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Résumé

Résumé

Le Modèle Standard de la physique des particules est basé sur le groupe de jauge SU(3) ×
SU(2) × U(1) et inclut les interactions forte et électrofaible. Son contenu en particules est
expérimentalement bien établi à l’exception du boson de Higgs. Celui-ci est nécessaire dans la
description de la brisure de la symétrie électrofaible mais, jusqu’à présent, non observé auprès
des collisionneurs actuels. Malgré le grand succès expérimental de ses prédictions, le Modèle
Standard souffre de certaines inconsistences théoriques et expérimentales. Les arguments cités
le plus souvent sont le problème de hierarchie, qui est lié aux corrections de boucles fermion-
iques à la masse du boson de Higgs, ainsi que l’unification des constantes de couplages requise
par des théories de grande unification mais non réalisée dans le Modèle Standard. Du côté cos-
mologique le Modèle Standard n’inclut pas de candidat pour la matière noire dans l’univers,
ce qui constitue un argument supplémentaire pour la physique au delà du Modèle Standard.
Parmi les extensions proposées, la Supersymétrie (SUSY), et en particulier le Modèle Super-
symétrique Standard Minimal (MSSM), est la théorie la plus économique et la mieux étudiée.
Basée sur une symétrie entre bosons et fermions, elle prédit des superpartenaires pour les
particules du Modèle Standard. L’absence d’observation directe des superpartenaires aux
collisionneurs actuels implique que la Supersymétrie doit être brisée à l’échelle électrofaible.
Le Lagrangien à basse énergie inclut alors des termes donnant une masse aux superparte-
naires, ce qui implique un total de 124 paramètres liés au mécanisme exact de la brisure. Il
est alors essentiel de contraindre l’espace des paramètres à l’échelle électrofaible ainsi qu’à
l’échelle de la brisure de la Supersymétrie. Selon les différents mécanismes de la brisure,
des termes violant la saveur peuvent être introduits dans le Lagrangien. Ceci implique la
nécessité d’étudier la possibilité de violation non-minimale de la saveur dans le contexte des
contraintes. La conservation de la R-parité implique que la particule supersymétrique la plus
légère (LSP) soit stable. Si cette dernière est électriquement neutre et un singlet de couleur,
elle constitue un excellent candidat pour la particule de matière noire. Le fait de pouvoir cal-
culer sa densité relique pour un modèle donné constitue une possibilité intéressante d’obtenir
des contraintes supplémentaires par rapport aux expériences auprès des collisionneurs ou des
mesures de précisions électrofaibles.

Dans la première partie de cette thèse, nous avons étudié les différentes contraintes qui
peuvent être imposées sur le MSSM à l’échelle électrofaible, tout en considérant la possi-
bilité de violation non-minimale de la saveur. En particulier, nous avons imposé les limites
expérimentales du rapport d’embranchement b → sγ, du paramètre électrofaible ∆ρ, et du
moment magnétique anomal du muon aµ, ainsi que les limites sur la densité relique ΩCDMh
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de matière noire obtenues par la mission WMAP et d’autres mesures cosmologiques. En ce
qui concerne les modèles de supergravité minimale (mSUGRA) où la violation de la saveur est
naturellement présente due à la médiation par la gravité, nous avons commencé par identifier
les régions exclues ou favorisées par les différentes contraintes grâce à des “scans” détaillés
de l’espace des paramètres. Basés sur cette analyse, nous avons défini des scénarios “bench-
mark” qui permettent une violation de la saveur importante entre les squarks de deuxième et
troisième génération, qui sont en accord avec toutes les contraintes, et qui n’impliquent pas de
masses trop élevées pour les superpartenaires qui seront alors observables aux collisionneurs
actuels ou futurs. Une étude détaillée des contraintes a ensuite permis d’identifier les limites
pour le paramètre introduisant le mélange de saveur dans la matrice de masses des squarks
et de comprendre la phénoménologie introduite par ce mélange.

Dans un deuxième temps, nous avons effectué une analyse similaire pour des modèles de
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Résumé

brisure de Supersymétrie par médiation de jauge (GMSB). Dans les modèles GMSB mini-
maux, les régions caractérisées par des petites masses ou des masses intermédiaires masses
de superpartenaires sont exclues par la contrainte sévère due à la désintegration b → sγ. La
violation de saveur dans le secteur des squarks peut être introduite ici si l’on tient compte
d’un possible mélange entre les champs de messagers et les champs de matière. Nous avons
montré que cette introduction d’un mélange de saveur permet de satisfaire les contraintes de
basse énergie et électrofaible également pour les scénarios incluant des masses de superparte-
naires découvrables aux collisionneurs. Nous avons alors pu définir des scénarios “benchmark”
également pour les modèles GMSB et discuter en détail leur phénoménologie qui est très sim-
ilaire à celle des points choisis en mSUGRA. Comme dans les modèles GMSB le gravitino
est toujours la LSP et le candidat de matière noire, des contraintes supplémentaires doivent
être prises en compte, comme par exemple le temps de vie de la particule la deuxième plus
légère (NLSP), ou la température du réchauffement à laquelle la leptogenèse impose une lim-
ite inférieure. Pour ces scénarios, nous avons analysé ces contraintes supplémentaires afin de
déterminer l’ordre de grandeur de la masse du gravitino.

La deuxième partie de cette thèse est consacrée à une étude de l’annihilation d’une paire
de neutralinos, candidat potentiel pour la matière noire, en une paire de quark-antiquark. Ce
processus domine dans des larges régions de l’espace des paramètres des modèles mSUGRA.
Dans un premier temps nous avons consideré la région appelée “A-funnel”, où quasiment le
seul diagram contribuant est l’annihilation en paire de quarks beau par l’échange d’un boson
de Higgs pseudoscalaire. Pour ce canal d’annihilation, nous avons calculé les corrections de
diagrammes à une boucle en QCD et SUSY-QCD. Ceci a été réalisé par l’application des
techniques de renormalisation et de resommation des corrections dominantes au couplage de
Yukawa, et par la méthode de la soustraction de dipôles pour l’implémentation des correc-
tions réelles. Nous avons ensuite montré numériquement que ces corrections ont un impact
important sur la section efficace d’annihilation. En particulier, l’implémentation de la masse
“running” du quark beau et les effets de la resommation en SUSY-QCD sont non négligeables
et peuvent diminuer la section efficace par jusqu’a 75 pour cent. Nous avons implémenté les
nouvelles corrections dans le code public DarkSUSY qui calcule la densite relique de matière
noire pour un scenario supersymétrique donné. Nous avons ainsi montré que la prédiction de
la densité relique de matière noire reçoit également des corrections significatives, au moins
dans cette région particulière de l’espace des paramètres. La région préférée par rapport
aux données cosmologiques est décalée vers des masses des particules supersymétriques plus
petites, ce qui compense la section efficace plus faible.

Ensuite, nous avons généralisé ces résultats pour l’annihilation de neutralinos en une paire
de quark-antiquark en tenant compte de tous les canaux possibles, c’est-à-dire l’échange d’un
boson Z, d’un boson de Higgs neutre ou d’un squark. Pour commencer, nous avons identifié
les régions dans l’espace des paramètres mSUGRA qui sont en accord avec les limites cos-
mologiques sur la densité relique et qui sont caractérisées par une contribution importante
de tels états finals. Il s’est avéré que, en mSUGRA, les quarks “légers” (up, down, charme
et étrange) ne jouent un rôle important que dans les régions expérimentalment défavorisées.
En conséquence, nous nous sommes concentrés sur les états finals qui contiennent des quarks
beau ou top. En applicant les mêmes techniques que pour la région “A-funnel”, les correc-
tions virtuelles et réelles en QCD et SUSY-QCD ont été calculées et implémentées dans un
code numérique. Ce dernier a ensuite été inclu dans le code public micrOMEGAs afin d’étudier
l’impact des nouvelles contributions. Comme pour la région “A-funnel”, les nouvelles contri-
butions ont un impact significatif sur la section efficace d’annihilation et, en conséquence, sur
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la prédiction de la densité relique de matière noire dans notre univers. La région favorisée
par la cosmologie est alors modifiée, ce qui montre que ces corrections doivent être prises en
compte si l’on souhaite obtenir des prédiction plus précises.

Dans la troisième partie du travail nous avons finalement consideré la production des
particules supersymétriques au futur Large Hadron Collider (LHC) du CERN. Afin d’inclure
des effets de violation non-minimale de la saveur, les couplages doivent être généralisés pour
prendre en compte les matrices de masses modifiées. Nous avons présenté des expressions an-
alytiques pour la section efficace partonique de production de squarks, jauginos et gravitinos.
Ceux-ci sont ensuite numériquement convolués avec des densités partoniques universelles pour
obtenir des prédictions numériques des sections efficaces au LHC. Nous avons effectué une
étude détaillee en ce concerne la production de squarks et jauginos pour nos scénarios “bench-
mark” dans des modèles GMSB avec violation de la saveur dans le secteur des squarks. En
particulier, nous avons discuté la phénoménologie impliquée par cette violation non-minimale
de la saveur, qui entrâıne des effets interéssants au niveau des sections efficaces. Concernant
la production de gravitinos, qui serait a priori intéressante dans des modèles GMSB où le
gravitino est la particule supersymétrique la plus légère, nos scénarios incluent des gravitinos
relativement lourds afin de satisfaire les contraintes cosmologiques. En conséquence, les sec-
tions efficaces de production sont numériquement trop faibles pour être observables au LHC.
Il est à noter que seulement un gravitino très léger permetterait d’obtenir une production
détectable. Nous argumentons que ce cas n’est pas réalisable dans nos modèles GMSB avec
violation de la saveur introduite par un mélange des champs de messager avec des champs de
matière.

En conclusion, la Supersymétrie est une extension attractive du Modèle Standard de la
physique des particules. Elle adresse le problème de hierarchie, mène à l’unification des con-
stantes de couplages et inclut des candidats intéressants pour la matière noire dans l’univers.
Comme perspectives, il serait intéressant d’élargir les études présentées dans cette thèse.
En ce qui concerne la violation non-minimale de la saveur, on pourrait par exemple re-
laxer les simplifications faites pour cette première étude ou analyser d’autres mécanismes de
brisure de la Supersymétrie. Il serait également intéressant de calculer des corrections QCD
et SUSY-QCD pour la production des particules supersymétriques dans ces scénarios. Pour
les processus d’annihilation de neutralinos, on pourrait étudier l’impact des corrections dans
le contexte de la détection directe ou indirecte de matière noire. Dans un modèle plus général
que mSUGRA on pourrait trouver des régions avec une forte contribution des quarks légers,
qui recevraient a priori des corrections importantes en QCD en SUSY-QCD. Comme la pro-
duction de gravitinos peut inclure des effets dus à la violation de la saveur, il serait intèressant
de l’ètudier dans un scenario avec un gravitino lèger et violation de la saveur dans le secteur
des squarks.
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Abstract

Abstract

In absence of direct experimental evidence, it is essential to constrain the parameter space of
the Minimal Supersymmetric Standard Model (MSSM) both at the Supersymmetry breaking
and the electroweak scale. After a brief introduction to Supersymmetry (SUSY), we present
an extensive analysis of electroweak, low energy, and cosmological constraints in minimal
supergravity (mSUGRA) and gauge-mediated SUSY-breaking (GMSB) scenarios. We include
the possibility of non-minimal flavour violation (NMFV) in the squark sector and define
“collider-friendly” benchmark points based on detailed scans of the parameter space. We
then consider neutralino pair annihilation into quark-antiquark pairs that dominates wide
ranges of the mSUGRA parameter space. We present the corresponding full one-loop QCD
and SUSY-QCD calculation and show numerically that the loop diagrams have an important
impact on the annihilation cross section and, in consequence, in the prediction of the dark
matter relic density, resulting in a modification of the preferred regions of the parameter space.
We finally present analytical expressions and numerical predictions for squark, gaugino, and
gravitino production cross sections at the LHC in GMSB with NMFV. We also discuss the
phenomenology of flavour mixing and cosmological implications on the gravitino mass within
this context.
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Chapter 1

Supersymmetry and the MSSM

Interesting extensions have been proposed for the Standard Model of particle physics, that
suffers from several conceptual problems and from discrepancies when it is confronted to
precision measurements. In this work, we focus on Supersymmetry, which is an attractive
solution and probably the most popular and best studied of these extensions. This first
Chapter is devoted to an introductional overview of Supersymmetry and its features. We
start by discussing the motivations for physics beyond the Standard Model, then present
the formal and phenomenological aspects of the Minimal Supersymmetric Standard Model
(MSSM) and show how it can solve the problems of the Standard Model. We thereby also
focus on flavour violation and dark matter issues, which will be the main topics of this Thesis.

1.1 Motivation

Including the electroweak [1–4] and strong [5–7] gauge interactions based on the symmetry
group SU(3) × SU(2) × U(1), the Standard Model of particle physics successfully describes
a wide range of phenomena. It greatly deals with the interactions of the particles that have
been discovered so far, and nearly all of its predictions have been experimentally verified at
very high precision. At present, the only experimentally missing piece is the Higgs boson,
originating from an isodoublet scalar field [8–12]. The latter is responsible for electroweak
symmetry breaking and for the fermion masses through its Yukawa couplings. However, there
are several strong hints that the Standard Model is not complete and has to be extended in
order to describe physics at arbitrarily high energies. In this context, the Standard Model is
rather supposed to be some effective low-energy limit of a more fundamental theory.

Strong arguments arise from the particle physics side, where the most cited one is the
so-called “hierarchy problem” related to the mass of the Higgs boson itself. The latter re-
ceives corrections through fermion loops involving integrals, that diverge quadratically. In
consequence, the correction to the Higgs mass is of the order of the cutoff scale squared,
which is used to regularize the loop integral. However, for that large Higgs masses, the Higgs
self-coupling would become too strong and the could no longer be used to explain electroweak
symmetry breaking. In addition, the expectation for the Higgs vacuum expectation value,
that governs the masses of gauge bosons and fermions, is of the order of a few 100 GeV, well
below an eventual cutoff scale [13,14]. A second argument concerns the unification of gauge
interactions. It is well-known that, within the Standard Model, the running weak, electro-
magnetic, and strong coupling constants do not meet in one single point at some high energy
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CHAPTER 1. SUPERSYMMETRY AND THE MSSM

scale, which should be the case if the three corresponding forces unify. Third, the Standard
Model does not include gravity, which cannot be ignored at energies near the Planck scale.
Finally, there is also the hope to clarify some “unaesthetic” points in the Standard Model.
Its large number of arbitrary parameters for instance, like the number of colours or lepton
families, might be explained by embedding it into some larger framework.

Further important hints come from cosmology. First evidence for a dark component in our
Universe has been found in 1933 [15]. Since then, indirect and direct evidence for the presence
of Dark Matter have been accumulating on all astrophysical scales. On galactic scales, the
strongest argument are the rotation curves of spiral galaxies, which have a flat behaviour at
large distances [16–18]. Without involving modified gravity, this is well explained only after
including a dark halo surrounding the galaxy. Other hints pointing to the existence of Dark
Matter come from weak or strong gravitational lensing of galaxies or clusters [19, 20] or the
velocity dispersion of dwarf spheroidal or spiral satellite galaxies [21, 22]. Recently, the first
direct proof for the existence of Dark Matter has been delivered by observations of the Bullet
cluster, where astronomers could for the first time separate the baryonic and dark matter
contributions after the collision of two clusters of galaxies [23]. On cosmological scales, strong
evidence comes from precision measurements of the anisotropies of the Cosmic Microwave
Background (CMB) by the satellites COBE and WMAP [24–27]. From those measurements,
combined with further cosmological data, e.g. from supernovae [28] and baryon acoustic oscil-
lations [29], it is clear today that we live in a flat Universe dominated by Dark Energy which
accounts for about 75% of its energy content. Only about 4% are made of baryonic matter,
while radiation accounts for about 0.001%. The remaining 25% of the matter-energy content
of our Universe are non-baryonic Dark Matter, that is supposed to consist of so-called weakly
interacting massive particles (WIMPs). In addition, simulations of large structure formation
suggest that the main part of the Dark Matter should be highly non-relativistic, i.e. “cold”
Dark Matter [30]. As no particle within the Standard Model is suitable to play that role1,
the presence of cold Dark Matter in our Universe is also strongly pointing to physics beyond
the Standard Model.

1.2 The Supersymmetry Algebra

Supersymmetry has first been introduced into particle physics in 1974 [31,32]. Its basic idea
is to postulate an additional symmetry between bosonic and fermionic degrees of freedom,
needed in order to cancel the fermionic contributions to the Higgs boson mass. Thus, a
supersymmetric transformation operator Q is an anticommutating spinor that transforms
a bosonic state into a fermionic one, and vice versa. A simple and elegant formulation of
Supersymmetry transformations is obtained in Euclidean space extended by two Grassmanian
coordinates θα and θ̄α̇ with {θα, θβ} = 0 for α, β = 1, 2, that defines the so-called superspace.
The spinorial generator Q and its hermitian conjugate Q† are then given by

Qα =
∂

∂θα
− iσµ

αβ̇
θ̄β̇

∂

∂xµ
and Q†

α̇ = − ∂

∂θ̄α̇
+ iθβσµβα̇

∂

∂xµ
. (1.1)

In principle, there can be N ≥ 1 distinct sets of generators, the theoretical upper limit is
N ≤ 4J , where J denotes the maximal spin of the particles involved in the theory. However,

1Neutrinos are relativistic particles, so that they can only account for hot Dark Matter. Additionally, they

are not massive enough to account for the rather important observed amount of Dark Matter in our Universe.
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since only the case N = 1 is of phenomenological interest, we do not consider models with
N > 1 for the rest of this Thesis. The generators are related to the generator of spacetime
translations Pµ through

{
Qα,Q†

β̇

}
= 2σµ

αβ̇
Pµ, (1.2)

which underlines the spacetime character of Supersymmetry. Here, σi denote the Pauli ma-
trices, and σ0 = 1. Furthermore, the operators Q and Q† obey the commutation and anti-
commutation relations

{
Qα,Qβ

}
=
{
Q†
α̇,Q

†

β̇

}
=
[
Pµ,Qα

]
=
[
Pµ,Q†

α̇

]
= 0. (1.3)

The particle states lie in the irreducible representations of the above superalgebra, that
are called supermultiplets. Each of them contains an equal number of fermionic and bosonic
states, which are called superpartners of each other. The Supersymmetry generators commute
both with the squared mass operator P 2 and the generators of the gauge transformations.
Thus, in exact Supersymmetry, particles in the same supermultiplet have equal mass, electric
charge, weak isospin, and colour quantum numbers.

Only two kinds of supermultiplets are relevant. The first possibility is a single Weyl
fermion together with a complex scalar field, which accounts for two fermionic and two bosonic
degrees of freedom. This is called a chiral supermultiplet. The second possibility is a gauge
multiplet that contains a massless spin-1 vector boson together with a Weyl fermion, which
accounts also for two fermionic and bosonic degrees of freedom. In N = 1 Supersymmetry,
further combinations of particles can always be reduced to combinations of chiral and vector
supermultiplets.

In order to preserve Supersymmetry when going off-shell, an additional complex scalar
field is introduced into the chiral supermultiplets. This auxiliary field without a kinetic term
counterbalances the two additional real fermionic degrees of freedom that a Weyl fermion ac-
quires when becoming off-shell. When going on-shell, the auxiliary field is eliminated through
its equations of motion. In the same way, an auxiliary field with one real bosonic degree of
freedom restores Supersymmetry in the gauge supermultiplets.

1.3 The Minimal Supersymmetric Standard Model (MSSM)

The Minimal Supersymmetric Standard Model (MSSM) is the minimal supersymmetric the-
ory that includes the Standard Model. Tab. 1.1 shows its particle content, organized in chiral
and vector supermultiplets. The quarks and leptons obtain the squarks and sleptons as scalar
superpartners, while those of the gluon, the electroweak gauge and the Higgs bosons are
called gluino, gauginos, and higgsinos. A particularity is the necessity of two complex Higgs
doublets in contrast to only one in the Standard Model. We also indicate the graviton and its
superparner the gravitino, that are present in theories with local Supersymmetry including
gravity.

In order to describe the interactions within the MSSM, we will denote the complex scalar
and Weyl fermions within the chiral supermultiplets by φ and ψ, while the gauge bosons and
their fermionic superpartners from the gauge supermultiplets are denoted by Aµ and λ. We
further denote the auxiliary fields of the chiral and gauge supermultiplets by F and D. We

3



CHAPTER 1. SUPERSYMMETRY AND THE MSSM

SM Particles Spin Spin Superpartners

Quarks
(
uL dL

)
1/2 Q 0

(
ũL d̃L

)
Squarks

u†R 1/2 ū 0 ũ∗R
d†R 1/2 d̄ 0 d̃∗R

Leptons
(
ν eL

)
1/2 L 0

(
ν̃ ẽL

)
Sleptons

e†R 1/2 ē 0 ẽ∗R

Higgs
(
H+
u H0

u

)
0 Hu 1/2

(
H̃+
u H̃0

u

)
Higgsinos(

H0
d H−

d

)
0 Hd 1/2

(
H̃0
d H̃−

d

)

Gluon g 1 1/2 g̃ Gluino

W bosons W 0,W± 1 1/2 W̃ 0, W̃± Winos

B boson B0 1 1/2 B̃0 Bino

Graviton G 2 3/2 G̃ Gravitino

Table 1.1: Chiral (upper part) and gauge (lower part) supermultiplets in the MSSM.

finally introduce the covariant derivatives

Dµφi = ∂µφi − igAaµ
(
T aφ

)
i
, (1.4)

Dµφ
∗
i = ∂µφ

∗
i + igAaµ

(
φ∗T a

)
i
, (1.5)

Dµψi = ∂µψi − igAaµ
(
T aψ

)
i
, (1.6)

Dµλ
a = ∂µλ

a + gfabcAbµλ
c, (1.7)

that will render the Lagrangian invariant under gauge transformations. The hermitian ma-
trices T a correspond to the representation under which the chiral supermultiplets transform
under the gauge group, related by the totally antisymmetric structure constants fabc through
[T a, T b] = ifabcT c. The Lagrangian of a renormalizable supersymmetric field theory can then
be written as

LSUSY = Lchiral + Lgauge −
√

2g
(
φ∗T aψ

)
λa −

√
2gλ†a

(
ψ†T aφ

)
+ g
(
φ∗T aφ

)
Da. (1.8)

The kinetic terms and gauge interactions of the chiral and gauge multiplets are contained in
the parts

Lchiral = −Dµφ∗iDµφi − iψ†iσ̄µDµψi −
1

2

(
W ijψiψj +W ∗

ijψ
†iψ†j

)
−W iW ∗

i , (1.9)

Lgauge = −1

4
F aµνF

µνa − iλ†aσ̄µDµλ
a +

1

2
DaDa. (1.10)

The superpotential W is an analytic function of the complex fields φ and contains the inter-
actions between the chiral and gauge supermultiplets through its derivatives

W i =
∂W

∂φi
and W ij =

∂2W

∂φi∂φj
, (1.11)

while F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν is the usual Yang-Mills field strength tensor. The

matrices σ̄ are related to the Pauli matrices σ through σ̄0 = σ0 and σ̄i = −σi for i = 1, 2, 3.
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Suppressing all gauge and family indices, the superpotential of the MSSM in terms of the
chiral superfields Q, L, ū, d̄, ē, Hu, and Hd is given by

WMSSM = ūyuQHu − d̄ydQHd − ēyeLHd + µHuHd. (1.12)

The first three terms correspond to the Yukawa couplings in family space, while the µ-term
is related to the masses of the Higgs bosons and the Higgsinos.

As two side remarks, let us note that the auxiliary fields Fi appear in the Lagrangian
only through the derivatives of the superpotential Wi, to which they are related through the
equations of motion Fi = −W ∗

i and F i∗ = −W i. Second, the Lagrangian of Eq. (1.8) is, of
course, invariant under global Supersymmetry transformations. For rather complete reviews
on Supersymmetry and in particular the MSSM see Refs. [33–35].

1.4 Supersymmetry Breaking

As no superpartners of the Standard Model particles have been observed so far, it is obvious
that Supersymmetry must be a broken symmetry in the vacuum stage chosen by Nature.
However, there is no consensus on the exact breaking mechanism. It only seems to be accepted
that Supersymmetry should be broken via “soft” terms in the Lagrangian, i.e. terms with
positive mass dimension. Otherwise, new quadratic divergences would be introduced and
Supersymmetry could no longer be a viable solution to the Hierarchy problem.

The possible Supersymmetry breaking terms are included in the Lagrangian at low energy,

Lsoft = −1

2

(
M1B̃B̃ +M2W̃W̃ +M3g̃g̃ + h.c.

)

−
(
Q̃†m2

QQ̃+ ˜̄um2
ū
˜̄u† + ˜̄dm2

d̄
˜̄d† + L̃†m2

LL̃+ ˜̄em2
ē
˜̄e†
)

−
(
m2
Hu
H∗
uHu +m2

Hd
H∗
dHd + b

(
HuHd + h.c.

))

−
(
˜̄uauQ̃Hu − ˜̄dadQ̃Hd − ˜̄eaeL̃He + h.c.

)
. (1.13)

Here, the mass terms for gluino, winos, bino, squarks, sleptons, and the Higgs bosons, are
contained in the first three lines. The last line of Lsoft involves the trilinear scalar interactions
au, ad, and ae. The latter are 3× 3 matrices in generation space, as are the matrices m2

i for
i = Q,L, ū, d̄, ē.

Most models assume that Supersymmetry breaking occurs at a scale 〈F 〉 in some “hidden”
or “secluded” sector, while the Standard model particles as well as their superpartners dwell
in the so-called “visible” or “observable” sector. Couplings between the particles contained
in the two sectors are supposed to be small and the mediation of Supersymmetry breaking
to the visible sector is realized through a shared interaction. After a brief discussion of the
super-Higgs mechanism, we will review two different scenarios that are relevant within this
work.

1.4.1 The Super-Higgs Mechanism and the Gravitino

As in the case of electroweak symmetry breaking, the spontaneous breaking of Supersymmetry
implies the existence of a Nambu-Goldstone boson, that is called the goldstino. Taking into
account gravity, Supersymmetry becomes a local symmetry and the resulting theory is called

5
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supergravity. The spin-2 graviton has then as its fermionic superpartner with spin 3/2 the
gravitino, which can be considered as the gauge field of local Supersymmetry transformations.
After the spontaneous breaking of Supersymmetry, the gravitino acquires a mass through the
so-called super-Higgs mechanism in an analogous way as the ordinary Higgs mechanism in the
context of electroweak symmetry breaking. The gravitino absorbs the goldstino, the latter
becoming its longitudinal components with spin 1/2. The so acquired gravitino mass is of the
order of

mG̃ =
〈F 〉√
3MP

, (1.14)

related to the Supersymmetry breaking scale 〈F 〉 and the reduced Planck mass MP.

After overlapping with the goldstino field, the gravitino has in principle four helicity states.
However, in collider phenomenology, the only gravitationally interacting “original” gravitino
components can generally be neglected with respect to the inherited goldstino modes that
feature non-gravitational interactions. Note that the gravitino plays an important role in
cosmology, not only as a possible dark matter candidate, but also in the context of the
abundances of light elements in our Universe. Cosmological constraints on the MSSM, and
in particular on the gravitino mass, are discussed in Sec. 2.2.

1.4.2 Constrained MSSM and Minimal Supergravity

The most popular framework is probably the constrained MSSM (cMSSM) [36–38]. In this
framework, often also called minimal supergravity (mSUGRA), the shared interaction that
mediates Supersymmetry breaking into the MSSM is gravity. The soft terms in Eq. (1.13) are
determined by only five universal parameters at the Supersymmetry breaking scale. These
are the common scalar and gaugino masses, m0 and m1/2, the universal trilinear coupling A0,
as well as the ratio of the vacuum expectation values of the Higgs doublets, tanβ, and the
sign of the Higgsino mass parameter, sgn(µ), for the Higgs sector. From the relations at high
scale,

M3 = M2 = M1 = m1/2, (1.15)

m2
Q = m2

ū = m2
d̄

= m2
L = m2

ē = m2
01, (1.16)

m2
Hu

= m2
Hd

= m2
0, (1.17)

ai = A0yi for i = u, d, e, (1.18)

the parameters at low energy are obtained through renormalization group running, i.e. their
numerical evolution down to the electroweak scale. The weak-scale parameters of the Higgs
sector are discussed in Sec. 1.5.1.

Note that the mediation of Supersymmetry breaking through the flavour-depending grav-
itational interaction may give rise to important flavour violating terms in the Lagrangian
at low energy, i.e. important flavour changing neutral currents (FCNC). Being in contrast
to current measurements this fact is often called the “flavour problem” in Supersymmetry.
However, rather stringent constraints can be imposed on the flavour breaking elements of the
Lagrangian. For a detailed discussion of flavour violation in the MSSM see Secs. 1.6, 2.3, and
2.4.
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1.4.3 Gauge Mediated Supersymmetry Breaking

Gauge-mediated SUSY breaking (GMSB) [39–42] is a second attractive scenario, that presents
a quite different phenomenology. As the name indicates, Supersymmetry breaking is medi-
ated to the visible sector through the usual gauge interactions, whereas gravity-mediated
contributions are suppressed. This is realized by introducing an additional messenger sec-
tor, containing a chiral superfield S as well as nq quark-like and nl lepton-like messenger
fields. The scalar and auxiliary components of the superfield S acquire vacuum expectation
values 〈S〉 and 〈FS〉. Through Yukawa couplings to S the messenger fields acquire a mass
Mmes ≃ 〈S〉, while 〈FS〉 generates the mass splitting of the messenger fields. The two vacuum
expectation values are usually re-expressed in terms of an effective Supersymmetry breaking
scale, Λ = 〈FS〉/〈S〉. The gauge interactions being flavour-blind, minimal GMSB provides
a natural suppression of flavour violation in the MSSM and thus an attractive possibility to
avoid the “flavour-problem” arising e.g. in minimal supergravity.

The soft Supersymmetry breaking terms are generated through virtual loops of messen-
gers. The gaugino masses stem from one-loop diagrams, while the scalar masses are due to
two-loop diagrams. At the messenger scale Mmes, the corresponding expressions read

Mi =
αi(Mmes)

4π
Λ g

(
Λ

Mmes

)(
N5 + 3N10

)
, (1.19)

m2
j̃

= 2
(
N5 + 3N10

)
Λ2 f

(
Λ

Mmes

) 3∑

i=1

α2
i (Mmes)

16π2
Cij, (1.20)

where the Cij are Casimir invariants and Ni the multiplicity of the messengers in the 5 + 5̄

and 10 + 10 vector-like supermultiplets. The threshold functions

f(x) =
1 + x

x2

[
log(1 + x) − 2Li2

x

1 + x
+

1

2
Li2

2x

1 + x

]
+
{
x→ −x

}
, (1.21)

g(x) =
1

x2

[(
1 + x

)
log(1 + x)

]
+
{
x→ −x

}
, (1.22)

are of the order of one for x ∈ [0; 1], i.e. for the relevant region where Λ < Mmes. Note
that configurations with Λ > Mmes do not lead to physical solutions of the renormalization
group equations. Since the trilinear couplings are generated at the two-loop level, they can
be neglected with respect to the masses generated by one-loop diagrams, so that

au = ad = ae = 0 (1.23)

at the messenger scale.

The phenomenology of the minimal GMSB model is then determined by the effective Su-
persymmetry breaking scale Λ, the messenger mass scale Mmes, and the numbers of messenger
fields, nq and nl. The Higgs sector is again parametrized by the ratio of the vacuum expec-
tation values of the two Higgs doublets, tanβ, and the sign of the higgsino mass parameter,
sgn(µ). Another free parameter is the gravitino mass mG̃, that is related to the Supersym-
metry breaking scale 〈F 〉 as shown in Eq. (1.14). However, the suppression of gravity with
respect to gauge interactions implies that the gravitino is the lightest supersymmetric particle.
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1.5 Mass Eigenstates of the MSSM

An important feature of Supersymmetry is the mixing of supersymmetric particles. When
SU(2)×U(1) is spontaneously broken, particles having equal quantum numbers mix, as do also
the neutral B0 and W 0 bosons in the Standard Model. Thus, the gauge eigenstates presented
in Tab. 1.1 are not the mass eigenstates of the theory, the latter being superpositions of gauge
eigenstates having equal quantum numbers. In the following, the particle mixing between
gauge and mass eigenstates and the resulting mass spectrum of the MSSM is discussed.

1.5.1 Higgs Sector

As already mentioned above, two complex Higgs doublets, Hu and Hd, are needed in Su-
persymmetry. They couple, and thus give mass, to the up- and down-type (s)quarks and
(s)leptons, respectively. Limiting the MSSM to only one doublet would spoil the cancellation
of chiral anomalies, since the sum of the hypercharges of all chiral fermions should be zero.
Another reason for the presence of the second doublet is that the superpotential should only
involve the superfields and not their conjugates, which cannot be fulfilled with one single
doublet.

After rotating away the vacuum expectation values of the charged Higgs fields using
SU(2)L gauge transformations, i.e. after setting 〈H+

u 〉 = 〈H−
d 〉 = 0, the scalar potential of

the MSSM can be written as

V =
(
|µ|2 +m2

Hu

)
|H0

u|2 +
(
|µ|2 +m2

Hd

)
|H0

d |2 − b
(
H0
uH

0
d + h.c.

)

+
1

8

(
g2 + g′2

)(
|H0

u|2 − |H0
d |2
)2

(1.24)

where the parameter b can be chosen to be real and positive. The neutral components of
the Higgs fields develop vacuum expectation values 〈H0

u〉 = vu/
√

2 and 〈H0
d 〉 = vd/

√
2. Their

ratio is traditionally denoted

tan β =
vu
vd

=
〈H0

u〉
〈H0

d 〉
(1.25)

with β ∈ [0;π/2]. This nomenclature anticipates the fact that the so introduced angle β will
turn out to parametrize the rotation of the gauge eigenstates into the mass eigenstates. The
variable tan β is one of the key parameters of the Higgs sector and the phenomenology of the
whole MSSM.

In order to provide electroweak symmetry breaking, the potential in Eq. (1.24) has to
present a minimum. It can be shown that this is the case if the conditions

(
|µ|2 +m2

Hu

)
+
(
|µ|2 +m2

Hd

)
> 2b and

(
|µ|2 +m2

Hu

)(
|µ|2 +m2

Hd

)
< b2 (1.26)

are satisfied simultaneously. It is interesting to note that this cannot be achieved in exact
Supersymmetry, where m2

Hu
= m2

Hd
, and therefore electroweak symmetry breaking automat-

ically also implies Supersymmetry breaking.

The two complex Higgs doublets contain eight real scalar degrees of freedom. After
electroweak symmetry breaking, three of them become the massless Nambu-Goldstone bosons
G0 and G±, that are absorbed by the electroweak gauge bosons that become massive. The
remaining five scalar degrees of freedom correspond to physical particles: two CP -even neutral
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(h0, H0), two charged (H±), and one CP -odd (A0) Higgs boson. These are related to the
gauge eigenfields through

(
G0

A0

)
=

√
2

(
sinβ − cosβ
cosβ sinβ

)(
ℑ
{
H0
u

}

ℑ
{
H0
d

}
)
, (1.27)

(
G+

H+

)
=

(
sinβ − cosβ
cosβ sinβ

)(
H+
u

H−∗
d

)
, (1.28)

(
h0

H0

)
=

√
2

(
cosα sinα
− sinα cosα

)(
ℜ
{
H0
u

}
− vu

ℜ
{
H0
d

}
− vd

)
. (1.29)

The masses of the five physical Higgs bosons are obtained by expanding the potential around
its minimum. At the tree level, they are given by

m2
h0,H0 =

1

2

(
m2
A +m2

Z ∓
√(

m2
A +m2

Z

)2 − 4m2
Am

2
Z cos 2β

)
, (1.30)

m2
A =

2b

sin 2β
, (1.31)

m2
H± = m2

A +m2
W , (1.32)

while the mixing angles α ∈ [−π/2; 0] and β are related through

tan 2α

tan 2β
=

m2
A +m2

Z

m2
A −m2

Z

and
sin 2α

sin 2β
=

m2
h0 +m2

H0

m2
h0 −m2

H0

. (1.33)

Note that only two variables are needed to parametrize the Higgs sector at the tree level, e.g.
mA and tanβ. For more detailed reviews of electroweak symmetry breaking and the Higgs
sector in the MSSM, see e.g. Refs. [43–46].

1.5.2 Gaugino Sector

When SU(2) × U(1) is spontaneously broken, the neutral higgsinos, bino, and wino mix,
resulting in the four neutralinos χ̃0

i (i = 1, 2, 3, 4). The corresponding mass matrix is given
by

Mχ̃0 =




M1 0 −mZsW cos β mZsW sinβ
0 M2 mZcW cos β −mZcW sin β

−mZsW cos β mZcW cos β 0 −µ
mZsW sin β −mZcW sinβ −µ 0


 , (1.34)

where sW = sin θW and cW = cos θW . Its diagonalization involves the unitary matrix N and
leads to four neutral mass eigenstates, the neutralino fields

χ̃0
i = Ni1B̃

0 + Ni2W̃
0 + Ni3H̃

0
d + Ni4H̃

0
u, (1.35)

while the mass eigenvalues, by convention ordered according to mχ̃0

1

< ... < mχ̃0

4

, are obtained
through

diag(mχ̃0

1

,mχ̃0

2

,mχ̃0

3

,mχ̃0

4

) = N ∗Mχ̃0N−1. (1.36)

In the context of neutralino dark matter, it is useful to introduce the gaugino and higgsino
fractions of the lightest neutralino, usually defined as fG = |N11|2 + |N12|2 and fH = |N13|2 +

9
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|N14|2. The lightest neutralino is then called “gaugino-like” if fG > 0.5 and “higgsino-like” if
fH > 0.5, its nature influencing the coupling strenghts to gauge and Higgs bosons.

In the same way, the charged higgsinos and winos also mix, resulting in four charginos χ̃±
i

(i = 1, 2). In contrast to the neutralino case, the chargino mass matrix

Mχ̃± =

(
M2

√
2mW sin β√

2mW cosβ µ

)
(1.37)

is asymmetric, so that two unitary matrices U and V are needed for its diagonalization. The
mass eigenvalues, ordered according to mχ̃±

1

< mχ̃±

2

, are then given by

diag(mχ̃±

1

,mχ̃±

2

) = U∗Mχ̃±V−1. (1.38)

while the chargino mass eigenstates are obtained through

(
χ̃−

1 , χ̃
−
2

)T
= U

(
W̃−, H̃−

d

)T
and

(
χ̃+

1 , χ̃
+
2

)T
= V

(
W̃+, H̃+

u

)T
. (1.39)

Being the superpartner of the gluon, the gluino is the only fermion in a colour octet
and therefore cannot mix with other particles. In models with minimal supergravity or gauge
mediated Supersymmetry breaking, and up to one-loop level, its mass parameter M3 is related
to the ones of the bino and wino at any scale through

M3

g3
=

M2

g2
=

M1

g1
, (1.40)

where the gi denote the coupling constants of the three gauge groups. This relation implies
that the gluino is usually much heavier than the other gauginos. This is yet emphasized by
the fact that the gluino is strongly interacting, and the dependence of M3 on the energy scale
is therefore more important than those of M1 and M2.

Note that the neutralinos and the gluino are, in contrast to the charged charginos, Majo-
rana fermions. The matrices N , U , and V naturally appear in the expressions for the couplings
of neutralinos and charginos, respectively.

1.5.3 Sfermion Sector

In the sfermion sector, the mass eigenstates are superpositions of the left- and right-handed
sfermions gauge eigenstates. Assuming constrained minimal flavour violation, the squared
mass matrix for each sfermion flavour is given by

M2
f̃

=

(
M2
L̃f

mfXf

mfX
∗
f M2

R̃f

)
. (1.41)

Denoting ML̃, MẼ, MQ̃, MŨ , and MD̃ the soft Supersymmetry breaking mass terms for left-

and right-handed sleptons and squarks, and mq, ml, eq, el, T
3
q and T 3

l the mass, electric
charge, and weak isospin quantum number of the squarks q and leptons l, the diagonal entries
are given by

M2
L̃q

= M2
Q̃q

+m2
q +m2

Z

(
T 3
q − eq sin2 θW

)
cos 2β, (1.42)

M2
R̃q

= M2
Ũq

+m2
q +m2

Zeq sin2 θW cos 2β for up − type squarks, (1.43)

M2
R̃q

= M2
D̃q

+m2
q +m2

Zeq sin2 θW cos 2β for down − type squarks, (1.44)
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for squarks (q = u, d, c, s, t, b) and by

M2
L̃l

= m2
L̃

+m2
l +m2

Z

(
T 3
l − el sin

2 θW
)
cos 2β, (1.45)

M2
R̃l

= m2
Ẽ

+m2
l +m2

Zel sin
2 θW cos 2β, (1.46)

for sleptons (l = e, νe, µ, νµ, τ, ντ ). The helicity mixing is generated by the off-diagonal ele-
ments

Xf = A∗
f − µ

{
cot β for up − type sfermions,

tan β for down − type sfermions,
(1.47)

involving the trilinear couplings Af .

Note that helicity mixing is proportional to the associated fermion mass, so that the
off-diagonal elements are usually neglected for the first and second generations of sfermions.
Mixing between the interaction eigenstates is then only relevant for the third generation, i.e.
the tau slepton as well as the bottom and top squarks. In order to obtain the physical mass
eigenstates, the mass matrix is diagonalized by a unitary matrix Rf̃ according to

diag(m2
f̃1
,m2

f̃2
) = Rf̃Mf̃Rf̃† and

(
f̃1, f̃2

)T
= Rf̃

(
f̃L, f̃R

)T
, (1.48)

where by convention mf̃1
< mf̃2

. The mass eigenvalues themselves are at the tree level given
by

m2
f̃1,2

=
1

2

(
M2
L̃f

+M2
R̃f

∓
√(

M2
L̃f

−M2
R̃f

)2
+ 4m2

fX
2
f

)
(1.49)

and the diagonalizing matrix can be expressed in terms of a mixing angle θf̃ ∈ [0;π/2],

Rf̃ =

(
cos θf̃ sin θf̃

− sin θf̃ cos θf̃

)
with tan 2θf̃ =

2mfXf

M2
L̃f

−M2
R̃f

. (1.50)

In the absence left-handed eigenstates, no diagonalizing matrix is necessary for sneutrinos. A
more detailed discussion of the squark sector including the possibility of flavour violation is
given in the following Section.

1.6 Flavour Violation in the Squark Sector

The squark mass matrices are usually expressed in the super-CKM basis [47]. At the weak
scale, their squares are given by

M2
ũ =




M2
L̃u

∆uc
LL ∆ut

LL muXu ∆uc
LR ∆ut

LR

∆cu∗
LL M2

L̃c
∆ct

LL ∆cu∗
RL mcXc ∆ct

LR

∆tu∗
LL ∆tc∗

LL M2
L̃t

∆tu∗
RL ∆tc∗

RL mtXt

muX
∗
u ∆uc

RL ∆ut
RL M2

R̃u
∆uc

RR ∆ut
RR

∆cu∗
LR mcX

∗
c ∆ct

RL ∆cu∗
RR M2

R̃c
∆ct

RR

∆tu∗
LR ∆tc∗

LR mtX
∗
t ∆tu∗

RR ∆tc∗
RR M2

R̃t




(1.51)
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and

M2
d̃

=




M2
L̃d

∆ds
LL ∆db

LL mdXd ∆ds
LR ∆db

LR

∆sd∗
LL M2

L̃s
∆db

LL ∆sd∗
RL msXs ∆sb

LR

∆bd∗
LL ∆bs∗

LL M2
L̃b

∆bd∗
RL ∆bs∗

RL mbXb

mdX
∗
d ∆ds

RL ∆db
RL M2

R̃d
∆ds

RR ∆db
RR

∆sd∗
LR msX

∗
s ∆sb

RL ∆sd∗
RR M2

R̃s
∆sb

RR

∆bd∗
LR ∆bs∗

LR mbX
∗
b ∆bd∗

RR ∆bs∗
RR M2

R̃b




(1.52)

for up- and down-type squarks, respectively. The expressions of their diagonal entries M2
L̃q

and M2
R̃q

as well as the squark helicity mixing elements Xq are given in Eqs. (1.42) – (1.44)

and Eq. (1.47), respectively.

In the Standard Model, the only source of flavour violation arises through the rotation
of the quark interaction eigenstates into the basis of physical mass eigenstates. This rota-
tion diagonalizes the quark Yukawa matrices and renders the charged-current interactions
proportional to the unitary CKM-matrix [48,49]. In the super-CKM basis, the squark eigen-
states undergo the same rotations at high energy scale as their quark counterparts, so that
their charged-current interactions are also proportional to the Standard Model CKM-matrix.
However, different renormalizations of quarks and squarks introduce a mismatch of quark
and squark field rotations at low energies and lead to additional flavour violation at the weak
scale through renormalization group running [50–53]. In minimal flavour violating (MFV)

Supersymmetry, the flavour violating non-diagonal entries ∆qq′

ij stem only from the trilinear
Yukawa couplings of the fermion and Higgs supermultiplets, and can therefore be deduced
from the CKM-matrix. In the “usual” MSSM, these are often neglected. In the so-called

constrained minimal flavour violation (cMFV) models, the off-diagonal entries ∆qq′

ij are then
set to zero.

However, when embedding Supersymmetry in larger structures such as grand unification
theories (GUTs), new sources of flavour violation can appear [54]. For example, local gauge
symmetry allows for R-parity violating terms in the SUSY Lagrangian, but these terms are
today severely constrained by proton decay and collider searches. Additional sources of flavour
violation are included in the squark mass matrices at the weak scale. In contrast to MFV, their
flavour violating off-diagonal entries cannot be deduced from the CKM-matrix alone. Non-
minimal flavour violation (NMFV) is therefore conveniently parametrized in the super-CKM

basis by considering the elements ∆qq′

ij of the squared squark mass matrix as free parameters.
They are usually normalized to the diagonal entries according to

∆qq′

ij = λqq
′

ij Mĩq
Mj̃′q

(1.53)

so that NMFV is governed by 24 dimensionless variables λqq
′

ij [55]. Note that SU(2) gauge

invariance relates the ∆qq′

ij of up- and down-type squarks through the CKM-matrix, implying
that a large difference between them is not allowed.

To diagonalize the mass matrices M2
ũ and M2

d̃
, a generalization of the rotation matrices

to two 6 × 6 matrices Rũ and Rd̃ is now required. The mass eigenstates are then obtained
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through

diag
(
m2
ũ1
,m2

ũ2
,m2

ũ3
,m2

ũ4
,m2

ũ5
,m2

ũ6

)
= RũM2

ũRũ†, (1.54)

diag
(
m2
d̃1
,m2

d̃2
,m2

d̃3
,m2

d̃4
,m2

d̃5
,m2

d̃6

)
= Rd̃M2

d̃
Rd̃†, (1.55)

where the masses are now ordered by convention according to mq̃1 < ... < mq̃6 for q = u, d.
The physical mass eigenstates are given by

(
ũ1, ũ2, ũ3, ũ4, ũ5, ũ6

)T
= Rũ

(
ũL, c̃L, t̃L, ũR, c̃R, t̃R

)T
, (1.56)

(
d̃1, d̃2, d̃3, d̃4, d̃5, d̃6

)T
= Rd̃

(
d̃L, s̃L, b̃L, d̃R, s̃R, b̃R

)T
. (1.57)

All relevant, i.e. squark-involving, couplings then have to be generalized, involving the rotation
matrices Rũ and Rd̃. For a listing of couplings in non-minimal flavour violating Supersymme-

try, see App. A. In the limit of vanishing off-diagonal parameters ∆qq′

ij (or λqq
′

ij ) the matrices

Rq̃ become again flavour-diagonal, leaving only the well-known helicity mixing already present
in (c)MFV. For a detailed review of flavour violation in the MSSM, see e.g. Ref. [56].

1.7 R-Parity and Dark Matter

Originally motivated by the non-observation of proton decay, that might become possible
within Supersymmetry, an additional symmetry has been introduced into the MSSM. This
so-called R-parity is related to baryon and lepton number conservation and is for each particle
defined as

PR = (−1)3(B−L)+2s =

{
+1 for Standard Model particles,

−1 for their superpartners,
(1.58)

where B and L denote the baryon and lepton numbers, respectively, and s the spin of the
particle.

Within this work, we suppose the MSSM to conserve R-parity, which leads to important
implications2. As a first consequence, only vertices with a pair number of supersymmetric
particles are allowed. The latter can then only be produced by pairs and may decay only
into final states containing an odd number of superpartners. As a further consequence, the
lightest supersymmetric particle (LSP) cannot decay and must therefore be stable.

As discussed above, the Standard Model has no particle that can account for the cold Dark
Matter in our Universe. In Supersymmetry, a natural candidate for this purpose is the stable
LSP [57]. Additionally, in order to be a viable candidate, it has to be electrically neutral and
a colour singlet. Therefore, a supersymmetric scenario may be ruled out, if it does not include
a cosmologically suiting LSP. Promising Dark Matter candidates are the lightest neutralino
χ̃0

1, which is the LSP in a wide range of the cMSSM or mSUGRA parameter space, or the
gravitino G̃, which is the LSP in scenarios with gauge-mediated Supersymmetry breaking
(GMSB) and can, depending on its mass, be either cold, warm, or hot Dark Matter.

2Nevertheless we should note that R-parity violation also leads to an interesting phenomenology, in partic-

ular in connection with neutrino physics.
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1.8 Beyond the Minimal Model

Although Supersymmetry, and in particular the MSSM presented above, addresses success-
fully the hierarchy problem by stabilizing the Higgs mass due to the new scalar loop contri-
butions, leads to unification of the gauge couplings [58], and includes a suitable candidate
for cold Dark Matter [57], several open questions remain, leading to the assumption that the
minimal MSSM should be extended in one or several sectors. As a first example, the “flavour
problem” can conveniently be addressed by considering gauge-mediated instead of gravity-
mediated Supersymmetry breaking or by including the possibility of non-minimal flavour
violation as discussed in Sec. 1.6.

Another question arises through the Supersymmetry conserving higgsino mass parame-
ter µ, that appears in the scalar potential of Eq. (1.24) together with the Supersymmetry
breaking masses mHu and mHd

. The two mass scales should then lie within a few orders
of magnitude with respect to the electroweak scale, whereas they are a priori unrelated. A
possible solution to this so-called “µ-problem” consists of introducing an additional gauge
singlet [59, 60]. In those next-to-minimal Supersymmetric Standard Models (NMSSM), the
µ-term is absent at the tree-level before Supersymmetry breaking and arises only from the
vacuum expectation values from the new field. Recently, an NMSSM scenario based on
gauge-mediated Supersymmetry breaking has been proposed [61].

Further examples of Supersymmetric models beyond the MSSM are the CP -violating
MSSM [62], that includes explicit or spontaneous CP -violation in order to address the “strong
CP -problem”, or models with R-parity violation [63]. Except for the inclusion of non-minimal
flavour violation in the squark sector, these models are, however, beyond the scope of this
Thesis.
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Chapter 2

Constraints and Benchmark Points
for the MSSM

The Minimal Supersymmetric Standard Model (MSSM) depends on 124 a priori free soft
Supersymmetry-breaking parameters at the electroweak scale, that are often restricted to a
few universal parameters imposed at the unification scale. In the absence of direct experi-
mental evidence for supersymmetric particles, a large variety of data can be used to constrain
the parameter space of the MSSM both at the weak and the high scale.

Mass limits for superpartners of Standard Model particles can be obtained from searches
of charginos, neutralinos, gluinos, stops and other squarks, and sleptons at colliders. In Tab.
2.1 the current most important lower limits are summarized, obtained from different measure-
ments or combinations of measurements [64]. Note that all of these limits have been obtained
assuming a neutralino LSP in the mSUGRA case, R-parity conservation, and constrained
minimal flavour violation (cMFV). Further constraints on the MSSM parameter space can be
obtained through electroweak precision, low-energy, and cosmological constraints. The first
ones are particularly important in the case of non-minimal flavour violation, while cosmology
is less sensitive to flavour mixing, but may involve parameters from outside the MSSM.

In this Chapter, we first discuss the different constraints that can be imposed on the MSSM
including non-minimal flavour violation (NMFV). Based on systematic scans of the parameter
space, we then work out benchmark scenarios for minimal supergravity (mSUGRA) and gauge
mediation (GMSB) scenarios, that allow for non-minimal flavour violation as discussed in Sec.
1.6 [65,66].

2.1 Low Energy and Electroweak Precision Constraints

For non-minimal flavour violation (NMFV), rather strong constraints can be obtained from
low-energy and electroweak precision observables. Upper limits from the neutral kaon sector,
on B- and D-meson oscillations, various rare decays, and electric dipole moments can be used
to impose constraints on non-minimal flavour mixing in the squark and slepton sectors. In
several works [55,68–70], rather complete analysis have been performed. The obtained limits

on the flavour mixing parameters λqq
′

ij are summarized in Tab. 2.2, pointing out that only
mixing between the second- and third-generation squarks can be substantial, and this only in
the left-left or right-right chiral sectors. Note that in gravity mediation models the latter is
disfavoured by its scaling with the Supersymmetry-breaking mass [54].
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Neutralinos mχ̃0

1

≥ 36 − 59 GeV in mSUGRA from combined LEP2 results

mχ̃0

1

≥ 93 GeV in GMSB from combined LEP2 results

mχ̃0

2

≥ 59 GeV in mSUGRA from combined LEP2 results

Charginos mχ̃±

1

≥ 45 − 85 GeV in mSUGRA from Z width and comb. LEP2 results

mχ̃±

1

≥ 150 GeV in GMSB from D/0

Stop mt̃1
≥ 95 − 96 GeV in mSUGRA from combined LEP2 results

Sbottom mb̃1
≥ 96 GeV in mSUGRA from combined LEP2 results

Other squarks mq̃ ≥ 300 GeV for gluinos of equal mass from CDF

Selectron mẽ1 ≥ 99 GeV in mSUGRA from combined LEP2 results
Smuon mµ̃1

≥ 95 GeV in mSUGRA from combined LEP2 results
Stau mτ̃1 ≥ 80 − 86 GeV in mSUGRA or GMSB from combined LEP2 results
Sneutrino mν̃1 ≥ 43 GeV from measurements of the Z width

Gluino mg̃ ≥ 195 GeV for any squark masses from CDF

Gravitino mG̃ ≥ 1.1 · 10−5 eV for heavy sparticles from CDF
mG̃ ≥ 1.3 · 10−5 eV for mq̃,mg̃ ∼ 200 GeV from Ref. [67]

Table 2.1: Current limits at 95% confidence level for supersymmetric particle masses, as
given in Ref. [64], and assuming constrained minimal flavour violation and R-parity conserva-
tion. Note that some of the limits depend on the imposed Supersymmetry breaking scenario
and mass hierarchies at the electroweak scale.

In this study, we take implicitly into account all of the previously mentioned constraints
by restricting ourselves to the case of flavour-mixing between the second and third generation
squarks and consequently to only one real NMFV-parameter. Depending on the sector that
includes flavour violation, this parameter is either

λLL ≡ λsbLL = λctLL or λRR ≡ λsbRR = λctRR, (2.1)

while all other λqq
′

ij are zero, respectively. Allowed regions for this parameter are then ob-
tained by imposing explicitly a number of low-energy, electroweak precision, and cosmological
constraints. Note that the equality λsbLL,RR = λctLL,RR is justified by the fact that SU(2) gauge
invariance relates these values and implies that a large difference between them is not allowed.

A rather stringent constraint comes from the theoretically robust inclusive branching ratio

BR(b→ sγ) =
(
3.55 ± 0.26

)
· 10−4, (2.2)

obtained from the combined measurements of BaBar, Belle, and CLEO [71], which affects
directly the allowed squark mixing between the second and third generation. The above
limit is imposed at the 2σ confidence level on the two-loop QCD / one-loop SUSY-QCD
calculation [70, 72]. Like the Standard Model contributions, squarks enter the calculation
of this branching ratio already at the one-loop level, so that its dependence on the NMFV-
parameters λLL and λRR is rather important.

A second important consequence of NMFV in the MSSM is the generation of large split-
tings between squark mass eigenvalues. The splitting within the isospin doublets influences
the Z- and W -boson self-energies at zero momentum ΣZ,W (0) in the electroweak ρ-parameter

∆ρ =
ΣZ(0)

m2
Z

− ΣW (0)

m2
W

(2.3)
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qq′ / ij LL LR RL RR

12 1.4 · 10−2 9.0 · 10−5 9.0 · 10−5 9.0 · 10−3

13 9.0 · 10−2 1.7 · 10−2 1.7 · 10−2 7.0 · 10−2

23 1.6 · 10−1 4.5 · 10−3 6.0 · 10−3 2.2 · 10−1

Table 2.2: The 95% probability bounds on the NMFV-parameters |λqq′ij | for down-type
squarks obtained in Ref. [68].

and consequently the W -boson mass mW and the squared sine of the electroweak mixing angle
sin2 θW . The latest combined fits of the Z-boson mass, width, pole asymmetry, W -boson,
and top quark mass constrain new physics contributions to T = −0.13 ± 0.11 [64] or

∆ρ = −αT =
(
1.02 ± 0.86

)
· 10−3 (2.4)

for α−1(mZ) = 127.918. This value is then imposed at the 2σ-level on the one-loop NMFV
and two-loop cMFV SUSY calculation [73].

The anomalous magnetic moment of the muon aµ = (gµ−2)/2 represents a third observable
that is sensitive to SUSY loop contributions. Recent BNL data and the Standard Model
prediction disagree by [64]

∆aµ = aexp
µ − aSM

µ =
(
29.2 ± 8.6

)
· 10−10. (2.5)

We take into account SM and MSSM contributions up to two loops [74,75] and require them
to agree with the region above within two standard deviations. Here, squarks are involved
only at the two-loop level, so that their contribution is suppressed with respect to the slepton
one-loop diagrams. Concerning our analysis within non-minimal flavour violation, we should
note that the one-loop SUSY contributions are approximately given by [76]

aSUSY,1−loop
µ ≃ 13 · 10−10

(
100 GeV

MSUSY

)2

tan β sgn(µ), (2.6)

if the relevant SUSY particles have a common mass MSUSY. In consequence, negative values
of µ then increase, not decrease, the disagreement between the experimental measurements
and the theoretical SM value of aµ, so that the region µ < 0 is strongly disfavoured in all
supersymmetric models.

2.2 Cosmological Constraints

As already mentioned in the previous Chapter, Supersymmetry provides an interesting can-
didate for the cold dark matter in our Universe. It is the lightest supersymmetric particle
(LSP), which is stable if R-parity is conserved. In order to have a suitable candidate for
non-baryonic cold dark matter (WIMP), it is first of all required to be electrically neutral
and a colour singlet [57].

Since we can then compute the relic abundance of the lightest supersymmetric particle for a
given scenario, the calculation of the relic density ΩCDMh

2 allows to put additional constraints
on the MSSM parameter space with respect to collider, low-energy, and electroweak precision
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data. Cosmologically (dis)favoured regions are identified by comparing to the rather narrow
interval

0.095 < ΩCDMh
2 < 0.136. (2.7)

This limit at 2σ (95%) confidence level has recently been obtained from the three-year data
of the WMAP satellite, combined with the SDSS and SNLS survey and Baryon Acoustic
Oscillation data and interpreted within an eleven-parameter inflationary model [77], which
is more general than the usual six-parameter “vanilla” concordance model of cosmology.
Note that this range is well compatible with the older, independently obtained range of
0.094 < ΩCDMh

2 < 0.129 [78].

2.2.1 Neutralino Dark Matter

One natural candidate for cold dark matter within supersymmetric models is the lightest of
the four neutralinos. It is only gravitationally and weakly interacting and massive enough to
account for the cold dark matter density observed in our Universe. In particular in models
with minimal supergravity, the LSP is usually a neutralino.

The evolution of the number density of the relic particle with mass mχ̃ is governed by the
Boltzmann equation

dn

dt
= −3Hn− 〈σannv〉

(
n2 − n2

eq

)
, (2.8)

where the first term on the right-hand side corresponds to a dilution due to the expansion
of the Universe, and the second one to a decrease due to annihilations and coannihilations.
Here, H denotes the Hubble expansion parameter and neq the density of the relic particle in
thermal equilibrium. Knowing the effective (co)annihilation cross section σann, the Boltzmann
equation can be integrated numerically from t = 0 (Big Bang) to t = t0 (today). The energy
density of the relic particle with mass mχ̃ is then directly proportional to the present number
density n0,

ΩCDMh
2 =

mχ̃n0

ρc
∝ 1

〈σannv〉
, (2.9)

ρc = 3H2
0/(8πGN) being the critical density of our Universe, H0 the present Hubble parameter,

and GN the gravitational constant [79].
The effective cross section σann involves all annihilation and coannihilation processes of

the relic particle into Standard Model particles. The notation 〈σannv〉 stands for the thermal
average of the cross section multiplied by the relative particle velocity v, which can in the
case of neutralino pairs and for a given temperature T be calculated by [80,81]

〈σannv〉 =
1

4Tm4
χ̃K

2
2 (mχ̃/T )

∫
ds sβχ̃(s)K1(

√
s/T )σann(s) ≡

∫
ds fv(s) σann(s). (2.10)

Here, K1 and K2 denote the modified Bessel functions of the first and second kind, respec-
tively, βχ̃ the neutralino velocity, and σann(s) is the annihilation cross section as a function
of the squared centre-of-momentum energy s. The most important processes contributing
to σann are those that have two-particle final states and that occur at the tree level [82].
In the case of neutralino (co)annihilation, possible final states include those with fermion-
antifermion pairs as well as with combinations of gauge (W±, Z0) and Higgs (h0, H0, A0,
H±) bosons, depending on the region of the parameter space. Processes producing fermions
or antifermions may be detectable either directly or through their annihilation into photons.
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In addition, these channels are always open (for b-quarks if mχ̃0

1

≥ 4.5 GeV) in contrast to

the other channels, which may be suppressed or even closed [79,82].
Several public codes perform a calculation of the cold dark matter relic density within

supersymmetric models. The most developed and most popular ones are DarkSUSY [83] and
micrOMEGAs [84]. All relevant annihilation and co-annihilation processes are implemented in
these codes, but for most of them no (or at least not the full) higher order corrections are
included. For a compilation of all contributing processes see e.g. Ref. [79]. A more detailed
discussion of processes with quarks in the final state is given in Chaps. 3 and 4.

2.2.2 Gravitino Dark Matter

Another promising candidate for the cold dark matter in our Universe is the gravitino, that
is present in local supersymmetric theories and acquires its mass through the super-Higgs
mechanism. In certain scenarios, in particular in the case of gauge-mediated Supersymmetry
breaking (GMSB), the gravitino is the lightest supersymmetric particle. Depending on its
mass, the gravitino can account either for cold (mG̃ & 100 keV), warm (1 keV . mG̃ .

100 keV), or hot (mG̃ . 1 keV) dark matter. The constraints for gravitino dark matter are
similar, while somewhat more complex, than in the neutralino case.

Today’s gravitino abundance in our Universe has two contributions. First, gravitinos
are produced by thermal scattering in the very early Universe. Their corresponding energy
density [85–87]

Ωth
G̃
h2 ≃ 0.27

(
TR

1010 GeV

)(
100 GeV

mG̃

)(
mg̃

1 TeV

)2

(2.11)

involves the gluino mass mg̃ at low energy and the reheating temperature TR. The latter is
the temperature of the Universe after inflation, for which at present no convincing constraints
exist. However, values of TR & 109 GeV are preferred in scenarios that feature leptogenesis
in order to explain the cosmic baryon asymmetry [88,89].

Second, there is non-thermal production through decay of the next-to-lightest supersym-
metric particle (NLSP) into the gravitino. As each NLSP will decay into its Standard Model
partner and one gravitino, the resulting gravitino energy density can be obtained through

Ωnon−th
G̃

h2 =
mG̃

mNLSP
Ωth

NLSPh
2, (2.12)

where Ωth
NLSPh

2 is the thermal freeze-out relic density the NLSP would have if it did not decay.
The calculation of Ωth

NLSPh
2 can be done in the same way as for the neutralino, i.e. by solving

the Boltzmann equation (2.8). This can be done numerically for any NLSP using the public
code micrOMEGAs, whereas DarkSUSY is only adapted to the neutralino case. Note that for low
values of mG̃ and high reheating temperatures TR thermal production dominates, whereas for
high values of mG̃ it is negligible with respect to the contribution from NLSP decay.

Of course, as in the neutralino case, to be a viable candidate for cold dark matter the
total energy density of the gravitino should be within the experimental limits in Eq. (2.7),
or at least not exceed the upper limit1. Since for a given supersymmetric scenario ΩG̃h

2 =

Ωth
G̃
h2 + Ωnon−th

G̃
h2 does not only depend on mG̃ but also on the reheating temperature, we

can put upper limits on the latter by evaluating the gravitino relic density.

1Note that, in GMSB models with gravitino warm or hot dark matter, the lightest messenger particle can

play the role of cold dark matter required by the constraints coming from large structure formation.
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Another constraint for scenarios with gravitino dark matter arises from the fact that
the NLSP can spoil the abundances of light elements in our Universe, such as Li, if it does
not decay rapidly enough [86]. The lifetime of a supersymmetric particle decaying into its
Standard Model partner and a gravitino is given by the inverse of the corresponding decay
rate,

ΓNLSP =
1

48πM2
P

m5
NLSP

m2
G̃

(
1 −

m2
G̃

m2
NLSP

)4

. (2.13)

Given the cosmological uncertainties, we have here neglected any flavour violation and super-
symmetric particle mixing, which only would have minor effects on the resulting limits for
the gravitino mass. Inserting the value of the reduced Planck mass MP =

√
8πGN, Eq. (2.13)

can be rewritten as

τNLSP =
(
6.1 · 103 s

)( 1 TeV

mNLSP

)5( mG̃

100 GeV

)2(
1 −

m2
G̃

m2
NLSP

)−4

. (2.14)

In order to preserve the abundances of the light elements, that are well explained by primordial
nucleosynthesis, the lifetime of the NLSP should be shorter than τNLSP . 2 · 103 seconds [86].
In consequence, this last constraint favours scenarios having a light gravitino and/or a heavy
NLSP. Note that this might enter in conflict with the thermal production preferring a rather
high reheating temperature and therefore also a rather high gravitino mass, as can be seen
from Eq. (2.11).

2.3 Non-Minimal Flavour Violation in mSUGRA Scenarios

The previously discussed experimental limits are now imposed on the constrained Minimal
Supersymmetric Standard Model (cMSSM), or minimal supergravity (mSUGRA) model, with
five free parameters m0, m1/2, A0, tan β, and sgn(µ) at the grand unification scale. Since our
analysis depends very little on the trilinear coupling A0, we set it to zero in the following. For
the ratio of the Higgs vacuum expectation values, we fix a small (tan β = 10), intermediate
(30), and large (50) value. The impact of the sign of the off-diagonal Higgs mass parameter
µ is investigated for tan β = 10 only, before we set it to µ > 0 for tan β = 30 and tan β = 50.

With these boundary conditions at the grand unification scale, we solve the renormaliza-
tion group equations numerically to two-loop order using the computer programme SPheno

2.2.3 [90] and compute the soft SUSY-breaking masses at the electroweak scale with the
complete one-loop formulas, supplemented by two-loop contributions in the case of the neu-
tral Higgs bosons and the µ-parameter. At this point we generalize the squark mass matrices
as described in Sec. 1.6 in order to account for flavour mixing between the second- and
third-generation squarks, diagonalize these mass matrices, and compute the low-energy and
electroweak precision observables with the computer programme FeynHiggs 2.5.1 [91]. As
already mentioned, flavour violation in the right-right chiral sector is here disfavoured due to

the scaling of the flavour-violating entries ∆qq′

ij with the Supersymmetry breaking scale, im-
plying a hierarchy ∆LL ≫ ∆LR,RL ≫ ∆RR [54]. Within mSUGRA, we therefore concentrate
on flavour mixing in the left-left sector, implemented through the parameter λLL, while λRR

is set to zero. The neutralino relic density is computed by a modified version of DarkSUSY
4.1, that takes into account the six-dimensional squark helicity and flavour mixing. For the
Standard Model input parameters, we use the current values of Ref. [64], summarized in App.
B.
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Figure 2.1: The m0-m1/2 planes for tan β = 10, A0 = 0, µ < 0, and λLL = 0, 0.03, 0.05,
and 0.1. We show WMAP favoured (black) as well as b→ sγ (blue) and charged LSP (beige)
excluded regions of the mSUGRA parameter space in constrained minimal (λLL = 0) and
(non-)minimal (λLL > 0) flavour violation.

2.3.1 Scans of the mSUGRA parameter space and benchmark points

Typical scans of the cMSSM parameter space in m0 and m1/2 with a relatively small value of
tan β = 10 and A0 = 0 are shown in Figs. 2.1 and 2.2 for µ < 0 and µ > 0, respectively. All
experimental limits described in Secs. 2.1 and 2.2 are imposed at the 2σ-level. As expected,
the b → sγ excluded region depends strongly on flavour mixing, while the regions favoured
by (g− 2)µ and the dark matter relic density are quite insensitive to variations of the NMFV
parameter λLL. ∆ρ constrains the parameter space only for very heavy scalar masses m0 >
2000 GeV and heavy gaugino masses m1/2 > 1500 GeV, so that the corresponding excluded
regions are not shown. In addition to the fact that µ < 0 is strongly disfavoured due to ∆aµ,
the measured b → sγ branching ratio excludes virtually all of the region favoured by the
dark matter relic density, except for very high SUSY masses. We therefore do not consider
negative values of µ in the rest of this analysis.

In Figs. 2.3 and 2.4, we show the m0-m1/2 planes for larger tanβ, namely tan β = 30 and
tan β = 50, and for µ > 0. The regions which are favoured both by the anomalous magnetic
moment of the muon and by the cold dark matter relic density, and which are not excluded
by the b → sγ measurements, are stringently constrained and do not allow for large flavour
violation.

We now inspect the m0–m1/2 planes in Figs. 2.2 – 2.4 for mSUGRA scenarios that are
allowed/favoured by low-energy, electroweak precision and cosmological constraints, and that
permit non-minimal flavour violation among left-chiral squarks of the second and third gen-
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Figure 2.2: The m0-m1/2 planes for tanβ = 10, A0 = 0, µ > 0, and λLL = 0, 0.03, 0.05, and
0.1. We show aµ (grey) and WMAP favoured (black) as well as b→ sγ (blue) and charged LSP
(beige) excluded regions of the mSUGRA parameter space in constrained minimal (λLL = 0)
and (non-)mininal (λLL > 0) flavour violation.

eration up to λLL ≤ 0.1. Additionally, we require them at the same time to be “collider-
friendly”, i.e. to have relatively low values of m0 and m1/2. Our choices are presented in
Tab. 2.3, together with the nearest pre-WMAP Snowmass Points (and Slopes, SPS) [92, 93]
and the nearest post-WMAP scenarios (BDEGOP) proposed in Ref. [94]. The benchmark
scenarios are also valid in (constrained) minimal flavour violation. We have also verified that

in the case of MFV the hierarchy ∆qq′

LL ≪ ∆qq′

LR,RL ≪ ∆qq′

RR and the equality λsbLL = λctLL are

still reasonably well fulfilled numerically with the values of λsbLL ≈ λctLL ranging from zero to
5 · 10−3 . . . 1 · 10−2 for our different benchmark points.

Starting with Fig. 2.2 and tan β = 10, the bulk region of equally low scalar and fermion
masses is all but excluded by the b→ sγ branching ratio. This leaves as a favoured region first
the so-called focus point region of low fermion masses m1/2, where the lightest neutralinos are
relatively heavy, have a significant higgsino component, and annihilate dominantly into pairs
of electroweak gauge bosons. Our benchmark point A lies in this region, albeit at smaller
masses than SPS 2 (m0 = 1350 GeV, m1/2 = 300 GeV) and BDEGOP E’ (m0 = 1530 GeV,
m1/2 = 300 GeV), which lie outside the favoured region by (g − 2)µ and lead to collider-
unfriendly squark and gaugino masses.

The second favoured region for small tan β is the coannihilation branch of low scalar
masses m0, where the lighter tau-slepton mass eigenstate is not much heavier than the lightest
neutralino and the two have a considerable coannihilation cross section. This is where we
have chosen our benchmark point B, which differs from the points SPS 3 (m0 = 90 GeV,
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Figure 2.3: Same as Fig. 2.2 for tanβ = 30, A0 = 0, µ > 0.
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Figure 2.4: Same as Fig. 2.2 for tanβ = 50, A0 = 0, µ > 0.
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m0 [GeV] m1/2 [GeV] A0 tan β sgn(µ) SPS BDEGOP Cosmol. region

A 700 200 0 10 + 2 E’ Focus point

B 100 400 0 10 + 3 C’ Co-annihilation

C 230 590 0 30 + 1b I’ Co-annihilation

D 600 700 0 50 + 4 L’ Bulk/Higgs funnel

Table 2.3: Benchmark point allowing for flavour violation among the second and third
generations for A0 = 0, µ > 0, and three different values of tanβ. For comparison we also
show the nearest pre-WMAP SPS [92,93] and post-WMAP BDEGOP [94] benchmark points
and indicate the relevant cosmological regions.

m1/2 = 400 GeV) and BDEGOP C’ (m0 = 85 GeV, m1/2 = 400 GeV) only very little in the
scalar mass. This minor difference may be traced to the fact that we use DarkSUSY 4.1 [83]
instead of the private dark matter code SSARD of Ref. [94].

At larger values of tan β = 30 in Fig. 2.3, only the coannihilation region survives the
constraints coming from b→ sγ decays. Here we choose our point C, which has slightly higher
masses than both SPS 1b (m0 = 200 GeV, m1/2 = 400 GeV) and BDEGOP I’ (m0 = 175 GeV,
m1/2 = 350 GeV), due to the ever more stringent constraints from the B-decay.

Finally, for the large value of tan β = 50 in Fig. 2.4, the bulk region reappears at relatively
high scalar and fermion masses. Here, the couplings of the heavier scalar and pseudoscalar
Higgs bosons H0 and A0 to bottom quarks and tau leptons and the charged Higgs coupling
to top-bottom quark pairs are significantly enhanced, resulting e.g. in increased dark matter
annihilation cross sections through s-channel Higgs exchange into bottom-quark final states.
So as tan β increases further (tan β ∼ 54, see Chap. 3), the so called Higgs-funnel region
eventually makes its appearance on the diagonal of large scalar and fermion masses. We
choose our point D in the concentrated (bulky) region favoured by cosmology and (g − 2)µ.
The corresponding masses are slightly higher than those of SPS 4 (m0 = 400 GeV, m1/2 =
300 GeV) and BDEGOP L’ (m0 = 300 GeV, m1/2 = 450 GeV). We do so in order to escape
again from the constraints of the b → sγ decay, which are stronger today than they were a
few years ago. In this scenario, squarks and gluinos are very heavy with masses over 1 TeV.

2.3.2 Dependence of Observables and Mass Eigenvalues on Flavour Viola-
tion

Let us now turn to the dependence of the precision variables discussed in the previous Section
on the flavour violating parameter λLL in the four benchmark scenarios defined above. Our
numerical analysis confirms the expected weak dependence of the leptonic observable (g−2)µ
on the squark sector. We find the constant values of aSUSY

µ = 6 · 10−10, 14 · 10−10, 16 · 10−10,
and 13 · 10−10 for our benchmark points A, B, C, and D, respectively. Note that the benchmark
points have been defined based on the older experimental limits ∆aµ =

(
22±10

)
· 10−10. Our

points B, C, and D lie well within 2σ of both the older and the current experimentally favoured
range of Eq. (2.5). The point A, however, lies now outside the 2σ interval with respect to the
“new” limits, so that a redefinition would be necessary [95].

In the first diagrams of Figs. 2.5 – 2.8 we show the dependence of the most stringent
low-energy constraint coming from the good agreement between the measurements of the
b→ sγ branching ratio and the two-loop Standard Model prediction, on the NMFV parameter
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Figure 2.5: Dependence of the precision observables BR(b → sγ), ∆ρ, and the cold dark
matter relic density ΩCDMh

2 as well as the lightest SUSY-particle, up- and down-type squark
masses on the NMFV parameter λLL in our benchmark scenario A. The experimentally al-
lowed/favoured ranges (within 2σ) are indicated by horizontal dashed lines.
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Figure 2.6: Same as Fig. 2.5 for our benchmark scenario B.
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Figure 2.7: Same as Fig. 2.5 for our benchmark scenario C.
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Figure 2.8: Same as Fig. 2.5 for our benchmark scenario D.
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λLL. The horizontal dashed lines indicate the favoured region at 2σ and exhibit two allowed
intervals, one close to λLL = 0 (green line), the second at higher values of λLL ≤ 0.5. The
latter is, however, disfavoured by B → Xsµ

+µ− data constraining the sign of the b → sγ
amplitude to be the same as in the Standard Model [96]. We therefore limit ourselves to
the regions in the vicinity of (constrained) minimal flavour violation, i.e. λLL ≤ 0.05 for the
points A, C, and D, and λLL ≤ 0.1 for the point B.

The electroweak precision observable ∆ρ is shown in the second diagrams of Figs. 2.5 – 2.8
for our four benchmark scenarios. Again, the horizontal band corresponds to the experimen-
tally allowed range, for which only the upper bound is visible. The self-energies diagrams of
the electroweak gauge bosons depend strongly on the helicities, flavours, and mass eigenval-
ues of the squarks in the loop. However, the sufficiently small SUSY masses in our scenarios
combined with the rather large experimental error still allow for relatively large values of
λLL ≤ 0.57, 0.52, 0.38, and 0.32 for the benchmark points A, B, C, and D, respectively.
As mentioned above, ∆ρ constrains SUSY models in cMFV only for m0 & 2000 GeV and
m1/2 & 1500 GeV.

In the next diagrams of Figs. 2.5 – 2.8, we show the cold dark matter relic density ΩCDMh
2

as a function of the NMFV parameter λLL. Here, only the lower bound of the indicated
favoured range of Eq. (2.7) is relevant, as the relic density falls with increasing λLL. In our
model A, the lightest neutralino has a sizable higgsino component, so that squark exchanges
contribute significantly to its annihilation cross section. Since the squark masses are generally
larger in our models B, C, and D, there is less sensitivity of ΩCDMh

2 to the NMFV parameter,
except for very large λLL ≤ 1.

This rapid fall-off of the relic density for very large λLL, can be understood by looking
at the resulting lightest up- and down-type squark mass eigenvalues, as shown in the fourth
diagrams of Fig. 2.5 – 2.8. For higher values of λLL the off-diagonal elements of the squared
squark mass matrices get more important, and in consequence the mass splitting between
lightest and heaviest up- and down-type squarks increases. As a further consequence, the
lightest squark mass eigenvalue approaches and finally falls below the mass of the lightest
neutralino. Coannihilation processes and light squark propagators then lead to a rapidly
falling dark matter relic density and finally to the case of a squark LSP, that is cosmologically
excluded.

An interesting phenomenon of level reordering between neighbouring states can be ob-
served in the remaining diagrams of Fig. 2.5 – 2.8 for the two lowest mass eigenvalues of
up- and down-type squarks. With increasing λLL the mass splitting between the lightest and
heaviest mass eigenstates gets larger, while the intermediate squark masses are practically
degenerate and insensitive to λLL. For up-type squarks, it is first the second-lowest mass that
decreases up to intermediate values of λLL ∼ 0.2− 0.5 while the lowest mass is constant, and
only at this point the second-lowest mass becomes constant and the lowest squark mass starts
to decrease further with λLL. These “avoided crossings” are a common phenomenon for Her-
mitian matrices, that depend continuously on one single real parameter. At the point where
the two levels should cross, the corresponding squark eigenstates mix and change character.
For our scenario C, the phenomenon occurs even a second time with an additional avoided
crossing between the states ũ2 and ũ3 at λLL ≃ 0.05. For scenario B, this takes place at
λLL ≃ 0.1 and there is even another crossing at λLL ≃ 0.02. For down-type squarks, the level
reordering phenomenon is not so pronounced.
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2.4 GMSB Scenarios and Non-Minimal Flavour Violation

In contrast to the cMSSM or mSUGRA model, where flavour violation naturally arises from
the fact that Supersymmetry breaking is mediated by gravity, flavour mixing is naturally
suppressed in the minimal gauge mediation scenarios, since the gauge interactions are flavour-
blind. However, it has been shown that flavour breaking terms can reappear at the electroweak
scale in models beyond the minimal one [42, 97, 98]. For squarks, flavour violation can then
arise in the left-left and the right-right chiral sectors. In this Section, we discuss the possibility
of non-minimal flavour violation induced through the possible mixing of messenger and matter
fields [98]. We show that this is an interesting possibility to relax the stringent electroweak
precision constraints, that virtually exclude the minimal GMSB scenario.

2.4.1 Scans of the Minimal GMSB Parameter Space

We first impose the experimental limits discussed in Sec. 2.1 at the 2σ confidence level on
the minimal gauge mediated SUSY breaking (GMSB) model with five free parameters Λ,
Mmes, Nmes, tanβ, and sgn(µ) at the GUT scale. A further free parameter is the gravitino
mass mG̃ at the weak scale, that will be discussed later in connection with the cosmological
constraints. The physical mass spectrum at the electroweak scale is again computed using
the combination of SPheno 2.2.3 and FeynHiggs 2.6.4 as described in Sec. 2.3. Since we

assume here constrained minimal flavour violation (cMFV), all off-diagonal entries λqq
′

ij of the
squared squark mass matrices are set to zero. For the numerical values of the Standard Model
input parameters, see App. B.

In Fig. 2.9 we show typical scans of the minimal GMSB parameter space in Λ and Mmes

for µ > 0 and different values of Nmes (1 and 3) and tan β (15, 30, and 50). The six panels
reveal that these scenarios are strongly disfavoured by the measurements of the b → sγ
branching ratio. In particular, the Snowmass Points [92] SPS 7 (Λ = 40 TeV, Mmes = 80 TeV,
tan β = 15, µ > 0, and Nmes = 3) and SPS 8 (Λ = 100 TeV, Mmes = 200 TeV, tan β = 15,
µ > 0, and Nmes = 1) lead to values of BR(b → sγ) = 4.86 · 10−4 and 4.57 · 10−4, which are
excluded at the 5σ and 4σ level, respectively, even if both of these points lie well within 1σ
of the experimentally allowed range for the anomalous magnetic moment of the muon, with
aSUSY
µ = 22.8 · 10−10 and aSUSY

µ = 16.3 · 10−10.

Recently, a detailed study of electroweak precision observables, including scenarios with
minimal GMSB, has been published [99]. Scanning also over tan β and allowing for higher
values of Nmes ≤ 8, the authors show that experimentally favoured scenarios can be achieved
at low messenger scales, which, however, implies a certain amount of fine tuning at the
electroweak scale, especially in the Higgs sector. Note that for Nmes & 8 problems with
perturbativity of the gauge interactions arise at very high scales [42].

2.4.2 GMSB Models with Non-Minimal Flavour Violation

Minimal gauge-mediated Supersymmetry breaking is known to suppress flavour-changing neu-
tral currents (FCNC) as suggested by measurements and thus avoid the so-called “flavour-
problem” naturally arising in models where Supersymmetry breaking is mediated by gravity.
Although the gauge interactions are flavour-blind, it has been shown that considering models
beyond the minimal GMSB can reintroduce flavour breaking terms at the electroweak scale in
the slepton and squark sectors. For example, for very high messenger scales Mmes ∼ 1015 GeV
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Figure 2.9: The Λ-Mmes planes for tanβ = 15, 30, and 50, Nmes = 1 and 3, µ > 0. We show
the b→ sγ excluded (dark blue) regions in constrained minimal flavour violation (cMFV). The
region Λ > Mmes above the diagonal is theoretically excluded due to non-physical solutions
to the renormalization group equations.

gravity is no longer negligible with respect to the flavour blind gauge interactions [42]. In con-
sequence, flavour violating terms are reintroduced through gravity mediating as in mSUGRA
models. However, scenarios with that high messenger scales are rather unattractive from
a phenomenological point of view due to the resulting very high sparticle masses. Second,
flavour violation can be induced from heavy right-handed neutrinos participating in leptoge-
nesis [97]. If these are lighter than the messenger scale, flavour off-diagonal mass terms are
introduced into the slepton mass matrices. A third possibility might be to consider broken
messenger number invariance, that implies that the lightest messenger is not stable, but in-
troduces flavour violating terms in the Lagrangian at the weak scale [42]. A disadvantage of
this model is that the now unstable lightest messenger may not be a viable candidate for cold
dark matter, if the too light gravitino cannot account for the observed relic abundance.

For our study, we focus on the model proposed in Ref. [98], based on the introduction of a
mixing between messenger and matter fields. In the case of fundamental messenger multiplets,
belonging to 5 and 5 representations of SU(5), the messengers carry the quantum numbers
of left-handed leptons and right-handed down-type quarks. In consequence, flavour violation
is introduced into the chiral sectors of right-handed sleptons and left-handed up- and down-
type squarks. In our analysis of squark flavour violation, this corresponds to the case already
discussed for minimal supergravity including a variation of the parameter λLL, while λRR is set
to zero. Also investigated is an alternative model with antisymmetric messenger multiplets,
belonging to 10 and 10 representations. In this case, the messengers share quantum numbers
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Figure 2.10: The Λ-Mmes planes for tanβ = 15, Nmes = 1, and µ > 0. We show aµ
favoured (grey) and b → sγ excluded (dark blue) regions in non-minimal flavour violation
(NMFV) with squark mixing between the second and third generations in the left-left sector
(λRR = 0, λLL > 0) or both the left-left and right-right sector (λLL = λRR > 0). The region
Λ > Mmes above the diagonal is theoretically excluded due to non-physical solutions of the
renormalization group equations.

with right-handed leptons, left-handed up- and down-type type quarks, and right-handed
up-type quarks, leading to flavour mixing for left-handed sleptons as well as for both left-
and right-handed up- and down-type squarks. Contrary to minimal supergravity, GMSB
allows thus for important flavour mixing in the right-right chiral sector. Note that, in this
antisymmetric scenario, flavour mixing in the sector of right-handed down-type squarks may
be parametrized independently of the other squarks. In our analysis however, we use for
simplicity the same flavour violation parameter λLL = λRR for both chiral sectors. This is
also motivated by SU(2) gauge invariance not allowing a large difference between them. In
both scenarios flavour violation is thus completely governed by the parameter λLL.

2.4.3 Benchmark Points for GMSB with Flavour Violation

We now re-investigate the low-energy and electroweak precision constraints including non-
minimal flavour violation as discussed above. Allowed regions for the parameters Λ, Mmes,
Nmes, tan β, sgn(µ), λLL, and λRR are obtained by explicitly imposing the constraints from
b→ sγ, ∆ρ, and aµ, that are sensitive to flavour violating terms. The renormalization group
running is again performed with SPheno 2.2.3. The flavour violating terms λLL and λRR

are included in the squark mass matrices at the electroweak scale before computing the mass
spectrum and the low-energy and electroweak precision observables with FeynHiggs 2.6.4.
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Figure 2.11: Same as Fig. 2.10 for Nmes = 3, tanβ = 15, and µ > 0.

In Figs. 2.10 – 2.15 we show scans of the Λ-Mmes plane for µ > 0 and the same values
Nmes = 1, 3 and tanβ = 15, 30, 50 as in Sec. 2.4.1. In each figure, the upper panels corre-
spond to the case of matter mixing with fundamental messengers and flavour mixing only in
the left-left chiral sector (λRR = 0), while the lower panels represent the case of antisymmet-
ric messengers leading to flavour mixing in the left-left and right-right chiral squark sectors
(λRR = λLL). For the same reasons as in mSUGRA scenarios, the region favoured by the
anomalous magnetic moment of the muon aµ is quite insensitive to variations of the param-
eter λLL. As expected, the region excluded by the inclusive branching ration BR(b → sγ)
depends strongly on flavour mixing. It is, in particular, also affected by the mixing scenario,
inducing a slight but visible difference in the excluded regions. The constraint coming from
∆ρ does not play a role for the moderate sparticle masses corresponding to our region of
interest, so that the excluded regions are not shown. It becomes clear that, if we allow for
flavour mixing between the second and third generation squarks, windows in the parameter
space both favoured by aµ and not excluded by the stringent constraint from b → sγ make
their appearance for small and moderate SUSY masses.

Within these regions, we propose six benchmark scenarios permitting non-minimal flavour
violation and not yielding too high sparticle masses (“collider-friendly”), so that possible
SUSY signals should be observable at present and/or future hadron colliders. Our choices are
presented in Tab. 2.4, labeled starting at the point E due to our four benchmark proposals for
mSUGRA scenarios including non-minimal flavour violation in Sec. 2.2. Note that, in contrast
to the mSUGRA case, these scenarios are not valid in constrained minimal flavour violation
(λLL = λRR = 0), so that we indicate the valid range for the flavour mixing parameters. We
have also checked that these scenarios are cosmologically allowed, see Sec. 2.4.5.
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Figure 2.12: Same as Fig. 2.10 for Nmes = 1, tanβ = 30, and µ > 0.

 (TeV)mesM
50 100 150 200

 (
T

eV
)

Λ

50

100

150

200

m
es

 >
 M

Λ

=0.1LLλ=0, 
RR

λ>0, µ=30, β=3, tanmesN

 (TeV)mesM
50 100 150 200

 (
T

eV
)

Λ

50

100

150

200

m
es

 >
 M

Λ

=0.15LLλ=0, 
RR

λ>0, µ=30, β=3, tanmesN

 (TeV)mesM
50 100 150 200

 (
T

eV
)

Λ

50

100

150

200

m
es

 >
 M

Λ

=0.2LLλ=0, 
RR

λ>0, µ=30, β=3, tanmesN

 (TeV)mesM
50 100 150 200

 (
T

eV
)

Λ

50

100

150

200

m
es

 >
 M

Λ

=0.1RRλ=
LL

λ>0, µ=30, β=3, tanmesN

 (TeV)mesM
50 100 150 200

 (
T

eV
)

Λ

50

100

150

200

m
es

 >
 M

Λ

=0.15RRλ=
LL

λ>0, µ=30, β=3, tanmesN

 (TeV)mesM
50 100 150 200

 (
T

eV
)

Λ

50

100

150

200

m
es

 >
 M

Λ

=0.2RRλ=
LL

λ>0, µ=30, β=3, tanmesN

Figure 2.13: Same as Fig. 2.10 for Nmes = 3, tanβ = 30, and µ > 0.
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Figure 2.14: Same as Fig. 2.10 for Nmes = 1, tanβ = 50, and µ > 0.
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Figure 2.15: Same as Fig. 2.10 for Nmes = 3, tanβ = 50, and µ > 0.
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Λ Mmes Nmes tan β sgn(µ) λLL NLSP SPS

E 65 TeV 90 TeV 1 15 + [0.14, 0.20] χ̃0
1 8

F 30 TeV 80 TeV 3 15 + [0.12, 0.18] τ̃1 7

G 100 TeV 110 TeV 1 30 + [0.14, 0.20] τ̃1 –
H 45 TeV 100 TeV 3 30 + [0.12, 0.18] τ̃1 –

I 130 TeV 140 TeV 1 50 + [0.14, 0.20] τ̃1 –
J 60 TeV 100 TeV 3 50 + [0.14, 0.20] τ̃1 –

Table 2.4: GMSB benchmark points allowing for non-minimal flavour violation. We also
indicate the allowed range for the NMFV-parameter λLL, the nature of the NLSP, and the
closest SPS benchmark point.

Starting with tan β = 15 and Nmes = 1 (see Fig. 2.10), we choose our benchmark point E
in the region favoured by the electroweak precision constraints corresponding to rather light
SUSY particles. As for any GMSB scenario, the gravitino is the lightest SUSY particle (LSP).
The next-to-lightest SUSY particle (NLSP) is the lightest neutralino with mχ̃0

1

= 95.4 GeV,
but the three lightest charged sleptons are very close with similar masses around 100 GeV.
The other sleptons, sneutrinos, and gauginos have moderate masses of about 150 – 300 GeV,
while the squarks and gluino are quite heavy with masses lying in the range of 700 – 800 GeV.
They are much lighter than those corresponding to SPS 8 with its large values of Λ and Mmes,
but well above the experimental limits obtained from direct searches assuming cMFV (see
Tab. 1.1), and are experimentally accessible at the LHC.

The point F (see Fig. 2.11) differs only very little from the point SPS 7, with the
Supersymmetry-breaking scale Λ shifted from 40 TeV to 30 TeV, so that it is no longer ex-
cluded by the most recent experimental values of BR(b→ sγ). As for SPS 7, the three lightest
sleptons have masses around 100 GeV, the lightest of them being the stau with mτ̃1 = 90.7
GeV. The other sleptons, sneutrinos, and gauginos are a bit heavier (120 – 200 GeV), and
the squarks and gluino are rather heavy (600 – 700 GeV). The points G, H, I, and J (see
Figs. 2.12 – 2.15) all have a stau NLSP with a mass between 99 and 160 GeV. The main
difference in their spectra is the number and nature of the particles that are closest in mass
to the NLSP. For the point G these are two sleptons and the lightest neutralino, whereas for
the point H these are only two sleptons. The points I and J do not have any particles close
to the NLSP in mass. For the four points G, H, I, and J, the other sleptons and gauginos are
rather light (200 – 600 GeV), while the squarks and gluino are very heavy (1 – 1.5 TeV).

2.4.4 Dependence of Observables and Mass Eigenvalues on Flavour Viola-
tion

We now study in detail the constraints of the electroweak precision and low-energy observables
on, as well as the mass spectra of the points E, F, G, H, I, and J. In the upper and lower
left panels of Figs. 2.16 – 2.21 we show the branching ratio BR(b → sγ) and the observable
∆ρ as a function of the flavour mixing parameter λLL and including both flavour violation
scenarios. As already mentioned, the leptonic observable aµ depends very weakly (at the
two-loop level only) on the squarks. In consequence, we find values of aµ independent of
λLL for our six benchmark scenarios, which are aSUSY

µ = 37.7 · 10−10, 41.3 · 10−10, 31.4 · 10−10,
36.6 · 10−10, 31.8 · 10−10, and 34.2 · 10−10 for the points E, F, G, H, I, and J, respectively.
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Figure 2.16: Dependence of the precision variables BR(b→ sγ) and ∆ρ, as well as the up-
and down-type squark masses on the NMFV-parameter λLL for flavour mixing in the left-left
(λRR = 0, full) or both in the left-left and right-right (λRR = λLL, dashed) chiral squark
sectors for our benchmark scenario E. The red dashed bands indicate the experimentally
favoured regions at 2σ, and the vertical red dashed lines correspond to the allowed range for
λLL with respect to the most stringent b→ sγ constraint.

These values lie well within 2σ of the experimentally favoured range of Eq. (2.5), and even
within 1σ for the points E, G, H, I, and J. For the inclusive branching ratio BR(b → sγ),
the experimentally allowed range within 2σ is indicated by two horizontal dashed lines. The
good agreement between the measurements and the two-loop SM prediction in combination
with the strong dependence of the SUSY contribution on squark flavour mixing only leave
two allowed narrow intervals for our flavour violation parameter, one being at relatively low
values λLL ∼ 0.15, the second one at higher values of λLL ∼ 0.5− 0.7. The latter is, as also in
the mSUGRA case, disfavoured by b→ sµ+µ− data [96]. The remaining interval is indicated
by vertical dotted lines. Note that the difference between the two scenarios is small for the
relevant values of λLL . 0.2. Concerning the observable ∆ρ, the difference between the two
considered flavour mixing scenarios is not visible, so that only one curve is shown. Again, the
horizontal line indicates the favoured range within 2σ, where only the upper limit is visible
on our logarithmic scale. In contrast to BR(b → sγ), here the relatively large experimental
errors allow for values of λLL . 0.3 − 0.6, depending on the benchmark point. The vertical
dashed lines indicate the allowed range for λLL with respect to the more stringent constraint
coming from b→ sγ.

The difference between the two flavour violation scenarios becomes more obvious when
we study the squark mass eigenvalues. The up- and down-type squark masses are shown
as a function of the flavour mixing parameter λLL in the centre and right upper panels of
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Figure 2.17: Same as Fig. 2.16 for our benchmark scenario F.

Figs. 2.16 – 2.21 for mixing with fundamental messengers (λRR = 0) and in the centre and
right lower panels for antisymmetric messengers (λRR = λLL). We observe here the same
level reordering phenomenon between neighbouring states as already in the case of minimal
supergravity, discussed in Sec. 2.3.2. With increasing flavour violation the mass splitting be-
tween the lightest and heaviest mass eigenstates becomes larger, while the intermediate squark
masses are practically unchanged. At the points, where two levels should cross, we observe
again the so-called “avoided crossings” already discussed for mSUGRA. Unfortunately, many
“avoided crossings” lie below, but some also within the allowed ranges of the flavour violating
parameter λLL, indicated by green vertical lines for each of the six benchmark scenarios. The
level reordering phenomenon is of similar importance for up-type and down-type squarks.
Concerning the difference between our two implementations of flavour violation in the squark
matrices, we observe an important splitting for only the lightest and heaviest eigenstates in
the case of flavour mixing only in the left-left chiral sector. In contrast, for flavour violation
in both the left-left and right-right chiral squark sectors, the two lightest and two heaviest
mass eigenvalues give rise to important splitting, while only the remaining two masses are
practically independent of λLL. This is a direct consequence of the fact that we have intro-
duced additional flavour mixing in two distinct sectors of the squark mass matrices and will
influence the squark and gaugino production cross sections presented in Chap. 5. Note also
that in the case of flavour mixing in only the left-left chiral sector, “avoided” level crossings
occur among the q̃1,2, q̃3,4, and q̃5,6 mass eigenstates, whereas in the case of flavour mixing in
both the left-left and right-right chiral squark sectors, we rather observe the mass flips among
the q̃2,3 and q̃4,5 mass eigenstates, respectively.
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Figure 2.18: Same as Fig. 2.16 for our benchmark scenario G.
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Figure 2.19: Same as Fig. 2.16 for our benchmark scenario H.
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Figure 2.20: Same as Fig. 2.16 for our benchmark scenario I.
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Figure 2.21: Same as Fig. 2.16 for our benchmark scenario J.

38



CHAPTER 2. CONSTRAINTS AND BENCHMARK POINTS FOR THE MSSM

2.4.5 Cosmological Limits on the Gravitino Mass

To make sure that the chosen benchmark points do not lead to cosmologically disfavoured
configurations, we determine the allowed regions for the gravitino mass mG̃ with respect to
the limits imposed by the relic abundance of cold dark matter in our Universe, the lifetime
of the next-to-lightest SUSY particle (NLSP) before decaying into the gravitino, as well as
the constraints on the reheating temperature TR due to leptogenesis. We therefore compute
the gravitino energy density ΩG̃h

2 in our Universe as described in Sec. 2.2.2, taking into
account the contributions from thermal production in the early Universe and from NLSP
decay. For each benchmark point, the relic density of the NLSP has been obtained with the
public code micrOMEGAs. In Fig. 2.22 we compare the gravitino relic density computed in this
way with the 2σ range of Eq. (2.7) as a function of the gravitino mass mG̃ and the reheating
temperature TR. For each scenario, we also indicate the upper limit on the gravitino mass
coming from the constraint on the NLSP lifetime, the cosmologically favoured range for the
reheating temperature TR & 109 GeV, the point where the gravitino mass would become
heavier than the NLSP mass, the limit between warm (WDM) and cold (CDM) dark matter,
as well as the gluino and NLSP masses entering the calculation.

Note that the contribution to ΩG̃h
2 from NLSP decay is only relevant for our point E

with its neutralino NLSP and Ωth
NLSPh

2 = 0.1275. The fact that this value already lies within
the WMAP favoured interval, opens an allowed band around mG̃ ≈ mχ̃0

1

= 95.4 GeV, as can
be seen in the first panel of Fig. 2.22. For the other points, the annihilation cross section
of the stau NLSP is more important, so that the resulting relic NLSP density is quite low
(Ωth

NLSPh
2 ∼ 0.003 − 0.012) and its values lie well below the lower limit 0.094 of the WMAP

2σ range.
From the graphs in Fig. 2.22 it becomes clear that for the chosen “collider-friendly”

benchmark points, we cannot simultaneously fulfill all the three more or less strict cosmo-
logical constraints. For instance, for a scenario featuring leptogenesis, i.e. having TR > 109

GeV, the lifetime of the next-to-lightest Supersymmetric particle (NLSP) would be too long
for not spoiling the light element abundances. We therefore relax the less stringent constraint
coming from leptogenesis and allow for a reheating temperature TR < 109 GeV. If we then
impose the constraint due to the lifetime of the NLSP, our six benchmark scenarios all lead to
an upper limit on the gravitino mass of mG̃ . 10−1 − 1 GeV. For simplicity, we propose the
same value mG̃ = 10−1 GeV for all points. This choice respects the limit due to the NLSP
lifetime, allows for a relic gravitino density agreeing with current WMAP data, and this in
combination with relatively high values of TR ∼ 107 GeV for the reheating temperature.
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Figure 2.22: The cosmologically favoured regions in the mG̃-TR plane for our benchmark
scenarios E, F, G, H, I, and J with respect to WMAP data (blue), the NLSP lifetime (vertical
red line), and leptogenesis (horizontal green line).
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Chapter 3

SUSY-QCD Corrections to Dark
Matter Annihilation in the
Higgs-Funnel

From a theoretical point of view, due to the large magnitude of the strong coupling constant,
QCD and SUSY-QCD corrections are bound to affect the dark matter annihilation cross
section into quarks in a significant way. They may even be enhanced logarithmically by
kinematics or in certain regions of the parameter space. On the experimental side, new
cosmological precision missions are to be launched in the near future. The Planck mission will
improve the present measurements of the CMB anisotropies by the COBE and WMAP missions
significantly and, in consequence, the cold dark matter relic density will be constrained to
a narrower interval. We therefore also need more accurate theoretical predictions, which
makes it necessary to include radiative corrections into the calculation of the annihilation
cross section.

In this Chapter, we present the calculation of these corrections for neutralino pair annihi-
lation into a bottom quark-antiquark pair through the s-channel exchange of a pseudoscalar
Higgs boson A0 [100]. This process dominates in the so-called “A-funnel” region of the mini-
mal supergravity (mSUGRA) parameter space at large values of tan β, which is theoretically
favoured by the unification of Yukawa couplings in Grand Unified Theories (GUTs) suggesting
that tan β should be of the order of the ratio between the top and bottom quark masses [101],
tan β ≃ mt

mb
∼ 40−45. Supposing a WIMP mass of 50 – 70 GeV, this process has been claimed

to be compatible with the gamma-ray excess observed in all sky directions by the EGRET satel-
lite [102–104]. However, the corresponding scenarios may lead to antiproton overproduction,
so that they would not be compatible with the observed antiproton flux [105].

χ1
0˜

χ1
0˜

b

bA0

Figure 3.1: The leading order Feynman diagram of the neutralino annihilation process
χ̃χ̃→ A0 → bb̄.
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3.1 Leading Order Cross Section

The Feynman diagram corresponding to the process of our interest is shown in Fig. 3.1.
Denoting the neutralino and bottom quark velocities by

βχ̃ =
v

2
=

√

1 −
4m2

χ̃

s
and βb =

√

1 − 4m2
b

s
(3.1)

and the squared total center-of-momentum energy by s, the properly anti-symmetrized neu-
tralino annihilation cross section can be written at leading order (LO) of perturbation theory
as

σLOv =
1

2

βb
8πs

NCg
2T 2

A11h
2
Abbs

2

|s−m2
A + imAΓA|2

. (3.2)

It is proportional to the inverse of the flux factor sv, the integrated two-particle phase space
sβb/(8πs), the number of quark colours NC = 3 and the squares of the weak coupling constant
g, a neutralino mixing factor

TAij =
1

2

(
N2j − tan θWN1j

)(
N4i cos β −N3i sin β

)
+ {i↔ j}, (3.3)

the bottom quark mass mb and tanβ through the Yukawa coupling

hAbb = −gmb tan β

2mW
, (3.4)

and the Higgs boson propagator.
As the neutralinos are supposed to be highly non-relativistic, it is common to express the

annihilation cross section in terms of the relative neutralino velocity v. This can be done by
expanding the squared center-of-momentum energy s in powers of v,

s
.
= 4m2

χ̃

(
1 +

v2

4

)
+ O(v4). (3.5)

Inserting this result in the expression for the cross section, Eq. (3.2), we obtain its non-
relativistic expansion

σLOv
.
= aLO + bLOv

2 + O(v4) (3.6)

with the coefficients

aLO = 2bLO =
NCg

2T 2
A11h

2
Abb

4πm2
χ̃

∣∣∣∣4 − m2

A

m2

χ̃

+ imAΓA

m2

χ̃

∣∣∣∣
2

√
1 − m2

b

m2
χ̃

(3.7)

in agreement with the result given in Ref. [82].
In Fig. 3.2 we show the leading order cross section σLO for two typical minimal supergravity

(mSUGRA) scenarios that lead to a dark matter relic density within the experimentally
favoured range of Eq. (2.7). We have chosen the parametersm0 = 1200 GeV,m1/2 = 900 GeV,
A0 = 0, and tanβ = 44.5 for µ < 0, as well as m0 = 1200 GeV, m1/2 = 800 GeV, A0 = 0, and
tan β = 54 for µ > 0. The annihilation cross section is presented as a function of the center-of-
momentum energy

√
s. For reference, we also show the value for the lower values of tan β = 10
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Figure 3.2: The leading order (LO) cross section of the neutralino annihilation process
χ̃χ̃ → A0 → bb̄ as a function of the center-of-momentum energy

√
s. The two scenarios lead

at the respectively largest indicated value of tan β to a dark matter relic density agreeing with
the experimental limits. The neutralino and pseudoscalar Higgs boson masses are indicated
in GeV.

and 30. It is obvious that the decay width increases with tan β. Due to the decreasing Higgs
boson mass, the peak in the cross section approaches the threshold at 2m2

χ̃0

1

= mA0 for higher

values of tan β. Note that, in the case of dark matter annihilation, only the region close to
the threshold is relevant, higher energies being Boltzmann suppressed. Near the threshold,
the annihilation cross section acquires values of the order of σLO ∼ 10−13 barn.

3.2 QCD Corrections

The neutralino pair annihilation process χ̃χ̃ → A0 → bb̄ receives O(αs) QCD corrections
from the self-energy, vertex correction, and real gluon emission diagrams shown in Fig. 3.3.
We apply dimensional regularization and on-shell renormalization for the virtual corrections,
which cancels the ultraviolet (UV) singularities. The remaining infrared (IR) poles vanish
by combining the virtual and the real emission contributions, which is done by applying the
dipole subtraction method [106]. For a discussion of technical details see App. C. Using these
standard methods, we obtain the O(αs) correction in the on-shell scheme

∆
(1)
QCD =

αs(s)

π
CF

[
1 + β2

b

βb

(
4Li2

1 − βb
1 + βb

+ 2Li2
βb − 1

1 + βb
− 3 log

2

1 + βb
log

1 + βb
1 − βb

−2 log βb log
1 + βb
1 − βb

)
− 3 log

4

1 − β2
b

− 4 log βb

+
3

8

(
7 − β2

b

)
+

1

16βb

(
19 + 2β2

b + 3β4
b

)
log

1 + βb
1 − βb

]
, (3.8)
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Figure 3.3: Diagrams for one-loop self-energy, vertex, and real QCD corrections contributing
to the process χ̃χ̃ → A0 → bb̄. We also show the top quark induced correction contributing
at the two-loop level.

which agrees with the known result for pseudoscalar Higgs boson decays [107]. Writing

∆QCD =
∑

i∆
(i)
QCD, where the index i refers to the contribution of O(αis), Eq. (3.8) contributes

to the total correction of the annihilation cross section

σ = σLO

[
1 + ∆QCD + ∆top + ∆SUSY

]
(3.9)

and equivalently for the Higgs decay width

ΓA→bb̄ = ΓLO
A→bb̄

[
1 + ∆QCD + ∆top + ∆SUSY

]
, (3.10)

which is valid in particular for low energies (LE). The contributions ∆
(i)
QCD for i ≥ 2, ∆top

and ∆SUSY are discussed later in this and the next Section, respectively.
In the “high-energy” limit βb → 1, i.e. for m2

b ≪ s, the correction in Eq. (3.8) develops a
logarithmic mass singularity

∆
(1)
QCD ≃ αs(s)

π
CF

[
− 3

2
log

s

m2
b

+
9

4

]
≡ ∆

(HE)
QCD, (3.11)

which has been introduced by the renormalization procedure and can be resummed to all
orders of perturbation theory using the renormalization group. This mass resummation is
based on the leading-logarithm approximation in QCD and is equivalent to replacing the
bottom quark mass mb with the running quark mass mb(s) in the Yukawa coupling hAbb [108],

hAbb = −gmb tan β

2mW
−→ −gmb(s) tan β

2mW
. (3.12)

For lower energies, the limit in Eq. (3.11) is not valid, and there is thus no need for a
resummation procedure. In order to connect the high and low energy domains, we use the
simple matching scheme

σQCD =
[
1 − βb

]
σ

(LE)
QCD + βbσ

(HE)
QCD, (3.13)

so that we use the resummed expression in the high-energy (HE) domain,

σ
(HE)
QCD = σLO

(
mb → mb(s)

)[
1 + ∆

(HE)
QCD

]
, (3.14)

and the valid result from Eq. (3.8) without using the running quark mass in the low-energy
(LE) case. The matching introduced in Eq. (3.13) allows for a smooth interpolation between
the two limits.
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Figure 3.4: Diagrams for one-loop self-energy and vertex SUSY-QCD corrections to the
process χ̃χ̃ → A0 → bb̄. We also show the electroweak stop-chargino contribution to the
bottom mass renormalization.

The remaining finite QCD-corrections in the MS-scheme are known up to O(α4
s) and are

numerically important at scales of the order of a few GeV. In parametrized form they can be
written as [109,110]

∆QCD =
αs(s)

π
CF

17

4
+
α2
s(s)

π2

[
35.94 − 1.359nf

]
+
α3
s(s)

π3

[
164.14 − 25.77nf + 0.259n2

f

]

+
α4
s(s)

π4

[
39.34 − 220.9nf + 9.685n2

f − 0.0205n3
f

]
, (3.15)

with nf = 5 denoting the number of flavours. The corrections of O(α3
s) and O(α4

s) have
been obtained for scalar Higgs bosons, but since the quarks are taken to be massless in the
calculation, the results also apply in the pseudoscalar case.

A separately gauge-independent correction of O(α2
s) is induced by the top quark loop

diagram shown on the right panel of Fig. 3.3. Its contribution [111]

∆top =
1

tan2 β

α2
s(s)

π2

[
23

6
− log

s

m2
t

+
1

6
log2 m

2
b(s)

s

]
(3.16)

can be important at small values of tan β, but is largely suppressed in the Higgs funnel region
considered here.

3.3 SUSY-QCD Corrections

In Supersymmetry, additional corrections arise through the sbottom-gluino exchanges shown
in Fig. 3.4. Note that there is no real emission contribution at this order due to R-parity
conservation. Working again in the on-shell renormalization scheme, they lead to the mass
renormalization(
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2
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2
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)

]
.

In the limit of large SUSY masses (mb ≪ mb̃i
,mg̃) only the first line of Eq. (3.17) survives

and the remaining two-point functions can be rewritten as a three-point function with zero
external momentum, so that the mass renormalization becomes

(
∆mb

mb

)

g̃b̃

=
αs(s)

π
CF

mg̃

2

(
Ab − µ tan β

)
I(m2

b̃1
,m2

b̃2
,m2

g̃), (3.18)
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which is proportional to

sin 2θb̃ =
2mb

(
Ab − µ tan β

)

m2
b̃1
−m2

b̃2

, (3.19)

i.e. the off-diagonal component of the sbottom mass matrix, and the three-point function at
zero external momentum
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(3.20)
In the above limit (mb ≪ mb̃i

,mg̃) where we now also neglect s ≪ m2
b̃i
,m2

g̃ and Ab with

respect to the tan β-enhanced µ, the vertex correction equals the mass renormalization in Eq.
(3.18) up to a factor 1/ tan2 β, so that the total SUSY correction becomes in this low energy
(LE) limit

∆
(LE)
SUSY =

αs(s)

π
CF

[
1 +

1

tan2 β

]
mg̃µ tan β I(m2

b̃1
,m2

b̃2
,m2

g̃). (3.21)

It has long been known that for large tanβ, the mass renormalization ∆mb can be signif-
icant and must be resummed by replacing

mb −→ mb

1 + limAb→0
∆mb

mb

(3.22)

in the Yukawa coupling hAbb [112]. More recently, it has been observed that Ab may be of
similar size as µ tan β, for example in no-mixing scenarios, so that its contribution must also
be resummed. This is done by the replacement [113]

limAb→0
∆mb

mb
−→

limAb→0
∆mb

mb

1 + limµ tan β→0
∆mb

mb

, (3.23)

which is, at O(αs), equivalent to resumming the whole low-energy expression for ∆mb, i.e.
replacing

mb −→ mb

1 + ∆mb

mb

(3.24)

in the Yukawa coupling hAbb.
The remaining finite contribution ∆SUSY to the cross section in Eq. (3.9) is finally given

by the difference between the full SUSY-QCD contribution and its resummed low-energy limit
that has been absorbed into the Yukawa coupling,
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αs(s)

π
CF

1 + tan2 β
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,m2
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]
.

(3.25)
An additional contribution to the quark mass renormalization, that can have an effect of

the same order of magnitude as ∆SUSY, arises from the stop-chargino loops shown in Fig. 3.4.
Its dominant contribution is given by [112]

(
∆mb

mb

)

t̃χ̃±

= − λ2
t

16π2

[
Atµ tan β − µ2

]
I(µ2,m2

t̃1
,m2

t̃2
), (3.26)

where λt =
√

2mt/
(√

v2
u + v2

d sinβ
)

denotes the top Yukawa coupling. Again the bottom

quark mass has been neglected with respect to the larger SUSY masses.
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Figure 3.5: Annihilation cross section including the different QCD and SUSY-QCD cor-
rections normalized to the leading order cross section. We show the QCD corrected cross
section including only the mass resummation (red dotted) and also the finite terms up to
O(α4

s) (red line), as well as the SUSY-QCD corrected cross section including mass resumma-
tion effects due to the sbottom-gluino (blue dashed) and the stop-chargino (blue dash-dotted)
contributions, and finally also the finite terms (blue line).

3.4 Impact on the Annihilation Cross Section

For the numerical evaluation of the presented results, we place ourselves in minimal super-
gravity (mSUGRA) scenarios with A0 = 0 and large tanβ, namely tan β = 44.5 for µ < 0
and tanβ = 54 for µ > 0. These choices correspond to an important contribution of the an-
nihilation process χ̃χ̃→ A0 → bb̄ and still allow for electroweak symmetry breaking (EWSB)
in a large region of the m0-m1/2 plane.

Starting from the mSUGRA parameters at the high scale, the weak-scale parameters are
determined through renormalization group running with SPheno [90], which includes two-loop
renormalization group equations (RGEs), the complete one-loop formulas for the soft SUSY
breaking masses supplemented by two-loop contributions in the case of the neutral Higgs
bosons and the µ parameter, and resummed limAb→0 ∆mb corrections. We then diagonalize
the mass matrices obtained in this way with FeynHiggs [91] to determine the physical Higgs
and SUSY masses. For the Standard Model input parameters, i.e. particle masses and coupling
constants, see App. B. In particular, we use the values mMS

b (mb) = 4.2 GeV and mpole
t =

174.2 GeV for the bottom and top quark masses, as well as αs(mZ) = 0.1176 for the strong
coupling constant.

In Fig. 3.5 we show the annihilation cross section of the process χ̃χ̃ → A0 → bb̄ nor-
malized to the leading order cross section σLO, including the different QCD and SUSY-QCD
corrections. Since the dependence on the centre-of-momentum energy

√
s is weak, the ratio is

shown as a function of tan β for fixed m0, m1/2, A0, and sgn(µ). The two scenarios for µ > 0
and µ < 0 are the same as for the leading order cross section in Fig. 3.2.

The QCD correction, including finite terms up to O(α4
s), decreases the annihilation cross

section by more than a factor of two. The main effect, however, is due to the performed mass

47



CHAPTER 3. SUSY-QCD CORRECTIONS TO χ̃χ̃→ A0 → BB̄

resummation, the running squared quark mass m2
b(s) being lower than the bare squared mass

m2
b in the leading order cross section by approximately the same factor. The finite terms

∆QCD are less important, as can be seen in the right panel of Fig. 3.5. The slight increase
of the QCD correction is explained by the fact that we have fixed the squared centre-of-
momentum energy s at a constant and small distance the threshold. As the mass spectrum
is influenced by the increasing tanβ, the threshold, together with the neutralino mass, is
shifted to higher energies. The top quark loop correction ∆top is also independent of the
other supersymmetric parameters. At very low values of tanβ, its contribution accounts for
a few percent of the QCD correction, while it accounts for less than 0.01% for tan β ≥ 40 in
the case of the “A-funnel” region in mSUGRA.

In addition to the QCD contributions discussed above, the annihilation cross section is
further reduced by the SUSY-QCD corrections. In the case of µ > 0, the effect is enhanced by
about 10% with respect to the leading order cross section, while in the case of µ < 0 the SUSY-
QCD correction accounts for up to another 40% of decrease at large tan β. To disentangle
the effects of the different contributions, we show the annihilation cross section including
first only the sbottom-gluino mass renormalization, then include also the stop-chargino loop
contribution, and finally the full SUSY-QCD correction including also the finite remainder
of Eq. (3.25). For positive µ, the resummation effects are more important than the finite
terms ∆SUSY, that account only for about one percent of the annihilation cross section. The
electroweak stop-chargino loop contribution is not negligible with respect to the QCD terms.
The situation changes for the case of negative µ, where the mass resummation has opposite
sign and increases the annihilation cross section. In contrast, the finite terms are here more
important and decrease the annihilation cross section to as little as ten percent of the leading
order cross section.

3.5 Impact on the Neutralino Relic Density

The cold dark matter relic density is calculated with the public tool DarkSUSY [83], which
includes the QCD corrections up to O(α2

s), i.e. Eq. (3.8), the O(α2
s) term of Eq. (3.15), and

the top quark loop correction Eq. (3.16). We have added the O(α3
s) and O(α4

s) QCD as well
as our O(αs) SUSY-QCD corrections described above. We also include their dependence on
the center-of-momentum energy

√
s, which is absent in DarkSUSY where the corrections are

always evaluated at the scale Q2 = m2
A for the Higgs decay width and at Q2 = 4m2

χ̃ for the
annihilation cross section.

We first determine the allowed regions in the m0-m1/2 plane shown in Fig. 3.6. The
Higgs funnel contribution to σeff rises from 40% for low values of m1/2 (or m0 for µ < 0)
to more than 95%, when m1/2 (and m0) is (are) large. It is obvious that the leading order
(LO) allowed regions are dramatically changed by the O(α2

s), O(α3
s), and O(α4

s) QCD and
O(αs) SUSY-QCD corrections, which reduce the annihilation cross section σeff by more than
a factor of two in this region. The increase in ΩCDMh

2 must therefore be compensated by
smaller masses, which results in a shift of the favoured contour towards smaller values of m0

and m1/2. As expected, the effect is negligible in the focus point (very low values of m1/2) and
co-annihilation (very low m0) regions as well as for small and intermediate values of tanβ.

In Fig. 3.7 we plot the dark matter relic density as a function of m1/2 for fixed m0 =
1200 GeV, corresponding to the cuts indicated by the horizontal dashed lines in the two
panels of Fig. 3.6. The effect of the O(α2

s) QCD corrections already included in DarkSUSY is

48



CHAPTER 3. SUSY-QCD CORRECTIONS TO χ̃χ̃→ A0 → BB̄

 (GeV)1/2m
200 400 600 800 1000

 (
G

eV
)

0
m

500

1000

1500
<0µ=44.5, β=0, tan0A

)0
sαLO O(

)2
sαDarkSUSY O(

)sα) + SUSY O(4
sαQCD O(

charged LSP
no EWSB

 (GeV)1/2m
200 400 600 800 1000

 (
G

eV
)

0
m

600

800

1000

1200

1400

>0µ=54, β=0, tan0A

)0
sαLO O(

)2
sαDarkSUSY O(

)sα) + SUSY O(4
sαQCD O(

charged LSP

no
 E

W
S

B

Figure 3.6: Regions in the m0-m1/2 plane forbidden by a charged LSP (beige) or by no
electroweak symmetry breaking (grey) and favoured by the observed dark matter relic density
ΩCDMh

2 for large tan β = 44.5 at µ < 0 (left) and tan β = 54 at µ > 0 (right). The green
contour corresponds to the pure O(α0

s) leading order calculation of the process χ̃χ̃→ A0 → bb̄,
the red contour is computed with DarkSUSY including QCD corrections up to O(α2

s), and the
blue contour includes the full O(α4

s) QCD and the O(αs) SUSY-QCD corrections.
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Figure 3.7: Leading order (black dotted), O(α2
s) (green dashed) and O(α4

s) (blue dot-dashed)
QCD, and O(αs) SUSY-QCD corrected predictions for the cold dark matter relic density
ΩCDMh

2 as a function of m1/2 for fixed m0 = 1200 GeV, A0 = 0, and for tan β = 44.5 at
µ < 0 (left) and for tan β = 54 at µ > 0 (right). The coloured band shows the experimentally
favoured range. The Higgs pole is indicated by a vertical dashed line.
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considerably enhanced by the O(α3
s) and O(α4

s) QCD and the O(αs) SUSY-QCD corrections,
while the top quark loop contributes less than 0.01% for the large values of tanβ under
consideration here. However, the difference between the O(α3

s) and O(α4
s) terms is not visible

on our logarithmic scale. Note that a local minimum of the relic density at m1/2 = 420 GeV
occurs when mχ̃ = mt, where the tt̄ annihilation channel is opened [114].

Due to our corrections the Higgs decay width ΓA is reduced by approximately the same
amount as the cross section. In consequence, on the Higgs pole, where ΓA is of particular
importance, the effect is reversed. Since the Higgs width ΓA increases with m1/2, in particular
for µ > 0, the annihilation cross section σeff reaches its maximum, corresponding to the
minimum of the relic density ΩCDMh

2, at some distance from the pole. Further away, the
QCD and SUSY-QCD corrections decrease σeff , and thus increase ΩCDMh

2, as expected.
Closer to the pole, indicated in Fig. 3.7 by a vertical dashed line, the reduced width becomes
important, so that the maximum of σeff , and thus the minimum of ΩCDMh

2, approaches the
pole.

3.6 Theoretical Uncertainties

An important uncertainty is coming from the choice of the renormalization scale, that vanishes
when taking into account all orders of perturbation theory. Since the leading order cross
section involves only electroweak couplings, this dependence is important for the QCD and
SUSY-QCD loops at O(αs). Typical variations µR

2 ≤ Q ≤ 2µR of the renormalization scale
lead in our case to a variation of up to four percent for the prediction of the neutralino relic
density.

Another non-negligible uncertainty is introduced by the choice of the Supersymmetry
spectrum generator. It is well known that, for the same input parameters at high scale,
different spectrum generators deliver different spectra at low scale, depending on the numerical
and theoretical accuracy in the renormalization group running [115], i.e. numerical methods
and the implemented level of loops, respectively. It is also known that these differences in the
spectrum may influence the prediction of the cold dark matter relic density [116].

Due to the fact that the top quark loop correction is negligible in the case of large tan β,
the numerical value of the top quark mass has no direct influence on our QCD and SUSY-
QCD corrections. However, variations of the top quark mass induce variations in the SUSY
particle spectrum through the renormalization group running. In consequence, for example,
the pseudoscalar Higgs mass increases with the top quark mass, so that the cosmologically
favoured “A-funnel” region lies at higher values of mχ and thus of m1/2. Note that, inde-
pendently of the spectrum generator and the value of the top quark mass, the impact of our
QCD and SUSY-QCD corrections remains the same as discussed in the Secs. 3.4 and 3.5.

Most neutralino dark matter studies in minimal supergravity (mSUGRA) assume a van-
ishing trilinear coupling A0. However, it has recently been shown that a non-vanishing A0,
that varies in a range of ±4 TeV, leads to new allowed regions in the m0-m1/2 plane of the
mSUGRA parameter space that are consistent with the cosmologically favoured region [117].
Concerning our analysis, variations of A0 might be interesting, as they may lead to important
variations of the coupling Ab at the electroweak scale. However, we have focused here on
A0 = 0 and leave the case of a non-vanishing trilinear coupling to further studies.
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Figure 3.8: The predictions for the neutralino relic density obtained with the public codes
DarkSUSY and micrOMEGAs as a function of the gaugino mass parameter m1/2. The coloured
band corresponds to the WMAP 2σ favoured interval.

3.7 Comparison with micrOMEGAs

We finally compare the results obtained with our modified version of DarkSUSY to the pre-
dictions given by the public tool micrOMEGAs [84]. It is well known that the two codes agree
well in wide regions of the mSUGRA parameter space. However, there are also regions with
disagreement, in particular in the “A-funnel” region studied in this Chapter. In micrOMEGAs,
the presented mass resummation approximations in QCD and SUSY-QCD are implemented,
based on the results given in Ref. [113]. They also include the finite QCD terms up to O(α3

s)
and the stop-chargino loop contributing to the bottom mass resummation. However, the finite
SUSY-QCD contribution of Eq. (3.25) is not implemented in micrOMEGAs.

In Fig. 3.8 we show the neutralino relic density computed with micrOMEGAs compared to
the one obtained with DarkSUSY including the same corrections as are included in micrOMEGAs,
i.e. the O(α3

s) QCD corrections and the SUSY-QCD bottom mass resummation. The mass
spectrum for both dark matter codes has been computed with our combination of SPheno
and FeynHiggs as described in Section 3.4.

Around the Higgs pole, indicated by the vertical dashed line, the predictions given by
DarkSUSY (green dashed line) and micrOMEGAs (blue line) show important differences. In
particular, the distance between the pole and the minimum of the relic density differs as do
the minimal values of ΩCDMh

2. When we include in DarkSUSY the same QCD and SUSY-QCD
(red line) corrections as are included in micrOMEGAs, important differences remain. These are
in particular due to different values of the Higgs decay with, ΓA. The red dash-dotted line
shows the prediction of the relic density obtained with DarkSUSY including QCD and SUSY-
QCD corrections, but with the Higgs decay width calculated and used by micrOMEGAs. As
expected, the minima in the relic density lie now at the same value of m1/2. However, the
relic density in this point still differs by one order of magnitude, which might be explained
by different implementations of the QCD running in the two codes. A detailed investigation
of the exact implementation of the running masses and coupling constants will therefore be
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necessary.
Note that the difference in the relic density at lower values of m1/2 is due to the fact that

micrOMEGAs includes also the SUSY-QCD corrections to the couplings of the CP -even Higgs
bosons, which are absent in DarkSUSY. In consequence, the annihilation cross section in the
relevant region at lower m1/2 is overestimated by DarkSUSY, leading to an underestimation of
ΩCDMh

2.
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Chapter 4

SUSY-QCD Corrections to
Neutralino Pair Annihilation
χ̃χ̃ → qq̄

Besides the annihilation through a pseudoscalar Higgs exchange presented in the previous
Chapter, further neutralino pair annihilation processes receive QCD and SUSY-QCD cor-
rections. These are the annihilation into quark-antiquark pairs through Z0-boson, CP -even
Higgs-boson and squark exchange, and also neutralino-stop coannihilation. For the latter,
QCD and SUSY-QCD corrections have recently been published [118]. In this Chapter, we
present the corrections for the remaining channels, i.e. for neutralino pair annihilation into
quark-antiquark pairs through the exchange of a Z0-boson, a squark, or a neutral Higgs-
boson [119].

4.1 Contribution of Quark-Antiquark Final States

Neutralino pair annihilation into a quark-antiquark pair can proceed through the exchange
of a Z-boson or a neutral Higgs boson (φ0 = h0,H0, A0) in the s-channel, as well as through
squark (q̃i with i, j = 1, 2) exchange in the t- or u-channel, as shown in Fig. 4.1. As a first
step, it is interesting to study the relative contributions of the different quark-antiquark final
states to the effective total annihilation cross section 〈σannv〉, that in turn determines the relic
abundance of dark matter. To this end, we have performed detailed scans over the m0−m1/2

planes of the minimal supergravity (mSUGRA) parameter space for fixed values tan β, A0, and
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Figure 4.1: The leading-order diagrams for neutralino pair annihilation into quark pairs
through Z-boson, neutral Higgs boson (φ0 = h0, H0, A0), or squark (q̃i with i, j = 1, 2)
exchange.
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sgn(µ). Starting from these high-scale parameters, the renormalization group equations have
been solved and the physical supersymmetric mass spectrum at the electroweak scale has been
obtained with the computer programme SPheno 2.2.3 [90]. For each point, the neutralino
relic density ΩCDMh

2 and the contributions of the six quark-antiquark production channels,
uū, dd̄, ss̄, cc̄, bb̄, and tt̄ have then been computed using the public code micrOMEGAs 2.1 [84].
For the Standard Model input parameters such as particle masses and coupling constants we
have again used the numerical values given in App. B, except for the top quark pole mass,
which has now been set to the more recent value mpole

t = 171.4 GeV [120].
The results of this analysis are shown in Figs. 4.2 and 4.3 for µ > 0, tanβ = 10, and

A0 = 0 and A0 = −1500 GeV, respectively. In Figs. 4.4 and 4.5, we then show the parameter
space scans for µ > 0, A0 = 0, and tanβ = 30 and 50. We indicate the relative contributions
to σannv for all quark final states (qq̄), the sum of the four “light” quarks (uū, dd̄, ss̄, and cc̄),
as well as bottom (bb̄) and top (tt̄) quark-antiquark final states. In each graph we also show
in blue the favoured region of the m0-m1/2 plane with respect to measurements of the cold
dark matter relic density of Eq. (2.7). Grey shaded regions are excluded due to a charged
LSP (high m1/2 and small m0), current SUSY particle mass limits (small m1/2), the stringent
constraint from the measurements of the inclusive branching ratio BR(b→ sγ) (small m0 and
m1/2), or unphysical solutions to the renormalization group equations (high m0). Note that
measurements of the electroweak ρ-parameter only exclude regions of higher masses lying
beyond the limits of our graphs in Figs. 4.2 – 4.5.

In the first panels of Figs. 4.2 – 4.5 we see that neutralino annihilation into quarks is gener-
ally dominant over wide ranges of the m0-m1/2 plane. Focusing on regions that lead to a neu-
tralino relic density agreeing with the cosmological limits, the only exceptions at tanβ = 10
are the coannihilation region at small m0 and high m1/2 and in the region m0 & 1000 GeV and
m1/2 ∼ 300− 400 GeV, where gauge and Higgs boson final states dominate. With increasing
tan β the former is shifted to higher gaugino masses, while the latter looses its importance.
Both of these observations can be traced to the fact that the Yukawa couplings of the Higgs
bosons to down-type quarks become numerically larger, enhancing the corresponding quark
final states.

Let us now turn to the individual contributions of the different quark flavours. From the
upper right panels of Figs. 4.2 – 4.5, it becomes obvious that the “light” first and second
generation quarks only play a non-negligible role in the case of light neutralinos, namely for
values of m1/2 . 300 GeV for the gaugino mass parameter. These regions, however, do either
not coincide with the WMAP favoured band of the neutralino relic density or are excluded by
the direct mass limits or the b→ sγ branching ratio. We will therefore focus in this analysis
on the third generation “heavy” quark final states. For a future analysis of scenarios with
important contributions of the four “light” flavours, it might be interesting to consider a more
general MSSM instead of minimal supergravity.

The contribution of bottom-antibottom final states to the total annihilation cross section
is shown in the lower left panels of Figs. 4.2 – 4.5. At tanβ = 10, this annihilation channel
dominates close to the pole of the CP -even Higgs boson, where 2mχ̃0

1

= mh0. The resonance
occurs at a constant value of m1/2. The corresponding part of the WMAP favoured band,
however, is for A0 = 0 excluded by the current mass limits. In particular, the lightest chargino
is here too light to satisfy the limits obtained from the LEP experiments. This situation
changes when we consider a non-vanishing trilinear coupling, since new loop contributions
then alter the particle masses. In Fig. 4.3, we show the case of A0 = −1500 GeV, where the
WMAP favoured region and also the Higgs pole now lie outside the zone excluded by direct
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mass limits.
As already stated, the Yukawa coupling of the pseudoscalar Higgs boson to bottom quarks

becomes more important for higher values of tan β. In consequence, the region where neu-
tralinos annihilate into bottom quarks grows (see Fig. 4.4 for tanβ = 30) and the “A-funnel”
region already discussed in Chap. 3 makes its appearance at tan β ≃ 50, as can be seen in
Fig. 4.5.

The annihilation of a neutralino pair into a top quark-antiquark pair is kinematically
allowed if the neutralino mass is larger than the top quark mass, mχ̃0

1

≥ mt. Since the
neutralino mass is at the tree level proportional to the gaugino mass parameter m1/2, the
corresponding annihilation channels open only beyond a certain threshold in m1/2. This
is well observed in the lower right panels of Figs. 4.2 – 4.5, where we show the relative
contribution of top quark-antiquark final states to the annihilation cross section 〈σannv〉. It
is interesting to note that the contribution is very similar for low and intermediate values of
tan β. It only decreases at large tan β in favour of the now dominant bottom quark final states.
Due to the large magnitude of the top quark mass and the resulting numerical importance
of the top Yukawa coupling, the relative contribution of the top quark final states is rather
important, if it is kinematically allowed. This is well visible in the four corresponding graphs,
where an important gradient between the region of too low neutralino masses and the one
of high tt̄ contributions is observed. The WMAP favoured band coincides in the focus point
region with top quark contributions of more than 60 percent.

As already mentioned in Chap. 3, the prediction of the neutralino relic density strongly
depends on the involved numerical programmes. On the one hand, there are differences be-
tween the two public codes DarkSUSY 4.2 and micrOMEGAs 2.1, mainly due to the different
implementations of the corrections to the bottom mass and the related Yukawa couplings to
the Higgs bosons. On the other hand, since all particle masses are involved in the calculation,
the choice of the spectrum generator also implies important uncertainties. This can be illus-
trated with the help of Fig. 4.6, where we show the same scan as in Fig. 4.2 of the m0 −m1/2

plane for tanβ = 10, A0 = 0, and µ > 0, but the renormalization group equations have
now been solved and the physical mass spectrum has been obtained using the public code
SuSpect 2.34 instead of SPheno 2.2.3. Comparing the two scans, minor differences appear
in the form and place of the different contours, due to the high sensitivity of the prediction
of the neutralino relic density on small differences in the SUSY masses. The main difference,
however, concerns the region which is close to the sector where no physical solutions to the
renormalization group equations leading to electroweak symmetry breaking can be achieved.
The scans shown in Fig. 4.6 reveal a relatively wide zone where SuSpect 2.34 already out-
puts warnings indicating that the numerical solution does not proceed in a stable manner,
whereas SPheno 2.2.3 treats them without incidents. An analogous behaviour also appears
for higher values of tanβ. Differences between SUSY spectrum generators and their impli-
cations on the dark matter relic density are discussed in Refs. [115, 116]. Since it provides
more viable solutions and since the WMAP favoured band follows these particular regions,
we shall continue to work with SPheno 2.2.3 in the following.

Inspecting again Figs. 4.2 – 4.5, interesting regions that agree with the observed dark
matter relic density of Eq. (2.7) and that involve at the same time important cross sections
for the annihilation of neutralinos into “heavy” quark-antiquark pairs can be found either in
the focus point region or around the Higgs resonances. At small tanβ = 10 and A0 = −1500
GeV, the latter is found at m1/2 ≈ 132 GeV, where annihilation into bb̄ final states through
exchange of a light Higgs boson is important. At high tanβ = 50, this region is excluded by
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Figure 4.2: The m0-m1/2 plane of the mSUGRA parameter space for tanβ = 10, A0 = 0,
and µ > 0 showing the relative contributions of all (top left), light (top right), bottom (bottom
left), and top (bottom right) quark final states to the total annihilation cross section σeffv,
as well as the points favoured with respect to WMAP data (blue), and those excluded by a
charged LSP (dark grey, high m1/2), mass limits on superpartners (intermediate grey), the
measurement of BR(b → sγ) (light grey), or no electroweak symmetry breaking (dark grey,
high m0). The SUSY mass spectrum has been obtained from the parameters at the high scale
through renormalization group running with SPheno 2.2.3.
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Figure 4.3: Same as Fig. 4.2 for tanβ = 10 and A0 = −1500 GeV.
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Figure 4.4: Same as Fig. 4.2 for tanβ = 30 and A0 = 0.
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Figure 4.5: Same as Fig. 4.2 for tanβ = 50 and A0 = 0.
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Figure 4.6: Same as Fig. 4.2 for tanβ = 10 and A0 = 0, where the SUSY mass spectrum has
now been calculated with SuSpect 2.34. Grey shaded regions are excluded due to a charged
LSP, no electroweak symmetry breaking, current LEP mass limits, or b→ sγ measurements.

the constraint from b → sγ, so that only the “A-funnel” region around the resonance of the
pseudoscalar Higgs boson survives. In the focus point region at high values of m0 neutralinos
annihilate dominantly into top quark-antiquark pairs. Note that at high tanβ this proceeds
mainly through the exchange of a CP -even heavy Higgs boson, due to its enhanced Yukawa
coupling in this sector of the parameter space. For lower values of tan β, not only the Higgs
exchange, but also the Z-boson and squark exchanges play a significant role.

4.2 QCD and SUSY-QCD Corrections

Corrections of O(αs) to the neutralino pair annihilation processes shown in Fig. 4.1 arise
through the quark and squark self-energies shown in Fig. 4.7, the gluon and gluino vertex
corrections shown in Fig. 4.8, the gluon and gluino box diagrams shown in Fig. 4.9, and the
real gluon emission diagrams shown in Fig. 4.10. Note that for each t-channel diagram, a
u-channel diagram is obtained through crossing (not shown).
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Figure 4.7: Quark (top) and squark (bottom) self-energy diagrams contributing at O(αs)
to the annihilation cross section.
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Figure 4.8: Vertex correction diagrams to the s-channel Z- and Higgs-boson exchange (top)
and to the t-channel squark exchange (bottom) contributing at O(αs) to the annihilation
cross section. The corresponding u-channel squark- exchange diagrams are not shown.

Starting with the virtual corrections, the quark and squark self-energies, the gluon and
gluino vertex corrections, as well as the gluon and gluino box diagrams have been calculated,
partly using the symbolic manipulation programme FORM 3.1 [121]. We have also numerically
compared our results for the squared matrix elements of all relevant squared matrix elements
and interference terms with those obtained using the combination of FeynArts 3.3 [122,123]
and FormCalc 5.0 [124,125]. The arising tensor integrals have been expressed in terms of the
scalar integrals A0, B0, C0, and D0 by applying the common reduction methods described
e.g. in Refs. [126,127].

For the “heavy” third generation quarks, the squark propagators, and the Yukawa cou-
plings the involved ultraviolet (UV) singularities are treated in the on-shell renormalization
scheme, where the counterterms to the quark and squark masses, wave functions, and mixing
matrices cancel the poles in ǫ =

(
4−D

)
/2. Here, D = 4−2ǫ denotes the number of space-time

dimensions. For a detailed calculation of the involved self-energies, vertex corrections, and
box amplitudes see App. C.

After the renormalization procedure, only infrared (IR) singularities remain, which include
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Figure 4.9: Box diagrams contributing at O(αs) to the annihilation cross section.
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Figure 4.10: Real gluon emission diagrams contributing at O(αs) to the annihilation cross
section. The corresponding u-channel squark exchange diagrams are not shown.

soft radiation and collinear divergences. These are canceled when taking into account the
real gluon emission corrections shown in Fig. 4.10. Here, crossing leads again to u-channel
diagrams that are not shown. The connection between the virtual and real emission parts
of the cross sections has been implemented using the dipole subtraction method for massive
partons proposed in Refs. [106, 128], based on the construction of an unphysical auxiliary
cross section σaux. By definition, the latter contains the same infrared singularities as also
the virtual and real contributions. It is subtracted from the real part and added to the virtual
part in order to cancel the remaining infrared poles in both contributions, that can then be
integrated numerically separately. A more detailed presentation and discussion of the dipole
subtraction method is given in App. D.

A careful treatment is required for the bottom-quark mass appearing in the Yukawa
couplings, since it receives important corrections from QCD and SUSY-QCD loops, as already
discussed in Chap. 3. We start from the running quark mass in the MS scheme at the scale
mb as input parameter, mMS

b (mb) = 4.2 GeV, from which we obtain in a first step the MS
mass at the scale Q2 = s by applying three-loop renormalization group running [129],

mMS
b (Q) = mMS

b (mb)
Fb(Q)

Fb(mb)
, (4.1)
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where the function Fb is given by

Fb(Q) =

[
23

6

αs(Q)

π

]12/23[
1 +

3731

3174

αs(Q)

π
+ 1.500706

α2
s(Q)

π2

]
. (4.2)

This intermediate result is then transformed at the two-loop level into the DR scheme using
the relation [129,130]

mDR
b (Q) = mMS

b (Q)

[
1 − 1

3

αs(Q)

π
− 29

72

α2
s(Q)

π2

]
. (4.3)

We finally include one-loop threshold corrections at the scale Q2 = s in order to obtain the
MSSM running mass in the DR scheme [131],

mDR
b (Q)MSSM = mDR

b (Q)SM + δmthreshold
b , (4.4)

where the term δmthreshold
b includes the gluino-sbottom and stop-chargino loop contributions

to the bottom-quark self-energy. The resulting value of mDR
b (Q)MSSM is then implemented

in the Yukawa couplings. Note that the typical scale of a neutralino annihilation process
is of the order of Q ∼ 100 GeV, so that using the threshold corrections instead of the full
MSSM renormalization group equations is a reasonable approximation [131]. Based on the
value obtained in this way for the running bottom mass, we then resum the numerically
important SUSY-QCD corrections coming from the sbottom-gluino and stop-chargino loops
and take into account the finite remainders for the corresponding vertices as discussed in Sec.
3.3. We should note again that the mass resummation is already implemented at this order
in the public version of micrOMEGAs, while DarkSUSY includes only the QCD running mass
and finite corrections at O(α2

s), but no SUSY-QCD corrections.

The bottom quark pole mass mpole
b , which is used in the kinematics, is obtained from the

input value mMS
b (mb) through the two-loop relation [129]

mMS
b (Q)

mpole
b

= 1 +
αs(Q)

π

[
ln
m2
b(Q)

Q2
− 4

3

]
+
α2
s(Q)

π2

[
− 11

3
ln2 m

2
b(Q)

Q2

+
197

72
ln
m2
b(Q)

Q2
− 187

32
+
ζ(3)

6
+
π2

9

(
1 + ln 2

)
+ ∆

]
, (4.5)

where ζ denotes the Riemann zeta-function and the correction effects due to the four light
quarks are contained in the term

∆ =
∑

q=u,d,s,c

π2

6

mq

mb

(
1 +

m2
q

m2
b

)
−
m2
q

m2
b

. (4.6)

The latter is, due to the involved mass ratios, however, numerically important only for
the charm-quark mass, and negligible for the bottom quark considered here. Note that
micrOMEGAs does not follow the same calculation prescription as the one discussed above.
In particular, they use the same effective quark mass in the Yukawa coupling and in the
kinematics. Thus, small differences in the cross section, and in consequence in the prediction
of the relic density, may occur due to the different treatment of the bottom quark mass.
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m0 (GeV) m1/2 (GeV) A0 (GeV) tan β sgn(µ) ΩCDMh
2 bb̄ tt̄

1 1500 130 -1500 10 + 0.116 86% –
2 1500 1500 0 50 + 0.112 83% –

3 3800 570 0 10 + 0.108 – 72%
4 5300 625 -1500 10 + 0.110 – 72%
5 3000 600 0 50 + 0.110 15% 64%

Table 4.1: Scenarios in minimal supergravity (mSUGRA) that lead to a neutralino relic
density agreeing with the current limits of Eq. (2.7), satisfy the current SUSY-particle mass
limits, and present important contributions of neutralino annihilation into bottom or top
quark-antiquark pairs. We indicate the mSUGRA parameters at the high scale, the relic
density obtained with micrOMEGAs 2.1, and the contributions of the different quark final
states to the annihilation cross section σannv.

For the top quark mass, we have as input parameter the pole mass mpole
t = 171.4 GeV,

which can directly be used in the kinematics. Contrary to the bottom mass, we also implement
the pole mass in the Yukawa couplings of the tree-level calculation, while we take into account
all higher order effects in the calculation of the corresponding loop diagrams. Note that the
top quark Yukawa couplings implemented in micrOMEGAs 2.1 include already the calculation
of an effective mass, which is also used in the kinematics instead of the pole mass in our
calculation.

4.3 Impact on the Annihilation Cross Section

We now turn to the numerical impact of the QCD and SUSY-QCD corrections presented in
Sec. 4.2 on the neutralino annihilation cross section. Based on the analysis of Sec. 4.1 we
have chosen five scenarios in the minimal supergravity (mSUGRA) parameter space, shown
in Tab. 4.1, that lead to a cold dark matter relic density in agreement with the limits of
Eq. (2.7) and which are characterized by important contributions of top and/or bottom final
states. For each set of parameters, we indicate the neutralino relic density obtained with
micrOMEGAs 2.1 as well as the relative contributions of bottom and top quark final states to
the total annihilation cross section 〈σannv〉. Our scenario 1 is situated in the neighbourhood
of the resonance of the light CP -even Higgs boson, while scenario 2 lies in the “A-funnel”
region. Both are dominated by bb̄ final states. Our scenarios 3, 4, and 5 all lie in the focus
point region and have dominant contributions from annihilation into top quarks. Note that
scenario 5 receives also a sizeable contributions from bb̄ final states due to the important
bottom Yukawa coupling at high tanβ. Note also that scenarios agreeing with the LEP mass
limits and featuring an important contribution of light Higgs boson exchange can only be
found for non-vanishing A0. Regions with a top-quark contribution of more than 80 percent
can be found for negative values of the Higgs mass parameter µ. We do, however, not consider
those points in our analysis, since negative values of µ are disfavoured by the supersymmetric
contributions to the anomalous magnetic moment aµ, see Eq. (2.6).

In Figs. 4.11 – 4.13, we show the annihilation cross section σannv of a neutralino pair into
bottom or top quark-antiquark pairs for our scenarios 1 to 5 as a function of the relative
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Figure 4.11: The annihilation cross section σ
(bb̄)
annv of a neutralino pair into a bottom quark-

antiquark pair multiplied with the relative neutralino velocity v for our scenarios 1 (left) and
2 (right). We show our tree-level result (green dash-dotted), the cross section implemented in
micrOMEGAs 2.1 (red dashed), and the cross section including the full QCD and SUSY-QCD
corrections (blue solid). The coloured area indicates, on a linear scale and in arbitrary units,
the s-dependence of the Boltzmann velocity distribution involved in the calculation of the
thermal averaged cross section.

momentum pcm in the centre-of-momentum frame, related to the energy
√
s through

s = 4
(
p2
cm +m2

χ̃0

1

)
. (4.7)

The threshold at pcm = 0 corresponds to s = 4m2
χ̃. For each scenario we show the cross

sections calculated by micrOMEGAs 2.1 (red dashed), our calculation at the tree-level (green
dash-dotted), and our calculation including the full QCD and SUSY-QCD corrections (blue
solid) discussed in Sec. 4.2. The coloured areas show the Boltzmann velocity distribution
function fv(s) that governs the integral in the calculation of the thermal average 〈σannv〉,
see Eq. (2.11) and the discussion in Sec. 2.2. Since we are only interested in the relative
distribution we omit all normalization factors, such as mχ̃ or T , that are constant with respect
to the energy, and the s-dependent part of the distribution is shown in arbitrary units. For
the temperature we insert the freeze-out temperature obtained through Tf = mχ̃0

1

/xf , where
xf is the freeze-out parameter determined by micrOMEGAs 2.1 in the calculation of the dark
matter relic density.

For our scenario 1, shown in the left panel of Fig. 4.11, the resonance of the light Higgs
boson h0 is well visible around pcm ≈ 20 GeV. The Higgs and neutralino masses in this point
are mh0 = 114.5 GeV and mχ̃0

1

= 53.7 GeV, respectively, and the freeze-out parameter is xf =
24.35 leading to Tf = 2.21 GeV. The width of the CP -even Higgs-boson is numerically small,
Γh0 = 3 · 10−3 GeV, which results in a rather high and narrow peak of the annihilation cross
section. Our tree-level cross section (green dash-dotted) agrees well with the one computed
by CalcHEP in the micrOMEGAs package. The small but well visible difference can be traced
to the different treatments of the bottom mass in the two calculations. First, micrOMEGAs
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2.1 calculates the bottom Yukawa coupling with the running mass in the MS-scheme instead
of DR in our calculation, see Sec. 4.2 for details. Second, in micrOMEGAs 2.1, the running
bottom mass is also used in the kinematics, whereas in our calculation the kinematics is
calculated using the on-shell mass as described in Sec. 4.2. Note, however, that the bottom
mass is small compared to the centre-of-momentum energy

√
s ≥ 2mχ̃0

1

≈ 107.4 GeV, so that
the major part of the difference is due to the different masses in the calculation of the Yukawa
couplings.

It is interesting to note that the peak of the velocity distribution, pcm ≈ 8 GeV, does not
coincide with the peak of the annihilation cross section, pcm ≈ 20 GeV. This is connected
to the fact that the favoured band with respect to WMAP data does not exactly lie on the
resonance of the light Higgs boson, see Fig. 4.2. If the peaks were at the same value of pcm,
the resulting thermal averaged annihilation cross section would be too high to allow for a
relic density agreeing with current cosmological data. The increase in the cross section when
taking into account the full QCD and SUSY-QCD corrections, i.e. adding the finite terms and
box contributions to the tree-level result containing already the bottom mass resummation,
is numerically more important around the peak of the velocity distribution than around the
Higgs resonance. For the latter, the dominating corrections are already contained in the QCD
and SUSY-QCD bottom mass resummation. However, farther away from the pole, the finite
contributions increase the annihilation cross section significantly. Let us recall that bottom
quark final states account for 86 percent of the total annihilation cross section 〈σannv〉.

For our scenario 2, situated in the “A-funnel” region of the mSUGRA parameter space,
the neutralino mass is with mχ̃0

1

= 655.7 GeV too large to give rise to a resonance with the

light Higgs boson (mh0 = 122.0 GeV). However, the mass and width of the pseudoscalar
Higgs boson are in this point mA = 1312.5 GeV and ΓA = 43.0 GeV, respectively, so that
already the point pcm = 0 is situated in the resonance of the pseudoscalar Higgs boson.
The decrease of the cross section for larger values of pcm is due to moving away from the
pole. Again, we observe a noticeable difference between the predictions based on the effective
tree-level calculations, which is explained by the same arguments as for scenario 1, i.e. the
different treatments of the bottom quark mass. Taking into account the QCD and SUSY-
QCD corrections leads to an increase of about 25 percent in the annihilation cross section,
that is practically independent of the energy pcm.

For the top quark dominated scenarios, the annihilation cross section σ
(tt̄)
annv of a neutralino

pair into a top quark-antiquark pair is shown in Fig. 4.12 for our scenarios 3 and 4, lying both
in the focus point region at tanβ and A0 = 0 and A0 = −1500 GeV, respectively. We show
again the cross sections obtained with the effective tree-level calculation, with micrOMEGAs

2.1, and including the full one-loop cross section. Due to the large top quark mass, the
resonance of the light Higgs boson (mh0 = 120.5 GeV) can not be encountered in these
scenarios. Since the resonances of the heavy and pseudoscalar Higgs bosons occur at pcm ≈
1900 GeV, the dependence of the cross sections on the energy is weak in the region of our
interest. Note that the light scalar Higgs masses are with mh0 = 120.5 GeV and mh0 = 120.8
GeV practically independent from the rather important variation of the trilinear coupling A0.
The difference between the cross sections obtained with the micrOMEGAs calculation and our
tree-level calculation are explained, as in the case of bottom quarks, by the different treatment
of the top quark mass in the Yukawa couplings. micrOMEGAs uses an effective mass, while
our calculation includes the value of the pole mass for the top quark, as discussed in Sec. 4.2.
Numerically important contributions arise then from the QCD and SUSY-QCD corrections,
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Figure 4.12: The annihilation cross section σ
(tt̄)
annv of a neutralino pair into a top quark-

antiquark pair multiplied with the relative neutralino velocity v for our scenarios 3 (left) and
4 (right). We show our tree-level result (green dash-dotted), the cross section implemented in
micrOMEGAs 2.1 (red dashed), and the cross section including the full QCD and SUSY-QCD
corrections (blue solid). The coloured area indicates, in arbitrary units, the s-dependence of
the Boltzmann velocity distribution involved in the calculation of the thermal averaged cross
section.
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Figure 4.13: The annihilation cross sections σ
(bb̄)
annv (left) and σ

(tt̄)
annv of a neutralino pair

into a bottom or top quark-antiquark pair multiplied with the relative neutralino velocity
v for our scenarios 5. We show our tree-level result (green dash-dotted), the cross section
implemented in micrOMEGAs 2.1 (red dashed), and the cross section including the full QCD
and SUSY-QCD corrections (blue solid). The coloured area indicates, in arbitrary units, the
s-dependence of the Boltzmann velocity distribution involved in the calculation of the thermal
averaged cross section.
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that increase the annihilation cross section by up to 50 percent of the tree-level value in both
scenarios.

Finally, let us discuss the neutralino pair annihilation cross section into bottom and top
quark pairs for scenario 5 shown in Fig. 4.13. This parameter point is located in the focus
point region at large tan β = 50. Bottom quarks contribute here already to 15 percent of the
total annihilation cross section, while top quarks are still dominant with 64 percent. This is
due to the fact that the cross section for top quarks is about five times larger than the one for
bottom quarks, as can be seen in Fig. 4.13. The neutralino mass is here mχ̃0

1

= 245.5 GeV,
so that again no Higgs resonance is visible in the interesting range with pcm ≤ 150 GeV. The
tree-level calculation compared to micrOMEGAs shows the differences already discussed for the
other parameter points. The corrections due to one-loop QCD and SUSY-QCD diagrams
increase the cross section by about 50 percent for bottom and 20 percent for top quark final
states, which corresponds to their numerical impact for the other scenarios.

4.4 Impact on the Neutralino Relic Density

We now study the effects of the QCD and SUSY-QCD corrections to neutralino annihilation
into top and bottom quark-antiquark pairs on the prediction of the neutralino relic density.
To this aim, the cross section including the corrections has been implemented into the public
code micrOMEGAs 2.1. In this way, the relic density can be calculated either using the tree-
level calculation for the processes shown in Fig. 4.1 or taking into account the new corrections
presented in Sec. 4.2 for top- and/or bottom-quark final states.

In Fig. 4.14 we show the predictions for the relic density as a function m1/2 and fixed
m0 = 1500 GeV, i.e. for a slope in the vicinity of our scenario 1. Since both the Higgs pole
and the WMAP favoured band are independent from m0 in this region (see Fig. 4.3), we
do not study here a variation of m0. We show the relic density obtained with micrOMEGAs

2.1 using the originally implemented cross section (red dashed), our calculation of the tree-
level (green dash-dotted), as well as our calculation including the full QCD and SUSY-QCD
corrections (blue solid). The current limits of Eq. (2.7) obtained from WMAP, supernovae,
and BAO data are represented as a coloured band. The Higgs pole is situated at m1/2 = 138.5
GeV, where the relic density is too low due to the enhanced annihilation cross section. To
both sides of the pole, the cross section falls rapidly (see Fig. 4.11), so that the relic density
increases. In consequence, two allowed intervals for m1/2 are observed, the first being rather
large at m1/2 ≈ 128.5 − 130.0 GeV, the second very narrow around m1/2 ≈ 138.3 GeV. Note
that the latter is invisible on the scans of Fig. 4.3 due to the insufficient resolution. At lower
values of m1/2, the relic density is with ΩCDMh

2 ≈ 0.17 again rather low, but does not reach
the WMAP favoured band. This behaviour is explained by the resonance of the Z0-boson,
situated at m1/2 = 110.8 GeV and enhancing again the annihilation cross section. However,
the region where m1/2 . 126 GeV, indicated by a vertical dashed line, is already excluded
by the LEP mass limits on the chargino, that becomes too light at such low values of the
gaugino mass parameter m1/2.

The differences between the tree-level calculations due to the treatment of the bottom
quark mass and discussed in Sec. 4.3 propagate into the prediction of the relic density pre-
sented here. Since the annihilation through Z0-boson exchange does not involve a quark
Yukawa coupling, this difference is absent in the region around the Z0-pole, where our tree-
level prediction agrees well with the micrOMEGAs calculation. Taking into account the full
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Figure 4.14: Prediction for the neutralino relic density ΩCDMh
2 as a function of the gaugino

mass parameter m1/2 for our scenario 1. The coloured band indicates the cosmologically
favoured region at 2σ, while the vertical dashed line separates the excluded (left) from the
allowed (right) regions due to the LEP chargino-mass limit.

one-loop QCD and SUSY-QCD corrections, the relic density decreases. This is coherent with
the increase of the cross section observed in Fig. 4.11. Since the numerically most important
contribution, the bottom quark mass resummation, is already included as an effective cou-
pling in the tree-level calculation, the decrease in the relic density around the Higgs pole is
rather small. It is even smaller than the difference between the two predictions including the
effective tree-level annihilation cross section. Note that, in order to compensate the larger
annihilation cross section, the cosmologically preferred region is shifted away from the Higgs
pole to smaller gaugino masses m1/2, i.e. it approaches the exclusion limit on the chargino
mass. Concerning the exchange of a Z0-boson, no corrections are included in the tree-level
calculation, so that the impact of the QCD and SUSY-QCD corrections is numerically more
important around the Z0-resonance.

In Fig. 4.15, we show the prediction for the neutralino relic density for our scenario 2. We
here analyze its dependence on the scalar mass parameter m0 and the gaugino mass parameter
m1/2. This scenario is situated at high tan β in the Higgs funnel region of the parameter
space, and bottom quark final states contribute 83 percent of the total annihilation cross
section. Again, a difference between the results obtained using the effective cross section at
the tree-level is observed in both graphs. When implementing the one-loop corrections, the
cross section is increased and the predicted relic density is significantly lower, resulting in a
deformation of the cosmologically favoured contour in the parameter space. In particular, the
allowed intervals for m0 and m1/2 based on the tree-level calculation are split into two ranges
for the mass parameters, respectively. This is well visible in both panels of Fig. 4.15 and
underlines again the importance of the non-resummable QCD and SUSY-QCD contributions
to the annihilation cross section in this region of the mSUGRA parameter space.

Let us now turn to the scenarios that are dominated by top quark final states. In Fig. 4.16
we show the prediction of the neutralino relic density for scenario 3 in the focus point region,
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Figure 4.15: The prediction for the neutralino relic density ΩCDMh
2 as a function of the

scalar mass parameter m0 (left) and the gaugino mass parameter m1/2 (right) for our scenario
2 obtained with micrOMEGAs 2.1 including their cross section calculation (red dashed), our
tree-level calculation (greed dash-dotted), and our full one-loop QCD and SUSY-QCD cross
section (blue solid) of the annihilation into bb̄ and tt̄ final states. The coloured band indicates
the cosmologically favoured region at 2σ.
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Figure 4.16: Same as Fig. 4.15 for our scenario 3.
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Figure 4.17: Same as Fig. 4.15 for our scenario 4.

where top final states contribute 72 percent to the thermally averaged annihilation cross
section 〈σannv〉. Again, we analyze variations of m0 and m1/2 around the original parameter
point. Here, the predictions based on the effective tree-level are in good agreement. As for
the bottom quark final states, the one-loop QCD and SUSY-QCD corrections then increase
the annihilation cross section, resulting in a decrease of about 20 percent in the neutralino
relic density. In order to compensate this decrease, the WMAP-favoured regions are shifted
to smaller scalar masses m0, but larger gaugino masses m1/2. This deformation gives rise to
shifts of up to 50 GeV inm0 and up to 30 GeV inm1/2 and is therefore rather important. Note
also that due to the implemented corrections, the WMAP favoured band becomes slightly
larger, as can be seen in Fig. 4.15.

Scenario 4 is also situated in the focus point region at small tan β = 10, but features
a non-vanishing trilinear coupling A0 = −1500 GeV. The corresponding predictions for the
neutralino relic density obtained with micrOMEGAs 2.1 are shown in Fig. 4.17. The situation
is very similar to the one of the previous parameter point. We have rather good agreement
between our tree-level calculation and the one implemented in micrOMEGAs 2.1, while the
new one-loop corrections lead to a decrease of the order of 15 percent in the neutralino
relic density. The preferred intervals are shifted smaller values of m0 and to larger m1/2,
respectively.

Our scenario 5, lying in the focus point region at high tanβ = 50, presents an interesting
configuration, since it receives sizeable annihilation contributions both from bottom (15%)
and top (64%) quark final states. In the analysis of the impact of the one-loop corrections on
the prediction of the neutralino relic density, shown in Fig. 4.18, we take into account not only
the effective cross section at the tree-level and the full one-loop corrected cross section, but
also the cross section taking into account only the one-loop corrections to the bottom quark
final state while including only the effective tree-level for the top quarks. The latter is shown
as an additional black dotted curve in the two panels of Fig. 4.18. It is interesting to note
that the one-loop corrections to annihilation into bottom quarks contribute as much as about
50 percent of the total correction, while the total contribution of bottom quark final states is
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Figure 4.18: Same as Fig. 4.15 for our scenario 5. We here show in addition the neutralino
relic density obtained implementing only the corrections to bottom quark final states (black
dotted).

only of 15 percent in this region of the parameter space. This is explained by the fact that the
annihilation cross section for bb̄ final states receives numerically more important corrections
that the one for tt̄, as can be seen in Fig. 4.15. As in the other focus point scenarios, the
WMAP favoured contour is shifted to smaller values of m0 and higher values of m1/2. The
total shift is here of about 25 GeV in m0 and 10 GeV in m1/2. Note that the two independent
contributions to the correction deform the contour in the same direction.

72



Chapter 5

Supersymmetric Particle
Production at the LHC

As already seen in Chap. 2, non-minimal flavour violation (NMFV) may lead to interesting
phenomenological aspects, in particular due to the avoided crossings of mass eigenvalues.
This also holds for the production of supersymmetric particles at hadron colliders, which is
discussed for the case of gauge-mediated Supersymmetry breaking (GMSB) in this Chapter.
A similar study has been presented for mSUGRA scenarios within Ref. [65], that is, however,
beyond the scope of this Thesis.

Total unpolarized hadronic cross sections

σ =

∫ 1

4m2/s
dτ

∫ 1/2 ln τ

−1/2 ln τ
dy

∫ tmax

tmin

dt fa/A(xa,M
2
a ) fb/B(xb,M

2
b )

dσ̂

dt
(5.1)

are obtained through convolving the relevant partonic cross section dσ̂/dt with universal
parton densities fa/A and fb/B of partons a, b in the hadrons A, B, which depend on the
longitudinal momentum fractions of the two partons xa,b =

√
τe±y and on the unphysical

factorization scales Ma,b. Unpolarized cross sections, averaged over initial spins, can be
derived from the expression

dσ̂ =
1

4

[
dσ̂1,1 + dσ̂1,−1 + dσ̂−1,1 + dσ̂−1,−1

]
, (5.2)

while single- and double-polarized cross sections, including the same average factor for initial
spins, are given by

d∆σ̂L =
1

4

[
dσ̂1,1 + dσ̂1,−1 − dσ̂−1,1 − dσ̂−1,−1

]
, (5.3)

d∆σ̂LL =
1

4

[
dσ̂1,1 − dσ̂1,−1 − dσ̂−1,1 + dσ̂−1,−1

]
. (5.4)

We first give analytical expressions for the helicity-depending partonic production cross
sections dσ̂ha,hb

of squarks, gluinos, gauginos, and gravitinos in non-minimal flavour violating
Supersymmetry. We also include analytical results for decay widths that involve gravitinos.
We finally present numerical predictions for the relevant production channels at the CERN
Large Hadron Collider (LHC) for the benchmark points E to J presented in Chap. 2 [66].
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Figure 5.1: Tree-level Feynman diagrams for the production of charged squark-antisquark
pairs in quark-antiquark collisions.

5.1 Squark and Gaugino Production

For definite helicities ha, hb of the initial state partons a, b = q, q̄, g the cross sections are
expressed in terms of the squark, chargino, neutralino, and gluino masses mq̃k , mχ̃±

k
, mχ̃0

k
,

and mg̃, the conventional Mandelstam variables

s =
(
pa + pb

)2
, t =

(
pa − p1

)2
, and u =

(
pa − p2

)2
, (5.5)

and the masses of the neutral and charged electroweak gauge bosons mZ and mW . Propaga-
tors appear as mass-subtracted Mandelstam variables

sξ = s−m2
ξ , tξ = t−m2

ξ , and uξ = u−m2
ξ , (5.6)

for ξ = Z, W, q̃i, g̃, χ̃
±
k , χ̃

0
k. The generalized coupling strengths in non-minimal flavour

violating Supersymmetry are denoted Labc, Rabc, or for simplicity

{
C1
abc, C2

abc

}
=
{
Labc, Rabc

}
. (5.7)

Also involved are several form factors, which are, together with all generalized couplings and
charges, listed in App. A. Note that the definition slightly differs from the one of Ref. [65] in
order to have a single notation for chargino and neutralino production and decays.

Let us start with the production of charged squark-antisquark pairs proceeding from an
equally charged quark-antiquark initial state through the Feynman diagrams shown in Fig.
5.1. The corresponding cross section can be written in a compact way as

dσ̂qq̄
′

ha,hb

dt
=

(
1 − ha

)(
1 + hb

)
[
W
s2W

+

(
4∑

k,l=1

N kl
11

tχ̃0

k
tχ̃0

l

)
+

G11

t2g̃
+

(
4∑

k=1

[
NW

]k

tχ̃0

k
sW

)
+

[
GW

]

t2g̃

]

+
(
1 − ha

)(
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)
[(

4∑
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N kl
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k
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l

)
+

G12
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]

+
(
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)(
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)
[(

4∑

k,l=1

N kl
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k
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l

)
+
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t2g̃

]

+
(
1 + ha

)(
1 − hb

)
[(

4∑

k,l=1

N kl
22

tχ̃0

k
tχ̃0

l

)
+

G22

t2g̃

]
, (5.8)

where coupling constants and Dirac traces are contained in the form factors. In constrained
minimal flavour violation (cMFV), superpartners of heavy flavours can only be produced
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through the purely left-handed s-channel W -boson exchange, since the t-channel diagrams
are suppressed by the small bottom and negligible top quark densities in the proton, and
one recovers the result of Ref. [132]. In non-minimal flavour violation (NMFV), t-channel
exchanges can, however, contribute to heavy-flavour final state production from light-flavour
initial states and even become dominant, due to the strong gluino coupling.

Neutral squark-antisquark pairs are produced either from equally neutral quark-antiquark
initial states through different gauge-boson or gaugino exchanges or from gluon fusion through
purely strong couplings. The corresponding Feynman diagrams are shown in Fig. 5.2. The
differential cross section for quark-antiquark scattering is given by

dσ̂qq̄
′

ha,hb

dt
=

(
1 − ha
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1 + hb
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[
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, (5.9)

where only very few interferences are eliminated due to colour conservation. The gluon-
initiated cross section reads

dσ̂ggha,hb

dt
=

παs
6s2

[
1 − 9tq̃iuq̃i

4s2

][
(
1 − hahb

)
−

2sm2
q̃i

tq̃iuq̃i

(
(
1 − hahb

)
−
sm2

q̃i

tq̃iuq̃i

)]
, (5.10)

involving only the strong coupling constant and being therefore more compact. In the limit of
constrained minimal flavour violation (cMFV), but diagonal or non-diagonal squark helicity,
these results agree with those of Ref. [132]. Diagonal production of identical squark-antisquark
mass eigenstates is, of course, dominated by the strong quark-antiquark and gluon-gluon
channels. Their relative importance depends on the partonic luminosity and thus on the type
and energy of the hadron collider under consideration. Non-diagonal production of squarks
of different helicity or flavour involves only electroweak and gluino-mediated quark-antiquark
scattering, and the relative importance of these processes depends largely on the gluino mass.
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Figure 5.2: Tree-level Feynman diagrams for the production of neutral squark-antisquark
pairs.

While squark-antisquark pairs are readily produced in pp̄ collisions, e.g. at the Tevatron,
from valence quarks and antiquarks, pp colliders have a larger quark-quark luminosity and
will thus more easily lead to squark pair production. The production of one down-type and
one up-type squark in the collision of an up-type and a down-type quark proceeds through
the t-channel chargino or u-channel neutralino and gluino exchanges shown in Fig. 5.3. The
corresponding cross section is given by
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=
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. (5.11)

Note the absence of a neutralino-gluino interference term due to colour conservation. The
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Figure 5.3: Tree-level Feynman diagrams for the production of an up-type and a down-type
squark in the collision of an up-type and a down-type quark.

cross section for the charge-conjugated production of antisquarks from antiquarks can be
obtained from the equations above by replacing ha,b → −ha,b. Heavy flavour final states
are completely absent in constrained minimal flavour violation (cMFV) due to the negligible
top quark and small bottom quark densities in the proton and can thus only be obtained in
non-minimal flavour violation.

In Fig. 5.4, we show the Feynman diagrams for the production of a pair of up-type or
down-type squarks. Taking into account non-minimal flavour violation, neutralino and gluino
exchanges can lead to identical squark flavours for different quark initial states, so that both
t- and u-channels contribute and may interfere. In the cross section
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(5.12)

gluinos dominate over neutralino exchanges due to their strong coupling, and the two only
interfere in the mixed t- and u-channels due to colour conservation. At the LHC, up-type
squark pair production should dominate over mixed up-/down-type squark production and
down-type squark pair production, since the proton contains two valence up-quarks and only

77



CHAPTER 5. SUPERSYMMETRIC PARTICLE PRODUCTION AT THE LHC

Figure 5.4: Tree-level Feynman diagrams for the production of two up-type or down-type
squarks.

Figure 5.5: Tree-level Feynman diagrams for the associated production of a squark and a
gaugino.

one valence down-quark. As before, the charge conjugate production of antisquark pairs is
obtained by making the replacement ha,b → −ha,b. If we neglect electroweak contributions as
well as squark flavour and helicity mixing and sum over left- and right-handed squark states,
we recover the results from Ref. [133].

The associated production of squarks and neutralinos or charginos is a semi-weak process
originating from quark-gluon initial states. The s-channel quark and the t-channel squark
contributions are shown in Fig. 5.5. Flavour violation is involved through the quark-squark-
gaugino vertex. The corresponding differential cross section can be written without form
factors as
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=
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, (5.13)

where nχ̃ = 6 sin2 θW
(
1 − sin2 θW

)
for neutralinos and nχ̃ = 12 sin2 θW for charginos. The

t-channel diagram involves the coupling of the gluon to scalars and does thus not depend
on its helicity hb. The cross section of the charge-conjugate process can be obtained by
taking ha → −ha. Third generation squarks can, again, only be produced in non-minimal
flavour violation (NMFV), preferably through a light (valence) quark in the s-channel. For
non-mixing squarks and gauginos, we agree again with the results of Ref. [133].
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Figure 5.6: Tree-level Feynman diagrams for gaugino pair production.

We finally consider the purely electroweak production of gaugino pairs from quark-anti-
quark initial states, shown in Fig. 5.6. Flavour violation can here occur via the quark-squark-
gaugino vertices in the t- and u-channels. However, since the summation over complete
squark multiplet exchanges makes these channels insensitive to the exchanged squark flavour,
the only dependence on flavour violation is due to the different parton density weights in the
proton. Furthermore, there are no final state squarks that could be experimentally tagged.
The cross section
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=
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(5.14)

can be expressed in terms of the generalized charges given in App. A. The charge-conjugate
process is again obtained by replacing ha,b → −ha,b. The cross section for chargino pair
production in e+e− collisions can be deduced by setting eq → el = −1, Lqq′Z → LeeZ =(
2T 3

l − 2el sin
2 θW

)
and Rqq′Z → ReeZ = −2el sin

2 θW . Neglecting all Yukawa couplings, our
cross section then agrees with the results of Ref. [134]. We also agree with the results of
Ref. [135] for chargino pair production in the case of non-mixing squarks. For the associated
production of a chargino and a neutralino, we recover the results of Ref. [136], provided we
correct a sign in their Eq. (2) as described in Ref. [137].
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Figure 5.7: Leading order Feynman diagrams for the associated production of a gravitino
and a gluino.

5.2 Production Cross Sections and Decays involving Graviti-

nos

If the gravitino is light, as it can be the case e.g. in scenarios with gauge-mediated Super-
symmetry breaking, it is also interesting to study its production at current hadron colliders.
In this Section, we present analytical expressions in non-minimal flavour violating Super-
symmetry for the production cross section of gravitinos in association with squarks, gluinos,
charginos, or neutralinos at hadron colliders, as well as for the decay widths of supersymmetric
particles involving gravitinos.

We refer to the effective Lagrangian for light gravitinos and the corresponding couplings
of goldstinos with quarks, squarks, gluons, and gluinos discussed e.g. in Ref. [67]. All vertices
are proportional to the Supersymmetry-breaking mass terms m2

q̃ −m2
q and m2

g̃. The Yukawa
coupling of the goldstino to quarks and squarks can be obtained from the gluino-quark-squark
vertex by the replacement [138]

gsT
a
ij →

m2
q̃i
−m2

q√
6MPmG̃

(5.15)

while the goldstino-gluon-gluino vertex can be obtained from the gluino-gluino-gluon coupling
by the replacement

− gsf
abcγµ → i

m2
g̃

2
√

6MPmG̃

[
/p, γ

µ
]
δab, (5.16)

p denoting the incoming momentum of the gluon. For a summary of couplings in non-minimal
flavour violating Supersymmetry, in particular for the gluino, see App. A. In all expressions,
we neglect the small gravitino mass mG̃ with respect to the other particle masses, except for
the above couplings.

The associated production of a gravitino and a gluino originates either from a neutral
quark-antiquark pair or from a gluon pair initial state, as it is shown in Fig. 5.7. The
quark-antiquark annihilation subprocess contains s-channel gluon and t- and u-channel squark
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Figure 5.8: Leading order Feynman diagrams for the associated production of a gravitino
and a neutralino or chargino.

exchange contributions. The corresponding differential cross section is

dσ̂qq̄
′

ha,hb

dt
=

αs
27s2M2
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2
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2∑
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(
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,

where we use again the generic notation of Eq. (5.7) for the coupling strengths C{I,J}
abc . Flavour

violation can be involved through the squark-quark-gluino and squark-quark-gravitino ver-
tices. However, the summation over the complete squark multiplet reduces these effects, the
small remaining sensitivity coming from the different parton density weights, as it is the case
for gaugino-pair production. The gluon fusion subprocess involves a quartic coupling and a
gluon and a two gluino exchange diagrams, yielding the cross section
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αsm
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}
. (5.18)

Note that this cross section is not affected by flavour violation and the expression is therefore
rather compact.

The associated production of a gravitino and a chargino or neutralino proceeds through
the diagrams shown in Fig. 5.8, i.e. from the collision of a quark-antiquark pair and through
t- or u-channel squark exchanges. It can involve flavour violation effects through the squark-
quark-gravitino and the squark-quark-gaugino vertices, but these are again reduced when we
sum over all squarks in a given supermultiplet. The differential cross section can be obtained
from Eq. (5.17) by removing the s-channel contribution and its interferences and replacing
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Figure 5.9: Leading order Feynman diagrams for the associated production of a gravitino
and a squark.

the gluino-squark-quark coupling by the chargino-squark-quark ones,
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Finally, gravitinos can also be produced in association with squarks, as shown in Fig.
5.9. Originating from a quark-gluon initial state and proceeding through s-channel quark,
t-channel squark, or u-channel gluino exchange, flavour violation effects can occur here as
before due to the squark-quark-gluino and squark-quark-gravitino vertices. The associated
cross section is given by
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. (5.20)

Note that the expressions in Eqs. (5.17) - (5.20) agree in the limit of constrained minimal
flavour violation and non-mixing mass-degenerate squarks with the results of Ref. [67].

We now turn from the production to the two-body decay processes of supersymmetric
particles. As for the cross sections, we express them in terms of the masses of the involved
particles, the electroweak gauge boson masses, mZ and mW , and the reduced Planck mass
MP . Analytical expressions for decay widths of squarks, gluons, and gauginos in non-minimal
flavour violation Supersymmetry can be found in Ref. [65], but without taking into account
final states with a gravitinos. We here extend this work and focus on the decays that involve
gravitinos shown in Fig. 5.10, i.e. decays of a supersymmetric particle into its Standard Model
partner and a gravitino.
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Figure 5.10: Leading order Feynman diagrams for the decay of a squark, a gluino, or a
gaugino into its Standard Model partner and a gravitino.

Flavour violation is involved here only in the squark decay through the squark-quark-
gravitino coupling. The corresponding decay width is given by
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=
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)
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where we have again neglected the gravitino mass everywhere except in the coupling constant.
The corresponding slepton decay width can easily be deduced from the previous result by
replacing consistently the couplings and masses. Note that there is no need to adapt colour
factors, since they are equal to unity for each decay mode except for the gluino which is not
relevant for slepton decay. In the limit of constrained minimal flavour violation (cMFV) we
recover the result for the decay width of Ref. [67]. For completeness, we recall the expressions
of gluino, chargino, and neutralino decays involving gravitinos but no flavour violation [139],
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5.3 Numerical Predictions for the LHC

In this Section, we present numerical predictions for the production cross sections in non-
minimal flavour violating Supersymmetry at the CERN Large Hadron Collider (LHC), i.e.
for pp-collisions at

√
s = 14 TeV centre-of-momentum energy [66]. For consistency with

our leading order (LO) QCD calculation in the collinear approximation, where all quark
masses but the top mass are neglected with respect to the centre-of-momentum energy

√
s,

we employ the LO set of the latest CTEQ6 global parton density fit [140], which includes
nf = 5 “light” quark flavours and the gluon, but no top-quark density. Whenever it occurs,
i.e. for gluon initial states and gluon and gluino exchanges, the strong coupling constant

αs(µR) is calculated with the corresponding LO value of Λ
nf =5
LO = 165 MeV. We identify the

renormalization scale µR with the factorization scales Ma = Mb and set the scales to the
average mass of the produced supersymmetric particles.

In Figs. 5.11 – 5.22, we show examples of the obtained numerical cross sections for
charged squark-antisquark and squark-squark production, neutral up- and down-type squark-
antisquark and squark-squark pair production, associated production of squarks with charginos
and neutralinos, and gaugino pair production for our benchmark points E, F, G, H, I, and J,
and for both of the two considered implementations of non-minimal flavour violation in the
GMSB model discussed in Sec. 2.4.2. We recall that the first is based on mixing between mat-
ter and fundamental messengers, leading to flavour mixing only in the left-left chiral squark
sector and implemented at the electroweak scale through the parameter λLL while λRR is set
to zero. The second scenario involves mixing with antisymmetric messengers, giving rise to
flavour violation in both the left-left and right-right chiral squark sectors governed by the
parameter λLL = λRR. For the sake of better readability, we show only the numerically most
important curves as well as a selection of those that involve visible flavour violating effects.

The magnitudes of the cross sections vary from the barely visible level of 10−2 fb for
weak production of heavy final states over the semi-strong production of average squarks
and gauginos and quark-gluon initial states to large cross sections of 102 to 103 fb for the
strong production of diagonal squark-squark and squark-antisquark pairs or weak production
of very light gaugino pairs. Unfortunately, the processes whose cross sections are largest are
mostly insensitive to the parameter λLL in both flavour violation scenarios, as the strong
gauge interaction is insensitive to quark flavours and gaugino pair production cross sections
are summed over exchanged squark flavours.

Some of the subleading, non-diagonal cross sections show, however, sharp transitions in
particular squark production channels. These transitions are directly related to the “avoided
crossings” of the mass eigenvalues discussed in Sec. 2.4.3. At the point, where two levels should
cross, the involved squarks change character and are subject to an exchange of their flavour
contents. Rather than the mass dependence on λLL, these exchanges then lead together with
the different parton densities in the proton to more or less sharp transitions in the production
cross sections, where the corresponding squarks are involved. This phenomenon is analogously
observed in the case of squark and gaugino hadroproduction in minimal supergravity [65].

As an example, let us discuss in detail the production of quarks and gauginos for our
benchmark point E. The cross sections in the flavour violation scenario based on fundamental
messengers are shown in Fig. 5.11. “Avoided crossing” of mass eigenvalues occur here, e.g.,
for down-type squarks at a value of λLL ≈ 0.145 between the squarks d̃3 and d̃4, see also
Fig. 2.16. Before this point, d̃3 is characterized by a dominant sdown content, while d̃4 has
first a dominant sbottom and then sstrange content. For λLL & 0.145, these contents are
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exchanged, i.e. d̃3 is then a strange-squark and d̃4 becomes sdown-like. As a consequence, the
cross sections involving the two mass eigenstates exchange their values, since the production
of first generation squarks is preferred due to the more important parton density of up- and
down-quarks in the proton. This can be seen in our example for the production of down-
type squark-squark and squark-antisquark pairs, mixed up- and down-type squark-squark
and squark-antisquark pair production, as well as for the associated production of down-type
squarks and charginos or neutralinos.

For up-type squarks, the level-reordering phenomenon occurs at values of λLL ≃ 0.09 in
the range excluded by the constraint from the inclusive branching ratio BR(b → sγ) (left
of the vertical green dashed line) and is therefore not shown here. However, another effect
becomes visible in the case of production cross sections that involve final states with up-
type squarks. Some of the mass eigenstates do not present sharp transitions, but rather
a continuous change in their flavour content. This is, e.g., the case for the lightest mass
eigenstate ũ1. The corresponding production cross sections increase smoothly with the flavour
violation parameter λLL, which is explained by the fact that at lower values of λLL the lightest
up-squark ũ1 is mostly stop-like, but receives sizeable contributions of the light flavours for
higher λLL. Together with the more important parton densities, this results in an increase of
the corresponding production cross sections. In the same way, we also observe cross sections
that decrease with λLL, due to a decrease of the light flavour content of the involved squarks.

The same phenomena are observed in the case of our second flavour violation scenario
with antisymmetric messengers, see Fig. 5.12 for the benchmark point E. Note that here also
“avoided crossings” between up-type squark mass eigenstates are observed, e.g. between ũ4

and ũ5 at λLL ∼ 0.11, which lies, however, already in the range excluded by BR(b→ sγ). In
this example, the ũ5 loses its important up-squark content to the scharm-dominated ũ4. The
latter becomes then purely sup-like, enhancing its production cross section due to the parton
density in the proton, while the cross sections involving ũ5 become less important.

For the benchmark points H with fundamental (see Fig. 5.17) and I (Fig. 5.20) and J (Fig.
5.22) with antisymmetric messengers, we observe a third effect at λLL = 0.158, 0.132, and 0.114,
respectively. Here, the pair production of up-type squark pairs (ũ3ũ4 for fundamental and
ũ4ũ5 for antisymmetric messengers) exhibits an interesting resonance-like behaviour. It is
generated by the fact that these squark mass eigenstates exchange their up and charm flavour
contents (and also their chiralities in the case of antisymmetric messengers) at the critical
values of λLL in a rather smooth way, so that both squark mass eigenstates receive significant
up-quark contributions to their production cross sections in the vicinity.

Let us recall that in the case of flavour mixing only in the left-left chiral sector, “avoided
crossings” occur among the q̃1,2, q̃3,4, and q̃5,6 mass eigenstates, whereas in the case of flavour
mixing in both the left-left and right-right chiral sectors, we rather observe the mass flips
among the q̃2,3 and q̃4,5 mass eigenstates, respectively. Note also that the difference between
the two flavour violation scenarios is invisible for the gaugino pair production in the bot-
tom right panels of Figs. 5.11 – 5.22, respectively, that are practically insensitive to flavour
violation in the squark sector.

Concerning the production of gravitinos, the cross sections corresponding to the channels
presented in Sec. 5.2 achieve sizeable orders of magnitude only in the case of a rather light
gravitino, see e.g. Ref. [67]. Contrary, if the latter is too heavy, its couplings are too small
to yield discoverable cross sections, since they are proportional to the inverse of the gravitino
mass squared. In particular, this is the case for our scenarios with gravitino cold dark matter
discussed in Sec. 2.4.5, where we have found a value of the order of mG̃ ∼ 10−1 GeV in order to
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fulfill the different cosmological constraints. Note that, in order to have a very light gravitino
and in consequence sizeable production cross sections, one could consider a GMSB scenario
with gravitino hot dark matter (mG̃ . 1 keV) and additional cold dark matter from stable
messenger particles [141–144]. In scenarios with a mixing between messenger and matter
fields, however, the stability of the lightest messenger might be lost. We therefore do not
consider the production of light gravitinos in our GMSB scenarios with additional flavour
violation in the squark sector.
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Figure 5.11: Examples of cross sections for charged squark-antisquark and squark-squark
production, neutral up- and down-type squark-antisquark and squark-squark pair production,
associated production of squarks with charginos and neutralinos, and gaugino pair production
at the LHC in our benchmark scenario E with flavour violation in the left-left chiral squark
sector (λRR = 0). The allowed range for the flavour violation parameter λLL is indicated by
vertical green dashed lines.
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Figure 5.12: Same as Fig. 5.11 for our benchmark scenario E with flavour violation in the
left-left and right-right chiral squark sectors (λRR = λLL).
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Figure 5.13: Same as Fig. 5.11 for our benchmark scenario F.
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Figure 5.14: Same as Fig. 5.12 for our benchmark scenario F.
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Figure 5.15: Same as Fig. 5.11 for our benchmark scenario G.
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Figure 5.16: Same as Fig. 5.12 for our benchmark scenario G.
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Figure 5.17: Same as Fig. 5.11 for our benchmark scenario H.
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Figure 5.18: Same as Fig. 5.12 for our benchmark scenario H.
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Figure 5.19: Same as Fig. 5.11 for our benchmark scenario I.
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Figure 5.20: Same as Fig. 5.12 for our benchmark scenario I.
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Figure 5.21: Same as Fig. 5.11 for our benchmark scenario J.
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Figure 5.22: Same as Fig. 5.12 for our benchmark scenario J.
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Chapter 6

Conclusions and Perspectives

Supersymmetry is an attractive framework postulating a symmetry between bosonic and
fermionic degrees of freedom and thus predicting superpartners for the Standard Model par-
ticles. It cures the hierarchy problem between the electroweak and the Planck scale, leads to
gauge coupling unification, and provides promising candidates for the cold dark matter in our
Universe. However, since no superpartners have been observed so far, Supersymmetry has to
be broken. The exact mechanism of Supersymmetry-breaking is thus of particular interest,
in particular since there is no consensus on how it should proceed. Different scenarios are
accepted by the community, based on different ways of mediation of Supersymmetry-breaking
to the observable sector and leading to different phenomenologies. It is therefore essential to
constrain the parameter space within the different models, both at the electroweak and the
Supersymmetry-breaking scale.

In the first part of this Thesis, we have investigated in detail the different constraints that
can be imposed on the MSSM parameter space. Apart from direct mass limits from collider
experiments, these are in particular due to electroweak precision and low-energy observables,
such as the inclusive branching ratio BR(b → sγ), the electroweak parameter ∆ρ, and the
anomalous magnetic moment of the muon aµ. Further strong constraints come from cosmol-
ogy, requiring that a supersymmetric model should include a viable candidate for cold dark
matter and lead to a relic density agreeing with recent observational data. We have analyzed
these constraints for minimal supergravity (mSUGRA) and gauge-mediated Supersymmetry
breaking (GMSB) scenarios, where we have taken into account the possibility of non-minimal
flavour violation in the squark sector, implemented through two real parameters λLL and
λRR corresponding to the left-left and right-right chiral sectors, respectively. For the case of
minimal supergravity, allowed regions of the parameter space remain for up to reasonably im-
portant values of the off-diagonal elements of the squark mass matrices. For gauge-mediated
Supersymmetry-breaking, it turns out that the minimal model without additional sources
of flavour violation suffers from the constraints, in particular from the recent measurements
of the inclusive branching ration BR(b → sγ). We have reintroduced flavour violation into
GMSB models by considering mixing between messenger and matter fields, that leads to
flavour mixing either only in the left-left or both in the left-left and right-right chiral squark
sectors. In both scenarios, this introduction of squark flavour violation opens windows in the
parameter space that are preferred by electroweak precision data with respect to the minimal
GMSB model. Based on our analysis, we have defined ten benchmark scenarios, that lie in the
experimentally favoured regions of the parameter space, that are “collider-friendly”, i.e. do
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not involve to high masses of the superpartners, and allow for non-minimal flavour violation
in a considerable range of the flavour mixing parameters λLL and λRR. For these points, a
detailed study has revealed that the phenomenology of non-minimal flavour violation Super-
symmetry is strongly influenced by “avoided crossings” of squark mass eigenvalues. These
lead to exchanges of the flavour content between neighbouring up- or down-type squarks and
show in the numerical predictions for squark production cross sections.

We have also investigated in detail the cosmological implications on the benchmark sce-
narios. For mSUGRA, the neutralino relic density has been computed using the public code
DarkSUSY, which has been adapted to include squark flavour violation entries in the squark
rotation matrices. The four benchmark points in mSUGRA all lead to dark matter relic
density in agreement with current WMAP limits. For the scenarios with GMSB, where the dark
matter candidate is the gravitino, further constraints related to leptogenesis and big bang
nucleosynthesis have to be taken into account. It has been shown that for the six bench-
mark points, these can be well fulfilled by adjusting the gravitino mass. The only exception
concerns the preferred interval of the reheating temperature of the Universe, which enters in
conflict with the constraints preserving the abundances of light elements.

One important part of this Thesis deals with radiative corrections to the neutralino pair
annihilation cross section. The latter plays an important role in the prediction of the relic
dark matter density for a given supersymmetric model. Due to the large strong coupling
constant, corrections of O(αs) can have a numerically important impact on the annihilation
cross section, and in consequence on the relic density and the cosmologically favoured regions
in the MSSM parameter space. As a first step, we have calculated the radiative corrections
of O(αs) to neutralino pair annihilation into a bottom quark-antiquark pair through the
exchange of a pseudoscalar Higgs boson. This process dominates in the so-called “A-funnel”
region of the mSUGRA parameter space at large tanβ. Including the corrections into the
public code DarkSUSY, we have demonstrated that they have an important impact on the
annihilation cross section and, in consequence, on the prediction of the neutralino relic density.
Taking into account the corrections, the preferred region in the parameter space is shifted to
smaller sparticle masses. We have also discussed the effects of the simultaneously corrected
width of the Higgs boson, which plays an important role near the Higgs pole.

The work concerning only the “A-funnel” region has then been extended by calculating
the complete QCD and SUSY-QCD corrections to neutralino pair annihilation into quark-
antiquark pairs at the one-loop level. A detailed analysis of the minimal supergravity pa-
rameter space has helped to identify the regions in the parameter space, where the different
quark-antiquark final states contribute significantly. As a first result, it has been revealed
that the first and second generation quarks only play important roles in regions that do either
not agree with the current WMAP limits or that are excluded by mass limits or the branch-
ing ratio BR(b → sγ). In consequence, we have focused on the “heavy” third generation
quarks. The complete one-loop corrections of O(αs) have been implemented in a numerical
programme which has been used in combination with the public code micrOMEGAs. This has
allowed to study their impact on the neutralino pair annihilation cross section and the result-
ing neutralino relic density. We have shown that taking into account the corrections leads to
a modification of the cosmologically favoured regions in the mSUGRA parameter space. In
particular, we have revealed the effects of the contributions that are not yet implemented in
the public version of micrOMEGAs.

We finally have studied the production of squark and gauginos at the CERN Large
Hadron Collider (LHC) within gauge-mediated Supersymmetry-breaking models including
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non-minimal flavour violation. We have pointed out the novel effects of flavour breaking
entries in the squark mass matrices, mainly due to the “avoided crossings” of squark mass
eigenvalues, on the production cross sections.

As perspectives, the obtained results on non-minimal flavour violation (NMFV) in minimal
supergravity and gauge-mediated Supersymmetry-breaking encourage to investigate further in
this sector. It will be interesting to perform a similar analysis of the electroweak precision, low-
energy, and cosmological constraints for scenarios with anomaly-mediated Supersymmetry-
breaking (AMSB). Since in those models, Supersymmetry-breaking is mediated by gravity as
in mSUGRA, flavour violation naturally appears at the electroweak scale. It would also be
interesting to study numerically the gravitino production cross sections presented in Chap. 5.
However, a scenario with a light gravitino, agreeing with the experimental constraints, and
providing a viable candidate for the cold dark matter has to be found. This might also lead
the analysis of non-minimal flavour violation beyond mSUGRA and GMSB. Of course, for
better theoretical accuracy it would be necessary to include higher order corrections to the
production cross sections and decay widths.

Concerning dark matter annihilation, scenarios with important contributions of light
quark final states to the annihilation cross section have not yet been studied. However,
it has been shown that in mSUGRA models these scenarios are already excluded by current
mass limits and measurements of the b → sγ branching ratio. We therefore should choose a
scenario beyond minimal supergravity with a neutralino LSP. Finally it would be interesting
to perform a study combining dark matter annihilation and non-minimal flavour violation.
This might be done for scenarios where coannihilations play an important role. The lightest
neutralino can then annihilate with a light stau or stop into Standard Model particles, which
may open space for flavour violation effects.
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Appendix A

Couplings and Form Factors in
Non-Minimal Flavour Violating
Supersymmetry

In this Appendix, we give detailed analytical expressions for generalized coupling strength,
charges, and form factors entering the squark and gaugino production cross section presented
in Chap. 5.

A.1 Generalized Strong and Electroweak Couplings

Considering the strong interaction first, the interaction of quarks, squarks, and gluinos, whose
coupling is normally just given by gs =

√
4παs, can in general lead to flavour violation in

the left- and right-handed chiral sectors through non-diagonal entries in the 6 × 6 squark
rotation matrices Rq̃ defined in Eqs. (1.54) and (1.55) for up-type and down-type squarks,
respectively. The generalized left- and right-handed quark-squark-gluino couplings are then
given by [65]

{
Lq̃jqk g̃, Rq̃jqkg̃

}
=
{
Rq
jk,−Rq

j(k+3)

}
, (A.1)

where, since the gluino is electrically neutral, the involved quark and squark both have to be
up- or down-type.

For the electroweak interaction, the square of the weak coupling g2
W = e2/ sin2 θW is

defined in terms of the electromagnetic fine structure constant α = e2/(4π) and the squared
sine of the electroweak mixing angle sin2 θW = 1− cos2 θW . Following the standard notation,
the W± − χ̃0

i − χ̃±
j , Z0 − χ̃+

i − χ̃−
j , and Z0 − χ̃0

i − χ̃0
j interaction vertexes are proportional to

OLij = − 1√
2
Ni4V∗

j2 + Ni2V∗
j1,

O′L
ij = −Vi1V∗

j1 −
1

2
Vi2V∗

j2 + δij sin2 θW ,

O′′L
ij = −1

2
Ni3N ∗

j3 +
1

2
Ni4N ∗

j4 (A.2)
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and

ORij = − 1√
2
N ∗
i3Uj2 + N ∗

i2Uj1,

O′R
ij = −U∗

i1Uj1 −
1

2
U∗
i2Uj2 + δij sin2 θW ,

O′′R
ij = −O′′L

ij , (A.3)

where the matrices N , V, and V relate to neutralino and chargino mixing as discussed in Sec.
1.5.2.

In non-minimal flavour violating Supersymmetry, the coupling strengths of left- and right-
handed quark and squarks to the electroweak gauge bosons are given by [65]

Lqq′Z =
(
2T 3

q − 2eq sin2 θW
)
δqq′ ,

Lq̃iq̃jZ =
(
2T 3

q̃ − 2eq̃ sin2 θW
) 3∑

k=1

Rq̃
ikR

q̃∗
jk,

Lqq′W =
√

2 cos θWVqq′ ,

Lũid̃jW
=

√
2 cos θW

3∑

k,l=1

Vukdl
Rũ
ikRd̃∗

jl , (A.4)

and

Rqq′Z =
(
2T 3

q − 2eq sin2 θW
)
δqq′ ,

Rq̃iq̃jZ =
(
2T 3

q̃ − 2eq̃ sin2 θW
) 3∑

k=1

Rq̃
i(k+3)R

q̃∗
j(k+3), (A.5)

respectively. The right-handed couplings to W -bosons are, of course, zero. Here, the weak
isospin quantum numbers are T 3

q,q̃ = ±1/2 for left-handed and T 3
q,q̃ = 0 for right-handed

quarks and squarks, their fractional electromagnetic charges are denoted by eq,q̃ and Vkl are
the elements of the CKM-matrix, defined through

V = V u
L V

d†
L =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 (A.6)

with the matrices V u and V d that rotate the up- and down-type quark interaction eigenstates
to the basis of physical mass eigenstates. To simplify the notation, we have introduced the
flavour indices d1 = d, d2 = s, d3 = b, u1 = u, u2 = c, and u3 = t.

The supersymmetric counterparts of the above vertices correspond to the quark-squark-
gaugino couplings, whose left- and right-handed contributions are given by [65]

Ld̃jdkχ̃
0

i
=

[(
eq − T 3

q

)
sin θWNi1 + T 3

q cos θWNi2

]
Rd∗
jk +

mdk
cos θW

2mW cos β
Ni3Rd∗

j(k+3),

Lũjukχ̃
0

i
=

[(
eq − T 3

q

)
sin θWNi1 + T 3

q cos θWNi2

]
Ru∗
jk +

muk
cos θW

2mW sinβ
Ni4Ru∗

j(k+3),
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Ld̃julχ̃
±

k
=

3∑

k=1

[
Ui1Rd∗

jk −
mdk√

2mW cos β
Ui2Rd∗

j(k+3)

]
Vuldk

,

Lũjdlχ̃
±

k
=

3∑

k=1

[
V∗
i1Ru

jk −
muk√

2mW sin β
V∗
i2Ru

j(k+3)

]
Vukdl

, (A.7)

and

−R∗
d̃jdkχ̃

0

i

= eq sin θWNi1Rd
j(k+3) −

mdk
cos θW

2mW cos β
Ni3Rd∗

jk,

−R∗
ũjukχ̃

0

i
= eq sin θWNi1Ru

j(k+3) +
muk

cos θW
2mW sinβ

Ni4Ru
jk,

−R∗
d̃julχ̃

±

k

=

3∑

k=1

mul√
2mW sin β

V ∗
uldk

Vi2Rd
jk,

−R∗
ũjdlχ̃

±

k

=

3∑

k=1

mdl√
2mW cos β

V ∗
ukdl

U∗
i2Ru∗

jk , (A.8)

respectively. All other couplings vanish due to electromagnetic charge conservation. Note
that the corresponding couplings for (s)leptons and (s)neutrinos can be deduced by taking
the proper limits, i.e. removing the up-type quark masses and set the CKM-matrix to unity.

A.2 Form Factors for Squark Production

In this Section, we give a summary of all form factors appearing in the cross sections of
squark-(anti)squark production, Eqs. (5.8), (5.9), (5.11), and (5.12). The form factors are
given by [65]

W =
π α2

16 sin4 θW cos4 θW s2

∣∣∣L∗
qq′W Lũid̃jW

∣∣∣
2 (
u t−m2

ũi
m2
d̃j

)
,

Y =
π α2 e2q e

2
q̃ δij δqq′

s2

(
u t−m2

q̃i m
2
q̃′j

)
,

Zm =
π α2

16 s2 sin4 θW cos4 θW

∣∣Lq̃iq̃jZ +Rq̃iq̃jZ
∣∣2 (Cmqq′Z

)2 (
u t−m2

q̃i m
2
q̃′j

)
,

×
[(

u t−m2
ũi
m2
d̃j

)
δmn +

(
mχ̃0

k
mχ̃0

l
s
)

(1 − δmn)

]
,

G =
2π α2

s δij δqq′

9 s2

(
u t−m2

q̃i m
2
q̃′j

)
,

Gmn =
2π α2

s

9 s2

∣∣∣Cn∗
d̃jq′g̃

Cmũiqg̃

∣∣∣
2
[(

u t −m2
ũi
m2
d̃j

)
δmn +

(
m2
g̃ s
)
(1 − δmn)

]
,

G̃mn =
2π α2

s

9 s2

∣∣∣Cmq̃iqg̃ Cn∗q̃jq′g̃
∣∣∣
2
[(

u t −m2
q̃i m

2
q̃j

)
δmn +

(
m2
g̃ s
)

(1 − δmn)

]
,
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Cklmn =
π α2

4 sin4 θW s2
Cn
ũjq′χ̃

±

k

Cm∗
d̃iqχ̃

±

k

Cn∗
ũjq′χ̃

±

l

Cm
d̃iqχ̃

±

l

×
[(

u t−m2
d̃i
m2
ũj

)
(1 − δmn) +mχ̃±

k
mχ̃±

l
s δmn

]
,

N kl
mn =

π α2

sin4 θW cos4 θW s2
Cn
d̃jq′χ̃0

k

Cm∗
ũiqχ̃0

k
Cn∗
d̃jq′χ̃0

l

Cmũiqχ̃0

l

[NW]k =
π α2

6 sin4 θW cos4 θW s2
ℜ
{
L∗
qq′W Lũid̃jW

Lũiqχ̃0

k
L∗
q̃jq′χ̃0

k

}(
u t−m2

ũi
m2
d̃j

)
,

[GW] =
4π αs α

18 sin2 θW cos2 θW s2
ℜ
{
L∗
ũiqg̃ Ld̃jq′g̃

L∗
qq′W Lũid̃jW

}(
u t−m2

ũi
m2
d̃j

)
,

[YZ]m =
π α2 eq eq̃ δij δqq′

2 s2 sin2 θW cos2 θW
ℜ
{
Lq̃iq̃jZ +Rq̃iq̃jZ

}
Cmqq′Z

(
u t−m2

q̃i m
2
q̃′j

)
,

[NY]km =
2π α2 eq eq̃ δij δqq′

3 sin2 θW cos2 θW s2
ℜ
{
Cmq̃iqχ̃0

k
Cm∗
q̃jq′χ̃0

k

}(
u t−m2

q̃i m
2
q̃j

)
,

[NZ]km =
π α2

6 sin4 θW cos4 θW s2
ℜ
{
Cmq̃iqχ̃0

k
Cm∗
q̃jq′χ̃0

k

(
Lq̃iq̃jZ +Rq̃iq̃jZ

)}
Cmqq′Z

(
u t−m2

q̃i m
2
q̃j

)
,

[NG]km =
8π ααs δij δqq′

9 sin2 θW cos2 θW s2
ℜ
{
Cmq̃iqχ̃0

k
Cm∗
q̃jq′χ̃0

k

}(
u t−m2

q̃i m
2
q̃j

)
,

[CY]km =
2π α2 eq eq̃ δij δqq′

3 sin2 θW s2
ℜ
{
Cm
q̃iqχ̃

±

k

Cm∗
q̃jq′χ̃

±

k

}(
u t−m2

q̃i m
2
q̃j

)
,

[CZ]km =
π α2

6 sin4 θW cos4 θW s2
ℜ
{
Cm
q̃iqχ̃

±

k

Cm∗
q̃jq′χ̃

±

k

(
Lq̃iq̃jZ +Rq̃iq̃jZ

)}
Cmqq′Z

(
u t−m2

q̃i m
2
q̃j

)
,

[CG]km =
8π ααs δij δqq′

9 sin2 θW s2
ℜ
{
Cm
q̃iqχ̃

±

k

Cm∗
q̃jq′χ̃

±

k

}(
u t −m2

q̃i m
2
q̃j

)
,

[
G̃G
]
m

= −4π α2
s δij δqq′

27 s2
ℜ
{
Cm∗
q̃iqg̃ Cmq̃jq′g̃

}(
u t −m2

q̃i m
2
q̃j

)
,

[G̃Y]m =
8π ααs eq eq̃ δij δqq′

9 s2
ℜ
{
Cm∗
q̃iqg̃ Cmq̃jq′g̃

}(
u t −m2

q̃i m
2
q̃j

)
,

[G̃Z]m =
2π ααs

9 sin2 θW cos2 θW s2
ℜ
{
Cm∗
q̃iqg̃ Cmq̃jq′g̃

(
Lq̃iq̃jZ +Rq̃iq̃jZ

)}
Cmqq′Z

(
u t−m2

q̃i m
2
q̃j

)
,

[CN ]klmn =
π α2

3 sin4 θW cos2 θW s2
ℜ
{
Cn
ũjq′χ̃

±

k

Cm∗
d̃iqχ̃

±

k

Cmũjqχ̃0

l
Cn
d̃iq′χ̃0

l

}

×
[(

u t−m2
d̃i
m2
ũj

)
(δmn − 1) +mχ̃±

k
mχ̃0

l
s δmn

]
,

[CG]kmn =
4π ααs

9 s2 sin2 θW
ℜ
{
Cn
ũjq′χ̃

±

k

Cm∗
d̃iqχ̃

±

k

Cm∗
ũjqg̃ Cn∗d̃iq′g̃

}

×
[(

u t−m2
d̃i
m2
ũj

)
(δmn − 1) +mχ̃±

k
mg̃ s δmn

]
,

[NT ]klmn =
π α2

sin4 θW cos4 θW s2
Cn∗q̃jq′χ̃0

k
Cm∗
q̃iqχ̃0

k
Cnq̃jq′χ̃0

l
Cmq̃iqχ̃0

l

×
[(

u t−m2
q̃i m

2
q̃j

)
(1 − δmn) +mχ̃0

k
mχ̃0

l
s δmn

]
,
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[NU ]klmn =
π α2

sin4 θW cos4 θW s2
Cn∗q̃iq′χ̃0

k
Cm∗
q̃jqχ̃0

k
Cnq̃iq′χ̃0

l
Cmq̃jqχ̃0

l

×
[(

u t−m2
q̃i m

2
q̃j

)
(1 − δmn) +mχ̃0

k
mχ̃0

l
s δmn

]
,

[NT U ]klmn =
2π α2

3 sin4 θW cos4 θW s2
ℜ
{
Cm∗
q̃iqχ̃0

k
Cn∗q̃jq′χ̃0

k
Cnq̃iq′χ̃0

l
Cmq̃jqχ̃0

l

}

×
[(

u t−m2
q̃i m

2
q̃j

)
(δmn − 1) +mχ̃0

k
mχ̃0

l
s δmn

]
,

[GT ]mn =
2π α2

s

9 s2

∣∣∣Cnq̃jq′g̃ C
m
q̃iqg̃

∣∣∣
2
[(

u t −m2
q̃i m

2
q̃j

)
(1 − δmn) +m2

g̃ s δmn

]
,

[GU ]mn =
2π α2

s

9 s2

∣∣∣Cnq̃iq′g̃ C
m
q̃jqg̃

∣∣∣
2
[(

u t −m2
q̃i m

2
q̃j

)
(1 − δmn) +m2

g̃ s δmn

]
,

[GT U ]mn =
4π α2

s

27 s2
ℜ
{
Cmq̃iqg̃ Cnq̃jq′g̃C

m∗
q̃iq′g̃ C

n∗
q̃jqg̃

}

×
[(

u t−m2
q̃i m

2
q̃j

)
(1 − δmn) −m2

g̃ s δmn

]
,

[NGA]kmn =
8π ααs

9 s2 sin2 θW cos2 θW
ℜ
{
Cn∗q̃jq′χ̃0

k
Cm∗
q̃iqχ̃0

k
Cm∗
q̃iq′g̃

Cn∗q̃jqg̃
}

×
[(

u t−m2
q̃i m

2
q̃j

)
(δmn − 1) +mχ̃0

k
mg̃ s δmn

]
,

[NGB]kmn =
8π ααs

9 s2 sin2 θW cos2 θW
ℜ
{
Cn∗q̃iq′χ̃0

k
Cm∗
q̃jqχ̃0

k
Cn∗q̃jq′g̃ C

m∗
q̃iqg̃

}

×
[(

u t−m2
q̃i m

2
q̃j

)
(δmn − 1) +mχ̃0

k
mg̃ s δmn

]
. (A.9)

A.3 Generalized Charges for Gaugino Production

The generalized charges for chargino pair production appearing in Eq. (5.14) are given by [65]

Qu−+
LL =

eqδijδqq′

s
−

Lqq′ZO
′R∗
ij

2 sin2 θW cos2 θW sZ
+

6∑

k=1

Ld̃kq′χ̃
±

i
L∗
d̃kqχ̃

±

j

2 sin2 θWud̃k

,

Qt−+
LL =

eqδijδqq′

s
−

Lqq′ZO
′L∗
ij

2 sin2 θW cos2 θW sZ
+

6∑

k=1

L∗
d̃kq′χ̃

±

i

Ld̃kqχ̃
±

j

2 sin2 θW td̃k

,

Qu−+
RR =

eqδijδqq′

s
−

Rqq′ZO
′L∗
ij

2 sin2 θW cos2 θW sZ
+

6∑

k=1

Rd̃kq′χ̃
±

i
R∗
d̃kqχ̃

±

j

2 sin2 θWud̃k

,

Qt−+
RR =

eqδijδqq′

s
−

Rqq′ZO
′R∗
ij

2 sin2 θW cos2 θW sZ
+

6∑

k=1

R∗
d̃kq′χ̃

±

i

Rd̃kqχ̃
±

j

2 sin2 θW td̃k

,

107



APPENDIX A. COUPLINGS AND FORM FACTORS

Qu−+
LR =

6∑

k=1

Rd̃kq χ̃
±

i
L∗
d̃kq χ̃

±

j

2 sin2 θWud̃k

,

Qt−+
LR =

6∑

k=1

R∗
d̃kq χ̃

±

i

Ld̃kq χ̃
±

j

2 sin2 θW td̃k

,

Qu−+
RL =

6∑

k=1

Ld̃kq χ̃
±

i
R∗
d̃kq χ̃

±

j

2 sin2 θWud̃k

,

Qt−+
RL =

6∑

k=1

L∗
d̃kq χ̃

±

i

Rd̃kq χ̃
±

j

2 sin2 θW td̃k

. (A.10)

For the associated production of charginos and neutralinos the charges are

Qu+0
LL =

1√
2 cos θW sin2 θW

[
OL∗ji L

∗
qq′W√

2sW
+

6∑

k=1

L∗
ũkq′χ̃

±

i

L∗
ũkqχ̃

0

j

uũk

]
,

Qt+0
LL =

1√
2 cos θW sin2 θW

[
OR∗ji L

∗
qq′W√

2sW
−

6∑

k=1

L∗
d̃kqχ̃

±

i

Ld̃kq′χ̃
0

j

td̃k

]
,

Qu+0
RR =

1√
2 cos θW sin2 θW

6∑

k=1

R∗
ũkq′χ̃

±

i

R∗
ũkqχ̃

0

j

uũk

,

Qt+0
RR =

1√
2 cos θW sin2 θW

6∑

k=1

R∗
d̃kqχ̃

±

i

Rd̃kq′χ̃
0

j

td̃k

,

Qu+0
LR =

1√
2 cos θW sin2 θW

6∑

k=1

R∗
ũkq′χ̃

±

i

L∗
ũkqχ̃

0

j

uũk

,

Qt+0
LR =

1√
2 cos θW sin2 θW

6∑

k=1

L∗
d̃kqχ̃

±

i

Rd̃kq′χ̃
0

j

td̃k

,

Qu+0
RL =

1√
2 cos θW sin2 θW

6∑

k=1

L∗
ũkq′χ̃

±

i

R∗
ũkqχ̃

0

j

uũk

,

Qt+0
RL =

1√
2 cos θW sin2 θW

6∑

k=1

R∗
d̃kqχ̃

±

i

Ld̃kq′χ̃
0

j

td̃k

. (A.11)

Finally, the charges for neutralino pair production are given by

Qu00
LL =

1

sin2 θW cos2 θW
√

1 + δij

[
Lqq′ZO

′′L
ij

2sZ
+

6∑

k=1

Lq̃kq′χ̃0

i
L∗
q̃kqχ̃

0

j

uq̃k

]
,

Qt00LL =
1

sin2 θW cos2 θW
√

1 + δij

[
Lqq′ZO

′′R
ij

2sZ
−

6∑

k=1

L∗
q̃kqχ̃

0

i

Lq̃kq′χ̃0

j

tq̃k

]
,
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Qu00
RR =

1

sin2 θW cos2 θW
√

1 + δij

[
Rqq′ZO

′′R
ij

2sZ
+

6∑

k=1

Rq̃kq′χ̃0

i
R∗
q̃kqχ̃

0

j

uq̃k

]
,

Qt00RR =
1

sin2 θW cos2 θW
√

1 + δij

[
Rqq′ZO

′′L
ij

2sZ
−

6∑

k=1

R∗
q̃kqχ̃

0

i

Rq̃kq′χ̃0

j

tq̃k

]
,

Qu00
LR =

1

sin2 θW cos2 θW
√

1 + δij

6∑

k=1

Rq̃kq′χ̃0

i
L∗
q̃kqχ̃

0

j

uq̃k
,

Qt00LR =
1

sin2 θW cos2 θW
√

1 + δij

6∑

k=1

L∗
q̃kqχ̃

0

i

Rq̃kq′χ̃0

j

tq̃k
,

Qu00
RL =

1

sin2 θW cos2 θW
√

1 + δij

6∑

k=1

Lq̃kq′χ̃0

i
R∗
q̃kqχ̃

0

j

uq̃k
,

Qt00RL =
1

sin2 θW cos2 θW
√

1 + δij

6∑

k=1

R∗
q̃kqχ̃

0

i

Lq̃kq′χ̃0

j

tq̃k
. (A.12)

109



APPENDIX A. COUPLINGS AND FORM FACTORS

110



Appendix B

Numerical Values

This Appendix consists of a compilation of the parameter values that have been used for
all numerical calculations throughout this work. We have used the following values for the
masses of the Standard Model fermions [64]:

Top quark pole mass mpole
t = 174.2 GeV

Bottom quark mass mMS
b (mb) = 4.2 GeV

Charm quark mass mMS
c (mc) = 1.25 GeV

Light quark masses mMS
s (ms) = 0.095 GeV

mMS
d (2 GeV) = 0.007 GeV

mMS
u (2 GeV) = 0.003 GeV

Tau lepton mass mτ = 1.777 GeV
Muon mass mµ = 0.106 GeV
Electron mass me = 0.511 · 10−3 GeV

Note, however, that we have neglected the quark masses except the top mass in the calcula-
tion of production cross sections at the LHC. In Chap. 4, we have used the more recent value
of mpole

t = 171.4 GeV [120] for the top pole mass.

The coupling constants of the strong, electroweak, and gravitational interactions are [64]:

Strong coupling constant αs(mZ) = 0.1176
Fine structure constant α−1(0) = 137.0359998

α−1(mZ) = 127.906
Fermi’s coupling constant GF = 1.16637 · 10−5 GeV−2

Gravitational constant GN = 6.7087 · 10−39 GeV−2

Reduced Planck mass MP =
√

1/8πGN

111



APPENDIX B. NUMERICAL VALUES

The masses and widths of the electroweak gauge bosons and the squared sine of the weak
mixing angle are given by [64]:

Z-boson mass mZ = 91.1876 GeV
Z-boson width ΓZ = 2.4952 GeV
W -boson mass mW = 80.403 GeV
W -boson width ΓW = 2.141 GeV

Weak mixing angle sin2 θW = 0.23122

The CKM-matrix is parametrized in the standard way, see Eq. (A.6), using the following
values for the mixing angles and the CP -violating phase [64]:

Mixing angles sin θ12 = 0.2243
sin θ13 = 0.0037
sin θ23 = 0.0413

CP -violating phase δ13 = 1.05
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Appendix C

Virtual One-Loop Calculations

In this Appendix, we present detailed calculations of the one-loop diagrams appearing in this
work.

C.1 Heavy Quark Self-Energy and Renormalization

The quark self-energy has QCD and SUSY-QCD contributions, that arise from the gluon-
quark and gluino-squark loops shown in Fig. C.1. For a quark having mass mq and four-
momentum pq, the self-energy can generally be split into its scalar and vector parts according
to

Σq(p
2
q) = mqΣS(p2

q) + /pq

[
ΣL(p2

q)PL + ΣR(p2
q)PR

]
. (C.1)

In the on-shell renormalization scheme, the mass and wavefunction renormalization constants
are then obtained through

δZm =
∆mq

mq
= ΣS(m2

q) +
1

2

[
ΣL(m2

q) + ΣR(m2
q)
]
, (C.2)

δZψ = −1

2

[
ΣL(m2

q) + ΣR(m2
q)
]

−m2
q

[
Σ′
L(m2

q) + Σ′
R(m2

q)
]
− 2m2

qΣ
′
S(m2

q), (C.3)

where Σ′
S,L,R(p2) denotes the derivative of ΣS,L,R(p2) with respect to p2.

In the case of the quark-gluon loop, the scalar and vector contributions of the quark

q

q

q

g

q

q

qi˜

g̃

Figure C.1: Gluon-quark and gluino-squark contributions to the quark self-energy at O(αs).
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qi˜ qj˜

g

qi˜ qj˜

qk˜

qi˜

qj˜

qk˜

g

qi˜

qj˜

q

g̃

Figure C.2: Contributions to the squark self-energy at O(αs).

self-energy are given by

Σ
(g)
S = −αsCF

4π

(
4 − 2ǫ

)
B0(p

2
q;m

2
q , 0) (C.4)

Σ
(g)
L,R = −αsCF

4π

(
2 − 2ǫ

)[
B0(p

2
q;m

2
q , 0) +B1(p

2
q ;m

2
q , 0)

]
. (C.5)

For the squark-gluino loop, we obtain explicitly (i = 1, 2)

Σ
(q̃ig̃)
S = (−1)i

αsCF
4π

mg̃

mq
B0(p

2
q ;m

2
g̃,m

2
q̃i) sin 2θq̃, (C.6)

Σ
(q̃1g̃)
R = −αsCF

4π

[
A0(m

2
g̃) −A0(m

2
q̃1) −

(
m2
g̃ −m2

q̃1 + p2
q

)
B0(p

2
q ;m

2
g̃,m

2
q̃1)

]
sin2 θq̃
p2
q

, (C.7)

while the remaining vectors parts can be derived using the relations

Σ
(q̃ig̃)
R = Σ

(q̃ig̃)
L (sin θq̃ ↔ cos θq̃), (C.8)

Σ
(q̃2g̃)
R,L = Σ

(q̃1g̃)
R,L (1 ↔ 2, sin θq̃ ↔ cos θq̃). (C.9)

C.2 Squark Self-Energy and Renormalization

The squark mass receives corrections through the one-point and two-point loop diagrams
shown in Fig. C.2. The one-point contributions originating from the squark bubble are given
by (i 6= j)

Σ
(q̃i)
q̃iq̃i

=
αsCF
4π

A0(m
2
q̃i) cos2 2θq̃, (C.10)

Σ
(q̃j)
q̃iq̃i

=
αsCF
4π

A0(m
2
q̃j ) sin2 2θq̃, (C.11)

Σ
(q̃i)
q̃iq̃j

=
αsCF
8π

A0(m
2
q̃i) sin 4θq̃, (C.12)

Σ
(q̃j)
q̃iq̃j

= −αsCF
8π

A0(m
2
q̃j ) sin 4θq̃, (C.13)

while all other contributions are zero. The gluon bubble contribution also vanishes due to the
massless gluon in the loop. The two-point contributions originating from the squark-gluon
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Z0

q

q
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q

g

Z0
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q

qi˜
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p2

q+p1

q-p2

q

Figure C.3: Feynman diagrams for the gluon (left) and gluino (centre) correction to the
Z-quark-quark vertex and generic diagram (right) indicating the notation for masses and
momenta.

and quark-gluino loops read

Σ
(gq̃i)
q̃iq̃i

= −αsCF
2π

m2
q̃i

[
2B0(p

2
q̃i ; 0,m

2
q̃i) +B1(p

2
q̃i ; 0,m

2
q̃i)

]
, (C.14)

Σ
(g̃q)
q̃iq̃i

= −αsCF
π

[
A0(m

2
q) +B1(p

2
q̃i ;m

2
g̃,m

2
q)

+
(
m2
g̃ + (−1)img̃mq sin 2θq̃

)
B0(p

2
q̃i ;m

2
g̃,m

2
q)

]
, (C.15)

Σ
(g̃q)
q̃iq̃j

=
αsCF
π

mg̃mq sin 2θq̃B0(p
2
q̃i ;m

2
g̃,m

2
q), (C.16)

respectively. In the on-shell scheme, the squark mass and wave function renormalization
constants are given by

δZmq̃i
= ℜ

{
Σ

(g)
q̃iq̃i

+ Σ
(g̃)
q̃iq̃i

+ Σ
(q̃1)
q̃iq̃i

+ Σ
(q̃2)
q̃iq̃i

}
, (C.17)

δZψq̃i
= −ℜ

{
Σ̇q̃iq̃i(m

2
q̃i)
}
. (C.18)

C.3 Vertex Corrections

In the calculation of our radiative corrections to neutralino pair annihilation into quark-
antiquark pairs, contributions at O(αs) arise from the gluon and gluino exchange between
quark and antiquark in the s-channel diagrams or between (anti)quark and squark in the
t- and u-channel diagrams. We here present analytical expressions for the corresponding
diagrams, that then have to be combined with the different diagrams at the tree-level in
order to obtain the squared matrix elements.

The quark-quark-vector coupling receives corrections of O(αs) through the gluon and
gluino exchanges shown in Fig. C.3. The leading order left- and right-handed coupling
strengths LqqZ and RqqZ are then corrected according to

LqqZ → LqqZ
(
1 + δLqqZ

)
and RqqZ → RqqZ

(
1 + δRqqZ

)
. (C.19)

For the gluon correction, the corrections δLqqZ and δRqqZ can be expressed in terms of the
tree-level coupling strengths,

δLqqZ =
αsCF
4π

(
FLL
qqZLqqZ + FLR

qqZRqqZ
)
, (C.20)

δRqqZ =
αsCF
4π

(
FRL
qqZLqqZ + FRR

qqZRqqZ
)
. (C.21)
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Figure C.4: Feynman diagrams for the gluon (left) and gluino (centre) correction to the
Higgs-quark-quark vertex and generic diagram (right) indicating the notation for masses and
momenta.

Denoting the external particle momenta pa, p1, and p2, the corresponding masses ma, m1,
and m2, and the internal loop masses M0, M1, and M2 as indicated in the generic diagram
on the right-hand side of Fig. C.3, the form factors appearing in Eqs. C.21 can be written as

FLL
qqZ = FRR

qqZ = 2
(
m1m2 −M1M2

)
γµC0 + 4

(
m1 −M1

)
pµ2C0

+2m1m2γ
µ
(
C1 + C2

)
− 4m1

(
pµ1C1 − pµ2C2

)

−4m1

(
pµ1C11 − pµ2C12

)
, (C.22)

FRL
qqZ = FLR

qqZ = γµB0 + 4
(
M2 −m2

)
pµ1C0 − 2

(
s−m2

1 −m2
2

)
γµC0

+4
(
M1 +M2 −m2

)(
pµ1C1 − pµ2C2

)
+ 4m1p

µ
2C1 − 4m2p

µ
1C2

−2
(
s−m2

1 −m2
2

)
γµ
(
C1 + C2

)
+ 2m2

1γ
µC1 + 2m2

2γ
µC2

−4γµC00 − 4m2

(
pµ1C12 − pµ2C22

)
. (C.23)

where we have already set the M0 = 0 for the gluon mass and the coefficient integrals are
given by

Cα = Cα
(
p2
1, s, p

2
2; 0,M

2
1 ,M

2
2

)
and B0 = B0

(
s;m2

1,m
2
2

)
. (C.24)

with s = (p1 + p2)
2.

Adopting the same notation for the gluon correction to the quark-quark-Higgs coupling
shown in Fig. C.4, the tree-level left- and right-handed coupling strengths receive corrections

Lqqφ → Lqqφ
(
1 + δLqqφ

)
and Rqqφ → Rqqφ

(
1 + δRqqφ

)
. (C.25)

for φ = h0,H0, A0. The corrections are again expressed in terms of the tree-level couplings,

δLqqZ =
αsCF
4π

(
FLL
qqφLqqφ + FLR

qqφRqqφ
)
, (C.26)

δRqqZ =
αsCF
4π

(
FRL
qqφLqqφ + FRR

qqφRqqφ
)

(C.27)

and the corresponding form factors, defined as in Eqs. (C.20) and (C.21), are here given by

FLL
qqφ = FRR

qqφ = B0 − 2
(
s−m2

1 −m2
2

)(
C0 + C1

)

−2m1M1C1 − 2m2M2C2 + 4m2
2C2, (C.28)

FRL
qqφ = FLR

qqφ =
(
4M1M2 − 2m2M1 − 2m1M2

)
C0 − 2

(
s−m2

1 −m2
2

)
C2

−2m1M2C1 − 2m2M1C2 + 4m2
1C1, (C.29)
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Figure C.5: Feynman diagrams for gluon (left) and gluino (centre) correction to the
neutralino-squark-quark vertex and generic diagram (right) indicating the notation for masses
and momenta.

with the same coefficient integrals as in Eq. (C.24).
The gluon loop diagram shown in Fig. C.5, implies the corrections

Lχ̃i q̃jq → Lχ̃iq̃jq

(
1 + δLχ̃i q̃jq

)
and Rχ̃iq̃jq → Rχ̃iq̃jq

(
1 + δRχ̃i q̃jq

)
(C.30)

to the neutralino-squark-squark vertex, leading to the one-loop contributions

δLχ̃i q̃jq =
αsCF
4π

[
FLL
χ̃iq̃jqLχ̃iq̃jq + FLR

χ̃iq̃jqRχ̃iq̃jq

]
, (C.31)

δRχ̃i q̃jq =
αsCF
4π

[
FRL
χ̃iq̃jqLχ̃iq̃jq + FRR

χ̃iq̃jqRχ̃iq̃jq

]
, (C.32)

to the tree-level left- and right-handed coupling strenghts Lχ̃iq̃jq and Rχ̃iq̃jq. Here, the form
factors can be written as

FLL
χ̃iq̃jq = FRR

χ̃i q̃jq = B0 +
(
3m2

1 +m2
2 −m2

a

)(
C0 + C2

)
+ 2
(
m2

1 +m2
2

)
C1, (C.33)

FRL
χ̃iq̃jq = FLR

χ̃i q̃jq = 2m1maC2. (C.34)

The appearing integrals are

Cα = Cα
(
p2
a, t, p

2
1;M

2
0 ,M

2
1 ,M

2
2

)
and B0 = B0(t;M

2
1 ,M

2
2 ). (C.35)

In contrast to the gluonic one-loop corrections discussed above, the corrections to the
quark-quark-vector and quark-quark-Higgs couplings arising from gluino loops shown in the
centre panels of Figs. C.3 and C.5 cannot be directly factorized. The tree-level quark-quark
vector coupling is rather replaced by the expression

LqqZPL +RqqZPR → Cq̃iq̃jZ
αsCF
4π

[
Lq̃iqg̃Lq̃jqg̃F̃LL

qqZ + Lq̃iqg̃Rq̃jqg̃F̃LR
qqZ

+Rq̃iqg̃Lq̃jqg̃F̃RL
qqZ +Rq̃iqg̃Rq̃jqg̃F̃RR

qqZ

]
, (C.36)

where we note Cq̃iq̃jZ = Lq̃iq̃jZ = Rq̃iq̃jZ the squark-squark-vector coupling and Lq̃iqg̃, Rq̃jqg̃
the left- and right-handed coupling strength of the squark-quark-gluino interaction. The form
factors appearing in Eq. (C.36) are given by

F̃LL
qqZ = F̃RR

qqZ = M0(p1 − p2)
µC0 + 2M0

(
pµ1C1 − pµ2C2

)
+ 2γµC00, (C.37)

F̃LR
qqZ = F̃RL

qqZ =
(
m1C1 +m2C2

)
(p1 − p2)

µ + 2m1

(
pµ1C11 − pµ2C12

)

+2m2

(
pµ1C12 − pµ2C22

)
, (C.38)
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with the integrals

Cα = Cα
(
p2
1, s, p

2
2;M

2
0 ,M

2
1 ,M

2
2

)
. (C.39)

In the same way, the tree-level quark-quark-Higgs coupling is replaced according to

LqqφPL +RqqφPR → Cq̃iq̃jφ
αsCF
4π

[
Lq̃iqg̃Lq̃jqg̃F̃LL

qqφ + Lq̃iqg̃Rq̃jqg̃F̃LR
qqφ

+Rq̃iqg̃Lq̃jqg̃F̃RL
qqφ +Rq̃iqg̃Rq̃jqg̃F̃RR

qqφ

]
, (C.40)

where Cq̃iq̃jφ = Lq̃iq̃jφ = Rq̃iq̃jφ denotes the squark-squark-Higgs coupling. Due to the fact
that there are no vector couplings, the form factors

F̃LL
qqφ = F̃RR

qqφ = M0C0, (C.41)

F̃LR
qqφ = F̃RL

qqφ = m1C1 +m2C2, (C.42)

are rather simple and compact with the same integrals C0, C1, and C2 as in Eq. (C.39).

Finally, the gluonic correction to the neutralino-squark-quark vertex, shown in the centre
panel of Fig. C.5, leads to a correction

δLχ̃i q̃jq =
αsCF
4π

(
FLL
χ̃iq̃jqLχ̃iq̃jq + FLR

χ̃iq̃jqRχ̃iq̃jq

)
, (C.43)

δRχ̃i q̃jq =
αsCF
4π

(
FRL
χ̃iq̃jqLχ̃iq̃jq + FRR

χ̃iq̃jqRχ̃iq̃jq

)
, (C.44)

of the tree-level coupling strengths Lχ̃iq̃jq and Rχ̃i q̃jq. The form factors can be written as

F̃LL
χ̃iq̃jq = F̃RR

χ̃i q̃jq = −M0V1V2

(
/p1

− /pa
)
− V1V2

(
/p1

− /pa
)(
/p1
C1 + /p2

C2

)
, (C.45)

F̃LR
χ̃iq̃jq = F̃RL

χ̃i q̃jq = M0M2V1V2 −M2V1V2

(
/p1
C1 + /p2

C2

)

−V1V2

(
4C00 + p2

1C11 + p2
2C22 + 2p1 · p2C12

)
, (C.46)

where V1 and V2 correspond to the expressions of the squark-quark-gluino vertices indicated
in Fig. C.5.

C.4 Box Contributions

The neutralino pair annihilation into quark-antiquark pairs receives corrections through the
box diagrams shown in Fig. C.6. In the following we present analytical results for the corre-
sponding amplitudes Mg and Mg̃. The amplitudes corresponding to the crossed final states
can be obtained by the replacement t ↔ u. In order to express the box amplitudes in a
rather generic way, we label the momenta and masses of the external particles by pi and
mi, while the internal particle masses are named Mi, for i = 1, . . . , 4, respectively, as indi-
cated in the generic diagrams of Fig. C.6. Regardless of their respective tensor structure,
we denote the four vertices generically Vk for k = 1, . . . , 4. Furthermore we introduce the
notation V ′

k = Vk(PR ↔ PL) originating from the exchange of the two chirality projectors in
the original vertex expression.

118



APPENDIX C. VIRTUAL ONE-LOOP CALCULATIONS

χ1
0˜

χ1
0˜

q

q

qi˜

q

q

g

χ1
0˜

χ1
0˜

q

q

q

qi˜

qj˜

g̃

pa

pb

p1

p2

q+p1

q-p2

q

Figure C.6: Feynman diagram for the gluon (left) and gluino (centre) box contributions at
O(αs) to neutralino pair annihilation into quark-antiquark pairs and generic diagram (right)
indicating masses and momenta.

Expressed in terms of four-point integrals, the amplitude of the gluino (“s-channel”) box
diagram is then given by

iM = v̄(p2)F1
0u(p1)ū(k1)F2

0 v(k2)D0 +
3∑

i=1

2∑

j=1

v̄(p2)F2j−1
i u(p1)ū(k1)F2j

i v(k2)Di

+v̄(p2)F1
00u(p1)ū(k1)F2

00v(k2)D00 +

3∑

i,j=1

v̄(p2)F1
iju(p1)ū(k1)F2

ijv(k2)Dij (C.47)

with the form factors

F1
0 = m4V2V1 +M2V ′

2V1 F2
0 = m2V3V4 +M3V ′

3V4

F1
1 = V2/k1V1 F2

1 = M3V ′
3V4 +m2V3V4

F3
1 = M2V ′

2V1 +m4V2V1 F4
1 = M3V ′

3V4

F1
2 = M2V ′

2V1 −M1V2V ′
1 F2

2 = M3V ′
3V4 +m2V3V4

F3
2 = M2V ′

2V1 +m4V2V1 F4
2 = M3V ′

3V4 −M4V3V ′
4

F1
3 = M2V ′

2V1 F2
3 = M3V ′

3V4 +m2V3V4

F3
3 = M2V ′

2V1 +m4V2V1 F4
3 = −V3/p2

V4

F1
00 = −V2γ

µV1 F2
00 = V3γµV4

F1
11 = −V2/k1V1 F2

11 = M3V ′
3V4

F1
12 = −V2/k1V1 F2

12 = M3V ′
3V4 −M4V3V ′

4

F1
13 = −V2/k1V1 F2

13 = V3/p2
V4

F1
21 = M2V ′

2V1 −M1V2V ′
1 F2

21 = M3V ′
3V4

F1
22 = M2V ′

2V1 −M1V2V ′
1 F2

22 = M3V ′
3V4 −M4V3V ′

4

F1
23 = M2V ′

2V1 −M1V2V ′
1 F2

23 = V3/p2
V4

F1
31 = M2V ′

2V1 F2
31 = M3V ′

3V4

F1
32 = M2V ′

2V1 F2
32 = M3V ′

3V4 −M4V3V4

F1
33 = M2V ′

2V1 F2
33 = V3/p2

V4

(C.48)

and the integrals (i, j = 0, . . . , 4)

D{i,ij} = D{i,ij}(−p3,−(p1 + p2),−p2;m1,m2,m3,m4). (C.49)
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Accordingly, the amplitude corresponding to the gluon (“t-channel”) box diagram shown
in the centre panel of Fig. C.6 reads

iM = −ū(k1)F̃1
0u(p2)v̄(p1)F̃2

0 v(k2)D0 −
3∑

i=1

2∑

j=1

ū(k1)F̃2j−1
i u(p2)v̄(p1)F̃2j

i v(k2)Di

−ū(k1)F̃1
00u(k1)v̄(p1)F̃2

00v(k2)D00 −
3∑

i,j=1

ū(k1)F̃1
iju(k1)v̄(p1)F̃2

ijv(k2)Dij (C.50)

with the form factors

F̃1
0 = m1γ

µV3V2 F̃2
0 = m3V1γµV4 +M1V ′

1γµV4 − /p2
V ′

1γµV4

F̃1
1 = M3γ

µV ′
3V2 − 2kµ1V ′

3V2 F̃2
1 = m3V1γµV4 +M1V ′

1γµV4 − /p2
V ′

1γµV4

F̃3
1 = −m1γ

µV3V2 F̃4
1 = /k1V ′

1γµV4

F̃1
2 = −γµ/p1

V ′
3V2 −M2γ

µV3V ′
2 F̃2

2 = m3V1γµV4 +M1V ′
1γµV4 − /p2

V ′
1γµV4

F̃3
2 = m1γ

µV3V2 F̃4
2 = M1V ′

1γµV4 − /p2
V ′

1γµV4

F̃1
3 = −M2γ

µV3V ′
2 F̃2

3 = m3V1γµV4 +M1V ′
1γµV4 − /p2

V ′
1γµV4

F̃3
3 = m1γ

µV3V2 F̃4
3 = /p2

V ′
1γµV4

F̃1
00 = γµV3γ

νV2 F̃2
00 = V1γνγµV4

F̃1
11 = 2kµ1V ′

3V2 −M3γ
µV ′

3V2 F̃2
11 = /k1V ′

1γµV4

F̃1
12 = 2kµ1V ′

3V2 −M3γ
µV ′

3V2 F̃2
12 = −M1V ′

1γµV4 + /p2
V ′

1γµV4

F̃1
13 = 2kµ1V ′

3V2 −M3γ
µV ′

3V2 F̃2
13 = /p2

V ′
1γµV4

F̃1
21 = γµ/p1

V ′
3V2 +M2γ

µV3V ′
2 F̃2

21 = /k1V ′
1γµV4

F̃1
22 = γµ/p1

V ′
3V2 +M2γ

µV3V ′
2 F̃2

22 = −M1V ′
1γµV4 + /p2

V ′
1γµV4

F̃1
23 = γµ/p1

V ′
3V2 +M2γ

µV3V ′
2 F̃2

23 = /p2
V ′

1γµV4

F̃1
31 = M2γ

µV3V ′
2 F̃2

31 = /k1V ′
1γµV4

F̃1
32 = M2γ

µV3V ′
2 F̃2

32 = −M1V ′
1γµV4 + /p2

V ′
1γµV4

F̃1
33 = M2γ

µV3V ′
2 F̃2

33 = /p2
V ′

1γµV4

(C.51)
and the four-point integrals (i, j = 0, . . . , 4)

D{i,ij} = D{i,ij}(−p3,−(p1 + p2),−p2;m1, 0,m3,m4). (C.52)

In the calculation of the matrix elements these amplitudes are multiplied with the different
tree-level amplitudes, and we have to sum over the different squark mass eigenstates. The
scalar integrals Di and Dij can be further reduced into combinations of the functions C0 and
D0. The reduction formulae can be found e.g. in Ref. [126]. However, the resulting expressions
are too long to be represented here.

120



Appendix D

Real Emission Corrections and
Dipole Subtraction Formalism

In addition to the virtual corrections discussed in App. C, the neutralino pair annihilation into
quark-antiquark pairs discussed in Chaps. 3 and 4 receives corrections through the emission
of a real gluon by one of the involved quarks or squarks. The corresponding matrix elements
comprise infrared (IR) singularities for soft or collinear gluons. In the total cross section, these
will cancel the infrared singularities remaining in the virtual part of the cross section. In our
work, the two parts of the cross section have been connected using the dipole subtraction
formalism [106,128]. In this Appendix, we present the involved real emission matrix elements
and discuss the implementation of the dipole formalism.

D.1 Diagrams and Matrix Elements

Corrections of O(αs) arise through the emission of a real gluon from one of the final state
quarks in the s-, t-, or u-channels and from the exchanged squark in the t- and u-channels.
The corresponding Feynman diagrams are shown in Figs. D.1 and D.2, except for the u-
channels which can easily be obtained through crossing. For a given quark-antiquark final
state and for the generic notation for Higgs bosons and squarks, the shown diagrams lead to a
total of 45 different classes of squared matrix elements. Because of their number and length,
they are here, however, not given in detail, except for typical examples for the different classes
of singularities.

For topological reasons, each matrix element comprises the same infrared poles as its
virtual counterpart. For example, the matrix element constructed from the first diagram of

χ1
0˜

χ1
0˜

q

g

q
Z0

q

χ1
0˜

χ1
0˜

q

g

q

Z0

q

χ1
0˜

χ1
0˜

q

g

q

φ0

q

χ1
0˜

χ1
0˜

q

g

q

φ0

q

Figure D.1: Feynman diagrams for real gluon emission from a final state quark in the
s-channel Z0- or Higgs-boson (φ0 = h0,H0, A0) exchange.
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χ1
0˜

χ1
0˜

q

g

q

qi˜
q

χ1
0˜

χ1
0˜

q

g

q

qi˜

q

χ1
0˜

χ1
0˜

q

g

q

qi˜

qi˜

Figure D.2: Feynman diagrams for real gluon emission from a final state quark or the
exchanged squark in the t-channel squark (q̃i with i = 1, 2) exchange.

Fig. D.1 and its conjugated diagram will cancel the infrared singularity of the corresponding
self-energy contribution, while the matrix element combining the first and second diagrams of
Fig. D.2 involves the same topology as the gluon box multiplied with a tree-level diagram. In
contrast to the virtual part, where the singularities show up as poles in ǫ, the real correction
matrix elements are expressed in terms of the scaling variables

xi =
2pi · ptot

s
=

2Ei√
s
, (D.1)

where the index i = 1, 2, 3 labels the three final state particles, i = 3 being the emitted
gluon. Ei is the energy of the corresponding particle and

√
s the total energy in the centre-

of-momentum frame. As a consequence of energy-momentum conservation, only two scaling
variables are independent, so that all matrix elements can be expressed in terms of x1 and
x2. In terms of the scaling variables and without the angular integration, the three-particle
phase space can be expressed as [106]

dPS(3) =
s

16π2
dx1dx2Θ(x+ − x2)Θ(x2 − x−)Θ(1 − x1)Θ(x1 − 2µq), (D.2)

where the integration limits are given by

x± =

(
2 − x1

)(
1 − x1 + 2µ2

q

)
±
(
1 − x1

)√
x2

1 − 4µ2
q

2
(
1 − x1 + µ2

q

) (D.3)

and µq = mq
√
s. For a more detailed discussion of the three-particle kinematics and phase

space see e.g. Ref. [145].
Soft and collinear singularities arise if x1 → 1 and/or x2 → 1. As an example, let us

discuss the simplest squared amplitude, involving the Higgs-boson exchange corresponding to
the third diagram of Fig. D.1 and its conjugated counterpart. The squared matrix element
can be written as

∣∣M(1)
φ0

∣∣2 = − 8παsCF∣∣s−m2
φ0 + imφ0Γφ0

∣∣2
Tχ̃0

1
φ0χ̃0

1

Tqφ0q̄

s2
(
1 − x1

)2 , (D.4)

where the traces of the initial and final state fermionic lines are given by

Tχ̃0

1
φ0χ̃0

1

=
(
s− 2mχ̃0

1

)[∣∣Lχ̃0

1
χ̃0

1
φ0

∣∣2 +
∣∣Rχ̃0

1
χ̃0

1
φ0

∣∣2
]
− 4m2

χ̃0

1

Lχ̃0

1
χ̃0

1
φ0Rχ̃0

1
χ̃0

1
φ0 ,

Tqφ0q̄ =
(
4m4

q − 2m2
qsx2 + s2(1 − x1)(1 − x2)

)[∣∣Lqq̄φ0

∣∣2 +
∣∣Rqq̄φ0

∣∣2
]

+4m2
q

(
2m2

q + s(1 − x2)
)
Lqq̄φ0Rqq̄φ0 , (D.5)
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respectively, and mφ0 and Γφ0 denote mass and width of the exchanged Higgs-boson. In Eqs.
(D.5), we note Labc and Rabc the left- and right-handed coupling strengths contained in the
Feynman rules of the corresponding vertices. The squared amplitude of the last diagram of
Fig. D.1 is obtained by replacing x1 ↔ x2, while the interference of the two diagrams involves
more complex combinations of the scaling variables. It is easy to check that the expression in
Eq. (D.4) is singular for x1 → 1 and for all values of mq. Note that in the case of vector boson
exchange in the s-channel, the amplitudes become more complicated due to the exchange of
spin information between the initial and final state particles.

Since infrared singularities only arise from gluon radiation off a final state quark, the
matrix elements involving emission only from squark propagators are infrared-finite. As an
example for this class of matrix elements, we show the squared amplitude obtained from the
diagram on the right-hand side of Fig. D.2 and its conjugated one. Labeling the incoming
momenta pa, pb, and the final state quark momenta p1, p2, the squared amplitude is given by

∣∣M(3)
q̃k

∣∣2 = −
8παsCF

(
2m2

χ̃0

1

+ 2m2
q − sx1 + 2pa · p1 − 2pa · p2

)
T (1)

χ̃0

1
q̃kq

T (2)

χ̃0

1
q̃kq∣∣m2

χ̃ +m2
q −m2

q̃k
− sx1 + 2pa · p1

∣∣2∣∣m2
χ̃ +m2

q −m2
q̃k

2pa · p1

∣∣2 . (D.6)

Here, the involved traces are given by

T (1)

χ̃0

1
q̃kq

= 2
(
L2
qq̃kχ̃

0

1

+R2
qq̃kχ̃

0

1

)
pb · p1 + 4mχ̃0

1

mqL
2
qq̃kχ̃

0

1

R2
qq̃kχ̃

0

1

,

T (2)

χ̃0

1
q̃kq

= T (1)
χ̃q̃q(1 ↔ 2, a↔ b), (D.7)

where we use the same generic notation as in Eqs. (D.5) for the masses and coupling strengths.
The scalar products appearing in the expressions of Eqs. (D.6) and (D.7) are given in terms
of the scaling variables by

pa · p1 =
s

4

(
x1 −

√
1 − 4µ2

χ̃0

1

√
x2

1 − 4µ2
q

)(
cos θ cos ξ − sin θ sin ξ sin η

)
,

pa · p2 =
s

4

(
x2 − cos θ

√
1 − 4µ2

χ̃0

1

√
x2

2 − 4µ2
q

)
,

pb · p1 =
s

2
x1 − pa · p1,

pb · p2 =
s

2
x2 − pa · p2, (D.8)

where we use again the reduced particle masses µi = mi/
√
s for i = q, χ̃0

1. For a detailed
discussion of the three-particle phase space involving the angles θ, η, and ξ see e.g. Refs.
[106,145]. Again, it is straightforward to check that the expression of the squared amplitude
is free of singularities for x1,2 → 1.

However, the combination of emission from the squark propagator with emission from
a massless final state quark gives rise to a collinear singularity. This can be seen in the
amplitude obtained from the interference of the two diagrams separately discussed above. It
can be written as

M(1)
φ0 M(3)∗

q̃k
=

2παsCF Tint

s(1 − x1)
(
s−m2

φ0 + imφ0Γφ0

)(
X − sx1 + 2pa · p1

)(
X − 2pa · p2

) , (D.9)
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where we use the abbreviation X = m2
χ̃0

1

+ m2
q − m2

q̃k
. For massless final state quarks, the

only fermionic line in this interference term leads to the trace

Tint = Lχ̃0

1
χ̃0

1
φ0Rχ̃0

1
χ̃0

1
φ0

(
Lqq̄φ0Lqq̃kχ̃0

1

L∗
qq̃kχ̃

0

1

+Rqq̄φ0Rqq̃kχ̃0

1

R∗
qq̃kχ̃

0

1

)

×
[
s2(1 − x1)(1 − x1 − x2) − 4sm2

χ̃0

1

(
(1 − x1)

2 − (1 − 2x1)x2

)

+2(pa · p1)
(
4m2

χ̃0

1

+ s(1 − x1)
)

+ 2x1(pa · p2)
(
s(3 + x1) − 4m2

χ̃0

1

)

−16(pa · p1)(pa · p2)
]

(D.10)

and the scalar products can again be expressed using Eqs. (D.8). Note that the expression in
Eq. (D.9) is not singular if mq > 0. Due to its length, the fermionic trace corresponding to
the massive case can, however, not be shown here.

D.2 Dipole Contributions to Real Emission Cross Section

A numerically efficient way of computing the total one-loop cross section out of the separate
parts containing virtual and real emission correction is the dipole subtraction method [106,
128]. This method is based on the construction of an unphysical auxiliary cross section, σaux,
that contains the same infrared singularities as do separately the real and virtual corrections.
It is implemented according to

σNLO =

∫

3

[(
dσR

)
ǫ=0

−
(
dσaux

)
ǫ=0

]
+

∫

2

[
dσV +

∫

1
dσaux

]

ǫ=0

, (D.11)

so that the two parts of the cross section become separately convergent and can be integrated
numerically. The schematic notation in Eq. (D.11) is understood to involve the integration
over the three- and two-particle phase space of the real and virtual contributions, respectively,
each including the auxiliary cross section. In the latter, the real gluon has to be integrated
out for the virtual contribution.

The dipole terms appearing in the construction of the auxiliary cross section σaux depend
only on the final state of the process in question. We therefore can use the expressions given
in App. C of Ref. [106] for the case of gluon emission and heavy partons in the final state.
The matrix element corresponding to the auxiliary cross section can then be written as

∣∣Maux

∣∣2 =
∣∣MLO

∣∣2
(
D31,2 + D32,1

)
, (D.12)

where |MLO|2 denotes the squared amplitude at leading order and the two dipole con-
tributions are in the case of identical final state quarks with mass mq = µq

√
s given by

(i, j = 1, 2) [106]

D3i,j =
8παsCF

s
(
1 − xj

)
[

2 − 4µ2
q

2 − xi − xj
−
√

1 − 4µ2
q

x2
j − 4µ2

q

xj − 2µ2
q

1 − 2µ2
q

(
2 +

xi − 1

xj − 2µ2
q

+
2µ2

q

1 − xj

)]
. (D.13)

When integrating over the three-particle phase space, the subtraction of the expression in
Eq. (D.13) renders all of the divergent matrix elements finite, provided that the corresponding
leading order matrix element is inserted in the expressions of the dipole contributions. Note
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that, in order to match with the real emission contribution, the matrix element at leading
order has to be expressed in terms of the “reduced” kinematic for 2 → 3 processes which is
discussed in App. D.3. The expressions given in Eqs. (D.12) and (D.13) also hold in the case
of massless quarks where µq = 0.

D.3 Kinematics for Dipole Contributions

In this Appendix, we discuss the “reduced” 2 → 3 kinematics, needed to express the squared
leading order 2 → 2 matrix element in terms of the scaling variables of the three-particle
phase space, x1 and x2, see Eq. (D.1). In the usual parametrization, the final state momenta
are labeled p1, p2, p3, the corresponding masses are m1, m2, m3 with p2

i = m2
i (i = 1, 2, 3),

and the total momentum is ptot = p1 +p2+p3. If we define the parton k to be the “spectator”
parton, i.e. the parton that is not involved in the emission of the gluon, the so-called “parent”
parton ĩj contains the emitting parton and the emitted gluon of the subprocess ĩj → i + j.
The auxiliary momenta p̃ij of the emitter and p̃k of the spectator can be defined in terms of
the original momenta pi (i = 1, 2, 3) as

p̃µk =
κ1/2(p2

tot,m
2
ij ,m

2
k)

κ1/2(p2
tot, (pi + pj)2, p

2
k)

[
pµk −

pk · ptot

p2
tot

pµtot

]
+
p2
tot +m2

k −m2
ij

2p2
tot

pµtot,

p̃µij = pµtot − p̃µk . (D.14)

Here, mij is the on-shell mass of the emitter ĩj and κ denotes the Källén function,

κ(x, y, z) = (x− y − z)2 − 4yz. (D.15)

Note that the auxiliary momenta obey the mass-shell conditions p̃2
ij = m2

ij and p̃2
k = m2

k,
and the total momentum conservation ptot = p̃ij + p̃k.

The three-particle phase space dPS(3)(pi, pj, pk) can then be exactly factorized in terms of

the two-particle phase space dPS(2)(p̃ij, p̃k) and a single-particle phase space factor dpi(p̃ij , p̃k)
according to [106,128]

dPS(3)(pi, pj , pk) = dPS(2)(p̃ij , p̃k) dpi(p̃ij, p̃k) Θ(1 − µ1 − µ2 − µ3). (D.16)

The rather complex expressions of the complete analytical result and corresponding integra-
tion limits for the case of massive quarks can be found in Ref. [106]. Note that both factors
on the right-hand side of Eq. (D.16) can be expressed in terms of the scaling variables x1 and
x2.

D.4 Dipole Contributions to Virtual Cross Section

In order to counterbalance the subtraction of the unphysical auxiliary cross section from the
real emission cross section and to cancel the remaining infrared singularities in the virtual
part, the so-called insertion operator has to be taken into account in the virtual part of
the cross section. The insertion operator I is obtained from the dipole terms discussed in
App. D.2 through integration over the single-particle phase space dpi(p̃ij p̃k), as schematically
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indicated in the last term of Eq. (D.11). In our case of real gluon emission from final state
quarks, and in D = 4 − 2ǫ dimensions, the insertion operator can be written as [106]

I =
∣∣MLO

∣∣2 αsCF
π

(4π)ǫ

Γ(1 − ǫ)

[(
µ2

s12

)ǫ(
Vq −

π2

3

)
+ Γq +

3

2
ln
µ2

s12
+ 5 − π2

6

]
, (D.17)

where µ denotes the renormalization scale and s12 = 2p1 · p2 = s−2m2
q. The term Vq contains

a singular and a non-singular part [106],

V(S)
q =

1 + β2
q

2βq

[
1

ǫ
ln

1 − βq
1 + βq

− 1

2
ln2 1 − βq

1 + βq
+ ln

1 − βq
1 + βq

ln
2

1 + β2
q

− π2

6

]
,

V(NS)
q =

1 + β2
q

2βq

[
2 ln

1 − βq
1 + βq

ln
2(1 + β2

q )

(1 + βq)2
+ 2 Li2

(1 − βq)
2

(1 + βq)2
− 2Li2

2βq
1 + βq

− π2

6

]

+
3

2
ln

1 + β2
q

2
+ ln (1 − µq) − 2 ln (1 − 2µq) −

1 − β2
q

1 + β2
q

ln
µq

1 − µq

− µq
1 − µq

+
8µ2

q − 4µq

1 + β2
q

+
π2

2
, (D.18)

involving the quark velocity βq =
√

1 − 4µ2
q . Note that the non-singular contribution vanishes

in the case of massless quarks, where βq = 1. The function Γq appearing in Eq. (D.17) is here
given by [106]

Γq =
1

ǫ
+

1

2
ln
m2
q

µ2
− 2. (D.19)

The expression in Eq. (D.17) contains the same infrared divergence as do the virtual
contributions presented in App. C. Combining the virtual and the dipole contributions as
indicated in Eq. (D.11) results therefore in a finite expression for the virtual part of the
annihilation cross section.
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Abstract

In absence of direct experimental evidence, it is essential to constrain the parameter space of
the Minimal Supersymmetric Standard Model (MSSM) both at the Supersymmetry breaking
and the electroweak scale. After a brief introduction to Supersymmetry (SUSY), we present
an extensive analysis of electroweak, low energy, and cosmological constraints in minimal
supergravity (mSUGRA) and gauge-mediated SUSY-breaking (GMSB) scenarios. We include
the possibility of non-minimal flavour violation (NMFV) in the squark sector and define
“collider-friendly” benchmark points based on detailed scans of the parameter space. We
then consider neutralino pair annihilation into quark-antiquark pairs that dominates wide
ranges of the mSUGRA parameter space. We present the corresponding full one-loop QCD
and SUSY-QCD calculation and show numerically that the loop diagrams have an important
impact on the annihilation cross section and, in consequence, in the prediction of the dark
matter relic density, resulting in a modification of the preferred regions of the parameter space.
We finally present analytical expressions and numerical predictions for squark, gaugino, and
gravitino production cross sections at the LHC in GMSB with NMFV. We also discuss the
phenomenology of flavour mixing and cosmological implications on the gravitino mass within
this context.

Résumé

En l’absence d’évidence expérimentale directe de superpartenaires, il est essentiel de con-
traindre l’espace des paramètres du Modèle Standard Supersymétrique Minimal (MSSM) aux
échelles de la brisure de la Supersymétrie et électrofaible. Après une brève introduction à la
Supersymétrie (SUSY), nous présentons une analyse extensive des contraintes électrofaible,
de basse énergie et cosmologiques dans des modèles de supergravité minimale (mSUGRA) et
de brisure de Supersymétrie par médiation de jauge (GMSB). Nous incluons la possibilité de
violation non-minimale de la saveur (NMFV) et définissons des scénarios “benchmark” basés
sur des “scans” détaillés de l’espace des paramètres. Ensuite, nous considérons l’annihilation
d’une paire de neutralinos en une paire de quark-antiquark qui domine dans de larges régions
de l’espace des paramètres dans les modèles mSUGRA. Nous présentons le calcul complet
incluant des corrections à une boucle en QCD et SUSY-QCD de ces processus et montrons
numériquement que les diagrammes à une boucle ont un impact non négligeable sur la section
efficace d’annihilation. En conséquence, la prédiction de densité relique de matière noire reçoit
des corrections importantes, ce qui résulte en une modification de la région cosmologiquement
favorisée dans l’espace des paramètres. Finalement, nous présentons des expressions analy-
tiques et des prédictions numériques pour des sections efficaces de production de squarks,
jauginos et gravitinos au LHC dans les modèles GMSB avec NMFV. Nous discutons également
la phénoménologie du mélange de saveur et les implications cosmologiques sur la masse du
gravitino dans ce contexte.

The electronic version of this document including fully coloured figures is available at
http://tel.archives-ouvertes.fr or http://www.arxiv.org.
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