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Chapter 1

Introduction

The Information highway, or the Internet, today connects millions of users across all the continents.
As is true with any road network, an efficient mechanism to regulate the packet traffic is necessary
in order to avoid congestion on the Internet. For example, a telephone network operator blocks
incoming users when the network gets saturated. The architects of the Internet, on the other hand,
designed a system which gave access to every incoming user. The design also had a fundamental
difference from the conventional telephone network. Unlike the telephone network in which the
operator controlled and regulated all the traffic, the architects of the Internet confided this task
with the users. The successful deployment of this paradigm required every end user to be aware of
the situation within the network and to react appropriately. For example, the existing users would
have to reduce their transmission rates to allow an incoming user to transmit at a reasonable rate.
The end users would, therefore, control and regulate their own traffic which traversed the Internet.

The transmission control protocol (TCP)[Jac88] was proposed and implemented as a dis-
tributed congestion control algorithm which regulated every user’s own traffic so as to meet the
design aim of fair and efficient sharing of the network resources. In addition to regulating the traf-
fic, TCP also ensured that each packet was delivered eventually to its destination. The algorithm
can be summarized as follows. The TCP algorithm probes the network by sending a small number
of packets. If the packets are successfully received at the destination, an acknowledgement is sent
by the destination to the sender. The acknowledgements indicate the availability of resources in
the network. The sender reacts to the acknowledgements by sending larger number of packets.
Eventually, the transmission rate exceeds the rate that the network can provide (i.e., congestion
sets in), thereby resulting in a loss of packets. The sender reacts to the loss of packets by reducing
the sending rate by half. The additive increase and multiplicative decrease (AIMD) algorithm just
described proved to be fair and efficient in sharing the network capacity. The TCP algorithm is
today used by a dominant proportion of Internet applications for reliable transfer of data.

Although TCP evolved along with the Internet, modifications were mainly restricted to ensure
proper functioning of the algorithm in various environments (for example, on wireless links or to
recover from multiple packet losses). The modifications were mainly engendered by the problems
encountered by casual end users (i.e., users with low quantum of data transfers) of the Internet. The
Internet was used not only by casual users but also by physics laboratories to exchange experimental
data. The volume of data to be transferred was one or two orders of magnitude larger than what

1
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typical user applications would transfer. These labs were connected by links of capacity larger than
that available to a casual Internet user. During the course of such long file transfers over high
speed links, the additive increase algorithm of TCP was identified as one of the causes of inefficient
utilization of the large bandwidth. For example, suppose a session transferring 1000byte packets at
500Mbps over a link with round trip delay of 200ms encounters a packet loss due to imperfections in
the optical fibre. The TCP algorithm would react to this loss by reducing its rate by half. It would
now take close to fifty minutes before the transmission rate ramps up to the original 500Mbps.
Since the loss is not due to congestion in the network, the transfer rate would be below the optimal
rate for a relatively long duration. After detecting a packet loss, the time it takes for the additive
increase algorithm to attain the available capacity increases linearly with the capacity. This linear
dependence on the capacity was considered to be a drawback in the Internet where the link speeds
were increasing rapidly every year.

The Internet community put forth several proposals to improve the performance of TCP
over high speed links. These proposals focused on altering the additive increase algorithm to
a more adaptive increase algorithm. A few of the proposals which have been discussed include
FAST [JWL04], WestWood+ [GM04], HighSpeed TCP [Flo03], CuBIC [XHR04], and Scalable TCP
[Kel03b]. We discuss briefly the salient features of these proposals. The TCP versions (presently
deployed, and the new proposals) can be coarsely classified into two categories. The classification
is based on the signals which are interpreted as congestion indications. The “loss-based” algorithms
interpret only packet losses as signs of congestion. Examples of TCP versions in this category
are Tahoe, NewReno, SACK (which are presently deployed, and to which we shall also refer to as
the AIMD algorithm), Scalable, CuBIC, and HighSpeed TCP (which are proposed enhancements).
The HighSpeed TCP algorithm proposes an increase and decrease algorithm which depends on the
current transmission rate and the maximum available capacity. The authors provide two functions
of the current transmission rate which are then used to compute the increments and decrements.
As the name suggests, the CuBIC algorithm modifies the additive increase to a cubic increase
function. The Scalable TCP algorithm proposes an even more aggressive multiplicative increase
algorithm. An interesting feature of the multiplicative increase algorithm is that the time it takes
to recover to the original window size after a packet loss is independent of the link capacity. This
feature makes it a good candidate for implementation at a time when link capacities are on the
rise. In addition to packet losses, the “delay-based” algorithms also use variations in the round
trip delay to estimate the available bandwidth. A decrease in available bandwidth is interpreted
as a sign of increasing congestion. The algorithms then reduce the rate accordingly. TCP Vegas
(a “delay-based” additive increase additive decrease algorithm), FAST (a high speed version of the
Vegas), and WestWood+ can be classified as “delay-based” algorithms.

Two of the desirable characteristics of a congestion control algorithm are efficiency and fair-
ness. The fraction of the link capacity utilised by an algorithm is reflected in its efficiency. A
higher efficiency translates into a lesser time to transfer the data, thereby resulting in higher user
satisfaction. Usually, a link in a network is traversed by multiple flows originating from possibly
distinct sources. Fairness reflects the ability of an algorithm to share the available capacity among
the existing users in a “fair” way. Indeed, the exact definition of fairness among heterogeneous

users1 is arguable. For homogeneous users, we could safely designate an algorithm as fair if all the
users receive equal share of the capacity. On a single link, the AIMD algorithm has been shown
to be fair. The set of homogeneous users eventually (i.e., if the source stays long enough!) share
the capacity equally. The heterogeneous users share the bandwidth in proportion to their round

1Heterogeneity can arise due to the use of different algorithms, or even due to the use of different parameters of

the same algorithm.
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trip times (RTT)2. Its efficiency, however, depends on the loss pattern (i.e., whether losses are
synchronous or asynchronous, whether the asynchronous losses depend on the transmission rate
or not), the available capacity, and the parameters of the algorithm. It may be agreed that any
proposal to modify/replace the AIMD algorithm will need to have a higher efficiency and a similar,
if not better, fairness property. These two characteristics can be classified as performance measures
of an algorithm.

The performance measures of an algorithm can be studied using various methodologies. One
way to study the performance of these algorithms is through simulations. The open source simulator
ns-2 provides the capability to evaluate the performance on various topologies and under different
traffic conditions. Indeed, simulation studies can help to quantitatively understand the behaviour
of any algorithm. A drawback of this method is the inability to exactly characterize the behaviour
in terms of the parameters. The parameter space is often large, and to study the performance
as a function of the parameters may require a large number of simulations. Another method to
evaluate the performance is to setup a test-bed consisting of a network of machines which run the
algorithm under review. Although similar to the method of simulations, this technique can give a
more realistic behaviour of the algorithm. The methodology that we employ is that of stochastic
modelling. The term stochastic modelling refers to models in which certain building blocks of the
model are stochastic processes. A stochastic process is used to model the uncertain nature of an
object. The drawback of such an approach is that models become analytically tractable only under
certain simplifications. These simplifying assumptions need to be carefully studied and justified.
On the positive side, these models can lead to some simple and elegant observations (for example,
the “square root” formula for the average sending rate of the AIMD algorithm), and insights which
can then be used to compare various algorithms. Stochastic models can also benefit from techniques
of analysis which have been developed in other domains.

1.1 Motivation for the thesis

A major portion of this thesis is devoted to formulation and analysis of stochastic models for certain
“loss-based” algorithms. The aim of such an analysis would be to obtain the related performance
measures. The formulation and solution of a very general model incorporating all the nuances of
a particular algorithm, which is subject to a general loss process, is quite a lofty ambition. Such
a model will need to incorporate the interaction between multiple sessions and effect of traversing
multiple links between the source and the destination. We set ourselves a more modest objective of
modelling and analysing certain aspects of an algorithm. Even though simplifying assumption will
be made, the analysis will hopefully shed some light on the performance aspects of these algorithms.

We shall mainly focus on the MIMD algorithm which has been suggested for Scalable TCP.
As mentioned earlier, the MIMD algorithm has the property that the time to recover is independent
of the capacity. Such a property is desirable during a time when the link capacities are constantly
on the increase. The implementation of Scalable TCP also requires minimal changes to the present
TCP. Below a certain threshold, Scalable TCP uses the additive increase algorithm. Beyond this
threshold for the sending rate, Scalable TCP employs a multiplicative increase algorithm instead
of the additive increase algorithm of the AIMD versions of TCP.

The first performance measure which we shall study is the average sending rate. Consider a
single instance, or a session, of Scalable TCP which has large amounts of data to transfer. The
instantaneous sending rate will depend on the increase algorithm, the decrease algorithm and the

2The interval of time from the moment a packet is sent to the moment its acknowledgement is received is called

an RTT.
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packet loss process seen by the source. Since the losses detected by the source occur at random,
a stochastic model of the algorithm is desirable. The building blocks of the model shall be the
increase algorithm, the decrease algorithm and the loss process. The loss process can be modelled
in various ways. It could depend on the sending rate or be independent. It could be Markovian
or identically distributed. One of the questions which we hope to answer is: how does the average
sending rate depend on the loss process? The impact of the loss process on the sending rate will
be explored in detail for the MIMD algorithm.

The other performance measure of interest is fairness. Fairness is usually quantified by a
function of the sending rates, called the fairness index. The fairness index is used to define what a
fair share is, and also quantifies how far a particular share is from the fair share. It has been shown
that, for users of the MIMD algorithm, synchronous packet losses can lead to extreme unfairness.
In other words, the fairness index can be arbitrarily far from the fair share value. We provide
conditions on the loss process under which the fairness index for the MIMD algorithm can be
brought closer to the fair share. One of the results obtained shows that the fairness index can
be improved by introducing asynchronous packet losses at an intensity greater than a threshold
intensity. These losses could be induced by a router using some active queue management (AQM)

scheme3. If a proposed congestion control algorithm is implemented it is possible that it will be
incrementally deployed. Thus, there may exist situations when MIMD and AIMD sessions will
share a link. We will study how MIMD and AIMD flows traversing a common link share the
available capacity when the packet losses are synchronous.

The “loss-based” algorithms react to packet losses by decreasing their sending rate. Packet
losses usually occur when the network capacity is reached. For example, a router using the drop tail
policy drops packets when its input buffer is full. It was felt that the drop tail policy was slow in

reacting to congestion. Instead of waiting for the whole buffer to fill up, congestion signals4 could
be sent as soon as the buffer started to fill up. Queue management policies which send congestion
signals in anticipation of congestion are called as AQM schemes. One such scheme, called random
early detection (RED) [FJ93], probabilistically drops incoming packets. In this scheme, the router
maintains an exponentially averaged queue length variable. An incoming packet is dropped with
a probability which increases with increasing exponentially averaged queue length. We formulate
a non-homogeneous QBD [Neu81] based model of the RED scheme, and analyse the model. The
performance measures of interest for this study are the average queue length and the average drop
probability.

In addition to stochastic models for congestion control algorithms, we also study two problems
of interest in wireless networks. Wireless devices are usually powered by finite energy batteries
which have to be recharged or replaced at the end of their lifetime. The energy that is delivered by
a battery depends on how the battery is used. Continuous use of a battery leads to a much lower
delivered energy compared to intermittent use. However, the device usually has packets to send,
and intermittent use of the battery may add to the delay of packets. Our objective is to study the
trade-off between energy and packet delay. The device has to decide whether to transmit packets
or leave the battery idle so that it could recover some charge due to relaxation phenomenon. This
decision problem can be formulated as a Markov Decision Process (MDP) [Put94]. The performance
measure of interest is a cost function which needs to be minimized. This cost function comprises
of a cost on the delay as well as cost on replacing/recharging the battery.

3An AQM scheme can be thought of as a congestion avoidance algorithm inside the network as opposed to TCP

which is a congestion avoidance algorithm at the end-users [FJ93].
4 A congestion signal could be either a packet drop or some explicit notification sent by means of setting bits in

the acknowledgement packets.
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Finally, we study a problem which arises in the UMTS cellular technology. Universal Mobile
Telecommunications System (UMTS) is the third generation of wireless telecommunication tech-
nology which aims to provide voice and high speed data services. It envisages to replace the current
GSM/GPRS architecture which provides services at a lower data rate. We study the average delay
experienced by TCP sessions when they traverse a UMTS downlink. UMTS provides different
channels to the users through which they can access services. The dedicated channel (DCH) has
a higher data rate and a higher setup time as compared to the forward access channel (FACH).
Scheduling a short session on the DCH can lead to larger delays for the session. However, the
size of the session is not known in advance to the base station. Through simulations, we study
the average delay performance of two policies which schedule the sessions based on the number of
packets of the session which are in the transmit queue. The aim of these policies is to reduce the
average delay experienced by each session. A larger queue length would indicate larger file sizes
and thus it is more efficient to switch a session with a large queue length on to the DCH.

1.2 Organisation and contribution of the thesis

The research problems studied in this thesis can be divided in two parts. The first part comprises
of Chapters 2-5 which are related to the performance analysis of congestion control algorithms and
of RED. The second part comprises of Chapters 6 and 7 which are related to performance studies
of certain problems in wireless networks.

In Chapter 2, we consider a discrete time model and study the behaviour of the window
size of the MIMD algorithm when subject to various loss processes. The loss processes under
consideration include the window-independent loss model, the window-dependent loss model, and
the first-order Markovian window-independent loss model. We show that the logarithm of the
window size process follows an additive recursive equation, which can be modelled as a Markov
chain. The main results of this work are the expressions for the expected window size of an MIMD
source when subject to window-independent losses. An approximate expression for the expected
window size for window-dependent losses is also provided. The analytical results are then compared
with simulations.

A continuous time model for a general increase algorithm and decrease algorithm is formulated
in Chapter 3. It is shown that, by applying a certain transformation, a general algorithm can be
studied as a general increase and additive decrease algorithm with a loss process appropriately
transformed as well. The transformation to the additive decrease algorithm will enable us to
relate the window size with the workload in a queueing system. By means of this analogy, we
provide conditions under which two congestion control algorithms will have the same behaviour.
For example, it is shown that the AIMD algorithm with a window-independent loss process has
similar behaviour as the MIMD algorithm with window-dependent loss process.

The fairness properties of the MIMD algorithm are studied in Chapter 4. We study the fair-

ness properties for both homogeneous and heterogeneous users. First, we study the intra-algorithm5

fairness property of the MIMD algorithm. The ratio of the instantaneous rates of two users is
modelled as a Markov chain which is either transient, null recurrent or positive recurrent depend-
ing upon the loss process and its intensity. For homogeneous users, it is shown that the fairness
index of the MIMD algorithm can be improved by introducing asynchronous losses at a non-zero

intensity. For heterogeneous6 users, it is shown that the intensity of asynchronous losses should
be greater than a threshold intensity. Next, we study the inter-algorithm fairness properties of

5By intra-algorithm we mean the scenario when all users employ the same algorithm.
6The heterogeneity is due to different round trip times.
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the MIMD algorithm. Specifically, we study how MIMD and AIMD users share the link capacity
when they are subject to synchronous losses. We show that the bandwidth share obtained by the
AIMD users is independent of the link capacity (assuming the capacity is large enough), and that
the MIMD users utilise the rest of the capacity.

In Chapter 5, we model the dynamics of a RED queue driven by Poisson traffic. For a
router with a large link capacity, a small averaging parameter has been proposed [FGS01]. Since
the averaging parameter is small, the exponentially average queue and the instantaneous queue
evolve on different time scales. The time-scale separation allows us to use a singular perturbation
based approach to analyse the behaviour of the average and instantaneous queue lengths. We
use a discretization method by means of which we model the joint average and the instantaneous
queue length as non-homogeneous quasi birth-and-death (QBD) process. In the limit when the
averaging parameter goes to zero, we use a singular perturbation approach to obtain the station-
ary distribution for the joint queue length process, and the average drop probability of the RED
algorithm.

The energy-delay trade-off for a wireless device is studied in Chapter 6. We formulate the
problem as a discrete-time Markov decision process. We study the finite horizon discounted cost,
the infinite horizon discounted cost and the average cost problems. Under certain conditions on the
cost function, it is shown that the optimal transmission policy is of threshold type, i.e., the device
transmits packets only if the queue length exceed the threshold. The optimal policy is also shown
to be bang-bang type, i.e., the device either transmits the maximum possible number of packets or
transmits nothing.

Finally, the average delay of TCP sessions for two threshold based channel selection policies
in UMTS is evaluated in Chapter 7. We use simulations as a means of comparing the performance
of the two algorithms.

The conclusions and the possible further research directions of this work are presented in
Chapter 8.



Chapter 2

Performance analysis of the MIMD algorithm in

discrete time

In this chapter, we study the behaviour of the window size of the MIMD congestion control al-
gorithm when it is subject to different loss processes. We start by considering the loss process
to be independent of the current window size. The window size observed at certain time instants
(at RTTs) is modelled as a multiplicative recursive equation. The logarithm of the window size
is shown to have the same behaviour as the workload process in a standard G/G/1 queue. The
Laplace-Stieltjes transform of the equivalent queue then directly provides the throughput of the
congestion control algorithm and the higher moments of the window size. Using the analysis for
the window-independent loss process, an approximation is proposed for the window-dependent
loss process. Finally, the performance measures are studied for a window-independent first-order
Markovian loss process. We validate our findings using Scalable TCP in ns-2 simulator.

The results in this chapter have appeared in [AAB+05].

2.1 Window based congestion control

We begin with a brief description of the functioning of a window based congestion control algorithm.
A window-based congestion control algorithm attempts to reliably transfer data and to avoid

congestion within the network. Let us assume that the data to be transferred is divided into equal
size blocks called packets.

Let us consider a source which wants to send an infinite number of data packets to a destina-

tion, as is shown in Figure 2.1. The source and the destination are connected through a network1

whose transmission capacity2 is unknown to both the source and the destination. A window-based
congestion control algorithm attempts to estimate the rate at which it can send the packets through
the network. Although the link capacities are fixed, there are other users who make use of the net-
work. Since a congestion control algorithm has to be fair and efficient, it will need to adapt its

1 A network can be considered to be a graph with a set of vertices and a set of edges. The vertices are routers

which forward incoming packets to on one of the outgoing edges. The edges are finite transmission rate links which

connect two routers in the network.
2Transmission capacity is the amount of data that can be transferred in a unit of time.

7
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Figure 2.1: Reliable data transfer through a network.

sending rate as a function of number of users present in the network. If other users leave the
network, the algorithm should increase its rate so as to efficiently use the link capacity. And, if
users enter the network, then the algorithm should decrease the sending rate so as to give a fair
share to the incoming users.

In order to adapt the sending rate, the algorithm needs information on the utilisation of the
network. This information is sent from the destination to the source by means of acknowledgement
packets. As soon as the destination receives a data packet, it sends an acknowledgement (ACK)
packet back to the source. The main purpose of ACK packet is to inform the source of faithful (or, at
least what it thinks is faithful) reception of a particular data packet at the destination. Additionally,

the ACK packets can also convey information on the level of congestion in the network3. The
interval of time from the moment a packet is transmitted by the source to the time the corresponding

acknowledgement is received by the source is called a round trip time (RTT)4. The RTT comprises
of the time required for propagation of the packets on the links and the time spent in the buffers
of the routers.

In order to ensure reliable packet delivery, the source maintains a list of data packets which
it has transmitted but for which it has not yet received an acknowledgement. This list, called a
window, contains the data packets which the source presumes to be in the network. At a given
time t, the window size determines the number of ACK packets which the source can expect to
receive in the interval [t, t + RTT ]. Thus, the number of packets in this list, or the window size,

is proportional to the sending rate5. The source adapts the sending rate by either increasing or
decreasing the window size.

From the algorithm’s perspective (shown in Figure 2.2), the network can be simplified to a

3This is done by setting bits in the ACK packet. This type of feedback is called the explicit congestion notification

(ECN) as opposed to the implicit congestion notification (ICN) in which the source infers congestion from some

information (for example, a packet loss). Indeed, ECN is more representative of the network conditions than ICN.

For, ICN may be based on information which may not be related to congestion at all. For example, ICN infers every

packet loss as a sign of congestion. A packet loss could occur not only due to congestion but also due to errors on

the wireless channel or on the optical fibre. This causes the algorithm to react even though there is no congestion.
4In practice, the RTT is itself a function of time, but for the purpose of presentation we shall make the simplifi-

cation that the RTT is a constant.
5This observation is valid only when the RTT is a constant. If a large number of packets of the source are

queued up in a router buffer then the RTT itself increases with the window size. Although the source sends packets

at a higher rate by increasing the window size, the rate of receiving the ACK packets (i.e., the effective service

rate) cannot be larger than the rate of the smallest capacity link on the path. The effective sending rate, or the

throughput, of the source is thus bounded.
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black box which has a transmission capacity c(t) (the targeted fair share of the algorithm), and
which gives feedback signals at rate h(t) (the congestion information delayed by an RTT). The
algorithm adapts its sending rate r(t) (i.e., its window size) so as to be as close as possible to c(t).
A model of a window-based algorithm would consist of the increase algorithm (to be used when no
congestion is perceived in the network), the decrease algorithm (to be used in reaction to increasing
congestion), and the congestion signals, h(t) (which indicate the level of congestion).
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Ẋ = α
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Figure 2.2: The network as perceived by a source.

2.1.1 The increase algorithm

In the absence of congestion signals, the source presumes the network capacity is not fully utilised.
Hence, in order to be more efficient, the source employs the increase algorithm.

For each positive acknowlegdement, i.e., in the absence of congestion, the source increases its

window size in a deterministic way. The dynamics of the window size6 can be described by the
recursive equation

wn+1 = min(f(wn, n),Wmax), (2.1)

where f(x, n) ≥ x, Wmax is the maximum window size which we shall define in Section 2.1.2, and
the time index n denotes the reception of the nth acknowlegdement (positive or negative). For
example, in the AIMD algorithm, for each positive acknowledgement the window size is updated
as

wn+1 = min(wn + c/wn,Wmax). (2.2)

Since wn is also the number of data packets transmitted during the previous RTT, the source can
expect to receive wn ACK packets during the present RTT. Hence, when there is no congestion,
the source increases its window size by c at time intervals of RTT. This translates into an additive
increase of the window size sampled at intervals of RTT. For the MIMD algorithm, the function f
is linear in w, which translates into a multiplicative increase of the window size sampled at intervals
of RTT.

For the purpose of theoretical modelling, the window-based algorithms can be modelled in
continuous time. The data is modelled as a fluid which can be transmitted in infinitesimal quan-
tities. Unlike in the physical system where the source adapts the window size at specific points in
time (i.e., on the reception of ACK packets), in this model the window size is adapted in continuous
time (i.e., the feedback from the destination is also assumed to be a fluid which is flowing at all
instants in time.) The dynamics of the window size during the increase phase can described by the
differential equation

ṙ(t) =

{
f(r(t), t), r(t) ≤ rmax,

0, r(t) > rmax,

6The window size could possibly be non-integer. The number of outstanding data packets is, however, always an

integer and it is determined by the integer part of the window size.
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where f is a positive function. For example, the additive increase algorithm can be modelled by
taking f to be a constant equal to c/RTT .

By increasing its sending rate the algorithm probes the network for its fair share.

2.1.2 Congestion notification

Congestion occurs at a router when the net input rate for an outgoing link exceeds the maximum
transmission rate at that outgoing link. Since any link has a finite maximum transmission rate,

the increase algorithm ensures that congestion will eventually occur7. The excess input rate causes
the buffer at the router to fill up. The maximum window size that the source can sustain without
causing the queues in the network to build up is called the bandwidth-delay product (BDP) of the
user. The BDP corresponds to the maximum number of outstanding packets the source can have

in the network. As the name indicates, the BDP is computed by using the relation8

BDP(packets) =
(max. transmission capacity(bits/sec)) × (min. round trip delay(sec))

packet size (bits)
. (2.3)

At the onset of congestion, the router can explicitly notify the level of congestion by setting
bits in the data packets. These bits are then sent back to the source by the destination by means of
the ACK packets. It is possible that the ECN mechanism may not be implemented in some of the
routers. These routers either allow the buffer to overflow (drop tail queue management) or drop
packets from the buffer using some active queue management (AQM) scheme.

Since a packet will be dropped once the router buffer is full, the source will perceive a packet
loss (delayed by an RTT) when the window size exceeds the sum of the BDP and the input buffer

size at the router9. Additionally, the destination may also have resource constraints such as a
finite receive buffer. It may therefore request the source to limit the maximum window size to
a value called the receiver’s advertised window, Wrecv. Let Wcong = BDP + buffer size denote
the maximum window size that the source can sustain without causing any packet drops. The
maximum window size, Wmax, of the source is limited by

Wmax = min(Wcong,Wrecv). (2.4)

However, packet drops are certain to happen only when W > Wcong.

As the router buffer starts to fill up, the RTT measured by a source using this router also
starts to increase. This increase in RTT is interpreted as a sign of congestion by “delay-based”
congestion control algorithms. The “loss-based” congestion control algorithms rely only on packet

losses 10 to signal congestion. The “loss-based” algorithms are said to rely on binary feedback
signals. The function h(t) either indicates congestion or indicates no congestion in the network.

7This may not be true if the source has a finite number of packets to send.
8In this relation, we assume all the packets are of equal size, and compute the BDP in units of packets. In general,

the BDP could be computed in bits by using only the numerator of the given relation.
9Beyond this window size, a packet loss will inevitably occur. However, if there are other users sharing the

network, or if there are random losses, then packet losses may occur earlier.
10The data packets sent by the source contains a unique identifier called the sequence number. The destination

expects to receive packets in order of the sequence number. For each data packet received, the destination sends

back an ACK packet containing the sequence number of the last data packet received in sequence. The source infers

the loss of a packet when it receives more than one ACK packet with the same sequence number.
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There is no information on the extent of congestion within the network11. In this thesis, we only
study congestion control algorithms which are “loss-based”.

The feedback function h(t), which takes only binary values, can also be modelled in discrete
or continuous time. In continuous time, h(t) can be modelled as a point process [BB03] (the points
indicating the arrival instants of loss notifications). The inter-arrival time of these points could
be independent of the current window size or could depend on the window size. For example, the
process h(t) could be a Poisson point process with intensity λ.

The “loss-based” algorithms react to losses irrespectively of the origin of the packet loss which
could be either due to congestion or due to some random event. We shall use the term “congestion
loss” to denote a loss which occurs when the input rate to the network exceeds its capacity (i.e.,
W > Wcong). The term “random loss” will denote a packet loss due to any other event. Henceforth
the term “loss” will denote a generic loss event which could be due to either congestion or a random
event.

2.1.3 The decrease algorithm

The arrival of loss (not only congestion) notifications at the source triggers the decrease algorithm.
In discrete time systems, on the reception of a negative acknowledgement, the window is updated
as

wn+1 = max(g(wn),Wmin), (2.5)

where g(x) < x, and Wmin is the minimum window size, usually set to unity. For the multiplicative
decrease algorithm, the source decreases the window size by a factor 1 − β, where β < 1, of the
current window size, i.e.,

wn+1 = max(βwn,Wmin), (2.6)

For the additive decrease algorithm, like in TCP Vegas, the window is reduced by a constant
number.

In continuous time systems, the decrease algorithm can be modelled as an instantaneous jump
in the window size,

r(t+) = max(g(r(t)), rmin), (2.7)

where g(x) < x.

2.2 The standard TCP algorithm

In the preceding section we described the functioning of a general window based congestion control
algorithm. The transmission control protocol is a window-based congestion control algorithm which
is widely deployed in the end hosts of the Internet. The TCP algorithm, which we shall call as the

standard TCP12, has its origins in the algorithm proposed by Van Jacobson [Jac88]. We now give
a simplified description of the actual implementation (described, among others, in [APS99]), and
motivate why this algorithm was found to be inefficient in networks which provide large transmission
rates.

11The ECN scheme proposed in [Flo94], which sets only one bit (say, 0 indicating no congestion, and 1 indicating

congestion), is also an example of binary feedback.
12The TCP algorithm has evolved over the years. The algorithm which we will describe is closer to the NewReno

version.
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The TCP algorithm operates in four phases: slow start, congestion avoidance, fast retransmit,

and fast recovery. The source starts by sending one data packet13 (i.e., window size of one) to the
destination. For each positive ACK packet received at the source, the window size is increased by
one. Thus, the sending rate increases multiplicatively in this phase. The fast increase in sending
rate ensures that the source is quickly able to estimate its fair share. This is the slow start phase,
and the source remains in this phase until it either experiences a loss or the window size reaches
a threshold (called the slow start threshold) or the window size reaches the maximum window size
requested by the destination, Wrecv.

The source infers a loss when it receives four ACK packets acknowledging the same data

packet14 or a timer, known as the retransmission timer, expires. The retransmission timer is reset

to a given value15 whenever either a new data packet is sent and the timer is off or a new ACK
packet is received. Since the source sends new packets only when an ACK packet arrives, the timer
prevents the source from remaining idle for too long in case there is an interruption in the ACK
stream.

Once a loss is detected using duplicate ACKs, the algorithm retransmits the lost packet(s)16

and decreases the window size by half. This is the fast retransmit phase which is immediately
followed by the fast recovery phase which lasts until a positive ACK is received for the lost packet.
In the fast recovery phase, the source transmits a new data packet for each ACK packet which is
received. The arrival of ACK packets indicates that the data packets are indeed getting across to
the destination, thereby freeing up the network resources.

Once the ACK packet for the retransmitted data packet is received, the algorithm enters the
congestion avoidance phase. On reception of each new ACK packet, the algorithm increases the
window size as

wn+1 = min(wn + 1/wn,Wmax). (2.8)

However, the window size cannot increase beyond the maximum window size requested by the
receiver. On the reception of duplicate ACKs, the algorithm exits the congestion avoidance phase
and enters the fast retransmit phase. If there are no timeouts then this cycle of alternating conges-

tion avoidance and fast retransmit/recovery phases continues until all the data has been correctly
received by the destination. If the retransmit timer expires, the source sets the slow start threshold
to half the current window size and then resets the window size to the minimum window size,
Wmin(which is usually equal to unity), and enters the slow start phase.

Let Wn be the window size of the source at end of the nth RTT. Assuming there are no

timeouts, the update equations for Wn are given by17

Wn+1 = min(Wn + 1,Wmax) if there are no losses;
Wn+1 = max(0.5 ·Wn,Wmin) if there are one or more losses.

(2.9)

Therefore, the standard TCP uses the AIMD algorithm. Chiu and Jain [CJ89] studied the fairness

13Sometimes the source can decide to start at a larger initial window size.
14The ACK packets (except for the first one) acknowledging the same data packet are called duplicate ACKs.
15This value is computed as a function of the estimated mean and deviation of the RTT. The estimates for mean

and deviation are computed by using a low-pass filter on the ACK stream.
16The selective acknowledgement (SACK) version of TCP [MMFR96] permits the destination to explicitly inform

the source of the data packets which are lost. In case of multiple packet losses, the source reduces the window size

only once and retransmits only the lost packets.
17We assume that SACK is used.
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and efficiency properties of congestion control algorithms of the form

Wn+1 = aI + bIWn if there are no losses,
Wn+1 = aD + bDWn if there are one or more losses,

(2.10)

when all the sources sharing a link were subject to a loss at the same time instant. They concluded
that the AIMD algorithm (aI > 0, bI = 1, aD = 0, bD < 1) required the minimum time to converge
to fairness. Their conclusion on the AIMD algorithm was also one of the reasons why the AIMD
algorithm was recommended for standard TCP by Van Jacobson in [Jac88].

2.3 The Scalable TCP algorithm

The standard TCP algorithm was implemented during a time when the typical average sending
rates obtained by end hosts was of the order of kilobytes per second (kBps). The link capacities
in Internet have increased rapidly during the past few years, providing the end hosts with average
sending rates of the order of megabytes per second (MBps). Although the fairness properties of
the AIMD algorithm are very desirable, the additive increase algorithm does not recover rapidly
enough after a loss which is not due to congestion [FRS01]. It was generally felt in the Internet
research community that the standard TCP algorithm needed to be modified so that it could
perform satisfactorily in large capacity networks as well. Since then, several new algorithms have
been proposed in [Flo03], [JWL04], [XHR04], [Kel03b] and [KHR02] among others.

In [Kel03b], T. Kelly proposed an algorithm, called Scalable TCP, which modified the additive
increase during the congestion avoidance phase to a multiplicative increase. On the reception of a
new ACK packet, the Scalable TCP algorithm increases the window size as

wn+1 = min(wn + 0.01,Wmax). (2.11)

Since the source can expect to receive wn ACK packets in the (n + 1)th RTT, the embedded
window size will increase multiplicatively in the absence of congestion. The decrease algorithm and
the other features (like, for example, the retransmission timer) of standard TCP are preserved in
Scalable TCP. The author also introduces the notion of a legacy threshold for the window size. If

the current window size is below the legacy threshold, Scalable TCP18 behaves like the standard
TCP. Since the multiplicative increase algorithm is faster than the additive increase algorithm, the
legacy threshold ensures that in small capacity networks the standard TCP users are not penalized.

Let Wn
19 be the window size of the source at the end of the nth RTT. In the congestion

avoidance phase, the MIMD algorithm20 updates Wn as

Wn+1 = min(α ·Wn,Wmax) if there are no losses,
Wn+1 = max(β ·Wn,Wmin) if there are one or more losses.

(2.12)

where α > 1 and β < 1 are constants. For the Scalable TCP algorithm, the values α = 1.01 and
β = 0.875 have been proposed by T. Kelly [Kel03b].

The Scalable TCP algorithm has the following desirable property. Let us assume that a
source with window size w experiences a packet loss due to reasons other than congestion. Since

18We shall use the term MIMD algorithm interchangeably with Scalable TCP, and the term AIMD algorithm

interchangeably with the standard TCP.
19We shall use this notation henceforth.
20We assume that Scalable TCP with SACK is used.
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the TCP (either standard or Scalable) algorithm cannot discern the cause of the loss, the source
will reduce the current window size to βw. The time Tr (in number of RTTs) required for the
source to increase the window size from βw to w will be

Tr = (1 − β)w for standard TCP,

Tr = − logα β for Scalable TCP.

During the interval Tr, the source sends data at a rate which is less than its fair share. From
the above equations we can conclude that the time to recover, Tr, for the AIMD algorithm is
proportional to the window size (and, by consequence, to the network capacity) whereas it is
independent of the window size for the MIMD algorithm. As the network capacity increases, the
AIMD algorithm will become inefficient in utilising the available capacity. On the other hand, for
the MIMD algorithm, the time to recover will be unaffected by an increase in the network capacity,
thus making it “Scalable”.

2.4 A discrete time stochastic model for the MIMD algorithm

The main emphasis of this chapter is to obtain certain performance measures, such as the average
sending rate, of the MIMD algorithm when it operates in different environments. Towards this
end, we first present a discrete time stochastic model for the window size evolution of the MIMD
algorithm. We shall then adapt this model for different environments, and obtain the performance
measures in each of them.

Let us consider an MIMD source which has an infinite amount of data packets to send21. Let
Wn denote the window size at the end of the nth RTT. We assume that the round trip time is a
constant. This is an approximation to the scenario where the queueing delay is much less than the
propagation delay.
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Figure 2.3: The Window evolution in discrete time.

During the (n+1)th RTT, the source will receive the acknowledgements for the data packets
sent during the nth RTT. Let pn(Wn) denote the probability that one or more data packets were
lost during the nth RTT. If we assume there are no timeouts, the window size will evolve according
to the recursive equation

Wn+1 = min(α ·Wn,Wmax) with probability (w.p.) 1 − pn(Wn),
Wn+1 = max(β ·Wn,Wmin) with probability pn(Wn),

(2.13)

21Such a source-destination pair is also called a persistent connection.
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where α > 1 and β < 1 are known parameters. In our model we have assumed that there is
either an increase or a decrease during an RTT. In practice, even if a packet loss is observed in
an RTT, the window size increases for all the positive ACKs which are received. For example, in
the (n+ 1)th RTT, if the ith ACK packet signals a lost data packet then Wn+1 would be equal to
(β+(α−1))Wn− (i−1)(α−1)(1−β)− (α−1). Since i takes values from unity to Wn, the window
size Wn+1 lies in the interval (αβWn− (α−1), (β+(α−1))Wn− (α−1)]. Thus, the approximation
Wn+1 = βWn is a lower bound for the true value of Wn+1. The recommended values, α = 1.01 and
β = 0.875, allow us to closely approximate Wn+1 by βWn.

2.4.1 The loss process

The loss process seen by the source is highly influenced by the environment in which the source
operates. The number of links on the route from the source to the destination, the number of
sources sharing each of these links, and the type of the links (whether the link is an optical fibre,
or a wireless channel, or Ethernet cable) are some of the factors which determine the loss process.
A loss process is usually determined by collecting the statistics of the losses observed by a source
in different environments [AAB00a]. We shall use three different models for the loss process.
These models have been used in the past to obtain the average sending rate of the standard TCP
algorithm. These loss models are approximations to different environments in which a source may
operate.

1. Window-independent loss process: In this model, the probability of loss in an RTT,
{pn(Wn), n ≥ 0}, is an independent and identically distributed stochastic process and is in-
dependent of the current window size of the source. The recursive equation for Wn is given
by

Wn+1 =

{
min(α ·Wn,Wmax) w.p. 1 − p;
max(β ·Wn,Wmin) w.p. p,

(2.14)

where p is the probability of experiencing one or more losses in an RTT. We shall use the

term loss rate22 to refer to the probability of experiencing a loss in an RTT.

The independence has been observed in connections over wide area networks [AAB00a], and
has also been studied in [BH02]. In [MGT99], the loss process is modelled as a Poisson point
process with a fixed rate. The independence is observed in [MGT99] when a large number of
a flows share a link and a flow traverses multiple links.

2. Window-dependent loss process: In some environments, each packet has a certain probability
of either being dropped or lost. For example, packets can be lost due to imperfections in an
optical fibre cable. Certain AQM schemes drop packets randomly from the buffer [PPP00].
Thus, a source with a larger window size has a larger probability of having packets in the
buffer, and is thereby more prone to experiencing a loss.

We assume that each packet is lost with a probability q independently of the other packets.
This model was first used in [OKM96] to derive the well-known “square-root” formula for the
throughput of the AIMD algorithm. In this model, the process {pn(Wn), n ≥ 0}, depends on

22Since p is the probability of loss in one RTT and the discrete time is in units of RTT, p can be considered as

the probability of loss per unit time. Hence, we refer to p as the loss rate. The term loss probability will be used to

refer to packet loss probability.
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Wn but is independent from one RTT to another. The recursive equation for Wn is given by

Wn+1 =

{
min(α ·Wn,Wmax) w.p. (1 − q)Wn ;
max(β ·Wn,Wmin) w.p. 1 − (1 − q)Wn .

(2.15)

3. Window-independent first-order Markovian loss process: The first-order Markovian loss pro-
cess allows us to introduce correlation among the losses experienced in successive RTTs. The
loss rate will be modelled as a first-order Markov chain which transits at RTTs (cf. [AAB00b]
in which the transitions occur at loss instants.). The probability of loss in the nth RTT will
be considered to be independent of Wn. The recursive equation for Wn is given by

Wn+1 =

{
min(α ·Wn,Wmax) w.p. 1 − pn;
max(β ·Wn,Wmin) w.p. pn,

(2.16)

where {pn, n ≥ 0} is a finite dimensional first-order Markov chain.

We briefly mention, but do not study, another model for the loss process which is particularly
suited for wireless links. In this model, known as the Gilbert-Elliot model [WM95], the packet loss
probability, qn, is a first-order Markov chain. In our description of loss processes, this model would
be described as window-dependent first-order Markovian loss process. The performance study of
the standard TCP algorithm using a Gilbert-Elliot model has been carried out in [KH98], [ZCR00]
and [AT03].

2.4.2 The time average service rate

A performance measure of interest is the time average sending rate. The time average service rate,
or the throughput, is defined as

γ = lim
t→∞

number of packets sent during [0, t]

t
(2.17)

Let τ(Wn) denote the length of the nth RTT, i.e., the nth RTT is a function of the window size,
Wn. From the Markov renewal-reward theorem [Wol89], the throughput can be obtained as

γ =
E[W ]

E[τ(W )]
, (2.18)

where E[f(X)] denotes expectation of a function f of a random variable X. In the discrete time
model, we embed the window size process at intervals of RTT, which is assumed to be constant.
Thus, we can obtain the observed throughput by using the relation γ = E[W ]/RTT.

2.4.3 A few words on modelling assumptions

There are various aspects of a practical congestion control algorithm which we have not incorpo-
rated in our model. In the parlance of the research community, we model an “idealised” MIMD
congestion control algorithm (see, e.g., [MO99], which considers the “idealised” behaviour of the
AIMD algorithm).
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1. No timeouts: The first approximation that we make is that there are no timeouts observed
by the source. The effect of a timeout is to reduce the current window to Wmin. Timeouts
usually occur when a source experiences multiple packet losses. We assume the Scalable TCP
algorithm is used along with SACK which allows the source to recover from multiple losses.
Although a timeout can still occur, the probability is lesser than the other versions (like
Tahoe or Reno) of TCP. Our model, therefore, gives an upper bound to the average sending
rate which becomes tighter as the probability of timeouts goes to zero.

2. At most one multiplicative decrease per RTT: We also assume the window is reduced only
once during an RTT, which is also a feature of the SACK version.

3. Infinite file size: This assumption is frequently made in the analysis the behaviour of con-
gestion control algorithms. Modelling short file sizes is rather difficult. Also, the application
layer protocol http 1.1 [FGF+99] can transfer several files in a batch over the same TCP
connection, thus getting the performance of a single large file. We assume that files are large
enough to see a regime close to stationarity.

4. Constant round trip times: The constant RTT assumption is quite important in relating
the average window size and the average service rate (or, the throughput) that a connection
obtains. The RTT is the sum of the propagation delay in the links and the queueing delay
in the routers. With the constant RTT assumption, the throughput can be directly obtained
as E[W ]/RTT . In networks with small buffering delay (in units of time required to empty
the buffer) compared to the propagation delay, this assumption is a good approximation. As
the buffering delay increases, more and more packets start getting queued up in the buffer
causing the round trip times to increase. The RTTs will now be closely linked to the window
size, Since the service rate of a link is finite, the throughput obtained by the source will be
upper bounded by this quantity. The effect of a non constant RTT is to modify the increase
algorithm, see, for example, [LM97] and [AABQ01b].

5. No legacy threshold: Our main aim is study the behaviour of the MIMD algorithm. For low
error probabilities and large capacity links, this assumption would become more realistic.

2.5 Outline and contribution

In Section 2.6, we shall give a summary of the various analytical techniques which have been
employed to obtain the throughput of the standard TCP algorithm. In Section 2.7 we shall anal-
yse the model with the window-independent loss process. Our approach, formally described in
Section 2.7.1, is based on showing that an invertible transformation applied to the window size
process results in a process that has the same evolution as the total workload process in a standard
G/G/1 queue. The Laplace-Stieltjes transform of the equivalent queueing process thus obtained
provides the throughput of the connection as well as the higher moments of the window size of
the given MIMD algorithm. In Section 2.8, we shall study the model with the window-dependent
loss process. We shall propose an approximation to this model, and obtain the throughput of the
connection using the analysis of the window-independent loss process. In Section 2.9 we shall study
the window-independent first-order Markovian loss process and obtain the performance measures
of the window size. We shall compare the analytical results with simulation results in Section 2.10.
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2.6 Related literature

Since it was proposed in 1988 [Jac88], the behaviour of standard TCP has been widely studied.
We cite only a few articles which are related to this work. In [BHCKS04], a good overview of the
analytical methods for studying the window size behaviour of standard TCP, i.e., for the AIMD
algorithm, is provided.

One of the first stochastic models of the AIMD algorithm was proposed in [OKM96]. The
authors studied the window size observed at arrival of ACK instants. For a packet loss probability
of q, it was shown that the throughput was proportional to 1/

√
q. In [LM97] the authors studied

the behaviour of two different flavours of standard TCP when the delay due to link buffer is not
negligible. They considered a deterministic loss model and obtained an approximation when the
losses were random. Their model was extended in [Kum98] to include the effect of timeouts. The
window size was modelled as a Markov chain embedded at loss instants or arrival of timeouts. The
throughput was obtained as the reward rate of the Markov renewal-reward process. In [KH98],
this model is extended to include the Gilbert-Elliot loss model for the packet error probability. In
[PFTK98], the authors considered a model in which they accounted for the number of packets sent
between the loss instant and the reception of the duplicate ACKs. For their model, which also
included timeouts, they derive an expression for the throughput of a TCP session when packets are
lost with a probability q and validate with experimental results. In [AAB00a] and [AAB00b] the
authors study the performance of TCP when the loss process is a general stationary point process
which may depend on the window size. In particular, they obtain the throughput expressions
when the inter-loss time is an i.i.d. renewal process and when loss process is a Markovian Arrival
Process(MAP). In [AABQ01a], the authors study a continuous time model wherein the window
size grows linearly between loss arrivals. The losses are assumed to arrive in batches according
to a Poisson process which is independent of the window size. For both bounded and unbounded
window sizes they obtain the distribution of the window size and its moments. In [BHCKS04], the
authors consider a similar formulation but with a loss intensity which is a linear function of the
window size, and they also account for timeouts.

The above cited articles mainly consider the behaviour of a single source which has a large
amount of data to send. The interaction among various flows has been modelled in, for example,
[BH02] and [MGG+04], which also has references related to multiple flow models. In [MSZ02] and
[CSA01], the performance of flows that have finite amount of data to send is analysed.

For deterministic losses, the authors considered a general increase and decrease algorithm in

[BB01]. In an RTT without a loss, the window increases by w−k whereas in an RTT with losses,

the window reduces by wl. For k = 0 and l = 1 the algorithm becomes AIMD, and for k = −1
and l = 1 the algorithm becomes MIMD. They obtain the result that the throughput for such algo-

rithms is proportional to q−(k+l+1). For example, for the MIMD algorithm the throughput becomes

proportional to q−1. We shall also obtain the same proportionality by first analysing a random
drop model for independent losses and then using an approximation of small loss probability.

2.7 Window-independent loss process

Let us consider a source which wants to transfer a large amount of data using the MIMD algorithm.
The source starts by sending W0 = Wmin amount of data across the network and waits for the
corresponding ACK packets. Let t0 denote the time instant when the last of the W0 packets is
transmitted. At t0, the number of outstanding packets, i.e., the window size is W0. Let t1 denote
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the time instant just after the source receives the W0th ACK packet (i.e., at t1 the algorithm has
either increased or decreased the window depending on the W0th ACK packet.). At this time
instant the window size would be either W1 = αW0 or W1 = βW0. Similarly, let t2 denote the time
instant when the (W0 +W1)th ACK packet is received, and let W2 be the window size at this time
instant. In this way we can construct the sequence {(Wn, tn), n ≥ 0}. We shall call the interval
(tn−1, tn], for n ≥ 1, as the nth RTT. Let Wn denote the window size at the end of the nth RTT.
During the nth RTT the source sends Wn packets, and can expect to get the corresponding ACK
packets in the (n+ 1)th RTT.

Let the sequence {An, n ≥ 1} be defined as

An =

{
α w.p. (1 − p);
β w.p. p,

(2.19)

where p is the probability of one or more losses occurring in any RTT. As described in Section 2.4,
we can model the process {Wn} by the recursive equation

Wn+1 = min(max(An+1Wn,Wmin),Wmax). (2.20)

We now adapt the above equation to three different scenarios so that the simplified equation
will help us to better understand the process {Wn} in each of the three scenarios.

(i) No upper bound on window size: In the first scenario, we assume there is no upper bound,
i.e., Wmax = ∞. Equation (2.20) simplifies to

Wn+1 = max(An+1Wn,Wmin). (2.21)

In practice, as described in Section 2.1.2, Wn is limited by either the receiver’s advertised
window or the network capacity. However, if the loss rate is sufficiently large such that the
upper bound is rarely reached, then this equation can be used to approximate the true window
behaviour. We shall analyse this scenario in Section 2.7.2.

(ii) No lower bound on window size: On the other hand, if the losses are infrequent, then the
probability of reaching the lower bound will be negligible. In such a scenario, we can assume
the lower bound to be zero and obtain the recursive equation

Wn+1 = min(An+1Wn,Wmax). (2.22)

The upper bound in this scenario corresponds to limitation imposed by the receiver’s ad-
vertised window (i.e., Wrecv ≤ Wcong). The receiver’s advertised window is assumed to be
below the network capacity. Thus, there are no losses due to congestion. This scenario will
be analysed in Section 2.7.3.

(iii) No lower bound on window size and congestion losses: This scenario, which we shall analyse
in Section 2.7.4, is similar to the scenario with no lower bound except for the fact that when
the window size reaches Wmax, the source experiences a congestion loss with probability one.
The upper bound in this scenario corresponds to the limitation due to the finite network
capacity (i.e., Wrecv > Wcong).
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(iv) Lower and upper bounds on the window size: Finally, in Section 2.7.5 we shall analyse the
scenario where both the lower and upper bounds are imposed. The recursive equation for Wn

in this scenario is given by Equation (2.20). The other three scenarios are approximations to
this scenario. Although the performance measures of interest can be obtained by analysing
the exact scenario, it is generally not easy to obtain them in closed form. The approximations
lead to some closed form expressions for the moments which give a better understanding of
the system than the analysis of the exact scenario.

In the next section we shall relate the process {Wn} in the first three scenarios with the
workload evolution in a G/G/1 queue observed at particular epochs. This relation will enable us
to obtain the distribution and the moments of Wn, thereby enabling us to obtain the throughput
of the MIMD algorithm as a function of the loss rate, p.

2.7.1 Preliminary analysis

Consider the discrete time stochastic recursive equation23

Wn+1 = max(An+1Wn, 1). (2.23)

The process {Wn} can be viewed as a sequence of observations of a continuous time process sampled
at certain, not necessarily equal, time intervals. The sequence An ∈ (0,∞) is assumed to be
stationary and ergodic.

On taking the logarithm on both sides of Equation (2.23), we obtain

log[Wn+1] = max(log[An+1] + log[Wn], 0). (2.24)

Using the substitutions Yn = log[Wn] and Un+1 = log[An+1] in the above equation, we obtain

Yn+1 = max(Yn + Un+1, 0). (2.25)

The recursive equation Equation (2.25) is an additive recursive equation which has the same form
as the recursive equation describing the amount of workload in a G/G/1 queue observed at, say, just
before an arrival (see, for example, [Kle75]). The sequence Un+1 denotes the difference between
the service time of the nth customer and the inter-arrival time between the nth and the (n +

1)th customer. Since the introduced transformation, log(·), is invertible, there is a one to one
correspondence between the processes {Yn, n ≥ 0} and {Wn, n ≥ 0}. Following this observation,
we can study the stability of the window size process {Wn, n ≥ 0} by studying the stability of
{Yn, n ≥ 0}. Furthermore, the equivalence of the process {Yn, n ≥ 0} and the workload in a G/G/1
queue will help us to obtain the steady state moments of Wn.

Theorem 2.7.1 Assume that E[logA0] < 0. Then there exists a unique stationary ergodic process

{W ∗
n}, defined on the same probability space as {Wn}, that satisfies the recursion in Equation (2.23).

Moreover, for any initial value W0 = w, there is a random time Tw, which is finite with probability

1, such that Wn = W ∗
n for all n ≥ Tw. If E[logA0] > 0 then Wn tends to infinity w.p.1 for any

initial value W0 = w.

23Without loss of generality, we can assume Wmin = 1. The results for any Wmin > 0 can be obtained by scaling

Wn appropriately.
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Proof. According to Theorem 2A [GY95], if E[logA0] < 0 then the stochastic process {Yn}
converges to a stationary ergodic process {Y ∗

n } which is defined on the same probability space as
{Yn} and is the unique stationary regime that satisfies Equation (2.25). This implies the statement
for Wn = exp(Yn). The last part of theorem similarly follows from [BB87, p. 36]. �

Remark 2.7.1 Due to Jensen’s inequality and the concavity of the logarithm function,

E[logA0] ≤ log E[A0]. Hence, log E[A0] < 0, or equivalently E[A0] < 1, is a sufficient condition for

the stability of the window process {Wn} (for the existence of a unique stationary ergodic regime

and the convergence to this regime). However this condition is in general not a necessary one.

Remark 2.7.2 We stress the importance of the maximum operator in Equation (2.23). Indeed, if

we eliminate it and write Wn+1 = An+1Wn then on taking the logarithm, we will obtain Yn+1 =

log[An+1] + Yn instead of Equation (2.25). Its solution is

Yn = Y0 +
n−1∑

i=0

log[Ai+1]. (2.26)

Since {An} is stationary ergodic, the strong law of large numbers implies that if E log[Ai] < 0 then

Yn will converge to −∞, and, hence, Wn will converge to 0 which is clearly a bad estimate for

the window size process. (If E log[Ai] > 0 then Yn and, hence, Wn will converge to ∞ which was

also predicted by the model that took the minimum window into account.) Note that in the limiting

case of E[logAi] = 0, if Ai’s are independent and identically distributed (i.i.d.) then Yn is a null

recurrent Markov chain and thus unstable.

The logarithmic transformation allows us to obtain the moments of Wn in the stationary regime
(i.e., moments of W ∗

n) from the Laplace-Steiltjes Transform (LST) of Yn in the stationary regime
(i.e., LST of Y ∗

n ). The LST of Y ∗
n is defined as

Y(s) = E[e−sY ∗

n ], (2.27)

for s ∈ S, where S is the region of convergence of Y(s). For a given integer j ≥ 0, the jth moment
of W ∗

n is obtained as follows

E[(W ∗
n)j ] = E[exp(jY ∗

n )] = Y(−j), (2.28)

where −j is assumed to belong to S. If −j 6∈ S then the corresponding moment is ∞. Thus, all
finite moments of W ∗

n can be obtained from the LST of Y ∗
n .

A similar analysis can be done for the stochastic recursive equation of scenario (ii),

Wn+1 = min(An+1Wn,Wmax), (2.29)

by making the transformation Yn = log[Wmax]−log[Wn]. The moments of W ∗
n can then be obtained

from the LST of Y ∗
n using the relation

E[(W ∗
n)j ] = E[W j

max exp(−jY ∗
n )] = W j

maxY(k). (2.30)

Since Y(s) is finite for s ≥ 0, all the moments of W ∗
n are finite.
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The recursive equation for scenario (i), as given by Equation (2.21), is similar to Equa-
tion (2.23). Therefore, the analysis of this model can be done along the lines of the analysis of
Equation (2.23). Similarly, the analysis of scenarios (ii) and (iii) can be done along the lines of the
analysis of Equation (2.29). We note that the analysis of scenario (iii) is similar to that of scenario
(ii). The equivalent queueing system of scenario (iii) can be obtained by deleting the idle periods
of the equivalent queueing system of scenario (ii). The throughput of the MIMD algorithm, or the
first moment of the window size, under different models, can be obtained from Equation (2.28) and
Equation (2.30).

We note that the z-transform, which is defined for integer valued random variables, is a
discrete analog of the LST. In the following sections, we shall derive the LST of the window size,
Wn, for the three models.

In the rest of this subsection, we shall use the following notation. The process {Wn} will
denote the window size process. We shall denote by {Yn} the process obtained upon transforming
{Wn}. The process {Wn} converges in the limit n → ∞ to a stationary ergodic process which
we shall denote by W . Similarly, Y shall denote the stationary ergodic process to which {Yn}
converges in the limit n→ ∞. We shall denote the probability distribution functions of Yn and Y
by πn and π, respectively.

2.7.2 Scenario (i): no upper bound on window size

In this subsection, we analyse scenario (i) in which the recursive equation for the window size
embedded at intervals of RTT is

Wn+1 = max(An+1Wn,Wmin). (2.31)

The sequence {An, n ≥ 1} is i.i.d. such that

An =

{
α w.p. 1 − p;
β w.p. p.

(2.32)

Along the lines of the preliminary analysis, we make the transformation

Yn =
log[Wn] − log[Wmin]

log[α]
, (2.33)

in which the normalization by log[α] is made for convenience. The recursive equation for the process
{Yn} is given by (from Equation (2.25))

Yn+1 =

{
Yn + 1 w.p. 1 − p;

(Yn − k)+ w.p. p.
(2.34)

where k = − log[β]
log[α] . Since β < 1, the number k is positive. For the process {Yn} to be positive

recurrent, the necessary and sufficient condition is E log[An] < 0, or, equivalently,

(k + 1)p > 1. (2.35)

The above inequality gives the condition on p for which scenario (i) is a valid approximation to the
true window behaviour. In the rest of this subsection, we shall assume that the above condition is
satisfied. We also make the following two assumptions.
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Assumption 2.7.1 k = − log[β]
log[α] is an integer.

Assumption 2.7.2 log[Wmin]
log[α] is an integer.

With these two assumptions, the state space of Yn reduces to the set of non-negative integers,
Z+ = {0, 1, 2, ...}. Thus, Yn can be modelled as a discrete state space Markov chain. Using the

inverse transformation of Equation (2.33), the state Yn = i maps to Wn = Wminα
i. The state

transition diagram of this scenario is shown in Figure 2.4.
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Figure 2.4: State transition diagram of Yn = log[Wn]−log[Wmin]
log[α] .

Let πn(j), j ∈ Z+, be the probability of Yn being in state j. From the forward equation for
the probabilities of a Markov chain,

πn+1(j) =

{
(1 − p)πn(j − 1) + pπn(j + k), j ≥ 1;

p
∑k

i=0 πn(i), j = 0.
(2.36)

Let Yn(z) denote the z-transform of Yn. The function Yn(z) is defined as

Yn(z) =
∞∑

j=0

πn(j)zj . (2.37)

From Equation (2.36) and Equation (2.37), we obtain

Yn+1(z) − πn+1(0) =
∞∑

j=1

πn+1(j)z
j

= (1 − p)
∞∑

j=1

πn(j − 1)zj + p
∞∑

j=1

πn(j + k)zj . (2.38)

Let Y(z) = lim
n→∞

Yn(z). Let W denote the stationary process to which {Wn} converges in the limit

n → ∞. We note that the stationary process of {Yn}, Y , and W are related as W = Wminα
Y .

Therefore, the jth moment of W is given by

E[W j ] = E[(Wminα
Y )j ] = W j

minY(αj). (2.39)
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Theorem 2.7.2 (a) Y(z) is given by

Y(z) =
1 − 1/z0
1 − z/z0

, (2.40)

where z0 is the unique root of

(1 − p)

p
zk+1 − 1

p
zk + 1 = 0 (2.41)

that lies outside the closed unit disc.
(b)

Prob(W ≥ w) =

(
w

Wmin

)− log[z0]/ log[α]

. (2.42)

Proof. From Theorem 2.7.1 we can conclude that the Markov chain Yn is stationary and ergodic.
In particular, this implies that Yn converges to Y and that πn(·) converges to π(·), the stationary
probability distribution function of Y .

To prove part (a), from Equation (2.38) we obtain

Y(z) − π(0) = (1 − p)zY(z) + pz−k
∞∑

j=0

πn(j + 1 + k)zj+1+k

Y(z)(1 − (1 − p)z) = π(0) + pz−k
∞∑

j=0

πn(j + 1 + k)zj+1+k

= π(0) + pz−k(Y(z) −
k∑

i=0

π(i)zi),

and hence,

Y(z)((1 − (1 − p)z)zk − p) = zkπ(0) − p
k∑

i=0

π(i)zi.

Since π(0) = p
∑k

i=0 πn(i), Y(z) can be expressed as

Y(z) =

∑k−1
i=0 π(i)(zk − zi)

− (1−p)
p zk+1 + 1

pz
k − 1

. (2.43)

Under the stability condition of Equation (2.35), Y(z) exists and is analytic in the open disc
{z : |z| < 1}. The numerator of Equation (2.43) has at most k − 1 zeros inside the unit circle
and one zero on the unit circle. Hence, there can be at most k − 1 zeros of the denominator
of Equation (2.43) within the unit circle as any more zeros will make Y(z) non-analytic. Using
Rouche’s theorem [Kra99] we can show that there are at least k zeros of the denominator inside
and on the unit circle. As z = 1 is a zero of the denominator, there are at least k − 1 zeros inside
the unit circle. From the two previous arguments, there are exactly k− 1 zeros of the denominator
within the unit circle and they must be the same as those of the numerator for Y(z) to be analytic
[Kle75]. Hence, Y(z) reduces to Equation (2.40).
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To prove part (b), we note that the distribution of Y can be obtained by inverting Y(z), and
is given by

π(j) = (1 − 1/z0)(1/z0)
j , j ≥ 0. (2.44)

The above equation, together with the relation W = Wminα
Y , gives Equation (2.42). �

Corollary 1 Let ζ = log[z0]
log[α] . The jth moment of W is given by

E[W j ] =

{
Wmin

ζ
ζ−j j < ζ;

∞ j ≥ ζ.
(2.45)

This follows from Equation (2.39) and Equation (2.40). The z-transform Y(z) is analytic for z < z0.
Hence, the jth moment of W is finite if j < ζ. The window size distribution can be seen to become
heavy tailed for ζ ≤ 2. Thus, for a given loss rate, p, either α or β can be suitably chosen in order
to reduce the variance of the window size.

With this we have obtained the distribution of the window size process, and its moments
when the loss rate is quite high (i.e., p > 1/(k + 1). Next, we study the complementary scenario
where the loss rate is small (i.e., p < 1/(k + 1)).

2.7.3 Scenario (ii): no lower bound on window size

In this subsection, we consider the scenario where the window at the sender is limited to Wmax.
The upper bound is due to the limitation imposed by the receiver’s advertised window. We note
that losses are only due to random events other than congestion. We transform the process {Wn}
in the following way,

Yn =
log[Wmax] − log[Wn]

log[α]
. (2.46)

We make the following assumption along with Assumption 2.7.2.

Assumption 2.7.3 log[Wmax]
log[α] is an integer.

The state transition diagrams of log[Wn]
log[α] and of Yn are shown in Figure 2.5. From the trans-

formation in Equation (2.46), the state Yn = i maps to the state Wn = Wmaxα
−i. The process

{Yn} satisfies the recursive equation

Yn+1 =

{
Yn + k w.p. p;
(Yn − 1)+ w.p. 1 − p.

(2.47)

From Theorem 2.7.1, for the process {Yn} to be positive recurrent, the necessary and sufficient
condition is

(k + 1)p < 1. (2.48)

In the rest of this section, we assume that the above condition is satisfied.
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Figure 2.5: State transition diagram of log[Wn]
log[α] (top figure) and Yn = log[Wmax]−log[Wn]

log[α] (bottom

figure) with no congestion losses.

As in the previous subsection, let Y denote the stationary process to which {Yn} converges
in the limit n→ ∞. The balance equations for computing the steady state probabilities are given
by

π(0) =
(1 − p)

p
π(1),

π(i) = (1 − p)π(i+ 1), i = 1, ..., k − 1.

π(i) = pπ(i− k) + (1 − p)π(i+ 1), i ≥ k.

These equations are similar to those for the number of customer in a bulk arrival queue.

Theorem 2.7.3 The z-transform of Y , Y(z), is given by

Y(z) = (1 − (k + 1)p)
1 − z

pzk+1 − z + (1 − p)
. (2.49)

Proof. Following similar arguments from Kleinrock [Kle75], we can write the z-transform as
follows.

∞∑

i=1

π(i)zi =
∞∑

i=1

pπ(i− k)zi +
∞∑

i=1

(1 − p)π(i+ 1)zi,

where π(i− k) = 0 for i < k. Therefore,

Y(z) − π(0) = pzk
∞∑

i=1

π(i− k)zi−k + z−1
∞∑

i=1

(1 − p)π(i+ 1)zi+1

= pzk
Y(z) + z−1(1 − p)(Y(z) − zπ(1) − π(0)),

which gives

Y(z)(z − pzk+1 − (1 − p)) = π(0)(z − (1 − p) − zp)). (2.50)
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Using the equality Y(1) = 1 along with L’Hôpital’s rule, we get π(0) = [1 − (k + 1)p]/[1 − p].
Hence, we obtain Y(z) as given by Equation (2.49). �

Corollary 2 The moments of W = Wmaxα
−Y are given by

E[W j ] = E[(Wmaxα
−Y )j)] = W j

maxE[α−jY ] = W j
maxY(α−j). (2.51)

The distribution of Y can be found by inverting Y(z) using partial fraction expansion. The
distribution can be seen to be a weighted sum of geometric distributions.

2.7.4 Scenario (iii): no lower bound on window size and congestion losses

In the present scenario, along with random losses, a loss occurs when the window size reaches
Wmax. The upper bound is due to the limitation of the network capacity. When this sending rate
is exceeded congestion sets in, and the source experiences a loss.

We make use of the same transformation that was made in Scenario (ii). The state transition
diagram of Yn is shown in Figure 2.6. As in Scenario (ii), the state Yn = i maps to the state

Wn = Wmaxα
−i. The only difference in transitions from the previous scenario is at state Y = 0. In
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Figure 2.6: State transition diagram of Yn = log[Wmax]−log[Wn]
log[α] with congestion losses.

this scenario, there is a jump with probability one from state 0 to state k. The balance equations
for the steady state probability distribution of Y are given by

π(i) = (1 − p)π(i+ 1), i = 0, ..., k − 1,

π(i) = pπ(i− k) + (1 − p)π(i+ 1) + (1 − p)π(0)δi−k, i ≥ k.

Theorem 2.7.4 The z-transform of Y , Y(z), is given by

Y(z) =

(
1 − (k + 1)p

(k + 1)

)
1 − zk+1

pzk+1 − z + (1 − p)
. (2.52)

Proof. We can find Y(z) as follows.

∞∑

i=1

π(i)zi = pzk
∞∑

i=1

π(i− k)zi−k +
1

z

∞∑

i=1

(1 − p)π(i+ 1)zi+1 + zk(1 − p)π(0), (2.53)
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which implies

Y(z) − π(0) = pzk
Y(z) + z−1(1 − p)(Y(z) − zπ(1) − π(0)) + zk(1 − p)π(0), (2.54)

and gives the relation

Y(z)(z − pzk+1 − (1 − p)) = π(0)(1 − p)(zk+1 − 1). (2.55)

Using the equality Y(1) = 1 along with L’Hôpital’s rule, we get π(0) = [1 − (k + 1)p]/[(k + 1)(1 − p)].
Hence, we obtain Y(z) as given by Equation (2.52). �

As for Scenario (ii), we can obtain the distribution of Y , and hence that of W , by inverting the
z-transform. We can also obtain the moments of W directly from Y(z) using the relation

E[W j ] = W j
maxY(α−j). (2.56)

2.7.5 Scenario (iv): lower and upper bounds on the window size

The scenarios analysed in the previous three subsections assumed either a lower or an upper bound
on the congestion window. Although approximate, the performance measures obtained through
the analysis of scenarios (i) − (iii) are easy to evaluate and provide simple expressions to obtain
the throughput of the connection. In this subsection, we present an analysis when the congestion
window is bounded from above and from below. The recursive equation for this scenario is

Wn+1 = max(min(An+1Wn,Wmax),Wmin). (2.57)

We make Assumptions 2.7.1, 2.7.2, and 2.7.3.

Let Yn = log[Wmax]−log[Wn]
log[α] be the transformation applied to Wn. Let L = log[Wmax]−log[Wmin]

log[α]

be the number of states of Yn. The recursive equation for the process {Yn} is given by

Yn+1 =

{
min(Yn + k, L) w.p. p,
max(Yn − 1, 0) w.p. 1 − p.

(2.58)

The state transition diagram of Yn is shown in Figure 2.7. The Markov chain Yn has a finite
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Figure 2.7: State transition diagram of Yn.

state space, and is a communicating Markov chain with L + 1 states. Therefore, its steady state
probabilities exist for 0 < p < 1. The steady state probability distribution of Y satisfies the balance
equations

π(m) = (1 − p)π(m+ 1) + pπ(m− k), m = 1, 2, ..., L− 1,

π(0) =
1 − p

p
π(1). (2.59)

where we define π(m) = 0 for m < 0.
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Proposition 2.7.1 Let m = r(k+ 1) + j, where j = m mod (k+ 1). The steady state probability

π(m) is given by

π(m) = π(0)
p

(1 − p)m
·

r∑

i=0

(−1)i
(
pi−1Ci−1,(r−i)(k+1)+j+p

iCi,(r−i)(k+1)+j−1

)
(1−p)ik, m = 0, 1, 2, ..., L.

(2.60)

The probability π(0) can be obtained using the normalizing condition
∑L

m=0 π(m) = 1. The coeffi-

cients, Ci,j, are given by

Ci,j = Cj,i =

(
i+ j

i

)
=

(
i+ j

j

)
. (2.61)

Ci,j can also be calculated from the recursion

Ci,j = Ci,j−1 + Ci−1,j . (2.62)

The first few values of Ci,j are given in the array below

(i, j) −1 0 1 2 3 ...

−1 0 1 0 0 0 ...
0 0 1 1 1 1 ...
1 0 1 2 3 4 ...
2 0 1 3 6 10 ...
3 0 1 4 10 20 ...

...
...

...
...

...
. . .

(2.63)

Proof. It can be shown using induction that the steady state probabilities given by Equation (2.60)
satisfy the steady state balance equations in Equation (2.59). The complete proof is given in
Appendix A.1. �

The steady state probabilities of the window size, Prob(W = w), can be obtained by using
the relation

Prob(W = w) = Prob

(
Y =

log[Wmax] − log[w]

log[α]

)
. (2.64)

We note that log[Wmax]−log[w]
log[α] is an integer since the state space of W , W, is of the form W =

{Wmin · αi, i = 0, 1, ..., L}. The jth moment of W can be obtained from

E[W j ] =
∑

w∈W

wjProb(W = w). (2.65)

The computational cost for obtaining the moments using Equation (2.65) is much higher than if
we use either Equation (2.45) or Equation (2.51).

In a similar way, the steady state probabilities for the stationary process W can be derived for
the scenario when there are lower and upper bounds on the window size and there are congestion
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losses at Wmax (i.e., Scenario (iii) with a lower bound on the window size). For this scenario, the
recursion of Equation (2.59) is modified to

π(m) = (1 − p)π(m+ 1) + pπ(m− k), m = k + 1, k + 2, ..., L− 1,

π(i) = (1 − p)k−iπ(k), i = 0, 1, ..., k. (2.66)

It can be seen that Equation (2.66) for m ≥ k+1 is same as Equation (2.59) for m ≥ 1. Therefore,
we can use Proposition 2.7.1 to obtain the probabilities π(m),m ≥ k + 1 as a function of π(k).

Since the probabilities are obtained as a function of π(k), we first substitute π(0) = π(k) (1−p)
p in

Equation (2.60), and then we obtain

Proposition 2.7.2 The steady state probability π(m) is given by

π(m) = π(k)
1

(1 − p)m−k
·

r∑

i=0

(−1)i
(
pi−1Ci−1,(r−i)(k+1)+j + piCi,(r−i)(k+1)+j−1

)
(1 − p)ik,

m = k + 1, k + 2, ..., L,

π(m) = π(k)(1 − p)k−i, m = 0, 1, ..., k.

The probability π(k) can be obtained from the normalizing condition
∑L

m=0 π(m) = 1.

We note that in the above equations we compute the probabilities with respect to π(k) unlike in
Equation (2.60) where the probabilities are computed relative to π(0).

Thus, we have obtained the steady state distribution of the window size of the MIMD con-
gestion control algorithm in the presence of a window-independent loss process. We shall compare
the results obtained in this subsection with simulations in Section 2.10. Next, we study the model
with a window-dependent loss process.

2.8 Window-dependent loss process

In this section, we consider a model in which the losses in an RTT depend on the window size
in that RTT. Specifically, we assume that each packet is lost (or, equivalently, is in error) with a
constant probability q. As a consequence of this assumption, the probability of one or more packet
losses in an RTT is no longer independent of the window size in that RTT. First, we present the
model with the window-dependent loss process. Then we propose an approximation to this model
which will enable us to compute the average window size in this model using the expression for the
average window size in the window-independent loss model with no lower bound (Scenario (ii)).

Let Wn be the window size at the end of the nth RTT. Therefore, the source transmitted
Wn packets during the nth RTT. Let pn denote the probability that one or more losses occurred
during the nth RTT. Then,

pn = 1 − (1 − q)Wn . (2.67)

The source will receive the loss notifications for these Wn packets during the (n+ 1)th RTT, and
will react accordingly. The window size Wn+1 satisfies the recursive equation

Wn+1 = max min(An+1Wn,Wmax),Wmin), (2.68)
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where An+1 is defined as

An+1 =

{
α w.p. 1 − pn,
β w.p. pn.

(2.69)

Instead of obtaining an explicit expression for the distribution function of the steady state
process W , we propose an approximation through which we can obtain a closed form expression
for the average sending rate.

Let us assume that Wmin = 0. This model was studied in Scenario (ii), albeit with a window-

independent loss process. For q · E[W ] < 1 24 , we can approximate pn as

pn ≈ qWn. (2.70)

Using the approximation of Equation (2.70), the average loss rate, E[p], in an RTT is given by

E[p] = qE[W ]. (2.71)

We now substitute E[p] = qE[W ] for the probability of loss in the expression for computing the
average window size in Scenario (ii) (i.e., in Equation (2.51) with j = 1.). For j = 1, Equation (2.51)
gives us

E[W ] = Wmax(1 − (k + 1)p)
1 − α−1

pα−(k+1) − α−1 + (1 − p)
, (2.72)

and Equation (2.72) together with Equation (2.71) gives

E[W ] = Wmax(1 − (k + 1)qE[W ])
1 − α−1

qE[W ]α−(k+1) − α−1 + (1 − qE[W ])
. (2.73)

Equation (2.73) is a quadratic equation in E[W ], namely

c2E[W ]2 + c1E[W ] + c0 = 0, (2.74)

where c2 = q 1−α−(k+1)

1−α−1 , c1 = −(1 + (k + 1)qWmax), and c0 = Wmax. Therefore, its roots can be

explicitly written as

E[W ]1,2 =
−c1 ±

√
c21 − 4c2c0

2c2
. (2.75)

Proposition 2.8.1 The solution of Equation (2.74) which satisfies the inequality E[W ] ≤ Wmax

is

E[W ] =
−c1 −

√
c21 − 4c2c0

2c2
. (2.76)

24In some way, this is a self referential condition. That is to say, even though we are not aware of the value of

E[W ], we assume this condition is satisfies in the computation of E[W ]. Later, we shall see that the E[W ] obtained

does indeed satisfy this condition, i.e, this condition is self consistent. Also, we can replace this condition with

qWmax < 1, but this condition turns out to be restrictive on q.
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Proof. Please see Appendix A.2. �

The average window size obtained in Equation (2.76) is a function of Wmax. For networks with
sufficiently large capacity (i.e., when Wmax → ∞)), the dependence of the average window size on
the packet loss probability q is given by the following proposition.

Proposition 2.8.2 In large capacity networks, the average window size observed by an MIMD

connection in the presence of a packet loss probability q is given by25

lim
Wmax→∞

E[W ] =
1

q(k + 1)
. (2.77)

Proof. Please see Appendix A.3. �

Therefore, the throughput obtained by an MIMD connection is inversely proportional to the packet
loss probability, q. This result is similar to the result obtained in [BB01] and [Kel03b]. We shall
also obtain a similar proportionality in Chapter 3. We can contrast this inverse proportionality of

the throughput with the inverse square root proportionality (i.e., ∝ q−0.5) of the throughput for
an AIMD connection [OKM96].

In Equation (2.76) we have obtained an expression for the approximate average window size
in the model with window-dependent loss process. We shall compare this approximation with
simulation results in Section 2.10.

2.9 Window-independent first-order Markovian loss process

In this section, we shall assume the loss rates process to be a first-order Markov chain. The first-
order Markov model introduces correlations between the loss rates in successive RTTs. We shall
assume that the lower bound on the window size, Wmin, is zero. This model is similar to Scenario
(ii), albeit with an first-order Markov loss process.

Let Rn denote the state of the loss process in the nth round trip time. We assume that Rn

can take two values:“GOOD” (state 0) and ”BAD” (state 1). When Rn is in the “GOOD” state, the
loss rate is zero. When Rn is in the “BAD” state, the loss rate is unity. Let The transitions of Rn

take place at intervals of RTT. Let P denote the transition probability matrix for Rn. We define
P as

P =

( 0 1

0 g 1 − g
1 1 − b b

)
. (2.78)

We define the vector 1
′ = [1 1]′, i.e., the transpose of the vector [1 1]. Let ξ denote the steady

state probability vector of the loss process. Then, ξ satisfies the equations

ξ = ξP and ξ1′ = 1, (2.79)

and is given by

ξ =

[
1 − b

2 − b− g

1 − g

2 − b− g

]
. (2.80)

25From this relation, we can see that the condition qE[W ] < 1 is indeed satisfied.
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The average loss rate observed by the source can be computed as

pa =
1 − g

2 − b− g
(2.81)

With this definition of the loss process, we note that b is the probability of one or more losses in
the (n + 1)th RTT given there were one or more losses in the nth RTT. We shall call b as the
burstiness parameter. For a fixed average loss rate, we shall be interested in evaluating the effect
of the burstiness parameter on the expected window size.

The process Wn satisfies the recursive equation

Wn+1 =

{
αWn, if Rn = 0,
βWn, if Rn = 1.

(2.82)

As in Section 2.7.3, we define Yn as

Yn =
log[Wmax] − log[Wn]

log[α]
. (2.83)

The couple (Yn, Rn) forms a two-dimensional Markov chain with a transition probability matrix of
(Yn, Rn) which is of M/G/1-type [Neu81]. The necessary and sufficient condition for the process
(Yn, Rn) to converge to a stationary and ergodic process (Y,R) is given by [Neu81]

pa(k + 1) < 1. (2.84)

Let Y0(z) be defined as

Y0(z) =
∑

j

Prob(Y = j, R = 0)zj . (2.85)

We define Y1(z) in a similar way.

Proposition 2.9.1 The vector Y(z) = [Y0(z) Y1(z)] can be derived as

Y(z)[QPzk+1 − Iz + (I −Q)P ] = (1 − z)Y(0)(I −Q)P, (2.86)

where

Q =

[
0 0
0 1

]
, (2.87)

and I is the 2 × 2 identity matrix.

Proof. Since the matrix P is of rank one, from Theorem 7 in [LZ96], the vector Y(0) can
be obtained up to a multiplicative constant by solving

Y(0) = Y(0)(PQ+ (I − P )QG), (2.88)

where G is a rank one matrix given by G = 1
′[g 1 − g]. The multiplicative constant can be

computed using the normalization equation Y(1)1′ = 1 along with Equation (2.86). Hence, we get

Y(z) = (1 − z)(1 − (k + 1)pa)

[
1

1 − g

g

]
(I −Q)P (QPzk+1 − Iz + (I −Q)P )−1. (2.89)
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�

Let E[W0] and E[W1] denote the expected window size when the loss process is in state 0

and in state 1, respectively. Since W and Y and related by Equation (2.83), the vector E[Wj ] =

[E[W j
0 ] E[W j

1 ]] can be obtained as

E[Wj ] = W j
maxY(α−j). (2.90)

2.10 Simulation results

In this section, we shall compare the results obtained through analysis with simulation results.

2.10.1 Simulation setup

The simulation were performed using the publicly available software ns-2 [MF]. As mentioned in
Section 2.3, Scalable TCP uses the MIMD algorithm in the congestion avoidance phase. Therefore,
we shall validate our analytical findings on the MIMD algorithm by simulation results of Scalable
TCP.

The simulation setup consists of a source which is connected to a destination by means of
a data link. The link bandwidth is 150Mbps and the two way propagation delay is 120ms. The
source has infinite amount of data to send. Since Scalable TCP differs from the standard TCP
only in the increase algorithm, the rest of the congestion control mechanism (i.e., the i.e., the fast

recovery/retransmit phase, timers, etc.) of Scalable TCP is taken to be the same as the NewReno
version of the standard TCP. The bandwidth-delay product for this system is approximately 2250
packets (packet size is 1040 bytes). In the Scalable TCP algorithm that we have implemented in
ns-2, the following assumptions are made:

1. The minimum window size, Wmin, is 8. It has been recommended in [Kel03b] to use the
Scalable algorithm after a certain threshold. The author proposed Wmin = 16.

2. There is no separate slow start phase since slow start can be viewed as a multiplicative
increase algorithm with α = 2.

3. The increase factor, α, is taken to be 1.01, and the decrease factor, β, is taken to be 0.86.

This value of β gives k = − log[β]]
log[α] ≈ 15. The values of α and β recommended in [Kel03b] are

α = 1.01 and β = 0.875.

In the simulations, the performance measures of interest are obtained by sampling the window size
at intervals of RTT = 0.12s. We would like to note that the value of the RTT is very close to
the propagation delay in the present setting, hence it does not vary much. Our main performance
measure of interest will be the throughput obtained by the source. We define throughput as the
average number of packets sent per RTT. With this definition, the throughput from the analysis
can be obtained by computing E[W ]/RTT.

2.10.2 Window-independent loss process

First, we discuss the results of the simulations for the window independent loss process, which was
analysed in Section 2.7.
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Figure 2.8: Distribution function of the window size, W , for Scenario (i). ζ = 1.55.

1. Scenario (i): In Figures 2.8 and 2.9, the probability distribution function of W , which ob-
tained through analysis (obtained from Equation (2.42)) and simulations, is shown for two
different values of the loss rate, p. Depending on the value of the root, z0, of Equation (2.41),
the distribution can be seen to become heavy tailed. For example, for p = 0.07, the tail
decreases at rate 1.55 indicating the heavy tailed nature of the window size. Figure 2.10
shows the throughput as a function of the loss rate, p. The error bars are the 99% confidence
intervals. In the models which we considered, the window size could take non-integer values.
In practice, however, the window size (or, strictly speaking, the number of packets in the
network) takes only integer values. For example, when the window size is 8.5, the sender
sends 8 packets. This can result in a discrepancy between the simulations and the theoretical
function.

2. Scenario (ii): Figure 2.11 shows the throughput as a function of the loss rate, p, for the
scenario in which the maximum window at the sender is limited by the receiver’s advertised
window. The receiver buffer is assumed to be limited to 500 packets. The error bars are
the 99% confidence intervals. A good match is observed between the simulations and the
analysis.

3. Scenario (iv): We now compare the results of Scenario (i) and Scenario (ii) with those of the
Scenario (iv) and simulations. Since Scenarios (i) and (ii) are approximations to Scenario
(iv), we shall be able to discern the range of loss rates for which the approximations are fairly
accurate. In Figure 2.12, the throughput obtained from the different scenarios and simulations
is plotted as a function of loss rate. The vertical line p = 1/(k+ 1) separates the two regions
where Scenario (i) and Scenario (ii) are valid, respectively. As p approaches 1/(k + 1) from
either direction, the approximations diverge from the simulation results. However, Scenario
(i) gives a good estimate when (k + 1)p >> 1, i.e., p >> 0.625 (k = 15 in the simulations).
Similarly, Scenario (ii) gives a good approximation of the system when p << 0.625. The
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Figure 2.9: Distribution function of the window size, W , for Scenario (i). ζ = 2.53.
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Figure 2.10: Throughput (pkts/RTT) versus loss rate, p, for Scenario (i).
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Figure 2.11: Throughput (pkts/RTT) versus loss rate, p, for Scenario (ii).

exact scenario (i.e., Scenario (iv)) fits well throughout the range of p. The throughput for
Scenario (i) is shown for p ≥ 0.068 because ζ (in Equation (2.45)) is > 1 for p ≥ 0.0673.

The computation of E[W ] for different scenarios, requires different computational complexity. In
order to obtain E[W ] of Scenario (i), we need to compute the largest root of the k + 1 degree
polynomial that is given by Equation (2.41). Once the largest root is obtained, we can compute all
the moments of the window size using Equation (2.45). In Scenario (ii), the expected window size
can be obtained using Equation (2.49) and Equation (2.51), and is relatively easier to compute than
the E[W ] of Scenarios (i) and (iv). The expected window size of Scenario (iv) appears to require a
large number of computations. Unlike in Scenario (i) and (iv), where the number of computations
required is independent of the number of states of W , the computation of E[W ] in Scenario (iv)

requires the computation of the probabilities that are given Equation (2.60).

2.10.3 Window-dependent loss process

We now compare the approximate throughput formula for the window dependent loss model that is
given by Equation (2.76) with simulation results. The simulation setup is as before. In Figure 2.13
and Figure 2.14, the throughput is plotted as a function of the packet loss probability, q, for two
different maximum window sizes, Wmax = 500 and Wmax = 2000. The approximation seems to
give a good match for loss probabilities less than 0.001.

2.10.4 Window-independent first-order Markovian loss process

The effect of bursty losses on the behaviour of the AIMD algorithm was studied in [AAB00b]. It
was observed that, in the absence of explicit window limitation, the throughput of TCP improved
as the burstiness in the losses increased. In this subsection, we study the behaviour of the MIMD
algorithm when burstiness increases in the losses.
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Ż = − α
Xmax exp(−z)

0
Πc

E[Xj ]
1
j

j

x1

x2

(1,0)

(0,1)

slope = θ

slope = θ/β

slope = θ · β
ω = 1, i = 0

ωβi

ωβi+1

ωβi−1

ωβ−i

ωβ−(i+1)

ωβ−(i−1)

fairness line

slope = κ

θ(0)

θ(t)

log[β]

an

s(0)

s(t)

Figure 2.12: Throughput (pkts/RTT) versus loss rate, p, for Scenarios (i), (ii), and (iv)
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Figure 2.13: Throughput versus packet loss probability for the window dependent loss process.
Wmax = 500.
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Figure 2.14: Throughput versus packet loss probability for the window dependent loss process.
Wmax = 2000.

In order to study the effect of burstiness, we fix the average loss rate, pa, given in Equa-
tion (2.81), and vary the burstiness parameter b. As b increases, the probability that a loss would
occur in the following RTT given that a loss occurred in the present RTT also increases. Therefore,
losses tend to becomes more bursty as b increases. In Figure 2.15, the average loss rate is set to
0.02. We observe that the throughput decreases as the burstiness parameter increases. This obser-
vation may seem to be contrary to that in [AAB00b] where it was noted that bursty losses improve
the throughput. However, we note that, unlike in [AAB00b], in this study the sender’s window is
limited by the receiver’s advertised window, and this leads to the decrease in throughput.

As the average loss probability increases, the effect of bursty losses also increases. The graph
of throughput versus the burstiness parameter for pa = 0.04 is given in Figure 2.16.

2.11 Summary and conclusions

In this chapter we studied the performance of the MIMD algorithm in the presence of different
loss processes. First, we presented a discrete time model for the evolution of the window size.
The logarithm of the window size process was shown to be equivalent to the evolution of workload
in a G/G/1 queue. We considered three loss processes:(i) window-independent loss process; (ii)

window-dependent loss process; and (iii) window-independent first-order Markovian loss process.
The moments of the window size process were obtained when the loss processes were window-
independent and window-independent first-order Markovian. For the window-dependent loss process,
we proposed an approximation using which we obtained the expected window size. The results
obtained using the above analysis were validated through simulations.
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Figure 2.15: Throughput versus burstiness parameter. pa = 0.02. Wmax = 500.
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Figure 2.16: Throughput versus packet loss probability. pa = 0.04. Wmax = 500.



Chapter 3

Performance analysis of congestion control algo-

rithms in continuous time

In the previous chapter we studied the behaviour of the window size of the MIMD algorithm
in discrete time. In this chapter, we shall study window-based congestion control algorithms in
continuous time. We shall start by considering a general increase algorithm and an instantaneous
decrease algorithm in the presence of a window-dependent random loss process. We shall derive the
Kolmogorov equation for the stationary distribution of the window size process. The window size
process will be shown to be equivalent to the workload in a queue with workload-dependent arrival
and service rates. This equivalence will enable us to give conditions under which two algorithms will
have similar behaviour. We shall again derive the performance measures for the MIMD algorithm
in continuous time.

The results in this chapter have appeared in [AAKP05].

3.1 Introduction

In the previous chapter, we studied the performance of the multiplicative increase multiplicative
decrease (MIMD) congestion control algorithm in discrete time. We shall now study in continuous
time the performance of a general increase and instantaneous decrease algorithm in the presence
of a window-dependent loss process. The subject of this performance analysis was motivated by
the following two observations. Firstly, while the behaviour of the additive increase algorithm in
various loss environments has been a subject of research during the past few years (see, for example,
[BHCKS04] for an extensive survey, and also Section 2.6), other increase algorithms have received
less attention. With the rapid increase in network capacities, various increase algorithms have been
proposed as alternatives to the additive increase algorithm. For example, CuBIC proposes a cubic
increase algorithm and Scalable TCP proposes a multiplicative increase algorithm. A framework
to analyse a general increase algorithm can help in comparing various proposals. Secondly, a
congestion control has to operate in vastly heterogeneous environments. The heterogeneity can
arise from, among others, geographical separation (which affects the round trip delay), nature
of the underlying physical links (for example, a wireless link can suffer from sustained periods
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42 Chap. 3 Performance analysis of congestion control algorithms in continuous time

of losses), and the buffer management scheme1. This heterogeneity can give rise to loss processes
which are different from one another. Therefore, through this study we hope to provide a framework
which can be used to analyse and compare different increase algorithms in the presence of different
window-dependent loss rates. We would like to emphasize that we shall study only “loss-based”
congestion control algorithms, which are described in Section 2.1.

3.2 System model

Let us consider a source which wants to send an infinite amount of data using a congestion control
algorithm which operates in continuous time. As described in Section 2.1, a congestion control al-
gorithm can be modelled using three building blocks. We shall now describe the increase algorithm,
the decrease algorithm and the loss process, which together model the behaviour of the congestion
control algorithm.

Let Xt denote the window size at time t. As has been assumed in related articles (see,
for example, [KK02], [AABQ01a] and [BHCKS04]), we consider the window size as an infinitely
divisible fluid. The window size is assumed to be bounded below by Xmin and bounded above by
Xmax.

3.2.1 The increase algorithm

In the absence of losses in the interval (τ, τ +∆), the dynamics of the window size can be described
by the differential equation

Ẋt = f(Xt), ∀t ∈ (τ, τ + ∆), (3.1)

where f(x) > 0, ∀x, and f is a continuous function. We shall assume that, for a given value of
Xτ , there exists a unique solution of the above differential equation in the interval (τ, τ + ∆). The
window size in the continuous time system can be interpreted as an interpolation of the window
size in the discrete time system. An additive increase algorithm that increases the window size
by c units in every RTT can be interpolated by a linear increase algorithm with f(Xt) = c

RTT .

Similarly, a multiplicative increase algorithm that increases the window size by a factor of αd every

RTT, can be interpolated by an exponential increase algorithm with f(x) = log[αd]
RTT x.

3.2.2 The loss process

As mentioned in Section 2.1.2, we shall model the loss process observed by the source as a point

process [BB03]. The points correspond to the arrival of loss notifications2. Specifically, we shall
assume that the loss process is a simple Poisson point process with an intensity which depends only
on Xt. Let Nt be the number of loss events observed by the source in the interval (0, t]. Using the
Poissonian assumption, we have the following relations

Prob(Nt+δ −Nt = 0) = 1 − Λ(Xt)δ + o(δ), (3.2)

Prob(Nt+δ −Nt = 1) = Λ(Xt)δ + o(δ), (3.3)

1A buffer management scheme determines how a router drops a packet (either incoming or from the buffer) when

the buffer starts to fill up.
2The loss could be due to either congestion or random events not related to congestion
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where Λ(x) > 0, ∀x, is the window-dependent intensity. We shall assume that Λ(Xt) is a continuous
function. For example, the loss process Λ(x) = λx corresponds to a window-dependent loss process
in which each packet is dropped with a probability λRTT [BHCKS04] (assuming λRTT < 1). The
dependence of Λ on the window size could also be determined by some AQM scheme in the router
which may decide to drop/mark packets according to some function of the window size.

3.2.3 The decrease algorithm

Let {τn}n≥1 denote the time instant when the nth loss notification arrives. On the reception of a
loss notification, the algorithm decreases its window size instantaneously. Specifically,

Xτn+ = g(Xτn), (3.4)

where we assume that the function g(x) satisfies the properties

1. g(x) < x, x ∈ (Xmin, Xmax], g(Xmin) = Xmin, and

2. if x1 < x2, then either g(x1) < g(x2) or g(x1) = g(x2) = g(Xmin).

These properties imply that the set

s(x) = {u ≥ x : g(u) ≤ x}, (3.5)

is connected. We shall use g−1(x) to denote sup s(x), i.e., g−1(x) is the maximal element from
which Xt can jump to a window size of less than or equal to x. We also assume that any sample
path of Xt is left continuous and has right limits.
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Figure 3.1: A Sample path of the process Xt (top figure) and Nt (bottom figure)

In Figure 3.1, we show a sample path of the processes Xt and Nt.
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3.2.4 A few words on the modelling assumptions

As in Chapter 2, we shall make certain assumptions in the model. We shall consider a source which
has an infinite amount of data to send. The congestion control algorithm is assumed to operate
in the congestion avoidance phase. Therefore, the window behaviour is mainly determined by the
increase algorithm, the decrease algorithm and the loss process as have been described above. We
also make the following two assumptions:

1. Constant round trip times: The window dynamics in between loss instant depends on whether
the round trip times are constant or not. As the round trip time increase the interpolation
function also changes. For instance, in [KA04] it has been observed that a multiplicative
increase algorithm changes to an additive increase algorithm as the buffer size increase.

2. Instantaneous feedback: The source is assumed to receive loss notification immediately and
not after a delay of RTT. By means of this assumption, the loss process observed by a source
depends on its current sending rate. If we were to assume delayed feedback then the loss
process would depend on Xt−RTT making the analysis difficult.

3.2.5 Performance measures

As observed in Section 3.2, the behaviour of the window size is determined by the 3-tuple<f , g, Λ>,
which we shall denote by ”system”. Let F : X 7→ �

+ be a function of the window size process. For a

given system, we shall be interested in the time-average expected value of this function, Eta[F (X)],
i.e.,

Eta[F (X)] = lim
T→∞

1

T

∫ T

0
F (Xt)dt. (3.6)

The function F could be suitably chosen so as to obtain the performance measure of interest. For
example, F could be taken to be the identity function, F (X) = X, in which case one would obtain
the time-average sending rate for the system. If F were to be the indicator function of the event
Xt ≤ x, I(Xt ≤ x), then one would obtain the time-average distribution of the window size process,
Π(x), i.e.,

Π(x) = lim
T→∞

1

T

∫ T

0
I(Xt ≤ x)dt. (3.7)

Usually, the performance measures of a continuous time system are obtained by sampling
the system at some discrete time instants. For example, a router in the Internet may monitor its
queue size only at certain time intervals in order to reduce the overhead due to measurements. The
performance measures obtained by observing the system at particular time instants are called as
event-averages [MY95]. Let ST denote the number of sampling events in the interval (0, T ]. The
process ST is assumed to be such that limT→∞ ST → ∞. The event-average distribution function,

Π̃(x), is obtained from the relation

Π̃(x) = lim
T→∞

1

ST

ST∑

i=1

I(Xi ≤ x), (3.8)

where Xi is value of Xt at the ith sampling instant.
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3.3 Outline and contribution

In Section 3.4, we derive the Kolmogorov equation for the stationary distribution of the window
size process of a given system. The solution of this equation will enable us to compute performance
measures of interest. In Section 3.5, by means of the Kolomogorov equation, we shall provide
conditions under which the window size process in two systems has the same behaviour. Further-
more, we shall show that the evolution of the window size is similar to the evolution of workload
in queueuing system with workload-dependent arrival and service rates. Using this analogy, we
shall give conditions under which two congestion control algorithms will have the same stationary
distribution and, hence, have same performance.

In Section 3.6, we shall study a system with MIMD algorithm and constant loss intensity.
We shall derive the performance measures by relating the window size with the workload in an
equivalent queueing system. We shall also show that the window evolution of a general increase
algorithm is equivalent to that of a linear increase algorithm. In Section 3.7 we shall derive the
moments of the window size for the MIMD algorithm and linear loss intensity. We shall validate
our analytical results by simulations in Section 3.8

We note that our analytical method is similar to that adopted in [AABQ01a] and [BHCKS04],
where the authors only studied the window size of the AIMD algorithm.

3.4 The Kolmogorov equation

We first note that the process {Xt} is a Markov process, i.e., the evolution of {Xt}t>T conditioned
on {Xs}s≤T is determined by XT . We shall assume that the process {Xt} is stationary and ergodic.
Therefore, we have

Π(x) = lim
T→∞

1

T

∫ T

0
I(Xt ≤ x)dt = lim

t→∞
Prob(Xt ≤ x), (3.9)

We shall assume that Π(x) is continuous everywhere except at Xmax. Let π(x) be the time-average
density function of the stationary process, X. We note that, depending on g(x), π(x) may have
points of discontinuity in the interval (Xmin, Xmax). In the rest of this chapter, we shall assume
that the upper bound is due to the receiver’s advertised window, Xmax = Wrecv. The relation
between Π(x) and Πcl(x), the limiting distribution when Xmax is due to the congestion losses, is
given in [AABQ01a], and we state it below.

Πcl(x) =
Π(x)

1 − φ(Xmax)
, (3.10)

where φ(Xmax) = 1 −
∫ Xmax−

Xmin

dΠ(x),

is the atom of the stationary distribution at the state Xmax.
Let M denote the set [g(Xmax), Xmax), and let I(M) be the indicator function of x ∈ M.

We shall assume that the functions Π(·) and Π̃(·) satisfy the condition

Π(Xmax) = 1, and Π̃(Xmax) = 1. (3.11)
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Proposition 3.4.1 For a system <f, g,Λ>, the unique time-average stationary distribution func-

tion, Π(x), is a solution of the equation

f(x)
dΠ(x)

dx
= Λ(Xmax)φ(Xmax)I(M) +

∫ g−1(x)

x
Λ(u)dΠ(u), (3.12)

where φ(Xmax) = 1 −
∫ Xmax−

Xmin

dΠ(x). (3.13)

Proof. Please see Appendix B.1. �

Similarly, we can also obtain the event-average stationary distribution of the window size
process embedded just before loss instants.

Proposition 3.4.2 For a system <f, g,Λ>, the unique event-average stationary distribution func-

tion, Π̃(x), is a solution of the equation

Π̃(x) = A(x− g(Xmax))φ̃(Xmax)I(m) +

∫ g−1(x)

Xmin

A(x− g(u))dΠ̃(u). (3.14)

where φ̃(Xmax) = 1 −
∫ Xmax−

Xmin

dΠ̃(x), (3.15)

and A(x− g(·)) = 1 − exp

(
−
∫ x

g(·)

Λ(y)

f(y)
dy

)
. (3.16)

Proof. Please see Appendix B.2. �

For a function F (X), we define

E[F (X)] =

∫ Xmax−

Xmin

F (x)dΠi(x) + F (Xmax)φ(Xmax). (3.17)

3.5 Relation between two systems

Let us consider two systems, <f1, g1,Λ1> and <f2, g2,Λ2> which have no lower bound and no
upper bound on the window size, i.e., Xmin = 0, Xmax = ∞. We shall assume that the window size
process in each system has a unique stationary density, πi(·), i = 1, 2. We shall provide a condition
under which π1 is related to π2. Since Xmax = ∞, the point mass at Xmax, φ(Xmax), is equal to
zero. From Equation (3.12), the stationary density of the window size in System i, πi, satisfies the
equation

fi(x)πi(x) =

∫ g−1
i (x)

x
Λi(u)πi(u)du, x ∈ (0,∞), i = 1, 2. (3.18)

Proposition 3.5.1 If <f1, g1,Λ1> and <f2, g2,Λ2> are two systems such that

1. g1(x) = g2(x) = g(x), ∀x, and

2. f1(x)
Λ1(x) = f2(x)

Λ2(x) = κ(x), ∀x,
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then

π1(x)

π2(x)
= C

Λ2(x)

Λ1(x)
= C

f2(x)

f1(x)
, ∀x, (3.19)

where C = E[Λ1(X)]

E[Λ2(X)]
.

Proof. We note that we have assumed f(x),Λ(x) > 0, ∀x. From Equation (3.18) and Condition 1,
πi(x) satisfies

fi(x)

Λi(x)

Λi(x)πi(x)

E[Λi(X)]
=

∫ g−1(x)

x

Λi(z)πi(z)

E[Λi(X)]
dz, x ∈ (0,∞), i = 1, 2. (3.20)

Let us define π̂i(x) = Λi(x)πi(x)

E[Λi(X)]
. We note that

∫
x π̂(x)dx = 1. Using Condition 2,

κ(x)π̂i(x) =

∫ g−1(x)

x
π̂i(z)dz, i = 1, 2. (3.21)

Since π̂1 and π̂2 are solutions to the same equation which has a unique solution, we can conclude
that π̂1(x) = π̂2(x), ∀x, thereby obtaining the relation in Equation (3.19). �

We can also relate the density function of the stationary window size process in System i

observed just before loss instants, i.e., the event-average density function, π̃i(·).

Proposition 3.5.2 Under conditions stated in Proposition 3.5.1, the event-average distribution of
the stationary window size process in the two systems is related as

Π̃1(x) = Π̃2(x), ∀x. (3.22)

Proof. For System i, the point mass at Xmax = ∞, φ̃i(Xmax) will be zero. Therefore, from

Equation (3.14), Π̃i(x) is a solution of the equation

Π̃i(x) =

∫ g−1(x)

Xmin

Ai(x− g(u))dΠ̃i(u). (3.23)

Since Ai(x− g(u)) depends on the ratio Λ(x)
f(x) , which is same for both the systems, A1(x− g(u)) =

A2(x− g(u)). Therefore, Π̃1(x) and Π̃2(x) are solutions to the same equation, which has a unique
solution. Hence, we obtain the relation in Equation (3.22). �

In order to illustrate the results in this section, we shall make use of two particular systems:

1. System A will refer to a system with an AIMD algorithm and a constant loss intensity, i.e.,
<α, βx, λ>; and

2. System M will refer to a system with an MIMD algorithm and a linear loss intensity, i.e.,
<αx, βx, λx>.
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The window size process in both the systems is assumed to have the same lower and upper bounds.
The stationary density of the window size processes in these two systems will be denoted by πA(·)
and πM (·), respectively. The System A corresponds to the AIMD algorithm, which is used in
standard TCP, and a constant loss intensity, whereas the System M corresponds to the MIMD
algorithm, which has been proposed in Scalable TCP, and a linear loss intensity.

The result in Proposition 3.5.1 gives conditions under which we can analyse one system using
the analysis of a related system. For example, System A and System M satisfy the conditions in
Proposition 3.5.1. If we assume that the window size process in one of the systems has a unique
stationary distribution then we can obtain the time-average stationary distribution of the window
size process in the other system. Similarly, using Proposition 3.5.2, we can relate the event-average
stationary distribution of the window size process in the two systems.

Next, we study the the general increase and multiplicative decrease algorithm with a constant
decrease factor of β. Here we can get some more equivalence results for two related systems when
Xmin = 0 and Xmax <∞.

3.5.1 A queueing model for multiplicative decrease algorithms

Let us consider a system <f, g,Λ> in which g(x) = βx, where β < 1. We note that in this section
Xmin = 0 and Xmax <∞. We now introduce the transformation

Zt = log[Xmax] − log[Xt]. (3.24)

In the transformed system, Zt takes values in [0,∞). Here we are assuming that Xmin = 0. In
order to find the stationary distribution, ΠZ(·), when Xmin > 0, we can first find the stationary
distribution with Xmin = 0 and then use the truncation method [Asm03, Chapter 14]. We note that
this method can be used only when the unbounded process has a unique stationary distribution.

Let <fZ , gZ ,ΛZ> denote the system for the process {Zt}. From Equation (3.1) and Equa-
tion (3.24), we have the relations,

fZ(z) = −f(Xmax exp(−z))
Xmax exp(−z) , gZ(z) = z + log[1/β], and ΛZ(z) = Λ(Xmax exp(−z)). (3.25)

A sample path of the process {Xt} and the transformed process {Zt} is shown in Figure 3.2.
The evolution of the process {Zt} resembles the evolution of workload in a queue with workload-
dependent arrival rate, ΛZ(·), workload-dependent service rate, |fZ(·)|, and service requirements

of constant size, log[1/β]. Such a queueing system has been studied in [BBBK04]. The condition3

for the existence of a unique stationary distribution of the workload in the queueing system (and,
hence, for the process Zt) is given in [BBBK04], and can be stated as

lim sup
z→∞

log[1/β]
ΛZ(z)

|fZ(z)| < 1. (3.26)

The stability condition for System A requires

lim sup
z→∞

log[1/β]
λXmax

α
exp(−z) < 1, (3.27)

3The condition is necessary only for unbounded systems, i.e., systems with Xmin = 0. A system with Xmin > 0

is always stable because the process cannot escape from the closed and bounded set [Xmin, Xmax].
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Figure 3.2: The process Xt which has an instantaneous multiplicative decrease (top figure) is
transformed into a process which an instantaneous constant increase (bottom figure).

which is indeed satisfied for fixed values of the parameters α, β, and λ. Using the relation in
Equation (3.19), we can say that System M is also stable for fixed values of α, β, and λ. For
a stable system, the authors of [BBBK04] also provide a condition under which the stationary
distribution of the workload in the queueing system has an atom at state 0. The condition for the
existence of an atom at state 0 requires

∫ z

0

ΛZ(u)

|fZ(u)|du < ∞, ∀ z ∈ (0,∞). (3.28)

The existence of an atom at state 0 in the queueing system is equivalent to the existence of an
atom at state Xmax in the window size system. For System A (and consequently for System M)
this condition translates into

λXmax

α

∫ z

0
exp(−z) < ∞, ∀ z ∈ (0,∞), (3.29)

which is satisfied for fixed values of the parameters. Hence, the stationary distributions of the
window size processes in Systems A and M will have an atom at state Xmax, i.e., φA(Xmax) > 0

and φM (Xmax)> 0.
For the multiplicative decrease algorithm with Xmax <∞, Proposition 3.5.1 can be restated

as

Proposition 3.5.3 If <f1, g1,Λ1> and <f2, g2,Λ2> are two systems such that

1. g1(x) = g2(x) = βx, ∀x, and

2. f1(x)
Λ1(x) = f2(x)

Λ2(x) , ∀x,
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then

π1(x)

π2(x)
= C

f2(x)

f1(x)
= C

Λ2(x)

Λ1(x)
, (3.30)

where C =
Λ1(Xmax)φ1(Xmax)

Λ2(Xmax)φ2(Xmax)
if φi(Xmax) > 0. (3.31)

Proof. Using the transformation in Equation (3.24), each system has an equivalent queueing
system in which the service requirements are the same in both the systems. The proof then follows
from [BBBK04, Theorem 3.1]. �

The equivalence between the window size in a multiplicative decrease algorithm and the
workload in queue with workload-dependent arrival and service rates also helps us to derive the
relation between the stationary distribution of the window size observed just before loss instant in
both the systems, i.e., the event-average stationary distribution. Let π̃(·) denote the event-average
density of the window size process in System i.

Proposition 3.5.4 Under conditions stated in Proposition 3.5.3,

π̃1(x) = π̃2(x), ∀ x ∈ (0, Xmax), (3.32)

φ̃1(Xmax) = φ̃2(Xmax). (3.33)

Proof. As in the proof of Proposition 3.5.3, the proof follows from the equivalence relation of
the window size process and the workload process in a queue with workload-dependent arrival and
service rates, and from [BBBK04, Theorem 3.3]. �

If one of the systems has a constant loss intensity, then by the PASTA property [Wol89] the
time-average stationary distribution of the window size in that system is equal to the stationary
distribution observed just before loss instants in either system. For the two system example,
Proposition 3.5.4 implies that System A and System M have the same stationary distribution of
the window size process observed just before loss instants. Since the loss intensity is constant in
System A, this distribution is also the (time-average) stationary distribution in System A. Since
System A has been analysed in [AABQ01a], we can use PASTA and Equation (3.32) to obtain the
stationary distribution of the window size observed just before loss instants in System M. We shall
illustrate these results with simulative examples in Section 3.8.

Remark 3.5.1 The equivalence between a window size system and a queueing system is, in gen-
eral, not restricted to window size systems with multiplicative decrease algorithms. For a general

instantaneous decrease function, g(x), if we can solve the functional equation

h(g(x)) = h(x) + 1, (3.34)

for function h along with the conditions that h is a decreasing function with continuous first deriva-

tive4 and h : (0, Xmax] 7→ [0,∞), then we can use the transformation z = h(x) and obtain an equiv-

alent queueing system with workload-dependent arrival rate Λ(h−1(z)), workload-dependent service

rate f(h−1(z))dh(x)
dx |x=h−1(z), and constant service requirements of unity. The Equation (3.34) is

referred to as Abel’s functional equation. For the multiplicative decrease algorithm, the function

h(x) = log[Xmax]−log[x]
log[1/β] solves Equation (3.34).

4Since z = h(x), dz
dt

= f(x) dh(x)
dx

. Since f(x) dh(x)
dx

is the service rate in the queueing system it should be negative.
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3.6 System with MIMD algorithm and a constant loss intensity

In this section we shall analyse the behaviour of the window size process in a system with MIMD
algorithm and a constant loss intensity. The system is represented as <αx, βx, λ>. This system is
the continuous time equivalent of the system studied in Section 2.7

3.6.1 No upper bound on window size

First, we assume Xmin > 0 and Xmax = ∞. We introduce the transformation

Yt =
log[Xt] − log[Xmin]

α
. (3.35)

The domain of Y is the set [0,∞). The transformed window size system can be described by

fY (y) = 1, gY (y) = y − log[1/β]

α
and ΛY = λ. (3.36)

The transformed process is a linear increase constant decrease process. The dynamics of {Yn} are
as follows. In between loss instants the process {Yt} increases with rate unity. The inter-arrival
times for the loss notifications are exponentially distributed with intensity λ. On the arrival of a
loss notification the transformed window size is decreased by an amount θ = log[1/β]/α subject to
a lower bound of zero. In order to obtain the stationary distribution of {Yt}, we embed the process
just after loss instants. Let {Yn} denote the embedded process. The recursive equation for the
evolution of {Yn} as

Yn+1 = max(Yn +An −Dn+1, 0), (3.37)

where An denotes the interval of time between the nth and the (n+1)th loss instants, and Dn is the
amount of decrease at the (n+1)th loss instant. The random variables {An, n ≥ 1} are independent
and exponentially distributed with intensity λ. The random variables {Dn, n ≥ 1} are identical
and equal to θ. Thus, the evolution of {Yn} is similar to the evolution of the workload observed
just before loss instants in a D/M/1 queue. The stationary distribution of the transformed window
size process observed just after loss instants is given by [Kle75]

Prob(Y > y) =

(
1 − s∗

λ

)
e−s∗y, (3.38)

where −s∗ is the root of the equation s + λ = λesθ in Re(s) < 0. The stability condition for the
workload process of this D/M/1 queue and, equivalently, of the window size process {Yt} is

1

λ
< θ. (3.39)

From Equation (3.35) and Equation (3.38), the complementary distribution function the
stationary window size process, X, observed just after loss instants is given by

Π̃c
X(x) =

(
1 − s∗

λ

)(
x

Xmin

)− s∗

α

, x > Xmin. (3.40)
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There is an atom of size s∗

λ at Xmin.

Next, we obtain the the (time-average) stationary distribution of the transformed window
size process. We first note that the transformed window size just before the (n+ 1)th loss instant,

Y −
n+1, is given by

Y −
n+1 = Yn +An. (3.41)

Since An is exponentially distributed with parameter λ,

Prob(Y −
n+1 > y) = λ

∫ ∞

0
Prob(Yn > y − u|An = u)e−λudu (3.42)

= λ

∫ ∞

0
Prob(Yn > y − u)e−λudu (3.43)

= λ

∫ ∞

y
e−λudu+ λ

∫ y

0
Prob(Yn > y − u)e−λudu (3.44)

= e−λy + λ

(
1 − s∗

λ

)
e−s∗y

∫ y

0
e−(λ−s∗)udu (3.45)

= e−s∗y. (3.46)

Using PASTA property, the (time-average) stationary distribution of the transformed window size
process is the same as distribution observed just before loss instants. From Equation (3.35) and
Equation (3.46), the (time-average) complementary distribution function of the stationary window
size process, X, can be obtained as

Πc
X(x) =

(
x

Xmin

)− s∗

α

, x ≥ Xmin. (3.47)

3.6.2 No lower bound on window size

We now assume Xmin = 0 and 0 < Xmax < ∞. As in for the system with no upper bound, we
transform the window size using the transformation

Yt =
log[Xmax] − log[Xt]

α
. (3.48)

The domain of Y is the set [0,∞). The evolution of Y can be described by

fY (y) = 1, gY (y) = y +
log[1/β]

α
, and ΛY (y) = λ. (3.49)

We note that, unlike {Xt}, the process {Yt} is decreasing subject to a lower bound in between
loss instants. The inter-arrival times between losses are exponentially distributed with intensity λ,
and upon the reception of a loss notification the process {Yt} jumps up by a constant θ = log[1/β]/α.
The evolution of the process {Yt} is similar to the evolution of the workload in a M/D/1 queue with
arrival rate λ and service time θ. The condition for stability of the M/D/1 queue and, equivalently,
of the transformed system is

θ <
1

λ
. (3.50)
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The Laplace transform of the stationary distribution of the workload in the M/D/1 described
above and, equivalently, of the transformed process is given by [Kle75]

Y(s) = (1 − λθ)
s

s− λ+ λe−sθ
. (3.51)

From Equation (3.48) and Equation (3.51), we can obtain the moments of the stationary window
size process as

E[Xj ] = XmaxY (α−j). (3.52)

3.6.3 A transformation for the window size process

In the previous two subsections we noted that by transforming the process {Xt}, we obtained a
process with linear dynamics in between loss instants. This method of transforming Xt to a process
with linear dynamics in between loss instants can be extended to general increase algorithms. Let
us consider a system <f, g,Λ> with window size process Xt. We assume 0 < Xmin < Xmax < ∞.
Let f(x) be a function such that

f(x) =

∫
1

f(x)
dx. (3.53)

We now define the process
Yt = f(Xt). (3.54)

The transformed system can be described by

fY (y) = 1, gY (y) = g(f−1(y)), and ΛY (y) = Λ(f−1(y)), (3.55)

with 0 < f(Xmin) ≤ Yt ≤ f(Xmax) < ∞. The process {Xt} is now transformed to a system with
linear increase, general decrease, and a general loss intensity. We can thus study the performance
of a general increase algorithm by studying the performance of a linear increase algorithm albeit
with a different decrease algorithm and loss intensity. In Section 3.6.1 and Section 3.6.2, we made
the transformation f(x) = log[x] to obtain a linear increase algorithm.

3.7 System with MIMD algorithm and a linear loss intensity

In this section we shall obtain moments of the window size process in a system with MIMD algorithm
and a linear loss intensity (<αx, βx, λx>), i.e., the moments of the window size process in System M.
We shall assume that Xmin = 0 and Xmax = ∞. We can expect this system to approximate
the scenario when the lower and upper bounds are rarely attained. From Equation (3.12), the
Kolmogorov equation for this system is

αxπM (x) =

∫ x/β

x
λuπM (u)du. (3.56)

We now multiply both sides of the equation by xj−1 and integrate over x ∈ (0,∞) to obtain

α

∫ ∞

0
xjπM (x) = λ

∫ ∞

0
xj−1

∫ x/β

x
uπM (u)du dx, j = 0, 1, 2, . . . (3.57)
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which simplifies to

αE[Xj ] = λ

∫ ∞

0
u

∫ u

βu
xj−1dx πM (u)du j = 0, 1, 2, . . . (3.58)

=

{
λ log[1/β]E[X], j = 0;

λ (1−βj)
j E[Xj+1], j = 1, 2, . . . .

(3.59)

Therefore,

E[X] =
α

λ log[1/β]
, (3.60)

E[Xj+1] =
αjj!

λj
∏j

i=1(1 − βi)
E[X] j = 1, 2, . . . . (3.61)

Thus, all the moments are finite even when Xmin = 0 and Xmax = ∞. We note that the relation
E[X] ∝ 1/λ was also obtained using an approximation in Section 2.8.

3.8 Simulation results

In this section we compare the analytical results obtained in this chapter with simulation results.
The simulations were performed using the open source simulator ns-2 [MF]. The simulation setup
has a source and destination node connected using a link of capacity 150Mbps. The round trip
time is assumed to be 120ms. The packet size for data was taken to be 1040bytes. The BDP of this
network is roughly 2250 packets. We set the receiver’s advertised window to 500, i.e., Xmax = 500.
With this setting the RTT is almost a constant. In the simulation, we used the SACK option for
both standard TCP as well as Scalable TCP.

3.8.1 Relation between two systems

First, we compare the equivalence results obtained in Section 3.5. We continue with the two-system
example of System A and System M.

System A is the continuous time equivalent of the standard TCP with SACK, which uses
the AIMD algorithm. In the absence of losses, standard TCP increases the window size by one
packet every RTT. In continuous time, this increase corresponds to to setting fA(x) = 1/RTT .
The multiplicative decrease parameter for standard TCP is 0.5. The decrease parameter remains
unchanged for both the discrete time as well as the continuous time systems, i.e., gA(x) = 0.5x.
The loss process for this system has a constant loss intensity of ΛA(x) = λA/RTT .

System M is the continuous time equivalent of the Scalable TCP algorithm with SACK, which
uses the multiplicative increase multiplicative decrease algorithm. In the absence of losses, Scalable
TCP increases the window size by a factor of 1.01 every RTT. In continuous time, this corresponds
to setting fM (x) = log[1.01]x/RTT . The multiplicative decrease parameter for Scalable TCP was
set to 0.5. The author in [Kel03b] proposes a decrease parameter of 0.875. Since we need the two
systems to have the same decrease algorithm, we set the parameter to 0.5, i.e., gM (x) = 0.5x. The
loss process in this system will be ΛM (x) = λMx/RTT .

Since we are only interested in the ratio f(x)/Λ(x), in the following discussion we will scale
f(x) and Λ(x) by RTT. Thus, when we say that fA(x) = 1 the actual function used in the
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Figure 3.3: Time-average density function of the window size, X.

simulations will be fA(x) = 1/RTT . We scale the functions so as to simplify the notation. With
this description, the systems can be summarized as

System A =< 1, 0.5, λA > and System M =< 0.01x, 0.5, λMx >, (3.62)

where we have made the approximation log[1.01] ∼ 0.01.
First, we validate the analytical results obtained in Proposition 3.5.1 and Proposition 3.5.2.

We assume λA = 0.03 and λM = 0.0003. The two systems now satisfy the conditions in Proposi-
tion 3.5.1. Therefore, we need to verify

πA(x) =
E[ΛA(X)])

E[ΛM (X)]

ΛM (x)

ΛA(x)
πM (x) (3.63)

=
xπM (x)

E[XM ]
, (3.64)

where E[XM ] is the expected window size in System M. In Figure 3.3 we plot πA(x) and πM (x)x
47.67 ,

where πA(·) and πM (·) were obtained through simulations. In this particular example, through
simulations it was observed that E[XM ] = 47.67. We see that there is a good match between the
analytical prediction and the simulation results. Now, we compare the event-average distribution

function in the two systems. In Figure 3.4 we plot the functions Π̃c
A(x) and Π̃c

M (x). As was
predicted in Proposition 3.5.2 the two functions follow each other very closely.

We note that in the above example the loss intensity was such that the lower bound, Xmin,
and the upper bound, Xmax, were rarely reached. Hence, we could apply the results obtained for
the unbounded system.

Next, we validate the results for the two systems when there is a positive point mass at
state Xmax, i.e., φA(Xmax), φM (Xmax) > 0. The corresponding analytical results were obtained in
Proposition 3.5.3 and Proposition 3.5.4. We assume λA = 0.008 and λM = 0.00008. Again, these
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Figure 3.4: Event-average complementary distribution function of the window size, X.

two systems verify the conditions in Proposition 3.5.1. Therefore, we need to verify

πA(x) =
ΛA(Xmax)φA(Xmax)

ΛM (Xmax)φM (Xmax)

ΛM (x)

ΛA(x)
πM (x) (3.65)

=
φA(Xmax)

XmaxφM (Xmax)
xπM (x) (3.66)

(3.67)

From the simulations, we observed that φA(Xmax) = 0.052 and φM (Xmax) = 0.0184. In Figure 3.5,
we plot πA(·) and the RHS of Equation (3.66) in which all the parameters were obtained through
simulations. We note that the density function has discontinuities at Xmax and at g(Xmax) (i.e.,
at 0.5Xmax). A good match is observed between the analytical prediction and the simulation
results. In Figure 3.6, we compare the event-average complementary distribution function for the
two systems obtained through simulations. The simulation results validate the analytical result
obtained in Proposition 3.5.4.

3.8.2 System with MIMD algorithm and a constant loss intensity

Next, we validate the results obtained in Section 3.6. Here we only consider the performance
measures for System M. The parameters for this system were set to <0.01x, 0.8.0.47>. We note
that this set of parameters satisfies the stability condition in Equation (3.39). In Figure 3.7, we plot
the time-average complementary distribution function of the stationary window size process. The
analytical solution is obtained from Equation (3.47). The complementary distribution function of
the stationary window size process observed just after loss instants in shown in Figure 3.8. The
corresponding analytical solution was obtained in Equation (3.40). A good match is observed
between analysis and simulations.
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Figure 3.5: Time-average density function of the window size, X.
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Figure 3.6: Event-average complementary distribution function of the window size, X.
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Figure 3.7: Time-average complementary distribution function of the window size, X. s∗

α = 2.12.
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Figure 3.9: Moments of the window size of the MIMD algorithm with a linear loss intensity.

3.8.3 System with MIMD algorithm and a linear loss intensity

Finally, we validate the expression for the moments of the window size process of the system
considered in Section 3.7. We note that in this system there is no lower bound and no upper bound
on the window size. For the simulations, we set the parameter values to <0.01x, 0.5, 0.0003x>. In

Figure 3.9, we plot the function E[X j
M ]1/j as obtained through simulations and from Equation (3.60)

and Equation (3.61).

3.9 Summary and conclusions

In this chapter we studied a continuous time model for the window size of a congestion control
algorithm in the presence of a window-dependent Poisson loss process. We provided conditions
under which two congestion control algorithms have the same window size behaviour, thereby
enabling us to analyze one system using the analysis of the other. It was observed that the event-
average distribution of the window size in a system with AIMD algorithm and a constant loss
intensity is the same as the event-average distribution of the window size in a system with MIMD
algorithm and a linear loss intensity. We also obtained the performance measures for the MIMD
algorithm with window-independent and window-dependent loss processes. The average sending
rate of the MIMD algorithm in the presence of a linear loss intensity, i.e, λx, was observed to be
inversely proportional to λ.
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Chapter 4

Some fairness properties of the MIMD congestion

control algorithm

In the previous two chapters we studied the behaviour of the window size from the perspective of
an individual source in the network. On most occasions a source will find itself sharing the network
resources with other sources. The sharing of common resource by different individuals gives rise to
questions about fairness of the resource allocation. In this chapter, we shall first study how sources
with MIMD congestion control algorithm share the capacity of a link. Then, we shall study how
sources using the MIMD algorithm and the AIMD algorithm share the capacity of a common link.

The results in this chapter have appeared in [AAP05].

4.1 Introduction

Let us consider two sources which want to transfer data across a common link of capacity C as
shown in the Figure 4.1. The share of the bandwidth obtained by either source will depend on the

congestion control algorithm that it employs and the parameters1 of the algorithm that it sets. We
shall say that the sources are homogeneous if both of them employ the same congestion control
algorithm with identical parameters. Otherwise, we shall say that the sources are heterogeneous.
The Internet admits a diverse set of sources which are quite often heterogeneous. In an environment
in which individuals share a resource, each individual may be interested in knowing the proportion
of the resource that it obtains. Since a source using the Internet relies on a congestion control
algorithm to determine its share, one of the design goals of a congestion control algorithm is to

ensure that the source obtains a “fair”2 share of the network resources. For homogeneous sources
sharing a single link, under certain conditions it was shown that the AIMD algorithm converges
to an allocation of equal share [CJ89]. This was one of the reasons why the AIMD algorithm was
chosen for implementation in standard TCP. For homogeneous sources in a multiple-link network,
the AIMD algorithm has been observed to be proportionally fair [KMT98], i.e., the source obtains
a share which is in proportion to the number of links that it uses. For sources with heterogeneous
RTTs, [VBB00] showed that the AIMD algorithm converged to a variant of proportional fairness

1The parameters here refer to the parameters of the increase and decrease algorithms, and the round trip times.
2We shall use the fairness index of [CJ89] as a measure of fairness.
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Figure 4.1: The network model for multiple users

with a bias towards flows with smaller RTTs. Although the AIMD algorithm has certain fairness
properties, it was observed to be inefficient in utilizing the capacity in networks with large capac-
ities. It may be agreed that any proposal to modify the current algorithm would need to have
fairness properties which are similar, if not better. In this chapter we follow up the analysis of
the average sending rate in the previous two chapters with analysis of the fairness properties of
the MIMD algorithm on a single link. First, we study the intra-algorithm fairness properties of
the MIMD algorithm. We shall distinguish two scenarios in which to study the intra-algorithm
fairness properties. In the first scenario, we shall study the fairness properties for homogeneous
sources, i.e., for sources that have identical parameters for the algorithm and identical RTTs. In
the second scenario we shall study the fairness properties for heterogeneous sources, i.e., for sources
that have the identical parameters for the algorithm but different RTTs. Next, we shall study the

inter-algorithm fairness3 properties of the MIMD algorithm. Any new proposal that will be imple-
mented is likely to be incrementally deployed. Therefore, there may exist situations when sources
using the MIMD algorithm and the AIMD algorithm will share a link. We shall study how the
MIMD algorithm shares the bandwidth with the AIMD algorithm.

4.2 The system model

In this section we shall describe the system model (the loss process, in particular). Since there are
two sources instead of one, as was the case in the previous chapters, the loss process observed by
the sources could be correlated. This correlation can affect the fairness properties of an algorithm
as we shall see later.

We use the following notation in this chapter. The sets
�

,
�

+, and � will denote the set
of real numbers, the set of positive real numbers, and the set of integers, respectively. A function
from R to R will be denoted using sans serif font. For example, x(t) denotes a function defined for
all real values of t. A function from Z to R will be denoted using italic fonts as x(). Usually, x(n)

would be the value of x(t) at the nth sampling instant. A vector r = (r1, r2, . . . , rN ) will denote
an N dimensional row vector. Its transpose will be denoted by r′. Also, we shall use the term
“session” to mean an instance of a given algorithm. The term source will be used for someone who
makes use of one or more instances (i.e., sessions) of the same algorithm.

Our system model is based on the model originally considered in [CJ89]. Let us consider two
sessions which share a link of capacity C as shown in Figure 4.1. Let x(t) ≡ (x1(t), x2(t)) be the

3We shall also refer to this as bandwidth sharing between AIMD and MIMD algorithms.



Sec. 4.2 The system model 63

rate4 vector at time t, where x1(t) and x2(t) denote the instantaneous rates of session 1 and of
session 2, respectively. The set of feasible rate vectors, {(x1, x2)|x1 + x2 ≤ C; x1, x2 ≥ 0} is shown
as the shaded area in Figure 4.2. The line x1(t) + x2(t) = C is called the efficiency line. On this
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Figure 4.2: The rate allocation vector

line the available capacity is fully utilized. The line x1(t) = x2(t) is called the fairness line. On this
line both the sessions obtain the same rates, and hence the bandwidth sharing is said to be fair.

We shall assume that the increase algorithm is updated in continuous time as was the case
in Chapter 3. Specifically, for the MIMD algorithm, the rate increases as

ẋi(t) = αixi(t), i = 1, 2, (4.1)

where αi =
log[αd]

RTTi
, (4.2)

and αd > 1 is the increase parameter of the discrete-time algorithm. For example, for Scalable
TCP αd = 1.01. The decrease algorithm is instantaneous and multiplicative, i.e.,

xi(just after a loss instant) = β · xi(at that loss instant), i = 1, 2, (4.3)

where we have assumed that any sample path of xi(t) is left-continuous with right-hand limits.

4.2.1 The loss process

As was done in previous chapters, we shall assume that the congestion control algorithm relies on
binary feedback (i.e., presence or absence of congestion) from the network to adapt the sending
rate, and to reduce congestion. The presence of congestion in the network is signalled by either
dropping or marking packets. A congestion signal can occur not only when the link capacity is
achieved but could also be initiated before that. For example, a congestion signal is sent as a
consequence of a packet drop when the link buffer overflows (i.e., when the capacity is achieved),
or when a router using AQM schemes such as RED or ECN decides to respectively drop or mark
a packet (i.e., a congestion signal is initiated before the capacity is achieved). In reaction to the

congestion signal, the algorithm reduces its sending rate. We shall use the term “loss” 5 to refer to
any signal that causes a reduction in the sending rate.

4We note that here we are using the term “rate” instead of the “window size” as was done in previous chapters.

The window size and the rate are related as: rate =
window size×packet size

RTT
. We use the the term “rate” because

the fairness index is defined in terms of the rates observed by each session.
5We shall use the terms losses and congestion signals interchangeably.
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A congestion signal is said to be synchronous when all the sessions sharing the link receive that
congestion signal at the same time instant. A congestion signal is said to be asynchronous when
some, but not all, sessions receive that congestion signal at the same time instant. We shall assume
that a synchronous congestion signal is generated when the capacity is achieved. In addition to
these congestion signals, we shall assume that the network generates congestion signals as a Poisson
process of intensity λ before the capacity is achieved. Each congestion signal that is generated by
the network is synchronous with probability 1− ε and is asynchronous with probability ε. We shall
use two models to determine which of the sessions receives the asynchronous congestion signal:

1. The rate-dependent loss model in which the probability that a session receives the congestion
signal is proportional to its current rate at the congestion instant [VBB00], [BHCKS04], i.e.,

probability session i receives asynchronous congestion signal = ε
xi(t)

x1(t) + x2(t)
, i = 1, 2.

(4.4)

2. The rate-independent loss model in which the probability that a session receives a congestion
signal is independent of the session’s rate [KMT98],[BH02], i.e.,

probability session i receives asynchronous congestion signal =
ε

2
, i = 1, 2. (4.5)

Remark 4.2.1 When we say “a congestion signal is generated” we shall refer to any congestion
signal. The term “a congestion signal is generated by the network” will exclusively refer to congestion
signals which are generated before the capacity is achieved.

In Figure 4.3, the evolution for the sending rate is shown as a function of time when two
sources share a link.

synchronous loss
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Ẋ = α
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Figure 4.3: Window evolution for two sources sharing a link.

Remark 4.2.2 The above loss model could be extended to N sessions. For example, in [BH02] the

authors propose a method to compute the probability that k out of N sessions receive the congestion
signal.

4.2.2 A few words on the modelling assumptions

As in Chapter 3, we shall make the following assumptions:

1. Constant round trip times; and
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2. Instantaneous feedback: This assumption is required only when we consider the rate-dependent
loss model.

These two assumptions were also made in Section 3.2.4 and are made in this model for the similar
reasons.

4.2.3 Fairness index

Let N be the number of sessions. The fairness index is a function F :
� N

+ 7→ �
+ using which

one can compare two feasible rate vectors. For a given feasible rate vector r, in [CJ89] the authors
considered the index

F =
(
∑N

i=1 ri)
2

N
∑N

i=0 r
2
i

. (4.6)

A property of this index is that F ≤ 1 with equality if and only if r1 = r2 = . . . = rN
6. Also,

F ≥ 1/N with equality if, for some i, ri 6= 0 and rj = 0, ∀j 6= i. For a rate vector r, the preceding

observations (also in [CJ89]) can be interpreted as: (i) if F = 1 then we can say that the rate
vector is a “fair” allocation; whereas (ii) if F = 1/N then we can say that only one session gets the
resource, thus the rate vector can be termed as “unfair” to other sessions.

In our model, the rate vector, {x(t), t ≥ 0} is a stochastic process, which may or may not
converge to a stationary and ergodic stochastic process. In order to take into account the dynamical
nature of the rate vector, we reformulate the fairness index as

F∗ = inf
x(0)

lim
T→∞

1

T

∫ T

0

(
∑N

i=1 xi(t))
2

N
∑N

i=0 xi(t)2
dt. (4.7)

Since the process {x(t)} need not be ergodic, we shall take the infimum over x(0) to consider the
worst-case fairness index is possible for the process {x(t)} that could obtained. The subscript ∗
will denote the system under consideration. In general, the fairness index is associated with a
particular system which comprises of sessions and the loss process. The sessions could be either
homogeneous or heterogeneous. Therefore, we shall associate the fairness index with a system and
not just with an algorithm, for example, sessions using MIMD algorithm and a synchronous loss
process can be considered as an example of a system. We shall consider three systems: (i) a system
with sessions using MIMD algorithm and a synchronous loss process, i.e., ∗ = sy; (ii) a system
with sessions using MIMD algorithm and a rate-independent loss process, i.e., ∗ = ri; and (iii) a
system with MIMD algorithm and a rate-dependent loss process, i.e., ∗ = rd. If, in system ∗, the
process {x(t), t ≥ 0} converges to a stationary and ergodic process x̃ then F∗ can be computed as

F∗ =
1

N
E

[
(
∑N

i=1 x̃i)
2

∑N
i=1 x̃2

i

]
. (4.8)

In the rest of this chapter we shall refer to F∗, which is defined in Equation (4.7), as the
fairness index.

6This property can be obtained through the Cauchy-Schwartz inequality, |r ·1| ≤ ‖r‖·‖1‖, where 1 = (1, 1, . . . , 1).
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4.3 Related literature and contributions

In [CJ89], the authors studied a discrete-time model version of the above model with synchronous

control signals7. The sessions reacted to control signals by adapting their rates in the following
way:

x(n+ 1) =

{
bIx(n) + aI for an increase (or a no congestion) signal,
bDx(n) + aD for a decrease (or a congestion) signal,

where aI , bI , aD and bD are constants and the sampling is done just after the reception of control
signals. In TCP NewReno, for example, arrival of ACKs can be considered as increase signals, and
arrival of duplicated ACKs or a time-out can be considered to be decrease signals. In [CJ89] it has
been argued that for convergence to the fairness line, the increase algorithm has to be multiplicative
and additive (i.e., aI > 0 and bI ≥ 1) and the decrease algorithm has to be multiplicative (bD < 1

and aD = 0). However, this result was derived under the assumption of synchronous control
signals. That is, both the sessions receive control signals at the same instant and both of them
either increase, or decrease their rates simultaneously. Indeed, under these two assumptions, the
rate vector for the MIMD algorithm stays on a line joining the origin to the initial rate vector,

and hence does not converge to fairness. Therefore, the fairness index for this system8, i.e., Fsy, is

1/N , which is the minimum possible value. In [BB01], the authors extend the model in [CJ89] to
include binomial increase and decrease functions, i.e., they consider the following rate adaptation:

x(n+ 1) =

{
bIx(n) + aIw

−k for an increase (or a no congestion) signal,
bDx(n) + aDw

l for a decrease (or a congestion) signal,

We note that k = −1 and l = 1 corresponds to the MIMD algorithm. They conclude that for the
rate vector to converge to the fairness line, the conditions k+l > 0, k ≥ 0 and l ≥ 0 must be satisfied.
As in [CJ89], the authors of [BB01] also assume that the congestion signals are synchronous. In
[Gor04], the authors argue that under a more realistic assumption of rate-dependent congestion
signals, the MIMD algorithm also converges to the fairness line. In the first part of the chapter,
we first show that, for sessions with the same RTT, Frd > Fsy, i.e., in a system with sessions using
MIMD algorithm, the fairness index can be improved by introducing rate-dependent losses. We
obtain the expressions for the long term fairness index and the mean time to reach the fairness line.
We note that our model is stochastic, hence any performance measures will be an expectation of a
function of a random variable.

In [XHR04] it was argued that for sessions with different RTTs, Scalable TCP (or, the MIMD
algorithm) is extremely unfair, i.e., the session with the smallest RTT obtained the whole capacity,
thereby giving a fairness index of 1/N . We show that, even in systems with heterogeneous MIMD
sessions, the fairness index can be improved by introducing rate-dependent losses with intensity
greater than a certain number. We then show, through simulations, that the results obtained for
two sessions also hold for N sessions.

In the second part of this chapter, we shall consider several sessions sharing a common
link on which losses are due to buffer overflow and are, can be considered to be synchronous.
In [HMM00] such a scenario was considered for sessions using the AIMD algorithm only. The
authors of [BB00] studied algorithms other than AIMD in a synchronous scenario. However, they
considered scenarios in which sources used the same algorithm. In [XHR04], fairness issues were

7A control signal can be either a signal to increase the rate or a signal decrease the rate.
8N = 2 in this case.
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studied for different TCP versions using high-speed networks. The RTT-fairness, i.e., bandwidth
sharing among sessions with different RTTs, was compared for different proposals of TCP. Here,
too, the fairness was studied among sessions using the same algorithm, i.e., the above mentioned
studies considered only intra-algorithm fairness. The inter-algorithm bandwidth sharing has been
studied in [GM04] for sessions of TCP NewReno [APS99], TCP Westwood+ [GM02] and TCP
Vegas [BP95], mainly through simulations. In [MLAW99], the authors study the coexistence of
sources using TCP Vegas and TCP Reno. Bandwidth sharing of standard TCP sessions and non-
TCP sessions has been studied in the context of compatibility, or “friendliness” of such flows with
standard TCP. In order to study inter-algorithm fairness properties of the MIMD algorithm, we shall
consider a heterogeneous scenario where different sessions may use either the AIMD or the MIMD
algorithms. This type of scenarios may be of interest in the future when, for example, sessions
using Scalable TCP and standard TCP may share the same link. We shall obtain expressions for
the equilibrium throughput (i.e., the average number of bits sent per unit of time) and the window
size of the sessions and compare the analytical results with simulations.

We also mention that fairness issues for congestion control algorithms on multiple links have
been studied in, among others, [KMT98], [MW00],[VBB00]. For example, in [MW00], the authors
consider a set of sources-destination pairs which share a path (i.e., a set of links with other source-

destination pairs. For a given feasible 9 rate vector, x, the authors define a global utility which
is a function of x, a vector p and a scalar α. They say that a rate vector is (p, α) proportionally

fair10 if it maximizes the global utility subject to the rate vector being feasible. We note that the
authors in [KMT98], [MW00] first define a fairness criterion and then design an algorithm which
converges to the fair allocation vector. Our study concerns source-destination pairs which share a
single link as shown in Figure 4.1. In single link scenarios, the proportionally fair vector is the one
which allocates equal rates to all the sources. In this regard, our model is restrictive. However, we
consider a slightly different problem: we are given a congestion-control algorithm that has been
shown to be quite unfair under certain conditions (see [CJ89], [XHR04], and the discussion in the
preceding paragraphs). Our aim is to provide conditions under which the fairness index of this
algorithm can be improved. Also, we analyse the model in a stochastic setting as opposed to the
deterministic differential equation approximation approach used in [KMT98] and [MW00]. The
contributions of this work include: (i) the conditions under which the fairness index of the MIMD
algorithm can be improved; and (ii) the results of bandwidth sharing between AIMD and MIMD
sources.

4.4 Outline

The rest of the chapter is organized as follows. First, we shall study the intra-algorithm properties
of the MIMD algorithm. In Section 4.5, we consider a homogeneous scenario wherein two MIMD
sessions with the same set of parameters share a link. We show that the fairness index of this system
can be improved by introducing rate-dependent losses at a non zero intensity. In Section 4.6 we shall
study the heterogeneous scenario wherein the two sessions have may different parameters. We shall
show that the fairness index of such a system can only be improved by introducing rate-dependent
losses at an intensity greater than a threshold intensity. Next, in Section 4.7 and Section 4.8 we
study the bandwidth sharing between AIMD and MIMD sessions when losses are synchronous. We

9The feasibility conditions include non-negativity of the rate vector, and that the sum of the rates of source-

destination pairs sharing a link should not exceed the link capacity.
10In [KMT98], the authors studied the (p, 1) proportional fairness.
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Table 4.1: Reaction to congestion signals

congestion signal x1(tn+) x2(tn+)

(0, 1) x1(tn) β · x2(tn) } asynchronous congestion signal
(1, 0) β · x1(tn) x2(tn)
(1, 1) β · x1(tn) β · x2(tn) synchronous congestion signal

show that the AIMD sessions obtain a share which is independent of the link capacity, and that
the rest of the capacity is utilized by the MIMD sessions. Finally, we present the conclusions in
Section 4.9.

4.5 Intra-algorithm fairness of the MIMD algorithm: homogeneous

sessions

We consider two sessions using the MIMD algorithm which share a link of capacity C. At time t,
the rates of the two sessions are denoted by x(t) ≡ (x1(t), x2(t)). The feasible set of rate vectors for
this system is

{(x1(t), x2(t)) : x1(t) + x2(t) ≤ C, x1(0), x2(0) > 0}, ∀t ≥ 0. (4.9)

Remark 4.5.1 The initial rate vector x(0) is taken such that xi(0) > 0. For the MIMD algorithm

if the initial rate is zero then the vector stays at zero which is not desirable.

We shall assume that, in the absence of congestion signals, the source increases its sending rate
exponentially, i.e.,

xi(t+ τ) = exp(αiτ) · xi(t), i = 1, 2, (4.10)

where αi =
log[αd]

τi
, (4.11)

τi is a time constant (for example, the RTT) of session i, and αd > 1 is the increase factor
of the discrete-time algorithm. The above formulation is a continuous time interpolation of a
multiplicative algorithm in which, for every RTT without congestion signals, the sender multiplies
the window by a factor of αd. This can be verified by substituting t = nτi in Equation (4.10).
Since the sessions are homogeneous, we shall take α1 = α2 = α. We assume that the two sessions
react to congestion signals from the network. Unlike the model in [CJ89], the two sessions need
not receive a congestion signal at the same time instant. Let 0 < β < 1 be the decrease factor.

Let tn denote the time instant at which a congestion signal11 is generated. Due to the possibility
of asynchronous congestion signals, there are three possible rate vectors at tn+, i.e., just after the
congestion signal is sent. The possible rate vectors are given in Table 4.1. A 0 signal represents
a no congestion signal whereas a 1 signal represents a congestion signal. On the reception of a
congestion signal, a session instantaneously reduces its rate by a factor of β.

11We have assumed that the feedback is instantaneous.
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4.5.1 The instantaneous rate ratio process

For two sessions we can rewrite Equation (4.7) as

F∗ =
1

2
+ inf

x(0)
lim

T→∞

1

T

∫ T

0

x1(t)x2(t)

x1(t)2 + x2(t)2
dt. (4.12)

From the above equation we can infer that the fairness index can be studied as a function of

θ(t) =
x2(t)

x1(t)
(4.13)

rather than as function of the vector x(t). In terms of θ(t) we can rewrite the fairness index as

F∗ =
1

2
+ inf

x(0)
lim

T→∞

1

T

∫ T

0

θ(t)

1 + θ(t)2
dt. (4.14)

Since the fairness index can be studied as a function of θ(t), we now study the behaviour of the
process {θ(t), t ≥ 0}. We shall show that {θ(t)} is a Markov process with a countable state space.
We shall then show that this process could be stable or unstable depending on the asynchronous
loss process.
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Figure 4.4: Geometric interpretation.

We note that θ(t) is the slope of the rate vector, x(t). In Figure 4.4(a), we show the geometric
interpretation of the response to the different congestion signals. If there were no congestion signals

during the interval (t, t+ τ) then the rate vector at time (t+ τ) would be ατ/τ0(x1(t), x2(t)). This
vector will have a slope of θ(t). If a synchronous congestion signal were to be generated at time t,
then the rate vector after the response, x(t+), would be β(x1(t), x2(t)). This vector will also have a
slope of θ(t). Therefore, the rate vector remains along the same line as long as either there are no
congestion signals or there are only synchronous congestion signals. However, the rate vector moves
to the line with slope θ(t)/β when a congestion signal (1, 0) is generated. Similarly, the rate vector
moves to the line with slope θ(t) ·β when a congestion signal (0, 1) is generated. Therefore, if there
were only synchronous congestion signals (i.e., (1, 1) signals) then θ(t) would be equal to θ(0) for
all t, and any initial unfair sharing would remain forever. Hence, in order to improve the fairness
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index of systems with sessions using the MIMD algorithm, it is necessary to provide a stream of
asynchronous congestion signals using, for example, some active queue management scheme.

Let tn denote the time instant when the nth congestion signal is generated. Let θ(n) = θ(tn+)

be the slope of the rate vector sampled just after the nth congestion signal is generated. From
Figure 4.4(a), it can be seen that, given an initial slope of θ(0), the slope of the line along which
the rate vector lies just after the nth control signal is generated can be written as

θ(n) = θ(0)βi (4.15)

for some i ∈ Z. Then, for any given initial slope, θ(0), we can find a unique ω ∈ [β1/2, β−1/2) and
j ∈ Z such that

θ(0) = ωβj . (4.16)

For convenience, we shall define θ(n) in terms of ω and β. From the preceding two arguments, the
state space of θ(n) can be represented by the countably infinite state space

S = {ωβi, ∀i ∈ Z}. (4.17)

A geometric interpretation of S is shown in Figure 4.4(b). We note that the slope ω = 1, i = 0

corresponds to the slope of the fairness line.
Let us define the process

s(t) =
log[θ(t)] − log[ω]

log[β]
, ∀t. (4.18)

With this definition, the state space of the process {s(t)} is the set of integers � . We note that the
evolution of s(t) can be described by the equation

s(tn+) =





s(tn) + 1 if the nth congestion signal is (0, 1);
s(tn) − 1 if the nth congestion signal is (1, 0);
s(tn) otherwise.

(4.19)

We shall embed this process at instants at which a congestion signal is generated.Let s(n) = s(tn)

denote the embedded process. We will show that s(n) is a Markov chain, and that it is stable or
unstable depending upon the asynchronous loss process.

4.5.2 The modified loss process

A congestion signal is generated either when the capacity is achieved or can be generated by the
network before the capacity is achieved. We have assumed that when the capacity is achieved a
synchronous congestion signal is generated. Since a synchronous congestion signal does not affect
the evolution of the process {θ(t)}, we can ignore the congestion signals which are generated when
capacity is achieved. Hence, we can analyse the fairness index by assuming the loss process to be
the one in which the congestion signals are generated by the network. Hence, the loss process can
be considered to be a Poisson process of intensity λ. In the rest of this section, we shall refer to
the network generated congestion signals as “congestion signals”.



Sec. 4.5 Intra-algorithm fairness of the MIMD algorithm: homogeneous sessions 71

Remark 4.5.2 We are studying the behaviour of the fairness index as a function of the rate ratio

process and not as a function of the individual rates, x(t), themselves. Hence, the individual rates

are not modelled separately. However, due to the capacity constraints, xi(t) affects the time interval

between two congestion signals, i.e.,

tn+1 ≤ tn +
1

α
log

[
C

x1(n) + x2(n)

]
. (4.20)

Since we can ignore the congestion signals generated due to capacity constraints, we can consider the

fairness index to be a function of {θ(t)} and the network generated congestion signals of intensity

λ. Hence, the capacity of the link does not affect the fairness index.

4.5.3 The rate-independent loss model

First we shall study the evolution of the process {s(n), n ≥ 0} when the asynchronous losses are rate-
independent. We note that s(t) remains constant between two asynchronous loss instants. From the
description of the loss model in Equation (4.5) along with the evolution of s(t) (Equation (4.19)),
the transition probabilities for s(n) are given by

Prob(s(n+ 1) = j|s(n) = i) =





ε
2 if j = i− 1;
ε
2 if j = i+ 1;
1 − ε if j = i.

(4.21)

From the transition probabilities, we can infer that the process {s(n)} forms a Markov chain with
an irreducible state space, � .

Proposition 4.5.1 For 0 < ε < 1, the Markov chain with transition probabilities defined in Equa-

tion (4.21) is null recurrent.

Proof. For this Markov chain to be null recurrent, we use a theorem from [FMM95], which we
also state as Theorem C.0.1 in Appendix C.

Let f(x) = x2, ψ(x) = |x|, A = {0}, γ = 1 and α = 2. Conditions 1, 2 and 3 of Theorem C.0.1
are satisfied with these assumptions. For condition 4(a),

∆fi =
ε

2
((x+ 1)2 − x2) +

ε

2
((x− 1)2 − x2) = ε > 0.

For condition 4(b),

∆ψi =
ε

2
((|x| + 1) − |x|) +

ε

2
((|x| − 1) − |x|) = 0.

For condition 4(c),

E[|ψ(s(n+ 1)) − ψ(s(n))|2 |s(n) = x] =
ε

2
((|x| + 1) − |x|)2 +

ε

2
((|x| − 1) − |x|)2

= ε <∞.

Hence, the Markov chain s is null recurrent. �

Since s is null recurrent, and the discrete state space has two accumulation points, −∞ (corre-
sponding to x1 → 0) and ∞ (corresponding to x2 → 0), the probability of being in any small
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vicinity of each point is 0.5. The mean time to go from one extreme to another will be ∞ and,
hence, the rate of one of the connections will be zero. This suggests that rate independent losses
are not sufficient to improve the fairness index.

Remark 4.5.3 We are taking the limit xi → 0 since the rate xi(t) of an MIMD session takes values

in the set (0,∞) if xi(0) > 0, and the rate is zero if xi(0) = 0. Also, we have assumed that the

minimum possible rate available to any session is not bounded away from zero. If the minimum
possible rate is bounded away from zero, then the state space will be finite. In this case the Markov

chain, s(n), will be positive recurrent. The steady state distribution for this Markov chain will be

uniform, and the exact fairness index could be computed using

Fri =
1

2
+

1

2L+ 1

L∑

i=−L

ωβi

1 + ωβ2i
, (4.22)

where we have assumed that the state space of s(n) has 2L+ 1 states that are symmetrically placed

about state 0. We can also write this equation in the form

Fri =
1

2
+

1

2L+ 1

[
ω

1 + ω
+

L∑

i=1

(
ωβi

1 + ωβ2i
+

ωβi

β2i + ω

)]
. (4.23)

On substituting for β = 0 in the denominator of the RHS, we obtain

1

2
+

1

2L+ 1

[
ω

1 + ω
+ (ω + 1)

β − βL+1

1 − β

]
, (4.24)

which is an upper bound on Fri. As L tends to ∞ the upper bound goes to 0.5, thereby resulting in
a minimal value for the fairness index.

Remark 4.5.4 Since the loss process is assumed to be a Poisson process, the continuous time

Markov process, {s(t)}, can also be considered as a piecewise deterministic Markov process (see,

for example, [Dav93]). Although the embedded process {s(n)} is null recurrent, there may exist

an invariant measure for the process {s(t)} [DC99, Example 2]. However, in our model the jump

rate is positive and bounded, hence there is a one-to-one mapping between the invariant probability

measure of the embedded process, {s(n)}, and the invariant probability measure of {s(t)} [DC99].

4.5.4 The rate-dependent loss model

Next, we study the behaviour of {s(n)} when the probability that a session receives the nth
congestion signal depends on its sending rate, s(n). The loss model is described by Equation (4.4).

Proposition 4.5.2 The process {s(n), n ≥ 0} is a discrete state-space Markov chain with transi-

tion probabilities given by

Prob(s(n+ 1) = j|s(n) = i) =





ε ωβi

1+ωβi if j = i+ 1;

ε 1
1+ωβi if j = i− 1;

1 − ε if j = i.

(4.25)
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We note that the state space � is irreducible for the {s(n)}. We now show that the limiting process
limn→∞ s(n) converges to a stationary and ergodic process with a unique invariant probability
measure. The existence of the limiting distribution can be ensured by proving that the Markov
chain {s(n)} is positive recurrent.

Proposition 4.5.3 For 0 < β < 1 and 0 < ε ≤ 1, the Markov chain, {s(n)}, defined in Proposi-
tion 4.5.2 is positive recurrent.

Proof. A Markov chain is positive recurrent if it satisfies the Foster’s criterion [FMM95] which
we state as Theorem C.0.2 in Appendix C.

Let f(i) = |i|, i ∈ Z and A = {0}. Let ∆fi := E[f(s(n + 1)) − f(s(n))|s(n) = i]. First,

we show that condition (C.1a) is satisfied. We note that ω ∈ [β1/2, β−1/2). For i < 0, from
Equation (4.25), we have

∆fi = ε
ωβi

1 + ωβi
(|i| − 1) + ε

1

1 + ωβi
(|i| + 1) + (1 − ε)|i| − |i| (4.26)

= ε
1 − ωβi

1 + ωβi
(4.27)

= −ε
(

1 − 2
β|i|

β|i| + ω

)
. (4.28)

≤ −ε
(

1 − 2
β

β + ω

)
. (4.29)

which is strictly negative for any β ∈ (0, 1) and ε ∈ (0, 1]. Similarly, for i > 0, we can show that

∆fi ≤ −ε
(

2

ωβ + 1
− 1

)
. (4.30)

Therefore, condition (C.1a) is satisfied. To check for (C.1b), for i = 0 we have

E[f(s(n+ 1))|s(n) = i] = ε
1

1 + ω
| − 1| + ε

ω

1 + ω
|1| = ε <∞.

Therefore, the Markov chain {s(n)} satisfies the conditions of Theorem C.0.2 and, hence, is positive
recurrent. �

Let s̃ and θ̃ denote respectively the stationary ergodic process to which the Markov chain {sn}
and the process {θ(t)} converge to when n→ ∞. We note that the fairness index in Equation (4.14)
can be rewritten as

Frd =
1

2
+ E

[
θ̃

1 + θ̃2

]
. (4.31)

Since the loss process is assumed to be a Poisson process, we can use the PASTA property and
Equation (4.18) to evaluate the fairness index as

Frd =
1

2
+ E

[
ωβs̃

1 + ω2β2s̃

]
. (4.32)
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We shall now find the distribution of s̃ and also the mean first passage time to the state 0
starting from a random state. We note that the state 0 corresponds to the state closest to the
fairness line, i.e., to the the state θ(t) = ω. Therefore, the mean first passage time from a random
state to the state 0 gives an indication of the mean time for the rate vector to get closest to the
fairness line. We again note that if ω 6= 1, then the process {θ(t)} cannot be on the fairness line
but can get close to the fairness line by reaching ω.

4.5.5 Steady state distribution

Let πi be the steady state probability of s̃ being in state i.

Proposition 4.5.4 The probability π(i)
∆
= Prob(s̃ = i) can be obtained as

π(i) =
π(0)

1 + ω
ωiβi(i−1)/2(1 + ωβi), ∀i, (4.33)

where π(0) =
1 + ω∑∞

i=−∞ ωiβi(i−1)/2 + ωi+1β(i+1)i/2
. (4.34)

Proof. From Equation (4.25), in steady state π(i) satisfies the balance equation

π(i) = (1 − ε)π(i) + ε
ωβi−1

1 + ωβi−1
π(i− 1) + ε

1

1 + ωβi+1
π(i+ 1). (4.35)

Or,

π(i) =
ωβi−1

1 + ωβi−1
π(i− 1) +

1

1 + ωβi+1
π(i+ 1). (4.36)

Now, we verify that π(i) as defined in Equation (4.33) satisfies Equation (4.36). On substituting
for π(·) from Equation (4.33) in right hand side of Equation (4.36), we obtain

ωβi−1

1 + ωβi−1
π(i− 1) +

1

1 + ωβi+1
π(i+ 1) =

π(0)

1 + ω
(ωiβi−1β(i−1)(i−2)/2 + ωi+1β(i+1)i/2)(4.37)

=
π(0)

1 + ω
ωiβi(i−1)/2(1 + ωβi) (4.38)

= π(i). (4.39)

The probability π(0) can be obtained by using the identity

∞∑

i=−∞

π(i) = 1. (4.40)

�

Since βi → 0 as i→ ∞, the tail of π(i) can be seen to decrease as βi2 , which is a very fast decrease.

Remark 4.5.5 Since the arrivals are Poisson with constant intensity, we can use PASTA and infer

that the steady state distribution of the embedded chain, θ(n), are also the time average distribution

for the process θ(t). We note that the steady state probabilities are independent of λ and ε.
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Proposition 4.5.5 The jth moment of the rate ratio process

E[θ̃j ] =
1 + β−j

2
β−j(j−1)/2. (4.41)

Proof. To prove this result we shall use the Jacobi triple product identity [HW79]

ϑ2(z, q)
∆
=

∞∑

i=−∞

ziqi(i−1)/2 =

∞∏

n=1

(1 − qn−1)(1 + zqn−1)

(
1 +

qn

z

)
. (4.42)

From Equation (3.13) and Equation (4.42), we can write

π(0) =
1 + ω

2ϑ2(ω, β)
. (4.43)

From Equation (4.18), we note that Prob(θ̃ = ωβi) = Prob(s̃ = i). The LHS of Equation (4.41)
can be written as

E[θ̃j ] =
∞∑

i=−∞

(ωβi)jπ(i) (4.44)

=
∞∑

i=−∞

π(0)

1 + ω
(ωiβi(i−1)/2 + ωi+1β(i+1)i/2)ωjβij (4.45)

=
∞∑

i=−∞

π(0)ωj

1 + ω
(ωiβi(i−1)/2βij + ωi+1β(i+1)i/2βij). (4.46)

We shall now evaluate each sum on the RHS separately. The first sum

∞∑

i=−∞

ωiβi(i−1)/2βij =
∞∑

i=−∞

(ωβj)iβi(i−1)/2 (4.47)

= ϑ2(ωβ
j , β). (4.48)

From Equation (4.42)

ϑ2(ωβ
j , β) =

∞∏

n=1

(1 − βn−1)(1 + ωβn−1+j)

(
1 +

βn−j

ω

)
(4.49)

=
∞∏

n=1

(1 − βn−1)(1 + ωβn−1)

(
1 +

βn

ω

) j−1∏

k=0

1 + β−k

ω

1 + ωβk
(4.50)

= ϑ2(ω, β)ω−jβ−j(j−1)/2. (4.51)

Similarly, the second sum on the RHS

∞∑

i=−∞

ωi+1βi(i+1)/2βij = β−j
∞∑

i=−∞

(ωβj)i+1βi(i+1)/2 (4.52)

= β−jϑ2(ωβ
j , β) (4.53)

= β−jϑ2(ω, β)ω−jβ−j(j−1)/2. (4.54)
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Therefore Equation (4.46) can be written as

E[θ̃j ] =
π(0)

1 + ω
ϑ2(ω, β)β−j(j−1)/2(1 + β−j) (4.55)

On substituting for π(0) from Equation (4.43) into Equation (4.55), we obtain

E[θ̃j ] =
1 + β−j

2
β−j(j−1)/2. (4.56)

�

We note that the moments of the rate ratio process are independent of ω, and, hence, are indepen-
dent of x(0).

From Equation (4.34), we can infer that

lim
β↓0

π(0) =
1

2
, (4.57)

and lim
β↑1

π(0) = 0. (4.58)

The fairness index, Frd, can be computed numerically using Equation (4.7) and Equation (4.33).
In Table 4.2 we give the fairness index for different values of β for ω = 1. In the numerical study

Table 4.2: Fairness index for different values of β. ω = 1.

β 0.95 0.875 0.75 0.6 0.5 0.1

Frd 0.987 0.97 0.942 0.91 0.88 0.777

we observed that the fairness index was independent of ω as well. Also, it was observed that

lim
β↓0

Frd =
3

4
, (4.59)

and lim
β↑1

Frd = 1. (4.60)

We see that π(0) and Frd are respectively decreasing and increasing functions of β. Since π(0) is
also the average time spent in state 0, i.e., the state closest to the fairness line, we can also consider
π(0) to be an indicator of fairness. The maximization of π(0) with respect to β will lead to a
minima of Frd and vice versa. Hence, the choice of the parameter β will be depend on the fairness
criterion that we choose to maximize.

4.5.6 Convergence to steady state distribution

The second largest eigenvalue of a matrix gives the rate of convergence to the steady state distri-
bution. Therefore, we can get an indication of the rate of convergence of the Markov chain s̃ by
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looking at the eigenvalues of its transition probability matrix,

P =




. . . −1 0 1 . . .

...
. . .

...
...

... . . .
−1 . . . 1 − ε εq−1 0 . . .

0 . . . ε(1 − q0) 1 − ε εq0 . . .

1 . . . 0 ε(1 − q1) 1 − ε . . .

...
...

...
...

...
. . .




(4.61)

where qi = ωβi

1+ωβi . Let ζi denote the ith eigenvalue of P such that ζi ≥ ζj for i < j, and ζ0 = 1.

We can obtain the following lower bound on ζi.

Proposition 4.5.6 For i > 0,

1 − ε ≤ ζi < 1. (4.62)

Proof. Since s̃ is positive recurrent and irreducible, the multiplicity of eigenvalues at 1 is 1.
Therefore, ζi < 1 for i > 0. We can rewrite P as

P = (1 − ε)I + εA (4.63)

where I is the identity matrix andA is a transition matrix of a birth-death process with up transition
probability qi and down transition probability 1 − qi. The matrix A is a stochastic matrix and,
therefore, all its eigenvalues belong to the interval [0, 1]. Let µi be the ith eigenvalue of A and let
vi be the corresponding left eigenvector. Then, from Equation (4.63) we get

viP = (1 − ε)vi + εviA = ((1 − ε) + εµi)vi.

Therefore, vi is also the left eigenvector of P , and the corresponding eigenvalue is (1 − ε) + εµi.
Since µi ≥ 0, we get the inequality ζi ≥ 1 − ε. �

Therefore, 1 − ε gives a lower bound on the rate of convergence of the Markov chain to the steady
state. We note that 1− ε is the probability of a synchronized network generated congestion signal.
Hence, if the probability of a synchronous loss is large, then the convergence to the steady state
will be slow.

4.5.7 Mean first passage time

In this section we compute the mean first passage time to the state 0 starting from a given state.
This gives us an estimate of the first time the rate vector reaches the fairness line starting from a
given initial state. The Markov chain {s(n)} is a birth-death process. If the initial state is positive,
the Markov chain will stay in the set of positive states before visiting state 0. Similarly, if the
initial state is negative, the Markov chain will stay in the set of negative states before visiting state
0. Therefore, we can obtain the mean first passage time to state 0 by considering two separate
chains, one for the set of positive states and the other for the set of negative states.

Let mi denote the mean first passage time from i to state 0. First, we shall consider the case
i > 0.
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Proposition 4.5.7 The mean first passage times, mi, i ≥ 1 can be obtained by using following
recursion: m0 = 0,

mi+1 =
εmi − ε(1 − qi)mi−1 − 1

εqi
, ∀i > 0, (4.64)

with m1 =
1 − π−
επ(0)q0

, (4.65)

and m0 = 0, (4.66)

where π− =
∑

i≤0 π(i).

Proof. The mean first passage time, mij , of a Markov chain from state i to j can be obtained by

using the recursion [KSK76]

mij = 1 +
∑

k 6=j

pikmkj , (4.67)

where pik is the transition probability from i to j. From the transition probability matrix given in
Equation (4.61), we obtain the recursion

mi+1 =
εmi − ε(1 − qi)mi−1 − 1

εqi
. (4.68)

To obtain the m1, we consider the set of states � − = {. . . ,−2,−1, 0}. The probability of being in
these states is π−. Hence, the mean recurrence time for � − is 1/π−. The mean recurrence time,
r−, can also be expressed as

r− = 1 + p−m1, (4.69)

where p− is the probability of going from � − to state 1. Since the chain {sn} can go from � − to
state 1 only through state 0,

p− =
π(0)

π−
εq0. (4.70)

Hence, we have

m1 =
1 − π−
επ(0)q0

. (4.71)

�

Similarly, we can obtain the recurrence relation for mean first passage time from state i, i ≤ −1 as

mi−1 =
εmi − εqimi+1 − 1

ε(1 − qi)
, ∀i < 0, (4.72)

with m−1 =
1 − π+

επ(0)(1 − q0)
, (4.73)

and m0 = 0, (4.74)

where π+ =
∑

i≥0 π(i).

The mean first passage time to state 0 is in the units of steps to reach state 0. In order to get

the absolute time we have to multiply this by the mean time between each step, i.e., by λ−1. We
note that the steady state probabilities are independent of ε whereas the mean first passage times
are inversely proportional to ε.
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4.6 Intra-algorithm fairness of the MIMD algorithm: heteroge-

neous sessions

In this section we shall assume that the two sessions are heterogeneous. The heterogeneity could
be either due to unequal increase parameters or due to unequal time constants or both. From
Equation (4.10), the rate evolution for session i in the absence of control signals is given by

xi(t+ τ) = exp(αiτ)xi(t), i = 1, 2, (4.75)

where αi = log[αdi]/τi, (4.76)

and αdi and τi are respectively the discrete-time increase parameter and the RTT of session i.
For heterogeneous sessions, we again define the process s(t) as

s(t) = log

[
x2(t)

x1(t)

]
. (4.77)

We note that s(t) is the logarithm of the rate ratio process.
In the absence of asynchronous congestion signals, the process {s(t)} evolves as

s(t+ τ) = s(t) + κτ, (4.78)

where κ = α2 −α1. Let tn denote the time instant when the nth asynchronous congestion signal is
generated by the network. The logarithm of the rate ratio just after this congestion signal is given
as

s(tn+) =

{
s(tn) + log[β] signal is (0,1);
s(tn) − log[β] signal is (1,0).

(4.79)

The evolution in time of s(t) is shown in Figure 4.5. in which we have assumed that κ is
positive. For simplicity let us assume that the heterogeneity is only due to unequal RTTs. For

{
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Figure 4.5: Evolution in time of s(t). τ2 < τ1.

κ > 0 (i.e., τ2 < τ2), from Equation (4.78) and Equation (4.79), it can be seen that if there
were only synchronous congestion signals then there would be a drift in time towards ∞, i.e.,
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limt→∞ s(t) = +∞. This suggests that the rate for session 1 would approach zero. Similarly, if
κ < 0 (i.e., τ2 > τ1) and there were to be only synchronous congestion signals, then there would be
a drift in time towards −∞, i.e., limt→∞ s(t) = −∞. This suggests that the rate for session 2 would
approach zero. It can also be seen that if κ = 0, i.e., τ1 = τ2, the dotted lines would be parallel
to the time axis. In this case s(t) would remain constant in the absence of asynchronous losses,
which was also observed in the previous section. We also observed in the previous section that the
losses needed to be rate-dependent in order to improve the fairness index. Hence, we conclude that
even for the system with heterogeneous sessions rate-dependent congestion signals are necessary in
order to improve the fairness index.

We note that as was mentioned in Section 4.5.2, we can consider only the congestion signals
to generated by the network. We also observed in Proposition 4.5.3 that any ε > 0 was sufficient
to ensure stability and that the value of ε does not affect the stability. We shall therefore assume
that the network generates only asynchronous congestion signals, i.e., ε = 1. In the rest of this
section, when we use the term “congestion signal” we shall mean “a rate-dependent congestion signal
generated by the network”.

Let {an, n ≥ 0} denote the time interval between the generation of the nth and the (n+ 1)th
congestion signal. We shall assume that the sequence {an, n ≥ 0} is an i.i.d. sequence with

distribution function12 A and intensity λ. We shall assume that A has a density function which is
non-increasing. Let {s(n)} = {s(tn−)} denote the process {s(t)} embedded just before the the nth
loss instant.

Proposition 4.6.1 The process {s(n), n ≥ 0} is a Markov chain with state space R, and it follows

the recursive equation

s(n+ 1) = s(n) + κan + dn, (4.80)

where dn is defined as

dn =

{
+ log[β] w.p. exp(s(n))

1+exp(s(n)) ;

− log[β] w.p. 1
1+exp(s(n)) .

(4.81)

Proof. The formulation follows from Equation (4.78), Equation (4.79) and Equation (4.4). �

We shall now provide a condition on the intensity λ such that the Markov chain {s(n)} is
positive recurrent. By showing that the Markov chain is positive recurrent, we can show that there
will not be a drift towards +∞ or −∞. This would then result in an improvement in the fairness
index. In the rest of this section we shall assume that κ > 0. We note that when κ < 0 we can

define s(t) = log
[

x1(t)
x2(t)

]
, and then the analysis would be similar.

4.6.1 Stability

Let us define ân = κan such that the distribution function of ân is Â and the intensity of ân is

λ̂ = κ−1λ. Let b = − log[β]. We note that b is a positive number because β is less than 1.

Proposition 4.6.2 The Markov chain {s(n)} defined by Equation (4.80) is positive recurrent if

λ̂−1 < b. (4.82)

12 We relax the Poissonian assumption just for this section.
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Proof. We note that the transition probabilities of {s(n)} are time homogeneous. In order to
show the positive recurrence of {s(n)}, we can use the a theorem from [MT93] which we state as
Theorem C.0.3 in Appendix C.

In order to check for the drift condition of this theorem, we consider V (y) = |y|, and the set
W = [−b, b]. The LHS of Equation (C.3)) becomes

∆V (x) + |x| =

∫

y∈R

1

1 + ex
|y|dÂ(y − (x+ b)) +

∫

y∈R

ex

1 + ex
|y|dÂ(y − (x− b))

=

∫ ∞

y=(x+b)

1

1 + ex
|y|dÂ(y − (x+ b)) +

∫ ∞

y=(x−b)

ex

1 + ex
|y|dÂ(y − (x− b))

=

∫ ∞

0

1

1 + ex
|y + (x+ b)|dÂ(y)) +

∫ ∞

0

ex

1 + ex
|y + (x− b)|dÂ(y)

≤
∫ ∞

0

1

1 + ex
(|y| + |x+ b|)dÂ(y)) +

∫ ∞

0

ex

1 + ex
(|y| + |x− b|)dÂ(y)

∆V (x) + |x| ≤ λ̂−1 +

∫ ∞

0

1

1 + ex
|x+ b|dÂ(y) +

∫ ∞

0

ex

1 + ex
|x− b|dÂ(y). (4.83)

For x ∈W , Equation (4.83) can be rewritten as

∆V (x) + |x| ≤ λ̂−1 +

∫ ∞

0

1

1 + ex
(|x| + |b|)dÂ(y) +

∫ ∞

0

ex

1 + ex
(|x| + |b|)dÂ(y)

∆V (x) ≤ λ̂−1 + b <∞.

For x ∈W c, Equation (4.83) can be rewritten as

∆V (x) + |x| ≤ λ̂−1 +

∫ ∞

0

1

1 + e|x|
(|x| + b)dÂ(y) +

∫ ∞

0

e|x|

1 + e|x|
(|x| − b)dÂ(y)

∆V (x) ≤ λ̂−1 +
1 − e|x|

1 + e|x|
b.

Let x∗ be the value of x for which

∆V (x) ≤ λ̂−1 +
1 − ex

1 + ex
b = −µ. (4.84)

Then, x∗ = log b+λ̂−1+µ

b−(λ̂−1+µ)
. For b > λ̂−1 + µ, there exits a x∗ ∈ R for which the ∆V (x) ≤ −µ.

If x∗ is less than b then the drift condition is satisfied for the W = [−b, b]. However, if x∗ is greater
than b then we can consider the set W = [−b, x∗]. Hence, for W = [−b,max(b, x∗)], the drift
condition (C.3) is satisfied.

Lemma 4.6.1 For any d such that −b ≤ d <∞, the set W = [−b, d] is a “small” set.

Proof. For x ∈W ,

P (x,B) =
1

1 + ex

∫

y∈B

dÂ(y − (x+ b)) +
ex

1 + ex

∫

y∈B

dÂ(y − (x− b))

≥ ex

1 + ex

∫

y∈B

dÂ(y + b− x). (4.85)
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Since the density function of Â was assumed to be a non-increasing function, then
∫
y∈B dÂ(y+

b − x) is a non-decreasing function in x. Also, ex

1+ex is an increasing function in x. Since x ≥ −b,
we can rewrite (4.85) as

P (x,B) ≥ e−b

1 + e−b

∫

y∈B
dÂ(y + 2b)

≥ φ(B), (4.86)

where φ(B) := e−b

1+e−b

∫
y∈B

dÂ(y + 2b). Since there exists a measure φ such that P (x,B) ≥

φ(B), x ∈W,B ∈ B(R), the closed and bounded set W = [−b, d] is a small set. �

It follows from Lemma 4.6.1 that W is indeed a small set. Since W is a “small set” when
b > λ̂, from Theorem C.0.3 we can conclude that, for b > λ̂, the Markov chain {s(n)} is positive
recurrent. �

We note that b > λ̂−1 is a sufficient condition for positive recurrence. Let us consider a
modified continuous time process, {ŝ(t)}, in which downward jumps occur with probability one
whenever a congestion signal is generated. We note that in the {s(t)} process both upward and
downward jumps occur according to Equation (4.80). For a given sequence {an, n ≥ 0}, we see
that at any t, s(t) ≥ ŝ(t). Since the process {ŝ(t)} drifts towards +∞ if λ < κ/b, we can say that
λ < κ/b is a sufficient condition for transience of the process {s(t)}.

From Proposition 4.6.2, we can say that a sufficient condition for improving the fairness index
in a system with heterogeneous sessions is

λ >
α2 − α1

| log[β]| . (4.87)

4.6.2 Simulation results

We shall now present simulations results in order to verify the analytical result obtained in Proposi-
tion 4.6.1 which states that, for heterogeneous sessions the rate-dependent congestion signals need
to be generated at an intensity greater than a certain number. The simulations were performed
using ns-2(version 2.26) [MF]. In the simulation scenario, nine Scalable TCP (with SACK) sessions
shared a link of 200Mbps. Sessions 1,2 and 3 had a RTT of 50ms, sessions 4,5 and 6 had a RTT
of 90ms, and sessions 7,8 and 9 had a RTT of 140ms. In Figure 4.6, the window size is plotted
as a function of time for different values of q, the packet drop probability. We note that q = 0
corresponds to losses which occur when the capacity is achieved. It was observed that these losses
were not always synchronous. However, during periods of synchronous losses (which have been
pointed out in the figure) the rate ratio of the sessions with the largest RTT remains constant.
Even though there are asynchronous losses due to congestion, the window sizes of the sessions with
larger RTTs go towards zero. We must mention that in practice the TCP has a minimum sending
window which is not zero. We now induce further asynchronous losses by dropping each packet
with probability q > 0. In Figures 4.6(b)–4.6(c) there is a marked improvement in the throughput
obtained by sessions with larger RTTs as the loss probability is increased. For sessions with RTT
of 50ms, we observe that the periods with periods with synchronous losses are not pronounced as
was the case when q = 0. For a larger loss probability (i.e., q = 0.0003), the average window size of
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each sessions is almost the same. This confirms the analytical result which stated that the fairness
in systems with heterogeneous MIMD sessions the fairness index can be improved by introducing
asynchronous congestion signals at a sufficiently large intensity. Let γ1, γ2 and γ3 be the total

Table 4.3: Throughput for each RTT class and overall efficiency

q γ1(Mbps) γ2(Mbps) γ3(Mbps) γ1+γ2+γ3

C

0 178 2.8 1 0.91
0.00015 148 25.5 7.14 0.905
0.0003 101 48 28.4 0.89

throughput of sessions with RTT of 50ms, 90ms and 140ms, respectively. In Table 4.3, the values
of throughput and the overall efficiency are given. We note that, for q = 0.0003, the ratio of the
throughputs of two different classes, γi

γj
, are almost in proportion of the respective RTTs.

Remark 4.6.1 (Window-dependent versus rate-dependent) In the simulations we observed

that the average window sizes of different sessions were almost equal when packets were dropped with
probability q. When packets are dropped with a fixed probability, the losses induced are window-
dependent and not rate-dependent. Hence, the effect of the asynchronous congestion losses was to
improve the window-based fairness index in such a way so as to equalize the window sizes. In order
to equalize the average rates, we would need to introduce rate-dependent losses, which would require
the knowledge of the rates of each session. We would like to note that the analysis that we performed

using a rate-based notation holds for the window-based notation as well, i.e., we could assume s(t)

to be the window ratio process instead of the rate ratio process and the probability of the session
receiving a congestion signal to be proportional to its window size.

4.7 Inter-algorithm fairness of the MIMD algorithm: equal RTTs

In the second part of this chapter, we shall study the bandwidth sharing when sessions using the
MIMD algorithm and sessions using the AIMD algorithm share the capacity link, and the losses
are synchronous. Specifically, we study the equilibrium behaviour of the window size, and the
throughput obtained by a session of each algorithm at equilibrium in the presence of synchronous
losses only. We also provide conditions under which a source of one algorithm can obtain a better
throughput than a source of the other algorithm. In this section, we shall assume that each session
has the same RTT, τ .

Remark 4.7.1 We note that we shall be using a window-based notation in the rest of this chapter.
For sessions with equal RTTs, the window-based notation is equivalent to rate-based notation.

4.7.1 System model

Let us consider l sessions which share a link of capacity C bits/s. Each session transmits data
using packets of size M bits. Let Λ be the bandwidth-delay product (BDP) of the system. We
shall assume that each session has the same RTT, τ , and that the RTT is mainly determined by
the propagation delay and, hence, can be considered to be a constant. We have the relation

Λ =
C · τ
M

. (4.88)
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Figure 4.6: Window evolution of MIMD sessions. RTT1 = 50ms. RTT2 = 90ms. RTT3 = 140ms.
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Let x(t) = (x1(t) x2(t) . . . xl(t)) denote the vector of window sizes of the l sessions at time t.
A synchronous loss (i.e., a loss for each session) is assumed to occur at time t if

l∑

i=1

xi(t) ≥ Λ. (4.89)

The above condition is equivalent to saying that a synchronous loss occurs when the total number
of outstanding packets in the network exceeds the total number of packets that the system can
handle.

Without loss of generality, let sessions 1, 2, ..., k use the MIMD congestion control algorithm
and the rest l − k sessions use the AIMD congestion control algorithm. In the absence of losses,
the two algorithms increase the window in the following way

xi(t+ ∆) =

{
x(t)α

∆/τ
m for 1 ≤ i ≤ k

x(t) + αa
∆
τ , for k + 1 ≤ i ≤ l,

(4.90)

where αm and αa are the increase parameters of the MIMD and the AIMD algorithm, respectively.
For example, αm = 1.01 for Scalable TCP, and αa = 1 for standard TCP. Let tn denote the time
instant when the nth congestion signal is received. We note that a congestion signal is equivalent
to a synchronous loss. In response to a congestion signal the two algorithms decrease the window
in the following way

xi(t
+
n ) =

{
βmx(tn) for 1 ≤ i ≤ k,
βax(tn) for k + 1 ≤ i ≤ l,

(4.91)

where βm and βa are the decrease parameters of the MIMD and the AIMD algorithm, respectively.
For example, βm = 0.875 for Scalable TCP, and βa = 0.5 for standard TCP.

Let x(n) denote the window size vector embedded just after the nth congestion signal is
received, i.e, x(n) = x(tn+). Let δn denote the time between the nth and (n + 1)th congestion
signals. Since all the sessions are assumed to receive congestion signals at the same instant, we can
write the following recursive equation for x(n).

xi(n+ 1) =

{
βmxi(n)α

δn/τ
m for 1 ≤ i ≤ k,

βa

(
xi(n) + αa

δn

τ

)
for k + 1 ≤ i ≤ l.

(4.92)

4.7.2 Bandwidth sharing

The transient behaviour of the window sizes can be obtained by solving Equation (4.92) along with
Equation (4.89). Given an initial window vector x(0), the time to the first loss t1 and, hence,
x(1) can be computed. This way we can recursively compute x(n). This allows us to obtain the
behaviour of the window size vector and the loss instants before the equilibrium is reached. At
equilibrium, δn and x(n) will converge to their steady state values denoted by δ∗ and ψ, respectively.
We are interested in finding the window size, ψi, of each session at equilibrium. Then, ψi together
with δ∗ will allow us to obtain the throughput for session i. At equilibrium x(n) would be identical
to x(n+1), x(n+2), and so on. Therefore, for each session i, we can obtain ψi from Equation (4.92)
as follows:

ψi =

{
βmψiα

δ∗/τ
m for 1 ≤ i ≤ k,

βa(ψi + αaδ
∗/τ) for k + 1 ≤ i ≤ l.

(4.93)
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The l equations in Equation (4.93) are fixed point solutions of the corresponding equations in
Equation (4.92). We now have l + 1 variables, ψi, 1 ≤ i ≤ l and δ∗, and l equations. The final
equation can be obtained by noting that a loss occurs when the condition in Equation (4.89) is
satisfied. Therefore, the (l + 1)th equation is obtained as

k∑

i=1

ψi

βm
+

l∑

i=k+1

ψi

βa
= Λ. (4.94)

We note that from any one of the first k equations in (4.93) we can obtain the value of δ∗. However,
the variables ψi, 1 ≤ i ≤ k cannot be uniquely determined from these k equations. They will depend
on the window vector just after the first synchronous loss. This result is equivalent to the result
obtained in [CJ89] where the rate vector of homogeneous MIMD sessions was dependent on the
initial rate vector. However, the equilibrium window size for the AIMD sessions can be uniquely
determined from Equation (4.93), using which we obtain

δ∗ = τ
log[1/βm]

logαm
, (4.95)

ψi = αa
βa

1 − βa

log[1/βm]

logαm
k + 1 ≤ i ≤ l. (4.96)

Nevertheless, from (4.94) we can obtain the sum of the equilibrium window sizes of the MIMD
sessions as

k∑

i=1

ψi = βmΛ − βm

βa

l∑

j=k+1

ψj , (4.97)

In order to compute the throughput, γi, of session i, we divide the time interval δ∗ in slots of
length τ . We note that, just after a loss instant, the window size for session i is ψi. In between
two loss instants, the window size for each session increases according to the algorithm given in
Equation (4.90). Also, in every RTT (i.e., in every slot), session i transfers packets equivalent to
its present window size. Therefore, in between two loss instants, the total number of packets that
are transferred by session i can be obtained by summing the window sizes during the δ∗/τ RTTs.
As before, we can obtain the throughput γi for each AIMD session, whereas for the MIMD sessions
we can only obtain the total throughput, γm.

γm =
M

δ∗

k∑

i=1

ψi
α
b δ∗

τ
c+1

m − 1

αm − 1
(4.98)

γi =
Mαa

τ

(
ψi + αa

b δ∗

τ c + 1

2

)
k + 1 ≤ i ≤ l. (4.99)

We note that the throughput expressions are approximate since the number of packets transferred
in an RTT is an integer whereas ψi can take non-integer values. Also, the number of packets
transferred in the RTT in which a loss occurs may not be equal to bψic.

We can make the following observations from Equation (4.95)-Equation (4.99):

1. The equilibrium value of the time between two loss instants, δ∗, is independent of the pa-
rameters of the AIMD algorithm. It is determined by the RTT, τ , and the parameters of the
MIMD algorithm only.
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Table 4.4: Several MIMD and several AIMD sessions.

Link Speed δ γm γa ψa

(Mbps) (s) (Mbps) (Mbps) (packets)

l = 6. k = 3. 200 2.83 (3) 164(151) 3.5(3.4) 29 (27)
l = 12. k = 6. 300 2.83 (3) 238.6(218) 3.5(3.4) 29 (27)

2. The equilibrium window size of the AIMD sessions depends only on the increase and decrease
parameters of the two algorithms. It does not depend on the capacity. Also, the AIMD
sessions have the same equilibrium window behaviour. Hence, the AIMD sessions obtain
identical throughputs.

3. The MIMD session utilise the rest of the capacity.

4.7.3 Simulation results

We now compare these observations with simulations performed using ns-2 (version 2.26). Unless
stated otherwise, in the simulations we used the same set of parameters. The MIMD sessions used
Scalable TCP, and the AIMD sessions used TCP NewReno. The packet size, M , for each session

was set to 1040 bytes (1000 bytes of data + 40 bytes of header). The propagation delay13, τ ,
was taken to be 100ms. The increase and decrease parameters for the two algorithms were set to
αm = 1.01, αa = 1.0, βm = 0.75, and βa = 0.5. Since the ψi for AIMD increases with decrease
in βm, we set βm to a value smaller than its recommended value so that the AIMD sessions also
obtain a certain throughput. From Figure 4.7(a) (3 MIMD sessions and 3 AIMD sessions) and
Figure 4.7(b) (6 MIMD sessions and 6 AIMD sessions), we note that the window size of AIMD
sessions sampled just after loss instants indeed converges to the same equilibrium value whereas
the equilibrium window size of an MIMD session depends on its window size just before the first
synchronous loss. The ψi for AIMD sessions remains the same even though the link capacity is
increased from 200Mbps to 300Mbps and the total number of sessions is increased from six to
twelve. Let γa and ψa denote the throughput and the equilibrium window size of any one of the
AIMD sessions, respectively.

In Table 4.4, the analytical and simulation values of δ∗, γm, γa, and ψa are given. The
simulation values are given in parentheses. As predicted in the analysis, the equilibrium window
size and the throughput of the AIMD sessions remains unchanged even when the capacity is increase
from 200Mbps to 300Mbps, and the total number of sessions is increased from six to twelve. We
note that γm represents the total throughput of the MIMD sessions.

4.7.4 Throughput comparison

We now study the scenario where one MIMD source and AIMD source share the same link. We note
that each source can initiate several sessions of the same algorithm. We are interested in knowing
the conditions under which the AIMD source can obtain higher throughput than the MIMD source.

First, we consider the case in which each source initiates only one session. In such a scenario,
the window size and the throughput of each session is obtained from Equations (4.96–4.98) with
l = 2 and k = 1.

13We have assumed that the propagation delay is the same as the RTT.



88 Chap. 4 Some fairness properties of the MIMD congestion control algorithm

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  50  100  150  200

W
in

do
w

 s
iz

e

AIMD

AIMD1
AIMD2
AIMD3
MIMD1
MIMD2
MIMD3

PSfrag replacements

Wn

Wn+1

nth RTT
L =

log[Wmax]
log[α]

log[Wn]−log[Wmin]
log[α] −→

log[Wn]
log[α] −→

(
log[Wmax]−log[Wn]

log[α]

)
−→
Xt

Nt

Zt

τi
τi+1

τi+2

τi+3

Time

Xmax

g(x) = βx

gZ(z) = z + log[1/β]
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Ż = − α
Xmax exp(−z)

0
Πc

E[Xj ]
1
j

j

x1

x2

(1,0)

(0,1)

slope = θ

slope = θ/β

slope = θ · β
ω = 1, i = 0

ωβi

ωβi+1

ωβi−1

ωβ−i

ωβ−(i+1)

ωβ−(i−1)

fairness line

slope = κ

θ(0)

θ(t)

log[β]

an

s(0)

s(t)
(a) C = 200Mbps. l = 6. k = 3.

 0

 200

 400

 600

 800

 1000

 1200

 0  50  100  150  200

W
in

d
o

w
 s

iz
e

Time(s)

AIMD

AIMD1
AIMD2
AIMD3
AIMD4
AIMD5
AIMD6
MIMD1
MIMD2
MIMD3
MIMD4
MIMD5
MIMD6

PSfrag replacements

Wn

Wn+1

nth RTT
L =

log[Wmax]
log[α]

log[Wn]−log[Wmin]
log[α] −→

log[Wn]
log[α] −→

(
log[Wmax]−log[Wn]

log[α]

)
−→
Xt

Nt

Zt

τi
τi+1

τi+2

τi+3

Time
Xmax

g(x) = βx

gZ(z) = z + log[1/β]
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Figure 4.7: Window evolution of sessions.

From Equations (4.98–4.99), as Λ → ∞ (i.e., C → ∞), the ratio of the throughputs, γ2/γ1,
goes to 0. This suggests that in high capacity systems, the MIMD source will get most of the
capacity. On the other hand, if the BDP of the system is small, the MIMD source will obtain a
lower throughput compared to the AIMD session.

Proposition 4.7.1 Let Λl denote a threshold BDP below which an AIMD session will get higher
throughput compared to an MIMD session. The threshold value, Λl, is given by

Λl = ψ2

(
αaδ

∗

2τ

(
δ∗

τ
+ 1

)(
αm − 1

αm − βm

)
+

1

βa

)
. (4.100)

Proof. The above relation can be obtained using the fact γ1 ≤ γ2 together with Equation (4.97).
�
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The value of Λl depends only on the increase and decrease parameters of the two algorithms. In
Table 4.5, we give the values of Λl for different βm with αm = 1.01 and αa = 1. In Figure 4.8(a),

Table 4.5: Λl for different values of βm.

βm 0.875 0.75 0.5

Λl 47.34 106.6 282.73

the window evolution of the two sessions is shown for C = 13Mbps and βm = 0.5. For this system,
the BDP is less than the Λl. The AIMD algorithm obtains a better throughput in this case. In
the next set of simulations, we set βm to its recommended value of 0.875. In Figure 4.8(b), the
corresponding window evolution is shown. The effect of increasing βm is to reduce the share of the
AIMD session. In Table 4.6, a comparison of the values obtained from analysis and simulations is
presented.

From Equation (4.99), it was inferred that the throughput obtained by each AIMD session
remains constant whereas the total throughput of the MIMD sessions increases with increase in
capacity. An AIMD source may want to obtain throughputs similar to an MIMD source. In this
case, the AIMD source may open several sessions in order to improve its observed throughput.
Since each AIMD session gets the same throughput independent of the number of AIMD sessions
(assuming there is sufficient capacity), an AIMD source can improve its observed throughput by
opening multiple sessions.

Proposition 4.7.2 The smallest number of sessions, ν, with which an AIMD source will obtain a
better global throughput compared to single MIMD source is given by

ν =

⌈
βm(αm − βm)

ψaαab δ∗

τ c(b δ∗

τ c + 1)(αm − 1

(
Λ − ψa

βa

)⌉
, (4.101)

where ψa is the equilibrium window of any one of the AIMD sessions and is defined in Equa-

tion (4.96).

We note that ν depends only on Λ and the increase and decrease parameters of the two algorithms.
In Table 4.7 we give the value of ν for different values of Λ for βm = 0.875.

Similar to the AIMD source, an MIMD source may also try to improve its observed throughput
by opening several sessions. Since, from Equation (4.99), the AIMD source will get a throughput
independent of the number of MIMD sessions, the observed throughput of an MIMD source will

Table 4.6: One MIMD and one AIMD session. τ = 140ms.

Link Speed η1 η2 ψ1 ψ2

(Mbps) (Mbps) (Mbps) (packets) (packets)

3 2.22 (2.36) 0.6 (0.52) 66.2 (70.7) 13.41 (11)
β = 0.875 5 4.05 (4.1) 0.75 (0.71) 96.82 (98) 13.41 (12)

10 8.86 (8.74) 0.92 (0.86) 173.39 (173) 13.41 (12)
13 4.73 (5.19) 4.92 (5.64) 69.09 (67) 69.6 (69)

β = 0.5 15 6.08 (6.62) 5.04 (5.65) 86.59 (84) 69.6 (68)
30 16.64 (16.95) 5.47 (5.86) 217.83 (211) 69.6 (69)
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Figure 4.8: Window evolution for one MIMD session and one AIMD session.

not improve by opening several sessions. This result is in contrast to the result obtained in Equa-
tion (4.101), where we noted that an AIMD source can improve its observed throughput by opening
several sessions.

4.8 Inter-algorithm fairness of the MIMD algorithm: unequal RTTs

In this section we study the effect of having a different RTT for each session on the equilibrium
window behaviour. The notation used and the scenario is the same as in Section 4.7. We shall
assume that there exists a BDP, Λ, such that there is a synchronous loss when condition in Equa-
tion (4.89) is satisfied. Let τi be the RTT of session i. Then, we can rewrite Equation (4.93) as
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Table 4.7: ν for different values of Λ.

βm = Λ 100 500 1000 10000 50000
0.875 ν 3 18 37 372 1863
βm = Λ 100 500 1000 10000 50000
0.5 ν 1 3 7 71 358

follows:

ψi = βmψiα
δ∗/τi
m , 1 ≤ i ≤ k, (4.102)

ψi = βa(ψi + αaδ
∗/τi), k + 1 ≤ i ≤ l. (4.103)

The expressions for throughput are:

γi =





M
δ∗ψi

∑b δ∗

τi
c

j=0 αj
m for 1 ≤ i ≤ k,

M
δ∗ψiαa

∑b δ∗

τi
c

j=0 j for k + 1 ≤ i ≤ l.

(4.104)

For Equation (4.102) to be consistent we need

δ∗ =
log[1/βm]

log[αm]
min

1≤i≤k
τi. (4.105)

Therefore, among the MIMD sessions, only the session with the least RTT will have an equilibrium
window size different from zero. The equilibrium window size of the other MIMD sessions will go
to zero. Hence, we can consider the case where there is only one MIMD session and several AIMD
sessions.

For k = 1, from Equations (4.102–4.103), we obtain

δ∗ = τ1
log[1/βm]

logαm
,

ψi = αa
βa

1 − βa

log[1/βa]

logαa

τ1
τi
, 2 ≤ i ≤ l,

ψ1 = βmΛ − βm

βa

l∑

i=2

ψi.

The inter-loss time depends entirely on the parameters and the RTT of the MIMD session. The
effect of different RTTs for the AIMD sessions is to scale ψi by a factor of τ1/τi. Therefore, an
AIMD session with lower RTT can obtain a better throughput.

4.8.1 Several MIMD sessions

We observed in the previous subsection that if there are l MIMD sessions with different RTTs
sharing a link, then the session with the smallest RTT will get all the capacity and the window
sizes for other sessions will go to zero. This result was also mentioned in [XHR04]. However, if the
sessions have the liberty to choose their increase and decrease parameters then each session can
obtain some share of the capacity. Let αmi and βmi be the increase parameter and the decrease
parameter, respectively, of the ith MIMD session.
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Proposition 4.8.1 A system with l MIMD sessions having different RTTs will have a behaviour
similar to a system with l MIMD sessions having the same RTT if

τi
log[1/βmi]

log[αmi]
= (a constant). (4.106)

The inter-loss time, δ∗, will then be equal to this constant.

Proof. We note that with this value of δ∗, Equation (4.102) is consistent for non-zero ψi, 1 ≤ i ≤ l.
Therefore, an equilibrium solution exists. Let x(0) is the initial window size vector. The time to the

first synchronous loss, t1, can be computed using the condition
∑l

i=0 xi(0)α
t1/τi

mi = Λ. We can now

compute xi(1) = βmixi(0)α
t1/τi

mi . The next loss will occur after a time δ∗. This can be verified by

noting that
∑l

i=0
xi(1)
βmi

= Λ, and t2 = δ∗ given by Equation (4.106) satisfies
∑l

i=0 xi(1)α
t2/τ
m = Λ.

From this we obtain t2 = δ∗. Since t1 is the equilibrium value of the inter-loss time, xi(1) will also
be the equilibrium value of ψi. Now, the system will be similar to the same RTT case where the
equilibrium window size vector is the same as the window size vector just after the first synchronous
loss. �

Therefore we can obtain a condition on setting the increase and decrease parameters of MIMD
algorithm as a function the RTT in order to obtain the same performance as system with the same
RTT.

4.9 Conclusions

In the first part of the chapter, we studied the fairness properties of systems with only MIMD
sessions. For homogeneous sessions, it was observed that the fairness index of a system with
synchronous congestion signals could be improved by introducing rate-dependent losses with non-
zero intensity. For heterogeneous sessions, i.e., sessions with different RTTs, it was observed that the
intensity of the rate-dependent congestion signals needed to be greater than a threshold intensity
in order to improve the fairness index. In the second part of this chapter, we studied bandwidth
sharing between MIMD sessions and AIMD sessions in systems with synchronous losses only. It
was noted that for a given set of parameters, AIMD sessions obtained a throughput which is
independent of the BDP, and that the rest of the capacity was utilized by the MIMD sessions. In
networks with BDP less than a threshold value, it was observed that one AIMD session obtained
better throughput than one MIMD session. It was also observed that an AIMD source could open
multiple sessions in order to improve its observed throughput whereas for the MIMD source the
throughput was invariant to the number of sessions it opened.



Chapter 5

A singular perturbation based analysis of a RED

queue

Several Active Queue Management (AQM) techniques for routers in the Internet have been pro-
posed and studied during the past few years. One of the widely studied proposals, Random Early
Detection (RED), involves dropping an incoming packet with some probability based on the esti-
mated average queue length at the router. The analytical approaches to obtaining average drop
probabilities in a RED enabled queue have been either based on using the instantaneous queue
size for calculating the drop probability or have considered averaging with a fluid approximation.
In this chapter, we use a singular perturbation based approach to analyse a RED enabled queue
with drop probabilities based on the estimated average queue size as has been proposed in the
standard RED. The singular perturbation approach is motivated by the fact that the instanta-
neous and the estimated average queue lengths evolve at two different time scales. We present an
analytical method to calculate the average queue length and the average drop probability for the
non responsive flows. We also provide analytical expressions when the arrival are Poissonian and
service times are exponential. Our model is derived under several approximations, and is validated
through simulations.

The results in this chapter have appeared in [AAP04].

5.1 Introduction

In the previous chapters, we studied the performance measures for an end-user of the Internet while
assuming the network to be a black box which gave feedback signals. In particular, we studied
the window size behaviour of congestion control algorithms which received congestion signals from
the network. A network consists of a set of links and nodes, called routers, which receive packets
on incoming links and forward the packets on one of the outgoing links. In order to counter the
fluctuations in the rate of incoming packets, a router is provisioned with a buffer which can absorb
a burst of packets of limited number. The overflow of this buffer leads to congestion signals being
generated. In this chapter, we invert the scenario considered in previous chapters. Specifically,

we consider the behaviour of the queue length in a router1 while modelling the end-users as one

1An element, which has several outgoing links, that switches incoming packets to one of the outgoing links
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Figure 5.1: The incoming traffic as perceived by a router.

aggregate source which sends packets to this router. An illustration of this model is shown in
Figure 5.1.

Since a router only has a finite buffer, it has to exercise some admission control, on the
incoming packets. We note that an admission control policy (or, a queue management scheme) is,
in effect, a policy to generate congestion signals. Thus, the choice of the queue management scheme
affects the behaviour of the window size of a congestion control algorithm. A simple and easy to
implement queue management scheme, called the drop-tail scheme, admits packets as long as there
is space available in the buffer. This scheme was also implemented in routers in the Internet.
However, it was observed that TCP used in conjunction with drop tail queues in the routers led to
oscillatory behaviour of the queue length and to bursty packet losses at the routers [ZC90]. A burst
of packet losses meant that several sources would increase and decrease their window size in unison.
The synchronized increase and decrease of the window size by different sources led to inefficient use
of the outgoing link. Thus, Active Queue Management (AQM) schemes were proposed to improve
the link utilization by sending congestion signals in anticipation of congestion (see, for example,
[FJ93], [PPP00], and [FKSS02]).

In order to overcome the synchronised window evolution, the Random Early Detection (RED)
algorithm proposes to drop packets at random before congestion actually sets in [FJ93]. Two of
the design aims of RED are to accept occasional bursts and to maintain a reasonable average
queue length when the system is heavily loaded with the objective of efficient use of the system
capacity. Towards this end, the routers maintain a variable corresponding to the exponentially
weighted moving average of the instantaneous queue length. An incoming packet is dropped with
some probability which is a function of this estimated average queue length. The performance of
the RED algorithm depends on the setting of parameters and the traffic characteristics [CJOS01].
Several alternatives and modifications have been proposed in [FKSS02], [ALLY01], [TM04], and
[OLW99].

The aim of our study is to use singular perturbation techniques (see, for example, [Sch86]
and [AFH02]) to provide an analytical expression for computing the drop probabilities and average
queue length in a RED enabled queue with averaging as has been proposed in RED. Furthermore,
we make use of the transition probability matrices in order to preserve the stochastic nature of the
system as opposed to a fluid approximation which is deterministic. The dynamics of the average
and the instantaneous queue lengths are modelled as a two dimensional Markov chain, which is then
approximated by a non-homogeneous (or level dependent) Quasi-Birth-and-Death (QBD) process
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[LR99]. This model then permits us to obtain the joint steady state distribution of the average and
the instantaneous queue lengths. The use of singular perturbation technique is motivated by the
fact that two different time scales are involved in the evolution of the average and the instantaneous
queue length. Indeed, for very small values of the averaging parameter, the average queue length
can be assumed to vary much more slowly compared to the instantaneous queue length. The use of
this decomposition allows us to compute the steady state distribution and the desired performance
metrics at a reduced complexity.

Remark 5.1.1 We must emphasize that the model which we shall study does not take into account
the effect of packet drops on the incoming rate of packets. As was mentioned earlier, congestion
control algorithms react to packet drops by reducing their sending rate. Thus, the rate of incoming
packets to the router is also reduced. However, there are traffic sources such as real-time streaming
flows that transfer data without using a congestion control algorithm, i.e., they do not react to
packet drops. Thus, our source model is more representative of sources that do not adapt their
sending rates based on congestion signals.

Next, we mention the techniques which have been previously used to analyse RED, and
mention the differences with our work.

5.1.1 Related literature

Various authors have studied the behaviour of RED, both through analysis and through simula-
tions. In [BMB00], the authors analyse the performance of a RED queue using the instantaneous
queue length, instead of the average queue length, to compute the drop probabilities. In [MGT00]
and [HMTG01], a fluid approximation is used to study the effect of the exponential averaging. In
[KRV02], the authors compute the joint distribution of the instantaneous and the averaged queue
length of an M/M/1/K queue as a solution of a set of differential equations. An analytical expres-
sion for the case of buffer size 1 and 2 is also provided. However, they consider packet drops only
due to buffer overflow. The study of [SVL02] uses a time scale decomposition to obtain in the limit
a differential equation for the exponentially averaged queue length. They also provide a diffusion
approximation to quantify the error due to the ODE approximation. This method of analysis is
then extended in [LV00] in which the assumption of a small averaging parameter is relaxed and a
time dependent arrival rate is considered. In [KLVK01], the authors extend this model to consider
the aggregate sending rate of TCP sources which react to packet drops.

Our method is also based on noting that average and the instantaneous queue lengths evolve
at different time scales. However, unlike the ODE approximation obtained in [SVL02], we use
a discretized version of that fluid dynamics which has a simple probabilistic interpretation. By
introducing probabilistic dynamics, we model the joint average and instantaneous queue length
process as a non-homogeneous QBD process. This formulation then allows us to obtain the joint
distribution of the average and the instantaneous queue length process. We note that this type
of discretization is very frequent in numerical solutions of fluid models and of diffusions, including
controlled ones and there is a huge literature that provides conditions under which the stochastic
processes related to the discrete model converge (in various senses) to the original fluid model as
the discretization step goes to zero, see, e.g., Theorems 2.7 and 4.2 in [CF96] (or the Appendix of
[BCD97] as well as [KD92]).

The rest of the chapter is organized as follows. In Section 5.2 we describe the RED algorithm
and present the system model. In Section 5.3 we outline the analytical method to compute the
joint distribution of the average and instantaneous queue length, and to compute other performance
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metrics. In Section 5.4 we compare the results obtained using the analysis and with simulations.
Finally, in Section 5.5 we present the conclusions.

5.2 Problem formulation

We first describe the algorithm which a RED-enabled router uses to drop packets.

5.2.1 The RED algorithm

The basic algorithm of RED was proposed in [FJ93] and can be summarized as follows. The router
updates an exponentially averaged queue length variable, qn, where the subscript n denotes the
nth packet arrival. In addition to qn, the router also keeps a count, cn, of the number of packets
accepted since the last dropped packet. The incoming packet is dropped with a probability, pd,
which is computed according to the following algorithm.

if qn < minth then

pd = 0, cn = −1,
else if minth ≤ qn ≤ maxth then

pb = maxp(qn −minth)/(maxth −minth),

pd = min(1, pb/(1 − cnpb)),
else

pd = 1,

where maxp (maximum drop probability), minth (minimum threshold for queue), and maxth (max-

imum threshold for queue) are given constants. The variable cn is set to zero each time an incoming
packet is dropped. The estimated average queue length, qn, is an exponentially weighted moving
average of the instantaneous queue length, Qn, and is computed as follows.

if Qn == 0 then

qn+1 = (1 − α)wqn,
else

qn+1 = (1 − α)qn + αQn+1, (5.1)

where α is the queue weight, and w is the average number of packets the router could have
transmitted during the previous idle period. Figure 5.2 shows the drop function associated with
the basic RED algorithm.

5.2.2 The system model

Let us consider a RED-enabled router which has a buffer size of K packets. We note that the
maximum queue size here is in terms of packets and not bits. Let Tn denote the inter-arrival time
between the (n−1)th and nth arrival. The sequence {Tn, n ≥ 1} is assumed to be independent and

identically distributed with mean λ−1, distribution function T (x), and Laplace-Stieltjes transform

T ∗(s). The packet service times are assumed to be exponentially distributed with mean µ−1. In
the notation of queueing theory, the model corresponds to a G/M/1/K queue with RED queue
management scheme.

Assumption 5.2.1 For minth ≤ qn ≤ maxth, an incoming packet is dropped with a probability pd

equal to pb.
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Figure 5.2: RED drop probability function

Remark 5.2.1 In [FJ93], the authors compare two methods of calculating the drop probability, pd.

In the first method, pd is taken to be equal to pb, and in the second method pd is computed as in the
algorithm described in Section 5.2.1. They conclude that, for the same number of average dropped
packet, the losses are more spread out when the second method is used. Therefore, by assuming
pd = pb we can expect to obtain an upper bound on the probability of more than j successive packet
losses.

Let Qn and qn be the instantaneous and estimated average queue lengths, respectively, just
before the nth arrival. The recursive equations for the evolution of the state (qn, Qn) are given by

Qn+1 =

{
max(Qn −Dn, 0) w.p. h(qn) or if Qn = K;
max(Qn + 1 −Dn, 0) w.p. 1 − h(qn),

(5.2)

qn+1 = (1 − α)qn + αQn+1, (5.3)

where Dn is the number of packet departures during the inter-arrival time Tn+1, and h(·) denotes
the RED packet drop probability function, i.e., pd = h(qn).

With this formulation, the process {(qn, Qn), n ≥ 0} is a Markov chain. Its analysis is difficult,
partly because the support of q is a countable subset of the interval [0,K] where K is the maximum
queue size.

We propose an approximation that reduces the support of q to a finite set denoted by Vm =

{0, ...,mK}, where m is some integer. In the following discussion, q̂n will refer to the discretized
estimated average queue length. We assume below that α is sufficiently small such that αmK < 1.
The recursive equation for q̂n is given by

q̂n+1 = (1 − α)q̂n + αmQn+1, q̂n ∈ {0, 1, ...,mK}. (5.4)

Now, we replace Equation (5.4) by the approximation

q̂n+1 = q̂n + Cn, (5.5)

where

Cn =





1 w.p. α(mQn+1 − q̂n)+ ;
−1 w.p. α(q̂n −mQn+1)

+ ;
0 otherwise ,
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with x+ = max(x, 0).
We note that with this definition, we obtain

E[q̂n+1 − q̂n|q̂n, Qn+1] = 1 · α(mQn+1 − q̂n)+ + (−1) · α(q̂n −mQn+1)
+

= α(mQn+1 − q̂n), (5.6)

so that Equation (5.4) becomes the mean field of Equation (5.5). With this approximation the
transitions of q̂n conditioned on Qn become stochastic as opposed to the deterministic transitions
in the original system.

The motivation for such an approximation is that we are interested in obtaining the steady
state distribution of the couple (q̂n, Qn) which will allow us to study the various performance
measures (e.g., average queue length, average drop probability, etc.) of the system. With this
approximation we can model the (q̂n, Qn) process as a non-homogeneous QBD process for which
algorithms are available to efficiently compute the steady state distribution [GJL84],[LR99].

In order to model the process (q̂n, Qn) as a QBD process, we first obtain the transition matrix
of Qn for a given value of q̂n. That is,

Ai = {ajk}i = P (Qn+1 = k|Qn = j, q̂n = i), ∀i ∈ 0, 1, ...,mK. (5.7)

The matrix Ai is a (K + 1) × (K + 1) matrix. Using Equation (5.2), the probability ajk can be
obtained as follows.

ajk =





(1 − h(i))d0 k = min(j + 1,K);
(1 − h(i))dj−k+1 + h(i)dj−k 0 < k ≤ j;
(1 − h(i))

∑∞
l=min(j+1,K) dl + h(i)

∑∞
l=min(j,K) dl k = 0,

(5.8)

where

dl =

∫ ∞

0
exp(−µx)(µx)l

l!
dT (x) (5.9)

is the probability of l departures between two arrivals.
Next, we obtain the transition matrix for q̂n conditioned on given values of Qn+1 and q̂n. Let

C+
i , C

−
i , C

0
i denote matrices given by

C+
i := {cjj} = p(q̂n+1 = i+ 1|Qn+1 = j, q̂n = i)

= α(m · j − i)+,

C−
i := {cjj} = p(q̂n+1 = i− 1|Qn+1 = j, q̂n = i)

= α(i−m · j)+,
C0

i := {cjj} = p(q̂n+1 = i|Qn+1 = j, q̂n = i)

= 1 − α(m · j − i)+ − α(i−m · j)+,
∀i ∈ {0, 1, ...,mK} ∀j ∈ {0, 1, ...,K}.

C+
i i, C−

i , and C0
i are (K + 1) × (K + 1) matrices which denote the transition probability of

q̂n+1 = q̂n + 1, q̂n+1 = q̂n − 1, and q̂n+1 = q̂n, respectively, when Qn+1 = j. We note that Ci’s are
diagonal matrices which satisfy the equality

C+
i + C−

i + C0
i = I. (5.10)
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Let P̃ denote the transition probability matrix for the two dimensional Markov chain (q̂n, Qn)

with π̃(α) as its stationary distribution. Using the identity

p(q̂n+1, Qn+1|q̂n, Qn) = p(q̂n+1|q̂n, Qn, Qn+1) · p(Qn+1|q̂n, Qn)

= p(q̂n+1|q̂n, Qn+1) · p(Qn+1|q̂n, Qn),

we can write P̃ as

P̃ =




A0(C
−
0 + C0

0 ) A0C
+
0 0 . . . . . .

A1C
−
1 A1C

0
1 A1C

+
1 0 . . .

0 A2C
−
2 A2C

0
2 A2C

+
2 . . .

...
...

. . .
...

...
...

...
...

. . .
...

0 . . . . . . AmKC
−
mK AmK(C0

mK + C+
mK)




. (5.11)

The diagonal rows entries of P̃ are matrices which give the transition probability matrix of Q for
a given value of q̂n, and q̂n+1 = q̂n whereas the off-diagonal entries give the transition probability
matrix of Q for a given value of q̂n and q̂n+1 = q̂n + 1, or q̂n+1 = q̂n − 1. Using Equation (5.10), we

can rewrite P̃ as

P̃ = P + PC, (5.12)

where P is given by

P =




A0 0 . . . 0
0 A1 . . . 0
...

...
. . .

...
0 . . . 0 AmK


 ,

and C is given by

C =




−C+
0 C+

0 0 . . .
C−

1 −(C−
1 + C+

1 ) C+
1 . . .

...
...

. . .
...

0 . . . C−
mK −C−

mK


 .

We note that P̃ is a function of the averaging parameter α. In [Flo97], the recommended value of
α is of the order of 0.002. In [FGS01], the authors recommend setting

α = 1 − exp(−1/∆), (5.13)

where ∆ is the link capacity in packets/sec. For large capacity links, this suggests that the averaging

parameter is small. This assumption on α allows us to obtain the steady state probabilities of P̃
using a singular perturbation approach which we outline below and which is computationally less
expensive than algorithms to compute the invariant vectors of matrices.
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5.3 Analysis

To use the singular perturbation approach, we first note that P is a matrix containing the tran-
sition probability matrices of the instantaneous queue length for a given value of the estimated
average queue length when the averaging parameter α = 0. Thus, P has mK ergodic classes each
corresponding to a particular value of q̂. The stationary distribution of each of these classes can
be computed separately. This system of decomposable Markov chains is the unperturbed system
which can be analysed separately for different values of q̂. In general, the stationary distribution
(which may not be unique) of the unperturbed system (i.e., α = 0) is not the same as the sta-
tionary distribution of the original system when α → 0 [Sch68]. This motivates us to use singular
perturbation technique to determine the stationary distribution of our system when α→ 0.

Later, we also show that the distributions of the instantaneous queue length and the average
queue length can be computed for the general case (i.e. α 9 0). We note that the use of the
approximation given in Equation (5.5) has resulted in a transition matrix, Equation (5.11), which
is similar to that of a level dependent Quasi-Birth-and-Death (QBD) process. We can now use the
algorithm, given in [GJL84], for computing the steady state probability vector for level dependent
QBD.

5.3.1 The limiting case

In this subsection we obtain the steady state probability vector of P̃ when α → 0. We note that

all the elements of the matrices C+
i and C−

i have α as a common multiple and thus we can replace

C+
i by αD+

i and C−
i by αD−

i where D+
i and D−

i have elements independent of α. Thus we can

rewrite equation Equation (5.12) as

P̃ = P + αPD. (5.14)

This is the standard formulation for the singularly perturbed Markov chains [Sch86]. The singular

perturbation approach allows us to find the stationary distribution of P̃ , π̃(α), in the limit α→ 0.

We present the method for finding the limiting stationary distribution of P̃ , the details of
which can be found in [Sch86], [AFH02]. Let πi denote the stationary distribution of Ai, and let V
be a (mK+1)× (mK+1)(K+1) matrix such that in the ith row the entries, corresponding to the
columns q̂n = i, are given by the rows of πi, and is zero elsewhere. The vector πi is the stationary
distribution vector of the unperturbed Markov chain of the instantaneous queue length when packets
are dropped with a probability depending on h(i). Let W be a (mK+1)(K+1)×(mK+1) matrix
such that in the ith column the entries corresponding to the rows q̂n = i are unity and the other
entries are zero.

V =




π0 0 . . . 0
0 π1 . . . 0
...

...
. . .

...
0 . . . . . . πmK


 , W =




1′ 0 . . . 0
0 1′ . . . 0
...

...
. . .

...
0 . . . . . . 1′


 ,

where 0 and 1 are (K + 1) × 1 vectors of 0 and 1, respectively.
Let S denote the generator matrix of the aggregated Markov chain. When α goes to 0, the

stochastic sequence q̂n converges weakly to a Markov chain induced by the aggregated transition
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matrix. Then S is given by

S = V PDW.

Since πi is the stationary distribution of Ai, V P reduces to V , i.e.,

S = V DW. (5.15)

Denote

f+
i = πiD

+
i 1′ (5.16)

=

K∑

j=d i
m
e

πi(j)(mj − i). (5.17)

f−i = πiD
−
i 1′ (5.18)

=

b i
m
c∑

j=0

πi(j)(i−mj). (5.19)

(5.20)

where πi(j) is the jth element of πi.

Using Equation (5.16) and Equation (5.18) we can rewrite S as

S =




−f+
0 f+

0 0 . . .
f−1 −(f−1 + f+

1 ) f+
1 . . .

...
...

. . .
...

0 . . . f−mK −f−mK


 .

The stationary distribution of this generator matrix can be obtained by solving γS = 0. The
stationary distribution, γ, is given by

γ := {γ(i)} = γ(0)

∏i−1
j=0 f

+
j∏i

j=1 f
−
j

, i ∈ {0, 1, ...,mK}, (5.21)

where

γ(0) =

(
mK∑

i=0

∏i−1
j=0 f

+
j∏i

j=1 f
−
j

)−1

.

Proposition 5.3.1 Let π̃(α) be the stationary distribution of P̃ for a given value of α, and let πi

denote the stationary distribution of Ai. Then, the limiting stationary distribution of P̃ , π̃(0) is

given by

π̃(0) = [γ1π1 γ2π2 ... γmKπmK ] , (5.22)

where γi is given in Equation (5.21).
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We note that the states q̂ > m·maxth are transient and the steady state probability of q̂ > m·maxth

is 0. This can be shown as follows. From Equation (5.17) we have

f+
i =

K∑

j=d i
m
e

πi(j)(mj − i). (5.23)

Since the packet drop probability is 1 for q̂ ≥ m·maxth, the steady state probability, πi(j), becomes

πi(j) =

{
1 j = 0;
0 j > 0,

∀i ≥ m ·maxth. (5.24)

This is true since all the packets arriving at the queue would be dropped and the queue would
be empty. Since, πi(j) is as given in Equation (5.24), and i ≥ m · maxth > 0, we get that

f+
i = 0, ∀i ≥ m · maxth. From Equation (5.19) we get f−i > 0 ∀i. From Equation (5.21) it

follows that γ(i) = 0 ∀i ≥ m ·maxth.

Remark 5.3.1 The stationary probability πi(j) is the steady state probability of an arrival finding

j customers in a G/M/1/K queue. These probabilities can be computed recursively. We note that

in the limit α→ 0, the instantaneous queue moves on a much faster time scale than the estimated
average queue length, and hence approaches stationarity. Therefore, if we had exponential inter-

arrival times and general service times (i.e., M/G/1/K) instead of general inter-arrival times

and exponential inter-arrival times (i.e., G/M/1/K) we could use the (time-average) steady state

distribution of the M/G/1/K system to compute the performance measures. In the limiting case,

the performance measures of both G/M/1/K and M/G/1/K queues with RED queue management

scheme could be obtained using this approach. However, for the general case (α 9 0), using our

method, we can only obtain the performance measures of the G/M/1/K queue with RED queue

management scheme.

If the arrival process to the queue is Poisson with rate λ and the service times are exponentially
distributed with mean µ, then the stationary distribution of Ai, πi, is given by

πi := {πi(j)} = πi(0)ρ
j
i , (5.25)

where

πi(0) =




K∑

j=0

ρj
i




−1

,

and ρi = λ · (1 − h(q̂n = i)) · µ−1. Here h(·) is the given drop function.

From the above analysis, using Equation (5.21), we are able to obtain the stationary distri-
bution of the average queue length variable, q̂. We use the PASTA property which states that the
arrivals see this average queue length distribution. Hence, we can calculate the average packet drop
probability as

Pavg =

mK∑

i=0

γ(i)h(i), (5.26)
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For batch arrivals, we make the assumption that every packet in a batch is dropped with same drop
probability. With this assumption, we can write the probability of dropping at least one packet in
batch as

Pavg =

m(K−N)∑

i=0

(1 − (1 − γ(i))N ) · h(i) +
mK∑

i=m(K−N)+1

h(i), (5.27)

5.3.2 An approximate analysis

We present an approximate analysis which allows us to obtain the mean value of q̂ without having
to find the distribution.
An approximate fixed point equation. The expected value of q̂, q̂∗, can be obtained by solving

q̂∗ = mE[Qq̂∗ ], (5.28)

where E[Qq̂∗ ] is the expected queue length when packets are dropped with a constant probability

h(q̂∗).
Using Equation (5.17) and Equation (5.19) we get

f+
i − f−i = m

K∑

j=0

jπi(j) − i = mE[Qi] − i, (5.29)

where E[Qi] is the expected queue length in the unperturbed Markov chain with q̂n = i. The term

f+
i − f−i can be thought of as an indicator for transitions of the average queue length, q̂. We note

that in states where mE[Qi] > i, f+
i − f−i is positive, hence indicating a tendency to increase q̂.

Similarly, when mE[Qi] > i, f+
i − f−i is negative, hence indicating a tendency to decrease q̂. The

expected value of q̂ will then occur at the point where f+
i − f−i = 0. Hence, q̂∗ can be obtained

by solving Equation (5.28). For the existence and uniqueness of the solution, we assume that the
drop probability function (this is the case in the gentle variant of RED [Flo00]) is a continuous
non-decreasing function, h(q̂), of the estimated average queue length. The effective offered load,
ρ∗, for a given value of q̂∗ is then given by

ρ∗ = ρ(1 − h(q̂∗)). (5.30)

Since ρ∗ is a continuous non-increasing function on q̂∗, we can express q̂∗ as

q̂∗ = h−1

(
1 − ρ∗

ρ

)
:= g(ρ∗). (5.31)

We note that g is continuous non-increasing function on ρ∗. Since the expected queue length,
E[Q(ρ∗)], in the stationary regime is a continuous non-decreasing function of the offered load, then
we can say that E[Qq̂∗ ], is a continuous non-increasing function of q̂∗. As q̂∗ and E[Q(·)] map to

the same interval, [0,K], we can say that the solution to Equation (5.28) exists and is unique.

Remark 5.3.2 The fixed point equation was also obtained in [SVL02] as the stationary solution

of an ordinary differential equation.
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5.3.3 The general case

In Section 5.3.1 we presented an analysis for the limiting case α→ 0. In this section we outline an
algorithm with which we can compute the steady state probabilities when α 9 0. However, α still
has to satisfy the condition αmK < 1.

The transition probability matrix of the two dimensional Markov chain (q̂n, Qn) given in
Equation (5.11) can be written as

P̃ =




L0 F0 0 . . . . . .
B1 L1 F1 0 . . .
0 B2 L2 F2 . . .
...

...
...

. . .
...

0 . . . . . . BmK LmK



, (5.32)

where Bi, Li, Fi denote the backward, local, and forward transition matrices, respectively. This is
the transition matrix for a level dependent QBD process. Let the π̃ be stationary distribution of

P̃ . Let π̃ = [π̃0π̃1...π̃mK ], where π̃i’s are vectors of size 1 ×K. π̃i is the steady state probability
vector of Q for q̂ = i. π̃ can be found using the following algorithm [GJL84].

1. Compute the Si matrices using the following recursion

S0 = L0

Si = Li +Bi(I − Si−1)
−1Fi−1, 1 ≤ i ≤ mK.

2. π̃mK is computed by solving

π̃mK = π̃mKSmK ,

π̃mK · 1 = 1.

3. π̃i, 0 ≤ i ≤ mK is computed using the recursion

π̃i = π̃i+1Bi+1(I − Sn)−1,

4. π̃ is found by normalization

π̃ =
π̃

π̃ · 1

5.4 Numerical results

In this section we present the results obtained through the analysis as described in the previous
section and the results obtained through simulations. Our aim to see the effect of the approxima-
tions that we made in the model and to verify that these effects are indeed negligible. The arrival
process is assumed to be Poisson batch arrival process with rate λ and fixed batch sizes, N . The
service times are assumed to be exponential with mean 1/µ. The offered load, ρ, is defined as

ρ = λN
µ .
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Figure 5.3: RED drop probability function

Remark 5.4.1 The validity of exponential inter-arrival time has been widely debated. Various au-

thors have shown that for different scenarios the traffic is self-similar and not Poissonian [LTWW94],

[PF95], [CB97]. However, in [CCLS03], the authors argue that under heavy load conditions the

traffic tends towards a Poisson process. In a recent article [KMFB04], the main findings suggest

that, when the level of multiplexing is large, packet arrivals appear Poissonian at small time scales,
non-stationary at medium time scales, and long-range dependent at large time scale. Thus, as a
preliminary study, we present some results related to the performance of a RED queue when the
inter-arrival time is exponentially distributed.

The analytical results were obtained by numerically calculating the values using MATLAB.
The buffer length, K, is taken to be 100 whereas the discretization parameter, m, is taken to be 5.
The drop probability function is taken to be of the form

Pdrop =





0, q̂ < minth
q̂−minth

maxth−minth
, minth ≤ q̂ ≤ maxth

1, q̂ > maxth

(5.33)

We note that all the values of minth, maxth, and q̂ are scaled by a factor m in the analysis in order
to discretize the estimated average queue size. The unscaled values for minth and maxth are 15
and 40, respectively, and the drop probability function versus the unscaled estimated average queue
length is as shown in Figure 5.3. We shall use the average drop probability and the probability
of at least one drop in a burst as performance measures. The simulations were performed using a

program written in C language [KR88], and approximately 108 packets were generated during the
simulations.

5.4.1 The limiting case

First, we present the results for the limiting case. In the simulations, the averaging parameter, α,
was taken to be 0.0001. In Figure 5.4, we plot the analytical as well as the simulation results for
average packet drop probability as a function of the offered load for different values of burst sizes.
There is a fairly good correspondence between the analytical and simulation results.

In [BMB00] it has been argued that the number of consecutive drops becomes infinite with
positive probability as α → 0. However, for the drop function as shown in Figure 5.2, the number
of consecutive drops appears to follow a geometric behaviour for small values of the number of
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Figure 5.4: Average packet drop probability versus offered load
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Figure 5.6: Probability of drop of at least one packet in a burst versus offered load
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Figure 5.7: Average queue length versus offered load

consecutive drops. We plot the probability that there are greater than or equal to n consecutive
drops as a function of n for a drop tail and a RED queue in Figure 5.5. The decay rate of the
tail is much faster in the case of a RED queue when compared to that of a drop tail queue. For
small values of n, the decay rate is close to pn, where p is the average packet drop probability.
Most of the mass can be seen to be concentrated within small values of n and, so the geometric
approximation appears to be a reasonable one. A continuous drop function ensures that the drops
are independent and, thus, reduces the probability of bursty losses. This argument supports using

gentle RED. The tail drop probability during this simulation scenario was 2 × 10−4 which also
suggests that synchronised losses are reduced.

As mentioned above, the probability of dropping consecutive packets becomes independent
when the drop function is continuous. This suggests that the probability of drops in a burst is
binomially distributed. The probability of at least one drop in a burst can thus be approximated

by 1 − (1 − p)N , where p is the average drop probability and N is the burst size. This behaviour
is seen in Figure 5.6 in which the probability of dropping at least one packet in a burst is plotted
as a function of the offered load.



108 Chap. 5 A singular perturbation based analysis of a RED queue

Next, we validate the approximate analysis for obtaining the average queue length. In order
to obtain the average queue length we need to solve the fixed point equation as given in Equa-
tion (5.28). For example, the expected queue length as observed by a incoming packet in a M/M/1

queue with finite buffer K is given by

E[Qq̂∗ ] =
ρq̂∗

(1 − ρq̂∗)
− (K + 1)

ρq̂∗
K+1

(1 − ρq̂∗
K+1)

, (5.34)

where

ρq̂∗ = ρ

(
1 − q̂∗ −minth

maxth −minth

)
.

We can now obtain the expected value of average queue length by solving

q̂∗ =
ρq̂∗

(1 − ρq̂∗)
− (K + 1)

ρq̂∗
K+1

(1 − ρq̂∗
K+1)

. (5.35)

Similarly, for the batch arrivals we use the expression for the infinite buffer case as an approximation.
The expected value, q̂∗, for batch arrivals is obtained by solving

q̂∗ =
ρq̂∗

(1 − ρq̂∗)

N + 1

2
. (5.36)

For the values of minth, maxth, and K assumed in this section, we plot in Figure 5.7 the average
queue as obtained from solving Equation (5.35) and Equation (5.36) numerically using MATLAB
and the results obtained through simulations.

5.4.2 The general case

Next, we consider the case when α 9 0. In the rest of this section we assume that the discretization
parameter, m, is 1. The drop function is the same as in the previous section. We need that αmK
be less than 1. Thus, α has to be chosen such that α < 0.01 in order to use the QBD algorithm.
We choose α = 0.009 which is close to 0.01. In Figure 5.8 and Figure 5.9 we plot the average drop
probability and the average queue length, respectively, as a function of the offered load. We note
that the behaviour is similar to that observed in the limiting case.

In order to see the effect of choosing an averaging parameter which is not necessarily small,
we plot in Figure 5.10 the distribution function of the average queue length, q̂, using the QBD
analysis, simulations, and the singular perturbation (SP) analysis. The offered load was 1.2 and
the burst size was taken to be 10. As can be observed from the figure, the effect of increasing α is to
increase the variance of q̂. We cannot, however, reduce the variance of q̂ by taking the limit. There
is a limiting distribution of q̂ (as was seen from the limiting case) and hence a limiting variance
which is different from 0.

5.5 Summary and conclusions

We used a singular perturbation based approach to find the limiting stationary distribution of
the average queue length and the packet drop probability in a RED enabled queue. For Poisson
arrival and exponential service times the limiting stationary distribution was given as closed form
expressions. The expected value of the average queue length was found to be the fixed point solution
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Ẋ = α
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Figure 5.8: Average drop probability versus offered load.
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Figure 5.9: Average queue length versus offered load.
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Figure 5.10: Distribution function of the average queue length. N = 10 and offered load is 1.2.
α = 0.009.
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of a function depending on the average queue length of a system with no averaging. The analytical
results were observed to match fairly accurately with results obtained through simulations. We also
showed that by using a continuous drop function we can reduce the number of consecutive losses
thereby avoiding synchronised losses. We showed that for the case when the averaging parameter
is not small, the stationary distribution can be computed using an algorithm for level dependent
QBDs. However, for small values of the averaging parameter, the computational complexity of
using this algorithm was much greater than that based on the singular perturbation approach. In
this work, we considered the scenario in which packet generation process is independent of packet
drops. Future work will involve the study of a RED queue with closed loop TCP traffic sources.



Chapter 6

Optimal control of delay and energy in a wireless

device

In the second part of the thesis, we shall consider two problems related to wireless devices and
wireless networks. The first problem that we study is related to optimizing the energy-delay tradeoff
faced by a wireless device. Specifically, we study a decision problem faced by an energy limited
wireless device that wants to transmit data and operates in discrete time. There is some external
arrival to the device’s transmit buffer. The possible decisions are: (i) to serve some of the buffer
content; (ii) to reorder a new battery after serving the maximum possible amount that it can; or (iii)

to remain idle so that the battery charge can increase owing to diffusion process (which is possible in
some commercially available batteries). We shall formulate the decision problem in the framework
of Markov Decision Processes. We shall address both finite and infinite horizon discounted costs
as well as average cost minimization problems. Without using any second order characteristics, we
obtain results that include: (i) optimality of bang-bang control; (ii) the optimality of threshold
based policies; (iii) parametric monotonicity of the threshold; and (iv) uniqueness of the threshold.

The results in this chapter have appeared in [BKP05].

6.1 Introduction

Wireless devices are constrained in their operational lifetime by finite energy batteries. Therefore,
energy efficient design of protocols at different layers of the protocol stack for wireless networks has
recently received significant attention, see, for example, [CGB04], [YHE02], [ZR01] and [PSAC01].
Although the primary objective of a device is to transmit and receive data with minimal delay, this
must be done with the added constraint of minimizing the transmission costs and increasing the
operational lifetime of the device. In [GKS03], the authors studied delay optimal packet scheduling
policies subject to average transmit power constraint over a wireless channel with independent
fading. In [RB05], the authors extended this model to include Markovian fading. Although in the
above mentioned articles an average transmit power constraint was imposed, an interesting feature
of the battery was ignored. In [FDN94], it was observed that a battery when left idle can regain
some of its lost charge. This phenomenon, known as relaxation phenomenon, allows a battery
operated in pulsed (or intermittent) discharge mode to deliver more energy than the same battery

111
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operated in continuous discharge mode. This enables a user to send more packets and increase
the operational lifetime of the battery by leaving it idle in between packet transmissions, thus
providing an incentive to remain idle even though the transmit buffer may not be empty. However,
this would add to the delay of the packets queued up in the buffer. This trade-off between energy
and delay leads to a decision making problem formulation where the user has to decide whether to
serve packets or leave the terminal idle in order to minimize certain costs.
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Figure 6.1: An illustration of the relaxation phenomenon.

In Figure 6.11, we illustrate the effect of pulsed discharge on the lifetime of a Lithium ion cell.
The data has been obtained using a computer program which simulates battery behaviour [New].
The parameter d represents the ratio of total ON time to the total time. By reducing the value of
d, i.e., by increasing the idle time, the operation lifetime of the cell increases. Although the time
scale on the graph is large (of the order of minutes), a similar phenomenon has been also observed
on a time scale of tens of milliseconds [PSS01]. The advantages of relaxation phenomenon in the
context of wireless devices was first presented in [CR99]. Since then several authors have proposed
algorithms which take advantage of the relaxation phenomenon. In a series of papers-[CR01a] and
[CR01b], the authors propose a stochastic model of a battery taking into account the relaxation
phenomenon. A discrete-time system is considered where, in every time slot the battery is idle, it
recovers a unit of charge with some probability. The performance measure of interest is the gain
in the operational lifetime. They propose a threshold based scheme wherein the transmission of
packets is interrupted when the battery charge falls below a given threshold. This scheme results
in a tradeoff between delay and energy efficiency. However, they do not consider an optimization
framework with costs for packet delay and battery charge. In [CR01b], the problem of choosing
a cell among a pack of cells is studied and the gain in operational lifetime for various schemes
such as round-robin, random selection, and best-of-the-pack scheme is computed. A battery aware
Medium Access Control (MAC) algorithm is proposed in [JMM04]. In this algorithm, a node uses
the battery state information of its two hop neighbours in order to schedule packets. In [PSS01],
the authors study the effect on a lithium ion cell when a sensor is operated in sleep mode. They
observe that gains of over a 100% can be realised by operating a sensor alternatingly in sleep mode
and in receive mode.

1This figure has been reproduced from [Pra02].
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In this chapter we aim to provide a framework to quantify the trade-off between energy
efficiency and delay. Unlike in [CR01a] where the main consideration is energy efficiency, we
impose costs on both delay and energy consumption. We consider a discrete time system in which
a user with a finite energy battery terminal has to decide whether to serve packets or to leave
the system idle in each time slot. Further, the user can decide to replace the battery with a new
one at an additional cost. We note that there are two variables (i.e., energy level of the battery
and the length of the transmit buffer) based on which a decision is to be made. We formulate
the problem as a Markov decision process. We then derive the structural properties based on the
directional derivative of the value function. We first consider a finite horizon problem and provide
the structure of the optimal policy. We then extend this to the infinite horizon discounted cost
problem, and finally consider the infinite horizon average cost minimization.

6.2 Outline

In Section 6.3, we shall formulate the energy-delay trade-off as an optimization problem. We
shall relate the energy-delay trade-off problem to a problem of optimal control of a discrete time
tandem queue. Since these two problems are equivalent, we shall solve the wireless device problem
by solving the tandem-queue problem. First, in Section 6.4, we shall consider the finite horizon
discounted cost problem and obtain structural results. These results show the possibility of two
different optimal policies depending on the derivatives of the cost functions. The two possibilities
will be studied analytically in Sections 6.5 and 6.6, where we shall also give a numerical example
to validate the results. The summary and conclusions will be presented in Section 6.7.

6.3 Problem formulation

We consider the optimal control problem where, at the beginning of each time slot (i.e., a decision
epoch), the user is aware of the current buffer occupancy and the energy level of the battery, and
hence can take an action based on these two parameters. However, it does not have any knowledge
of the amount of data that will arrive in the transmit buffer during the current time slot. In this
section, we shall formalize the problem statement mentioned in Section 6.1.

Some words on the notation: We shall use the notation z+ to denote max(z, 0), sg(x) to
denote the sign of x, and I(a) to denote the indicator function of an event a.

Let xn and pn denote the buffer length and the remaining energy level, respectively, at the
beginning of the nth time slot. We assume xn is infinitely divisible and xn ∈ [0,∞), ∀n, i.e., the
buffer content is fluid and there is infinite buffer space. The remaining energy level, pn, is assumed
to be bounded above by M , i.e., pn ∈ [0,M ], ∀n. A linear relationship is assumed between the
amount of energy and the amount of fluid that can be transmitted using this energy (see, for
example, [Bor03] where the throughput is assumed to be a linear function of the transmit power).
In other words, a unit of energy is required to serve each unit of fluid. The state space, C, is
given by C = {(x, p) : x ∈ [0,∞), p ∈ [0,M ]}. The cost function associated with the state (x, p) is
denoted by h(x) + g(p), where h(x) is a non-negative and increasing function of x, and g(p) is a
non-negative and decreasing function of p. Let wn denote the amount of fluid which arrives during
the nth time slot. The random sequence {wn}, n ≥ 0, is assumed to be independent and identically
distributed with distribution function µ(·).

We assume that in every slot in which the battery is left idle, the residual battery energy
increases from p to some amount p + ζ(p) ≥ p. In the rest of this chapter, we will drop the
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dependence on p of ζ(p) and use ζ to denote the function. We note that the case ζ = 0 corresponds
to the other practical scenario where the battery does not gain any charge when left idle. In the
state (x, p), the user can take one of the following actions:

1. remain idle2,

2. serve some amount u ∈ [0,min(x, p)], or

3. serve min(x, p) and reorder a new battery with residual energy level M .

A cost of r(p), where r(·) is a non-decreasing function of p, is incurred each time a battery is
reordered in state (x, p). A policy π defines an action for each (x, p) ∈ C. Let β < 1 denote the
discount factor. We study optimal policies which minimize one of the following three cost criteria.

− Finite horizon discounted cost:

E
N∑

k=0

βk(h(xk) + g(pk) + r(pk)I(reorder)),

for some N > 0.

− Infinite horizon discounted cost:

E
∞∑

k=0

βk(h(xk) + g(pk) + r(pk)I(reorder)).

− Infinite horizon average cost:

lim
N→∞

1

N

N∑

k=0

(h(xk) + g(pk) + r(pk)I(reorder)).

Remark 6.3.1 In this model, we have not taken into account certain aspects of the relaxation

phenomenon (see, for example, [CR01a]). Firstly, the amount of recovered energy when the battery

is left idle depends not only on the present residual charge but also on the entire discharge/recharge

history which may not easy to model and analyse. Secondly, the maximum amount of energy that
a battery can deliver is finite. In our formulation, the user can take decisions so that the battery
can recover charge an infinite number of times, i.e., it could use one battery forever. However, as
a first approximation, we analyse a simplified model.

6.3.1 An equivalent discrete-time tandem queue

Let us consider a discrete-time tandem queue with one fixed server and one moving server as shown
in Figure 6.2. A controller performs the task of scheduling the two servers. In each slot, the moving
server can serve either of the two queues. The fixed server can serve only the second queue, and it
can do so only when the moving server is at the first queue. That is to say, both the servers cannot

2By remaining idle we mean going into sleep mode. The battery can recover some charge even though a small

current is drawn to keep the system in sleep mode [PSS01].
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serve the second queue in the same slot. However, it is possible that the moving server serves the
first queue and the fixed server serves the second queue in the same slot.

During each slot, a random amount of work arrives in the first queue. The first queue has an
infinite buffer capacity whereas the second queue’s buffer capacity is finite. The work served from
the first queue enters the second queue. There is a further source of strong interaction between
the two queues: the amount of service imparted to the first queue in any slot cannot exceed the
remaining buffer capacity of the second queue at the beginning of the slot (this is to ensure that
no work is lost). This is the case when the first queue’s server (i.e., the moving server) does not
take into account the fact that the work in the second queue may have been depleted because of
some service imparted by the fixed server. There is a workload-dependent holding cost associated
with each of the two queues.

In one slot, the moving server can perform either (at most) M units of work on the first queue
or (at most) ζ(y) ≤ M units of work on the second queue (i.e., the work done can depend on the
workload, y). In one slot, the fixed server can perform at most M units of work on the second
queue. However, there is a fixed cost, c, incurred in every slot in which work is done by the fixed
server whereas there is assumed to be no cost associated with the service performed by the moving
server. Since the cost c is independent of the work done by the fixed server, it is optimal for the
fixed server to exhaustively serve the second queue. At the beginning of each slot, the controller has
to decide whether to activate the fixed server or not, and the amount of work to be done on each
queue. The objective of the controller is to minimize the long term average of the cost incurred in
each slot.

uk

kyxk

wk vk

Moving server

Fixed server

M
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Figure 6.2: The discrete-time tandem queue model.

6.3.2 Analogy between the wireless problem and the tandem queue problem

The first queue in the tandem queue problem is analogous to the transmit buffer of the wireless
problem, while the second queue is analogous to the battery. The analogy between the second
queue and the battery is better understood by using the relation yk = M−pk. The workload in the
second queue corresponds to the amount of energy consumed from the battery. After the moving
server serves uk amount of work from the first queue (i.e., uk amount of fluid is transmitted from
the transmit buffer), this work enters the second queue (i.e., the energy level reduces by uk). If the
moving server serves ζ(yk) amount of work from the second queue, it corresponds to an increase
in the residual energy level by ζ(M − pk). The constraint that the moving server can only serve
one queue in one slot corresponds to the constraint that either fluid can be transmitted from the
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transmit queue or the residual charge in the battery can increase. The service imparted by the
fixed server corresponds to replacing the battery.

With the help of the analogy described above, we can solve the wireless problem by solving
the tandem queue problem. In the following subsection, we shall formulate the tandem queue
problem as a Markov decision problem. We shall mention a few articles relevant to the tandem
queue problem. In order to solve the Markov decision problem, we shall use the vanishing discount
approach to study the average cost problem. Specifically, we will first study the infinite horizon dis-
counted cost dynamic programming problem and then let the discount factor approach unity. The
finite storage capacity of the second queue leads to non-convexity of the value function. Therefore,
convexity preserving arguments cannot be used to demonstrate the optimality of a threshold type
control policy. However, we provide conditions for the cost functions for which a bang-bang policy
at the first queue and a threshold policy at the second queue are optimal.

6.3.3 Dynamic programming problem formulation

We consider a tandem queue (as shown in Figure 6.2) which is operated in discrete time. Let xk and
yk denote respectively the workload in the first queue and in the second queue at the beginning
of slot k. The state space of the system can be described by a two-dimensional vector (xk, yk)

where xk ∈ [0,∞) and yk ∈ [0,M ]. The cost function associated with state (xk, yk) is given by
h(xk) + g(yk) (the corresponding cost function for the wireless problem is h(x) + g(M − pk). The
functions h(·) and g(·) are assumed to be positive and increasing. Let wk denote the amount of
work that arrives in the first queue during slot k. The random variable wk is assumed to be i.i.d.
with distribution function µ(·) and mean E[w] < M . The state equations can be written as

xk+1 = xk + wk − uk,

yk+1 = yk + uk − vk.
(6.1)

Due to the finite storage capacity of the second queue, the amount of work done on the first
queue (i.e., uk) depends on the work present in the second queue, i.e., uk ∈ [0,min(xk,M − yk)].
Moreover, if the fixed server is activated and the mobile server serves some amount of work at the
first queue, then the fixed server can serve this work at the second queue in the same slot i.e.,
vk ∈ [0,min(yk + uk)]. Let φk ∈ {0, 1} denote whether the fixed server is inactive or active in the
kth slot. In each slot in which φk = 1, a fixed cost of c is incurred. In each slot, the controller can
take one of the following actions.

1. To activate the fixed server, i.e., φk = 1, in which case it is optimal for the moving server to
serve the maximum possible in the first queue, i.e., uk = min(xk,M − yk).

2. To disable the fixed server, i.e., φk = 0, in which case the moving server could either serve
uk ∈ [0,min(xk,M − yk)] at the first queue or serve vk = min(yk, ζ) at the second queue

Remark 6.3.1 1. Since a fixed cost is incurred independently of the amount served when the
fixed server is active, and the fixed server can serve at most yk + uk, it is optimal for the
moving server to maximize uk.

2. Since the work done on the first queue enters the second queue, the controller has to decide on

the amount of work the moving server does on the first queue (i.e., uk ∈ [0,min(xk,M −yk)])

when φk = 0. There is a trade-off between reducing the work (and, hence, the holding cost)
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in the first queue and increasing the work (and, hence, the holding cost) in the second queue.

On the other hand, service at the second queue reduces the overall holding cost. Therefore,

the moving server serves the maximum possible amount at the second queue (i.e., min(yk, ζ)).

The action performed in each slot is a 3-tuple (φk, uk, vk). The set of actions, A, available to the
controller contains the 3-tuples

A =





(1,min(xk,M − yk),min(xk + yk),M), (6.2a)

(0, uk, 0), uk ∈ [0,min(xk,M − yk)], and (6.2b)

(0, 0,min(yk, ζ)). (6.2c)

Remark 6.3.2 1. The action (2b) is itself an uncountable set of actions because the controller

has to decide on the amount of work to be served in the first queue.

2. For φk = 0, the action set contains the possibility of the mobile server not serving the second

queue even though the first queue is empty, and vice versa (i.e., the action could be (0, 0, 0)

even though the state (xk, yk) may not be (0, 0)). Later we shall see that it is not optimal to

take this action if the state is not (0, 0).

In order to study the infinite horizon discounted cost problem, one usually looks at the value
iteration, thus effectively solving the finite horizon discounted cost problem as well [Put94]. Hence,
we study the optimal policy for the three cost criteria in the following order.

− Finite horizon discounted cost (FHDC):

minimize E
N∑

k=0

βk(h(xk) + g(yk) + c · I(φk = 1)), (6.3)

for some N > 0 and a discount factor β.

− Infinite horizon discounted cost (IHDC):

minimize E
∞∑

k=0

βk(h(xk) + g(yk) + c · I(φk = 1)), (6.4)

for some β < 1.

− Infinite horizon average cost (IHAC):

minimize lim
N→∞

1

N

N∑

k=0

(h(xk) + g(yk) + c · I(φk = 1)). (6.5)

We assume that the controller is aware of the state of the system and hence can decide based
on this information. This problem can be formulated as the above described discrete-time Markov
decision process for which we provide the conditions for optimality of bang-bang control.
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6.3.4 Literature related to control of discrete-time tandem queues

We discuss two articles that are related to this work. One study of control of tandem queue that
appears to be very similar to our problem is that of [ZVW82] (they consider linear cost functions).
However, they assume ζ = 0 (i.e., the moving server is fixed at the first queue), and that there
is always a dummy customer present in the second queue so that the term corresponding to our
(x −M)+ term does not show up in their case; this is also the reason that they are able to show
convexity of the value function. This approach can be taken in their model as they assume Poisson
arrivals and exponentially distributed service requirements. We can not do this since we are working
with a discrete time queue. Yet another study is of [Haj84] which considers two interconnected
queues and shows that the optimal policy is that of a monotone switching curve.

These studies are different from the present work in at least the following aspects:

− Since [ZVW82] and [Haj84] consider systems in continuous time under Poissonian assump-
tions, the jump in any dimension of the state can be at most by one (an arrival or a departure).
However, we are considering a discrete time system, hence we are allowing for a general arrival
process (and hence, jumps in state space).

− In both the above mentioned works ζ is assumed to be zero, i.e., the moving server is fixed
at the first queue.

− Both the above mentioned studies consider a linear holding cost functions. We are allow-
ing for a more general objective function, and in fact we will characterize a wider class of
holding cost functions for which threshold based policies are optimal. Moreover, we will not
use strict second order characteristics of the holding cost functions and will establish impor-
tant structural results like parametric monotonicity for the mentioned class of holding cost
functions.

− We are assuming that the buffer capacity of the second queue is finite. As mentioned already,
this results in a strong dependence of the amount of service to the first queue. It turns out
that the characterization of the value function in the infinite horizon discounted cost problem
depends crucially on the buffer capacity of the second queue. In particular, starting with the
same holding cost functions h(·) and g(·), the IHDC value function is M -convex (we shall
define M -convexity in Section 6.5) and hence depends on the buffer capacity M of the second
queue. This characterization of the IHDC value function is also a new contribution that the
present work makes.

A survey of control of service rate in a network of queues is presented in [SW93].

6.4 The finite horizon discounted cost problem

Let Vk(x, y) denote the value function when the state is (x, y) and there are k more decision epochs
(i.e., k more slots) remaining before reaching the horizon (i.e., we terminate the decision making
process). We shall assume that V0(x, y) is equal to zero for all (x, y). The dynamic programming
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equation for the optimal value function is

Vk+1(x, y) = h(x) + g(y) + βmin
{
EwVk((x− (M − y))+ + w, 0) + c,

min
0≤u≤min(x,M−y)

EwVk(x+ w − u, y + u),

EwVk(x+ w, (y − ζ)+)
}
.

(6.6)

The operator Ew is the expectation over the random variable w. The term EwVk((x− (M −y))+ +

w, 0) corresponds to activating the fixed server and serving the maximum possible amount at the
first queue (i.e., action (2a)). The term min0≤u≤x∧(M−y)EwVk(x + w − u, y + u) corresponds to

φk = 0 and the mobile server serving some amount uk from the first queue (i.e., action (2b)). The

final term, Vk(x + w, (y − ζ)+), corresponds to φk = 0 and the mobile server serving min(y, ζ) at
the second queue (i.e., the action (2c)).

For the rest of this section, we shall assume that β = 1 with a remark that all the results of
this section are valid when we consider a discount factor of β < 1. Let N denote the finite horizon.
We first provide a sufficient condition under which bang-bang control is optimal at the first queue,
i.e., the decision is to either serve the maximum possible quantity or to serve nothing. This reduces
the decision space of uk from uk ∈ [0,min(x,M − y)] to uk ∈ {0,min(x,M − y)}. The condition
which will allows us to reduce the decision space is quite general and is satisfied by, among others,
linear functions h(x) = c1x and g(y) = c2y. We shall also provide some structural results of the
optimal policy, like parametric monotonicity for the threshold policy. We point out here that we
obtain the results of this section without using second order characteristics of the value functions,
like convexity or decreasing-differences property.

6.4.1 Optimality of bang-bang control

Let ∇Vk(x, y) = − ∂
∂aVk(a, b)+

∂
∂bVk(a, b)|a=x,b=y denote the directional derivative3 of Vk(a, b) along

the vector (−1, 1), evaluated at the point (x, y). We assume that V1(x, y) = h(x) + g(y) satisfies
the following condition.

Condition A The function ∇V1(x, y) = −h′(x) + g′(y) has the same sign,

say S def
= sg(−h′(x) + g′(y)) = sg(∇V1(x, y)), for all values of x and y.

Note that this condition is satisfied by the linear cost functions h(x) = c1x and g(y) = c2y.
Under Condition A we have the following two lemmas.

Lemma 6.4.1 For all values of x, y, w, and a given k ≤ N , the minimizer

u∗ = argmin
0≤u≤min(x,M−y)

EwVk(x+ w − u, y + u) is given by

u∗ =

{
0 if sg(∇Vk(a, b)) = + ∀(a, b),

min(x,M − y) if sg(∇Vk(a, b)) = − ∀(a, b).

Proof. The distribution function of w is given by µ(·). Therefore,

EwVk(x+ w − u, y + u) =

∫

w
Vk(x+ w − u, y + u)dµ(w). (6.7)

3We use the term derivative and right derivative interchangeably.
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The derivative of EwVk(·, ·) with respect to u can be written as

d

du
EwVk(x+ w − u, y + u) = ∇EwVk(x+ w − u, y + u)

=

∫

w
∇Vk(x+ w − u, y + u)dµ(w).

(6.8)

Since ∇Vk(x+w−u, y+u) has a sign independent of u, x, y, w, it follows that ∇EwVk(x+w−u, y+u)
has the same sign as ∇Vk(x + w − u, y + u). Therefore, Ew(Vk(x + w − u, y + u) is an increasing
(resp., decreasing) function of u when sg(∇Vk(a, b)) = + (resp.,−). The lemma thus follows. �

Lemma 6.4.2 Under Condition A, ∇Vk(x, y) has the same sign as ∇V1(x, y) for all values of

k ≤ N,x, and y.

Proof. We use the induction argument to prove this lemma. For k = 1, from Condition A,
sg(∇V1(x, y)) is the same for all (x, y), hence the claim is true. Let S = +, and let the claim be
true for some k ≥ 1, i.e., sg(∇Vk(x, y)) = S for all (x, y). Using Lemma 6.4.1, and Equation 6.6
with β = 1, we obtain

Vk+1(x, y) = h(x) + g(y) + min
{
EwVk((x− (M − y))+ + w, 0) + c, (6.9)

EwVk(x+ w, y), EwVk(x+ w, (y − ζ)+)
}
. (6.10)

From the hypothesis, sg(∇Vk(x, y)) = S for all values of (x, y). As the expectation operator gives
a convex combination, it follows from the hypothesis and envelop theorem [Ber95, Lemma 3.3.1]
that each of the terms under the minimum operator above will have the same property, i.e., their
directional derivatives along vector (−1, 1) will have sign S. Therefore, sg(∇Vk+1(x, y)) = S for all
(x, y). A similar argument holds when sg(∇V1(x, y)) = −. �

Corollary 3 For all values of x, p, w, and k < N ,

u∗k = argmin
0≤u≤min(x,M−y)

EwVk(x+ w − u, y + u), (6.11)

is given by

u∗k =

{
0 if S = + ∀(x, y),

min(x,M − y) if S = − ∀(x, y).
(6.12)

Proof. The proof follows from Lemma 6.4.1 and Lemma 6.4.2. �

Lemma 6.4.3 The value function Vk(x, y) is non-decreasing in y for a fixed x and non-decreasing

in x for a fixed y.

Proof. From the assumption, h(x) is increasing in x and g(y) is increasing in y and observe that
V1(x, y) = h(x) + g(y). The proof for a general value of k follows by using induction approach as
in the previous proof. �
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Corollary 4 For S = +, it is optimal for the moving server to be at the first queue only when the
fixed server is activated.

Proof. For S = +, using Lemma 6.4.1 and Lemma 6.4.2, Equation 6.6 simplifies to

Vk+1(x, y) = h(x) + g(y) + min
{
EwVk((x− (M − y))+ + w, 0) + c, (6.13)

EwVk(x+ w, y), EwVk(x+ w, (y − ζ)+)
}
. (6.14)

From Lemma 6.4.3, EwVk(x + w, y) ≥ EwVk(x + w, (y − ζ)+). Therefore, if φk = 0, the moving
server serves the second queue. The moving server serves the first queue only when φk = 1. �

Using Lemmas 6.4.1, 6.4.2 and 6.4.3, we can characterize the set of optimal policies based S
as follows. By the set of optimal policies we mean the set of policies which will be optimal for some
value of (x, y).

Theorem 6.4.1 For any k ≤ N , x and y, the set of optimal policies (i.e., 3-tuples (φ∗, u∗, v∗))

1. for S = + is:

A∗
+ =

{
(1,min(x,M − y), y + min(x,M − y)),

(0, 0,min(y, ζ);

2. for S = − is:

A∗
− =





(1,min(x,M − y), y + min(x,M − y)),
(0, 0,min(y, ζ)),

(0,min(x,M − y), 0).

The above result is important because now the action set has reduced considerably. From
Theorem 6.4.1, the problem can be studied in two different regimes.

1. In the first regime, where S = +, there controller has to decide between two actions. In
the first action, the fixed server serves y + min(x,M − y) from the second queue and the
mobile server serves min(x,M − y) from the first queue. In the second action, the fixed
server is inactive and the mobile server serves min(y, ζ) from the second queue. Therefore,
the controller needs to decide whether to activate the fixed server or not.

2. In the second regime, where S = −, the controller has to decide among three actions. In the
first action, the fixed server serves y + min(x,M − y) from the second queue and the mobile
server serves min(x,M − y) from the first queue. In the second action, the fixed server is
inactive and the mobile server serves min(y, ζ) from the second queue. In the third action,
the fixed server is inactive and the mobile server serves min(x,M − y) from the first queue.
For ζ = 0, the number of decisions reduce to two. In this case, as for S = +, the controller
needs to decide whether to activate the fixed server or not.

In order to obtain more structural results, we shall study the two regimes separately in Section 6.5
and in Section 6.6.

We end this section with a property of the value function which will be of use later.
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Lemma 6.4.4 The function ∂
∂xVk(x, y) (resp., ∂

∂yVk(x, y)) is bounded below by minx h
′(x) (resp.,

miny g
′(y)) for each k ≤ N .

Proof. We shall use induction to prove this lemma. Suppose S = + (It can be similarly shown
for S = −.). For k = 1, V1(x, y) = h(x) + g(y). The statement is therefore true for k = 1. The
dynamic programming equation is

Vk+1(x, y) = h(x) + g(y) + min
{
EwVk((x− (M − y))+ + w, 0), EwVk(x+ w, (y − ζ)+)

}
. (6.15)

For a fixed value of w, from Lemma 6.4.3, ∂
∂xVk((x− (M − y))+ +w, 0) and ∂

∂yVk(x+w, (y− ζ)+)

are nonnegative. The same property therefore holds for the convex combination over w weighted
by the distribution of w. Therefore, we obtain

∂

∂x
Vk+1(x, p) ≥ h′(x) ≥ min

x
h′(x). (6.16)

Using a similar argument, it follows that ∂
∂yVk(x, y) ≥ miny g

′(y). �

6.5 The case of S = +

In this section we study the case S = + and obtain structural results for the finite/infinite horizon
discounted cost problem and then use the vanishing discount approach to study the average cost
problem.

6.5.1 Structure of an optimal policy

In the previous section it was observed that it was optimal to serve in the first queue only when
the fixed server was active. We now characterize the policy for activating the fixed server. We will
show that there exists a threshold policy for activating the fixed server. Specifically, for a given
value of k and y, there is a threshold value, x∗k(y), such that if x < x∗k(y) then the optimal action

is to disable the fixed server. We also show that x∗k(y) is a decreasing function of y.
From Theorem 6.4.1, the controller has two actions to choose from. The dynamic program-

ming equation becomes

Vk+1(x, y) = h(x) + g(y)+ βmin
{
EwVk((x− (M − y))+ + w, 0) + c,

EwVk(x+ w, (y − ζ)+)
}
. (6.17)

For a given value of k and y, let the first crossover point, x∗k(y), of EwVk((x− (M − y))+ +

w, 0) + c and EwVk(x+ w, (y − ζ)+). be defined as

x∗k(y)
def
= inf{x : EwVk((x− (M − y))+ + w, 0) + c ≥ EwVk(x+ w, (y − ζ)+)}. (6.18)

For a given value of k and y, the threshold x∗k(y) is that value of x below which it is optimal to

disable the fixed server. Such a value always exists since x∗k(y) = 0 is also a possibility.

Theorem 6.5.1 If S = +, then x∗k(y) is a decreasing function of y for any fixed k.
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Proof. First, we show that the assertion is true for each fixed value of w. To simplify the notation,

let ds(x, y)
def
= Vk((x − (M − y))+ + w, 0) + c, and di(x, y)

def
= Vk(x + w, (y − ζ)+). For a fixed

value of k, y, and w, let x∗ be the first crossover of ds(x, y) and di(x, y), i.e., it is optimal to remain
idle for x < x∗. Since x∗ is a crossover point,

∂

∂x
ds(x, y)|x=x∗ <

∂

∂x
di(x, y)|x=x∗ , (6.19)

and
ds(x

∗, y) = di(x
∗, y). (6.20)

In order to show that x∗k(y, w) is decreasing in y, first we need to show that ds(x
∗, y + δ) <

di(x
∗, y + δ) for some δ > 0. Consider

ds(x
∗, y + δ) − di(x

∗, y + δ) = ds(x
∗, y) + δ

∂

∂x
ds(x, y)|x=x∗ + o(δ) − di(x

∗, y) − δ
∂

∂y
di(x

∗, y) + o(δ).

(6.21)

Substituting from Equations 6.19 and Equation (6.20) in the above equation, we obtain

ds(x
∗, y + δ) − di(x

∗, y + δ) < δ
∂

∂x
di(x, y)|x=x∗ − δ

∂

∂y
di(x

∗, y) + o(δ)

= δ

[
∂

∂x
di(x, y)|x=x∗ − ∂

∂y
di(x

∗, y)

]
.

(6.22)

Since S = +, on the right hand side the coefficient of δ is negative for sufficiently small δ. Therefore,
ds(x

∗, y + δ) < di(x
∗, y + δ) for some δ > 0. �

We note here that to obtain the parametric monotonicity we have not used convexity or decreasing
differences property of the value function (which are in fact not true in our case).

6.5.2 The infinite horizon discounted cost problem for y = 0

Next, we consider the case of N = ∞, i.e., the infinite horizon discounted cost problem. The
properties obtained for the finite horizon problem hold also for the infinite horizon discounted cost
problem. For the finite horizon case, it was necessary to study the value function for all possible
values of its argument, i.e., x and y. However, since we intend to study the average cost problem
via the infinite horizon discounted cost case by using the vanishing discount approach, we shall
see that, for the case where S = +, it is sufficient to study the value function V (x, y) only at
y = 0. Therefore, in this section we study the structure of the infinite horizon discounted problem
value function V (x, 0) assuming S = +. We start with considering the problem of minimizing the
discounted cost

V (x0, y0) =
∞∑

k=0

βk(h(xk) + g(yk) + c · I(φk = 1)).

The decision to be made at each slot is whether to activate the fixed server or not. Using the
properties of the value function obtained in the finite horizon case, V (·, ·), satisfies the dynamic
programming equation

V (x, y) = h(x) + g(y) + βmin
{
EwV ((x− (M − y))+ + w, 0) + c, EwV (x+ w, (y − ζ)+)

}
.

(6.23)
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The value function, V (x, y), can also be obtained as V (x, y) = limk→∞ Vk(x, y). From the value
iteration equation Equation (6.23) and the state equations Equation (6.1), we observe that once
the second queue becomes empty, it remains empty. The work is queued only at the first queue.
The decision to be made is whether or not to activate the fixed server. The value iteration for
y = 0 is

V (x, 0) = h(x) + g(0) + βmin
{
EwV ((x−M)+ + w, 0) + c, EwV (x+ w, 0)

}
. (6.24)

The value function V (x, 0) depends only on the value function at y = 0. Assuming the initial state
y0 to be zero, the second queue always remains empty. This simplifies the problem as we can study
the value function as function of x only. The problem now becomes equivalent to optimal control
of a discrete-time queue with one server: A maximum of M units can be served in each slot. There
is a holding cost of h(x) + g(0) associated with a workload of x. In every slot in which work is
done, there is an additional cost of c.

Remark 6.5.1 We briefly return to the wireless problem and give the analogous policy. In the
finite horizon case, the structural results for S = + imply that either the device is in sleep mode, in
which case it recovers some charge, or maximum possible work is done at the transmit buffer and
a new battery is reordered. In the infinite horizon case, some further results can be obtained due to
the fact that once the battery charge recovers to its maximum capacity, M , it cannot recover further
charge. Since the optimal policy is to either operate the device in sleep mode or to serve maximum
possible from the transmit queue and reorder the battery, the residual charge remains at M . Hence,
we can study the optimal policy by studying the value function at p = M or, equivalently, at y = 0.

In the rest of this section we shall study the structure of the optimal policy for the equivalent
single server problem. Since y is equal to zero, we shall use V (x) to denote V (x, 0).

Condition B The function h(x) is a concave and increasing function, and h′(0) ≤ (1−β)c
M .

Theorem 6.5.2 Under Condition B, the value function Vk(x) is concave in x, and V ′
k(0) ≤ (1−βk)c

M

for all k ≥ 0.

Proof. We show this using induction. The statement is true for k = 1 by virtue of the assumption
on h(x). Since Vk(x) is concave, V ′

k(x) ≤ V ′
k(0). Therefore, if Vk(x) satisfies the two assertions

then for any x and w,

Vk(x+ w) ≤ Vk((x−M)+ + w) + c.

Hence, Vk+1(x) = h(x) + g(0) + βEwVk(x + w). Since Vk(x) is concave, it follows that Vk+1(x) is
also concave. Also,

V ′
k+1(0) = h′(0) + βEwV

′
k(w) ≤ (1 − β)c

M
+ β

(1 − βk)c

M
=

(1 − βk+1)c

M
.

The assertion is therefore true. �

The above result suggests that if supx h
′(x) = h′(0) ≤ (1−β)c

M then it is optimal to remain idle

forever after the queue becomes empty. This result, though seemingly counter-intuitive, can be
explained by the fact that we are considering discounted cost which gives more weight to the near
future cost. To be able to give more consideration to the distant future, we require β very close to
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unity, in which case the condition of the theorem (i.e., supx h
′(x) = h′(0) ≤ (1−β)c

M ) will not hold.

This point will be clear when we consider the average cost optimization problem where one gives
all weight to the distant future costs.

Corollary 5 Under Condition B, the infinite horizon discounted cost problem value function has

a slope V ′(x) ≤ c
M .

For the linear cost function h(x), we have the following corollary.

Corollary 6 If h(x) = c1x with c1 ≤ (1−β)c
M then

1. V ′
k(0) = 1−βk

1−β c1, and

2.

V (x)
def
= lim

k→∞
Vk(x) =

c1x+ g(0)

1 − β
+ c1E[w]

β

(1 − β)2
. (6.25)

These results hold when h(x) is a concave function, and h′(0) ≤ (1−β)c
M (i.e., supx h

′(x) ≤
(1−β)c

M .). Under these conditions, the optimal policy is to always remain idle. Next, we find a

condition under which the optimal policy will require some work to be done.

Condition C The function h(x) is a concave and increasing function, and infx h
′(x) > (1−β)c

M .

Theorem 6.5.3 Under Condition C there exists an integer K such that VK(x) > VK(0) + c for

some x < M .

Proof. We prove this by contradiction. For a given x < M , suppose there exists no such K, i.e.,
Vk(x + w) < Vk(w) + c, ∀k. We start from k = 2 and show that V ′(x) is increasing. Due to the
assumption on EwVk(x+ w), we have

V2(x) = h(x) + g(0) + βEwV1(x+ w). (6.26)

Since V1(x) = h(x)+ g(0) is concave in x, it follows that V2(x) is concave in x, and by assumption,
satisfies the property that V2(x + w) < V2(w) + c for each x < M . Therefore, concavity in x is
preserved for all k. Also,

V ′
2(x) ≥ inf

x
h′(x) + β inf

x
h′(x) =

(1 − β2)c

M
. (6.27)

Proceeding in similar manner, we can show that for each fixed x, V ′
k(x) is strictly increasing in k

and is in fact at least 1−βk

1−β infx h
′(x) > (1− βk) c

M as can be seen from the above. This contradicts

the assumption that for each k, Vk(x+ w,M) < Vk(w,M) + c for each x < M . �

Until now h(x) was assumed to be a concave function. Next, we consider another possible
structure of h(x).

Definition 1 A function f(x) is said to be M -convex if f ′(x) ≤ f ′(x+M) for all x.
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Theorem 6.5.4 If h(x) is M -convex and increasing then Vk(x) is continuous and M -convex, i.e.,

V ′
k(x+M) ≥ V ′

k(x), x ≥ 0. (6.28)

Proof. We show this by induction. The assertion is true for k = 1. Assume above is true for
k ≥ 1. From the dynamic programming equation

V ′
k+1(x+M) − V ′

k+1(x) = h′(x+M) − h′(x)

+
∂

∂x
min

{
EwVk((x+ w) + c, EwVk(x+M + w)

}

− ∂

∂x
min

{
EwVk((x−M)+ + w) + c, EwVk(x+ w)

}
(6.29)

The required equality can be shown by comparing each term under the first minimum operator
with each term under the second minimum operator, and using M -convexity of Vk(x) and h(x). �

The above result also implies that Vk(x) need not be convex or concave in general.

Let us assume that infx h
′(x) > 0. We now scale the parameters of the function g and c such

that infx h
′(x) = 1. We shall now use Lemma 6.4.4 to establish the optimality of the threshold

based policy.

Theorem 6.5.5 If h(x) is M -convex and increasing with h′(0) = 1 and c < M then for the infinite

horizon problem with the second queue empty, there is a unique threshold η∗ such that if x ≤ η∗

then it is optimal for the fixed server to be inactive in the present slot else it is optimal to activate

the fixed server in which case the mobile server serves min(x,M) from the first queue in the present

slot.

Proof. Since we are considering the infinite horizon problem, the value function V (x) (with
the second queue empty) satisfies Equation 6.23 with y = 0. First, we show that there exists at
least one point at which it is optimal to serve min(x,M). From Lemma 6.4.4 and the assumption
that infx h

′(x) = 1, the derivative of V (x) is bounded below by unity. As a consequence of this,
V (M + x) ≥ V (x) + M for any x. Let x be equal to M . We compare the two terms under the
minimum operator in Equation 6.24. For x = M ,

EwV (w) + c− EwV (M + w) = c+

∫

w
(V (w) − V (M + w))dµ(w)

≤ c−M.

(6.30)

Since c < M , it follows from above that

c+ EwV ((M −M)+ + w) < EwV (M + w)

so that the optimal choice in a slot in which x = M is to serve min(x,M).
Also, at x = 0,

EwV ((x−M)+ + w) + c− EwV (x+ w) = c > 0.

Therefore, it is optimal to leave the server idle in a slot in which x = 0.
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Next, we show that if it is optimal to serve min(x,M) at x then it is optimal to serve

min(z,M) at any z > x. Let x ≥M be a point such that c+EwV ((x−M)+ +w) < EwV (x+w).
We know that x = M is such a point. For any δ > 0,

c+

∫

w
V ((x+ δ −M) + w)µ(dw)

= c+

∫

w

[
V ((x−M) + w) + δV ′((x−M) + w) + o(δ)

]
µ(dw)

<

∫

w

[
V (x+ w) + δV ′((x−M) + w) + o(δ)

]
µ(dw)

<

∫

w

[
V (x+ w) + δV ′(x+ w) + o(δ)

]
µ(dw)

=

∫

w
V (x+ δ + w)µ(dw) + o(δ),

where the last inequality follows from Theorem 6.5.4. Thus, if it is optimal to activate the fixed
server and serve min(x,M) from the first queue when the occupancy of the first queue is x, then
the same is also optimal for all (x+ δ) > x, and in particular, for all x ≥M .

For x < M , we note that EwV ((x − M)+ + w) + c is a constant independent of x, and
EwV (x+ w) is an increasing function of x. Also, at x = 0 it is optimal to disable the fixed server
whereas at x = M it is optimal to activate the fixed server and serve min(x,M) from the first
queue. Therefore, there exists a η∗ < M such that EwV (w) + c = EwV (η∗ +w). For η∗ < x < M ,
EwV (w)+c is less than EwV (η∗+w), and for 0 ≤ x < η∗, EwV (w)+c is greater than EwV (η∗+w).
Since it is also optimal to serve min(x,M) for x ≥ M , it is therefore optimal to disable the fixed
server for x < η∗ and activate the fixed server and to serve min(x,M) from the first queue for
x ≥ η∗. This completes the proof of the existence of a threshold type policy. �

We note that linear functions are both concave andM -convex. For a linear cost function h(x) = c1x,
we can use Theorems 6.5.2, 6.5.3, and 6.5.5 to obtain the following optimal policy when starting
from y0 = 0. For a discount factor of β,

1. if c1 ≤ (1 − β) c
M then it is optimal to always remain idle.

2. else there is a η∗ < M such that it is optimal to remain idle for x < η∗ and serve min(x,M)

for x > η∗.

The first part is obtained from Theorem 6.5.2. The second part is obtained as follows. Since
c1 > (1 − β) c

M and y0 = 0, using Theorem 6.5.3, we will ultimately get to a slot, say K, in which

VK(x) > VK(0) + c for some x < M . Since the structure derived for M -convex h(x) is valid here,
Theorem 6.5.5 can be invoked.

We now characterize the effect of the discount factor on the value function. Let Vk,β(·, ·) and

Vβ(x) denote respectively the k-step to go value function and the limiting value function when the
discount factor is β.

Lemma 6.5.1 For each k and x, Vk,β(x) is non-decreasing in β.
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Proof. We show this by induction. The result is true for k = 1 because V1,β(x) = h(x) + g(0).

Assume now that the assertion is true for some k. From Equation (6.23),

d

dβ
Vk+1,β(x) = min

{
EwVk,β((x−M)+ + w) + c, EwVk,β(x+ w)

}

+ β
d

dβ
min

{
EwVk,β((x−M)+ + w) + c, EwVk,β(x+ w)

}
.

Each term of the right hand side is positive. Therefore, Vk+1,β is also non-decreasing in β. �

Lemma 6.5.2 The function ∂
∂xVk,β(x) is a non-decreasing function of β.

Proof. The statement is true for k = 1. It can be shown using induction that the assertion holds
for all k ≥ 1. �

Let η∗(β) denote the unique threshold of the infinite horizon discounted cost problem when
the discount factor is β.

Theorem 6.5.6 The optimal threshold η∗(β) is non-increasing in β.

Proof. Since η∗ < M is the unique threshold,

EwVβ(η∗(β) + w) − EwVβ(w) = c. (6.31)

For an ε > 0 such that β + ε < 1, using Lemma 6.5.2, it follows that EwVk,β+ε(η
∗(β) + w) −

EwVk,β+ε(w) > c because in between x = 0 and x = η∗(β), the slope of EwVk,β+ε(x + w) with

respect to x is at least that of EwVk,β(x+ w). This implies that xk(β + ε) ≤ xk(β). �

6.5.3 The average cost problem

We now consider the problem of optimization of the infinite horizon average cost for the case S = +.
The approach is to use results from infinite horizon discounted cost optimization and then use the
standard vanishing discount approach with β → 1. If the average cost exists, it is independent
of the initial state so that we can without loss of generality assume that y0 = 0. For the infinite
horizon discounted cost case, it was noted that once the second queue became empty it remained
so thereafter. Thus making the structural results obtained in Section 6.5.2 for this particular case
very relevant to the analysis of average cost problem.

A sufficient condition for existence of a stationary average optimal policy, which can be
obtained as limit of discounted cost optimal policies fβ(x) is provided in [Sch93]. In our problem

fβ : R → {0, 1} where 0 means the fixed server is disabled, and 1 means the fixed server is activated

and the mobile server serves min(x,M) from the first queue. Define wβ(x) = Vβ(x) − infx Vβ(x),

where Vβ(x) is the infinite horizon discounted cost value function when discount factor is β, the

first queue’s occupancy is x and the second queue is empty. The reference [Sch93] gives a set of
conditions on the problem definition (which hold in the present case but we do not provide their
details here) under which the following result holds:
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Theorem 6.5.7 ([Sch93] Theorem 3.8) Suppose there exists a policy Ψ and an initial state x

such that the average cost V Ψ(x) < ∞. Let supβ<1wβ(x) < ∞ for all x, then there exists a sta-

tionary policy f1 which is average cost optimal and the optimal cost is independent of the initial
state. Also f1 is limit discount optimal in the sense that, for any x and given any sequence of dis-

count factors converging to one, there exists a subsequence {βm} of discount factors and a sequence

xm → x such that f1(x) = limm→∞fβm
(xm).

In order to apply above result we need to show:

1. Existence of policy Ψ: Since E[w] < M , the policy of serving min(x,M) in every slot yields
a finite average cost.

2. supβ<1wβ(x) < ∞ for all x: For any β, since Vβ(x) is monotone increasing, it follows that

x∗ := argmin
x

Vβ(x) = 0. We have

Vβ(x∗) = h(0) + βEwVβ(w) (6.32)

Now, for any fixed x0 = x, consider a policy that serves from the first and second queue till
the time the first queue is empty (let us denote this time by a random variable Z). Then, it
can be seen that

Vβ(x) ≤
∞∑

n=d x
M

e




n∑

j=0

βjh(x+

j∑

i=1

wi − (j + 1)M) + βnVβ(0)


Prob(Z = n) (6.33)

≤
∞∑

n=d x
M

e




n∑

j=0

βjh(x+

j∑

i=1

wi − (j + 1)M)


Prob(Z = n) + Vβ(0). (6.34)

Therefore,

wβ(x) = Vβ(x) − Vβ(0) ≤
∞∑

n=d x
M

e




n∑

j=0

h(x+

j∑

i=1

wi − (j + 1)M)


Prob(Z = n). (6.35)

the expression on the right hand side is independent of β and finite almost surely if E[W ] < M .
The required condition is thus verified.

Hence, for the average criterion, the cost is independent of the initial state. Thus, we can, without
loss of generality, assume that the second queue is initially empty. We can now make use of the
results of Section 6.5.2 and obtain our main result.

Theorem 6.5.8 For the average cost optimization problem, if S = + and h(x) is a M -convex

function then there exists a threshold based policy which gives the minimum cost.

Proof. We have seen that for the discounted cost case the optimal policy is threshold based. We
also know that the threshold is a monotone function of the discount factor β. This, along with
Theorem 6.5.7, implies the existence of a threshold based optimal policy for average cost case as
well. �
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6.5.4 Numerical results

We now illustrate the obtained analytical results with numerical examples. We note that the
experiments are performed using a discrete state space. The holding costs are assumed to be
linear in the queue lengths, i.e., h(x) = c1x, and g(y) = c2y. The number of arrivals in a slot is
geometrically distributed with mean E[w] = 10. The parameters of the numerical evaluation are
set as follows: c1 = 1, c2 = 2, c = 30, M = 20, β = 0.97. We note that S = sg(−h′(x) + g′(y)) is

positive. Also, c1 ≥ (1−β)c
M .

Remark 6.5.2 We have taken ζ to be zero for these experiments. However, the structure that we
obtained for S = + holds for ζ ≥ 0.

For numerical computation the length of the second queue is taken to be 400 which is much
larger than E[w] and M . The initial state of the second queue is taken to be zero. The results are
shown for the infinite horizon discounted cost problem.
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Ż = − α
Xmax exp(−z)

0
Πc

E[Xj ]
1
j

j

x1

x2

(1,0)

(0,1)

slope = θ

slope = θ/β

slope = θ · β
ω = 1, i = 0

ωβi

ωβi+1

ωβi−1

ωβ−i

ωβ−(i+1)

ωβ−(i−1)

fairness line

slope = κ

θ(0)

θ(t)

log[β]

an

s(0)

s(t)

Figure 6.3: The optimal number of units served versus the first queue length, x.

In Figure 6.3, the optimal policy is shown as a function of the first queue length. As it
was noted earlier, there exists a threshold η∗ < M such that if x ≥ η∗ then it is optimal to serve
min(x,M) else it is optimal to remain idle. The corresponding value function is shown in Figure 6.4.
Even though the cost functions are linear, the value function is neither convex nor concave.

6.6 The case of S = − and ζ = 0

For the case S = − we make the simplification that ζ = 0. This will allow us to obtain structural
results for the optimal policy.

In Theorem 6.4.1 it was observed that it was optimal for the mobile server to serve min(x,M−
y) from the first queue. We shall characterize the service policy for the fixed server. We will use
the same methodology as in the previous section. First, we will solve the finite horizon problem.
Then, we will solve the infinite horizon discounted problem, and finally we will solve the average
cost problem.
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Figure 6.4: The optimal value versus the length of the first queue, x.

The dynamic programming equation for this case is

Vk+1(x, y) = h(x) + g(y) + βmin{EwVk((x− (M − y))+ + w, 0) + c,

EwVk((x− (M − y))+ + w, y + min(x,M − y)}.
(6.36)

The terms under the minimization operator are functions of (x+ y). Therefore, the optimal policy
depends only on (x+y), i.e., the optimal policy is the same for all (x, y) such that x+y = constant.
This structure helps us to characterize the optimal policy.

6.6.1 The finite horizon discounted cost problem

Since the optimal policy is the same for all (x, y) such that x + y = constant, we shall study the
optimal policy in two different regions based on (x+ y). First, we will study the case x+ y < M .
Later, we shall study the case x+ y ≥M .

For x+ y < M , Equation (6.36) becomes

Vk+1(x, y) = h(x) + g(y) + βmin{EwVk(w, 0) + c, EwVk(w, x+ y)}. (6.37)

Let h(x) be a positive and increasing function.

Theorem 6.6.1 For a given k and x+y < M , there exists a threshold η∗k such that if η∗k ≤ x+y <

M then it is optimal to activate the fixed server else if 0 ≤ x + y < η∗k it is optimal to disable the

fixed server.

Proof. We again note that the threshold depends uniquely on (x + y) and is the same for all
(x, y) such that x + y = constant. We vary x + y from zero to M . The first term under the
minimization operator is independent of x and y and is therefore a constant. From Lemma 6.4.3,
Vk(·, ·) is increasing in its second argument and therefore the second term under the minimization
operator is increasing in x + y. We note that, for (x, y) = (0, 0), the optimal policy is to remain
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idle. As x+y increases, EwVk(w, x+y) also increases. Let η∗k be the point such that EwVk(w, η
∗
k) =

EwVk(w, 0) + c. It is possible that, for x + y < M , this point may not exist in which case we set
η∗k = M . �

Next, we derive the structure for x+ y ≥M . For x+ y ≥M , Equation 6.36 becomes

Vk+1(x, y) = h(x) + g(y) + βmin{EwVk((x+ y −M) + w, 0) + c,

EwVk((x+ y −M) + w,M)}.
(6.38)

Theorem 6.6.2 For x + y ≥ M , if infy g(y) ≥ c
M then it is always optimal to activate the fixed

server at (x, y) for any k.

Proof. We note that the optimal policy again depends only on (x + y). From Lemma 6.4.4, if

supy g(y) ≥ c
M then ∂

∂yVk(x, y) ≥ c
M for all values of k and (x, y). Therefore, for any given value

of x+ y ≥ M , EwVk((x+ y −M) + w, 0) + c ≤ EwVk((x+ y −M) + w,M). Hence, it is optimal
to activate the fixed server for all x+ y ≥M . �

The condition infy g(y) ≥ c
M also implies that η∗k < M for any k. For infy g(y) ≥ c

M , we can

combine the results of Theorems 6.6.1 and 6.6.2 to obtain a threshold type policy for the fixed
server.

Theorem 6.6.3 For each k, if infy g
′(y) ≥ c

M then there exist a η∗k ≤ M such that if x + y ≥ η∗k
then it is optimal to activate the fixed server else it is optimal to disable the fixed server.

The results obtained here are very similar to those obtained for the case S = + in the sense
that we get a threshold based policy where existence of a nontrivial threshold depends on the slope
of the cost functions.

6.6.2 The infinite horizon discounted cost and average cost problems

We note that the existence of the threshold based policy was shown for all k. Therefore, a threshold
based policy also holds for the infinite horizon discounted cost problem.

For the average cost problem, we need equivalents of Lemma 6.5.2 and Theorem 6.5.6. Let
η∗k(β) denote the unique threshold for k-step to go cost function when the discount factor is β.

Lemma 6.6.1 The function ∂
∂yVk,β(x, y) is non-decreasing in β for each x, k and y.

Proof. The statement is true for k = 1. Assume it is true for all n ≤ k. Then, ∂
∂yVk+1,β(x, y)

=

{
g′(y) + β ∂

∂yEwVk,β(w, x+ y) (x+ y) < η∗(β)

g′(y) + β ∂
∂yEwVk,β((x+ y −M)+ + w, 0) (x+ y) > η∗(β)

so that the result follows for k + 1-step cost as well. �

Theorem 6.6.4 The optimal threshold η∗k(β) is non-increasing in β.
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Proof. The proof follows the proof of Theorem 6.5.6. �

We can now approach the infinite horizon discounted cost and the average cost problems in
a way similar to that for S = +. In particular, we get counterparts of Theorems 6.5.5 and 6.5.8.

Theorem 6.6.5 For the infinite horizon discounted cost problem, if g(y) is an increasing function

with infy g
′(y) ≥ c

M then there is a unique threshold η∗(β) such that if x ≤ η∗(β) then it is optimal

to to disable the fixed server else it is optimal to activate the fixed server.

Theorem 6.6.6 For the average cost optimization problem, there exists a threshold based policy
which gives the minimum cost.

Remark 6.6.1 We revisit the wireless problem in order to relate its optimal policy with that of the

tandem queue problem. For S = − and ζ = 0 (i.e., the battery cannot recover charge when left

idle), the optimal policy for replacing the battery is of threshold type. In each slot, min(x, p) packets

are transmitted. The battery is replaced only when x+M − p exceeds a threshold which is less that
M .

6.6.3 Numerical results

We now illustrate the obtained analytical results with numerical examples. The holding costs
are assumed to be linear in the queue lengths, i.e., h(x) = c1x, and g(y) = c2y. The number
of arrivals in a slot is geometrically distributed with mean E[w] = 10. The parameters of the
numerical evaluation are set as follows: c1 = 1, c2 = 0.9, c = 15, M = 20, β = 0.97. We note that
S = sg(−h′(x) + g′(y)) is negative. Also, c2 ≥ c

M . The results are shown for the infinite horizon

discounted cost problem.
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Figure 6.5: The optimal number of units served versus the first queue length, x.

In Figure 6.5, the optimal policy at the first queue is shown as a function of the length of
the first queue for y = 4. As it was noted in Theorem 6.4.1, u∗ is x ∧ (M − y). In Figure 6.6, the
optimal policy at the second queue, v, is shown as a function of (x, y). There exists a η∗ < M such
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Figure 6.6: The optimal policy at the second queue.

that if x + y < η∗ then it is optimal to disable the fixed server else it is optimal to activate the
fixed server.

6.7 Summary and conclusions

We considered jointly optimal control of delay and energy in a wireless device. An equivalence
was established with the control of a tandem queue. The optimal control of tandem queue was
formulated as a Markov decision process problem. We considered the optimization of the finite
and infinite horizon discounted costs as well as that of infinite horizon average cost. The problem
becomes hard as the underlying state space is two-dimensional and second order properties like
convexity or increasing/decreasing differences do not hold. We established the optimality of a bang-
bang policy which is threshold based. We also studied the behavior of this threshold and obtained
parametric monotonicity results. Unlike in other related works which assume certain conditions
on the cost functions in order to show the optimality of threshold type policies, we characterize
the conditions (e.g., M -convexity) which lead to threshold type policy. That is, our approach to
showing optimality of threshold type policy is complementary to the standard approach. Also, we
note that the finite horizon model considered in this work is that of a general interacting system
where a change in one dimension results in a corresponding change in the other dimension. The use
of the sign of directional derivative to establish optimality of bang-bang control for such systems
appears to be a natural choice. For finite buffer systems, we developed the notion of M -convexity
which ensures the existence of threshold based policies.



Chapter 7

Scheduling of TCP sessions over UMTS

In the final chapter of the thesis we study a problem which is motivated by the transfer of data on
the cellular technology, UMTS. Data transfer on the UMTS downlink can be done either through
dedicated channels (DCH) or shared channel (FACH). The data transfers on the DCHs can receive
very high throughputs. However, a setup time of the order of 250ms is required before data transfer
can begin on the DCH. For very short transfers it may be better to use the shared channel. However,
for long data sessions it might be better to allocate a dedicated channel. In this paper, we propose
a threshold policy to determine which sessions should use the dedicated channels. Initially, we use
the FACH for a given connection. Then if we get an indication that the current burst might be long
(for example, we observe a long queue from that source), then beyond some threshold we shall try
to allocate a DCH to that connection (if there is one available). We also present and evaluate the
performance of algorithms in which a timer is set when the queue size falls below a threshold and
the connection is on DCH. The use of a timer allows a connection to remain for a longer duration on
DCH and thus improve performance. We use ns-2 simulations to obtain the performance measures
for the threshold and timer based policies.

The results in this chapter have appeared in [PAAD03].

7.1 Introduction

UMTS is the 3rd generation of cellular wireless networks which aims to provide high speed data
access along with real time voice calls [HT01]. On the UMTS downlink (i.e., from the base station
to the mobile), data can be transferred through dedicated channels (DCH) or a shared channel
(FACH). Dedicated channels offer higher transfer speeds but require a setup time which is significant
(of the order of 250ms). Shared channels, on the other hand, have a low setup time and also low
transfer speeds. For sporadic packets (i.e., files or transfers that are very short) it is efficient to
use the shared channel. However, for long data sessions it may be better to allocate a dedicated
channel. Most data transfers over the Internet are performed today with TCP. Data connections
on the Internet are known to be bursty where the basic burst size is best described with a Pareto
distribution:

Prob(burst size > s] = (k/s)β , (7.1)

135
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where k > 0 is the minimum size and 1 < β ≤ 2 (for Internet traffic) [Mah97]. We use the traffic
description of Appendix B of [UMT98] which is the standard for UMTS data structure. It is also
based on the Pareto distribution for the transfer size. Our starting point is the observation that long
bursts are in some sense "predictable": if we observe that the current burst has already transfered
many packets, say x, then the distribution of the remaining size of the burst R = burst size − x is
given by

Prob(R > x+ s|R > x) =

(
x

x+ s

)β

. (7.2)

So, for a fixed value of s, as x increases (to infinity), Pr(R > x+ s|R > x) increases to 1. (This is
a general property of heavy tailed distributions [GK98]). Therefore, it seems natural to implement
the following policy: we start by scheduling a new connection to FACH if a DCH is not available.
Then, if we get an indication that the current burst might be long (for example, we observe a
long queue from that source), then beyond some threshold we shall try to allocate a DCH to that
connection (if there is one available). When the queue size of a connection falls below a threshold
we switch it back to FACH. We also present and evaluate the performance of a modified threshold
algorithm. In the modified threshold algorithm, instead of switching immediately when the queue
size falls below a threshold, a timer is set and the connection remains on the DCH for this period.
If there are no new arrivals within this timeout period, the connection is switched back to FACH.
The timer is used in order to allow the ACKs to reach the TCP source and new packets to be
released by the source.

The rest of the chapter is organized as follows. In Section 7.2, we present the network
configuration used in the simulations and describe the methods used in the implementation of the
code. In Section 7.3, we describe the source traffic model, the simulation parameters and give the
values used in the simulations. In Section 7.4, we present the results of the threshold algorithm.
In Section 7.5, we describe the modified threshold policies wherein a timer is used along with the
threshold on the DCH. In Section 7.6, we present the results of the modified threshold policies and
compare them with the results of the original threshold policy. In Section 7.7, we summarize the
results obtained from this work and present the conclusions.

7.2 Network model

We consider a network model with Ntcp TCP sources which need to send data to mobile receivers.
We assume a single cell scenario with one base station and several mobile stations which act as
destinations for TCP traffic. The TCP sources are assumed to be connected to the base station
of the cell with a high speed (5mbps, 30ms) link. The base station can transfer data from a TCP
source on either DCH or FACH at a given time. There is one FACH and Ndch DCHs in the system.
The FACH is a time division multiplexed channel. In addition to any TCP connections which may
be present on a FACH, there is signaling traffic which must be transmitted on the FACH. The
signaling traffic has priority over the TCP connections. During the silence periods of the signaling
traffic, data from one or more TCP connections can be transmitted on the FACH. On the FACH,
data from the TCP connections is assumed to be transmitted in a round-robin fashion. If all the
DCHs have a TCP connection configured, a connection on DCH should be first switched to FACH
before a session from FACH can be switched on to a particular DCH. This means that a switch
can take up to 500ms (if there is already a TCP connection configured on the DCH).

Switching from one channel to another is costly in time and in signaling. In the model we
assume that there exists a queue corresponding to each TCP connection in the base station. The
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base station is hence able to track the queue length of each connection. During the switching time
(of around 250ms) from one channel to another, no packets from the queue of the TCP connection
being switched can be transmitted. We, therefore, try to avoid quick switching and propose the
following channel allocation policy. There are two thresholds Th and Tl. If the number of packets in
the queue of a connection using FACH reaches Th and a DCH is available then we initiate a switch
to the DCH. If the number of packets in the queue of a connection using DCH drops below Tl and
the number of allocated DCHs equals the Ndch, then we switch the connection back to FACH. The
simulation setup for the network is presented in Figure 7.1.
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Figure 7.1: Simulation setup

Each TCP source node, TCPi is connected to a routing node called Switch (SWTi). SWTi

is present inside the base station and can be connected either to the FACHIN or directly to the
TCP destination via the DCH. The SWIi node is created to simplify the simulations and may
not be present inside a real base station. The FACHIN is another virtual node which simulates
the prioritized round robin service discipline taking place on the FACH. This is a service discipline
which we had to implement. In this discipline, the node FACHIN gives priority to the traffic
from CBRSRC while serving the packets from the SWIi’s (only those which are currently not
transmitting on DCH) in a round-robin manner. We note that there are no queues at FACHIN

and all the packets are either queued at SWTi or at the CBRSRC. The CBRSRC simulates a
constant bit rate source of signaling/control traffic. It generates packets at rate Rsig and is assumed
to be present within the base station. The signaling traffic flows from the base station to the mobile
receivers. Even though we model the destination of the signaling traffic (CBRDST ) as one node
different from DSTi, we note that it does not affect the simulations as simultaneous transfer of
data and control packets to the same mobile receiver is possible when different channels are used.
The links SWIi − FACHIN and CBRSRC − FACHIN are virtual links within the base station
and thus have zero delay. We note that the data from SWTi to DSTi can take two different routes
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i.e., SWIi − FACHIN − FACHOUT − DSTi (via FACH) or SWTi − DSTi (via DCH). At any
given time only one route from the above two can be active. Although in the simulation scenario
we have as many DCH links as TCP source nodes, the simulation allows us to connect not more
than Ndch DCH channels at a time, which may be chosen strictly smaller than the number of TCP
sources (Ntcp). In the simulations we switch over from FACH to DCH by changing the cost of the
links and recomputing the routes. This is done as follows: Initially, the cost of the direct path
from the Switch to the TCP destination is set to 10 and the cost of all other links to 1. Hence, the
traffic gets routed through the FACH. When a switch is desired, the cost of the DCH is set to 1
and the routes are recomputed. This activates the DCH and the traffic gets routed on the DCH.

7.3 Input for the simulation

We use ns-2 [MF] for our simulation study with the following parameters:

− Number of available DCH channels (Ndch) is taken to be 1. The number of simultaneous
TCP connections, Ntcp varies between 2 to 8.

− Values of threshold Th for switching between channels is varied between 0 and 15. A threshold
value of 0 indicates that we try to switch a connection to DCH as soon as it arrives.

− The duration of the simulation is taken 200000 secs in order to reach stationarity. The large
time needed to get good accuracy is partially due to the nature of the long range dependence
of the traffic.

− The time it takes to switch between channels (Dsw) is 250ms.

− We consider the background (non TCP traffic source) traffic source, that uses the FACH, to
be CBR source with rate Rsig = 24 kbps. It sends a 1kB packet at an interval of 1/3secs. It
has non pre-emptive priority over TCP.

− The TCP connection traffic model is as follows: On a TCP connection, data arrives in bursts.
The number of packets in a burst has a Pareto distribution. The shape parameter is generally
taken to be between 1.04 and 1.14 [Mah97, GS99]. We take the shape parameter to be k = 1.1

[UMT98] and the average file (burst) size is taken to be FSavg = 30kB [Mah97]. We do not

take all the parameters from [UMT98] as they are not adapted to TCP traffic. The model
in [UMT98] considers packets of size 81.5 bytes whereas TCP does not send short packets
[Bra89]. A TCP connection alternates between "ON" and "OFF" states. In the ON state, the
inter-arrival time between successive bursts is exponentially distributed with mean Tbur. At
the end of each burst, the connection goes into OFF state with probability Poff . It remains
in the OFF state for an exponentially distributed duration with mean Toff . At the end of
this duration the connection goes to ON state which is marked by the arrival of a burst.
Figure 7.2 shows the traffic model used at each source node.

− The TCP packet size is taken to be 320 bytes which is of the same size as a RLC data segment
in UMTS [TSG99].

− The schedule of service of packet in the FACH is taken to be round robin. The implementation
in ns-2 is not standard and we had to change some link element features of ns-2 in order to
implement this schedule.

Tables 7.1 and 7.2 give the values of the network parameters and traffic parameters, respectively.
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Figure 7.2: Traffic source model

7.4 Simulation results I

In Figure 7.3 we show the average burst delay versus Th for different number of TCP connections,
Ntcp. For a given value of Ntcp, it is observed that initially the delay reduces and then increases
with increasing values of Th. This suggests an optimal value of the threshold at which the delay is
minimum. At higher values of Th an increase in the burst delay is observed because a higher value
of Th implies more time is spent in the FACH. The FACH is a low bandwidth channel which has
high priority signaling traffic on it. This results in low average bandwidth being shared amongst
the TCP connections. For a TCP connection, the switch to DCH is based on its the current buffer
size which in turn depends on its current window size. The current window size is incremented
whenever an ACK is received by the sender. When a TCP connection is on a low bandwidth link,
the window builds up slowly due to delay in receiving an ACK. This slow buildup of the window
size results in slow buildup of the current buffer size. As the value of Th is increased, a TCP
connection has to spend more time on the slow FACH before it builds up its buffer size resulting
in a higher delay.

We also observe a decrease in the burst delay for small values of Th. This dip is observed due
to the high speed of the DCH and the delay before ACKs can reach the source. Before the source
can release more packets to the DCH queue it must receive an ACK from the TCPdest. However,
there is a link delay and transmission delay before the ACK is received by the source. If, in this
period, the DCH queue becomes empty, the session is switched back to the FACH. As soon as the
source receives the ACK it releases packets to the queue thus prompting a switch back to DCH.
This redundant switch consumes 500ms and thus adds to the delay of the burst. However, if there
are enough packets present in the queue such that the queue does not become empty prior to the
arrival of the ACK, there is no switch back and forth. The number of packets which ensures that

Table 7.1: Network parame-
ters

Ndch 1

Rdch 384 kbps

Rfach 33 kbps

Rsig 24 kbps

Tl 1

Dsw .25 s

Table 7.2: Traffic source pa-
rameters

Ton 0.3s

Toff 5s

Poff 0.33

FSavg 30 kB

k 1.1

Pktsize 320 B
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Figure 7.3: Average delay versus Th. Ndch = 1, Dw = 250ms.

this back and forth switch does not take place is 5 and hence we see an optimal value at Th = 4.
For a given value of Th, the average burst delay increases as a function of Ntcp. As the number

of TCP connections on the FACH increase, the available bit-rate for each connection reduces thereby
increasing the time taken to increase the window size and hence to exceed the threshold.

In Figure 7.4 we show the throughput as a function of the Th for different values of the
number of TCP connections, Ntcp. The throughput first increases and after an optimal value
of Th it decreases. The improvement in throughput at the optimum threshold is more prominent
compared to improvement of delay. For a given threshold, the throughput decreases with increasing
number of TCP connections.

7.5 Modified threshold policy

In the previous section we observed that the use of the original threshold policy resulted in a switch
from DCH to FACH even though the source had packets to send. This resulted in a poor delay
performance for the policy. In this section we propose a modified threshold policy which aims to
ameliorate this flaw of the original threshold policy. In the modified threshold policy, the switch
from the FACH to DCH takes place according to the same criterion as the original threshold policy.
However, when the queue length at SWIi drops below Tl and the connection i is on DCH we start
a timer for a duration Tout. If there are packet arrivals at the queue (SWIi) during this period, we
reset the timer to 0. We simulate two policies which decide on the switch back to FACH.

In the pre-emptive scheme, if during the timeout period there is another TCP connection
which requires a switch to DCH, we initiate a switch back to FACH.

In the non pre-emptive scheme, we wait till the end of the timer before we initiate the switch
back to FACH. Also, at the end of the timer if there are no other requests for the DCH, we start
the timer for a duration of Tout thus allowing the connection to remain on DCH.

A timeout value of 0 results in the original threshold policy. The use of timeout periods is
motivated by the fact that there is a delay before the ACKs reach the source. Hence, even though
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Figure 7.4: Throughput versus Th. Ndch = 1, Dw = 250ms.

the queue at the base station is empty the source may have packets to send and may be waiting to
receive the ACKs before it sends the data packets. The timer, to some extent, waits for the ACKs
to reach the source and the source to release the packets.

7.6 Simulation results II

In Figure 7.5 and Figure 7.6 show the average delay performance of the pre-emptive (pe) and
non pre-emptive (npe) schemes of the modified threshold policy. We again note that the case
of Ton = 0 corresponds to the original threshold policy. From the figures, we observe that the
modified threshold policies also have a optimal value of the threshold as was observed in the case
of the original threshold policy. As compared to the original policy, the modified policy with pre-
emptive scheme performs marginally better. As the number of TCP connections increases, the
probability of a request for a switch also increases. Hence, the pre-emptive scheme, in which a
switch is initiated as soon as there is a request, performs very close to the original policy when
Ntcp = 8. With Ntcp = 5, the duration of the idle period on the DCH (i.e., when the timer is on and

no requests have been received) is longer and thus the connection is able to receive packets from
the source and remain on the DCH and avoid a costly (in terms of time) switch back to FACH. The
non pre-emptive scheme performs better than both the original policy and the pre-emptive scheme.
The performance gains are close to 20% at Th = 0 and Ntcp = 5. In the non-preemptive scheme,
the base station waits till the end of the timer before it initiates a switch. The timeout duration
ensures to some extent that the TCP session has ended and thus can be switched back to FACH.
Hence, a TCP session which is once switched to DCH remains on the high speed DCH till the end
of the session thereby reducing its average delay.

In Figure 7.7 and Figure 7.8 show the performance of the policies when the switching delay,
Dw is 500ms. At a higher switching delay, the optimal threshold shifts to right. As the cost of
shifting to DCH and back is high, it is preferable to remain on the FACH when the connections
have fewer packets to send. However, we still note that the non pre-emptive scheme performs better
than the other schemes. With a higher switching delay, the performance gain obtained by using
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Figure 7.5: Average delay versus Th. Ndch = 1,Ntcp = 5, Dw = 250ms.
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Figure 7.6: Average delay versus Th. Ndch = 1,Ntcp = 8, Dw = 250ms.
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Figure 7.7: Average delay versus Th. Ndch = 1,Ntcp = 5, Dw = 500ms.

the optimal threshold is higher and is observed to be around 10% compared to the no threshold
case.

In Figure 7.9 we show the average delay with Ndch = 2, Ntcp = 8, and Dw = 250ms. We
observe a similar behavior as in the case of Ndch = 1.

Also, in general, we observe that there is significant loss in delay performance at threshold
values higher than the optimal value.

7.7 Summary and conclusions

We evaluated, through simulations, the performance TCP data transfers on the UMTS downlink.
We used a threshold policy to determine which TCP connections should use the high speed dedi-
cated channels. The results indicated the presence of a optimal value of the threshold for minimum
burst delay. However, the threshold policy resulted in redundant switches between the FACH and
DCH, and therefore in increased average delay for the file transfers. We used a timer on the DCH
to prevent these frequent switches. We observed that the use of a timer on the DCH resulted
in improved delay performance for the bursts (files). The results indicate that for the simulated
parameters the use of a threshold did not significantly improve the delay performance and suggest
that use of a timer with a threshold can give improved performance.
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Figure 7.8: Average delay versus Th. Ndch = 1,Ntcp = 8, Dw = 500ms.
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Figure 7.9: Average delay versus Th. Ndch = 2,Ntcp = 8, Dw = 250ms.



Chapter 8

Summary, conclusions and perspectives

In Chapter 2, we studied the window-size behaviour of the MIMD algorithm in the presence of three
different loss processes. We obtained the expressions for the probability distribution function of
the window-size in the presence of window-independent losses for algorithms with both unbounded
and bounded window-sizes. For a window-dependent loss process an approximate expression for
the throughput was derived when there is an upper bound on the window size. Through this

expression, we observed that, in an unbounded system, the throughput was proportional to q−1,
where q is the packet loss probability. This proportionality result itself is not new, however we
believe that the method employed to arrive at it is original. Although we considered three different
loss processes, we did not study the effect of Markovian window-dependent losses. For wireless links,
the per packet loss probability is frequently modelled as first-order Markov process. Since wireless
technology becomes ubiquitous, the performance analysis of an algorithm in such an environment
will be useful. Also, our analysis is restricted to a single instance of the algorithm. In [BH02], the
authors study the AIMD algorithm in a multiple session scenario through which they observe that
although the sessions obtain the same long term average throughput, the variance in the sending
rates is large. Such an analysis of the MIMD algorithm will help to understand the interaction
among various sessions.

In Chapter 3, we compared the steady state distribution of the window-size of two different
algorithms. We obtained conditions on the loss process so that the algorithms had similar window-
size process observed at loss instants. In deriving the steady state behaviour of the window-size, we
had made two simplifying assumptions. The first assumption was to model the RTT as a constant.

In practice it is possible that there are large buffers1 in the routers. As the buffer starts to fill up,
the changes in the RTTs become more significant. This change in the RTT can alter the window
evolution process, and, hence, will affect the throughput of the algorithm. For example, in [KA04]
it has been observed that as the buffer fills up, the window-size of the MIMD algorithm grows
linearly in time. It will be interesting to study the effect of an RTT that depends on the current
window-size. We note that there is a feedback effect wherein an increase in window-size affects
the RTT which then affects the increase algorithm. The second simplifying assumption was to
model the feedback of the congestion signals as instantaneous feedback. In practice the feedback

1By large we mean that the buffer size is such that the time to empty the buffer is of the order of the propagation

delay of the outgoing link at router.
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arrives after a delay of RTT. As has been mentioned in [Kel03a] and [Sri04], the delay-stability of
a congestion control algorithm is affected by its increase algorithm. Since the feedback is delayed,
the congestion control algorithm continues with its increase algorithm for an RTT even though the
router buffer may be full. Hence, to have a better idea of the effect of the increase algorithm on
the overflow of the router buffer, it may be necessary to take into account the feedback delay. As
in the perspectives for Chapter 2, another direction to pursue would be to analyse the effect of
multiple sessions sharing a link.

The main observation in Chapter 4 was that the fairness index in systems with homogeneous
MIMD sessions can be improved by introducing rate-dependent losses at an intensity greater than
zero. In systems with heterogeneous sessions, the fairness index can be improved by introducing
rate-dependent losses at an intensity greater than a positive number. We modelled the rate ratio
process for two sessions only. Firstly, although we expect the condition for the heterogeneous users
to hold even for N sessions, the computation of the exact threshold loss intensity will be of help in
designing mechanisms which can improve the fairness index. Secondly, we only modelled the rate
ratio process and not the sum of the rates. We noted that the fairness index improved by increasing
the loss intensity. However, this leads to a decrease in the throughput of the sessions. A joint model
for the sum of the rates and rate ratio can hopefully lead to a loss intensity which optimizes a given
function of the fairness index and the throughput. We also studied the bandwidth sharing between
AIMD and MIMD sessions in systems with synchronous losses only. The bandwidth sharing will
depend on the loss process. For example, when losses are only due to a packet error probability, q,

the throughput of an AIMD sessions is proportional to q−0.5 whereas the throughput of a MIMD

session is proportional to q−1. Hence, by considering a loss process with certain proportion of
synchronised losses, we can obtain a behaviour different from the purely synchronised or purely
asynchronised behaviour.

The analysis of queue-size of a RED-enabled buffer was performed in Chapter 5. By using a
probabilistic dynamics for the average queue-size variable, we were able to model the instantaneous
and the average queue-sizes as a non-homogeneous QBD process. For a small averaging parame-
ter, we used techniques from singular perturbation theory to obtain the joint distribution of the
instantaneous and the average queue-sizes. For the non-limiting case, we noted that the joint dis-
tribution can be obtained by using algorithmic techniques. The input traffic sources were assumed
to be open-loop, i.e. sources that do not react to packet drops/marks. The RED algorithm was
mainly designed to improve the utilization of the link when sources are closed-loop. We believe
that an analysis of the queue-size behaviour when the sources are closed-loop, like TCP, can help
in choosing the parameters of the RED algorithm. Indeed, a complete model with feedback delays
and closed-loop sources may be desirable but intractable but as a first approximation the feedback
delay may be neglected.

In Chapter 6, we formulated the joint optimization of energy efficiency and queueing delay
as a Markov decision problem. We considered the finite horizon discounted cost, infinite horizon
discounted cost and the average cost problems. The main observations of the analysis was the
optimality of threshold based policies. Based on the cost functions, the optimal threshold was
either a function of the queue-size only or a function of the sum of the queue-size and the depleted
battery energy. We made a simplifying assumption that the battery recovers charge linearly with
the time it is left idle. An implication of this assumption was that we could, in theory, use a
battery to send an infinite number of packets. In practice, the battery charge recovery depends
not only on the current available charge but also the entire history of the battery charge-discharge
cycle. Hence, the effect on the optimal policy of this dependence may need to be studied. In one
of the scenarios we made the simplifying assumption that the battery could not recover its charge.



147

The optimal policy without this assumption needs to be investigated. Also, we assumed that only
batteries with fixed initial charge can be reordered. An extension of this work would be to consider
a scenario where the battery charge to be reordered is itself a decision variable. Another possible
extension to this model would be to include the effect of wireless channel fluctuations. We assumed
that there was a linear relationship between the number of packet sent and the battery charge
consumed. However, wireless channels are subject to fading phenomenon due to which packets
need to be sent with a higher power in some time slots as compared to power required in the other
time slots. Therefore, the device may be reluctant to send packets in a slot if the channel gain is
very small. The optimization problem will now include the state of the wireless channel as the third
state variable. This state variable can, for example, modulate the slope of the linear proportionality
between the packets sent and the charge consumed. The controller will now take a decision based
on these three variables.

Through simulations, in Chapter 7 we studied the effect of two channel allocation policies
on the average delay of TCP sessions using UMTS channels. Specifically, we studied policies for
switching sessions between a slow FACH and a fast DCH, which required a non-negligible switchover
time. It was observed that a threshold based policy with hysteresis can reduce the average delay seen
by TCP sessions. We do not have a theoretical model for analysing these policies. A theoretical
analysis can reveal the exact dependence of the optimal threshold on the switchover times, the
transmission rates of DCH and FACH, and the traffic pattern. We believe that such an analysis of
the optimal threshold will be of use to UMTS operators in designing their systems. We would like
to mention that this problem arose during discussions with the researchers from France Telecom,
a mobile telephone operator in France.
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Appendix A

Proofs from Chapter 2

A.1 Proof of Proposition 2.7.1

We first note that for m = 1, (2.60) gives π(1) = π(0) p
1−p ,which is also obtained from (2.59). From

(2.59), for m ≥ 1, π(m) satisfies the recursion

π(m+ 1) =
π(m) − pπ(m− k)

1 − p
. (A.1)

We show that the probabilities given by (2.60) satisfy the above recursion. Let m = n(k + 1) + j,
where j = m mod (k + 1). Let n denote the level of m. There are two cases : a) j = k, and b)
j < k. When j = k, π(m) and π(m− k) are on the same level n. When j < k, π(m) is on level n
and π(m− k) is on level n− 1.

Case a): From (2.60),

π(n(k + 1) + k) =
π(k)

(1 − p)n(k+1)

·
n∑

i=0

(−1)i
(
pi−1Si−1,(n−i)(k+1)+k + piSi,(n−i)(k+1)+k−1

)
(1 − p)ik,

π(n(k + 1)) =
π(k)

(1 − p)n(k+1)−k

·
n∑

i=0

(−1)i
(
pi−1Si−1,(n−i)(k+1) + piSi,(n−i)(k+1)−1

)
(1 − p)ik,

149
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Substituting in the RHS of (A.1), we get

π(n(k + 1) + k) − pπ(n(k + 1)) =
π(k)

(1 − p)n(k+1)
·

[
n∑

i=0

(−1)i
(
pi−1Si−1,(n−i)(k+1)+k + piSi,(n−i)(k+1)+k−1

)
(1 − p)ik

+
n∑

i=0

(−1)i+1
(
piSi−1,(n−i)(k+1) + pi+1Si,(n−i)(k+1)−1

)
(1 − p)(i+1)k

]
,

=
π(k)

(1 − p)n(k+1)
·

[
(
pi−1Si−1,(n−i)(k+1)+k + piSi,(n−i)(k+1)+k−1

)
(1 − p)ik|i=0

+
n∑

i=1

(−1)i
(
pi−1Si−1,(n−i)(k+1)+k + piSi,(n−i)(k+1)+k−1

)
(1 − p)ik

+
n∑

i=1

(−1)i
(
pi−1Si−2,(n−i+1)(k+1) + piSi−1,(n−i+1)(k+1)−1

)
(1 − p)ik

+(−1)n+1
(
pnSn−1,0 + pn+1Sn,−1

)
(1 − p)(n+1)k

]
,

=
π(k)

(1 − p)n(k+1)
·
[
(
pi−1Si−1,(n−i)(k+1)+k + piSi,(n−i)(k+1)+k−1

)
(1 − p)ik|i=0

+
n∑

i=1

(−1)i
[
pi−1(Si−1,(n−i)(k+1)+k + Si−2,(n−i)(k+1)+k+1)

+ pi(Si,(n−i)(k+1)+k−1 + Si−1,(n−i)(k+1)+k)
]
(1 − p)ik

+(−1)n+1
(
pnSn−1,0 + pn+1Sn,−1

)
(1 − p)(n+1)k

]
,

The coefficients Si,j satisfy the recursion

Si,j = Si,j−1 + Si−1,j . (A.2)

Also, from (2.63), S−1,j = δ0,j , ∀j, and S0,j = 1, ∀j ≥ 0. Therefore, for i = 0, we can substitute
Si−1,(n−i)(k+1)+k by Si−1,(n−i)(k+1)+k+1, and Si,(n−i)(k+1)+k−1 by Si,(n−i)(k+1)+k. Similarly, Si,0 =

1, ∀i, and Si,−1 = 0, ∀i. Therefore, we can substitute Sn,−1 by Sn+1,−1, and Sn−1,0 by Sn,0. The
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coefficients of pi−1 and pi can be substituted by the recursion given in (A.2).

=
π(k)

(1 − p)n(k+1)
·

[
(
pi−1Si−1,(n−i)(k+1)+k+1 + piSi,(n−i)(k+1)+k

)
(1 − p)ik|i=0

+
n∑

i=1

(−1)i
[
pi−1Si−1,(n−i)(k+1)+k+1 + pi(Si,(n−i)(k+1)+k

]
(1 − p)ik

+(−1)n+1
(
pnSn,0 + pn+1Sn+1,−1

)
(1 − p)(n+1)k

]
,

=
π(k)

(1 − p)n(k+1)
·

n+1∑

i=0

(−1)i
[
pi−1Si−1,(n+1−i)(k+1) + piSi,(n+1−i)(k+1)−1

]
(1 − p)ik

= (1 − p)π((n+ 1)(k + 1)) = (1 − p)π(m+ 1).

This proves case (a).

Case (b) : Since j < k, we can write m = n(k + 1) + j − k as (n − 1)(k + 1) + j + 1. From
(2.60),

π(m) = π(n(k + 1) + j) =
π(k)

(1 − p)n(k+1)+j−k

·
n∑

i=0

(−1)i
(
pi−1Si−1,(n−i)(k+1)+j + piSi,(n−i)(k+1)+j−1

)
(1 − p)ik,

π(m− k) = π((n− 1)(k + 1) + j + 1) =
π(k)

(1 − p)n(k+1)+j−k−k
·

n−1∑

i=0

(−1)i
(
pi−1Si−1,(n−1−i)(k+1)+j+1 + piSi,(n−1−i)(k+1)+j

)
(1 − p)ik,

Therefore,

π(m) − pπ(m− k) =
π(k)

(1 − p)n(k+1)+j−k
·

[
n∑

i=0

(−1)i
(
pi−1Si−1,(n−i)(k+1)+j + piSi,(n−i)(k+1)+j−1

)
(1 − p)ik

+
n−1∑

i=0

(−1)i+1
(
piSi−1,(n−1−i)(k+1)+j+1 + pi+1Si,(n−1−i)(k+1)+j

)
(1 − p)(i+1)k

]
,
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=
π(k)

(1 − p)n(k+1)+j−k
·
[
(
pi−1Si−1,(n−i)(k+1)+j + piSi,(n−i)(k+1)+j−1

)
(1 − p)ik|i=0

+
n∑

i=1

(−1)i
(
pi−1Si−1,(n−i)(k+1)+j + piSi,(n−i)(k+1)+j−1

)
(1 − p)ik

+
n∑

i=1

(−1)i
(
pi−1Si−2,(n−i)(k+1)+j+1 + piSi−1,(n−i)(k+1)+j

)
(1 − p)ik

]
.

Using substitutions similar to that in case (a) we get

=
π(k)

(1 − p)n(k+1)+j−k
·
[
(
pi−1Si−1,(n−i)(k+1)+j+1 + piSi,(n−i)(k+1)+j

)
(1 − p)ik|i=0

+
n∑

i=1

(−1)i
[
pi−1Si−1,(n−i)(k+1)+j+1 + pi(Si,(n−i)(k+1)+j

]
(1 − p)ik

]

=
π(k)

(1 − p)n(k+1)+j−k
·

n∑

i=0

(−1)i
[
pi−1Si−1,(n−i)(k+1)+j+1 + piSi,(n−i)(k+1)+j

]
(1 − p)ik

= (1 − p)π(n(k + 1) + j + 1) = (1 − p)π(m+ 1).

This completes the proof. 2

A.2 Proof of Proposition 2.8.1

Let θ = 1−α−(k+1)

1−α−1 . Note that θ is less than 1, since α is greater than 1.

The discriminant is given by

c21 − 4c0c2 = (1 + (k + 1)qWmax)2 − 4Wmaxqθ

= 1 + ((k + 1)qWmax)2 + (2(k + 1) − 4θ)qWmax

> 0.

The last inequality is obtained using the fact k ≥ 1 and θ < 1. Since the discriminant is positive,
both the roots, E[W ]1,2, are real. Using the fact c1 < 0 and c0, c2 > 0 along with Descartes’ sign
rule, we obtain that both the roots are real and positive.

We first show that −c1
2c2

> Wmax.

−c1
2c2

=
1 + (k + 1)qWmax

2qθ

=
1

2qθ
+

(k + 1)qWmax

2qθ
.

The first term in the above equality is positive. In the second term, we use the fact θ < 1 together

with k ≥ 1, to note that the coefficient ofWmax is greater than 1. Therefore, we obtain −c1
2c2

> Wmax.

Hence, E[W ]1 in (2.75) does not satisfy the constraint E[W ] ≤Wmax.
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Next, we show that E[W ]2 satisfies the given constraint. We denote the dependence of E[W ]2
on q by f(q).

lim
q↓0

f(q) = lim
q↓0

(
1

2qθ
+

(k + 1)Wmax

2θ

)
−

√(
1

2qθ
+

(k + 1)Wmax

2θ

)2

− Wmax

(qθ)2

= lim
q↓0

(
1

2qθ
+

(k + 1)Wmax

2θ

)

−

√(
1

2qθ
+

(k + 1)Wmax

2θ
−Wmax

)2

+

(
(k + 1)

θ
− 1

)
W 2

max

= lim
q↓0

(
1

2qθ
+

(k + 1)Wmax

2θ

)
−
(

1

2qθ
+

(k + 1)Wmax

2θ
−Wmax

)

= Wmax. (A.3)

Let g(q) be defined as

g(q) =
1

2qθ
+

(k + 1)Wmax

2θ
.

The function g(q) is a continuous and decreasing function of q ∈ (0, 1]. Let h(q) be defined as

h(q) =
√

(g(q) −Wmax)2 + d0,

where d0 =
(

(k+1)
θ − 1

)
W 2

max > 0. Since d0 > 0, h(q) is a positive and continuous function of

q ∈ (0, 1].
We can rewrite f(q) as

f(q) = g(q) − h(q). (A.4)

Now consider

h′(q) =
(g(q) −Wmax)√

(g(q) −Wmax)2 + d0

g′(q), q ∈ (0, 1]

|h′(q)| =

∣∣∣∣∣
(g(q) −Wmax)√

(g(q) −Wmax)2 + d0

∣∣∣∣∣ |g
′(q)|, q ∈ (0, 1].

Since d0 > 0, we obtain
|h′(q)| < |g′(q)|. (A.5)

Since g(q) is a decreasing function of q, g′(q) < 0. We can rewrite (A.4) as

f ′(q) = −(|g′(q)| + h′(q)). (A.6)

Using inequality (A.5) in (A.6), we obtain

f ′(q) < 0.

Therefore f(q) is a decreasing function of q ∈ (0, 1]. Also, from (A.3), we have limq↓0 f(q) = Wmax.

Therefore, f(q) < Wmax, q ∈ (0, 1]. Hence, E[W ]2 satisfies the constraint. 2
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A.3 Proof of Proposition 2.8.2

Let θ = 1−α−(k+1

1−α−1 . We denote the dependence of E[W ]2 on q by f(Wmax).

lim
Wmax→∞

f(Wmax) =
1

2qθ

[
lim

Wmax→∞
(1 + (k + 1)qWmax) −

√
(1 + (k + 1)qWmax)2 − 4Wmax

]

=
1

2qθ

[
lim

Wmax→∞
(1 + (k + 1)qWmax)

−

√(
1 − 2θ

k + 1
+ (k + 1)qWmax

)2

−
(

1 − 2θ

k + 1

)2

+ 1


 .

=
1

q(k + 1)
.

A.4 Lower and upper bounds on z0

In this section, we provide a lower bound and an upper bound on the largest root, z0, of the
equation

f(z)
def
= (1 − p)zk+1 − zk + p = 0, (A.7)

where k > 0 and 0 < p < 1. It was shown in the proof of Theorem 2.7.2 that the necessary and

sufficient condition for z0 > 1 is p > 1
k+1 . We shall assume that this condition is satisfied. The

function f(z) may have complex roots but the root of interest, z0, is real. Hence we shall consider
the f as if f :

� 7→ �
.

Proposition A.4.1 A lower bound for z0 is given by

zlb =
k

(k + 1)(1 − p)
. (A.8)

Proof. From the condition p > 1
k+1 , we obtain zlb > 1. We note that f(1) = f(z0) = 0 and

z0 > 1. Hence, f(z) attains a minima in the interval (1, z0). We differentiate Equation (A.7) and
equate it to zero to obtain

f ′(z) = (1 − p)(k + 1)zk − kzk−1 = 0.

Or, z =
k

(k + 1)(1 − p)
.

We set zlb = k
(k+1)(1−p) . For z > zlb,

f ′(z) = (1 − p)(k + 1)zk − kzk−1

= zk−1((1 − p)(k + 1)z − k)

> 0.

The function, f(z), is, therefore, increasing for z > zlb. Also, limz→∞ f(z) → ∞. �

Next, we give an upper bound for z0.
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Proposition A.4.2 An upper bound for z0 is given by

zub =

(
k + 1

k

)1−p 1

1 − p
. (A.9)

Proof. First, we show that f(zub) > 0.

f(zub) = zk
ub((1 − p)zub − 1) + p

= zk
ub

(
(1 − p)

(
k + 1

k

)1−p 1

1 − p
− 1

)
+ p

= zk
ub

((
k + 1

k

)1−p

− 1

)
+ p

> 0.

At z = 1,
f ′(1) = (k + 1)(1 − p) − k < 0. (A.10)

Since f ′(z) is negative at z = 1 and f(1) = 0 and f(z0) = 0, f(z) is negative for z ∈ (1, z0) and is
positive in (z0,∞). Hence, zub > z0. �

In Table A.4, we numerically compare the bounds with the true value of z0.

k p zlb z0 zub

0.3334 1.0015 1.003 1.967
0.4 1.111 1.2164 2.1266

2 0.7 2.224 3.0927 3.7681
0.9 6.6889 9.942 10.447
0.99 68.965 103.438 103.85
0.251 1.0013 1.0026 1.6561
0.3 1.071 1.137 1.747
0.5 1.50 1.839 2.309

3 0.75 3.75 4.967 5.296
0.9 7.50 9.9909 10.2918
0.99 74.99 99.99 100.288

0.1676 1.0012 1.0024 1.398
0.2 1.042 1.08 1.447
0.5 1.668 1.968 2.193

5 0.75 3.342 4.007 4.197
0.9 8.389 10.067 10.251
0.99 89.285 107.14 107.32

k p zlb z0 zub

0.0635 1.001 1.0021 1.1343
0.1 1.0422 1.072 1.178
0.5 1.8768 2.0019 2.0676

15 0.75 3.757 4.008 4.073
0.9 9.422 10.05 10.1149
0.99 98.684 105.26 105.32

0.0394 1.00104 1.00206 1.081
0.1 1.0689 1.101 1.1516

25 0.5 1.9248 2.0018 2.0414
0.75 3.853 4.0074 4.0468
0.99 100.806 104.838 104.877

0.9986 625 650 650.04
0.0206 1.00102 1.00201 1.041

0.1 1.09 1.111 1.1318
0.5 1.963 2.002 2.022

50 0.9 9.864 10.061 10.081
0.99 104.384 106.471 106.491

0.9986 704.22 718.31 718.33

Table A.1: Numerical comparison of the lower bound, the true value, and the upper bound.

Remark A.4.1 We are in fact interested in log[z0]/ log[α]. Although the bound may be a good

approximation for z0, it may not be a good approximation for log[z0]. For example, for k = 15 and

p = 0.0635 there is a relative error of 0.1%, i.e., (z0 − zlb)/z0 = 0.001 in lower bound. However,

on a logarithmic scale, there is a relative error of 50% for the same value of k and p.
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Appendix B

B.1 Derivation of the Kolmogorov equation in continuous time

Consider a time t, and let Π(t, x) = Prob(Xt ≤ x). For some x ∈ [Xmin, Xmax), the forward
Kolmogorov equation for Π(t, x) can be written as

Π(t+ δ, x) = Π(t, y) + Λ(Xmax)δφ(t,Xmax)I(M) +

∫ g−1(x)

u=y
Λ(u)δdΠ(t, u) + o(δ), (B.1)

where y < x is such that x = y + f(y)δ + o(δ) and φ(t, x) = Prob(Xt = x). The first term on the
right hand side corresponds to the probability that at time t the process Xt ≤ y < x in which case
case Xt+δ ≤ x. The second term corresponds to a loss event which takes the process to a state
Xt+δ ≤ x, and the o(δ) term contains the probabilities corresponding to two or more jumps in the
interval [t, t + δ]. Using Taylor series expansion of f at x, the term y = x − f(y)δ + o(δ) can be
rewritten as y = x− f(x)δ + o(δ). The forward equation is now given by

Π(t+ δ, x) =Π(t, x− f(x)δ + o(δ)) + Λ(Xmax)δφ(t,Xmax)I(M)

+

∫ g−1(x)

u=x−f(x)δ+o(δ)
Λ(u)δdΠ(t, u) + o(δ).

(B.2)

We now expand the first term on the right hand side in a Taylor series around the point x−f(x)+

o(δ) and the left hand side around the point (t+ δ), we get

δ
∂

∂t
Π(t, x) + o(δ) = − δf(x)

∂

∂x
Π(t, x) + Λ(Xmax)δφ(t,Xmax)I(M)

+

∫ g−1(x)

u=x−f(x)δ+o(δ)
Λ(u)δdΠ(t, u) + o(δ).

(B.3)

We now take the limit δ ↓ 0, and obtain the integro-differential equation

∂

∂t
Π(t, x) + f(x)

∂

∂x
Π(t, x) = Λ(Xmax)φ(t,Xmax)I(M) +

∫ g−1(x)

u=x
Λ(u)dΠ(t, u). (B.4)
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Assuming Π(t, x) converges to a limiting distribution, Π(x), as t→ ∞, we get the Kolmogorov
equation for the steady state distribution as

f(x)
dΠ(x)

dx
= Λ(Xmax)φ(Xmax)I(M) +

∫ g−1(x)

x
Λ(u)dΠ(u), x ∈ [Xmin, Xmax). (B.5)

B.2 Derivation of the Kolmogorov equation in discrete time

The derivation of this equation follows a similar derivation in [BBBK04]. Let Xn denote the value

of Xt at the nth loss instant, i.e., Xn = Xτn , and let Π̃(n, x) = Prob (Xn ≤ x). The evolution
of the process {Xn, n ≥ 0} can be described by the recursive equation

Xn+1 = g(Xn) +An+1, (B.6)

where An+1 is the increase in the window-size between the nth and the (n+ 1)th loss instants. We
note that the increase in window-size in the time interval (τn, τn+1) depends only on the values of
Xt, t ∈ (τn, τn+1). Therefore, we have the Markovian property

Prob(An+1 ≤ y|{Xi, i ≤ n}) = Prob(An+1 ≤ y|Xn). (B.7)

From Equation (B.6) and Equation (B.7), we can write the recursive equation for Π̃c(n, x) as

Π̃(n+ 1, x) =Prob(An+1 ≤ x− g(Xmax))φ̃(n,Xmax)I(M)

+

∫ g−1(x)

Xmin

Prob(An+1 ≤ x− g(u)|Xn = u)dΠ̃(n, u),
(B.8)

where φ̃(n, x) = Prob(Xn = x). Let A(n + 1, y) = Prob(An+1 ≤ y|Xn). We now find A(n + 1, ·).
From Equation (3.3), the probability that no loss occurs in a time interval [t, t+ δ] is given by

Prob(no loss in [t, t+ δ]) = exp(−Λ(Xt)δ). (B.9)

Let Xt be equal to x. From Equation (3.1), a change in the window-size from x to x+ ε is reflected
as a change in time from t to t+ ε

f(x) + o(ε). From Equation (B.9) we obtain

Prob(no loss in window-interval [x, x+ ε]) = exp

(
−Λ(x)

f(x)
ε

)
. (B.10)

Therefore,

A(n+ 1, x− g(u)) = 1 − exp

(
−
∫ x

g(u)

Λ(y)

f(y)
dy

)
. (B.11)

We assume that the process {Xn} converges to a stationary process in the limit n→ ∞. Let

Π̃(x) = limn→∞ Π̃(n, x). From Equation (B.8), we obtain the relation

Π̃(x) = A(x− g(Xmax))φ̃(Xmax)I(M) +

∫ g−1(x)

Xmin

A(x− g(u))dΠ̃(u). (B.12)



Appendix C

Some existing theorems on stability of Markov

chains

Theorem C.0.1 ([FMM95]) For an irreducible Markov chain {sn} to be null recurrent, it suffices

that there exist two functions f(x) and ψ(x), x ∈ Z, and a finite subset A ∈ Z, such that the

following conditions hold:

1. f(x) ≥ 0, ψ(x) ≥ 0, ∀x ∈ Z;

2. For some positive α, γ, with 1 < α ≤ 2,

f(x) ≤ γ[ψ(x)]α, ∀x ∈ Z.

3. lim
xi→∞

ψ(xi) = ∞ and supx/∈A f(x) > supx∈A f(x).

4. a) E[f(s(n+ 1)) − f(s(n)) |s(n) = x] ≥ 0, x /∈ A;

b) E[ψ(s(n+ 1)) − ψ(s(n)) |s(n) = x] ≤ 0, x /∈ A;

c) sup
x∈X

E[|ψ(s(n+ 1)) − ψ(s(n))|α |sn = x] = C,<∞.

Theorem C.0.2 (Foster, [FMM95]) An irreducible Markov chain s, on a countable state Z, is

ergodic if and only if there exists a positive function f(α), α ∈ Z, a number µ > 0 and a finite set

A such that

E[f(s(n+ 1)) − f(s(n))|s(n) = i] ≤ −µ, i /∈ A, (C.1a)

E[f(s(n+ 1))|s(n) = i] <∞, i ∈ A. (C.1b)

For the next theorem, we shall need the following definition.

159
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Definition 2 A set C is called a “small” set if there exists an m > 0 and a measure φm, φm(R) > 0,

such that
Pm(x,B) ≥ φm(B), x ∈ C,B ∈ B(R). (C.2)

Theorem C.0.3 ([MT93]) For some “small” set W ∈ B(R), some constant h < ∞, µ > 0, and

an extended real-valued function V : R → [0,∞], the Markov chain {s(n)} is stable if

∆V (x) :=

∫

R

P (x, dy)V (y) − V (x) ≤ −µ+ hI(x ∈W ), (C.3)

where P (x, ·) is the one step transition probability kernel of {s(n)}.



Appendix D

Présentation des travaux de thèse

D.1 Introduction

L’Internet est un réseau d’ordinateurs qui permet un échange des données entre ses nœuds. L’idée
d’un réseau d’ordinateurs fut conçu au début des années 1960 aux Etats-Unis dans le cadre d’un
programme de recherche financé par le département de défense americain. Ce qui a commencé
comme une simple expérience entre deux ordinateurs est devenu aujourd’hui un réseau de plus de
300 millions d’ordinateurs répandu sur les six continents.

L’échange de données sur l’Internet s’effectue sur le principe de “commutation par paquets”.
Un nœud, appelé source, qui souhaite transférer un fichier (c’est-à-dire un ensemble de données),
le segmente en paquets qui sont numérotés. Grâce à Internet Protocol (IP), les nœuds peuvent
tracer le chemin qui mène à une destination donnée. Un chemin est un ensemble de nœuds, appelés
routeurs, qui assurent la liaision entre différentes parties de l’Internet. Les paquets traverseront
alors le chemin l’un après l’autre avant d’arriver à la destination.

Etant donné que les routeurs sont des nœuds à taux de transmission fini, l’éxpedition de
paquets sans contrôle de la part de la source peut résulter en pertes de paquets, non seulement de
la source elle-même mais aussi des autres sources qui partagent le même routeur. Afin d’assurer le
bon fonctionment du réseau, à la fin des années 1980 Transmission Control Protocol (TCP) était
proposé [Jac88] et adopté comme le protocole de contrôle de transmission dans la plupart des nœuds
de l’Internet. Depuis sa première apparition, le protocole a beaucoup evolué, réflétant en partie la
croissance de l’Internet et de son infrastructure.

Contrairement au protocole IP, qui est suivi par tous les nœuds du parcours, TCP n’est suivi
que par la source et la destination, assurant ainsi un fonctionnement indépendent du caractère du
réseau sur le chemin. Le protocole peut être résumé ainsi: La source envoie une rafale de paquets
à la destination. L’ensemble des paquets qui sont émis mais qui ne sont pas encore acquittés, est
appelé une fenêtre. Pour chaque paquet reçu, la destination renvoie à la source un acquittement
contenant le numero du dernier paquet reçu dans le séquence. Les ressources du réseau sont
partagées parmi plusieurs utilisateurs dont le nombre varie en fonction du temps. La source,
privée de ces renseignements précis, doit les recueillir à partir des acquittements qu’il recoit. Un
acquittement contenant un numero en séquence sert donc à la fois à signaler la sous-utilisation de la
capacité du réseau et à signaler la bonne réception d’un paquet de données. La source réagit alors
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en envoyant une rafale avec plus de paquets (c’est-à-dire qu’elle augmente son taux de transmission)
afin de pouvoir estimer son propre débit équitable. En revanche, un acquittement contenant un
numéro de séquence déjà acquitté signale à la source qu’un des paquets n’était pas reçu en séquence
et que, en ce moment, il y a très probablement des pertes de paquets, appelés congestion, dans
le réseau. La source réagit en renvoyant le paquet perdu et en divisant son taux de transmission
par deux. Nous dénotons par ”délai de bout en bout” (Round Trip Time (RTT)) le temps entre
l’émission d’un paquet de données et la réception de l’acquittement correspondant. Dans la phase
de congestion avoidance, TCP emploie l’algorithme des accroissements additifs et de la décroissance
multiplicative (Additive Increase Multiplicative Increase (AIMD)). Plus précisément, dans chaque
RTT sans pertes de paquets, la source augmente la taille de la fenêtre (c’est-à-dire le taux de
transmission) par un paquet (c’est-à-dire d’une façon additive), et lorsqu’une ou plusieurs pertes
sont détectées, la source divise la taille de la fenêtre par deux. Cet algorithme d’AIMD a jusqu’ici
bien servi à la gestion de congestion dans l’Internet et au partage équitable des ressources de
l’Internet entre ses utilisateurs.

Pendant ces dernières années, l’Internet a connu une croissance importante en nombre des
utilisateurs et en taux de transmission disponible dans ses liaisons dorsales. Ce dernier a révelé
une faiblesse dans l’algorithme AIMD employé par TCP. Nous prenons un exemple pour mieux
l’expliquer: supposons qu’une source, qui est en train de transférer des paquets de taille 1000 bytes
à un débit de 500 Mbps et un RTT de 200 ms, détecte une perte due à des imperfections dans
la fibre de verre. Celle-ci va engendrer une décroissance du débit de la source, et l’algorithme des
accroissements additifs mettra plus de cinquante minutes avant de revenir à un débit de 500 Mbps.
Or, pendant ces cinquante minutes, le débit serait sous-optimal car la diminution du débit n’était
pas due à la congestion et la source aurait pu transmettre à un débit de 500 Mbps sans engendrer
des pertes de paquets. Dans l’algorithme AIMD, ce temps de récupération croît linéairement avec le
débit auquel la perte était détectée. Avec la croissance du débit qu’une source pourrait obtenir, cette
propriété de l’algorithme AIMD ne fut pas considérée comme acceptable. Afin d’améliorer ce com-
portement sous-optimal de l’algorithme AIMD, plusieurs propositions, notamment FAST [JWL04],
WestWood+ [GM04], High-Speed TCP [Flo03], CuBIC [XHR04] et Scalable TCP [Kel03b], ont été
faites.

Deux des propriétés désirables d’un algorithme sont l’efficacité et l’équité, et nous les désignons
comme des mesures de performance d’un algorithme. Dans cette thèse, nous nous intéresserons
aux mesures de performance de Scalable TCP. Le protocole, proposé par T. Kelly, envisage une
simple modification de l’algorithme AIMD. Au lieu des accroissements additifs, T. Kelly proposa
des accroissements multiplicatifs, des accroissements qui sont plus aggressifs que des accroissements
additifs. Alors, Nous avons un algorithme des accroissements multiplicatifs et de la décroissance

multiplicative (MIMD). À noter que la modification est simple et donc facilite le déploiement de
l’algorithme dans les nœuds de l’Internet. Une des propriétés des accroissements multiplicatifs est
que le temps de récupération reste indépendant du débit auquel la perte était détectée. Cette
particularité de l’algorithme est désirable surtout lorsque le débit obtenu par une source ne cesse
d’augmenter.

Les mesures de performance d’un algorithme peut être évalué en utilisant des outils différents.
Par exemple, nous pouvons faire des expériences extensives de cet algorithme dans des conditions
très variées. Ainsi, nous pouvons comprendre le comportement de l’algorithme dans des conditions
presque réelles. Cependant, l’espace des paramètres d’algorithme est parfois assez grand pour
nécessiter un très grand nombre d’expériences avant de retirer des conclusions sur le comportement.
Un autre outil, qui reste à notre disposition, est la modélisation et l’analyse stochastiques. Un
modèle stochatique de taille de la fenêtre de l’algorithme est exigé par le caractère aléatoire de perte
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de paquets. Certes, les modèles peuvent nécessiter des simplifications avant de se prêter à l’analyse.
Néanmoins, l’analyse d’un modèle simplifié peut donner des formules qu’on peut corroborer avec
des expériences.

D.1.1 Objets et contributions de cette thèse

Dans la première partie de cette thèse nous analyserons les mesures de performance à travers
des modèles stochastiques. Plus précisément, nous présenterons trois modèles stochastiques de la
taille de la fenêtre d’une session de transfert de données. Chaque modèle est caractérisé par son
processus de perte de paquet. D’abord nous étudions un modèle où la probabilité de pertes de
paquets dans chaque RTT est indépendante d’un RTT à l’autre et indépendante de la taille de la
fenêtre. Ensuite, nous étudions un modèle où chaque paquet de données peut être perdu avec une
probabilité constante, et nous obtenons une formule du débit de la source. Une étude similaire
de l’algorithme AIMD avait montré que le débit était proportionnel à l’inverse de la racine carrée
de la probabilité de perte d’un paquet [OKM96]. Pour l’algorithme MIMD, nous montrons que le
débit obtenu par une source est proportionnel à l’inverse de la probabilité de perte d’un paquet.
Enfin, nous étudions un modèle où le processus de perte de paquet suit une loi markovienne mais
reste indépendant de la taille de la fenêtre. Dans ces trois modèles, nous nous intéresserons au
débit obtenu par une source. Les résultats sont obtenus à partir des modèles en temps et en espace
discrets.

Nous continuouns cette étude de comportement de la taille de la fenêtre de l’algorithme
MIMD mais cette fois-ci en analysant le comportement en temps et en espace continus. Dans cette
étude, nous supposons que le processus de perte de paquet est un processus ponctuel qui suit une
loi de Poisson dont le paramètre est une fonction de la taille de la fenêtre. Cette étude a pour but
d’obtenir des résultats d’équivalence de differents algorithmes. Par exemple, nous montrons que
le comportement de l’algorithme AIMD lorsque le paramètre de processus de Poisson est constant
est le même que celui de l’algorithme MIMD lorsque le paramètre de processus de Poisson est une
fonction linéaire de la taille de la fenêtre. Afin de obtenir ces résultats, nous utiliserons des résultats
obtenus en théorie des files d’attente [BBBK04]. Nous montrerons également que le logarithme de
la taille de la fenêtre de l’algorithme MIMD est équivalent au temps d’attente dans une file d’attente
G/G/1. Ceci nous permettra d’obtenir des moments de la taille de la fenêtre.

Ensuite, nous étudions comment deux sources utilisant l’algorithme MIMD partagent un
goulot d’étranglement. Les pertes de paquets sont dites synchronisées lorsque les deux sources
subissent une perte au même instant. Pour les sources homogènes, c’est-à-dire des sources avec
les même paramètres de l’algorithme, Chiu et Jain avaient montré que l’algorithme MIMD était
inéquitable lorsque les pertes de paquets étaient synchronisées tandis que l’algorithme AIMD était
équitable. Cet argument convainquit Van Jacobson de proposer l’algorithme AIMD pour le pro-
tocole TCP [Jac88]. Cependant, les pertes de paquets ne sont pas toujours synchronisées. Nous
démontrons que l’indice d’équité augmente lorsque le processus de perte de paquet devient désyn-
chronisé. Pour les sources hétérogènes, dans [XHR04] il était montré que la source avec un plus
petit RTT obtenait un débit qui augmentait vers la capacité du goulot d’étranglement lorsque le
temps tendait vers l’infini. Nous démontrons que la source avec un plus grand RTT peut aussi
obtenir un débit fini si le taux de désynchronisation est strictment supérieur à une quantité qui
dépend de la différence entre les deux RTTs et du facteur multiplicatif de l’algorithme MIMD.
Les résultats de cette analyse seront corroborrés par des expériences faits par le simulateur ns-2.
Ensuite, nous étudions le partage de capacité entre plusieurs sources utilisant l’algorithme MIMD
et l’algorithme AIMD lorsque le processus de perte de paquet est synchronisé. Nous montrons que
le débit obtenu par chaque source AIMD est indépendant de la capacité du goulot d’étranglement
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et dépend uniquement des paramètres des deux algorithmes. Le reste de la capacité est partagé
entre les sources qui utilisent l’algorithme MIMD.

Dans l’étude précédente nous avions remarqué qu’un certain taux de désynchronisation était
nécessaire afin d’améliorer l’indice d’équité lorsque les deux sources étaient hétérogènes. Dans
un autre contexte, Floyd et Jacobson proposèrent un algorithme, qui s’appelle Random Early

Detection (RED), afin d’augmenter le taux de désynchronisation dans les pertes de paquets dans
l’Internet. Auparavant, des études avaient démontré qu’à cause de la synchronisation, l’efficacité
de l’algorithme AIMD était réduite, et que cette synchronisation avait pour cause le mécanisme
de gestion de file d’attente dans les routeurs. Jusque-là, les routeurs utilisaient le mécanisme
de gestion Drop tail qui acceptait des paquets jusqu’à ce que la file d’attente fût remplie. En
revanche, le mécanisme RED rejetait chaque paquet avec une probabilité calculée en fonction
d’une moyenne mobile du nombre instantané de paquets dans la file d’attente. Dans cette étude,
les mesures de performance d’un algorithme seront la probabilité moyenne de perdre un paquet, la
probabilité de perdre un certain nombre de paquets d’une rafale, et le nombre moyen de paquets
dans la file d’attente. Nous montrons que, suite à des approximations, nous pouvons obtenir ces
mesures numériquement en utilisant des algorithmes de processus de Quasi-Birth-Death. Lorsque
le paramètre du calcul de la moyenne mobile tend vers zéro, le nombre instantané de paquets dans
la file d’attente et la moyenne mobile commencent à évoluer sur deux échelles de temps différentes.
Dans ce cas particulier, nous utilisons la méthode de la perturbation singulière afin d’étudier les
mesures de performance de l’algorithme RED.

Enfin, nous nous intéresserons aux deux problèmes qui apparaissent dans les études du réseau
mobile. Dans le premier problème, nous considérons un système en temps discret. Ce système
consiste en un appareil mobile avec une source d’énergie finie et une file d’attente dans laquelle une
rafale de paquets arrive dans chaque intervalle de temps. Pour transmettre un paquet, l’appareil
doit dépenser un certain nombre d’unités d’énergie. Etant donné le nombre de paquets dans la file
d’attente et l’énergie disponible dans la source au début de chaque intervalle de temps, l’appareil
doit prendre une des trois décisions suivantes : (i) transmettre un certain nombre de paquets, ce qui
diminue l’énergie restante, (ii) rester inactif, ce qui augment l’énergie restante, et (iii) transmettre
le maximum possible nombre de paquets et remplacer la source d’énergie, ce qui vaut un coût fini
et déterminé. Dans chaque intervalle de temps, un coût proportionnel au nombre de paquets dans
la file d’attente et l’énergie restante est généré. L’appareil veut déterminer la politique (c’est-à-dire
une suite des décisions) qui minimise les critères suivants: (i) coût pénalisé à horizon fini, (ii) coût
pénalisé à horizon infini, et (iii) coût moyen. Nous faisons l’analyse de ce problème dans le cadre des
processus de décision markoviens. Dans le cas où la fonction de coût généré dans chaque intervalle
possède une dérivée directionnelle constante, nous montrons que le problème peut être divisé en
deux sous-problèmes selon le signe de la dérivée directionnelle. Dans les deux sous-problèmes, nous
montrons, sans utiliser les caractéristiques de second ordre, (i) l’optimalité du contrôle à seuil, (ii)

la monotonie paramétrique de ce seuil, et (iii) l’unicité de ce seuil. Dans le deuxième problème, nous
considérons l’évalution de performance de différentes politiques d’ordonnancement des flots TCP
sur la voie descendante du réseau Universal Mobile Telecommunications System (UMTS). Ce réseau
est la 3ème génération de réseaux mobiles et offre un débit supérieur à 144 kbps à ses utilisateurs.
Sur la voie descendante, le réseau dispose de deux canaux différents—le Dedicated CHannel (DCH)

et le Forward Access CHannel (FACH)—pour transmettre les paquets aux utilisateurs. Bien que le
DCH offre un débit nettement supérieur par rapport au FACH, le temps de mise en place du canal

est aussi nettement supérieur à celui du FACH. À noter que pour un flot de petite taille, le temps
de mise en place du canal pourrait être plus important que son temps de transfert, défavorisant
ainsi une commutation de flot vers DCH. En revanche, pour un flot de grande taille, le temps
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de mise en place pourrait être moins important que son temps de transfert, privilégiant ainsi une
commutation vers DCH. En l’absence de renseignement exact sur la taille d’un flot à la station de
base, nous proposons deux politiques basées sur le nombre de paquet de chaque flot dans la file
d’attente à la station de base. Pour chaque politiques, nous évaluons le délai de transfert d’un flot
en fonction de sa taille.

Les modèles présentés dans la plupart des cas sont des modèles markoviens. Soit {Xn, n ≥ 0},
une suite de variables aléatoires. Le processus Xn est une chaîne de Markov si la distribution de
Xn+1 ne dépend que de la valeur de Xn. Ce genre de dépendance fut proposée et étudiée par
A.A. Markov au début des années 1900. Nous utiliserons les chaînes de Markov pour étudier la
distribution de la taille de la fenêtre de l’algorithme MIMD (chapitres 2 et 3), du processus de
rapport des débits de deux sources (chapitre 4), et la distribution conjointe du nombre de paquets
dans la file d’attente et de la moyenne mobile (chapitre 5). Nous utiliserons également la théorie
des processus de décision markoviens afin de déterminer la politique optimale (chapitre 6).

Dans ce qui suit, nous allons dévélopper les principaux sujets abordés dans les paragraphes
précédents.

D.2 Le comportement de la taille de la fenêtre de l’algorithme

MIMD en temps discret

Dans cette section, nous analyserons le comportement de la taille de la fenêtre de l’algorithme
MIMD en temps discret. Cette analyse nous amènera à la distribution de la taille de la fenêtre
en état stationnaire. Notons que la valeur moyenne de la taille de la fenêtre est proportionnelle
au débit obtenu par la source. Ainsi, à travers de cette analyse nous essayerons de comprendre le
comportement du débit obtenu par une source MIMD en fonction du processus de perte de paquet.
Le comportement de la taille de la fenêtre est déterminé en grande partie par le processus de perte
de paquets. Dans ce modèle, nous considérons une source qui a un fichier de très grande taille,
voire infinie, et qui utilise l’algorithme MIMD pour contrôler la congestion. Dans notre modèle,
nous faisons les hypothèses suivantes.

− Pas de Timeouts: l’effect d’un timeout est de faire retomber la taille de la fenêtre à sa
borne inférieure. Les Timeouts se produisent généralement lorsqu’il y a plusieurs pertes
consécutives. Nous supposons que Scalable TCP est utilisé avec SACK, une modification qui
peut récupérer plusieurs pertes sans un timeout.

− Au plus une décroissance dans chaque RTT: c’est aussi une des particularités de la modifica-
tion SACK.

− Une taille infinie du fichier.

− Des RTT constants.

Soit Wn la taille de la fenêtre observée à la fin du nème RTT. La variable Wn évolue selon
les règles suivantes

Wn+1 =

{
min(α ·Wn,Wmax) s’il n’y a aucune perte pendant le nème RTT,
max(β ·Wn,Wmin) dans le cas contraire.

(D.1)

où α > 1 est le paramètre d’accroissement, β < 1 est le paramètre de décroissance, et Wmin et
Wmax sont respectivement des bornes inférieure et supérieure de Wn. La borne supérieure est
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souvent exigée par la destination à cause d’une taille finie de sa file d’attente tandis que la borne
inférieure est nécessaire afin de garantir un certain débit. Notons qu’un taux de transmission fini
du goulot d’étranglement impose également une borne supérieure à Wn. La vraie borne supérieure
est alors le minimum de ces deux bornes supérieures.

Soit p(Wn) la probabilité de perdre plus qu’un paquet pendant le nème RTT. Nous considérons
trois modèles de la fonction p(Wn).

− Modèle (i): La probabilité de perdre plus qu’un paquet dans chaque RTT est une constante p
indépendante de Wn. Cette indépendance était observée dans les réseaux étendus [AAB00a],
et était étudiée dans [BH02]. Cette indépendance était observée lorsque le nombre de flots
tendait vers l’infini et chacun de ces flots traversait plusieurs liaisons [MGT99].

− Modèle (ii): Chaque paquet pourrait être perdu avec une probabilité q. Ce modèle peut servir
quand la liaison introduit des pertes à cause des imperfections, c’est le cas, par exemple, des
liaisons de fibre de verre. Dans [OKM96], ce modèle était utilisé pour montrer que le débit
d’une source qui utilisait l’algorithme AIMD était proportionnel à 1/

√
q.

− Modèle (iii): Soit pn la probabilité de perdre plus qu’un paquet dans le nème RTT. Dans ce
modèle la suite pn est une chaîne de Markov (cf. [AAB00b]).

Un sommaire des analyses et des résultats concernant l’algorithme AIMD est présenté dans
[BHCKS04].

D.2.1 Les principaux résultats

− Modèle (i): Sous l’hypothèse du modèle (i), Wn évolue selon les règles suivantes

Wn+1 =

{
min(α ·Wn,Wmax) 1 − p,
max(β ·Wn,Wmin) p.

(D.2)

C’est une récurrence stochastique multiplicative. La suite Wn est une chaîne de Markov
en temps discret et en espace borné. Soit Yn = log(Wn). Avec cette transformation, la
récurrence devient additive, et nous sommes capables d’obtenir les moments de Wn à partir
de la transformée de Laplace de Yn. Quand k = − log[β]/ log[α] est un entier, l’espace aussi
devient discret. Soit π(m) la probabilité que, en état stationnaire, Wn est égal à m. Nous
avons le résultat suivant :

π(m) = π(0)
p

(1 − p)m
·

r∑

i=0

(−1)i
(
pi−1Ci−1,(r−i)(k+1)+j + piCi,(r−i)(k+1)+j−1

)
(1 − p)ik,(D.3)

m = 0, 1, 2, ..., L,

où L est le nombre d’états de Wn, π(0) est obtenu par la normalisation
∑L

m=0 π(m) = 1, et

Ci,j =

(
i+ j

j

)
. (D.4)
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− Modèle (ii): Sous l’hypothèse du modèle (ii), Wn évolue selon les règles suivantes :

Wn+1 =

{
min(α ·Wn,Wmax) w.p. (1 − q)Wn ;
max(β ·Wn,Wmin) w.p. 1 − (1 − q)Wn .

(D.5)

L’analyse de cette récurrence est difficile. Afin de pouvoir obtenir une formule explicite, nous
proposons l’approximation

pn ≈ qWn. (D.6)

où pn est la probabilité de perdre plus qu’un paquet dans le nème RTT. Ceci nous permet
d’utiliser l’analyse faite pour le modèle (i). Alors, nous avons

E[W ] =
−c1 −

√
c21 − 4c2c0

2c2
. (D.7)

où c2 = q 1−α−(k+1)

1−α−1 , c1 = −(1 + (k + 1)qWmax), et c0 = Wmax. Nous notons que, dans cette

analyse, Wmin = 0. Lorsque Wmax tend vers l’infini, nous avons

lim
Wmax→∞

E[W ] =
1

q(k + 1)
. (D.8)

Nous remarquons que le débit de l’algorithme MIMD est proportionnel à 1/q tandis que celui
de l’algorithme AIMD est proportionnel à 1/

√
q.

− Modèle (iii): En suivant la méthode d’analyse du modèle (i), nous pouvons obtenir une
expression pour la valeur moyenne de la taille de la fenêtre, et cette expression est donnée
par Equation (2.89).

Nous avons verifié ces résultats par des expériences faites en utilisant le simulateur ns-2 [MF].

D.3 Analyse de performance des algorithmes de contrôle de con-

gestion en temps continu

Dans cette section, nous nous intéréssons à la taille de la fenêtre en temps continu. Nous montrons
que le processus de la taille de la fenêtre est markovien et écrivons l’équation de Kolmogorov pour
la distribution stationnaire de ce processus. Cette équation permet de comparer le comportement
des algorithmes et, surtout, d’obtenir des conditions sous lesquelles deux algorithmes auront le
même comportement. Une approache similaire a été adopt’ee dans [AABQ01a, KK02, BHCKS04]
afin d’analyser l’algorithme AIMD.

Nous pouvons décrire le comportement de la taille de la fenêtre d’un algorithme en spécifiant
son algorithme des accroissements, celui de sa décroissance ainsi que le processus de perte de
paquets. Soit Xt la taille de la fenêtre à l’instant t. Dans le modèle en temps continu

− Le processus de perte de paquets est ponctuel et suit une loi de Poisson dont le paramètre,
Λ(Xt), est une fonction de la taille de la fenêtre.

− Dans l’intervalle de temps entre deux pertes de paquets, la taille de la fenêtre croît selon la
solution de l’équation différentielle

Ẋt = f(Xt), ∀t ∈ (τ, τ + ∆), (D.9)
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où (τ, τ + ∆) est un intervalle de temps sans pertes de paquets. Nous notons que la fonction
f(x) = constante est une interpolation de l’algorithme des accroissements additifs, et la
fonction f(x) = αx est celle de l’algorithme des accroissements multiplicatifs.

− Chaque perte de paquet engendre une décroissance donnée par une fonction g(Xt). Soit τn
le temps d’arrivé du nème perte de paquet. Ainsi,

Xτn+ = g(Xτn). (D.10)

À noter que Xt a une borne inférieure, Xmin, et une borne supérieure, Xmax.

D.3.1 Les principaux résultats

Un système est défini par les trois fonctions <f, g,Λ>. Par conséquence de la formulation ci-dessus,
le processus {Xt} est markovien. Soit π(x) la mesure invariante du processus {Xt}. Dans le cas
où Xmin = 0 et Xmax = ∞, La proposition suivante est verifée.

Proposition D.3.1 Soitent <f1, g1,Λ1> et <f2, g2,Λ2> deux systèmes tels que

1. g1(x) = g2(x) = g(x), ∀x, et

2. f1(x)
Λ1(x) = f2(x)

Λ2(x) = κ(x), ∀x.

Alors,

π1(x)

π2(x)
= C

Λ2(x)

Λ1(x)
= C

f2(x)

f1(x)
, ∀x, (D.11)

où C = E[Λ1(X)]

E[Λ2(X)]
.

De même façon, dans le cas où Xmin = 0 et Xmax <∞, nous avons la proposition suivante.

Proposition D.3.2 Soitent <f1, g1,Λ1> et <f2, g2,Λ2> deux systèmes tels que

1. g1(x) = g2(x) = βx, ∀x, et

2. f1(x)
Λ1(x) = f2(x)

Λ2(x) , ∀x.

Alors,

π1(x)

π2(x)
= C

f2(x)

f1(x)
= C

Λ2(x)

Λ1(x)
, ∀x (D.12)

où C =
Λ1(Xmax)φ1(Xmax)

Λ2(Xmax)φ2(Xmax)
si φi(Xmax) > 0, (D.13)

et φ(Xmax) = 1 −
∫ Xmax−

0
π(x)dx. (D.14)
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Considérons l’exemple suivant : soient< f1, g1,Λ1 >=< α, βx, λ > et< f2, g2,Λ2 >=< αx, βx, λx >.
Le premier système représente l’algorithme AIMD et un processus de perte de paquet qui est in-
dépendant de Xt. Le deuxième système représente l’algorithme MIMD et un processus de perte
de paquet dont l’intensité dépend linéairement de Xt. Nous constatons que les deux conditions
exigées par les deux propositions sont satisfaites. Par conséquence, nous pouvons nous servir de
l’analyse d’un système afin d’analyser l’autre.

Par suite, nous analysons l’algorithme MIMD lorsque l’intensité du processus de perte de
paquet est une fonction linéaire de Xt. Le système étudié est alors noté < αx, βx, λx >. Pour ce
système, nous pouvons calculer les moments de Xt à l’état stationnaire par la récurrence suivante :

E[X] =
α

λ log[1/β]
, (D.15)

E[Xj+1] =
αjj!

λj
∏j

i=1(1 − βi)
E[X] j = 1, 2, . . . . (D.16)

Dans [BHCKS04], il est noté qu’un processus de perte de paquet à l’intensité de la forme λx est en
fait un approximation du cas où la probabilité de perte de paquet est constante. Dans la section
précédente, Nous avions obtenu une expression de la valeur moyenne de la taille de la fenêtre en
temps discret. En temps continu, nous trouvons que la valeur moyenne est proportionnelle à 1/q,
en accord avec la formule obtenue dans la section précédente.

D.4 Quelques propriétés d’équité de l’algorithme MIMD

Dans les sections précédentes, nous avons étudié le comportement de la taille de la fenêtre d’une
source utilisant l’algorithme MIMD. Dans cette section, nous étudions d’abord comment deux
sources MIMD se partagent la capacité d’un goulot d’étranglement. Nous étudions ensuite le
cas où plusieurs sources utilisant soit l’algorithme MIMD soit l’algorithme AIMD se partagent la
capacité d’un goulot d’étrangelement. Nous utiliserons le modèle en temps et en espace continu,
décrit en section précédente, pour la taille de la fenêtre d’une source. Des études sur l’équité ont
paru entre autres, en [CJ89], [BB01],[HMM00],[Gor04],[XHR04],[KMT98], et [MW00].

Dans un premier temps, nous considérons deux sources homogènes, autrement dit deux
sources qui ont les mêmes paramètres de l’algorithme MIMD. Le processus de perte de paquet
peut être synchronisé ou désynchronisé. Nous supposons que les pertes se produisent selon un
processus de Poisson ponctuel et homogène dont l’intensité est constante. Dans le premier modèle,
nous supposons que les pertes sont synchronisées, autrement dit, les deux sources subissent des
pertes simultanément. Soit θ(t) le processus représentant le rapport des débits de deux sources.
Dans [CJ89], θ(t) = 1 définit la ligne d’équité. Une des propriétés de l’algorithme des accroisse-
ments multiplicatifs est que θ(t) reste constant entre deux pertes consécutives. Si les pertes sont
synchronisées, nous constatons que θ(t) restera toujours égal à θ(0). Ainsi, si le partage initial est
iniquitable (c’est-à-dire θ(t) 6= 1), il le restera pour toujours. Dans un contexte déterminé, Chiu et
Jain avaient proposé un indice d’équité que nous reformulons dans un contexte stochastique de la
façon suivante :

F∗ =
1

2
+ inf

x(0)
lim

T→∞

1

T

∫ T

0

θ(t)

1 + θ(t)2
dt. (D.17)

où x(0) est le vecteur initial des débits. La valeur minimale de cet indice est 0.5 et sa valeur
maximale est 1. La valeur maximale de cet indice est atteinte si et seulement si les deux sources
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obtiennent le même débit pout tout t. Lorsque le processus de perte de paquet est synchronisé, nous
pouvons montrer que l’indice atteint sa valeur minimale. Le processus de perte de paquet est dit
dépendant du débit si les pertes sont désychronisées et que la source qui subit la perte est choisie au
hasard, avec une probabilité qui croît avec le débit de cette source. De même, le processus de perte
de paquet est dit indépendant du débit si la probabilité de choisir une source est indépendante du
débit de cette source. Dans [Gor04], l’auteur avait avancé des arguments pour montrer que l’indice
d’équité aurait pu être amélioré si le processus de perte de paquet était dépendant du débit.

Dans ce travail, nous présentons un modèle stochastique et obtenons la distribution station-
naire de θ(t). Soit θ(n) la chaîne de Markov obtenue par l’observation du processus θ(t) juste avant
une perte. Nous montrons que la chaîne de Markov θ(n) est récurrente positive si le processus
de perte de paquet dépend du débit. Dans ce cas, la valeur de l’indice est supérieure à sa valeur
minimale et dépend du facteur multiplicatif de l’algorithme. En revanche, la chaîne θ(n) est récur-
rente nulle si le processus de perte de paquet est indépendant du débit, auquel cas l’indice d’équité
atteindra sa valeur minimale.

Dans un deuxième temps, nous considérons le cas où les deux sources sont hétérogènes. Le
plus souvent, la hétérogénéité est due à une différence entre les RTTs respectifs. Nous montrons
que θ(n) est récurrente positive si le processus de perte de paquet dépend du débit et son intensité
est supérieure à une constante qui dépend des paramètres de deux connexions.

Pour finir, nous étudions comment les sources utilisant l’algorithme MIMD et celles utilisant
l’algorithme AIMD se partagent la capacité d’un goulot d’étranglement, lorsque le processus de
perte de paquet est synchronisé. Nous obtenons des résultats suivants :

− Chaque source qui utilise l’algorithme AIMD obtient un débit indépendant de la capacité du
goulot d’étranglement. Ce débit dépend des paramètres des deux algorithmes.

− L’ensemble des sources MIMD obtient la capacité restante.

− Il existe un seuil de la capacité au-dessous duquel une source utilisant l’algorithme AIMD
obtiendra un meilleur débit qu’une autre utilisant l’algorithme MIMD.

D.5 L’approche de perturbation singulière pour analyser une file

d’attente RED

Nous considérons une file d’attente M/M/1 avec RED. L’algorithme RED peut être décrit ainsi :
soit Qn le nombre de paquets dans la file d’attente juste avant le nième arrivée. L’algorithme
consiste à calculer, juste avant chaque arrivée, une moyenne mobile de la façon suivante :

qn+1 = (1 − α)qn +Qn+1, (D.18)

où 0 < α < 1. Le nième paquet arrivé est rejeté avec une probabilité qui dépend de qn.

Plusieurs travaux ont porté sur l’analyse d’une file d’attente RED [MGT00, BMB00, HMTG01,
KLVK01, SVL02]. Nous proposons un analyse stochastique lorsque le paramètre α tend vers zéro.
Il se trouve que le processus conjoint (qn, Qn) est une chaîne de Markov. Afin de faciliter l’analyse,
nous proposons l’approximation suivante :

q̂n+1 = q̂n + Cn, (D.19)
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où

Cn =





1 avec une probabilité α(mQn+1 − q̂n)+ ;
−1 avec une probabilité α(q̂n −mQn+1)

+ ;
0 sinon ,

où la notation x+ = max(x, 0) a été utilisé.
Grâce à cette approximation, le processus conjoint (q̂n, Qn) devient un processus QBD. Pour

calculer la distribution stationnaire d’un processus QBD, les algorithmes décrits dans [GJL84] et
[LR99] peuvent être utilisés. Dans le cas où le paramètre α tend vers zéro, q̂n évolue selon une
échelle de temps plus lente que celle de Qn. Cette séparation des échelles de temps nous permet
d’utiliser une perturbation singulière pour obtenir la distribution jointe et les autres mesures de

performance. À noter que pour obtenir la distribution stationnaire de q̂n, nous pouvons supposer
que Qn se trouve déjà à l’état stationnaire. Pour calculer la valeur moyenne du nombre de paquets
dans la file d’attente, nous proposons une formule approximative mais facile à calculer.

D.6 Contrôle optimal du délai et de l’énergie dans un appareil

mobile

Soit un appareil mobile qui veut transmettre des paquets en temps discret. Dans chaque intervalle
de temps, une rafale d’un nombre aléatoire de paquets arrive dans la file d’attente de l’appareil.
L’appareil a une source d’énergie finie à sa disposition. Soit M le nombre maximale d’unités
d’énergie que la source d’énergie peut contenir. Tout paquet transmis consomme un nombre fixe
d’unités d’énergie. Soient pn et xn, respectivement, le nombre restant d’unités d’énergie et le
nombre de paquets dans la file d’attente au début du nième intervalle. Etant donné pn et xn, au
début du nième intervalle, l’appareil doit prendre un des trois décisions suivantes :

− transmettre ne rien, ce qui augmenterait le nombre restant d’unités d’énergie (le nombre
d’unités d’énergie est toujours borné par M);

− transmettre un certain nombre de paquets, ce qui diminuerait le nombre de paquets dans la
file d’attente mais aussi le nombre restant d’unités d’énergie. Le nombre de paquets pouvant
être transmis est borné par le minimum de pn et xn;

− tranmettre min(pn, xn) et remplacer la source d’énergie avec une autre pleine, ce qui induit
un coût fixe.

Dans chaque intervalle de temps, un coût h(xn)+ g(pn) est généré. L’appareil veut minimiser (i) le
coût penalisé à horizon fini, (ii) le coût penalisé à horizon infini, et (iii) le coût moyen. Le processus
du nombre de paquets dans chaque rafale est une suite de variables aléatoires i.i.d. telle que le
nombre moyen de paquets dans une rafale est inférieur à M . Sous cette hypothèse, le problème peut
être formulé comme un processus de décision markovien. Nous montrons que la politique optimale

pour minimiser le coût moyen est celle du contrôle à seuil. À cette fin, nous faisons l’hypothèse que
le signe de h′(x) + g′(p) est indépendant de x et de p pout tout (x, p). Sous cette hypothèse, nous
montrons que l’appareil soit transmet rien soit il transmet min(xn, pn), et que le choix dépend du
signe de la derivée directionelle, h′(x) + g′(p). Nous pouvons alors réduire l’espace des décisions,
et, par récurrence, nous montrons que la politique du contrôle à seuil est optimale pour minimiser
le coût penalisé à horizon fini et le coût penalisé à horizon infini. Enfin, nous nous servons d’un
théorème de Schäl [Sch93] pour montrer l’optimalité du contrôle à seuil pour minimiser le coût
moyen.
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D.7 Politiques d’ordonnancement des flots TCP dans l’UMTS

Sur la voie descendante, la station de base dispose de deux canaux – FACH et DCH. Nous faisons
l’hypothèse que le canal FACH offre un débit maximal de 32 kbps, et le canal DCH offre un débit
constant de 384 kbps. Par ailleurs, le temps de mise en place de DCH pour chaque flot est de
l’ordre de 250 ms tandis que celui de FACH est négligeable. Le canal DCH est un canal dedié au
flot qui l’utilise tandis que le débit du canal FACH pourrait être partagé entre plusieurs sources.
D’ailleurs, le trafic de signalisation est transmis sur FACH, et ce trafic est prioritaire par rapport

au trafic des données. La station de base doit choisir quel le flot peut transmettre sur DCH. À
noter qu’il n’est pas rentable de commuter les flots de petite taille sur DCH. Puisque la station
de base ne peut connaître à l’avance la taill d’un flot, nous proposons une politique basée sur le

nombre de paquets d’un flot dans la file d’attente à la station de base. À savoir que chaque flot qui
arrive est accordé une file d’attente virtuelle à la station de base. Dans cette politique, chaque flot
commence à transmettre sur FACH. Si le nombre de paquets d’une source dans sa file d’attente
dédiée dépasse un seuil et le DCH est disponible, alors le flot est commuté vers DCH. En faisant
des expériences sur ns-2, nous avons obtenu le temps de transfert moyen d’un flot en fonction de la
seuil. Nous avons constanté qu’il existe un seuil optimal qui minimise le temps de transfert moyen.

D.8 Perspectives

Dans les chapitres 2 et 3, nous avons étudié le comportement de la taille de la fenêtre de l’algorithme
MIMD. Nous avons constaté que le débit obtenu est proportionnel à l’inverse de la probabilité de
perte d’un paquet. L’analyse fut faite pour trois processus différents de perte de paquet. Nous
pourrions étudier le comportement lorsque la probabilité de perte d’un paquet est un processus
markovien. Ce processus est souvent utilisé pour des liaisons sans-fil. Notre étude considére le
cas d’une seule source. Dans [BH02], une étude est faite dans le cas où plusieurs sources utilisant
l’algorithme AIMD. Ce genre d’étude pourrait nous aider à mieux comprendre la dynamique du
système lorsqu’il y a une interaction entre les sources. Notre étude fut réalisée sous certaines
hypothèses. Une de ces hypothèses est que RTTs sont constants. Or, en général, les RTTs dépendent
de la taille des files d’attente dans les routeurs. Par conséquence, ils dépendent de la taille de la
fenêtre de chaque source. Nous pourrions étudier le comportement dans pareille situation.

Dans le chapitre 4, nous avons constaté que l’indice d’équité dans le cas de sources ho-
mogènes augmente lorsque le processus de perte de paquet dépend du débit, et dans le cas de
sources hétérogènes l’intensité de ce processus doit être supérieure à une constante qui dépend

des paramètres de l’algorithme. L’indice d’équité croît avec l’intensité. À noter que nous avons
considéré le rapport des débits de deux sources et non pas leur débit cumulé. Lorsque le processus
de perte de paquet dépend du débit, une intensité forte diminue l’efficacité. Il existe donc un com-
promis entre l’efficacité et l’indice d’équité. Nous pourrions étudier ce compromis afin de trouver
l’intensité optimale. Dans le chapitre 5, nous avons étudié une file d’attente RED lorsque les flux
d’arrivée sont en boucle ouverte. La plupart des flux dans l’Internet sont en boucle fermée (les
flux qui utilisent TCP, par exemple). Alors, il est possible d’analyser la file d’attente lorsque les
flux sont en boucle fermée. Ceci permettra de choisir de bonnes valeurs pour les paramètres de
RED. L’analyse presenté dans le chapitre 6 a été conduite sous certaines hypothèses. Une de ces
hypothèses est que la croissance de l’énergie restante est un processus sans mémoire. Un mod-
èle plus vraisemblable devrait prendre en compte la dépendance au passé de la source d’énergie.
Dans le chapitre 7, nous avons étudié la performance de deux algorithmes d’ordonnancement par
simulations. Nous avons constaté qu’il existe un seuil de nombre de paquet dans la file d’attents



Sec. D.8 Perspectives 173

au-dessous du quel il était optimal de commuter une source de FACH à DCH. Il serait intéressant
de développer un modèle permettant de calculer analytiquement le seuil optimal. Les operateurs
mobiles porraient se servir d’une telle analyse afin d’offrir un meilleur service à leurs utilisateurs.
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Appendix E

List of Acronyms

ACK ACKnowledgement
AIMD Additive Increase Multiplicative Decrease
AQM Active Queue Management
DCH Dedicated CHannel
FACH Forward Access CHannel
MIMD Multiplicative Increase Multiplicative Decrease
PASTA Poisson Arrivals See Time Averages
QBD Quasi-Birth-and-Death
RED Random Early Detection
RTT Round Trip Time
SACK Selective ACKnowledgement
TCP Transmission Control Protocol
UMTS Universal Mobile Telecommunications System
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Résumé

Cette thèse contient quelques applications des chaînes de Markov et des processus de décision markoviens pour le
contrôle de congestion et de puissance. D’abord nous étudions le comportement de la taille de la fenêtre d’une
source qui utilise l’algorithme MIMD. Nous montrons que le logarithme de la taille de la fenêtre suit une récurrence
stochastique additive, et est une chaîne de Markov. Nous obtenons la distribution et les moments de la taille de la
fenêtre lorsque le processus de perte de paquet est indépendant de la taille de la fenêtre. Nous montrons aussi que
le débit obtenu par une source est proportionnel à l’inverse de la probabilité de perte d’un paquet. Ensuite, nous
analysons le processus de la taille de la fenêtre d’un algorithme de contrôle de congestion en temps continu. Nous
obtenons l’équation de Kolmogorov pour la distribution de ce processus en état stationnaire, et montrons que ce
processus est équivalent au processus de temps d’attente dans une file d’attente où le taux d’arrivée et de service
dépend du processus de temps d’attente. Suite à cette équivalence, nous pourvoyons des conditions sous lesquelles
deux algorithmes ont le même comportement. Puis, nous étudions le processus de rapport de deux sources qui
utilisent l’algorithme MIMD et qui se partagent la capacité d’un goulot d’étranglement. Pour les sources homogènes,
nous montrons que l’indice d’équité s’améliore si le processus de perte de paquet dépend du débit. Pour les sources
hétérogènes, nous montrons que l’intensité du processus de perte de paquet doit être supérieure à une constante qui
dépend des paramètres des algorithmes pour que l’indice d’équité s’améliore. Lorsque le processus de perte de paquet
est synchronisé et plusieurs sources utilisant soit l’algorithme AIMD soit l’algorithme MIMD se partagent une liaison,
nous observons que les sources utilisant l’algorithme AIMD obtiennent un débit indépendant de la capacité de la
liaison. Ensuite, nous présentons un modèle stochastique pour obtenir la distribution jointe du nombre instantané de
paquets et de sa moyenne mobile dans une file d’attente RED. Lorsque le paramètre du calcul de la moyenne mobile
tend vers zéro, nous utilisons la théorie de perturbation singulière afin d’obtenir la distribution conjointe. Nous
montrons que le nombre moyen peut être calculé à partir d’une équation à point fixe. Ensuite, nous étudions un
problème de commande optimale en temps discret. Un appareil mobile veut transmettre des paquets et conserver son
énergie en même temps. Nous montrons que la politique optimale est un contrôle à seuil. Enfin, par simulations, nous
étudions le délai des flots TCP sur la voie descendante de l’UMTS lorsque deux politiques différentes de commutation
de canaux sont utilisées.

Mots-clés — Modélisation stochastique, chaînes de Markov, processus de décision markoviens, algorithmes de
contrôle de congestion, MIMD, équité, file d’attente RED, séparation d’échelle de temps, UMTS, politiques de
commutation de canaux.

Abstract

This thesis is based on some applications of Markov chains and decision processes for performance analysis of
congestion avoidance algorithms and power control. First, we study the behaviour of the window size of an MIMD
congestion control algorithm when subject to different loss processes. We show that the logarithm of the embedded
window size follows an additive recursive equation, which can be modelled as a Markov chain. Through this model,
we obtain the distribution of the window size and its moments when losses are independent of the window size. We
then propose an approximation for the loss process in which each packet is lost with a constant probability, and
show that the throughput is inversely proportional to the packet loss probability. Next, we study a continuous time
model for the window size of a general increase and instantaneous decrease congestion control algorithm. We show
that the window size is a Markov process for which we give the Kolmogorov equation for the stationary distribution
function. By applying a transformation, we also show that the window size is equivalent to the workload in a queue
with state-dependent arrival and service rates. Through the Kolmogorov equation and the analogy with a queueing
system we provide conditions under which two congestion control algorithms have related window size behaviour.
For example, it is shown that the behaviour of the window size of the MIMD algorithm with a linear loss is similar
to that of the window size of the AIMD algorithm with a constant loss intensity. Next, we model the instantaneous
ratio of the sending rates of two competing MIMD sessions as a Markov chain. Through this model we study the
fairness properties of the MIMD algorithm when subject to different loss processes. For heterogeneous sources, we
show that the fairness index can be improved by introducing rate-dependent losses at an intensity which is greater
than a certain threshold intensity. We also study the bandwidth sharing between AIMD and MIMD sources when
the losses are synchronous. The results indicate that the AIMD sources obtain a rate that is independent of the
link capacity whereas the MIMD sources utilise the rest of the capacity. Next, we model the instantaneous and
the average queue sizes of a RED enabled queue as a non-homogeneous Quasi-Birth-Death process. In the limit
when the averaging parameter goes to zero, we use the singular perturbation technique to find the joint distribution
of the average and the instantaneous queue sizes. In this limiting regime, the expected average queue size can be
approximated by the solution to a fixed point equation. A problem related to energy-delay tradeoff in a wireless
device is studied next. The device has a finite energy battery using which it wants to transmit data. The battery
can recover some charge when left idle. In each slot, the device has to decide whether to transmit data or to leave
the battery idle in order to increase the battery lifetime. We formulate this problem as a Markov decision process
and provide conditions under which the optimal policy is of threshold type. Finally, through simulations we study
the effect of two threshold based channel switching policies in UMTS on the expected delay performance of TCP
sessions.

Keywords — Stochastic modelling, Markov chains, Markov decision processes, congestion control algorithms,
MIMD, fairness, RED queue, time-scale seperation, UMTS, channel switching policies.


