
HAL Id: tel-00327515
https://theses.hal.science/tel-00327515

Submitted on 8 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approaches to Assess Validity of Derivatives and to
Improve Efficiency in Automatic Differentiation of

Programs
Mauricio Araya-Polo

To cite this version:
Mauricio Araya-Polo. Approaches to Assess Validity of Derivatives and to Improve Efficiency in
Automatic Differentiation of Programs. Autre. Université Nice Sophia Antipolis, 2006. Français.
�NNT : �. �tel-00327515�

https://theses.hal.science/tel-00327515
https://hal.archives-ouvertes.fr

Approaches to Assess Validity of Derivatives and
to Improve Efficiency in Automatic Differentiation

of Programs

Une thèse présentée

par

Mauricio Araya Polo

á

l’université de Nice Sophia Antipolis

pour obtenir le titre de

Docteur en Sciences

specialité

Informatique

Thèse soutenue le 24 Novembre 2006 devant le jury composé de:

M. André Galligo (Président)
Mme. Christine Eisenbeis (Rapporteur)
M. Trond Steihaug (Rapporteur)
M. José M. Cela
M. Laurent Hascoët

Sophia-Antipolis, France

Thesis advisor Author
Laurent Hascoët Mauricio Araya Polo

Approaches to Assess Validity of Derivatives and to Improve
Efficiency in Automatic Differentiation of Programs

Abstract
The context of this work is Automatic Differentiation (AD). Fundamentally, AD
transforms a program that computes a mathematical function into a new program
that computes its derivatives. Being automatic, AD can spare a large amount of
development effort. AD is increasingly used in Scientific Computing, but some prob-
lems still delay its widespread use. In this thesis we propose elements of solution
for two of these problems. The first problem is non-differentiability of most real-life
programs for some particular inputs. AD tools often overlook this problem. Howe-
ver users need a strong degree of confidence in the derivatives they obtain, to use
them e.g. in optimization engines. Non-differentiability in programs may come from
various causes, from the mathematical model to the actual implementation choices.
Practically, non-differentiability in programs is embodied by the presence of control.
Rather than studying notions of extended derivatives, our approach is to describe
the domain in the input space for which the function actually remains differentiable.
We describe several alternatives to find this domain of validity and we evaluate their
complexity. We formally study one method to compute the complete domain, but
we discard it because of its cost. Alternatively, we propose a simpler directional
method that we have implemented and validated on several examples. The second
problem is efficiency of the reverse mode of AD, which computes gradients and is
therefore of high interest. Reverse AD programs use the intermediate values from
the original program in the reverse order, and this has a cost, whatever the strategy
used. Available strategies all rely on a combination of storing and recomputing inter-
mediate values, thus costing memory space and execution time. The central tactic,
called ”checkpointing”, trades duplicate execution of complete segments of the code
for memory space. In this work, we formalize the static data-flow behavior of reverse
AD programs, taking checkpointing into account. Based on these formal results, we
contribute two improvements to reverse AD strategies. First, the data-flow analysis
lets us reduce the number of stored values to a minimum, and we give elements of
proof of minimality. Second, we obtain indications on the code segments that are
most appropriate for checkpointing. To experiment on checkpointing schemes, we
extend the data-flow analyses and the reverse mode in our AD tool. We show the
benefits on several large Scientific Computing codes.

Directeur thése Auteur
Laurent Hascoët Mauricio Araya Polo

Approaches to Assess Validity of Derivatives and to Improve
Efficiency in Automatic Differentiation of Programs

Résumé
Ce travail concerne la Différentiation Automatique (DA) de codes. La DA transforme
un programme calculant une fonction mathématique en un nouveau programme cal-
culant ses dérivées, gagnant ainsi un temps de développement conséquent. L’usage
de la DA se répand en Calcul Scientifique, mais souffre encore de quelques problèmes.
Cette thèse propose des éléments de solution à deux de ces problèmes. Le premier
problème est la non-différentiabilité des programmes réels, pour certaines entrées.
Les outils de DA négligent souvent ce problème, alors que les utilisateurs ont besoin
d’une grande confiance dans ces dérivées avant de les utiliser, par exemple dans des
boucles d’optimisation. Quelle que soit son origine réelle, cette non-différentiabilité
se traduit dans la structure de contrôle des programmes. Plutôt que d’étudier des
extensions de la notion de dérivée, nous préférons ici caractériser le domaine autour
des entrées courantes pour lequel le contrôle reste constant et la différentiabilité est
conservée. Nous proposons plusieurs approches et évaluons leurs complexités. Nous
étudions formellement une construction du domaine entier, mais sa complexité limite
son application. Alternativement, nous proposons une méthode directionnelle moins
coûteuse, que nous avons implémentée et validée sur plusieurs exemples. Le second
problème est l’efficacité du mode inverse de la DA, qui produit des codes ”adjoints”
calculant des gradients. Ces codes utilisent les valeurs intermédiaires du programme
initial dans l’ordre inverse, ce qui nécessite une combinaison de sauvegarde et de recal-
cul de ces valeurs. Une tactique fondamentale, nommée ”ckeckpointing”, économise
de la mémoire au prix de la reexécution de segments de code. Dans notre travail,
nous formalisons les analyses de flot de données nécessaires la différentiation inverse,
y compris dans le cas du checkpointing. A partir de cette formalisation, nous pro-
posons deux avancées aux stratégies de la DA inverse. D’une part ces analyses nous
fournissent des ensembles de valeurs sauvegarder, que nous pouvons prouver mini-
maux. D’autre part nous en tirons des indications sur les meilleurs segments de code
candidats au checkpointing. Pour expérimenter ces choix, nous étendons les analyses
et l’algorithme de différentiation inverse de notre outil de DA. Nous montrons les
bénéfices que l’on peut attendre sur des codes réels.

Contents

Title Page . i
Abstract . ii
Resume . iii
Table of Contents . iii
List of Figures . viii
List of Tables . x
Citations to Previously Published Work xii
Acknowledgments . xiii
Dedication . xiv

1 Introduction 1
1.1 Abusive Use of Derivatives . 3
1.2 Memory Shortage in Reverse Mode 4
1.3 Overview of the Thesis . 6

2 Automatic Differentiation 8
2.1 AD: Motivation, Goal and Framework 9

2.1.1 Motivation . 9
2.1.2 AD’s Goals . 9
2.1.3 Framework . 10

2.2 Programs and Mathematical Functions 11
2.2.1 Program Representation . 11

Programs and Instructions . 11
Control Flow and the Flow-Graph 12
Subroutine Calls and the Call-Graph 12

2.2.2 Mathematical Functions Implemented by Programs 13
Structure . 13
Visualization . 14

2.3 The Chain Rule . 16
2.3.1 The Chain Rule and Programs 16
2.3.2 Example . 18
2.3.3 The Chain Rule on DAG . 18

2.4 The Tangent Mode of AD . 20

iv

Contents v

2.4.1 Definition and AD Model . 20
2.4.2 Example . 21
2.4.3 The Tangent Mode on DAG 22

2.5 The Reverse Mode of AD . 23
2.5.1 Definition and AD Model . 23
2.5.2 Example . 24
2.5.3 The Basic Problem of the Reverse Mode 25
2.5.4 The Reverse Mode on DAG 26
2.5.5 Relationship between Tangent and Reverse Modes 27

2.6 Theoretical Performances of AD Modes 27
2.7 Strategies and Architectures for AD tools 29

2.7.1 AD Implementation Strategies 29
Overloading . 29
Source Transformation . 30

2.7.2 AD Tool Architectures . 31
Source-to-Source Architecture 31
Other Architectures . 33

2.8 Examples of AD Application . 34

3 The Domain of Validity of Derivatives 35
3.1 The Validity Problem . 37
3.2 Analysis of the Validity Problem . 41

3.2.1 The Differentiability of Intrinsic Functions 41
3.2.2 Differentiability of Conditional Statements 43

3.3 Defining and Propagating Validity Information 45
3.3.1 Validity Information Definition 46
3.3.2 Propagating Validity Information 47

3.4 Half-Spaces Backward Propagation (HSBP) 48
3.4.1 Definition . 48
3.4.2 Problems with HSBP . 49

Size and Representation . 49
Reducing the Size of the Set of Constraints 49
Changing the Constraint Representation 50

3.5 Directional Forward Propagation (DFP) 52
3.5.1 Definition . 52
3.5.2 Problems with DFP . 54
3.5.3 DFP Implementation . 54
3.5.4 DFP and AD Modes . 56

3.6 Experimental Results . 56
3.6.1 Basic Example . 56
3.6.2 Experiments with the Newton Method 59
3.6.3 Experiments with Real-Life Scientific Programs 64

Contents vi

3.7 Related Techniques . 65
3.7.1 Interval Extension . 65
3.7.2 Sub-differentials . 66
3.7.3 Laurent Series . 67

3.8 Conclusions and Future Work . 68

4 Data-Flow Analyses and Checkpointing for the Reverse Mode 70
4.1 The Memory Consumption Problem of the Reverse Mode 72

4.1.1 Store-All Strategy vs Recompute-All Strategy 72
4.1.2 Experimental Measurements 74
4.1.3 The Store-All Strategy and Memory Constraint 76

4.2 Classical Strategies for the Store-All Approach 77
4.2.1 Fine-Grain Strategies . 78

Data-Flow Analyses . 78
Recomputing versus Storing 81

4.2.2 Coarse-Grain Strategies . 82
Checkpointing . 82
Assumption Regarding the Tape and the Snapshot 84
Checkpoint Placements . 84
Snapshot Definition . 86

4.3 A Formal Model of Store-All Reverse Mode of AD 88
4.4 Contributions to the Fine-grain Strategies 89

4.4.1 Adjoint Data-flow Analyses 89
Adjoint Liveness Analysis . 90
Refined TBR Analysis . 90
Adjoint Write Analysis . 91

4.4.2 Improved Model of the Store-All Reverse Mode of AD 91
4.4.3 Experimental Measurements 92

4.5 Contributions to Coarse-grain Strategies 93
4.5.1 A Formal Model of Store-All Reverse Mode AD with Check-

pointing . 93
4.5.2 Improved Snapshot Definition 93
4.5.3 Example . 94
4.5.4 The Systematic Checkpointing 94

Simulation of Hybrid Strategies Assuming Snapshot < tape . 97
Simulation of Hybrid Strategies Assuming Snapshot > tape . 98

4.5.5 Implementation . 99
Implementation of the Split Mode in tapenade 99

4.5.6 Experimental Observation of Problems and Results 100
Example Codes . 100
STICS . 100
UNS2D . 102

Contents vii

SONICBOOM . 105
4.5.7 Discussion . 106

4.6 Conclusions and Future Work . 107

5 Conclusions and Further Research Directions 110
5.1 Summary and Conclusions . 110

5.1.1 The Validity Problem . 110
5.1.2 The Memory Problem of The Reverse Mode 111

5.2 Contributions . 113
5.2.1 The Validity Problem . 113
5.2.2 The Memory Problem of the Reverse Mode 113

5.3 Future Research Directions . 114
5.3.1 The Validity Problem . 114
5.3.2 The Memory Problem of the Reverse Mode 115

5.4 Concluding Remarks . 115

Bibliography 116

A 123
A.1 Addendum to tapenade Tutorial . 123

A.1.1 Requirements . 123
A.1.2 Domain of Validity . 123

Procedure . 123
Example of Application . 124

A.1.3 Checkpointing . 126
Procedure . 126
Example of Application . 126

B 133
B.1 Program Examples . 133

B.1.1 Extended Results for Validity Information with Newton Method 133

List of Figures

1.1 Sonic Boom Optimization, CFD using a gradient based method [34]. . 1
1.2 From models to implemented derivatives. 2
1.3 Non-differentiable functions for particular input. 3
1.4 Reverse mode of AD with SA strategy. 5

2.1 Two valid execution paths. 12
2.2 Call-graph: nested calls. 13
2.3 Computational graph and evaluation list for Formula 2.7. 15
2.4 Vertices hold the elementary mathematical functions and along the

edges the partial derivatives of the destination vertex 19
2.5 General view of AD tool structure. Compiler-like structure. 32
2.6 General view of AD tool tapenade structure. 33

3.1 Plot of the example and the modified example around a given input. . 39
3.2 Plot of directional derivatives with input space direction (x1d, x2d) =

(1, 1). 41
3.3 Differentiated flow-graph for example. 43
3.4 Examples of problematic functions. 44
3.5 Representations for an arbitrary example. 52
3.6 Directional representation for an arbitrary example. 54
3.7 Experiments with two directions of the input space, and the computed

validity information. 59
3.8 Newton method using derivatives generated by AD. 61
3.9 Examples of piecewise functions for the Newton method. 61
3.10 Piecewise functions. 63
3.11 Sub-differential example. 67

4.1 Plot of RA and SA strategies, where the horizontal axis represents the
amount of values currently on the stack. 75

4.2 Experimental results. Graphical distribution in a memory vs time. . . 76
4.3 Graphical projection of local optimization for both, SA and RA strate-

gies. 77
4.4 Example dependency graph. 79

viii

List of Figures ix

4.5 Predecessor (Pi) and successor (Si) blocks of basic block B. 81
4.6 Checkpointing on Reverse Mode AD. 83
4.7 Checkpointing on all calls in Reverse Mode AD (joint-all mode). . . . 96
4.8 No Checkpointing in Reverse Mode AD (split-all mode). 97
4.9 Hybrid approach (split-joint) . 97
4.10 Simulation results, tape = 10, snapshot = 6. 98
4.11 Generic Numerical Results, tape = 6, snapshot = 10. 99
4.12 STICS Call-graph. 101
4.13 UNS2D Call-graph. 103
4.14 SONICBOOM Call-graph. 105

A.1 UNS2D Call-graph. 127

List of Tables

2.1 Automatic generated tangent differentiated code. 21
2.2 Automatic generated reverse differentiated code. 24
2.3 Automatic generated reverse differentiated versions of example code. . 25
2.4 Derivatives for elementary operations. 28

3.1 Automatic generated tangent differentiated modified code. 40
3.2 Function replacements and its derivatives for intrinsics in AD. 42
3.3 Representation of solution space, trade-off. 51
3.4 Algorithm to update β. 55
3.5 Tangent Differentiated example code with Validity Analysis. 57
3.6 Numerical results of the example, with (x1d, x2d) = (1, 4). 58
3.7 Numerical results of the example, with (x1d, x2d) = (1,−1). 58
3.8 Function f() and its tangent differentiated version. 60
3.9 Function f piecewise() and its tangent differentiated version. 62
3.10 Numerical results of the Newton method on piecewise function. . . . 63
3.11 Numerical results of Newton method and DFP on piecewise function. 64
3.12 Real-life program settings. 65

4.1 RA ruleset . 73
4.2 SA ruleset . 74
4.3 Experiments RA vs SA . 75
4.4 TBR analysis example. 82
4.5 Computation of snapshot example. 87
4.6 Scientific codes description. 92
4.7 Time and memory improvements on three large scientific codes. . . . 92
4.8 Reverse differentiated version of example code of Table 4.5 95
4.9 From original call-graph to reverse differentiated with checkpointing

call-graph. 96
4.10 Memory and time performance for STICS. 102
4.11 Profiling information about snapshots, tapes and number of calls to

subroutines of UNS2D. 103
4.12 Memory and time performance for UNS2D. 104

x

List of Tables xi

4.13 Memory and time performance for SONICBOOM. 106
4.14 Time and memory improvements on three large scientific codes. . . . 108

A.1 Results from validated code of the example with direction (xd,yd) =
(1,1). 126

Citations to Previously Published Work

Large portions of Chapters 3 have appeared in the following two papers:

“Domain of Validity of Derivatives Computed by Automatic Differen-
tiation”, Mauricio Araya-Polo, Laurent Hascoët, INRIA Research Report
#5237, june 2004.

“Certification of Directional Derivatives Computed by Automatic Diffe-
rentiation”, Mauricio Araya-Polo, Laurent Hascoët, Article in WSEAS
Transactions on Circuits and Systems, WSEAS, 2005.

Most of Chapter 4 has been published as:

“Enabling User-driven checkpointing strategies in Reverse-mode Auto-
matic Differentiation”, Laurent Hascoët, Mauricio Araya-Polo, INRIA
Research Report and also in Proceedings of the ECCOMAS conference,
Egmond aan Zee, The Netherlands, September 2006.

“Data Flow Algorithms in the tapenade tool for Automatic Differen-
tiation”, Mauricio Araya-Polo, Laurent Hascoët, Proceedings of the E-
CCOMAS conference, Jyvaskyla, Finland, july 2004.

“The Adjoint Data-Flow Analyses: Formalization, Properties, and A-
pplications”, Laurent Hascoët, Mauricio Araya-Polo, Proceedings of the
AD2004 Conference, Chicago, Illinois, july 2004.

Electronic preprints are available on Internet at the following URLs:

http://www-sop.inria.fr/tropics/

http://www-sop.inria.fr/tropics/Mauricio.Araya

Acknowledgments

I am very glad to write this page. After all this time and work, the moment of
look back and to express my gratitude has come. First or all, I am deeply indebted
to my supervisor, Dr. Laurent Hascoët for offering me an opportunity within the
TROPICS project. I would like to thank you for all the guiding, cooperation, en-
couragements, and lasting support throughout the research. To the members of the
jury - Dr. Christine Eisenbeis, Dr. Trond Steihaug, Dr. José Maria Cela and the
president of the jury Prof. Andre Galligo - I am grateful for the time you all devoted
to reading this. It is my honor and I thank you for the advice and the constructive
criticism that contributed to bringing the original draft to this final stage.

I would like to thank also, Dr. Johan Fabry for reviewing most of the thesis. His
discussion and remarks have influenced the way of express the ideas of this work. It
is an impossible task to acknowledge all the people that have help me to achieve this
work. I am in debt to many other colleagues for the useful discussions, in particu-
larly I wish to thank Benjamin Dauvergne, Stephen Wornom, Valérie Pascual, Alain
Dervieux, Hicham Tber, Gonzalo Robledo, Tomas Barros, Nelson Morales, Mariano
Vazquez, Christophe Massol, Javier Bustos, Shaun Forth, Jean Utke, Uwe Naumann.
If your name is not listed, my gratitude is with you as much as with the people listed.

The sacrifices that this work has required, have been felt most strongly by my
family and friends. Thus, I would like to express my gratitude to my family, my
father and my late mother, and sister for laying the fundaments for this work. Last
but not least, I want to thank my Anne-Cécile for all the support that she gave me
during the years, specially considering the workload on her own back. You have been
very helpful and enduring.

I also gratefully acknowledge the financial support I received from the Conicyt
Chile, as part of a scholarship offered under the cooperation program between Coni-
cyt and INRIA Sophia-Antipolis.

The solid work done by the open source community is also acknowledged in fact
invaluable from a computer science research perspective. Debian GNU/Linux has
provided a robust platform for research. For writing articles and the thesis, LaTeX,
Vim, and Svn have been used.

Mauricio Araya Polo.
November 2006.

Dedicated to my father Pedro, my mother Yolanda and my sister

Gabriela, to my beloved Anne-Cécile, and finally but no less important to

my friends and relatives.

Chapter 1

Introduction

Scientific computing is concerned with constructing computer programs that im-
plement the analysis and solutions for scientific and engineering problems. Mainly, the
analysis and solutions implemented are based on mathematical models. For instance,
some applications of scientific computing are: Computational Fluid Dynamics (CFD),
weather forecast models, biological models, particle collision simulations.

Figure 1.1: Sonic Boom Optimization, CFD using a gradient based method [34].

All those mathematical models rely on methods and algorithms that require
derivatives. Therefore, the models are implemented as program required to imple-
ment these derivatives. In Figure 1.1, we can observe an example of application of
scientific computing, specifically CFD research which include shape optimization [38],
their mathematical methods heavily rely on derivatives, in particular gradients. In
fact, in Figure 1.1 shows the variation of the gradients for an objective function, which
relates the shape of the airplane and the pressure.

1

Chapter 1: Introduction 2

As we can observe in Figure 1.2, when we need an implementation of the deriva-
tives we can either do it by hand or we can use Automatic Differentiation (AD) [5, 27].

ManualManual

Manual

Manual

F ′(X)F (X)

P P
′

AD

Figure 1.2: From models to implemented derivatives.

In Figure 1.2, the cost of implementing P ′, where P ′ is the the program that
computes the derivatives required by model F ′(X), depends on which path we follow.
The cheapest (in terms of development time) path goes from the mathematical model
F (X) through the manually implemented program P to finally using AD to the di-
fferentiated program P ′. On the other hand, the manual implementation of program
P ′ requires a lot of work, due to the size of codes and the complexity of the task, also
the manual implementation is not reliable because it may introduce bugs.

AD is extremely fast, and the generated derivatives reliable. It is extremely fast
because the AD models are based on the efficient application of the chain rule (diffe-
rentiation of composed functions). For instance, using our AD tool tapenade [32],
it takes less than ten minutes to generates derivatives for 50.000 lines of code (LOC).
In contrast, doing this by hand would take many man hours of work. The derivatives
obtained using AD are reliable because they are the result of the systematic and
mechanic application of the chain rule, therefore these derivatives are exact and as
precise as the machine precision. Also, the differentiated programs have an equally
high efficiency as the efficiency of the original program.

AD has a long history as a way to differentiate programs, the first proposition
was made in 1964 [62]. Although the AD models and tools have evolved to high level
quality, still AD has its problems, inconsiderate use of AD may lead to unreliable
derivatives, as we show later in Section 1.1. Furthermore, when AD is used to ge-
nerate certain types of derivatives, for instance gradients, this may lead to memory
shortage for large programs. In Section 1.2 we discuss this in more detail.

The goal of this thesis is to address the above two problems. In the remainder
of this chapter we give an overview of each of the above problems together with the

Chapter 1: Introduction 3

solution we propose. Finally, we give an overview of the rest of the chapters of the
thesis.

1.1 Abusive Use of Derivatives

The behavior of most programs with control flow depends on the input values.
This is implemented by conditional statements, each conditional statement decides
which is the next segment of code to be executed among a set of segments. AD models
respect the logical structure of programs, therefore once AD is applied, each condi-
tional statement chooses among a set of segment of code which implement derivatives.
Given two slightly different input, the conditional statement may chose two com-
pletely different segments of code to execute. As a result, the differentiated program
would return two completely different derivatives from the given slightly different in-
put. This means that the derivatives generated by AD tools might be inconsistent
and even incorrect. With incorrect we mean that AD tools implement derivatives
even when the functions are non-differentiable for certain input, in particular when
the functions are implemented using conditional statements.

x x

x x

y y

y y

y = |x| y = 1

x

y =
√

x

x0

f2(x)

y =

{

f1(x) x ≤ x0

f2(x) x > x0

f1(x)

Figure 1.3: Non-differentiable functions for particular input.

In Figure 1.3 we can observe some of the cases that may produce unreliable deriva-
tives, because AD tools generate differentiated codes and those codes can be executed
with inputs that are not valid. Where the invalid input are those input for which the
presented functions have non-differentiabilities, or input too close to radical changes
in the definition of the functions, for instance the function in the bottom-right func-
tion of Figure 1.3.

Chapter 1: Introduction 4

AD tools can not modify the original program because the internals of the im-
plemented models are not known. Thus, we can only notify the user that for certain
input the derivatives are not reliable.

We aim to make the derivatives useful even under the described conditions, for
this we want to provide the biggest safe neighborhood. This safe neighborhood is de-
fined as a region in the input space of which we can obtain consistent derivatives. In
order to provide that neighborhood we compute the biggest possible variation around
the given input that does not change the segments of code selected by the conditional
statements to be executed.

We have developed two strategies to compute the safe neighborhood. The first
strategy, called HSBP, provides a complete and precise (at first order) description of
the neighborhood, but has a prohibitive computational cost. The cost comes from
the fact that a large number of conditional statements must be analyzed, and every
analysis itself is computational expensive. This analysis relies on the reverse mode of
AD, thus improvement on this mode, which are developed in the second part of this
work, may help to reduce the computational burden of HSBP. The second strategy,
called DFP, provides a less complete description of the neighborhood, at the same
level of precision of HSBP, but at low computational cost.

We have conducted a number of experiments to validate the DFP strategy. We
have found that the strategy indeed allows us to compute the safe neighborhood.
This serves as warning of inconsistent derivatives or non-differentiabilities within the
program.

1.2 Memory Shortage in Reverse Mode

Gradients are the most popular kind of derivatives used by mathematical me-
thods. The most efficient way, in execution time, to generate gradients is to use what
is called the reverse mode of AD [27]. Unfortunately, during the execution of the
reverse mode a large amount of intermediates values need to be accessible. To cope
with that problem we have two main possible solutions. The first strategy is called
Store-All (SA) [27], which consists in storing the intermediate values until they are
required. Thus the efficiency of the reverse mode comes at high price in memory
consumption. The second strategy is called Recompute-All (RA) [53], which consists
in recomputing the intermediate values every time they are required. Thus, RA dras-
tically reduces the execution time efficiency of the reverse mode.

In this thesis we address the memory consumption problem of SA strategy. We
chose this strategy because in the tool (tapenade) developed by our team we already

Chapter 1: Introduction 5

achieved high efficiency in execution time, using SA strategy, and we aim at reducing
the memory usage without loosing too much in execution time. Therefore, in this
thesis we investigate the trade-off between execution time and memory consumption,
looking for provide the most efficient derivatives, in particular for gradients.

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

������

������

������������

������������

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

Forward
Sweep

Backward
Sweep

mpeak

x̄ = f ′t1 (x0)× x̄1;

xj = fj(xj−1);

xp−1 = fp−1(xp−2);

x̄j = f ′tj+1(xj)× x̄j+1;

x0;

TIME

...

...

...

...

x̄p−1 = f ′tp (xp−1)× ȳ;

restore values

store values

(stack)
MEMORY

Figure 1.4: Reverse mode of AD with SA strategy.

In Figure 1.4 we can observe the general features of the AD reverse mode with SA
strategy. Thus during the forward sweep some intermediate values are stored in the
stack, thus the peak of memory usage is reached at the end of the this sweep. After,
during the reverse sweep the values are restored allowing to compute the derivatives.

In order to address the problem, we have to two kind of strategies: fine-grain and
coarse-grain strategies. Where fine-grain strategy focus in local optimization, at the
level of instructions. Coarse-grain strategy treat the problem in big segments of code.

We perform research in both kind of strategies. Now, we give an overview of our
contributions. First, we discuss our work in fine-grain strategy. Second, we present
our research in coarse-grain strategy.

Fine-grain strategy rely on data-flow analysis. Data-flow analysis is a set of tech-
niques which run on the source code of the program. The main goal of these techniques
within AD is to assist in generating the best possible differentiated code. In particu-
lar, some of these techniques are focused on computing the sets of values to store for
the reverse mode.

We improve the existing data-flow analyses, and also added new analysis. As a

Chapter 1: Introduction 6

result, we are able to obtain smaller sets of values to store, and fewer instructions
to implement. Therefore, our tool tapenade generates codes of high quality and
efficiency.

In contrast to fine-grain strategy, coarse-grain strategy is focused on taking ad-
vantage of the trade-off between storing and recomputing, where the trade-off is most
effective, that is at the level of segments of code.

The most important coarse-grain mechanism is called checkpointing. In reverse
mode of AD, and following SA strategy, some values of intermediate instructions are
stored stack-wise. When these values are required to compute derivatives they are
restored. Alternatively, checkpointing mechanism consist in deactivating the storing
for some segments of code. When intermediate values are required to compute deriva-
tives these segments of code are recomputed, and this time with the storing activated.
Thus, checkpointing only stores what is needed to perform the re-computation of the
checkpointed segment, this set of values is called snapshot. Usually, this amount of
data is smaller than the stored data during the computation of the segment, thus
we gain in memory. The trade-off here is that, because we need to recompute some
segments, we have lost some execution time.

Using improved data-flow analysis from the fine-grain strategies, we are able to
compute smaller snapshots. Furthermore, we introduce flexibility in the placement of
the checkpoints. Before this, tapenade places the checkpoints systematically before
every subroutine call, but this strategy is not optimal. We have provide the possi-
bility to the user to selects the checkpoints placements.

We carried out experiments on a number of scientific programs, in order to validate
our approach. The results are promising for both level of optimization. The results
confirm also the expected level of improvements of these strategies.

1.3 Overview of the Thesis

We organized this document in three parts:

• Chapter 2: Automatic Differentiation.

This chapter is devoted to introduce the basics of AD. We start defining our
framework, which includes the way we represents programs, and the relation-
ship between mathematical models and programs. After we introduce the chain
rule and its relation with implementation of derivatives. We present the tan-
gent mode of AD, which is the first specialization of the chain rule, this mode

Chapter 1: Introduction 7

generates directional derivatives. The second specialization of the chain rule is
the reverse mode of AD, which generates adjoint code, which is very efficient to
implement gradients. Finally we review performance issues of AD modes, and
architectural characteristics of AD.

• Chapter 3: Domain of Validity of Derivatives.

This chapter covers our research about the first mentioned problem. First, we
analyze the problem in detail. Second, we present the general approach to the
problem. After that, we present the first method based on the general approach,
which results to be expensive. Thus, we discuss alternatives to improve it. We
introduce a second method based on the general approach, this method re-
sults to be of an acceptable cost. We present the implementation of the second
method. Finally, the experimental results obtained using the second method
are presented and discussed.

• Chapter 4: Data-flow Analysis and Checkpointing Strategies for Reverse Mode

This chapter address the second mentioned problem. The problem is presented
in detail, including the two main strategies to solve it, RA and SA. After we
present an overview of the classical techniques to improve the two main strate-
gies. We chose to keep working only on SA strategy. We have mainly different
levels of optimization. The first level, the one we called fine-grain level, is related
to data-flow analysis. The second level, the one we called coarse-grain level, is
related to the checkpointing mechanism. We presents the classical, improved
and new data-flow analysis for reverse mode AD. Experimental results are pre-
sented for these analysis. The checkpointing mechanism is analyze in detail. A
checkpointing strategy is composed by two elements, the checkpoints placement
and the composition of the snapshots. We introduce an improved equation to
compute the snapshot. We present different checkpointing strategies for reverse
differentiated programs. Finally, experimental results are presented along with
the discussion.

Chapter 2

Automatic Differentiation

This chapter introduces concepts and fundamentals of Automatic Differentiation
(AD). AD is a general approach to generate programs that implement derivatives
[37], it is general because it includes several strategies to obtain derivatives from a
program, these are all valid, but with different levels of efficiency and reliability. The
derivatives can be generated as first order approximations to a function, on the other
hand exact derivatives can be obtained using the chain rule and the well known rules
of differential calculus. The use of the chain rule is the generally accepted approach.

The chain rule can be used fundamentally in two ways: forward and reverse. For-
ward and reverse indicate the direction of application of the chain rule with respect
to the inputs and to the outputs of the function. That dichotomy supports the two
most classical AD modes, tangent and reverse mode [27]. We called tangent the first
mode, the one related to the forward application of the chain rule, in order to avoid
future complications with notation. The reverse mode, the one related to the reverse
application of the chain rule, receives most attention by researches in the domain,
because it is used to compute gradients, which are highly demanded in scientific a-
pplications.

The reverse mode is very efficient in execution time but is a great consumer of
memory, which justifies the AD community [3] effort to improve it. In this chapter
we present a practical and theoretical evaluation of these modes, and we introduce
the main lines of improvement we investigated for the reverse mode.

Before introducing the formalizations we give the motivation and framework within
the AD field where this thesis stands.

8

Chapter 2: Automatic Differentiation 9

2.1 AD: Motivation, Goal and Framework

2.1.1 Motivation

The interest in AD is motivated by domains where computational derivatives are
required, which can include all sciences and technology. Particularly, scientific com-
puting is a great consumer of all order of derivatives, mainly because most methods
rely on numerical analysis techniques, and those techniques are all based or partially
based on differential calculus. Among the applications of scientific computing we can
mention: Computational Fluid Dynamics (CFD), optimization, environmental simu-
lations, financial modeling and computational physics.

For example, Gradient Based Methods (GBM) are iterative methods where the
decisions regarding convergence are strongly tied to derivatives and their precision.
When GBM are implemented in computer programs, the derivatives provided must
be precise to ensure the correct flow of the algorithms. Also due to the iterative
nature of the methods, these derivatives need to be computed efficiently.

After having mentioned one example where computational derivatives are useful,
we can now clearly state what are the requirements to use computational derivatives
within a scientific application. We call these requirements the goals of AD, and they
are described in the next section.

2.1.2 AD’s Goals

The main goals of AD are to provide precise and efficient derivatives. To provide
precise derivatives AD fights on with two fronts, the first is the precision that can be
achieved, and the second is related to the way the derivatives are obtained.

AD derivatives must be precise because most of the applications -mathematical
models- which use these derivatives rely on the level of precision of the computer.
Therefore, AD derivatives must be as precise as the computer precision. AD looks
for automatic ways to obtain derivatives in order to reduce errors (bugs) introduced
by human intervention. Consequently, AD became a human triggered but automatic
process. In order to generate derivatives from a computer program composed by
thousands to millions of lines of code, human intervention seems like a hazard. This
is because it is a potential bug generator activity. Moreover we have a potentially low
reliability of human-made derivatives. Ideally, human intervention should be reduced
to provide the input, to launch the process and to integrate the differentiated code
to the already existing application.

Computational derivatives should not degrade the applications performance. E-

Chapter 2: Automatic Differentiation 10

fficiency is always required when resources are limited, in our case the derivatives will
be part of large models which are very demanding on execution time and memory
space. Especially, AD focuses on memory consumption due to fact that this resource
is the most limited.

Mainly, AD provides first order derivatives, specifically directional derivatives and
derivatives obtained by manipulation of the Jacobian matrix (Jacobian), like gradients
and adjoints. Also, higher order derivatives can be obtained, for example the Hessian
matrix and partial elements of this matrix.

2.1.3 Framework

There are mainly two ways of computing computational derivatives, one way is
called numerical and the other way is called symbolic. In this thesis, we solely focus
on the first. We discard the latter due to the complexity introduced by the manipu-
lation of the formulae and extra amount of memory and computing time required.

Within numerical differentiation we have two main approaches to compute the
derivatives, one is called Divided Differences (DD) and the other is called Automatic
Differentiation (AD).

In order to obtain derivatives by the DD approach one of the equations of Formula
2.1 is applied.

f ′(x) =
f(x + ǫ)− f(x)

ǫ
(2.1)

A better approximation is possible with centered DD, as is follow:

f ′(x) =
f(x + ǫ)− f(x− ǫ)

2× ǫ
(2.2)

Formula 2.2 is more expensive in execution time than Formula 2.1, because re-
quires two execution of the original function.

We discard DD approach for the following three reasons. First, unlike AD where
the precision is bound to the machine precision, this approach introduces trunca-
tion errors. Therefore the precision is limited by the manipulation of floating point.
Secondly, the selection of the correct ǫ in Formula 2.1 is a never ending process of
trial and error, which eventually affects the derivatives precision. Thirdly, at first
view this approach looks cheap from the computational point of view, it just requires
two evaluations of the original program plus some elemental operations. However, if
derivatives for a large number of input variables are needed, the performance in terms
of execution time decreases in direct proportion with the number of variables, which

Chapter 2: Automatic Differentiation 11

is unacceptable in real life applications.

As the results of the above discussion, this thesis is devoted to the numerical-
analytical approach of Automatic Differentiation.

In the following sections we will present the fundamentals in which AD is based.
We start with the relation between computational programs and mathematical func-
tions. The rest of the chapter is organized as follows. In Section 2.3 we present
the chain rule. In Section 2.4 we introduce the tangent mode of AD. In Section 2.5
we introduce the reverse mode of of AD. In Section 2.6 we analyze the AD modes
performance. In Section 2.7 we present the classical strategies and architectures for
AD tools. Finally in Section 2.8 we review some examples of application domains of
AD.

2.2 Programs and Mathematical Functions

2.2.1 Program Representation

Programs and Instructions

We consider programs as concatenated sequences of instructions, where instruc-
tions are represented by the symbol Ij, with j ∈ {1, q}. Thus, an arbitrary program
P has the following form:

P = I1 ; I2 ; . . . ; Ij ; . . . ; Iq−1 ; Iq (2.3)

where the semicolon represents the concatenation operator.

Instructions can be classified into the following groups [14]: input/output, memo-
ry management, general statements (assignments and expressions), control flow and
subroutine calls. The first group is not relevant to this work. Memory management
(allocation/deallocation of memory) only plays a role in the reverse mode (Section
2.5).

The remaining groups are the most relevant to our work, basically because they
implement the features of the mathematical models. The third group of instructions
holds the numerical expressions, which are composed of the elementary operations and
the mathematical functions given by the programming language (intrinsic functions).
Ideally, this should be all that is needed to represent any mathematical model, but
that is not true due to the fact that programs have a high complexity and large
size. Therefore, to cope with complexity, programs make use of control structures
(for instance, the conditional statement if. . . then. . . else, which we call a test) and

Chapter 2: Automatic Differentiation 12

loops, both components of the fourth group of instructions. Finally, to cope with
large programs, which may include multiple use of non sequential segments of code,
programs can be divided in manageable pieces (subroutines), which introduces the
use of subroutine calls.

Control Flow and the Flow-Graph

The control flow determines the dynamic behavior of programs, and reveals the
existence of several sub-sequences of instructions which may perform the program
execution. A sub-sequence of instructions si, where si ⊂ P , is called an execution
path if the instructions in si compute a valid output of the program P for a certain
input set. Thus, a program with a control flow structure is a set of possible execution
paths, but when a program is executed, only one execution path is carried out.

If an instruction Ij of a program P implements a test, the Expression 2.3 will not
change, because it is a static representation which hides the information flow within
the program control structure. Thus, in order to represent the set of execution paths
we make use of the flow-graph [1, 46] (Figure 2.1).

Ij ;

Ij+2

Ij+1
B5

B3

B4

B2B1

I1; . . . ; Ij−1; ; Ij+3; . . . ; Iq

Figure 2.1: Two valid execution paths.

In Figure 2.1, the conditional structure in Ij introduces two possible branches
(Ij+1, Ij+2). Therefore, the program P has the following execution paths: s1 =
I1 ; . . . ; Ij ; Ij+1 ; . . . ; Iq and s2 = I1 ; . . . ; Ij ; Ij+2 ; . . . ; Iq.

In order to simplify the notation and as it is usually presented [1], a sequence of
instructions without control structure is called a basic block Bi, for instance in Figure
2.1 we have block B1 = I1 ; . . . ; Ij−1. Also, a block which only holds a conditional
statement (test) we called a header block, for instance we have a block B2 in Figure
2.1.

Subroutine Calls and the Call-Graph

Next, we introduce the notation to manipulate subroutine calls, let us re-define
program P as follows:

Chapter 2: Automatic Differentiation 13

P = B1 ; Call B ; B2 ; Call C ; B3 (2.4)

C = B1 ; Call D ; B2

where P has a main body from where two subroutines (B and C) are called, and it
has other three basic blocks, subroutine C has just two basic blocks, and one call to
subroutine D.

Subroutines called by program P may call other subroutines. For example, sub-
routine C calls subroutine D (Figure 2.2). This mechanism is called nesting. The
level of nesting called depth is arbitrary, and the depth is counted from level zero
which is the program main body to the last level of called subroutines. This counting
process is possible to carry out because the calling structure resembles, in runtime,
the tree structure.

In order to represent graphically the subroutine call structure of programs we use
the call-graph [1, 46] representation (Figure 2.2).

C

D

P

B

Figure 2.2: Call-
graph: nested calls.

In Figure 2.2, we denote the subroutines with named
boxes corresponding to the names given in algebraic
form (Formula 2.4), the calls are represented by a-
rrows.
The direction of the arrow indicates the calling direction, for
example, program P calls subroutine B.

Note that, the control structure is closely related to the
calling structure of the program, for instance, a subroutine
might be called from a loop or from one branch of a test.
Unfortunately, the call-graph representation fails to illustrate
this dynamic behavior within subroutines. Therefore, we will
use call-graphs to show only the static structure of the calls within a program, without
repetitive or recursive calls, and assuming that all the subroutines are called at least
one time, even if they are inside conditional statements.

2.2.2 Mathematical Functions Implemented by Programs

Structure

Mathematical models or functions are composed out of elemental mathematical
functions. We denote these elemental functions as fi(), with i ∈ {1, p} ⊂ IN . For
example, we define the function F , which receives a vector X as input, that vector

Chapter 2: Automatic Differentiation 14

is composed of variables from an input space of dimension n. Function F returns a
vector Y which belongs to an output space of dimension m. Thus, F is expressed as
follows:

Y = F (X) = fp(. . . fi(. . . f1(X))) (2.5)

F : X ∈ IRn → Y ∈ IRm

After the computation of f1(X) the output vector of variables becomes the input
vector X2 to function f2(). This process is repeated until the last function fp(Xp) is
computed. Formula 2.6 represents the same mechanism, and introduces an easy-to-
follow notation for functional composition, where the symbol ◦ represents the com-
position operator.

Y = F (X) = fp(Xp) ◦ . . . ◦ fi(Xi) ◦ . . . ◦ f1(X) (2.6)

where the intermediate vector of variables Xi = fi−1(Xi−1) ◦ · · · ◦ f1(X) for every
i ∈ {1, p} is obtained just after the evaluation of the elemental function fi−1(), and
given as input to function fi().

Programs that implement mathematical functions take advantage of this structure,
and so, each elemental mathematical function fi() is represented by an instruction Ii.
Thus, in principle, the number of instructions is the same as the number of elemental
functions. In programs, the mechanism described in Formula 2.6 is executed in the
same order, but the index numbers of the instructions are assigned with inverse order
with respect to the index number of the elemental functions. For instance the first
instruction to be executed is I1, and usually it represents the last elemental function
fp(), which is the first elemental function to be evaluated in Formula 2.6 mechanism.

Usually, the function output is defined by different expressions depending on va-
rious input domains. In other words, the function expression is composed by several
disjunct pieces. Once an input is given, only one of those pieces returns the output
of the function. This kind of function is called piecewise, and it is implemented using
conditional statements.

In programming languages, the elementary mathematical functions are imple-
mented by the basic algebraic operations ω1 = (+,−, /, etc.), plus some classical
mathematical functions ω2 = (sin, cos, abs, etc.), thus the set of elementary mathe-
matical functions are defined as ω = (ω1, ω2).

Visualization

Computational Graphs are one way of visualizing programs that implement ma-
thematical functions. In particular, Directed Acyclic Graphs (DAG) [48] are used.

Chapter 2: Automatic Differentiation 15

These are composed by a set of vertices V , and a set of edges E which connect the
vertices. The vertices vi ∈ V represent the elementary functions from ω. The edges
ei,j ∈ E represent the dependency between the two sequential vertices, for instance
ei,j = (vi, vj) with vi ≺ vj where ≺ is the dependency relationship, and ≺∗ its transi-
tive closure. The DAG is acyclic because the condition vi ≺∗ vj ≺∗ vi never happens,
or in other words, a vertex never depends on itself. Finally, the graph is directed be-
cause the edges only follow the direction origin (vi) to destination (vj), where vi ≺ vj ,
denoted in the DAG by arrows.

In order to illustrate the previous definitions we present a simple example, given
by the following formula:

Y = F (x1, x2) =
sin(x2

1 + x2
2)× (1− x2)

x2
1 + x2

2

(2.7)

F : X ∈ IR2 → Y ∈ IR

1

+

−

×

× ×

/ F

sin

v1

x2 x1

v7

v2v3

v4

v6

v5

Evaluation list

I1 = x1 × x1

I2 = x2 × x2

I3 = 1− x2

I4 = I1 + I2

I5 = sin(I4)

I6 = I5 × I3

I7 = I6/I4

Figure 2.3: Computational graph and evaluation list for Formula 2.7.

The list of instructions which are computed by a program is called the evaluation
list, for example the left square of Figure 2.3. The instructions in an evaluation list
are implemented based on elementary functions, thus the operation count of every
instruction just is one. As often happens, real-life programs evaluation lists include
instructions composed by several elementary functions, for instance, in our example
we may re-write instruction I5 as follows I5 = (sin(I4) × I3)/I4, thus reducing the
evaluation list by two instructions. However, after that change, the operation count
for the evaluation list remain the same, which means that we do not save execution
time. On the other hand, we define fewer instructions and store fewer local values,

Chapter 2: Automatic Differentiation 16

which could lead to reduced memory consumption. This remark depends on the com-
puting platform, e.g. the hardware-software combination.

The order of the first three instructions of the evaluation list of Figure 2.3 can be
re-arranged in different ways without modifying the output. That fact allows us to
foresee possible improvements to the program performance, for instance reducing the
number of temporary variables by re-using them several times.

AD takes advantage of the fact that no matter how complex a mathematical func-
tion is, it is possible to decompose it into fundamental functions, and the derivatives
for those functions are well known. In the next section we present the basics of this
mechanism.

2.3 The Chain Rule

2.3.1 The Chain Rule and Programs

The chain rule of calculus can be applied only if the involved functions are di-
fferentiable. For instance, for a function F (X) = f2(f1(X)), with f2() and f1()
differentiable, the chain rule takes the following form:

Y ′ = F ′(X) = f ′2(f1(X))× f ′1(X) (2.8)

or alternatively,

Y ′ = F ′(X) = (f ′2(X2) ◦ f1(X))× f ′1(X) (2.9)

In the context of this work, where the function F is a mathematical model im-
plemented by a computer program, we assume that each elementary mathematical
function fi() component of F is differentiable. Therefore, the composition of such
functions, for instance Formula 2.6 is differentiable, and its differentiated form is:

Y ′ = F ′(X) = f ′p(Xp)× . . .× f ′i(Xi)× . . .× f ′1(X) (2.10)

F ′ : X ∈ IRn → Y ′ ∈ IRm×n

where every f ′i() is a Jacobian matrix, thus F ′ holds the Jacobian matrix for function
F , and Xi = fi−1(Xi−1) ◦ · · · ◦ f1(X) for every i ∈ {1, p} is the set of intermediate
variables computed by the composition of the original functions, the composition goes
from original functions f1() to fi−1(). Thus, the function f ′i() receives the updated
set of variables as input.

Using the fact that the instructions of program P implement the elementary ma-
thematical functions of F , we obtain the following expression for the program P ′

Chapter 2: Automatic Differentiation 17

which computes Jacobian F ′.

P ′ = I ′11 ; . . . ; I ′1r ; I1 ; . . . ; I ′j1 ; . . . ; I ′jr ; Ij ; . . . ; I ′q1 ; . . . ; I ′qr (2.11)

where each sequence of instructions I ′j∗ with j ∈ {1, q} implements f ′i(Xi) with
i ∈ {1, p}. Because f ′i() is a Jacobian, each instruction I ′jk with k ∈ {1, r} represents
a partial derivative, where a partial derivatives is defined as the derivative of a multi
variable function with respect one of its variables while the others held constant. For
example, a function F is defined as F (x1, x2) = sin(x1 ∗ x2), with f1(x1, x2) = x1 ∗ x2

and f2(f1(x1, x2)) = sin(f1(x1, x2)), the jacobian of F is:

F ′(x1, x2) = f ′2(f1(x1, x2))× f ′1(x1, x2) (2.12)

We can define X0 = (x1, x2) and X1 = f1(x1, x2), thus Formula 2.12 becomes:

F ′(x1, x2) = f ′2(X1)× f ′1(X0) =
∂f2

∂X1
× (

∂f1

∂x1

∂f1

∂x2
) (2.13)

A program P that computes F may have the following instructions:

P = I1 ; I2 (2.14)

where the instructions are defined as I1 = x1∗x2 and I2 = sin(I1). Thus, the program
P ′ (differentiated version of P) that computes F ′ of Formula 2.13 has the following
form:

P ′ = I ′11 ; I ′12 ; I ′21 ; I ′22 (2.15)

where the instructions in Formula 2.15 are defined as follows:

I1 = x1 ∗ x2

I ′11 = ∂f1

∂x1

= x2

I ′12 = ∂f1

∂x2

= x1

I ′21 = ∂f2

∂X1

∂f1

∂x1

= sin(I1) ∗ I ′11
I ′22 = ∂f2

∂X1

∂f1

∂x2

= sin(I1) ∗ I ′12

In order to estimate the size of P ′ in terms of number of instructions, we propose
that the maximum number of instructions of the program P ′ is n (dimension of the
input space) times the number of instructions of the program P (potentially a partial
derivative for every input for every fi()) plus the numbers of instructions of P . This
is because the instructions I ′j may use some of the original Ij . On the other hand,
assuming that no original instruction is required, and assuming that only one instruc-
tion is required to implement the f ′i(), the minimal number of instructions needed to
implement P ′ is the same as the original program P number of instructions. Clearly,
the number of instructions varies depending on two aspects: the number of original

Chapter 2: Automatic Differentiation 18

instructions necessary to compute the differentiated ones, and the way the inputs
depend on the functions fi(). This leads to the concept of Jacobian sparsity, which
looks for the non-zero elements of the matrix.

The chain rule also can be applied to piecewise functions, but in that case the
piecewise function has to be continuous and differentiable for the connection points,
thus ensuring the minimal conditions for differentiation. Nonetheless, the derivatives
computed around or for the connection points may be inconsistent, thus making the
results unreliable. This problem is the motivation for the third chapter of this thesis.

2.3.2 Example

In order to simplify the expressions of Formula 2.7, we introduce the following
functional replacements: a(x1, x2) = x2

1 + x2
2, b(x2) = (1− x2) which transforms For-

mula 2.7 into the following form:

F (a, b) =
sin(a)× b

a
(2.16)

Applying the chain rule to the example Formula 2.16, we obtain the following
expressions for the partial derivatives:

∂

∂x1

F = 2× x1 × b× (
cos(a)

a
− sin(a)

a2
) (2.17)

∂

∂x2
F =

2× x2 × b× cos(a)

a
− (a− 2× x2 × b)× sin(a)

a2
(2.18)

The formulas 2.17 and 2.18 are not factorized in a random way, the factorization
takes into account the fact that sin() and cos() are expensive functions to evaluate
from computational point of view, thus minimizing the repetition of those functions
is valuable in execution time.

2.3.3 The Chain Rule on DAG

Figure 2.4 shows the original DAG (in Figure 2.4) augmented with the partial
derivatives ci,j of every elementary function fi(), which in a DAG are represented by
the vertices. In the context DAG formalization the partial derivatives are defined as
follows

ci,j =
d

dvi

vj (2.19)

These partial derivatives are placed along the edges just before every vertex des-
tination, for instance the partial derivative of vertex vj with respect to vi (ci,j) goes

Chapter 2: Automatic Differentiation 19

along the edge ei,j. It is possible to obtain a partial derivative for a vertex with respect
to a vertex which could not necessarily be a direct predecessor, the only condition is
that the vertices must be connected by a path of dependencies.

1

+

−

×

× ×

sin

v1

x2 x1

v2

v4

v6

v5

1

−1

1

2× x2 2× x1

cos(v4)

v3

1/v4

−v6/v
2
4

v7 / F

v3

v5

Jacobian evaluation
list

Original evaluation
list

I8 = 2× x1

I9 = 2× x2

I10 = cos(I4)

I11 = I10 × I7

I12 = I7/I4

I13 = I11/I5

I14 = I13 − I12

I15 = I14 × I8

I16 = I11 − I12

I17 = I16 × I9

I1 = x1 × x1

I2 = x2 × x2

I3 = 1− x2

I4 = I1 + I2

I5 = sin(I4)

I6 = I5 × I3

I7 = I6/I4

Figure 2.4: Vertices hold the elementary mathematical functions and along the edges
the partial derivatives of the destination vertex

In order to obtain formulas 2.17 and 2.18 within DAG formalization, we have to
apply the following rule for every input variable:

∂

∂xi

F =
∑

l∈C

∏

i,j∈l

ci,j (2.20)

The right hand side (rhs) outer operation of Formula 2.20 sweeps over all the
dependency paths C, a dependency path is a sequence of vertices, where these vertices
satisfy the dependency relationship with their successors. every dependency path
in C connects xi to the last vertex of the DAG. The rhs inner operation multiplies
the partial derivative of every vertex in the dependency path l, where l ∈ C. The
latter generates a series of mathematical expressions which the former composed in
the required partial derivative.

The computation of the Jacobian using the chain rule for an arbitrary function
implemented by a program is expensive. In particular, it is computationally expen-
sive due to the repetitive matrix times matrix operation. Nevertheless, the chain rule
generates exact derivatives, and it is possible to be implemented and to be represented

Chapter 2: Automatic Differentiation 20

in many ways.

The following section explores a specialization of the chain rule which is less ex-
pensive to compute, because it takes into account the directional characteristic of the
derivatives.

2.4 The Tangent Mode of AD

2.4.1 Definition and AD Model

The tangent mode is the first specialization of the framework described in the
previous section. The motivation for this model is the fact that the computation of
the complete Jacobian is too expensive, and usually only certain directions in the
input space are needed. Thus, the tangent mode produces code which implements
the derivatives for certain directions in the input space. In order to produce the so-
called tangent differentiated code, we have to modify the Formula 2.10, introducing
the directional effect. We obtain the following form,

dY = F ′(X)× dX = f ′p(Xp)× · · · × f ′i(Xi)× · · · × f ′1(X)× dX (2.21)

F ′ × dX : X, dX ∈ IRn → dY ∈ IRm

where X represents the input variables, and dX a column-vector which holds a di-
rection in the input space, both of dimension n; also dY is the output row-vector of
variables of dimension m. In Formula 2.21 we have used the associativity property
of matrix multiplication, thus the computation of the formula takes O(n2) instead of
O(n3) by a classic linear algebra algorithm.

Formula 2.21 is related with the classical and general definition of directional
derivative provided by the Gâteaux derivative [21]. But unlike Gâteaux derivative,
we demand only that the function is differentiable for the given directions in the input
space. Also, the derivatives generated with Formula 2.21 are obtained applying the
chain rule. In contrast, Gâteaux derivative is computed as a limit, thus suffering all
the already mentioned problems that make DD not a reliable way to obtain compu-
tational derivatives.

The AD model that implements the Formula 2.21 has the following form

P ′ = I ′1 ; I1 ; . . . ; I ′j ; Ij ; . . . ; I ′q (2.22)

In Formula 2.22 Jacobian times direction vector operations are represented by I ′j
with j ∈ {1, q}, thus implementing the directional derivative of Ij, which follows a
particular direction in the input space which is given as an input.

Chapter 2: Automatic Differentiation 21

2.4.2 Example

Table 2.1 shows the tangent differentiated version of the program that implements
the example Formula 2.7. The original evaluation list of instructions is given in the left
part of Figure 2.3 as well as in the left part of Table 2.1, the differentiated evaluation
list is given in the right part of Table 2.1.

Original Code Tangent Differentiated Code

subroutine F(x1,x2,y)

i1 = x1 * x1

i2 = x2 * x2

i3 = 1 - x2

i4 = i1 + i2

i5 = sin(i4)

i6 = i5 * i3

y = i6 / i4

subroutine F d(x1,x1d,x2,x2d,y,yd)

i1d = x1d * x1 + x1 * x1d

i1 = x1 * x1

i2d = x2d * x2 + x2 * x2d

i2 = x2 * x2

i3d = - x2d

i3 = 1 - x2

i4d = i1d + i2d

i4 = i1 + i2

i5d = i4d * COS(i4)

i5 = SIN(i4)

i6d = i5d * i3 + i5 * i3d

i6 = i5 * i3

yd = (i6d * i4 - i6 * i4d) / i4**2

y = i6 / i4

Table 2.1: Automatic generated tangent differentiated code.

In Table 2.1 the tangent differentiated version of subroutine F (Fd), receives as
input: variables x1 and x2, the direction on input space represented by x1d and x2d.
The output of the differentiated subroutine is the original output y and the direction
on the output space yd, which represents the directional derivative for this subroutine.
Instructions with suffix d implement the directional derivative of the corresponding
instruction. Note that for the code presented in this work, the intrinsic functions
(sin(), cos()) are denoted in capital letters, and the subroutines are stripped down to
the header instructions, thus discarding variable declarations and unnecessary sym-
bols.

The number of instructions of subroutine F d is consistent with the estimation
made in Section 2.3, and it is even more accurate if the instructions of the differentia-
ted program are splited into instructions just holding an elementary function. Also,
the differentiated program computes the original output y even if is not required to

Chapter 2: Automatic Differentiation 22

compute any differentiated instruction. This feature is related with the convention
within the AD community in order not to modify the original code, otherwise those
instructions should not be computed. The original code is not modified in order to
allow the user to recognize the code after the differentiation process.

The differentiated subroutine in right part of Table 2.1 implements the tangent
differentiation of the example with respect to both input variables. Thus, in this
particular example the tangent differentiated code implements the following mathe-
matical expression:

dY = F ′(X)× dX =
∂

∂x1
F × dx1 +

∂

∂x2
F × dx2 (2.23)

2.4.3 The Tangent Mode on DAG

Equation 2.23 can also be computed using the tangent mode within the DAG
formalization. Formula 2.20 has to be modified introducing the directional charac-
teristic, for instance for a scalar example we propose the following form,

dY =
n

∑

i

∂

∂xi

F × dxi =
n

∑

i

(
∑

l∈C

∏

i,j∈l

ci,j)× dxi (2.24)

The complete Jacobian is computed by applying the tangent mode with respect
to every input variable, and then evaluating the differentiated subroutine given every
axis of the Cartesian system as dX.

If higher-order derivatives are required, the tangent mode can be applied repeate-
dly; but this procedure introduces practical complications, for instance, the notation
becomes increasingly difficult to handle. Furthermore, the generated differentiated
code becomes increasingly difficult to read and understand due to the long and compli-
cated variable and subroutine names. Also, the brute-force procedure is not efficient,
because some higher-order partial derivatives may not be required, usually what is
needed is Hessian times vector. In order to compute the Hessian matrix it is pre-
ferred to study the pattern of sparsity of the Jacobian, before computing the partial
derivatives.

The tangent mode of AD proves to be cheaper to compute than the complete
jacobian for every program for certain directions in the input space. In the following
section we present the second fundamental AD mode, the reverse mode, which was
developed with the intention to provide an efficient way to produce gradients.

Chapter 2: Automatic Differentiation 23

2.5 The Reverse Mode of AD

2.5.1 Definition and AD Model

The main goal of the reverse mode is to compute linear combinations of the
columns of the Jacobian, a gradient. The gradients are important because they are
used in several numerical methods, for instance in gradient based methods.

For scalar functions, the gradient is defined like the column vector whose compo-
nents are the weighed partial derivatives of the function. The interest on the gradient
lies on the information regarding the directions in the input space, which show the
largest ratio of change in the output space. Therefore, we build a vector Y that defines
the weights of each component of the original output Y = F (X). The composition
of this vector with the original output vector Y defines a scalar output,

Ȳ t × Y = Y t × Ȳ (2.25)

replacing Y = F (X) in 2.25 we obtain

Ȳ t × Y = F t(X)× Ȳ (2.26)

and its gradient has the following form (using the chain rule):

X̄ = F ′t(X)× Ȳ = f ′t1 (X)× . . .× f ′ti (Xi)× . . .× f ′tp (Xp)× Ȳ (2.27)

F ′ × Ȳ : Ȳ ∈ IRm, X ∈ IRn → X̄ ∈ IRn

where every f ′tj () and F ′t(X) are transposed Jacobians. Xi are computed in the same
way as they are computed in the chain rule, that is through the evaluation of the
function from the original input. However in Formula 2.27 the order of computation
is inverted, thus the first function to be computed is f ′tp (Xp) the input of which is Xp,
and recalling from Section 2.3, Xp is obtained after the computation of all original
functions fi() except fp(). Therefore, to compute the reverse mode, first we have
to compute the original program, and in a second stage, we have to compute the
Formula 2.27.

In Formula 2.27 as well as in the tangent mode (Formula 2.21) the first operation
is matrix times vector, the result of which is propagated through the suite, thus,
in principle the cost of reverse mode computation is similar to the tangent mode.
Unfortunately, due to the fact that the reverse computation requires the original in-
termediate variable values, the original program needs to be computed. Furthermore,
some price has to be paid for the computation of the transposed elements of the Ja-
cobian. These facts diminish the efficiency of the reverse mode.

Chapter 2: Automatic Differentiation 24

The AD model that implements the Formula 2.27 has the following form

P̄ =
−→
P ;
←−
P = I1 ; . . . ; Ij ; . . . ; Iq−1 ; I ′q ; . . . ; I ′j ; . . . ; I ′1 (2.28)

where the reverse differentiated program P̄ is composed of two parts: the first one is

called forward sweep
−→
P , and is basically the original sequence of instructions. The

second part is called backward sweep
←−
P , and it is composed of the instructions that

implement the transposed Jacobian times vector operations. Remarkably, the last
instruction of the forward sweep is never required in the backward sweep. This is
because the input set of variables for the first instruction of the reverse sweep is the
output of the forward sweep minus the last instruction. Therefore whatever that
last instruction computes is not required (except if the last instruction is defined as
In =

√

(In−1), where the derivative depends on In).

2.5.2 Example

Original Code Sweep Reverse Differentiated Code

subroutine F(x1,x2,y)

i1 = x1 * x1

i2 = x2 * x2

i3 = 1 - x2

i4 = i1 + i2

i5 = sin(i4)

i6 = i5 * i3

y = i6 / i4

f

o

r

w

a

r

d

b

a

c

k

w

a

r

d

subroutine F b(x1,x1b,x2,x2b,y,yb)

i1 = x1 * x1

i2 = x2 * x2

i3 = 1 - x2

i4 = i1 + i2

i5 = SIN(i4)

i6 = i5 * i3

y = i6 / i4

i6b = yb / i4

i5b = i3 * i6b

i4b = COS(i4) * i5b - i6

* yb/i4**2

i3b = i5 * i6b

i1b = i4b

i2b = i4b

x2b = x2b + 2 * x2 * i2b - i3b

x1b = x1b + 2 * x1 * i1b

Table 2.2: Automatic generated reverse differentiated code.

In Table 2.2 the reverse differentiated version of subroutine F (Fb), receives as
inputs variables x1 and x2, and the weight of the original output represented by yb.

Chapter 2: Automatic Differentiation 25

The outputs are the elements of the gradient (in this case) x1b and x2b. Instructions
with suffix b implement the derivatives corresponding to the original instructions.

2.5.3 The Basic Problem of the Reverse Mode

The previous program example is not realistic with respect to the usage of the
variables, usually in real codes the variables are re-defined, for example the original
evaluation list of left part of Table 2.2 might be re-written in many ways as presented
in upper section of Table 2.3.

Version 1 Version 2 Version 3

f

o

r

w

a

r

d

b

a

c

k

w

a

r

d

i1 = x1 * x1

i2 = i1

i1 = x2 * x2

i2 = i2 + i1

i1 = 1 - y

i3 = sin(i2)

CALL PUSH(i1)

i1 = i3 * i1

i1b = yb/i2

i2b = -(i1*yb/i2**2)

CALL POP(i1)

i3b = i1*i1b

i1b = i3*i1b

i2b = i2b+COS(i2)*i3b

x2b = x2b-i1b

i1b = i2b

x2b = x2b + 2*x2*i1b

i1b = i2b

x1b = x1b + 2*x1*i1b

CALL PUSH(x1)

x1 = x1*x1

i1 = x2*x2

i1 = x1 + i1

CALL PUSH(x2)

x2 = 1 - x2

x1 = SIN(i1)

CALL PUSH(x1)

x1 = x1*x2

x1b = x1b + yb/i1

i1b = -(x1*yb/i1**2)

CALL POP(x1)

x2b = x2b + x1*x1b

x1b = x2*x1b

i1b = i1b+COS(i1)*x1b

CALL POP(x2)

x2b = 2*x2*i1b - x2b

x1b = i1b

CALL POP(x1)

x1b = 2*x1*x1b

CALL PUSH(x1)

x1 = x1*x1 + x2*x2

CALL PUSH(x2)

x2 = sin(x1)*(1-x2)

x2b = x2b + yb/x1

x1b = x1b -

x2*yb/x1**2

CALL POP(x2)

x1b = x1b +

(1-x2)*COS(x1)*x2b

x2b = 2*x2*x1b -

SIN(x1)*x2b

CALL POP(x1)

x1b = 2*x1*x1b

Table 2.3: Automatic generated reverse differentiated versions of example code.

Once some variables required in the reverse sweep are re-defined in the forward
sweep, the values that they used to hold are not available for the reverse sweep.
This reveals the hardest problem of the reverse mode of AD. The problem is how to
make those vanished variables values available when they are required in the reverse
sweep. There are mainly two strategies to cope with this problem: Store-All (SA)
or Recompute-All (RA). The former strategy consists in storing all the values, during

Chapter 2: Automatic Differentiation 26

the forward sweep, thus making them accessible in the reverse sweep. The latter stra-
tegy consists in re-computing every required (but lost) value in the reverse sweep. A
trade-off is immediately apparent; SA consumes a great deal of memory, on the other
hand RA increases the execution time. The best strategy lies somewhere between
these two extremes. This discussion serves as introduction to the fourth chapter of
this thesis, where we shall deal with that trade-off.

Table 2.3 shows some variations over the original example code, but also presents
the reverse differentiated version of these variations. One way to have access to the
original values of variables is to store them, as we described for SA strategy. For
instance, a simple mechanism to store and restore the values in the correct order is
the stack, when a variable is about to be re-defined, the value is stored in the stack.
In the case of Table 2.3, we use a function named PUSH to perform the storing
process. Conversely, when a derivative is about to be computed and the instruction
that implements that derivative requires a vanished variable value, a function named
POP is called to restore it from the stack. Thus, the various differentiated codes of
Table 2.3 implement the reverse mode AD with the SA strategy.

2.5.4 The Reverse Mode on DAG

To compute the reverse mode using the DAG formalization, we have to modify the
Formula 2.20 in order to introduce the fact that now we compute adjoints. Adjoints
are computed with respect to the outputs, as follows:

v̄j =
∂yi

∂vj

(2.29)

The systematic application of Formula 2.29 allows to obtain the adjoints for func-
tion F with respect ȳi ∈ Ȳ , which adjoints compose the gradient (in scalar case).
One of the desirable characteristic of the DAG formalization is that once the DAG
including the partial derivatives is obtained, it can be used to generate both forward
and backward mode for the represented function, or in other words, it allows the chain
rule to be easily exploited in two directions. Thus, using the partial derivatives in
the DAG, we get the following formula for the backward propagation of the adjoints,

x̄i = (
∑

l∈
←−
C

∏

i,j∈l

ci,j)× ȳi (2.30)

After the ȳi are initialized with the weights for every original output, the Formula

2.30 sweeps over all the paths l ∈ ←−C , where
←−
C is the same set as C in Formula 2.20,

but with the paths following the edges in inverse order. That change can be seen as
the transposition of the Jacobian, which is the key operation within the reverse mode
formalization.

Chapter 2: Automatic Differentiation 27

2.5.5 Relationship between Tangent and Reverse Modes

Both modes (tangent and reverse) implement elements of the Jacobian matrix,
but depending on the dimension of the input (n) and output (m) spaces, it is possible
to advise which mode to apply to a given program. If n > m and specially if m = 1
(gradient) the reverse mode is the choice, this is because after Jacobian transposition,
the matrix times vector operation (Mn×m × Vm×1) will be cheaper than the original
Jacobian times vector (Mm×n × Vn×1). On the other hand, but for the same reasons,
if n < m the mode to choose is the tangent.

Nevertheless, there is a relation between the modes, which can be used for vali-
dation purposes. We can use the following relationships to verify that reverse mode
results are consistent with the tangent mode results. Starting from:

X̄ = Ȳ × F ′(X) (2.31)

dY = F ′(X)× dX (2.32)

and we want to define a simply relationship between vectors, thus we can replace the
definition of F ′(X) in 2.31 on equation 2.32, finally obtaining

Ȳ × dY = X̄ × dX (2.33)

The relationship in Formula 2.33 is useful at practical level. This is because it can
be used as a test of consistency between the results obtained of the differentiation of
a program with both fundamental modes of AD. In the next section we present the
classical theoretical performances of those modes.

2.6 Theoretical Performances of AD Modes

The complexity of the AD modes can only be bound [27, 59]. This is because
the performance of the modes depend on the particularities of the implementation.
The bounds are build based on the original program complexity. This is reasonable
because both modes includes large parts of the original program.

We denote the execution time required by the evaluation of a program P as
TIME(P), and the memory consumption required by the evaluation of a program P as
MEMORY(P). Both definitions are based on the requirements at instruction level.
For instance, TIME(P) is the accumulation of the execution time required by the
evaluation of every instruction in program P . The execution time of every instruction
is computed as the cost of the operations involved, thus tables with operation costs
are required. In order to compute the cost of a differentiated instruction we have to
use tables like Table 2.4, but with every possible elementary function, also a table

Chapter 2: Automatic Differentiation 28

Elemental function Tangent Reverse

f = x± y fd = xd ± yd yb = xb = fb
f = x · y fd = xd · y + x · dy xb = y · fb

yb = x · fb

f = x/y fd = y·dx−x·dy

y2 xb = fb/y

yb = −(x·fb)
y2

Table 2.4: Derivatives for elementary operations.

with the cost of every operation is needed.

The bounds of the tangent mode are:

TIME (P ′) ≤ ctan × TIME (P) (2.34)

MEMORY (P ′) ≈ ×MEMORY (P) (2.35)

In Formula 2.34, P ′ denotes the tangent differentiated program. The coefficient
ctan is computed based on the mentioned tables of costs. The number of operations per
tangent differentiated instructions depends on the number of directions of derivation.
Therefore, ctan depends on this number as well. Practically, the number of directions
of derivation is the main factor that determines the performance of the tangent mode.

Formula 2.34 shows that the memory consumption of the tangent mode is close
to the original program memory consumption. This is because, although we now
tangent codes use more memory than the original, the memory consumption of both
program (differentiated and original) is small. Practically, the difference in memory
consumption is negligible.

The bounds of the reverse mode are:

TIME (P) ≤ crev × TIME (P) (2.36)

MEMORY (P) ≤ t ×MEMORY (P) + tape (2.37)

In Formula 2.34, P denotes the reverse differentiated program. The coefficient
crev is computed based on the cost of the operations needed to computed the deriva-
tives, but also the computation of crev includes the time required by the memory
management inherent of the structure of reverse differentiated. This extra execution
time comes from the store/restore process needed to supply the required intermediate
variables values. If the reverse mode is used to compute gradients, for industrial size
codes the value of crev lies between 5 and 8. This is because the number of inputs, as
for the tangent mode, play a role. We can consider crev ≈ m×crev, where m is the di-
mension of the output domain of the function implemented by program P . Therefore,

Chapter 2: Automatic Differentiation 29

when m = 1, the cost to obtain gradients only depends on the cost of evaluating pro-
gram P times the stack accessing cost plus the extra cost of computing the derivatives.

If restore-all, i.e. recompute the intermediate variables values, is use by the re-
verse differentiation, the Formula 2.34 has to be extended to captures the impact of
high number of the instructions re-execution.

If the program is reverse differentiated using store-all strategy, the bound of For-
mula 2.37 is composed of two elements. The first element depends on coefficient t.
This is computed using tables of cost per operation. The second element is called
tape. The tape is the stack used to store the intermediate variables values during
the forward sweep. Due to this process, for large codes, the tape can grow to una-
cceptable size. Thus, the tape becomes the most important element in the memory
consumption of reverse mode of AD.

The real life performance of AD modes is linked to the strategies and architectures
of the AD tools. This is the matter of the next section.

2.7 Strategies and Architectures for AD tools

In this section we present the two classical strategies to implement the AD models.
We also present the general architecture of a AD tool. We focus on a compiler-like
architecture, but we also mention other architectures. At the end of this section we
present some applications of AD.

2.7.1 AD Implementation Strategies

Overloading

Overloading consists in replacing each active variable, i.e. a variable used by a
derivative, with a new variable which holds two values, the first value is the original
variable value, and the second value holds the differential information. Also, each
elementary operation is treated in the same way, thus internally replaced by a new
operation, which holds the computed value and its derivative. This procedure is car-
ried out at compiling time. This means that the changes in the original code are just
the necessary to inform where to apply the replacements. This is usually done by
changing the variables and operations types and names.

The advantages and drawbacks of the overload strategy can be summarized as
follows:

Chapter 2: Automatic Differentiation 30

• Advantage: The original program is barely changed, since everything is done at
compile time.

• Advantage: The implementation of the differentiation techniques is done inside
libraries or as a part of a compiler, thus it is hidden to the user, and more
important, the differentiated code is totally independent of the it. Therefore, a
change in this implementation does not affect the differentiated code [6].

• Drawback: The performance of the differentiated code is low. This is because
it constantly builds and destroys pairs of values.

• Drawback: It is hard to implement the reverse mode , mainly because the lack
of context information, which is crucial in order to produce efficient code.

Examples of overloading AD tools are:

• adol-c (C/C++) [28], adol-f (F77/90) [55]. These tools are able to generate
tangent, reverse differentiated code and some kinds of higher-order derivatives.

• fadbad (C++) [4]. This tool is able to generate tangent and reverse differen-
tiated code.

• NAGWare (F95) [49]. The tools provide tangent and reverse differentiated
code.

Source Transformation

Source transformation consists in generate a complete new program, which is com-
posed of most of the original program instructions and data definitions, and the new
variables, arrays, and data structures that will hold the derivatives and the deriva-
tives instructions.

The advantages and drawbacks of the source transformation strategy can be su-
mmarized as follows:

• Advantage: The resulting differentiated code is simple and can be compiled into
an efficient code [6].

• Advantage: Improvement on the analyses is possible due to the abundant con-
text information. This information is gathered during the initial steps of the
compiler-like process, and it is reflected in rich intermediate representations. As
we present in the next section.

• Drawback: The complexity of implementing a compiler-like tool.

Chapter 2: Automatic Differentiation 31

• Drawback: Changes in the original code force to re-generate the differentiated
code.

Examples of source transformation AD tools are:

• adic (C) [10]. This tool generates first and second order derivatives.

• adifor (F77/90) [9]. This tool computes directional derivatives, gradients, and
the Jacobian taking advantage of the sparsity.

• openAD (F90, C/C++) [60]. It computes tangent and reverse differentiated
code.

• tamc, taf (F77/90, C/C++) [53, 24]. These tools generate tangent and reverse
differentiated code. To compute the reverse mode recompute-all strategy, i.e.
re-compute the required intermediate variables values, is used.

• tapenade (F77/90 and C) [32]. It computes directional derivatives and gra-
dients. In order to compute the reverse in efficient way this tools uses store-all
strategy, i.e. store the intermediate variables values.

2.7.2 AD Tool Architectures

Source-to-Source Architecture

Currently, the great majority of the AD tools use transformation strategy. This
is because the reasons presented in the previous section, and particularly being the
reverse mode the most popular AD mode, source transformation strategy is able to
compute it efficiently thanks to global analysis of the code.

In Figure 2.5 (next page) we can observe the general structure of the AD tools
that use source transformation. The structure in Figure 2.5 is strongly based on the
classical compiler structure [1, 46]. AD tools take advantage of this fact, specially at
the level of the analyses over the code.

In our AD tool tapenade the differentiation process flows as follows. Firstly,
the original source code is parsed by the language-specific front-end. During this
phase, the front-end transform the code to a semantic equivalent simplified form, the
intermediate representation. In tapenade the intermediate representation is called
imperative language (IL). This first stage is complex because is closely related with
compiler features of the tool [63].

Chapter 2: Automatic Differentiation 32

Transformation

Transformation

Unparser

Transformed intermediate representation

Back−end

Analysis

Specific tool API

Intermediate representation transformation

Intermediate representation

Transformed code

Parser

Original code

Front−end

Code generation

Analysis (lexical, syntax, semantic)

Intermediate representation generation

Figure 2.5: General view of AD tool structure. Compiler-like structure.

Secondly, the high-level information is gathered, such as the basic code elements,
like basic blocks, expressions and subroutines. After that, the information is save in
efficient structures for the analysis. In tapenade the structures are the flow-graph
and call-graph. The analysis step includes all the necessary context analysis to exe-
cute the high-level transformation. Then the code transformation takes place.

Finally, the transformed intermediate representation code is unparsed (printed)
to obtain the differentiated code.

In Figure 2.6 we can observe how tapenade internal structure follows the general
structure of a compiler. Thus we can observe in the left-bottom area the parsers, in the
center the analyses and differentiation, also the implementation of the users interface,
and in the right-bottom the printers. tapenade is written in JAVA and some modules
are written in C. it supports programs written in Fortran77 and Fortran90/95, is also
under development to supports C.

Chapter 2: Automatic Differentiation 33

Figure 2.6: General view of AD tool tapenade structure.

Other Architectures

Other architectures exists. Among them let us mention:

• AD Libraries or ad-hoc libraries [44]. Basically special subroutines and types
of the library are called from the original code, these subroutines provide the
derivatives.

• Embedded AD in well known compilers [49]. So far, the most well known case of
this architecture is the NAGWare compiler, which provides AD functionalities.

• Mathematical software (aka MATLAB) that includes AD [8, 52]. Extensions to
mathematical software are mainly based on macros, and ad-hoc libraries written
in the particular programming language of the mathematical software.

• AD inside general scientific frameworks [7, 56]. This last kind of architecture
is similar to the previous one, but now the AD facility is built within a specific
scientific framework.

Chapter 2: Automatic Differentiation 34

2.8 Examples of AD Application

In this section we provide some examples of utilization of AD in scientific and
engineering applications.

Domain Id Application AD tool

Beam Physics 1 Simulation and Optimization cozy infinity

of the Tevatron Accelerator [56].
Biomedicine 2 Implementation of Automatic adol-c

Differentiation Tools for Multicriteria
IMRT Optimization [39].

CFD 3 Reverse automatic differentiation for tapenade

optimum design from adjoint state
assembly to gradient computation [15].

Engineering 4 Adjoint Differentiation of a adifor

Structural Dynamics Solver [58].
Engineering 5 Streamlined Circuit Device Model adol-c

Development with freeda

and adol-c [30].
Hydraulic 6 AD: A Tool for Variational Data tapenade

Assimilation and Adjoint Sensitivity
Analysis for Flood Modeling [12].

Optimization 7 Application of Targeted AD to Large tamc

Dynamic Optimization [51].
Robotics 8 Periodic Orbits of Hybrid Systems matlab

and Parameter Estimation admc++

via AD [52].
Weather Forecast 9 Development of an Adjoint taf

for a Complex Atmospheric Model,
the ARPS [64].

Weather Forecast 10 Tangent Linear and Adjoint Versions taf

of NASA/GMAO’s Fortran 90
Global Weather Forecast Model [23]

Chapter 3

The Domain of Validity of
Derivatives

Contributions of this chapter:

• We formalize a general approach to the validity problem for a general
program. The approach consist of analyzing the variation of each conditional
statement, and propagating the variation to the end of the program, where
a valid sub-domain of the input space is built.

• We present a first specialization of the general approach. This is
called HSPB and relies on the reverse mode of AD. Unfortunately, HSPB
is unacceptable expensive. The computational cost comes from the size of
problem, where the size of the problem depends on the number of constraints
and the representation of the information to be propagated. We discuss
alternatives to reduce this cost. As a results we present a trade-off between
computational cost and accuracy of the representation.

• We present a second specialization of the general approach. This is
called DFP and relies on the forward mode of AD. Unlike HSBP, DFP is
computational cheap, but returns only partial information. We introduce
an implementation based on DFP. The implementation can be seen as an
extension to the AD tool tapenade.

• We discuss the possible utilization of this tool as an embedded part
of a larger algorithm or method, thus the results of the tool become
feedback information for such algorithm.

35

Chapter 3: The Domain of Validity of Derivatives 36

Automatic Differentiation (AD) tools assume differentiability of the function im-
plemented by the given program. This assumption is fundamental, because the un-
derlying mechanism of AD is the systematic application of the chain rule, which
assumes differentiability of every component function. However, sometimes functions
are composed by non-smooth elementary functions, which may lead to lose the global
differentiability. Another source of wrong derivatives are switches in the control
flow, mainly coming from conditional statements. These switches make most pro-
grams only piecewise differentiable. In these cases, sometimes the derivatives close to
switches are inconsistent, because they are computed by different sets of instructions.
Furthermore, differentiated programs may return derivatives where the implemented
function is not differentiable, for instance [64]. Unfortunately, the everyday use of AD
overlooks those problems, thus problems that should be essential become a matter of
concern only when results are not what was expected.

Extended models of AD have been developed that return useful generalized de-
rivatives for some classes of non-smooth functions [35]. However, there are no com-
prehensive studies, and to the best of our knowledge, no AD tool so far has incor-
porated any feature to cope with this kind of problematic functions.

From the users point of view, any kind of indication of possible problems with
the derivatives is welcome, as Christianson stated explicitly “... it is useful that the
AD-based model can signal automatically any potential catastrophic non-linearity
...” [13]. Without warnings, the users lost time and gain in frustration until they
discover why the derivatives were incorrect. For example, Tadjouddine [58] after
differentiating his code with ADIFOR [11], and discovering that the resulting deriva-
tives were incorrect was forced to deal with non-differentiability by doing the extra
effort of manually modifying the differentiated code. Furthermore, this activity may
introduce extra errors to the derivatives, because it is highly error prone..

To address this problem, in this chapter we propose a general model to evaluate,
along with the derivative, the size of the differentiable neighborhood of the current
input where the returned derivatives do not suffer from non-differentiability. There-
fore, unlike the approaches proposed by Griewank in chapter 11.2 and 11.3 of [27], our
approach do not look for patch the problem by means of generalized differentiation or
one-sided Taylor-wise expansions, what we look for with our approach is to inform the
user about where it is safe to use derivatives computed by AD. In order to inform the
user our AD model will provide a “safe neighborhood”, which is a sub-domain from
where the derivatives can be computed safely. This “safe neighborhood” is essen-
tial to use the derivatives consistently. We investigated several models to compute
this neighborhood and study their complexity. With this model, the differentiated
program computes, along with the usual derivatives, some extra runtime information
about the “safeness” of the derivatives, without diminishing the computing efficiency

Chapter 3: The Domain of Validity of Derivatives 37

of the differentiated code. Finally, we present an implementation and experiments
made with our AD tool tapenade.

In the following section, we introduce the validity problem, especially focusing on
the control flow switches, but not discarding problems inherent to the implementation
of fundamental mathematical functions by programming languages. The rest of the
chapter is organized as follows. In Section 3.2 we present the in-deep analysis of
the validity problem. In Section 3.3 we define the the validity information and its
propagation. In Section 3.4 we propose the first method to cope with the validity
problem. In Section 3.5 we propose the second method. In Section 3.6 we present the
experimental results. In Section 3.7 we present related techniques. Finally in Section
3.8 we discuss the results and give some prospects about the proposed methods.

3.1 The Validity Problem

Providing precise and reliable derivatives are among the goals of AD commu-
nity, thus AD tools should provide valid derivatives within the input domain of the
applications. Unfortunately, current AD models do not include verification of the
differentiability of the functions. Furthermore, experience shows that the differentia-
bility of functions implemented by programs can be rather easily corrupted, and to
worsen the problem, the means of this corruption are usually overlooked, particularly
at the development stage.

We have identified two main sources of non-differentiability in programs: first, the
use of intrinsic functions of a programming language that are not differentiable for
their current inputs. Second, the changes in the control flow that break the differen-
tiability of the functions.

The first source of problems is due to functions like: abs(), min(), max(,), sqrt().
These functions are non-differentiable or exhibit discontinuities for certain inputs in
their domains. If functions of this kind are composed with smooth functions, the
composition is at risk of being non-smooth. The chain rule can be nevertheless a-
pplied in that condition, but the results might be wrong.

The second source of problems, which is more common and overlooked, is intro-
duced by conditional statements (test). The tests are part of the control flow structure
of the original program, and this structure is preserved in the differentiated version
of the original program. If the input values vary, even by a very small amount, this
may make some tests branch differently (switch). Consequently, the actual state-
ments executed change, and therefore the sequence of derivative statements changes
accordingly. The implementation and differentiation of piecewise functions is prime

Chapter 3: The Domain of Validity of Derivatives 38

candidate for producing wrong derivatives, because piecewise functions are imple-
mented using tests, and those test may switch depending on small variation of the
inputs.

A couple of particular cases are worth to be mentioned. First, the function 1/x,
if the function input is small but non zero, then the result is correct. In this case,
the problem arises when the derivative of the function is evaluated for a small enough
input, in that case the result can be a infinite or not a number (depending on the com-
puting platform), which is neither correct nor useful. Second, implementation of func-
tion by using look-up tables and interpolation mechanism. Clearly non-differentiable
case, so far the best way to get derivatives in this case is to add another look-up table
with pre-computed derivatives. This case is neither address in this work nor in the
literature of AD.

To illustrate the validity problem and consequences, we introduce the programs
on which we carried out our experiments. The first code is a modified version of the
example Formula 2.7 given in Section 2.2.2. The second program is a implementa-
tion of the Newton method to find roots and to find the local minimum/maximum.
The particularity is that in this case the function on which the method is applied is
defined piecewise. Finally, we experiment with real-life scientific programs; those pro-
grams belong to the pool of program given by scientific partners of our research team.

As we mentioned above, in order to illustrate the validity problem, we present the
following example. We modify the example problem given in Section 2.2.2, introduc-
ing a test which shall reveal the effects and consequences of the conditional statements
over the derivatives. The original example Function 2.7 has a good behavior in terms
of continuity and differentiability in its domain. The output of Function 2.7, with
input X ∈ [−2, 2][−2, 2], is represented by the left part of Figure 3.1.

In order to show the effects on the derivatives of switches in the control flow, we
modify the Formula 2.7 as follows:

Y = F (x1, x2) =

{

sin(x2

1
+x2

2
)×(1−x2)

x2

1
+x2

2

if x2 < x1

−1×sin(x2

1
+x2

2
)×(1−x1)

x2

1
+x2

2

if x2 >= x1

(3.1)

F : X ∈ IR2 → Y ∈ IR

where the second expression is minus one time the first expression, also (1 − x2) of
the first expression is replaced by (1 − x1) in the second expression. Both changes
are taken into account at implementation level. We can observe in the left sector
of Table 3.1, the implementation of the above changes by instruction i5 within the
test T1. After the differentiation of the piecewise example, we obtain a differentiated

Chapter 3: The Domain of Validity of Derivatives 39

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-1

-0.5

 0

 0.5

 1

 1.5

 2

y

x1

x2

y

-2-1.5-1-0.5 0 0.5 1 1.5 2

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

y

x1
x2

y

original example piecewise example

Figure 3.1: Plot of the example and the modified example around a given input.

code, which is presented in the right sector of Table 3.1.

The differentiation is applied regardless of the differentiability of the component
functions, thus overlooking any local differentiability problem. The control flow struc-
ture is preserved (test T1), and we obtain two derivative statements for i5 corres-
ponding to every branch of the test, therefore the example is only piecewise differen-
tiable.

Unfortunately, the differentiated code is generated without taking the possible
inconsistent results into account, and it returns a derivative yd even when the input
variables are |x1| ≈ |x2|, which leads to two different sets of derivative statements.
As a result, for a slightly different inputs two different derivatives are returned.

In Figure 3.2 the behavior of the original differentiated and piecewise differen-
tiated is compared, for instance, in the original differentiated example the derivative
for points p1 = (x1, x2) = (0.100001611,−0.0999996886) and p2 = (x1, x2) =
(−0.0999983624, 0.100000314) is yd = −0.999933362, but in the piecewise case, the

Chapter 3: The Domain of Validity of Derivatives 40

Modified Example Code Tangent Differentiated Code

subroutine F(x1,x2,y)

i1 = x1 * x1

i2 = x2 * x2

i3 = i1 + i2

i4 = SIN(i3)

T1 IF (x2 .LT. x1) THEN

i5 = 1 - x2

ELSE

i5 = 1 - x1

i5 = -i5

END IF

i6 = i4 * i5

y = i6 / i3

subroutine F d(x1,x1d,x2,x2d,y,yd)

i1d = x1d * x1 + x1 * x1d

i1 = x1 * x1

i2d = x2d * x2 + x2 * x2d

i2 = x2 * x2

i3d = i1d + i2d

i3 = i1 + i2

i4d = i3d * COS(i3)

i4 = SIN(i3)

T1 IF (x2 .LT. x1) THEN

i5d = -x2d

i5 = 1 - x2

ELSE

i5d = -x1d

i5 = 1 - x1

i5d = -i5d

i5 = -1 * i5

END IF

i6d = i4d * i5 + i4 * i5d

i6 = i4 * i5

yd = (i6d * i3-i6 * i3d) / i3**2

y = i6 / i3

Table 3.1: Automatic generated tangent differentiated modified code.

derivative for p1 is yd = −0.999933362 and for p2 is yd = 0.999933362.

A minor modification in the function definition, and subsequently in the implemen-
tation, may introduce discontinuities, therefore the differentiated piecewise function
may return different derivatives in a neighborhood of a critical point within the do-
main. If this fact is not taken into account, the resulting derivatives may be useless
in certain domains. The numerical results of the example show that a very careful
use of these result derivatives is mandatory. Otherwise, if the rest of the code is not
adapted to those changes in the derivatives depending on certain input, the general
results could be spoiled.

What happened in this example may happen systematically within large codes.
In codes which contain hundreds of conditional statements, even if only one of those
conditional statements affects the derivatives, by propagation the whole program re-

Chapter 3: The Domain of Validity of Derivatives 41

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

x2

cut x1 + x2 == 0

F
piecewise F

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

yd
x2

cut x1 + x2 == 0

F_d
piecewise F_d

original examples differentiated examples

Figure 3.2: Plot of directional derivatives with input space direction (x1d, x2d) =
(1, 1).

turning derivatives may become unreliable.

The validity problem is discussed in the next section in detail. There we mainly
include the description of the two sources of the problem, and the existing reduction
procedure which leads to only one fundamental problem.

3.2 Analysis of the Validity Problem

3.2.1 The Differentiability of Intrinsic Functions

Some of the intrinsic functions of the programming languages hide discontinuities
and non-differentiability. A short and open list of dangerous intrinsic functions is:
abs(x) = |x|, sqrt(x) =

√
x, |x, y| =

√

x2 + y2, max(x,y), min(x,y), sign(x), heav(x).

These functions are commonly used, because they are provided by the progra-
mming language, but their implementations and derivative definitions require special
attention. This comes from the fact that all of them include discontinuities, or that
their derivatives are well known for their problems of differentiability.

One way to deal with those problematic functions is changing their implemen-

Chapter 3: The Domain of Validity of Derivatives 42

Intrinsic Tangent Differentiated Code

C abs()

i1 = ABS(x1)

C sqrt()

i1 = SQRT(i1)

C max(,)

i2 = MAX(i1, x1)

C derivative of abs()

IF (x1 .GE. 0.) THEN

i1d = x1d

i1 = x1

ELSE

i1d = -x1d

i1 = -x1

END IF

C derivative of sqrt()

IF (i1 .EQ. 0.0) THEN

i1d = 0.0

ELSE

i1d = i1d/(2.0*SQRT(i1))

END IF

i1 = SQRT(i1)

C derivative of max(,)

IF (i1 .LT. x1) THEN

i2 d = x1d

i2 = x1

ELSE

i2 d = i1d

i2 = i1

END IF

Table 3.2: Function replacements and its derivatives for intrinsics in AD.

tation but not their mathematical meaning. As a result the implementation of the
function can be modified from the intrinsic form (originally implemented by libraries
of the programming language) to a conditional form. The latter is called the con-
ditional form because in most cases the new implementation includes conditional
statements to overcome the inherent problems of the functions, thus the point(s) of
non-differentiability is(are) taken into account.

The previous mechanism allows to implement derivatives for those problematic
differential functions, and it preserves the original computation results without loss
of efficiency. Also, the mechanism can be nested, thus allowing all possible com-
binations of those functions. Table 3.2 shows the implementation of some of the
replacement functions of the problematic functions, along with their derivatives.

Chapter 3: The Domain of Validity of Derivatives 43

The idea of replacing one implementation of a function by another to cope with
non-differentiability was proposed in [26]. In that work a formalization that allows to
derivate the Euclidean norm is also presented. This function is not an intrinsic func-
tion in Fortran 77 standard, but is widely implemented in ways that eventually lead
to wrong derivatives. Tools that implement this idea are adifor [11] and tapenade.

Once the above mechanism is applied, the first source of differentiability problems
is transformed into the second source of problems, because all the replacements in-
clude conditional statements. Therefore, we claim that the second source of problems
is the only fundamental one, and it is the problem that we shall study, derivatives
computed through changes in the control flow.

3.2.2 Differentiability of Conditional Statements

Sometimes the derivatives depend on the tests. In these cases we have different
derivatives depending on the switch of the test. If the test has the form
“if . . . then . . . else” then we have two sets of derivatives instructions, each one co-
rresponding to the branches of the test. recall the notation of programs: programs
are composed of blocks of instructions Bi and tests Ti. After differentiation, we ob-
tain blocks B′i, which are the differentiated blocks corresponding to Bi, which contain
the original instructions plus the derivatives instructions. The conditional statements
remain the same, that is, they are represented by Ti in the differentiated code.

For example, in Figure 3.3 the control flow will follow instructions B′3 or B′4
depending on the sign of the test.

; B′3

; B′4

B2

B′1; ; B′5T1

Figure 3.3: Differentiated flow-graph for example.

The problem arises when for some input, the program evaluates the sequence of
blocks B′1; T1; B

′

3; B
′

5, and for another slightly different input value, the program e-
valuates B′1; T1; B

′

4; B
′

5. The difference between the first and second input value may
be very small, but enough to switch the test T1. The derivative instructions within
B′3 and B′4 may be totally different. Thus, small changes in the input values may
switch the test returning completely different derivatives. Note that there is a special

Chapter 3: The Domain of Validity of Derivatives 44

case when the instructions in both branches are identical. This case is not studied
here because the returned derivatives should be consistent, this is due to the lack of
consequences of the test switching.

Nested forms of conditional statements introduce more execution paths or sets
of derivative statements. Thus, highly branching forms of tests may lead to more
inconsistent derivatives. For instance for a simple two branches test we may obtain
two sets of derivatives depending on the inputs, for a three branches test we may
obtain three sets of derivatives and so on. From the point of view of the analysis,
these nested forms however do not introduce more complexity into the problem itself.
This is because the analysis is focus on the switch of one test at time.

x x

x x

y y

y y

y = |x| y = 1
x

y =
√

x

x0

f2(x)

y =

{

f1(x) x ≤ x0

f2(x) x > x0

f1(x)

Figure 3.4: Examples of problematic functions.

In general, we can generate all forms of conditional statements based on the mi-
nimal set of forms presented in Figure 3.4. In this figure the bottom right figure
represents a piecewise function, and the other forms may be changed into something
similar to the latter. The ramification can grow arbitrarily, and branches may have
branches by themselves, therefore the returned sets of derivatives can be counted as
the execution paths of a flow-graph.

In the previous discussion we reviewed the structure of a test, but in real life
codes, the structure of the tests are in average (from our experience) two levels deep
with a maximum of three branches per each branch of the level 0, thus nine different
execution paths. The propagation of the information is the key factor in this problem,
due to the fact that the real life codes may have hundreds of tests, and a good deal

Chapter 3: The Domain of Validity of Derivatives 45

of them are related to the derivatives

It is important to remark the fact that the problem of inconsistent derivatives is
exposed by repetitive execution of differentiated code, which returns different deriva-
tives for a rather similar input. For a particular input value, the execution follows
a path of instructions. But in a second execution of the differentiated code, with a
similar input value, the path followed changes because of a test switch. As a result
the returned derivatives are different or radically different of what was obtained in
the first execution. The problem is inherent to the runtime behavior of programs,
therefore it is not possible to foresee this problem, as it depends on the given input
for each execution.

We believe that the information needed to ensure the validity of the derivatives
as well as help to overcome the validity problem might be used to improve some algo-
rithms, for instance algorithms which rely on a criterion which depends on derivatives
to lead the iterative process.

In the following section, we present our approach to the validity problem of deriva-
tives. This approach aims at introducing a new model of AD which does not change
the structure of the program, yet adds valuable information about the derivatives at
execution time without diminishing the performance.

3.3 Defining and Propagating Validity Information

In this section, we propose a new AD model which includes a method to validate
the derivatives. Our approach does not try to establish differentiability close a test,
but rather to accept that any test may cause non-differentiability. Therefore, the
approach consists on the evaluation of how close the tests are from their switching
values.

To validate the derivatives, we evaluate an interval in a neighborhood of the input
data where no non-differentiability problem arises. Practically, this requires analyzing
each conditional statement at run-time, in order to find for which data it will switch,
and propagate this information as a constraint on the input data. We also discuss
the complexity of this mode and some alternatives. Finally, we develop a mode that
studies the validity of the derivatives; the implementation of that method introduces
an extension of the tangent mode of AD.

We devise a method that returns a certain interval of solutions where the deriva-
tives are not compromised by conditional switching. To do that, we develop a forma-
lization that relates the tests, the input values and the variations of the input values.

Chapter 3: The Domain of Validity of Derivatives 46

Our idea is to evaluate the largest interval within a neighborhood of the current input
data, so that there is no differentiability problem if the input remains in this interval.
In the case when this interval is notably too small, this will be a warning to the user
against an invalid use of these derivatives.

3.3.1 Validity Information Definition

As we introduced in the previous section, programs can be seen as a concatenation
of blocks Bi and tests Ti. The notation for tests is extended to Ti(Xi), emphasizing
that the tests are built up from the intermediate variables Xi within the block before
(Bi) the test. Therefore, an arbitrary program P has the following form:

P = (B1(X), X1) ; T1(X1) ; . . . ; (Bn(Xn−1), Xn) ; Tn(Xn) ; (Bn+1(Xn), Y) (3.2)

where the pair (Bi(Xi−1), Xi) describes the input (Xi−1) for block Bi, and its output
is the updated set of intermediate variables Xi.

Once AD is applied to program P , the new augmented program P ′ includes the
derivatives instructions and the original control structure of the program, in this case
the structure given in Formula 3.2.

P ′ = (B′1(X, dX), X1, dX1); T1(X1) ; . . .

. . . ; (B′n(Xn−1, dXn−1), Xn, dXn) ; Tn(Xn) ; (B′n+1(Xn, dXn), Y, dY) (3.3)

where the expression (B′i(Xi−1, dXi−1), Xi, dXi) has as input the intermediate va-
riables Xi−1, dXi−1 before block Bi, and as output the updated variables Xi, dXi.
The expression describes the differential relation between dXi−1 and dXi through the
following first order approximation,

dXi = J(Bi(Xi))× dXi−1 (3.4)

Also, Formula 3.4 shows the propagation of intermediate variables Xi through the
evaluation of the jacobian of block Bi().

In order to describe how the propagation of the intermediate variables are related
to test switches, let us consider a test Ti(Xi) in isolation. It uses only variables from
Xi, and we can admit without loss of generality, that Ti is positive, that is

Ti(Xi) ≥ 0 (3.5)

The analysis we developed looks for how much the intermediate variables Xi can
change without switching the test, where that change is represented by dXi. Adding

Chapter 3: The Domain of Validity of Derivatives 47

to the Formula 3.5 the variation dXi, we obtain:

Ti(Xi + dXi) ≥ 0 (3.6)

Developing Formula 3.6 as an approximation of first order, we obtain:

Ti(Xi)+ < T ′i (Xi), dXi >≥ 0

< T ′i (Xi), dXi >≥ −Ti(Xi) (3.7)

where the operator <, > is the dot product.

Recursive development of the Formula 3.4 describe how dXi depends differentially
(at first order) on the input X and dX:

dXi = J(Bi(Xi) ; . . . ; B1(X))× dX = J(Bi(Xi))× . . .× J(B1(X))× dX (3.8)

Using Formula 3.7 and Formula 3.8, we can state that the constraint on dX upon
which the test Ti does not switch is:

< J(Ti(Xi)), J(Bi(Xi)× . . .× J(B1(X))× dX > ≥ −Ti(Xi) (3.9)

where the derivative of test Ti is expressed as T ′i (Xi) = J(Ti(Xi)), this is possible due
to the fact that a test is implemented as an instruction.

Formula 3.9 is a constraint on dX, which represents a half-space in the input space.
If the inputs remain in the half-space that satisfies the constraint, the variation dX
is valid. Furthermore, due to the fact that dX is piecewise linear on the convex
polyhedron, and the input X is in the interior of the valid domain, the computed
derivatives are Fréchet derivatives [18, 19]. In computational terms, for a given X in
the half-space that satisfy the constraints, the program follows the same execution
path, or in other words remains in the same branch of the test, therefore the variations
dX are consistent.

3.3.2 Propagating Validity Information

For the entire program, the computed derivatives will be valid if the variation dX
of the input X satisfies all the constraints (Formula 3.9) for each test Ti. This gives
a set of constraints on dX, or a set of half-spaces. The intersection of the half-spaces
composes the neighborhood of the input values that returns valid derivatives; this
neighborhood is what we call the validity information.

To compute the validity information for the entire program, systematically every
test is analyzed; once the validity information is computed for the test, the information
has to be combined with the information of previous tests, and so on to the end of the

Chapter 3: The Domain of Validity of Derivatives 48

program. This mechanism may be implemented in several ways. In the next section,
we shall discuss a first approach which is based on the reverse mode of AD.

3.4 Half-Spaces Backward Propagation (HSBP)

3.4.1 Definition

To implement the previous method, we need to compute several jacobians, but
the computation of complete jacobians is expensive, therefore we have investigated
cheaper ways to implement the method. For instance, it is possible to modify For-
mula 3.9 in order to allow the computation of jacobians using the reverse mode of
AD. Alternatively, the left side of the dot product in the left hand side (lhs) of For-
mula 3.9 can be computed using the forward mode of AD. Recall that from what we
introduced in 2.6, the computational costs of the forward mode is proportional to the
dimension of the input space.

Observing Formula 3.9, and recalling that we must solve it for dX. This means
we must isolate dX. A powerful way to do that is to transpose the jacobians in the
dot product, yielding the equivalent equation:

dX t × J(B1(X))t × . . .× J(Bi(Xi))
t × J(Ti(Xi)) ≥ −Ti(Xi) (3.10)

dX t
i × J(Ti(Xi)) ≥ −Ti(Xi) (3.11)

where in Formula 3.11, the computation of the differential relationship between dX
and dXi through X (Formula 3.8) is carried out backwards. This is as follows:

dX t
i = (J(Bi(Xi) ; . . . ; B1(X))×dX)t = dX t×J(B1(X))t× . . .×J(Bi(Xi))

t (3.12)

where backward means that the first jacobian to be computed is the jacobian of the
block just before the test. The expression J(B1(X))t × . . .× J(Bi(Xi))

t × J(Ti(Xi))
in Formula 3.10 is directly computed by the reverse mode of AD.

In this approach the constraint on dX is computed in a efficient way regarding
execution time, also, the solution space is an exact (first order) representation, a
half-space, therefore once all constraints are combined the global space of solutions
shall be precise. Unfortunately, the reverse mode is expensive in terms of memory
consumption, because it requires to store a large number of intermediate variables.
Therefore, before implementing the model, we shall discuss alternatives to reduce the
computations of Formula 3.10.

Chapter 3: The Domain of Validity of Derivatives 49

3.4.2 Problems with HSBP

We consider the model of Section 3.4.1 complete in the sense that it returns
one constraint on dX for each test encountered during the execution of the program.
However, in real situations, the number of tests is so large (A solver named STICS has
27.000 lines of code and around 540 tests that must to be analyzed) that this complete
model is not practical, because the analysis of every test leads to compute Formula
3.10, which is demanding in memory space. This section investigates strategies to
reduce the cost of this model.

Size and Representation

There are mainly two problems related to the cost of the model. The first is to
compute and to propagate the validity information for a possible large set of cons-
traints. This is expensive due to the computation of the validity information for every
constraint. Thus, we aim at reducing the number of constraints.

The Second problem is the manipulation of the validity information representation
might become a complex task. So far, we manipulated the representation of every
analyzed test as a half-space in concordance with Formula 3.10. However, this can be
a source of problems considering the dimension of the input space, and considering
the dimension of the constraints themselves. For instance, the intersection of two
half-spaces is not a half-space in general. Thus, we shall present alternative repre-
sentations, which leads to a trade-off between the accuracy of the representation and
the memory space needed to store that representation.

Reducing the Size of the Set of Constraints

The size of the set of constraints comes from the number of constraints and dimen-
sion of the inputs. Therefore, we face two alternatives: to drop certain constraints,
or/and to select certain directions of derivation. The former strategy is discussed in
this section, the latter strategy will be developed in Section 3.5. There are two ways
to attempt the constraint elimination process, one is automatic and the other is a
user driven activity.

We proposed a method to automatically drop some constraints, based on the fact
that some of them may be redundant. To detect the redundant constraints, we calcu-
lated an index of relevance of constraints. The index was calculated using a measure
of distance, where the distance is calculated as the separation between the constraint
and the space of solution already computed. Consequently, we eliminated the useless
ones, or in other words, we discarded the constraints which were far from the solu-
tion space. That criterion is founded on our goal, which is to provide a conservative
neighborhood within the input space where the derivatives are valid. This method is

Chapter 3: The Domain of Validity of Derivatives 50

highly inspired by the analytic center cutting-plane methods (ACCPM) [61, 54].

The proposed method is precise in the sense that it drops constraints, which may
not add solutions to the already computed solution space; thus the method may dis-
card a great deal of constraints, and at the same time, returns a reliable solution space.

In the general case, the drawback with the ACCPM method is to determine the
optimal point x∗, which initializes every iteration of the method. In fact, to determine
that point can be as expensive as to calculate the index of relevance (ranking) of each
constraint of the system. Our proposed method to drop constraints has an advantage
over the general ACCPM, because the user gives a particular input around which
we computed the safe neighborhood. We use that input as the initial optimal point,
thus saving costly computation. However, we recognize that the given point has few
chances of being optimal.

The proposed method was abandoned, after being tested on examples, due to the
cost that it represents to compute the ranking. The computation of that ranking
includes dealing with high-order derivatives, thus the cost of applying the method for
large set of constraints is unacceptable. Nonetheless, the method is interesting, and
the open problem of improving the ranking computation remains to be solved.

The second option to reduce the number of constraints is to let the user select
which test must be analyzed. The idea is that the choice is given to the user con-
sidering the users knowledge about the meaning of the code. Therefore the user
is considered to be well aware of the meaning and consequences of every test in the
code; thus, the user can select the tests which have most influence over the derivatives.
From an implementation point of view, the user may use programming directives in
the code to indicate which test must be analyzed.

Unfortunately, the previous tactic is impracticable on large codes for several rea-
sons, for instance, large codes are developed by teams, thus the difference between
the global and local knowledge of the code may mislead the selection of the relevant
constraints. Moreover, even if the manual selection of constraints is possible on some
large codes, we believe that the number of selected constraints will be large, thus not
helping enough the global goal of reducing the size of set of constraints.

Changing the Constraint Representation

In the previous discussion, two strategies were presented in order to reduce the size
of the set of constraints; both strategies produced an exact (first order approxima-
tion) representation of the solution space, that representation is a polyhedron where
the component faces are the constraints. In this section we propose to change that

Chapter 3: The Domain of Validity of Derivatives 51

representation in order to save computational costs. However once the representation
is changed it becomes an coarse approximation. Therefore, we may lose some valid
solutions which belong to the exact representation of the solution space.

The solution space of the constraint system can be represented in several ways, and
different representations have different computational costs. Also, the representations
have different degree of accuracy, so we have a trade-off between computational cost
and accuracy (Table 3.3), as we discuss next.

Representation Computational Cost Accuracy

spherical low very low
hyper-rectangular acceptable low
polyhedral high good

Table 3.3: Representation of solution space, trade-off.

It is possible to represent the constraints using spheres, where the spheres are cen-
tered in the given input. The spherical representation is the cheapest representation
in memory space, because we only need to store a point and a radius. Unfortunately
the spherical representation is very inaccurate, because if the radius is set as the dis-
tance between the given input and the half-space, at the end program evaluation, the
radius may be reduced to the distance between the given input and the closest half-
space. Therefore, the represented solution space may be very small in comparison to
the exact solution space, it may seem as an inscribed sphere within the polyhedron,
where in the worst case scenario shows a sphere tangent to only one half-space, as in
Figure 3.5.

The next two representations are more accurate because they fit better with geo-
metry of intersected half spaces. The first one is so-called hyper-rectangular. To
store a hyper-rectangle (an arbitrary dimensional rectangle) we just need to store
two points for each dimension. In this case, the lost solution space is located between
the inscribed hyper-rectangle and the polyhedron. A common situation which relates
the representations is shown in Figure 3.5.

In Figure 3.5 the bold black lines denote the exact solution space, which we call
the polyhedrical representation, and the simple lines represent the constraint half-
spaces. The hyper-rectangle (in this case just a rectangle) is inscribed in the exact
solution space, as well as the sphere (in this case a circle). The circles centre (the
black point) is the given input.

The polyhedrical representation was the default representation assumed until this

Chapter 3: The Domain of Validity of Derivatives 52

C2

C3

C4

C5

C1

Figure 3.5: Representations for an arbitrary example.

point. It requires to store several vertices and edges, thus it is very expensive from a
computational point of view, particularly expensive in memory consumption.

After reviewing several strategies and tactics developed to reduce the computa-
tional costs of the HSBP method, we estimate that the method -even for reduced
cases- is not practical, because the costs are too high. In the next section, we present
a method which takes advantage of a simple decision from the user that has a great
impact, which is the selection of certain directions in the input space.

3.5 Directional Forward Propagation (DFP)

The size of the set of constraints remains as a big concern, but among the ways
to reduce the problem size there is one which leads to DFP. That is, is possible to
select certain directions of derivation, or even better to let the user identify and select
certain directions of the input. This allows to simplify the constraints, and to focus
on the relevant domain of validity. Besides, we can use the forward mode of AD
because the needed derivatives will be directional ones.

3.5.1 Definition

The model we presented in Section 3.4 is expensive in memory consumption and
execution time. To counter this, here we propose a strategy which is focused on di-
rectional derivatives. The goal is to give the user information about the validity of
the derivatives regarding specific directions in the input space. This strategy returns
an exact solution space, but is restrained in a certain spatial direction.

Chapter 3: The Domain of Validity of Derivatives 53

The idea behind our proposed strategy is to evaluate how much we can change the
input X with regard to a particular direction in the input space, without switching an
arbitrary test Ti. Therefore, the size of this change defines the “safe neighborhood”
where derivatives may lay.

We recall Formula 3.9, and develop the dot product:

J(Ti(Xi))
t × J(Bi(Xi)× . . .× J(B1(X))× dX ≥ −Ti(Xi) (3.13)

where dX can be decomposed as dX = dX̂ × βi, where dX̂ represents the directional
variation of the input, and βi is the scalar that holds the magnitude of this variation,
in particular βi is related to the test Ti(). Developing Formula 3.13 with the dX
decomposition, we obtain:

J(Ti(Xi))
t × J(Bi(Xi))× . . .× J(B1(X))× dX̂ × βi ≥ −Ti(Xi) (3.14)

isolating βi in Formula 3.14, we obtain:

βi ≥
−Ti(Xi)

J(Ti(Xi))t × J(Bi(Xi))× . . .× J(B1(X))× dX̂
(3.15)

Formula 3.15 is the constraint that βi must satisfy for the test Ti, thus βi holds
the information about how much the input variation dX can increase following the
given direction X̂ of the input space.

To compute the directional domain of validity in a neighborhood of the input X
regarding a certain direction, βi has to be computed for every test in the program,
and all the βi must be gathered and combined into a single constraint on β.

Note that the repetition of the procedure for all the Cartesian basis in the input
space returns less precise information than the model of Section 3.4, as can be observed
in Figure 3.6.

Figure 3.6 shows the intervals represented by arrows starting from the input (black
point), for instance the input directions in this example are the Cartesian basis. The
inner shape (dotted lines rectangle) is an approximation that can be deduced using
the interval representation. This deduction takes advantage of the convexity of the
space of solutions (bold black lines).

The performance of the method is better in both aspects, memory and time, than
HSBP method. This is because DFP computes certain directions in the input space,
and the AD model behind the process is the forward mode, which is cheaper to
compute than the reverser mode, which is behind HSBP. Unfortunately, DFP is less

Chapter 3: The Domain of Validity of Derivatives 54

C2

C3

C4

C5

C1

Figure 3.6: Directional representation for an arbitrary example.

precise, even if we project a polyhedron from the borders of the directional solution
(as in Figure 3.6) the solution space will be a subset of the exact solution space.

3.5.2 Problems with DFP

DFP returns validity information of acceptable precision for certain directions in
the input space. Unfortunately, as may happen for large code or code with an input
space with many dimensions, the cost of applying the model is still expensive, and
may be more than the cost that the users are able to accept.

To cope with this problem, and recalling the discussion of Section 3.4.2, we have
mainly two options to reduce the cost of DFP model, the first is to select the most
relevant tests, which require a good knowledge of the code, and eventually may lead
to a good deal of manual work, if the number of tests is large. Secondly, the user
can identify the most relevant directions in the input space, which is a cheap way to
reduce the cost, because the decision about the relevant directions is made just one
time before the application of the DFP model, which is automatic.

3.5.3 DFP Implementation

The implementation of DFP is based on the tangent mode of AD, because the tan-
gent computes the directional variation of the output with respect to certain directions
of the input. Thus, the implementation of DFP takes advantage of the computation
of variation of the intermediate variables, therefore allowing the computation of every
constraint.

Chapter 3: The Domain of Validity of Derivatives 55

For an arbitrary program P = B1 ; T1 ; . . . ; Bn ; Tn ; Bn+1, the tangent diffe-
rentiated version is P ′ = B′1 ; T1 ; . . . ; B′n ; Tn ; B′n+1.

To implement DFP, we insert an instruction before every test of program P ′ .
This instruction computes the value βi for the test, and updates the global value β
for the program.

For a general program P , the domain-validated program P̌ is as follows:

P̌ = B′1 ; V1 ; T1 ; . . . ; B′n ; Vn ; Tn ; B′n+1

where Vi is the instruction that computes the value of βi. The value of βi is used to
update the value of β. At the end, we obtain the value of β which holds the informa-
tion for the whole program P̌ . Finally, the interval of validity (“safe neighborhood”)
is built up from the β value.

Practically, the instruction Vi is not a single expression, it is a call to a subroutine,
which runs the algorithm that updates the global β, which is basically an intersection
of intervals algorithm. This algorithm is:

if (td .ne. 0.0) then

temp = - (t / td)

if (temp .lt. 0.0) then

if (infmin) then

gmin = temp

infmin = .FALSE.

else

gmin = max(gmin, temp)

endif

else

if (infmax) then

gmax = temp

infmax = .FALSE.

else

gmax = min(gmax, temp)

endif

endif

endif

Table 3.4: Algorithm to update β.

where t and td are the inputs, and represents the test and the variation of the
test. The variables infmin, infmax, gmin, gmax are initialized at the beginning

Chapter 3: The Domain of Validity of Derivatives 56

of the segment of code that is chosen to be analyzed. The two first variables are
initialized to true, and their purpose is to indicate that the interval of validity has
infinite boundaries, which is true at the initial stage. Variables gmin, gmax hold the
computed bound of the interval.

3.5.4 DFP and AD Modes

The information computed by DFP is useful for all AD modes, because all of them
are related by the chain rule, and codes that include tests are subject to tangent or
reverse differentiation, or both. Therefore, a three-stage process to be sure about the
differentiability of the output regarding the inputs is as follows. As first stage, run
DFP for a certain input, and directions within the input space. As a second stage,
use that information to select the input that avoids non-differentiability. As third
stage, run the desired mode of AD with a safe input.

In the particular case of reverse mode of AD within an optimization process, the
steps should be as follows:

1. For a given set of values, run the reverse mode of AD obtaining a gradient.

2. Use the gradient to obtain a descent direction.

3. Run DFP to explore the validity in this direction.

4. From DFP results, choose the step size and go to step 1.

3.6 Experimental Results

In this section, we show how the implementation of DFP works, and how the re-
sults are expressed. We first present the numerical results obtained by the application
of DFP on the example given in Section 3.1. In Section 3.6.2 we apply DFP to the
Newton method, and we discuss the results. Finally, in Section 3.6.3, we applied DFP
to two scientific programs.

3.6.1 Basic Example

As first case, DFP is applied to the example code of Table 3.5 regarding both
directions of differentiation. We obtain the the differentiate code of Table 3.5.

Table 3.5 shows the subroutine call VALIDITY TEST(x1 - x2, x1d - x2d), where
VALIDITY TEST() is the subroutine that computes the local βi and updates the global
value β. This computation is carried out by the algorithm presented in Table 3.4.
The subroutine has as inputs the test T1 = x1− x2 ≥ 0 and its variation dT1 = x1d

Chapter 3: The Domain of Validity of Derivatives 57

subroutine F d(x1,x1d,x2,x2d,y,yd)

i1d = x1d * x1 + x1 * x1d

i1 = x1 * x1

i2d = x2d * x2 + x2 * x2d

i2 = x2 * x2

i3d = i1d + i2d

i3 = i1 + i2

i4d = i3d * COS(i3)

i4 = SIN(i3)

CALL VALIDITY TEST(x1 - x2, x1d - x2d)

T1 IF (x2 .LT. x1) THEN

i5d = -x2d

i5 = 1 - x2

ELSE

i5d = -x1d

i5 = 1 - x1

i5d = -i5d

i5 = -1 * i5

END IF

i6d = i4d * i5 + i4 * i5d

i6 = i4 * i5

yd = (i6d * i3-i6 * i3d) / i3**2

y = i6 / i3

Table 3.5: Tangent Differentiated example code with Validity Analysis.

- x2d.

In Table 3.6 we can observe an extract of the results of the first experiment,
which is to execute the code of Table 3.5 with inputs (x1, x2) = [−2, 2][−2, 2] when
x1 + x2 == 0, and following the direction (x1d, x1d) = (1, 4).

Basically the results of Table 3.6 can be separated in two groups, one group is
composed by the points before reaching the test x1 == x2, for those points the in-
terval of validity has the form [∞, 0.∗], that is, in the given direction the interval is
reducing due to proximity to the test. In the opposite direction to the given direction
the interval is infinite, because there is no differentiability problem in that direction.
Conversely, the second group has the form [−0.∗,∞], because in the opposite direc-
tion to the given direction the interval increases as the input gets far from the test,
and the values are negative because they are in the opposite direction of the given

Chapter 3: The Domain of Validity of Derivatives 58

x1 x2 yd [gmin gmax] infmin infmax

0.399999 -0.399999 -3.57733 0.0 0.266666 T F
0.299999 -0.299999 -3.83849 0.0 0.199999 T F
0.199999 -0.199999 -3.95735 0.0 0.133333 T F
0.099999 -0.099999 -3.99533 0.0 0.066666 T F

-0.000001 0.000001 0.995140 -0.000002 0.0 F T
-0.100000 0.100000 1.004333 -0.066666 0.0 F T
-0.200000 0.200000 1.037307 -0.133333 0.0 F T
-0.300000 0.300000 1.134554 -0.200000 0.0 F T

Table 3.6: Numerical results of the example, with (x1d, x2d) = (1, 4).

direction.

In Table 3.6 we use the values of infmin and infmax to represent the ∞ bound.
This is the case when the bounds has not been updated. We use that variables
because there is no such thing as infinite the real number represented by computers.
In the rest of the thesis we will use the symbol ∞ in order to simplify the tables.

x1 x2 yd [gmin gmax]

0.399999 -0.399999 0.746525 -0.399999 ∞
0.299999 -0.299999 0.901311 -0.299999 ∞
0.199999 -0.199999 0.973350 -0.199999 ∞
0.099999 -0.099999 0.997000 -0.099999 ∞
-0.000003 0.000003 1.271568 −∞ 0.000003
-0.100000 0.100000 0.997000 −∞ 0.100000
-0.200000 0.200000 0.973350 −∞ 0.200000
-0.300000 0.300000 0.901311 −∞ 0.300000

Table 3.7: Numerical results of the example, with (x1d, x2d) = (1,−1).

In Table 3.7 we can observe the same behavior of the results of Table 3.6, but this
time, because the direction of differentiation is different, the two groups of results
are switched with respect to the test. When the point is getting closer to the test
the interval is reduced, and the value is negative because it is obtained the in the
opposite direction of to the given input direction. After the test the gmin bound is
infinite because there is no problems of differentiability in the opposite direction of
the given direction.

Figure 3.7 shows a graphical representation of the derivatives of both experi-
ments, including the aforementioned interval of validity. The interval of validity is

Chapter 3: The Domain of Validity of Derivatives 59

-6

-4

-2

 0

 2

 4

 6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

yd

x2

cut x1+x2 == 0, (x1d,x2d) = (1,4)

piecewise F_d
gmin
gmax

-4

-3

-2

-1

 0

 1

 2

 3

 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y,
 y

d

x2

cut x1+x2 == 0, (x1d,x2d) = (1,-1)

piecewise F_d
gmin

gmax

Figure 3.7: Experiments with two directions of the input space, and the computed
validity information.

represented only for the boundary which is not infinite. In this case DFP successfully
informs the validity information.

3.6.2 Experiments with the Newton Method

The goal of this experiment is to show how the validity information may help
a general method, in particular when the method includes piecewise or non-smooth
functions [26], which at implementation level are implemented as conditional state-
ments.

The Newton Method is an iterative algorithm to finding approximations to the
zeros (or roots) of a real function, as can be defined in the following form:

xn+1 = xn −
f(xn)

f ′(xn)
(3.16)

f ∈ C1 : [a, b]− > IR

Chapter 3: The Domain of Validity of Derivatives 60

where the function f() is differentiable and defined on the interval [a, b]. The algo-
rithm starts with an initial x0 ∈ [a, b], and iterates with n ∈ IN until the root is
found, or some other stopping criterion. The method can also be used to find a local
maximum/minimum, in that case the function f() has to be differentiable twice, and
what the method solves can be seen as the search for the root of f ′(). The method
to search for a local minimum has the following form:

xn+1 = xn −
f ′(xn)

f ′′(xn)
(3.17)

f ∈ C2 : [a, b]− > IR

The method can be extended to arbitrary dimensions by replacing f ′() by the
gradient ∇f(), and the second derivative f ′′() by the Hessian matrix Hf() of f().

We implement Formula 3.17 with the iterative method to search for a local mi-
nimum, thus we can use AD to compute f ′() and f ′′() for the implementation of an
arbitrary function f(). In order to carry out the experiment we implement a function
f() as follows:

Original Function Code Second Order Differentiated Code

REAL FUNCTION F(x)

f = x**3 + x**2 - 3*x - 3

REAL FUNCTION F D D(x,xd0,xd,f,f d)

f d d = 3*xd*2*x*xd0 + 2*xd*xd0

f d = 3*x**2*xd + 2*x*xd - 3*xd

f = x**3 + x**2 - 3*x - 3

Table 3.8: Function f() and its tangent differentiated version.

Table 3.8 shows the implementation of function f(), and its second derivative
f ′′(), both needed to carry out the iterative method. The first and second derivatives
are implemented in function FUNCTION F D D() of right sector of Table 3.8, this im-
plementation was obtained by applying the tangent mode of AD on the code that
implements the function f() two times. The implementation of the Newton method
itself is presented in Appendix B.1, along with the complete procedure to replicate
the results of this section.

In Figure 3.8 we can observe the results of the method on f(). The method
reaches the solution, and it takes the same number of steps as a hand-made version
does, therefore the implementation of the method using AD derivatives is viable and
efficient, at least for this kind of functions.

Chapter 3: The Domain of Validity of Derivatives 61

-5

 0

 5

 10

 15

 0.5 1 1.5 2 2.5

y

x

Newton Method

x**3 + x**2 - 3*x - 3
steps

Figure 3.8: Newton method using derivatives generated by AD.

The goal of this section is to experiment with piecewise functions. Therefore we
now present cases of piecewise functions which can be used with the Newton method.

xc xc

xcxc

y

y

y

y

xx

xx

Figure 3.9: Examples of piecewise functions for the Newton method.

The four piecewise functions presented in Figure 3.9 introduce problems for the
Newton method. The convergence to the local minimum for the first (top-left) is
strongly related to the initial guess, thus the connection between functions becomes
an insurmountable barrier, for the second function the fact that it is piecewise only
produces a delay in the convergence. In the last two cases, the bottom area of Figure
3.9, the convergence is not clearly achieved due to the drastic difference between the
the first derivative of the component functions. It is possible to have a cycle of never

Chapter 3: The Domain of Validity of Derivatives 62

ending iterations. Therefore, we implement a piecewise function f piecewise() which
exhibits a similar behavior as the last case (bottom-right) of Figure 3.9. This decision
is based on the idea that the validity information could help more than just warning
about inconsistent derivatives.

Piecewise Function Code Second Order Differentiated Code

REAL FUNCTION F PIECEWISE(x)

IF (x .GT. 1) THEN

f piecewise = x**3 + x**2

- 3*x - 3

ELSE

f piecewise = x**3 + 2*x**2

- 15*x + 8

ENDIF

REAL FUNCTION F PIECEWISE D D

(x,xd0,xd,f piecewise,f piecewise d)

IF (x .GT. 1) THEN

f piecewise d d = 3*xd*2*x*xd0 +

2*xd*xd0

f piecewise d = 3*x**2*xd +

2*x*xd - 3*xd

f piecewise = x**3 + x**2 -

3*x - 3

ELSE

f piecewise d d = 3*xd*2*x*xd0 +

2*2*xd*xd0

f piecewise d = 3*x**2*xd +

2*2*x*xd - 15*xd

f piecewise = x**3 + 2*x**2 -

15*x + 8

END IF

Table 3.9: Function f piecewise() and its tangent differentiated version.

Table 3.9 shows the implementation of function the f piecewise() and its deriva-
tives, the first and second order derivatives required by the Newton method. The
first branch of function the f piecewise() is similar to the function f() of the pre-
vious experiment. The Newton method is applied to the piecewise function with the
same set-up used with function f(), and we obtain the following results.

In Figure 3.10 we can observe that convergence is not reached, and in Table 3.10,
which is truncated at iteration 10, we can observe that. This is because the iterative
process falls in a loop. This loop is composed of three steps, for instance, the first
loop goes from iteration 5 to iteration 7.

We applied DFP to the piecewise function in order to compute the validity infor-
mation along the Newton method, obtaining the results of in Table 3.11.

Chapter 3: The Domain of Validity of Derivatives 63

-4

-2

 0

 2

 4

 6

 8

 10

 12

 0.5 1 1.5 2 2.5

y

x

Newton Method, piecewise function

f(x)
steps

Figure 3.10: Piecewise functions.

Steps x y y’ y”

0 2.50000 11.37500 20.75000 17.00000
1 1.27941 -3.10708 4.46951 9.67647
2 0.81752 -2.37972 -9.72493 8.90510
3 1.90958 1.88102 11.75864 13.45748
4 1.03582 -3.92319 2.29038 8.21490
5 0.75701 -1.77519 -10.25278 8.54205
6 1.95728 2.45734 12.40740 13.74368
7 1.05451 -3.87894 2.44499 8.32705
8 0.76089 -1.81492 -10.21958 8.56534
9 1.95402 2.41699 12.36265 13.72413

10 1.05323 -3.88207 2.43430 8.31935

Table 3.10: Numerical results of the Newton method on piecewise function.

This experiment is specific because the local minimum is at the same time the
connection point between the two component functions of f piecewise(). As a result
of this, we can observed in Table 3.10, Figure 3.10 and Table 3.11 convergence is
not achieved, and the method shall iterate forever without satisfying the stopping
criterion.

Once validity information is computed for every iteration, the interval of validity
warns about the proximity to the test, in this case the local minimum. For exam-
ple, for step 1 the interval of validity is [−0.27941,∞], that is in the given direction
(xd = 1) there is no problem of differentiability, on the other hand, the point is very
close to the test and to a drastic change in the first derivative value. As we can

Chapter 3: The Domain of Validity of Derivatives 64

Steps x y y’ gmin gmax

0 2.50000 11.37500 20.75000 -1.50000 ∞
1 1.27941 -3.10708 4.46951 -0.27941 ∞
2 0.81752 -2.37972 -9.72493 −∞ 0.18248
3 1.90958 1.88102 11.75864 -0.90958 ∞
4 1.03582 -3.92319 2.29038 -0.03582 ∞
5 0.75701 -1.77519 -10.25278 −∞ 0.24299
6 1.95728 2.45734 12.40740 -0.95728 ∞
7 1.05451 -3.87894 2.44499 -0.05451 ∞
8 0.76089 -1.81492 -10.21958 −∞ 0.23911
9 1.95402 2.41699 12.36265 -0.95402 ∞

10 1.05323 -3.88207 2.43430 -0.05323 ∞

Table 3.11: Numerical results of Newton method and DFP on piecewise function.

observe in Table 3.11, the step 2 is even closer to the local minimum, but anyway the
stopping criterion is not satisfied.

Taking into account the behavior of the Newton method when it deals with a
certain type of functions, and taking into account the useful information generated
by DFP. First, The above results show that DFP successfully informs the validity
information for this iterative method. Second, the validity information may be useful
for a user of the Newton method when the objective function is not smooth.

We propose that the validity information may be used not only to warn the user
about non-differentiability, but also as feedback to algorithms, specially when those
algorithms are dealing with non-smooth functions. For instance, in this case the
Newton method can be modified, that is by improving either the stopping criterion
or the computation of the next step regarding the validity information.

3.6.3 Experiments with Real-Life Scientific Programs

The goal of this was to test the scalability of DFP. Therefore, we mostly focus in
how the method behaves dealing with large codes, in particular from the computa-
tional point of view. We conducted a large number of tests on two real-size programs.
Basically, the experiments were not focused on the mathematical meaning of the re-
sults, because neither the models behind the codes nor the inputs are in our domain
of knowledge. Consequently, we handled these as black boxes.

In Table 3.12 we can observe the description of the codes used in the experiments,
the information given in the table is mainly related with the size of the codes and the

Chapter 3: The Domain of Validity of Derivatives 65

Program Application domain Lines code # Tests # Analyzed tests

STICS Agronomy 27.000 2.682 542
CEA CFD 19.789 1.864 189

Table 3.12: Real-life program settings.

number of tests within. The column named analyzed tests represents the number of
test which have influence in the derivatives, thus the validity information is commu-
tated only for them.

DFP proves to be cheap in execution time. The execution time of the tangent
differentiated code STICS is 0.529 seconds. The execution time of the tangent diffe-
rentiated code STICS with the validity deployment is 0.551. Therefore, the overhead
of the DFP is just 4%. The provided execution times are average of multiple execu-
tions of the codes.

The results require close analysis from the end-user in order to be mathematically
useful, but from our point view, the results are promising, in the sense that they are
consistent with the predicted behavior, that is with the behavior around the randomly
selected input and its derivatives.

3.7 Related Techniques

This section is a selection of techniques from the literature, all these techniques
are related to the problem of calculating derivatives when the functions involved
have problems of differentiability, in particular when the problem is generated by the
control flow. We discuss four approaches, Interval Extension, Ideal Discontinuity,
Sub-differentials and Laurent Series.

3.7.1 Interval Extension

The goal of this approach is to deal with non-differentiable functions using in-
terval extensions, in particular with conditional statements. The interval exten-
sion F (X) is the interval which encloses the extreme values of the function results,
{f(x) | x ∈ X} ⊆ F (X), where X is the input domain. Functions with branches are
represented as follows:

F (X) = χ(xs, xq, xr) =







xq if xs < 0
xr if xs > 0

xq∪xr otherwise

Chapter 3: The Domain of Validity of Derivatives 66

Where, xs is the decision expression, xq and xr are the interval evaluations of
function of each branch, and x∪y is the interval hull of the interval evaluation of
functions x and y.

Because interval extension is applicable when the functions are smooth, a new
property is necessary, thus adapting interval extension to non-smooth functions. Ba-
sically, if the jacobian F ′(X) is bounded, closed and convex set as Lipschitz sets
[50], it is possible to define interval extension for every case of branches and non-
differentiable functions (as the intrinsic functions describe in Section 3.2.1).

For example, the derivative extension (when χ(0−, xq, xr) = χ(0+, xq, xr)) is de-
fined as follows:

∂χ(xs, xq, xr)

∂xq

=







1 if xs < 0
0 if xs > 0

[0,1] otherwise
,

∂χ(xs, xq, xr)

∂xr

=







0 if xs < 0
1 if xs > 0

[0,1] otherwise

,
∂χ(xs, xq, xr)

∂xs

= 0

This approach was developed to verify solutions of non-linear systems of equations,
and for global optimization [41, 42]. The author aims to use these interval extension
in the AD context through operator overloading, using the package INTLIB [40].
The approach is related to our work because it presents a solution to the problem
introduced by the conditional statements, but Kearfott’s approach is only partial be-
cause does not cover all possible cases, and it is defined within the interval arithmetic
framework, which is not a standard in our field.

3.7.2 Sub-differentials

The sub-differential of a function f() at point x0 is the set

∂f(x0) = {y : f(x)− f(x0) ≥ 〈y, x− x0〉} (3.18)

For a function of one variable this is the collection of angular coefficients y for
which the lines f(x0) + y(x− x0) lie under the graph of f, as is represented in Figure
3.11.

The sub-differential is a concept which generalizes the derivative for a convex
function, and if f is differentiable at x0, then ∂f(x0) = f ′(x0). [36]

The sub-differential concept belongs to the convex calculus, which is widely used
in convex analysis, and therefore also in optimization research [20, 36]. We have

Chapter 3: The Domain of Validity of Derivatives 67

x

y = f(x)

y

y = y2(x− x0) + f(x0)
y = y1(x− x0) + f(x0)

∇f(x0) = [y1, y2]

x0

Figure 3.11: Sub-differential example.

no information regarding an implementation of the sub-differential approach within
the AD community. However, we consider the approach connected with our work
in the sense that they both look to overcome the problem of non-differentiability,
particularly non-differentiability in certain points of the input space. Unfortunately,
this approach has three problems. First, it is computational expensive, due to the
several executions required to compute Formula 3.18. This formula computes an
interval, this interval represents the derivative. As a result, the second problem arises,
even if the user knows exactly the input which produces the non-differentiability,
the returned derivative for that input will be an interval. This probably requires
the utilization of the interval arithmetic, which change completely the framework of
work. The third problem comes from the fact that this technique requires certain
mathematical conditions (convexity) in order to be applied correctly. Therefore, the
range of possible applications is limited for this technique.

3.7.3 Laurent Series

This method deals with functions with known troublesome inputs, as the ones
listed in Section 3.2.1. The method is based on Laurent series, which original use
is in complex analysis. Laurent series represents a function as a power series which
includes terms of negative degree. Usually, this method allows to express complex
functions in cases where a Taylor series expansion cannot be applied.

In the AD context, Laurent series are one-side expansions of problematic func-

Chapter 3: The Domain of Validity of Derivatives 68

tions, like |x| and x2log(x) at the origin. The method requires that the user’s input
be a point x0 for the evaluation and differentiation, and also a direction x1. With
this input the directional differentiation can be performed in an effective way.

However the problem arises when the method obtains roots with an uncertain sign,
i.e. when the number of significant terms may vary from intermediate to intermediate
steps. The Laurent series can be truncated, thus becoming a Taylor polynomial.
Hence, the method is applicable as long as we deal with the latter [27].

3.8 Conclusions and Future Work

The question of derivatives being valid only in a certain domain is a crucial pro-
blem of AD. If derivatives returned by AD are used outside their domain of validity,
this can result in errors that are very hard to detect. AD tools must be able to detect
this kind of situation.

The origin of the problem is due to two aspects: problematic intrinsic functions
and changes in the flow control. Fortunately, the first kind of problem can be trans-
formed into the second kind of problems. Thus we only have to deal with one kind
problems: the changes in the control flow.

We proposed two methods to tackle the problem of non-differentiability in pro-
grams differentiated with Automatic Differentiation. Both rely in analyze every con-
ditional statements, in order to determine which is the neighborhood from which we
can obtain reliable derivatives. This safe neighborhood was called domain of validity.

The first method we proposed HSBP allow us to compute the domain of validity
for a given input with an acceptable precision. The method computes the validity
information for every conditional statement (constraint) and then propagates the in-
formation, to do that it uses the reverse mode of AD.

Unfortunately, even although HSPB provide us with a complete description of the
domain of validity, the cost of this method is prohibitively high, both in execution
time and memory consumption. The main problem to apply the method is the size
of the set of constraints.

Several alternatives to reduce the cost of the method were presented. Basically,
these alternatives are: to select the most relevant constraints, and to change the so-
lution space representation. Unfortunately, we explained that the above alternatives
have small impact on reduce the computational costs, therefore we look for another
method.

Chapter 3: The Domain of Validity of Derivatives 69

The second proposed method DFP computes the validity information following a
given direction in input space. Thus the representation of the validity information
becomes a interval. If the input remains in this interval, the returned derivatives have
no problem of differentiability. The implementation of this method is based on the
tangent mode of AD. The computational cost of DFP is marginal (4%) with respect
the computational cost of the tangent mode. That small overhead is added to the
computation of derivatives when DFP analyze every test within the code, but only
for certain directions in the input space.

We have presented method DFP, which proves to be useful, thus it is one possible
way to warn the user from abusive use of the derivatives.

The future work for DFP includes to implement a tracking system to determine
the conditional statement which has more relevance to the validity information. This
system can be implemented as an extra parameter of the subroutine VALIDITY TEST.
This parameter can be updated by the subroutine with the information regarding the
increase/decrease of the bounds of the validity information.

Further improvements to the method, which would increase the accuracy is to use
a higher-order approximation to compute the validity information. This can helps in
case when the first order approximation is not enough precise, therefore not helping
to avoid the problems that motivate this research.

Finally, we believe that the method can be integrated to a large algorithms/methods.
But only to warn the user about possible problems, also to add a new kind of feedback
to the algorithm, which can helps to improve the performance of the it.

Chapter 4

Data-Flow Analyses and
Checkpointing for the Reverse
Mode

Contributions of this chapter:

• We introduce a mathematical specifications for data-flow analyses
used by reverse mode AD. This mathematical specifications are based
on classical data-flow analyses for a model of reverse mode of AD.

• We formalize an improved AD model with Store-All strategy. This
improved model relies on the above adjoint data-flow analyses.

• We extend the above AD model in order to take into account a
checkpointing strategy, this strategy consists of systematically checkpoint
subroutines calls, thus looking for reduce the memory space consumption.

• We implement the extended AD model in our AD tool tapenade.
This implementation also add a new functionality that enables the users
to specify checkpointing strategies. Accordingly, we perform a thorough
study of the effect of checkpointing strategies on real-size scientific
programs.

70

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 71

In this chapter we investigate ways to cope with the main problem of the reverse
mode of AD. Although the reverse differentiated program structure has a high effi-
ciency in execution time of , this structure is also source of the main problem of the
reverse mode of AD. Recalling from Section 2.5.1, the reverse differentiated structure
of a program is composed of two main parts, the first part is called the forward sweep
and the second part is called the backward sweep. The forward sweep has basically
the same instructions as the original program. The purpose of the forward sweep is to
compute intermediate values required in the backward sweep. The backward sweep
implements the derivatives. During the execution of the forward sweep variables are
re-defined, thus changing their intermediate values. The problem arises when the
intermediates values are required by the derivatives, but they are not accessible any-
more because they have been overwritten.

In this thesis we focus on a strategy to cope with the above problem. This stra-
tegy is called Store-All (SA). The SA strategy consists of storing the intermediate
variables values in the forward sweep, then restoring them in the backward sweep,
this makes the intermediate values accessible to the instructions that implement the
derivatives. The problem with this approach is the possibly unacceptable high mem-
ory consumption [22]. This is what motivates our research. We have investigated
two kind of optimization in order to handle the memory problem. The first kind
of optimizations improves the differentiated code at the level of instructions, and is
based on data-flow analyses. The second kind of optimizations works on segments of
code, this segments have both arbitrary control flow and size.

In the following section, we detail the problem and present the main two strate-
gies to handle it. We give a description of both strategies, the SA strategy and the
Restore-All (RA) strategy, where RA consists of recomputing the required variables.
A trade-off between both strategies is also introduced.

This chapter is organized as follows. In Section 4.1 we introduce the main problem
of the reverse mode of AD. In Section 4.2 we present the classical strategies to cope
with the mentioned problem. In Section 4.3 we present a initial formal model for
reverse differentiation, which takes into account the SA strategy. Also, in section 4.3
we present the general framework for the sequel of the chapter, this sequel is split
between instruction-level and code segments kind of optimization. In Section 4.4 we
present our contributions to the instruction-level kind of optimizations. In Section
4.5 we present our contributions to the code segments kind of optimizations. Finally
in Section 4.6 we conclude and discuss future work.

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 72

4.1 The Memory Consumption Problem of the Re-

verse Mode

The Reverse mode computes adjoint codes, in particular gradients. Due to the
structure of the reverse mode of AD, the computation of that kind of code is very
efficient in terms of execution time. But this has the cost of requiring a large amount
of intermediate variable values, which may be lost by a re-definition of the variable
during the forward sweep. Therefore, the reverse mode has a drawback. Because
intermediate variables are re-defined during the forward sweep, the values that those
intermediate variables held are not accessible in the backward sweep, when deriva-
tives may require them. For instance, let us consider the following example:

P = I1 ; I2 = x× y ; I3 (4.1)

P = I1 ; I2 = x× y ; I3 ; I ′3 ; xb = y × I2b ; yb = x× I2b ; I ′1 (4.2)

where program P is the reverse differentiated version of program P , and the instruc-
tions I ′i implement the derivative of the corresponding instructions Ii.

In Formula 4.2, the reverse derivative of instruction I2 is composed of two terms,
that is I ′2 = (xb = y × I2b ; yb = x × I2b), according with Table 2.4. If we assume
that variables x and/or y are re-defined in I3, then the values of those variables held
at the moment of the computation of I2 are out of reach when they are required by
instruction I ′2.

Actually, programs include several re-definition of variables, just imagine variables
within loops. Thus the scenario presented by Formula 4.2 is common in industrial/scien-
tific programs. In order to avoid that problem, we may ask the users to modify their
codes, but this is not realistic, thus AD models have to overcome this problem in a
systematic way. In the next section, we explore the main alternatives to cope with
the mentioned problem.

4.1.1 Store-All Strategy vs Recompute-All Strategy

In order to provide the lost intermediate values required by the reverse mode, we
mainly have two options: Recompute-All (RA) [24] and Store-All (SA) [27] strategy.

The RA strategy aims at solving the problem by not storing intermediate values
in the forward sweep, but just carrying out the forward sweep which generates the
initial state of the backward sweep. Then, when the backward sweep reaches an
instruction which needs a certain value out of reach, the RA strategy computes the
whole sequence of original instructions required to produce the needed value. In the
right area of Figure 4.1 (page 72) we can observe the memory usage of a brute force

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 73

implementation of the RA strategy.

Rule Program Reverse Differentiated Program

R0 P = () P = ()
R1 P = I P = I ′

Rn P = U ; I P = • ; U ; I ′ ; ◦ ; U

Table 4.1: RA ruleset

Table 4.1 presents the minimum set of recursive formulas needed to build a reverse
differentiated program in RA fashion, where symbol () means the empty set, the U
represents the sequence of instructions from the beginning of the program until before
a certain instruction I, the symbol • depicts the storage of the input variables values,
and the symbol ◦ depicts the restoration of the previously stored values.

Pra = • ; I1 ; I2 ; I ′3 ; ◦ ; I1 ; I ′2 ; ◦ ; I ′1 (4.3)

Formula 4.3 shows the reverse differentiated program example (from Formula 4.1),
program Pra in Formula 4.3 was obtained using the rules presented in Table 4.1, thus
implementing the reverse differentiated program in RA fashion. Therefore, in order
to make the required values to instruction I ′3 accessible, the sequence of instructions
I1 ; . . . ; I2 is computed, and so on for the rest of derivative instructions. To ensure
that the re-computation of segments will produce the correct values, the input values
of program P should be stored one time, and restored as many times as they are
required.

RA is demanding in execution time, quadratic with respect to the number of ins-
tructions (brute force), because it re-computes the intermediate values every time
they are required. The worst case scenario happens when the required values are the
last values vanished in the forward sweep, thus forcing the re-computation of most of
the original sequences of instructions.

In contrast, the SA strategy consists in storing in a special stack-wise memory
structure (tape) all the intermediate values that will be required in the backward
sweep. In the backward sweep the values from the tape are restored in the reverse
order with respect to order of storage. This results in the structure of reverse differ-
entiated programs shown on left area of Figure 4.1 (next page).

Table 4.2 presents the minimum set of recursive formulas needed to build a re-
verse differentiated program in SA fashion, where the D represents the sequence of
instructions after certain instruction until the end of the program, symbol •i depicts

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 74

Rule Program Reverse Differentiated Program

R0 P = () P = ()
R1 P = I P = I ′

Rn P = I ; D P = •1 ; I ; D ; ◦1 ; I ′

Table 4.2: SA ruleset

the storage of the variables values to be overwritten by instruction Ii, and symbol ◦i
depicts the restoration of the previous stored values.

Psa = •1 ; I1 ; •2 ; I2 ; I ′3 ; ◦2 ; I ′2 ; ◦1 ; I ′1 (4.4)

Formula 4.4 is the reverse differentiated version of the program example (from
Formula 4.1), it implements the SA strategy. Therefore, before the variables are
re-defined their values are stored, and then restored in the backward sweep before
the instruction that requires them. For instance, the last instruction of program Psa

requires values which may be overwritten by I1, thus before I1 the values are stored
in •1, then restored from ◦1 before I ′1. The same procedure is also implemented for
I ′2, but it is not the case of I ′3 because definitions in I3 are useless for I ′3, then I3 is
not needed at all, therefore there is no need to store values before I3.

As was presented in the Section 2.6, the RA strategy is linear order with respect
to memory consumption and execution time. The worst case scenario occurs when it
is necessary to store a large number of values, in that case the tape might grows to
an unacceptable size.

After considering Figure 4.1, it is clear that the efforts to improve the RA strategy
should be focused in reducing execution time. On the other hand, the drawback of
SA is the high memory consumption, as can be observed in Figure 4.1, the peak of
memory consumption occurs at about the end of the forward sweep. Comparatively,
the peak of memory consumption of the SA strategy is far bigger than the one of
the RA strategy, but the execution time required to compute the program for the
SA strategy is shorter than the execution time required by the RA strategy. In order
to visualize the strategies performance, we carried out experiments with brute force
versions of both strategies.

4.1.2 Experimental Measurements

In order to compare both strategies, we present experimental measurements made
on a small straight-line example. The selected code does not include subroutine calls.
The code is small because we have no access to a tool that produces RA differentiated
code. Therefore, the transformation needed to implement the RA strategy version of

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 75

�
�
�

�
�
��
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

������
������

������������
������������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
���

store values

restore values

recompute values

mpeak

x̄ = f ′t1 (x0)× x̄1;

xj = fj(xj−1);

xp−1 = fp−1(xp−2);

x̄j = f ′tj+1(xj)× x̄j+1;

x0;

TIME

...

...

...

...

x̄p−1 = f ′tp (xp−1)× ȳ;

MEMORY

Sweep

Sweep
Forward

Backward

mpeak

x0;
...

xj = fj(xj−1);

TIME

xp−1 = fp−1(xp−2);

...

x̄p−1 = f ′tp (xp−1)× ȳ;...

x̄j = f ′tj+1(xj)× x̄j+1;...

x̄ = f ′t1 (x0)× x̄1;

MEMORY

Figure 4.1: Plot of RA and SA strategies, where the horizontal axis represents the
amount of values currently on the stack.

the code were hand-made, the results are numerically consistent with the one obtained
with the SA strategy version of the code.

Experiment Execution Time [s] Memory [bytes]

RA 51.1 8
RA v1 49.2 16
RA v2 48.7 16
RA v3 49.4 12

SA 43.7 28
SA v1 44.3 20
SA v2 44.8 16
SA v3 45.2 16

Table 4.3: Experiments RA vs SA

In Table 4.3 we can observe the two groups of results. First, the results of the RA
strategy and its variations, where these variations replace re-computations by storage
of values. Second, the results of SA and its variations, where these variations replace
an intermediate variable value storage by a value re-computation.

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 76

 10

 15

 20

 25

 30

 43 44 45 46 47 48 49 50 51 52

M
EM

OR
Y

[b
yte

s]

TIME [s]

RA vs SA

SA

SA v3

RA

RA v1RA v2

RA v3

SA v1

SA v2

Figure 4.2: Experimental results. Graphical distribution in a memory vs time.

Figure 4.2 shows the graphical distribution of the results presented in Table 4.3.
As we can observe, the extreme points are the result obtained by the application of
the strategies in their “basic” form. The rest of the results are local optimizations
based on trading storage and re-computation.

We propose that in general codes, local optimizations follow the pattern of Figure
4.3, which is based on our experimental results. Nonetheless, we admit that the pa-
ttern may be changed by some features of codes no considered in the experiments. The
results of Table 4.3, graphically represented in Figure 4.2 and 4.3, help us to clearly
realize the trade-off between the recomputing and storing. While SA outperform RA
in execution time, RA outperform SA in memory space.

4.1.3 The Store-All Strategy and Memory Constraint

After evaluating the previous experiments and taking into account the positive
experience of the TROPICS team about the RA strategy, we decided to study the
SA strategy in depth. We believe that it is a very promising strategy starting from
the fact that in execution time it performs better than the RA strategy. On the other
hand, memory consumption may be improved and that will be our focus.

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 77

��

��

SA

MEMORY

RA

TIME

Figure 4.3: Graphical projection of local optimization for both, SA and RA strategies.

We believe that the memory constraint is the most pressing constraint. For in-
stance in the hardware industry, CPU technology moves faster than RAM technology.
The latter is bound by the Moore’s Law [45] of integrated circuits (the number of
transistors doubling every 18 months) and the former only by a constant ratio of
growth of about 10% increase. Thus, memory space is the constraint we choose to
address.

Furthermore, Due to the relationship between the RA and SA strategies, our de-
velopments in SA strategy in order to improve the memory consumption overhead,
will be adaptable to RA strategy. This will produce improvements in execution time.

In the next section, we present the classical strategies within SA strategy, which
is the starting point of our research.

4.2 Classical Strategies for the Store-All Approach

To control the memory problem produced by the storing of intermediates val-
ues, the store-all strategy can be improved in two main directions. First, by refining
the data-flow analyses in order to reduce the number of values to store, and the
instructions to generate. These data-flow analyses are instruction level kind of im-
provement, thus we called them fine-grain strategies. Second, deactivate the store-all
strategy (without activating recompute-all) for chosen segments of the code, therefore
allowing us to spare memory space. Because the scope of this strategy are segments
of code, we call this a coarse-grain strategy.

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 78

The goal of this section is to address the above two main directions of improve-
ments. Consequently, in the following we present the classical fine-grain strategies
used to cope with the memory problem of the reverse mode. This will be followed by
the same exercise for the coarse-grain strategy.

4.2.1 Fine-Grain Strategies

Data-Flow Analyses

Data-flow analyses are static, because they work at compilation time and without
any runtime information. These analyses are conservative in terms of the results,
thus avoiding cases where the result of the analysis is uncertain, if this happens the
worst case is assumed. Another hazard to the data-flow analyses is the combinatorial
explosion problem. To handle it, usually the data-flow analyses are designed as a hie-
rarchical model. In this kind of model two sweeps through the code are performed,
the first sweep is bottom-up and computes local synthesized information , thus this
information is independent of the rest of the program (context free). Conversely, the
second sweep is top-down and context dependent, thus propagating the synthesized
information of the first sweep through the program.

The above characteristics and desired features are the framework for all the data-
flow analyses presented in this thesis. Also it is important to notice that the data-flow
analyses equations are solved using fixed point iteration. Although for some particular
cases, it is possible to solve the equations without fixed point, but this is a theoretical
remark because in practice all implemented algorithms do fixed point iteration.

The traditional data-flow analyses are focused on generic code, extensions to these
analyses that take into account the particularities of the AD generated code were in-
troduced in [17, 47, 31], where Activity analysis and To Be Recorded (TBR) were
defined as:

• Activity analysis [31]:

The optimization of differentiated code by activity analysis can be considered
as an specific partial evaluation kind of optimization, because from all possible
paths between the input and output variables only some of them hold differ-
entiable influence, and so the variables along the paths. Not all the variables
have differentiable influence, the ones which have this influence are called active
variables, the analysis that determine this state of the variables is called activity
analysis. This analysis is general in the sense that is used by all modes of AD.
In order to determine the set of active variables in a piece of code we have to

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 79

use the dependency relationship. A variable is active at some place in the code
if the following two conditions are satisfied:

– the variable depends in differentiable way on an independent variable,

– at the same time a dependent variable depends in differentiable way on the
variable.

Among the output variables of the code, the ones for which the derivatives are
requested are called dependent variables. The independent variables are input
variables with respect to which the dependent output must be differentiated.
Graphically, a variable is active if it belongs to at least one path of the depen-
dency graph of a program, where that path starts from an independent variable,
and the path ends at a dependent variable.

z

t

t = x * y

v = y * y

z = sin(t) * v

subroutine sub(x, y, z)

*

sin

*

*

x y

v

Figure 4.4: Example dependency graph.

If the code in Figure 4.4 is differentiated with respect to independent variable x
and dependent variable z, the variable t is active, because variable t depends on
the independent variable x and at the same time, dependent variable z depends
on it. In contrast, variable v is not an active variable because depends on y

which is not an independent variable. Alternatively, if the code in Figure 4.4
is differentiated with respect to independent variable y and dependent variable
z, variables t and v are active, because both variables depends on independent
variable y and dependent variable z depends on them.

In order to detect active variables, the activity analysis runs three analysis.
The first analysis is called differentiable dependency analysis, it computes for
basic blocks the differential dependency of every pair of variables. For instance,
the dependency across a piece of code A is defined by the following data-flow

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 80

equation:

Dep(A) = {(vo, vi) ∈ Outputs(A)× Inputs(A) | vo depends on vi}
where the combinator ⊗ is defined as

V ⊗Dep = {x | ∃y ∈ V | (y, x) ∈ Dep} (4.5)

Once the above analysis is finished, and the information about dependencies is
synthesized, the second and third analysis are executed. The second analysis
is called varied, it computes the set of variables that possibly depend on some
independent input. The third analysis is called useful, it computes the set of
variables on which some dependent output possibly depends. The intersection
of these two sets determine which variables are active.

• TBR [17, 47, 31]:

In the forward sweep of the reverse mode variables may be overwritten, and
this can happens several times, thus variables may hold different intermediate
values. Some of these intermediate variables values may be required in order
to compute the derivatives in the backward sweep. Unfortunately, the required
intermediate values are not accessible when they are needed. In order to provide
these required values, the TBR analysis determines which intermediate values
must be stored in the tape during the forward sweep, thus making these values
accessible to the derivatives in the backward sweep by restoring them from the
tape. The TBR analysis is specific of the reverse mode of AD.

TBR is composed of two steps. The first step is a bottom-up analysis that
synthesizes two sets of variables, the variables that will be used in the adjoint
code (Req()) and the variables killed in the forward sweep. The second step
is a top-down analysis which using the previous two sets of variables, deter-
mines the variables values that must to be stored. When a required variable is
overwritten, a stack management subroutine PUSH is inserted to push the value
to the tape, and the overwritten variable is deleted from the set of required
variables. The PUSH is inserted just before the instruction that overwrites the
variable. In order to restore the values from the stack in the backward sweep,
a stack management subroutine POP is inserted just after the instruction that
implemented the derivative of the instruction that overwrites the variable.

The general data-flow equations needed to compute the second step of TBR
analysis for the basic block B of Figure 4.5 is defined as:

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 81

B

Sl

P0

S0

. . .

. . .

Pn

Figure 4.5: Predecessor (Pi) and successor (Si) blocks of basic block B.

InReq(B) =
n

⋃

i=0

OutReq(Pi)

OutReq(B) = (InReq(B) \ Kill(B)) ∪ Req(B) (4.6)

where the first equation (InReq) accumulates the effect of all the predecessors
of block B. The second equation (OutReq) takes into account that some varia-
bles are overwritten, when this happens instructions PUSH are inserted, and the
overwritten variables become not required. It may happen that the variables
becomes required later during the block due to the Req analysis. This happens
if the variables are required by another instruction in the adjoint version of the
block (in the following example of Table 4.4, this happens for instructions i1,

i2 and i5).

The Kill analysis used in Formula 4.6 and in the rest of this work, is defined
as the set of variables whose value are completely overwritten inside a segment
of code. In general for two successive segments of code A and B we take the
conservative under-approximation:

Kill(A; B) = Kill(A) ∪Kill(B).

Recomputing versus Storing

Some values required by the backward sweep can be re-computed just by re-
executing one or two original instructions. In that case to store the value when
forward sweep, or to re-compute it in the backward sweep are both valid options to
follow. But both require precise analysis in order to determine the fine trade-off.

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 82

Example Code Data-flow Analysis Computation

Block 1 (B1):

i1 x = x / y

i2 y = 10 * x

i3 w = COS(y)

Block 2 (B2):

i4 z = x * SIN(x)

i5 y = x * z

i6 w = w * COS(x)

InReq(B1) = {x, y}

a PUSH(x) is inserted before i1 in forward sweep,
because variable x ∈ InReq(B1) and it is killed

a PUSH(y) is inserted before i2 in forward sweep,
because variable y ∈ InReq(B1) and it is killed

Kill(B1) = {x, y, w}
Req(B1) = {x, y}
⇒ OutReq(B1) = ({x, y} \ {w, x, y}) ∪ {x, y}

= {x, y}

InReq(B2) = OutReq(B1)

a PUSH(y) is inserted before i5 in forward sweep,
because variable y ∈ InReq(B2) and it is killed

Kill(B2) = {w, y, z}
Req(B2) = {w, x, z}
⇒ OutReq(B2) = ({x, y} \ {w, y, z}) ∪ {w, x, z}

= {w, x, z}

Table 4.4: TBR analysis example.

4.2.2 Coarse-Grain Strategies

Checkpointing

The mechanism which deactivates the store-all strategy for certain chosen seg-
ments, is called checkpointing. Checkpointing exploits a trade-off between storing
and re-computing. It has two consequences on the behavior of the reverse differenti-
ated program:

1. when the forward sweep reaches a chosen segment (called checkpointed segment),
a sufficient set of values (called a snapshot) must be stored. The snapshot allows
to re-execute the checkpointed segment in the backward sweep with the correct
context. During the forward sweep execution of a checkpointed segment, the
store-all strategy is deactivated.

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 83

2. when the snapshot is restored during the backward sweep, the checkpointed
segment is re-executed, but this time the store-all strategy is activated. As a
result, the rest of the backward sweep is executed as usual.

�
�
�

�
�
�

�
�
�

�
�
�

������

������

������

������

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

store snapshot(C)

−→
C forward sweep C
←−
C backward sweep C

C original code

storing tape(C)

restoring tape(C)

restore snapshot(C)

mpeak

−→
C

←−
C

←−
C

−→
C

TIME

Sweep

Sweep

t

Backward
Sweep

tc

Backward

Forward

C

mpeakc

Sweep
Forward

(stack)
MEMORY

Figure 4.6: Checkpointing on Reverse Mode AD.

Recall that the set of variables values stored for a segment during the forward
sweep (of SA strategy) is called the tape. The checkpointing mechanism is profitable
if the size of the snapshot is smaller than the size of the tape for any checkpointed
segment. Under this assumption the mechanism is profitable in memory space. This

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 84

is because storing the snapshot barely increases the size of the stack, thus the mem-
ory consumption peak of the reverse differentiated program with checkpointing is
(tape − snapshot) smaller than a reverse differentiated program without checkpoin-
ting. In contrast, the mechanism is not profitable in execution time, due to a double
execution of the checkpointing segment.

In order to define a checkpointing strategy two elements have to be specified. The
first element is the selection of checkpoint placements. The second element is to define
which variables values should belongs to the snapshots.

Assumption Regarding the Tape and the Snapshot

As we mentioned above, we assume that the tape is bigger than the snapshot. This
assumption is reasonable because in most cases the checkpointed segment and the size
of its tape are large. This is because the size of the tape grows linear with respect
to the number of instructions of the checkpointed segment. In contrast, the snapshot
experiences a logarithmic rate of growth with respect the number of instructions.
For instance, the set of input values for a large subroutine might be small. Finally,
experimental observations confirm the assumption, these observations are part of the
experiments of the end of the chapter.

For example in Figure 4.6, we assume that tape(C) > snp(C). Consequently we
see that mpeakc is smaller than mpeak, because in the checkpointed case, tape(C) is
not required by the first forward sweep of segment C. Conversely, we see that tc is
larger than t, because in the no-checkpointing case the subroutines are executed only
one time, and as we can observe in the checkpointing case the segment C is executed

twice (C and
−→
C).

Checkpoint Placements

The checkpointed segments can be placed in arbitrary ways, or through a syste-
matic scheme, which is called a checkpoint strategy. In literature the Griewank [25]
strategy is well known, this strategy is optimal, but only for a particular case (loop
with fixed number of steps). In the general case, the runtime behavior of the program
is unknown. For this general case the optimal checkpointing strategy has not been
found yet.

Next, we present the two classical checkpointing strategies:

1. Optimal Checkpointing strategy for a fixed number of steps:

This strategy fixes the size of snapshots, thus it is focused on deciding the op-
timal checkpoint placement, and the number of them. In order to accomplish

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 85

this, the strategy uses recursive functions that select which computational steps
are suitable to be checkpointed. This strategy is also known as binomial par-
titioning. This is because the key point of the strategy is to split the range of
steps, thus allowing recursion on the sub-ranges.

The following equations present an upper bound in execution time and memory
consumption of the reverse mode computation under this checkpointing strat-
egy:

Td ≡ G + (d + r)R (4.7)

Wt ≡ Ŵ + W̄ + tW (4.8)

Formula 4.7 is an upper bound of the size of the tape (memory consumption)
used in the reverse mode. In this formula, d is the number of snapshots, r is the
size of the steps, R is the size of the state of variables, and G is the maximal
size of the state of variables. Basically this formula is composed of the multi-
plication of the depth of recursion (d + r) and R.

Formula 4.8 is the upper bound of the execution of the reverse mode. In this
formula t is the number of extra computational steps, Ŵ is the execution time
needed to compute the forward sweep, W̄ is the execution time needed to com-
pute the backward sweep, and W is the execution time of the original program.
Both spatial and temporal complexity order of magnitude are bounded by log-
arithmic expression. For example, if d = r the complexity of the strategy is
log(T/rR), where T is the size of the tape. Also, an interesting trade-off is pre-
sented in [25] between the size of the snapshots and the number of checkpoints.

This strategy has been implemented by Griewank and Walther [29], but using
simplified algorithms. This is because the original version was very expensive
at the computational level (as it included too many recursions), and very par-
ticular about the kind of problems that could handle.

An promising extension to this strategy was introduced by Sternberg [57]. In
that work, the number of steps is given but the size of the snapshots change
depending on where the checkpoints are placed. The strategy uses two kind
of snapshots, one called thin, the other called fat. Both kind of snapshots are
related; the size of the fat snapshot is thrice the size of the thin snapshots.
Authors introduce the idea of nesting checkpointing in their framework. Also,
heuristics are presented to improve performance for certain cases of unknown
runtime behavior. As a result, they achieved sub-optimal performance for those
cases.

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 86

2. Checkpointing subroutines calls:

A strategy that is more simple and easy to implement, although not optimal, is
to systematically place the checkpoints before each subroutine call. This stra-
tegy is used in our AD tool tapenade. It is possible that some checkpoints
are not necessary or of little use. This is one of the reasons why the strategy
is not optimal. The other reason is that sometime the assumption (snapshot
¡ tape) behind the checkpointing strategy is not valid, as we will show in the
experimental results.

In the above strategy, the size of the snapshot is defined by an equation which
relies on data-flow analysis, thus the size of the snapshot for each subroutine
call is different. This is because it depends on the internals of the checkpointed
subroutine.

Snapshot Definition

The snapshot is the minimal set of variables required to allow the checkpointed
segment to be re-computed, thus producing the values which are required in the
backward sweep. In order to determine the snapshot we introduce the following con-
servative definition, this definition is conservative because provides the required set of
variables, but occasionally it may also include some not required variables, which, in
any case, does not corrupt the computation, but it does not help the memory space
performance of the program.

For an arbitrary program P = S ; D, where S is a subroutine, and the checkpoints
are placed before the subroutine calls. The differentiated version of program P is as
follows,

P = PUSH(Snp(S, D)) ; S ; D ; POP(Snp(S, D)) ; S (4.9)

The definition of the snapshot formula used in Formula 4.9 is:

Snp(S, D) = Use(S) ∩ (Out(S) ∪Out(D)) (4.10)

In Formula 4.10, the set Use(S) is some upper bound of the amount of information
we need to store, because this set contains the values necessary for the backward sweep
of S. But that set may include to many unnecessary variables values. Therefore, we
can refine the snapshot formula by detecting the variables which are overwritten in S
(Out(S)), also detecting the variables overwritten in the downstream of P (Out(D)).

Table 4.5 shows the computation of the snapshot for subroutine SUB. The local
variable u of subroutine SUB is not considered in the computation of the analyses,

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 87

Example Code Snaphot Computation

SUBROUTINE EXAMPLE(x, y, z)

w = COS(y)

z = w * SIN(x)

CALL SUB(w, x, y, z)

y = z * w

z = y**2 + x * COS(z)

END

SUBROUTINE SUB(w, x, y, z)

u = COS(w) + y + x

x = z / u

END

Use(SUB) = {w, x, y, z}
Out(SUB) = {x}
Out(D) = {y, z}

Snp(SUB) = {w, x, y, z} ∩ ({x} ∪ {y, z})
Snp(SUB) = {w, x, y, z} ∩ {x, y, z}
Snp(SUB) = {x, y, z}

Table 4.5: Computation of snapshot example.

because for purpose of the snapshot computation this variable has no influence, due
to its status of local variable of the checkpointed segment.

In the sequel of this section, we present the formulas of Use and Out analysis,
both are required in Formula 4.10. Also, we present the Live analysis. These formu-
las are used in the rest of the chapter, in particular to derive some of the improved
data-flow analysis. The following analyses are presented for successive segments of
code, because in the sequel, i.e. the improved analyses, the analyses are also presented
for that kind of code. The derivation of the general rules for these analyses is direct.

The set of variables whose value at the beginning of Z is read inside Z is denoted
by Use(Z). For instance, for two successive segments of code A and B, the variables
killed by A hide the variables read by B, so that:

Use(A; B) = Use(A) ∪ (Use(B) \Kill(A)). (4.11)

The set of variables whose value at the beginning of the segment of code A is
overwritten or partly overwritten inside A, during some possible execution of A, is
denoted by Out(A). For example, for two successive segments of code A and B:

Out(A; B) = Out(A) ∪Out(B). (4.12)

If the Out analysis is applied to a segment of code when the stack is used, the
variables values in the stack are not considered by the analysis. This is because from

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 88

the point of view of the analysis these variables are globally unmodified. The Out
analysis is defined as follows:

Out(PUSH(v); A; POP(v)) = Out(A) \ {v}. (4.13)

Finally, the Live analysis is defined as the set of live variables at the beginning
of the tail segment of a program, where the variables values influence the results of
the program. By definition all program results are live. We define Live([]) = ∅. For
two successive segments of code A and B, where B is the tail of the program, the live
variables of segment B leads to live variables just before A through the dependence
across A, defined in Formula 4.5. As a result, the formula Live for two successive
segments is:

Live(A; B) = Live(B)⊗Dep(A) (4.14)

In the next section, we use the presented analysis to state the formal model of the
reverse mode of AD.

4.3 A Formal Model of Store-All Reverse Mode of

AD

Using the above defined analysis we introduce an formal AD model for SA stra-
tegy. For a given program P = I ; D, where I is an instruction, and D represents
the sequence of instructions called downstream, where this sequence of instructions
goes from after instruction I to the end of the program. The reverse differentiated
program P has the following form:

P = I; D =
−→
I ; D;

←−
I = PUSH(Out(I)) ; I ; D ; POP(Out(I)) ; I ′ (4.15)

The structure of program P is composed of two parts, the forward sweep:

−→
P =

−−→
I; D = PUSH(Out(I)) ; I ;

−→
D

and the backward sweep:

←−
P =

←−−
D; I =

←−
D ; POP(Out(I)) ; I ′

The model states that if a variable is overwritten by I, the value of the variable
before being overwritten has to be stored in the stack. This set of variables is pro-
vided by the Out analysis. The action is carried out by PUSH. As a result, the value
can be restored by POP in the backward sweep before being used by I ′.

The model can be improved. In the next section, we present the first kind im-
provements. This is the improved data-flow analyses.

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 89

4.4 Contributions to the Fine-grain Strategies

The model described in Formula 4.15 can be improved. We have made three im-
provements which we discuss in this section. The first improvement is related to the
fact that the results of instruction I in Formula 4.15 are only useful for D. This is
because if we have instructions before I, called upstream U , the backward sweep of

these instructions
←−−
U ; I, only require intermediate variables values created before I.

As a result, if the results of I are not useful in D, we can discard instruction I and
the associated PUSH/POP. In order to detect this behavior we introduce the predicate
Adj-live(I, D) = (Out(I) ∩ Live(D) 6= ∅). Therefore if the predicate is false we can
remove the instruction I. To compute the predicate we have first to compute the
analysis Out, which is already presented, and Live(D) which is new. This new ana-
lysis is called Adjoint Liveness. This analysis can be considered as an particular kind
of slicing, because starting from the end of a code segment, systematically discard
the not needed instructions, thus it generates a sliced version of the differentiated
program.

The second improvement is related to the TBR analysis. The idea is to refine the
TBR analysis using the context information of the following differentiated instruc-
tions, which include the backward sweep of U , thus we must introduce U as a context
into Formula (4.15). We use the notation ⊢ to separate U from the part of the program
currently being differentiated. We introduce the set of variables used by instructions

I ′ and after, which is Use(I ′;
←−
U). Taking this into account, the only variables ac-

tually PUSH’ed and POP’ed for instruction I are now the set (Out(I) ∩Use(I ′;
←−
U)).

Therefore, we have to define Use(I ′;
←−
U)

The last improvement is related to the activity analysis. If the activity analysis is
carried out before the above two improvements, the above analyses compute smaller
sets of intermediate variables. This is because the activity analysis may discard a
good deal of instructions. For instance, some variables can be prove to have always a
zero derivative with respect to the independent inputs or dependent outputs. When
the variable written by assignment I is inactive, then I ′ can be removed. When some
variable used by assignment I is inactive, I ′ is simplified.

In the remainder of this section, we discuss these improvements in more detail.

4.4.1 Adjoint Data-flow Analyses

In this section we provide the data-flow equations of three adjoint data-flow ana-
lyses. This analyses are called adjoint because they are focused on the differentiated
instructions, thus looking to generate these kind of instructions at the cost of the fewer

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 90

possible original instructions. The first two adjoint data-flow analyses are introduced
in the above section. The third adjoint data-flow analysis is basically a refinement of
the Out analysis.

Adjoint Liveness Analysis

This analysis looks for the set Live(U ⊢ I; D), with Live([]) = ∅. The analysis
computes the necessary differentiated variables. Both D and I ′ write differentiated
variables. Therefore Live(U ⊢ I; D) is the union of the necessary variables required
for D and I ′. The formula Live(I; D) is composed of two slices. The first slice does not
depend of the context, and it states that the necessary variables due to I ′ are Live(I ′).
The second slice is due to D. This slice states that due the differential dependency
across I, using Formula 4.14, the necessary variables due to D are Live(D)⊗Dep(I).
As a result, the composed formula is:

Live(I; D) = Live(I ′) ∪ (Live(D)⊗Dep(I)). (4.16)

In order to avoid any circularity in the specification of the analysis, we run the Ad-
joint Liveness analysis that computes Live(Z), where Z is the reverse differentiated

tail of the original program, before TBR analysis that computes Use(
←−
U). Formula

(4.16) is extended to cope with basic blocks instead of instructions: for any block B
followed by a downstream code D

Live(B; D) = Live(B) ∪ (Live(D)⊗Dep(B)).

This backward data-flow equation is particularly efficient since Live(B) and Dep(B)
can be precomputed.

Refined TBR Analysis

From the classical equation (4.11) of the Use analysis, we can write the rules that

compute Use(I ′;
←−
U) and Use(

←−
U), yielding a formal specification of the TBR analy-

sis. Since I ′ only overwrites differentiated variables, and we study here the data-flow
properties of the original variables only, Kill(I ′) = ∅. Therefore

Use(I ′;
←−
U) = Use(I ′) ∪Use(

←−
U), (4.17)

where Use(
←−
U) is defined recursively by:

Use(
←−
[]) = Use([]) = ∅

Use(
←−−
U ; I) =



















Use(POP(Out(I) ∩Use(I ′;
←−
U)); I ′;

←−
U)

= (Use(I ′) ∪Use(
←−
U)) \Kill(I) if adj-live(I, D)

Use(I ′;
←−
U) = Use(I ′) ∪Use(

←−
U) otherwise

(4.18)

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 91

This formula runs forward on a flow-graph, or, in other words, this is a forward
data-flow equation.

Adjoint Write Analysis

The Out must be adapted in order to be consistent with previous improved analy-
ses. This analysis now has to take into account the context provided by the upstream
segment of the program. Adjoint Write Analysis computes Out(U ⊢ Z). If Z = [],
obviously Out(U ⊢ []) = ∅. If Z = I; D, we distinguish two cases according to adj-
live(I, D). We also use definition (4.13), i.e. a PUSH/POP pair on a variable leaves it
unmodified by definition. As a result, we obtain:

Out(U ⊢ I; D) =















(Out(I) ∪Out([U ; I] ⊢ D))\ (Kill(I) ∩Use(I ′;
←−
U))

if adj-live(I, D)

Out([U ; I] ⊢ D) otherwise.

(4.19)

We see that Out(U ⊢ I; D) is always included in Out(I; D), and this is often
strictly due to the PUSH/POP pairs. Formula (4.19), as Formula 4.4.1, runs backward
on a flow-graph.

4.4.2 Improved Model of the Store-All Reverse Mode of AD

As a result of the improved and new adjoint data-flow analyses the formal model
changes to the following, more precise and complex model [33]:

U ⊢ I; D = [PUSH(Out(I) ∩Use(I ′;
←−
U)); I;] if adj-live(I, D)

[U ; I] ⊢ D;

[POP(Out(I) ∩Use(I ′;
←−
U));] if adj-live(I, D)

I ′

(4.20)

Depending on the predicate adj-live(I, D), the original instruction I can be dis-
carded, subsequently the PUSH/POP can also be eliminated, no matter the result of

the Use(I ′;
←−
U) analysis. This is an important gain in memory, because the stack is

not used. Furthermore, it also represents a gain in execution time. This is because
the access time to the stack is not really negligible. If the predicate adj-live(I, D) is
true, then the gain depends on the size of the set of values to store. This gain is the

difference between (Out(I) ∩Use(I ′;
←−
U)) and Out(I), which used to be the set of

variables to store in Formula 4.15.

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 92

4.4.3 Experimental Measurements

We measured the benefits of Adjoint Liveness and Adjoint Write analyses on three
large applications that we use as validation tests. The results strongly depend on the
actual codes, thus Table 4.6 shows the general description of the scientific codes used
in our experiments. Notice that the same codes are used at the end of the chapter,
where they are tested using different checkpointing strategies.

Code name Number of lines Application domain

STICS 27 000 Agronomy
UNS2D 2 700 CFD

SONICBOOM 21 000 CFD

Table 4.6: Scientific codes description.

We can observe in table 4.7, that the results are positive in almost all the experi-
ments. This is because the speedup ranges between 7% and 18%, and the improve-
ment in memory between 0% and 49%. This last result requires extra explanation.
The STICS code is so large that it makes a heavy use of the swap space in the reverse
mode. This causes the huge slowdown of the reverse mode. Therefore, it is even more
important to spare 49% in memory, which we achieve thanks to the Adjoint Write
analysis.

Experiment Time Memory
Description Total [s] % gain Peak [Mb] % gain

Adjoint program STICS1 42.60 456
1 + Adjoint data-flow analysis 35.70 16 230 49
Adjoint program UNS2D 2 29.70 260
2 + Adjoint data-flow analysis 24.78 16 259 0
Adjoint program SONICBOOM3 5.65 10.9
3 + Adjoint data-flow analysis 4.62 18 9.4 14

Table 4.7: Time and memory improvements on three large scientific codes.

In Table 4.7 we compare execution times of the reverse differentiated programs,
and the improved reverse differentiated programs (both using TBR analysis). The
improved version includes the adjoint liveness and adjoint write analysis. We com-
pare the memory consumption under the same set-up. The memory consumption is
measured as the maximum size of the tape.

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 93

4.5 Contributions to Coarse-grain Strategies

4.5.1 A Formal Model of Store-All Reverse Mode AD with
Checkpointing

We are interested in studying the call-graph of the reverse differentiated codes.
This is because the call-graph is the most handy way to analyze a program with
checkpointed segments of code, specifically when the checkpoints are placed before
subroutine calls. We have to extend the formulas of the previous sections in order to
capture the influence of these analyses of the call-graph.

Let us now consider the case where the program P contains checkpointed seg-
ments. Thus, for an arbitrary program P = S ; D, where the checkpointed segment
is a subroutine S. Usually, the predicate adj-live(S, D) is true, thus simplifying the
notation and losing no generality. As a result, for the special case of the checkpointed
segment S, the reverse AD model of Formula 4.20 is replaced by:

U ⊢ S; D = PUSH(Out(S) ∩Use(
←−
U));

PUSH(Snp(U, S, D));
S;
[U ; S] ⊢ D;
POP(Snp(U, S, D));
[] ⊢ S;

POP(Out(S) ∩Use(
←−
U));

(4.21)

A trade-off is presented between the set computed by Snp(U, S, D) and the set

Out(S) ∩Use(
←−
U), which basically is due to the context added by U . For example,

putting U instead of [] as the context for the generation of S will cost more PUSH/POP

inside S, and on the other hand, storing Out(S) ∩ Use(
←−
U) becomes unnecessary

in (4.21). Exploration of this trade-off is an open problem [16].

The AD model with checkpointing defined in Formula 4.21 is more efficient than
the model of Formula 4.9. This is because it takes advantage of the adjoint data-flow
analyses, who allow to define a better snapshot formula, as we present in the next
section.

4.5.2 Improved Snapshot Definition

In comparison with Formula 4.10, we mainly improve that formula by adding the
context information of U which is used by the adjoint data-flow analyses. First, the
set of variables Live(S), required to run S, is smaller than Use(S). Second, we need
to restore a variable only if it was modified “in between,” i.e. is in the Out set of code

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 94

sequence S; D. We take advantage of Out(D) being smaller than Out(D). Therefore,
when the predicate adj-live(S, D) is true, we define the snapshot as:

Snp(U, S, D) = Live(S) ∩ (Out(S) ∪Out([U ; S] ⊢ D)) (4.22)

The set of variables to store by the improved definition of snapshot is smaller than
the one computed by Formula 4.10. This because snapshot definition of Formula 4.22
uses the adjoint liveness analysis, which computes a smaller set of variable vales than
the set used in Formula 4.10. Also, in Formula 4.22 the set Out is computed taking
into account the context [U ; S]. This implies the possibility of reducing the computed
set.

4.5.3 Example

The reverse differentiated code of Table 4.8 was obtained (from the original code
of Table 4.5) using the classical model of reverse mode of AD. All commented lines
are not necessary, this is determine by the improved formal model of Store-All reverse
mode of AD with checkpointing. Therefore, in order to determine these improvements,
the adjoint data-flow analyses, as well as the improved snapshot formula were used.

In Table 4.8, due to Adjoint Liveness Analysis the last instruction of the forward
sweep of subroutines EXAMPLE B and SUB B is discarded, thus allowing to spare the
pair PUSH/POP that the TBR analysis has inserted. Thanks to the Adjoint Write
Analysis and the Adjoint Liveness Analysis we are able to compute a smaller snapshot,
thus variable z is not anymore stored. Notice that depending on the context of the
analyses, the variable y may not be part of the Snp(SUB), this is correct as long as
TBR analysis take this into account and insert a PUSH just after subroutine SUB and
before the instruction that overwrites y. This alternative is valid because variable y

/∈ Out(SUB), and the required value of this variable in SUB B will be restored just
before the subroutine call.

4.5.4 The Systematic Checkpointing

Checkpointed segments can be chosen in various manners, and can be nested. In
AD tools, checkpointing is applied systematically, for instance at subroutine calls or
around loop bodies.

Figure 4.7 central section shows the call-graph of a reverse differentiated program
using the joint-all mode, where joint-all is the checkpointing strategy of checkpoint
each subroutine call. Experience indicates that the joint-all strategy is not optimal,
though the optimal situation is not easy to foresee.

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 95

SUBROUTINE EXAMPLE B(x, xb, y, yb, z, zb)

w = COS(y)

z = w * SIN(x)

C CALL PUSHREAL8(z)

CALL PUSHREAL8(y)

CALL PUSHREAL8(x)

CALL SUB(w, x, y, z)

y = z * w

C CALL PUSHREAL8(z)

C z = y**2 + x * COS(z)

<forward sweep ends, backward sweep begins>

C CALL POPREAL8(z)

yb = 2 * y * zb

xb = COS(z) * zb

zb = w * yb - x * SIN(z) * zb

wb = z * yb

CALL POPREAL8(x)

CALL POPREAL8(y)

C CALL POPREAL8(z)

CALL SUB B(w, wb, x, xb, y, yb, z, zb)

wb = wb + SIN(x) * zb

xb = xb + w * COS(x) * zb

yb = yb - SIN(y) * wb

END

SUBROUTINE SUB B(w, wb, x, xb, y, yb, z, zb)

u = COS(w) + y + x

C CALL PUSHREAL8(x)

C x = z / u

<forward sweep ends, backward sweep begins>

C CALL POPREAL8(x)

zb = zb + xb / u

ub = - z * xb / u**2

wb = wb - SIN(w) * ub

yb = ub

xb = ub

END

Table 4.8: Reverse differentiated version of example code of Table 4.5

Before we go further in our analysis, it is important to formalize the process of
obtaining the call-graph of differentiated programs. This formalization is important
because we use the differentiated call-graph for further applications of the snapshot
formula. The formalization is resumed in Table 4.9.

One can think of deactivate the checkpointing mechanism for certain segments of

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 96

DB

C C
−→
C

←−
C

−→
B

←−
B

←−
D

−→
D

−→
A

←−
A

take snapshot

use snapshot

original subroutine x

←−x

x

backward sweep for x

−→x forward sweep for x

C

B D

A

Figure 4.7: Checkpointing on all calls in Reverse Mode AD (joint-all mode).

Symbols

S = subroutine – = a call
• = memory write ◦ = memory read
T = tree of subroutines T ⋆ = multiple tree
S→ = forward sweep of S ←S = backward sweep of S

Rules
Rule Description

RAD(S) = S→ ←S Reverse A.D. over S
RAD(S-T ∗) = S→ − TS(T ∗) ←S − RADS(T ∗) RAD over S call T ∗

RADS(()) = () RAD with Snapshot over ()
RADS(S) = ◦S→ ←S RADS over S
RADS(TT ∗) = RADS(T ∗)RADS(T) RADS over a T and T ∗

RADS(S-T ∗) = ◦S→ − TS(T ∗) ←S − RADS(T ∗) RADS over S call T ∗

TS(()) = () Take Snapshot over ()
TS(S) = •S TS over S
TS(TT ∗) = TS(T)TS(T ∗) TS over a T and T ∗

TS(S-T ∗) = •S − T ∗ TS over S call T ∗

Table 4.9: From original call-graph to reverse differentiated with checkpointing call-
graph.

code, this is called split mode. But that feature was not part of the tool at hand, so
we added it to the tool. In split mode the forward sweep and the backward sweep are
implemented separately, and do not follow each other during execution. Therefore,
no snapshot is required, but this forces to store more intermediate values in the tape.
This is because the local variables values of the forward sweep of the no-checkpointed
segment are unreachable for the corresponding backward sweep. As a result, they have
to be stored. Figure 4.8 shows the other classical alternative, which is no-checkpoint
for each subroutine, this alternative is called the Split-All strategy.

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 97

C

B D

A
−→
A

−→
D

−→
B

−→
C

←−
A

←−
C

←−
D

←−
B

original subroutine

−→x

←−x

x x

forward sweep for x

backward sweep for x

Figure 4.8: No Checkpointing in Reverse Mode AD (split-all mode).

The advantage of split mode is that the subroutines are executed just one time
(Figure 4.8), then savings in execution time are important.

Split-all and joint-all are two extreme strategies. It is worth trying hybrid cases,
and we present a couple of cases in Figure 4.9. The first strategy hybrid1, implements
the joint mode for all subroutines except for subroutine D.

B

C

−→
A

←−
A

C

−→
A

D
−→
B

←−
B

−→
D

←−
D

−→
C

−→
D

←−
D

−→
B

←−
B

−→
C

←−
C

←−
A

←−
C

hybrid1 hybrid2

Figure 4.9: Hybrid approach (split-joint)

Conversely, the second strategy: hybrid2, implements the split mode for all sub-
routines except for subroutine D, which is checkpointed.

Simulation of Hybrid Strategies Assuming Snapshot < tape

In order to have a more precise idea of the aforementioned trade-off we have to si-
mulate the performance of mentioned cases for two motivating scenarios. We assume
that all the subroutines have the same snapshot size, and have the same tape size,
but snapshot and tape have different sizes. Also, we assume that each subroutine has
the same execution time. The original call-graph is the one given in the left section
of Figure 4.7 and the differentiated ones are given in Figures 4.7, 4.8, 4.9.

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 98

For the first scenario, we set the memory size of the snapshot to 6 and the memory
size of the tape to 10. This setup corresponds to the usual assumption that the tape
is bigger than the snapshot for subroutines.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70

m
em

or
y

time

Joint v/s Split

Joint-All
Split-All
hybrid1
hybrid2

Figure 4.10: Simulation results, tape = 10, snapshot = 6.

Figure 4.10 shows the behavior of the four checkpointing strategies previously
mentioned. As we expected, the curve that represents the joint configuration shows
the fewest consumption of memory but the largest execution time. Conversely, the
curve that represents the split mode has the highest peak of memory consumption
but the shortest execution time. Hybrid strategies range between these two extremes.

Simulation of Hybrid Strategies Assuming Snapshot > tape

This previous scenario assumed that the tape is bigger than the snapshot. Howe-
ver, this assumption is not always valid. Therefore, we present a second simulation
where we assume that the tape cost 6 in memory, and the snapshot costs more, e.g.
10.

Figure 4.11 shows that joint and split modes are not the extreme of the trade-off
anymore. In fact, the extreme bounds in memory consumption correspond to the
hybrid modes. Another interesting fact from the second simulation is that the ma-
ximum peak of memory consumption is smaller than the one of the first simulation.
This is not surprising as the snapshot is bigger than the tape but far less used. In
this scenario, the advantage of checkpointing is less obvious because of the costs of

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 99

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70

m
em

or
y

time

Checkpointing-All
No-Checkpointing

hybrid1
hybrid2

Figure 4.11: Generic Numerical Results, tape = 6, snapshot = 10.

snapshots, therefore the split-all mode is nearly the best in every respect.

We have shown in Figure 4.10 and Figure 4.11 that the hybrid strategies are
appealing alternatives to the basic strategies. It would be very useful to carry some
experiments with the basic and hybrid strategies. This will give us an idea of the
best strategies regarding industrial size code. We consider this experimentation the
first step to an optimal checkpointing strategy.

4.5.5 Implementation

Along with the modification of the analyses, the generation of the differentiated
program must also be adapted. The AD model defined in Section 4.5.1 shows that
the joint mode runs the backward sweep of C immediately after the forward sweep

C. When C is a subroutine, the subroutines
−→
C and

←−
C can be easily be merged into

a single subroutine C̄. As a consequence, local variables of C (and of
−→
C) are still in

scope when
←−
C starts, and therefore preserve their values.

Implementation of the Split Mode in tapenade

The mentioned feature is no longer possible in split mode, since subroutine
−→
C and←−

C must be separated. Consequently, local variables of
−→
C must be stored before they

vanish and restored when
←−
C starts. This was addressed in the implementation by

adding a new analysis. This analysis finds the local variables that are necessary for

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 100

the backward sweep, so that they are PUSH’ed to the end of the forward sweep and
POP’ed at the beginning of the backward sweep.

We make the choice of generalization versus specialization, by allowing for only
one split mode per subroutine. Even then, this requires care in naming the subrou-
tines. We need to create up to four names (original, forward sweep, backward sweep
and reverse differentiated) when split and joint strategies are combined. This problem
is technical, but it has implications within the whole way that tapenade handles
differentiated elements.

The split strategy is driven by the user by means of a directive (C$AD NOCHECKPOINT)
which is placed just before the subroutine call, or through a command line option
(-split "[name of subroutines]"). The introduction of directives is a novel fea-
ture for tapenade.

We give a tutorial on checkpointing and AD tool tapenade in Appendix A.1.
The tutorial includes snippets of code from our pool of validation codes. Some of
these codes are used in the next section.

4.5.6 Experimental Observation of Problems and Results

Example Codes

We applied the split mode to certain subroutine calls, looking for experimental
confirmation of the intuitions from Section 4.5. In particular, we want to show the
interest of letting the user drive the checkpointing strategy.

The subroutines chosen to be split were the ones that best illustrate the memory
and run-time trade-off. The criteria to choose subroutines rely on two values, which
can be obtained by studying the reverse generated code. These values are: the size of
the snapshot and the size of the tape. The implementation of both values is based on
PUSH calls, thus the comparison between these values is straightforward. For instance,
we can observe Table 4.11 (page 96).

STICS

STICS is an agronomy modeling program. It has 21.010 lines of code (LOC), and
46.921 LOC were generated to implement the reverse differentiated subroutines.

In STICS code, we introduce three levels of nested loops around subroutine
onebigloop because this code simulates an unsteady process over 400 time steps.
These nested loops are a manual modification that allow us to perform checkpointing

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 101

ONEBIGLOOP

BIGFUNCTION

BIOMAER CROIRA TRANSPI MINERAL LIXIV

INICLIMLECSTAT RECUP BILAN PROFILINITIAL

DENSIRAC

Figure 4.12: STICS Call-graph.

on various groups of time steps.

The performance of STICS is depicted in Table 4.10, specifically in execution
time, shows how inefficient the joint-all strategy can be. In this case, the re-execution
of the subroutines due to the checkpointing mechanism is the main responsible for
this performance drop. This fact confirms our statement about the sub-optimality of
joint-all strategy.

For this experiment, the default (Split-All) strategy applied by tapenade gave
very bad results in time, with a slowdown factor of about 100 from the original code
to the reverse differentiated code. We made some measurements of the tape sizes
compared to the snapshot sizes, and we found out that tape was much smaller than
snapshot for subroutines densirac, croira and onebigloop. This is a special case
of the situation of Figure 4.11 and is reflected on the experimental figures of Table
4.10. We see that split mode on these three subroutines gain execution time at no
memory cost. Combined split mode on the three subroutines (experiment 09) gives
an even better result.

The enormous gain in execution time makes the differentiated/original ratio go
down to about 7, which is what AD tools generally claim. In the STICS experiment,
the execution time of the Split-All version did not come from the duplicate executions
due to checkpointing but rather from the time needed to PUSH and POP these very
large snapshots. This suggests that a complete model to study optimal checkpointing

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 102

Experiment Time Memory
Id Description Total [s] % gain Peak [Mb] % gain

01 Joint-All strategy 38.56 229.23
02 split mode biomaer 36.15 6.3 229.23 0.0
03 split mode mineral 35.78 7.2 229.28 0.0
04 split mode densirac 30.02 22.1 229.23 0.0
05 split mode croira 24.45 36.6 229.23 0.0
06 split mode onebigloop 23.75 38.4 229.75 -0.2
07 04 and 05 16.79 56.5 229.23 0.0
08 04 and 06 15.64 59.4 229.75 -0.2
08 05 and 06 11.71 69.6 206.81 9.8
09 04, 05 and 06 3.93 89.8 149.11 34.9
09 03, 04, 05 and 06 3.92 89.8 149.11 34.9
09 split all the above subroutines 3.90 89.9 149.11 34.9

Table 4.10: Memory and time performance for STICS.

strategies should definitely take into account the time spent for tape and snapshots
operations.

Practically, in the STICS example there is no doubt densirac, croira and
onebigloop should be differentiated in split mode. In addition, one can differentiate
additional subroutines in split mode, (e.g. mineral), but the additional execution
time gain is marginal.

UNS2D

UNS2D is a CFD solver. It has 2.055 LOC. The reverse differentiated version has
2.200 LOC.

On figures 4.13 and 4.12, loops are denoted by square brackets. For instance,
on Figure 4.13 we have two loops, one which involves from subroutine pasdtl to
subroutine quaind, and a second one which includes all inbigfunc’s subroutines.
These loops are the segment of the program that consumes most of memory and time.

In Table 4.11 we can observe the required information to determine the checkpoints
placements. This is because we can use these information to decide for each subroutine
its checkpoint status. The profiling information was obtained using an extension of
tapenade, which generates differentiated code with the necessary instructions to
carry out the computation of the profiling information in runtime.

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 103

QUAINDCALGRAENTHALDINBIGFUNCPASDTLCALGRA

DIFFAR FLW2D SYMMT CALGRA

BIGFUNCTION

CALCL CALCL

Figure 4.13: UNS2D Call-graph.

Depth Subroutine Snapshot Tape #calls

0 bigfunc b 0 184 1
1 pasdtl b 15 191.4 734
1 inbigfunc b 152 649.7 734
1 enthald b 30.5 46.9 734
1 calgra b 30.5 21.5 734
1 quaind b 22.8 16.1 13
2 diffar b 53.4 656.3 1468
2 flow2d b 30.5 78.2 3674
2 symmt b 15.6 0 3674
2 calgra b 45.8 21.5 2940
3 grdt1 b 0 46.9 1468
3 concon b 0 32.5 3674
3 conrie b 30.5 3.9 3674

Table 4.11: Profiling information about snapshots, tapes and number of calls to
subroutines of UNS2D.

The first four experiments 02 - 05 of Table 4.12 report gain both in time and
memory, reminding us of the case where tape < snp (Figure 4.11). This is indeed
what we observe when we measure the actual sizes of tape and snapshot for the sub-
routines in question. Therefore, when each of calgra/calcl/quaind enthald are
split the program saves memory for the snapshot without using as much for the tape.
At the same time it saves time because the subroutine is not executed twice. No-
tice that the case of enthald is somewhat different, the research is open for this case.

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 104

Experiment Time Memory
Id Description Total [s] % gain Peak [Mb] % gain

01 Joint-All strategy 41.69 184.69
02 split mode calcl

on all call placements 37.66 9.7 167.53 9.3
03 split mode quaind 37.54 9.9 162.13 12.2
04 split mode calgra

on all call placements 36.63 12.1 163.92 11.2
05 split mode enthald 34.33 17.6 162.17 12.2
06 split mode inbigfunc 31.83 23.6 468.13 -153.5
07 02 and 05 33.95 18.6 163.20 11.6
08 03 and 06 31.75 23.8 446.82 -141.9
09 02, 04 and 05 35.81 14.1 174.45 5.5
10 02, 05 and 06 35.49 14.8 533.23 -188.7
11 02, 03, 04 and 05 38.50 7.6 184.45 0.13
12 02, 04, 05 and 06 30.92 25.8 408.88 -121.4
13 split mode on all

above subroutines 32.67 21.6 443.56 -140.2

Table 4.12: Memory and time performance for UNS2D.

Experiment 06 exhibits a gain in time at the cost of a larger memory use. As we
suspected from the simulations on Figure 4.10, this corresponds to the case where
snp < tape. This is also what people had in mind when checkpointing was first pro-
posed, and in this situation checkpointing is really a time/memory trade-off. There-
fore checkpointing inbigfunc (in other words the joint mode) is a wise choice when
memory size is limited.

Experiments 07 - 13 can be separated in two sets: whether inbigfunc is check-
pointed (08, 10, 12 and 13) or not (07, 09 and 11). The separation criterion underlines
the relative weight of the subroutine inbigfunc.

Experiments 07, 09 and 11 shows a remarkable behavior on the execution time
performance. The execution time savings of combined split mode subroutines should
accumulate, regarding what we observe in Figures 4.10 and 4.11, but surprising the
execution time performance for these experiments show the opposite. In particular,
the experiment 11’s execution time saving (3.18s) is smaller than the execution time
savings (4.03s, 4.15s, 5.03s and 7.36s) of everyone of the subroutines which compose
the experiment itself. This behavior lead us to do further experimentation and anal-
ysis in order to make it consistent with the checkpointing model described.

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 105

Finally, we advice to use the split mode strategy given by the experiment 12 in
case of execution time savings demands. On the other hand, experiments 03 and 05
allow memory savings up to 12%.

SONICBOOM

SONICBOOM is a part of a CFD solver which computes the residual of a state
equation. It has 14.263 LOC, but only 818 LOC to be differentiated, generating 2.987
LOC of derivative subroutines.

GRADNOD FLUROE VCURVM TRANSPIRATION CONDDIRFLUX

PSIROE

Figure 4.14: SONICBOOM Call-graph.

The first group of experiments, 02 - 04 from Table 4.13, shows gain in execution
time, because the subroutines are executed only one time. There is no gain in memory
because the size of the snapshot and the tape are very close.

The experiments where gradnod is involved exhibit the largest gain in execu-
tion time. This is related to the fact that gradnod accounts for the largest part of
the computation, and since the tape size grows in step with the number of executed
instructions, tape(gradnod) is much larger than snp(gradnod). For the other sub-
routines in this experiment, we also have tape < snp, but to a smaller extent. There-
fore, everything behaves like in the classical case of Figure 4.10. In particular, there
is no subroutine for which the split mode would give a gain in a memory consumption.

It is worth noticing that the effect of the split mode is really an increase in mem-
ory traffic rather than in memory peak size. For example splitting conddirflux

certainly results in a higher memory traffic, but the increase of the local memory
peak is hidden by the main memory peak which occurs just after

−−−−−−−→
gradnod. We are

currently carrying new experiments and developing refined models that include this
memory traffic.

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 106

Experiment Time Memory
Id Description Total [s] % gain Peak [Mb] % gain

01 Joint-All strategy 0.2900 10.84
02 split mode vcurnvm 0.2725 6.0 10.84 0.0
03 split mode conddirflux 0.2699 6.9 10.84 0.0
04 split mode fluroe 0.2500 13.8 11.06 -2.0
05 split mode gradnod 0.2374 18.1 18.77 -73.1
06 02 and 03 0.2624 9.5 10.84 0.0
07 04 and 05 0.2374 18.1 19.00 -75.2
08 02, 03 and 04 0.2475 14.7 11.08 -2.2
09 02, 03 and 05 0.2360 18.6 18.77 -73.1
10 split mode on all

the above subroutines 0.2374 18.1 19.00 -75.2

Table 4.13: Memory and time performance for SONICBOOM.

Practically for this experiment, our advice would be to run subroutines fluroe,
vcurvm and conddirflux (experiment 08) in split mode in any case, and this
already gives a 14.7% improvement in time at virtually no cost in memory. In the
case where memory size is not strictly limited, then it is advisable to run gradnod

in split mode too, which gives an additional gain in time at the cost of a large increase
in memory peak.

4.5.7 Discussion

Related works on optimal checkpointing have been conducted mostly on the model
case of loops of fixed-size iterations. Only in the particular sub-case where the num-
ber of iterations in known in advance was an optimal scheme found mathematically
[25]. This leads to the treeverse/revolve [29] tool for an automatic application of
this scheme. We are not aware of optimal checkpointing schemes for the case of an
arbitrary call-tree or call-graph.

Notice that checkpointing is not the only way to improve the performance of the re-
verse mode of AD. Local optimizations can reduce the computation cost of the deriva-
tives by re-ordering the sub-expressions inside derivatives [2]. Other optimizations
implement a fine-grain time/memory trade-off by storing expensive sub-expressions
that occur several times in the derivatives.

Local optimizations only give a fixed small benefit. For large programs, only nested
checkpointing can make reverse differentiated codes actually run without exceeding
the memory capacity of the machine. Therefore the study of optimal checkpointing

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 107

schemes is an absolute necessity.

4.6 Conclusions and Future Work

The reverse differentiated structure of a program is composed of two main parts,
the first part is called the forward sweep and the second part is the called backward
sweep. The forward sweep has basically the same instructions of the original pro-
gram, and it computes the intermediate variables values required in the backward
sweep. The backward sweep implements the derivatives. During the execution of
the forward sweep, variables are re-defined, thus changing intermediate values. The
problem arises when the intermediate values are required by the derivatives, but they
are not anymore accessible because they have been overwritten. This is the source of
the problem we have addressed in this chapter.

To cope with this problem we have two main strategies. We follow the strategy
called store-all, which consists in storing the required values during the forward sweep,
in order to restore them in the backward sweep. This solution has a problem: the
amount of memory needed to store the values can be unacceptably high.

We aimed to refine our AD reverse mode model to generates the best code possi-
ble in terms of memory consumption, without diminishing the efficiency in execution
time. To achieve this, we have two main lines of action. The first consists of local
optimization of the generated code. To achieve this optimization we improve the exis-
ting data-flow analyses, thus introducing what we called adjoint data-flow analyses.

We have described our special-purpose data-flow analyses that are used to im-
prove the performance of the produced codes. The experimental results show that
the improvements successfully reduce the peak of memory consumption up to 49%.
Also, the execution time is reduced on average up to 16%.

The second line of action in which we worked takes advantage of the trade-off
between storage and re-computation, at the level of segments of code. Therefore, this
kind of optimization can seen as global. The main technique of this kind of optimiza-
tion is the mechanism called checkpointing, which spares time or memory depending
on the trade between storage and re-computation.

We started from the observation that the strategy consisting in checkpointing each
and every subroutine call is in general, although safe from the memory point of view,
far from optimal. Both simulations on very small examples, and real experiments
on real-life programs show that some subroutines should never be checkpointed, and
that others may be checkpointed depending on the available memory.

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 108

The great variety of possible situations makes the objective of automatic selec-
tion of checkpointing sites very difficult to achieve. It seems therefore reasonable to
let the user drive this choice through an adapted user interface. We discussed the
developments that we made into the AD tool tapenade to add this functionality.
This new functionally allowed us to conduct extensive experiments on real codes.
This validate our hypotheses on the optimal checkpointing problem. Furthermore,
the results suggests the relevant criteria for a future helping tool. These are for each
subroutine, its execution time, its tape and snapshot sizes, and the time required by
tape PUSH and POP traffic.

In Table 4.14 we combine the results of both kind of optimizations. Due to the fact
that the results were obtained in two different platform, a post-process was required
to compose the following table.

Experiment Time Memory
Description Total [s] % gain Peak [Mb] % gain

Adjoint program STICS (AP1) 42.60 456
AP1 + adjoint data-flow analysis (ADF) 35.70 16 230 49
AP1+ ADF + hybrid strategy 09 3.55 90 149 35

Adjoint program UNS2D (AP2) 29.70 260
AP2 + adjoint data-flow analysis 24.78 16 259 0
AP2 + ADF + hybrid strategy 05 20.32 18 227 12

Adjoint program SONICBOOM (AP3) 5.65 10.9
AP3 + after adjoint data-flow analysis 4.62 18 9.4 14
AP3 + ADF + hybrid strategy 08 3.97 14 9.6 -2

Table 4.14: Time and memory improvements on three large scientific codes.

In Table 4.14 the mentioned hybrid strategies correspond to the ones in Table
4.10, Table 4.12 and Table 4.13. We can observe in Table 4.14 the improvements of
every global strategy (fine-grain and coarse-grain) for our test codes. The combined
results are very positive, the most interesting case is STICS, where the gains are on
both memory and time are quite promising.

The results are very encouraging, thus the next step is to look for an automatic
way of discovering the optimal checkpointing strategy. An automatic strategy to place
the checkpoints could be based on execution time profiling of the original program
or even of the differentiated code itself. This suggests a process of iterative improve-
ments of the reverse differentiated codes, based on previous runs, much like what is

Chapter 4: Data-Flow Analyses and Checkpointing for the Reverse Mode 109

done in iterative compilation [43].

Finally, both lines of action, local and global are connected, thus interesting trade-
off can help us to improve the results, and to refine our AD models.

Chapter 5

Conclusions and Further Research
Directions

This thesis has two main parts. The first part is devoted to informing the user
about possible incorrect use of differentiated codes generated by AD. We called this
problem the validity problem of AD. The second part is focused on reducing the
memory consumption of the reverse mode of AD. We called this problem the memory
problem of reverse mode of AD.

Consequently, in the following we first detail the work we performed to address
the first problem. This will be followed by the same exercise for the second problem.

5.1 Summary and Conclusions

5.1.1 The Validity Problem

Automatic Differentiation (AD) tools assume differentiability of the function im-
plemented by the given program. This assumption is fundamental, because the un-
derlying mechanism of AD is the systematic application of the chain rule, which
assumes differentiability of every component function. However, sometimes functions
are composed by non-smooth elementary functions, which may lead to loss of the
global differentiability. Another source of wrong derivatives are switches in the con-
trol flow, mainly coming from conditional statements. These switches make most pro-
grams only piecewise differentiable. In these cases, sometimes the derivatives close to
switches are inconsistent, because they are computed by different sets of instructions.
Furthermore, differentiated programs may return derivatives where the implemented
function is not differentiable. Unfortunately, the everyday use of AD overlooks those
problems, thus problems that should be essential become a matter of concern only
when results are not what was expected.

110

Chapter 5: Conclusions and Further Research Directions 111

We proposed two methods to tackle the problem of non-differentiability in pro-
grams differentiated with Automatic Differentiation. The first method we proposed
HSBP allow us to compute the domain of validity for a given input with an acceptable
precision. Unfortunately, even although HSBP provide us with a complete descrip-
tion of the domain of validity, the cost of this method is prohibitively high, both in
execution time and memory consumption.

The main problem to apply this method is the size of the set of constraints.
To cope with that problem we proposed several alternatives. The alternatives in-
clude: automatic/manual drop of constraints and change of solution space represen-
tation. Unfortunately, none of alternatives prove to reduce significantly the cost of
the method. Therefore, we found it is difficult to reduce the cost enough to make this
method practical.

The second method we proposed DFP, it compute intervals following a given di-
rection of input data. In these intervals, the returned derivatives have no problem
of differentiability. The computational cost of the new mode is marginal (4%) with
respect to the computational cost of HSBP. That small overhead is added to the
computation of derivatives when DFP is implemented for every test within the code,
but only for certain directions in the input space.

The only drawback of DFP is that the information returned by the method is par-
tial, because this information is computed regarding a certain direction in the input
space. It is possible to obtain an approximation to the complete information, but
that add an extra cost to the method.

The second method can be seen as the other extreme of the spectrum. Execution
time and memory usage is low, but the computed domain of validity just informs
about a specific direction of derivation in the input space. Nonetheless, the method
has proven to be useful as we have shown in our experiments.

DFP is easy to use and is fully implemented in the AD tool tapenade. Due to
its low cost, we believe that is an efficient way to deal with the validity problems of
differentiated codes.

5.1.2 The Memory Problem of The Reverse Mode

Reverse mode computes adjoint codes, in particular gradients. Due to the struc-
ture of the reverse mode of AD, the computation of that kind code is very efficient in
terms of runtime, but has a drawback. This is because certain intermediate variables
are re-defined during the forward sweep, the values that those intermediate variables
held are not accessible to compute the derivatives in the reverse sweep.

Chapter 5: Conclusions and Further Research Directions 112

In order to provide the intermediate values required by the reverse mode, we have
mainly two options: Recompute-All (RA) [24] and Store-All (SA) [27] strategy. In
this thesis we focus on SA strategy. We have investigated two kind of optimizations
for SA strategy. The first kind is the fine-grain optimization, this is based on data-flow
analysis. This analysis runs on a static representation of the complete program, and
the improvements are visible at instructions level. The second is the coarse-grain op-
timization, this optimization consists mainly in the checkpointing mechanism, which
involves large segments of code.

In order to compute the smaller sets of variable to store/restore, and the fewer
number of instructions to generate, we have improved the existing adjoint data-flow
analyzes. We add also a new data-flow analysis, this analysis computes the precise
set of instructions which are really required to compute the derivatives in the reverse
mode. Using these analysis we were able to introduce a refined model for reverse
mode of AD. These improved analyzes and AD model are currently implemented in
our AD tool tapenade.

The adjoint data-flow analyses perform efficiently, they reach up to 49% of im-
provement in memory consumption, and with an average execution time of 16%.
Data-flow analyzes are fundamental in the generation of efficient differentiated code.
Particularly, the adjoint data-flow analyzes are the main tool behind the generation
of the best backward sweep code. Furthermore, the analyzes allow to compute the
smaller sets of values to store during the forward sweep, and even to reduce the num-
ber of instructions of the forward sweep by indicating which original instructions are
not necessary to compute the derivatives.

Checkpointing is an appealing way to exploit the trade-off between storing and re-
computing. A checkpointing strategy is composed of two elements, the snapshot and
the checkpoints placement. We introduce a formal equation to compute the snapshot
based on the above analysis. This formalization and the fact that the checkpoin-
ting change the structure of the differentiated programs force us to adapt the AD
model for reverse mode. Therefore, we present an extended AD model which includes
checkpointing. This model place the checkpoints systematically before the subrou-
tines calls. This strategy is sub-optimal, and due to the fact that for some segments of
code is better not use checkpoint, we introduce the possibility to the user to select the
checkpointing placement. All the contributions mentioned are currently implemented
in our AD tool. That allow us to run comprehensive experiments with real-size scien-
tific codes.

Data-flow analyzes and Checkpointing are related, and improvements in the for-
mer has a consequently positive impact in the latter. The relationship between them

Chapter 5: Conclusions and Further Research Directions 113

comes from the fact that definition of snapshot is based on data-flow analyzes.

Checkpointing has a good performance, achieving up to 35% decrease in peak
memory consumption, and up to 90% decrease in execution time. Therefore, a good
checkpointing strategy can improve the performance of reverse differentiated codes.

5.2 Contributions

5.2.1 The Validity Problem

• We formalize a general approach to the validity problem. The approach is based
on analyze the variation of each conditional statement.

• We present the first specialization of the general approach. This is called HSPB
and relies on the reverse mode of AD.

• We introduce alternatives to reduce the size of the set of constraints.

• We propose a method to automatically drop useless constraints.

• We introduce alternatives to change the representation of constraints.

• We discuss the costs of the alternatives. As a results we present a trade-off
between computational costs and accuracy of the representation.

• We present the second specialization of the general approach. This is called
DFP and relies on the forward mode of AD.

• We compare DFP and HSBP. And we propose a tactic that allow DFP generate
the same kind of solution space as HSBP.

• We present and discuss alternatives in order to reduce the computational cost
of DFP, particularly in execution time.

• We present an implementation based on DFP. The implementation can be seen
as an extension to the AD tool tapenade.

5.2.2 The Memory Problem of the Reverse Mode

• We introduce and compare the two main alternatives to cope with the memory
problem of reverse mode of AD.

• We present in detail the Store-All strategy.

Chapter 5: Conclusions and Further Research Directions 114

• We improve existing data-flow analysis (Activity analysis and TBR) for adjoint
code.

• We add a new data-flow analysis (Adjoint-Liveness analysis).

• We present an improved AD model for Store-all, using these analysis.

• We present the checkpointing technique. This technique allow two parameters
to be set, the snapshot and the placement of the checkpoints.

• We formalize the snapshot using data-flow analysis.

• We adapt the AD model in order to take into account the Checkpointing strat-
egy.

• We implement the above AD model in our AD tool tapenade. This imple-
mentation modifies the existing model, and also allows the user to select the
checkpointing placements.

• We present and compare checkpointing strategies.

5.3 Future Research Directions

Like all research this work is not finished. We have a number of possible roads for
future work. We discuss them here.

5.3.1 The Validity Problem

It is possible to rescue the method to automatically drop constraints. This is to
improving the cost of the computation of the ranking of relevance, which is the core
stage of that method.

It is possible to increase the accuracy of the solution space of the general approach,
thus also for DFP and HSBP, if we use a second order approximation. This will be
useful for certain cases, where the first order approximation falls short.

Introduce the results to the AD community in order for the method to be used.
Also, showing the usefulness of the method we can encourage the necessary feedback
that can helps us to improve the method and make it robust.

The method DFP can be integrated with larger mathematical methods or algo-
rithms, specifically those methods which deal with non-smoothness. DFP can provide
useful information for those methods, information that can be regarded, for instance,
as feedback for iterative methods.

Chapter 5: Conclusions and Further Research Directions 115

5.3.2 The Memory Problem of the Reverse Mode

Data-flow analyses can be further refined. Specially promising is the array region
analysis adapted to the AD context. Another promising extension to the fine-grain
strategies is the possibility of combine storing/recomputing/inverting, which requires
a new set of data-flow analyses.

The big open problem of checkpointing is to find an optimal checkpointing stra-
tegy for the general case, so far we only have hints about how the checkpoints can be
placed, but a consistent strategy is yet to come.

Finally, but no less important, is the further research about the trade-off between
the size of the snapshots and the tape of the rest of the code. We can foresee a triple
trade-off snapshot/tape/checkpoints placements, which opens a wide range of new
strategies to explore in order to optimize the reverse mode of AD.

5.4 Concluding Remarks

In this thesis we have cover two relevant aspects of AD, each one of them have
relevance because they are related to fundamental features of AD.

The first aspect is related to the reliability of the derivatives, thanks to our re-
search the users who doubts about the differentiability of their implemented model
have the possibility of check their inputs and run their code without hesitation.

The second aspect is related to the efficiency of the reverse differentiated code.
We looked for ways to allow the user run their programs without fear to fall short
in memory space. This is a big concern when the original programs are large or
the internals of the original programs include the usage of gigantic data structures.
Thanks to our developments the user is in position to tune the checkpointing strat-
egy which may lead to important saving in memory space as well as in execution time.

We believe that the work is not done yet, and there are open problems that should
be address, but the current status of the AD tools, in particular our tapenade,
provide the user with a powerful tool that actually can help them with their imple-
mented models, allow them to achieve a good performance.

Bibliography

[1] Aho A., Sethi R., and Ullman J. Compilers: Principles, Techniques and Tools.
Addison-Wesley, Reading, MA, 1986.

[2] A. Griewank and U. Naumann. Accumulating Jacobians as Chained Sparse
Matrix Products. Math. Prog., 3(95):555–571, 2003.

[3] http://www.autodiff.com, 2006.

[4] C. Bendtsen and Ole Stauning. fadbad, a flexible C++ package for automatic
differentiation. Technical Report IMM–REP–1996–17, Department of Mathe-
matical Modelling, Technical University of Denmark, Lyngby, Denmark, 1996.

[5] Martin Berz, Christian Bischof, George Corliss, and Andreas Griewank, edi-
tors. Computational Differentiation: Techniques, Applications, and Tools. SIAM,
Philadelphia, PA, 1996.

[6] C. H. Bischof and H. M. Bücker. Computing derivatives of computer programs.
In J. Grotendorst, editor, Modern Methods and Algorithms of Quantum Che-
mistry: Proceedings, Second Edition, volume 3 of NIC Series, pages 315–327.
NIC-Directors, 2000.

[7] Christian H. Bischof, H. Martin Bücker, Wolfgang Marquardt, Monika Petera,
and Jutta Wyes. Transforming equation-based models in process engineering.
In H. M. Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris, editors,
Automatic Differentiation: Applications, Theory, and Implementations, Lecture
Notes in Computational Science and Engineering. Springer, 2005.

[8] Christian H. Bischof, H. Martin Bücker, and Andre Vehreschild. A macro lan-
guage for derivative definition in ADiMat. In H. M. Bücker, G. Corliss, P. Hov-
land, U. Naumann, and B. Norris, editors, Automatic Differentiation: Applica-
tions, Theory, and Implementations, Lecture Notes in Computational Science
and Engineering. Springer, 2005.

[9] Christian H. Bischof, Alan Carle, Peyvand Khademi, and Andrew Mauer. adi-

for 2.0: Automatic differentiation of Fortran 77 programs. IEEE Computational
Science & Engineering, 3(3):18–32, 1996.

116

Bibliography 117

[10] Christian H. Bischof, Lucas Roh, and Andrew Mauer. adic — An extensible
automatic differentiation tool for ANSI-C. Software–Practice and Experience,
27(12):1427–1456, 1997.

[11] Alan Carle and Mike Fagan. adifor 3.0 overview. Technical Report CAAM-TR-
00-02, Department of Computational and Applied Mathematics, Rice University,
2000.

[12] William Castaings, Denis Dartus, Marc Honnorat, François-Xavier Le Dimet,
Youssef Loukili, and Jérôme Monnier. Automatic differentiation: A tool for
variational data assimilation and adjoint sensitivity analysis for flood modeling.
In H. M. Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris, editors,
Automatic Differentiation: Applications, Theory, and Implementations, Lecture
Notes in Computational Science and Engineering. Springer, 2005.

[13] Bruce Christianson and Maurice Cox. Automatic propagation of uncertainties.
In H. M. Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris, editors,
Automatic Differentiation: Applications, Theory, and Implementations, Lecture
Notes in Computational Science and Engineering, pages 47–58. Springer, 2005.

[14] The Fortran Company. Fortran 77 standard, 1995.

[15] F. Courty, A. Dervieux, B. Koobus, and L. Hascoët. Reverse automatic differenti-
ation for optimum design: from adjoint state assembly to gradient computation.
Optimization Methods and Software, 18(5):615–627, 2003.

[16] B. Dauvergne and L. Hascoët. The data-flow equations of checkpointing in re-
verse automatic differentiation. In International Conference on Computational
Science, ICCS 2006, Reading, UK, 2006.

[17] C. Faure and U. Naumann. Minimizing the tape size. In G. Corliss, C. Faure,
A. Griewank, L. Hascoët, and U. Naumann, editors, Automatic Differentiation
of Algorithms: From Simulation to Optimization, Computer and Information
Science, chapter 34, pages 293–298. Springer, New York, NY, 2001.

[18] M. Fréchet. Sur la notion de diffrentielle. C.R. Acad. Sci. Paris, 152:845–847,
1050–1051, 1911.

[19] M. Fréchet. Sur la notion de diffrentielle totale. Nouvelles Ann. Math. Sr. 4,
12:385–403, 433–449, 1912.

[20] R.V. Gamkrelidze. Analysis II. Number 14 in Encyclopaedia of Mathematical
Sciences. Springer-Verlag, 1987.

[21] R. Gâteaux. Sur les fonctionnelles continues et les fonctionnelles analytiques.
C.R. Acad. Sci. Paris Sr. I Math., 157:325–327, 1913.

Bibliography 118

[22] David M. Gay. Semiautomatic differentiation for efficient gradient computations.
In H. M. Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris, editors,
Automatic Differentiation: Applications, Theory, and Implementations, Lecture
Notes in Computational Science and Engineering. Springer, 2005.

[23] R. Giering, T. Kaminski, R. Todling, R. Errico, R. Gelaro, and N. Winslow.
Generating tangent linear and adjoint versions of NASA/GMAO’s Fortran-90
global weather forecast model. In H. M. Bücker, G. Corliss, P. Hovland, U. Nau-
mann, and B. Norris, editors, Automatic Differentiation: Applications, Theory,
and Implementations, Lecture Notes in Computational Science and Engineering.
Springer, 2005.

[24] Ralf Giering. Tangent Linear and Adjoint Model Compiler, Users Manual. Center
for Global Change Sciences, Department of Earth, Atmospheric, and Planetary
Science, MIT, Cambridge, MA, December 1997.

[25] Andreas Griewank. Achieving logarithmic growth of temporal and spatial com-
plexity in reverse automatic differentiation. Optimization Methods and Software,
1:35–54, 1992.

[26] Andreas Griewank. Automatic directional differentiation of nonsmooth com-
posite functions. In Roland Durier, editor, Recent Developments in Optimiza-
tion, French-German Conference on Optimization, pages 155 – 169, Dijon, 1994.
Springer Verlag.

[27] Andreas Griewank. Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation. Number 19 in Frontiers in Appl. Math. SIAM, Philadel-
phia, PA, 2000.

[28] Andreas Griewank, David Juedes, H. Mitev, Jean Utke, Olaf Vogel, and Andrea
Walther. adol-c: A package for the automatic differentiation of algorithms
written in C/C++. Technical report, Institute of Scientific Computing, Technical
University Dresden, 1999. Updated version of the paper published in ACM Trans.
Math. Software 22, 1996, 131–167.

[29] Andreas Griewank and Andrea Walther. Algorithm 799: Revolve: An imple-
mentation of checkpoint for the reverse or adjoint mode of computational differ-
entiation. ACM Trans. Math. Software, 26(1):19, 1999.

[30] Frank P. Hart, Nikhil Kriplani, Sonali R. Luniya, Carlos E. Christoffersen, and
Michael B. Steer. Streamlined circuit device model development with freedaR©

and adol-c. In H. M. Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Nor-
ris, editors, Automatic Differentiation: Applications, Theory, and Implementa-
tions, Lecture Notes in Computational Science and Engineering. Springer, 2005.

Bibliography 119

[31] L. Hascoet, U. Naumann, and V. Pascual. “to be recorded” analysis in reverse-
mode automatic differentiation. Future Generation Computer Systems, 21(8),
2004.

[32] L. Hascoët and V Pascual. tapenade 2.1 user’s guide. Technical report 300,
INRIA, 2004.

[33] Laurent Hascoët and Mauricio Araya-Polo. The adjoint data-flow analyses: For-
malization, properties, and applications. In H. M. Bücker, G. Corliss, P. Hovland,
U. Naumann, and B. Norris, editors, Automatic Differentiation: Applications,
Theory, and Implementations, Lecture Notes in Computational Science and En-
gineering. Springer, 2005.

[34] Laurent Hascoët, Mariano Vázquez, and Alain Dervieux. Automatic differen-
tiation for optimum design, applied to sonic boom reduction. In V. Kumar,
M. L. Gavrilova, C. J. K. Tan, and P. L’Ecuyer, editors, Computational Science
and Its Applications – ICCSA 2003, Proceedings of the International Conference
on Computational Science and its Applications, Montreal, Canada, May 18–21,
2003. Part II, volume 2668 of Lecture Notes in Computer Science, pages 85–94,
Berlin, 2003. Springer.

[35] Eric Hassold and André Galligo. Automatic differentiation applied to convex
optimization. In Martin Berz, Christian Bischof, George Corliss, and Andreas
Griewank, editors, Computational Differentiation: Techniques, Applications, and
Tools, pages 287–297. SIAM, Philadelphia, PA, 1996.

[36] Lemaréchal C. Hiriart-Urruty J., editor. Convex Analysis and Minimization
Algorithms I y II. A Series of Comprehensive Studies in Mathematics. Springer-
Verlag, New York, NY, 1991.

[37] Masao Iri. History of automatic differentiation and rounding estimation. In
Andreas Griewank and George F. Corliss, editors, Automatic Differentiation
of Algorithms: Theory, Implementation, and Application, pages 1–16. SIAM,
Philadelphia, PA, 1991.

[38] Antony Jameson. Aerodynamic design via control theory. J. Sci. Comput.,
3(3):233–260, 1988.

[39] Kyung-Wook Jee, Daniel L. McShan, and Benedick A. Fraass. Implementation
of automatic differentiation tools for multicriteria IMRT optimization. In H. M.
Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris, editors, Automatic
Differentiation: Applications, Theory, and Implementations, Lecture Notes in
Computational Science and Engineering. Springer, 2005.

Bibliography 120

[40] R. B. Kearfott, M. Dawande, K.S. Du, and C.Y. Hu. Algorithm 737: Intlib,
a portable fortran 77 interval standard function library. ACM Trans. Math.
Software, 20 (4):447459, 1994.

[41] R. Baker Kearfott. Treating non-smooth functions as smooth functions in global
optimization and nonlinear systems solvers. In Götz Alefeld, Andreas From-
mer, and Bruno Lang, editors, Scientific Computing and Validated Numerics,
Mathematical Research, pages 160–172. Akademie Verlag, Berlin, 1995.

[42] R. Baker Kearfott. Interval extensions of non-smooth functions for global opti-
mization and nonlinear systems solvers. Computing, 1996. Accepted for publi-
cation.

[43] T. Kisuki, P.M.W. Knijnenburg, M.F.P. O’Boyle, and H.A.G Wijshoff. Iterative
compilation in program optimization. In In Proc. CPC2000, pages 35 – 44, 2000.

[44] Koichi Kubota. Computation of matrix permanent with automatic differentia-
tion. In H. M. Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris,
editors, Automatic Differentiation: Applications, Theory, and Implementations,
Lecture Notes in Computational Science and Engineering. Springer, 2005.

[45] Gordon E. Moore. Cramming more components onto integrated circuits. In
Proceedings of the IEEE, volume 86 (1), pages 82 – 85. IEEE, 1998.

[46] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufman, 1997.

[47] U. Naumann. Reducing the memory requirement in reverse mode automatic
differentiation by solving TBR flow equations. In P. M. A. Sloot, C. J. K. Tan,
J. J. Dongarra, and A. G. Hoekstra, editors, Computational Science – ICCS 2002,
Proceedings of the International Conference on Computational Science, Amster-
dam, The Netherlands, April 21–24, 2002. Part II, volume 2330 of Lecture Notes
in Computer Science, pages 1039–1048, Berlin, 2002. Springer.

[48] Uwe Naumann. Efficient Calculation of Jacobian Matrices by Optimized Appli-
cation of the Chain Rule to Computational Graphs. PhD thesis, Technical Uni-
versity of Dresden, December 1999.

[49] Uwe Naumann and Jan Riehme. Computing adjoints with the NAGWare For-
tran 95 compiler. In H. M. Bücker, G. Corliss, P. Hovland, U. Naumann, and
B. Norris, editors, Automatic Differentiation: Applications, Theory, and Imple-
mentations, Lecture Notes in Computational Science and Engineering. Springer,
2005.

Bibliography 121

[50] A. Neumaier. Interval methods for systems of equations. In et all A. Neumaier,
G.-C. Rota, editor, Encyclopedia of Mathematics and its Applications, pages
170–215. Cambridge University Press, Cambridge, England, 1990.

[51] Derya B. Özyurt and Paul I. Barton. Application of targeted automatic dif-
ferentiation to large-scale dynamic optimization. In H. M. Bücker, G. Corliss,
P. Hovland, U. Naumann, and B. Norris, editors, Automatic Differentiation:
Applications, Theory, and Implementations, Lecture Notes in Computational
Science and Engineering. Springer, 2005.

[52] Eric Phipps, Richard Casey, and John Guckenheimer. Periodic orbits of hybrid
systems and parameter estimation via AD. In H. M. Bücker, G. Corliss, P. Hov-
land, U. Naumann, and B. Norris, editors, Automatic Differentiation: Applica-
tions, Theory, and Implementations, Lecture Notes in Computational Science
and Engineering. Springer, 2005.

[53] Thomas Kaminski Ralf Giering. Generating recomputations in reverse mode
AD. In Uwe Naumann George F. Corliss, editor, Automatic Differentiation
of Algorithms: From Simulation to Optimization, chapter 33, pages 283–291.
Springer Verlag, Heidelberg, 2002.

[54] J. Goffin S. Elhedhli and J. Vial. Nondifferentiable optimization: Cutting plane
methods. In C.A. Floudas and P.M. Pardalos, editors, Encyclopedia of Optimiza-
tion, volume 4, pages 40–45. Kluwer Academic, 2001.

[55] Dmitri Shiriaev. adol–f automatic differentiation of Fortran codes. In Martin
Berz, Christian H. Bischof, George F. Corliss, and Andreas Griewank, editors,
Computational Differentiation: Techniques, Applications, and Tools, pages 375–
384. SIAM, Philadelphia, PA, 1996.

[56] Pavel Snopok, Carol Johnstone, and Martin Berz. Simulation and optimization
of the Tevatron accelerator. In H. M. Bücker, G. Corliss, P. Hovland, U. Nau-
mann, and B. Norris, editors, Automatic Differentiation: Applications, Theory,
and Implementations, Lecture Notes in Computational Science and Engineering.
Springer, 2005.

[57] Julia Sternberg and Andreas Griewank. Reduction of storage requirement by
checkpointing for time-dependent optimal control problems in ODEs. In H. Mar-
tin Bücker, George F. Corliss, Paul D. Hovland, Uwe Naumann, and Boyana
Norris, editors, Automatic Differentiation: Applications, Theory, and Implemen-
tations, pages 99–110. Springer, 2005.

[58] Mohamed Tadjouddine, Shaun A. Forth, and Andy J. Keane. Adjoint differen-
tiation of a structural dynamics solver. In H. M. Bücker, G. Corliss, P. Hovland,

Bibliography 122

U. Naumann, and B. Norris, editors, Automatic Differentiation: Applications,
Theory, and Implementations, Lecture Notes in Computational Science and En-
gineering. Springer, 2005.

[59] Michael Ulbrich and Stefan Ulbrich. Automatic differentiation: A structure-
exploiting forward mode with almost optimal complexity for Kantorovic trees.
In Herbert C. Fischer, B. Riedmueller, and S. Schaeffler, editors, Applied Math-
ematics and Parallel Computing, Festschrift for Klaus Ritter, pages 327–357.
Physica-Verlag, Berlin, 1996.

[60] Jean Utke. openAD: Algorithm implementation user guide. Technical Memo-
randum ANL/MCS–TM–274, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, Argonne, Ill., 2004.

[61] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38
(1):49–95, 1996.

[62] R. Wengert. A simple automatic derivative evaluation program. Communications
of the ACM, 7(8):463–464, 1964.

[63] Reinhard Wilhelm and Dieter Maurer. Compiler Design. Addison-Wesley, 1995.

[64] Y. Xiao, M. Xue, W. Martin, and J. Gao. Development of an adjoint for a
complex atmospheric model, the ARPS, using taf. In H. M. Bücker, G. Corliss,
P. Hovland, U. Naumann, and B. Norris, editors, Automatic Differentiation:
Applications, Theory, and Tools, Lecture Notes in Computational Science and
Engineering. Springer, 2005.

Appendix A

A.1 Addendum to tapenade Tutorial

This tutorial is focused on the utilization of the new features of tapenade. These
new features were developed during this Thesis. To access a complete tutorial, please
connect to http://www-sop.inria.fr/tropics/.

A.1.1 Requirements

In order to perform the experiments without any initial problem, the following
requirements must be fulfill.

• TAPENADE version 2.1 or 2.2 (download it from
ftp://ftp-sop.inria.fr/tropics/tapenade/)

• Programs to be differentiated must be Fortran77/90 (F77/90) source code.

• Some F77/90 compiler.

A.1.2 Domain of Validity

Procedure

• Once the program to be differentiated is available, it must be compiled with the
compiler of choice and executed. This is just to be sure we are in safe ground,
and the program has no bugs.

• Define the variables of your interest (dependent and independent).

• We call tapenade with all the necessary parameters. If there is any doubt, the
tapenade tutorial should be re-read. In this particular tutorial we care only
about the tapenade switch -dV (for tangent validity mode).

• Add the following lines to every subroutine inside your code that should be
accessed to update the validity information:

123

Appendix A: 124

COMMON /validity_test_common/ gmin, gmax, infmin, infmax

REAL gmin, gmax

LOGICAL infmin, infmax

That piece of code give you access to the boundaries of the safe neighborhood,
where gmin is the lower bound of the interval and gmax is the upper bound, if
infmin or infmax is true, then the interval has a infinite lower or upper bound.

• Link the following object file validityTest.o (ELF 32-bit LSB relocatable, Intel
80386) to the rest of your binary objects. This file is located in the directory
ADFirstAidKit, which is part of the distribution package of tapenade.

• Compile the code.

• Executing the program provide the runtime information about differential va-
lidity of the domain.

Example of Application

• Source Code of the Example.

SUBROUTINE SUB1(x, y, o1)

REAL x, y, o1

x = y * x

o1 = x * x + y * y

IF (o1 > 190) THEN

o1 = -o1*o1/2

ELSE

o1 = o1*o1*20

ENDIF

END

• Calling tapenade with the selected parameters, and the option (-dV)

> tapenade -dV -head sub1 -vars "x y" -outvars "o1"

-o example1 example1.f

Tapenade - Version 2.2 (r1229) - Tue Jun 27 15:24:32 2006

@@ Creating ./example1_dva.f

job is complete

The differentiated code is as follows,

Appendix A: 125

C Generated by TAPENADE (INRIA, Tropics team)

C Tapenade - Version 2.2 (r1229) - Tue Jun 27 15:24:32 2006

C

C Differentiation of sub1 in forward (tangent) validated mode:

C variations of output variables: x o1

C with respect to input variables: x y

SUBROUTINE SUB1_DVA(x, xd, y, yd, o1, o1d)

IMPLICIT NONE

REAL o1, o1d, x, xd, y, yd

C

xd = yd*x + y*xd

x = y*x

o1d = xd*x + x*xd + yd*y + y*yd

o1 = x*x + y*y

CALL VALIDITY_TEST(o1 - 190, o1d)

IF (o1 .GT. 190) THEN

o1d = -((o1d*o1+o1*o1d)/2)

o1 = -(o1*o1/2)

xd = 0.0

ELSE

o1d = 20*(o1d*o1+o1*o1d)

o1 = o1*o1*20

xd = 0.0

END IF

END

• Adding the validity enabling code.
In this case, the initialization of the block of data is placed in the program
which calls to subroutine SUB1 DVA(). For instance, the block of data is added
to small driver program.

• Results.
After compiling the driver along with files example1 dva and validityTest. The
differentiated program execution generates the following results:

In Table A.1, we can see how the interval change around the critical point
(where the test switch). Before the switch, the interval is [−∞, 0.005], which
means that derivate is close to a discontinuity in the given direction, but in
the opposite direction is −∞, this means that there is no differential problem.
Conversely, after the test, the interval is [0.004,∞], because the critical point
lay behind the evaluated point in the given direction.

Appendix A: 126

x y o1d [gmin gmax]

3.62 3.62 1456628.2 −∞ 0.026
3.63 3.63 1484149.2 −∞ 0.016
3.64 3.64 1512117.1 −∞ 0.005
3.65 3.65 -38513.4 -0.004 ∞
3.66 3.66 -39235.4 -0.014 ∞
3.67 3.67 -39969.0 -0.023 ∞

Table A.1: Results from validated code of the example with direction (xd,yd) = (1,1).

A.1.3 Checkpointing

Procedure

• Differentiate in reverse mode a program with tapenade. By default all sub-
routines will be checkpointed.

• Analyze the differentiate code looking for large snapshots, tape and other im-
portant features of the code, for instance, loops.

• Chose the more appealing subroutines to be no checkpointed. Mark these sub-
routines inserting the directive (“C$AD NOCHECKPOINT”) just before the sub-
routine call, or using the command line option (“-split [name of subroutine]”).
Then, Re-execute tapenade with the corresponding parameters.

• Compare the results, if the results are unsatisfactory, repeat the process chang-
ing the checkpoint placements.

Example of Application

• We use a segment of the scientific program UNS2D to illustrate the checkpoint-
ing utilization.
Program UNS2D call-graph can be observed in Figure A.1 (next page).

From this call-graph we carry out experiments on the sub call-graph under sub-
routine INBIGFUNC. Therefore, the selected segment of code is composed of the
subroutine INBIGFUNC, which calls to subroutines: DIFFAR, FLW2D, SYMMT,

CALGRA. The header of the subroutine INBIGFUNC includes the following in-
put/output variables:

SUBROUTINE INBIGFUNC(kmult,kvisc,coefrk,dtl,

& th1,th2,th3,th4,

& nubo,vnocl,pres,dm,coor,f1,f2,f3,f4,g1,g2,g3,g4,

Appendix A: 127

QUAINDCALGRAENTHALDINBIGFUNCPASDTLCALGRA

DIFFAR FLW2D SYMMT CALGRA

BIGFUNCTION

CALCL CALCL

Figure A.1: UNS2D Call-graph.

& t1,t2,t3,t4,rh1,rh2,rh3,rh4,rhd1,rhd2,rhd3,rhd4,

& vn1,vn2,vn3,noe1,noe2,noe3,icola,iarg,icora,

& cson,temp,amu,amut)

• The body of the subroutine INBIGFUNC is as follows:

do 200 iter=1,kmult

c

c---

c Physical and Artificial Viscosity

c ---------------------------------

IF(ITER.LE.KVISC) THEN

c Artificial viscosity

c --------------------

call diffar (nubo,vnocl,pres,dm,coor,f1,f2,g1,g2,g3,g4,

& t1,t2,t3,t4,rh1,rh2,rh3,rh4,rhd1,rhd2,rhd3,rhd4,

& vn1,vn2,vn3,noe1,noe2,noe3,icola,

& f3,f4,cson)

ENDIF

c---

c Inviscid Fluxes

c ---------------

call flw2d(nubo,vnocl,icola,t1,t2,t3,t4,rh1,rh2,rh3,rh4,

f g1,g2,g3,g4,pres,noe1,noe2,noe3,vn1,vn2,vn3,

. cson,iarg,icora,coor)

c---

Appendix A: 128

c Inviscid fluxes + viscous (artificial) fluxes

c --

do 202 is=1,ns

rh1(is)=rh1(is)+rhd1(is)

rh2(is)=rh2(is)+rhd2(is)

rh3(is)=rh3(is)+rhd3(is)

rh4(is)=rh4(is)+rhd4(is)

202 continue

c---

c Sub-solution

c ------------

do 203 is=1,ns

dtme=coefrk(iter)*dtl(is)*dm(is)

t1(is)=th1(is)+dtme*rh1(is)

t2(is)=th2(is)+dtme*rh2(is)

t3(is)=th3(is)+dtme*rh3(is)

t4(is)=th4(is)+dtme*rh4(is)

203 continue

c---

c Symetric plane if it exists

c ---------------------------

call symmt(noe3,vn3,t1,t2,t3,t4,iarg,icora,th1,th2,th3,th4)

c---

IF(ITER.NE.KMULT) THEN

c Computation of the primitive variables

c --------------------------------------

call calgra(t1,t2,t3,t4,g1,g2,g3,g4,pres,cson,temp,amu,

. amut)

ENDIF

c---

c

200 continue

• We execute tapenade with the usual parameters used to differentiate this code.

> tapenade -b -head inbigfunc -vars "dtl f1 f2 rh1 rh2 rh3

rh4 coor vnocl g1 g2 g3 t1 g4 t2 t3 t4 th1 th2 th3 th4 vn1

vn2 rhd1 rhd2 rhd3 rhd4 cson cla pres" -outvars "dtl f1 f2

rh1 rh2 rh3 rh4 coor vnocl g1 g2 g3 t1 g4 t2 t3 t4 th1 th2

th3 th4 vn1 vn2 rhd1 rhd2 rhd3 rhd4 cson pres" -o allDiff *.f

The differentiated subroutines are generated and printed in the file allDiff b.f.

Appendix A: 129

• A snippet of the reverse differentiated code is as follows:

DO iter=1,kmult

C

C---

C Physical and Artificial Viscosity

C ---------------------------------

IF (iter .LE. kvisc) THEN

CALL PUSHINTEGER4ARRAY(icola, 21)

CALL PUSHINTEGER4ARRAY(noe3, 1000)

CALL PUSHINTEGER4ARRAY(noe2, 1000)

CALL PUSHINTEGER4ARRAY(noe1, 1000)

CALL PUSHREAL4ARRAY(vn3, 2*1000)

CALL PUSHREAL4ARRAY(vn2, 2*1000)

CALL PUSHREAL4ARRAY(vn1, 2*1000)

CALL PUSHREAL4ARRAY(rh4, 2000)

CALL PUSHREAL4ARRAY(rh3, 2000)

CALL PUSHREAL4ARRAY(rh2, 2000)

CALL PUSHREAL4ARRAY(rh1, 2000)

CALL PUSHREAL4ARRAY(t4, 2000)

CALL PUSHREAL4ARRAY(f2, 2000)

CALL PUSHREAL4ARRAY(f1, 2000)

CALL PUSHREAL4ARRAY(dm, 2000)

CALL PUSHREAL4ARRAY(pres, 2000)

CALL PUSHREAL4ARRAY(vnocl, 2*6000)

CALL PUSHINTEGER4ARRAY(nubo, 2*6000)

C Artificial viscosity

C --------------------

CALL DIFFAR(nubo, vnocl, pres, dm, coor, f1, f2,

+ g1, g2, g3, g4, t1, t2, t3, t4, rh1, rh2, rh3,

+ rh4, rhd1, rhd2, rhd3, rhd4, vn1, vn2, vn3,

+ noe1, noe2, noe3, icola, f3, f4, cson)

CALL PUSHINTEGER4(1)

ELSE

CALL PUSHINTEGER4(0)

END IF

Here, in the differentiated code, the rest of the forward sweep and the begin-
ning of the backward sweep is placed, until the restoration of the snapshot for
DIFFAR B.

CALL POPINTEGER4(branch)

Appendix A: 130

IF (.NOT.branch .LT. 1) THEN

CALL POPINTEGER4ARRAY(nubo, 2*6000)

CALL POPREAL4ARRAY(vnocl, 2*6000)

CALL POPREAL4ARRAY(pres, 2000)

CALL POPREAL4ARRAY(dm, 2000)

CALL POPREAL4ARRAY(f1, 2000)

CALL POPREAL4ARRAY(f2, 2000)

CALL POPREAL4ARRAY(t4, 2000)

CALL POPREAL4ARRAY(rh1, 2000)

CALL POPREAL4ARRAY(rh2, 2000)

CALL POPREAL4ARRAY(rh3, 2000)

CALL POPREAL4ARRAY(rh4, 2000)

CALL POPREAL4ARRAY(vn1, 2*1000)

CALL POPREAL4ARRAY(vn2, 2*1000)

CALL POPREAL4ARRAY(vn3, 2*1000)

CALL POPINTEGER4ARRAY(noe1, 1000)

CALL POPINTEGER4ARRAY(noe2, 1000)

CALL POPINTEGER4ARRAY(noe3, 1000)

CALL POPINTEGER4ARRAY(icola, 21)

CALL DIFFAR_B(nubo, vnocl, vnoclb, pres, presb, dm,

+ , coorb, f1, f1b, f2, f2b, g1, g2, g3, g4, t1,

+ t1b, t2, t2b, t3, t3b, t4, t4b, rh1, rh1b, rh2,

+ rh2b, rh3, rh3b, rh4, rh4b, rhd1, rhd1b, rhd2,

+ rhd2b, rhd3, rhd3b, rhd4, rhd4b, vn1, vn1b, vn2

+ , vn2b, vn3, vn3b, noe1, noe2, noe3, icola, f3,

+ f4, cson, dmb, coor)

END IF

ENDDO

The snippet represents a part of the forward/backward sweep of the subroutine
INBIGFUNC. We can observe the snapshot before subroutine DIFFAR, and we
can also obverse how the snapshot is restored before the reverse differentiated
version of the subroutine DIFFAR. The snapshots are stored/restored using the
PUSH/POP subroutines. So far, every subroutine is checkpointed, which is by
default the strategy in tapenade.

• In order to change of checkpointing strategy we will deactivate the checkpointing
mechanism for an arbitrary subroutine. In this case we chose to do this with
subroutine DIFFAR. Therefore, we insert in subroutine INBIGFUNC the directive
that deactivate the checkpointing mechanism for the subroutine DIFFAR. As we
can observe in the following snippet of the original subroutine INBIGFUNC. The
directive syntax is “C$AD NOCHECKPOINT”.

Appendix A: 131

do 200 iter=1,kmult

c

c---

c Physical and Artificial Viscosity

c ---------------------------------

IF(ITER.LE.KVISC) THEN

c Artificial viscosity

c --------------------

C$AD NOCHECKPOINT

call diffar (nubo,vnocl,pres,dm,coor,f1,f2,g1,g2,g3,g4,

& t1,t2,t3,t4,rh1,rh2,rh3,rh4,rhd1,rhd2,rhd3,rhd4,

& vn1,vn2,vn3,noe1,noe2,noe3,icola,

& f3,f4,cson)

ENDIF

We execute tapenade with the same parameter as the first execution. As a
result, we obtain the following reverse differentiated code.

do 200 iter=1,kmult

C

C---

C Physical and Artificial Viscosity

C ---------------------------------

IF (iter .LE. kvisc) THEN

C Artificial viscosity

C --------------------

CALL DIFFAR_FWD(nubo, vnocl, pres, dm, coor, f1, f2,

+ g3, g4, t1, t2, t3, t4, rh1, rh2, rh3, rh4, g1, g2,

+ rhd1, rhd2, rhd3, rhd4, vn1, vn2, vn3, noe1,

+ noe2, noe3, icola, f3, f4, cson)

CALL PUSHINTEGER4(1)

ELSE

CALL PUSHINTEGER4(0)

END IF

Here, in the differentiated code, the rest of the forward sweep and the beginning
of the backward sweep is placed. This code is normal reverse differentiated code,
thus every subroutine is checkpointed.

CALL POPINTEGER4(branch)

IF (.NOT.branch .LT. 1) THEN

CALL DIFFAR_BWD(nubo, vnocl, vnoclb, pres, presb,

Appendix A: 132

+ coor, coorb, f1, f1b, f2, dm, dmb,

+ , f2b, g1, g2, g3, g4,

+ t1, t1b, t2, t2b, t3,

+ t3b, t4, t4b, rh1, rh1b

+ , rh2, rh2b, rh3, rh3b,

+ rh4, rh4b, rhd1, rhd1b,

+ rhd2, rhd2b, rhd3, rhd3b

+ , rhd4, rhd4b, vn1, vn1b

+ , vn2, vn2b, vn3, vn3b,

+ noe1, noe2, noe3, icola

+ , f3, f4, cson)

ENDIF

ENDDO

As we can observe deactivate the checkpoint mechanism for subroutine DIFFAR

spare the storage of a large snapshot, therefore reducing the size of the tape
for subroutine INBIGFUNC. However, this choice has a hidden cost in memory
space. This is the local variables values that must to be stored before the end
of subroutine DIFFAR FWD.

We can use a tapenade switch to achieve the same result. This switch is “-split
[name of subroutine]”. In order to obtain the same above reverse differentiated
code, we have to executed tapenade with the following parameters:

tapenade -b -head inbigfunc -vars "dtl f1 f2 rh1 rh2

rh3 rh4 coor vnocl g1 g2 g3 t1 g4 t2 t3 t4 th1 th2 th3

th4 vn1 vn2 rhd1 rhd2 rhd3 rhd4 cson cla pres"

-outvars "dtl f1 f2 rh1 rh2 rh3 rh4 coor vnocl g1 g2

g3 t1 g4 t2 t3 t4 th1 th2 th3 th4 vn1 vn2 rhd1 rhd2

rhd3 rhd4 cson pres" -split diffar -o allDiffnocheck *.f

• All possible combinations of checkpointing mechanism deactivation can be a-
pplied to the subroutines of the subroutine INBIGFUNC. We leave the users to
try those combinations.

Appendix B

B.1 Program Examples

B.1.1 Extended Results for Validity Information with New-
ton Method

Implementation of the objective function f().

REAL FUNCTION F(x)

REAL x

f = x**3 + x**2 - 3*x - 3

RETURN

END

Obtaining the first order derivative with TAPENADE.

> tapenade -d -vars "x" -outvars "f" -o f f.f

Obtaining the second order derivative with TAPENADE.

> tapenade -d -vars "x" -outvars "f_d" -o f_d f_d.f

Differentiated code for objective function f(), including the original function, the first
and second derivative.

C Generated by TAPENADE (INRIA, Tropics team)

C Tapenade - Version 2.2 (r1229) - Tue Jun 27 15:24:32 2006

C

C Differentiation of f_d in forward (tangent) mode:

C variations of output variables: f_d

C with respect to input variables: x

REAL FUNCTION F_D_D(x, xd0, xd, f, f_d)

IMPLICIT NONE

REAL f, f_d, x, xd, xd0

133

Appendix B: 134

f_d_d = 3*xd*2*x*xd0 + 2*xd*xd0

f_d = 3*x**2*xd + 2*x*xd - 3*xd

f = x**3 + x**2 - 3*x - 3

RETURN

END

Implementation of Newton Method.

PROGRAM MAIN

REAL tol, x, xd, xd0, y, yd, ydd

INTEGER iter_counter, iter_limit

C Iteration limit

iter_limit = 20

C Tolerance

tol = 1.0e-3

C Iteration counter

iter_counter = 0

C Initial guess

x = 2.5

C Initial guess directions

xd = 1.0

xd0 = 1.0

C Initializations

y = 0.0

yd = 0.0

ydd = 0.0

WRITE(*, ’(A6,X,A9,2X,A9,X,A9)’) ’x’,’y’,"y’","y’’"

DO

C Call to second order differentiated code of function F

ydd = F_D_D(x, xd0, xd, y, yd)

WRITE(*,’(F9.5,X,F9.5,X,F9.5,X,F9.5)’) x,y,yd,ydd

x = x - (yd / ydd)

C Stoping criterion I

IF (abs(yd) < tol) EXIT

iter_counter = iter_counter + 1

C Stoping criterion II

IF (iter_counter > iter_limit) EXIT

END DO

END

Results obtained executing the Newton method on the presented objective function
f().

Appendix B: 135

x y y’ y’’

2.50000 11.37500 20.75000 17.00000

1.27941 -3.10708 4.46951 9.67647

0.81752 -4.23784 0.64004 6.90510

0.72483 -4.26830 0.02577 6.34896

0.72077 -4.26835 0.00005 6.32460

Implementation of piecewise objective function f piecewise().

REAL FUNCTION F_PIECEWISE(x)

REAL x

IF (x .GT. 1) THEN

f_piecewise = x**3 + x**2 - 3*x - 3

ELSE

f_piecewise = x**3 + 2*x**2 - 15*x + 8

ENDIF

RETURN

END

Differentiated code for objective function f piecewise(), including the original func-
tion, the first and second order derivative.

C Generated by TAPENADE (INRIA, Tropics team)

C Tapenade - Version 2.2 (r1229) - Tue Jun 27 15:24:32 2006

C

C Differentiation of f_piecewise_d in forward (tangent) mode:

C variations of output variables: f_piecewise_d

C with respect to input variables: x

REAL FUNCTION F_PIECEWISE_D_D(x, xd0, xd, f_piecewise,

+ f_piecewise_d)

IMPLICIT NONE

REAL f_piecewise, f_piecewise_d, x, xd, xd0

C

IF (x .GT. 1) THEN

f_piecewise_d_d = 3*xd*2*x*xd0 + 2*xd*xd0

f_piecewise_d = 3*x**2*xd + 2*x*xd - 3*xd

f_piecewise = x**3 + x**2 - 3*x - 3

ELSE

f_piecewise_d_d = 3*xd*2*x*xd0 + 2*2*xd*xd0

f_piecewise_d = 3*x**2*xd + 2*2*x*xd - 15*xd

f_piecewise = x**3 + 2*x**2 - 15*x + 8

END IF

Appendix B: 136

RETURN

END

Results obtained from execute the Newton method on the presented objective
function f piecewise().

x y y’ y’’

2.50000 11.37500 20.75000 17.00000

1.27941 -3.10708 4.46951 9.67647

0.81752 -2.37972 -9.72493 8.90510

1.90958 1.88102 11.75864 13.45748

1.03582 -3.92319 2.29038 8.21490

0.75701 -1.77519 -10.25278 8.54205

1.95728 2.45734 12.40740 13.74368

1.05451 -3.87894 2.44499 8.32705

0.76089 -1.81492 -10.21958 8.56534

1.95402 2.41699 12.36265 13.72413

1.05323 -3.88207 2.43430 8.31935

0.76062 -1.81215 -10.22191 8.56371

1.95425 2.41979 12.36577 13.72549

1.05331 -3.88185 2.43505 8.31989

0.76064 -1.81234 -10.22175 8.56382

1.95423 2.41960 12.36555 13.72540

1.05331 -3.88186 2.43500 8.31985

0.76064 -1.81233 -10.22176 8.56382

1.95423 2.41961 12.36556 13.72541

1.05331 -3.88186 2.43500 8.31985

0.76064 -1.81233 -10.22176 8.56382

In order to obtain the implementation of f piecewise() with the validity analysis.

> tapenade -dV -vars "x" -outvars "f_piecewise_d"

-o f_piecewise_d f_piecewise_d.f

Differentiated code for objective function f piecewise(), including the original
function, the first and second order derivative, and the call to the subroutine which
compute the validity information.

C Generated by TAPENADE (INRIA, Tropics team)

C Tapenade - Version 2.2 (r1229) - Tue Jun 27 15:24:32 2006

C

C Differentiation of f_piecewise_d in forward (tangent) validated mode:

C variations of output variables: f_piecewise_d

C with respect to input variables: x

Appendix B: 137

REAL FUNCTION F_PIECEWISE_D_DVA(x, xd0, xd, f_piecewise,

+ f_piecewise_d)

IMPLICIT NONE

REAL f_piecewise, f_piecewise_d, x, xd, xd0

REAL f_piecewised, xdd

xdd = 0.0

f_piecewise_d_dva = 0.0

f_piecewised = 0.0

C

CALL VALIDITY_TEST(x - 1, xd0)

IF (x .GT. 1) THEN

f_piecewise_d_dva = 3*xd*2*x*xd0 + 2*xd*xd0

f_piecewise_d = 3*x**2*xd + 2*x*xd - 3*xd

f_piecewise = x**3 + x**2 - 3*x - 3

ELSE

f_piecewise_d_dva = 3*xd*2*x*xd0 + 2**2*xd*xd0

f_piecewise_d = 3*x**2*xd + 2**2*x*xd - 15*xd

f_piecewise = x**3 + 2*x**2 - 15*x + 8

END IF

RETURN

END

x y y’ y’’ gmin gmax

2.50000 11.37500 20.75000 17.00000 -1.50000 0.00000

1.27941 -3.10708 4.46951 9.67647 -0.27941 0.00000

0.81752 -2.37972 -9.72493 8.90510 0.00000 0.18248

1.90958 1.88102 11.75864 13.45748 -0.90958 0.00000

1.03582 -3.92319 2.29038 8.21490 -0.03582 0.00000

0.75701 -1.77519 -10.25278 8.54205 0.00000 0.24299

1.95728 2.45734 12.40740 13.74368 -0.95728 0.00000

1.05451 -3.87894 2.44499 8.32705 -0.05451 0.00000

0.76089 -1.81492 -10.21958 8.56534 0.00000 0.23911

1.95402 2.41699 12.36265 13.72413 -0.95402 0.00000

1.05323 -3.88207 2.43430 8.31935 -0.05323 0.00000

0.76062 -1.81215 -10.22191 8.56371 0.00000 0.23938

1.95425 2.41979 12.36577 13.72549 -0.95425 0.00000

1.05331 -3.88185 2.43505 8.31989 -0.05331 0.00000

0.76064 -1.81234 -10.22175 8.56382 0.00000 0.23936

1.95423 2.41960 12.36555 13.72540 -0.95423 0.00000

1.05331 -3.88186 2.43500 8.31985 -0.05331 0.00000

0.76064 -1.81233 -10.22176 8.56382 0.00000 0.23936

1.95423 2.41961 12.36556 13.72541 -0.95423 0.00000

Appendix B: 138

1.05331 -3.88186 2.43500 8.31985 -0.05331 0.00000

0.76064 -1.81233 -10.22176 8.56382 0.00000 0.23936

