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el-houda, N. Khadra et H. Karim. Ils m’ont accompagné durant mon chemin et ils m’ont
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Méthode de Galerkin discontinue pour un modèle
stratigraphique

Résumé

Dans cette thèse, on considère un modèle stratigraphique issu de la modélisation géologique

de la formation d’un bassin sédimentaire. Ce modèle original a été initialement développé

par l’Institut Français du Pétrole (IFP). Il décrit la formation de bassins sédimentaires

à une seule lithologie ; il décrit également le transport et l’accumulation de sédiments et

prend en compte les phénomènes d’érosion, de sédimentation et les apports de sédiments

aux frontières du bassin. L’aspect mathématique original de ce problème réside dans

l’imposition d’une contrainte sur le taux d’érosion qui doit rester inférieur à une fonction

donnée E. Ce qui nous amène à considérer une loi de conservation de type dégénéré.

Ce travail est organisé comme suit: dans le Chapitre 1 le DgFem (Discontinuous Galerkin

Finite Element Method) pour un problème elliptique est présenté avec une estimation a

priori de l’erreur. Nous considérons le problème suivant : comment choisir le paramètre

γ apparaissant dans le terme de stabilisation. On remarque par ailleurs que la solution

DgFem converge vers la solution éléments finis conformes lorsque γ tend vers l’infini. Ce

résultat théorique est confirmé par des tests numériques. Nous terminons ce chapitre par

des techniques standards ”red-green refinement” pour le raffinement local du maillage.

Dans le Chapitre 2, on présente le modèle mathématique. On établit l’existence d’une

solution au problème par le biais d’une discrétisation implicite en temps, en établissant des

estimations a priori appropriées. Le chapitre 3 concerne la discrétisation en temps avec

une méthode de Galerkin discontinue pour une version linéarisée simplifiée du problème.

Nous introduisons tout d’abord la discrétisation en temps, nous établissons une estimation

a priori de l’erreur. À la fin du chapitre, nous proposons quelques résultats numériques.

Le chapitre 4 traite de la discrétisation du problème stratigraphique : nous utilisons

un schéma Dg(0) implicite en temps et un schéma DgFem(p), p ≥ 0 pour la variable

d’espace. En ce qui concerne la discrétisation de l’espace, le choix des flux à l’interface

entre deux éléments du maillage est très important, d’autant plus que la diffusion introduit

un terme non-linéaire et non-négatif. La moyenne pondérée est préférée à la moyenne

arithmétique classiquement utilisée dans les méthodes SIPG. Ce choix est justifié par la

présence d’une frontière libre provenant de la contrainte. Dans le cas p = 0, nous prouvons

que le schéma vérifie implicitement la contrainte, ce qui rend cette méthode compatible avec

la modélisation continue. L’existence et l’unicité d’une solution discrète sont prouvées. Des

simulations numériques sont présentées. Nous terminons le chapitre avec un algorithme

adaptatif combinant les schéma DgFem(0) et DgFem(p), p ≥ 1.





A discontinuous Galerkin method for a model from
stratigraphy

Abstract

In this thesis, we consider a stratigraphic model arising from the modelling of geologi-

cal basin formation. This model has been initially developed by the Institut Français du

Pétrole (see [30]). It takes into account sedimentation, transport and accumulation, erosion

phenomena, and others. The original mathematical aspect of this model is the imposition

of a constraint on the time-derivative of the unknown u. This leads to the consideration

of a class of conservation laws of degenerate type.

This work is organized as follows: in Chapter 1, some notation used in this thesis are

collected. Then, the DgFem for an elliptic problem is presented with some a priori error

estimates. We consider the problem: how to choose the parameter γ involved in the sta-

bilization term. We remark that the DgFem solution converges to the conforming finite

element solution when the parameter γ tends to infinity. This theoretical result is con-

firmed by numerical tests. This chapter ends with some standard techniques, used along

this thesis for local mesh refinement based on red-green refinement. In Chapter 2, the

mathematical model of stratigraphy is presented. An existence result of a solution of prob-

lem is proved by means of an implicit time-discretization, establishing appropriate a priori

estimations.

Chapter 3 is concerned with the time discontinuous Galerkin discretization of the Sobolev

equation which is a simple case of the stratigraphic model. We first introduce the time dis-

cretization, then we give an a priori error analysis. At the end of the chapter, we propose

some numerical results.

Chapter 4 deals with the discretization of the stratigraphic problem: an implicit Dg(0)

scheme in time and a DgFem(p), p ≥ 0 scheme in space. Concerning the space dis-

cretization, the choice of the flux at the interface between two elements is very important,

especially since the diffusion term is a nonlinear and nonnegative term. A weighted average

is preferred to the arithmetic one, classically used in SIPG methods. This choice is justified

by the presence of the free set discriminated by the constraint. In the case of lowest order

case, we prove that the scheme satisfies implicitly the constraint, which makes this method

compatible with the continuous model. We prove that a discrete solution exists and is

unique as soon as τ is greater than a positive threshold τ ∗. Some numerical simulations

are presented. We finish the chapter with a p-adaptive algorithm combining the DgFem(0)

and DgFem(p), p ≥ 1 schemes.
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Introduction

The modelling of sedimentary basins allows to recall the history of hydrocarbons since their

genesis. It takes into account many physical and geological phenomena such as: erosion,

compaction, sedimentation, formation of faults, plate tectonics play, chemical reactions,

etc. This modelling is of primary importance in petroleum engineering because it allows,

in particular, an effective selection of the sites of drillings. Other fields are also covered by

this modelling, like the study of pollution risks in the ground by one or more contaminants,

of research miners, and others. The computation of sedimentation and erosion processes

lead to a better knowledge of the geometry of the layers, and of their lithological nature

(see, for example [25]). In this thesis, we consider a stratigraphic model arising from the

modelling of geological basin formation. This model has been initially developed by the

Institut Français du Pétrole (see [30]). It takes into account sedimentation, transport and

accumulation, erosion phenomena, and others. The original mathematical aspect of this

model is the imposition of a constraint on the time-derivative of the unknown u. This leads

to the consideration of a class of conservation laws of degenerate type.

For more information on the physical descriptions and numerical aspects of the monolitho-

logical and multilithological cases of these models see R. Eymard et al. [26], [24], and V.

Gervais et al. [29].

Concerning the theoretical aspects of the monolithological case, S. N. Antontsev et al. (see

[6] ) propose a new conservative formulation, which is equivalent to the model proposed

by R. Eymard et al. (see [26], [24]):

(1) ∂tu− div[λK(x)∇u] = 0, λ ∈ H(∂tu+ E),

where, H denotes the maximal monotone graph of the Heaviside function, u denotes the

thickness of sediment and E denotes the admissible erosion rate. The advantage of this

formulation is that it implicitly contains the constraint

(2) ∂tu+ E ≥ 0.

We propose in Chapter 2 a description of the model.

The existence and the uniqueness of a solution to this problem is still an open problem.
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Indeed, on the one hand, these ”new unilateral problems” proposed by J.-L. Lions in [35]

p. 420 where the constraint is imposed on the time-derivative of the solution and not on

the solution itself are not much developed in the literature. On the other hand, a nonlinear

function of ∂tu as a viscosity term is a delicate problems, with local hyperbolic behaviour

and hysteretic effects (see [4]).

The mathematical analysis of an implicit time-discretization of the problem and in partic-

ular an explicit study of the one-dimensional sedimentation has been considered by S. N.

Antontsev, G. Gagneux, R. Luce and G. Vallet (see [3]).

In the framework of a perfect physical equilibrium (see D. Granjeon [31]), the flux ~q is

considered to be proportional to the slope by writing that ~q ∝ −∇u. Taking into account

a balance of the slope, and, according to a Darcy-Barenblatt law (see [11]), one considers

that ~q ∝ −∇(u+ τ∂tu), where τ > 0 is a time-scale. Then, we get the following problem:

(3) ∂tu− div[λK(x)∇(u+ τ∂tu)] = 0, λ ∈ H(∂tu+ E).

Existence and uniqueness results of the solution to the above differential inclusion are still

open problems. A modified model where H is replaced by a Lipschitz continuous function

a, for example the Yosida approximation of H, is analyzed by S. N. Antontsev et al. [4].

An existence result of a solution to this nonlinear degenerate pseudoparabolic1 equation by

means of an adapted compactness argument is considered when K = 1. Local hyperbolic

behaviour is proved too. Thanks to the regularity of the solutions (i.e. u and ∂tu in

H1(Ω)), it can be shown that the problem is equivalent to the following one:

(4) ∂tu− div[λK∇u+ τK∇∂tu] = 0, λ ∈ H(∂tu+ E).

Recently, the results on existence and uniqueness are generalized by S. N. Antontsev et al.

[5] to nonlinear diffusion coefficients K, time-dependent E and λ = a(∂tu+ E).

Equations of pseudoparabolic type are used in the modelling of many different physical

phenomena such as:

• the theory of porous media (see G. I. Barenblatt [11], C. Cuesta et al. [17], R. E.

Ewing [23] and J. Garcia-Azorero et al. [28]),

• in aggregation of populations (V. Padron [36]),

• in solvent uptake in polymeric solids (W. P. Düll [19]),

• singular perturbation problems (G. I. Barenblatt et al. [12], R. E. Ewing [22] and P.

I. Plotnikov [37]).

1A problem with the time-derivative of the solution in the second order operator.



In this thesis, we extend the results of the above cited articles to more general data. In

particular, we consider a source term f and a space-time dependent function E.

The main contribution of this thesis is the development of a robust and efficient numerical

scheme for the computation of the approximate solution of the stratigraphic problem (4),

with λ = a(∂tu+ E).

Our approach is based on the discontinuous Galerkin finite element method (DgFem). The

choice of this method is motivated by its flexibility and robustness to treat equations with

varying and degenerate coefficients. In the lowest order case (p = 0), it coincides with the

finite volume discretization used before to treat the stratigraphic equation.

The piecewise polynomial trial functions are discontinuous. Approximate continuity is

imposed by the use of appropriate penalty terms involving jumps of the function values of

inter-element edges. These terms have to take into account the character of the continuous

operators. Therefore, special care has to be taken in order to discretize the novel aspects

of the problem: the time-dependent and degenerate diffusion coefficient, as well as the

pseudoparabolic regularization.

The primary motivation for DgFem is its robustness and the possibility to obtain higher-

order discretizations. Moreover, the local nature of the trial spaces enables us to locally

adapt the approximation order (hp-methods), which seems to be of interest for the prob-

lem (4) and more generally for parabolic equations with dominant transport terms where

solutions vary rapidly on small parts of the domain. Another advantages of the DgFem

method is that it leads to a natural flux function, defined on each edge of the triangulation

of the domain, and which satisfies an element-wise conservation law, a property desired

in many applications. Finally, the structure of the mass matrices (block diagonal) is an

attractive feature in the context of time-dependent problems, especially if explicit time

discretizations are used. For the above mentioned reasons, there has been an increased

interest in DgFem and different variants have been developed. In the last ten years, a

unified analysis of the different DgFem methods has been developed, for an overview see

the article of Arnold, Brezzi, Cockburn and Marini [8].

Among the DgFem variant, we are interested in this work by the SIPG (Symmetric Interior

Penalty Galerkin) method, established following the works of Baker [10], Douglas and

Dupont [18], Wheeler [9] and Arnold [7]. The bilinear form is symmetric, and the jumps of

the approximate solution, as well as the Dirichlet boundary conditions, are penalized. The

stabilization parameter has to be large enough. The NIPG method of Rivière, Wheeler

and Girault [38] is very similar, except the sign of one term. In this case, the positivity of

the bilinear form is provided for p ≥ 2, without any stabilization terms. A disadvantage of

the NIPG method, unlike the SIPG one, lies in the fact that the convergence of the error

in L2 norm is in general not increasing, even under the elliptic regularity hypothesis.

In this thesis, we first consider the simple case of the stratigraphic problem when the con-



straint is inactive (∂tu+E > 0). Then, the problem is reduced to a linear pseudoparabolic

problem, which is also known as the Sobolev equation.

The nature of such problems is transient and, therefore, an appropriate time stepping

scheme has to be applied in numerical simulations in order to obtain an approximate

solution. A flexible and robust time discretization method is the Dg(r) (discontinuous

Galerkin) which is based on a variational formulation of the initial value problems and

approximation by piecewise polynomial of degree r in time. We develop a generalization

of this well-known scheme for the heat equation to the Sobolev equation. Then, error

estimates, explicit in the polynomial degrees of order r and time step k, are derived. Some

numerical experiments illustrate the theoretical results.

For the stratigraphic problem with constraint, the implicit Dg(0) scheme is used in time.

Concerning the space discretization, a variant of the SIPG method is proposed. A difference

with the above-cited works, dealing with constant coefficients, appears in the choice of the

consistency terms where the arithmetic average usually used in SIPG is replaced by the

weighted averages involving the nonlinear diffusion coefficient a, a similar discretization

has been used by A. Ern et al. [21] for a stationary convection-diffusion problem with

discontinuous diffusion coefficients. This leads us to consider the harmonic average of the

function a and the arithmetic average of the normal derivative of the unknown, in order

to impose the continuity of the flux at the interface between two mesh elements. This

choice is motivated by the nature of the problem since it may degenerate in order to take

into account the constraint. By allowing the solution to be discontinuous at the interface,

the penalization term is weighted by the harmonic average of the function a. This choice

leads in the lowest-order case, DgFem(0), to discrete solution which implicitly satisfy the

constraint. Existence of the discrete solution for general p is also established if τ > 0 and

its uniqueness is shown when τ is bigger than a given positive threshold τ ∗.

It is well known that higher order discontinuous Galerkin methods do not respect the maxi-

mum principle. Our aim is then to propose an adaptive algorithm that combines DgFem(0)

scheme and DgFem(p) p ≥ 1 scheme. This is done with the objective to obtain higher-

order accuracy, while still verifying the constraint. In this work, a p-adaptive algorithm

for a stratigraphic problem is presented. The idea of the algorithm is to first solve the

problem using higher-order DgFem, and then, using an interface indicator, to reduce the

approximation order of the selected elements to zero.

Let us now present the detailed plan of each chapter.

This work is organized as follows: in Chapter 1, some notations used in this thesis

are collected. Then, the DgFem for an elliptic problem is presented with some a priori

error estimates. We consider the problem: how to choose the parameter γ involved in

the stabilization term. It depends on the solution and on the inverse estimate constant,

which itself depends on the approximation order. Then, we remark that the discontinuous



Galerkin solution converges to the conforming finite element solution when the parameter

γ tends to infinity. This theoretical result is confirmed by numerical tests.

This chapter ends with some standard techniques, used along this thesis, as local mesh

refinement based on red-green refinement and triangular element with arbitrary order (see

R. Verfürth [41]).

In Chapter 2, the mathematical model of stratigraphy is presented. An existence result of

a solution of problem (4) is proved by means of an implicit time-discretization, establishing

appropriate a priori estimations.

Chapter 3 is concerned with the time discontinuous Galerkin discretization of the Sobolev

equation which is a simple case of the stratigraphic model. We first introduce the time

discretization, then we give an a priori error analysis. With a particular choice of the

projection operator, we prove that the Dg(r) time error is controlled by the interpolation

error. At the end of the chapter, we propose some numerical results.

Chapter 4 deals with the discretization of the stratigraphic problem: an implicit Dg(0)

scheme in time and a DgFem(p) p ≥ 0 scheme in space. Concerning the space discretization,

the choice of the flux at the interface between two elements is very important, especially

since the diffusion term is a nonlinear and nonnegative term. A weighted average is pre-

ferred to the arithmetic one, classically used in SIPG methods. This choice is justified

by the presence of the free set discriminated by the constraint. In the case of lowest or-

der DgFem(0) discretization, as in the continuous case, we prove that the scheme satisfies

implicitly the constraint, which makes this method compatible with the continuous model.

We prove that a discrete solution exists and is unique as soon as τ is greater than a positive

threshold τ ∗. Some numerical simulations using DgFem(p) scheme, p ≥ 0, are presented.

We finish the chapter with a p-adaptive algorithm combining the DgFem(0) and DgFem(p)

p ≥ 1 schemes. The aim of this algorithm is to impose p = 0 at any element incompatible

with the constraint. Some numerical simulations are presented. The numerical tests have

been realized with a C++ code based on the library Concha.





Chapter 1

Notation and preliminary results

1.1 Introduction

In the following section, notations used along this work are collected. In section 3.2, we

first present the DgFem for elliptic problem then an a priori error analysis is developed.

We remark that the DgFem solution coincides with the Fem solution when the penalty

parameter γ tends to infinity. This is confirmed by some numerical results. In section

1.5, a h-adaptive algorithm is presented, based on residual a posteriori error estimates

(see [33] for the Laplacian case and [20] for the advection-reaction-diffusion equations with

anisotropic and discontinuous diffusivity). Implementation issues concerning the red-green

techniques [41] for the local mesh refinement are described. Some numerical examples are

shown.

1.2 Notation and preliminaries

We suppose that Ω ⊂ R2 is a bounded polygonal domain, and that h is a triangular mesh

in a family of shape-uniform meshes [16].

We denote by Kh the set of triangles and by Sh the set of edges; divided into interior edges

S int
h and boundary edges S∂

h . An interior edges S ∈ S int
h is shared by two triangles. We

arbitrarily chose a normal nS pointing from K+ to K−, see Figure 1.1. In Kh, we consider

the space Hm(Kh), m ≥ 1, defined by

(1.1) Hm(Kh) = {v ∈ L2(Ω) such that v|K ∈ Hm(K) for allK ∈ Kh}.

For p ∈ N, we define the discontinuous finite element space :

(1.2) V p
h =

{
vh ∈ L2(Ω) : vh|K ∈ P pK for all K ∈ Kh

}
,

where, for any integer k, P k is the space of polynomial functions of maximal degree k.

17



Figure 1.1: Two adjacent triangles sharing edge S.

Due to the discontinuity of the approximation space, the weak formulation reveals jumps

terms through the cell interfaces. We use the standard notation concerning the jumps and

averages for vh ∈ V p
h , S ∈ S int

h , and x ∈ S:

v±h (x) = lim
ε→0+

vh(x∓ εnS), [vh]S = v+
h − v−h .

For a boundary edge we set [vh]S := v−h .

In addition, let κ be a bounded positive piecewise continuous function with respect to h.

We define the weighted average of vh ∈ Vh on an interior edge S by

(1.3) { ∂vh

∂nS

}S,κ :=
κ−

κ+ + κ−
κ+∂v

+
h

∂nS

|S +
κ+

κ+ + κ−
κ−
∂v−h
∂nS

|S,

we observe that:

(1.4) { ∂vh

∂nS

}S,κ =
κ−κ+

κ+ + κ−
(
∂v+

h

∂nS

|S +
∂v−h
∂nS

|S).

For convenience, we extend the above definition to the boundary edges as follow: for

S ∈ S∂
h , we set {∂vh

∂n
}S,κ = κ ∂vh

∂nS
|S.

For a constant function κ, we get the standard arithmetic average on an interior edge S as

(1.5) { ∂vh

∂nS

}S,κ :=
κ

2

∂v+
h

∂nS

|S +
κ

2

∂v−h
∂nS

|S.

In addition, we introduce the following notations:

• xK is the orthocenter of K ∈ Kh,

• xS is the barycenter of edge S ∈ Sh,

• hS = |xK+ − xK−| for S ∈ S int
h ,

• hS = |xK− − xS| for S ∈ S∂
h ,



Let us recall this well-known variant of Poincaré’s inequality (see [15]) :

Lemma 1.1 For all vh ∈ V p
h , we have

(1.6) ‖vh‖2
0,Ω ≤ C

 ∑
S∈Sint

h

1

hS

‖[vh]‖2
S +

∑
S∈S∂

h

1

hS

‖vh‖2
S +

∑
K∈Kh

‖∇vh‖2
K

 ,

where C is a constant depending on Ω.

The following inverse estimate holds (see [40]): For all K ∈ Kh, and for all vh ∈ V p
h , there

is a constant C depends only on p and the minimum angle such that

(1.7) ‖vh‖0,∂K ≤ C h
−1/2
K ‖vh‖0,K .

1.3 DgFem discretization

1.3.1 Model problem

We consider the following elliptic problem with homogeneous Dirichlet boundary condi-

tions:

− div(κ∇u) + αu = f in Ω,

u = 0 on ∂Ω.
(1.8)

We assume that the constant α satisfies α ≥ 0, the diffusivity κ ∈ L∞(Ω) is a scalar

function such that 0 < κmin ≤ κ ≤ κmax and f ∈ L2(Ω). The weak formulation of (1.8) is:

find u ∈ H1
0 (Ω) such that

(1.9)

∫
Ω

κ∇u · ∇v dx+ α

∫
Ω

u v dx =

∫
Ω

f v dx ∀v ∈ H1
0 (Ω).

The existence and the uniqueness of u is given by the Lax-Milgram theorem.

1.3.2 Discrete formulation

For the discretization of (1.9), we introduce the following bilinear form for given uh and vh

in V p
h :

A(uh, vh) :=
∑

K∈Kh

∫
K

κ∇uh · ∇vh dx+ α
∑

K∈Kh

∫
K

uh vh dx−
∑
S∈Sh

∫
S

{∂uh

∂nS

}S,κ[vh]S ds

−
∑
S∈Sh

∫
S

[uh]S{
∂vh

∂nS

}S,κ ds+
∑
S∈Sh

γ

hS

∫
S

γS[uh][vh] ds,

(1.10)



where 2γS is the harmonic average of κ and the penalty parameter γ is assumed to be large

enough. Defining the linear form:

(1.11) L(vh) :=

∫
Ω

f vh dx,

the discrete problem consists on finding uh in V p
h such that:

(1.12) A(uh, vh) = L(vh), ∀ vh ∈ V p
h .

We equip the finite element space V p
h with the following norms:

‖v‖2
1,h := ‖v‖2

0,Ω + ‖κ1/2∇v‖2
0,Ω + |h−1/2

S [v]S|2γS
,

and

‖v‖2
h,A := ‖v‖2

1,h +
∑
S∈Sh

hS‖
∂v

∂nS

‖2
0,S,

where |v|γS
is given by

|v|2γS
=
∑
S∈Sh

∫
S

γS v
2 ds.

As consequence of the inverse estimate (1.7), the norms ‖.‖1,h and ‖.‖h,A are equivalent on

the subspace V p
h . The stability of the method can now be proved.

Lemma 1.2 (Coercivity) There exists a constant C > 0 such that for all vh in V p
h

(1.13) A(vh, vh) ≥ C‖vh‖2
h,A.

Proof. Let vh ∈ V p
h . We have

(1.14) A(vh, vh) = ‖κ1/2∇vh‖2
0,Ω + α‖vh‖2

0,Ω − 2
∑
S∈Sh

∫
S

{ ∂vh

∂nS

}S,κ[vh]S ds+ γ|h−1/2
S [vh]|2γS

.

Consider now the third term in the right hand side. Let S ∈ Sh. Using Young’s inequality,

we get

−2

∫
S

{ ∂vh

∂nS

}S,κ[vh]S ds ≥ −hSε

∫
S

κ+ + κ−

κ+κ−
|{ ∂vh

∂nS

}S,κ|2 ds−
1

ε hS

∫
S

κ+κ−

κ+ + κ−
[vh]

2
S ds

≥ −εC‖κ1/2∇vh‖2
0,K+∪K− −

1

ε
|h−1/2

S [vh]S|2γS
,

(1.15)

where in the last step, we have used the inequality (1.7). Choosing ε such that 1−εC = c,

and taking γ0 = c+ ε−1, we obtain:

(1.16) A(vh, vh) ≥ c‖vh‖2
1,h + (γ − γ0)|h−1/2

S [vh]S|2γS
,

the assertion follows by chosen γ large enough.



Lemma 1.3 (Consistence) Let u be the solution of (1.9) and uh the solution of (1.12).

Assume that u ∈ H2(Kh). Then, for all vh in V p
h

(1.17) A(u− uh, vh) = 0.

Proof. Let vh ∈ V p
h . Since u ∈ H1

0 (Ω) ∩H2(Kh), we have

A(u, vh) :=
∑

K∈Kh

∫
K

κ∇u · ∇vh dx+ α
∑

K∈Kh

∫
K

u vh dx

−
∑
S∈Sh

∫
S

{ ∂u
∂nS

}S,κ[vh]S ds.

(1.18)

Using the fact that κ ∂u
∂nS

is ”continuous” on the interior edges S int
h yields

{ ∂u
∂nS

}S,κ = (
κ+

κ+ + κ−
+

κ−

κ+ + κ−
)(κ

∂u

∂nS

) = κ
∂u

∂nS

.

Integrating by parts leads to∑
K∈Kh

∫
K

κ∇u · ∇vh dx−
∑
S∈Sh

∫
S

{ ∂u
∂nS

}S,κ[vh]S ds = −
∑

K∈Kh

∫
K

div(κ∇u)vh dx.

We get

A(u, vh) =
∑

K∈Kh

∫
K

(− div(κ∇u) + αu)vh dx =

∫
Ω

f vh dx = A(uh, vh),

yielding the assertion.

For the continuity property of the bilinear form A, we can prove the following result

(1.19) A(u, v) ≤ C(‖κ‖∞, ‖α‖∞)‖u‖h,A‖v‖h,A u, v ∈ V p
h .

1.3.3 A priori error analysis

In this section, we establish an a priori error estimate for DgFem in energy norm. The

analysis is performed by using the continuity, the coercivity and the consistence properties

established previously.

Theorem 1.1 Let u be the solution of the problem (1.8) and uh the discrete solution of

(1.12). Assume that u ∈ Hp+1(Kh), then, there is a constant C independent of h such that

(1.20) ‖u− uh‖h,A ≤ C hp‖u‖Hp+1(Kh).



Proof. Let vh ∈ V p
h , owing to lemma 1.2, 1.3

‖uh − vh‖2
h,A ≤ C A(uh − vh, uh − vh) = C A(u− vh, uh − vh)

≤ C ‖u− vh‖h,A‖uh − vh‖h,A,
(1.21)

yields

‖uh − vh‖h,A ≤ C ‖u− vh‖h,A.

Taking vh = Πhu ∈ V p
h the L2-projection of u

‖uh − Πhu‖h,A ≤ C ‖u− Πhu‖h,A.

Now, using the triangle inequality, we get

(1.22) ‖u− uh‖h,A ≤ C ‖u− Πhu‖h,A.

The assertion follows by using the standard approximation properties of the L2-orthogonal

projector Πh.

The error estimate in L2 norm can be improved by using the duality argument, as shown

in the next theorem.

Theorem 1.2 Under the assumptions of Theorem 1.1, there is a constant C independent

of h such that

(1.23) ‖u− uh‖0,Ω ≤ C hp+1‖u‖Hp+1(Kh).

1.3.4 Dependence on γ

Thanks to (1.16), one gets that

(1.24)

∫
Ω

fuγ
h dx = A(uγ

h, u
γ
h) ≥ c‖uγ

h‖
2
1,h + (γ − γ0)|h−1/2

S [uγ
h]S|

2
γS
.

Then, inequality (1.24) yields that (uγ
h)γ is a bounded sequence for the norm ‖.‖1,h and

that |h−1/2
S [uγ

h]S|γS
tends to 0 when γ tends to infinity.

For any accumulation point wh of sequence (uγ
h)γ, since at the limit |h−1/2

S [wh]S|γS
= 0, it

is an element of the conforming finite element space.

Moreover, passing to the limits with respect to γ (γ → +∞) in the discrete formulation

with some test-functions in the continuous FE-space, proves that wh = uh. Then, one gets

the convergence of all the sequence uγ
h to uh.

This proves that the DgFem solution converges to the conforming finite element solution

when γ tend to infinity.

To clarify the order of convergence, let us recall, from Larson [34], the following result:



Proposition 1.1 Let uγ
h the DgFem solution of the problem (1.8), uh the Fem solution of

(1.8) and u the solution to the continuous problem. If u is assumed Hp+1(Ω), then, for all

γ ≥ γ0 one has

(1.25) ‖uγ
h − uh‖h,A ≤

C

γ − γ0

hp‖u‖p+1,

where C is a positive constants independent of h and γ.

1.4 Numerical results

In this section, we present the results of some numerical experiments. In the first and the

second test, we study the behaviour of the error with respect to h, the mesh parameter,

and p the approximation order. In the third test, we are interested in the behaviour of

uγ
h with respect to γ (when it tends to ∞). In order to illustrate this, we consider the

following elliptic problem with κ = 1 and α = 0;

(1.26) −∆u = f in Ω =]0, 1[2,

where f is chosen such that the exact solution is given by

u(x, y) = sin(π(x− y)).

In this case, the DgFem is the classical SIPG method. We start by studying the convergence

with respect to h, for p = 1, 2, 3, 4.

1.4.1 h-DgFem

In this section, we illustrate the behaviour of the error with respect to the discretization

parameter h, for a fixed approximation order p in {1, 2, 3, 4}. In the figure below, we

represent the energy and L2 norms of the error with respect to h;



Figure 1.2: ‖u− uh‖1,h and ‖u− uh‖0,Ω as a function of h in log-log scale.

These figures show the convergence of the error with respect to h and that the convergence

is of order p + 1 in L2 norm and of order p in energy norm which confirm the theoretical

results.

1.4.2 Exponential convergence of p-DgFem

In this example, problem (1.26) is considered, with a fixed discretization parameter h.

The numerical illustration concerns the behaviour of the convergence with respect to the

approximation order p. The result is presented in Figure 1.3

Figure 1.3: ‖u− uh‖1,h and ‖u− uh‖0,Ω as a function of the approximation order p.



The figure illustrates that, the refinement p-uniform delivers exponential convergence with

respect to the number of degree of freedom because of the regularity of the exact solution.

This is demonstrated by using a linear scale for the number of degree of freedom and the

logarithmic scale for the error.

1.4.3 Convergence study (variable approximation order)

In this section, we study the convergence of the error in L2 and energy norms with respect

to the discretization parameter h with uniform and variable approximation order. The

result is represented in the figure below :

Figure 1.4: ‖u− uh‖0,Ω (top) and ‖u− uh‖1,h (bottom) with respect to h in log-log scale.

This numerical tests have been realized in the objective to validate a code written in C++



with approximation order depends on the mesh element. A convergence rate equal to

min(pK) + 1 in L2 norm is observed, because the exact solution is regular. Increasing

uniformly p gives a good approximation in this case.

1.4.4 Dependence on γ

In this section, a fixed mesh is considered. Then, we are interested in the behaviour of

the difference between uγ
h: the discrete solution given by the DgFem; and uh the discrete

solution given by the standard Galerkin method.

The figure below illustrates the convergence with respect to γ. Three different meshes are

considered (with a log-log scale) and confirm the theoretical result proved in section 1.3.4.

Figure 1.5: ‖uγ
h − uh‖H1(Kh) as a function of γ in log-log scale.

The figure shows that, for a large γ, the DgFem gives the same error as the CFE. Indeed, if

we choose γ in an optimal way, the DgFem error is less than the CFE error. In figure 1.7,

we present the L2 norm of the error with respect to γ for p = 1 and optimal gamma with

respect to p;



Figure 1.6: ‖u− uh‖0,Ω as a function of γ (left) and ‖u− uh‖1,h as a function of γ (right).

This figure illustrates the existence of an optimal value γ0 of the parameter γ. It depends

a priori on the approximation order p. Since no theoretical results prove this, we propose

in the Figure 1.7 some numerical indications of the optimal value γ0 as a function of p.

Figure 1.7: gamma optimal as a function of p.

1.5 h-adaptive DgFem discretization

1.5.1 Red-green mesh refinement

One standard method of local mesh refinement in 2-D is the red-green refinement (see R.

Verfürth [41]), especially for Delaunay meshes. A triangle marked for refinement is split

into four smaller sons, so called red triangles, as shown in Figure 1.8. At the intersections



of the triangle edges, new points are inserted. Thereby, four triangles are generated, whose

edges are connected to these points. A pleasant property of this method is that all new

triangles are geometrically similar to the original one, and thereby, the element quality of

the new triangles is similar to the original one.

Figure 1.8: A red-refined triangle

Using this method, any neighboring triangles can be red-refined (see Figure 1.9) and any

of the red triangles can be red-refined itself. But red-refined triangles will produce extra

points along an edge of neighboring triangles that are not refined to the same level. These

triangles must be refined irregularly, which are labeled as green triangles and are of lower

quality (shown in Figure 1.10). Green-refinement is only performed if a single point is

inserted. If more points are inserted or higher refinement of this triangle is wanted, the

green triangles are removed and the parent triangle is red-refined, too.

Figure 1.9: A red-refined triangle with red-refined neighbor

By continuation of these two strategies, a local mesh refinement is produced. Red triangles

can be surrounded by red triangles as well as green triangles, and red triangles can also be

further red-refined, which may also induce the generation of surrounding green triangles.

With a hierarchical memory representation, refinement and also coarsening of already

refined triangles can be handled easily.

Figure 1.10: A red-refined triangle with green-refined neighbor

If we regard Ω as a pseudo-element whose ”sons” are the elements of T0, the process of

creating an admissible mesh can be viewed as the creation of an element tree, in which the

root is Ω. The level li of Ti then corresponds to the distance from Ti to Ω.



1-irregular rule

In general, it is advantageous to regularize an admissible mesh by restricting the number of

irregular vertex on each edge. There are number of ways to accomplish this regularization,

we shall mainly consider the following 1-irregular rule.

1-irregular rule: Refine any unrefined element for which any of the sides contains more

then one irregular vertex.

We shall also use the following two-neighbor rule:

two-neighbor rule: Refine any element with two neighbors that have been regularly

refined.

The properties of the 1-irregular rule when applied to triangular meshes differ somewhat

from the case of quadrilateral element. Unlike quadrilaterals, refinement of triangular

elements does not always generate new regular vertex. Let the l + 1 level mesh Tl be

generated by successive refinement of the center element. T3 is illustrated in Figure 1.11.

All the Tl are 1-irregular. However, the only regular nodes for l > 2 are the six boundary

nodes.

Figure 1.11: T3

Given a 1-irregular mesh T ′
, we can generate a more refined mesh T ” by applying wherever

possible, the following green rule:

Green refinement rule

With as few elements as possible, triangulate any unrefined element with an irregular

vertex on one or more of it sides. The three situations in which the green rule can occur

are shown in Figure 1.12.



Figure 1.12: The green refinement rule

Algorithm of local mesh refinement

In this section, we present an algorithm for the generation of local mesh refinement de-

scribed previously. It implements the 1-irregular and two-neighbor rules.

In this algorithm, we assume that a logical-valued function IsRefined is available which

indicates, for a given element in the mesh, whether the element to be refined. An element

in the mesh may be refined either because IsRefined indicates that it should be refined,

or if it satisfies the two-neighbor rule or the 1-irregular rule. The algorithm of refinement

is as follows:

• Step 1 : Delete the green triangle.

• Step 2 : Refine red triangle.

• Step 3 : Perform the 1-irregular rule.

• Step 4 : Perform the two-neighbor rule.

• Step 5 : Refine the green triangle using green rule.

1.5.2 A posteriori error estimate

An a posteriori error estimate is a rigorous bound to a prescribed error quantity in terms

of available information. Here, we consider control of the energy error ‖u− uh‖h,A.

(1.27) ‖u− uh‖2
h,A ≤

∑
K

ε2
K

where εK is a computable quantity depending on uh and the data. The following theorem

gives an upper bound of the error in energy norm. The prove of the theorem is given in

[33] for an elliptic problem in the case of κ = 1 and α = 0. An adaptive algorithm has

been considered and a result of the convergence of the algorithm is given. Recently, an

a posteriori error analysis for the advection-reaction-diffusion equations with anisotropic



and discontinuous diffusivity is considered in [20]. Let us recall from [33] the following

theorem.

Theorem 1.3 Let u be the solution of (1.9) and uh be the solution of (1.12) with κ = 1

and α = 0. There holds

(1.28)
∑

K∈Kh

‖u− uh‖2
0,K ≤ C

∑
K∈Kh

ηK(f, uh) +
∑

S∈Sint
h

ηS(uh)

 ,

where C is a constant independent of h and γ, ηK and ηS are given by

ηK = h2
K‖f + ∆uh‖2

0,K , ηS = hS |[∂nS
uh]S|2S +

γ2

hS

|[uh]S|2S

In addition the following estimates hold

• (i) Suppose that f is a piecewise polynomial on Kh. Then for each K ∈ Kh,

ηK ≤ c ‖u− uh‖2
0,K .

• (ii) For S ∈ ∂K+ ∩ ∂K−,

hS |[∂nS
uh]S|2S ≤ c (‖u− uh‖2

0,K+ + ‖u− uh‖2
0,K−).

• (iii) There exists γ1 depending only on p and the minimal angle such that for all

γ ≥ γ1 ∑
S∈Sint

h

γ2

hS

|[uh]S|2S ≤ c
∑

K∈Kh

‖u− uh‖2
0,K ,

c is a constant independent of h and γ.

1.5.3 h-adaptive algorithm

In this section, we describe the outline of the h-adaptive algorithm. We repeat the algo-

rithm that automatically constructs an adapted solution in the approximation space by

h-refinement.

• Step 1 (initialization): Assume an initial coarse mesh Kh consisting of piecewise-

polynomial (p = 2). User input θ ∈ [0, 1] and Tol > 0 for the energy norm of the

approximation error function η.

• Step 2: Compute coarse mesh approximation uh ∈ V p
h on Kh.



• Step 3 (Error estimator): Compute the indicator εK on every element Ki, i =

1, ..., NK in the mesh, calculate the global error estimate η, if η < Tol, stop compu-

tation.

• Step 4 (Marking element): Let the number εK be given as in steps 3. We find

A(j) ⊂ K(j) be the solution of the following optimization problem:

(1.29) Minimize CardinalA(j),

under the constraint

(1.30)
∑

K∈A(j)

ε2
K ≥ θ2

∑
K∈K(j)

ε2
K .

• Step 5 (h-refinement): Refine K ∈ A(j), then we establish a new finite element space,

and we continue with step 3.

1.5.4 Numerical examples

In this section, we present the results of some numerical experiments.

L-shaped domain

In order to illustrate the h-adaptive algorithm, we consider the following elliptic problem

with non homogeneous Dirichlet boundary condition;

−∆u = 0 in Ω

u = g on ∂Ω,
(1.31)

where r and θ are the polar coordinates and g is given by

(1.32) g(x, y) = r(x, y)2/3 sin(2/3(θ(x, y) + 2π)), (x, y) ∈ ∂Ω.

The geometry of the computational domain is displayed in figure 1.13



Figure 1.13: The L-shaped domain Ω

The exact solution is given by:

(1.33) u(x, y) = r(x, y)2/3 sin(2/3(θ(x, y) + 2π)), for all x, y ∈ Ω.

This problem has a re-entrant corner located at the origin, thereby producing a singularity

on the solution (non-convexity of the domain). We present in the figures below, some

iterations of adaptive mesh refinement and the numerical solution obtained in the final

mesh;



Figure 1.14: Mesh refinement iteration 2 Figure 1.15: Mesh refinement iteration 4

Figure 1.16: Numerical solution

The figure 1.17 displays the convergence history on H1(Kh) norm of the error with respect

to the number of degree of freedom in log-log scale;



Figure 1.17: Convergence history on H1(Kh) norm of the error h-adapt(p = 2)

Internal layer

In this example, we consider the following elliptic problem with non-homogeneous Dirichlet

boundary condition:

(1.34) −∆u = f in ]0, 1[2,

where the right hand side f is chosen such that the exact solution is given by

(1.35) u(x, y) = arctan(α(r(x, y)− π/3)), α = 60,

with r(x, y) =
√
x2 + y2.

The exact solution u is regular with high gradient. We present in the figure below some

iterations of the algorithm and the corresponding numerical solution;



Figure 1.18: Mesh refinement, first itera-

tion
Figure 1.19: Numerical solution

Figure 1.20: Mesh refinement, iteration 4 Figure 1.21: Numerical solution



Figure 1.22: Mesh refinement iteration 8 Figure 1.23: Numerical solution

The figure 1.24 displays the convergence history of the H1(Kh) norm of error with respect

to the number of degree of freedom in logarithmic scale;

Figure 1.24: Convergence history on H1(Kh) norm of error, h-adapt(p = 2) in log-log scale





Chapter 2

Presentation of the model and study

of the existence

2.1 Introduction

In this chapter, we present and study a mathematical problem arising from the modelling of

maximal erosion rate in geological stratigraphic phenomena. The equation of such problems

is nonlinear; the diffusion coefficient depends of the time-derivative of the unknown u

and degenerates in order to take implicitly into account a global constraint on the time-

derivative of u :

(2.1) ∂tu+ E ≥ 0,

where E is a prescribed maximum erosion rate of the sediments.

The outlines of this chapter is organized as follows: in the following section, we present the

mathematical model. In section 2.3, a mathematical formulation that contains implicitly

the constraint (2.1) is presented. In section 2.4, we give a result of existence of a solution

to the model problem.

2.2 Mathematical model

We consider a sedimentary basin Ξ with basis Ω ⊂ RN (N = 1, 2) (see Figure 2.1), assumed

to be a bounded domain with a Lipschitz boundary. It is determined by a known vertical

position H(x, t) for each instant t and each position x. The position of this base is due

to vertical displacements of tectonics and the variation of the sea level. It provides a

description of the transport laws of sediments and their coupling, as well as the flux of

sediments at the edges of the basin.

For a positive number T , we denote by Q =]0, T [×Ω and u the sediments thickness; the
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topography is then given by u + H. The mathematical model is obtained by writing

the mass conservation equation, the Darcy-Barenblatt’s law and by taking into account a

constraint of obstacle (limited erosion rate).

Figure 2.1: a sedimentary basin in 2D

2.2.1 Equation of conservation

We consider that the sediments thickness u satisfies the mass conservation equation:

(2.2) ∂tu+ div(~q) = f in Q,

where ~q is the flux of the sediments.

According to Darcy-Barenblatt’s law (see [11]), the flux of sediments ~q is given by the

relation:

(2.3) ~q = −K∇(u+ τ∂tu),

with K is the viscosity rate, τ > 0.

In a sedimentary basin formation process, sediments must first be produced in situ by

weathering effects prior to be transported by surfacing erosion. Thus, R. Eymard et al.

[26] introduce a maximum erosion rate

(2.4) ∂tu+ E ≥ 0, a.e. in Q,

where E(x, t) ≥ 0 denotes the admissible maximum erosion rate.



In order to reconcile the constraint with a conservative formulation, a limiter λ is introduced

to correct the theoretical diffusive flow into a real diffusive flow:

(2.5) ~q = −λK∇(u+ τ∂tu),

where λ is a unknown function with values a priori in [0, 1] which will be defined later.

Moreover, K = 1 would be consider in the sequel.

2.2.2 Boundary conditions

In the real physical framework, one has to consider a partition of the boundary: Γ = Γe∪Γs.

An input flux ϕe is imposed on Γe and an unilateral conditions ∂tu+E ≥ 0, ~q.~n+ ϕs ≥ 0

and (∂tu+ E)(~q.~n+ ϕs) = 0 on Γs (see S. N. Antontsev et al. [2]).

In our academic work, Dirichlet boundary conditions would be considered.

2.2.3 Mathematical modelling of λ

In [26], the authors propose to consider a measurable flux limiter λ that satisfies

(2.6) 0 ≤ λ ≤ 1, ∂tu+ E ≥ 0, (1− λ)(∂tu+ E) = 0, a.e. in Ω× (0, T ).

S.N. Antontsev, G. Gagneux and G. Vallet [6] propose a new conservative formulation

which contains implicitly (2.6): for all u ∈ L2(0, T ;H1
0 (Ω)), with ∂tu ∈ L2(0, T ;H1

0 (Ω)),

(2.2,2.5,2.6) is equivalent to the following formulation:

(2.7) ∂tu− div[λ∇(u+ τ∂tu)] = f in Ω× (0, T ), λ ∈ H(∂tu+ E) ∩ L∞(Q).

Here, for the sake of simplicity, homogeneous Dirichlet boundary conditions on u and ∂tu

are considered. u(0, .) = u0 ∈ H1
0 (Ω), E ∈ L∞(0, T ;H1(Ω)), f ∈ L∞(0, T ;L2(Ω)) and H

denotes the maximal monotone graph of the Heaviside function.

The advantage of this writing is that, as soon as f +E ≥ 0 is assumed, the constraint (2)

is implicitly satisfied.

Indeed, on the one hand, obviously (2.6) implies that λ ∈ H(∂tu+ E).

On the other hand, if λ ∈ H(∂tu + E), one just has to prove that ∂tu + E ≥ 0. Since the

solution is understood in a weak sense: ∀ v ∈ H1
0 (Ω),∫

Ω

[∂tuv + λ∇(u− τE)∇v + τ∇(∂tu+ E)∇v]dx =

∫
Ω

fvdx.

Then, for the available test function (∂tu+ E)−, we get that

(2.8) −
∫

Ω

(E + f)(∂tu+ E)−dx =

∫
Ω

∣∣(∂tu+ E)−
∣∣2dx+

∫
Ω

λ∇(u+ τ∂tu)∇(∂tu+ E)−dx.



That leads to ∂tu+ E ≥ 0 a.e. in Ω× (0, T ) since λ1{∂tu+E<0} = 0 a.e.

Now, we are interested in deriving a new model, equivalent to the previous one. Since

λ ∈ H(∂tu+E), ∂tu+E ≥ 0 and ∂tu+E ∈ H1
0 (Ω), thanks to the lemma of Saks, we have

λ∇(u+ τ∂tu) = λ∇(u+ τ(∂tu+ E)− τE)

= λ∇u+ τλ∇(∂tu+ E)− τλ∇E
= λ∇u+ τ∇(∂tu+ E)+ − τλ∇E, λ ∈ H
= λ∇(u− τE) + τ∇(∂tu+ E).(2.9)

Thus, the problem (2.7) is equivalent to the following one:

(2.10) ∂tu− div[λ∇(u− τE)]− τ∆(∂tu+ E) = f, λ ∈ H(∂tu+ E).

Results of existence and uniqueness of a solution to the above differential inclusion are still

open problems. Our purpose is to analyze a modified model where H is replaced by a, a

regular approximation of H, vanishing on R− in order the constraint to be respected.

2.3 Mathematical formulation

In this section, we are interested in the following pseudoparabolic problem (P):

(2.11) ∂tu− div[a(∂tu+ E)∇(u− τE)]− τ∆(∂tu+ E) = f in Ω× (0, T ).

The initial height is given by : u(0, .) = u0 in Ω, where u0 ∈ H1
0 (Ω), homogeneous Dirichlet

condition are assumed for u and ∂tu and the following assumptions are made concerning

the data.

(2.12) (H) :


τ > 0, E ∈ L∞(0, T ;H1(Ω)) is a nonnegative function,

f ∈ L∞(0, T ;L2(Ω)), f + E ≥ 0 in Q, and

a : R → [0, 1] is a Hölder continuous function,

a ∈ C0,θ(R), with θ ≥ 1/2, and vanishing on ]−∞, 0].

Then, we would say that

Definition 2.1 A solution to problem (P) is any u in H1(0, T ;H1
0 (Ω)), such that for any

v in H1
0 (Ω), and for t a.e. in (0, T ),

(2.13)

 u (0, .) = u0 in Ω and ∀ v ∈ H1
0 (Ω),∫

Ω

[∂tuv + a(∂tu+ E)∇(u− τE)∇v + τ∇(∂tu+ E)∇v]dx =

∫
Ω

fvdx.

Lemma 2.1 If u is a solution to (2.13). Then the constraint ∂tu + E ≥ 0 a.e. in Q is

implicitly satisfied.

Proof. One just to adapt the demonstration given by (2.8) since a(∂tu+E)1{∂tu+E<0} = 0.



2.4 Existence of a solution

In this section, we study the existence of a solution to problem (2.13). To prove the

existence of a solution of this problem, we proceed as follow: we initially propose an

existence and uniqueness lemma of the solution to an additional stationary problem. Then

we prove the existence of a sequence of solutions to an implicit time-discretized problem.

And, via some a priori estimations, we prove that the problem (2.13) has a solution by

passing to the limits with respect to the time step.

Lemma 2.2 Let us consider a bounded function b ∈ C0,θ(R) with θ ≥ 1
2
, κ in H1(Ω), f

in L2(Ω), E in H1(Ω) a nonnegative function. Then, a unique solution w exists in H1
0 (Ω)

such that, for all v in H1
0 (Ω)

(2.14)

∫
Ω

[wv + b(w + E)∇(κ− τE)∇v + τ∇(w + E)∇v]dx =

∫
Ω

fvdx.

Proof. The result of existence of a solution is based on the theorem of fixed point of

Schauder.

Concerning the uniqueness, we consider two admissible solutions w1 and w2. Let ξ =

w1 − w2 and for µ > 0, we define pµ by

(2.15) pµ(t) = min

[
1, ln[max(1,

e t

µ
)]

]
.

pµ is a non-increasing Lipschitz-continuous function with pµ(0) = 0. The Lipschitz-constant

is equal to e
µ
. Therefore, v = pµ(ξ) is a suitable test function and we have that

0 =

∫
Ω

ξpµ(ξ)dx+

∫
Ω

[b(w1 + E)− b(w2 + E)]∇(κ− τE)∇pµ(ξ)dx+ τ

∫
Ω

∇ξ∇pµ(ξ)dx.

Thus,

0 =

∫
Ω

ξpµ(ξ)dx+

∫
Ω∩{µ

e
<ξ<µ}

1

ξ
[b(w1+E)−b(w2+E)]∇(κ−τE)∇ξdx+τ

∫
Ω∩{µ

e
<ξ<µ}

1

ξ
|∇ξ|2dx.

So, it comes that :∫
Ω

ξpµ(ξ)dx + τ

∫
Ω∩{µ

e
<ξ<µ}

1

ξ
|∇ξ|2dx ≤ c

∫
Ω∩{µ

e
<ξ<µ}

ξθ−1|∇(κ− τE)∇ξ|dx

≤ c2

2τ

∫
Ω∩{µ

e
<ξ<µ}

ξ2θ−1|∇(κ− τE)|2dx+

∫
Ω∩{µ

e
<ξ<µ}

τ

2ξ
|∇ξ|2dx.

In particular, we have

(2.16)

∫
Ω

ξpµ(ξ)dx+ τ

∫
Ω∩{µ

e
<ξ<µ}

1

2ξ
|∇ξ|2dx ≤ c2µ2θ−1

2τ

∫
Ω∩{µ

e
<ξ<µ}

|∇(κ− τE)|2dx.



Since the function µ → 1]µ
e
,µ[ converge simply to 0 as µ → 0+, the theorem of Lebesgue

yields ∫
Ω∩{µ

e
<ξ<µ}

|∇(κ− τE)|2dx→ 0, as µ→ 0+.

Moreover,

lim
µ→0+

pµ(ξ) = sign+
0 (ξ) in L2(Ω).

Thus

|(w1 − w2)
+|L1(Ω) ≤ 0, and w1 ≤ w2.

Note that w1 and w2 play the same role, to deduce that w1 = w2.

2.4.1 The semi-discretized problem

We consider a uniform partition of (0, T ) into N subintervals [tk, tk+1[, k = 0, ..., N − 1.

We denote by ∆t = tk+1 − tk the time step. Assume that Ek+1 ∈ H1(Ω) with Ek+1 ≥ 0,

fk+1 ∈ L2(Ω) with fk+1 +Ek+1 ≥ 0. Denote by ‖.‖0 the L2 norm and by ‖.‖1 the H1 norm.

The semi-discretized problem is written: find uk+1 ∈ H1
0 (Ω) for k = 0, ..., N − 1 such that

uk+1 − uk

∆t
− div[a(

uk+1 − uk

∆t
+ Ek+1)∇(uk+1 − τEk+1)]

−τ∆(
uk+1 − uk

∆t
+ Ek+1) = fn+1,

u0 = u0 in Ω.

(2.17)

Since we are interested in variational solutions, the problem is: find uk+1 ∈ H1
0 (Ω) for

k = 0, ..., N − 1, such that for all v in H1
0 (Ω)

(2.18)



1

∆t

∫
Ω

uk+1v dx+

∫
Ω

a(
w − uk

∆t
+ Ek+1)∇(uk+1 − τEk+1) · ∇v dx

+
τ

∆t

∫
Ω

∇uk+1 · ∇v dx =

∫
Ω

fk+1v dx

+
1

∆t

∫
Ω

ukv dx+
τ

∆t

∫
Ω

∇uk · ∇v dx− τ

∫
Ω

∇Ek+1 · ∇v dx,

u0 = u0 in Ω.

Note that we have just to prove the result for the first iteration. Denote by u = u1, E = E1,

f 1 = f and w := u−u0

∆t
. The problem becomes:∫

Ω

wv dx+ ∆t

∫
Ω

(a(w + E) +
τ

∆t
)∇w · ∇v dx+

∫
Ω

a(w + E)∇(u0 − τE) · ∇v dx

=

∫
Ω

fv dx− τ

∫
Ω

∇E · ∇v dx.
(2.19)



Lemma 2.3 Assume hypothesis (H) for data a and τ . For a given u0 ∈ H1
0 (Ω), a unique

solution w exists to the problem (2.19).

The discrete version of the constraint is implicitly satisfied: u−u0

∆t
+ E ≥ 0 a.e. in Ω.

Proof. The existence of w is based on the fixed point theorem of Schauder-Tychonov. Let

ψ : H1
0 (Ω) → H1

0 (Ω), S 7→ w = ψ(S) the unique solution of the following linear problem:

Find w ∈ H1
0 (Ω) such that for all v ∈ H1

0 (Ω):∫
Ω

wv dx+ ∆t

∫
Ω

(a(S + E) +
τ

∆t
)∇w · ∇v dx =

∫
Ω

fv dx

−
∫

Ω

a(S + E)∇(u0 − τE)∇v dx− τ

∫
Ω

∇E∇vdx.
(2.20)

The existence of a solution to this linear problem is guaranteed by the Lax-Milgram lemma

since ∆t a(S + E) + τ ≥ τ > 0. Using v = w in the weak formulation, we have

‖w‖2
0 +

∫
Ω

(∆t a(S + E) + τ)|∇w|2dx =

∫
Ω

fwdx−
∫

Ω

a(S + E)∇(u0 − τE)∇wdx

− τ

∫
Ω

∇E∇wdx.

Using the assumptions, Cauchy-Schwarz and Young’s inequalities, we obtain

1

2
‖w‖2

0 +
τ

2
‖∇w‖2

0 ≤
1

2
‖f‖2

0 + 4τ‖∇E‖2
0 +

1

τ
‖∇u0‖2

0.

We conclude that

‖w‖1 ≤ C(τ, ‖f‖0, ‖∇u0‖0, ‖∇E‖0).

The set K = {v ∈ H1
0 (Ω); ‖v‖1 ≤ C} is not empty, bounded, convex and strongly closed.

Thus weakly compact in H1
0 (Ω). Moreover, ψ(K) ⊂ K.

Consider Sn ⇀ S in H1
0 (Ω). Thus Sn′ → S in L2(Ω) and a.e. in Ω for a sub-sequence,

since the injection of H1
0 (Ω) ⊂ L2(Ω) is compact. Since a is continuous and bounded, for

any v in H1
0 (Ω),

a(Sn′ + E)∇v → a(S + E)∇v a.e. in Ω and in
(
L2(Ω)

)d
.

Let wSn′
:= ψ(Sn′). The boundedness of (wSn′

) inH1
0 (Ω) allows us to extract a sub-sequence

(wSn′′
) such that

wSn′′
⇀ ξ in H1

0 (Ω).

By passing to the limits (n′′ → ∞), we conclude that ξ satisfies: ξ ∈ H1
0 (Ω) and for all

v ∈ H1
0 (Ω) ∫

Ω

ξv dx+ ∆t

∫
Ω

(a(S + E) +
τ

∆t
)∇ξ · ∇v dx

=

∫
Ω

fv dx−
∫

Ω

a(S + E)∇(u0 − τE) · ∇v dx− τ

∫
Ω

∇E · ∇v dx.
(2.21)



Thus ξ = wS (the uniqueness of the solution) and all the sequence (wSn)n converges weakly

to wS. ψ is sequentially continuous with respect to the weak convergence. The existence

of a fixed point ws then results from the Schauder fixed point theorem.

For the discrete constraint, the assertion follows by taking in (2.19) v = (u−u0

∆t
+ E)−.

Lemma 2.4 Assume hypothesis (H) for data a and τ , fk+1 ∈ L2(Ω), Ek+1 ∈ H1(Ω) such

that fk+1 + Ek+1 ≥ 0 and u0 in H1
0 (Ω). Then a sequence (uk+1) exists in H1

0 (Ω), solution

to the problem (2.18). As expected, the discrete version of the constraint is satisfied.

uk+1 − uk

∆t
+ Ek+1 ≥ 0 a.e. in Ω.

Proof. The existence of the sequence, as well as the constraint condition, is an induction

of the previous result.

2.4.2 A priori estimates

For all sequences (uk)0≤k≤N−1, with u0 = u0, we define in Q the functions

u∆t(t) =
N−1∑
k=0

uk 1k(t),

where 1k is the characteristic function in the interval [k∆t, (k + 1)∆t[, and

(2.22) ũ∆t(t) = (t− k∆t)
uk+1 − uk

∆t
+ uk, if t ∈ [k∆t, (k + 1)∆t[, 0 ≤ k ≤ N − 1.

We note that, the derivative ∂tũ∆t, calculated in the distribution sense is, t a.e.

∂tũ∆t(t) =
N−1∑
k=0

uk+1 − uk

∆t
1k(t).

For a.e. t in (0, T ) and for all v in H1
0 (Ω), one has that

(2.23)

∫
Ω

[∂tũ∆tv+a(∂tũ∆t+E∆t)∇(u∆t − τE∆t)∇v+τ∇(∂tũ∆t + E∆t)∇v]dx =

∫
Ω

f∆tvdx,

where E∆t and f∆t are given by

E∆t =
N−1∑
k=0

1

∆t

∫
k∆t

(k+1)∆t

E(., s)ds1k, f∆t =
N−1∑
k=0

1

∆t

∫
k∆t

(k+1)∆t

f(., s)ds1k.

Thanks to those notations, we are able to say that



Lemma 2.5 For small ∆t

• The sequences (u∆t) and (ũ∆t) are bounded in L∞(0, T ;H1
0 (Ω)),

• The sequence (∂tũ∆t) is bounded in L∞(0, T ;H1
0 (Ω)).

Proof. Let us consider v = uk+1−uk

∆t
in (2.18), in order to get

‖u
k+1 − uk

∆t
‖2

0 + τ‖∇(
uk+1 − uk

∆t
)‖2

0 ≤ ‖∇(uk+1 − τEk+1)‖0‖∇(
uk+1 − uk

∆t
)‖0

+ τ‖∇Ek+1‖0‖∇(
uk+1 − uk

∆t
)‖0 + ‖fk+1‖0‖

uk+1 − uk

∆t
‖0.

Thus, for any positive ε1, ε2, one has that

‖u
k+1 − uk

∆t
‖2

0 + τ‖∇(
uk+1 − uk

∆t
)‖2

0 ≤ ε1 + ε2
2

‖∇(
uk+1 − uk

∆t
)‖2

0 +
1

2ε1
‖∇(uk+1 − τEk+1)‖2

0

+
τ 2

2ε2
‖∇Ek+1‖2

0 +
1

2
‖fk+1‖2

0 +
1

2
‖u

k+1 − uk

∆t
‖2

0.

With ε1 = ε2 = τ
2
, we have

1

2
‖u

k+1 − uk

∆t
‖2

0 +
τ

2
‖∇(

uk+1 − uk

∆t
)‖2

0 ≤ 1

τ
‖∇(uk+1 − τEk+1)‖2

0 + τ‖∇Ek+1‖2
0 +

1

2
‖fk+1‖2

0

≤ 2

τ
‖∇uk+1‖2

0 + 3τ‖∇Ek+1‖2
0 +

1

2
‖fk+1‖2

0,

and

‖u
k+1 − uk

∆t
‖2

0 + τ‖∇(
uk+1 − uk

∆t
)‖2

0 ≤ 8∆t2

τ
‖

k∑
m=0

∇(
um+1 − um

∆t
)‖2

0 +
8

τ
‖∇u0‖2

0

+ 6τ‖∇Ek+1‖2
0 + ‖fk+1‖2

0

≤ 8∆t2

τ
(k + 1)

k∑
m=0

‖∇(
um+1 − um

∆t
)‖2

0 +M

≤ 8T∆t

τ

k∑
m=0

‖∇(
um+1 − um

∆t
)‖2

0 +M,

where M is given by

M =
8

τ
‖∇u0‖2

0 + 6τ‖∇Ek+1‖2
0 + ‖fk+1‖2

0.



Denote by xk = ‖∇(uk+1−uk

∆t
)‖2

0, using hypothesis (H) for data E and f , there is a constant

C independent of ∆t such that

xk ≤
8T∆t

τ 2

k∑
m=0

xm + C.

If ∆t ≤ τ2

16T
, we get

xk ≤
16T∆t

τ 2

k−1∑
m=0

xm + 2C.

On the one hand, by using the discrete version of the lemma of Gronwall, one obtains

xk ≤ 2C exp(
16T

τ 2
k∆t) ≤ C exp(

16T 2

τ 2
).

Thus

(2.24) ‖∇(
uk+1 − uk

∆t
)‖2

0 ≤ C, and ‖∂tũ∆t‖L∞(0,T ;H1
0 (Ω)) ≤ C.

On the other hand, we have

‖∇uk‖0 = ‖
k−1∑
m=0

∇(
um+1 − um

∆t
).∆t+∇u0‖0

≤
k−1∑
m=0

∆t‖∇(
um+1 − um

∆t
)‖0 + ‖∇u0‖0

≤ (
k−1∑
m=0

∆t)1/2(
k−1∑
m=0

‖∇(um+1 − um)‖2
0

∆t
)1/2 + ‖∇u0‖0

≤
√
TC + ‖∇u0‖0.

Thus, we get

(2.25) ‖u∆t‖L∞(0,T ;H1
0 (Ω)) ≤ C.

From (2.24) and (2.25) we deduce that

(2.26) ‖ũ∆t‖L∞(0,T ;H1
0 (Ω)) ≤ C,

and the assertions in Lemma (2.5) are proved.



2.4.3 Existence result

Let us prove now the existence of a solution u to the problem (P).

Proposition 2.1 There exists at least an element u in H1(0, T ;H1
0 (Ω)) such that, t a.e.

in (0, T ): ∀ v ∈ H1
0 (Ω),

(2.27)

∫
Ω

[∂tuv + a(∂tu+ E)∇(u− τE)∇v + τ∇(∂tu+ E)∇v]dx =

∫
Ω

fvdx.

Moreover, the constraint ∂tu+ E ≥ 0 is implicitly satisfied.

Proof. The proof is based on a priori estimations on the sequence (un).

From Lemma (2.5), we conclude that, the sequence (ũ∆t) is bounded in H1(0, T ;H1
0 (Ω)).

Thus u in H1(0, T ;H1
0 (Ω)) exists and a sub-sequence, still denoted by (ũ∆t) may be ex-

tracted such that, ũ∆t converges weakly to u in H1(0, T ;H1
0 (Ω)) and, for all t ∈ (0, T ),

ũ∆t(t) ⇀ u(t) in H1
0 (Ω).

In particular, we have u(0, .) = u0 a.e. in Ω. Moreover, we have ∀ t ∈ [k∆t, (k + 1)∆t[,

‖u∆t(t)− ũ∆t(t)‖H1
0 (Ω)) = ‖ũ∆t(k∆t)− ũ∆t(t)‖H1

0 (Ω)) ≤
∫ (k+1)∆t

k∆t

‖∂tũ∆t(s)‖H1
0 (Ω))ds,

≤ C∆t.

Then, for all t ∈ (0, T )

u∆t(t) ⇀ u(t) in H1
0 (Ω).

Moreover, note that by construction, for a.e. t in ]0, T [, E∆t(t) converges to E(t) in H1(Ω)

and f∆t(t) to f(t) in L2(Ω).

From Lemma (2.5), we have that the sequence (∂tũ∆t) is bounded in L∞(0, T ;H1
0 (Ω)).

Then, there is Z, subset of (0, T ), with L((0, T ), Z) = 0, such that, in addition to the

above convergences, for all t ∈ Z the sequence (∂tũ∆t)(t) is in a fixed bounded subset of

H1
0 (Ω). We may extract a sub-sequence denoted by (∂tũ∆tt), such that

∂tũ∆tt(t) ⇀ ξ(t) in H1
0 (Ω).

The embedding of H1
0 (Ω) in L2(Ω) is compact, thus

(2.28) ∂tũ∆tt(t) → ξ(t) in L2(Ω) a.e. in Ω by a sub-sequence denoted by the same way.

Thus, since a is continuous and bounded, for all v in H1
0 (Ω), we have

(2.29) a(∂tũ∆tt(t) + E∆t(t))∇v → a(ξ(t) + E(t))∇v in (L2(Ω))d.



The derivative operators ∂
∂xi

are linear and continuous from H1
0 (Ω) into L2(Ω), thus we get

that

∀ t ∈ Z, ∇(ũ∆t(t)− τE∆t(t)) ⇀ ∇(u(t)− τE(t)) in (L2(Ω))d,

∇(∂tũ∆tt(t) + E∆t(t)) ⇀ ∇(ξ(t) + E(t)) in (L2(Ω))d.

Passing to the limits on ∆t (∆t → 0+) in (2.23), for all v in H1
0 (Ω), ξ(t) satisfies the

equation∫
Ω

[ξ(t)v + a(ξ(t) + E(t))∇(u(t)− τE(t))∇v + τ∇(ξ(t) + E(t))∇v]dx =

∫
Ω

f(t)vdx.

Then, using lemma (2.2), with b = a and κ = u(t) and hypothesis (H), the solution ξ(t)

is unique in H1
0 (Ω). Then, all the sequence (∂tũk(t))∆t, and not only the sub-sequences

(∂tũ∆tt)(t) extract from (∂tũ∆t)(t), converges in H1
0 (Ω) toward ξ(t). Thus, we have for all

t in Z

∂tũ∆t(t) ⇀ ξ(t) in H1
0 (Ω).

Therefore, the function ξ :]0, T [→ H1
0 (Ω) is weakly measurable (indeed, for any g in

H−1(Ω), t 7→ 〈g, ξ(t)〉 is the limit of a sequence of measurable functions t 7→ 〈g, ∂tũ∆t(t)〉)
and consequently ξ is a measurable function thanks to the theorem of Pettis [42], since

H1
0 (Ω) is a separable set.

Moreover, for any v in L2(0, T ;H1
0 (Ω)),

(∂tũ∆t(t), v(t)) ⇀ (ξ(t), v(t)) a.e. in ]0, T [.

As the sequence (∂tũ∆t) is bounded in L∞(0, T ;H1
0 (Ω)), there exists a constant C such

that

|(∂tũ∆t(t), v(t))| ≤ C‖v(t)‖1.

Thus, we conclude that ∂tũ∆t ⇀ ξ in L2(0, T ;H1
0 (Ω)).

Thus, we get that ξ = ∂tu, then by passing to the limits (∆t→ 0+), we have, for t a.e. in

(0, T ), for all v in L2(0, T ;H1
0 (Ω))

(2.30)

∫
Ω

[∂tuv + a(∂tu+ E)∇(u− τE)∇v + τ∇(∂tu+ E)∇v]dx =

∫
Ω

fvdx,

i.e. a solution to problem (P) exists.



Chapter 3

Dg time discretization of the Sobolev

equation

3.1 Introduction

The aim of this chapter is to discuss the time-approximation of the Sobolev equation; which

is a linearized version of the stratigraphic model with parameter λ equal to one.

Thus, we get the following linear problem:

(3.1) ∂tu−∆u− τ∆∂tu = f,

for x ∈ Ω, t ∈ J = (0, T ], τ > 0, where Ω is a bounded domain in Rd with Lipschitz

boundary ∂Ω.

We consider homogeneous Dirichlet boundary condition for u and for ∂tu, and the following

initial condition:

(3.2) u(x, 0) = u0(x), x ∈ Ω.

where u0 ∈ H1
0 (Ω).

Equation (3.1) is of pseudoparabolic type, which means that the time-derivative appears

in the highest order term of the operator. Such equations are called Sobolev equations.

They arise in many applications (cf. chap. Introduction). The nature of such problems is

transient and, therefore, an appropriate time stepping scheme has to be applied to obtain

an approximative solution. A flexible and efficient time discretization method is the dis-

continuous Galerkin finite element one (Dg) which is based on variational formulation of

initial value problems.

This type of equation was studied by Benjamin, Bona, and Mahony [13] to describe uni-

directional long dispersive waves. Theoretical results on existence, uniqueness, regularity,
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and decay at infinite time of solution for (3.1) are studied in Benjamin [13] and Tran [1],

for example. Numerical approximations based on finite differences, finite elements, and

spectral methods have been considered in Douglas, Bona, Ewing [32, 14, 23].

The outline of this chapter is as follows: In section 3.2, we introduce the discontinuous

Galerkin finite element method (Dg) for the problems (3.1)-(3.2). In section 3.3, error

estimates that are explicit in the polynomial order r and time step k are derived. The

section 3.4 concerns the discretization in time and space of the problem. In section 3.5, we

present some numerical results.

To describe the time-discretization, we use Bochner spaces of functions which map a time

interval I = (a, b) into a separable Hilbert space V : we denote by Lp(I;V ), 1 ≤ p ≤ ∞
and Hk(I;V ), 0 ≤ k ∈ R, the corresponding Lebesgue and Sobolev spaces. Ck(Ī;V ) are

the functions that are k times continuously differentiable. Pr(I;V ) denotes the set of all

the polynomials of degree less or equal to r, with coefficients in V, i.e. p ∈ Pr(I;V ) if and

only if p(t) =
∑r

j=0Xjt
j for some Xj ∈ V and t ∈ I. Pr denotes the orthogonal projector

of L2(I, V ) on Pr(I, V ), and we set V = L2(I, V ).

We emphasize here that the space V typically is infinite dimensional function space and,

in this sense, the theoretical setting of this chapter is semi-discrete. In practice, the spatial

operator might also have to be discretized. This will be addressed in section 3.4 below.

3.2 Dg time discretization

In order to discretize Problem (3.1) in time by Dg, let us start by introducing time meshes.

Let M be a partition of J =]0, T [ into N(M) subintervals {In}N
n=1 given by In =]tn−1, tn[

with nodes 0 =: t0 < t1 < ... < tN−1 < tN := T . The length of time step In is given by

kn := tn − tn−1.

The idea of Dg is to approximate the exact solution u by a semi-discrete function uk which,

on each step In, consists in a polynomial in t of order rn with coefficients in V .



Of course, u is not required to be continuous across the time nodes. This allows us to

write the Dg as a time stepping scheme. In order to deal with the discontinuities across

nodes tn, we define the left- and right-handed limits of a function u : J → H := L2(Ω) (or

u : J → V := H1
0 (Ω)) to be

u+
n = lim

s→0+
u(tn + s), 0 ≤ n ≤ N − 1, u−n = lim

s→0+
u(tn − s), 1 ≤ n ≤ N,

when these limits exist.

Furthermore, the jump of u across tn is defined as

[u]n = u+
n − u−n , 0 ≤ n ≤ N − 1.

The semi-discrete space in which we want to discretize (3.1)-(3.2) in time is

(3.3) Vr
k = {u : J → V : u|In ∈ Pr(In;V ), 1 ≤ n ≤ N}.

We consider the following discontinuous Galerkin approximation of (3.1)-(3.2): Find uk ∈
Vr

k such that

(3.4) ∀ vk ∈ Vr
k , a(uk, vk) = F (vk).

The bilinear form a(., .) and the form F are given by

a(u, v) =

∫ tN

0

(
(u′, v) + (∇u,∇v) + τ(∇u′,∇v)

)
dt+

N−1∑
n=1

([u]n, v
+
n )

+ (u+
0 , v

+
0 ) + τ

N−1∑
n=1

([∇u]n,∇v+
n ) + τ(∇u+

0 ,∇v+
0 ),(3.5)



and

F (v) = (u0, v
+
0 ) + τ(∇u0,∇v+

0 ) +

∫ tN

0

(f, v)dt.

where u′ = ∂tu.

Remark 3.1 Due to the discontinuity of the trial and test space, we may choose the test

function v vanishing outside In. Thus, (3.4) can be interpreted as an implicit time marching

scheme, where uk is obtained by solving successively evolution problems on In (for n =

1, ..., N) with initial values u−k,n−1. More precisely: if uk is already given on the time

intervals Ik, 1 ≤ k ≤ n− 1, we determine uk on In by solving:

Find uk ∈ Pr(In;V ) such that∫
In

{(u′k, vk)H + (∇(uk + τu′k),∇vk)H}dt+ (u+
k,n−1, v

+
k,n−1)H + τ(∇u+

k,n−1,∇v
+
k,n−1)H

=

∫
In

(f, vk)Hdt+ (u−k,n−1, v
+
k,n−1)H + τ(∇u−k,n−1,∇v

+
k,n−1)H ,(3.6)

for all vk ∈ Pr(In;V ). Here we set u−k,0 = u0.

Lemma 3.1 For all vk, wk ∈ Vr
k , one has that

a(vk, wk) =
N∑

n=1

∫
In

{−(vk, w
′
k)H + (∇vk,∇(wk − τw′k))H}dt

−
N−1∑
n=1

(v−k,n, [wk]n)H + (v−k,N , w
−
k,N)H

− τ
N−1∑
n=1

(∇v−k,n, [∇wk]n)H + τ(∇v−k,N ,∇w
−
k,N)H ,(3.7)

a(vk, vk) =
N∑

n=1

∫
In

‖∇vk‖2
Hdt+

1

2
‖v+

k,0‖
2
H +

τ

2
‖∇v+

k,0‖
2
H

+
1

2

N−1∑
n=1

‖[vk]n‖2
H +

τ

2

N−1∑
n=1

‖[∇vk]n‖2
H .(3.8)

Proof. Integration by parts in time and rearranging the nodal contributions give (3.7). To

prove (3.8), note that

a(vk, vk) =
1

2
a(vk, vk) +

1

2
a(vk, vk) =: T1 + T2.

Evaluating T1 with (3.5) and T2 with (3.7) show the assertion.

Notation:

Let us set in the sequel the following discrete energy norm: ∀ vk ∈ Vr
k , ‖|vk‖|2 := a(vk, vk).



Proposition 3.1 The Dg (3.4) has a unique solution uk ∈ Vr
k . Moreover, if u ∈ H1(0, T ;V )

is the solution to (3.1)-(3.2), one has the Galerkin orthogonality

∀ vk ∈ Vr
k , a(u− uk, vk) = 0.

Proof. Since the bilinear form a is continuous and coercive and the form linear F is

continuous, the Proposition comes from the Lax-Milgram theorem.

3.3 A priori error analysis

In this section, we derive error estimates for the Dg, explicit in time steps kn and in the

r-order polynomials. First, we introduce a projector and show that it is well defined. Then,

we derive estimate for this projector and we give a priori error estimate for Dg.

3.3.1 Interpolation error

In this section we introduce and analyze a projector. Let I = (−1, 1) and denote by

{Li}i≥0, Li ∈ P i(I), the Legendre polynomials on I. For u, v ∈ H1(Ω), we define the

scalar product

(u, v)τ = (u, v)H + τ(∇u,∇v)H ,

where (., .) denotes the L2 scalar product.

Definition 3.1 Let I = (−1, 1). For a function u ∈ L2(I;V ) which is continuous at

t = 1, we define Πru ∈ Pr(I;V ), r ∈ N, r ≥ 1, via the r + 1 conditions

(3.9) ∀ q ∈ Pr−1(I;V ),

∫
I

(Πru− u, q)τdt = 0, Πru(1) = u(1) in V.

Lemma 3.2 Πr is well defined.

Proof. Uniqueness:

Assume that u1 and u2 are two polynomials in Pr(I;V ) which satisfy (3.9), especially, we

have u1(1) = u2(1) in V .

Denote by Li, i ≥ 0, the Legendre polynomial of degree i ≤ r. The difference u1 − u2 can

be developed into the series:

u1 − u2 =
r∑

i=0

viLi, with vi =
2i+ 1

2

∫
I

(u1 − u2)Lidt ∈ V.



Fix now k ∈ {0, ...., r − 1}. From (3.9), it follows that

∀ v ∈ V,

∫
I

(u1 − u2, vLk)τdt = 0.

Using the orthogonality properties of the Legendre polynomials, we get

(vk, v)τ = 0 for all v ∈ V.

We conclude that vk = 0 in V , which gives

u1 − u2 = vrLr, vr ∈ V.

Since u1(1) = u2(1), and Lr(1) = 1, we have vr = 0, which proves the uniqueness of a

polynomial satisfying the conditions in Definition 3.1.

The existence follows similarly by setting

(3.10) Πru =
r−1∑
i=0

uiLi + (u(1)−
r−1∑
i=0

ui)Lr.

Definition 3.2 On an arbitrary interval In = (tn−1, tn), with kn := tn − tn−1, we define

Πr
In

via the linear map Q : (−1, 1) → In, t̂ 7→ t = 1
2
(tn−1 + tn + t̂kn) as

Πr
In
u = [Πr(u ◦Q)] ◦Q−1.

Lemma 3.3 Let u ∈ H1(I;V ) and let u =
∑∞

i=0 uiLi be the Legendre expansion of u with

coefficient ui = 2i+1
2

∫
I
uLi(t)dt ∈ V . For r ∈ N0, we denote by P r the L2(I;V )-projection

onto Pr(I;V ). There holds:

‖u− Πru‖2
L2(I;V ) = ‖u− P ru‖2

L2(I;V ) +
2

2r + 1
‖u(1)− (P ru)(1)‖2

V .

Proof. From the Definition of Πr we have: Πru =
∑r−1

i=0 uiLi+(u(1)−P ru(1))Lr. Therefore,

u− Πru = (u− P ru)− (u(1)− P ru(1))Lr.

The assertion follows by using the orthogonality properties of Legendre polynomials.

We recall the following approximation result from [39]. There, the proof is presented for

real-value functions, but the extension to the Bochner spaces considered here is straight-

forward.



Proposition 3.2 Let I = (−1, 1) and let u ∈ Hk+1(I;V ) for some integer k ≥ 1. Then

there exists q ∈ Pr(I;V ), r ≥ 1, such that

‖u′ − q′‖2
L2(I;V ) ≤

(r − s)!

(r + s)!
‖u(s+1)‖2

L2(I;V ),

‖u− q‖2
L2(I;V ) ≤

1

max(1, r2)

(r − s)!

(r + s)!
‖u(s+1)‖2

L2(I;V ),

for any 0 ≤ s ≤ min(r, k). Additionally, q(±1) = u(±1) if r ≥ 1.

Now, we give an estimation of the projector Πr:

Theorem 3.1 Let In = (tn−1, tn), kn := tn − tn−1, u ∈ Hrn+1(In;V ), rn ≥ 1 the approxi-

mation order on In. Then, we have

(3.11) ‖u− Πrn
In
u‖L2(In;V ) ≤

(kn

2

)rn+1 2
√

2

r2
nrn!

‖u(rn+1)‖L2(In;V ).

Proof. For the simplicity, we give the proof for the reference element I = (−1, 1) with

approximation order r. Then, we conclude by using the transformation Q.

Assume that u ∈ Hr+1(I;V ), using the Proposition 3.2, we obtain the following approxi-

mation estimate for P r:

(3.12) ‖u− P ru‖2
L2(I;V ) ≤

1

max(1, r2)

1

(2r)!
‖u(r+1)‖2

L2(I;V ),

For the second term in Lemma 3.3, we use the following Darboux-Christoffel formula:

(3.13) (P ru)(s) =
r + 1

2

∫ 1

−1

Lr+1(s)Lr(t)− Lr(s)Lr+1(t)

s− t
u(t)dt,

and
r + 1

2

∫ 1

−1

Lr+1(s)Lr(t)− Lr(s)Lr+1(t)

s− t
dt = 1.

Then we get

(P ru)(s)− u(s) =
r + 1

2

∫ 1

−1

Lr+1(s)Lr(t)− Lr(s)Lr+1(t)

s− t
(u(t)− u(s))dt.

In particular for s = 1,

(P ru)(1)− u(1) =
r + 1

2

∫ 1

−1

Lr+1(t)− Lr(t)

t− 1
(u(t)− u(1))dt.

By using the following Legendre polynomial properties, we come to

Lr =
1

2rr!

( d
dt

)r
(1− t2)r,



thus

Lr+1 − Lr =
1

2rr!

( d
dt

)r(− (1 + t)(1− t2)r
)
.

Now, assume that u in Hr+1(I;V ), with r ≥ 1. By setting αr = r+1
2r+1r!

, we obtain that

(P ru)(1)− u(1) = αr

∫
I

( d
dt

)r(− (1 + t)(1− t2)r
)u(t)− u(1)

t− 1
dt

= −αr

∫
I

( d
dt

)r(
(1 + t)(1− t2)r

) ∫ 1

t

u′(s)

1− t
dsdt

= −αr

∫
I

( d
dt

)r(
(1 + t)(1− t2)r

) ∫ 1

0

u′
(
(1− t)σ + t

)
dσdt

= (−1)r+1αr

∫
I

(
(1 + t)(1− t2)r

) ∫ 1

0

(1− σ)ru(r+1)
(
(1− t)σ + t

)
dσdt

= (−1)r+1αr

∫
I

(
(1 + t)(1− t2)r

) ∫ 1

t

u(r+1)(s)
(1− s)r

(1− t)r+1
dsdt.

‖(Pru)(1)− u(1)‖V ≤ αr

∫
I

∣∣(1 + t)(1− t2)r
∣∣( 1

1− t

)r+1
∫ 1

t

(1− s)r‖u(r+1)(s)‖V dsdt.

Using Cauchy-Schwarz inequality, we get

‖(P ru)(1)− u(1)‖V ≤ αr

∫ 1

−1

(1 + t)r+1
( 1

1− t

)( ∫ 1

t

‖u(r+1)(s)‖2
V ds
) 1

2
( ∫ 1

t

(1− s)2rds
) 1

2dt

≤ αr√
2r + 1

∫ 1

−1

(1 + t)r+1(1− t)r− 1
2

( ∫ 1

−1

‖u(r+1)(s)‖2
V ds
) 1

2dt

≤ αr√
2r + 1

‖u(r+1)‖L2(I;V )

∫ 1

−1

(1 + t)r+1(1− t)r− 1
2dt.

Setting s = 1−t
2

, we get

‖(P ru)− u(1)‖V ≤ 22r+ 3
2

αr√
2r + 1

‖u(r+1)‖L2(I;V )

∫ 1

0

(1− s)r+1(s)r− 1
2ds

≤ 2r+ 1
2

r + 1

r!
√

2r + 1
‖u(k+1)‖L2(I;V )

∫ 1

0

(1− s)r+1(s)r− 1
2ds

≤ 2r+ 1
2

(r + 1)

r!
√

2r + 1
‖u(r+1)‖L2(I;V )B(r + 2, r +

1

2
),(3.14)

where B is the beta function and is defined by

∀ (p, q) ∈]0,∞[2, B(p, q) =

∫ 1

0

(1− t)p−1tq−1dt,

which is related to the gamma function by

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
.



Then, we obtain

B(r + 2, r +
1

2
) =

Γ(r + 2)Γ(r + 1
2
)

Γ(2r + 5
2
)

=
(r + 1)!Γ(r + 1

2
)

Γ(2r + 5
2
)

.

Replacing B in (3.14), we get

‖(P ru)(1)− u(1)‖V ≤ 2r+ 1
2
(r + 1)(r + 1)!Γ(r + 1

2
)

r!
√

2r + 1Γ(2r + 5
2
)
‖u(r+1)‖L2(I;V )

≤ 2r+ 1
2

(r + 1)2Γ(r + 1
2
)

√
2r + 1Γ(2r + 5

2
)
‖u(r+1)‖L2(I;V ).

Now, we simplify the term in the right hand side to obtain

Γ(r + 1/2)

Γ(2r + 5/2)
=

(2r − 1)× (2r − 3)× ...× 5× 3× 22r+2

(4r + 3)× (4r + 2)× ...× (2r + 1)× (2r − 1)× ...× 5× 3× 2r
.

Therefore,

‖(P ru)(1)− u(1)‖V ≤ 22r+5/2 r + 1

(2r + 1)3/2r!

r+1∏
i=1

i

2(r + i) + 1
‖u(r+1)‖L2(I;V )(3.15)

≤
√

2

(2r + 1)1/2r!

r+1∏
i=1

4i

2(r + i) + 1
‖u(r+1)‖L2(I;V )

≤
√

2

2
2r
3

+16(2r + 1)3/2r!
‖u(r+1)‖L2(I;V ).

Now, using (3.15) and (3.12) in Lemma (3.3), we obtain the estimation for Πr.

3.3.2 A priori error estimate

Proposition 3.3 Let u be the exact solution of (1.1) − (1.2) and uk the semi-discrete

solution of the Dg (3.4) in Vr
k . Let Iu ∈ Vr

k be the interpolate of u which is defined on

each time interval In by Iu|In = Πr
In

(u|In).

Then there holds

‖u− uk‖L2(I;V ) ≤ C‖u− Iu‖L2(I;V ).

The constant C is in particular independent of T.

Proof. : By Lemma 3.1 we have, for all vk, wk ∈ Vr
k ,

a(vk − wk, vk − wk) =

∫
J

‖∇(vk − wk)‖2
Hdt+

1

2
‖(vk − wk)

+
0 ‖2

H +
τ

2
‖∇(vk − wk)

+
0 ‖2

H

+
1

2

N−1∑
n=1

‖[vk − wk]n‖2
H +

τ

2

N−1∑
n=1

‖[∇(vk − wk)]n‖2
H .(3.16)



Hence, we get∫
J

‖uk − Iu‖2
V dt ≤ a(uk − Iu, uk − Iu) ≤ |a(u− Iu, uk − Iu)|

where we have used, in the last step, Proposition 3.1. Writing Θ for uk − Iu, we get with

lemma 3.1 and the definition of I that∫
J

‖uk − Iu‖2
V dt ≤

∫
J

{−(u− Iu,Θ′)H + (∇(u− Iu),∇(Θ− τΘ′))H}dt

+
N−1∑
n=1

((u− Iu)−n , [Θ]n)H + ((u− Iu)−N , w
−
k,N)H

+ τ
N−1∑
n=1

(∇(u− Iu)−n , [∇Θ]n)H + (∇(u− Iu)−N ,∇Θ−
N)H(3.17)

=

∫
J

|(∇(u− Iu),∇Θ)H}|dt

≤
∫

J

‖u− Iu‖V ‖Θ‖V dt.(3.18)

We conclude now with the Cauchy-Schwarz inequality that∫
J

‖uk − Iu‖2
V dt ≤ C

∫
J

‖u− Iu‖2
V dt.

Using the triangle inequality, we get

‖u− uk‖L2(I;V ) ≤ 2‖u− Iu‖L2(I;V ).

Therefore, Proposition 3.3 and Theorem 3.1 give error estimates for the Dg (3.4) which

are valid if the exact solution is at least in H1(I;V ) .

Theorem 3.2 Let u be the exact solution of (3.1)-(3.2) and uk the semi-discrete solution

of the Dg (3.4). Assume that u|In ∈ Hrn+1(In;V ) for 0 ≤ n ≤ N . Then we have

(3.19) ‖u− uk‖2
L2(In;V ) ≤

N∑
n=1

(kn

2

)2(rn+1) 1

r4
n(rn)!2

‖u(rn+1)‖2
L2(In;V ).

3.4 Discretization in time and space

The Dg reduces the pseudoparabolic equation (3.1) in each time step In to a coupled

elliptic system of r + 1 equations. In order to obtain a fully discrete solution, this system

has to be solved numerically. Note that for large r, this is very costly, the system has to

be decoupled.



3.4.1 The spatial problems

On a generic time step I = (t0, t1) with length k = t1 − t0 > 0 and approximation order

r, the Dg semi-approximation uk is found by solving the problem in (3.6). The right-hand

side f(t) and the initial condition uinit are the known data on the time step.

Let {ϕ̂i}r
i=0 and {ψ̂i}r

i=0 the two bases of the reference polynomial space Pr((−1, 1)), chosen

as normalized Legendre polynomials. These bases define transported variants {ϕi}r
i=0 and

{ψi}r
i=0 on Pr((t0, t1)) given by ϕi ◦ F (t̂) = ϕ̂i(t̂) and ψi ◦ F (t̂) = ψ̂i(t̂), where F is the

transformation t = F (t̂) = 1
2
(t0 + t1 + kt̂) from (−1, 1) onto (t0, t1).

Now if we set uk =
∑r

j=0 uk,jϕj and vk =
∑r

i=0 vk,iψi with coefficients uk,j, vk,i ∈ V ,

Problem (3.6) is then equivalent to the elliptic system, given in a variational sense:

Find {uk,j}r
j=0 ⊂ V such that for all {vk,i}r

i=0 ⊂ V

r∑
i,j=0

{
[ ∫

I

ϕ′jψidt+ ϕ+
j (t0)ψ

+
i (t0)

](
(uk,j, vk,i) + τ(∇uk,j,∇vk,i)

)
(3.20)

+
( ∫

I

ϕjψidt
)
(∇uk,j,∇vk,i)}

=
r∑

i=0

{(
∫

I

fψidt, vk,i) +
(
(uinit, vk,i) + τ(∇uinit,∇vk,i)

)
ψ+

i (t0)}.

We introduce the matrices

Âij :=

∫ 1

−1

ϕ̂′jψ̂idt̂+ ϕ̂+
j (−1)ψ̂+

i (−1), B̂ij :=

∫ 1

−1

ϕ̂jψ̂idt̂,

which are expressed in terms of the bases {ϕ̂i} and {ψ̂i} on (−1, 1) and which are therefore

independent of k. Then, (3.20) is to find {uk,j}r
j=0 ⊂ V such that for all {vk,i}r

i=0 ⊂ V

(3.21)
r∑

i,j=0

Âij

(
(uk,j, vk,i) + τ(∇uk,j,∇vk,i)

)
+
k

2
B̂ij(∇uk,j,∇vk,i) =

r∑
i=0

k

2
(f̂ 1

i , vk,i) + (f̂ 2
i , vk,i),

where the right hand sides f̂ 1
i and f̂ 2

i are defined by

f̂ 1
i (v) =

( ∫ 1

−1

[f ◦ F ]ψ̂idt̂, v
)
, f̂ 2

i (v) =
(
(uinit, v) + τ(∇uinit,∇v)

)
ψ̂+

i (−1).

To obtain a fully discrete approximation of (3.1), (3.2) the system (3.21) has to be solved

numerically by a Finite Element Method. if {uh
k,j} is a FE solution of (3.21) in Vh ⊂ V ,

then uh
k =

∑r
j=0 u

h
k,jϕj approximates uk =

∑r
j=0 uk,jϕj on the time step I. We get for the



error

‖uk − uh
k‖2

L2(I;V ) =

∫
I

‖
r∑

j=0

(uk,j − uh
k,j)ϕj‖2

V dt

=
r∑

j=0

‖uk,j − uh
k,j‖2

V (j + 1/2)

∫
I

L2
jdt =

k

2

r∑
j=0

‖uk,j − uh
k,j‖2

V ,

where we used the orthogonality properties of the Legendre polynomials.

Thus, we have the following proposition :

Proposition 3.4 Let u be the exact solution of (3.1), (3.2) on J = (0, T ] and let uk be the

time discretization of u. On each interval In we develop uk|In into uk|In =
∑r

j=0 u
n
k,jϕn,j.

Let {uh,n
k,j } be a Finite Element approximation of (3.21) and let uh

k be the fully discrete

solution. Then we have

(3.22) ‖u− uh
k‖2

L2(J ;V ) ≤ C‖u− uk‖2
L2(J ;V ) + C

N∑
n=1

kn

r∑
j=0

‖un
k,j − uh,n

k,j ‖
2
V .

The first term in the error estimate (3.22) is the error of the time discretization. The

second error contribution stems from the spatial discretization and will be discussed in

more details.

For r = 1, the matrix Â is given by

Â =

 1
2

√
3
4

−
√

3
4

3
2

 .

Let us denote by b the bilinear form defined by

b(~u,~v) =
r∑

i,j=0

Âij

(
(uj, vi) + τ(∇uj,∇vi)

)
+
k

2
B̂ij(∇uj,∇vi).

The bilinear form b is continue and V-coercive, and we have

b(~u, ~u) =
r∑

i=0

Âii

(
‖ui‖2 + τ‖∇ui‖2

)
+
k

2
‖∇ui‖2,

and we get

(3.23) b(~u, ~u) ≥ τ + k

2

r∑
i=0

‖∇ui‖2.

Now using (3.23) and the continuity of the bilinear form b, we get

(3.24) ‖~un
k − ~uh,n

k ‖V ≤ C

τ + kn

inf
~v∈Vh

‖~un
k − ~v‖V .



3.5 Numerical results

3.5.1 Convergence study

As a test problem, we choose the standard Sobolev equation with d = 2; the computational

domain being the unit square Ω = (0, 1)2 and the time interval J = (0, 0.1). Here, we

choose for the initial data: u0(x, y) = sin(πx) sin(πy), and for right hand side: f =

− exp(−t) sin(πx) sin(πy), with τ = 1.

u0 is actually the first eigenfunction of the Laplacian and belongs to H1
0 (Ω).

The corresponding exact solution u(t, x, y) is smooth in space and time and is given by :

u(t, x, y) = exp(−t) sin(πx) sin(πy).

Since the solution is smooth, we would investigate the performance of the Dg by using

a spatial discretization of known better order than the temporal one. In order to test

the convergence on k, we choose a fixed time approximation order for all time steps of

the partition M. Convergence is then achieved by refining the time partition M, i.e by

increasing the number of time steps in the interval J = (0, 0.1). We present in the figure

below (see Figure 3.1) the convergence rate for the previous problem with r = 0, 1. In

space discretization, we use the standard P1 finite element method.

Figure 3.1: Convergence rate for previous problem, h-Dg

This figure shows the convergence of Dg scheme as a function of the time step. A conver-

gence rate equal to r + 1 is observed when the approximation order with respect to time

is r.





Chapter 4

Space-Time DgFem discretization for

the stratigraphic model

4.1 Introduction

In this chapter, we are interested in the discretization of the stratigraphic problem studied

in Chapter 2. We use the notations and the preliminary results given in Chapter 1. For

the sake of simplicity, we shall assume in the sequel that E is a non-negative constant.

Although in more realistic models E depends on other variables such as the bathymetry

b, the difference between the sediment thickness and the sea level. The purpose of this

chapter is to introduce a numerical scheme that implicitly contains the constraint (2).

This is proved by using the lowest-order DgFem(0) with a particular choice of the flux at

the interface between two meshes elements. It is well known that high order DgFem(p)

do not respect the maximum principle, our aim is to propose a p-adaptive algorithm that

combines DgFem(0) and DgFem(p), p ≥ 1 in order to get more accuracy while still verifying

the constraint.

The outline of this chapter is organized as follow: In the following section, the semi-

discretized problem using Dg(0) scheme is presented. In section 4.3, we introduce the

discontinuous Galerkin scheme for the semi-discretized problem, we prove the existence

and the uniqueness of the discrete solution, then we prove that the lowest-order DgFem

scheme satisfies implicitly the constraint. In section 4.4, the Newton algorithm for the

numerical resolution of the system of nonlinear equations is presented. The section 4.5

concerns the numerical results. In section 4.6, a p-adaptive algorithm applied to the model

problem is presented.
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4.2 Time Dg discretization

We consider a uniform partition of (0, T ) into N subintervals Ik = [tk, tk+1[, k = 0, ..., N−1.

We denote by ∆t = tk+1 − tk the time step. To introduce the Dg time scheme, we rewrite

the model problem in the following form: Find u and w in H1
0 (Ω) such that

(4.1)


w − ∂tu = E in Ω× (0, T ),

w − div[a(w)∇u]− τ∆w = f + E in Ω× (0, T ),

u(0, x) = u0 in Ω.

The discontinuous Galerkin approximation for the problem (4.1) reads: Find u∆t and w∆t

in Vr
k such that for all χ, ψ in Vr

k

∫ T

0

∫
Ω

w∆t χdx dt−
∫ T

0

∫
Ω

∂tu∆t χdx dt−
N−1∑
k=1

∫
Ω

[u∆t]kχ
+
k dx−

∫
Ω

u+
0 χ

+
0 dx

=

∫
Ω

u0χ
+
0 dx+

∫ T

0

∫
Ω

E∆t χdx dt,∫ T

0

∫
Ω

w∆t ψ dx dt+

∫ T

0

∫
Ω

a(w∆t)∇u∆t · ∇ψ dx dt+ τ

∫ T

0

∫
Ω

∇u∆t · ∇ψ dx dt

=

∫ T

0

∫
Ω

(f∆t + E∆t)ψ dx dt.

Since the functions χ and ψ are not required to be continuous at time tk, one may assume

that χ and ψ vanish outside Ik. Therefore, the system reduces to: for each Ik with

k ≤ N − 1, determine u∆t and w∆t in Vr
k such that∫

Ik

∫
Ω

w∆t χdx dt−
∫

Ik

∫
Ω

∂tu∆t χdx dt−
∫

Ω

u+
∆t,kχ

+
k dx = −

∫
Ω

u−∆t,kχ
+
k dx

+

∫
Ik

∫
Ω

E∆t χdx dt,∫
Ik

∫
Ω

w∆t ψ dx dt+

∫
Ik

∫
Ω

a(w∆t)∇u∆t · ∇ψ dx dt+ τ

∫
Ik

∫
Ω

∇u∆t · ∇ψ dx dt

=

∫
Ik

∫
Ω

(f∆t + E∆t)ψ dx dt.

For the sake of simplicity, we consider in the sequel the case r = 0, i.e., when the approxi-

mating functions are piecewise constant in time. Then ∂tu∆t ≡ 0 and u∆t(t) = uk+1 = u+
∆t,k,

w∆t(t) = wk+1 = w+
∆t,k, and the method reduces to the implicit Euler method: Find uk+1



and wk+1 in H1
0 (Ω) such that∫

Ω

wk+1 χdx =
1

∆t

∫
Ω

(uk+1 − uk)χdx+

∫
Ω

Ek+1 χdx, ∀χ ∈ L2(Ω),∫
Ω

wk+1 ψ dx+

∫
Ω

a(wk+1)∇uk+1 · ∇ψ dx+ τ

∫
Ω

∇wk+1 · ∇ψ dx

=

∫
Ω

(fk+1 + Ek+1)ψ dx, ∀ ψ ∈ H1
0 (Ω),

(4.2)

where fk+1 and Ek+1 are respectively the average of f∆t and E∆t over Ik. The first equation

in (4.2) gives that wk+1 = 1
∆t

(uk+1 − uk). Replacing wk+1 by its values in the second

equation of (4.2) and introducing the function b(w) := a(w−uk

∆t
+ Ek+1), we obtain the

equation to be solved in each time step: Find uk+1 ∈ H1
0 (Ω) such that for all v in H1

0 (Ω)

(4.3)



1

∆t

∫
Ω

uk+1v dx+

∫
Ω

(b(uk+1) +
τ

∆t
)∇uk+1 · ∇v dx =

∫
Ω

fk+1v dx

+
1

∆t

∫
Ω

ukv dx+
τ

∆t

∫
Ω

∇uk · ∇v dx,

u0 = u0 in Ω.

4.3 Space DgFem discretization

4.3.1 DgFem formulation

Our starting point is the time discrete problem (4.3). Let us introduce the following bilinear

form for given ρh ∈ V p
h :

A(ρh)(uh, vh) =
1

∆t

∫
Ω

uhvh dx+
∑

K∈Kh

∫
K

(b(ρh) +
τ

∆t
)∇uh · ∇vh dx+

∑
S∈Sh

γ0

hS

∫
S

γS[uh][vh] ds

−
∑
S∈Sh

∫
S

{∂uh

∂nS

}S,b[vh]S ds−
∑
S∈Sh

∫
S

[uh]S{
∂vh

∂nS

}S,b ds

−
∑
S∈Sh

∫
S

{∂uh

∂nS

}S,τ/∆t[vh]S ds−
∑
S∈Sh

∫
S

[uh]S{
∂vh

∂nS

}S,τ/∆t ds,

(4.4)

where γS = τ
∆t

+ 2b+b−

b++b−
and γ0 > 0.

Defining the linear form

Lk(vh) :=
1

∆t

∫
Ω

uk
hvh dx+

∑
K∈Kh

∫
K

τ

∆t
∇uk

h · ∇vh dx+
∑
S∈Sh

γ0τ

hS∆t

∫
S

[uk
h][vh] ds

−
∑
S∈Sh

∫
S

{∂u
k
h

∂nS

}S,τ/∆t[vh]S ds−
∑
S∈Sh

∫
S

[uk
h]S{

∂vh

∂nS

}S,τ/∆t ds+

∫
Ω

fk+1vh dx.

(4.5)



The discrete approximation to (4.3) reads: Find uk+1
h ∈ V p

h such that for all vh ∈ V p
h

(4.6) A(uk+1
h )(uk+1

h , vh) = Lk(vh).

A similar discretization has been used in [21] for a stationary convection-diffusion problem

with discontinuous diffusion coefficients.

The stability of (4.6) is expressed by the following result.

Lemma 4.1 Let for γ0 > 0 and ρ a positive bounded piecewise continuous function

(4.7) ‖|uh|‖h,ρ :=

√
1

∆t
‖uh‖2 +

τ

∆t

∑
K

‖∇uh‖2
K +

τ

∆t

∑
S∈Sh

γ0

hS

‖[uh]S‖2
S.

Then ‖| · |‖h,ρ is a norm on V p
h and there exists γ > 0, independent of h, such that

(4.8) A(ρ)(uh, uh) ≥ γ ‖|uh|‖2
h,ρ.

This result is responsible for the well-posedness of the discrete problem. As usual, it yields,

in connection with consistency, to convergence.

4.3.2 Existence and uniqueness

On the discrete level, we obtain not only existence of a solution, but also uniqueness.

Proposition 4.1 Suppose for p > 0 that γ0 is sufficiently large. The problem (4.6) has

at least one solution. In addition, if a is Lipschitz-continuous and τ sufficiently large, the

solution is unique too.

Proof. The proof of the existence of a solution to the problem (4.6) is based on the Brower’s

fixed point theorem. We consider an application ψ : V p
h → V p

h such that ψ(ρ) = uk+1
h,ρ ,

where uk+1
h,ρ is the solution of the following linearized problem

(4.9)


Find uk+1

h,ρ ∈ V p
h , such that

A(ρ)(uk+1
h,ρ , vh) = Lk(vh) ∀ vh ∈ V p

h .

Existence and uniqueness of uk+1
h,ρ follow from the Lax-Milgram theorem in conjunction

with Lemma 4.1.

Let ρn → ρ, choosing vh = uk+1
h,ρ , we show that the sequence (uh,ρn)n is bounded in V p

h . We

may extract a subsequence uh,ρn′
such that uh,ρn′

→ ξ as n′ →∞. The sequence (uh,ρn′
)n′

satisfies the equation (4.9), thus by passing to the limits (n′ →∞), we prove that ξ satisfies



the equation (4.9), we conclude that ξ = ψ(ρ) (uniqueness of the solution). The whole

sequence converges and ψ is continuous. Thus the assertion follows from the Brower fixed

point theorem.

We now turn to the uniqueness proof. Assume that the problem (4.6) has two solutions

u1
h and u2

h. We set wh = u1
h − u2

h. We have for all vh ∈ V p
h

(4.10) A(u1
h)(wh, vh) = A(u1

h)(u
2
h, vh)− A(u2

h)(u
2
h, vh) =: R(vh).

In particular for vh = wh, we have

C1‖|wh|‖2
h,u1

h
≤ |A(u1

h)(u
2
h, wh)− A(u2

h)(u
2
h, wh)|.

The right hand-side is:

R(wh) =
∑

K∈Kh

∫
K

(b1 − b2)∇u2
h · ∇wh dx+

∑
S∈Sh

γ0

hS

∫
S

(
γ1

S − γ2
S

)
[u2

h][wh] ds

−
∑
S∈Sh

∫
S

{∂u
2
h

∂nS

}S,(b1−b2)[wh]S ds−
∑
S∈Sh

∫
S

[u2
h]S{

∂wh

∂nS

}S,(b1−b2) ds,

where bi = b(ui
h) and γi

S = τ
∆t

+
2b+i b−i
b+i +b−i

. Let L be the Lipschitz-constant of a. Then we have

|b(u1
h)− b(u2

h)| = |a(u
1
h − uk

∆t
+ Ek+1)− a(

u2
h − uk

∆t
+ Ek+1)

≤ L|u
1
h − uk

∆t
+ Ek+1 − (

u2
h − uk

∆t
+ Ek+1)| ≤ L

∆t
|u1

h − u2
h|

=
L

∆t
|wh|.

The standard inverse estimate ‖∇vh‖K,∞ ≤ Ch−1/2‖∇vh‖K gives ‖∇u2
h‖Ω,∞ ≤ Ch−1/2‖|u2

h|‖h,u2
h
≤

Ch−1/2 with a data-dependent constant since u2
h solves (4.6). We therefore obtain with

Lemma 1.24∑
K∈Kh

∫
K

(b1 − b2)∇u2
h · ∇wh dx ≤ L

∆t

∑
K∈Kh

∫
K

|wh|∇u2
h · ∇wh dx

≤ L‖∇u2
h‖∞,Ω

∆t

∑
K∈Kh

∫
K

‖∇wh‖2
K

≤ CLh−1/2

∆t

∑
K∈Kh

∫
K

‖∇wh‖2
K

≤ C1τ

2∆t

∑
K∈Kh

∫
K

‖∇wh‖2
K ≤ C1

2
‖|wh|‖2

h,u1
h
,



provided τ ≥ 2Ch−1/2C−1
1 L‖∇u2

h‖∞,Ω. Now the term can be absorbed by the left-hand

side of (4.10).

The other terms are treated in similar way, and we find wh = 0.

4.3.3 DgFem(0)

In the lowest-order case, the DgFem scheme reduces to a cell-centered finite volume method,

and the well-known theoretical results can be used, see for example[27].

In this case the bilinear form A reduces to

A(ρh)(uh, vh) =
1

∆t

∫
Ω

uhvh dx+
∑
S∈Sh

1

hS

∫
S

γS[uh][vh] ds.(4.11)

It is clear that the term γS

hS
[uh] is an approximation of the normal flux, and this implies

that γS

hS
has to be chosen as the distance of the orthocenters of the neighboring triangles

of S, in case of an interior side. A similar argument is used for the boundary sides.

The error analysis of [27] assumes that the triangulation h satisfies the following condition:

there exists η > 0 such that for any α angle of an element K ∈ Kh we have

(4.12) η < α <
π

2
.

4.3.4 Discrete maximum principle

In analogy to the continuous formulation, we prove that the DgFem(0) scheme with bilinear

form (4.11) satisfies implicitly the constraint
uk+1

h −uk
h

∆t
+ Ek+1 ≥ 0 a.e. in Ω, for k =

0, ..., N − 1.

Proposition 4.2 Let uk+1
h be the solution of the problem (4.6) with p = 0. Assume that

fk+1 and Ek+1 satisfy fk+1 + Ek+1 ≥ 0. Then, we have

(4.13)
uk+1

h − uk
h

∆t
+ Ek+1 ≥ 0, a.e. in Ω, k ≥ 0.

A similar result cannot be expected for p ≥ 1 since the discretization of the elliptic operator

does not lead to an M-matrix in this case. This will be illustrates by the numerical

experiments below.

Proof. Let uk+1
h be the solution of the problem (4.6), we have ∀vh ∈ V 0

h∫
Ω

(
uk

h − uk−1
h

∆t
+ Ek+1)vh dx+

∑
S∈Sh

1

hS

∫
S

2b+b−

b+ + b−
[uk+1

h ][vh] ds

+τ
∑
S∈Sh

1

hS

∫
S

[
uk+1

h − uk
h

∆t
+ Ek+1][vh] ds

=

∫
Ω

fk+1vh dx+

∫
Ω

Ek+1vh dx ∀ vh ∈ V 0
h .



In particular for vh = (
uk+1

h −uk
h

∆t
+ Ek+1)− ∈ V 0

h , we obtain

−‖(u
k+1
h − uk

h

∆t
+ Ek+1)−‖2

0 +
∑
S∈Sh

1

hS

∫
S

2b+b−

b+ + b−
[uk+1

h ][(
uk+1

h − uk
h

∆t
+ Ek+1)−] ds

+τ
∑
S∈Sh

1

hS

∫
S

[
uk+1

h − uk
h

∆t
+ Ek+1][(

uk+1
h − uk

h

∆t
+ Ek+1)−] ds

=

∫
Ω

fk+1(
uk+1

h − uk
h

∆t
+ Ek+1)− dx+

∫
Ω

Ek+1(
uk+1

h − uk
h

∆t
+ Ek+1)− dx.

If on the one hand,
uk+1,+

h −uk,+
h

∆t
+ Ek+1 ≥ 0 and

uk+1,−
h −uk,−

h

∆t
+ Ek+1 ≥ 0, we have

[vh] = (
uk+1,+

h − uk,+
h

∆t
+ Ek+1)− − (

uk+1,−
h − uk,−

h

∆t
+ Ek+1)− = 0.

On the other hand,
uk+1,+

h −uk,+
h

∆t
+ Ek+1 or

uk+1,−
h −uk,−

h

∆t
+ Ek+1 is non-positive and from the

definition of the average of b, we obtain

2b+b−

b+ + b−
= 0.

We conclude that

∑
S∈Sh

1

hS

∫
S

2b+b−

b+ + b−
[uk+1

h ][(
uk+1

h − uk
h

∆t
+ Ek+1)−] ds = 0,

we obtain

−‖(u
k+1
h − uk

h

∆t
+ Ek+1)−‖2

0 =

∫
Ω

fk+1(
uk+1

h − uk
h

∆t
+ Ek+1)− dx+

∫
Ω

Ek+1(
uk+1

h − uk
h

∆t
+ Ek+1)− dx

+ τ
∑
S∈Sh

1

hS

∫
S

|[(u
k+1
h − uk

h

∆t
+ Ek+1)−]|2 ds.

Since the term in the right hand side is nonnegative

(
uk+1

h − uk
h

∆t
+ Ek+1)− = 0.

Thus
uk+1

h −uk
h

∆t
+ Ek+1 ≥ 0.



4.4 Nonlinear solver

The non-linear equations at each time-step are solved by a Newton-type algorithm which

solves in each iteration l

(4.14) B(uk+1,l
h )(uk+1,l+1

h − uk+1,l
h , vh) = α

(
Lk(vh)− A(uk+1,l

h )(uk+1,l
h , vh)

)
,

where

B(uh)(wh, vh) = A(uh)(wh, vh) +
∑

K∈Kh

∫
K

a′ε(uh)∇wh · ∇vh dx+
∑
S∈Sh

γ0

hS

∫
S

γ′S[wh][vh] ds

−
∑
S∈Sh

∫
S

{∂wh

∂nS

}S,a′ε [vh]S ds−
∑
S∈Sh

∫
S

[wh]S{
∂vh

∂nS

}S,a′ε ds,

(4.15)

with γ′S = ∂γS/∂uh and α is a positive number.

We denote by F k(uh) = A(uh)(uh, vh)− Lk(vh), it is not necessary that F k(uk+1
h ) = 0 has

got a solution even if F k(uk+1) = 0 has. In this case the Newton iteration tends to be the

minimizer of ‖F k(uk+1
h )‖.

It is well known that for sufficiently small α

(4.16) ‖F k(uk+1,l+1
h )‖ < ‖F k(uk+1,l

h )‖,

and

(4.17) dl = −

(
∂F k(uk+1,l

h )

∂uh

)−1

F k(uk+1,l
h ),

is a direction descent for ‖F k(uk+1
h )‖. The Newton iteration is

(4.18) uk+1,l+1
h = uk+1,l

h + αldl,

where 0 < αl ≤ 1 is chosen as large as possible in order to allow quadratic convergence.

The Newton method is local, and convergence is assured only when uk+1,0
h is close enough

to the solution. In general, the first guess may be outside the region of convergence. To

improve convergence from bad initial guesses, a damping strategy is used for choosing αl.

It chooses the largest damping coefficient α out of the sequence 1, 1/2, 1/4, ..., such that

the following inequality holds:

(4.19) ‖F k(uk+1,l+1
h )‖ < ‖F k(uk+1,l

h )‖.

An important point of this strategy is that when uk+1,l
h approaches the solution, then α→ 1

and thus the convergence rate increases.



Closely related to the above problem is the choice of the initial guess uk+1,0
h . By default,

the solver sets uk+1,0
h and then assembles the DgFem matrices Ak and bk and computes

uk+1,1
h = A−1

k bk,

and the Newton iteration is then started with uk+1,1
h , which should be a better guess than

U0. Furthermore, if the equation is linear, then uk+1,1
h is the exact DgFem solution and the

solver does not enter the Newton loop.

In general the exact Jacobian

Jl =
∂F k(uk+1,l

h )

∂uh

,

is not available. A very simple approximation to Jl, which gives a fixed point iteration, is

possible as follows. Essentially, for a given uk+1,l
h , we compute the DgFem matrices Ak and

bk and we set

(4.20) Uk+1,l+1 = A−1
k F.

This is equivalent to approximating the Jacobian Jl with the matrix Ak. Indeed, since

F k(uk+1,l
h ) = Aku

k+1,l
h − bk, putting Jl = Ak we have

uk+1,l+1
h = uk+1,l

h − J−1
l F k(uk+1,l

h ) = uk+1,l
h − A−1

k (Aku
k+1,l
h − bk) = A−1

k bk,

In many cases the convergence rate is slow, but the cost of each iteration is cheap. The

Newton algorithm is as follows

• Step 1 (Initialization): for a given u0 initial condition, Tol > 0 for residual norm,

∆t: time step and triangulation Kh, we compute uk
h the L2-projection of u0.

• Step 2 (Initial guess for Newton algorithm): construct the matrix Ak and the right

hand side bk, compute uk,l
h = A−1

k bk and nr = ‖F k(uk,l
h )‖.

• Step 3 (Newton algorithm)

– Step 3.1: construct the Jacobian matrix J .

– Step 3.2: solve Jl ∗ δuk
h = −αF k(uk,l

h ).

– Step 3.3: compute uk,l+1
h = uk,l

h + δuk
h and nrr = ‖F k(uk,l

h )‖.

– If (nr < nrr), α = α/2 and continue with 3.2.

– If nrr < Tol continue with step 4.

• Step 4: Set uk+1
h = uk,l+1

h and continue with step 2.



4.5 Numerical results

We consider problem (4.3) in the domain Ω =] − 1, 1[2 for 0 ≤ t ≤ T with homogeneous

Dirichlet condition and a right hand side f equal to 0. The initial condition u0 is given by

u0(x, y) = − sin(πx) sin(πy),

and a = aε is given by

aε(u) =



0 if u < 0,

3u2

ε2
(1− 2u

3ε
) if 0 ≤ u ≤ ε,

1 if u ≥ ε.

The meshes are obtained by uniform refined from a coarse mesh h0, verifying the angle

condition required for p = 0.

We fix ε at 0.1, the maximum erosion rate E is equal to 0.1 and the time step ∆t = 0.1.

We then compare the number of iterations needed for the convergence of the algorithm by

using DgFem(p), p = 0, 1, 2. The algorithm stopped at a tolerance fixed at 10−12 (norm

of residual) or if the maximum number of iteration fixed at 80 iterations is reached. The

result is presented in the table below

τ 1 0.1 0.05

t 0.1 0.2 0.4 0.1 0.2 0.4 0.1 0.2 0.4

p = 0 24 12 8 25 21 17 80 39 39

p = 1 22 9 9 38 52 48 46 55 52

p = 2 26 7 7 35 40 46 39 47 56

Table 4.1: Number of Newton iterations with respect to τ , t, and p.

The table shows that for τ equal to one, the convergence of Newton algorithm is achieved

with a small number of iterations. As indicated by our uniqueness proof, for a small value

of τ convergence is very slow.

Now, we fix the parameter τ at one and look for the dependence of the convergence of

Newton algorithm with respect to the mesh size h. We represent in the table below the

number of iterations as a function of the mesh size h at time t = 0.2.



N
Number of iterations

p = 0 p = 1 p = 2

896 30 8 7

3584 12 7 7

14336 8 7 6

Table 4.2: Number of Newton iterations with respect to h and p for τ = 1 at time t = 0.2.

4.5.1 Convergence study

In this section, we study the convergence of the error in norm L2 for the problem (4.3)

under uniform mesh refinement. We denote u∗h the reference solution obtained by solving

the problem (4.3) using p = 2 scheme in a fine mesh with 57344 element, then we compute

the norm L2 of the error as the norm of the difference between uh and uhref
. We represent

in the table below the norm L2 of error as a function of h at time t = 0.1, the time step is

fixed at ∆t = 0.1.

Ne
‖u∗h − uh‖L2(Ω) rate

p = 0 p = 1 p = 2 p = 0 p = 1 p = 2

896 1.51e− 1 3.57e− 2 1.48e− 2 – – –

3584 6.95e− 2 9.47e− 3 1.48e− 3 1.11 1.91 2.90

14336 3.32e− 2 2.42e− 3 2.25e− 4 1.06 1.96 2.70

Table 4.3: L2 norm of error with respect to h and p for τ = 1 at time t = 0.1.

The table (4.3) shows the convergence of the DgFem scheme with convergence rate approx-

imatively equal to p + 1. As indicated by our proof of the uniqueness, the convergence is

not guaranteed if the parameter τ is very small.

4.5.2 Numerical simulations

In this section, we present some numerical simulations. We solve the problem (4.3) using

p = 0, 1, 2. We choose ε = 0.1, the maximum erosion rate E = 0.1, the time step ∆t = 0.1.

Our aim is to test numerically if the discrete constraint
un+1

h −un
h

∆t
+ En+1 is satisfied. If we

consider the linearized problem, the numerical solution satisfied ∂tuh ≤ 0 in part of domain

where the initial condition is convex and ∂tuh ≥ 0 in the rest of domain. Figure 4.1 shows

the numerical solution and the constraint at different time using p = 0, 1, 2 schemes.



Figure 4.1: Vertical 1D cut at y = 0.5 of the numerical solution (left) and the constraint

∂tuh + E (right) with τ = 1 (top) and τ = 0.1 (bottom), p = 0.

The figures show that the constraint is satisfied in all domain Ω and at each time step.

When the constraint is active, we have ∂tuh +E ' 0. This confirm the theoretical results.

In the sequel, we consider the same example with p = 1, we present in the figure below the

numerical solution and the constraint at different time step with different values of τ



Figure 4.2: Numerical solution and the numerical approximation of the constraint at time

t = 0.4, τ = 0.1, p = 1.

Figure 4.3: Vertical 1D cut at y = 0.5 of the constraint ∂tuh +E with τ = 0.1 and p = 1.



Figure 4.4: Numerical solution and the numerical approximation of constraint at time

t = 0.4 with τ = 0.05 and p = 1.

Figure 4.5: Vertical 1D cut at y = 0.5 of the constraint ∂tuh +E with τ = 0.05 and p = 1.



Figure 4.6: Vertical 1D cut at y = 0.5 of the numerical solution and the constraint ∂tu+E

with τ = 0.05 (top) and τ = 0.02 (bottom) using DgFem(p) schemes, p = 0, 1, 2.

This numerical simulations show the influence of the parameter τ on the constraint, for

a small values of τ , the constraint is not satisfied near the interface and the boundary if

p ≥ 1 is used.

In the following numerical examples, we fix the parameter τ to 0.05 and we look for the

influence of the discretization parameters h and p on the constraint. The figure 4.7 presents

the numerical constraint with respect to h and p at time t = 0.1.



Figure 4.7: Vertical 1D cut at y = 0.5 of the numerical constraint ∂tuh + E with p = 1

(top) and p = 2 (bottom), τ = 0.05.

The figure illustrates the influence of the discretization parameters on the constraint. It

tends to be satisfied, when we refine the mesh and increasing the approximation order. High

order schemes and fine mesh means a big number of degree of freedom while a DgFem(0)

gives a good approximation. Our aim is then to reduce to zero the approximation order in

the zone where the constraint is not satisfied.

4.6 Adaptive algorithm

4.6.1 Introduction

The numerical results presented in the last section show that using DgFem(0) scheme,

the constraint is implicitly satisfied. However, the constraint is not totally satisfies if we

use a high order DgFem scheme, some negative values appear near the interface. With a

small value of τ , this values became important. In this section an adaptive algorithm that

combines the DgFem(0) scheme and high order DgFem scheme is given. The idea of the

algorithm is to solve the problem by using a high order scheme, then thanks to an interface



indicator, we reduce to zero the approximation order of the selected triangle.

4.6.2 Adaptive algorithm

For vh ∈ V p
h , we define its interpolate Ih by describing its values at the usual Lagrange

interpolation nodes on each mesh element by taking the average of the values of vh at the

node,

(4.21) In
h (vh)(n) =

1

|Kn|
∑

K∈Kn

vh\K(n),

where Kn is the set of mesh element that contains the node n and where |Kn| is the

cardinal of the set. The p-adaptive algorithm is summarized as follow: we repeat the

following algorithm until time t = T

• Step 1 (Initialization): for a given u0 initial condition, Tol > 0 for residual norm,

∆t: time step and triangulation Kh, we compute uk
hp the L2-projection of u0 in V p

h .

• Step 2 (Initial guess for Newton algorithm): construct the matrix A and the right

hand side F , compute uk,l
hp = A−1

k bk in V p
h and nr = ‖F k(uk,l

hp)‖.

• Step 3 (Newton algorithm)

– Step 3.1: construct the Jacobian matrix Jl.

– Step 3.2: solve Jl ∗ δuk,l
hp = −αF k(un,k

hp ).

– Step 3.3: compute uk,l+1
hp = uk,l

hp + δuk,l
hp in V p

h and nrr = ‖F k(uk,l+1
hp )‖.

– Step 3.4: If (nr < nrr), α = α
2
, continue with step 3.2.

– Step 3.5: If nrr < Tol, continue with step 4.

• Step 4: for each element Ki, i = 1, ...,mh, we compute

ηj
i = Ih(

uk,l+1
hp − uk

hp

∆t
+ Ek)(nj), j = 1, 2, 3.

If ηj
i ≥ 0, i = 1, ...,mh, j = 1, 2, 3, set uk+1

hp = uk,l+1
hp and continue with step 2

• Step 5 (Marking element): for a given ηj
i i = 1, ...,mh, j = 1, 2, 3, we find a set A

subset of K, the set of mesh elements such that for all i ∈ A:

ηj
i × ηk

i < 0, j = 1, 2, 3, and k ≡ (j + 1) mod 3.

• Step 6 (Refine): for i ∈ A, we set pKi
= 0, we then construct a new finite element

space V p̃
h , we compute the L2-projection of uk

hp into V p̃
h and we continue with step 2.

• Step 7: we set uk+1
hp = uk,l+1

hp , uk
hp = uk+1

hp and continue with step 1.



4.6.3 Numerical simulations

In this section, we first consider a mesh with approximation order varying between zero

and one see figure 4.8, then, we compare the result with uniform p, p = 0, 1. The figure 4.9

represents the numerical approximation of the time-derivative constraint ∂tuh + E;

Figure 4.8: Mesh with approximation order varying between 0 and 1.

Figure 4.9: Vertical 1D cut at y = 0.5 of the numerical approximation of the time-derivative

constraint at time t = 0.1, τ = 0.1.

In the sequel, some numerical simulations using our p-adaptive algorithm are presented.

The maximum erosion rate is fixed to E = 5., the parameter τ = 1., ε = 0.01, the time step

is fixed to ∆t = 0.1, we then repeat the algorithm until the satisfaction of the constraint

or a prescribed maximum iteration. The result is represented in the figure below



Figure 4.10: Vertical 1D cut at y = 0.5 of the numerical solution and the time-derivative

constraint of uh.

Figure 4.11: Vertical 1D cut at y = 0.5 of the numerical solution and the time-derivative

constraint of uh.

The figures (4.10,4.11) illustrate the influence of the maximum erosion rate parameter E

on the sediment thickness. For large E, the erosion rate constraint is not active, in this

case the algorithm converges in the first iteration. On the contrary case, for a small E, the

erosion is constrained by the maximum erosion rate, for τ ≥ 1 the constraint is satisfied

in the first iteration. Indeed, for τ < 1 the constraint is not satisfied and the algorithm

is repeated until the satisfaction of the constraint. We represent in the figure below the

mesh and the numerical approximation of the time-derivative constraint of uh at different

iteration of the algorithm



Figure 4.12: First and final adaptive mesh at time t = 0.1.

Figure 4.13: Vertical 1D cut of the numerical approximation of the time-derivative con-

straint at time t = 0.1, τ = 0.1, ε = 0.1.

Some numerical oscillations between two mesh elements with different order appear in the

first iterations of the algorithm. This oscillations disappeared in the last iteration which

correspond to the final mesh see figure 4.12 where p is set to zero in the zone where the

constraint is active.

4.7 Conclusions

We have presented a numerical scheme that implicitly takes into account the constraint

on the time-derivative of the unknown. We have shown existence and uniqueness of the

discrete solution under a condition on τ . Numerical and theoretical results show that the

constraint (2) is implicitly satisfied if the p = 0 is used. Numerical experiments show

that the constraint (2) is not satisfied when p > 0. An p-adaptive algorithm is proposed,

some numerical simulations show that some numerical oscillations appear when a combined

DgFem(0) and DgFem(p), p > 0 scheme is used, this oscillations disappeared after some

iterations. Our aim in a future work is to propose an adaptive hp algorithm that combines

h and p refinement in order to get more accuracy while still verifying the constraint.







Conclusions and perspectives

In this thesis, a mathematical model arising from stratigraphy under a constraint on the

erosion rate is considered. The main feature of this model is that the constraint is implicitly

satisfied in the equations.

In chapter 1, the discontinuous Galerkin finite element method applied to diffusion-advection

problem has been presented. In particular, we have considered a way to choose the pa-

rameter γ that appears in the stabilization term. Some numerical simulations show the

existence of optimal value of γ. An adaptive algorithm using red-green refinement for local

mesh refinement has been detailed with some numerical examples.

In Chapter 2, the mathematical model is presented, we have proved the existence of a

solution to the regularized problem. In the case of homogeneous problem and constant E,

the uniqueness result is proved by S. Antontsev et al. in [5]. Our purpose in a future work

is to generalize this approach to our case.

In Chapter 3, we have introduced and analyzed the discontinuous Galerkin time discretiza-

tion for a linear pseudoparabolic problem which is a simplified linearized version of the

model presented in Chapter 2. Then, a priori error estimates explicit in the time step

∆t and the approximation order r has been established. The Chapter is concluded by a

numerical example illustrating the theoretical result. As a complement of this Chapter, we

propose to complete this result by estimating the space discretization error.

In Chapter 4, we have introduced the DgFem for the model problem. We have proved the

monotonicity in the lowest-order case, this has been confirmed by some numerical simula-

tions. We have established the existence of a discrete solution and its uniqueness under a

condition on the parameter τ . Some numerical simulations show that, the constraint is not

implicitly satisfied if a high order DgFem scheme is used. An adaptive algorithm combines

DgFem(0) and high order DgFem scheme is proposed. Some numerical oscillations appear

when a combined DgFem(0) and DgFem(p), p > 0 scheme is used, this will be amelio-

rated by refining in h each elements with p = 0. Our aim in a future work is on the one

hand to propose an adaptive hp algorithm that combines h and p refinement in order to

get accuracy and efficiency while still verifying the constraint. On the other hand, to do

some numerical simulations for the physical problem by dealing with unilateral boundaries

conditions.
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Résumé

Dans cette thèse, nous nous intéressons à un problème mathématique issu de
la modélisation de taux d’érosion maximale dans la stratigraphie géologique.
Une contrainte globale sur ∂tu, la dérivée par rapport au temps de la solution,
est la principale caractéristique de ce modèle. Ce qui nous amène à considérer
une équation non linéaire pseudo-parabolique avec un coefficient de diffusion
qui est une fonction non-linéaire de ∂tu. En outre, le problème dégénère de
telle sorte de tenir compte implicitement de la contrainte. Nous présentons
un résultat de l’existence d’une solution au problème continu. Ensuite, une
méthode DgFem (discontinuous Galerkin finite element method) pour son
approximation numérique est développée. Notre objectif est d’utiliser les
propriétés d’approximation constante par morceaux pour tenir compte im-
plicitement de la contrainte.

Mots clés: Stratigraphie, méthode de Galerkin discontinue, contrainte,
pseudo-parabolique.

Abstract

In this Thesis, we are interested in a mathematical problem arising from
the modeling of maximal erosion rates in geological stratigraphy. A global
constraint on ∂tu, the time-derivative of the solution, is the main feature
of this model. This leads to a non-linear pseudoparabolic equation with a
diffusion coefficient which is a nonlinear function of ∂tu. Moreover, the prob-
lem degenerates in order to take implicitly into account the constraint. We
present a result of existence of a solution to the continuous problem. Then,
a DgFem (discontinuous Galerkin finite element method) for its numerical
approximation is developed. Our goal is to use the properties of piecewise
constant approximation to keep implicitly the constraint.

Key words: Stratigraphy, discontinuous Galerkin method, constraint, pseu-
doparabolic.
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