
HAL Id: tel-00324206
https://theses.hal.science/tel-00324206

Submitted on 24 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Development of the fictitious sources method for
stratified media and design of resonant cavities antennas

Giacomo Benelli

To cite this version:
Giacomo Benelli. Development of the fictitious sources method for stratified media and design of
resonant cavities antennas. Physics [physics]. Université Paul Cézanne - Aix-Marseille III, 2007.
English. �NNT : �. �tel-00324206�

https://theses.hal.science/tel-00324206
https://hal.archives-ouvertes.fr
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Chapter 1

Introduction

Today, the study of electromagnetic waves behavior in different environments
is a topic of fundamental interest. In fact, it constitutes the hearth of modern
technologies such as telecommunications, electronic, imaging, optical compo-
nents, astronomy. In particular, the problem of electromagnetic scattering
from a disordered or periodic set of objects, or from a set of defects on given
surfaces, is the key to design devices that could improve the performance of
processors, or increase the speed of networks.

Computer methods for analyzing problems in electromagnetics generally
fall into one of three categories: analytical techniques, numerical techniques,
and expert systems. Analytical techniques make simplifying assumptions
about the geometry of a problem in order to apply a closed-form (or table
look-up) solution. Numerical techniques attempt to solve fundamental field
equations directly, subject to the boundary constraints posed by the geome-
try. Expert systems do not actually calculate the field directly, but instead
estimate values for the parameters of interest based on a rules database.

A number of computer programs based on analytical techniques are avail-
able to the engineer. Analytical techniques can be a useful tool when the
important EM interactions of the configuration can be anticipated. However,
most EMC problems of interest are simply too unpredictable to be modeled
using this approach.

Expert systems approach a problem in much the same way as a quick-
thinking, experienced EM engineer with a calculator would approach it. As
system design and board layout procedures become more automated, expert
system EM software will certainly play an important role. Nevertheless,
expert systems are no better than their rules database and it is unlikely that
they will ever be used to model or understand phenomena driven by very
complex EM interactions.

Numerical techniques generally require more computation than analytical
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techniques or expert systems, but they are very powerful EM analysis tools.
Without making a priori assumptions about which field interactions are most
significant, numerical techniques analyze the entire geometry provided as in-
put. They calculate the solution to a problem based on a full-wave analysis.
A number of different numerical techniques for solving electromagnetic prob-
lems are available. Each numerical technique is well-suited for the analysis of
a particular type of problem. The numerical technique used by a particular
EM analysis program plays a significant role in determining what kinds of
problems the program will be able to analyze.

The first part of this thesis illustrates the characteristics of a particular
numerical technique called Method of Fictitious Sources (MFS) and how it
has been implemented in a software that can solve a large class of three
dimensional scattering problems. Pros and cons of MFS when compared
with other methods will be illustrated. In the second part of this thesis,
we will show how computer-aided design can help design innovative types of
antennas.

Chapter 2 will illustrate in detail the basis of the Method of Fictitious
Sources in comparison with other numerical methods. The method will be
illustrated with examples involving homogeneous and stratified media.

Chapter 2.5 will propose the solution of some significant scattering prob-
lems obtained with our implementation of the MFS.
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Chapter 2

The method of fictitious
sources

2.1 Background and some history

In the past years, several numerical methods for electromagnetic computa-
tion have been developed. In fact, there is no such thing as ”the univer-
sal method”: on the opposite, by the need to solve different, very specific
problems, several methods were born that slowly widened their field of ap-
plications, though each remaining more suited to a given class of problems.
Without trying to be exhaustive, we would like to give a brief overview of
the most known ones in comparison to the Method of Fictitious Sources.

2.1.1 Finite Element Methods

The first step in finite-element analysis is to divide the configuration into
a number of small homogeneous pieces or elements. The elements can be
small where geometric details exist and much larger elsewhere. In each finite
element, a simple (often linear) variation of the field quantity is assumed.

Generally, finite-element analysis techniques solve for the unknown field
quantities by minimizing an energy functional. The energy functional is an
expression describing all the energy associated with the configuration being
analyzed.

The major advantage that finite element methods have over other EM
modeling techniques stems from the fact that the electrical and geometric
properties of each element can be defined independently. This permits the
problem to be set up with a large number of small elements in regions of com-
plex geometry and fewer, larger elements in relatively open regions. Thus
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it is possible to model configurations that have complicated geometries and
many arbitrarily shaped dielectric regions in a relatively efficient manner.
Commercial finite element codes are available that have graphical user inter-
faces and can determine the optimum placement of node points for a given
geometry automatically.

2.1.2 Moment Methods

The method of moments (or moment method) is a technique for solving
complex integral equations by reducing them to a system of simpler linear
equations.

The equation solved by moment method techniques is generally a form
of the electric field integral equation (EFIE) or the magnetic field integral
equation (MFIE). Both of these equations can be derived from Maxwells
equations by considering the problem of a field scattered by a perfect con-
ductor (or a lossless dielectric). These are equations where the unknowns
(that appear generally in a double integration expression) are the electric or
magnetic surface current densities.

The first step in the moment-method solution process is to expand the
unknown currents as a finite sum of given basis (or expansion) functions.
Then the equations are enforced in discrete points on the surface directly or
by the use of ”weight” functions.

The unknowns of the problem are the coefficients of the surface current
expansion and once found, can be used to calculate the scattered electric and
magnetic fields directly from the induced currents.

2.1.3 Finite Difference Time Domain Method

The Finite Difference Time Domain (FDTD) method is a direct solution of
Maxwells time dependent curl equations. In its simples original formula-
tion, it uses simple central-difference approximations to evaluate the space
and time derivatives. It is a time stepping procedure where inputs are time-
sampled analog signals. The region being modeled is represented by two
interleaved grids of discrete points. One grid contains the points at which
the magnetic field is evaluated, the second one contains the points at which
the electric field is evaluated. By alternately calculating the electric and
magnetic fields at each time step, fields are propagated throughout the grid.
Time stepping is continued until a steady state solution or the desired re-
sponse is obtained. At each time step, the equations used to update the field
components are fully explicit. No system of linear equations must be solved.
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Frequency domain results can be obtained by applying a discrete Fourier
transform to the time domain results.

The required computer storage and running time is proportional to the
electrical size of the volume being modeled and the grid resolution. Because
the basic elements are cubes, curved surfaces on a scatterer must be stair-
cased. For many configurations this does not present a problem, however for
configurations with sharp, acute edges, an adequately staircased approxima-
tion may require a very small grid size. This can significantly increase the
computational size of the problem. This requires additional computation,
but a wide-band frequency-domain analysis can be obtained by transform-
ing the systems impulse response. The first significant disadvantages of this
technique is that the problem size can easily get out of hand for some configu-
rations. The fineness of the grid is generally determined by the dimensions of
the smallest features that need to be modeled. Another disadvantage is that
the method introduces an artificial numerical dispersion due to the intrinsic
nature of the method. Moreover, dispersive materials are more difficult to
model with respect to other methods.

2.1.4 Method of Fictitious Sources

The Method of Fictitious Sources (MFS) is a relatively new method for an-
alyzing EM problems. It is a frequency domain technique that (like the
method of moments) is based on the method of weighted residuals. However,
this method is unique in that the expansion functions are analytic solutions
of the fields generated by sources located some distance away from the surface
where the boundary condition is being enforced. Moment methods generally
employ expansion functions representing quantities such as charge or current
that exist on a boundary surface. The expansion functions of the MFS are
wave field solutions corresponding to adequate sources. By locating these
sources away from the boundary, the field solutions form a smooth set of
expansion functions on the boundary and singularities on the boundary are
avoided. Like the method of moments, a system of linear equations is devel-
oped and then solved to determine the coefficients of the expansion functions
that yield the best solution. Since the expansion functions are already field
solutions, it is not necessary to do any further computation to determine the
fields. Conventional moment methods determine the currents and/or charges
on the surface first and then must integrate these quantities over the entire
surface to determine the fields. This integration is not necessary at any stage
of the MFS solution. There is little difference in the way dielectric and con-
ducting boundaries are treated by the MFS. The same expansion functions
are used. For this reason, a general purpose implementation of the MFS can
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model configurations with multiple dielectrics and conductors much more
readily than a general purpose moment method technique. On the other
hand, moment method techniques, which employ expansion functions that
are optimized for a particular type of configuration (e.g. thin wires), are
generally much more efficient at modeling that specific type of problem.

The MFS has been developed independently from different groups and
in fact it is known with several names, as Generalized Multipole Technique
(GMT), Method of Auxiliary Sources (MAS), Multiple Multipole Methods
(MMP) and others. The first attempts to use this method were probably
due to Kupradze [1]. During the eighties, the method has been discussed and
applied, amongst the others, by Hafner, Leviatan and Boag, [2, 3]. In the
past decade, fundamental advances on mathematical aspects of the problem
has been made in Marseille’s group by Tayeb, Cadilhac, Petit, leading to
a different approach that produced many theoretical and numeric results
[4, 5, 6, 7, 8].

2.2 The basis of the method

In the following chapters, time-harmonic fields are represented by complex
vectors using a e−jωt dependence. We denote with ǫ0 and µ0 the permittivity
and permeability of vacuum, by k0 = ω

√
ǫ0ω0 the wave number, and by

η0 =
√

(µ0

ǫ0
) the vacuum impedance. Where not differently specified, each

medium is considered to be non-magnetic (µ = µ0).
In order to give a framework to the method, we consider a 3D diffraction

problem by a homogeneous, closed object, bounded by a surface S (see figure
2.1). We call Ω1 (resp. Ω2) the exterior (resp. interior) of S. The domain Ω1

(resp. Ω2) is supposed filled with a material of permittivity ǫ1 (resp. ǫ2). We
assume that on the exterior of the surface we have a material ǫ1, while on
the interior we have ǫ2, both generally complex and with positive imaginary
part. The object is illuminated by a known incident field F inc = (Einc,Hinc)
and we want to solve the total field F = (E,H).

It is known from the equivalence principle that the solution of the problem
is completely represented by the tangential components of the total electro-
magnetic field, calculated on the surface S. This is why it is convenient to
represent the unknown total field by defining the couple Φ1 of vector func-

1We use η0H instead of simply H for numerical reasons. In fact, |η0H| and |E| have
comparable magnitudes and this may avoid possible numerical instabilities in the solution
of the system, in some cases.
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Figure 2.1: The scatterer is the greyed region. Its surface is S, its interior is
Ω2, its exterior is Ω1. The basic idea is to express the scattered field F sc in
Ω1 as a combination of fields radiated from sources placed in Ω2. Viceversa,
the field F in Ω2 is expressed as a combination of fields radiated from sources
placed in Ω1.
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tions, defined on the surface S:

Φ = (n̂ × E, n̂ × η0H)|S (2.1)

and, in the same way, the same quantity referred to the incident field only

Φinc = (n̂ × Einc, n̂ × η0H
inc)|S . (2.2)

Let’s eventually define also the scattered field F sc as the difference between
the total and the incident field

F sc = F − F inc. (2.3)

We can now say that the solution of our problem is the total field F that
satisfies the following conditions:

(a) the scattered field F sc satisfies Maxwell’s equations in Ω1 and a radia-
tion condition at infinity,

(b) the total field F satisfies Maxwell’s equations in Ω2 and

(c) the boundary conditions on the surface S of the scatterer are fulfilled.

Let’s now consider N sources S1,n(n = 1, 2, . . . , N), placed on S1 inside
Ω2 and radiating fields F1,n = (E1,n,H1,n) in the whole space supposed to be
filled with a material with permittivity ǫ1. These sources, being placed in
Ω2, generate a Maxwellian field F1,n with no singularities in Ω1: thus, F1,n

fulfill the condition (a) mentioned above. Moreover, a linear combination
∑

n c1,nF1,n (where c1,n are complex coefficients) still fulfill the same condi-
tion. If the coefficients c1,n are appropriately chosen, this linear combination
can be regarded as an approximation of F sc in Ω1.

In the same way, consider a set of fictitious sources S2,n(n = 1, 2, . . . , N)
placed on S2 inside Ω1 and radiating fields F2,n = (E2,n,H2,n) in the whole
space supposed to be filled with a material with permittivity ǫ2. A linear
combination

∑

n c2,nF2,n fulfill the condition (b) and, with the proper choice
of c2,n, can be regarded as an approximation of F in Ω2.

Now, denoting by Φ1,n and Φ2,n the boundary values of the fields F1,n

and F2,n on S, we can express the continuity of the total field’s tangential
component on S, condition (c), as

Φinc +
∑

n

c1,nΦ1,n −
∑

n

c2,nΦ2,n = 0. (2.4)
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From a mathematical point of view, equation 2.4 can be seen as the
truncation of a decomposition of Φ on two different total basis Φ1,n and Φ2,n,
according to

Φinc + lim
N→∞

N
∑

n=1

c1,nΦ1,n = lim
N→∞

N
∑

n=1

c2,nΦ2,n. (2.5)

The truncation is necessary to implement the method, and this leads to an
approximate result. From a mathematical point of view, this is an important
aspect of the method: details on the effect of this truncation can be found
in [9].

Now, equation 2.4 can be fulfilled on surface S in several ways. The sim-
pler one is the Point Matching method, and it has been applied by many
authors to the MFS. It consists in enforcing the boundary condition over
a set of sampling points (usually equally spaced) on surface S. By appro-
priately choosing their number, one can get a square linear system with as
many equations as unknowns, and can obtain a solution which fulfill exactly
the boundary condition in this points. On the opposite though, between
this points the solution may be badly verified and strong oscillations can be
observed.

Our method is different and it is based on the least-square algorithm: the
aim is to find, for a given N , a set of coefficients c1,n, c2,n that minimize the
norm

∆N = min

∥

∥

∥

∥

∥

Φinc +
N

∑

n=1

c1,n(N)Φ1,n −
N

∑

n=1

c2,n(N)Φ2,n

∥

∥

∥

∥

∥

. (2.6)

calculated on the surface of the scatterer.
In this way, the number of sampling points M used to enforce boundary

condition (c) on S can be chosen independently from the number of un-
knowns. We can thus increase the number of sampling points with respect
to the point matching method, obtaining a better overall accuracy of the re-
sult for almost the same computational effort. Moreover, another important
feature of this method is the fact that the normalized error

∆̃N = ∆N/‖Φinc‖ (2.7)

can be used to express the accuracy in the boundary condition (c) and so to
provide a good index on the precision and convergence of the solution. It must
be stressed that this is a precious tool that can avoid the usual procedure
of running the same calculation with different number of unknowns and test
points, just to check if convergence has been reached.
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Once the unknowns c1,n, c2,n have been found, it is possible to write the
field in each region as

F sc =
N

∑

n=1

c1,nF1,n in Ω1 (2.8)

F =
N

∑

n=1

c2,nF2,n in Ω2. (2.9)

2.2.1 Perfectly conducting scatterer

The case of a perfectly conducting scatterer can be treated in the same way,
only keeping in mind that we only need one set of fictitious sources, placed
inside the scatterer. In equation (2.5), the c2,n coefficients vanish. The
boundary condition includes only the vanishing of the tangential components
of E.

So, the coefficients are obtained by minimizing the norm

∥

∥n̂ × Einc +
N

∑

n=1

c1,n n̂ × E1,n

∥

∥ (2.10)

This is naturally due to the fact that the field inside a perfectly conductor
scatterer is null.

2.2.2 Case of multiple scatterers

In case of multiple scatterers, a bit of care is needed to understand where a
specific set of fictitious source will radiate. In general (see Fig. 2.2) for N
scatterers, internal f.s. placed on Si,in will radiate in Ω1 =

(

Ω2

⋃

Ω3

⋃

. . . ΩN

)

as if it was filled with an ǫ1 material. On the opposite, external f.s. placed
on Si,out will radiate in Ωi as in a whole space filled with ǫi material.

So, the total field in Ω1 will be a superposition of fields radiated by every
distribution of internal fictitious sources and the incident field. The field
inside the n-th body instead, will be the result of the radiation of its own
external fictitious sources distribution.

2.2.3 Case of excitation inside an object

Radiation problems are usually treated by placing an excitation inside the
scatterer. Conceptually, no changes are necessary. The only difference is,
keeping figure 2.1 as a reference, that the exciting field must be taken into
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Figure 2.2: Case of multiple scatterers. Every internal f.s. distribution
contributes to the field in Ω1. The field inside each scatterer is instead given
only by its own external f.s. distribution.
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Figure 2.3: An object placed in a stratified medium formed by one layer
only. The surface delimiting the object is denoted with S, its interior is
Ω2, its exterior is Ω1. We want to express the scattered field F sc in Ω1 as
a combination of fields generated by sources placed inside Ω2, that radiate
in the stratified medium. Viceversa, the field F in Ω2 is expressed as a
combination of fields generated by sources placed in Ω1 that radiated in a
uniform homogeneous space.

account in region Ω2 only. Equation 2.4 changes accordingly, with Φinc having
a negative sign:

−Φinc +
∑

n

c1,nΦ1,n −
∑

n

c2,nΦ2,n = 0. (2.11)

2.3 Stratified medium problems

With proper modifications, the MFS can be applied to problems involving
the presence of a stratified medium.

The basic ideas of the method remains the same, that is, we want to
express the fields in the different homogeneous regions of space as a combi-
nation of fields radiated by opportunely placed fictitious sources. What is
different in this case is that the boundary conditions now must be fulfilled
not only on the scatterer finite surface, but also on the interfaces between
the layers of the stratified medium. These surfaces are infinite and so the
boundary conditions on them cannot be enforced numerically in the usual
way, but must be taken into consideration analytically.

We consider a 3D diffraction problem by a homogeneous, closed object,
bounded by a surface S (see fig. 2.3). We call Ω1 (resp. Ω2) the exterior

12



(resp. interior) of S. The structure is illuminated by a known incident field
F inc = (Einc,Hinc) and we want to solve the total field F = (E,H).

By using the same notation introduced in section 2.2, we can say that the
solution of the problem is a field F that satisfies the following conditions:

(a) the scattered field F sc satisfies Maxwell’s equations in Ω1, boundary
conditions on the interfaces B and a radiation condition at infinity,

(b) the total field F satisfies Maxwell’s equations in Ω2 and

(c) the boundary conditions on the surface S of the scatterer are fulfilled.

The problem is conceptually identical to the one in the free space, with
the exception of the boundary condition on B that must be analytically taken
into account into the appropriate fields that we will use. Condition (a) implies
that F sc will include these conditions. As F sc will be expressed as a linear
combination of sources placed in Ω2, these sources must be considered as if
they were radiating in the unperturbed stratified medium, thus satisfying the
boundary condition.

There is another aspect that must be considered. In fact, in the Ω1 region
the total field will be a superposition of F sc and F inc. Since condition (a)
must eventually be satisfied by the total field, all the incident fields must
includes the boundary condition on B too, and thus they must be computed
as propagating in the unperturbed stratified medium.

In conclusion, a good way to think at the problem is that every field that
will be used in the region Ω1 must be considered as if it was propagating in
the unperturbed stratified media. This applies both to incident fields and to
the fields radiated by fictitious sources placed in Ω2.

This approach to stratified media problem is quite flexible, as it allows
to model several kind of problems, like scatterers embedded in a substrate,
interaction between scatterers in presence of a layered medium, defects and
holes in metallic or dielectric films.

Unfortunately, a closed form, analytical solution for propagation in a
stratified medium is known only for a small number of canonical cases, no-
tably planewaves. For dipoles, the computation must be computed numeri-
cally and it requires some efforts to be accurate and fast enough to make the
method practically usable.

2.3.1 Green’s function computation

We used the method proposed by Martin et al. [10], with some modifica-
tions, and extended the computation to the magnetic field (as the tangential
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components of the magnetic field on the inclusion are also required). The
procedure is illustrated for the electric field only, please refer to Appendix A
for the computation of the magnetic field.

The Green’s function2 plays a very important role in many numerical
methods, so the problem of its computation has been addressed by many
authors. Sommerfeld firstly treated the problem in single-interface stratified
media, and other authors later studied it in connection with antennae radia-
tion [11, 12, 13, 14, 15]. Lately, M.Paulus, P.Gay-Balmaz and O. J.F. Martin
proposed a computation method, for the general case of multiple interfaces,
that proved to be fast and accurate enough to be actually used in numerical
methods [10]. In our work, we followed their footsteps and implemented this
method, with some minor modifications, using it as the starting point to
compute the magnetic field tensor too.

The Green’s tensor G(r, r′) for an arbitrary scattering system described
by the dielectric permittivity ǫ(r) and the magnetic permeability µ(r) is the
solution of the vector wave equation with a point source term [16]:

∇× µ−1(r)∇× G(r, r′) − k2
0ǫ(r)∇× G(r, r′) = µ−1(r)1δ(r − r′) (2.12)

where k2
0 = ω2ǫ0µ0 is the vacuum wave number. Notice that the time depen-

dence is assumed to be exp(−jωt).
Without going too much into the details the homogeneous Green’s func-

tion GH can be used as a starting point to compute the stratified medium
Green’s function G. This can be done by using a Fourier representation of
GH and performing the integration along z analytically, by using the calculus
of residues, thus obtaining a plane-wave representation of GH .

Now, given kBz =
√

(k2
B − k2

x − k2
y), an appropriate orthonormal system

can be introduced k̂(kBz), l̂(kBz), m̂(kBz) [17] where k̂(kBz) represents the
propagation direction of a given (kx, ky) planewave, and l̂(kBz), m̂(kBz) rep-
resent respectively s and p polarization components.

By using this reference system, one can easily superpose to each Fourier
component of GH the additional terms coming from the upgoing and down-
going plane waves that are present due to multiple reflection/transmission
through the different interfaces, each one with the right amplitude depending
on its polarization. This lead to eq.(9) on [10], which is the basic tensorial
equation that express G. We report here the generalized expression for a
given component of this equation

2Actually, what is computed is the Green’s tensor, that is the electric vector field
radiated in a given point by three orthogonal dipoles. Thus anytime we will mention the
Green’s function, we will mean the Green’s tensor function.
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Figure 2.4: Stratified medium consisting of N layers with (ǫ1, µ1, . . . , ǫN , µN)
separated by interfaces at z = d1, . . . , dN−1. The vector R = r − r′ de-
fines the relative distance between r and r′ and ρ = (x − x′, y − y′) =
(ρ cos φ, ρ sin φ) is the projection of R onto the xy plane.

Gαβ(r, r′) =
i

8π2

∫ ∫

dkx dky exp{i[kx(x − x′)

+ ky(y − y′)]} 1

klz

{[l̂α(±klz)A
s
l,αβexp(iklzz)

+ l̂α(∓klz)B
s
l,αβexp(−iklzz)]l̂β(klz)

+ [m̂α(±klz)A
p
l,αβexp(iklzz)

+ m̂α(∓klz)B
p
l,αβexp(−iklzz)]m̂β(klz)]}.

(2.13)

Here, the coefficients As
l,αβ, Bs

l,αβ, Ap
l,αβ, Bp

l,αβ are the amplitude coeffi-
cients of the upgoing and downgoing waves in the l-th layer, for s- and p-
polarizations. The upper sign refers to the case z > z′ and the lower sign
to the case z < z′. It must be noticed that klz, l̂, m̂, As, Bs, Ap, Bp are all
function of kx, ky.

Equation (2.13) can be simplified by introducing a cylindrical coordinate

15



system in the xy and kxky planes, via the substitutions

R = (x − x′, y − y′, z − z′) = (ρ, z − z′),

ρ = (ρ cos φ, ρ sin φ)

k = (kx, ky, kz) = (kρ, kz),

kρ = (kρ cos kφ, kρ sin kφ).

The integration over kφ can now be performed analytically by using Bessel
functions [18]:

Jn(kρρ) =
i−n

2π

∫ 2π

0

dkφ exp(ikρρ cos kφ) cos(nkφ) (2.14)

and this leaves us with only a monodimensional integration to perform, over
kρ, in the form

G(r, r′) = − ẑẑ

k2
l

δ(R) +
i

4π

∫ ∞

0

dkρ[f
s(kρ; r, r′) + f p(kρ; r, r′)]. (2.15)

The components f s and f p are given in Appendix B of [10].
Equation (2.15) is a typical Sommerfeld integral in the form

G(kρ; r, r′) = g(kρ; r, r′)Jn(kρρ)[A(kρ, z
′)exp(iklzz)

+B(kρ, z
′)exp(−iklzz)].

(2.16)

The numerical computation of this function is not straightforward due to
the very awkward behavior of the integrand. The integrand, in fact, has two
class of singularities: poles and branch points.

Regarding branch points, they are related to klz =
√

(k2
l − k2

ρ) which,

being the square root of a complex number, is double valued and branch
cuts given by Im(klz = 0) intersect the plane of integration. Each branch cut
ends in a branch point located in kρ = ±klz. It is possible to demonstrate
[19, 20] that those branch cuts and branch points exists only for the two
outermost layers, so only for kρ = ±k1,±kN .

We can choose the right sign for the calculation of klz by physical consid-
erations. In particular, the radiation condition imposes that the integrand
must vanish for z = ±∞, so we must use the value with Im(klz) = 0.

The second class of singularities are poles, coming from the vanishing de-
nominators in eq.(2.16). For dielectric media (without losses), such poles are
in the region kρ < klmax = maxlRe(kl). If there are losses, the singularities
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shift in the first quadrant of the plane of integration, but still can cause a
problem if they are close enough to the Re(kρ) axis (that is, for small losses).

Once the singularities of the integrands have been located, we must chose
an appropriate integration path that accurately avoids them and suitable
numerical quadrature algorithms. The basic idea is to pass in the fourth
quadrant of the complex plane, in such a way to surround the singularities.
This can be done along an ellipse starting in kρ = 0, with a major axis equal
to at least klmax. The minor axis instead is a balance between the need to be
far from the singularities but without extending too much into the negative
imaginary direction, where the integrand increases rapidly.

For the rest of the integration, it is not possible to find a path which
is always valid, like in the case of the ellipse. In fact, the behavior of the
integrands along the real kρ axis is quite variable depending on the value of
kρρ and |z − z′|. In particular, in the case where |z − z′| is small enough, the
exponential damping of equation(2.16) that normally makes the integrand
vanish for kρ → ∞ are quite weak and reveals the oscillatory nature of the
integrands, thus making the quadrature more difficult. In that case, it is more
convenient to use an integration path which is parallel to the imaginary axis,
by transforming the integrands making use of the Hankel functions:

Jn(kρρ) =
1

2
[H(1)

n (kρρ) + H(2)
n (kρρ)]

=
1

2
[H(1)

n (kρρ) + [H(1)
n ((kρρ)∗)]∗].

(2.17)

For large values of kρρ in fact, the Hankel function has the following asymp-
totic behavior

lim
|kρρ|→∞

=

√

2

πkρρ
e[ikρρ− 1

2
iπ(n+ 1

2
)] (2.18)

that ensures, with its exponential term, a fast convergence when Im(kρρ) →
∞ .

When trying to implement this strategy, we found that it is quite hard
to find a given value |z − z′| that can be used to decide between the real or
the imaginary axis integration path. In fact, while it is surely true that the
integrands becomes oscillatory under a given value, it is also true that the
asymptotic behavior 2.18 is both dependent on ρ and kρ. This means that
in case of very small values of ρ, the integrands vanishes so slowly along the
imaginary axis that it can actually be more convenient to keep integrating
on the real axis.

So, instead of using a given value of |z− z′| to switch between integration
paths, we have identified a relation ρ = f(|z − z′|) who defines a given

17



Figure 2.5: Real part of the integrand(xx component), taken for a three layers
media, with ǫ1 = 1, ǫ2 = 4, ǫ3 = 3. The wavelength is 633 and the central layer
extends from −300 to 300. The source is placed in (x′, y′, z′) = (0, 0,−150)
while the observation point is in (x, y, z) = (150, 150,−100).
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Figure 2.6: Same as in figure2.6 but here z = 250. It can be observed how
the integrand’s behavior on the real kρ is much more obscillatory.

19



z-z’

r

C

z-z’ = zD

V
1

V
2

V
3

d

Figure 2.7: Integration strategy. Imaginary-axis integration is used in volume
V1 only, while in V2 and V3, a real-axis path is used.

surface C. Every observation point falling in the region ρ ≤ f(|z − z′|) will
be solved with the real-axis integration path, other points will be solved with
the imaginary-axis integration path.

After running several examples, we empirically identified a suitable sur-
face C, and expressed it through polynomial interpolation. Such relation is
illustrated in figure 2.7.
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2.4 Implementation

There are some aspects of the method, which have not been put in evidence
so far, that must be taken into consideration in order to implement it. In
particular, it must be noticed how there are several degrees of freedom in the
choice of:

- Type of sources (dipoles, multipoles, others...)

- Position of the sources (distance between sources and surface of the
scatterer)

- Number of sources (truncation of the series in eq.2.5)

- Number of surface points (number of points where boundary conditions
will be enforced)

Every choice regarding these aspects has an impact on the accuracy of
the method. Moreover, solutions that are well adapted to a given class of
problems, can be completely unappropriate for others. Thus, it is very im-
portant to produce a code which is as flexible as possible with regards to
these choices.

All the results produced in this report are obtained by using dipoles as
fictitious sources. They are ranged in such a way to form couples of crossed
dipoles, oriented tangentially with respect to the scatterer’s surface. See
Figure 2.8 for an example in the case of a sphere. The choice of dipoles is
deliberate: in fact, while some authors [2] suggest to mix dipoles with special
sources (multipoles or line sources) at given positions in order to minimize
the number of unknowns, we prefer to have more unknowns, but that do
not need special care in their placement (apart from the distance from the
surface of the scatterer). This produces a more generic approach which is in
general able to solve any kind of objects without necessarily knowing much
about the properties of the solution.

In addition, in order to solve problems in stratified media, we must be
able to calculate the field radiated by fictitious sources in such a medium
(see Appendix A). This is a quite demanding task and dipoles, in this sense,
are the best compromise between accuracy and difficulty of calculation and
eventually could be used as a base for more complicated source types. On
the other hand, some other sources could be easier to calculate.

Regarding the fictitious surfaces used to place f.s., our experience, and
that of other authors, show that in the majority of the cases the best results
are obtained using a surface perfectly conformal to the shape of the scatterer.
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Figure 2.8: Crossed dipoles distributed tangentially on the surface of a
sphere.

(a) Too small distance between source and
surface. The matrix produced is singular.

(b) Too high distance between source and
surface. The matrix produced is degenerate.

Figure 2.9: Extreme choices of dos
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Other aspects that must be taken into consideration are the total number
of fictitious sources Ns, their reciprocal distance dss and their distance from
the scatterer surface dos. The distance dos has an influence on the accuracy
of the solution in the sense that a small dos can degrade the accuracy of
the numerical solution, while a large dos can make the matrix unsuitable for
numerical computation [21, 22].

An empirical explanation of this phenomenon is given by figure 2.9 where
the two extremes are illustrated. For a too small dos, each source radiates
a very high field in the few points in its proximity and a quasi-null field
elsewhere. This produces a very ill-conditioned matrix, where the diagonal
contains values several order of magnitude higher than the rest of it. For
a too high dos, one source is almost indistinguishable from the others, thus
giving a degenerate matrix, that contains almost the same values on each
column of the same row.

The problem is a little bit more complicated from the fact that the range
of acceptable values for dos depends also on the choice of Ns or dss. Never-
theless, we found that this range is large enough to allow some degrees of
freedom in the f.s. placement. For objects that are not too small with respect
to the wavelength, we use a starting distance equal to approximately one half
of the scatterer dimension, using the normalized error 2.7 as a reference to
fine-tune.

Once the dos and Ns parameters are chosen for inner fictitious sources,
the same values are usually used for external ones. We have observed though
that the quality of the solution is much less sensitive to external sources than
to internal ones.
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2.5 Results

2.5.1 Free-space problems

We present here the results of some typical scattering problems solved with
the fictitious sources method. All the problems are completely frequency-
scalable, so some dimensions are presented in arbitrary units.

Sphere

This problem involves a dielectric (ǫr = 3) sphere of radius R = 2.3. Taking
figure 2.10 as a reference, the incident field is a plane wave with propaga-
tion vector k̂ = (x̂, ŷ, ẑ) = (0, 0,−1), and x−polarized electric field, with
wavelength 2π.

The surface of the scatterer is meshed with 500 points, while two spheres
with 320 points are used for fictitious sources placement, placed at a dis-
tance d = 0.7R from the scatterer’s surface. On each point of the surface,
four scalar equations are enforced, imposing the continuity of the tangential
components of the electric and magnetic fields. The fictitious sources are
ranged in such a way to have two crossed dipoles on each of the 320 points
(see Figure 2.11).

This leads to a linear system with 2000 equations and 1280 unknowns.
On a standard laptop PC, around 80 seconds are needed to solve the system
and trace a 100x100 points field map.

Figure 2.12 shows the far scattered field. The bistatic cross section is
shown, as defined in [23], pag. 401.

Figure 2.13 shows the normalized error on the surface of the scatterer: it
is computed as

1

‖Φinc‖

∣

∣

∣

∣

∣

Φinc +
N

∑

n=1

c1,n(N)Φ1,n −
N

∑

n=1

c2,n(N)Φ2,n

∣

∣

∣

∣

∣

. (2.19)
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Figure 2.10: A typical scattering problem with an incident planewave. The
polarization is described in terms of the angle that the electric field forms
with the θ̂ unitary vector.
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Figure 2.11: Surface mesh and crossed dipoles used as fictitious sources.
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Figure 2.12: Bistatic Scattering Cross Section of the dielectric sphere.EV V is
the θ-component of the electric field, computed in the φ = 0 plane. EHH is
the φ-component of the electric field, computed in the φ = π/2 plane.
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Figure 2.14: Electric and Magnetic field components on the YZ axis. It
should be recalled that the incident planewave is X-polarized. In particular
from 2.14(a) it can be verified that, in this plane, the X component of the
total electric field (incident+scattered) is continue everywhere on the surface
of the sphere, as it is expected. 28
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Figure 2.15: Absolute value of the total Electric and Magnetic field, on the
three main planes XY, XZ and YZ cutting through the sphere.
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Cube

Objects with edges are known to give accuracy problems, especially to rep-
resent fields around the edges [24]. In our implementation though, we found
that it is always possible to improve the precision by increasing the number
of fictitious sources without the need to approach them to the edge. It must
be noticed, however, that due to the particular surface mesh we use (see Ap-
pendix B), no points are ever placed exactly on corners or vertexes. In our
vision, this doesn’t represent a limitation, because for real-world problems,
objects are always smoothed at a certain scale.

Figure (2.16) shows that the corners are indeed the regions where the
error is higher, but still very acceptable (around 10−2 at least).

The scatterer is a dielectric cube (ǫr = 2.2) with side equal to L =
11.9 · 10−2. Taking figure 2.10 as a reference, the incident field is a plane
wave with propagation vector k̂ = (x̂, ŷ, ẑ) = (0, 0,−1), and polarized as
ψ = 45◦, with wavelength 7.5 · 10−2.

The surface of the scatterer is meshed with 972 points, while two cubes
with 588 points are used for fictitious sources placement, placed at a distance
d = 0.7L from the scatterer’s surface. This leads to a linear system with 3888
equations and 2352 unknowns. On a standard laptop PC, around 110 seconds
are needed to solve the system and trace a 100x100 points field map.

Figure 2.17 show the far scattered field.
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Figure 2.16: The maximum error in the boundary conditions is in the mag-
nitude of 10−2.
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Figure 2.17: Bistatic Scattering Cross Section of the dielectric cube. EV V is
the θ-component of the electric field, computed in the φ = 0 plane. EHH is
the φ-component of the electric field, computed in the φ = π/2 plane.
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Figure 2.18: Electric and Magnetic field components on the YZ plane. It
should be recalled that the incident planewave has both a X- and a Y- po-
larized component.
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Figure 2.19: Absolute value of the total Electric and Magnetic field, on the
three main planes XY, XZ and YZ cutting through the cube.
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Figure 2.20: A spherical and a cubic scatterer (in blue), with inner (red) and
outer(green) f.s. distributions.

Multiple scatterers

An example of multiple-scatterer problems is given here, showing the case of
two dielectric objects: a sphere and a cube. The sphere has radius R = 350,
center Cs = (−500, 0, 0) and relative permittivity ǫr = 3. The cube has side
D = 700, it is centered in Cc = (500, 0, 0) and it has relative permittivity
ǫr = 2.2. The problems is solved for a wavelength equal to 800, under the
excitation of an incident planewave with propagation vector defined by the
angles θ = 45◦, φ = 45◦, ψ = 0◦.
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Figure 2.21: The maximum error in the boundary conditions is in the mag-
nitude of 10−2.
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Figure 2.22: Electric and Magnetic field components on the XZ plane.
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Figure 2.23: Absolute value of the total Electric and Magnetic field, on the
three main planes XY, XZ and YZ cutting through the scatterers.
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2.5.2 Stratified medium problems

Our aim when dealing with stratified media, is to be able to model plasmonic
devices. Such devices include, amongst the others, sub-wavelength holes in
metallic layers, metal-dielectric interfaces, metallic nanocavities or defects on
metallic surfaces.

We present here some results we have obtained for some of these config-
urations.

Spherical cavity in a metallic layer

An example of a defect on a metallic surface has been modeled by partially
superimposing a spherical scatterer filled with air to a metallic layer. The
metallic layer has an air superstrate and substrate. It has a complex relative
permittivity equal to ǫr = (−9.89 + i1.05) and extends from z = −400nm to
z = 200nm. The sphere has a radius equal to R = 350nm and it is centered
in the origin of the coordinate system.

A repartition of sources on spheres of radius 245 nm and 455 nm (resp.
for the internal and external sources) has been found to give accurate results
for reasonable computational burden (see Fig. 2.24). We used 640 fictitious
sources on each spheres (two crossed dipoles on each of the 320 points on
the spheres) and the boundary conditions are computed on 500 points on
the spherical inclusion. With this configuration we have about one point for
each (λ/15)2 area on the spherical inclusion. Thus, the least square problem
consist in minimizing the error on the continuity of the two tangential com-
ponents of the electric and magnetic fields on 500 points (i.e. 2000 equations)
by choosing the 1280 amplitudes of the fictitious sources.

Fig. 2.26 shows a map of the modulus of the electric field when the struc-
ture is enlightened by a plane wave coming from the top of the figure, with
a normal incidence (with respect to the stratified media), linearly polarized
along x-axis and a wavelength equal to 800 nm. The enhancement of field
inside the cavity shows that a resonance of the cavity has been excited, but
note that the parameters have not been optimized with this aim. In order to
illustrate that point we have plotted on Fig. 2.25 the residual error on each
point of the embedded object. Note that the error is always less than 9.10-3.
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Figure 2.24: A sketch of the sphere mesh (in red) and of interior fictitious
sources placement (in blue). The illustrated fictitious sources radiate in the
unperturbed stratified medium.
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Figure 2.25: The maximum error in the boundary conditions is in the mag-
nitude of 10−2 and it is concentrated in the upper part of the sphere, and on
the sphere-layer interface in particular.

41



Y axis

Z
 a

xi
s

Ex (V/m)

 

 

−400 −200 0 200 400
−400

−200

0

200

0.5

1

1.5

2

2.5

3

(a) Ex

Y axis

Z
 a

xi
s

Hx (A/m)

 

 

−400 −200 0 200 400
−400

−200

0

200

0.5

1

1.5

2
x 10

−4

(b) Hx

Y axis

Z
 a

xi
s

Ey (V/m)

 

 

−400 −200 0 200 400
−400

−200

0

200

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(c) Ey

Y axis

Z
 a

xi
s

Hy (A/m)

 

 

−400 −200 0 200 400
−400

−200

0

200

1

2

3

4

5

6

7

x 10
−3

(d) Hy

Y axis

Z
 a

xi
s

Ez (V/m)

 

 

−400 −200 0 200 400
−400

−200

0

200

0.02

0.04

0.06

0.08

(e) Ez

Y axis

Z
 a

xi
s

Hz (A/m)

 

 

−400 −200 0 200 400
−400

−200

0

200

1

2

3

4

5

x 10
−3

(f) Hz

Figure 2.26: Electric and Magnetic field components on the YZ plane. It
should be recalled that the incident planewave is X polarized.
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Figure 2.27: Absolute value of the total Electric and Magnetic field, on the
three main planes XY, XZ and YZ cutting through the sphere.
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Cylindrical hole

The second example is a single hole in a dielectric layer surrounded by air.
The hole is assumed to be invariant along z, and has a circular cross section
with radius 50 nm. As the structures we have in mind to model are nano-
holes or nano-objects for optical applications this is not really a limitation
and is realistic for actual devices. The thickness of the layer is 160 nm and
the permittivity is 2.25. The considered wavelength is 400 nm. Note that
the embedded object is a cylinder whose edges have been rounded with a
radius of 20 nm (the total height of the rounded cylinder is 200 nm, see
white dashed line in Fig. 4). The exact location and shape of the upper and
lower faces of the cylinder doesn’t change the results as the hole is assumed
to be filled by air as are the substrate and superstrate, but it allows us to
avoid sharp edges that may cause numerical instabilities. We have checked
that 1632 sources and 800 points on the object give satisfactory results. Fig
2.28 shows the map of the modulus of the electric and magnetic fields when
the structure is enlighten by a plane wave incident from the top with normal
incidence and linearly polarized along the x-axis.
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Figure 2.28: Electric and Magnetic field components on the YZ plane. It
should be recalled that the incident planewave is X polarized.
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Figure 2.29: Detail on the shape used to model a cylindrical hole. Rounded
edges are present to avoid possible instabilities due to sharp corners.
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Chapter 3

A compact planar antenna

3.1 Introduction.

Satellite communications are widely used nowadays in several sectors of hu-
man activities. There are several reasons why they are preferred over other
kind of connections. Amongst the others, a single satellite can cover at once
millions of users (theoretically, almost the entire earth could be covered by
only 3 of them), even those otherwise difficult to reach with wired connec-
tions. Moreover, some applications couldn’t be realized otherwise (GPS, re-
mote sensing). This is why the demand for satellite communication capacity
is constantly increasing: GPS, mobile satellite telephones, remote monitor-
ing systems, digital and analog television, telephony, digital radio and many
other new satellite applications are all pushing the limits of actual satellite
devices.

But the growing demand for ever-more bandwidth and space segment is
being offset by new satellites and by a more efficient use of existing transpon-
der capacity, achieved by improving the performance of all the devices in-
volved in the earth-satellite link, amongst the others, the antennas.

The most common type of antenna used on satellites is multi-beam an-
tennas. Such devices are able to cover very large zones of the earth with a
high level of signal. They are normally made of a number of smaller, similar
antennas, each of them able to cover a small area (called spot). By putting
them side by side, an array is created which is able to cover a large area with
several spots, through a direct radiation or via the use of (usually parabolic)
reflectors.

In order to efficiently superpose these spots, each antenna must satisfy
certain constraint, the main one being to have small lateral dimensions.
Moreover, they must be able to handle high powers (the power loss in the
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earth-satellite link is dramatic), be light (the heavier the satellite, the higher
the launch cost) and limit the use of dielectric materials (performance degra-
dation).

The project described in this report is included in this scenario and it
regards the design of a compact planar antenna for satellite application.
This project is a cooperation between Alcatel Space France and the Institut
Fresnel, Université Paul Cézanne Aix-Marseille III. The detailed requested
specifics are:

• Planar antenna with lateral dimensions 2.8λ × 2.8λ.

• High surface efficiency (> 90%).

• Single access.

• High power handling.

• Bandwidth of at least 2.5%.

• Low level of crosspolar radiation.

• Low level of side lobe levels.

3.2 Fundamental antenna parameters

We present here a brief resume on the main antenna parameters that will be
used trough this report.

The electromagnetic field radiated by every antenna satisfies, in the far
zone (Fraunhofer zone), the following properties:

• the electric (E) and magnetic (H) fields propagate as a spherical wave,
that can be locally described as a uniform planewave propagating in
the radial direction r̂.

• E and H are perpendicular to each other and to the propagating direc-
tion. Their modules decrease as 1

r
and the ratio between them is con-

stant and equal to the characteristic impedance of the medium η =
√

µ
ǫ

The Power Density [W/m2] radiated from an antenna is given by the
module of the Poynting vector P , defined as

P (r, θ, φ) =
1

2
E(r, θ, φ) × H∗(r, θ, φ) =

1

2η

|E(θ, φ)|2
r2

r̂ (3.1)
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Figure 3.1: A radiation pattern.

which decreases as 1
r2 . It is convenient to define a quantity which is inde-

pendent from the distance from the antenna, called Radiation Intensity
[W/srad],

U(θ, φ) = r2P (r, θ, φ) (3.2)

that represents the power radiated in direction (θ, φ) per unit of solid angle.
The Total Power radiated from the antenna can be obtained by integrating
U(θ, φ) as

Wt =

∮

S

P (r, θ, φ) dS =

∮

S

U(θ, φ)

r2
dS =

∮

4π

U(θ, φ) dΩ (3.3)

U(θ, φ) characterizes the directional properties of the antenna and can
be used to plot its Radiation Pattern (Fig. 3.1). For directive antennas,
usually a main lobe is present, in the direction where the radiation is con-
centrated, and minor secondary lobes. The ratio between the amplitude of
the highest secondary lobe(s) and the amplitude of the main lobe is called
Side Lobe Level (SLL) and it is usually measured in dBs. By cutting the
radiation pattern through sections at constant φ or θ, bi-dimensional charts
can be obtained called Antenna Patterns. For linearly polarized antennas,
two cuts are most important:
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• E plane: plane containing both the direction of maximum radiation
and the electric field E

• H plane: plane containing both the direction of maximum radiation
and the electric field H

In each of these planes, two different radiation patterns can be defined: the
Copolar radiation, which represents, in the E plane (resp. H plane), the
component of the e.m. field with electric (respectively magnetic) field com-
ponent lying in the E (resp.H) plane. Viceversa, the Crosspolar component
represents, in the E plane (resp. H plane), the component of the e.m. field
with electric (respectively magnetic) field component orthogonal to the E
(resp.H) plane.

The antenna Directivity is useful to express the ability of the antenna
to concentrate the radiation in one direction, with respect to an isotropic
antenna that radiates the same power Wt.

D(θ, φ) =
U(θ, φ)

Uiso

=
U(θ, φ)

Wt/4π
(3.4)

The Gain is a very similar quantity which is instead defined with respect to
the power Win which enters the antenna.

G(θ, φ) =
P (r, θ, φ)

Win/4πr2
=

U(θ, φ)

Win/4π
(3.5)

The powers Wt and Win differ only for the power losses possibly present in
the antenna. For lossless antennas, Directivity and Gain are synonymous:
this is the case of the antenna presented in this report, where the two terms
will sometimes be present, with the same meaning. It must be noticed how
these quantities are usually expressed in dB following the definition (equally
valid for D and G):

GdB = 10 log10(G). (3.6)

Very often, Gain and Directivity are normalized with respect to their maxi-
mum value, in such a way to have a value of 0dB in the direction of maximum
radiation.

For aperture antennas, another important parameter related to direc-
tivity is Surface efficiency. It is calculated in relation to the radiation
characteristic of a uniformly illuminated aperture on a ground plane. For
such antennas, the maximum directivity is given by

Duniform =
4π

λ2
Ap (3.7)
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where Ap is the physical area of the antenna. For any other aperture antenna,
the maximum directivity is smaller. Thus, for an antenna with maximum
directivity D0, a surface efficiency ǫap can be expressed as

ǫap =
D0

Duniform
(3.8)

The Surface efficiency is a measure of how efficiently the physical area of the
antenna is utilized.

Other fundamental parameters are defined in regard to the antenna impedance
matching. Normally in fact, not all the power available from the generator
can enter the antenna and be radiated, but only a fraction of it. We are
naturally interested to maximize this fraction. When we consider the an-
tenna attached to a transmission line, as in Fig. 3.2, we know that there are
incident current and tension waves that can be expressed like

V (l) = V +ejβl + V −e−jβl (3.9)

I(l) =
V +

Z0

ejβl +
V −

Z0

e−jβl (3.10)

The Reflection Coefficient in l = 0 corresponds to the S11 parameters of
the Scattering matrix representation of a two-port junction, and it’s defined
as

S11 = Γ(0) =
V −

V +
. (3.11)

It represents the incident wave reflection at the antenna as a fraction of the
incident one. If one wants an index of the power reflected at the antenna,
one could use the following (in dB)

10 log10

∣

∣

∣

∣

V −

V +

∣

∣

∣

∣

2

= 20 log10

∣

∣

∣

∣

V −

V +

∣

∣

∣

∣

= 20 log10(S11). (3.12)

With such a definition, S11 = −3dB corresponds to a 50% of power reflection,
S11 = −10dB corresponds to a 10% power reflection, and so on.

It must be noticed how a low value of S11 does not necessarily imply a
well-matched antenna. Instead, it is a necessary prerequisite to the design of
an appropriate matching device, which is not treated in this report.
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Figure 3.2: Schematic representation of a transmission line attached to a
complex load (possibly representing an antenna), with incident tension and
current waves.
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Figure 3.3: 2D model for the cavity antenna. The model it is based on, is
a Fabry-Perot cavity, around 5 times larger in the x direction. Notice that
this structure is invariant in the z direction.

3.3 Initial configuration: Fabry-Perot antenna.

In order to simplify the project and define some of the several variables
involved in the design, a 2D model was initially created. The structure
described in Fig. 3.3 shows this model.

It is inspired by the antenna described in [25]: a Fabry-Perot cavity,
whose mirrors are constituted by parallel wires or strips designed (distance,
wires diameter or strips width) in such a way to have the desired reflection
coefficients. A source is placed in proximity of the mass plane (a patch or
an open ended waveguide). This kind of antenna is known to give a high
directivity, at the cost of a quite large surface (around 10λ). In order to
obtain a compact antenna, the large Fabry-Perot cavity is ”truncated”, as
shown in Fig. 3.3, by means of two metallic walls in such a way to obtain
the desired dimension of 2.8λ. Since the antenna is designed to work at 14
GHz, its size is 60 mm.

This structure has been initially simulated by means of a 2D rigorous
modal method using the S-matrices of each scatterer (the structure is divided
in several rectangular scatterers)[26]. The same method has been used to
optimize parameters such as the total number of grids, the widths of the
strips or wires and the distance between these latter and the mass plane. All
the optimizations have been done with the aim of obtaining a high directivity.
At this stage of the project, no considerations on impedance matching are
done.

Since the aim is to get a surface efficiency of ǫap ∼ 90% , the 3D directivity
is given by

D3D = ǫap
4π(2.8λ)2

λ2
= 89 (3.13)
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which, using approximate formulas for directive antennas (§2.5, [27]), gives
for the principal radiation lobe a half-power beamwidth ∆θ equal to

D3D = 89 =
4π

∆θ2
=⇒ ∆θ = 21.5◦ (3.14)

that, in the 2D case, corresponds to a targeted directivity of

D2D =
2π

∆θ
= 16.7 (3.15)

The grid is made of a periodical arrangement of infinitely conducting
strips, with period d fixed and strips width w. The thickness of the strips is
equal to 0.14 mm, which corresponds to the thickness of the metallic plate
used to etch the grid in the experiment. In the numerical optimization, the
parameters are the grid position (distance h to the ground plane) and the
width of the strips w. The cost function used for the optimization is aimed
to give a directivity as close as possible to a given Dgoal in a given frequency
range. This range is chosen to be 5%, centered on 14 GHz. We have used
d = 5.8 mm, and in that case the result of the optimization is w = 2.1
mm, and h = 10.9 mm. The maximum directivity that we obtained in this
configuration is shown in figure 3.4 and though not optimal, was considered
a good starting point to build a prototype and to test the validity of our
approach.

From this 2D model, a 3D one has been derived, by simply truncating the
2D cavity in the transversal direction in such a way to obtain a square cavity.
A second set of parallel strips has been added, orthogonal to the first one,
thus obtaining a regular grid, see Fig. 3.5. A patch antenna, appropriately
designed to resonate in the frequency band of interest1, has been added on
the mass plane to constitute the excitation.

This antenna has been built and measured in the anechoic chamber of the
Institut Fresnel, showing an almost perfect coincidence with the simulations
(see Fig.3.6). While the results in terms of directivity and radiation pattern
are good, this antenna suffers from a very poor impedance matching, as Fig.
3.7 shows. This result is not surprising, because for this prototype impedance
matching has never been included as a goal of the optimization.

1The patch was initially designed assuming it was placed in the free space. The in-
teraction between the cavity and the patch has been investigated once the prototype has
been built.
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Figure 3.4: 2D directivity, best optimization result with one grid. The two
vertical lines delimit the frequency range.

Figure 3.5: The cavity antenna excited by a patch.
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Figure 3.6: Comparison between simulations(left) and measurements(right)
of the antenna shown in figure 3.5.Only copolar components of the fields are
shown. These plots are produced by normalizing radiation patterns indepen-
dently for each different frequency. Thus, the 0dB level at a given frequency
is not comparable, in absolute value, to the 0dB value at a different frequency.
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Figure 3.7: S11 parameter, in dB, versus frequency, showing the poor
impedance matching of the antenna.

57



-40 -30 -20 -10 0 10 20 30 40

10.0

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

H plane, cross-polarization

-30

-27

-24

-21

-18

-15

-12

-9

-6

-3

0

Angle

G
H

z

Figure 3.8: Relation between peaks in S11 and crosspolars level.

3.3.1 First conclusions

This experience showed how the concept of a strip grating cavity-backed
antenna is indeed promising: a planar directive antenna can be obtained
with compact size. The behavior of the cavity, though, and its interaction
with the source had to be further investigated, with the aim of a higher
directivity and, most of all, a good impedance matching.

From this preliminary results, we could understand that the size of the
cavity plays a fundamental role for both directivity and impedance matching.
In particular, the S11 measurements revealed the presence of phenomena
that can be interpreted as resonances of the cavity. As Fig. 3.7 illustrates, at
certain frequencies the power absorbed from the cavity (and then converted to
radiated power) has a maximum (minimum values for S11). Moreover, these
peaks are in strict relation with negative peaks in the Gain curve, changes
in the radiation pattern and a sudden increase in the level of crosspolars,
as Figs. 3.8 and 3.9 show. All these observations suggest a multi-resonant
nature of the cavity.

Once the multi-resonant nature of the cavity has been revealed, it remains
to understand what mode corresponds to each peak. In order to do so, a first
easy test is to run several simulations, varying one dimension of the cavity
at a time. In such a way, one can understand if a given mode is resonant (or
multi-resonant) along one, two or all three sides of the cavity.

One results of this kind of investigation is shown in Figures 3.10, where
the frequency of each S11 peak is shown as a function of cavity sides (always
keeping the cavity square and for the same cavity height). It appears evident
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Figure 3.9: Gain and S11 curves, showing typical corresponding peaks at the
same frequencies.
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Figure 3.10: S11 peaks migration with respect to cavity size.

that the peaks from S1 to S6 are dependent from the cavity sides (shift
to lower frequencies for bigger size), while S7 seems unaffected from this
parameter. Our hypothesis is that S7 corresponds to a mode whose resonant
frequency depends only from the cavity height (distance mass plane-grid).
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3.4 A 3D finite elements method

In order to continue our investigation and to deepen the observations made
so far, a fully 3D numerical method is needed, which is able to include all
the parameters of interest of our antenna, and which is able to visualize the
field distribution inside the cavity.

We thus chose to use a commercial software based on the finite element
method. It includes a fully 3D CAD2, which allowed us to model in detail our
antenna and to see how a change in the design could affect the performance.

The finite element method works by dividing the model into several small
homogeneous pieces (finite elements), where simple approximated field ex-
pressions are used. The total number of finite elements depends on the size
of the model and on the size of the smaller details. As this number grows,
the computational resources needed to solve the problem grow very rapidly,
so it’s very important to keep it as low as possible.

In our case, a model of the whole antenna (we remember, approximately
2.8λ× 2.8λ) would produce a number of finite elements too high to be prac-
tically usable. Fortunately, we could exploit the intrinsic symmetry of the
antenna by modeling only one quarter of the structure and using symmetry
planes, thus proportionally reducing the number of finite elements and the
computational resources needed. Figure 3.11 shows the model of the antenna
and also introduces some modifications that have been requested from Alca-
tel with respect to the antenna shown in the previous sections. In particular,
the patch excitation used so far has been substituted with a waveguide open-
ing directly into the mass plane. This kind of excitation is preferable to a
patch when, as in our case, high power handling is needed. Moreover, the
guided access allows us to build an antenna with no dielectric components:
this is an advantage for an antenna designed to be mounted on satellites,
where dielectrics suffer from fragility and performance degradation.

3.4.1 New kinds of grid

At first, we wanted to investigate the effects of a different kind of grid, again
obtained by orthogonally crossing two sets of parallel strips which are the
result of 2D optimizations, with grids of 20 strips instead of the previous
10. A first optimization was run, with strips of constant width. A second,
much more complex optimization, aimed to obtain grids with a variable strip
width. Without going too much into the details of the optimization, we can
say that the strip width has been described as a function of the x coordinate,

2Computer Aided Design
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Figure 3.11: The model of the cavity antenna. Notice that only one quarter
of the antenna is modeled by using symmetry planes, in order to reduce the
number of finite elements and the computational resources needed. Plane
yz has a ”Perfect E symmetry” boundary condition, while plane xz has a
”Perfect H symmetry” boundary condition (see Fig. 3.12).

Reflection on E plane

E H

(a) Perfect E symmetry. This im-
plies a null tangential E and normal
H on the plane of symmetry.

Reflection on H plane

E H

(b) Perfect H symmetry. This im-
plies a null tangential H and normal
E on the plane of symmetry.

Figure 3.12: E and H symmetries boundary conditions.
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and forced to satisfy a polynomial law. The cost function has been modified
in such a way to penalize widths that are too small to be actually realizable.
The distance between the grid and the mass plane has also been included in
the parameters to be optimized.

It must be noticed also that, due to a change in the specifics requested
from Alcatel Space, the whole antenna has been resized to work at 20 GHz
and not at 14 GHz anymore. Taking Fig. 3.13 as a reference, the (x, y)
dimensions of the cavity are, in the order, (42, 42)mm. The waveguide we
used is a standard WR42, whose section (x, y) measures (4.32, 10.67)mm.

The two grids that we obtained are shown in Figure 3.13, followed by
the results in terms of Gain and S11. The parameters of the two grids are
the following (for the VW grid, the measures are given from the cavity edge
towards the center):

CW VW
Grid Height(mm) 11 10.8
Grid Step(mm) 2.1 2.1
Strip Width(mm) 0.65 0.1926

0.3561
1.0434
1.3278
1.1000
1.1047
1.2476
1.3716
1.3721
1.3242

The results of these simulations allowed us to make some fundamental
observations. First of all, the frequency where the Gain is maximum is higher
with the VW grid than with the CW (19.8GHz versus 19.4GHz, Fig. 3.14).
The maximum value itself is around 1dB higher with the VW grid than with
the CW one. Peaks in S11 and G are observed, similarly to the observations
made at 14 GHz with the previous grids, but while with the CW grids some
power enters the antenna around 19.5GHz, the VW grid produce an almost
total reflection at all frequencies (Fig. 3.15).

These observations suggested us again to compare the behavior of the
antenna to the one of a resonant cavity. In particular, one of our hypothesis
is that the maximum Gain frequency corresponds to the presence of a given
cavity mode, which is resonant in the z direction. In this case, the observed
frequency shift could be related to the different cavity height. In fact, the
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(a) Constant width grid (CW). (b) Variable width grid (VW).

Figure 3.13: The new grids made of 20x20 crossed strips.

maximum Gain point has a 2% shift towards lower frequencies for a 1.8%
thicker cavity.

A second hypothesis is that the grid can be compared to a lossy wall:
when losses are low (VW grid, with much thicker strips), the Gain is higher
but a much lower power leaves the antenna in the form of radiation; when
losses are lower, the gain is lower too, but more power is able to leave the
cavity and be radiated.

We proceeded then to trace field charts inside the cavity, which are shown
in Fig. 3.17 and Fig. 3.18 for the VW grid. They are traced at the frequency
of 19.2 GHz (first minimum of gain and power absorption) and at 20.1 GHz
(maximum gain). The field charts are evidently the ones of the modes TE250
and TE011.

It’s the presence of the TE011 mode that generates a good radiation
pattern with a satisfying Gain (see Fig. 3.16). This mode in fact has the most
uniform field distribution in the plane xy, and it generates a very constant
illumination of the grid, which is fundamental to obtain a good Gain. On the
opposite, the presence of the 250 mode is undesirable and should be avoided
if possible.
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Gain

(a) Gain with the grid CW.

Gain

(b) Gain with the grid VW.

Figure 3.14: Gain with 20x20 crossed strips.
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S11

(a) S11 with the grid CW.

Gain

S11

(b) S11 with the grid VW.

Figure 3.15: Power reflection with 20x20 crossed strips.
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Figure 3.16: 3D Polar plot of the radiation pattern obtained using the VW
grid.
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(a) Electric field amplitude and direction on a xy cut at z=3.78mm.

(b) Electric field amplitude on a xz plane in y=0mm.

Figure 3.17: Electric field distribution at 20.1 GHz inside the cavity. It can
be identified with a TE011 mode.
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(a) Electric field amplitude and direction on a xy cut at z=3.78mm.

(b) Electric field amplitude on a xz plane in y=0mm.

Figure 3.18: Electric field distribution at 19.2 GHz inside the cavity. It can
be identified with a TE250 mode.
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3.5 A method to dimension the cavity.

For a perfectly metallic cavity, the cut frequencies of each mode can be easily
calculated analytically starting from the modes of a rectangular waveguide.
For the details of this calculation, see Appendix C. It is straightforward
to implement such formulas into a spreadsheet and thus calculate the cut
frequencies of each mode that could be supported from a perfectly metallic
cavity of arbitrary size in a certain frequency range.

If we make this calculation for a perfect cavity of the same size of our
antenna, in the range 19-21GHz, we find an almost perfect match for modes
011 and 250, as the following table shows.

x y z Perfect cavity Cavity antenna
2 5 0 19.233 19.2
5 2 0 19.233
0 0 1 19.841
0 1 1 20.160 20.1
1 0 1 20.160
4 4 0 20.203
1 1 1 20.474
3 5 0 20.825
5 3 0 20.825

All the modes calculated analytically and not present in the simulations,
do not get excited inside the antenna due to the nature of the exciting field.
The waveguide aperture on the bottom of the cavity has in fact an x-polarized
field, which is constant in the x direction and sinusoidal in the y direction,
with a maximum in y=0. This allows, for example, only modes with an odd
symmetry in the y direction.

This strong analogy between the cavity antenna and a closed, metallic
cavity is a precious tool that can help us design individually each side of
the antenna. In this way, we can work on the y and z dimensions of the
antenna to excite the desired mode TE011 at 20GHz. The cut frequency of
this mode in fact is independent from the x dimension. This gives us a degree
of freedom that can be used to move the undesired TE250 mode (whose cut
frequency instead depends also on the x size) away from the frequency range
of interest.

With a longer x side, the TE250 mode will be moved to lower frequencies.
The following table shows the modes that are expected for a (44, 42, 7.56)mm
cavity, together with what is found from the simulations on a similar antenna.
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x y z Perfect cavity Cavity antenna
2 5 0 19.115 19.15
4 4 0 19.749
0 0 1 19.841
1 0 1 20.132 20.10
5 3 0 20.133
0 1 1 20.160
1 1 1 20.446
6 0 0 20.455
3 5 0 20.578
6 1 0 20.764 20.70
2 0 1 20.980
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Figure 3.19: Gain obtained with VW grid, 44x42x7.56mm cavity.

Figure 3.20: S11 obtained with VW grid, 44x42x7.56mm cavity.
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x
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z

Figure 3.21: Mode TE610 gets excited inside the antenna at 20.7 GHz.

Again the matching between the analytical calculation and the simula-
tions is perfect. The same procedure has been applied to the case of CW
grid, with similar results.
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(a) CW Plane E copolar radiation pattern.
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(b) VW Plane E copolar radiation pattern.
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(c) CW Plane H copolar radiation pattern.
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(d) VW Plane H copolar radiation pattern.

Figure 3.22: Radiation patterns for 20x20 strip grids, 44x42mm cavity. Grid
CW shows a low Side Lobe Level (< −20dB) in a large range of frequencies.
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Figure 3.23: Optimization of strip widths separately along the x and y axis.

3.6 Grids for a better impedance matching

Now that we have a tool to correctly dimension the cavity, we focalize our
attention on the grid and try to apply the observations done in the previous
sections.

In particular, we know that the cavity mode we want to excite is the
TE011, which doesn’t have the same field distribution along x and y. So,
there is no special reason to use a grid which has the same design along x
and along y. Instead, we would like to design separately the strip widths
along x and along y, trying to look for the best compromise between Gain
and Impedance matching.

In order to minimize the number of parameters to be optimized, we
worked on the type of grid CW, that is with a constant strip width. In
this case though, the strip widths will be different along the x and the y
directions. The choice of this grid is due to a lower side lobe levels exhibited
in the radiation pattern (see Fig. 3.22) and to a slightly better impedance
matching.

Two different parametric simulations are done: with reference to Fig.
3.23, a first simulation aims to optimize the value of Wy, keeping Wx con-
stant to the 0.2mm used so far. Wy is the most important parameter, being
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the width of the strips that are parallel to the electric field, the ones that
interacts more strongly with the cavity field. Wx has a smaller influence on
the behavior of the antenna, as already observed in the previous simulations,
and its dimension mostly modifies the level of crosspolars and the impedance
matching.

Once an optimum Wy is be found, a second simulation optimizes the
value of Wx, keeping Wy constant. By reiterating this process, successive
refinements are possible.

Figs. 3.24 and 3.25 show the Gain and S11 curves as a function of Wy.
It can be observed that for bigger Wy, the power reflected from the an-
tenna is higher, while at the same time the Gain gets higher. What is more
important though, is that the frequencies of maximum gain and maximum
power absorption are shifted, for all cases, with respect to each other: this
gives a narrower overall bandwidth. Moreover, they both shift towards lower
frequencies for thinner Wy.

It is clear that a tradeoff between a high Gain and a low power reflection
is necessary. Let’s define BS as the bandwidth in terms of S11 requisites only
and BG as the bandwidth in terms of Gain requisites only:

• BS: frequency range where S11 < targeted S11

• BG: frequency range where G > targeted G.

Our choice of Wy = 0.5mm gives a value of BG(G > 19db) equal to 400MHz,
centered in 19.7GHz; a value of BS(S < −3db) equal to 300MHz, centered
in 19.85GHz.
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Figure 3.24: S11 variation for different strip widths Wy.
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Figure 3.25: Gain variation for different strip widths Wy.
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Let’s now proceed to the analysis of the variation of Wx, keeping Wy =
0.5mm. It can be observed from figures 3.26 and 3.27 how Wx influences
the antenna behavior similarly to Wy, even if less dramatically. That is, for
bigger Wx, the power reflected from the antenna is higher but the Gain curve
is better. Again, a choice of compromise is necessary, and Wx must be chosen
in such a way to have a good impedance matching without sacrificing too
much the Gain curve. A value of Wx = 0.4mm allows to obtain the following
performances:

• S11 < −3dB in the range 19.7 − 20GHz

• S11 < −5dB in the range 19.75 − 19.95GHz

• G > 18dB in the range 19.35 − 20GHz

• G > 19dB in the range 19.6 − 19.8GHz
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Figure 3.26: S11 variation for different strip widths Wx.
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Figure 3.27: Gain variation for different strip widths Wx.
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3.7 The introduction of perfectly magnetic

walls.

Our conclusions, after the optimizations described in the previous parame-
ters, were not completely satisfactory. The overall bandwidth of the antenna
is narrow (∼ 1.5% ) and it was obtained in exchange of a lower maximum
Gain (19dB against the 20dB that could be reached with different grids). A
big part of the problem is that the center frequencies of the bands BS and
BG are shifted, thus reducing the overall bandwidth.

We tried to find a solution to this problem by reverting to the basic prin-
ciples of this antenna: the more uniform the illumination of the grating, the
better the performances, at least in terms of directivity. For a metallic cavity,
the TE011 is the first z-resonant mode that can be excited (see Appendix
C), with a sinusoidal field distribution along the x axis, and a constant field
distribution along the y axis (see Fig.3.17).

Could it be possible to modify the cavity in such a way to obtain a cavity
mode which is resonant along the z axis, but with a constant illumination
both along the x and along the y axis? The answer to this question must
necessarily be searched in a change of boundary conditions in the lateral walls
of the cavity. In particular, if the x-aligned walls are made of a perfectly
magnetic material, a TEM mode can be present in the cavity and resonate
along the z axis (see Appendix C). This would give the best possible aperture
illumination and so the best possible surface efficiency.

A first attempt in this sense has been made by simply taking the antenna
with the optimized grid described in the last section, and by changing the
boundary conditions of the lateral (x-aligned) walls, with the aim of just
demonstrate the feasibility of the idea. The result was an immediate im-
provement of the maximum gain of around 1dB, as Fig. 3.28 shows, with the
expected field distribution inside the cavity (Fig. 3.30).

At around 19.7GHz, a resonant peak appears, in correspondence to a
sudden degradation of the Gain curve. At a second analysis, it appears to be
a 450 mode (Fig.3.29). This mode is far enough from the work frequency and
doesn’t represent a problem, nevertheless it will be moved at slightly higher
frequency by means of a small cavity resize, using the same analytical tool
used previously for the metallic cavity.
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Figure 3.28: Gain curve obtained by using two perfectly magnetic walls.

Figure 3.29: TE450 mode appearing when using a PEC/PMC cavity
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Figure 3.30: Electric field magnitude and polarization, at 19.2 GHz, in a
PEC/PMC cavity. It can be noticed how the field amplitude is almost con-
stant in the xy plane.
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3.7.1 Grid optimization with metallic walls

The previous result has been obtained with a grid optimized for a fully metal-
lic cavity and a TE011 mode illumination. This grid is surely not optimal in
this case, where the cavity mode has a constant distribution both along the
x and along the y axis. A new grid optimization thus has been ran, in order
to maximize Gain and Impedance matching.

A procedure similar to the one depicted in §3.6 has been adopted. The
first step consists in optimizing the width Wy while keeping the value Wx =
0.3mm. The influence of Wy on Gain and Impedance Matching is shown in
Fig. 3.32. Larger widths Wy shift the point of minimum power reflection
and maximum gains at higher frequencies, as already observed with metallic
walls. The usual compromise between Gain and Impedance Matching is again
present, though in this case the Gain values are between 1 and 2 dBs higher
than in the case of metallic walls.

A value of Wy = 0.1mm has been chosen as the best G ∼ S11 tradeoff.
The hypothesis of thinner values has not been investigated, because for the
technologies used at this scale, it is near to the lowest realizable value.

The second step was the optimization of Wx, keeping Wy = 0.1mm.
Again, this parameter has a smaller impact on the Gain and S11 curves, but
still it must be carefully chosen to obtain a well-tuned antenna. The choice
of Wx = 0.3 finally seems the best and gives the following performances:

• S11 < −3dB in the range 19.10 − 19.40GHz

• S11 < −5dB in the range 19.15 − 19.35GHz

• In the same range of frequencies, G is equal or higher than 20dB, except
between 19.35 and 19.40 GHz, where anyway it remains higher than 19
dB.

We remember that this has been obtained with a cavity size of (x = 43.56, y =
41, z = 7.53)mm. The surface efficiency can easily be calculated from the
value of 20dB of directivity, at 19.25GHz, as

ǫap =
100

43.56 · 41 4π
15.62

∼ 1 (3.16)

The total bandwidth of the antenna is 1.56%, centered on 19.25GHz, whit
a Gain of 20dB on most of it.
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Figure 3.31: S11 variation for different strip widths Wy, keeping Wx = 0.3mm.

0.1

d
B

0.2 0.3
0.4

Gain

Thicker Wy:
from 0.1 to 0.9 mm

Figure 3.32: Gain variation for different strip widths Wy, keeping Wx =
0.3mm.
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Figure 3.34: Gain variation for different strip widths Wx, keeping Wy =
0.1mm.
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Figure 3.35: Detail on S11 for the grid optimized in presence of the magnetic
walls.
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Figure 3.36: Detail on G for the grid optimized in presence of the magnetic
walls.
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Figure 3.37: Radiation pattern of the PEC/PMC cavity with optimized grid.
The white lines identify the frequency range of utilization.

3.8 Conclusions

In the course of this report, we have addressed the problem of designing
a compact planar antenna for satellite applications. The main goals of the
designs were surface efficiency, high power handling, compact size. The initial
designs, inspired by a Photonic Band Gap antenna, have been modified to
meet our needs and led to a cavity-backed, metallic grid antenna. With the
help of accurate Finite Elements simulations and measures of prototypes, we
have gained a good insight of the physical behavior of the antenna. This
allowed us to develop an analytical tool that can support the design of the
cavity size for different frequencies. Finally, by exploiting the properties of
artificial surfaces, we have designed the final PEC/PMC configuration, which
has allowed us to meet most of the requested specifics.

The main advantages of this antenna is the compact size in terms of thick-
ness. For a comparable aperture size when compared to a typical pyramidal
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horn, this antenna is on order of magnitude thinner (λ/2 against the 6λ of a
typical corrugated horn. This gives a wider flexibility for reciprocal antenna
placement when designing arrays and allows conformal surface mounting.
Moreover, it grants a major weight decrease, which is a crucial factor for
satellite antennas.

Several perspective works arise from this project. At first, the design
and realization of an artificial surface which can behave as a PMC in the
frequency range of interest will be needed. Several papers and practical
realizations are available from other authors and it will be interesting to see
how these surfaces will behave when embedded in our design.

A second effort should be done to be able to support circular polarizations.
Some experiments have been done in this sense during these project, and have
been abandoned mostly for problems in the realization of prototypes. Basing
on our observations, we have strong clues that very good performances can be
achieved by using a square cavity in conjunction with feeding system made of
two in-phase waveguides. This structure is in our opinion the best candidate
to form the basis of a circularly polarized antenna.

Last but not least, the major inconvenient of this antenna is the band-
width, which is the parameter that satisfies the worst the requested value.
The resonant nature of the cavity in fact is an intrinsic limit. This limit
could be overtaken, in our opinion, only in exchange of a lower maximum
directivity, as the measures and simulations we showed demonstrate.

Finally, an impedance matching device must be designed. This has never
been a goal of our project, which has instead been assigned to an independent
team. The effects of such a device on the bandwidth of this antenna should
be investigated.
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Appendix A

Green’s function magnetic field.

The magnetic field can be obtained from the electric field, for each single
Fourier component, via the Maxwell equation

H =
j

ωµ
∇× E (A.1)

In our case, we start from the G tensor, whose components we have called
Gαβ. We can now introduce the vector Gβ, which represent the electric
field radiated by a dipole oriented in the direction β, where β is one of the
cartesian unitary vector. In the same way, we introduce the vector GHβ for
the magnetic field. Following equation A.1, we can write

∇× Gβ =

(

∂

∂y
Gzβ − ∂

∂z
Gyβ

)

x̂+

(

∂

∂z
Gxβ − ∂

∂x
Gzβ

)

ŷ+

(

∂

∂x
Gyβ − ∂

∂y
Gxβ

)

ẑ

(A.2)

The computation will be performed on equation (2.13), and in a second
time the passage in cylindrical coordinate will be performed. The kx, ky

integration and the rotational are performed on independent variables, so
the order of the operands will be swapped.
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A.1 s- polarization

The generic form of the s- polarized component of G is

Gs
αβ(r, r′) =

i

8π2

∫ ∫

dkx dky exp{i[kx(x − x′)

+ ky(y − y′)]} 1

klz

{[l̂α(±klz)A
s
l,αβexp(iklzz)

+ l̂α(∓klz)B
s
l,αβexp(−iklzz)]l̂β(klz)

(A.3)

where

l̂ = (sin kφ,− cos kφ, 0)

m̂ = (
klz

kl

cos kφ,
klz

kl

sin kφ,
kρ

kl

})
(A.4)

A small simplification can be introduced by noticing that l̂(+klz) = l̂(−klz).
Moreover, being l̂z = 0, we can conclude that

Gs
h,xβ = − ∂

∂z
Gs

yβ

Gs
h,yβ =

∂

∂z
Gs

xβ

Gs
h,zβ =

∂

∂x
Gs

yβ − ∂

∂y
Gs

xβ

(A.5)

We provide the details of the calculations for the first component only of the
(A.5); the calculation for the other components is absolutely similar.

Gs
h,xβ =

−i

8π2

∫ ∫

dkx dky
1

klz

[l̂y l̂β
∂

∂z
(Aseiklzz + Bse−iklzz)]ei[kx(x−x′)+ky(y−y′)]

(A.6)
where

As(z, z′) = As
0(z

′) + Θ(z − z′)e−ikl′zz′ ⇒ ∂

∂z
As = δ(z − z′)e−ikl′zz′

Bs(z, z′) = Bs
0(z

′) + Θ(z′ − z)eikl′zz′ ⇒ ∂

∂z
Bs = −δ(z − z′)eikl′zz′ .

(A.7)

which leads us to the expression

Gs
h,xβ =

(

. . .

)

1

klz

[

l̂y l̂β

(

δ(z − z′)ei(klzz−kl′zz′) − δ(z − z′)e−i(klzz−kl′zz′)

+ iklzA
seiklzz − iklzB

se−iklzz

)

]

.

(A.8)
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In z = z′, it is also true that klz = kl′z, so the two Dirac-delta terms cancel
each other, thus giving the expression

Gs
h,xβ =

(

. . .

)

1

klz

[

l̂y l̂β

(

iklzA
seiklzz − iklzB

se−iklzz

)

]

. (A.9)

By passing in cylindrical coordinates, and using 2.14 to perform the integra-
tion along kφ, we obtain, in analogy to the 2.15, the integrand terms

f s
h,xx = −i

[

− kρJ0(kρρ) +
2

ρ
J1(kρρ)

]

sin(φ) cos(φ) (A.10)

·
[

Asexpiklzz − Bsexp−iklzz

]

f s
h,xy = −i

[

kρJ0(kρρ) cos2 φ − 1

ρ
J1(kρρ) cos(2φ)

]

(A.11)

·
[

Asexpiklzz − Bsexp−iklzz

]

.

With similar calculations, the other components can be computed, obtaining

f s
h,xz = 0 (A.12)

f s
h,yx = i

[

kρJ0(kρρ) sin2 φ +
1

ρ
J1(kρρ) cos(2φ)

]

(A.13)

·
[

Aseiklzz − Bse−iklzz

]

f s
h,yy = f s

h,xx (A.14)

f s
h,yz = 0 (A.15)

f s
h,zx =

k2
ρ

klz

J1(kρρ) sin φ

[

Aseiklzz + Bse−iklzz

]

(A.16)

f s
h,zy = −

k2
ρ

klz

J1(kρρ) cos φ

[

Aseiklzz + Bse−iklzz

]

(A.17)

f s
h,zz = 0 (A.18)

(A.19)
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A.2 p- polarization

The generic form of the p- polarized component of G is

Gp
αβ(r, r′) =

i

8π2

∫ ∫

dkx dky exp{i[kx(x − x′)

+ ky(y − y′)]} 1

klz

{[m̂α(±klz)A
p
l,αβexp(iklzz)

+ m̂α(∓klz)B
p
l,αβexp(−iklzz)]m̂β(klz)

(A.20)

The components of GHβ are given by

Gp
h,xβ =

∂

∂y
Gp

zβ − ∂

∂z
Gp

yβ (A.21)

Gp
h,yβ =

∂

∂z
Gp

xβ − ∂

∂x
Gp

zβ (A.22)

Gp
h,zβ =

∂

∂x
Gp

yβ − ∂

∂y
Gp

xβ (A.23)

but we will provide here the details of the calculation only for Gp
h,xx. In

general, it is

∂

∂y
Gp

zβ = ikyG
p
zβ =

1

8π2

∫ ∫

dkxdky
iky

klz

{

m̂z · m̂β

(

Ap
zβeiklzz + Bp

zβe−iklzz

)}

ei[kx(x−x′)+ky(y−y′)]

(A.24)

that, in the case β = x and passing in cylindrical coordinates, becomes

−i
k3

ρ

k2
l

sin(kφ) cos(kφ)

(

Ap
z,xe

iklzz + Bp
z,xe

−iklzz

)

eikρρ cos(kφ−φ) (A.25)

which, by using Bessel identity, gives us the first part of the monodimensional
integrand in (A.21), that I call

f
p(1)
h,xx = i

k2
ρ

k2
l

[

− kρJ0(kρρ) +
2

ρ
J1(kρρ)

]

sin(φ) cos(φ)

(

Ap
zxe

iklzz + Bp
zxe

−iklzz

)

.

(A.26)
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The second part of equation (A.21) is

∂

∂z
Gp

yβ =

1

8π2

∫ ∫

dkxdky
1

klz

{

± m̂ym̂β

[

( ∂

∂z
Ap

yβ

)

eiklzz + iklzA
p
yβeiklzz

−
( ∂

∂z
Bp

yβ

)

e−iklzz + iklzB
p
yβe−iklzz

]

m̂β

}

ei[kx(x−x′)+ky(y−y′)]

(A.27)

where

Ap
yβ(z, z′) =

{

±Ap
yβ0(z

′) ± Θ(z − z′)e−ikl′zz′ if β 6= z

Ap
yβ1(z

′) + Θ(z − z′)e−ikl′zz′ if β = z
(A.28)

Bp
yβ(z, z′) =

{

∓Bp
yβ0(z

′) ∓ Θ(z′ − z)eikl′zz′ if β 6= z

Bp
yβ1(z

′) + Θ(z′ − z)eikl′zz′ if β = z
(A.29)

By calculating the z derivative of these expressions, we get

∂

∂z
Ap

yβ(z, z′) =

{

δ(z − z′)
(

2Ap
yβ0 + e−ikl′zz′

)

if β 6= z

δ(z − z′)e−ikl′zz′ if β = z
(A.30)

∂

∂z
Bp

yβ(z, z′) =

{

−δ(z − z′)
(

2Bp
yβ0 + eikl′zz′

)

if β 6= z

−δ(z − z′)eikl′zz′ if β = z.
(A.31)

By substituting into equation (A.27), in the case β = z we obtain

∂

∂z
Gp

yβ =

=
1

8π2

∫ ∫

dkxdky
1

klz

{

± klz

kl

2

cos(kφ) sin(kφ)

[

iklz

(

Ap
yxe

iklzz + Bp
yxe

−iklzz

)

+ δ(z − z′)

(

2Ap
yx0 + e−ikl′zz′

)

eiklzz + δ(z − z′)

(

2Bp
yx0 + eikl′zz′

)

e−iklzz

]

}

· ei[kx(x−x′)+ky(y−y′)]

(A.32)

that, passing in cylindrical coordinate and using Bessel identity, gives us the
second part of the monodimensional integrand,

f
p(2)
h,xx

= ∓i

�
klz

kl

�2�
kρJ0(kρρ) −

2

ρ
J1(kρρ)

�
sin(φ) cos(φ)

�
Ap

yxeiklzz + Bp
yxe−iklzz

�
− δ(z − z′)

(
2

klz

k2
l

�
kρJ0(kρρ) −

2

ρ
J1(kρρ)

�
sin(φ) cos(φ)

�
Ap

yx0eiklzz + Bp
yx0e−iklzz + 1

�)
.

(A.33)
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To sum up, we provide here the complete expressions for fp
h,αβ:

fp
h,xx

= i
k2

ρ

k2
l

�
− kρJ0(kρρ) +

2

ρ
J1(kρρ)

�
sin(φ) cos(φ)

�
Ap

zxeiklzz + Bp
zxe−iklzz

�
(A.34)

∓ i

�
klz

kl

�2�
kρJ0(kρρ) −

2

ρ
J1(kρρ)

�
sin(φ) cos(φ)

�
Ap

yxeiklzz + Bp
yxe−iklzz

�
− δ(z − z′)

(
2

klz

k2
l

�
kρJ0(kρρ) −

2

ρ
J1(kρρ)

�
sin(φ) cos(φ)

�
Ap

yx0eiklzz + Bp
yx0e−iklzz + 1

�)
fp

h,xy
= −i

k2
ρ

k2
l

�
kρJ0(kρρ) sin2(φ) +

1

ρ
J1(kρρ) cos(2φ)

��
Ap

zyeiklzz + Bp
zye−iklzz

�
(A.35)

∓ i

�
klz

kl

�2�
kρJ0(kρρ) sin2(φ) +

1

ρ
J1(kρρ) cos(2φ)

��
Ap

yyeiklzz + Bp
yye−iklzz

�
− δ(z − z′)

(
2

klz

k2
l

�
kρJ0(kρρ) sin2(φ) +

1

ρ
J1(kρρ) cos(2φ)

��
Ap

yy0eiklzz + Bp
yy0e−iklzz + 1

�)
fp

h,xz
= −

kρ

klzk2
l

sin(φ)J1(kρρ)

 
Ap

zzeiklzz + Bp
zze−iklzz

!
(A.36)

∓
k2

ρklz

k2
l

sin(φ)J1(kρρ)

 
Ap

yzeiklzz + Bp
yze−iklzz

!
fp

h,yx
= ±i

 
klz

kl

!2�
kρJ0(kρρ) cos2(φ) −

1

ρ
J1(kρρ) cos(2φ)

��
Ap

xxeiklzz + Bp
xxe−iklzz

�
(A.37)

+ 2iδ(z − z′)

(�
klz

k2
l

��
kρJ0(kρρ) cos2(φ) −

1

ρ
J1(kρρ) cos(2φ)

��
Ap

xx0eiklzz + Bp
xx0e−iklzz

�)
+i

k2
ρ

k2
l

�
kρJ0(kρρ) cos2(φ) −

1

ρ
J1(kρρ) cos(2φ)

��
Ap

zxeiklzz + Bp
zxe−iklzz + 1

�
fp

h,yy
= ∓i

 
klz

kl

!2�
− kρJ0(kρρ) +

2

ρ
J1(kρρ)

�
sin(φ) cos(φ)

�
Ap

xyeiklzz + Bp
xye−iklzz

�
(A.38)

∓ 2iδ(z − z′)

(�
klz

k2
l

��
− kρJ0(kρρ) +

2

ρ
J1(kρρ)

�
sin(φ) cos(φ)

�
Ap

xy0eiklzz + Bp
xy0e−iklzz + 1

�)
−i

k2
ρ

k2
l

�
− kρJ0(kρρ) +

2

ρ
J1(kρρ)

�
sin(φ) cos(φ)

�
Ap

xyeiklzz + Bp
xye−iklzz + 1

�
fp

h,yz
= ±

k2
ρklz

k2
l

J1(kρρ) cos(φ)

 
Ap

xzeiklzz + Bp
xze−iklzz

!
(A.39)

+
k4

ρ

k2
l
klz

J1(kρρ) cos(φ)

 
Ap

zzeiklzz + Bp
zze−iklzz

!
fp

h,zx
= 0 (A.40)

fp
h,zy

= 0 (A.41)

fp
h,zz

= 0. (A.42)
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Appendix B

MFS and geometry
representation

A fully 3D MFS has been implemented in Fortran 90. In its last version, the
code can solve scattering problems both in the free space and in stratified
media, involving one or multiple homogeneous, non-overlapping scatterers of
arbitrary shape.

The program is conceived as a console application, that takes its input
from several files (see figure B.1), in ASCII format for easy editing (except
for the geometry files), and restitutes the solved electric and magnetic fields,
in the region of interest, in ASCII format, for a subsequent visualization
with a tool of choice. The linear system’s solution (coefficients for the f.s.)
is saved for any subsequent field calculations. Besides the solved total field,
the residual norm (2.7) is provided as an index of accuracy.

B.1 Geometry representation and the STL

format

It can be noticed from Fig.B.1 that the geometrical representation of the
scatterer(s) is completely separated from the core of the software, and instead
is committed to specialized input files, in STL format. The choice of using
an external CAD to generate both the scatterer’s surface and the fictitious
surfaces is an important aspects of our code, and the main reason for its
capability of solving arbitrary shaped objects.

The problem of how to efficiently represent and manipulate geometrical
descriptions of the scatterers is one of the first issues arising when trying
to implement a 3D numerical method. The problem may be more or less
difficult depending on the type of objects one would want to represent. I.e.:
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Input.in

Materials

Geometries

MFS
engine

Utilities

Near field

Far field

Precision

txt

txt

txt

txt

txt

txt

STL

Figure B.1: A gross scheme of the MFS program structure. Each label
represents one or more input/output file, with their format.

are we willing to solve only ”academic” problems, where objects have a proper
analytical description or do we need ”real life” objects of arbitrary shapes?
Generally speaking, one would always be able to solve the more general
case, but without a proper equation to implement, how can we generate the
representation of an arbitrary shaped object?

In the f.s. method, it also must be considered that we need not only a
representation of the scatterer, but we also need adequate surfaces where f.s.
can be placed. Ideally we would also like to be able to manipulate these sur-
faces arbitrarily, in such a way to investigate the effect of sources placement
on solution’s accuracy. This makes necessary to properly implement algo-
rithms to move, scale, rotate 3D objects (at least). As most fictitious sources
distribution require to be at constant distance from the scatterer surface,
proper algorithm of conformal surface creation should be implemented.

Shortly, what we need is a three-dimensional CAD program. There is no
point in trying to create a new CAD program from scratch: it is not in the
goals of our research and it would be a waste of time. The best solution is to
keep the creation and manipulation of three-dimensional geometries external
to the MFS engine. We only need to choose a data representation that can be
used to interface the CAD program to MFS. One choice maybe to interface
directly the CAD code (if available) with MFS: this choice, possible in theory,
is quite difficult to realize practically for several reasons. Moreover, in this
way we would link our code to a given version of the CAD program we use
and we would get stuck to the only platform the CAD can run into.

This is why we concluded that the best choice is to completely separate
the mesh creation process from the MFS engine. In this way, one could create
the meshes on one machine, export them in a suitable format and use them
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facet normal nx ny nz
outer loop
vertex vx1 vy1 vz1
vertex vx2 vy2 vz2
vertex vx3 vy3 vz3

endloop
endfacet

2

3

1

CCW

Out

Figure B.2: STL file format and facet orientation. Each triangle is described
with its three vertex v1, v2, v3 and the normal vector n

on one or more machines where MFS is run. In our case we do not need 3D
volume meshes, but only 3D surface meshes. This is because we only enforce
boundary conditions on the scatterer surface, and we finally express the total
field everywhere in a semi-analytical way.

The STL format is a simple yet complete file format, perfectly suited to
represent surface meshes. It is a well documented, open format that contains
all the data we need, that is surface point and normal vectors. It is widely
used in stereolithography and thus it is available as exportable format from
almost every CAD program. An example of Open Source CAD that is able
to export in STL format is BRL-CAD or Active3D.

We believe that this solution is the most flexible in terms of manipulation
of f.s. placement. Several common activities, like changing the number of
sources on a given surface, putting sources closer to the edges, or adding
more sources in given locations, have proven to be easy and fast.

An STL file describes a raw unstructured triangulated surface by the
unit normal and vertices (ordered by the right-hand rule) of the triangles
using a three-dimensional Cartesian coordinate system. For each triangle,
we calculate its center c and we use this point to describe the surface of the
scatterer or to place fictitious sources. The vector n̂, normal to the triangle
on the point c, is directly read from the file with no further elaborations, and
it is also used to calculate the tangential vectors t1 and t2 as

t1 = v1 − c

t2 = n × t1
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Appendix C

Waveguides and rectangular
cavities

A cavity can be considered as a volume enclosed by a conducting surface
and within which an electromagnetic field can be excited. The electric and
magnetic energies are stored in the volume of the cavity. The fields in the
cavity can be excited, or coupled to an external circuit, by several means as
small-coaxial lines loop or probes. Alternatively, the cavity can be coupled
to a waveguide by means of a small aperture in a common wall. Before
considering the problem of the field solution in a cavity, the problem in a
waveguide must be solved.

C.1 Rectangular waveguides

Hollow pipe waveguides are very common at microwave frequencies, and
rectangular cavities are the most used in particular. This kind of guide does
not support TEM waves. Instead, the field solutions are a superposition
of TE and TM waves, and can be found by solving Maxwell’s equations in
transverse (x,y) coordinates.

For TE waves propagating in the positive zeta direction1, the solution
can be found by imposing ez = 0 and decoupling the equations in e and h,

1Through this chapter, an ejωt time dependence is assumed, as the usual convention
at microwave frequencies.
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Figure C.1: A rectangular waveguide.

to find

∇2
t hz + k2

chz = 0 (C.1)

h =
−jβ

k2
c

∇thz (C.2)

e = −Zhẑ × h (C.3)

where β = (k2
0 − k2

c )
1
2 and Zh = (k0Z0)/β. The complete field solutions are

then given by

H = ±he∓jβz + hze
∓jβz (C.4)

E = Et = ee∓jβz (C.5)

A solution for (C.1) can be found by separation of variable, that is as-
suming a product solution hz = f(x)g(y). In this way, the solution for f and
g are easily found to be

f = A1 cos kxx + A2 sin kxx (C.6)

g = B1 cos kyy + B2 sin kyy (C.7)

where A1, A2, B1, B2 are arbitrary constants. These constants, and kx, ky,
can be found by imposing the boundary conditions that hz must satisfy. In
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particular, for a metallic waveguide, the normal component of the transverse
magnetic field h must vanish at the waveguide walls. This means, from
(C.2), that it must be n̂ · ∇thz = 0, where n̂ is the normal unitary vector at
the walls. When this condition holds, (C.3) shows that the tangential e will
vanish too. In conclusions, the boundary conditions on hz are

∂hz

∂x
= 0 at x = 0, a

∂hz

∂y
= 0 at y = 0, b

By substituting this conditions in the solution for f and g, it is found that
A2 = 0,B2 = 0, and that

kx =
nπ

a
n = 0, 1, 2, . . .

ky =
mπ

b
n = 0, 1, 2, . . .

This gives an expression for hz equal to

hz = Anm cos
nπx

a
cos

mπy

b
(C.8)

where Anm = A1B1 and both n and m are different from zero, which identifies
a trivial constant hz solution. From this expression we can conclude that the
cutoff wavenumber for the nm-th mode is given by

kc,nm =

[(

nπ

a

)2

+

(

mπ

b

)2])
1
2

(C.9)

The propagation constant for the nm-th mode is jβnm = j(k2
0 − k2

c,nm)1/2.
For k0 > kc,nm, βnm is real and the mode propagates, otherwise the mode
rapidly decays along z.

It is important to notice how kc,nm is dependent from the guide dimen-
sions only, and that the field solution for TM modes gives the same kc,nm

expression.

C.2 Perfectly metallic cavity

Figure C.2 illustrates a rectangular cavity: it can be considered a section of
a rectangular waveguide of height b and width a, terminated with a short
circuit at z = 0 and z = d. If d equals a multiple of a half guide wavelength
at the frequency f , the resultant standing wave pattern is such that the
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Figure C.2: A rectangular cavity.

z=dz=0

Figure C.3: Standing wave pattern in a short circuited waveguide.
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x and y components of the electric field are zero at z = 0 and at z =
d. Consequently, a short circuit can be placed at both this sections, thus
constituting a rectangular cavity. The same simple approach leads to the
field solution, that can be directly derived from the corresponding waveguide
solution. For the nmth TE or TM mode, the propagation constant is given
by

β2
nm = k2

0 −
(

nπ

a

)2

−
(

mπ

b

)2

, where k0 =
2πf0

c
(C.10)

For the cavity to be a multiple of half a guide wavelength, it must be βnmd =
lπ. This relation, when used in the C.10, leads to a solution only for discrete
values of k0 that we indicate as knml, where knml is given by

knml =

[(

lπ

d

)2

+

(

mπ

b

)2

+

(

nπ

a

)2] 1
2

(C.11)

From these values of knml, the resonant frequencies of each mode can easily
be calculated.

It must be noticed that there is a triply infinite number of resonant fre-
quencies, corresponding to different field distributions. Also note that there
is more than one field solution for each given resonant frequency, since (C.11)
holds for both TE and TM mode. In addition, because of a lack of a pref-
erential coordinate, in the case of a rectangular cavity, field solutions corre-
sponding to TE and TM modes with respect to the x and y axes could also be
constructed, and these would have the same resonant frequencies. However,
the latter modes are just a linear combination of a TE and TM mode with
respect to the z axis and therefore don’t represent a new solution.

Equation C.11 can be easily implemented in a spreadsheet or in any other
form, and be used to calculate the excitation order of each mode, for arbitrary
dimensions a, b, d.

C.3 PEC/PMC waveguide and cavity

A waveguide with two PEC and two PMC walls can support a TEM mode.
Fig. C.3 shows a section of such a guide, with the electric field distribution.
The magnetic field is orthogonal to it and they both lie on the transverse
plane. When the TEM mode is polarized with the electric field parallel to the
PMC walls, boundary conditions are satisfied. In fact, PMCs surfaces have a
null orthogonal electric field and a null tangential magnetic field. Viceversa,
PEC walls have a null tangential electric field and a null orthogonal magnetic
field.
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Figure C.4: A section of a PEC/PMC guide, showing the Electric Field
distribution.

When a section of such a guide is truncated with appropriately placed
short circuit walls in the z direction, a cavity can be obtained by applying
the same exact procedure described in the previous section.
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