

Soutenance de thèse de Faustine Grossemy

Sous la direction de Janet Borg et Zahia Djouadi

Des grains cométaires en laboratoire: premiers résultats de la mission Stardust

Grain de la comète Wild 2 piégé dans l'aérogel © NASA

Plan de la présentation

- Introduction
- Intégrité des grains collectés
- Composition élémentaire de la comète Wild 2
- Matière organique de la comète Wild 2 et d'IDPs
- Conclusions et perspectives

Des grains cométaires en laboratoire : premiers résultats de la mission Stardust – Grossemy Faustine – 19 Juin 2008

Les comètes Collectes La mission Stardust Problématique

Introduction

- Intégrité des grains collectés
- Composition élémentaire de la comète Wild 2
- Matière organique de la comète Wild 2 et d'IDPs
- Conclusions et perspectives

Les comètes

Petits corps irréguliers de quelques km de diamètre

Renferme de la matière qui n'a pas ou peu évolué depuis la formation du Système Solaire

Loin du Soleil: noyau glacé

Proche du Soleil: la chevelure + queue de plasma + queue de poussières

Les comètes

Problématique

La mission Stardust

Collectes

Comète Borrelly vue par Deep Space 1

Comète Hale-Bopp © Laborde

Des grains cométaires en laboratoire : premiers résultats de la mission Stardust - Grossemy Faustine - 19 Juin 2008

Les comètes Collectes La mission Stardust Problématique

Moyens de collecte

Vols stratosphériques de la NASA: IDPs (Interplanetary Dust Particles)

Expéditions en Antarctique: Micrométéorites Antarctiques (MMAs)

 Collectes en Orbite Basse Terrestre: grains piégés dans collecteurs de haute (métaux ultra purs) et basse densité (mousse, aérogel)

Mission spatiale: Stardust

Avion stratosphérique

Collecteur déployé à l'extérieur de MIR (ODCExperiment)

La sonde Stardust

Les comètes Collectes La mission Stardust Problématique

Stardust

2008

Sep

15

Survol de la comète 81P/Wild 2 le 2 janvier 2004
 Collecte des grains à une vitesse relative de 6.1 km/s

Grains de la comète rapportés sur Terre le 15 Janvier 2006, piégés dans de l'aérogel.

La sonde Stardust

Collecteur en aérogel

Image du noyau de Wild 2

Les comètes Collectes La mission Stardust Problématique

Différents types d'échantillons

Des grains cométaires en laboratoire : premiers résultats de la mission Stardust – Grossemy Faustine – 19 Juin 2008

Introduction

Intégrité des grains Composition élémentaire Matière organique Conclusions & Perspectives Les comètes Collectes La mission Stardust Problématique

Matière interstellaire

Comment ?

Observations (VLT, ISO, Spitzer) Synthèse en laboratoire Simulation de processus interstellaires.

Matière primitive

Grains de poussière interplanétaire Micrométéorites Antarctiques, Échantillons Stardust...

Comment ?

Analyses en laboratoire Techniques : microspectroscopies IR et Raman, microscopie X synchrotron...

Transition de la matière du milieu interstellaire à la nébuleuse solaire

- Évolution de la matière interstellaire dans la nébuleuse primitive
- Témoin de la composition chimique et des conditions physiques de la nébuleuse solaire et de son évolution

Introduction

Intégrité des grains collectés

- Composition élémentaire de la comète Wild 2
- Matière organique de la comète Wild 2 et d'IDPs
- Conclusions et perspectives

Introduction Analyses Fe-XANES Résultats Modèle empirique

- Analyses sur les lignes ID21 et ID22 de l'ESRF (European Synchrotron Radiation Facility) de Grenoble.
- En collaboration avec
- LGIT, Grenoble, France: A. Simionovici
- LST, ENS-Lyon, France: L. Lemelle, T. Ferroir

ESRF, beamline ID21 and ID22, Grenoble, France: **D. Eichert, P. Bleuet, J. Susini**

SSL, UC Berkeley, USA: A.J. Westphal, C.J. Snead

- Détermination des abondances élémentaires : fluorescence X
- Étude du ralentissement dans l'aérogel : étude XANES au seuil K du fer

Vue aérienne de l'ESRF

Introduction Analyses Fe-XANES Résultats Modèle empirique

La fluorescence X

Des grains cométaires en laboratoire : premiers résultats de la mission Stardust – Grossemy Faustine – 19 Juin 2008

Spectroscopie d'absorption X: XANES (X-ray Absorption Near Edge Structure)

Spectre obtenu en faisant varier l'énergie du faisceau incident autour de l'énergie d'ionisation d'un atome donné: **7125 eV** pour le **Fer**

Position du pré-pic est à comparer à deux positions de référence (Wilke et al., 2001)

			-
7-	1101 -		
			VET
······ ···· ···· ···· ····· ···· ······	140 F -		- ^
	114 5 0	\mathbf{V}	
		V	GUT
			· · · ·

Introduction Analyses Fe-XANES Résultats Modèle empirique

Analogues des échantillons Stardust

- LC01B2, 2D0401, 2D0403: échantillons ODCE (Orbital Debris Collection Experiment).

 - 8JUN05B: contenant un grain de la météorite Allende bombardé à l'aide d'un canon à poussières dans de l'aérogel Stardust à ~ 6 km/s.

> Counts 200 - 170 - 140 - 140 - 110 - 30 Distribution de Fe, 2D0401, trace

Image optique de 2D0401

Sep

el-00321787, version 1

Introduction Analyses Fe-XANES Résultats Modèle empirique

Pré-seuils normalisés de différentes régions de 2D0401

Introduction Analyses Fe-XANES Résultats Modèle empirique

 Le grain semble être réduit lors de son ralentissement, réduction difficile à expliquer (chauffage lors l'entrée, présence d'oxygène provenant de l'aérogel).

Scénario proposé à partir des résultats btenus pour l'échantillon de Allende

> État d'oxydation pas modifié !

> > Fe²⁺

Étude de 5 échantillons Stardust

• Fe²⁺ dans les particules finales:

en accord avec notre scénario

• présence de fer métallique dans une des particules finales:

réduction par du carbone ? grain incident Fe⁰ ?

Grain final

Introduction Composition élémentaire Interprétation des résultats Conclusion

- Introduction
- Intégrité des grains collectés
- Composition élémentaire de la comète Wild 2
- Matière organique de la comète Wild 2 et d'IDPs
- Conclusions et perspectives

Introduction Composition élémentaire Interprétation des résultats Conclusion

Échantillons 6 keystones

- C2009 04apr06
- C2009 03apr06
- C009 track2 24mar06
- C2009 27mar06
- C2009 29mar06
- C027

Image optique de C2009 29mar06

Conditions expérimentales

Expériences menées sur les lignes ID22 et ID21 à l'ESRF:

	ID22	ID21
Flux	10 ¹¹ ph/s	10 ⁹ ph/s
Résolution spatiale	2 µm	Jusqu'à 1 µm
Énergie du faisceau	13 keV	2.5 et 7.2 keV

Des grains cométaires en laboratoire : premiers résultats de la mission Stardust – Grossemy Faustine – 19 Juin 2008

Introduction Composition élémentaire Interprétation des résultats Conclusion

Calcul de la composition élémentaire de la particule incidente:

Introduction Composition élémentaire Interprétation des résultats Conclusion

Calcul de la composition élémentaire de la particule incidente:

spectre somme S_{aér}

Somme des pixels où il y a de la matière spectre somme **S**

Calcul de la composition élémentaire de la particule incidente:

Ajustement des 2 spectres $\rightarrow A_i$, $A_{i(aer)}$ aire de la bande Ka de l'élément i

- Nb de coups pour l'élément i dans l'éch : $\mathbf{n}_i = \mathbf{A}_i \mathbf{A}_{i(aér)}$. $\frac{npix_{ech}}{npix}$
- Nb de coups corrigé : $N_i = n_i \cdot \frac{r}{t}$
- Masse de chaque élément m_i?

Calcul de la composition élémentaire de la particule incidente:

Ajustement des 2 spectres $\rightarrow A_i$, $A_{i(aer)}$ aire de la bande Ka de l'élément i

- Nb de coups pour l'élément i dans l'éch : $n_i = A_i A_{i(aér)} \cdot \frac{npix_{ech}}{npix_{aér}}$
- Nb de coups corrigé : $N_i = n_i \cdot \frac{r}{t}$

spectre somme S_{aér}

• Masse de chaque élément m_i?

Standard dont $m_{i \text{ Std}}$ (m_i / μm^2) connue très précisément pour: K, Ti, Fe, Zn

 $\mathbf{m}_{\mathsf{Fe}} = \frac{\mathbf{N}_{\mathsf{Fe}}}{\mathbf{N}_{\mathsf{FeStd}}} \cdot \mathbf{m}_{\mathsf{FeStd}} \cdot \mathbf{S}_{\mathsf{spot}}$

spectre somme S

où S_{spot} = taille du faisceau sur le standard

Des grains cométaires en laboratoire : premiers résultats de la mission Stardust – Grossemy Faustine – 19 Juin 2008

Introduction Intégrité des grains Composition élémentaire Matière organique Conclusions & Perspectives	Introduction Composition élémentaire Interprétation des résultats Conclusion	
--	---	--

Résultats: comparaison aux abondances chondritiques (Flynn et al., Sc*ience, 2006*)

Introduction Intégrité des grains Composition élémentaire Matière organique Conclusions & Perspectives	
--	--

Comparaison aux abondances élémentaires des objets primitifs

Déplétion en soufre

Enrichissements en Cu, Zn et Ga

Échantillons	S/Si		Etude de Flynn et al. (1996):
IDPS chond. ⁽¹⁾			Tous les éléments avant une température
Tous	0,691		de condensation inférieure à 1190 K (Mn),
CP-IDPs	0,810		à part le soufre,
CS-IDPs	0,662		sont enrichis par rapport aux Ci dans les IDPS.
Météorites			
CI ⁽²⁾	1		
CM ⁽³⁾	0,39		
Matrice des CI (4)	0,25	(1)	Sebremm et al. 1090
Comètes		(1) (2) (3)	Anders et Grevesse, 1989 Jarosewich, 1990
Wild 2 ⁽⁵⁾	0,13 – 0,5	(4) (5)	McSween et Richardson, 1977 Flynn et al., 2006
Halley ⁽⁶⁾	0,915	(6)	Schulze et al., 1997

Introduction Composition élémentaire Interprétation des résultats Conclusion

Comparaison aux abondances élémentaires du MIS diffus

Introduction Introduction Intégrité des grains Composition Composition élémentaire Interprétatio Matière organique Conclusion Conclusions & Perspectives

Introduction Composition élémentaire Interprétation des résultats Conclusion

Contraintes sur la formation de la matière cométaire ?

 Enrichissements en éléments modérément volatils (Cu, Zn, Ga) observés dans les échantillons Stardust et dans les IDPs:

échantillonnage d'une zone de la nébuleuse enrichie en éléments volatils ?

Déplétion en soufre:

- liée à l'absence de soufre dans les grains du MIS diffus ?
 - processus de condensation incomplet ?

Dans régions internes de la nébuleuse

à ~700 K (10⁻³ bar)

Introduction La microspectroscopie IR Intégrité des grains Spectres IR Composition élémentaire Aérogel Matière organique Bande à 3.4µm Conclusions & Perspectives Du MIS à la nébuleuse

- Introduction
- Intégrité des grains collectés
- Composition élémentaire de la comète Wild 2
- Matière organique de la comète Wild 2 et d'IDPs
- Conclusions et perspectives

Introduction La microspectroscopie IR Intégrité des grains Spectres IR Composition élémentaire Aérogel Matière organique Bande à 3.4µm Conclusions & Perspectives Du MIS à la nébuleuse

La microspectroscopie IR

Spectromètre couplé à un microscope IR
Gamme spectrale: 650-4000 cm⁻¹ (15.4 – 2.5 μm)
Utilisé en mode réflexion ou transmission
Résolution de 4 cm⁻¹

Introduction La microspectroscopie IR Intégrité des grains Spectres IR Composition élémentaire Aérogel Matière organique Bande à 3.4µm Conclusions & Perspectives Du MIS à la nébuleuse	
---	--

Préparation des échantillons

Introduction La microspectroscopie IR Intégrité des grains Spectres IR Composition élémentaire Aérogel Matière organique Bande à 3.4μm Conclusions & Perspectives Du MIS à la nébuleuse

IDPs L2021C5

La microspectroscopie IR Spectres IR Aérogel Bande à 3.4µm Du MIS à la nébuleuse

1330

2300

Échantillons Stardust

Images MEB ©LSPES/IAS

Des grains cométaires en laboratoire : premiers résultats de la mission Stardust – Grossemy Faustine – 19 Juin 2008

Introduction Intégrité des grains Composition élémentaire Matière organique Conclusions & Perspectives	
--	--

Bande à 3.4µm (~2941cm⁻¹) des particules 35,21 et 35,26 et de l'aérogel

Rapport CH₂/CH₃

$$\frac{CH_2}{CH_3} = \frac{N(aCH_2)}{N(aCH_3)}$$

avec N(aCH_x) = $\frac{(\int \tau_v dv)_{CH_x}}{A(a - CH_x)}$

τ épaisseur optique $A(a-CH_x)$ Dartois et al. (2004) - A(a-CH₂) = 8.4 ± 0.1 .10⁻¹⁸ cm.group⁻¹ - A(a-CH₃) = 1.25 ± 0.1 .10⁻¹⁷ cm.group⁻¹

Échantillons	CH_2/CH_3
35,21	6.5 ± 1.4
35,26	6.3 ± 1.8
L2021C5	3.5 ± 0.9

Particule 35,21

Introduction Intégrité des grains Composition élémentaire Matière organique Conclusions & Perspectives	La microspectroscopie IR Spectres IR Aérogel Bande à 3.4µm Du MIS à la nébuleuse ?	
--	--	--

Comparaison au MIS diffus vers le Centre Galactique

Spectre de la source du centre galactique fourni par E. Dartois

Introduction Intégrité des grains Composition élémentaire Matière organique	La microspectroscopie IR Spectres IR Aérogel Bande à 3 4um	
Conclusions & Perspectives	Du MIS à la nébuleuse ?	and the second sec

	Objets		CH_2/CH_3
Tagish Lake (Cl2)		(1)	7.3
35,21			6.5 ± 1.4
Wild 2	35,26	$\langle 0 \rangle$	6.3 ± 1.8
	35,17	(2)	6.1 ± 1.0
	35,18		9.6 ± 2.5
	L2021C5		3.5 ± 0.9
IDPs	6 IDPs	(3)	2.8 à 5.5
	Hydratés	(4)	2.31 ± 1.74
	Anhydres	(')	2.46 ± 1.32
Murchison (CM)		(5)	~2
Orgueil (CI)		(6)	~2
Centre Galactique		(7)	~2

Longueur des chaînes aliphatiques

- Matière organique de Wild 2 pas interstellaire
- Histoires différentes pour la matière organique présente dans les différents objets primitifs
- Matière organique de Wild 2 s'apparente à celle présente dans Tagish Lake
- (1) Matrajt et al., 2004
- (2) Rotundi et al., 2008
- (3) Matrajt et al., 2005
- (4) Flynn et al., 2003
- (5) Pendleton et al., 1994
- (6) Ehrenfreund et al., 1991
- (7) Dartois et al., 2004

- Introduction
- Intégrité des grains collectés
- Composition élémentaire de la comète Wild 2
- Composition moléculaire de la comète Wild 2 et d'IDPs
- Conclusions et perspectives

Conclusions

(Grossemy et al., *PSS*, 2007)

Composition élémentaire de Wild 2:

- abondances chondritiques pour Ca, Ti, Cr, Mn, Ni, Ge, Se
- enrichissements en Cu, Zn et Ga
- déplétion en soufre

(Flynn et al., Science, 2006)

Matière organique de Wild 2:

chaînes aliphatiques plus longues que dans les grains du MIS.

(Rotundi et al., MAPS, 2008)

Sep 2008

Autres résultats importants

Minéraux hautes températures: forstérite, CAIs (Ca-Al-rich Inclusions)

(Zolensky et al., *Science*, 2006)

Analyse des gaz rares: rapport ³He/⁴He élevé

(Marty et al., Science, 2008)

Anomalies isotopiques plus rares que dans les météorites ou les IDPs

(McKeegan et al., Science, 2006)

Le lien entre les comètes et les CP-IDPs n'est plus aussi clair

Phases spécifiques aux CP-IDPs: enstatite ayant une morphologie très particulière GEMS (Glass with Embedded Metal and Sulfides)

(Ishii et al., Science, 2008)

Perspectives

Poursuivre l'analyse de la composition élémentaire de la comète

Confirmation ou non des déplétions et enrichissements observés Évaluation de l'absorption de la fluorescence de S par l'aérogel Caractérisation de l'aérogel

Calculs de thermodynamique des processus de condensation

Poursuivre l'analyse des IDPs et des MMAs

Prochaine grande étape: mise en orbite de la mission ROSETTA autour de la comète 67P/Churyumov-Gerasimenko en 2014 et atterrissage de Philae sur son noyau.

- CIVA: microscopie et spectrométrie IR
- COSIMA: spectrométrie de masse à temps de vol