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In this talk: infinite automata for context-sensitive languages
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Graphs and languages

Definition
Graph: set of triples (u, a, v) ∈ Γ∗ × Σ × Γ∗ (edges)

(written u
a

−→ v)

Remarks:

• Vertices are identified by words

• No isolated vertices

• Isomorphic graphs considered equal

Definition (Language of a graph)
L(G , I , F ) = set of all path labels of G between I and F (with
I , F rational sets of vertices)
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Rational graphs

Definition
A Σ-graph G defined by a family of transducers (Ta)a∈Σ such

that u
a

−→ v ⇐⇒ (u, v) ∈ Ta is called rational

Note: synchronized transducers define automatic graphs
letter-to-letter transducers define synchronous graphs
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Rational graphs

Definition
A Σ-graph G defined by a family of transducers (Ta)a∈Σ such

that u
a

−→ v ⇐⇒ (u, v) ∈ Ta is called rational

Note: synchronized transducers define automatic graphs
letter-to-letter transducers define synchronous graphs

Decidability

• Rational graphs have an undecidable FO theory

• Automatic graphs have a decidable FO theory
[Blumensath, Grädel]
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A rational graph
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Languages of rational graphs

Theorem (Morvan,Stirling,Rispal)
Rational and automatic graphs both accept precisely the
context-sensitive languages

• Existing proof uses the Penttonen normal form for
context-sensitive grammars

• Technically non-trivial
• No notion of determinism

• Our contribution: syntactical proof
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Proof idea

For all rational graph G and sets I , F , there exists a linearly
bounded machine (LBM) M accepting L(G , I , F )

1 Let u0
a1−→ u1 . . . un−1

an−→ un with u0 ∈ I , un ∈ F

2 For all i , let ρi be the corresp. run of Tai
on (ui−1, ui)

3 Build M such that there is a bijection btw. such
sequences ρ1 . . . ρn and accepting runs over a1 . . . an
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Proof idea

For all rational graph G and sets I , F , there exists a linearly
bounded machine (LBM) M accepting L(G , I , F )

a1 · · · an

...
...

ρ1 · · · ρn

...
...

⇐⇒

a1 · · · an

c1

...

cm
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Proof idea

For all rational graph G and sets I , F , there exists a linearly
bounded machine (LBM) M accepting L(G , I , F )

a1 · · · an

...
...

ρ1 · · · ρn

...
...

⇐⇒

a1 · · · an

c1

...

cm

Converse: similar idea
(column of a LBM space-time diagram −→ vertex in a
rational graph)
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Structural restrictions

Observation
Every CS language can be accepted from a rational set of
sources by a synchronous graph of degree 1!

↪→ Necessity to consider structural restrictions:

• Graphs with a unique source

• Finite or bounded degree
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Structural restrictions

Languages according to transducer class, number of sources
and degree

Rational Automatic Synchronous
rat. set of sources = CS = CS = CS
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Structural restrictions

Languages according to transducer class, number of sources
and degree

Rational Automatic Synchronous
rat. set of sources = CS = CS = CS
1 source, any d = CS = CS = Rat
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Structural restrictions

Languages according to transducer class, number of sources
and degree

Rational Automatic Synchronous
rat. set of sources = CS = CS = CS
1 source, any d = CS = CS = Rat
1 source, d < ∞ = CS = LRCS = Rat

LRCS: languages accepted in linear # of head reversals
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Structural restrictions

Languages according to transducer class, number of sources
and degree

Rational Automatic Synchronous
rat. set of sources = CS = CS = CS
1 source, any d = CS = CS = Rat
1 source, d < ∞ = CS = LRCS = Rat
1 source, d < K ⊆ UCS ⊆ DCS = Rat

LRCS: languages accepted in linear # of head reversals
UCS: unambiguous context-sensitive languages
DCS: deterministic context-sensitive languages
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Rational graphs and determinism

Families of rational graphs accepting UCS and DCS:

• Unambiguous rational graphs with unambiguous
transducers accept UCS

• Synchronous graphs with globally deterministic
transducers accept DCS

Note: non-structural criteria!
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LBM transition graphs

• Idea: associate a real-time graph to the computations of
a linearly bounded machine

• New LBM model with labeled rules:

• Finite control, input alphabet, tape alphabet
• Auxiliary list-like memory
• (Σ ∪ {ε})-labeled rules for cell insertion, deletion or

rewriting, + movement
• Restriction: no ε-labeled insertion rule

• Transition graph of M: u
a

−→ v iff there exists an
(aε∗)-run between configs. u and v in M
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A linearly bounded graph
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A linearly bounded graph
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A linearly bounded graph
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Properties

Languages

• The languages of linearly bounded graphs are the
context-sensitive languages

• Every context-sensitive language is accepted by a
deterministic linearly bounded tree

• The transition graph of a terminating machine accepts a
deterministic CS language iff it is deterministic
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Properties

Closure properties
Linearly bounded graphs are closed under

• restriction to reachable vertices

• restriction to context-sensitive sets of vertices

• synchronized product

Decidability
At least one linearly bounded graph has an undecidable
first-order theory
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Comparison

• Note: linearly bounded graph have by definition a finite
out-degree

Theorem

1 Finite degree rational and linearly bounded graphs are
incomparable (differences in degree growth rate)

2 Every finite degree automatic graph is isomorphic to a
linearly bounded graph

3 Every bounded degree rational graph is isomorphic to a
linearly bounded graph
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A hierarchy of single-source,
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Perspectives

• More thorough study of bounded-degree and deterministic
rational and automatic graphs

• External characterization of linearly bounded graphs
(generators + transformations)

• Structural comparison to other families

• Complete family of single-source bounded-degree CS
automata with decidable first-order theory?
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