
HAL Id: tel-00327414
https://theses.hal.science/tel-00327414

Submitted on 8 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis and Optimization of a New Family of Parallel
Manipulators with Decoupled Motions

Sébastien Briot

To cite this version:
Sébastien Briot. Analysis and Optimization of a New Family of Parallel Manipulators with Decoupled
Motions. Automatic. INSA de Rennes, 2007. English. �NNT : �. �tel-00327414�

https://theses.hal.science/tel-00327414
https://hal.archives-ouvertes.fr


 

 
 

 
THESE 

 
 

Présentée le 20 juin 2007 
 

Devant l’Institut National des Sciences Appliquées de Rennes 
 

En vue de l’obtention du 
 

Doctorat de GENIE MECANIQUE 
 
 
 

Par : Sébastien BRIOT  
 
 
 

N° d’ordre : D-07-07 
 
 
 

Analyse et Optimisation  

d’une Nouvelle Famille de Manipulateurs Parallèles  

aux Mouvements Découplés 
 
 
 
Directeur de Thèse : Vigen ARAKELYAN 
 
 
Membres du jury : 
 
BIDAUD Philippe  Professeur des Universités  Président 
 
GOGU Grigore  Professeur des Universités  Rapporteur 
WENGER Philippe  Directeur de Recherche CNRS  Rapporteur 
 
ARAKELYAN Vigen  Professeur des Universités  Examinateur 
CHABLAT Damien  Chargé de Recherche CNRS  Examinateur 
GLAZUNOV Victor  Professeur à l’Académie des Sciences  Examinateur 
 de Russie 
GUEGAN Sylvain  Maître de Conférences  Examinateur 



 
 



  i 

 

Abstract 

 

 

 

 

It is well known that, amongst the numerous advantages of parallel manipulators 

when compared with their serial counterparts, one can notice better velocities and 

dynamic characteristics, as well as higher payload capacities. However, there are some 

drawbacks, such as a smaller workspace, a high coupling in the kinematic relationships 

and more constraining singularities. In order to overcome these disadvantages, the 

decoupling of the movements of parallel robots has been proposed.  

Thus, the research project deals with the design, the optimization and the 

improvement of a new family of parallel manipulators from 3 to 6 degrees of freedom 

named PAMINSA (PArallel Manipulator of the I.N.S.A.). The second part of this 

manuscript presents the characteristics of these architectures, namely the decoupling 

between the movements of the platform in the horizontal plane from its translations 

along the vertical axis.  

In a third section, we analyse the singular configurations of these manipulators. 

This analysis is necessary in order to choose the manipulator which has the largest 

singularity-free workspace.  

In sections 4 and 5, we propose novel methods allowing an increase in the size of 

their singularity-free workspace. The first solution is based on the use of mechanisms 

with variable structures, i.e. mechanisms of which structural parameters can be altered. 

Such a solution makes it possible to increase the singularity-free workspace to 100% of 

the maximal workspace. The second solution deals with the optimization of the 

dynamic parameters of the manipulators, which makes it possible to pass through the 

singularities during the displacements of the manipulator.  

Finally, in a sixth section, a new, fast and efficient method of computing the 

accuracy of PAMINSA manipulators is described. In addition, solutions for the 

improvement of functional characteristics of PAMINSA manipulators are proposed. 
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Lj the length of the j-th link of the 5R planar parallel manipulator. 
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n an integer; n = 0, 1, 2, ... 

P, P a passive/actuated prismatic joint. 

p an integer. 

q the vector of the active-joints variables. 

qj the j-th active-joint variable for the planar displacements of the PAMINSA 

manipulators or for the 5R robot. 

qv the active-joint variable for the vertical translations of the PAMINSA-4D3L. 

qvi the active-joint variable for the vertical translations of points Bi of 

pantograph linkages. 

R, R a passive/actuated rotoid joint. 

Rb the radius of the circumscribed circle of the base triangle. 

Ri a wrench applied on the platform by the i-th leg. 

rj the relative position of the centers of masses of the j-th limb of the 5R parallel 

robot. 

Rpl the radius of the circumscribed circle of the platform triangle. 

S a passive spherical joint. 

T the kinetic energy of a mechanical system. 

t a twist. 

V the potential energy of a mechanical system. 

W a wrench. 

x the position of the platform along the x-axis of the base frame. 

x an axis. 

x the vector of the coordinates of the platform. 

y the position of the platform along the y-axis of the base frame. 

y an axis. 

z the position of the platform along the z-axis of the base frame. 

z an axis. 

α an angle. 
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αb an angle characterizing the base triangle. 

αpl an angle characterizing the platform triangle. 

βb an angle characterizing the base triangle. 

βpl an angle characterizing the platform triangle. 

δij the Kronecker symbol; δij = 1 if j = i and δij = 0 if j ≠ i 

δpl an angle; πβδ nplpl += 2/  (n = 0, 1, 2, …). 

δx the position error of the platform along the x-axis of the base frame. 

δx the vector of the errors of the platform. 

δy the position error of the platform along the y-axis of the base frame. 

δz the position error of the platform along the z-axis of the base frame. 

δφx the orientation error of the platform around the x-axis of the base frame. 

δφy the orientation error of the platform around the y-axis of the base frame. 

δφz the orientation error of the platform around the z-axis of the base frame. 

∆X the norm of the vector of position error due to active-joints errors. 

∆φ the orientation error due to active-joints errors. 

ε the error bound on the active-joint variables 

εi an angle for the kinematic description of the i-th pantograph linkage. 

εpl an angle; 2/παε ±= plpl . 

φ the orientation of the platform around the z-axis of the base frame. 

γi an angle; γi = —5π/6, —π/6, π/2. 

λ the vector of the Lagrange multipliers. 

θ the orientation of the platform around the z-axis of the second intermediary 

moving frame (Euler angles description). 

ρi the length of the i-th passive prismatic joint of the PAMINSA manipulators. 

τ the vector of the actuators torques/efforts. 

ψ the orientation of the platform around the x-axis of the first intermediary 

moving frame (Euler angles description). 

ζi an angle for the kinematic description of the i-th pantograph linkage. 
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Introduction 

 

 

 

 

Context of the thesis. 

 

Over the last decades, researchers and companies have been attracted by the idea of 

creating new parallel manipulators. Such a mechanical architecture divides the 

manipulated load between the several legs of the system and, as a result, each 

kinematic chain carries only a fraction of the total load. Thus, it makes it possible the 

creation of mechanical structures with higher rigidity, containing movable links having 

relatively small masses. Many industrial applications of these manipulators in the 

electronics, food and pharmaceutical sectors, or in aeronautics or medical devices are 

well-known.   

However, parallel manipulators have also some drawbacks, such as a limited 

workspace, more constraining singularity loci or a high coupling of kinematics and 

dynamics. 

 This non-linearity of the kinematic and dynamic models of parallel manipulators is 

not attractive for industrial applications. In order to solve this problem, over the last 

few years, new structures have been developed. The literature review of previous 

research on decoupling of the kinematic and dynamic input/output relationships of 

parallel manipulators shows that, in most of the cases, two approaches are developed 

(see chapter 1): 

- decoupling between position and orientation; 

- full-decoupling, i.e. the decoupling of the displacements in relation to all the 

degrees of freedom of the platform. 

Our observations show that, despite rather encouraging results, it is not easy to 

develop a simple parallel architecture with fully-decoupled motions whilst conserving its 

principal advantages: a greater rigidity of the structure with light links.  

In order to solve this problem, we have tried to find a compromise between the 

decoupling of the movements and the architectural characteristics of parallel structures. 

In other words, we have changed the statement of problem: it is not essential that 
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parallel architecture be fully decoupled, it can also be partially decoupled but it is 

important to obtain a mechanical architecture with important payload. This 

problematic has led to the creation of a new family of decoupled parallel manipulators, 

which is the main topic of this thesis. 

 

 

Contributions of the thesis. 

 

This manuscript presents several major contributions which are listed below: 

- the creation of a new family of decoupled parallel manipulators: the 

non-linearity of the kinematic and dynamic models of parallel manipulators is 

not attractive for industrial applications. In order to solve this problem, 

decoupled structures have been proposed. It appears in chapter 1 that, in 

order to decouple the kinematic and dynamic input/output relationships of 

parallel manipulators, two approaches are developed in most of the cases: (i) 

decoupling between position and orientation; (ii) full-decoupling, i.e. the 

decoupling of the displacements about all the degrees of freedom of the 

platform. Despite rather encouraging results, the fully-decoupled manipulators 

have drawbacks also, such as a lack of rigidity or the increase in the number 

of joints. This is the reason why we have tried to find a compromise between 

the decoupling of the movements and the architectural characteristics of 

parallel structures. In chapter 2, a new design approach is proposed and a 

family of new parallel manipulators, of which displacements in the horizontal 

plane are decoupled from the other movements, is developed. These 

manipulators are called PAMINSA (PArallel Manipulators of the I.N.S.A.); 

- the singularity analysis of PAMINSA manipulators: one of the most 

important drawbacks of parallel manipulators is their singular configurations. 

Therefore, the chapter 3 analyses the singularities of PAMINSA manipulators. 

It is shown that one particular case of singularity corresponds to an unusual 

type of self motion. Thus, the geometric conditions for such a type of self 

motion are derived and the global behaviour of the manipulators inside the 

gained degree of freedom is kinematically interpreted. The obtained results 

can be used to design manipulators without self motions, to optimize the 

singularity-free workspace of this type of robots and to choose the optimal 

architectures of PAMINSA manipulators; 
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- the increase of singularity-free zones by the use of mechanisms of 

variable structures: the closed-loop of parallel manipulators limits the 

motion of the platform and creates special singular zones inside the 

workspace. The workspace of parallel manipulators, which is less than that of 

serial manipulators, is reduced and limits their functional performances. 

Therefore, solutions for enlarging the workspace of parallel manipulators are 

needed. One possible solution consists of using mechanisms with variable 

structure, i.e. mechanisms of which structure parameters can be altered. This 

solution is developed in chapter 4. For this purpose, the pressure angle is used 

as an indicator of force transmission. The optimal control of the pressure 

angle for a given trajectory of the manipulator is obtained by means of legs 

with variable structure. The suggested procedure used to determine the 

optimal structure of PAMINSA manipulators is performed and illustrated by 

two numerical simulations. Such a solution can be easily extended to other 

type of parallel structures, such as Gough-Stewart platforms; 

- the optimal dynamic conditions for passing through the Type 2 

singular configurations: the chapter 5 presents another method, based on 

the optimization of the dynamic parameters of parallel manipulators, which 

makes it possible to pass through the Type 2 singular configurations (see 

chapter 3), and as a result, to enlarge the workspace of parallel mechanisms. 

The principal contribution of this chapter is the presentation, for the first 

time, of the general definition of the condition for passing through the 

singular position which can be formulated as the following: in the presence of 

Type 2 singular configurations, the platform of a parallel manipulator can 

pass through the singular positions without perturbation of motion if the 

wrench applied on the platform by the legs and the external loads is 

orthogonal to the direction of the uncontrollable motion (in other terms, if the 

work of applied forces and moments on the platform along the uncontrollable 

motion is equal to zero). An example of this approach is treated on a 

PAMINSA manipulator and experimental validations are shown; 

- the proposition of a simple method for the accuracy analysis of 

PAMINSA manipulators: simple and fast methods for computing the 

accuracy of a given robot design are needed in order to use them in design 

optimization procedures which seek maximum accuracy. Several performance 

indices have been developed and used to roughly evaluate the accuracy of 

serial and parallel robots. However, none of them deal with robot accuracy. 
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Therefore, in chapter 6, a simple method for the accuracy analysis of 

PAMINSA manipulators is presented. This method is achieved by following a 

detailed mathematical proof that gives important insight into the accuracy of 

planar parallel robots. The method is illustrated on two practical designs; 

- the improvement of the performances of PAMINSA manipulators: in 

chapter 6, we also propose new compensation schemes, which consist of the 

introduction into the initial system of complementary units making it possible 

to cancel the positioning errors. Two different approaches are proposed and 

the performances of such designs are shown. The reduction of the input 

torques is also studied. It is shown in simulation and by experimental tests 

that, for a dynamic mode of operation, the complete static balancing may be 

ineffective in terms of input torques. In the case of accelerated motions, it is 

proposed to carry out an optimal redistribution of the movable masses and to 

achieve a partial mass balancing. 

Let us now begin with a short overview of the development of parallel robots. 
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Platform to the Tripteron 

 

 

1.1.  The historical evolution of parallel robots.  p. 6 

1.2.  Towards the kinematic decoupling of parallel structures. p. 16 

1.3.  Summary. p.  26 

 

 
This chapter is devoted to the historical evolution of parallel 

manipulators. First of all, a review of the well-known parallel 

structures which are applied in industry, patented or prototyped, is 

presented. The efficiency of such structures is shown and their 

advantages and drawbacks are discussed.  

It is well-known that parallel manipulators have attracted several 

manufacturers because it was promised, they would have greater 

rigidity and better dynamic characteristics compared with their serial 

counterparts. However, despite these very attractive advantages, they 

also have some drawbacks, as for example, a small workspace, the 

presence of singular positions and nonlinear coupled kinematics and 

dynamics. It is obvious that a parallel structure with linear input-

output equations is more appealing than a nonlinear one. A literature 

review shows the principal solutions for motion decoupling of parallel 

manipulators: (i) decoupling between position and orientation; (ii) 

full-decoupling, i.e. the decoupling of the displacements around all the 

degrees of freedom of the platform.  

Finally, it is proposed to find a new kind of decoupling, which 

could be used for the development of new architectures of parallel 

manipulators with high-load carrying capacity.  
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1.1. The historical evolution of parallel robots. 

 

In this chapter, we propose to make a short presentation of the expansion of 

parallel structures. However, please note that we do not want to make an exhaustive 

list of all the existing parallel machines, but to give some key points in the development 

of these structures. 

 

 

1.1.1. At the beginnings. 

 

Mechanisms known as parallel manipulators are defined in the terminology for the 

mechanism and machine science [IFToMM 2003] as manipulators that control the 

motion of their end-effector by means of at least two kinematic chains going from the 

end-effector towards the frame. 

There exist numerous texts which deal with the true origins of parallel robots, such 

as [Bonev 2003a] and [Merlet 2006a]. Accordingly to Dr. Bonev, it seems that, the 

history of parallel kinematic began in 1928 when James E. Gwinnett thought of 

building a motion platform for the entertainment industry and applied for a patent 

which presents a device based on a spherical parallel mechanism [Gwinnett 1931] (Fig. 

1.1). 

 

 

 
Figure 1.1. – Possibly the first spatial parallel mechanism 

[Gwinnett 1931]. 

 

However, the industrial development of parallel structures really began with the 

development of the Gough platform [Gough 1962]. Dr. Eric Gough is the person who 

built the first octahedral hexapod, which is probably the most popular parallel robot 
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(Fig. 1.2). This parallel mechanism was invented in 1947 to respond to problems of 

aero-landing loads. A universal machine was needed in order to determine the 

properties of tires under combined loads. 

This robot probably has the simplest structure a parallel manipulator can have. It 

is composed of six legs. Each leg is made of a jack which is connected to both the base 

and the platform by spherical joints located at the end of each leg. The actuation is 

achieved by changing the length of the legs. 

 

 

 

Figure 1.2. – The first octahedral hexapod [Gough 1962]. 

 

The idea of using hexapods for aeronautics appeared only twenty years later when 

Dr. Stewart described a 6-degrees-of-freedom (DOF) manipulator for use as a flight 

simulator [Stewart 1965] (Fig. 1.3). In the 1960’s, the expansion of the aeronautic 

industry, the increasing costs for the training of pilots and the necessity of testing new 

aircrafts led to the creation of new mechanical structures able to move a platform with 

a very high payload (which can carry aircraft cockpits for example). The aim of such 

systems is to create manipulators with high rotational acceleration capacities. For this 

purpose, hexapods are well suited because they have a high ratio payload/mass-of-the-

structure. 

Nowadays, thanks to its attractive characteristics, the industrial applications of the 

Gough-Stewart platform have been diversified (surgical operations, assembling, etc. – 

see Fig. 1.4). 
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Figure 1.3. – The Stewart platform [Stewart 1965]. 

 

  

(a) Fanuc F-100 robot for assembling 

applications. 

(b) Motorized manipulator for surgery. 

[Lazarevic 1997] 

Figure 1.4. – Various applications of the Gough-Stewart platform. 

 

The evolution of parallel manipulators continued with the creation of the Delta 

robot by Prof. Raymond Clavel in 1986 [Clavel 1990]. The creation of this robot 

resulted from a simple observation. 

During a visit to a chocolate factory, Prof. Clavel noticed that the manual 

conditioning of the chocolates was a monotone and boring activity for the operators. 

Moreover, there was a lack of hygiene during the manipulation of the products. 
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However, he also noticed that the existing industrial robots were not well suited to 

replacing the operators because of their poor dynamic capabilities which would have 

resulted in to a poor productivity. 

Thus, Prof. Clavel suggested a new original device for positioning and orienting an 

element in space (Fig. 1.5).  

 

 

 
Figure 1.5. – Schematic of the Delta parallel robot from Prof. Clavel’s patent 

[Clavel 1990]. 

 

The displacement of the platform (8) of the Delta robot is the result of the 

movement of the three articulated arms (4) mounted on the base (1), each of which is 

connected to a pair of parallel rods (5). The three orientations are eliminated by joining 

the rods in a common termination and the three parallelograms ensure the stability of 

the platform (8). This configuration of the robot has three degrees of freedom. The 

platform (8) stays constantly parallel to the base (1) and cannot rotate about the axis 

perpendicular to this plane. The platform (8) supports a working element (9) the 

rotation of which is controlled by a fixed actuator (11) situated on the base (1) by 

means of the slider (14). Thus, taking into account this supplementary rotation, the 

Delta robot has four degrees of freedom.   

It should be noted that the Delta robot was developed for high-speed manipulations 

(Fig. 1.6.a) and it is well known in the electronics, food and pharmaceutical sectors as a 

reliable system for the fast execution of light-duty tasks. However, in recent years, 
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more attention has been paid to the increasing number of possible industrial 

applications, such as the manipulation of medical devices (Fig. 1.6.b).  

 

 

 

(a) the FlexPicker by ABB. (b) the SurgiScope by ISIS. 

Figure 1.6. – Various applications of the Delta robot. 

 

 

1.1.2. Prototypes and industrial applications of parallel manipulators. 

 

Nowadays, parallel structures are well known and widely developed, mainly for 

machining applications. While the number of DOF can vary, the actuated systems can 

be linear or rotary and the number of legs can change, their structures are mostly some 

declinations of the Gough-Stewart platform and of the Delta robot. 

Parallel robots are very attractive for several industrial applications because such 

mechanical architectures divide the manipulated load between the several legs of the 

system and, as a result, each kinematic chain carries only a fraction of the total load, 

which allows the creation of more rigid robots. Such structural architectures also make 

it possible to reduce the mass of the movable links (all the actuators are mainly fixed 

on the base and many legs are stressed by traction/compression efforts) and, as a 

result, make it possible to use less powerful actuators. Moreover, compared with the 

errors of serial manipulators which are accumulated, it seems the errors of parallel 
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manipulators are averaged out. Such characteristics promise to create structures with 

high payload, high dynamic capacities and high accuracy. 

These appealing characteristics have attracted the attention of several researchers 

and companies, and many of them have begun to patent and to build new machines 

based on parallel structures. Among several examples, we can notice: 

- the Variax (Fig. 1.7.a): this machine with 6 DOF, commercialized by Giddings 

and Lewis, is typically based on an hexapod structure. It has got a large 

workspace (700 mm × 700 mm × 750 mm). However, the performances of this 

machine are not equivalent wherever in its workspace; 

- the Tricept (Fig. 1.7.b): Neos Robotics has developed a machine tool with 5 

DOF based on a serial wrist with two rotary DOF mounted on a tripod which 

allows one translation and two rotations. The Tricept is mainly used for 

welding operations and is one of the most successful parallel machines with 

more than 200 units sold; 

- the Sprint Z3 (Fig. 1.7.c): this machine tool, developed by DS Technologies, 

has 3 DOF (two rotations and one translation) and is mounted on a serial 

structure with two translatory DOF, one of which can translate along 60 m. 

Its use is foreseen for the aeronautic industry. 

- the double Scara robot (Fig. 1.7.d): probably one of the most popular 

structures with 4 DOF (with the FlexPicker). It can place components with a 

precision of 0.005 mm in a workspace around the size of a DIN A6 sheet of 

paper (150 mm × 105 mm). Its dynamic properties are very appealing (its 

cycle period for pick-and-place is inferior to 0.5 s); 

- the FlexPicker (Fig. 1.6.a): the FlexPicker from ABB, which is an industrial 

version of the Delta robot with 4 DOF, can produce accelerations and 

velocities superior to 10 G and 10 m/s respectively (its cycle period is inferior 

to 0.4 s); 

- the Quattro (Fig. 1.7.e): based on the Delta robot concept [Nabat 2005], but 

having four legs instead of three (the rotation of the end-effector is induced by 

the shearing of the platform), the Quattro from Adept is specifically designed 

for high-speed packaging and material handling. Its dynamic properties are 

better than for the previous manipulators (its cycle period is inferior to 0.25 

s). 

- the QuickStep (Fig. 1.7.f): the QuickStep (from Krause & Mauser) has been 

developed for high speed cutting operations. It is a Delta like robot with 3 

DOF which is actuated by means of linear motors mounted in parallel (not in 
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the same plane). Its workspace is quite significant (630 mm × 630 mm × 500 

mm) and it can reach velocities about 200 m/min and accelerations superior 

to 2 G; 

- the UraneSX (Fig. 1.7.g): the UraneSX, from Renault Automation, has been 

designed on the same structure as the QuickStep. It can reach velocities about 

150 m/min and accelerations from 3.5 up to 5 G; 

- the XYθ stage NAF 3 (Fig. 1.7.h): it is a planar parallel manipulator with 2 

translations and one rotation developed by Seiko. This robot has been 

designed for positioning operations requiring high rigidity and high accuracy 

in a small workspace (repeatability: 0.7 µm; workspace: 3 × 3 mm for 3 deg. of 

orientation). 

- the Orthoglide (Fig. 1.7.i): this mechanism with 3 translatory DOF was 

developed at the IRCCyN of Nantes (France) [Chablat 2000] [Chablat 2003]. 

The use of this robot is foreseen for high-speed machining applications 

(workspace: 200 mm × 200 mm × 200 mm; velocity of 1.2 m/s and acceleration 

of 20 m/s2). 

- the Schoenflies Motion Generator (SMG – Fig. 1.7.j): the SMG of McGill 

University (Montreal, Canada) [Angeles 2006] has 3 translatory DOF and one 

motion of rotation. It is designed for pick-and-place operations. Its cycle 

period is about 0.5 s. 

- the Isoglide (Fig. 1.7.k): this mechanism with 4 DOF [Gogu 2007] (3 

translations and one rotation) was developed at the LAMI of Clermont-

Ferrand (France). This manipulator is decoupled (see section 1.2.2) and can 

be used in machining applications where great accuracy is necessary. 

- the CaPaMan (Cassino Parallel Manipulator – Fig. 1.7.l): this family of 

spatial parallel manipulators with 3 controlled DOF was developed in the 

LARM of Cassino (Italy) [Ottaviano 2001]. Several prototypes have been 

completed for different types of applications, such as earthquake simulations. 

Surprisingly, despite numerous promises of parallel structures, companies such as 

Giddings & Lewis and Ingersoll with long-standing expertise in machining have failed 

with their hexapods even though they were the first to deliver them to the market. 

Why did have they met such a defeat? Were the promises of high payload capacity, 

high velocities and high accuracy too ambitious? 
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(a) the Variax by Giddings and Lewis. (b) the Tricept by Neos Robotics. 

  

(c) the Sprint Z3 by DS Technologies. (d) the Scara robot from Mitsubishi. 

 

 

(e) the Quattro from Adept. (g) the QuickStep by Krause & Mauser. 

Figure 1.7. – Examples of parallel manipulators. 
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(g) the UraneSX by Renault Automation. (h) the XYθ stage NAF 3 by Seiko. 

  

(i) the Orthoglide of the IRCCyN. (j) the SMG of McGill University. 

 
 

(k) the Isoglide of the LAMI. (l) the CaPaMan of the LARM. 

Figure 1.7. – Examples of parallel manipulators (continued). 
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Indeed, the fact that virtually all the hundreds, or even thousands, of motion 

simulators with load capacities of up to several tons are based on parallel robots 

(mostly hexapods), compared with serial robots, which are able to carry at most five 

hundred kilograms, unquestionably demonstrates that the promise of high payload 

capacities has been fulfilled. The commercial success of the Delta parallel robot and the 

performance of the recently launched Quattro confirms the fulfillment of the promise of 

high productivity, though serial robots are not far behind (Scara serial robots can 

operate at up to 140 cycles per minute and cheaper linear motors make Cartesian 

robots operate even faster). But the promise of high accuracy has not been fulfilled yet. 

Among several factors which may lead to the poor accuracy of these mechanisms, we 

may note: 

- the presence of singularities in the workspace, some of them leading to huge 

positioning errors (the Type 2 singularities – see chapters 3 and 6); such a 

problem may however be avoided by the use of actuation redundancy (which 

is a costly solution) or by reducing the size of the workspace (which is already 

smaller than for their serial counterparts); 

- the use of links with lighter masses which leads to a loss of rigidity of the 

structure; such a problem may be easily avoided by the use of more rigid 

links; 

- manufacturing errors and joint clearances, which can be rectified by 

calibration and an appropriate design; 

- the non-linearity and the complexity of the kinematic and dynamic models of 

the parallel manipulators which leads to positioning errors. It seems obvious 

that if the position (or the orientation) of a manipulator depends on fewer 

input parameters, it will be less sensitive to input errors. 

The non-linearity of the static and dynamic models of parallel manipulators is 

really not attractive for industrial applications and leads to insurmountable problems of 

accuracy. This is the reason why, over the last few years, new structures of parallel 

architectures have been developed in order to simplify and linearize the kinematic and 

dynamic input/output relationships.  

 

 

 

 

 

 



Chapter 1: Parallel robots: from the Gwinnett platform to the Tripteron. 

 

16 

1.2. Towards the kinematic decoupling of parallel 

structures. 

 

In order to improve the accuracy of the parallel structures, researchers have 

thought of decoupling/simplifying the control laws of such structures. This is an 

interesting point of view because: 

- decoupling the control laws implies decreasing the number of error parameters 

able to influence the accuracy of a parallel manipulator; 

- decoupling makes it possible to improve the dynamic performances of parallel 

manipulators because there is no need to synchronize the different actuators. 

Several approaches of decoupling the control laws have been proposed in the 

literature. Let us consider these approaches. 

 

 

1.2.1. From the decoupling between position and orientation... 

 

Designing for decoupled parallel manipulators began when Prof. Clavel developed 

the 4-DOF Delta robot (Fig. 1.5), of which position is decoupled from its orientation. 

However, it seems decoupling really started to attract the interest in the 90’s. One of 

the first works on this subject was proposed in [Patarinski 1993]. 

In this paper, the authors proposed four new manipulators with 6 DOF derived 

from the Gough-Stewart platforms, in which the laws controlling the position of the 

end-effector are decoupled from the laws controlling its orientation (Fig. 1.8). For each 

of them, three legs control the position P of the moving platform while the orientation 

is controlled by the actuation of the six legs. 

In this article, the authors also present the kinematic analysis of such manipulators. 

It is shown that their Jacobian matrices (which make it possible to obtain the twist of 

the platform as a function of the velocities of the articulated joints) have a block 

triangular structure, which simplifies the kinematic control laws. 

 The principal drawback of such structures is the necessity of using a triple 

spherical joint at point P. The use of such a triple spherical joint complicates the 

design and can create serious technological problems. However, such design conditions 

are improved in the works [Di Gregorio 2001] and [Legnani 2005]. 

In 1995, Prof. Min Ki Lee presented a new decoupled structure [Lee 1995] that he 

named the double parallel manipulator (Fig. 1.9). 
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(a) basic structure. (b) double tetrahedron. 

  

(c) decoupled parallel manipulator with R1 

joints (at Cj, j = 1 to 6). 

(d) decoupled parallel manipulator with 

both P and R joints (at Cj, j = 1, 2, 3). 

Figure 1.8. – The decoupled parallel manipulators proposed in 

[Patarinski 1993]. 

 

This manipulator is made up of two parallel manipulators with a common central 

axis. The first manipulator with three linear actuators places a movable platform-1 at 

the desired position. In the second manipulator, two linear actuators tilt the platform-2 

to the desired orientation with respect to the base-2 which is rigidly located above 

platform-1. Linear actuators are attached to base-1 and base-2 via universal joints and 

connected to platform-1 and platform-2 via spherical joints. The purpose of the 

                                                 
1 In the remainder of this manuscript, R, P and S will stand for passive rotoid, prismatic and 
spherical joints, respectively, and R and P for actuated rotoid and prismatic joints, respectively. 
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common central axis is to constrain each parallel manipulator in order to have 

respectively 3 and 2 DOF. Adding a rotary actuator on platform-2 allows the decoupled 

parallel manipulator to have 6 DOF. 

 

 

 

Figure 1.9. – The double parallel manipulators proposed in [Lee 1995]. 

 

The same design approach is applied by Prof. Lallemand in the double-Delta 

parallel robot [Lallemand 1997]. The first Delta manipulator places a movable platform 

at the desired position. The second Delta robot makes it possible to orient the end-

effector with respect to the base frame. 

Obviously, the control laws of such structures are simplified because one 

manipulator makes it possible to position the end-effector and the other makes it 

possible to orientate it. However, their major drawback is their design complexity. 
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In 1995 again, the Nabla 6 was presented in [Bernier 1995]. This manipulator is a 

spatial robot with 6 DOF actuated by six linear motors (Fig. 1.10). The centre of the 

platform is linked to the extremity of three rods via a triple spherical joint. The other 

extremity of each rod is linked via spherical joints to a moving solid (B1, B2 and B3 

respectively) which has a linear movement along a linear guide. The three guiding axes 

lie on a same plane and intersect at point G. The angle between the axes is equal to 

120 deg. Three other rods are connected via spherical joints to the platform and to the 

moving solids (B4, B5 and B6). The orientation of the platform is controlled by the 

displacement of the six linear actuators. 

 

 
 

Figure 1.10. – Architecture of the Nabla 6. 

 

As for the manipulators of [Patarinski 1993], the Jacobian matrix has a block 

triangular structure, which simplifies the kinematic control laws. 

Three years later, in the study [Mianowski 1998] the Polman-6 (Fig. 1.11) was 

developed. This manipulator consists of three identical driving mechanisms in the form 

of 2-DOF five bar planar parallelograms mounted in the base in such a way that their 

axes are situated in the lines parallel to x, y and z-axes of the Cartesian coordinate 

system. The moving platform has a form of a half spatial cross with spherical joints 

and is connected to driving mechanisms by the way of three identical parallelograms 

similar to those used in the Delta robot. With such a structure, the position of the end-

effector is controlled by the rotation of the rods (1), (2) and (3) while the orientation is 

controlled by the rotation of the rods (4), (5) and (6). This time, the position of the 

end-effector is totally independent on its position, which implies that the laws are much 

more simplified than for the previous manipulators. 
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Figure 1.11. – Architecture of the Polman-6. 

 

All the presented works dealt with the decoupling between the position and the 

orientation of the parallel manipulators with 6 DOF. However, the robots with 6 DOF 

are not the only manipulators of which control laws can be simplified. The decoupling 

between position and orientation can also be obtained on structures with different 

DOF. As examples, we can notice: 

- spatial structures with two translations and one rotation (Fig. 1.12.a): some 

examples of such structures have been presented in [Chablat 2003]. The 

position of the point P in the xOy plane is controlled by the displacement of 

one planar mechanism controlled by prismatic joints of which direction are e1 

and e2, and the orientation is given by the displacement of the link B3P which 

is actuated through a prismatic joint of which direction is e3. 

- spatial structures with two translations and two rotations (Fig. 1.12.b): the 

example we present for such structures is based on the previous manipulator. 

While the position is controlled by the displacement of one planar mechanism, 

the orientations are obtained by the displacement of the link CP. The position 

of point C is controlled by the simultaneous displacement of linear actuators 

of which directions are e3 and e4; 

- spatial structures with one translation and two rotations (Fig. 1.12.c, d, e): 

presented in [Jin 2004], it is specified that, for all these manipulators, the 

position (S2/R2) is controlled by the displacement of one leg and the 

orientations are given by the simultaneous displacement of the three legs; 
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(a) (b) 

 
 

(c) (d) 

  

(e) (f) 

Figure 1.12. – Structures decoupled between position/orientation with various DOF. 
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- planar structures with three translations and one rotation (Fig. 1.12.f): for this 

manipulator presented in [Yu 2006], the displacement along the x-axis is fully 

independent. The translation along the y-axis is allowed by the simultaneous 

displacements of the prismatic pairs ρ2 and ρ3 and the orientation is obtained 

by their antagonistic displacements. 

It should be noted that the decoupling between position and orientation is not the 

only case of partial decoupling of parallel structures. There are also other kinds of 

simplification of the control laws, as for example the partial decoupling between the 

DOF of manipulators with only translatory movements (Fig. 1.13). For the presented 

mechanism, the translation along the x-axis is decoupled from the translations along 

the other axes. 

Thus, the control laws of the manipulators of which positions are decoupled from 

their orientations have evolved in order to be dependent on fewer parameters, and, as a 

result, to become simpler. However, even if the simplification is already tangible, the 

kinematics relationships are still coupled. Therefore, researchers have continued to seek 

architectures with the simplest control law possible. 

 

 

Figure 1.13. – Other kind of partial decoupling [Jin 2004]. 

 

 

1.2.2. ... to the full-decoupling of the movements. 

 

The next step of the simplification of the control laws of the manipulators is the 

apparition of fully-isotropic manipulators. 

Isotropicity of a robotic manipulator is related to the condition number of its 

Jacobian matrix, which can be calculated as the ratio of the largest and smallest 

singular value. A robotic manipulator is fully-isotropic if its Jacobian matrix is isotropic 
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throughout the entire workspace, i.e. the condition number of the Jacobian matrix is 

equal to one. The condition number is an interesting index characterizing the distortion 

of a unit hypersphere under the linear mapping [Angeles 2003]. It has been developed 

as a kinetostatic performance index of robotic mechanical systems [Merlet 2006b]. 

Thus, the isotropic design aims at ideal kinematic and dynamic performance of the 

manipulator [Fattah 2002]. 

Several works have dealt with the synthesis of fully-isotropic parallel manipulators 

[Bouzgarrou 2004] [Carricato 2002] [Carricato 2004a] [Carricato 2004b] [Gogu 2004] 

[Gogu 2005a] [Gogu 2005b] [Gogu 2005c] [Gogu 2005d] [Gogu 2006a] [Gogu 2006b] 

[Gogu 2006c] [Gogu 2007] [Gosselin 2004] [Gosselin 2007] [Kong 2002a] [Kong 2002b] [Li 

2004] [Richard 2007]. An analysis of these works shows that the Jacobian matrix J of 

such structures mostly corresponds to the identity matrix. Thus the kinematic control 

laws are very simple: 

 

 q
V

&=⎥
⎦

⎤
⎢
⎣

⎡
ω

 (1.1) 

 

where V corresponds to the Cartesian velocity of the platform, ω to its rotational 

velocity and q&  is the vector of the articular velocities. Thus these architectures are 

fully-decoupled, i.e. the displacements around all the degrees of freedom of the platform 

are decoupled. 

The figure 1.14 presents several examples of fully-isotropic manipulators. The 

manipulator of figure 1.14.a is a manipulator with one translation and two rotations. 

The translational displacement of the end-effector along the x-axis is directly obtained 

by the movement of the prismatic pair (2A). One rotation of the platform is performed 

by the displacement of one rotating actuator (2B) and the rotation about the other axis 

is given by the displacement of a second rotating actuator (2C). 

Figure 1.14.b presents a manipulator with two translations and two rotations. The 

laws controlling the position and orientation of the end-effector are fully-decoupled, i.e. 

the displacement of the controlled point along the x and z-axes are respectively 

obtained by the actuation of the prismatic guides (2A) and (2B) and the two 

orientations of the platform are obtained by the rotation of actuators (2C) and (2D) 

respectively. 

The architecture of figure 1.14.c represents a fully-isotropic manipulator with 3 

translations and 1 rotation. Once again, the position and orientation of the end-effector 

are fully-decoupled, i.e. the displacement of the controlled point along the x, y and z-
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axes are respectively obtained by the actuation of the prismatic guides (2A), (2B) and 

(2C) and the rotation of the platform is given by the rotation of link (2D). The same 

design concept is proposed in the manipulator of figure 1.14.d. 

 

 

 

(a) 1 translation and 2 rotations. (b) 2 translations and 2 rotations. 

 

 

(c) 3 translations and 1 rotation. (d) 3 translations and 1 rotation. 

Figure 1.14. – Examples of uncoupled manipulators proposed by Prof. Gogu. 
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It may be mentioned that many works on full-decoupling of the movements deal 

with manipulators with translatory motions. Such a result has been obtained in 

publications as [Carricato 2002] [Carricato 2004b] [Gosselin 2004] [Kong 2002a] [Kong 

2002b] [Li 2004]. Some examples of such structures are presented in figure 1.15. For all 

these manipulators, it is possible to see that the displacement of only one actuator 

controls the translation of the platform along one direction. 

 

 
 

(a) (b) 

 
 

(c) (d) 

Figure 1.15. – Examples of fully-decoupled manipulators with 3 translatory DOF: 

(a) and (b), two manipulators designed in [Carricato 2004b], (c) and (d), two possible 

arrangements of manipulators called Tripteron presented in [Gosselin 2004]  

and [Kong 2002]. 
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Obviously, the most important advantage of such fully-decoupled manipulators is 

their very simple input/output kinematic relationships (and as a result their 

input/output dynamic equations).  

However, despite these very encouraging results, fully-decoupled structures have 

also many drawbacks, such as: 

- the increase in the number of joints, which multiplies the number of parameters 

which can induce errors during the manufacturing stage;  

- the loss of rigidity of the structures; on figures 1.15.a, b and d, one can see that 

the payload is only supported by one leg. This is in contradiction with one of 

the main advantages of the parallel manipulators (each kinematic chain carries 

only a fraction of the total load, which leads to the creation of more rigid 

robots). 

It seems obvious that trying to simplify the control laws of parallel structures and 

conserving their principal advantages is a complicated problem. This is the reason why 

we have tried to find a compromise between the decoupling of the movements and the 

architectural characteristics of the parallel structures, i.e. to find a new kind of 

decoupling which makes it possible to develop parallel manipulators with high-load 

carrying capacities. 

 

 

1.3. Summary. 

 

In this chapter, we have presented a short review of the well known parallel 

structures which were patented and developed for industry. Parallel manipulators have 

attracted several manufacturers because it was promised, they would have greater 

rigidity, better velocities and dynamic characteristics and greater accuracy compared 

with their serial counterparts. However, despite these very attractive advantages, 

companies have mostly failed to deliver parallel structures to the market. 

While the promises of great rigidity and high velocities have already been obtained 

on several structures, the promise of a high degree of accuracy has not been fulfilled 

yet, which can explain the industrial defeat of parallel manipulators. 

Among several factors which may lead to the poor accuracy of the mechanisms, we 

may note: 

- the presence of singularities in the workspace, some of them leading to huge 

positioning errors; however, solutions have already been proposed and validated; 
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- the use of links with lighter masses which leads to a loss of rigidity of the 

structure; such a problem may be easily avoided by the use of more rigid links; 

- manufacturing errors and joint clearances, which can be rectified by calibration 

and an appropriate design; 

- the non-linearity of the kinematic and dynamic models of the parallel 

manipulators which leads to tracking errors. 

In order to solve the problem of the poor accuracy of the parallel structures, several 

researchers have thought of decoupling/simplifying the control laws of such structures. 

Our literature review shows that, in most of the cases, two approaches are developed: 

- decoupling between position and orientation; 

- full-decoupling, i.e. the decoupling of the displacements around all the degrees 

of freedom of the platform. 

Despite these rather encouraging results, the fully-decoupled manipulators have 

drawbacks also, such as a lack of rigidity or the increase in the number of joint. 

In the following chapter, a new approach to the decoupling of parallel structures is 

presented. This approach seeks to find a compromise between the decoupling of the 

movements and the architectural characteristics of the parallel structures. 
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In this chapter, a new family of decoupled parallel manipulators is 

presented. These manipulators are called PAMINSA (PArallel 

Manipulator of the I.N.S.A.). The characteristic of these 

manipulators is the decoupling of the displacements in the horizontal 

plane from the displacements along/about the other directions. Their 

conceptual design, in which the copying properties of pantograph 

linkage are used, makes it possible to obtain a large payload 

capability.  

Based on these considerations, parallel structures with 4 DOF are 

firstly synthesized and a systematic approach for motion generation 

of input point of each limb is presented. It is then shown that this 

approach can be extended to manipulators from 3 to 6 DOF.  

A basic structure with 4 DOF is studied in order to analytically 

demonstrate the design concept. 

A prototype of PAMINSA manipulator is presented and, then, the 

experimental validation of the design concept is carried out. It is 

shown experimentally that the static loads on the rotating actuators, 

which move the platform in the horizontal plane, are cancelled. 
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2.1. Design analysis of PAMINSA manipulators. 

 

It has been shown in the previous chapter that the non-linearity in the kinematic 

and dynamic models of parallel manipulators is not attractive for industrial 

applications. In order to solve this problem, over the last few years, new structures had 

been developed. Our literature review of previous research on decoupling of the 

kinematic and dynamic input/output relationships of parallel manipulators has shown 

that, in most of the cases, two approaches are developed (see chapter 1): 

- decoupling between position and orientation; 

- full-decoupling, i.e. the decoupling of the displacements around all the degrees 

of freedom of the platform. 

Despite rather encouraging results, as for example the increase in positioning 

accuracy due to the linear input/output relationships, we would like to remember that 

the fully-decoupled manipulators have drawbacks also, such as a lack of rigidity or an 

increase in the number of joints. It is obvious that it is not easy to solve the problem of 

the full decoupling of the movements and to conserve the principal advantages of the 

parallel structures. However, there is a need of structures which could be used in 

industrial applications for the manipulation of heavy equipment with great positioning 

accuracy. 

This is the reason why we have tried to find a compromise between the decoupling 

of the movements and the architectural characteristics of the parallel structures. In 

other words, we have changed the statement of the problem: it is not essential that a 

parallel architecture be fully-decoupled, it can also be partially decoupled. But it is 

important to obtain a mechanical architecture with high payload capacities. 

 

Let us consider a new conceptual design approach of decoupling in which the 

displacements of the platform in the horizontal plane (two translations about x and y- 

axes and one rotation about the vertical axis) are independent on its translations along 

the vertical axis. 

Why is this approach more effective? To answer this question, it is necessary to 

take into account the following considerations. 
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2.1.1. A new approach to the problem of the design of decoupled 

parallel manipulators.  

 

An energetic analysis shows that the work of gravity applied on a body moving in 

the horizontal plane is equal to zero (the gravitational forces are always perpendicular 

to the displacements, Fig. 2.1). But the work of the same force when the body is 

moving along the vertical axis is other than zero (the gravitational forces are parallel to 

the displacements). This phenomenon is used in the design of the hand operated 

manipulators [Arakelian 1998] [Arakelian 2004], in which the horizontal displacements 

of the payload are carried out manually and the vertical displacements are actuated. 

This principle is applied in the design of the new parallel PAMINSA manipulators. 

 

 

Figure 2.1. – Gravity work in space: motions in the horizontal plane and along the 

vertical axis. 

 

Let us consider in the following part the mechanical architecture of the suggested 

manipulators.  

 

 

2.1.2. Mechanical architecture of PAMINSA.  

 

The first idea was to develop a parallel architecture of which displacements of the 

platform in the horizontal plane are independent on its vertical displacements. For this 

purpose, the pantograph linkage is used as a leg. The pantograph is a mechanical 

system with two input points Ai and Bi and one output point Ci (Fig. 2.2) [Lu 1996]. 

These input points linearly control the displacement of the output point Ci. Thus, one 

linear actuator connected to input point Bi can control the vertical displacement of the 
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output point Ci and the other linear actuator with horizontal axis can control its 

horizontal displacements (Fig. 2.3). Please note that these motions are completely 

decoupled, i.e. they can be carried out independently.  

 

 

Figure 2.2. – Scheiner pantograph linkage.  

 

  

(a) along a horizontal axis. (b) along a vertical axis. 

Figure 2.3. – Control of the displacement of the pantograph linkage. 

  

Let us suppose that there is a concentrated mass in the point Ci. In this case, the 

load of the gravitational forces on the actuator of the horizontal displacements will be 

equal to zero (the gravitational forces are always perpendicular to the displacements). 

With regard to the actuator of vertical displacements, the load of the gravitational 

forces is not zero (the gravitational forces are parallel to the displacements). Moreover, 

the input/output relationship for vertical displacement is linear and it is determined by 

the magnification factor k of the pantograph (k = AiCi/AiBi). These properties of the 

pantograph mechanism are used in PAMINSA manipulators (this is demonstrated in 

section 2.2). 
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(a) (b) 

Figure 2.4. – PAMINSA with 4 DOF (a); kinematic chain of each leg (b). 

 

Now let us connect three identical Scheiner pantograph linkages with the base and 

the platform as is shown in Fig. 2.4. In the obtained structure, one vertical actuator Mv 

controls the vertical displacement of points Bi of the pantograph linkages, and as a 

result, the vertical displacement of pairs Ci of the moving platform. The generation of 

motion in the horizontal plane is achieved by the actuators M1, M2 and M3 connected 

through two passive pairs (Hi and Ii) with input joints Ai. The movement of each chain 

MiIiHi is planar as well as the displacement of input joints Ai. As a result, the actuators 

Mi control the horizontal displacements of points Ci. 

Thus, it is easy to see that, for the suggested architecture, the vertical translation 

of the platform along z-axis is decoupled from its displacements in the horizontal plane 

(translations about x and y-axes and rotation φ about z-axis). This implies that the 

kinematic models controlling the displacement of the manipulator can be divided into 

two parts:  

- one model for the displacements in the horizontal plane (Fig. 2.5.a); this model 

is equivalent to a 3-RPR manipulator of which first revolute joints are actuated; 

- one model for the translations along the vertical axis (Fig. 2.5.b) equivalent to a 

pantograph linkage. 
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(a) Planar displacements. (b) Vertical translations. 

Figure 2.5. – Kinematic models for the displacements of the manipulator under 
study. 

 

Among the obvious advantages of the suggested manipulator architecture, we have 

noted following points: 

(i) the decoupling of the control powers in two parts makes it possible to raise an 

important payload to a fixed altitude by powerful actuators and, then, to displace 

it on the horizontal plane by less powerful actuators;  

(ii) a great accuracy in the horizontal positioning, because the payload can be locked 

in the horizontal plane by the mechanical architecture of the manipulator (in 

other words, if the position of the vertical actuator is fixed, the altitude of the 

platform cannot change); 

(iii) the cancellation of loads of gravity on the rotating actuators which move the 

platform in the horizontal plane;  

(iv) the simplification of the vertical control based on linear input/output 

relationships. 

It should be noted that the motion generation of the input point Ai can be carried 

out in several ways. All architectures shown in table 2.1 have the same properties 

mentioned above. Their kinematic models can be divided as previously into one model 

for the vertical translations and one model for the planar displacements. As a result, 

the different schematics for input motion generation can be easily distinguished by the 

planar equivalent models of the structure (the pair M’i — or H’i — corresponds to the 

displacement of both pair Mi — or Hi — and pantograph linkage; the grey pairs stand for 

the actuated pairs). All the planar equivalent models presented in table 2.1 are well 

known and their kinematics have been widely studied [Bonev 2003b] [Merlet 1996] 

[Merlet 2006a]. 
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Table 2.1. – Examples of motion generation of the input point Ai of pantograph 

linkages. 

 

Planar equivalent model 

Kinematic chain 
Type Schematics 

3D representation 

 

3-RRR 

 

 
 

 

3-RRR 

 

 
 

 

3-RPR 

 

 
 

 

3-RPR 

 

 
 

 

3-RRP 
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Table 2.1. – Examples of motion generation of the input point Ai of pantograph 

linkages (continued). 

 

 

 3-PPR 

 

 

 

3-PPR 

 

 

 

3-PRR 

 

 
 

 
3-PRR 

 

 

 

 

3-PRP 
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It appears to us that the proposed manipulators could be used in industrial 

applications for the manipulation of heavy equipment with great positioning accuracy. 

But this is not the only utility of such architectures. Various fields are possible 

depending on the type of the industrial application, as for example the use of 

PAMINSA manipulators in micro-manipulation (as long as the magnification factor of 

the pantograph linkages does not enlarge the displacements but, on the contrary, 

reduces the movement quantity). 

 

 

2.1.3. The manipulators from 3 to 6 DOF. 

 

Our observations have shown that the structures with 4 DOF of table 2.1 can be 

modified in order to increase/decrease the number of DOF of the manipulators, without 

changing the properties of the design approach. Table 2.2 presents PAMINSA 

manipulators from 3 to 6 degrees of freedom with a planar equivalent model which is a 

3-RPR structure. Notation PAMINSA-jDnL means that the manipulator has j degrees 

of freedom and n legs (j = 3 to 6, n = 2, 3). In table 2.2, the output parameters, the 

actuated joints, as well as the type of connection between the platform and the legs are 

also represented. Such modifications can be easily extended to the other types of 

kinematic chains represented in table 2.1. 

For each kind of manipulator, the rotations of the legs allow the horizontal 

displacements of the platform at a given altitude with given inclinations. Please note 

that the inclinations about x and y-axes and the translation along z-axis are obtained 

by the vertical translations of points Bi of each leg. 

Each kind of PAMINSA has its own advantages and can be used differently. Let us 

consider the characteristics of each architecture: 

- PAMINSA-4D3L, as was mentioned above, makes it possible to improve the 

positioning accuracy about the vertical axis because the structure is 

kinematically locked during the displacement on the horizontal plane. Such a 

design allows the fixation of an important load in a given altitude, and then its 

positioning on the horizontal plane. 

- PAMINSA-4D2L is able to perform the same task as the PAMINSA-4D3L with 

only two legs. It should be noted that, in this case, the motorization is a bit 

different. The displacements in the horizontal plane are allowed by two rotary 

motors M’i fixed on the base and one linear actuator H’1 which is mounted in 

series with the actuator M’1. 
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Table 2.2. – The family of PAMINSA manipulators from 3 to 6 DOF. 

 

PAMINSA-4D2L 

3D view Planar equivalent model DOF: 3 Translations and 1 

Rotation 

Type of connection between 

the platform and the legs:  

Universal (Cardan) joints 

Actuated joints: 

M1, H1, M2 and Mv 

 

PAMINSA-3D3L* 

3D view Planar equivalent model 
DOF: 3 Translations 

Type of connection between 

the platform and the legs:  

Universal (Cardan) joints 

Actuated joints: 

M1, M2 and Mv 
 

PAMINSA-4D3L*2 

3D view Planar equivalent model 1 DOF: 3 Translations and 1 

Rotation 

Type of connection between 

the platform and the legs:  

Spherical pairs 

Actuated joints: 

M1, M2 and Mv1, Mv2 

 
 

                                                 
*  Two of the three legs of such a type of manipulator are actuated with the same motor and 
stay parallel to each other. 
1  The size of the platform of the planar equivalent model changes with the variation of the 
orientation of the platform of the spatial PAMINSA manipulator. 
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Table 2.2. – The family of PAMINSA manipulators from 3 to 6 DOF (continued). 

 

PAMINSA-4D3L 

3D view Planar equivalent model 
DOF: 3 Translations and 1 

Rotation 

Type of connection between 

the platform and the legs:  

Universal (Cardan) joints 

Actuated joints: 

M1, M 2, M 3 and Mv 

PAMINSA-5D3L 

3D view Planar equivalent model 1 
DOF: 3 Translations and 2 

Rotations 

Type of connection between 

the platform and the legs:    
Spherical pairs 

Actuated joints: 

M 1, M 2, M 3 and Mv1, Mv2 

PAMINSA-6D3L 

3D view Planar equivalent model 1 
DOF: 3 Translations and 3 

Rotations 

Type of connection between 

the platform and the legs:  

Spherical pairs 

Actuated joints: 

M 1, M 2, M 3 and  

Mv1, Mv2, Mv3 
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- PAMINSA-3D3L* can be used in any application where only 3 translations 

along three axis are needed. 

- PAMINSA-4D3L* is useful for any task with 3 translations and one orientation 

about the x or y-axis. 

- PAMINSA-5D3L allows the carrying out of all displacements in the horizontal 

plane with an inclination angle ψ of the platform (Fig. 2.6). The angle of the 

inclination ψ can be defined as an angle between the normal Npl to the platform 

and the normal N of the plane xOy. Thus, it is possible to move the platform 

on the horizontal plane with any inclination relative to the horizontal plane. In 

this case, the inclination is defined by the rotation of the point C3 about the line 

C1C2. 

- PAMINSA-6D3L allows any orientation φ of the platform about the z-axis and 

its displacements on the horizontal plane. Two other inclinations of the platform 

and its vertical translation are allowed. 

 

 

 

Figure 2.6. – The angle of the inclination ψ of the platform for 

the PAMINSA-5D3L. 

 

We would like to mention that for all versions of presented PAMINSA 

manipulators, there is a decoupling between the displacements on the horizontal plane 

and the other displacements. The kinematics of each architecture from 3 to 6 DOF will 

be discussed in chapter 3. 

Among several structures, the manipulators for the generation of Schoenflies 

motions (table 2.1) are more appealing for industrial applications because they allow 

the positioning of a device at a given point and then its orientation about one given 
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axis. However, the next evolution of PAMINSA manipulators showed that it is also 

possible to create fully-decoupled structures based on the pantograph linkages. 

 

 

2.1.4. A particular structure with 3 fully-decoupled translatory 

motions. 

 

Let us consider a fully-decoupled PAMINSA manipulator with translatory motions.  

Fully-decoupling the three possible translations of a manipulator is an important 

challenge for many researchers [Carricato 2002] [Carricato 2004b] [Gosselin 2004] [Kong 

2002a] [Kong 2002b] [Li 2004]. Such manipulators are able to replace the existing serial 

Cartesian robot (XYZ).  

As for the basic versions of PAMINSA with 4 DOF (table 2.1), one vertical 

actuator Mv (Fig. 2.7) controls the vertical displacement of points Bi of the pantograph 

linkages and, as a result, the vertical displacement of pairs Ci of the moving platform. 

  
 

 
 

(a) Kinematic chain. (b) Planar equivalent model. 

Figure 2.7. – Fully-decoupled PAMINSA with 3 DOF. 

 
The horizontal displacements of the manipulator along x and y-axes are allowed by 

the translations of actuators M1 and M3. Let us suppose legs 1 and 2 are disconnected 

from leg 3. Input points A1 and A2 are linked to actuator M1 through the two kinematic 

chains H1I1 and H2I2. Thus, if actuators M1 and Mv are fixed, the permitted passive 

motion of the platform is a pure translation along an axis parallel to joint H1 and H2. 

Analogically, the passive displacement of point J3 of the third leg is a pure translation 

along an axis parallel to H3. As a result, the planar equivalent model of the 

manipulator is the decoupled planar parallel manipulator presented in Fig. 2.7.b. 
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The kinematics of such a manipulator is very simple. Let q1, q3 and qv respectively 

be the articular coordinates of actuators M1, M3 and Mv. The coordinates of the 

controlled point of the platform are x, y and z. Thus we have the following relationship: 

 

 Jqx = , (2.1) 

with 
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where x = [x, y, z]T, q = [q1, q2, qv]
T and k is the magnification factor of the 

pantograph linkages. Thus, the velocity equation is: 

 

 qJx && =  (2.3) 

 

So, J is the Jacobian matrix of the manipulator. Since J is a constant diagonal 

matrix with non zero elements, the manipulator does not have any singularities of Type 

1, 2 and 3 [Gosselin 1990]. However, please note that only cases of singularities appear 

with the degeneracy of the parallelograms AiEiDiFi.  

Our observations showed that, in the typical fully-decoupled manipulators, the 

payload is supported by only one limb. In the case of the suggested structure, the 

distribution of the payload is more efficient because each limb carries only a fraction of 

the load. As a result, the manipulator based on these properties should have a better 

rigidity.  

 

 

2.2. Static analysis of the PAMINSA structures. 

 

In section 2.1, we have stated that the load of the gravitational forces on the 

actuator for the horizontal displacements of PAMINSA manipulators will be equal to 

zero because the gravitational forces are always perpendicular to the displacements. 

This statement is demonstrated in this part. 

Let us derive the potential energy of a basic PAMINSA manipulator with 4 DOF of 

which planar equivalent model is a 3-RPR manipulator with equilateral base and 

platform triangles. Its kinematic chain is represented in figure 2.8. We consider its 
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articular coordinates are represented by q = [q1, q2, q3, qv]
T (respectively corresponding 

to actuators M1, M2, M3 and Mv) and the controlled coordinates are the position [x, y, 

z]T of the centre P of the platform and its orientation φ about z-axis. It is supposed the 

centre of masses of each link Bji is located at their middle. 

 

 
Figure 2.8. – Joints and links description for the static analysis of the studied 

manipulator. 

 

The potential energy V of the manipulator can be expressed as follows: 

 

 ∑
=

+=
3

1i
legpl i

VVV  (2.4) 

 

where Vpl is the potential energy of the platform and 
ilegV is the potential energy of the 

leg i (i = 1, 2, 3). 

Developing equation (2.4) and considering that the coordinates of all of the points 

of the pantograph linkages can be found as a linear combination of the coordinates of 

points 3i, 5i and 9i (appendix A), one can express the terms Vpl and 
ilegV  as follows: 

 

 zgmV plpl =  (2.5) 
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with,  
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In these relations, Cvj (j = 1, 2, 3, 4) are constant terms of which dimension is 

equivalent to a mass multiplied by the gravitational acceleration g, mpl is the mass of 

the platform with the payload, mj is the mass of the j-th joint of the leg i (i = 1, 2, 3), 

mBj is the mass of the link Bji, LBj is the length of link Bji and z5i and z9i are the altitude 

of joints 5i and 9i. The expressions of the coordinates of joints 5i and 9i are given in 

appendix A. 

The efforts τ applied on the actuators by the gravitational effects (i.e. in a static 

mode of operation) are given by: 
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Let τ1, τ2, τ3 and τv be the efforts applied respectively on the actuators M1, M2, M3 

and Mv. Their expressions are given by: 
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It is possible to see that the term Cv2 is only dependent on the masses of the legs of 

the mechanism and does not vary with the increase in the mass mpl of the payload. 

This is the reason why a mass embedded on the platform does not produce any efforts 

on the actuators M1, M2 and M3 which allow the horizontal displacements. 

Thus, we have analytically proved on an example the veracity of the design concept 

of the manipulator. Please however note that this approach could be generalized in 

order to demonstrate it is valuable for any PAMINSA structures. 

The next part will deal with the design of a prototype of the proposed basic 

architecture. 

 

 

2.3. Design of a prototype and experimental validations. 

 

We have developed at I.N.S.A. of Rennes a prototype of PAMINSA-4D3L of which 

kinematic chain is represented in the figure 2.4 (the CAD model of the prototype itself 

is represented in figure 2.9). The aim of this prototype is to validate the design concept 

of PAMINSA manipulators.  

 

 

Figure 2.9. – CAD model of the PAMINSA manipulator. 

 

This part aims to give some design considerations about this prototype. Its aim is 

not to present an exhaustive list of the chosen design solutions but to make the reader 

understand the key points in the design of our manipulator. 

The first stage in the development of our prototype is to choose the dimensions of 

the elements of the robot. 
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2.3.1. Workspace analysis.  

 

The lengths of the links of the robot have been numerically found to ensure the 

dextrous workspace3 of the robot to be a cylinder with the following characteristics: 

- the workspace must be reachable for all the orientation of the platform in the 

interval [—60 deg., +60 deg.]; 

- its radius is equal to 150 mm; 

- its height is equal to 300 mm. 

To choose the lengths of the desired links, we have to deal with these constraints: 

- in order to avoid the negative effects of the degeneracy of the pantograph 

linkages inside the workspace, the angle between links AiEi and EiCi must be 

comprised between 30 and 150 degrees; 

- the passive slider must not collide with the vertical limb GiBi. Therefore, its 

stroke must not be inferior to 50 mm; 

- the lengths of the links have to be minimal in order to minimize the 

deformations of the structure; 

- the radius of the circumscribed circle of the base triangle M’1M’2M’3 cannot be 

superior to 350 mm because of machining constraints; 

- for reasons of design simplicity and in order to limit the manufacturing time, 

the prototype is foreseen symmetrical. 

Therefore, the lengths of the links can be found by experimental tests: 

- the radii of the circumscribed circles of the base and platform triangles 

M’1M’2M’3 and J1J2J3 are respectively equal to 350 mm and 100 mm; 

- the magnification factor of the pantograph k is equal to 3; 

- the lengths of limbs AiEi and EiCi are respectively equal to 420 mm and 630 

mm; 

- the length of the vertical limb GiBi is equal to 442 mm; 

- the maximal stroke of the passive slider is equal to 300 mm. 

The workspace of a PAMINSA manipulator with such characteristics is represented 

in figure 2.10. As the system is symmetrical, we shall only represent the workspace for 

the orientation angles comprised between 0 and 60 degrees. 

                                                 
3 The dextrous workspace is the region which can be reached by the reference point with any 
orientations [Merlet 1998]. 
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(a) φ = 0 deg. (b) φ = 10 deg. 

  

(c) φ = 20 deg. (d) φ = 30 deg. 

  

(e) φ = 40 deg. (f) φ = 50 deg. 

 

(g) φ = 60 deg. 

Figure 2.10. – Workspace of the prototype of PAMINSA. 
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Once we have chosen the lengths of the links, we must deal with the design of the 

different elements of the manipulator. 

 

 

2.3.2. On the design of the prototype elements. 

 

This section will give some information about the realization of our prototype.  

The most important characteristic of the prototype is the following: the 

manipulator should be able to be displaced with at least 20 kg on the platform during 

quasistatic movements.  

Please note that the aim of this prototype is to validate the design concept of 

PAMINSA manipulators. It is obvious that we would have designed an industrial 

version of the prototype differently, using more rigid links and other different 

manufactured components. 

 

From our point of view, the key points in the realization of our prototype are the 

following elements: 

- the pantograph linkages because they ensure the appropriate rigidity of the 

manipulator; 

- the passive slider because the prismatic pairs are usually more complicated to 

design than the rotoid pairs and because, in our particular structure, even a 

small clearance in this joint would lead to the poor accuracy of the manipulator; 

- the vertical guides of limbs BiGi because they must allow the actuation of the 

legs of the mechanism but must also ensure the passive movements of the 

vertical limbs; 

- the actuators because the actuator for the vertical translations has to be 

powerful enough to carry the embedded payload and the actuators for the 

horizontal displacements must be accurate to ensure the correct behaviour of 

the manipulator during its movements. 

The prototype designed using the above considerations is represented in figure 2.11. 

The key points of the design are detailed below.  

So, let us begin with the design of the pantograph linkages. 
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(a) with no payload. (b) with a payload of 200 N. 

Figure 2.11. – Prototype of the PAMINSA manipulator. 

 

 

2.3.2.1. Design of the pantograph linkages.  

 

The optimal design of the pantograph linkages is an important challenge as they 

mainly ensure the correct rigidity of the robot. 

 

 
 

(a) planar view. (b) 3D view. 

Figure 2.12. – CAD model of a pantograph linkage of the PAMINSA manipulator. 
 



Chapter 2: PAMINSA: a new family of decoupled parallel manipulators. 

50 

The pantograph linkages have been made with double hollow aluminium tubes of 

which thickness is equal to 1.5 mm (Fig. 2.12). Taking into account this consideration, 

the deformation of the structure under an embedded load of 20 kg is inferior to 1 mm. 

While the rotational velocities of the axes of the pantograph linkages are quite slow 

(compared with cyclic mechanisms), they have been completed with bearings in order 

to avoid problems of clearance. 

It is obvious that such a design is not optimal. To minimize the deformations of the 

structure, it would have been preferable to create pantograph linkages of which limbs 

are designed in order to resist flexure solicitations (Fig. 2.13). Moreover, from an 

industrial point of view, the numerous joints are not appealing and a less complicated 

design would have been more attractive. However, such a solution has been chosen with 

regards to cost and manufacturing time considerations. 

 

 

(a) planar view. (b) 3D view. 

Figure 2.13. – CAD model of an optimized pantograph linkage. 
 

 

2.3.2.2. Design of the passive prismatic pairs.  

 

The passive sliders are perhaps the most important pairs of the mechanism because 

even a small clearance implies a positioning error of the pantograph linkage which leads 

to the poor accuracy of the controlled point of the platform. Moreover, each passive 

slider has to support a load equal to (1—k) times the load applied to the platform (due 
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to the pantograph properties). This is the reason why we have decided to use profile 

rail guides (Fig. 2.14). 

Such profile rail guides are accuracy rolling bearings for linear movements. The 

contact with rails is made at two contact points. The use of circular balls allows 

absorbing deformations and leads to running modes without backlashes and clearances. 

Moreover, the small difference between the static and dynamic friction coefficients and 

the right response to a solicitation of the actuated system lead to a very high 

positioning accuracy. The references of the chosen guides are CSR SBM15.1.350L 

(running parallelism accuracy in operation: about 10 µm; friction coefficient: 0.005). 

 

 

Figure 2.14. – CAD model of a profile rail guide. 

 

 

2.3.2.3. Design of the guides of the vertical limbs BiGi.  

 

The vertical guides must allow at the same time the actuation of the pantograph 

linkages by the rotary motors but also the passive translations and rotations of the 

vertical limbs BiGi. 

The limbs BiGi will be manufactured with hollow steel tubes with a thickness of 4.7 

mm, which will provide deformations superior to 0.1 mm under the small efforts 

applied on these elements. 

In order to ensure the vertical translations of the limbs, we use plain bearings with 

high accuracy which will reduce the angular clearances. The plain bearings will be fixed 

to the actuation systems and will rotate at the same speed as the limbs BiGi which is 

preferable to avoid any lockage (Fig. 2.15).  
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Figure 2.15. – Design of the guides of the vertical limbs. 

 

 

2.3.2.4. Motorization for the horizontal displacements.  

 

The displacements on the horizontal plane of the developed prototype are obtained 

by the use of three DC Harmonic Drive motors (ref. 3557 012 CR) connected at the 

legs by means of toothed-belt transmissions (Fig. 2.16).  

 

 
 

Figure 2.16. – Actuation system of each leg. 
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These motors have the following characteristics: 

- gear ratio: 50; 

- rated output torque: 3.5 N.m; 

- rated input speed: 3500 rad.min-1; 

- transmission accuracy: 51.<  arcmin; 

- repeatability: 10.±<  arcmin. 

The choice of tooth-belt transmissions has been preferred to the use of gears 

because such a design solution is simple to use and it respects the desired 

characteristics for the velocities (quasistatic displacements) and effort transmission in 

the mechanism. 

 

 

2.3.2.5. Motorization for the vertical translations.  

 

The translations along the vertical axis are obtained by the use of one DC Parvex 

motor (ref. RX 320 D) connected to the legs by means of a ball-screw transmission. 

This actuated system has the following characteristics: 

- ball-screw pitch: 10 mm; 

- rated output torque: 1.1 N.m; 

- rated input speed: 1300 rad.min-1; 

- encoder: 10000 steps. 

The use of a DC motor with a ball-screw transmission for the vertical translations 

has been preferred to the use of hydraulic jacks or another actuation system because: 

- a DC current generator is already necessary for the control of the 3 rotary 

actuators for the planar displacements; 

- it is less constraining than an hydraulic system (an hydraulic pump should be 

added in order to pressurize the system and a DC motor needs less maintenance 

than an hydraulic device); 

- a DC motor is strong enough to support the loads that we want to apply on the 

platform (20 kg). 

 

In this section, we have presented the design considerations of the mechanical key 

points of our prototype. The next part will deal with the experimental validation of the 

design concept. 
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2.3.3. Experimental validation of the decoupling concept. 

 

In order to validate the suggested design concept, we have measured the input 

torques/force of the actuators with a payload of 200 N applied on the platform (Fig. 

2.11.b) and without this (Fig. 2.11.a) for the trajectory given in figure 2.17. The 

obtained results are presented in figure 2.18. 

 

 

  

Figure 2.17. – Position of the platform for z = —0.6 m and φ = 0 deg. 

 

 

The analytical demonstrations (section 2.2) were validated by experimental tests. 

The curves with and without payload for the 3 rotating actuators (Fig. 2.18.a, b, c) are 

superposed. We can see that they are similar, i.e. the loads on these actuators are 

cancelled. The small differences might result from friction in the joints, manufacturing 

errors, elasticity of the links and tracking errors. 

Regarding the vertical actuator (Fig. 2.18.d), it supports the payload and the 

increase in the input force is significant. 

Thus, we can note that the obtained measures prove all theoretical results 

presented above. 
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(a) Input torque of actuator M1. (b) Input torque of actuator M2. 

  

(c) Input torque of actuator M3. (d) Input force of actuator Mv. 

Figure 2.18. – Input torques/effort on the actuators with and 

 without an embedded load of 200 N. 

 

 

2.4. Summary. 

 

In this chapter, a new family of decoupled parallel manipulators is presented. This 

new family is based on the hand-operated systems approach. The structures are carried 

out with the use of pantograph linkages. Among the obvious advantages of such an 

approach, we may note: 

- the decoupling of the control powers in two parts, making it possible to raise an 

important payload to a fixed altitude by powerful actuators and, then, to 

displace it on the horizontal plane by less powerful actuators;  
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- a great accuracy in the horizontal positioning because the payload can be locked 

in the horizontal plane by the mechanical architecture of the manipulator (in 

other words, if the position of the vertical actuator is fixed, the altitude of the 

platform cannot change); 

- the cancellation of static loads on the rotating actuators which move the 

platform in the horizontal plane;  

- the simplification of the vertical control based on linear input/output 

relationships. 

First, different possible architectures with 4 DOF have been presented. It is shown 

that their control models can be divided between two parts: a model for the 

displacements in the horizontal plane and a model for the vertical translations. This 

approach can be systematized for manipulator from 3 to 6 DOF. Particularly, a new 

architecture with 3 fully-decoupled translatory motions is disclosed. 

Then, the input efforts of a basic version of the PAMINSA with 4 DOF have been 

calculated using an energetic approach. It has been analytically shown that the load 

embedded on the platform does not produce any supplementary efforts on the actuators 

for the horizontal displacements. 

Finally, a prototype of PAMINSA and experimental tests have been presented. It 

was shown that the experimental tests prove the validity of the suggested design 

concept. 

The next step of the analysis of these new manipulators is the study of their 

kinematics, and particularly their singularities, because they may be the worst 

drawbacks of parallel manipulators. 
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Chapter 3 

 

 

Singularity Analysis of PAMINSA 

Manipulators  

 

 

3.1.  Determination of the singularity loci. p. 58 

3.2.  The self motions of PAMINSA manipulators. p. 67 

3.3.  Summary. p.  83 

 

 
This chapter presents the analysis of the singular configurations of 

PAMINSA manipulators of which planar equivalent models are the 3-

RPR mechanisms.  

In the first section, the singularity loci of PAMINSA manipulators 

from 3 to 6 DOF are determined by studying the degeneracy of the 

determinant of the Jacobian matrix of the manipulators. It is shown 

that the singular configurations of the manipulators are similar to 

those of the 3-RPR mechanisms.  

In the second section, it is also shown that one particular case of 

singularity corresponds to an unusual type of self motion. Thus, the 

geometric conditions for such a type of self motion are derived by 

studying the degeneracy of the direct kinematic model and the global 

behaviour of the manipulators inside the gained degree of freedom is 

kinematically interpreted. A practical example is discussed and 

experimental validations, performed on the prototype of PAMINSA-

4D3L, are presented. 

The obtained results can be used to design manipulators without 

self motions, to optimize the singularity-free workspace of this type of 

robots and to choose the optimal architectures of PAMINSA 

manipulators. 
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3.1. Determination of the singularity loci. 

 

From an industrial point of view, the complexity and the numerous occurrences of 

singular configurations seem to be the worst drawback of parallel robots because these 

configurations reduce the size of the workspace, which is already smaller than that of 

similarly-sized serial robots. 

The singularity analysis has attracted the attention of several researchers and 

different studies have been published [Bandyopadhyay 2004] [Glazunov 1990] [Gosselin 

1990] [Karouia 2005] [Ma 1992] [Merlet 1989] [Pernkopf 2002] [Saint-Onge 2000] [Wen 

2003] [Wolf 2004] [Zhao 2005] [Zlatanov 1994]. [Zlatanov 1994] presented a method that 

can serve to identify the singularities of both passive and active chains via a study of 

the deficiency of the rank of an augmented non-square Jacobian matrix. However, this 

analysis is quite difficult and not useful for PAMINSA manipulators. The singularity 

analysis presented here is carried out in the Gosselin and Angeles approach [Gosselin 

1990], based on the properties of the Jacobian kinematic matrices of the mechanical 

structure, i.e. when the Jacobian matrices relating the input velocities and the output 

velocities become rank deficient. Three types of singular configurations can be observed: 

- Type 1 singularities are configurations where the platform loses a degree of 

freedom because the serial chain of one of the legs is singular; 

- Type 2 singularities are configurations where an uncontrollable motion of the 

platform occurs; 

- Type 3 singularities are configurations where both Type 1 and Type 2 singular 

configurations appear at the same time. 

The singularity analysis presented here is devoted only to PAMINSA manipulators 

from 3 to 6 DOF of which planar equivalent models are 3-RPR mechanisms (table 2.2). 

Similar approaches could be used in order to find the singular configurations of the 

other types of PAMINSA architectures (table 2.1). 

PAMINSA are parallel manipulators in which singular configurations can be 

separated into two cases: singularities of the pantograph linkage used as a leg and 

singularities of the simplified schematic representation of PAMINSA manipulators in 

which the pantograph mechanism is replaced by a PRPS chain (Fig. 3.1). The pair H’i 
corresponds to the free translational displacement of both prismatic pair Hi and 

pantograph linkage (Fig. 3.2). The actuators M’i and M’vi correspond to actuators Mi 

and Mvi of which displacements are copied by the pantograph linkage. In PAMINSA 

manipulators, these singularities are not coupled and may be examined separately.  
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It may be noted that the singular configurations of pantograph linkage can be 

found via an analysis of the articulated parallelogram. They are well known and we 

shall not deal with them. The study below is devoted only to the singularities of the 3-

PRPS parallel structure. 

 

 

 
Figure 3.1. – Simplified schematic representation of the i-th actuated leg. 

 

 
 

Figure 3.2. – Schematics of one leg of PAMINSA-6D3L. 

 

 

3.1.1. Inverse kinematics of PAMINSA manipulators. 

 

In the general case, the kinematics of the PAMINSA-6D3L describes the kinematics 

of the other manipulators (Fig. 3.2). The position of the centre of the platform P and 

the orientation of the moving frame {M} (attached to the platform) in the base frame 

{B} (the x-axis of the base frame is collinear to O1O2 and the z-axis is vertical; its 
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origin is located at the centre of the circumscribed circle of O1O2O3) are represented by 

x = [x, y, z, φ, ψ, θ]T and the actuated variables by q = [q1, q2, q3, qv1, qv2, qv3]
T. 

Parameters x, y, z, φ, ψ, θ represent the three components of the position of point P 

and the three rotation angles of the platform, respectively. The angles φ, ψ and θ can 

be obtained by expressing the directional cosines in terms of z-x-z Euler angles φ, ψ, θ. 

Parameters q1, q2, q3, qv1, qv2, qv3 represent the rotations of the three legs of the 

manipulator about the z-axis of frame {B} and the vertical position of points Bi (i = 1, 

2, 3), respectively. Note that for the analyses of PAMINSA-4, 5, 6D3L, O1O2O3 and 

C1C2C3 represent equilateral triangles. 

The closed loop relations relative to x and q can be expressed as (for i = 1, 2, 3): 

 
 0cos)(sin)( =−−−= iOiCiiOiCij qyyqxxf , for j = i (3.1) 

 
 0=−= Civij zqkf , for j = i + 3 (3.2) 
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where:  

- k is the magnification factor of the pantograph; 

- ibOi Rx γcos= , ibOi Ry γsin=  with )/,/,/( 2665 πππγ −−=i ; 

- Rpl and Rb are the platform and base radii respectively; 

- Rot(α,w) is the matrix representing the rotation of angle α (α = φ, ψ, θ +γi) 

around the w-axis of the intermediate frame (w = x, y and z); 

- xCi, yCi and zCi are the coordinates of point Ci . 

 

 

3.1.2. Singularity analysis of the PAMINSA-6D3L. 

 

Differentiating equations (3.1) and (3.2) with respect to time, we obtain a 6- 

dimensional system: 

 

 0qBtA =+ &  (3.4) 
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where: 

- T
vvv qqqqqq ],,,,,[ 321321 &&&&&&& =q  is the vector of the derivatives of the articulated 

joints; 

- t is the twist of the platform expressed in the base frame; 

 and: 
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with 22 )()( OiCiOiCii yyxx −+−=ρ , [ ] [ ]TCiCiCi
T

PCiPCiPCii zzyyxxzyx −−−== ,,,,PC  

and [ ]Tiii qq 0sincos=d  (for i = 1, 2, 3). 

Singularities of parallel manipulators appear when matrices A and B are rank-

deficient. We will deal only with the singularities of Type 1 and 2. Type 3 singularities 

are a mix of both Type 1 and 2 singular configurations. 

Examining matrix B of the PAMINSA with 6 DOF, Type 1 singularities appears 

when: 

 

 0)det( 321
3 == ρρρkB . (3.7) 

 

This expression is achieved when ρi is equal to 0 (i = 1, 2, 3), i.e. points Oi, Bi and 

Ci are aligned. In such a configuration, one rotation of the input link Mi cannot bring 

to the displacement of the platform (Fig. 3.3). 
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Figure 3.3. – Example of Type 1 singularity. 

 

Type 2 singularities appear when det(A) = 0. Examining matrix A of the 

PAMINSA with 6 DOF, it appears that its determinant is a product of two factors: 

 

 )det()det()det( 21 AAA =  (3.8) 
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Factorizing the determinant of matrix A1, it is possible to obtain: 

 

 ψcos)det( =1A  (3.10) 

 

This means that, if the inclination angle ψ  is equal to ±π/2, the rotation about the 

axis x of angle ψ is impossible and small rotations of the platform are allowed (Fig. 

3.4.a). 

The study of det(A2) is much more interesting. One can see that the matrix A2 is 

composed of the planar components of the wrenches Ri [Dimentberg 1965] of which 

directions are located in the horizontal plane and which are perpendicular to the 

directions of the passive prismatic pairs (Fig. 3.1). Therefore, the PAMINSA-6D3L will 

have the same Type 2 singularities as the 3-RPR manipulator [Bonev 2003b]. 

 



3.1. Determination of the singularity loci. 

  63 

 

(a) singular configuration when ψ = ±π/2,

planar front view of the manipulator. 

(b) singular configuration when ∆ = 0, 

top view of the 3-PRPS manipulator. 

 

(c) singular configuration when ρi = +∞, 

top view of the 3-PRPS manipulator. 

Figure 3.4. – Example of Type 2 singularity for PAMINSA-4, 5, 6D3L. 

 

 

Factorizing the determinant of matrix A2, one can obtain: 

 

 )8/(27)det( 321
3 ρρρ∆= plR2A  (3.11) 

 

Thus, det(A2) = 0 if: 

- for any fixed altitude, the platform is on a conic ∆ = 0 located in the horizontal 

plane. The coefficients of ∆ only depend on the orientation angles of the 
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platform and are given in appendix B. Such a configuration appears when the 

three wrenches Ri intersect a unique line perpendicular to the horizontal plane 

and passing through the point W (Fig. 3.4.b) [Bonev 2003b]. In such a case, this 

line is the instantaneous axis of rotation of the moving plate; 

- the length ρ1, ρ2 or ρ3 tends to +∞, what means that the legs of the manipulator 

are parallel. Thus, the platform is able to translate along the direction of the 

passive prismatic pairs H’i (Fig. 3.4.c). 

Please note that the expressions of det(A) and det(B) do not depend on the 

altitude z of the platform. 

 

 

3.1.3. Singularity analysis of the PAMINSA-5D3L. 

 

It can be shown that the PAMINSA with 5 DOF can be assimilated to a 

PAMINSA with 6 DOF of which first two linear actuators have the same 

displacements. Thus, angle θ is equal to 0. To find its singularity loci, these constraints 

have to be introduced in the expressions of the determinant of matrices A and B.  

As for the previous case, the manipulator is in Type 1 singularity when ρi is equal 

to 0 (i = 1, 2, 3), i.e. when points Oi, Bi and Ci are aligned. Furthermore, the 

manipulator is in Type 2 singularity when: 

- the inclination angle ψ  is equal to ±π/2. This case corresponds to figure 3.4.a; 

- for any fixed altitude, the platform is on a conic Λ = 0 located in the horizontal 

plane. The coefficients of Λ only depend on the orientation angles φ and ψ of 

the platform. Their expressions are given at appendix B. This case corresponds 

to figure 3.4.b; 

- the length ρ1, ρ2 or ρ3 tends to +∞. This case corresponds to figure 3.4.c. 

The kinematic interpretation of these singularities is the same as for the previous 

manipulator. 
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3.1.4. Singularity analysis of the PAMINSA-4D3L. 

 

Similarly to the previous case, the PAMINSA with 4 DOF can be assimilated to a 

PAMINSA with 6 DOF of which linear actuators have the same displacements. Thus, 

angles ψ and θ are equal to 0. These new constraints have to be introduced in the 

expressions of the determinant of matrices A and B.  

From this point, we shall not deal with the Type 1 singularities because, for the 

whole studied PAMINSA structures, they are not different from the previous 

manipulators. So, the Type 2 singularities appear when: 

- the angle φ is equal to )/(cos 1
bpl RR−±  (Fig. 3.4.b); 

- the length ρ1, ρ2 or ρ3 tends to +∞ (Fig. 3.4.c). 

- for any fixed altitude, the platform is situated on a circle located in the 

horizontal plane, of which radius depends on angle φ (Fig. 3.4.b). The expression 

of this circle is: 

 

 φcos22222
bplplb RRRRyx −+=+  (3.12) 

 

 

3.1.5. Singularity analysis of the PAMINSA-4D3L*. 

 

The PAMINSA-4D3L* can be assimilated to a PAMINSA with 5 DOF of which two 

of the legs stay parallel. Thus, angles φ and θ are equal to 0. Moreover, the base 

triangle must not be equilateral. 

Its Type 2 singularities appear when: 

- the inclination angle ψ  is equal to ±π/2. This case corresponds to figure 3.4.a; 

- the three legs are parallel, which corresponds to πnqq += 31  (n = 0, 1, 2, …) 

(Fig. 3.5.a). In such a configuration, the manipulators gains one self motion of 

translation along the passive prismatic guides; 

- the three wrenches Ri intersect in the same point, which will appear when 

2/1 π±=q  (Fig. 3.5.b). In such a case, the vertical line passing through W is 

the instantaneous axis of rotation of the moving plate. 
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(a) singular configuration when 

πnqq += 31  (n = 0, 1, 2, …), 

top view of the 3-PRPS manipulator. 

(b) singular configuration 

when 2/1 π±=q , 

top view of the 3-PRPS manipulator. 

Figure 3.5. – Example of Type 2 singularity for PAMINSA-3, 4D3L*. 
 

 

3.1.6. Singularity analysis of the PAMINSA-3D3L*. 

 

The PAMINSA-3D3L* can be assimilated to a PAMINSA-4D3L* of which all linear 

actuators have the same displacements. Thus, angles φ, ψ and θ are equal to 0. 

Therefore its Type 2 singularities appear when: 

- the three legs are parallel, which corresponds to πnqq += 31  (n = 0, 1, 2, …) 

(Fig. 3.5.a); 

- the three wrenches Ri intersect in the same point, which will appear when 

2/1 π±=q  (Fig. 3.5.b). 

 

 

3.1.7. Singularity analysis of the PAMINSA-4D2L. 

 

This manipulator is a bit different from the others. However, the screw theory will 

help us to solve the problem of its singular configurations. Geometrically, it is easy to 

see that its Type 2 singularities appear when the 3 wrenches Ri intersect in one point 

(obligatorily J1), i.e. when 2/3 πφ ±=q  (Fig. 3.6). The unconstrained motion 

corresponds to small rotations of the platform about point J1. 
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Figure 3.6. – Example of Type 2 singularity for PAMINSA-4D2L. 

 

Thus, in this part, we have found the singular configurations of the family of 

PAMINSA manipulators of which planar equivalent models are the 3-RPR structures. 

However, with the presented approach, it is not possible to characterize the true nature 

of each kind of Type 2 singular configuration (infinitesimal or finite gained motion). It 

will be shown in the next part that we need to study the degeneracy of the direct 

geometric model in order to fill in this gap. 

 

 

3.2. The self motions of PAMINSA manipulators. 

 

We have just seen that Type 2 singular configurations can be divided into two 

classes, depending on the nature of the gained degree(s) of freedom, being either 

infinitesimal or finite, i.e. self motion. However, merely studying the Jacobian, one 

cannot identify the nature of Type 2 singularities. 

Symmetry and, more precisely, design conditions that simplify the generally too 

complex direct kinematics of parallel robots are often privileged by robot designers. 

Unfortunately, such design conditions usually lead to self motions, which are certainly 

the worst type of singularity. Furthermore, as we shall show in this section, self 

motions also occur in unsymmetrical seemingly general designs without simplified direct 

kinematic models. Hence, it is essential that such self motions be well understood in 

order to be avoided. 

Several papers discuss the existence of self motions in parallel robots. Not 

surprisingly, most of them deal with the Gough-Stewart platform, of which direct 

kinematic model leads to as much as 40 real solutions, for a relatively general design. 

Design conditions simplifying the direct kinematics of Gough-Stewart platforms, and 
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subsequently leading to self motions, are given in [Husty 1994] [Husty 2000] [Karger 

1998a] [Karger 2001] [Karger 2003] [Wohlhart 2003]. A classification of all self motions 

of the Stewart-Gough platform is presented in [Karger 1998a]. It is shown that the self 

motions can be translations, pure rotations, generalized screw motions, motions 

equivalent to the displacements of spherical four-bar mechanisms, or more complex 

spatial motions. 

The Stewart-Gough platform is not the only parallel robot with self motions. A few 

other parallel robots having self motions have also been studied. For example, in 

[Bonev 2006], it is shown that all singularities of the special 3-RRR spherical parallel 

robot, known as the Agile Eye, are self motions. The analysis of self mobility of spatial 

5R closed-loop mechanisms with one degree of freedom are presented in [Karger 1998b]. 

Reference [Bandyopadhyay 2004] discusses the determination of generalized analytical 

expressions for the analysis of self motions and presents several examples for both 

planar and spatial mechanisms with legs composed of R joints. 

Recently, the self motions of a particular design of a 3-RPR planar parallel robot 

with congruent equilateral base and platform were studied in [Chablat 2006], mainly 

from a theoretical point of view. This section basically generalizes this study and will 

analyse the self motions of general 3-RPR planar parallel robots, which have the same 

kinematics and singularities as the PAMINSA manipulators studied above. 

 

 

3.2.1. Direct kinematics of the 3-RPR planar parallel manipulator. 

 

We have already said we need more information for characterizing the complete 

kinematic behaviour of the robot inside Type 2 singular configuration. This can be 

found by studying the degeneracy of the direct kinematic model of the manipulator. 

The following analysis is based on the schematics of the robot shown in Fig. 3.7. 

The revolute joints M’i are fixed on the base and are actuated. Each leg is composed of 

one passive prismatic joint, placed between points M’i and Ki, and of one passive 

revolute joint Ji, connected to the mobile platform. 

We consider that we control the position [x, y]T of point P of the mobile platform 

and the orientation φ of the platform. The active joints variables are the angles qi (i = 

1, 2, 3). The origin of the base frame is chosen at point O. Points O and P are located 

at the centres of the circumscribed circles of triangles M’1M’2M’3 and J1J2J3, respectively 

(Fig. 3.8). Finally, let ρi = M’iKi and li = KiJi (an offset). 
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Figure 3.7. – Schematic representation of the studied 3-RPR planar parallel robot. 

 

 

(a) fixed base (b) mobile platform 

Figure 3.8. – Parameterisation of the base and platform triangles. 
 

 

Thus, it is possible to express the position of points M’i and Ji as: 
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where ),,( bbbbi βααπαγ +−−+=  and ),,( plplplpli βααπαδ +−−+= . 

From these expressions and referring to [Bonev 2003b], one can determine the 

closure equations of the system: 
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Figure 3.9. – Geometric interpretation of the direct kinematics. 

 

It was shown in [Merlet 1996] that the solution of the direct kinematics of a 3-RPR 

planar parallel robot is equivalent to finding the intersection points between an ellipse 

and a line, but no analytical expressions are given. Let us dismount the revolute joint 

at J3. For given active joint variables q1 and q2, points J1 and J2 are constrained to 

move along two lines, L1 and L2, respectively, and the mobile platform undergoes a 

Cardanic movement [Sekulie 1998] [Tischler 1998] (Fig. 3.9). As a result, any points Q 

from the mobile platform, including P and J3, describes a curve E(Q), which can be an 

ellipse, two parallel lines or a doubly-traced line segment. Thus, the direct kinematics 

can be solved by finding the intersection points between the curve E(J3) and the line 

L3. 

Let us now derive the expression of the elliptic curve E(J3). It is possible to write 

the following closure equation: 
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 31111113 JJJKKM’OM’OJ +++= . (3.15) 

 

This yields the following expression:  
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  (3.16) 

 

In this expression, all parameters are known except ρ1 and φ. However, they are 

dependent on each other. Without loss of generality, we chose the parameter φ as 

independent variable and express ρ1 as a function of φ, using the following closure 

equation: 

 

 222221111121 M’KKJJJJKKM’M’M’ ++++= . (3.17) 

 

Developing this relation, we obtain: 
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 (3.18) 

 

Expressing ρ1 and ρ2 as a function of φ from (3.18), we obtain: 

 

 φφρ sincos 321 jjjj aaa ++= ,   (j = 1, 2)  (3.19) 

 

where the expressions for aji are given in appendix C. Reintroducing expression (3.19) 

in equation (3.16), we find the following relation: 
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where bji (j = 1, 2) are given in appendix C. 
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Thus, for any fixed input parameters qi , we have found in (3.20) the parametric 

expression of the elliptic curve E(J3) depending on the orientation φ of the platform. 

Furthermore, we know that point J3 belongs to line L3, of which expression is: 

 

 333’3’333 cos)sin(tan qlyxqlxqy MM ++−+= .  (3.21) 

 

Introducing (3.20) into (3.21), we find: 

 

 )cos(cos)sin(sin0 3333’33’3333 JMMJ yqlyqxqlxq −++−+= .  (3.22) 

 

Developing (3.22), 

 

 0sincos 321 =++ φφ ccc ,  (3.23) 

 

where ci are given in appendix C. Thus, from (3.23), it is possible to find the solution 

for φ: 
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Note that this solution is not unique and corresponds to the two assembly modes of 

the robot. Finally, it is possible to find the expression for the position using the 

following closure equation: 

 

 PJJKKM’OM’OP 111111 +++= , (3.25) 

 

which yields: 
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In a Type 2 singularity, the lines normal to the directions of the prismatic joints 

and passing through points Ji are concurrent or parallel (Fig. 3.10) [Bonev 2003b].  
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(a) Infinitesimal rotation about W 

 

(b) Finite translation (self motion) along the 

direction of the prismatic joints 

Figure 3.10. – Type 2 singularities of the 3-RPR manipulator. 

 

 

These lines coincide with the direction of the forces Ri applied to the platform by 

the actuators.  

However, we need more information for characterizing the complete kinematic 

behaviour of the robot inside such a singular configuration. This can be found by 

studying the degeneracy of the direct kinematic model. Thus, there are Type 2 

singularities if: 

- E(J3) is an ellipse tangent to L3: in such a case, the directions of the three forces 

Ri intersect in one point W, and the robot gains one infinitesimal rotation about 

this point (Fig. 3.10.a);  

- L1, L2 and L3 are parallel and E(J3) degenerates to two lines parallel to L1 and L2 

(and L3): in such a case, the directions of the three forces Ri are parallel and the 

manipulator gains one self motion of translation (Fig. 3.10.b);  

- E(J3) degenerates to a doubly-traced line segment parallel to L3 (this case will 

be discussed in the following section). 
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3.2.2. Analysis of self motions. 

 

The self motions are certainly the worst type of singularity a parallel robot could 

cross. If the robot enters such a singularity, as there are infinitely many possible poses 

for the same active-joint variables, the information on the pose of the platform is lost. 

As a result, it may be impossible to exit such a singularity (even with external help 

such as inertia) and the robot may break. For the robot under study, one could think 

that such a singularity exists only when L1, L2 and L3 are parallel. In this case, we 

observe the apparition of a self motion of translation, corresponding to the case shown 

in Fig. 3.10.b. 

It turns out that a second case of self motion will appear when E(J3) degenerates 

into a doubly traced line segment parallel to L3. This case corresponds to a Cardanic 

self motion (Fig. 3.11). 

Note that such a singularity is a particular case of the singular configurations where 

the three forces Ri intersect at one point W (Fig. 3.10.a).  

 

 

 
 

Figure 3.11. – Cardanic self motion. 
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3.2.2.1. Design conditions leading to Cardanic self motions. 

 

We have to find the geometric conditions which lead to Cardanic self motions. 

Thus, E(J3) degenerates into a doubly-traced line segment if yJ 3 is linearly dependant 

on xJ 3 for 0)sin( 21 ≠− qq . Rewriting equation (3.20), one can obtain: 
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E(J3) will degenerate to a line if the determinant of matrix b vanishes. This would 

be the case if: 

 

 plqq ε+= 21 , where 2/παε ±= plpl .  (3.28) 

 

Thus, for such a condition, it is possible to find that: 

 

 211133 )( bbxmy JJ +−= ,  (3.29) 

 
where )tan( 2 plqm δ+=  and πβδ nplpl += 2/  (n = 0, 1, 2, …). 

 

 

 

Figure 3.12. – Example of Cardanic motion for a 3-RPR planar parallel robot with 

Rpl = 0.2 m, Rb = 0.35 m, l1 = l2 = 0.05 m, αpl = 36° and βpl = 72°. 
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Therefore, when L1 and L2 make an angle of εpl and L2 and L3 make an angle of δpl, 

the manipulator gains a Cardanic self motion (Fig. 3.12). However, such a motion 

appears for several given particular configuration of the active joint space, while it is 

possible to see in [Chablat 2006], for a particular design of 3-RPR planar parallel robot 

with congruent equilateral base and platform triangles, that if condition (3.28) is 

satisfied, there exists an infinity of active joint configurations in which the robot gains 

a Cardanic self motion. Thus, it may be possible to find other conditions for the robot 

to have Cardanic self motion for any values of the angle q2.  

This particularity appears for configurations where q1 = q2 + εpl, if the line E(J3) 

always coincides with L3 for any values of q2. This means that one of two lines L4 or L’4 

(which are parallel to E(J3) and at the distance l3 from E(J3)) passes through M’3, for 

any given values of q2 (Fig. 3.11). Their equations are given by: 

 

 33213311’44/ cos)sin( qhbqhbxmy +++−=LL  where h3 = ±l3.  (3.30) 

 

Line L4 or L’4 passes through one fixed point F from the base, for any q2, if and only 

if: 
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Developing (3.31) and simplifying, one finds the coordinate xF of the fixed point: 

 

 )()tansin(coscos 2qgRx plplplbbF −+= αββα   (3.32) 

where: 
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Thus, one fixed point exists if and only if g(q2) = 0 for any q2, i.e. if: 

 

 0sin)sin(sin 321 =+−− plplplpl hll εεδδ . (3.34) 

 

Therefore g(q2) = 0 if: 



3.2. The self motions of PAMINSA manipulators. 

 

  77 

 
pl

plplpl ll
l

ε
εδδ

sin

)sin(sin 21
3

−−
±= .  (3.35) 

 

Introducing equation (3.35) into equations (3.30) and (3.32), one can determine the 

coordinates of the fixed point F of the line L4 or L’4: 
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Since F = M’3, the following conditions on the base and platform shapes must hold: 

 

 plb αα =  and plb ββ = .  (3.37) 

 

Thus, the base and the mobile platform should be similar triangles. 

In summary, any 3-RPR planar parallel robot will have Cardanic self motions if 

and only if plqq ε+= 21  and plqq δ+= 23 . Moreover, if the base and the mobile 

platform are similar and if plplplpl lll εεδδ sin/))sin(sin( 213 −−±= , there are 

Cardanic self motions for any values of angle q2. Of course, these conditions would have 

been different if we had examined the degeneracy of E(J1) for given values of angles q2 

and q3 (or E(J2) for given values of angles q1 and q3). However, such conditions could 

be easily found by a circular permutation of the indices of the articulated legs. 

 

 

3.2.2.2. Kinematic analysis of the Cardanic self motion. 

 

Let us now analyse the allowable displacement of the centre P of the platform when 

the base and the mobile platform are similar triangles, plqq ε+= 21 , 

and plplplpl lll εεδδ sin/))sin(sin( 213 −−±= . The expressions of the coordinates of 

point P, function of q2, are found using the following closure equation: 

 

 PJJKKM’OM’OP 222222 +++= . (3.38) 
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Developing this expression, one can obtain: 
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where the expression of ρ2 is given at equation (3.19). Developing and introducing 

relations (3.28), (3.35) and (3.37) in (3.39), it can be found that: 
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From the previous expression, it is possible to conclude that, in such a particular 

configuration, varying the orientation φ of the mobile platform, point P moves on a 

circle S centred in O’ of which radius is Rpl (Fig. 3.13). The coordinates of point O’ are 

defined by: 
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Computing the expressions of the coordinates of point W, the intersection point of 

the three wrenches Ri, one obtains: 
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Thus, W is located on a circle K centred in O’ of which radius is 2Rpl. It is also 

possible to observe that the platform and vector O’P rotate in opposite senses. 

One can rewrite expression (3.40) as follows: 
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with 
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For a given angle φ and variable angle q2, expression (3.43) represents the 

singularity loci (for the Cardanic self motions) of the manipulator with specified 

parameters. The obtained result corresponds to the parametric expression of an 

epicycloid P. The epicycloids P1 and P2 represented in Fig. 3.13 are the curves 

corresponding to angles φ = 0 and φ = π respectively. 

 

 

 
 

Figure 3.13. – Schematics of a Cardanic self motion of the studied manipulator 

with Rpl = 0.1 m, Rb = 0.35 m, l1 = l2 = 0.07 m, l3 = 0 m, αb = 30° and βb = 120°. 
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3.2.3. Examples and experimental validations. 

 

As was previously said, the prototype of the PAMINSA manipulator presents the 

same Type 2 singularities as a symmetric 3-RPR planar parallel robot, which will be 

studied in this section. Indeed, the planar equivalent model of the prototype of the 

PAMINSA manipulator corresponds to a 3-RPR planar parallel robot of which base 

and platform are non-identical equilateral triangles and of which offsets are zero, li = 0. 

These conditions correspond to a robot with Cardanic self motions within its 

workspace. 

It has been shown in section 3.1.4 that the prototype, which corresponds to a 

PAMINSA-4D3L, is in a Type 2 singularity when: 

 

 +∞=iρ , for i = 1, 2 or 3  (3.45) 

or 

 )/(cos 1
bpls RR−±== φφ   (3.46) 

or 

 φcos22222
plbplb RRRRyx −+=+ .  (3.47) 

 

Condition (3.45) implies that the platform is located at an infinite distance from the 

centre of the base frame. This is equivalent to the fact that the three legs of the 

manipulator are parallel (Fig. 3.10.b). Condition (3.46) implies that the robot gains one 

degree of freedom for any considered position of the workspace, for a fixed platform 

angle φs. Finally, condition (3.47) implies that the manipulator gains one degree of 

freedom when the point P is located on a circle centred in O of which radius is 

φcos222
plbplb RRRRR −+= . Thus, we have to find which of the last two conditions 

correspond to Cardanic self motions. 

Introducing the constraints li = 0, αb = αpl and βb = βpl into equation (3.40), one 

can find: 
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Raising the norm of vector OP to square, we obtain equation (3.47). Thus, this 

particular design of 3-RPR planar parallel robot gains one Cardanic self motion when 

the end effector is positioned on a circle P centred at O and with radius equal to 

φcos222
plbplb RRRRR −+=  (Fig. 3.14). The circles P1 and P2 represented on 

Fig. 3.14 are the circles P corresponding to angles φ = 0 and φ = π respectively. 

Note that, for the angle φs, the robot gains one infinitesimal degree of freedom at 

any position, except if point P is located on a circle centred in O of which radius is 

equal to splbplbs RRRRR φcos222 −+= . Such a position still corresponds to a 

Cardanic self motion. Moreover, for Rpl = Rb, the angle φs corresponds to a self motion 

of translation [Chablat 2006]. This means that, when the platform centre is located on 

the circle P1, the platform gains two self motions at the same time. 

Observing equation (3.48), it is possible to conclude that the gained degree of 

freedom is a motion along a circle S centred in O’ of which radius is Rpl. The 

coordinates of point O’ are: 
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Note that the circle S is tangent to circles P1 and P2. This means that the maximal 

singularity-free workspace is delimited by the circle P1. The radius of the circle P1 is 

equal to: 

 

 plb RRR −=1 .  (3.50) 

 

Dividing equation (3.50) by Rb yields: 

 

 bplb RRRR /1/1 −==ν . (3.51) 
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Figure 3.14. – Schematics of a Cardanic self motion of the studied manipulator with 

Rpl = 0.1 m, Rb = 0.35 m, αb = 30° and βb = 120°. 
 

 

Thus, the smaller the ratio Rpl/Rb, the greater the value of ν. So it is possible to 

conclude that, for having a larger singularity-free workspace, the rate Rpl/Rb has to be 

smaller. However, the smaller the mobile platform with respect to the base, the less 

accurate is its orientation. 

In order to demonstrate the previous results, we have positioned the PAMINSA 

prototype in a singular configuration with Cardanic self motion (x = 0 m, y = —0.25 m, 

φ = 0°). This position is shown on Fig. 3.15.g. For such a configuration, the three 

actuators are blocked. However, it is possible to see on Figs. 3.15.a to 3.15.l that the 

platform is not constrained and undergoes a Cardanic self motion when external force is 

applied to the platform. 
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Figure 3.15. – Cardanic self motion of the mobile platform of the PAMINSA prototype 

starting from the configuration x = 0 m, y = —0.25 m, φ = 0° (view from below). 

 

 

3.3. Summary. 

 

In this chapter the singularity analysis of PAMINSA with three, four, five and six 

degrees of freedom is presented. The singularities have been determined in analytic 

form by an algebraic approach based on the analysis of the properties of the Jacobian 

matrices. The nature of each kind of singularity is discussed and kinematically 

analysed. 

We also analyse the self motions of the PAMINSA manipulators under study. Two 

kinds of Cardanic self motions have been identified: for only several active-joint 

configurations in the case of a relatively general design and for infinitely many active-

joint configurations in the case of designs with similar base and platform triangles and 

special conditions on the offsets.  

For many different values of the design parameters, the robot will have Cardanic 

self motions and it is important to have exact knowledge of them. The results, in terms 

of singularity loci and of associated finite displacements, have been validated on an 
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actual robot prototype. These results can be used to optimize the singularity-free 

workspace of this type of robots and to choose the optimal architectures of PAMINSA. 

Finally, we would like to mention that, in this work, the singularity analysis was 

carried out by taking into account only the kinematic relationships. In practice, this 

problem is much more complicated and it may be studied with kinetostatic and 

dynamic aspects.  

Moreover, the singular configurations limit the workspace of parallel manipulators, 

which is less than that of serial manipulators. In the following chapter, a means of 

enlarging the workspace of parallel manipulators by passing through singular 

configurations will be proposed. 
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Chapter 4 

 

 

Increase of Singularity-Free Zones in the 

Workspace of PAMINSA Manipulators 

Using Mechanisms of Variable Structure 
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4.5.  Summary. p. 103 

 

 

This chapter deals with the solution that consists of increasing the 

singularity-free zones in the workspace of PAMINSA manipulators. 

The singularity zones are defined no longer only via a kinematic 

analysis of the degeneracy of the Jacobian matrix of the theoretical 

perfect model of the manipulator, but also by the quality of force 

transmission. 

 For this purpose, the pressure angle is used as an indicator of 

force transmission. The optimal control of the pressure angle for a 

given trajectory of the manipulator is obtained by means of legs with 

variable structure. The suggested procedure used in the 

determination of the optimal structure of parallel manipulators is 

performed on a 3-RPR mechanism, of which kinematic parameters 

are equivalent to the prototype of the PAMINSA-4D3L.  

It is illustrated by means of two numerical simulations, which 

show that the singularity-free workspace is increased to 100% of the 

real workspace of the manipulator. 



Chapter 4:  Increase of singularity-free zones in the workspace of PAMINSA manipulators  
 using mechanisms of variable structure. 

86 

4.1. The quality of motion transmission and the pressure 

angle.  

 

It has already been said that the closed-loop of parallel manipulators limits the 

motion of the platform and creates special singular zones inside the workspace [Merlet 

2006a]. The workspace of parallel manipulators, which is less than that of serial 

manipulators, is reduced and limits their functional performance. 

One of the most evident solutions to this problem is the introduction of 

complementary actuators in the initial system, which make it possible to eliminate the 

singular configurations of parallel manipulators by means of optimal control of the 

motion [Alvan 2003] [Glazunov 2004]. However, it is an expensive solution to the 

problem because of the use of additional actuators. Moreover, the control of the 

manipulator caused by actuation redundancy is much more complicated. 

In this chapter we propose a new solution, which is carried out by using 

mechanisms of variable structure, i.e. mechanisms of which structure parameters can be 

altered. With regard to the determination of singularity-free zones inside the 

workspace, we propose a kinetostatic approach taking into account the force 

transmission.    

 

 

4.1.1. The pressure angle. 

 

As seen in the previous chapter, the physical interpretation of a singularity in 

kinematics refers to those configurations in which the number of degrees of freedom of 

the mechanical structure changes instantaneously, either the manipulator gains some 

additional, uncontrollable movements or loses some degrees of freedom. Algebraically, a 

singularity analysis is based on the properties of the Jacobian matrices of the 

mechanical structure, i.e. when the Jacobian matrices relating the input speeds and the 

output speeds, become rank deficient (see chapter 3). However, it is also well known 

that, when a parallel manipulator is close to a singular configuration, it loses its 

rigidity. Moreover, the quality of motion transmission is deteriorated and, as a result, 

the manipulator loses its payload capability. Thus, the singularity zones must be 

avoided, and an indicator of the quality of motion transmission close to the singular 

configurations of parallel manipulators must be defined. In the present work, we use a 

kinetostatic approach for the evaluation of the quality of motion transmission by using 

the pressure angle, well known in the mechanism design but not so often applied to 
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parallel mechanisms. One defines the pressure angle as an angle between vectors of 

force and velocity of a point at which force is applied. Thus, for the best force 

transmission, it is desirable to have the pressure angle close to zero. One also knows the 

transmission angle, which is equal to 90° minus pressure angle and, accordingly, the 

transmission angle is desirable if it will be close to 90°. 
 S. Balli and S. Chand [Balli 2002] considered several examples to determine the 

transmission angle of planar and spatial mechanisms, particularly, for mechanisms with 

two degrees of freedom. G. Sutherland and B. Roth [Sutherland 1973] showed that the 

input link of a spatial mechanism tends to move the output link when the transmission 

wrench is not reciprocal to the output link velocity screw. On the base of this 

consideration, a general index of motion transmission for spatial mechanisms is 

proposed. The quality of motion and force transmission was successfully summarized in 

the work of G. Sutherland [Sutherland 1981] and C.-C. Lin and W.-T. Chang [Lin 

2002]. The study of G. Sutherland and B. Roth [Sutherland 1973] was generalized for 

any spatial single-loop mechanism in the recent study C. Chen and J. Angeles [Chen 

2005]. O. Alba-Gomez, P. Wenger and A. Pamanes [Alba-Gomez 2005] have evaluated 

the quality of motion in the three-degrees-of-freedom manipulators by means of a 

kinetostatic indicator, which is similar to the pressure angle.      

In the present study, we use the pressure angle as an indicator of the quality of 

motion transmission and, in our opinion, this shows the nature of the inaccessibility of 

parallel manipulators’ singular zones better than the kinematic approach.  

 

 

4.1.2. Application on the PAMINSA-4D3L. 

 

Let us consider the basic version of PAMINSA-4D3L. The Type 2 singularities of 

such a mechanism do not depend on the altitude of the platform, i.e. the force 

transmission on the platform does not change with the altitude. This is the reason why 

it is possible to analyse solely the force transmission of its simplified planar equivalent 

model: the 3-RPR manipulator (Fig. 4.1). 

The workspace of the manipulator can be defined as the totality of positions that a 

moving platform can reach. However, these accessible positions are limited not only by 

geometrical parameters and the type of actuation of the parallel mechanism, but also 

by force transmission. Especially in the configurations close to the singular positions, 

the force transmission becomes unfavorable and the transmission of motion can be 

disrupted, and as a result, leads to the breakdown of the parallel mechanism or 
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undesirable motion. The pressure angle is an important criterion for the analysis of the 

inaccessible zone of parallel manipulators.  

However, when the number of links or the degree of freedom increases, the 

determination of the pressure angles becomes more complicated. Let us exanimate the 

pressure angles of the considered manipulator. We consider that the revolute pairs M’i 

are actuated and passive joints are located at H’i and Ji. 

 

 
 

Figure 4.1. – Planar parallel manipulator 3-RPR. 

 

Thus, each kinematic chain includes one actuated and two passive pairs. The 

wrench acting to the output link is reciprocal to the unit vectors situated along the 

axes of non-actuated pairs. Let Ei 1, Ei 2, Ei 3 (Fig. 4.2) be the unit vectors of the axes of 

kinematic pairs.  

 

 

 
Figure 4.2. – Representation of the planar parallel manipulator 3-RPR in 3D. 
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Here, Ei 1 corresponds to the rotating actuated pair, Ei 2 and Ei 3 correspond to 

sliding and rotating passive pairs accordingly (Ei 1 and Ei 2 directed perpendicular to the 

plane of the mechanism). These unit screws in any position of the mechanism have the 

following Plucker coordinates:  

 

 [ ]0100 0
1

0
11 yixii ee=E , (4.1) 

 

 [ ]0000 0
2

0
22 yixii ee=E , (4.2) 

 

 [ ]0100 0
3

0
33 yixii ee=E , (4.3) 

where: 
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2 −= ,  (4.5) 

 

 Jixi ye =0
3 , Jiyi xe −=0

3 .  (4.6) 

 

xM’i, xJi, yM’i, yJi are the coordinates of the point M’i and Ji, ρi is the distance 

between the points M’i and Ji. 

The Plucker coordinates of the unit screws can be described in the matrix E: 
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The determinant of the matrix E vanishes if the axes Ei1 and Ei3 coincide. This 

corresponds to the Type 1 singular configuration of the manipulator [Bonev 2003b]. 

We can obtain the wrenches Ri, which are reciprocal to the unit vectors of the axes 

of the passive kinematic pairs [Dimentberg 1965]. They can be written as:  

 

 [ ]0000 iziyixi rrr=R .  (4.8) 
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The conditions of reciprocity are:  

 

 00
2

0
2 =+ iyyiixxi rere ; 000

3
0
3 =++ iziyyiixxi rrere .   (4.9) 

 

The equation (4.9) means that each connecting kinematic chain determines one 

wrench of zero pitch (vector). It is perpendicular to the axis Ei2 and intersects the point 

Ji. The coordinates of wrenches in the form of the matrix R are given by: 
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In Type 2 singular configurations, it has been shown that the system of the 

wrenches Ri degenerates and that they intersect in the same point or are parallel (see 

chapter 3). This can be shown by the representation of the components of this matrix. 

If all the wrenches are parallel, then the first two columns are proportional. If all the 

wrenches intersect in the same point W = [xW, yW]T, then the coordinate 0
izr  can be 

written as: 

 

  WyWxiz xryrr 11
0 −= .  (4.11) 

 

In the matrix R, the third column is a linear combination of the first and seconds 

columns: 
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To find the pressure angle, we consider the wrenches Ri and the directions of the 

velocities of the points Ji determined by the twists reciprocal to these wrenches. The 

velocity of the point Ji is determined by the two wrenches R2 and R3. One can find the 

twist t1 = [0, 0, w1z, v1x, v1y, 0] reciprocal to the wrenches R2 and R3 using the 

equations:  
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 00
111111 =++ zzyyxx rwrvrv  ; 00

212121 =++ zzyyxx rwrvrv . (4.13) 

 

It is obvious that the axis of the twist t1 is situated perpendicular to the plane of 

the mechanism and intersects the centre W1 of velocities of the platform according to 

the wrenches R2 and R3 (Fig. 4.2). Without loss of generality, the twist t1 can be 

expressed as: 

 

 [ ]0100 11 WW xy −=1t . (4.14) 

 

The velocity VJ1 of point J1, when the leg 1 is disconnected of the platform, has the 

coordinates (Fig. 4.2): 

 

  111111 JWJzxxJ yyywvv −=−= , 111111 JWJzyyJ xxxwvv +−=+= . (4.15) 

 

Finally, the pressure angle can be written as (Fig. 4.2):  

 

 ( )1J11J1 RVRV /cos 1
1

−=α . (4.16) 

 

It was noted that, in the singular configurations, all the pressure angles are equal to 

90°. Indeed, in this case, the axis of the wrench R1 intersects the axes of the wrenches 

R2 and R3 and the velocity VJ1 is perpendicular to the axis of the wrench R1. 

Thus, the pressure angles can be determined at the joints of each kinematic chain 

by similar ways. Then, the maximum values of the three pressure angles can be 

compared with their limit values. In this way, we have mapped the whole workspace of 

the parallel manipulator to detect the inaccessible zones with unfavourable values of 

the pressure angles (see section 4.3).    

If the prescribed path of the parallel manipulator intersects any unacceptable zone 

in which the pressure angle has an inadmissible value, the transmission of the motion 

can be disrupted. In this case, it is necessary to change the structural parameters of the 

mechanism, i.e. the input motions. This will be shown in the following section. 
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4.2. The legs with variable structure. 

 

Figure 4.3 shows a schematic of the modified leg with the added articulated dyad. 

The rotating actuators are mounted on the base and connected by electromagnetic 

clutches with the links M’iKi and M’iH’i. These two input links cannot be actuated 

simultaneously, and the input motion can be transmitted either by link M’iKi or M’iH’i. 
In this way, we can obtain the legs of the mechanism with different structural 

parameters, which allows an increase in the singularity-free zones in the workspace of 

the considered parallel manipulator. 

 

 

 
Figure 4.3. – Leg with variable structure. 

 

By example, one or all of the pairs M’i (Fig. 4.1) can be passive and the prismatic 

pairs can be actuated by the chain M’iKiH’i. In this case, the actuator torque is 

transmitted to link M’iKi, which becomes an input link and moves the prismatic pair.   

Let us consider the system of wrenches existing in this case. The link H’iJi is 

constrained by two wrenches of zero pitch Ti1 and Ti2. The axis of wrench Ti1 is 

perpendicular to the line M’iJi and the axis of wrench Ti2 coincides with the axis of the 

link H’iKi. The unit screw [ ]0100 ’0
2

’0
2 yixii ee=2E’  of the twist of link H’iJi is 

reciprocal to wrenches Ti1 and Ti2. This twist is of zero pitch and is perpendicular to 

the plane of the mechanism. Ti1 and Ti2 coincides with the point of intersection of the 

axis E’i2 and the plane of the mechanism. If link H’iKi is perpendicular to the link H’iJi,, 

then the wrenches Ti1 and Ti2 are parallel and the instantaneous motion of the link 

H’iJi is translational. The wrench Ri can be determined using the equation analogous to 

(4.9). The pressure angle can be found using the equation (4.16). 

Thus, in each position we determine m pressure angles corresponding to all m 

degrees of freedom. Then we consider the maximum value of these angles. Then, by 
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such a way, we can determine the pressure angles corresponding to the different 

structures distinguished by different input links and obtain all possible workspace with 

singularity-free zones. It is examined in the next section. 

 

 

4.3. Plotting of singularity-free zones taking into account 

the pressure angles. 

 

In this section, we would like to show the singularity-free zones in the workspace of 

a 3-RPR parallel manipulator with modified legs. These zones have been determined by 

analysing the maximum values of the pressure angles.  

For numerical simulations, we consider a 3-RPR parallel manipulator, in which the 

base triangle M’1M’2M’3 is equilateral with a radius equal to 0.35 m (Fig. 4.1) and the 

platform also represents an equilateral triangle with a radius equal to 0.1 m. The 

rotation of the revolute joints M’i is limited to ±90°. For the added dyads, M’iKi = KiH’i 
= 0.25 m. The articulated dyads are always located on the left of the prismatic pairs as 

is shown in Fig. 4.3 and the translation of the prismatic pairs are limited relative to the 

joints M’i and H’i by values (M’iH’i)min = (H’iJi)min = 0.05 m. 

Taking into account that the manipulator can be actuated either by links M’iKi or 

by links M’iH’i, for given output parameters x = [x, y, φ]T of the platform, we have 8 

different combinations of actuation, i.e. we have 8 different combinations of input 

parameters presented below (underlined letters show the input pairs, R for input links 

M’iH’i with input angles qi and P for input links M’iKi with input displacements ρi): 

 

RRR: RPR- RPR- RPR : q(1) = [q1, q2, q3]
T 

RRP: RPR- RPR- RPR : q(2) = [q1, q2, ρ3]
T 

RPR: RPR- RPR- RPR : q(3) = [q1, ρ2, q3]
T 

RPP: RPR- RPR- RPR : q(4) = [q1, ρ2, ρ3]
T 

PRR: RPR- RPR- RPR : q(5) = [ρ1, q2, q3]
T 

PRP: RPR- RPR- RPR : q(6) = [ρ1, q2, ρ3]
T 

PPR: RPR- RPR- RPR : q(7) = [ρ1, ρ2, q3]
T 

[ ] ⇒= Tyx φ,,x  

PPP: RPR- RPR- RPR : q(8) = [ρ1, ρ2, ρ3]
T 
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Tables 4.1 and 4.2 show the workspaces of each case of actuation with 0° and 45° 
orientation angles (the origin of the fixed base frame is located at the centre of the 

equilateral triangle M’1M’2M’3). In these figures, several zones can be seen, which 

correspond to the variations of the maximum values of the pressure angle for given 

positions of the platform. The contrast intensity shows the variations of the pressure 

angle (see Fig. 4.4). 

 

 

 

Figure 4.4. – The contrast intensity corresponding to the pressure angle.  

 

Thus, the black zones are the surfaces where the pressure angle has inadmissible 

values, and as a result, these are the zones which cannot be reached by the parallel 

mechanism.  

 

 

(a) φ = 0 deg. (b) φ = 45 deg. 

Figure 4.5. – The reachable workspace of the parallel manipulator  

with modified legs. 
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Table 4.1. – Maximum values of the pressure angles (φ = 0°). 

  
(a) Actuators: RRR. (b) Actuators: PPP. 

  
(c) Actuators: PRR. (d) Actuators: RPP. 

  
(e) Actuators: RPR. (f) Actuators: PRP. 

  
(g) Actuators: RRP. (h) Actuators: PPR. 
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Table 4.2. – Maximum values of the pressure angles (φ = 45°). 

  
(a) Actuators: RRR (b) Actuators: PPP 

  
(c) Actuators: PRR (d) Actuators: RPP 

  
(e) Actuators: RPR (f) Actuators: PRP 

  

(g) Actuators: RRP (h) Actuators: PPR 



4.3. Plotting of singularity-free zones taking into account the pressure angles. 

 

  97 

 

 

Table 4.3. – Total value of singularity-free volumes for each case of actuation. 

 

φ = 0° (workspace surface: 0.21 m²) φ = 45° (workspace surface: 0.2 m²) 

Type of 
actuation 

Singularity-free 

zones, α ≤ 75°  
(m²) 

Singularity-free 
zones relative to 

the whole 
workspace 

Singularity-free 

zones, α ≤ 75°  
(m²) 

Singularity-free 
zones relative to 

the whole 
workspace 

RRR 0.137 65% 0.147 74% 

PPP 0.181 86% 0.152 76% 

PRR 0.152 72% 0.158 79% 

RPR 0.152 72% 0.158 79% 

RRP 0.152 72% 0.158 79% 

RPP 0.155 74% 0.165 83% 

PRP 0.155 74% 0.165 83% 

PPR 0.155 74% 0.165 83% 

 

The table 4.3 shows the ratio between the total value of singularity-free volumes 

and the total workspace for each case of actuation (for two examined cases: φ = 0° 

and φ = 45°). 
Figure 4.5 shows the reachable workspace of the modified parallel mechanism with 

legs of variable structure. We can see that the workspace of the modified manipulator 

is only composed of singularity-free zones and the whole workspace of the manipulator 

is reachable (increase to 100%). 

 

 

4.4. Trajectory planning. 

 

In order to obtain the best structural architecture of the manipulator for a given 

trajectory, we propose in this section a procedure that allows the determination of the 

optimal system of actuation. This algorithm is based on the control of the pressure 

angles in the joints of the manipulator along the given trajectory (Fig. 4.6). 

Two numerical examples are considered below in order to illustrate the application 

of the suggested design procedure.    
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Figure 4.6. – Procedure for the determination of the optimal structure of the 

parallel manipulator taking into account the pressure angles. 

 

 

4.4.1. Example 1. 

 

For the given parallel manipulator (Fig. 4.1) with legs of variable structure (Fig. 

4.3), we want to generate the trajectory by a straight line from the initial position 

P1 = (x1 = 0, y1 = 0, φ1 = 0) to the final position P2 = (x2 = —0.25 m, y2 = 0, φ2 = 0). 

YES

Input data: the geometrical parameters of 
the parallel mechanism, the given trajectory 
and the limit value of the pressure angle. 
 

Estimation of the pressure angles in the 
joints along the trajectory for all possible 
structures of the parallel mechanism with 
variable architecture. 
(The pressure angles are inferior to the 
limit value?) 

This parallel manipulator 
cannot carry out the given 
trajectory. 

Is there the possibility of the motion 
generation by one structure for which the 
maximum value of the pressure angle along 
the trajectory is always less then the limit 
value?   

 
Trajectory planning. 

Decomposition of the given trajectory in 
several parts and generation of the motion 
by different structures (it would be 
desirable if the trajectory can be carried out 
by minimal structural changes). 

NO

YES 

NO 
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The estimation of the pressure angle along the given trajectory shows that the best 

structural solution to generate motion is the RPR-RPR-RPR mechanism, i.e. when the 

first actuator is connected to the link M’1H’1 and the two others with the links M’2K2 

and M’3K3. In this case, the maximum values of the pressure angles in the joints are 

always less than the limit value.  

In order to illustrate the variations of torques for the examined case, we developed 

a model of the manipulator with the given trajectory using the ADAMS software. The 

gravity field was disabled and a force parallel to the x-axis and equal to 100 N was 

applied to the platform and the friction coefficients in the prismatic pairs were equal to 

0.01. The obtained torques are shown in figure 4.7. It is easy to observe that the 

torques have admissible values along the trajectory. 

Please note that, in absence of gravity, these torques are completely equivalent to 

those of the rotary actuators of a PAMINSA mechanism. 

 

   

(a) Actuator 1 (b) Actuator 2 

 

(c) Actuator 3 

Figure 4.7. – Torques of the actuators. 
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4.4.2. Example 2. 

 

For the given parallel manipulator (Fig. 4.1) with legs of variable structure (Fig. 

4.3), we want to generate the trajectory by straight lines from the initial position  

P1 = (x1 = 0, y1 = 0, φ1 = 0) to the second position P2 = (x2 = 0.1 m, y2 = —0.25 m, 

φ2 = 0) and, then, to the final position P3 = (x3 = —0.1 m, y3 = —0.25 m, φ3 = 0).  

 

  

(a) Actuator 1 (b) Actuator 2 

 

(c) Actuator 3 

Figure 4.8. – Torques of the actuators. 

 

In this case, the estimation of pressure angle shows that it is impossible to carry out 

the given trajectory by one structural system. First, the trajectory from initial position 

P1 = (x1 = 0, y1 = 0, φ1 = 0) to the second position P2 = (x2 = 0.1 m, 

 y2 = —0.25 m, φ2 = 0) must be carried out by the RPR-RPR-RPR mechanism. Then, 
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from the second position P2 = (x2 = 0.1 m, y2 = —0.25 m, φ2 = 0) to the final position 

P3 = (x3 = —0.1 m, y3 = —0.25 m, φ3 = 0), the trajectory must be carried out by the 

RPR-RPR-RPR mechanism. Thus, the suggested solution based on these structural 

architectures makes it possible to obtain the optimal actuation system of the 

manipulator considering the pressure angle.  

The obtained torques are shown in figure 4.8. We can note that the torques have 

admissible values along the trajectory but there is a discontinuity in the point P2 

caused by the structural change of the parallel mechanism. 

It should be noted that the mechanism of variable structure shown above was 

developed by means of the added articulated dyads, but, it is obvious that such a 

mechanism can be designed on the base of the screw or cam systems, rhombic 

pantographs, etc. 

In a similar way, one obtains the increase of singularity-free zones in the workspace 

of planar parallel manipulators only with revolute pairs (and, as a result, in the 

workspace of PAMINSA manipulators with corresponding structural parameters). In 

figure 4.9 is illustrated a 3-RRR parallel manipulator with the legs of variable 

structure. 

 

 

 

Figure 4.9. – Planar parallel manipulator 3-RRR with legs of variable structure. 
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The rotating actuators are mounted on the base and connected by electromagnetic 

clutches with the links AiCi and AiDi. These two input links cannot be actuated 

simultaneously and the input motion can be transmitted either by the link AiCi or AiDi. 

In this way, we can obtain the leg’s mechanism with different structural parameters 

and carry out the given trajectory taking into account the limit value of the pressure 

angle. We shall not treat the procedure of resolution because it differs from the 

previous case only by the determination of the pressure angle. 

The legs of variable structure can also be applied on general spatial mechanisms, as 

for example the 3-RPS mechanism (Fig. 4.10). A schematic of the modified leg with the 

added articulated dyad which makes it possible to change the input motion is shown on 

figure 4.11. The rotating actuators are mounted on the base and connected by 

electromagnetic clutches with the links AiDi and AiCi. 

 

 
 
 

Figure 4.10. – Spatial parallel manipulator 3-RPS. 
  

 
 

Figure 4.11. – Planar representation of the leg with variable structure. 
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The input motion can be transmitted either by the link AiDi or AiCi. In this way, 

we can obtain the leg of the mechanisms with different structural parameters, which 

changes the direction of the wrench Ri1 and makes it possible to increase the 

singularity-free zones.  

This approach can be applied for mechanisms with different degrees of freedom and 

different structures of legs. Particularly at the point Ai of the 3-RPS mechanism can be 

situated a universal joint. Then, each kinematic chain determines only one wrench Ri of 

which direction can be changed by choosing different input links. Thus, by such a way, 

we can determine the pressure angles corresponding to the different structures and 

obtain all possible workspace with singularity-free zones. 

 

4.5. Summary. 

 

A procedure for the increase of singularity-free zones in the workspace of planar 

parallel manipulators is presented in this chapter. The procedure is based on the known 

kinematic singularity equations and the control of the pressure angles in the joints of 

the manipulator along the given trajectory of the platform. The zones that could not be 

reached by the manipulator were detected. To increase of the reachable workspace of 

the manipulator, the legs of variable structure are proposed. Such a solution makes it 

possible to obtain the best structural architecture of the manipulator for any trajectory. 

The design of the optimal structure of the planar parallel manipulator 3-RPR (which is 

the planar equivalent model of the PAMINSA-4D3L) is illustrated by two numerical 

simulations. 

Please note that this approach can be generalized to several planar or spatial 

manipulators. We believe that the suggested method is a useful tool for the 

improvement of the functional performances of parallel manipulators with singular 

zones. 

In the following chapter, another method for enlarging the workspace of parallel 

mechanisms is also presented. This method is based on the optimization of the dynamic 

parameters of the manipulators. 
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Chapter 5 

 

 

Determination of Optimum Dynamic 

Parameters of Parallel Manipulators for 

Passing through the Singular Positions 

 

 

5.1.  Path planning of parallel manipulators in the presence of singular positions. p. 106 

5.2.  Optimal dynamic conditions for passing through Type 2 singularities. p. 107 

5.3.  Illustrative examples. p. 110 

5.4.  Experimental validation of obtained results. p. 124 

5.5.  Summary. p. 125 

 

 

In this chapter, for the first time, the optimal dynamic conditions 

are determined, which allow the stable generation of motion inside 

the singular zones.  

The obtained results show that the general condition for passing 

through a singularity can be defined as the following: the end-effector 

of the parallel manipulator can pass through the singular positions 

without perturbation of motion if the wrench applied on the end-

effector by the legs of the manipulator and the external loads is 

orthogonal to the twist along the direction of the uncontrollable 

motion (in other terms, if the work of applied forces and moments on 

the platform along the uncontrollable motion is equal to zero). 

This condition is obtained from the inverse dynamics and 

analytically demonstrated by the study of the Lagrangian of a general 

parallel manipulator. The obtained results are illustrated by two 

numerical simulations on a planar 5R mechanism and a PAMINSA 

manipulator with 4 DOF and validated by experimental tests. 
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5.1. Path planning of parallel manipulators in the presence 

of singular positions. 

 

The singularity analysis of parallel manipulators has attracted the attention of 

several researchers and different studies have been published. Previous works on this 

problem may be arranged in three principal groups:  

- kinematic study of the singular positions of parallel manipulators (chapter 3); 

- kinetostatic study of the singular configurations taking into account the force 

transmission (chapter 4); 

- path planning of parallel manipulators in the presence of singular positions; this 

point is developed in the remainder of this section.  

The further study of singularity in parallel manipulators has revealed an interesting 

problem that concerns the path planning of parallel manipulators under the presence of 

singular positions, i.e. the motion feasibility in the neighborhood of singularities. In this 

case the dynamic conditions can be considered in the design process. One of the most 

evident solutions for the stable motion generation in the neighbourhood of singularities 

is to use redundant sensors and actuators (see chapter 4). However, it is an expensive 

solution to the problem because of the additional actuators and the complicated control 

of the manipulator caused by actuation redundancy. Another approach concerns with 

motion planning to pass through singularity [Bhattacharya 1998] [Dasgupta 1998] [Jui 

2005] [Kemal Ider 2005] [Maas 2006] [Nenchev 1997] [Perng 1999], i.e. a parallel 

manipulator may track a path through singular poses if its velocity and acceleration are 

properly constrained. This is a promising path for the solution of this problem. 

However only a few research papers on this approach have addressed the path planning 

for obtaining a good tracking performance but they have not adequately addressed the 

physical interpretation of dynamic aspects.   

In this chapter, for the first time, the dynamic condition for passing through the 

singular positions is defined in general. It allows the stable motion generation inside in 

the presence of singularity by means of the optimum force control. The disclosed 

condition can be formulated as follows: “In the presence of a Type 2 singularity, the 

platform of the parallel manipulator can pass through the singular positions without 

perturbation of motion if the wrench applied on the platform by the legs and external 

forces is orthogonal to the direction of uncontrollable motion”. In other terms, the 

condition is that the work of applied forces and moments on the platform along the 

uncontrollable motion is equal to zero. This condition is obtained from the inverse 
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dynamics and analytically demonstrated by the study of the Lagrangian of a general 

parallel manipulator. The obtained results are illustrated by numerical simulations and 

validated by experimental tests. 

The chapter is organized as follows. Starting from the Lagrange equations, part 5.2 

derives the analytical conditions on the effort distribution of a general parallel 

mechanism for passing through a Type 2 singularity. The section 5.3 applies these 

general conditions on two examples of parallel mechanisms (a 5R planar parallel robot 

and a PAMINSA manipulator with 4 DOF). Finally in part 5.4, experimental tests are 

carried out on the prototype of PAMINSA manipulator. 

 

 

5.2. Optimal dynamic conditions for passing through Type 

2 singularities. 

 

Let us consider a parallel manipulator composed of m links, which has n degrees of 

freedom and driven by n actuators.  

As it is well known, the Lagrangian dynamic formulation for a parallel manipulator 

can be expressed as: 

 

 λτ TLL
B

qq
+

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
&dt

d
,  (5.1) 

 

where,  

- τ is the vector of the input efforts; 

- L is the Lagrangian of the examined manipulator;  

- T
nqqq ],...,,[ 21=q  and T

nqqq ],...,,[ 21 &&&& =q  represent the vector of active joints 

variables and the active joints velocities respectively; 

- Tzyx ],,,,,[ θψφ=x  and Tzyx ],,,,,[ θψφ &&&&&&=v  represent the trajectory 

parameters and their derivatives respectively (x, y, z represent the position of 

the controlled point and φ, ψ and θ the rotation of the platform about three 

axes aφ, aψ and aθ); 

- λ is the Lagrange multipliers vector, which is related to the wrench applied on 

the platform by: 
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 pWA T−=λ  (5.2) 

where,  

- A and B are two matrices relating the vectors v and q&  according to qBAv &=  

which can be found by the derivation of the closure equations with respect to 

time [Gosselin 1990]. 

- Wp is the wrench applied on the platform by the legs and the external forces 

[Khalil 2002], which is defined as: 
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where fp is the force expressed along the directions of the global frame and np is the 

torque expressed about the axes aφ, aψ and aθ. 

The term Wp can be rewritten in the base frame using a transformation matrix D 

[Merlet 2006a]: 

 

 )( 0
p

R
p WDW =  (5.4) 

 

where p
R W0  is the expression of the wrench Wp in the base frame, and 
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where I3×3, 03×3 and R3×3 are respectively the identity matrix, the zero matrix and the 

transformation matrix between axes aφ, aψ and aθ and the base frame, of which 

dimensions are 3×3. 

Introducing equation (5.4) into equation (5.1), one can obtain: 
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where ( ) BAJ R 1
0

−
=  is the Jacobian matrix between the twist t of the platform 

(expressed in the base frame) and q& , DAAR =0  is the expression of matrix A in the 

base frame. 

For any prescribed trajectory x(t), the values of vectors q&& , q&  and q can be found 

using the inverse kinematics. Thus, taking into account that the manipulator is not in a 

Type 1 singularity [Gosselin 1990], the terms Wb and p
R W0  can be computed. 

However, for a trajectory passing through a Type 2 singularity, the determinant of 

matrix J tends to infinite. Numerically, the values of the efforts applied by the 

actuators become infinite. In practice, the manipulator either is locked in such a 

position of the end-effector or it generates an uncontrolled motion. That is the end-

effector of the manipulator produces a motion, different to the prescribed trajectory. 

It is known that a Type 2 singularity appears when the determinant of matrix AR0  

vanishes, in other words, when at least two of its columns are linearly dependant 

[Merlet 2006a].  

Let us rewrite the matrix AR0  as: 
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In the presence of Type 2 singularity the columns of matrix AR0  are linearly 

dependant, i.e. 

 

 ∑
=

=
6

1

0
u

juu aα , j = 1, …, 6 (5.8) 

 

where αj are coefficients, which in general can be functions of qp (p = 1, …, n). It 

should be noted that the vector ts = [α1, α2, …, αn]
T represents the direction of the 

uncontrollable motion of the platform in a Type 2 singularity. 

Rewriting equation (5.8) in a vector form, we obtain: 
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=

=
6

1u
uu 0Nα , Nu = [a1u, a2u, …, anu]

T, u = 1, …, 6 (5.9) 

 

where Nu represents the u-th column of matrix AR0 . 

By substituting (5.9) into (5.2), we obtain: 

 

 u
T
u W=λN , u = 1, …, 6 (5.10) 

 

where Wu is the u-th line of vector p
R W0 . 

Then, from equations (5.9) and (5.10), the following conditions are derived: 

 

 ( ) ( )∑ ∑
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==
6

1

6
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0
u u

uu
T
uu Wαα λN . (5.11) 

 

The right term corresponds to the scalar product of vectors ts and p
R W0 .  

Thus, in the presence of a Type 2 singularity, it is possible to satisfy conditions 

(5.11) if the wrench applied on the platform by the legs and the external loads is 

orthogonal to the direction of the uncontrollable motion (singular motion). Otherwise, 

the dynamic model is not consistent. Obviously, in the presence of a Type 2 singularity, 

the displacement of the end-effector of the manipulator has to be planned to satisfy 

(5.11).

Let us illustrate the considered problem by examples. 

 

 

5.3. Illustrative examples. 

 

In this section, two examples are chosen to illustrate the obtained theoretical results 

discussed above. The first example presents a planar 5R parallel manipulator, which 

allows obtaining relatively simple mathematical models for demonstrating the expected 

results by numerical simulations. The second example concerns with PAMINSA 

manipulator developed in the I.N.S.A. of Rennes. The fulfilled numerical simulations 

carried out on ADAMS software are validated on the built prototype.    
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5.3.1. Planar 5R parallel manipulator. 

 

The planar 5R parallel manipulator, as shown in Fig. 5.1, is a structure of which 

output point is connected to the base by two legs, each of which consists of three 

revolute joints and two links. In each of the two legs, the revolute joint connected to 

the base is actuated. Thus, such a manipulator is able to position its output point in a 

plane. 

 

 

 

Figure 5.1. – Kinematic chain of the planar 5R parallel manipulator. 

 

  

(a) ψ1 = ψ2 ±π  (b) ψ1 = ψ2 + 2nπ (n = 0, 1, 2...). 

Figure 5.2. – Type 2 singularities of the planar 5R parallel manipulator. 

 

As shown in Fig. 5.1, the actuated joints are denoted as A and E with input 

parameters q1 and q2. The common joint of the two legs is denoted as C, which is also 

the output point with controlled parameters x and y. A fixed global reference system 

xOy is located at the centre of AE with the y-axis normal to AE and the x-axis 

directed along AE. The lengths of the links AB, BC, BD, DE are respectively denoted 
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as L1, L2, L3 and L4. The positions of the centers of masses Si of links from joint centers 

A, B, D and E are respectively denoted by dimensionless lengths r1, r2, r3 and r4, i.e. 

AS1 = r1L1, BS2 = r2L2, DS3 = r3L3 and ES4 = r4L4. 

The singularity analysis of this manipulator [Liu 2006] shows that the Type 2 

singularities appear when links 2 and 3 are parallel (Fig. 5.2). In both cases, the gained 

degree of freedom is an infinitesimal translation perpendicular to the links 2 and 3. 

However, if L2 = L3, the gained degree of freedom in case (b) becomes a finite rotary 

motion about point B. 

 

 

5.3.1.1. Inverse dynamics. 

 

In order to simplify the analytic expressions, we consider that the gravity effects are 

along the z-axis and consequently the input torques are only due to inertia effects. It is 

also preferable to replace the masses of moving links by concentrated masses [Seyferth 

1974] [Wu 2007]. For a link j with mass mj and its axial moment of inertia Ij, we have: 
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where mji (i = 1, 2, 3) are the values of the three point masses placed at the centers of 

the revolute joints and at the center of masses of the link j. 

In this case, the kinetic energy T can be written as: 

 

( )2222
44

2
33

2
22

2
11

2

1
DDCCBBSSSSSSSS mmmmmmmT VVVVVVV ++++++=  (5.13) 

 

where, 121 mmS = , 222 mmS = , 323 mmS = , 424 mmS = , 2113 mmmB += , 

2123 mmmC += , 4133 mmmD += . The terms mji are deduced from the relation (5.12), 

VSj is the vector of the linear velocities of the centre of masses Sj and VB, VC and VD 

are the vectors of the linear velocities of the corresponding axes.   

The input torques can be obtained from equation (5.6): 

 

 pb WJW T
R5+=τ  (5.14) 



5.3. Illustrative examples. 

 

  113 

taking into account that for examined manipulator: 

 

 DDBBb FJFJW TT += ,  (5.15) 

where, 
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 CBBF ΓΓ 11 CB mm += , CDDF ΓΓ 32 CD mm += , (5.17) 
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 )1( 3333 rrmm SC −= , 2
33

2
442 )1( rmmrmm SDSD −++= . (5.20) 

 

The term Wp is given by: 

 

 DCBpW ΓΓΓ 321 CCC mmm ++= , (5.21) 
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33

2
222 rmmrmm SCSC ++= , (5.22) 

 

and the Jacobian matrix J5R by: 
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We determine ts in according with (5.8):  

 

 T]cos,sin[ 11 ψψ−=st . (5.26) 

 

Thus, the examined manipulator can pass through the given singular positions if 

the force Wp determined by (5.21) is orthogonal to the direction of the uncontrollable 

motion ts described by (5.26). 

 

 

5.3.1.2. Motion Planning. 

 

Let us now consider the motion planning, which makes it possible to satisfy this 

condition. For this purpose the following parameters of manipulator’s links are 

specified: L1 = L2 = L3 = L4 = 0.25 m; r1 = r2 = r3 = r4 = 0.5; a = 0.2 m; m1 = m4 = 

2.81 kg; I1 = I4 = 0.02 kg/m2; m2 = m3 = 1.41 kg; I2 = I3 = 0.01 kg/m2. 

 

 

 

Figure 5.3. – Initial, singular and final positions of the planar 5R parallel 

manipulator. 

 

The point C should reproduce a motion along a straight line between the initial 

position C0 (x0, y0) = C0 (0.1, 0.345) and the final point Cf (xf, yf) = Cf (—0.1, 0.145) in 

tf = 2 s. However, the manipulator will pass by a Type 2 singular position at point Cs 

(xs, ys) = Cs (0, 0.245) (Fig. 5.3). 

Thus, the given trajectory can be expressed as follows: 

 

 ⎥
⎦

⎤
⎢
⎣

⎡
−+
−+

=⎥
⎦

⎤
⎢
⎣

⎡
=

)()(

)()(

)(

)(

00

00

yytsy

xxtsx

ty

tx

f

f
x . (5.27) 



5.3. Illustrative examples. 

 

  115 

Developing the condition (5.11) for passing through the singular position for the 

planar 5R parallel manipulator at point Cs, we obtain: 

 

 063)48248( 2
22

11 =−− ymyxLm CC &&&&  (5.28) 

 

Then, taking into account that the velocity and the acceleration of the end-effector 

in initial and final positions are equal to zero, the following nine boundary conditions 

are found: 

 

 s (t0) = 0, (5.29) 

 

 s (tf) = 1, (5.30) 

 

 s (ts = 1 s) = 0.5, (5.31) 

 

 0)( 0 =ts& , (5.32) 

 

 0)( =fts& ,  (5.33) 

 

 1)/()/()( 00 =−=−= xxxyyyts fsfss &&& ,  (5.34) 

 

 0)( 00 == sts &&&& ,  (5.35) 

 

 0)( == ff sts &&&& ,  (5.36) 

 

 )6)(3/()48248()( 20
22

11 CfssCss mxxyxLmsts −−== &&&&&&& .  (5.37) 

 

From (5.29) – (5.37), the following eighth order polynomial trajectory planning is 

found:   

 

( ) 876543 12606.007101.158909.372792.584228.325851.0 ttttttts +−+−+−= . (5.38) 
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(a) actuator 1. (b) actuator 2. 

Figure 5.4. – Input torques of the planar 5R parallel manipulator in the case of 

the sixth order polynomial trajectory planning, obtained by the ADAMS software. 

 

 

  

(a) actuator 1. (b) actuator 2. 

Figure 5.5. – Input torques of the planar 5R parallel manipulator in the case of the 

fifth order polynomial trajectory planning, obtained by the ADAMS software. 

 

 

Thus the generation of the motion by the obtained eighth order polynomial makes 

it possible to pass through the singularity without perturbation and the input torques 

remain in the limits of finite values, which are validated by numerical simulations 

carried out by the ADAMS software (Fig. 5.4). 

Thus, we can assert that the obtained optimal dynamic conditions assume the 

passing of the manipulator’s end-effector through the singular position.  
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Now, we would like to show that, in the case of the generation of the motion by 

any trajectory planning without meeting the adopted boundary conditions, the end-

effector is not able to pass through the singular position. For the generation of motion 

between initial and final positions, let us generate by a fifth order polynomial trajectory 

planning: 

 

 ( ) 543 1875.09375.025.1 tttts +−= . (5.39) 

 

The obtained numerical simulations carried out by the software ADAMS are given 

in Fig. 5.5. We can see that, when the manipulator is close to the singular configuration 

(for ts = 1 s), the values of the input torques tend to infinity. 

 

 

5.3.2. PAMINSA-4D3L. 

 

Chapter 3 disclosed that there are Type 2 singularities in the workspace of 

PAMINSA manipulators. In this section, we will study the possibility of passing 

through the singular positions of these manipulators. The obtained results will be 

illustrated by numerical simulations and validated by experimental tests in the 

following section.   

Let us now study the inverse dynamics of the PAMINSA-4D3L described in figure 

2.8. 

 

 

5.3.2.1. Inverse dynamics. 

 

We consider that the gravity effects are directed along the z-axis and, consequently, 

the input torques are due to both gravity and inertia effects. 

In the case of the studied PAMINSA manipulator, the Lagrangian can be written 

as: 

 

 VTL −=  (5.40) 

 

where V is the potential energy and T the kinetic energy. The expression of V is 

presented in chapter 2. 
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We consider that the links are perfect tubes. Therefore the inertia matrix Ij of the 

link Bji at the center of masses will be written as: 
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Thus, the kinetic energy T of the manipulator can be represented as: 
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TTT ,  (5.42) 

 

where Tpl is the kinetic energy of the platform, Tlegi is the kinetic energy of the leg i, 

with: 

 

 ( )2222 )(
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1 φ&&&& plplpl IzyxmT +++=  (5.43) 

 

where mpl and Ipl are respectively the mass and the axial moment of inertia of the 

platform about the vertical axis, and 
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and 
irotT  is the kinetic energy of the rotating links.  

Note that there are two types of rotations (Fig. 2.8): 

- rotation due to the actuators Mi (i = 1, 2, 3) (angle qi), which is about the vertical 

axis, 



5.3. Illustrative examples. 

 

  119 

- rotations due to the displacement of the pantograph in the linkage plane (angles ζi 

and εi denoted as the angles between the direction of the passive slider and links B4i 

and B3i respectively). 

Thus, the kinetic energy of the rotating links can be written as: 
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The expressions for Ccj (j = 1, …, 13) are given in appendix D. 

The input torques can be obtained from equation (5.6): 

 

 pb WJW T+=τ  (5.47) 

 

where the expressions of J, Wb and Wp are presented in appendix D. 

 

 

5.3.2.2. Motion planning. 

 

The following parameters of manipulator’s links are specified at appendix E for the 

trajectory generation. 

The point P is desired to make a motion x(t) along a straight line between point P0 

(x0, y0) = P0 (0, 0) and point Pf (xf, yf) = Pf (0.3, 0) in tf = 2.4 s at an altitude z = 

—0.45 m and with a constant orientation of the platform equal to φ = 0 deg. However, 

the manipulator will pass through a Type 2 singular position at point Ps (xs, ys) = 

(0.25, 0) (Fig. 5.6). 

In order to carry out a comparative analysis for the optimized and not optimized 

dynamic conditions for passing through Type 2 singularity, it has been considered two 

cases. The first is such a movement on the given trajectory, which is calculated from 

condition (5.11), and the second is an arbitrary motion. 

At first let us consider an optimized trajectory which allows satisfying the condition 

(5.11), i.e. the force Wp should be perpendicular to the to the twist ts = [0, 0, 1, 0, 0.1, 

0]T (equation (4.4)) defining the direction of the unconstrained motion.  
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Figure 5.6. – Displacement of the PAMINSA along the prescribed straight line 

(planar equivalent model). 

 

 
Developing expression (5.11) for the PAMINSA at point Ps, we obtain: 
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Now considering that the end-effector of the manipulator moves along a straight 

line directed along the x-axis, we can note that )( sty&  = )( stz&  = )( sty&&  = )( stz&&  = )( stφ&  

= )( stφ&&  = 0. Thus, the relationships, which satisfy the passing through of the singular 

positions, taking into account that the velocity and the acceleration of the platform in 

the initial and final positions are equal to zero, can be expressed by the following 

boundary conditions: 

 

 x(t0) = x0,  (5.49) 

 

 x(tf) = xf,  (5.50) 

 

 x(ts = 2 s) = xs,  (5.51) 
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 0)( 0 =tx& , (5.52) 

 

 0)( =ftx& , (5.53) 

 

 0)( 0 =tx&& , (5.54) 

 

 0)( =ftx&& , (5.55) 

 

 05.0)( == ss xtx && m/s,  (5.56) 

 

 1.32583)( −== ss xtx &&&&  m/s2. (5.57) 

 

In this case, a motion for passing of the platform through the singular position can be 

found from the following eighth order polynomial form: 

 

 ( ) 345678 27.17563.40023.36505.16665.3741.3 tttttttx −+−+−=  (5.58) 

 

However, a trajectory obtained by (5.58) cannot be reproduced by the prototype 

because of the limited capability of drivers’ deceleration. Therefore, the trajectory was 

divided into two parts, i.e. the first sixth order polynomial trajectory assumes the 

motion from an initial to the singular position (P0Ps) and the second sixth order 

polynomial trajectory from singular to the final position (PsPf). The core of the problem 

is the same but it allows for generating motions for the prototype. 

Thus, the trajectory planning equations can be written as: 

 

( ) ( ) ( )6
6

5
5

4
4

3
300 tbtbtbtbxxxtx s +++−+=  for t ≤ ts; (5.59) 

 

( ) ( ) ( )6
6
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5
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4

2
21 )()()()()( sfsfsfsfsfsfs ttcttcttcttcttcxxxtx −+−+−+−+−−+=   

for t > ts.  (5.60) 

 

with b3 = —3.3033, b4 = 5.10456, b5 = —2.45207, b6 =0.37844, c1 = 1, c2 = —13.25829, c4 

= 2365.3672, c5 = —11953.07236 and c6 = 16158.76157. 
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(a) actuator M1. (b) actuator M2. 

 

(c) actuator M3. 

Figure 5.7. – Input efforts of the PAMINSA in the case of the sixth order 

polynomial trajectory planning, computed with ADAMS software. 

 

Thus, the motion obtained from the following sixth order polynomial equations 

 

( ) 6543 095.0613.0276.1826.0 tttttx +−+−=  for t ≤ 2s; (5.61) 

 

( ) 65432 9.8079.102921.545714.1541222.2445553.2067187.72722 tttttttx +−+−+−=  

for t > 2s;  (5.62) 

 

allows for passing through the singularity without perturbation, and the input efforts 

take on finite values (Fig. 5.7).  
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(a) actuator M1. (b) actuator M2. 

 

(c) actuator M3. 

Figure 5.8. – Input efforts of the PAMINSA in the case of the fifth order polynomial 

trajectory planning, computed with ADAMS software. 

 

It can be seen that the input torques remain in the limits of finite values, but, by 

the end of the motion there is an increase in the input efforts, caused by a quick 

deceleration to stop the manipulator before it reaches the workspace boundary. It will 

be shown further that in the case of the motion generated by any trajectory planning 

without meeting the adopted boundary conditions (5.49) – (5.57), the manipulator 

platform is not able to pass through the singular position. For this purpose, the 

generation of motion between initial and final positions is carried out by a fifth order 

polynomial trajectory planning. 
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In this case, for ( ) m0=ty , ( ) m45.0−=tz  and ( ) 0=tφ , the fifth order polynomial 

trajectory planning is the following: 

 

 ( ) 543 023.0137.0217.0 ttttx +−=  (5.63) 

 

The obtained input efforts computed by the software ADAMS are represented in Fig. 

5.8. 

It can be noted that, while the manipulator passes through the singular configuration 

(for ts ≈ 1.8 s), the value of the input torques tend to infinity. 

Let us now validate the obtained results by experimental tests. 

 

 

5.4. Experimental validation of obtained results. 

 

First of all, we have implemented the fifth order control law described in the 

previous section. We observed the reproduction of the desired motion during the 

displacement of the platform. The obtained trajectory is shown in Fig. 5.9 (dotted line). 

The different positions are classified by time. For positions from (a) to (d), the 

platform moves towards the singular zone but yet it is outside of it. In this case, the 

reproduction of the real trajectory is similar to the desirable. At position (e), the 

manipulator enters the singular zone, which is close to the circle of the theoretical 

singular loci, and starts an uncontrollable motion. Thus, since the motion generation is 

carried out by non optimized dynamic parameters, the platform moves along an 

unplanned trajectory (see positions (f), (g) and (h) in Fig. 5.9). 

Next, we have implemented the sixth order control laws as it was shown in the 

previous section and observed the behavior of the platform during the displacement 

(Fig. 5.10). The different positions are classified by time. During all these 

displacements, the manipulator retains its orientation and passes through the singular 

configuration without any perturbation. 

Thus, we can note that the obtained optimum dynamic conditions allow the passing 

of the manipulator through the singular position  
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Figure 5.9. – Trajectory reproduction on the PAMINSA during the displacement of 

the platform with the fifth order polynomial law (view from below). 

 

 

 

Figure 5.10. – Trajectory reproduction on the PAMINSA during the displacement 

of the platform with the sixth order polynomial law (view from below). 

 

 

5.5. Summary. 

 

In a singular configuration, a manipulator can gain one or more degrees of freedom, 

and at such a configuration it may becomes uncontrollable, i.e. it may not reproduce 

stable motion with prescribed trajectory. Nevertheless there are several proven motion 
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planning techniques which make it possible to pass through these singular zones. These 

approaches are simulated by numerical examples and illustrated on several parallel 

structures. It is a promising option for the solution of this problem. However, attention 

is focused only on control aspects of this problem and very little attention has been 

paid to dynamic interpretation, which is a crucial factor for governing the behavior of 

parallel manipulators at the singular zones.  

In this chapter we have found the optimal dynamic conditions, for making the pass 

through the Type 2 singular configurations possible. The general definition of the 

condition for passing through the singular position is formulated as follows: in the 

presence of Type 2 singular configuration, the platform of a parallel manipulator can 

pass through the singular positions without perturbation of motion if the wrench 

applied on the platform by the legs and external efforts are orthogonal to the direction 

of the uncontrollable motion, or in other words, if the work of applied forces and 

moments on the platform along the uncontrollable motion is equal to zero. This 

condition has been verified by numerical simulations carried out with the software 

ADAMS and validated by experimental tests on the prototype of PAMINSA. 

The passing of any parallel manipulator through the singular positions by the 

proposed technique is carried out by optimal generation of inertia forces. Hence, it is 

impossible to stop the manipulator in the singular locus and to start again from fixed 

position. 

Finally, it should be noted that for the case of non controllable external forces 

applied on the platform the proposed technique cannot be used. Therefore, the most 

prominent field of the industrial application is a “fast pick and place” manipulation, 

when the generation of motion is determined by input, gravitational and inertia forces. 

The next chapter deals with optimization methods which can be used in design 

procedures of PAMINSA manipulators. 
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Chapter 6 

 

 

Optimization of PAMINSA Manipulators  

 

 

6.1.  Accuracy analysis.  p. 128 

6.2.  Minimization of the deformations. p. 147 

6.3.  Input torques minimization. p. 156 

6.4.  Summary. p. 165 

 

 
In this chapter, methods for the optimization of PAMINSA 

manipulators are shown. In the first part, a new, fast and efficient 

method of accuracy analysis of planar parallel manipulators (which 

may be easily applied to the PAMINSA manipulators) is presented. 

This method is achieved by following a detailed mathematical proof 

that gives important insight into the accuracy of planar parallel 

robots. The method is illustrated on two practical designs. This 

method can be used in design optimization procedures that seek 

maximum accuracy. 

In the second part, we propose new compensation schemes, which 

consist of the introduction into the initial system of complementary 

units making it possible to cancel the positioning errors due to the 

elasticity of the links. Two different approaches are proposed and the 

performances of such designs are shown. 

Finally, the reduction of the input torques is also studied. It is 

shown in simulation and by experimental tests that, for a dynamic 

mode of operation, the complete static balancing may be ineffective in 

terms of input torques. In the case of accelerated motions, it is 

proposed to carry out an optimal redistribution of the movable 

masses and to achieve a partial mass balancing. 
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6.1. Accuracy analysis. 

 

Parallel robots are increasingly being used for precision positioning, and a number 

of them are used as 3-DOF planar alignment stages. Clearly, in such industrial 

applications, accuracy is of utmost importance. Therefore, simple and fast methods for 

computing the accuracy of a given robot design are needed in order to use them in 

design optimization procedures which seek maximum accuracy. 

Errors in the position and orientation of a parallel robot are due to several factors: 

- manufacturing errors, which can however be taken into account through 

calibration; 

- backlash, which can be eliminated through proper choice of mechanical 

components; 

- compliance, which can also be eliminated through the use of more rigid 

structures (though this would increase inertia and decrease operating speed); 

- active-joint errors, coming from the finite resolution of the encoders, sensor 

errors, and control errors. 

Therefore, as pointed out by Merlet [Merlet 2006c], active-joint errors (input errors) 

are the most significant source of errors in a properly designed, manufactured, and 

calibrated parallel robot. In this section, we address the problem of computing the 

accuracy of a parallel robot in the presence of active-joint errors only. In the balance of 

section 6.1, the term “accuracy” will therefore refer to the position and orientation 

errors of a parallel robot that is subjected to active-joint errors only. 

The classical approach consists of considering the first order approximation that 

maps the input error to the output error: 

 

 qJx δδ =  (6.1) 

 

where δq represents the vector of the active-joint (input) errors, δx the vector of 

output errors and J is the Jacobian matrix of the robot. However, this method will give 

only an approximation of the output maximum error. Indeed, as we will prove in this 

section, given a nominal configuration and some uncertainty ranges for the active-joint 

variables, a local maximum position error and a local maximum orientation error not 

only occur at different sets of active-joint variables in general, but these active-joint 

variables are not necessarily all at the limits of their uncertainty ranges. 
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Several performance indices have been developed and used to roughly evaluate the 

accuracy of serial and parallel robots. A recent study [Merlet 2006b] reviewed most of 

these performance indices and discussed their inconsistencies when applied to parallel 

robots with translational and rotational degrees of freedom. The most common 

performance indices used to indirectly optimize the accuracy of parallel robots are the 

dexterity index [Gosselin 1992], the condition number and the global conditioning index 

[Gosselin 1991]. However, in a recent study of the accuracy of a class of 3-DOF planar 

parallel robots [Yu 2007], it was demonstrated that dexterity has little to do with robot 

accuracy, as we define it. 

Obviously, the best accuracy measure for an industrial parallel robot would be the 

maximum position and maximum orientation errors over a given portion of the 

workspace [Merlet 2006c] [Yu 2007] or at a given nominal configuration, given actuator 

inaccuracies. A general method based on interval analysis for calculating close 

approximations of the maximum output error over a workspace was proposed recently 

in [Merlet 2006c]. Obviously, the maximum output error over a workspace is the most 

important information for a designer. However, this method is relatively difficult to 

implement, gives no information on the evolution of the accuracy of the manipulator 

within its workspace and gives no kinematic insight into the problem of optimal design. 

In contrast, a very simple geometric method for computing the exact value of the 

accuracy of 3-DOF 3-PRP planar parallel robots was described in [Yu 2007]. This 

method proposes to replace the existing dexterity maps by maximum position error 

maps and maximum orientation error maps. While this method covers three of the 

most promising designs for precision parallel robots (one of which is commercialized 

and the other two built into laboratory prototypes), it does not always work for other 

3-DOF planar parallel robots. 

This section generalizes the method proposed in [Yu 2007] by following a detailed 

mathematical proof that gives us important insight into the accuracy of planar parallel 

robots. The present study considers only 3-DOF three-legged planar parallel robots 

with prismatic and/or revolute joints, one actuated joint per leg, and at most one 

passive prismatic joint in a leg. Although this method is developed for planar parallel 

manipulators, it is well adapted for the study of the accuracy of PAMINSA 

manipulators with 4 DOF because of the decoupling between the kinematic model for 

the vertical displacements and the planar simplified representation for the movements 

in the horizontal plane (the maximum accuracy along the vertical axis z is constant 

and equal to k εZ, where k is the magnification factor of the pantograph and εZ the 

maximal accuracy of the linear actuator). 
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The method is illustrated on two practical designs, which are the planar equivalent 

models of different types of PAMINSA manipulators: 

- a 3-RPR planar parallel robot; 

- a planar 3-PRR robot [Gosselin 1996]. 

This section is organized as follows. The next part briefly outlines the mathematical 

theorems used in this section. Then, we will present the method used for the analysis of 

the orientation and position errors. Finally, several numerical examples are presented 

and conclusions are given. 

 

 

6.1.1. Mathematical background. 

 

Analysing the (local) maximum position error and the (local) maximum orientation 

error of a parallel robot, induced by bounded errors in the active-joint variables, is 

basically studying, on a set of closed intervals, the maxima of functions ∆X and 

∆φ defined as: 

 

 2
0

2
0 )()( yyxxX −+−=∆ , (6.2) 

 

 2
0)( φφφ −=∆ , (6.3) 

 

where x0, y0 and φ0 are the Cartesian coordinates corresponding to the nominal 

(desired) platform pose (position and orientation) of the studied parallel robot, and x, y 

and φ  are the actual platform coordinates. 

In the case of a 3-DOF planar fully-parallel robot, ∆X and ∆φ are functions of three 

variables: the active-joint variables of the robot (the inputs), which will be denoted by 

qi (i = 1, 2, 3). Thus, we have to find the maxima of ∆X and ∆φ on the set of intervals 

qi ∈ [qi 0–ε, qi 0+ε], where qi 0 are the active-joint variables corresponding to the nominal 

pose (x0, y0, φ0) of the platform (in the selected working mode, i.e. the selected solution 

to the inverse kinematics) and ε is the error bound on the active-joint variables (Fig. 

6.1). 
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Figure 6.1. – Input error bounding box. 

 

To simplify our error analysis, we will make the practical assumption that the 

nominal configuration is sufficiently far from (Type 1 and Type 2) singularities. Type 1 

singularities [Gosselin 1990] are configurations where a parallel robot loses its desired 

functionality – it loses one or more degrees of freedom. These are the internal and the 

external boundaries of workspace. For this reason, the usable workspace of an industrial 

parallel robot will be away from these singularities. Similarly, Type 2 singularities 

[Gosselin 1990] are another kind of configurations where a parallel robot loses its 

desired functionality – this time it loses control of the mobile platform. Furthermore, 

near these configurations, the output error increases exponentially. For these reasons, 

industrial parallel robots are designed to exclude such singularities. Therefore, we will 

obviously perform our error analysis only for configurations that are sufficiently far 

from singularities, i.e. for nominal configurations from which the robot cannot enter 

into singularity while the active-joint variables stay within their error-bounded 

intervals. 

Once we made this practical assumption, we address the problem of finding the 

global maxima of ∆X and ∆φ. It is well known that the maximum of a continuous 

multivariable function, f, over a given set of intervals can be found by analysing the 

Hessian matrix, H: 
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Using this Hessian matrix, the set of variables (q1m, q2m, q3m), where 

[ ]εε +−∈ 00 , iiim qqq , leads to a maximum of f if 0),,(/ 321 =∂∂ mmmi qqqqf  and H is 

negative definite. If such a point exists (q1m, q2m, q3m), we will call it a maximum of the 

first kind. 

The global maximum of f could also be on the faces of the input error bounding box 

shown in figure 6.1. This time, we have to study the maxima of six functions of two 

variables each, defined as: 

 

g1: ( ) ( )321032 ,,, qqqfqq ε+→ , 

g2: ( ) ( )321032 ,,, qqqfqq ε−→ , 

g3: ( ) ( )320131 ,,, qqqfqq ε+→ , 

g4: ( ) ( )320131 ,,, qqqfqq ε−→ , 

g5: ( ) ( )ε+→ 302121 ,,, qqqfqq , 

g6: ( ) ( )ε−→ 302121 ,,, qqqfqq . 

 

If such points exist, we will call them maxima of the second kind. 

The global maximum of f could also be on the edges of the input error bounding 

box. This time, we have to study the maxima of twelve univariate functions: 

 

h1: ( )εε ++→ 302011 ,, qqqfq , 

h2: ( )εε −+→ 302011 ,, qqqfq , 

h3: ( )εε +−→ 302011 ,, qqqfq , 

h4: ( )εε −−→ 302011 ,, qqqfq , 

h5: ( )εε ++→ 302102 ,, qqqfq , 

h6: ( )εε +−→ 302102 ,, qqqfq , 

h7: ( )εε −+→ 302102 ,, qqqfq , 

h8: ( )εε −−→ 302102 ,, qqqfq , 

h9: ( )320103 ,, qqqfq εε ++→ , 

h10: ( )320103 ,, qqqfq εε −+→ , 

h11: ( )320103 ,, qqqfq εε +−→ , 

h12: ( )320103 ,, qqqfq εε −−→ . 

 

If such points exist, we will call them maxima of the third kind. 
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Finally, the global maximum of f could also be on one of the eight corners of the 

input error bounding box. These eight points will be referred to as extrema of the 

fourth kind. 

Finding the global maxima of functions ∆X and ∆φ is equivalent to finding the 

maxima of functions ∆X ² and ∆φ ². In the next section, we will study the extrema of the 

functions ∆X ² and ∆φ ². 
 

 

6.1.2. Analysis of the orientation and position errors. 

 

6.1.2.1. Maximum orientation error. 

 

The partial derivatives of ∆φ ² are given as: 

 

 
( ) ( )0

2

2 φφφφ
−

∂
∂

=
∂
∆∂

ii qq
 (i = 1, 2, 3). (6.5) 

 
These derivatives are equal to zero if 0/ =∂∂ iqφ  or if 00 =− φφ . Obviously, 

however, a maximum can exist only if 0/ =∂∂ iqφ . 

For a 3-DOF planar parallel robot, two different situations correspond to the 

condition 0/ =∂∂ iqφ : 

- the robot is at a Type 1 singularity. However, we already assumed that the 

robot cannot enter a Type 1 singularity within the studied interval; 

- the twist of the mobile platform, when legs j and p (j, p = 1, 2, 3, pji ≠≠ ) 

are fixed, is a pure translation. Figure 6.2 represents the mobile platform of a 

robot linked to three actuated legs, through revolute joints (these could be 

prismatic joints as well). Each leg applies a wrench Ri on the mobile platform, 

of which centre is denoted by P. The intersection point W3 of the wrenches R1 

and R2 represents the instantaneous rotation centre of the mobile platform 

when actuators 1 and 2 are fixed and the third actuator is moving. Thus, if  

x = [x, y]T, vector 3/ q∂∂x , defined as [ ]Tqyqxq 333 /// ∂∂∂∂=∂∂x , 

represents the instantaneous displacement of the platform under the action of 

the third actuator only. For the twist of the platform to be a pure translation, 

wrenches R1 and R2 need to be parallel (Fig. 6.3). When such a configuration is 
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inside the studied interval, the corresponding orientation error is a local 

extemum. 

 

 
Figure 6.2. – The leg wrenches applied to the mobile platform. 

 

 
Figure 6.3. – Pure translational motion following a variation in q3 only. 

 

 

Figure 6.4. – Extrema of the first and second type for the function ∆φ ². 
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Therefore, a maximum of the first kind exists if and only if R1//R2 and R2//R3 

and R1//R3 (Fig. 6.4). However, such a configuration corresponds to a Type 2 

singularity, and we already assumed that there are no Type 2 singularities for the set of 

studied intervals. 

A maximum of the second kind exists if Ri//Rj and Ri//Rp (i, j, p = 1, 2, 3), 

pji ≠≠ . This, however, is equivalent to the previous case and is therefore impossible. 

A maximum of the third kind exists if Ri//Rj (i, j = 1, 2, 3). If such a configuration 

is possible, it has to be tested to determine its nature. 

Finally, extrema of the fourth kind will always exist and should always be tested. 

Thus, in the analysis of the orientation error, only maxima of the third and fourth 

kind might appear. Maxima of the third kind are very difficult to compute analytically 

even for simple 3-DOF planar parallel robots. Therefore, we are confident that the best 

way to proceed, in areas of the workspace where one feels that the robot might be in 

configurations in which two wrenches are parallel and this could be a local maximum 

(rather than a minimum) for the orientation angle, is to discretize the edges of the 

input error bounding box (Fig. 6.1), compute ∆φ at each discrete point, and retain the 

maximum value. Obviously, such a discretization will be somewhat time-consuming and 

less accurate, but this approach will still produce much more meaningful results than a 

simple dexterity plot. Note, however, that in most of the cases, it will be obvious that 

such configurations cannot occur. For these cases, one must only compute ∆φ at each 

corner of the input error bounding box and retains the maximal value. This will be the 

exact local orientation error. 

 

 

6.1.2.2. Maximum position error. 

 

The partial derivatives of ∆X² are given as: 

 

 
( ) ( )0

T2

2 xx
x

−⎟⎟
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ii qq

X
, (i = 1, 2, 3). (6.6) 

 

These derivatives are equal to zero if 0/ =∂∂ iqx , if iq∂∂ /x  is orthogonal to  

x – x0, or if x – x0 = 0. Obviously, however, the condition x – x0 = 0 corresponds to an 

absolute minimum, and will therefore be ignored. 
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For a 3-DOF planar parallel robot, two different situations correspond to the 

condition 0/ =∂∂ iqx : 

- the robot is at a Type 1 singularity. However, we already assumed that the 

robot cannot enter in a Type 1 singularity within the interval of interest; 

- the twist of the mobile platform, when legs j and p (j, p = 1, 2, 3, pji ≠≠ ) 

are fixed, is a pure rotation. When the twist of the platform is a pure rotation, 

this means that the intersection point W3 of wrenches R1 and R2 coincides with 

point P (Fig. 6.5). When such a configuration is inside the studied interval, the 

corresponding position error is a local extemum. 

 

 

Figure 6.5. – Pure rotational motion following a variation in q3 only. 
 

Next, we will show geometrically that an absolute maximum of ∆X 
2 can exist only 

on the edges (including the corners) of the input error bounding box. Indeed, finding 

this maximum is equivalent to finding the point from the uncertainly zone of the 

platform centre that is farthest from the nominal position of the mobile platform. This 

uncertainty zone is basically the maximal workspace of the robot (i.e. the set of all 

attainable positions of the platform centre) obtained by sweeping the active-joint 

variables in their corresponding intervals, qi ∈ [qi 0–ε, qi 0+ε]. Obviously, the point that 

we are looking for will be on the boundary of this maximal workspace. 

A geometric algorithm for computing this boundary is presented in [Merlet 1998], 

but we will not discuss it here in detail. We only need to mention that this boundary is 

composed of segments of curves that correspond to configurations in which at least one 

leg is at a Type 1 singularity (which we exclude from our study) or at an active-joint 

limit (we also consider that there are no limits on the passive joints). A segment for 

which only one active-joint is at a limit is a line segment (in the case of a passive 
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prismatic joint) or a circular arc of which radius depends on the leg lengths and 

platform size (in the case of two passive revolute joints). 

In error analysis, the studied intervals are extremely small compared to the overall 

dimensions of the robot, and so is the uncertainty zone for a given nominal 

configuration. This means that, in practice, the radius of a circular arc that belongs to 

the boundary of the uncertainty zone will be much greater than the maximum position 

error. Therefore, for such a tiny arc of large radius, the point that is farthest from the 

nominal position will be at one of the two extremities of the arc. This point will 

therefore correspond to at least two active-joint variables at a limit. 

Thus, thanks to this geometric analysis, we were able to demonstrate that the 

maximum position error cannot be elsewhere but on the edges of the input error 

bounding box. Next, a deeper analysis will guarantee, to a certain precision, that in 

some cases, the maximum position error occurs only at one of the eight corners of the 

input error bounding box. 

For legs j and p (j, p = 1, 2, 3, pji ≠≠ ), the condition for having a maximum of 

the third kind on the interval [ ]εε +− 00 , ii qq  is that: 

- case (a): 0/ =∂∂ iqx ; 

- case (b): iq∂∂ /x  is orthogonal to 0xx − . 

Condition (a) has already been discussed. Such a configuration has to be examined 

in order to determine whether it corresponds to an absolute maximum or not. However, 

it is very difficult to analytically identify such configurations. Therefore, once again, we 

are confident that the best way to proceed, in areas of the workspace where one feels 

that the robot might be in configurations in which two leg wrenches intersect at the 

centre of the mobile platform, is to discretize the edges of the input error bounding 

box, compute ∆X at each discrete point, and retain the maximum value. Note, 

however, that in most of the cases it will be obvious that such configurations cannot 

occur. For these cases, one must only consider condition (b). 

Condition (b) is even more complicated to analyse analytically. The partial 

derivative iq∂∂ /x  represents the first two elements of column i (i = 1, 2, 3) of the 

Jacobian matrix of the robot. If the direction of vectors iq∂∂ /x  is close to a constant 

in the studied interval (which is far from Type 2 singularities), then it is possible to say 

that, on this interval, the displacement of the robot, when legs j and p are fixed, is 

close to a straight line. This can be verified approximately by computing vector 

iq∂∂ /x  at each corner of the input-error bounding box. If the variation of the 
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direction of the vector iq∂∂ /x  is inferior to a given value (for example 1 degree), then 

one can consider that the direction of iq∂∂ /x  does not change in the studied interval. 

Let B be a point for which iq∂∂ /x  is orthogonal to 0xx −  (Fig. 6.6). Vector u 

defines the direction of the allowed displacement at point B. If we represent a line 

passing through point B, of which direction is defined by vector u, this line defines the 

locus for the displacement of the platform around point B when only actuator i is 

moving. If we represent two points A and C located on this line around B, the direction 

of vector u defines the direction of the displacement when leg i is actuated in the 

positive sense of qi. Thus, point A represents the point before passing point B and point 

C the point after when actuator i is moving. 

 

 
Figure 6.6. – Analysis of a local extremum for  

which iq∂∂ /x  is orthogonal to )( 0xx − . 

 

It is so possible to determine the signs of the product ( ) ( )0xxx −∂∂ T
iq/  at points 

A and C. At point A it is negative and at point C it is positive. This shows that point 

B is a local minimum of ∆X². Thus, such a configuration does not represent a 

maximum of the third kind. 

Of course, there are exceptions to our rule of thumb, but they are extremely rare 

and occur only for some particular mechanism designs. For example, consider a 3-RPR 

planar parallel robot. The curve described by the platform centre, when two of the 

actuators are blocked, is an ellipse. Therefore, if one takes a segment at which 

endpoints the slope is nearly the same, this segment is clearly close to a line. However, 

if a 3-RRR planar parallel robot is considered, the curve is a sextic. Theoretically, it is 

possible to have a segment at which endpoints the slope is nearly the same, yet the 
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segment is far from linear (e.g., there is a cusp point, or a tiny loop). However, we 

consider that such situations are extremely unlikely to happen, and even if they do, 

they will occur for only certain configurations and not throughout the workspace. 

Therefore, for simplicity, we will exclude this small possibility from our study. 

 

 

6.1.2.3. Conclusions. 

 

To sum up, the proposed method is very simple to implement and, for most 

practical 3-DOF planar robot designs, fast and accurate. For most designs, at each 

nominal configuration, we have to compute the direct kinematics for eight sets of 

active-joint variables, which can either be done analytically, or using a very accurate 

numerical method (since we are far from singularities). Thus, for computing the local 

maximum orientation error and local maximum position error of a 3-DOF planar 

parallel robot for a given nominal configuration, one should, at worst, compute the 

direct kinematics at only 12n points, where n is the number of discretization points on 

each of the edges of the input error bounding box. As already mentioned, such a 

discretization is unfortunately somewhat time-consuming and might lead to a certain 

computational inaccuracy. However, relatively simple analysis can show that, for a 

given robot design, only the eight vertices of the input error bounding box should be 

verified. Namely, for the computation of the maximum orientation error, this is the 

case if no two wrenches can be parallel and lead to a local maximum, and for the 

computation of the maximum position error, this is the case if no two wrenches can 

intersect at the platform centre and the variation of the direction of each vector 

iq∂∂ /x  is very small. 

 

 

6.1.3. Examples. 

 

6.1.3.1. 3-DOF 3-RPR planar parallel robot. 

 

In this part, we will study the accuracy of a 3-DOF 3-RPR planar parallel robot 

(Fig. 4.1), which is the planar equivalent model of a type of a PAMINSA manipulator 

(table 2.1). This robot is designed as follows: 

- the actuators are mounted on the base and are located at revolute joints M’I; 
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- triangles M’1M’2M’3 and J1J2J3 are equilateral; 

- the centre O of frame xOy is located at the geometric centre of triangle 

M’1M’2M’3; 

- Rb = OM’i = 0.35 m and Rpl = PJi = 0.1 m; 

- the error bound on the active-joint variables is rad102 4−⋅=ε . 

The Type 2 singularities of this robot are well known (chapter 3). They appear 

when the robot is in such a configuration that: 

- the rotation angle is °±≈= − 4.73)/(cos 1
bpl RRφ ; 

- the platform centre P is located on a circle of which centre is O and of which 

radius is equal to φcos222
plbplb RRRR −+ . 

These characteristics are those of the planar equivalent model of the prototype of 

PAMINSA-4D3L. 

The Type 1 singularities for this robot occur when point M’i coincides with point Ji. 

These three Type 1 singularity points lie on the Type 2 singularity circle. 

Thus we propose to analyse a usable workspace defined by a circle of which centre 

is O and of which radius is equal to 0.245 m for two different orientation angles φ, 0 

and 10 degrees. This workspace is free of singularities (the radius for the Type 2 

singularity circle at φ = 0° and at 10° is 0.25 m and 0.2521 m, respectively). 

The direct kinematic model of the robot is quite simple to obtain and has two 

distinct solutions (see chapter 3), for active-joint variables that do not lead to 

singularities. We have to study here three different cases: 

- Case (a): Configurations where two wrenches are parallel. These configurations 

can be either a local maximum or a local minimum for the orientation error. In 

our example, the wrenches are perpendicular to the directions of the prismatic 

joints and pass through points Ji. Thus, this case appears when the directions of 

two of the prismatic joints are parallel (Fig. 6.7.a). For such configurations, the 

orientation of the platform remains constant if only the actuated joint of the 

third leg moves. Therefore, this configuration is a local minimum for the 

orientation error; 

- Case (b): Configurations where two wrenches intersect at the platform centre. 

These configurations can be either a local maximum or a local minimum for the 

position error. In our example, it is easy to verify that such configurations 

appear only outside the studied workspaces (Fig. 6.7.b); 
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- Case (c): Configurations in which the direction of vectors iq∂∂ /x  is not nearly 

constant. Figures 6.8.a and 6.8.b represent the variation in the direction of 

vectors 1/ q∂∂x  in the studied interval (the figures for 2/ q∂∂x  and 3/ q∂∂x  

are obtained by 120° rotations). It is possible to note that this variation is 

extremely small in the studied workspace (less than 0.6°). 
 

  
(a) 0/ 3 =∂∂ qφ  (b) 0/ 3 =∂∂ qx  

Figure 6.7. – Configurations of the 3-RPR parallel manipulator corresponding to local 

extrema in (a) the orientation error and (b) the position error. 

  

  

(a) φ = 0°. (b) φ = 10°. 

Figure 6.8. – Variation in the direction of vector 1/ q∂∂x  (degrees). 
 



Chapter 6: Optimization of PAMINSA manipulators. 

142 

Thus, there are only eight active-joint variable sets to test for computing the 

maximum orientation and maximum position error of the robot for a given nominal 

pose. For each set, the two possible platform poses are obtained analytically, and the 

corresponding orientation error and position error are computed for the solution that is 

closest to the nominal pose. The resulting contour plots for two orientations are 

presented in Figs. 6.9 and 6.10. 

 

  
(a) maximum orientation error (degrees) (b) maximum position error (µm) 

Figure 6.9. – Maximum orientation and position errors for 

the 3-RPR manipulator at φ = 0°. 

  

  
(a) maximum orientation error (degrees) (b) maximum position error (µm) 

Figure 6.10. – Maximum orientation and position errors for 

the 3-RPR manipulator at φ = 10°. 
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As expected, it can be seen that the robot is more accurate in the centre of its 

workspace, far from singularities. The closer the robot to the singularity circle, the 

poorer is its accuracy. It is interesting to note that, while there is always a substantial 

position error, the orientation error is virtually zero in the central part of the 

workspace. 

 

 

6.1.3.2. 3-DOF 3-PRR planar parallel robot. 

 

In this part, we will study the accuracy of a 3-PRR planar parallel robot 

(Fig. 6.11).  

This robot is designed as follows: 

- the actuators are mounted on the base and are located at prismatic joints PiM’i; 

- the centre O of frame xOy is located at the geometric centre of the triangle 

P1P2P3; 

- triangles P1P2P3 and J1J2J3 are equilateral and the guides of the prismatic joints 

are tangent to the circle of which centre is O and of which radius is OP1; 

- OM’i = 0.35 m, M’iJi = 0.4 m and PJi = 0.1 m; 

- the stroke of the actuators is 76 cm; 

- the error bound on the active-joint variables is ε = 10 µm. 

 

 
Figure 6.11. – Schematic of the studied 3-PRR manipulator. 
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The direct kinematics of this robot allows up to six real solutions and cannot be 

solved analytically [Merlet 1996]. Since we only need the solution that can be reached 

from the nominal pose, while the active-joint variables remain in their intervals, the 

best solution is to use an iterative numerical method such as the Newton-Raphson 

method. This method requires only the computation of the Jacobian matrix of the 

robot, which is very simple to obtain. In our error analysis, we will always start the 

algorithm at the nominal configuration and vary the active-joint variables in a very 

small interval of length up to ε. Furthermore, we will use this algorithm for 

configurations that are sufficiently far from singularities. Therefore, as verified in this 

example, the algorithm converges very quickly (usually, in only two iterations for a 

precision of 10-20 m and 10-20 degrees). 

The singularities of this robot have been studied in [Bonev 2003b], but correspond 

to quite complex curves. Fortunately, however, it is easy to find a design for which 

there are no singularities inside the workspace for the given working mode (given set of 

inverse kinematic solutions). The studied workspace of our robot corresponds to an 

equilateral triangle inscribed in a circle centred in O and of which radius is equal to 0.3 

m. One edge of the triangle is parallel to x. This workspace will be studied for 

orientation angles equal to 0° and 10°. There are no Type 2 singularities in it. 

We have to study here three different cases: 

- Case (a): Configurations where two wrenches are parallel. These configurations 

can be either a local maximum or a local minimum for the orientation error. In 

our example, the instantaneous wrenches are along the lines M’iJi. Thus, this 

case appears when two of the legs are parallel (Fig. 6.12). Two types of such 

configurations exist. Figure 6.12.a represents a configuration which corresponds 

to a local minimum for the orientation error. For this configuration, the two 

legs form a parallelogram and the orientation of the platform remains constant 

while the third actuator moves alone. Figure 6.12.b represents a configuration 

which corresponds to a local maximum for the orientation error. In this 

configuration, if the mobile platform is pushed away in any direction by the 

third leg, it will rotate in the same sense. However, in our example, it is easy to 

verify that such configurations cannot appear inside the studied workspace; 

- Case (b): Configurations where two wrenches intersect at the platform centre. 

These configurations can be either a local maximum or a local minimum for the 

position error. In our example, it is easy to verify that such configurations 

cannot appear inside the studied workspace; 
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- Case (c): Configurations in which the direction of vectors iq∂∂ /x  (i = 1, 2, 3) 

is not nearly constant. Figures 6.13.a and 6.13.b represent the variation in the 

direction of vectors 1/ q∂∂x  in the studied interval (the figures for 2/ q∂∂x  and 

3/ q∂∂x  are obtained by rotations of 120°). It is possible to note that this 

variation is very small in the studied workspaces (less than 0.01°). As already 

mentioned, this is not a 100% guarantee that the maximum position error 

occurs at one of the eight corners of the input error bounding box. Therefore, 

for the purposes of this demonstration, we have also verified on the edges of the 

bounding box (using 20 discretization intervals on each edge). Not even one 

nominal configuration was found for which the maximum position error is not at 

one of the eight corners. Therefore, the assumption that we make is valid in this 

example. 

 

 
 

(a) local minimum (b) local maximum 

Figure 6.12. – Configurations of the 3-PRR parallel manipulator corresponding to local 

(a) minimum and (b) maximum of the orientation error. 

 
Thus, for this robot too, there only are eight sets of active-joint variable to test for 

computing the local maximum orientation error and local maximum position error of 

the robot. The resulting contour plots for two different orientations are presented in 

figures 6.14 and 6.15. 

It can be noted that the position error of this parallel robot is nearly constant for 

both orientations, from about 11 µm to 17 µm, and only slightly larger than the input 

errors ε = 10 µm. This may be explained by the fact that the robot stays far from 

Type 2 singularities in the studied workspace. Furthermore, it appears the orientation 

error is nearly constant and virtually zero, throughout the workspace. Therefore, this 

parallel robot is an excellent candidate for precision positioning, as demonstrated by 

the authors of [Hesselbach 2004]. 
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(a) φ = 0°. (b) φ = 10°. 

Figure 6.13. – Variation in the direction of vector 1/ q∂∂x  (degrees). 

 

  
(a) maximum orientation error (degrees) (b) maximum position error (µm) 

Figure 6.14. – Max. orientation and position errors for the 3-PRR manipulator (φ=0°).
 

  
(a) maximum orientation error (degrees) (b) maximum position error (µm) 

Figure 6.15. – Max. orientation and position errors for the 3-PRR manipulator  

(φ = 10°). 
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6.1.4. Conclusion. 

 

This section presented an analytic study of the local maximum orientation and 

position errors occurring in 3-DOF planar parallel robots subjected to errors in the 

inputs. It was proven that, when sufficiently far from singularities, the local maximum 

orientation and position errors occur only when at least two inputs suffer a maximum 

error. However, a simple procedure was proposed to evaluate, for a given design, 

whether these output errors might occur when only two inputs are at a maximum 

error. Thanks to this analytic study, a simple method was proposed to calculate the 

local maximum orientation and position errors for a given nominal configuration and 

given error bound on the inputs. The method involves solving the direct kinematics for 

eight, or a maximum of 12n (n being the number of discretization steps), sets of inputs. 

This method is relatively fast and accurate, but above all, very simple to implement 

and gives valuable insight into the kinematic accuracy of parallel robot. We believe 

that the proposed method should be used for all 3-DOF planar fully-parallel robots 

instead of the much less meaningful dexterity maps. 

This method can be used in design optimization procedures which seek maximum 

accuracy and in the choice of the appropriate actuators for PAMINSA manipulators. 

The next step of the optimization of PAMINSA manipulators is the minimization of 

the deformations due to the elasticity of the links. 

 

 

6.2. Minimization of the deformations. 

 

Among the obvious advantages of PAMINSA manipulators, we may note the 

improvement of positioning accuracy along the vertical axis because the kinematical 

locking of the structure does not allow the altitude variations during the displacements 

in the horizontal plane. However, the positioning accuracy also depends on the 

elasticity of the elements of the manipulator.  

Many industrial applications of parallel manipulators, such as the assembly of 

electronic, optical units, or several medical applications require high accuracy. It should 

be noted that most of parallel manipulators used today are much better at repeatability 

than at accuracy. For improvement of position accuracy of parallel manipulators, it is 

possible to use calibration methods, to increase the rigidity of links or the lack of 

backlashes in drive systems. A new approach called Geometric and Elastic Error 

Compensation (GEC) was proposed in the study [Meggiolaro 2001]. It was shown that 
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the two techniques can be effectively combined to achieve high absolute positioning 

accuracy.    

In this section, for improvement of positioning accuracy of PAMINSA, we propose 

new compensation schemes, which consist of the introduction into the initial system of 

complementary units making it possible to cancel the positioning errors. Two different 

approaches are proposed and the performances of such designs are shown. 

 

 

6.2.1. Accuracy analysis. 

 

The rigidity of the developed prototype of PAMINSA is studied taking into account 

the elasticity of the links of the pantograph linkages with the Castem software (the 

geometry and mass distribution parameters of the links are listed in Table 6.1). Two 

cases were examined: the errors due to the deformations of the manipulator without 

any payload (Fig. 6.16) and with a load of 20 kg (Fig. 6.17).  

Static rigidity is defined as the 6×6 symmetrical matrix K that maps generalized 

infinitesimal displacements δx = [δx, δy, δz, δφx, δφy, δφz]
T of the platform to 

generalized external loads W = [Fx, Fy, Fz, Mx, My, Mz]
T.  

Thus, we have   

 

 xKW δ= . (6.7) 

 

The analysis of the obtained results shows that the position in which the structure 

is less deformed is the central position. When the platform moves away from this 

position, the manipulator becomes less rigid and loses its accuracy. However, it is 

important to note that the absolute errors along the vertical axis are rather small 

(δzmax= 0.02 mm). Thus, we can note that the suggested manipulator allows the 

displacements of the platform on the horizontal plane with great accuracy. It should be 

also noted that the positioning errors do not depend on the elasticity of actuator 

systems. The gravitational forces are also vertical and do not have any action on the 

rotating actuators. 
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Table 6.1. – Dimensions and characteristics of the prototype’s links. 

 

Location Section Dimensions Location Section Dimensions 

 
 

Beam (1) 

H = 50 mm 

h = 25 mm 

e = 3 mm 

L = 308 mm

 

Beam (1) 

D = 40 mm 

e = 1.5 mm 

L = 630 mm 

 

 

Beam (1) 

D = 25 mm 

e = 4.7 mm 

L = 442 mm
 

Solid (2) 

D = 25 mm 

L = 15 mm 

 

 

Beam (1) 

D = 25 mm 

e =1.5 mm 

L = 210 mm  

Solid (2) 

D =310 mm 

L = 12 mm 

 

 

Beam (1) 

D = 25 mm 

e = 1.5 mm 

L = 420 mm
 

Beam (1) 

H = 25 mm 

h = 50 mm 

e = 2 mm 

L = 363.5 mm 

 

 

Beam (1) 

D = 40 mm 

e = 1.5 mm 

L = 420 mm

 

 

(1) Material: AU4G,  

 Characteristics: E = 74000 MPa, ν = 0.33, 

 ρ = 2800 kg/m3. 
 

(2) Material: Steel,  

 Characteristics: E = 210000 MPa, ν = 0.28,  

ρ = 7850 kg/m3. 
 
Masses of joints:  
 
mAi = 0.305 kg, mBi = 0.338 kg, mCi = 0.233 kg,  
mDi = 0.259 kg, mEi = 0.262 kg, mFi = 0.28 kg,  
mGi = 0.214 kg 



Chapter 6: Optimization of PAMINSA manipulators. 

150 

 

  

(a) Positioning error along x-axis. (b) Orientation error about x-axis. 

  

(c) Positioning error along y-axis. (d) Orientation error about y-axis. 

  

(e) Positioning error along z-axis. (f) Orientation error about z-axis. 

Figure 6.16. – Absolute positioning errors of the platform with orientation φ = 0° at 

the altitude z = —0.6 m. 
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Figure 6.17. – Absolute positioning errors of the platform along the z-axis with a load 

of 20 kg (at altitude z = —0.6 m and with platform orientation φ = 0°). 
 

With a payload of 20 kg applied on the platform, the variations of the positions 

along the vertical axis are represented in Fig. 6.17. The maximal error is less than 140 

µm, which is small, taking into account that the pantograph links are hollow tubes 

with a thickness of 1.5 mm. It is obvious that positioning errors for the manipulator 

can be reduced using high stiffness links. 

In the remainder of this section, we will present two new approaches for the 

improvement of positioning accuracy of PAMINSA manipulators. 

 

 

6.2.2. Improvement of positioning accuracy of PAMINSA by means 

of correcting systems mounted on the drive system. 

 

Most of the research papers devoted to the study of parallel manipulators deal with 

the mechanical structures with rigid links and without clearances in the joints. So in 

this case, the position of the platform is considered perfectly parallel to the base. But in 

reality, the errors due to the elastic deformations of the mechanical structure of the 

manipulator change the position of the platform (attitude and inclination).  

The positioning errors are less important if the output point P (Fig. 6.18), i.e. the 

end of a surgical device or a sensor, is located on the horizontal plane of the platform. 

But the error becomes more important if this output point is moved from the 

horizontal plan of the platform. For example, if the output point is located on the plane 

xOz and is moved away 200 mm from the horizontal plane of the platform (with 100 
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mm radius), the error 0.14 mm of the platform along the z-axis increases at the end of 

the output point to 0.57 mm (see Fig. 6.18). 

 

 

Figure 6.18. – Absolute positioning errors of the output point, which is moved 

away 200 mm from the horizontal plane of the platform. 

 

It is obvious that the improvement of positioning accuracy can be achieved by the 

increase in the rigidity of links. However, it is also promising to develop design methods 

for the improvement of positioning accuracy by the use of additional correcting 

systems. 

Figure 6.19 shows PAMINSA with two compensation systems, which are presented 

in figure 6.20. It should be noted that, in the modified design of the manipulator, the 

joints on the platform are also changed: the universal joints used in the initial version 

are replaced by spherical pairs. The compensation systems, which cancel the errors due 

to the elasticity of links, are provided with two complementary actuators Mcj. These 

actuators allow the displacements of the pantograph’s points Bi making it possible to 

eliminate the inclination error of the platform. These modifications allow the correction 

of the vertical positions of two spherical pairs of the platform, which is absolutely 

enough for cancellation of the positioning error of the inclination of the platform. 

The vertical positions of such a spherical pair located on the platform can be 

determined analytically for the whole workspace (or given altitude) of the manipulator 

on the base of equation (6.7) or by using three sensors mounted on the platform. 

Measuring the spherical joint motion errors for the manipulators with three and six 

prismatic joints (for Tripod and Hexapod types), as well as several installation 

examples of the sensors, was discussed in the study [Oiwa 2002].  
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Figure 6.19. – PAMINSA with added compensation systems. 

 

 

Figure 6.20. – Kinematic schema of the added compensation systems for the 

correction of the positioning errors of the platform along the vertical axis. 

 

Note that the compensation scheme developed for PAMINSA is constructively more 

efficient because it is mounted on the drive system of the vertical displacements. As a 

result, the variable length of the compensation device is always vertical. It should be 

also noted that it is simpler for computation because the translational displacement in 

the added system can be found directly from positioning errors of the platform’s joint 

taking into account the magnification factor of the pantograph linkage. In this manner, 

the significant reduction of errors can be achieved and the obtained results are shown 

in figure 6.21. It is seen that, after compensation of the errors due to the elasticity of 
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links, the vertical positions of the platform’s joints have constant values and the 

inclination error is eliminated. 

 

 

Figure 6.21. – The vertical positioning errors of the platform’s joints C1, C2 and C3 of 

the initial and modified manipulators (the examined case correspond to the platform 

with orientation φ = 0° at the altitude z = —0.6 m). 

 

6.2.3. Improvement of positioning accuracy of PAMINSA by means 

of correcting systems mounted on the platform. 

 

Let us consider another correcting system mounted on the platform of PAMINSA. 

Such a system can be added on any parallel structure for the correction of positioning 

error of the inclination of the platform. The suggested system consists of a correcting 

mass, which has the possibility to turn about the vertical axis of the platform and to 

carry out translational displacements on the horizontal plane (Fig. 6.22). 

 

 

Figure 6.22. – Representation of the correcting system mounted on the 

platform. 
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Introducing the correcting conditions into equation (6.7), we obtain: 

 

 [ ]Tystxstc MMgm 000 )()(
11 −+= −− KWKxδ , (6.8) 

 

from which, taking into account that after correction 

 

 [ ]Tzzyx φδδδδ= 00xδ , (6.9) 

 

we determine the static moments Mst(x) and Mst(y) and then the position λ and 

orientation α of the correcting mass mc. 

In other words, the correcting mass mc should be located on the platform in such a 

manner that its gravity effects eliminate the inclination error of the platform. 

For a PAMINSA-4D3L with parameters of the prototype (see table 6.1), the values 

of the position λ and orientation α for the correcting mass mc = 3 kg are shown in 

figure 6.23. 

 

  

Figure 6.23. – Position λ and orientation α of the correcting mass mc. 

 

These values are obtained for the platform having a constant orientation φ = 0° at 

the altitude z = —0.6 m. The obtained results are the same as the previous case (Fig. 

6.21), i.e. after compensation of the errors due to the elasticity of links, the vertical 

positions of the platform’s joints have constant values and the platform becomes 

perfectly parallel to the base. 
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6.2.4. Conclusions. 

 

In this section, new design approaches for the improvement of positioning accuracy 

of a 4-DOF PAMINSA manipulator are discussed. Usually the studies devoted to 

parallel manipulators deal with the mechanical structures on the base of rigid body 

mechanics and consider that the platform is perfectly parallel to the base. It has been 

shown that the elasticity of links has an influence on the positioning accuracy of the 

developed parallel manipulator. For the cancellation of these positioning errors due to 

the elasticity of links, two approaches are presented. The first solution is carried out by 

means of two correcting systems mounted on the drive system of the vertical 

displacements. The second solution is carried out by use of a correcting mass mounted 

on the platform. The obtained results show that, after compensation of the errors due 

to the elasticity of links, the vertical positions of the platform’s joints have constant 

values and the inclination of the platform in relation to the base is cancelled. 

The next step of our optimization procedure is the reduction of the input torques of 

the manipulator. 

 

6.3. Input torques minimization. 

 

An important challenge in industrializing a new manipulator is the reduction of its 

manufacturing cost. This cost can be reduced by different manners, as for example: 

- by using common pieces which can easily be found in industry, as ball bearings; 

- by designing the manipulator with the simplest structure which can be easily 

reproduced and of which links have simple shapes; 

- by having actuators with relatively small power, which can be obtained by 

minimizing the efforts that the motors have to apply. 

In this section, the minimization of input torques of the PAMINSA manipulator 

with 4 DOF is discussed. The optimal results obtained are based of the static and 

dynamic models of the manipulator developed in chapter 2 and chapter 5. 
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6.3.1. Reduction of input torques in static mode of operation.  

 

In [Arakelian 1998], it is shown that the input torques due to the effect of 

gravitational forces on the pantograph linkage can be cancelled by the optimal 

redistribution of its movable masses. Thus, by complete static balancing of legs, it 

should be possible to cancel the loads due to the movable masses of the legs on the 

rotating actuators of PAMINSA manipulators. 

In our case, the static balancing can be achieved by canceling the term Cv2 of 

equation (2.6). We propose to add masses on point Fi (Fig. 2.4) of each leg in order to 

statically balance the mechanism. 

Figure 6.24 shows the variations of the torque of actuator M1 before and after mass 

balancing. After complete static balancing, the potential energy of the manipulator is 

constant for any configuration and zero actuator torques are required.  

 

 
 

Figure 6.24. – Variations of the actuator torques for z = —0.6 m and φ = 0° before 

(dark grey) and after (bright grey) static balancing of legs (motor 1). 

 

The presented example was calculated using the link parameters of the developed 

prototype (see appendix E). The value of the added masses are 2.8 kg (to observe the 

increase in masses after balancing, it should be noted that the mass of each pantograph 

linkage before balancing was 3.1 kg). 

It is obvious that such a balancing is very useful for a static mode of operation of 

the manipulator. However, with the increase in the accelerations of moving links, the 

complete static balancing becomes ineffective because the increase in inertia forces leads 

to complementary loads. That is why an optimal balancing of limbs is considered 

below.  
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6.3.2. Reduction of input torques in dynamic mode of operation. 

 

In chapter 5, we presented an analytic dynamic model of PAMINSA based on the 

Lagrange equations. 

For a comparative analysis of the unbalanced and statically balanced manipulators 

in dynamic mode of operation, a prescribed trajectory in horizontal plane is defined 

(Fig. 6.25) and, for the manipulator parameters given in appendix E, the input torques 

are determined (Fig. 6.26). 

Thus, the obtained results showed that, in the case of accelerated motions for input 

torques minimization, it is better to achieve a partial mass balancing.   

The minimization problem can be expressed as the following: 

 

 
jiji rm

dyn
p

,
minmax →τ  (6.10) 

 

i.e. it is necessary to find such a distribution rji of moving masses mji which allows the 

minimization of the maximum values of the input torques.  

The calculated values of added masses located at the axis Fi of each leg are 1.3 kg. 

The values of the input torques after complete static balancing and optimal balancing 

are presented in figure 6.27. 

Thus, the analysis of obtained results shows that such an optimization allows the 

reduction of the maximal values of the input torques in dynamic mode of operation up 

to 45%.  

 

  

(a) Displacement along x-axis. (b) Displacement along y-axis. 

Figure 6.25. – The prescribed trajectory for z = —0.7 m and φ = 0°. 
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(a) Torque of the actuator M1 

 

(b) Torque of the actuator M2 

 

(c) Torque of the actuator M3 

Figure 6.26. – Actuators’ torques for unbalanced (full line) and statically balanced 

manipulators (dotted line). 
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(a) Torque of the actuator M1 

 

(b) Torque of the actuator M2 

 

(c) Torque of the actuator M3 

Figure 6.27. – Actuators’ torques for unbalanced (full line) and partially balanced 

manipulators (dotted line). 
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We would like to mention that the minimization was carried out for a prescribed 

trajectory. This trajectory may be either the generalized trajectory with maximum 

acceleration, which is generated by the robot (for example, pick-and-place motion) or a 

trajectory, which is variable with unknown parameters. In the first case, the masses of 

the balancing counterweights can be constant and the influence of the trajectory 

variations on the torque minimization will be small. In the second case, the balancing 

counterweights should be designed with adjustable parameters and they can be adapted 

to the given trajectory [Arakelian 1989] [Arakelian 1990]. 

 

 

6.3.3. Experimental validations. 

 

6.3.3.1. Reduction of input torques in static mode of operation. 

 

The static balancing of the manipulator is experimentally accomplished by adding 

counterweights of 2.8 kg at the axis Fi of the pantograph linkages (Fig. 6.28). 

 

 

Figure 6.28. – Counterweights added on pantograph linkages. 

 

In order to prove the minimization of input torques before and after balancing, 

some arbitrary configurations of the manipulator were examined. The tested poses are 

given in table 6.2. 
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Table 6.2. – The poses for the experimental validation of the static balancing. 

 

Pose 1 2 3 4 5 6 7 

x (m) 0.124 0.015 -0.149 0.072 -0.053 -0.134 -0.173 

y (m) 0.096 0.047 0.009 0.129 0.09 -0.075 -0.042 

z (m) -0.6 -0.615 -0.733 -0.497 -0.540 -0.389 -0.687 

φ (deg.) 34.72 -20.23 4.53 9.23 33.92 -3.5 15.64 

 

 

Table 6.3. – The absolute values of the maximal input torques before (case 1) and 

after (case 2) static balancing. 

 

Pose 1 2 3 4 5 6 7 

Case 1 (N.m) 1.78 1.81 1.38 3.31 3.23 1.93 2.4 

Case 2 (N.m) 0.46 0.26 0.34 0.47 0.59 0.35 0.55 

Reduction 74 % 86 % 76 % 86 % 82 % 82 % 77 % 

 

 

For these seven positions of the platform, the maximal absolute values of the input 

torques of the 3 rotating actuators before and after complete static balancing are 

measured (table 6.3). The reduction of the maximal input torques varies from 74% to 

86%. 

 

 

6.3.3.2. Reduction of input torques in dynamic mode of operation. 

 

As proposed above, for the trajectory given in figure 6.25, we measure the input 

torques of the three rotary actuators for the three different cases: 

- without added masses for torques reduction; 

- with added masses for static balancing; 

- with added masses for dynamic optimization. 
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(a) Torque of the actuator M1. 

 
(b) Torque of the actuator M2. 

 
(c) Torque of the actuator M3. 

Figure 6.29. – Actuators’ torques without (full line) and with (dotted line) added 

masses for static balancing. 
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(a) Torque of the actuator M1. 

 

(b) Torque of the actuator M2. 

 

(c) Torque of the actuator M3. 

Figure 6.30. – Actuators’ torques without (full line) and with (dotted line) added 

masses for dynamic optimization. 
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The results are presented in figures 6.29 and 6.30. 

As seen previously, the masses of 2.8 kg for the static balancing becomes inefficient. 

Thus, an optimal redistribution of the movable masses becomes useful. The reduction 

of the input torques with the added masses of 1.3 kg varies from 41% to 55%.  

Thus, we can note that the obtained measures prove all numerical simulations 

presented above. 

 

 

6.4. Summary. 

 

This section presents an analytic study of the maximum orientation and position 

errors occurring in PAMINSA manipulators subjected to errors in the inputs. It was 

proven for the planar equivalent models of PAMINSA manipulators that, when 

sufficiently far from singularities, the local maximum orientation and position errors 

occur only when at least two inputs suffer a maximum error. However, a simple 

procedure is proposed to evaluate, for a given design, whether these output errors 

might occur when only two inputs are at a maximum error. Thanks to this analytic 

study, a simple method is proposed to calculate the local maximum orientation and 

position errors for a given nominal configuration and given error bound on the inputs. 

The method involves solving the direct kinematics for eight, or a maximum of 12n (n 

being the number of discretization steps) sets of inputs. This method is relatively fast 

and accurate, but above all, very simple to implement and gives a valuable insight into 

the kinematic accuracy of parallel robot. 

Also, new design approaches for the improvement of positioning accuracy of a 4-

DOF PAMINSA manipulator are discussed. It is shown that the elasticity of links has 

an influence on the positioning accuracy of the developed parallel manipulator. For the 

cancellation of these positioning errors due to the elasticity of links, two approaches are 

presented. The first solution is obtained by means of two correcting systems mounted 

on the drive system of the vertical displacements. The second solution is carried out 

using a correcting mass mounted on the platform. The obtained results show that, after 

compensation of the errors due to the elasticity of links, the vertical positions of the 

platform’s joints have constant values and the inclination of the platform in relation to 

the base is cancelled. 

The reduction of the input torques is also studied. It is shown that, for a dynamic 

mode of operation, the complete static balancing may be ineffective in terms of input 
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torques. In the case of accelerated motions, it is proposed to carry out an optimal 

redistribution of the movable masses and to achieve a partial mass balancing. 

Finally, tests on the prototype of PAMINSA are presented. It is shown 

experimentally that it is possible to reduce the torques of the actuators by the optimal 

redistribution of the movable masses (from 74% to 86% in static mode of operation and 

from 41% to 55% in dynamic mode of operation). 
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Conclusion 

 

 

 

 

Summary and contribution of the thesis. 

 

The subject of this thesis was the analysis and the optimization of a new family of 

parallel manipulators called PAMINSA (PArallel Manipulator of the I.N.S.A.).  

The first chapter of our manuscript dealt with the history of parallel kinematic 

machines and briefly reviewed the historical evolution of parallel mechanisms developed 

for the industry, patented or prototyped. While it was promised they would have 

greater rigidity, better velocities and dynamic characteristics, and high accuracy 

compared with their serial counterparts, such mechanisms have achieved little success 

in the industrial word. This may be explained by several factors:  

- the presence of singularities in the workspace, some of them leading to huge 

positioning errors; however, solutions have already been proposed and 

validated; 

- the use of links with weaker masses which leads to a loss of rigidity of the 

structure; such a problem may be easily avoided by the use of more rigid 

links; 

- manufacturing errors and joint clearances, which can be rectified by 

calibration and an appropriate design; 

- the non-linearity of the static and dynamic models of parallel manipulators 

which leads to positioning errors. 

In order to solve the problem in the non-linearity in the relationships of parallel 

robots, several researchers have thought of decoupling/simplifying the control laws of 

such structures. Our literature review has shown that, in most of the cases, two 

approaches are developed: (i) the decoupling between position and orientation; (ii) the 

full-decoupling of the movements. Despite these rather encouraging results, the fully-

decoupled manipulators have drawbacks also, such as a lack of rigidity or the increase 

in the number of joints. 

This is the reason why we proposed, in chapter 2, a compromise between the 

decoupling of the movements and the architectural characteristics of parallel structures. 
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In other words, we changed the statement of the problem: it is not essential that a 

parallel architecture be fully-decoupled, it can also be partially decoupled. But it is 

important to obtain a mechanical architecture with high payload capacities. 

Thus, we proposed a new design approach of decoupling in which the displacements 

of the platform in the horizontal plane are independent on its displacements along the 

vertical axis. Based on this concept, a new family of decoupled parallel manipulators 

from 3 to 6 DOF was created. The structures are obtained with the use of pantograph 

linkages. Among the obvious advantages of such an approach, we may note: 

- the decoupling of the control powers in two parts, making it possible to raise 

an important payload to a fixed altitude by powerful actuators and, then, to 

displace it on the horizontal plane by less powerful actuators;  

- a great accuracy in the horizontal positioning because the payload can be 

locked in the horizontal plane by the mechanical architecture of the 

manipulator (in other words, if the position of the vertical actuator is fixed, 

the altitude of the platform cannot change); 

- the cancellation of static loads on the rotating actuators which move the 

platform in the horizontal plane;  

- the simplification of the vertical control based on linear input/output 

relationships. 

The proposed manipulators could be used in many industrial applications such as 

the manipulation of heavy equipment with great positioning accuracy or in micro-

manipulation (as long as the magnification factor of the pantograph linkages does not 

enlarge the displacements but, on the contrary, reduces the movement quantity). 

At the end of chapter 2, a prototype of PAMINSA and experimental tests were 

presented. It was shown that the experimental tests prove the validity of the suggested 

design concept. 

The following step of the analysis of these new manipulators was the study of their 

kinematics, and particularly their singularities, because they may be the worst 

drawbacks of parallel manipulators. This is the reason why we analysed in chapter 3 

the singular configurations of PAMINSA with three, four, five and six degrees of 

freedom, of which planar equivalent models are the 3-RPR manipulators. The 

singularities have been determined in analytic form by an algebraic approach based on 

the analysis of the properties of the Jacobian matrices. The nature of each kind of 

singularity has been discussed and kinematically analysed. 

We have also shown that this kind of PAMINSA manipulators may have Cardanic 

self motions within their workspace. As the self motions may be the worst type of 
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singular configurations a parallel manipulator could have, the geometric conditions 

leading to Cardanic self motions have been derived. The results, in terms of singularity 

loci and of associated finite displacements, have been validated on an actual robot 

prototype. These results can be used to optimize the singularity-free workspace of this 

type of robots and in choosing the optimal architectures of PAMINSA. 

As the singular configurations also limit the workspace of parallel manipulators, 

which is less than that of serial manipulators, the following point of our analysis was to 

find a means of enlarging the workspace of parallel manipulators by passing through 

singular configurations. Therefore, chapter 4 presented a new procedure for the increase 

of singularity-free zones in the workspace of planar parallel manipulators. The 

procedure is based on the known kinematic singularity equations and the control of the 

pressure angles in the joints of the manipulator along the given trajectory of the 

platform. The zones that could not be reached by the manipulator were detected. In 

order to increase of the reachable workspace of the manipulator, legs of variable 

structure were proposed. Such a solution makes it possible to obtain the best structural 

architecture of the manipulator for any trajectory. The design of the optimal structure 

of the PAMINSA, of which planar equivalent model is a 3-RPR manipulator, was 

illustrated by two numerical simulations. 

Chapter 5 presented another method, based on the optimization of the dynamic 

parameters of parallel manipulators, which makes it possible to pass through the Type 

2 singular configurations, and as a result, to enlarge the workspace of parallel 

mechanisms. The principal contribution of this chapter is the presentation, for the first 

time, of the general definition of the condition for passing through the Type 2 singular 

positions, which can be formulated by the following: in the presence of Type 2 singular 

configurations, the platform of a parallel manipulator can pass through the singular 

positions without perturbation of motion if the wrench applied on the platform by the 

legs and the external loads is orthogonal to the direction of the uncontrollable motion 
(in other terms, if the work of applied forces and moments on the platform along the 

uncontrollable motion is equal to zero). This condition has been verified by simulations 

on two examples (a planar 5R parallel robot and a PAMINSA-4D3L) and validated by 

experimental tests on the prototype of PAMINSA. 

Finally, chapter 6 introduced new methods which can be used in the design 

optimization of PAMINSA manipulators. These methods may be defined as follows: 

- method for accuracy analysis: it was proven for the planar equivalent model of 

PAMINSA that, when sufficiently far from singularities, the local maximum 

orientation and position errors occur only when at least two inputs suffer a 
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maximum error. However, a simple procedure was proposed to evaluate, for a 

given design, whether these output errors might occur when only two inputs 

are at a maximum error. Thanks to this analytic study, a simple method was 

proposed to calculate the local maximum orientation and position errors for a 

given nominal configuration and given error bound on the inputs. The method 

involves solving the direct kinematics for eight, or a maximum of 12n (n being 

the number of discretization steps) sets of inputs. This method is relatively 

fast and accurate, but above all, very simple to implement and gives a 

valuable insight into the kinematic accuracy of parallel robot; 

- method to minimize the deformations: new design approaches for the 

improvement of positioning accuracy of a 4-DOF PAMINSA manipulator have 

been discussed. It has been shown that the elasticity of links has an influence 

on the positioning accuracy of the developed parallel manipulator. For the 

cancellation of these positioning errors due to the elasticity of links, two 

approaches have been presented. The first solution is obtained by means of 

two correcting systems mounted on the drive system of the vertical 

displacements. The second solution is carried out by use of a correcting mass 

mounted on the platform. The obtained results show that, after compensation 

of the errors due to the elasticity of links, the vertical positions of the 

platform’s joints have constant values and the inclination of the platform in 

relation to the base is cancelled; 

- method for reducing input efforts: the reduction of the input torques was 

studied. It was shown that, for a dynamic mode of operation, the complete 

static balancing may be ineffective in terms of input torques. In the case of 

accelerated motions, it was proposed to carry out an optimal redistribution of 

the movable masses and to achieve a partial mass balancing. Finally, tests on 

the prototype of PAMINSA are presented. It is shown experimentally that it 

is possible to reduce the torques of the actuators by the optimal redistribution 

of the movable masses (from 74% to 86% in static mode of operation and from 

41% to 55% in dynamic mode of operation). 

We would like to mention that these works have been presented in several articles 

(of which list is given in appendix F). Moreover, the family of PAMINSA manipulators 

is patented (the text of the international patent is given in appendix G). 
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Direction for future works. 

 

Concerning the future research and developments on the subject of PAMINSA 

manipulators, it could be interesting to make a comparative analysis between the 

different architectures in order to find the manipulator which is the most appropriate 

for a desired task. Effectively, although we have, for the time being, proposed a family 

of new manipulators, but we do not yet know which manipulator is the most accurate, 

provides the largest workspace, the best effort transmission (and as a result the best 

efficiency), has the highest velocity, is the least sensitive to manufacturing errors or is 

the easiest to design. Such an analysis is of great interest for the future industrial 

applications. 

A second axis of research could be the cancellation of the shaking forces and 

shaking moments of PAMINSA manipulators via the optimal redistribution of the 

movable masses. Mass balancing of the moving links brings about a reduction of 

vibration that considerably improves the performances of mechanisms. However, 

complete shaking force and shaking moment balancing of parallel manipulators is a 

complicated problem and few research papers have been presented on this subject 

[Fattah 2006] [Ricard 2000] [Wu 2003] [Wu 2005]. In [Arakelian 1999], the author 

demonstrates it is possible to completely eliminate the shaking forces and moments of 

four-bar mechanism by the use of pantograph linkages. This result may be generalized 

in order to obtain the cancellation of the shaking forces and shaking moments of 

PAMINSA manipulators. 

Another axis of research could be the linearization of the relationships of the 

dynamic model of PAMINSA manipulators. The present industrial robots limit their 

working speed and payload due the difficulty of maintaining tracking and positioning 

accuracy. This difficulty arises since, inherently, the robot dynamics are highly coupled, 

which result in complexity in the controller design. Some methodologies for decoupling 

the dynamic equations have been applied on 1-DOF mechanisms [Arakelian 2003] 

[Nishioka 1995] [Wu 2001] or serial structures [Abdel-Rahman 1991] [Coelho 2004] 

[Minotti 1991] [Yang 1986] [Youcef-Toumi 1987], but, due to the high-coupling of 

parallel manipulators, the dynamic decoupling is very difficult to obtain on such 

structures and some important research has to be achieved on this subject. 

All the propositions detailed above apply to PAMINSA manipulators. However, my 

future research interests are not limited to these types of manipulators. Many research 

fields are attractive, such as finding new solutions for increasing the singularity-free 
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zones in the workspace of parallel manipulators, or better understanding the effort 

transmission at Type 2 singular configurations.  

I am also interested in creating new structures for different purposes, such as 

medical applications. In the past few years, more and more medical robots have been 

created, mainly for surgery operations [Bidaud 2002]. However, there are many other 

potential medical applications where parallel structures can be used, such as in the 

creation of mechanisms for 3D ultrasound imaging or for in vitro testing of cadaveric 

spine specimens. For example, at this moment in time, existing spine test devices are 

only capable of applying loads or displacements at one end of a spine segment, thus 

failing to reproduce realistic testing conditions involving muscles actions. In contrast, 

new parallel systems based on the use of steel wires, instead of rigid links, could replace 

completely the action of muscles and hence reproduce realistic testing conditions. Thus, 

my works would naturally be orientated to find new solutions for these problems. 
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Appendix A 

 

 

 

Computation of the Coordinates of the 

Pantograph Linkages Centre of Masses 

 

 

 

 

Based on the description of the pantograph linkage of the figure 2.8, the coordinates 

of its centre of masses can be expressed as the barycentric coordinates of the centre of 

masses of each joint and link. Therefore, we need to calculate the coordinates of each 

point of the described linkage. 

The coordinates of point 5i (i = 1, 2, 3) are equal to: 

 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+
+

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

c

ipl

ipl

i

i

i

L

R

R

z

y

x

z

y

x

)sin(

)cos(

5

5

5

γφ
γφ

 (A.1) 

 

where [x, y, z]T represents the position of the centre of the platform and φ its 

orientation about the vertical axis. Lc is the constant distance between points 6i and 5i 

and Rpl represents the radius of the circumscribed circle of the platform triangle 616263. 

Moreover, as the platform triangle is equilateral, γ1 = —5π/6, γ2 = —π/6 and γ3 = π/2. 

The coordinates of points 3i, 2i and 8i can be expressed as: 
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where Rb represents the radius of the circumscribed circle of the base triangle, k is the 

magnification factor of the pantograph linkages and LBj is the length of the link Bji (j = 

1 to 10). 

The position of point 9i can be found by solving a system of quadratic equations 

representing the intersection of two circles situated in the plane of the pantograph 

linkage:  

- one circle centered in 8i of which radius is LB 8; 

- one circle centered in 5i of which radius is LB 4. 

This system can be written under the form: 
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where 2
35

2
355 )()( iiiii yyxxX −+−= , )1/(58 −−= kXX ii  and X9i represent the 

projection, in the plane of the pantograph linkage, of the coordinates of points 5i, 8i and 

9i, respectively.  

Thus the coordinates of point 9i can be deduced: 
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with:  
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The coordinates of points 2i and 4i can be calculated as a linear combination of the 

coordinates of points 3i, 5i and 9i: 
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Supposing the centre of masses Sji of each link Bji (j = 1 to 10) is located at their 

middle, their coordinates can be expressed as: 
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Thus, the coordinates [xSi, ySi, zSi]
T of the centre of masses of the i-th pantograph 

linkage can be found by the following relation: 

 

 

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∑∑
==

Bji

Bji

Bji

j
Bj

j
ji

ji

ji

j
tot

Si

Si

Si

z

y

x

m

z

y

x

m
m

z

y

x

10,8,7,4,3,2,1

9

2

1
 (A.16) 

 

with mtot the total mass of the pantograph linkage. 
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Developing the term zSi, one can note that: 
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From these expressions, it is possible to see that the terms Cvj of equation (2.6) 

(j = 1, 2, 3, 4) are equal to zjtot Cmg , where g is the gravitational acceleration. 
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Appendix B 

 

 

 

Expressions of the Terms of the Conics 

Representing the Singularity Loci 

 

 

 

 

In the following expressions, cα and sα will denote the cosines and the sinus of angle 

α respectively (α = φ, ψ, θ). 

The expression of the conic ∆ of chapter 3 is equal to: 
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The expression of the conic Λ of chapter 3 is equal to: 
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Appendix C 

 

 

 

Expressions of the Intermediary Terms 

for the Analysis of the Self Motions 

 

 

 

 

Expressions of aji (j = 1, 2, i =1, 2, 3): 
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Expressions of bji (j = 1, 2, i =1, 2, 3): 
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Expressions of ci (i = 1, 2, 3): 
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 Appendix D 

 

 

 

Expressions of the Terms for the Inverse 

Dynamics of the PAMINSA-4D3L 

 

 

 

 

From the time derivation of coordinates of each point of pantograph linkages 

expressed in appendix A, it is possible to deduce the terms Ccj (j = 1, …, 13) of 

equations (5.45) and (5.46). Thus: 
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So the input efforts can be deduced from equation (5.40) using the expression (5.6). 

After simplifications, it is possible to see that they can be written under the form: 

 

 pb WJW T+=τ  (D.14) 

 

where J = —A-1B is the global Jacobian matrix (the expression of matrix A is given at 

relation (3.6)) and: 
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In equations (D.16) and (D.17), vectors FP, Fji and FSji represents respectively the 

wrenches due to both gravity and inertia effects applied on the platform, the joints and 

the links of the pantograph linkage. Moreover, matrices JXji, JXSji, JQji and JQSji 

represents the Jacobian matrices between the coordinates of the points ji, Sji (position 

and orientation) and the variables x = [x, y, z, φ]T and q = [q1, q2, q3, qv]
T respectively. 

Their expressions are detailed below. In these expressions, δij represents the Kronecker 

symbol (δij = 1 if j = i and δij = 0 if j ≠ i). 
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with αi = ζi if j = 4, 7, αi = εi if j = 3, 8 and 

 

 [ ]TiiiiiBji qqq &&& cossin αα−=Ω . (D.53) 
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Appendix E 

 

 

 

Characteristics of the PAMINSA Used 

for the Numerical Simulations 

 

 

 

 

For the numerical simulations, we used the following characteristics: 

- the radii of the circles circumscribed to the base and platform triangles are 

respectively equal to Rb = 0.35 m and Rpl = 0.1 m; 

- magnification factor of the pantograph: k = 3; 

- the gravitational acceleration g is equal to 9.81 m/s2. 

- lengths of the links of the pantograph linkages: LB1 = 0.308 m, LB2 = 0.442 m, 

LB3 = LB8 = 0.42 m, LB4 =k LB7 = 0.63 m, LB5 = 0.0275 m, LB10 = 0.3635 m; 

- masses of the joints of the pantograph linkages: m2 = 0.214 kg, m3 = 0.338 kg, 

m4 = 0.262 kg, m5 = 0.233 kg, m7 = 0.28 kg, m8 = 0.305 kg, m9 = 0.259 kg; 

- mass of the platform: mpl  = 2.301 kg; 

- masses of the links of the pantograph linkages: mB1 =1.221 kg, mB2 = 0.921 kg, 

mB3 = 0.406 kg, mB4 = 0.672 kg, mB7 = 0.107 kg, mB8 = 0.403 kg, mB10 = 0.436 kg; 

- mass of 2.8 kg added on point 7p for the simulations of figure 2.8. 

- axial moment of inertia of the platform: 2kg/m015.0=plI . 

- axial moments of inertia of the links of pantograph linkages:  

2)3( kg/m0038.0=B
XXI , 2)3( kg/m02.0=B

YYI , 2)4( kg/m0012.0=B
XXI , 

2)4( kg/m048.0=B
YYI , 24)7( kg/m108 −⋅=B

XXI , 2)7( kg/m003.0=B
YYI , 

2)8( kg/m0024.0=B
XXI , 2)8( kg/m02.0=B

YYI , 2
2 kg/m003.0=BI , 2

10 kg/m02.0=BI . 
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TITRE :  
« Analyse et Optimisation d’une Nouvelle Famille de Manipulateurs Parallèles aux Mouvements Découplés » 

RÉSUMÉ :  
Il est bien connu que, parmi les nombreux avantages des manipulateurs parallèles par rapport aux robots 
sériels, on peut citer des vitesses et accélérations plus élevées, et une plus grande capacité de charge. 
Cependant, il existe des inconvénients, comme un volume de travail restreint, de forts couplages cinématiques 
et des singularités plus contraignantes. Afin d’améliorer leurs performances, des travaux ont été menés 
concernant le découplage des mouvements des robots parallèles. Le projet de thèse porte sur la conception, 
l’optimisation et l’amélioration d’une nouvelle famille de manipulateurs parallèles de 3 à 6 degrés de libertés 
partiellement découplés appelés PAMINSA (PArallel Manipulator of the I.N.S.A.). La deuxième partie de ce 
manuscrit présente la particularité de ces architectures qui est le découplage entre les mouvements de la plate-
forme dans le plan horizontal et les translations suivant l’axe vertical. Dans une troisième partie, nous faisons 
l’analyse des singularités de ces manipulateurs. Cette analyse est nécessaire pour choisir le manipulateur qui a 
le plus grand espace de travail sans singularité. Dans les parties 4 et 5, nous proposons des méthodes 
permettant d’augmenter la taille de leur espace de travail sans singularité. La première solution est basée sur 
l’utilisation de mécanismes à structure variable, c’est-à-dire des mécanismes dont les paramètres structurels 
peuvent être changés. Cette solution permet d’augmenter l’espace de travail sans singularité jusqu’à 100% de 
l’espace de travail total. La deuxième solution porte sur une optimisation des paramètres dynamiques des 
manipulateurs qui permet de traverser les singularités lors de déplacements de la plate-forme. Enfin, dans une 
sixième partie, une nouvelle méthode performante et rapide permettant de calculer la précision des 
manipulateurs PAMINSA ainsi que des solutions pour améliorer leurs caractéristiques fonctionnelles sont 
proposées.  
 

MOTS-CLÉS :  
Manipulateurs parallèles, PAMINSA, découplage, singularités, augmentation de l’espace de travail sans 
singularité, réduction des efforts moteurs, précision. 

TITLE:  
“Analysis and Optimization of a New Family of Parallel Manipulators with Decoupled Motions” 

ABSTRACT:  
It is well known that, amongst the numerous advantages of parallel manipulators when compared with their 
serial counterparts, one can notice better velocities and dynamic characteristics, as well as higher payload 
capacities. However, there are some drawbacks, such as a smaller workspace, a high coupling in the kinematic 
relationships and more constraining singularities. In order to overcome these disadvantages, the decoupling of 
the movements of parallel robots has been proposed. Thus, the research project deals with the design, the 
optimization and the improvement of a new family of parallel manipulators from 3 to 6 degrees of freedom 
named PAMINSA (PArallel Manipulator of the I.N.S.A.). The second part of this manuscript presents the 
characteristics of these architectures, namely the decoupling between the movements of the platform in the 
horizontal plane from its translations along the vertical axis. In a third section, we analyse the singular 
configurations of these manipulators. This analysis is necessary in order to choose the manipulator which has 
the largest singularity-free workspace. In sections 4 and 5, we propose novel methods allowing an increase in 
the size of their singularity-free workspace. The first solution is based on the use of mechanisms with variable 
structures, i.e. mechanisms of which structural parameters can be altered. Such a solution makes it possible to 
increase the singularity-free workspace to 100% of the maximal workspace. The second solution deals with 
the optimization of the dynamic parameters of the manipulators, which makes it possible to pass through the 
singularities during the displacements of the manipulator. Finally, in a sixth section, a new, fast and efficient 
method of computing the accuracy of PAMINSA manipulators is described. In addition, solutions for the 
improvement of functional characteristics of PAMINSA manipulators are proposed. 
 

KEYWORDS:  
Parallel manipulators, PAMINSA, decoupling, singularities, increase of the singularity-free zones of the 
workspace, input effort reduction, accuracy. 
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