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 “If you detect any mistakes of mine, I rely on your 

superior knowledge to excuse them; for who has ever avoided 

errors in the wide-extended field of Nature? Who is furnished 

with sufficient stock of observations? I shall be thankful for 

your friendly corrections, I have done what I could myself”. 
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Father of modern Taxonomy
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Chapter summary (French) 

 L’existence d’une paroi autour des cellules végétales est l’un des caractères qui les 

différencie des cellules animales. Cette paroi joue des rôles importants au cours du 

développement des plantes, et au cours de leurs interactions avec l’environnement qu’il 

s’agisse de stress biotiques ou abiotiques. Elle est également essentielle pour le port dressé 

des végétaux et permet la circulation de molécules signal entre cellules distantes. La 

croissance des végétaux fait intervenir deux processus cellulaires, qui sont la division 

cellulaire et l’augmentation de volume qui peut-être être soit anisotrope (grossissement), soit 

directionnelle (élongation). Ce travail porte sur la recherche de protéines importantes pour 

l’élongation des cellules végétales, et plus particulièrement pour les modifications des parois 

au cours de ce processus. 

 

 La première partie de cette introduction décrit les constituants pariétaux principaux : 

les polysaccharides (cellulose, hémicelluloses, pectines), les protéines, les lignines, les lipides, 

les cires et les ions. La description des protéines est volontairement succinte puisqu’elle 

reprend l’état des connaissances avant le début de mes travaux de thèse, i.e. avant l’essor des 

approches protéomiques qui ont permis d’avoir une vue globale des protéines pariétales.  

 

 Dans les deux parties suivantes sont présentés successivement les protéines dont le 

rôle dans l’élongation cellulaire est connu ainsi que le mécanisme particulier de l’élongation 

cellulaire dans les hypocotyles d’Arabidopsis thaliana. En effet, ces hypocotyles présentent la 

particularité de s’allonger environ 100 fois en un temps très court par simple élongation 

cellulaire.  

 

 Enfin, les objectifs de ma thèse sont développés. Il s’agissait d’avoir une vue globale 

de la régulation des gènes impliqués dans la biogenèse des parois au cours d’un processus 

d’élongation cellulaire chez A. thaliana.  Le modèle expérimental retenu a été celui des 

hypocotyles étiolés. Les questions posées étaient les suivantes : 

• Quelles sont les protéines présentes dans les parois des hypocotyles étiolés à deux 

stades de leur développement (croissance active vs  croissance terminée) ? 

• Existe-t-il des différences entre les protéomes pariétaux à ces deux stades 

développement ? 

• Quelles sont les fonctions possibles des protéines identifiées ? 
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 Deux approches complémentaires ont été menées : une approche protéomique 

impliquant la mise au point de protocoles de purification de parois (chapitre 3) et de 

séparation des protéines pariétales (chapitre 4) ; et une approche de transcriptomique (chapitre 

5). L’ensemble des résultats obtenus a été interprété  grâce à la bioinformatique non 

seulement pour la prédiction de la localisation sub-cellulaire des protéines, mais encore pour 

celle de domaines fonctionnels.  
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Land plants are among the largest organisms. This achievement is based largely on 

the growth, and mechanics of their cell wall, a structure that encases cells of plants, algae, 

fungi and bacteria like an armour. Plant cell wall is remarkable complex and dynamic entity 

and is one of the most sticking features that differentiate plants from animals and other 

eukaryotic cells. Cell wall of higher plants is of high economic importance to human 

especially as raw material of human and animal food, textiles, wood, paper, thickeners, 

biofuels and other products. 

 

Cell wall was first observed by Robert Hooke in 1665 when he examined thin slices 

of cork under his microscope. In fact, he found small tiny boxes that he called cells and being 

dead material, consisted only of cell walls.  

 

Cell wall of higher plants is a complex but organized molecular composite that may 

comprise many different polysaccharides, lignin, suberin, wax, proteins, aromatic substances, 

calcium, boron and water. Owing to the diversity of cell shapes and functions, the molecular 

composition and arrangement of cell wall exhibits a great diversity. Generally the cell wall 

consists of three parts: middle lamella, primary wall and secondary wall. Middle lamella is the 

first layer formed between the adjacent cells at the time of cytokinesis. Primary wall is 

simultaneously laid inner to the middle lamella, and is present in all type of cells and allows 

changes in cell size and shape. Secondary wall is impregnated on the inner surface of the 

primary cell wall in some type of cells (e.g. conducting cells) after achieving their final shape 

and size. 

The cell wall of higher plants performs a variety of functions during growth and 

development as well as in plant defense, including maintenance of the osmotic pressure, water 

movement, rate and direction of cell growth, cell differentiation, intercellular communication 

and signalling, structural support and morphology of plant, cohesion among the cells of a 

tissue, storage, protection against pathogens and abiotic stresses. They also contribute to the 

functional specialization of cell types. 

 

Here a detailed description of the cell wall components, their properties, structural 

organization and interactions among them, will be given. In addition, the involvement of 

different cell wall components especially the proteins in growth and development will be 

elaborated. Finally, we will discuss how cell wall proteins contribute to cell elongation by 

interacting with other cell wall components which makes the subject of this work.  



Figure 1.1:  Biosynthesis of cell wall components (after Buchanan et al., 2000)
Cell wall biogenesis takes place in a series of coordinated steps inside or outside the cell. 
Synthesis of cellulose microfibrils and callose occurs at the plasma membrane surface. 
Synthesis and glycosylation of cell wall proteins and wall-modifying enzymes occur at the 
rough ER while synthesis of non-cellulosic polysaccharides at the Golgi apparatus. From here, 
the materials destined for cell wall are transported to cell surface in the form of secretory 
vesicles formed at the trans-Golgi network. 
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1.2. Cell wall components  

About 10% of the plants genome is devoted to cell wall biogenesis 

(http://cellwall.genomics.purdue.edu/). Cell wall biogenesis has been divided into six distinct 

stages: substrate generation, polymer synthesis, secretion, assembly, rearrangement during 

development, and disassembly. These steps are taking place both inside and outside the cell. 

Figure 1.1 illustrates the cell compartment where synthesis and processing or modifications of 

major cell wall components occur. 

 

The molecular composition and arrangement of wall polymers differ among species, 

among tissues of a single species, among individual cells, and even among regions of the wall 

around a single cell (Buchanan et al., 2000). Following are the major cell wall components. 

 

1.1.1. Polysaccharides 

1.1.2.1. Cellulose 

Cellulose is the most abundant plant polysaccharide that accounts for 15-30% of the 

dry mass of the primary cell wall and even more in the secondary walls. In plants, cellulose 

occurs in paracrystaline assemblies, i.e. microfibrils of about 36 parallel arranged (1→4)β-D-

Glc chains hydrogen-bonded to one another along their length (Figure 1.2). Many microfibrils 

combine to form a cellulose fiber laid down on the cell surface in several layers distinguished 

by the different orientation of their fibers (Buchanan et al., 2000). Cellulose synthesis 

(reviewed in Reiter (Reiter, 2002); and Cosgrove (Cosgrove, 2005) occurs at rosette-like 

structures, the cellulose-synthesizing complex (CSC) that consists of six hexagonally-

arranged subunits (CESA) that are embedded in the plasma membrane (Figure 1.3). Different 

CESA genes are assumed to be required to make a functional CSC, and different sets of genes 

are involved in the formation of the primary and secondary walls. CESA1, CESA3 and 

CESA6 or CESA6-like (CESA2, CESA9) are required for biosynthesis of the primary wall, 

whereas CESA4, CESA7 and CESA8 are required to form secondary walls. The most 

convincing proof of this comes from the study on the CESA1 and CESA3 mutants that result 

in gametophyte lethality and CESA6 mutant causing cellulose deficiency and growth defects 

(Persson et al., 2007). In other such studies, the catalytic domain of cotton CesA was 

immunolocalized at and near the CSCs (Kimura et al., 1999) and the mutant atcesA1 (rsw1) 

was shown to cause disassembly of CSC, reduced cellulose accumulation and accumulation 

of non-crystalline (1→4)β-D-Glc (Arioli et al., 1998). CSCs probably contain other proteins. 

KORRIGAN is assumed to have some role in polymerization or crystallization of microfibrils 



a b c

d

e

Figure 1.2: Structure of cellulose microfibrils
(after Buchanan et al., 2000)
a. Helically-winded microfibrils around an elongating cell
almost transverse to the long axis of cell; b. Freeze-fracture
replica of an elongating maize root cells showing arrangement
of cellulose microfibrils as impression through the plasma
membrane; c. A single microfibril; d. Cross-section of
microfibril showing spacial arrangement of glucan chains inmicrofibril showing spacial arrangement of glucan chains in
the core of the microfbrill; e. X-ray diffraction showing
arrangement of atoms in the unit structure of a microfibril.

Rosette subunit

(1→4)β-D-Glc chain cellulose microfibrilc

CESA RosettesRosette subunit

Figure 1.3: The cellulose-synthesizing machinery of the cell (after Cosgrove 2005)
a Immunogold labelling of CESA localized to hexameric cellulose synthesizing complex (CSC) ina. Immunogold labelling of CESA, localized to hexameric cellulose synthesizing complex (CSC) in
the plasma membrane. The black circles represent gold nanoparticles that are attached to antibody
against CESA. Scale bar, 30 nm; b. A model showing how three different CESA proteins (shown in
three different colours: orange, brown, green) might be organized into subunits and then into a
hexameric CSC; c. A model of how CESA complexes synthesize a cellulose microfibril. Each CESA
protein can synthesize a single (1→4)β-D-Glc chain. In this model, microfibril is shown to consist of
36 (1→4)β-D-Glc chains, synthesized by a CSC, which is composed of a hexamer of CESA
hexamers.



Figure 1.4: Structure of xyloglucan (after Reiter 2002)
XLFG type xyloglucan of Arabidopsis where the solid arrows
indicate linkages that are always present, where as dashed
arrows denote substitution patterns.

Figure 1.5: Structure of pectins (after Willats et al., 2001)
Simplified schematic diagram to indicate some of the features of the three major types of pectins: HGA, RG-I and RG-II. Oligosaccharide
epitopes recognized by anti-HGA monoclonal antibody PAM1 and anti-RG-I monoclonal antibodies LM5 and LM6 are also indicated.
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or in recycling of sitosterol (Nicol et al., 1998). COBRA is thought to link the complexes to 

nearby microtubules for guidance along the membrane (Roudier et al., 2005). KOBITO1 is 

assumed to take part in the cellulose synthesis machinery or to play a role in the coordination 

between cell elongation and cellulose synthesis (Pagant et al., 2002). 

 

Cellulose is present in cell wall of all types, provides strength and rigidity to cell 

wall, and prevents the swelling of the cell wall and rupture of the plasma membrane that 

might occur when osmotic conditions favour water entry into the cell. 

 

1.1.1.2.  Cross-linking glycans 

The cell wall polysaccharides that can hydrogen-bond to cellulose microfibrils are 

classified as cross-linking glycans. Most of them are also called hemicelluloses. In type I cell 

wall, characteristic of dicots, the major cross-linking glycans of primary cell wall are 

xyloglucans (XGs). XGs typically consist of a (1→4)β-D-Glc backbone carrying (1→6)α-D-

Xyl moieties on three consecutive Glc residues. As shown in Figure 1.4, the Xyl residues 

attached to the second and third Glc residues of the backbone can carry D-Gal in (1→2)β-

linkage, and the second of these Gal residues is usually substituted by L-Fuc in (1→2)α-

linkage (Reiter, 2002) to make XLFG xyloglucan according to the nomenclature of Fry et al. 

(Fry et al., 1993). The structure and distribution of the side branch (chains) vary in different 

tissues and species (forming XXFG, XXXG, XXLG, XLLG or XLXG) which seem important 

for bonding to cellulose. Glucuronoabinoxylans (GAXs) are the major cross-linking polymers 

of type II cell wall, characteristic of commelinoide monocots and some dicots. The structure 

of GAXs varies considerably with respect to degree of substitution and position of attachment 

of α-L-Ara residues (Carpita and Gibeaut, 1993). The other types of cross-linking glycans are 

“mixed linkage” (1→3, 1→4)β-D-glucan, glucomannans, galactoglucomannans and 

galactomannans (Carpita and Gibeaut, 1993). 

 

1.1.1.3. Pectic matrix 

Pectins (reviewed in Ridley et al. (Ridley et al., 2001) and Willats et al. (Willats et 

al., 2001)) are a mixture of heterogenous, branched and highly hydrated polysaccharides 

(Figure 1.5). They are rich in polygalacturonic acid (PGA) and account for 30% total cell wall 

mass (Carpita and Gibeaut, 1993). GalA occurs in two major structural features (homo and 

heteropolymers) that form the backbone of three polysaccharide domains found in almost all 

pectins: homogalacturonan (HGA), rhamnogalacturonan-I (RG-I), and rhamnogalacturonan-II 



Figure 1.6: Formation of pectin networks by covalent and ionic bonds
(after Cosgrove 2005)
a. A model of how the different pectins may be covalently linked together to form a
macromolecular pectin network. In this model, RG-I serves as the backbone and the other
pectin domains are attached as branches; b. RG-II chains are cross-linked to form dimers
through a borate ester bond; c HGA forms stiff gels through Ca2+-mediated crosslinking of
its carboxyl groups through ionic and coordinate bonds.its carboxyl groups through ionic and coordinate bonds.
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(RG-II). These three types of GalA covalently bond to each other to form a pectic network 

throughout the primary cell wall matrix and middle lamellae. HGA is a linear, unbranched 

(unsubstituted) homopolymer containing about 100–200 GalA residues, and is called smooth 

region of pectins. HGA is an abundant and widespread kind of pectin which is synthesized in 

the Golgi apparatus and deposited in the cell wall. It has 70–80% GalA residues 

methylesterified at the C-6 carboxyl. The demethylesterified HGA in the cell wall matrix can 

be cross-linked by Ca2+ to form supramolecular assemblies and gels (Figure 1.6). Other 

modifications and substitutions of HGA are not as widespread as methyl esterification. RG-I 

(known as the hairy region of pectin) is an acidic pectic domain consisting of as many as 100 

repeats of the disaccharide L-Rha-D-GalA. RG-I is abundant and heterogenous and generally 

glycosidically-attached to HGA domains. Arabinogalactan and arabinan side chains 

commonly include D-Gal and L-Ara residues. Type I arabinogalactans are (1→4)β-linked D-

Gal with non-reducing terminal-Ara (t-Ara) substituted at the O-3 of some of the Gal units 

(Carpita and Gibeaut, 1993). Arabinogalactans of type II with (1→3)β- and (1→6)β-linked-

D-Gal residues also occur on pectic backbones. Arabinans can become branched by links 

through O-2 and O-3. Another major, widespread highly conserved pectic domain is RG-II 

which is similar to HGA by possessing homopolymer backbone, but is branched like RG-I. It 

consists of around 9 GalA residues backbone substituted by 4 heteropolymeric side chains 

each consisting of eleven different sugars including Api, aceric acid and 2-keto-3-deoxy-D-

manno-octulosonic acid (kdo). RG-II can dimerize by means of borate ester links through Api 

residues.  

 

In plants, several enzymes like pectin methylesterases (PMEs) (Micheli, 2001) 

polygalacturonase (PGs) (Tanaka et al., 2002) and pectate lyases (PLs) (Marin-Rodriguez et 

al., 2002) modify or degrade pectins in relation with changes in cellular adhesion and 

plasticity of the cell wall, a prerequisite to elongation and development. 

 

1.1.2. Cell wall proteins 

Until the last decade cell wall was considered to be made mainly of polysaccharides 

and structural proteins. But recent studies, especially proteomic studies have reported the 

presence of many other proteins including enzymes that perform a wide range of functions. 

The present study has further contributed to this area. Here cell wall proteins (CWPs) will be 

treated as have been considered before this study: structural proteins, that can form networks 

and other proteins that contribute to a wide range of functions from growth and development 



a

Ara

Gal

Ara

b

c

d

Figure 1.7: Cell wall structural proteins, motifs and glycosylation
(after Buchanan et al., 2000).
a. Tomato extensin possessing Ser (Hyp)4 or related motif with high glycosylation with
tetra-Ara as well as Gal at Ser. Isodityrosine linkage is also shown on the Tyr-Lys-Tyr
motif, a likely position for this linkage; b. Maize extensin like Thr-rich moderately-
glycosylated protein; c. A Soybean PRP that lacks contiguously hydroxylated Ser, Thr,glycosylated protein; c. A Soybean PRP that lacks contiguously hydroxylated Ser, Thr,
and Hyp residues (a likely position for glycosylation with Ara) are not heavily
glycosylated; d. Petunia GRP with no glycosylation site.
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to response to biotic and abiotic stresses. All CWPs possess a signal peptide and are targeted 

to secretory pathway (Buchanan et al., 2000). 

 

1.1.2.1. Structural proteins 

Although all types of cell wall are mainly composed of polysaccharides, cellulose-

crosslinking glycans network embedded in pectic matrix, another network is formed by cell 

wall structural proteins. Cell wall structural proteins can be grouped into three principal 

classes on the basis of their sequence rich in some particular type of amino acids: the 

extensins, hydroxyproline/proline-rich proteins (H/PRPs) and glycine rich proteins (GRPs). 

Examples of such proteins are given in Figure 1.7. All these proteins are encoded by large 

multigene families and are developmentally-regulated. Extensins and H/PRPs are assumed to 

be cross-linked to make the wall less extendable when the cells achieve their final size. Their 

relative amount varies among tissues and species. 

 

Extensins are well studied-structural proteins, which are rod-shaped distinguished by 

their amino acid sequence rich in Pro, Tyr, Lys, Ser, His, Val where Pro may reach up to 

50%. They possess the repeating motif Ser-(Pro)n (n ≥ 3) and Tyr-Lys-Tyr sequences that are 

important for their secondary and tertiary structure making inter- and intra-molecular 

bonding. They are highly O-glycosylated and have basic pIs (Cassab, 1998; Sommer-

Knudsen et al., 1998; Buchanan et al., 2000). Normally extensins are O-glycosylated with 

chains of Ara on contiguous Hyp residues and Gal on Ser (Kieliszewski and Lamport, 1994; 

Kieliszewski, 2001). 

 

H/PRPs represent another large multigene family of structural proteins. Because of 

their similarity to extensins they are also thought to be rod-shaped (Buchanan et al., 2000). 

H/PRPs contain the repetitive pentamere motif (Pro-Hyp-Val-Tyr-Lys)n or its variants but 

lack Ser and are O-glycosylated (Cassab, 1998). 

 

GRPs (reviewed in Ringli et al. (Ringli et al., 2001)) that belong to another major 

cell wall structural protein family, should be distinguished from intracellular GRPs that are 

assumed to bind RNAs. Cell wall GRPs have repetitive sequences which may contain more 

than 60% Gly arranged in short repeating units. The GRP protein sequences often follow the 

motif (Gly-X)n in the Gly-rich region, where X is often Gly, but can also be another amino 

acid. Ala, Ser, Val, His, Phe, Tyr and Glu are common at the X position. In some cases, the 



Figure 1.8: Structural complexity of an arabinogalactan (Seifert and Robert 2007)Figure 1.8: Structural complexity of an arabinogalactan (Seifert and Robert 2007)
The first complete structure of an arabinogalactan glycan, derived from synthetic green
flourescent protein (GFP):(Ala-Pro)51, expressed in tobacco BY2 cells.
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motif varies (Ringli et al., 2001). Beside the (Gly-X)n motif, higher-order repetitive sequences 

that are rarely perfect are sometimes found and were proposed to be important for the 

formation of the secondary structure of the proteins. GRPs are believed to form plate-like 

structure rather than rod-shape conformation, on the plasma membrane-cell wall interface. 

They are thought to crosslink to cell wall polysaccharides are therefore difficult to extract.  

 

1.1.2.2. Arabinogalactan proteins (AGPs) 

AGPs (reviewed in Seifert and Roberts (Seifert and Roberts, 2007)) consist of a core 

protein of highly varying length and domain complexity, and one or more arabinogalactan 

(AG) side chains (Figure 1.8). They often contain a glycosylphosphatidylinositol (GPI) lipid 

anchor (Borner et al., 2005). The relative ratio of glycan to protein is sometimes higher than 

9, but can vary strongly for the same AGP core protein isolated from the same tissue. AGPs 

are precipitated by treatment with the β-Yariv reagent. In some AGPs, the peptide backbones 

are 10-13 residue-long and are called AG peptides. Most AGP sequences consist of a single 

central domain rich in Pro, Ala, Ser, and Thr. Most AGPs are O-glycosylated at one or more 

Hyp residues by AG type II (found in dicots) groups. These consist of (1→3) and (1→6)β-

linked Gal chains connected to each other by (1→3, 1→6)-linked branch points, O-3 and O-6 

positions substituted with terminal Ara residues. Type I AGs (characteristic of monocots and 

some dicots) are (1→4)β-linked D-Gal with non-reducing terminal-Ara (t-Ara) substituted at 

the O-3 of some of the Gal units (Carpita and Gibeaut, 1993). AGPs are involved in a variety 

of functions, e.g. embryonic and post-embryonic patterns, pollen tube guidance, growth, 

secondary wall deposition, abscission and interaction with growth regulators and microbes.  

 

1.1.2.3. Other proteins 

 Recently it has become clear that cell wall is very dynamic and contains many 

different enzymes and other agents (reviewed in Cosgrove (Cosgrove, 1999) and Fry (Fry, 

2004)) conferring it dynamic properties like plasticity and extensibility. Among these proteins 

were expansins (e.g. α- and β-expansins), hydrolases (e.g. cellulases, xylanases, PMEs, PGs), 

transferases (e.g. xyloglucan endotransglycosylase hydrolases (XTHs), lyases (e.g. pectate 

lyases) oxido-reductases (e.g. peroxidases and laccases). These non-structural proteins 

perform a wide range of biological roles. A few examples of these functions are cited below 

while others, concerning especially the modification of cell wall and regulation of cell 

elongation are given in section 1.2.  

 



Figure 1.9: Lignin biosynthesis in dicots (after Boudet et al., 2003)
The figure shows a simplified view of the most favoured lignin biosynthetic pathway in
angiosperms where the implication of laccases in the oxidation of monolignols is still not known.

Abbreviations: CAD, cinnamyl alcohol dehydrogenase; CCoAOMT, caffeoyl-CoA O-
methyltransferase; C3H, p-coumarate 3-hydroxylase; C4H, cinnamate 4-hydroxylase; CCR,
hydroxycinnamoyl-CoA reductase; 4CL 4-coumarate CoA ligase; COMT caffeic acid/5-hydroxycinnamoyl CoA reductase; 4CL, 4 coumarate CoA ligase; COMT, caffeic acid/5
hydroxyferulic acid O-methyltransferase also known as AldOMT, 5-hydroxyconiferaldehyde O-
methyltransferase; F5H, ferulate 5-hydroxylase also known as Cald5H, coniferaldehyde 5-
hydroxylase; HCT, p-hydroxycinnamoyl-CoA:quinate shikimate p-ydroxycinnamoyl-CoA
transferase; PAL, phenylalanine ammonia-lyase; SAD, sinapyl alcohol dehydrogenase.
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 Inside cells, proteases are involved in all aspects of the plant life cycle (Schaller, 

2004), but their role in cell wall is not very clear. Outside cells, some are thought to be 

involved in cell-cell communication by generating local-signals (Matsubayashi and Sakagami, 

2006). The subtilisin-like serine protease Stomatal Density and Distribution 1 (SDD1) is 

thought to control stomata distribution and density in Too Many Mouths (TMM) dependent 

way (Berger and Altmann, 2000; Nadeau and Sack, 2003). The cell wall HRGP, Root-Shoot-

Hypocotyl-Defective (RSH), is essential for normal embryo development in A. thaliana and 

the mutant fails to develop normal embryo because mal-positioning of the cell plate at the 

time of division leading to the formation of abnormal embryo (Hall and Cannon, 2002). 

Reviewing the role of the cell wall in embryogenesis (Malinowski and Filipecki, 2002), the 

authors have highlighted that chitinases, XTHs, and peroxidases participate in embryogenesis 

regulation by involvement in signal transduction, and by influencing cell shape and division 

plane. AGPs are considered source of signals in a variety of ways (Seifert and Roberts, 2007). 

They may bind directly to a receptor that activate a signal transduction cascade or may release 

lipid signals by cleavage of GPI anchor by phospholipase or oligosaccharide as signals by 

endoglucanases. Inflorescence Deficient in Abscission (IDA) gene encoding an AGP playing a 

role in the abscission where its mutant delayed floral organ abscission and its over-expression 

produced opposite effect. Pectate lyases play important role in softening ripening fruits 

(Marin-Rodriguez et al., 2002). Peroxidases that rigidify cell wall by cross-linking of wall 

compounds are expressed to cope with biotic and abiotic stresses like wound, pathogen 

interaction, and climatic aggression (Passardi et al., 2004; Passardi et al., 2005). 

Polygalacturonase-inhibiting proteins (PGIPs) protect plant against fungal attack by inhibiting 

fungal PGs (De Lorenzo et al., 2001).  

 

1.1.3.  Other cell wall components 

1.1.3.1. Lignins 

Lignins (reviewed in Boerjan et al. (Boerjan et al., 2003), Boudet et al. (Boudet et 

al., 2003) and Davin and Lewis (Davin and Lewis, 2005)) are the 2nd most abundant plant 

substances in vascular plants. They are usually deposited in the secondary cell wall with few 

lignins exceptionally occurring in primary cell wall (Buchanan et al., 2000). Lignins are 

assumed to be obtained by the oxidative polymerization of monolignols in the cell wall by 

peroxidases and laccases. The first step of lignin biosynthesis is the deamination of 

phenylalanine (dicots) or tyrosine (monocots) by ammonia lyases, yielding cinnamic or p-

coumaric acids, respectively (Figure 1.9). Successive steps of hydroxylation, methylation, 



Figure 1.10: Lignin structure (after Evtuguin and Amado 2003, in Davin and Lewis 2005)
An example of putative primary sequence structure of a syringyl lignin-derived hexamer fragment
from Eucalyptus globulus. The radical-radical coupling linkages between the sinapyl alcoholyp g p g g py
monomers are shown in red.

Figure 1.11: Plant cuticle (after Heredia-Guerrero et al., 2008)
Current microscopic model of plant cuticle that shows the epicuticular wax crystals deposited on
an amorphous and dense matrix of cutin polymer, containing some intracuticular waxes.

Figure 1.12: Major monomers of plant cutin (after Heredia-Guerrero et al., 2008)
Chemical structure of the major monomers present in plant cutin. These monomers are derived
from C16 saturated fatty acid and from C18 unsaturated fatty acids. Some plants have mainly C16
family of monomers, whereas others have a mixture of both C16 and C18 families of monomers.
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formation of hydroxycinnamoyl-CoA thioesters, reduction of hydroxycinnamoyl-CoA 

thioesters to hydroxycinnamaldehydes, and reduction of hydroxycinnamaldehydes lead to 

three p-hydroxycinnamyl alcohols (monolignols), p-coumaryl, coniferyl, and sinapyl alcohols 

which are transported from the cytosol to the apoplast. When reaching the apoplast, 

monolignols undergo dehydrogenative polymerization via oxidases, forming lignins. They 

comprise two major components namely guaiacyl (G), derived from coniferyl alcohol, and 

syringyl (S), derived from sinapyl alcohol (Figure 1.10) and one minor component p-

hydroxyphenyl units (H), derived from p-coumaryl alcohol. Although polymers of only three 

types of monomers, the composition and structure of lignins vary significantly among 

different plants or within the same plant (Billa et al., 1998). 

 

1.1.3.2. Lipids 

Lipids constitute the impermeable hydrophobic outer portion of the cell wall called 

cuticle, a continuous layer that covers aerial parts of leaves, fruits and young non-woody 

stems. Cuticle weight ranges from 2000 µg/cm2 (in fruits) to 450-800 µg/cm2 (in leaves). 

Forty to 80% of this is constituted by cutin, the extracellular lipids that are interconnected by 

ester bonds and can be studied after hydrolysing the polyesters (Heredia, 2003). Waxes are 

soluble extracellular lipids and can be extracted with organic solvents. The structure and 

composition of the cuticle vary in different plants, plant organs and growth stages but 

basically comprise a cutin matrix developed on the epidermal plant cell wall with waxes. 

Waxes are solid, partially crystalline aggregates at room temperature (Schreiber, 2005). They 

appear either embedded in the matrix (intracuticular) or deposited on its surface (epicuticular) 

as shown in Figure 1.11 (Riederer and Müller, 2005). Epicuticular wax may exist as a smooth 

film in some species or as wax crystals in other species (Buschhaus et al., 2007). Chemically, 

cutin is a polymeric network of polyhydroxylated C16 and C18 fatty acids cross-linked by ester 

bonds (Figure 1.12). Waxes are generally described as mixtures of homologous long-chain 

aliphatic compounds, like alkanes, alcohols, aldehydes, fatty acids and esters with the addition 

of varying proportions of cyclic compounds like triterpenoids and hydroxycinnamic acid 

derivatives (Heredia, 2003).  

 

Cuticle controls non-stomatal water loss, protects plants against ultraviolet radiation. 

It does not allow the water to stand easily on surface of the plant thus minimizing 

accumulation of dust, pollen and air pollutants. In addition, surface wax is thought to play 

important roles in plant defense against bacterial and fungal pathogens (Kunst and Samuels, 
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2003). Surface wax has also been shown to participate in a variety of plant-insect interactions 

(Eigenbrode and Espelie, 1995). For example epicuticular lipid extracts and individual lipid 

component enhance or deter oviposition, movement, and feeding. 

 

1.1.3.3. Suberin 

 Suberin is a biopolymer making a barrier between plants and the environment in 

specialized plant tissues (e.g. periderm, bark and tuber skin) that protects the internal living 

tissues from dehydration, injuries, and pathogens (Soler et al., 2007). Suberized cells are also 

found in the epidermis and hypodermis of roots, the endodermis and the bundle sheath of 

grasses (Graca and Santos, 2007). Suberin is a complex polyester made of glycerol and long-

chain diacids and hydroxyacids (Schreiber et al., 1999; Groh et al., 2002). In suberized cells, 

suberin represents up to 50% of the mass of the cell wall (Pereira, 1988). 

 

In the outermost tissues of plants, suberized cells play a vital role affording 

protection against environmental aggressions and pathogens, and controlling temperature and 

water loss (Schreiber et al., 1999; Groh et al., 2002). 

 

1.1.3.4. Inorganic salts 

Calcium and boron are the two major minerals localized in the cell wall. Calcium is 

also an essential plant nutrient and is required for various structural roles in the cell wall and 

membranes. Plants take up calcium from soil through roots and calcium is delivered to the 

shoots via xylem. Calcium enters the plant cells through specific ion channels in their plasma 

membranes (White and Broadley, 2003). In cell wall, Ca2+ participates in cross-linking the 

demethylesterified HGA to form supramolecular assemblies and gels (see Figure 1.6) (Willats 

et al., 2001) that modify cell wall physical and chemical properties.  

 

Boron is an essential nutrient for vascular plants. In cell wall, it cross-links RG-II to 

form dimers by borate ester bond between two apioses (see Figure 1.6) (Ridley et al., 2001). 

Boron deficiency makes the tissues brittle or fragile, while plants grown on high boron levels 

may have unusually flexible or resilient tissues (Loomis and Durst, 1992). Boron helps 

establishing an effective legume–Rhizobium symbiosis (Bolanos et al., 1994) and is required 

for the maintenance of nodule cell wall structure (Bonilla et al., 1997). 

 



Figure 1.13 Structure of the primary cell wall (after Cosgrove 2005)
Cellulose microfibrils (purple rods) are synthesized by large hexameric complexes in the plasma
membrane, whereas hemicelluloses and pectins, which compose the matrix polysaccharides, are
synthesized in the Golgi apparatus and are deposited to the wall surface by vesicles. Xyloglucans are
tightly bound to microfibrils by hydrogen bonds and form cross-links between them, thus constituting a
load-bearing network. For clarity, the hemicellulose–cellulose network is shown on the left part of the
cell wall without pectins, which are emphasized on the right part of the figure. In most plant species the
main hemicellulose is xyloglucan (blue), while hemicelluloses such as arabinoxylans (grey) and
mannans (not shown) are found in lesser amounts. The main pectin polysaccharides include
h l t I d h l t ith ll t f l l t birhamnogalacturonan I and homogalacturonan, with smaller amounts of xylogalacturonan, arabinan,

arabinogalactan I (not shown) and rhamnogalacturonan II. Pectin domains are believed to be covalently
linked together and to bind to xyloglucan by covalent and non-covalent bonds. Neutral pectin
polysaccharides (green) are also able to bind to cellulose surfaces. pH of the cell wall and the action of
different enzymes (not shown) like expansins, endo-1,4-β-D-glucanases, XTHs, PMEs and peroxidases
on the cell wall components modify the properties of cell wall resulting in wall loosening or rigidification.



                                                                                                                                       Chapter 1 
___________________________________________________________________________ 

___________________________________________________________________________ 
                                                                            15 

1.2. Cell wall proteins in relation to cell elongation and growth 

Growth can be described as an irreversible increase of volume. In plants, growth is 

the outcome of cell division, enlargement of the new cells and their differentiation into 

different types of tissues. These processes of growth are accompanied by permanent change in 

size (usually an increase in length or volume) and an increase in dry mass of the growing part. 

Enlargement of cells may be polarized, expanding more in one axis than the other 

(elongation) or it may be uniform in all directions as in isodiametric cells. Furthermore 

polarized growth takes place in two ways. In the first case, called tip growth, in which the 

growth is focused on a single specialized region, the apex of the tip growing cell. This type of 

growth is found in pollen tube, root hair and fungal hyphae. The other type is called diffuse 

growth and takes place at any point of a meristematic cell mostly in the cell wall parallel to 

the axis of elongation. This latter type of elongation generally occurs in the apical meristem of 

root and shoot or the intercalary meristem. This study is focused exclusively on diffuse 

polarized cell growth.  

 

Before maturity, plant cells usually enlarge 10- to 1000-fold in volume by the 

process of vacuolation and irreversible cell wall expansion (Cosgrove, 1997). According to 

this review, there are two major concepts that account for the molecular basis of expansion. 

The first concept couples wall expansion to biosynthesis and secretion of wall polymers but 

did not explain the wall stress relaxation which is essential expansion of the cell via water 

uptake. The second concept considers wall expansion as result of biochemical loosening of 

the wall which permits turgor-driven extension of the wall polymer network. Though 

convincing, this latter neglects the need for integration of new polymers into the expanding 

wall.  

 

To explain cell wall expansion based on rheological properties of the growing wall 

several potential mechanisms of stress relaxation and expansion can be imagined. Figure 1.13 

represents the organization of various cell wall components and the various types of 

coordinated interactions between them that allow the cell to elongate but maintain cell wall 

integrity as intact structure. These interactions are described below in slight detail.  

 

 The acid-growth theory of cell wall expansion (Hager, 2003), which states that 

auxin, in an activated form (~A) activates a H+-pumping ATPase at the plasma membrane 

(PM) which utilizes respiratory energy (ATP) to raise the proton concentration in the 
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apoplast. This triggers cell elongation by activating cell wall enzymes. The transport of 

protons into the cell wall is compensated by a flow of cations into the cytoplasm, which 

maintains turgor pressure during cell elongation.  

 

In elongating cells, the cellulose microfibrils are deposited perpendicular to the axis 

of elongation, forming a spring-like structure (Green, 1962). Such an arrangement reinforces 

lateral walls on one side and allows directional expansion (elongation) of the cell on the other 

hand through loosening of cellulose-hemicellulose networks. Expansins that can restore acid-

induced creep of denatured walls, also participate this process. In fact, expansins are thought 

to transiently displace short stretches of hemicelluloses that are bonded to the surface of 

cellulose microfibril. It makes polymers to creep dragging along other structural components 

if the wall is in tension (Cosgrove, 1998).  

 

Endo-1,4-β-D-glucanases (EGases) are assumed to cleave the β-1,4-glycosidic 

bonds between glucose of xyloglucans relaxing wall polysaccharides to move apart during 

cell elongation.  

 

 XTHs also perform cell wall modifications required for the process of wall assembly 

and cell expansion, by either wall loosening or incorporating new xyloglucan chains into 

extending walls (Chanliaud et al., 2004). They cleave xyloglucans and rejoin the newly 

generated reducing ends to others by acting on the xyloglucans attached to cellulose 

microfibrils (Vissenberg et al., 2005).  

 

PMEs can cause wall loosening or wall stiffening according to their mode of action 

on HGs (Micheli, 2001). Once integrated into the cell wall, they may act randomly (as in 

fungi) or linearly (as in plants) on HGs. When PMEs act randomly on HGs (at acidic pH), the 

demethylesterification releases protons that promote the action of endopolygalacturonases 

(Endo-PGs) and contribute to cell wall loosening. When PMEs act linearly on HGs (at basic 

pH), PMEs give rise to blocks of free carboxyl groups that could interact with Ca2+, so 

creating a pectate gel. Because the action of Endo-PGs in such a gel is limited, this action 

pattern of PMEs contributes to cell wall stiffening. 

 

 Peroxidases (reviewed in Passardi et al. (Passardi et al., 2004)) also play a dual role 

in this context. By peroxidative cycle, they oxidize various substrates such as tyrosine 



Figure 1.14. Changes in thickness of cell walls of dark-grown hypocotyls
(after Derbyshire et al., 2007)
Cell wall thicknesses of different tissues [outer epidermis (OE), inner epidermis (IE), outer cortex
(OC), inner cortex (IC), and endodermis (EN)] of hypocotyls freeze-fractured at their mid-points at
different developmental stages of dark-grown hypocotyls:different developmental stages of dark grown hypocotyls:
stage I: at the embryo stage prior to germination
stage II: at the onset of germination
stage III: at 50% of their final length
stage IV: immediately after cessation of growth
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residues, monolignols, suberin units and ferulic acids. The radicals produced by the 

peroxidative cycle, if linked to other polymers can cross-link cell wall polymers like extensins 

or lignins that block any further wall loosening and hence cell expansion. Inversely, by 

hydroxylic cycle they produce reactive oxygen species (ROS) like ·OH that can cleave 

various polysaccharides non-enzymatically and contribute to wall loosening. Wall loosening 

is also caused by regulating H2O2 concentration by both peroxidative and hydroxylic cycles.  

 

 Listed above are the proteins potentially involved directly or indirectly in cell wall 

elongation or its arrest, but still a huge investment is needed in this field to completely 

understand the process.  

 

1.3.       A. thaliana etiolated hypocotyls as a model for cell elongation 

 To understand the mechanism of cell elongation, hypocotyls of A. thaliana are widely 

used as model (Gendreau et al., 1997). During hypocotyl elongation, almost the entire cell 

machinery is devoted to synthesize, export and reorganize cell walls. The cell wall remains 

dynamic in real sense provided with the required plasticity and elasticity. Etiolation of 

hypocotyls makes them to elongate more than hypocotyls of light-grown seedlings. In dark-

grown seedlings, hypocotyls elongate along a spatially and temporally steep acropetal 

gradient. This growth takes place mainly by cell elongation (100-fold elongation as compared 

to embryo cells) and does not involve significant cell divisions. Elongation follows an 

acropetal gradient and takes place in two distinct, time-separated phases: synthesis and 

deposition of new cell wall polymers and addition and re-organization of the existing ones 

(Gendreau et al., 1997; Derbyshire et al., 2007). During the first 3 days after germination, 

synthesis and deposition of cell wall material are the main processes, producing cells with 

thick walls. In the following days (until 7 days), hypocotyls grow mainly by extensive 

polymer disassembly and rearrangement resulting in thiner cell walls (Figure 1.14). 

Furthermore they respond to growth hormones as normal plant parts do. The model plant A. 

thaliana have the advantage of the existence of mutants with altered hypocotyl growth 

facilitating gene functional study (Mouille et al., 2003). Owing to these characteristics, 

etiolated hypocotyls of A. thaliana could be considered an ideal model for the study of cell 

elongation. 
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1.4. Objectives of the project 

 As discussed above, CWPs contribute to several physiological functions. But these 

correspond to only a small part of the cell wall genes and role of most of the CWPs is still 

hidden. This project is aimed at identifying cell wall genes involved in cell elongation or its 

arrest. Here we have tried to identify the members of the multigene families known to be 

involved in elongation or elongation arrest in etiolated hypocotyls of A. thaliana as well as 

other proteins that could contribute to these processes.  

 

The questions raised during this work are:  

i) Which are the proteins present in cell wall of elongating hypocotyls and 

fully-grown hypocotyls that have stopped elongation? 

ii) Do there exist differences between the cell wall proteomes of elongating 

organs and those that have stopped elongation? What are these differences? 

iii) What are the functions of these proteins?  

 

 To achieve these goals, comparative cell wall proteomics was used as primary 

approach in etiolated hypocotyls of A. thaliana: a fast growing stage (5-day-old) and a stage 

when there is no more elongation (11-day-old) will be compared. Since previous studies 

showed no defined correlation between the mRNAs and protein concentrations (Moritz and 

Meyer, 2003), working directly with proteins was preferred here. Proteomics has been defined 

as a global qualitative analysis of complex protein mixtures, including the post-translationally 

modified proteins as well as those encoded by alternatively spliced transcripts, and appears as 

a complementary approach to genomic and transcriptomic studies (Hunter et al., 2002). 

Comparative proteomics provides an overview of the proteome and detects proteins which are 

altered between different stages (Moritz and Meyer, 2003) like the two physiological stages in 

this study. In addition, a comparative transcriptomic study was performed on the same 

material. Microarrays are a powerful, sensitive, versatile, and easy-to-use genomic tool that 

can simultaneously determine expression levels for thousands of genes at reasonable cost 

(Meyers et al., 2004; Trevino et al., 2007). Furthermore, combining the two types of data will 

give information about the post-transcriptional regulations of genes encoding CWPs. Here a 

global view of the functions of different genes representing these two physiological stages 

will be given. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 2 
 

MATERIALS AND METHODS
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2.1. Materials 

2.1.1. Plant material 

 Arabidopsis thaliana ecotype Columbia 0 (Col 0) was used for in vitro and in vivo 

cultures for obtaining the hypocotyls, other plant material, and for transformation with the 

desirable constructs. 

 

2.1.2. In vitro culture for obtaining etiolated hypocotyls 

 One hundred and thirty mg seeds of A. thaliana were weighed in an Eppendorf tube, 

soaked for 2-3 h in 1 mL tape water, sterilized by treating with 4 times diluted Javel (sodium 

hypochlorite) for 45 min. To remove the sterilizing solution, the seeds were washed 6 times 

with 1 mL of sterilized ultra high quality (UHQ) water each time. Finally, the seeds were 

sowed in Magenta boxes containing 50 mL of Murashige and Skoog (MS) medium 

(Murashige and Skoog, 1962) pH 5.8, supplemented with 2% (w/v) sucrose and 0.8-1.2% 

(w/v) agar. Synchronization of germination was obtained by 2-4 days chill treatment and 4 h 

light treatment of the seeds. Seedlings were grown at 23°C in the dark for 5 or 11 days.  

 

2.2. Methods 

2.2.1.  Isolation of cell walls from hypocotyls (after Feiz et al. (Feiz et al., 2006)) 

 For one experiment, hypocotyls were collected from 18 and 36 Magenta boxes for 

the 11 day-old and 5 day-old samples respectively. Hypocotyls of A. thaliana were collected 

by cutting the seedlings with scissors below the cotyledons and above the crown measuring 

~0.7 cm for 5 day-old and ~1.2 for 11 day-old seedlings. The hypocotyls thus obtained were 

transferred to 5 mM sodium acetate buffer (pH 4.6), 0.4 M sucrose in a large Petri dish kept 

on ice. To remove the cut cotyledons and testa, hypocotyls were extensively washed on a 2 

mm mesh, with 0.8-3.0 L of 5 mM sodium acetate buffer (pH 4.6), 0.4 M sucrose depending 

on the weight of the hypocotyls. Afterwards, the hypocotyls were transferred to a Moulinex®-

type grinder containing 600 mL of the same buffer supplemented with 1 mL of protease 

inhibitor cocktail (Sigma Aldrich, Saint Louis, USA) and Polyclar® at the rate of 1 g/10 g 

fresh weight of hypocotyls in order to complex the phenolic compounds (Charmont et al., 

2005). The mixture was ground in cold room at full speed for 5 min. Cell walls were 

separated from soluble cytoplasmic materials by centrifugation for 15 min at 1000 × g at 4°C 

using the Beckman J2-HC centrifuge and a JA 14 rotor. They were further purified by two 

additional centrifugations in 150 mL per tube of 5 mM sodium acetate buffer (pH 4.6) 

containing 0.6 M and 1 M sucrose respectively. The cell wall containing pellet was hold at 
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each step. To ensure the removal of cytosolic proteins and other soluble material, the pellet 

was extensively washed on nylon net (25 μm pore size) with 3-5 L of 5 mM sodium acetate 

buffer (pH 4.6). Finally it was ground in liquid nitrogen with mortar and pestle in order to 

obtain very fine powder and to have intimate contact with the protein extraction buffer. The 

cell wall fraction was lyophilized and stored at -20°C. 

 

2.2.2. Sequential extraction of proteins from purified cell walls 

 Generally, 0.6-0.9 g of lyophilized cell walls were taken per tube for protein 

extraction. Proteins were extracted in 4 successive steps by using 10 mL/g of salt solutions in 

this order: 2 extractions with 6-9 mL 5 mM sodium acetate buffer (pH 4.6), 0.2 M CaCl2, 

followed by 2 extractions with 6-9 mL 5 mM sodium acetate buffer (pH 4.6), 2 M LiCl. 

Protease inhibitor cocktail (Sigma Aldrich, Saint Louis, USA), was added at a concentration 

of 15 μL/g cell walls, during the first extraction with each salt. Cell walls were resuspended 

by vortexing during 5-10 min at room temperature and then centrifuged for 15 min, at 40000 

× g and 4°C. The protein content of each extract was measured using the Bradford method 

(Bradford, 1976) with the Coomassie® protein assay reagent kit (Pierce, Perbio Science, 

Rockford, USA) taking bovine serum albumine (BSA) as a standard. Proteins were desalted 

using Econo-Pac® 10DG columns (Bio-Rad Laboratories, Inc. Hercules, CA, USA) 

equilibrated with 0.2 M ammonium formate. Depending on the volume of each extract and of 

protein concentration, protein solutions could be concentrated by successive centrifugations 

using the Centriprep® centrifugal filter device (YM-10 kDa membrane for volumes greater 

than 6 mL or 5 kDa for smaller volumes) (Millipore, Billerica, MA, USA) at 4000 × g. 

Finally, proteins were lyophilized. 

 

2.2.3. Protein fractionation by cation exchange chromatography 

 All the lyophilized extracts were combined and redissolved in a total volume of 2 or 

3 mL of water. They were again quantified as described above. One mg of proteins was used 

for chromatographic fractionation on a 1 mL HiTrapTM SP FF column (Amersham 

Biosciences, Uppsala, Sweden) equilibrated with 50 mM MES (pH 5.6m adjusted with 

NaOH) operated with an FPLCTM System (Amersham Biosciences, Uppsala, Sweden) 

controlled by FPLCdirectorTM version 1.0 (Amersham Biosciences, Uppsala, Sweden). The 

protein solution was adjusted to 50 mM MES (pH 5.6) and 20 µL protease inhibitor cocktail 

(Sigma Aldrich, Saint Louis, USA) were added before loading onto the column. Loading onto 
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the column was accomplished at a flow rate of 0.5 mL/min. A 10 mL unfixed fraction was 

collected at the same rate. Three mL of first wash with 50 mM MES (pH 5.6) were collected 

at a flow rate of 1 mL/min. Fixed proteins were eluted by a gradient from 0 to 0.8 M NaCl in 

50 mM MES (pH 5.6) and 24 fractions (1 mL each) were collected at a flow rate of 1 

mL/min. A modified gradient was applied when enrichment of certain proteins was required. 

Finally the column was successively washed with 3 mL of 1.2 M and 3 mL of 1.5 M NaCl in 

50 mM MES (pH 5.6) at the same flow rate. These washes were also collected as 6 fractions 

(1 mL/tube). Two µL/mL Protease inhibitor cocktail (Sigma Aldrich, Saint Louis, USA) was 

added to all the 1 mL collecting tubes. Quantity of proteins in each fraction was measured by 

the Bradford method (Bradford, 1976). The fractions were combined in groups of 2 or 3 

depending on their protein concentration and were desalted as previously described prior to 

lyophilization.  

 

2.2.4. 1D-E (SDS-polyacrylamide gel electrophoresis) and staining procedures 

 Each lyophilized chromatography fraction (group of 2 or 3 fractions) was 

redissolved in 200 µL water and electrophoresis of proteins was performed according to 

Laemmli (Laemmli, 1970). Samples were loaded on 12 × 15 cm polyacrylamide gel with a 

concentration of 12.5% and a thickness of 1.5 mm (Annex I). For transfer, 8% polyacrylamide 

gels of 8 × 6 cm and 1.5 mm thickness were used (Annex II). 

 

 Gels were stained with any one of the following staining procedures: 

 

2.2.4.1. Staining with Coomassie Brilliant Blue (CBB) 

 CBB staining was performed according to Scheler et al. (Scheler et al., 1998). After 

electrophoresis, the gel was fixed by overnight dipping and gentle shaking in 50% methanol. 

It was then rinsed 3 times with UHQ water by changing the water after each 30 min. Then, the 

gel was sensitized by dipping it in sensitising solution (34% methanol, 2% H3PO4 17% 

ammonium sulfate) for 1 h. Finally, the gel was put in the staining solution (34% methanol, 

2% H3PO4 17% ammonium sulfate, CBB G (Sigma Aldrich, Saint Louis, USA) 0.66 g/L for 

2-3 days. For clearing the background, the gel was rinsed 1-2 times in 2% H3PO4 before 

scanning the gel. The gel was stored at 4°C in 2% H3PO4. 
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2.2.4.2. Staining with silver nitrate 

 For silver nitrate staining, the protocol of Shevchenko et al. (Shevchenko et al., 

1996) was followed. The gel was first fixed in 45% ethanol, 5% acetic acid, 55% UHQ water 

for 30 min to one night. Then, the gel was rinsed with 30% ethanol and UHQ water, one after 

the other (10 min × 3 each). The gel was sensitized by treating with 0.02% Na2S2O3. Then, it 

was rinsed 2 times for 1 min each, with UHQ water. Lastly, stain was developed on gel with 

0.04% formaldehyde, 0.2% Na2CO3. It was left on a shaker and stopped when enough stained 

by taking it out and immersing in 1% acetic acid and stored in it at 4°C. 

 

2.2.4.3. Staining with Amido Black 

 Amido Black staining was used for staining polyacrylamide gel and PVDF transfer 

membrane (0.2 µm, Schleicher & Schuell, Dassel, Germany) after transferring proteins on it. 

The protocol was provided by Mr. Jacques D’Alayer, Head of “Le Plateau d’Analyse et de 

Microséquençage des Protéines”, Pasteur Institute, Paris.  

 

 The gel was fixed in 50% methanol, 10% acetic acid solution for 30 min × 2. The 

gel was stained by overnight treatment with 50% methanol, 10% acetic acid and 0.003% (3 

mg/100 mL) Amido black (Naphthol Blue Black, Sigma Aldrich, Saint Louis, USA). The gel 

was rinsed 3 times with UHQ water to remove methanol, acetic acid and excess of colour. 

 

 For the PVDF membrane, once the proteins were transferred on it, it was first rinsed 

with UHQ water and stained in staining solution (40% methanol, 1% acetic acid) for 15-60 s. 

Water was used for destaining gel background. The membrane was dried in folds of blotting 

paper. Pieces of 2 × 8 mm were cut for N-terminal sequencing. 

 

2.2.4.4. Staining with Gelcode® Glycoprotein staining kit  

 Pierce kit (Perbio Science, Rockford, USA) was used to detect the glycoproteins 

present in the crude extract of hypocotyls. After electrophoresis, the gel was completely 

immersed in 50% methanol for 30 min. Then, the gel was washed twice with 3% acetic acid. 

The gel was transferred to “Oxidizing Solution” and let to agitate for 15 min. The gel was 

again washed twice with 3% acetic acid for 5 min. Now, the gel was treated with “Reducing 

Solution” for 5 min with gentle agitation. Finally, the gel was washed extensively with 3% 

acetic acid and then with UHQ water. The gel was stored in 3% acetic acid. 
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2.2.5. Transfer of proteins from gel on PVDF membrane 

 For this, tank transfer method using Mini Trans-Blot® Electrophoretic Transfer Cell 

(Bio-Rad Laboratories, Inc. Hercules, CA, USA), 8% polyacryamide gel, PVDF membrane 

was followed. PVDF membrane (0.2 µm, Schleicher & Schuell, Dassel) measuring 8 × 10 cm, 

was first immersed for a while in pure methanol, rinsed 2 times for 10 min with UHQ water 

and finally equilibrated in cold transfer buffer (0.025 M Tris, 0.192 M Glycine, 0.01% SDS). 

The fiber pads and Whatman 3 mm filter paper were also soaked in cold transfer buffer. The 

transfer sandwich (also named gel cassette) was prepared inside the transfer buffer contained 

in a tray. From cathode towards anode, the order was as follows: first fiber pad, 2 folds of 

Whatman® 3 mm filter paper, gel, PVDF membrane, 2 folds of Whatman® 3 mm filter paper 

and fiber pad. The sandwich and an ice cube were inserted into the tank which was 

completely filled with the transfer buffer. Transfer was carried out in cold room at constant 75 

V during 2 h 15 min. 

 

2.2.6. Protein identification by mass spectrometry 

 Protein bands were excised from stained gels with a 2 mm inner diameter Pasteur 

pipette. Each gel piece was washed twice with 100 μL of acetonitrile (ACN)/25 mM 

ammonium bicarbonate (50/50 v/v), for 10 min. After drying under vacuum for 15 min, gel 

pieces were rehydrated with 10 μL of sequencing grade a trypsin (Promega Corporation, 

Madison, WI, USA) solution (10 μg/mL) in 25 mM ammonium bicarbonate and digested 

overnight at 37°C. After addition of 1 μL ACN, a 5 min sonication was performed. An aliquot 

of 1 μL was deposited on the sample plate of the mass spectrometer with 1 μL of the matrix 

solution (6 g/L of α-cyano-4-hydroxycyannamic acid in 50% ACN/0.1% trifluoroacetic acid).  

 

 All mass spectrometry (MS) analyses were performed on the “Plate-Forme de 

Protéomique”, Toulouse Midi-Pyrénées, France. Matrix Assisted Laser Desorption/Ionization 

Time-of-Flight (MALDI-TOF) mass spectrometer (Voyager-DeTM STR, Perseptive 

Biosystems, USA), was operated in positive reflector mode at the following parameters: 

accelerating voltage 20 kV; grid voltage 68%; extraction delay time, 200 ns. An external 

calibration was realized with a mixture of known masses of peptides (monoisotopic MH+ 

904.4681, 1296.6853, 1570.6774, 2093.0867, 2465.1989). Acquisition mass was between 750 

and 4000 Da. Mass data were analysed by Data Explorer software (Applied Biosystems/MDS 

Sciex, Foster City, CA, USA). For each sample, an internal mass calibration was performed 
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using trypsin autolysis peaks (monoisotopic MH+ 842.5100, 1045.5600 and 2211.1046). 

Peptide mass fingerprinting data were analyzed by MS-FIT Protein Prospector 

(http://prospector.ucsf.edu). The retained parameters were mass tolerance of 20 ppm, one 

missed cleavage, NCBI non redundant database (2005.01.06), 6 open reading frames and 

oxidation of methionine (or in some cases hydroxylation of proline). In some cases peptides 

were analyzed using, the hybrid linear ion trap mass spectrometer (Q TRAP® MS), 

LC/MS/MS system (Applied Biosystems/MDS Sciex, Foster City, CA, USA) as described in 

Boudart et al. (Boudart et al., 2005). Data were processed by the Analyst software (Applied 

Biosystems/MDS Sciex, Foster City, CA, USA) and submitted to the search software 

MASCOT (http://www.matrixscience.com/home.html). 

 

2.2.7. Extraction of RNAs  

 RNAs were extracted from A. thaliana hypocotyls for comparative transcriptomics. 

Hypocotyls were cut below cotyledons and above crown with scissors and grinded in liquid 

nitrogen using a mortar and pestle and stored at -80°C.  

 

 RNAs were extracted using “SV total RNA extraction kit” (Promega) following their 

protocol for “Isolation of Total RNA from Plant Tissue” and “RNA purification by 

centrifugation (spin)” with minor changes required. The ground tissue was mixed with “RNA 

Lysis Buffer” (175 µL/30 mg). Then added to it “RNA Dilution Buffer” (350 µL/30 mg) and 

mixed by inversion. Now, the mixture was distributed in 1.5 mL Eppendorf tubes (1 tube/30 

mg ground tissue). The tubes were centrifuged at 13,000 rpm in a microcentrifuge for 10 min. 

The cleared lysate solution was transferred to a fresh microcentrifuge tube by pipetting. To 

this, 200 µL of 95% ethanol were added, and mixed. The mixture was then transferred to the 

“Spin Column Assembly” (SCA) and centrifuged at 13,000 rpm for 1 min. The flow-through 

was discarded and 600 µL of “RNA Wash Solution” were added to the “SCA”. It was again 

centrifuged at 13,000 rpm for 1 min. Then 50 µL of freshly prepared “DNase Incubation 

Mixture” (40 µL Yellow Core Buffer, 5 µL 0.09 M MnCl2 and 5 µL of DNase I enzyme per 

sample) was directly added to the membrane inside the “SCA”. After application of the 

mixture, “SCA” was incubated for 15 min at 20-25°C. After incubation, 200 µL of “DNase 

Stop Solution” were added to the “SCA”, and centrifuged at 13,000 rpm for 1 min. Now the 

membrane inside the “SCA” was washed successively with 600 µL and 250 µL “RNA Wash 

Solution” by centrifugation at 13,000 rpm for 1 and 2 min respectively. For eluting RNA, the 

basket was transferred from the “Collection Tube” to the “Elution Tube” and 100 µL 
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“Nuclease-Free Water” were added to the membrane before centrifugation at 13,000 rpm for 

1 min. The RNAs were collected in “Elution Tube” and stored at -80°C. Generally 108 µg 

and 118 µg RNAs were extracted from 800 mg of powder of 5 and 11 days hypocotyls 

respectively. 

 

2.2.8. RT-PCR and semi-quantitative PCR 

 RT-PCR was used for comparison of transcript levels of selected genes in 5-day-old 

hypocotyls to those in 11-day-old hypocotyls of wild type plants. The RNAs extracted from 

the hypocotyls were used as starting material. Complementary DNA (cDNA) first strand were 

obtained from mRNA templates through reverse transcription. For this, 1 µL dNTPs (10 mM 

each), 1 µL oligo (dT)15 primers (Promega) and 1 µL pork desmin mRNA were added to 1 µg 

(10 mL) total RNAs (treated with DNase). In order to denature RNAs, the reaction mixture 

was heated at 65°C for 5 min and immediately put on ice. Then 4 µL of 5× First Strand Buffer 

(Invitrogen), 2 µL of 0.1 M DTT (Invitrogen) and 1µL RNasine Plus RNase Inhibitor 

(Promega) were added to the reaction tube. Then the mixture was incubated at 42°C for 2 min 

before addition of 1 µL of SuperScriptTM II reverse transcriptase (Invitrogen). Again the tube 

was incubated at 42°C for 1 h. At the end, the enzyme was denatured by incubating the tubes 

at 70°C for 15 min. The cDNAs obtained in this way were kept at -20°C. The details of the 

reaction are given in Annex III. 

 

 For comparing RNA quantity of selected genes in 5- and 11-day-old hypocotyls, 

qPCR was performed on their respective first strand cDNA using a Roche lightcycler system 

(Roche Diagnostics, Meylan, France) according to manufacturer’s recommendations and gene 

specific oligonucleotide primers (Table 2.1). Using the results from quantitative PCR to 

determine the number of amplification cycles required to be in a linear range for all genes of 

interest, semi-quantitative PCR was performed to compare relative amounts of the 

corresponding mRNAs. The amplified fragments were analyzed by electrophoresis in 

polyacrylamide gels in standardized conditions. In each case, the presence of a fragment of 

the expected size was checked after staining with ethidium bromide. 
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Table 2.1 Primers used for RT-qPCR amplifications 

Accession number Primer sequence (5'→3', sense orientation) Primer sequence (5'→3', antisense orientation) 

At1g05570 CACTTCCTCTGATAACAATCAAAGAC GCTTACACGCTTGTGCAATG 

At1g10550 CAATTCAGTAAGATCGCCATTG TTTGACACCAACCCAGCTC 

At1g28290 AACCATAAGACTCAAACCCTTC TGAGGGTGGTGGTGATGAG 

At1g49240 CACCCGAGAGGAAGTACAGTG CATACTCTGCCTTAGAGATCCACA 

At1g66180 ACCACAAGCTCAACAAATGGT GGAGGAAGCTTTTTACGATGAC 

At1g68560 GTCGCCGTTAAATGTTGTTG CCCATCTACATTGATGAAATCCT 

At1g69530 GCATCGCTCAATACAGAGC GAGTGTCCGTTTATCGTAAACCTT 

At2g21140 TCTCATCCTTGATAAAGATGC TCTACGTAGAATTCAACAAAGC 

At2g28790 GTGCCCACTACAACGGAAAA TGAGCTAGAGAAGCTGGTGGT 

At3g07130 GGGATCGGCAACCTGATTA GCCCATGTCTCGTTCTTCAT 

At3g16850 GTAGCCTTCAGAACCACCAGA TCAACGCTTGTGAGATCGAC 

At3g43270 TTCCGATCTGCTACATTTGCT GACCGCTTGGTGTTTTTCC 

At4g12880 GGCATGAAGCTAGATGTTTTAGTTG ACATAAAATTGATTTCTTATTGTGCTG 

At4g18670 CACCACCTCCAATCTACGAAG GCCCCTTTTGAGAACATTCTG 

At5g05850 TGGTACCACTGGAGGAAAGC TTGCAACTCCATAGCCACAG 

At5g11420 GTCTCTTCTCTTTACTTTGGTCGTC AGTCGCCGTTTGGTAACATC 

At5g44360 AGGAGCTTATTTGAATTACCGAGA TCGCATCTTCAAAGCTCGTA 

At5g64100 GCAAGACTTCGCTGCTAAAAC GCCGTTGAAGTTAACGAACC 

desmin a CAGCCTCAGTCCTCCAAATCACA TAGGCCTGAGGTCACAGAGGT 
a : Pig desmin RNA was used as an internal control for reverse transcription 

 

2.2.9. Microarray analysis 

 Microarray analysis was carried out at the Unité de Recherche en Génomique 

Végétale (URGV), Evry, France, by Mrs. Ludivine Soubigou-Taconnat and Dr. Jean-Pierre 

Renou, using the CATMA array (Crowe et al., 2003; Hilson et al., 2004), containing 24,576 

gene-specific sequence tags (GSTs) from Arabidopsis. RNA samples from 3 independent 

biological replicates were pooled. For each comparison, one technical replication with 

fluorochrome reversal was performed for each RNA sample. The reverse transcription of 

RNAs in the presence of Cy3-dUTP or Cy5-dUTP (Perkin-Elmer-NEN Life Science 

Products), the hybridization of labeled samples to the slides, and the scanning of the slides 

were performed as described in Lurin et al.  (Lurin et al., 2004). 

 

2.2.10. Statistical analysis of microarray data 

 Experiments were designed with the statistics group of the URGV. Statistical 

analysis was based on 2 dye swaps (i.e. 4 arrays, each containing 24,576 GSTs and 384 

controls) as described in Lurin et al. (Lurin et al., 2004). Controls were used for assessing the 

quality of the hybridizations, but were not included in the statistical tests or the graphic 
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representation of the results. For each array, the raw data comprised the logarithm of median 

feature pixel intensity at wavelengths 635 (red) and 532 nm (green). No background was 

subtracted. In the following description, log ratio refers to the differential expression between 

two conditions. It is either log2 (red/green) or log2 (green/red) according to the experimental 

design. Array-by-array normalization was performed to remove systematic biases. First, spots 

that were considered badly formed features were excluded. Then, global intensity-dependent 

normalization using the LOESS procedure was performed to correct the dye bias. Finally, for 

each block, the log2 ratio median calculated over the values for the entire block was 

subtracted from each individual log2 ratio value to correct print tip effects on each metablock. 

To determine differentially expressed genes, a paired t test was performed on the log2 ratios, 

assuming that the variance of the log2 ratios was the same for all genes. Spots displaying 

extreme variance (too small or too large) were excluded. The raw p-values were adjusted by 

the Bonferroni method, which controls the Family Wise Error Rate (FWER). We considered 

as being differentially expressed the genes with an FWER of 5%. The Bonferroni method 

(with a type I error equal to 5%) was used in order to keep a strong control of the false 

positives in a multiple-comparison context (Ge et al., 2003). 

 

2.2.11. Data Deposition 

 Microarray data from this article were deposited at Gene Expression Omnibus 

(http://www.ncbi.nlm.nih.gov/geo/; accession No. E-MEXP-789) and at CATdb 

(http://urgv.evry.inra.fr/CATdb/; Project RS05-11_Hypocotyls) according to the “Minimum 

Information About a Microarray Experiment” standards. 

 

2.2.12. Bioinformatic analysis 

 DNA sequences related to each protein or to each gene were collected using data 

available in the Unigene database (http://www.ncbi.nlm.nih.gov). The Arabidopsis Genome 

Initiative (AGI) nomenclature was used (http://mips.gsf.de/proj/thal/, 

http://www.tigr.org/tdb/tgi/agi/). Sub-cellular localization and length of signal peptides were 

predicted using PSORT (http://psort.nibb.ac.jp) and TargetP 

(http://www.cbs.dtu.dk/services/TargetP/) (Nielsen et al., 1997; Emanuelsson et al., 2000). 

Prediction of transmembrane domains was done using Aramemnon 

(http://aramemnon.botanik.uni-koeln.de/) (Schwacke et al., 2003). Molecular mass and pI 

value were calculated using the aBi program (http://www.up.univ-

mrs.fr/∼wabim/d_abim/compo-p.html). Homologies to other proteins were searched using 
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BLAST programs (http://www.ch.embnet.org/software/BottomBLAST.html) [Altschul et al., 

1990]. Identification of protein families and domains was performed using InterProScan 

(http://www.ebi.ac.uk/InterProScan/) (Quevillon et al., 2005). GHs and CEs were classified 

according to the CAZy database (http://www.cazy.org/CAZY/) (Coutinho and Henrissat, 

1999). The GT77 family was annotated according to Egelund et al. (Egelund et al., 2004). 

XTHs and expansins were named according to http://labs.plantbio.cornell.edu/xth/ and 

http://www.bio.psu.edu/expansins/index.htm respectively. AGPs and FLAs were named 

according to Schultz et al. (Schultz et al., 2002), Johnson et al. (Johnson et al., 2003), Van 

Hengels and Roberts (van Hengel and Roberts, 2003) and Liu and Mehdy (Liu and Mehdy, 

2007). Proteins homologous to COBRA, LRXs and Hyp/Pro-rich proteins were annotated 

according to Roudier et al. (Roudier et al., 2002), Baumberger et al. (Baumberger et al., 

2003), and Fowler et al. (Fowler et al., 1999) respectively. The lignin toolbox was proposed 

by Raes et al. (Raes et al., 2003). Peroxidases were named as in the PeroxiBase 

(http://peroxidase.isb-sib.ch/index.php) (Bakalovic et al., 2006). Laccases were annotated as 

in Pourcel et al. (Pourcel et al., 2005) and McCaig et al. (McCaig et al., 2005). SKU-like 

proteins and phytocyanins were described in Jacobs and Roe (Jacobs and Roe, 2005), and 

Nersissian and Shipp (Nersissian and Shipp, 2002) respectively. Subtilases are listed at 

http://csbdb.mpimp-golm.mpg.de/csbdb/dbcawp/psdb.html. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 3 
 

EVALUATION OF CELL WALL PREPARATIONS FOR 
PROTEOMICS: A NEW PROCEDURE FOR PURIFYING 

CELL WALLS FROM ARABIDOPSIS HYPOCOTYLS 
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Chapter summary (French) 

 Le premier objectif de ce travail étant d’identifier les protéines présentes dans les 

hypocotyles en élongation et après l’achèvement de leur croissance, il nous fallait mettre en 

œuvre une étude de protéomique. En effet, la protéomique est un outil de choix pour une 

étude globale des protéines. Essentiellement deux types de stratégies, appelées non-

destructive ou destructive, ont été mises en œuvre jusqu’à présent, aucune d’elles n’étant 

capable de révéler l’ensemble des protéines pariétales (Lee et al., 2004 ; Jamet et al., 2008). 

Dans le premier cas, l’intégrité des cellules est respectée puisqu’il s’agit soit d’analyser des 

protéines secrétées dans des milieux de culture, soit de pratiquer des infiltrations dans des 

espaces intercellulaires avec des solutions salines. Dans le second cas, les tissus sont broyés 

avant de procéder à la purification des parois et à l’extraction des protéines avec des solutions 

salines. Cette dernière approche présente un certain nombre de contraintes qui affectent les 

résultats qualitativement et quantitativement : 

i) les protéines pariétales peuvent être perdues au cours de la purification des parois 

puisque ce compartiment extracellulaire n’est pas entouré d’une membrane ; 

ii) les protéines extracellulaires peuvent être contaminées par des protéines 

intracellulaires qui se lient de manière non-spécifique aux polysaccharides des 

parois au cours de leur purification. 

 

 Dans les études protéomiques précédemment publiées, ces problèmes ont rarement 

fait l’objet d’une grande attention. C’est ainsi qu’un grand nombre de protéines connues ou 

prédites par bioinformatique pour être intracellulaires (parfois plus de 50%) ont été 

considérées comme pariétales. Pour pratiquer une étude protéomique des parois végétales, la 

qualité de la purification des parois apparaît donc essentielle. Avant de commencer la mise au 

point de notre protocole de purification de parois, nous avons analysé en détail les résultats de 
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plusieurs études publiées précédemment. Nous avons retenu plusieurs points qui nous 

paraissaient importants et avons essayé d’apporter des solutions : 

i) Perte de protéines au cours de la purification des parois en présence de tampon à 

forte force ionique : nous avons employé un tampon de faible force ionique 

(tampon acétate de sodium 5 mM) pendant toute la procédure de purification des 

parois. 

ii) Contamination des parois par des organelles ou des vésicules membranaires : nous 

avons employé des centrifugations successives en présence de concentrations 

croissantes de saccharose (0.4 M, 0.6 M, et 1.0 M). La forte densité des parois 

permettait ainsi de les recueillir sous forme de culot après chaque centrifugation. 

iii) Contamination des parois par des protéines intracellulaires : nous avons introduit 

une étape de lavage extensif des parois purifiées avec le tampon à faible force 

ionique (tampon acétate de sodium 5 mM). 

iv) Protéolyse : des inhibiteurs de protéases ont été ajoutés tout au long de la 

procédure de purification des parois et des protéines. 

v) Contaminations intracellulaires dues à la présence de détergents dans le tampon 

d’extraction : aucun détergent n’a été ajouté dans les tampons utilisés. 

vi) Méthodes de vérification de la qualité des préparations de parois : les méthodes 

traditionnelles se sont révélées inappropriées pour vérifier la présence de 

contaminants intracellulaires par manque de sensibilité. Nous avons employé 

systématiquement les outils de la bioinformatique pour prédire l’adressage sub-

cellulaire des protéines ainsi que les données de la littérature. Il s’agissait de 

s’assurer de la présence d’un peptide signal et de l’absence de signal de rétention 

des protéines dans le reticulum endoplasmique. 
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 Le protocole de purification retenu a permis d’obtenir des préparations de parois de 

bonne qualité, comme en témoigne la grande proportion de protéines dont la localisation sub-

cellulaire prédite est extracellulaire (environ 80%). Cette proportion n’a été atteinte dans 

aucune autre étude publiée précédemment. Les résultats sont détaillés dans l’article qui suit 

publié dans Plant Methods. 
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 As a first objective of the work to identify the proteins that are present in the 

elongating and fully-elongated hypocotyls, a proteomic study was needed. Proteomics is 

considered an appropriate tool for large scale studies. Several methods classified as 

destructive and non-destructive are used (Lee et al., 2004; Jamet et al., 2008) since no single 

method is sufficient alone to study complete cell wall proteome. In the non-destructive 

methods living cells are used, and proteins secreted in the culture medium or extracted with 

washing of cells or vacuum infiltration of tissues with salt solutions are analysed. In other 

cases, destructive methods are employing the purification of cell wall from the tissue followed 

by extraction of the proteins with salts. However, the latter approach has several constraints 

that affect the results qualitatively and quantitatively: 

i) loss of CWPs during cell wall purification due to the lack of a surrounding 

membrane 

ii) contamination of CWPs by intracellular proteins that non-specifically bounds to 

the cell wall polysaccharides in the cell wall preparation procedure. 

 

 In previous cell wall proteomic studies, these problems were not being given due 

attention and thus resulted in the identification of high number (up to 50% or more) of known 

or predicted intracellular contaminants. For performing a proteomic study on cell wall, purity 

of cell wall is of utmost importance. To establish a protocol that could purify a proteomic-

grade cell wall, the existing protocols of cell wall preparation, and the results obtained with 

them were analysed. This analysis brought into our notice some steps that seem to be 

responsible for these problems. Keeping in mind these points, we have established a new 

protocol for cell wall preparation. These problems and distinguishing features of our protocol 

to overcome these problems are listed below: 

 

(i) Loss of CWPs by using high ionic strength buffers in cell wall preparation: We 

replaced these buffers by low ionic strength buffer (5 mM acetate buffer) 

throughout cell wall preparation steps in this new protocol. 

(ii) Contamination of cell wall by cell organelles and other vesicles: To purify 

organelles-free cell wall, our protocol uses increasing sucrose concentration (0.4 

M, 0.6 M and 1.0 M) during three successive centrifugations. 

(iii) Lack of extensive washes of the cell wall to wash away the soluble intracellular 

contaminants: To eliminate soluble intercellular contaminants, our protocol 
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proposes extensive washing of the cell wall pellet with the low ionic strength 

buffer (5 mM acetate buffer). 

(iv) Proteolytic degradation of CWPs: For preventing CWP proteolytic degradation, 

we use protease inhibitors. 

(v) Intracellular contamination caused by the use of detergents in the extraction 

buffer: Our new method avoids use of detergents in the protein extraction buffer 

from the purified cell wall that contribute to minimizing the number of 

intracellular proteins in CWP extract. 

(vi) Use of inappropriate methods to judge the purity of cell wall and to distinguish 

true CWPs from the false ones: Traditional methods used were not enough 

sensitive to distinguish between pure and impure cell walls and all the proteins 

identified were considered as CWPs. We analyse the identified proteins with 

bioinformatic tools to check for the presence of signal peptide and absence of ER 

retention signal. 

 

  During this study, the above protocol was used and satisfactory results were 

obtained. CWPs extracted from cell wall purified with this protocol allowed the identification 

of high number (about 80 %) of predicted CWPs with few intracellular contaminants. None of 

the previously published studies has reported such high proportion. The detailed results are 

given in the article published in Plant Methods.  

  

The supplementary data files are given as annexes at the end of the report. 
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Abstract
Background: The ultimate goal of proteomic analysis of a cell compartment should be the
exhaustive identification of resident proteins; excluding proteins from other cell compartments.
Reaching such a goal closely depends on the reliability of the isolation procedure for the cell
compartment of interest. Plant cell walls possess specific difficulties: (i) the lack of a surrounding
membrane may result in the loss of cell wall proteins (CWP) during the isolation procedure, (ii)
polysaccharide networks of cellulose, hemicelluloses and pectins form potential traps for
contaminants such as intracellular proteins. Several reported procedures to isolate cell walls for
proteomic analyses led to the isolation of a high proportion (more than 50%) of predicted
intracellular proteins. Since isolated cell walls should hold secreted proteins, one can imagine
alternative procedures to prepare cell walls containing a lower proportion of contaminant proteins.

Results: The rationales of several published procedures to isolate cell walls for proteomics were
analyzed, with regard to the bioinformatic-predicted subcellular localization of the identified
proteins. Critical steps were revealed: (i) homogenization in low ionic strength acid buffer to retain
CWP, (ii) purification through increasing density cushions, (iii) extensive washes with a low ionic
strength acid buffer to retain CWP while removing as many cytosolic proteins as possible, and (iv)
absence of detergents. A new procedure was developed to prepare cell walls from etiolated
hypocotyls of Arabidopsis thaliana. After salt extraction, a high proportion of proteins predicted to
be secreted was released (73%), belonging to the same functional classes as proteins identified using
previously described protocols. Finally, removal of intracellular proteins was obtained using
detergents, but their amount represented less than 3% in mass of the total protein extract, based
on protein quantification.

Conclusion: The new cell wall preparation described in this paper gives the lowest proportion of
proteins predicted to be intracellular when compared to available protocols. The application of its
principles should lead to a more realistic view of the cell wall proteome, at least for the weakly
bound CWP extractable by salts. In addition, it offers a clean cell wall preparation for subsequent
extraction of strongly bound CWP.
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Background
Cell walls are natural composite structures, mostly made
of high molecular weight polysaccharides, proteins, and
lignins, the latter found only in specific cell types. They are
dynamic structures contributing to the general morphol-
ogy of the plant. Cell walls are involved in cell expansion
and division, and they are sources of signals for molecular
recognition within the same or between different organ-
isms [1-5]. Cell wall proteins (CWP) represent a minor
fraction of the wall mass: 5–10% in primary cell walls of
dicots, as reported for cell suspension cultures, but accu-
rate determinations in various plant organs are still lack-
ing [6]. Despite their low abundance, CWP contribute, at
least in part, to the dynamic of cell walls. CWP can be
involved in modification of cell wall components, wall
structure, signalling, and interactions with plasma mem-
brane proteins at the cell surface [7].

Proteomics appears to be a suitable method to identify a
large number of CWP thus providing information for
many genes still lacking a function. Recent publications
on cell wall proteomics have shown that more than 50%
of the identified proteins were known to be intracellular
proteins in higher plants [8,9], green alga [10] and fungi
[11]. Different techniques unrelated to proteomics, such
as biotinylation of cell surface proteins, or immunoelec-
tron microscopy, also suggested a cell wall location for
some glycolytic enzymes, proposing that they are bona fide
components of the yeast cell wall [11]. However, the reli-
ability of protein profiling for a compartment like the cell
wall, strongly depends on the quality of the preparation.
Unfortunately, the classical methods to check the purity of
a particular fraction are not conclusive for proteomic stud-
ies, since the sensibility of the analysis by mass spectrom-
etry is 10 to 1000 times more sensitive than enzymatic or
immunological tests using specific markers. Our experi-
ence in the field has shown that the most efficient way to
evaluate the quality of a cell wall preparation is (i) to iden-
tify all the proteins extracted from the cell wall by mass
spectrometry, and (ii) to perform extensive bioinformatic
analysis to determine if the identified proteins contain a
signal peptide, and no retention signals for other cell com-
partments [12-15]. It is then possible to conclude about
the quality of the cell wall preparation by calculating the
proportion of predicted secreted proteins to intracellular
ones.

The aim of the present study is to present a comparative
analysis of different methods previously published to pre-
pare cell walls for proteomic studies. These methods will
be evaluated by the proportion of proteins predicted to be
secreted after bioinformatic analysis as stated above. A
new method is presented, based on classical cell wall
preparations, but adapted to the new technologies. The

results indicate that such a method significantly reduces
the number of proteins without predicted signal peptide.

Results and discussion
Several strategies have been designed to gain access to
CWP. The most labile CWP, i.e. those having little or no
interactions with cell wall components, can be recovered
in culture media of cell suspension cultures [12] or liquid
cultured seedlings [14]. Extracellular fluids can be har-
vested from cell suspension cultures [12,16] or intact
organs such as leaves [13]. However, such analysis cannot
be done in all cases. It is then necessary to isolate cell walls
starting with a drastic mechanical disruption of the mate-
rial of interest. Consequently, labile CWP may be lost, and
intracellular proteins or organelle fragments may contam-
inate cell wall preparations.

To design a procedure for cell wall isolation and subse-
quent protein extraction, several general features should
be kept in mind. Plant and fungal cell walls are mainly
built up with highly dense polysaccharides. This property
can be used to purify them through density gradients by
centrifugation. The biochemical structure of walls is com-
plex, and CWP can be bound to the matrix by Van der
Waals forces, hydrogen bonds, and hydrophobic or ionic
attractions. Such interactions can also be modulated by
the composition of the isolation medium. Commonly, a
low ionic strength is preferred to preserve ionic bonds, but
also to dilute the ionic strength of the cell wall itself. An
acidic pH is chosen to maintain the interactions between
proteins and polysaccharides as in planta. Once isolated,
cell walls are classically treated by CaCl2 buffers to release
proteins, and by LiCl buffers for extraction of glycoprotein
[17,18]. The use of detergents has also been reported to
extract proteins strongly embedded in the polysaccharide
matrix, like wall associated kinases [19]. Finally, CWP can
be covalently bound to cell wall components so that they
are resistant to salt-extraction. At present, there is no satis-
factory procedure to isolate them. We analyze recent pub-
lications using different methods to isolate cell walls from
plants or yeast prior to proteomic analysis [8,9,20].

Analysis of early methods
Chivasa et al. [8] used A. thaliana cell cultures to purify cell
walls. The procedure is schematically represented in Fig-
ure 1A. The first step consisted in cell grinding in water.
The homogenate was layered onto 10% glycerol and let to
sediment for several hours. The cell wall pellet was resus-
pended in water and washed 3 times by repeated centrifu-
gations. The proteins were sequentially extracted with 0.2
M CaCl2, and urea buffer (7 M urea, 2 M thiourea, 4%
CHAPS, 1% DTT, 2% Pharmalytes 3–10). The extracted
proteins were separated by 2D-GE and identified by
MALDI-TOF mass spectrometry (MS). The identified pro-
teins were analyzed with several bioinformatic programs
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Cell wall preparation from A. thaliana cell culturesFigure 1
Cell wall preparation from A. thaliana cell cultures. A – Schematic representation of the purification of cell walls from 
A. thaliana cell suspension cultures, and of the different extracts obtained [8]. B – Number of proteins identified in each extract 
after separation by 2D-GE and MALDI-TOF MS analysis. After bioinformatic analysis, proteins were classified as outside (pro-
teins containing a signal peptide and no other targeting sequences), having at least one trans-membrane domain and intracellu-
lar (predicted to be located in any intracellular compartment). Proteins for which predictions by different bioinformatic 
programs are in conflict are classified as "not clear". Twenty-four different proteins predicted to be secreted were identified in 
this study (see Additional file 1).
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Cell wall preparation from M. sativa stemsFigure 2
Cell wall preparation from M. sativa stems. A – Schematic representation of the purification procedure of cell walls from 
M. sativa stems, and of the different extracts obtained [9]. B – Number of proteins identified in each extract after 2D-GE sep-
aration and LC-MS/MS analysis. Proteins were classified as indicated in legend to Figure 1. Since the M. sativa genome is not 
fully sequenced, the sequence of the N-terminus of some proteins is not known. They were classified as "not predictable". 
Twenty-five different proteins predicted to be secreted were identified in this study (see Additional file 2).
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Preparation of cell walls from C. albicans (yeast and hyphae)Figure 3
Preparation of cell walls from C. albicans (yeast and hyphae). A – Schematic representation of the purification proce-
dure of cell walls from the dimorphic fungus C. albicans (yeast and hyphae), and of the extracts obtained [20]. B – Number of 
proteins identified in each extract after 2D-GE and analysis by MALDI-TOF or MALDI-TOF/TOF MS. Proteins were classified 
as indicated in legend to Figure 1. Four different proteins predicted to be secreted were identified in this study (see Additional 
file 3).
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and classified as: (i) outside (proteins predicted to be
secreted since they contain a signal peptide and no other
targeting sequence), (ii) having trans-membrane
domain(s), or (iii) intracellular (proteins not fulfilling
these criteria). Figure 1B represents the results of both
extractions. It appears that the CaCl2 extract contains the
highest proportion of proteins predicted to be secreted
(50%), and that the use of detergents and chaotropic
agents brings out mostly intracellular proteins, even if
20% of this fraction corresponds to predicted secreted
proteins. Twenty-four different proteins predicted to be
secreted were identified with this method.

Stems of Medicago sativa (alfalfa) were used for cell wall
protein profiling [9]. In this case, a different procedure
was used to isolate cell walls (Figure 2A). Tissues were fro-
zen and ground in cold grinding buffer (50 mM Na ace-
tate buffer, pH 5.5, 50 mM NaCl, and 30 mM ascorbic
acid) with PVPP. Cell walls were isolated by filtering
through a 47 μm2 mesh nylon membrane and washed
sequentially with grinding buffer, 0.1 M NaCl, acetone
and 10 mM Na acetate pH 5.5. The proteins were sequen-
tially extracted with 0.2 M CaCl2, and 3 M LiCl buffers.
The data obtained in this publication was analyzed as
mentioned above, and the results are presented in Figure
2B. The proportion of intracellular proteins in the CaCl2
extract is quite high (50%). It seems that the first washes
do not eliminate such proteins. It is also possible that the
wash performed with 0.1 M NaCl eliminates part of the
secreted proteins. Twenty-five different proteins predicted
to be secreted were identified in this study.

The procedure for isolation of cell walls from the dimor-
phic fungus Candida albicans used by Pitarch et al [20] was
based on previous methods designed to isolate proteins
covalently linked to the polysaccharide matrix [21,22].
Yeast and hyphae were collected by centrifugation and fil-
tration, washed several times with lysis buffer (10 mM
Tris-HCl, pH 7.4, 1 mM PMSF), and mechanically dis-
rupted in lysis buffer (Figure 3A). After centrifugation, the
pellet was successively washed with cold water and
decreasing concentrations of NaCl (85, 34 and 17 mM) in
1 mM PMSF. Proteins were extracted with boiling SDS-
extraction buffer (50 mM Tris-HCl, pH 8.0, 0.1 M EDTA,
2% SDS, 10 mM DTT). The residue was separated in two
fractions, one was extracted with alkali (30 mM NaOH),
and the other was submitted to sequential digestions by a
β-1,3-glucanase followed by an exochitinase to break
down the polysaccharide matrix. Each of the four samples
were separated by 2D-GE, digested with trypsin and the
peptides identified by MALDI-TOF or MALDI-TOF/TOF
MS. The proteins identified in this publication were sub-
mitted to bioinformatic analysis and the results are repre-
sented in Figure 3B. Only four proteins predicted to be

secreted were identified. All the others are predicted to be
intracellular proteins (78%).

Altogether, this evaluation of three procedures to isolate
cell walls from plants or fungi prior to proteomic analyses
shows that they all produce a material containing a high
proportion of proteins predicted to be intracellular, sug-
gesting they are contaminants. Even if a careful bioinfor-
matic analysis allows the discrimination between secreted
and intracellular proteins, the time and effort consumed is
not satisfactory.

A modified method to prepare plant cell walls
From the analysis of the presented methods and other
classical cell wall preparations used for the purification of
cell wall enzymes [23,24], several points appear to be
essential for the purification of cell walls. First, the pres-
ence of NaCl at early steps of cell wall preparations of M.
sativa and C. albicans in grinding or washing buffers might
induce a release of CWP even at a low concentration [12].
This might indirectly increase the proportion of intracel-
lular proteins sticking non-specifically to cell wall
polysaccharides. The use of a low ionic strength buffer for
tissue grinding and subsequent washes to purify cell walls
appears as an interesting alternative to prevent loss of
CWP. Second, the protocol used for A. thaliana cell sus-
pension cultures is the only one including a purification
of cell walls through a dense medium, i.e. sedimentation
in 10% glycerol. Proteins predicted to be secreted repre-
sented 50% of the identified proteins. It seems that a
series of sedimentations/centrifugations in solutions of
increasing densities would help in eliminating organelles
and other vesicles less dense than cell wall polysaccha-
rides [23,24]. Third, despite repeated washes, the cell wall
preparation from A. thaliana cell suspension cultures still
contained a high proportion of proteins predicted to be
intracellular. A way to eliminate soluble contaminants
such as intracellular proteins is to perform extensive
washes of cell walls with a low ionic strength buffer [24].
Finally, the addition of polyvinyl polypyrrolidone (PVPP)
to trap plant phenolic compounds [14] as well as anti-
proteases to limit protein degradation during the manip-
ulations [13], improves the quality of protein identifica-
tion by mass spectrometry. Our procedure was established
on the basis of these requirements.

Eleven day-old etiolated hypocotyls were ground in a low
ionic strength buffer, 5 mM acetate buffer pH 4.6 in 0.4 M
sucrose (Figure 4). PVPP and anti-proteases were added to
the homogenate, centrifuged, and the resulting pellet
resuspended in 5 mM acetate buffer pH 4.6 with increas-
ing concentrations of sucrose (0.6 M and 1 M) and centri-
fuged. The residue (CW3) was extensively washed on a
nylon membrane (25 μm pore size) with large amounts of
5 mM acetate buffer pH 4.6 (3 L for 16 g fresh material).
Page 6 of 13
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Cell wall preparation from A. thaliana hypocotylsFigure 4
Cell wall preparation from A. thaliana hypocotyls. Schematic representation of the purification procedure of cell walls of 
A. thaliana etiolated hypocotyls. Sixteen g of fresh etiolated hypocotyls were ground. All supernatants were discarded after 
each centrifugation. The CW3 residue was extensively washed on a nylon net (25 μm pore size) with 3 L of 5 mM acetate 
buffer, pH 4.6. The CW4 pellet was ground in liquid nitrogen in a mortar with a pestle in order to reduce the size of the frag-
ments, and lyophilized, obtaining 1.3 g of dry powder.
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Extraction of proteins from A. thaliana hypocotyls with saltsFigure 5
Extraction of proteins from A. thaliana hypocotyls with salts. A – Half of the CW4 lyophilized powder (0.65 g) was 
successively suspended in 0.2 M CaCl2, 5 mM acetate buffer pH 4.6, and in 2 M LiCl, 5 mM acetate buffer pH 4.6. The CaCl2 
extract contained 400 μg of proteins. The LiCl extract contained 40 μg of proteins. B – Number of proteins identified in each 
extract after 1D-GE separation, and analysis by MALDI-TOF MS or LC-MS/MS. Proteins were classified as indicated in legend 
to Figure 1. Seventy-three different proteins predicted to be secreted were identified in this study (see Additional file 4).
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Extraction of proteins from A. thaliana hypocotyls cell walls with boiling SDS and DTTFigure 6
Extraction of proteins from A. thaliana hypocotyls cell walls with boiling SDS and DTT. A – The CW6 pellet 
described in Figure 5 was used for further extraction of proteins using boiling 4% SDS and 50 mM DTT in 62.5 mM Tris-HCl 
buffer, pH 6.8. The SDS-DTT extract contained 10 μg of proteins. B – Number of proteins identified in each extract after 1D-
GE separation, and analysis by MALDI-TOF MS or LC-MS/MS. Proteins were classified as indicated in legend to Figure 1 (see 
Additional file 5).
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The cell wall fraction was ground in liquid nitrogen in a
mortar to reduce the size of the particles, which improves
the subsequent extraction of proteins (CW4). In a typical
cell wall preparation from A. thaliana hypocotyls, 16 g of
fresh material resulted in 1.3 g of lyophilized powder.

Sequential salt extraction of proteins from cell walls
The lyophilized powder (CW4) was sequentially extracted
with salts that can extract proteins ionically bound to the
polysaccharide matrix. Calcium chloride has been
reported as an efficient salt for the extraction of cell wall
proteins [8,9,13], and was used in this procedure (Figure
5A) to identify 65 secreted proteins (see Additional file 4).
From 0.65 g of lyophilized powder, 400 μg of proteins
were routinely obtained. LiCl was known as potent salt to
extract hydroxyproline-rich glycoproteins from
Chlamydomonas reinhardii cells, and was successfully used
on M. sativa cell walls and A. thaliana rosettes [9,13,18].
LiCl only extracted 40 μg of proteins, 29 were identified as
predicted to be secreted, but only 8 were specifically
extracted by this salt (see Additional file 4).

A recent review on 281 CWP identified in proteomic stud-
ies by mass spectrometry [7] concluded that more than
60% of them have a basic pI, and around 80% in salt-
extractable fractions. This is a serious problem for the sep-
aration of CWP by the classical 2D-GE, since it is well
known that basic glycoproteins are poorly resolved by this
technique [7]. We have then used 1D-GE for the separa-
tion, each band stained with Coomassie™ blue was
digested by trypsin and further analyzed by MALDI-TOF
MS or LC/MS/MS. Each protein was analyzed using sev-
eral bioinformatic programs as described above. Seventy-
three different proteins predicted to be secreted were iden-
tified in this study, whereas only 12 proteins predicted to
be intracellular and 11 proteins predicted to have trans-
membrane domains were found.

The protocol of CWP extraction we used is almost the
same as the one employed with M. sativa stems [9]. But
comparison of Figures 2B and 5B shows big differences in
the proportion of proteins predicted to be intracellular or
having trans-membrane domains (50% for M. sativa vs
27% for A. thaliana). Since the main difference between
the two protocols is the addition of centrifugations
through a dense medium, it shows that this step is critical
for the purity of cell walls.

The proteins predicted to be secreted identified in this
study belong to the same functional classes as those
described in previous cell wall proteomes established
from cell wall preparations [8,9,25]. Shortly, these func-
tional classes comprise proteins acting on polysaccharides
(e.g. glycoside hydrolases, carbohydrate esterases,
expansins), proteases, proteins with interacting domains

(e.g. lectins, leucine-rich repeat proteins, enzyme inhibi-
tors), oxido-reductases (e.g. peroxidases, berberine-bridge
enzymes), proteins involved in signaling processes (e.g.
arabinogalactan proteins), structural proteins, proteins of
unknown function and miscellaneous proteins [7]. The
new protocol appears to be more efficient since a large
proportion of identified proteins are predicted to be tar-
geted to the compartment of interest.

Since we noticed that the use of detergents described in
previous protocols increased the proportion of proteins
predicted to be intracellular or having trans-membrane
domains [8,20], we wanted to test it on our cell wall prep-
aration. The CW6 pellet (Figure 6) was treated with boil-
ing SDS-DTT buffer (62.5 M Tris-HCl, pH 6.8, 4% SDS, 50
mM DTT). Less than 10 μg of proteins were obtained. As
for the other fractions, the proteins were concentrated,
separated by 1D-GE, and the Coomassie™ blue stained
bands were analyzed by mass spectrometry. Fifty-three
proteins were identified in this fraction, among which 11
(20%) were predicted to be secreted, 12 (23%) were pre-
dicted to have trans-membrane domains and 30 (57%)
were predicted to originate from intracellular compart-
ments including cytoplasm, endoplasmic reticulum,
microbodies, and chloroplasts. Comparison of these
results with those shown in Figures 1B and 3B, in which
detergents such as CHAPS-Urea-DTT or SDS-DTT were
also used, confirms that treatment with detergents mainly
extract intracellular proteins as well as membrane proteins
trapped within the polysaccharide matrix: respectively
66% and 88% of proteins predicted to be intracellular,
and 15% of proteins having trans-membrane domain in
the case of A. thaliana cell walls. Unless looking for spe-
cific proteins only extractible in those conditions, this step
should be avoided for a large-scale cell wall proteomic
study. It can rather be a good method to get rid of contam-
inants and to have a cleaner preparation for subsequent
extraction of strongly bound CWP.

Conclusion
The new cell wall preparation procedure followed by salt
extraction of proteins described in this paper gives the
lowest proportion of proteins predicted to be intracellular
when compared with other available protocols and allows
the identification of proteins fitting in the same func-
tional classes. Addition of a step including detergent treat-
ment revealed the presence of minor amounts of a few
additional proteins predicted to be secreted, but of many
proteins predicted to be intracellular. Prediction of the
sub-cellular localization of proteins by different bioinfor-
matic programs appeared as an essential tool to evaluate
cell wall purification procedures. However, it should not
be considered satisfactory to determine the sub-cellular
localization of any protein identified by a proteomic anal-
ysis. Additional experiments performed in planta, such as
Page 10 of 13
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immunolocalization or localization of fluorescent protein
fusions, are required to confirm it. The application of the
principles of cell wall purification described in this paper
should lead to a more realistic view of the cell wall pro-
teome, at least for the weakly bound CWP extractable by
salts. In addition, it offers a clean cell wall preparation for
subsequent extraction of strongly bound CWP.

Methods
Plant material and isolation of cell walls
One hundred and fifty mg of A. thaliana seeds (ecotype
Columbia 0) were sowed per Magenta box containing
Murashige and Skoog medium [26] supplemented with
2% w/v sucrose and 1.2% w/v agar. Seedlings were grown
at 23°C in the dark for 11 days. For one experiment,
hypocotyls from 16 Magenta boxes were collected. One
cm long hypocotyls were cut below the cotyledons and
above the root, washed with distilled water and trans-
ferred into 500 mL of 5 mM acetate buffer, pH 4.6, 0.4 M
sucrose and protease inhibitor cocktail (Sigma) 1 mL per
30 g of hypocotyl fresh weight. The mixture was ground in
a blender at full speed for 15 min (Figure 4). After adding
PVPP (1 g per 10 g fresh weight of hypocotyls), the mix-
ture was incubated in cold room for 30 min while stirring.
Cell walls were separated from soluble cytoplasmic fluid
by centrifugation of the homogenate for 15 min at 1000 ×
g and 4°C. The pellet (CW1 in Figure 4) was further puri-
fied by two successive centrifugations in 500 mL of 5 mM
acetate buffer, pH 4.6, respectively 0.6 M and 1 M sucrose.
The residue (CW3) was washed with 3 L of 5 mM acetate
buffer, pH 4.6, on a nylon net (25 μm pore size). The
resulting cell wall fraction (CW4) was ground in liquid
nitrogen in a mortar with a pestle prior to lyophilization.
Starting with 16 g fresh weight of hypocotyls, this process
resulted in 1.3 g dry powder.

Sequential proteins extraction and identification
Typically, 0.65 g of lyophilized cell walls was used for one
experiment. Proteins were extracted by successive salt
solutions in this order: two extractions each time with 6
mL CaCl2 solution (5 mM acetate buffer, pH 4.6, 0.2 M
CaCl2 and 10 μL protease inhibitor cocktail), followed by
two extractions with 6 mL LiCl solution (5 mM acetate
buffer, pH 4.6, 2 M LiCl and 10 μL protease inhibitor
cocktail). Cell walls were resuspended by vortexing for 5–
10 min at room temperature, and then centrifuged for 15
min at 4000 × g and 4°C. Supernatants were desalted
using Econo-Pac® 10 DG columns (Bio-Rad) equilibrated
with 0.2 formic acid ammonium salt. The extract were
lyophilized and resuspended in sample buffer for separa-
tion of proteins by 1D-GE, as previously described [12].

The next extraction was carried out by SDS and DTT. The
cell wall preparation was treated with 12 mL solution con-
taining 62.5 mM Tris, 4% SDS, 50 mM DTT, pH 6.8

(HCl). The mixture was boiled for 5 min and centrifuged
for 15 min at 40000 × g and 4°C. The supernatant was
dialyzed against 1 L H2O in Spectra/Por® membrane 10
kDa MWCO bags (Spectrum Medical Industries) at room
temperature, then concentrated by successive centrifuga-
tion using the Centriprep® centrifugal filter devices (YM-
10 kDa membrane) (Millipore) at 4000 × g followed by
speed vacuum centrifugation.

The protein content of each extract was measured using
the Bradford method [27] with the Coomassie™ protein
assay reagent kit (Pierce) using bovine serum albumin
(BSA) as standard.

Gels were stained with Coomassie™ Brilliant Blue-based
method [28]. Colored bands were digested with trypsin
and MALDI-TOF MS or LC-MS/MS analyses were per-
formed as previously reported [12,13].

The sequences of the identified proteins were subse-
quently analyzed with several bioinformatic programs to
predict their sub-cellular localization [29-31]. In some
cases, predictions were not the same with the three pro-
grams. Results are then indicated as "not clear". Data are
described in Tables 1–5 (additional data).
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Additional data file 1
Table 1 – Bioinformatic analysis of proteins extracted from cell walls of 
A. thaliana cell suspension cultures [8].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1746-
4811-2-10-S1.pdf]

Additional data file 2
Table 2 - Bioinformatic analysis of proteins extracted from cell walls of M. 
sativa stems [9]
Click here for file
[http://www.biomedcentral.com/content/supplementary/1746-
4811-2-10-S2.pdf]

Additional data file 3
Table 3 – Bioinformatic analysis of proteins extracted from cell walls of 
C. albicans [20].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1746-
4811-2-10-S3.pdf]

Additional data file 4
Table 4 - Bioinformatic analysis of proteins extracted from cell walls of A. 
thaliana etiolated hypocotyls with salts.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1746-
4811-2-10-S4.pdf]

Additional data file 5
Table 5 - Bioinformatic analysis of proteins extracted from cell walls of A. 
thaliana etiolated hypocotyls with SDS and DTT.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1746-
4811-2-10-S5.pdf]
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CHAPTER 4 
 

A NEW PICTURE OF CELL WALL PROTEIN DYNAMICS 
IN ELONGATING CELLS OF ARABIDOPSIS THALIANA: 

KNOWN PLAYERS AND NEW COMERS 
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Chapter summary (French) 
 La croissance des cellules végétales est accompagnée par celle de leurs parois qui 

nécessite d’une part la synthèse de constituants pariétaux, d’autre part leur ajout dans les 

parois et le remaniement des réseaux existants. Les protéines pariétales sont importantes pour 

cette dernière phase. Obtenir une image globale des protéines pariétales dans des hypocotyles 

en cours d’élongation (plantules agées de 5 jours) et après la fin de leur croissance (plantules 

âgées de 11 jours) devrait contribuer à la compréhension des mécanismes de réarrangement 

des constituants pariétaux ainsi que les processus de régulation de la croissance pariétale.  

 

 Après avoir surmonté la première difficulté de ce travail consistant à obtenir des 

préparations de parois de bonne qualité (chapitre 3), je me suis consacré à l’étude 

protéomique des  parois des hypocotyles en élongation comparée à celle des hypocotyles 

après la fin de leur croissance. Les protéines pariétales ont été extraites avec du CaCl2, puis du 

LiCl à chaque stade de développement. La difficulté suivante est apparue au niveau de la 

séparation des protéines. En effet, les méthodes existantes ne se sont pas révélées très 

efficaces dans la mesure où les protéines pariétales sont majoritairement basiques et 

glycosylées, donc difficiles à séparer avec la méthode traditionnellement utilisée en 

protéomique, i .e. l’électrophorèse bi-dimensionnelle. Par ailleurs, l’électrophorèse mono-

dimensionnelle était un outil insuffisamment performant puisque de nombreuses protéines co-

migraient et devenaient ainsi difficiles à identifier par cartographie peptidique massique 

(spectrométrie de masse de type MALDI-TOF). Ce problème a été surmonté en effectuant une 

séparation des protéines en deux étapes. La première étape a consisté en une chromatographie 

d’échange de cations à haute performance, utilisant le caractère basique des protéines 

pariétales. La seconde étape a consisté en une électrophorèse mono-dimensionnelle des 

fractions recueillies le long du gradient d’élution par une solution saline. Ensuite, les 

protéines colorées au bleu de Coomassie ont été systématiquement identifiées par 

cartographie peptidique massique et bioinformatique. C’est ainsi (i) que le nombre de 

protéines identifiées a été doublé, comparé à ce qui avait été identifié après une simple 

séparation par électrophorèse mono-dimensionnelle, (ii) que la qualité des identifications a été 

largement améliorée, et (iii) qu’il a été possible d’effectuer une semi-quantification des 

protéines. 

 

 Cette étude a permis d’identifier 137 protéines pariétales (120 à 5 jours, et 101 à 11 

jours) parmi lesquelles 51 n’avaient pas encore été identifiées par protéomique. La prédiction 
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de domaines fonctionnels par bioinformatique a permis de les classer en neuf groupes : des 

protéines agissant sur les polysaccharides pariétaux, des oxydo-réductases, des protéases, des 

protéines ayant des domaines d’interaction avec des polysaccharides ou d’autres protéines, 

des protéines impliquées dans la signalisation, des protéines structurales, des protéines liées 

au métabolisme des lipides, diverses protéines et des protéines de fonction encore inconnue.  

 

 La comparaison des deux stades de développement a montré des différences de 

profil. Bien que beaucoup de protéines extracellulaires soient communes (84), 36 et 17 

protéines ont été identifiées de manière spécifique à 5 et 11 jours respectivement. De plus, la 

comparaison des niveaux relatifs des 84 protéines communes montre que 61 et 26 protéines 

sont plus abondantes à 5 et à 11 jours respectivement. L’ensemble de ces résultats montre que 

les parois hypocotyles en élongation active (5 jours) semblent plus métaboliquement plus 

actives que celles des hypocotyles dont la croissance est achevée (11 jours).  

 

 L’analyse par bioinformatique des fonctions des protéines identifiées dans les 

hypocotyles au cours de leur élongation ou après la fin de leur croissance a permis d’obtenir 

les résultats suivants : 

i) Les protéines agissant sur les polysaccharides (XTH, PG, PME et expansines) sont 

plus nombreuses dans les hypocotyles en cours d’élongation, ce qui est cohérent 

avec leurs rôles supposés dans le réarrangement des polysaccharides ou l’insertion 

de nouveaux polymères dans les parois. 

ii) Cependant, ces protéines ainsi que les peroxidases sont trouvées aux deux stades 

de développement. Ceci indique soit que ces protéines ont des demi-vies 

importantes, soit qu’elles pourraient jouer des rôles différents. Par exemple, les 

XTH pourraient intervenir non seulement pour le réarrangement des xyloglucanes 

au cours de la phase d’élongation cellulaire, mais aussi au cours de la 

différenciation d’éléments trachéaires plus tardivement. Les peroxidases 

pourraient d’une part contribuer à la formation de radicaux libres participant à la 

fragmentation des polysaccharides au cours de l’élongation cellulaire, et d’autre 

part assurer la formation des réseaux de protéines et de polyphénols après son 

arrêt. 

iii) La présence d’inhibiteurs d’enzymes telles que les protéases, PME, PG et 

xyloglucane endoglucanases (XEGIP) montre que la présence d’une enzyme ne 

signifie pas nécessairement qu’elle est active. L’interaction avec un inhibiteur peut 
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moduler son activité biologique. De même, 14 protéases ont été trouvées : elles 

pourraient soit assurer la maturation de protéines pour les rendre actives ou au 

contraire assurer leur dégradation.  L’apport d’une approche protéomique est ici 

essentiel pour envisager ces types de régulation. 

iv) Six protéines liées au métabolisme des lipides ont été identifiées. Leur rôle n’est 

pas clairement établi. Cependant, on peut imaginer qu’il s’agit de candidats qui 

pourraient être impliqués dans la formation de la cuticule particulièrement épaisse 

des hypocotyles ayant poussé à l’obscurité. 

v) Seize protéines de fonction inconnue ont été identifiées. Ces protéines pourraient 

jouer des rôles importants qui restent à découvrir au cours de la croissance des 

hypocotyles. 

 

 L’ensemble de cette étude a permis de donner une image globale des protéines 

présentes dans les parois des hypocotyles étiolés d’Arabidopsis. Cette étude permet 

d’identifier des gènes potentiellement importants pour l’élongation cellulaire. Elle permet 

aussi d’envisager des mécanismes de régulation de l’activité biologique des protéines dans les 

parois en rapprochant des partenaires potentiels (enzymes et leurs inhibiteurs, protéases). Des 

études fonctionnelles fines sont encore nécessaires pour  préciser le rôle de ces protéines au 

cours du développement des hypocotyles. Les résultats sont détaillés dans l’article qui suit, 

actuellement soumis pour publication. 
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 In plants cell, elongation and plant overall growth are accompanied by the synthesis, 

addition and re-arrangement of cell wall components. CWPs are important for proper 

assembly and reorganization of cell wall components. A global picture of the CWPs of 

elongating (5-day-old) and fully elongated (11-day-old) hypocotyls may help to uncover their 

interactions with other cell wall components and to understand the regulatory mechanisms of 

cell elongation.  

 

 After overcoming the first problem of obtaining good quality cell wall (chapter 3), I 

focused on comparative proteomic study of cell wall of etiolated hypocotyls during and after 

elongation. CWPs were extracted with CaCl2 and LiCl from the cell wall purified from 

hypocotyls of both stages according to the method described in chapter 3. Good quality 

resolution of CWPs was a problem: 

i) the CWP extract resolved with one dimentional electrophoresis (1D-E), more than 

one protein were identified from the same band of CBB-stained polyacrylamide 

gel because of the complexity of the sample with several proteins of same 

molecular weight. 

ii) 2D-E is not a suitable resolving tool for CWPs because most of them are 

glycosylated and have basic PIs.  

 

 This problem was overcome by first separating CWP extract by cation exchange 

chromatography using Fast Protein Liquid Chromatography (FPLC), followed by 1D-E of the 

salt eluted fractions. The profile of the proteins on CBB-stained polyacrylamide gel and their 

identification by mass spectrometry and bioinformatics justified the use of FPLC followed by 

1D-E as a powerful alternative to 2D-E for CWPs. Use of this technique (i) doubled the 

number of identified proteins as compared to 1D-E alone, (ii) gave higher quality 

identification by higher numbers of peptides for identification and repetition of identification 

in succeeding fractions, and (iii) allowed semi-quantification of proteins. 

 

 Overall 137 CWPs (120 and 101 in 5- and 11-day-old respectively) were identified 

in this study, among which 51 are reported for the first time in a proteomic study. The 

bioinformatics prediction of functional domains allowed their classification into nine 

categories: proteins acting on carbohydrates, oxido-reductases, proteins with interaction 

domains, proteases, structural proteins, proteins involved in signaling, proteins related to lipid 

metabolism, proteins with miscellaneous functions, and proteins of unknown function. 
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 Comparison of the two physiological stages revealed differences regarding 

presence/absence or abundance of several proteins in one or the other samples. Although most 

CWPs (84) were common to both stages, 36 and 17 were identified only in 5- and 11-day-old 

hypocotyls respectively. The comparison of relative amount showed 61 and 26 proteins are 

more abundant at 5- and 11-day-old stages respectively. These results suggest that the cell 

wall of 5-day-old hypocotyls undergoing active elongation is metabolically more active than 

at 11-day-old hypocotyls that are fully grown. 

 

 The main results obtained from the bioinformatic analysis of the functions of the 

proteins identified in etiolated hypocotyls during and after elongation are listed below: 

i) Proteins expected to be acting on carbohydrates (XTHs, PGs, PMEs, and 

expansins) are numerous in elongating hypocotyls where they can be involved in 

the rearrangement of wall polysaccharides or integration of the new wall polymers.  

ii) However such proteins involved in elongation (XTHs, expansins, PGs PMEs and 

peroxidases) are found in both stages. This gives clues about long half-lives of 

these proteins or their involvement in other processes. For example the XTHs 

could be involved in rearrangement of xyloglucans not only during elongation, but 

also latter during treachery elements differentiation. The peroxidases produce free 

radicals that can break cell wall polysaccharides during elongation or cross-link 

structural proteins and polyphenols after elongation. 

iii) It seems that the proteases found at both stages regulate these proteins by 

proteolytic degradation.  

iv) Presence of Inhibitors of enzymes like proteases, PME, PGs and xyloglucan 

endoglucanases (XEGIPs) suggests that the presence of a protein does not mean its 

active functioning. Thus the interaction of an inhibitor may regulate the biological 

activity of the enzyme. Fourteen proteases were also found that may be involved in 

the maturation of proteins or in their degradation. The contribution of proteomic 

approach is therefore essential to consider such regulations. 

 

v) The function of proteins related to lipid metabolism is not clear. Six members of 

this group identified during this study might be involved in the formation of thick 

cuticle, characteristic of etiolated hypocotyls of A. thaliana. 

vi) Sixteen proteins of unknown function were found in both stages that could 

perform important roles in hypocotyls thus requiring special attention.  



                                                                                                                                       Chapter 4 
___________________________________________________________________________ 

___________________________________________________________________________ 
                                                                           52 

 

 This study gives a global picture of proteins present in the cell wall of etiolated 

hypocotyls of A. thaliana and helped to identify genes potentially important for cell 

elongation. By identifying the proteases and enzyme inhibitors, it pointed out the mechanisms 

the may regulate the biological activity of proteins in the cell wall. Despite all these, 

functional characterization of these proteins is needed to know their exact roles during 

hypocotyle development. The detailed results are given in the following article, recently 

submitted for publication. 

 

The supplementary data files are given as annexes at the end of the report. 
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Summary  

●  To figure out the role of cell wall proteins (CWPs) in the addition and rearrangement of 

plant cell wall components during cell elongation, the identification, quantification, and 

comparison of the secreted proteins of Arabidopsis thaliana half- (active growth) and 

fully-grown (after growth arrest) etiolated hypocotyls was performed. 

● A comparative proteomic study was performed at the two developmental stages of 

hypocotyls starting from purified cell walls and using a new strategy for CWP separation 

including high performance cation exchange chromatography and mono-dimensional 

electrophoresis 

● In total, 137 proteins predicted to be secreted were identified, among which 51 were not 

previously found by proteomic approaches. Expected CWPs known to be involved in cell 

wall extension such as XTHs, expansins, PGs, PMEs and peroxidases were identified as 

well as new CWPs such as proteases, proteins related to lipid metabolism and proteins of 

unknown function.  

● This work highlights a great dynamics of CWPs between the two developmental stages. The 

presence of proteins well-known to be related to cell wall extension after growth arrest 

showed that they might play other functions in cell walls. From this global view of cell 

wall proteins, putative regulatory mechanisms of protein biological activity are discussed. 
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Keywords: protein dynamics, cell elongation, Arabidopsis thaliana, cell wall, etiolated 

hypocotyl, proteome. 

 

Abbreviations  

AGP: arabinogalactan protein; CBB: Coomassie brilliant blue; CWP: cell wall protein; 1D-E: 

mono-dimensional electrophoresis; 2D-E: two-dimensional electrophoresis; FLA: fasciclin 

arabinogalactan protein; GH: glycoside hydrolase; GRP: glycine-rich protein; LAE: late-

abundant embryogenesis protein; LTP: lipid transfer protein; LRR: leucine-rich repeat; LRX: 

leucine-rich repeat extensin; MALDI-TOF: matrix-assisted laser desorption ionization – time 

of flight; PG: polygalacturonase; PL: polysaccharide lyase; PME: pectin methylesterase; 

PTM: post-translational modification; XTH: xyloglucan endotransglucosylase-hydrolase.
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Introduction  

 

 Plant cell walls are dynamic compartments which composition and structure vary 

during development and response to environmental stresses. Variability has been observed in 

developing roots at the level of glycoproteins in carrot (Smallwood et al., 1994), and of 

polysaccharides in Arabidopsis thaliana (Freshour et al., 1996). In both articles, antibodies 

against specific epitopes showed irregular distribution between cell types, as well as changes 

during development. To characterize cell wall plasticity, elongation is a particularly 

appropriate process in which cell walls need to enlarge and to be re-organized. The cell 

machinery is almost completely dedicated to synthesize, export, and reorganize cell walls that 

are mainly composed of polysaccharide networks (Cosgrove, 2005). 

 

 To gain information on the genes and derived proteins involved in cell wall 

elongation, it is important to dissect the different phases of this process. Arabidopsis 

hypocotyls are a suitable material, since almost no cell division occurs, and only the cells 

present in the embryo undergo elongation (Gendreau et al., 1997; Saibo et al., 2003; Refrégier 

et al., 2004). Another advantage is that in etiolated hypocotyls, synthesis, addition, and 

reorganization of the cell wall material occur in time-separate phases (Gendreau et al., 1997; 

Derbyshire et al., 2007). During the first 3 days after germination, synthesis and deposition of 

cell wall material are the main features, producing cells with thick cell walls. Through the 

following days, the hypocotyl will grow mainly by extensive polymer disassembly and 

rearrangement.  

 

 Understanding the molecular mechanisms responsible for rearrangement of cell wall 

polymers during hypocotyl growth requires the identification of proteins present in muro. 

Previous studies identified gene families involved in rearrangement of cell wall components 

during cell elongation (Nicol and Hofte, 1998; Micheli, 2001; Fry, 2004; Passardi et al., 

2004). On the other hand, plant cell wall proteomics has emerged a few years ago providing 

information on cell wall proteins (CWPs) present in many different types of cells including 

cell suspension cultures, roots, rosette leaves, and stems (Jamet et al., 2008; Lee and 

Saravanan, 2004). In most cases, limitations were encountered, e.g. presence of intracellular 

contaminants (Feiz et al., 2006), poor quality of separation of CWPs by two-dimensional 

electrophoresis (2D-E) (Minic et al., 2007). Based on bioinformatic prediction of functional 

domains, main families of CWPs were identified (Jamet et al., 2006). 
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 In this paper, we analyzed the cell wall proteome of half- (active elongation) and 

fully-grown (after growth arrest) etiolated hypocotyls identifying the proteins present at both 

stages. A new strategy has been established for CWP separation, and semi-quantification. The 

comparison of these two proteomes revealed significant dynamics of CWPs. The presence of 

CWPs expected to be involved in polysaccharide rearrangement and modification was 

confirmed in growing hypocotyls. However, some of them were also present in fully-grown 

hypocotyls, suggesting other functions. Finally, the presence of unexpected proteins 

suggested that unknown features of cell elongation should be investigated.  
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Material and Methods   

 

Plant material 

 One hundred and thirty mg of Arabidopsis thaliana seeds (ecotype Columbia 0) 

were cultivated in Magenta box as described (Feiz et al., 2006). Magenta boxes were 

maintained at 4°C in the dark during 48 h and subsequently exposed for 4 h to light to 

synchronize beginning of germination. Finally, seedlings were grown at 23°C in the dark for 

5- or 11-days. Hypocotyls were cut with scissors below the cotyledons and above the roots of 

seedlings. Typically, 36 and 18 Magenta boxes were required for 5- and 11-day-old seedlings 

respectively. 

 

Cell wall purification and protein extraction 

 Cell walls were purified as previously described (Feiz et al., 2006). Proteins were 

extracted from purified cell walls with two successive extractions with CaCl2 solution (5 mM 

sodium acetate buffer, pH 4.6, 0.2 M CaCl2 and 10 µL protease inhibitor cocktail, Sigma), 

followed by two extractions with LiCl solution (5 mM sodium acetate buffer, pH 4.6, 2 M 

LiCl and 10 µL protease inhibitor cocktail). Finally, proteins were desalted and lyophilized. 

 

Protein separation by cationic exchange chromatography 

 Lyophilized proteins were dissolved in a total volume of 2 mL of water. They were 

quantified with the Coomassie® protein assay reagent kit (Pierce) taking bovine serum 

albumin (BSA) as a standard (Bradford, 1976). One mg of proteins was used for 

chromatographic fractionation on a 1 mL HiTrapTM SP FF column (Amersham Biosciences) 

equilibrated with 50 mM MES (pH 5.6) operated with an FPLCTM System (Amersham 

Biosciences) controlled by FPLCdirectorTM version 1.0 (Amersham Biosciences). The protein 

solution was adjusted to 50 mM MES (pH 5.6) and 20 µL protease inhibitor cocktail (Sigma) 

was added before loading onto the column at a flow rate of 0.5 mL.min-1. A 10 mL unfixed 

fraction was collected at the same rate. Three mL of first wash with 50 mM MES (pH 5.6) 

were collected at a flow rate of 1 mL.min-1. Fixed proteins were eluted by a gradient from 0 to 

0.8 M NaCl in 50 mM MES (pH 5.6) and 24 fractions (1 mL each) were collected at a flow 

rate of 1 mL.min-1. Finally the column was successively washed with 3 mL of 1.2 M NaCl 

and 3 mL of 1.5 M NaCl in 50 mM MES (pH 5.6) at the same flow rate. These washes were 

also collected as 6 fractions (1 mL per tube). To prevent protein degradation, 2 µL of protease 

inhibitor cocktail (Sigma) were added to all the 1 mL fractions, 6 µL to the first wash and 20 
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µL to the unfixed fractions. The fractions were combined by 2 or 3 depending on their protein 

concentration. Unfixed proteins were concentrated by successive centrifugations using the 

Centriprep® centrifugal filter device (YM-10 kDa membrane for volumes greater than 6 mL 

or 5 kDa for smaller volumes, Millipore) at 4000 × g. All protein fractions were desalted 

using Econo-Pac® 10DG columns (Bio-Rad) equilibrated with 0.2 M ammonium formate 

prior to lyophilization  

 

Protein separation by mono-dimensional electrophoresis (1D-E) and identification  

 Each lyophilized fraction was dissolved in 200 µL water and electrophoresis of 

proteins was performed according to Laemmli (Laemmli, 1970). Samples were loaded on 22 

× 15 cm SDS-polyacrylamide gel with a concentration of 12.5% of acrylamide and a 

thickness of 1.5 mm. The staining was carried out by a Coomassie Brilliant Blue (CBB)-based 

method (Scheler et al., 1998). Colored bands were excised from gels and digested with 

trypsin. MALDI-TOF MS analyses were performed as previously reported (Borderies et al., 

2003; Boudart et al., 2005). MALDI-TOF-TOF MS analysis was performed using a MALDI 

TOF-TOF Voyager 4700 (AppliedBiosystems/MDS Sciex, USA). N-terminal sequencing of 

the protein encoded by At5g14920 was performed at Plate-Forme d’Analyse et de 

Microséquençage des Protéines at Institut Pasteur (Paris, France). 

 

Semi-quantification 

 Peptide mass fingerprints were compared to the non-redundant database of 

Arabidopsis of NCBI (ftp://ftp.ncbi.nih.gov/blast/db) using ProteinProspector (MS-FIT: 

http://prospector.ucsf.edu/cgi-bin/msform.cgi?form=msfitstandard). A quantification index 

(QI) was calculated for each protein. It was calculated by adding the percentages of coverage 

by peptide mass mapping (ratio between the number of amino acids in peptides detected by 

MS and the total number of amino acids of the protein) in all the bands of the FPLC profile in 

which the protein was identified.  

 

Bioinformatic analyses 

 Sub-cellular localization, length of signal peptides, prediction of transmembrane 

domains, homologies to other proteins and protein functional domains were predicted as 

described (Minic et al., 2007). GHs and CEs were classified according to the CAZy database 

(http://www.cazy.org/CAZY/) (Coutinho and Henrissat, 1999). XTHs and expansins were 
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named according to http://labs.plantbio.cornell.edu/xth/ and 

http://www.bio.psu.edu/expansins/index.htm respectively. AGPs and FLAs were named 

according to Schultz et al. (Schultz et al., 2002), Johnson et al. (Johnson et al., 2003) and van 

Engels and Roberts (van Hengel and Roberts, 2003). Proteins homologous to COBRA, LRXs 

and Hyp/Pro-rich proteins were annotated according to Roudier et al. (Roudier et al., 2002), 

Baumberger et al. (Baumberger et al., 2003), and Fowler et al. (Fowler et al., 1999) 

respectively. Peroxidases were named as in the PeroxiBase (http://peroxidase.isb-

sib.ch/index.php) (Bakalovic et al., 2006). Laccases were annotated as in Pourcel et al. 

(Pourcel et al., 2005) and McCaig et al. (McCaig et al., 2005). SKU-like proteins and 

phytocyanins were named according to Jacobs and Roe (Jacobs and Roe, 2005), and 

Nersissian and Shipp (Nersissian and Shipp, 2002) respectively. Protease annotation was done 

according to the MEROPS database (http://merops.sanger.ac.uk/). 
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Results  

 

Establishment of methods for efficient proteomic analysis of hypocotyl cell walls  

 

 This proteomic study aimed at comparing two developmental stages of Arabidopsis 

hypocotyls and required high amounts of material. It required establishing appropriate culture 

conditions to get large amounts of homogenous material. They include synchronization of 

germination, high seedling density on culture medium, and control of culture conditions in 

vitro. Two stages of development were compared: 5-day-old elongating hypocotyls and 11 

day-old fully-grown hypocotyls (Gendreau et al., 1997; Derbyshire et al., 2007). First, 

purified cell walls were prepared avoiding intracellular contamination and loss of proteins 

(Feiz et al., 2006). To collect high amounts of proteins, two successive extractions were 

performed with 0.2 M CaCl2 and 2 M LiCl (Feiz et al., 2006). Both extracts were combined 

and used for further analysis. Typically, about 1 mg of proteins was obtained from 1 g of dry 

purified cell walls.  

 

  Finally, proteins were separated prior to identification using matrix-assisted laser 

desorption ionization - time of flight (MALDI-TOF) mass spectrometry (MS) and 

bioinformatics. Since 2D-E is not appropriate for the separation of CWPs (Jamet et al., 2008), 

these proteins were separated using mono-dimensional gel electrophoresis (1D-E). About 60 

bands could be stained with Coomassie Brilliant Blue (CBB). Fifty-two and 67 proteins could 

be identified in the extract from 5- and 11-day-old hypocotyls respectively (Figures 1 and 2, 

and Tables S1 and S2, supplementary material). Because of the limited resolution of 1D-E, 

many proteins were identified in each band, some of them with a low number of peptides. In 

order to improve separation and identification of proteins, we introduced an additional step 

before 1D-E. Since most CWPs are basic proteins (Jamet et al., 2006), a cationic exchange 

chromatography was performed using a Fast Performance Liquid Chromatography (FPLC) 

device (Figures S1 and S2, supplementary material). Fractions were collected and combined 

prior to separation by 1D-E (Figures 1 and 2, S1b and S2b, supplementary material). Now, 

about 500 bands could be stained with CBB and further analyzed by MALDI-TOF MS. The 

percentage of successful protein identification from stained bands was about 70%: 141 and 

109 proteins were identified in extracts from 5- and 11-day-old hypocotyls respectively. 

Many of those proteins were identified in several bands, reinforcing their identification. A 

great improvement of the quality of the analysis was observed: (i) the number of identified 



Figure 1. Analysis of proteins extracted by CaCl2 and LiCl from purified
cell walls of 5-day-old etiolated hypocotyls.
Total Separation by 1D-E of the total extract of proteins Fractions A to M Separation byTotal. Separation by 1D-E of the total extract of proteins. Fractions A to M. Separation by
1D-E of 13 fractions (A to M) obtained after cation exchange chromatography (see Figure S1,
supplementary material). Molecular mass markers are on the right. Numbers refer to bands
analyzed by MALDI-TOF MS with successful identification (see Table S1, supplementary
material).



Figure 2 Analysis of proteins extracted by CaCl2 and LiCl from purifiedFigure 2. Analysis of proteins extracted by CaCl2 and LiCl from purified
cell walls of 11-day-old etiolated hypocotyls.
Total. Separation by 1D-E of the total extract of proteins. Fractions N to Z. Separation by
1D-E of 13 fractions (N to Z) obtained after cation exchange chromatography (see Figure S2,
supplementary material). Molecular mass markers are on the right. Numbers refer to bands
analyzed by MALDI-TOF MS with successful identification (see Table S2, supplementary
material).



Table 1. Number of proteins identified in purified cell walls of 5- and 11-day-old etiolated 

hypocotyls of Arabidopsis. 

 

 

 

 

 

 

 

 

 

 

 

 
a Proteins are listed in Table S3, supplementary material. 

 

 

 

 5-days 11-days altogether 

total number of identified proteins a 147 126 173 

number of predicted secreted proteins a 120 101 137 

number of predicted secreted proteins 
identified only in 5-or 11-day-old 
etiolated hypocotyls a 

36 17  

number of predicted intracellular 
proteins a 27 25 36 



Figure 3. Sorting of CWPs identified from purified cell walls of 5- and
11-day-old etiolated hypocotyls in functional classes.
Proteins were classified according to their functional domains as described in Experimental
procedures: proteins acting on carbohydrates (PAC), oxido-reductases (OR), proteins with
interaction domains (ID), proteases (P), structural proteins (SP), proteins involved in signaling (S),
proteins related to lipid metabolism (LM), proteins with miscellaneous functions (M), and proteins of
yet unknown function (UF). a. Number of proteins found in the nine functional classes in 5- (5-days),
and in 11-day-old hypocotyls (11-days). b. Number of proteins found only in 5- (only 5-days), or in
11-day-old (only 11-days) hypocotyls. c. Number of proteins present in higher amount in 5- (higher
5-days) or in 11-days-old (higher 11 days) hypocotyls.
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proteins was doubled; (ii) the quality of the identifications was increased with higher numbers 

of peptides for identification of most proteins (Figures S3 and S4, supplementary material); 

(iii) it was possible to make a semi-quantification of proteins to compare the two samples. 

 

Proteins identified in cell wall extracts of Arabidopsis etiolated hypocotyls  

 

 Combining results from 1D- and 2D-separation, 147 and 126 proteins were 

identified in 5- and 11-day-old etiolated hypocotyls respectively (Table 1). Bioinformatic 

prediction of their sub-cellular localization indicated that 120 (82%) and 101 (79%) proteins 

were secreted in 5- and 11-day-old hypocotyls respectively. On the other hand, 27 and 25 

proteins (in (5- and 11-day-old hypocotyls respectively) did not have any predicted signal 

peptide and were considered as intracellular contaminants. Altogether, 173 proteins were 

identified in hypocotyls among which 137 (79%) were expected to be secreted, indicating the 

good quality of cell wall preparations. Those proteins will be called CWPs in the following. 

Although many CWPs (84) were found in both samples, 36 and 17 were identified only in 5- 

and 11-day-old hypocotyls respectively. 

 

 A second bioinformatic analysis of CWPs allowed their classification according to 

functional domains. For several protein families, nomenclature of experts was used as 

described in Experimental procedures. The nine functional classes defined by Jamet et al. 

(2008) were employed (Figure 3): proteins acting on carbohydrates, oxido-reductases, 

proteins with interaction domains, proteases, structural proteins, proteins involved in 

signaling, proteins related to lipid metabolism, proteins with miscellaneous functions, and 

proteins of unknown function. Some protein classes were more represented at 5-days than at 

11-days, e.g. proteins acting on carbohydrates (28 vs 21), proteins with interaction domains 

(25 vs 22), proteins related to lipid metabolism (7 vs 5), and proteases (14 vs 9) (Figure 3a). In 

each functional class, some CWPs were only identified at 5- or 11-days (Figure 3b). 

Differences appeared among proteins acting on carbohydrates (respectively 11 and 4 were 

found only at 5- or 11-days), among proteases (5 were only found at 5-days), proteins with 

domains of interactions with proteins or carbohydrates (3 were only found at 5-days), 

miscellaneous proteins and proteins of unknown function. In particular, the pattern of oxido-

reductases appeared to be very different with 5 and 6 proteins being only found at 5- and 11-

days respectively. On the contrary, signaling and structural proteins showed minor changes. 

Due to their specific structural characteristics, they are poorly represented in both proteomes. 



A. Proteins acting on carbohydrates
expansins PMEs XTHs PGs

3

4

5

C. Proteins related

1

2

0

2

3

4

5

C. Proteins related 
to lipid metabolismB. Oxido-reductases

2

3

4

peroxidases others
5

0

1

D. Proteases and protease inhibitors
Asp proteases Cys and Ser proteases Protease inhibitors

5

1

0

1

2

3

4

5

0

Figure 4. Occurrence of proteins belonging to several families among
proteins extracted with CaCl2 and LiCl from purified cell walls of 5- and 11-
day-old etiolated hypocotyls.
a. Families of proteins predicted to encode expansins, PMEs, XTHs and PGs. b. Protein families

di t d t d id d t B b i b id i b ld P t i f ilipredicted to encode oxido-reductases. Berberine-bridge enzymes are in bold. c. Protein families
predicted to encode proteins related to lipid metabolism. Proteins having a GDSL
Lipase/Acylhydrolase domain are in bold. d. Families of proteins predicted to encode proteases or
protease inhibitors. Cys proteases are in bold. The number of FPLC fractions in which each protein
was identified was counted: black and white bars stand for 5- and 11-day-old etiolated hypocotyls
respectively. Stars indicate proteins that have been only identified after separation by 1D-E.
Detailed information about the distribution of proteins in total extract and in FPLC fractions are given
in Table S3 (supplementary material).
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Structural proteins are difficult to extract when they are cross-linked, and to identify because 

of numerous post-translational modifications (PTMs) (Shpak et al., 2001). Proteins involved 

in signaling like arabinogalactan proteins (AGPs) may also have many PTMs (Schultz et al., 

2000), and proteins with trans-membrane domains are not usually extracted in our working 

conditions. 

 

 Finally, 51 proteins reported in this work were not identified in previous cell wall 

proteomic studies (Table 2). There are 11 CWPs acting on carbohydrates, 8 oxido-reductases, 

5 proteases, 8 carrying interacting domains, 1 possibly involved in signaling, 1 structural 

protein, 4 proteins related to lipid metabolism, 5 proteins with diverse functions, and 7 

without known function.  

 

Semi-quantitative comparative analysis of CWPs 

 

 The comparison between the two physiological stages done in the previous section 

was based on the single criterion of presence/absence of a protein among proteins identified 

by MS in our working conditions. A more precise comparison would require quantification of 

the proteins. However, CBB staining of the gels did not allow such quantification for several 

reasons. Despite improvement in the separation of proteins by liquid chromatography 

followed by 1D-E as compared to 1D-E alone, most proteins were found in several FPLC 

fractions and in several bands of the same FPLC fractions. This was probably due to PTMs, 

proteolytic maturation or degradation of proteins. Moreover, MALDI-TOF MS analyses are 

not quantitative due to differences in ionization efficiency of diverse peptides, and to 

variations related to competitive desorption of peptides at the time of ionization. We propose 

alternative ways to compare the proteins between both samples. In a first approach, FPLC 

fractions in which proteins were identified were counted to give a first criterion based on the 

following rationale: an abundant protein is more difficult to resolve and will be distributed in 

more fractions than a rare protein. Such a calculation done on members of several gene 

families gave an overview on the relative abundance of each of them (Figure 4). Two 

additional criteria were then considered to evaluate the relative amount of each protein at both 

stages of development: the number of bands per fraction, and the percentage of coverage of 

the amino acid sequence by peptide mass mapping. A correlation was observed between the 

abundance of a protein and the number of matching peptides expressed as percentage of 

coverage (results not shown). The addition of all values for a given protein provided a semi-



Table 2. CWPs identified in salt extracts of purified cell walls of 5- and 11-day-old etiolated 
hypocotyls of Arabidopsis. 
 
Accession numbers of genes encoding proteins predicted to have a GPI anchor or trans-
membrane domains are in bold or in grey boxes respectively. Accession numbers of genes 
encoding proteins newly identified in etiolated hypocotyls through cell wall proteomics are 
underlined. Details of functional annotation are in Tables S1 and S2 (supplementary material). 
  
accession annotation 5-days 11-days

AGI        
proteins acting on carbohydrates     
At2g06850 GH family 16  (AtXTH4)   
At5g13870 GH family 16 (AtXTH5)    
At3g44990 GH family 16 (AtXTH31)    
At2g36870 GH family 16 (AtXTH32)    
At1g10550 GH family 16 (AtXTH33)   
At4g16260 GH family 17    
At4g19810 GH family 18 (chitinase)    
At3g12500 GH family 19 (chitinase)   
At3g55260 GH family 20 (beta-hexosaminidase)    
At1g19170 GH family 28 (polygalacturonase)    
At2g33160 GH family 28 (polygalacturonase)    
At3g06770 GH family 28 (polygalacturonase)    
At3g16850 GH family 28 (polygalacturonase)   
At3g61490 GH family 28 (polygalacturonase)   
At4g18180 GH family 28 (polygalacturonase)    
At1g68560 GH family 31 (alpha-xylosidase) (AtXYL1)   
At3g13790 GH family 32 (beta-fructofuranosidase)   
At5g34940 GH  family 79 (endo beta-glucuronidase/heparanase)   
At1g11580 CE family 8 (pectin methylesterase)    
At1g53830 CE family 8 (pectin methylesterase) (AtPME2)   
At3g14310 CE family 8 (pectin methylesterase) (AtPME3)   
At3g43270 CE family 8 (pectin methylesterase)   
At4g33220 CE family 8 (pectin methylesterase)   
At5g53370 CE family 8 (pectin methylesterase)    
At4g37950 PL family 4 (rhamnogalacturonate lyase)    
At1g05570 GT family 48 (callose synthase) (AtCalS1)   
At5g02260 alpha-expansin (AtEXPA9)   
At1g20190 alpha-expansin (AtEXPA11)   
At5g39270 alpha expansin (AtEXPA22)    
At3g45970 expansin-like A (AtEXLA1)   
At4g38400 expansin-like A (AtEXLA2)   
At3g45960 expansin-like A (AtEXLA3)    

    
oxido-reductases     
At1g71695 peroxidase (AtPrx12)   
At3g21770 peroxidase (AtPrx30)   
At3g32980 peroxidase (AtPrx32)   
At3g49110 peroxidase (AtPrx33)    
At3g49120 peroxidase (AtPrx34)   
At3g50990 peroxidase (AtPrx36)    
At5g25980 peroxidase (AtPrx43)    



At4g30170 peroxidase (AtPrx45)   
At5g17820 peroxidase (AtPrx57)    
At5g64100 peroxidase (AtPrx69)   
At5g66390 peroxidase (AtPrx72)    
At2g30210 homologous to laccase (AtLAC3)   
At1g30710 berberine-bridge enzyme homologue    
At4g20860 berberine-bridge enzyme homologue    
At5g44360 berberine-bridge enzyme homologue   
At5g44410 berberine-bridge enzyme homologue    
At1g01980 berberine-bridge enzyme homologue  
At2g02850 plantacyanin ARPN (blue copper binding protein)    
At4g12880 early nodulin AtEN20 (blue copper binding protein)   
At5g22140 expressed protein (oxido-reductase domain)    
At5g56490 expressed protein (FAD binding domain)    

    
proteins with interacting domains     
At1g53070 lectin homologue (legume lectin domains)   
At1g78820 lectin homologue (curculin-like)    
At1g78830 lectin homologue (curculin-like)   
At1g78850 lectin homologue (curculin-like)   
At1g78860 lectin homologue (curculin-like)   
At5g06860 PGIP1 (LRR domains)   
T23B7.10 PGIP1 homologue (LRR protein FLR1)   
At5g12940 Phaseolus vulgaris PGIP2 homologue (LRR domains)   
At1g33590 expressed protein (LRR domains)   
At2g34930 expressed protein (LRR domains)   
At3g20820 expressed protein (LRR domains)   
At2g17120 expressed protein (LysM domain)   
At1g03220 carrot EDGP and tomato XEGIP homologue   
At1g03230 carrot EDGP and tomato XEGIP homologue   
At5g19110 carrot EDGP and tomato XEGIP homologue   
At1g47710 serpin homologue (serine protease inhibitor)   
At1g17860 inhibitor family I3 (Kunitz-P family)    
At1g73260 inhibitor family I3 (Kunitz-P family)    
At1g47540 inhibitor family I18 (mustard trypsin inhibitor-2 family)    
At2g40880 inhibitor family I25 (phytostatin)    
At5g05110 inhibitor family I25 (phytostatin)    
At4g16500 inhibitor family I25 (cystatin family)    
At4g25260 invertase/ pectin methylesterase inhibitor homologue   
At5g46940 invertase/pectin methylesterase inhibitor homologue    
At5g46960 invertase/pectin methylesterase inhibitor homologue    

    
proteases      
At1g09750 aspartic protease homologue (pepsin family)    
At3g02740 aspartic protease homologue (pepsin family)     
At3g52500 aspartic protease homologue (pepsin family)     
At3g54400 aspartic protease homologue (pepsin family)    
At5g07030 aspartic protease homologue (pepsin family)    
At1g79720 aspartic protease homologue (CND41 peptidase)     
At5g10770 aspartic protease (CND41 peptidase)    
At1g47128 cysteine proteinase homologue (papain family)    
At5g43060 cysteine proteinase homologue (papain family)    



At4g01610 cysteine proteinase homologue (papain family)    
At4g36880 cysteine proteinase homologue (papain family)     
At3g02110 serine carboxypeptidase D (SCPL25)    
At5g23210 serine carboxypeptidase (SCPL34)    
At4g30610 carboxypeptidase homologue (BRS1 - Brassinosteroid-Insensitive BRI 

suppressor 1)    
    

structural proteins     
At1g28290 proline-rich protein   
At5g14920 proline-rich protein   
At2g05580 glycine-rich protein   
At4g13340 LRR-extensin (AtLRX3)    
At3g24480 LRR-extensin (AtLRX4)   
At4g18670 LRR-extensin (AtLRX5)   

    
signaling      
At4g05200 receptor kinase homologue (RLK, DUF26-1b subfamily)    
At5g55730 fasciclin-like arabinogalactan protein (AtFLA1)   

    
proteins related to lipid metabolism     
At1g29670 lipase acylhydrolase homologue (GDSL family)   
At1g54010 lipase/acylhydrolase homologue (GDSL family)    
At1g54030 lipase/acylhydrolase homologue (GDSL family)   
At3g48460 lipase/acylhydrolase homologue (GDSL family)   
At5g15720 lipase/acylhydrolase homologue (GDSL family)    
At2g38530 non-specific lipid transfer protein type 1 (LTP2)    

At5g23820 expressed protein (ML domain - MD-2-related lipid recognition 
domain)    

At2g16001 expressed protein (lipid recognition domain)    
    

miscellaneous functions     
At2g27190 purple acid phosphatase homologue (PAP1)   
At3g07130 purple acid phosphatase homologue   
At5g34850 purple acid phosphatase homologue    
At4g29270 acid phosphatase homologue   
At4g24340 phosphorylase homologue homologue    
At3g02870 myo-inositol monophosphatase homologue    
At5g09440 Nicotiana tabacum phi-I homologue   
At5g64260 Nicotiana tabacum phi-I homologue   
At5g66590 Nicotiana tabacum pathogenesis-related protein PR1 homologue   
At2g28790 Lycopersicon esculentum osmotin homologue   
At5g15230 gibberellin-regulated protein (GASA4)    
At4g27110 homologous to COBRA (AtCOBL10)    
At1g09560 germin (subfamily 2, member 1, GLP5)    

    
unknown function     
At3g56750 expressed protein    
At3g22000 expressed protein (DUF26)    
At1g26850 expressed protein (DUF248)    
At1g80240 expressed protein (DUF642)   
At3g08030 expressed protein (DUF642)   
At4g32460 expressed protein (DUF642)   
At5g11420 expressed protein (DUF642)   



At5g25460 expressed protein (DUF642)   
At1g78460 expressed protein (SOUL heme binding domain)    
At2g04690 expressed protein (homologous to a human brain CREG protein)   
At2g15220 expressed protein (Plant Basic Secreted Protein domain)   
At2g34700 expressed protein (Ole e1 allergen domain)   
At3g20370 expressed protein (MATH domain)    
At2g28490 expressed protein (cupin domain)   
At3g22640 expressed protein (cupin domain)   
At4g36700 expressed protein (cupin domain)    
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quantitative index (QI) allowing comparison of the relative amount of each protein between 

the two samples (Table S4, supplementary material).  

 

 Taking into account QIs, 63% of the proteins showed differences between the two 

developmental stages: 61 proteins (42%) are more abundant at 5-days and 26 (17%) at 11-

days. Figure 3c presents the results ordered by functional classes. Differences observed 

considering only the presence/absence of proteins are enhanced especially for proteins acting 

on carbohydrates with 17 out of 32 being more abundant at 5- than at 11-days as for proteins 

having domains of interactions or related to lipid metabolism, and miscellaneous proteins. 

These results were fully consistent with those described above only taking into account the 

presence of a protein in FPLC fractions (Figure 3b). 

 

 For proteins acting on carbohydrates (Figure 4a), all the identified expansins were 

found to be more represented at 5- than at 11-days. The situation was similar for PMEs with 

the exception of At3g43270 that was found in the same number of FPLC fractions at 5- and 

11-days. On the contrary, XTHs and PGs presented a more complex pattern. Three XTHs 

were more represented at 5- than at 11-days (AtXTH4, AtXTH5, and AtXTH31), AtXTH33 

was equally represented at both stages, and AtXTH32 was only found at 11-days. Three PGs 

were only found at 5-days (At2g33160, At1g19170, and At4g18180), At3g15850 was equally 

represented at 5- and 11-days, and At3g06770 was only found at 11-days.  

 

 The distribution of oxido-reductases between the two stages looked as complicated 

as that of XTHs (Figure 4b). AtPrx36 and AtPrx57 were only identified at 5-days whereas 

AtPrx12, AtPrx43, and AtPrx72 were only identified at 11-days. AtPrx32 was more 

represented at 5-days whereas AtPrx45 was more represented at 11-days. Finally, AtPrx30, 

AtPrx34, and AtPrx69 were equally represented at both stages. Among other proteins 

predicted to be oxido-reductases, berberine-bridge enzymes were distributed between the two 

stages of development. 

 

 Most proteins related to lipid metabolism were more represented at 5- than at 11-

days (Figure 4c). This is especially the case for proteins containing a GDSL-

Lipase/Acylhydrolase domain (At1g29670, At1g54010, and At3g48460). 
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 In the case of proteases (Figure 4d), the situation was contrasted depending on the 

protease family. Three Asp proteases were only found at 5-days (At1g79720, At3g02740, and 

At3g52500), whereas 3 of them were more abundant at 11- than at 5-days (At3g54400, 

At5g10770, and At5g07030). At1g09750 was equally represented at the two stages. Cys 

proteases were more represented at 11- than at 5-days (At1g47128, At5g43060, and 

At4g01610). On the contrary, a Ser protease was only found at 11-days (At4g30610). Finally, 

protease inhibitors (Figure 4d) were distributed between the two stages of development with 4 

of them equally represented at both stages, 2 of them only found at 5-days, and 1 more 

represented at 11-days. 
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Discussion  

 

 This work provides a global picture of the cell wall proteome during elongation of 

etiolated hypocotyls of Arabidopsis. It shows the dynamics of CWPs during two phases of 

hypocotyls development, i.e. active elongation and after growth arrest. Expected CWPs 

known to be involved in cell wall extension such as XTHs, expansins, PGs, PMEs and 

peroxidases were identified as well as new CWPs such as proteases, proteins predicted to be 

related to lipid metabolism and proteins of unknown function. In addition, the occurrence of 

CWPs well-known to be related to cell wall extension after growth arrest showed that such 

proteins probably play other functions in mature cell walls. 

 

 A major advance in plant cell wall proteomics was brought by setting up a new 

separation method for CWPs. Separation of plant CWPs for proteomic purposes was difficult 

using 2D-E (Jamet et al., 2008). The window of protein separation is optimal for pIs between 

3 and 10 and for molecular masses between 120 and 10 kDa. Since most CWPs are basic 

glycoproteins, they tend to migrate as a smear on the basic side of 2D-gels (Minic et al., 

2007). Alternative methods were proposed that consisted in separation of CWPs into an acidic 

and a basic fractions by cationic exchange chromatography followed by 2D-E and 1D-E 

respectively (Borderies et al., 2003; Boudart et al., 2005). The new method includes a first 

step of separation by cationic exchange chromatography at acidic pH, and a second step of 

separation by 1D-E. It gives more information on the physico-chemical properties of the 

proteins, allows comparative semi-quantification between different samples, as well as a 

better identification through MALDI-TOF MS. In the case of etiolated hypocotyls of 

Arabidopsis, it allowed doubling the number of proteins identified as compared to separation 

by 1D-E alone. In addition, since many CWPs can now be visualized, this work provided 

preparative tools for developing biochemical studies on CWPs, e.g. for further purification or 

structural characterization. 

 

 Altogether, 137 CWPs were identified in this study among which 51 were not yet 

identified through cell wall proteomics. This work also presents an overview of the dynamics 

of CWPs during cell elongation. More CWPs were identified at 5- than at 11-days, suggesting 

a higher metabolic activity in cell walls during active elongation. Many differences were 

observed between elongating and full-size hypocotyls. When considering only 

presence/absence of a CWP, these changes concerned 53 out of the 137 identified CWPs 
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(38%). When taking into account the proposed semi-quantification method, this percentage 

even increased to 63% (34 additional proteins). Changes in the same gene family can reflect 

regulation of gene expression at different stages of development and/or differences in 

biological activity as discussed below for XTHs, PGs, expansins, PMEs, and peroxidases. 

Proteins acting on carbohydrates are more numerous and more abundant in elongating 

hypocotyls than in full-size hypocotyls. This was expected since rearrangements of cell wall 

polysaccharides are very important during cell elongation (Derbyshire et al., 2007). More 

surprising is the fact that proteases are more numerous and in higher amounts at 5- than at 11-

days. Nothing is known about their targets in cell walls. Are they contributing to release 

peptides involved in signaling (Matsubayashi and Sakagami, 2006)? Are they involved in 

protein maturation (Lee et al., 2004) or in protein degradation? Conversely, two protease 

inhibitors are much more abundant at 11- than at 5-days. Altogether, it seems that proteolytic 

activities are more involved when elongation is active than during elongation arrest. Among 

oxido-reductases, five berberine-bridge enzymes were identified among which three were 

only present at 11-days. The role of such proteins in cell walls is unknown. For proteins with 

interacting domains, changes are found in lectins and PME inhibitors that are more abundant 

at 5-days. Among miscellaneous proteins, the amount of CWPs containing phosphatase 

domains was found to be higher at 5- than at 11-days. Such proteins were shown to be 

associated to regeneration of protoplast cell walls (Kaida et al., 2003) and pollen tube growth 

(Ibrahim et al., 2002), but their precise roles are unknown. A protein homologous to COBRA 

(AtCOBL10) was only found at 5-days. Although the function of AtCOBL10 is not known, it 

should be noted that COBRA was shown to participate in orientation of cellulose microfibrils, 

and dark-grown hypocotyls of cob-4 mutant have a 95% reduction in length compared to 

wild-type (Roudier et al., 2005). AtCOBL10 might play such role during elongation of 

hypocotyl cells.  

 

 Many proteins expected to participate in cell wall extension were found such as 

XTHs, expansins, PGs, PMEs and peroxidases (Micheli, 2001; Passardi et al., 2004; 

Cosgrove, 2005; Zhang et al., 2007). But such proteins, i.e. same proteins or proteins of the 

same family were also found after completion of elongation. Several hypotheses can be 

proposed. Although many proteases were identified at both stages of development suggesting 

a regulation of CWPs by proteolytic degradation, these proteins can have a long half-life. 

Some of these proteins probably also participate in differentiation of tracheary elements. 

XTHs belonging to phylogenic group 3 such as AtXTH31-33 have been assumed to have 
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xyloglucan endo-hydrolysis activity (Rose et al., 2002). They might be involved in 

rearrangement of cell walls of differentiating vessels elements. Such elements can be 

observed using microscopy (not shown). In the same way, some expansins were found in 

differentiating tracheary elements (Li et al., 2003). Finally, at least PMEs and peroxidases 

were assumed to play roles both during the elongation process and elongation arrest. The 

enzymatic activity of PMEs might be modulated depending on the pH of the extracellular 

matrix and on the structure of pectic homogalacturonans. They could have either a local 

activity favoring the enzymatic activity of endo-PGs thus producing fragments of pectin, or a 

processing activity leading to de-esterification of stretches of GalA and formation of the so-

called egg-boxes that tend to rigidify the pectic network (Micheli, 2001). Moreover, the 

degree of pectin methyl-esterification was shown to be positively correlated to hypocotyl 

growth (Derbyshire et al., 2007). The activity of peroxidases is also versatile (Passardi et al., 

2004). During the hydroxylic cycle, peroxidases can produce reactive oxygen species that can 

break cell wall polysaccharides in a non-enzymatic way thus favoring cell wall extension 

(Fry, 1998; Passardi et al., 2004). On the contrary, during the peroxidative cycle, peroxidases 

can promote cross-linking of cell wall components such as structural proteins or lignins. In 

addition, members of most of these protein families were identified in apoplastic fluids of 

rosette leaves (Boudart et al., 2005). Since leaf cells are surrounded by mature walls, it means 

that those CWPs could play house-keeping roles.  

 

 Proteomics provides information about possible regulatory mechanisms of CWPs. 

As previously discussed in (Fry, 2004), the presence of a protein does not mean that it has full 

biological activity. Proteins with putative enzymatic activities are numerous, but inhibitors of 

these activities are also present. This is the case for proteases (14) and protease inhibitors (7), 

PMEs (6) and PME inhibitors (3 PMEIs). Some PMEs have a pro-domain consisting in a 

PMEI. However, such domains are assumed to be cleaved during or just after protein export 

since they were never found in purified PMEs (Micheli, 2001). In the same way, no peptide 

matching the PMEI domains were found during identification of PMEs by peptide mass 

mapping (data not shown). Other enzyme inhibitors are assumed to be involved in defense 

reaction such as PG inhibiting proteins (3 PGIPs) and inhibitors of xyloglycan 

endoglucanases (3 XEGIPs) since some of them were shown to be specifically active against 

fungal enzymes (Juge, 2006). But this was not proven for all of them. Other regulatory 

mechanisms include variations in pH of extracellular matrix that occur during growth arrest 



                                                                                                                                       Chapter 4 
___________________________________________________________________________ 

___________________________________________________________________________ 
                                                                           69 

(Juge, 2006), physical contact between enzymes and their substrates (Fry, 2004) and 

proteolytic degradation. 

 

 Eight proteins predicted to be related to lipid metabolism were identified at both 

stages of hypocotyl development. At present, little is known about the functions of such 

proteins in cell walls. Since etiolated hypocotyls have a thicker cuticle than light-grown 

hypocotyls (Gendreau et al., 1997), presence of proteins involved in cuticle formation is 

expected. Several genes encoding proteins from the same families have been found to be up-

regulated in 35S::AtMYB41 plants having defects in cell expansion and leaf surface 

permeability (Cominelli et al., 2008). Two mutants affected in genes encoding proteins 

related to lipid metabolism have been described. GLIP1 encodes a predicted 

lipase/acylhydrolase that was shown to have a lipase activity in vitro and to disrupt fungal 

spore integrity at the level of cell wall and/or membrane (Oh et al., 2005). Although none of 

the proteins of the GDSL family was shown to have an activity towards natural lipids in vitro, 

it cannot be excluded that such proteins are hydrolases acting on cutin or suberin lipids (F. 

Beisson, personal communication). BODYGUARD encodes a protein predicted to belong to 

an α/β-hydrolase fold superfamily (Kurdyukov et al., 2006). The bodyguard mutant shows 

defects in cuticle formation that could result from incomplete polymerization of carboxyl 

esters of the cuticle. The function of LTPs is still a matter of debate. They were shown to bind 

fatty acids and to transfer phospholipids between membranes in vitro (Kader, 1997). 

At2g38530 encoding LTP2 was found to be up-regulated in the epidermis of stems and 

assumed to contribute to active cuticle formation during stem elongation (Suh et al., 2005). 

Apart from this role in cuticle formation, many roles were proposed for LTPs including 

systemic resistance signaling (Maldonado et al., 2002), ability to promote cell wall expansion 

through binding to a hydrophobic partner in cell walls (Nieuwland et al., 2005), and 

activation of a PG (Tomassen et al., 2007). CWPs predicted to be related to lipid metabolism 

identified in this study are candidates for playing roles in cuticle formation. 

 

 This proteomic survey provides tools for biochemical studies of CWPs, identifies 

members of multigene families involved in cell elongation, and gives clues for unraveling the 

function of many CWPs in etiolated hypocotyls. It also shows a great dynamics of CWPs 

between the two developmental stages. This is illustrated by changes in protein amount, 

presence/absence of specific members of multigene families, and presence of many enzymes 

including proteases and their inhibitors. Interestingly, many CWPs were only found at one 
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stage of development, either active elongation or after growth arrest. Conversely, different 

CWPs from the same gene families were found at both stages of development showing stage-

specific regulation and suggesting diverse roles in cell walls. A particular attention should be 

paid to proteins of unknown function, some of which are very abundant. Additional functional 

studies are now required to shed light on the roles of the identified CWPs during the 

elongation of hypocotyls in the dark.  
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Chapter summary (French) 

 Pour mieux comprendre la biogenèse des parois, une étude transcriptomique a été 

réalisée sur le même matériel que l’étude protéomique décrite dans le chapitre 4. Il s’agissait 

d’une part d’apporter des éléments concernant les niveaux de régulation des gènes codant des 

protéines impliquées dans la mise en place de la paroi, de rechercher des nouveaux gènes 

importants pour l’élongation des parois, et de comparer les résultats obtenus à ceux de la 

protéomique. Les puces CATMA (Complete Arabidopsis Transcriptome MicroArray) ont été 

utilisées dans le cadre d’une collaboration avec l’équipe de Jean-Pierre Renou de l’URGV 

d’Evry. Les résultats ont été analysés en se focalisant sur des gènes codant des protéines 

impliquées dans la biogenèse des parois et des gènes codant des protéines pariétales.  

 

 Dans un premier temps, le niveau de transcrits d’un ensemble de 846 gènes appelés 

CWGs (Cell Wall Genes) et annotés par des experts a été analysé. Ces gènes codent pour des 

protéines qui participent d’une part à la synthèse et au transport des constituants pariétaux, 

d’autre part à leur assemblage dans les parois ainsi qu’au remodelage des réseaux de 

polysaccharides, de protéines et de lignine.  Environ 55% de ces gènes ont des niveaux de 

transcrits détectables sur les puces CATMA aux deux stades développement des hypocotyles. 

Ceci suggère que les processus de synthèse et d’assemblage des constituants pariétaux sont 

importants à la fois au cours de l’élongation cellulaire et après son arrêt. Les niveaux de 

transcrits d’autres gènes tels ceux qui codent pour des AGP et des FLA ont également été 

analysés. Certains d’entre eux ont des niveaux de transcrits très élevés. Cependant leur rôle 

dans les parois n’est pas encore connu. 

 

 Dans un second temps, nous avons recherché des gènes codant pour des protéines 

secrétées dont les niveaux de transcrits seraient modérés ou élevés. L’idée était d’identifier de 

nouveaux gènes importants pour les remaniements pariétaux au cours de l’élongation 

cellulaire. Les 278 gènes identifiés ont été appelés SPGs (Secretory Pathway Genes). Ils 

appartiennent aux mêmes classes fonctionnelles que celles qui ont été définies au cours des 

études protéomiques. Parmi les SPGs, figurent 55 gènes codant des protéines agissant sur les 

polysaccharides pariétaux, 6 peroxydases. Après avoir retiré ces gènes déjà identifiés parmi 

les CWPs, ce sont plus de 200 nouveaux gènes qui pourraient jouer des rôles dans 

l’élongation cellulaire parmi lesquels 70 codent des protéines de fonction inconnue. 
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 Moins de 100 gènes codant des protéines secrétées ont des niveaux de transcrits 

significativement variables entre les deux stades de développement des hypocotyles (43 ont 

un niveau de transcrits supérieur à 5 jours, et 38 à 11 jours). Une réduction du niveau de 

transcrits entre 5 et 11 jours était attendue pour des gènes codant des GT et des GH, mais pas 

pour des gènes codant des PME dont l’activité de déméthylation des pectines semblait plutôt 

décrite après la phase d’élongation cellulaire pour favoriser la formation de complexes avec 

Ca2+ (« boîtes à œufs »). Par contre, une augmentation du niveau de transcrits de gènes codant 

des GRP était attendue à 11 jours, puisque les GRP ont été associées à la formation de 

protoxylème. Les différences entre les résultats attendus et ceux obtenus par ces analyses 

pourraient être expliquées soit par des nouveaux rôles des gènes concernés, soit par des 

régulations particulières de leur expression. Il pourrait exister un délai entre la synthèse de 

certains transcrits et leur traduction en protéine, ou encore, certaines protéines pourraient être 

particulièrement stables. Enfin, il faudrait prendre en compte l’activité des protéases qui 

pourraient intervenir dans l’activation de certaines enzymes ou dans leur dégradation. 

 

 Enfin, les données de transcriptomique ont été comparées aux données de 

protéomique. Trois cas ont été relevés : (i) la protéine est identifiée, et le niveau de transcrits 

du gène correspondant est détectable sur les puces CATMA; (ii)  le gène a un niveau de 

transcrit modéré ou élevé, mais la protéine n’est pas identifiée ; (iii) la protéine est identifiée, 

mais le niveau de transcrits du gène correspondant n’est pas détectable sur les puces CATMA. 

Plusieurs explications peuvent être proposées pour le second cas du point de vue de la 

protéomique. Certaines protéines sont difficiles à extraire des parois, peu abondantes, 

difficiles à colorer avec le bleu de Coomassie, ou encore difficiles à identifier par 

spectrométrie de masse du fait de leurs nombreuses modifications post-traductionnelles. Il se 

pourrait aussi que les protéines aient une demi-vie très courte ou encore, comme évoqué 

précédemment, qu’il existe un délai entre transcription et traduction d’un ARNm. Dans le 

troisième cas, les transcrits pourraient avoir une courte demi-vie, et les protéines au contraire 

être stables. En conclusion, nos travaux ont montré qu’il n’y a pas de cohérence systématique 

entre les données de transcriptomique et de protéomique. La régulation post-transcriptionnelle 

semble être importante dans le cas des gènes codant des protéines pariétales dans les 

hypocotyles étiolés. Les données de transcriptomique et de protéomique semblent donc 

complémentaires pour étudier la régulation des gènes codant des protéines pariétales. 

L’ensemble de ces résultats est détaillé dans l’article qui suit actuellement soumis pour 

publication.
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 To better understand cell wall biogenesis by complementing the results of proteomic 

study (chapter 4) and to know about the transcriptional regulation during hypocotyl 

elongation, a transcriptomic study was performed on same material used for proteomic study 

in chapter 4. For transcript profiling, Complete Arabidopsis Transcriptome MicroArray 

(CATMA) was used at URGV, Evry in collaboration with the research team of Jean-Pierre 

Renou. This chapter provides an analysis of:  

i) the transcript level of genes that could possibly take part in the biogenesis of cell 

wall  

ii) the transcript level of the genes for which the proteins were identified in the 

proteomic study (chapter 4) 

 

 In a first selection, the level of a set of 846 genes called cell wall genes (CWGs) and 

known to be involved in cell wall biogenesis was measured. At both stages of hypocotyl 

development, about 55% of these genes had detectable transcript level on CATMA. These 

genes are participating in synthesis, transport, assembly and rearrangement of cell wall 

polysaccharides (nucleotide-sugar inter-conversion pathway, monolignol biosynthesis, vesicle 

trafficking, structural proteins, GTs, GHs, XTHs, PMEs, PLs, expansins, peroxidases) 

suggesting that these two processes are very active during elongation. Levels of transcripts of 

other genes like those encoding AGPs and ALFs have also been analysed. Some of them have 

very high levels of transcripts, however, their role in cell wall is not yet known. 

 

 In a second step, we looked for genes that encode secretory proteins with moderate 

or high level of transcripts. The idea was to identify new genes important for assembly and 

reorganization of cell wall during elongation. The 278 genes identified in this way were called 

Secretory Pathway Genes (SPGs). They belong to the same functional classes to which 

belonged the proteins identified in the proteomic study. Among the SPGs, 55 genes encode 

proteins acting on cell wall polysaccharides and 6 genes encode peroxidases. After removing 

the genes encoding CWPs identified in the proteomic study, more than 200 new genes 

remained including 70 genes encoding proteins of unknown function that may play roles in 

cell elongation. 

 

 Less than 100 genes encoding secretory proteins had significant differences in their 

transcript levels between the two stages of hypocotyl development (43 and 38 having higher 

level in 5- and 11-day-old hypocotyls respectively). Higher level of transcripts in 5-day-old 
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hypocotyls was expected for genes encoding GTs and GHs, but not for genes encoding PMEs, 

that seems important after elongation to perform demethylation of pectins and promote the 

formation of "egg boxes" with Ca2+. Conversely, higher level of transcripts of genes encoding 

GRPs was expected in 11 days, since they have been involved in repair mechanism of 

elongating protoxylem primary cell wall. The differences between the expected results and 

those obtained during this work could be explained either by new roles of the concerned 

genes, or by special regulations of their expression. It could be a delay between the synthesis 

of mRNAs and their translation, or certain proteins could be particularly stable. Finally, the 

activity of proteases should also be considered since they may be involved in the activation of 

certain enzymes or in their degradation. 

 

Comparison of the transcriptomic data to the proteomic data (chapter 4) revealed 

three different cases: (i) protein identification with detectable level of transcripts of the 

corresponding gene on CATMA; (ii) high level of transcript but protein was not identified; 

(iii) Protein identified while the transcripts of the corresponding gene was not detectable on 

CATMA.  

 

 Several explanations can be proposed for the second case from the viewpoint of 

proteomics; some proteins are difficult to extract from cell wall; others are difficult to stain 

with Coomassie blue; still others are difficult to identify by mass spectrometry because of 

their post-translational modifications or absence of trypsin cut sites. It is also possible that 

these proteins have a very short half-life or as mentioned above, there is a delay between the 

synthesis mRNA and active protein. In the third case, the transcripts might have a short half-

life, and proteins rather are stable.  

 

In brief, this study revealed: (i) that there exists no systematic correlation between the 

abundance of transcripts and the presence of the corresponding proteins; (ii) that the 

post-transcriptional regulation of genes encoding CWPs in etiolated hypocotyles seems to be 

important; (iii) the transcriptomic and proteomic data seem complementary to study the 

regulation of genes encoding CWPs. 

 

The supplementary data files are given as annexes at the end of the report. 
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Abstract 

  
Background 

 Plant cell growth is a complex process involving cell division and cell elongation. 

Arabidopsis thaliana hypocotyls undergo a 100-fold length increase mainly by cell 

elongation. Cell enlargement implicates significant changes in the composition and structure 

of cell walls.  In order to understand cell wall biogenesis during cell elongation, mRNA 

profiling was made on half- (active elongation) and fully-grown (after growth arrest) etiolated 

hypocotyls of Arabidopsis. 

 

Results 

 Transcriptomic studies were performed on two sets of genes. The first set of 846 

genes called cell wall genes (CWGs) included genes involved in cell wall biogenesis, that is 

in synthesis and transport of cell wall components and in their assembly and rearrangements 

in cell walls. A significant proportion of them have detectable levels of transcripts (54.5%), 

suggesting that these processes are important throughout hypocotyl elongation and after 

growth arrest. A second set of 3039 genes named secretory pathway genes (SPGs) was 

studied to search for new genes encoding secreted proteins possibly involved in cell wall 

expansion. Based on transcript level, about 200 genes were selected. Seventy of them encoded 

proteins of yet unknown function. Finally, comparison with results of a proteomic study on 

the same material revealed that 35 out of the 137 identified proteins were products of the 

genes having high or moderate level of transcripts. It was surprising to find that about 15% of 

the genes encoding proteins identified by proteomics showed levels of transcripts below 

background. 

 

Conclusions 

 Members of multigenic families known to be involved in cell wall biogenesis were 

identified during growth of etiolated hypocotyls as well as about 200 genes that might be 

required for cell wall assembly and/or rearrangement. No clear correlation was found between 

the abundance of transcripts (transcriptomic data) and the presence of the proteins (cell wall 

proteomic data) demonstrating (i) the importance of post-transcriptional events for the 

regulation of genes during cell elongation and (ii) that transcriptomic and proteomic data are 

complementary. 



                                                                                                                                       Chapter 5 
___________________________________________________________________________ 

___________________________________________________________________________ 
                                                                           83 

Background  
 Plant cell growth occurs mainly by cell elongation, and may or may not be 

accompanied by cell division.  A meristematic cell might enlarge as much as 50000-fold its 

initial volume. In this process, membrane surface area and amount of cell wall material 

increase. The primary cell wall plays an essential role since it should allow turgor-driven 

increase in cell volume by permitting the incorporation of new cell wall material and 

rearrangement of existing cell wall. Several plant organs including coleoptiles (poaceae), 

internodes (legumes), and hypocotyls (mung bean, sunflower, and Arabidopsis thaliana) have 

been used to study cell elongation [1]. Environmental signals such as light temperature, and 

hormones, regulate hypocotyl growth [2-5]. Arabidopsis seedlings grown in continuous 

darkness are a material of choice to analyze the cell elongation process. Indeed, cells of 

hypocotyls undergo a 100-fold length increase compared to embryo cells [6]. Growth occurs 

mostly by cell expansion, with little cell division [4, 6-8]. Changes in wall thickness during 

elongation of Arabidopsis hypocotyls were investigated using cryo-field-emission scanning 

electron microscopy [1]. At the germination stage, cell wall thickening occurs and involves 

high rates of biosynthesis and deposition of cell wall components. During the elongation 

stage, cell walls undergo remarkable thinning, requiring extensive polymer disassembly and 

rearrangement.  

 

 Many genes are assumed to be involved in cell wall synthesis and rearrangement to 

support growth of plant cell walls [9]. They encode cellulose synthases (CESAs), cellulose 

synthases-like (CSLs), endo-glucanases, xyloglucan endotransglucosylase/hydrolases (XTHs) 

and expansins. They belong to multigenic families, but the members of each family involved 

in elongation of hypocotyl cells have not been precisely identified. It is also likely that other 

genes are important for cell elongation.  

 

 In this paper, Arabidopsis etiolated hypocotyls were compared at two developmental 

stages, half- and fully-grown, i.e. active elongation vs. elongation arrest. Transcript profiling 

was carried out using CATMA (Complete Arabidopsis Transcriptome MicroArray) [10]: (i) 

to look at the level of transcripts of cell wall genes (CWGs) belonging to families known to 

be involved in cell wall biogenesis; (ii) to identify genes encoding secreted cell wall proteins 

(SPGs) having high or moderate level of transcripts; (iii) to reveal differential gene expression 

between half- and fully-grown etiolated hypocotyls; (iv) and to look at the correlation 



                                                                                                                                       Chapter 5 
___________________________________________________________________________ 

___________________________________________________________________________ 
                                                                           84 

between transcript abundance and protein presence as revealed by a  proteomic study 

performed on the same material (Irshad et al., submitted for publication). 

 

Results and Discussion 

 
Level of transcripts of cell wall genes (CWGs) during hypocotyl elongation 

 Etiolated hypocotyls were compared at two developmental stages. Five-day-old 

hypocotyls were approximately half the final size. Growth propagated following an acropetal 

gradient. After 5-days, the bottom cells were fully elongated, whereas the top cells were only 

starting elongation [8]. Eleven-day-old hypocotyls had reached their maximum size and the 

cells were more than 100-fold their initial length [6]. CATMA was used for mRNA profiling. 

Since one of the major modifications during cell elongation is the addition and rearrangement 

of cell wall components, a selection of genes possibly involved in cell wall biogenesis was 

made (Additional data file 1). This selection was called “Cell Wall Genes” (CWGs). It was 

mainly based on the knowledge of gene families known to be involved in biogenesis of cell 

walls, that means synthesis and transport of cell wall components and their assembly or 

rearrangement in cell walls (see Methods). It includes genes encoding proteins involved in 

substrate generation (nucleotide-sugar inter-conversion pathway, monolignol biosynthesis), 

polysaccharide synthesis (mainly glycosyl transferases), vesicle trafficking, 

assembly/disassembly of the wall (glycosyl hydrolases, expansins, carbohydrate esterases, 

carbohydrate lyases), structural proteins, oxido-reductases involved in cross-linking of wall 

components (mainly peroxidases and laccases). A few gene families encoding cell wall 

proteins were also included such as arabinogalactan proteins (AGPs), fasciclin AGPs (FLAs), 

phytocyanins, multicopper oxidases, pectin methylesterase (PME) inhibitors, and subtilases. 

Only genes annotated by experts were retained (see Methods) and 26 gene families are 

represented. 

 

 Altogether, 1021 genes were selected among which only 846 were analyzed through 

CATMA for technical reasons. Some genes had no gene-specific tag (GST) on the 

microarray, others were not considered because of a poor signal of hybridization to the RNA 

probe, or of inaccurate duplicates. The level of transcripts was expressed as log2 of the mean 

signal intensity. Values of log2 below 6.75 were considered as background. Values between 

6.75 and 9 corresponded to a low level of transcripts (1 to 4-fold the background level), 



Table 1. Cell Wall Genes (CWGs) with high levels of transcripts in either 5- or 11-day-old hypocotyls.  
 
CWGs were selected according to several papers and databases as mentioned in Methods. The intensity of the signal is expressed as log2, the ratios 
between the levels of transcripts at 11-days and 5-days as well as the Bonferroni p-values are indicated. CWGs are classified by gene family. 

 

Functional classes AGI number Predicted or known gene function 5-days 11-days ratio 11-days 
/ 5-days p-value 

Substrate generation             
nucleotide-sugar interconversion pathway  AT5G39320 UGD1 11.43 11.03 -0.40 1.00 
  AT1G08200 AXS2 10.34 9.98 -0.36 1.00 

lignin toolbox AT4G39330 Arath;CAD1(cinnamyl alcohol 
dehydrogenase) 11.03 10.33 -0.70 7.14E-02 

  AT2G30490 Arath;C4H (CYP73A5) (trans-cinnamate 
4-hydroxylase) 10.84 10.43 -0.41 1.00 

  AT1G76790 Arath;COMT-like8 (caffeic acid O-
methyltransferase) 10.37 9.48 -0.89 4.45E-05 

  AT5G48930 
Arath;HCT (hydroxycinnamoyl-
CoA:shikimate/quinate hydroxycinnamoyl 
transferase) 

10.24 10.28 0.04 1.00 

    
Synthesis of polysaccharides             
glycosyl transferases (GTs) AT2G22900 GT34 10.09 9.72 -0.36 1.00 
  AT2G28110 GT47 (Group E) (FRA8) 11.39 10.73 -0.67 1.86E-01 
  AT5G09870 GT2 (AtCesA5) 10.01 9.11 -0.90 3.26E-05 
  AT5G05170 GT2 (AtCesA3) 10.36 9.89 -0.47 1.00 
       
Vesicle trafficking             
  AT1G69460 emp24/gp25L/p24 family protein 10.17 10.55 0.37 1.00 
       
Modification of polysaccharides             
glycosyl hydrolases (GHs) AT1G64390 GH9 (endoglucanases) 10.68 10.19 -0.49 1.00 
  AT4G02290 GH9 (endoglucanases) 11.10 10.08 -1.02 1.57E-07 
  AT2G06850 GH16 (AtXTH4) 12.98 12.15 -0.83 6.40E-04 
  AT4G14130 GH16 (AtXTH15) 12.72 11.98 -0.74 1.62E-02 



  AT4G30290 GH16 (AtXTH19) 11.37 11.40 0.03 1.00 
  AT4G30270 GH16 (AtXTH24) 10.84 11.64 0.80 1.63E-03 
  AT1G32170 GH16 (AtXTH30) 10.06 9.85 -0.21 1.00 
  AT5G56870 GH35 (beta galactosidases) (AtBGAL4)  13.18 11.97 -1.22 5.60E-12 
  AT1G45130 GH35 (beta galactosidases) (AtBGAL5) 11.21 10.42 -0.78 3.24E-03 
carbohydrate esterases (CEs) AT2G43050 CE8 (pectin methylesterases)  12.56 10.76 -1.80 0.00 
  AT3G49220 CE8 (pectin methylesterases)  11.81 10.99 -0.82 8.65E-04 
  AT3G14310 CE8 (pectin methylesterases) AtPME3 10.79 9.90 -0.90 4.05E-05 
  AT3G05910 CE13 (pectin acylesterases) 10.44 10.14 -0.3 1.00 
carbohydrate lyases (CLs) AT5G48900 PL1 (pectate lyases) (Group A) 10.92 10.23 -0.70 6.69E-02 
  AT1G04680 PL1 (pectate lyases) (Group A) 10.73 10.22 -0.52 1.00 
  AT1G67750 PL1 (pectate lyases) (Group A) 10.66 10.42 -0.24 1.00 
  AT3G07010 PL1 (pectate lyases) (Group A) 10.26 9.56 -0.70 6.16E-02 
expansins AT5G02260 AtEXPA9 (alpha expansin) 12.71 12.44 -0.28 1.00 
  AT1G69530 AtEXPA1 (alpha expansin) 10.62 10.86 0.24 1.00 
  AT2G37640 AtEXPA3 (alpha expansin) 10.34 10.52 0.18 1.00 
  AT4G28250 AtEXPB3 (beta expansin) 9.07 10.38 1.31 0.00 
    
Structural proteins             
Hyp/Pro rich proteins (H/PRP) AT2G21140 AtPRP2 11.67 11.15 -0.51 1.00 
    
Oxido-reductases             
peroxidases AT2G37130 AtPrx21 14.28 12.86 -1.42 0.00 
  AT4G21960 AtPrx42 13.17 12.40 -0.77 5.29E-03 
  AT1G05260 AtPrx03 10.68 10.18 -0.51 1.00 
  AT4G33870 AtPrx48 10.52 9.25 -1.27 0.00 
  AT1G71695 AtPrx12 10.17 9.54 -0.63 4.86E-01 
  AT5G64120 AtPrx71 10.03 9.85 -0.18 1.00 
phytocyanins AT4G12880 AtEN20 (early nodulin) 10.84 11.19 0.36 1.00 
  AT2G32300 AtUCC1 (uclacyanin) 10.61 10.60 -0.02 1.00 
SKU-like proteins (multi-copper oxidases) AT1G76160 SKS5 10.33 9.91 -0.43 1.00 
    
Proteins possibly involved in signaling             
arabinogalactan proteins (AGPs) AT2G14890 AtAGP9 11.71 11.82 0.12 1.00 



  AT5G11740 AtAGP15 (AG peptide) 11.03 11.71 0.68 1.10E-01 
  AT5G10430 AtAGP4 10.84 10.65 -0.19 1.00 
  AT3G13520 AtAGP12 (AG peptide) 10.77 11.51 0.74 1.50E-02 
 AT1G28290 AtAGP31 10.97 11.42 0.46 1.00 
fasciclin AGPs (FLAs) AT1G03870 AtFLA9 12.49 12.25 -0.24 1.00 
  AT2G45470 AtFLA8 11.96 11.53 -0.43 1.00 
  AT4G12730 AtFLA2 10.85 10.44 -0.41 1.00 
    
Proteases             
subtilases AT3G14067 AtSBT1.4 11.85 10.71 -1.15 2.80E-10 
  AT2G05920 AtSBT1.8 11.54 10.90 -0.64 4.50E-01 
  AT5G67360 AtSBT1.7 (ARA12) 11.45 11.12 -0.33 1.00 
  AT5G51750 AtSBT1.3 11.04 10.80 -0.24 1.00 
  AT5G59090 AtSBT4.12 10.47 9.49 -0.99 7.99E-07 
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values between 9 and 10 to a moderate level (4 to 8-fold the background level) and values 

higher than 10 to a high level (more than 8-fold, and up to 64-fold the background level). The 

level of transcripts of the 846 genes analyzed was below background for 369 genes (45.8%), 

low for 343 (40.5%), moderate for 53 (6.3%) and high for 55 (6.5%). Most families are 

represented by genes with low, moderate or high levels of transcripts.  

 

 At both stages, of the 55 genes with high levels of transcripts (Table 1), 11 are 

involved in the synthesis or transport of cell wall components and 27 are involved in 

modifications of cell wall components. Altogether, 64.6% and 45.5% respectively of the 

genes related to synthesis or transport of cell wall components and to their modifications in 

cell walls respectively have detectable level of transcripts. Two separate phases of growth 

have been described in Arabidopsis dark-grown hypocotyls: an early phase of active synthesis 

of cell wall polysaccharides up to 3-days after beginning of germination, and a late phase of 

cell expansion [8]. The former phase results in thicker cell walls which later on become 

thinner as hypocotyls elongate [1]. Our results show that both synthesis and rearrangement of 

cell wall components are probably required throughout hypocotyl elongation, and even after 

growth arrest.  

 

 Most of these genes were expected to be transcribed during cell elongation. Genes 

involved in rearrangement of cell wall components encode GHs such as endoglucanases, 

XTHs, and beta-galactosidases; carbohydrate esterases such as PMEs; pectin acylesterases; 

PLs; expansins of the alpha- or beta-type; and peroxidases. However, 21 genes encoding 

PMEs and 6 genes encoding pectin acylesterases have detectable levels of transcripts among 

which 4 genes have high levels of transcripts (Additional file 1), which seems contradictory 

with previous results showing that a low level of pectin esterification, associated to abundance 

of PMEs and acylesterases, restricted cell elongation in Arabidopsis hypocotyls [11].  It 

should be noted that 21 genes encoding PME inhibitors also have detectable levels of 

transcripts. The interplay between PME and their inhibitors could regulate the activity of 

PMEs. Nine genes encoding proteins possibly involved in oxido-reduction reactions have 

high levels of transcripts (peroxidases, phytocyanins, and protein homologous to SKU5). Six 

peroxidase genes fall in this category, among which AT2G37130 (AtPrx21) has one of the 

highest levels of transcripts.  The multiple roles of peroxidases during growth have been 

reviewed [12]. They could either release reactive oxygen species able to cut polysaccharides 
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or restrict growth by cross-linking structural proteins, monolignols, or polysaccharides and 

ferulate.  

 

 Other CWGs are also well-represented such as those encoding arabinogalactan 

proteins (AGPs), fasciclin AGPs (FLAs) and subtilases (Table 1). Even if AGPs and FLAs 

have been shown to be associated with wood formation in poplar [13], their role in cell 

expansion is not very clear at present. Likewise, nothing is known about the role of proteases 

during cell elongation. Finally, genes of the COBRA gene family have level of transcripts low 

or below background. However, COBRA was shown to play an important role in microfibril 

deposition during rapid elongation and in the orientation of cellulose microfibrils [14]. It may 

mean that such proteins are stable during hypocotyl elongation.  

 

 This work gives clues for understanding the function of members of multigene 

families either during cell elongation or after its arrest. Indeed, general functions have been 

proposed for most of these gene families, but only scarce information is available for specific 

members.  

 

Genes encoding secreted proteins with high or moderate level of transcripts in etiolated 

hypocotyls 

 Most of the gene families described above was already known to be involved in cell 

wall biogenesis. In order to identify new genes that might be involved in cell expansion, a 

second selection was made based on sub-cellular location of proteins, choosing all the genes 

encoding proteins with predicted signal peptide thus targeted to the secretion pathway. The 

3039 selected genes were ranked by level of transcripts, producing a profile similar to the one 

obtained with CWGs, namely 1341 genes (44.1 %) above background level, 1363 (44.9%) 

with a low transcript level, 185 (6.1%) with a moderate level, and 150 (4.9%) with at high 

level. From this selection, only genes encoding proteins predicted to be located either outside 

the cell or in the plasma membrane were retained (see Methods). In Additional data file 2, 278 

genes named “Secretory Pathway Genes” (SPGs) with moderate or high levels of transcripts 

are listed and grouped in families according to their predicted functional domains (see 

Methods). All these protein families were already described in cell wall proteomic studies 

[15-17]: proteins acting on carbohydrates (55 genes); proteases (25 genes); proteins possibly 

involved in signaling (23 genes); structural proteins (9 genes); proteins possibly involved in 

oxido-reduction reactions (20 genes); proteins with interacting domains (20 genes); proteins 



                                                                                                                                       Chapter 5 
___________________________________________________________________________ 

___________________________________________________________________________ 
                                                                           87 

related to lipid metabolism (25 genes); miscellaneous proteins (31 genes); proteins of 

unknown function (70 genes). Main differences lie in the genes encoding proteins possibly 

involved in signaling since they comprise AGPs, FLAs, and plasma membrane proteins that 

are difficult to isolate, separate or identify through proteomics [15]. In the same way, the 

group of proteins of unknown function is very important because 42% of them are predicted 

to have trans-membrane domains. On the contrary, the group of structural proteins is probably 

under-represented because of the lack of appropriate GSTs for many of them. Indeed, their 

repetitive amino acid sequences make the design of specific probes difficult. One should note 

the abundance of proteases that can be assumed to be essential for protein turnover in tissues 

undergoing rapid elongation followed by elongation arrest within a short time. They may also 

be involved in signaling as shown for SDD1 (STOMATAL DENSITY AND 

DISTRIBUTION 1) and   ALE1 (ABNORMAL LEAF EPIDERMIS 1) [18, 19] or in protein 

maturation as assumed for AtSBT1.7, thus contributing to regulation of cell wall enzyme 

activities [20]. In addition, there are probably interactions between proteases and protease 

inhibitors to regulate the proteolytic activities in cell walls. Several of the 70 proteins of yet 

unknown function have known structural domains (29 genes). Others share domains with 

other proteins, such as domains of unknown function (DUF), or belong to the so-called 

uncharacterized protein families (UPF). Many are of particular interest, since they are only 

present in plants.  

 

 Among these 278 SPGs, only the 55 encoding proteins acting on carbohydrates, and 

the 8 encoding peroxidases or laccases were shown or assumed to contribute to assembly or 

rearrangement of cell wall components. It means that this study allowed identifying about 200 

genes encoding proteins that are candidates to play roles during growth of Arabidopsis 

etiolated hypocotyls. Their functional characterization will be paramount to understand cell 

wall architecture and assembly during an elongation process. 

 

Are there variations in the level of transcripts between half- and fully-grown 

hypocotyls? 

 The comparison of the transcript levels of genes encoding secreted proteins between 

5- and 11-day-old hypocotyls showed that 81 genes have a significant differential expression 

(Additional data file 3). Forty-three and 38 genes have a higher level of transcripts in 5- and 

11-day-old hypocotyls respectively. The highest increase (13.8-fold) was found at 11-days for 

a gene encoding a GRP (AT2G05440). Conversely, the largest decrease (3.5-fold) was 
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Figure 1. Overview of SPGs expressed in 5- and 11-day-old hypocotyls.
A. The number of genes belonging to several families of SPGs with moderate and high level ofA. The number of genes belonging to several families of SPGs with moderate and high level of
transcripts is shown: white and grey bars are used for 5- and 11-day-old hypocotyls respectively. B.
Genes of the same families showing significant differences in expression between 5- and 11- day-
old hypocotyls are counted: genes with higher level of transcripts in 5-day-old hypocotyls are
represented by white bars; genes with higher level of transcripts in 11-day-old hypocotyls are
represented by grey bars. AGP: arabinogalactan protein; GRP: glycine-rich protein; GT: glycosyl
transferase; GH: glycosyl hydrolase; LAE: late embryogenesis abundant; LTP: lipid transfer protein;
PL: polysaccharide lyase; PME: pectin methylesterase; XTH: xyloglucan
endotransglucosylase/hydrolase.
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observed at 11-days for a gene encoding a putative Asp protease (AT5G10770). The number 

of genes of selected families expressed differentially in both samples is represented in Figure 

1. For comparison, the number of genes of the same families having high or moderate levels 

of transcripts is also represented. All the selected gene families are represented by almost the 

same number of genes at both developmental stages (Figure 1A). However, there are striking 

differences when the comparison is done with genes which level of transcripts varies 

significantly (Figure 1B).  

 

 Several genes encoding GTs, GHs, and PMEs have higher levels of transcripts at 5-

days than at 11-days, i.e. at a time hypocotyls undergo active elongation. Although GTs and 

GHs are expected to be expressed during elongation, the role of PMEs appears to be more 

complex  [21]. They have been described as enzymes involved in the arrest of cell elongation 

acting at the level of esterified pectins to de-esterify methyl residues and to allow binding to 

Ca2+ ions, thus promoting the formation of egg boxes. But they could also play roles during 

elongation in combination with polygalacturonases to favor the fragmentation of pectin 

chains. The proportion of cells already elongated could also be significant after 5-days of 

growth. Alternatively, there might be a delay between synthesis of mRNAs, and production of 

an active protein. This might be the case for PMEs that are usually produced as polyproteins 

comprising an inhibitor at their N-terminus and an active enzyme at their C-terminus [21].  

 

 Genes belonging to other gene families have higher levels of transcripts at 11-days: 

PLs, expansins, protease inhibitors, AGPs, GRPs, lipid transfer proteins (LTPs), and late-

embryogenesis abundant proteins (LEAs). Higher levels of transcripts were not expected for 

several of them, e.g. PLs that are enzymes involved in the deconstruction of pectin backbones 

[22], expansins that are assumed to be involved in cell expansion [9], and LTPs that have 

recently been related to cell elongation [23]. On the contrary, GRPs have been shown to be 

associated to cell walls of xylem and phloem by tissue printing [24]. The great increase in the 

amount of transcripts of AT2G05440 is consistent with the development of protoxylem 

elements that contain GRPs [25]. Concerning AGPs, they are very well represented in the 

transcriptome of hypocotyls with 12 AGPs having detectable levels of transcripts (Additional 

data file 1). AGPs are candidates for cell-to-cell communication [26], and were found to be 

associated to wood formation in poplar [13]. Nothing is known about the role LEAs could 

play in fully-developed hypocotyls. 

 



Table 2. Genes with high levels of transcripts in either 5- or 11-day-old hypocotyls for which the encoded proteins were identified in 
a proteomic study performed on the same plant material.  
 
Genes are classified by predicted functional domains as described in Methods. The intensity of the signal is expressed as log2, the ratios between the levels 
of transcripts at 11 and 5 days as well as the Bonferroni p-values are indicated. 
 

Functional class Gene family AGI 
number 

Predicted or known gene 
function 5-days 11-days 

ratio 11-
days / 5-

days 
p-value 

        

Proteins acting on 
carbohydrates 

glycoside hydrolase family 16 
(xyloglucan 
endotransglycosidases/hydrolases) 

AT2G06850 AtXTH4 12.98 12.15 -0.83 6.40E-04 

  glycoside hydrolase family 31 AT1G68560 XYL1 (alpha-xylosidase) 10.60 10.13 -0.47 1.00 
  expansin AT5G02260 AtEXPA9 12.71 12.44 -0.28 1.00 

  carbohydrate esterase family 8 
(pectin methylesterases) AT3G14310 AtPME3 10.79 9.9 -0.90 4.05E-05 

     
Proteases cysteine protease (papain family) AT4G01610   12.4 12.38 -0.02 1.00 
  aspartyl protease AT1G11910   12.95 12.35 -0.60 1.00 
  aspartyl protease AT5G10770   12.46 9.97 -2.49 0.00E+00 
  asparaginyl peptidase AT4G32940   12.35 10.82 -1.53 0.00E+00 
     
Structural proteins proline-rich protein (PRP) AT1G28290   10.97 11.42 0.46 1.00 
     
Proteins involved in oxido-
reduction reactions peroxidases AT1G71695 AtPrx12 10.17 9.54 -0.63 4.86E-01 

  protein homologous to germin AT1G09560 GLP5 (subfamily 2, 
member 1) 10.19 9.79 -0.40 1.00 

  phytocyanin (proteins homologous 
to blue copper binding proteins) AT4G12880 plastocyanin 10.84 11.19 0.36 1.00 

     
Proteins with interacting 
domains protein homologous to lectins AT1G78850 curculin-like, mannose 

binding 11.95 11.42 -0.53 1.00 



  protein with leucine-rich domains 
(LRRs)  AT3G20820 expressed protein (LRR 

domains) 10.49 9.99 -0.50 1.00 

  enzyme inhibitor AT1G73260 serine protease inhibitor 12.00 12.5 0.50 1.00 
     

Miscellaneous functions   AT2G22170
homologous to Brassica 
napus dehydratation 
stress-induced protein 

10.57 10.54 -0.03 1.00 

   AT5G09440 homologous to phosphate-
induced proteins (phi) 11.87 10.73 -1.14 3.41E-10 

   AT5G15230 gibberellin regulated protein 
(GASA4) 12.58 13.42 0.84 4.08E-04 

    AT2G27190 homologous to purple acid 
phosphatase 10.67 10.42 -0.25 1.00 

     
Unknown functions expressed proteins AT5G11420 DUF642 11.97 11.68 -0.29 1.00 
  AT3G08030 DUF642 12.03 11.69 -0.33 1.00 
   AT3G20370 MATH domain 10.31 10.33 0.01 1.00 
   AT3G22640 cupin domain 9.52 10.52 1.00 4.06E-07 
   AT2G28490 cupin domain 10.09 10.69 0.59 1.00 

    AT2G34700 pollen proteins Ole e I 
family  10.14 8.35 -1.80 0.00E+00 
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 Finally, some gene families have members which level of transcripts is higher either 

in 5- or in 11-day-old hypocotyls. This is the case of XTHs, peroxidases and proteases. XTHs 

are expected to play roles in cell elongation by cutting and linking fragments of xyloglucans 

[27]. However, they have also been identified by proteomics in mature tissues such as rosette 

leaves [28]. Peroxidases are assumed to cross-link networks of structural proteins and to 

polymerize monolignols in secondary walls at the end of elongation, thus being involved in 

the arrest of cell elongation [12]. But they could also be involved in the generation of free 

radicals able to cut polysaccharides, thus favoring wall extension [12]. The role of proteases 

in cell walls during elongation has not yet been described. As mentioned above, it can be 

assumed that they contribute to protein turnover in tissues where many physiological 

processes occur within a short time. It should be noted that 5 genes encoding protease 

inhibitors are up-regulated in 11-day-old hypocotyls, suggesting complex regulations of 

proteolytic activities in cell walls at the end of the arrest of hypocotyls elongation. 

 

 These differences in transcript abundance between the two samples should be taken 

carefully with regard to the possible functions carried out by the proteins, since many other 

genes from the same families are transcribed in half- and fully-grown hypocotyls, but without 

significant differences.  

 

Transcriptome vs. proteome  

 In order to look for the consistency between levels of mRNAs and presence of the 

corresponding proteins, which are the molecules present in cell walls, a proteomic analysis 

has been performed on cell walls and the results were compared to those of this 

transcriptomic analysis. The cell wall proteomes of 5- and 11-days-old hypocotyls were 

achieved and a total of 137 proteins predicted to be secreted were identified (Irshad et al., 

submitted for publication). When these 137 proteins were compared to the 278 SPGs with 

moderate and high levels of transcripts (Additional data file 2), only 35 proteins matched 

(12.8 %). From the 150 SPGs having high levels of transcripts in etiolated hypocotyls, only 

25 (16.6 %) showed the corresponding proteins (Table 2). It was expected that proteomic 

profiling identified at least the proteins encoded by the highly-transcribed genes. The great 

inconsistency between the abundance of mRNAs and the presence of the corresponding 

proteins was surprising, but several reasons may explain this disparity.  It is known that CWP 

extraction and identification can be challenging [15, 16]. Many proteins can remain linked to 

the polysaccharide matrix, such as the structural proteins [29, 30], or some peroxidases that 
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Figure 2. Level of transcripts of genes encoding CWPs identified through
proteomics.
A. The levels of transcripts of genes were determined by the CATMA analysis in 5- and 11-day-old
hypocotyls (white and dark grey bars respectively). Percentage of genes falling in the three following
categories are represented: high transcript level corresponds to log2 values of the mean signal
intensity higher the 10, moderate to values between 9 and 10, and weak to values between
background (6.75) and 9. nd means not determined. B. Half-lifes of mRNAs (h) corresponding tobackground (6.75) and 9. nd means not determined. B. Half lifes of mRNAs (h) corresponding to
SPGs having high or moderate levels of transcripts (grey bars) or to proteins identified through cell
wall proteomics (black bars). Percentage of genes in each range of half-lifes is indicated for each
set of gene. Half-lifes of mRNAs in cell suspension cultures were from Narsai et al. (2007) [36].
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might be strongly bound to pectins [31]. Others are difficult to identify because of their 

structure, e.g. a high level of O-glycosylation as for AGPs, which require a special 

deglycosylation step [32]. Proteins containing few linkages sensitive to trypsin digestion can 

also escape identification by peptide mass mapping. Finally, low-abundant proteins elude 

proteomic analyses. For the proteins that were identified without particular problems such as 

GHs, expansins and proteases, only a few of them correspond to highly-transcribed genes. It 

indicates that a high level of transcripts is not always correlated with the presence of the 

protein.  

 

 We then looked at the level of transcripts of the 137 genes encoding the proteins 

identified through proteomics (Figure 2A). The transcript level of 21 genes was not found in 

the CATMA experiment since some of them have no GST or were eliminated because of poor 

signals of hybridization to the RNA probe, or of inaccurate duplicates. The levels of 

transcripts of the 105 remaining genes were surprising, since 34.2 (resp. 35.6%) had low 

levels of transcripts and 15.8% (resp. 14.9%) had levels of transcripts below background at 5-

days (resp. 11-days). However, all the identified proteins are assumed to be the most 

abundant. This shows that the transcripts could have short half-lives and/or that the proteins 

could have a low turnover.  

 

 To confirm the results obtained with the CATMA analysis, the level of transcripts 

was estimated by semi-quantitative RT-PCR for several genes corresponding to the three 

cases described (Figure 3): high or moderate level of transcripts and proteins identified; high 

level of transcripts and proteins not identified; low or below background level of transcripts 

and proteins identified. The results obtained for genes having high or moderate level of 

transcripts are consistent with CATMA results. When the number of PCR cycles was 

increased to visualize transcripts of some genes having levels of transcripts below background 

in CATMA analysis (Figure 3C), no band (At5g44360) or bands of weak intensity were 

detected, as compared with At2g21140 which has a high level of transcripts (Figure 3B). It 

means that CATMA results are consistent with semi-quantitative RT-PCR results.  

 

 Altogether, these results show that there is not a clear correlation between the 

presence of CWPs as shown by cell wall proteomic analysis and the amount of transcripts of 

the corresponding genes. The quality of this correlation may depend on genes and/on 

environmental conditions. For example, the quantification of soluble proteins of yeast at mid-
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Figure 3 RT PCR analysis of the transcripts of some genes encoding CWPs identified through proteomicsFigure 3. RT-PCR analysis of the transcripts of some genes encoding CWPs identified through proteomics.
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log phase showed that for a given transcript level, protein levels were found to vary by more 

than 20-fold, whereas for a given protein level, transcript levels were found to vary 30-fold  

[33]. However, up-regulation of yeast genes in response to glucose or nitrogen limitation was 

found to be controlled at the transcriptional or post-transcriptional level respectively [34]. In 

Arabidopsis and rice, changes observed in the soluble proteome in response to bacterial 

challenge were not strictly correlated to changes in transcript levels [35]. These results show 

that quantitative analysis of transcript levels is not sufficient to infer protein levels. Multilevel 

analysis must take into account the stability of transcripts, their availability for active 

translation, as well as the stability of proteins that is certainly essential considering the high 

number of proteases in cell walls. With regard to transcript stability, data from a recent study 

aiming at measuring mRNA decay rates in Arabidopsis cell suspension cultures [36] were 

used to look for half-lifes of gene transcripts identified through proteomics (Figure 2B). It can 

be seen that more than half of the proteins (64%) identified by cell wall proteomics 

correspond to genes having transcripts with rather long half-lifes (6-24 h). Conversely, no 

gene corresponding to proteins identified by cell wall proteomics has transcripts with half-life 

shorter than 1 h. This distribution differs from that of transcripts of genes having high or 

moderate level of transcripts since 46% of these genes have half-lifes shorter than 6h. 

For the particular case of Arabidopsis etiolated hypocotyls, only 25 genes both showed a 

high level of transcripts during cell elongation and after its arrest and encoded proteins 

identified by cell wall proteomics. They might be considered either as house-keeping genes in 

this organ or good markers for cell elongation of dark-grown hypocotyls. 

 

Conclusions  

 mRNA profiling of the genes potentially involved in cell wall biogenesis (CWGs) in 

elongating etiolated hypocotyls showed that more than half of them present a detectable level 

of transcripts. All gene families are expressed. The results suggest that both synthesis and 

rearrangement of wall components are required throughout hypocotyl elongation. The 

transcriptomic analysis of genes encoding secreted proteins showed that around 200 new 

genes might be implicated in this process. Understanding the biochemical and biological 

functions of these genes might reveal new mechanisms of cell wall expansion or growth 

arrest, or new functions for the cell wall. 

 

 Less than 100 genes encoding secreted proteins had significantly different levels of 

transcripts between growing and full-elongated hypocotyls. As expected, genes acting on 
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polysaccharides (GTs or GHs) had higher levels of transcripts at 5-days, whereas others 

encoding PMEs or peroxidases were not supposed to have higher level of transcripts during 

active elongation. Their function during cell elongation should be revisited. On the contrary, 

several genes encoding LTPs, LEAs, lipases, and protease inhibitors had higher levels of 

transcripts at 11-days. Their functions remain to be found at the end of the elongation process. 

Finally, as expected, some genes encoding GRPs were found to have much higher levels of 

transcripts in fully-grown hypocotyls at a time lignification is an active process. However, 

since all these genes belong to multigene families, one cannot rule out the fact that a similar 

function can be shared by several genes. 

  

 Finally, a proteomic analysis of the cell walls of half- and fully-grown hypocotyls 

identified 137 proteins. When the transcript levels of the corresponding genes were analyzed, 

15% presented levels of transcripts below CATMA background. On the contrary, only 13% of 

the genes encoding secreted proteins with high or moderate levels of transcripts corresponded 

to proteins identified through proteomics. Thus, the comparison between transcript levels and 

presence of the corresponding proteins suggested that many genes encoding proteins secreted 

in cell walls are regulated at a post-transcriptional level during the elongation of etiolated 

hypocotyls. In conclusion, transcriptomic and proteomic data appeared to be complementary 

to describe the regulation of gene activity. 

 

Methods 

 

Plant material 

 Arabidopsis thaliana seedlings (ecotype Columbia 0) were grown in continuous 

dark on Magenta box on Murashige and Skoog [37] medium supplemented with 2% sucrose. 

Etiolated hypocotyls were collected after 5- and 11- days of culture. 

 

Total RNA extraction 

 Three independent RNA extractions were performed for each sample (5- and 11-

day-old hypocotyls). Hypocotyls were cut below cotyledons and above crown with sterile 

scissors. They were ground in liquid nitrogen in a mortar with a pestle. Extraction of total 

RNAs was performed using the SV Total RNA Isolation kit according to manufacturer’s 

instructions (Promega France, Charbonnières, France). For each RNA extraction, 750 mg of 

ground hypocotyls were used. Typically, about 110 µg of total RNAs were obtained.  
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Transcriptome studies 

 Microarray analysis was carried out at the Unité de Recherche en Génomique 

Végétale (Evry, France), using the CATMA array [10, 38], containing 24,576 GSTs from 

Arabidopsis. RNA samples from three independent biological replicates were pooled. For 

each comparison, one technical replication with fluorochrome reversal was performed for 

each RNA sample (i.e. four hybridizations per comparison). The reverse transcription of RNA 

in the presence of Cy3-dUTP or Cy5-dUTP (Perkin-Elmer-NEN Life Science Products), the 

hybridization of labeled samples to the slides, and the scanning of the slides were performed 

as described in Lurin et al. [39]. 

 

Statistical analysis of microarray data 

 Experiments were designed with the statistics group of the Unité de Recherche en 

Génomique Végétale. Statistical analysis was based on two dye swaps (i.e. four arrays, each 

containing 24,576 GSTs and 384 controls) as described [39]. Controls were used for assessing 

the quality of the hybridizations, but were not included in the statistical tests or the graphic 

representation of the results. For each array, the raw data comprised the logarithm of median 

feature pixel intensity at wavelengths 635 (red) and 532 nm (green). To estimate the 

expression level of each gene, we considered a background value obtained by addition of the 

average background value to 2 background standard deviation. This background was not 

subtracted from the data presented in this paper, but was considered for the interpretation of 

the results. In the following description, log2 ratio refers to the differential expression between 

two conditions. It is either log2 (red/green) or log2 (green/red) according to the experimental 

design. Array-by-array normalization was performed to remove systematic biases. First, we 

excluded spots that were considered badly formed features. Then, we performed global 

intensity-dependent normalization using the LOESS procedure to correct the dye bias. 

Finally, for each block, the log ratio median calculated over the values for the entire block 

was subtracted from each individual log ratio value to correct print tip effects on each 

metablock.  To determine differentially expressed genes, we performed a paired t test on the 

log ratios, assuming that the variance of the log ratios was the same for all genes. Spots 

displaying extreme variance (too small or too large) were excluded. The raw p-values were 

adjusted by the Bonferroni method, which controls the FWER. We considered as being 

differentially expressed the genes with an FWER of 5%. We use the Bonferroni method (with 
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a type I error equal to 5%) in order to keep a strong control of the false positives in a multiple- 

comparison context [40]. 

 

Data deposition 

 Microarray data from this article were deposited at Gene Expression Omnibus 

(http://www.ncbi.nlm.nih.gov/geo/; accession No. E-MEXP-789) and at CATdb 

(http://urgv.evry.inra.fr/CATdb/; Project RS05-11_Hypocotyls) according to the “Minimum 

Information About a Microarray Experiment” standards. 

 

Semi-quantitative PCR 

 cDNA first strand  were obtained from total RNAs using 1 µg total RNAs and 

SuperScript™  II reverse transcriptase (Invitrogen, Carlsbad, San Diego, CA, USA). As a 

control, the same amount of pig desmin RNA was added in each sample. Quantitative PCR 

was performed using a Roche lightcycler system (Roche Diagnostics, Meylan, France) 

according to manufacturer’s recommendations. The sequences of oligonucleotide primers 

used for amplification is provided in Additional data file 5. Using the results from quantitative 

PCR to determine the number of amplification cycles required to be in a linear range for all 

genes of interest, semi-quantitative PCR was performed to compare relative amounts of the 

corresponding mRNAs. The amplified fragments were analyzed by electrophoresis in 

polyacrylamide gels in standardized conditions. In each case, presence of a fragment of the 

expected size was checked after staining with ethidium bromide, and the comparison of 

staining intensities was used for semi-quantification. 

 

Bioinformatic analyses 

 Sub-cellular localization and length of signal peptides were predicted using PSORT 

(http://psort.nibb.ac.jp/) and TargetP (http://www.cbs.dtu.dk/services/TargetP/) [41, 42]. 

Prediction of transmembrane domains was done with Aramemnon 

(http://aramemnon.botanik.uni-koeln.de/) [43]. Molecular masses and pI values were 

calculated using the aBi program (http://www.up.univ-mrs.fr/~wabim/d_abim/compo-p.html). 

Homologies to other proteins were searched for using BLAST programs 

(http://www.ncbi.nlm.nih.gov/BLAST/) [44]. Identification of protein families and functional 

domains was performed using MyHits (http://myhits.isb-sib.ch/cgi-bin/motif_scan) and 

InterProScan (http://www.ebi.ac.uk/InterProScan/) [45].  
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 All the protein families chosen in our CWG list were annotated by experts. GHs and 

CEs were classified according to the CAZy database (http://www.cazy.org/CAZY/) [46] at 

the Cell Wall Genomics website (http://cellwall.genomics.purdue.edu/intro/index.html). The 

GT77 family was annotated according to Egelund et al. [47]. XTHs and expansins were 

named according to http://labs.plantbio.cornell.edu/xth/ and 

http://www.bio.psu.edu/expansins/index.htm respectively. AGPs and FLAs were named 

according to Schultz et al. [48], Johnson et al. [49], Van Hengels and Roberts [50], and Liu 

and Mehdy [51]. Proteins homologous to COBRA, LRXs and Hyp/Pro-rich proteins were 

annotated according to Roudier et al. [14], Baumberger et al. [52], and Fowler et al. [53] 

respectively. The lignin toolbox was proposed by Raes et al. [54]. Peroxidases were named as 

in the PeroxiBase (http://peroxidase.isb-sib.ch/index.php) [55]. Laccases were annotated as in 

Pourcel et al. [56] and McCaig et al. [57]. SKU-like proteins and phytocyanins were 

described in Jacobs and Roe [58], and Nersissian and Shipp [59] respectively. Subtilases are 

listed at http://csbdb.mpimp-golm.mpg.de/csbdb/dbcawp/psdb.html. 
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List of abbreviations 

AGP: arabinogalactan protein; CATMA: Complete Arabidopsis Transcriptome MicroArray; 

CESA: cellulose-synthase; CSL: cellulose-synthase like; CWG: cell wall gene; CWP: cell 

wall protein; FLA: fasciclin arabinogalactan protein; GH: glycoside hydrolase; GRP: glycine-

rich protein; GST: gene-specific tag; GT: glycosyl transferase; LEA: late-embryogenesis 

abundant protein; LTP: lipid transfer protein; LRR: leucine-rich repeat; LRX: leucine-rich 

repeat extensin; PL: polysaccharide lyase; PME: pectin methylesterase; SPG: secretory 

pathway gene; XTH: xyloglucan endotransglucosylase-hydrolase 
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French version 

 La première étape de ce travail a consisté en l’identification des protéines présentes 

dans les parois d’hypocotyles étiolés d’Arabidopsis en élongation ou après la fin de leur 

élongation en utilisant une approche de protéomique. Pour éviter la perte de protéines au 

cours de la purification des parois et la contamination par des protéines intracellulaires, nous 

avons dû établir un nouveau protocole de purification de parois. Les proteins ont été extraites 

avec des solutions salines avant d’être séparées par électrophorèse 1D. nous avons pu 

identifier un grand nombre de protéines par cartographie peptidique massique en utilisant la 

spectrométrie de masse de type MALDI-TOF. Une grande proportion de ces protéines avait 

un peptide signal prédit par bioinformatique. Une proportion aussi élevée de protéines 

secrétées n’avait jamais été obtenue dans les études de protéomique de la paroi précédemment 

publiées. Ces protéines ont été appelées protéines pariétales (CWP). Notre méthode de 

purification a été récemment utilisée au laboratoire avec succès pour des suspensions 

cellulaires de tabac (S. Muzammil, M2R, Université Toulouse III, 2007-2008). Ceci montre 

qu’il doit être possible de l’adapter à différents organes et à d’autres plantes. Des expériences 

préliminaires indiquent également qu’une fraction de protéines interagissant avec les pectines 

peut être extraite de telles parois (G. Boudart, résultats non publiés). Des expériences 

supplémentaires sont maintenant nécessaires pour caractériser ces protéines. Enfin, bien que 

toutes les protéines appelées CWP aient un peptide signal prédit, leur localisation sub-

cellulaire doit encore être vérifiée par immunolocalisation ou par localisation de protéines 

fusion avec la GFP (Green Fluorescent Protein) in planta. 

 

 Concernant la protéomique des parois végétales, un autre apport majeur de ce travail 

est le développement d’une nouvelle méthode de séparation des protéines pariétales. Mettant 

à profit le fait que la plupart des CWPs sont basiques, nous avons utilisé une chromatographie 

échangeuse de cations à pH acide comme première étape de séparation, mimant ainsi les 

parois végétales qui sont chargées négativement. La seconde étape de séparation a consisté en 

une électrophorèse 1D. L’efficacité de cette nouvelle stratégie de séparation 2D a permis 

d’identifier deux fois plus de protéines que la simple électrophorèse 1D. De plus, les 

identifications par cartographie peptidique massique ont été de meilleure qualité puisque le 

pourcentage de recouvrement des séquences des protéines était significativement plus élevé. 

Enfin, il a été possible de procéder à une semi-quantification des protéines. Cette nouvelle 

stratégie pourra être employée pour des études biochimiques et structurales futures de 
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nombreuses protéines pariétales. En effet, il est maintenant possible de les visualiser après 

seulement deux étapes de séparation. 

 

 Cette analyse protéomique a permis l’identification de 137 protéines pariétales à 

partir des hypocotyles étiolés d’Arabidopsis. 51 de ces protéines ont été identifiées pour la 

première fois par protéomique, ce qui suggère une expression organe-spécifique des gènes 

correspondants. 84 de ces protéines étaient communes aux deux stades de développement des 

hypocotyles (élongation active vs élongation terminée) alors que 36 et 17 ont été identifiées 

seulement à 5 jours (élongation active) et à 10 jours (élongation terminée) respectivement. La 

semi-quantification des protéines a montré que le niveau de 34 protéines différaient entre les 

deux stades de développement. D’un point de vue quantitatif, les résultats de cette étude 

suggèrent que les parois des hypocotyles subissant une élongation sont métaboliquement plus 

actives que celles des hypocotyles dont l’élongation est terminée. 

 

 Parmi les protéines identifiées dans cette étude, celles qui étaient attendues car 

jouant un rôle soit dans le réarrangement des polysaccharides au cours de l’élongation 

cellulaire (XTH, PG, expansines), ou encore dans la formation des boîtes à œufs pectiques 

(PME), des réseaux de protéines structurales et de polyphénols (peroxysases, laccases) en fin 

d’élongation ont été trouvées. Cependant, certaines d’entre elles ont également été trouvées 

tout au long du développement des hypocotyles. Ce résultat inattendu suggère l’existence de 

mécanismes de régulation au niveau de la durée de vie des protéines, ou de l’activité 

biologique des protéines. Une autre hypothèse est que ces protéines seraient impliquées dans 

d’autres processus encore à découvrir. Plusieurs protéines liées au métabolisme des lipides 

ont été identifiées. Aucune fonction ne leur a encore été clairement associée bien qu’il a été 

suggéré qu’elles pourraient contribuer à la formation de la cuticule particulièrement épaisse 

des hypocotyles étiolés. De la même manière, les protéines de fonction inconnue sont des 

bons candidats pour contribuer à l’élongation cellulaire. Des études supplémentaires incluant 

l’obtention de plantes présentant des niveaux d’expression des gènes correspondants modifiés 

sont nécessaires pour comprendre la fonction de tous ces gènes. 

 

 En plus de l’identification de gènes candidats pour jouer des rôles au cours de 

l’élongation cellulaire, la protéomique permet d’obtenir une vision globale des protéines d’un 

compartiment cellulaire, et notamment d’identifier en même les partenaires d’interactions 

protéine-protéine. Par exemple, des enzymes et leurs inhibiteurs ont été trouvés tels que des 
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protéases et des inhibiteurs de protéases, des PME et des PMEI, des PG et des PGIP. Ceci 

montre que l’activité biologique d’une protéines peut être régulée par une maturation par une 

protéase, une interaction avec un inhibiteur, et/ou la protéolyse. L’abondance des protéases et 

de leurs inhibiteurs dans les parois des hypocotyles doit être soulignée. Des tests fonctionnels 

devraient permettre de montrer l’existence de ces activités de régulation. 

 

 L’étude protéomique des hypocotyles étiolés a été complétée par une étude de 

transcriptomique réalisée sur le même matériel. Dans un premier temps, des niveaux de 

transcrits significatifs ont été détectés pour plus de la moitié des gènes supposés être 

impliqués dans la biogenèse des parois (CWG) avec une proportion importante de gènes 

codant des protéines impliquées dans la synthèse et le transport des constituants pariétaux. 

Nos résultats indiquent que la synthèse, le transport et le réarrangement des constituants 

pariétaux interviendraient tout au long du développement des hypocotyles étiolés. Ce résultat 

n’était pas attendu dans la mesure où deux phases successives de modification des parois 

avaient été décrites : une synthèse active de constituants pariétaux ayant pour conséquence 

une augmentation de l’épaisseur de parois, suivie par une phase de réduction de l’épaisseur 

des parois pendant l’élongation cellulaire. Dans un second temps, nous avons recherché des 

gènes codant des protéines secrétées ayant des niveaux de transcrits modérés ou élevés (SPG). 

C’est ainsi que nous avons identifié plus de 200 gènes qui pourraient jouer un rôle important 

pendant le développement des hypocotyles à l’obscurité. Comprendre leurs fonctions pourrait 

révéler de nouveaux mécanismes importants pour l’élongation cellulaire, l’arrêt de la 

croissance, ou de nouvelles fonctions pour les parois. 

 

 La dernière partie de l’étude a été consacrée à la comparaison entre les données 

transcriptomique et protéomique. A notre surprise, environ 15% des protéines identifiées par 

protéomique correspondent à des gènes dont les niveaux de transcrits sont inférieurs au bruit 

de fond CATMA. Au contraire, nous avons identifié des protéines correspondant à seulement 

13% des gènes codant des protéines secrétées et ayant des niveaux de transcrits modérés ou 

élevés. Ceci montre que les données de protéomique et de transcriptomique ne sont pas 

systématiquement cohérentes. Une grande proportion de gènes codant des protéines secrétées 

semble être régulée à un niveau post-transcriptionnel dans les hypocotyles étiolés. Ainsi, les 

niveaux de protéines ne peuvent pas être déduits des niveaux de transcrits. Les deux types de 

données devraient être utilisée pour mieux décrire la régulation de l’activité des gènes pendant 

l’élongation des hypocotyles. Des expériences supplémentaires devraient être effectuées pour 
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déterminer la demi-vie des transcrits, leur capacité à être transcrits, et déterminer la demi-vie 

des protéines. Ceci constitue un champ de recherches complètement nouveau dans lequel peu 

de données expérimentales existent. 
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English version 

 The first step of this work consisted in the identification of proteins present in cell 

walls of elongating and fully-elongated hypocotyls of Arabidopsis by a proteomic approach 

using a destructive method. To avoid loosing CWPs during the purification of cell walls and 

contamination by intracellular proteins, we had to establish a new protocol for purification 

of cell walls. Proteins were extracted with salt solutions and separated by 1D-E. We were able 

to identify a high number of proteins by peptide mass mapping using MALDI-TOF mass 

spectrometry, and a high proportion of them were predicted to be secreted by bioinformatics. 

Such a high proportion of secreted proteins was never found before in cell wall proteomic 

studies. These proteins were called CWPs. This method of purification of cell walls has been 

recently successfully applied to tobacco cell suspension cultures in the laboratory (S. 

Muzammil, M2R, Toulouse III University, 2007-2008). This result shows that it should be 

possible to adapt it to different plant organs and to other plants. Preliminary experiments 

indicate that a fraction of proteins interacting with pectins can also be released from such 

purified cell walls (G. Boudart, unpublished results). Additional experiments are now required 

to characterize these proteins. Finally, although all the so-called CWPs are predicted to have a 

signal peptide, their sub-cellular localization should be confirmed either by 

immunolocalization or localization of Green Fluorescent Protein (GFP)-fusions in planta. 

 

 Another major achievement of this study is the development of a new separation 

method for CWPs. Since most CWPs are basic proteins, cation exchange chromatography 

with FPLC was used at acidic pH as a first step of separation, thus mimicking cell walls that 

are negatively charged in planta. The second step of separation consisted in 1D-E. The 

efficiency of this new 2D-separation strategy allowed the identification of twice as much 

proteins as 1D-E alone. In addition, it permitted a better identification with a higher number 

of matching peptide by MALDI-TOF MS peptide mass mapping, and semi-quantification of 

proteins. This method also proved to be a powerful tool for future biochemical and structural 

studies of CWPs.  

 

 This proteomic analysis allowed the identification of 137 CWPs from Arabidopsis 

etiolated hypocotyls, thus providing a global image of protein dynamics during cell 

elongation. Fifty-one CWPs were identified for the first time by cell wall proteomics, 

supporting the idea of organ-specific expression of CWPs. Eighty-four CWPs were common 

to both stages of hypocotyl development (active elongation vs after elongation arrest) whereas 



                                                                                                                                       Chapter 6 
___________________________________________________________________________ 

___________________________________________________________________________ 
                                                                           109 

36 and 17 were only identified at 5-days (active elongation) and 11-days (after elongation 

arrest) respectively. Semi-quantification showed that the amount of 34 CWPs was different at 

one or the other developmental stage. Altogether, from a quantitative point of view, the 

results of this study suggest that cell walls of hypocotyls undergoing elongation are 

metabolically more active than those of hypocotyls after elongation arrest.   

 

 Among the CWPs identified in this study, the proteins expected to play roles in 

rearrangements of cell wall polysaccharides during cell wall elongation (XTHs, PGs, 

expansins), in formation of pectin egg boxes (PME) or in cross-linking of proteins or 

polyphenols (peroxidases, laccases) after the end of elongation were found. However, some of 

them were also found all along the growth of hypocotyls. This unexpected result suggests the 

existence of regulatory mechanisms at the level of protein half-lives or protein biological 

activity. Alternatively, such proteins might be involved in other processes still to be 

discovered. Several proteins related to lipid metabolism were identified. They have yet no 

clear function in cell walls although it has been suggested that they could be involved in the 

synthesis of the thick cuticle that surround etiolated hypocotyls. In the same way, proteins of 

yet unknown function are good candidates to contribute somehow to cell elongation. 

Additional analyses including study of plants with modified level of expression of these genes 

should allow understanding the function of these genes. 

 

 Apart form identifying new candidates for performing roles in cell wall elongation, 

proteomics provides a unique way to get a global view of CWPs, thus putting together 

proteins able to interact. For example, enzymes and the corresponding inhibitors were found 

such as proteases and protease inhibitors, PMEs and PMEIs, PG and PGIPs. It suggests that 

the biological activity of a protein might be regulated by maturation by a protease, interaction 

with an inhibitor, and/or proteolysis. The great abundance of proteases and of their inhibitors 

in the cell wall proteome of hypocotyls should be emphasized. Functional tests should allow 

demonstration of these regulatory activities. 

 

 The proteomic study of etiolated hypocotyls was complemented by a 

transcriptomic survey performed with the same material. In a first analysis, significant 

transcript levels were detected for more than one half of the genes assumed to be involved in 

cell wall biogenesis (CWGs) with a significant proportion of genes involved in synthesis and 

transport of cell wall components. Our results indicate that synthesis, transport and 



                                                                                                                                       Chapter 6 
___________________________________________________________________________ 

___________________________________________________________________________ 
                                                                           110 

rearrangements of cell wall components occur during hypocotyl elongation and growth arrest. 

This result contrasts with what was previously reported about the existence of two phases of 

cell wall modification during hypocotyl elongation: active synthesis of cell wall 

polysaccharides with increase in cell wall thickness, followed by thinning down of cell walls 

during cell elongation. In a second analysis, we focused on genes encoding secreted proteins 

(SPGs) and we could identify more than 200 genes having moderate or high level of 

transcripts. All of them are candidates to play important roles, not yet described, during 

hypocotyl development. Understanding their function might reveal new mechanisms 

important for cell wall expansion, growth arrest, or new function for cell walls. 

 

 The last part of our study consisted in the comparison between proteomic and 

transcriptomic data. To our surprise, about 15% of the proteins identified by proteomics 

corresponded to genes having level of transcripts below CATMA background level. 

Conversely, we identified proteins corresponding to only 13% of the genes encoding secreted 

proteins and having moderate or high level of transcripts. It means that proteomic and 

transcriptomic data are not consistent in all cases. A great proportion of genes encoding 

secreted proteins seems to be regulated at a post-transcriptional level in etiolated hypocotyls. 

Hence, protein abundance cannot be inferred from transcriptomic data. Both kinds of data 

should be better used to describe regulation of gene activity during hypocotyl elongation. 

Additional experiments should be performed to know more about half-lives of transcripts, 

their ability to be translated, and about half-lives of proteins in cell walls. This is a completely 

new field of research in which there is no data. 
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                  Annex I. Composition of (12 × 15 cm) polyacryamide gel for 1D-E of proteins 
 

Solutions and buffers  

Nature, %age of acrylamide, and volume (mL) 

Resolving 
gel (7.5%) 

Resolving 
gel (8%) 

Resolving 
gel (9%) 

Resolving 
gel (10%) 

Resolving 
gel (11%) 

Resolving 
gel (12%) 

Resolving 
gel (12.5%)

Stacking 
gel (4%) 

Acrylamide 40% 7.280 7.776 8.748 9.720 10.692 11.664 12.150 1.944 

Bis-acrylamide 2% 4.000 4.288 4.824 5.360 5.896 6.432 6.700 1.072 

Buffer A 4x (Tris-HCl 1.5 M pH 8 .8) 10.000 10.000 10.000 10.000 10.000 10.000 10.000 0.000 

Buffer B 10x (Tris-HCl 1.25 M pH 6.8) 0 0 0 0 0 0 0 2.000 

SDS 10% (filtered)  0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.200 

UHQ water 18.120 17.336 15.828 14.320 12.812 11.304 10.550 14.720 

Ammonium persulfate 10% 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.100 

TEMED   0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 

Total 40.020 40.020 40.020 40.020 40.020 40.020 40.020 20.056 
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                 Annex II: Composition of  mini (6 × 8 cm) polyacryamide gel for 1D-E of proteins 

 

Solutions and buffers  
Nature, %age of acrylamide, and volume (mL) 

Resolving 
gel (7.5%) 

Resolving 
gel (8%) 

Resolving 
gel (9%) 

Resolving 
gel (10%) 

Resolving 
gel (11%) 

Resolving 
gel (12%) 

Resolving 
gel (12.5%)

Stacking gel 
(4%) 

Acrylamide 40% 1.456 1.555 1.750 1.944 2.138 2.333 2.430 0.486 
Bis-acrylamide 2% 0.800 0,858 0.965 1.072 1.179 1.286 1.340 0.268 
Buffer A 4x (Tris-HCl 1.5 M pH 8.8) 2.500 2.500 2.500 2.500 2.500 2.500 2.500 0.000 
Buffer B 10x (Tris-HCl 1.25 M pH 6.8) 0 0 0 0 0 0 0 0.500 
SDS 10% (filtered)  0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.050 

UHQ water 3.089 2.932 2.631 2.329 2.027 1.726 1.575 3.680 
Ammonium persulfate 10% 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.025 
TEMED   0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

Total 8.000 8.000 8.000 8.000 8.000 8.000 8.000 5.014 
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Annex III. Composition of RT-PCR buffer 
 Components Volume (µL) 

 Oligo (dT)15 primer (Promega Corporation, 
Madison, WI, USA) 500 µg/mL 1 

 Total RNA (100 ng/µL) 10 

 dNTPs (10 mM each)  1 

 Desmine mRNA ( Pork mRNA) 1 

After 5 min heating at 
65°C and putting again 
on ice, the following 
components are added:

  

  

  

 5× First Strand Buffer (Invitrogen, 
Carlsbad, San Diego, CA, USA)  4 

 DTT, 0.1 M (Invitrogen, Carlsbad, San 
Diego, CA, USA) 2 

 RNasine Plus RNase Inhibitor, 40 U/µL 
(Promega Corporation, Madison, WI, USA) 1 
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step 1: CaCl2 extract Predicted subcellular localization
Gene (A. 
thaliana ) PSORT (a) TargetP (b)

Predicted        
signal peptide (c) Aramemnon (d)

 transmembrane domain At3g30810

Golgi (0.900), plasma membrane 
(0.790), chloroplast thylakoid 
membrane (0.762) other (0.796) yes

At4g12420 plasma membrane (0.919) secretory pathway (0.989)  1-20 GPI anchor

outside At1g06870 outside (0.638) secretory pathway (0.850)  1-21
At1g21670 outside (0.820) secretory pathway (0.973)  1-21
At1g53070 outside (0.528) secretory pathway (0.972)  1-17 or 1-23
At1g78830 outside (0.820) secretory pathway (0.962)  1-22
At1g78850 outside (0.820) secretory pathway (0.973)  1-22
At2g39700 outside (0.810) secretory pathway (0.961)  1-20
At2g41800 outside (0.370) secretory pathway (0.369)  1-21
At2g44450 outside (0.820) secretory pathway (0.853)  1-22
At2g47050 outside (0.820) secretory pathway (0.928)  1-20
At3g07320 outside (0.790) secretory pathway (0.482)  1-19
At3g08030 outside (0.820) secretory pathway (0.985)  1-21
At3g45960 outside (0.805) secretory pathway (0.744)  1-20
At3g45970 endoplasmic reticulum (0.820) secretory pathway (0.854)  1-20
At3g61820 outside (0.628) secretory pathway (0.828)  1-26 or 1-25
At4g20830 outside (0.820) secretory pathway (0.540)  1-30
At4g25900 outside (0.820) secretory pathway (0.924)  1-20 or 1-24
At4g30270 outside (0.800) secretory pathway (0.975)  1-21
At5g06860 outside (0.733) secretory pathway (0.964)  1-21

intracellular At1g08450
endoplasmic reticulum (0.910) (C-
terminal HDEL) secretory pathway (0.995)  1-28

At1g13440 microbody (0.539) other (0.610)
At1g30580 microbody (0.507) other (0.579)
At2g39050 microbody (0.515) other (0.910)
At2g43710 microbody (0.495) chloroplast (0.977)
At3g02630 chloroplast stroma (0.593) chloroplast (0.779)
At3g26060 mitochondry (0.679) chloroplast (0.904)
At3g48380 mitochondry (0.596) mitochondry (0.308)
At3g58480 nucleus (0.760) other (0.802)
At4g17260 cytoplasm (0.450) other (0.435)
At4g37870 nucleus (0.880) other (0.849)
At5g08310 mitochondry (0.789) mitochondry (0.946)
At5g20080 mitochondry (0.859) mitochondry (0.855)
At5g46550 nucleus (0.940) other (0.504)
At5g55990 microbody (0.569) secretory pathway (0.580), other (0.576)

not clear At4g22410 cytoplasm (0.450) secretory pathway (0.922)  1-26

At5g37990 endoplasmic reticulum (0.550)
secretory pathway (0.523), 
chloroplast (0.307)  1-15

Data are from [8]. Proteins were extracted from A. thaliana cell walls of cell suspension cultures as described in Figure 1. Two successive extractions were performed : step 1 using CaCl2, and step 2 using 
urea. All proteins sequences were analyzed with three bioinformatic programs to predict their sub-cellular localization. Proteins for which predictions by different bioinformatic programs are in conflict are 
classified as “not clear”. 

Additional file 1: Bioinformatic analysis of proteins extracted from cell walls of A. thaliana  cell suspension cultures [8].
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step 2: urea extract transmembrane domain At1g61500 plasma membrane (0.460) secretory pathway (0.963)  1-24 yes
At1g67880 plasma membrane (0.790) other (0.955) yes
At3g25560 plasma membrane (0.460) secretory pathway (0.742)  1-32 yes
At3g57400 plasma membrane (0.830) other (0.792) yes
At5g08390 plasma membrane (0.460) secretory pathway (0.932)  1-22 yes
At5g58640 plasma membrane (0.640) secretory pathway (0.326)  1-17 yes

outside At1g71695 outside (0.820) secretory pathway (0.829)  1-22 or 1-31
At2g16430 outside (0.820) secretory pathway (0.963)  1-25
At2g44450 outside (0.820) secretory pathway (0.853)  1-22
At3g08030 outside (0.820) secretory pathway (0.985)  1-21
At3g45970 endoplasmic reticulum (0.820) secretory pathway (0.854)  1-20
At3g52500 outside (0.820) secretory pathway (0.649)  1-18
At4g08770 outside (0.633) secretory pathway (0.955)  1-22
At4g24890 outside (0.820 secretory pathway (0.925)  1-20 or 1-26

intracellular At1g24360 mitochondry (0.613) chloroplast (0.545), mitochondry (0.206)
At1g30580 microbody (0.507) other (0.579)
At1g43800 nucleus (0.760) mitochondry (0.430)
At1g43800 nucleus (0.760) mitochondry (0.430)
At1g52960 nucleus (0.960) chloroplast (0.630)
At1g56070 mitochondry (0.360) other (0.823)
At1g69290 chloroplast (0.840) chloroplast (0.528)
At1g72560 cytoplasm (0.450) other (0.872)
At2g17190 cytoplasm (0.650) other (0.797)

At2g32920
endoplasmic reticulum (0.910) (C-
terminal KDEL) secretory pathway (0.920)  1-17 or 1-24

At2g36530 endoplasmic reticulum (0.600) other (0.747)
At2g43710 microbody (0.495) chloroplast (0.977)
At2g44350 mitochondry (0.883) mitochondry (0.848)
At3g04600 nucleus (0.940 other (0.954)
At3g14440 chloroplast (0.905) chloroplast (0.719)
At3g15730 microbody (0.634) other (0.614)
At3g16857 nucleus (0.700) other (0.376)
At3g57400 plasma membrane (0.830) other (0.792)
At4g17260 cytoplasm (0.450) chloroplast (0.703)
At4g31180 chloroplast (0.890) chloroplast (0.876)
At4g36530 microbody (0.594) other (0.828)
At4g37870 nucleus (0.880) other (0.849)
At5g06450 microbody (0.640) other (0.954)
At5g20080 mitochondry (0.859) mitochondry (0.855)
At5g26710 endoplasmic reticulum (0.550) chloroplast (0.552)

At5g28540
endoplasmic reticulum (0.910) (C-
terminal HDEL) secretory pathway (0.993)  1-27

At5g41550 chloroplast (0.520) mitochondry (0.517)

Colour code: proteins found at both steps 1 and 2
proteins found at both steps 1 and 2

(a) PSORT : http://psort.nibb.ac.jp/form.html  [29]
(b) TargetP: http://www.cbs.dtu.dk/services/TargetP/  [30]
(c) Two sizes are indicated when different signal peptides are predicted by PSORT and TargetP. The first one is predicted with PSORT.
(d) Aramemnon: http://aramemnon.botanik.uni-koeln.de/  [31]
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step 1: CaCl2 extract 
Predicted subcellular 
localization

Gene (A. 
thaliana ) Protein PSORT (a) TargetP (b)

Predicted signal 
peptide (c) Aramemnon (d)

transmembrane domain CAC34417 plasma membrane (0.460) secretory pathway (0.986)  1-20 yes

P16002
chloroplast (0.659), plasma 
membrane (0.650) chloroplast (0.924) yes

P26291
plasma membrane (0.790), 
chloroplast (0.753) chloroplast (0.797) yes

outside At1g09560 AAB51577 outside (0.609) secretory pathway (0.960)  1-23
At3g62020 AAB51752 plasma membrane (0.685) secretory pathway (0.970)  1-21 no

BAA81904 plasma membrane (0.790) secretory pathway (0.758)  1-39 no
CAA09607 outside (0.820) secretory pathway (0.996)  1-25 or 1-23
CAA10167 outside (0.790) secretory pathway (0.963)  1-16 or 1-22
CAA10287 outside (0.585) secretory pathway (0.867)  1-33
CAC44501 outside (0.820) secretory pathway (0.985)  1-24
CAD29731 outside (0.714) secretory pathway (0.982)  1-23 or 1-26

At1g49750 NP_175397 vacuole (0.750), outside (0.666) secretory pathway (0.239)  1-15 or 1-22
At3g20820 NP_188718 vacuole (0.861), outside (0.820) secretory pathway (0.752)  1-19
At4g34480 NP_195174 plasma membrane (0.460) secretory pathway (0.942)  1-22
At5g14440 NP_196949 outside (0.786) secretory pathway (0.941)  1-30
At5g51890 NP_200002 plasma membrane (0.685) secretory pathway (0.991)  1-24 no
At1g09750 NP_563851 outside (0.456) secretory pathway (0.899)  1-21 or 1-23
At1g20850 NP_564126 vacuole (0.808), outside (0.786) secretory pathway (0.987)  1-26
At4g33490 NP_567922 outside (0.820) secretory pathway (0.913)  1-21

P36907 outside (0.757) secretory pathway (0.985)  1-23
Q01806 plasma membrane (0.685) secretory protein (0.983)  1-30 no
Q9S8P4 outside (0.820) secretory pathway (0.967)  1-20
S68805 outside (0.781) secretory pathway (0.961)  1-24
T07086 outside (0.743) secretory pathway (0.771)  1-19
T09642 vacuole (0.761), outside (0.657) secretory pathway (0.981)  1-30 or 1-24

Data are from [9]. Proteins were extracted from M. sativa  cell walls of stems as described in Figure 2. Two successive extractions were performed : step 1 using CaCl2, and step 2 using LiCl. All proteins sequences were 
analyzed with bioinformatic softwares to predict their sub-cellular localization. When only partial protein sequences or no sequence are available, proteins are classified as "not predictable".

Additional file 2: Bioinformatic analysis of proteins extracted from cell walls of M. sativa stems [9].
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intracellular AAC49358 mitochondry (0.555) chloroplast (0.628)
AAG34872 microbody (0.540) other (0.568)
AAL77589 mitochondry (0.679) chloroplast (0.765)
CAA09177 microbody (0.640) other (0.884)

At1g16470 NP_173096 cytoplasm (0.450) other (0.703)
At1g23740 NP_173786 mitochondry (0.594) chloroplast (0.568), mitochondry (0.442)
At1g48590 NP_175292 mitochondry (0.480) mitochondry (0.529)
At1g67280 NP_176896 mitochondry (0.807 chloroplast (0.895)
At2g15570 NP_179159 chloroplast (0.919) chloroplast (0.979)
At2g24940 NP_180066 cytoplasm (0.450) other (0.890)
At2g32520 NP_180811 microbody (0.570) other (0.896)
At3g20390 NP_188674 mitochondry (0.644) chloroplast (0.497), mitochondry (0.371)
At3g26060 NP_189235 mitochondry (0.679) chloroplast (0.904)
At3g43810 NP_189967 cytoplasm (0.650) other (0.894)
At3g55330 NP_191093 chloroplast (0.647) chloroplast (0.966)
At4g09010 NP_192640 chloroplast (0.512) chloroplast (0.737)
At5g01650 NP_195785 chloroplast (0.890) other (0.719)
At1g09310 NP_563841 cytoplasm (0.650) other (0.906)
At3g17440 NP_566578 endoplasmic reticulum (0.850) other (0.736)
At3g63190 NP_567141 mitochondry (0.838) chloroplast (0.933)
At5g20080 NP_568391 mitochondry (0.859) mitochondry (0.855)

O65194 chloroplast (0.876) chloroplast (0.710)
O65198 chloroplast (0.921) chloroplast (0.941)
P10933 endoplasmic reticulum (0.550) chloroplast (0.907)
P16048 mitochondry (0.870) mitochondry (0.645)
P16059 mitochondry (0.750) chloroplast (0.307), 
P29450 chloroplast (0.950) chloroplast (0.977)
P49231 cytoplasm (0.450) other (0.818)
P51615 plasma membrane (0.615) other (0.941)
Q02610 cytoplasm (0.450) other (0.404)
Q42971 endoplasmic reticulum (0600) other (0.608)
Q43636 cytoplasm (0.450) other (0.907)

T06363
plasma membrane (0.650), 
chloroplast (0.539) chloroplast (0.505)

T09286 mitochondry (0.920) mitochondry (0.766)

not predictable AAD34458 encoded by a truncated cDNA
AAL06644 encoded by a truncated cDNA
AAL15646 encoded by a truncated cDNA
JC4780 data not available in usual databases
JC4781 data not available in usual databases
JC4782 data not available in usual databases
S22489 encoded by a truncated cDNA
T05957 encoded by a truncated cDNA
T09165 encoded by a truncated cDNA
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step 2: LiCl extract outside At1g49750 NP_175397 vacuole (0.850), outside (0.666) secretory pathway (0.239)  1-15 or 1-22
P36907 outside (0.757) secretory pathway (0.985)  1-23
T07086 outside (0.743) secretory pathway (0.771)  1-19
T07171 outside (0.820) secretory pathway (0.981)  1-23
T09665 outside (0.820) secretory pathway (0.922)  1-28

intracellular AAD56659 mitochondry (0.483) mitochondry (0.839)
At5g41550 NP_198970 chloroplast (0.520) mitochondry (0.517)

T93508
endoplasmic reticulum (0.910) (C-
term HDEL) secretory pathway (0.991)  1-20

not predictable P04353 encoded by a truncated cDNA

Colour code: proteins found at both steps 1 and 2

(a) PSORT : http://psort.nibb.ac.jp/form.html  [29]
(b) TargetP: http://www.cbs.dtu.dk/services/TargetP/  [30]
(c) Two sizes are indicated when different signal peptides are predicted by PSORT and TargetP. The first one is predicted with PSORT.
(d) Aramemnon: http://aramemnon.botanik.uni-koeln.de/  [31]
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step 1: SDS-DTT extract 
Predicted subcellular 
localization Accession (a) PSORT (b) TargetP (c)

Predicted        signal 
peptide (d)

outside CA1541 outside (0.370) secretory pathway (0.946)  1-18
Phrp *

intracellular CA0362 cytoplasm (0.650) other (0.911)

CA0915
endoplasmic reticulum (0.910) (C-
term HDEL) secretory pathway (0.977)  1-29 or 1-32

CA1015 mitochondry (0.541) other (0.694), mitochondry (0.271)
CA1230 nucleus (0.760) other (0.843)
CA1691 mitochondry (0.360) other (0.789), mitochondry (0.227)

CA1755
endoplasmic reticulum (0.910) (C-
term HDEL) secretory pathway (0.955)  1-23

CA2474 microbody (0.300) other (0.798)
CA2857 nucleus (0.760) other (0.842)
CA3081 nucleus (0.980) other (0.885)
CA3208 cytoplasm (0.650) mitochondry (0.663)
CA3483 mitochondry (0.360) other (0.275), mitochondry (0.299)
CA3534 cytoplasm (0.450) other (0.887)
CA3874 cytoplasm (0.450) other (0.793)
CA4671 cytoplasm (0.450) other (0.834)
CA4765 mitochondry (0.853) mitochondry (0.716)
CA4844 endoplasmic reticulum (0.550) other (0.704)
CA4862 mitochondry (0.360) other (0.934)
CA4959 nucleus (0.600) other (0.923)
CA5135 cytoplasm (0.450) other (0.928)
CA5180 cytoplasm (0.450) other (0.797)
CA5892 mitochondry (0.471) mitochondry (0.637)
CA5950 microbody (0.800) other (0.604)

not predictable CA2810 not present in the database

step 2: NaOH extract outside Hsp150p/Pir2p*

intracellular CA1691 mitochondry (0.360) other (0.789), mitochondry (0.227)
CA2474 microbody (0.300) other (0.798)
CA3483 mitochondry (0.360) other (0.275), mitochondry (0.299)
CA3874 cytoplasm (0.450) other (0.793)
CA4765 mitochondry (0.853) mitochondry (0.716)
CA5180 cytoplasm (0.450) other (0.797)
CA5892 mitochondry (0.471) mitochondry (0.637)

Additional file 3: Bioinformatic analysis of proteins extracted from cell walls of C. albicans  [20].

Data are from [20]. Proteins were extracted from C. albicans cell walls as described in Figure 3. Four successive extractions were performed : step 1 using SDS-DTT, step 2 using NaOH, step 
3 using a β-1,3-glucanase and step 4 using an exochitinase. All proteins sequences were analyzed with bioinformatic programs to predict their sub-cellular localization. Proteins for which 
predictions by different bioinformatic programs are in conflict are classified as “not clear”. 
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step 3: β-1,3-glucanase extract outside
putative β-1,3-
glucanase*
Hsp150p/Pir2p*
Phrp *

intracellular CA1691 mitochondry (0.360) other (0.789), mitochondry (0.227)
CA3874 cytoplasm (0.450) other (0.793)
CA5892 mitochondry (0.471) mitochondry (0.637)

step 4: exochitinase extract outside Hsp150p/Pir2p*
Phrp *

intracellular CA1691 mitochondry (0.360) other (0.789), mitochondry (0.227)
CA2474 microbody (0.300) other (0.798)
CA3874 cytoplasm (0.450) other (0.793)
CA5180 cytoplasm (0.450) other (0.797)
CA5892 mitochondry (0.471) mitochondry (0.637)

colour code: proteins found in at least 2 fractions
proteins found in at least 2 fractions

* proteins that failed to be identified to already annotated C. albicans  proteins
(a) http://genolist.pasteur.fr/CandidaDB/
(b) PSORT : http://psort.nibb.ac.jp/form.html  [29]
(b) TargetP: http://www.cbs.dtu.dk/services/TargetP/  [30]
(d) Two sizes are indicated when different signal peptides are predicted by PSORT and TargetP. The first one is predicted with PSORT.
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step 1: CaCl2 extract Predicted subcellular localization
Gene (A. 
thaliana ) PSORT (a) TargetP (b)

Predicted        
signal peptide (c) Aramemnon (d)

transmembrane domain At1g23480 plasma membrane (0.919) secretory pathway (0.875)  1-29 yes
At1g54010 plasma membrane (0.685) secretory pathway (0.991)  1-29 yes
At1g55850 plasma membrane (0.600) other (0.787) yes
At1g62660 plasma membrane (0.790) other (0.822) yes
At1g79680 outside (0.820) secretory pathway (0.929)  1-26 or 1-24 yes
At3g20580 plasma membrane (0.600) secretory pathway (0.860)  1-35 yes (GPI anchor)
At3g45970 endoplasmic reticulum (0.820) secretory pathway (0.854)  1-20 yes
At4g15320 plasma membrane (0.600) other (0.879) yes

outside At1g02335 plasma membrane (0.685) secretory pathway (0.933)  1-22 no
At1g03220 outside (0.820) secretory pathway (0.912)  1-22
At1g03230 outside (0.820) secretory pathway (0.910)  1-23
At1g09560 outside (0.609) secretory pathway (0.960)  1-23
At1g09750 outside (0.456) secretory pathway (0.899)  1-21 or 1-23
At1g11580 outside (0.820) secretory pathway (0.423)  1-34

At1g18970
mitochondry (0.850), plasma 
membrane (0.650) secretory pathway (0.932)  1-27 no

At1g20190 outside (0.820) secretory pathway (0.961)  1-20
At1g28290 outside (0.681) secretory pathway (0.483)  1-24
At1g29670 outside (0.820) secretory pathway (0.987)  1-24
At1g33590 outside (0.738) secretory pathway (0.963)  1-24 no
At1g65590 outside (0.819) secretory pathway (0.948)  1-24
At1g68560 outside (0.820) secretory pathway (0.982)  1-27
At1g73260 outside (0.542) secretory pathway (0.985)  1-26
At1g76160 outside (0.820) secretory pathway (0.984)  1-23
At1g78830 outside (0.820) secretory pathway (0.962)  1-22
At1g78850 outside (0.820) secretory pathway (0.973)  1-22
At1g78860 outside (0.652) secretory pathway (0.981)  1-22
At2g05580 outside (0.820) secretory pathway (0.993)  1-20 no
At2g18140 outside (0.820) secretory pathway (0.695)  1-20 or 1-16
At2g28790 outside (0.705) secretory pathway (0.990)  1-24 or 1-21
At2g30210 outside (0.820) secretory pathway (0.983)  1-25
At2g38530 plasma membrane (0.685) secretory pathway (0.967)  1-23 no
At3g08030 outside (0.820) secretory pathway (0.985)  1-21
At3g13790 outside (0.494) secretory pathway (0.969)  1-20 or 1-28
At3g14220 outside (0.609) secretory pathway (0.926)  1-20 or 1-28
At3g14310 plasma membrane (0.460) secretory pathway (0.227)  1-40 or 1-37 no
At3g16850 outside (0.820) secretory pathway (0.965)  1-19 or 1-20
At3g18080 outside (0.370) secretory pathway (0.374)  1-23

Additional file 4: Bioinformatic analysis of proteins extracted from cell walls of A. thaliana  etiolated hypocotyls with salts.

Proteins were extracted from A. thaliana cell walls of etiolated hypocotyls as described in Figure 5. Two successive extractions were performed : step 1 using CaCl2, and step 2 using LiCl. All proteins sequences were 
analyzed with bioinformatic programs to predict their sub-cellular localization. Proteins for which predictions by different bioinformatic programs are in conflict are classified as “not clear”. 
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At3g20370 outside (0.633) secretory pathway (0.965)  1-25
At3g20820 outside (0.820) secretory pathway (0.752)  1-19
At3g21770 outside (0.820) secretory pathway (0.967)  1-27
At3g22640 outside (0.820) secretory pathway (0.996)  1-22
At3g24480 outside (0.795) secretory pathway (0.978)  1-25
At3g25700 endoplasmic reticulum (0.820) secretory pathway (0.425)  1-23
At3g43270 outside (0.820) secretory pathway (0.979) 1-24
At3g49120 outside (0.609) secretory pathway (0.604) 1-28 or 1-29
At3g54400 outside (0.595) secretory pathway (0.409) 1-19
At3g55260 outside (0.738) secretory pathway (0.805) 1-22 or 1-20
At4g08950 outside (0.820) secretory pathway (0.871) 1-21
At4g12880 outside (0.820) secretory pathway (0.952) 1-18 or 1-26
At4g13340 outside (0.820) secretory pathway (0.945) 1-20
At4g16500 outside (0.820) secretory pathway (0.929)  1-22
At4g18970 plasma membrane (0.685) secretory pathway (0.980)  1-22 no
At4g29270 outside (0.820) secretory pathway (0.983)  1-26
At4g30170 outside (0.695) secretory pathway (0.980)  1-25
At4g33220 outside (0.709) secretory pathway (0.919)  1-19
At5g02260 plasma membrane (0.685) secretory pathway (0.969)  1-20 no
At5g06230 plasma membrane (0.790) secretory pathway (0.744)  1-38
At5g06860 outside (0.733) secretory pathway (0.964)  1-21
At5g07030 outside (0.820) secretory pathway (0.559)  1-19
At5g09440 outside (0.820) secretory pathway (0.812)  1-19 or 1-23
At5g10770 plasma membrane (0.760) secretory pathway (0.276)  1-25
At5g11420 outside (0.820) secretory pathway (0.989)  1-22
At5g12940 outside (0.820) secretory pathway (0.985)  1-29 or 1-26
At5g23210 outside (0.820) secretory pathway (0.992)  1-25
At5g25460 outside (0.820) secretory pathway (0.979)  1-19
At5g26260 outside (0.547) secretory pathway (0.926)  1-22 or 1-23
At5g26280 outside (0.528) secretory pathway (0.963)  1-22 or 1-23
At5g34850 outside (0.748) secretory pathway (0.870)  1-16 or 1-22
At5g34940 outside (0.820) secretory pathway (0.996)  1-21
At5g43060 outside (0.685) secretory pathway (0.991)  1-21
At5g44380 plasma membrane (0.811) secretory pathway (0.439)  1-32 no
At5g63810 outside (0.819) secretory pathway (0.887)  1-29
At5g64260 outside (0.685) secretory pathway (0.966)  1-19 or 1-23

intracellular At1g67090* chloroplast (0.923) chloroplast (0.769)

At3g09260
endoplasmic reticulum (0.910) (C-
term KDEL) secretory pathway (0.952)  1-24

At3g16880 cytoplasm (0.450) other (0.625)
At4g15440 microbody (0.540) other (0.891)
At4g22165 microbody (0.640) other (0.493)
At4g23670 microbody (0.560) other (0.847)
At4g28520° outside (0.820) secretory pathway (0.962)  1-23
At5g38410* outside (0.370) chloroplast (0.741)
At5g38420* endoplasmic reticulum (0.550) chloroplast (0.806)
At5g38430* outside (0.370) chloroplast (0.807)
At5g44120° outside (0.700) secretory pathway (0.975)  1-24 or 1-23

not clear At2g21540 plasma membrane (0.700) other (0.945) no
At3g26380 outside (0.690) other (0.355), secretory pathway (0.168)  1-32 yes
At3g32980 mitochondry (0.660) secretory pathway (0.356)  1-29
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step 2: LiCl extract transmembrane domain At1g54010 plasma membrane (0.685) secretory pathway (0.991)  1-29 yes

At1g73620
Golgi (0.900), plasma membrane 
(0.790) other (0.532) yes

At4g16590 plasma membrane (0.600) other (0.879) yes
At5g20630 plasma membrane (0.460) secretory pathway (0.922)  1-20 yes

outside At1g03220 outside (0.820) secretory pathway (0.912)  1-22
At1g03230 outside (0.820) secretory pathway (0.910)  1-23
At1g09750 outside (0.456) secretory pathway (0.899)  1-21 or 1-23
At1g17860 outside (0.690) secretory pathway (0.910)  1-19
At1g29670 outside (0.820) secretory pathway (0.987)  1-24
At1g47128 outside (0.771) secretory pathway (0.993)  1-21
At1g68560 outside (0.820) secretory pathway (0.982)  1-27
At1g73260 outside (0.542) secretory pathway (0.985)  1-26
At1g78850 outside (0.820) secretory pathway (0.973)  1-22
At2g05580 outside (0.820) secretory pathway (0.993)  1-20
At2g22170 outside (0.820) secretory pathway (0.990)  1-21
At2g28790 outside (0.705) secretory pathway (0.994)  1-24 or 1-21
At2g34700 outside (0.432) secretory pathway (0.790)  1-23 or 1-28
At3g14310 plasma membrane (0.460) secretory pathway (0.227)  1-40 or 1-37 no
At3g16850 outside (0.820) secretory pathway (0.965)  1-19 or 1-20
At3g21770 outside (0.820) secretory pathway (0.967)  1-27
At3g49120 outside (0.609) secretory pathway (0.604)  1-28 or 1-29
At3g54400 outside (0.595) secretory pathway (0.409)  1-19
At4g30170 outside (0.695) secretory pathway (0.980)  1-25
At4g34980 outside (0.820) secretory pathway (0.980)  1-20
At5g06860 outside (0.733) secretory pathway (0.964)  1-21
At5g07030 outside (0.820) secretory pathway (0.559)  1-19
At5g09440 outside (0.820) secretory pathway (0.812)  1-19 or 1-23
At5g11420 outside (0.820) secretory pathway (0.989)  1-22
At5g25460 outside (0.820) secretory pathway (0.979)  1-19
At5g26280 outside (0.528) secretory pathway (0.963)  1-22 or 1-23
At5g51260 outside (0.820) secretory pathway (0.938)  1-19
At5g59090 outside (0.820) secretory pathway (0.978)  1-24
At5g66390 outside (0.820) secretory pathway (0.973)  1-23

intracellular At5g20830 microbody (0.475) other (0.669)  1-20

not clear At3g42160 plasma membrane (0.650) other (0.925) no

colour code: proteins found at both steps 1 and 2
proteins found at both steps 1 and 2

* small subunit of RUBISCO
° homolog to storage proteins, most probably vacuolar localization
(a) PSORT : http://psort.nibb.ac.jp/form.html  [29]
(b) TargetP: http://www.cbs.dtu.dk/services/TargetP/  [30]
(c) Two sizes are indicated when different signal peptides are predicted by PSORT and TargetP. The first one is predicted with PSORT.
(d) Aramemnon: http://aramemnon.botanik.uni-koeln.de/  [31]
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step 3: SDS-DTT Predicted subcellular localization
Gene (A. 
thaliana ) PSORT (a) TargetP (b)

Predicted        
signal peptide (c) Aramemnon (d)

transmembrane domain At2g25300

chloroplast thylakoid membrane 
(0.765), plasma membrane 
(0.650) chloroplast (0.573) yes

At4g33230

chloroplast thylakoid membrane 
(0.615), plasma membrane 
(0.600) other (0.932) yes

At4g25080

endoplasmic reticulum (0.600), 
mitochondry (0.453), chloroplast 
(0.376) chloroplast (0.866) yes

At2g24820
mitochondry (0.791), microbody 
(0.635), chloroplast (0.500) chloroplast (0.897) yes

At4g15820

mitochondry (0.861), chloroplast 
(0.660), plasma membrane 
(0.650) mitochondry (0.537) yes

At1g72990 outside (0.820) mitochondry (0.957)  1-29 yes
At1g27200 plasma membrane (0.790) other (0.521) yes
At3g05610 plasma membrane (0.790) mitochondry (0.537) yes
At3g61270 plasma membrane (0.790) other (0.843) yes
At4g15320 plasma membrane (0.600) other (0.879) yes
At4g16590 plasma membrane (0.600) other (0.879) yes
At5g41390 plasma membrane (0.600) mitochondry (0.750), other (0.544) yes

outside At1g66270 outside (0.820) secretory pathway (0.976)  1-24
At1g71695 outside (0.820) secretory pathway (0.829)  1-22 or 1-31
At2g46570 outside (0.370) secretory pathway (0.868)  1-20 or 1-29
At3g14040 outside (0.820) secretory pathway (0.984)  1-23 or 1-25
At4g11310 outside (0.820) secretory pathway (0.995)  1-18 or 1-23
At4g12880 outside (0.820) secretory pathway (0.952)  1-18 or 1-26
At4g28790 outside (0.820) secretory pathway (0.726)  1-17 or 1-24
At4g33810 outside (0.820) secretory pathway (0.910)  1-24
At5g07030 outside (0.820) secretory pathway (0.559)  1-19
At5g25460 outside (0.820) secretory pathway (0.979)  1-19

At5g44020
mitochondry (0.850), outside 
(0.820) secretory pathway (0.845)  1-16 or 1-21

Additional file 5: Bioinformatic analysis of proteins extracted from cell walls of A. thaliana  etiolated hypocotyls with SDS and DTT.

Proteins were extracted from A. thaliana  cell walls of etiolated hypocotyls as described in Figure 6. One extraction was performedusing SDS and DTT. All proteins sequences were analyzed with bioinformatic 
programs to predict their sub-cellular localization. Proteins for which predictions by different bioinformatic programs are in conflict are classified as “not clear”. 
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intracellular ArthCp029 chloroplast
ArthCp030 chloroplast
At1g55490 chloroplast (0.864) chloroplast (0.979)
At1g67090* chloroplast (0.923) chloroplast (0.769)
At2g21170 chloroplast (0.888) chloroplast (0.950)
At3g04350 chloroplast (0.842) other (0.635), chloroplast (0.451)
At3g13470 chloroplast (0.950) chloroplast (0.924)
At3g53460 chloroplast (0.903) chloroplast (0.903)
At4g15040 chloroplast (0.496) other (0.625), chloroplast (0.289)
At4g20360 chloroplast (0.950) chloroplast (0.975)
At5g20720 chloroplast (0.895) chloroplast (0.901)
At5g54190 chloroplast (0.924) chloroplast (0.957)

At3g09260
endoplasmic reticulum (0.910) (C-
term KDEL) secretory pathway (0.952)  1-24

At4g28520° outside (0.820) secretory pathway (0.962)  1-23
At5g44120° outside (0.700) secretory pathway (0.975)  1-24 or 1-23
At1g49240 cytoplasm (0.450) other (0.891)
At3g18780 cytoplasm (0.450) other (0.883)
At4g11850 cytoplasm (0.450) other (0.806)
At5g17920 cytoplasm (0.450) other (0.713)
At4g02520 microbody (0.520) other (0.556)
At2g13890 endoplasmic reticulum (0.850) other (0.609)
At1g13440 microbody (0.539) other (0.610)
At1g60120 microbody (0.704) other (0.753)
At1g78380 microbody (0.640) other (0.523)
At3g02230 microbody (0.603) other (0.765)
At3g04120 microbody (0.472) other (0.619)
At3g60120 microbody (0.640) other (0.712)
At5g58690 microbody (0.499) other (0.598)

not clear At3g49400 plasma membrane (0.650) other (0.338) no
At5g37470 plasma membrane (0.600) other (0.973) no

colour code: proteins also extracted by CaCl2 or LiCl
proteins also extracted by CaCl2 or LiCl
proteins also extracted by CaCl2 or LiCl

* small subunit of RUBISCO
° homolog to storage proteins, most probably vacuolar localization
(a) PSORT : http://psort.nibb.ac.jp/form.html  [29]
(b) TargetP: http://www.cbs.dtu.dk/services/TargetP/  [30]
(c) Two sizes are indicated when different signal peptides are predicted by PSORT and TargetP. The first one is predicted with PSORT.
(d) Aramemnon: http://aramemnon.botanik.uni-koeln.de/  [31]
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Figure S1, supplementary data                                                                               Chapter 4

Figure S1, supplementary material. Separation of proteins extracted with
CaCl2 and LiCl from purified cell walls of 5 day old etiolated hypocotyls byCaCl2 and LiCl from purified cell walls of 5-day-old etiolated hypocotyls by
cation exchange chromatography followed by 1D-E.
a. Graph showing amounts of proteins (in µg) in each fraction eluted by a NaCl gradient (from 0 to
0.8 M) followed by two steps at 1.2 and 1.5 M NaCl. Doted vertical lines show the grouping up of
chromatography fractions whereas the letters (from A to M) correspond to those analyzed by 1D-E.
b. 1D-E of total CWP (total) and chromatography fractions (Ub stands for unbound proteins, Wa for
proteins eluted with loading buffer). Molecular mass markers are in kDa.
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Figure S2, supplementary data                                                                               Chapter 4

Figure S2, supplementary material. Separation of proteins extracted with
CaCl2 and LiCl from purified cell walls of 11-day-old etiolated hypocotyls by
cation exchange chromatography followed by 1D-E.
a. Graph showing amounts of proteins (in µg) in each fraction eluted by a NaCl gradient (from 0 to
0.8 M) followed by two steps at 1.2 and 1.5 M NaCl. Doted vertical lines show the grouping up of
chromatography fractions whereas the letters (from N to Z) correspond to those analyzed by 1D-E.
b. 1D-E of total CWP (total) and chromatography fractions (Ub stands for unbound proteins, Wa for
proteins eluted with loading buffer). Molecular mass markers are in kDa.
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Figure S3, supplementary data                                                                               Chapter 4

Figure S3, supplementary material. Identification of proteins extracted by CaCl2
and LiCL from purified cell walls of 5-day-old Arabidopsis etiolated hypocotyls by
MALDI-TOF MS. a. Improvement of efficiency of protein identification after 2D-separation of
proteins. Numbers of m/z found for identification of proteins after 1D- (yellow bars) and 2D-(blue
bars) separation are shown. Note that only 6 out of 46 proteins are identified with less m/z after 1D-
than after 2D-separation. b. Increase in number of m/z for protein identification thanks to 2D-
separation of proteins. Numbers of proteins identified with 3 to 20 m/z are shown after 1D-(yellow
bars) and 2D- (blue bars) separation. Note that the barycentre of this number of m/z used for
successful identification is higher after 2D- than after 1D-separation.
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Figure S4, supplementary data                                                                               Chapter 4

Figure S4, supplementary material. Identification of proteins extracted by
CaCl2 and LiCL from purified cell walls of 11-day-old Arabidopsis etiolatedCaCl2 and LiCL from purified cell walls of 11 day old Arabidopsis etiolated
hypocotyls by MALDI-TOF MS.
a. Improvement of efficiency of protein identification after 2D-separation of proteins. Numbers of
m/z found for identification of proteins after 1D- (yellow bars) and 2D-(blue bars) separation are
shown. Note that only 7 out of 50 proteins are identified with less m/z after 1D- than after 2D-
separation. b. Increase in number of m/z for protein identification thanks to 2D-separation of
proteins. Numbers of proteins identified with 3 to 20 m/z are shown after 1D-(yellow bars) and 2D-
(blue bars) separation. Note that the barycentre of this number of m/z used for successful
identification is higher after 2D- than after 1D-separation.
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Table S1, supplementary data Chapter 4

Table S1, supplementary material.  Identification of proteins extracted from purified cell walls of 5-day-old Arabidopsis  hypocotyls by CaCl2 and LiCl solutions.

* or # proteins that could not be distinguished
Colour code secretory proteins (Presence of predicted signal peptide was checked using PSORT: http://psort.ims.u-tokyo.ac.jp/form.html, and TargetP: http://www.cbs.dtu.dk/services/TargetP/)

transmembrane domains (Presence of predicted transmembrane domains was checked using Aramemnon: http://aramemnon.botanik.uni-koeln.de/)
GPI anchors (presence or GPI anchors was checked using Aramemnon: http://aramemnon.botanik.uni-koeln.de/)
intracellular proteins
proteins identified after 1D-separation (1-DE), but not identified after 2D-separation (cationic exchange chromatography followed by 1-DE)

total band accession annotation signal peptide transmembrane functional domains b

protein number AGI % sequence number of MM (kDa) pI domains
extract coverage peptides (m/z) a GPI anchors

1 At5g17820 peroxidase (AtPrx57) 23,0 4 31636,96 11,42  1-22 peroxidase active site (PS00436)
2, 3 At1g68560 glycoside hydrolase family 31 (alpha-xylosidase) (AtXYL1) 16,4 12 99641,37 6,26  1-27 glycoside hydrolases family 31 active site (PS00129)
4, 6 At1g28290 proline-rich protein 9,7 4 35913,36 10,77  1-24 histidine-rich region profile (PS50316), proline-rich region profile 

(PS50099), pollen proteins Ole e 1 family (PF01190)
 5-7 At3g16850 glycoside hydrolase family 28 (polygalacturonase) 27,9 8 46982,42 5,25  1-19 glycoside hydrolase family 28 (PF00295)

7 At2g27190 homologous to purple acid phosphatase (PAP1) 9,8 4 50962,71 5,75  1-28 metallo-phosphoesterase motif (PS50185), calcineurin-like 
phosphoesterase (PF00149)

8, 9, 36-38 At1g78850* homologous to lectin (curculin-like) 14,5 6 46664,12 8,90  1-22 PAN domain (PF00024), lectin (probable mannose binding) (PF01453)

8, 9 At1g78860* homologous to lectin (curculin-like) 14,4 6 46804,29 6,00  1-22 PAN domain (PF00024), lectin (probable mannose binding) (PF01453)

 9-11 At1g03220 homologous to carrot EDGP and tomato XEGIP 17,3 6 43394,37 9,99  1-22
9 At5g34940 glycoside hydrolase family 79 (endo beta-

glucuronidase/heparanase)
10,6 4 57219,88 9,13  1-21 glycoside hydrolase family 79, N-terminal domain (PF03662)

10, 11 At1g09750 homologous to aspartic protease (pepsin family) (Peptidase family 
A1, subfamily A1B unassigned peptidases, MEROPS) 

16,9 8 45038,78 9,09  1-23 lipase Ser active site (PS00120), Ser-rich region (PS050324), 
eukaryotic aspartic protease (PF00026)

 10-12 At1g03230 homologous to carrot EDGP and tomato XEGIP 15,9 6 43723,02 10,27  1-23
12 At3g54400 homologous to aspartic protease (pepsin family) (Peptidase family 

A1, subfamily A1B unassigned peptidases, MEROPS) 
9,9 4 43313,31 10,26  1-19 eukaryotic aspartyl protease (PF00026)

13 At3g43270 carbohydrate esterase family 8 (pectin methylesterase) 17,5 9 54929,20 9,55  1-24 pectinesterase (PF01095), plant invertase/pectin methylesterase 
inhibitor PMEI) (PF04043)

 13-15, 18, 32-34 At5g11420 expressed protein (DUF642) 28,4 11 37344,57 7,70  1-22 domain of unknown function DUF 642 (PF04862)
13 At5g07030 homologous to aspartic protease (pepsin family) (Peptidase family 

A1, subfamily A1B unassigned peptidases, MEROPS) 
11,8 5 44860,54 10,82  1-19 eukaryotic aspartyl protease (PF00026)

13, 15 At1g19170 glycoside hydrolase family 28 (polygalacturonase) 11,8 6 49948,02 9,65  1-47 glycosyl hydrolase family 28 (PF00295)
13 At4g33220 carbohydrate esterase family 8 (pectin methylesterase) 15,6 7 56832,32 6,24  1-19 pectinesterase (PF01095)
15 At3g49120 peroxidase (AtPrx34) 17,8 6 35695,45 9,41  1-30 peroxidase active site signature (PS00436), peroxidases proximal 

heme-ligand signature (PS00435)
15, 23, 40, 43-46 At4g32460 expressed protein (DUF642) 22,7 8 37375,51 9,25  1-21 domain of unknown function DUF 642 (PF04862)

16, 17 At3g20820 expressed protein (LRR domains) 26,0 8 37850,70 9,90  1-19 typical LRR profile (PS50506), plant specific LRR profile (PS50502), 
SDS22+like LRR profile (PS50504)

16-21, 36-38, 40 At5g25460 expressed protein (DUF642) 35,0 13 37948,52 9,03  1-19 domain of unknown function DUF 642 (PF04862)
17, 18, 25, 30 At3g08030 expressed protein (DUF642) 23,6 8 36993,02 6,87  1-21 domain of unknown function DUF 642 (PF04862)
18, 36, 38, 39 At1g70850 homologous to Bet v I allergen family 20,9 6 35569,93 4,96 pathogenesis-related protein Bet v I family (PF00407)

18-20 At5g12940 homologous to Phaseolus vulgaris  PGIP2 (LRR domains) 21,6 7 36784,96 10,45  1-29 plant specific LRR profile (PS50502), Leucine Rich Repeat (PF00560)

18 At1g78830 homologous to lectin (curculin-like) 11,2 4 48101,66 9,45  1-22 PAN domain (PF00024), lectin (probable mannose binding) (PF01453)

20, 21 At1g29670 homologous to lipase/acylhydrolase (GDSL family) 23,1 6 37153,43 9,65  1-24 GDSL-like Lipase/Acylhydrolase (PF00657)
20 At5g64100 peroxidase (AtPrx69) 11,2 5 33228,93 10,72  1-23 peroxidases active site signature (PS00436)
22 At1g53240* homologous to mitochondrial NAD-dependent malate 

dehydrogenase
16,7 5 35804,43 9,49 malate dehydrogenase active site signature (PS00068), lactate/malate 

dehydrogenase, NAD binding domain (PF00056), lactate/malate 
dehydrogenase, alpha/beta C-terminal domain  (PF02866)

22 At3g15020* homologous to mitochondrial NAD-dependent malate 
dehydrogenase

16,7 5 35875,41 9,34 malate dehydrogenase active site signature (PS00068), lactate/malate 
dehydrogenase, NAD binding domain (PF00056), lactate/malate 
dehydrogenase, alpha/beta C-terminal domain  (PF02866)

MALDI-TOF identification mature protein
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23 At3g14310 carbohydrate esterase family 8 (pectin methylesterase) (AtPME3) 18,9 9 60050,61 9,59  1-40 transmembrane 
domains

pectinesterase signature 1 (PS00800), pectinesterase signature 2 
(PS00503), pectinesterase (PF01095, plant invertase/pectin 
methylesterase inhibitor (PF04043)

24, 25 At4g30170 peroxidase (AtPrx45) 31,7 9 33052,57 10,43  1-25 haem peroxidase, plant/fungal/bacterial (PS00435, PS00436, 
PS50873)

24 At2g06850 glycoside hydrolase family 16 (endoxyloglucan transferase) 
(AtXTH4)

20,3 7 31716,77 9,65  1-24 glycoside hydrolases family 16 (PF00722)

25 At3g50990 peroxidase (AtPrx36) 10,4 3 35273,36 4,57  1-20 peroxidases proximal heme-ligand signature (PS00435), peroxidases 
active site signature (PS00436), plant heme peroxidase family profile 
(PS50873), peroxidase (PF00141)

25-27 At3g45970 expansin-like A (AtEXLA1) 18,9 4 26258,12 9,46  1-20 pollen allergen (PF01357), barwin (PF00967)
26-28 At5g43060 homologous to cysteine proteinase (papain family) (RD21 

peptidase, Peptidase family C1, C01.064 MEROPS)
13,4 6 36995,63 5,79  1-22 eukaryotic thiol (cysteine) proteases asparagine active site (PS00640), 

papain family cysteine protease (PF00112), granulin (PF00396)

26-28 At5g09440 homologous to Nicotiana tabacum phi-I 20,5 7 27366,44 10,15  1-23 phosphate-induced protein 1 conserved region (PF04674)
26 At5g64260 homologous to Nicotiana tabacum phi-I 14,1 8 30550,86 9,98  1-19 phosphate-induced protein 1 conserved region (PF04674)
27 At4g38400 expansin-like A (AtEXLA2) 16,6 5 26516,93 9,60  1-20 expansin, cellulose-binding-like domain profile (PS50843), expansin, 

family-45 endoglucanase-like domain profile (PS50842), rare 
lipoprotein A (RlpA)-like double-psi beta-barrel (PF03330), pollen 
allergen (PF01357)

29 At3g22640 expressed protein (cupin domain) 12,3 7 52687,99 6,45  1-22 cupin domain profile (PS50849), cupin (PF00190), cupin domain 
29-31 At2g28790 homologous to Lycopersicon esculentum osmotin 12,9 3 24551,60 9,53  1-24 thaumatin family (PF00314)
31-34 At2g28490 expressed protein (cupin domain) 12,3 6 53594,59 5,45  1-19 cupin domain profile (PS50849), cupin (PF00190)

31 At4g29270 homologous to acid phosphatase 18,0 4 25900,84 9,15  1-26 HAD superfamily, subfamily IIIB (acid phosphatase) (PF03767)
33 At2g40880 inhibitor family I25 (phytostatin) (cystatin family, I25.014, MEROPS) 31,2 3 11955,61 9,71  1-22 cysteine proteases inhibitors signature (PS00287), cystatin domain 

(PF00031)
33-35 At1g20190 alpha-expansin (AtEXPA11) 19,8 7 24817,74 9,84  1-20 expansin, family-45 endoglucanase-like domain profile (PS50842), 

expansin, cellulose-binding-like domain profile (PS50843), pollen 
allergen (PF01357)

33-37 At4g12880 early nodulin (AtEN20) (phytocyanin) 24,8 5 14273,34 9,64  1-18 plastocyanin-like domain (PF02298) (copper binding proteins)
36-38 At3g02110 homologous to serine carboxypeptidase D (SCPL25) (Peptidase 

family S10, S10.005, MEROPS)
14,4 5 51075,46 9,35  1-22 serine carboxypeptidases, histidine active site (PS00560), serine 

carboxypeptidases, serine active site (PS00131), serine 
carboxypeptidase
 (PF00450)

37 At3g21770 peroxidase (AtPrx30) 15,2 4 32901,55 10,54  1-27 peroxidases active site signature (PS00436)
41 At2g05580 glycine-rich protein 21,8 3 21517,58 10,21  1-20 glycine-rich region profile (PS50315)

43-47 At1g67090 RUBISCO small subunit A1 26,1 6 20216,04 9,26 ribulose bisphosphate carboxylase, small chain (PF00101)
42-44 At5g38410* RUBISCO small subunit B3 30,9 6 20284,25 9,40 ribulose bisphosphate carboxylase, small chain (PF00101)

43 At5g38420* RUBISCO small subunit B2 26,0 6 20350,22 9,24 ribulose bisphosphate carboxylase, small chain (PF00101)
48 At2g38530 non-specific lipid transfer protein type 1 (LTP2) 25,4 3 9475,92 11,90  1-25 protease inhibitor/seed storage/LTP family (PF00234), plant lipid 

transfer proteins signature (PS00597)
A  1-3, 9, 10, 11 At3g16850 glycoside hydrolase family 28 (polygalacturonase) 33,8 14 46982,42 5,25  1-19 glycoside hydrolase family 28 (PF00295)
A  4, 5 At1g79720 homologous to aspartic protease (CND41 peptidase) (Peptidase 

family A1, subfamily A1.050 , MEROPS) 
10,1 5 49324,89 8,88  1-28 eukaryotic and viral aspartyl proteases active site (PS00141), 

eukaryotic aspartyl protease (PF00026)

A  5-8 At3g32980 peroxidase (AtPrx32) 28,7 13 35712,41 6,00  1-29 peroxidases active site signature (PS00436)
A  7, 8 At1g47710 homologous to serpin (serine protease inhibitor) 50,6 17 42639,41 4,97 transmembrane 

domains
serpins signature (PS00284), serpin (serine protease inhibitor) 
(PF00079)

A 10, 11 At5g22140 expressed protein (oxido-reductase domain) 14,2 6 46982,42 5,25  1-19 glycoside hydrolase family 28 (PF00295)
A  10-13 At5g43060 homologous to cysteine proteinase (papain family) (RD21 

peptidase, Peptidase family C1, C01.064 MEROPS)
14,2 5 36995,63 5,79  1-22 eukaryotic thiol (cysteine) proteases asparagine active site (PS00640), 

papain family cysteine protease (PF00112), granulin (PF00396)

A 11, 12 At1g11840 glyoxalase I homologue (lactoylglutathione lyase) (ATGLX1) 27,2 7 31928,38 5,19  glyoxalase I signature 1 (PS00934), glyoxalase I signature 2 
(PS00935), glyoxalase/bleomycin resistance protein/dioxygenase 
superfamily (PF00903)

A 11, 12 At4g01610 homologous to cysteine proteinase (papain family) (Cathepsin B, 
Peptidase family C1, C01.049, MEROPS)

13,6 5 36995,63 5,79  1-22 eukaryotic thiol (cysteine) proteases histidine active site (PS00639), 
papain family cysteine protease (PF00112), propeptide_C1 (PF08127)

A 13 At2g33160 glycoside hydrolase family 28 (polygalacturonase) 8,0 4 72778,41 9,68  1-20 polygalacturonase active site (PS00502), glycoside hydrolases family 
28 (PF00295)
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A  14,15 At3g11630 homologous to 2-Cys peroxiredoxin 24,8 4 29091,87 7,91 AhpC/TSA family  (PF00578)
A 16-18 At5g23820 expressed protein (ML domain - MD-2-related lipid recognition 

domain)
20,1 4 15240,10 4,17  1-24 ML domain  (PF02221)

A 16, 17 At5g46960 homologous to plant invertase/pectin methylesterase inhibitor 
(PMEI)

22,4 4 16869,03 4,52  1-20 plant invertase/pectin methylesterase inhibitor  (PF04043)

A 19 At3g20390 homologous to endoribonuclease 31,0 5 19815,74 9,57 uncharacterized protein family UPF0076 signature (PS01094), 
endoribonuclease L-PSP (PF01042)

B 1, 3 At2g38530 non-specific lipid transfer protein type 1 (LTP2) 16,1 2 9475,92 11,90  1-25 protease inhibitor/seed storage/LTP family (PF00234), plant lipid 
transfer proteins signature (PS00597)

B 2 At1g47710 homologous to serpin (serine protease inhibitor) 17,6 6 42639,41 4,97 transmembrane 
domains

serpins signature (PS00284), serpin (serine protease inhibitor) 
(PF00079)

D  1, 2 At3g16850 glycoside hydrolase family 28 (polygalacturonase) 29,6 12 46982,42 5,25  1-19 glycoside hydrolase family 28 (PF00295)
D  3, 4 At1g54010 homologous to lipase/acylhydrolase (GDSL family) 21,1 5 40021,24 9,05  1-29 GDSL-like Lipase/Acylhydrolase (PF00657)
D 5 At3g32980 peroxidase (AtPrx32) 29,0 11 35712,41 6,00  1-29 peroxidases active site signature (PS00436)
D 6 At4g01610 homologous to cysteine proteinase (papain family) (Cathepsin B, 

Peptidase family C1, C01.049, MEROPS)
15,0 5 36995,63 5,79  1-22 eukaryotic thiol (cysteine) proteases histidine active site (PS00639), 

papain family cysteine protease (PF00112), propeptide_C1 (PF08127)

E  1, 5-7, 9 At5g34940 glycoside hydrolase family 79 (endo beta-
glucuronidase/heparanase)

19,6 8 57219,88 9,13  1-21 glycoside hydrolase family 79, N-terminal domain (PF03662)

E  2-5, 9 At3g16850 glycoside hydrolase family 28 (polygalacturonase) 28,5 12 46982,42 5,25  1-19 glycoside hydrolase family 28 (PF00295)
E 5 At3g55260 glycoside hydrolase family 20 (beta-hexosaminidase) 19,2 8 58810,86 5,66  1-22 glycoside hydrolase family 20 (PF00295), glycoside hydrolase family 

20, catalytic domain (PF00728), glycoside hydrolase family 20, domain 
2 (PF02838)

E 8 At5g34850 homologous to purple acid phosphatase 22,1 8 53242,23 6,79  1-16 calcineurin-like phosphoesterase (PS00149), phosphoesterase 
(PF50185)

E 10 At2g17120 expressed protein (LysM domain) 17,7 5 35262,82 6,24  1-23 GPI anchor LysM domain (PF01476)
E  11-13, 17 At3g49120 peroxidase (AtPrx34) 32,3 8 35695,45 9,41  1-30 peroxidase active site signature (PS00436), peroxidases proximal 

heme-ligand signature (PS00435)
E 12, 13 At1g54010 homologous to lipase/acylhydrolase (GDSL family) 43,0 13 40021,24 9,05  1-29 N-terminal 

transmembrane 
domain

lipase/acylhydrolase with GDSL-like motif (PS50241), GDSL-like 
lipase/acylhydrolase (PF00567)

E  12-14 At3g32980 peroxidase (AtPrx32) 29,0 11 35712,41 6,00  1-29 peroxidases active site signature (PS00436)
E 14 At1g70850 homologous to Bet v I allergen family 37,0 8 35569,93 4,96 pathogenesis-related protein Bet v I family (PF00407)
E 14, 15 At4g19810 glycoside hydrolase family 18 (chitinase) 32,2 9 38510,49 9,37  1-24 glycoside hydrolases family 18 (PF00704)
E 14 At1g54030 homologous to lipase/acylhydrolase (GDSL family) 11,6 3 46082,76 6,20 transmembrane 

domains
lipase/acylhydrolase with GDSL-like motif (PS50241), GDSL-like 
Lipase/Acylhydrolase (PF00657)

E 14 At5g06860 PGIP1 (LRR domains) 19,4 5 34324,36 9,56  1-21 LRR (PF00560, PS50502, PS50506)
E 14 At5g39270 alpha expansin (AtEXPA22) 11,5 3 27348,10 9,74  1-13 expansin, family-45 endoglucanase-like domain profile (PS50842), 

expansin, cellulose-binding-like domain profile (PS50843), rare 
lipoprotein A (RlpA)-like double-psi beta-barrel  (PF03330), pollen 
allergen  (PF01357)

E 15, 16 At4g36700 expressed protein (cupin domain) 16,4 7 53703,31 5,21  1-25 glutamic acid-rich region profile (PS50313), cupin (PF00190)
E 15-17 At3g20370 expressed protein (MATH domain) 24,3 8 40734,84 5,56  1-25 2 MATH domains (PF00917)
E 16, 17 At1g53240 homologous to mitochondrial NAD-dependent malate 

dehydrogenase
16,7 4 35804,43 9,49 malate dehydrogenase active site signature (PS00068), lactate/malate 

dehydrogenase, NAD binding domain (PF00056), lactate/malate 
dehydrogenase, alpha/beta C-terminal domain  (PF02866)

E 18, 19 At3g12500 glycoside hydrolase family 19 (basic endochitinase) 10,2 3 32367,86 6,24  1-20 chitinase family 19 signature 1 (PS00773), signature 2 (PS00774), 
chitin recognition or binding domain signature (PS00026), chitinase 
class I (PF00182), chitin recognition protein (PF00187)

E 19 At3g02870 homologous to myo-inositol monophosphatase 33,6 9 29121,33 5,03 transmembrane 
domains

inositol monophosphatase family signature 1 (PS00629), inositol 
monophosphatase family signature 2 (PS00630), inositol 
monophosphatase family (PF00459)

E 19-21 At4g01610 homologous to cysteine proteinase (papain family) (Cathepsin B, 
Peptidase family C1, C01.049, MEROPS)

20,3 7 36995,63 5,79  1-22 eukaryotic thiol (cysteine) proteases histidine active site (PS00639), 
papain family cysteine protease (PF00112), propeptide_C1 (PF08127)

E 20-22 At1g11840 glyoxalase I homologue (lactoylglutathione lyase) (ATGLX1) 27,2 7 31928,38 5,19 glyoxalase I signature 1 (PS00934), glyoxalase I signature 2 
(PS00935), glyoxalase/bleomycin resistance protein/dioxygenase 
superfamily (PF00903)

E 20, 21 At1g67280 glyoxalase I homologue (lactoylglutathione lyase) (ATGLX1) 20,9 6 39167,11 7,73 glyoxalase I signature 1 (PS00934), glyoxalase/bleomycin resistance 
protein/dioxygenase superfamily (PF00903)

E 21-23 At5g43060 homologous to cysteine proteinase (papain family) (RD21 
peptidase, Peptidase family C1, C01.064 MEROPS)

15,8 8 36995,63 5,79  1-22 eukaryotic thiol (cysteine) proteases asparagine active site (PS00640), 
papain family cysteine protease (PF00112), granulin (PF00396)
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E 21-23 At1g47128 homologous to cysteine proteinase (papain family) (RD21A, 
Peptidase family C1, C01.064 MEROPS)

11,0 5 48785,27 5,01  1-21 eukaryotic thiol (cysteine) proteases histidine active site (PS00639), 
cysteine active site (PS00640), asparagine active site (PS00139), Cys-
rich region (PS50311), papaine family cysteine protease (PF00112) 

E 22 At1g30710 homologous to berberine-bridge enzyme (S)-reticulin:oxygen 
oxidoreductase

9,4 5 56821,30 9,63  1-23 berberine and berberine like  (PF08031), FAD binding domain  
(PF01565)

E 24, 25 At3g55440 triose phosphate isomerase 23,2 7 27168,94 5,10 triose phosphate isomerase active site (PS00171)
E 25, 26 At2g28490 expressed protein (cupin domain) 11,0 4 53594,59 5,45  1-19 cupin domain profile (PS50849), cupin (PF00190)
E 27 At2g15220 expressed protein (Plant Basic Secreted Protein domain) 30,2 7 22772,21 9,09  1-21 neutral zinc metallopeptidases, zinc-binding region signature 

(PS00142), plant basic secretory protein (PF04450)
E 28 At1g73260 inhibitor family I3 (Kunitz-P family) (subfamily I3A unassigned 

peptidase inhibitor homologues, MEROPS)
13,0 3 20982,78 5,20  1-26 trypsin and protease inhibitor Kunitz legume (PF00197)

E 28 At5g44360 homologous to berberine-bridge enzyme (S)-reticulin:oxygen 
oxidoreductase

8,1 4 57931,72 9,83  1-22 oxygen oxido-reductases covalent FAD binding site (PS00862), FAD 
binding domain (PF01565), berberine and berberine like (PF08031)

E 29 At5g55730 fasciclin-like arabinogalactan protein (AtFLA1) 10,1 3 42165,78 5,65  1-24 GPI anchor Beta-Ig-H3/fasciclin domain (PS50213)
E  30, 31 At2g04690 expressed protein (homologous to a human brain CREG protein) 31,9 6 20214,11 8,00  1-28
E 32 At5g66090 expressed protein 37,1 6 22539,76 6,15 UspA (universal stress protein )  IPR00616
E 33-35 At4g16500 inhibitor family I25 (cystatin family) (subfamily I25B unassigned 

peptidase inhibitor homologues, MEROPS) 
33,3 5 10183,74 9,78  1-22 cystatin domain (PF00031)

F 1, 8-10 At1g03220 homologous to carrot EDGP and tomato XEGIP 31,6 10 43394,37 9,99  1-22
F 2, 4, 46-48 At2g38530 non-specific lipid transfer protein type 1 (LTP2) 33,1 4 9475,92 11,90  1-25 protease inhibitor/seed storage/LTP family (PF00234), plant lipid 

transfer proteins signature (PS00597)
F 3 At2g34930 expressed protein (LRR domains) 22,9 20 97059,60 9,59  1-28 leucine-rich region profile (PS50319), serine-rich region profile 

(PS50324), typical LRR profile (PS50506), SDS22+-like LRR profile 
(PS50504), plant-specific LRR profile (PS50502)

F 5 At3g16850 glycoside hydrolase family 28 (polygalacturonase) 24,6 7 46982,42 5,25  1-19 glycoside hydrolase family 28 (PF00295)
F 6, 9, 11 At1g78860 homologous to lectin (curculin-like) 21,0 8 46804,29 6,00  1-22 PAN domain (PF00024), lectin (probable mannose binding) (PF01453)

F  7-9, 11 At1g78850 homologous to lectin (curculin-like) 26,8 11 46664,12 8,90  1-22 PAN domain (PF00024), lectin (probable mannose binding) (PF01453)

F  8-12, 18-23 At1g09750 homologous to aspartic protease (pepsin family) (Peptidase family 
A1, subfamily A1B unassigned peptidases, MEROPS) 

16,9 9 45038,78 9,09  1-23 lipase Ser active site (PS00120), Ser-rich region (PS050324), 
eukaryotic aspartic protease (PF00026)

F  11-13 At3g43270 carbohydrate esterase family 8 (pectin methylesterase) 17,8 14 54929,20 9,55  1-24 pectinesterase (PF01095), plant invertase/pectin methylesterase 
inhibitor PMEI) (PF04043)

F  12-14 At3g49120 peroxidase (AtPrx34) 16,1 6 35695,45 9,41  1-30 peroxidase active site signature (PS00436), peroxidases proximal 
heme-ligand signature (PS00435)

F  13, 14 At3g48460 homologous to lipase/acylhydrolase (GDSL family) 22,8 6 39627,85 8,91  1-26 lipase/acylhydrolase with GDSL-like motif (PS50241), GDSL-like 
lipase/acylhydrolase (PF00657)

F  13-17 At1g78830 homologous to lectin (curculin-like) 21,5 8 48101,66 9,45  1-22 PAN domain (PF00024), lectin (probable mannose binding) (PF01453)

F 14-16 At5g06860 PGIP1 (LRR domains) 27,6 8 34324,36 9,56  1-21 LRR (PF00560, PS50502, PS50506)
F 14-21 At4g36700 expressed protein (cupin domain) 15,2 8 53703,31 5,21  1-25 glutamic acid-rich region profile (PS50313), cupin (PF00190)
F 14 At3g32980 peroxidase (AtPrx32) 15,6 7 35712,41 6,00  1-29 peroxidases active site signature (PS00436)
F 15, 16 At1g70850 homologous to Bet v I allergen family 39,6 9 35569,93 4,96 pathogenesis-related protein Bet v I family (PF00407)
F 15 At1g70830 homologous to Bet v I allergen family 26,0 7 37614,51 5,03 pathogenesis-related protein Bet v I family (PF00407)
F 17-19 At1g29670 homologous to lipase/acylhydrolase (GDSL family) 38,6 10 37153,43 9,65  1-24 GDSL-like Lipase/Acylhydrolase (PF00657)
F 17 At3g01590 homologous to aldose 1-epimerase 19,3 5 34738,64 5,72 aldose 1-epimerase (PF01263)
F 18, 19 At1g53240 homologous to mitochondrial NAD-dependent malate 

dehydrogenase
24,9 8 35804,43 9,49 malate dehydrogenase active site signature (PS00068), lactate/malate 

dehydrogenase, NAD binding domain (PF00056), lactate/malate 
dehydrogenase, alpha/beta C-terminal domain  (PF02866)

F 18, 19 At4g18180 glycoside hydrolase family 28 (polygalacturonase) 13,0 4 41118,43 10,42  1-23 polygalacturonase active site (PS00502), glycoside hydrolase family 
28 (PF00295)

F 20 At3g14310 carbohydrate esterase family 8 (pectin methylesterase) (AtPME3) 14,4 7 60050,61 9,59  1-40 transmembrane 
domains

pectinesterase signature 1 (PS00800), pectinesterase signature 2 
(PS00503), pectinesterase (PF01095, plant invertase/pectin 
methylesterase inhibitor (PF04043)

F 21 At5g53370 carbohydrate esterase family 8 (pectin methylesterase) 9,7 5 64240,96 8,80 GPI anchor plant invertase/pectin methylesterase inhibitor (PF04043), 
pectinesterase (PF01095)

F 21 At4g30170 peroxidase (AtPrx45) 14,8 4 33052,57 10,43  1-25 haem peroxidase, plant/fungal/bacterial (PS00435, PS00436, 
PS50873)
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F 21, 22 At4g01610 homologous to cysteine proteinase (papain family) (Cathepsin B, 
Peptidase family C1, C01.049, MEROPS)

15,3 5 36995,63 5,79  1-22 eukaryotic thiol (cysteine) proteases histidine active site (PS00639), 
papain family cysteine protease (PF00112), propeptide_C1 (PF08127)

F 22-24 At3g45970 expansin-like A (AtEXLA1) 29,4 8 26258,12 9,46  1-20 pollen allergen (PF01357), barwin (PF00967)
F 22, 23 At1g47128 homologous to cysteine proteinase (papain family) (RD21A, 

Peptidase family C1, C01.064 MEROPS)
16,2 6 48785,27 5,01  1-21 eukaryotic thiol (cysteine) proteases histidine active site (PS00639), 

cysteine active site (PS00640), asparagine active site (PS00139), Cys-
rich region (PS50311), papaine family cysteine protease (PF00112) 

F 22-26 At5g43060 homologous to cysteine proteinase (papain family) (Peptidase 
family C1, RD21 peptidase, C01.064 MEROPS)

16,0 7 36995,63 5,79  1-22 eukaryotic thiol (cysteine) proteases asparagine active site (PS00640), 
papain family cysteine protease (PF00112), granulin (PF00396)

F 26, 27 At3g55440 triose phosphate isomerase 27,5 6 27168,94 5,10 triose phosphate isomerase active site (PS00171)
F 27-29 At4g29270 homologous to acid phosphatase 29,3 8 25900,84 9,15  1-26 HAD superfamily, subfamily IIIB (acid phosphatase) (PF03767)
F 27-31 At2g28490 expressed protein (cupin domain) 13,7 6 53594,59 5,45  1-19 cupin domain profile (PS50849), cupin (PF00190)
F 27-29 At3g63190 homologous to ribosome recycling factor 25,8 7 30422,14 6,50 ribosome recycling factor (PF01765)
F 27 At4g36880 homologous to cysteine protease (papain family) (Peptidase family 

C1, Brassicain, C01.021 MEROPS)
16,5 5 39395,74 6,50  1-22 eukaryotic thiol (cysteine) proteases cysteine active site (PS00139), 

eukaryotic thiol (cysteine) proteases histidine active site (PS00639), 
eukaryotic thiol (cysteine) proteases asparagine active site (PS00640), 
papain family cysteine protease  (PF00112)

F 28 At3g57140 homologous to patatin (phospholipase domain) 9,7 6 89933,66 6,31 patatin-like phospholipase  (PF01734)
F 28 At4g27110 homologous to COBRA (AtCOBL10) 8,4 5 71335,23 9,86  1-21 GPI anchor phytochelatin synthetase-like conserved region (PF04833), 

carbohydrate binding domain  (SSF49394)
F 28-32, 35, 36, 38 At4g12880 early nodulin (AtEN20) (phytocyanin) 24,8 5 14273,34 9,64  1-18 plastocyanin-like domain (PF02298) (copper binding proteins)
F 29 At5g05110 inhibitor family I25 (phytostatin) (cystatin family, I25.014, MEROPS) 10,3 3 23934,58 8,48  1-24 cysteine proteases inhibitors signature (PS00287), cystatin domain 

(PF00031)
F 33, 34 At1g17860 inhibitor family I3 (Kunitz-P family) (subfamily I3A unassigned 

peptidase inhibitor homologues, MEROPS)
25,5 7 19718,68 9,76  1-21 soybean trypsin inhibitor (Kunitz) protease inhibitors family signature 

(PS00283), trypsin and protease inhibitor (PF00197)
F 34-36 At5g01300 homologous to phosphatidylethanolamine-binding protein 50,0 7 71823,40 5,15 phosphatidylethanolamine-binding protein (PF01161), 
F 35, 36 At2g04690 expressed protein (homologous to a human brain CREG protein) 28,1 6 20214,11 8,00  1-28
F 35, 36 At4g25260 homologous to plant invertase/ pectin methylesterase inhibitor 

(PMEI)
16,9 4 15737,05 5,50  1-19 plant invertase/pectin methylesterase inhibitor (PF04043)

F 37, 39-42 At3g15670 homologous to late embryogenesis abundant protein (LEA) 36,4 6 24186,00 9,50 late embryogenesis abundant protein (LEA) (PF02987)
F 39-43 At4g39260 homologous to RNA binding protein (AtGRP8) 41,4 6 16578,63 5,12 glycine-rich region profile (PS50315), eukaryotic RNA Recognition 

Motif (RRM) profile (PS50102), RNA recognition motif. (a.k.a. RRM, 
RBD, or RNP domain) (PF00076)

F 39-44 At1g09310 expressed protein (DUF538) 38,5 7 19947,00 5,12 domain of unknown function DUF538 (PF04398)
F 40 At4g23680 homologous to Bet v I allergen family 45,0 7 17473,54 5,80 pathogenesis-related protein Bet v I family (PF00407)
F 42-45 At4g01900 PII nitrogen sensing protein (GLB I) 34,7 7 21275,40 5,12 P-II protein C-terminal region signature (PS00638), nitrogen regulatory 

protein P-II (PS00543)
F 43-45 At1g67090 RUBISCO small subunit A1 19,4 4 20216,04 9,26 ribulose bisphosphate carboxylase, small chain (PF00101)
F 43 At5g38410* RUBISCO small subunit B3 24,3 4 20284,25 9,40 ribulose bisphosphate carboxylase, small chain (PF00101)
F 43 At5g38430* RUBISCO small subunit B1 19,3 4 20286,18 9,24 ribulose bisphosphate carboxylase, small chain (PF00101)
F 48 At1g47540 inhibitor family I18 (mustard trypsin inhibitor-2 family) (family I18 

unassigned peptidase inhibitor homologues, MEROPS)
45,9 4 9051,17 4,97  1-18 scorpion toxin-like domain  (PF00537)

G 1 At3g15670 homologous to late embryogenesis abundant protein (LEA) 24,0 4 24186,00 9,50 late embryogenesis abundant protein (LEA) (PF02987)
G  2-5, 7, 9-11, 45, 

55-59
At2g38530 non-specific lipid transfer protein type 1 (LTP2) 46,6 5 9475,92 11,90  1-25 protease inhibitor/seed storage/LTP family (PF00234), plant lipid 

transfer proteins signature (PS00597)
G 3, 7 At1g05570 glycosyl transferase family 48 (callose synthase) (AtCalS1) 2,8 5 225730,52 9,51 1,3-beta-glucan synthase component (PF02364)
G 5 At2g34930 expressed protein (LRR domains) 10,9 11 97059,60 9,59  1-28 leucine-rich region profile (PS50319), serine-rich region profile 

(PS50324), typical LRR profile (PS50506), SDS22+-like LRR profile 
(PS50504), plant-specific LRR profile (PS50502)

G  6-8 At1g68560 glycoside hydrolase family 31 (alpha-xylosidase) (AtXYL1) 8,2 7 99641,37 6,26  1-27 glycoside hydrolases family 31 active site (PS00129)
G 10 At3g07130 homologous to purple acid phosphatase 9,6 5 58523,64 5,71  1-17 metallo-phosphoesterase motif (PS50185), calcineurin-like 

phosphoesterase (PF00149)
G 11, 12 At3g61490 glycoside hydrolase family 28 (polygalacturonase) 10,9 4 49497,06 5,76  1-23 glycoside hydrolase family 28 (PF00295)
G 12, 13 At2g27190 homologous to purple acid phosphatase (PAP1) 19,0 10 50962,71 5,75  1-28 metallo-phosphoesterase motif (PS50185), calcineurin-like 

phosphoesterase (PF00149)
G 13-15 At1g33590 expressed protein (LRR domains) 40,6 16 48103,60 9,90  1-24 LRR (PF00560), leucine zipper pattern (PS00029)
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G 13-15 At1g78850 homologous to lectin (curculin-like) 27,0 10 46664,12 8,90  1-22 PAN domain (PF00024), lectin (probable mannose binding) (PF01453)

G 14 At1g78860 homologous to lectin (curculin-like) 20,5 7 46804,29 6,00  1-22 PAN domain (PF00024), lectin (probable mannose binding) (PF01453)

G 14 At5g56490 expressed protein (FAD binding domain) 13,5 7 62107,85 6,49  1-17 FAD binding domain  (PF01565)
G 15, 16 At1g03220 homologous to carrot EDGP and tomato XEGIP 23,9 7 43394,37 9,99  1-22
G 15-17, 19, 21 At1g03230 homologous to carrot EDGP and tomato XEGIP 29,0 10 43723,02 10,27  1-23
G 17, 18 At1g09750 homologous to aspartic protease (pepsin family) (Peptidase family 

A1, subfamily A1B unassigned peptidases, MEROPS) 
16,9 8 45038,78 9,09  1-23 lipase Ser active site (PS00120), Ser-rich region (PS050324), 

eukaryotic aspartic protease (PF00026)
G 18, 19, 21 At3g54400 homologous to aspartic protease (pepsin family) (Peptidase family 

A1, subfamily A1B unassigned peptidases, MEROPS) 
16,0 7 43313,31 10,26  1-19 eukaryotic aspartyl protease (PF00026)

G 18 At2g40880 inhibitor family I25 (phytostatin) (cystatin family, I25.014, MEROPS) 21,6 3 11955,61 9,71  1-22 cysteine proteases inhibitors signature (PS00287), cystatin domain 
(PF00031)

G 19-22 At3g43270 carbohydrate esterase family 8 (pectin methylesterase) 19,0 14 54929,20 9,55  1-24 pectinesterase (PF01095), plant invertase/pectin methylesterase 
inhibitor PMEI) (PF04043)

G 20 At3g02740 homologous to aspartic protease (pepsin family) (Peptidase family 
A1, subfamily A1B unassigned peptidases, MEROPS) 

14,1 4 50452,54 5,38  1-20 eukaryotic and viral aspartyl proteases active site (PS00141), 
eukaryotic aspartyl protease (PF00026)

G 21, 22 At5g11420 expressed protein (DUF642) 23,2 9 37344,57 7,70  1-22 domain of unknown function DUF 642 (PF04862)
G 22, 23 At3g48460 homologous to lipase/acylhydrolase (GDSL family) 24,9 7 39627,85 8,91  1-26 lipase/acylhydrolase with GDSL-like motif (PS50241), GDSL-like 

lipase/acylhydrolase (PF00657)
G 23-27, 35, 36 At1g78830 homologous to lectin (curculin-like) 20,0 7 48101,66 9,45  1-22 PAN domain (PF00024), lectin (probable mannose binding) (PF01453)

G 23, 24 At3g20820 expressed protein (LRR domains) 37,5 11 37850,70 9,90  1-19 typical LRR profile (PS50506), plant specific LRR profile (PS50502), 
SDS22+like LRR profile (PS50504)

G 24 At5g10770 homologous to aspartic protease (CND41 peptidase) (Peptidase 
family A1, A01.050, MEROPS)

18,8 7 37068,36 5,48  1-22 eukaryotic aspartyl protease (PF00013)

G 25, 26 At1g78820 homologous to lectin (curculin-like) 15,2 6 48184,38 9,54  1-22 D-mannose binding lectin  (PF01453), PAN domain (PF00024)
G 26-29 At1g29670 homologous to lipase/acylhydrolase (GDSL family) 35,3 9 37153,43 9,65  1-24 GDSL-like Lipase/Acylhydrolase (PF00657)
G 27, 29, 30 At4g36700 expressed protein (cupin domain) 16,4 9 53703,31 5,21  1-25 glutamic acid-rich region profile (PS50313), cupin (PF00190)
G 28, 29 At1g53070 homologous to lectin (legume lectin domains) 28,3 8 27805,05 9,15  1-23 legume lectins alpha domain (PF00138), legume lectins beta domain 

(PF00139)
G 28 T23B7.10 homologous to PGIP1 (LRR protein FLR1) 23,1 4 33134,88 9,62  1-23 typical LRR profile (PS50506), plant specific LRR profile (PS50502), 

plant disease resistance response protein (PF03018)
G 30-32 At4g30170 peroxidase (AtPrx45) 40,9 12 33052,57 10,43  1-25 haem peroxidase, plant/fungal/bacterial (PS00435, PS00436, 

PS50873)
G 30, 31 At2g06850 glycoside hydrolase family 16 (endoxyloglucan transferase) 

(AtXTH4)
17,6 6 31716,77 9,65  1-24 glycoside hydrolases family 16 (PF00722)

G 31-35 At3g45970 expansin-like A (AtEXLA1) 33,6 8 26258,12 9,46  1-20 pollen allergen (PF01357), barwin (PF00967)
G 32-35 At4g38400 expansin-like A (AtEXLA2) 29,1 10 26516,93 9,60  1-20 expansin, cellulose-binding-like domain profile (PS50843), expansin, 

family-45 endoglucanase-like domain profile (PS50842), rare 
lipoprotein A (RlpA)-like double-psi beta-barrel (PF03330), pollen 
allergen (PF01357)

G 34-38, 40, 41 At3g22640 expressed protein (cupin domain) 19,5 10 52687,99 6,45  1-22 cupin domain profile (PS50849), cupin (PF00190), cupin domain 
G 34, 35 At5g09440 homologous to Nicotiana tabacum phi-I 17,3 5 27366,44 10,15  1-23 phosphate-induced protein 1 conserved region (PF04674)
G 35-46, 49, 50 At4g12880 early nodulin (AtEN20) (phytocyanin) 30,5 6 14273,34 9,64  1-18 plastocyanin-like domain (PF02298) (copper binding proteins)
G 37-40 At4g29270 homologous to acid phosphatase 38,7 9 25900,84 9,15  1-26 HAD superfamily, subfamily IIIB (acid phosphatase) (PF03767)
G 38-40 At2g28490 expressed protein (cupin domain) 9,0 4 53594,59 5,45  1-19 cupin domain profile (PS50849), cupin (PF00190)
G 39 At1g20190 alpha-expansin (AtEXPA11) 18,6 5 24817,74 9,84  1-20 expansin, family-45 endoglucanase-like domain profile (PS50842), 

expansin, cellulose-binding-like domain profile (PS50843), pollen 
allergen (PF01357)

G 42-47 At3g02110 homologous to serine carboxypeptidase D (SCPL25) (Peptidase 
family S10, S10.005, MEROPS)

20,3 8 51075,46 9,35  1-22 serine carboxypeptidases, histidine active site (PS00560), serine 
carboxypeptidases, serine active site (PS00131), serine 
carboxypeptidase
 (PF00450)

G 42, 43, 45 At5g66590 homologous to Nicotiana tabacum  pathogenesis-related protein 
PR1

38,9 6 18040,82 9,65  1-19 SCP-like extracellular protein (PF00188) (sperm coating glycoprotein)

G 44, 45 At2g16001 expressed protein (lipid recognition domain) 30,6 4 14715,26 9,61  1-23 E1 protein and Def2/Der2 allergen (ML domain - MD-2-related lipid 
recognition domain) (PF02221)

G 46-48 At1g17860 inhibitor family I3 (Kunitz-P family) (subfamily I3A unassigned 
peptidase inhibitor homologues, MEROPS)

47,4 10 19718,68 9,76  1-21 soybean trypsin inhibitor (Kunitz) protease inhibitors family signature 
(PS00283), trypsin and protease inhibitor (PF00197)

G 47, 48 At4g30610 homologous to serine carboxypeptidase (BRS1 - Brassinosteroid-
Insensitive BRI suppressor 1) (Peptidase family S10, S10.015 
MEROPS)

14,2 6 50571,16 9,15  1-20 serine carboxypeptidases, serine active site (PS00131), serine 
carboxypeptidases, histidine active site (PS00560), serine peptidase 
(PF00450)
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G 51, 52 At1g09310 expressed protein (DUF538) 27,9 5 19947,00 5,12 domain of unknown function DUF538 (PF04398)
G 52, 53, 54 At5g38410* RUBISCO small subunit B3 27,6 5 20284,25 9,40 ribulose bisphosphate carboxylase, small chain (PF00101)
G 52, 53, 57 At5g38430* RUBISCO small subunit B1 22,7 5 20286,18 9,24 ribulose bisphosphate carboxylase, small chain (PF00101)
G 52, 53 At5g38420* RUBISCO small subunit B2 22,7 5 20350,22 9,24 ribulose bisphosphate carboxylase, small chain (PF00101)
G 53-56 At1g67090 RUBISCO small subunit A1 22,8 5 20216,04 9,26 ribulose bisphosphate carboxylase, small chain (PF00101)
G 57, 58 At4g16500 inhibitor family I25 (cystatin family) (subfamily I25B unassigned 

peptidase inhibitor homologues, MEROPS) 
43,6 6 10183,74 9,78  1-22 cystatin domain (PF00031)

H 1, 3, 4, 10, 12-14, 
16-32, 35-42, 48-

54, 56-59

At5g11420 expressed protein (DUF642) 32,0 16 37344,57 7,70  1-22 domain of unknown function DUF 642 (PF04862)

H 2 At3g24480 LRR-extensin (AtLRX4) 10,5 6 51682,00 6,39  1-25 plant specific LRR profile (PS50502), Leucine Rich Repeat (PF00560), 
Pro-rich profile (PS50099)

H 3 At4g13340 LRR-extensin (AtLRX3) 5,9 4 79847,66 6,29  1-20 proline-rich region profile (PS50099), leucine-rich repeat (PF00560), 
extensin-like region (PF04554), leucine-rich repeat, plant specific 
(PS50502)

H 3 At4g18670 LRR-extensin (AtLRX5) 6,3 4 87040,18 9,02  1-27 histidine-rich region profile (PS50316), plant specific LRR profile 
(PS50502), serine-rich region profile (PS50324), Leucine Rich Repeat 
(PF00560)

H 3 At5g53370 carbohydrate esterase family 8 (pectin methylesterase) 8,7 4 64240,96 8,80 GPI anchor plant invertase/pectin methylesterase inhibitor (PF04043), 
pectinesterase (PF01095)

H 4 At1g28290 proline-rich protein 6,4 3 35913,36 10,77  1-24 histidine-rich region profile (PS50316), proline-rich region profile 
(PS50099), pollen proteins Ole e 1 family (PF01190)

H  5-9 At1g68560 glycoside hydrolase family 31 (alpha-xylosidase) (XYL1) 19,3 19 99641,37 6,26  1-27 glycoside hydrolases family 31 active site (PS00129)
H 10 At3g13790 glycoside hydrolase family 32 (beta-fructofuranosidase) 8,9 5 63490,72 9,68  1-25 glycoside hydrolases family 32 active site (PS00609), glycosyl 

hydrolases family 32 (PF00251)
H 11 At3g07130 homologous to purple acid phosphatase 12,2 6 58523,64 5,71  1-17 metallo-phosphoesterase motif (PS50185), calcineurin-like 

phosphoesterase (PF00149)
H 12 At2g27190 homologous to purple acid phosphatase (PAP12) 27,9 14 50962,71 5,75  1-28 metallo-phosphoesterase motif (PS50185), calcineurin-like 

phosphoesterase (PF00149)
H 12 At3g61490 glycoside hydrolase family 28 (polygalacturonase) 12,2 4 49497,06 5,76  1-23 glycoside hydrolase family 28 (PF00295)
H 13 At1g78850 homologous to lectin (curculin-like) 7,7 4 46664,12 8,90  1-22 PAN domain (PF00024), lectin (probable mannose binding) (PF01453)

H 13 At1g33590 expressed protein (LRR domains) 9,0 5 48103,60 9,90  1-24 LRR (PF00560), leucine zipper pattern (PS00029)
H 14-17 At1g03230 homologous to carrot EDGP and tomato XEGIP 33,2 12 43723,02 10,27  1-23
H 17 At5g19110 homologous to carrot EDGP and tomato XEGIP 23,5 8 41369,63 10,01  1-19
H 18 At4g05200 homologous to receptor kinase (RLK, DUF26-1b subfamily) 9,2 6 72576,6 6,09  1-25 trans-membrane 

domains
protein kinases ATP-binding region signature (PS00107), 
Serine/Threonine protein kinases active-site signature (PS00108), 
protein kinase domain profile (PF50011), domain of unknown function 
DUF 26 (PF01657), Protein kinase domain (PF00069), protein tyrosine 
kinase (PF07714)

H 20-23, 32 At3g20820 expressed protein (LRR domains) 37,5 11 37850,70 9,90  1-19 typical LRR profile (PS50506), plant specific LRR profile (PS50502), 
SDS22+like LRR profile (PS50504)

H 20 At1g71695 peroxidase (AtPrx12) 26,5 7 37104,36 9,46  1-22 peroxidase (PF00141)
H 21, 22 At5g12940 homologous to Phaseolus vulgaris  PGIP2 (LRR domains) 18,6 6 36784,96 10,45  1-29 plant specific LRR profile (PS50502), Leucine Rich Repeat (PF00560)

H 22, 24, 26, 27, 32, 
41, 50, 52- 53

At5g25460 expressed protein (DUF642) 18,7 8 37948,52 9,03  1-19 domain of unknown function DUF 642 (PF04862)

H 23-29, 32 At2g06850 glycoside hydrolase family 16 (endoxyloglucan transferase) 
(AtXTH4)

42,2 14 31716,77 9,65  1-24 glycoside hydrolases family 16 (PF00722)

H 24, 25 At5g64100 peroxidase (AtPrx69) 19,6 8 33228,93 10,72  1-23 peroxidases active site signature (PS00436)
H 25, 26 T23B7.10 homologous to PGIP1 (LRR protein FLR1) 24,0 6 33134,88 9,62  1-23 typical LRR profile (PS50506), plant specific LRR profile (PS50502), 

plant disease resistance response protein (PF03018)
H 28 At5g13870 glycoside hydrolase family 16 (endoxyloglucan transferase) 

(AtXTH5)
14,3 6 31752,61 9,53  1-21 xyloglucan endo-transglycosylase (XET) C-terminus (PF06955), 

glycoside hydrolases family 16 (PF00722)
H 29 At5g64260 homologous to Nicotiana tabacum phi-I 20,7 6 30550,86 9,98  1-19 phosphate-induced protein 1 conserved region (PF04674)
H 29-34 At5g09440 homologous to Nicotiana tabacum phi-I 20,5 6 27366,44 10,15  1-23 phosphate-induced protein 1 conserved region (PF04674)
H 30 At4g38400 expansin-like A (AtEXLA2) 13,2 4 26516,93 9,60  1-20 expansin, cellulose-binding-like domain profile (PS50843), expansin, 

family-45 endoglucanase-like domain profile (PS50842), rare 
lipoprotein A (RlpA)-like double-psi beta-barrel (PF03330), pollen 
allergen (PF01357)
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H 31-35 At3g22640 expressed protein (cupin domain) 16,0 10 52687,99 6,45  1-22 cupin domain profile (PS50849), cupin (PF00190), cupin domain 
H 31 At3g45970 expansin-like A (AtEXLA1) 14,7 4 26258,12 9,46  1-20 pollen allergen (PF01357), barwin (PF00967)
H 33-35 At2g28790 homologous to Lycopersicon esculentum osmotin 16,5 4 24551,60 9,53  1-24 thaumatin family (PF00314)
H 34 At4g29270 homologous to acid phosphatase 17,6 4 25900,84 9,15  1-26 HAD superfamily, subfamily IIIB (acid phosphatase) (PF03767)
H 34-42 At4g12880 early nodulin (AtEN20) (phytocyanin) 30,5 6 14273,34 9,64  1-18 plastocyanin-like domain (PF02298) (copper binding proteins)
H 35 At2g28490 expressed protein (cupin domain) 9,0 4 53594,59 5,45  1-19 cupin domain profile (PS50849), cupin (PF00190)
H 36-38 At1g20190 alpha-expansin (AtEXPA11) 18,6 6 24817,74 9,84  1-20 expansin, family-45 endoglucanase-like domain profile (PS50842), 

expansin, cellulose-binding-like domain profile (PS50843), pollen 
allergen (PF01357)

H 38-45 At5g66590 homologous to Nicotiana tabacum  pathogenesis-related protein 
PR1

38,9 6 18040,82 9,65  1-19 SCP-like extracellular protein (PF00188) (sperm coating glycoprotein)

H 39-40, 47 At3g02110 homologous to serine carboxypeptidase D (SCPL25) (Peptidase 
family S10, S10.005, MEROPS)

16,1 6 51075,46 9,35  1-22 serine carboxypeptidases, histidine active site (PS00560), serine 
carboxypeptidases, serine active site (PS00131), serine 
carboxypeptidase
 (PF00450)

H 42, 43, 46, 48 At2g34700 expressed protein (Ole e1 allergen domain) 37,1 6 16248,80 10,22  1-23 pollen proteins Ole e I family (PF01190)
H 43 At4g30610 homologous to serine carboxypeptidase (BRS1 - Brassinosteroid-

Insensitive BRI suppressor 1) (Peptidase family S10, S10.015 
MEROPS)

11,8 5 50571,16 9,15  1-20 serine carboxypeptidases, serine active site (PS00131), serine 
carboxypeptidases, histidine active site (PS00560), serine peptidase 
(PF00450)

H 51-54, 56 At1g67090 RUBISCO small subunit A1 19,4 4 20216,04 9,26 ribulose bisphosphate carboxylase, small chain (PF00101)
H 51-54, 56-58 At5g38410* RUBISCO small subunit B3 24,3 4 20284,25 9,40 ribulose bisphosphate carboxylase, small chain (PF00101)
H 52-54 At5g38430* RUBISCO small subunit B1 19,3 4 20286,18 9,24 ribulose bisphosphate carboxylase, small chain (PF00101)
H 54 At5g38420* RUBISCO small subunit B2 19,3 4 20350,22 9,24 ribulose bisphosphate carboxylase, small chain (PF00101)
H 52, 54, 55 At4g32460 expressed protein (DUF642) 12,6 5 37375,51 9,25  1-21 domain of unknown function DUF 642 (PF04862)
H 57, 58 At4g16500 inhibitor family I25 (cystatin family) (subfamily I25B unassigned 

peptidase inhibitor homologues, MEROPS) 
35,0 6 10183,74 9,78  1-22 cystatin domain (PF00031)

H 58 At2g38530 non-specific lipid transfer protein type 1 (LTP2) 31,4 4 9475,92 11,90  1-25 protease inhibitor/seed storage/LTP family (PF00234), plant lipid 
transfer proteins signature (PS00597)

I  1-5, 10, 11, 14, 
17-32, 34, 38-58

At5g25460 expressed protein (DUF642) 37,4 17 37948,52 9,03  1-19 domain of unknown function DUF 642 (PF04862)

I  2-5, 8-12 At1g28290 proline-rich protein 9,2 4 35913,36 10,77  1-24 histidine-rich region profile (PS50316), proline-rich region profile 
(PS50099), pollen proteins Ole e 1 family (PF01190)

I  6-8 At1g68560 glycoside hydrolase family 31 (alpha-xylosidase) (XYL1) 16,2 13 99641,37 6,26  1-27 glycoside hydrolases family 31 active site (PS00129)
I 12, 14, 16-20, 22-

24, 26-32, 34-40, 
42, 43, 45, 46, 49, 

54, 56-58

At5g11420 expressed protein (DUF642) 35,8 16 37344,57 7,70  1-22 domain of unknown function DUF 642 (PF04862)

I 13, 40 At1g78850 homologous to lectin (curculin-like) 10,7 4 46664,12 8,90  1-22 PAN domain (PF00024), lectin (probable mannose binding) (PF01453)

I 13 At1g78820 homologous to lectin (curculin-like) 11,4 5 48184,38 9,54  1-22 D-mannose binding lectin  (PF01453), PAN domain (PF00024)
I 13 At3g52500 homologous to aspartic protease (pepsin family) (Peptidase family 

A1, subfamily A1B unassigned peptidases, MEROPS) 
9,2 4 48996,36 9,49  1-18 eukaryotic and viral aspartyl proteases active site (PS00141), 

eukaryotic aspartyl protease (PF00026)
I 14, 15 At1g03230 homologous to carrot EDGP and tomato XEGIP 19,6 7 43723,02 10,27  1-23
I 15 At4g33220 carbohydrate esterase family 8 (pectin methylesterase) 11,6 11 56832,32 6,24  1-19 pectinesterase (PF01095)
I 16, 17 At5g19110 homologous to carrot EDGP and tomato XEGIP 23,5 8 41369,63 10,01  1-19
I 16-18 At5g07030 homologous to aspartic protease (pepsin family) (Peptidase family 

A1, subfamily A1B unassigned peptidases, MEROPS) 
22,3 9 44860,54 10,82  1-19 eukaryotic aspartyl protease (PF00026)

I 16, 17 At3g43270 carbohydrate esterase family 8 (pectin methylesterase) 15,2 8 54929,20 9,55  1-24 pectinesterase (PF01095), plant invertase/pectin methylesterase 
inhibitor PMEI) (PF04043)

I 20, 21, 23 At1g10550 glycoside hydrolase family 16 (endoxyloglucan transferase) 
(AtXTH33)

15,5 5 32314,04 9,73  1-21 glycoside hydrolases family 16 (PF00722), xyloglucan endo-
transglycosylase (XET) C-terminus (PF06955)

I 21-26 At5g12940 homologous to Phaseolus vulgaris  PGIP2 (LRR domains) 37,7 14 36784,96 10,45  1-29 plant specific LRR profile (PS50502), Leucine Rich Repeat (PF00560)

I 21-22 At3g20820 expressed protein (LRR domains) 22,5 6 37850,70 9,90  1-19 typical LRR profile (PS50506), plant specific LRR profile (PS50502), 
SDS22+like LRR profile (PS50504)

I 23 At1g80240 expressed protein (DUF642) 23,0 7 37817,29 9,57  1-22 domain of unknown function DUF 642 (PF04862)
I 25, 26 At1g53830 carbohydrate esterase family 8 (pectin methylesterase) (AtPME2) 17,4 9 59942,45 9,67  1-40 GPI anchor pectinesterase signature 1 (PS00800), pectinesterase signature 2 

(PS00503), pectinesterase (PF01095), plant invertase/pectin 
methylesterase inhibitor (PF04043)

I 26 At1g11580 carbohydrate esterase family 8 (pectin methylesterase) 16,3 9 58066,93 9,43  1-34 pectinesterase (PF01095), plant invertase/pectin methylesterase 
inhibitor (PF04043)

I 26 At4g30610 homologous to serine carboxypeptidase (BRS1 - Brassinosteroid-
Insensitive BRI suppressor 1) (Peptidase family S10, S10.015 
MEROPS)

9,0 5 50571,16 9,15  1-20 serine carboxypeptidases, serine active site (PS00131), serine 
carboxypeptidases, histidine active site (PS00560), serine peptidase 
(PF00450)

I 27 At3g44990 glycoside hydrolase family 16 (endoxyloglucan transferase) 
(AtXTH31)

16,0 6 31710,24 9,69  1-18 glycoside hydrolase family 16 (PF00722), xyloglucan endo-
transglycosylase, C-terminal (PF06955)
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I 28 At3g14310 carbohydrate esterase family 8 (pectin methylesterase) (AtPME3) 17,9 8 60050,61 9,59  1-40 transmembrane 
domains

pectinesterase signature 1 (PS00800), pectinesterase signature 2 
(PS00503), pectinesterase (PF01095, plant invertase/pectin 
methylesterase inhibitor (PF04043)

I 28-30 At2g06850 glycoside hydrolase family 16 (endoxyloglucan transferase) 
(AtXTH4)

39,5 12 31716,77 9,65  1-24 glycoside hydrolases family 16 (PF00722)

I 29-31 At5g64260 homologous to Nicotiana tabacum phi-I 35,7 11 30550,86 9,98  1-19 phosphate-induced protein 1 conserved region (PF04674)
I 29-33 At5g09440 homologous to Nicotiana tabacum phi-I 17,3 5 27366,44 10,15  1-23 phosphate-induced protein 1 conserved region (PF04674)
I 29 At3g45960 expansin-like A (AtEXLA3) 15,2 4 26269,86 9,99  1-20 expansin, family-45 endoglucanase-like domain profile (PS50842), 

expansin, cellulose-binding-like domain profile (PS50843), pollen 
allergen (PF01357)

I 29 At3g45970 expansin-like A (AtEXLA1) 15,1 4 26258,12 9,46  1-20 pollen allergen (PF01357), barwin (PF00967)
I 31 At1g42970 glycereldehyde 3-phosphate dehydrogenase 14,3 5 47659,41 6,27 glyceraldehyde 3-phosphate dehydrogenase, NAD binding domain  

(PF00044), glyceraldehyde 3-phosphate dehydrogenase, C-terminal 
domain  (PF02800)

I 32-35 At3g22640 expressed protein (cupin domain) 21,4 11 52687,99 6,45  1-22 cupin domain profile (PS50849), cupin (PF00190), cupin domain 
I 33-35 At2g28790 homologous to Lycopersicon esculentum osmotin 12,9 4 24551,60 9,53  1-24 thaumatin family (PF00314)
I 34, 35, 37-40 At4g12880 early nodulin (AtEN20) (phytocyanin) 24,8 5 14273,34 9,64  1-18 plastocyanin-like domain (PF02298) (copper binding proteins)
I 35-37 At5g02260 alpha-expansin (AtEXPA9) 32,2 7 25579,80 10,19  1-21 expansin, family-45 endoglucanase-like domain profile (PS50842), 

pollen allergen (PF01357)
I 36, 37 At1g20190 alpha-expansin (AtEXPA11) 18,6 6 24817,74 9,84  1-20 expansin, family-45 endoglucanase-like domain profile (PS50842), 

expansin, cellulose-binding-like domain profile (PS50843), pollen 
allergen (PF01357)

I 36 At2g28490 expressed protein (cupin domain) 12,7 5 53594,59 5,45  1-19 cupin domain profile (PS50849), cupin (PF00190)
I 38-41, 43-46 At5g66590 homologous to Nicotiana tabacum  pathogenesis-related protein 

PR1
33,0 5 18040,82 9,65  1-19 SCP-like extracellular protein (PF00188) (sperm coating glycoprotein)

I 39, 42, 47 At5g23210 homologous to serine carboxypeptidase (SCPL34) (Peptidase family 
S10, S10.005, MEROPS)

11,8 5 53718,78 9,44  1-25 serine carboxypeptidases, histidine active site (PS00560), serine 
carboxypeptidases, serine active site (PS00131), serine 
carboxypeptidase
 (PF00450)

I 39 At3g02110 homologous to serine carboxypeptidase D (SCPL25) (Peptidase 
family S10, S10.005, MEROPS)

12,3 5 51075,46 9,35  1-22 serine carboxypeptidases, histidine active site (PS00560), serine 
carboxypeptidases, serine active site (PS00131), serine 
carboxypeptidase
 (PF00450)

I 46 At2g34700 expressed protein (Ole e1 allergen domain) 18,3 6 16248,80 10,22  1-23 pollen proteins Ole e I family (PF01190)
I 52, 53, 55, 56 At1g67090 RUBISCO small subunit A1 19,0 4 20216,04 9,26 ribulose bisphosphate carboxylase, small chain (PF00101)
I 52-55, 57 At5g38410* RUBISCO small subunit B3 24,3 5 20284,25 9,40 ribulose bisphosphate carboxylase, small chain (PF00101)
I 52-55, 57 At5g38430* RUBISCO small subunit B1 19,3 4 20286,18 9,24 ribulose bisphosphate carboxylase, small chain (PF00101)
I 52-55, 57 At5g38420* RUBISCO small subunit B2 19,3 4 20350,22 9,24 ribulose bisphosphate carboxylase, small chain (PF00101)
I 53, 57 At4g32460 expressed protein (DUF642) 11,2 5 37375,51 9,25  1-21 domain of unknown function DUF 642 (PF04862)
I 56 At4g27160 2S albumin isoform 3 (protease inhibitor/seed storage/LTP family) 22,0 4 16909,07 7,69  1-17 protease inhibitor/seed storage/LTP family (PF00234)

J 1, 13-27, 30, 32-
36, 38-42

At5g25460 expressed protein (DUF642) 35,5 15 37948,52 9,03  1-19 domain of unknown function DUF 642 (PF04862)

J  2-10 At1g28290 proline-rich protein 14,5 5 35913,36 10,77  1-24 histidine-rich region profile (PS50316), proline-rich region profile 
(PS50099), pollen proteins Ole e 1 family (PF01190)

J 4, 5 At2g30210 homologous to laccase (AtLAC3) 15,4 8 61172,59 10,11  1-25 multicopper oxidases signature 2 (PS00080), multicopper oxidase 
(PF00394)

J 9 At3g52500 homologous to aspartic protease (pepsin family) (Peptidase family 
A1, subfamily A1B unassigned peptidases, MEROPS) 

9,2 4 48996,36 9,49  1-18 eukaryotic and viral aspartyl proteases active site (PS00141), 
eukaryotic aspartyl protease (PF00026)

J 10 At1g03230 homologous to carrot EDGP and tomato XEGIP 13,4 5 43723,02 10,27  1-23
J 11, 12 At3g43270 carbohydrate esterase family 8 (pectin methylesterase) 20,1 13 54929,20 9,55  1-24 pectinesterase (PF01095), plant invertase/pectin methylesterase 

inhibitor PMEI) (PF04043)
J 12, 13 At5g07030 homologous to aspartic protease (pepsin family) (Peptidase family 

A1, subfamily A1B unassigned peptidases, MEROPS) 
23,5 10 44860,54 10,82  1-35 eukaryotic aspartyl protease (PF00026)

J 12 At4g33220 carbohydrate esterase family 8 (pectin methylesterase) 14,1 7 56832,32 6,24  1-19 pectinesterase (PF01095)
J  12-14, 18, 19, 21, 

25, 39-42
At5g11420 expressed protein (DUF642) 27,6 11 37344,57 7,70  1-22 domain of unknown function DUF 642 (PF04862)

J 16-18 At5g12940 homologous to Phaseolus vulgaris  PGIP2 (LRR domains) 31,5 11 36784,96 10,45  1-29 plant specific LRR profile (PS50502), Leucine Rich Repeat (PF00560)

J 19 At1g53830 carbohydrate esterase family 8 (pectin methylesterase) (AtPME2) 12,1 8 59942,45 9,67  1-40 GPI anchor pectinesterase signature 1 (PS00800), pectinesterase signature 2 
(PS00503), pectinesterase (PF01095), plant invertase/pectin 
methylesterase inhibitor (PF04043)

J 20-22 At1g11580 carbohydrate esterase family 8 (pectin methylesterase) 19,7 10 58066,93 9,43  1-34 pectinesterase (PF01095), plant invertase/pectin methylesterase 
inhibitor (PF04043)

J 21 At3g44990 glycoside hydrolase family 16 (endoxyloglucan transferase) 
(AtXTH31)

14,3
4

31710,24 9,69  1-18 glycoside hydrolase family 16 (PF00722), xyloglucan endo-
transglycosylase, C-terminal (PF06955)
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J  21-23 At3g14310 carbohydrate esterase family 8 (pectin methylesterase) (AtPME3) 24,8 13 60050,61 9,59  1-40 trans-membrane 
domains

pectinesterase signature 1 (PS00800), pectinesterase signature 2 
(PS00503), pectinesterase (PF01095, plant invertase/pectin 
methylesterase inhibitor (PF04043)

J 23, 25 At5g64260 homologous to Nicotiana tabacum phi-I 29,8 9 30550,86 9,98  1-19 phosphate-induced protein 1 conserved region (PF04674)
J 25-27 At5g09440 homologous to Nicotiana tabacum phi-I 20,5 6 27366,44 10,15  1-23 phosphate-induced protein 1 conserved region (PF04674)
J 25 At4g38400 expansin-like A (AtEXLA2) 14,3 4 26516,93 9,60  1-20 expansin, cellulose-binding-like domain profile (PS50843), expansin, 

family-45 endoglucanase-like domain profile (PS50842), rare 
lipoprotein A (RlpA)-like double-psi beta-barrel (PF03330), pollen 
allergen (PF01357)

J 26-28 At3g22640 expressed protein (cupin domain) 14,0 5 52687,99 6,45  1-22 cupin domain profile (PS50849), cupin (PF00190), cupin domain 
J 27, 28 At2g28790 homologous to Lycopersicon esculentum osmotin 12,9 3 24551,60 9,53  1-24 thaumatin family (PF00314)
J 29-31 At5g02260 alpha-expansin (AtEXPA9) 24,4 5 25579,80 10,19  1-21 expansin, family-45 endoglucanase-like domain profile (PS50842), 

pollen allergen (PF01357)
J 29-32 At4g12880 early nodulin (AtEN20) (phytocyanin) 24,8 5 14273,34 9,64  1-18 plastocyanin-like domain (PF02298) (copper binding proteins)
J 30, 31 At1g20190 alpha-expansin (AtEXPA11) 19,8 5 24817,74 9,84  1-20 expansin, family-45 endoglucanase-like domain profile (PS50842), 

expansin, cellulose-binding-like domain profile (PS50843), pollen 
allergen (PF01357)

J 33, 36, 37 At5g66590 homologous to Nicotiana tabacum  pathogenesis-related protein 
PR1

28,6 4 18040,82 9,65  1-19 SCP-like extracellular protein (PF00188) (sperm coating glycoprotein)

J 35, 36 At2g05580 glycine-rich protein 40,1 6 21517,58 10,21  1-20 glycine-rich region profile (PS50315)
J 37

At5g46940
homologous to plant invertase/pectin methylesterase inhibitor 
(PMEI) 19,3

3 16933,85 10,42  1-20
plant invertase/pectin methylesterase inhibitor (PF04043)

J 39, 41, 42 At4g32460 expressed protein (DUF642) 17,5 7 37375,51 9,25  1-21 domain of unknown function DUF 642 (PF04862)
J 40 At5g38430* RUBISCO small subunit B1 27,6 5 20286,18 9,24 ribulose bisphosphate carboxylase, small chain (PF00101)
J 40 At5g38420* RUBISCO small subunit B2 27,6 5 20350,22 9,24 ribulose bisphosphate carboxylase, small chain (PF00101)
J 42 At1g67090 RUBISCO small subunit A1 19,4 4 20216,04 9,26 ribulose bisphosphate carboxylase, small chain (PF00101)
J 42, 43 At4g27160 2S albumin isoform 3 (protease inhibitor/seed storage/LTP family) 17,7 3 16909,07 7,69  1-17 protease inhibitor/seed storage/LTP family (PF00234)

K 1 At2g30210 homologous to laccase (AtLAC3) 12,6 7 61172,59 10,11  1-25 multicopper oxidases signature 2 (PS00080), multicopper oxidase 
(PF00394)

K  1, 5 At1g28290 proline-rich protein 8.9 (32.3) 4 + 3 (Hyp) 35913,36 10,77  1-24 histidine-rich region profile (PS50316), proline-rich region profile 
(PS50099), pollen proteins Ole e 1 family (PF01190)

K  6, 7 At3g43270 carbohydrate esterase family 8 (pectin methylesterase) 12,5 9 54929,20 9,55  1-24 pectinesterase (PF01095), plant invertase/pectin methylesterase 
inhibitor PMEI) (PF04043)

K 7 At5g11420 expressed protein (DUF642) 11,2 4 37344,57 7,70  1-22 domain of unknown function DUF 642 (PF04862)
K  8-10 At5g14920 proline-rich protein Edman sequencing + 

MALDI-TOF-TOF MS c
3 26753,23 10,98  1-21 gibberellin regulated protein (PF02704)

K  11-13 At1g53830 carbohydrate esterase family 8 (pectin methylesterase) (AtPME2) 15,5 11 59942,45 9,67  1-40 GPI anchor pectinesterase signature 1 (PS00800), pectinesterase signature 2 
(PS00503), pectinesterase (PF01095), plant invertase/pectin 
methylesterase inhibitor (PF04043)

K  11-14 At3g14310 carbohydrate esterase family 8 (pectin methylesterase) (AtPME3) 16,7 8 60050,61 9,59  1-40 transmembrane 
domains

pectinesterase signature 1 (PS00800), pectinesterase signature 2 
(PS00503), pectinesterase (PF01095, plant invertase/pectin 
methylesterase inhibitor (PF04043)

K 12, 13 At1g11580 carbohydrate esterase family 8 (pectin methylesterase) 20,5 10 58066,93 9,43  1-34 pectinesterase (PF01095), plant invertase/pectin methylesterase 
inhibitor (PF04043)

K  15, 16 At1g20190 alpha-expansin (AtEXPA11) 19,8 5 24817,74 9,84  1-20 expansin, family-45 endoglucanase-like domain profile (PS50842), 
expansin, cellulose-binding-like domain profile (PS50843), pollen 
allergen (PF01357)

K 16 At4g12880 early nodulin (AtEN20) (phytocyanin) 24,1 5 14273,34 9,64  1-18 plastocyanin-like domain (PF02298) (copper binding proteins)
K  17, 18 At5g15230 gibberellin-regulated protein (GASA4) 31,1 5 9207,55 10,75  1-25 gibberellin regulated protein  (PF02704)
K  18, 19 At4g27160 2S albumin isoform 3 (protease inhibitor/seed storage/LTP family) 17,1 4 16909,07 7,69  1-17 protease inhibitor/seed storage/LTP family (PF00234)
K  18, 19 At4g27170 2S albumin isoform 4 (protease inhibitor/seed storage/LTP family) 15,7 3 16946,26 7,80  1-21 protease inhibitor/seed storage/LTP family (PF00234)

L  1-3 At5g14920 proline-rich protein Edman sequencing + 

MALDI-TOF-TOF MS c
3 26753,23 10,98  1-21 gibberellin regulated protein (PF02704)

L 3 At4g24340 homologous to phosphorylase 29,9 6 33774,65 9,63  1-27 phosphorylase family (PF01048)
L  4, 6 At4g27170 2S albumin isoform 4 (protease inhibitor/seed storage/LTP family) 24,1 4 16946,26 7,80  1-21 protease inhibitor/seed storage/LTP family (PF00234)
L 5 At4g27160 2S albumin isoform 3 (protease inhibitor/seed storage/LTP family) 16,5 3 16909,07 7,69  1-17 protease inhibitor/seed storage/LTP family (PF00234)
L 6 At4g27150 2S albumin isoform 2 (protease inhibitor/seed storage/LTP family) 24,7 4 17473,78 6,34  1-17 protease inhibitor/seed storage/LTP family (PF00234)

b: Functional domains were predicted as described in Material and methods. PF stands for PFAM, PS for PROSITE and IPR for InterPro.
c: N-terminal sequencing, XXTLPS; LC-MS/MS sequencing, CGQHSR.

a: The following criteria were retained for protein identification: at least 4 peptides are required for proteins larger than 15 kDa, only 3 peptides can be used for proteins smaller than 15 kDa. Allowed modifications are 1 miscleavage and Met oxidation. In each series of samples ( i.e. , total and A to L), the best score of 
identification is shown. 
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Table S2, supplementary material. Identification of proteins extracted from purified cell walls of 11-day-old Arabidopsis  hypocotyls by CaCl2 and LiCl solutions

* proteins that could not be distinguished
Colour code secretory proteins (Presence of predicted signal peptide was checked using PSORT: http://psort.ims.u-tokyo.ac.jp/form.html, and TargetP: http://www.cbs.dtu.dk/services/TargetP/)

transmembrane domains (Presence of predicted transmembrane domains was checked using Aramemnon: http://aramemnon.botanik.uni-koeln.de/)
GPI anchors (presence or GPI anchors was checked using Aramemnon: http://aramemnon.botanik.uni-koeln.de/)
intracellular proteins
proteins identified after 1D-separation (1-DE), but not identified after 2D-separation (cationic exchange chromatography followed by 1-DE)

total band accession annotation signal peptide transmembrane functional domains b

protein number AGI % sequence number of MM (kDa) pI domains

extract coverage peptides (m/z) a GPI anchors

1

 1-16, 18-24, 27, 
29, 30, 32-34, 41, 
42, 44, 45, 47, 53-

56

At5g25460 expressed protein (DUF642) 48,5 17 37948,52 9,03  1-19 domain of unknown function DUF 642 (PF04862)

2
 1-23, 26, 28, 37-
40, 43, 44, 52-56

At5g11420 expressed protein (DUF642) 34,7 14 37344,57 7,70  1-22 domain of unknown function DUF 642 (PF04862)

3
1, 2 At1g28290 proline-rich protein 47 4 35913,36 10,77  1-24 histidine-rich region profile (PS50316), proline-rich region profile 

(PS50099), pollen proteins Ole e 1 family (PF01190)

4
2, 3, 5, 7, 10, 13-

15, 24
At1g03230 homologous to carrot EDGP and tomato XEGIP 16,8 6 43723,02 10,27  1-23

5
3, 7, 9, 10, 12, 14, 

15
At1g03220 homologous to carrot EDGP and tomato XEGIP 13,2 4 43394,37 9,99  1-22

6
5 At2g06850 glycoside hydrolase family 16 (endoxyloglucan transferase) (AtXTH4) 13,2 5 31716,77 9,65  1-24 glycoside hydrolases family 16 (PF00722)

7
5 At5g07030 homologous to Asp protease (pepsin family) (Peptidase family A1, 

subfamily A1B unassigned peptidases, MEROPS) 
8,6 4 44860,54 10,82  1-19 eukaryotic aspartyl protease (PF00026)

8 9, 10 At3g16850 glycoside hydrolase family 28 (polygalacturonase) 31,9 12 46982,42 5,25  1-19 glycoside hydrolase family 28 (PF00295)

9
11 At5g34940 glycoside hydrolase family 79 (endo beta-

glucuronidase/heparanase)
9,9 4 57219,88 9,13  1-21 glycoside hydrolase family 79, N-terminal domain (PF03662)

10 11 At1g33590 expressed protein (LRR domains) 7,8 4 48103,60 9,90  1-24 LRR (PF00560), leucine zipper pattern (PS00029)

11
13, 14, 41-43 At1g78850 homologous to lectin (curculin-like) 18,1 7 46664,12 8,90  1-22 PAN domain (PF00024), lectin (probable mannose binding) (PF01453)

12
13, 41 At1g78860 homologous to lectin (curculin-like) 14,9 6 46804,29 6,00  1-22 PAN domain (PF00024), lectin (probable mannose binding) (PF01453)

13
13-15 At1g09750 homologous to Asp protease (pepsin family) (Peptidase family A1, 

subfamily A1B unassigned peptidases, MEROPS) 
12,7 7 45038,78 9,09  1-23 lipase Ser active site (PS00120), Ser-rich region (PS050324), 

eukaryotic aspartic protease (PF00026)

14
16 At3g43270 carbohydrate esterase family 8 (pectin methylesterase) 6,1 4 54929,20 9,55  1-24 pectinesterase (PF01095), plant invertase/pectin methylesterase 

inhibitor PMEI) (PF04043)

15
17-19, 21 At3g20820 expressed protein (LRR domains) 27,9 9 37850,70 9,90  1-19 typical LRR profile (PS50506), plant specific LRR profile (PS50502), 

SDS22+like LRR profile (PS50504)

16
17, 19, 32 At3g49120 peroxidase (AtPrx34) 8,5 5 35695,45 9,41  1-30 peroxidase active site signature (PS00436), peroxidases proximal 

heme-ligand signature (PS00435)

17
19-24 At5g12940 homologous to Phaseolus vulgaris  PGIP2 (LRR domains) 21,6 7 36784,96 10,45  1-29 plant specific LRR profile (PS50502), Leucine Rich Repeat (PF00560)

18 19 At3g32980 peroxidase (AtPrx32) 15,6 7 35712,41 6,00  1-29 peroxidases active site signature (PS00436)
19 20, 22, 23, 47 At1g70850* homologous to Bet v I allergen family 35,4 9 35569,93 4,96 pathogenesis-related protein Bet v I family (PF00407)
20 47 At1g70830* homologous to Bet v I allergen family 17,6 4 37614,51 5,03 pathogenesis-related protein Bet v I family (PF00407)
21 21-23, 30, 31 At3g08030 expressed protein (DUF642) 23,6 7 36993,02 6,87  1-21 domain of unknown function DUF 642 (PF04862)
22 22 At4g37950 polysaccharide lyase family 4 (rhamnogalacturonate lyase) 8,8 5 74062,32 9,65  1-30 rhamnogalacturonate lyase family (PF06045)

23
23, 24 At1g78830 homologous to lectin (curculin-like) 13,0 8 48101,66 9,45  1-22 PAN domain (PF00024), lectin (probable mannose binding) (PF01453)

24 23 At1g80240 expressed protein (DUF642) 18,6 5 37817,29 9,57  1-22 domain of unknown function DUF 642 (PF04862)

25
24 T23B7.10 homologous to PGIP1 (LRR protein FLR1) 18,8 4 33134,88 9,62  1-23 typical LRR profile (PS50506), plant specific LRR profile (PS50502), 

plant disease resistance response protein (PF03018)
26 24 At5g64100 peroxidase (AtPrx69) 18,7 6 33228,93 10,72  1-23 peroxidases active site signature (PS00436)

27

25 ArthCp030 RUBISCO large subunit (RBCL) 21,5 11 52954.98 5.79 ribulose bisphosphate carboxylase large chain active site (PS00157), 
ribulose bisphosphate carboxylase large chain, catalytic domain  
(PF00016), ribulose bisphosphate carboxylase large chain, N-terminal 
domain (PF02788)

28 25, 53-58 At1g67090 RUBISCO small subunit A1 28,9 5 20216,04 9,26 ribulose bisphosphate carboxylase, small chain (PF00101)

29
28, 29 At4g30170 peroxidase (AtPrx45) 38,8 11 33052,57 10,43  1-25 haem peroxidase, plant/fungal/bacterial (PS00435, PS00436, 

PS50873)

MALDI-TOF identification mature protein
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30

29-31 At1g47128 homologous to cysteine proteinase (papain family) (RD21A, 
Peptidase family C1, C01.064 MEROPS)

11 4 48785,27 5,01  1-21 eukaryotic thiol (cysteine) proteases histidine active site (PS00639), 
cysteine active site (PS00640), asparagine active site (PS00139), Cys-
rich region (PS50311), papaine family cysteine protease (PF00112) 

31 30, 31 At5g64260 homologous to Nicotiana tabacum phi-I 27,2 8 30550,86 9,98  1-19 phosphate-induced protein 1 conserved region (PF04674)
32 30, 31 At3g45970 expansin-like A (AtEXLA1) 27,5 7 26258,12 9,46  1-20 pollen allergen (PF01357), barwin (PF00967)

33

30 At4g01610 homologous to cysteine proteinase (papain family) (Cathepsin B, 
Peptidase family C1, C01.049, MEROPS)

14,2 4 36995,63 5,79  1-22 eukaryotic thiol (cysteine) proteases histidine active site (PS00639), 
papain family cysteine protease (PF00112), propeptide_C1 (PF08127)

34

32, 33 At5g43060 homologous to cysteine proteinase (papain family) (RD21 
peptidase, Peptidase family C1, C01.064 MEROPS)

13,4 5 36995,63 5,79  1-22 eukaryotic thiol (cysteine) proteases asparagine active site (PS00640), 
papain family cysteine protease (PF00112), granulin (PF00396)

35 32-35 At5g09440 homologous to Nicotiana tabacum phi-I 17,3 5 27366,44 10,15  1-23 phosphate-induced protein 1 conserved region (PF04674)
36 32-41 At4g12880 early nodulin (AtEN20) (phytocyanin) 30,5 6 14273,34 9,64  1-18 plastocyanin-like domain (PF02298) (copper binding proteins)

37

32, 33 At4g38400 expansin-like A (AtEXLA2) 10,9 3 26516,93 9,60  1-20 expansin, cellulose-binding-like domain profile (PS50843), expansin, 
family-45 endoglucanase-like domain profile (PS50842), rare 
lipoprotein A (RlpA)-like double-psi beta-barrel (PF03330), pollen 
allergen (PF01357)

38 34-36 At2g28790 homologous to Lycopersicon esculentum osmotin 20,5 5 24551,60 9,53  1-24 thaumatin family (PF00314)
39 35-37 At2g28490 expressed protein (cupin domain) 13,7 6 53594,59 5,45  1-19 cupin domain profile (PS50849), cupin (PF00190)
40 35 At3g22640 expressed protein (cupin domain) 9,3 5 52687,99 6,45  1-22 cupin domain profile (PS50849), cupin (PF00190), cupin domain 
41 36 At3g56750 expressed protein 9,4 4 42120,52 9,89  1-39
42 37 At4g29270 homologous to acid phosphatase 12,5 4 25900,84 9,15  1-26 HAD superfamily, subfamily IIIB (acid phosphatase) (PF03767)

43

38, 39 At1g20190 alpha-expansin (AtEXPA11) 25 8 24817,74 9,84  1-20 expansin, family-45 endoglucanase-like domain profile (PS50842), 
expansin, cellulose-binding-like domain profile (PS50843), pollen 
allergen (PF01357)

44 38, 39 At1g09560 germin (subfamily 2, member 1, GLP5) 14,6 3 20472,37 9,71  1-23 germin (PS00725), cupin (PF00190)
45 40 At3g21770 peroxidase (AtPrx30) 15,2 4 32901,55 10,54  1-27 peroxidases active site signature (PS00436)

46

41-43 At3g02110 homologous to serine carboxypeptidase D (SCPL25) (Peptidase family 
S10, S10.005, MEROPS)

14,6 6 51075,46 9,35  1-22 serine carboxypeptidases, histidine active site (PS00560), serine 
carboxypeptidases, serine active site (PS00131), serine 
carboxypeptidase
 (PF00450)

47
41, 49, 50 At1g73260 inhibitor family I3 (Kunitz-P family) (subfamily I3A unassigned 

peptidase inhibitor homologues, MEROPS)
23,2 4 20982,78 5,20  1-26 trypsin and protease inhibitor Kunitz legume (PF00197)

48 42 At3g11630 homologous to 2-Cys peroxiredoxin 29,3 7 29091,87 7,91 AhpC/TSA family  (PF00578)

49
43-45 At5g66590 homologous to Nicotiana tabacum  pathogenesis-related protein 

PR1
33,0 5 18040,82 9,65  1-19 SCP-like extracellular protein (PF00188) (sperm coating glycoprotein)

50
44, 45 At1g17860 inhibitor family I3 (Kunitz-P family) (subfamily I3A unassigned peptidase 

inhibitor homologues, MEROPS)
39,3 9 19718,68 9,76  1-21 soybean trypsin inhibitor (Kunitz) protease inhibitors family signature 

(PS00283), trypsin and protease inhibitor (PF00197)
51 46 At2g04690 expressed protein (homologous to a human brain CREG protein) 19,5 4 20214,11 8,00  1-28

52

47 At5g23210 homologous to serine carboxypeptidase D (SCPL34) (Peptidase 
family S10, S10.005, MEROPS)

8,2 4 53718,78 9,44  1-25 serine carboxypeptidases, histidine active site (PS00560), serine 
carboxypeptidases, serine active site (PS00131), serine 
carboxypeptidase
 (PF00450)

53

48, 49 At4g39260 homologous to RNA binding protein (AtGRP8) 41,4 5 16578,63 5,12 glycine-rich region profile (PS50315), eukaryotic RNA Recognition 
Motif (RRM) profile (PS50102), RNA recognition motif. (a.k.a. RRM, 
RBD, or RNP domain) (PF00076)

54 49, 50 At4g23680 homologous to Bet v I allergen family 47,0 8 17473,54 5,80 pathogenesis-related protein Bet v I family (PF00407)
55 49 At4g23670 homologous to Bet v I allergen family 43 8 17517,73 5,84 pathogenesis-related protein Bet v I family (PF00407)
56 50-54 At1g09310 expressed protein (DUF538) 40,1 5 19947,00 5,12 domain of unknown function DUF538 (PF04398)
57 52-58 At5g38410* RUBISCO small subunit B3 27,6 5 20284,25 9,40 ribulose bisphosphate carboxylase, small chain (PF00101)
58 52, 53, 55-57 At5g38430* RUBISCO small subunit B1 22,6 5 20286,18 9,24 ribulose bisphosphate carboxylase, small chain (PF00101)
59 52, 53, 55-57 At5g38420* RUBISCO small subunit B2 22,6 5 20350,22 9,24 ribulose bisphosphate carboxylase, small chain (PF00101)
60 53 At3g22000 expressed protein (DUF26) 14,6 4 27296,47 9,97  1-32 domain of unknown function DUF26 (PF01657)

61

53-56, 58, 59 At4g20860 homologous to berberine-bridge enzyme (S)-reticulin:oxygen 
oxidoreductase

10,4 7 58375,98 9,71  1-16  oxygen oxidoreductases covalent FAD-binding site (PS00862), 
FAD_binding_4
FAD binding domain (PF01565), BBE Berberine and berberine like 
(PF08031)

62 53-57 At4g32460 expressed protein (DUF642) 16,7 7 37375,51 9,25  1-21 domain of unknown function DUF 642 (PF04862)
63 57, 59, 60 At4g27150 2S albumin isoform 2 (protease inhibitor/seed storage/LTP family) 17,6 3 17473,78 6,34  1-17 protease inhibitor/seed storage/LTP family (PF00234)
64 59, 60 At4g27160 2S albumin isoform 3 (protease inhibitor/seed storage/LTP family) 18,3 3 16909,07 7,69  1-17 protease inhibitor/seed storage/LTP family (PF00234)
65 59 At1g47540 homologous to trypsin inhibitor 12,2 2 9051,17 4,97  1-18 scorpion toxin-like domain  (PF00537)

66
59, 60 At2g38530 non-specific lipid transfer protein type 1 (LTP2) 17,8 2 9475,92 11,90  1-25 protease inhibitor/seed storage/LTP family (PF00234), plant lipid 

transfer proteins signature (PS00597)
67 60 At4g27170 2S albumin isoform 4 (protease inhibitor/seed storage/LTP family) 23,7 3 16946,26 7,80  1-21 protease inhibitor/seed storage/LTP family (PF00234)

N 1 At3g16850 glycoside hydrolase family 28 (polygalacturonase) 25,9 8 46982,42 5,25  1-19 glycoside hydrolase family 28 (PF00295)
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N 2 At1g47710 homologous to serpin (serine protease inhibitor) 20,2 7 42639,41 4,97 transmembrane 
domains

serpins signature (PS00284), serpin (serine protease inhibitor) 
(PF00079)

N 3 At4g16260 glycoside hydrolase family 17 12,8 6 35905,19 6,64  1-16 glycoside hydrolases family 17 signature (PS00587), glycoside 
hydrolases family 17 (PF00332)

N 4, 5 At4g01610 homologous to cysteine proteinase (papain family) (Cathepsin B, 
Peptidase family C1, C01.049, MEROPS)

14,4 6 36995,63 5,79  1-22 eukaryotic thiol (cysteine) proteases histidine active site (PS00639), 
papain family cysteine protease (PF00112), propeptide_C1 (PF08127)

N  4-6 At1g47128 homologous to cysteine proteinase (papain family) (RD21A, 
Peptidase family C1, C01.064 MEROPS)

16,7 7 48785,27 5,01  1-21 eukaryotic thiol (cysteine) proteases histidine active site (PS00639), 
cysteine active site (PS00640), asparagine active site (PS00139), Cys-
rich region (PS50311), papaine family cysteine protease (PF00112) 

N 4, 5 At3g12500 glycoside hydrolase family 19 (chitinase) 9,8 3 32367,86 6,24  1-20 chitinase family 19 signature 1 (PS00773), signature 2 (PS00774), 
chitin recognition or binding domain signature (PS00026), chitinase 
class I (PF00182), chitin recognition protein (PF00187)

N 5, 6 At5g43060 homologous to cysteine proteinase (papain family) (RD21 
peptidase, Peptidase family C1, C01.064 MEROPS)

13,6 6 36995,63 5,79  1-22 eukaryotic thiol (cysteine) proteases asparagine active site (PS00640), 
papain family cysteine protease (PF00112), granulin (PF00396)

N 5, 6 At1g11840 glyoxalase I homologue (lactoylglutathione lyase) (ATGLX1) 17,6 5 31928,38 5,19  glyoxalase I signature 1 (PS00934), glyoxalase I signature 2 
(PS00935), glyoxalase/bleomycin resistance protein/dioxygenase 
superfamily (PF00903)

N 8 At1g73260 inhibitor family I3 (Kunitz-P family) (subfamily I3A unassigned 
peptidase inhibitor homologues, MEROPS)

19,1 4 20982,78 5,20  1-26 trypsin and protease inhibitor Kunitz legume (PF00197)

O 1 At3g16850 glycoside hydrolase family 28 (polygalacturonase) 25,5 8 46982,42 5,25  1-19 glycoside hydrolase family 28 (PF00295)
O 2 At4g16590 glucoside transferase family 2 (cellulose synthase like) (CslA1) 8,8 4 60927,18 9,80  1-27 transmembrane 

domains
glycoside hydrolase family 2 (PF00535)

O 3 At1g23190 homologous to phosphoglycomutase 12,3 5 63170,37 5,79 phosphoglucomutase/phosphomannomutase, alpha/beta/alpha 
domain I (PF02878), phosphoglucomutase/phosphomannomutase, 
alpha/beta/alpha domain II (PF02879), 
phosphoglucomutase/phosphomannomutase, alpha/beta/alpha 
domain III (PF02880), phosphoglucomutase/phosphomannomutase, C-
terminal domain (PF00408)

O 4 At1g47128 homologous to cysteine proteinase (papain family) (RD21A, 
Peptidase family C1, C01.064 MEROPS)

16,7 4 48785,27 5,01  1-21 eukaryotic thiol (cysteine) proteases histidine active site (PS00639), 
cysteine active site (PS00640), asparagine active site (PS00139), Cys-
rich region (PS50311), papaine family cysteine protease (PF00112) 

O 5 At5g43060 homologous to cysteine proteinase (papain family) (RD21 
peptidase, Peptidase family C1, C01.064 MEROPS)

13,6 3 36995,63 5,79  1-22 eukaryotic thiol (cysteine) proteases asparagine active site (PS00640), 
papain family cysteine protease (PF00112), granulin (PF00396)

O 6 At5g44360 homologous to berberine-bridge enzyme (S)-reticulin:oxygen 
oxidoreductase

7,9 4 57931,72 9,83  1-22 oxygen oxido-reductases covalent FAD binding site (PS00862), FAD 
binding domain (PF01565), berberine and berberine like (PF08031)

Q  1-6 At3g16850 glycoside hydrolase family 28 (polygalacturonase) 36,0 16 46982,42 5,25  1-19 glycoside hydrolase family 28 (PF00295)
Q 2, 3 At5g34940 glycoside hydrolase family 79 (endo beta-

glucuronidase/heparanase)
18,1 9 57219,88 9,13  1-21 glycoside hydrolase family 79, N-terminal domain (PF03662)

Q   4-6 At2g17120 expressed protein (LysM domain, GPI anchor) 12,3 6 35262,82 6,24  1-23 GPI anchor LysM domain (PF01476)
Q 7, 8, 10 At3g49120 peroxidase (AtPrx34) 30,0 11 35695,45 9,41  1-30 peroxidase active site signature (PS00436), peroxidases proximal 

heme-ligand signature (PS00435)
Q 6 At3g43270 carbohydrate esterase family 8 (pectin methylesterase) 13,3 7 54929,20 9,55  1-24 pectinesterase (PF01095), plant invertase/pectin methylesterase 

inhibitor PMEI) (PF04043)
Q 7 At2g36870 glycoside hydrolase family 16 (endoxyloglucan transferase) 

(AtXTH32)
16,4 6 31928,02 9,92  1-24 glycoside hydrolase family 16 (PF00722), xyloglucan endo-

transglycosidease (XET) C-terminus (PF06955)
Q  8-10 At3g32980 peroxidase (AtPrx32) 31,8 14 35712,41 6,00  1-29 peroxidases active site signature (PS00436)
Q 10, 11 At5g06860 PGIP1 (LRR domains) 21,5 7 34324,36 9,56  1-21 LRR (PF00560, PS50502, PS50506)
Q 10, 11 At1g70850 homologous to Bet v I allergen family 41,1 13 35569,93 4,96 pathogenesis-related protein Bet v I family (PF00407)
Q 10, 11 At1g54030 homologous to lipase/acylhydrolase (GDSL family) 14,5 5 46082,76 6,20 transmembrane 

domains
lipase/acylhydrolase with GDSL-like motif (PS50241), GDSL-like 
Lipase/Acylhydrolase (PF00657)

Q 12, 13 At3g12500 glycoside hydrolase family 19 (chitinase) 10,5 4 32367,86 6,24  1-20 chitinase family 19 signature 1 (PS00773), signature 2 (PS00774), 
chitin recognition or binding domain signature (PS00026), chitinase 
class I (PF00182), chitin recognition protein (PF00187)

Q 14, 15 At1g47128 homologous to cysteine proteinase (papain family) (RD21A, 
Peptidase family C1, C01.064 MEROPS)

13,8 6 48785,27 5,01  1-21 eukaryotic thiol (cysteine) proteases histidine active site (PS00639), 
cysteine active site (PS00640), asparagine active site (PS00139), Cys-
rich region (PS50311), papaine family cysteine protease (PF00112) 

156



Table S2, supplementary data Chapter 4

Q 14, 15 At4g01610 homologous to cysteine proteinase (papain family) (Cathepsin B, 
Peptidase family C1, C01.049, MEROPS)

18,9 6 36995,63 5,79  1-22 eukaryotic thiol (cysteine) proteases histidine active site (PS00639), 
papain family cysteine protease (PF00112), propeptide_C1 (PF08127)

Q 15, 16 At5g43060 homologous to cysteine proteinase (papain family) (RD21 
peptidase, Peptidase family C1, C01.064 MEROPS)

10,8 5 36995,63 5,79  1-22 eukaryotic thiol (cysteine) proteases asparagine active site (PS00640), 
papain family cysteine protease (PF00112), granulin (PF00396)

Q 17 At2g28490 expressed protein (cupin domain) 9,2 5 53594,59 5,45  1-19 cupin domain profile (PS50849), cupin (PF00190)
Q 18-20, 22, 26 At1g73260 inhibitor family I3 (Kunitz-P family) (subfamily I3A unassigned 

peptidase inhibitor homologues, MEROPS)
23,2 5 20982,78 5,20  1-26 trypsin and protease inhibitor Kunitz legume (PF00197)

Q 19 At2g15220 expressed protein (Plant Basic Secreted Protein domain) 30,1 9 22772,21 9,09  1-21 neutral zinc metallopeptidases, zinc-binding region signature 
(PS00142), plant basic secretory protein (PF04450)

Q 21 At5g55730 fasciclin-like arabinogalactan protein (AtFLA1) 13,9 4 42165,78 5,65  1-24 GPI anchor Beta-Ig-H3/fasciclin domain (PS50213)
Q 23, 24 At2g04690 expressed protein (homologous to a human brain CREG protein) 30,0 6 20214,11 8,00  1-28
Q 27, 28 At4g16500 inhibitor family I25 (cystatin family) (subfamily I25B unassigned 

peptidase inhibitor homologues, MEROPS) 
60,0 10 10183,74 9,78  1-22 cystatin domain (PF00031)

Q 28 At2g38530 non-specific lipid transfer protein type 1 (LTP2) 30,0 4 9475,92 11,90  1-25 protease inhibitor/seed storage/LTP family (PF00234), plant lipid 
transfer proteins signature (PS00597)

R 1 At3g16850 glycoside hydrolase family 28 (polygalacturonase) 29 11 46982,42 5,25  1-19 glycoside hydrolase family 28 (PF00295)
R 1 At5g25980 peroxidase (AtPrx43) 19,1 4 36806,45 5,45  1-32 transmembrane 

domains
peroxidases proximal heme-ligand signature (PS00435), plant heme 
peroxidase family profile (PS50873), peroxidase (PF00141)

R 2 At1g78860 homologous to lectin (curculin-like) 11,7 4 46804,29 6,00  1-22
PAN domain (PF00024), lectin (probable mannose binding) (PF01453)

R 3 At1g78850 homologous to lectin (curculin-like) 18,8 8 46664,12 8,90  1-22 PAN domain (PF00024), lectin (probable mannose binding) (PF01453)

R 3 At5g34940 glycoside hydrolase family 79 (endo beta-
glucuronidase/heparanase)

9,9 4 57219,88 9,13  1-21 glycoside hydrolase family 79, N-terminal domain (PF03662)

R 3 At3g06770 glycoside hydrolase family 28 (polygalacturonase) 8,7 4 46124,62 6,21  1-19 glycoside hydrolase family 28 (PF00295)
R 3 At1g26850 expressed protein (DUF248) 7,1 4 66120,79 6,19  1-32 putative methyltransferase (DUF248) (PF03141)
R 4, 5 At1g03220 homologous to carrot EDGP and tomato XEGIP 19,2 6 43394,37 9,99  1-22
R  4-6, 11 At1g09750 homologous to Asp protease (pepsin family) (Peptidase family A1, 

subfamily A1B unassigned peptidases, MEROPS) 
16,9 9 45038,78 9,09  1-23 lipase Ser active site (PS00120), Ser-rich region (PS050324), 

eukaryotic aspartic protease (PF00026)
R 6 At3g43270 carbohydrate esterase family 8 (pectin methylesterase) 14,2 8 54929,20 9,55  1-24 pectinesterase (PF01095), plant invertase/pectin methylesterase 

inhibitor PMEI) (PF04043)
R 6, 8, 9 At3g49120 peroxidase (AtPrx34) 27,5 10 35695,45 9,41  1-30 peroxidase active site signature (PS00436), peroxidases proximal 

heme-ligand signature (PS00435)
R 7, 10 At5g06860 PGIP1 (LRR domains) 29,1 9 34324,36 9,56  1-21 LRR (PF00560, PS50502, PS50506)
R 7 At3g32980 peroxidase (AtPrx32) 21,3 10 35712,41 6,00  1-29 peroxidases active site signature (PS00436)
R 7, 10 At1g70850 homologous to Bet v I allergen family 42,7 6 35569,93 4,96 pathogenesis-related protein Bet v I family (PF00407)
R 8 At3g49110 peroxidase (AtPrx33) 15,5 6 35383,10 7,91  1-33 peroxidase active site signature (PS00436), peroxidases proximal 

heme-ligand signature (PS00435), plant heme peroxidase family 
profile (PS50873)

R  12-14, 17 At1g47128 homologous to cysteine proteinase (papain family) (RD21A, 
Peptidase family C1, C01.064 MEROPS)

13,8 7 48785,27 5,01  1-21 eukaryotic thiol (cysteine) proteases histidine active site (PS00639), 
cysteine active site (PS00640), asparagine active site (PS00139), Cys-
rich region (PS50311), papaine family cysteine protease (PF00112) 

R 13-16 At5g43060 homologous to cysteine proteinase (papain family) (RD21 
peptidase, Peptidase family C1, C01.064 MEROPS)

17,1 9 36995,63 5,79  1-22 eukaryotic thiol (cysteine) proteases asparagine active site (PS00640), 
papain family cysteine protease (PF00112), granulin (PF00396)

R 13 At4g01610 homologous to cysteine proteinase (papain family) (Cathepsin B, 
Peptidase family C1, C01.049, MEROPS)

17,6 6 36995,63 5,79  1-22 eukaryotic thiol (cysteine) proteases histidine active site (PS00639), 
papain family cysteine protease (PF00112), propeptide_C1 (PF08127)

R 13 At3g45970 expansin-like A (AtEXLA1) 21,9 5 26258,12 9,46  1-20 pollen allergen (PF01357), barwin (PF00967)
R 16 At5g44410 homologous to berberine-bridge enzyme (S)-reticulin:oxygen 

oxidoreductase
11,8 4 57892,40 9,06   1-29 oxygen oxidoreductases covalent FAD-binding site (PS00862), 

berberine and berberine like (PF08031), FAD binding domain 
(PF01565)

R 18, 19, 25 At4g12880 early nodulin (AtEN20) (phytocyanin) 22,7 4 14273,34 9,64  1-18 plastocyanin-like domain (PF02298) (copper binding proteins)
R 19 At2g15220 expressed protein (Plant Basic Secreted Protein domain) 24,9 5 22772,21 9,09  1-21 neutral zinc metallopeptidases, zinc-binding region signature 

(PS00142), plant basic secretory protein (PF04450)
R 19-21, 28, 30 At1g73260 inhibitor family I3 (Kunitz-P family) (subfamily I3A unassigned 

peptidase inhibitor homologues, MEROPS)
33,0 8 20982,78 5,20  1-26 trypsin and protease inhibitor Kunitz legume (PF00197)

R 21-23 At5g55730 fasciclin-like arabinogalactan protein (AtFLA1) 10,1 3 42165,78 5,65  1-24 GPI anchor Beta-Ig-H3/fasciclin domain (PS50213)
R 24, 25 At5g01300 homologous to phosphatidylethanolamine-binding protein 39,5 6 71823,40 5,15 phosphatidylethanolamine-binding protein (PF01161), 
R 25, 26 At2g04690 expressed protein (homologous to a human brain CREG protein) 33,8 6 20214,11 8,00  1-28
R 25 At4g25260 homologous to plant invertase/ pectin methylesterase inhibitor (PMEI) 16,9 4 15737,05 5,50  1-19 plant invertase/pectin methylesterase inhibitor (PF04043)

R 27-33 At1g09310 expressed protein (DUF538) 40,1 5 19947,00 5,12 domain of unknown function DUF538 (PF04398)
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R

27-29 At4g39260 homologous to RNA binding protein (AtGRP8) 35,5

5 16578,63 5,12 glycine-rich region profile (PS50315), eukaryotic RNA Recognition 
Motif (RRM) profile (PS50102), RNA recognition motif. (a.k.a. RRM, 
RBD, or RNP domain) (PF00076)

R 28 At4g23670 homologous to Bet v I allergen family 63,6 13 17517,73 5,84 pathogenesis-related protein Bet v I family (PF00407)
R

31, 36
At1g31340* polyubiquitin (AtUBQ7) (*and/or ubiquitin extension protein) 23,0 4 17397,00 5,85 ubiquitin domain signature (PS00299), ubiquitin domain profile 

(PS50053), ubiquitin family (PF00240)
R

33 At4g01900 PII nitrogen sensing protein (GLB I) 18,4
4 21275,40 5,12 P-II protein C-terminal region signature (PS00638), nitrogen regulatory 

protein P-II (PS00543)
R 34 At1g78460 expressed protein (SOUL heme binding domain) 16,9 4 21857,91 9,75 SOUL heme binding protein (PF04832)
R 34-36 At2g38530 non-specific lipid transfer protein type 1 (LTP2) 40,0 5 9475,92 11,90  1-25 protease inhibitor/seed storage/LTP family (PF00234), plant lipid 

transfer proteins signature (PS00597)

S 1 At3g24480 LRR-extensin (AtLRX4) 9,7 4 51682,00 6,39  1-25 plant specific LRR profile (PS50502), Leucine Rich Repeat (PF00560), 
Pro-rich profile (PS50099)

S 1 At4g18670 LRR-extensin (AtLRX5) 5,7 4 87040,18 9,02  1-27 histidine-rich region profile (PS50316), plant specific LRR profile 
(PS50502), serine-rich region profile (PS50324), Leucine Rich Repeat 
(PF00560)

S 2 At1g05570 glycosyl transferase family 48 (callose synthase) (AtCalS1) 3,3 5 225730,52 9,51 1,3-beta-glucan synthase component (PF02364)
S  3-6, 38-41 At2g38530 non-specific lipid transfer protein type 1 (LTP2) 50,0 6 9475,92 11,90  1-25 protease inhibitor/seed storage/LTP family (PF00234), plant lipid 

transfer proteins signature (PS00597)
S 4 At2g34930 expressed protein (LRR domains) 13,5 12 97059,60 9,59  1-28 leucine-rich region profile (PS50319), serine-rich region profile 

(PS50324), typical LRR profile (PS50506), SDS22+-like LRR profile 
(PS50504), plant-specific LRR profile (PS50502)

S 7 At1g78860 homologous to lectin (curculin-like) 11,7 4 46804,29 6,00  1-22 PAN domain (PF00024), lectin (probable mannose binding) (PF01453)

S 7 At2g27190 homologous to purple acid phosphatase (PAP1) 8,5 3 50962,71 5,75  1-28 metallo-phosphoesterase motif (PS50185), calcineurin-like 
phosphoesterase (PF00149)

S 8, 9 At1g33590 expressed protein (LRR domains) 31,8 12 48103,60 9,90  1-24 LRR (PF00560), leucine zipper pattern (PS00029)
S 8, 9 At1g78850 homologous to lectin (curculin-like) 26,5 11 46664,12 8,90  1-22 PAN domain (PF00024), lectin (probable mannose binding) (PF01453)

S  9-11, 13 At1g03220 homologous to carrot EDGP and tomato XEGIP 37,9 11 43394,37 9,99  1-22
S 10, 11, 13 At1g03230 homologous to carrot EDGP and tomato XEGIP 14,7 8 43723,02 10,27  1-23
S 10, 11, 19 At1g09750 homologous to Asp protease (pepsin family) (Peptidase family A1, 

subfamily A1B unassigned peptidases, MEROPS) 
17,6 9 45038,78 9,09  1-23 lipase Ser active site (PS00120), Ser-rich region (PS050324), 

eukaryotic aspartic protease (PF00026)
S 12, 13 At3g43270 carbohydrate esterase family 8 (pectin methylesterase) 16,3 12 54929,20 9,55  1-24 pectinesterase (PF01095), plant invertase/pectin methylesterase 

inhibitor PMEI) (PF04043)
S 12, 13 At3g54400 homologous to Asp protease (pepsin family) (Peptidase family A1, 

subfamily A1B unassigned peptidases, MEROPS) 
13,6 6 43313,31 10,26  1-19 eukaryotic aspartyl protease (PF00026)

S  14-18, 23 At1g78830 homologous to lectin (curculin-like) 24,0 8 48101,66 9,45  1-22 PAN domain (PF00024), lectin (probable mannose binding) (PF01453)

S 14 At3g48460 homologous to lipase/acylhydrolase (GDSL family) 20,7 6 39627,85 8,91  1-26 lipase/acylhydrolase with GDSL-like motif (PS50241), GDSL-like 
lipase/acylhydrolase (PF00657)

S  15-17 At5g06860 PGIP1 (LRR domains) 22,2 6 34324,36 9,56  1-21 LRR (PF00560, PS50502, PS50506)
S 16, 17 At1g70850 homologous to Bet v I allergen family 24,0 5 35569,93 4,96 pathogenesis-related protein Bet v I family (PF00407)
S 16 At4g01610 homologous to cysteine proteinase (papain family) (Cathepsin B, 

Peptidase family C1, C01.049, MEROPS)
17,6 5 36995,63 5,79  1-22 eukaryotic thiol (cysteine) proteases histidine active site (PS00639), 

papain family cysteine protease (PF00112), propeptide_C1 (PF08127)

S 16 At5g10770 homologous to Asp protease (CND41 peptidase) (Peptidase family A1, 
A01.050, MEROPS)

11,8 3 37068,36 5,48  1-22 eukaryotic aspartyl protease (PF00013)

S 16 At2g40880 inhibitor family I25 (phytostatin) (cystatin family, I25.014, MEROPS) 32,0 3 11955,61 9,71  1-22 cysteine proteases inhibitors signature (PS00287), cystatin domain 
(PF00031)

S 18, 19 At1g29670 homologous to lipase/acylhydrolase (GDSL family) 38,0 11 37153,43 9,65  1-24 GDSL-like Lipase/Acylhydrolase (PF00657)
S 18 At5g15720 homologous to lipase/acylhydrolase (GDSL family) 13,2 5 48101,66 9,45  1-22 GDSL-like Lipase/Acylhydrolase  (PF00657)
S 19 T23B7.10 homologous to PGIP1 (LRR protein FLR1) 16,9 4 33134,88 9,62  1-23 typical LRR profile (PS50506), plant specific LRR profile (PS50502), 

plant disease resistance response protein (PF03018)
S 20, 21, 24 At4g30170 peroxidase (AtPrx45) 40,9 12 33052,57 10,43  1-25 haem peroxidase, plant/fungal/bacterial (PS00435, PS00436, 

PS50873)
S  21-23 At3g45970 expansin-like A (AtEXLA1) 32,4 9 26258,12 9,46  1-20 pollen allergen (PF01357), barwin (PF00967)
S 22 At4g38400 expansin-like A (AtEXLA2) 26,0 7 26516,93 9,60  1-20 expansin, cellulose-binding-like domain profile (PS50843), expansin, 

family-45 endoglucanase-like domain profile (PS50842), rare 
lipoprotein A (RlpA)-like double-psi beta-barrel (PF03330), pollen 
allergen (PF01357)

S 22 At5g43060 homologous to cysteine proteinase (papain family) (RD21 
peptidase, Peptidase family C1, C01.064 MEROPS)

16,0 7 36995,63 5,79  1-22 eukaryotic thiol (cysteine) proteases asparagine active site (PS00640), 
papain family cysteine protease (PF00112), granulin (PF00396)

S 24, 25 At4g29270 homologous to acid phosphatase 26,6 7 25900,84 9,15  1-26 HAD superfamily, subfamily IIIB (acid phosphatase) (PF03767)
S  25-28 At4g12880 early nodulin (AtEN20) (phytocyanin) 30,5 6 14273,34 9,64  1-18 plastocyanin-like domain (PF02298) (copper binding proteins)
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S 28, 29 At3g02110 homologous to serine carboxypeptidase D (SCPL25) (Peptidase family 
S10, S10.005, MEROPS)

13,0 4 51075,46 9,35  1-22 serine carboxypeptidases, histidine active site (PS00560), serine 
carboxypeptidases, serine active site (PS00131), serine 
carboxypeptidase
 (PF00450)

S 28, 32-35 At1g73260 inhibitor family I3 (Kunitz-P family) (subfamily I3A unassigned 
peptidase inhibitor homologues, MEROPS)

19,1 6 20982,78 5,20  1-26 trypsin and protease inhibitor Kunitz legume (PF00197)

S 30, 31 At1g17860 inhibitor family I3 (Kunitz-P family) (subfamily I3A unassigned peptidase 
inhibitor homologues, MEROPS)

66,8 13 19718,68 9,76  1-21 soybean trypsin inhibitor (Kunitz) protease inhibitors family signature 
(PS00283), trypsin and protease inhibitor (PF00197)

S 34-36 At1g09310 expressed protein (DUF538) 40,8 7 19947,00 5,12 domain of unknown function DUF538 (PF04398)
S 36 At5g38410 RUBISCO small subunit B3 22,6 5 20284,25 9,40 ribulose bisphosphate carboxylase, small chain (PF00101)
S 37 At2g02850 plantacyanin (AtPNC) (phytocyanin) 20,1 3 11167,60 9,08  1-28 plastocyanin-like domain (PF02298) (copper binding protein)
S 38 At4g16500 inhibitor family I25 (cystatin family) (subfamily I25B unassigned 

peptidase inhibitor homologues, MEROPS) 
30,0 4 10183,74 9,78  1-22 cystatin domain (PF00031)

T 1 At3g24480 LRR-extensin (AtLRX4) 8,5 5 51682,00 6,39  1-25 plant specific LRR profile (PS50502), Leucine Rich Repeat (PF00560), 
Pro-rich profile (PS50099)

T  2-6 At1g68560 glycoside hydrolase family 31 (alpha-xylosidase) (AtXYL1) 22,8 17 99641,37 6,26  1-27 glycoside hydrolases family 31 active site (PS00129)
T 4 At4g18670 LRR-extensin (AtLRX5) 5,0 4 87040,18 9,02  1-27 histidine-rich region profile (PS50316), plant specific LRR profile 

(PS50502), serine-rich region profile (PS50324), Leucine Rich Repeat 
(PF00560)

T 7 At3g07130 homologous to purple acid phosphatase 10,9 6 58523,64 5,71  1-17 metallo-phosphoesterase motif (PS50185), calcineurin-like 
phosphoesterase (PF00149)

T 7 At2g37620# actin (ACT1) 22,0 7 41797,89 5,12
actins and actin-related proteins signature (PS01132), actins signature 
1(PS00406), actins signature 2 (PS00432), actin  (PF00022)

T 7 At3g53750# actin (ACT3) 22,0 7 41797,89 5,12
actins and actin-related proteins signature (PS01132), actins signature 
1(PS00406), actins signature 2 (PS00432), actin  (PF00022)

T 8, 9 At3g61490 glycoside hydrolase family 28 (polygalacturonase 20,0 7 49497,06 5,76  1-23 glycoside hydrolase family 28 (PF00295)
T 9 At2g27190 homologous to purple acid phosphatase (PAP1) 15,6 7 50962,71 5,75  1-28 metallo-phosphoesterase motif (PS50185), calcineurin-like 

phosphoesterase (PF00149)
T 10, 11 At1g33590 expressed protein (LRR domains) 40,0 16 48103,60 9,90  1-24 LRR (PF00560), leucine zipper pattern (PS00029)
T 10 At1g78850 homologous to lectin (curculin-like) 16,1 6 46664,12 8,90  1-22 PAN domain (PF00024), lectin (probable mannose binding) (PF01453)

T 10, 12-14, 27 At1g03230 homologous to carrot EDGP and tomato XEGIP 45,6 15 43723,02 10,27  1-23
T 12 At4g20860 homologous to berberine-bridge enzyme (S)-reticulin:oxygen 

oxidoreductase
15,8 6 58375,98 9,71  1-16  oxygen oxidoreductases covalent FAD-binding site (PS00862), 

FAD_binding_4
FAD binding domain (PF01565), BBE Berberine and berberine like 
(PF08031)

T 13 At1g03220 homologous to carrot EDGP and tomato XEGIP 12,7 4 43394,37 9,99  1-22
T 13, 14 At3g54400 homologous to Asp protease (pepsin family) (Peptidase family A1, 

subfamily A1B unassigned peptidases, MEROPS) 
20,5 6 43313,31 10,26  1-19 eukaryotic aspartyl protease (PF00026)

T 14, 15 At4g33220 carbohydrate esterase family 8 (pectin methylesterase) 17,5 7 56832,32 6,24  1-19 pectinesterase (PF01095)
T 14-22, 24-27, 29, 

38, 39, 41-47
At5g11420 expressed protein (DUF642) 30,0 17 37344,57 7,70  1-22 domain of unknown function DUF 642 (PF04862)

T 17-20, 24, 25, 29-
31

At3g20820 expressed protein (LRR domains) 50,0 16 37850,70 9,90  1-19 typical LRR profile (PS50506), plant specific LRR profile (PS50502), 
SDS22+like LRR profile (PS50504)

T 17-19 At1g71695 peroxidase (AtPrx12) 23,5 7 37104,36 9,46  1-22 peroxidase (PF00141)
T 19 At5g10770 homologous to Asp protease (CND41 peptidase) (Peptidase family A1, 

A01.050, MEROPS)
15,6 5 37068,36 5,48  1-22 eukaryotic aspartyl protease (PF00013)

T 19 At1g70850 homologous to Bet v I allergen family 23,4 6 35569,93 4,96 pathogenesis-related protein Bet v I family (PF00407)
T 19 At5g12940 homologous to Phaseolus vulgaris  PGIP2 (LRR domains) 20,0 5 36784,96 10,45  1-29 plant specific LRR profile (PS50502), Leucine Rich Repeat (PF00560)

T 20 At1g78830 homologous to lectin (curculin-like) 13,8 5 48101,66 9,45  1-22 PAN domain (PF00024), lectin (probable mannose binding) (PF01453)

T 20, 38, 39, 41, 42 At5g25460 expressed protein (DUF642) 20,0 7 37948,52 9,03  1-19 domain of unknown function DUF 642 (PF04862)
T 22-24, 40 T23B7.10 homologous to PGIP1 (LRR protein FLR1) 34,5 8 33134,88 9,62  1-23 typical LRR profile (PS50506), plant specific LRR profile (PS50502), 

plant disease resistance response protein (PF03018)
T 22 At5g64100 peroxidase (AtPrx69) 26,0 5 33228,93 10,72  1-23 peroxidases active site signature (PS00436)
T 22 At5g66390 peroxidase (AtPrx72) 18,7 5 35004,65 9,63  1-23 peroxidase (PF00141)
T 23 At1g53070 homologous to lectin (legume lectin domains) 15,8 5 27805,05 9,15  1-23 legume lectins alpha domain (PF00138), legume lectins beta domain 

(PF00139)
T 24-27 At2g06850 glycoside hydrolase family 16 (endoxyloglucan transferase) (AtXTH4) 30,7 10 31716,77 9,65  1-24 glycoside hydrolases family 16 (PF00722)

T 25, 27 At4g30170 peroxidase (AtPrx45) 40,3 14 33052,57 10,43  1-25 haem peroxidase, plant/fungal/bacterial (PS00435, PS00436, 
PS50873)

T 26-28 At3g45970 expansin-like A (AtEXLA1) 35,8 7 26258,12 9,46  1-20 pollen allergen (PF01357), barwin (PF00967)
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T 26-28 At5g64260 homologous to Nicotiana tabacum phi-I 20,0 6 30550,86 9,98  1-19 phosphate-induced protein 1 conserved region (PF04674)
T 27-29 At5g09440 homologous to Nicotiana tabacum phi-I 20,0 8 27366,44 10,15  1-23 phosphate-induced protein 1 conserved region (PF04674)
T 28 At4g38400 expansin-like A (AtEXLA2) 20,0 7 26516,93 9,60  1-20 expansin, cellulose-binding-like domain profile (PS50843), expansin, 

family-45 endoglucanase-like domain profile (PS50842), rare 
lipoprotein A (RlpA)-like double-psi beta-barrel (PF03330), pollen 
allergen (PF01357)

T 30, 31 At2g28790 homologous to Lycopersicon esculentum osmotin 10,0 4 24551,60 9,53  1-24 thaumatin family (PF00314)
T 31 At4g29270 homologous to acid phosphatase 25,4 4 25900,84 9,15  1-26 HAD superfamily, subfamily IIIB (acid phosphatase) (PF03767)
T 31-35, 37, 38 At4g12880 early nodulin (AtEN20) (phytocyanin) 44,7 8 14273,34 9,64  1-18 plastocyanin-like domain (PF02298) (copper binding proteins)
T 32-33 At1g20190 alpha-expansin (AtEXPA11) 19,8 5 24817,74 9,84  1-20 expansin, family-45 endoglucanase-like domain profile (PS50842), 

expansin, cellulose-binding-like domain profile (PS50843), pollen 
allergen (PF01357)

T 32 At1g09560 germin (subfamily 2, member 1, GLP5) 14,6 4 20472,37 9,71  1-23 germin (PS00725), cupin (PF00190)
T 34-37 At5g66590 homologous to Nicotiana tabacum  pathogenesis-related protein 

PR1
38,9 5 18040,82 9,65  1-19 SCP-like extracellular protein (PF00188) (sperm coating glycoprotein)

T 34 At1g73260 inhibitor family I3 (Kunitz-P family) (subfamily I3A unassigned 
peptidase inhibitor homologues, MEROPS)

19,1 3 20982,78 5,20  1-26 trypsin and protease inhibitor Kunitz legume (PF00197)

T 35 At3g02110 homologous to serine carboxypeptidase D (SCPL25) (Peptidase family 
S10, S10.005, MEROPS)

20,0 4 51075,46 9,35  1-22 serine carboxypeptidases, histidine active site (PS00560), serine 
carboxypeptidases, serine active site (PS00131), serine 
carboxypeptidase
 (PF00450)

T 36, 37 At1g17860 inhibitor family I3 (Kunitz-P family) (subfamily I3A unassigned peptidase 
inhibitor homologues, MEROPS)

25,5 4 19718,68 9,76  1-21 soybean trypsin inhibitor (Kunitz) protease inhibitors family signature 
(PS00283), trypsin and protease inhibitor (PF00197)

T 44-46 At2g38530 non-specific lipid transfer protein type 1 (LTP2) 40,0 5 9475,92 11,90  1-25 protease inhibitor/seed storage/LTP family (PF00234), plant lipid 
transfer proteins signature (PS00597)

T 44-46 At4g16500 inhibitor family I25 (cystatin family) (subfamily I25B unassigned 
peptidase inhibitor homologues, MEROPS) 

50,0 8 10183,74 9,78  1-22 cystatin domain (PF00031)

T 45 At5g05110 inhibitor family I25 (phytostatin) (cystatin family, I25.014, MEROPS) 16,8 4 23934,58 8,48  1-24 cysteine proteases inhibitors signature (PS00287), cystatin domain 
(PF00031)

U  1-40 At5g11420 expressed protein (DUF642) 30,0 13 37344,57 7,70  1-22 domain of unknown function DUF 642 (PF04862)
U  1-14, 16-40 At5g25460 expressed protein (DUF642) 30,0 12 37948,52 9,03  1-19 domain of unknown function DUF 642 (PF04862)
U  2-7 At1g28290 proline-rich protein 6,4 5 35913,36 10,77  1-24 histidine-rich region profile (PS50316), proline-rich region profile 

(PS50099), pollen proteins Ole e 1 family (PF01190)
U 3 At5g59370* actin (ACT4) 14,1 5 41778,87 5,80

actins and actin-related proteins signature (PS01132), actins signature 
1(PS00406), actins signature 2 (PS00432), actin  (PF00022)

U 3 At3g46520* actin (ACT12) 14,1 5 41794,87 5,20
actins and actin-related proteins signature (PS01132), actins signature 
1(PS00406), actins signature 2 (PS00432), actin  (PF00022)

U 3 At2g37620# actin (ACT1) 13,5 5 41797,89 5,12
actins and actin-related proteins signature (PS01132), actins signature 
1(PS00406), actins signature 2 (PS00432), actin  (PF00022)

U 3 At3g53750# actin (ACT3) 13,5 5 41797,89 5,12
actins and actin-related proteins signature (PS01132), actins signature 
1(PS00406), actins signature 2 (PS00432), actin  (PF00022)

U 8 At3g13790 glycoside hydrolase family 32 (beta-fructofuranosidase) 16,4 9 63490,72 9,68  1-25 glycoside hydrolases family 32 active site (PS00609), glycoside 
hydrolases family 32 (PF00251)

U 11, 12, 20 At1g03230 homologous to carrot EDGP and tomato XEGIP 35,9 11 43723,02 10,27  1-23
U 11 At1g03220 homologous to carrot EDGP and tomato XEGIP 12,5 4 43394,37 9,99  1-22
U 11 At4g16260 glycoside hydrolase family 17 12,4 4 35905,19 6,64  1-16 glycoside hydrolases family 17 signature (PS00587), glycoside 

hydrolases family 17 (PF00332)
U 13, 14 At5g19110 homologous to carrot EDGP and tomato XEGIP 23,9 9 41369,63 10,01  1-19
U 13, 14 At3g43270 carbohydrate esterase family 8 (pectin methylesterase) 20,0 8 54929,20 9,55  1-24 pectinesterase (PF01095), plant invertase/pectin methylesterase 

inhibitor PMEI) (PF04043)
U 14 At5g07030 homologous to Asp protease (pepsin family) (Peptidase family A1, 

subfamily A1B unassigned peptidases, MEROPS) 
10,0 6 44860,54 10,82  1-19 eukaryotic aspartyl protease (PF00026)

U 16, 17 At3g20820 expressed protein (LRR domains) 35,9 10 37850,70 9,90  1-19 typical LRR profile (PS50506), plant specific LRR profile (PS50502), 
SDS22+like LRR profile (PS50504)

U  16-19, 21 At5g12940 homologous to Phaseolus vulgaris  PGIP2 (LRR domains) 40,0 15 36784,96 10,45  1-29 plant specific LRR profile (PS50502), Leucine Rich Repeat (PF00560)

U 16 At1g10550 glycoside hydrolase family 16 (endoxyloglucan transferase) 
(AtXTH33)

19,7 6 32314,04 9,73  1-21 glycoside hydrolases family 16 (PF00722), xyloglucan endo-
transglycosidease (XET) C-terminus (PF06955)

U 21, 22, 24 At2g06850 glycoside hydrolase family 16 (endoxyloglucan transferase) (AtXTH4) 22,3 8 31716,77 9,65  1-24 glycoside hydrolases family 16 (PF00722)

U 22 At4g30170 peroxidase (AtPrx45) 24,3 6 33052,57 10,43  1-25 haem peroxidase, plant/fungal/bacterial (PS00435, PS00436, 
PS50873)
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U 23-25 At5g64260 homologous to Nicotiana tabacum phi-I 30,0 8 30550,86 9,98  1-19 phosphate-induced protein 1 conserved region (PF04674)
U 25, 26 At5g09440 homologous to Nicotiana tabacum phi-I 20,0 5 27366,44 10,15  1-23 phosphate-induced protein 1 conserved region (PF04674)
U 26 At2g28790 homologous to Lycopersicon esculentum osmotin 20,0 4 24551,60 9,53  1-24 thaumatin family (PF00314)
U 27-29 At1g20190 alpha-expansin (AtEXPA11) 30,2 6 24817,74 9,84  1-20 expansin, family-45 endoglucanase-like domain profile (PS50842), 

expansin, cellulose-binding-like domain profile (PS50843), pollen 
allergen (PF01357)

U 29 At4g12880 early nodulin (AtEN20) (phytocyanin) 12,1 3 14273,34 9,64  1-18 plastocyanin-like domain (PF02298) (copper binding proteins)
U 30, 31 At3g02110 homologous to serine carboxypeptidase D (SCPL25) (Peptidase family 

S10, S10.005, MEROPS)
10,0 4 51075,46 9,35  1-22 serine carboxypeptidases, histidine active site (PS00560), serine 

carboxypeptidases, serine active site (PS00131), serine 
carboxypeptidase
 (PF00450)

U 30-35 At5g66590 homologous to Nicotiana tabacum pathogenesis-related protein PR1 38,9 7 18040,82 9,65  1-19 SCP-like extracellular protein (PF00188) (sperm coating glycoprotein)

U 32, 34 At1g77810 glycosyl transferase family 31 (galactosyl transferase) 19,6 4 41656,86 6,07  1-26 galactosyl transferase (PF01762)
U 32, 33 At2g34700 expressed protein (Ole e1 allergen domain) 30,3 6 16248,80 10,22  1-23 pollen proteins Ole e I family (PF01190)
U 35 At1g73260 inhibitor family I3 (Kunitz-P family) (subfamily I3A unassigned 

peptidase inhibitor homologues, MEROPS)
17,2 3 20982,78 5,20  1-26 trypsin and protease inhibitor Kunitz legume (PF00197)

U 37, 38, 40 At4g32460 expressed protein (DUF642) 14,0 7 37375,51 9,25  1-21 domain of unknown function DUF 642 (PF04862)
U 39, 41-44 At4g27160 2S albumin isoform 3 (protease inhibitor/seed storage/LTP family) 20,0 4 16909,07 7,69  1-17 protease inhibitor/seed storage/LTP family (PF00234)
U 42 At4g27150 2S albumin isoform 2 (protease inhibitor/seed storage/LTP family) 20,0 3 17473,78 6,34  1-17 protease inhibitor/seed storage/LTP family (PF00234)

V  1-4, 6, 7-18, 20-
22, 26-32

At5g25460 expressed protein (DUF642) 37,1 15 37948,52 9,03  1-19 domain of unknown function DUF 642 (PF04862)

V  2-7 At1g28290 proline-rich protein 9,2 4 35913,36 10,77  1-24 histidine-rich region profile (PS50316), proline-rich region profile 
(PS50099), pollen proteins Ole e 1 family (PF01190)

V 4, 5 At2g30210 homologous to laccase (AtLAC3) 15,4 8 61172,59 10,11  1-25 multicopper oxidases signature 2 (PS00080), multicopper oxidase 
(PF00394)

V  7-14, 16, 20, 22, 
32

At5g11420 expressed protein (DUF642) 26,2 13 37344,57 7,70  1-22 domain of unknown function DUF 642 (PF04862)

V 8, 9 At1g03230 homologous to carrot EDGP and tomato XEGIP 13,6 5 43723,02 10,27  1-23
V 10, 11 At5g07030 homologous to Asp protease (pepsin family) (Peptidase family A1, 

subfamily A1B unassigned peptidases, MEROPS) 
26,7 14 44860,54 10,82  1-19 eukaryotic aspartyl protease (PF00026)

V 12 At1g71695 peroxidase (AtPrx12) 16,5 5 37104,36 9,46  1-22 peroxidase (PF00141)
V 13-16 At5g12940 homologous to Phaseolus vulgaris  PGIP2 (LRR domains) 34,2 13 36784,96 10,45  1-29 plant specific LRR profile (PS50502), Leucine Rich Repeat (PF00560)

V 13 At3g20820 expressed protein (LRR domains) 19,7 5 37850,70 9,90  1-19 typical LRR profile (PS50506), plant specific LRR profile (PS50502), 
SDS22+like LRR profile (PS50504)

V 17, 18 At3g14310 carbohydrate esterase family 8 (pectin methylesterase) (PME3) 17,4 9 60050,61 9,59  1-40 trans-membrane 
domains

pectinesterase signature 1 (PS00800), pectinesterase signature 2 
(PS00503), pectinesterase (PF01095, plant invertase/pectin 
methylesterase inhibitor (PF04043)

V 18 At1g53830 carbohydrate esterase family 8 (pectin methylesterase) (PME2) 7,9 4 64172,61 9,76  1-40 trans-membrane 
domains

pectinesterase signature 1 (PS00800), pectinesterase signature 2 
(PS00503), pectinesterase (PF01095), plant invertase/pectin 
methylesterase inhibitor (PF04043)

V 19-21 At5g64260 homologous to Nicotiana tabacum phi-I 28,9 9 30550,86 9,98  1-19 phosphate-induced protein 1 conserved region (PF04674)
V 20-22 At5g09440 homologous to Nicotiana tabacum phi-I 20,5 6 27366,44 10,15  1-23 phosphate-induced protein 1 conserved region (PF04674)
V 22 At2g28790 homologous to Lycopersicon esculentum osmotin 12,9 3 24551,60 9,53  1-24 thaumatin family (PF00314)
V 23, 24 At5g02260 alpha-expansin (AtEXPA9) 24,0 6 25579,80 10,19  1-21 expansin, family-45 endoglucanase-like domain profile (PS50842), 

pollen allergen (PF01357)
V 24, 25 At1g20190 alpha-expansin (AtEXPA11) 18,7 6 24817,74 9,84  1-20 expansin, family-45 endoglucanase-like domain profile (PS50842), 

expansin, cellulose-binding-like domain profile (PS50843), pollen 
allergen (PF01357)

V 25 At4g12880 early nodulin (AtEN20) (phytocyanin) 23,4 9 14273,34 9,64  1-18 plastocyanin-like domain (PF02298) (copper binding proteins)
V 26, 27 At2g05580 glycine-rich protein 40,1 6 21517,58 10,21  1-20 glycine-rich region profile (PS50315)
V 28 At1g01980 homologous to berberine-bridge enzyme (S)-reticulin:oxygen oxido-

reductase
12,0 6 58023,25 8,98  1-20 berberine and berberine like (PF08031), FAD binding domain 

(PF01565)
V 31 At4g32460 expressed protein (DUF642) 14,0 5 37375,51 9,25  1-21 domain of unknown function DUF 642 (PF04862)
V 33-35 At4g27150 2S albumin isoform 2 (protease inhibitor/seed storage/LTP family) 20,6 3 17473,78 6,34  1-17 protease inhibitor/seed storage/LTP family (PF00234)
V 33-35 At4g27160 2S albumin isoform 3 (protease inhibitor/seed storage/LTP family) 18,3 3 16909,07 7,69  1-17 protease inhibitor/seed storage/LTP family (PF00234)
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W 1 At2g30210 homologous to laccase (AtLAC3) 14,2 7 61172,59 10,11  1-25 multicopper oxidases signature 2 (PS00080), multicopper oxidase 
(PF00394)

W 2, 5 At1g28290 proline-rich protein 9,2 4 35913,36 10,77  1-24 histidine-rich region profile (PS50316), proline-rich region profile 
(PS50099), pollen proteins Ole e 1 family (PF01190)

W 6 At3g43270 carbohydrate esterase family 8 (pectin methylesterase) 20,0 10 54929,20 9,55  1-24 pectinesterase (PF01095), plant invertase/pectin methylesterase 
inhibitor PMEI) (PF04043)

W 6 At5g07030 homologous to Asp protease (pepsin family) (Peptidase family A1, 
subfamily A1B unassigned peptidases, MEROPS) 

20,0 8 44860,54 10,82  1-19 eukaryotic aspartyl protease (PF00026)

W 6, 7, 18 At5g11420 expressed protein (DUF642) 30,0 11 37344,57 7,70  1-22 domain of unknown function DUF 642 (PF04862)
W  7-9, 12, 17, 18 At5g25460 expressed protein (DUF642) 20,0 7 37948,52 9,03  1-19 domain of unknown function DUF 642 (PF04862)
W 8 At3g20820 expressed protein (LRR domains) 10,0 4 37850,70 9,90  1-19 typical LRR profile (PS50506), plant specific LRR profile (PS50502), 

SDS22+like LRR profile (PS50504)
W 9, 11 At5g12940 homologous to Phaseolus vulgaris  PGIP2 (LRR domains) 20,0 6 36784,96 10,45  1-29 plant specific LRR profile (PS50502), Leucine Rich Repeat (PF00560)

W 10, 11 At5g14920 proline-rich protein Edman 
sequencing + 

MALDI-TOF-TOF 

3 26753,23 10,98  1-21 gibberellin regulated protein (PF02704)

W 12 At3g14310 carbohydrate esterase family 8 (pectin methylesterase) (PME3) 19,7 7 60050,61 9,59  1-40 trans-membrane 
domains

pectinesterase signature 1 (PS00800), pectinesterase signature 2 
(PS00503), pectinesterase (PF01095, plant invertase/pectin 
methylesterase inhibitor (PF04043)

W 13 At5g64260 homologous to Nicotiana tabacum phi-I 11,0 4 30550,86 9,98  1-19 phosphate-induced protein 1 conserved region (PF04674)
W 14 At5g09440 homologous to Nicotiana tabacum phi-I 17,3 5 27366,44 10,15  1-23 phosphate-induced protein 1 conserved region (PF04674)
W 15, 16 At1g20190 alpha-expansin (AtEXPA11) 19,8 5 24817,74 9,84  1-20 expansin, family-45 endoglucanase-like domain profile (PS50842), 

expansin, cellulose-binding-like domain profile (PS50843), pollen 
allergen (PF01357)

W 16 At4g12880 early nodulin (AtEN20) (phytocyanin) 33,6 4 14273,34 9,64  1-18 plastocyanin-like domain (PF02298) (copper binding proteins)
W 19, 20 At4g27150* 2S albumin isoform 2 (protease inhibitor/seed storage/LTP family) 13,5 2 17473,78 6,34  1-17 protease inhibitor/seed storage/LTP family (PF00234)
W 19-21 At4g27160* 2S albumin isoform 3 (protease inhibitor/seed storage/LTP family) 14,0 2 16909,07 7,69  1-17 protease inhibitor/seed storage/LTP family (PF00234)

X 1 At1g28290 proline-rich protein 6,4 3 35913,36 10,77  1-24 histidine-rich region profile (PS50316), proline-rich region profile 
(PS50099), pollen proteins Ole e 1 family (PF01190)

X 2, 3 At5g11420 expressed protein (DUF642) 11,7 5 37344,57 7,70  1-22 domain of unknown function DUF 642 (PF04862)
X 4 At3g20820 expressed protein (LRR domains) 7,7 3 37850,70 9,90  1-19 typical LRR profile (PS50506), plant specific LRR profile (PS50502), 

SDS22+like LRR profile (PS50504)
X 4 At5g25460 expressed protein (DUF642) 12,5 4 37948,52 9,03  1-19 domain of unknown function DUF 642 (PF04862)
X 5 At5g14920 proline-rich protein Edman 

sequencing + 
MALDI-TOF-TOF 

3 26753,23 10,98  1-21 gibberellin regulated protein (PF02704)

X 6 At4g27170 2S albumin isoform 4 (protease inhibitor/seed storage/LTP family) 15,1 3 16946,26 7,80  1-21 protease inhibitor/seed storage/LTP family (PF00234)

Y 1 At5g11420 expressed protein (DUF642) 10,0 5 37344,57 7,70  1-22 domain of unknown function DUF 642 (PF04862)
Y 2 At5g25460 expressed protein (DUF642) 10,0 4 37948,52 9,03  1-19 domain of unknown function DUF 642 (PF04862)
Y 3 At5g14920 proline-rich protein Edman 

sequencing + 
MALDI-TOF-TOF 

MS c

3 26753,23 10,98  1-21 gibberellin regulated protein (PF02704)

b: Functional domains were predicted as described in Material and methods. PF stands for PFAM, PS for PROSITE and IPR for InterPro.
c: N-terminal sequencing, XXTLPS; LC-MS/MS sequencing, CGQHSR.

a: The following criteria were retained for protein identification: at least 4 peptides are required for proteins larger than 15 kDa, only 3 peptides can be used for proteins smaller than 15 kDa. Allowed modifications are 1 miscleavage and Met oxidation. In each series of samples ( i.e. , total and 
M to Z), the best score of identification is shown. 
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Table S3, supplementary material. Classification of proteins extracted from purified cell walls of 5-and 11-day-old Arabidopsis  hypocotyls in FPLC fractions A to Z.

* or # proteins that could not be distinguished
Colour code

secretory proteins (Presence of predicted signal peptide was checked using PSORT: http://psort.ims.u-tokyo.ac.jp/form.html, and TargetP: http://www.cbs.dtu.dk/services/TargetP/)
transmembrane domains (Presence of predicted transmembrane domains was checked using Aramemnon: http://aramemnon.botanik.uni-koeln.de/)
GPI anchors (presence or GPI anchors was checked using Aramemnon: http://aramemnon.botanik.uni-koeln.de/)
intracellular proteins
proteins identified after 1D-separation (1-DE), but not identified after 2D-separation (cationic exchange chromatography followed by 1-DE)
proteins only identified in cell walls of 5-day-old etiolated hypocotyls
proteins only identified in cell walls of 11-day-old etiolated hypocotyls

accession annotation 5-day-old hypocotyls 11-day-old hypocotyls
AGI total A B C D E F G H I J K L M total N O P Q R S T U V W X Y Z

predicted secreted proteins
proteins acting on carbohydrates

1
At2g06850 glycoside hydrolase family 16 (endoxyloglucan transferase) 

(AtXTH4) 1 1 1 1 1 1 1

2
At5g13870 glycoside hydrolase family 16 (endoxyloglucan transferase) 

(AtXTH5) 1

3
At3g44990 glycoside hydrolase family 16 (endoxyloglucan transferase) 

(AtXTH31) 1 1

4
At2g36870 glycoside hydrolase family 16 (endoxyloglucan transferase) 

(AtXTH32) 1

5
At1g10550 glycoside hydrolase family 16 (endoxyloglucan transferase) 

(AtXTH33) 1 1
6 At4g16260 glycoside hydrolase family 17 1 1
7 At4g19810 glycoside hydrolase family 18 (chitinase) 1
8 At3g12500 glycoside hydrolase family 19 (chitinase) 1 1 1
9 At3g55260 glycoside hydrolase family 20 (beta-hexosaminidase) 1

10 At1g19170 glycoside hydrolase family 28 (polygalacturonase) 1
11 At2g33160 glycoside hydrolase family 28 (polygalacturonase) 1
12 At3g06770 glycoside hydrolase family 28 (polygalacturonase) 1
13 At3g16850 glycoside hydrolase family 28 (polygalacturonase) 1 1 1 1 1 1 1 1 1 1
14 At3g61490 glycoside hydrolase family 28 (polygalacturonase) 1 1 1
15 At4g18180 glycoside hydrolase family 28 (polygalacturonase) 1
16 At1g68560 glycoside hydrolase family 31 (alpha-xylosidase) (AtXYL1) 1 1 1 1 1
17 At3g13790 glycoside hydrolase family 32 (beta-fructofuranosidase) 1 1

18
At5g34940 glycoside hydrolase family 79 (endo beta-

glucuronidase/heparanase) 1 1 1 1 1
19 At1g11580 carbohydrate esterase family 8 (pectin methylesterase) 1 1 1
20 At1g53830 carbohydrate esterase family 8 (pectin methylesterase) (AtPME2) 1 1 1 1
21 At3g14310 carbohydrate esterase family 8 (pectin methylesterase) (AtPME3) 1 1 1 1 1 1 1
22 At3g43270 carbohydrate esterase family 8 (pectin methylesterase) 1 1 1 1 1 1 1 1 1 1 1 1
23 At4g33220 carbohydrate esterase family 8 (pectin methylesterase) 1 1 1 1
24 At5g53370 carbohydrate esterase family 8 (pectin methylesterase) 1 1
25 At4g37950 polysaccharide lyase family 4 (rhamnogalacturonate lyase) 1
26 At1g05570 glycosyl transferase family 48 (callose synthase) (AtCalS1) 1 1
27 At5g02260 alpha-expansin (AtEXPA9) 1 1 1
28 At1g20190 alpha-expansin (AtEXPA11) 1 1 1 1 1 1 1 1 1 1 1
29 At5g39270 alpha expansin (AtEXP22) 1
30 At3g45970 expansin-like A (AtEXLA1) 1 1 1 1 1 1 1 1 1
31 At4g38400 expansin-like A (AtEXLA2) 1 1 1 1 1 1 1
32 At3g45960 expansin-like A (AtEXLA3) 1
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oxido-reductases
33 At1g71695 peroxidase (AtPrx12) 1 1 1
34 At3g21770 peroxidase (AtPrx30) 1 1
35 At3g32980 peroxidase (AtPrx32) 1 1 1 1 1 1 1
36 At3g49110 peroxidase (AtPrx33) 1
37 At3g49120 peroxidase (AtPrx34) 1 1 1 1 1 1
38 At3g50990 peroxidase (AtPrx36) 1
39 At5g25980 peroxidase (AtPrx43) 1
40 At4g30170 peroxidase (AtPrx45) 1 1 1 1 1 1 1
41 At5g17820 peroxidase (AtPrx57) 1
42 At5g64100 peroxidase (AtPrx69) 1 1 1 1
43 At5g66390 peroxidase (AtPrx72) 1
44 At2g30210 homologous to laccase (AtLAC3) 1 1 1 1

45
At1g30710 homologous to berberine-bridge enzyme (S)-reticulin:oxygen 

oxidoreductase 1

46
At4g20860 homologous to berberine-bridge enzyme (S)-reticulin:oxygen 

oxidoreductase 1 1

47
At5g44360 homologous to berberine-bridge enzyme (S)-reticulin:oxygen 

oxidoreductase 1 1

48
At5g44410 homologous to berberine-bridge enzyme (S)-reticulin:oxygen 

oxidoreductase 1

49
At1g01980 homologous to berberine-bridge enzyme (S)-reticulin:oxygen 

oxidoreductase 1
50 At2g02850 plantacyanin (AtPNC) (phytocyanin) 1
51 At4g12880 early nodulin (AtEN20) (phytocyanin) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
52 At5g22140 expressed protein (oxido-reductase domain) 1
53 At5g56490 expressed protein (FAD binding domain) 1

proteins with interacting domains
54 At1g53070 homologous to lectin (legume lectin domains) 1 1
55 At1g78820 homologous to lectin (curculin-like) 1 1
56 At1g78830 homologous to lectin (curculin-like) 1 1 1 1 1 1
57 At1g78850 homologous to lectin (curculin-like) 1 1 1 1 1 1 1 1 1
58 At1g78860 homologous to lectin (curculin-like) 1 1 1 1 1 1
59 At5g06860 PGIP1 (LRR domains) 1 1 1 1 1
60 T23B7.10 homologous to PGIP1 (LRR protein FLR1) 1 1 1 1 1
61 At5g12940 homologous to Phaseolus vulgaris  PGIP2 (LRR domains) 1 1 1 1 1 1 1 1 1
62 At1g33590 expressed protein (LRR domains) 1 1 1 1 1
63 At2g34930 expressed protein (LRR domains) 1 1 1
64 At3g20820 expressed protein (LRR domains) 1 1 1 1 1 1 1 1 1 1
65 At2g17120 expressed protein (LysM domain) 1 1
66 At1g03220 homologous to carrot EDGP and tomato XEGIP 1 1 1 1 1 1 1 1
67 At1g03230 homologous to carrot EDGP and tomato XEGIP 1 1 1 1 1 1 1 1 1 1
68 At5g19110 homologous to carrot EDGP and tomato XEGIP 1 1 1
69 At1g47710 homologous to serpin (serine protease inhibitor) 1 1 1

70
At1g17860 inhibitor family I3 (Kunitz-P family) (subfamily I3A unassigned 

peptidase inhibitor homologues, MEROPS) 1 1 1 1 1

71
At1g73260 inhibitor family I3 (Kunitz-P family) (subfamily I3A unassigned 

peptidase inhibitor homologues, MEROPS) 1 1 1 1 1 1 1 1

72
At1g47540 inhibitor family I18 (mustard trypsin inhibitor-2 family) (family I18 

unassigned peptidase inhibitor homologues, MEROPS) 1 1

73
At2g40880 inhibitor family I25 (phytostatin) (cystatin family, I25.014, MEROPS) 

1 1 1

74
At5g05110 inhibitor family I25 (phytostatin) (cystatin family, I25.014, MEROPS) 

1 1

75
At4g16500 inhibitor family I25 (cystatin family) (subfamily I25B unassigned 

peptidase inhibitor homologues, MEROPS) 1 1 1 1 1 1

76
At4g25260 homologous to plant invertase/ pectin methylesterase inhibitor 

(PMEI) 1 1

77
At5g46940 homologous to plant invertase/pectin methylesterase inhibitor (PMEI)

1

78
At5g46960 homologous to plant invertase/pectin methylesterase inhibitor (PMEI)

1
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proteases

79
At1g09750 homologous to aspartic protease (pepsin family) (Peptidase family 

A1, subfamily A1B unassigned peptidases, MEROPS) 1 1 1 1 1 1

80
At3g02740 homologous to aspartic protease (pepsin family) (Peptidase family 

A1, subfamily A1B unassigned peptidases, MEROPS) 1

81
At3g52500 homologous to aspartic protease (pepsin family) (Peptidase family 

A1, subfamily A1B unassigned peptidases, MEROPS) 1 1

82
At3g54400 homologous to aspartic protease (pepsin family) (Peptidase family 

A1, subfamily A1B unassigned peptidases, MEROPS) 1 1 1 1

83
At5g07030 homologous to aspartic protease (pepsin family) (Peptidase family 

A1, subfamily A1B unassigned peptidases, MEROPS) 1 1 1 1 1 1 1

84
At1g79720 homologous to aspartic protease (CND41 peptidase) (Peptidase 

family A1, subfamily A1.050 , MEROPS) 1

85
At5g10770 homologous to aspartic protease (CND41 peptidase) (Peptidase 

family A1, A01.050, MEROPS) 1 1 1

86
At1g47128 homologous to cysteine proteinase (papain family) (RD21A, 

Peptidase family C1, C01.064 MEROPS) 1 1 1 1 1 1 1

87
At5g43060 homologous to cysteine proteinase (papain family) (RD21 peptidase, 

Peptidase family C1, C01.064 MEROPS) 1 1 1 1 1 1 1 1 1 1

88
At4g01610 homologous to cysteine proteinase (papain family) (Cathepsin B, 

Peptidase family C1, C01.049, MEROPS) 1 1 1 1 1 1 1 1 1

89
At4g36880 homologous to cysteine protease (papain family) (Peptidase family 

C1, Brassicain, C01.021 MEROPS) 1

90
At3g02110 homologous to serine carboxypeptidase D (SCPL25) (Peptidase 

family S10, S10.005, MEROPS) 1 1 1 1 1 1 1 1

91
At5g23210 homologous to serine carboxypeptidase (SCPL34) (Peptidase family 

S10, S10.005, MEROPS) 1 1

92

At4g30610 homologous to serine carboxypeptidase (BRS1 - Brassinosteroid-
Insensitive BRI suppressor 1) (Peptidase family S10, S10.015 
MEROPS) 1 1 1

structural proteins
93 At1g28290 proline-rich protein 1 1 1 1 1 1 1 1 1 1
94 At5g14920 proline-rich protein 1 1 1 1 1
95 At2g05580 glycine-rich protein 1 1 1
96 At4g13340 LRR-extensin (AtLRX3) 1
97 At3g24480 LRR-extensin (AtLRX4) 1 1 1
98 At4g18670 LRR-extensin (AtLRX5) 1 1 1

signaling
99 At4g05200 homologous to receptor kinase (RLK, DUF26-1b subfamily) 1

100 At5g55730 fasciclin-like arabinogalactan protein (AtFLA1) 1 1 1
proteins related to lipid metabolism

101 At1g29670 homologous to lipase/acylhydrolase (GDSL family) 1 1 1 1
102 At1g54010 homologous to lipase/acylhydrolase (GDSL family) 1 1
103 At1g54030 homologous to lipase/acylhydrolase (GDSL family) 1 1
104 At3g48460 homologous to lipase/acylhydrolase (GDSL family) 1 1 1
105 At5g15720 homologous to lipase/acylhydrolase (GDSL family) 1
106 At2g38530 non-specific lipid transfer protein type 1 (LTP2) 1 1 1 1 1 1 1 1 1 1 1

107
At5g23820 expressed protein (ML domain - MD-2-related lipid recognition 

domain) 1
108 At2g16001 expressed protein (lipid recognition domain) 1

miscellaneous functions
109 At2g27190 homologous to purple acid phosphatase (PAP1) 1 1 1 1 1
110 At3g07130 homologous to purple acid phosphatase 1 1 1
111 At5g34850 homologous to purple acid phosphatase 1
112 At4g29270 homologous to acid phosphatase 1 1 1 1 1 1 1
113 At4g24340 homologous to phosphorylase 1
114 At3g02870 homologous to myo-inositol monophosphatase 1
115 At5g09440 homologous to Nicotiana tabacum  phi-I 1 1 1 1 1 1 1 1 1 1
116 At5g64260 homologous to Nicotiana tabacum  phi-I 1 1 1 1 1 1 1 1 1

117
At5g66590 homologous to Nicotiana tabacum  pathogenesis-related protein PR1

1 1 1 1 1 1 1
118 At2g28790 homologous to Lycopersicon esculentum  osmotin 1 1 1 1 1 1 1 1
119 At5g15230 gibberellin-regulated protein (GASA4) 1
120 At4g27110 homologous to COBRA (AtCOBL10) 1
121 At1g09560 germin (subfamily 2, member 1, GLP5) 1 1
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unknown function
122 At3g56750 expressed protein 1
123 At3g22000 expressed protein (DUF26) 1
124 At1g26850 expressed protein (DUF248) 1
125 At1g80240 expressed protein (DUF642) 1 1
126 At3g08030 expressed protein (DUF642) 1 1
127 At4g32460 expressed protein (DUF642) 1 1 1 1 1 1 1
128 At5g11420 expressed protein (DUF642) 1 1 1 1 1 1 1 1 1 1 1 1 1
129 At5g25460 expressed protein (DUF642) 1 1 1 1 1 1 1 1 1 1 1
130 At1g78460 expressed protein (SOUL heme binding domain) 1
131 At2g04690 expressed protein (homologous to a human brain CREG protein) 1 1 1 1 1
132 At2g15220 expressed protein (Plant Basic Secreted Protein domain) 1 1 1
133 At2g34700 expressed protein (Ole e1 allergen domain) 1 1 1
134 At3g20370 expressed protein (MATH domain) 1
135 At2g28490 expressed protein (cupin domain) 1 1 1 1 1 1 1 1
136 At3g22640 expressed protein (cupin domain) 1 1 1 1 1 1
137 At4g36700 expressed protein (cupin domain) 1 1 1

total number of predicted secreted proteins 46 10 2 0 4 28 33 44 41 37 26 11 2 0 52 8 4 0 20 27 34 42 25 20 14 5 3 0

predicted intracellular proteins
1 At1g67090 RUBISCO small subunit A1 1 1 1 1 1 1 1
2 At5g38410* RUBISCO small subunit B3 1 1 1 1 1 1 1
3 At5g38420* RUBISCO small subunit B2 1 1 1 1 1 1
4 At5g38430* RUBISCO small subunit B1 1 1 1 1 1 1
5 ArthCp030 RUBISCO large subunit (RBCL) 1
6 At4g01900 PII nitrogen sensing protein (GLB I) 1 1
7 At1g11840 glyoxalase I homologue (lactoylglutathione lyase) (ATGLX1) 1 1 1
8 At1g67280 glyoxalase I homologue (lactoylglutathione lyase) (AtGLX1) 1
9 At1g42970 glycereldehyde 3-phosphate dehydrogenase 1

10 At1g23190 homologous to phosphoglycomutase 1

11
At3g15020* homologous to mitochondrial NAD-dependent malate 

dehydrogenase 1

12
At1g53240* homologous to mitochondrial NAD-dependent malate 

dehydrogenase 1 1 1
13 At3g01590 homologous to aldose 1-epimerase 1
14 At1g77810 glycosyl transferase family 31 (galactosyl transferase) 1
15 At3g15670 homologous to late embryogenesis abundant protein (LEA) 1 1
16 At1g31340 polyubiquitin (AtUBQ7) (*and/or ubiquitin extension protein) 1
17 At3g20390 homologous to endoribonuclease 1
18 At3g55440 triose phosphate isomerase 1 1
19 At3g57140 homologous to patatin (phospholipase domain) 1
20 At3g63190 homologous to ribosome recycling factor 1
21 At3g11630 homologous to 2-Cys peroxiredoxin 1 1
22 At1g70830 homologous to Bet v I allergen family 1 1
23 At1g70850 homologous to Bet v I allergen family 1 1 1 1 1 1 1 1
24 At4g23670 homologous to Bet v I allergen family 1 1
25 At4g23680 homologous to Bet v I allergen family 1 1
26 At4g39260 homologous to RNA binding protein (AtGRP8) 1 1 1
27 At5g01300 homologous to phosphatidylethanolamine-binding protein 1 1
28 At4g27150 2S albumin isoform 2 (protease inhibitor/seed storage/LTP family) 1 1 1 1 1 1
29 At4g27160 2S albumin isoform 3 (protease inhibitor/seed storage/LTP family) 1 1 1 1 1 1 1 1
30 At4g27170 2S albumin isoform 4 (protease inhibitor/seed storage/LTP family) 1 1 1 1
31 At2g37620# actin (ACT1) 1 1
32 At3g53750# actin (ACT3) 1 1
33 At5g59370* actin (ACT4) 1
34 At3g46520* actin (ACT12) 1
35 At5g66090 expressed protein 1
36 At1g09310 expressed protein (DUF538) 1 1 1 1

number of predicted intracellular proteins 6 3 0 0 0 6 16 5 4 6 4 2 3 0 15 1 1 0 1 7 3 3 7 2 2 2 0 0
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CWPs identified only in 5-day-old etiolated hypocotyls
CWPs identified only in 11-day-old etiolated hypocotyls

nd QI was not calculated since the protein was identified in the same separation conditions in the two samples. 

accession annotation 5 day-old hypocotyls 11day-old hypocotyls
1D- and 2D-
separations

1D-
separation

2D-
separation

AGI QI QI only only
proteins acting on carbohydrates

At2g06850 glycoside hydrolase family 16 (endoxyloglucan transferase) (AtXTH4) 4,59 1,35 1  

At5g13870 glycoside hydrolase family 16 (endoxyloglucan transferase) (AtXTH5) 0,40 1

At3g44990 glycoside hydrolase family 16 (endoxyloglucan transferase) (AtXTH31) 0,41 1

At2g36870 glycoside hydrolase family 16 (endoxyloglucan transferase) (AtXTH32) 0,16 1

At1g10550 glycoside hydrolase family 16 (endoxyloglucan transferase) (AtXTH33) 0,56 0,20  1
At4g16260 glycoside hydrolase family 17 0,32 1
At4g19810 glycoside hydrolase family 18 (chitinase) 0,74 0,18  1
At3g12500 glycoside hydrolase family 19 (chitinase) 0,34 0,41 1
At3g55260 glycoside hydrolase family 20 (beta-hexosaminidase) 0,17 1
At1g19170 glycoside hydrolase family 28 (polygalacturonase) 0,21 1
At4g18180 glycoside hydrolase family 28 (polygalacturonase) 0,25 1
At3g16850 glycoside hydrolase family 28 (polygalacturonase) 3,77 2,38 1
At3g06770 glycoside hydrolase family 28 (polygalacturonase) 0,28 1
At3g61490 glycoside hydrolase family 28 (polygalacturonase) 0,39 0,33 1
At2g33160 glycoside hydrolase family 28 (polygalacturonase) 0,08 1

At1g68560 glycoside hydrolase family 31 (alpha-xylosidase) (AtXYL1) 1,62 0,82 1  

At3g13790 glycosyl hydrolase family 32 (beta-fructofuranosidase) 0,09 0,16 1

At5g34940 glycosyl hydrolase family 79 (endo-beta-glucuronidase/heparanase) 0,94 0,11 1  

At1g53830 carbohydrate esterase family 8 (pectin methylesterase) (AtPME2) 0,78 0,10  1

At3g14310 carbohydrate esterase family 8 (pectin methylesterase) (AtPME3) 1,08 0,65 1

At3g43270 carbohydrate esterase family 8 (pectin methylesterase) 2,24 1,23 1

At4g33220 carbohydrate esterase family 8 (pectin methylesterase) 0,42 0,77 1

At1g11580 carbohydrate esterase family 8 (pectin methylesterase) 0,96 1

At5g53370 carbohydrate esterase family 8 (pectin methylesterase) 0,10 1

At4g37950 polysaccharide lyase family 4 (rhamnogalacturonate lyase)  0,90 1

At1g05570 glycoside transferase family 48 (callose synthase 1) (AtCalS1) 0,04 0,03 1

At5g02260 alpha-expansin (AtEXP9) 1,22 0,43  1

At1g20190 alpha-expansin (AtEXPA11) 2,22 2,59 1

At5g39270 alpha-expansin (AtEXPA22) 0,11 1

At3g45970 expansin-like A (AtEXLA1) 3,45 2,04 1

At4g38400 expansin-like A (AtEXLA2) 1,48 0,67 1  

Table S4, supplementary material. Semi-quantification of CWPs identified by MALDI-TOF MS from 5- and 11-day-old etiolated Arabidopsis  hypocotyls.

A quantification index (QI) is attributed to each protein in each sample ( 5- and 11-day-old etiolated hypocotyls). It was calculated by adding the percentages of coverage by peptide mass mapping in all
the bands in which the protein was identified. When the protein was only identified in the total extracts after 1D-E (1D-separation), the values obtained for this identification were retained. When the
protein was identified only after cation exchange chromatography and 1D-E of the eluted fractions (2D-separation), the values obtained for this identification were retained. When the protein was
identified in both cases, only the values corresponding to the latter were taken into account. 
Only differences higher than 2-fold were considered as significant and are indicated in bold red.
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At3g45960 expansin-like A (AtEXLA3) 0,14 1

oxido-reductases

At1g71695 peroxidase (AtPrx12) 0,27 0,87 1

At3g21770 peroxidase (AtPrx30) 0,15 0,15 1

At3g32980 peroxidase (AtPrx32) 3,18 0,87  1

At3g49110 peroxidase (AtPrx33)  0,16  1

At3g49120 peroxidase (AtPrx34) 1,53 2,04 1

At3g50990 peroxidase (AtPrx36) 0,10 1

At4g25980 peroxidase (AtPrx43) 0,19 1

At4g30170 peroxidase (AtPrx45) 1,92 2,57 1

At5g17820 peroxidase (AtPrx57) 0,23 1

At5g64100 peroxidase (AtPrx69) 0,35 0,26 1

At5g66390 peroxidase (AtPrx72) 0,19  1

At2g30210 homologous to laccase (AtLAC3) 0,40 0,56 1

At4g20860 homologous to berberine-bridge enzyme (S)-reticulin:oxygen oxidoreductase 0,16 1

At5g44360 homologous to berberine-bridge enzyme (S)-reticulin:oxygen oxidoreductase 0,08 0,16 1

At5g44410 homologous to berberine-bridge enzyme (S)-reticulin:oxygen oxidoreductase 0,12 1

At1g30710 homologous to berberine-bridge enzyme (S)-reticulin:oxygen oxidoreductase 0,16 1

At1g09610 homologous to berberine-bridge enzyme (S)-reticulin:oxygen oxidoreductase 0,12
At4g12880 early nodulin (AtEN20) (phytocyanin) 11,84 5,66 1  

At2g02850 plantacyanin (AtPNC) (phytocyanin) 0,20 1

At5g22140 expressed protein (oxidoreductase domain) 0,28 1
At5g56490 expressed protein (FAD binding domain) 0,15 1

proteases

At5g07030
homologous to aspartic protease (pepsin family) (Peptidase family A1, subfamily A1B 
unassigned peptidases, MEROPS) 1,43 0,86 1

At1g09750
homologous to aspartic protease (pepsin family) (Peptidase family A1, subfamily A1B 
unassigned peptidases, MEROPS) 1,94 0,97 1  

At3g54400
homologous to aspartic protease (pepsin family) (Peptidase family A1, subfamily A1B 
unassigned peptidases, MEROPS) 0,59 0,78 1

At5g10770
homologous to aspartic protease (CND41 peptidase) (Peptidase family A1, A01.050, 
MEROPS) 0,34 0,42 1

At3g02740
homologous to aspartic protease (pepsin family) (Peptidase family A1, subfamily A1B 
unassigned peptidases, MEROPS) 0,14 1

At1g79720
homologous to aspartic protease (CND41 peptidase) (Peptidase family A1, subfamily 
A1.050 , MEROPS) 0,20 1

At3g52500
homologous to aspartic protease (pepsin family) (Peptidase family A1, subfamily A1B 
unassigned peptidases, MEROPS) 0,28 1

At5g43060
homologous to cysteine proteinase (papain family) (RD21 peptidase, Peptidase family 
C1, C01.064 MEROPS) 1,78 1,65 1

At1g47128
homologous to cysteine proteinase (papain family) (RD21A, Peptidase family C1, 
C01.064 MEROPS) 0,73 1,30 1

At4g01610
homologous to cysteine proteinase (papain family) (Cathepsin B, Peptidase family C1, 
C01.049, MEROPS) 1,43 1,50 1

At4g36880
homologous to cysteine protease (papain family) (Peptidase family C1, Brassicain, 
C01.021 MEROPS) 0,16 1

At4g30610
homologous to serine carboxypeptidase (BRS1 - Brassinosteroid-Insensitive BRI 
suppressor 1) (Peptidase family S10, S10.015 MEROPS) 0,45 1

At3g02110
homologous to serine carboxypeptidase D (SCPL25) (Peptidase family S10, S10.005, 
MEROPS) 1,69 0,71 1  

At5g23210
homologous to serine carboxypeptidase (SCPL34) (Peptidase family S10, S10.005, 
MEROPS)  nd 1
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proteins with interacting domains

At1g53070 homologous to lectin (legume lectin domains) 0,71 0,16  1
At1g78820 homologous to lectin (curculin-like) 0,39 1

At1g78830 homologous to lectin (curculin-like) 2,38 1,48 1

At1g78850 homologous to lectin (curculin-like) 1,93 1,98 1

At1g78860 homologous to lectin (curculin-like) 0,84 0,24 1  

At5g06860 PGIP1 1,16 1,91 1

T23B7.10 homologous to PGIP1 (LRR protein FLR1) 0,61 1,55 1  

At5g12940 homologous to Phaseolus vulgaris  PGIP2 (LRR domains) 3,85 4,44 1

At1g33590 expressed protein (LRR domains) 1,19 1,11 1

At2g34930 expressed protein (LRR domains) 0,46 0,24  1

At3g20820 expressed protein (LRR domains) 2,15 5,12 1

At2g17120 expressed protein (LysM domain) 1,18 0,35 1

At5g19110 homologous to carrot EDGP and to tomato XEGIP 0,84 0,39  1

At1g03220 homologous to carrot EDGP and to tomato XEGIP 2,37 4,02 1

At1g03230 homologous to carrot EDGP and to tomato XEGIP 1,65 1,55 1

At1g47710 homolog to serpin (serine protease inhibitor) 1,33 0,20  1
At1g17860 inhibitor family I3 (Kunitz-P family) (subfamily I3A unassigned peptidase inhibitor 

homologues, MEROPS) 1,78 1,81 1
At1g73260 inhibitor family I3 (Kunitz-P family) (subfamily I3A unassigned peptidase inhibitor 

homologues, MEROPS) 0,30 5,13 1  
At1g47540 inhibitor family I18 (mustard trypsin inhibitor-2 family) (family I18 unassigned peptidase 

inhibitor homologues, MEROPS) nd nd 1  

At2g40880 inhibitor family I25 (phytostatin) (cystatin family, I25.014, MEROPS) 0,22 0,31 1  

At5g05110 inhibitor family I25 (phytostatin) (cystatin family, I25.014, MEROPS) 0,10 0,17 1
At4g16500 inhibitor family I25 (cystatin family) (subfamily I25B unassigned peptidase inhibitor 

homologues, MEROPS) 2,12 5,61 1

At4g25260 homologous to plant invertase/ pectin methylesterase inhibitor (PMEI) 0,34 0,17 1

At5g46940 homologous to plant invertase/pectine methylesterase inhibitor (PMEI) 0,19 1
At5g46960 homologous to plant invertase/pectine methylesterase inhibitor (PMEI) 0,44 1

structural proteins

At1g28290 proline-rich protein 2,61 2,14 1

At5g14920 proline-rich protein 0,17 0,29 1

At2g05580 glycine-rich protein 0,74 1,61 1  

At4g13340 LRR-extensin (AtLRX3) 0,08 1

At3g24480 LRR-extensin (AtLRX4) 0,12 0,33 1
At4g18670 LRR-extensin (AtLRX5) 0,07 0,11 1

signaling

At4g05200 homologous to receptor-kinase (RLK, DUF26-1b subfamily) 0,09 1
At5g55730 fasciclin-like arabinogalactan protein (AtFLA1) 0,19 0,58 1
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proteins related to lipid metabolism
At1g29670 homologous to lipase/acylhydrolase (GDSL family) 2,27 0,75 1  
At1g54010 homologous to lipase/acylhydrolase (GDSL family) 1,67 1
At1g54030 homologous to lipase/acylhydrolase (GDSL family) 0,12 0,23 1
At5g15720 homologous to lipase/acylhydrolase (GDSL family)  0,13 1
At3g48460 homologous to lipase/acylhydrolase (GDSL family) 0,98 0,21 1
At2g38530 non-specific lipid transfer protein type 1 (LTP2) 5,26 9,07 1  
At5g23820 expressed protein (ML domain - MD-2-related lipid recognition domain) 0,80 1
At2g16001 expressed protein (lipid recognition domain) 0,61 1

miscellaneous functions
At2g28790 homologous to Lycopersicon esculentum  osmotin 1,06 0,96 1

At5g15230 gibberellin-regulated protein (GASA4) 0,47 1

At3g07130 homologous to Glycine max  phytase and to purple acid phosphatase 0,25 0,11  1

At2g27190 homologous to purple acid phosphatase (PAP1) 0,60 0,24 1  

At5g34850 homologous to purple acid phosphatase 0,38 1

At4g29270 homologous to acid phosphatase 2,53 0,79 1  

At4g24340 homologous to phosphorylase 0,33 1

At3g02870 homologous to myo-inositol monophosphatase 0,34 1

At5g09440 homologous to N. tabacum  phi-I 3,35 2,52 1

At5g64260 homologous to N. tabacum  phi-I 2,37 1,67 1

At4g27110 homologous to COBRA (AtCOBL10) 0,08 1

At5g66590 homologous to Nicotiana tabacum  pathogenesis-related protein PR1 7,86 5,2 1

At1g09560 germin (subfamily 2, member 1, GLP5) 0,29 1

unknown function
At3g56750 expressed protein  0,09 1

At3g22000 expressed protein (DUF26) 0,15 1

At1g26850 expressed protein (DUF248) 0,07 1

At1g80240 expressed protein (DUF642) nd nd 1  

At3g08030 expressed protein (DUF642) 0,73 0,76 1

At4g32460 expressed protein (DUF642) 1,21 0,50 1  

At5g11420 expressed protein (DUF642) 20,05 24,30 1

At5g25460 expressed protein (DUF642) 20,12 23,77 1

At3g20370 expressed protein (MATH domain) 0,57 1

At2g04690 expressed protein (homologous to a human CREG protein) 1,07 1,11 1

At1g78460 expressed protein (SOUL heme binding domain) 0,17 1

At2g34700 expressed protein (Ole e1 allergen domain) 1,51 1,00 1

At2g15220 expressed protein (Plant Basic Secreted Protein domain) 0,30 0,85 1
At2g28490 expressed protein (cupin domain) 1,23 0,09 1
At3g22640 expressed protein (cupin domain) 0,12 0,09 1
At4g36700 expressed protein (cupin domain) 1,96 1
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Additional data file 1

Gene family AGI number Predicted or known gene function CATMA probe 5 day-old hypocotyls 11 day-old hypocotyls ratio 11 days / 
5 days

p-value

prolyl-4-hydroxylases a 
AT5G18900 CATMA5A17270 9,67 9,60 -0,07 1,00
AT2G43080 AtP4H1 CATMA2A41480 8,77 8,77 -0,01 1,00
AT4G33910 CATMA4A35710 8,70 7,96 -0,74 1,85E-02
AT1G20270 CATMA1A19270 7,54 7,62 0,08 1,00
AT3G28480 CATMA3A28370 7,23 7,07 -0,16 1,00
AT4G25600 CATMA4A27290 6,87 7,00 0,13 1,00

nucleotide-sugar interconversion pathway 
b AT5G39320 UGD1 CATMA5A34920 11,43 11,03 -0,40 1,00

AT1G08200 AXS2 CATMA1A07190 10,34 9,98 -0,36 1,00
AT5G15490 UGD3 CATMA5A13740 9,73 9,46 -0,27 1,00
AT5G28840 GME1 CATMA5A26920 9,53 9,49 -0,04 1,00
AT1G53500 RHM2 CATMA1A44530 9,11 8,83 -0,28 1,00
AT1G17890 GER2 CATMA1A16900 9,00 8,83 -0,18 1,00
AT4G30440 GAE1 CATMA4A32050 8,86 8,69 -0,17 1,00
AT2G27860 AXS1 CATMA2A26260 8,75 8,68 -0,07 1,00
AT5G66280 GMD1 CATMA5A61645 8,59 8,17 -0,42 1,00
AT3G23820 GAE6 CATMA3A23780 8,54 8,51 -0,02 1,00
AT3G46440 SUD1 CATMA3A39510 8,49 8,36 -0,13 1,00
AT4G00110 GAE3 CATMA4A00110 7,89 7,81 -0,08 1,00
AT1G73250 GER1 CATMA1A62530 7,82 8,02 0,20 1,00
AT1G30620 UXE1 (MUR4) CATMA1A28670 7,78 7,82 0,03 1,00
AT2G47650 AUD2 CATMA2A46090 7,75 7,61 -0,13 1,00
AT1G02000 GAE2 CATMA1A00990 7,70 7,58 -0,12 1,00
AT1G26570 UGD4 CATMA1A24800 7,58 7,31 -0,27 1,00
AT2G34850 UXE2 CATMA2A32970 7,51 7,49 -0,02 1,00
AT2G45310 GAE4 CATMA2A43710 7,46 7,71 0,25 1,00
AT1G12780 UGE1 CATMA1A11765 7,29 7,78 0,49 1,00
AT1G64440 UGE4 CATMA1A53740 7,25 7,04 -0,21 1,00
AT3G62830 AUD CATMA3A55995 7,21 7,06 -0,15 1,00
AT1G63000 UER1 CATMA1A52170 7,18 7,08 -0,10 1,00
AT3G51160 GMD2 (MUR1) CATMA3A44165 6,91 6,87 -0,05 1,00

glycosyl transferases (GTs)

GT8 c AT5G18480 Group E CATMA5A16780 9,66 9,36 -0,30 1,00
AT1G77130 Group A CATMA1A66340 9,40 8,95 -0,45 1,00
AT2G20810 Group D (GAUT10) CATMA2A19380 9,11 8,64 -0,47 1,00
AT3G62660 Group C (GATL7) CATMA3A55830 8,70 8,52 -0,18 1,00
AT3G02350 Group D (GAUT9) CATMA3A01330 8,69 8,47 -0,22 1,00
AT5G15470 Group D (GAUT14) CATMA5A13720 8,26 8,01 -0,25 1,00
AT1G18580 Group D (GAUT11) CATMA1A17620 8,09 7,88 -0,21 1,00
AT1G19300 Group C (GATL1=Parvus) CATMA1A18330 8,06 7,93 -0,14 1,00
AT3G01040 Group D (GAUT13) CATMA3A00060 8,06 7,82 -0,24 1,00
AT2G38650 Group D (GAUT7) CATMA2A36930 8,03 8,02 -0,01 1,00
AT3G61130 Group D (GAUT1) CATMA3A54300 7,99 7,87 -0,12 1,00
AT1G24170 Group C (GATL8) CATMA1A23060 7,89 7,94 0,05 1,00

Table 1. Cell Wall Genes (CWGs) with detectable levels of transcripts in 5- and 11-day-old hypocotyls. CWGs were selected according to several papers and databases as mentioned at the bottom of the Table. The intensity of the signal is
expressed as log2, the ratio between the levels of transcripts at 11 days and 5 days as well as the p-value are indicated. CWGs are classified by gene family and level of transcripts: below background in black, low level in blue (between background and
9), moderate level in green (between 9 and 10) and high level in red (higher than 10). Significant Bonferroni p-values are highlighted in green (p<5%)
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AT4G38270 Group D (GAUT3) CATMA4A39780 7,75 7,92 0,17 1,00
AT3G18660 Group A (PGS1P1) CATMA3A18270 7,64 7,18 -0,46 1,00
AT1G13250 Group C (GATL3) CATMA1A12260 7,58 7,33 -0,25 1,00
AT1G70090 Group C (GATL9) CATMA1A59370 7,38 7,28 -0,10 1,00
AT5G47780 Group D (GAUT4) CATMA5A43750 7,37 7,49 0,12 1,00
AT3G28340 Group C (GATL10) CATMA3A28190 7,11 6,99 -0,13 1,00
AT1G02720 Group C (GATL5) CATMA1A01680 6,91 6,84 -0,07 1,00
AT3G58790 Group D (GAUT15) CATMA3A51790 6,78 6,72 -0,06 1,00
AT2G35710 Group E CATMA2A33890 6,77 6,80 0,03 1,00
AT1G56600 Group B (AtGolS2) CATMA1A47690 6,73 7,26 0,53 1,00
AT5G30500 Group B CATMA5A27960 6,68 6,77 0,10 1,00

GT31 d AT4G00300 Group A CATMA4A00350 9,68 8,84 -0,84 4,22E-04
AT1G05170 Group E CATMA1A04030 9,55 9,00 -0,55 1,00
AT1G77810 Group E CATMA1A66970 8,26 8,19 -0,07 1,00
AT3G14960 Group C CATMA3A14310 8,22 8,38 0,16 1,00
AT2G32430 Group E CATMA2A30720 8,19 7,96 -0,23 1,00
AT3G11420 Group A CATMA3A10410 7,86 8,03 0,17 1,00
AT2G26100 Group C CATMA2A24460 7,68 7,71 0,04 1,00
AT5G41460 Group A CATMA5A37060 7,00 6,72 -0,28 1,00
AT1G33250 Group A CATMA1A31530 6,95 7,11 0,16 1,00
AT5G53340 Group D CATMA5A49250 6,93 6,95 0,02 1,00
AT1G53290 Group C CATMA1A44310 6,88 6,86 -0,02 1,00

GT34 e AT2G22900 CATMA2A21380 10,09 9,72 -0,36 1,00
AT4G02500 CATMA4A02820 9,31 8,99 -0,31 1,00
AT3G62720 XT1 CATMA3A55880 7,63 7,47 -0,17 1,00
AT1G74380 CATMA1A63770 7,60 7,37 -0,23 1,00
AT2G22900 CATMA2B21380 7,35 7,21 -0,14 1,00
AT1G18690 CATMA1A17720 6,68 6,77 0,09 1,00

GT37 f AT2G03220 FUT1 (MUR2) CATMA2A02125 6,74 6,79 0,05 1,00
AT1G14070 FUT7 CATMA1A13020 6,77 6,69 -0,08 1,00

GT47 g AT2G28110 Group E (FRA8) CATMA2A26510 11,39 10,73 -0,67 1,86E-01
AT5G22940 Group E CATMA5A20440 9,40 8,74 -0,66 2,06E-01
AT5G61840 Group E (AtGUT2) CATMA5A57440 8,58 8,34 -0,24 1,00
AT4G16745 Group D CATMA4A17710 8,23 7,85 -0,38 1,00
AT2G20370 Group A (MUR3) CATMA2A18850 8,06 7,78 -0,27 1,00
AT4G22580 Group A (AtGT19) CATMA4A24310 8,04 8,05 0,01 1,00
AT1G27440 Group E (AtGUT1) CATMA1A25670 7,83 7,82 0,00 1,00
AT4G38040 Group D CATMA4A39540 7,68 7,72 0,03 1,00
AT3G57630 Group E CATMA3A50640 7,61 7,28 -0,33 1,00
AT5G62220 Group A (AtGT18) CATMA5A57810 7,60 7,53 -0,06 1,00
AT5G33290 Group C CATMA5A28910 7,57 7,32 -0,26 1,00
AT2G31990 Group A (AtGT15) CATMA2A30260 7,56 7,55 -0,01 1,00
AT1G21480 Group D CATMA1A20530 7,43 7,38 -0,05 1,00
AT2G35100 Group B (ARAD1) CATMA2A33240 7,34 7,17 -0,17 1,00
AT1G34270 Group B CATMA1A32570 7,26 7,15 -0,11 1,00
AT1G67410 Group B CATMA1A56730 7,12 6,89 -0,23 1,00
AT5G16890 Group B CATMA5A15200 7,10 6,95 -0,15 1,00
AT4G16745 Group D CATMA4A17700 7,09 7,20 0,11 1,00
AT1G74680 Group B CATMA1A64050 7,09 6,87 -0,22 1,00
AT5G33290 Group C CATMA5A28900 6,98 6,93 -0,04 1,00
AT5G44930 Group B CATMA5A40770 6,91 7,11 0,20 1,00
AT5G11610 Group D CATMA5A10380 6,90 6,90 0,00 1,00
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AT4G13990 Group A (AtGT14) CATMA4A14190 6,88 6,83 -0,05 1,00
AT5G03800 Group C CATMA5A02990 6,84 6,80 -0,04 1,00
AT5G19670 Group D CATMA5A18100 6,80 6,83 0,03 1,00
AT5G25310 Group C CATMA5A23020 6,80 6,63 -0,17 1,00
AT5G03800 Group C CATMA5A03000 6,79 6,77 -0,02 1,00

GT77 h AT1G19360 CATMA1A18380 9,97 9,52 -0,45 1,00
AT2G35610 CATMA2A33740 7,60 7,41 -0,20 1,00
AT2G35610 CATMA2A33750 7,33 7,17 -0,16 1,00
AT5G44820 CATMA5A40660 7,23 7,01 -0,22 1,00
AT1G75110 RRA2 CATMA1A64440 7,01 6,90 -0,12 1,00
AT1G14590 CATMA1A13610 6,94 6,95 0,01 1,00

GT2 (cellulose synthases) i AT5G05170 AtCESA3 (primary wall) CATMA5A04375 10,36 9,89 -0,47 1,00
AT5G09870 AtCESA5 (unknown function) CATMA5A08637 10,01 9,11 -0,90 3,26E-05
AT4G39350 AtCESA2 (unknown function) CATMA4A40743 9,80 8,99 -0,82 9,50E-04
AT4G32410 AtCESA1 (primary wall) CATMA4A34150 9,80 9,53 -0,27 1,00
AT2G25540 AtCesA10 (unknown function) CATMA2A23880 7,63 7,25 -0,38 1,00
AT5G44030 AtCESA4 (secondary wall) CATMA5A39800 7,60 7,28 -0,31 1,00
AT5G17420 AtCesA7 (secondary wall) CATMA5A15680 6,94 6,87 -0,08 1,00

GT2 (cellulose synthases-like) i AT5G03760 AtCSLA9 CATMA5A02940 8,94 8,47 -0,47 1,00
AT3G28180 AtCSLC4 CATMA3A06563 8,93 8,66 -0,26 1,00
AT5G22740 AtCSLA2 CATMA5A20200 8,63 8,45 -0,18 1,00
AT2G35650 AtCSlA7 CATMA2A33860 8,60 8,21 -0,39 1,00
AT3G07330 AtCSLC6 CATMA3A28010 8,57 9,03 0,46 1,00
AT2G33100 AtCslD1 CATMA2A31270 7,32 6,99 -0,33 1,00
AT1G55850 AtCSLE1 CATMA1A47044 7,19 7,92 0,73 1,98E-02
AT1G23480 AtCslA3 CATMA1A22512 7,04 6,99 -0,05 1,00

GT48 (callose synthases) j AT1G05570 AtGSL6 (CALS1) CATMA1A04500 9,17 8,14 -1,03 8,89E-08
AT2G31960 AtGSL3 CATMA2A30240 9,15 8,71 -0,44 1,00
AT5G13000 AtGSL12 CATMA5A11220 8,68 8,64 -0,04 1,00
AT2G36850 AtGSL8 CATMA2A35110 7,90 7,92 0,02 1,00
AT3G07160 AtGSL10 CATMA3A06350 7,87 7,77 -0,09 1,00

vesicle trafficking (emp24/gp25L/p24 family 
protein) k AT1G69460 CATMA1A58750 10,17 10,55 0,37 1,00

AT1G57620 CATMA1A47920 8,70 9,08 0,37 1,00
AT3G07680 CATMA3A06940 8,26 8,69 0,43 1,00
AT1G14010 CATMA1A12960 8,03 8,03 0,00 1,00
AT1G21900 CATMA1A21000 7,69 7,75 0,06 1,00
AT1G09580 CATMA1A08430 7,05 7,09 0,03 1,00

glycosyl hydrolases (GHs)

GH9 (endoglucanases) l AT4G02290 CATMA4A02560 11,10 10,08 -1,02 1,57E-07
AT1G64390 CATMA1A53700 10,68 10,19 -0,49 1,00
AT5G49720 AtKOR CATMA5A45658 9,64 9,94 0,30 1,00
AT1G70710 AtCEL1 CATMA1A59990 9,32 8,93 -0,39 1,00
AT1G75680 CATMA1A64980 8,37 8,20 -0,17 1,00
AT4G24260 CATMA4A25995 7,70 7,88 0,18 1,00
AT1G71380 CATMA1A60700 7,70 7,68 -0,02 1,00
AT2G32990 CATMA2A31180 7,35 7,23 -0,12 1,00
AT4G39000 CATMA4A40450 6,68 6,83 0,15 1,00

GH16 (xyloglucan 
endotransglycosylases/hydrolases) (XTHs) AT2G06850 At-XTH4 CATMA2A05540 12,98 12,15 -0,83 6,40E-04

AT4G14130 At-XTH15 CATMA4A14375 12,72 11,98 -0,74 1,62E-02
AT4G30290 At-XTH19 CATMA4A31900 11,37 11,40 0,03 1,00

173



Table S1, supplementary data Chapter 5

AT4G30270 At-XTH24 (MERI-5) CATMA4A31885 10,84 11,64 0,80 1,63E-03
AT1G32170 At-XTH30 CATMA1A30510 10,06 9,85 -0,21 1,00
AT2G01850 At-XTH27 CATMA2A00905 9,92 9,56 -0,36 1,00
AT1G11545 At-XTH8 CATMA1A10510 9,18 9,03 -0,15 1,00
AT1G14720 At-XTH28 CATMA1A13765 8,78 8,92 0,14 1,00
AT4G37800 At-XTH7 CATMA4A39300 8,70 8,17 -0,52 1,00
AT2G36870 At-XTH32 CATMA2A35140 8,31 7,86 -0,45 1,00
AT5G13870 At-XTH5 CATMA5A12105 8,17 8,15 -0,02 1,00
AT3G23730 At-XTH16 CATMA3A23670 7,79 7,81 0,02 1,00
AT5G48070 At-XTH20 CATMA5A44050 7,60 7,56 -0,05 1,00
AT4G25820 At-XTH14 CATMA4A27496 6,87 6,76 -0,11 1,00
AT2G14620 At-XTH10 CATMA2A13330 6,73 6,78 0,05 1,00
AT5G65730 At-XTH6 CATMA5A61080 6,69 6,78 0,10 1,00

GH17 n AT5G42100 Group C CATMA5A37820 9,93 9,88 -0,05 1,00
AT3G04010 Group B CATMA3A02980 9,85 8,30 -1,55 0,00E+00
AT5G58090 Group B CATMA5A53850 9,33 9,56 0,23 1,00
AT3G07320 Group E CATMA3A06560 8,55 8,29 -0,25 1,00
AT5G42720 Group C CATMA5A38510 8,54 8,49 -0,05 1,00
AT4G31140 Group B CATMA4A32830 8,47 8,22 -0,24 1,00
AT2G26600 Group C CATMA2A24920 8,41 8,09 -0,32 1,00
AT2G01630 Group D CATMA2A00680 8,40 8,37 -0,03 1,00
AT5G20330 Group A (AtBG4) CATMA5A18800 8,26 8,04 -0,22 1,00
AT1G64760 Group B CATMA1A54070 8,13 8,09 -0,04 1,00
AT5G58480 Group B CATMA5A54240 7,81 7,61 -0,20 1,00
AT3G55430 Group C CATMA3A48400 7,78 7,75 -0,03 1,00
AT2G27500 Group C CATMA2A25930 7,73 8,01 0,28 1,00
AT4G29360 Group D CATMA4A30990 7,64 7,60 -0,04 1,00
AT5G20870 Group B CATMA5A19400 7,36 7,20 -0,16 1,00
AT5G56590 Group D CATMA5A52400 7,29 7,03 -0,26 1,00
AT5G18220 Group B CATMA5A16490 7,25 7,14 -0,11 1,00
AT1G30080 Group C CATMA1A28100 7,08 7,02 -0,06 1,00
AT1G66250 Group D CATMA1A55520 6,99 6,89 -0,10 1,00
AT4G17180 Group B CATMA4A18200 6,92 6,88 -0,04 1,00
AT5G20560 Group A CATMA5A19060 6,87 6,87 -0,01 1,00
AT1G32860 Group C CATMA1A31160 6,84 7,01 0,17 1,00
AT3G15800 Group C CATMA3A15190 6,82 6,73 -0,09 1,00

GH18 (yieldins) o AT5G24090 CATMA5A21620 7,22 7,30 0,09 1,00
AT4G19730 CATMA4A20960 6,98 6,91 -0,08 1,00
AT4G19810 CATMA4A21020 6,88 6,89 0,00 1,00

GH28 (polygalacturonases) p AT4G23820 Group A CATMA4A25640 9,36 8,91 -0,45 1,00
AT3G06770 Group A CATMA3A05990 9,01 8,78 -0,23 1,00
AT5G41870 Group A CATMA5A37590 8,64 8,35 -0,29 1,00
AT3G55790 Group A CATMA3A48760 8,13 8,58 0,45 1,00
AT3G61490 Group A CATMA3A54630 8,09 8,55 0,45 1,00
AT3G62110 Group A CATMA3A55250 7,93 7,77 -0,16 1,00
AT1G80170 Group D CATMA1A69350 7,64 7,64 0,00 1,00
AT5G49215 Group A CATMA5A45170 7,36 7,19 -0,16 1,00
AT3G42950 Group A CATMA3A35240 7,32 7,30 -0,02 1,00
AT3G15720 Group B CATMA3A15120 7,27 7,42 0,15 1,00
AT3G16850 Group A CATMA3A16240 7,08 6,95 -0,13 1,00
AT4G32375 Group B CATMA4A34110 6,97 6,84 -0,13 1,00
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AT5G14650 Group C CATMA5A12860 6,90 6,91 0,01 1,00
AT4G23500 Group A CATMA4A25330 6,79 6,75 -0,04 1,00
AT1G70500 Group D CATMA1A59770 6,77 6,75 -0,02 1,00

GH35 (beta-galactosidases) q AT5G56870 AtBGAL4 CATMA5A52625 13,18 11,97 -1,22 5,60E-12
AT1G45130 AtBGAL5 CATMA1A37985 11,21 10,42 -0,78 3,24E-03
AT5G20710 AtBGAL7 CATMA5A19240 8,89 7,98 -0,92 1,72E-05
AT5G63810 AtBGAL10 CATMA5A59336 8,51 8,25 -0,26 1,00
AT3G52840 AtBGAL2 CATMA3A45773 8,44 7,71 -0,73 2,32E-02
AT2G28470 AtBGAL8 CATMA2A26900 8,12 7,77 -0,35 1,00
AT5G63800 AtBGAL6 CATMA5A59333 7,59 7,34 -0,25 1,00
AT1G72990 AtBGAL17 CATMA1A62200 7,16 7,03 -0,12 1,00

carbohydrate esterases (CEs)

CE8 (pectin methylesterases) r AT2G43050 CATMA2A41450 12,56 10,76 -1,80 0,00E+00
AT3G49220 CATMA3A42250 11,81 10,99 -0,82 8,65E-04
AT3G14310 AtPME3 CATMA3A13580 10,79 9,90 -0,90 4,05E-05
AT1G53840 AtPME1 CATMA1A44933 9,39 9,04 -0,35 1,00
AT3G43270 CATMA3A35650 8,75 8,37 -0,38 1,00
AT1G53830 AtPME2 CATMA1A44930 8,35 7,61 -0,74 1,61E-02
AT3G49220 CATMA3A42240 8,20 8,14 -0,06 1,00
AT4G33220 CATMA4A34970 8,08 7,75 -0,33 1,00
AT5G09760 CATMA5A08570 7,80 7,64 -0,16 1,00
AT3G10720 CATMA3A09760 7,54 7,26 -0,28 1,00
AT3G29090 CATMA3A29170 7,50 7,78 0,28 1,00
AT5G64640 CATMA5A60070 7,44 7,93 0,49 1,00
AT5G53370 CATMA5A49270 7,41 7,30 -0,11 1,00
AT5G64640 CATMA5A60070 7,35 7,17 -0,18 1,00
AT3G59010 CATMA3A52040 7,31 6,81 -0,50 1,00
AT4G02330 CATMA4A02630 7,05 7,00 -0,05 1,00
AT1G05310 CATMA1A04190 7,03 6,81 -0,22 1,00
AT5G47500 CATMA5A43480 6,90 7,06 0,17 1,00
AT5G04970 CATMA5A04150 6,89 6,86 -0,03 1,00
AT3G05610 CATMA3A04630 6,83 6,91 0,08 1,00
AT3G47400 CATMA3A40400 6,74 6,76 0,03 1,00

CE13 (pectin acylesterases) s AT3G05910 CATMA3A04940 10,44 10,14 -0,30 1,00
AT4G19410 CATMA4A20590 8,25 8,09 -0,17 1,00
AT2G46930 CATMA2A45390 7,97 8,07 0,10 1,00
AT3G09410 CATMA3A08300 7,25 7,31 0,06 1,00
AT3G62060 CATMA3A55190 7,15 7,01 -0,14 1,00
AT5G23870 CATMA5A21340 6,94 6,87 -0,06 1,00

carbohydrate lyases (CLs)

PL1 (pectate lyases) t AT5G48900 Group A CATMA5A44810 10,92 10,23 -0,70 6,69E-02
AT1G04680 Group A CATMA1A03520 10,73 10,22 -0,52 1,00
AT1G67750 Group A CATMA1A57110 10,66 10,42 -0,24 1,00
AT3G07010 Group A CATMA3A06210 10,26 9,56 -0,70 6,16E-02
AT4G24780 Group A CATMA4A26470 8,40 9,43 1,03 1,03E-07
AT5G63180 Group A CATMA5A58780 8,03 7,52 -0,52 1,00
AT3G55250 Group B CATMA3A48250 7,95 8,14 0,18 1,00
AT3G09540 Group B CATMA3A08400 7,76 7,56 -0,20 1,00
AT5G04310 Group C CATMA5A03510 7,42 7,17 -0,26 1,00
AT3G55140 Group B CATMA3A48150 7,37 7,27 -0,11 1,00
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AT3G24670 Group A CATMA3A24620 7,37 7,22 -0,15 1,00
AT4G13710 Group A CATMA4A13890 7,29 7,03 -0,27 1,00
AT5G09280 Group B CATMA5A08090 7,14 7,37 0,23 1,00
AT5G15110 Group B CATMA5A13390 6,89 6,92 0,03 1,00
AT1G30350 Group B CATMA1A28360 6,80 6,78 -0,03 1,00
AT1G14420 Group B CATMA1A13420 6,77 6,73 -0,04 1,00
AT3G27400 Group A CATMA3A27260 6,59 6,94 0,35 1,00

PL4 (rhamnogalacturonan lyases) u AT1G09910 CATMA1A08780 8,04 7,87 -0,17 1,00
AT1G09890 CATMA1A08750 6,80 6,73 -0,07 1,00

expansins v AT5G02260 AtEXPA9 (alpha expansin) CATMA5A01340 12,71 12,44 -0,28 1,00
AT1G69530 AtEXPA1 (alpha expansin) CATMA1A58850 10,62 10,86 0,24 1,00
AT2G37640 AtEXPA3 (alpha expansin) CATMA2A35920 10,34 10,52 0,18 1,00
AT2G40610 AtEXPA8 (alpha expansin) CATMA2A38930 9,95 9,85 -0,10 1,00
AT2G28950 AtEXPA6 (alpha expansin) CATMA2B27340 9,26 9,80 0,54 1,00
AT4G28250 AtEXPB3 (beta expansin) CATMA4A29890 9,07 10,38 1,31 0,00E+00
AT1G20190 AtEXPA11 (alpha expansin) CATMA1A19190 8,76 8,72 -0,03 1,00
AT2G03090 AtEXPA15 (alpha expansin) CATMA2A02000 8,01 8,56 0,55 1,00
AT4G38400 AtEXLA2 (expansin like family A) CATMA4A39920 7,98 7,74 -0,24 1,00
AT4G38210 AtEXPA20 (alpha expansin) CATMA4A39720 7,91 8,42 0,51 1,00
AT2G28950 AtEXPA6 (alpha expansin) CATMA2A27340 7,88 8,09 0,21 1,00
AT1G26770 AtEXPA10 (alpha expansin) CATMA1A24995 7,87 7,97 0,10 1,00
AT2G20750 AtEXPB1 (beta expansin) CATMA2A19310 7,47 7,31 -0,16 1,00
AT3G55500 AtEXPA16 (alpha expansin) CATMA3A48450 7,43 7,30 -0,13 1,00
AT5G05290 AtEXPA2 (alpha expansin) CATMA5A04475 7,27 7,64 0,37 1,00
AT5G56320 AtEXPA14 (alpha expansin) CATMA5A52120 7,25 6,99 -0,26 1,00
AT3G45960 AtEXLA3 (expansin like family A) CATMA3A38990 6,97 6,91 -0,06 1,00
AT3G29030 AtEXPA15 (alpha expansin) CATMA3A29035 6,71 6,80 0,09 1,00

arabinogalactan proteins (AGPs) w AT2G14890 AtAGP9 CATMA2A13650 11,71 11,82 0,12 1,00
AT5G11740 AtAGP15 (AG peptide) CATMA5A10540 11,03 11,71 0,68 1,10E-01
AT5G10430 AtAGP4 CATMA5A09183 10,84 10,65 -0,19 1,00
AT1G28290 AtAGP31 CATMA1A26460 10,97 11,42 0,46 1,00
AT3G13520 AtAGP12 (AG peptide) CATMA3A12660 10,77 11,51 0,74 1,50E-02
AT5G53250 AtAGP22 (AG peptide) CATMA5A49170 9,48 9,98 0,50 1,00
AT3G61640 AtAGP20 (AG peptide) CATMA3A54770 8,69 9,53 0,85 3,14E-04
AT2G47930 AtAGP26 CATMA2A46360 8,46 9,10 0,63 5,19E-01
AT5G18690 AtAGP25 CATMA5A17040 7,90 8,07 0,17 1,00
AT5G64310 AtAGP1 CATMA5A59763 7,85 8,47 0,62 7,55E-01
AT4G09030 AtAGP10 CATMA4A09010 7,75 8,34 0,58 1,00
AT4G37450 AtAGP18 (Lys-rich AGP) CATMA4A39020 7,68 7,73 0,04 1,00
AT1G68725 AtAGP19 (Lys-rich AGP) CATMA1A58110 7,64 7,57 -0,08 1,00

fasciclin AGPs (FLAs) x AT1G03870 AtFLA9 CATMA1A02720 12,49 12,25 -0,24 1,00
AT2G45470 AtFLA8 CATMA2A43870 11,96 11,53 -0,43 1,00
AT4G12730 AtFLA2 CATMA4A12870 10,85 10,44 -0,41 1,00
AT2G04780 AtFLA7 CATMA2A03690 9,27 9,69 0,42 1,00
AT3G12660 AtFLA14 CATMA3A11630 8,54 8,09 -0,46 1,00
AT5G55730 AtFLA1 CATMA5A51470 8,18 7,96 -0,22 1,00
AT3G11700 AtFLA18 CATMA3A10640 8,01 8,28 0,27 1,00
AT5G44130 AtFLA13 CATMA5A39880 7,76 7,48 -0,28 1,00
AT5G03170 AtFLA11 CATMA5A02280 7,75 7,66 -0,09 1,00
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AT5G60490 AtFLA12 CATMA5A56200 7,57 7,42 -0,15 1,00
AT3G60900 AtFLA10 CATMA3A53870 7,28 7,12 -0,16 1,00
AT2G24450 AtFLA3 CATMA2A22780 7,19 7,12 -0,07 1,00

GPI-anchored peptide (GAPEP) family y AT3G01950 CATMA3A00940 7,46 7,94 0,48 1,00
AT5G40970 CATMA5A36640 7,29 7,74 0,44 1,00
AT5G40960 CATMA5A36630 6,96 8,07 1,11 1,58E-09
AT3G01940 CATMA3A00930 6,85 7,15 0,31 1,00
AT5G50660 CATMA5A46550 6,83 6,84 0,01 1,00

COBRA-like proteins z AT5G15630 AtCOBL4 CATMA5A13880 7,65 7,23 -0,43 1,00
AT4G16120 AtCOBL7 CATMA4A16865 7,51 7,38 -0,12 1,00
AT3G02210 AtCOBL1 CATMA3A01200 7,44 7,50 0,06 1,00
AT3G29810 AtCOBL2 CATMA3A30250 7,41 7,53 0,11 1,00
AT5G60920 COB CATMA5CTRL29 6,83 6,79 -0,04 1,00
AT5G49270 COBL9 CATMA5A45240 6,78 6,76 -0,02 1,00

leucine-rich repeat extensins (LRXs) aa AT3G24480 AtLRX4 CATMA3A24360 9,68 9,56 -0,11 1,00
AT2G15890 AtPEX3 CATMA2A14770 9,07 9,38 0,31 1,00
AT4G33980 AtPEX4 CATMA4A35800 8,52 8,89 0,37 1,00
AT1G62440 AtLRX2 CATMA1A51580 7,57 7,44 -0,12 1,00
AT4G13340 AtLRX3 CATMA4A13500 6,89 6,83 -0,06 1,00
AT3G22800 AtLRX6 CATMA3A22740 6,78 6,84 0,06 1,00
AT4G18670 AtLRX5 CATMA4A19790 6,70 6,79 0,09 1,00

Hyp/Pro-rich proteins (H/PRP) ab AT2G21140 AtPRP2 CATMA2A19790 11,67 11,15 -0,51 1,00
AT4G38770 AtPRP4 CATMA4A40195 8,94 8,78 -0,16 1,00

extensins ac AT1G23720 CATMA1A22610 7,01 6,92 -0,08 1,00

AT3G28550 CATMA3A28430 6,91 6,96 0,05 1,00
AT3G54580 CATMA3A47520 7,01 6,94 -0,07 1,00

lignin toolbox ad AT4G39330 Arath;CAD1(cinnamyl alcohol 
dehydrogenase)

CATMA4A40735 11,03 10,33 -0,70 7,14E-02

AT2G30490 Arath;C4H (CYP73A5) (trans-cinnamate 4-
hydroxylase)

CATMA2A28746 10,84 10,43 -0,41 1,00

AT1G76790 Arath;COMT-like8 (caffeic acid O-
methyltransferase)

CATMA1A66010 10,37 9,48 -0,89 4,45E-05

AT5G48930 Arath;HCT (hydroxycinnamoyl-
CoA:shikimate/quinate hydroxycinnamoyl 
transferase)

CATMA5A44840 10,24 10,28 0,04 1,00

AT2G40890 Arath;C3H2 (CYP98A3) (p-coumarate 3-
hydroxylase)

CATMA2A39220 9,83 9,16 -0,67 1,45E-01

AT1G20480 Arath;4CL-like4 (4-coumarate CoA ligase) CATMA1A19480 9,57 9,02 -0,55 1,00

AT5G54160 Arath;COMT (caffeic acid O-
methyltransferase)

CATMA5A50073 9,55 9,02 -0,53 1,00

AT5G58490 Arath;CCR-like5 (cinnamoyl-CoA 
reductase)

CATMA5A54250 8,96 9,14 0,18 1,00

AT1G15950 Arath;CCR1 (cinnamoyl-CoA reductase) CATMA1A14998 8,74 8,79 0,05 1,00

AT3G21240 Arath;4CL2 (4-coumarate CoA ligase) CATMA3A21086 8,62 8,40 -0,22 1,00
AT3G10340 Arath;PAL4 (Phe ammonia lyase) CATMA3A09340 8,46 8,52 0,06 1,00

AT1G72680 Arath;CAD9 (cinnamyl alcohol 
dehydrogenase)

CATMA1A61900 8,40 8,53 0,13 1,00

AT3G19450 Arath;CAD2 (cinnamyl alcohol 
dehydrogenase)

CATMA3A19045 8,40 7,96 -0,44 1,00

AT3G61990 Arath;CCoAOMT3 (caffeoyl-CoA O-
methyltransferase)

CATMA3A55120 8,27 8,06 -0,21 1,00

177



Table S1, supplementary data Chapter 5

AT2G02400 Arath;CCR-like2 (cinnamoyl-CoA 
reductase)

CATMA2A01315 8,09 8,02 -0,08 1,00

AT5G04230 Arath;PAL3 (Phe ammonia lyase) CATMA5A03420 8,06 7,83 -0,23 1,00
AT4G34230 Arath;CAD6 (cinnamyl alcohol 

dehydrogenase)
CATMA4A36050 7,83 7,53 -0,30 1,00

AT1G20510 Arath;4CL-like1 (4-coumarate CoA ligase) CATMA1A19510 7,78 7,40 -0,38 1,00

AT2G21890 Arath;CAD8 (cinnamyl alcohol 
dehydrogenase)

CATMA2A20490 7,66 7,41 -0,25 1,00

AT1G51680 Arath;4CL1 (4-coumarate CoA ligase) CATMA1A42785 7,64 8,15 0,51 1,00
AT5G63380 Arath;4CL-like8 (4-coumarate CoA ligase) CATMA5A58930 7,60 7,42 -0,18 1,00

AT2G21730 Arath;CAD7 (cinnamyl alcohol 
dehydrogenase)

CATMA2A20370 7,44 7,31 -0,13 1,00

AT4G26220 Arath;CCoAOMT7 (caffeoyl-CoA O-
methyltransferase)

CATMA4A27740 7,23 7,48 0,24 1,00

AT5G04330 Arath;F5H2 (CYP84A4) CATMA5A03540 7,15 6,89 -0,27 1,00
AT2G37040 Arath;PAL1 (Phe ammonia lyase) CATMA2A35330 7,01 7,94 0,93 8,18E-06
AT3G21230 Arath;4CL4 (4-coumarate CoA ligase) CATMA3A21070 6,99 6,91 -0,07 1,00
AT1G80820 Arath;CCR2 (cinnamoyl-CoA reductase) CATMA1A70050 6,90 6,81 -0,09 1,00

AT4G19010 Arath;4CL-like6 (4-coumarate CoA ligase) CATMA4A20160 6,89 6,82 -0,07 1,00

AT5G53810 Arath;COMT-like13 (caffeic acid O- CATMA5A49700 6,82 6,72 -0,10 1,00
AT4G36220 Arath;F5H1 (CYP84A1) CATMA4A37873 6,68 6,84 0,15 1,00

peroxidases ae AT2G37130 AtPrx21 CATMA2A35430 14,28 12,86 -1,42 0,00
AT4G21960 AtPrx42 CATMA4A23655 13,17 12,40 -0,77 5,29E-03
AT1G05260 AtPrx03 CATMA1A04113 10,68 10,18 -0,51 1,00
AT4G33870 AtPrx48 CATMA5A59590 10,52 9,25 -1,27 0,00
AT1G71695 AtPrx12 CATMA1A60876 10,17 9,54 -0,63 4,86E-01
AT5G64120 AtPrx71 CATMA4A35650 10,03 9,85 -0,18 1,00
AT3G21770 AtPrx30 CATMA3B21635 9,54 9,77 0,23 1,00
AT3G21770 AtPrx30 CATMA3A21635 9,29 9,52 0,23 1,00
AT5G51890 AtPrx66 CATMA5A47820 8,92 9,12 0,21 1,00
AT5G66390 AtPrx72 CATMA5A61725 8,70 8,57 -0,13 1,00
AT4G37520 AtPrx50 CATMA4A39085 8,28 8,32 0,04 1,00
AT5G64110 AtPrx70 CATMA5A59580 8,24 8,37 0,13 1,00
AT5G39580 AtPrx62 CATMA5A35160 7,83 7,95 0,11 1,00
AT2G38390 AtPrx23 CATMA2A36690 7,80 8,96 1,15 1,96E-10
AT3G17070 AtPrx29 CATMA3A16470 7,73 7,62 -0,11 1,00
AT1G44970 AtPrx09 CATMA1A37915 7,72 7,56 -0,16 1,00
AT2G41480 AtPrx25 CATMA2A39890 7,65 8,09 0,44 1,00
AT4G30170 AtPrx45 CATMA4A31806 7,52 7,65 0,13 1,00
AT2G22420 AtPrx17 CATMA2A20940 7,34 7,48 0,14 1,00
AT4G37530 AtPrx51 CATMA4A39090 7,24 7,29 0,05 1,00
AT5G05340 AtPrx52 CATMA5A04520 7,04 7,24 0,20 1,00
AT5G19890 AtPrx59 CATMA5A18330 7,13 7,20 0,08 1,00
AT5G40150 AtPrx63 CATMA5A35810 7,32 7,19 -0,13 1,00
AT5G19880 AtPrx58 CATMA5A18320 6,98 6,99 0,01 1,00
AT2G24800 AtPrx18 CATMA2A23170 7,03 6,95 -0,08 1,00
AT2G18980 AtPrx16 CATMA2A17560 7,11 6,93 -0,18 1,00
At4g36430 AtPrx49 CATMA4A38005 6,77 6,90 0,13 1,00
AT2G18150 AtPrx15 CATMA2A16820 6,63 6,88 0,25 1,00
AT5G22410 AtPrx60 CATMA5A19865 6,86 6,81 -0,05 1,00
AT5G17820 AtPrx57 CATMA5A16105 6,99 6,76 -0,23 1,00
AT3G01190 AtPrx27 CATMA3A00185 6,78 6,73 -0,05 1,00
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laccases af AT5G60020 AtLAC17 CATMA5A55770 9,53 9,23 -0,30 1,00
AT5G03260 AtLAC11 CATMA5A02370 9,23 9,39 0,17 1,00
AT2G38080 AtLAC4 CATMA2A36370 8,91 8,33 -0,58 1,00
AT2G30210 AtLAC3 CATMA2A28490 8,23 8,14 -0,09 1,00
AT2G29130 AtLAC2 CATMA2A27560 7,29 7,01 -0,28 1,00
AT5G05390 AtLAC12 CATMA5A04570 7,01 7,04 0,03 1,00
AT2G40370 AtLAC5 CATMA2A38650 6,93 6,86 -0,07 1,00
AT5G01190 AtLAC10 CATMA5A00220 6,88 6,77 -0,12 1,00
AT5G48100 AtLAC15 CATMA5A44080 6,77 6,68 -0,09 1,00

SKU-like proteins (multi-copper oxidases) 
ag AT1G76160 SKS5 CATMA1A65380 10,33 9,91 -0,43 1,00

AT1G41830 SKS6 CATMA1A35650 9,76 9,27 -0,49 1,00
AT4G12420 SKU5 CATMA4A12530 9,28 8,97 -0,31 1,00
AT5G48450 SKS3 CATMA5A44430 9,11 8,93 -0,18 1,00
AT4G22010 SKS4 CATMA4A23690 8,47 8,11 -0,36 1,00
AT3G13990 SKS11 CATMA3A13220 7,66 7,51 -0,15 1,00
AT1G41830 SKS6 CATMA1A35660 7,11 6,96 -0,14 1,00
AT4G28090 SKS10 CATMA4A29740 6,82 6,72 -0,09 1,00

phytocyanins ah AT4G12880 AtEN20 (early nodulin) CATMA4A13020 10,84 11,19 0,36 1,00
AT2G32300 AtUCC1 (uclacyanin) CATMA2A30615 10,61 10,60 -0,02 1,00
AT5G15350 AtEN22 (early nodulin) CATMA5A13625 9,07 9,35 0,28 1,00
AT1G08500 AtEN21 (early nodulin) CATMA1A07465 8,78 9,08 0,30 1,00
AT5G53870 AtEN1 (early nodulin) CATMA5A49760 8,24 8,22 -0,02 1,00
AT1G72230 AtUCC8 (uclacyanin) CATMA1A61460 8,10 8,34 0,24 1,00
AT4G28360 AtEN2 (early nodulin) CATMA4A30000 8,07 8,52 0,46 1,00
AT3G20570 AtEN14 (early nodulin) CATMA3A20300 7,83 8,16 0,33 1,00
AT3G60280 AtUCC3 (uclacyanin) CATMA3A53305 7,78 7,81 0,03 1,00
AT4G31840 AtEN13 (early nodulin) CATMA4A33490 7,53 8,19 0,66 2,47E-01
AT2G27035 AtEN17 (early nodulin) CATMA2A25400 7,33 7,57 0,24 1,00
AT4G27520 AtEN12 (early nodulin) CATMA4A29090 7,33 7,49 0,16 1,00
AT5G26330 AtSTC3 (stellacyanin) CATMA5A24030 7,23 7,32 0,09 1,00
AT3G27200 AtUCC6 (uclacyanin) CATMA3A27010 7,20 7,63 0,43 1,00
AT5G25090 AtEN6 (early nodulin) CATMA5A22800 6,98 7,12 0,15 1,00
AT2G25060 AtEN7 (early nodulin) CATMA2A23390 7,06 7,40 0,34 1,00
AT4G33930 AtEN26 (early nodulin) CATMA4A35740 6,91 6,87 -0,03 1,00
AT2G02850 AtPNC (plantacyanin) CATMA2A01770 6,84 6,90 0,06 1,00
AT5G07475 AtUCC5 (uclacyanin) CATMA5A06680 6,81 6,84 0,03 1,00
AT5G20230 AtSTC1 (stellacyanin) CATMA5A18670 6,79 7,42 0,62 0,67
AT5G57920 AtEN3 (early nodulin) CATMA5A53680 6,69 6,82 0,13 1,00

subtilases ai AT3G14067 AtSBT1.4 CATMA3A13290 11,85 10,71 -1,15 2,80E-10
AT2G05920 AtSBT1.8 CATMA2A04690 11,54 10,90 -0,64 4,50E-01
AT5G67360 AtSBT1.7 (ARA12) CATMA5A62810 11,45 11,12 -0,33 1,00
AT5G51750 AtSBT1.3 CATMA5A47680 11,04 10,80 -0,24 1,00
AT5G59090 AtSBT4.12 CATMA5A54840 10,47 9,49 -0,99 7,99E-07
AT3G14240 AtSBT1.5 CATMA3A13520 9,92 9,76 -0,16 1,00
AT1G20160 AtSBT5.2 CATMA1A19170 8,84 8,90 0,06 1,00
AT4G34980 AtSBT1.6 CATMA4A36760 8,49 8,32 -0,17 1,00
AT4G00230 AtSBT4.14 (XSP11) CATMA4A00245 8,20 8,20 0,00 1,00
AT2G04160 AtSBT5.3 (AIR3) CATMA2A03130 7,94 7,37 -0,57 1,00
AT1G30600 AtSBT2.1 CATMA1A28650 7,35 7,20 -0,15 1,00
AT5G19660 AtSBT6.1 CATMA5A18090 7,27 7,12 -0,15 1,00
AT5G44530 AtSBT2.3 CATMA5A40320 7,15 6,88 -0,27 1,00
AT5G45650 AtSBT5.6 CATMA5A41630 7,03 6,83 -0,20 1,00
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AT2G39850 AtSBT4.2 CATMA2A38090 6,73 6,82 0,09 1,00
AT1G32950 AtSBT3.4 CATMA1A31250 6,79 6,80 0,01 1,00
AT5G59190 AtSBT4.3 CATMA5A54940 6,76 6,79 0,03 1,00
AT5G58840 AtSBT4.9 CATMA5A54600 6,78 6,77 0,00 1,00
AT5G67090 AtSBT1.9 CATMA5A62540 6,81 6,77 -0,04 1,00
AT5G03620 AtSBT4.15 CATMA5A02800 6,79 6,74 -0,06 1,00
AT2G19170 AtSBT2.5 CATMA2A17780 6,89 6,72 -0,18 1,00
AT5G59100 AtSBT4.4 CATMA5A54850 6,77 6,65 -0,11 1,00pectin methylesterase/invertase inhibitors 

aj (PMEIs) AT2G31430 CATMA2A29670 8,79 8,76 -0,03 1,00
AT3G12880 CATMA3A11840 8,78 8,51 -0,27 1,00
AT4G25260 CATMA4A26950 8,67 9,10 0,43 1,00
AT1G62770 CATMA1A51910 8,22 8,37 0,15 1,00
AT5G64620 CATMA5A60045 8,20 8,28 0,08 1,00
AT5G62350 CATMA5A57950 8,09 8,47 0,38 1,00
AT3G47670 CATMA3A40660 7,72 7,72 0,00 1,00
AT3G47380 CATMA3A40380 7,53 7,80 0,27 1,00
AT2G01610 CATMA2A00660 7,52 7,88 0,36 1,00
AT4G12390 CATMA4A12500 7,44 7,34 -0,10 1,00
AT1G47960 CATMA1A39055 7,19 7,83 0,65 3,44E-01
AT3G17220 CATMA3A16630 7,18 7,37 0,19 1,00
AT3G49330 CATMA3A42360 7,05 7,10 0,05 1,00
AT5G20740 CATMA5A19270 7,02 6,90 -0,12 1,00
AT1G70720 CATMA1A60000 6,97 6,91 -0,06 1,00
AT1G23205 CATMA1A22290 6,95 7,17 0,22 1,00
AT5G24370 CATMA5A21980 6,94 6,99 0,05 1,00
AT1G14890 CATMA1A13920 6,94 7,35 0,41 1,00
AT1G48010 CATMA1A39095 6,83 6,81 -0,02 1,00
AT3G62820 CATMA3A55990 6,77 6,65 -0,12 1,00
AT3G55680 CATMA3A48660 6,75 6,80 0,05 1,00

a: http://cellwall.genomics.purdue.edu/families/4-6-5.html s: http://cellwall.genomics.purdue.edu/families/4-5-2.html
b: http://cellwall.genomics.purdue.edu/families/1-1.html t: http://cellwall.genomics.purdue.edu/families/4-4-1.html
c: http://cellwall.genomics.purdue.edu/families/2-3-1.html u: http://cellwall.genomics.purdue.edu/families/4-4-2.html
d: http://cellwall.genomics.purdue.edu/families/2-3-5.html v: http://www.bio.psu.edu/expansins/arabidopsis.htm#At-EXLB1
e: http://cellwall.genomics.purdue.edu/families/2-3-4.html w: [48-51]
f: http://cellwall.genomics.purdue.edu/families/1-1.html x: [48]
g: http://cellwall.genomics.purdue.edu/families/2-3-2.html y: http://cellwall.genomics.purdue.edu/families/6-4-10.html
h: http://www.cazy.org/fam/GT77.html, [47] z: [14]
i: http://cellwall.genomics.purdue.edu/families/2-2.html aa: [52]
j: http://cellwall.genomics.purdue.edu/families/2-4.html ab: [53]
k: http://cellwall.genomics.purdue.edu/families/3-1.html ac: our own annotation
l: http://cellwall.genomics.purdue.edu/families/4-3-2-1.html ad: [54]
m: http://labs.plantbio.cornell.edu/xth/genes.htm ae: http://peroxidase.isb-sib.ch/listing.php?action=view&id=4362
n: http://cellwall.genomics.purdue.edu/families/4-3-2-2.html af: [56, 57]
o: http://cellwall.genomics.purdue.edu/families/4-1-2.html ag: [58]
p: http://cellwall.genomics.purdue.edu/families/4-3-3.html ah: [59]
q: http://cellwall.genomics.purdue.edu/families/4-3-1-1.html ai: http://csbdb.mpimp-golm.mpg.de/csbdb/dbcawp/psdb/pub/sgenes.html 
r: http://cellwall.genomics.purdue.edu/families/4-5-1.html aj: Pr Jérôme Pelloux (Amiens University, France), personal communication
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Additional data file 2

Functional class Gene family AGI number gene name CATMA probe 5-days 11-days ratio 11-days / 5-
days p-value

1 Proteins acting on carbohydrates
glycoside hydrolase family 1 (beta-
glucosidase) AT3G60130 CATMA3A53140 10.84 9,70 -1.14 3,41E-10

2 AT3G18080 CATMA3A17550 10,40 10.53 0.13 1,00
3 AT3G21360 CATMA3A21250 9,96 11,47 1,51 0,00E+00
4 AT5G26000 CATMA5A23655 9,34 9,08 -0,25 1,00
5 AT1G02850 CATMA1A01780 8,98 9,36 0,38 1,00
6 AT1G52400 CATMA1A43455 7,36 9,04 1,68 0,00E+00
7 glycoside hydrolase family 3  AT5G49360 CATMA5A45350 12.67 11.94 -0.73 2,20E-02
8 AT5G10560 CATMA5A09290 10.88 10.42 -0.46 1,00
9 AT5G20950 CATMA5A19500 9,46 9,74 0,28 1,00

10 glycoside hydrolase family 9 AT1G64390 CATMA1A53700 10.68 10.19 -0.49 1,00
11 AT4G02990 CATMA4A02570 11,10 10,08 -1,02 1,57E-07
12 AT5G49720 AtKOR CATMA5A45658 9,64 9,94 0,30 1,00
13 AT1G70710 AtCEL1 CATMA1A59990 9,32 8,93 -0,39 1,00

14
glycoside hydrolase family 16 (xyloglucan 
endotransglycosidases/hydrolases) AT2G06850 AtXTH4 CATMA2A05540 12.98 12.15 -0.83 6,40E-04

15 AT1G11545 AtXTH8 CATMA1A10510 9,18 9,03 -0,15 1,00
16 AT4G14130 AtXTH15 CATMA4A14375 12.72 11.98 -0.74 1,62E-02
17 AT4G30290 AtXTH19 CATMA4A31900 11.37 11,40 0.03 1,00
18 AT4G30270 AtXTH24 CATMA4A31885 10.84 11.64 0,80 1,63E-03
19 AT2G01850 AtXTH27 CATMA2A00905 9,92 9,56 -0,36 1,00
20 AT1G32170 AtXTH30 CATMA1A30510 10.06 9.85 -0.21 1,00
21 glycoside hydrolase family 17  AT5G42100 CATMA5A37820 9,93 9,88 -0,05 1,00
22 AT5G58090 CATMA5A53850 9,33 9,56 0,23 1,00
23 AT3G04010 CATMA3A02980 8,30 9,85 -1,55 0,00E+00

24
glycoside hydrolase family 19 (chitinase 
class I) 

AT1G05850 ELP: ECTOPIC DEPOSITION OF 
LIGNIN IN PITH 

CATMA1A04870 12.52 11.97 -0.56 1,00

25 AT2G43590 glycoside hydrolase family 19 CATMA2B42010 9,36 9,40 0,04 1,00
26 glycoside hydrolase family 20 AT3G55260 CATMA1A46320 9,64 9,13 -0,51 1,00
27 glycoside hydrolase family 27 AT5G08380 CATMA5A07660 8,97 9,42 0,44 1,00
28 glycoside hydrolase family 31 AT1G68560 XYL1 (alpha-xylosidase) CATMA1A57930 10.6 10.13 -0.47 1,00

29
glycoside hydrolase family 35 (beta-
galactosidase) AT5G56870 AtBGAL4 CATMA5A52625 13.18 11.97 -1.22 5,60E-12

30 AT1G45130 AtBGAL5 CATMA1A37985 11.21 10.42 -0.78 3,24E-03

31
glycoside hydrolase family 38 (alpha-
mannosidase)

AT3G26720 glycoside hydrolase family 38 (alpha-
mannosidase)

CATMA3A26465 11.33 10.38 -0.95 4,81E-06

32 glycoside hydrolase family 47 AT1G27520 CATMA1A25750 9,15 9,08 -0,07 1,00
33 pectate lyase family 1 AT1G67750 CATMA1A57110 10.66 10.42 -0.24 1,00
34 AT5G48900 CATMA5A44810 10.92 10.23 -0,70 6,69E-02
35 AT1G04680 CATMA1A03520 10.73 10.22 -0.52 1,00
36 AT3G07010 CATMA3A06210 10.26 9.56 -0,70 6,2E-02
37 AT4G24780 CATMA4A26470 8,40 9,43 1,03 1,03E-07

38
carbohydrate esterase family 8 (pectin 
methylesterases) AT3G49220 CATMA3A42250 11.81 10.99 -0.82 8,65E-04

39 AT2G43050 CATMA2A41450 12.56 10.76 -1,80 0,00E+00
40 AT3G14310 AtPME3 CATMA3A13580 10.79 9,90 -0,90 4,05E-05
41 AT1G53840 CATMA1A44933 9,39 9,04 -0,35 1,00

42
carbohydrate esterase family 13 (pectin 
acylesterases)

AT3G05910 CATMA3A04940 10.44 10.14 -0,30 1,00

43 AT5G57655 homologous to xylose isomerase CATMA5A53360 10.55 10.19 -0.36 1,00

44

glycosyl transferase family 2 (cellulose 
synthases)

AT5G05170 AtCESA3 CATMA5A04375 10.36 9.89 -0.47 1,00
45 AT5G09870 AtCESA5 CATMA5A08637 10.01 9.11 -0,90 3,26E-05
46 AT4G39350 AtCESA2 CATMA4A40743 9,80 8,99 -0,82 9,50E-04
47 AT4G32410 AtCESA1 CATMA4A34150 9,80 9,53 -0,27 1,00

48
glycosyl transferase family 48 (callose 
synthases)

AT1G05570 AtCALS1 CATMA1A04500 9,17 8,14 -1,03 8,89E-08

49 AT2G31960 AtGSL3 CATMA2A30240 9,15 8,71 -0,44 1,00
50 expansins AT1G69530 AtEXPA1 CATMA1A58850 10.62 10.86 0.24 1,00
51 AT2G37640 AtEXPA3 CATMA2A35920 10.34 10.52 0.18 1,00
52 AT2G28950 AtEXPA6 CATMA2B27340 9,26 9,80 0,54 1,00
53 AT2G40610 AtEXPA8 CATMA2A38930 9,95 9,85 -0,10 1,00
54 AT5G02260 AtEXPA9 CATMA5A01340 12.71 12.44 -0.28 1,00
55 AT4G28250 AtEXPB3 CATMA4A29890 9.07 10.38 1.31 0,00

1 Proteases cysteine proteases (papain family) AT5G60360 CATMA5A56105 12.54 11,90 -0.65 3,43E-01
2 AT3G54940 CATMA3A47930 8.35 10.33 1.98 0,00E+00
3 AT1G62290 CATMA1A51380 11.77 12.48 0.72 3,29E-02
4 AT4G01610 CATMA4A01830 12,40 12.38 -0.02 1,00

5
AT1G20850 XCP2 (XYLEM CYSTEINE 

PEPTIDASE 2)
CATMA1A19916 9,33 9,19 -0,14 1,00

6
serine proteases (proteins homologous to 
serine proteases) AT5G67360 AtSBT1.7, ARA12 CATMA5A62810 11.45 11.12 -0.33 1,00

7 AT5G51750 AtSBT1.3 CATMA5A47680 11.04 10,80 -0.24 1,00
8 AT3G14067 AtSBT1.4 CATMA3A13290 11.85 10.71 -1.15 2,80E-10
9 AT3G14240 AtSBT1.5 CATMA3A13520 9,92 9,76 -0,16 1,00

10 AT2G05920 AtSBT1.8 CATMA2A04690 11.54 10,90 -0.64 4,50E-01
11 AT5G59090 AtSBT4.12 CATMA5A54840 10.47 9.49 -0.99 7,99E-07
12 aspartyl proteases AT1G66180 CATMA1A55440 10.98 10.28 -0.69 7,75E-02
13 AT1G11910 CATMA1A10930 12.95 12.35 -0,60 1,00
14 AT5G10770 CATMA5A09510 12.46 9.97 -2.49 0,00E+00
15 AT5G19120 CATMA5A17530 9,29 9,41 0,12 1,00
16 AT3G61820 CATMA5A57420 9,24 9,52 0,28 1,00
17 peptidases AT1G78680 carboxypeptidase CATMA1A67745 10.76 10.53 -0.23 1,00
18 AT3G10450 SCPL7 (serine carboxypeptidase) CATMA3A09450 9,65 9,70 0,05 1,00
19 AT5G08260 SCPL35 (serine carboxypeptidase) CATMA5A07520 8,87 9,21 0,34 1,00
20 AT4G32940 asparaginyl peptidase CATMA4A34690 12.35 10.82 -1.53 0,00E+00
21 AT3G01720 metallopeptidase CATMA3A00730 8,54 9,47 -0,93 9,02E-06
22 AT4G38220 metallopeptidases M20/M25/M40 CATMA4A39730 9,76 9,04 -0,72 3,02E-02
23 AT5G56660 metallopeptidases M20/M25/M40 CATMA5A52456 9,97 9,64 -0,33 1,00
24 AT1G62710 C13 family CATMA1A51830 8,47 9,19 0,72 2,72E-02
25 AT5G19740 M28 family CATMA5A18160 9,55 9,22 -0,33 1,00

1 Proteins possibly involved in signaling arabinogalactan proteins (AGPs) AT5G10430 AtAGP4 CATMA5A09183 10.84 10.65 -0.19 1,00
2 AT2G14890 AtAGP9 CATMA3A12660 11.71 11.82 0.12 1,00
3 AT3G13520 AtAGP12 CATMA3A12660 10.77 11.51 0.74 1,50E-02
4 AT5G11740 AtAGP15 CATMA5A10540 11.03 11.71 0.68 1,10E-01
5 AT3G61640 AtAGP20 CATMA3A54770 8,69 9,53 0,85 3,14E-04
6 AT5G53250 AtAGP22 CATMA5A49170 9,48 9,98 0,50 1,00
7 AT2G47930 AtAGP26 CATMA2A46360 8,46 9,10 0,63 5,19E-01

8
fasciclin-AGPs (FLAs)

AT4G12730 AtFLA2 CATMA4A12870 10.85 10.44 -0.41 1,00
9 AT2G04780 AtFLA7 CATMA2A03690 9,27 9,69 0,42 1,00

10 AT2G45470 AtFLA8 CATMA2A22160 11.96 11.53 -0.43 1,00
11 AT1G03870 AtFLA9 CATMA1A02720 12.49 12.25 -0.24 1,00

12
expressed proteins AT2G23810 tetraspannin domain, signal 

transduction?
CATMA2A22170 10.91 10,60 -0.31 1,00

13
AT1G32400 tetraspannin domain, signal 

transduction?
CATMA1A30780 10.49 10.35 -0.14 1,00

14
proteins homologous to receptor-kinases 
(RLKs)

AT2G37710 AtLRK1/AtLecRK-e (RLK/Pelle, L-
Lectin subfamily)

CATMA2A35995 10.44 9.83 -0.61 9,33E-01

15
AT1G53730 AtSRF6 (RLK/Pelle, LRR-V 

subfamily/STRUBBELIG family) 
CATMA1A44820 10.06 9.38 -0.68 1,34E-01

16 AT2G39180 AtCRR2 CATMA2A37410 9,23 8,30 -0,93 8,33E-06
17 AT1G08590 CLAVATA1 CATMA1A07510 9,22 8,32 -0,90 3,05E-05
18 AT1G69270 AtRPK1 CATMA1A58565 10,30 9,39 -0,91 2,35E-05
19 AT5G16000 RLK/Pelle, LRR-II subfamily CATMA5A14280 9,23 9,08 -0,15 1,00
20 AT1G27190 RLK/Pelle, LRR-Xa subfamily CATMA1A25440 9,98 9,78 -0,20 1,00
21 AT2G39360 RLK/Pelle, CrRLK1L-1 subfamily CATMA2A37610 8,60 9,51 -0,91 2,12E-05
22 AT1G09970 LRR-XI subfamily CATMA1A08840 10.79 10.39 -0,40 1,00
23 AT2G01820 LRR IX subfamily CATMA2A00870 10.98 10.37 -0.61 8,98E-01

Table 2. Secretory Pathway Genes (SPGs) with moderate or high levels of transcripts in 5- and 11-day-old hypocotyls. SPGs were annotated using bioinformatic softwares for sub-cellular localization and functional domains as described in
Methods. The intensity of the signal is expressed as log2, the ratio between the levels of transcripts at 11-days and 5-days as well as the p-value are indicated. CWGs are classified by gene family and level of transcript: low level in blue (between backgrou
and 9),  moderate level in green (between 9 and 10) and high level in red (higher than 10). Significant Bonferroni p-values are highlighted in green (p<5%).

Genes encoding proteins predicted to be outside the cell are highlighted in yellow, proteins predicted to secreted and to have trans-membrane domains are in pink, and proteins predicted to be secreted and to have a GPI anchor are in dark yellow. Genes 
encoding proteins identified in the proteomic study (Irshad et al.,  submitted for publication) performed with the same plant material are in bold characters.
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1 Structural proteins glycine-rich proteins (GRPs) AT2G05380 AtGRP3 CATMA2A04205 11.98 12.04 0.06 1,00
2 AT2G05520 CATMA2A04295 11.69 11.63 -0.06 1,00
3 AT2G05440 CATMA2A04270 7.22 11.01 3.79 0,00E+00
4 AT1G62240 CATMA1A51310 9.33 10.43 1,10 3,00E-09
5 AT2G05540 CATMA2A04310 12,20 12.54 0.34 1,00
6 AT4G29020 CATMA4A30690 8,63 9,15 0,52 1,00
7 proline-rich proteins (PRPs) AT1G28290 CATMA1A26460 10.97 11.42 0.46 1,00
8 AT2G21140 AtPRP2 CATMA2A19790 11.67 11.15 -0.51 1,00
9 leucine-rich-repeat extensin (LRX) AT3G24480 AtLRX4 (LRR-extensin) CATMA3A24360 9,68 9,56 -0,11 1,00

1
Proteins possibly involved in oxido
reduction reactions peroxidases AT1G05260 AtPrx3 CATMA1A04113 10.68 10.18 -0.51 1,00

2 AT1G71695 AtPrx12 CATMA1A60876 10.17 9.54 -0.63 4,86E-01
3 AT2G37130 AtPrx21 CATMA2A35430 14.28 12.86 -1.42 0,00E+00
4 AT4G21960 AtPrx42 CATMA4A23655 13.17 12,40 -0.77 5,29E-03
5 AT4G33870 AtPrx48 CATMA4A35650 10.52 9.25 -1.27 0,00E+00
6 AT5G64120 AtPrx71 CATMA5A59590 10.03 9.85 -0.18 1,00

7
proteins homologous to berberine bridge 
enzymes At5g44380 CATMA5A40150 8,49 9,93 -1,45 0,00E+00

8
proteins homologous to multicopper 
oxidases AT5G21105 CATMA5A19660 9,96 9,61 -0,35 1,00

9 AT1G76160 SKS5 (homologous to SKU5) CATMA1A65380 10.33 9.91 -0.43 1,00
10 AT1G41830 SKS6 (homologous to SKU5) CATMA1A35650 9,76 9,27 -0,49 1,00
11 proteins homologous to germin AT5G03460 GLP1 CATMA5A02640 10.31 10.89 0.57 1,00
12 AT5G20630 AtGER3 CATMA5A19130 11.47 11.64 0.17 1,00
13  AT1G09560 GLP5 (subfamily 2, member 1) CATMA1A08413 10.19 9.79 -0,40 1,00
14 laccases AT5G03260 AtLAC11 CATMA5A02370 9,23 9,39 0,17 1,00
15 AT5G60020 AtLAC17 CATMA5A55770 9,53 9,23 -0,30 1,00

16
expressed protein (oxido-reductase 
domain)

AT3G03330 CATMA3A02250 10.65 10.73 0.08 1,00

17
phytocyanins (proteins homologous to 
blue copper binding proteins) AT2G32300 AtUCC1 (uclacyanin) CATMA2A30615 10.61 10,60 -0.02 1,00

18 AT4G12880 plastocyanin CATMA4A13020 10.84 11.19 0.36 1,00
19 AT1G08500 AtEN21 (plastocyanin domain) CATMA1A07465 8,78 9,08 0,30 1,00
20 AT5G15350 AtEN22 (plastocyanin domain) CATMA5A13625 9,07 9,35 0,28 1,00

1 Proteins with interacting domains proteins homologous to lectins AT1G78850 curculin-like, mannose binding CATMA1A67950 11.95 11.42 -0.53 1,00
2 AT1G78830 curculin-like, mannose-binding CATMA1A67930 9,82 9,22 -0,60 1,00
3 AT3G15356 legume lectin CATMA3A14725 10.81 9.96 -0.84 3,38E-04
4 AT3G54080 legume lectin CATMA3A47030 9,50 9,76 0,26 1,00
5 AT5G01090 legume lectin CATMA5A00120 9,37 9,15 -0,22 1,00

6

AT1G69295 expressed protein (X8 domain, 
carbohydrate binding?)

CATMA1A58590 11.06 11.34 0.27 1,00

7
AT2G17120 expressed protein (peptidoglycan-

binding LysM domain)
CATMA2A15860 9,22 9,03 -0,19 1,00

8
proteins with leucine-rich repeat (LRR) 
domains

AT5G12940 expressed protein (LRR domains) CATMA5A11170 9,68 9,05 -0,63 5,72E-01

9
AT3G20820 expressed protein (LRR domains) CATMA3A20560 10,49 9,99 -0,50 1,00

10 AT1G28340 expressed protein (LRR domains) CATMA1A26520 9,59 9,26 -0,33 1,00
11 enzyme inhibitors AT4G25260 pectin methylesterase inhibitor CATMA4A26950 8,67 9,10 0,43 1,00
12 AT1G73260 serine protease inhibitor CATMA1A62540 12,00 12.5 0,50 1,00

13
AT1G75830 protease inhibitor (gamma-thionin) CATMA1A65113 8.73 10.53 1,80 0,00E+00

14
AT2G02120 protease inhibitor (gamma-thionin) CATMA2A01180 9.87 11.29 1.42 0,00E+00

15 AT1G71950 protease inhibitor CATMA1A61160 9.46 10.04 0.58 1,00
16 AT2G31980 protease inhibitor (cystatin) CATMA2A30250 10.06 11.32 1.26 0,00E+00
17 AT1G73330 protease inhibitor (Kunitz) CATMA1A62630 11.73 11.55 -0.18 1,00

18
expressed proteins with diverse structural 
domains

AT1G21680 expressed protein (WD40-like Beta 
Propeller Repeat)

CATMA1A20770 10.9 11.08 0.18 1,00

19

AT3G09090 expressed protein (FG-GAP domain 
that may fold into beta-propeller 
structure)

CATMA3A07960 9,06 9,16 0,09 1,00

20

AT3G51050 expressed protein (FG-GAP repeat 
that may fold into beta-propeller 
structure)

CATMA3A44050 10,10 9.87 -0.23 1,00

1 Proteins related to lipid metabolism
proteins homologous to lipid transfer 
proteins AT2G38540 LTP1 CATMA2A36820 11.06 11.66 0,60 1,00

2 AT1G27950 CATMA1A26130 10.02 10.29 0.27 1,00

3
proteins homologous to GDSL 
Lipase/Acylhydrolase

AT1G71980 CATMA1A61200 11.86 11.05 -0.81 1,42E-03

4 AT3G16370 CATMA3A15780 11.55 11.09 -0.47 1,00
5 AT1G28580 CATMA1A26790 10.91 11.02 0.11 1,00
6 AT2G04570 CATMA2A03550 10.23 9.72 -0.51 1,00
7 AT5G45670 CATMA5A41660 10.05 10.08 0.03 1,00
8 AT3G04290 CATMA3A03260 9,74 9,50 -0,25 1,00
9 AT5G45950 CATMA5A41950 9,42 8,55 -0,87 1,16E-04

10 AT5G03610 CATMA5A02790 9,23 9,19 -0,04 1,00

11

proteins homologous to plant lipid transfer 
protein/seed storage/trypsin alpha 
amylase inhibitor AT1G55260 CATMA1A46320 9,08 9,04 -0,04 1,00

12 AT2G15050 CATMA2A13890 8,80 9,20 0,40 1,00
13 AT3G53980 CATMA3A46940 8,99 9,99 1,00 3,81E-07
14 AT4G22490 CATMA4A24210 9,40 9,10 -0,29 1,00
15 AT1G12090 CATMA1A11135 12.32 12.54 0.22 1,00
16 AT3G18280 CATMA3A17820 9.93 11.63 1,70 0,00E+00
17 AT3G43720 CATMA3A36600 9,49 9,86 0,37 1,00

18
expressed protein (ML domain - MD-2-
related lipid recognition domain) AT3G44100 CATMA3A36990 9.75 10.43 0.68 1,03E-01

19 AT2G16005 CATMA2A14850 10,13 9,47 -0,66 2,20E-01
20 others AT5G14180 homologous to lipase CATMA5A12400 8.9 10,00 1,10 3,79E-09
21 AT3G51730 homologous to saposin CATMA3A44690 10.82 10.63 -0.18 1,00

22
AT4G26690 homologous to glycerophosphoryl 

diester phosphodiesterase
CATMA4A28280 9,38 9,00 -0,38 1,00

23
AT4G29700 homologous to type I 

phosphodiesterase
CATMA4A31330 9,38 8,44 -0,94 6,03E-06

24 AT5G34850 homologous to phosphoesterase CATMA5A29650 11.84 11.39 -0.45 1,00
25 AT4G01950 homologous to acyltransferase CATMA4A02220 9,05 8,33 -0,72 2,97E-02

1 Miscellaneous
AT3G57010 homologous to strictosidine synthase CATMA3A50000 9,95 9,47 -0,48 1,00

2 AT3G45040 homologous to cytidylyltransferase CATMA3A38060 9,38 9,20 -0,18 1,00

3
AT5G10480 PEPINO/PASTICCINO2, putative 

anti-phosphatase (AtPEP/AtPAS2)
CATMA5A09210 9,06 9,09 0,04 1,00

4 AT5G60920 COBRA CATMA5A56600 10,48 10,23 -0,26 1,00

5
AT1G03880 homolog to plant seed storage protein 

(cupin domain)
CATMA1A02730 11.24 11.39 0.15 1,00

6

AT2G22170 homologous to Brassica napus 
dehydratation stress-induced 
protein

CATMA2A20720 10.57 10.54 -0.03 1,00

7 AT3G08650 metal transporter family CATMA3A07470 10.12 9.56 -0.56 1,00

8
AT5G12200 homolog to amido-hydrolase (metal-

dependent hydrolase)
CATMA5A10970 10.34 9.66 -0.68 1,18E-01

9
AT2G34250 homolog to protein transport protein 

(sec61)
CATMA2A32380 10.57 10.75 0.18 1,00

10 AT2G34490 cytochrome P450 family CATMA2A32630 11.82 11.47 -0.35 1,00

11
proteins homologous to late 
embryogenesis abundant proteins AT3G17520 CATMA3A16945 9.06 10.84 1.78 0,00

12 AT2G41260 M17 CATMA2A39610 9.45 10.4 0.95 3,44E-06
13 proteins homologous to dirigent proteins AT2G28670 CATMA2A27080 10.63 10.16 -0.47 1,00
14 AT1G58170 CATMA1A48300 8,88 9,05 0,16 1,00
15 hormone-related proteins AT2G17500 homologous to auxin efflux carrier CATMA2B16180 11.69 11.01 -0.68 1,01E-01

16

AT1G68100 protein required for auxin conjugate 
sensitivity (AtIAR 1) (Zip Zinc 
transporter domain)

CATMA1A57475 9,62 9,46 -0,16 1,00

17 AT1G04560 homolog to AWPM (ABA-induced) CATMA1A03410 7.92 10.17 2.25 0,00E+00

18
AT4G09600 gibberellin regulated cysteine rich 

protein family (GASA3)
CATMA4A09633 8,11 9,53 1,43 0,00

19
AT5G15230 gibberellin regulated protein (GASA4) CATMA5A13515 12.58 13.42 0.84 4,08E-04

20

pathogenesis-related proteins AT3G04720 pathogenesis-related protein 
(AtPR4) (Carbohydrate Binding-
Module family 18 - CBM18)

CATMA3A03743 9,40 9,30 -0,10 1,00

21 AT1G75800 homolog to thaumatin CATMA1A65090 10.52 10.25 -0.27 1,00
22 AT4G36010 homolog to thaumatin CATMA4A37660 8,65 9,12 0,46 1,00
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23
proteins homologous to phosphate-
induced proteins (phi) AT5G09440 CATMA5A08270 11.87 10.73 -1.14 3,41E-10

24 AT4G08950 CATMA4A08890 9,90 9,64 -0,26 1,00
25 AT5G51550 CATMA5A47480 9,35 9,77 0,42 1,00

26
proteins homologous to acid 
phosphatases

AT5G44020 CATMA5A39790 9,62 9,64 0,02 1,00

27
AT2G27190 homologous to purple acid 

phosphatase
CATMA2A25560 10.67 10.42 -0.25 1,00

28 AT1G25230 AtPAP3 (purple acid phosphatase) CATMA1A23880 10,42 9,94 -0,48 1,00
29 AT2G01890 AtPAP8 (purple acid phosphatase) CATMA2A00940 9,99 9,62 -0,36 1,00
30 proteins homologous to ribonucleases AT1G24450 CATMA1A23390 8,57 9,25 0,67 1,48E-01
31 AT2G39780 RNS2 CATMA2A38006 9,04 9,29 0,25 1,00

1 Unknown function expressed proteins AT5G20520 CATMA5A19000 11.32 11.75 0.43 1,00
2 AT3G13410 CATMA3A12540 11.19 10.95 -0.23 1,00
3 AT3G15950 CATMA3A15360 11.07 10.74 -0.33 1,00
4 AT5G52180 CATMA5A48120 10.85 10,70 -0.15 1,00
5 AT3G24160 CATMA3A24093 10.51 10.21 -0,30 1,00
6 AT5G25265 CATMA5A22980 10.32 9.75 -0.57 1,00
7 AT1G78040 CATMA1A67150 10.21 10.23 0.02 1,00
8 AT1G61900 CATMA1A50970 9,99 9,67 -0,33 1,00
9 AT2G12400 CATMA2A10420 9,91 9,22 -0,69 8,75E-02

10 AT5G58375 CATMA5A54130 9.74 10.32 0.58 1,00
11 AT1G69980 CATMA1A59280 9,69 9,97 0,27 1,00
12 AT4G27120 CATMA4A28730 9,66 9,50 -0,16 1,00
13 AT1G47310 CATMA1A38230 9,56 9,22 -0,34 1,00
14 AT4G39840 CATMA4A41230 9,53 9,82 0,29 1,00
15 AT1G43580 CATMA1A36910 9,47 9,64 0,17 1,00
16 AT2G42840 CATMA2A41257 9,43 9,26 -0,17 1,00
17 AT5G17190 CATMA5A15470 9,41 9,91 0,50 1,00
18 AT5G13140 CATMA5A11350 9,26 9,53 0,27 1,00
19 AT5G61820 CATMA5A57420 9,22 9,28 0,05 1,00
20 AT3G09570 CATMA3A08440 9,15 9,06 -0,09 1,00
21 AT1G29790 CATMA1A27760 9,12 9,37 0,25 1,00
22 AT2G04690 CATMA2A03640 9,11 9,24 0,14 1,00
23 AT1G67785 CATMA1A57160 8,98 9,74 0,76 8,15E-03
24 AT4G30450 CATMA4A32060 8,97 9,53 0,56 1,00
25 AT5G01075 CATMA5A00100 8,85 9,19 0,34 1,00
26 AT1G48440 CATMA1A39540 8,83 9,15 0,32 1,00
27 AT1G80860 CATMA1A70080 8,71 9,23 0,52 1,00
28 AT2G27385 CATMA2A25790 8,50 9,00 0,50 1,00
29 AT3G27390 CATMA3A27250 9,24 8,34 -0,90 3,05E-05
30 AT1G16850 CATMA1A15840 8,12 9,01 0,90 3,70E-05

31

expressed proteins with domains of 
unknown function (DUF) or 
uncharacterized protein families (UPF) AT1G61740 DUF81 CATMA1A50820 9,41 9,41 0,00 1,00

32 AT3G01100 DUF221 CATMA3A00135 9,13 9,04 -0,10 1,00
33 AT1G30360 DUF221 CATMA1A28370 11.37 10.46 -0.91 2,25E-05
34 AT3G54260 DUF231 CATMA3A47210 7,38 9,00 1,62 0,00E+00
35 AT1G51630 DUF246 CATMA1A42760 9,65 9,15 -0,50 1,00
36 AT3G23300 DUF248 CATMA3A23300 9,77 9,60 -0,17 1,00
37 AT5G26740 DUF300 CATMA5A24080 10.69 10.24 -0.46 1,00
38 AT5G19590 DUF538 CATMA5A18020 9,37 9,37 0,01 1,00
39 AT5G19860 DUF538 CATMA5A18290 10.34 10.02 -0.32 1,00
40 AT4G02370 DUF538 CATMA4A02670 10.56 10.8 0.24 1,00
41 AT3G07460 DUF538 CATMA3A06690 9,63 9,48 -0,15 1,00
42 AT1G27930 DUF579 CATMA1A26110 9,27 9,58 0,31 1,00
43 AT4G32460 DUF642 CATMA4A34200 9,52 9,02 -0,51 1,00
44 AT5G25460 DUF642 CATMA5A23220 9,81 9,24 -0,57 1,00
45 AT1G29980 DUF642 CATMA1A28000 9,20 9,36 0,15 1,00
46 AT3G08030 DUF642 CATMA3A07290 12.03 11.69 -0.33 1,00
47 AT5G11420 DUF642 CATMA5A10190 11.97 11.68 -0.29 1,00
48 AT3G15480 DUF1218 CATMA3A14890 10.23 10.44 0.21 1,00
49 AT1G27000 DUF1664 CATMA1A25200 9,89 9,81 -0,08 1,00
50 AT4G30660 UPF0057 CATMA4A32270 8,52 9,37 0,85 2,45E-04
51 AT5G36290 UPF0016 CATMA5A31840 9,26 9,44 0,18 1,00

52
expressed proteins with diverse structural 
domains AT1G07080 GILT domain CATMA1A06150 10.23 10.65 0.42 1,00

53 AT5G25610 BURP domain CATMA5A23380 11.92 11.36 -0.55 1,00
54 AT3G20370 MATH domain CATMA3A20050 10.31 10.33 0.01 1,00
55 AT3G22640 cupin domain CATMA3A22600 9.52 10.52 1,00 4,06E-07
56 AT2G28490 cupin domain CATMA2A26920 10.09 10.69 0.59 1,00
57 AT1G53210 calcium-binding EF-hand domains CATMA1A44240 10.47 9.91 -0.56 1,00
58 AT1G29020 calcium-binding EF-hand domains CATMA1A26980 9,91 9,19 -0,72 2,90E-02

59
AT2G20990 calcium dependent membrane 

targeting domain, CaLB protein
CATMA2A19620 10.37 9.89 -0.47 1,00

60
AT1G05500 calcium dependent membrane 

targeting domain, CaLB protein
CATMA1A04400 9,78 9,38 -0,40 1,00

61
AT3G61050 calcium dependent membrane 

targeting domain, CaLB protein
CATMA3A54220 10.31 9.65 -0.66 2,17E-01

62 AT5G18520 integral membrane protein CATMA5A16820 11.15 10,90 -0.25 1,00
63 AT5G42090 integral membrane protein CATMA5A37800 10.65 10,50 -0.15 1,00

64
AT4G39730 membrane or lipid associated protein 

domain
CATMA4A41080 10.31 10.23 -0.08 1,00

65 AT2G25110 MIR domain CATMA2A23430 8,70 9,06 0,35 1,00
66 AT5G25100 EMP70 domain CATMA5A22810 9,10 9,22 0,12 1,00
67 AT1G64670 alpha/beta hydrolase fold CATMA1A53990 9,87 9,47 -0,40 1,00

68
other expressed proteins

AT4G14420
protein associated to hypersensitive
response CATMA4A14790 8,83 9,44 0,61 9,59E-01

69 AT2G41470 embryo specific protein CATMA2A39880 8,96 9,47 0,50 1,00
70 AT2G34700 pollen proteins Ole e I family CATMA2A32820 10.14 8.35 -1,80 0,00E+00
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Functional class Gene family AGI number gene name 5-day-old 
hypocotyls

11-day-old 
hypocotyls

ratio 11-
days / 5-

days
p-value

Level of transcripts higher in 5-day-old than in 11-day-old  hypocotyls

1
Proteins involved in polysaccharide
synthesis

glycosyl transferase family 2 (cellulose 
synthases)

AT5G09870 AtCESA5 10.01 9.11 -0,90 3,26E-05

2
glycosyl transferase family 48 (callose 
synthases)

AT1G05570 AtCALS1 9,17 8,14 -1,03 8,89E-08

3 Proteins acting on carbohydrates
glycoside hydrolase family 1 (beta-
glucosidase)

AT3G60130 10.84 9,70 -1.14 3.41e-10

4 glycoside hydrolase family 3  AT5G49360 12.67 11.94 -0.73 2,20E-02
5 glycoside hydrolase family 9 AT4G02990 11,10 10,08 -1,02 1,57E-07

6
glycoside hydrolase family 16 (xyloglucan 
endotransglycosidases/hydrolases) AT2G06850 AtXTH4 12.98 12.15 -0.83 6,40E-04

7 AT4G14130 AtXTH15 12.72 11.98 -0.74 1,62E-02
8 glycoside hydrolase family 17 AT3G04010 8,30 9,85 -1,55 0,00E+00

9
glycoside hydrolase family 35 (beta-
galactosidase) AT5G56870 AtBGAL4 13.18 11.97 -1.22 5,60E-12

10 AT1G45130 AtBGAL5 11.21 10.42 -0.78 3,24E-03
11 AT3G52840 AtBGAL2 8,44 7,71 -0,73 2,32E-02

12
glycoside hydrolase family 38 (alpha-
mannosidase)

AT3G26720 11.33 10.38 -0.95 4,81E-06

13
carbohydrate esterase family 8 (pectin 
methylesterases) AT3G49220 11.81 10.99 -0.82 8,65E-04

14 AT2G43050 12.56 10.76 -1,80 0,00E+00
15 AT3G14310 AtPME3 10.79 9,90 -0,90 4,05E-05

16 Proteases
serine proteases (proteins homologous to 
serine proteases) AT3G14067 AtSBT1.4 11.85 10.71 -1.15 2,80E-10

17 AT5G59090 AtSBT4.12 10.47 9.49 -0.99 7,99E-07
18 aspartyl proteases AT5G10770 12.46 9.97 -2.49 0,00E+00
19 peptidases AT4G32940 asparginyl peptidase 12.35 10.82 -1.53 0,00E+00
20 AT3G01720 metallopeptidase 8,54 9,47 -0,93 9,02E-06
21 AT4G38220 metallopeptidases M20/M25/M40 9,76 9,04 -0,72 3,02E-02

22 Proteins possibly involved in signaling
proteins homologous to receptor-kinases 
(RLKs) AT1G08590 CLAVATA1 9,22 8,32 -0,90 3,05E-05

23 AT2G39180 AtCRR2 9,23 8,30 -0,93 8,33E-06
24 AT1G69270 AtRPK1 10,30 9,39 -0,91 2,35E-05
25 AT1G07650 LRR VIII-2 subfamily 8,95 8,18 -0,76 7,19E-03

26
Proteins possibly involved in oxido
reduction reactions peroxidases AT2G37130 AtPrx21 14.28 12.86 -1.42 0,00E+00

27 AT4G21960 AtPrx42 13.17 12,40 -0.77 5,29E-03
28 AT4G33870 AtPrx48 10.52 9.25 -1.27 0,00E+00

29
proteins homologous to berberine bridge 
enzymes AT5G44380 8,49 9,93 -1,45 0,00E+00

30 Proteins with interacting domains proteins homologous to lectins AT3G15356 legume lectin 10.81 9.96 -0.84 3,38E-04
31 AT1G78820 curculin-like, mannose-binding 8,96 8,04 -0,93 1,15E-05

32
proteins with leucine-rich repeat (LRR) 
domains AT1G78230 expressed protein 8,22 7,48 -0,74 1,41E-02

33 proteins with fasciclin domains AT3G52370 expressed protein 8,80 8,08 -0,73 2,21E-02

34 Proteins related to lipid metabolism
proteins homologous to GDSL 
Lipase/Acylhydrolase AT1G71980 11.86 11.05 -0.81 1,42E-03

35 AT5G45950 9,42 8,55 -0,87 1,16E-04
36 AT2G42990 8,73 7,99 -0,73 1,90E-02

37
proteins homologous to acyltransferase

AT4G01950 9,05 8,33 -0,72 2,97E-02

38
protein homologous to type I 
phosphodiesterase AT4G29700

9,38 8,44 -0,94 6,03E-06

39 Miscellaneous
proteins homologous to phosphate-
induced proteins (phi) AT5G09440 11.87 10.73 -1.14 3,41E-10

40 Unknown function

expressed proteins with domains of 
unknown function (DUF) or 
uncharacterized protein families (UPF) AT1G30360 DUF221 11.37 10.46 -0.91 2,25E-05

41
other expressed proteins AT2G34700 homolog to N. tabacum  pistil-specific 

protein
10.14 8.35 -1,80 0,00E+00

42 AT3G27390 9,24 8,34 -0,90 3,05E-05
43 AT2G32560 9,34 8,58 -0,76 7,05E-03

Level of transcripts higher in 11-day-old than in 5-day-old  hypocotyls
1 Proteins acting on carbohydrates glycoside hydrolase family 1 AT3G21360 9,96 11,47 1,51 0,00E+00

2

glycoside hydrolase family 16 (xyloglucan 
endotransglycosidases/hydrolases)

AT4G30270 AtXTH24 10.84 11.64 0,80 1,63E-03
3 pectate lyase family 1 AT4G24780 8,40 9,43 1,03 1,03E-07
4 expansins AT4G28250 AtEXPB3 9.07 10.38 1.31 0,00E+00
5 Proteases cysteine proteases (papain family) AT3G54940 8.35 10.33 1.98 0,00E+00
6 AT1G62290 11.77 12.48 0.72 3,29E-02
7 peptidases AT1G62710 C13 family 8,47 9,19 0,72 2,72E-02
8 Proteins possibly involved in signaling arabinogalactan proteins (AGPs) AT3G13520 AtAGP12 10.77 11.51 0.74 1,50E-02
9 AT3G61640 AtAGP20 8,69 9,53 0,85 3,14E-04

10
Proteins possibly involved in oxido
reduction reactions

peroxidases
AT2G38390 AtPrx23 7,80 8,96 1,15 1,96E-10

11 Structural proteins glycine-rich proteins (GRPs) AT2G05440 7.22 11.01 3.79 0,00E+00
12 AT1G62240 9.33 10.43 1,10 3,00E-09

13 Proteins with interacting domains enzyme inhibitors AT1G75830 protease inhibitor (gamma-thionin) 8.73 10.53 1,80 0,00E+00

14 AT2G02120 protease inhibitor (gamma-thionin) 9.87 11.29 1.42 0,00E+00

15 AT2G15010 protease inhibitor (gamma-thionin) 7,57 8,70 1,13 5,54E-10

16 AT2G43510 protease inhibitor (trypsin inhibitor) 7,99 8,93 0,94 4,99E-06
17 AT2G31980 protease inhibitor (cystatin) 10.06 11.32 1.26 0,00E+00

Table 3. Secretory Pathway Genes (SPGs) with modulated levels of transcripts in 5- and 11-day-old hypocotyls. SPGs were annotated using bioinformatic softwares for sub-cellular localization and
functional domains as described in Methods. The intensityof the signal is expressed as log2, the ratio between the levels of transcripts at 11-days and 5-days as well as the p-value are indicated (Bonferroni p-
value<5%).
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18 Proteins related to lipid metabolism

proteins homologous to plant lipid transfer 
protein/seed storage/trypsin alpha 
amylase inhibitor AT3G53980 8,99 9,99 1,00 3,81E-07

19 AT3G18280 9.93 11.63 1,70 0,00E+00
20 others AT5G14180 homolog to lipase 8,90 10,00 1,10 3,79E-09

21 Miscellaneous
proteins homologous to late 
embryogenesis abundant proteins AT3G17520 9.06 10.84 1.78 0,00E+00

22 AT2G41260 M17 9.45 10,40 0.95 3,44E-06
23 hormone-related proteins AT1G04560 homolog to AWPM (ABA-induced) 7.92 10.17 2.25 0,00E+00

24 AT5G15230
gibberellin regulated protein (GASA4)

12.58 13.42 0.84 4,08E-04

25 AT4G09600
gibberellin regulated protein (GASA3)

8,11 9,53 1,43 0,00E+00
26 others AT2G22860 phytosulfokine (AtPSK2) 7,61 8,49 0,88 7,46E-05
27 AT3G49780 phytosulfokine (AtPSK4) 7,64 8,61 0,97 1,97E-06
28 Unknown function expressed proteins AT1G67785 8,98 9,74 0,76 8,15E-03
29 AT1G16850 8,12 9,01 0,90 3,70E-05
30 AT1G54860 7,46 8,66 1,20 1,68E-11
31 AT5G40960 6,96 8,07 1,11 1,58E-09
32 AT4G38080 7,16 8,39 1,23 0,00E+00
33 AT5G64510 7,49 8,96 1,48 0,00E+00
34 AT5G53650 7,87 8,96 0,91 2,43E-05

35

expressed proteins with domains of 
unknown function (DUF) or 
uncharacterized protein families (UPF) AT3G54260 DUF231 7,38 9,00 1,62 0,00E+00

36 AT4G30660 UPF0057 8,52 9,37 0,85 2,45E-04

37
expressed proteins with diverse structural 
domains AT3G22640 cupin domain 9.52 10.52 1,00 4,06E-07

38 AT1G49320 BURP domain 7,16 8,01 0,86 2,10E-04
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accession annotation 5-days 11-days 5-days 11-days ratio p-value
AGI  11-days/5-days

At2g06850
glycoside hydrolase family 16 
(endoxyloglucan transferase) (AtXTH4) 12,98 12,15 -0,83 6,40E-04

At5g13870
glycoside hydrolase family 16 
(endoxyloglucan transferase) (AtXTH5) 8,17 8,15 -0,02 1,00E+00

At3g44990
glycoside hydrolase family 16 
(endoxyloglucan transferase) (AtXTH31) nd nd

At2g36870
glycoside hydrolase family 16 
(endoxyloglucan transferase) (AtXTH32) 8,31 7,86 -0,45 1,00E+00

At1g10550
glycoside hydrolase family 16 
(endoxyloglucan transferase) (AtXTH33) 6,21 6,22 0,01 1,00E+00

At4g16260 glycoside hydrolase family 17 6,56 6,68 0,12 1,00E+00
At4g19810 glycoside hydrolase family 18 (chitinase) 6,88 6,89 0,00 1,00E+00
At3g12500 glycoside hydrolase family 19 (chitinase) 8,08 7,72 -0,36 1,00E+00

At3g55260
glycoside hydrolase family 20 (beta-
hexosaminidase) 9,64 9,13 -0,51 1,00E+00

At1g19170
glycoside hydrolase family 28 
(polygalacturonase) 6,70 6,68 -0,02 1,00E+00

At2g33160
glycoside hydrolase family 28 
(polygalacturonase) 6,56 6,46 -0,10 1,00E+00

At3g06770
glycoside hydrolase family 28 
(polygalacturonase) 9,01 8,78 -0,23 1,00E+00

At3g16850
glycoside hydrolase family 28 
(polygalacturonase) 7,08 6,95 -0,13 1,00E+00

At3g61490
glycoside hydrolase family 28 
(polygalacturonase) 8,09 8,55 0,45 1,00E+00

At4g18180
glycoside hydrolase family 28 
(polygalacturonase) 6,57 6,55 -0,03 1,00E+00

At1g68560
glycoside hydrolase family 31 (alpha-
xylosidase) (AtXYL1) 10,6 10,13 -0,47 1,00E+00

At3g13790
glycoside hydrolase family 32 (beta-
fructofuranosidase) 6,89 6,78 -0,11 1,00E+00

At5g34940
glycoside hydrolase family 79 (endo beta-
glucuronidase/heparanase) 6,98 6,90 -0,09 1,00E+00

At1g11580
carbohydrate esterase family 8 (pectin 
methylesterase) 7,29 7,26 -0,04 1,00E+00

At1g53830
carbohydrate esterase family 8 (pectin 
methylesterase) (AtPME2) 8,35 7,61 -0,74 1,61E-02

At3g14310
carbohydrate esterase family 8 (pectin 
methylesterase) (AtPME3) 10,79 9,90 -0,90 4,05E-05

At3g43270
carbohydrate esterase family 8 (pectin 
methylesterase) 6,30 6,46 0,16 1,00E+00

At4g33220
carbohydrate esterase family 8 (pectin 
methylesterase) 8,08 7,75 -0,33 1,00E+00

At5g53370
carbohydrate esterase family 8 (pectin 
methylesterase) 7,41 7,30 -0,11 1,00E+00

At4g37950
polysaccharide lyase family 4 
(rhamnogalacturonate lyase) 6,68 6,73 0,05 1,00E+00

At1g05570
glycosyl transferase family 48 (callose 
synthase) (AtCalS1) 6,58 6,58 0,00 1,00E+00

At5g02260 alpha-expansin (AtEXPA9) 12,71 12,44 -0,28 1,00E+00
At1g20190 alpha-expansin (AtEXPA11) 8,76 8,72 -0,03 1,00E+00
At5g39270 alpha expansin (AtEXP22) nd nd
At3g45970 expansin-like A (AtEXLA1) nd nd
At4g38400 expansin-like A (AtEXLA2) 7,98 7,74 -0,24 1,00E+00
At3g45960 expansin-like A (AtEXLA3) 6,97 6,91 -0,06 1,00E+00

At1g71695 peroxidase (AtPrx12) 10,17 9,54 -0,63 4,86E-01
At3g21770 peroxidase (AtPrx30) 9,54 9,77 0,23 1,00E+00
At3g32980 peroxidase (AtPrx32) nd nd
At3g49110 peroxidase (AtPrx33) 6,28 6,37 0,09 1,00E+00
At3g49120 peroxidase (AtPrx34) nd nd
At3g50990 peroxidase (AtPrx36) 6,47 6,58 0,11 1,00E+00
At5g25980 peroxidase (AtPrx43) 6,52 6,54 0,02 1,00E+00
At4g30170 peroxidase (AtPrx45) 7,52 7,65 0,13 1,00E+00
At5g17820 peroxidase (AtPrx57) 6,99 6,76 -0,23 1,00E+00
At5g64100 peroxidase (AtPrx69) 6,72 6,68 -0,05 1,00E+00
At5g66390 peroxidase (AtPrx72) 8,70 8,57 -0,13 1,00E+00
At2g30210 homologous to laccase (AtLAC3) 8,23 8,14 -0,09 1,00E+00

At1g30710
homologous to berberine-bridge enzyme (S)-
reticulin:oxygen oxidoreductase 6,32 6,41 0,09 1,00E+00

At4g20860
homologous to berberine-bridge enzyme (S)-
reticulin:oxygen oxidoreductase 6,80 6,78 -0,01 1,00E+00

At5g44360
homologous to berberine-bridge enzyme (S)-
reticulin:oxygen oxidoreductase 6,56 6,64 0,07 1,00E+00

At5g44410
homologous to berberine-bridge enzyme (S)-
reticulin:oxygen oxidoreductase 6,78 6,91 0,12 1,00E+00

At1g01980
homologous to berberine-bridge enzyme (S)-
reticulin:oxygen oxidoreductase 6,22 6,34 -0,11 1,00E+00

At5g22140 expressed protein (oxido-reductase domain) nd nd
At5g56490 expressed protein (FAD binding domain) nd nd

At2g02850
plantacyanin ARPN (blue copper binding 
protein) 6,84 6,90 0,06 1,00E+00

At4g12880
early nodulin AtEN20 homologous to blue 
copper binding protein 10,84 11,19 0,36 1,00E+00

Table 4. Proteins extracted and identified by mass spectrometry from purified cell walls of 5- and 11-day-old etiolated hypocotyls of A. thaliana . All these proteins were annotated using
bioinformatic softwares for sub-cellular localization and functional domains as described in Material and methods. Proteomic data are in Irshad et al. (2008, submitted for publication). Presence of
proteins at 5-days or 11-days is indicated by a ticked box. For transcriptomics, the intensity of the signal is expressed as log2, the ratio between the levels of transcripts at 11-days and 5-days as
well as the p-value are indicated. Background level for transcriptomics is 6.75 (grey boxes indicate results below background). Genes encoding proteins with predicted GPI anchors or trans-
membrane domains are in bold, and in pink boxes respectively.

proteins acting on carbohydrates

oxido-reductases

proteomic data transcriptomic data
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At1g53070 homologous to lectin (legume lectin domains) 7,92 7,74 -0,18 1,00E+00
At1g78820 homologous to lectin (curculin-like) 8,96 8,04 -0,93 1,15E-05
At1g78830 homologous to lectin (curculin-like) 9,82 9,22 -0,60 1,00E+00
At1g78850 homologous to lectin (curculin-like) 11,95 11,42 -0,53 1,00E+00
At1g78860 homologous to lectin (curculin-like) 7,05 7,20 0,15 1,00E+00
At5g06860 PGIP1 (LRR domains) nd nd
T23B7.10 homologous to PGIP1 (LRR protein FLR1) nd nd

At5g12940
homologous to Phaseolus vulgaris  PGIP2 
(LRR domains) 9,68 9,05 -0,63 5,72E-01

At1g33590 expressed protein (LRR domains) nd nd
At2g34930 expressed protein (LRR domains) 7,46 7,68 0,22 1,00E+00
At3g20820 expressed protein (LRR domains) 10,49 9,99 -0,50 1,00E+00
At2g17120 expressed protein (LysM domain) 9,22 9,03 -0,19 1,00E+00

At1g03220
homologous to carrot EDGP and tomato 
XEGIP nd nd

At1g03230
homologous to carrot EDGP and tomato 
XEGIP nd nd

At5g19110
homologous to carrot EDGP and tomato 
XEGIP 8,10 8,09 -0,01 1,00E+00

At1g47710
homologous to serpin (serine protease 
inhibitor) 8,01 7,97 -0,04 1,00E+00

At1g17860

inhibitor family I3 (Kunitz-P family) (subfamily 
I3A unassigned peptidase inhibitor 
homologues, MEROPS) 8,78 8,95 0,17 1,00E+00

At1g73260

inhibitor family I3 (Kunitz-P family) (subfamily 
I3A unassigned peptidase inhibitor 
homologues, MEROPS) 12,00 12,50 0,50 1,00E+00

At1g47540

inhibitor family I18 (mustard trypsin inhibitor-2 
family) (family I18 unassigned peptidase 
inhibitor homologues, MEROPS) nd nd

At2g40880
inhibitor family I25 (phytostatin) (cystatin 
family, I25.014, MEROPS) nd nd

At5g05110
inhibitor family I25 (phytostatin) (cystatin 
family, I25.014, MEROPS) 7,84 7,93 0,09 1,00E+00

At4g16500

inhibitor family I25 (cystatin family) (subfamily 
I25B unassigned peptidase inhibitor 
homologues, MEROPS) 8,08 8,42 0,34 1,00E+00

At4g25260
homologous to plant invertase/ pectin 
methylesterase inhibitor (PMEI) 8,67 9,10 0,43 1,00E+00

At5g46940
homologous to plant invertase/pectin 
methylesterase inhibitor 6,36 6,33 -0,03 1,00E+00

At5g46960
homologous to plant invertase/pectin 
methylesterase inhibitor nd nd

proteases

At1g09750

homologous to aspartic protease (pepsin 
family) (Peptidase family A1, subfamily A1B 
unassigned peptidases, MEROPS) nd nd

At3g02740

homologous to aspartic protease (pepsin 
family) (Peptidase family A1, subfamily A1B 
unassigned peptidases, MEROPS) 7,22 7,32 0,10 1,00E+00

At3g52500

homologous to aspartic protease (pepsin 
family) (Peptidase family A1, subfamily A1B 
unassigned peptidases, MEROPS) 8,8 8,34 -0,46 1,00E+00

At3g54400

homologous to aspartic protease (pepsin 
family) (Peptidase family A1, subfamily A1B 
unassigned peptidases, MEROPS) 9,33 8,92 -0,42 1,00E+00

At5g07030

homologous to aspartic protease (pepsin 
family) (Peptidase family A1, subfamily A1B 
unassigned peptidases, MEROPS) nd nd

At1g79720

homologous to aspartic protease (CND41 
peptidase) (Peptidase family A1, subfamily 
A1.050 , MEROPS) 8,93 8,43 -0,51 1,00E+00

At5g10770

homologous to aspartic protease (CND41 
peptidase) (Peptidase family A1, A01.050, 
MEROPS) 12,46 9,97 -2,49 0,00E+00

At1g47128

homologous to cysteine proteinase (papain 
family) (RD21A, Peptidase family C1, C01.064 
MEROPS) nd nd

At5g43060

homologous to cysteine proteinase (papain 
family) (RD21 peptidase, Peptidase family C1, 
C01.064 MEROPS) nd nd

At4g01610

homologous to cysteine proteinase (papain 
family) (Cathepsin B, Peptidase family C1, 
C01.049, MEROPS) 12,4 12,38 -0,02 1,00E+00

At4g36880

homologous to cysteine protease (papain 
family) (Peptidase family C1, Brassicain, 
C01.021 MEROPS) 8,63 8,79 0,16 1,00E+00

At3g02110

homologous to serine carboxypeptidase D 
(SCPL25) (Peptidase family S10, S10.005, 
MEROPS) 7,92 7,71 -0,20 1,00E+00

At5g23210

homologous to serine carboxypeptidase 
(SCPL34) (Peptidase family S10, S10.005, 
MEROPS) 9,49 8,82 -0,67 1,49E-01

At4g30610

homologous to serine carboxypeptidase 
(BRS1 - Brassinosteroid-Insensitive BRI 
suppressor 1) (Peptidase family S10, S10.015 
MEROPS) 7,42 7,21 -0,21 1,00E+00

At1g28290 proline-rich protein 10,97 11,42 0,46 1,00E+00
At5g14920 proline-rich protein 8,11 7,79 -0,31 1,00E+00
At2g05580 glycine-rich protein 8,12 8,40 0,29 1,00E+00
At4g13340 LRR-extensin (AtLRX3) 6,89 6,83 -0,06 1,00E+00
At3g24480 LRR-extensin (AtLRX4) 9,68 9,56 -0,11 1,00E+00
At4g18670 LRR-extensin (AtLRX5) 6,70 6,79 0,09 1,00E+00

structural proteins

proteins with interacting domains
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signaling

At4g05200
homologous to receptor kinase (RLK, DUF26-
1b subfamily) 6,50 6,51 0,01 1,00E+00

At5g55730 fasciclin-like arabinogalactan protein (AtFLA1) 8,18 7,96 -0,22 1,00E+00

At1g29670
homologous to lipase acylhydrolase 
(GDSL family) nd nd

At1g54010
homologous to lipase/acylhydrolase 
(GDSL family) nd nd

At1g54030
homologous to lipase/acylhydrolase 
(GDSL family) 10,10 9,75 -0,35 1,00E+00

At3g48460
homologous to lipase acylhydrolase 
(GDSL family) 8,05 7,79 -0,26 1,00E+00

At5g15720
homologous to lipase acylhydrolase 
(GDSL family) 6,85 6,73 -0,13 1,00E+00

At2g38530 non-specific lipid transfer protein 2 (LTP2) nd nd

At5g23820
expressed protein (ML domain - MD-2-
related lipid recognition domain) nd nd

At2g16001
expressed protein (lipid recognition 
domain) nd nd

At2g27190
homologous to purple acid phosphatase 
(PAP1) 10,67 10,42 -0,25 1,00E+00

At3g07130 homologous to purple acid phosphatase 6,62 6,52 -0,10 1,00E+00
At5g34850 homologous to purple acid phosphatase 11,84 11,39 -0,45 1,00E+00
At4g29270 homologous to acid phosphatase nd nd
At4g24340 homologous to phosphorylase nd nd

At3g02870
homologous to myo-inositol 
monophosphatase 7,17 7,38 0,21 1,00E+00

At5g09440 homologous to Nicotiana tabacum  phi-I 11,87 10,73 -1,14 3,41E-10
At5g64260 homologous to Nicotiana tabacum  phi-I 6,47 6,47 0,00 1,00E+00

At5g66590
homologous to Nicotiana tabacum 
pathogenesis-related protein PR1 6,42 6,40 -0,02 1,00E+00

At2g28790
homologous to Lycopersicon esculentum 
osmotin 8,00 8,45 0,45 1,00E+00

At5g15230 gibberellin-regulated protein (GASA4) 12,58 13,42 0,84 4,08E-04
At4g27110 homologous to COBRA (AtCOBL10) 6,39 6,38 -0,01 1,00E+00
At1g09560 germin (subfamily 2, member 1, GLP5) 10,49 9,99 -0,50 1,00E+00

At3g56750 expressed protein nd nd
At3g22000 expressed protein (DUF26) nd nd
At1g26850 expressed protein (DUF248) nd nd
At1g80240 expressed protein (DUF642) 8,11 7,73 -0,38 1,00E+00
At3g08030 expressed protein (DUF642) 12,03 11,69 -0,33 1,00E+00
At4g32460 expressed protein (DUF642) 9,52 9,02 -0,51 1,00E+00
At5g11420 expressed protein (DUF642) 11,97 11,68 -0,29 1,00E+00
At5g25460 expressed protein (DUF642) 9,81 9,24 -0,57 1,00E+00
At1g78460 expressed protein (SOUL heme binding domain) 6,52 6,54 0,02 1,00E+00

At2g04690
expressed protein (homologous to a human 
brain CREG protein) 9,11 9,24 0,14 1,00E+00

At2g15220
expressed protein (Plant Basic Secreted 
Protein domain) nd nd

At2g34700 expressed protein (Ole eI allergen domain) 10,14 8,35 -1,80 0,00E+00
At3g20370 expressed protein (MATH domain) nd nd
At2g28490 expressed protein (cupin domain) 10,09 10,69 0,59 1,00E+00
At3g22640 expressed protein (cupin domain) 9,52 10,52 1,00 4,06E-07
At4g36700 expressed protein (cupin domain) 6,72 7,11 0,39 1,00E+00

proteins related to lipid metabolism

miscellaneous functions

unknown function
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Accession number Primer sequence (5'→3', sense orientation) Primer sequence (5'→3', antisense orientation) Length of expected fragment (bp)
At1g05570 CACTTCCTCTGATAACAATCAAAGAC GCTTACACGCTTGTGCAATG 96

At1g10550 CAATTCAGTAAGATCGCCATTG TTTGACACCAACCCAGCTC 125

At1g28290 AACCATAAGACTCAAACCCTTC TGAGGGTGGTGGTGATGAG 95

At1g49240 CACCCGAGAGGAAGTACAGTG CATACTCTGCCTTAGAGATCCACA 93

At1g66180 ACCACAAGCTCAACAAATGGT GGAGGAAGCTTTTTACGATGAC 78

At1g68560 GTCGCCGTTAAATGTTGTTG CCCATCTACATTGATGAAATCCT 95

At1g69530 GCATCGCTCAATACAGAGC GAGTGTCCGTTTATCGTAAACCTT 97

At2g21140 TCTCATCCTTGATAAAGATGC TCTACGTAGAATTCAACAAAGC 111

At2g28790 GTGCCCACTACAACGGAAAA TGAGCTAGAGAAGCTGGTGGT 100

At3g07130 GGGATCGGCAACCTGATTA GCCCATGTCTCGTTCTTCAT 82

At3g16850 GTAGCCTTCAGAACCACCAGA TCAACGCTTGTGAGATCGAC 80

At3g43270 TTCCGATCTGCTACATTTGCT GACCGCTTGGTGTTTTTCC 96

At4g12880 GGCATGAAGCTAGATGTTTTAGTTG ACATAAAATTGATTTCTTATTGTGCTG 91

At4g18670 CACCACCTCCAATCTACGAAG GCCCCTTTTGAGAACATTCTG 112

At5g05850 TGGTACCACTGGAGGAAAGC TTGCAACTCCATAGCCACAG 95

At5g11420 GTCTCTTCTCTTTACTTTGGTCGTC AGTCGCCGTTTGGTAACATC 126

At5g44360 AGGAGCTTATTTGAATTACCGAGA TCGCATCTTCAAAGCTCGTA 74

At5g64100 GCAAGACTTCGCTGCTAAAAC GCCGTTGAAGTTAACGAACC 118

desmin a CAGCCTCAGTCCTCCAAATCACA TAGGCCTGAGGTCACAGAGGT

a : Pig desmin RNA was used as an internal control for reverse transcription.

Table 5. Nucleotide primers used for PCR amplifications
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Dynamique des protéines pariétales au cours de l'élongation cellulaire 
dans des hypocotyles étiolés d'Arabidopsis thaliana : 

approches protéomique et transcriptomique 
 
Résumé 
 La paroi cellulaire des végétaux supérieurs est une structure complexe jouant de nombreux rôles au 
cours du développement ainsi qu’en réponse aux stress. Les protéines pariétales sont notamment 
importantes au cours de l’élongation cellulaire. Des hypocotyles étiolés d’Arabidopsis thaliana ont été 
choisi comme modèle d’élongation cellulaire parce qu’ils subissent une élongation polarisée et rapide en 
l’absence de division cellulaire. Deux stades de développement ont été comparés grâce à des analyses 
protéomique et transcriptomique : pendant leur élongation vs après la fin de leur croissance. Pour rendre 
l’analyse protéomique efficace, une nouvelle méthode de purification de parois et une stratégie de 
séparation des protéines pariétales ont été établies. Les protéines ont été identifiées par cartographie 
peptidique massique en utilisant la spectrométrie de masse de type MALDI-TOF. Cette étude a permis 
d’identifier 137 protéines parmi lesquelles 51 n’avaient pas été identifiées auparavant. Plusieurs familles 
de protéines connues pour être impliquées dans l’elongation cellulaire ou son arrêt ont été trouvées par 
l’une ou l’autre approche (XTH, PG, expansines, peroxydases, laccases). De nouvelles protéines 
candidates pour jouer des rôles dans l’élongation cellulaire ont été identifiées, telles des protéases, des 
protéines liées au métabolisme des lipides ou des protéines de fonction inconnue. La comparaison des 
résultats de protéomique et de transcriptomique ne montre pas de cohérence systématique, suggérant 
l’existence de mécanismes de régulation post-transcriptionnels des gènes codant les protéines pariétales. 
 
Mots-clefs : 
Arabidopsis thaliana, développement, protéines pariétales, paroi cellulaire végétale, protéomique, 
transcriptomique 
 
 

Dynamics of cell wall proteins during cell elongation in etiolated hypocotyls 
of Arabidopsis thaliana as shown by proteomic and transcriptomic surveys 

 
Abstract 
 The cell wall of higher plants is a complex dynamic entity that performs a variety of functions during 
growth and development as well as in response to environmental stresses. Cell wall proteins play 
important roles in cell elongation. Etiolated hypocotyls of Arabidopsis thaliana were chosen as 
elongating organs since they undergo rapid and polar elongation without cell division. Two 
developmental stages were compared through proteomic and transcriptomic surveys: active elongation (5-
day-old hypocotyls) vs after growth arrest (11 day-old hypocotyls). As a prerequisite to proteomic study, 
an efficient cell wall purification method was established as well as a powerful strategy for protein 
separation. Proteins were identified by peptide mass mapping using MALDI-TOF mass spectrometry and 
bioinformatics. This study resulted in identification of 137 proteins among which 51 were not identified 
before by proteomics, and 36 (resp. 17) were found only at 5-days (resp. 11-days). Overall, many protein 
families expected to be involved in cell wall elongation or in elongation arrest were found by either 
survey such as XTHs, PGs, expansins, peroxidases, and laccases. However, some of them were found all 
along hypocotyl development which suggests other roles in cell walls. In addition, many proteins not 
described before to play roles during cell wall elongation were identified, such as proteases, proteins 
related to lipid metabolism and proteins of yet unknown function. Finally, proteomic and transcriptomic 
results revealed no systematic consistency between them suggesting post-transcriptional regulation steps 
for genes encoding cell wall proteins. 
 
Key words: 
Arabidopsis thaliana, development, cell wall proteins, plant cell wall, proteomics, transcriptomics 
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