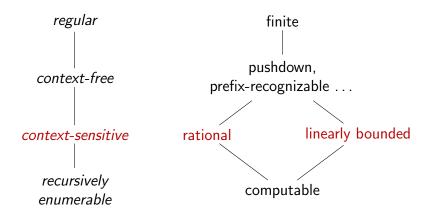
Finitely Presented Infinite Graphs

Antoine Meyer <ameyer@liafa.jussieu.fr>

IRISA – Université de Rennes 1 LIAFA – Université Denis Diderot, Paris

A hierarchy of infinite automata regular finite pushdown, context-free prefix-recognizable ... linearly bounded context-sensitive rational recursively computable enumerable

A hierarchy of infinite automata



In this talk: infinite automata for context-sensitive languages

Graphs and languages

Definition Graph: set of triples $(u, a, v) \in \Gamma^* \times \Sigma \times \Gamma^*$ (edges) (written $u \xrightarrow{a} v$)

Remarks:

- Vertices are identified by words
- No isolated vertices
- Isomorphic graphs considered equal

Definition (Language of a graph)

L(G, I, F) = set of all path labels of G between I and F (with I, F rational sets of vertices)

Rational graphs

Definition

A Σ -graph G defined by a family of transducers $(T_a)_{a \in \Sigma}$ such that $u \xrightarrow{a} v \iff (u, v) \in T_a$ is called rational

Note: synchronized transducers define automatic graphs letter-to-letter transducers define synchronous graphs

Rational graphs

Definition

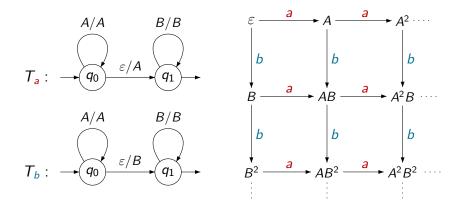
A Σ -graph G defined by a family of transducers $(T_a)_{a \in \Sigma}$ such that $u \xrightarrow{a} v \iff (u, v) \in T_a$ is called rational

Note: synchronized transducers define automatic graphs letter-to-letter transducers define synchronous graphs

Decidability

- Rational graphs have an undecidable FO theory
- Automatic graphs have a decidable FO theory [Blumensath, Grädel]

A rational graph



Finitely Presented Infinite Graphs

Languages of rational graphs

Theorem (Morvan, Stirling, Rispal)

Rational and automatic graphs both accept precisely the context-sensitive languages

- Existing proof uses the Penttonen normal form for context-sensitive grammars
 - Technically non-trivial
 - No notion of determinism
- Our contribution: syntactical proof

Proof idea

For all rational graph G and sets I, F, there exists a linearly bounded machine (LBM) M accepting L(G, I, F)

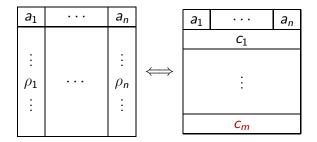
1 Let
$$u_0 \stackrel{a_1}{\longrightarrow} u_1 \dots u_{n-1} \stackrel{a_n}{\longrightarrow} u_n$$
 with $u_0 \in I$, $u_n \in F$

2 For all *i*, let ρ_i be the corresp. run of T_{a_i} on (u_{i-1}, u_i)

Build M such that there is a bijection btw. such sequences ρ₁...ρ_n and accepting runs over a₁...a_n

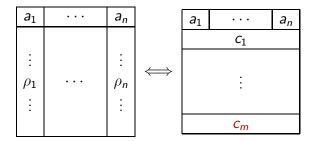
Proof idea

For all rational graph G and sets I, F, there exists a linearly bounded machine (LBM) M accepting L(G, I, F)



Proof idea

For all rational graph G and sets I, F, there exists a linearly bounded machine (LBM) M accepting L(G, I, F)



Converse: similar idea (column of a LBM space-time diagram \longrightarrow vertex in a rational graph)

Observation

Every CS language can be accepted from a rational set of sources by a synchronous graph of degree 1!

- \hookrightarrow Necessity to consider structural restrictions:
 - Graphs with a unique source
 - Finite or bounded degree

Languages according to transducer class, number of sources and degree

	Rational	Automatic	Synchronous
rat. set of sources	= CS	= CS	= CS

Languages according to transducer class, number of sources and degree

	Rational	Automatic	Synchronous
rat. set of sources	= CS	= CS	= CS
1 source, any <i>d</i>	= CS	= CS	= Rat

Languages according to transducer class, number of sources and degree

	Rational	Automatic	Synchronous
rat. set of sources	= CS	= CS	= CS
1 source, any d	= CS	= CS	= Rat
1 source, $\mathit{d} < \infty$	= CS	= LRCS	= Rat

LRCS: languages accepted in linear # of head reversals

Languages according to transducer class, number of sources and degree

	Rational	Automatic	Synchronous
rat. set of sources	= CS	= CS	= CS
1 source, any d	= CS	= CS	= Rat
1 source, $\mathit{d} < \infty$	= CS	= LRCS	= Rat
1 source, $d < K$	$\subseteq UCS$	$\subseteq DCS$	= Rat

LRCS: languages accepted in linear # of head reversals UCS: unambiguous context-sensitive languages DCS: deterministic context-sensitive languages

Rational graphs and determinism

Families of rational graphs accepting UCS and DCS:

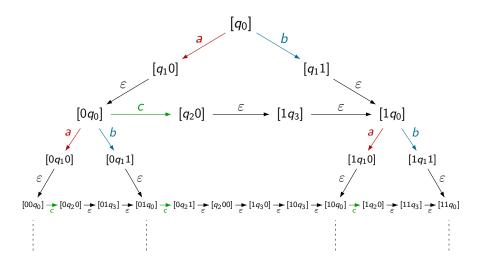
- Unambiguous rational graphs with unambiguous transducers accept UCS
- Synchronous graphs with globally deterministic transducers accept DCS

Note: non-structural criteria!

LBM transition graphs

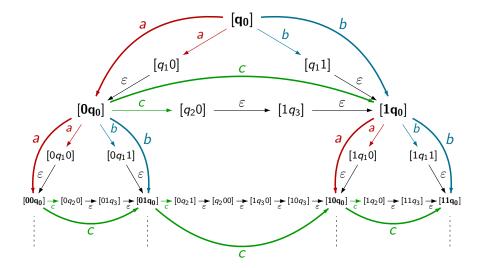
- Idea: associate a real-time graph to the computations of a linearly bounded machine
- New LBM model with labeled rules:
 - Finite control, input alphabet, tape alphabet
 - Auxiliary list-like memory
 - $(\Sigma \cup \{\varepsilon\})$ -labeled rules for cell insertion, deletion or rewriting, + movement
 - Restriction: no ε -labeled insertion rule
- Transition graph of $M: u \xrightarrow{a} v$ iff there exists an $(a\varepsilon^*)$ -run between configs. u and v in M

A linearly bounded graph

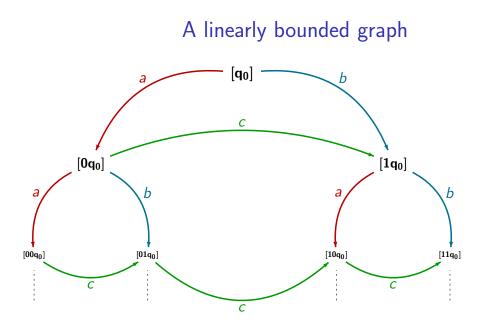


Finitely Presented Infinite Graphs

A linearly bounded graph



Finitely Presented Infinite Graphs



Properties

Languages

- The languages of linearly bounded graphs are the context-sensitive languages
- Every context-sensitive language is accepted by a deterministic linearly bounded tree
- The transition graph of a terminating machine accepts a deterministic CS language iff it is deterministic

Properties

Closure properties

Linearly bounded graphs are closed under

- restriction to reachable vertices
- · restriction to context-sensitive sets of vertices
- synchronized product

Decidability

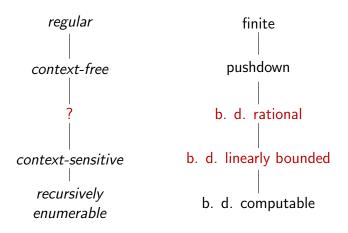
At least one linearly bounded graph has an undecidable first-order theory

• Note: linearly bounded graph have by definition a finite out-degree

Theorem

- Finite degree rational and linearly bounded graphs are incomparable (differences in degree growth rate)
- 2 Every finite degree automatic graph is isomorphic to a linearly bounded graph
- Severy bounded degree rational graph is isomorphic to a linearly bounded graph

A hierarchy of single-source, bounded-degree infinite automata



Finitely Presented Infinite Graphs

Perspectives

- More thorough study of bounded-degree and deterministic rational and automatic graphs
- External characterization of linearly bounded graphs (generators + transformations)
- Structural comparison to other families
- Complete family of single-source bounded-degree CS automata with decidable first-order theory?