
Section 3.4.3 we describe our experiments on speeding up Gaussian mixture learning
and end with conclusions in Section 3.4.4.

3.4.1 An accelerated EM algorithm for Gaussian mixtures

We have seen that the EM algorithm iteratively maximizes the lower bound F(θ, q) on
the data log-likelihood L(XN , θ) with respect to q and θ. The bound is a function of
mixture parameters θ and a set of distributions q = {q1, . . . , qN} where each qn(s) cor-
responds to a data point xn and defines an arbitrary discrete distribution over mixture
components indexed by s. Recall that this lower bound can be written in two forms:

F(θ, q) =
N∑

n=1

[log p(xn; θ)−D(qn(s)‖p(s|xn; θ))] (3.37)

=
N∑

n=1

k∑
s=1

qn(s) [log p(xn, s; θ)− log qn(s)] . (3.38)

The dependence of p on θ is throughout assumed, although not always written explic-
itly. As discussed in Section 3.1.2, the EM algorithm can be modified by constraining
the allowed distributions over hidden variables, i.e. the responsibilities qn(s). Rather
than iteratively increasing L, such a constrained, or variational, EM algorithm will it-
eratively increase a lower bound on L. The idea of our accelerated EM algorithm is to
assign equal responsibilities to chunks of data points that are nearby in the input space.

Consider a partitioning of the data space into a collection of non-overlapping cells A =
{A1, . . . , Am}, such that each point in the data set belongs to a single cell. To all points in

4 The material of this section is largely drawn from (Verbeek et al., 2003d).



3.4 ACCELERATING THE EM ALGORITHM FOR LARGE DATA SETS 77

a cell A ∈ Awe assign the same responsibility distribution qA(s) which we can compute
in an optimal way as we show next. Note from (3.38) that the objective function F can
be written as a sum of local parts F =

∑
A∈AFA, one per cell. If we impose qn(s) = qA(s)

for all data points xn ∈ A, then the part of F corresponding to a cell A reads:

FA =
∑
xn∈A

k∑
s=1

qA(s) [log p(xn|s) + log p(s)− log qA(s)] (3.39)

= |A|
k∑

s=1

qA(s) [log p(s)− log qA(s) + 〈log p(x|s)〉A] , (3.40)

where 〈·〉A denotes average over all points in cell A. Setting the derivatives of FA w.r.t.
qA(s) to zero we find the distribution qA(s) that maximizes FA:

qA(s) ∝ p(s) exp〈log p(x|s)〉A. (3.41)

Such an optimal distribution can be computed separately for each cell A ∈ A, and only
requires computing the average conditional log-likelihood of the points in A.

We now show that it is possible to efficiently compute (i) the optimal qA(s) for each cell
A in the E-step and (ii) the new values of the unknown mixture parameters in the M-
step, if some statistics of the points in each cell A are cached in advance. The averaging
operation in (3.40) can be written5:

〈log p(x|s)〉A =
1

|A|
∑
xn∈A

log p(xn|s) (3.42)

= − 1

2

[
log |Σs|+

1

|A|
∑
xn∈A

(xn − µs)
>Σ−1

s (xn − µs)

]
(3.43)

= − 1

2

[
log |Σs|+ µ>

s Σ−1
s µs + Tr{Σ−1

s 〈xx>〉A} − 2µ>
s Σ−1

s 〈x〉A
]
. (3.44)

From this we see that the mean 〈x〉A and average outer product matrix 〈xx>〉A of the
points in A are sufficient statistics for computing the optimal responsibilities qA(s). The
same statistics can be used for updating the mixture parameters θ. If we set the deriva-
tives of F w.r.t. θ to zero we find the update equations similar to those given in (3.11)
for the standard EM algorithm:

p(s)← |A|
n

∑
A∈A

qA(s), (3.45)

µs ←
|A|

np(s)

∑
A∈A

qA(s)〈x〉A, (3.46)

Σs ←
|A|

np(s)

∑
A∈A

qA(s)〈xx>〉A − µsµ
>
s . (3.47)

5 We ignore the additive constant −d
2 log(2π), which translates into a multiplicative constant in (3.41).
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Note that the sums over the data points have been replaced by sums over the cells of
the partition that is used. Therefore, the number of summations and multiplications that
has to be performed for each component scales linearly with the number of cells rather
than with the number of data points. Note that, whichever partition we choose, the
constrained EM algorithm presented above, which interacts with the data only through
the cached statistics of chunks of data, is always a convergent algorithm in that each
step increases a lower bound on data log-likelihood. In the limit, if we partition all data
points into separate cells, the algorithm coincides exactly with the normal EM algorithm
and will converge to a local maximum of the data log-likelihood. It is easy to see that if
we refine a specific partition and recompute the responsibilities qA(s) then F cannot de-
crease. Refinement of the partition and recomputing the responsibilities can be viewed
as an E-step. Clearly, various trade-offs between the amount of computation and the
tightness of the bound can be made, depending on the particular application.

A convenient structure for storing statistics in a way that permits the use of different
partitions in the course of the algorithm is a kd-tree (Bentley, 1975; Moore, 1999), see
Section 3.3.2, a binary tree that defines a hierarchical decomposition of the data space
into cells, each cell corresponding to a node of the tree. As in (Moore, 1999) we store
in each node of the kd-tree the sufficient statistics of all data points under this node.
Building these cached statistics can be efficiently done bottom-up by noticing that the
statistics of a parent node are the sum of the statistics of its children nodes. Building the
kd-tree and storing statistics in its nodes has cost O(N log N).

A particular expansion of the kd-tree corresponds to a specific partition A of the data
space, where each cell A ∈ A corresponds to an outer node of the expanded tree. Further
expanding the tree means refining the current partition, and in our implementations as
heuristic to guide the tree expansion we employ a breadth-first search strategy in which
we expand all cells in the current partition. Other strategies, like a best-first one are
possible as well. We also need a criterion to stop expanding the tree, and one could
use, among others, bounds on the variation of the data posteriors inside a node like
in (Moore, 1999), a bound on the size of the partition (number of outer nodes at any
step), or sampled approximations of the difference between log-likelihood and F . An-
other possibility, which we used in our implementation, is to control the tree expansion
based on the performance of the algorithm, i.e. whether refining the partition improves
the value of F from the previous partitioning by a significant amount.

3.4.2 Related work

The idea of using a kd-tree for accelerating the EM algorithm in large-scale mixture
modelling was first proposed in (Moore, 1999). In that work, in each EM step every
node in the kd-tree is assigned responsibility distribution equal to the Bayes posterior
of the centroid of the data points stored in the node, i.e., qA = p(s|〈x〉A). In comparison,
we use qA proportional to the average joint log-likelihood, c.f. (3.41). If there is little
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variation in the posteriors within a node, e.g. when using fine-grained partitions, the
approximation will hardly affect the update in the M-step, and therefore the M-step
will probably still increase the data log-likelihood. However this is not guaranteed.

In (Moore, 1999) a different tree expansion is computed in each EM step, as stopping
criterion for tree expansion bounds are used on the variation of the posterior probabil-
ities of the data inside a node of the kd-tree. Computing these bounds is a nontrivial
operation that involves solving a quadratic programming problem.

The main advantage of our method compared to (Moore, 1999) is that we provably
increase in each EM step a lower bound of the data log-likelihood by computing the op-
timal responsibility distribution for each node given the current parameters. Moreover,
this optimal distribution is independent of the size, shape, and other properties of the
node, allowing us to run EM even with very coarse-grained partitions. As mentioned
above, and demonstrated in the experiments below, by gradually refining the partition-
ing while running EM we can get close to the optima of the log-likelihood in relatively
few EM steps.

3.4.3 Experimental results

In this section we describe our experiments and present the obtained results. In the
experiments we applied our constrained EM algorithm to learn a k-component MoG
on the data. First, a kd-tree is constructed and we cache in its nodes the data statistics
bottom-up, as explained above. The EM algorithm is started with an initial expansion
of the tree to depth two. We keep this partitioning fixed and run the accelerated EM
until convergence. Convergence is measured in terms of relative increase in F . We
then refine the partitioning by expanding the current cells of the partitioning. Then
we run again the constrained EM algorithm until convergence, refine the partitioning
breadth-first, etc. We stop the algorithm if the relative change in F between two suc-
cessive partitions is smaller than 10−4. In all experiments we used artificially generated
data sampled from a randomly initialized k-component MoG in D dimensions with a
component separation of c, as defined in (3.33).

Difference with suboptimal shared responsibilities. As indicated by theory, the re-
sponsibilities computed from (3.41) maximizing F for a given θ. For fixed θ, the log-
likelihood L is unaffected by the choice of responsibilities, thus we see from (3.37) that
the sum of KL divergences should be smaller when using the optimal shared respon-
sibilities (3.41) than when for example using p(s|〈x〉A), as in (Moore, 1999). We inves-
tigated the difference in summed KL divergences between the responsibilities and the
true posteriors when using (3.41) and using p(s|〈x〉A).

We generated 20 data sets of 5000 points from a random k = 20 component MoG in
D = 10 dimensions with a separation of c = 2. We then initialized a mixture using
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Figure 3.11: Differences in KL divergence as a function of partition size.

k-means and approximated the responsibilities for this mixture. Fig. 3.11 shows the
differences in the KL divergence summed over all data points, for different partitioning
sizes, averaged over the 20 data sets. Each unit on the horizontal axis corresponds to
expanding the tree one level down, and hence doubling the number of nodes used in
the partition. The result confirms that our method indeed gives a better approximation,
as predicted by theory. The difference is larger for rough partitions, this is as expected
since p(s|〈x〉A) becomes a better approximation of the individual responsibilities as the
partition becomes finer.

Gaussian mixture learning: accelerated vs. regular EM. We compared our method to
the regular EM algorithm in terms of speed and quality of the resulting mixtures. We
looked at how the difference in performance and speed is influenced by the number of
data points, dimensions, components, and the amount of separation.

The default data set consisted of 10,000 points drawn from a 10-component 3-separated
MoG in 2 dimensions. To compare log-likelihoods we also created a test set of 1000
points from the same mixture. We applied both algorithms to a mixture initialized us-
ing k-means. Fig. 3.12 shows the negative log-likelihood of the test set attained by the
algorithms and the generating mixture averaged over 20 data sets as well as the speed-
up of the accelerated algorithm. Speed was measured using the total number of basic
floating point operations (flops) needed for convergence. The graphs show how many
times fewer flops were needed by the accelerated algorithm.

The results show that (i) the speed-up is roughly linear in the number of data points (ii)
the number of dimensions and components have a negative effect on the speed-up and
(iii) the amount of separation has a positive effect. In general the accelerated algorithm
requires more iterations to converge but it is still faster than regular EM algorithm since
the iterations themselves are executed much faster. The difference in the performance of
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Figure 3.12: Experimental results on Gaussian mixture learning. (Left) Speed-up factor. (Right)
Negative log-likelihoods at convergence: generating mixture (black), regular EM (light),

accelerated EM (dark).
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Figure 3.13: Experimental results on greedy Gaussian mixture learning. (Left) Speed-up factor.
(Right) Negative log-likelihoods at convergence: generating mixture (black), regular EM (light),

accelerated EM (dark).
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the two algorithms w.r.t. log-likelihood becomes larger (our method performs worse) as
the number of components and data dimensionality increase. However, the difference
in log-likelihood between accelerated and regular EM is still small compared to the re-
spective differences with the log-likelihood of the generating mixture, even when using
many components in relatively high dimensional spaces.

Gaussian mixture learning: accelerated greedy vs. greedy EM. We also combined
the accelerated EM algorithm with the greedy EM algorithm of Section 3.2. Below we
present the results of a comparison similar to the comparison presented above, now
comparing the standard greedy and accelerated greedy algorithm.

The effects on the speed-up of changing the number of points, dimensions, separation
and number of components are similar to those obtained with the non-greedy algo-
rithms. However, the effects when increasing dimension are less pronounced. Further-
more, both greedy algorithms obtain log-likelihoods very close to those of the generat-
ing mixture. Thus, using the greedy algorithm improves results for both methods and
reduces the difference in log-likelihood between them while obtaining similar speed-
ups as compared to the non-greedy algorithms.

3.4.4 Conclusions

We presented an accelerated EM algorithm that can be used to speed-up the EM algo-
rithm to learn MoGs for large data sets. Our contributions over similar existing tech-
niques are two-fold. First, we can show that the algorithm maximizes a lower bound on
data log-likelihood and that the bound becomes tighter if we use finer partitions. The
algorithm finds mixture configurations near local optima of the log-likelihood surface
which are comparable to those found by the regular EM algorithm, and does so consid-
erably faster. Second, the algorithm is convergent and maximizes a lower bound on data
log-likelihood for any partitioning of the data. This allows us to use partitions where
the true posteriors differ heavily in each part, which are needed when working on very
large data sets and only limited computational resources are available. Another option
is to start the algorithm with a rough partitioning, for which the EM iterations are per-
formed very fast, and only refine the partitioning when needed because the algorithm
converged with the rough partitioning.

Comparing our work with (Moore, 1999), we conclude that with the same computa-
tional effort we can use the optimal shared responsibilities instead of the posterior at
the node centroid which limits the algorithm to using relatively fine partitions.

The need to store sufficient statistics limits the use of our method, and other methods
based on storing sufficient statistics to accelerate MoG learning, to data sets that are of
relatively low dimension. This is because the space needed to store the average outer
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products grows quadratically with the data dimension. However, if the covariance ma-
trix is constrained to be diagonal then the inner products are sufficient statistics, for
which the storage requirements are only linear in the data dimensionality. Finally, note
that the proposed technique can directly be applied to other Gaussian mixture models
such as the self-organizing mixture models described in the next chapter. An interesting
line of further research is to consider whether a similar technique can be developed to
speed-up mixture learning for discrete data.

Outlook

In this chapter we have considered Gaussian mixture learning with the EM algorithm.
We presented greedy algorithms for MoG learning and k-means clustering that avoid
many of the poor local optima found by other methods. The greedy algorithms start
with a single component and then iteratively add a component to the mixture and up-
date the mixture parameters with the EM algorithm. The greedy approaches are of
particular interest when the number of mixture components (or clusters) has to be deter-
mined, since locally optimal mixtures with different numbers of components are gener-
ated. We also presented an accelerated EM algorithm that is convergent and guaranteed
to increase a lower bound on the data log-likelihood. Our accelerated EM algorithm also
supports coarse partitions that cannot be used in existing accelerated EM algorithms.

In the following chapters we will use mixture models for dimension reduction. The di-
mension reduction techniques developed in those chapters divide the data into several
clusters and analyze the relation between the clusters in order to produce a represen-
tation of the data in fewer dimensions than the original data. The self-organizing map
approach of the next chapter associates with each mixture component a location in a
low dimensional latent space. Data points are mapped to the latent space by averag-
ing over the locations of the mixture components according to the posterior p(s|x). In
Chapter 5 each mixture component implements a linear map between the data space
and the latent space. For each data point, a weighted average of the linear maps of the
components is used to map it to the latent space; the weights are given by the posterior
on the components.



4

SELF-ORGANIZING MIXTURE MODELS

In this chapter we present a class of models for non-linear data visualization based on
probabilistic mixture models. Some of these models exhibit great similarity to Koho-
nen’s self-organizing map, but the fact that ours are based on mixture models allows
for several important benefits. In the first section we review Kohonen’s self-organizing
map and discuss its limitations to motivate our work. Then, in Section 4.2, we present
our mixture based approach. Related work on self-organizing maps is discussed in
Section 4.3. We provide experimental results obtained when applying our approach to
different types of mixture models in Section 4.4, after which we present our conclusions
in Section 4.5.1

4.1 Self-organizing maps

The self-organizing map, or SOM for short, was introduced by Kohonen in the early
1980s. It extends data clustering in a manner such that it can be used for dimension
reduction; each cluster is assigned fixed coordinates in a low dimensional latent space.
After estimation of the parameters of a SOM from a given data set, the data can be
mapped to the latent space by assigning each data point the latent coordinates associ-
ated with the cluster that best matches it. Notably, the mapping from the data space
to the latent space implemented by a SOM can be non-linear. A self-organizing map
preserves topology in the sense that clusters that are nearby in the latent space will typ-
ically contain similar data. We will refer to the clusters also as ‘nodes’, a term that is
common in the SOM literature.

Since their introduction, self-organizing maps have been applied in many engineering
problems, see e.g. the list of over 3000 references on applications of SOM in (Kohonen,
2001). One key application area is data visualization. As noted in the introduction, di-
mension reduction is a valuable tool for visualizing high dimensional data since it is

1 The material of this chapter is largely drawn from (Verbeek et al., 2003b; Verbeek et al., 2004b).
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not possible to use a simple scatter plot for such data. An application of SOMs for for
content-based image retrieval can be found in the PICSOM system 2 (Laaksonen et al.,
2001). The system provides a search mechanism that allows a user to find images of in-
terest through several interactions with the system. First, the PICSOM system presents
some random images from the data-base to the user and then the user identifies relevant
images: i.e. images that are most similar to the desired image. Alternatively, the user
could directly provide some relevant images to the system. The system uses a SOM to
find similar pictures and presents those to the user: it presents images from the node
that best matches the relevant images and also from nodes that are in the latent space
near the best matching node. The process is then iterated by letting the user add new
images (from the presented ones) to the set of relevant images and/or removing others.
The system uses several different representations of the images. Among others, color
and texture content are used. As the user adds more images to the set of relevant im-
ages, it may become apparent that they are all similar in respect to their texture content
but not in their color content. The system then identifies that mainly texture content
matters and will present new images on the basis of similar texture content.

Kohonen’s self-organizing map algorithm. The basic self-organizing map (SOM) al-
gorithm assumes that the data are given as vectors xn ∈ IR (n = 1, . . . N). With each
node s (s = 1, . . . , k) we associate two vectors: gs gives the location in the latent
space and µs ∈ IR is the ‘center’ in the data space. The latent space is typically two-
dimensional in visualization applications of the SOM. The centers µs are estimated in
such a way that nearby nodes in the latent space will have nearby centers in the data
space. There are two ways to estimate the centers, we can process data items one-by-
one (on-line) and all-at-once (batch). The batch algorithm is useful when the data set is
fixed. The on-line algorithm is useful when the data comes as a continuous stream. We
described the online algorithm in Section 2.2.2.

The neighborhood function is a function that maps two nodes to a real number which
encodes spatial relationships of the nodes in the latent space. Typically, the neighbor-
hood function is a positive function which decreases as the distance between two nodes
in the latent space increases. An example is the exponent of the negative squared Eu-
clidean distance between the two nodes in the latent space. The neighborhood function
evaluated at nodes r and s is written as:

hrs = exp(−λ‖gr − gs‖2), (4.1)

where λ controls the width of the neighborhood function.

Recall that the on-line SOM algorithm processes one data point at a time and for each
data point performs two steps. In the assignment step the current data item is assigned
to the ‘winner’: the node r∗ with the nearest center (according to some dissimilarity

2 An on-line demo of the system can be found at http://www.cis.hut.fi/picsom/ .

http://www.cis.hut.fi/picsom/
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Figure 4.1: The update of the on-line algorithm for a point x. The small discs represent data
points and the big discs represent cluster centers. The ordering of the nodes in the latent space
is indicated by connecting neighboring nodes with bars. The size of the arrows indicates the

force by which the nodes are attracted toward the point x.

measure, often Euclidean distance). In the update step each center µs is moved toward
the data vector by an amount proportional to hr∗s: the value of the neighborhood func-
tion evaluated at the winner r∗ and node s. Thus a center is moved toward the data
that is assigned to it, but also toward data that is assigned to nodes nearby in the latent
space. Fig. 4.1 illustrates the update for a point indicated with x.

The batch version of the SOM algorithm performs the assignment and update steps for
all data points at once. First each data point is assigned to its winning node. Then, in
the update step each center µr is placed at the weighted average of all data, where each
data vector is weighted by a factor proportional to the neighborhood function evaluated
at r and the winner for that data vector. Thus, if we use sn to indicate the winner for
data point xn, we have:

µr ←

[
N∑

n=1

hsnrxn

]
/

[
N∑

n=1

hsnr

]
. (4.2)

Limitations of Kohonen’s self-organizing map. The Euclidean distance used in the
assignment step of the SOM algorithm is not always appropriate, or applicable when
the data is not expressed as real-valued vectors. Consider data that consists of vectors
with binary entries. The Euclidean distance can still be used, but how will we represent
the centers? As binary vectors as well, or should we allow for scalars in the interval
[0, 1]? In general it is not always clear whether Euclidean distance is appropriate or not.
If it is not, then it may not be obvious which dissimilarity measure is more appropri-
ate and whether the centers should be the same type of object as the data vectors (e.g.
binary vs. real valued vectors). Hence, an ongoing issue in research on self-organizing
maps is to find appropriate dissimilarity measures for different types of data, see e.g.
(Kohonen and Somervuo, 2002). Another problematic situation occurs when the data
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has several real valued variables but also some discrete variables. Should the dissimi-
larity be a, possibly weighted, sum of a dissimilarity for the real valued variables and a
dissimilarity for the discrete variables?

In some applications values in the data might be missing: a sensor on a robot breaks
down, an entry in a questionnaire was left unanswered, etc. In such cases it is common
practice when applying Kohonen’s SOM algorithm, see e.g. (Kohonen, 2001), to simply
ignore the missing values and use a modified dissimilarity measure in order to compute
the winning node and to update the centers. However, it is unclear whether and why
this is a good idea.

Finally, the Kohonen’s SOM algorithm cannot be interpreted as maximizing some ob-
jective function and it is not guaranteed to converge (Erwin et al., 1992)

These limitations motivate our mixture model approach to self-organizing maps. In
the next section we present our EM algorithm for mixture models that yields topology
preserving maps. The algorithm is obtained by using a slightly modified E-step in the
standard EM algorithm for mixture models. After we have presented our SOM ap-
proach based on mixture models, we compare our approach in Section 4.3 to a number
of alternative learning schemes that have been proposed.

4.2 Self-organizing mixture models

In this section we describe how we produce self-organizing maps by using a constrained
EM algorithm for parameter estimation of a mixture distribution. First we describe our
approach and give an example for modelling data with a Gaussian mixture, then we
discuss some algorithmic issues. In Section 4.2.2 we explain how we can deal with
missing data values, and in Section 4.2.3 we show how a variation of Kohonen’s SOM,
the adaptive-subspace SOM, can also be cast in our mixture model approach.

4.2.1 A constrained EM algorithm for self-organizing maps

In the previous chapter we introduced the EM algorithm for mixture models. Recall the
EM lower-bound F on the data log-likelihood L from the previous chapter:

L(θ) ≥ F({qn}, θ, ) =
N∑

n=1

Fn(qn, θ), (4.3)

with

Fn(qn, θ) = log p(xn; θ)−D(qn‖p(s|xn; θ)) (4.4)
= Eqn [log p(xn, s; θ)] +H(qn). (4.5)
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Where D andH denote Kullback-Leibler divergence and entropy respectively. We used
θ to represent the parameters of the mixture model and qn is a distribution on the
mixture components associated with the n-th data point. The standard EM algorithm
(Dempster et al., 1977; Neal and Hinton, 1998) can be understood as performing coor-
dinate ascent on the EM lower bound F on the data log-likelihood function L. In the
E-step the bound F is maximized w.r.t. the distributions qn for fixed θ, and in the M-
stepF is maximized w.r.t. the parameters of the mixture model θ for fixed qn. After each
E-step the equality F = L holds.

In order to obtain self-organizing behavior in the mixture model learning we constrain
the distributions qn to be in a restricted set of distributions Q. The distributions in Q
are similar to the neighborhood function of Kohonen’s SOM. Non-negative neighbor-
hood functions hrs can be re-scaled to sum to unity, so that they can be interpreted as a
distribution hr(s) over the components s. The neighborhood function of (4.1) results in:

hr(s) ∝ exp(−λ‖gr − gs‖2),
k∑

s=1

hr(s) = 1. (4.6)

We refer to such neighborhood functions as ‘normalized’ neighborhood functions. The
set Q contains all the normalized neighborhood functions hr(·); (r = 1, . . . , k). Using
the restricted set of distributions Q, the E-step consists of selecting for each data item
n the component r∗ such that Fn from (4.4) is maximized if we use qn = hr∗ . As be-
fore, we will call r∗ the ‘winner’ for data item n. Since the E-step is constrained, the
objective function F does not have to equal the log-likelihood after the E-step. Instead,
the objective function sums data log-likelihood and a penalty term which measures the
KL divergence between the (best matching, after the E-step) normalized neighborhood
function and the true posteriors p(s|x) for each data point. If the penalty term is low it
means that the posteriors do in fact look like the neighborhood function, indicating that
components nearby in the latent space represent similar data.

What happens in the M-step if the qn in the EM algorithm are normalized neighborhood
functions? Similar to Kohonen’s SOM, the winner for xn receives most responsibility
and will be forced to model xn, but also its neighbors in the latent space will be forced,
to a lesser degree, to model xn. So by restricting the qn in the EM-algorithm to be a
normalized neighborhood function centered on one of the nodes, we ensure that the
components with large responsibility for a data point are close to each other in the latent
space. In this manner we obtain a training algorithm that yields mixture models with
self-organizing properties similar to Kohonen’s SOM.

The effect can be understood in another way. Consider the second decomposition (4.5)
of the terms Fn in the objective function F from (4.3). Let us consider also two mixtures,
parameterized by θ and θ′, that yield equal data log-likelihood L(θ) = L(θ′). The ob-
jective function F subtracts from the data log-likelihood a penalty term which consists
of KL divergences. Thus if the data log-likelihoods are equal, F prefers the mixture for
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which the KL divergences are the smallest, i.e. the mixture for which the posterior on
the mixture components is most similar to the normalized neighborhood function. If
the posteriors truly are very similar to the normalized neighborhood function, then this
implies that components nearby in the latent space model similar data.

Our EM algorithm for self-organizing mixture models (SOMM) can be summarized as:

SOMM algorithm.
Initialize the parameter vector θ and then iterate until convergence:

1. E: Determine for each xn the distribution q∗ ∈ Q that maximizes Fn, i.e.
q∗ = arg minq∈Q DKL(q‖p(s|xn; θ)), and set qn ← q∗.

2. M: Perform the normal M-step for the mixture, i.e. maximize F w.r.t. θ
using the qn computed in the E-step.

In fact, in the M-step we do not need to maximize F with respect to the parameters θ.
As long as we can guarantee that the M-step does not decrease F , we are guaranteed
that the iterations of the (modified) EM algorithm will never decrease F .

Finally, in order to project the data to the latent space, we average over the latent coor-
dinates of the mixture components. Using the latent coordinates gs (s = 1, . . . , k) of the
mixture components, we define the latent coordinates for the n-th data item as:

gn =
k∑

s=1

p(s|xn)gs. (4.7)

Example with Gaussian mixture. A particularly simple M-step is obtained when we
apply our general algorithm to a mixture of Gaussian densities (MoG) with fixed and
equal mixing weights πs = 1/k for all k components and isotropic variance:

p(x|s) = N (x; µs, σ
2I). (4.8)

For this simple MoG, the Fn are given, up to some constants, by:

Fn(qn, θ) = −1

2
D log σ2 −

k∑
s=1

qns

[
σ−2‖xn − µs‖2/2 + log qns

]
. (4.9)

The parameters of the mixture are θ = {σ2, µ1, . . . ,µk}. The parameters θ maximizing
F for given q1, . . . , qN are obtained easily through differentiation of F . In the M-step for
this mixture we set:

µs ←
N∑

n=1

qnsxn/
N∑

n=1

qns (4.10)

σ2 ←
N∑

n=1

k∑
s=1

qns‖xn − µs‖2/(ND). (4.11)
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In comparison to Kohonen’s batch SOM algorithm, only the winner definition is differ-
ent in this case: instead of the the minimizer of ‖xn − µr‖2 we select the minimizer of∑k

s=1 hr(s)‖xn − µr‖2. Hence, the selection of the winners also takes into account the
neighborhood function, whereas this is not the case in the standard Kohonen SOM. The
update for the means µs given above coincides exactly with that of Kohonen’s batch
SOM algorithm when using the Euclidean distance.

Shrinking the neighborhood function. Since the objective function might have local
optima and the EM algorithm is only guaranteed to give a local optimizer ofF , good ini-
tialization of the parameters of the mixture model is essential to find good parameters.
We can use the parameter λ ∈ IR of the neighborhood function to control the entropy
of the neighborhood distributions. In the limit of λ→ 0, the neighborhood distribution
becomes uniform. If all distributions in Q are uniform then initialization of the param-
eters θ is irrelevant since in the E-step all data points are equally assigned to all mixture
components. The subsequent M step will give all components very similar parameters.3

We can start the algorithm with neighborhood distributions with high entropy (small
λ) and gradually decrease the entropy until we reach the desired form of the neighbor-
hood function.4 Other SOM approaches use similar procedures to gradually decrease
the entropy of the neighborhood function to avoid poor solutions.

In implementations we started with λ such that the q ∈ Q are close to uniform over the
components, then we run the EM algorithm until convergence. After convergence we
set λnew ← ηλold with η > 1, typically η is close to unity, such as 1.1 or 1.01. We initialize
the EM procedure for λnew, with θ found when running EM with λold.

Reducing computational complexity with sparse winner search. The computational
cost of the E-step is O(Nk2) because for every data point and every component we have
to evaluate Fn which involves a sum over all components. This is a factor k slower
than SOM and prohibitive in applications where both N and k are large. However,
by restricting the search for a winner in the E-step to a limited number of candidate
winners we can obtain an O(Nk) algorithm. A straightforward choice is to use the l
components with the largest joint likelihood p(xn, s) as candidates, corresponding for
our simple example MoG to smallest Euclidean distances to the data point. If none of
the candidates yields a higher value of Fn(qn, θ), we keep the winner of the previous
step. In this way we are guaranteed, in each E-step, not to decrease the objective. We
found l = 1 to work remarkably well and fast in practice; in this case we only check
whether the winner from the previous round should be replaced with the node with
highest joint-likelihood p(s,xn).

3 Only when using mixture components for which it is not possible to maximize F in the M-step w.r.t.
θ initialization is still important.

4 The entropy of the neighborhood distribution and λ are monotonically related.
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4.2.2 Modelling data with missing values

When the given data has missing values the EM algorithm can still be used to train
a mixture on the incomplete data (Ghahramani and Jordan, 1994). The procedure is
similar to the normal EM algorithm to train a mixture model. Below, we consider the
case for i.i.d. data. Let us use xo

n to denote the observed part of xn and xh
n to denote the

missing or ‘hidden’ part. The distributions qn now range over all the hidden variables of
xn, namely zn, the generating component, and possibly xh

n if there are some unobserved
values for xn. We can again bound the log-likelihood of the observed data:

F(Q,θ) =
N∑

n=1

Fn(qn, θ), (4.12)

with

Fn(qn, θ) = log p(xo
n; θ)−DKL(qn‖p(zn,x

h
n|xo

n)) (4.13)
= Eqn log p(xo

n,x
h
n, zn; θ) +H(qn). (4.14)

In the E-step we set: qn ← p(zn,x
h
n|xo

n). The M-step updates θ to maximize (or at least
increase) the expected joint log-likelihood:

N∑
n=1

Eqn log p(xo
n,x

h
n, zn; θ). (4.15)

As with the standard EM algorithm for mixture models, after the E-step F equals the
log-likelihood of the observed data, so we see that the EM iterations can never decrease
the log-likelihood of the observed data.

To handle missing data in the EM algorithm for self-organizing mixture models we
consider the decomposition: qn(zn,x

h
n) = qn(zn)qn(xh

n|zn). We can write (4.14) as:

Fn(qn, θ) = H(qn(zn)) + Eqn(zn)

[
H(qn(xh

n|zn)) + Eqn(xh
n|zn) log p(zn,x

h
n,x

o
n)
]
.

(4.16)

Just as before, we can now constrain the qn(zn) to be a normalized neighborhood func-
tion. In order to maximize F w.r.t. Q in the E-step, we set qn(xh

n|zn)← p(xh
n|xo

n, zn). The
optimization of F w.r.t. qn(zn) is achieved by choosing qn(zn) to be the neighborhood
function that maximizes (4.16). In the M-step we then have to maximize (or at least
increase) the expected joint (complete) data log-likelihood

N∑
n=1

k∑
zn=1

qn(zn)
[
log πzn + Eqn(xh

n|zn) log p(xo
n,x

h
n|zn)

]
(4.17)
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w.r.t. the parameters θ. The class of mixture components that is employed determines
how easy or difficult it is to derive and perform the M-step, and whether we can maxi-
mize or just increase F w.r.t. θ in the M step.

Things become particularly simple when the mixture components distribute indepen-
dently over variables which have missing values and the other variables. In this case,
instead of (4.12)-(4.14), we can use the normal EM bound on the data log-likelihood:

F(Q, θ) =
∑

n

Fn(qn, θ) (4.18)

with

Fn(qn, θ) = log p(xo
n; θ)−DKL(qn‖p(zn|xo

n)) (4.19)
= Eqn log p(xo

n, zn; θ) +H(qn). (4.20)

This is possible since we now have (by assumption) standard expressions for the dis-
tributions p(xo

n|zn). The E-step in this case sets qn(zn) ← p(zn|xo
n) ∝ p(zn)p(xo

n|zn), i.e.
the E-step simply ‘ignores’ the missing values. Ignoring missing data in the assignment
step of SOM algorithms is common, here we see that within our framework it is only
justified to do so if our model distributes over the observed variables independently of
the variables with missing values.

4.2.3 The adaptive-subspace self-organizing map.

The adaptive-subspace self-organizing map (ASSOM) (Kohonen et al., 1997) learns in-
variant features of data patterns. The ASSOM does not process single data points (pat-
terns) but small sets Ai (i = 1, . . . , N) , called ‘episodes’, of slightly transformed pat-
terns. The data points in an episode are forced to be assigned the same winner, thereby
forcing the nodes of the map to fit patterns and their transformations. The nodes of
the basic ASSOM are parameterized by a set of vectors that together span a linear sub-
space of the complete signal space. The learning algorithm updates the subspace of
each node in such a manner that the patterns, and their transformations, assigned to the
node have minimum average squared Euclidean distance to the subspace. In this man-
ner the distance of a pattern to a subspace will tend to be more or less invariant for the
transformations included in the episodes. The ASSOM thus ensures that the variation
of patterns between the different nodes does not contain the transformations that were
used to generate the episodes.

The ASSOM can be readily cast in the probabilistic mixture framework presented here.
To do this we force all patterns x in an episode Ai of transformed patterns to share the
same responsibilities qAi

(s) over the components s of the mixture. We can then rewrite
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the objective function F defined in (4.3)-(4.5) as:

F =
N∑

i=1

FAi
(θ, qAi

), (4.21)

FAi
=
∑
x∈Ai

k∑
s=1

qAi
(s) [log p(x, s)− log qAi

(s)] (4.22)

= |Ai|
k∑

s=1

qAi
(s) [log p(s) + 〈log p(x|s)〉Ai

− log qAi
(s)] , (4.23)

where 〈log p(x, s)〉Ai
= 1

|Ai|
∑

x∈Ai
log p(x, s) and |Ai| denotes the number of patterns in

the episode. In the E-step we then set qAi
to maximize F(θ, qAi

). Compared to computa-
tions needed in the basic E-step presented in Section 4.2, we simply replace the complete
log-likelihood log p(x, s) with the average log-likelihood over the episode: 〈log p(x, s)〉Ai

.

Since the ASSOM nodes span subspaces of the original signal space, it is reasonable to
use Gaussian components with constrained covariance matrices of the PCA type, see
Section 3.1.4. The covariance matrix can then be written as: Σ = σ2I + ΛΛ>. The d
columns of the matrix Λ span the linear subspace with large variance and the σ2I term
adds some small variance in all variables that makes the covariance matrix non-singular.
Note that here we essentially use the same technique as in Section 3.4 on accelerated
Gaussian mixture learning, but for a different purpose.

4.3 Comparison with related work

Several other modifications of the original SOM algorithm have been proposed to over-
come its limitations. These modifications can be divided into two categories. First,
different dissimilarity measures, used to determine the winning node, have been pro-
posed for different types of data. Second, alternative learning algorithms for SOMs have
been proposed which can be shown to converge to a local maximum of some objective
function. We discuss some of these methods below and compare them to our approach.

Our approach offers contributions in both these categories. First, since our approach
is applicable to any mixture model for which we have a standard EM algorithm, it can
be applied to a wide range of data types. The class of mixture components that is used
implicitly provides the dissimilarity measure. In our approach, the mixture component
densities can be designed based on assumptions or prior knowledge on how the data
is distributed. The actual algorithm is then derived as an instantiation of the general
algorithm. Hence, we separate the design of the model from the learning algorithm. For
example, we could use a mixture of Bernoulli distributions to model binary variables.
Since we merely replace the E-step, we can very easily make a self-organizing map
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version of any mixture model for which we have a normal EM algorithm. Second,
our learning algorithm is guaranteed to converge to a local maximum of the objective
function F . The proposed algorithm also offers the other merits of probabilistic models,
like the ability to handle missing data values and the ability to learn mixtures (of self-
organizing maps).

Kohonen’s self-organizing map. Let us first consider the Kohonen’s original SOM
(KSOM) algorithm. We saw that our algorithm is very close to KSOM when applied
on the simple MoG used in the example in Section 4.2: the update of the means of the
Gaussians is the same as the update for the centers in KSOM with Euclidean distance as
dissimilarity. For this simple model the conditional log-likelihood p(x|s) is given by the
negative squared Euclidean distance ‖x−µs‖2 (up to some additive and multiplicative
constants). If we use a sparse search for the winner (E-step) with only l = 1 candidate,
the difference with Kohonen’s winner selection is that we only accept the closest node,
in terms of Euclidean distance, as a winner when it increases the objective F and keep
the previous winner otherwise.

In contrast to KSOM, we presented a SOM algorithm applicable to any type of mixture
model. We can use prior knowledge to select specific mixture components for given
data and then train it with our SOMM algorithm. In particular, the probabilistic frame-
work allows us to model dependencies between the different variables and helps us
design SOM algorithms for data types which are difficult to handle in the original SOM
framework, e.g. data that consists of variable-size trees or sequences, data that combines
numerical with categorical features, etc. Finally, our SOMM algorithm is guaranteed to
converge and it finds a (local) maximum of an easy to interpret objective function that
sums data log-likelihood and a penalty term. For the KSOM algorithm no such objective
function exists (Erwin et al., 1992) and it is not guaranteed to converge.

Soft topographic vector quantization. The soft topographic vector quantization al-
gorithm (STVQ) (Graepel et al., 1998; Heskes, 2001) our SOMM algorithm presented
above. Given some dissimilarity measure d(xn, θs) between data items and nodes, the
following objective function is maximized w.r.t. the qns and θs by STVQ:

FSTV Q = −
N∑

n=1

k∑
s=1

qns log qns − β

N∑
n=1

k∑
s=1

qns

∑
r

hrsd(xn, θs), (4.24)

with all qns ≥ 0 and
∑

s qns = 1. The error function sums an entropy term and an error
term. The error term d(xn, θs) can be based on squared Euclidean distance to a reference
vector µs for each component s, but other errors d based on the exponential family can
be plugged in.5 Instead of selecting a single ‘winner’ as in our work, an unconstrained

5 The exponential family contains all the distributions for which the log-likelihood ln p(x|θ) can be writ-
ten as: ln p(x|θ) = a0(x)+ b0(θ)+

∑m
i=1 ai(x)bi(θ), for finite m. It includes many well known distributions
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distribution qns over the nodes is used. Since a complete distribution over the nodes is
used rather than selecting a single winner, one cannot apply the ‘sparse’ winner search
speed-up. However, speed-ups can be achieved when for each n not all qns are opti-
mized, but rather the qns for only a few components s are optimized (different ones for
each data item), while keeping the values qns for other components fixed.

The parameter β is used for annealing in STVQ. For small β the entropy term, with only
one global maximum, becomes dominant, whereas for large β the error term, potentially
with many local optima, becomes dominant. A deterministic annealing scheme (Rose,
1998) is followed: by gradually increasing β more structure is added to the objective
function until some desired value of β is reached. In comparison, we use the neighbor-
hood function for annealing: we start with a broad neighborhood function and shrink
it gradually to the desired shape in order to be less sensitive to the initialization of the
parameters. Both approaches have a similar effect.

After optimizing over the qns, the error functionFSTV Q may be interpreted as the sum of
log-likelihood of the data under a mixture model p plus a penalty term independent of
the data (Heskes, 2001). Using squared Euclidean distance as a dissimilarity measure,
the components and mixing weights of the mixture model p are given by :

p(x) =
k∑

s=1

πsN (x;ms, β
−1I), (4.25)

where the parameters of this mixture are given by:

πs =
exp (−βvs)∑k

s′=1 exp (−βvs′)
, ms =

k∑
r=1

hsrµr, vs =
k∑

r=1

hsr‖µs − µr‖2. (4.26)

The validity of this interpretation is of course dependent on the particular dissimilarity
measure that is used. The dissimilarity measure should be derived from distributions
in the exponential family to validate the mixture model interpretation.

In comparison, the relation of our objective function F to the log-likelihood of the data
under a mixture model (log-likelihood plus a penalty between the true posterior and
the neighborhood function) also holds for models outside the exponential family. Note
that in STVQ the annealing parameter β, which is set by hand or through an anneal-
ing schedule, controls parameters (the mixing weights and the variance of the mixture
components) in the corresponding mixture model. In our approach the neighborhood
function is used for annealing and it appears in the objective function only in the penalty
term and does not control the parameters of the mixture model. Thus our objective func-
tion F is related to data log-likelihood under a mixture model in a simpler way than
FSTV Q. Also, in our approach we can optimize over all the parameters of the mixture
model, while in STVQ the final value of the variance is set by hand.

such as the Gaussian, inverse Gaussian, gamma, Poisson, and binomial distribution.
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Generative Topographic Mapping. Generative Topographic Mapping (GTM) (Bishop
et al., 1998b) achieves topographic organization of the cluster centers in a quite different
manner than the self-organizing map approaches discussed so far, see also Section 2.2.2
where we already reviewed the GTM. GTM fits a constrained probabilistic mixture
model to given data. The parameters θs (s = 1, . . . , k) of the k mixture components
are parameterized as a linear combination of a fixed set of m smooth nonlinear basis
functions φi of the fixed coordinates gs of the components in the latent space. For a
Gaussian mixture model the means µs are then of the form:

µs =
m∑

i=1

αisφi(gs) (4.27)

Due to the smooth mapping from latent coordinates of the mixture components to their
parameters, nearby components in the latent space will have similar parameters. The
parameters αis of the linear map are fitted by a standard EM algorithm to maximize the
data log-likelihood. Although originally presented for Gaussian mixtures, the GTM can
be extended to mixtures of other members of the exponential family (Girolami, 2001;
Kaban and Girolami, 2001). To our knowledge it is unknown how to extend the GTM
to mixtures of component densities outside the exponential family.

The main benefit of GTM over SOMM is that the parameter fitting can be done directly
on the basis of maximum likelihood. For SOMM we need to specify the number of
mixture components and the neighborhood function. For GTM we need to specify: the
number of mixture components, the number of basis functions and their smoothness
and shape. The GTM parameters can be dealt with in a Bayesian manner by speci-
fying appropriate prior distributions over the parameters. A a-posteriori distribution
over parameter settings given the data can then be found using (approximate) inference
techniques when enough computational resources are available (Bishop et al., 1998a).
For the SOMM approach it is not clear whether such techniques can be used to set the
parameters of the algorithm. Since the SOMM has fewer parameters to be set, it may be
preferred in situations where no prior distributions on the parameters are available or
when limited computational resources prevent the use of approximate inference tech-
niques to estimate the parameters of the GTM.

Other mixture based SOM algorithms. Another approach to learn mixture models
that implements topology preserving maps, similar to GTM, is presented (Utsugi, 1998).
A special smoothness prior on the parameters is used that favors nearby components
in the latent space to have similar parameter. The type of prior that is appropriate
depends on the type of mixture components that is used. Thus, a new class of mix-
ture components potentially also requires a new prior distribution. This makes it less
straight-forward to apply this approach to new types of mixture components than our
approach for which we only need to derive the new M-step. For this method it is not
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clear whether it generalizes directly to mixture models outside the exponential family
and whether speed-ups can be applied to avoid O(nk2) run-time.

A different way to cast the SOM in a probabilistic framework is given by (Anouar et al.,
1998). The log-likelihood function that is maximized is:

L′ =
N∑

n=1

log
k∑

s=1

pnsp(x|θs). (4.28)

Here, each data point has its likelihood evaluated under its own mixture of the k com-
ponent densities p(·|θs) (s = 1, . . . , k) with mixing weights pns. The algorithm iterates
two steps. In the first step, we set:

pns ← hrns with: rn = arg max
r

k∑
s=1

hrsp(xn|s). (4.29)

In the second step a new parameter vector is computed for given pns. However, the new
parameter vector is in general not guaranteed to increase L′ for the fixed pns. Just as our
approach, this model in principle allows one to use any type of mixture components.
Contrary to our approach, this algorithm does not optimize data log-likelihood under a
single mixture, since the mixing weights vary for each data item and change throughout
the iterations of the algorithm. Moreover, the second learning step is not guaranteed to
improve the objective function. The algorithm has run-time O(Nk2), but can benefit
from the same speed-up as our approach.

Another probabilistic SOM-like model, based on isotropic Gaussian components, is
given in (Kostiainen and Lampinen, 2002). The maximum-likelihood estimation proce-
dure of the means of the Gaussian densities coincides with the estimation of the centers
in the batch version of Kohonen’s SOM algorithm. There are, however, some difficul-
ties with this approach. First, the final density estimate is not smooth throughout the
data space. Second, the estimation of the variance of the Gaussian densities cannot be
performed in closed form but requires numerical optimization techniques. Third, to
evaluate the likelihood a normalizing constant has to be computed which is defined
through integrals that cannot be analytically evaluated. Therefore sampling techniques
are required to approximate it. Furthermore, the density model appears to be restricted
to Gaussian mixtures with the corresponding squared Euclidean distance as dissimilar-
ity measure.

4.4 Experimental results

In this section we present experimental results obtained with the SOMM algorithm. We
start with an experiment using Gaussian component densities. The second example
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Figure 4.2: Configuration of the means µs during training after 10, 20, . . . , 60 EM iterations.

uses Bernoulli distributions for binary data and in the third example we model data
with both discrete and continuous features.

The simple Gaussian mixture. We generated a data set by drawing 500 points at ran-
dom from a uniform distribution over the unit square and trained two different self-
organizing mixture models. The first model consisted of 49 Gaussian densities placed
on a 7 by 7 rectangular grid in the latent space and we used a Gaussian neighborhood
function as in Section 4.2. In Fig. 4.2 we show the means µs of the Gaussian components,
connected according to the grid in the latent space. Configurations after each 10 EM it-
erations are shown for the first 60 iterations. It can be seen how the SOMM spreads out
over the data as the neighborhood function is shrunk until it has about 80% of its mass
at the winner at iteration 60. Fig. 4.3 shows the same experiment for the second model,
which has 50 Gaussian components placed on a regular grid in a one dimensional la-
tent space. Here we showed the configuration after every 20 iterations. Again, we can
observe the SOM spreading out over the data as the algorithm progresses. In this case
the SOM has to fold itself in order to approach the uniform distribution of the data.

To quantitatively determine the similarity with Kohonen’s SOM (KSOM) we compared
the results when using our SOMM and KSOM for the unit square data. For both meth-
ods we evaluated the objective function F of SOMM, as defined in (4.3)-(4.5). To eval-
uate the objective function for KSOM, we used the means as obtained with KSOM and
the variances obtained with SOMM to specify a mixture model. Both methods used the
same neighborhood shrinking scheme: λ is multiplied by 1.1 after convergence with the
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Figure 4.3: Configuration of the means µs during training after 20, 40, . . . , 120 EM iterations.

current neighborhood function. For SOM the neighborhood function was also changed
if the algorithm did not converge after 1000 iterations. In Fig. 4.4 we summarize the
results for different numbers of mixture components k and dimensions of the latent
space d. We used a standard rectangular grid for the components in the latent space
and a Gaussian neighborhood function. The reported results on FSOMM and FKSOM are
averages over 50 experiments; the standard deviations are given as well.

In general, SOMM and KSOM give similar values of the objective function. The differ-
ence in the average objective function between the methods is in general smaller than
the standard deviations in the results. Recall that the objective function F is the sum of
the data log-likelihood and a penalty term D which sums the KL divergences between
the neighborhood function and the true posteriors on the components. If we consider
the penalty terms DSOMM and DKSOM , obtained respectively with SOMM and KSOM,
we again see that the differences are small and close to the standard deviation in the
penalty terms observed for each method. We conclude that for the MoG considered
here there is no significant difference between the performance of SOMM and KSOM.

A mixture of Bernoulli distributions. In this example we apply the SOMM algorithm
to a mixture with non-Gaussian components. We model word occurrence data in doc-
uments obtained from the 20 newsgroup data set.6 The data set contains occurrence
of 100 words in 16242 newsgroup postings. The data is represented as a 100 × 16424
matrix with entries that are either zero or one. Each row represents a word and each

6 This data set is available at: http://www.ai.mit.edu/˜jrennie/20Newsgroups/ .

http://www.ai.mit.edu/~jrennie/20Newsgroups/
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k d FSOMM FKSOM DSSOM DKSOM

10 1 725.0± 16.0 728.1± 13.1 99.5± 5.9 108.2± 7.6

25 1 751.1± 14.1 758.2± 12.8 120.2± 5.5 124.1± 6.3

100 1 840.0± 15.0 848.7± 12.7 119.6± 5.7 124.6± 4.4

9 2 730.0± 9.0 731.6± 9.0 115.9± 2.6 115.0± 2.8

25 2 753.2± 8.6 754.3± 8.4 133.9± 3.1 135.4± 3.8

100 2 797.7± 9.7 801.9± 8.4 149.7± 4.3 153.9± 4.1

Figure 4.4: Comparison of KSOM and SOMM in terms of the SOMM objective F and penaltyD.

column represents a document. A 1 indicates that the specific word occurs in a specific
document. Thus, each word is a data point, and its feature vector indicates in which
documents this word occurs.

We use mixture components that assume independence between all the bits in the fea-
ture vector, and each bit is Bernoulli distributed. We use N to indicate the number of
words and D to denote the number of documents and xd

n ∈ {0, 1} to denote the value of
the d-th bit of the feature vector (presence in document d) of the n-th word xn. The prob-
ability of the d-th feature being ‘1’ according to the s-th mixture component is denoted
psd. Thus, the likelihood of x under component density s is given by:

p(xn|s) =
D∏

d=1

p
xd

n
sd (1− psd)

(1−xd
n). (4.30)

The mixing weights of all k = 25 components were taken equal. To perform the E-step
in our SOMM algorithm we compute the conditional log-likelihoods log p(xn|s) as:

log p(xn|s) =
D∑

d=1

[
(1− xd

n) log(1− psd) + xd
n log psd

]
, (4.31)

and proceed as usual. In the M-step we have to maximize the expected joint log-
likelihood w.r.t. the parameters psd. This yields:

psd ←
∑N

n=1 qnsx
d
n∑N

n=1 qns

, (4.32)

i.e. we set psd to the relative frequency of occurrence of the words in document d where
all the words are weighted by the responsibilities qns. Note that the update of the psd is
similar to that for the means µs of the simple MoG given in (4.10). This suggests that we
might as well treat the data as if it were continuous valued and use Gaussian mixture
components. In the E-step, however, the conditional log-likelihoods are quite different:
they are given for the simple MoG, up to some constant, as squared Euclidean distances,
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while here by (4.32). Thus the Bernoulli distributions yield a different ‘dissimilarity’
between data points and mixture components (or nodes).

In Fig. 4.5 we plotted the words at the corresponding gn; the bottom plot zooms in on
the area indicated by the box in the top plot. The visualization of the data allows us
to identify different regions of the map that contain words that have similar occurrence
patterns in the documents. Due to the huge dimensionality of this data, the posteriors
are rather peaked, i.e. the posteriors have very low entropy resulting in gn, as computed
from (4.7), that are almost equal to one of the gs. In a visualization this results in placing
the words almost exactly at the locations of the mixture components in the latent space.
If we print the words on their location in the latent space, they would be printed on
top of each other. Therefore, for visualization we did not use the actual posterior but
distributions p′(s|xn) ∝ p(s|xn)α for 0 < α < 1 such that the entropies of the p′(s|xn)
were close to two bits.7

Modelling credit card application data. In this section we consider a self-organizing
mixture model for data set describing 690 credit card applications, available from the
UCI machine learning repository (Blake and Merz, 1998). The data has 6 numerical fea-
tures and 9 nominal attributes.8 The meaning of the attributes is not provided with the
database for privacy reasons, except for the attribute that indicates whether the credit
card application was approved or not. Therefore, interpretation of modelling results
in terms of customer profiles is difficult. However, below we summarize and compare
results we obtained when applying different SOM algorithms on this data. For each
model we used k = 25 components arranged in a two dimensional square grid and a
Gaussian neighborhood function.

A simple way to extend the standard Kohonen SOM (KSOM) to data that has nominal
attributes is to use the one-of-n encoding: each nominal variable is represented with a
binary vector, one bit for each possible value, with a 1 in the location of the particular
value a data item has for the nominal variable. Thus a variable that can take as values
‘red’, ‘green’ or ‘blue’ is encoded with a bit vector of length three, where the values are
encoded with the vectors 001, 010 and 100 . The final data vector then becomes the
concatenation of the continuous data attributes and the binary vectors of the nominal
attributes. The KSOM model can be trained by either proceeding as usual on the one-of-
n (1/n) encoding, or by constraining the means of the nodes to be in the 1/n encoding
as well (Negri and Belanche, 2001). The latter corresponds to a normal batch KSOM
update step, and then mapping the updated mean vector to the 1/n encoding with a
1 in the position of the maximum value of the mean vector. In the results below the

7 The justification for using the normalized exponentiated posteriors is again that if we have a dis-
tribution and want the distribution that is closest in the sense of KL divergence to the original under a
constraint on the entropy, then we should use the normalized exponentiated distribution.

8 For 37 records the values of one or more attributes are missing, in the example below we removed
these cases from the data set for simplicity.
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Figure 4.5: Self-organizing Bernoulli models, k = 25. The bottom plot displays the area in the
box in the top plot. Note that the ambiguous word ‘win’ (referring to the operating system

‘windows’ and to ‘winning’ a game) is located between the computer terms (top left area) and
the sports terms (top right area).
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normal KSOM is indicated by KSOM and the version with means constrained to the
1/n encoding is indicated with KSOM-1/n.

In this experiment we considered variants of SOMM with different combinations of
densities for the continuous variables and distributions for the discrete variables. For
the continuous variables we used multivariate Gaussian densities with three types of
covariance matrices : isotropic (i), diagonal (d) and general (g). We used two different
distributions on the nominal variables. The first distribution modelled all nine nominal
variables independently (i). The second distribution modelled some pairs of nominal
variables jointly (p). The different combinations are indicated by SOMM-xy, where x
denotes the covariance matrix structure (i, d, or g) and y denotes the nominal variable
model (i or p).

The four pairs of nominal variables that were modelled jointly were selected by com-
puting (based on the complete data set) the mutual information9 between pairs of nom-
inal variables, and we selected the pairs with maximum mutual information in a greedy
manner. For two of the four pairs the mutual information was in the order of the entropy
of one of the variables in the pair, indicating strong correlations between the variables.
The continuous variables had considerably different ranges of values (differing by sev-
eral orders of magnitude). Therefore, we scaled all continuous variables to have unit
variance and zero mean before learning the different models. Note that for diagonal
and general covariance matrices this scaling is superfluous, since the model can take
the different variances into account.

In order to compare the KSOM models with the SOMM models, we used the objective
function F of SOMM. When we train a KSOM model this yields a final assignment of
data items to nodes after the last training step. To obtain a mixture model for which
we can evaluate F , we used the neighborhood function of the winning node for a data
point as its responsibility over mixture components. We then performed a single M-step
of SOMM with isotropic covariance matrix and an independent model for the nominal
variables. We used such components as they are most closely related to the results of
the KSOM algorithms. We then evaluated F using the resulting mixture models. The
resulting averages of F and the penalty termD for the different models are presented in
Fig. 4.6. Averages were taken over 20 experiments, each time selecting a random subset
of 620 of the total 653 data points.

The results support two conclusions. First, the SOMM-ii algorithm obtains higher ob-
jective values than both KSOM algorithms. The KSOM algorithm yields better results
than the KSOM-1/n algorithm. We also compared the penalty terms obtained with the
different algorithms. We see that the SOMM-ii models yield lower penalty terms than
the KSOM models. However, the differences in the objective function are not com-
pletely explained by the smaller penalty. On average the SOMM-ii models also yield

9 The mutual information I(X;Y ) between two variables X and Y , jointly distributed according to p
is defined in terms of KL divergence as follows: I(X;Y ) = D(p(X, Y )‖p(X)p(Y )).
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method F D
KSOM −6070.0± 79.3 443.1± 20.7

KSOM-1/n −6389.8± 81.2 532.5± 31.4

SOMM-ii −5678.8± 47.3 297.2± 24.4

SOMM-di −1481.3± 118.9 380.3± 50.8

SOMM-gi −1398.3± 94.7 411.7± 56.9

SOMM-ip −5147.2± 46.7 232.1± 13.3

SOMM-dp −1001.9± 81.8 342.8± 44.1

SOMM-gp −1096.4± 248.7 342.5± 42.4

Figure 4.6: Comparison in terms of the SOMM objective F and the penalty term D.

a higher likelihood. We conclude that on average the SOMM-ii models yield both a
higher likelihood and better topology preservation than the KSOM models. Second,
using SOMM models that use more expressive component densities we can obtain con-
siderably higher scores of the objective function. In particular the models that do not
assume equal variance in all continuous variables obtain relatively high scores.10 This
indicates that these models give a much better fit on the data and thus that they can
provide more realistic descriptions of the credit card applicants in the clusters.

4.5 Conclusions

We presented a constrained EM algorithm to learn self-organizing maps based on mix-
ture models with any type of component densities. Our algorithm is convergent and
maximizes an objective function that sums the data log-likelihood and a penalty term.
Our mixture model approach to self-organizing maps offers several benefits as com-
pared to existing SOM algorithms. First, the use of mixture models as a basis for SOMs
allows for easy design of dissimilarity measures by choosing the component densities
based on prior knowledge and/or assumptions. In particular, it is easy to model de-
pendencies between variables, which is non-trivial in the standard approach to self-
organizing maps: it would correspond to using dissimilarity measures that are non-
additive over the features. Second, our approach can be applied to arbitrary component
densities. Third, the EM framework allows one to deal with missing data in a princi-
pled way, by estimating in each EM iteration the missing values based on the current
parameters of the mixture model.

10 Note that the non-isotropic models achieve relatively large penalty terms. This is caused by several
‘overlapping’ mixture components with similar parameters. Consequently, their posteriors are similar
which conflicts with the neighborhood function. In the isotropic mixtures this happens less, because
overlapping components incur too much loss in data log-likelihood.





5

COMBINING LOCAL LINEAR MODELS TO
FORM GLOBAL NON-LINEAR MODELS

In this chapter we consider a method to combine several local linear mappings to obtain
a globally non-linear mapping. The method is based on a mixture of Gaussian (MoG)
density for which we can estimate the parameters with an EM-like algorithm. First,
we use this method for unsupervised non-linear dimension reduction. We contribute
an improvement to the existing parameter estimation procedure, replacing an iterative
parameter estimation procedure with a closed-form estimation. Second, we consider
how this method can used when high dimensional outputs have to be predicted from
high dimensional inputs.1

5.1 Introduction

Recently various nonparametric spectral methods, such as Isomap (Tenenbaum et al.,
2000), LLE (Roweis and Saul, 2000), Kernel PCA (Schölkopf et al., 1998) and Laplacian
Eigenmaps (Belkin and Niyogi, 2002) have been proposed (see Section 2.2) which reduce
the dimensionality of a fixed training set in a non-linear way that maximally preserves
certain inter-point relationships. These methods allow generalization of the mapping
from the high dimensional space to the low dimensional space to new data points. We
have seen this for kernel PCA in Section 2.2.1, and procedures for the other methods
can be found in (Bengio et al., 2004). However, these methods generally do not provide
an inverse mapping from the low dimensional space to the high dimensional space.

Linear dimension reduction techniques have several attractive properties: they can be
implemented very efficiently and produce a functional mapping, in both directions,
between the high and low dimensional space, that generalizes to data not included

1 Part of the material presented in this chapter is drawn from (Verbeek et al., 2002b; Verbeek et al.,
2004a; Verbeek et al., 2003a).
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when the mapping was learned. Their practical applicability is limited, however, since
in practical situations the data may be confined to a non-linear subspace of the original
feature space.

In this chapter, we consider a method to combine several, locally valid, linear mappings
between the data space and the space of reduced dimension. The presented method
delivers, after training, a non-linear mapping which can be used to convert previously
unseen high dimensional observations into their low dimensional global coordinates
and vice versa, without the need to store the original training data.

Intuitively, the approach taken in this chapter can be understood as a combination of
clustering and principal component analysis (PCA). The idea is illustrated in Fig. 5.1;
although globally the data is spread out in three directions, locally the data is concen-
trated around a two dimensional subspace. This allows us, locally, to describe the data
accurately by two coordinates in the appropriate subspace (plane). Thus, clusters need
to be identified in which the data are concentrated around a low dimensional linear sub-
space. Several authors, e.g. (Kambhatla and Leen, 1994; Tipping and Bishop, 1999), have
reported that such a combination of clustering and PCA allows for significantly better
reconstructions of images when they are reconstructed from their PCA projections, as
compared to a reconstruction using one single linear PCA subspace. Others (Hinton
et al., 1997) successfully used such a ‘mixture of PCAs’ (MPCA) to model images of
hand written digits; an MPCA model was learned on images of each digit i = 0, . . . , 9,
yielding density models pi (i = 0, . . . , 9). The learned models were used to classify new
images x of handwritten digits by classifying them as digit i = arg maxj pj(x).

The problem with this approach is that each cluster provides a separate low dimen-
sional coordinate system that is only used for data in that cluster rather than one —
global— low dimensional coordinate system for all data. Thus, if our goal is to find a
single low-dimensional representation of the data, e.g. for data visualization, then the
combination of clustering and PCA is not sufficient. We need a method to combine the
coordinate systems of the different local PCA subspaces into a single low dimensional
representation. In Section 2.2.1 we mentioned a method to find principal curves (Ver-
beek et al., 2002a) that (i) finds clusters of data that are concentrated around a line seg-
ment and (ii) connects the line segments to find a piece-wise linear curve around which
the complete data set is concentrated. This approach is limited to find one-dimensional
representations of the data. The techniques described in this chapter also integrate sev-
eral local low-dimensional representations, even if the local subspaces have a dimen-
sionality greater than one, as in the example in Fig. 5.1.

In the next section we describe a recently introduced method to integrate the local low
dimensional representations. Our contribution in this section is an improvement of the
parameter estimation technique, which replaces an iterative procedure with a closed-
form solution. We compare this method with several other dimension reduction tech-
niques: PCA, the self-organizing mixture models approach of the previous chapter, and
generative topographic mapping.
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Figure 5.1: Data in IR3 with local two dimensional subspaces indicated by the axes (left). The
Desired global two dimensional data representation unfolds the non-linear subspace in which

the data resides (right).

In Section 5.3, we consider how this method applies to a setting where one has two
sets of high dimensional points in different spaces that are related by several correspon-
dences, i.e. for some points in one set we know that they should have the same low
dimensional coordinates as a point in the other set. Non-linear dimension reduction for
the two sets of points simultaneously allows us to predict the correspondences for other
points through the discovered low dimensional representation. Since this approach also
exploits points without a correspondence, good predictions can be made even when
only a few correspondences are given. Note that this technique is useful in sensor fu-
sion problems, where each high dimensional set is a collection of measurements from a
different sensor. The correspondences are then simultaneously recorded readings from
the different sensors; these different sensor readings are thus recorded while the mea-
sured system is in a single state. Then, if one sensor fails, the missing high dimensional
sensor reading may be reconstructed from the other high dimensional sensor reading
by a mapping through the low dimensional space. We extend the approach of Sec-
tion 5.2 for this new setting and compare it to a more straightforward approach using a
mixture of factor analyzers. In Section 5.4 we present our conclusions on the methods
considered in this chapter.

5.2 Combining local linear models

In Section 5.2.1 we describe in detail two types of local linear models that can be com-
bined to form global non-linear models: mixtures of probabilistic factor analyzers and
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mixtures of probabilistic principal component analyzers. Then, in Section 5.2.2, we de-
scribe a method to simultaneously estimate the parameters of such mixtures and inte-
grate the local coordinate systems into a single global representation. In Section 5.2.3
we present our improved parameter estimation procedure. Since the optimization pro-
cedure is only guaranteed to find local optima of the objective function, careful initial-
ization of the parameters is required. In Section 5.2.4 we consider several parameter ini-
tialization methods. Finally, in Section 5.2.5, we present experimental results obtained
with this approach and compare them to results obtained with other methods.

5.2.1 Mixtures of linear models

We assume that the high dimensional data {x1, . . . ,xN} is sampled independently and
identically from a smooth (non-linear) manifold and is potentially corrupted by some
additive Gaussian noise. Thus, the data is distributed on, or near, a low dimensional
manifold in a high dimensional space. If the manifold is sufficiently smooth, i.e. locally
it is almost linearly embedded in the high dimensional space, then we can model the
data density with a mixture of densities that concentrate their mass in a linear subspace.
To this end we can use mixtures of factor analyzers (MFA) or mixtures of principal
component analyzers (MPCA).

Both an MFA and an MPCA density over data vectors x ∈ IRD can be specified by intro-
ducing two hidden (or unobserved) variables s and z. The first variable, s ∈ {1, . . . , k},
is an index over the k components of the mixture. The second variable z ∈ IRd is a
coordinate in the d-dimensional subspace associated with the mixture component with
index given by s. Thus, z may be interpreted as a coordinate on one of the local lin-
ear approximations of the manifold. The density over vectors x follows from the joint
density over (x, z, s):

p(x, z, s) = p(x|z, s)p(z|s)p(s), (5.1)
p(z|s) = N (z; 0, I), (5.2)

p(x|s, z) = N (x; µs + Λsz,Ψs). (5.3)

The distribution on x given s is obtained by marginalizing over z and given by:

p(x|s) =

∫
z

p(x|z, s)p(z|s) dz = N (x; µs,ΛsΛ
>
s + Ψs). (5.4)

The marginal distribution on x is then given by the mixture:

p(x) =
k∑

s=1

p(s)p(x|s). (5.5)

The columns of the matrix Λs span the subspace of component s which has an offset
µs from the origin. The uncertainty of the latent coordinate z is mapped by µs and Λs
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into uncertainty of x in the subspace. The positive diagonal matrix Ψs adds variance
outside the subspace which makes the covariance matrix of p(x|s) positive definite so
that p(x|s) is a proper density. The MPCA density differs from the MFA density by the
restriction that Ψs = σ2

sI.2

The subspace spanned by the columns of Λs provides a coordinate system which can be
used to reconstruct the data from low dimensional coordinates z ∈ IRd, at least for data
that receives high likelihood under p(x|s). The joint model p(x, z, s) induces a Gaussian
density on z given x and s:

p(z|x, s) = N (z;Γ−1
s Λ>

s Ψ−1
s (x− µs),Γ

−1
s ), (5.6)

Γs = I + Λ>
s Ψ−1

s Λs, (5.7)

which can be used to infer the coordinates z in the local subspace given a data point x
and a mixture component s.

5.2.2 Aligning local linear models

In order to combine the local coordinate systems of each mixture component into a sin-
gle global coordinate system, we assume that each data point has unique (but unknown)
global coordinates g on the manifold. Furthermore, we assume that locally —in a re-
gion that is assigned high likelihood by a single mixture component, say component
s— there is a linear transformation that maps the local coordinates z to the global coor-
dinates g; i.e. locally we have:

g = κs + Asz, (5.8)

for some offset κs ∈ IRd and linear map As. If a data point x is assigned high likelihood
by two or more mixture components, then the global coordinates as computed from
the different coordinate systems with (5.8) should be approximately the same. In other
words: mixture components with high posterior p(s|x) should ‘agree’ on the global co-
ordinate of point x. Since the local coordinates z are not known with certainty, a formal
notion of ‘agreement’ between the mixture components needs to take into account the
uncertainty in the local coordinates z as given by p(z|x, s).

Conditioned on a mixture component s we have posited a deterministic linear relation
between local and global coordinates in (5.8). Therefore, the Gaussian density p(z|xn, s)
induces a Gaussian density on g given xn and s:

p(g|xn, s) = N (g;mns,V
−1
s ), (5.9)

Vs = A−>ΓsA
−1 (5.10)

mns = κs + V−1
s A−>

s Λ>
s Ψ−1

s (xn − µs). (5.11)

2 See Section 3.1.4 for more details on the difference between PCA and FA.
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Since s is also not known with certainty we marginalize over it to obtain the conditional
density on g given x. This density takes the form of a MoG:

p(g|x) =
k∑

s=1

p(s|x)p(g|x, s). (5.12)

Thus, if several mixture components with non-negligible posterior p(s|x) for a data
point x yield quite different corresponding densities p(g|x, s) on the global coordinates,
then they do not ‘agree’ and the mixture p(g|x) will exhibit several modes. On the other
hand, if all components with non-negligible posterior p(s|x) yield exactly the same den-
sity p(g|x, s) on the global coordinates, the components are in perfect agreement and
the mixture p(g|x) will be exactly a single Gaussian.

Therefore, to include the notion of agreement in the learning algorithm for the mixture
model we can penalize models which —on average— yield multi-modal p(g|xn). To
this end we add to the data log-likelihood a penalty term. The penalty term measures
how much the mixture p(g|xn) resembles a Gaussian qn(g) = N (g;gn,Σn), through the
KL divergence D(qn(g)‖p(g|xn)). The penalized log-likelihood objective function reads:

L′ =
N∑

n=1

[
log p(xn)−D(qn(g)‖p(g|xn))

]
(5.13)

=
N∑

n=1

[
H(qn(g)) +

∫
qn(g) log p(xn,g) dg

]
, (5.14)

whereH denotes the entropy of a distribution.3 Note that the objective L′ does not only
depend on the parameters of the mixture model p, but also on the distributions qn which
can be regarded as probabilistic estimates of the global coordinates of the data.

Remarks. Note the similarity between L′ and the objective function (4.3) that we intro-
duced in the previous chapter to enforce self-organization in mixture models. There, we
associated a discrete hidden variable with each data point —an index over the mixture
components— and with each mixture component s we associated a location gs in the
low dimensional latent space. We used the penalty term D(qn(s)‖p(s|xn)), to encourage
the p(s|x) to be ‘localized’ in the latent space since the qn were constrained to be of the
form qn(s) ∝ exp(−λ‖gs − gt‖) for some t ∈ {1, . . . k}. In contrast, here we aim to find
a mixture of linear models such that the smooth density over latent coordinates, p(g|x),
is uni-modal.

The mixture of experts approach to classification and regression (Jacobs et al., 1991) is
also similar to the method presented in this chapter. This approach constructs a com-
plex (e.g. non-linear) classification or regression function by combining several experts.

3 See Section 3.1.2 for the definitions of entropy and KL divergence.
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Each expert implements a simple (e.g. linear) classification or regression function that
is suitable for some subset of the data space. To determine which expert should be
used to classify a new data point, a gating network is used. The gating network pro-
duces weighting factors (that are positive and sum to one) by which the predictions
of the individual experts are averaged. Of course, the output of both the experts and
the gating network depend on the presented data point. Analogously, in the model
described above, the non-linear mapping between high dimensional coordinates x and
latent coordinates g defined in (5.12) is also a weighted average of simple linear Gaus-
sian dependencies p(g|x, s) weighted by factors p(s|x) that switch between the ‘experts’.

Optimization. In Section 3.1.2 we encountered the problem of local maxima in mix-
ture log-likelihoods and discussed the EM algorithm to identify these local maxima.
The second term in the summands of our objective function defined in (5.14) is an ex-
pectation of the logarithm of the mixture likelihood p(xn,g) =

∑k
s=1 p(s)p(xn,g|s), and

as a result L′ also exhibits local maxima that are not global. Below, we consider how
we can use an EM-like algorithm to (locally) maximize the objective L′. To this end we
introduce for each data point a distribution qn(s) over the mixture components that is
used to define a bound on the mixture log-likelihoods:

log p(xn,g) ≥ log p(xn,g)−D(qn(s)‖p(s|xn,g)) (5.15)

= H(qn(s)) +
k∑

s=1

qn(s) log p(xn,g, s). (5.16)

The bounds on the individual mixture log-likelihoods can be combined to bound the
complete objective function:

L′ ≥ Φ =
N∑

n=1

[
H(qn(s)) +H(qn(g)) +

k∑
s=1

qn(s)

∫
qn(g) log p(xn,g, s) dg

]
. (5.17)

We can now iteratively increase Φ, analogous to the EM algorithm, by maximizing it
in turn with respect to the parameters of qn(s), qn(g) and p respectively. We coin this
EM-like maximization of Φ the Coordinated Factor Analysis (CFA) algorithm. Using
the abbreviations, qns = qn(s), xns = xn−µs, and gns = gn−κs, we can write Φ in terms
of the parameters as:

Φ =
N∑

n=1

k∑
s=1

qns[Sns − Ens], (5.18)

Sns =
1

2
log |Σn| − log qns +

d

2
log(2π), (5.19)

Ens =
1

2
g>nsVsgns +

1

2
x>nsΨ

−1
s xns − g>nsA

−>
s Λ>

s Ψ−1
s xns +

1

2
Tr{ΣnVs} (5.20)

+
1

2
log |Ψs|+ log |As| − log p(s) +

D + d

2
log(2π). (5.21)
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To maximize Φ with respect to the distributions qn(s) we equate the corresponding par-
tial derivatives to zero and find the maximizing assignment as:

qns ←
e−Ens∑
s′ e

−Ens′
. (5.22)

Similarly, to maximize Φ with respect to the distributions qn(g) we set:

Σ−1
n ←

∑
s

qnsVs, gn ← Σn

∑
s

qnsVsmns. (5.23)

Given the distributions qn(s) and qn(g) we can maximize Φ with respect to the param-
eters of p. Let q̃ns = qns/

∑
m qms, then the maximizing assignments for the mixing

weights and offsets are:

p(s)← 1

N

∑
n

qns, κs ←
∑

n

q̃nsgn, µs ←
∑

n

q̃nsxn. (5.24)

For the remaining parameters {Λs,As,Ψs}ks=1 we can again equate the partial deriva-
tives to zero.4 Using the weighted correlations and covariances:

Cs =
∑

n

q̃nsxnsgns, Gs =
∑

n

q̃ns[gnsg
>
ns + Σn], (5.25)

the equations are:

Λs = CsG
−1
s As, (5.26)

[Ψs]ii =
∑

n

q̃ns

[[
xns −ΛsA

−1
s gns

]2
i
+
[
ΛsA

−1
s ΣnA

−>
s Λ>

s

]
ii

]
, (5.27)

A−1
s = (I + Λ>

s Ψ−1
s Λs)

−1(A>
s + Λ>

s Ψ−1
s Cs)G

−1
s . (5.28)

These equations are coupled, and it is not immediately clear how we can find the pa-
rameters that jointly satisfy these equations. In (Roweis et al., 2002) the authors propose
to use the optimality equations as assignments and iterate them until convergence, i.e.
in turn setting the left-hand-side of each of the equations (5.26)–(5.28) to the righthand
side of the equation. Clearly, the optimal matrices form a fixed point of these equa-
tions. Note that in this manner a ‘double-loop’ algorithm is obtained. First we loop
over the EM steps until convergence and second, within each M-step, we iterate (5.26)–
(5.28) as assignments until convergence. Below, we show that parameters that satisfy
(5.26)–(5.28) can be found in closed-form, obviating the iterations within the M-steps.

4 See e.g. (Schönemann, 1985) for some of the required matrix derivatives.
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5.2.3 Closed-form update equations

In (Verbeek et al., 2002b) it was already shown that for a restricted version5 of the prob-
abilistic model p the parameters can be found in closed-form. Here we show that the
same holds for the unrestricted model.

If we substitute (5.26) into (5.28), we obtain the equation:

A−1
s = (I + A>

s G−1
s C>

s Ψ−1
s CsG

−1
s As)

−1(A>
s + A>

s G−1
s C>

s Ψ−1
s Cs)G

−1
s . (5.29)

This equation can be further simplified by simple algebraic manipulation to reveal the
solutions for As:

(I + A>
s G−1

s C>
s Ψ−1

s CsG
−1
s As)A

−1
s Gs = A>

s + A>
s G−1

s C>
s Ψ−1

s Cs, (5.30)
A−1

s Gs + A>
s G−1

s C>
s Ψ−1

s Cs = A>
s + A>

s G−1
s C>

s Ψ−1
s Cs, (5.31)

A−1
s Gs = A>

s , (5.32)
Gs = AsA

>
s . (5.33)

Once the optimal As is found, corresponding optimal Λs and Ψs are found through
(5.26) and (5.27). Since Gs is positive definite by construction, see (5.25), the existence
of a matrix As satisfying (5.33) is guaranteed (Horn and Johnson, 1985). Note that for
any matrix As that satisfies (5.33) and some unitary matrix U, i.e. with UU> = I, the
matrix AsU also satisfies (5.33). This invariance corresponds to an arbitrary unitary
transformation of the local coordinates in the subspace of a mixture component.

We will now show that we do not need to explicitly factorize Gs as is suggested by
(5.33). Let us make the following observations:

1. In all computations needed for the other updates and evaluation of Φ, the matrix
Λs appears only in products ΛsA

−1
s . For optimal As and Λs this product equals

CsG
−1
s , cf. (5.26), and does not depend on the particular factorization that is used.

2. To compute Ens we need the logarithm of the determinant of As. The equality
log |As| = 1

2
log |Gs| shows that this quantity does not depend on the particular

factorization.

3. To compute Vs we need A−>
s A−1

s , which equals G−1
s , again independent of which

factorization is used.

Thus, although optimal matrices As are characterized by the factorization of Gs in (5.33),
the actual factorization is not needed in the CFA parameter estimation procedure.

Evaluation of closed-form update equation. Next we consider how our closed-form
update compares with the iterative scheme of (Roweis et al., 2002) in terms of com-
putation time and the obtained parameter estimates. For our closed-form update we

5 The covariance matrix was restricted to be of the k-subspaces type (see Section 3.1.4).
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only need to compute G−1
s and the product CsG

−1
s . To perform the latter multiplica-

tion O(Dd2) computations are needed. The matrices G−1
s and CsG

−1
s , which are fixed

throughout the iterations, are also needed when iterating (5.26)–(5.28). In addition, in
the iterative approach, the amount of computations needed in each iteration is O(Dd2),
which is needed to compute the different matrix products in the updates equations.
Thus, our closed-form update equations require less computations than a single itera-
tion of iterative approach. The factor of speed-up when using our closed-form equations
rather than the iterative approach depends on the number of iterations needed by the
iterative approach to reach a fixed point.

Below we present results comparing the performance when using the closed-form up-
date equations versus the iterative approach. To start the iterations of (5.26)–(5.28) we
initialized As by its value found in the previous M-step, and randomly in the first step.
To determine when the iterative procedure has converged we considered the maximum
relative change m in the elements aij of As, i.e.

m = max
i,j
|1− anew

ij /aold
ij |. (5.34)

We assumed the iterations to have converged if m < 10−4.

To our knowledge it is not known whether the iterative procedure is guaranteed to
converge. In practice we encountered cases (with D = 3 and d = 2) where the iterations
did not converge within 105 iterations. Since (i) the number of iterations needed to
converge can be extremely large and (ii) there might be cases where the iterations do
not converge at all, it makes sense to limit the number of iterations. If the iterations do
not converge, we can simply keep the old parameters found at the last time the iterations
converged. In our experiments we found that using a maximum of 100 iterations hardly
ever yields convergence in the M-step, a maximum of 1000 yielded convergence in most
cases. In our experiments we also noticed that the number of iterations needed for
convergence is much larger when the estimates of the gn are very poor, e.g. initialized
by independent draws form a Gaussian distribution.

To quantify the speed-up of the closed-form equations in practice, and to see whether
they lead to better final parameter estimates, we measured: (i) the total time needed for
the algorithm to converge6, (ii) the value of Φ that was attained after convergence and
(iii) the number of EM steps required to converge.

We measured the performance when applying the algorithms to two data sets. The first
one is the data set of Fig. 5.1 (we will refer to it as the ‘S’ data set), we initialized the latent
coordinates as coordinates on the unrolled ‘S’. The second data set is a set of 698 images
of 64× 64 pixel each of a face seen from different directions and under different lighting
conditions, rendered by a computer graphics engine.7 To speed-up the experiment, the

6 To measure convergence of the EM algorithm we checked whether the relative change in Φ was
smaller than 10−4.

7 This data set is available online at http://isomap.stanford.edu .

http://isomap.stanford.edu
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Results for the ‘S’ data set, N = 1000, D = 3, d = 2, k = 10.
# EM steps time time/step Φ

closed-form 123.5± 49.5 6.6± 3.9 0.05± 0.01 0.9± 0.6

iterative 125.5± 33.8 77.8± 29.3 0.61± 0.10 0.2± 0.8

Results for the isomap face data set, N = 698, D = 30, d = 3, k = 50.
# EM steps time time/step Φ

closed-form 78.4± 7.0 30.0± 2.8 0.382± 0.004 9.7± 0.7

iterative 76.7± 9.1 198.0± 32.7 2.596± 0.420 8.1± 1.1

Figure 5.2: Performance evaluation of closed-form update equations.

faces were first projected on the 30-dimensional principal components subspace which
contains over 90% of the total data variance. The face varies in the direction from which
it is seen (two degrees of freedom) and the direction of lighting (one degree of freedom).
Here, we initialized the latent coordinates as the known three pose parameters.

The results are summarized in Fig. 5.2 by averages and standard deviations from ten
runs. The results show that using the closed-form update equations in practice yields a
significantly faster algorithm and higher values for the objective function in a compara-
ble number of EM iterations. We conclude that the closed-form update equations are to
be preferred over the iterative procedure proposed in (Roweis et al., 2002).

5.2.4 Parameter initialization

Like many other EM algorithms, the CFA algorithm described above can terminate at
poor local optima of the objective function. Careful parameter initialization, especially
of the gn, is needed to successfully use the algorithm. In (Roweis et al., 2002) the authors
proposed to initialize the gn by using some other unsupervised non-linear dimension
reduction technique. We can then apply the CFA algorithm described above until con-
vergence while keeping the gn fixed at their initialized value. The Σn are also kept fixed
at a small multiple of identity and the qns are initialized at random near uniform.8 In this
manner we learn a MoG on the ‘complete’ data, i.e. each data vector xn is augmented
with its estimated global coordinate gn. After such an initialization phase, the gn and
Σn can be updated as well, to obtain better estimates of consistent global coordinates gn

and their uncertainties. Note that the overall procedure is still unsupervised.

In principle any non-linear dimension reduction method can be used for the initializa-
tion. However, since we need it to avoid poor local optima in the optimization proce-
dure of the last section, the initialization should not suffer from the same problem. The

8 Alternatively, while keeping the gn and Σn fixed, a greedy mixture learning approach can be used
such as described in Chapter 3.
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methods we consider below minimize quadratic error functions, which have only one
global minimum which can be identified efficiently.

Initialization using locally linear embedding. In (Roweis et al., 2002) the authors
used the locally linear embedding (LLE) algorithm for initialization of the gn, see Sec-
tion 2.2.3. Recall that the LLE algorithm consists of two steps. In the first step, for each
data point xn weights wnm are computed that optimally reconstruct xn from a linear
combination of a few data points xm that are nearest to xn in the data space. We use W
to denote the matrix with [W]nm = wnm and G to denote the N × d matrix with g>n on
the n-th row. In the second step of LLE, we use the weights in W to find the matrix G
with low dimensional coordinates that minimizes:

ELLE =
∑

n

‖gn −
∑
m

wnmgm‖2 = Tr{G>MG}, (5.35)

where M = (I−W)>(I−W). Since ELLE is invariant to translations and rotations of the
gn, the low dimensional coordinates are constrained to be zero mean and have identity
covariance matrix. The d dimensional coordinates that minimize ELLE can be recovered
by computing the (d + 1) eigenvectors with smallest eigenvalues of the sparse N × N
matrix M.

Although the matrix M used by LLE is sparse, its size grows as the number of points in
the data sets grows. In (Teh and Roweis, 2003), a constrained version of the LLE algo-
rithm was proposed that avoids the linear growth of the eigenproblem with the number
of data points. In this approach first a mixture of factor analyzers (MFA) is fitted on the
data. The fitted model is used to constrain the solutions of the LLE algorithm as follows.
The MFA gives for each data point xn and mixture component s a posterior probability
qns = p(s|xn). Furthermore, we can project each data point xn on the subspace of the
s-th mixture component to obtain zns = Λs(xn − µs). The global coordinates gn, which
are found by LLE, are now constrained to be given by:

gn =
∑

s

qnsgns, gns = κs + Aszns, (5.36)

where gns is a linear transformation of zns. Given the qns and zns, the global coordinates
only depend on the linear maps As and the offsets κs. To make this linear dependence
explicit we write G as the product of matrices U and L:

G = UL, U =


q11[1 z>11] . . . q1k[1 z>1k]

...
. . .

...

qN1[1 z>N1] . . . qNk[1 z>Nk]

 , L =



κ>
1

A>
1

...

κ>
k

A>
k


. (5.37)
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If we now substitute G = UL in ELLE from (5.35), we obtain:

ELLE = Tr{G>MG} = Tr{L>U>MUL}. (5.38)

Under the constraints that the gn are zero mean and have identity covariance matrix,
the gradient of the error function equals zero for vectors v that satisfy:

U>MUv = λU>Uv. (5.39)

Similar to the unconstrained LLE, the optimal linear maps are recovered by computing
the (d + 1) eigenvectors with smallest eigenvalues. The first eigenvector has eigenvalue
λ = 0 and it has constant value in all the entries for the κs and zero elsewhere. This
eigenvector does not satisfy the variance constraint since it leads to assigning the same
coordinate to all the data points. The other eigenvectors do satisfy the constraints and
the value of the error function is given by the sum of their corresponding eigenvalues.

Note that the eigenvectors v are of length k(d+1), the number of local models times one
plus the dimensionality of the local subspaces, rather than of length N as in the normal
LLE algorithm. However, in order to compute the error function we do need to find the
N ×N weight matrix W for which we need to find for each point its nearest neighbors
in the data space. Finding the nearest neighbors costs O(N2) operations in a naive im-
plementation which computes distances for each pair of data points. As mentioned in
Section 2.2.4, more efficient techniques exist.

In (Wieghardt, 2001) a similar approach was presented to integrate a fixed set of local
linear models. In this approach each data point is assigned to one or more local models,
and the overlap of two local models s and t is defined as the set of data points that is as-
signed to both s and t. Then, approximate distances between overlapping local models
are estimated on the basis of the points in their overlap. The distances between non-
overlapping local models are estimated as the length of the shortest connecting path
through overlapping models. Then classical MDS (see Section 2.2.3) is applied to find
global low dimensional coordinates κs for each local model. (Note the similarity with
the isomap algorithm, discussed in Section 2.2.3.) Finally, for each local model s a linear
transformation from local to global coordinates is found. This is done on the basis of (i)
the center of gravity, in local coordinates of model s, of points in the overlap between s
and each overlapping model t, and (ii) the difference κs − κt in latent coordinates be-
tween local model s and all overlapping models t. Compared to the approach of (Teh
and Roweis, 2003), this approach is more ad-hoc in the sense that here the optimization
is decoupled into several steps which are not optimizing a single objective function.

Initialization without computing nearest neighbors. An alternative method, similar
to the constrained LLE algorithm but for which nearest neighbors are not needed, was
proposed in (Brand, 2003). As in the constrained LLE algorithm, a mixture of linear
models is fitted to the data and for every data point xn each mixture component s yields
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a posterior probability qns = p(s|xn) and a projection zns of xn on the subspace associ-
ated with component s. Each mixture component s is assigned a linear map that can be
used to map local coordinates zns to global coordinates, again we have: gns = Aszns+κs.

The error function here is similar to the notion of ‘agreement’ in Section 5.2.2: for each
data point we want the mapping of its local coordinates to the global coordinates —
using components with large qns— to be as close as possible to the (unknown) global
coordinate gn. Given the global coordinates gn, we can define the error function as
the weighted (by the posteriors) sum over all data points xn and local models s of the
squared distance between the global coordinate gn and the local projections gns:

ECharting =
N∑

n=1

k∑
s=1

qns‖gn − gns‖2. (5.40)

To find an estimate of the gn from given linear maps and corresponding local projections
gns we can minimize this error with respect to the gn. The minimizing gn are given by a
weighted average of the local mappings of xn to global coordinates:

gn =
k∑

s=1

qnsgns. (5.41)

We can now substitute the estimated global coordinates of (5.41) into (5.40), such that it
becomes a function of the local linear maps only. This yields:

ECharting =
1

2

N∑
n=1

k∑
s=1

k∑
t=1

qnsqnt‖gns − gnt‖2. (5.42)

This error function is quadratic in the linear maps As and offsets κs. We define the
block-diagonal matrix D with k blocks Ds (s = 1, . . . , k) as:

D =


D1 0

. . .

0 Dk

 , Ds =
N∑

n=1

qns[z
>
ns 1]>[z>ns 1]. (5.43)

With U and L as defined above, the objective can now be written as:

ECharting = Tr{L>(D−U>U)L}. (5.44)

For the same reasons as before, we constrain the gn to be zero mean and have unit
covariance. The columns of L yielding zero derivative of ECharting under this constraint
are characterized as the generalized eigenvectors:

(D−U>U)v = λU>Uv. (5.45)
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The value of the objective function is given by the sum of the corresponding eigenval-
ues λ. The smallest eigenvalue is always zero, corresponding to mapping all data into
the same latent coordinate. This embedding is uninformative since it is constant, there-
fore we select the eigenvectors corresponding to the second up to the (d + 1)st smallest
eigenvalues to obtain the best embedding in d dimensions.

Note that the objective ECharting effectively only takes points into account for which
the posterior qns is non-negligible for at least two mixture components. This can be
seen from (5.42), where each term is multiplied by the product of two posteriors qnsqnt.
Experimentally we found that often only a small percentage of the data points have a
posterior distribution with entropy significantly larger than zero if a mixture of FA or
PCA is fitted to high dimensional data that is distributed on or near a low dimensional
manifold. Therefore, only a small number of data points determine the actual error
function. Thus, this method is not very robust, since two different mixtures fitted to
the same data might yield quite different sets of points that determine the actual error
function and quite different results could be obtained.

Robustness for variation in the mixture fitting can be improved by using several, say
C, different mixtures of local models fitted to the same data. To obtain several different
mixtures that fit the data well, we can use the EM algorithm and initialize each mixture
at different parameter values; the EM algorithm will most probably terminate at differ-
ent mixture configurations due to the local optima in the data log-likelihood surface.
Alternatively, we can train each mixture on a different random subset of, say 90%, of
all available data. We can then define a new mixture, p, by averaging over the C mix-
tures p1, . . . , pC ; thus p = 1

C

∑C
i=1 pi. Since each individual mixture pi has to fit all the

data, most of the posteriors p(s|x) on components in p will have an entropy significantly
larger than zero. Thus in the larger mixture p almost every point will contribute to the
associated objective function ECharting and better results are obtained in practice (Ver-
beek et al., 2003a).

Comparison of coordinate initialization methods. Above we have described several
ways to initialize the estimates of the global coordinates of the data. We pointed out
that ECharting can become degenerate if the mixture posteriors are near zero entropy.
This degeneracy does not occur when using the constrained LLE error function. Even
when all points have a posterior with zero entropy, the constrained error function (5.38)
is still non-degenerate and can be used successfully. This is an important advantage of
using the constrained LLE method.

However, ECharting has the advantage that it can be used in two settings where the LLE
algorithm cannot. First, if there are missing values in the data vectors then it is not clear
how to compute the nearest neighbors and the reconstruction weights. Second, it is also
not clear how to compute the neighbors and weights if the data are not vectors in IRD but
also have discrete valued variables. In both settings we can still fit a mixture model to
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Figure 5.3: Original data in IR3 (top left). Recovered low dimensional coordinates with grid
overlay (bottom). Grid points mapped to the data space using model (top right).

the data and compute the posteriors on the mixture components. In the first setting we
can also compute projections on local subspaces. In the second setting projections can
only be computed from the real-valued variables. If there are no real valued variables
at all, it is possible to discard the linear maps As and only optimize for the κs.9

For the data sets used in our experiments, which are all treated as sets of vectors in
IRD without missing values, we found that the mixture fitting often takes more time
than finding the nearest neighbors. In particular when several mixtures are used to
alleviate the problem of low entropy posteriors with ECharting, the mixture fitting takes
more computation than finding the nearest neighbors. Therefore, in the experiments
described in the next section we used initialization based on the LLE error function.

5.2.5 Experimental results

In this section we present results obtained by applying the method described in the
previous section to several data sets. First, we present several qualitative experimen-
tal results. Second, we present a quantitative comparison of the obtained results with
results obtained with self-organizing maps and generative topographic mapping.

9 In fact, in this case solving for the κs coincides with the Laplacian eigenmap algorithm, see Sec-
tion 2.2.3, using the affinity matrix Q>Q, where [Q]ns = qns.
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Figure 5.4: Recovered latent representation of the images (top). Images generated with model
along the line segments shown in the top panel (bottom).

Qualitative results. The model presented above can be used in two directions. First,
the model can be used for dimension reduction, i.e. mapping a point x in the data space
to a point g in the latent space. Second, the model can be used for data reconstruction,
i.e. mapping a point g in the latent space to a point x in the data space. In Fig. 5.3 we
illustrate the two directions in which we can use the model using the ‘S’ data set of
Fig. 5.1. We initialized the latent coordinates with the LLE algorithm using 10 nearest
neighbors, and we used a mixture of k = 10 factor analyzers. In the left panel of Fig. 5.3
the original three dimensional data is depicted on which the model was trained. The
right panel depicts the two-dimensional latent representation of the original data and a
rectangular grid in the same space. The left panel depicts the same grid, when mapped
to the data space with the trained model. The illustration shows that the non-linear
subspace containing the data was indeed recovered based on the training data and that
accurate non-linear mapping between the data space and latent space is possible using
k = 10 locally valid linear mappings.

Next, we show results obtained when applying the model to a data set of images of a
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Reconstruction error Erec. Log-likelihood/103.
PCA: 0.685± 0.055 PCA: −1.61± 0.02

k CFA GTM SOMM CFA GTM SOMM
9 0.00± 0.00 0.31± 0.01 0.42± 0.01 0.19± 0.15 −1.82± 0.02 −1.92± 0.02

16 0.00± 0.00 0.18± 0.02 0.27± 0.04 0.65± 0.08 −1.60± 0.03 −1.80± 0.06

25 0.00± 0.00 0.12± 0.01 0.18± 0.02 0.73± 0.12 −1.53± 0.03 −1.68± 0.04

36 0.00± 0.00 0.08± 0.01 0.14± 0.02 0.74± 0.09 −1.45± 0.04 −1.56± 0.05

49 0.00± 0.00 0.09± 0.02 0.11± 0.02 0.56± 0.16 −1.39± 0.04 −1.47± 0.04

64 0.00± 0.00 0.06± 0.01 0.08± 0.01 0.30± 0.20 −1.35± 0.04 −1.39± 0.03

81 0.00± 0.00 0.04± 0.01 0.07± 0.01 0.01± 0.22 −1.34± 0.07 −1.34± 0.04

Figure 5.5: Results for the ‘S’ data set.

face, which vary in the pose and expression of the face. This data set consists of 1965
images of 20 × 28 pixels each. The data set was also used in (Roweis et al., 2002) and
we were able to confirm the results reported there.10 For initialization we used the
LLE algorithm with 14 nearest neighbors. The recovered latent representation of the
data is illustrated in Fig. 5.4, where each dot represents the coordinates g of an image.
We used the trained model to generate images x from latent coordinates g along three
straight trajectories in the latent space. The trajectories are plotted in the figure and the
corresponding generated images are shown in the bottom panel of Fig. 5.4. The latent
coordinates form two clusters; the first trajectory passes through both clusters and the
other two trajectories stay within a single cluster. From the generated images along the
trajectories we can see that the clusters roughly correspond to images of smiling and
non-smiling faces. The reconstructed images along the second and third line segment
show that the variation within the clusters corresponds to the variation in gazing direc-
tion (left-right) of the faces.

Quantitative comparison. Here we compare CFA with several other dimension re-
duction methods: PCA, self-organizing mixture models (SOMM), and generative topo-
graphic mapping (GTM). To asses the generalization performance of these methods for
data not included in the training set, the methods are evaluated using a separate set of
test data. We compared the log-likelihood assigned to the test data and the reconstruc-
tion error obtained for the test data. The reconstruction error was measured as follows:
(i) we map each test data point xn to a point gn in the latent space and then (ii) we map
the gn in the latent space back to the data space11, yielding x̂ and (iii) we measure the

10 This data set is available online from http://www.cs.toronto.edu/˜roweis .
11 For SOMM we mapped latent coordinates back to the data space by assigning the high dimensional

coordinates of the mixture component with nearest mean in the latent space. For GTM we map latent
coordinates back to the data space using the obtained generalized linear model, see Section 2.2.2.

http://www.cs.toronto.edu/~roweis
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Reconstruction error Erec/105 Log-likelihood/106

PCA: 10.48± 0.06. PCA: −2.998± 0.002.
k CFA GTM SOMM CFA GTM SOMM
9 7.0± 0.5 9.3± 0.1 9.3± 0.1 −2.40± 0.01 −3.688± 0.003 −3.682± 0.004

16 6.2± 0.4 8.1± 0.1 8.2± 0.1 −2.33± 0.01 −3.662± 0.004 −3.632± 0.005

25 5.9± 0.7 7.3± 0.1 7.4± 0.1 −2.29± 0.01 −3.644± 0.005 −3.591± 0.005

36 5.4± 0.5 6.8± 0.1 6.7± 0.1 −2.26± 0.01 −3.634± 0.005 −3.553± 0.006

49 5.4± 0.6 6.4± 0.1 6.2± 0.1 −2.26± 0.02 −3.625± 0.004 −3.521± 0.005

64 5.6± 0.7 6.1± 0.2 5.8± 0.1 −2.28± 0.02 −3.619± 0.004 −3.495± 0.006

81 5.4± 0.6 6.0± 0.1 5.5± 0.1 −2.32± 0.02 −3.614± 0.004 −3.473± 0.007

Figure 5.6: Results for the image data.

squared Euclidean distance between the original test point and its reconstruction. Thus
the reconstruction error may be defined as:

Erec =
N∑

n=1

‖xn − x̂n‖2. (5.46)

All models used a two dimensional latent space, and for GTM and SOMM the nodes
were placed on a square rectangular grid in the latent space such that the node loca-
tions had zero mean and identity covariance. For GTM and SOMM we use Gaussian
component densities with isotropic covariance matrix. For GTM we used as many ba-
sis functions as mixture components. The basis functions were of the form φi(g) =
exp(−‖g − κi‖2/2σ2), with σ2 = 1/10.

We performed the comparison on two data sets: the ‘S’ data set used before (using a
training and test set of 600 points) and a data set of 2000 images of 40× 40 pixels each of
a face looking in different directions (using 1500 training images and 500 test images).
The reported results are averages and standard deviations over 20 randomly drawn
train and test sets. The results on the ‘S’ data set are summarized in Fig. 5.5 and those
on the second data set in Fig. 5.6. In Fig. 5.7 we plotted some obtained reconstructions
(using k = 81) for the different models. As expected from the results in Fig. 5.6, the re-
constructions of the different methods appear quite similar although the ones produced
with CFA look slightly better (in particular those in the second and last column).

Note the overfitting effect for CFA on both data sets. The mean reconstruction error
and log-likelihood are optimal for about 36-50 components, using more components
actually worsens the results although the models are more expressive. This effect is
well known (Webb, 2002) and is caused by the fact that when using many components
more parameters must be estimated. However, since the amount of available data is
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Figure 5.7: Top row: original images. Reconstructions of images based on two-dimensional
representation using CFA (second row), GTM (third row) and SOMM (fourth row).

limited, the parameters cannot be accurately estimated and as a result the model can
be erroneous. The overfitting effect is not observed for SOMM and GTM. This can be
explained by the fact that these models use fewer parameters than the CFA model, while
using the same number of mixture components.

The obtained results lead to the following conclusions. The CFA model is able to achieve
significantly higher log-likelihood on the test data than the SOMM and GTM models,
while using the same number of mixture components. Compared to the log-likelihood
differences, the reduction in reconstruction errors is relatively small. However, with a
small number of mixture components the CFA model is able to achieve small recon-
struction errors. SOM and GTM need a much larger number of mixture components
in order to achieve comparable reconstruction errors since they do not use local linear
mappings. The standard deviation in the results obtained with the CFA model is several
times larger than in those obtained for SOM and GTM (except for the reconstruction er-
rors on the ‘S’ data set). This is caused by the sensitivity to the initialization of the CFA
model. It is possible that this sensitivity can be resolved by using more robust initial-
ization techniques, e.g. it is possible to minimize the sum of LLE error function using
several numbers of neighbors or to use bootstrap-like procedures as in (Ham et al.,
2003). Generally, the linear PCA models perform the worst. Interestingly, for the image
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Figure 5.8: Two data sets (left and right panel), the four pairs of corresponding points have
been labelled ‘a’–‘d’.

data the PCA model assigns higher likelihood to the test data than the GTM and SOMM
models. This is due to the fact that the data is very high dimensional; if the dimension-
ality grows the mass of an isotropic Gaussian density contained within a ball of unit
radius quickly drops12. The PCA model is able to concentrate most mass in the linear
subspace with most data variance, and therefore yields a higher likelihood.

5.3 Learning mappings between manifolds

In the previous section we considered the CFA model for non-linear dimension reduc-
tion. In this section, we consider how the CFA model applies to the case where multiple
embeddings of the same underlying low dimensional manifold are observed, each em-
bedding lying in a different high dimensional data space. So rather than one set of high
dimensional data points, we are now given two sets of high dimensional data points:
{x1

n ∈ IRD1}(n = 1, . . . , N1) and {x2
n ∈ IRD2} (n = 1, . . . , N2). The two sets are related

through a set of correspondences: for some pairs x1
n,x

2
m we know they share the same

low dimensional coordinate on the manifold. Fig. 5.8 illustrates this setting: the two
data sets are plotted respectively in the left and right panel and the correspondences
are indicated by the letters ‘a’–‘d’. Our goal is to predict the missing correspondences,
i.e. for a point in one space without a correspondence we want to estimate the coordi-
nates of the point in the other space that would correspond to it. In other words, we
consider a prediction problem where both the inputs and outputs are intrinsically low
dimensional, but specified as vectors in a high dimensional space.

12 For a Gaussian with unit isotropic variance the mass contained in a unit ball is 70% in a one dimen-
sional space, but only 0.02% in a 10 dimensional space (Carreira-Perpiñán, 1997).
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One can also think of the data as points in the product space IRD1 × IRD2 = IRD1+D2 .
Corresponding pairs x1

n,x
2
m can be regarded as a point in the product space, the first D1

coordinates are given by x1
n and the remaining D2 coordinates are given by x2

m. Points
x1

n for which we do not have a correspondence can be regarded as points in the product
space for which the first D1 coordinates are given by x1

n and the other coordinates are
not observed and similarly for points x2

n without correspondence.

Note that without loss of generality we can re-order the points such that (i) all the points
with a correspondence have a lower index than points without a correspondence and
(ii) all corresponding points have the same index, i.e. we only have correspondences for
pairs x1

n,x
2
m with n = m. The data vectors can be collected into a N1 × D1 matrix X1

and a N2 ×D2 matrix X2 which contain the coordinates of the data points as rows. We
can then partition the two matrices into a block containing points with correspondences
(indexed by c) and a part for points without a correspondence (indexed by w):

X1 =

(
X1

c

X1
w

)
, X2 =

(
X2

c

X2
w

)
. (5.47)

Viewing the data as points in the product space with missing values, the matrix with
data in the product space is given by:

X =


X1

c X2
c

X1
w ?

? X2
w

 , (5.48)

where the question marks indicate the missing values. The goal is now to estimate the
missing values. This can be done by estimating a density p(x1,x

2) on the product space,
since such a density induces the predictive densities p(x1|x2) and p(x2|x1).

The method described in this section is related to the parameterized self-organizing
map (PSOM) (Ritter, 1993). The PSOM also produces a mapping between two high
dimensional spaces through an underlying low dimensional representation. The basic
idea is to first find a low dimensional representation13 of the set of given input-output
pairs {(xi,yi)} (i = 1, . . . , N) and then to find a vector-valued function f that optimally
reproduces each input-output pair from its low dimensional representation. Thus if
gi is the vector of low-dimensional coordinates of the i-th pair, then f is such that for
i = 1, . . . , N we have f(gi) ≈ (xi,yi). The function f is taken to be a linear combination
of non-linear basis functions. To predict the output for a new input x, low dimensional
coordinates g∗ are found such that g∗ = arg ming ‖x − fx(g)‖2, where fx is the function
f restricted to the part corresponding to x. Compared to the CFA approach the PSOM
has two drawbacks: (i) PSOM can not use observations without a correspondence and
(ii) to map between the two spaces we have to find the low dimensional coordinates g∗

13 The authors suggest using self-organizing maps.
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that optimally reproduce the input. This involves minimizing a non-convex error func-
tion, which may produce erroneous results if a local but non-global minimum is found.
Arguably, another drawback of PSOM is that for a given input it simply produces an
output where the CFA approach produces a density over possible outputs. For these
reasons we do not compare the CFA approach with PSOM below.

Another approach to the correspondence problem is to fit a mixture of factor analyzers
(MFA) to the (incomplete) data matrix X. The EM algorithm can be used to estimate the
parameters in the presence of missing values, see e.g. (Ghahramani and Jordan, 1994).

In Section 5.3.1 we start by considering how the CFA model and learning algorithm
should be adapted to apply to this new setting. Then, in Section 5.3.2, we consider ini-
tialization techniques suitable for this setting. In Section 5.3.3 we present experimental
results which are used to compare the CFA and the MFA approach.

5.3.1 The probabilistic model

The probabilistic model presented in Section 5.2, together with its learning algorithm
can be adapted to apply to the current problem. Recall that in Section 5.2 we assumed
the densities

p(z) = N (z; 0, I), (5.49)
p(x|z, s) = N (x; µs + Λszs,Ψs). (5.50)

Furthermore, conditioned on s, we posited a deterministic relation: g = κs+Asg, which
induces the densities:

p(g|s) = N (g; κs,AsA
>
s ), (5.51)

p(x|g, s) = N (x; µs + ΛsA
−1
s (g − κs),Ψs). (5.52)

In the current setting it is more convenient to parameterize the model in a slightly dif-
ferent manner:

p(g|s) = N (g; κs,Σs), (5.53)
p(x|g, s) = N (x; µs + Λs(g − κs),Ψs). (5.54)

These densities induce the conditional densities p(x|s) and p(g|x, s):

p(x|s) = N (x; µs,Cs), (5.55)
Cs = ΛsΣsΛ

>
s + Ψs, (5.56)

p(g|x, s) = N (g;ms,V
−1
s ), (5.57)

Vs = Σ−1
s + Λ>

s Ψ−1Λs, (5.58)
ms = κs + V−1

s Λ>
s Ψ−1

s (x− µs). (5.59)
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The marginal p(x|s) has a D × D covariance matrix of the factor analysis type and its
inverse and determinant can be computed from inverses and determinants of d × d
matrices and diagonal matrices:

|Cs| = |Ψs| × |Σs| × |Vs|, (5.60)
C−1

s = Ψ−1
s (Ψs −ΛsV

−1
s Λ>

s )Ψ−1
s . (5.61)

Since we do not know the missing values, the objective function Φ defined in (5.17) in
the previous section is modified by basing it on the observed variables only. If xo

i indi-
cates the part of xi that was observed (either the D1 first variables, the last D2 variables,
or all variables), then the modified objective function reads:

Φ =
N∑

n=1

[
H(qn(s)) +H(qn(g)) +

k∑
s=1

qn(s)

∫
qn(g) log p(xo

n,g, s) dg

]
. (5.62)

To write Φ in terms of the model parameters we use the superscripts 1 and 2 to indicate
the sub-matrices and sub-vectors related to the first and second data space. Thus x1

i

indicates the first D1 coordinates of vector x1 and similarly Λ2
s denotes the sub-matrix

given by the last D2 rows of Λs. We write Φ as a sum of entropy terms Sns and energy
terms Ens, using the abbreviations x1

ns = x1
n−µ1

s, and similarly for x2
ns, and gns = gn−κs:

Φ =
N∑

n=1

k∑
s=1

qns[Sns − Ens], (5.63)

Sns =
1

2
log |Σn| − log qns +

d

2
log(2π), (5.64)

Ens = − log p(s) +
1

2
log |Σs|+

1

2
Tr{Σ−1

s (Σn + gnsg
>
ns)} (5.65)

+
1

2
(x1

ns −Λ1
sgns)

>Ψ1
s
−1

(x1
ns −Λ1

sgns) +
1

2
Tr{ΣnΛ

1
s
>
Ψ1

s
−1

Λ1
s}+

1

2
|Ψ1

s| (5.66)

+
1

2
(x2

ns −Λ2
sgns)

>Ψ2
s
−1

(x2
ns −Λ2

sgns) +
1

2
Tr{ΣnΛ

2
s
>
Ψ2

s
−1

Λ2
s}+

1

2
|Ψ2

s|.(5.67)

The second (respectively third) line of the expression for Ens should not be added for
points of which the first D1 (respectively last D2) coordinates are not observed.

Next we consider the parameter update equations of the EM-like algorithm. For Σn and
gn the updates become:

Σ−1
n ←

k∑
s=1

qns

[
Σ−1

s + Λ1
s
>
Ψ1

s
−1

Λ1
s + Λ2

s
>
Ψ2

s
−1

Λ2
s

]
, (5.68)

gn ← Σn

k∑
s=1

qns

[
Σ−1

s κs + Λ1
s
>
Ψ1

s
−1

(x1
ns + Λ1

sκs) + Λ2
s
>
Ψ2

s
−1

(x2
ns + Λ2

sκs)
]
.(5.69)
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Note that for the updates related to a particular data point, only the terms related to
the observed coordinates should be added. The update equations for qns, p(s) and κs

remain as before, thus using q̃ns = qns/
∑

m qms, the updates are:

qns ←
e−Ens∑
s′ e

−Ens′
, p(s)← 1

N

∑
n

qns, κs ←
∑

n

q̃nsgn. (5.70)

The other updates are given below:

Σs =
∑

n

q̃ns

[
Σn + gnsg

>
ns

]
, (5.71)

Λ1
s =

[∑
n

qnsx
1
nsg

>
ns −

∑
n

qnsx
1
ns ×

∑
n qnsg

>
ns∑

n qns

]
(5.72)

×

[∑
n

qns

[
Σn + gnsg

>
ns

]
−
∑

n

qnsgns ×
∑

n qnsg
>
ns∑

n qns

]−1

, (5.73)

µ1
s =

1∑
n qns

∑
n

qns

[
x1

n −Λ1
sgns

]
, (5.74)

[
Ψ1

s

]
i

=
1∑
n qns

∑
n

qns

[
x1

ns −Λ1
sgns

]2
i
+
[
Λ1

sΣnΛ
1
s
>
]

ii
(5.75)

In the last three updates the sums over data points run only over points for which the
first D1 coordinates are observed. The updates for µ2

s,Λ
2
s and [Ψ2

s]i are analogous.

5.3.2 Parameter initialization

As before, proper initialization of the gn is crucial in order to find good parameter esti-
mates with our EM-like algorithm. Below, we consider how the initialization methods
of the previous section apply to the current setting.

Parameter initialization without computing nearest neighbors. The parameter ini-
tialization method based on ECharting, presented in Section 5.2.4, can be extended to the
current setting as follows. Recall that the method based on ECharting consists of two
steps. First, a mixture of linear models is fitted to the data to yield for each data point
and mixture component a responsibility qns and a projection zns of xn on the subspace
of component s. Second, the quadratic error function ECharting (which is based on the
qns and zns) is minimized to find optimal linear maps that project the coordinates in the
component subspaces to global low dimensional coordinates. The global low dimen-
sional coordinates gn for a point xn are given by the weighted average of the projections
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gns with the different components:

gn =
k∑

s=1

qnsgns =
k∑

s=1

qns[κs + Aszns]. (5.76)

In the current setting where we have two sets of points, we can proceed as before for
each point set separately. However, in order to take into account the correspondence
between pairs x1

n and x2
n, we want the latent coordinates g1

n and g2
n computed from x1

n

and x2
n to be as similar as possible. Thus, we can use an error function that adds ECharting

based on each point set separately and for each correspondence a term that penalizes
the squared distance between g1

n and g2
n:

E = E1
Charting + E2

Charting +
∑

n

‖g1
n − g2

n‖2, (5.77)

where the last sum runs over corresponding pairs x1
n, x2

n. This error function is again
quadratic in the linear maps assigned to the mixture components and can be minimized
with the same techniques that were used in the previous section.

LLE based parameter initialization. In the current setting we can not directly apply
the LLE based parameter initialization used before because the missing values do not
allow us to compute nearest neighbors and reconstruction weights in the usual manner.

In (Ham et al., 2003) an approach was proposed to extend the LLE algorithm to the
current setting. The idea is to perform LLE on both sets of points X1 and X2 separately,
but to constrain the latent coordinates of corresponding points to be identical. Note
that for each set X1 and X2 we can compute the nearest neighbors and reconstruction
weights as in the first step of the standard LLE algorithm. Recall that the standard LLE
error function is:

ELLE =
N∑

n=1

‖gn −
N∑

m=1

wnmgm‖2 = Tr{G>MG}. (5.78)

Let E1
LLE = Tr{G1>M1G1} be the LLE error function based on X1 and similarly for

E2
LLE . Our goal is to minimize E1

LLE +E2
LLE subject to the constraint that corresponding

points have the same latent coordinates, and the usual constraint that the latent coordi-
nates are zero mean and have identity covariance. If we partition the matrix G1 with
latent coordinates for X1 into blocks G1

c and G1
w as:

G1 =

[
G1

c

G1
w

]
, (5.79)
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and similarly for G2, then the correspondence constraint is that G1
c = G2

c . We can use a
similar partition of the matrices M1 and M2:

M1 =

[
M1

cc M1
cw

M1
wc M1

ww

]
, M2 =

[
M2

cc M2
cw

M2
wc M2

ww

]
. (5.80)

It is not difficult to show that the constrained minimization problem is solved by com-
puting the (d + 1) eigenvectors of:

M =


M1

cc + M2
cc M1

cw M2
cw

M1
wc M1

ww 0

M2
wc 0 M2

ww

 , (5.81)

with smallest eigenvalues. As before, the eigenvector with smallest eigenvalue (zero)
contains a degenerate solution and is discarded. The final solution is then given by
letting the other d eigenvectors be the columns of:

G =


Gc

G1
w

G2
w

 . (5.82)

Comparison of initialization methods. In the previous section we saw that the error
function ECharting becomes degenerate when the entropy in the posterior probabilities
tends to zero. The same degeneracy appears in the current setting. In the current setting,
the LLE based error function can also become degenerate. However, this only happens
if the dimensionality of the latent space is greater than, or equal to, the number of cor-
respondences (which is unlikely since usually this dimensionality is very small).

Another difference is that in the LLE based method a constraint is used to account for
the correspondences, while in the method based on ECharting the penalty term that en-
codes the correspondences is added to the separate error function of each set of points.
As a result, if there are only very few correspondences, the penalty term is relatively
unimportant as compared to the other error functions and some weighting factor has to
be introduced to increase the influence of the penalty term. The value of the weighting
factor introduces a free parameter, and it is not clear how to set it automatically.

In our experiments below, we have used the LLE based initialization method because
it can be used when only very few correspondences are given and does not involve
weighting of the different errors.
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Figure 5.9: Data sets X1 (left panel) and X2 (right panel). If both curves are stretched out on a
line between zero and one, then corresponding points have the same position. Corresponding

points are filled identically in the figures.

5.3.3 Experimental results

In this section we experimentally compare CFA and MFA models to predict high di-
mensional correspondences. We investigate how the performance of the approaches
depends on the number of given correspondences and the number of mixture compo-
nents. First, we compare prediction accuracy on two synthetic data sets to gain insight
into the differences between the two approaches. Then we compare them using a data
set consisting of gray scale images of two objects to determine if the differences observed
with the synthetic data sets are also apparent in more realistic data sets.

The MFA density model was described in Section 5.2.1, and we used the EM algorithm
for mixtures of factor analyzers (Ghahramani and Hinton, 1996) to find parameters that
correspond to a (local) maximum of the data log-likelihood.

Synthetic data sets. In the first experiment we consider two data sets X1 and X2 that
are both distributed along a curve embedded in IR2, illustrated in Fig. 5.9. Both sets con-
tain 1240 points, in each experiment we used a training set of 200 points from each set
and a second set of 200 corresponding points to assess the quality of the fitted models.
The results reported below are averages over 20 experiments.

We trained CFA and MFA models using a latent dimensionality of d = 1, while varying
the percentage c of training data for which correspondences are available (ranging from
c = 5% up to c = 55% in 5% intervals, i.e. using from 10 up to 110 correspondences)
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k c = 1
20

3
20

5
20

7
20

9
20

11
20

1 0.64 0.83 0.59 0.60 0.59 0.62 0.57 0.58 0.53 0.54 0.51 0.52

2 0.22 0.69 0.20 0.26 0.18 0.21 0.17 0.18 0.16 0.17 0.16 0.17

3 0.09 0.88 0.10 0.20 0.08 0.11 0.08 0.11 0.07 0.07 0.07 0.07

4 0.04 0.93 0.05 0.19 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.03

5 0.02 1.05 0.02 0.09 0.02 0.08 0.03 0.10 0.02 0.03 0.02 0.02

6 0.04 1.03 0.01 0.34 0.01 0.05 0.03 0.06 0.01 0.03 0.01 0.01

7 0.03 0.79 0.01 0.19 0.01 0.06 0.01 0.06 0.01 0.05 0.01 0.02

8 0.09 1.03 0.01 0.21 0.01 0.16 0.01 0.06 0.00 0.06 0.00 0.02

9 0.26 1.01 0.01 0.31 0.00 0.15 0.00 0.09 0.01 0.14 0.01 0.01

10 0.49 0.99 0.01 0.25 0.01 0.14 0.00 0.08 0.00 0.02 0.00 0.02

Figure 5.10: Results (CFA left and MFA right in each column) for the first synthetic data set.

and the number k of mixture components (ranging from k = 1 to k = 10). To asses the
quality of the fitted models we used the test data, for which all 4 coordinates are known.
For the test data we predicted the last two coordinates given the first two coordinates
with the trained models, and vice versa.

When using an MFA, each mixture component s is a Gaussian density p(x|s) on the
product space which induces a conditional Gaussian on the coordinates in the second
space given the coordinates in the first space: p(x2|x1, s). Combining the different com-
ponents we obtain the conditional mixture density p(x2|x1) =

∑k
s=1 p(x2|x1, s)p(s|x1).

Hence, the expected value of x2 under this distribution, which we denote by x̂2, is the
sum of the means of p(x2|x1, s) (s = 1, . . . , k) where each mean is weighted by the cor-
responding posterior probability p(s|x1). The same analysis holds for the CFA models
and the predictions on x1 given x2.

As an error measure of the models we used the squared difference between the pre-
dicted coordinates x̂1 (or x̂2) and the true coordinates of x1 (or x2), averaged over all
test data points and over the coordinates. Thus for all N = 200 test points we measure:

Erec =
1

ND1

N∑
n=1

‖x̂1
n − x1

n‖+
1

ND2

N∑
n=1

‖x̂2
n − x2

n‖. (5.83)

In Fig. 5.10 we tabulated, for different numbers of correspondences and mixture com-
ponents, the error Erec obtained with CFA and MFA. Results where the CFA error is
significantly14 smaller are printed in bold.

Results of the same experiment using the data set shown in Fig. 5.8 are tabulated in
Fig. 5.11. In these experiments the latent dimensionality was d = 2. Of the total 1240

14 To determine significance we used a t-test with 19 degrees of freedom and p = 0.05.
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k c = 1
20

3
20

5
20

7
20

9
20

11
20

1 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19

2 0.27 0.74 0.18 0.34 0.16 0.18 0.16 0.18 0.16 0.17 0.16 0.16

3 0.34 0.98 0.21 0.33 0.13 0.19 0.13 0.18 0.13 0.15 0.13 0.15

4 0.34 1.26 0.14 0.57 0.12 0.25 0.12 0.16 0.11 0.17 0.10 0.14

5 0.22 1.13 0.15 0.51 0.08 0.30 0.09 0.20 0.10 0.18 0.08 0.16

6 0.25 1.45 0.13 0.71 0.08 0.37 0.08 0.23 0.07 0.18 0.06 0.16

7 0.25 1.40 0.09 0.67 0.09 0.40 0.09 0.23 0.06 0.20 0.05 0.14

8 0.23 1.28 0.09 0.67 0.06 0.42 0.06 0.26 0.05 0.19 0.05 0.13

9 0.20 1.30 0.10 0.63 0.05 0.40 0.05 0.26 0.05 0.17 0.05 0.14

10 0.18 1.20 0.08 0.62 0.06 0.43 0.05 0.26 0.04 0.19 0.04 0.15

Figure 5.11: Results (CFA left and MFA right in each column) for the second synthetic data set.

data points in each set, 600 random points were used to fit the models and another 600
random pairs of corresponding points were used to asses the error of the model. Again,
significantly smaller errors are printed bold.

The results for both data sets show a similar pattern. If many correspondences are
available, CFA and MFA give comparable results. If only a few correspondences are
given CFA performs significantly better than MFA. This difference is more pronounced
as the number of mixture components becomes larger. The effect is observed more
clearly in Fig. 5.12 where we plotted the average error differences against the number
of correspondences divided by the number of mixture components.

The explanation of the effect is that if the average number of correspondences per mix-
ture component becomes very low, then in an MFA model there can be mixture com-
ponents s which have (almost) no responsibility for correspondences (i.e. observations
without missing values). In such cases it is not possible to determine the dependencies
between coordinates in the two different spaces, since for each data point with non-
negligible responsibility for the component s either only the first D1 coordinates are
observed or only the last D2 coordinates. In comparison, the CFA model can exploit the
incomplete observations to determine these dependencies; this is possible through the
dependencies between the incomplete observations and the estimated global low di-
mensional coordinates on the manifold. To illustrate the difference in predictions using
a few correspondences and relatively many components, we plotted the obtained pre-
dictions on the test set in Fig. 5.13. These predictions were obtained on the first synthetic
data set, using k = 10 mixture components and four correspondences (c = 2

100
).

Mapping between views of different objects. In the second experiment we also com-
pare the reconstruction errors using MFA and CFA models, but we use a more realistic
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Figure 5.12: Average error of MFA minus average error of CFA on test set, plotted as function
of the number of correspondences per mixture component. Left and right panel show results

for respectively the first and the second synthetic data set.
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Figure 5.13: Predictions on the test set with MFA and CFA and the true coordinates plotted as
dots. The correspondences are plotted with an × symbol.
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Figure 5.14: Examples of the images of the two toy puppets. The top row contains images of
the cat figure and the bottom row images of the dwarf figure. Corresponding views are

displayed above each other.

data set of much higher dimensionality. The data consists of 2500 gray-scale images of
64×64 pixels each of two toy puppets viewed from different directions. In Fig. 5.14 some
corresponding views of the two puppets are depicted. The images, originally used in
(Peters et al., 2002), were provided by G. Peters who recorded them at the Institute for
Neural Computation of the Ruhr-Universität-Bochum, Germany. Images of the objects
were recorded while moving the camera over the viewing hemisphere, see the left panel
of Fig. 5.15. The viewing hemisphere was sampled at 3.6◦ intervals in longitude (yield-
ing 100 steps to complete the circle) and at 4.0◦ intervals in latitude (yielding 25 steps to
go from the equator of the hemisphere to the pole). Note that the images recorded near
the top of the hemisphere differ considerably, since these are different rotations of the
top view of the object.

There are only two degrees of freedom in each set of images since the images are de-
termined by position of the camera, which is in turn determined by its longitude and
latitude on the hemisphere. Since the longitude is a periodic degree of freedom, the
images can be embedded on the surface of a cylinder in a Euclidean space. In princi-
ple the images can also be embedded, while preserving nearest neighbor relations, in a
two dimensional space by embedding images with equal latitude on concentric circles
with a radius that is monotonically increasing with the latitude. However, such a two
dimensional embedding in not returned by the LLE based algorithm since it is not di-
rectly aiming at the preservation of nearest neighbor relations. Three dimensions are
required to recover a cylinder-like embedding of the images in which only similar im-
ages are embedded nearby. Therefore, we used a three dimensional latent space for the
CFA models, and to obtain comparable results we also do this for the MFA models. In
Fig. 5.16 the two dimensional and three dimensional latent representation recovered by
the LLE based initialization method when using all 2500 images of each set and 125 cor-
respondences is illustrated. The recovered coordinates indeed trace-out a cylinder-like
shape in the three dimensional embedding. The two dimensional embedding corre-
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Figure 5.15: The viewing hemisphere; the object was fixed in the center of the sphere and
images were recorded when the camera was placed a different locations on the hemisphere

(crossings of the lines on the surface) and directed toward the object.

sponds roughly to a projection of the cylinder along is axis.

In order to speed-up experimentation, the images were first projected to the 100 dimen-
sional linear PCA subspace of the 64 × 64 = 4096 dimensional space spanned by the
pixel values. Over 90% of the original variance in the data was contained in this sub-
space with approximately 40 times fewer dimensions. Since the discarded dimensions
contain only a small fraction of the data variance, projecting the original data to the
PCA subspace is expected to have little effect on the obtained results. Below we also
show results obtained when using 1000 dimensional PCA projection. We trained CFA
and MFA models with different numbers of mixture components k = 10, 20, . . . , 100
and with different percentages of the data for which correspondences were given c =
1%, 2%, 5%, 10%, 20%, 50%. Of each object 2000 images were used for training and 500
to asses the reconstruction error Erec from (5.83).

The obtained errors, averaged over six random selections of training and test data, are
tabulated in Fig. 5.17. In Fig. 5.18 we plotted averages of the error of CFA models and of
MFA models using k = 40 components against the percentage of correspondences that
was used. It can be observed that already with relatively few correspondences, CFA
models make accurate predictions. Many more correspondences are needed to obtain
similar errors with MFA models.

To compare MFA and CFA qualitatively, we plotted the predicted correspondence for
some of the test examples in Fig. 5.19. For reference, we also included reconstructions
of the images obtained from a three dimensional linear PCA projection, which is the op-
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Figure 5.16: Two dimensional (left panel) and three dimensional (right panel) embedding of 625
of the 2500 images. Images recorded from equal latitude and longitude are connected by lines.

timal linear reconstruction of the images from a three dimensional representation. The
depicted results were obtained by training models with k = 65 mixture components on
2000 images of each object with 100 images in correspondence (c = 5/100). Before fitting
the models, the images in each set were projected on the first 1000 principal components
derived from the images in that set, preserving over 99.6% of the variance in each set.
The average errors (per image and per dimension) were 0.127 for CFA and 0.732 for
MFA. Clearly, the CFA model —which exploited the manifold structure of the data—
yields superior predictions as compared to those obtained with the MFA model.

5.4 Conclusions

In this chapter we considered the CFA approach that combines several linear models
to form a non-linear models. The amount of computation required to perform the EM-
steps is O(NDkd+Nd3)). Compared to GTM and SOMM, the advantage of this method
is that the low dimensional representation is not restricted to a discrete set of points (the
nodes in SOMM and GTM) but offers a continuous low dimensional representation.
Furthermore, the conditional density p(g|x) on latent coordinates given a data vector
(and vice versa p(x|g)) is Gaussian mixture density whose parameters and expectation
are readily computed.

In Section 5.2.3 we presented an improvement in the parameter estimation scheme pro-
posed in (Roweis and Saul, 2000) that replaces an iterative procedure in the M-step of
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k c = 2
100

c = 5
100

c = 10
100

c = 20
100

c = 50
100

1 4.87 6.47 4.64 6.47 4.21 6.42 4.04 6.42 3.89 6.32

10 2.31 8.16 1.99 5.25 1.78 3.74 1.54 2.51 1.47 1.74

20 1.44 7.21 1.18 4.89 1.08 4.29 0.93 2.55 0.84 1.02

30 1.15 7.14 0.96 4.71 0.84 3.35 0.73 2.40 0.64 1.07

40 1.51 7.06 0.74 4.20 0.68 2.71 0.66 2.26 0.64 0.86

50 2.32 7.94 0.73 4.30 0.54 3.27 0.50 2.34 0.44 0.72

60 1.49 7.36 0.55 4.55 0.59 2.95 0.46 1.78 0.36 0.89

70 16.59 7.84 0.58 5.75 0.45 3.70 0.51 1.98 0.38 0.94

Figure 5.17: CFA and MFA errors for the image data set divided over the number of test points
(500) and the number of dimensions (100).
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Figure 5.18: The reconstruction errors obtained with CFA and MFA models using k = 40
components, averaged six random train and test sets.



142 COMBINING LOCAL LINEAR MODELS TO FORM GLOBAL NON-LINEAR MODELS

TRUE 

CFA

MFA

PCA

TRUE 

CFA

MFA

PCA

Figure 5.19: Top panel shows (predicted) corresponding view of the cat given a view of the
dwarf and bottom panel shows (predicted) corresponding view of the dwarf given a view of

the cat. Within each panel, from top top bottom: true correspondence, reconstruction with CFA,
reconstruction with MFA and 3D PCA projection.
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the EM-like algorithm with a closed-form solution. The closed-form update leads to
a considerable speed-up in the algorithm and improved parameter estimates. The ex-
perimental results presented in Section 5.2.5 indicated that the CFA approach compares
favorably to SOMM and GTM in the sense that fewer mixture components are needed
to obtain similar reconstruction errors (errors in predicting the high dimensional points
from their low dimensional representation).

In Section 5.3 we applied the CFA approach to a setting where the goal is to find a model
that enables us to predict between two high-dimensional variables. In this setting, the
training data consists of two sets of high dimensional observations each in a different
space. Only for some of the observations the corresponding point in the other space is
given. We compared the CFA approach with a mixture of factor analyzers approach,
and experimentally found that when only a few correspondences are given the CFA ap-
proach leads to significantly better prediction accuracy, both for synthetic and natural
data. The difference in performance is explained by the fact that CFA successfully uses
the manifold structure of the data to determine the dependencies between the high di-
mensional variables, even if very few correspondences are given. It is straightforward
to generalize this approach to settings where more than two sets of points are given.





6

CONCLUSION AND DISCUSSION

Clustering and dimension reduction methods can be used to find a more compact rep-
resentation of high dimensional data. In this compact representation, the data are de-
scribed on the basis of cluster membership and/or by a low dimensional vector ob-
tained by projecting the data on a low dimensional manifold. These methods are useful
tools for data visualization, and pre-processing data in classification or regression ap-
plications in order to avoid the curse of dimensionality.

In this thesis we studied probabilistic mixture models, which provide a versatile frame-
work for clustering and dimension reduction. By using different component distribu-
tions, the framework can be applied to many different types of data. Furthermore, pa-
rameter estimation, missing values in the data, and model selection can all be treated
within a single and formally sound framework. We presented several contributions
which we hope increase the practical applicability of mixture models for clustering and
dimension reduction problems. Below we summarize the conclusions drawn in the pre-
vious chapters and outline directions for further research.

6.1 Summary of conclusions

Many, if not all, mixture model based clustering and dimension reduction techniques
suffer from the problem that the objective function that is optimized exhibits several
local optima. Standard parameter estimation techniques are hindered by these local op-
tima, since they may return parameter estimates which are locally optimal but far from
globally optimal. In Section 3.2 we presented a greedy parameter estimation scheme,
that iteratively (i) adds components to the mixture and (ii) re-estimates the parame-
ters of the mixture obtained so far with the EM algorithm. In Section 3.3 we presented a
similar greedy scheme for k-means clustering. Our experimental results, obtained using
synthetic and natural data, show that the greedy approach yields equal or better clus-
terings (in terms of the objective function) than alternative techniques. An additional
benefit of the greedy approach is that a sequence of mixture models with an increasing
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number of components is generated, which is useful when the number of clusters has
to be determined as well.

In Section 3.4 we presented a constrained EM algorithm to accelerate parameter estima-
tion for Gaussian mixtures from large data sets. Other existing acceleration techniques
allow a limited freedom in setting a trade-off between accuracy and speed-up of each
EM step. For very large speed-up and small accuracy the algorithms are not guaranteed
to converge to (in a particular sense) locally optimal parameter estimates. In contrast,
our algorithm converges to (locally) optimal parameter values for any trade-off between
accuracy and speed, and also allows other speed-up techniques (e.g. based on geometric
reasoning) to be plugged-in.

In Chapter 4 we presented a self-organizing map approach based on mixture models;
the parameters are estimated by a constrained EM algorithm. The advantage of our
mixture model based approach over Kohonen’s original self-organizing map is that the
learning algorithm is guaranteed to converge and can be interpreted as maximizing an
objective function. Moreover, the objective function can be augmented such that data
with missing values can also be used for parameter estimation. Since self-organization
is achieved by a simple modification of the standard EM algorithm for mixture mod-
els, our approach is readily applied to any mixture model for which the standard EM
algorithm is available. A priori domain knowledge can be used to select an appropriate
class of component densities. Therefore, it is relatively easy to apply this method to data
which is not given as a set of vectors of real numbers.

In Chapter 5 we considered the coordinated factor analysis (CFA) model which uses a
mixture of linear Gaussian latent variable models for non-linear dimension reduction.
We presented an improvement of the original parameter estimation algorithm that is
faster and leads to more accurate parameter estimates. We experimentally compared
the performance of this method with generative topographic mapping and the self-
organizing map approach of Chapter 4. The experimental results show that the CFA
model needs about half the number of mixture components needed by the other ap-
proaches to reconstruct the data from the latent representation with a given accuracy.
This is due to the fact that the CFA approach use a continuous latent representation,
where the other approaches use a discrete latent representation.

In Section 5.3 we applied the CFA model to predict high dimensional correspondences.
In this setting two data sets are given, each sampled from a different high dimensional
embedding of the same low dimensional manifold. In addition, some correspondences
are given: for some data points in the first set it is known that they share the same low
dimensional coordinate on the manifold as a point in the second set. The goal is to
predict, for points without a given correspondence, the coordinates of the correspond-
ing point in the other set. This problem can be regarded as a missing value problem,
which can be solved without constructing a global low dimensional latent representa-
tion, e.g. using a mixture of factor analyzers (MFA) which uses several local linear low
dimensional representations to predict the correspondences. With our experiments we
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demonstrated that if only few correspondences are given, then the CFA models yield
more accurate predictions than the MFA models. This is explained by the fact that the
MFA models lack a global low dimensional representation as used by the CFA models.

6.2 Discussion of directions for further research

Combining spectral methods and parametric models. A drawback of mixture models
is the fact that parameter estimation techniques may return estimates that are locally,
but not globally optimal. In principle, sampling based global optimization methods can
be used, like simulated annealing, but these require an impractically long sequence of
samples. In Section 3.2 and Section 3.3 we presented algorithms that avoid the local
optima better than alternative algorithms, but in general there is no efficient algorithm
available which is guaranteed to identify the globally optimal parameters.

In recent years there has been considerable interest in spectral methods for clustering
and dimension reduction. Spectral methods deliver a clustering or low dimensional
representation of the given data, but not a parametric model that can be used to map
new data to a cluster index or low dimensional coordinate. The main attraction of these
methods is that they minimize a quadratic function with a single global minimum that
can be efficiently identified. Most of these methods involve a small number of parame-
ters which have to be set, such as the number of neighbors k in nearest neighbor based
methods. Since they are few in number, global optimization of these parameters is easier
than finding a parametric model with many parameters of the high dimensional data.

To generalize the clustering or low dimensional representation produced by spectral
methods to new data, all training data has to be retained and often nearest neighbors of
the new data have to be found in the original data. Both storing the original data and
finding nearest neighbors is undesirable when dealing with large data sets. In Chapter 5
we initialized the estimates of hidden variables in the CFA model with the solutions of
spectral methods. Further research is needed to explore further possibilities to combine
the benefits of spectral methods and methods that deliver a parametric model that can
be applied to new data. For example, spectral methods could be used to define a dis-
tribution over plausible clusterings or latent coordinates. Parametric model learning
can then be biased toward such plausible solutions rather than just be initialized by the
solution of the spectral method.

Robust dimension reduction. In Chapter 5 we used mixtures of linear Gaussian latent
variable models for non-linear dimension reduction. Gaussian densities are attractive
from a computational point of view, and are also preferred as a default density in the ab-
sence of prior knowledge which suggests another, more appropriate, class of densities.
However, the short tails of the Gaussian density make‘ parameter estimation relatively
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sensitive to outliers in the data. Outliers are data points which are very different from all
other data points and that would be very unlikely under a distribution with parameters
estimated from the other data points. Outliers can be caused by noise in measurement
systems. Mixtures of linear latent variable models based on t-distributions have been
proposed (de Ridder and Franc, 2003) to obtain more robustness against outliers. It
would be interesting to consider how such mixtures of t-distributions could be used to
form global non-linear models as in the CFA model.

Semi-supervised learning. As discussed in the introduction, unsupervised clustering
and dimension reduction techniques can be used to find compact data representations
to overcome the curse of dimensionality in classification and regression problems. Data
processing then proceeds in two steps. First, a suitable compact data representation is
determined using unsupervised examples. Second, the supervised data is analyzed in
the new representation to find an appropriate classification or regression function. Re-
cently semi-supervised learning1 approaches have been introduced that integrate these
two steps by directly learning a classification or regression function in the high dimen-
sional space from both supervised and unsupervised data. Loosely speaking, these
methods avoid the curse of dimensionality by using unsupervised data to reduce the
set of possible functions. The power of the semi-supervised approach lies in the fact
that both the supervised and unsupervised data are used to reduce the set of functions.

Various semi-supervised learning approaches have been proposed (Baluja, 1998; Blum
and Mitchell, 1998; Nigam et al., 2000; Szummer and Jaakkola, 2002; Zhu et al., 2003).
Some of these use nearest neighbor graphs, to encode the smoothness assumption the
class label (or regression variable) tends to be the same or similar for nearby points in
the high dimensional data space. These methods can be implemented efficiently, have
few parameters that have to be estimated and perform very well in practice. However,
to evaluate the predictive density all training data needs to be accessed and thus stored.
Nearest neighbor based methods can also be used to define a distribution over the class
labels of both the supervised and unsupervised data. By conditioning on the known
class labels of the supervised data we obtain a distribution over class labels of the un-
supervised data. It is an interesting possibility to define such a conditional distribution
on the class labels of the unsupervised data, and then to learn a parametric model from
supervised and unsupervised data that —in expectation with respect to the uncertain
class labels of the unsupervised data— optimally predicts the class labels.

1 Unfortunately, the term semi-supervised learning is sometimes used to refer to reinforcement learn-
ing, e.g. in (Arbib, 1995), which is quite different from the setup considered here.
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Verma, D. and Meilă, M. (2003). A comparison of spectral clustering algorithms. Tech-
nical Report CSE 03-05-01, University of Washinton. Pages: 15, 17

Verveer, P. J. and Duin, R. P. W. (1995). An evaluation of intrinsic dimensionality estima-
tors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(1):81–86.
Pages: 38

Viola, P. and Jones, M. J. (2004). Robust real-time face detection. International Journal
of Computer Vision, 57(2):137–154. Pages: 19

Vlassis, N. and Likas, A. (2002). A greedy EM algorithm for Gaussian mixture learning.
Neural Processing Letters, 15(1):77–87. Pages: 56
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SUMMARY

Many current information processing systems have to process huge amounts of data.
Often both the number of measurements as well as the number of variables in each
measurement —the dimensionality of the data— is very large. Such high dimensional
data is acquired in various forms: images containing thousands of pixels, documents
that are represented by frequency counts of several thousands of words in a dictionary,
or sound represented by measuring the energy in hundreds of frequency bands. Be-
cause so many variables are measured, a wide variety of tasks can be performed on the
basis of these sorts of data. For example, images can be used to recognize hand-written
digits and characters, but also to recognize faces of different people.

Information processing systems are used to perform several types of tasks, such as clas-
sification, regression and data visualization. In classification, the goal is to predict the
class of new objects on the basis of a set of supervised examples. For example, in a
digit recognition task the supervised examples are images of digits together with a la-
bel indicating which digit is depicted in the image. The supervised examples are used
to find a function that maps new images to a prediction of the class label. Regression
is similar to classification, but the goal is here to predict a continuous number rather
than a discrete class label. For example, a challenging regression application would be
to predict the age of a person on the basis of an image of his face. In data visualization
the goal is to produce an insightful graphical display of data. For example, the results
of image database queries can be presented using a two dimensional visualization, such
that similar images are displayed near to each other.

In many applications where high dimensional data is used the diversity in the data
considered is often limited. For example, only a limited variety of images is processed
by a system that recognizes people from an image of their face. Images depicting digits
or cars are not processed by such a system, or perhaps only to conclude that it does
not depict a face. In general, the high dimensional data that is processed for specific
tasks can be described in a more compact manner. Often, the data can either be divided
into several groups or clusters, or the data can be represented using fewer numbers: the
dimensionality can be reduced.

It turns out that it is not only possible to find such compact data representations, but
that it is a prerequisite to successfully learn classification and regression functions from



162 SUMMARY

high dimensional examples. Also for visualization of high dimensional data a more
compact representation is needed, since the number of variables that can be graphically
displayed is inherently limited. In this thesis we present the results of our research on
methods for clustering and dimension reduction. Most of the methods we consider are
based on the estimation of probabilistic mixture densities: densities that are a weighted
average of several simple component densities. A wide variety of complex density func-
tions can be obtained by combining simple component densities in a mixture.

Layout of this thesis. In Chapter 1 we give a general introduction and motivate the
need for clustering and dimension reduction methods. We continue in Chapter 2 with a
review of different types of existing clustering and dimension reduction methods.

In Chapter 3 we introduce mixture densities and the expectation-maximization (EM)
algorithm to estimate their parameters. Although the EM algorithm has many attrac-
tive properties, it is not guaranteed to return optimal parameter estimates. We present
greedy EM parameter estimation algorithms which start with a one-component mixture
and then iteratively add a component to the mixture and re-estimate the parameters of
the current mixture. Experimentally, we demonstrate that our algorithms avoid many
of the sub-optimal estimates returned by the EM algorithm. Finally, we present an ap-
proach to accelerate mixture densities estimation from many data points. We apply this
approach to both the standard EM algorithm and our greedy EM algorithm.

In Chapter 4 we present a non-linear dimension reduction method that uses a con-
strained EM algorithm for parameter estimation. Our approach is similar to Koho-
nen’s self-organizing map, but in contrast to the self-organizing map, our parameter
estimation algorithm is guaranteed to converge and optimizes a well-defined objective
function. In addition, our method allows data with missing values to be used for pa-
rameter estimation and it is readily applied to data that is not specified by real numbers
but for example by discrete variables. We present the results of several experiments to
demonstrate our method and to compare it with Kohonen’s self-organizing map.

In Chapter 5 we consider an approach for non-linear dimension reduction which is
based on a combination of clustering and linear dimension reduction. This approach
forms one global non-linear low dimensional data representation by combining multi-
ple, locally valid, linear low dimensional representations. We derive an improvement
of the original parameter estimation algorithm, which requires less computation and
leads to better parameter estimates. We experimentally compare this approach to sev-
eral other dimension reduction methods. We also apply this approach to a setting where
high dimensional ‘outputs’ have to be predicted from high dimensional ‘inputs’. Exper-
imentally, we show that the considered non-linear approach leads to better predictions
than a similar approach which also combines several local linear representations, but
does not combine them into one global non-linear representation.

In Chapter 6 we summarize our conclusions and discuss directions for further research.
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