
HAL Id: tel-00323970
https://theses.hal.science/tel-00323970

Submitted on 23 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Behavioral matchmaking for service retrieval
Juan-Carlos Corrales

To cite this version:
Juan-Carlos Corrales. Behavioral matchmaking for service retrieval. Software Engineering [cs.SE].
Université de Versailles-Saint Quentin en Yvelines, 2008. English. �NNT : �. �tel-00323970�

https://theses.hal.science/tel-00323970
https://hal.archives-ouvertes.fr

Behavioral matchmaking for service retrieval

by

Juan Carlos Corrales

A thesis presented to the

University of Versailles Saint-Quentin-en-Yvelines

in fulfillment of the thesis requirement for the degree of

Doctor of Philosophy in Sciences

Speciality

Computer Science

Versailles, France, January 2008

JURY

Boualem BENATALLAH, Professor University of New South Wales, Australia (Reviewer)

Farouk TOUMANI, Professor University of Blaise Pascal, Clermont-Ferrand (Reviewer)

Bernd AMANN, Professor University of Pierre et Marie Curie-LIP6, Paris (Examiner)

Mokrane BOUZEGHOUB, Professor University of Versailles Saint-Quentin-en-Yvelines (Advisor)

Daniela GRIGORI, Associate Professor of University Versailles Saint-Quentin-en-Yvelines (Co-advisor)

c©Juan Carlos Corrales, 2008

I hereby declare that I am the sole author of this thesis.

I authorize the Versailles Saint-Quentin-en-Yvelines University to lend this thesis to other institutions or

individuals for the purpose of scholarly research.

Juan Carlos Corrales

I further authorize the Versailles Saint-Quentin-en-Yvelines University to reproduce this thesis by photo-

copying or other means, in total or in part, at the request of other institutions or individuals for the purpose

of scholarly research.

Juan Carlos Corrales

ii

Abstract

The capability to easily find useful services (software applications, software components, scientific

computations) becomes increasingly critical in several fields. Current approaches for services retrieval are

mostly limited to the matching of their inputs/outputs possibly enhanced with some ontological knowl-

edge. Recent works have demonstrated that this approach is not sufficient to discover relevant components.

In this dissertation we argue that, in many situations, the service discovery should be based on the specifi-

cation of service behavior. The idea behind it, is to develop matching techniques that operate on behavior

models and allow delivery of partial matches and evaluation of semantic distance between these matches

and the user requirements. Consequently, even if a service satisfying exactly the user requirements does

not exist, the most similar ones will be retrieved and proposed for reuse by extension or modification. To

do so, we reduce the problem of behavioral matching to a graph matching problem and we adapt existing

algorithms for this purpose.

Motivated by these concerns, we developed the WS-BeM platform for ranking web services based on

behavior matchmaking, which takes as input two WSCL or BPEL protocols and evaluates the semantic

distance between them. The prototype is also available as a web service. Furthermore, an application is

described concerning the tool for evaluating the effectiveness of the behavioral matchmaking method.

iii

To my family

iv

Acknowledgements

My foremost thank goes to my thesis advisers Mokrane Bouzeghoub and Daniela Grigori. Without

them, this dissertation would not have been possible. I thank them for their patience and encouragement

that carried me on through difficult times, and for their insights and suggestions that helped to shape my

research skills. Their valuable feedback contributed greatly to this dissertation.

I thank the rest of my thesis committee members: Dr. Boualem Benatallah, Dr. Farouk Toumani and

Dr. Bernd Amann. Their valuable feedback helped me to improve the dissertation in many ways.

I thank all doctoral students and staffs in PRiSM Laboratory, especially to SIAL group. Many thanks

to my lab mates, past and present, for all the help and friendship shared. Specials thanks to Octavio

Ramirez, Parinaz Davari, Veronika Peralta, Xiaohui Xue, Dimitre Kostadinov and Sofiane Abbar. It was

nice to work with them in a friendly environment.

I also want to thank all people in the Telematics Engineering Group of the University of Cauca for

their support. In the same way, I want thank the Program Alban for the scholarship received during these

three years.

I have now the pleasure of acknowledging those who have provided me with the personal foundation

which has been so indispensable to my professional life. I owe special thanks with all my heart to my

parents, Fredy and Stella, and to my brother David Camilo, for providing the bedrock of support on which

my life has been built upon and the fortress of never-ending love which has enabled me to defy all the

storms of life. I am also grateful to my girlfriend Carolina for her patience and enriching my life with her

love.

Juan Carlos Corrales

January 9, 2008

Versailles, France

v

Contents

1 Introduction 1

1.1 Context . 1

1.2 Motivating scenarios . 2

1.3 Problem statement . 4

1.4 Our proposal . 4

1.5 Contributions and main results . 4

1.6 Thesis outline . 5

2 Analysis of Related Work 7

2.1 Service Behavioral Models . 8

2.1.1 Service Choreography . 9

2.1.2 Behavioral Interface . 11

2.1.3 Service Orchestration . 13

2.1.4 Assessment of Service Composition Techniques 14

2.2 Formal Models for Representing Processes . 15

2.2.1 Process Algebra Models . 15

2.2.2 Petri Net Models . 16

2.2.3 Finite State Automata (FSA) . 16

2.2.4 Graph Representation . 17

2.2.5 Assessment of Formal Models . 17

2.3 Service Matchmaking Techniques . 18

2.3.1 Graph Matching Algorithms . 18

2.3.2 Service Matchmaking . 21

2.3.3 Assessment of the Service Matchmaking Techniques 23

2.4 Summary . 24

3 Service Behavioral Matchmaking 26

3.1 The Graph Matching Problem . 27

3.1.1 Background of Graph Matching . 27

3.1.2 Edit Distance: A Method to Measure the Similarity of two Graphs 28

3.1.3 Error-correcting Subgraph Matching . 29

3.1.4 Extensions of the EC-Algorithm . 31

3.2 Conversation Protocol Matchmaking . 33

vi

3.2.1 Web Services Conversation Language: WSCL 34

3.2.2 WSCL to Graph Transformation . 38

3.2.3 Decomposition of WSCL Interactions . 38

3.2.4 Comparison Rules of WSCL Graphs . 39

3.2.5 Linguistic Comparison of WSCL Attributes . 41

3.2.6 Granularity Level Comparison of Mapped WSCL Interactions 41

3.2.7 An Example for the WSCL Matchmaking . 42

3.3 Summary . 44

4 Behavioral Matchmaking: Application to Business Process Protocol 45

4.1 Business Process Execution Language for Web Services: BPEL 46

4.2 BPEL to Graph Transformation . 50

4.3 BPEL Graphs Matchmaking . 53

4.4 Comparison Rules of BPEL Graphs . 55

4.4.1 Matching Edges. 55

4.4.2 Matching Connectors. 56

4.4.3 Suppression Function. 57

4.4.4 Matching Basic Activites. 57

4.4.5 Matching Wait Activities. 58

4.5 Compostion and Decomposition of BPEL Basic Communication Patterns 59

4.6 An Example for the BPEL Matchmaking . 62

4.7 Summary . 64

5 Prototype and Experimentation 65

5.1 Platform for Service Matchmaking . 65

5.1.1 System Functionalities . 66

5.1.2 System Architecture . 67

5.1.3 User Interfaces . 69

5.2 A Tool for Evaluating the Effectiveness of Behavioral Matchmaking Method 71

5.2.1 System Functionalities . 72

5.2.2 System Architecture . 72

5.2.3 User Interfaces . 74

5.3 Experimental Evaluation . 75

5.3.1 Experimental Evaluation Goals . 76

5.3.2 Experiment Methodology and Result . 77

5.4 Summary . 83

6 Conclusions 84

6.1 Achievements of dissertation . 84

6.2 Future work . 86

6.2.1 Repository for Business Processes Matchmaking 86

6.2.2 Indexing Techniques for Business Processes Matchmaking 87

6.2.3 Matchmaking of Outsourcing Process Fragments 87

6.2.4 Processes Ranking . 87

vii

List of Tables

2.1 Assessment of composition viewpoints . 14

2.2 Assessment of formal models . 18

2.3 Assessment of the service matchmaking techniques . 24

3.1 Correspondences between WSCL elements and graph elements 38

3.2 Cost for granularity differences . 42

4.1 Synchronous vs. asynchronous interactions . 59

5.1 Comparisons set . 78

viii

List of Figures

1.1 Two conversation protocols . 3

2.1 Choreography scenario . 10

2.2 Supplier behavioral interface . 11

2.3 Warehouse behavioral interface . 11

2.4 Customer behavioral interface . 12

2.5 Supplier service orchestration . 13

3.1 Example of Error-correcting subgraph isomorphism detection 31

3.2 WSCL matchmaking process . 34

3.3 UML metamodel of WSCL protocol . 35

3.4 Example of a WSCL conversation . 36

3.5 XML representation of the WSCL transition . 37

3.6 XML representation of a ReceiveSend interaction . 38

3.7 WSCL matchmaking example . 43

4.1 BPEL matchmaking process . 45

4.2 BPEL metamodel . 47

4.3 BPEL activities hierarchy . 48

4.4 Example of a BPEL process . 49

4.5 Example of a ParterLink description . 49

4.6 Example of the XML description of a pick activity . 50

4.7 Correspondences between BPEL elements and graph elements 53

4.8 BPEL matchmaking example . 63

5.1 Platform for service ranking based on behavioral matchmaking 66

5.2 Logical architecture of the prototype . 68

5.3 WSCL documents interface . 70

5.4 BPEL documents interface . 70

5.5 WSCL options interface . 70

5.6 BPEL options interface . 70

5.7 WSCL matching results interface . 71

5.8 BPEL matching results interface . 71

5.9 Logical architecture of the tool . 73

5.10 Services to compare interface . 74

ix

5.11 Criterion selection interface . 74

5.12 Interface of service branch comparison . 75

5.13 Service ranking interface . 75

5.14 Match quality for different cost functions (WSCL system) 78

5.15 Execution time for different cost functions (WSCL system) 79

5.16 Execution time for growing number of nodes (WSCL system) 79

5.17 Match quality forWe = 1,We = 1/2 andWe = 1/3 (BPEL system) 80
5.18 Match quality forWe = 1/4, We = 1/5 andWe = 1/10 (BPEL system) 81
5.19 Match quality average (BPEL system) . 82

5.20 Execution time for the different cost functions (BPEL system) 82

5.21 Matchmaking two BPEL documents . 83

6.1 Example of the Outsourcing Process Matchmaking . 87

x

Chapter 1

Introduction

1.1 Context

The area of Web usage has evolved from a sole repository for text and images to a popular means of

business process integration giving birth to Web services. Web Services are the self-describing, modular

software application that can be marked by URL. It can be defined, advertised, discovered, located and

used across Internet by using a set of open standards such as SOAP, XML. The concept of a web service

has received much attention in recent years as a promising vehicle for cross-organizational integration

of applications based on the web. At its most basic, a web service is a network-connected application,

which processes XML documents and exchanges these with its environment. This simple model allows

interoperability in heterogeneous networks such as the internet by providing loose coupling of applications

and platform-independency.

One of the most appealing aspects ofWeb services is having the ability to aggregate the functionality of

individual Web services by composing them to create Web processes. This leads to the automatization of

the capabilities related to publication, discovery of web services that take part in a composition (behavioral

interface, choreography and orchestration).

The complexity of the Web process discovery depends directly on user requirements. In a practical

situation, user requirements normally consist of multiples web services that take part in a composition.

Furthermore, the available candidate Web processes might satisfy only a part of the user requirements.

These Web processes may originate from heterogeneous sources and may be represented in different

forms.

Further, the increasing number of Web processes descriptions are difficult to manage in open environ-

ments such as the Web. The main problem arises when hundreds of different Web processes are created

by composing hundreds of thousands of different services. Moreover, web processes are built indepen-

dently from each other at different locations by different people. Therefore, discovering a Web process

that matches user’s requirement is time consuming, tedious and clumsy.

In order to make the discovery process efficient, scalable and effective, there exist three types of

desiderata for a service description: it has (a) to be capable of performing a certain task (i.e., maintain

a shopping cart), (b) to expose a particular interface (i.e., provide view, addproduct and remove-product)

and (c) to behave in a certain manner (i.e., ignore any request for product removals if no product additions

have been performed yet). Such expectations motivate and guide the searches of the developers through

1

2 Behavioral matchmaking for service retrieval

Web service repositories, as they try to discover and select the service that best matches their needs.

Further, nowadays the capability to easily find useful services (software applications, software compo-

nents, scientific computations, Web processes) becomes increasingly critical in several fields. Examples

of such services are numerous:

• Software applications as web services which can be invoked remotely by users or programs. One of
the main problems arising from the current framework of web services is the need to dynamically put

in correspondence service requesters with service suppliers, hence allowing the formers to benefit

from the more recent offers or updates of the latter. This is specially important for applications

interested in dynamic binding to services, depending on their availability, their quality or their

current cost, which fits with the dynamic nature of the Web where services are frequently published,

removed or released.

• Programs and scientific computations (scientific workflows) which are important resources in the
context of Grid systems, sometimes even more important than data [57]. In such environments, data

and procedures are first rank classes which can be published, searched and handled. They might be,

for example, complex mathematical computations, simulation models or data mining algorithms.

Thus, the scientists need to retrieve these procedures to determine whether it is worth to reutilize

them or rewrite them again with respect to desired characteristics.

• Pervasive environments emphasize the need for application dynamism and autonomic behaviors.

These environments are characterized by the variability and mobility of acting entities on the net-

work. Dynamically composing applications and guaranteeing service continuity to the users is a

grand challenge in pervasive computing. In this sense, service selection mechanisms are needed in

pervasive architectures in order to overcome service ambiguity, which leads to composition unpre-

dictability [26].

In all these cases, users are interested in finding suitable components in a library or a collection of

programs described by appropriate models. User formulates a requirement as a process model; his goal

is to use this model as a query to retrieve all components whose respective process models match with a

whole or part of this query. If models that match exactly do not exist, those which are most similar must

be retrieved. For a given goal, the models that require minimal modifications may be the most suitable

ones as the component reuse aims generally to reduce development cost. If the retrieved models have to

be tailored to the specific needs, the adaptation effort should be minimal.

In the next section we further motivate the work presented in this dissertation.

1.2 Motivating scenarios

In this section, we present two scenarios requiring behavioral matchmaking. The first example situates in

the context of web services integration and consists in retrieving services having compatible behavior. It

will be used in section 3.2.7 (An example for the WSCLmatchmaking) to illustrate our approach. The sec-

ond example shows that a behavior matchmaking method and a way to quantify similarities/dissimilarities

between two models are needed, not only in the context of service retrieval, but also in other applications,

like delta-analysis.

Introduction 3

Web services integration. Consider a company that uses a service S to order office supplies. Suppose

that the company wants to find retailers (say WalMart or Target) having compatible web services (a new

retailer or replacing the current partner). The allowed message exchange sequences are called conversation

protocols and can be expressed for example using BPEL abstract processes, WSCL, or other protocol

languages (see, e.g., [20]). The specification of the conversation protocol is important, as it rarely happens

that service operations can be invoked independently from one another. Thus the company will search for

a service having a compatible conversation protocol. After finding retailer services, the most compatible

one has to be selected among them. If the service is not fully compatible, the company will either adapt

its service or develop an adaptor to conform to the behavior of the retrieved service. In the former case,

finding the most similar service allows to minimize the development cost. In the latter case, identifying

automatically the differences between protocols is the first stage in the process of semi-automatically

developing adapters (see [18]). In both cases, process models have to be automatically compared in order

to highlight their similarity or differences in terms of their business protocols.

Figure 1.1: Two conversation protocols

To go further in our example, suppose that the protocol of the query model expects to exchange

messages in the following order: clients can invoke Lgn, then they can send shipping preferences Shipment

and finally invoke the Buy operation. In contrast, the protocol of a given target service allows the following

sequence of operations: clients can invoke Login, then Purchase and finally they receive the shipping

information (Shipping). Matching the two processes shows that, although they have the same list of

actions, the order of actions is not the same. Moreover, the shipping interaction is modelled differently in

the two protocols. The user should adapt the query model to the target model by reordering the sequence

of actions or generating an adapter as done in [18].

Note that finding retailer services taking into account only inputs and outputs can be used only as a

first filter because it does not guarantee that retrieved services support the same order of exchanged mes-

sages as done by behavioral matching.

4 Behavioral matchmaking for service retrieval

Delta analysis consists in finding the differences between two models. For example, the query model

is an implemented model currently running in a given enterprise, while the target model corresponds to

a well-known standard in the business area (e.g. RosettaNet PIPs specified by RosettaNet group). The

enterprise challenge is to check whether their implemented process conforms to this standard. Thus, they

need to compare the conversation model of their existing service with that prescribed by the standards. For

large models and especially when the enterprise does not use the standard vocabulary, a tool should help

users identifying all the differences between the two models. Based on these differences, the reengineering

cost of the existing service could be better evaluated.

1.3 Problem statement

The problem to be addressed in this dissertation is how to support the service discovery process using

a matchmaking phase based on the specification of the service behavior. This situation leads to provide

formalisms for modelling services and algorithms for reasoning about similarities among instances of

such models. Assuming there are appropriate formalisms for specifying behaviors of a query service

and corresponding target services, there should also exist correlations between such behaviors. There-

fore, determining similarities between service behavior descriptions is necessary for any service searching

mechanism.

Further, the service discovery requires new semantics for matchmaking because a simple attribute/value

search (see [111]) does not apply to service matching, since these services comprise complex structures

which must be compared in order to find a match. Hence, the matchmaking is not simply an equivalence

of service attributes, it needs to consider the structural information of the processes included into the

services.

1.4 Our proposal

The purpose of this thesis is to develop matching techniques that operate on behavioral models of the

services and allow delivery of partial matches as well as an evaluation of the semantic distance between

these matches and the user requirements. Consequently, even if it does not exist a service that satisfies

exactly the requirements of the user, the most similar ones will be retrieved and proposed for reuse by

extension or modification. To do so, we reduce the problem of service behavioral matching to a graph

matching problem and we adapt existing algorithms for this purpose.

1.5 Contributions and main results

The main contributions of this thesis are:

• A detailed analysis of service matchmaking. The main results of this analysis are: (a) A survey
on several viewpoints from which behavioral models for service composition can be captured; (b) A

description of formal representations of services; (c) An analysis of the techniques used for service

matchmaking, which were clarified in three categories: Service matchmaking based on interfaces,

semantics and behavior.

Introduction 5

• The proposal of techniques and algorithms for the service matchmaking. In this dissertation a
solution for service retrieval based on behavioral specification was developed. By using a graph rep-

resentation formalism for services, we proposed to use an error correcting graph matching algorithm

in order to allow an approximate service matching (see [61, 42, 47, 41, 45, 43, 44]).

• Application of service matchmaking to WSCL protocol. In this thesis we motivated the need
to retrieve services based on their conversation model. We exemplified our approach for behavior

matching for conversation protocols expressed using the WSCL model (see [61, 47, 41, 43]). Start-

ing from the classical graph edit distance, we proposed two new graph edit operations to take into

account the difference of granularity levels that could appear in two models. The conversation pro-

tocol matchmaking process is composed of the following steps: First, the conversations protocols to

be compared are transformed into graphs. Next, the graphs are expanded in order to have the same

level of granularity in both graphs and the error-correcting graph matching algorithm is applied.

The similarity function evaluates the similarity between the graphs. Finally, the granularity levels

are compared and the costs corresponding to identified differences are added to the total distance.

• Application of service matchmaking to BPEL protocol. Considering the importance of Web pro-
cesses, in this dissertation we discussed our approach for Behavioral matchmaking, by examining

the usage of matching techniques in the context of BPEL behavioral specifications (see [42]). The

BPEL matchmaking process is composed of the following steps: first, the BPEL documents to be

compared are transformed to graphs. Next, the error correcting graph matching algorithm is applied

(considering the decompostion and composition functions during the algorithm execution). Then,

the similarity function evaluates the similarity between the graphs.

• A prototype for behavioral matchmaking for service retrieval. We developed a prototype called
Ws-BeM (Web services-Behavioral Matchmaking), which implements the proposed approaches.

The tool allows the execution of the algorithms for matchmaking services (see [45, 44, 46]). In order

to validate our approach, the prototype was tested with two application scenarios: the matching of

BPEL and WSCL protocols.

• A prototype for evaluating the effectiveness of our behavioral matchmaking method. We con-
structed a tool for evaluating the effectiveness of our behavioral matchmaking method (see [44, 46]).

This tool allows to create a user service ranking based on manual comparisons between a query ser-

vice and the services in the repository. The tool permits to compare the result obtained by the

Ws-BeM platform and a ranking defined by users.

1.6 Thesis outline

The remaining of this thesis is organized in five chapters:

Chapter 2 describes the related works to behavioral matchmaking for service retrieval, wich have been

clustered into three main categories: (i) As we are focused into matching of composed services, in this

category we concentrate on several viewpoints from which behavioral models for service composition

can be captured, and the relations between these viewpoints. (ii) Since our approach develops matching

techniques that operate on behavioral models of the services, in this category we depict formal descriptions

6 Behavioral matchmaking for service retrieval

that offer representation features in order to describe, exchange and execute services.(iii) Finally, we

explain the related works with respect to service matchmaking techniques for service discovery.

Chapter 3 explains our graph-based approach to behavior matchmaking and shows an application of

this one. First we introduce the graph matching problem explaining its definition and notation. As this

PhD thesis concentrates on inexact service matching, a method to measure the similarity of two graphs

is depicted. Then, the error-correcting subgraph matching is presented in detail. Finally, we show an

application case of this algorithm to WSCL (Web Services Conversation Language) protocols.

Chapter 4 discusses the approach for behavioral matchmaking by examining the usage of matching

techniques in the context of BPEL behavioral specifications. First we will introduce the BPEL protocol,

then we explain the BPEL to graph transformation. Thereupon, we show the BPEL matchmaking algo-

rithm which is based on the algorithm introduced in previous chapter, but considering the comparison

rules for the BPEL metamodel. Finally, an example of the BPEL matchmaking process will be depicted.

Chapter 5 illustrates the practical use of our proposal for Behavioral matchmaking evaluating real ser-

vices (WSCL and BPEL services). First we describe our prototype and experimentations presenting the

We-BeM tool, describing its functionalities, architecture and its user interface. Then, we show a tool

for evaluating our matching method. Finally, we present the performance evaluation tests, describing the

considered test scenarios, the test strategies and the obtained results.

Chapter 6 presents conclusions and some research perspectives.

Chapter 2

Analysis of Related Work

Web Services (WS) provide an ubiquitously supported framework for application-to-application interac-

tion, based on existing Web protocols and open XML standards. The Web Services framework is one of

the newest members in the service-oriented computing area. It is divided into three areas: communication

protocol, service description and service discovery. Several specifications have been developed like SOAP

[4], Web Services Description Language (WSDL) [6] and Universal Description, Discovery and Integra-

tion (UDDI) [5], correspondingly. In addition to these standards, there are a number of proposed standards

and on-going work towards standardization that deals with non-functional aspects of Web services. The

leading specifications that provide domain independent languages for describing non-functional aspects

of Web services are WS-Policy [7] and WS-Agreement [2] . In addition, a number of domain specific

vocabularies are being developed to describe various non-functional aspects. For example, WS-Security

[3] is a vocabulary for the security domain that defines security tokens, encryption algorithms and other

security related artifacts. Other domain specific vocabularies include WS-Trust [8] and WS-Transaction

[8].

One of the most appealing aspects ofWeb services is having the ability to aggregate the functionality of

individual Web services by composing them to create Web processes. This leads to the automatization of

the capabilities related to publication, discovery of web services that take part in a composition (behavioral

interface, choreography and orchestration). However, service composition that enables one to aggregate

or compose existing services into a new composite service is still highly complex but critical task in

service-oriented technologies. Several key challenges in service composition need to be addressed: How

to facilitate the discovery of services? and how to enhance reliability of composite services?.

In this dissertation we argue that, in many situations, the service discovery process requires a match-

making phase based on the specification of the component behavior. Therefore, the related works to this

PhD thesis have been clustered into three main categories:

(i) As we are focused into service matchmaking, in this category we concentrate on several viewpoints

from which behavioral models for service composition can be captured, and the relations between

these viewpoints.

(ii) Since our approach develops matching techniques that operate on behavioral models of the services,

in this category we depict formal representations that allows to describe, exchange and execute

service behaviors.

7

8 Behavioral matchmaking for service retrieval

(iii) Finally, we explain the related works with respect to service matchmaking techniques for service

discovery.

2.1 Service Behavioral Models

The Service-Oriented Computing (SOC) paradigm refers to the set of concepts, principles and methods

that represent computing in Service-Oriented Architecture (SOA) in which software applications are con-

structed based on independent component services with standard interfaces. The main idea of SOC/SOA is

to explicitly separate software engineering from programming, to emphasize on software engineering and

to deemphasize on programming. SOC separates software development into three independent parties:

Application builders (by software engineers), service providers (by programmers) and service brokers

(joint effort from standard organizations, computer industry and government).

- Service providers: They use a traditional programming language such as Java, C++, or C# to write

program components. All components will be wrapped with open standard interfaces, called ser-

vices, or Web services if the services are available over the internet, so that application builders

can simply use the services without further communication with the service providers. The same

services can be used by many applications.

- Service brokers: Allow services to be registered and published for public access. Help application

builders to find services they need.

- Application builders: Instead of constructing software from scratch using basic programming lan-

guage, the application builders represent the final users who specify the logic application in a high-

level language specification, using standard services as components. Therefore, the application

builders are software engineers who have a good understanding of software architecture and do-

main of application.

As the number and types of available services increase, the need for writing new services and the

need for programmers will drop. On the other hand, as computer applications move into more and more

domains, the need for application builders will increase. Using an analogy example, service providers are

hotel and airline proprietaries, while the application builders are tourism plans vendors (architects) who

use the hotels and airlines to build millions of different plans-based. We do not need many people who

can design different types of hotels and airlines, but we need many architects to build different plans.

Service-Oriented Computing (SOC) utilizes services as the constructers to support the development

of rapid, low-cost and easy composition of distributed applications. Services are autonomous, platform-

independent computational entities that can be used in a self-sufficient way. Services can be described,

published, discovered, and dynamically assembled for developing massively distributed, interoperable and

evolvable systems. Services perform functions that can range from answering simple requests to executing

sophisticated business processes requiring peer-to-peer relationships between possibly multiple layers of

service consumers and providers. Any piece of code and any application component deployed on a system

can be reused and transformed into a network-available service. Services reflect a ”service-oriented”

approach to programming, based on the idea of composing applications by discovering and invoking

network-available services rather than building new applications or by invoking available applications to

Analysis of related work 9

accomplish some task [94]. Services are most often built in a way that is independent of the context in

which they are used. This means that the service provider and the consumers are loosely coupled.

In summary, some of the key aspects of service-orientation are:

- Loose coupling: Services maintain a relationship that minimizes dependencies and only requires

that they retain an awareness of each other.

- Service contract: service adhere to a communication agreement, as defined collectively by one or

more service descriptions and related documents.

- Autonomy: Services have control over the logic they encapsulate.

- Abstraction: Beyond what is decribed in the service contract, services hide logic from the outside

world.

- Reusability: Logic is divided into services with the intention of promoting reuse.

- Composability: Collections of services can be coordinated and assembled to form composite ser-

vices.

- Statelessness: Services minimize retaining information specific to an activity.

- Discoverability: Services are designed to be outwardly descriptive so that they can be found and

assessed via available discovery mechanisms.

The service composition encompasses necessary roles and functionalities for the aggregation of mul-

tiple services into a single composition. Resulting composite services may be used by process as basic

services in further service compositions or may be offered as complete applications/solutions to clients.

Service aggregators accomplish this task. Service aggregators thus become service providers by publish-

ing the service descriptions of the composite service they create. Service aggregators develop specifica-

tions and/or code that permit the composite service to perform functions that are based on features such

as meta-data descriptions, standard terminology and reference models and service conformance. Service

aggregators perform service coordination to control the execution of the composite services (e.g. pro-

cesses), services transactions and manage both the dataflow as well as the control flow between composite

services. They also enforce policies on aggregate service invocations.

Currently, there are competing initiatives for developing business process definition specifications,

which aim to define and manage business process activities and business interaction protocols comprising

collaborating services. The terms behavioral interface, orchestration and choreography have been widely

used to describe business interaction protocols comprising collaborating services [17].

As we are focused into service matching, in the remainder of this section we concentrate on several

viewpoints from which behavioral models for service composition can be captured, and the relations

between these viewpoints.

2.1.1 Service Choreography

A choreography model describes a collaboration between a collection of services to achieve a common

goal. It captures the interactions in which the participating services engage to achieve this goal and the

10 Behavioral matchmaking for service retrieval

dependencies between these interactions, including: causal and/or control-flow dependencies (i.e.. that a

given interaction must occur before another one, or that an interaction causes another one), exclusion de-

pendencies (that a given interaction excludes or replaces another one), data-flow dependencies, interaction

correlation, time constraints, transactional dependencies, etc.

A choreography does not describe any internal action of a participating service that does not directly

result in an externally visible effect, such as an internal computation or data transformation. A choreog-

raphy captures interactions from a global perspective meaning that all participating services are treated

equally. In other words, a choreography encompasses all interactions between the participating services

that are relevant with respect to the choreographys goal. Web Service Choreography is more formally de-

scribed by the W3CWeb Services Choreography Working group as; ”...the external observable behaviour

across multiple clients (which are generally Web Services but not exclusively so) in which external observ-

able behaviour is defined as the presence or absence of messages that are exchanged between a Web

Service and its clients” [67].

Figure 2.1: Choreography scenario

A choreography of a well known service interaction scenario is shown in the form of an UML activity

diagram in Figure 2.1. Three services are involved in this choreography: one representing a ”customer”,

another one a ”supplier” and a third one a ”warehouse”. The elementary actions in the diagram represent

business activities that result in messages being sent or received. For example, the action ”order goods”

undertaken by the customer results in a message being sent to the supplier (this is described as a textual

note below the name of the action). Of course, every message sending action has a corresponding message

receipt action but to avoid cluttering the diagram, only the sending or the receipt action (not both) are

shown for each message exchange. For example, the action ”send RFQ to Supplier” in activity ”Request

Quote” implies that there is a corresponding action ”receive RFQ from Customer” on the Suppliers side,

Analysis of related work 11

but this latter action is not shown in the diagram.

Note that Figure 2.1 does not include the activities and alternative paths required to deal with errors

and exceptions that one could realistically expect in the scenario in question. Including this information

would add considerably to the complexity of the model.

Implementations for choreography standards are currently in the form of the Web Service Choreog-

raphy Description Language (WS-CDL) [68] and the Web Service Choreography Interface (WSCI) [13].

These specifications have been introduced as part of a service-oriented model aligned with the same W3C

working groups.

2.1.2 Behavioral Interface

A Behavioral interface captures the behavioral aspects of the interactions in which one particular service

can engage to achieve a goal. It complements structural interface descriptions such as those supported

by WSDL, which capture the elementary interactions in which a service can engage, and the types of

messages and the policies under which these messages are exchanged.

Figure 2.2: Supplier behavioral interface Figure 2.3: Warehouse behavioral interface

A behavioral interface captures dependencies between elementary interactions such as control-flow

dependencies (e.g. that a given interaction must precede another one), data-flow dependencies, time con-

straints, message correlations, transactional dependencies, etc. It focuses on the perspective of one single

party. As a result, a behavioral interface does not capture ”complete interactions” since interactions neces-

sarily involve two parties. Instead, a behavioral interface captures interactions from the perspective of one

of the participants, and can therefore be seen as consisting of communication actions performed by that

12 Behavioral matchmaking for service retrieval

participant. Also, behavioral interfaces do not describe internal tasks such as internal data transformations.

Figures 2.2, 2.3 and 2.4 show examples of behavioral interfaces corresponding to the supplier, ware-

house and customer roles in the choreography of Figure2.1.

Figure 2.4: Customer behavioral interface

Note that a role defined in a choreography may be associated with multiple behaviours and multiple

WSDL interfaces. Moreover, for a given role in a choreography, an arbitrary number of behavioral inter-

faces may be defined providing the same functionality but not necessarily using the same interactions or

the same order of interactions. For example, in Figure2.3 the shipping order is sent to the warehouse in a

parallel thread to the one where the payment details are received from the customer. An alternative would

be that payment is received from the customer before the shipping order is sent out.

Depending on whether an interface captures an ”as is” or a ”to be” situation, a distinction can be

made between provided and expected (or required) interfaces. A provided (behavioral) interface is an

abstraction of the way a given service interacts with the external world. On the other hand, an expected

(behavioral) interface captures an expectation of how a service should behave in order to play a given

role in a choreography. Thus, an expected interface corresponds to a contract that a given party needs

to fulfill to successfully collaborate with other parties. Ideally, the provided and expected interfaces of a

service coincide. In practice however, it may happen that the interface provided by a service is different

from the interface that it is expected to provide in a given scenario. In this case, the provider of the

service is responsible for mediating between the interface that it is expected to provide and the one that

it actually implements. This mediation (or adaptation) process has been the subject of several research

efforts [105, ?].

Implementations for behavioral interface are actually in the form of the Web Services Conversation

Language (WSCL) [16] wich proposes a simple conversation language standard that can be used for

various Web-service protocols and frameworks. It focuses on modeling the sequencing of the interactions

Analysis of related work 13

or operations of one interface. It fills the gap between mere interface definition languages that do not

specify any choreography and more complex process or flow languages that describe complex global

multi-party conversations and processes.

2.1.3 Service Orchestration

Orchestration describes how services can interact with each other at the message level, including the

business logic and execution order of the interactions from the perspective and under control of a single

endpoint.

An orchestration model describes both the communication actions and the internal actions in which a

service engages. Internal actions include data transformations and invocations to internal software mod-

ules. An orchestration may also contain communication actions or dependencies between communication

actions that do not appear in any of the services behavioral interface(s). This is because behavioral inter-

faces may be made available to external parties and thus, they only need to show information that actually

needs to be visible to these parties. Orchestration refers to an executable business process that may result

in a long-lived, transactional, multi-step process model. With orchestration, the business process interac-

tions are always controlled from the (private) perspective of one of the business parties involved in the

process.

Figure 2.5: Supplier service orchestration

Figure 2.5 shows an orchestration of a supplier service. This orchestration includes an internal action

for validating the payment, shown in dotted lines in the diagram. This may correspond for example to

an interaction with a service that is not exposed to the outside world. Other internal actions may be

included in this orchestration. The orchestration of Figure 2.5 also supports the possibility of an order

14 Behavioral matchmaking for service retrieval

cancellation request being received from the customer anytime before the payment, leading to termination

of the process.

Orchestration is targeted by a family of XML-based process standard definition languages most repre-

sentative of which is the Business Process Execution Language for Web Services (WS-BPEL)[11]. How-

ever, BPEL is intended to cover both the orchestration and the behavioral interface viewpoints. Exactly,

the abstract process part of BPEL can be used for describing the behavioral interface viepoints and the

execution part can be used for describing the orchestration.

2.1.4 Assessment of Service Composition Techniques

Table 2.1 summarizes the service composition viewpoints presented in this sub-section. The symbol (+)

means that the property on that column is supported by the viewpoint. The symbol (-) means that the

property is not supported. Finally, the sign (+/-) means that the property is moderately supported.

Assessment Parameters Composition Viewpoints
Service Behavoiral Service

Choreography Interface Orchestration
Process is always controlled by one party - + +

The services follow a pre-defined plan + - -

Each service is self-sufficient of the others + - -

Inclusion of internal and external webservices - +/- +

The involved Web Services do not know that they are implicated into a composition - + +

Definition of the public message exchanged between the Web Services + +/- -

Message exchanged must contain all state information needed to evaluate next action + - -

Tracking of the sequence of messages involving multiple parties and sources + - -

Each participant responsible for adaptive behavior for anomaly response - +/- +

Compensation of anomalies in real-time - - +

Description of process flow - + +

Table 2.1: Assessment of composition viewpoints

Orchestration differs from choreography in that it expresses a body of business process logic that is

typically owned by a single organization. An orchestration establishes a business protocol that formally

defines a business process definition. The workflow logic within an orchestration is broken down into a

series of basic and structured activities that can be organized into sequences and flows. More collaborative

in nature, choreography tracks the sequence of messages involving multiple parties, where no party truly

”owns” the conversation. It is associated with the public message exchanges that occur between multiple

Web services participants that can assume different roles and that have different relationships. If we have

an analogy with the urban trafic, the Orchestration is akin to traffic lights where events are controlled cen-

trally, whereas Choreography is more like a roundabout, where each participant is following a prearranged

set of rules.

A behavioral interface express the behavior of a particular service provider or service user in its com-

munication with another service provider or user to achieve a particular goal. Since a behavioral interface

only describes the behavior of a single service provider, it only comprises one role into the services con-

versation. A Behavioral Interface can be used as a starting point to generate an ”orchestration” skeleton

that can then be filled up with details regarding internal tasks and refined into a full orchestration. This has

the advantage that once the orchestration is fully refined, the provided behavioral interface of the service

will coincide with the expected behavioral interface. On the other hand, an existing orchestration can be

Analysis of related work 15

used to generate the provided behavioral interface of a service by appropriately hiding actions not to be

exposed.

As this dissertation is motivated by the idea that an inter-organizational process can be considered

as a cooperation of various pre-established processes of several organizations, we focus our efforts on

matchmaking of behavioral interfaces, considering that this one captures interactions from the perspective

of one of the organizations.

2.2 Formal Models for Representing Processes

This section presents four business process modeling formalisms. These formalisms offer representation

features in order to describe, exchange and execute business processes.

2.2.1 Process Algebra Models

Processes can be modeled using process algebras. Examples of process algebra models are calculus of

communicating systems (CCS) [87], communicating sequential processes (CSP) [63] and p-calculus [88].

These languages provide algebras for specifying and reasoning about concurrent systems or processes.

They provide sets of terms, operators and axioms for writing and manipulating algebraic expressions.

The behavior of the systems being modeled can be analyzed based on the defined operators. The pi-

calculus is a mathematical model of processes whose interconnections change as they interact [23]. The

basic computational step is the transfer of a communication link between two processes; the recipient can

then use the link for further interaction with other parties. This makes π-calculus particularly suitable
for representing where accessible resources vary over time. The π-calculus, in addition to modeling
concurrent systems, can also express mobile processes and techniques for analyzing their behavior. Some

of the operations supported by these languages are simulation and bisimulation of process instances. For

example, given two process descriptions in π-calculus notation, it is possible to check for their equivalence
using bisimulation operation.

In [77] the authors argue that BPEL is not equipped with formal semantics (as other existing proposals)

and since it includes a large number of aspects, it is difficult to formally reasoning on processes behavior.

In light of this observation, the semantics of a BPEL fragment is formally addressed in [77]. The proposal

represents a significant contribution in two directions. Firstly, formalizes a novel orchestration language,

webπ∞ which represents by itself a simplification of WS-BPEL including an unambiguous specification,

thus making possible to formally reason on orchestration processes. Secondly, an implementor of an

actual WS-BPEL orchestration engine could implement simply this single mechanism providing all the

remaining ones by compilation. The language is composed of a small set of operators which can meet the

BPEL behaviours, offering a reasonable simplicity to the application designers. This langage includes:

a parallel operator allowing explicit concurrency; a restriction operator allowing compositionality and

explicit resource creation; a recursion or a process definition operator; a sequence operator allowing causal

relationship between activities; an inaction operator which is just a ground term for inductive definition

on sequencing; message passing and especially name passing operators allowing communication and link

mobility.

16 Behavioral matchmaking for service retrieval

2.2.2 Petri Net Models

A Petri Net is a formal and graphical language for modeling systems or processes [99]. It comprises

places, transitions, arcs and tokens. Places represent states of a Petri Net and they can contain tokens.

Input arcs connect places with transitions, while output arcs start at a transition and end at a place. The

current state of the modeled system, called the marking, is given by the number of tokens in each place.

The system marking changes when transitions fire, meaning tokens are removed from input places and

inserted to output places of a transition. Transitions can only fire if they are enabled, meaning, there are

tokens ready to fire in the input places.

Petri Nets provide a tool for describing systems that are characterized as being concurrent, asyn-

chronous, distributed and nondeterministic. In graphical form, Petri Nets can be used as a visual com-

munication aid in a similar way to that the structured design notations from traditional systems analysis

and design methodologies. The language of Petri Nets however, provides a solid mathematical basis for

the description and analysis of equations of state, algebraic and other mathematical models. This yields

a practical notation for describing the behaviour of system processes, such as that given for a simplified

alternating bit [92].

A related formalism to Petri Nets is the Workflow Net (WF-Net) [117]. WF-Nets have been used

to model interorganizational workflows in [116]. Like Petri Nets, WF-Nets are token-based and contain

places and transitions, but in addition, they contain a single initial and final place. They have better com-

putational properties than Petri Nets, but are used in asynchronous communication models were messages

may arrive in a different order to that in which they were sent.

The authors of [62] propose a Petri Net-based algebra for composing Web services. The formal se-

mantics of the composition operators is expressed in terms of Petri Nets by providing a direct mapping

from each operator to a Petri Net construction. Thus, any service expressed using the algebra constructs

can be translated into a Petri Net representation. By means of a set of algebra properties, the approach

is able to transform and optimize Web service expressions guaranteeing the same semantics of initial ex-

pressions. In addition, the use of a formal model allows the verification of properties and the detection of

inconsistencies both within and between services.

2.2.3 Finite State Automata (FSA)

An FSA is defined by a finite set of messages, states, a set of transitions, a initial state and a set of final

or accepting states [64]. It can be represented as a graph with a single initial state, where nodes represent

states, arcs represent transitions connecting two states. Transitions are labeled with messages drawn from

the message set. FSA graphs are traversed from the initial state. Final states are specifically marked with

concentric cycles and they represent the acceptance of a message sequence by the FSA. FSAs are closed

under intersection and have polynomial time algorithms for emptiness test and intersection. However

FSAs in their original form cannot represent mandatory semantics of message sequences. Therefore FSAs

do not have parallel execution semantics, as provided by more expressive approaches like Petri Nets.

In [22] the authors describe a conceptual model for representing e-Service behaviour and temporal

constraints, based on FSAs. FSAs allows to capture a large class of e-Services and to formally verify

important properties of e-Services [122], such as correctness, safety (i.e., at each point in the execution

of an e-Service certain logical invariants hold), liveness (i.e., an e-Service is ensured to move towards

a point where a goal can be reached). Additionally, this approach introduces a new language, WSTL

Analysis of related work 17

(WEB SERVICE TRANSITION LANGUAGE), that relies on such a conceptual model. The novelty

of this approach is that WSTL provides constructs to which corresponding elements of FSAs can be

straightforwardly mapped.

2.2.4 Graph Representation

Graphs are a general and powerful data structure for the representation of objects and concepts. In a graph

representation, the nodes typically represent objects or parts of objects, while the edges describe relations

between objects or object parts. Graphs have some interesting invariance properties. For instance, if a

graph, which is drawn on paper, is translated, rotated, or transformed into its mirror image, it is still the

same graph in the mathematical sense. These invariance properties, as well as the fact that graphs are

wellsuited to model objects in terms of parts and their relations, make them very attractive for various

applications [30]. In applications such as pattern recognition and computer vision, object similarity is

an important issue. Given a database of known objects and a query, the task is to retrieve one or several

objects from the database that are similar to the query. If graphs are used for object representation this

problem turns into determining the similarity of graphs, which is generally referred to as graph matching.

In [59] the authors present a possible metamodel based on conceptual graphs to represent processes

that fulfills corporate memory requirements (Acquisition, storage, evolution and dissemination of knowl-

edge acquired by the organization). The metamodel is composed of three basic concepts: ACTIVITY,

PROCESS and EVENT. An activity is defined by its inputs and outputs, the agents that enable the activity

and by pre and post conditions. Preconditions define conditions or states that must be verified to fire the

execution of the activity; postconditions define states or conditions that will result from the execution of

the activity. An event is a point in time that marks the end of an activity; it marks the realization of the

postcondition of the activity. A process is defined as a set of events that represent the execution of a set of

activities.

In [80], the authors have introduced a transformation from BPEL to EPCs (Event-Driven Process

Chains). A flat EPC Schema is defined as a directed and coherent graph with cardinality and type con-

straints. Built on a conceptual mapping, this approach presents a transformation program that is able to

generate EPC models as EPML files (XML-based interchange format for EPCs) from BPEL process def-

initions automatically. Such a transformation helps to communicate BPEL processes to business analysts

that are often involved in the approval of business logic. The EPC visualization focuses on the dynamic

behavior of the BPEL model. BPEL constructs (i.e. basic and structured activities) are transformed to

blocks of EPC elements that offer equivalent semantics. EPC elements get names that are generated from

the names of the corresponding BPEL elements. Furthermore, the program can be used for re-engineering

of BPEL processes. Finally, the transformation concept is general in such a way that it can be easily

adapted to generate output of another graph-based process language that is encoded in XML.

2.2.5 Assessment of Formal Models

Table 2.2 summarizes the formal representations of processes explained in this sub-section. The symbol

(+) means that the parameter on that column is supported by the formal model. The symbol (-) means that

the property is not supported. The sign (+/-) means that the property is moderately supported. Finally, the

symbol N/A means not applicable, meaning the property does not apply to the model with which it has

been associated.

18 Behavioral matchmaking for service retrieval

The aim of this comparison is to provide criteria for modelling web service composition (including

state of resources etc) through a notation. We consider completeness (a complete set of semantics and

maturity of notation), composability (a property that enables reasoning about a composed system on the

basis of its constituent parts without any additional need for information about the implementation of

those parts), parallelism (a key aspect of formalism which must be fulfilled for accurately modelling web

service composition) and the complexity of performing matching (polynomial matching).

Formal representation Assessment parameters
Completeness Composability Parallelism Polynomial matching

Process algebra models + + + N/A

Petri Net models + - + +

Finite state automata + + +/- +

Graph representation + + + +/-

Table 2.2: Assessment of formal models

As this dissertation is focused on matchmaking of behavioral interfaces, and considering that this one

captures interactions from the perspective of one of the organizations, we therefore believe that Graph rep-

resentation model provides a simple and maturity notation for expressing the service’s semantics. More-

over the graph representation enables reasoning about a composed system on the basis of its constituents

parts without any additional need for information about the implementation of those parts. Furthermore,

the parallelism supported by the graph model is a key aspect of formalism which must be fulfilled for

accurately modelling web service composition. Despite graph matching is a complex process, techniques

can be applied in order to increase its performance (see [40, 124, 27]). Finally, the graph model is used by

several approaches (see [80, 96, 59]) as formal representation for business process.

2.3 Service Matchmaking Techniques

In this section we explain the techniques for service matchmaking which are based on process modeling

formalisms. As our approach of service matchmaking is founded on graph representation, first we intro-

duce the graph matching algorithms. Next, a state of the art of different service matchmaking techniques

is presented. More precisely, we show a classification of the different techniques of service matchmaking.

An assessment of existing techniques is given at the end of the section.

2.3.1 Graph Matching Algorithms

Graph matching has become a very active field of research [9]. A wide spectrum of graph matching al-

gorithms with different characteristics have become available meanwhile [30]. In its most general form,

graph matching refers to the problem of fiding a mapping f from the nodes of one given graph g1 to
the nodes of another given graph g2, that satisfy some constraints or optimality criteria. For example, in
graph isomorphism detection, mapping f is a bijection that preserves all edges and labels. In subgraph
isomorphism detection, mapping f is requested to be injective such that all edges of g1 are included in g2

and all labels are preserved. Other graph matching problems that require the constructions of a mapping

f with particular properties are maximum common subgraph detection and graph edit distance computa-
tion. The standard algorithm for graph and subgraph isomorphism detection is the one by Ullman [114]. In

Analysis of related work 19

this approach, a simple tree-search algorithm based on refinement procedure is introduced, which attains

efficiency by inferentially eliminating successor nodes in the tree-search. Further, maximum common

subgraph detection has been addressed in [78, 72, 97] and several methods for error-tolerant graph match-

ing have been presented in the literature. In this section we present an overview of the principal graph

matching approaches.

Classical methods for error-tolerant graph matching can be found in [54, 104, 106, 113, 126]. Most of

these algorithms are particular versions of the A* search procedure, (i.e., they rely, at some extent, to tree

search incorporating various heuristic lookahead techniques in order to prune the search space).

Additionally, error-correcting graph matching is a powerful concept that has various applications in

pattern recognition and machine vision, and its application is focused on distorted inputs. It constitutes

a new approach very similar to other graph matching techniques. In [36] this topic is addressed and a

new distance measure on graphs that does not require any particular edit operations is proposed. This

measure is based on the maximal common subgraph of two graphs. A general formulation for error-

correcting subgraph isomorphism algorithms is presented in [75] in terms of adjacency graphs, and [29]

presents a study on the influence of the definition of fitness functions for error correcting graph matching

which reveals guidelines for defining fitness functions for optimization algorithms in error correcting

graph matching. In addition, in [83] an algorithm for error-correcting subgraph isomorphism detection

from a set of model graphs to an unknown input graph is introduced.

In approximate, or error-correcting, graph matching one considers a set of graph edit operations, and

defines the edit distance of two graphs g1 and g2 as the shortest (or least cost) sequence of edit operations

that transform g1 into g2. A maximum common subgraph of two graphs g1 and g2 is a subgraph of

both g1 and g2 such that there is no other subgraph of g1 and g2 with more nodes. Graph edit distance and

maximum common subgraph are well known concepts that have various applications in pattern recognition

and machine vision. In [28] a particular cost function for graph edit distance is introduced, and it is shown

that under this cost function graph edit distance computation is equivalent to the maximum common

subgraph problem.

In [56] the authors explain the relationship between two important problems in pattern recognition

using attributed relational graphs, the maximum common subgraph and the minimum common supergraph

of two graphs. This relation is established by means of simple constructions, which allow to obtain the

maximum common subgraph from the minimum common supergraph, and vice versa. On this basis, a

new graph distance metric is proposed for measuring similarities between objects represented by attributed

relational graphs. The proposed metric can be computed by a straightforward extension of any algorithm

that implements error-correcting graph matching, when run under an appropriate cost function, and the

extension only takes time linear in the size of the graphs.

Conceptual graphs have been used to model knowledge representations since their introduction in the

early 80s. The formalism of conceptual graphs introduced in [110] is a flexible and consistent knowledge

representation with a well-defined theoretical basis. Moreover, simple conceptual graphs are considered

as the kernel of most knowledge representation formalisms built upon Sowas model. This formalism can

capture semantics in the representation of data, and it offers some useful constructs which makes it a likely

platform for a knowledge-based system. An extension of this concept to graph matching is introduced in

[15], where reasoning in Sowas model can be expressed by a graph homomorphism called projection.

This paper presents a family of extensions of this mode, based on rules and constraints, keeping graph

homomorphism as the basic operation. Apart from this type of graphs, graph matching has also been

proposed, from both a theoretical or a practical view point, in combination with: matching graphs [53],

20 Behavioral matchmaking for service retrieval

minimal condition subgraphs [58], finite graphs [14], weighted mean of a pair of graphs [33], median

graphs [66] and decomposition approaches [85]. Furthermore, different ways of representing patterns are

analyzed in terms of symbolic data structures such as strings, trees and graphs in [31].

Majority of methods presented in this section are guaranteed to find the optimal solution but require

exponential time and space due to the NP completeness of the problem. Suboptimal, or approximative

methods, on the other hand, are polynomially bounded in the number of computation steps but may fail

to find the optimal solution. For example, in [40, 124, 27], probabilistic relaxation schemes are described.

Other approaches are based on neural networks such as the Hopfield network [55] or the Kohonen map

[128] and the approach presented in [101].

The fact of formulating complex graph matching problems as combinatorial optimization ones is not

novel, and many references applying different techniques in this field can be found in the literature. Ge-

netic algorithms are just an example of this [48, 121, 89]. However, all of these approximate methods may

get tracked in local minima and miss the optimal solution. Approaches to the weighted graph matching

problem using eigenvalues and linear programming, have been proposed in [115] and [10], respectively.

As a special case, the matching of trees has been addressed in a series of papers recently [37, 90, 98, 119].

Decision trees have also been applied to graph matching. An example of this is [107], in which

decision trees are used for solving the largest common subgraph problem instead of applying queries

to a database of models. Another example can be found in [82] where decision trees are applied as a

fast algorithm for the computation of error-correcting graph isomorphisms. Decision trees are also been

applied to multiple graph matching [84]. The decision tree is created using a set of a priori known model

graphs generated from exact subgraph isomorphism detection.

We can see that the correspondences between graphs can be established by a variety of graph relation

paradigms. Popular paradigms found today include graph and subgraph isomorphism detection for exact

matching approaches. However, in our approach of service matchmaking, the users are interested in

finding suitable service. Then, the user formulates a requirement as a process model; his goal is to use this

model as a query to retrieve a component whose respective process model matchs with a whole or part of

this query. Hence, it is necessary to incorporate the concepts of error correction and inexact matching into

service matchmaking.

The term approximate matching means that it is not possible to find an isomorphism between the

two services to be matched. This is the case when the number of activities is different in both the query

and target service. This may be due to the schematic aspect of the service and the difficulty to segment

accurately the service into meaningful entities. Therefore, in these cases no isomorphism can be expected

between both services, and the service matching problem does not consist in searching for the exact way

of matching activities of a service with activites of the other, but in finding the best matching between

them. In that case, the matching aims at finding a non-bijective correspondence between a query service

and a target service.

The error correction is the definition of the errors that are to be taken into account into the service

matchmaking process. Probably the best known error correction model for matching processes is similar

to the model used in string edit distance. It is based on the idea of introducing edit operations. For each

possible error type a corresponding list of edit operation is defined. In order to model the fact that certain

error types are more likely than others, cost functions are assigned to the edit operations.

Based on the considerations presented above, we therefore believe that the error-correcting subgraph

isomorphism detection is the matching technique which is more accurate to our service mathcmaking

problem. In the chapter 3 we explain in detail this matching technique.

Analysis of related work 21

2.3.2 Service Matchmaking

This section describes the techniques used for service matchmaking. We have clustered the existing tech-

niques in three set: Service matchmaking based on interfaces, semantics and behavior.

Service Matchmaking based on Interfaces. Currently, the algorithms for Web services discovery in

registers like UDDI or ebXML are based on a search by key words or tables of correspondence of cou-

ples (key-value). To support a more precise service discovery process, mechanisms based on interface

matchmaking were proposed (i.e.,[111, 70]). Such approaches of web service matching tend to address

syntactic and/or semantic matching. To analyze their merits, it is useful to further classify them as uniform

or hybrid. Uniform matching approaches refer to atomic matching techniques that can not be any further

decomposed in finer-grained matching techniques. Hybrid matching approaches on the other hand may

combine various matching methods (e.g., syntactic and semantic) into a composite algorithm. In [111]

the authors discuss a set of complementary methods for assessing the similarity of interface specifications

(WSDL), allowing to order the potentially useful services according to their relevance to the developer’s

query. To assess the similarity between two WSDL specifications, these methods utilize, on one hand, the

semantics of the identifiers and of the natural-language descriptions of WSDL specifications, and on the

other hand, the structure of their operations, messages and types. More precisely, the authors describe a

suite of web-service discovery methods that combine traditional information retrieval and two WordNet-

based techniques with a structure-matching algorithm leveraging the structure of the XML-based service

specification in WSDL.

In [70] the authors presents theWSDL-M2 algorithm wich combines two techniques: lexical matching

to calculate the linguistic similarity between concept descriptions, and structural matching to evaluate the

overall similarity between composite concepts. The overall matching process is implemented in three

steps: First, all files from the collection of WSDL specifications are parsed in order to allow extraction of

their structured content. In the second step, the parsed document is tagged to enable lexical analysis. In

the third step, the tagged WSDL specifications can be further analyzed and subsequently indexed using

diferent information retrieval models (V SM : Vector-Space Model and tf − idf measure).To address
the major shortcoming of V SM a combination V SM and WordNet is proposed. Finally, the structural

matching is treated as Maximum Weight Bipartite Matching to calculate semantic similarity between

concept descriptions and to compute similarity of complex WSDL concepts taking into account their

constituents (sub-types).

On another front, recently there has been a proliferation of Web service search engines on the Inter-

net. These can be clustered into two types. The first type accepts as input, keywords, which they use to

search within WSDL descriptions of services. Bindingpoint, NET XMLWeb Services Repertory, Webser-

viceX.NET, Web Service List and SalCental (see [103]). The second type of Web service search engines

goes beyond naive keyword matching of WSDL contents by performing a similarity search on WSDL op-

erations of Web services, considering operation name and input/output parameters. An example that uses

such a technique to find matching Web services is Woogle (see [51]). In [51] the search engine combines

multiple sources of evidence to detect similarity: textual descriptions of the operations and of the entire

web services and similarity between the parameter names of the operations. The underlying algorithm

is based on a technique that clusters parameter names in the collection of web services into semantically

meaningful concepts. These concepts are used in the comparison of input or output parameters.

In summary, the approaches used by Web service search engines can only match simple services, thus

22 Behavioral matchmaking for service retrieval

do not handle the execution aspects of services.

Service Matchmaking based on Semantics. Within the framework of the semantic Web, description

logics were proposed for a richer and precise formal description of services. These languages allow the

definition of ontologies, such as for example OWL-S. The OWL-S [49] proposed an ontology for describ-

ing Web services based on the Web Ontology Language (OWL) [50]. OWL-S is structured into three types

of knowledge: service profiles, service model and service grounding. Service profiles describe the capa-

bility of a Web service. The service model describes services in terms of inputs, outputs, preconditions

and effects of invoking a service; processes in OWL-S are described in terms of their states, including in-

formation such as initial activation, execution and completion. Service grounding describes how to access

the service.

By describing service capabilities using OWL-S, it is possible to find matching Web services from a

semantic perspective. Several Web service matchmaking prototypes have been implemented using this

approach, for example [39, 74, 93, 24, 21, 112]. Work related to this can be found in [95, 109], where

approaches for annotating Web services with semantic information and using this for service discovery

are described.

In [93, 21], a published service is matched with a required service when the inputs and outputs of the

required service match the inputs and outputs of the published service (i.e., they have the same type or

one is a generalization of the other). In [69], independent filters are defined for service retrieval: the name

space, textual description, the domain of ontology that is used, types of inputs/outputs and constraints.

The approach presented in [38] takes into account the operational properties like execution time, cost

and reliability. The authors of [127] provide a lightweight semantic comparison of interfaces based on

similarity assessment methods (lexical, attribute, interface and QoS similarity).

The semantic-based approaches mentioned above are very efficient for matching simple services based

on semantic descriptions of their capabilities. Besides, is not clear how these approaches can match the

complex business processes, which consider the structural information of the processes included into the

services.

Service Matchmaking based on Behavior. Service retrieval based on key words or some seman-

tic attributes is not satisfactory for a great number of applications. The tendency of recent work is

to exploit more and more knowledge on service components and behavior. The need to take into ac-

count the behavior of the service described by a process model was underlined by several researchers

[112, 102, 24, 100, 125]. In [24], in order to improve precision of web service discovery, the process

model is used to capture the salient behavior of a service. A query language for services is defined which

allows to find services by specifying conditions on the activities which compose them, the exceptions

treated, the flow of the data between the activities.

Recently, authors in the academic world have published papers that discuss similarity and compatibil-

ity at different levels of abstractions of a service description (e.g., [19, 25, 51, 125]). In terms of protocol

specification and analysis, existing approaches provide models (e.g., based on pi-calculus, petri nets or

state machines) and mechanisms to compare specifications (e.g., protocols compatibility checking).

In [91], the authors have presented an approach that enables dynamic binding for BPEL process (dy-

namic binding of WSs to WS-flow instances at run time, i.e. the ability to exchange a WS instance

participating in a WS-flow instance with an alternative one) that is done in three steps. First, providing

Analysis of related work 23

a high-level description of process, second, abstracting the process behavior using symbolic observation

graphs (SOG) using workflow nets (Wf-nets) which is a specific form of Petri Nets and finally providing

an algorithm for SOG matching used for binding dynamically business processes.

In [71], a pi-calculus representation is used for formalizing a service and query behavior. Specifi-

cally, single operations involving message exchanges are expressed in pi-calculus, differentiated by four

transmission types, namely one-way, notification, request-response and solicit-response; Also, the con-

straints between operations of a service or a query that define the allowed order of execution are expressed

in pi-calculus. After expressing the service and query behavior using pi-calculus, service matchmaking

between a service query and a service description is reasoned through the capability of pi-calculus.

In [125], authors give a formal semantics to business process matchmaking based on finite state au-

tomata extended by logical expressions associated to states. Computing the intersection is computationally

expensive and thus does not scale for large service repositories. To solve this problem, the authors of [76]

present an indexing approach for querying cyclic business processes using traditional database systems.

The choice of finite state automata as a modelling formalism limits the expressiveness of the models,

for instance representing parallel execution capabilities can lead to very large models.

A new behavior model for web services is presented in [108] which associates messages exchanged

between participants with activities performed within the service. Activity profiles are described using

OWL-S (Web Services Ontology Language). Web services are modelled like non-deterministic finite

automatons and a new query language is developed for expressing temporal and semantic properties on

service behaviors.

To summarize, the need to take into account the service behavior in the retrieval process was under-

lined by several authors and some recent proposals exist ([108],[76]). The few approaches that exist give

a negative answer to the user if a model satisfying exactly his requirements does not exist in the registries,

even if a model that requires a small modification exists. Moreover, they assume that services have a com-

mon semantics on message names. We do not make this assumption; as companies model differently their

services, we try to deal with the heterogeneity of message names and message sequencing. Our objective

is to propose an approach for service retrieval based on behavioral specification allowing an approximate

match. To the best of our knowledge, there is not another approach allowing to retrieve services having

similar behavior and defining a behavior-based similarity measure.

2.3.3 Assessment of the Service Matchmaking Techniques

The table 2.3 summarizes the Service matchmaking techniques presented in this sub-section. The symbol

(+) means that the property on that column is supported by the matchmaking technique. The symbol (-)

means that the property is not supported. Finally, the sign (+/-) means that the property is moderately

supported.

The evaluated parameters for each service technique are: Stateful, Stateless and Semantics. Stateful

and stateless are properties that describe whether a computer or computer program is designed to note and

remember one or more preceding events in a given sequence of interactions with a user, another computer

or program, a device, or other outside element. Stateful means the computer or program keeps track of

the state of interaction, usually by setting values in a storage field designated for that purpose. Stateless

means there is no record of previous interactions and each interaction request has to be handled based

entirely on information that comes with it. Stateful and stateless are derived from the usage of state as a

set of conditions at a moment in time.

24 Behavioral matchmaking for service retrieval

Assessment Parameters Service matchmaking techniques
Based on Based on Based on
Interfaces Semantics Behavior

Stateless + + +

Stateful - - +

Semantics +/- + +/-

Table 2.3: Assessment of the service matchmaking techniques

In the table 2.3 we can see that service matchmaking tecniques based on interfaces, supports stateless

but not stateful services and fairly supports the description of semantic services; Because of search engines

can only match simple services, thus do not handle the process aspects of services. Finally, the semantic

descriptions are fairly supported, as any search engines like Woogle (see [51]) has a semantics evaluation

level.

The Service matchmaking technique based on semantics supports stateless services and the semantics

descriptions. Besides, such technique does not support stateful services, due to that it is very efficient

at finding simple services by matching semantic descriptions of their capabilities, but is not clear how to

translate this to match complex business processes to check for bilateral or multi-lateral collaborations.

The Service matchmaking technique based on behavior supports fairly the semantic description, but

some approaches as [108] inserts sematics to the behavioral matchmaking. On the other hand, such

technique supports stateless and stateful services, owing to formal descriptions of the services and the

used matching technique take into account the order in which services are executed.

2.4 Summary

In this dissertation we argued that, in many situations, the service discovery process requires a matchmak-

ing phase based on the specification of the component behavior. Therefore, the related works to this PhD

thesis were clustered into three main categories:

(i) As we were focused into service matchmaking, in this category we concentrated on several view-

points from which behavioral models for service composition can be captured. More precisely,

we presented the following view points: (a) Service Choreography, (b) Behavioral interface and

(c) Orchestration. Finally we presented an evaluation of these view points. As this dissertation is

motivated by the idea that an inter-organizational process can be considered as a cooperation of

various pre-established processes of several organizations, we focused our efforts on matchmaking

of behavioral interfaces, considering that this one captures interactions from the perspective of one

of the organizations.

(ii) Since our approach develops matching techniques that operate on behavioral models of the services,

in this category we depicted formal representations that allows to describe, exchange and execute

service behaviors. The formal representations presented were: Process algebra, Petrit Nets, Finite

State Automata and Graph Representation. Finally, an assessment of these formal representations

was maked. The aim of this comparison was to provide criteria for modelling web service com-

position. We concluded that Graph representation model provides a simple and mature notation

for expressing the service’s semantics. Moreover the graph representation enables reasoning about

Analysis of related work 25

a composed system on the basis of its constituents parts without any additional need for informa-

tion about the implementation of those parts. Furthermore, the parallelism supported by the graph

model is a key aspect of formalism which must be fulfilled for accurately modelling web service

composition.

(iii) Finally, we explain the related works with respect to service matchmaking techniques for service

discovery. As our approach of service matchmaking is founded on graph representation, first we

introduced the graph matching algorithms. Next, a state of the art of different service matchmaking

techniques was presented. We clustered the existing techniques in three set: Service matchmaking

based on interfaces, semantics and behavior. Finally, an assessment of existing techniques was

given at the end of the chapter. The approaches used by Web service interfaces search can only

match simple services, thus do not handle the execution aspects of services. The semantic-based

approaches are very efficient for matching simple services based on semantic descriptions of their

capabilities. Besides, is not clear how these approaches can match the complex business processes,

which consider the structural information of the processes included into the services. To the best of

our knowledge, there is not another approach allowing to retrieve services having similar behavior

and defining a behavior-based similarity measure.

Chapter 3

Service Behavioral Matchmaking

Service discovery is an essential task in the process of developing service-oriented applications. In a

typical service-discovery scenario, the service requester has specific expectations about the candidate

service. In general, there are three types of desiderata for a service: it has (a) to be capable of performing

a certain task (i.e., maintain a shopping cart), (b) to expose a particular interface (i.e., provide view,

addproduct and remove-product) and (c) to behave in a certain manner (i.e., ignore any request for product

removals if no product additions have been performed yet). Such expectations motivate and guide the

developers searches through web-services repositories, as they try to discover and select the service that

best matches their needs.

When these dimensions are not considered in concert, the precision of the discovery process tends

to be limited. For example, using only the dimension (a) into a matching method between a service

and a request does not guarantee that they are interoperable, so the interoperability between two services

depends on its structural information and the service availability. Additionally, when the interface of a

service matches a requester interface and the parameter types have not a detailed description, it is not

clear how exactly the parameter data and operations match the requester specification. Furthermore, in

some cases, interface matching may get confused because the operation signatures are not significantly

distinct.

In this dissertation we argue that, in many situations, the service discovery process requires a match-

making phase based on the specification of the component behavior. After retrieving services having

equivalent functionalities (using for example, interface matching, ontology, etc.), several applications re-

quire to find among these service candidates the one having the most similar behavior in respect with user

needs. While the first discovery step has been the subject of excellent research work ([51, 93], etc.), for the

second step, there are no solutions allowing to rank the list of candidates in respect with behavior model.

In this chapter we explain our graph-based approach to behavior matchmaking and show an application

of this one. First, we introduce the graph matching problem explaining its definition and notation. As this

PhD thesis concentrates on approximate service matching, a method to measure the similarity of two

graphs is depicted. Then, the error-correcting subgraph matching is presented in detail. Finally, we show

an application case of this algorithm to WSCL (Web Services Conversation Language) protocols.

26

Service Behavioral Matchmaking 27

3.1 The Graph Matching Problem

Graphs are powerful and universal tools widely used in information processing. Numerous methods for

graph analysis have been developed and become important in computer science and engineering. Many

fields such as computer vision, scene analysis, chemistry and molecular biology have applications in

which objects have to be retrieved and identified. When this processing is to be performed by a computer

automatically without the assistance of a human expert, a useful way of representing the knowledge is by

using graphs. In conclusion the graphs have been proved as an effective way of representing real world

objects and in this way the problem of object retrieval turns into determining the similarity of graphs,

which is generally referred to as graph matching.

In this section we recall a background on graph matching, then we present a method to measure the

similarity of two graphs. Next, we explain the error-correcting subgraph matching. Finally, we depict

the extensions for expanding the EC-Algorithm (Error correcting algorithm) to the Service Behavioral

Matchmaking.

3.1.1 Background of Graph Matching

In the following we describe the definitions and the notations used within the graph theory.

Definitions and notation

A graph G = (V,E) in its basic form is composed of vertices and edges. V is the set of vertices (also

called nodes or points) and E ⊂ V × V is the set of edges (also known as arcs or lines) of graph G.
The order (or size) of a graph G is defined as the number of vertices of G and it is represented as |V |
and the number of edges as |E|. If two vertices in G, say u, v ∈ V , are connected by an edge e ∈ E,
this is denoted by e = (u, v) and the two vertices are said to be adjacent or neighbors. Edges are said to
be undirected when they have no direction, and a graph G containing only such types of graphs is called

undirected. When all edges have directions and therefore (u, v) and (v, u) can be distinguished, the graph
is said to be directed. In this dissertation we will mainly use directed graphs, but graph matching can also

be applied to undirected ones. In addition, a directed graph G = (V,E) is called complete when there is
always an edge (u, u′) ∈ E = V × V between any two vertices u, u′ in the graph.

Graph vertices and edges can also contain information. When this information is a simple label (i.e. a

name or number) the graph is called labelled graph, where α : V → LV is the vertex labelling function

and β : E → LE is the edge labelling function; therefore a directed labelled graph is defined by a

quadruple G = (V,E,α,β). Other times, vertices and edges contain some more information. These are
called vertex and edge attributes, and the graph is called attributed graph. More usually, this concept

is further specified by distinguishing between vertex-attributed (or weighted graphs) and edge-attributed

graphs.

Graph matching

Given two graphs -the Query graph G and the Target graph G′ the procedure of comparing them involves
to check whether they are similar or not. Generally speaking, the standard concepts in graph matching

include graph isomorphism and subgraph isomorphism.

28 Behavioral matchmaking for service retrieval

Graph isomorphism. Two graphs are called isomorphic if they have identical structure. More formally,

an isomorphism between two graphs G and G′ is a bijective mapping between the nodes of G and G′ that
preserves the structure of the edges. Then:

Let G and G′ be graphs. A graph isomorphism between G and G′ is a bijective mapping f : V → V ′

such that

- α(v) = α′(f(v)) for all v ∈ V

- for any edge e = (u, v) ∈ E there exists an edge e′ = (f(u), f(v)) ∈ E′ such that β(e) = β′(e′)
and for any edge e′ = (u′, v′) ∈ E′ there exists an edge e = (f−1(u′), f−1(v′)) ∈ E such that

β(e) = β′(e′).

This type of problem is said to be exact graph matching.

Subgraph isomorphism is another popular concept in graph comparison. Given two graphs, there ex-

ists a subgraph isomorphism if one graph contains a subgraph that is isomorphic to the other. Subgraph

isomorphism is useful to find out if a given object is part of another object or even of a collection of several

objects. Therefore:

If f : V → V ′ is a graph isomorphism between graphs G and G′, and G′ is a subgraph of another
graph G”, i.e. G′ ⊂ G”, then f is called a subgraph isomorphism from G to G”.

When an isomorphism cannot be found between the two graphs to be matched because the number of

vertices is different in both the query and target graphs, then the graph matching problem does not consist

in searching for the exact way of matching vertices of a graph with vertices of the other, but in finding the

best matching between them. This leads to a class of problems known as inexact graph matching.

There exist instances of subgraph isomorphism as maximum common subgraph and the minimum

common subgraph. The maximum common subgraph of two graphs G′ and G is the largest graph that

is isomorphic to a subgraph of both G′ and G. Maximum common subgraph is useful to measure the

similarity of two objects. Clearly, the larger the maximum common subgraph of G′ and G is, the more

similar the two graphs are. On other side the minimum common supergraph of a pair of graphs G′ and G
is the smallest graph that contains subgraphs isomorphic to G′ and G (see [35]).

3.1.2 Edit Distance: A Method to Measure the Similarity of two Graphs

A method to measure the similarity of two graphs is graph edit distance. It is a generalization of string

edit distance, also known as Levenshtein distance [10]. In graph edit distance, one introduces a set of

graph edit operations. These edit operations are used to model distortions that transform a noisy pattern

into an ideal object representation. Common sets of graph edit operations include the deletion, insertion

and substitution of nodes and edges. Given a set of edit operations, graph edit distance is defined as the

minimum number of operations needed to transform one graph into the other. Often a cost is assigned to

each edit operation. The costs are application dependent and are generally used to model the likelihood

of the corresponding distortions. Typically, the more likely a certain distortion is to occur, the lower is its

cost. If a cost is assigned to each edit operation then the edit distance of two graphs, G and G′, is defined

Service Behavioral Matchmaking 29

as the minimum cost taken over all sequences of edit operations that transform G into G′. Graph edit
distance and related similarity measures have been discussed in [106, 104, 32].

Given a graph G, a graph edit operation δ on G is any of the following:

- substituting the label α(v) of vertex v by l.

- substituting the label β(e) of edge e by l′.

- deleting the vertex v from G (for the correction of missing vertices). Note that all edges that are

incident with the vertex v are deleted too.

- deleting the edge e from G (for the correction of missing edges).

- inserting an edge between two existing vertices (for the correction of extraneous edges).

Edited graph Given a graph and an edit operation δ, the edited graph δ(G) is a graph in which the op-
eration δ was applied. Given a graph G and a sequence of edit operations ∆ = (δ1, δ2, · · · δk), the edited
graph ∆(G) is a graph ∆(G) = δk(· · · δ2(δ1(G)))..).

As this dissertation concentrates on approximate services matching, then for the sake of completeness,

the subgraph edit distance will be formally introduced in the remainder of this section.

3.1.3 Error-correcting Subgraph Matching

Given two graphs G and G′, an error-correcting (ec) subgraph isomorphism f from G to G′ is a 2-tuple
f = (∆, f∆) where ∆ is a sequence of edit operations and f is a subgraph isomorphism from ∆(G) to
G′.

For each edit operation δ, a certain cost is assigned C(δ). The cost of an ec-subgraph isomorphism
f = (∆, f∆) is the cost of the edit operations ∆, i.e., C(∆) =

∑k
i=1 C(δi). Usually, there is more

than one sequence of edit operations such that a subgraph isomorphism from ∆(G) to G′ exists and,
consequently, there is more than one ec-subgraph isomorphism from G to G′. We are interested in the
ec-subgraph isomorphism with minimum cost. Then:

Subgraph edit distance. Let G and G′ be two graphs. The subgraph distance from G to G′, ed(G,G′)
is given by the minimum cost taken over all error-correcting subgraph isomorphism f from G to G′.

Algorithm of error-correcting sub-graph isomorphism detection

In this section we present a well-known algorithm for the problem of error-correcting subgraph isomor-

phism detection [81].

The sub-graph isomorphism detection is based on a state-space searching using an algorithm similar

to A* [106]. The basic idea of a state-space search is to have states representing partial solutions of the

given problem and to define transitions from one state to another, thus, the latter state represents a more

complete solution than the previous state. For each state s there is an evaluation function f(s) which

30 Behavioral matchmaking for service retrieval

Algorithm 1 Error-correcting sub-graph isomorphism detection (G(V), GI(VI))
1: Initialize OPEN: map the activity node in V onto each activity node in VI (call Node-mapping), i.e.

create a mapping p. Calculate the cost of this mapping C(p) and add p to OPEN .
2: IF OPEN is empty THEN Exit.

3: Select p of OPEN such that C(p) is minimal and remove p from OPEN
4: IF C(p)> Accept threshold THEN Exit.
5: IF p represents a complete mapping from G to GI THEN output p. Set acceptthreshold = C(p).
Goto 2.

6: Let p={(v1,wi),...,(vk,wj)} be the current mapping that maps k nodes from G.
7: FOR each Interaction node w in VI that has not yet mapped to a corresponding node in V

7.1: extends the current mapping p to p′ by mapping the vk+1 node of V to w,
p′={(v1,wi),...,(vk,wj),(vk+1,w)} and calculate the cost of this mapping C(p′)

7.2: add p′ to OPEN

8: Goto 2

describes the quality of the represented solution. The states are expanding themselves according to the

value of f . In the case of each sub-graph isomorphism detection, given a query graph G and an target

graph GI , a state s in the search space represents a partial matching from G to GI . Each partial matching

implies a number of edit operations and their cost can be used to define the evaluation function f(s).
In other words, the Algorithm 1 starts by mapping the first node of G with all the nodes of GI and

chooses the best mapping (with minimal cost). This represents a partial mapping that will be extended

by adding one node at a time. The process terminates when either a state representing an optimal ec
subgraph isomorphism (error-correcting subgraph isomorphism matching) fromG toGI has been reached

or all states in the search space have edit costs that exceed a given acceptance threshold. The cost of the

mapping C(p′) represents the cost of extending the current mapping p with the next node in the query
graph. Extending the mapping by mapping a vertex v (in the target graph that has not yet mapped) to a
vertex w in the query graph (that does not belong to the current mapping) implies node edit operation and
edge edit operations. First, the attributes of v must be substituted by attributes of w, and secondly, for
each pair of already mapped nodes (v′, w′) it must be ensured that any edge (v′, v) in the query graph can
be mapped to an edge (w′, w) in the target graph by means of edge edit operations ([81]).

Example. Consider the graphs g1 and g2 in Figure 3.1 and the problem of finding the ec subgraph
isomorphism from g1 to g2. Notice that the vertices of g1 and g2 are labeled with letters of the Latin

alphabet while the edges are unlabeled. Additionally, the vertices of g2 are uniquely numbered for the
purpose of identification. The costs of the edit operations are defined as follows. The substitution of a

label l1 by a label l2 is defined to be the distance of the letters l1 and l2 in the order of the alphabet. For
instance, if l1 = a and l2 = g the cost for substituting a by g, or g by a, is 6. The cost for deleting a
vertex is constantly set to 3 while the cost for deleting and inserting an edge is set to 1. The search space

that is expanded by the traditional algorithm is displayed in Figure3.1. On the left of the search space, the

graph g1 is redrawn with its vertices given in the order in which they are matched. Each state s is indicated
by a partial matching (v)[c] where (v) denotes the number of the vertex of g2 that is matched with the

Service Behavioral Matchmaking 31

corresponding vertex of g1 and [c] is the total cost that is implied by the partial matching represented in
the state s and its predecessor states. The states are expanded according to the cost c. In order to represent
the deletion of a vertex, the symbol $ is introduced.

Figure 3.1: Example of Error-correcting subgraph isomorphism detection

In the beginning, there is only the root state, (0)[0], for which all successors states are generated. Next,
the state with the lowest costs, namely the third state from the left, (3)[1] is expanded, and so on. The
path to the state representing the ec subgraph isomorphism is depicted in bold face in Figure3.1. Note

that the ec subgraph isomorphism from g1 to g2 matches the vertex f onto the vertex g, the vertex a onto
the vertex b and the vertex e onto the vertex d. The edge between a and f in g1 is deleted and an edge
between f and e in g1 inserted. The total costs of the edit operations amounts to 5 units.

3.1.4 Extensions of the EC-Algorithm

In order to expand the Ec-Algorithm to the service behavioral matchmaking we have considered two

extensions. The first extension focuses on granularity level of services. In order to rank the target services,

the second extension refers to the similarity measures. Such measures have to take into account the number

of interactions or the number of interaction sequences in the target service that were covered by the query

service. In the following we describe these extensions.

32 Behavioral matchmaking for service retrieval

Extension of the sub-graph edit distance

Given that the matched models can have different granularity levels for achieving the same functionality,

new edit operations are required. For example, one service has a single operation (activity) to achieve cer-

tain functionality, while in other service the same behavior is achieved by composing several operations.

Given a graph G, we extend the definition of edit operation δ on G by adding two operations:

- decomposing a vertex v into two vertices v1, v2.

- joining two vertices v1, v2 into a vertex v.

We limit ourselves to a simple case of decomposition, when a vertex is decomposed into a sequence

of two vertices. This simple type of decomposition is sufficient for applications that we analyzed. A

more general decomposition operation would be to decompose a vertex into a connected subgraph, this is

subject of future work.

The operation of decomposing a vertex v into two vertices v1, v2 is executed in the following way :

- all the edges having as destination the vertex v will have as destination the vertex v1;

- all edges having as source the vertex v, will have as source the vertex v2;

- an edge between the vertex v1 and v2 will be added.

The joining operation is executed in a similar way. These two new edit operations allow to model one-

to-many dependencies among vertices of two graphs (i.e., a vertex in one graph correspond to two vertices

in the second graph). The classical edit operations take into account only one-to-one mappings between

vertices of the two graphs. For example, if a vertex v in the first graph corresponds to the composition
of two vertices in the second graph (v1 followed by v2), a matching algorithm based on the classical edit

distance would map v to v1 and suppress v2. It would not be possible to discover that v is mapped to a
composition of v1 and v2.

Similarity Measure for Behavioral Matching

The subgraph edit distance defined previously expresses the cost of transformation needed to adapt the

query graph (Q) in order to cover a subgraph in the target model (T). This distance is asymmetric, it

represents the distance from the query graph to the target graph. On the other hand, the similarity of

graphs and distance between them are closely related and are often confused. While the term distance is

used more precisely in a mathematical sense, the particular meaning of the term similarity often depends

on the circumstances and its field of application. Therefore, the similarity measures for service behavioral

matchmaking are calculated as following:

- considering that a similarity measure should not only be qualitative, giving information about com-

monalities and differences between the two graphs, but also quantitative, indicating how much two

graphs are similar. So we consider that the similarity between two graphs can be based on distance

measure, but they are inversely related. Therefore two graphs are deemed to be similar when there

exist a small distance measure between them. The similarity function can be defined as:

Service Behavioral Matchmaking 33

Simedit(Q,T) =
1

1 + editDist(Q,T)

Where editDist(Q,T) is the minimal cost of the edit operations needed to transform the query

graph with respect to the target graph.

- in order to rank the target graphs, the similarity measure has to take into account the number of

vertices in the target graph that were covered by the query graph. If two target graphs have the same

subgraph distance to the query graph (Simedit(Q,T)) but are matched to subgraphs with different
number of nodes, the one that matches a subgraph with more nodes will be preferred. Then the

similarity fuction is:

Simnode(Q,T) = Simedit(Q,T) ∗ |NQ ∩ NT |
|NQ|

Where |NQ ∩ NT | is the number of nodes that appear both in Query and Target graph.

- The third similarity measure is based on the number of different sequences between two graphs.

Simseq(Q,T) = Simedit(Q,T) ∗ 1
1 + |Nseq(Q)| + |Nseq(T)|− 2 |Nseq(Q) ∩ Nseq(T)|

In the same way of Simnode, if two target graphs have the same distance measure with respect

to the query graph (Simedit(Q,T)) but they are matched to subgraphs with different number of
node sequences, the one that matches a subgraph with more node sequences will be preferred. In

this similarity function the Nseq parameter represents the number of consecutive nodes (Nseq(Q)
for query graph and Nseq(T) for target graph) and Nseq(Q) ∩ Nseq(T) represents the mapped
sequences into query graph with respect to the target graph. For instance, if we selectNseq = 3 (tri
sequence), then the function will consider all sequences of three consecutive nodes of the query and

target graph and their intersection. Thus, tri(Q), tri(T) and |tri(Q) ∩ tri(T)| will be calculated.

3.2 Conversation Protocol Matchmaking

In this section we illustrate the use of the error-correcting graph matching algorithms for conversation

protocol matchmaking. We choose to exemplify our approach for business protocol matchmaking by

using the WSCL model [16]. The same approach can be applied for other models (Into chapter 4 we

will present the matchmaking by using the BPEL model), as long as the conversation protocol can be

transformed to a graph in a unique way (equivalent representations of a conversation protocol are reduced

to the same process graph).

The conversation protocol matchmaking process is composed of the following steps (see figure3.2).

First, the conversation protocols to be compared are transformed into graphs. Next, both graphs are ex-

panded in order to have the same level of granularity. Then, the error-correcting graph matching algorithm

is applied. The similarity function evaluates the similarity between the graphs. Finally, the granularity

levels are compared and the costs corresponding to identified differences are added to the total distance.

34 Behavioral matchmaking for service retrieval

Figure 3.2: WSCL matchmaking process

Next, we first give an overview of Web Services Conversation Language (WSCL), and then we discuss

each matchmaking step in detail; finally, we illustrate it using an example.

3.2.1 Web Services Conversation Language: WSCL

WSCL is a simple conversation definition language, which offers the basic constructs to model the se-

quencing of the interactions or operations of one interface. It complements the interface definition by

specifying the invocation order of the operations. A conversation in WSCL is specified using the follow-

ing basic constructers:

- Document type descriptions specify the types (schemas) of XML documents that the service can

accept and transmit in the course of a conversation. The schemas of the documents exchanged

are not specified as part of the WSCL specification document; the actual document schemas are

separate XML documents referenced by their URL in the XML Document Type elements of the

conversation specification (see figure 3.3).

- Interactions model the actions of the conversation as document exchanges between two participants.

WSCL supports five types of interactions: Send (the service sends out an outbound document); Re-

ceive (the service receives an inbound document); SendReceive (the service sends out an outbound

document and then expects to receive an inbound document in reply); ReceiveSend (the service re-

ceives an inbound document and then sends out an outbound document); Empty (does not contain

any documents exchanged, but is used only for modelling the start and end of a conversation.) (see

figure 3.3). Each interaction specifies the type (schemas) of XML document that is expected as

input or is produced as output.

- Transitions specify the ordering relationships between interactions.

Conversations list all the interactions and transitions that compose the conversation. A WSCL docu-

ment contains additional information about the conversation, including the conversation’s name and the

name of documents interchanged between the participants. Conversations can be thought of as interfaces

or public processes supported by a service. They differ from interfaces as defined by CORBA IDE or

Java interfaces because they also specify the possible ordering of operations (i.e. the possible sequences

in which documents may be exchanged).

A conversation definition defines the conversation from the perspective of one of the participants. In

most cases, a conversation published in a service directory is the one defined from the perspective of the

listener; the first interaction to happen is a Receive or ReceiveSend interaction. An initiator can derive its

conversation definition from the conversation definition of the listener simply by converting Receive and

Service Behavioral Matchmaking 35

ReceiveSend interactions into Send and SendReceive interactions, and vice versa. Two participants can

successfully interact if the conversation definitions they use are duals of each other.

Figure 3.3: UML metamodel of WSCL protocol

The figure 3.4 shows an WSCL conversation. First the service expects a conversation to begin with

the receipt of a LoginRQ message (Login interaction). The service sends as a response a ValidLoginRS
or InvalidLoginRS document depending on the type and content of the message received. In case of a

valid login, the service will expect a SeatsPreferenceRQ message (CheckSeatsAvailability interaction).
Depending on the content of the received document, the ChecksSeatsAvailability interaction can reply
with ValidPreferencesRS or InvalidPreferencesRS. If the response is a ValidPreferencesRS, the service

will hope a confirmation ConfirmationRQ (ReserveSeats interaction), then if the reservation is valid
the conversation await a PurchasePreferencesRS message and can send as a reply a InvalidPaymentRS or

send the payment information (ValidPaymentRS) to the user (PurchaseSeats interaction), otherwise the
conversation will end.

36 Behavioral matchmaking for service retrieval

Figure 3.4: Example of a WSCL conversation

The Conversation XML description contains two sub-elements: the interactions list, which contains

the conversation interactions and the transitions list have within the transition elements. Another part

of defining the possible ordering of interactions is the specification of the first and last interactions of a

conversation. In the XML description, this is done by the attributes InitialInteraction and FinalInteraction

of the Conversation element. For the WSCL example presented in figure3.4 the initial interaction is Login

and de final interaction is PurchaseSeats.

A conversation can proceed from one interaction to another as allowed by the permissible sequencing

defined in the transition elements. The figure 3.5 shows the XML transition of WSCL example depicted.

SourceInteraction references an interaction that can precede the DestinationInteraction when the conver-

sation is executed. Similarly, DestinationInteraction references one of the interactions that can follow

the SourceInteraction when the conversation is executed. Together, all transitions specify all possible se-

quences of the interactions. SourceInteractionCondition is an additional constraint on the transition. It is

Service Behavioral Matchmaking 37

needed when the SourceInteraction specifies more than one possible document to be exchanged and the

type of document exchanged has an influence on the possible next interactions.

Figure 3.5: XML representation of the WSCL transition

Additionally, the figure 3.6 exemplify the XML representation of CheckSeatsAvailability interac-
tion. Each ReceiveSend interaction is the logical unit of receiving a request and then returning a response.

The interaction is not complete until the response has been sent. A ReceiveSend interaction can specify

more than one Outbound XML Document. This ability allows the modeling of the type of cases in which

there are multiple types of response messages that a service might return in response to a specific request.

Having additional possible responses is mainly used for error messages. If a ReceiveSend interaction

specifies more than one outbound document type, only one of them is being exchanged at runtime.

38 Behavioral matchmaking for service retrieval

Figure 3.6: XML representation of a ReceiveSend interaction

3.2.2 WSCL to Graph Transformation

The parser function transforms a WSCL conversation model into a graph whose vertices represent interac-

tions and whose edges represent transitions. Each node has the following attributes: name, interaction type

and documents. The table 3.1 shows the correspondence between WSCL constructs and graph elements.

WSCL construct Graph element

Interaction Vertex

Type Vertex attribute

Inbound document Vertex attribute

Outbound document Vertex attribute

Id Label

Transition Edge

Transition condition Edge attribute

Table 3.1: Correspondences between WSCL elements and graph elements

3.2.3 Decomposition of WSCL Interactions

After transforming conversation protocols into graphs, the second step in the behavior matching is graph

expansion. The decomposition operations are applied in order to have the same granularity level in

both models. The decomposition operation depends on the metamodel of the protocols to be matched.

For instance, for WSCL metamodel, it is possible that in one protocol an interaction is modelled as a

SendReceive interaction, while in the second protocol the same functionality is achieved by having a Send

Service Behavioral Matchmaking 39

interaction followed by a Receive interaction. Thus, the decomposition will transform interactions of type

SendReceive or ReceiveSend in atomic interactions: Send and Receive.

A SendReceive interaction is decomposed into a Send interaction followed by a Receive interaction in

the following way:

- all edges having as destination the SendReceive interaction will have as destination the Send inter-

action

- all edges having as source the SendReceive interaction, will have as source the Receive interaction

- an edge will be added from the Send interaction to the Receive interaction

- if the SendReceive interaction has outbound document a and inbound document b, then the Send
interaction will have a as outbound document and the Receive interaction will have b as inbound
document.

In a similar way, a ReceiveSend interaction is decomposed into a Receive interaction followed by a

Send interaction.

A decomposition function could also be applied to deal with difference of granularity of exchanged

message; that is, if a message D can be decomposed into n atomic messages, then an interaction sending

the document D (Send D) could be decomposed into n Send interactions corresponding to the n docu-

ments parts. However, in this approach we do not analyze message content and thus we propose only the

decomposition operation described above.

This decomposition function is specific to WSCL model. For other applications, user can specify a

different decomposition function. The decomposition function has always the same signature: it takes as

argument a vertex and returns two vertices resulting from decomposition (that are supposed to be sequen-

tial). The function behavior is specific to the application (metamodel of the protocols to be matched) and

consists in specifying how the labels and attributes of the new vertices are obtained from the decomposed

vertex.

3.2.4 Comparison Rules of WSCL Graphs

The Comparison rules describe all the application-dependent functions allowing to calculate the cost of

graph edit operations. These functions are used by the algorithm of ec subgraph isomorphism matching

for calculating the distance between the graphs (see section3.1.3). In order to support applications with

specialized cost function, user-defined cost function can be registered as a rule. In the following we

explain the cost function used for conversation protocol matchmaking.

The cost for inserting, suppressing edges and vertices can be set to a constant. The cost for editing a

vertex is calculated by function VertexMatch (see Algorithm2). As vertices represent WSCL interactions,

this cost expresses the distance between two WSCL interactions. Each interaction has a label (Id) and
two attributes: the interaction type (Type) and documents set (D) (in or outbound documents). The
matchmaking gives priority to type comparison, and if two interactions have the same type, it compares

the similarity of the set of documents TotalSD; if there is a similarity between them (TotalSD > 0), it
calculates the similarity of the interaction names (SimId).

40 Behavioral matchmaking for service retrieval

Algorithm 2 Function VertexMatch

INPUTS: (Nodei,Nodej)

Nodei: Struct (Idi,Typei,Di), Nodej: Struct (Idj ,Typej,Dj)

OUTPUT:DistanceNode

if Typei)= Typej (different types) then
ReturnDistanceNode = 1

else

Calculate document sets similarity TotalSD
if TotalSD > 0 then
Calculate Ids similarity SimId = LS(Idi, Idj)

DistanceNode = 1 − wd ∗ TotalSD + wi ∗ SimId

wd + wi

ReturnDistanceNode

else
ReturnDistanceNode = 1

end if

end if

The function SD(Di,Dj) where Di, Dj is the set of documents of Nodei and Nodej respectively,

computes the best mapping that can be obtained between the documents of the two sets.

SD(Di, Dj) =

Max(SD(Di − I,Dj − J) + LS(I, J)), Di)= φ,Dj)= φ,
I ∈ Di, J ∈ Dj

0, Di = φ ∨ Dj = φ

The number of mappings established are Min(|Di|, |Dj |). Function LS calculates the linguistic

similarity between document names and is explained in the next section.

Finally, the total similarity of the document sets is:

TotalSD =
SD(Di,Dj)

k
Where, k = Number of documents of set D i. The result of applying the function SD is normalized with respect

to the number of documents of the node belonging to the target graph.

Weights wd and wi indicate the contribution of TotalSD (similarity of documents being exchanged)

and SimId (similarity of interaction names) respectively in the total DistanceNode score (0 ≤ wd ≤ 1
and 0 ≤ wi ≤ 1).

Service Behavioral Matchmaking 41

3.2.5 Linguistic Comparison of WSCL Attributes

The Linguistic comparison calculates the linguistic similarity between two labels based on their names

[95]. The labels are often formed by a word or by a combination of words and can contain abbreviations.

To obtain a linguistic distance between two strings, we use existing algorithms: NGram, Check synonym,

and Check abbreviation. The NGram algorithm estimates the similarity according to a number of com-

mon qgrams between label names [12]. The Check synonym algorithm uses a linguistic dictionary (e.g.

Wordnet [86] in our implementation) to find out the synonyms between the label names while the Check

abbreviation uses an abbreviation dictionary according to the application domain.

First, strings are tokenized on the basis of punctuation and capitalization. Then unnecessary words

are removed from the list of tokens, using a stop-word list. If these individual tokens cannot be matched,

they are stemmed using porter stemmer algorithm and try to match them using NGram technique. If

any of these algorithms return a full match, i.e. 1 on scale of 0 to 1, then a match score of 1 for linguistic

similarity is returned. On the other hand, if all the algorithms return 0, it means that there is no matching

between labels. If the NGram value and the Check abbreviation value are equal to 0, and Check
Synonym is between 0 and 1, the total linguistic similarity value will be equal to the Check Synonym

one. Finally, if the three algorithm values are between 0 and 1, the similarity LS ([95]) is the average of
them:

LS =

1 if (m1 = 1 ∨ m2 = 1 ∨ m3 = 1)
m2 if (0 < m2 < 1 ∧ m1 = m3 = 0)
0 if (m1 = m2 = m3 = 0)
m1+m2+m3

3 if m1,m2,m3 ∈ (0, 1)

Where, m1 = Sim(NGram), m2=Sim(SynonymMatching) and m3= Sim(Abbreviation Expansion).

There are other possible ways to measure name similarity: Levenshtein edit distance algorithm , tech-

niques borrowed from the information retrieval area like TF-IDF or a combination of these techniques.

However, defining a clever function for syntactic similarity is outside the scope of this approach, since the

focus of our work is on behavior similarity.

3.2.6 Granularity Level Comparison of Mapped WSCL Interactions

The ec subgraph isomorphism (error-correcting subgraph isomorphism matching) is applied to graphs that
were expanded, i.e., contain only atomic Send or Receive interactions. The granularity comparison checks

whether the interactions that were mapped by the ec subgraph isomorphism algorithm have the same

granularity level in both models. For instance, suppose that in the target graph we have a SendReceive

interaction. This was decomposed by the decomposition function in a Send interaction followed by a

Receive interaction that were mapped with two corresponding interactions in the query graph (by the ec
subgraph isomorphism algorithm). If these interactions were atomic in the query graph, the cost of joining

operation has to be added to the total graph distance (line 5 in the Table3.2).

The costs for granularity differences that have to be taken into account for the total distance graph for

all cases of figure (atomic versus non atomic interactions in the query and target graph) are summarized

in the Table 3.2.

42 Behavioral matchmaking for service retrieval

Interaction type Interaction type Granularity
of query graph of target graph Diff. Cost
S atomic S atomic 0
R atomic R atomic 0
SR SR 0
RS RS 0

SR (or RS) S atomic + R atomic cj
SR (or RS) S nonat. + R nonat. cd + cj
SR (or RS) S nonat. + R atomic or cd/2 + cj

S atomic + R nonat.
S atomic S nonatomic cd/2
R atomic R nonatomic cd/2

S=Send, R=Receive, SR= SendReceive, RS=ReceiveSend

Table 3.2: Cost for granularity differences

For the sake of clarity, the table does not present the cases for interactions that have no correspondence

in the other graph. If the mapped interactions have the same granularity level (they are both atomic or non

atomic) there is no cost to be added to the subgraph edit distance.

A more complicated case (line 7 in the Table3.2) is when a SendReceive interaction SRI in the target

graph is mapped with an atomic Send interaction SM followed by a Receive interaction RM that is non

atomic (belongs to a SendReceive SRM) in the query graph. In this case, the cost is cj + cd/2 (cj = cost

of joining SM and RM ; cd/2 = cost for obtaining RM by decomposing SRM interaction in the query

graph).

3.2.7 An Example for the WSCL Matchmaking

Suppose that we would like to find the similarity between two purchase services whose conversations have

been described using WSCL language. We consider again the example presented in section1.1 that we

describe in more detail.

- The first conversation (target service) of the figure 3.7 expects a conversation to begin with the re-

ceipt of a LoginRQmessage (Login interaction). The service sends as a response a ValidLoginRS or
InvalidLoginRS document depending on the type and content of the message received. In case of a

valid login, the service will expect a PurchaseRQ message (Purchase interaction). Depending on
the content of the received document, the Purchase interaction can reply with PurchaseAccepted
RS, InvalidPaymentRS or OutOfStockRS. If the response is a PurchaseAcceptedRS, the service will

send the shipping information (ShippingInformation, type Send) to the user (Shipping interaction),
otherwise the conversation will end.

- Similarly, the second conversation (query service) of the figure3.7 expects a LgnRQ message and

can send as a reply a ValidLgnRS or InvalidLgnRS document (Lgn interaction). In case of a valid
login, client can send shipping preferences and the service will return a ShipmentAcceptedRS or

OutsideZone document according to the content of document received (Shipment interaction, type
SendReceive). In the first case, the conversation continues with a Buy interaction, otherwise it
ends.

Service Behavioral Matchmaking 43

Our system converts each WCSL document into a graph (target graph and query graph, Figure3.7).

Next, the graphs are decomposed according to the interaction type (Decomposed target graph and query

graph, Figure 3.7) using the decomposition function. The documents are assigned according to the type

of the decomposed interaction. Thus, for a decomposed Receive interaction an Inbound XML Document

is assigned and for a decomposed Send interaction an Outbound XML Document is set.

Figure 3.7: WSCL matchmaking example

Then the graph matchmaking algorithm is applied on the decomposed graphs. The function V ertex
Match will be invoked for comparing nodes. For each pair of interactions, first the function will verify
if there exists a similarity between its documents. For example, when comparing Buy and Purchase

interactions (Type: Send), the best mapping between the outbound documents of each interaction is found

and a total similarity (TotalSD) is calculated. As there exist a similarity between them, the linguistic
similarity (LS) is calculated between the interaction names (Id: Buy and Id: Purchase) and finally, the
total distance is calculated. For this example we have considered that the similarity of interaction names

(wi) has the same importance than the similarity of documents being exchanged (wd). The dotted lines in

Figure 3.7 represent the mappings found by the system between the two graphs.

Finally, the cost of granularity differences is added to the total graph distance. Thus, the Shipment

interaction (type ReceiveSend) in the query graph has to be decomposed into two interactions to match

44 Behavioral matchmaking for service retrieval

the Shipping interaction (type Send) into the target graph (see the dotted lines of Figure3.7). Therefore,

the cost of line 8 of Figure 3.2 is added. For the other mappings no granularity cost is added.

In conclusion, the edit script will show that the two graphs are similar, but have the following structural

differences: for the mapping (Shipment,Shipping) (see figure 3.7), the Shipment is a Send non atomic

interaction (was obtained by decomposing a SR interaction) and the Shipping is a send atomic interaction.

(Hence the system will add the granularity cost Cd/2 to the total distance between the two graphs.) There
is not a corresponding node for the Shipment (R) into the target graph. On the other side, the interactions

for purchasing and for shipping are executed in different order in the two models, therefore the system

will add to the total distance the costs of necessary edit operations for reordering them. Thus, the script of

the graph edit operations is the following:

- Decomposing the node Shipment(SR) from query graph

- Deleting the node Shipment(R) from query graph

- Deleting the edge (Shipment,Buy) from query graph

- Deleting the edge (Lgn,Shipment) from query graph

- Inserting the edge (Lgn,Buy) into query graph

- Inserting the edge (Buy,Shipment) into query graph

3.3 Summary

In this chapter we explained our graph-based approach to behavior matchmaking and showed an applica-

tion of this one. First, we introduced the graph matching problem explaining its definition and notation

used within the graph theory. As this PhD thesis concentrates on approximate services matching, a method

to measure the similarity of two graphs was depicted. Next, the error-correcting subgraph matching (Ec-

Algorithm) was presented in detail.

In order to expand the Ec-Algorithm to the service behavioral matchmaking we presented two exten-

sions. The first extension focused on granularity level of services. In order to rank the target services, the

second extension refered to the similarity measures. Such measures have to take into account the number

of interactions or the number of interaction sequences in the target service that were covered by the query

service.

Finally, we showed an application case of this algorithm to WSCL (Web Services Conversation Lan-

guage) protocols. The same approach can be applied for other models (Into chapter 4 we will present the

matchmaking by using the BPEL model). The conversation protocol matchmaking process is composed

of the following steps. First, the conversation protocols to be compared are transformed into graphs. Next,

both graphs are expanded in order to have the same level of granularity. Then, the error-correcting graph

matching algorithm is applied. The similarity function evaluates the similarity between the graphs. Fi-

nally, the granularity levels are compared and the costs corresponding to identified differences are added

to the total distance.

Chapter 4

Behavioral Matchmaking: Application to

Business Process Protocol

Over the last couple of decades, workflow technology has increasingly been used to coordinate activities in

inter and intra organizational settings. With the advent of Web services and service oriented architectures

(SOA) (see [52]), workflows have transitioned into Web services based processes (called Web processes),

which leverage XML based open standards and a loosely coupled distributed computing model of SOA

to achieve easier integration of autonomous distributed components. While the preliminary focus of SOA

based implementations in the industry have leveraged the ease of integration provided by Web services,

the true potential of Web service based solutions are the Web processes.

Web processes are the new generation workflows created using Web services. The Web processes

can be implemented using WS-BPEL (Web Services Business Process Execution Language), wich is the

industry de facto standard for Web services. BPEL technology has been established as a key contributor

to the success of the service environment. BPEL allows to easily compose new services out of existing

services. This enables new business models for software and enables non-IT professionals to create ser-

vices. In the BPEL initiative, the process constructed exploits a classical workflow style composition of

services, extended with external message interaction capability.

Considering the importance and extensive utilization of BPEL protocol for services description, in this

chapter, we will discuss our approach for Behavioral matchmaking, by examining the usage of matching

techniques in the context of BPEL behavioral specifications of the service. The BPEL matchmaking

process is composed of the following steps (see figure 4.1). First, the BPEL documents to be compared

are transformed to graphs. Next, the error correcting graph matching algorithm is applied (considering the

decompostion and composition functions during the algorithm execution). Then, the similarity function

evaluates the similarity between the graphs.

Figure 4.1: BPEL matchmaking process

45

46 Behavioral matchmaking for service retrieval

First we will introduce the BPEL protocol, then we will explain the BPEL to graph transformation.

In the section 4.3, we will show the BPEL matchmaking algorithm which is based on the algorithm

introduced in previous chapter, but considering the comparison rules for the BPEL metamodel (section

4.4). Finally, an example of the BPEL matchmaking process will be depicted.

4.1 Business Process Execution Language for Web Services: BPEL

Web services are components, which are based on the industry standards WSDL (Web Service Definition

Language), UDDI (Universal Description Discovery and Integration) and SOAP (Simple Object Access

Protocol). They enable to connect different components even across organizational boundaries in a plat-

form and language independent manner [73]. None of these standars for Web services however provides

for the definition of the business semantics of Web services, the Web services are isolated and opaque.

Braking insolation means to connect Web services and specify how collections of Web services are jointly

used to realize more complex functionality- typically a business process. A business process specifies

the potential execution order of operations from a collection of web services, the data shared between

these Web services, which partners are involved and how they are involved in the business process, joint

exception handling for collections of Web services etc. In this way, BPEL [11] has emerged as a standard

for specifying and executing web services-based processes. It supports the modelling of two types of

processes: executable and abstract processes. An abstract process is a business protocol, specifying the

message exchange between different parties from the perspective of a single organization (or composite

service), whitout revealing the internal behavior. An executable process, in contrast, specifies the actual

behavior of a participant. On the other side, a BPEL process is constituted of the following components:

- Variables: In BPEL variables are used to store workflow data and messages that are exchanged

with Web Services. Variables have to be declared in the header part of a BPEL process.

- PartnerLinks: Partner links represent a bilateral message exchange between two parties. Via a

reference to a partnerLinkType the partnerLink defines the mutual required portTypes of a mes-

sage exchange: it holds a myRole and a partnerRole attribute to define who is playing which role.

PartnerLinks are relevant for basic activities that involve Web Service requests (see figure4.2).

- Basic Activities: Basic activities define the operations which are performed in a process (see figure

4.3). These include operations involving Web Services like:

- The receive construct allows the business process to do a blocking wait for a matching message

to arrive.

- The reply activity allows the business process to send a message in reply to a message that was

received through a receive. The combination of a receive and a reply forms a request-response

operation on the WSDL portType for the process.

- The invoke construct allows the business process to invoke a one-way or request/response

operation on a portType offered by a partner.

- The assign activity can be used to update the values of variables with new data. An assign

construct can contain any number of elementary assignments.

Behavioral matchmaking: Application to BPEL protocol 47

- The throw construct generates a fault from inside the business process.

- The wait activity allows you to wait for a given time period or until a certain time has passed.

Exactly one of the expiration criteria must be specified.

- The empty construct allows you to insert a ”no-op” instruction into a business process. This is

useful for synchronization of concurrent activities, for instance.

Figure 4.2: BPEL metamodel

- Structured Activities: BPEL offers structured activities for the definition of control flow, alter-

native branches or sequential execution (see figure 4.3). These structured activities can be nested.

Next, we present the structured BPEL activities:

- The sequence construct allows to define a collection of activities to be performed sequentially

in lexical order.

- The switch activity allows to select exactly one branch of activity from a set of choices.

- The pick construct allows to block and wait for a suitable message to arrive or for a time-out

alarm to go off. When one of these triggers occurs, the associated activity is performed and

the pick completes.

- The flow activity allows to specify one or more activities to be performed concurrently. Links

can be used within concurrent activities to define arbitrary control structures.

- The scope construct allows to define a nested activity with its own associated variables, fault

handlers, and compensation handler.

48 Behavioral matchmaking for service retrieval

- The compensate structured activity is used to invoke compensation on an inner scope that has

already completed normally. This construct can be invoked only from within a fault handler

or another compensation handler.

Figure 4.3: BPEL activities hierarchy

BPEL builds on IBM’s WSFL and Microsoft’s XLANG and combines thus the features of a block

structured language (XLANG) with those for directed graphs (WSFL). As a result there are sometimes

two equivalent ways to implement a desired behavior. For exemple, a sequence can be accomplished using

a sequence or a flow with a link between activities, a choice based on certain data values can be done using

the switch or flow elements, etc.

As this dissertation focuses on matching of behavioral interface, next we present an example of a

BPEL abstract process. The figure 4.4 presents a BPEL abstract process for a shopping portal. The busi-

ness strategy of the Web shopping portal has two aspects: On one hand, the portal is open to all Online
Shops. On the other hand, the portal requires the participating shops to build their services according to a
standardized protocol, specified in terms of an abstract BPEL process model. The BPEL process models

the following behavior: First, the customer should place his order (ReceiveOrder activity, type: receive).
Then, the shop may send zero or more questions (OrderIncomplet activity, type: while) to the customer
concerning his order (SendQuestion activity, type:invoke) and await his update (ReceiveUpdate activ-
ity, type: receive). Eventually, the shop sends the invoice (SendInvoice activity, type: invoke) and re-

Behavioral matchmaking: Application to BPEL protocol 49

Figure 4.4: Example of a BPEL process

quires the customer to pay (CustomerPayment activity, type: pick), either with credit card (cc payment)
or out of his checking account (ca payment). Finally, the shop finishes the process by sending the delivery

data or pickup data accordingly to its business strategy (ChooseShipment activity, type: switch). The
formats and the channels of messages being exchanged are defined in the Web service description WSDL

(Operation, Portype, etc).

There are two major sections in the XML description of the abstract business process for the Online

Shops service:

- the partnerLinks section defines the different parties that interact with the business process in the

course of processing the order.

Figure 4.5: Example of a ParterLink description

50 Behavioral matchmaking for service retrieval

The four partnerLinks shown here correspond to the sender of the order (customer), as well as the

providers of price (InvoicingProvider), Payment (PaymentProvider) and the shipment (Shipping-

Provider). Each partner link is characterized by a partner link type. This information identifies

the functionality that must be provided by the business process and by the partner service for the

relationship to succeed, that is, the portTypes that the purchase order process and the partner need

to implement (see figure 4.5).

- the process definition section contains the description of the normal behavior for handling a pur-

chase request. The structure of the main processing section is defined by the outer< sequence > el-
ement, which states that the five activities contained inside are performed in order (ReceiveOrder,
OrderIncomplet, SendInvoice, CustomerPayment and ChooseShipment). The figure 4.6
shows the XML description for the Pick activity.

Figure 4.6: Example of the XML description of a pick activity

The onMessage element is used to receive a particular message from a partner via a port type and

operation that the process provides. In this way, the CustomerPayment activity (pick activity)
waits for a credit card (cc payment) or checking account (ca payment) payment incoming mes-
sage. Whenever one of the specified messages is received, the pick activity is completed, and the

ProcessPaymentCC or ProcessPaymentCA activity is executed.

In the remainder of the chapter, we concentrate on the matchmaking of BPEL abstract processes, but

the same approach can be adapted to matching executable processes.

4.2 BPEL to Graph Transformation

The parser function presented in this section has the same functionality of parser explained into the section

3.2.2. For instance for BPEL model the parser transforms a behavior model into a process graph. A BPEL

graph has at least one start nodes and can have multiple end nodes. The graph has two kinds of nodes :

regular nodes representing the activities and connectors representing split and join rules of type XOR or

AND. Nodes are connected via arcs which may have an optional guard. Guards are conditions that can

evaluate to true or false.

Behavioral matchmaking: Application to BPEL protocol 51

Algorithm 3 Function FlatteningBCF

INPUT: BPELdocument
OUTPUT: BPELgraph

ADD Start node to BPELgraph
ADD End nodes to BPELgraph
for each SAi do

Calculate SAgraphi = BCFtransform(SAi)
ADD SAgraphi to BPELgraph
Calculate the edge (SAgraphi, SAgraphj) = tc(SAi, SAj)
ADD the edge (SAgraphi, SAgraphj) to BPELgraph

end for

return BPELgraph

We implemented the flattening strategy presented in [80] to transform a BPEL document to a BPEL

graph. The general flattening idea is to map Structured activities (SA) to respective BPEL graph fragments
(see Algorithm 3). This algorithm traverses the nested structure of BPEL control flow (BCF) in a top-down

manner and apply recursively a transformation procedure specific to each type of structured activity. First,

the Start and the End nodes are identified into the BPEL document, then for each structured activity the

Structured activity graph (SAgraphi) is calculated executing the BCF transform function on SAi (see

Algorithm 4). Next, the SAgraphi is added toBPELgraph. For each SAgraphi added toBPELgraph
the Algorithm 3 calculates its edges with others structured activity graphs (SAgraphj) considering the
mapping tc, which is defined according to the transition conditions of Structured Activites (SA) into the
BPEL document.

The algorithm 4 shows the BCFtransform procedure which is reinvoked recursively on nested

elements. In this algorithm the first parameter represents the structured activity to be processed followed

by the predecessor and successor node of the output Structured Activity Graph (SAgraph) between which
the nested structure is hooked in (i.e. predecessor and successor).

The BCFtransform procedure starts checking whether the current structured activity (SA) serves
as target and source for links. If so, respective connectors are added at the beginning and the end of the

current structured activity block. In this way the links into BPEL control flow are mapped to arcs and the

respective join and split connectors are added around the nested basic activities. There exist five sub-
procedures to handle the five structured activities: Sequence, Flow, Switch, While, and Pick. Here, it is

assumed that Pick is only used to model alternative start events. The transformation of Scopes simply calls

the procedure for its nested activity. Empty activities map to an arc between predecessor and successor

nodes. Terminate is mapped to an end event. Moreover, each BPEL basic activity (Receive, Reply,
Invoke, Wait) is transformed to a node into BPEL graph. Since our approach is interested into basic
BPEL control flow, the Assing activities are mapped to an edge between predecessor and successor nodes.

Besides this PhD thesis focuses on messages exchanged by partners engaged in a bussines conversation

and not in the private behavior of each partner, hence the handling of failures and compensation are not

covered in this dissertation. Future works may address activities that interfere with the control flow (e. g.

throw).
The procedures BCFtransformSeq, BCFtransformFlow, BCFtransformPick, BCFtransformSwitch and

52 Behavioral matchmaking for service retrieval

BCFtransformWhile generate the BPEL graph elements that correspond to the respective BCF structured

activities. BCFtransformSeq transforms a Sequence by connecting all nested activities with the graph

edges. Although not explicitly defined, this transformation requires an order defined on the nested ac-

tivities. For each sub-activity the BCFtransform procedure is invoked again. The graph representation

of Switch (BCFtransformSwitch procedure) into BPEL graph consists of a block of alternative branches

between an XOR split and an XOR join. The branching conditions are associated to the edges.

Algorithm 4 Function BCFtransform

INPUTS: SA
OUTPUT: SAgraph

Calculate BCFtransform(SA,Predecessor, Successor,Connector)
if ∃(Linki, SA) then
ADD a SplitConnectori

ADD an edge between the Predecessor Activity and the SplitConnectori
end if

if ∃(SA,Linkj) then
ADD a JoinConnectorj(Linkj)
ADD an edge between the JoinConnectorj and Successor activity

end if

if activity ∈ Seq then
Calculate BCFtransformSeq(SA,Predecessor,Successor)

else if activity ∈ Flow then
Calculate BCFtransformFlow(SA,Predecessor,Successor,AND)

else if activity ∈ Pick then
Calculate BCFtransformPick(SA,Predecessor,Successor,XOR)

else if activity ∈ Switch then
Calculate BCFtransformSwitch(SA,Predecessor,Successor,XOR)

else if activity ∈ While then
Calculate BCFtransformWhile(SA,Predecessor,Successor,XOR)

else if activity ∈ Basic then
Calculate (Activity,Predecessor,Successor)

else if activity ∈ Empty then
Calculate (Predecessor,Successor)

else if activity ∈ Assign then
Calculate (Predecessor,Successor)

else if activity ∈ Terminate then
Calculate (Predecessor,End)

end if

return SAgraph

The Pick activity has some similarities to the Switch. Yet, instead of evaluating an expression it waits

for the occurrence of one out of a set of events and executes the associated activities. These events may

be related to time or to message receipts. Syntactically, the BCFtransformPick procedure maps to the

Behavioral matchmaking: Application to BPEL protocol 53

same control flow elements as the Switch. In the case of OnMessage conditions the message is specified

with noncontrol flow elements similar to a Receive activity. In the case of an OnAlarm event the time is

modelled similar to theWait activity. Each alternative event is followed by nested activities merged with an

XOR join. The BCFtransformFlow procedure is transformed to a block of parallel branches starting with

an AND split and synchronized with an AND join. For the While activity, BCFtransformWhile creates a

loop between an XOR join and an XOR split, the condition is added to the edge. The transformation of

Scopes simply calls the procedure for its nested activity.

The nodes that represent the basic activities have the following attributes: Operation and PortType.

The connector nodes have two attributes: ConnectorType (AND-split, AND-join, XOR-split, XOR-join)

and ActivityType (the BPEL structured activity from which it was transformed). Figure 4.7 shows the

correspondence between BPEL constructs and graph elements.

Figure 4.7: Correspondences between BPEL elements and graph elements

4.3 BPEL Graphs Matchmaking

The algorithm presented in this section is based on ec subgraph isomorphism matching for calculating the
distance between two graphs (see section 3.1.3). Next, we present the modification that we have made to

this algorithm for working with BPEL model.

With the goal of reducing the search space, before executing the matchmaking algorithm the nodes

54 Behavioral matchmaking for service retrieval

of two graphs (G and GI) are well-arranged in sets according to the activity types. In this way only the

nodes that belong to the same activity type into G (query graph) and GI (target graph) respectively are

compared (i.e., Invokesyn set, Invokeasyn set, Receive set, Reply set, Wait set). The algorithm starts

by mapping the first node included into the first set of G with all the nodes of the same set of GI and

chooses the mapping with minimal cost (Algorithm5, line 1). This represents a partial mapping that will

be extended by adding one node at a time (line 7). The process terminates when either a state representing

an optimal ec-subgraph isomorphism from G to GI has been reached or all states in the search space have

edit costs that exceed a given acceptance threshold.

The cost of the mapping C(p′) (line 7.1) represents the cost of extending the current mapping p with
the next node in the query graph. Extending the mapping by mapping a vertex v (in the target graph that
has not yet mapped) to a vertex w in the query graph (that does not belong to the current mapping) implies
node edit operation and edge edit operations. On the other hand, a process graph has two kinds of nodes:

activities and connectors. In contrast with activities, connectors do not represent business functions, they

express control flow constraints. In this way first, the label and attributes of v must be substituted by label
attributes of w, and secondly, for each mapping (v′, w′) ∈ p it must be ensured that any edge (v′, v) or any
connector between (v′, v) in the query graph can be mapped to an edge (w′, w) or a connector between
(w′, w) in the target graph by means of edge and connector edit operations.

Algorithm 5 Error-correcting sub-graph isomorphism detection (G(V), GI(VI))
1: Initialize OPEN: For each activities set, map the activity node in V onto each activity node in VI (call
ActivityMatch), i.e. create a mapping p. Calculate the cost of this mapping C(p) and add p to OPEN.

2: IF OPEN is empty THEN Exit.

3: Select p of OPEN such that C(p) is minimal and remove p from OPEN

4: IF C(p)> Accept threshold THEN Exit.

5: IF p represents a complete mapping from G to GI THEN output p. Set accept threshold = C(p). Goto

2.

6: Let p={(v1,wi),...,(vk,wj)} be the current mapping that maps k nodes from G.
7: FOR each activity node w in VI that has not yet mapped to a corresponding node in V

7.1: extends the current mapping p to p’ by mapping the vk+1 node of V to w,

p’={(v1,wi),...,(vk,wj),(vk+1,w)} and calculate the cost of this mapping C(p’)

7.2: CHECK if vk+1 and w nodes represent basic or wait activities; THEN execute Function

BasicActivityMatch or WaitActivityMatch respectively on (vk+1,w). VERIFY if
minimal DistanceNode > composition or decomposition threshold, and apply decom-

position or decomposition operation if necessary. Finally, ADDDistanceNode to C(p’).

7.3: CHECK if ∃ an Edge or a Connector between (w′,w) mapped nodes; THEN execute
Function EdgeCost or ConnectorCost respectively. ELSE SuppressionCost on
(v′,v) is applied. Finally, ADDDistance(Edge, Connector or Supp) to C(p’)

8: Goto 2

In line 7.2 we consider the cost of mapping two basic (Invoke, Receive, or Reply) or two wait
activities (We make the activities distinction as the attributs of wait activity and the other activities are
different). Exactly, this line calls the algorithms that implement these cost functions. Then in the same

Behavioral matchmaking: Application to BPEL protocol 55

line 7.2 the algorithm verifies if minimalDistanceNode > composition or decomposition threshold, and

next the decomposition or decomposition operation is applied if necessary. The decomposition operation is

applied on Invoke activity of type request/response. The composition operation is applied on asynchronous

communication pattern [Invoke(one way) + Receive] consecutive. Finally, DistanceNode is added to
C(p’). On the other hand the matching process compares the connectors in a manner similar to edges,

when mapping edges between two activity nodes, we map also the possible connectors binding directly

to the nodes. That is, first the algorithm verifies if there exist an edge or a connector between the mapped

nodes (w′, w) of target graph (Line 7.3) and then, it calls the function that calculates the cost of adding
or deleting an edge, or the function that implements the cost of inserting, substituting or suppressing a

connector. Finally the costs are added to C(p’). In the next sections we explain in detail how each function

is implemented.

4.4 Comparison Rules of BPEL Graphs

In the same way as in section 3.2.4 the Comparison rules depict all the application-dependent functions

allowing to calculate the cost of graph edit operations. These functions are used by the graph matching

module for calculating the distance between the graphs. In the following we explain the cost functions

used for BPEL protocol matchmaking.

4.4.1 Matching Edges.

For any mappings M(v,w) and M′(v′, w′) (where {v, v′} nodes ∈ query graph and {w,w′} nodes ∈
target graph) and given that exists an edge between (v, v′) nodes, the Algorithm 6 analyzes if the costs of
inserting, substituting an edge or deleting a connector between (w,w′) nodes are necessaries.

Algorithm 6 Function EdgeCost

INPUTS:M(v,w);M ′(v′, w′)
OUTPUT:DistanceEdge

For the mappings M(v,w);M ′(v′, w′) where (v, v′) nodes ∈ query graph AND (w′, w) nodes ∈ target
graph; and given an edge between (v, v′) nodes then:

if ∃ an edge between the nodes (w,w′) then
return DistanceEdge = 0

else if ! an edge between the nodes (w,w′) then
return DistanceEdge = Cei

else if ∃ a connector between the nodes (w,w′) then
return DistanceEdge = Ccd + Cei

end if

Therefore, the algorithm considers three cases:

• If there exist an edge between (w,w′) nodes, the DistanceEdge = 0 is returned.

56 Behavioral matchmaking for service retrieval

• If does not exist an edge between (w,w′) nodes, a cost of inserting an edge between (w,w′) is
returned DistanceEdge = Cei.

• If there exists a connector between the nodes (w,w′), the cost of deleting a connector (Ccd) and

inserting an edge between (w,w′) are returned (DistanceEdge=Ccd +Cei).

4.4.2 Matching Connectors.

For any mappings M(v,w) and M′(v′, w′) (where {v, v′} nodes ∈ query graph and {w,w′} nodes ∈
target graph) and given that exist a connector between (v, v′) nodes, the Algorithm 7 analyzes if the costs
of inserting, substituting a connector or deleting an edge between (w,w′) nodes are necessaries.

Algorithm 7 Function ConnectorCost

INPUTS:M(v,w);M ′(v′, w′)
OUTPUT:DistanceConnector

For the mappings M(v,w);M ′(v′, w′) where (v, v′) nodes ∈ query graph AND (w,w′) nodes ∈ target
graph; and given a connector between (v, v′) nodes then:

if ∃ a connector between the nodes (w,w′) then
if the connector types between(v, v′) and (w,w′) are different then
return DistanceConnector = Ccs

else if the connector types are same then

return DistanceConnector = 0
end if

else if ! a connector between the nodes (w,w′) then
return DistanceConnector = Cci

end if

if ∃ an edge between the nodes (w,w′) then
return DistanceConnector = Ced + Cci

end if

Therefore, the algorithm considers three cases:

• If there exists a connector between (w,w′) nodes, the algorithm analyzes the connector types. If the
connector types between(w,w′) and (v, v′) are different, a cost of connector substituting is returned
(Ccs) other wise DistanceConnector = 0.

• If does not exist a connector between (w,w′) nodes. In this case, a cost of inserting a connector
between (w,w′) is returned DistanceConnector = Cci.

• Finally, if there exists an edge between the nodes (w,w′), the cost of deleting an edge (Ced) and

inserting a connector between (w,w′) are returned (DistanceConnector= Ced +Cci).

Behavioral matchmaking: Application to BPEL protocol 57

4.4.3 Suppression Function.

For any mappings M(v,w) and M′(v′, w′) (where {v, v′} nodes ∈ query graph and {w,w′} nodes ∈
target graph) and given that does not exist neither an edge nor a connector between (v, v′) nodes, the
Algorithm 8 analyzes if the costs of deleting a connector or an edge between (w,w′) nodes are necessary.

Algorithm 8 Function Suppression

INPUTS:M(v,w);M ′(v′, w′)
OUTPUT:DistanceSupp

For the mappings M(v,w);M ′(v′, w′) where (v, v′) nodes ∈ query graph AND (w,w′) nodes ∈ target
graph; and given that does not exist neither an edge nor a connector between (v, v′) nodes then:

if ∃ an edge between the nodes (w,w′) then
return DistanceSupp = Ced

else if ∃ a connector between the nodes (w,w′) then
return DistanceSupp = Ccd

else if ! neither a connector nor an edge between the nodes (w,w′) then
return DistanceSupp = 0

end if

Therefore, the algorithm considers three cases:

• If there exists an edge between (w,w′) nodes, the cost of deleting an edge is returned (Distance
Supp = Ced).

• If there exists a connector between (w,w′) nodes, the cost of deleting a connector is added (Distance
Supp = Ccd).

• If does not exist neither a connector nor an edge between (w,w′) nodes, so Distance Edge =0.

4.4.4 Matching Basic Activites.

The cost for editing a basic activity vertex (receive, invoke, reply) is calculated by function BasicActiv-

ityMatch (see Algorithm 9). This cost expresses the distance between two BPEL basic activities. Each

activity has two attributes: the Operation name (Op) and the PortType (PT). The matchmaking gives
priority to operation comparison, and if two operations are similar (SimOperation > 0), it compares the
similarity of the PortType and calculates the distance between activities (DistanceNode).

Weights wop and wpt indicate the contribution of Op (similarity of Operations) and PT (similarity of
PortTypes) respectively in the total DistanceNode score (0 ≤ wop ≤ 1 and 0 ≤ wpt ≤ 1).

Further, the Reply activities must always be preceded by a Receive activity with the same partner link,

portType and (request/response) operation, such that no reply has been sent for that Receive activity. So,

given two mapped Receive activities, the function BasicActivityMatch will be applied only on Reply
activities that correspond to the previously mapped Receive activities.

58 Behavioral matchmaking for service retrieval

Algorithm 9 Function BasicActivityMatch

INPUTS: (Nodei,Nodej)

Nodei: Struct (Opi, PTi), Nodej: Struct (Opj,PTj)

OUTPUT:DistanceNode

Calculate Operation Similarity SimOperation = LS(Opi,Opj)
if SimOperation = 0 (different Operations) then
Return DistanceNode = 1

else

Calculate PortType Similarity SimPortType = LS(PTi, PTj)
Calculate DistanceNode

DistanceNode = 1 −
wop ∗ SimOperation + wpt ∗ SimPortType

wop + wpt

end if

4.4.5 Matching Wait Activities.

This function (see Algorithm 10) calculates the cost for editing a vertex which represents a wait activity.

Each wait vertex has two attributes: a delay for a certain period of time (F) or until a certain deadline is
reached (U). The function checks if two ForExpressions or two UntilExpressions are similar, and
gives a result for DistanceNode respectively. The time similarity function (TS) calculates the resem-
blance between the time expressions giving preference to the closest one. The following time expressions

are considered: PnY nMnDTnHnMnS for FOR expressions (i.e. 1 year, 3 months, 5 days, 8 hours, 45
minutes, and 10 seconds = P1Y 3M5DT8H45M10S) and CCY Y − MM − DDThh : mm : ssZ for

UNTIL expressions (i.e. 10:25 p.m. and 12 seconds UTC, January 31, 2005 = 2005 − 01 − 31T22 : 25 :
12Z).

Algorithm 10 Function WaitMatch

INPUTS: (Nodei,Nodej)

Nodei: Struct (Fi, Ui), Nodej: Struct (Fj, Uj)

OUTPUT:DistanceNode

if ForExpression there exist then
Calculate ForExpression Similarity SimFor = TS(Fi, Fj)
Calculate DistanceNode = 1 − SimFor

else

Calculate UntilExpression Similarity SimUntil = TS(Ui, Uj)
Calculate DistanceNode = 1 − SimUntil

end if

Behavioral matchmaking: Application to BPEL protocol 59

4.5 Compostion and Decomposition of BPEL Basic Communication Pat-

terns

We have seen that the classical set of edit operations of error correcting subgraph detection, consisting of

the deletion, insertion, and substitution of nodes and edges, is powerful enough to transform any two given

graphs into each other. Despite their theoretical power, it can be argued that these edit operations are not

perfectly suit for all problem domains. For instance for the BPEL matchmaking process, it is possible that

when we compare two services, in one service a message exchange is modelled as a synchronous interac-

tion, while in the second process is modelled as an asynchronous interaction, therefore a decomposition

operation is considered for representing a synchronous interaction as an asynchronous interaction. If we

have the contrary case in which the first process has an asynchronous interaction, while into the second

process the same interaction is modelled with a synchronous pattern, a composition operation is necessary.

The table 4.1 shows how a BPEL message exchange can be modelled as a basic asynchronous or

synchronous interaction for an operation invoked by the process.

Synchronous interaction Asynchronous interaction

Invoke (request/response) Invoke (one way) + Receive

Table 4.1: Synchronous vs. asynchronous interactions

Exactly, the decomposition and composition operations take importance when the graph matchmaking

algorithm does not find an acceptable mapping cost between the BPEL activities that represent a basic

synchronous or asynchronous communication pattern.

In this way if the minimal cost of a mapping M(v,w) (where v node ∈ query graph AND w node

∈ target graph) exceeds a threshold and v represents an Invoke (request/response), the decomposition
operation is applied on w for verifying if the equivalent asynchronous pattern (w1→w2) is found by the

algorithm to have a better value of total distance between the two graphs. This edit operation changes

target graph by replacing node w by two new nodes w1 (Invoke (one way)) and w2 (Receive). Moreover,

edges between the new nodes or between the new nodes and nodes that existed before the decomposition

operation must be inserted. The contrary case is applied for the composition operation.

For instance, the costs tree of figure3.1 represents the error correcting subgraph isomorphism between

the query graph g2 and the normal target graph g1. If the node 3 of target graph is decomposed, two new
nodes (g′ and g′′) and one edge between them must be inserted. Therefore the costs tree is expanded in

two new branches, one for g′ and another for g′′. These branches are originated in the same level of the
node 3. Then, the algorithm will search for the path with minimal value from the costs tree.

Further, there exists several interaction cases between a BPEL process and another application as:

Asynchronous Interaction with Timeout or with a Notification Timer, One Request-Multiple Responses,

One Request-One of Two Possible Responses, One Request-a Mandatory Response-and an Optional Re-

sponse, Partial Processing, Multiple Application Interactions; but our approach considers the basic syn-

chronous and asynchronous interactions only, because the advanced interaction analysis increases the

complexity of error-correcting sub-graph isomorphism detection. This means that the proposed solu-

tions to vertex composing and decomposing require comparison not only of the original graph nodes but

also of the composing and decomposing nodes that they originate. Assuming the computational com-

plexity of a traditional error-correcting sub-graph isomorphism detection problem to be O(mnn) (n and
m being the number of nodes of the two graphs), the complexity of the composition solution scales to

60 Behavioral matchmaking for service retrieval

O(m(n+ξ)(n + ξ)) ξ being the number of nodes originated from each decomposition and composing

operation respectively.

In the next paragraphs we will present in detail each operation.

Decomposing vertices An Invoke activity of type request/response (having min as input message and

mout as output message) can be decomposed in an Invoke activity (one way, having message min) and

a Receive activity (having mout as message). The new activities Invoke(one way) and Receive take the

Operation and PortType attributes of Invoke(request/response) activity.

The algorithm 11 shows the decomposition operation wich is executed during the matching process.

This one is organized in the following way:

• first the nodes of two graphs are compared using the function BasicActivityMatch

• if the minimal cost of a mapping (v,w) between the Invoke (request/response) activity v of query
graph and the Invoke (request/response) activity w of target graph exceed the decomposition thresh-
old (Distance Node(v,w) > Threshold), then the decomposition operation is executed on Invoke

(request/response) vertex (w) of the target graph.

• afterwards the decomposed activities (w1 and w2) are added to OPEN. Therefore the costs tree is

expanded in two new branches, one for w1 and another for w2.

Algorithm 11 Function Decomposition

INPUTS: M(v,w) where v = Invokesynchronous activity ∈ query graph; w = Invokesynchronous

activity ∈ target graph
OUTPUT: (w1→w2) decomposed asynchronous pattern; where w1 is an Invoke activity (one way) and

w2 is a Receive activity

Calculate Function BasicActivityMatch(v,w)
if minimal DistanceNode(v,w) > Threshold then

Calculate the Decomposition(w) = (w1 → w2)
ADD the mappings of the (w1→w2) decomposed pattern to OPEN

else

EXIT

end if

For instance, suppose that into a BPEL model a submission process requires two activities: an Invoke

(one way) activity (SubmitOrder) and a Receive activity (ConfirmationOrder), but in a second BPEL

model the same process is modeled as one Invoke (request/response) activity (SubmitOrderRequest). Since

we search a correspondence betwen the two BPELmodels, then the Invoke (request/response) activity that

represents the Order submission in the second BPEL model can be decomposed in one Invoke (one way)

activity followed of a Receive activity.

Behavioral matchmaking: Application to BPEL protocol 61

Composing vertices The vertex composition is the inverse operation to vertex decomposition. This op-

eration replaces a set of connected vertices with one vertex. The new vertex replaces the old ones and

inherits their properties. For BPEL metamodel the vertices composition is applied on asynchronous com-

munication pattern [Invoke(one way) + Receive] consecutive (Table4.1). The new activity Invoke(request/

response) takes the Operation and PortType attributes of Invoke(one way) activity.

In the same way of decomposition opreration, the composition operation is executed during the match-

ing process. In order to notice the composition of the vertices, the matching process is organized as an

iterative process that performs the following actions (see Algorithm12), at each iteration step:

• first the nodes of two graphs are compared using the function BasicActivityMatch

• if the minimal DistanceNode between two Invoke (one way) activities (v,w) exceeds a com-
position threshold (Distance Node(v,w) > Threshold), then the algorithm verifies if the Invoke

activity (one way) w in the target graph is followed by a Receive activity p.

• if the Invoke activity (one way)w is followed by a Receive activity p, then the composition operation
is executed on asynchronous communication pattern (w→p).

• afterwards the composed Invoke (request/response) activity (c) is added to OPEN. Therefore the
costs tree is expanded in one new branch.

Algorithm 12 Function Composition

INPUTS: M(v,w);q where v is an Invokeasynchronous activity ∈ query graph; w is an

Invokeasynchronous activity ∈ target graph; p is a Receive activity ∈ target graph.
OUTPUT: (c) composed synchronous pattern; where c is the Invoke activity (request/response)

Calculate Function BasicActivityMatch(v,w)
if minimal DistanceNode(v,w) > Threshold then

Verify if w is followed by a Receive activity p
if w is followed by a Receive activity p then
Calculate the Composition(w, p) = (c)
ADD the mappings of the (c) composed pattern to OPEN

else

EXIT

else

EXIT

end if

end if

Suppose that a BPEL graph describes a loan process, in this graph an Invoke activity (initiate service)

initiates the loan request. The contents of this request are put into a request variable. This request variable

is sent to the asynchronous loan processor Web service. The loan process into Web service then sends

the correct response to the Receive activity (Wait for call-back) into de BPEL graph. In this example,

the Invoke (one way) activity that represents the loan request, and the Receive activity that waits for the

call-back, can be composed into Invoke (request/response) that contains both activities.

62 Behavioral matchmaking for service retrieval

4.6 An Example for the BPEL Matchmaking

We will exemplify the BPEL matchmaking by comparing two BPEL processes for hotel reservation.

- Suppose that the first service has the following activities: first, the customer should place his hotel

selection Reservation Request (Activity type: Receive). Then, either ShowCatalog or ShowAvail-

ability message are expected via Hotels information (Activity type: Pick). Next, the (RequestCat-

alog, Activity type: Invoke) or ShowAvailability information (RequestAvailability, Activity type:

Invoke) activities are executed respectively. Afterwards, a confirmation (UserConfirmation Type:

Reply) with the reserve information is sent to user. Finally, the hotel reservation service expects for

the credit card payment PaymentCC (Type: Receive).

- The second service model has the following activities sequence: first, the customer should place

his Reservation (Activity type: Receive) preferences. Then the hotel reservation service receives

the customer reservation dates (Show Availability Type: Receive) and verifies the hotels availabil-

ity (CheckAvailability Type: Invoke); if there are no rooms available for the proposed dates, the

last two operations are repeated until finding available rooms. Next, a confirmation (Confirmation

Type: Reply) is sent to user. Finally, the hotel reservation service requires the customer to pay (Pay-

ment Type: Switch), either with credit card (are PaymentCC Type: Receive) or out of his checking

account (PaymentCA Type: Receive).

Our system converts a BPEL document into a graph (query graph and target graph in Figure4.8) using

the BPEL parser function. Next, the graphs are compared by the graph matchmaking algorithm. The

EdgeCost, ConnectorCost, Suppression, BasicActivity Match and WaitMatch functions will be
invoked for comparing the activities and connectors nodes.

For each pair of activity nodes, first the BasicActivityMatch andWaitMatch functions will verify
if there exist a similarity between its operations. For example, when comparing Reservation and Reserva-

tionRequest activities (Type: Receive), the best mapping between the Reservation and ReservationRequest

operations is found respectively using the linguistic similarity function LS. As there exist a similarity be-
tween them, the LS function calculates the similarity between the PortTypes (portType:ResvPT and

portType:ResvRqPT), and finally, the total distance is returned. For this example we have considered
that the similarity of operation (wop) has the same importance than the similarity of portType (wpt). With

the goal of reordering the query graph with respect the target graph, for each mapping found the sys-

tem applies the EdgeCost, ConnectorCost and Suppression functions. The dotted lines in Figure4.8
represent the mappings detected by the system between the two graphs.

In conclusion, the edit script will show that the two graphs have some common activities, but the

activities ShowAvailability, CheckAvailability and PaymentCC of the query graph are parts of different

structured activities in the target graph. However, the matchmaking algorithm will find similar activities

for the right branch of the target graph (Start, ReservationRequest, ShowAvailability, RequestAvailability,

UserConfirmation, Payment and End). In this example the decomposition and composition operations are

not applied.

Finally, the script of the graph edit operation is the following:

- Deleting the edge (CheckAvailability,XOR-Split) from query graph

Behavioral matchmaking: Application to BPEL protocol 63

- Deleting the edge (XOR-join,ShowAvailability) from query graph

- Inserting the edge (XOR-Split,ShowAvailability) into query graph

- Inserting the edge (CheckAvailability,XOR-join) into query graph

Figure 4.8: BPEL matchmaking example

64 Behavioral matchmaking for service retrieval

4.7 Summary

Considering the importance and extensive utilization of BPEL protocol for service description, in this

chapter, we discussed our approach for Behavioral matchmaking, by examining the usage of matching

techniques in the context of BPEL behavioral specifications of the service. The BPEL matchmaking

process is composed of the following steps. First, the BPEL documents to be compared are transformed

to graphs. Next, the error correcting graph matching algorithm is applied (considering the decompostion

and composition functions during the algorithm execution). Then, the similarity function evaluates the

similarity between the graphs. So, in this chapter first we introduced the BPEL protocol, then we explained

the BPEL to graph transformation. In the section4.3, we showed the BPELmatchmaking algorithm which

is based on the algorithm introduced in previous chapter, but considering the comparison rules for the

BPEL metamodel. Finally, an example of the BPEL matchmaking process was depicted.

Chapter 5

Prototype and Experimentation

Chapters 3 and 4 described our proposal for Behavioral matchmaking for service retrieval. In this chapter

we illustrate its practical use with real services. To this end, we have developed a prototype called Ws-

BeM (Web services-Behavioral Mathcmaking), which implements the proposed approaches. The tool

allows the execution of the algorithms for matchmaking services in the context of service ranking.

In order to validate our approach, the prototype has been tested in two application scenarios: the

matching of BPEL and WSCL protocols. For each of these applications, we briefly describe its principle

and howWs-BeM has been used. The validation of our approach in these application scenarios is twofold.

Firstly, we want to analyze the matching process quality by using different application scenarios into WS-

BeM. Secondly, we want to test the execution time of matchmaking method using these protocols.

Further, we have constructed a tool for evaluating the effectiveness of our behavioral matchmaking

method. This is a tool that allows to create a user service ranking based on manually comparisons between

a query service and the services in the repository. The tool permits to compare the result obtained by the

platform and the ranking defined by users.

The following sections describe our prototype and experimentations: Section5.1 presents the We-

BeM tool, describing its functionalities, architecture and its user interface. Section5.2 shows the tool

for evaluating our matching method, depicting its functionalities, architecture and its user interface. Fi-

nally, the section 5.3 presents the performance evaluation tests, describing the considered test application

scenarios, the test strategies and the obtained results.

5.1 Platform for Service Matchmaking

We developed a prototype system that implements our approach of Behavioral matchmaking for services

retrieval. The tool was built using the Java programming language (JDK 1.6.0) and the Netbeans 5.0

Integrated Development Environment (IDE).We created as desktop prototype, but this one is also available

as a web service that takes as input two WSCL or BPEL files and calculates the similarity between them

(http://ariadna.unicauca.edu.co/matching/) . It returns also the script of edit operations

required in order to transform the first protocol to conform with the second one.

In the remainder of this section, first we describe the functionalities provided by the system. Then, we

describe the system architecture and finally, we depicted the user interfaces provided by the prototype.

65

66 Behavioral matchmaking for service retrieval

5.1.1 System Functionalities

Given a set of published services having equivalent functionalities (corresponding to a given domain, for

example, trip reservation services), the goal of WS-BeM platform is to rank services with respect to their

suitability in fitting user requirements. We suppose that the user expresses his needs as a service behavior

model and the platform will help him identifying the services having the most similar behavior model.

In our platform the service ranking is based on service behavioral matching presented in chapter 3 and

4, which is reduced to a graph matching problem.

The services ranking is constructed taking into account different measures (graph edit distance, simple

similarity and similarity based on: number of mapped nodes and number of mapped node sequences). The

system is presented in Figure 5.1. This is composed of the following modules:

Figure 5.1: Platform for service ranking based on behavioral matchmaking

• Services to graphs parser: This module transforms a service behavior description (e.g., BPEL or
WSCL) to a graph.

• Graph matchmaking: This module takes as inputs the two graphs produced by the parser presented
above and finds out the semantic distance between them based on the error correcting sub-graph

isomorphism with minimal cost.

• Cost functions builder: This module groups the cost functions for the graph edit operations that
allow to calculate the distance between graphs. The costs assigned to different graph edit opera-

tions reflect the relative importance of dissimilarities between different graph attributes. Thus they

depend of service behavior metamodel and on the application domain.

Prototype and Experimentation 67

• Linguistic analyzer: This component calculates the linguistic similarity between two strings using
the following algorithms: NGram, Check synonym, Check abbreviation and tokenization.

• Granularity level analyzer: It checks whether decomposition/composition operations are necessary
and add their cost to the distance measure. These graph edit operations are necessary when the

same functionality is modeled at different granularity levels in the two graphs (for example, using

two nodes in a graph and only one node in the other graph).

• Similarity functions: This module defines the similarity functions that allows to construct the service
ranking. It uses the result of the graph matchmaking module (the edit distance, the node mappings,

etc.).

• Tool for evaluating the effectiveness of the behavioral matchmaking method. This is a tool that
allows to create a user service ranking based on manually comparisons between a query service and

the services in the repository. The tool permits to compare the result obtained by the platform and

the ranking defined by users. Given the fact that the parameterization of the cost function is domain

dependent and very important for the effectiveness of the matchmaking method, it is important to

have a tool allowing to determine the optimal parameters to use for a given domain and similarity

criteria. In the section 5.2 we will explain in detail this tool.

5.1.2 System Architecture

The logic architecture presented in figure 5.2 organizes the software classes into packages, subsystems,

and layers. This one is implemented in three different layers (Application, Mediation and Foundation

[65]) . Figure 5.2 shows the layers of the architecture and the interaction among them, as well as the most

relevant packages that compose each layer.

- The Application layer manages the packages that implement the prototype functionalities. This

layer is composed by the following packages:

* Service parser: this package allows to register the functions that transform the services meta-

model consumed by the user to a graph. For instance for We-BeM we have implemented the

WSCL and BPEL functions, but it is possible to register other function as WS-CDL.

* Graph matchmaking: this package contains the classes that implement the error correcting

subgraph isomorphism detection. This package uses the Similarity analyzer, Granularity ana-

lyzer, Cost function builder, Linguistic analyzer packages for calculating the matching between

the two service graphs.

* Granularity analyzer: contains the decomposition and composition classes for each meta-

model.

* Cost function builder: this package allows to register the comparison rules for matching the

service metamodels.

* Linguistic analyzer: contains the classes that implement the algorithms for calculating the

similarity between the two character strings. For instance for WS-BeM we have used the

Ngram, Token, Sinonym and Abbreviation algorithms, but other algorithms can be registered.

68 Behavioral matchmaking for service retrieval

* Similarity analyzer: has within the functions that allows to calculate the similarity based on

the total distance between the two graphs. In the same way of above packages, this one allows

to register other similarity functions.

* Graphical user interface: In order to achieve a visual representation, this package contains all

classes that implement the graphical interfaces of the prototype.

Figure 5.2: Logical architecture of the prototype

- Mediation layer contains all application program interfaces (APIs) used by the prototype. The

layer is composed by the following packages:

* Xerces: is a family of software packages for parsing and manipulating XML. The library

implements a number of standard APIs for XML parsing, including DOM, SAX and SAX2.

In this manner, Xerces package supports the service parser package.

* Apache Axis: is an open source, XML based Web service framework. This consists on a

Java and C++ implementation of SOAP server, and several utilities and APIs, to generate

and deploy Web service applications. Using Apache Axis, the graphs matchmaking can be

published as a Web service.

Prototype and Experimentation 69

* JWNL: (Java WordNet Library) is an API for accessing WordNet-style relational dictionaries.

It also provides functionality beyond data access, such as relationship discovery and morpho-

logical processing.

* JGraph: is a Java Graphing framework that fully complies with Swing design principles.

It contains all the graph visualization and interaction functionality of a graph library. This

package supports the visualization of the graphical user interface.

* JGraph Layout: is a high performance graph layout library for JGraph that automatically

positions the graph, diagram, or network in a visually pleasing manner.

- Foundation layer includes the basic software that enables the prototype performance . This layer

is composed of the following packages:

* SOAP-Simple Object Access Protocol: is a protocol for exchanging XML-based messages

over computer networks, normally using HTTP/HTTPS. SOAP forms the foundation layer of

the Web services stack, providing a basic messaging framework that more abstract layers can

be built on. This package supports the publication of graphs matchmaking as a Web service.

* WordNet: is a semantic lexicon for the English language. It groups English words into sets of

synonyms called synsets; Provides short, general definitions, and records the various semantic

relations between these synonym sets. The purpose is twofold: to produce a combination of

dictionary and thesaurus that is more intuitively usable, and to support automatic text analysis

and artificial intelligence applications. This package is used by Linguistic analyzer (through

the JWNL package) for verifying the semantic relationship between two words.

* Tomcat: implements the servlet and the JavaServer Pages (JSP) specifications from Sun Mi-

crosystems, providing an environment for Java code to run in cooperation with a web server.

It adds tools for configuration and management but can also be configured by editing config-

uration files that are normally XML-formatted. In this manner, Tomcat supports the Apache

Axis package.

* Windows XP professional: is the operating system that supports the prototype.

5.1.3 User Interfaces

In this section, we present the graphical user interfaces (GUI) of WS-BeM through two screen snapshots:

one showing the panel of WSCL mathcmaking and the other showing the panel of BPEL mathcmaking.

The mathcmaking process begins when the user loads the WSCL or BPEL files, then the parser WSCL

or BPEL is executed respectively. Next, the user selects the decomposition function, this is a particular

step to WSCL metamodel since for BPEL metamodel the decomposition and composition functions are

executed during the matching process. The fourth step allows the user to assign the costs for the graph

edit operations. Finally, the matching result is presented to the user. The figures5.3 and 5.4 show the

graphical interfaces in which user can choose the WSCL or BPEL documents to be compared. The

interface shows also the graphs resulted from parsing the documents. Into the figure5.3 the atomic nodes

(Send or Receive) and the non-atomic nodes (ReceiveSend or SendReceive) have different colors. In the

same way, the interface of figure 5.4 depicts the connector and basic activity nodes with different colors.

70 Behavioral matchmaking for service retrieval

Figure 5.3: WSCL documents interface Figure 5.4: BPEL documents interface

In the graphical interface of the figure 5.5 user can set the costs for the WSCL graph edit operations

(Interaction and Transitions). The costs of: the granularity, the similarity weight for names and document

interactions (Wi and Wd), and the threshold value for the graph edit distance (Acceptable value), are

fixed too in this interface. On the other hand, the interface shows the decomposition of input and model

graph (first and second graph). In the same way, figure 5.6 allows to insert the cost for the BPEL graph

edit operations (Activities, Connectors and Transitions). The costs of: similarity weight for PortType and

OperationType (Wpt andWop), and the threshold values for the composition and decomposition functions,

are fixed too in this interface.

Figure 5.5: WSCL options interface Figure 5.6: BPEL options interface

Prototype and Experimentation 71

In [34], authors argue that the edition operation costs are defined in ad doc manner, purely guided by

heuristics and intuition. Therefore in the section5.3 we center our effort on the parameterization of costs

function to give the user an optimal matching result.

Finally, the figures 5.7 and 5.8 show the results of matching algorithm. These results are displayed in

a graphical and textual way.

Figure 5.7: WSCL matching results interface Figure 5.8: BPEL matching results interface

5.2 A Tool for Evaluating the Effectiveness of Behavioral Matchmaking

Method

The tool implements a method that allows the users to compare manually the models of a query service

and a target service, and subsequently create a service ranking according to the results of the compari-

son. The models represent the most relevant features of the web processes described in BPEL (abstract

process). In this way, the tool enables to compare the result obtained by the platform for service match-

making and the ranking defined by the users. Given the fact that the parameterization of the cost function

is domain dependent and very important for the effectiveness of the matchmaking method, it is impor-

tant to have a tool allowing to determine the optimal parameters to use for a given domain and simi-

larity criteria. The tool was built using the Java programming language (JDK 1.6.0) and the Netbeans

5.0 Integrated Development Environment (IDE). The system is a Web application wich is available at

http://ariadna.unicauca.edu.co/pertinence .

In the remainder of this section, first we describe the functionalities provided by the system. Then, we

describe the system architecture and finally, we depicted the user interfaces provided by the tool.

72 Behavioral matchmaking for service retrieval

5.2.1 System Functionalities

Our implementation includes two base user-levels: the comparator and the administrator user. Next the

functionalities are presented for each user.

- Comparator level

* Make comparison: After logging in the evaluation tool, the system proposes to the user the

services to compare. Then he can assign a similarity score (between 1 and 5) for the two ser-

vices corresponding to the comparison criteria that he finds relevant. The proposed similarity

criteria are: service name, service description, activity set and the service structure. For the

activity set, the tool allows to compare interaction by interaction.

- Administrator level

* Users management: The tool allows to create new users or edit already existing users (com-

parator or administrator users).

* BPEL document management: The system enables to register target and query BPEL docu-

ments into the services repository.

* Analyzing comparison results: With this functional component the tool can create a ranking

for each query service analyzed according with the comparison criteria. This list is a Top n
(1<n<10) ranking, where the first one is the most similar service.

5.2.2 System Architecture

Figure 5.9 shows the layers of the tool’s architecture and the interaction among them, as well as the most

relevant packages that compose each layer.

- The Application layer manages the packages that implement the tool functionalities. This layer is

composed of the following packages:

* Comparator user interface: In order to achieve a visual representation, these packages contain

all classes that implement the graphical interfaces of the comparator user.

* Administrator user interface: this package contains all classes that implement the graphical

interfaces of the administrator user.

* Comparison process: contains the implementation for comparing manually two services.

* Ranking process: this package calculates the service ranking based on results of comparison

process package.

* User manager: this package implements the logic to register and edit the user parameters that

interact with the tool.

* BPEL documents manager: contains the classes that implement the logic for managing the

BPEL query and target documents.

Prototype and Experimentation 73

Figure 5.9: Logical architecture of the tool

- Mediation layer is composed by the following packages:

* JDBC: is an API for the Java programming language that defines how a user may access a

database. It provides methods for querying and updating data in a database. This interface is

used by the packages of application layer that implement the logic of application, for storing

the data into the Firebird database.

* Firebird: is the database management system (open source of InterBase) used for storing the

users data and the analysis of services matching and ranking.

* JDK: Java Development Kit is an integrated development environment (IDE) for writing Java

applications. It consists of a runtime environment that sits on top of the operating system

layer that allows to compile, debug, and run the effectiveness tool which is written in the Java

language.

* Tomcat: provides an environment to run the tool as a web application.

- Foundation layer include the basic software that enables to perform the prototype. This layer is

74 Behavioral matchmaking for service retrieval

composed of Windows XP professional which is the operating system that supports the tool.

5.2.3 User Interfaces

In this section we show the main interfaces of the tool. As we have said, after logging into the evaluation

tool, the user selects the query service to analyze. The comparison process begins by comparing the

query service against the first target service (see figure 5.10) and finishes when the last target service is

compared.

Figure 5.10: Services to compare interface Figure 5.11: Criterion selection interface

Each pair of services is turned into a web-page, which offers a comfortable graphical user interface

and permits an accurate definition of survey parameters. As can be seen in Figure5.11, the subjects are

asked to assess the similarity between two processes on a scale from 1 (no similarity) to 5 (identical). With

simple radio buttons the users can specify how they have made the assessment: 1. by service name, 2. by

service description, 3. by set of activities, 4. by service structure and 5. using other assessment method.

Finally, in order to catch the subjective aspect of the similarity measurement, the tool allows to specify

the importance of each criteria.

If the user selects as criteria the set of activities, the tool allows to analyze each branch of service

graph, comparing interaction by interaction (see figure5.12). Finally, the tool creates a ranking for each

query service analyzed according with the comparison criteria or by a combination of criteria (see figure

5.13). The n level of Top n ranking is given by the user. This Top is organized in descending order and
if this one is composed by several criteria an average is calculated.

Prototype and Experimentation 75

Figure 5.12: Interface of service branch comparison Figure 5.13: Service ranking interface

5.3 Experimental Evaluation

One of the problems in services retrieval evaluation is the lack of a benchmark of service similarity. In

a nutshell the problem of developing a benchmark of service similarity is that this one requires a lot of

testing data and experimentation which is time consuming, therefore most evaluation methods take place

on a statistical system level. Besides, a benchmark should involve the human evaluation, but bechmark

of this type are not proposed frequently. Therefore the human interaction must be addressed in service

retrieval evaluation if it wants to catch up with reality. So, in this dissertation we made use of the construct

validity technique for validating the WS-BeM results. This validity is concerned with the relation between

theory and observation. It refers to the degree to which a given measure accurately characterizes the

construct under study. To carry out this validity we analyzed the effectiveness of behavioral matchmaking

method, which is based on comparison of the results obtained by the WS-BeM prototype and a human

evaluation carried out by the tool for evaluating the effectiveness of behavioral matchmaking method(see

5.2).

As this dissertation focuses on matching technique and not in service ranking, the experimental eval-

uation concentrates on measuring the matching quality. Although the evaluation tool allows to create a

service ranking, for this experimental evaluation we used only the tool functionality that lets us analyze

each branch of service graph, comparing interaction by interaction (see figure5.12). Therefore, we evalu-

ate the matching quality comparing the result obtained by the prototype against the results stored into the

evaluation tool. In futur works we will use the tool for evaluating a service discovery prototype.

In this section, first the goals of the evaluations will be described, followed by an overview of the

environment of the experiments. The data set used for the experiments, is described as well as results and

their analysis. These results show the better cost function for obtaining an optimal matching result. Also

76 Behavioral matchmaking for service retrieval

we explore the limits of the algorithm with respect to the execution time.

5.3.1 Experimental Evaluation Goals

The goal of the experimental evaluation was to characterize the performance and quality of matchmaking

process. In particular, we wanted to find out the following:

• parameterization of the cost function

• quality assessment of matchmaking process

• performance of matchmaking algorithm

• conformance of matching results calculated by the prototype to intuitive results registered by the
user.

To make the parameterization and relevance measurable criteria, we will exemplify the expression of

parameterization of the cost function, and in particular the matching quality definition in terms of precision

and recall.

Parameterization of the cost function:

An important problem is the definition of the graph edit operations and the corresponding cost

function. The choice of a specific edit operation to be applied on the query graph depends

on its cost. For example, consider that the node deletion cost has set to 0.5 and that three

vertices labels in the query graph are different from the target graph (the distance between

the labels being 0.1). Then, the graph edit distance is 0.3. On the other hand, if label error

grows beyond 0.5, then the algorithm will consider the possibility of deleting a vertex. The

relationship between node deletion cost and node substitution cost strongly influences the

result and the behavior of the algorithm. The goal of our experiments is to parameterize

the cost function in order to obtain a good quality of the matchmaking algorithm. We first

describe how the quality of the matchmaking algorithm can be evaluated.

Measures for match quality:

To provide a basis for evaluating the quality of the matchmaking algorithm, we first have man-

ually performed the match identifying the correspondences between the interactions of two

BPEL models (nodes of the graph). To evaluate the quality of the matchmaking algorithm,

we compared the matches P returned by our algorithm to the matches provided manually

(R). Then, we determined the set of true positives, i.e. correctly identified matches, I , as well
as the set of false positives, i.e. false matches, F = P/I , and false negatives, i.e. missed
matches M = R/I . Based on the cardinalities of these sets, the following quality measures
are computed:

• Precision = |I|/|P | = |I|/(|I| + |F |) estimates the reliability of the match predictions
• Recall = |I|/|R| specifies the share of real matches that are found.

Prototype and Experimentation 77

• Overall = 1 - (|F |+ |M |)/R= (|I|− |F |)/|R|= Recall ∗ (2− 1/Precision) represents a
combined measure for match quality (see [79]) taking into account the post-match effort

needed for both removing false and adding missed matches.

Precision and Recall metrics are intensively used in information retrieval systems. Note that

neither Precision nor Recall alone can accurately assess the match quality. Recall can easily

be maximized at the expense of a poor Precision by returning all possible correspondences.

Similarly, a high Precision can be achieved at the expense of a poor Recall by returning only

few (correct) correspondences. On the other side, Overall metric proportionally depends on

both Recall and Precision, providing a single metric summarizing match quality.

5.3.2 Experiment Methodology and Result

As we have said, evaluating the WS-BeM prototype needs to compare the matching results against a

foundation result. Therefore the system is compared against the matching results of a human evaluation

which is done using the tool for evaluating the effectiveness of behavioral matchmaking method. We

studied the influence of the cost function, more precisely of the relationship between the deletion cost and

substitution cost, over the quality of the matching result. For our evaluation, we used 5 WSCL and BPEL

files (For the BPEL files three nesting levels of structured activities are considered) having between 10

and 15 nodes (current web services are relatively simple, with a small number of operations). For each

file, we generated distorted copies (that are syntactically different, but achieve the same functionality) in

the following way:

- by changing label names with synonyms and abbreviations (case 1)

- by changing label names and changing the order of interactions (deleting, inserting edges) (case 2)

- by changing label names, deleting vertices and inserting new vertices (case 3).

In summary we generated 5 query services and 15 target services as testing data.

Using the tool for evaluating the effectiveness of behavioral matchmaking method we generated a

foundation matching result that will allow to evaluate the matching quality of the WS-BeM prototype.

Precisely, we took the testing data presented above and then we compared the query service against the

target services using the tool functionality that allows to compare interaction by interaction between two

service graph. Therefore, five users assessed 5 query services (Qj) against 15 target services (Ti). Each

user covered a set of services. The table5.1 shows that five users (U1 to U5) carried out 15 comparisons for

each query service respectively (e.g. the user U1 assessed the query service Q1 against 15 target services).

In the same way the query service Q2 was treated). In summary 150 comparisons were analyzed using the

tool and two comparison were made to each query service, since one query service was evaluated at least

one time by two different users.

In the other side, we evaluated the 5 query services against 15 target services (the same testing data)

using the WS-BeM prototype. With the goal of studying the influence of the cost function into the match-

ing result, for each query service analyzed we modified the costs of edit operations. Then, we contrasted

these results with the foundation matching result obtained by the evaluation tool to determine the best cost

function.

78 Behavioral matchmaking for service retrieval

Users Query service Comparisons
U1 Q1 and Q2 30
U2 Q2 and Q3 30
U3 Q3 and Q4 30
U4 Q4 and Q5 30
U5 Q5 and Q1 30

Table 5.1: Comparisons set

The experiments were conducted on a Dell machine, with a Pentium 4 processor 2.30GHz clock

speed and 1000 MB RAM. The total disk space was 80 GB. The machine was running under Windows

XP operating system.

In the remainder of this section, we show the evaluation results obtained for calibrating the system,

and the execution time used by the matching process of two WSCL and BPEL metamodels.

WSCL experimentation:

In our experiments, we have changed the cost of deleting a vertex, Cd from 0.1 to 0.9, while

the weights of deleting and inserting edges were kept constant to 0.2. The cost for substituting

a node label and its associated attributes is defined as explained in the section 4.1. Its value is

between 0 (full similarity) and 1 (no match).

Figure 5.14: Match quality for different cost functions (WSCL system)

The figures 5.14 shows the average precision, recall and overall that we obtained when com-

paring the WSCL files with their distorted copies for different values of cost of deleting a

vertex, Cd (Cd=0.1, Cd=0.4, Cd=0.8). We reported the quality measures separately for the

three cases presented above. The experiments show that good quality results can be obtained

with the following parameterization of the cost function: vertex deletion cost= 0.8, edge dele-

tion cost=0.2, edge insertion cost =0.2.

Figure 5.15 shows the average execution times for the three cases and the different values for

the vertex deletion cost. The experiments show that for the parameterization that produced

the best quality results (Cd = 0.8), the algorithm takes more time compared to the others. The

explanation for this behavior is the following: The relationship between node deletion cost

and node substitution cost strongly influences the search space of the algorithm. When the

vertex deletion cost is high compared to the insertion cost, before any node deletion is tried,

Prototype and Experimentation 79

the algorithm attempts to substitute labels in the query graph by labels in the target graph.

As the names matching algorithm is time consuming, the execution time is longer. When the

deletion cost is decreased, many of these mappings become too expensive and are no longer

considered.

Figure 5.15: Execution time for different cost functions (WSCL system)

In the next experiment we tried to explore the limits of the algorithm with respect to the size

of the target graph. The theoretical complexity of the graph matchmaking algorithm [81]

is (O(m2n2) in the best case (when the distance between the query and the target graph is
minimal) and O(mnn) in the worst case (m = the total number of vertices in the target graph;
n = the total number of vertices in the query graph).

Figure 5.16: Execution time for growing number of nodes (WSCL system)

In the previous experiment we noticed that searching for synonyms in Wordnet leads to the

80 Behavioral matchmaking for service retrieval

search of possibly large conceptual graphs, which is time consuming. In order to reduce

this time we have introduced an ad hoc dictionary in which synonyms search is done with

a negligible cost. (This domain-specific dictionary can be enriched with confirmed corre-

spondences at the level of interaction and document names, allowing thus to reuse the match

results.) Within this context, given a set of target graphs whose sizes vary from 5 vertices to

30 vertices, the corresponding execution times are presented in Figure 10. Despite the expo-

nential theoretical cost, the graphic shows that the matchmaking algorithm can be used, with

a low cost, for WSCL specifications having less than 30 interactions, which corresponds to

reasonable problem size.

BPEL experimentation:

In the BPEL experiments we introduced the following relations between the graph edit oper-

ations:

• Cei = Ced, the cost of inserting and deleting an edge take the same value.

• Cns < Cnd/Ws, the parameter Ws controls the weight of a node deletion relative to
a node substitution

• Ced = We ∗ Cnd, the parameter We allows us to weight the importance of edit oper-
ations on the edges relative to nodes deletion operation

The Ws parameter assures that the node substitution operation has more probability of ex-
ecuting, since its cost is smaller with respect to the cost of deleting a node. Therefore, the

matching algorithm will consider that the cost of label substituting a node is between zero

and Cnd/Ws, where zero represents a perfect mapping and Cnd/Ws the threshold permit-
ted for substituting a label. If Cns > Cnd/Ws, then the algorithm will consider that labels
are totally different.

Cns =
{

LS if (0 ≤LS≤Cnd/Ws)
∞ if LS>Cnd/Ws

On the other hand theWe parameter guarantees that the operations cost on the edge (Ce) are
smaller that Cnd, assuring that these ones have more probability of performing.

Figure 5.17: Match quality forWe = 1,We = 1/2 and We = 1/3 (BPEL system)

Prototype and Experimentation 81

In our experiments, we fixed the cost of deleting a vertex Cnd to 2 and the parameter Ws
was kept constant to 4. Considering these values, the cost of the Linguistic Similarity (Cns)
between two node labels took values between 0 (full similarity) and 1 (threshold permitted for

substituting a label). While the weights of deleting and inserting edges were varied according

to We parameter. In these experiments we varied We from 0 to 1.

Figure 5.18: Match quality forWe = 1/4,We = 1/5 and We = 1/10 (BPEL system)

Figures 5.17 and 5.18 show the precision, recall and overall average achieved after comparing

the foundation matching results and the matching results obtained using the WS-BeM proto-

type. The considered values of We parameter were: We= 1, We =1/2, We= 1/3, We= 1/4,
We= 1/5 andWe= 1/10.

We reported the quality measures separately for the three cases of distorted service copies

(case 1, 2 and 3). Through the figure 5.17 we can conclude that forWe = 1,We = 1/2, and
We = 1/3 values, the three cases have a similar behavior for the precision, recall and overall
measures. The figure 5.18 shows that for We = 1/4 there is an improvement in the quality
matching, and withWe= 1/5 andWe= 1/10 we can achieve the best matching.

Finally, in the figure 5.19 we can deduce that good quality results can be obtained from

We=1/5 andWs=4, with vertex deletion cost= 2, where the node substitution threshold=1/2,
edge deletion cost=2/5 and edge insertion cost =2/5. Since for connectors are treated as edges,

the edit operations on connectors take the same costs assigned to the operations on the edges.

Figure 5.20 shows the average execution times for the three distorted copies of BPEL services

and six parameterizations of the cost function (150 comparisons). The experiments show that

the first case takes less time compared to the others. The explanation for this behavior is the

following: As in both services the structure is the same and the node label names are syn-

onyms or abbreviations, then the algorithm will apply the minimal number of edit operation

since the two services are semantically similar. Case 2 shows that the algorithm takes more

time for calculating the matching, as the query and the target service have different structure

and more edit operation are applied on the query graph. Finally in case 3 the algorithm spends

more execution time, therefore the target service has more activities, and then there are more

mapping possibilities for each activity into the query graph. On the other hand the optimal

82 Behavioral matchmaking for service retrieval

Figure 5.19: Match quality average (BPEL system)

parameterization (withWe = 1/5 orWe = 1/10) takes more execution time for calculating
the services matching (with respect to the other parameterizations) because of the algorithm

prefers to suppress, insert edges and connectors prior to suppress nodes.

Figure 5.20: Execution time for the different cost functions (BPEL system)

In the next experiment we tried to explore the limits of the algorithm with respect to the

size of the target graph. Given a set of target graphs whose sizes vary from 5 vertices to

35 vertices, the corresponding execution times are presented in Figure5.21. The experiment

was made for We = 1/5 parameter (best matching). Despite the exponential theoretical
cost, the graphic 5.21 shows that the matchmaking algorithm can be used, with a low cost, for

BPEL specifications having less than 35 basic activities and three nesting levels for structured

Prototype and Experimentation 83

activities, which corresponds to reasonable problem size.

Figure 5.21: Matchmaking two BPEL documents

5.4 Summary

In this chapter we described a prototype called Ws-BeM (Web services-Behavioral Mathcmaking), which

implements the proposed approaches into the chapters 3 and 4. The tool allows the execution of the

algorithms for matchmaking services in the context of service ranking. Further, we have constructed a

tool for evaluating the effectiveness of our behavioral matchmaking method. This is a tool that allows to

create a user service ranking based on manually comparisons between a query service and the services in

the repository.

The experimental evaluation of our approach was twofold. Firstly, we wanted to analyze the matching

process quality by using different application scenarios (WSCL and BPEL) into WS-BeM. Although

the evaluation tool allows to create a service ranking, for this experimental evaluation we used only the

tool functionality that lets us analyze each branch of service graph, comparing interaction by interaction.

Secondly, we wanted to test the execution time of matchmaking method using these protocols. Despite

the exponential theoretical cost, the matchmaking algorithm can be used, with a low cost, for WSCL

specifications having less than 30 interactions and for BPEL specifications having less than 35 basic

activities and three nesting levels for structured activities, which corresponds to reasonable problem size.

Chapter 6

Conclusions

6.1 Achievements of dissertation

In this PhD thesis we proposed a solution for service retrieval based on behavioral specification. The ap-

proach uses matching techniques that operate on service behavioral models and allow delivery of partial

matches as well as an evaluation of the semantic distance between these matches and the user require-

ments. Consequently, even if a service satisfying exactly the user requirements does not exist, the most

similar ones will be retrieved and proposed for reuse by extension or modification. To do so, we reduced

the problem of service behavioral matching to a graph matching problem and we adapted existing algo-

rithms for this purpose. By using a graph representation formalism for services, we proposed to use an

error correcting graph matching algorithm in order to allow an approximate service matching.

We exemplified our approach for behavioral matchmaking, by examining the usage of matching tech-

niques in the context of WSCL and BPEL behavioral specifications. Despite the exponential theoretical

cost, the matchmaking algorithm can be used, with a low cost, for WSCL specifications having less than

30 interactions and for BPEL specifications having less than 35 basic activities and three nesting levels

for structured activities, which corresponds to reasonable problem size.

Aiming to reduce the search space into the BPEL metamodel, before executing the matchmaking

algorithm the nodes of two BPEL graphs (G and GI) were well-arranged in sets according to the activity

types. In this way only the nodes that belong to the same activity type into G (query graph) and GI

(target graph) respectively were compared (i.e., Invokesyn set, Invokeasyn set, Receive set, Reply set,
Wait set). Furthermore, given two mapped Receive activities, the function BasicActivityMatch will be
applied only on Reply activities that correspond to the previously mapped Receive activities.

In spite of the considerations presented above, the number of states in the algorithm search space may

grow exponentially in the worst case. Thus, various researchers have proposed to use a more sophisticated

evaluation function which considers not only the cost of the represented partial matching, but also the

future cost that is implied by this partial matching (see [?, 113]). By applying a so-called lookahead

procedure in order to estimate the future cost, the number of expanded states can be reduced (see [126]).

The lookahead procedure however, is of quadratic complexity and must be executed for each state in the

search space. Furthermore, the algorithm continues only matching two graphs at the same time.

Given that in service discovery a query service must be compared against several target services at the

same time, our algorithm must be applied on each target service. This may become prohibitive to practical

84

Conclusions 85

applications if the number of target services is large. Therefore, in future works it is necessary to create a

target service repository and an indexing system that allows to optimize the similarity search process.

As this dissertation focused on matching of behavioral interface, the mathcmaking algorithm was

applied on BPEL abstract process, but the same approach can be adapted to matching executable processes

(considering the executable BPEL parameters). Furthermore, the dissertation was centered on messages

exchanged by partners engaged in a business conversation and not in the private behavior of each partner,

hence the handling of failures and compensation were not covered. Future works may address activities

that interfere with the control flow (e. g. throw).
Finally, we developed a prototype system (Ws-BeM) to implement our approach of behavioral match-

making for services retrieval: application to BPEL and WSCL protocols. Furthermore, we have con-

structed a tool for evaluating the effectiveness of our behavioral matchmaking method. The validation of

our approach was twofold. Firstly, we analyzed the matching process quality for different application sce-

narios (WSCL and BPEL) into WS-BeM. Secondly, we tested the execution time of matchmaking method

using these protocols.

Although the evaluation tool allows to create a service ranking, for this experimental evaluation we

used only the tool functionality that lets us analyze each branch of service graph, comparing interaction by

interaction. Therefore, we evaluated the matching quality comparing the result obtained by the prototype

against the results stored into the evaluation tool. In this way, the tool for evaluating the effectiveness

of our behavioral matchmaking method allowed us to parameterize the costs function to give the user

an optimal matching result. The experiments showed that for WSCL portocol, a good quality results

can be obtained with the following parameterization of the cost function: vertex deletion cost= 0.8, edge

deletion cost=0.2, edge insertion cost =0.2. For BPEL protocol the good quality results were obtained

from We=1/5 and Ws=4, with vertex deletion cost= 2, where the node substitution threshold=1/2, edge
deletion cost=2/5 and edge insertion cost =2/5. Given that the evaluation tool allows to create a service

ranking, in futur works we will use this tool for evaluating a service discovery method.

As summary, the main contributions of this thesis were:

• A detailed analysis of service matchmaking. The main results of this analysis were: (a) A survey
on several viewpoints from which behavioral models for service composition can be captured; (b) A

description of formal representations of services; (c) An analysis of the techniques used for service

matchmaking, which were clarified in three categories: Service matchmaking based on interfaces,

semantics and behavior.

• The proposal of techniques and algorithms for the service matchmaking. In this dissertation a
solution for service retrieval based on behavioral specification was developed. By using a graph rep-

resentation formalism for services, we proposed to use an error correcting graph matching algorithm

in order to allow an approximate service matching (see [61, 42, 47, 41, 45, 43, 44]).

• Application of service matchmaking to WSCL protocol. In this thesis we motivated the need
to retrieve services based on their conversation model. We exemplified our approach for behavior

matching for conversation protocols expressed using the WSCL model (see [61, 47, 41, 43]). Start-

ing from the classical graph edit distance, we proposed two new graph edit operations to take into

account the difference of granularity levels that could appear in two models. The conversation pro-

tocol matchmaking process is composed of the following steps: First, the conversations protocols to

be compared are transformed into graphs. Next, the graphs are expanded in order to have the same

86 Behavioral matchmaking for service retrieval

level of granularity in both graphs and the error-correcting graph matching algorithm is applied.

The similarity function evaluates the similarity between the graphs. Finally, the granularity levels

are compared and the costs corresponding to identified differences are added to the total distance.

• Application of service matchmaking to BPEL protocol. Considering the importance of Web pro-
cesses, in this dissertation we discussed our approach for Behavioral matchmaking, by examining

the usage of matching techniques in the context of BPEL behavioral specifications (see [42]). The

BPEL matchmaking process is composed of the following steps: first, the BPEL documents to be

compared are transformed to graphs. Next, the error correcting graph matching algorithm is applied

(considering the decompostion and composition functions during the algorithm execution). Then,

the similarity function evaluates the similarity between the graphs.

• A prototype for behavioral matchmaking for service retrieval. We developed a prototype called
Ws-BeM (Web services-Behavioral Mathcmaking), which implements the proposed approaches.

The tool allows the execution of the algorithms for matchmaking services (see [45, 44, 46]). In order

to validate our approach, the prototype was tested with two application scenarios: the matching of

BPEL and WSCL protocols.

• A prototype for evaluating the effectiveness of our behavioral matchmaking method. We con-
structed a tool for evaluating the effectiveness of our behavioral matchmaking method (see [44, 46]).

This tool allows to create a user service ranking based on manual comparisons between a query ser-

vice and the services in the repository. The tool permits to compare the result obtained by the

Ws-BeM platform and a ranking defined by users.

In next section we discuss some research perspectives.

6.2 Future work

Future work can be constructed along the following lines: (i) Repository for Business Processes Match-

making, (ii) Indexing Techniques for Business Processes Matchmaking (iii) Matchmaking of Outsourcing

Process Fragments (iv) Ranking of Business Processes.

6.2.1 Repository for Business Processes Matchmaking

The business process matchmaking must be implemented efficiently to support service discovery in a large

service repository, like on the Internet scale, addressing the problem of comparing a web process with a set

of web processes in a library. Thus, a repository is necesary for storing web processes. In [118] the authors

describe a BPEL Repository, which is an Eclipse plug-in built to store business processes together with

other XML data. It provides a framework for storing, finding and using these documents. The framework

takes care of representing the XML data as EMF objects (Objets of Eclipse Modeling Framework) that are

Java objects. Then, it is possible to query the XML files as EMF objects using an object-oriented query

language, namely the Object Constraint Language (OCL) that is part of the UML specification. Therefore

our perspective is to adapt our Service Matchmaking to this BPEL repository.

Conclusions 87

6.2.2 Indexing Techniques for Business Processes Matchmaking

Indexing support is needed in large service repositories since the number of business processes to be

compared is large, thus scanning whole repositories to compute the matching is computationally expensive

[76]. Since our approach of service matchmaking is based on graph matching, and considering that many

approaches have been proposed to graph database indexing (see [123, 60, 120]), a future work can explore

which is the most appropriate index for working with our matchmaking algorithm.

6.2.3 Matchmaking of Outsourcing Process Fragments

An activity of a process may be implemented by another process. When a process is used to provide a

service to be performed by an activity within another process, we can define this one as a subprocess.

Outsourcing is a scenario for using a subprocess from another process. In this scenario the functionalities

corresponding to the subprocess of an external partner are taken into account for reducing the burden of

modelling new ones.

Figure 6.1: Example of the Outsourcing Process Matchmaking

Figure 6.1 gives an example: process P1 contains an activity that is turned into a subprocess P2.

Our perspective consists in analyzing how the similarity between the activity and the subprocess can be

detected automatically.

6.2.4 Processes Ranking

Matchmaking is basically the process of discovering, based on a given request, promising partners for

some kind of purpose. It is a common process to several scenarios in the Internet era, spanning from e-

commerce to web-services, to grid computing, to human resource management, to actual dating services,

to Peer-to-Peer computing. Obviously, main issues emerge when the search is not limited to identity

matches but, as in real life, when the objective is finding partners suitable at least to some extent, or –

when a single partner cannot fulfill the request – find a pool of cooperating partners able to accomplish it.

88 Behavioral matchmaking for service retrieval

As this process may lead to various possible matches, the notion of ranking becomes central, to provide

a list of potential partners ordered according to some criteria [1]. In this way, a future work can focus on

developing a service ranking for a specific domain based on our service matchmaking approach that take

into account others parameters as QoS, execution times, service availability, etc.

Bibliography

[1] 1st international workshop on semantic matchmaking and resource retrieval:issues and perspec-

tives. http://sisinflab.poliba.it/smr2006/. Last accessed on September 2007.

[2] Grid resource allocation agreement protocol wg, (ws-agreement).

https://forge.gridforum.org/projects/graap-wg. Last accessed on August 2006.

[3] Oasis web services security (wss) tc. www.oasis-open.org/committees/wss/. Last accessed on

September 2007.

[4] Simple object access protocol (soap). http://www.w3.org/TR/soap/. Last accessed on September

2007.

[5] Universal description, discovery and integration (uddi). http://www.uddi.org. Last accessed on

September 2007.

[6] Web service description language (wsdl). www.w3.org/TR/wsdl. Last accessed on September 2007.

[7] Web service policy framework (ws-policy). http://www-106.ibm.com/developerworks/library/ws-

polfram/. Last accessed on September 2007.

[8] Web service transactions specifications (ws-transactions). http://www-

128.ibm.com/developerworks/library/specification/ws-tx/. Last accessed on September 2007.

[9] Special section on graph algorithms and computer vision. IEEE Trans. PAMI, 23(10):1049–1151,

2001.

[10] H. Almohamed. A linear programming approach for the weighted graph matching problem. IEEE

Trans. PAMI 15, pages 522–525, 1993.

[11] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,

S. Thatte, I. Trickovic, and S. Weerawarana. Business process execution language for web services,

version 1.1. In Standards proposal by BEA Systems, International Business Machines Corporation,

and Microsoft Corporation, 2003.

[12] R. C. Angell, G. E. Freund, and P. Willett. Automatic spelling correction using a trigram similarity

measure. Information Processing and management, 19(4):255–261, 1983.

[13] A. Arkin and S. et al. Askary. Web service choreography interface (wsci) 1.0. W3C - Web Services

Choreography Working Group, 2002.

89

90 Behavioral matchmaking for service retrieval

[14] R. Bacik. Structure of Graph Homomorphism. PhD thesis, Simon Fraser University, Canada, 2001.

[15] J. Baget and M. Mugnier. Extension of simple conceptual graphs: the complexity of rules and

constraints. Artificial Intelligence Research, 16:425465, 2002.

[16] A. Banerji, C. Bartolini, D. Beringer, V. Chopella, K. Govindarajan, A. Karp, H. Kuno, M. Lemon,

G. Pogossiants, S. Sharma, and S. Williams. Web services conversation language (wscl) 1.0. In

W3C, 2002.

[17] A. Barros, M. Dumas, and P. Oaks. Standards for web service choreography and orchestration:

Status and perspectives. In Proc. of Business Process Management Workshops, 2006.

[18] B. Benatallah, F. Casati, D. Grigori, H. R. Motahari Nezhad, and F. Toumani. Developing adapters

for web services integration. In Proc. of CAISE, 2005.

[19] B. Benatallah, F. Casati, and F. Toumani. Analysis and management of web services protocols. In

Proc. of ER, 2004.

[20] B. Benatallah, F. Casati, and F. Toumani. Web services conversation modeling: A cornerstone for

e-business automation. IEEE Internet Computing, 2004.

[21] B. Benatallah, M.S. Hacid, C. Rey, and F. Toumani. Semantic reasoning for web services discovery.

In Proc. of ESSW, 2003.

[22] D. Berardi, F. ROSA, L. SANTIS, and M. MECELLA. Finite state automata as conceptual model

for e-services. 2003.

[23] J.A. Bergstra, A. Ponse, and S.A (eds) Smolka. Handbook of process algebra. North Holland,

Elsevier, 2001.

[24] A. Bernstein and M. Klein. Towards high-precision service retrieval. In Proc. of ISWC, 2002.

[25] L. Bordeaux, G. Salan, D Berardi, and M. Mecella. When are two web services compatible? In

Proc. of TES, 2004.

[26] A. Bottaro, AGrodolle, and P. Lalanda. Pervasive service composition in the home network. In Proc

of the 21st International IEEE Conference on Advanced Information Networking and Applications,

2007.

[27] A. Branca, E. Stella, and A. Distante. Qualitative scene interpretation using planar surfaces. Au-

tonomous Robots, 8(2):129139, 2000.

[28] H. Bunke. On a relation between graph edit distance and maximum common subgraph. Pattern

Recognition Letters, 18(8):689694, 1997.

[29] H. Bunke. Error correcting graph matching: on the influence of the underlying cost function. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 21(9):917922, 1999.

[30] H. Bunke. Graph matching: Theoretical foundations, algorithms, and applications. pages 82–88,

2000.

Conclusions 91

[31] H. Bunke. Recent advances in structural pattern recognition with applications to visual form anal-

ysis. In Proceedings of the Fourth International Workshop on Visual Form IWVF4, 2001.

[32] H. Bunke and C. Allermann. Inexact graph matching for structural pattern recognition. Pattern

Recognition Letters, 1:245–253, 1983.

[33] H. Bunke and S. Gunter. Weighted mean of a pair of graphs. Computing, 67(3):209224, 2001.

[34] H. Bunke and X. Jiang. Graph matching and similarity. Intelligent Systems and Interfaces, pages

281–304, 2000.

[35] H. Bunke, X. Jiang, and A. Kandel. On the minimum common supergraph of two graphs. Comput-

ing, 65(1):13–25, 2000.

[36] H. Bunke and K. Shearer. A graph distance metric based on the maximal common subgraph. Pattern

Recognition Letters, 19(3-4):255259, 1998.

[37] V. et al. Cantoni. 2-d object recognition by multiscale tree matching. Pattern Recognition 31, pages

1443–1455, 1998.

[38] J. Cardoso and A. Sheth. Semantic e-workflow composition. Journal of Intelligent Information

Systems, 21:191–225, 2003.

[39] L. C. Chiat, L. Huang, and J. Xie. Matchmaking for semantic web services. In Proc of Services

Computing, 2004 IEEE International Conference on (SCC’04), 2004.

[40] W.J. Christmas, J. Kittler, and M. Petrou. Structural matching in computer vision using probabilistic

relaxation. IEEE Trans. PAMI 8, pages 749–764, 1995.

[41] J.C. Corrales, D. Grigori, and M. Bouzeghoub. Behavioral matchmaking for service retrieval:

application to conversation protocols. In Proc of 22̀emes Journées Bases de Données Avancées,

BDA, 2006.

[42] J.C. Corrales, D. Grigori, and M. Bouzeghoub. Bpel processes matchmaking for service discovery.

In Proc. of 14th International Conference on Cooperative Information Systems (CoopIS), pages

237–254, 2006.

[43] J.C. Corrales, D. Grigori, and M. Bouzeghoub. Decouverte de services basee sur leurs protocoles

de conversation. In Ingenierie des systemes d’information (ISI), volume 12, pages 9–32, 2007.

[44] J.C. Corrales, D. Grigori, and M. Bouzeghoub. Ws-bem: Web services ranking based on behavior

matchmaking. In Proc of 23èmes Journées Bases de Données Avancées, BDA, 2007.

[45] J.C. Corrales, D. Grigori, M. Bouzeghoub, and J. Burbano. Services matchmaking system. In Proc

of VI Congreso Nacional de Electrnica, Telecomunicaciones e Informtica, ETI 2.006, 2006.

[46] J.C. Corrales, D. Grigori, M. Bouzeghoub, and J.E. Burbano. Bematch: A platform for matchmak-

ing service behavior models. In 11th International Conference on Extending Database Technology,

EDBT, 2008.

92 Behavioral matchmaking for service retrieval

[47] J.C. Corrales, D. Grigori, M. Bouzeghoub, and A. Ordonez. Conversation protocol matchmaking.

In Proc. of Euro American Conference on Telematics and Information Systems., pages 67–74, 2006.

[48] A. Cross, R. Wilson, and E. Hancock. Genetic search for structural matching. In Proceedings of

the Computer Vision - ECCV, pages 514–525, 1996.

[49] M. David, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuinness, B. Parsia,

T. Payne, M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara. Bringing semantics to web services:

The owl-s approach. In Proc of the First International Workshop on Semantic Web Services and

Web Process Composition, 2004.

[50] M. Dean and G. Schreiber. Owl web ontology language reference. In w3c recommendation, pages

http://www.w3.org/TR/owl–ref. Last accessed on September 2007, 2004.

[51] L. Dong, A. Halevy, J. Madhavan, E. Nemes, , and J. Zhang. Similarity search for web services. In

Proc. of VLDB, 2004.

[52] Thomas Erl. Service-Oriented Architecture (SOA): Concepts, Technology, and Design. The Prentice

Hall Service-Oriented Computing Series, second edition, 2005.

[53] L. Eroh and M. Schultz. Matching graphs. Graph Theory, 29(2):7386, 1998.

[54] M.A. Eshera and K.S. Fu. A graph distance measure for image analysis. IEEE Trans. SMC 14,

pages 398–408, 1984.

[55] J. Feng, M. Laumy, and M. Dhome. Inexact matching using neural networks. Pattern Recognition

in Practice IV: Multiple Paradigms, Comparative Studies and Hybrid Systems, pages 177–184,

1994.

[56] M. Fernandez and G. Valiente. A graph distance metric combining maximum common subgraph

and minimum common supergraph. Pattern Recognition Letters, 22(6-7):753758, 2001.

[57] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera: A virtual data system for representing,

querying and automating data derivation. In Proc. of Ssdbm, 2002.

[58] S. Gao and J. Shah. Automatic recognition of interacting machining features based on minimal

condition subgraph. Computer Aided Design, 30(9):727739, 1998.

[59] O. Gerbe, R. Keller, , and G. Mineau. Conceptual graphs for representing business processes in

corporate memories. 1998.

[60] R. Giugno and D. Shasha. Graphgrep: A fast and universal method for querying graphs. In Proc.

of ICPR, pages 112–115, 2002.

[61] D. Grigori, J.C. Corrales, and M. Bouzeghoub. Behavioral matchmaking for service retrieval. In

Proc. of The IEEE International Conference on Web Services (ICWS), pages 145–152, 2006.

[62] R. Hamadi and B. Benatallah. A petri net-based model for web service composition. In Fourteenth

Australasian Database Conference-ADC, pages 191–200, 2003.

Conclusions 93

[63] C. A. R. Hoare. Communicating sequential processes. Prentice Hall International, 1985.

[64] R. Hopcroft, J. E.and Motwani and J. D. Ullman. Introduction to automata theory, languages, and

computation. 2001.

[65] I. Jacobson, G. Booch, and J. Rumbaugh. The unified software development process. In Addison-

Wesley, 1998.

[66] X. Jiang, A. Munger, and H. Bunke. On median graphs: Properties, algorithms, and applications.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(10):11441151, 2001.

[67] N. Kavantzas and D. Burdett. Ws choreography model overview. W3C - Web Services Choreogra-

phy Working Group, 2004.

[68] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon. Web services choreography

description language version 1.0. W3C - Web Services Choreography Working Group, 2004.

[69] T. Kawamura, J.A. De Blasio, T. Hasegawa, M. Paolucci, and K. Sycara. A preliminary report of

a public experiment of a semantic service matchmaker combined with a uddi business registry. In

Proc. of ICSOC, 2003.

[70] N. Kokash, W. van den Heuvel, and V. D’Andrea. Leveraging web services discovery with cus-

tomizable hybrid matching. In Proc. of ICSOC, pages 522–528, 2006.

[71] Li Kuang, Ying Li, Shuiguang Deng, Jian Wu, Wei Shi, and Zhaohui Wu. Expressing service and

query behavior using pi-calculus for matchmaking. In Proc of the 2006 IEEE/WIC/ACM Interna-

tional Conference on Web Intelligence, pages 629–632, 2006.

[72] G. Levi. A note on the derivation of maximal common subgraphs of two directed or undirected

graphs. Calcolo, 9:341–354, 1972.

[73] F. Leymann. Web services: Distributed applications without limits. In BTW, pages 2–23, 2003.

[74] L. Li and I. Horrocks. A software framework for matchmaking based on semantic web technology.

In Proc of WWW 2003, pages 331–339, 2003.

[75] J. Llados, E. Marti, and J. Villanueva. Symbol recognition by error-tolerant subgraph matching be-

tween region adjacency graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence,

23(10):11371143, 2001.

[76] B. Mahleko and A. Wombacher. Indexing business processes based on annotated finite state au-

tomata. In Proc. of The IEEE International Conference onWeb Services (ICWS’06), pages 303–311,

2006.

[77] M. Mazzara and R. Lucchi. A pi-calculus based semantics for WS-BPEL. Journal of Logic and

Algebraic Programming, 2006.

[78] J. McGregor. Backtrack search algorithms and the maximal common subgraph problem. Software-

Practice and Experience, 12:23–34, 1982.

94 Behavioral matchmaking for service retrieval

[79] H. Melnik, S.and Garcia and E. Rahm. Similarity flooding : A versatile graph matching algorithm

and its application to schema matching. In 18th ICDE, 2002.

[80] J. Mendling and J. Ziemann. Transformation of bpel processes to epcs. In Proc. of the 4th GI

Workshop on Event-Driven Process Chains (EPK2005), 2005.

[81] B. Messmer. Graph Matching Algorithms and Applications. PhD thesis, University of Bern, 1995.

[82] B. T. Messmer and H. Bunke. Error-correcting graph isomorphism using decision trees. Interna-

tional Journal of Pattern Recognition and Artificial Intelligence, 12(6):721742, 1998.

[83] B. T. Messmer and H. Bunke. A new algorithm for error-tolerant subgraph isomorphism detection.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(5):493504, 1998.

[84] B. T. Messmer and H. Bunke. A decision tree approach to graph and subgraph isomorphism detec-

tion. Pattern Recognition, 32:1979–1998, 1999.

[85] B. T. Messmer and H. Bunke. Efficient subgraph isomorphism detection: a decomposition ap-

proach. IEEE Transactions on Knowledge and Data Engineering, 12(2):307323, 2000.

[86] G. Miller. Wordnet: A lexical database for english. Communications of the ACM, 38(11):39–41,

1995.

[87] R. Milner. A calculus of communicating systems. Springer-Verlag NewYork, Inc, 1982.

[88] R. Milner. Communicating and mobile systems: the p-calculus. Cambridge University Press, 1999.

[89] R. Myers and E. R. Hancock. Least-commitment graph matching with genetic algorithms. Pattern

Recognition, 34(2):375394, 2001.

[90] K. Oflazer. Error-tolerant retrieval of trees. IEEE Trans. PAMI 19, pages 1376–1380, 1997.

[91] N. Ould, A. M’Bareck, and S. Tata. Bpel behavioral abstraction and matching. In Business Process

Management Workshops, pages 495–506, 2006.

[92] J. Paananen. Tik-110.501 seminar on network security. In Available at Helsinki University of

Technology: http://www.tml.tkk.fi/Opinnot/Tik-110.501/1995/intfo.html, 1995.

[93] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Semantic matching of web services capa-

bilities. In Proc. of ISWC, 2002.

[94] M. Papazoglou and D. Georgakopoulos. Introduction, service-oriented computing. Commun. ACM,

46(10):24–28, 2003.

[95] Abhijit Patil, Swapna Oundhakar, A. Sheth, and Kunal Verna. Meteor-s web service annotation

framework. In Proc. of WWW Conference, 2004.

[96] C. Pautasso and G Alonso. Visual composition of web services. In Proceedings of the 2003 IEEE

Symposium on Human Centric Computing Languages and Environments, pages 92–99, 2003.

Conclusions 95

[97] M. Pelillo. A unifying framework for relational structure matching. In Proceedings of the 14th

ICPR, 1998.

[98] M. Pelillo, K. Siddiqi, and S. Zucker. Matching hierarchical structures using associated graphs.

IEEE Trans. PAMI 21, pages 1105–1120, 1999.

[99] J. L. Peterson. Petri net theory and the modeling of systems. In Prentice-Hall, 1981.

[100] G. Piccinelli, G. Di Vitantonio, and L. Mokrushin. Dynamic service aggregation in electronic

marketplaces. Computer Networks, 2(37), 2001.

[101] D. Riviere, J. Mangin, D. Papadopoulos, J. Martinez, V. Frouin, and J. Regis. Automatic recogni-

tion of cortical sulci of the human brain using a congregation of neural networks. Medical Image

Analysis, 6(2):7792, 2002.

[102] S. S. Bansal and J. M. Vidal. Matchmaking of web services based on the DAML-S service model.

In Proc. of AAMAS, pages 926–927, 2003.

[103] M. Saboua and J. Panb. Towards semantically enhanced web service repositories. Web Semantics:

Science, Services and Agents on the World Wide Web, 5:142–150, 2007.

[104] A. Sanfeliu and K.S. Fu. A distance measure between attributed relational graphs for pattern recog-

nition. IEEE Transactions on Systems, Man, and Cybernetics, 13(5):353–363, 1983.

[105] H. Schmidt and R. Reussner. Generating adapters for concurrent component protocol synchronisa-

tion. In FMOODS ’02: Proceedings of the IFIP TC6/WG6.1, pages 213–229, 2002.

[106] L. G. Shapiro and R. M. Haralick. Structural descriptions and inexact matching. IEEE Trans.

Pattern Anal. Mach. Intell., 3, 1981.

[107] K. Shearer, H. Bunke, and S. Venkatesh. Video indexing and similarity retrieval by largest common

subgraph detection using decision trees. Pattern Recognition, 34(5):10751091, 2001.

[108] Z. Shen and J. Su. Web services discovery based on behavior signatures. In Proc. of IEEE SCC,

2005.

[109] K. Sivashanmugam, K. Verma, A. Sheth, , and J. Miller. Adding semantics to web services stan-

dards. In Proc of the the 1st International Conference on Web Services (ICWS’03), 2003.

[110] J. F. Sowa. Conceptual structures: Information processing in mind and machine. Addison-Wesley,

1984.

[111] E. Stroulia and Y. Wang. Structural and semantic matching for assessing web-service similarity.

Int. J. Cooperative Inf. Syst., 14(4):407–438, 2005.

[112] D. Trastour, C. Bartolini, and J. Gonzalez-Castillo. A semantic web approach to service description

for matchmaking of services. In Proc. of SWWS, 2001.

[113] W.H. Tsai and K.S. Fu. Error-correcting isomorphisms of attributed relational graphs for pattern

recognition. IEEE Trans. SMC, 9:757–768, 1979.

96 Behavioral matchmaking for service retrieval

[114] J.R. Ullman. An algorithm for subgraph isomorphism. Journal of the Association for Computing,

23(1):31–42, 1976.

[115] S. Umeyama. An eigendecomposition approach to weighted graph matching problems. IEEE Trans.

PAMI 10, pages 695–703, 1988.

[116] W. van der Aalst. Interorganizational workflows: An approach based on message sequence charts

and petri nets. 1999.

[117] W. Van der Aalst and K. V. Hee. Workflow management- models, methods, and systems. In MIT

Press, 2002.

[118] J. Vanhatalo, J. Koehler, and F. Leymann. Repository for business processes and arbitrary associated

metadata. In Proc of the BPM Demo Session at the Fourth International Conference on Business

Process Management, 2006.

[119] J. et al. Wang. An algorithm for finding the largest approximately commen substructure of two

trees. IEEE Trans. PAMI 20, pages 889–895, 1998.

[120] W. Wang, C. Wang, Y. Zhu, B. Shi, J. Pei, X. Yan, and J. Han. Graphminer: a structural pattern-

mining system for large disk-based graph databases and its applications. In Proc of the ACM-

SIGMOD International conference on Management of data(SIGMOD), 2005.

[121] Y.-K. Wang, K.-C. Fan, and J.-T. Horng. Genetic-based search for error-correcting graph isomor-

phism. IEEE Trans. SMC 27, 4:588–597, 1997.

[122] G. Weikum. Towards guaranteed quality and dependability of information services. 1999.

[123] D.W. Williams, J. Huan, and W. Wang. Graph database indexing using structured graph decompo-

sition. In 23rd International Conference on Data Engineering (ICDE), 2007.

[124] R. Wilson and E. Hancock. Graph matching by discrete relaxation. Pattern Recognition in Practice

IV: Multiple Paradigms, Comparative Studies and Hybrid Systems, pages 165–176, 1994.

[125] A. Wombacher, B. Mahleko, P. Fankhauser, and E. Neuhold. Matchmaking for business processes

based on choreographies. In Proc. of EEE, 2004.

[126] E.K. Wong. Three-dimensional object recognition by attributed graphs. Syntactic and Structural

Pattern Recognition-Theory and Applications, pages 381–414, 1990.

[127] J. Wu and Z. Wu. Similarity-based web service matching. In Proc. of IEEE SCC, 2005.

[128] L. Xu and E. Oja. Improved simulated annealing, boltzmann machine, and attributed graph match-

ing. In L.Almeida (ed): LNCS 41 Springer Verlag2, pages 151–161, 1990.

