

Synthèse et caractérisation photophysique de polymères fluorescents à base de polysiloxane pour la détection de composés nitroaromatiques Le TNT est un explosif communément utilisé (industrie, armement)

- La tension de vapeur saturante du TNT est très faible (13,7 ppb à 25°)
 - Le TNT de qualité militaire contient des impuretés (plusieurs pourcents en masse)
 - La tension de vapeur du 2,4-DNT est plus élevée (230 ppb à 25 $^{\circ}$ C) \rightarrow molécule cible pour notre étude

NO₂

NO₂

Concept – Cahier des charges

- Design du polymère
- Synthèse et caractéristiques photophysiques des 4-amino-1,8-naphtalimides
- Synthèse et caractéristiques des polysiloxanes-(4-amino-1,8-naphtalimide)
- Interaction PSi-NI et 2,4-DNT
- Conclusions et perspectives

: Soutenance de thèse Edouard Obert

4/03/2008

Concept – Cahier des charges

- Design du polymère
- Synthèse et caractéristiques photophysiques des 4-amino-1,8-naphtalimides
- Synthèse et caractéristiques des polysiloxanes-(4-amino-1,8-naphtalimide)
- Interaction PSi-NI et 2,4-DNT
- Conclusions et perspectives

Idée : association d'un polymère à empreinte moléculaire (MIP) et d'un polymère fluorescent :

- MIP : sélectivité (développé dans un autre laboratoire)
- Polymère fluorescent : sensibilité

→ Inhibition de la fluorescence en présence de 2,4-DNT

This document and an) ©THALES 2005. Temp Idée : association d'un polymère à empreinte moléculaire (MIP) et d'un polymère fluorescent :

- MIP : sélectivité (développé dans un autre laboratoire)
- Polymère fluorescent : sensibilité

→ Inhibition de la fluorescence en présence de 2,4-DNT

This document and an) ©THALES 2005. Temp Idée : association d'un polymère à empreinte moléculaire (MIP) et d'un polymère fluorescent :

- MIP : sélectivité (développé dans un autre laboratoire)
- Polymère fluorescent : sensibilité

→ Inhibition de la fluorescence en présence de 2,4-DNT

This document and an) ©THALES 2005. Temp

Polymères fluorescents conjugués 📀

Piège de basse énergie

→ État excité délocalisé sur le squelette conjugué du polymère

Principal avantage : Amplification importante du signal d'inhibition de fluorescence

- Polymère de l'état de l'art : 3D-PPE : limite de détection inférieure au ppt
- Inhibition de la fluorescence limitée par la diffusion du polluant dans la matrice polymère

^[1] J.-S. Yang; T. M. Swager*, « Porous Shape Persistent Fluorescent Polymer Films: An Approach to TNT Sensory Materials » J. Am. Chem. Soc., (1998) 120, 5321

^[2] H. Sohn, M. J. Sailor, D. Magde, W. C. Trogler^{*}, « *Detection of Nitroaromatic Explosives Based on Photoluminescent Polymers Containing Metalloles », J. Am. Chem. Soc.* (2003) 125, 3821

^[3] Y. Liu, R. C. Mills, J. M. Boncella, K. S. Schanze*, « Fluorescent Polyacetylene Thin Film Sensor for Nitroaromatics », Langmuir (2001) 17, 7462

This document and any ©THALES 2005. Temp

Polymères fluorescents à chaînes latérales 📀

→ Amplification modérée attendue (dans le rayon de Förster ≈ 1nm) plus faible que dans le cas des polymères conjugués

Principaux avantages :

- Rendements quantiques de fluorescence élevés
- Solubilité dans la plupart des solvants organiques
- Température de transition vitreuse basse \rightarrow amélioration du temps de réponse

This document and ©THALES 2005. 7

But de l'étude

- Synthèse d'un (co)polymère aux propriétés suivantes :
 - Rendement de fluorescence élevé
 - Bonne diffusion des gaz dans le polymère
 - Affinité avec le 2,4-DNT
 - Extinction de fluorescence en présence de 2,4-DNT
 - Stable dans le temps

Concept – Cahier des charges

Design du polymère

- Synthèse et caractéristiques photophysiques des 4-amino-1,8-naphtalimides
- Synthèse et caractéristiques des polysiloxanes-(4-amino-1,8-naphtalimide)
- Interaction PSi-NI et 2,4-DNT
- Conclusions et perspectives

Squelette de type polysiloxane :

≻T_G basse (Ex : Polydiméthylsiloxane : T_G = -127℃)
Polypropylène : T_G = -13℃)

 $- \left(\begin{array}{c} CH_3 \\ -Si \\ \downarrow \end{array} \right) \right) n$

Bonne perméabilité aux gaz (~30 fois plus qu'avec le polybutadiène et 300 fois plus qu'avec le polystyrène)

Facilement modifiable via la réaction d'hydrosilylation

Choix du composé fluorescent 📀

- Rendement quantique de fluorescence élevé à l'état solide :
 - $\Phi_{\rm F} = 60\%^{[1]}$
- Structure facile à modifier et à fonctionnaliser
- Système π étendu et riche en électrons pour interagir avec les cycles aromatiques pauvres en électrons comme le 2,4-DNT

^[1] V. Cleave; G. Yahioglu, P. Le Barny; R. H. Friend; N. Tessler, *"Harvesting singlet and triplet energy in polymers LED"*, *Adv. Mater. (Weinheim, Ger.)*, (1999) 11(4), 285

This document an ©THALES 2005. 7

Concept – Cahier des charges

Design du polymère

- Synthèse et caractéristiques photophysiques des 4-amino-1,8-naphtalimides
- Synthèse et caractéristiques des polysiloxanes-(4-amino-1,8-naphtalimide)
- Interaction PSi-NI et 2,4-DNT
- Conclusions et perspectives

Synthèse de 4-amino-1,8-naphtalimide 🗲

- Bon rendement
- Synthèse très polyvalente
 - → Grande variété de structures accessibles

This document and any ©THALES 2005. Temp

Principe des mesures de photophysique 📀

This document and any da ©THALES 2005. Template

THALES

Montage de fluorescence résolu dans le temps

Fluorescence intense et homogène (durée de vie identique selon λ_{Em}) THALES

16

Solvatochromisme important : effet bathochrome

Equation de Lippert-Mataga (moments dipolaires)

Molécule	(Me-Allyl)ANI
μ _g (D)	6,8 (calculé : 5,5)
μ _e (D)	12,5
μ_{e} - μ_{g} (D)	5,7

→ Différence de moment dipolaire très importante

This document and any ©THALES 2005. Temp

Caractéristiques spectroscopiques

	(Me-Allyl)ANI
λ ^{abs} (nm)	413
λ ^{fluo} (nm)	520
<τ> (ns)	6,96
Φ _f	60 %

- Fluorescence des ANI tertiaires particulièrement bonne à l'état solide
 - ANI tertiaire fluorescence dépendante de la présence d'eau

This document and ©THALES 2005. T

- Concept Cahier des charges
- Design du polymère
- Synthèse et caractéristiques photophysiques des 4-amino-1,8-naphtalimides
- Synthèse et caractéristiques des polysiloxanes-(4-amino-1,8-naphtalimide)
- Interaction PSi-NI et 2,4-DNT
- Conclusions et perspectives

Synthèse des polymères : choix de l'hydrosilylation 📀

Paramètres clés :

- Choix du catalyseur :
- \rightarrow Sélectivité de la réaction \rightarrow pureté du polymère
- Pureté des réactifs :

Eau dans le milieu réactionnel → branchement ou réticulation du polymère

This document anu an ©THALES 2005. Temp

Synthèse des polymères : Catalyseurs 🗲

Catalyseurs d'hydrosilylation commerciaux :

Catalyseur de Karstedt

Pt/C

Platine sur charbon activé

- Catalyseur de Karstedt :
 - Réaction rapide.
 - Sélectivité perfectible
 - Non compatible avec les alcools (réaction d'O-silylation)

Catalyseur Pt/C :

■ Réaction trop lente (non terminée après 2 semaines à 80 ℃)

This documern and ©THALES 2005. 1

Synthèse des polymères : Catalyseurs Pt-carbène 📀

Catalyseur d'hydrosilylation non-commercial :

Développé par Markò et al.^[1]

- → meilleure sélectivité
- \rightarrow compatibilité avec les fonctions alcool.

ALES

Problème avec le greffon naphtalimide 📀

- Greffage du greffon 4-amino-1,8-naphtalimide :
 - Problème : réaction lente (1 semaine)
 - En contradiction avec les molécules simples (1-octène)
 - Pas un problème d'encombrement stérique
 - Mécanisme d'inhibition

This document and any ©THALES 2005. Temp

Problème avec le greffon naphtalimide 📀

Interférent			NH					
Quantité	0,1 éq	1 éq	10 éq	0,1 éq	1 éq	10 éq	0,36 éq	1 éq
ξ (20h)	1	1	1	0,93	0,86	0,77	1	0,97

- Amine aromatique secondaire : ralentit la réaction
 - Impureté rouge formée en petite quantité
- Mais quantité trop faible pour expliquer l'inhibition

THALES

H.

Problème avec le greffon naphtalimide 📀

Complexation du doublet non liant de l'amine aidée par la présence de l'alcène

Idée : Éloigner l'amine de l'alcène → Formation du cycle défavorisée

Problème avec le greffon naphtalimide 🗲

This document and any dat ©THALES 2005. Template

THALES

- Réaction rapide avec chaîne de type undécènyl
 - Pas d'impureté rouge formée avec n = 9

- Caractérisation en RMN ¹H et en FTIR des polymères synthétisés bonne
- Sauf problème d'intégration des protons en α du silicium
 - Intégration donne taux de substitution au max de 72 %

- PSi-NI(30)
 - Chromophore Naphtalimide greffé sur un squelette polysiloxane
- + Plastification interne

This document and any ©THALES 2005. Temp

- **PSi-NI(15)-AF(15)**
- → Ajout d'un alcool fluoré + Plastification interne

This document and any ©THALES 2005. Temp

Polymère	T _G
PSt-NI	184 °C
PSi-NI(100)	137 °C
PSi-NI(50)	33 °C
PSi-NI(30)	6,5 °C
PSi-NI(15)-AF(15)	-46.3 °C

- T_G très basse \Rightarrow pénétration rapide du polluant dans la matrice polymère
- → meilleur temps de réponse du capteur attendu

PSi-NI(30)

- Transferts d'énergie
- Durée de vie longue pour fluorophore en phase condensée

Rendement quantique de fluorescence (état solide) Rendement quantique de fluorescence Nombre de photons emis par le système photons absorbés par le système $\Phi_f =$ photons absorbés Nombre de photons émis Échantillon $\Phi_{\rm f}^{\rm sol}$ (nm) $\Phi_{\rm f}^{\rm film}$ (nm) PSt-NI 0.80 0.60 Rendement quantique de fluorescence à l'état solide PSi-NI(30) 0.43 0.77 élevé PSi-NI(50)-AF(50) 0.73 0.39

0.50

0.83

PSi-NI(15)-AF(15)

THALES

This document and ©THALES 2005. Tr

- Durée de vie de fluorescence : \approx 5 ns
- \Rightarrow Probabilité de rencontre de l'excitation avec un inhibiteur : x 25 (Amplification)

THALES

- Durée de vie de fluorescence : \approx 5 ns
- \Rightarrow Probabilité de rencontre de l'excitation avec un inhibiteur : x 25 (Amplification)

- Durée de vie de fluorescence : \approx 5 ns
- \Rightarrow Probabilité de rencontre de l'excitation avec un inhibiteur : x 25 (Amplification)

- Durée de vie de fluorescence : \approx 5 ns
- \Rightarrow Probabilité de rencontre de l'excitation avec un inhibiteur : x 25 (Amplification)

THALES

Étude du phénomène de solvatation 📀

- Solvatation par diffusion de l'excitation vers les chromophores de plus basse énergie.
- Énergie de solvatation : 10⁻²⁰ kJ/molécule
- \Rightarrow Insuffisant pour que l'excitation reste dans les pièges de basse énergie \rightarrow amplification pas limitée par la solvatation

Étude du phénomène de solvatation 📀

- Solvatation par diffusion de l'excitation vers les chromophores de plus basse énergie.
- Énergie de solvatation : 10⁻²⁰ kJ/molécule
- \Rightarrow Insuffisant pour que l'excitation reste dans les pièges de basse énergie \rightarrow amplification pas limitée par la solvatation

Étude du phénomène de solvatation 📀

- Solvatation par diffusion de l'excitation vers les chromophores de plus basse énergie.
- Énergie de solvatation : 10⁻²⁰ kJ/molécule
- \Rightarrow Insuffisant pour que l'excitation reste dans les pièges de basse énergie \rightarrow amplification pas limitée par la solvatation

- Concept Cahier des charges
- Design du polymère
- Synthèse et caractéristiques photophysiques des 4-amino-1,8-naphtalimides
- Synthèse et caractéristiques des polysiloxanes-(4-amino-1,8-naphtalimide)
- 4/03/2008 : Soutenance de thèse Edouard Obert
 - Interaction PSi-NI et 2,4-DNT
 - Conclusions et perspectives

Propriétés photophysique en présence de DNT (principe de la mesure)

This document and any da ©THALES 2005. Template

36

Propriétés photophysique en présence de 2,4-DNT

Fourni par L. Lutsen de IMEC (Interuniversity Microelektronica Centrum vzw) (Belgique)

3D-PPE : M_W=199,000 I_P= 8.2

Efficacité d'inhibition : Diminution de la fluorescence après une minute d'exposition du polymère au 2,4 DNT (épaisseur du film : 10 nm)

 \rightarrow Détection de l'explosif

Rendement quantique de fluorescence :

 \rightarrow diminution épaisseur de la couche sensible \rightarrow amélioration cinétique

Facteur de mérite : Produit des deux → meilleur compromis

This document and any ©THALES 2005. Temp

Détection du 2,4-DNT à l'aide des polymères obtenus 📀

Rendements quantiques de fluorescence bons

- Inférieurs à celui du dérivé du polystyrène
- Supérieurs à celui du 3D-PPE

Détection du 2,4-DNT à l'aide des polymères obtenus 📀

Efficacité de fluorescence PSi

- Supérieurs à celle du 3D-PPE et du dérivé du PSt
- Présence d'alcool fluoré améliore un peu l'efficacité

Détection du 2,4-DNT à l'aide des polymères obtenus 📀

- Polymère très efficace pour détecter le 2,4-DNT
- Inhibition de fluorescence réversible
- Résultats meilleurs qu'avec le 3D-PPE

- Concept Cahier des charges
- Design du polymère
- Synthèse et caractéristiques photophysiques des 4-amino-1,8-naphtalimides
- Synthèse et caractéristiques des polysiloxanes-(4-amino-1,8-naphtalimide)
- Interaction PSi-NI et 2,4-DNT
- Conclusions et perspectives

- Synthèse des copolymères : synthèse au point et grande gamme de structures accessibles
- Copolymères obtenus :
 - Basse T_G
 - Rendement de fluorescence à l'état solide élevé
 - Inhibition de fluorescence efficace en présence de DNT
- Polymère à chaînes latérales : bonne alternative aux polymères fluorescents conjugués pour les applications en tant que couches sensibles pour les capteurs d'explosifs

THALES

- Poursuite de l'étude des interactions entre ces polymères et le 2,4-DNT
 - Intégration au démonstrateur DETEX (BAM : Berlin)
- Amélioration des performances
 Dépôt des polymères sur silice mésoporeuse : augmentation surface spécifique
 Intégration dans un système Laser polymère = milieu amplificateur

Autre application : Biologie Seul inconvénient des ANI tertiaires : sensibilité à l'eau

Structure à base de naphtalimide

Amine secondaire encombrée

- Fluorescence non sensible à la polarité du solvant.
- Fluorescence à l'état cristallin mono-exponentiel et insensible à la présence d'eau

<u>CEA Saclay :</u> Vesna Simic, Olivier Colombani, Bernard Geffroy, Noella Lemaître

Université Paris VI : Laurent Bouteiller

ENS Cachan : Isabelle Leray, Jean Pierre Malval, Jean-Alexis Spitz, Gilles Clavier, Jean Jacques Vachon

Thales R&T : Françoise Soyer, Évelyne Chastaing ...

