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Chapter 1. Introduction 
 
 

 L’imagerie medicale par echographie a subi un important developement au cours 

des vingt dernieres annees. Les principales raisons de ce developement sont dues au 

faible cout de la modalite par rapport aux autres methodes disponibles (CT-scan, IRM), a 

la mobilite des appareils (des appareils portables commencent meme a etre disponibles), 

au caractere non-invasif et non-radioactif de la methode, ou encore a la possibilite de 

visualiser des images en temps reels, contrairement aux autres modalites. Recemment, les 

echographes ont acquis la possibilite d’imager des volumes en 3 dimensions, comme par 

exemple un cœur qui bat ou le visage d’un bebe.  

Les applications sont nombreuses : detection de cancers, diagnostic prénatal ou 

encore visualisation d’ecoulements sanguins grace au mode Doppler.  

Cependant, la qualite des images est severemment degreades chez un certains 

nombre d’individus, a cause de l’inhomogeneite des tissus traverses. On parle 

d’aberration. Cette degradation limite la capacite diagnostique des ultrasons. Des 

exemples sont presentes de la Figure 1 a la Figure 3. La detection des cancers du sein, 

entre autre, est particulierement affecte. En effet le sein est un milieu particulierement 

heterogene, et les frequences utilisees pour cette application sont elevees, ce qui 

augmente la sensibilite au probleme.      

La correction des aberrations est donc un sujet important. Cette these s’interesse 

au developement d’une methode basee sur le retournement temporel pour corriger les 

aberrations. Les resultats developes dans ce manuscript sont toutefois plus general et 

s’appliquent aussi a d’autre domaines.  
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Figure 1 Image d’un phantom medical, imitant les tissus biologiques, sans aberration (haut), et en 

presence d’un aberrateur (bas).  Les points sont moins bien resolus, et les cysts deviennent invisibles.  
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Figure 2 Image du foie chez un patient facile (haut) et difficile, c’est a dire dont l’image est degreadee 

par le phenomene d’aberration (bas).  Il est aise de reconnaître des structures comme les vaisseaux 

sanguins dans le premier cas, mais quasiment impossible dans le second cas.  
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Figure 3 Images cardiaques chez un patient facile (haut) et difficile (bas). On distingue aisement les 

quatre compartiments du cœur dans l’image superieur, mais cela est plus difficile pour l’image du 

bas. 
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I. FOCALISATION DANS DES MILIEUS HOMOGENES ET HETEROGENES 

La plupart des applications en acoustique repose sur la possibilité de focaliser les 

signaux. Par exemple, pour former une image d un milieu diffusant, on insonifie le milieu 

par un faisceau ultrasonore, et on reçoit les échos des diffuseurs au moyen d’une barrette 

échographique. La résolution de l’image, et donc sa qualité, dépend de la focalisation du 

faisceau. En effet, si le faisceau insonifie plusieurs diffuseurs a la fois, les échos de ces 

diffuseurs sont reçus simultanément, et il n’est pas possible de séparer les diffuseurs lors 

de la formation de l’image. Apres la réception, une nouvelle focalisation est applique, 

appelle focalisation en réception. Cette focalisation s’effectue habituellement en 

appliquant des délais a chaque voie, et en les sommant. Cette opération est appelée 

Beamforming ou formation de voie.      

I.A. Focalisation en milieu homogène  

I.A.1. Le concept de « delay and sum » 

 Il y a quelques années, la focalisation nécessitait l’emploie de lentilles. 

Aujourd’hui, elle s’effectue électroniquement. Une barrette est en effet constituée d’un 

certain nombre de transducteurs, indépendants les uns des autres. Chaque transducteur 

peut transmettre une impulsion ultrasonore a un temps donne.  

 Pour focaliser en un point P de l’espace, il faut que le transducteur i transmette 

une impulsion avec un délai ti correspondant au temps de propagation du transducteur au 

point P, ti(P)=ri(P)/c ou ri(P) est la distance entre P et le transducteur, et c est la vitesse 

du son. Ainsi, les fronts d’onde de tous les transducteurs arrivent en même temps au point 
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P et interfère constructivement. Ailleurs, les fronts d’onde interfèrent destructivement, 

car ils arrivent decales. Ainsi, l’énergie est concentre dans le voisinage de P. P est appele 

point focal. Les delais ti  correspondant a la propagation dans un milieu homogene sont 

souvent appeles delais geometriques.   

 En reception, l’echo du diffuseurs situe au point P arrive a la barette et est 

converti en signal electrique. Les signaux recus par chaque transducteur arrivent decalles. 

Le delai correspond au temps de propagation depuis P et est donc l’oppose des ti. La 

focalisation en reception s effectue en retardant les signaux de chaque voies par ti, et en 

les sommant. Ainsi, les signaux correspondant au point P s’ajoutent constructivement, 

tandis que les signaux provenant d’autres points interferent destructivement.   

   

 Il est souvent pratique de considerer une approche monochromatique (a une 

frequence, aussi appelee bande etroite par reference a la largeur de la bande passante) car 

les calculs y sont simplifies. L’approche precedente est connue sous le nom d’approche 

impulsionelle, ou bande large.      

 Dans l’approche monochromatique, le decallage des signaux devient un 

dephasage. Le signal applique sur le transducteur i devient  

)()(
)()(

Pr
e

Pr
eH

i

Ptj

i

Pjkr

i
ii ω

==  

Eq.1. 1 
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I.A.2 Fonction de Green 

La fonction r
e jkr

 est connue sous le nom de fonction de Green 

monochromatique  pour un espace libre a trois dimensions. Elle represente le champ emit 

par une source ponctuelle (voir par exemple (Goodman) chapitre 3). 

Par abus de langage, le vecteur H dont les coordonnées sont les Hi est appele 

fonction de Green du point P dans ce document. H represente en quelques sortes les 

coordonnees du  point P dans la base de la barette, appelée base canonique. Dans le 

domaine temporel, on appelera le front d’onde provenant de P et recu par la barette, la 

fonction de Green temporelle de P. Rigoureusement, une fonction de Green temporelle 

est le signal recu quand la source emet un dirac, mais dans ce document on etend le terme 

aux signaux a bande passant limite (par la fonction de transfert des transducteurs).  

 

Figure 4 Une fonction de Green temporelle 

I.A.3 Retournement temporel des fonctions de Green et focalisation 

La fonction de Green H est le signal recu par la barette lorsqu’un pulse est emis 

au point P. En vertu de l’invariance par retournement temporel, si l’on transmet le 

retourne temporel (conjugue en monochromatique) de la fonction de Green, on genere 
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une onde qui focalise au point P. Ce resultat est valide non seulement en milieu 

homogene, mais aussi dans n’importe quel milieu pouvu que l attenuation soit 

negligeable (Fink). C’est pour cela qu’il est interessant de savoir estimer les fonctions de 

Green, tout specialement dans les milieux homogenes ou l’on ne la connaît pas 

theoriquement, comme nous allons le voir dans la partie suivante.   

I.B Focalisation en milieu heterogene 

I.B.1.Origine du probleme en imagerie medicale   

 Lorsque le milieu est homogène et que la vitesse du son y est connu, il est simple 

de focaliser, comme nous l’avons vu dans le paragraphe précèdent. Un exemple simple 

est le cas de l’eau, par exemple lors d’expérience realise dans un laboratoire.  

 En premiere approximation, le corps humain peut aussi etre considere comme 

milieu homogene car les tissus sont constitues en majorite d’eau. C’est l’approximation 

faites par les appareils d’echographie. Cela donne de bons résultats dans la plupart des 

cas.  
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ORGANE A 
IMAGER 

graisse 

muscle 

Tissu connectif 
 

Figure 5 Schema des couches de tissus gras et musculaires en surface de l’organe a imager 

Cependant, en realite, la vitesse du son diffère d’un tissu a un autre, car la 

compressibilite et l’elasticite des tissus (dont dépend la vitesse du son) varie. Les 

differences sont particulierement importante dans la couche grasse, constitue de lobule de 

graisse (1450 m/s) entoure par du tissu connectif (1615 cm/s) comme on le voit sur la 

Figure 5(Hinkelman, Mast et al.; Mast, Hinkelman et al.). La traversee de cette couche 

(importante chez les patients obeses) entraine un decallage des fronts d’onde emis par 

chaque transducteurs, qui n’arrivent plus en phase au point focal. L’image est alors de 

pauvre qualite, et il est difficile de faire un diagnostic. On parle d’aberrations.  
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I.B.2. Solution generale : retournement temporel de la fonction de Green  

Pour focaliser dans le milieu heterogene, et obtenir une image de bonne qualite, il 

faut connaître la fonction de Green de chaque point dans le milieu. En effet, comme on 

l’a vu dans le paragraphe precedent, en transmettant le retourne temporel de la fonction 

de Green, on genere une onde qui focalise en P. Cela est vrai tant que l’invariance par 

retournement temporel est valide, c'est-à-dire tant que l’attenuation est negligeable. C’est 

en general le cas dans le corps humain, et c’est l’hypothese qui est faite dans ce 

document. Une exception est le crane. 

Contrairement au cas homogene, on ne peut pas calculer a l’avance les fonctions 

de Green de chaque point du milieu. En effet, elles sont differentes pour chaque patient. Il 

est donc necessaire de savoir estimer les fonctions de Green du milieu heterogene a partir 

du signal echographique. Idealement, un algorithme de correction d’aberration se fait en 

3 etapes : 

• Acquisition du signal echographique en utilisant les fonctions de Green 

homogenes 

• Estimation des fonctions de Green heterogenes a partir du signal 

echographique 

• Nouvelle acquisition utilisant les fonctions de Green estimées 

On parle dans ce cas d’imagerie adaptative, car la focalisation s’adapte au milieu.  

En general, la fonction de Green dans un milieu heterogene ne peut pas etre 

considere comme une simple loi de retard (les signaux sur chaque voies sont identiques 

mais retarde les uns par rapport aux autres) Il se produit des phenomenes d’interferences, 

diffraction et quelque fois aussi de réflexion multiple. Les signaux sont donc en général 
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deforme temporellement (la déformation étant différente pour chaque voies) et 

l’amplitude varie selon les voies. Un exemple est montre Figure 6.  

 

Figure 6Exemple de fonction de Green dans un milieu heterogene (la simulation utilise le modele de 

l’ecran en champ lointain developpe dans la section I.B.4) 

 Pour focaliser en transmission, il faut etre capable de transmettre le retourne 

temporel du front d’onde représente Figure 6. Cela nécessite des voie equipees de filtres 

programmable individuellement (du type mirroir a retournement temporel), ce dont ne 

sont pas equipes les appareils d’echographie actuels. En reception, l’equivalent du 

retournement temporel est la convolution par un match-filter (Dorme and Fink 1995) 

illustre par la Figure 7. Cela aussi necessite une architecture couteuse pour les appareils 

d’echographie.  
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Figure 7 Comparaison entre le beamforming classique (retard et somme)  et l’approche match-filter. 

A) En general, la focalization est effectue par alignement des signaux sur chaque voie. Lorsque les 

signaux sont ajoutes les uns aux autres, les signaux provenant du point d’interet (point focal) 

s’ajoutent constructivement. B) Si les signaux sur chaque voie ont des formes differentes, les alignes 

n’est plus suffisant C) Dans l’approche match-filter, on convolue les signaux sur chaque voix par le 

retourne temporal de la function de Green du point focal. Si les signaux recus provienent 

effectivement du point focal, on obtient un pic des fonctions sur chaque voie (la convolution d’un 

signal par son retourne temporel, qui est equivalent a l’auto-correlation du signal, a un fort 

maximum correspondant a la superposition exacte des signaux) On peut alors ajouter 

constructivement les signaux entre eux, tous les pics ayant lieux au meme moment.  
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Dans le formalisme monochromatique, une fonction de Green heterogene dans le 

cas general s’ecrit sous la forme 

( )),()(),(),( PPtj
ii

iiePaPH ωφωωω +=  

Eq.1. 2. 

Ou en general, n’est pas lineaire en ω. La fonction de Green heterogene est donc 

la fonction de Green homogene de l’Eq.1. 1, multipliee par le filtre 

),( Pi ωφ

( )),(),( Pj
i

iePa ωφω . 

Un autre obstacle pour l’implementation est le besoin d’estimer la fonction de 

Green pour chaque point ou l’on veut focaliser. Lorsque l’on veut faire une image d’un 

milieu, on focalise typiquement sur plusieurs centaines de points. En general, on peut 

cependant considerer que la fonction de Green d’un point P est valable pour les points de 

son proche voisinage, a condition de rajouter un retard correspondant a la propagation 

homogene. La region dans laquelle cette aproximation est valide est appelle isoplanatic 

patch  

Afin d’implementer des algorithmes de correction d’aberration en temps reel dans 

un echographes, des modeles simplifies ont ete introduits. Ces modeles sont aussi utiles 

pour simuler simplement une aberration. Ils seront utilises au long de cette these.   

I.B.3. Ecran de phase en champ-proche (near-field phase screen)   

 C’est le modele le plus simple, et utilise par la quasi-totalite des méthodes de 

correction d’aberration. Dans ce modele, toute l’heterogeneite est suppose etre concentre 

dans une couche mince immediatement apres la barette. Le reste du milieu est homogene. 
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Dans ce cas, un front d’onde emis par un point du milieu arrive intact jusqu'à 

l’heterogeneite (aberrateur). Chaque point du front d’onde subi un delai different lors de 

la traversee de l’heterogeneite (car ils traversent des tissus different). L’effet de 

l’aberrateur est donc d’introduire un delai τi sur chaque element, en plus du delai 

geometrique ti(P) correspondant a la propagation dans le milieu homogene. On modelise 

alors l’heterogeneite par un ecran d’epaisseur nulle, situe devant la barette, qui introduit 

un simple delai lors du passage de l’onde.  Une fonction de Green typique dans ce 

modele est represente Figure 8. On observe bien le delai introduit par l’aberrateur.  

 

Figure 8 Fonction de Green dans le modele de l’ecran en champ proche 

Dans le formalisme monochromatique (Eq.1. 2), le delai se traduit par un dephasage 

),( Pi ωφ , lineaire en fonction de la frequence, et independant de P : 

 ( ) ii ωτωφ =  

Eq.1. 3 

.  

 Il y a de nombreux avantages a travailler avec un ecran champ-proche : 

• La focalisation peut etre rectifie simplement en compensant les retards τi, ce qui 

est tres simple a implementer dans un scanner.  
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• La correction ne depend pas du point P auquel on veut focaliser. En effet, pour 

chaque point, l’ecran introduit les meme retard τi. La loi de retard totale pour 

focaliser en P est ti(P)+τi. Une fois que lesτi ont ete estime, il est possible de 

focaliser n’importe ou dans le milieu, en ajustant les delais geometriques. On a 

donc besoin d’estimer une seule fonction de Green, en utilisant une des 

methodes presentes plus tard. On peut ensuite en deduire les fonctions de Green 

de tous les autres points.  

Ce modele est tres simple a utiliser, mais n’est pas tres realiste. En effet, 

l’heterogeneite est rarement concentre sur une faible epaisseur a la surface du 

transducteur, mais est en general distribuee sur plusieurs centimetres. L’ecran champ 

proche peut etre vu comme une approximation a l’ordre 0 d’un aberrateur reel. 

Les corrections d’aberration basees sur ce modele permettent en general une 

legere amelioration de la qualite de l’image, mais a notre connaissance, la plupart des 

implementations cliniques ont ete decevantes.  

I.B.4. Ecran de phase en champ-lointain (far-field phase screen)   

 Un modele plus complet est obtenu si l’on place l’ecran de phase non plus a la 

surface de la barette, mais en profondeur dans le milieu. Ce modele est appele ecran de 

phase en champ lointain. Il offre une meilleur approximation de l’effet des 

heterogeneites.  

 Dans ce modele, certaines composantes du front d’onde sont retardes lors de la 

traversee de l’ecran, comme dans le modele champ-proche. Cependant, lorsque le front 

d’onde continue de se propager vers la barette, les diverse composantes qui sont 

maintenant dephasees, interferent. Il en resulte une deformation temporelle du front 
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d’onde, et une variation de son amplitude en fonction de l’azimuth. Une facon de 

regarder le probleme est de considerer chaque point de l’ecran de phase comme une 

source secondaire. Le phenomene d’interference (diffraction) apparaît car les sources 

secondaire sont hors-phase. Ces phenomenes de distortion et d’interferences sont 

observes dans le cas d’heterogeneites distribues. Le modele en champ lointain est donc 

plus complet que l’ecran en champ proche, car il prend en compte, au 1er ordre, ces effets.  

Une fonction de Green typique obtenue dans le modele de l’ecran de phase en champ 

lointain est represente Figure 9. 

 

Figure 9 Fonction de Green dans le cas d’un ecran de phase en champs lointain  

 Ce modele a ete propose initialement par (Liu and Waag) puis (Dorme and Fink). 

Il est repris est developpe dans le chapitre 2 de cette these.  

II.  METHODES D’ESTIMATION DE FONCTIONS DE GREEN 

 On peut classifier les méthodes en différentes catégories. Le premier critère est 

l’approximation considérée. On différenciera les méthodes reposant sur l’approximation 

de l’écran champ proche (dans ce cas, on n'estime pas vraiment la fonction de green, mais 
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la meilleure loi de retard qui approche la fonction) et les méthodes qui estiment 

complètement la fonction de Green.  

Certaines méthodes ne s’appliquent qu’au speckle, d’autres seulement aux 

diffuseurs ponctuels. En imagerie médicale, la majorité du milieu est constitue de 

speckle, et donc il est impératif que la méthode soit capable d’estimer les fonctions de 

Green a partir du speckle.  

Le speckle est le signal qui a un aspect granuleux ou neigeux, observable dans la 

quasi-totalité des images médicales. Il est aussi observe dans d’autres domaines comme 

le contrôle non-destructif. Le speckle apparaît lorsque le milieu contient une grande 

densité de diffuseurs microscopiques, comme c’est le cas dans les tissus biologiques ou 

les diffuseurs sont les structures cellulaires. Dans ce cas, un grand nombre de diffuseurs 

sont présents dans une cellule de résolution (le volume insonifie a un instant donne par le 

système ultrasonore) et l’écho obtenu est la somme de la contribution de chacun des 

diffuseurs, qui sont légèrement dephases les uns par rapport aux autres. Le problème est 

similaire au problème de marche aléatoire. La somme des signaux est aléatoire et obéit 

aux lois statistiques, présentées dans le chapitre 4.  
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Figure 10 Image d’un foie. La plupart du signal, qui a un aspect « neigeux » est du speckle.  Il y a 

aussi quelques diffuseurs étendus (vaisseaux sanguins), mais pas de diffuseurs ponctuels.  

II.A Methode reposant sur le modèle écran en champ-proche (estimation de loi de 

retards seulement)  

 Ces méthodes sont particulièrement intéressantes pour l’implémentation en temps 

réel et a faible coût d’une correction d’aberration. Toutefois les qualités d’images 

obtenues sont moyennes.  

II.A.1. Methodes de cross-correlation de signaux  (O’Donnell)  

 Cette méthode a été proposée par (Flax and O'Donnell 1988; O'Donnell and Flax 

1988). Elle consiste à calculer la fonction de corrélation de signaux reçus par des 

éléments voisins de la barrette, i and i+1. Le pic de la fonction de corrélation indique la 
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différence de temps d’arrivée entre les signaux. Les fronts d’ondes sont alignes 

auparavant de façon a enlever les délais géométriques ti(P), correspondant a la partie 

homogène de la propagation. Les différences de temps d'arrivée correspondent donc aux 

différences de retard introduits par l’aberrateur, τi+1-τi. La connaissance des différences 

de retard pour chaque couple de voisins permet de remonter à la loi τi. 

La méthode permet d’estimer les délais a partir écho de diffuseurs ponctuels, ou 

bien du speckle. De nombreuses variantes ont été developpees. Dans certaines, la 

fonction de corrélation est normalisée, dans d’autres la covariance remplace la corrélation 

(Silverstein and Ceperley 2003). Enfin, dans d’autres approches, le calcul des fonctions 

de corrélation est remplace par la somme de la différence entre les signaux au carre, ou 

par la somme de la valeur absolue de la différence (Friemel, Bohs et al. 1995; Viola and 

Walker 2003). Enfin, dans une dernière approche, le retard est estime a partir de la 

corrélation entre le signal reçu par un element et un signal de référence(Rigby, Chalek et 

al. 2000). 

 Une variante a été propose par (Gauss, Trahey et al. 2001; Fernandez, 

Gammelmark et al. 2003). Cet algorithme est connu sous le nom de LMS (Least Mean 

Square) Dans ce cas, les fonctions de corrélation ne sont calcules non plus uniquement 

entre pairs éléments voisins, mais aussi entre proche voisins. Le profil de retard optimal 

est ensuite obtenu en minimisant la distance entre le profil et les délais estimes, grâce a la 

méthode des moindres carre (LMS). Le fait d’utiliser les corrélations entre proche voisin, 

et non pas seulement voisins immédiats, augmente la robustesse dans le speckle. Nous 

reviendrons sur cela dans le chapitre 4.  
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 II.A.2 Maximisation de l’intensité du speckle 

 Cette méthode a été propose par (Levin, Gregg et al. 1989) Elle est base sur le fait 

que intensité du speckle augmente avec la qualité de la focalisation. L’algorithme ajuste 

les retards sur les voies de façon a maximiser intensité du speckle dans une région 

d’intérêt.  

Cette méthode est spécifique au speckle.  

II.B. Methodes estimant la fonction de Green complète 

 Ces méthodes sont plus efficaces que les précédentes, et font l’objet de la plupart 

des travaux récents. Cependant, leur implémentation sur des échographes commerciaux 

est encore loin d’être à l’ordre du jour. Une comparaison des performances de ces 

méthodes et faites dans le chapitre 4.  

II.B.1 Itération du retournement temporel et méthode DORT 

 L’itération du retournement temporel (Prada, Wu et al.) permet d’estimer la 

fonction de Green du diffuseur le plus brillant du milieu. On insonifie d’abord le milieu et 

on enregistre les échos. Ensuite, on reemet les signaux retournes temporellement. Ceux-ci 

focalisent sur les diffuseurs, et un nouvel écho est genere. A chaque itération, écho des 

diffuseurs les plus faible sont atténues par rapport au diffuseur le plus brillant. Au bout 

d’un grand nombre itération, seul écho du diffuseur le plus brillant est reçu. 

 Les fonctions de Green des autres diffuseurs peuvent être obtenues en utilisant la 

méthode DORT (Décomposition de l’Opérateur Retournement Temporel) (Prada and 

Fink; Prada, Manneville et al.). La méthode est base sur l’acquisition de Opérateur 

Retournement Temporel qui décrit le processus de retournement temporel entre la 
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barrette et les diffuseurs. Opérateur Retournement temporel est habituellement défini par 

le produit KKH ou Ki,j est le signal reçu par éléments j lorsque une impulsion est transmise 

par éléments i.    

Les vecteurs propres de l’opérateur retournement temporel correspondent aux 

invariants du retournement temporel. Dans le cas ou les diffuseurs sont bien résolus, 

chaque invariant correspond à la fonction de Green d’un diffuseur. La méthode est décrite 

plus précisément dans le chapitre 2.  

 Les méthodes basées sur le retournement temporel sont les plus puissantes (au 

moins tant que l’atténuation est négligeable. Cependant la méthode DORT, dans sa 

version originale, est loin d'être utilisable dans le domaine médicale Cela est lie entre 

autre a la nature des diffuseurs et aux modes d’acquisition des échographes Le sujet de 

cette thèse est précisément d’adapter la méthode a un tel environnement.   

 Opérateur Retournement Temporel peut aussi être interprète comme une matrice 

de covariance (Prada and Thomas; Gruber, Marengo et al.). Cela est particulièrement 

intéressant pour faire le lien avec les autres méthodes d’estimation, qui sont pour la 

plupart basées sur le calcul de fonctions de corrélation Ainsi, le coefficient (i,j) de 

Opérateur Retournement Temporel est le coefficient de corrélation (a une fréquence 

donnée) entre les signaux reçus par les éléments i et j de la barrette La corrélation est à 

entendre au sens deterministique (car les signaux sont des échos de diffuseurs ponctuels. 

La corrélation est moyenne sur l’ensemble des transmissions (chaque transmission 

pouvant être vue comme une nouvelle réalisation du milieu. 

 26



II.B.2 Décomposition de la matrice de corrélation spatiale 

 Cette méthode a été proposée par (Varslot, Krogstadt et al.), pour le speckle. Elle 

consiste à construire dans un premier temps une matrice de corrélation spatiale des 

signaux diffuses par une région de speckle, a un certain nombre de fréquences. Par 

exemple, le coefficient (i,j) de cette matrice, est le coefficient de corrélation (a une 

fréquence donnée) des signaux reçus par les éléments i et j de la barrette La corrélation 

est à entendre au sens statistique (le signal est ici un signal aléatoire, le speckle) : Le 

moyennage s’effectue sur diverses réalisations de la distribution de speckle. L’aspect 

statistique du speckle et de la corrélation spatiale est développe en détail dans le chapitre 

4.  

 Ensuite, une décomposition de la matrice est effectuée. Le 1er vecteur propre est la 

fonction qui maximise intensité du speckle. D’après ce que l’on a vu en II.A.2, cette 

fonction peut être interprète comme une fonction de Green d’un point dans la région 

d’intérêt.  

 Cette méthode semble très similaire a la méthode DORT : toutes deux impliquent 

la décomposition d’une matrice de corrélation Toutefois, l’une s’applique à des diffuseurs 

deterministiques tandis que l’autre s’applique à des signaux aléatoires. Nous reviendrons 

sur la similarité entre les deux méthodes dans le chapitre 4, lorsque nous généralisons la 

méthode DORT au speckle.  

II.B.3.Methodes de corrélation dans le domaine fréquentiel 

 Cette méthode est utilisée par (Waag and Astheimer; Waag and Astheimer). Elle 

est l’équivalent fréquentiel de la méthode II.A.1. Les signaux reçus sont alignes de façon 

à supprimer le retard correspondant à la propagation homogène, ti(P). La transformée de 
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Fourier est ensuite effectuée, et le coefficient de corrélation entre voisins est calcule à un 

certain nombre de fréquences. La phase du coefficient de corrélation donne φi+1(ω,P)- φi 

(ω,P), d’après Eq.1. 2.. Le déphasage introduit par l’aberration peut donc en être déduit et 

corrige. L’avantage par rapport aux méthodes temporelles est la possibilité de prendre en 

compte des termes de phases non-lineaires en fonction de la fréquence, et qui ne se 

traduisent donc pas par un simple retard.   

 

III. MODELES POUR LES SIGNAUX 

 Nous présentons brièvement les modèles et approximations pour les signaux 

acoustiques qui seront utilises dans ce manuscrit.  

III.A Formule de Rayleigh-Sommerfeld 

 Le champ acoustique genere par une barrette peut être décrit par la formule de 

Rayleigh-Sommerfeld. Nous supposons que la pression applique dans le plan de la 

barrette est continue. Soit E(X) ce signal. Le champ de pression dans le milieu, a un point 

M de coordonnées (x,z) est donne par  

( )

( )
dX

Xxz
eXE

j
xP
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Xxzjk
⋅
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22
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Eq.1. 4 

ou 
( )

( )22

22

Xxz
e Xxzjk

−+

−+
 est la fonction de Green du point M, et θ est l’angle sous 

lequel est observe le point. Le terme en cos est en général néglige. Mathématiquement, la 
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formule Eq.1. 4 peut alors être interprétée comme la projection du signal E(X) sur la 

fonction de Green du point considère.  

III.A.2 Approximation de Fresnel en coordonnes cartésiennes 

 Pour des point tels que z>>(x-X), on fait en général l’approximation de Fresnel  

( ) ( )
z
XxzXxz

2
22

2
1 −

+≈−+  

Eq.1. 5 

L’Eq.1. 4 devient alors 
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Eq.1. 6 

ou K est une constante indépendante de x, et TF désigne la transformée de Fourier. Le 

champ est donc donne par la transformée de Fourier du signal applique dans le plan de la 

barrette multiplie par un terme de phase. Lorsque l’on focalise en un point, ce terme de 

phase est annule, et le signal peut être considère comme la transformée de Fourier de 

l’ouverture. En général, pour une ouverture de taille D, et sans apodization, le signal 

observe dans le plan focal est donne par 
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

D
z
x

λ
πsinc , et la résolution est D

zλ .  
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III.A.3 Approximation de Fresnel en coordonnées polaires 

 Lorsque l’on utilise une mode d’acquisition sectoriel (phase array, les points 

focaux sont situes sur un arc de cercle), les coordonnes polaires sont utilisées. 

L’approximation de Fresnel s’écrit alors 

θθ sin
2
1sin2

2
22 X

r
XrrXXr −+≈−+  

Eq.1. 7 

Le terme de gauche, exprimant la distance entre un point de la barrette et le point M, est 

obtenu par le théorème d’Al Kashi. On obtient alors  
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Eq.1. 8 

Le champ sur l’arc de cercle focal est alors ⎟
⎠
⎞

⎜
⎝
⎛

λ
θπ sinsinc D , et la résolution est 

donnée par D
λθ =∆ sin .  

Souvent, l’approximation supplémentaire θθ ≈sin est effectuée 

III.D La propagation comme un filtre passe-bas 

 Comme l’indique la formule Eq.1. 8, seule les détails dont la fréquence spatiale 

(dans la coordonnée sinθ) est inférieure a λ2
D  sont transmis, et reçus (car la même 

formule est valable en réception) L’image observe a donc un contenu fréquentiel limite. 

La propagation agit comme un filtre passe-bas. Cela n’est pas valable seulement dans le 

plan focal, mais a toutes distances. 
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 Une formule similaire être donnée en coordonnées cartésiennes La fréquence 

maximale est λz
D

2 . Une démonstration rigoureuse fait intervenir la technique du 

spectre angulaire (voir (Goodman) pp.55-61). En effet Eq.1. 6 ne convient pas à cause du 

terme de phase dépendant de x a l’extérieur de l’intégral.  

 
 
 
  

IV. PLAN DE LA THESE 

 Le principal but de cette thèse est d’adapter une méthode basée sur le 

retournement temporel, la méthode DORT, a l’imagerie médicale La plupart des résultats 

concernent aussi d’autres domaines de l’imagerie acoustique, et le manuscrit est écrit de 

façon assez générale  

 Un premier obstacle a l’utilisation de la méthode DORT conventionnelle en 

échographie médicale est le mode d’acquisition utilise. La méthode DORT est basée sur 

le full data set, c’est à dire que les transmissions sont effectuées avec chaque éléments 

individuellement et a tour de rôle. Ceci n’est pas praticable dans le domaine médical, 

pour diverse raison évoquée dans le chapitre 2. Une adaptation de la méthode au mode 

d’acquisition focalise utilise par les échographes est l’objet du chapitre 2. Dans ce même 

chapitre, le modèle des transducteurs virtuels qui permet de traiter de façon simple et 

élégante la méthode DORT à partir de transmissions focalisées est présente. La nouvelle 

méthode est baptisee FDORT (F pour focalise) Nous verrons aussi que cette méthode 

permet de résoudre le problème de l'écran en champ lointain comme s’il s’agissait d’un 

écran en champ proche.  
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 La méthode DORT fonctionne bien sur des diffuseurs ponctuels lorsqu’ils sont 

dans l’eau, mais moins bien lorsqu’ils sont entoures de speckle. Nous proposons une 

solution également dans le chapitre 2. Enfin, ce chapitre traite aussi du problème du 

déplacement des cibles. En effet, dans le corps humain, les diffuseurs sont en perpétuel 

mouvement, et propose une implémentation rapide de la méthode     

 

 Le plus gros inconvenient de DORT, est que la méthode a été developee pour des 

diffuseurs ponctuels. Ce type de diffuseurs est virtuellement inexistant dans un milieu 

complexe comme le corps humains. La grande majorité des diffuseurs présents dans les 

tissus biologique est le speckle, et il est donc fondamental de trouver une méthode 

fonctionnant avec ce type de signal. Ceci est l’objet du chapitre 4. Ce chapitre présente 

une théorie statistique de la méthode pour les signaux aléatoires, et fait le lien avec un 

théorème important, le théorème de Van Cittert Zernike. Des exemples de correction 

d’aberration seront presentes.  

 Un autre type de diffuseurs trouves dans les tissus sont les diffuseurs étendus, 

c’est à dire dont la taille dépasse la cellule de résolution du système Il s’agit par exemple 

des parois de vaisseaux. Ce type de diffuseurs est l’objet du chapitre 3. Ce chapitre est 

place avant celui sur le speckle, car certains résultats de ce chapitre seront utiles pour 

l’analyse dans le speckle.  

 Finalement, échographie médicale utilise des signaux larges bandes, alors que la 

méthode DORT est principalement une méthode monochromatique. Des méthodes 

permettant d’obtenir les fonctions de Green temporelles sont développes dans le chapitre 
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5. En particulier, nous présentons la décomposition de Opérateur Retournement Temporel 

dans le domaine temporel, ce qui fait intervenir un tenseur d’ordre 4.  
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Chapter 2. The Time Reversal Operator with 
Virtual Transducers: FDORT  
 

 36



II. INTRODUCTION AND PRESENTATION OF THE METHOD 

The DORT method is very efficient to extract the Green’s function of points 

scatterers in simple cases, like wires in water for example. A weakness of the original 

method is that it is based on full data sets. This means that the signals are transmitted 

with one element at the time.  

In more complex situation, like medical ultrasound, full data sets are rarely used. 

Rather, sets of focused transmits are used. A focused transmits is generated by firing a 

group of elements, with delays ri(P)/c, where ri(P) is the distance between the element i 

and the focal point P. There are two main advantages to using the focused transmits over 

the full data sets in imaging. (Gammelmark and Jensen; Lokke Gammelmark and Arendt 

Jensen; Jensen, Holm et al.) 

• The signal-to-noise ratio (SNR) is improved because more energy is 

transmitted for each transmits. Usually, it is improved by a factor N for random 

noise (for example electronic noise due to the transducers) or a factor N for 

deterministic noise (for example an active scatterer, like a distant ship in 

underwater acoustics, or waves generated by the body), where N is the number of 

elements fired for each focused transmits. 

• It is more robust to motion. Indeed, to make the image of a point P, only 

the transmit focusing at, or near P is needed with a focused sets. With a full data 

sets, the focusing in transmission as to be reconstructed from the different 

transmits. As there is a lap of time between the first and last transmits used, the 

scatterers may have moved.  
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We presents here a generalization of the DORT method using a focused transmit 

scheme, this method is termed FDORT.  

The FDORT method is illustrated in Figure 11. A beam is transmitted, and the 

received signals are recorded for each element. The Fourier transform of the signals is 

then taken. The Fourier coefficient at frequency ω for the signal received by element j 

when the beam i is transmitted gives the element Kij(ω) of the transfer matrix K(ω).  

ith transmit

j 
Kij 

 

Figure 11 Acquisition of the transfer matrix with the FDORT method. It differs from the 

conventional DORT method by the use of focused transmit. The element Kij of the matrix is the signal 

received by element j after the ith focused beam has been transmitted.   

Different transmit sequences using groups of elements (like Hadamard codes) have 

previously been proposed with the DORT method to improve the SNR. More recently, 

acquisitions using orthogonal codes have been proposed to improve the SNR and the 

motion robustness in a wave-guide (Folegot, de Rosny et al.). These schemes were 

interpreted as alternative bases where the Time Reversal Operator could be expressed.  

Although the focused beams can also be interpreted, under certain conditions, as a 

new orthogonal basis, as it will be shown in III.C, we also propose a more intuitive and 

more general approach based on the concept of virtual transducers, and show that the 
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FDORT method can be seen as a simple DORT method between a virtual array, whose 

elements are the transmits foci, and the physical array. This is a new interpretation 

compared to a previous paper about the method (Robert, Burcher et al.).  

First (Section II), we develop the formalism of the DORT method, in the case of 2 

distinct arrays. The main results are summarized.  

Then, we develop the concept of virtual transducers and virtual arrays. The main 

beam sequences are reviewed.     

In the three last sections are presented applications of the FDORT method that take 

advantage of the focused beams benefits. This includes focusing through a far-field phase 

screen, extracting the Green’s function of scatterers embedded in speckle and a fast 

implementation of DORT in the case where the region of interest is limited.  
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III. THE DORT METHOD BETWEEN TWO DIFFERENT ARRAYS 

II.A. The transfer matrix and the time reversal operator 

 The theory of the D.O.R.T. method has been thoroughly covered in the literature 

(Prada and Fink 1994; Prada, Manneville et al. 1996). It is introduced here to set the 

formalism. The method is based on a matrix description that describes a transmit-receive 

process performed by an array of transducers(Prada and Fink 1994; Prada, Manneville et 

al. 1996), or between 2 different arrays (an array of M transmitters and an array of L 

receivers)(Prada, Tanter et al. 1997). Most of D.O.R.T. experiments are conducted using 

the same array in transmission and reception, but in order to introduce the modified 

method in Section III, between the array of virtual transducers and the array of real 

transducers, we will consider in the following the general case of 2 different arrays, 

shown in Figure 12. 

 

K lm (t) 

m l 

L receivers M 
transmitters 

 

Figure 12 The DORT method between two arrays  
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If the system (propagating medium and electro acoustic response) is linear and 

time-invariant, the process of transmitting and receiving can be described by a collection 

of filters: each transmitting element m and each receiving element l are linked by an 

interelement impulse response klm(t), so that: 

 
rl(t) = em(t) ⊗ klm(t)       

 
where rl(t) is the signal received on the lth transducer when em(t) is transmitted on the mth 

transducer, as seen in Figure 12. Thus when the input of the element number m is a delta 

impulse, the output of the element number l is rl(t) = klm(t). The Fourier transform yields:  

Rl(ω) = Klm(ω). The repetition of the process for each pair (l,m) of transmitting and 

receiving element leads, at a given frequency, to the transfer matrix K(ω): 

K(ω) =  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

LML

M

KK

KK
KKK

1

2221

11211

OM

L

The matrix K describes the transmit-receive process between the arrays and is therefore 

depending on the scattering medium. If a signal E(ω) = [E1(ω),E1(ω), …, EM(ω)]T, where 

Em(ω) is the input of the element m, at the frequency ω, and T is the transpose (that 

transform a 1*M line vectors into a M*1 column vector) is transmitted into the medium, 

the received echo is given by the following matrix formulation: 

R(ω)=K(ω)E(ω)      
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where R(ω)=[R1(ω), R2(ω), …, RL(ω)]T, Rl(ω) being the signal received by the lth 

element of the receive array. E(ω) and R(ω) are vectors expressed respectively in the 

transmit and receive basis, formed by the elements of the arrays.     

The time reversal operator is then defined(Prada, Tanter et al. 1997) as TTx = 

KHK in the transmit (Tx) basis or by TRx = KKH in the receive (Rx) basis, where H stand 

for the hermitian, or conjugate, transpose (transpose followed by complex conjugation). 

For all the results recalled here, there is no need for K to be either symmetric or square 

(which is obviously not the case if L is not equal to M) as it was in the earliest 

papers(Prada and Fink 1994; Prada, Manneville et al. 1996). Then in general KHK and 

KKH are different, but both have the same rank, equal to the rank of K. 

As (KHK)H = KHK (the same hold in the receive basis) the time reversal 

operator is hermitian positive in an orthogonal basis and thus can be diagonalized. 

Moreover, the eigenvalues are real and positive, and the eigenvectors are orthogonal.  

Practically, the diagonalisation of the time reversal operator is not used. 

Indeed, the diagonalization is mathematically equivalent to the singular value 

decomposition (svd) of K: 

K=USVH       

 

where S is a L×M diagonal matrix completed by lines of zeros, containing the singular 

values of K; U is a L×L unitary matrix whose columns are the eigenvectors of KKH (here 

the time reversal operator expressed in the receive basis); V is the M×M matrix whose 

columns are the eigenvectors of KHK. 
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II.B. Case of isotropic, pointlike scatterers and single scattering 

II.B.1. Expression of the transfer matrix 

 In the case of isotropic point scatterers and under the Born approximation, the 

eigenvectors and eigenvalues of the time reversal operator can be theoretically calculated. 

For clarity, the number of point scatterers is assumed to be two. Let P and Q be the 

scatterers’ positions. We denote by HRx(P) and HTx(P) the monochromatic Green’s 

functions of P expressed in the Rx and Tx bases respectively. For example, HTx(P) is a 

1*M vector and HTx(P)i describes the propagation between the ith element and P. Let 

D(P) and D(Q) be the reflectivity of each scatterer. We also assume the absence of noise 

and we omit the acousto-electrical responses of the transducers, as they have no influence 

on the results. 

 A transmit-receive process can be divided into 3 stages, as seen in FIGURE 

CYCLE: propagation from the Tx array to the scatterers, reflection on the scatterers, and 

finally propagation to the Rx array. The transmit-receive process between Tx element m 

and Rx element n is then: 

 )(*)D(*)(  )(*)D(*)( nmnmnm QHQQH PHPPHK RxTxRxTx += and finally, one can 

write the transfer matrix as the product of 3 terms(Prada and Fink 1994):  

 

K=(HRx)H
 D HTx         

 

where   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

NRx2Rx1Rx

NRx2Rx1Rx

)(H)(H)(H
)(H)(H)(H

QQQ
PPP

H Rx
L

L
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and  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

)D(0
0)D(
Q

P
D

 HTx has the same structure as HRx ; its rows are the Green functions expressed in 

the Tx array. It follows that the rank of K is equal to the number of scatterers. 

II.B.2. Time reversal operator from the scatterers’ point of view 

 In the receive basis, the time reversal operator becomes: 

 

 KKH= (HRx)H
 D HTx  HTx

H D HRx                                            

 

 Although experimentally we only have access to the time reversal operator 

expressed from the point of view of one of the arrays, in order to understand the 

properties of its eigenvectors, it is more convenient to express it from the point of view of 

the scatterers, in other words in the scatterers’ basis. As depicted in FIGURE, the time 

reversal process can be seen as a cycle. From the scatterers’ point of view, the cycle 

begins at the scatterers location and is seen as follows: The scatterers emit an echo 

toward the Tx array, which backpropagates the echo toward the scatterers. The signal is 

reflected by the scatterers, received by the Rx array and backpropagated one more time 

toward the scatterers.  
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Figure 13 The time reversal process can be seen as a full cycle between 3 actors: the Tx array, the Rx 

array and the scatterers. Propagation between the actors is described by HTx and HRx. Reflection from 

the scatterers is equivalent to a multiplication by D, and the backpropagation by the arrays is 

equivalent to a phase conjugation, included in the hermitian transpose H. K describes the one-way 

propagation between Tx and Rx, represented by the solid line. The time reversal operator can be 

expressed mathematically from the point of view of any of these 3 actors. Then one has to start from 

the desired actor and make a full cycle.   

Let Tscat be the time reversal operator in the scatterer basis; as there are two 

scatterers, Tscat is a 2*2 matrix and Tscat,ij is the signal received by scatterer i after a full 

time reversal process when the initial echo was sent by scatterer j. Tscat is expressed as   

 

      Tscat = D HTx HTx
H D HRx HRx

H    

Eq.2. 1 

Furthermore,  
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HRx HRx
H =  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
><

><
 ²||)(||)(|)(

)(|)( ²||)(||
QHQHPH

PHQHPH

RxRxRx

RxRxRx

Eq.2. 2                         

And a similar expression holds for HTx HTx
H. Because D is already diagonal, a condition 

for the expression of Tscat to be diagonal is: 

<HRx(P)|HRx(Q)> = 0  

Eq.2. 3                                                                      

which means that HRx HRx
H is diagonal, and 

           <HTx(P)|HTx(Q)> = 0   

Eq.2. 4                                                                 

which means that HTx HTx
H  is diagonal. In other words, the Green functions of the 

scatterers are orthogonal in both the transmit (Eq.2. 4)  and the receive (Eq.2. 3) bases.  

II.B.3. Physical interpretation  

There is a physical interpretation of the scalar products from Eq.2. 3 and Eq.2. 4. Using 

time-reversal arguments, transmitting  )(QHRx  with the receive array results in focusing 

on the point Q. The field received at the point P when transmitting such a signal is 

expressed as  

∑
=

L

i
i

1
i )(*)( PHQH RxRx = <HRx(P)|HRx(Q)>    

Eq.2. 5 
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 This is deduced from the interpretation of the rayleigh-sommerfeld formula as a 

projection on a Green function (Chapter 1.III.A). Thus the scalar product is equal to zero 

if it is possible to focus on one scatterer without sending energy to the other one. The 

scatterers are then said to be well resolved or well separated.  

 

Figure 14 The scalar product between the Green’s functions of two points P and Q is proportional to 

the field at P when one focus on Q. The scalar product, and therefore the coupling between the 

scatterers, is high if the points are not resolved (orange zone). Points in the light blue zone may also 

be coupled with the scatterer Q.   

II.B.4. Eigenvectors 

 The conditions of Eq.2. 3 and Eq.2. 4 are satisfied if the scatterers are well resolved from 

the point of view of both arrays. In this case, Eq.2. 1 shows that the time reversal operator 

is diagonal in the scatterers’ basis. The two eigenvectors of the time reversal operator 

expressed in the Rx basis associated with non-zero eigenvalues are then the scatterers’ 

Green’s functions, HRx(P) and HRx(Q) expressed in the Rx array.  Identically, 
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eigenvectors of the time reversal operator expressed in the Tx basis are the Green 

function in the Tx array. The svd of K gives the eigenvectors in both the Rx and Tx array. 

Moreover, the eigenvalue corresponding to the scatterer P is  

 λ = ||HTx(P)||2 ||HRx(P)||2 D(P)2

If the targets are not well resolved, there is a coupling between them through the 

non-zero diagonal terms of Eq.2. 3 and the eigenvectors are expressed as a linear 

combination of the Green functions(Prada, Manneville et al. 1996). The transmission of 

such an eigenvector does not lead to point focusing but DORT still provides useful 

information in this case. 

 

IV.  FOCUSED BEAMS AND VIRTUAL TRANSDUCERS 

III.A. Virtual transducer model 

The decomposition of the Time Reversal Operator between two physical arrays 

has been presented in the previous Section. Now, it is shown that the focused transmits 

used in the FDORT method can be considered as virtual transducers.  

When a transmit is focused on a point P, at depth Z, the evolution of the wave-

front can be separated in two different steps, as seen in Figure 15. First, one observes a 

wave that converges to the focal point P. As the wave gets closer from P, the lateral size 

of the wave-front reduces. When the wave-front is at P, most of the energy is 

concentrated in an area of lateral width D
Zλ where D is the aperture size, and λ is the 

wave-length. The wave-front is at P at time t0=Z/c, where c is the speed of sound.  

The wave-front does not stop at P, and one observes then a wave that diverges 

from the point P, propagating outward.  
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III.A.1.Virtual transducer for t>t0   

For an observer located at a depth greater than Z, it looks like the wave is 

originating from a virtual transducer located at P. The equivalent virtual transducer is not 

isotropic, but has a directivity pattern with an angle θ, as shown in Figure 16, so that it 

generates the same cone of sound as the focused transmit.  

 

P 

t<t0 

P 

t>t0 
O 

 

Figure 15 Wave-front resulting from a focused transmit, before (left) and after (right) it reaches the 

focal point P. For t<t0 , the wave is propagating inward, converging toward P. For t>t0 , the wave is 

propagating outward, diverging from P. An observer O located in the sound cone, hear the wave-

front as if it were coming from a virtual transducer located at P. 

 The angle θ of the cone is defined by the geometrical relationship 

    ( )
Z

D
2

2tan =θ  

Eq.2. 6 

as seen in Figure 16. Most of the time, the angles are small, and 
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 Z
D=θ  

Eq.2. 7 

is a good approximation. The directivity of a transducer is defined as the width of the 

main lobe. The Fresnel relationship in polar coordinates teaches that the field is given by 

the Fourier transform of the transducer, scaled by a factor λ. Therefore, a virtual element 

of width  D
Zλ  would be a good approximation. In fact, a more accurate equivalent 

virtual transducer would be a sinc function whose main lobe width is D
Zλ  

   
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

D
Z
Xc

λ
πsin  

Eq.2. 8  

so that, at the limit, in the focal plane (plane of the virtual transducer) the field of the 

virtual transducer and the field of the focused transmit are equal (in the focal plane, the 

field of a focused beam can be well approximated by a sinc).   
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Figure 16 Wave-front for the focused transmit (left) and for an equivalent virtual transducer (right) 

located at P, with a directivity angle θ, transmitting a pulse at t0. For the observer O, both fields are 

very similar.   

 The shape of the virtual transducer does not really matter. What is important for 

the following is that for an observer O, deeper than Z, the wave-front of a focused 

transmit generated at t=0 is (almost) the same as the wave-front from a virtual transducer 

located at P, with a directivity angle Z
D=θ , and generated at t=t0.  

 By spatial reciprocity, the same concept applies in reception, if a static focused 

receive on P is used. Let us imagine that the observer generates a pulse at t=0, then the 

signal recorded by the array focused in reception on P, would be the same as the signal 

recorded by the virtual transducer to seconds earlier.  

 In this work, the focused beams will be used mainly in transmission. But all the 

results could be generalized to the reception as well. 

 51



III.A.2 Virtual transducer for t<t0 

 For t<t0, the wave-front is converging toward the focal point. It is like observing 

the wave-front emitted by a transducer at the focal spot, but in a movie played backward.  

For an observer located shallower than Z, the wave-front appears as the time-reversed of 

a wave-front emitted at t=-t0 by a virtual transducer facing the array, as shown in Figure 

17. The virtual transducer has the same directivity Z
D=θ as the one discussed in the 

previous part.  

In reception, the analogy is the same: by spatial reciprocity, the signal recorded by 

the array focused on P would be the time-reversed of the signal recorded by a virtual 

transducer located at P.  

 

P 

t<t0 

O 
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Figure 17 Wave-front for the focused transmit (left) and for an equivalent virtual transducer (right) 

located at P, with a directivity angle θ, transmitting a pulse at -t0. For the observer O, the wave-front 

of the focused beam is the time-reversed of the wave-front for the virtual transducer. 
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 The strong analogy between a focused beam and a transducer can actually be 

understood by the fact that they can both be seen as a Green’s function. When a real 

element is fired, the signal propagating in the medium is the Green’s function of the 

element. On the other hand, when one focus on a point P, one actually transmit the 

Green’s function of the point P. The real transducer has only a forward (propagating 

outward) component because there is effectively a source. The virtual transducer has both 

backward and forward component because there are no sources or sinks. 

 A similar concept of virtual sources can be found in the literature, for example 

(Gammelmark and Jensen 2003). 

III.B. The DORT method between a real array and a virtual array  

It has been shown that the focused transmits were equivalent to virtual 

transducers. The FDORT method uses focused transmits and per-element receives, 

therefore it is equivalent to a DORT method between a virtual array whose elements are 

the foci for each transmits, and the real physical array. It is then possible to use the results 

of Section.2.I, for DORT between two different arrays.  

III.B.1. The focused transfer matrix and its singular vectors 

The notation K now refers to the transfer-matrix for the FDORT method. In this 

case, Kij is the signal received by element j when the ith focused beam is transmitted. 

Using the virtual transducer model, it can be seen as the inter-element response between 

the virtual transducer i and the real transducer j. Therefore, the matrix K describes a time-

reversal operator between the virtual array and the real array. The results of the Section 

III.A can then be used. 
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 The singular value decomposition (SVD) of the K matrix gives  K=USVH, where 

U would contain the invariants of the Time Reversal Operator in the physical array (also 

termed canonical array) and V would contain the invariants expressed in the virtual 

array. In the case of resolved, point scatterers, U contains the Green’s function of each 

scatterers in the physical array, while V contains the Green’s function of the same 

scatterers in the virtual array. For scatterers located shallower than the focal depth (t<t0), 

V contains actually the conjugate of the Green’s function, because the wave-fronts for the 

focused transmits are the time-reversed of the virtual transducers wave-fronts.  

The conditions for the scatterers Green’s function to be separated is that they are 

resolved from both the real and virtual arrays point of view. The resolution of the virtual 

array actually depends on the focused beams sequence. This is discussed in 

Section.III.B.2.  

III.B.2. Example of virtual arrays and properties 

 There are several possibilities of choosing a scheme of focused beams. Here are 

the most popular ones. The consequences of each scheme on the FDORT properties are 

discussed. 

III.B.2.a Linear scan 

In a linear scan, only a sub-aperture of the total array is usually used for a 

transmit. The consecutive transmits are obtained by translation of the sub-aperture. As a 

result the virtual array is linear, as shown in Figure 18. This scan sequences is typically 

used when the region to image is a rectangle whose lateral extent is equal or less than the 
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array width. The directivity of the elements depends on the size of the sub-aperture and 

on the focal depth as stated in Eq.2. 6 and Eq.2. 7.  

 

 

Figure 18 Example of a linear scan sequence (only the first few beams are shown), with 

corresponding virtual array in red.    

Resolution: An important parameter is the resolution of the virtual array, as it is a 

condition to separate the Green’s function of scatterers. The resolution is proportional to 

the ratio z/d, where z is the distance to the virtual array, and d is the width of the virtual 

array. As can be seen from Figure 19, the resolution is in this case the same for every 

depth, and is limited by the directivity of the virtual transducers. Indeed, if z increases, 

the number of virtual transducers that the point can hear increases also, because of the 

directivity. In a good approximation, the resolution for any point is given by the formula 

D
Zλ , where Z is the focal depth (and not the depth of the scatterers) and D is the size of 

the transmit aperture. The resolution at any depth is then given by the resolution chosen 

for the focal depth. In general, the resolution is less good than the resolution obtained 

with the conventional DORT method where the full aperture is used at every  depth.  
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Figure 19 Left: each transducer has a directivity function corresponding to the sound cone of the 

beam. Therefore, only the scatterer inside the cone, like the blue scatterer, will hear and be heard by 

the virtual transducer. The red scatterer does not hear the virtual transducer. Right: because of this 

directivity effect, a scatterer (in blue) hears only a limited number of virtual transducer. The virtual 

array that insonifies a given point has then a limited size, which limits the resolution of the FDORT 

method with linear scan. It can be seen geometrically, that the angle α between the scatterer and the 

virtual array is the same as the angle of the beams. Therefore, the resolution for any point in the 

medium, independently of its depth is the same and is equal to the resolution of the focus, 

D
Za λ= .  The angle that would be obtained with the full aperture is shown in dash line.  

Transducers spacing: A key parameter is the separation between two 

consecutives virtual transducers. A way of determining this is to use similar design rules 

as for an array of real transducers (Angelsen 2000) (6.21). Another approach, involving 

the orthogonality between the Green’s functions, is discussed in the next Section.   

When the element spacing in an array is too large, grating lobes appear. Indeed, 

the Fresnel approximation in polar coordinates states that the field at the focal radius is 
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given by the Fourier transform of the aperture, with scaling by λ. For a continuous 

aperture, this gives the well-known sinc shape of the beam pattern. However, an array is 

not continuous but made of a few discrete elements. In a 1st approximation, each element 

can be considered as a point. In this case, it is like the continuous array has been sampled, 

or multiplied by a dirac comb. Let a be the distance between two elements. In the Fourier 

domain, this results in a periodic repetition of the sinc at a period a
λθ =∆sin . The 

repetitions of the sinc form so-called grating lobes. The first grating lobes are then at an 

angle a
λθ =∆sin from the main lobe. The further apart are the transducer in an array, 

the closer from the main lobe are the grating lobes. In fact, each element is not a point, 

but has a finite extent, which give him a directivity. For example, an element equivalent 

to a virtual transducer has a shape in 
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

D
Z
Xc

λ
πsin  (Eq.2. 8). Therefore, the array is better 

modelized by the Dirac comb convolved by the sinc. In the Fourier domain, the field of 

the point-like array is multiplied by the directivity function (here the Fourier transform of 

the sinc) The directivity should be narrow enough so that the grating lobes are 

suppressed. In our case, the directivity is approximately given by Z
D=∆ θsin  (Eq.2. 7). 

The worst case happens when the main lobe is steered on the edge of the directivity 

function, and therefore the appropriate spacing between transducers is D
Za λ≤ . If the 

spacing between elements is larger than this, the method may not be able to separate two 

scatterers when a scatterer is in the main lobe while the other one is in a grating lobe.  
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In ultrasound, the signals are often broad-band, and in this case, the spacing at the center 

frequency can be chosen. The beam spacing required for FDORT is significantly less 

than the beam spacing used in imaging modes. 

 To summarize, with a linear scan, both the resolution and the maximum spacing is 

equal to D
Zλ , which is the inverse of the spatial bandwidth.   

III.B.2.b Sector scan (or phase scan)  

 In a sector scan, the full aperture is usually used for a transmit. The consecutive 

transmits are then obtained by steering (rotating) the beam. Thus, the foci are located on a 

circle at a constant radius from the array center. This is shown in Figure 20. Therefore, 

the virtual array is a curved array. The sector scan is especially interesting when the zone 

to image is a sector.  

 Resolution: A geometrical derivation similar to the one in Figure 19 shows that 

with this scheme the resolution of the virtual array is the same as the real array. Indeed, 

as shown in Figure 20, the angle between the blue scatterer and the virtual array is the 

same as the angle between the scatterer and the real array. Thus with such a transmit 

sequences, the performance of FDORT in terms of scatterers separation is identical to 

DORT, and is equal to 
D
λθ =∆ sin .  
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Figure 20 Example of sector scan. The foci are located on a circle, and the beams are steered.   

Transducers spacing: The maximum transducers spacing is derived in III.C, using 

orthogonality condition between the transmits. It is found that the distance between two 

consecutive virtual transducers is 
D
λθ =∆ sin .  

III.B.2.c Hybrid scan  

 The hybrid scan is shown in Figure 21. It combines the advantages of linear and 

sector scan. The whole aperture is used for each transmit, which results in a resolution 

identical to the DORT method, as shown for the blue scatterer in Figure 21. However, the 

foci are located on a line at constant depth, and thus the virtual array is linear, which 

makes the method more intuitive. 
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Figure 21 Hybrid scheme. The foci are on a line, but the full aperture is used for each beam. Thus the 

resolution is the same as DORT.  The angle between a scatterer (blue point) and the virtual array is 

the same as the angle between the scatterer and the real array.  

III.B.3. Simulations 

 Two point scatterers located at depth 30mm have been simulated using Field II 

(J.A.Jensen). One of the point was twice brighter than the other. An array with 128 

elements and 7.3 MHz center frequency was used. Three sets of acquisition were 

performed, using the hybrid scheme of Section III.B.2.c., with a beam spacing equal to 

0.2 mm. The focal depths were respectively 10mm, 30mm (scatterers depth) and 60mm 

(deeper than scatterers). For each case, the transfer matrix K was built for several 

frequencies ranging from 0 to 12 Mhz, using a Fast Fourier Transform of the received 

signal. The SVD of each matrix was performed. According to III.B.1, the singular vector 

U gives the Green’s function in the physical array, whereas the singular vector V gives 

the Green’s functions in the virtual array.  

 The temporal eigenvectors for each scatterer were then reconstructed by taking 

the Fourier transform of the monochromatic eigenvectors. 
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 In Figure 22 are shown the eigenvalues in function of the frequency. There are 

two non-zero eigenvalues, indicating the presence of 2 scatterers in the medium. The two 

first temporal eigenvectors in the real array are shown in Figure 23. Each eigenvector is 

the temporal Green’s function, or wave-front of one of the scatterer. In Figure 24 shows 

the amplitude and phase of the 1st eigenvector U at the center frequency. These results are 

very similar to what one would obtain with the classical DORT method.  

 

Figure 22 Evolution of the eigenvalues in function of the frequency. There is one non-zero eigenvalue 

for each point scatterer. 

 

Figure 23 Temporal eigenvectors expressed in the real array. They correspond to each scatterer’s 

wave-front.   
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Figure 24 Amplitude and phase of the 1st singular vector U at the center frequency. It represents the 

monochromatic Green’s function of the first scatterer.  

 
 However, with FDORT, additional information can be obtained from the other 

singular vector V. It gives the Green’s function in the virtual array. The position of the 

virtual array can be adjusted by changing the focal depth. Three cases can be 

distinguished: the scatterers can be retrospectively deeper than, as the same depth as, or 

shallower than the virtual array. It is important to understand that in all cases the ability 

to separate the scatterers is the same, and that the singular vector U are similar. Changing 

the focal depth is simply a way of changing the point of view. Examples of applications 

will be developed in Sections IV. And V.  
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Figure 25 Temporal singular vectors expressed in the virtual array at depth 10mm. It is obtained by 

the Fourier transform of the frequency domain vector V. The wave-fronts are truncated on the edges 

because of the directivity of the virtual transducers. The scatterers do not hear the virtual 

transducers on the edges.  

 

 

Figure 26 Phase and amplitude of the 1st singular vectors V . It represents the monochromatic 

Green’s function of the brightest scatterer expressed in the virtual array. The directivity pattern of 

the transducers is clearly visible in the amplitude term.  
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Figure 27 First temporal singular vector, and amplitude of the first monochromatic singular vector 

at the center frequency, for the virtual array located at 30 mm, in the scatterers plane. In this plane 

the virtual transducers, or transmit beams, are sinc functions, with a narrow main lobe, and only a 

few insonify significantly the scatterer. The sinc function variation can be noticed in the amplitude.   

 

 

Figure 28 First Temporal singular vector, amplitude, and phase of the 1st singular vector V at the 

center frequency for the virtual array located at 60mm. The curvature of the wave-front and of the 

phase are inversed compared to Figure 23 to Figure 26, because the scatterer is now shallower than 

the focal depth, and as explained in Section III.A.2., the signals are time-reversed in this case.   

III.C. The focused transmits as an orthogonal basis 

 The DORT method has been implemented in the past with transmits sequences 

other than single elements transmits. In these cases, orthogonal combinations of array 

elements were used. The interest of using this kind of transmits is increasing the SNR.  

 64



 The focused beams can themselves be considered as an orthogonal basis. Each 

focused beam is the Green’s function of the corresponding focal point. For one 

frequency, it is given by )(
)(

Pr
eH

i

Pjkr

i
i=  . The condition of orthogonality of Green’s 

functions is given by Eq.2. 5 : the Green’s functions of two points P and Q are orthogonal 

if it is possible to focus with the array on P without sending energy on Q.  

For the linear scan, in the focal plane, the field is given by 
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

D
Z
Xc

λ
πsin , 

according to Chapter 1.III.B.1. The main lobe of the sinc is centered on the focus, here 

the point P. The points that are not insonified, and therefore whose Green’s function are 

orthogonal to P’s Green’s function, are the points located at the zeros of the sinc. The 

distance between these points is D
Za λ= . Therefore, by choosing foci that are separated 

by  

D
Za λ=  

Eq.2. 9 

in the focal plane, each beam will be orthogonal to every other, and one is able to build 

an orthogonal family of beams.  

For the phase scan, one needs to reason on a line at constant radius from the 

center of the array, in polar coordinates. The Fresnel approximation of Chapter 1.III.B.2 

states that, in the focal radius, the field is the Fourier transform of the aperture, for the 

spatial frequency λ
θsin . The field for a beam focusing on θ = 0, is then given by 
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⎝
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λ
θπ sinsin Dc . The other beams will then be orthogonal if their foci are located at 

angles such that  

D
n=λ

θsin                       

Eq.2. 10 

where n is an integer. In other words, 
D
λθ =∆ sin .  

In the case where the array elements have a width equal to 2
λ , which is the 

condition to have a directivity angle equal to π (half-plane), the array image the half-

plane. To span the whole field of view, one needs foci ranging from θsin =-1 to 

θsin =+1. Combined with Eq.2. 10, this yields 
2

λ
D  beams, which is also equal to the 

number of element in the array. In this case, the canonical basis and the beam basis are 

two equivalent orthogonal basis of the same space.  

It is easy to see the beams as an orthogonal basis in the case where the foci are in 

the very far-field. In this case, the Fraunhoffer approximation is valid, and the signal 

applied in the array to generate a beam is 
xj

e λ
θ

π
sin2

. Together with Eq.2. 10, this yields 

x
D
n

j
e

π2
. This forms a family of Fourier coefficients, which is a well-known orthogonal 

basis. They are the basis of Fourier series (UNSER). A similar result could also be 

derived in the Fresnel aproximation, using properties of the Fourier transform.   

Note: only the sector scan can form an orthogonal basis of the same space as the 

canonical basis. With the linear scan, it has been seen in III.B.2.a that some resolution 
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was lost compared to the canonical basis. The space span by a linear scan is then a sub-

space of the canonical space.   

The interpretation of the beams as an orthogonal basis is a nice result, although it 

is not essential for the present application. The FDORT method works well in general 

with families of beams that are not an orthogonal basis (for example if the spacing 

between beams is smaller than the orthogonality condition). The virtual transducer model 

is a more general and more intuitive approach.  

The condition of orthogonality for the beams, stated in Eq.2. 9 and Eq.2. 10, is 

equivalent to the grating lobe condition given in III.B.2. This gives an upper-bound on 

the distance between beams that yield optimal results. If the spacing is greater than the 

upper-bound, the performance of the method is reduced. However, it is possible to use a 

spacing smaller than the bound although the beams are no longer orthogonal. This will 

just requires using more beams to span the whole space. There will be some redundancy, 

but is not a problem for FDORT, as the SVD will makes sense of the information.  

The orthogonal basis provides all the information on the space, and thus a full-

performance FDORT, with the smallest number of beams possible (minimum entropy). It 

leads to information optimization. It is then helpful when the number of beams is an 

issue. As acquiring a new beam takes time, it yields a faster implementation.      

An orthogonal basis can be required for some signal processing algorithm. A 

good reference is (Trees). 

III.D Link to back-propagation 

 Let Q be the position of a scatterer. Its Green’s function is H(Q). Let Pm be the 

foci of a focused beam. Focusing on Pm is equivalent to delay the signals of the physical 
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array by ri(Pm)/c and summing. In a monochromatic formalism, it is equivalent to project 

the signals on Pm  Green’s function. Therefore, the echo from Q heard by Pm is expressed 

as mm PHQHS (|)(= . According to Eq.2. 5, Sm is also the field at position Pm when the 

echo from the scatterer Q is back-propagated from the array. Again, this shows that the 

focused beams act like virtual transducers that probe the value of the field at distance. 

The difference with the previous virtual transducer interpretation is that here the virtual 

transducers do not have a directivity, they are isotropic. However, the field is now the 

back-propagated field, which means that the signal is non-zero only in a cone.  

 To summarize, there are 2 ways to interpret the virtual transducers:  

- either as transducers with a directivity probing the free space field from the 

scatterer 

- or as isotropic transducer probing the back-propagated field of the transducer 

 

The interest of this interpretation is to give a physical interpretation of the change 

of basis between the canonical basis (physical array) and the focused basis (virtual array). 

The change of basis is obtained by a back-propagation of the signals from the array plan 

to the focal plan.  
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V.  APPLICATION TO FOCUSING THROUGH A FAR-FIELD PHASE 

SCREEN 

IV.A Changing a far-field phase screen problem into a near-field phase screen 

problem using a virtual array 

IV.A.1 Heuristics 

 It has been seen in Chapter 1 that the far-field phase screen was a better model for 

the heterogeneities than a near-field model (where the phase screen is supposed to be 

immediately in front of the array). However, the far-field model is much more 

complicated to deal with than the near-field phase screen model. First, time delays are no 

longer enough to correct the aberration, and a match-filter/ time reversal is necessary. 

Second, with a near-field phase screen, if one knows the Green’s function of a single 

point in the medium, one is able to focus anywhere in the medium as the aberration does 

not depend on the position. With the far-field phase screen, the aberration depends on the 

position. Thus the knowledge of a point Green’s function enables to focus only in the 

neighborhood of the point. 

  This is where the virtual transducers are helpful. Indeed, in the case where the 

aberrator is in the far-field, it is possible to use an array of virtual transducers close to the 

phase screen. This is feasible by choosing a focal depth for the focused transmit that is 

slightly shallower than the phase screen. In this case, the aberrator is still in the far-field 

for the physical array, but it is in the near-field for the array of virtual transducers (the 
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virtual elements are immediately in front of the aberrator)! This means that we can 

benefit from the advantage of a near-field phase screen when we are working with the 

virtual transducers.  

IV.A.2 Example 

We illustrate this with a simulated example. The simulation setup is illustrated in 

Figure 29 

  

30 mm 

75 mm 

X=-2 mm X=8 mm X=-12 mm 
 

Figure 29 Simulation setup. A virtual transducer with its directivity pattern is shown in red.   

 A phase-screen, that applies a differential delay of 100 ns in average, with a 

spatial correlation of 4.5mm, was located at 30 mm from an array (128 elements of 

0.2mm). Three point scatterers were located at a depth of 75 mm, and at an azimuth of 

respectively -12, -2, and +8 mm. FDORT was performed using the hybrid scheme, with 

foci at z=30 mm, in the phase screen plan. The spacing between the virtual transducers 

(foci) was 0.2 mm, which is slightly below the orthogonal condition (0.23 mm). The 

monochromatic singular vectors were computed both in the physical array, and the virtual 
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array. The temporal invariants of the time reversal were computed by Fourier transform, 

in the temporal frequency dimension, of the singular vectors. The temporal Green’s 

function for the physical array are shown in Figure 30 while the temporal Green’s 

function in the virtual array are shown in Figure 31. 

 

 

Figure 30 Temporal Green’s function of the 3 scatterers (resp. -12,-2 and 8 mm) in the physical 

array.  Because of the far-field phase screen, the signals are distorted in time, and there are 

important variations of amplitude across the array. Moreover, the effect of the aberration depends 

on the position of the scatterer. For example, the amplitude peaks are at different position for each 

scatterer.  
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Figure 31 Temporal Green’s functions (resp. -12,-2 and 8 mm)  in the virtual array, located just 

behind the phase screen.  The wave-fronts are merely delayed by the aberration. There is no 

distortion of the pulse or variation of amplitude. For each scatterer, the signal is received only by 

about 80 virtual elements, because of the directivity of the virtual transducers.  

 It is obvious in this example that from the virtual array point of view, the 

aberration acts as a near-field phase screen. The wave-fronts are merely delayed, and the 

aberration delays are the same for all scatterers. The only difference with a true phase 

screen as shown in FIGURE CHAPTER I is due to the directivity of the virtual 

transducers. This phenomenon is fully predicted by our model though, as described in 

section III. For example, one can see that the virtual transducer depicted in Figure 29 

cannot hear the leftmost (x= -12 mm) scatterer.  
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IV.B Steering from the virtual array 

 With the far-field phase screen, the knowledge of the Green’s function of the 3 

scatterers enables to focus only in the immediate neighborhood (isoplanatic patch) of the 

point. The size of the isoplanatic patch, which is the area where the aberration effect is 

constant, depends on the strength of the phase screen and the distance to the array. With 

the phase screen chosen in the simulations, the isoplanatic patch is very narrow, as seen 

in Figure 32. The Green’s function of a scatterer located at -12 mm was used to focus at 

this point and at neighbor points. To focus at neighbor points, a steering term was added 

to the phase of the Green’s function, which corresponds to the difference in geometrical 

delays between the reference point and the new point. This is equivalent to consider that 

the term due to the aberration is the same for all points. Both amplitude and phase of the 

Green’s function are used.   
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Figure 32 Focusing from the physical array at, respectively from top left to bottom right: -12 mm, -

11.7 mm, -11.5 mm, -10 mm. The Green’s function for the scatterer at -12 mm was used to correct 

the aberration. Therefore the focusing is perfect at – 12 mm. However it degrades very rapidly, as 

the aberration varies with the position.  

 The focusing degrades very rapidly. At only 0.5 mm from the reference point, the 

focusing can be considered as relatively poor.  

The same steering process was then performed from the virtual array, to focus at 

the same neighbor point. In this case, the focusing on neighbor point was very good, even 

if the point was far away from the reference. The focusing on a point at x=-10mm is 

shown in Figure 33, and is much better than the focusing on the same point from the 

physical array shown in Figure 32.  
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From the virtual array, we can in theory focus anywhere in the medium using the 

knowledge of a single Green’s function, because the phase screen is near-field. However, 

as seen in Figure 31, because of the directivity of the virtual transducers, one Green’s 

function gives only information about a part of the phase-screen. For example, the 

Green’s function of the scatterers at x= -12 mm, gives a non-zero signal only on the 80 

left-most virtual transducers. Therefore, only the delay experienced by these 80 

transducers can be deduced. To characterize completely the phase screen delay, it is 

necessary to use another scatterer that is heard by the remaining virtual transducers. The 

scatterer at x=8mm is suitable. From the knowledge of these two Green’s functions, one 

can characterize completely the phase screen, and then focus on any point in the medium 

using the proper geometrical delay.  

Using the unwrapped phase of the Green’s functions for the two scatterers at –12 

mm and 8 mm, we were able to deduce the delay profile shown in Figure 34. The 

estimated profile was very close from the true profile. Then, using this profile we were 

able to focus anywhere in the medium by adding the proper geometrical delay, ri(P)/c, 

where ri(P) is the distance between a point and the virtual tranducer i. The focusing on a 

point at x= -2 mm is shown in Figure 33. The focusing was not obtained from the 

measured Green’s function of the scatterer located at this point, but by steering using the 

knowledge of only the 2 other Green’s function (x = -12 and x= 8 mm). Using the virtual 

transducers, we were then able to achieve a very good focusing on a point that was 1 cm 

away from the closest estimated Green’s function, through a far-field phase screen.        

 75



 
Figure 33 Focusing from the virtual array at respectively, from left to right, -10 mm and – 2 mm. The 

reference Green’s function was at –12mm in the 1st case,  and –12 mm and + 8 mm in the second case.  

   
Figure 34 Estimated delay profile of the phase screen (blue) compared to the true delay profile (red).   

 In conclusion, with appropriate virtual transducers, one is able to focus on any 

point through a far-field phase screen, using the knowledge of only two Green’s 

functions. This is remarkable, as the size of the isoplanatic patch (seen from the physical 

array) was hardly 0.5mm. In addition, the focusing from the virtual array requires only 

time-delaying the signal, and not a complete match-filter.  
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IV.C Practical implementation 

IV.C.1 Determination of the phase screen position 

 In a practical setting, the depth of the phase screen is not necessarily known. We 

investigate here a few criterion to determine this depth.  

IV.C.1.a Criterion based on the amplitude 

 If the phase screen only delays the wave-front, and does not introduce any 

attenuation, the amplitude of the wave-front immediately after going through the phase 

screen is approximately constant. During the propagation after the phase screen, 

interferences lead to amplitude variation. The 1st criterion is then based on the field 

amplitude. The monochromatic Green’s function of the scatterer at x=-2mm of the 

previous example is numerically back-propagated in an homogeneous medium, as shown 

in Figure 35. As the wave-front gets closer from the phase-screen plane (z=30mm), the 

amplitude variation becomes smoother. After the phase-screen plane, amplitude variation 

reappears, because the phase screen was not modeled in the back-propagation.  
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Figure 35 Field due to the back-propagation of a Green’s function. Right: zoom around the phase 

screen depth.  The plane where the amplitude is approximately constant indicates the phase-screen 

position.  

IV.C.1.b Criterion based on the distortion  

 The drawback of the previous approach is that, in a real setting, an aberration 

often introduces amplitude variation through attenuation, and not merely time-delays. An 

approach proposed by (Liu and Waag) and (Dorme and Fink) is to use a wave-front 

similarity factor. Indeed, the propagation after the phase screen does not lead only to 

amplitude variation, but also to pulse distortion. The criterion is based on the correlation 

between pulses at two distant location of the wave-front. By numerical back-propagation 

in a homogeneous medium, the wave-front is computed at any depth. For each depth, a 

similarity factor is computed by correlation of the pulses. The phase-screen depth is given 

by the maximum of the similarity factor.  

 IV.C.1.c Criterion based on spatial invariance of the aberration effect 

 A third property of the near-field phase screen can be used. In the near-field phase 

screen model, the aberration effect is independent on the position. One can focus 
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anywhere in the medium by adjusting the geometrical delays. For a far-field phase 

screen, the aberration term depends on the position. It can vary significantly from one 

position to the other. It is approximately constant only in the isoplanatic patch.  

The criterion compares then the back-propagated field for 2 different scatterers. 

Immediately after the phase screen, the field differs only by the steering term. In the 

Fresnel approximation, it is a linear phase shift. Far from the phase-screen, the fields are 

more different, as the aberration effect is no longer the same. Both the amplitude and 

phase variation is different for the 2 scatterers.  

 Therefore, we numerically back-propagate two Green’s function, at the central 

frequency. Ideally, the 2 scatterers should be far enough so that the aberration effect is 

significantly different. However, if they are too far apart, their wave-front will cross two 

different part of the phase-screen, and the signals can no longer be compared.  

 Let PA(x,z0) and PB(x, z0) be the field for the two Green’s functions at depth z0. In 

the phase-screen plane, these two functions should differ only by a phase shift. Therefore 

the Fourier transform of the product PA(x,z0) PB(x, z0)* should exhibit a strong peak 

whose position depends on the phase shift. The value of the peak maximum corresponds 

to the correlation between the aberration term for the 2 scatterers. In order to normalize 

the criterion, we define the criterion as { }[ ]

∫∫
=

dxzxPdxzxP

zxPzxPFT
C
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2
0

2
0

00

),(),(

*),(),(max . This 

criterion is equal to 1 if PA(x,z0) and PB(x, z0) are identical except for a linear phase term. 

If PA(x, z0) and PB(x, z0) differs by their amplitude or phase (other than linear shift), the 

criterion decreases. To highlight the position of the phase screen, C−1
1  is plot.  
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The curve in Figure 36 has been obtained by comparison of the Green’s function 

of 2 scatterers separated by 2 mm, with the phase-screen of Figure 29.  

 

Figure 36 Criterion based on spatial invariance of the aberration effect. The peak indicates the 

position of the phase-screen.  

 This criterion yields an accurate position of the phase-screen, and requires the 

back-propagation for only one frequency. However, 2 scatterers have to be available.  

IV.C.2 Application to Real Experiments 

 In Section IV.B, it was shown how it was possible to focus from the virtual array 

of transducer in a numerical experiment. We now describe how this can be done in a real 

experiment, where we want to be able to focus on any point through a far field phase 

screen. In a real experiment, we don’t have access directly to the virtual transducers, but 

to the physical transducers. In order to focus on a point, we need to know the signal to 

apply to each physical transducer. Therefore, we need to express the Green’s function in 

the real array.   
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 We already know how to generate each focused beam (virtual transducer) from 

the physical array. The signal applied in the real array to form a few focused beams are 

shown in Figure 37. We also know how to focus from the array of virtual transducer on 

any point in the medium. We just have to apply the appropriate delay to each virtual 

transducer. This means that some focused beams are transmitted later than others. 

Therefore, if we delay the wave-fronts corresponding to each focused beam by the 

appropriate amount, and add the signals together, we obtain the signal to transmit in order 

to focus on any point in the medium. This is illustrated in Figure 37.  

Note: This operation is equivalent to backpropagating the signal from the virtual array to 

the canonical array, as proposed in (Dorme and Fink). In the case where the virtual 

transducers forms an orthogonal basis, it is also equivalent to change bases (from the 

basis of focused beams to the canonical basis; the Green’s function of each focal point is 

then the coordinate of each focused beam in the canonical basis)  
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Figure 37 To compute the Green’s function of any point in the medium in the physical array, one 

merely has to add the wave-front corresponding to each virtual transducer that insonify the point 

with the proper time delays.  The virtual transducers that do not insonify the point (because of the 

directivity) are not summed.  

 The method was used to synthesized the Green’s function of the point at x=-2mm 

(Figure 29). The Green’s function obtained is very close to the Green’s function 

measured when a scatterer is present at this point (Figure 38).  
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Figure 38 Temporal Green’s function of the point at x=-2mm, measured (left) and synthesized using 

the method described in this section (right) 

 
 This method is particularly interesting has it shows how a complicated wave-

front, where the pulse is distorted and the amplitude varies, can be synthesized by a mere 

sum of simpler wave-fronts. Match filter processing is very costly to implement in 

practice, as it requires filters on each channel. This shows that it can be reduced to a 

series of delay-and-sum.    

IV.C.3 Application to imaging 

 To image a medium, one has to focus in transmission and reception on every 

point of the medium. One way to use the method in imaging is to compute the match-

filters for every point in the medium, and do match-filter processing. However, the 

advantage of imaging compared to a focusing experiment, is that the focusing can be 

done numerically. For example, a full data set can be acquired, and the focusing on each 

point is achieved a posteriori by processing the full data set.  

The full data set does not have to be acquired in the physical array though. It can 

also be acquired in the virtual array. A full data set in the virtual array is obtained when a 

signal is transmitted successively by each virtual transducer (focused beams), and for 
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each transmit, the signal is received by all virtual transducers. Receiving with a virtual 

transducer is equivalent to focusing in receive on the location of the desired virtual 

transducer. Focusing in receive on a point P is achieved by delaying the signals received 

by the physical transducers by ri(P)/c and summing them. Before, we were using the 

virtual transducers (focusing) only in transmit. Now we are using them both in transmit 

and in receive. 

In practice, the full data set in the virtual array would be acquired the following 

way:  

• a focused beam is transmitted 

• the received signals are recorded by every physical transducers 

• the signals are delayed and summed to reconstruct the signals received by 

each virtual transducer  

• the process is repeated for every focused transmit 

 

Once the full data set in the virtual array is obtained, it is very easy to image the 

medium. Two parts of the medium can be distinguished: deeper and shallower than the 

virtual array.  

We consider first the deeper part. Focusing in this part is equivalent to focusing 

through the near-field phase screen (from the point of view of the virtual array). This is 

done by adding the phase screen delays to the geometric delays.  

Let us consider now the shallower part. There is no phase screen between the 

virtual array and this part, and simple geometric delays can be used. However, we have 

seen in section.III.A.2 that an observer located shallower than the virtual array was 
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observing a time-reversed version of the signal emitted by the array (because the wave-

fronts are converging to the virtual transducers). For this observer, the signal from the 

furthest virtual transducer is the first signal observed. Therefore, the delays have to be 

inversed when focusing in this part of the medium from the virtual array.    

 

Figure 39 From left to right: image of an unaberrated point-scatterer phantom, image of the same 

phantom with a 100ns rms phase-screen located at 30mm; and image of the aberrated phantom 

corrected using the FDORT method.  The corrected image is not perfect, but much better than the 

aberrated image. 

   

   

VI. FDORT WITH TIME GATING  

 
The DORT method is able to detect and focus on well separated point scatterers, 

like wires (which can be considered point-like in the 2-D geometry of the experiments), 

in water, even in the presence of a strong aberrator(Prada, Manneville et al. 1996). In 

medical applications, however, the scatterers are embedded in tissue that generates a 
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speckle signal. The DORT process was performed on a tissue-mimicking phantom with 

wire-targets, represented in Figure 40.  

 

 

Figure 40 Phantom used for the experiments 

Eigenvalues and numerical backpropagation of the second  eigenvector are shown 

in Figure 41. Due to speckle, the eigenvectors become too noisy and DORT fails: 

Focusing on the wires’ locations is very poor.  

It is desirable to have a method that can offer the same kind of performance as 

DORT in such an environment, where the targets are embedded in speckle. A mere 

implementation of the FDORT method as described earlier is not a solution for this 

problem, and leads the same results as DORT. However, we are now presenting a 

method, based on FDORT with time gating, on a linear scan, that provides an excellent 

solution of this problem. This solution takes advantage of a property of focused beams 
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and cannot be implemented as efficiently with a full data sets. This section is taken from 

(Robert, Burcher et al.).  

We start by an analysis of the noise and then present the solution.  

 

 

Figure 41 FDORT on a tissue mimicking phantom, performed with the whole received signal. Left: 

singular values in function of the frequency. It shows that lots of eigenvalues have an important 

magnitude and it is hard to make a clear distinction between significant targets eigenvalues and noise 

eigenvalues; Right: Field resulting from the numerical backpropagation at 4.3 MHz (close to the 

central frequency) of the 2nd eigenvector.  

 
 

V.A. Influence of noise on eigenvectors and eigenvalues 

  Signals from scatterers other than the ones we want to detect (here the wires in 

the phantom) are considered as a noise. In this case these are sub-resolution scatterers 

generating speckle signal. Two cases can be distinguished:  

a. Ideally separated scatterers These are not coupled with the targets; they are located 

outside the coupling area for each target, as depicted in Figure 14. They give rise to new 

non-zero eigenvalues, but do not affect the eigenvectors corresponding to the targets that 

still enable perfect focusing. The focusing properties are preserved, but as there are more 
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non-zero eigenvalues, it is more difficult to determine which eigenvectors correspond to 

the targets.  

b. Non ideally separated scatterers They are located in the shadow (light blue area in 

Figure 14) of the target and therefore are coupled with the target. There are more non-

zero eigenvalues, as in the previous case, but here the eigenvectors are affected: They are 

no longer equal to the Green functions of individual targets, but are linear combinations 

of the targets’ Green functions and Green functions from noise scatterers coupled with 

the targets. The resulting eigenvectors can be very complex in the presence of speckle 

signals, as hundreds of sub-resolution scatterers are coupled with the target. 

FIGURErepresents, in a clinical image, all the scatterers coupled with the target, located 

at a depth of 25 mm. The focusing properties are in this case dramatically degraded, as 

seen in Figure 41. 

 

V.B. A solution: FDORT with time gating 

V.B.1. Principle 

 We are here interested to reduce the effect of the last kind of noise, which has the 

worst influence. The noise comes from the set of scatterers coupled with the target, 

contained in a conical shape centered on the target. Laterally, in the target plane, the  

zone of coupling is narrow. It is the resolution cell of the array. This limitation is due to 

the finite size of the array and affect usual beamforming imaging. Axially the coupled 

zone is much more extended. This limit is not present in classical beamforming. It is due 

to the fact that the temporal resolution is not exploited by DORT or FDORT because of 
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their only monochromatic nature. An important amount of information is then lost. In 

conventional imaging, the axial resolution comes from the broadband nature of the signal.  

 To solve this difficulty, impulsive and monochromatic approaches have to be 

mixed. At any given time τ, an incident ultrasound beam illuminates only a volumetric 

distribution of scatterers, called the isochronous volume(Fink and Cardoso 1984; Jean-

Francois and Mathias 1991; Mallart and Fink 1994) . Now, selecting within the received 

signal an analysis time window [τ,τ+∆τ] (Figure 43) is equivalent to selecting only 

echoes from scatterers located in a well-defined volume whose lateral extension is equal 

to the lateral extension of the beam, and whose axial extension ∆z is related to ∆τ. If we 

repeat this process for every beam, the union of all the volumes gives a slice of the 

medium of width ∆z, represented in Figure 42. 

 

∆z 

Figure 42 Tissue-mimicking phantom used for the experiments. The zone of coupling for one 

scatterer is indicated by the white conical shape. Scatterers inside this area are coupled with the 
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scatterer. The box drawn with dashed lines indicates the slice obtained by time gating the signals. 

This reduces the influence of the coupled scatterers. 
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whole medium is insonified and it is no longer feasible to select signals from a given 

depth. 

 The method has been presented here with a linear scan. It can also be done with a 

phased scan, but in this case, slices of radius are taken, rather than slices of depth.  

V.B.2. Experiments 

 Experiments are carried out on the medical phantom represented in Figure 40, 

using a Philips HDI-5000 and a 1-D linear array at 4.3 MHz center frequency. 

 For each transmission the signals on all N received elements are recorded. The 

signals are gated in time, keeping only the signal from z-0.5∆z to z+0.5∆z. The window 

width is chosen to be slightly longer than the pulse width. For the mth transmission pulse, 

gating in depth is achieved using the geometrical focal law focusing along the beam m at 

depth z. 

 Figure 44 shows the eigenvalue spectrum and the numerical backpropagation of 

the second eigenvector obtained using the FDORT method in the medical phantom at the 

depth of 9 wires. It demonstrates a great improvement in the focusing ability of the first 

eigenvectors, compared to the results in Figure 41. To obtain the focal law of each wire, 

one needs to repeat the process for several depth ranges.   

 In conclusion, the FDORT method can still be performed to detect point targets in 

the presence of speckle noise, but the medium needs to be sampled in thin slices to 

decouple the targets from the speckle noise. The number of significant eigenvalues is the 

number of targets in the slice, and the eigenvectors are the corresponding Green 

functions. Targets localization is now feasible, as shown in Figure 45. 
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Figure 44 FDORT on a tissue mimicking phantom, performed in the slice shown in Figure 42. Left: 

singular values in function of frequency (MHz).: 9 eigenvalues have now significant magnitudes 

compared to the others; Right: Field resulting from the numerical backpropagation at 4.3 MHz 

(close to the central frequency) of the 2nd eigenvector. A good focusing is now obtained. 

 
Figure 45 Targets localization in speckle. Left: field resulting from the numerical backpropagation of 

the 9 first eigenvectors without the time gating. Right: same with the time gating: the focusing and 

wires localization is very clean.  
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VII. LOCAL FDORT 

VI.A. FDORT in a limited region of space 

 VI.A.1. Principles 

The DORT method using the elements basis is well adapted when the zone of 

interest (the zone when one wants to detect and extract the Green’s function of scatterers) 

is the whole half plane. In most cases, though, the zone of interest is narrower, and can be 

limited to a small region of space. Intuitively, there is less information to extract from a 

small region of space than from the whole half space, and we should not need as many 

transducers in this case. It also seems that the most efficient use of the transducers would 

be to place them in the middle of the region of interest, which is possible with virtual 

transducers; in this case we would need only a few transducers to listen to all the signals 

from the region.  
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Figure 46 When the region of interest (gray) is limited, it is most efficient to have the transducers at a 

depth corresponding to the middle of the region. This is possible with virtual transducers. The 

number of transducers needed is reduced. Indeed, most of the virtual transducers, like the green one, 

are not providing any information and do not need to be transmitted. In this example, only the 3 red 

virtual transducers are necessary.  This allows a much faster implementation of the method as only a 

few transmits are necessary.    

It is possible to develop this point more rigorously by considering the beams as a 

basis for the Green’s function. The focused beams are particularly interesting because 

they are spatially localized, especially near the focal depth. Indeed, each beam insonifies 

a narrow region of space. Retrospectively, each point is insonified by a limiting number 

of beams, or virtual transducers. This is very obvious in Figure 27, when the scatterer is 

at the focal depth. The amplitude of the Green’s function is non-zero only on very few 

virtual transducers. Therefore, all the information on the point is concentrated in few 

vectors. It is then possible to perform FDORT on a small region of space with only a few 
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beams. No performance is lost because the beams that are not used did not carry any 

information on the region of interest.  

This is illustrated in Figure 47 and Figure 48. First, we have projected the 

normalized Green’s function of the points on a sub-space of only 5 consecutive 

orthogonal beams of the phase scan. Figure 47 (left) shows that almost all points in a 

triangular slice are completely described by this 5 beams. Indeed, the projection in the 

sub-space is close to 1. On the opposite, the 5 beams carry no information on points 

outside the slice; their projection in the sub-space is equal to zero. By adding more beams 

in the sub-space, one can increase the size of the slice (Figure 47 - right). This basis is 

particularly efficient, as the number of transmits needed depends on the size of the region 

of interest.  

 

Figure 47 In dark red is shown the sub-space spanned by 5 (left) and 16 (right) consecutive 

orthogonal beams in a phase scan. The map represents the projection of the normalized Green’s 

function of each point of the space in the sub-space. When the projection is 1 (or close to 1) the 

Green’s function can be described entirely by the family of beams. . The dark red area is basically 

the area where FDORT can be performed at full performance.    
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 The same as been done for the hybrid scan, in Figure 48. In this case, the beams 

are well localized around the focal depth (50 mm). The zone that is completely 

represented is diamond shaped and center around the focal depth.  

 
Figure 48 In dark red is shown the sub-space spanned by 10 (left) and 20 (right) consecutive 

orthogonal beams with the hybrid scan, The results with a linear scan are similar.   

The problem with the canonical basis traditionally used with DORT is that if we 

want to decompose a Green function in this basis, we will have a significant component 

on most of the vectors. This is because each real element insonifies most of the space 

(Figure 49). Then, if we want to perform a synthetic aperture acquisition with only a few 

elements in transmission, we lose part of the information and obtain different results than 

if we were using all the elements. (Reducing the number of element in transmission is 

equivalent to using a smaller array, which will yield a lower resolution). 
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Figure 49 Same for the canonical basis (conventional DORT method) The points Green’s function 

have been projected on the 32 first elements of the canonical basis (out of 64 elements) No point is 

completely described. The projection is about 0.5, which means half the information is missing. This 

missing information translates in decreased performance (decreased resolution)  

VI.A.2 Fast FDORT method and target detection in 3D 

The reduction in number of transmits can be significant. For example, it the 

targets are known to be within an angle of 30 degrees, the number of transmits can be 

reduced by about 6 compared to the whole 180 degrees half plane, by using a phased 

scan. The process is speed up considerably. 

This is especially important if we want to detect target in a 3D volume, with a 2D 

array. Indeed, 2D arrays can have 1000 to 10000 elements, and it is completely 

unrealistic to acquire a full data set with such an array. If we have an idea of the region 

where the targets are, the FDORT method can still be performed with a relatively low 

number of focused transmits.  

 97



VI.A.3 Quantity of information in a region of space 

We can go further and show that the focused beams are very close to the optimal 

family of vectors one can use to extract information from a limited region of space. 

Indeed let us imagine that we want to extract the information from a region of space of 

width L, and relatively narrow in depth. To simplify, let us reason in a monochromatic 

formalism, and for a linear scan. As the beam evolves relatively slowly in the depth 

dimension, it is possible to do the derivation at only one depth. We would like to find the 

most optimal basis, that is to say the smallest family of vector where one can express all 

the Green’s functions of the region.  

As the medium is seen by an array of limited size, the highest spatial frequencies 

are lost during the propagation from the medium to the array (Chapter 1.III.B.3). The 

image of the medium can then be represented by a function whose spatial frequencies 

spectrum has a width equal to z
D

λ where d is the depth of the medium slice we are 

considering. The image of the medium is then a band-limited function. It is also limited 

in space, in an interval of length L, which is the size of the region of interest. The sub-

space of band-limited and space limited functions has been extensively studied, notably 

by Slepian et al. (Goodman; Slepian and Pollack 1961; Frieden 1971), as it is a frequent 

problem in engineering. It is treated in more detail in Chapter 3. The dimension of such a 

sub-space is equal to the space-bandwidth product, in this case z
LDN λ= . As Dz

λ is 

also the size of the resolution cell of the array, N is the equal to the number of resolution 

cells in the interval L. This means that one needs at least N vector, when using the most 

optimal basis, to extract all the information. This is also approximately what we obtain 
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with the focus beams, when they are separated by z
D

λ (orthogonal condition, Eq.2. 9) A 

similar result can be obtained in polar coordinate for the phase scan.  

VI.B Application to moving scatterers  

VI.B.1 Problem  

It is in general difficult to use the DORT method (with the canonical basis) when the 

scatterers are moving. Indeed, between the first and the last transmits needed to build the 

Time Reversal Operator, a given target moves. Therefore everything happens as if there 

were several targets: the first one corresponding to the initial position of the target, and 

the last one corresponding to the final position. As a consequence, even if only one 

scatterer is present in the medium, several non-zero eigenvalues are observed, as shown 

in Figure 50. This happens especially when the motion of the scatterer is lateral. In this 

case, the number of non-zero eigenvalues is equal to the lateral displacement of the 

scatterer, expressed in number of resolution lengths, between the first and last transmits. 

Indeed, if the target has moved the equivalent of 3 resolution lengths, the DORT method 

will see 3 different resolved scatterers (this problem is similar to the extended object 

problem developed in Chapter 3). Moreover, the ability of the method to separate 

different scatterers decreases (Figure 51). Finally, if the motion is important, the first 

eigenvector no longer looks like a point Green’s function (Figure 52). This is because it 

corresponds to a combination of the Green functions corresponding to all the positions, 

which leads to interferences (again, this is similar to the extended object problem and is 

described in Chapter 3) 
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VI.B.2 Motivations 

 This problem is important, because in practice few targets stay still. In medical 

imaging, the body of a patient is constantly moving. The abdomen moves due to the 

breathing. Cardiac imaging is particularly affected by motion. A typical motion for the 

abdomen is 4 cm/s. In the heart, certain parts (like the valves) reaches speed over 20 cm/s 

(Lokke Gammelmark and Arendt Jensen 2003). This means that during one acquisition of 

the canonical Time Reversal Operator (about 1/30 s) the displacement of a scatterer can 

reach 5 mm!  

In underwater acoustics, most of the targets are also moving. In addition, the 

medium itself is moving and therefore the Green’s functions are changing over time. The 

case of an underwater wave-guide is found in (Folegot, Rosny et al. 2005).  

A typical application of Time Reversal with moving scatterers is 

lithotripsy(Thomas and Fink 1998). A kidney stone is tracked in real time by iterative 

Time Reversal. After a few iterations of the iterative Time Reversal, one obtains the 

Green’s function from the brightest scatterer (supposed to be the stone) The Green’s 

function is then used to focus on the stone with an intense wave, and destroy it. If several 

bright scatterers other than the stone are present, it might be helpful to use the DORT 

method instead of an iterative Time Reversal.  

VI.B.3 Solution 

 As we have seen in VI.A, the advantage of the focused beams is that only a 

limited number of beams are insonifying a given scatterer. For a scatterer at the focal 

depth, this is only 2 or 3 beams. For most other scatterers not too far from the focal depth, 

it is less than 10. This means that the time between the 1st and last transmits that insonify 
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a target is considerably reduced compared to the canonical method. Therefore the 

displacement of the scatterer is also reduced. In general, it can be reduced 10 times or 

more compared to the canonical method. If only a subset of transmits are used as 

explained in VI.A, it is possible to update the Green’s function at a higher rate. However, 

the computing time necessary for the Fourier Transform and SVD is limiting the speed.  

 Simulation setup: An array with 7.3 Mhz center frequency has been simulated. In 

the 1st case, a single scatterer at depth 70 mm was simulated. It was moving with a lateral 

speed equal to 4 cm/s in a 1st case, and 20 cm/s in a 2nd case. These are observed speeds 

for motion in the human body. In a 3rd case, 2 scatterers located 3 mm apart were 

simulated. Both were moving with the same lateral speed of 4 cm/s. For each case, 

DORT (canonical basis) and FDORT (beam focused at 65mm, hybrid scheme) were 

performed. The results are displayed in the following figures.   

 

Figure 50 Single point-scatterer moving at 4 mm/s. With DORT (left) several non-zero eigenvalues 

are observed. With FDORT (right), only one significant eigenvalue is observed. 
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Figure 51 Two point-scatterers distant from 3 mm. With DORT (left), the 1st eigenvector correspond 

to the Green’s function from one scatterer, but the 2nd eigenvector is a mixture of several signals 

corresponding to the 2 scatterers. With FDORT, the scatterers are well resolved, and the 2 first 

eigenvectors correspond to their respective Green’s functions. This is what we would observe without 

motion.  

 

Figure 52 Single scatterer moving at 20 cm/s (typical speed in the heart). With DORT (left), the 

observed first eigenvector is due to interferences between Green’s function for successive position of 

the scatterer.  The FDORT method (right) is robust at such speed. 

VI.C. Application to small objects detection  

In Section V. we proposed gating the signal in depth to reduce coupling. In 

Section VI.A, it was shown how the method could be applied to a volume of limited 
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lateral dimension. Thus, using FDORT, we can specify the size of the volume where the 

method is performed: in azimuth by setting which transmits are processed, and in depth 

by setting the width of the time window. This can be used to perform a local FDORT 

method(Robert, Burcher et al.). An application of this algorithm is the detection of small 

objects.  

 One of the challenges of breast ultrasonic imaging is improved detection of small 

microcalcifications, which can be associated with cancer. Small microcalcifications are 

often hard to distinguish because of their small size and because they are embedded in 

speckle. 

VI.C.1. Influence of the scatterer nature in the DORT method 

 When the scatterer size is less than a wavelength, the scatterer is associated with 

only one non-zero eigenvalue. However, for deterministic scatterers whose size is greater 

than a wavelength, two or more eigenvalues are observed10. The extended objects 

problem will be developed further in Chapter III.  

 A way of detecting small deterministic scatterers like the microcalcifications is to 

use the Local FDORT method and to consider the ratio of the first two eigenvalues. If a 

point scatterer is present at the location, the first eigenvalue is higher than the second one, 

and the ratio is dramatic. If there is only speckle or an extended reflector, like a cyst edge, 

the eigenvalues are of similar magnitude and the ratio is close to 1. Considering only the 

first eigenvalue is not enough, as it is proportional to the echogenicity (reflectivity) which 

is often greater for extended objects or even speckle; the ratio takes into account the size 

difference. 
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VI.C.2. The moving window FDORT 

 Local FDORT gives access to the local properties of the medium. Thus it gives 

the eigenvalues and the ratio of the eigenvalues at a specific location, the location of the 

window. To scan the medium, one needs to move the window at a series of locations. 

This can be done in depth by translating the time gate or in azimuth by changing the 

transmits processed. For example, the first window may use transmits 1 to 10, the second 

window transmits 2 to 11, and so on. For each location, the sizes of the windows are the 

same. Eigenvalues are computed for each position. This is the moving window FDORT.  

VI.C.3. In vivo experiments and results 

 Experiments are carried out on clinical data. Acquisitions are performed on a 

healthy female volunteer, using a Philips HDI-5000 scanner with a 1-D linear array 

probe, at 7.3 MHz center frequency. Local FDORT is performed in a window whose 

dimension is ∆z = 0.7 mm and ∆x = 1 mm (5 transmits). The window is moved along the 

white line depicted on Figure 53.b at a constant depth, where a microcalcification has 

been identified, using a moving window FDORT. Figure 53.c shows the variation of the 

first eigenvalues versus azimuth, at the center frequency. Looking only at the first 

eigenvalue, which is proportional to the reflectivity, we cannot distinguish the 

microcalcification from the other scatterers. However, when considering the ratio λ1/λ2, in 

Figure 53.d, the microcalcification appears clearly. Averaging over several frequencies 

within the bandwidth improves the results. The process can be repeated for several 

depths, and a 2D color map can be plotted, but at significant computational cost. 
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Figure 53 b) A scatterer identified as a microcalcification is shown by the white arrow.  c) The first 

two eigenvalues are plotted versus the azimuth. The first eigenvalue is proportional to the 

echogenicity, but considering the second eigenvalue adds additional information. d) Ratio of the first 

two eigenvalues versus the azimuth: the position of the microcalcification is indicated by a high ratio. 

 

 Finally, the eigenvector corresponding to the identified microcalcification has 

been used in focusing. The resulting field in the medium has been computed and the 

results are displayed in Figure 54. This demonstrates the good focusing property of 

FDORT’s eigenvectors in a clinical application.  
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Figure 54  Focusing achieved in breast clinical data using a microcalcification as a point scatterer. 

The 1st eigenvector has been numerically backpropagated. Left: intensity of the resulting field. 

Right: intensity versus azimuth at the depth of the microcalcification.    

 

 

VIII.  CONCLUSION 

We have seen how the FDORT method can be intuitively described by a Time 

Reversal process between the physical array and an array of virtual transducers located at 

the beams foci. With appropriate beams (phased or hybrid scan), the performance, in 

terms of scatterers resolution, is the same as the conventional DORT method. We give a 

condition in term of beam spacing for the beams to form an orthogonal basis.  

The focused beams offer a few advantages compared to the original method. The 

SNR is better, and the problems due to targets motion are reduced, as only a reduced 

number of focused beams typically insonified a given scatterer.   

An important application of the virtual transducers is the problem of the far-field 

phase screen. By choosing appropriately the location of the virtual transducers, one is 

able to transform the problem in a near-field phase screen problem. Focusing through the 

far-field phase screen on any point of the medium is now possible by steering from the 
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virtual array. It requires the knowledge of only one or two Green’s function. Moreover, 

the virtual array model offers a solution to focus through the far-field phase screen using 

only two successive delay-and-sum operations instead of a full match-filter usually costly 

to implement.   

A drawback of the DORT method is that it is a monochromatic approach, and 

therefore the resolution in depth is poor. A solution mixing monochromatic and 

broadband formalism is proposed. It is based on the relationship between time of arrival 

and depth, valid in the case of the focused beams. Spectacular results are obtained for the 

detection of targets embedded in speckle.  

Finally, the focused beams are an efficient basis to use when the region of interest 

is small, because their energy is concentrated in space. In this case, only a few beams are 

necessary, and the method is faster. A local method taking advantage of theses properties 

has been designed for small objects detection.  
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Chapter 3. Extended Objects 
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I. INTRODUCTION 

 In the case of rigid point-scatterers, the DORT theory is well understood: the 

number of non-zero singular values is equal to the number of scatterers, and the singular 

vectors correspond to the scatterers Green functions. A scatterer is considered poine-like 

if its size is much smaller than the resolution cell, L
Zλ , where L is the size of the 

imaging aperture, and Z the depth of the scatterer. In media like biological tissue, there 

are virtually no point-scatterer. Example of scatterers (except speckle, which will be 

reviewed in Chapter 4) includes vessels, microcalcifications, or kidney stones. These 

scatterers are typically the size of one or a few resolution cells.  
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Figure 55 Microcalcifications in the breast (shown by circle in the left panel) 

 Microcalcifications in the breast are particularly important because they can be 

associated with cancerous cellular activity. Usually, the presence of a single 

microcalcification is not alarming, but the presence of a cluster of microcalcifications 

can be a serious symptom. It is usually hard to differenciate a clutter from a single 

microcalcification with ultrasound, because microcalcifications have typically the size of 

the resolution cell.  
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 The amplitude of the DORT matrix eigenvectors obtained in-vivo for a 

microcalcification are shown in Figure 56,and the amplitude of the numerically 

backpropagated fields are shown in Figure 57. 

 

Figure 56 Amplitude (in arbitrary units) of the two first singular vectors for an in-vivo 

microcalcification.  

 

D
epth 

Azimuth 
Figure 57 Amplitude of the fields obtained by numerical backpropagation of the two singular 
vectors.   

  

 This chapter does not focus only on Green’s function estimate, but rather on 

different applications of the DORT (or FDORT that gives similar results) with regard to 
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extended objects in medical imaging. After presenting a theory for small rigid objects, 

we will review the applications to tomography and microcalcification diagnosis.    

 A theory of DORT with cylindrical objects has been proposed by inver. He 

proposes a solution based on Hermite-Gaussian modes for scatterers much larger than 

the resolution cell, and a solution based on Legendre polynomials for scatterers whose 

size is about the resolution cell. Our analyze is based on slightly different 

approximations and on a flat objects, and yield the Prolate Spheroidal Functions as 

solutions in both cases. We will show that asymptotically, our solutions tend to Aubry et 

al. solutions.  

II. THEORY 

II.A Expression of the time reversal operator for an extended object 

II.A.1 Continuous formalism 

 For any given frequency, the signal R received by the array is linked to the 

transmit signal E by the transfer matrix K 

    KER =  

Eq.3. 1 
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Figure 58 Set-up  

 
 The time reversal operator is defined by KKH. The invariants of the time reversal 

operator are practically the singular vectors of K. Eq.3. 1 can be rewritten with explicit 

summation. 

     ∑
=

=
N

j
jiji EKR

1

Eq.3. 2 

where N is the number of elements. Using a continuous formalism is easier in our case. 

We introduces XT and XR, the coordinates of a point of the array, resp. in transmission and 

in reception. The equation becomes 

   T

L

L TTRR dXXEXXKXR ∫−
=

2/

2/
)(),()(

Eq.3. 3 

where  is called the Kernel of the integral equation, and is the equivalent of 

the matrix K in discrete formalism. The matrix coefficients are then given by K

),( TR XXK

ij=K(Xi,Xj) 

where i and j are 2 array elements. The discrete and continuous problem are equivalent if 

the sampling requirements are met, which is the case in most arrays.  
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II.A.2 Kernel in the Fresnel approximation 

 The Kernel can be derived easily in the case of the Fresnel approximation (see 

Chapter 3.III.A.2). The derivations are done in Appendix. For an object whose scattering 

distribution is d(x), we find that the kernel is given by 

  ⎥⎦
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⎡ +

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= −

Z
XXexdFTeeXXK TRZ

xj
Z

X
j

Z
X

j

TR

TR

λ
λ
π

λ
π

λ
π 222 4

1
22

)(),(  

Eq.3. 4 

where FT-1 stands for the inverse Fourier Transform. The term 

⎥⎦
⎤

⎢⎣
⎡ +

⎪⎭

⎪
⎬
⎫
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⎪
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xj
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1 )(  is the Fresnel transform of the object scattering 

distribution (The Fresnel transform of a function f(x) being defined as 

dXeeXE z
xXj

z
Xj

λ
π

λ
π 22 2

)(∫ ) Basically, the amplitude of the kernel is given by the Fresnel 

transform of the object. The amplitude depends only on TR XX +  (anti-Toeplitz), which 

gives the particular symmetry of the matrix (see Figure 59).  

II.A.3 Kernel for objects of size a< Zλ   

 For an object small enough, ⎥⎦
⎤

⎢⎣
⎡ +

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
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XXexdFT TRZ

xj

λ
λ

22

)( may be approximated 

by { } ⎥⎦
⎤

⎢⎣
⎡ +

Z
XXxdFT TR

λ
)( . Indeed the variation of the parabolic phase term is negligible 

over a short distance. This approximation is known as the Fraunhoffer approximation, 

and will be considered true for the remaining of the derivations. We are assuming the 

Fraunhoffer approximation in the object plane only, and not for the array plane. The 
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condition for the object size is . A typical depth in medical ultrasound is 

Z=50mm, and a typical wave-length ranges from λ=0.2mm (linear arrays) to λ=0.5mm 

(phased arrays). In practice, we had a good fitting between theory and simulation results 

for objects was a<4mm (linear arrays) or a<10mm (phased). The approximation is 

validated for most scatterers present in medical ultrasound. Therefore, Eq.3. 4 becomes    

Za λ<2

{ } ⎥⎦
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⎡ +
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22 22

 

Eq.3. 5 

The amplitude of the kernel is given by the Fourier Tranform of the object. 

 We also assume that the object has a rectangular scattering distribution (1 inside 

the object, 0 outside). Its Fourier transform is then a sinc function. Under the Fraunhoffer 

approximation, and for a rectangular object, the expression of the kernel simplifies to  

 ⎥⎦
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Eq.3. 6 

 The amplitude of the kernel for an object that met the Fraunhofer condition and 

for a larger object are shown in Figure 59 and Figure 60.  
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Figure 59 Left: Amplitude of the K matrix for an object of size a, such as a2 < λZ (Fraunhofer 

approximation). In this case, the Fresnel transform simplifies to a simple Fourier transform. For a 

rectangular object, this yields a sinc. Right: Same for a larger object (a2=64mm, while λZ=10mm ) 

The phase term in the Fresnel transform can no longer be neglected.  

 

 

 

Figure 60 Amplitude along the diagonal in the 2 cases of Figure 59, the sinc pattern (left) and 

Fresnel transform of a square aperture pattern (right) are obvious.  

 

II.B Invariants of the Time Reversal Operator: The Prolate Spheroidal functions 

 Finding the invariants of the time reversal operator is equivalent to computing the 

singular functions of the kernel K. In continuous formalism, the singular functions of the 
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Kernel are a set of functions E(X) and R(X) constituting an orthonormal basis of the 

transmit, resp. receive, arrays, and such that 
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Eq.3. 7 

where µ is the associated singular value. Using Eq.3. 6, we obtain 
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 The equation can be solved by choosing a function W(X) such as W(X)= 

Z
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Eq.3. 9 

Eq.3. 9 is a well-studied Fredholm equation of 2nd order, with hermitian kernel, and the 

solutions have been found by Slepian {slepian} They are called the Prolate Spheroidal 

Wave-functions. These functions have also been studied in optics (Goodman 1975; 

Goodman 1985) (Frieden 1971) in problems closest from the present one. They depend 

on only one parameter,
Z

LaN
λ

= , which can be interpreted as the number of resolution 

cell in the objects. (Boyd 2004) provides a good mathematical overview.  
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 The main result is that the number of non-zeros singular values is 

proportional to the parameter , in our case, the number of resolution cells that fit 

in the object. This is an intuitive result. More precisely, the N first singular values are 

equal, and the following singular values drop rapidly to zero.  

N

 

Figure 61 Five first Spheroidal Prolate function for N=1 (left) and N=10. 

 The singular vectors (the Prolate Spheroidal functions) have the interesting 

properties to be the invariants of the Finite Fourier Transform, in other words, 

eigenvectors in the array space or in the object space have the same shape.  

 They are the natural basis of the space of simultaneously band-limited and time-

limited functions. No functions can be completely band-limited and time-limited at the 

same time, but the Prolates are the closest functions to be. They are the most concentrated 

simultaneously in time and frequency. This is why there are of such interest in 

information theory, signal processing or optics. The consequence of this property in our 

application is that they maximize the concentration of energy simultaneously in the array 

plane and the object plane.  

 The invariants of the Time Reversal Operator are derived from the Prolate 

functions using: 
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Eq.3. 10       

where Wi(X) is the ith Prolate function, and the last equality is due to the symmetry of the 

functions.  

 The phase of the singular vectors corresponds then to a focusing on the object.  

 These results are valid for small objects, such as . This is the case for 

most objects encountered in medical imaging. Solution for larger objects are discussed in 

Appendix B.  

Za λ<2

III. RESULTS 

III.A. Results with a one-dimensional array 

III.A.1 Object with N=10 

 An extended object has been simulated with field II. The parameters were the 

following: λ=0.2mm (center frequency), a=4mm, Z=50mm and L=25mm. Therefore 

N=10.   

 The theoretical singular values are compared with the simulation results in Figure 

62. There is a good agreement between theory and simulation. In simulation, the singular 

values start decreasing earlier, which is likely due to the directivity. The directivity could 

be taken into account using perturbation theory (Aubry, Rosny et al. 2006). It confirms 

that the number of non-zero singular values is about N.  
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Figure 62 Analytical (blue) and simulated singular values for an object with N=10. 

 It is also interesting to look at the evolution of the singular values with the 

frequency in Figure 63. The number of non-zero singular values increases versus the 

wavelength. This is obvious in Figure 63 (right) where the singular values have been 

normalized by the 1st one to get rid of the effect of the bandwidth. This is a typical 

property of Prolate functions (Goodman 1985). This is in agreement with the fact that the 

resolution increases with the frequency. Thus more resolution cell fits in the objects.  
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Figure 63 Singular values in function of the frequency. On the right panel, the singular values have 

been normalized to get rid of the bandwidth effect. As the frequency increases, more points are 

resolved in the object.   

 A few singular functions obtained in simulation are compared to the Prolate 

functions (analytical solutions) in Figure 64.  

 

Figure 64 Left: Analytical results, the Prolate functions for N=10 (1st, 3rd, 6th and 10th are shown) 

Right: simulation results.  

Note: It is not always easy to observe the prolate with a rectangular objects, as all the 

singular vectors have identical singular values. We often observe a mixture. 
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III.A.2 Scatterer whose size is about the resolution cell (N=1) “resonance region” 

 Another important case are the scatterers whose size is just about the wave-

lengths. They are particularly hard to characterize on an image. This is the case for the 

micro-calcifications. An example with N=1.2 is shown in Figure 65 and Figure 66. 

 
Figure 65 Analytical (left) and simulated (right) singular values for an object in the so-called 

resonance region (about the size of the resolution cell) N=1.2 in this case. One singular value is 

dominant but a second singular value has also a relatively large value. This 2nd singular value is 

important to characterize the shape of the object. 

 
Figure 66 Amplitude of the first two invariants for N=1.2. Analytical solutions (left) and simulated 

(right). The agreement is almost perfect.  
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III.B Application to Green’s function estimation and focusing 

 As seen Eq.3. 10, the solution in homogeneous medium, is the homogeneous 

Green’s function modulated by the Prolate functions. The amplitude modulation 

originates from the interferences between several points of the object. The same results 

can be generalize to a heterogeneous medium, if the isoplanatic patch is about the size of 

the object. In this case, the invariants become  
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Eq.3. 11 

Where φ is the phase term due to the heterogeneity. 

 As a result of the amplitude modulation, the Green’s function cannot be estimated 

as precisely from extended object as from point scatterers. For example, if one considers 

the 1st invariant, one will have a good estimate of the Green’s function in the central 

elements where the amplitude is important, but no estimate for the outer elements where 

the amplitude is zero.  

 If the object is relatively small, say one or two resolution cells, the width of the 

amplitude function is still close to the array width, as seen in Figure 66 and the effect is 

negligible. The 1st invariant can be considered almost as a point Green’s function. The 

focusing is illustrated in Figure 67, where the field resulting from the backpropagation of 

the 4 first invariants for the small objects are shown. The 1st invariant leads to a sharp 

focus. The same result is obtained in presence of an aberration. 

  For larger object, a loss of resolution is occurred, because of the narrow 

amplitude factor seen in Figure 64. As a results, the focal spot obtained by time reversal 
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of the 1st invariant is broad (Figure 68). The large is the object, the broader is the focal 

spot. 

 Moreover, if the object is not flat but has a complex shape, the kernel of Eq.3. 9 is 

no longer a sinc, and the solution W will likely be complex, and not real like the prolate. 

In this case, the phase of the invariants will be equal to the phase of the Green’s function 

plus the phase of W, according to Eq.3. 10. The phase estimate is then biased.  

 To conclude, an extended object can still be used to estimate Green’s function if 

its size is relatively small, but larger objects, especially if they have a complex shape, 

may introduce an error in the estimate.   
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Figure 67 Field resulting from the backpropagation of the first four invariants for the small object 

(resonance region) The 1st invariant (top left) yield a focusing comparable to the Green’s function of 

a point. The other invariants cannot be used for focusing because of the lobes.  

 
Figure 68 Backpropagation of the 1st invariants for the object with N=10.  The resolution is not 

suitable.  

 

III.B Results with a 2D array 

 Most of the new medical probes are 2D-array that image a 3D volume. It is 

interesting to look at the analytical solutions for some 3D objects. 

 The solutions have a simple form if the object scattering distribution is separable 

in Cartesian coordinates )()(),( ydxdyxd = . This is the case, for example, for a wire 

aligned with one of the array directions (we have then )(1)(),( yxyxd δ= ) or for a 
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rectangular plate ( , where box is the box function)  Indeed, in that 

case, the kernel is also separable (property of the Fourier Transform) For symmetry 

reason, the solutions are separable too, and we have

)()(),( yboxxboxyxd =

)()(),( YRXRYXR YX= , where RX 

and RY are solutions to the respective 1D equations, and )()(),( YEXEYXE YX= . This is 

derived in Appendix B. 

 The number of singular values is Nx*Ny ie the number of 2D resolution cells in 

the object.  

 

Figure 69 Selected invariants for a simulated rectangular plate imaged with a 2D array. The object 

size was roughly 5 resolution cells in azimuth * 3 resolution cells in elevation. The invariants can be 

described by a cartesian product of Prolate functions. Here are shown the modes (1,1), (1,2), (2,3), 

and (3,5).  

.                                         
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IV. COMPARISON WITH PREVIOUS WORK 

 (Aubry, Rosny et al. 2006) have proposed a solution based on Hermite-Gaussian 

modes for scatterers much larger than the resolution cell (when the edge effect of the 

array are negligible), and a solution based on Legendre polynomials for scatterers whose 

size is about the resolution cell (in this case the edge effect is dominant).  

 We can find these functions as asymptotic limit of our solutions. Indeed, for a 

small parameter N (the number of resolution cell in the object), or near the edges, the 

Prolate functions can be approximated by Legendre Polynomials(Boyd 2004).  

 Similarly, for large N, the Prolate functions can be well approximated by Hermite-

Gaussian modes, with a width equal to
N

1 .  

   )()( 2

2

XNHeXW i

XN

i

−
≈  

 However, the solutions based on Hermite Gaussians seem to be valid also for 

larger scatterers that do not met the Fraunhofer approximation. They cover the solutions 

derived in Appendix B. Also the Hermite-Gaussian modes in (Aubry, Rosny et al. 2006) 

are derived for a cylindrical object, which influences the width of the modes.  

 The prolate are better solutions for the scatterers in the Fraunhoffer regimen, in 

particular in the transition region between Legendre and Hermite-gaussian solutions. 

Moreover, the results about the number of non-zero eigenvalues could not be derived in 

(Aubry, Rosny et al. 2006) because the finite size of the array is not taken into account.      
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V. APPLICATIONS: SUPER-RESOLUTION, TOMOGRAPHY AND 

MICROCALCIFICATION DIAGNOSIS  

 The problem with image in the resonance region (about the resolution cell) is that 

they are difficult to differentiate from pure point-scatterers on a conventional image. This 

is backed up by the fact that they have one dominant singular values. However, the other 

singular-values, even tough they are small, are not completely equal to zero and carry 

information on the object size and shape (the 2nd singular value is obviously non-zero, but 

even the following singular values are non-zero when plotted on a logarithmic scale). The 

aim of inverse methods is to use and amplify the information in the others singular 

vectors. The more singular vectors can be used and the better the resolution is. However, 

the singular values become so small at some point, that the noise limits the possible 

resolution. Also, the accuracy of the model of the medium used in the reconstruction 

seriously limits the resolution. The inverse methods do not allow to reconstruct the 

missing information lost during the propagation (high spatial frequencies), and do not 

violate the law of physics. Rather, they work by assuming additional information on the 

object, in general that the edges are sharp. 

 Most inverse methods are based on the decomposition of the Covariance matrix, 

and a link between Covariance matrices and Time Reversal Operator has been done in 

(Gruber, Marengo et al. 2004) Therefore, the methods can be used directly with the time 

Reversal Invariants. A general reference for array processing algorithm is (Trees 2002) 

One of the algorithm is the minimum variance, also known as Capon, algorithm. An 

expression of the Minimum Variance algorithm using DORT’s eigenvector is given in 

(Prada and Thomas 2003) As an illustration, the minimum Variance method has been 
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used with the small scatterer in the resonance region. The profile at the focal depth has 

been reconstructed using the usual backpropagation method , and with the Minimum 

Variance method (Figure 70) 

 

Figure 70 Profile of the object at center frequency. It is the object convolved by the beam pattern 

(sinc). It is then a low-pass filtered version of the object (the propagation act as a lo-pass filter) Right: 

profile obtained with the minimum variance algorithm. The real object is in dash line.   

 
Figure 71 Same as Figure 70, but for a point scatterer. With the conventional profile, it is very 

difficult to make the difference between the point and the extended object. With the Minimum 

variance method, the difference is obvious, and it is easy to asset the size of the scatterer.  

 These methods are good to increase the resolution in the azimuth dimension, but 

not in the depth dimension (they are monochromatic methods). This is why some 

researchers use them with an enclosing array, or cavity, in a setup similar to tomography. 
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(Mast, Nachman et al. 1997; Waag, Liu et al. 1997) use a formalism similar to our (but in 

spherical coordinate and plane wave approximation) Their inverse method is also based 

on variance minimization, and account for multiple scattering. More recent work account 

for heterogeneities (Waag 2006). High resolution images of phantom are shown. 

(Lewis, Liu et al. 2006) used an advanced inverse scattering method from the 

electromagnetic inverse community to determine the shape of microcalcifications and 

differenciate between clutter and single microcalcification. Simulation in homogeneous 

medium are impressive, but in-vivo applications are much more challenging.  

VI. CONCLUSION 

 The invariants of the Time Reversal Operator for a small flat object whose size a 

is such as , are the Prolate Spheroidal functions. The number of non-zero 

singular values is roughly equal to the number of resolution cells in the object.  

Za λ<2

 If the object is small enough (a few resolution cells), the 1st invariant is a good 

estimate of the Green’s function. For larger objects, the estimate is only good for central 

elements and a loss of resolution occurs.  

 The main application of Time Reversal Invariants in medical imaging is the 

characterization of small scatterers. Indeed, the invariants can be used in inverse filtering 

methods that allows a reconstruction of the objects with higher resolution. This is 

especially promising for microcalcifications characterization, which remains a challenge 

of ultrasound imaging.   

APPENDIX A:  DERIVATION OF THE KERNEL 
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 Let XT , resp. XR be the coordinate in the array plane for the transmit, resp. the 

receive, process,  and x the coordinate in the object plane. Let d(x) be the scattering 

distribution of that object. The derivation is done under the Fresnel approximation (see 

Chapter 3.III.A.2) First, a signal E(X) is transmitted by the array. Using the Fresnel 

approximation, (valid for x<<Z and X<<Z) the pressure field Pi(x) received by the object 

is 
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Using the relationship relating the Fourier Transform of a product of functions to the 

convolution product of the Fourier transform of the functions, noting that 

 132



)()(
2

R
RZ

X
j

T XE
Z

X
Z
xeXEFTFT

T

−=⎥⎦
⎤

⎢⎣
⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

λλ
λ  and not as the second transform is 

not an inverse Fourier Transform, and omitting the factor K yields 

)( RXE

 

T
Z

X
jL

L T
TRZ

xj
Z

X
j

R dXeXE
Z

XXexdFTeXR
TR

λλλ

λ

222

2/

2/

2

)()()( ∫− ⎥⎦
⎤

⎢⎣
⎡ +

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=      -L/2 < XR < L/2   (4) 

Finally 

  ⎥⎦
⎤

⎢⎣
⎡ +

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= −

Z
XXexdFTeeXXK TRZ

xj
Z

X
j

Z
X

j

TR

TR

λ
λλλ

222 2
1 )(),(  

APPENDIX B: LARGER OBJECTS 

 If the objects become to large (or its curvature does not cancel it), it is no longer 

possible to ignore the phase term in 
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)( . In this case, the kernel of Eq.3. 7 is 

no longer the Fourier Transform of the object, but its Fresnel Transform. It is not easy to 

derive the new analytical solutions, but, intuitively, they are very close to be the Fresnel 

transform of the Prolate functions, at least for the first functions, that are not localized on 

the edge. In the following we are then neglecting the array edge effect, which is an 

approximation done in {Aubry} to derive the Hermite-gaussian solutions.  

Indeed, let’s take W1(x), the 1st Prolate function. Its Fresnel transform can be chosen to 
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The amplitude of the Fresnel transform is still the 1st Prolate function, but dilated 

REFERENCE.  Thus, if the phase term is not varying very fast, we can consider 

that , the Fresnel transform of (the prolate in the object plane) will still be a 

function concentrated in the array plane. Let assume that 

)(~
1 XW )(1 XW
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transmitted with the array. Then, in the object plane, the field is proportional to 
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using eq(1). We have neglected the effect of the finite-size of the aperture, using the 

assumption that the function was concentrated in the aperture. Using (9) the field 

becomes  

 

)()( 1 xWxPi =                                                                                              (11) 
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We have used the fact that W1(x) was real and concentrated in the object. For the 1st 

inequality we use the formula { } { } *][)(][*)( XxfFTXxfFT −= , and for the 2nd equality 

we replace the Fourier Transform evaluated for -X by the inverse Fourier transform 

evaluated for –X. If we time reverse the received signal, we see that the proposed 

solution is an invariant of the time reversal process. For the functions on the edge, the 

derivation is no longer exactly valid; indeed because of the dilatation property of the 

Fresnel transform, the Fresnel transform of the functions may no longer be concentrated 

in the aperture.  

In fig.we compare the eigenvalues for the case where the phase term may no longer be 

neglected to the eigenvalues of eq(7). The number of non-zero eigenvalues is still the 

same, proportional to the number of resolution cells, but the last non-zero eigenvalues are 

lower when the phase term is not neglected (this may be physically related to the 

dilatation introduced by the Fresnel transform that spead a part of the energy out of the 

array) 
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Figure 72 Blue: theoretical eigenvalues distribution at center frequency when the Fresnal phase 

term is neglectible; red: same with the phase term; ((a2=64mm, while λZ=10mm ) ) this does not 

change the number of eigenvalues, still proportional to the number or resolution cell. Bottom: 

Eigenvalues distribution from simulation, for 2 objects of different size (corresponding to the 2 cases 

of Figure 59)  
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APPENDIX C: INVARIANTS FOR 3D OBJECTS WITH 2D ARRAYS 

 The singular value equation becomes 
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where kernel2D is the 2-D Fresnel transform of the object 
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DORT with a 2D array 

The discrete equivalent of the 1D equation was the singular-problem of a matrix given by  
 

),(ker, jiji XXnelK =      

 

Similarly, the discrete equivalent of eq.(13) is the singular problem for a tensor given by 
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using Einstein’s notation, and with the conditions that the singular matrices R, 

respectively E, constitute an orthonogonal basis of the receive, respectively transmit 

space. K2D is the generalization of the transfer matrix to 2D arrays.  is then the 

signal received by element (i,j) when a pulse is fired by element (k,l). Practically, the 

singular problem (15) can be rewritten in term of a matrix singular problem. Each pair 

(i,j) may be indexed by a number α, , and each pair (k,l) may be indexed by β 

. Eq(15) becomes then  

lkji
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where R~  and E~ are vectors and 12 ×N DK 2~  is a matrix. The singular 

decomposition of 

22 NN ×

DK 2~  can easily be performed numerically.  

Analytical solutions for separable kernels 

Solutions of eq(13) have a simple form if the object reflectivity function is separable in 

Cartesian coordinates  . This is the case, for example, for a wire 

aligned with one of the array directions (we have then 

)()(),( ydxdyxd =

)(1)(),( yxyxd δ= ) or for a 

rectangular plate ( , where box is the box function)  Indeed, in that 

case, the kernel is alos separable (property of the Fourier Transform) For symmetry 

reason, the solutions are separable too. 

)()(),( yboxxboxyxd =

)()(),( YRXRYXR YX= and 

. Eq(13) finally becomes )()(),( YEXEYXE YX=
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and the equations for the X and Y quantities can be solved independently   
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X )(kernel , this is exactly the equation we have for a 1D 

object with reflectivity d(x) ; we have a similar equation for Y.  

The solutions of eq(17) are then the products of the solutions of the 1D equations. The 

singular value is the product of the singular values of the two 1D problems.  

The number of non-zero singular values is equal to the number of pairs of X non-zero 

singular values and Y non-zero singular values. Let NX be the number of X non-zero 

singular value and NY the same for the Y axis, then the number of non-zero values for the 

2D problem is NXNY, which is again proportional to the number of resolution cells in the 

object (2D resolution cell in that case) 
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Chapter 4. FDORT In Speckle 

 141



I. INTRODUCTION 

In a biological medium, like the human body, there are actually very few well 

resolved point scatterers. Most of the signal is speckle. Speckle is due to the presence of a 

large number of sub-resolution scatterers. The observed signal results from the 

interferences between the wave-fronts from all the insonified scatterers and has a random 

aspect. Therefore the speckle has to be dealt with in terms of statistics.  As speckle is 

more abundant than nicely resolved point scatterers, it is a requirement for aberration 

correction in medical ultrasound to be able to extract Green functions of the medium 

from speckle signal.    

Unfortunately, Time Reversal methods are originally designed for deterministic 

scatterers only. In this chapter, we show that FDORT can also be used to extract Green’s 

functions from pure speckle signal. In this case, we select signal coming from around the 

focal depth, by gating the signal in time. Although the original FDORT algorithm gave 

decent results in speckle, a slight modification of the algorithm is better suited for 

estimation in speckle. This will be described and justified in Sec.III.A.  

We start by giving a review of the main properties of and tools used for speckle. 

In Sec.III, we show that for random speckle signal, KKH can be interpreted as a 

spatial correlation matrix described by the Van Cittert- Zernike theorem(Mallart and Fink 

1994). This links this method to the work of others (Msoy, Angelsen et al. 2004; Msoy, 

Varslot et al. 2005) and yield an interesting interpretation of the 1st eigenvalue. With 

speckle, a 3rd interpretation is possible as a time reversal operator for an equivalent 

virtual object, which leads to physical meaning for the eigenvectors. The variance of the 

estimate of the Green’s function is also discussed. 
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In Sec. IV we will see that in presence of an aberration, the FDORT method in 

speckle need to be iterated. It usually converges to the Green’s function after a few 

iterations. Experimental results in phantom are presented.   

Our method is then compared to other’s in Sec.V. Finally a unique feature of the 

FDORT method is developed: the ability to separate the signal of interests from strong 

interferences, in Sec.VI.  

The main contributions of this work are the Sections III and IV. The Section VI is 

also interesting and can be read easily. The Section V is more technical and but given for 

completeness.   

As this paper makes a link between DORT and random signal processing (like the 

VanCittert Zernike theorem), notations of both fields are used, so that the reader can refer 

easily to the original papers. Thus, the signal received by array element j for the ith 

transmit is Kij in DORT notations which highlights the fact that it is a coefficient of the 

transfer matrix K, and Sj
i in statistical notation, which highlight the fact that it is the ith 

realization of the signal received by element j.   

 

II. BASIC STATISTICAL PROPERTIES OF SPECKLE SIGNALS  

 This Section summarizes speckle concept that are helpful to understand the work 

exposed in this thesis. A reader familiar with random signal processing and speckle 

phenomena can start directly the section III.  
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A. Randomness of the speckle 

Tissues viewed by an ultrasound medical scanner acquire a granular appearance. 

The details structure of this granularity bears no obvious relationship to the macroscopic 

properties of the imaged tissue, but rather it appears random. This is due to the fact that 

an ultrasound pulse insonifies many sub-resolution scatterers at the same time. 

1. The scattering or isochronous volume 

Indeed, let Sm(x,t) be the signal received by array element m, at time t, when the 

transmits is focused at the lateral position (azimuth) x. This is illustrated in Figure 73. 

Because the wave-front has a certain extent laterally (the beam width) and axially (the 

pulse-length), the echos of many scatterers are received simultaneously by the array. The 

volume of scatterers that contribute to a sample, Sm(x,t), of the signal, is called, in this 

document, the scattering volume. It is also known as the isochronous volume(Fink, 

Cardoso et al. 1984). The scattering volume is delimited laterally by the width of the 

beam, and axially by the length of the pulse. In other word, the volume is delimited by 

the wave-front at frozen time t for a transmit at x. To be accurate, one has to consider 

round-trip wave-front. In our case, we are interested by focused transmits, and single 

element receive. Therefore, the lateral extension is given by the transmit only. The axial 

extension is given, around the focal depth, by the convolution of the transmit pulse by the 

receive pulse. The scattering volume is shown in Figure 73    
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m Sm(x,t) 

x 

 

Figure 73 The signal S(xb,tb) is due to the sum of the scatterers located in the scattering volume or 

isochronous volume at time tb. The scattering volume is delimited by the wave-front.  

2. The model of fully developed speckle  

Thus Sm(x,t)  is the sum of the contribution of all scatterers located in the scattering 

volume at time t. The resulting backscattered signal is then the sum of many coherent 

components, but that have different phases, resulting in an interference pattern.  

Usually, the model of fully developed speckle is used. In this model, the signals 

from different scatterers are supposed to be independent. In a monochromatic formalism, 

this means that the phase and amplitude of a given scatterer are independent of the other 

scatterers.  

Therefore, the sum Sm(x,t) can be seen as a random walk, that is to say the sum of 

many independent complex signals as seen in Figure 74. The statistics of a random walk 

is given by the central limit theorem.  
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Figure 74 Model of the random walk for speckle signal. The resulting signal (red) is the sum of many 

coherent components that have random phases.  The amplitude of the resulting signal has then a 

Gaussian distribution.  

The speckle can then only be rigorously described using statistics. The intensity of 

one realization of the speckle (one point in the image), or a sample of received signal 

Sm(x,t)  do not carry useful information as they are random. However expected, or 

average, values are meaningful. To compute an average value, one needs several 

realizations of the random signal. Ideally, a different realization would be obtain using 

the same scattering volume, but with a different random scattering distribution. To have 

N realizations, one would then need to repeat N times the experiment, but changing the 

random medium each time. This is not feasible in practice, and a better solution will be 

developed in Section III.A.  

Speckle statistics has been developed in optics, and very good references are 

(Goodman 1975; Goodman 1985) 
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The fully developed speckle approximation assumes there is no correlation between 

neighbor scatterers. This is obviously not exactly the case in practice, as the scattering 

distribution follows the material structure. However, the approximation is good as long as 

the correlation length of the distribution is significantly smaller than the size of the 

scattering volume.     

B. First order statistics 

 First order statistic gives the statistics for a single sample of signal, whereas 

second order statistics is the statistic for product of samples (correlation). The statistics of 

the speckle are fully described by the random walk in the complex plane, and by the 

central limit theorem, which states that the sum of a large number of independent random 

variables has a Gaussian (or normal) statistics. First order statistics are not important for 

this work, and they are summarized here quickly, following (Goodman 1975). 

• The complex signal (monochromatic formalism) has a Gaussian circular statistics 

(Gaussian in the complex plane). The real and imaginary parts have Gaussian 

statistics with zero mean.  

• The phase has a uniform statistics, any value of the phase as the same statistics 

1/2π. 

• The intensity has a Rayleigh probability distribution. Its variance is equal to its 

mean value.  

• A sum of samples (beamformed signal) enjoy the same statistics, aside of a 

scaling constant.  
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C. Second order statistics 

Second order statistic is the statistic of square of, or product of random variables. 

In particular, it gives the cross-correlation of signals. It is important for speckle 

processing.    

 1. Van Cittert Zernike theorem  

The Van Cittert-Zernike theorem has been introduced by (Mallart and Fink 1994) 

to derive the spatial correlation function of the signal backscattered by speckle, that is to 

say the correlation between signals received by a pair of array elements m  and 

n. 

>< *
nmSS

The theorem states that the correlation function is given by the Fourier transform 

of the transmit beam intensity profile in the random mirror plane 
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where  is the Fourier transform of the transmit beam intensity, β is a real constant, 

and

( )XP

( 222
nm XX

Z
−

λ
)π  is the difference of geometric curvature between the 2 elements. In an 

homogeneous medium, the transmit field at the focal depth is a sinc function, the 

intensity is a sinc2 and then the spatial correlation function is a triangle function. This is 

illustrated in Figure 75. 

 

m Sm(x,t) Sn(x,t) 
n 

Xm 
Xn 

22 )(sin)( xcxpi =

>< *
nmSS

Xn-Xm 

 

Figure 75 The Van Cittert Zernike theorem expresses the cross-correlation  between two 

samples received by different receive elements m and n from the same scattering volume.  The 

theorem states that the spatial correlation function is given by the Fourier transform of the intensity 

distribution p

>< *
nmSS

i(x)2, here a triangle. The correlation decrease then linearly in function of the distance 

between elements Xm-Xn.  

A derivation based on (Mallart and Fink 1994) is provided in the following. The spatial 

correlation matrix is then introduced. Finally, the Van Cittert Zernike theorem is derived 

 149



for an inhomogeneous medium. Usually, in presence of aberration, the intensity 

distribution is broader as the focus is not as good, and then the spatial correlation function 

is narrower. The derivations are included because they are a good way to be familiar with 

the speckle formalism, but they are not required to understand the work of the thesis. A 

reader can therefore jump to II.C.2. 

 

Theorem for a homogeneous medium  

The analysis is done in a monochromatic approach, but the signals are supposed 

to be originating from a volume located at a certain depth only. This means that the 

signals are gated in time to select echoes from a given depth prior to take the Fourier 

transform. This is like taking a slice of the medium. We suppose also that the signals are 

gated at the focal depth.  

Following (Mallart and Fink 1994), the scattering volume can be modeled as a 

random mirror (Figure 76). All the quantities introduced here are in the frequency 

domain, but the index ω will only be specified the first time the quantity is used for 

clarity. Let r(x,ω) be the scattering coefficient of the random mirror. Let pi(x,ω) be the 

incident field, and pb(x,ω) the backscattered field at the surface of the plane, such as 

 

   )()()( xrxpxp ib =

Eq.4. 1 
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Sn(x,ω) 
n 

r(x) 

 

Figure 76 The scattering distribution is replaced by a random mirror whose reflectivity is a random 

function r(x) 

If the lateral distribution of the incident field is not too broad so that we can use 

the Fraunhoffer approximation, the received field P(X) on the array can be expressed as 

the Fourier transform of pb(x). X is the coordinate on the array plane, while x is the 

coordinate in the scattering plane.      
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Eq.4. 2 

where Z is the depth of the scattering plane. Often the complex exponential term is 

removed by aligning the signals in receive, but this is not the case in this work.  

 

 151



  The spatial correlation RP of the received pressure field between 2 array elements 

m and n is then 
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Eq.4. 3 

where the bracket symbols < > stand for the expected value, which would be obtained by 

averaging on an infinite number of realizations of the random variable.  

We used the development of a product of two integrals 

 ∫ ∫ ∫=⋅ 2121 )()()()( dxdxxgxfdxxgdxxf

Eq.4. 4    

and the fact that only r(x) is a random variable and depend on the realizations.  

 

Using the fully developed speckle model (4.II.A.2) stating that there is no 

correlation between neighbor scatterers, we can write 

 

)()()( 21
2

021 xxrxrxr −>=< δ  

Eq.4. 5                              

where δ(x) is the Dirac function, and r0 is a function of frequency. The scattering 

coefficient r(x) has then the same statistics as a white noise. Using Eq.4. 5 in Eq.4. 3 

yield 
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Eq.4. 6 

where the notation FT[f(x)](X) is the Fourier Transform of f(x) evaluated at abscissa X 

Eq.4. 6 shows that the spatial correlation function of the field backscattered by speckle is 

given by the Fourier transform of the intensity distribution of the incident pressure field. 

This formula is known as the Van Cittert Zernike theorem. It has been demonstrated here 

in the case of the Fraunhoffer approximation for simplicity, but still holds under the more 

general Fresnel approximation (Mallart and Fink 1994).  

An important result is that the spatial correlation function depends only on the 

distance Xi-Xj between the 2 elements. We can then write 

 

)(),( nmpnmp XXRXXR −=  

Eq.4. 7 

 This is no longer exactly true when one account for the directivity of the 

transducers, or the attenuation.  

In practice, the measured signal is not the pressure p, but the output of each 

transducer. Let Sj(ω) be the signal measured on element m. The signal is proportional to 
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the element width and to the acousto-electric response. Both will be regrouped in the 

factor Ael(ω), which yields 

 

)( jelj XPAS =  

Eq.4. 8 

for the output of the jth element. 

Eq.4. 6 and Eq.4. 8 lead to the expression of the spatial cross-correlation RS(m,n) 

between the signals Sm and Sn, received by transducers m and n.  
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Eq.4. 9  

where ( ) ])([ 2xpFTXP i=  and β= 
2

0 ||
⎟
⎠
⎞

⎜
⎝
⎛

Z
Ar el .   

 The derivations have been performed for a signal at one temporal frequency, 

which is the type of signal we are using in the FDORT formalism. The result can also be 

expressed in the time domain (Walker and Trahey 1997) and (Silverstein 2001).The term 

cross-spectrum is sometimes used (Waag and Astheimer 2005; Waag and Astheimer 

2006) instead of cross-correlation, to highlight the fact that it is built in the temporal 

frequency domain. Rigorously, it is a cross-spectrum regarding to the temporal domain, 
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but a cross-correlation regarding to the spatial domain. Therefore, the term spatial cross-

correlation will be used in this document.   

The spatial correlation matrix 

 In this work, the spatial correlation matrix is an important tool. It is noted RSS to 

make the difference with the spatial correlation function. It is the matrix whose 

coefficients are the cross-correlation between the signals received by pairs of transducers. 

Thus  

( ) >=<= *
, ),( nmSnmSS SSnmRR  

The Van Cittert Zernike Theorem in presence of an aberrator 

In presence of an aberration, the theorem is slightly modified. In the frequency 

domain, the aberrator is represented by the complex function Ab(X,ω). Neglecting the 

variation of the amplitude   
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In presence of aberration, using eq. Eq.4. 2 and Eq.4. 8, the signal on the mth 

element becomes  
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where the index Ab in  highlight the fact that the phase aberration is affecting the 

transmit. Then the spatial correlation becomes 
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Eq.4. 10 
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The main difference with the homogeneous case is that the differential phase 

aberration appears in the phase term. This is the base of phase aberration estimation 

algorithm, as will be later. Moreover, the aberration modifies the distribution of the 

transmit intensity, and therefore the shape of the amplitude of the spatial correlation. The 

correlation function is no longer a triangle. Usually, in presence of aberration, the 

intensity distribution is broader as the focus is not as good, and then the spatial 

correlation function is narrower, as shown in Figure 77.  

 

Figure 77 Amplitude of the spatial correlation in an homogeneous medium (straight line), and in the 

presence of phase aberration of different strength. The spatial correlation is a triangle in an 

homogeneous medium and become narrower as the aberration strength increases. The width of the 

main lobe is the coherence length of the signal.  

The Van Cittert Zernike theorem in function of the aperture auto-correlation 

 Another form of the theorem can be expressed in function of the transmit 

aperture. This form will be especially helpful for aberration correction, as it will be 

possible to express the spatial correlation function in function of the aberrator.   
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 In the Fresnel approximation, the pressure distribution  in the focal plane is 

related to the signal in the transmit aperture, A

)(xpi

Tx(X) , by a Fourier Transform. Therefore, 

from the property of the Fourier transform, )]([)]([))()(( XgFTXfFTxgxfFT ×=−⊗ , 

the intensity distribution 
2

)(xPi  in the focal plane is related to the Fourier transform of 

the auto-convolution of the aperture function, )()( XAXA TxTx −⊗ , that we note simply 

. Injecting this in the Van Cittert Zernike theorem, Eq.4. 10, yields )(XRATx
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Eq.4. 11 

 The amplitude of the spatial correlation is given by the autocorrelation of the 

aperture function. In a homogeneous medium, the aperture function is a gate that has the 

dimension of the transmit aperture, and the auto-correlation gives a triangle. However, in 

presence of aberration, the transmit aperture has to be multiplied by the aberration term 

. Therefore, the amplitude of the spatial correlation function is given by 

the autocorrelation of the aberration. The spatial correlation can then be linked to the 

auto-correlation of the aberrator. In general, if an aberrator has a phase that varies fast 

and with large amplitude, and leads to a narrower correlation function than an aberrator 

that varies slowly with low amplitude. Closed relationships between the aberrator profile 

and the spatial correlation function are derived in (Mallart and Fink 1994) 

)()( Xj Ab

eXAb φ=
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2. The focusing criterion, C  

The focusing criterion C has been introduced by (Mallart and Fink 1994).The 

focusing criterion is an objective measure of the quality of focusing. It is a number that 

can vary from 0 to 1, the upper bound being reached only for signal from point scatterers. 

In speckle, its value depends on how well the received signals are correlated, which in 

turns, from the VanCittert Zernike theorem, depends on the quality of focusing. The 

criterion is defined as a ratio of the coherent intensity and the incoherent intensity. Let us 

then define these quantities first.  

The coherent intensity 

Let S(ω) contain the Ne signals Si (ω) received by each of the Ne array elements. 

S(ω) is then a Ne*1 vectors 
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Let V(ω) be the Ne*1 complex vector used to beamform the received signal. It can 

be seen as a filter applied on the receive signal, and can be used for aberration correction. 

The amplitude of V(ω) is the apodisation and the phase is related to the time delay law 

applied on each element. V is usually the Green function of the desired focal point. The 

beamformed amplitude is then  
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*
 

Eq.4. 12 

Now, the coherent intensity is 

( ) VSSVSVSVAAI HHHHH
C === *  

Eq.4. 13             

where forms a matrix whose element (m,n) is . The expected coherent intensity, 

or average speckle brightness, is   

HSS *
nm SS

 VSSVI HH
c = .             

We used the fact that V is independent of the realizations. HSS  is a matrix whose 

element (m,n) is *
nmSS , and therefore it is the spatial correlation matrix RSS. Finally 
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The coherent intensity, or speckle brightness, increases as the signals get more 

coherent and add constructively. It is then a good relative criterion to asset the strength of 

the aberration.  

An explicit expression of the coherent intensity in function of the spatial 

correlation function can be derived (in Appendix 4.A). 

dXXRXRI ARxATxC ∫= )()(β  

Eq.4. 14

where  is the autocorrelation of the transmit aperture or the Fourier transform of 

the transmit intensity distribution in the focal plane, and  is the same for the 

receive aperture. In general, if the same aperture is used in transmit and receive, the 

functions are the same. Eq.4. 14 relates the coherent intensity to the area under the spatial 

correlation function. Indeed the integral of a function can be interpreted as the area under 

the function plot. As shown in Figure 77, the spatial correlation gets narrower when the 

aberration is stronger and therefore the area under the plot decreases.  

)(XRATx

)(XRARx

However it is not an absolute criterion as it does not depend only on the quality of 

the focusing, but also on other parameters like the speckle echogeneicity or the array 

parameters. Looking at one value of the coherent intensity does not allow us to conclude 

on the quality of focusing without knowing what the maximum value is. Hence the idea 

to normalize the intensity to get an absolute criterion.                        
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The incoherent intensity 

Using the Schwartz inequality, ∑ ∑∑ ≤≤
i i

ii
i

ii baba 22
2

0 , with ai=Vi  and bi=Si , 

we find  

∑∑ >>≤<≤<
Ne

i
i

Ne

i
iC SVI 220                                        

Choosing V such as it is a unit vector (its l2-norm ∑
Ne

i
iV 2  is equal to 1), which will be 

the case in the following as we will be considering eigenvectors of the correlation matrix 

(a correlation matrix has the hermitian symmetry and therefore has orthonormal 

eigenvectors), the inequality becomes 

  

 ∑ ><>≤≤<
Ne

i
iC SI 20                                                     

where ∑ ><=
Ne

i
iinc SI 2 can be interpreted as the expected total incoherent intensity, 

which is the sum of the intensity received by each element. This differs from the coherent 

intensity where the signals are summed on an amplitude basis and can therefore interfere 

– constructively or destructively. Our definition of incoherent intensity differs from 

(Mallart and Fink 1994) by a factor N that comes from the fact that we are using a 

normalized vector V.  The incoherent intensity can also be expressed in function of the 

spatial correlation matrix 

)(),(
11

2
SS

Ne

i
SS

Ne

i
iInc RTriiRSI === ∑∑

==

 

Eq.4. 15 
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where Tr  is the trace of a matrix.  

Focusing criterion  

When normalizing the expression of the coherent intensity in function of the 

spatial correlations functions given in Eq.4. 14, a similar formula is obtained for the 

focusing criterion (in Appendix 4.A) 

∫ ⋅⋅= dXXlXlC arrayARxarrayATx )()( ρρ  

Eq.4. 16 

Where 
)0(
)(

)(
ATx

ATx
ATx R

XR
X =ρ is the normalized auto-correlation function of the aperture, 

also known as coherence function. Unlike the coherent intensity in Eq.4. 14 the 

expression for C does not depend on any numerical factor, and the correlation functions 

are fully normalized so that they no longer depends on any array parameters, as shown in 

Figure 78 

 

0 larray=Ne 

2
iS
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1 

)(XRATx )( XlarrayATx ⋅ρ  

 

Figure 78 The spatial correlation function (left) depends on many parameters of the array. After 

normalization by the total incoherent intensity, it becomes independent of the parameters.  
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In a homogeneous medium (perfect focusing), the normalized spatial correlation 

function  is a triangle whose base is equal to the 2, and C was shown in)( XlarrayATx ⋅ρ 8 to 

be equal to 2/3 in this case (C is the area of the triangle to the square). However this is 

not exactly the maximum value that C can reach in speckle, as it is for a square 

apodization. With other apodizations higher value of C can be reached, and value close to 

0.75 have been observed during simulations. Other parameters like the transducers 

directivity can influence C. C drops quickly when the focusing degrades, and a good rules 

of thumb seems to consider that the focusing is decent if C is above 0.5.  

 

0 1 

1 

0 

1 

L/larray 

 

Figure 79  in an homogeneous medium and in presence of the aberration. The area 

under the plot to the square, that gives the focusing criterion, decreases in the last cases, and is 

proportional to the ratio between the coherence length and the array.   

)( XlarrayATx ⋅ρ

  

 An explicit relationship between C and the coherence length of the signal can be 

derived. The spatial correlation function for a backscattered signal of coherence length L 

can be roughly approximated by a triangle of base 2*L/larray. It results that C would be 

arrayl
L3/2  in this case, where D is the full array width. Indeed when the base of the 

triangle was equal to 2.larray, C was 2/3. The coefficient 2/3 in this case is not really 
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important as it depends on the shape of the correlation function (2/3 is for a triangle), but 

the main result is the proportionality between C and 
arrayl
L . The focusing criterion is 

basically inversely proportional to the number of coherent cells in the array.  

   

 

3. Correlation between signals originating from different speckle region 

 Another 2nd order statistics result will be very helpful for the following. It 

concerns the correlation between signals arriving from neighbor region of speckle. 

Indeed, to reduce the variance of the estimates with speckle, it is interesting to average 

the results on different region of speckle. In order to have a good averaging, one wants to 

add uncorrelated signals. It is then helpful to know how fast the echos decorrelate from 

one region to another. The signals are not completely correlated because they originate 

from different scattering volume, that have different random scattering distribution. 

Intuitively, the correlation between the signals is proportional to the overlap between 

their scattering volumes. This is rigorously derived in the following.      
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S(xa,ta) S(xa,ta) 
S(xb,tb) S(xb,tb) 

 

Figure 80 The correlation between signals generated by different scattering volumes (different 

transmit or arrival time) is proportional to the overlap between the scattering volumes. Left: the two 

scattering volume overlap, so the resulting signals S(xb,tb) and S(xa,ta) are correlated.  Right: the two 

scattering volumes do not overlap, so the resulting signals S(xb,tb) and S(xa,ta) are uncorrelated. They 

give independent realizations of the signal.   

 
 We consider here the correlation of two regions displaced in azimuth or in depth. 

We consider first the correlation between 2 time samples of signal. For simplicity, the 

signals are received by the same transducer so that the only cause of the decorrelation is 

the fact that the signals originates from different region. If different transducers as used in 

receive, an additional decorrelation due to the Van Cittert Zernike theorem is introduced.  

 Let S(xa,ta) be the signal received at time ta, when the transmits is focused at the 

lateral position (azimuth) xa. S(xa,ta) is the sum of the contribution of all scatterers located 

in the scattering volume at time ta. As explained in 4.II.A, the volume is delimited by the 

wave-front at frozen time ta for a transmit at xa. 

Rigorously, the wave-front should be noted w(x,z,xa,ta) because the wave-front 

varies in two dimensions (x and z) and because it depends on the transmit azimuth (xa) 
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and on the time considered (the wave-front propagates with time) However, it can be 

considered that the wave-front for a transmit can be deduced from the wave-front for 

another transmit by a translation, which is a good approximation. This is called shift-

invariance in azimuth. As only signals from around the focal depth are considered in this 

work, we can also consider that the wave-front is shift-invariant with depth. These 

approximations allow to write w(x- xa,z-za) with za=1/2cta which simplifies the 

derivation.  

The signal received at time t is then expressed as  

∫∫ −−= dxdzzxrzzxxwtxS aa ),(),(),(  

where is the random scattering distribution, and can be seen as a higher-order 

equivalent of the random mirror introduced in the previous section.  

),( zxr

The assumption that the speckle is full developed translate here in  

  ),(),(),( 2121
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0
*

2211 zzxxrzxrzxr −−>=< δ

The correlation between S(xa,ta) the signal sample received at time ta for a 

transmit focusing at azimuth xa and S(xb,tb) the signal sample received at time tb for a 

transmit focusing at azimuth xb is thus  
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In the last step, x’=x1-xa was used. The last integral express the auto-correlation of the 

wave-front, at lag and )( ab xx − )( ab zz − . Thus 

),(),(),( 2
0

*
ababwbbaa zzxxRrtxStxS −−=  

This equation states that the correlation between two samples of received signals is 

proportional to the overlap between the corresponding round-trip wave-fronts. 

 A normalized version can be derived, noting that *),(),( aaaa txStxS  is the 

incoherent intensity , and defining the normalized correlation function, also called 

coherence function  

IncI

 )0,0(
),(

),(
w

ababw
ababw R

zzxxR
tzxx

−−
=−−σ  

 The normalized equation is then  

),(),(),( *
ababwIncbbaa zzxxItxStxS −−= σ  

Eq.4. 17  

 In this work, temporal frequency domain signals are considered. In order to 

compute the Fourier Transform of the signals, one time sample is not enough. A sequence 

of several time sample is needed. To perform FDORT in speckle, the signals are gated in 

time. The size of the gate is typically one pulse length. Doing this is equivalent to 

convolve the receive signal S(x,t) by a gate that has a linear phase corresponding to the 

desired frequency. Convolving by such a function does modify the round-trip wave-front. 

An accurate derivation should take this into account. However, as long as the size of the 

gate is of the order of the pulse-length, the modification is negligible, and the formula for 

time sample will be used.    
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Consequently, Eq.4. 17 can be used to compute the correlation for the coefficients 

of the FDORT matrix. It gives the condition for two signals to be independent. The 

coherence area has the size of the resolution cell (or point spread function). In azimuth, 

two transmits separated by the beam-width, 
D
zλ , where D is the size of the aperture are 

uncorrelated. In depth, two signals are uncorrelated if they are separated by the round-trip 

pulse-length.  

D. Basics of estimation theory  

We will be introducing estimate of the correlation function in section III. We present 

quickly the basics about estimation theory.  

The ith realization of the signal received by element m is . In practice we do not 

have access directly to the expected cross-correlation between two signals received by 

elements m and n, . We have access to a mere estimate of the cross-

correlation, which is an average of I realizations of the cross-correlation. The estimate, 

 is defined as         

i
mS

>⋅< *
nm SS

mnR~

*1~
1

i
n

M

m

i
mmn SS

I
R ∑

=

=  

 The following results are valid for the estimate of any quantities, not only the 

cross-correlation. The expected value of the estimate is equal to the expected cross-

correlation (the estimate is said non-biased)  

>⋅=< *~
nmmn SSR  

The variance of the estimate is defined as 
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( ) 222 ~~~~ ><−=><− mnmnmnmn RRRR  

and the standard deviation is the square root of the variance. The standard deviation can 

be interpreted as the average error made on the estimate. If the I realizations are 

independent, the standard deviation of the estimate is proportional to 
I

1 , which means 

that the error decreases when the number of independent realization increases.  

 For a complex signal, like , an exact expression of the variance is not simple. 

It depends both on the number of realizations and on the coherence between the signals 

(the coherence, 

mnR~

),( nmµ , is the normalized cross-correlation. It is equal to 1 for perfectly 

coherent signals). Probability clouds are shown in Figure 105. For a large number of 

realizations, and a decent coherence, the following formula can be given (see (Priestley 

1988) p.703, and the appendix B of this chapter for a derivation of the results for 

continuous fields)  
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In the following, we will be estimating Green’s function. The standard deviation of the 

phase of the Green’s function is particularly important, as the quality of focusing depends 

mainly on the phase. The standard deviation of the phase of the Green’s function is also 

proportional to 
I

1 .   
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III. INTERPRETATIONS OF KKH  

In the previous chapters, it has been shown that, in the case of deterministic, well-

resolved scatterers, KKH could be interpreted as a time reversal operator for a virtual 

array. The Time Reversal Operator interpretation of KKH is fundamental, as it yields 

physical meaning to the eigenvectors and eigenvalues using a thought experiment of 

Time reversal iteration. . Indeed, the Green’s functions of well resolved scatterers are 

invariants of the Time reversal process. When one transmit a Green’s function, only the 

corresponding scatterer is insonified, and the received echo is the time reversed version 

of the transmit Green’s function. One can time reverse the signal and iterate the process, 

and still get the same signal. 

Speckle is formed from a very large number of sub-resolved scatterers. In this 

case a thought experiment of iterative Time Reversal no longer helps predicting the 

behavior of the eigenvector, nor their focusing properties, , as many scatterers are 

insonified at the same time. Therefore, a new interpretation has to be proposed.  
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A. Spatial correlation matrix, or Van Cittert Zernike matrix  

1. Link between KKH and the spatial correlation matrix 

 In the FDORT method, the volume of scatterers insonified by each transmit can 

be limited in depth (from z–∆z to z+∆z) by the time gating, as seen in Figure 81, before 

taking the Fourier transform. In speckle, we select scattering volumes around the focal 

depth. Therefore, we are exactly in the conditions of the Van Cittert Zernike theorem, 

illustrated in Figure 73 and Figure 74, and the coefficient Kim(ω) of K is the same as 

Sm(xi,ω) used in Section.4.II. In the following, Sm(xi,ω)  will be noted simply Sm
i.    

 

 

ith transmit

m 
Kim 

2∆z 

 

Figure 81 Acquisition of the transfer matrix in the FDORT method. The focused transmit i insonify 

the medium. The signal received by array element j is time gated to select the signal from depth z–∆z 

to z+∆z, and its Fourier coefficient at frequence ω gives the matrix coefficient Kim. In speckle ∆z is 

taken to be about the pulse-length. 

Thus the beam pattern at the focal depth is now noted  p(x). For a homogeneous 

medium, p(x) is a sinc function. Each of the N transmits insonify a similar scattering 
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volume, as the transmits are translated version of each other, but with a different set of 

scatterers and therefore gives a different realization of the random backscattered signal. 

This is equivalent to the problem where we fire N times the same transmit (instead of 

using N consecutive transmit) but with a different random medium each time. In our case 

however, the insonified volumes for each transmits are in slightly different locations. 

Better results are obtained if this is taken into account by a modification of the FDORT 

algorithm. Indeed, the echoes resulting from a focal spot at depth Z and azimuth x=0, 

have typically a wavefront curvature proportional to 
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Eq.4. 18                                                     

where X is the coordinate in the array plane, and using the Fresnel aproximation. For 

another transmit whose focal spot is at abscissa xi, we have 
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Eq.4. 19    

In order to have signals that really look like two realizations of the same signals, it 

is necessary to remove the part depending on xi in the wavefront curvature. This is done 

by time delaying the echo for the ith transmit by 

( )
Z

xXx ii λ
π

⋅+22/1  

Eq.4. 20       
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This is described in Figure 82. As a result, it looks like the two realizations come from the 

same location, but that it is the medium that has moved between the two insonifications.   

Alternatively, the signal can be completely aligned. In this case, the complete curvature is 

removed using a time-delay given by Eq.4. 19. This is interesting in the case where there 

is no interest in the whole Green function, and only the perturbation due to 

heterogeneities is of interest, like in phase aberration correction.  

 

 

P P M P’ PM =′

a b c

 

Figure 82 a) A transmit focusing at a point P and the corresponding received wave front. In speckle, 

ideally, to estimate the Green function at point P, we would like to fire several times the same 

transmit focusing at P, but with a different speckle distribution each time, to provide a good 

averaging of the randomness. b) Instead, we use a neighbor beam focusing at M close to P (the 

distance between M and P is exaggerated here). c) By properly shifting the wave front of the received 

signal, it looks like the whole medium is virtually translated and M’, the new position of M, 

corresponds to P. Thus a new realization of the signal coming from P is obtained, with a different 

scatterer distribution. By virtually translating the phantom by different amounts, several realizations 

are obtained.  
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 Now, Kim or Sm
i is the ith realization of the backscattered signal received by the mth 

array element. Developing the product KKH yields for the coefficient (m,n) of KKH:  

  ( ) ⎟
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Eq.4. 21   

This is I times the average, over the I realizations of the speckle (in this case I is the 

number of transmits), of the product of the signals received by element m and by element 

n. This is, at frequency ω, an estimate of *
nm SS , the cross-correlation of the signals 

received on elements m and n (see SectionII.D). Thus KKH can be interpreted as an 

estimate of the spatial correlation matrix RSS.   

There is a difference between RSS and KKH, which is only an estimate of RSS from 

a limited number of realizations (the transmits). In particular, the estimate KKH has a 

variance which depends on the number of transmits. It is only one possible estimate of 

RSS, and most of the results derived here would apply to other estimates of RSS.     

2. Link to the Van Cittert Zernike theorem 

  In speckle, the FDORT matrix is then an estimate of the spatial correlation matrix, 

which contains the spatial cross-correlation for every pair of array elements. Following 

the Van Cittert Zernike theorem derived in Section 4.II.C.1, the spatial cross-correlation 

for a pair of elements (m,n) only depends on the distance between the elements, Xm – Xn, 

and is proportional to the Fourier Transform of the square of p(x): 
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Eq.4. 22 

where ( ) ])([ 2xpFTXP =  

Eq.4. 23    

β is a real constant, ( 222
nm XX

Z
−

λ
)π  is the difference of geometric curvature between the 2 

elements, that is the difference of propagation path in an homogeneous medium, and 

øAb(Xm) – øAb(Xn) is the differential aberration phase between elements m and  n, that is 

due to the presence of an inhomogeneity in the medium. In the usual near-field screen 

approximation, where the aberration introduces a mere time delay τi on the element i , 

øAb(Xi) =ωτi.  

 The amplitude of the spatial correlation is particularly interesting. In a 

homogeneous medium, p(x) is the sinc function, and therefore its Fourier transform is the 

triangle function. The amplitude of the cross-correlation for a pair of element decreases 

as a triangle function when the distance between elements increases. This is the pattern 

one can observe when the amplitude of the KKH matrix is plot (Figure 83). 
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Figure 83  a,b)Theoretical amplitude of the spatial correlation matrix (a) and projection on the anti-

diagonal (b) in homogeneous media as predicted by the VanCittert Zernike theorem. The triangular 

shape that arises from the Fourier Transform of sinc2 is easily identifiable. 64 of the 128 elements 

were used in transmission, which is why the triangle base is 64 elements wide. c, d) Experimental 

amplitude of the FDORT matrix , for a 60 mm focus. The differences observed for the edge elements 

are mainly due to the transducers directivity, which was not taken into account in the VanCittert 

Zernike prediction.    

 
 In inhomogeneous medium, the focus is broader, and therefore the spatial 

correlation function decreases faster. This is also observed for the amplitude of the 

matrix, as seen in Figure 84. 
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Figure 84 Same as Figure 83  for the aberrated case. The amplitude of the  spatial correlation 

matrix is now given by the autocorrelation of the aberrated aperture.  

 In conclusion, in speckle, KKH is an estimate of the spatial correlation matrix – or 

Van Cittert Zernike matrix- that is fully described by the Van Cittert Zernike theorem. 

This interpretation of the matrix will be helpful to interpret the eigenvalues. It is also 

interesting because correlation matrices are a very important tool in random signal 

processing, and is the base of numerous algorithm (Trees 2002).     

This interpretation of the FDORT matrix as a correlation matrix is not surprising. 

For deterministic scatterers, it has already been shown (Prada and Thomas 2003; Gruber, 

Marengo et al. 2004)  that the Time Reversal Operator can be interpreted as a correlation 

matrix of the received signal.   

 

B. Time Reversal Operator for an equivalent virtual object 

 As said in the previous Section, in speckle, it does not make sense, a priori, to 

interpret directly KKH as a Time Reversal Operator. However, we can play a trick and 

interpret it as the Time Reversal operator for an equivalent deterministic object. 

Everything happens as if we were performing a Time Reversal experiments on an object 
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whose reflectivity is proportional to p(x)2, the beam intensity. Indeed, it is shown in the 

following, that for such an experiment, and under Fraunhoffer approximation, the transfer 

matrix, that we can call Keq has the same coefficient as the spatial correlation matrix 

described in Sec. III.A. Intuitively, it is easy to see where this virtual object comes from. 

In fact, the speckle can be considered as a random mirror (Mallart and Fink 1994), that 

reflects an image of the transmit beam p(x). If only one transmit, or realization, is 

available, this image is very blurred. However, by averaging on several realizations, the 

random mirror is smoothed, and the object is revealed.   

 More rigorously, one can compare the equation expressing the coefficients of the 

spatial correlation matrix (Eq.4. 22), to the equation expressing the coefficient of the 

transfer matrix K for an extended object in Chapter 3 (Eq.3. 5). They are both identical, if 

we choose the object scattering distribution to be equal to p(x)2. (There is a difference in 

the arguments; in one case it is nm XX + , and in the other case nm XX − . Consequently 

one of the matrices is deduced from the other by a column flip, but this kind of symmetry 

does not affect the singular vectors)   

Thus from a mathematical standpoint, everything happens as if the focused 

transmit was creating a virtual scatterer at the focal spot and we were doing DORT on it. 

The first eigenvector is then the Green function of the focal spot. As the focal spot is not 

a perfect point, but has a finite size given by the resolution of the array, there is not a 

single eigenvector, but several one, as observed with extended object (Chapter 3). If the 

focal spot is sufficiently small, the 1st eigenvector can still be considered to be the 

Green’s function of the focal point. It is therefore important to use the whole aperture in 

transmit to keep the focal spot as small as possible.  
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To illustrate this point, we show in Figure 85, the eigenvalues distribution and the 

amplitude of the 2 first eigenvectors, when the full transmit is used. In Figure 86, we 

show the same thing for a narrow transmit aperture, and therefore a larger beam pattern.  

 

Figure 85 Normalized eigenvalue distribution, and amplitude of the 2 first eigenvectors when the full 

transmit aperture is used (optimal setting for FDORT in speckle). It is very similar to what was 

obtain for a small object about the size of the resolution cell in chapter 3 (here the object is the beam 

pattern to the square) It will be shown in III.D that the 1st eigenvalue is about 2/3.  

 
Figure 86 Same for a narrow transmit aperture (20 elements out of 128) In this case the virtual 

object is larger, and there are more non-zero eigenvalues (the variation of the eigenvalues is different 

than in Chapter 3 because the object is not a rectangle but a sinc to the square) The amplitude of the 

eigenvectors look similar to the case of an object larger than the resolution cell in Chapter 3. The 
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width of the 1st eigenvector’s amplitude is narrow. Therefore is not good for focusing (low 

resolution)  

C. Variance and standard deviation of the estimation 

 We have determined asymptotic expressions and properties for the FDORT 

matrix in speckle. However, in a random media like speckle, one can only talk in 

statistical terms. The asymptotic properties have to be considered as mean values, 

obtained only if one could average on an infinite number of realizations of the signal. The 

estimated coefficients of the matrix, and therefore the eigenvectors, will in practice 

fluctuate from this mean value. The random fluctuation is characterized by a standard 

deviation (see Section II.D). The variance (square of the standard deviation) is usually 

used in the literature (Astheimer, Pilkington et al. 2006; Msoy, Angelsen et al. 2007).The 

standard deviation seems to have more physical meaning though, as the quality of 

focusing depends on the standard deviation of the phase of the Green’s function, rather 

than its variance. The results given here apply to the standard deviation of most estimated 

quantities in this paper (amplitude and phase of the estimated Green’s functions, 

coefficients of KKH) 

 Expressions of the standard deviation are given in Section. II.D and the main 

result is that the standard deviation is proportional to the square root of the number of 

independent realizations. In our case, the different realizations are given by the different 

transmits. It has been shown in Section.II.C that two transmits yield independent (or non-

correlated) realizations if they are separated by a distance equal to the width of the 

transmit resolution cell
D
Zλ . Therefore the number of realizations that one can extract 
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from a part of medium of width L is 
Z

LD
λ

. L is usually limited because we assume 

(Section. III.A) that the curvature of the wave-fronts coming from all the locations that 

we use differs only by a linear term that we remove before averaging. It makes sense that 

if we want to estimate the Green’s function at a specific location, only the region of 

medium with the same Green’s function can be used. Removing the linear term enables 

to use the region where the Fresnel approximation holds. However, in most cases, we are 

interested by estimating the Green’s function in inhomogeneous medium. In this case, the 

Green’s function can vary quickly from one location to another. The region where we can 

still make the assumption that the Green’s function differs only by a linear term is called 

the isoplanatic patch. In medical ultrasound, a typical isoplanatic patch in the breast is 1 

mm laterally and 2 mm axially (Dahl, Soo et al. 2005). Therefore, the number of 

independent realizations that one can take laterally is given by the lateral size of the 

isoplanatic patch divided by 
D
Zλ , which is typically 0.4 mm. Consequently, only 3 or 4 

independent realizations can be taken laterally.  

 As a limited number of realizations can be taken laterally, the variance can be 

further reduced by taking realizations from different depth. As shown in Figure 87, 

signals from a few depths surrounding the focal depths can be selected by time gating. 

Two different windows in depth yield independent realization if they are separated by the 

pulse-length, which, depending on the frequency of the probe typically varies from 0.2 to 

0.5 mm.   
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Figure 87 Independent realizations in the isoplanatic patch. The number of independent realizations 

is equal to the number of resolution cells. 

  

In our simulations, 4 realizations were selected laterally, and 6 axially which yield 24 

realizations, and the standard deviation is reduced by a factor 5. With a 2D array (Waag 

and Astheimer 2005; Waag and Astheimer 2006) and 3D imaging, the number of 

realizations can be increased by taking additional realizations in the elevation dimension 

(the 3rd dimension). In (Waag and Astheimer 2005; Waag and Astheimer 2006) 70 

realizations are typically taken in a 3D volume.  

To summarize, in speckle, the variance of the estimate decreases with the number 

of realizations, and the number of realizations is given by the area of the isoplanatic patch 

divided by the area of the resolution cell hpulselengt
D
Z

⋅
λ . In 3D, the number of 
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realizations would be given by the volume of the isoplanatic patch divided by the volume 

of the resolution cell.  

One could be tempted to increase the transmit density (by reducing the distance 

between consecutive transmits) in order to have more realizations and decrease the 

variance further. However, the additional realizations would not be independent from the 

initial realizations. Therefore, they do not bring additional information. They bring only 

redundancy. Doing this would slow the acquisition process, as more transmit are 

required, but would not reduce further the variance. In fact, it is proved rigorously in 

Appendix B, that even if one take an infinity of continuous realizations in a given volume 

(by varying continuously the position (x,t)), the maximum variance reduction is given by 

the number of realization cells in the volume. This derivation is, to our knowledge, new 

in acoustics, but is placed in Appendix in reason of its technical difficulty.  
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Figure 88 Standard deviation of the phase in function of the lateral size of the speckle region. In blue, 

the transmits are very close from each other (0.01 mm) while in red, the transmits used in the 

estimation were separated by the beam width (0.4 mm). It is clear that taking more transmits than 

required by the condition to have independent realizations does not improve the estimation.  

The number of resolution cell in a volume is a good measure of the quantity of 

information (number of degree of freedom) one can extract from the volume. This is also 

equivalent to the space-bandwidth product, a well-known measure of information 

quantity in engineering, which is equal to the area interrogated times the area of the 

spectrum (k-space) of the system. The area in k-space can be approximated by the 

product of the temporal bandwidth c
B , and the spatial bandwidth F

D
λ . Therefore, the 

space-bandwidth product is F
D

c
BArea patchcIsoplanati λ⋅⋅_ .  
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It is shown in Appendix, that in a 1st approximation, this result is still valid in 

presence of a near-field phase screen aberration.  

D. Interpretation of the first eigenvalue in speckle 

1. Interest of the focusing criterion  

We use here the statistical interpretation developed in Sec.III.A. to show that the first 

eigenvalue in speckle has an important interpretation: if it is properly normalized, it is the 

focusing criterion C introduced in Section II.C.2.  

 The focusing criterion is equal to the ratio of the coherent intensity and incoherent 

intensity. Now, we need to express this quantity in term of the spatial correlation matrix.  

2. Link between first eigenvalue and coherent intensity 

(Varslot, Krogstadt et al. 2004). demonstrated that the first eigenvector of the 

spatial correlation matrix (or FDORT matrix) gives the receive focal law and apodization 

that maximizes the speckle brightness and can therefore be used to correct an aberration. 

Indeed, let V be the Nel × 1 complex vector used to beamform the signal in receive. The 

phase term of V is a focal law, and the amplitude term is an apodization law. V is usually 

the Green function of the desired focal point.  

 An expression of the expected coherent intensity in function of the spatial 

correlation matrix and of the vector V used to beamform the signal has been derived in 

Section II.C.2 

 VRVI SS
H

c =  
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 An estimate of the coherent intensity averaged on the few transmits used in 

FDORT is therefore .  VKKV HH

It is well known (Donnell 1982; Nock, Trahey et al. 1989) that the coherent 

intensity, or speckle brightness increases with the quality of focusing. Therefore the best 

focusing is obtained by maximizing the coherent intensity. Now, let us show that the 

normalized vector V that maximizes the coherent intensity is the 1st eigenvector of the 

spatial correlation matrix.  

Indeed let ei be the ith eigenvector. The eigenvectors form an orthonormal basis, 

then one can decompose V in that basis ∑ ><= ii eeVV | and therefore  

                           
∑

∑
=><≤

><=
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i

eV

eVVV iSS
H R

where λi is the ith eigenvalue. We used the fact that the norm of V is 1. The inequality is 

reached when V = e1.  

Consequently, the 1st eigenvector of the spatial correlation matrix maximizes the 

coherent intensity, and hence the focusing (this confirms the result we derived using 

Time Reversal on the equivalent object in Sec.III.B) and the 1st eigenvalue is the 

corresponding coherent intensity. In practice, estimates of these parameters are given by 

the 1st eigenvector and eigenvalue of KKH.  

The coherent intensity is proportional to the focusing quality, however, it is only a 

relative criterion. Looking at the 1st eigenvalue by itself does not allow to conclude on the 

quality, as it depends on many parameters like the transmitted power, the scatterer 

reflectivity. This is where the criterion C is interesting, because it is an absolute criterion.  

 186



3. Link between the incoherent intensity and the sum of the eigenvalues 

The expected incoherent intensity is the sum of the intensity received by each 

elements 

)(),(
11

2
SS

Ne

i
SS

Ne

i
iInc RTriiRSI === ∑∑

==

                                                    

where Tr is the trace of a matrix, that is, the sum of its diagonal elements. The Trace is 

conserved when the matrix is expressed in another basis. In the eigenvectors basis, the 

matrix is diagonal, and the diagonal elements are the eigenvalues. Thus the incoherent 

intensity is also equal to the sum of all eigenvalues.  

∑
=

=
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i
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1
λ  

 The incoherent intensity can be estimated by the sum of the eigenvalues of KKH. 

4. Link between C and the normalized 1st eigenvalue 

The focusing criterion C is the ratio of the coherent intensity over the incoherent 

intensity. Thus, an estimate of C is given by  
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The notation C1 is used to highlight the fact that it is the focusing criterion obtained when 

the first eigenvector e1 is used to beamform the received signal.  

Alternatively, a normalized version of the spatial correlation matrix can be built 

  

 
)( H

H
H
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KKKK =                                                   
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This matrix has the same eigenvector as KKH as it just differs by a scaling factor, but its 

first eigenvalue is directly C1. 

Thus, the decomposition of the FDORT matrix not only provides an estimate of 

the Green’s function, e1, but also provides a direct measure of how well the aberration is 

corrected, or in other words, a measure of the quality of the image. For example, a 1st 

normalized eigenvalue above 0.5 means that the estimate of the Green’s function is good. 

A poor value of the 1st normalized eigenvalue means that an iteration is needed (this will 

be elaborated in Sec.IV). With other aberration correction methods, such a criterion has 

to be computed separately(Lacefield and Waag 2002).  

IV. APPLICATION TO FOCUSING IN HETEROGENEOUS MEDIUM 

A. Equivalent virtual object and iteration of the method 

 It has been shown that performing FDORT in speckle was equivalent to 

performing DORT on an equivalent virtual object which has the shape of the transmit. In 

homogeneous media, a virtual scatterer is created at the focal spot, and the 1st eigenvector 

is the Green’s function of the focal spot.  

 However, in presence of phase aberration, the transmit is no longer well focused 

and the virtual object is more complex In order to illustrate the effects of phase 

aberration, an FDORT experiment in speckle has been simulated using Field II 

(J.A.Jensen 1996). A 1-D linear array of 128 elements at 7.3 MHz central frequency is 

simulated. It focuses at 60 mm depth through a near-field phase screen. All the elements 

are used in transmit in order to get the best possible estimation of the phase screen, as has 

been explained in Section II.C. The statistics of the phase screen are 45ns average delay 
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variation, 4 mm spatial correlation length of the variation. The delay profile is shown in 

Fig.8, along with its estimate after 1 and 5 iterations of the FDORT method. The speckle 

phantom is generated with 15 scatterers per-resolution cell. 24 realizations are used (4 

realizations laterally and 6 axially) for the measurement of the transfer matrix. 

 In Figure 89.a.we see that the beampattern through the aberrator appears as a 

collection of points that are not well resolved. In the case of such an object, the 1st 

eigenvector is mainly the Green’s function of the brightest spot but as it is not well 

separated from the other points, it is perturbated by the signal from the other points5. As a 

result, the focusing obtained by backpropagation of the 1st eigenvector is not very good 

(Figure 89.b), but it is better than the original transmit. The process can therefore be 

iterated: the transmits are partially corrected using the 1st estimate of the Green’s function 

and a new KKH matrix is built. The virtual object correspond now to Figure 89.b. One 

point is now clearly brighter than the other and the new 1st eigenvector will be mainly the 

Green’s function from this point, with less interferences from the other points than during 

the 1st iteration. As seen in Figure 89.c the focusing properties improved. By iterating the 

process a few times, the interferences decreases to zero and the 1st eigenvector converges 

to the Green’s function of the brightest spot of the initial virtual object. This yields a very 

good focusing through the inhomogeneous media (Figure 89.d).  
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Figure 89 Simulated transmit fields at 7.3 Mhz in presence of the near field phase aberrator for 

different number of iteration of the algorithm a) Initial transmit: it is based on the Green function in 

homogeneous medium, and therefore the focusing is very poor. It is the equivalent virtual object for 

the 1st FDORT iteration b) The 1st eigenvector obtained in the 1st iteration is back-propagated. It 

focuses mainly on the brightest spot of the 1st transmit, but with significant interferences. The 

focusing criterion C is only 0.3. It is used to correct the transmit for the 2nd iteration of FDORT c) 

First eigenvector from the 2nd iteration. The focusing has improved. It is used to correct the transmit 

for the 3rd iteration. d) Fifth iteration: the 1st eigenvector yield now a very good focusing. It is an 

accurate estimate of the Green function in presence of the phase aberrator. C is now equal to 0.7.  

 

 Our interpretation of the 1st eigenvalue as the focusing criterion C is very helpful 

here. Indeed, it is an objective assessment of the quality of focusing. It indicates when the 
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iteration should be stopped. Indeed, as soon as C reaches a certain threshold, we know 

that we have a good focusing, and a good estimate of the Green’s function. The evolution 

of C in function of the number of iteration is shown in Figure 90. 

 

 

Figure 90 Evolution of the normalized 1st eigenvalue in speckle with a simulated near-field phase 

screen. The normalized 1st eigenvalue is equal to the focusing factor C. At the 1st iteration, C is about 

0.3, which is the sign of a bad focusing related to the phase screen. After a few iterations, the 

algorithm converges and C passes 0.7, which means that the focusing is excellent. The corresponding 

transmit fields are displayed in Figure 89. 

 

  The phase profile of the near-field phase screen can be estimated from the 

Green’s function phase, by removing the geometrical phase law corresponding to 

propagation in the homogeneous media. The estimated profiles at the center frequency 

are displayed in Figure 91. The phase has been converted in time by dividing by ω. As 

expected, the estimation is not good at the 1st iteration, but converges toward the true 

applied profile after a few iterations.   
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Figure 91 The phase of the estimated Green functions is unwrapped and the geometrical curvature 

removed to show an estimate of the aberrator delay profile. The estimate (dash line) is compared 

with the true profile (solid line), after the 1st iteration (a) and after 5 iterations (b). The estimate is 

not very good at the first iteration but converges after a few iterations. 

 

 We have learnt to auto-focus in a speckle medium using iteration of the FDORT 

method. This can be applied to imaging through heterogeneous medium. A phantom of 

pure speckle containing cyst has been simulated. The absence of bright scatterers ensures 

that only speckle signal is used to auto-focus. The 45ns, 4 mm FWHM near-field phase 

screen used in the previous example is applied and result in a severe distortion of the 

image. The estimate of the Green’s function after 5 iterations is used to correct the image 

and restore a good focusing. Practically, the aberrator delay profile is estimated as 

described above (Figure 91) and is used to correct the beamforming process. Results 

before and after correction are shown in Figure 92. 

The image quality improvement can be quantified by the cyst contrast. It is 

defined by 

 ⎟
⎠
⎞

⎜
⎝
⎛⋅=

llesionleve
levelbackgroundcontrastCyst log20_  
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where lesionlevel is the average level in the lesion, and backgroundlevel the average level 

in a region having the same shape located in the speckle, close to the lesion. The cyst 

contrast before correction is found to be 4 dB. After correction, the contrast is 22 dB, 

which is close from the 23 dB obtained in a  reference unaberrated medium.  

 

 

Figure 92 Image of a simulated speckle phantom containing, in presence of a near fild phase screen, 

before and after correction.  

 

B. Focusing through a far-field phase screen 

In the previous example (Figure 89 and Figure 90), the heterogeneity was 

modeled by a near-field phase screen. This is a good model if the heterogeneity is 

localized in a thin slice close to the transducer. This model is also the easiest to correct, 

as it can be corrected by simple time-delays. In the frequency domain, that we consider 

here, it translates by a phase correction ii ωτφ = . Another advantage of the near-field 

phase screen, is that the isoplanatic patch discussed in Sec.III.C. is large, like in the 

homogeneous case. Thus, more realizations can be taken.  
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A more difficult case is obtained if the phase screen is no longer close to the 

array, but deeper in the medium (far-field phase screen, see Chapter1.I.B.4). In this case, 

the effect in the array plane can no longer be modeled by simple time-delays, but by 

phase and amplitude (because of the interferences) variations at each frequency. The 

phase is a-priori no longer linear in function of the frequency. An additional difficulty 

results in the limited size of the isoplanatic patch in this case.  

The same phase-screen as in Sec.IV.A. is simulated, but it is now located at a 

depth of 20 mm. The focal depth was chosen to be 80 mm. Results are shown in Figure 

93. Again, the 1st eigenvector lock on the brightest point of the initial transmit field 

(equivalent object) and the focusing is improved after a few iterations.  
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Figure 93 Simulated transmit fields at 7.3 Mhz in presence of the far field phase aberrator (drawn on 

each transmit in white) located at depth 20 mm, for different number of iteration of the algorithm a) 

Initial transmit: it is based on the Green function in homogeneous medium, and therefore the 

focusing is very poor. It is the equivalent virtual object for the 1st FDORT iteration b) Field obtained 

after back-propagation of the 1st eigenvector obtained in the 1st iteration. It focuses mainly on the 

brightest spot of the 1st transmit, but with interferences. C is 0.35 c) 1st eigenvector after the 4th 

iteration. C is 0.7 d) Evolution of the normalized eigenvalue, or C factor. Even if the screen is not 

close to the array, the convergence is reached quickly.   

 

As in the case of the near-field phase screen, the convergence of the iteration is 

reached after a few iterations, with a focusing criterion close to 0.7. Now, the 1st 

eigenvector has an amplitude variation, as expected with the screen in the far-field. 

Backpropagation of the eigenvector (amplitude plus phase) yields a good focusing 

(Figure 93.c).  
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Figure 94 Amplitude and delay profile for the 1st eigenvector at the center frequency. As the phase 

screen is at 20 mm from the array, interferences occur and lead to amplitude variations.  The 

FDORT method gives both the amplitude variation and the phase variation.  

 

To summarize, FDORT has the ability to estimate accurate Green’s functions in 

speckle in the more general model of a far-field phase screen.      

C. Medical phantom results 

Medical phantom data were obtained using a phased array at 2.7 MHz, and the 

Philips HDI-5000 scanner.  

In a real experimental setup, two main things are differing from the simulations. 

First, the nature of the signal is different. In simulation, a perfect fully-developed was 

simulated, and no noise or bright scatterers (that can act as off-axis interference) were 

present. Second, a real aberrator will probably differ from the simple model used.  In 

order to separate the influence of these two factors, two sets of experiments have been 

performed.  
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Experimental data and simulated aberrator 

In the first experiment, the goal was to check that the method was working with 

real signals. Thus an experimental data set from an unaberrated phantom was used, and 

the data was artificially aberrated in the computer by delaying the signals. Therefore, the 

nature of the aberration is the same as in the simulation. The aberrated phantom is shown 

in Figure 96. The region of speckle used for FDORT was 2mm wide and 2 mm deep, and 

was located in the center right part of the phantom. About 25 realizations were selected in 

the region. The statistic of the phase screen was 45ns, 4 mm FWHM.      

Discussion: The evolution of the 1st eigenvalue is shown in Figure 95. The 

maximum is reached after 3 iterations, and the focusing criterion is close to 0.6. The 

value is lower than in simulation, which is due to the transducers directivity and to the 

noise. However, 0.6 is already an excellent value. The images before correction, and 

corrected using the aberrator estimation after the 1st and 3rd estimations are shown in 

Figure 96 to Figure 98. An amplitude and delay correction was used. After the 3rd 

iteration, a very good focusing is achieved and it yield a good image quality.  

 

 

Figure 95 Evolution of the 1st eigenvalue after a few iterations.  
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Figure 96 Image of the artificially aberrated phantom without correction.  

 
Figure 97 Image of the artificially aberrated phantom corrected after the 1st iteration of FDORT. 

The points in the near field are not very well resolved yet. 
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Figure 98 Image of the artificially aberrated phantom corrected after the 3rd iteration of FDORT. 

The focusing is excellent.  

Experimental data with rubber aberrator 

 Now, experimental data of a phantom with a rubber aberrator is used. The rubber 

aberrator is characterized by a 75 ns rms delay and a 3 mm FWHM. It is then stronger 

than the simulated one. The aberrator was positioned between the phantom and the array. 

The aberrated image can be seen in Figure 99. The speckle area used for the estimation 

was the same as in the previous case. The corrected image after 5 iterations of FDORT is 

shown in Figure 100.  
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Figure 99 Image of the phantom with rubber aberrator without correction. 

 

 

Figure 100 Image of the phantom with rubber aberrator corrected after the 5th iteration of FDORT.  
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 Discussion: Some improvement is seen in the resolution of the points scatterers 

on the left side near the speckle region, but the image still looks globally distorted. The 

focusing criterion stayed under 0.4 even after 10 iterations. As a comparison, FDORT has 

also been performed on one of the point scatterer, and the Green’s function of the point 

scatterer used to correct the image. The result was similar to Figure 100. Other aberration 

correction methods gave similar results. 

 There are two main possible explanations for the difficulty to correct the image:  

• Isoplanatic patch: as discussed in Section II.B., once the Green’s function of a 

point has been estimated, the Green’s function of the neighbor points can be 

deduced by the addition of a steering term. This works as long as the points are 

in a region surrounding the 1st point. This region is the isoplanatic patch. Despite 

the rubber aberrator is located in the near field, and thus should a large 

isoplanatic patch was expected, the results seems to show this is not the case. 

Indeed, the focusing seems to be good close to the region that has been used for 

the estimation, but it degrades rapidly away from this region. 

• Two dimensional nature of the aberrator: the rubber aberrator varies in both 

azimuthal and elevational dimension, but as a 1D array is used, only the 

azimuthal dimension is corrected. This is the reason why most aberration 

correction schemes uses 2D array (Lacefield and Waag 2002; Fernandez, 

Gammelmark et al. 2003; Fernandez and Trahey 2003; Waag and Astheimer 

2005; Waag and Astheimer 2006) 
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V. LINK WITH OTHER ABERRATION CORRECTION METHOD IN SPECKLE 

 A few aberration correction methods have been presented in Chapter1. The aim of 

this section is to interpret several of these methods with the spatial correlation matrix 

formalism and show that they are more similar than they appear.   

A. 1-lag cross-correlation (O’Donnell)  

 This method has first been proposed in the time-domain by (Flax and O'Donnell 

1988; O'Donnell and Flax 1988). It consists in computing the cross-correlation between 

the signals in pairs of adjacent elements. In the time domain, the maximum of the cross-

correlation indicates the average difference of arrival time between the 2 elements and 

provide thus an estimate of the delay due to the aberrator. The method can also be 

implemented in the temporal frequency domain. This can be understood easily using our 

formalism. Indeed, an estimate of the cross-correlation between adjacent elements m and 

m+1 is given by the coefficients ( ) 1,
*

1 ++ = mmSSmm RSS  on the 1st extra-diagonal of the 

spatial correlation matrix.  

Such a coefficient can be expressed, following Eq.4. 10, as  
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The phase term corresponding to the geometrical curvature of the wave-front has been 

removed, as the wave-fronts are usually aligned in aberration estimation method.                               

Taking the phase (noted ∠ ) of both side of the expression yield  
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The phase of the coefficient (m,m+1) of the spatial correlation matrix is 

proportional to the phase difference between the 2 neighbor elements plus another term, 

which is the phase of the Fourier transform of the intensity distribution in the focal plane. 

In general, the Fourier transform of a function is complex, and the phase is non-zero. 

However, the term depends only on the separation between elements and thus is identical 

for all couple of neighbor elements. The last term of Eq.4. 25 is then the same constant 

for all elements on the 1st extra-diagonal of the matrix. Let A be this constant. Eq.4. 25 

becomes 
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and the phase estimate is obtained by integrating  
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In this case the bias is then reduced to a mere linear phase shift A
pitch

XX i ×
−

)( 1 . In this 

technique, like in most aberration estimation technique, the estimated profile is detrended 

(suppression of linear phase shift). A linear bias will therefore not have any influence on 

the estimated profile. Thus, this method is said to be unbiased.  
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In practice, the estimate can be obtained by integration of the phase of 

the elements

)(~
n

Ab Xφ

( ) 1, +mm
HKK  of the 1st extra-diagonal of the FDORT matrix.  

This technique is very simple to implement, as no SVD is required, and only the 

terms on the 1st extra-diagonal have to be computed. Moreover, it does not, a priori 

requires any iteration, unlike FDORT. In practice, though, iterations may be required. 

Indeed the variance of the estimate depends on the spatial correlation that is low at the 1st 

iteration, as the transmit is not well focused. To obtain an estimate with an acceptable 

variance, at least one iteration is usually required.  

The main drawback of this method compared to FDORT is in the presence of 

multiple signals, like off-axis scatterers. This problem is the object of the Section.4.V. 

Another drawback of the method can be noticed when one or several elements have a low 

signal. As the method relies only on correlation between neighbor elements, a 

discontinuity in the estimated aberrator profile can be observed at the location of the low 

signal elements.    

B. Maximum Speckle Brightness 

 The speckle brightness increases with the quality of focusing. This is back-up by 

the expression of the speckle brightness in function of the spatial correlation in 

Section.II.B. Therefore, an aberration correction method consists in maximizing the 

brightness in a region of interest, corresponding usually to the isoplanatic patch, by 

adjusting the delays on the array elements. The brightness is maximized when the delay 

corrects the aberration.  

 204



 As seen in Section.4.III.E., the 1st eigenvector of FDORT maximizes the speckle 

brightness. Thus, the maximum speckle brightness algorithm is very close to the FDORT 

method. The main difference, is that, in the speckle brightness algorithm, only the 1st 

eigenvector is obtained, which is a limitation in the case of multiple signals discussed in 

Section.4.V. Also, FDORT provides directly an objective criterion, C. The speckle 

brightness is only a relative criterion and is not as useful.   

C. Eigenfunction analysis of backscattering signal 

 This method has been proposed by (Varslot, Krogstadt et al. 2004) and involves 

the decomposition of the spatial correlation matrix. It is then similar to our method. 

However, in (Varslot, Krogstadt et al. 2004) no practical way to build an estimate of the 

matrix is proposed. We propose to use the FDORT matrix as such an estimate. Moreover, 

our interpretation of the 1st eigenvalue enables to make the iteration process automatic as 

it provides a criterion for the convergence.   

D. Multi-lag cross-correlation (LMS algorithm)   

 The multi-lag cross correlation technique is similar to the 1-lag cross-correlation 

technique, except that the cross-correlation is not only performed between adjacent 

elements, but also between pair of neighboring elements (up to a few elements apart). 

The differential delays are deduced from the correlation function maximums. Finally, the 

aberrator profile that fit the best the differential delays for all the pair of elements is 

found using a Least Mean Square (LMS) fitting that minimizes the least mean square 

error between the aberrator estimate and the differential delays (Fernandez, Gammelmark 

et al. 2003) and (Gauss, Trahey et al. 2001)The fact that not only delays between adjacent 
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elements but also delays between other pair of elements are used improves the robustness 

of the estimation, as more information is available. However, as the distance between 

elements in a pair increases, the Van Cittert Zernike theorem predicts a decrease in the 

correlation between the signals. When the correlation becomes too low, the differential 

delay estimate for the pair of element is very noisy and the benefits of using more pair of 

elements is overcame by the low quality of the additional delay estimate.(Fernandez, 

Gammelmark et al. 2003)  and (Gauss, Trahey et al. 2001) are therefore using only near-

neighbor pair of elements, up to 3 elements apart.  

 Another solution would be to use all pair of elements, but to weight the 

differential delay estimate given by each pair by the spatial correlation coefficients. Thus, 

pairs of elements that have a good correlation and thus provide a robust estimate have a 

large weight, while pairs of elements with a low correlation and therefore a large error in 

the estimate have a small weight. A variant of such a method is proposed by (Msoy, 

Angelsen et al.), in the temporal frequency domain.  

 We are now showing that it is also exactly what FDORT is doing. This is not 

surprising because Eq.4. 24 shows that the spatial correlation matrix, or FDORT matrix, 

contains the differential phase term for every pair of elements.  

Indeed, rewriting Eq.4. 16 with discrete formalism yield 
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Eq.4. 26                                      

)(iATxρ is the coherence of the signals for a pair of elements separated by i elements (lag 

i). It depends on the aberration in transmits. It is the triangle function if the transmit is not 
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aberrated. Let assume it is still a real positive function in presence of an aberrator. 

)(iARxρ is the autocorrelation of the receive aperture. The receive aperture phase 

comprises 2 terms: the receive aberration,  and a correction applied during the 

beamforming process, 

)(iAbφ

)(~ iφ . It is then possible to write the receive aperture as 

  )))(~)((exp()( iijiA Ab
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At lag 1 for example, the autocorrelation  is  )1( =iARxρ
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This expression is a sum of exponential whose arguments are the differences 

between the true differential phase and the estimated differential phase. Similar 

expressions are obtained for other lags. 

The 1st eigenvector of FDORT try to maximize the value of C by adjusting )(~ iφ , 

the estimated phase term. C is maximized if each of the is maximized.  At lag 1, 

(Eq.4. 27), it is obtained if all the exponential of the sum have the same phase, so that the 

sum is constructive (the sum can be seen geometrically as a sum of vectors of length 1, 

the resulting vector is the longest if all the vectors are aligned) thus, for every i 

)(iARxρ

 
 Aiiii AbAb +−+=−+ )()1()(~)1(~ φφφφ  

Eq.4. 28 

where A is a constant  At lag 2, maximization of  is equivalent to  )2( =iARxρ
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')()2()(~)2(~ Aiiii AbAb +−+=−+ φφφφ  

Eq.4. 29                 

C is maximized only if A=A’, so that the term at lags 1 and 2 have the same phase and 

add constructively in Eq.(16). This is possible only if A=0. Indeed 

Aii
iiiiii

AbAb 2)()2(
)(~)1(~)1(~)2(~)(~)2(~

+−+=

−+++−+=−+

φφ

φφφφφφ
 

Eq.4. 30 

using Eq.4. 28 twice. Eq.4. 29 and Eq.4. 30 are compatible with A=A’ only if A=A’=0.  

Eq.4. 28 with A=0 means that the difference between the true and estimated differential 

phase is minimized. Eq.4. 29 states the minimization of the difference between true and 

estimated 2-lag differential phase. Thus the phase of the 1st eigenvector is the estimation 

that fit the best the differential phase for all lags. 

According to Eq.4. 26, the contribution of each lag in C is weighted by , which is 

the coherence of the received signals for this lag. Therefore, the lags for which the signals 

are the most coherent have large weights, while signals that are very weakly correlated 

(and therefore result in a high variance in the estimation) have small weights and have a 

low contribution to the estimate.  

)(iATxρ

While the LMS algorithm minimizes the the least mean square error between the 

aberrator estimate and the differential delays, FDORT minimizes the error function .1 C−  
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VI. GREEN FUNCTION ESTIMATION AND FOCUSING IN PRESENCE OF 

STRONG INTERFERING SIGNALS 

 The FDORT method is quite complex to implement as it involves singular value 

decomposition of the spatial correlation matrix. As seen in the previous section, methods 

involving a simple summation of the coefficients in the 1st extra-diagonal only yield an 

estimate of the phase of the Green’s function as accurate as FDORT. A question one may 

ask is then what is then the advantage of the FDORT method? A first advantage has 

already been discussed before: unlike the other methods, FDORT provides both the phase 

and the amplitude of the Green’s function. In addition, it provides a measure of the 

focusing quality through the 1st eigenvalue. However, all this quantities could also be 

estimated independently. 

 There is another important advantage of using FDORT, which is similar to the 

advantage of using the DORT (or FDORT) method with point scatterers. The 

fundamental advantage of the DORT method is that it is able to separate the wave-fronts 

form different scatterers. Each eigenvector correspond to a different scatterer. It is then 

able to separate the signal of the target of interest from other signals (other scatterers, 

interferences..) This property is fundamentally linked to the interpretation as a covariance 

matrix (Gruber, Marengo et al.) and principal component analysis (Rao 1964) (Cooley 

and Lohnes 1971) 

In the same fashion, the fact that the FDORT method in speckle involves the 

decomposition of the spatial correlation matrix enables it to separate signals. Let us 

consider a simple example where one try to estimate a Green’s function from speckle 

signal in presence of a strong interference. In our case, the interference is a signal coming 
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from “infinite”. In practice, the interference can be due to an active source (a boat in 

underwater acoustic for example). In medical ultrasound, the interference could be a 

bright off-axis scatterer. A simple aberration method does not separate the signals, so the 

estimated phase will be an average of the interference Green’s function and of the 

Green’s function that one wants to estimate (Dahl and Trahey 2003). If the interference is 

much stronger than the speckle signal, then the estimate gives the phase of the 

interference and it is impossible to know the desired Green’s function. However FDORT 

has the ability to separate the 2 signals as long as they are orthogonal (resolved). The 1st 

eigenvector will typically be the interference Green’s function, while the 2nd eigenvector 

will be the desired speckle Green’s function. It does not matter how much stronger is the 

interference signal. 

Simulation  

The setup is illustrated in Figure 101. The speckle is placed behind a phase screen. This 

setup has been simulated with an interference signal 1000 times stronger (60 dB) than the 

speckle signal of interest. The magnitude of the interference is exaggerated to 

demonstrate the efficiency of the FDORT algorithm.  
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Figure 101 Setup for the simulation: the goal is to estimate the Green’s function of point P in 

speckle (blue wave-front) using focused transmit, in presence of a strong interferer signal (red wave-

front). The signal from point P travels through an heterogeneity, but the interferer does not. In order 

to estimate the parameters of the heterogeneity it is necessary to isolate the wave-front of P from the 

interferers. In the simulation, the interferer is 1000 times stronger than the signal.   

 
 The phases for the 1st and 2nd eigenvector of FDORT are displayed in Figure 102. 

The geometrical delay law has been subtracted from the 2nd eigenvector for clarity. It is 

clear that the 1st eigenvector corresponds to the interference and the 2nd eigenvector to the 

speckle target. The distortion due to the heterogeneity is seen in the phase of the speckle 

Green’s function, and not in the phase of the interference as the interference signal did 

not go through the heterogeneity.  
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Figure 102 Phase for the 1st and 2nd eigenvector of FDORT, corresponding to the setup of Figure 101. 

The 1st eigenvector corresponds clearly to the interference, while the 2nd corresponds to the speckle, 

and carries information on the heterogeneity.  

 
Backpropagation of the eigenvectors, shown in Figure 103 confirms that the 2 signals are 

very well separated. In addition, it shows that the estimate of the speckle Green’function 

is excellent as one is able to achieve very good focusing through the heterogeneity. The 

eigenvectors shown here were obtained after 4 iterations, where the 2nd eigenvector was 

used to correct the transmit.  

 

Figure 103Fields after numerical backpropagation of the 1st (left) and 2nd eigenvectors. This confirms 

that the 1st eigenvector corresponds to the interference, while the 2nd eigenvector corresponds to the 

desired speckle signal. The eigenvector corresponding to the speckle is a very good estimate of the 

 212



Green’s function and leads to a good focusing through the heterogeneity despite the presence of the 

strong interfering signal.    

It is remarkable that such an accurate estimate of the speckle Green’s function is 

possible in presence of an interfering signal 1000 times stronger. This is an important 

property of FDORT.  

With another estimation method, like the 1 lag cross correlation method, this is 

not possible. The phase profile estimated with the 1-lag method is shown in Figure 104. It 

is completely dominated by the strong interference. It is difficult to extract any 

information about the heterogeneity from this curve, and the focusing in speckle cannot 

be achieved using this method.   

 

Figure 104 Phase estimate obtained with the 1-lag cross-correlation method. The estimate is 

completely dominated by the interference, and it is not possible to extract any information about the 

heterogeneity.  
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 Some application of this signal separation property also arises when there are a 

few bright scatterers in a speckle medium. If one try to estimate the Green’s function in a 

region of pure speckle, there are chances that one receives not only echoes from the 

speckle region, which is the region insonified by the transmits, but also from bright 

scatterers outside of the region. This happens even though one focus in transmit far from 

the bright scatterers because there is some energy in the side lobes of the transmit. In this 

case we talk about off-axis scatterers. This can be an important problem in aberration 

correction if the off-axis scatterer is not in the isoplanatic patch of the speckle. In this 

case the wave-fronts of the speckle and of the off-axis scaterrers are distorted by different 

aberrations, and a classic estimation method will yield an average of the two aberrations, 

which will not lead to a very good focusing on the speckle region, nor on the off-axis 

scatterer. FDORT can separate the aberration profiles. 

 One can note that even though FDORT can separate the Green’s function of two 

scatterers, the order of the Green’s function can change when the method is iterated. For 

example, in an experiment, FDORT was used to estimate the Green’s function in a 

speckle region in the phantom of Figure 96, close from a bright scatterers. For the 10 first 

iterations, the 1st eigenvector was corresponding to the speckle, and the scatterer’s 

eigenvector was 2nd. However, after 10 iterations, the bright scatterer’s eigenvector took 

the first position.  

VII. CONCLUSION 

 It has been shown that FDORT could be used to extract Green’s functions from 

speckle signal as well as from resolved scatterers. With resolved scatterers, the operator 

KKH, built with the FDORT method, is connected to Time Reversal. In speckle, it has 
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been shown that KKH was connected to another fundamental theorem of acoustics, the 

Van Cittert Zernike theorem. This yields an interpretation of the 1st eigenvalue of the 

FDORT matrix as the focusing criterion C, which is a measure of the quality of the 

focusing, and has been used in number of publications. In speckle KKH can alternatively 

be interpreted as a canonical Time Reversal Operator for an equivalent virtual object that 

has the shape of the transmit. This leads to an intuitive understanding of the 

eigenvectors. Thus, the first eigenvector focuses on and is the Green function of the 

brightest point of the transmit beam pattern, which, in homogeneous medium is the focal 

spot of the transmit. In heterogeneous medium, a few iterations of the method are often 

needed to converge on the Green’s function of a point. The interpretation of the 1st 

eigenvalue of KKH is of particular interest, as it indicates objectively when the focusing 

is good enough and the iteration can be stopped. The focusing properties of the 1st 

eigenvector of KKH have been demonstrated for different model of heterogeneities. 

Finally, a main feature of the FDORT method is its ability to separate wave-fronts. In 

particular, it is able to separate the signal of interest from interferences and off-axis 

scatterers. 
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APPENDIX A COHERENT INTENSITY AND FOCUSING CRITERION IN 

FUNCTION OF THE SPATIAL CORRELATION FUNCTION 

 

From Eq.4. 12 and Eq.4. 13, the coherent intensity is  
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Using Eq.4. 10 yields 
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We introduced earlier a transmit aperture function. Similarly, the receive aperture 

function in presence of the aberrator is  

*)( )()( XVeXA i
Ab Xj

Rx
φ=  

Eq.4. 31 

                                                               

V(X) is an apodization function, that can also be complex to allow for aberration 

correction. Using the continuous formalism  

jijiATxjRxiRx dXdXXXRXAXAI )()()( * −= ∫∫γ                                       

Letting ∆X be Xi-Xj leads to  
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we recognize in the first integral dXjXAXXA jRxjRx )()(∫ +∆  the autocorrelation 

function of the equivalent receive aperture denoted . Now )(XRARx

 
XdXRXRI ARxATx ∆∆∆= ∫ )()(γ  

Eq.4. 32 
                                                                             

We also need to express the incoherent intensity. Eq.4. 15 yield IInc=Ne.RS(i,i) 

From Eq.4. 11, )0(),( ATxSS RiiR β=  

And in the continuous formalism, we can write Ne=larray, the array length. Finally, 

arrayATxInc lRI ⋅= )0(β  

Eq.4. 33 

Now, we can derive an expression of the coherence factor by taking the ratio of equation 

Eq.4. 32 and Eq.4. 33. Let us first introduce a normalized version of the aperture 

autocorrelation function, known as the coherence function 

)0(
)(

)(
ATx

ATx
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X =ρ                                         

The maximum of the coherence function, reached for X=0, is 1, for any aperture used. 

For the receive aperture, Eq.4. 31 yields since v(X) has a unit 

norm. Then . Thus, 
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the last step was obtained using a change of variable.                         
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Appendix B. VARIANCE OF THE ESTIMATION 

 It was mentioned in Section III.C. that the maximum variance reduction that one 

can achieve in a given volume of speckle is equal to the number of resolution cells in the 

volume. We provide here a more rigorous derivation of this.  

 For simplicity, we start deriving the result for the amplitude of the coefficients of 

the spatial correlation matrix (or FDORT matrix). The case of the phase will then be dealt 

with.  

A. Variance of the amplitude of the spatial correlation 

coefficients 

 The estimate of the spatial correlation between the signals received by element i 

and element j is given by  
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Eq.4. 34 

This is the average value on I realizations of the product of the signals received by 

the transducers. As explained in III.C, the realizations can be taken by transmitting at 

different azimuths x, and by selecting signals from different depths (different arrival time 

t). To highlight this, let us note one realization of the signal received by element m 

Sm(x,t). Let us now imagine that we average on every realizations from a given volume of 

speckle (here, as we are considering a 2D geometry, it is more rigorously an area of 

speckle). The dimension of the volume is X in azimuth, and T in arrival time (depth). The 

estimate of the spatial correlation coefficient can thus be rewritten, using continuous 

notations instead of discrete ones 
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( ) ∫∫ ⋅=
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nmnm
H dxdttxStxS

XT
KK *

, ),(),(1     

The integral on the area of speckle is the continuous equivalent of the sum in 

Eq.4. 34. Each position (x,t) defines here a realization, that was indexed by i in the 

discrete formulation.   

Let us first check that the expected value of the estimation is the spatial 

correlation between the signals. The expected value is  

( ) ∫∫ >⋅<>=<
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By definition, 

  >⋅>=<⋅< **),(),( nmnm SStxStxS

Eq.4. 35     
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is the spatial correlation. It is independent of the index (x,t). Of course, this rely on the 

position (x,t) being in the isoplanatic patch, close to the focal depth, and on the wave-

fronts being properly shifted as explained in Figure 82, so that the  can be 

considered as different realizations of the same signal. Then    
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Indeed, is the total area and is thus equal to XT. We have shown that in average, 

the coefficients of the FDORT matrix, 

∫∫
area

dxdt

( ) nm
HKK , , are equal to the spatial correlation 

coefficients. This seems obvious as ( ) nm
HKK ,  is an estimate of the spatial correlation 

coefficients, but it is not the case for all estimators in statistics. ( ) nm
HKK ,  is said to be a 

non-biased estimation of the spatial correlation coefficient.  

More interesting is the variance of the estimation. The variance is defined by  
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H KKKKKKKK  

Eq.4. 36 

         

The second term is the square of the expected value derived before.  

( ) 2*2
, >⋅=<>< nmnm

H SSKK  

Let us focus on the 1st term. 
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Eq.4. 37 

The derivation of the variance involves a product of 4 terms, and is therefore 4th order 

statistics. 4th order moments are usually very difficult to compute. However, in the case 

of jointly Gaussian variable, as it is the case with speckle signal, the 4th order moment 

can be expressed as a sum of 2nd order moments. This is the known as the Gaussian 

moment theorem (also known as Wick theorem) (Goodman 1985). Let u1, u2, u3, and u4 

be 4 jointly Gaussian random variables. The Wick formula says [eq.(2.8.-22) in 

(Goodman 1985)] 

 *
23

*
41

*
43

*
21

*
43

*
21 uuuuuuuuuuuu +=    

 In our case, this yield  
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Eq.4. 38 

 The 1st term simplifies using Eq.4. 35. to yield   

2*** )2,2()2,2()1,1()1,1( >⋅=<⋅⋅ nmnmnm SStxStxStxStxS  
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This term will cancel out with the 2nd term of Eq.4. 36 as will be shown later. For 

now let us focus on the 2nd term of Eq.4. 38, which is responsible for the variance.  

*)2,2()1,1( txStxS mm ⋅  represents the correlation between the signal from a window 

located at position (x1,t1) and the signal from a window located at position (x2,t2). This 

has been derived in Section II.C.2.. It is independent on the receiver m and leads to  
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*

2211 zzxxItxStxS wInc −−= σ  

 Injecting this in Eq.4. 38 yield  
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Equation Eq.4. 37 becomes 
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Finally, the variance expressed in Eq.Eq.4. 36 becomes 
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Changing the variable to x1=x+x2 and t1=t+t2 yields  
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and finally noticing that  leads to the expression of the variance XTdtdx =∫∫ 22
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Now XT is the area of speckle interrogated, and the integral term also has the dimension 

of an area. ),( zxwσ  is a function which is basically non-zero only on a zone that has the 

size of the resolution cell, and whose maximum value is 1. If the area of integration is 

larger than the resolution cell, then ∫∫ dxdzzxw
2),(σ  is about the area of the resolution 

cell (modulo a numerical factor that depends on the bandwidth and apodization). 

Therefore, the variance is proportional to the number of resolution cell in the total area. 

In general, with a 2D array, the reduction in variance of the estimate is proportional to the 

number of resolution cell in the volume of speckle used for the estimate.  
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 A very important conclusion, is that even if a continuum of realizations (each 

realization corresponding to a pair (x,t)) is used, the variance is reduced only by a finite 

amount. In other words, there are only a finite number of realizations in the speckle 

volume, which is the number of resolution cells, . There is then no use to use 

more than  realizations if they are well chosen so that they are independent.  

cellresolutionN _

cellresolutionN _

 Another interesting parameter is the space-bandwidth product. It is easily shown 

that ∫∫  is roughly equal to the inverse of the area of the spectrum  

of the wave-front. The spatial frequency domain is also known as k-space. The variance 

is inversely proportional to the product of the area of speckle by the area of the spectrum 

of the system. Then another expression of the variance is  
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We used the fact that the area in k-space could be approximated by the product of the 

temporal bandwidth B and the spatial bandwidth F
D

λ . 

 The expression in function of the area of the spectrum is particularly important. 

Indeed, the amplitude of the spectrum, and then its area, is independent of the depth 

(Zemp and Insana 2004).In particular it is the same at the focal depth and at other depth. 

Only the phase of the spectrum is changing, which does not affect the area. Also in a 

good approximation, the amplitude of the spectrum is not affected by a near field phase 

aberration. This means, that, counter intuitively,  the quantity of information is the same 

out of the focus, or in presence of a phase aberration.  

B. Variance of the phase 

Computing the variance of the phase is more technical. Such a derivation is 
done in chapter 6.2 of (Goodman 1985), for a one-dimensional (time) signal. This can be 
easily generalized to our 2-dimensional model (azimuth-time) using the derivation in 
Section 4.VI.A. Only the main results are given here.   

The 1st step is to compute the variance for the real part and the imaginary part of 

the spatial correlation coefficients. This is very similar to the derivation of the previous 

section (4.VI.A.) The only difference is that it involves computing correlation like 

*)2,2()1,1( txStxS nm ⋅  where both the speckle region and the receive element are 

different. This is half way between the Van Cittert Zernike theorem and the result of 

II.C.2. A rough approximation made by Goodman is 
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This allows to compute easily the mean value and variances 
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The variance of the phase can then be represented graphically by representing a 

cloud of probability for the complex coefficient ( ) nm
HKK , as shown in Figure 105. The 

variance does not depend only on the number of resolution cell, but also on the coherence 

of the signals received by a pair of element. According to the Van Cittert Zernike 

theorem, neighbor coefficients have a high coherence, and ),( nmµ  is close to 1. In this 

case the variance of the phase is small. This makes sense, as when the signals are 

perfectly coherent, their phase difference is constant. For elements further apart, 

especially in a heterogeneous medium where the coherence length is decreased, ),( nmµ  

can be close to zero, and the variance of the phase is important. In all cases, it decreases 

inversely proportionally to the number of resolution cells.  
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Figure 105 Probability clouds for the spatial correlation, for 3 values of the coherence. From top left 

to bottom: ),( nmµ =0, ),( nmµ =0.5, ),( nmµ =0.98. As the coherence increases, the phase 

variance decreases.  

 In the limit where the number of realizations is important and ),( nmµ  is not to 

small, a closed formula can be derived for the variance of the phase (6.2.-3 in (Goodman 

1975)) 

( )( )[ ] 2
_

2

,
),(

),(1
var

nmN

nm
KKangle

cellresolution
nm

H

µ

µ

⋅

−
=  

This formula is a general version of the one derived by (Walker and Trahey 1995).In 

our case, the realizations are taken from a volume, (or area) of speckle. In his case, the 

only averaging was in time. 
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I. INTRODUCTION 
 

 The DORT (and FDORT) method is a powerful technique to extract 

monochromatic Green’s function from a medium. However, in medical ultrasound, like 

in several other modalities, broadband signals are used. The broadband nature of the 

signal offers one great advantage, which is the axial (in depth) resolution of the scatterers 

in an image. With one frequency, or narrow-band signals, the scatterers are badly 

resolved in depth. A shadow can also be observed. With the broad-band signals used in 

medical ultrasound (the bandwidth is usually about 60% of the central frequency and 

even more with the new generation of transducers) an axial resolution of the order of the 

wave-length is achieved.  

 Sometimes, enough information can be extracted from the Green’s function at the 

central frequency. For example, in the near-field phase screen model, the aberration is 

modeled as a delay, and therefore the knowledge of the phase at one frequency is enough. 

However, most of the time, it is essential to have broad-band (or temporal) Green’s 

function. For example, to focus on a scatterer by time reversal, one needs the temporal 

Green’s function. In wave-guides (Folegot, Prada et al. 2003; Prada, Rosny et al. 2006) or 

in any case of multiple reflections (multiple reflections are observed in medical imaging) 

temporal Green’s function are also required to see the multiple arrivals. Finally, in a 

general model of aberration, where the aberration phase depends on the frequency, it is 

necessary to know the Green’s function for every frequency sample of the bandwidth.    

 One solution is to compute the invariants of theTime Reversal Operator at every 

frequency sample, and then to do a Fourier Transform to obtain the invariant in the time 
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domain. This is what we have done in the previous chapters when we have been showing 

temporal Green’s function. This approach works well when only one scatterer, or a few 

scatterers with different reflectivities are present. However, if there are a few scatterers 

with similar reflectivity (and therefore similar singular values), or if their reflectivities 

vary differently in function of the frequency, we usually observe a permutation problem. 

In other words, the order of the singular vectors changes with the frequency. For 

example, one scatterer might be the brightest, at low frequencies, and therefore it will 

correspond to the first singular vector (the one with the higher singular value), and 

another scatterer might be brighter at higher frequencies. This problem is illustrated in  

 

Figure 106 Permutation problem for two scatterers (in-vivo microcalcifications). The 1st singular 
vector of DORT (blue) corresponds to the scatterer I at low frequency, and to the scatterer II at high 
frequency, because the reflectivity functions of the scatterers cross each other.  
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Figure 107 Permutation problem in the case of  9 wires in a medical phantom (depitcted on the right 
in the blue box) One wire is significantly brighter than the other, but the other wires have similar 
level of reflectivity, therefore the singular values cross eact others.  

 In this case, taking the Fourier Transform of the 1st singular vector will give a 

mixture of several Green’s functions.  

The main objective of this Chapter is to derive methods to solve this problem, and obtain 

proper time-domain Green’s function. Other less important limitation of the 

monochromatic approach will be addressed: 

• One of them has been solved partially in Chapter 2.V.: while the DORT 

method yield a good lateral separation of the scatterers, the axial 

separation is very weak (two scatterers with same azimuth but different 

depths are likely to be coupled: the two singular vectors will be a 

combination of the scatterers’ Green functions) The DORT method does 

not take advantage of the temporal resolution offered by broadband 

signals. Fourier transforming the frequency domain singular vectors does 

not help. 
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• Moreover, the temporal signals obtained by Fourier transforming the 

monochromatic singular vectors are not really invariants of the time 

reversal process. They are invariant spatially, but not temporally. The 

transfer function of the transducers, foe example, spread the signal at each 

time reversal process. 

 Since it is difficult to reconstruct the time-domain Green’s function from the 

frequency domain ones, the best solution seems to compute directly the invariants of the 

Time Reversal in the time domain. This is the object of the Section II. We will show how 

to build this operator that takes the form of a tensor, and how to decompose it. However, 

we will see that the solutions do not fulfill all our wishes and we will explain why 

physically.  

 A method based on the decomposition of a Focused tensor, that mixes the tensor 

approach with the focused beams, is then proposed. This method is a good solution for 

our problem. However, we will see that it requires a-priori information on the medium.  

II. SPATIO-TEMPORAL INVARIANTS OF THE TIME REVERSAL  

II.A Heuristics 
 In order to compute the invariants to the Time Reversal in the time domain, we 

need to build the Time Reversal Operator in the time domain. In the frequency domain, 

the Time Reversal Operator was represented by a matrix. In the time domain, things 

become more complicated mathematically, and we need to introduce higher order tensor. 

In Section II.B, a rigorous mathematic formalism is introduced. But we first want to 

justify intuitively the need for the tensor representation.  
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II.A.1 Reminder: frequency domain formalism   
 In the frequency domain (Prada and Fink 1994; Prada, Manneville et al. 1996), 

the received signal vector R(ω) is linked to the transmitted (emitted) signal vector E(ω) 

by the transfer matrix K(ω) 

    )()()( ωωω EKR =  

Eq.5. 1 

 In order to show explicitly the dimensions of the quantity considered, we 

introduce Einstein’s notations. The indexes are explicitly shown, and the summation is 

done on the repeated index (m in Eq.5. 2). Eq.5. 1 is rewritten 

    )()()( , ωωω mmii EKR =  

Eq.5. 2 

 In Eq.5. 2, the index k refers to an array element in receive (spatial sample in 

receive) and the index j to an array element in transmit. The Time Reversal Operator is 

KKH. Usually, the singular value decomposition of K is used to compute the invariants of 

the time Reversal Operator. 

II.A.2 Time Domain Formalism 
 In the frequency domain, the signals were represented by vectors. Each element 

corresponded to a spatial sample. In the time domain, we need two dimensions to 

describe the signals: the spatial dimension (array elements) and the time dimension. 

Therefore, a signal is represented by a matrix. A typical time domain emitted signal is 

represented in Figure 108. This signal is represented by the matrix Em,n. The index n 

refers to a time sample in the observation window.  
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Figure 108 A time domain transmitted signal. Two indexes are required to describe the signal. m 
refers to the spatial dimension, and n referes to the time dimension 

 Similarly, the received signal is represented by the matrix Ri,j. Now, the received 

signal can be linked to the transmitted signal by a transfer tensor (a tensor is the 

generalization of a vector or matrix to any dimension) As we need two indexes to 

describe the transmit signal, and two other to describe the receive signal, the transfer 

tensor has 4 indexes: i,j,m,n. It is a 4th order tensor. Eq.5. 2 becomes  

    nmnmjiji EKR ,,,,, =

Eq.5. 3 

  represents the signal received on element i, at time sample j when a pulse 

is transmitted by element m at time sample n. (In practice, it is not required to transmit a 

pulse at each time sample to acquire the tensor. Indeed, the process is time shift invariant, 

therefore the received signal when a pulse is transmitted at time sample n+1 can be 

deduced from the received signal when a pulse is transmitted at time sample n by a shift 

in time)   

nmjiK ,,,
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 In practice, we are not using the transfer tensor, but the Time Reversal Operator 

described in the next section. Indeed, the observation window in receive is too large with 

the transfer tensor: the echo coming from scatterers at very different depths will arrive 

with a large delay between them. Decomposing such large tensor is computationally 

prohibitive. However, when the echos are time reversed and retransmitted, the echos 

from all scatterers (after 1 time reversal cycle) will arrive simultaneously, which reduces 

greatly the size of the observation window.    

II.B The Time Reversal Operator in the Time Domain 

II.B.1 Expression of the Time Reversal process in the time domain 
 We are now using continuous notation for the time dimension, and discrete 

notation for the spatial dimension (array element). This gives more physical meaning to 

the derivations. The signal received by element i is now Ri(t). Einstein convention is still 

used for the discrete dimension (implicit summation on the repeated index) Eq.5. 3 

becomes 

   ∫ −=
T

mmii dEtKtR
0

0
,

0 )()()( τττ

Eq.5. 4                                    

where T is the length of the transmitted pulse, E0
m(t). We can write )( τ−tKm instead of 

),(, τtK mi  because of the time shift invariance. The upper index 0 is used to differentiate 

the signals at the different iterations of the time reversal.  

 The signal is time-reversed (E1
i(t) =R0

i(-t)) and transmitted back to the medium. 

A new echo, R1
k(t) is received 
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The second time integral is infinite as the received signal R0
i(-t) can be very long, as 

explained at the end of Section.II.A.2. (Extending the integration to negative times has no 

consequence as the signals are equal to zero for negative times) Let 21' τττ −−= ; the 

quantity inside the brackets becomes 

  ∫∫
∞

∞−

∞

∞−
++=−−− '))('()'()()( 2,,121,1, ττττττττ dtKKdKtK ikmimiik

Eq.5. 6          

 Invoking the spatial reciprocity principle yield )()( ,, tKtK kiik = . In Eq.5. 6, the 

summation on the repeated index i was implicit. Writing it explicitly yield 

   =−−−∫
∞

∞− 121,1, )()( ττττ dKtK miik ∑∫
=

∞

∞−
++

N

i
ikmi dtKK

0
2,, '))('()'( ττττ

Eq.5. 7 

where N is the number of array elements.  

  is the cross-correlation between the impulse 

responses received by element k and element m, when a pulse is transmitted by element i, 

evaluated at lag 

∫
∞

∞−
++ '))('()'( 2,, ττττ dtKK ikmi

t+2τ . In the left side of Eq.5. 7, we recognized this cross-correlation 

function, averaged on all transmits i. The realizations of this correlation function are then 

taken both in time and in space. Let )( 2, tC mk +τ be this correlation function 
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Eq.5. 8 

 Using Eq.5. 8 in Eq.5. 5, the receive signal after the Time Reversal process 
becomes 

    ∫ +=
T

mmkk dEtCtR
0 22

0
2,

1 )()()( τττ

Eq.5. 9                                                                  

 Finally, the input for the next iteration is the time reversed version of .  )(1 tRk

    ∫ −=−=
T

mmkkk dEtCtRtE
0 22

0
2,

12 )()()()( τττ

Eq.5. 10 

with, still, implicit summation on the repeated index m. Eq.5. 10 defines the time domain 

Time Reversal Operator. 

II.B.2 Time Domain Invariants of the Time Reversal Operator 
The invariants are given by . As is of finite length T, then 

must also be of finite length T. We are then only interested by Eq.5. 10 for 

. This yield  

)()( 02 tEtE µ= )(0 tE

)(2 tE

Tt0 <<

∫ −=
T

mmkk dEtCtE
0 22

0
2,

0 )()()( τττµ            Tt0 <<        Nk1 <<

Eq.5. 11         

II.B.3 Discrete formulation: the Time Reversal Tensor 
We are now discretizing the time. becomes , and  becomes 

. The integral (continuous summation) is replaced by the discrete (implicit) 

summation on the index n. Eq.5. 11 becomes 

)(0 tEk
0
,lkE )( 2

0 τmE

0
,nmE
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0
,,,,

0
, nmnmlklk ECE =µ  

Eq.5. 12 

with   ][)()( ,,,,,, lnC
f

lnCttCC mk
s

mklnmknmlk −=
−

=−=  

Eq.5. 13 

where fs is the temporal sampling frequency, and using signal processing notation in the 

last equality.  

The tensor  is the time domain Time Reversal Operator. The link between 

Time Reversal Operator and correlation (covariance) matrices has already been pointed 

out in the monochromatic case(Prada and Thomas 2003; Gruber, Marengo et al. 2004) It 

is very clear in the time domain: the coefficients of the Time reversal Operator are given 

by the cross-correlation of the signals received by two elements, averaged on all the 

transmits.  

nmlkC ,,,

To summarize, the coefficient is obtained by the following processing:  nmlkC ,,,

• A pulse is transmitted with the 1st element; and the signal is received by 

elements k and m. The cross-correlation function of the two signals is 

computed. 

• The process is repeated for each transmit elements. The cross-correlation 

functions obtained for all transmits are averaged to form  )(, tC mk

• The coefficient  is the [n-l] time sample of  nmlkC ,,, )(, tC mk

 The time domain invariants of the Time Reversal Operator are found by 

decomposing the tensor . The method for the decomposition is given in Section 

II.C.  

nmlkC ,,,
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II.C. Decomposition of the Tensor  

II.C.1 Existence of the decomposition 
Using the spatial reciprocity principle, and a shift in time in Eq.5. 8, we find 

 

 lknmlnkmlnmknmlk CttCttCC ,,,,,,,, ))(()( =−−=−=  

Eq.5. 14 

which ensures the existence of a eigen-decomposition of the tensor (Cardoso 1991).  

II.C.2 Maping of the tensor to a matrix  
 The decomposition of high-order tensor is not unique, unlike the 2D (matrix) 

case. There exists several generalization of the SVD, depending on the properties one is 

looking for. The decomposition that we propose here is the one that leads to the spatio-

temporal invariants of the operator, which is a priori what we are looking for.   

 The 4th order problem may be transformed in a matrix eigen-problem that can be 

numerically solved. Each pair (k,l) may be indexed by a number α, LK ⋅≤≤ α1 , where 

K and L are the number of samples in space and time ( K=N, the number of elements and 

L=  where T is the length of the observation window (in s), fs is the sampling 

frequency and therefore  is the number of time samples). In general, we can choose, 

sfT ⋅

sfT ⋅

( ) kKl +⋅−= 1α . This is equivalent to unwrap the tensor and matrices, and is shown in 

Figure 109. Each pair (m,n) may also be indexed by β, sfTN ⋅⋅≤≤ β1 ., and finally 

Eq.5. 12  becomes 

     0
,

0
ββααµ ECE =
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and the decomposition of  is computed using a conventional matrix decomposition. 

The singular (or eigen) vectors obtained have to be remapped into singular matrices. For 

example, the SVD of  yield 

βα ,C

βα ,C βαβα SVUC =, , and Uα is remapped into Uk,l. 

 

Figure 109 Unwrapping a matrix into a tensor. By remapping the indexes, the four dimensionnal 
problem is transformed into an easily solvable 2D problem. 

II.D. Practical implementation and results 

II.D.1. Practical implementation 
 The matrix  can become very large (βα ,C sfTN ⋅⋅≤≤ βα ,1 ). To be able to 

perform its decomposition using software like Matlab, it is necessary to limit its size. The 

number of spatial samples is the number of array elements and cannot easily be reduced. 

However, the number of times samples can be kept low by selecting a small observation 

window, and using the minimum sampling frequency (given by the Nyquist limit). In our 
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implementations, we had 60 samples in time and a 64 elements array. The pitch was 0.4 

mm, and the center frequency 7 MHz.  

 We used Field II for the simulations, and Matlab for the signal processing. Only 

the first few singular vectors are computed.  

II.D.2 Results with two well-resolved scatterers 
 Two resolved point-scatterers are simulated at a depth of 50 mm. They were 

separated by 5 mm. We are expecting to obtain the Time domain Green’s functions of the 

scatterers. The results are shown in Figure 110.  

 

 

Figure 110 Top left: signal received for one transmit showing the two scatterer’s echos. Top right: 
singular values of the time domain Time Reversal Operator. Bottom: first invariants for each of the 
scatterer.  
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 As expected, we obtains two singular matrices that looks like the scatterers 

Green’s function. However, the wave-fronts are larger in time than the original wave-

fronts. Moreover, there is not only two non-zero singular values, as we could have 

expected by generalizing the monochromatic results, but nearly 20. These results are 

analyzed in the following Section, and it will be shown that they are coherent with the 

Time Reversal Invariance.  

II.D.3 Interpretation 
 To understand the results, a single scatterer has been simulated. The results are 

shown in Figure 111 to Figure 113. 

 

Figure 111 Left: Echo from one transmit ; Right singular value decomposition for a single scatterers. 
Multiple non-zero singular values are presents.  
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Figure 112 Left: First temporal invariant. The 2nd invariant has a very similar shape. Right: the 
signal on one element for the two first invariants are compared. They correspond to a sine and cosine 
modulation, and have the same eigenvalue. 

 

 

 
Figure 113 Third and fifth invariants. The 4th, resp. 6th,  invariant has the same envelope as the 
3rd,resp. 5th invariant but a sine modulation. 

 Even for a single scatterer, several non-zero singular values are observed. This is 

at first surprising, but is finally coherent with what we are looking for: the Invariants of 

the Time Reversal Operator. Indeed, if one wave-front is invariant of the Time Reversal, 

the same wave-front shifted in time will also be an invariant (Figure 114). The singular 

matrices are combinations of the different shifted versions of the scatterer Green’s 

function, which is why they appear so large. Physically, there is then no reason to have 

only one spatio-temporal invariant for each scatterer.  
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Figure 114 Left: a scatterer Green’s function. Right: the same Green’s function shifted in time. If 
the first one is an invariant of the Timr Reversal Operator, then the second is also an invariant. The 
singular matrices (Figure 112 and Figure 113) are combination of these shifted signals.  

 

 For each singular value, we observe two singular matrices that have identical 

singular values. They correspond to the same wave-front, but shifted by a quarter of a 

wave-length. They correspond to sine and cosine modulation of the signal (Figure 112)   

 Physically, there could be an infinite number of invariants for each scatterer 

(obtained by shifting a 1st invariant in time by different amount) In practice, the number 

of invariant is limited by the size of the observation window. The number of non-zero 

singular values is related to the number of wave-fronts that can fit in the Observation 

Window. This is given by the time-bandwidth product WT (W is the bandwidth and T is 

the observation window). In fact, the problem is very similar to the extended object 

problem presented in Chapter 3. For an extended object (at a given frequency), the 

number of invariants is given by the number of resolution cell that fit in the object, or the 

product of the object length D by the spatial bandwidth L/λZ (the size of the array is L). If 
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the bandwidth of the transducer was square, instead of typically Gaussian, the different 

time-domain invariants would be given by the Prolate functions. The cosine and sine 

modulation arises from the fact that the bandwidth has both positive (centered around 

+7Mhz) and negative frequencies (-7MHz).  

 The problem may actually be considered as a 2D problem (2D array, 2D objects) 

The 2nd array dimension being the time-window, and the 2nd object dimension being the 

temporal frequencies. The equivalent object is plotted in Figure 115.  

 

    

 

x 

t 

W 

 
Figure 115 Equivalent 2D objects for the spatio-temporal problem, for a point scatterer. The 
temporal dimension appears has an extended object in both case, the size of the object been given by 
the bandwidth W.  There is one object in the positive frequencies and another in the negative 
frequencies, which double the number of invariants. 

 

 Note: The singular matrices of the time domain Time Reversal Operator are 

invariants in space and time of the time reversal, and thus they keep the same shape after 

several iterations, which is not the case for wave front reconstructed from the 

monochromatic singular vectors of the DORT method.   

 To summarize, the decomposition of the time domain Time Reversal Operator 

does not yield one unique invariant for each scatterer, but several ones. The invariants are 
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the combination of different time-shifted versions of the Green’s function. The 1st 

invariant can be seen as a large, narrower bandwidth version of the desired Green’s 

function.  

 The nice properties of the monochromatic invariant of the Time Reversal 

Operator (the number of non-zero singular values is equal to the number of scatterers, 

and the singular vectors are the Green’s function) are not conserved in the Time Domain. 

 In fact the monochromatic properties are linked to the Covariance matrix 

interpretation and the Principal Component analysis (Rao 1964). In 2D (matrices) there is 

a unique singular value decomposition, and the singular vectors enjoy many properties. 

At higher dimensions, there is several generalization of the SVD, but none of them offers 

all the benefits of the 2D SVD. Principal Component Analysis generalization to higher 

order is an active topic. Several algorithms have been proposed. Most of them need a 

priori information about the problem and are very specific to a given problem.  

II.D.4 Improvement  
   It is possible to improve the method to have less invariants for each scatterer, 

and have invariants less spread in time.  

One solution to reduce the observation window length T (the number of invariant 

being related to the number of wave-fronts that can fit in the window). However the wave 

front is partially cut, as seen in Figure 116. 
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Figure 116 Singular values and 1st singular matrices for the same scatterer as in Figure 111, but 
using a smaller observation window. The number of singular values decreases, but the wave-front is 
partially cut. 

 A better solution is to use an asymmetrical tensor . We can reduce the 

observation window corresponding to the index n, while keeping a large window for the 

index l. The number of invariants is considerably reduced, as seen in Figure 117, but the 

wave-front is still observe entirely, because we plot the singular matrice U

nmlkC ,,,

k,l, 

corresponding to the full time window. Good results were obtained, especially when n is 

reduced to only one sample. However, this method is not as good to separate nearby 

scatterers. Indeed, the Green’s function of the scatterers will be separated by the SVD if 

both the singular matrices Uk,l and Vm,n are orthogonal. When n is reduced to 1 sample, 

Vm,n correspond to a single line of the wave-front Figure 118. Typically, only the low 

frequency component of the wave-front is encoded on this line, and the resolution is not 

as good. Therefore, the separation of 2 Green’s function for nearby scatterer may not be 

complete (Figure 119) 
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Figure 117 Singular values and 1st singular matrice (Uk,l) obtained with a full time-window in 
transmit on the left side of the tensor (index l), but a time window reduced to 1 sample on the right 
side (index n). The number of invariants is reduced and the invariant is more concentrated in time. 
Moreover, the method has a low processing cost.   

 

 
Figure 118 Vm,n is reduced to only one line when the observation window is reduced to one sample in 
the dimension n. Two Green’s function are then less likely to be orthogonal and separated by the 
SVD, because all spatial frequencies are not encoded in this line (the low frequencies are typically at 
the front of the wave-front, while the high frequencies are in the tails) Therefore the separation of 
Green’s function is less good   
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Figure 119 Separation of 2 scatterers responses when n is reduced to one sample. The Green’s 
function are not as well resolved as with the full method Figure 110. 

 

II.D.5 Invariants for an extended objects 
 The temporal invariants for an extended objects are very difficult to reconstruct 

from the monochromatic invariants, because the singular values are very similar and 

therefore the order of singular vector changes easily in function of the frequency. Time 

domain invariants are easily found by decomposition of the Time Reversal Tensor. The 

spatial variation is typical from the Prolate functions (Chapter 3).  
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Figure 120 A few invariants for an extended objects.  

III. DECOMPOSITION OF THE FOCUSED TENSOR 

 The decomposition of the time domain Time Reversal Operator provides the 

spatio-invariants of the Time Reversal, but do not offer a generalization of the properties 

of the monochromatic invariants. There is not a unique non-zero singular values for each 

point-scatterers, the first singular matrices is a narrower-band version of the desired 

Green’s function. Moreover, the method does not offer the additional property that one 

can expect from a time domain method: the separation of scatterers at the same azimuth 

but different depth, reminded in Introduction.  

 We propose here a method to achieve these objectives when some a-priori 

information is known about the medium. More precisely, the method requires to be able 

to achieve a good focusing in the medium. This means that it will work well in 

homogeneous medium or slightly heterogeneous medium. The performance will be 

degraded for strongly heterogeneous medium. This is a drawback compared to the 

monochromatic DORT method, that performs equally well in any heterogeneous 

medium, as long as the attenuation is negligible.  
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III.A The Focused Tensor 
 The focused tensor can be seen as a generalization of the method FDORT with 

time gating exposed in Chapter 2.V. This is not a surprise as the method was designed to 

separate the Green’s function from scatterers at different depth. The method was a mix of 

impulsive and monochromatic approaches. The impulsive approach was used to separate 

the signal in depth, and the monochromatic approach was used to separate the signals 

laterally by the mean of the SVD. We now have the tools to perform the SVD directly in 

the time domain by doing a tensor decomposition. Therefore we can implement the 

method entirely in the time domain.  

 The Focused tensor, Fk,l,m,n  is built by using the following process: 

- The kth focused beam is transmitted. 

- The echo is recorded by every element. The signal is gated in time to select the 

echos originating from a particular depth. The position of the time gate is refered 

by the index l.  

- The selected signal is placed in a matrix full of zero. The spatial dimension of this 

matrix corresponds to the index m while the time dimension is the index n. This 

matrix is a slice of the tensor Fk,l,m,n. This is shown in Figure 121. The length of 

the gate is the pulse-length. 

- Another gate is selected, leading to a new slice of the tensor (index l+1) (Figure 

122). The spacing between two consecutive gates center is the pulse-length.  

- When all the gates have been selected, the process is repeated for the next focused 

transmit (index k+1) 
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Figure 121 The echo originating from a particular depth is selected using a time gate. This gives a 
slice of the tensor.   

 

Figure 122 The gate is displaced to select the signal from the next depth. This gives another slice of 
the tensor.  

The Focused tensor is not exactly the Time Reversal Operator in the focused 

basis. Else the decomposition would provide the same results as in section II.  
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III.B Decomposition of the Focused Tensor 
 The focused tensor is decomposed by mapping into a matrix, as explained in 

Section.II.C. Two Green’s function will be separated if both the singular matrices Uk,l and 

Vm,n are orthogonal. Vm,n provides the signal in the canonical basis, in function of the time. 

This is similar to what was obtained in Section.II.  

 However, Uk,l provides a different information. k is the transmit number, or n 

other word the lateral position of the transmit resolution cell. l refers to position of the 

time gate, or in other words to the axial position (depth) of the resolution cell. 

Consequently, Uk,l gives the signal in a “resolution cell basis” or in a “image pixel basis”. 

This will become clear after a few examples.  

 Two Green’s function will be separated if the matrices Vm,n are orthogonal, which 

is the usual Green’s function orthogonality condition, but also if their representations in 

the image basis, Uk,l, are orthogonal. In practice, that means that the two scatterers are in 

different resolution cells, which is why the scatterers separation depends on the quality of 

focusing.  

III.C. Results 

III.C.1 Two well-resolved scatterers 
 The Focused tensor has been built with the 2 scatterers simulation described in 

II.D.2. The transmits were focused at the scatterers depth. The results are shown in Figure 

123. There are two dominant singular values corresponding to the two scatterers, and the 

singular matrices Vm,n correspond to the scatterer Green’s functions. The two wave-fronts 

are perfectly separated, and they are not spread in time.  
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Figure 123 Simulation of two scatterers in a homogeneous medium. Top left: typical received signal, 
showing the echo of the 2 scatterers. Top right: singular values distribution for the Focused tensor; 
two dominant singular values are observed, they correspond to each scatterer. Bottom: singular 
matrices Vm,n. They give the scatterers Green’s function. 

III.C.2 Two point scatterers in inhomogeneous medium 
 The focused tensor method works ideally in a homogeneous medium. We are now 

showing that it can still be used in slightly inhomogeneous medium. The same two point-

scatterers are simulated with a near-field phase screen (30ns average delay variation and 

4.5 mm spatial correlation). The results are shown in Figure 124.  

 The Green’s functions are slightly less well separated, but the result is 

satisfactory. When the strength of the aberration increases, the separation degrades. 

Indeed, as said in III.B, the quality of the separation depends on the quality of focusing. 

For stronger aberration, it is possible to use an iterative method: the first estimate of the 
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aberration is found and used to correct the transmit focusing for the 2nd iteration 

(similarly to the speckle algorithm, described in Chapter 4.IV)  

 In the case of wave-guides, the method can still be used to obtain Green’s 

function. However, it will not take advantage of the super-resolution of the wave guide 

(because the transmit focusing assumes an homogeneous medium) and very close 

scatterers may not be separated.  

 

    

 
Figure 124 Simulation of two scatterers (5mm apart) in an inhomogeneous medium, modeled by a 
near-field phase screen, with 30ns average delay variation and 4.5 mm spatial correlation. Top left: 
typical echo showing the two wave-fronts. Bottom: singular matrices Vm,n. They correspond to the 
time domain Green’s function of the scatterers. The separation is not as good as in the 
homogeneous medium, but still decent.  
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III.C.3 Separation of scatterers from different depths 
 The phantom data set introduced in Chapter.2.V is now used. We want to 

demonstrate that the decomposition of the Focused tensor also leads to a separation of 

scatterers at different depth, which is expected from a time domain method (the axial 

resolution is linked to the pulse width) 

 It is best to focus the transmit beams at any depth (to optimize the scatterers 

separation) If the region of interest is shallow, focusing at the center is usually enough. 

The dynamic focusing in transmit can be achieved by acquiring a full data set (single 

elements transmit) first, and adding the different transmits with the relevant delays to 

achieve the focusing.  

 The phantom used for the experiment is showed in Figure 125. The region of 

interest is shown in blue. Using the monochromatic method (DORT) was shown to lead 

to coupling between the scatterers at different depth and speckle. The results of the 

decomposition of the Focused Tensor are shown in Figure 126.  

 The Green’s function of the scatterers are given by the singular matrices Vm,n . 

They are well separated, there is no coupling with wires or speckle from other depths. We 

are also showing the singular matrices Uk,l  for the same scatterers. As mentioned in 

Section III.B, they correspond to the projection of the Green’s functions on the resolution 

cells, or image pixels. Therefore, they give an image of the scatterer in the region of 

interest. They enable to locate the scatterer, without the need for a back-propagation.  
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Figure 125 Phantom used for the experiment with the region of interest in blue  

 

 

Figure 126 Two first singular matrices of the Focused Tensor. We show both the Vm,n that 
corresponds to the Green’s functions (wave-fronts), and the Uk,l that corresponds to the projection 
on the image pixels and therefore provides an image of the scatterers.  
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 With the monochromatic methods (DORT), the number of scatterers that can be 

detected in theory is limited by the number of array elements (number of degrees of 

freedom, or dimension of the space) Now the broad-band nature of the method brings 

extra degrees of freedom. The number of scatterers that can be theoretically detected is 

now basically equal to the number of resolution cells in the region of interest. Axially, the 

size of the resolution cell is of the order of the wave-length. Laterally, it is D
zλ  for a 

linear array (D is the aperture size and z is the depth) or D
λ  for a phased array (see 

Chapter 2).  

IV. RECONSTRUCTION OF THE TEMPORAL GREEN’S FUNCTION BY 

CORRELATION OF MONOCHROMATIC GREEN’S FUNCTIONS 

IV.1 Theory  
 We propose here an alternative method to obtain the temporal Green’s function. 

The problem when one tries to reconstruct the time-domain Green’s function from the 

frequency-domain ones is that the order of the singular vectors changes with the 

frequency.  Therefore we need a method that enables us to link a singular vector at one 

frequency with the singular vector corresponding to the same scatterer at another 

frequency.  

 A solution to this problem is to compute the cross-correlation (in fact scalar 

product) between a singular vector at a certain frequency, and all the singular vectors at 

another frequency. The idea is that the singular vector corresponding to the same scatterer 

will be more similar, and therefore it will have a better correlation.  
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 However, things are not as simple. The phase of the Green’s function for a given 

scatterer changes with the frequency. Indeed, it is proportional to ωti(P), where ti(P) is 

the propagation time between a transducer and a scatterer as given by Eq.1.1. Thus, the 

correlation between two singular vectors corresponding to the same scatterer is close to 

one if the frequencies are close, but decreases when the frequency lag increases. The 

correlation is then given by
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( )
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e

Xxz
c

j

∫ −+

−+
∆

22

22ω

, where ∆ω is the 

frequency difference, (x,z) are the coordinates of the scatterer, and X is the coordinate of 

the transducers. The function is plot in Figure 127. The position of the 1st minimum is 

given by The function decreases faster when the resolution increases.  

 

Figure 127 Correlation (scalar product) between the singular vector corresponding to a scatterer for 
f=7.3 Mhz, and the singular vectors for the same scatterers at other frequencies. The singular vectors 
are normalized, so the peak is equal to 1.  

 
 In Figure 128, the correlation between the Green’s function of a point P at the 

central frequency and the Green’s function of every point at the same depth as P and for 

every frequency of the bandwidth is shown. For frequencies close to the central 

frequency, only the Green’s function located in the same resolution cell as P have a 
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strong correlation. When the frequency lag increases, more and more points have a 

similar correlation. It becomes increasingly difficult to link the singular vectors.  

 

Figure 128 Correlation (scalar product) between the singular vector at 7.3 MHz for a scatterer 
located at 0 mm, and the singular vectors for other scatterers and other frequencies.  

 Therefore it is preferable to use a short frequency lag ∆ω, in the high-correlation 

area. By correlation the Green’s function separated by a frequency lag, say ω and ω+∆ω, 

we can link the singular vectors. Then we can do the same between ω+∆ω and ω+2∆ω, 

ω+2∆ω  and ω+3∆ω and so forth. Finally, we can link all the singular vectors in the 

bandwidth.  

 However, we have to take another effect into account. At the points where the 

singular values cross each other, there is usually a coupling between the singular vectors 

that have similar singular values. The singular vectors around these points are a mixed of 

Green’s function corresponding to both scatterers. Thus, if ∆ω is smaller than the 

frequency interval where the coupling occur, we will lose the tracking of the singular 

vectors. Therefore, it is important not to choose ∆ω to small. ∆ω= VALUE is appropriate. 
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It actually correspond to the Nyquist number that correspond to an observation window 

(the window where the temporal functions are shown) of about the size of the wave-front.     

IV.2 Experiments 
 Two scatterers with different frequency response are simulated, using Field II 

(J.A.Jensen). The singular values and reconstructed first temporal invariants using the 

classical DORT method is shown in Figure 129. The order of the singular vectors 

changes at about 6 MHz. Therefore, the first time-domain invariant is a mix of both 

scatterers. 

 

Figure 129 Singular values (left) and first temporal invariant (reconstructed by Fourier Transform 
of the frequency domain invariants) with the classical DORT method. 

  

 The scalar product between singular vectors at consecutive frequencies has been 

computed, and used to match each singular vector with the corresponding one at a 

different frequency. We used here a lag = DGYFD for the sampling in frequency domain. 

 For example, we compute the scalar product between the 1st singular vector at a 

given frequency and the 1st and 2nd singular vector at the following frequency. The 

maximum correlation indicates if the singular vectors have been switching order. This is 

shown in Figure 130. In this case the shift takes place at 6 MHz. This is used to find the 
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position of a given singular vector, as seen in Figure 130 (right). Once the position of the 

singular vectors has been identified, it is possible to take the Fourier Transform and to 

obtain the time domain Green’s function.  

 

Figure 130 Left: Correlation coeficient between the 1st singular vector at each frequency and the 1st 
and 2nd singular vector at the next frequency. Red indicates a high correlation, while blue is a low 
correlation. At 6 Mhz, the 2nd singular vector has the highest correlation, which indicates that the 
order has switched. The correlations are used to find the position of the singular vector 
corresponding to a given scatterer (right)  

 

Figure 131 Temporal invariants reconstructed by Fourier Transform of the frequency domain 
singular vectors, after their position has been adjusted.  

 
 This method yield good results, and does not require any a priori knowledge of 

the medium. However, the method may failed when the area where the singular vectors 

are coupled is too large, especially in the case where the resolution is high. Indeed, in this 

case the coherence length of the singular vectors at different frequencies decreases. The 
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singular vectors needs to be well separated in the frequency domain. Thus, this method 

does not resolve scatterers from different depth.  

 

V.CONCLUSION 

 We have shown how to build the Time Reversal Operator in the time domain. It 

takes the form of a fourth order tensor. A method to decompose the tensor and find the 

spatio-temporal invariants of the Time Reversal has been proposed. However, the spatio-

temporal invariants no longer have the properties of the monochromatic invariants given 

by the DORT method. There is several spatio-temporal invariants for each scatterer, and 

the 1st invariant is a combination of several time-shifted version of the Green’s function, 

and appear as a spread in time (narrower band) version of the Green’s function. The 

decomposition of the time domain Time Reversal Operator is then not a good solution to 

the problem of extracting Green’s functions. 

 We have proposed to use a Focused tensor instead. The Focused tensor offers a 

perfect solution to the problem in a homogeneous, or slightly heterogeneous, medium. It 

also has the property to separate the Green’s functions of scatterers at the same azimuth, 

but different depth (axial resolution) which is not the case of a monochromatic method. 

With the DORT method (monochromatic), the maximum number of scatterers that can be 

detected is limited by the number of array element. Thanks to the resolution in time, the 

number of scatterers that one can detect with the focused tensor is in theory equal to the 

number of resolution cells in the region of interest. Another interest of the Focused tensor 

is that it provides at the same time the Green’s functions in the right side singular matrix 

and an image in the left-side singular matrix. However, the Focused Tensor method 
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requires a priori information about the medium. Its performance is dependent on the 

quality of focusing. For very inhomogeneous medium, an iterative method might be a 

solution.    

 Finally, we proposed a method to match the monochromatic singular vectors 

obtained at different frequencies with the classical DORT method. This is based on the 

strong correlation between two singular vectors corresponding to the same scatterers but 

having slightly different frequencies. The method has been demonstrated on a simple 

case.  
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Conclusion 

 Au cours de cette these, une serie de résultats permettant l’application de 

methodes basees sur le Retournement Temporel en imagerie medicale ont ete etablis. 

 Dans le chapitre 2, nous avons vu adapte la methode de decomposition de 

l’operateur retournement temporel a partir de transmission focalisees, comme c’est le cas 

en echographie. Nous avons vu que le probleme pouvait etre vu comme un probleme de 

retournement temporel classique entre deux barettes : la barette physique d’une part, et 

une barette virtuelle, dont les transducteurs correspondent aux foci des transmissions. La 

methode focalisee permet de gagner en rapport signal sur bruit par rapport a la methode 

classique, et elle est plus robuste lorsque le milieu est en mouvement (typique pour le 

corps humain) De plus elle permet une implementation plus rapide lorsque l’on ne 

s’interesse qu’a une region reduite de l’espace. En effet, un nombre limite de rayon 

insonifie une region donnee de l’espace. Une application prometteuse est le probleme de 

l’ecran de phase en champs lointain (Chapitre I.B.4). En choisissant convenablement la 

position des foci, on peut transformer le probleme de l’ecran en champ lointain en un 

probleme d’ecran en champ proche, beaucoup plus simple a corriger. En effet, cela 

revient a generer une barette virtuelle, situe immediatement derriere l’ecran de phase. Du 

point de vue de cette barette virtuelle, l’ecran est en champ proche. Enfin, nous avons 

presente un algorithme base sur les transmissions focalisees qui permet de resoudre les 

diffuseurs en profondeur, en utilisant certains avantages de la nature large bande des 

signaux. Cela permet entre autre une nette amelioration de la detection de diffuseurs 

ponctuels entoures de speckle.  
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 Au cours du chapitre 3, nous nous sommes interesses au probleme des diffuseurs 

etendus. C’est par exemple le cas d’un vaisseaux ou d’une microcalcification en imagerie 

medicale. Nous avons montre que dans le cas ou la taille du diffuseur est suffisament 

petite devant la longueur d’onde et la profondeur, les solutions sont une famille de 

fonctions connues appellees Spheroidal Prolate Wave-functions. Le nombre de valeur 

propre de l’operateur Retournement temporel differente de zero dans ce cas est 

proportionel a la taille de l’objet, exprimee en nombre de cellule de resolution. Si l’objet 

est suffisamment petit, le premier vecteur propre de l’operateur retournement temporel 

peut etre considere comme une fonction de Green d’un point de l’objet. L’une des 

applications les plus prometteuses est la caractérisation de petits objets, dont la taille est 

de l’ordre de la cellule de resolution. Ces objets, qui ont un role crucial dans la detection 

de cancer du sein par exemple, sont mal caractérisé par un mode d’imagerie classique, 

Les vecteurs propres de l’operateur retournement temporel sont la base naturelle 

d’algorithme d’inversion, qui permettent d’obtenir une image a tres haute resolution des 

objets.  

 Dans le chapitre 4, nous avons montre que la methode FDORT permettait 

d’extraire des fonctions de Green a partir du speckle, sans avoir besoin de la presence 

d’un diffuseur ponctuel brillant. C’est un aspect particulierement important pour 

l’imagerie medicale et la correction d’aberration. Le rayon transmis cree en quelque sorte 

un objet virtuel dans le speckle. Le premier vecteur propre est en general la fonction de 

Green du point focal du rayon. Nous avons etabli un formalisme statistique de la methode 

pour les mileux aleatoire, et fait le lien avec un theoreme important, le theoreme de Van 

Cittert Zernike. En particulier, cela permet d’interpreter la premiere valeur propre 
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normailsee en tant que critere de focalisation. Lorsque la premiere valeur propre est 

proche de 2/3, cela signifie que la focalisation est bonne. En milieu heterogene, la 

methode doit etre iterer quelques fois avant de converger vers la fonction de Green. Nous 

avons montre que la methode permettait d’estimer des fonctions de Green et de focaliser 

a la fois dans les modeles de l’ecran de phase en champ proche et en champ lointain. Un 

avantage de la methode FDORT par rapport a d’autres algorithmes de correction 

d ‘aberration et sa capacite a separer le signal d’interet des interferences, meme si celles-

ci sont plus intenses.  

 Enfin dans le Chapitre 5, nous avons essaye d’exploiter les proprietes larges 

bandes du signal echographique en developpant des methodes pour obtenir les fonctions 

de Green directement dans le domaine temporel. En effet, la reconstruction des fonctions 

de Green temporelle a partir des fonctions de Green monochromatique est rendu difficile 

par un probleme de permutation des vecteurs propres. Nous avons tout d’abord montre 

comment construire l’operateur retournement temporel dans le domaine temporel. Il 

prend la forme d’un tenseur du 4eme ordre. Nous avons explique comment decomposer 

ce tenseur pour obtenir les invariants spatio-temporel du retournement temporel. 

Malheureusement, ces invariants ne generalisent pas les proprietes interessantes des 

invariants monochromatique, ce qui est explique en terme physique. Nous avons ensuite 

propose d’utiliser le Tenseur Focalise. Cette methode offre une bonne solution pour les 

milieux homogenes ou legerement heterogenes. Elle permet en outre de separer les 

diffuseurs a differente profondeurs, et le nombre maximum de diffuseurs que l’on peut 

detecter est egale au nombre de cellules de resolution dans le milieu. La matrice 

singuliere droite du Tenseur focalise est la fonction de Green temporelle du diffuseur, 
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tandis que la matrice singuliere gauche offre directement une image permettant de 

localiser le diffuseur dans le milieu. Cependant, cette methode necessite de l’information 

a priori sur le milieu, et depend de la qualite de la focalisation. Finalement nous avons 

presente une methode permettent de relier les invariants monochromatiques de la 

methode DORT classique, correspondant au meme diffuseurs mais a frequence 

differente. Cela permet, au moins dans le cadre d’exemple simple, de resoudre le 

probleme de permutation.  
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