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Ithaca

When you set out on your journey to Ithaca,

pray that the road is long,

full of adventure, full of knowledge.

The Lestrygonians and the Cyclops,

the angry Poseidon do not fear

You will never find such as these on your path,

if you do not carry them within your soul,

if your soul does not set them up before you.

And if you find her poor, Ithaca has not deceived you.

Wise as you have become, with so much experience,

you must already have understood what Ithacas mean.

Constantine P. Cavafy (1911)
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Abstract

The work described in this thesis is done in the context of a long term effort at VERIMAG labora-

tory to build a complete model based tool-chain for the design and implementation of embedded

systems. We follow a layered approach that distinguishes the application level from the architec-

tural/implementation level. The application is described in a high-level language that is indepen-

dent of implementation details. The application is then mapped to a specified architecture using

a number of techniques so that the desired properties of the high level description are preserved.

In this thesis, the application is described in SIMULINK/STATEFLOW, a wide-spread model-

ing language that has become a de-facto standard in many industrial domains, such as automotive.

At the architectural level we consider single-processor, multi-tasking software implementations.

Multi-tasking means that the application software is divided into a number of processes that are

scheduled by a real-time operating system, according to some preemptive scheduling policy, such

as static-priority or earliest deadline first.

Between these two layers we add an intermediate representation layer, based on the syn-

chronous language LUSTRE, developed at VERIMAG for the last 25 years. This intermediate

layer permits us to take advantage of a number of tools developed for LUSTRE, such as simula-

tors, model-checkers, test generators and code generators.

In a first part of the thesis, we study how to translate automatically SIMULINK/STATEFLOW

models into LUSTRE. For SIMULINK this is mostly straightforward, however it still requires

sophisticated algorithms for the inference of type and timing information. The translation of

STATEFLOW is much harder for a number of reasons; first STATEFLOW presents a number of

semantically “unsafe” features, including non-termination of a synchronous cycle or dependence

of semantics on the graphical layout. Second, STATEFLOW is an automata-based, imperative

language, whereas LUSTRE is a dataflow language. For the first set of problems we propose a

number of statically verifiable conditions that define a “safe” subset of STATEFLOW. For the

second set of problems we propose a set of techniques to encode automata and sequential code

into dataflow equations.

In the second part of the thesis, we study the problem of implementing synchronous designs

in the single-processor multi-tasking architecture described above. The crucial issue is how to

implement inter-task communication so that the semantics of the synchronous design are pre-

served. Standard implementations, using single buffers protected by semaphores to ensure atom-

icity, or other, lock-free, protocols proposed in the literature do not preserve the synchronous

semantics. We propose a new buffering scheme that preserves the synchronous semantics and is

also lock-free. We also show that this scheme is optimal in terms of buffer usage.
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Résumé

Le travail décrit dans cette thèse fait partie d’un effort de recherche au laboratoire VERIMAG pour

créer une chaı̂ne d’outils basée sur modèles (model-based) pour la conception et l’implantation

des systèmes embarquées. Nous utilisons une approche en trois couches, qui séparent le niveau

d’application du niveau implantation/architecture. L’application est décrite dans un langage de

haut niveau qui est indépendante des détails d’implantation. L’application est ensuite transférée

à l’architecture d’exécution en utilisant des techniques spécifiques pour que les propriétés de-

mandées soient bien préservées.

Dans cette thèse, l’application est décrite en SIMULINK/STATEFLOW, un langage de

modélisation très répandu dans le milieu de l’industrie, comme celui de l’automobile. Au niveau

de l’architecture, nous considérons des implantation sur une plate-forme ”mono-processeur” et

”multi-tâches”. Multi-tâches signifie que l’application est répartie en un nombre des tâches qui

sont ordonnées par un système d’exploitation temps-réel (RTOS) en fonction d’une politique

d’ordonnancement préemptive comme par exemple la priorité statique (static-priority SP) ou la

date-limite la plus proche en priorité (earliest deadline first EDF).

Entre ces deux couches, on rajoute une couche de représentation intermédiaire basée sur le

langage de programmation synchrone Lustre, développé à VERIMAG durant les 25 dernières

années. Cette représentation intermédiaire permet de profiter des nombreux outils également

développés à VERIMAG tels que des simulateurs, des générateurs de tests, des outils de

vérification et des générateurs de code.

Dans la première partie de cette thèse, on étudie comment réaliser une traduction automatique

de modèle SIMULINK/STATEFLOW en modèles Lustre. Coté SIMULINK, le problème est rela-

tivement simple mais nécessite néanmoins l’utilisation d’algorithmes sophistiqués pour inférer

correctement les informations de temps et de types (de signaux) avant de générer les variables

correspondantes dans le programme Lustre. La traduction de STATEFLOW est plus difficile à

cause d’un certain nombre de raisons ; d’abord STATEFLOW présent un certain nombre de com-

portements ”non-sûr” tels que la non-terminaison d’un cycle synchrone ou des sémantiques qui

dépendent de la disposition graphique des composants sur un modèle. De plus STATEFLOW

est un langage impératif, tandis que Lustre un langage de flots de données. Pour le premier

problème nous proposons un ensemble de conditions vérifiables statiquement servant à définir

un sous-ensemble ”sûr” de STATEFLOW. Pour le deuxième type de problèmes nous proposons

un ensemble de techniques pour encoder des automates et du code séquentiel en équations de

flots de données.

Dans la deuxième partie de la thèse, on étudie le problème de l’implantation de programmes

xi



synchrones dans l’architecture mono-processeur et multi-tâche décrite plus haut. Ici, l’aspect

le plus important est comment implanter les communications entre tâches de manière à ce que

la sémantique synchrone du système soit préservée. Des implantations standards, utilisant des

buffers de taille un, protégés par des sémaphores pour assurer l’atomicité, ou d’autres proto-

coles ”lock-free” proposés dans la littérature ne préservent pas la sémantique synchrone. Nous

proposons un nouveau schéma de buffers, qui préserve la sémantique synchrone tout en étant

également ”lock-free”. Nous montrons de plus que ce schéma est optimal en terme d’utilisation

des buffers.
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Chapter 1

Introduction

Context of this thesis

The technological evolution we are experiencing the last decades has resulted in using more and

more “computerized” devices for an entire spectrum of tasks, from the simple everyday tasks to

the most sophisticated and complicated ones, which is far from the classical perception of what

we used to call “computer”. Moreover the constantly reducing size of these systems results to

finding usage even in the most unthinkable (for the past decades) places, providing the market

with a big number of small devices that we may call “gadgets”. More than 98% of processors

today are in such systems, and are no longer visible to the customer as computers in the classical

sense.

Other examples can be found in consumer electronics such as mobile phones, house electrical

appliances or in more “heavy” industries like automotive, railway, avionics and aerospace. We

call all these systems embedded systems. More precisely, when we consider high-risk application

domains, like the avionics or the automotive, those systems are called safety-critical embedded

systems. In this specific area of embedded and real-time systems the basic requirement is high-

quality design and being able to guarantee a set of correctness properties.

The design of such systems is a difficult task. In this context, the model-based design

paradigm has been established as an important paradigm for the development of modern embed-

ded software. The main principle of the paradigm is to use models (with formal or semi-formal

semantics) all along the development cycle, from design, to analysis, to implementation. Using

models rather than, say, building prototypes is essential for keeping the development costs man-

ageable. However, models alone are not enough. Especially in the safety-critical domain, they

need to be accompanied by powerful tools for analysis (e.g., model-checking) and implemen-

tation (e.g., code generation). Automation here is the key: high system complexity and short

time-to-market make model reasoning a hopeless task, unless it is largely automatized.

The benefits of model-based design are many. First, high-level models raise the level of

abstraction, allowing the designer to focus on the essential functions of the system rather than

implementation details. This in turn makes possible to build larger and more complex systems.

Analysis tools, such as simulation or model-checking tools, are crucial at this stage. Bugs that

are found early in the design process are easier and less expensive to fix.
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Chapter 1. Introduction

At some point the implementation phase begins, during which the system is actually built.

By “system” we mean hardware, software or both. One may consider also the environment as

part of the system and thus of the whole implementation process1. In the hardware industry the

implementation phase is closely coupled with the modeling and analysis phase. Powerful EDA

tools, stemming from a rich body of research on logic synthesis and similar topics, are used for

gate synthesis, circuit layout, routing, etc. Such tools are largely responsible for the proliferation

of electronics and their constant increase in performance.

In the software industry the situation is not as clear. On one hand, high-level models are not

as widespread. After all, the software itself is a model and simulation can be done by executing

the software. Testing and debugging are common-place (in fact, very time-consuming) but they

are done at the implementation level, that is, on the target software. Implementation is automated

using the most classical tools in computer science: compilers. The situation is changing, how-

ever: languages such as SIMULINK/STATEFLOW
2, UML3 and others, as well as corresponding

software-synthesis facilities are used more and more. Currently, software synthesis is mostly re-

stricted to separate code generation for parts of the system. The integration of the different pieces

of code is usually done “manually” and is source of many problems, since the implementation

often exhibits unexpected behavior: deadlocks, missed data values, etc. These problems arise be-

cause the implementation method (in this case, code generation followed by manual integration)

does not guarantee that the original behavior (high-level semantics) is preserved.

The reason high-level semantics are generally not preserved by straightforward implementa-

tion methods is the fact that high-level design languages often use “ideal” semantics, such as con-

current, zero-time execution (as well as communication) of an unlimited number of components.

It is essential to use such ideal semantics in order to keep the level of abstraction sufficiently high.

On the other hand, these assumptions break down upon implementation: components take time

to execute; communication is also not free; neither is concurrency: scheduling is needed when

many software components are executed on the same processor and communication is needed

between components executing on separate hardware platforms.

As a result, implementations often exhibit a very different behavior than the original high-

level model. This is a problem, because it means that the results obtained by analyzing the

model (e.g., model satisfies a given property) may not hold at the implementation level. In

turn this implies that testing and verification need to be repeated at the implementation level.

This is clearly a waste of resources. In order to avoid this, we need to address the issue of the

preservation of properties of the high-level model, when moving towards the implementation.

This is the vision that motivates this thesis. To contribute to the effort of building a complete

model-based tool-chain that starts with high-level design languages and allows automatic, as

much as possible, synthesis of embedded code that, by construction, preserves crucial properties

of the high-level model.

This is an ambitious goal and, naturally, we had to look at only some parts of the entire

problem. In particular, our main focus has been the class of embedded control applications, and

1 This is especially important in control applications where the environment is the object to be controlled and

the one the controller needs to be adapted to.
2 MATLAB, SIMULINK and STATEFLOW are trademarks of the MathWorks Inc.: http://www.mathworks.com.
3 From the Object Management Group: http://www.uml.org/
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mostly those coming from domains such as automotive. Many of our choices, such as the choice

of which high-level design languages to consider, are a result of this context.

Our work has been performed in the context of two European projects, the project “NEXT

TTA”4 and the project “RISE”5. We should also say that our work has been part of an on-going

team effort at the VERIMAG laboratory for a number of years. This effort is explained in more

detail in Chapter 2.

Before proceeding to list the contributions of this thesis, let us briefly describe the state of

the art in what concerns model-based design.

State of the art

In the domains that we are mostly interested, that is the safety-critical applications like the au-

tomotive and avionic industries, the use of the SIMULINK/STATEFLOW toolkit by MathWorks is

considered as the de-facto standard.

SIMULINK offers to the designer a graphical interface that allows to combine blocks from

a number of libraries and interconnect them using signals. These blocks may perform basic

operations (like addition or multiplication) or more advanced ones (like transfer functions or

integration). SIMULINK can model discrete as well as continuous behavior making it feasible

for the designer to model not only the system but also the physical environment where this

system will be embedded. Thus the designer can simulate the interaction of his system and

the environment to check for the correctness and to measure the performance. Coupled with

SIMULINK there is the STATEFLOW tool that provides automata-based design capabilities. Other

products of MathWorks are the REAL-TIME WORKSHOP and REAL-TIME WORKSHOP EM-

BEDDED CODER code generators, that produce, starting from a SIMULINK/STATEFLOW model,

imperative code for given target execution platforms. Other companies also provide third-party

tools for SIMULINK/STATEFLOW, such as the TARGETLINK library and code generator from

dSpace.

SIMULINK/STATEFLOW started purely as a simulation environment and lacks many desir-

able features of programming languages. It has a multitude of semantics (depending on user-

configurable options), informally and sometimes only partially documented. Although commer-

cial code generators exist for SIMULINK/STATEFLOW, these present major restrictions. For ex-

ample, TARGETLINK does not generate code for blocks of the “Discrete” library of SIMULINK,

but only for blocks of the dSpace-provided SIMULINK library, and currently handles only mono-

periodic systems. Another issue not addressed by these tools is the preservation of semantics.

Indeed, the relation between the behavior of the generated code and the behavior of the simulated

model is unclear. Often, speed and memory optimization are given more attention than semantic

consistency. We describe in detail the short-comings of current code-generators for SIMULINK

in Section 7.9.

4 The project’s title is “High-Confidence Architecture for Distributed Control Applications” and for more infor-

mation refer to the official web-page http://www.vmars.tuwien.ac.at/projects/nexttta
5 “RISE” stands for “Reliable Innovative Software for Embedded Systems” and more information can be found

in http://www.esterel-technologies.com/rise/
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Chapter 1. Introduction

SCADE, a product of Esterel Technologies, Inc., is another design environment for embed-

ded software. SCADE uses a graphical user interface for design capture, similar to SIMULINK.

However, at the heart of the tool lies a backbone language, LUSTRE [HCRP91], which is a syn-

chronous language with formal semantics, developed at the VERIMAG laboratory for the past

twenty years. SCADE features model-checking capabilities with its “plug-in” from Prover 6, a

very important feature in the domain of safety-critical applications. Moreover, SCADE is en-

dowed with a DO178B-level-A7 code generator which allows it to be used in highest criticality

applications. SCADE has been used in important European avionic projects (Airbus A340-600,

A380, Eurocopter) and is also becoming a de-facto standard in this field.

Besides these and other commercial products8, there is a number of related offerings from

the academic world. Synchronous languages is one set of such offerings [BCE+03]. These lan-

guages appeared at approximately the same time in the eighties and include LUSTRE [HCRP91],

ESTEREL [BG92] and SIGNAL [GGBM91]. Synchronous languages share a number of com-

mon characteristics, among which a deterministic, synchronous automaton semantics, much

like that of a Mealy machine. These languages were conceived early-on as high-level pro-

gramming languages, targeted at embedded software. Code generation for these languages

has thus been one of the main concerns, and a lot of effort has been devoted in this direc-

tion [HCRP91, BG92, GGBM91].

With a different focus, and larger scope, the Metropolis project [BWH+03] offers a frame-

work that implements the platform-based design paradigm. In this paradigm, function (i.e., high-

level model) and architecture (i.e., execution platform) are clearly separated. Metropolis offers

a modeling framework to capture both. It also provides mechanisms, essentially by means of

action synchronization, for mapping the function onto the architecture. This mapping (currently

chosen by the user) essentially defines an implementation choice. By trying out and evaluating

different mappings, the user can explore different implementation choices.

The PTOLEMY project9 is another framework mostly focusing in modeling, and in particu-

lar in heterogeneous formalisms, that use radically different models of computation. Examples

of such formalisms range from Kahn process networks [Kah74] to Communicating Sequential

Processes (CSP) [Hoa85] to hybrid automata [ACH+95]. How to compose such heterogeneous

models in a coherent manner is a non-trivial problem, and the main focus of PTOLEMY.

Contributions of this thesis

State-of-the-art offerings are limited in a number of ways. Some solutions, for instance

SIMULINK, lack in formal semantics and provide little analysis capabilities except simulation10.

6 http://www.prover.com
7 DO-178B, Software Considerations in Airborne Systems and Equipment Certification is a standard for software

development, which was developed by RTCA and EUROCAE. The FAA accepts use of DO-178B as a means of

certifying software in avionics.
8 e.g., Telelogic’s TAU, supporting UML and SysML (http://www.telelogic.com/Products/tau/), ETAS’ ASCET

automotive platform, and more
9 http://ptolemy.eecs.berkeley.edu [BHLM94]

10 A recent plug-in to SIMULINK is the “Verification and Validation” tool-box which performs input stimuli

generation and checks model coverage. The third-party tool Reactis, by Reactive Systems, has similar functionality.
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Others, for instance synchronous languages, provide relatively restricted modeling frameworks.

Finally, most solutions provide very limited code generation capabilities (essentially single-

processor, single-tasking) with little or no guarantees on preservation of properties of the high-

level model.

With this work, we hope to provide remedies to some of these shortcomings. Our work has

been done in the context of a long-term effort at the VERIMAG laboratory aiming to build a

complete tool-chain for the design and the implementation of safety-critical embedded systems

(see Chapter 2 for details). The contributions that this thesis brings to this effort are the following:

• We provide a method to translate (discrete-time) SIMULINK to LUSTRE. SIMULINK of-

fers an excellent high-level modeling framework, that is widespread in a number of ap-

plication domains, in particular, in the automotive domain. Our work provides a way to

link SIMULINK to a number of tools available for LUSTRE, including formal analysis tools

such as model-checkers and test generators. The translation also allows to use the code

generation capabilities for LUSTRE as well as the new techniques developed in this thesis

(see below). This translation is presented in Chapter 4.

• We provide a method to translate STATEFLOW to LUSTRE. STATEFLOW offers enhanced

modeling capabilities to SIMULINK. Together they offer a heterogeneous modeling frame-

work based on a combination of block diagrams and state machines. Apart from our trans-

lation to LUSTRE, we also provide static analysis techniques for STATEFLOW, that permit

to guarantee absence of critical errors in a model, such as non-termination of a simulation

cycle. This translation is presented in Chapter 5.

• We provide tools that implement the above translation methods. We also describe a few

case studies we have treated using these tools. The tools and case studies are presented in

Chapter 6.

• We provide a method to generate code from synchronous models onto single-processor,

multi-tasking execution platforms. Our method is proved to be semantics-preserving, in

the sense that the executable software has the same behavior as the “ideal” synchronous

model. Our method is also optimal with respect to memory requirements. The method is

presented in Chapter 7.

Organization of this document

The rest of this document is organized as follows. Chapter 2 describes the overall model-based

design effort at VERIMAG, in the context of which this work has been performed. In Chapter 3

we provide the basics of the LUSTRE synchronous programming language, which is a crucial

element in this overall approach. In Chapters 4 and 5 we study the translation of SIMULINK

and STATEFLOW, respectively, to LUSTRE. In Chapter 6 we present the implementation of these

translation methods in the tool SS2LUS, and also describe some case studies where this tool has

been used. Finally in Chapter 8 we present the conclusions of this work and possible future

directions.

Christos Sofronis Ph.D Thesis 5



Chapter 1. Introduction

6 Verimag — November 2006 Christos Sofronis



Chapter 2

Model-based design at VERIMAG

This thesis is in the context of almost 10 years efforts in VERIMAG to build a complete model

based tool-chain for the design and implementation of embedded systems. Moreover we focus

in the embedded systems that are used in high-risk application domains such as the automotive

and the aeronautics, where security is the most important requirement.

Designing according to the model based approach refers to using high-level abstractions to

conceptualize a system. Those high-level abstractions may be software platforms or models that

abstract the real implementation details and provide the designer with means to focus in certain

aspects of his design. Most of the times it is better to provide the designer with a methodology

that abstracts the communications between tasks of his model. Having a more general tool is

redundant and complicates the design in this case.

We propose a layered approach that distinguishes the application and the architecture in

which the execution will take place. In this sense, our approach follows the paradigm of platform-

based design [SV02], implemented in other frameworks such as Metropolis [BWH+03].

In our flavor of this approach we add another layer between the application and the architec-

ture layers. This layer that serves as an intermediate representation, is the LUSTRE synchronous

programming language, developed in VERIMAG for the last 25 years. We choose LUSTRE first

because of the vast knowledge of its mechanisms available within VERIMAG and also because

it permits us to take advantage of a number of tools developed for it, such as simulators, model-

checkers, test generators and code generators. A more detailed description of LUSTRE is pro-

vided in Chapter 3.

The model based approach we propose is the three-layered one we can see in Figure 2.1. As

said earlier, the LUSTRE language serves as an intermediate level between the top and the bottom

pyramids.

The top level is the application layer and contains all the tools, platforms and models that can

be used to facilitate the design of a system. In this area we can find SIMULINK, STATEFLOW,

UML or other formalisms and mathematical representations.

In the middle level we position LUSTRE, into which we translate the models produced in

the top level. Then we use the model-checking capabilities of LUSTRE to verify and validate

our design and thus, be sure that we the system respects always some safety properties. The

importance of the latter is significant since, as we saw earlier, the target applications are the ones

7
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in the domains of automotive, aerospace and more general in high-risk applications.

The bottom level is the one of the actual execution of the system. In this layer we have all

the possible execution architectures and we can choose according to our needs. This contains

centralized or distributed architectures using single-tasking or multi-tasking software, various

hardware platforms as well as various communication media.

An on-going effort at VERIMAG aims at enriching the top and bottom layers, adding more

high-level description languages and more low-level execution platforms, to the capabilities of

our current tools. The first compiler of the LUSTRE language [HCRP91] covers implementa-

tion of LUSTRE on a mono-processor and single-task execution platform. The work of Adrian

Curic [Cur05, CCM+03] covers implementation of LUSTRE (and an extended LUSTRE lan-

guage) to a distributed synchronous execution platform, called the Time-Triggered Architecture

(TTA) [Kop97], where nodes communicate via the Time-Triggered Protocol (TTP) [KG94].

Our work contributes to the previous efforts as depicted by the dashed lines in Figure 2.1.

First, we provide a translation from SIMULINK to LUSTRE that we study in Chapter 4. We also

study the translation of STATEFLOW to LUSTRE in Chapter 5. Finally, we study the implemen-

tation of LUSTRE (and synchronous languages in general) on a mono-processor, multi-tasking

execution platform in Chapter 7.

We hope that future works will further enhance the picture by considering other high-level

languages (e.g., UML [Gro01]) and more execution platforms.

8 Verimag — November 2006 Christos Sofronis
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Chapter 3

The Synchronous Programming Language

LUSTRE

LUSTRE [CPHP87, HCRP91] is a synchronous dataflow programming language that has been

designed and developed in VERIMAG laboratory 25 years ago, following the merging of the

synchronous and the dataflow paradigms. On top of the language there is a number of tools

that constitute the LUSTRE platform. These tools take advantage of the formal foundations of

LUSTRE to provide model-checking capabilities and test generation. There is also the compiler

of producing imperative C code, that respects the semantics of the language. Finally there are

tools for the simulation of the system on design.

Moreover, SCADE, the industrial counterpart of LUSTRE, was founded by Esterel Tech-

nologies, Inc.. SCADE, having LUSTRE as backbone, provides graphical user interface to the

designer and also has a certified compiler1, which is very important in the area of aeronautics

and automotive industries. We can measure the importance of SCADE, and thus of LUSTRE,

by counting the number of companies already using it as a basis for their design. The last big

success of SCADE is its use for the development of the latest project of Airbus, the A380 carrier

airplane.

In this Chapter, we demonstrate the principles of LUSTRE and also give some examples of

usage. Furthermore, we discuss the C code generation capabilities of the LUSTRE compiler. We

do not intent to provide a full-fledged cover of the area, in which case the reader should refer

to [BCGH93, BCE+03].

3.1 The LUSTRE language

A LUSTRE program models essentially a deterministic Mealy machine, as illustrated in Fig-

ure 3.1. The machine has a (possibly infinite) set of states, a (possibly infinite) set of inputs and

a (possibly infinite) set of outputs. Given the current state and the current input the transition

function and output function compute the next state and the current output, respectively.

1 certified with the DO-178B certification on level A
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state

transition/output
function

inputs outputs

next
state

Figure 3.1: A LUSTRE program is a deterministic Mealy machine.

LUSTRE time is logical and counted in discrete instants. Logical time means there is no

a-priori notion of instant duration or time elapsing between two instants. Indeed, the beginning

of each instant is determined at run-time by the environment in which the embedded LUSTRE

program is running. This environment calls the LUSTRE program and the LUSTRE program

performs one step of the Mealy machine described above: read inputs, compute outputs, write

outputs. The synchrony hypothesis dictates that the computations associated with the current

instant (reading inputs, computing outputs, writing outputs) are finished before the next instant

arrives.

In LUSTRE, every variable and expression denotes a flow, i.e., a pair of

• a possible infinite sequence of values of a given type,

• a clock, representing a sequence of times.

The use of the clock is to designate the instants that the flow takes a value. This means that

in the n-th time of its clock the flow takes the n-th value of its sequence of values. Any program

has a cyclic behavior (the Mealy automaton discussed above) and that cycle determines the basic

clock of the program. Other, slower clocks, can be defined using boolean-valued flows: the new

clock defined by a boolean flow is the sequence of times that this flow takes the value true. For

instance Table 3.1 displays the time-scales defined by a flow C whose clock is the basic clock

and a flow C’ whose clock is defined by C.

basic time-scale 1 2 3 4 5 6 7 8

(defined by the environment)

C true false true true false true false true

time-scale defined by C 1 2 3 4 5

C’ false true false true true

time-scale defined by C’ 1 2 3

Table 3.1: Boolean flows and their clocks.
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Variables in LUSTRE are coupled explicitly with their type and clock. When the latter does

not appear explicitly, the clock of the variable is the basic clock of the current node, where

the variable is declared. Basic data types in LUSTRE are boolean, integer, real and one type

constructor tuple. Usual operators over basic types are available:

• arithmetic: +, -, *, /, div, mod

• boolean: and, or, not

• relational: =, <, <=, >, >=

• conditional: if then else

These are the data operators and operate only on operands that have the same clock; they

operate point-wise on the sequences of values of their operands. For instance, if X and Y are

two integer flows on the basic clock and their values are (x1, x2, ..., xn, ...) and (y1, y2, ..., yn, ...),
then the following expression

if X>0 then Y+1 else 0;

is a flow with integer type and on the basic clock, which in the n-th instance the value is:

if xn > 0 then yn + 1 else 0

Besides these operators, LUSTRE has four more which are called “temporal” operators, which

operate specifically on flows:

• pre (as for “previous”) acts as a memory; if (e1, e2, ..., en, ...) is the sequences of values of

the expression E, then the expression pre E has the same clock and its sequence of values

is (nil, e1, e2, ..., en, ...), where nil represents an undefined value denoting an uninitialized

memory.

• -> (“followed by”): if E and F are two flows with the same clock and respectively the

following values (e1, e2, ..., en, ...) and (f1, f2, ..., fn, ...), then the expression F ->E is an

expression with the same clock and with sequence of values (f1, e1, e2, ..., en, ...). In other

words, this expression is always equal to E except the first instant that is equal to F.

Those two operators are mostly used in couple, to generate a memory with an initial value. A

very “classical” way to use those operands are in combination like in the following expression:

Y = X -> pre Z;

and the result of this operation is shown in Table 3.2.

The other two temporal operators are the ones that affect the clock of a flow:

• when operator is used to “sample” an expression to a slower clock. Let E be an expression

and B a boolean expression with the same clock, then E when B is a flow whose clock is

defined by B and the sequence of values is composed by the values of E when B is true.

Christos Sofronis Ph.D Thesis 13
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X x1 x2 x3 x4 x5 x6 ...

Z z1 z2 z3 z4 z5 z6 ...

Y = X -> pre Z x1 z1 z2 z3 z4 z5 ...

Table 3.2: Example for the use of pre and ->.

• current operator is used to “interpolate” an expression on the clock immediately faster

than its own. If E is an expression with clock defined by the boolean flow B, which is not

the basic clock, then current E has the same clock as B and its value is the value of E

at the last time that B was true. Note that until the first time that B is true the resulting

flow will be nil.

Table 3.3 provides an example to illustrate the use of the last two temporal operants.

B false false true false true false false true true

X x1 x2 x3 x4 x5 x6 x7 x8 x9

Y = X when B x3 x5 x8 x9

current Y nil nil x3 x3 x5 x5 x5 x8 x9

Table 3.3: Example of use of when and current .

LUSTRE is a declarative language where variables are defined by equations of the form x =
E, where x is a variable and E is an expression on variables or constants using the operators

described above. Each intermediate or output variable in a LUSTRE program has a unique such

definition, i.e., having two or more equations x = E1 and x = E2 is not allowed. Inputs are

not defined by equations, since they are provided by the environment. An equation in LUSTRE

expresses a global invariant, i.e., the value of the flow x is at every logical instant equal to the

value of the flow computed by E. Thus, equations are essentially a mechanism for functional

composition.

Structure is given to a LUSTRE program by declaring and calling LUSTRE nodes, in much

the same way as, say, C functions are declared and called. Here is an example:

A is a node taking as inputs a boolean flow b, an integer flow i and a real flow x and returning

a real flow y. A uses internal flows j and z (with usual scope rules). The body of A is declared

between the let and tel keywords. A calls node B to compute z and node C to compute y

(conditionally). Nodes B and C are declared elsewhere.

3.2 LUSTRE compiler and code generation

The LUSTRE compiler guarantees that the system under design is deterministic and respects the

synchronous hypothesis. It accomplishes the task thanks to static verifications which amounts

to:

14 Verimag — November 2006 Christos Sofronis
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node A(b: bool; i: int; x: real)

returns (y: real);

var j: int; z: real;

let

j = if b then 0 else i;

z = B(j, x);

y = 0.0 -> (if b then pre z else C(z));

tel

Figure 3.2: A LUSTRE node example.

• Definition checking: every local and output variable should have one and only one equa-

tional definition.

• Clock consistency.

• Absence of cycles in definitions: Any cycle should use at least one pre operator.

This latter check, in LUSTRE, is done by statically rejecting any program that contains a cycle

in the instantaneous dependencies relation. This, syntactic, method of rejecting designs is some

times too restrictive, since a further boolean causality check could prove that the program has

one and only one solution for any given input.

Moreover to the above static checks, the LUSTRE compiler can generate code to be executed

in a target platform. The first such implementation is the code generation for a mono-processor

and mono-thread implementation. Thus, the compiler can generate a monolithic program in the

imperative C language. The principle to associate an imperative program to LUSTRE, is to con-

struct an infinite loop whose body implements the inputs to outputs transformations performed

at any cycle of the node.

The two basic steps are: (1) introduce variables for implementing the memory needed by

the pre operators and (2) sort the equations in order to respect data-dependencies. Note that a

suitable order exists as soon as the program has been accepted by the causality checking.

node counter(x, reset: bool) returns (c: int);

var lc : int;

let

c = lc + (if x then 1 else 0);

lc = if (true -> pre reset) then 0 else pre c;

tel

Figure 3.3: A counter in LUSTRE.

Consider the example of Figure 3.3. This LUSTRE program, implements a counter that counts

the occurrences of its input x since the last occurrence of reset, or the beginning of time if

reset has never occurred.

Christos Sofronis Ph.D Thesis 15
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The resulted C code generated for the example of the counter is shown in Figure 3.4, where

the variables that implement the memory for the pre operators are pre reset and pre c and

as for the data-dependency lc must be computed before c.

bool pre_reset = true;

int pre_c = 0, c; // c: output

bool x, reset; // inputs

void counter_step() {

int lc;

lc = (pre_reset)? 0 : pre_c;

c = lc + (x)? 1 : 0;

pre_c = c;

pre_reset = reset;

}

Figure 3.4: The C code for the example of the counter.

Following those principles, the target code is a simple sequence of assignments. The main

advantage of this somehow naive algorithm is that it produces a code which is neither better

nor worse than the source code: both the size and the execution time are linear with respect to

the size of the source code. This one-to-one correspondence between source and target code is

particularly appreciated in critical domain like avionics, and it has been adopted by the SCADE

compiler.
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Chapter 4

Analysis and Translation of Discrete-Time

SIMULINK to LUSTRE

4.1 SIMULINK Translation Objectives

SIMULINK and LUSTRE are languages manipulating signals and systems. Signals are functions

of time. Systems take as input signals and produce as output other signals. In SIMULINK, which

has a graphical language, the signals are the “wires” connecting the various blocks. In LUSTRE,

the signals are the program variables, called flows. In SIMULINK, the systems are the built-in

blocks (e.g., adders, gains, transfer functions) as well as composite blocks, called subsystems. In

LUSTRE, the systems are the various built-in operators as well as user-defined operators called

nodes.

In the sequel, we use the following terminology. We use the term block for a basic SIMULINK

block (e.g., adder, gain, transfer function) and the term subsystem for a composite SIMULINK

block. We will use the term system for the root subsystem. We use the term operator for a basic

LUSTRE operator and the term node for a LUSTRE node.

4.2 Differences of SIMULINK and LUSTRE

We will try now to elaborate on the differences of SIMULINK and LUSTRE languages as a first

step towards the translation from the former to the latter. They are both data-flow programming

languages that allow the representation of multi-periodic sampled systems as well as discrete

Simulink Lustre

Signals “wires” connecting blocks variables (flows)

Systems Sum, Gain, Unit Delay, ..., subsystems +, pre, when, current, ..., nodes

Table 4.1: Signals and systems in SIMULINK and LUSTRE.
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event systems. However, despite their similarities, they also differ in many ways:

• LUSTRE has a discrete-time semantics, whereas SIMULINK has a continuous-time seman-

tics1. It is important to note that even the blocks of SIMULINK belonging to the “Discrete

library” produce piecewise-constant continuous-time signals. Thus, in general, it is pos-

sible to feed the output of a continuous-time block into the input of a discrete-time block

and vice-versa.

• LUSTRE has a unique, precise semantics. The semantics of SIMULINK depends on the

choice of a simulation method. For instance, some models are accepted if one chooses a

variable-step integration solver and rejected with a fixed-step solver.

• LUSTRE is a strongly-typed language with explicit types for each flow. Explicit types

are not mandatory in SIMULINK. However, they can be set using, for instance, the Data

Type Converter block or an expression such as single(1.2) which specifies the constant 1.2
having type single. The differences of the typing mechanisms of SIMULINK and LUSTRE

are discussed in more detail in Section 4.4.

• LUSTRE is modular in certain aspects, while SIMULINK is not. In particular, concern-

ing timing aspects, a SIMULINK model allows a subsystem to “run faster” (be sampled

at a higher rate) than its parent system. In this sense, SIMULINK is not modular since

the subsystem contains implicit inputs (i.e., sample times). The differences of the timing

mechanisms of SIMULINK and LUSTRE are discussed in more detail in Section 4.5.2.

• Hierarchy in SIMULINK is present both at the definition and at the execution levels. This

means that subsystems are drawn graphically within their parent systems, to form a tree-

like hierarchy. The same hierarchy is used to determine the order of execution of nodes.

In LUSTRE, the execution graph is hierarchical (nodes calling other nodes), while the

definition of nodes is “flat” (that is, following the style of C rather than, say, Pascal, where

procedures can be declared inside other procedures). The differences of the structure of

SIMULINK and LUSTRE are discussed in more detail in Section 4.6.

4.3 The Goals and Limitations of the Translation

The ultimate objective of the translation is to automatize the implementation of embedded

controllers as much as possible. We envisage a tool chain where controllers are designed in

SIMULINK, translated to LUSTRE, and implemented on a given platform using the LUSTRE C

code generator and a C compiler for this platform. Other tools, for instance, for worst-case exe-

cution time (WCET) analysis, code distribution, schedulability analysis and scheduling, etc., can

also assist the implementation process, especially when targeting distributed execution platforms

(e.g., see [CCM+03]).

1 In the sense that LUSTRE signals are functions from the set of natural numbers to sets of values and SIMULINK

signals are functions from the set of positive real numbers to sets of values.
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The basic assumption is that the embedded controller to be implemented is designed in

SIMULINK using the discrete-time part of the model. Thus, we only translate the discrete-time

part of a SIMULINK model. Of course, controllers can be modeled in continuous time as well.

This is typically done in control theory, so that analytic results for the closed-loop system can be

obtained (e.g., regarding its stability). Analytical results can also be obtained using the sampled-

data control theory. In any case, the implemented controller must be discrete-time. How to obtain

this controller is a control problem which is clearly beyond the scope of this paper. According

to classical text-books [AW84], there are two main ways of performing this task: either design

a continuous-time controller and sample it or sample the environment and design a sampled

controller.

Concretely, the subset of SIMULINK we translate includes blocks of the “Discrete” library

such as “Unit-delay”, “Zero-order hold”, “Discrete filter” and “Discrete transfer function”,

generic mathematical operators such as sum, gain, logical and relational operators, other useful

operators such as switches, and, finally, subsystems including triggered and enabled subsystems.

The subset of SIMULINK currently handled by our method and tool (called S2L) is shown in

Figure 4.1.

Other goals and limitations of our translation are the following.

1. We aim at a translation method that preserves the semantics of SIMULINK. This means

that the original SIMULINK model and the generated LUSTRE program should have the

same observable output behavior, given same inputs, modulo precisely defined conditions.

Since SIMULINK semantics depends on the simulation method, we restrain ourselves only

to one method, namely, “solver: fixed-step, discrete” and “mode: auto”. We also assume

that the LUSTRE program is run at the time period the SIMULINK model was simulated.

Thus, an outcome of the translation must be the period at which the LUSTRE program shall

be run (see also Section 4.5).

2. We do not translate S-functions or Matlab functions. Although such functions can be help-

ful, they can also create side-effects, which is something to be avoided and contrary to

the “functional programming” spirit of LUSTRE. Notice, however, that our tool does not

“block” or rejects the input model when the latter contains such functions. It translates

them into external function calls, like other “unknown” SIMULINK blocks (see also item

5, below).

3. As the SIMULINK models to be translated are in principle controllers embedded in larger

models containing both discrete and continuous parts, we assume that for every input of

the model to be translated (i.e., every input of the controller) the sampling time is explicitly

specified. This also helps the user to see the boundaries of the discrete and the continuous

parts in the original model.

4. In accordance with the first goal, we want the LUSTRE program produced by the translator

to type-check if and only if the original SIMULINK model type-checks (i.e., is not rejected

by SIMULINK because of type errors). However, the behavior of the type checking mech-

anism of SIMULINK depends on the simulation method and the “Boolean logic signals”
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Figure 4.1: The set of SIMULINK blocks that are currently handled by S2L.
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flag (BLS). Thus, apart from the simulation method which must be set as stated in item 1,

we also assume that BLS is on. When set, BLS imposes that inputs and outputs of logical

blocks (and, or, not) be of type boolean. Not only this is good modeling and programming

practice, it also makes type inference more precise (see also Section 4.4) and simplifies

the verification of the translated SIMULINK models using LUSTRE-based model-checking

tools.

We also set the “algebraic loop” detection mechanism of SIMULINK to the strictest degree,

which rejects models with such loops. These loops correspond to cyclic data dependencies

in the same instant in LUSTRE. The LUSTRE compiler rejects such programs.

5. For reasons of traceability, the translation must preserve the hierarchy of the SIMULINK

model as much as possible. We achieve this by suitable naming, as explained in Sec-

tion 4.6.

6. The translator must “try its best”. This means that it must be able to handle as larger a

part of the SIMULINK model as possible, potentially leaving some parts un-translated. But

it should not “block” or reject models simply because there are some parts in them that

the translator does not “know” how to translate. We achieve this by taking advantage of

the possibility to include external data types and external functions in a LUSTRE program.

The translator generates external function code for every “unknown” block.

It should also be noted that SIMULINK is a product evolving in time. This evolution has

an impact on the semantics of the tool, as mentioned earlier. For instance, earlier versions

of SIMULINK had weaker type-checking rules. We have developed and tested our translation

method and tool with Matlab version 6.5.0 release 13 (Jun 18, 2002), SIMULINK Block Library

5.0.1. All examples given in the thesis refer to this version as well. However any SIMULINK

model created with a MATLAB release between r12 and r13 is treated and translated correctly.

4.4 Type inference

Type inference is a prior step to translation per se. It is necessary in order to infer the types of

signals in the SIMULINK model and use them to associate types of variables in the generated

LUSTRE program. In this section, we explain the typing mechanisms of LUSTRE and SIMULINK

and then present the type inference technique we use. The type rules for SIMULINK that are

stated here are with respect to the simulation method and flag options mentioned in Section 4.3.

4.4.1 Types in LUSTRE

LUSTRE is a strongly typed language, meaning that every variable has a declared type and op-

erations have precise type signatures. For instance, we cannot add an integer with a boolean or

even an integer with a real. However, predefined casting operators such as int2real can be

used to transform the type of a variable in a “safe” way.
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Figure 4.2: A type error in SIMULINK.

Basic types in LUSTRE are bool for boolean, int for integer and real. Composite types

are essentially records of fixed size, constructed with the type operator. For instance,

type type_rrb = {real, real, bool};

declares the new type type rrb as the tuple of two reals and one boolean. The LUSTRE com-

piler ensures that operations between flows with different types do not take place. For example,

var x: int; y: real; z: real;

z = x + y;

results into a type error and the program is rejected.

It should be noted that constants in LUSTRE also have types. Thus, 0 is zero of type int,

whereas 0.0 is zero of type real. true and false are constants of type bool.

4.4.2 Types in SIMULINK

In SIMULINK, types need not be explicitly declared. Nevertheless, SIMULINK does have typing

rules: some models are rejected because of type errors. An example is shown in Figure 4.2.

The model contains a type error since a signal of type int8 and a signal of type single are

attempted to be fed as inputs to the Sum block which expects its inputs to have the same type.

Notice that the SIMULINK simulator detects this error. The annotations of signals with types and

colors in the figure is performed by SIMULINK itself.

The objective of the type inference step is to find the type of each SIMULINK signal. This

type is then mapped during the translation step to a type of the corresponding variable in the

generated LUSTRE program.

Informally, the type system of SIMULINK can be described as follows. There are 9 basic

“data types”, namely, boolean, double, single, int8, uint8, int16, uint16, int32

and uint32. By default, all signals are double, except when:

1. the user explicitly sets the type of a signal to another type, e.g., by a Data Type

Converter block or by an expression such as single(23.4); or

2. a signal is used in a block which demands another type. For instance, all inputs and outputs

of Logical Operator blocks are required to be boolean.
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Constantα : α, α ∈ SimNum

Sum : α × · · · × α → α, α ∈ SimNum

Gain : α → α, α ∈ SimNum

Relation : α × α → boolean, α ∈ SimNum

Switch : α × β × α → α, α, β ∈ SimNum

Logical Operator : boolean× · · · × boolean → boolean

Discrete Transfer Function : double → double

Zero-Order Hold, Unit Delay : α → α, α ∈ SimT

Data Type Converterα : β → α, α, β ∈ SimT

InPort, OutPort : α → α, α ∈ SimT

Table 4.2: Types of some SIMULINK blocks.

A type error occurs when incompatible types are fed into a block, for instance, when a boolean

is fed into a Sum block or when an int8 is fed into a Discrete Transfer Function

block.

Denote by SimT the set of all SIMULINK types and let SimNum = SimT − {boolean}.

Then, the typing requirements imposed by SIMULINK basic blocks can be represented by the type

signatures given in Table 4.2. It can be seen that some blocks impose no typing constraints, such

as the Unit Delay block, while others have precise type signatures, such as the Logical

Operator blocks (logical and, or, etc.).

Thus, the type system of SIMULINK is polymorphic and in fact contains both types of poly-

morphism (e.g., see [Pie02]):

• Parametric polymorphism: this is, for instance, the case of the Unit Delay block, which

delays its input by one cycle (i.e., simulation step). The type of this block is α → α with

α ∈ SimT .

• Ad-hoc polymorphism (or overloading): this is, for instance, the situation with the Sum

block, which accepts a number of inputs of the same numerical type and generates an

output of the same type. The type of this block is α × · · · × α → α with α ∈ SimNum.

4.4.3 Type Inference and Translation

The type system of SIMULINK can be formalized as an extension of Milner’s polymorphic type

system for ML [Mil78] which handles parametric polymorphism with type classes as used for

instance in Haskell [HJW90] to handle ad-hoc polymorphism. The situation will be simpler

for SIMULINK, which has only three classes, namely, SimT , SimNum and {boolean}. A

unification algorithm (e.g. [Rob65, MM82]) can be used to infer types, which is standard type

theory.
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For the type inference, we extract from the SIMULINK model the type equations for every

signal transformation , using “fresh” type variables for every signal. As signal transformation,

we mean all the blocks and subsystems, even though the ones that have no inputs or no outputs.

After extracting all those equations, we solve them using Robinson’s Unification algorithm U .

The type of a SIMULINK subsystem (or root system) A is defined given the types of the

subsystems or blocks composing A, using a standard function composition rule.

As we shall see in Section 4.6 our translation preserves the structure of SIMULINK. In par-

ticular, every SIMULINK signal s is mapped to a variable xs in the generated LUSTRE program.

Once the type of s is inferred using the above method, the type of xs is determined. This is done

as follows.

• If the type of s is boolean then the type of xs is bool.

• If the type of s is int8, uint8, int16, uint16, int32 or uint32 then the type of

xs is int.

• If the type of s is single or double then the type of xs is real.

• If the type of s is α then the type of xs is real.

The last case is consistent with the fact that the default type in SIMULINK is double.

4.5 Clock inference

As with type inference, clock inference is a prior step to translation. It is necessary in order

to infer timing information of the SIMULINK model and use this information during generation

of the LUSTRE program. In this section, we explain the timing mechanisms of LUSTRE and

SIMULINK and then present our clock inference technique. Notice that the timing rules for

SIMULINK that are stated

here are with respect to the simulation method and flag options mentioned in Section 4.3.

4.5.1 Time in LUSTRE

As mentioned in Chapter 3, LUSTRE time is logical and counted in discrete instants. Associated

with each LUSTRE flow x is a Boolean flow bx, called the clock of x, specifying the instants

when x is defined: x is defined at instant i iff bx(i) = true. For example, if x is defined at

i = 0, 2, 4, ... then bx = true false true false · · ·. We say that “x runs on clock bx”.

Input variables are by definition defined at every instant: their clock is called the basic clock,

represented by the Boolean flow true. “Slower” clocks are obtained from the basic clock using

the when operator. For example, if x is an input then the flow y defined only at even instants

can be generated by the following LUSTRE code:

cl_half = true -> not pre(cl_half) ;

y = x when cl_half ;
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expression e clock(e) constraints

input x basic

x+y clock(x) clock(x) = clock(y)
pre(x) clock(x)
x when b b clock(x) = clock(b), b boolean

current(x) clock(clock(x))

Table 4.3: Clock calculus of LUSTRE.

cl half is the Boolean flow alternating between true and false (starting with true). It thus

defines a clock which is twice as slow as the basic clock. The expression x when cl half

defines the flow sampled from x according to clock cl half.

Clocks can be seen as extra typing information. The compiler ensures that the LUSTRE pro-

gram satisfies a set of constraints on clocks, otherwise the program is rejected. For example, in

the expression x+y, x and y must have the same clock, which is also the clock of the result-

ing flow. The set of these constraints and how to calculate clocks is called clock calculus. A

simplified version of this calculus is shown in Table 4.3. For more details the reader is referred

to [Cas92, CP03].

It is worth mentioning that the LUSTRE compiler checks clock correctness in a syntactic, not

semantic manner. Indeed, finding whether two Boolean flows are semantically equivalent is an

undecidable problem2. Therefore, in an expression such as (x when b) + (y when c), b

and c must be identical in order for the expression to clock-check.

4.5.2 Time in SIMULINK

SIMULINK has essentially two timing mechanisms, sample times and triggers. We briefly de-

scribe these mechanisms in what follows.

Sample times As mentioned already, discrete-time SIMULINK signals are in fact piecewise-

constant continuous-time signals. These signals can have associated timing information, called

“sample time” and consisting of a period and an initial phase. Sample times may be set in blocks

such as input ports, unit-delay, zero-order hold or discrete transfer functions. The sample time

of a signal is derived from the block producing the signal and specifies when the signal is to

be updated. A signal x with period π and initial phase θ is updated only at times kπ + θ, for

k = 0, 1, 2, ..., that is, it remains constant during the intervals [kπ + θ, (k + 1)π + θ). SIMULINK

requires that π ≥ θ. By default, blocks have their sample time value set to −1, which corresponds

to an undefined or “inherited” (from the parent system or from the inputs) value.

Similarly to what happens to clocks in LUSTRE, sample times serve as an extra type system in

SIMULINK: some models are rejected because of timing errors. An interesting example is shown

2 This is because a Boolean flow can be seen as the output of a Turing machine. LUSTRE is Turing equivalent

thus checking equivalence of Boolean flows would imply checking equivalence of Turing machines.
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Figure 4.3: A SIMULINK model producing a strange error.

in Figure 4.3. The sample times of inputs “In1” and “In2” are set to 2 and 3, respectively.3 This

model is rejected by SIMULINK. However, if the Gain block is removed, then the model is

accepted. This is strange, since the Gain block is a simple multiplication by 1, thus, should not

be expected to change the behavior of the system. The explanation is given at the end of this

section.4

The “GCD rule” Contrary to LUSTRE, SIMULINK does not require that all inputs of a block

have the same sample time. The basic rule for combining signals with different sample times is

what may be called the “GCD (greatest common divisor) rule”. This rule states that the output

of a block will have as sample time the GCD of the sample times of the inputs. An example is

shown in Figure 4.4. The sample times of the two inputs of the Sum block are 4 and 9. Following

the rule, the sample time of the output will be 1.

In fact, the rule is more complicated because sample times are not simply periods but pairs

(period, phase). In general, given n input signals with sample times (πi, θi), where πi is the

period and θi is the phase, for i = 1, ..., n, the output signal will have sample time (π, θ) =
gcd-rule((πi, θi)i=1,...,n), where

π =

{

gcd(π1, ..., πn),
gcd(π1, ..., πn, θ1, ..., θn)

if θ1 = · · · = θn

otherwise

θ =

{

θ1 mod π,
0,

if θ1 = · · · = θn

otherwise

(4.1)

In the above definition, gcd denotes the GCD function and mod the modulo function. For exam-

3 Unless otherwise mentioned, we assume that phases are 0.
4 The same anomaly persists when using Matlab Version 6.5.0.180913a Release 13 and SIMULINK version 5.0.1

(R13) dated 19-Sep-2002. But it only happens when setting simulation parameters to “fixed step”, “auto”.
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ple,

gcd-rule((2, 0), (3, 0)) = (1, 0) gcd-rule((12, 3), (6, 3)) = (6, 3)

gcd-rule((12, 6), (12, 0)) = (6, 0) gcd-rule((12, 3), (12, 4)) = (1, 0)

It can be seen that in the special case where all phases are zero, π is indeed equal to the GCD of

π1, ..., πn.
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Figure 4.4: Illustration of the “GCD rule”.

Triggered subsystems Another timing mechanism of SIMULINK is by means of “triggers”.

Only subsystems (not basic blocks) can be triggered. A subsystem A can be triggered by a signal

x (of any type) in three ways, namely, “rising”, “falling” or “either”. An example of a triggered

subsystem is shown in Figure 4.5. The trigger is of type “rising”. Each of the three types

specifies the time the trigger occurs depending on the direction with which signal x “crosses”

zero. For instance, the “rising” trigger occurs when x changes from negative to non-negative or

from non-positive to positive. However, as mentioned in the SIMULINK manual:

“In the case of discrete systems, a signal’s rising or falling from zero is considered

a trigger event only if the signal has remained at zero for more than one time step

preceding the rise or fall. This eliminates false triggers caused by control signal

sampling.”

For example, as shown in Figure 4.6, a rising trigger occurs at time 6. But it does not occur at

time 3 because a trigger has occurred at time 2, that is, only one time step earlier.

The sample time of blocks inside a triggered subsystem cannot be set by the user: it is

inherited from the sample time T of the triggering signal. The sample times of all input signals

must be equal to T . The sample time of all outputs is T as well. Thus, in the example shown in

Figure 4.5, the sample times of s, x1, x2 and y are all equal.

In the case of a triggered subsystem B defined inside another triggered subsystem A, the

same rules apply. First, all sample times in B are inherited (cannot be set by the user). Second,

the “sample times” of the trigger, inputs and outputs of B must all be equal. We use the term

sample time in quotes, here, because these signals have inherited sample times. In fact, the

signals are updated every time A is triggered, which may well be non-periodically. Still, these

signals have associated timing information, namely, the triggering condition. We elaborate more

on this in Section 4.5.3.
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Figure 4.5: A triggered subsystem.
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Figure 4.6: Illustration of the rising trigger.

Enabled subsystems “Enabled” subsystems look similar to triggered subsystems (see Fig-

ure 4.7). At first glance, the semantics of an enabled subsystem appear similar to those of a

triggered subsystem as well. One would expect that the difference between the two is that the

former is enabled every time the enabling signal is non-zero whereas the latter is enabled every

time the triggering signal rises (or falls, or both). However, SIMULINK does not impose on en-

abled subsystems the restrictions on sample times that it imposes on triggered subsystems. In

particular, the sample times of blocks inside an enabled subsystem do not have to be inherited.

Also, the sample times of its input signals may differ from each other and may also be differ-

ent from the sample time of the enabling signal. Absence of such restrictions results in quite

complicated semantics for this construct.

For example, consider the model shown in Figure 4.8. It is made up of a subsystem enabled

by periodic signal e produced by a Pulse Generator block − Figure 4.8(a). The enabled

subsystem is simply a counter − Figure 4.8(b). The period of the counter is set to 2. This is done

by setting the sample time of the 1
z

block (Unit delay block) to 2.

Figure 4.9 shows two experiments performed with this model. In both experiments the en-

abling signal e is as shown in part (a) of the figure: it is a pulse remaining high for 3 time units

and low for 3 time units, starting from high. However, in the first experiment, the sample time

of e is set to 1, whereas in the second experiment, the sample time of e is set to 3.5 As can be

5 This is done by setting the parameters of the Pulse Generator block. The latter permits to obtain the
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Figure 4.7: An enabled subsystem.
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(b) The interior of the enabled subsystem shown in (a).

Figure 4.8: A SIMULINK model with a counter inside an enabled subsystem.
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seen, the output y is not the same in the two experiments. First, the initial value is not the same.

Second, the signal is not updated at the same times. In particular, at time 6, it is updated when e

has sample time 1 but it is not updated when e has sample time 3. This seems strange, because:

(1) the pulse e is the same in both experiments, in particular, it is positive at time 6; (2) the

“clock” of the pulse e “ticks” at time 6 in both experiments, since 6 is a multiple of 1 and also

a multiple of 3; (3) the “clock” of the counter subsystem “ticks” at time 6 in both experiments,

since 6 is a multiple of 2.

As a result of such experiments, we have not been able to identify the logic SIMULINK uses

to update enabled subsystems with complex parameters. Therefore, we restrict ourselves to the

subset of SIMULINK where enabled subsystems satisfy the same rules as triggered subsystems,

namely: (1) all sample times of blocks inside an enabled subsystem must be set to −1 and (2)

the sample times of all input signals must be the same and must also be equal to the sample time

of the enabling signal.6 Under these restrictions, the semantics of a subsystem A enabled by

signal s are as expected: A is activated at the beginning of each period of its inputs, provided s
is non-zero at that point.

Timing modularity Timing in SIMULINK is not as modular as in LUSTRE, in the following

sense. LUSTRE nodes do not have their own time: they are only activated at instants where their

inputs are active. Consequently, a node B called from a node A cannot be active at instants when

A is not active. This is true for triggered subsystems in SIMULINK as well. However, SIMULINK

allows a block inside a (non-triggered) subsystem to have any sample time, possibly smaller than

the parent subsystem. Thus, the block can be active while its parent system is inactive. We

consider this a non-modular feature of SIMULINK. Still, we are able to translate such models in

LUSTRE, by calling the parent node with the “faster” clock (on which the child block will run)

and passing as parameter the “slower” clock as well.

Timing rules Another difference between SIMULINK and LUSTRE lies in how changes of

timing are performed in the two languages. In LUSTRE, this can only be done using the when

and current operators. In SIMULINK, the sample time of a signal can be changed using

the Unit Delay block or the Zero-order Hold block. In order to do this, however, the

following rules must be obeyed:7

1. “When transitioning from a slow to fast rate, a Unit Delay running at the slow rate must

be inserted between the two blocks. When transitioning from a fast to a slow rate, a Zero

Order Hold running at the slow rate must be inserted between the two blocks.”

same signal using different parameter settings, in particular, setting the “sample time”, “period”, etc., parameters.
6 SIMULINK itself issues warnings in various cases where condition (2) is not satisfied, for instance: “Warning:

Sample time of enable signal feeding subsystem block ’enable problem/Enabled Subsystem’ is slower than blocks

within the enabled subsystem. This can result in nondeterministic behavior in a multitasking real-time system.

Consider adding a Rate Transition block followed by a Signal Specification block with a sample time equal to the

enable signal rate.”
7 The rules are quoted from error messages produced by the SIMULINK tool.
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Figure 4.9: A strange behavior of the model of Figure 4.8.
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2. “Illegal rate transition found involving Unit Delay block ... When using this block to

transition rates, the input must be connected to the slow sample time and the output must

be connected to the fast sample time. The Unit Delay must have a sample time equal to

the slow sample time and the slow sample time must be a multiple of the fast sample time.

Also, the sample times of all destination blocks must be the same value.”

3. “Illegal rate transition found involving Zero Order Hold block ... When using this block to

transition rates, the input must be connected to the fast sample time and the output must be

connected to the slow sample time. The Zero Order Hold must have a sample time equal

to slow sample time and the slow sample time must be a multiple of the fast sample time.

Also, the sample times of all source blocks must be the same value.”8

The necessity of these rules is dictated by implementation concerns. Indeed, for simulation

purposes the rules are not necessary, since time is logical and communication between tasks can

be delayed arbitrarily so that the reader task reads the correct data. However, using the REAL-

TIME WORKSHOP code generator for a real-time execution platform raises concerns about the

data integrity in case of preemption.

For example, if a slow-rate block S “feeds” its output to a fast-rate block F , and the worst-

case execution time (WCET) of S is greater than the period of F , then S cannot communicate its

output directly to F (S would have to complete before F can start, but this exceeds the period of

F ). A solution is to insert a unit-delay between S and F . Then F only needs the previous value

of S and does not have to wait for the current instance of S to complete. The latter can execute

concurrently with current instances of F using a multi-tasking implementation scheme on top of

an operating system providing a preemptive scheduler.

Unfortunately, such rules create confusion among specification and implementation con-

cerns. There is a priori no reason why the class of admitted specifications should be restricted

because of implementation concerns. Such concerns may not even be an issue: for instance,

when the WCETs of S and F “fit” into the period of F . Also, implementation constraints de-

pend on decisions such as the choice of hardware which are likely to change over time.

We believe that in a model-based approach specification and implementation should be

clearly separated. LUSTRE does separate the two. First, it imposes no unnecessary restrictions

on the specification side. In the case of the above example, it offers the designer the possibility

to model both cases, with or without a unit-delay between S and F . Naturally, the choice of

the designer may be influenced by implementation concerns. Second, different implementation

techniques are available. As mentioned in the introduction, these include the traditional single-

processor, single-tasking code generation methods, plus more recent methods such as those for

the Time Triggered Architecture [CCM+03] or for a single-processor, multi-tasking architecture

that we present in Chapter 7.

After this short digression, let us return to the timing rules of SIMULINK. The second rule

above explains why the model of Figure 4.3 is rejected when the Gain block is present and

accepted otherwise. Indeed, after computing the sample times according to the method described

8 The third rule may seem strange since it implies that a zero-order hold block can have more than one inputs. In

fact, this happens when the input to this block comes from a Mux block, thus, encoding a vector of signals.
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in the following section, we find that the output of block Unit Delay2 has sample time 3. This

output is “fed” to the Gain block, which also has sample time 3, and to the left-most Sum block,

which has sample time 1 (the greatest common divisor of 2 and 3). This violates the last part of

the second rule, namely, that “the sample times of all destination blocks must be the same”.

As mentioned earlier, SIMULINK requires that for all sample times (π, θ) in the model, π
is not smaller than θ. This rule may be violated during gcd-rule operations, in which case

SIMULINK issues an error.

Summary In summary, the timing mechanism in SIMULINK can be described as follows.

SIMULINK has a set of sample times,

SampleTimes = {−1} ∪ {(π, θ) | π, θ ∈ Q≥0, π ≥ θ, π 6= 0},

where Q≥0 is the set of non-negative rationals. Similarly to a type signature, a SIMULINK block

can be given a sample time signature, as shown in Table 4.4. The terms “Output”, “Math”

and so on refer to the blocks of the corresponding libraries shown in Figure 4.1. The notation

“Discreteβ” refers to a block of the Discrete library which has its sample time set to β by the

user (note that default is −1). The notation “Triggeredα” (respectively, “Enabledα”) refers to a

triggered (respectively, enabled) subsystem where the triggering (respectively, enabling) signal

has sample time α. We can see that:

• An Output block preserves the sample time of its input.9

• All blocks in the “Math” library produce an output having sample time computed by the

GCD rule. The same is true for the Switch block.

• For a block of the “Discrete” library, there are two cases. If the block has its sample time

parameter set to −1, the output has the same sample time as the input, otherwise, it has the

sample time set in the block.

• Triggered (respectively, enabled) subsystems require that all inputs have the same sample

time, which must also be equal to the sample time of the triggering (respectively, enabling)

signal. This sample time is preserved on the outputs.

4.5.3 Clock Inference

Similarly to type inference, the objective of clock inference is to compute, for each signal in the

SIMULINK model, the timing information associated with this signal. This timing information

is then used during the translation step to generate the clock of the corresponding variable in the

generated LUSTRE program. An additional objective of clock inference is to define the period

(and initial phase) at which the LUSTRE program must be run, in order to respect the real-time

semantics of the original SIMULINK model.

9 Strictly speaking, an Output block has no output (the output is provided to the parent system of the subsystem

where the block is defined). However, it is useful to view this block as the identity function.
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Output : α → α, α ∈ SampleTimes

Math : α1 × · · · × αn → gcd-rule(α1, ..., αn), αi ∈ SampleTimes , i = 1, ..., n

Switch : α × β × γ → gcd-rule(α, β, γ), α, β, γ ∈ SampleTimes

Input : α → α, α ∈ SampleTimes

Discreteβ : α → α, α ∈ SampleTimes , β = −1

Discreteβ : α → β, α ∈ SampleTimes , β ∈ SampleTimes , β 6= −1

Triggeredα : α × · · · × α → α, α ∈ SampleTimes

Enabledα : α × · · · × α → α, α ∈ SampleTimes

Table 4.4: Sample time signatures in SIMULINK.

Clock inference of triggered and enabled subsystems Consider a SIMULINK signal x. If

x is defined inside a triggered or enabled subsystem A then the timing information we want to

associate with x is, much like in LUSTRE, the Boolean signal b which represents the times A is

activated. Signal b is not explicitly defined in the SIMULINK model. It is implicitly defined by

the signal s feeding the trigger or enabled icon in the model, the type of s and the type of the

trigger. Thus, no particular inference must be performed in this case. How to explicitly construct

b in the generated LUSTRE program is explained in Section 4.6.

Clock inference of sample times Now, consider the case where x is defined neither inside a

triggered subsystem nor inside an enabled subsystem. In this case, the timing information of x is

a sample time. Although the latter can be undefined (i.e., the default sample time −1) we might

still have some information which is useful to keep. For instance, when x is the output of a Sum

block, we know that the sample time of x will be related to the sample times of the inputs of the

block according to the GCD rule. We would like to infer this information automatically from the

SIMULINK model.

We do this using what can be qualified a “symbolic” technique, as follows. We consider the

language of clock types defined by the following syntax:

t ::= α | (π, θ) | gcd(t, t)

where t is a clock-type term, α is a clock-type variable in a given set of variables, (π, θ) ∈
SampleTimes \ {−1} is a clock-type constant and gcd(t, t) is a composite term correspond-

ing to the gcd-rule operation. Using arithmetic properties of the latter such as associativity

and the properties of GCD, clock-type terms can be sometimes simplified. For instance, we

can write gcd(t1, t2, t3) instead of gcd(t1, gcd(t2, t3)) and (1, 0) instead of gcd((2, 1), (3, 0)).
Moreover, if we fix an order (say, lexicographic) on the set of clock-type variables then we can

define for each clock-type term its canonical form, obtained by (1) eliminating all but one con-

stants by applying gcd-rule, (2) eliminating multiple occurrences of the same subterm (since
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Figure 4.10: Example of clock inference.

gcd(t, t, t′) = gcd(t, t′)), (3) ordering the variables according to the given order and (4) order-

ing constants before variables. For example, if variables are ordered α1, α2, ..., then the canonical

form of gcd(α2, α1, (2, 0), (3, 0)) is gcd((1, 0), α1, α2).

Given a SIMULINK model we infer for each signal in the model a clock-type which is a term

in the syntax above. We treat triggered and enabled subsystems as “black boxes”, that is, we do

not infer clock-types for the signals defined inside these subsystems. This is justified because

all such signals will have inherited sample times and we can associate to them LUSTRE clocks

using the method described above. For the rest of the signals, we proceed as follows.

First, we assign a clock-type variable to each signal. Then, we build a set of equations relating

these variables, according to the signatures given in Table 4.4. For example, if y is the output of

a Sum block with inputs x1, x2 and α1, α2, αy are the corresponding clock-type variables, we get

the equation

αy = gcd(α1, α2).

We then solve this set of equations using a unification algorithm, as in the case of type inference.

However, it is worth noting two particularities of clock-type unification. First, when two terms

f(t) and g(t′) must be unified but f 6= g, unification fails. This cannot occur in the case of clock

types since we have a single operator f , namely, gcd. Second, when variable α must be unified

with f(t) but α occurs free in t, standard unification fails. However, clock-type unification will

succeed, because of special properties of the gcd operator. In general, α = gcd(t) has a solution

α = gcd(t−α) where t−α is obtained by eliminating α from t.

To see this, consider the example shown in Figure 4.10. We assume that the Unit Delay

block has sample time set to default, that is, −1. From this model we get the equations

αy = gcd(α1, α2), α2 = αy

thus also

α2 = gcd(α1, α2).

As said above, the solution is to eliminate α2 from the right-most term, obtaining

α2 = gcd(α1)
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or

α2 = α1.

Thus, unification succeeds in this case with α1 = α2 = αy.

Clock-type unification may fail, for instance, when trying to unify constant clock-types that

differ. One situation where this occurs is when two inputs of, say, a triggered subsystem have

different sample times, thus, violating the signature shown in Table 4.4. When unification fails,

the SIMULINK model is rejected due to timing errors.

The solution provided by the unification algorithm when the latter succeeds is to be inter-

preted as follows. For signals with inferred clock-types which are constants (π, θ), we know

exactly their sample time. For signals with inferred clock-types which are variables α1, α2, ...,
their sample times are unknown and can be anything. The rest of the signals will have a clock-

type of the form gcd(αi, αj, ...) or gcd((π, θ), αi, αj, ...). The sample times of such signals are

not known, however, they are subject to constraints expressed by the GCD rule.

4.6 Translation

The type and clock inference steps are independent and can be performed in any order. Once

this is done, the translation itself is performed, in a hierarchical manner. The SIMULINK model

is organized as a tree, where the children of a subsystem (or system) are the subsystems (or

blocks) directly appearing in it. The translation is performed following this hierarchy in a

bottom-up fashion, that is, starting from the basic blocks which form the leaves of the hierar-

chy tree. SIMULINK signals are mapped into LUSTRE flows. SIMULINK blocks are translated as

input/output equations between signals, either by using predefined LUSTRE operators, in the case

of simple blocks, or by calling LUSTRE nodes, which capture the functionality of more complex

blocks. SIMULINK subsystems are also translated by declaring and calling LUSTRE nodes.

Naming In accordance with the goal of traceability and in order to preserve the hierarchical

structure of the SIMULINK model in the generated LUSTRE program, each LUSTRE node is

named with the corresponding path of names in the SIMULINK tree. For example, a subsystem

B contained in a subsystem A will be translated into a LUSTRE node named NameofA B where

NameofA is the name of the LUSTRE node corresponding to subsystem A.

When a signal in SIMULINK has a name, the name is preserved during the translation. How-

ever, it is often the case that signals in SIMULINK are not named (they are simply “wires” con-

necting two blocks). In such a case, the name given to the corresponding LUSTRE variable

reflects the block which produces the signal. For example, if an unnamed signal is produced by

a block named Sum1 then the corresponding LUSTRE variable will be named Sum1 out.

Translation of basic SIMULINK blocks Simple SIMULINK blocks are translated into prede-

fined LUSTRE operators. In particular:

• The Sum block is translated using the + and - LUSTRE operators.
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• The Product and Gain blocks are translated using the * and / LUSTRE operators and

constants.

• The Logical Operator block is translated using the Boolean LUSTRE operators and,

or, not.

• The Relational Operator block is translated using the LUSTRE comparison opera-

tors <, >, <=, >=, =, <>.

• The Unit Delay block is translated using the LUSTRE operators pre and ->. In par-

ticular, if x and y are the input and output of the block and init is the initial value

(a constant) specified in the dialog box of the block, then the following LUSTRE code is

generated:

y = init -> pre(x) ;

• A Zero-Order Hold block with sample time set to −1 is the identity function, thus no

special code needs to be generated. If the sample time of the block is set, then the block is

translated using a when statement, possibly preceded by a current statement. The latter

is needed in the case where the input signal is not running on the basic clock. For example,

consider the model of Figure 4.13 and assume that the sample time of the Zero-Order

Hold block is 3. Thus, the output has sample time 3 as well. First, suppose that the sample

time of the input is 1 and that this also corresponds to the basic clock. Then, the translation

would be:

y = x when clock_3_0 ;

Second, suppose that the sample time of the input is 2, in which case the sample time

corresponding to the basic clock is 1. Then, the translation would be:

x_ = if clock_2_0 then current(x) else 0 -> pre(x_) ;

y = x_ when clock_3_0 ;

• A Constant block is translated into the corresponding constant. Here, the type infor-

mation of the output of the block is used. For example, the output of constant block 0 is

translated to false if it has type boolean, to 0 if it has type int and to 0.0 if it has

type real. This is because in LUSTRE constants are not overloaded with many types.

• The Saturation block truncates its input according to bounds provided by the user. It is

translated using if-then-else statements. For instance, if the upper and lower bounds

are 0.5 and −0.5 then the generated LUSTRE code is like:

Saturation = if In1 > 0.5 then 0.5

else if In1 < -0.5 then -0.5

else In1 ;
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• A Switch block is also translated using an if-then-else statement, where the middle

input is compared with the value of the threshold block property to select one of the

two other inputs as the output. For instance, if the threshold is set to 5.0 then the generated

LUSTRE code is like:

Switch = if (In2 >= 5.0) then In1 else In3 ;

More complex SIMULINK blocks are translated into LUSTRE nodes. In particular:

• The Pulse Generator is translated with the use of pre operators and recursion. For

example, the pulse with amplitude = 10, period = 5, phase = 2, pulse width = 2 will

be translated to the following LUSTRE node:

node PulseGen_1()

returns (out: real);

var dpg1, dpg2, dpg3, dpg4, dpg5, pha1, pha2 :real ;

let

dpg1 = 10.0 -> pre dpg2 ;

dpg2 = 10.0 -> pre dpg3 ;

dpg3 = 0.0 -> pre dpg4 ;

dpg4 = 0.0 -> pre dpg5 ;

dpg5 = 0.0 -> pre dpg1 ;

pha1 = 0.0 -> pre dpg1 ;

pha2 = 0.0 -> pre pha1 ;

out = pha2 ;

tel

The five first equations define a signal which repeats a cycle of five instants, having value

10.0 the first two times and zero the rest three times. The next two equations “shift” the

signal to the correct phase.

• The Discrete Filter and Discrete Transfer Function blocks are trans-

lated into nodes using arithmetic operators and pre according to standard algebraic ma-

nipulations of the expression specified in the dialog box of the block. For example, the

Discrete Transfer Function block with expression z+2
z2+3z+1

is translated into the

LUSTRE node:

node Transfer_Function_3(x: real) returns(y: real);

var y_1, y_2: real;

let

y = 0.0 -> pre(y_1) ;

y_1 = x - 3.0*y + (0.0 -> pre(y_2)) ;

y_2 = 2.0*x - y ;

tel.

This comes from the interpretation y = z+2
z2+3z+1

x, that is, (z2 +3z+1)y = (z+2)x, which

yields y = z−1x + 2z−2x − 3z−1y − z−2y = (x − 3y)z−1 + (2x − y)z−2.
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Figure 4.11: Mux - Demux example.

• The Data Type Conversion block is translated as a type casting operation. For ex-

ample, the following code can be used to turn a real x into a boolean b:

node real_to_bool(x: real)

returns (b: bool) ;

let

b = if (x = 0.0) then true else false;

tel

• The Mux and Demux blocks permit to group and ungroup signals into “bundles”, for ex-

ample, as shown in Figure 4.11. Signals of different types are allowed. Thus, a group of

signals can be viewed as a record. The translation to LUSTRE starts by declaring a new

type composite type from the types of each signal in the group (known after type infer-

ence). Then, LUSTRE FROM and TO are used to compose/decompose signals. For the

example of Figure 4.11, the LUSTRE code will be as shown below:

type type_bri = {bool, real, int} ;

node mux(c1: bool; c2: real; c3: int)

returns(out: type_bri) ;

let

out = TO(type_bri; c1, c2, c3) ;

tel

node demux(in: type_bri)

returns (Out1: bool; Out2: real; Out3: int);

let

(Out1, Out2, Out3) = FROM (type_bri; in) ;

tel

• The Combinatorial Logic block implements a truth table. It can be implemented

using if-then-else statements.
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Figure 4.12: SIMULINK system A with subsystem B.

Translation of subsystems and subsystem calls A SIMULINK subsystem is translated into a

LUSTRE node, possibly containing calls to other nodes. The LUSTRE node has the same inputs

and outputs as the SIMULINK subsystem, plus, sometimes, the clock of some of its inputs (this is

done for modularity). Here is an example of such a translation. Consider the SIMULINK model

shown in Figure 4.12, with subsystems A and B. The LUSTRE code generated for this example

is as shown below:

node A(A_in1, A_in2, A_in3 : real)

returns (A_out1, A_out2 : real) ;

let

A_out1 = B(A_in1, A_in2) ;

A_out2 = ...

tel

node B(B_in1, B_in2 : real)

returns (B_out : real) ;

...

An example where it is necessary to pass clock information as input to the LUSTRE node is given

in Section 6.2.1.

Translation of triggered subsystem calls If the subsystem to be called is a triggered subsys-

tem such as the one shown in Figure 4.5, special code needs to be added in order to capture the

timing behavior according to the trigger. We illustrate how this is done in the case of a “rising”

trigger. The translation method is similar for the other two types of triggers.

First, as mentioned in Section 4.5.3, we must explicitly define in LUSTRE the Boolean flow

representing the trigger, which is implicit in SIMULINK. This is performed using three auxiliary
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LUSTRE nodes rising bool, rising int and rising real. These nodes are indepen-

dent from the SIMULINK model and can be predefined in a library. There is one node for each

possible type of the triggering signal s, because LUSTRE does not currently support polymor-

phism. We only present rising int here. The other two nodes are defined similarly.

node rising_int (s : int)

returns (rise_trigger : bool);

var neg_to_nonneg, nonpos_to_pos, not_before : bool ;

let

rise_trigger = neg_to_nonneg or (nonpos_to_pos and not_before) ;

neg_to_nonneg = false -> (pre(s < 0) and (s >= 0)) ;

nonpos_to_pos = false -> (pre(s <= 0) and (s > 0)) ;

not_before = false -> not pre(rise_trigger) ;

tel

The node takes as input an integer flow and returns a Boolean flow which is true whenever

there is a rising trigger on s. The local variables neg to nonneg and nonpos to pos rep-

resent the situations where the signal s rises from negative to zero or positive and from negative

or zero to positive, respectively. The local variable not before ensures that in situations such

as the one shown in Figure 4.6 there is no trigger produced when it should not.

Then, the LUSTRE code generated when calling a triggered subsystem A like the one of

Figure 4.5 is as follows (we assume that variables x1 and x2 are of type int):

var trig : bool;

trig = rising_int(s) ;

x1t = x1 when trig ;

x2t = x2 when trig ;

yt = A(x1t, x2t) ;

y = if trig then current(yt) else (0 -> pre(y)) ;

Variables x1t and x2t are obtained by “sampling” the inputs only at times dictated by the

trigger. Consequently, node A is activated only at those times as well, and its output yt has

the same clock, that is, trig. To obtain output y which must have the same clock (sample

time) of the inputs x1 and x2, we must perform a current operation. However, a simple

current is not enough, since it may leave y undefined for the initial instants when the trigger

is potentially false. This is why we use the if-then-else construct in the equation defining

y. This construct ensures that the value of y is equal to 0 until the first time trig becomes true.

Translation of enabled subsystem calls The LUSTRE code generated when calling an enabled

subsystem is the same as when calling a triggered subsystem, except that flow trig is replaced

by flow enab, defined as follows:

var enab : bool;

enab = if (e > 0) then true else false ;

where e is the signal feeding the Enable icon.
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Figure 4.13: A Zero-Order Hold block modifying the period of its input.

Translation of signals with sample times The unification algorithm on sample times, pre-

sented in Section 4.5.3, produces a “symbolic” sample time for each SIMULINK signal. It re-

mains to associate these symbolic sample times to LUSTRE clocks. Here, a problem arises, due

to the unknown sample times. The problem comes from the fact that a LUSTRE program has a

single basic clock and all other clocks are subclocks of the basic clock. Thus, in LUSTRE, α1 and

α2 must be subclocks of gcd(α1, α2), since the latter is “faster”. To solve this problem, we take

a pragmatic approach. We assume one of the following (this becomes an option to the translation

algorithm):

• either that all unknown sample times are equal to the gcd-rule of all known sample times,

• or that all unknown sample times are fixed by the user when generating the LUSTRE code.

In both cases the sample times become known at the moment of code generation. The basic

clock of the LUSTRE program is assumed to have period and initial phase equal to the gcd-rule

of all sample times in the system. For each other sample time, a boolean flow corresponding to

this sample time is constructed inside the LUSTRE program and used to create flows associated

with this sample time. For example, if (2, 1) and (3, 0) are the only sample times in the model,

then the basic clock will be assumed to have sample time (1, 0) = gcd-rule((2, 1), (3, 0)). In the

main node of the LUSTRE program, the following clocks will be created:

var clock_2_1: bool, clock_3_0: bool;

var cnt3: int;

clock_2_1 = false -> not pre(clock_2_1) ;

cnt3 = 0 -> (pre(cnt3) + 1) mod 3;

clock_3_0 = if (cnt3 = 0) then true else false ;

Clock clock 2 1 alternates between false and true, starting at false, to model the initial

phase 1 and the period 2. Clock clock 3 0 follows the cycle true, false, false, modeling a

period 3 with initial phase zero. This clock is defined using a counter modulo three.

In general, a clock with period per and phase ph is produced using the following node:
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node make_clock(per: int; ph: int)

returns( clock: bool );

var cnt: int;

let

cnt = (per - ph) -> (pre(cnt) + 1) mod period ;

clock = if (cnt = 0) then true else false ;

tel

The above clocks are used during LUSTRE code generation as follows. Consider the Zero-

Order Hold block of Figure 4.13 and assume that the sample time of input x is (1, 0) and the

sample time set to the zero-order hold block is (2, 1). Then the sample time of the output y is

also (2, 1) and the generated LUSTRE code is as follows:

y = x when clock_2_1 ;

If, instead of a Zero-Order Hold block we had, say, a Discrete Transfer Function block, the

LUSTRE code would be:

y = DTF(x when clock_2_1) ;

where DTF is the LUSTRE node implementing the Discrete Transfer Function block.

Now consider the Sum block of Figure 4.4 and assume that the sample times of inputs x1 and

x2 are (2, 1) and (3, 0), respectively. Also assume as a first case that the basic clock is (1, 0).
Then the sample time of the output y is (1, 0) and the generated LUSTRE code is as follows:

x1t = if clock_2_1 then current(x1) else (0 -> pre(x1t)) ;

x2t = if clock_3_0 then current(x2) else (0 -> pre(x2t)) ;

y = x1t + x2t ;

x1 and x2 have been previously produced using the when operator on the appropriate clocks.

Then, x1t and x2t are on the basic clock and so is the output y. The if-then-else con-

struct is used with the current operator as previously, to ensure well-defined initial values.

As a second case, assume that (1, 0) is not the basic clock but a subclock. Then y must be

obtained as

y = (x1t + x2t) when clock_1_0 ;

4.7 Related Work

Before concluding this Chapter, we comment on some work related to its contents.

[BFM+05] study the translation between SIMULINK and the language supported by the AS-

CET tool-set by the ETAS group. ASCET’s language is closer to the implementation level than

LUSTRE, in the sense that the basic entities are tasks scheduled by a real-time operating system

(RTOS).

[TNTBS00] report on an approach to co-simulate discrete controllers modeled in the syn-

chronous language Signal [GGBM91] along with continuous plants modeled in SIMULINK.

[CHLrA02] present tools for co-simulation of process dynamics, control task execution and net-

work communication in a distributed real-time control system. [SBCR01] use a model-checker
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to verify a SIMULINK/STATEFLOW model from the automotive domain, however, they translate

their model manually to the input language of the model-checker.

A number of approaches are based in extending SIMULINK with libraries of predefined blocks

and then using SIMULINK as a front-end or simulator. The hybrid-system model-checker Check-

Mate uses such an approach [SRKC00, CK03]. [KSHP02] extend SIMULINK with the capability

of expressing designs in the time-triggered language Giotto [HHK01].

[JZW+00] report on translating SIMULINK to the SPI model, a model of concurrent processes

communicating with FIFO queues or registers. The focus seems to be the preservation of value

over-writing which can occur in multi-rate systems when a “slower” node receives input from a

“fast” one.

[JB03] report on MAGICA, a type-inference engine for Matlab. The focus is on deriving

information such as whether variables have real or imaginary values, array sizes for non-scalars,

and so on.

[ASK04] propose a method to translate SIMULINK/STATEFLOW models into hybrid automata

using graph transformations.

4.8 Conclusions

We have presented a method for translating a discrete-time subset of SIMULINK models into

LUSTRE programs. The translation is done in three steps: type and clock inference, followed by

a hierarchical bottom-up translation. We have implemented the method in a tool called S2L and

applied it to two embedded controller applications from the automotive domain. The interest of

our tool is that it opens the way to the use of formal and certified verification and implementation

tools attached to the LUSTRE tool chain. Also, in the process of translation, we explained and

formalized the typing and timing mechanisms of SIMULINK.

Perhaps the most significant drawback of our approach is its dependency on syntax and se-

mantics of SIMULINK models. New versions of SIMULINK appear as often as every six months

and sometimes major changes are made with respect to previous versions. This situation seems

difficult to avoid given the relative “monopoly” of SIMULINK/STATEFLOW in the control de-

sign landscape. Another weakness of our tool is its incompleteness: several unsafe constructs

of SIMULINK are not translated. Yet this can be seen as the price to pay for having a sound

translation.

44 Verimag — November 2006 Christos Sofronis



Chapter 5

Analysis and Translation of STATEFLOW to

LUSTRE

In this Chapter we will analyze STATEFLOW and go through a faithful translation towards LUS-

TRE, trying to preserve the semantics that we define in the next Sections.

Before we can attempt to define which features of STATEFLOW are suitable for translation

into LUSTRE, we have to illustrate some of the semantical issues with STATEFLOW, which are

also likely to cause problems with our translator. These issues range from “serious” ones, such as

non-termination of a simulation step or stack overflow, to more “minor” ones, such as dependence

of the semantics upon the positions of objects in the STATEFLOW diagram. First, we briefly

describe the STATEFLOW language and informally explain its semantics (for a formal semantics,

see [HR04]).

5.1 A short description of STATEFLOW

STATEFLOW is a graphical language resembling Statecharts [Har87]. The semantics of STATE-

FLOW are embodied in the interpretation algorithm of the STATEFLOW simulator1. A STATE-

FLOW chart has a hierarchical structure, where states can be refined into either exclusive (OR)

states connected with transitions or parallel (AND) states, which are not connected. It is impor-

tant to note that parallel states are not executed concurrently, but sequentially. Figure 5.13 shows

an example: A and B are parallel states (with parent the root state), while all their child states

are exclusive. A transition can be a complex (possibly cyclic) flow graph made of segments join-

ing connective junctions. Each segment can bear a complex label with the following syntax (all

fields are optional):

E[C]{Ac}/At

where E is an event, C is the condition (i.e., guard), Ac is the condition action and At is the

transition action. Ac and At are written in the action language of STATEFLOW, which contains

1 This is documented in a 900-page long User’s Guide STATEFLOW and STATEFLOW Coder, User’s Guide,

Version 5. Available at http://www.mathworks.com/products/stateflow/ From this guide we have borrowed our

terminology.
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assignments, emissions of events, and so on. The order of execution of those actions is stated

later. Actions written in the action language can also be associated to states. A state can have an

entry action, a during action, an exit action and on event E actions, where E is an event.

The interpretation algorithm is triggered every time an event arrives from SIMULINK or from

within the STATEFLOW model itself.2 The algorithm then executes the following steps:

Search for active states: this search is performed hierarchically, from top to bottom. At each

level of hierarchy, when there are parallel states, the search order is a graphical two di-

mensional one: states are searched from top to bottom and from left to right, in order to

impose determinism upon the STATEFLOW semantics.

Search for valid transitions: once an active state is found, its output transitions are searched

for a valid one to follow, with respect to several criteria: the event of the transition must be

present and its condition must be true. As mentioned earlier, both the event on a transition

and the condition are optional, in which case those criteria are not checked. The goal is to

find a transition which is valid all the way from the source state to the destination state. In

particular, when the transition is multi-segment, the condition actions of each segment are

executed while searching and traversing the transition graph, even if the condition does not

hold. The search order is again deterministic: transitions are searched according to the 12

o’clock rule.3

Execute a valid transition: once a valid transition is found, STATEFLOW follows these steps:

execute the exit action of the source state, set the source state to inactive, execute the

transition actions of the transition path, set the destination state to active and finally execute

the entry action of the destination state.

Idling: when an active state has no valid output transitions an active state performs its during

action and the state remains active.

Termination: occurs when there are no active states.

It should be emphasized that each of the executions runs to completion and this makes the be-

havior of the overall algorithm very complex. In particular, when any of the actions consists

of broadcasting an event, the interpretation algorithm for that event is also run to completion

before execution proceeds. This means that the interpretation algorithm is recursive and uses a

stack. However, as we will see, the stack does not store the full state, which leads to problems of

side effect (Section 5.2). Also, without care, the stack may overflow (Section 5.2).

Interface between SIMULINK model and STATEFLOW chart

Every STATEFLOW model resides inside a SIMULINK system and more precisely it is introduced,

in the SIMULINK model, using the “Chart” block from the “sflib” library (that may be invoked

2 The SIMULINK event is often a SIMULINKtrigger, although it can also be the simulation step of the global

SIMULINK-STATEFLOW model.
3 Notice that this is considered harmful even in the STATEFLOW documentation, where it is stated: “Do not

design your STATEFLOW diagram based on the expected execution order of transitions.”
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with the stateflow command in the MATLAB command line environment). STATEFLOW

charts run as blocks in a SIMULINK model. The STATEFLOW block connects to other blocks in

the model by input and output signals, the same signals that are used for the interconnection be-

tween all the other SIMULINK blocks. Through these connections, STATEFLOW and SIMULINK

share data and respond to events that are broadcasted between model and Chart.

In fact, STATEFLOW is updated (the interpretation algorithm is executed), as we saw earlier,

when an event is emitted from within the Chart. However, SIMULINK can trigger the Chart in

certain cases. These are the following

• When SIMULINK decides to sample the STATEFLOW Chart block, according to the sam-

pling times of the input signals. Indeed STATEFLOW can have inputs from the SIMULINK

model that have sample time, according to which the Chart is updated. Also we can set the

sample time parameter of the Chart into a certain period as well.

• A STATEFLOW block can accept a trigger, pretty much like a SIMULINK subsystem can

be triggered by a signal. Thus we can declare a Chart input as a trigger, which, as in

SIMULINK, will trigger the Chart depending on the rising, falling or either choice we

make. See Section 4.5.2 for a description of different types of SIMULINK triggers.

5.2 Semantical issues with STATEFLOW

One of the motivations for this work was to define explicitly a “safe part” STATEFLOW and then

provide means for checking and possibly correcting

Non-termination and stack overflow

As already mentioned, a transition in STATEFLOW can be multi-segment and the segment graph

can have cycles. Such a cycle can lead to non-termination of the interpretation algorithm during

the search for valid transition step.

Another source of potential problems is the run-to-completion semantics of event broadcast.

Every time an event is emitted the interpretation algorithm is called recursively, runs to com-

pletion, then execution resumes from the action statement immediately after the emission of the

event. This can lead, semantically, to infinite recursion and in practice (i.e., during simulation)

to stack overflow.4

A simple model resulting in stack overflow is shown in Figure 5.1. When the default state A
is entered, the event E is emitted as instructed by the entry action of A. E results in a recursive

call of the interpretation algorithm and since A is active its outgoing transition is tested. Since

the current event E matches the transition event (and because of the absence of condition) the

condition action is executed, emitting E again. This results in a new call of the interpretation

algorithm which repeats the same sequence of steps filling up the stack until overflow.

4 This is recognized in the official documentation: “Broadcasting an event in the action language is most useful

as a means of synchronization among AND (parallel) states. Recursive event broadcasts can lead to definition of

cyclic behavior. Cyclic behavior can be detected only during simulation.”
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A/
en: E

BE { E }

Figure 5.1: Stack overflow

Backtracking without “undo”

While searching for a valid transition, STATEFLOW explores the segment/junction graph, until

a destination state is reached. If, during this search, a junction is reached without any enabled

outgoing segments, the search backtracks to the previous junction (or state) and looks for another

segment. This backtrack, however, does not restore the values of variables which might have been

modified by a condition action. Thus, the search for valid transitions can have side effects on the

values of variables.

A

C

B
{a=0}

[false] {a+=100}

[true] {a+=10}[true] {a+=1}

[true] {a+=1000}

Figure 5.2: Example of backtracking

An example of such a behavior is generated by the model shown in Figure 5.2. The final

value of variable a when state C is entered will be 1011 and not 1001 as might be expected. This

is because when the segment with condition “false” is reached, the algorithm backtracks without

“undoing” the action “a+=10”.

Dependence of semantics on graphical layout

In order to enforce determinism in the search order for active states and valid transitions (thus

ensuring that the interpretation algorithm is deterministic) STATEFLOW uses two rules: the “top-

to-bottom, left-to-right” rule for states and the “12 o’clock” rule for transitions. These rules

imply that the semantics of a model depend on its graphical layout. For example, as the model
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is drawn in Figure 5.3, parallel state A will be explored before B because it is to its left. But if

B was drawn slightly higher, then it would be explored first. (Notice that STATEFLOW annotates

parallel states with numbers indicating their execution order, e.g., as shown in Figure 5.3.)

The order of exploration is important since it may lead to different results. In the case of “12

o’clock” rule, for example, if the top-most transition of the model of Figure 5.2 emanated from

the 11 o’clock position instead of the 1 o’clock position, then the final value of a would be 1001

instead of 1011.

Exploration order also influences the semantics in the case of parallel states, even in the

absence of variables and assignments. An example is given by the model of Figure 5.3. A and B
are parallel states. When event E1 arrives, if A is explored first, then E2 will be emitted and the

final global state will be (A2, B3). But if B is explored first then state B2 is reached and, when

exploring state A the emitted event E2 will not change the state of B, since from state B2 there is

no output transition. Thus, the final global state will be (A2, B2). This means that parallel states

in STATEFLOW do not enjoy the property of confluence.

B 1
A 2 B1A1

B2 B3A2

E2E1
E1 { E2 }

Figure 5.3: Example of non-confluence

Early return logic

Another interesting feature of STATEFLOW is termed early return logic in the STATEFLOW man-

ual. This problem is illustrated in Figure 5.4. When event E is emitted, the interpretation algo-

rithm is called recursively. Parent state A is active, thus, its outgoing transition is explored and,

since event E is present, the transition is taken. This makes A inactive, and B active. When the

stack is popped and execution of the previous instance of the interpretation algorithm resumes,

state A1 is not active anymore, since its parent is no longer active.

The problem with early return logic may arise when the user has a program, in the STATE-

FLOW action language, where there are variable manipulation and event emits. If an event emit-

ted will cause an early return, the user may have the false impressions that the entire body of his

program is executed, updating all the variables.
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A

B
A1 A2

E

{ E }

Figure 5.4: “Early return logic” problem

Super-transitions

We end this part by briefly mentioning a last problem; the possibility of having the so-called

super-transitions crossing different levels of the state hierarchy. This is a feature of Statecharts as

well, but is generally considered harmful in the Statecharts community [Har87]. Many proposals

disallow such transitions for the sake of simpler semantics [LvdBC00].

5.3 Simple conditions identifying a “safe” subset of STATE-

FLOW

In this section we present a sufficient number of simple conditions for avoiding error-prone mod-

els such as those discussed previously. The conditions can be statically checked using mostly

light-weight techniques. The conditions identify a preliminary, albeit strict, “safe” subset of

STATEFLOW. A larger subset can be identified through “heavier” checks such as model-checking,

as discussed in Section 5.6.

Absence of multi-segment loops: If no graph of junctions and transition segments contains

a loop (a condition which can easily be checked statically) then the model will not suffer from

non-termination problems referred to in Section 5.2. This condition is quite strict, however, it is

hard to loosen, since termination is undecidable for programs with counters and loops.

Acyclicity in the graph of triggering and emitted events: An event E is said to be triggering

a state s if the state has a “on event E: A” action or an outgoing transition which can be triggered

by E (i.e., E appears in the event field of the transition label or the event field is empty). E is said

to be emitted in s if it appears in the entry, during, exit or on-event action of s, or in the condition

or transition action5 of one of the outgoing transitions of s. Given a STATEFLOW model, we

construct the following graph. Nodes of the graph are all states in the model. For each pair of

nodes v and v′, we add an edge v → v′ iff the following two conditions hold:

5 In fact, transition action events can probably be omitted from the set of emitted events of s, resulting in a less

strict check. We are currently investigating the correctness of this modification.
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1. There is an event E which is emitted in v and triggering v′.

2. Either v = v′ or the first common parent state of v and v′ is a parallel state.

The idea is that v can emit event E which can then trigger v′, but only if v and v′ can be active at

the same time. If the graph above has no directed cycle then the model will not suffer from stack

overflow problems.

Absence of assignments in intermediate segments: In order to avoid side effects due to lack

of “undo”, we can simply check that all variable assignments in a multi-segment transition appear

either in transition actions (which are executed only once a destination state has been reached) or

in the condition action of the last segment (whose destination is a state and not a junction). This

ensures that even in case the algorithm backtracks, no variable has been modified. An alternative

is to avoid backtracking altogether, as is done with the following check.

Conditions of outgoing junction segments form a cover: In order to ensure absence of back-

tracking when multi-segment transitions are explored, we can check that for each junction, the

disjunction of all conditions in outgoing segments is the condition true. If segments also carry

triggering events, we must ensure that all possible emitted events are covered as well.

Conditions of outgoing junction segments are disjoint: In order to ensure that the STATE-

FLOW model does not depend on the 12 o’clock rule, we must check that for each state or junc-

tion, the conditions of its outgoing transitions are pair-wise disjoint. This implies at most one

transition is enabled at any given time. In the presence of triggering events, we can relax this by

performing the check for each group of transitions associated with a single event E (or having

no triggering event).

It should be noted that checking whether STATEFLOW conditions are disjoint or form a cover

is an undecidable problem, because of the generality of these conditions. From a STATEFLOW

design, we can extract very easily the logical properties expressing that a set of conditions are

disjoint and form a cover. These logical properties can be transmitted as a proof obligation to

some external tool such as a theorem prover. However, for most practical cases, recognizing

common sub-expressions is sufficient for establishing that some conditions are disjoint and form

a cover.

Checks for confluence: In order to ensure that the semantics of a given STATEFLOW model

does not depend on the order of exploring two parallel states A and B, we must check two things.

First, that A and B do not access the same variable x (both write x or one reads and the other

writes x). But this is not sufficient, as shown in Section 5.2, because event broadcasting alone

can cause problems. A simple solution is to check that in the aforementioned graph of triggering

and emitted events, there is no edge v → v′ such that v belongs to A and v′ to B or vice-versa.

This is exactly the problem of Figure 5.3, where one of the edges in the above mentioned

graph of triggering and emitted events is the A1 → B1; the emitted event in the outgoing tran-

sition form A1 to A2 is the same event E that is triggering event for the state B1 (because the
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B 1
A 2 B1A1

B2 B3A2

E1 E3
E1 { E2 }

A 1

B 2
B1A1

B2 B3A2

E1 E3
E1 { E2 }

Figure 5.5: The example of Figure 5.3 corrected to be confluent

outgoing transition to state B3 is triggered by E). Also the first common parent of states A1 and

B1 is a parallel state (the root).

Thus if the triggering event in the outgoing transition of state B1 to B3 is another event,

i.e., E3, the design would be confluent. This is the case of the designs in Figure 5.5, where we

substituted the E2 event with E3 not emitted in the parallel state A (or in any sub-state). Note

that the both designs in Figure 5.5 are the same with the only difference the graphical layout; in

the bottom design, state B is below state A and it will be executed/checked after that. And in the

upper design it is the contrary (we can see that also by the numbers in the upper right corner of

each state). In any case, as said earlier, both designs are confluent and will have the same effects

no matter the input.

Checks for “early return logic”: To ensure that our model is free of “early return logic” prob-

lems, we can check that for every state s and each of its outgoing transitions having a triggering

event, this event is not emitted anywhere inside s or its eventual sub-states. Note that if a tran-

sition has no triggering event then this transition is enabled for any event, thus, we must check

that no event is emitted in s.
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5.4 Translation into LUSTRE

The checks on a STATEFLOW model described in Section 5.3 define a subset which is much more

likely to be correct according to the system designer’s intentions than using the full STATEFLOW

definition. It is restrictive, however, since it disallows some of STATEFLOW’s programming fea-

tures which designers have become used to. We would therefore like to extend our subset by em-

ploying analysis with sound theoretical underpinnings. One such framework is model-checking

and we have access to the well-established model-checker called LESAR [RHR91, HLR92]

which takes LUSTRE as its input. A translation of STATEFLOW into LUSTRE therefore opens

up the possibility of allowing some of the “unsafe” features of STATEFLOW to be used with

confidence provided we can verify the intended properties of the model using LESAR.

We have to be clear, however, about the difference between the subset of STATEFLOW which

is “safe” in the sense of the previous discussion and that which is translatable into LUSTRE.

We can copy the behavior of STATEFLOW as precisely as required (given sufficient effort in

building the translator) and can even implement loops and recursion provided we can prove that

the behavior is bounded. The generated program, however, does not have any guaranteed safety

properties since all the previous discussion about the semantical problems with STATEFLOW

are carried over into the LUSTRE translation. This is where model-checking and other formal

methods can be applied. In this section we describe the translation process informally and in

Section 5.6 we show how some of the previously mentioned properties can be verified and our

subset extended using the LESAR model-checker.

Needless to say, the goal of the translation is not simply to provide a way to model-check

STATEFLOW models. It is also to allow for semantic-preserving code generation and implemen-

tation on uni-processor or multi-processor architectures [CCM+03, TSSC05, STC05].

5.4.1 Encoding of states

Off/
en:switchoff=1
ex:switchoff=0

On/
en:switchon=1
ex:switchon=0

Set/cnt++

Reset/cnt++

Figure 5.6: A simple STATEFLOW chart

The most obvious method of encoding states into LUSTRE is to represent each state as a

boolean variable and a section of code to update that variable according to the validity of the

Christos Sofronis Ph.D Thesis 53



Chapter 5. Analysis and Translation of STATEFLOW to LUSTRE

input and output transitions. For example, one can envisage a very simple and elegant encoding

of the boolean component (i.e., without the entry actions) of the example in Figure 5.6 in the

LUSTRE code depicted in Figure 5.7. Here a state becomes true if any of its predecessor states

are true and there is a valid transition chain from that state. It becomes false if it is currently true

and there is a valid transition chain to any of its successor states. Otherwise it remains in the

same state. The initial values of the states are defined by the validity of the default transitions.

node SetReset0(Set, Reset: bool)

returns (sOff, sOn: bool);

let

sOff = true ->

if pre sOff and Set then false

else if (pre sOn and Reset) then true

else pre sOff;

sOn = false ->

if pre sOn and Reset then false

else if (pre sOff and Set) then true

else pre sOn;

tel

Figure 5.7: Simple LUSTRE encoding of the example

This code is semantically correct for a system consisting only of states but it is difficult to

incorporate the imperative actions attached to both states and transitions in STATEFLOW. For ex-

ample, if the above code had included the entry actions in the states then all the values referenced

by the action code would have to be updated in each branch of the if-then tree. This causes two

problems. Firstly, for even quite small charts the number of values being updated can become

large and this has to be multiplied by the complexity introduced by the network of transitions

each state participates in. Secondly, the action language is an imperative language for which it

would be difficult to compile a single expression for each sequence of actions. Note also that if

more than one state updates the same value then causality loops and multiple definitions could

arise.

A more practical approach, therefore, is to split the above equations into their components

and use explicit dependencies to force their order of evaluation. Inspecting the code in Figure 5.7

the state update equation for each state consists of:

• an initialization value computed from default transitions (true for sOff),

• a value for each outgoing transition (Set for sOff),

• an exit clause ((pre sOff and Set) for sOff),

• an entry clause ((pre sOn and Reset) for sOff) and

• a no-change value (pre sOff).
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Explicitly separating these components allows us to insert the action code at the correct point

in the computation of a reaction. This results in the rather dense encoding shown in Figure 5.8.

Here, the code has been split into several sections.

• Initial values. These are the initial values for all variables, false for states and the

initial value from the data dictionary for STATEFLOW variables. Mention that after the

first, initial cycle, those variables have the pre value of the corresponding variable, which

is the previous state (on or off) of the corresponding state (in the STATEFLOW graph)

• Transition validity. In this section the values for the transitions are computed. For con-

venience in the translator these are actually calls to predefined nodes generated in advance

from the transitions’ events and actions. Note that the test for the activity of the source

state is included in the transition’s validity test. In the example of Figure 5.8, for reasons

of simplicity, the validity of the links appears inside the node.

• State exits. Any states which are true and have a valid outgoing transition are set to

false.

• Exit actions. The code for any exiting state’s exit actions is computed. This section also

includes during actions for states which remain active and on actions also for active states.

• Transition actions. The code for the transition actions is executed. Note that the exiting

state’s value is false while this occurs.

• State entries. Any states which are false and have a valid incoming transition are set to

true.

• Entry actions. Entering states action code is executed with the state’s variable now true.

This sequence corresponds to the sequence of events in STATEFLOW’s interpretation algo-

rithm. Note that by “transition valid” we do not mean that the transition is valid with respect

to the current context but that this is a transition which will be traversed in the current reaction.

Thus the arbitration between competing outgoing transitions has to be resolved by the transition

valid computation.

There are some additional complications in the code shown in Figure 5.8, for instance the use

of the init and term flags which are used to control initialization and termination of subgraphs

but these are discussed in the later sections.

5.4.2 Compiling transition networks

Figure 5.9 shows a STATEFLOW chart with a junction. Junctions in STATEFLOW do not have a

physical state and can be thought of as nodes in an if-then tree. This is thus the most sensible

encoding of junctions. One problem, however, is that junction networks can be sourced from

more than one state and/or a single state can have more than one output to the same junction.
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node SetReset1(Set, Reset, init, term: bool)

returns (sOff, sOn: bool; switchon, switchoff, cnt: int);

var sOff_1, sOff_2, sOn_1, sOn_2, lv5, lv6, lv7: bool;

switchon_1, switchon_2, switchoff_1, switchoff_2,

cnt_1, cnt_2: int;

let

-- initial values

sOff_1 = false -> pre sOff;

sOn_1 = false -> pre sOn;

switchon_1 = 0 -> pre switchon;

switchoff_1 = 0 -> pre switchoff;

cnt_1 = 0 -> pre cnt;

-- link validity

lv5 = if sOff_1 then Set else false;

lv6 = if sOn_1 then Reset else false;

lv7 = if init and not (sOff_1 or sOn_1) then true else false;

-- state exits

sOff_2 = if sOff_1 and (lv5 or term) then false else sOff_1;

sOn_2 = if sOn_1 and (lv6 or term) then false else sOn_1;

-- exit actions

switchoff_2 = if not sOff and sOff_1 then 0 else switchoff_1;

switchon_2 = if not sOn and sOn_1 then 0 else switchon_1;

-- transition actions

cnt_2 = if lv5 then cnt_1+1 else cnt_1;

cnt = if lv6 then cnt_2+1 else cnt_2;

-- state entries

sOff = if not sOff_2 and (lv7 or lv6) then true else sOff_2;

sOn = if not sOn_2 and lv5 then true else sOn_2;

-- entry actions

switchoff = if sOff and not sOff_1 then 1 else switchoff_2;

switchon = if sOn and not sOn_1 then 1 else switchon_2;

tel

Figure 5.8: Alternative LUSTRE encoding of the example

A B

[x==0]{y−−}

[x<>0]{y++} [x<2]

Figure 5.9: A STATEFLOW chart with a junction
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These can be handled quite easily if one allows a certain amount of code duplication, the common

subnetwork for two joining outgoing transitions being compiled twice.

We could devise a very natural scheme for LUSTRE to handle this but again it becomes dif-

ficult to insert the condition and transition actions into the if-then tree in LUSTRE. Figure

5.10 shows the actual code generated6. The functions cv{678}_ not shown compute the con-

dition code for their respective transitions. Note how the cv8 call is duplicated between lv6

and lv7 . Essentially, the junction tree is turned into a flattened representation with two flags,

“end” which signifies the termination of the tree (either a destination state or a terminal junc-

tion) and “exit” which is true if the terminal was a state. One slight inefficiency is the use of

these flags to defeat further computation after the termination point is reached (the not end

clauses). These two flags correspond to the End, No and Fire transition values in [HR04], the

semantics of our junction processing is identical to the semantics described therein.

There is also a slight problem with the “transition valid” section in the code shown in Figure

5.8. For the example shown there can only ever be one transition valid flag true at each instant

but when a state has (potentially competing) outgoing transitions there has to be some kind of

arbitration between them, hopefully using the same arbitration as STATEFLOW itself. In fact the

statements are chained together with a common flag which indicates when a valid transition has

been found. This is called the ok variable and a revised transition validity computation section

is shown in Figure 5.11. In fact we need a separate ok flag for each subgraph, this is explained

later when inter-level transitions are discussed.

A more serious problem is that junction networks can have loops which results in unbounded

recursion and therefore a loss of synchronous semantics. Figure 5.12 shows a simple for-loop.

There are a number of possibilities for handling this.

Junctions as states. An easy solution would be to give junctions a physical state in the exe-

cuting LUSTRE program. This effectively moves the non-termination problem outward into the

code calling the STATEFLOW model but also moves the burden of the proof of non-termination to

the client code. This has been implemented in our translator where we also provide an additional

status flag called “valid” as an output which is true only if the current state is not a junction.

In theory, the client code could loop over the STATEFLOW code until this flag becomes true at

which point the other outputs are also valid.

Loop unrolling with external proof obligations. This is unsatisfactory from the point of view

of using the translator as a development tool. We would prefer to simply impose a synchronous

semantics upon STATEFLOW and outlaw such constructs if they cannot be proven to be bounded.

Given a synchronous semantics for STATEFLOW we have to outlaw such constructs in the general

case. It is possible, however, to unroll such loops (Figure 5.12 also shows the expansion of the

simple loop) without loss of generality, provided bounds can be proven on the number of itera-

tions. This means we can generate proof obligations for external tools such as Nbac [JHR99]. If

6 Our code examples have been condensed for brevity and use abbreviated variable names. cv means “condition

valid”, lv “transition valid”, ca “condition action” and su “state update”
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-- link id=7 name=[x<>0]{y++}

node lv7_(x, y: int; ok, lv7, lv8: bool)

returns(yo: int; oko, lv7o, lv8o: bool);

var cv7, cv8, end, end_1, end_2, ok_1: bool;

let

end_1 = false;

ok_1, cv7, end_2 =

if (not (end_1 or ok)) then cv7_(x) else (ok, false, end_1);

yo = if cv7 then ca7(y) else (y);

oko, cv8, end =

if ((not end_2) and cv7) then cv8_(x) else (ok_1, false, end_2);

lv7o, lv8o = if (cv8 and end) then (true, true) else (lv7, lv8);

tel

-- link id=6 name=[x==0]{y--}

node lv6_(x, y: int; ok, lv6, lv8: bool)

returns(yo: int; oko, lv6o, lv8o: bool);

var cv6, cv8, end, end_1, end_2, ok_1: bool;

let

end_1 = false;

ok_1, cv6, end_2 =

if (not (end_1 or ok)) then cv6_(x) else (ok, false, end_1);

yo = if cv6 then ca6(y) else (y);

oko, cv8, end =

if ((not end_2) and cv6) then cv8_(x) else (ok_1, false, end_2);

lv6o, lv8o = if (cv8 and end) then (true, true) else (lv6, lv8);

tel

-- node id=3 name=A

node suAlv(x, y: int; ok, sA, trm, ini: bool)

returns(yo: int; oko, lv6, lv7, lv8: bool);

var lv8_1, ok_1: bool; y_1: int;

let

y_1, ok_1, lv6, lv8_1 = lv6_(x, y, ok, false, false);

yo, oko, lv7, lv8 = lv7_(x, y_1, ok_1, false, lv8_1);

tel

Figure 5.10: Code generated for the junctions example
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ok_1 = false;

lv5, ok_2 = if not ok_1 and sOff_1

then (Set, Set) else (false, ok_1);

lv6, ok_3 = if not ok_2 and sOn_1

then (Reset, Reset) else (false, ok_2);

lv7, ok = if not ok_3 and init and not (sOff_1 or sOn_1)

then (init, init) else (false, ok_3);

Figure 5.11: Chaining together transition-valid computations

a bound exists and is feasible we can unroll loops individually as required. This requires further

investigation. Currently, we detect all junction loops and reject models which have them.

A B

{x=0}

[x<3]{x++}

A B{x=0} {x++} {x++}{x++}

Figure 5.12: A for-loop implemented in STATEFLOW junctions and its expansion

5.4.3 Hierarchy and parallel AND states

The entire hierarchy of a STATEFLOW model and the translation of it towards LUSTRE nodes

boils down to simple function calls of nested states, the only complication being the initialization

and termination of the nested states.

For example, Figure 5.13 illustrates a simple model with both parallel and exclusive substates.

For both types of substate we insert the function calls to the substates after computation of the

local state variables, the LUSTRE nodes generated for the top-level state (parallel) and state B

(exclusive) for this model are depicted in Figure 5.14.

Initialization and termination are controlled by two variables, “ini” and “trm” which are

passed down the hierarchy. This is a standard method for implementing state machines in syn-

chronous languages [MH96]. One way of viewing the ini value is as apseudo-state which the

model is in prior to execution and in fact this plays the role of the state variable for default tran-

sitions. For parallel states the local state variable depends only on the ini and trm variables,

as do the flags for entry, exit and during actions. These are computed as in Figure 5.15 (s is
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B 2 A 1

A1

A2

B1 B2

B1a

B1b

B2a

B2b

E/J E/I
H

F/E F/EG/E G/E

H

Figure 5.13: A model with parallel (AND) and exclusive (OR) decompositions

the local state variable) and are embodied in auxiliary nodes (for example the state variable is

computed by the node sfs in Figure 5.14).

For exclusive substates the ini and trm flags are computed solely from the local state

variable (ini = s and not pre s and trm = pre s and not s). The complication is

that we need the value of the state variable at the end of the reaction without actually setting

the variable itself because the nested states have to be executed using the input value. This is

why we call the state entry computation beforehand (sgu8 B1en for example) but save the

value in a temporary variable (sg8 B1t) and then update the actual value at the end of the

computation. The temporary value then stands for the new value and the input value (sg 8B1in)

for the previous one. Actually, for the code presented here this is unnecessary but when event

broadcasting is enabled (Section 5.4.6) the value of the state variable can be updated by actions.

Note also that for the top-level call we set ini to true -> false and trm to false.

5.4.4 Inter-level and inner transitions

The methods described so far work in a natural way for STATEFLOW charts which are structured

as trees, which allows the LUSTRE code also to be structured as a tree. One consequence of

this is that we can map states onto LUSTRE nodes and still retain the same action sequences

as STATEFLOW. STATEFLOW, however, allows inter-level transitions, i.e., between states not

at the same level of the node hierarchy which means that the model becomes a more general

graph structure rather than a tree. This in itself does not break any of the characteristics of

a synchronous implementation but it does greatly complicate the translation. As such, early

versions of the translator simply outlawed transitions of this type in favor of a much simpler

analysis. A large amount of legacy STATEFLOW code uses inter-level transitions, however, so a
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-- Toplevel graph (AND,[A,B])

node sf_2(F,G,H: event) returns(I,J: event);

let

...

sgA = sfs(ini,trm);

J,I,okA,sA1,sA2 = sf_4(E_1,I_1,J_1,okA_1,sA1_1,sA2_1,sgA,trm,ini);

sgB = sfs(ini,trm);

okB2,okB1,okSubgraph36,sB2a,sB2b,sB1a,sB1b,sgB2,sgB1,E =

sf_7(F,G,H,E_1,okB2_1,okB1_1,okSubgraph36_1,sB2a_1,sB2b_1,sB1a_1,

sB1b_1,sgB2_1,sgB1_1,sgB,trm,ini);

...

tel

-- State B (OR,[B1,B2])

node sf_7(F,G,H,E: event; okB2,okB1,okSubgraph36,sB2ain,sB2bin,sB1ain,

sB1bin,sgB2in,sgB1in,sgB,trm, ini: bool)

returns(okB2o,okB1o,okSubgraph36o,sB2a,sB2b,sB1a,sB1b,sgB2,sgB1: bool;

Eo: event);

let

...

sgB1t = sguB1en(okSubgraph36o,lv16,lv18,sgB1_1,trm,ini);

sgB2t = sguB2en(okSubgraph36o,lv17,sgB2_1,trm,ini);

okB1o,sB1a,sB1b,E_1 =

sf_8(G,E,okB1,okSubgraph36o,lv17,sB1ain,sB1bin,sgB1t,

((not sgB1t) and sgB1in),(sgB1t and (not sgB1in)));

okB2o,sB2a,sB2b,Eo =

sf_11(F,E_1,okB2,okSubgraph36o,lv18,sB2ain,sB2bin,sgB2t,

((not sgB2t) and sgB2in),(sgB2t and (not sgB2in)));

...

tel

Figure 5.14: LUSTRE code fragments for parallel and hierarchical states
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state (init and not term) ->

(init or pre s) and (not term)

entry init -> s and not pre s

exit (init and term) ->

((pre s or ((not pre s) and init)) and (not s))

during false -> s and pre s

Figure 5.15: Computation of parallel state variables

preliminary version of our translator which can handle inter-level transitions has been developed.

B

A

B1

B2

[x==0]
E

[x<>0] E

E

Figure 5.16: A model with inter-level transitions

Figure 5.16 illustrates a simple STATEFLOW chart with an inter-level transition network, from

A to B and B2. Figure 5.17 shows the different kinds of inner transitions that can be used. The

top transition [x==0] is an inner transition which terminates in the parent state A, transitions

[x==1] and [x==2] show inner transitions to and from a substate of A and transition [x==3]

terminates in a junction (this style of inner transition is known as a flowchart in STATEFLOW

terminology).

These charts show a number of problems with inter-level transitions:

• The inter-level transition from the junction to B2 in Figure 5.16 acts in lieu of a default

transition when it is taken so any default transition in the states traversed by the path have

to be ignored.

• Any transition which traverses a state inwards results in activation of that state and likewise

any transition which traverses outwards results in deactivation of the state.

and inner transitions:

62 Verimag — November 2006 Christos Sofronis



5.4. Translation into LUSTRE

A

A1

A2

[x==0]

[x==1] [x==2]

[x==3]

Figure 5.17: A model with inner transitions

• The semantics of inner transitions mean that, for example, transition [x==1] in Figure

5.17 acts as a default transition for state A when an inner transition results in termination

of the currently active substate but not when the state is entered from outside. The other

three transitions do not have this property since none of them terminate in an internal state.

• State A neither exits nor enters when an inner transition is taken and its during actions are

executed before the inner transitions are taken. Thus, if either of the transitions [x==0]

or [x==2] are taken state A2 is reached.

• Note that transitions [x==0], [x==1] and [x==3] are considered to emanate from

the same source and thus require arbitration and are subject to STATEFLOW’s check for

multiple valid transitions. They also take precedence over default transitions when an

inner transition is taken.

• Only one inner transition can be taken at a time so that if state A1 exits on transition

[x==2] it cannot return on transition [x==1].

• Flowchart transitions are taken, if valid, each time the state is active and a higher priority

transition is not valid. Inner transitions are prioritized according to the 12 o’clock rule so

that they are checked in the order [x==0], [x==3] then [x==1]. Inner transitions from

the parent state take precedence over those emanating from substates. They do not result

in a change of state and are evaluated purely for their side-effects.

In addition, a transition network can be mixed, i.e., has paths through it which can be inter-

level, inner, flowchart or normal paths, or an arbitrary combination of all of them. Note also that

both inner and inter-level transitions can lead to inconsistent states if not implemented properly.

This results in a highly complex semantics for STATEFLOW transitions which would be extremely

difficult to emulate precisely. The semantics in [HR04] follows STATEFLOW’s interpretation
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algorithm very closely but is essentially an imperative method which would be difficult to adapt

to LUSTRE’s synchronous semantics.

We have, instead, implemented a compromise solution which behaves in a very similar man-

ner to STATEFLOW with some distortions on the state, condition and transition actions. This

solution is based on splitting transition networks into separate paths and associating them with

the outermost point traversed by any transition in the path. Evaluation then proceeds top-down

as before but computing transition validity is done when the transitions come into scope. The

results of this computation can then be passed down the hierarchy. For instance, the transitions

labeled E and F in Figure 5.18 are computed at the top level of the hierarchy and then flags cor-

responding to their validity are passed as arguments to the nodes generated for states A and B.

States A1 and B1 then include these additional parameters in their entry and exit clauses.

A B

A1 B1E

F

Figure 5.18: Inter-level transitions with action order distortion

The problem then arises as to how to ensure that the sequence of state exit action followed

by transition action followed by state entry action is in the correct order. If substates are checked

in a fixed order then at least one of transitions E or F must be evaluated in reverse, i.e., the entry

and exit actions will be executed in the wrong order. Several possible solutions are possible:

• We could dynamically order the calls to the nodes for A and B according to which transi-

tions have been computed as valid.

• We could move the entry, transition and exit actions to either the source for the transition

path, the outermost scope of the transition path or the destination of the transition path.

• We could lift all the actions to the top-level node in the hierarchy and impose an order on

the actions based upon some abstraction of STATEFLOW’s interpretation algorithm.

All of these options would result in other more subtle distortions in the actions as compared

to STATEFLOW. They also have the additional complexity of computing all the entry and exit

actions for states along the paths traversed.

Currently, none of these options are implemented so we can only guarantee the correct order

of action execution only for for non-inter-level transitions. We can, however, guarantee that all

actions which would have been executed within a single LUSTRE reaction will get executed in

some order.
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Inter-level transitions

The basic scheme, however, is relatively easy to implement for inter-level transitions provided

we are careful to compute the correct arguments (transitions) to the substate nodes.

The only major complication is the computation of the ok value for inter-level transitions.

Because of the presence of default transitions we need an ok flag for each substate because the

computation of transition validity is disjoint for each default transition taken within the hierarchy.

We also need a separate ok flag for each parallel state because transition computations are also

disjoint between parallel states. Luckily, STATEFLOW outlaws inter-level transitions between

parallel states but we still need a flag for each subgraph because of default transitions. This

means that we need to associate an ok value with each transition (in fact we associate it with the

flag for its source graph) so that the transition is only valid if both its validity flag and associated

ok flag are true.

Figure 5.19 shows the code produced for Figure 5.16. This is a direct implementation of the

scheme described above. Points to note about this code include:

• transitions 8 (default for A), 9 (A to junction), 10 (B2 to A), 12

(junction to B) and 13 (junction to B2) are all computed at the top-level, of

which 9, 10 and 13 are passed to the node for subgraph B,

• the node for state B augments these with the transitions 11 (B1 to B2) and 14 (default

for B1),

• the complex predicate for the default transition to state B1 has to take into account whether

state B is being entered by inter-level transition 13 or normal transition 12,

• the distortions in the actions (state A enters before B2 exits if transition 10 is taken) and

• the computation of the ok flags, for example, transition 12 uses okTop whereas transition

10 uses okB.

Inner transitions

Although we have treated inter-level and inner transitions separately here, they are intimately

interlinked due to the possibility of a single path through a transition network having transitions

of both types. It is even possible for a single transition to be of both types. In some ways, inner

transitions are simpler than inter-level transitions since they are nearly local (only involving the

immediate parent state) but are more complicated in the way they interact with other transitions

at the same level.

5.4.5 Action language translation

There are two basic options for translating the simple imperative language implemented by

STATEFLOW into the synchronous language LUSTRE. One possibility would be to generate C

code from the action code and use the external function call facility of LUSTRE to call the action
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-- link id=8 name= point -> A

-- link id=9 name=E A -> junction

-- link id=10 name=E B2 -> A

-- link id=11 name=E B1 -> B2

-- link id=12 name=[x==0] junction -> B

-- link id=13 name=[x<>0] junction -> B2

-- link id=14 name= point -> B1

-- graph id=17 name=B,NONTOP

node sf_4(E:event; okB,okTop,lv9,lv10,lv13,sB1in,

sB2in,sgB,trm,ini:bool)

returns(okBo,sB1,sB2:bool);

var lv11,lv11_1,lv14,lv14_1,okB_1,sB1_1,sB2_1:bool;

let

lv11_1,lv14_1=(false,false);

okB_1,lv11=if sB1in then suB1lv(E,okB,sB1in,trm,ini)

else (okB,lv11_1);

okBo,lv14=if not ((okTop and lv13) and (okTop and lv9))) and

(ini and (not (sB2in or sB1in))

then iniu19__pointlv(okB_1,trm,ini) else (okB_1,lv14_1);

sB2_1=if sB2in then suB2ex(okBo,lv10,sB2in,trm,ini) else (sB2in);

sB1_1=if sB1in then suB1ex(okBo,lv11,sB1in,trm,ini) else (sB1in);

sB2=suB2en(okBo,okTop,lv11,lv9,lv13,sB2_1,trm,ini);

sB1=suB1en(okBo,lv14,sB1_1,trm,ini);

tel

-- graph id=18 name=Top,GCTOP

node sf_2(E:event; x:int) returns(sB1,sB2,sgB,sA:bool);

var ini,lv10,lv10_1,lv12,lv12_1,lv13,lv13_1,lv8,lv8_1,lv9,lv9_1,

okB,okB_1,okB_2,okTop,okTop_1,okTop_2,okTop_3,sA_1,sA_2,sAt,

sB1_1,sB2_1,sgB_1,sgB_2,sgBt,trm:bool;

let

sA_1=false -> pre sA; sgB_1=false -> pre sgB;

sB2_1=false -> pre sB2; sB1_1=false -> pre sB1;

okTop_1,okB_1=(false,false);

lv10_1,lv9_1,lv12_1,lv13_1,lv8_1=(false,false,false,false,false);

okB_2,okTop_2,lv10=

if sB2_1 then suB2lv(E,okB_1,okTop_1,sB2_1,trm,ini)

else (okB_1,okTop_1,lv10_1);

okTop_3,lv9,lv12,lv13=

if sA_1 then suAlv(E,x,okTop_2,sA_1,trm,ini)

else (okTop_2,lv9_1,lv12_1,lv13_1);
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okTop,lv8=

if ini and not (sA_1 or sgB_1)

then iniu20__pointlv(okTop_3,trm,ini) else (okTop_3,lv8_1);

sA_2 = if sA_1

then suAex(okTop,lv9,lv12,lv13,sA_1,trm,ini) else (sA_1);

sgB_2 = if sgB_1

then sguBex(okB_2,lv10,sgB_1,trm,ini) else (sgB_1);

sA=suAen(okB_2,okTop,lv8,lv10,sA_2,trm,ini);

sgB=sguBen(okTop,lv9,lv12,lv13,sgB_2,trm,ini);

okB,sB1,sB2=sf_4(E,okB_2,okTop,lv9,lv10,lv13,sB1_1,sB2_1,sgB,

sgB and trm -> (not sgB) and (pre sgB),

sgB -> sgB and not (pre sgB));

tel

Figure 5.19: LUSTRE code fragments for inter-level transitions

code. This has appeal since this translation would be essentially a one-to-one correspondence

between semantic objects. However, the model-checking and other verification tools are unable

to work with embedded C code and we lose expressive power for our system. The alternative,

and harder, approach is to translate the action code into LUSTRE. The problem here is that we

need to impose a sequential order on the generated LUSTRE statements which matches the execu-

tion order in the STATEFLOW. We also have efficiency problems since any values in the context

not referenced by the action code have to be copied across but we are not concerned with the

efficiency of the generated LUSTRE code at this point.

Pseudo-lustre

To ease this translation we have defined a simple sequential subset of LUSTRE characterised by

the following properties:

• LUSTRE statements are considered to be evaluated from top to bottom.

• Any inputs which are updated have an output value created for them7.

• Any outputs referenced before their first definition have inputs created for them.

• Values referenced within pre statements are not considered as instances.

• Values on the left hand side of the equations are made unique.

• References to sequenced values on the right hand side are transformed to refer to the most

recent instance.

7 Created output variables are suffixed with the string “ out” (or simply “o” in abbreviated form) and created

inputs are suffixed with “ in”. Unique variables are suffixed by an integer.
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-- a) Untransformed -- b) Transformed

node test(x: int) node test(x, y_in: int)

returns(y: int); returns(y, x_out: int);

let var x_1: int;

x = x + y; let

x = x + 1; x_1 = x_in + y_in;

y = y + 1; x_out = x_1 + 1;

tel y_out = y_in + 1;

tel

Figure 5.20: Transformation of pseudo-LUSTRE

For example, Figure 5.20 shows the transformation of a simple test node. This transformation

allows us to virtually transliterate the action code directly into LUSTRE with minimal alteration.

In fact, this style of LUSTRE is also useful for code generated elsewhere and is used ubiquitously

in the translator.

STATEFLOW arrays to LUSTRE arrays

The only significant complication is arrays for which we synthesize access code which allows

them to behave as variables. For example, the action code x[0]++, where x has type intˆ3 is

translated into:

xo = aset1_i(3, 0, aget1_i(3, 0, x) + 1, x);

We synthesize a function “a(get|set|fill)<n>_<ts>” for each <n>-dimensional ar-

ray value of type <ts>. Note that each time an array value is accessed or updated the entire

array is searched or copied resulting in very inefficient code.

Temporal logic operators

A similar complication arises for temporal logic code, for which we synthesize auxiliary LUSTRE

routines. Figure 5.21 shows the synthesized code for the after temporal operator. The main

issue is that the counter is only incremented when the state is active so we have to pass the

associated state variable to the counter function. The code shown here simply tests if the current

count (cnt) is greater than the required number of counts (n), the code for before, at and

every being similar.

5.4.6 Event broadcasting

One of the most difficult aspects of STATEFLOW to translate is the generation of events within

the STATEFLOW model, these are called local events in STATEFLOW terminology. The problem

is that STATEFLOW implements these by running the interpretation algorithm to completion on
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-- Counter function for temporal events

node sfcnts(s, E: bool) returns(a: bool; cnt: int);

var inc: int;

let

a = s -> s and not pre s;

inc = if a and E then 1 else 0;

cnt = inc ->

if a then inc

else if s and E

then (pre cnt) + 1

else pre cnt;

tel

-- after function for temporal events

node sfaft(n: int; s, E: bool) returns(flg: bool);

var a: bool; cnt: int;

let

a, cnt = sfcnts(s, E);

flg = n >= 0 and s and (cnt >= n);

tel

Figure 5.21: Counter function for temporal logic
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each transmitted local event which implies the possibility of unbounded behavior (since transmis-

sion of one event can trigger the transmission of another). On the other hand, LUSTRE provides

a bounded (and known at compile time) recursion mechanism. Therefore, if we can prove (or

assume) that the implicit recursion is bounded by a constant k, then we can translate the STATE-

FLOW model into a LUSTRE program with recursion bounded by k.

Up to now, nothing we have described implies any kind of recursive behavior in the transla-

tor, we could simply generate the code by preserving the hierarchy in the original STATEFLOW

model. Now, however, we have to know the arguments to the top-level call when we implement

a broadcast event. We could either make the translator a fix-point computation where the argu-

ments to previously generated graphs are updated when event broadcasts happen, we could use

a two-pass method where the first pass computes the nodes and arguments and the second gen-

erates the code or, since the only recursion point is the top-level call we could simply predict the

arguments to this node and use that for the broadcasts. Currently, we use the last (and simplest)

option but if, for example, we were to implement the send function, which is the ability to send

an even to a specific state, as a function call to the relevant node we would require a more general

analysis.

Another slight complication is that LUSTRE will not accept a constant value for the top-

level node. Bounded recursion requires the presence of a recursion variables which have to be

statically evaluated. We thus generate a proxy node for the top-level call and seed this with

the value of the recursion variable. We implement bounded recursion by creating a const8

recursion variable for event broadcasts which we call the “event stack size”. We can then call

the top-level node at the point where an event is broadcast, reducing this constant by one. This

allows emulation of the recursive nature of STATEFLOW’s interpretation algorithm up to a finite

limit set by the event stack size. If we have a proof of the bound on event broadcast recursion

then our behavior will be the same as STATEFLOW’s.

B/
on E: F;

1
A/
en: E;

2

Figure 5.22: A model with non-confluent parallel states requiring event broadcasting

In Figure 5.22 the two states A and B are evaluated in the order B then A but A emits event

E whereas B receives it. Figure 5.23 shows the relevant parts of the generated code. The event

broadcast routines simply call the recursion point (sf 2ca). At the point of call, all events are

cleared (clr) and the event being broadcast is set (set). The recursion point is the sf 2ca

node and the top-level function (sf 2) is simply a wrapper for sf 2ca replacing the recursion

8 A const value in LUSTRE is not actually a constant. It refers to a value which can be statically evaluated at

compilation time.
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variable (const n) with the event stack size. This is needed because LUSTRE will not accept a

const value as an input to the top-level node.

-- entry action for node id=3 name=A

node enaA(F,E: event; sB,sA,term,init: bool;

const n: int)

returns(Fo: event; sBo,sAo: bool; Eo: event);

let

Fo,sBo,sAo,Eo=

with n=0 then (F,sB,sA,E)

else sf_2ca(clr,set,sB,sA,term,init,n-1);

tel

-- graph id=7 name=Parallel5,call

node sf_2ca(F,E: event; sB,sA,term,init: bool;

const n: int)

returns(Fo: event; sBo,sAo: bool; Eo: event);

...

-- graph id=7 name=Parallel5,top

node sf_2(dummy_input: bool) returns(F: event);

let

...

F,sB,sA,E=sf_2ca(F_1,E_1,sB_1,sA_1,term,init,1);

tel

Figure 5.23: Code showing event stack

Within this scheme it is possible to implement STATEFLOW’s “early return logic” which is in-

tended to reduce the possibility of inconsistent states arising from the misuse of event broadcasts.

It results, however, in messy and inefficient code since virtually all activity after the potential pro-

cessing of an event has to be guarded with a check of the parent or source state. This has been

partially implemented in our translator, for example, in the above code, if state A was within

another state, say A1, then the call to the entry action for state A would actually be something

like:

if (sgA1 and enA) then enaA1(...);

This static recursion technique allows us, in theory, to emulate the behaviour of STATEFLOW

charts which exhibit bounded-stack behaviour. In practice, there is a heavy penalty to pay for

static recursion since the recursion encompasses practically the entire program. This means that

each event broadcast point results in expansion of the whole program at that point, down to the

level of the event stack. Practical experience with the translator shows that an event stack size of

4 is about the greatest that can be accomodated in reasonable space and time.

Christos Sofronis Ph.D Thesis 71



Chapter 5. Analysis and Translation of STATEFLOW to LUSTRE

Finally, we can easily accommodate STATEFLOW’s send facility which allows sending of

an event to a named state. One possibility is to view this as a function call of the target state

[HR04], however, this would require generalization of the recursion mechanism to allow calls to

intermediate nodes. A simpler solution is to simply treat events as integers and use the convention

that 0 is an inactive event, 1 is a broadcast event and events with other integer values are targeted

at the state with that identity number. For this purpose we abstract the event type and provide

constants for event testing:

type event = int;

const set = 1; clr = 0;

The on action for state B (id number 4) would thus become guarded by:

if ((E = set) or (E = 4)) then ...

5.4.7 History junctions

History junctions are a STATEFLOW feature which allow states to “remember” their previous

configuration in between activations. This is easily handled by our translator by keeping local

variables within each node corresponding to a state with a history junction. The only complica-

tion is how to trigger storage and restoring of the history values. Luckily, the init and term

flags correspond almost exactly to the semantics of history junctions, we only need to store them

when term is true and restore them when init is true. Figure 5.24 shows the relevant

code.

node sf_3(sAin,sBin,sgTOP,term,init: bool)

returns(sA,sB: bool);

var sAh,sBh,...: bool;

let

sB_1,sA_1=(false,false) ->

if init then (pre sBh,pre sAh) else (sBin,sAin);

...

sBh,sAh=(false,false) ->

if term then (sBin,sAin) else (pre sBh,pre sAh);

tel

Figure 5.24: Saving and restoring history values

5.4.8 Translation fidelity

It is not possible to formally verify the equivalence of STATEFLOW’s and our translator’s behav-

iors, principally because of a lack of a formal definition for STATEFLOW. Our translator was

developed, however, directly from the STATEFLOW documentation and its description of the in-

terpretation algorithm which, as far as possible, we have encoded into LUSTRE. We have also
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manually verified the equivalence of the two systems on a substantial set of example STATEFLOW

models based around the subset of STATEFLOW which we currently support. From our point of

view, however, the primary reference for the behavior of the translated code is the LUSTRE trans-

lation. In a real-world example we would perform tests and validation upon the LUSTRE code

and not upon the STATEFLOW model directly.

This also applies to our link with SAFE STATE MACHINES (SSM) by Esterel Technologies,

Inc.. SSM, like STATEFLOW, is also a graphical interface to a finite state machine system but,

unlike STATEFLOW, is based on a sound formal semantics and there exists a formal translation

path into languages such as LUSTRE. The question exists, however, as to how to translate legacy

STATEFLOW code into SSM and the issues embodied in our translator also apply to translation

from STATEFLOW into SSM. Our translator can, however, be used as a reference semantics for

this translation since its output should, in theory, have the same semantics as the output from

STATEFLOW → SSM → LUSTRE.

5.5 Which subset of STATEFLOW do we translate

Currently, we can translate hierarchical and parallel AND states assuming no inter-level tran-

sitions. We can implement event broadcasting provided the broadcasting recursion is bounded

by a reasonably small value. State entry, exit, during and on-actions as well as condition and

transition actions for transitions are all supported. Only part of the action language is translat-

able but we can implement array processing and so-called temporal logic operators. This gives

basic functionality. In addition, however, we can implement sending of events to specific states,

history junctions and inner transitions.

5.6 Enlarging the “safe” subset by model-checking

The existence of a translation from STATEFLOW into LUSTRE allows us to immediately apply

the existing model-checking tools for LUSTRE to STATEFLOW models.

Observer 1

{prop=sOn && (~sOff) || (~sOn) && sOff;}

Figure 5.25: Simple observer in STATEFLOW

For example, Figure 5.25 shows a simple observe implemented in STATEFLOW for the model

in Figure 5.6. Here the property is a trivial mutual exclusion of states and LESAR verifies this

property without consuming any significant time or memory.
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In this section we demonstrate two useful properties that can be model-checked in STATE-

FLOW models, i.e., confluence of parallel states and boundedness of event broadcasting. Our

translator is able to generate auxiliary LUSTRE nodes which are observers for properties sup-

plied to the translator. Currently, these are LUSTRE expressions but it should be possible to allow

these expressions to be supplied by the STATEFLOW model in the form of graphical functions or

some other form of annotation. This would obviate the necessity of the user learning LUSTRE’s

syntax and semantics. In this section we simply demonstrate two useful properties that can be

model-checked in STATEFLOW models, i.e., confluence of parallel states and boundedness of

event broadcasting.

N2 3 N3 4N1 1 N4 2

Observer 5

F

EA GC

DB H

R1S1 R2S2R1S1R2S2

{prop=(sgN1==sgN3 && sgN2==sgN4 && ...
 sA==sE && sC==sG && sB==sF && sD==sH);}

Figure 5.26: An observer for parallel state confluence

Figure 5.26 shows a set of parallel states9. States N1 and N2 (executed in the order N1

then N2) and states N3 and N4 (executed N4 then N3) form two versions of the same simple

machine except for the order of parallel execution. The figure also shows an observer which

directly compares equivalent state variables between the two machines. Running LESAR on the

generated LUSTRE code results in a TRUE value so we can deduce that the order of execution of

parallel states in the machine N1/N2 (or N3/N4) is irrelevant.

Figure 5.27 shows a STATEFLOW chart which requires either parallel state confluence or the

use of an event stack. State TOP1 generates a local event E upon receiving input event G. Event

E is received by state TOP2 which then emits output event F. To allow detection of event stack

overflow the translator generates an additional local value “error” which is set if there is an

9The state variable names are accessible in our translator so sOn refers to the variable for the On state. These

pseudo-variables have to be included in STATEFLOW’s data dictionary.
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Observer 3

TOP1 2 TOP2 1

C

B D

A

E/F; E/F;G/E; G/E;

{prop=~error;}

Figure 5.27: An observer for event stack overflow
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attempt to broadcast an event when the event stack counter is zero. The broadcast statement for

event F is show in Figure 5.28.

propo,Fo,sAo,sBo,sCo,sDo,sgObservero,sgTOP1o,sgTOP2o,

erroro,Eo =

with n = 0

then (prop,F,sA,sB,sC,sD,sgObserver,

sgTOP1,sgTOP2,true,E)

else sf_2ca(clr,clr,set,prop,sA,sB,sC,sD,

sgObserver,sgTOP1,sgTOP2,error,

term,init,n-1);

Figure 5.28: Code for event broadcast with error detection

If TOP2 is executed before TOP1 we need event broadcasts to allow E to be received by

TOP2. Furthermore, if output event F is to be broadcast we need a minimum event stack of 2

which is verified by LESAR. Model-checking using the error property gives a FALSE property

for an event stack depth of 1 but a TRUE property if the event stack is set to 2. Finally, if we

reverse the order of execution of states TOP1 and TOP2 we can get a TRUE property with an

event stack size of zero.

Although these examples are trivial the analysis itself can be extended to models of any

complexity. We envisage using the model-checking not just for verification of safety properties

but also as a means of enhancing the subset of STATEFLOW which we are able to implement. A

designer can use model-checking to spot where his design does not conform and where to fix the

model to bring it into conformance.

5.7 Related Work

STATECHARTS [Har87] are sometimes compared with STATEFLOW since both are visual rep-

resentations of state machines. STATECHARTS semantics are complex to define, in fact, many

variants exists, for instance, see [HN96, HG97] and references therein. There has also been

much work into either translating STATECHARTS into a known system such as hierarchical au-

tomata [MLS97] or by deriving a semantics for a suitable subset [LvdBC00]. Most of these

works yield semantics that are different from those of STATEFLOW. For example, STATEFLOW

has no notion of true concurrency since its semantics is “run-to-completion”.

UML’s state-machine diagrams also resemble both STATEFLOW and STATECHARTS. No-

tice that UML state machines have a “run-to-completion” semantics, like STATEFLOW [Gro05,

HG97].

Tiwari [Tiw02] describes analysis for SIMULINK/STATEFLOW models by translating them

into communicating pushdown automata. These automata are represented in SAL [BGL+00]

which allows formal methods such as model-checking and theorem proving techniques to be
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applied to these models. Essentially, the system is treated as a special hybrid automaton and

algebraic loops involving STATEFLOW charts are not considered.

[Nee01] presents the data model of SIMULINK and STATEFLOW as a UML class diagram.

Hamon and Rushby have developed a structural operational semantics for STATE-

FLOW [HR04] for which they have an interpreter to allow comparison with STATEFLOW. Their

subset of STATEFLOW seems to have been inspired by the Ford guidelines [For99], for instance

loops are forbidden in event broadcasting and local events can only be sent to parallel states.

They have other restrictions as well, such as forbidding transitions out of parallel states but in

general support most of the STATEFLOW definition including inter-level transitions. They also

have a translator into the SAL system which allows various model-checking techniques to be

applied to STATEFLOW.

5.8 Conclusions

In this Chapter we studied the translation of STATEFLOW to LUSTRE. Although the behavior

of STATEFLOW is deterministic, it may lead to problematic designs, for instance, such that a

simulation cycle does not terminate or where tiny changes in the graphical layout may modify

the behavior of the model. To handle these issues we proposed a set of conditions, that can

be checked statically, that guarantee that a STATEFLOW model will be free of the semantical

problems described.

Besides the analysis of STATEFLOW and those static rules, we have provided a method to

translate a STATEFLOW Chart into the synchronous programming language LUSTRE. This trans-

lation can be used in many different ways. First of all, for code generation, using one of the code

generators available for LUSTRE. The translation can also be used for verification of STATEFLOW

models, using LUSTRE’s model-checker Lesar. We can use verification to check not only general

properties about the model but also specific properties, for instance, those related to semantical

issues above (e.g., check the confluence of a set of states).

The translation algorithms presented in this and the previous Chapter have been implemented

in a prototype tool called SF2LUS. This is presented in the Chapter that follows.
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Chapter 6

The SIMULINK/STATEFLOW to LUSTRE

Translator: Tool and Case Studies

We implemented the algorithms discussed in Chapter 4 and Chapter 5, in prototype tools that

translate SIMULINK and STATEFLOW into LUSTRE. Those tools are the S2L and SF2LUS re-

spectively, and on top of them we added a coordination system able to translate a model that

contains both SIMULINK and STATEFLOW parts. This latter, mostly scripting, tool is called

SS2LUS as for Simulink-Stateflow-to-Lustre.

The tools can be downloaded free of charge, after signing an academic license1. To date, the

tool has been distributed to five different users and we have a collaboration with most of them in

terms of bugs and new features needed.

In this Chapter we study certain aspects of the implementation of those tools and the way

they interact. Moreover, we demonstrate their use on a number of real models we tested during

implementation phase.

Note that in Appendix A, we provide the output of the tools when invoked using the --help

flag. This output contains the main information about the tools and all the possible invocation

arguments.

6.1 Tool

6.1.1 The S2L tool

In Chapter 4, we studied all the aspects of the translation from SIMULINK to LUSTRE. Alongside

to studying those methods and algorithms we implemented them in a prototype tool that achieves

the goals of this translation, modulo all the constraints that are discussed in Section 4.3.

This tool is named S2L as for Simulink-to-Lustre translation and it is a tool written using the

Java programming language. Though the initial implementation was back and forth compatible

with older Java versions, in the latest updates of the tool, we used the latest addition of Java, the

1 For more information refer to the official website of the tool following the Simulink, Stateflow link in the

following web page: http://www-verimag.imag.fr/SYNCHRONE
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safety of the software. This latest addition in S2L will require, to compile and run, a version of

Java greater or equal to Java 1.5.

All the above packages are documented using the Java’s JavaDoc documentation tool and its

appropriate notation. In fact we provide two flavors of JavaDoc documentation, the one is for

private development usage, with all the details of private classes and a “light” version, where we

only describe the public classes that one will use to build on top of this ADT some new behavior.

Simulink model
.mdl

constraints
type inference
clock inference

error

generation
code

XML data

.lus

Lustre File

representation
.xml

ToLustre

xmlParser

mdl2xml

Figure 6.1: The S2L tool architecture.

In Figure 6.1 we can see the software architecture of the S2L. It is composed out of three

main packages:

fr.verimag.mdl2xml This package makes a simple one-to-one translation from the SIMULINK

model file to an equivalent XML representation. However, this package can be invoked with

a parameter that will filter the irrelevant to the translation information such as, dimensions

and placement of blocks in the SIMULINK graph.

In Appendix B, we provide an example of this translation to XML.

fr.verimag.xmlParser This is the package that will parse the XML file and generate the Abstract

Data Tree holding all the information of the model in its structures. All the information
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is stored with in the ADT with root node an instance of the class Model. Other, main

classes–components of this tree are Block, Line, SimulinkSystem, Port.

fr.verimag.s2l In this package we have implemented all the inferences and the code generation

algorithms that we have seen in Chapter 4. The main class is the class ToLustre,

which instantiates and calls the appropriate classes and methods, found on that package.

During the implementation of the tool, MathWorks has released a number of new releases of

the MATLAB toolkit, changing the model file format from one release to the next. This made

it difficult for the tool to follow all the changes, so we decided to stick with the file format

introduced by MATLAB-6 (releases r12, r12.1 and r13)2.

The current version of the tool is a command line program. However there is a graphical user

interface version, which currently is in a Beta and not stable version. The GUI is also imple-

mented in Java and the main window you can see in Figure 6.2. The steps for the compilation

of a SIMULINK model are (1) first we chose the file to translate, (2) we invoke the translator

pressing the “S2L” button (the user will be asked to give the translation flags and options then).

Moreover, (3) we can continue (if we have a LUSTRE complier) by passing the resulted LUSTRE

generated code to that complier.

As we see in Figure 6.2 in the upper, gray text-box we have the resulted LUSTRE code and in

the bottom, yellowish text box we have the output of the translator and the LUSTRE compiler.

Thus, for the command line S2L the input arguments must imperatively contain the model

(.mdl) file and also a number of optional flags and options that alternate certain features of the

translation. Below we summarize the most important of them (for a complete list of the argu-

ments the reader may refer to the Appendix A), as this is provided by the tool’s help message:

–reluc Using this flag will generate LUSTRE code that respects the syntax of the RELUC com-

piler. RELUC 3 is an experimental LUSTRE compiler provided by ESTEREL. The default

LUSTRE output format is the one that respects LUSTRE V4 distribution.

–debug This option will generate on the standard output debug information of the translation

procedure. Moreover, a file named allVars, will be generated on the same directory

containing hierarchically all the LUSTRE variables generated along with their timing and

type information as they have been inferred from the inference algorithms that we saw in

Section 4.4 and Section 4.5.

–monoperiodic Mainly for debugging purposes we may need to bypass the clock inference, in

which case we use this option which ignores the Sample Times of all the elements of the

SIMULINK model, or better, treats everything as being inherited (or −1). This means that

the triggered subsystems will still have the correct triggering clock as their basic clock.

2 Note that some times, using a newer version of MATLAB and trying to save in an old format, will introduce

elements in the model file that are not supported by the respective version itself and thus by our tool. So we strongly

propose the use of MATLAB 6 - release13 to obtain the best results.
3 RELUC stands for Retargetable Lustre Compiler

Christos Sofronis Ph.D Thesis 81



Chapter 6. The SIMULINK/STATEFLOW to LUSTRE Translator: Tool and Case Studies

Figure 6.2: The main window of the GUI version of the S2L tool.
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–choose-system In a big and complex system, we may want to translate only a small part hidden

in the tree structure of subsystems. Using this flag we interactively choose the subsystem

that will be the root node of the translation to LUSTRE.

–no-main By default, S2L, will generate a folding node that encapsulates the main node in the

generated LUSTRE file. This helps on generating internal clocks and associating them

to input/output LUSTRE variables and thus giving a “cleaner” interface to the user that no

longer he has to cope with timing relation between inputs. However, this may be redundant

if there is no timing variance between inputs and/or outputs, thus using this option will skip

this step.

–xml Using this option, the tool only generates the XML representation of the SIMULINK model

and stops the execution.

The result of invoking S2L is to generate a LUSTRE program in a .lus file (usually with the

same file name, unless explicitly stated). Moreover, the tool outputs the period that the LUSTRE

program should be run at, so that the translation corresponds to the source model. As we have

seen in Section 4.5, this is a result of the clock inference algorithm.

However, if during any stage of the translation there is an error, then the translation is aborted

and an error message is printed on the standard output. Note also, that the code generation

is done on-the-fly, which means that every node that is generated is written and flushed to the

output file, so that in any undesired exception, we will still have the LUSTRE code generated up

to the occurrence of this exception.

6.1.2 The SF2LUS tool

The translation of STATEFLOW to LUSTRE studied in Chapter 5 has been implemented in the

SF2LUS tool. This tool has been implemented by Norman Scaife, a post-doc at Verimag from

2003 to 2005. SF2LUS is written in Objective Caml (OCaml).

SF2LUS does not use intermediate XML representation and the ADT is parsed immediately

out of the model file. On the other hand SF2LUS provides more options to toggle features of the

translation and produce detailed debugging output. Note that the tool initially was conceived to

parse the STATEFLOW part of a model and construct a graphical representation of it. Then various

methods for generating code were implemented and the final version, actually implements all the

features we have studied in the previous chapter.

The input to the tool is a STATEFLOW model. The tool supports the MATLAB 7 release 14

and if the file format remains the same in the next versions of the tool, it will support them also.

Output from the tool is primarily LUSTRE V4. This version of LUSTRE includes bounded

iteration using the when construct in conjunction with statically-evaluated constants and proved

very useful in structuring STATEFLOW’s unbounded iterations such as event broadcasts and junc-

tion loops. In general, however, it is intended that SF2LUS be used in conjunction with the

planned STATEFLOW analysis tool to allow the elimination of unbounded recursion either by

automated transformation or by manual editing of the STATEFLOW chart.
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Other outputs include preliminary versions of SCADE [Est] which allows STATEFLOW

charts to be included as source code into the SCADE suite of tools by Esterel Technologies,

Inc., RELUC which is a commercial version of LUSTRE also by ESTEREL and some minor

support required by the abstract interpretation tool NBAC (via LUS2NBAC provided in the LUS-

TRE distribution). These output formats are only partially supported, however. Note that the

LUSTRE output itself can be used as input to a variety of tools including the model-checker

LESAR [RHR91, HLR92].

Hereafter we discuss the principle options of the translator, invoked in command line as

arguments.

Output language

Four output languages are currently supported, triggered by the following options:

-pollux Generate LUSTRE V4 output. This is the default mode and the most fully supported.

-nbac Generate NBAC output. NBAC is almost completely compatible with LUSTRE V4 via

the LUS2NBAC utility supplied with the LUSTRE distribution. This option simply triggers

emulation of the integer modulus function which seems to be missing from NBAC.

-reluc Use RELUC modifications. Again, since the SF2LUS translator uses only a small sub-

set of LUSTRE the output is almost compatible with RELUC. Currently, this option trig-

gers some additional parenthesization which seems to be needed. Currently, arrays and

the event stack are not supported since RELUC does not have LUSTRE’s static recursion

mechanism.

-scade Use SCADE modifications. There are some syntactic differences between SCADE and

LUSTRE, some of which can be ironed out by a simple transformation on the output. These

involve constructs such as:

(x,y) = if p then f(a,b) else (c,d);

which are not supported by SCADE. Again, there are no arrays or event stack.

Namespace management

Namespace management in the SF2LUS translator is not fixed, for several reasons:

• There is the tension between providing human-readable LUSTRE output without making

the code too verbose.

• Different users may have different preferences as to what is readable, depending upon their

intended usage of the resulting code.

• It is difficult to translate namespaces accurately between two such widely differing lan-

guages as STATEFLOW and LUSTRE. It is simple to convert names from one syntax space

to another but doing so while retaining the flavor of the original language is difficult.
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• It is possible that different translations may have to coexist in the same context which will

inevitably result in namespace collisions. This is exacerbated by the fact that LUSTRE V4

has no concept of modularity.

For these reasons, SF2LUS supports several options controlling the way the output namespace

is generated:

-names Use state names in variables. So, for example, a state called A generates a variable sA

(or state A).

-ids Use state ids in variables. A state with id 3 will be referenced by s3 (state 3).

-names ids Use both names and state ids in variables. For example s3 A (state 3 A).

-long names Use unabbreviated names in the output. Currently, the complete list of abbrevia-

tions is:

point action a after aft at at

before bfr call ca change ch condition c

count cnt counter cntr counts cnts during du

end end enter ent entry en error err

event ev events evs every evry exit ex

flag flg graph g history h in in

increment inc init ini inners ins junction j

link l okay ok out o pre p

print pr property prop state s stateflow sf

stub st subgraph sg term trm tmp t

transition tr update u valid v verify verif

-varprefix Prefix all variables (for namespace conflict avoidance). Do not use this, it is present

for debug purposes only.

-prefix,-suffix Prefix/suffix all toplevel names. This is used, for instance, when one wishes to

compare the output from two different translations. All the visible identifiers in the output

code are prefixed by the given string, for example, “-prefix A” might give:

type Aevent = bool;

const Aset = true; Aclr = false;

node Asf_2(Set, Reset: Aevent) returns(sOff, sOn: bool);

General translator control

These options control the translation process at the most basic level.

-no self init Top level graph does not provide initialization. Normally, the init and term

flags are automatically set to:
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init = true -> false;

term = false;

at the top level of the code. This option disables this behavior but is only present for

debugging the translator.

-ess Event stack size. This sets the depth of the event stack, see Section 5.4.6 for usage informa-

tion and caveats.

-sends Enable sends to specific states. This option triggers some additional processing which

allows STATEFLOW’s send function to be implemented. Note that events become inte-

gers which may affect subsequent analysis and that currently this feature is only partially

implemented. See Section 5.4.6.

-junc states Treat junctions as states. When this is set junctions are given a physical state (called

j<ID> or junction_<ID>) and the chart can stay in a junction after a reaction. An

additional output boolean (v or valid) is generated which is true if and only if the

current state is not a junction. See Section 5.4.2.

-errstate Add error processing to event broadcasts. This generates an extra output boolean

variable (err or error) which is set to true if an event is broadcast at the lowest level

of the event stack. This logic is switched off if the event stack size is zero.

-unroll Unroll loops according to loop counters. Using the annotations in the STATEFLOW chart

described in Section 5.4.2 transition networks involving loops are unfolded a fixed number

of times resulting in a loop-free chart. The unrolling algorithm is currently very primitive

and has complexity problems.

Data management

Handling MATLAB’s workspace is complicated by the fact that it is stored in a binary format

which external tools cannot read. Hence, the translator has to make some assumptions about

the workspace which it communicates via the .mws file. Note also that this file provides the

means of communication with the S2L tool also. These options allow some additional control

over workspace values:

-create missing Add missing data to data dictionary. If a chart contains a reference to a vari-

able not in STATEFLOW’s data dictionary then it can be automatically created. All such

variables have to have the same scope and type, however.

-missing scope Scope for missing data (default: INPUT_DATA). Recognized values are:

r13/r14 INPUT_EVENT OUTPUT_EVENT LOCAL_EVENT

OUTPUT_DATA INPUT_DATA LOCAL_DATA

TEMPORARY_DATA CONSTANT_DATA

r14 FUNCTION_INPUT_DATA FUNCTION_OUTPUT_DATA PARAMETER_DATA
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-missing datatype Data type for missing data (default: double). Known values are (not all

are supported):

double single int8 int16

int32 uint8 uint16 uint32

boolean fixpt ml

-no constants Omit workspace constants from output. This is used by SS2LUS and prevents

SF2LUS from including constants defined in the MATLAB workspace file from being in-

cluded. The output is not legal LUSTRE since the constants are expected to be provided

by S2L.

Time

The STATEFLOW implicit time variable t is slightly problematical since LUSTRE does not have

any notion of absolute time. For stand-alone STATEFLOW-generated LUSTRE code the following

options allow t to be generated automatically assuming a fixed time difference between reac-

tions. If time is not emulated here then it is assumed to be an input to the chart. The MATLAB

workspace file contains an entry indicating whether t is an input or not.

-emulate time Provide internal time value. References to STATEFLOW’s time value are imple-

mented internally in the LUSTRE code according to the following two options.

-start time Start time for emulated time (default: 0.0). The value of t at reaction zero.

-time increment Time increment for emulated time (default: 1.0). The t variable is incre-

mented by this amount at the start of each reaction.

Observers

One of the main uses of the SF2LUS translator is in the proof of safety properties. The following

options support this activity:

-observe Add observer node for given expression. Generate a single LUSTRE node observing

the expression given as a string of LUSTRE code. State variables can be observed provided

the -states_visible option is set.

-no observers Don’t read observer file. By default, SF2LUS looks for a file <file>.obs

when given a model file <file>.mdl. If it exists it is assumed to be a file containing

observable expressions, one per line. LUSTRE-style comments (--) are permitted.

-consistency Add a state consistency observer. This option causes an observer for the state

variables to be generated. The observer is called consistency_<CID> and is mostly

used to verify the translation process, see Section 5.6. The -states_visible option

is set automatically.
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-counters Add loop counters to junction networks. An additional integer output for each

junction in the chart is generated. The counters are called cntrj<ID> where <ID>

is the id number for the junction. Each counter is incremented when its junction

is entered during transition path analysis. Currently, maximum values are not main-

tained so the values have to be checked after each reaction. In addition, an observer

(called loop_counters_<CID>) is generated for all the junctions annotated as in Sec-

tion 5.4.2. The -junc_states option is set automatically.

Debugging features

Finally there is a number of options used to help in debugging the translator. Some may be of

use in debugging STATEFLOW charts, however. Given the large number and the specialization of

those options, we recall the reader to refer to the tool usage itself for further information.

6.1.3 SS2LUS tool architecture and usage

In this Section we will present the SS2LUS tool, which translates models composed by both a

SIMULINK and a STATEFLOW part. SS2LUS, written in the shell’s scripting language, invokes

the two tools S2L and SF2LUS and interface them in a “clean” manner: whenever S2L finds a

STATEFLOW block, it submits it to SF2LUS which translates it into a LUSTRE node and returns

this node (body plus type signature) back to S2L. Thus, SS2LUS is a mechanism that combine

the functionality of those two independent tools and accepts he following inputs:

• The SIMULINK/STATEFLOW model to be translated to LUSTRE. This is a .mdl file and it

must be generated by a MATLAB release between r12 and r14.

• Arguments to be passed to S2L.

The output is a LUSTRE program (a .lus file) and the period that the LUSTRE program

must be executed, which as we have seen in Section 4.5, it is the output of the clock inference

algorithm. Also the above discussed .mws file is generated in the current directory.

The procedure of the translation is to call the module to translate the STATEFLOW part and

generate the LUSTRE code in a temporary file. Upon correct execution and translation of the

STATEFLOW part4 there is the translation of the SIMULINK part. However in that case, there is a

primitive exploration of the STATEFLOW part, from S2L to extract the inputs and outputs of the

STATEFLOW chart, so that the correct node call is generated.

Upon successful completion of the SIMULINK translation also, we append the LUSTRE code

of the temporary file and we have the LUSTRE program that corresponds to the initial model.

Though the independent tools have several parameters and flags to alternate features of the

translations, the global tool have restricted this usage to the default, which is the intersection so

that both tools can cooperate. However, one may use the tools independently and generate the

glue code between them manually, i.e., the code that will call the STATEFLOW part from within

the SIMULINK part.

4 In any case that an error occurs, an error message is printed and translation is aborted
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6.2 Case Studies

In this section we present four case studies of the use of the above tools. We have used S2L to

translate two SIMULINK models provided by the Audi automotive constructor in the context of

the European IST project “NEXT TTA”.5 The first model defines a warning processing system

and is part of a larger controller used by Audi in production vehicles. The second model is a

larger steer-by-wire controller. Both models have been given to Verimag for internal project

purposes and cannot be made public due to intellectual property restrictions. Thus, we only

present parts of these models.

In Section 6.2.3, we present a case study that we have created to test the SF2LUS translator

and in Section 6.2.4 there is an case study of our overall translator, which generates one LUSTRE

program out of a model composed by both a SIMULINK and a STATEFLOW part.

6.2.1 Warning processing system

The objective of the system is to recognize if a car is moving towards its physical limits and to

generate a warning to the driver. However, the warning may be canceled because of a number of

conditions ensuring that the car is not in a dangerous situation.

The main subsystem is called cancel warning and is shown in Figure 6.3. The subsystem

has ten inputs and five outputs. Inputs warning 1 in and warning 2 in are generated on

the same electronic control unit (ECU) and are sampled with a rate of 20 milliseconds (ms).

Each warning is a boolean, representing an a-priori need to issue a warning. The input signals

warning 1 amp in and warning 2 amp in are the amplitudes of the warnings. They are

8-bit signals sampled with a rate of 20 ms. The rest of the input signals (signal 1, signal 2,

. . . ) are used to compute the warning permission no warning and they have a sampling rate

of 4 ms. The outputs of the main subsystem are the warning signals and their amplitudes (with

the sampling rate of 20 ms) as well as the warning permission (with the sampling rate of 4 ms).

The cancel warning subsystem is itself composed of a number of subsystems and basic

blocks, as shown in Figure 6.4. The subsystem no warning conditions is supposed to

check a number of conditions which cancel the warning. Depending on its output, the subsystem

eliminate warning filters the warning. The subsystem warning filter blocks one of

the warning signals if the other one is already active. The subsystem warning duration en-

sures that a warning which has been issued will be sustained long enough in order to be perceived

by the user.

The entire SIMULINK model has a hierarchy depth of 6 layers (including the top-level sys-

tem). It contains 20 subsystems and more than 200 total components (including subsystems,

basic SIMULINK blocks, as well as input/output port blocks).

Translating the entire SIMULINK model to LUSTRE using the S2L tool takes less than a

second. The resulting LUSTRE program is 718 lines long. A small part of the program is shown

in Figure 6.5. It contains the signature of the LUSTRE node corresponding to the subsystem

5 http://www.vmars.tuwien.ac.at/projects/nexttta/
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Figure 6.3: The cancel warning subsystem.
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cancel warning. This node is not the main node of the LUSTRE program, but it is called

from the main node, part of which is also shown in the figure.

Notice that the LUSTRE node cancel warning contains one more input than the

SIMULINK subsystem cancel warning, namely, clock1 5. This is because of the fol-

lowing requirement in the LUSTRE language. When a node takes inputs not running at the basic

clock of the node, the clock(s) of these inputs must be passed as argument(s) to the node. In this

case, some inputs run at the basic clock of 4 ms while others run at the slower clock of 20 ms,

that is, five times slower. Flow clock1 5, constructed in the main node, models this. Recall

that the assumption is that the LUSTRE program will be run periodically every 4 ms. Under this

assumption, flows running at the basic clock will be sampled every 4 ms (e.g., In5) whereas

those running at the clock clock1 5 will be sampled every 20 ms, which is what we want.

Verification As mentioned earlier, one of the benefits of having a formal counterpart of the

SIMULINK model is the possibility for performing formal verification. We took advantage of

this option and performed model-checking on the LUSTRE program generated from the warning

processing system. The properties to be checked were provided by Audi, as part of our collabo-

ration in the “NEXT TTA” project.

We used the LESAR model-checker [RHR91]. LESAR takes as input the LUSTRE program

and the property to be checked, expressed in a formal way. Usually, the property is modeled

in LUSTRE, using an observer. The observer is a LUSTRE node which outputs a boolean signal

which should remain true unless the property is violated. The environment (inputs to the LUSTRE

program) is also modeled, usually by assertions. The model checker performs exhaustive search

of the state space to check if the property is violated at any reachable states. The problem is

generally undecidable, since the program may contain integer and real variables. Thus, LESAR

performs automatically abstraction of the infinite-domain variables (integers, reals), so that the

state space is guaranteed to be finite. Abstractions are performed either using additional boolean

variables or using a polyhedra library [HPR97].

As a first step, we have formalized the requirements which have been provided by Audi in

English. We have then checked them using LESAR. A total of 23 properties were checked and a

number of them were found to be false, given the environment constraints. It turned out that the

latter were not as strict as in a realistic situation, but a more detailed model of the environment

was not available. In a few cases, we had to manually modify the LUSTRE program in order for

the verification to succeed in finding the error, by “hand-coding” abstractions of integer and real

variables.

6.2.2 Steer-by-wire controller

The second model provided by Audi is part of an assistant system for a prototype car which helps

the driver keep the car on the road. The system consists of a camera, a steering actuator and a

networked embedded system. The latter is based on the time triggered architecture (TTA) and

its implementation in the TTP protocol [Kop97, KG94]. In this system, four computers are used,

one dedicated to image processing the camera input, one for actuating and two running the same
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node main( In1: bool; In2: bool; ... )

returns ( Out1: bool; Out2: bool; ... );

var In1_5: bool; In2_5: bool; ...

let

( Out1, Out2, ... ) = cancel_warning( clock1_5, In1_5, In2_5, ... ) ;

In1_5 = In1 when clock1_5 ;

...

clock1_5 = make_clock(5, 0) ;

tel

node cancel_warning( clock1_5:bool;

warning_1_in:bool when clock1_5;

warning_2_in:bool when clock1_5;

warning_1_amp_in:real when clock1_5;

warning_2_amp_in:real when clock1_5;

signal_1:real;

signal_2_n:bool;

signal_3:bool;

signal_4:real;

signal_5:real;

signal_6:real )

returns ( warning_1_out:bool when clock1_5;

warning_2_out:bool when clock1_5;

no_warning:bool;

warning_1_amp_out:real when clock1_5;

warning_2_amp_out:real when clock1_5 );

let

...

tel

Figure 6.5: A small fragment of the LUSTRE program generated by S2L from the warning processing

system model.
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Sensorik_Bus

BV_Bus

LM_Nm

Spursystem

Sensorik_Bus

BV_Bus

Sensorik

LM_Nm

Lenkmomentaktuatorik

 3{3}
<BV_Bus>

 {3}
<Sensorik_Bus>

double
<LM_Nm>

Figure 6.6: The steer-by-wire controller model (root system).

steering control algorithm for fault-tolerance purposes. The computers are linked with CAN bus

as well as TTP network.

As part of the “NEXT TTA” project, we used S2L to automatically translate the SIMULINK

model containing the control algorithm into LUSTRE. The LUSTRE program was then compiled

into C using C code generators from Esterel Technologies, Inc.. The C code was integrated into

the prototype vehicle: a minimal manual effort was required to interface the code with the TTP

platform. A demonstration of the system was performed for the reviewers and project partners

during the final project review on January 22, 2004 at the Audi testbed in Ingolstadt, Germany.

The root system of the SIMULINK model is shown in Figure 6.6. It consists of three sub-

systems. The Sensorik subsystem is used to receive inputs from the environment and do

an initial processing. The Spursystem subsystem performs the main computations. The

Lenkmomentaktuatorik subsystem is used to write the outputs. Notice that the first sub-

system has no external inputs and the last one has no external outputs. This is because interfacing

of the generated code is done through the use of external functions belonging in special libraries.

In the SIMULINK model, inputs in the Sensorik subsystem are replaced by Ground blocks

and outputs in the Lenkmomentaktuatorik subsystem are replaced by the Terminator

blocks. These blocks are translated by S2L as external LUSTRE functions. The latter are then

defined using external APIs and libraries.

Other parts of the model are shown in Figures 6.7 and 6.8.

The size of this model is 6 levels of hierarchy, 20 subsystems and about 150 blocks. The

entire model runs at a single period. The generated LUSTRE code is 486 lines long and contains

19 nodes and 13 external functions.

6.2.3 A car alarm monitoring system

The next case study is the STATEFLOW model shown in Figure 6.9. This is a hypothetical alarm

monitoring system for a car. This contains two parallel states, Speedometer which adjusts

the speed variable according to input events and Car which is hierarchical, the outer layer

engine on monitoring the engine status and the next inner layer monitoring the car’s speed.

The innermost level has two parallel states, belt which monitors the seat belt status and gen-

erates the belt alarm alarm if the seat belts are not on and the speed is greater than 10, and

locks which monitors the door lock switch and controls the locks.
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6.2. Case Studies

LESAR only has limited support for numerical values, and does not handle the speed vari-

able very well. Since we now have a LUSTRE program, we could use the tool Nbac [JHR99],

which is based on abstract interpretation techniques, to handle the speed variable. However, the

only role of this variable in the model is in boolean tests so we can abstract this variable and use

an equivalent set of boolean flags. This chart is shown in Figure 6.10. Here, the Speedometer

state outputs flags according to whether the speed is zero, non-zero or greater than 10 or 20. The

rest of the model has been suitably transformed. The observer for this model states that there

should be no alarms when the engine is off and that the door locks should always be on when the

speed is greater than 20. Furthermore, the belt alarm should be on if the speed is greater than 10

and the belt status is off.

Car 2

Speedometer 1

engine_off

engine_on

running

stopped

belt 1

locks 2

locks_off locks_on/
en: locks_down

time_tic { speed = 0 } road_tic { speed ++ }

toggle_engine

toggle_locks_button

[ !belt && speed > 10] { belt_alarm }

[ speed == 0 ] [ speed >  0 ]

toggle_engine [ speed > 20 ]

open_door || toggle_locks_button

Figure 6.9: An alarm controller for a car

Running LESAR on the original model results in a FALSE property with the following coun-

terexample:

--- TRANSITION 1 ---

road_tic

--- TRANSITION 2 ---

toggle_engine and not time_tic and road_tic

--- TRANSITION 3 ---

not toggle_engine and not time_tic and road_tic
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Observer 3

Car 2

Speedometer 1

engine_off

engine_on

running

stopped

locks 2

belt 1

locks_on/
en: locks_down

locks_off

road_tic

[speed_eq_0]{speed_eq_0=false;}

[!speed_eq_0]
time_tic {
speed_eq_0=true;
speed_gt_10=false;
speed_gt_20=false;}

[!speed_gt_10]{speed_gt_10=true;}

[speed_gt_10]{speed_gt_20=true;}

[speed_eq_0]

[ speed_eq_0 ]
[ !speed_eq_0 ]

[!speed_eq_0]

toggle_engine

[ !belt && speed_gt_10] { belt_alarm }

[!speed_gt_20]

toggle_engine

open_door || toggle_locks_button[!speed_gt_20]

toggle_locks_button

[ speed_gt_20 ]
[speed_gt_20]

{prop=((sgengine_on&&((!speed_gt_20)||(speed_gt_20&&slocks_on))
                                  &&((!srunning)||(srunning&&((belt)||(!belt&&speed_gt_10&&belt_alarm)))))
         ||(sengine_off&&(!belt_alarm&&!locks_down)));}

Figure 6.10: Abstracted and corrected version of the alarm controller
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What the model-checker has spotted is that if the engine is switched on while the car is mov-

ing (not an impossibility by any means) then it is possible to reach a state where the speed

is greater than 20 and not be in the locks on state. The solution is simple, split up the

default transitions in the engine on and locks states (for example, [speed_eq_0] and

[!speed_eq_0]) so that the correct state is reached depending upon the initial conditions

when these states are entered. These additional default transitions are shown in Figure 6.10. The

new model gives a TRUE LESAR property with the observer shown.

This model is perhaps not a realistic application but even with such a simple model the prop-

erties verified by LESAR are not intuitively obvious. It is also not very well-written STATEFLOW

since the use of conditions on default transitions is warned against in the STATEFLOW documen-

tation. The point, however, is that given suitable observers and verification by model-checking,

even badly written STATEFLOW can be used with confidence.

6.2.4 A mixed SIMULINK/STATEFLOW case study

The last case study we present is a model that combines both a SIMULINK part and a STATEFLOW

part. One of the users of our distributed platform is the group in Turku Center for Computer

Science in Finland. They have used our translator, and its model checking capabilities, for their

research in combining SIMULINK/STATEFLOW with mode-automata.

This model has been kindly provided to us by Pontus Boström of the Department of Computer

Science of Abo Akademi, Finland. It is a part of the model used in [BM06] to investigate the

suitability of a formalization proposed in that work.

The model represents a digital hydraulics system. The system consists of a hydraulic cylinder

that moves a load mass either to a desired position or with a desired speed. The speed of the load

mass is controlled by the pressure on each side of the piston in the cylinder. A digital controller

controls the pressures in the cylinder using a system of on/off valves. The SIMULINK model

is illustrated in Figure 6.11 and the STATEFLOW part is the Mode switching block in the

middle of the SIMULINK diagram. The STATEFLOW controller (shown in Figure 6.12) has the

following three modes stopped, extending and retracting.

Using our tool-chain, we managed to translate this model to LUSTRE and then to ensure that

the invariant in each mode is maintained by the transitions. The initial model contains more than

50 Blocks and the hierarchy is not very deep composed of only of the two subsystems we see in

Figure 6.11 as long as with one STATEFLOW Chart. The translated LUSTRE code has a length of

400 lines and contains as many as 30 LUSTRE nodes.
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Figure 6.11: The SIMULINK part of the kiiku verification example
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stopped extending

retracting

[extend]

[stop]

[retract]

[extend]

[stop]
[retract]

Figure 6.12: The STATEFLOW part of the kiiku verification example
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Chapter 7

Preservation of Synchronous Semantics

under Preemptive Scheduling

7.1 Motivation

In this Chapter we study the problem of code generation from synchronous high-level languages

such as SIMULINK or LUSTRE to a single-processor, multi-tasking architecture. This is in the

context of the tool-chain presented in Chapter 2 (Figure 2.1).

Before we enter into the study of this problem, we should motivate the need for consider-

ing this type of architectures, and multi-tasking code generation in particular. After all, single-

processor code generation methods for synchronous models exist, and in fact are the oldest: the

classic single-task code generation methods (see Section 3.2 and [HCRP91]). These methods

generate the simplest kind of code, that presents a number of advantages. For instance, it does

not require a real-time operating system (RTOS) with multi-tasking capabilities (i.e., a scheduler

to allocate the processor to the different tasks). Why then worry about multi-tasking implemen-

tations?

To understand this, let us examine more in detail the difference between the single-task and

the multi-task implementation, from where we will see the motivation for the work presented in

this Chapter. It is true that the generation of a single, monolithic program out of a synchronous

program is simple as we saw in Section 3.2, but there is a major drawback, mostly when the

synchronous program has parts running in different periods. In this case, the single-task im-

plementation may fail the schedulability check, whereas the counterpart multi-tasking one will

succeed.

We demonstrate the above using a simple example. Consider a synchronous program con-

sisting of two parts, or tasks, P1 and P2, that must be executed every (, i.e., their periods are) 10

ms and every 100 ms, respectively. Suppose the worst-case execution time (WCET) of P1 and

P2 is 2 ms and 10 ms, respectively, as shown in Figure 7.1. Then, generating a single task P that

includes the code of both P1 and P2 would be problematic. P would have to be executed every

10 ms, since this is required by P1. Inside P , P2 would be executed only once every 10 times

(e.g., using an internal counter modulo 10). Assuming that the WCET of P is the sum of the
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P1:

0 10 20 30 40 50 60 70 80 90 100 110 120 time (ms)

...

...
P2:

Figure 7.1: Two periodic tasks.

WCETs of P1 and P2 (note that this is not always the case), we find that the WCET of P is 12

ms, that is, greater than its period. In practice, this means that every ten times, the task P1 will

be delayed by 2 ms. This may appear harmless in this simple case, but the delays might be larger

and much less predictable in more complicated cases.

Until recently, there has been no rigorous methodology for handling this problem. In the

absence of such a methodology, industrial practice consists in “manually” modifying the syn-

chronous design, for instance, by “splitting” tasks with large execution times, like task P2 above.

Clearly, this is not satisfactory as it is both tedious and error-prone.

Multi-task implementations can provide a remedy to schedulability problems as the one dis-

cussed above. When an RTOS is available, and the two tasks P1 and P2 do not communicate with

each other (i.e., do not exchange data in the original synchronous design), there is an obvious

solution: generate code for two separate tasks, and let the RTOS handle the scheduling of the

two tasks. Depending on the scheduling policy used, some parameters need to be defined. For

instance, if the RTOS uses a static-scheduling policy, as this is the case most of the times, then a

priority must be assigned to each task prior to execution. During execution, the highest-priority

task among the tasks that are ready to execute is chosen. In the case of multi-periodic tasks, as in

the example above, the rate-monotonic assignment policy is known to be optimal in the sense of

schedulability [LL73]. This policy consists in assigning the highest priority to the task with the

highest rate (i.e., smallest period), the second highest priority to the task with the second highest

rate, and so on.

This solution is simple and works correctly as long as the tasks do not communicate with each

other. However, this is not a common case in practice. Typically, there will be data exchange

between tasks of different periods. In such a case, some inter-task communication mechanism

must be used. On a single processor, this mechanism usually involves some form of buffering,

that is, shared memory accessed by one or more tasks. Different buffering mechanisms exist:

• simple ones, such as a buffer for each pair of writer/reader tasks, equipped with a locking

mechanism to avoid corruption of data because of simultaneous reads and writes.

• same as above but also equipped with a more sophisticated protocol, such as a priority

inheritance protocol to avoid the phenomenon of priority inversion [SRL90], or a lock-

free protocol to avoid blocking upon reads or writes [CB97, HPS02].

• other shared-memory schemes, like the publish-subscribe scheme used in the PATH

project [PV95, Tri02], which allows decoupling of writers and readers.
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None of these buffering schemes, however, guarantees preservation of the original syn-

chronous semantics1. This means that the sequence of outputs produced by some task at the

implementation may not be the same as the sequence of outputs produced by the same task at

the original synchronous program. Small discrepancies between semantics and implementation

can sometimes be tolerated, for instance, when the task implements a robust controller which has

built-in mechanisms to compensate for errors. In other applications, however, such discrepan-

cies may result in totally wrong results, with catastrophic consequences. Having a method that

guarantees equivalence of semantics and implementation is then crucial. It also implies that the

effort spent in simulation or verification of the synchronous program need not be duplicated for

the implementation. This is an extremely important cost factor and hereafter we provide standard

methods and algorithms to overcome this problem and preserve the semantics in a communica-

tion between tasks in a preemptive scheduling execution platform.

As we show later in Section 7.3.3, ”naive” inter-process communication schemes do not pre-

serve the synchronous semantics. In particular, such schemes are not deterministic: depending

on the execution time of the tasks, the data sent from a task to another might be different.

One might say that strict preservation of the synchronous semantics is not really necessary.

After all, in control applications controllers are usually designed to be robust to various types of

data variability, including data loss, jitter, sensor inaccuracies, etc. Two answers can be given

to this claim. First, controllers contain more and more ”discrete logic”, which is not robust (a

single bit-flip may change the course of an if-then-else statement). Second, echos from the in-

dustry indicate that determinism is an important requirement. For instance, recent versions of

the SIMULINK code-generator REAL-TIME WORKSHOP provide options to ”ensure determin-

istic data transfer” (see the ”Related work” section for references). Our contacts with Esterel

Technologies reveal similar concerns.

Decomposition of a synchronous program into tasks

In the rest of this chapter we will be assuming an abstract model of a synchronous program based

on a set of communicating tasks where each task has its own triggering event (see Section 7.2).

The question arises, then, how to go from a synchronous model such as SIMULINK or LUSTRE

to this abstract model of tasks. In other words, how to decompose a synchronous program into a

set of tasks.

The decomposition procedure can be quite complicated involving WCET (worst-case execu-

tion time) estimation and schedulability analysis (i.e., checking that the tasks meet their dead-

lines, given a specified scheduling policy). Decomposition is indeed a topic on its own, and we

do not attempt to cover it in this work. Instead, we discuss a simple decomposition method, often

encountered in practice. Clearly this is a topic for future research.

The simple method boils down to grouping together all the different parts of the code that

are triggered by the same event, into separate tasks, one task for each such event. This event

1 Many of these schemes guarantee a freshest-value semantics, where the reader always gets the latest value

produced by the writer. Freshness is desirable in some cases, in particular in control applications, where the more

recent the data, the more accurate they are.
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may be a periodic one (i.e., the “tick” of a periodic clock) or an aperiodic one (e.g., linked to the

crank-shaft angle in an engine-control application).

We illustrate the above decomposition method on an example. Consider the SIMULINK

model in Figure 6.4, Section 6.2.1. This system has two different periods: red blocks and signals

have a period of 4 milliseconds (ms) and green ones have a period of 20 ms.

In this case, we can simply decompose this system in two tasks: the “red” task with period 4

ms will contain all red blocks, and the “green” task with period 20 ms will contain all the green

blocks. In this example the red task communicates data to the green task, but not vice-versa.

Notice that if the green task also needed to communicate data to the red one, there would be a

problem, namely, a dependency cycle, at those instants where both tasks are active (i.e., every 20

ms). In such cases this simple decomposition method does not work, and more refined methods

are necessary.

7.2 An inter-task communication model

We consider a set of tasks, T = {τ1, τ2, ...}. The set need not be finite, which allows the modeling

of, for example, dynamic creation of tasks.

To model inter-task communication, we consider a set of data-flow links of the form (i, j, p),
with i, j ∈ {1, 2, ...} and p ∈ {−1, 0}. If p = 0 then we write τi → τj , otherwise, we write

τi
−1
→ τj . The tasks and links result in what we shall call a task graph. For each i, j pair, there

can only be one link, so we cannot have both τi → τj and τi
−1
→ τj .

Intuitively, a link (i, j, p) means that task τj receives data from task τi. If p = 0 then τj

receives the last value produced by τi, otherwise, it receives the one-before-last value (i.e., there

is a “unit delay” in the link from τi to τj). In both cases, it is possible that the first time that τj

occurs2 there is no value available from τi (either because τi has not occurred yet, or because it

has occurred only once and p = −1). To cover such cases, we will assume that for each task τi

there is a default output value yi
0. Then, in cases such as the above, τj uses this default value.

Notice that links model data-flow, and not precedences between tasks.

We allow for cycles in the graph of links, provided these cycles are not zero-delay, that is,

provided there is at least one link (i, j,−1) in every cycle. Notice that we could allow zero-delay

cycles if we made an assumption on the arrival patterns of tasks, namely, that all tasks in a zero-

delay cycle cannot occur at the same time. However, it is often the case that tasks occur at the

same time. For instance, two periodic tasks with the same initial phase, will “meet” at multiples

of the least common multiplier of their periods.

Synchronous, zero-time semantics

We associate with this model an “ideal”, zero-time semantics. For each task τi we associate a set

of occurrence times Ti = {ti1, t
i
2, ...}, where tik ∈ R≥0 and tik < tik+1 for all k. Because of the

2 As we shall see shortly, we define an “ideal” zero-time semantics where a task executes and produces its result

as the same time it is released. We can thus say “task τi occurs”.
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zero-time assumption, the occurrence time captures the release, start and finish times of a task.

The release time refers to the time the task becomes ready for execution. The start time refers to

the time the task starts execution. The end time refers to the time the task finishes execution. In

the next section, we will distinguish these three times.

We make no assumption on the occurrence times of a task. This allows us to capture all

possible situations, namely, where a task is periodic (i.e., released at multiples of a given period)

or where a task is aperiodic or sporadic. Also note that for two tasks i and j, we might have

tik = tjm, which means that i and j may occur at the same time. The absence of zero-delay cycles

ensures that the semantics will still be well-defined in such a case.

Given time t ≥ 0, we define ni(t) to be the number of times that τi has occurred until t, that

is:

ni(t) = |{t′ ∈ Ti | t′ ≤ t}|.

We denote inputs of tasks by x’s and outputs by y’s. Let yi
k denote the output of the k-th

occurrence of τi. Given a link τi → τj , xi,j
k denotes the input that the k-th occurrence of τj

receives from τi. The ideal semantics specifies that this input is equal to the output of the last

occurrence of τi before τj , that is:

xi,j
k = yi

ℓ, where ℓ = ni(t
j
k).

Notice that if τi has not occurred yet then ℓ = 0 and the default value yi
0 is used.

If the link has a unit delay, that is, τi
−1
→ τj , then:

xi,j
k = yi

ℓ, where ℓ = max{0, ni(t
j
k) − 1}.

Some examples of the ideal semantics are provided in the next section, where we also show

potential problems that arise during implementation.

7.3 Execution on static-priority or EDF schedulers

7.3.1 Execution under preemptive scheduling policies

We consider the situation where tasks are implemented as stand-alone processes executing on

a single processor equipped with a real-time operating system (RTOS). The RTOS implements

a scheduling policy to determine which of the ready tasks (i.e., tasks released but not yet com-

pleted) is to be executed at a given point in time. In this work, we consider two scheduling

policies:

• Static-priority: each task τi is assigned a unique priority pi. The task with the highest

(greatest) priority among the ready tasks executes. We assume no two tasks have the same

priority, that is, i 6= j ⇒ pi 6= pj . This implies that at any given time, there is a unique task

that may be executed. In other words, the scheduling policy is deterministic, in the sense

that for a given pattern of release and execution times, there is a unique behavior.
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• Earliest-deadline first or EDF: each task is assigned a unique (relative) deadline (in short,

deadline). We assume no two tasks have the same deadline, that is, i 6= j ⇒ di 6= dj .

The task with the smallest absolute deadline among the ready tasks executes. The absolute

deadline of a task is equal to r + d, where r is the release time of the task and d is the

deadline. However, there is a case, that the scheduler cannot make a deterministic choice.

This is examined thoroughly in Section 7.4.4, providing a solution and explanation using

an example.

In the ideal semantics, task execution takes zero time. In reality, this is not true. A task is

released and becomes ready. At some later point it is chosen by the scheduler to execute. Until it

completes execution, it may be preempted a number of times by other tasks. To capture this, we

distinguish, as explained above, the release time of a task τi from the time τi begins execution

and from the time τi ends execution. For the k-th occurrence of τi, these three times will be

denoted ri
k, bi

k and ei
k, respectively.

Throughout this Chapter, we make only one assumption concerning the release times of the

different tasks, namely, that the tasks are schedulable. Schedulability means that no task ever

violates its absolute deadline, that is, that the release of a task cannot be prior to the completion

of the previous instance, if there exists any, of the same task. Therefore, in the static-priority case,

we assume that the absolute deadline is the next release time of the task, that is, the absolute

deadline of the k-th occurrence of τi is ri
k+1. In the EDF case, if di is the deadline of τi, then the

absolute deadline of the k-th occurrence of τi is ri
k + di.

Obviously, schedulability depends on the assumptions made on the release times and execu-

tion times of tasks. Checking schedulability is beyond the scope of this work. A large amount

of work exists on schedulability analysis techniques for different sets of assumptions: see, for

instance, the seminal paper of Liu and Layland [LL73], the books [HKO+93, SSRB98], or more

recent schedulability methods based on timed automata model-checking [FY04]. Notice, how-

ever, that our assumption of schedulability is not related to a specific schedulability analysis

method: it cannot be, since we make no assumptions on release times and execution times of

tasks.

7.3.2 A “simple” implementation

Our purpose is to implement the set of tasks so that the ideal semantics are preserved by the

implementation. It is worth examining a few examples in order to see that a “simple” implemen-

tation does not preserve the ideal semantics.

What we call simple implementation is a buffering scheme where, for each link τi → τj , there

is a buffer Bi,j used to store the data produced by τi and consumed by τj . This buffer must ensure

data integrity: a task writing on the buffer might be preempted before it finishes writing, leaving

the buffer in an inconsistent state. To avoid this, we will assume that the simple implementation

scheme uses atomic reads and writes, so that a task writing to or reading from a buffer cannot be

preempted before finishing.

For links with unit delays, of the form τi
−1
→ τj , the simple implementation scheme uses a

double buffer (B0
i,j, B

1
i,j). B1

i,j is used to store the current value written by the producer (i.e., the
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value written by the last occurrence of the producer) and B0
i,j is used to store the previous value

(i.e., the value written by the one-before-last occurrence). Every time a write occurs, the data in

the buffers is shifted, that is, B0
i,j is set to B1

i,j and B1
i,j is overwritten with the new value. The

reader always reads from B0
i,j . Reads and writes are again atomic.

For the purposes of this section, we assume that each task is implemented in a way such

that all reads happen right after the beginning and all writes happen right before the end of the

execution of the task. Also, there is only one read/write per pair of tasks, that is, if τi → τj then τi

cannot write twice to τj . These assumptions are not part of the implementation scheme. They are

a “programming style”. Our aim is to show that, even when this programming style is enforced,

the ideal semantics are not generally preserved. Note that these assumptions are not needed in the

sections that follow: the protocols we propose work even when these assumptions do not hold.

However, we will assume that every writer task writes at least once at each occurrence. This

is not a restrictive assumption since “skipping” a write amounts to memorizing the previously

written value (or the default output) and writing this value.

7.3.3 Problems with the “simple” implementation

Even with the above provisions, the ideal semantics are not always preserved. Consider, as a

first example, the case τi → τj , where static-priority scheduling is used and τi has lower priority

than τj , pi < pj . Consider the situation shown in Figure 7.2. We can see that, according to

the semantics, the input of the m-th occurrence of τj is equal to the output of the (k + 1)-th
occurrence of τi. However, this is not true in the implementation, because τj preempts τi before

the latter has time to finish, thus, before it has time to write its result.

One possible solution to the above problem is to use some type of priority-inheritance pro-

tocol, which essentially “lifts” the priority of a task while this task is accessing a resource: see,

for instance [SRL90]. In such protocols, the consumer task “blocks” and waits for the producer

task to finish. In this work, we are interested in wait-free solutions because they are easier to

implement. However, there is no wait-free solution to the above problem, unless we require that,

whenever τi has lower priority than τj and τj receives data from τi, a unit delay is used between

the two tasks, in other words, the link must be: τi
−1
→ τj . From now on, we will assume that this

is the case.

Even when the above requirement is satisfied, the simple implementation scheme is not cor-

rect. Consider the case τi
−1
→ τj , where pi < pj , that is, a low-to-high priority communication,

with unit delay. Suppose there is another task τq with pq > pj > pi. Consider the situation shown

in Figure 7.3, where the order of task releases is τi, τi, τq, τi and τj . In the ideal semantics, the

reader task τj uses the output yi
k−1. However, in the simple implementation, it uses the output

yi
k−2. This is because τq “masks” the releases of τi and τj , which results in an execution order of

τi and τj which is the opposite of their arrival order.

As a third example, consider the high-to-low static-priority case, where the producer has

higher priority than the consumer. In particular, we have τi → τj and pi > pj . There is also a

third task τq with higher priority than both τi and τj , pq > pi > pj . Consider the situation shown

in Figure 7.4. We can see that, according to the semantics, the input of the m-th occurrence of τj
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a: ideal semantics

b: simple implementation
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is equal to the output of the k-th occurrence of τi. However, this is not true in the implementation.

This is again because τq “masks” the order of arrival of τj and τi (rj
m < ri

k+1). As a result, the

order of execution of τj and τi is reversed and the reader τj consumes a “future” (according to

the semantics) output of the writer τi.

a: ideal semantics

b: simple implementation
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Figure 7.4: In the semantics, xj
m = yi
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These examples show that a simple implementation scheme like the one above will fail to

respect the ideal semantics. Note that the problems are not particular to static-priority scheduling.

Similar situations can happen with EDF scheduling, depending on the deadlines of the tasks. For

instance, the situation shown in Figure 7.2 can occur under EDF scheduling if rj
m+dj < ri

k+1+di.

The situation shown in Figure 7.4 can occur under EDF scheduling if rq
l + dq < ri

k+1 + di <
rj
m + dj .

7.4 Semantics-preserving implementation: the one-reader

case

To overcome the above problems, we propose an implementation scheme that preserves the ideal

semantics. The scheme can be applied to both cases of static-priority and EDF scheduling. For

simplicity and in order to facilitate understanding, we first present the scheme in the special case

of a writer task communicating to a single reader task. In this case, there are three protocols

depending on the relative priorities (or deadlines) of the tasks as well as on whether a unit-delay

is present or not. Thus, there are three protocols: the low-to-high protocol, the high-to-low
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protocol and the high-to-low protocol with unit-delay. These protocols are special cases of the

general protocol presented in Section 7.5.

The first is used in the static-priority case when the writer task has lower priority than the

reader task, or in the EDF case when the writer has smaller deadline than the reader. The second

is used in the static-priority case when the writer has higher priority than the reader, or in the

EDF case when the writer has greater deadline than the reader. The third is used in the same

cases as the second, but where there is a unit-delay between the writer and the reader.

The essential idea of all protocols is that, contrary to the simple implementation scheme of

the previous section, actions must be taken not only while tasks execute but also when they are

released. These actions are simple (and inexpensive) pointer manipulations. They can therefore

be provided as operating system support.

The protocols specify such release actions for both writer and reader tasks. It is essential for

the correctness of the protocol that when both writer and reader tasks are released simultane-

ously, writer release actions are performed before reader release actions.

7.4.1 The low-to-high buffering protocol

The low-to-high buffering protocol is described in Figure 7.5. Notice that, as mentioned in the

previous section, we assume a unit-delay between writer and reader. In this protocol, the writer

τi maintains a double buffer and a one-bit variable current. The reader τj maintains a one-

bit variable previous. current points to the buffer currently written by τi and previous

points to the buffer written by the previous occurrence of τi. The buffers are initialized to the

default value yi
0 and current is initialized to 0. previous does not need to be initialized,

since it is set by the reader task upon its release.

When the writer task is released, it toggles the current bit. When the reader task is re-

leased, it copies the negation of the current bit and stores it in its local variable previous.

Notice that these two operations happen when the tasks are released, and not when the tasks

start executing. During execution, the writer writes to B[current] and the reader reads from

B[previous].

A typical execution scenario is illustrated in Figure 7.6. We assume static-priority scheduling

in this example. One time axis is shown for each task. The double buffer is shown in the middle.

The arrows indicate where each task writes to or reads from. In this example, the low-priority

writer is preempted by the high-priority reader. It is worth noting that the beginning of execution

of the high-priority task does not always coincide with its release. This is because, in general,

there may be other tasks with even higher priority and they may delay the beginning of the task in

question (in fact, they may also preempt it, but this is not shown in the figure). It can be checked

that the semantics are preserved. A proof of preservation is provided in Section 7.7.

7.4.2 The high-to-low buffering protocol

The high-to-low buffering protocol is described in Figure 7.7. In this protocol, it is the reader

τj that maintains a double buffer. The reader also maintains two one-bit variables current,

next. current points to the buffer currently being read by τj and next points to the buffer
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Communication: τi
−1
→ τj .

Task τi maintains a double buffer B[0,1] and a one-bit variable current.

Task τj maintains a bit previous.

Initially, current = 0 and B[0] = B[1] = yi
0.

During execution:

• When τi is released: current := not current.

• While τi executes it writes to B[current].

• When τj is released: previous := not current.

• While τj executes it reads from B[previous].

Applicable under static-priority scheduling when pi < pj .

Applicable under EDF scheduling when di > dj .

Figure 7.5: Low-to-high buffering protocol.
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Figure 7.6: A typical low-to-high communication scenario.
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that the writer must use when it arrives next, in case it preempts the reader. The two buffers are

initialized to the default value yi
0 and both bits are initialized to 0.

When the reader task is released, it copies next into current, and during its execution,

it reads from B[current]. When the writer task is released, it checks whether current

is equal to next. If they are equal, then a reader might still be reading from B[current],

therefore, the writer must write to the other buffer, in order not to corrupt this value. Thus, the

writer toggles the next bit in this case. If current and next are not equal, then this means

that one or more instances of the writer have been released before any reader was released, thus,

the same buffer can be re-used. During execution, the writer writes to B[next].

A typical execution scenario is illustrated in Figure 7.8. This example also assumes static-

priority scheduling. Here, it is the reader that is preempted. It is worth noting that the beginning

of execution of the high-priority writer does not coincide with its release. This is because, in

general, there may be other tasks with even higher priority and they may delay the beginning of

the writer. In fact, such tasks may also preempt the writer, but this is not shown in the figure.

7.4.3 The high-to-low buffering protocol with unit-delay

This protocol is intended for the case τi
−1
→ τj . Before presenting this protocol, we must first

point out that we can often handle this case without need for a new protocol, but using the high-

to-low protocol presented above. This can be done by modifying the writer task τi so that it

outputs not only its usual output yi but also the previous value of yi. That is, the k-th occurrence

of τi will output both yi
k and yi

k−1, for k = 1, 2, .... This can be done at the expense of adding an

internal buffer to τi, which stores the previous value of the output. Then, it suffices to “connect”

the reader τj to yi
k−1, which means that we have transformed the link τi

−1
→ τj into a link τi → τj .

Thus, we can use the high-to-low protocol of Section 7.4.2.

The modification of τi suggested above is not always possible, since it requires access to

the task internals (e.g., source code). This is not always available, for instance, because of

intellectual property restrictions. For this reason, we also provide a protocol dedicated to the

high-to-low with unit-delay case. This protocol can be used by considering the writer and reader

tasks as “black boxes”.

The high-to-low buffering protocol with unit-delay is described in Figure 7.9. In this protocol,

the reader τj maintains a triple buffer. There are also three pointers previous, current and

reading. previous points to the buffer that contains the previous last value written by τi.

This is the value that was written by the execution of the one before last occurrence of the writer

(the execution that correspond to the previous last release of the writer). current points to the

buffer that the writer last wrote to or is still writing to. Finally, reading points to the buffer

that τj is reading from. Buffer B[0] is initialized to the default value yi
0. Pointers previous

and reading are initialized to 0 whereas current is initialized to 1.

When the reader task is released, it copies previous into reading, and during its execu-

tion reads from B[reading]. When the writer is released, it sets previous to current,

so that previous points to the value previously written. Then, current is assigned to a free

position in the buffer, that is, a position different from both previous and reading. Note
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Communication: τi → τj .

Task τj maintains a double buffer B[0,1] and two one-bit variables

current, next.

Initially, current = next = 0 and B[0] = B[1] = yi
0.

During execution:

• When τi is released: if current = next, then next := not

next.

• While τi executes it writes to B[next].

• When τj is released: current := next.

• While τj executes it reads from B[current].

Applicable under static-priority scheduling when pi > pj .

Applicable under EDF scheduling when di < dj .

Figure 7.7: High-to-low buffering protocol.
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that after the first execution the previous pointer will still point in the first buffer which has

the default value.

7.4.4 Some examples under EDF scheduling

All examples we have given so far have assumed static-priority scheduling. It is probably easier

for the reader to be persuaded of the correctness of the protocols in the static-priority case, before

going to the other scheduling policy, the EDF.

In this section, we provide some informal arguments and examples to justify intuitively why

the protocols can also be applied to EDF. Notice that, a priori, one might think that the protocols

are not applicable to EDF, for the following reason. Under EDF, the priorities of tasks change

dynamically. On the other hand, the above protocols have been designed assuming a static

priority assignment to the writer and the reader. Indeed, if the two priorities are swapped, a

different protocol must be used. These facts could lead one to conclude that, under EDF, the

buffering scheme needs to be dynamic as well.

Fortunately, this is not the case: the buffering scheme can be defined statically, that is, before

execution begins. In particular, the buffering scheme depends on the relative deadlines di and dj

of the writer τi and the reader τj , respectively.

• If di > dj then the low-to-high buffering scheme is used. Again, we assume a unit-delay

between τi and τj , in order to avoid the problem of Figure 7.2.

• If di < dj and τi → τj , then the high-to-low buffering scheme is used.

• If di < dj and τi
−1
→ τj , then the high-to-low with unit-delay scheme is used.

The case di > dj implies that, if τj is released before τi then τi cannot preempt τj , neither

can it start before τi ends. Indeed, rj
k ≤ ri

m and dj < di implies rj
k + dj < ri

m + di, that is, the

absolute deadline of τj is smaller than that of τi. Therefore, we have a situation which is “almost

the same” as the low-to-high static-priority case. The difference is that in the static-priority case

τj always preempts τi, whereas in the EDF case this might not happen. Therefore, in order to

guarantee the correctness of the scheme, we must examine this last possibility, to ensure that

nothing goes wrong.

Figure 7.11 illustrates what might happen when τj does not preempt τi as it normally would in

the low-to-high static-priority scenario. One can see that this poses no problems for the buffering

scheme. In fact, the situation is as if the k-th instance of τj was released after the (m + 1)-th
instance of τi finished.

Let us now turn to the case di < dj . This case implies that, if τi is released before τj then

τj cannot preempt τi, neither can it start before τi ends. Indeed, ri
k ≤ rj

m and di < dj implies

ri
k + di < rj

m + dj , that is, the absolute deadline of τi is smaller than that of τj . Therefore, we

have a situation which is “almost the same” as the high-to-low priority case. The difference is

that in the high-to-low priority case τi always preempts τj , whereas in the EDF case this might

not happen. As before, we must examine this possibility.
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Communication: τi
−1
→ τj .

Task τj maintains a triple buffer B[0..2] and three one-bit variables

previous, current, reading.

Initially, previous = reading = current = 0, B[0] = yi
0.

During execution:

• When τi is released:

previous := current;

current := x∈[0..2].(x 6= previous ∧ x 6=
reading).

• While τi executes it writes to B[current].

• When τj is released: reading := previous.

• While τj executes it reads from B[reading].

Figure 7.9: High-to-low buffering protocol with unit delay.
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Figure 7.11: The scenario of Figure 7.6 possibly under EDF: τi is not preempted.

Figure 7.12 illustrates what might happen when τi does not preempt τj as it normally would in

the high-to-low static-priority scenario. Again, this poses no problems to the buffering scheme.

The situation is as if the (k + 1)-th instance of τi was released after the m-th instance of τj

finished.

The same situation is for the case where τi
−1
→ τj and di < dj . Figure 7.13 shows a typical

execution, where the writer task does not preempt the reader, despite the fact that the latter has

larger deadline. This does not cause any problem, however. In fact, the situation is exactly the

same as the one where τi arrives after τj finishes.

EDF special case: equal absolute deadlines

When we were defining the task model, in Section 7.2, and the scheduling policies later, we

provided means to the scheduler so that he has always a deterministic choice about the next

executing task; we opposed that no two tasks can have the same priorities, for the SP, and no two

tasks can have equal relative deadlines.

However, there is a case, under EDF, where the scheduler cannot distinguish between two

tasks, which one is to be executed first: when the release of a task will have the same absolute

deadline with the task actually running or with a task that is already preempted and waiting to

continue execution.

We could bypass this problem by instructing the scheduler to continue executing the oldest

task. Likewise we avoid the cost of context switching, when the new task is about to preempt

an already running task. Nevertheless, we show in this section that this non-deterministic choice

does not affect the preservation of semantics provided by our protocols.

We will show the above, using the example in Figure 7.14, figuring three tasks τi, τj and τq,

with relative deadlines dq < dj < di and task τi communicates its data to task τj . Since reader
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Figure 7.12: The scenario of Figure 7.8 possibly under EDF: τj is not preempted.

τj has shorter relative deadline than writer τi, we will use the low-to-hi buffering protocol, as we

saw in the previous section, which means that there is a unit-delay from the reader to the writer.

Without loss of generality, we consider that the first execution of writer task τi in the figure,

is after a series of releases and executions of the tasks and that all of them have completed.

Suppose also that current=0 Back to the example, upon release of the writer τi at time tr′
i

and according to the hi-to-low protocol, we have current=1 and during execution τi writes in

buffer B[current]=B[1].

On the second release of the writer, at time tri
the new value of the pointer is current=0

and during its execution, τi writes to B[current]=B[0]. However, before the completion of

τi, there is the release of task τq, at time trq
, whose absolute deadline trq

+ dq is shorter than

the one of τi. Thus, the scheduler chooses to preempt τi and execute τq. Before the end of the

execution of task τq, at time trj
, we have the release of the reader task τj . Always according to the

protocol, there will be new assignment for the previous pointer: previous=¬current=1
and when τj will be executing, it will read from buffer B[previous]=B[1].

The subtle point of this example, is that the arrival of the reader τj happens so that its absolute

deadline is equal to the one of the writer τi, already preempted. Indeed, tri
+ di = trj

+ dj , as

it is shown in the Figure, so when τq finishes execution, the scheduler will not be able to decide

which task to execute next.

Our answer to this situation is that, simply, it makes no difference which will be the sched-

uler’s choice. As a matter of fact, the two executions of Figure 7.14 demonstrate what’s the series

of events in any of the two choices. On top the scheduler chooses to continue the execution of

the writer and after it finishes, then it executes the reader, whereas in the bottom the execution of
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Figure 7.13: The scenario of Figure 7.10 possibly under EDF: τj is not preempted.

the reader task will preempt, for the second time, the execution of the writer.

Since there can be no more release of the reader or the writer before time tri
+ di (remember

that the schedulability assumption states that there can be no new release of a task before it’s

absolute deadline), the pointer values current=0 and previous=1, stay unchanged and

thus, the writer keeps writing in B[0] and the reader keeps reading from B[1], no matter what

is their execution order, as is depicted in the both cases of the figure.

7.4.5 Application to general task graphs

The three protocols presented above can also be used in a general task graph as the one described

in Section 7.2. Here, we show how this can be done in a simple way. Notice that the method

we present here is not always optimal in terms of buffer utilization. Section 7.5 presents a

generalized protocol which is also optimal.

We can assume that tasks are ordered with respect to their priorities or deadlines, depending

on whether we are in a static-priority or EDF setting, respectively. For instance, in a static-

priority setting, we assume that tasks are ordered as τ1, τ2, ..., meaning that τ1 has the highest

priority, τ2 has the second highest, and so on. In an EDF setting, τ1 has the smallest deadline,

and so on.

We will also assume, as we already said above, that there is no link τi → τj such that i >
j. This would correspond to the low-to-high priority case without unit-delay, where semantics

cannot be generally preserved. Thus, with i > j, we have only three types of links, namely,

τi
−1
→ τj , τj → τi and τj

−1
→ τi.
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One simple way of using the protocols is to consider each data-flow link separately. In other

words, assuming i > j, for each link τi
−1
→ τj we apply the low-to-high protocol, for each link

τj → τi we apply the high-to-low protocol, and for each link τj
−1
→ τi we apply the high-to-low

protocol with unit-delay. This method results in a memory requirement of 2M + 2N1 + 3N2

(single) buffers, where M is the number of τi
−1
→ τj links in the task graph, N! is the number of

τj → τi links and N2 is the number of τj
−1
→ τi links. We also have memory requirements for

the one-bit variables, but these are negligible. Note that we use the notation of M ,N1 and N2

because it will be similar (corresponding to the case we use) when we explain the generalized

protocol in Section 7.5.1.

We can immediately improve the above memory requirement by observing that, in the case

of the low-to-high protocol, it is the writer that maintains the double buffer and not the reader.

Therefore, if we have a set of links τi
−1
→ τjk

with i > jk for k = 1, ...,M , and if τi communicates

the same data to all tasks τjk
, then we do not need 2m buffers, but only 2.

Let us give an example. Consider the task graph shown in Figure 7.15. Unit-delays are

depicted as −1 on the links. Notice that all unit-delays are mandatory, except the one on the link

τ3
−1
→ τ4. We assume that every writer communicates the same data to all readers.

Using the simple method, we have buffer requirements equal to 2M + 2N1 + 3N2 = 2 ∗
4 + 2 ∗ 2 + 3 ∗ 1 = 15. Using the improved method, the buffers maintained by each task are as

follows:

• τ1 is the highest-priority (or lowest-deadline) task. It maintains one double buffer as the

writer of the link τ1 → τ3. It maintains no buffer as a reader, since in this case the buffers

are maintained by the lower-priority writers.

• τ2 maintains no buffer.

• τ3 maintains one double buffer as the writer of the links τ3
−1
→ τ1 and τ3

−1
→ τ2.

• τ4 maintains one double buffer as the writer of the links τ4
−1
→ τ1 and τ4

−1
→ τ2. τ4 also

maintains a triple buffer as the reader of the link τ3
−1
→ τ4.

• τ5 maintains one double buffer as the reader of the link τ3 → τ5.

Thus, in total, the improved method uses 2 + 2 + 2 + 3 + 2 = 11 buffers, or 4 buffers less than

the simple method. There is still room for improvement, however. In particular, we show in the

next section how the buffer requirements can be optimized.

7.5 Semantics-preserving implementation: the general case

As already mentioned, the protocols presented in Section 7.4 are specializations of a generalized

protocol, called DBP, that we present in this section. DBP is used for one writer communicat-

ing (the same) data to N lower-priority (or larger-deadline) readers and M higher-priority (or

smaller-deadline) readers, as shown in Figure 7.16. In N1 among the N lower-priority readers
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Figure 7.15: A task graph.

N1 lower-priority readers N2 lower-priority readers with unit-delay

writer

M higher-priority readers with unit delay

−1

−1

Figure 7.16: Applicability of the DBP protocol.

there is no unit-delay, while in the rest N2 = N − N1 readers there is a unit-delay. DBP can be

applied to general (i.e., multi-writer) task graphs as we show in Section 7.5.2.

Apart from being semantics-preserving, DBP also allows to reduce the memory requirements

with respect to the simple method presented in Section 7.4.5. In particular, DBP requires N + 2
(single) buffers, assuming M 6= 0 and N2 6= 0. If M = N2 = 0 (i.e., there are no readers linked

with a unit-delay) then DBP requires N + 1 = N1 + 1 buffers. This is to be compared, for

example, to 2N buffers required when using the method of Section 7.4.5. Buffer requirements

are presented in detail in Section 7.8.
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7.5.1 The Dynamic Buffering Protocol

DBP is shown in Figure 7.17. The figure shows the protocol in the case where M 6= 0 or

N2 6= 0, that is, the case where there are links with unit-delay. If M = N2 = 0 then the protocol

is actually simpler: the pointer previous is not needed and instead of N + 2 = N1 + 2, only

N1 + 1 buffers are needed.

The operation of DBP is as follows. The writer τw maintains all buffers and pointers except

the pointers of the higher-priority readers P[i]. The current pointer points to the position

that the writer last wrote to. The previous pointer points to the position that the writer wrote

to before that. R[i] points to the position that τi must read from.

The key point is that when the writer is released, a free position in the buffer array must

be found, and this is where the writer must write to. By free we mean a position which is not

currently in use by any reader, as defined by the predicate free(j). Finding a free j ∈ [1..N +
2] amounts to finding some j which is different from previous (because B[previous] may

be used by the higher-priority reader or a possible lower-priority with unit-delay reader may need

to copy its value) and also different from all R[i] (because B[R[i]] is used, or will be used,

by the lower-priority reader τi). Notice that such a j always exists, by the pigeon-hole principle:

there are N + 2 possible values for j and up to N + 1 possible values for previous and all

R[i].

Finding a free position is done in the second instruction executed upon the release of the

writer. The first instruction updates the previous pointer. This pointer is copied by each

higher-priority reader τ ′
i , when released, into its local variable P[i]. τ ′

i then reads from

B[P[i]].

When a lower-priority reader τi is released, we have two cases: (i) either τi is one of the

N1 readers that are linked without a unit-delay, or (ii) τi is one of the N2 readers that are linked

with unit-delay. In case (i) τi needs the last value written by the writer. In case (ii) τi needs the

previous value. Pointer R[i] is set to the needed value. Besides this pointer assignment the

rest of the procedure remains the same for both kinds of lower-priority readers. While executing,

τi reads from B[R[i]]. When τi finishes execution, R[i] is set to null. This is done for

optimization purposes, so that buffers can be re-used as early as possible. Notice that even if this

operation is removed, DBP will still be correct and it will use at most N + 2 buffers. However,

DBP will be sub-optimal, in the sense that the buffer pointed to by R[i] will not be freed until

the next release of τi. With the above operation present, the buffer is freed earlier, namely, when

the current release of τi finishes.

Notice that DBP also relies on the fact that no more than one instance of every task can be

active at any point in time, which follows from the schedulability assumption. In more detail,

there can be no more than one pointer per lower-priority task, which allow us to use the pigeon

hole principle as we did before.

Like the protocols discussed in the previous section, DBP also specifies release actions for

both writer and reader tasks. In case of simultaneous release of more than one tasks, we re-

quire that the release actions of the writer task are performed before the release actions of the

simultaneously released readers. The actions of the readers can be performed in any order.

Another major contribution of the above algorithm is that it does not take into account any
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Communication: τw → τi, for i = 1, ..., N1, τw
−1
→ τi, for i = N1 + 1, ..., N1 + N2, and

τw
−1
→ τ ′

i , for i = 1, ...,M . Let N = N1 + N2.

Task τw maintains a buffer array B[1..N+2], one pointer array R[1..N] and two point-

ers current and previous.

Each task τ ′
i , for i = 1, ...,M , maintains a local pointer P[i].

All pointers are integers in [1..N+2]. A pointer can also be null.

Initially, current = previous = 1, all R[i] and P[i] are set to null, and all

buffer elements are set to yi
0.

During execution:

Writer:

• When τw is released:

previous := current;

current := some j∈[1..N+2] such that free(j), where

free(j) ≡ (previous6=j ∧ ∀i∈[1..N].R[i]6=j).

• While τw executes it writes to B[current].

Lower-priority reader τi:

• When τi is released:

if i∈[1..N1] then R[i] := current (link τw → τi)

else R[i] := previous (link τw
−1
→ τi)

• While τi executes: reads from B[R[i]].

• When τi finishes: R[i] := null.

Higher-priority reader τ ′
i :

• When τ ′
i is released: P[i] := previous.

• While τ ′
i executes: reads from B[P[i]].

Applicable under static-priority scheduling when

∀i = 1, ..., N . pi < pw. and ∀i = 1, ...,M . p′i > pw.

Applicable under EDF scheduling when

∀i = 1, ..., N . di > dw and ∀i = 1, ...,M . d′
i < dw.

In case of simultaneous release of writer and readers: the action for the writer is executed

first. The actions for the readers can be executed in any order.

Figure 7.17: The protocol DBP.
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Figure 7.18: A task graph with one writer and three readers.

possible initial offset of the concerning tasks. This is important mostly for the multi-periodic

application of the algorithm, as we’ll study in Section 7.5.3, since methods used up to now,

exclude the use of the initial offset.

An example

To illustrate how DBP works, we provide an example. Consider the task graph shown in Fig-

ure 7.18. There are four tasks: one writer τw with period Tw = 2, one higher-priority reader τ1

with period T1 = 1 and two lower-priority readers τ2 and τ3 with periods T2 = 3 and T3 = 5
respectively. This means that for the one writer of this task graph N = 2, where N is the number

of lower priority readers. Moreover there is one task with higher priority. Suppose the priorities

of the tasks follow the rate-monotonic assignment policy (note that DBP does not require this, as

it can work with any priority assignment):

Prio1 > Priow > Prio2 > Prio3.

According to the algorithm, the writer will maintain a buffer array B, a pointer array R

of size 2, and two pointers current and previous. Also, τ1 maintains a local pointer

P. Note that, since N = 2, B cannot grow larger than 4 buffers. The initial values are

current=previous=1 and R[2]=R[3]=P[1]=null.

A sample execution of DBP is shown in Figures 7.19 and 7.20. Figure 7.20 shows the values

of the pointers during execution. Figure 7.19 shows the release, begin of execution and end of

execution events for each task. Task τ1 is released at times 0, 1, 2, 3, 4, 5, task τw is released at

times 0, 2, 4, and so on. We use the notation τ1, τ
′
1, ... to denote different instances of the same

task. Notice that a task instance may be “split” because of preemption: this is, for instance, the

case of τ2 which is split between the first and second cycle. The heights of the task “boxes” in

the figure denote the relative priorities of the tasks.
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Figure 7.19: The execution of the tasks.

init 0 1 2 3 4 5

current 1 2 2 1 1 3 3

previous 1 1 1 2 2 2 2

P[1] null 1 1 2 2 1 1

R[2] null 2 2 null 1 null null

R[3] null 2 2 2 2 2 3

Figure 7.20: The values of the DBP pointers during execution.

Figure 7.19 also shows exactly where each task reads from and writes to at any given time

(dashed and solid arrows respectively). The “boxes” at the bottom of the figure correspond to the

buffer array B and the values stored in each buffer: y0 is the initial (default) value, y1 is the value

written by the first instance of τw, and so on. Notice that B grows to 3 buffers in this example.

It can be verified that the synchronous semantics are preserved. For example, the first instance

of reader 2, τ2, reads the value produced by the first instance of the writer, which was released

at the same time. The third instance of reader 1, τ ′′
1 , reads the same value: this is because a unit

delay is present in this case. It is worth noting that the unique instance of reader 3 shown in the

figure, although it is preempted multiple times, consistently reads the correct value, namely y1.

The fact that this instance has not terminated execution when the writer is released at time 4 is

what triggers the allocation of a new buffer B[3].

Specializations

It can be easily shown that the three protocols presented in Section 7.4 are specializations of

DBP. First, consider the low-to-high protocol (Figure 7.5). It can be obtained by using DBP with
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N = 0 and M = 1. Then, DBP uses two buffers B[1..2] and three pointers: previous,

current, P[1]. In fact, previous is redundant since it always points to the buffer not

pointed to by current. Thus, current corresponds to the pointer current of Figure 7.5

and P[1] corresponds to the pointer previous of Figure 7.5 (the latter is local to the reader).

Next, consider the high-to-low protocol (Figure 7.7). It can be obtained by using DBP with

N2 = M = 0 and N1 = 1. As we said above, in this case only N1 + 1 = 2 buffers are needed

and the pointer previous is useless. Thus, DBP uses two pointers current, R[1]: they

correspond to pointers next and current of Figure 7.7, respectively.

Finally, consider the high-to-low protocol with unit-delay (Figure 7.9). It can be obtained

by using DBP with N1 = M = 0 and N2 = 1. Then, DBP uses three buffers B[1..3]

and three pointers previous, current, R[1]: they correspond to pointers previous,

current, reading of Figure 7.9, respectively.

7.5.2 Application of DBP to general task graphs

Applying DBP to a general task graph is easy: we consider each writer task in the graph and

apply DBP to this writer and all its readers. As an example, let us consider again the task graph

shown in Figure 7.15. There are three writers in this graph, namely, τ1, τ3 and τ4. We assume, for

each writer, that it communicates the same data to all its readers. Then, the buffer requirements

are as follows:

• τ1 has only one lower-priority reader without unit-delay. That is, we are in the case M =
N2 = 0 and N1 = 1. As said above, in this case DBP specializes to the high-to-low

protocol, which requires one double buffer.

• τ3 has two higher-priority readers τ1 and τ2 (with unit-delay), one lower-priority reader τ4

without unit-delay and one lower-priority reader τ5 with unit-delay. That is, we are in the

case N1 = N2 = 1 and M = 2. We apply DBP and we need N + 2 = 4 buffers.

• τ4 has two higher-priority readers. That is, we are in the case N = 0 and M = 2. We

apply DBP and we need 2 buffers.

Thus, in total, we have 8 single buffers. This is to be compared to 11 single buffers needed

using the method described in Section 7.4.5.

In the case that we have more than one writer, as we said earlier, there is distinctive appli-

cation of the DBP protocol with new memory space and pointers. Therefore, we do not need

to take care about the execution of assignments implied by two different instances of DBP (we

could impose for example a partial order for the readers and the writers depending on the priority

of the writers of the corresponding DBP). This means that the assumption we expressed earlier,

i.e. when a reader and a writer arrive simultaneously, we give priority to the actions of the writer,

is sufficient in the general case, we just described.
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7.5.3 Application of DBP to tasks with known arrival pattern

We have seen that the three protocols, described in Section 7.4, are correct for any arrival pat-

tern. The same holds for DBP as well. In this section we examine the application of DBP to

applications where the triggering pattern of tasks is known, for instance, multi-periodic applica-

tions where each task is periodic with a known period. We will see that in this case DBP can be

optimized, taking advantage of the additional knowledge on the arrival patterns. In this section

we discuss a time optimization, which aims at turning DBP into a static rather than dynamic

protocol. In Section 7.8 we discuss memory optimizations.

DBP, being a dynamic protocol in general, implies an overhead, namely, searching for a free

buffer to use every time the writer is released. To this overhead must be added the time to allocate

a buffer on-the-fly, or the “waste” of memory in case buffers are pre-allocated. We can do better

if we know the arrival pattern of the tasks, by providing a static schedule. This can be done

by simulating the DBP with the, a priori known, release times of the reader(s) and writer tasks.

During simulation we keep track where the writer stores data on every execution and from where

the reader(s) read from, on every execution as well. Those positions are instructed by DBP and

more precisely, for the writer it is the current pointer and for the reader task τi it is the pointer

R[i].

This simulation must be done until the hyper-period of the tasks. In the case where the tasks

are multi-periodic, this hyper-period Th is the least common multiplier of all periods. If tasks

are not multi-periodic then we will have to find a point where the arrival pattern starts repeating.

If that point doesn’t exist either, we will have to keep track for the entire possible execution of

the system. This last one, of course, may be very inefficient in case the execution is not short,

causing the static schedule to be enormous in terms of memory (to remember where the readers

and writer read from and writes to).

7.6 Periods in consecutive powers of two

We further investigate special cases of applications for which the periods are powers of two.

We also consider one additional factor, whether we have atomic reads and writes or not. If data

transfer is instantaneous then we can further optimize the system since the scheduling constraints

allow earlier release of buffer space.

7.6.1 Non-atomic case

Consider n tasks, τ1, ..., τn, such that task τi has period Ti = 2i−1 and a priority which is in

inverse order of period. Suppose each task sends data to all lower-priority tasks. For three tasks

of periods T1 = 1, T2 = 2 and T3 = 4, this gives the situation shown in Figure 7.21.

We assume that for simultaneous occurrences, the higher-priority task takes precedence and

thus transmits its data to the co-incidentally occurring lower-priority task. Thus the first emission

of τ1 (r1a) is required by both τ2 and τ3. Furthermore, the data is required to persist until the

end of the period of τ3, i.e., until r3a’. However, the same emission is required by τ2 and this
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Figure 7.21: Multiperiodic events with consecutive periods in powers of 2

buffer can be shared with τ3. Thus we can implement this system using three single buffers (one

for r1a to r2a and r3a, one for r2a to r3a and one for r1c to r2b). Our original scheme

would require three double buffers.

In fact, it is immediately apparent that for the highest-priority task out of n tasks we require

n − 1 single buffers. Thus, for each writer task i, we require n − i single buffers, one for each

of the (lower-priority) reader tasks. When every task is a writer, this gives a total of n(n − 1)/2
single buffers. If we used the general scheme of Subsection 7.4 we would require n(n − 1)/2
double buffers, that is, double the memory space.

To implement this scheme in practice requires a buffer indexing mechanism. Generating the

indexing pattern implied by Figure 7.21 is quite simple. We must first observe that each alternate

emission of the top-level task is unused by lower-priority tasks. Given this, for one writer and n
reader tasks, for emission i = {0, 2, 4, . . .} the writer utilizes buffer:

B(i) = min
{

j : 0 ≤ j ≤ n − 1, i mod 2n−j = 0
}

(7.1)

The writer at time i writes to buffer B(i), any reader occurring at time i reads from buffer B(i).
For example, for n = 3 we need 3 buffers indexed 0, 1, 2 and used according to the pattern

B(0) = 0, B(2) = 2, B(4) = 1, B(6) = 2, B(8) = 0, and so on. A potentially useful value is

the residence time of the data in the buffer which can be computed as: R(i) = 2n−B(i).

7.6.2 Atomic case

In Section 7.6 we made no assumptions about the atomicity of data transfers and we were con-

strained to allow buffers to be occupied for the entire period of a given task. However, we know
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Figure 7.22: Multiperiodic events with consecutive periods in powers of 2, atomic reads

from the fixed-priority scheduling constraints that a low-priority task τj must begin execution

before the mid-point of its period, i.e., 2j−2. If it has not managed to do so, this means that the

cumulative execution time of higher-priority tasks is at least half the period of τj and, since all

these higher-priority tasks will also be executed at the second half of τj’s period, τj will never

get to execute. This contradicts our assumption that the system is schedulable.

Now, we assume that tasks sample their data at the start of execution so if we can arrange

for reading of the data to be completed prior to the period mid-point then the related buffer

becomes free before the next emissions of higher-priority tasks. If we have a fixed bound on

communications we can simply add this time to the execution time for each higher-priority task

and the scheduler can then guarantee atomicity in the sense described here. Alternatively, we

could rely upon the operating system to provide atomic data transfer. In any case, we can make

further savings in the number of required buffers.

Consider Figure 7.22 which illustrates the situation for three tasks and atomic reads. We can

now implement communications from τ1 to tasks τ2 and τ3 using only a single buffer because we

can use the same buffer for r1a to r2a and for r1c to r2b. In fact, for writing task τi, we need

⌊(n − i)/2⌋ buffers. The reason for the divide by two is that since only every second emission

from task τi is needed we do not need a new buffer each time we add a new higher-priority task.

To see this consider the two processor case in Figure 7.22 (τ2 and τ3) which needs a single buffer

(from r2a to r3a) and compare with the three processor case in the same figure. Since r2b is

ignored, no further buffers are required. For n tasks, with n even we need (n/2)2 buffers, and

for n odd we need (n/2)2 + (n/2) buffers in total.

The buffer indexing function for this situation is simply B(i)/2 and the data residence time

R(i)/2.
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Non-consecutive powers of two do not pose any serious problems since these are simply

subsets of the current analysis. The only complication is that the buffer indexing may require

support in the form of index tables rather than analytical formulae as above. More general har-

monic cases can also be treated using the methods here, for example periods of T1 = 1, T2 = 2
and T3 = 6 are almost the same as for the 1 − 2 − 4 case apart from the duplicate emissions

from τ1 to τ2.

7.7 Proof of correctness

In this section we formally prove that the protocols proposed in Sections 7.4 and 7.5 are correct,

that is, they preserve the ideal semantics. We will use two different proof techniques. For the

one-writer/one-reader protocols of Section 7.4 we reduce correctness to a problem of model-

checking on a finite-state model, where automatic verification techniques can be applied [QS81,

CGP00]. For the general protocol of Section 7.5 we provide a “manual” proof. Although the

latter establishes the correctness of the special protocols as well, we believe that the model-

checking proof technique is still worth presenting, because it can serve to establish correctness

of other similar protocols in an automatic way. Moreover, from a historical point of view, the

one-writer to one-reader protocols, have been founded earlier and the model-checking proof was

used in the first place.

7.7.1 Proof of correctness using model-checking

In order to use model-checking, we must justify why finite-state models suffice. We do this in a

series of steps.

The first step is to prove correctness of each protocol for a single writer and a single reader.

Obviously, the protocols must function correctly for an arbitrary number of tasks. However, we

do not want to model all these tasks, since this would yield a model with an unbounded number

of tasks, where model-checking is not directly applicable. To avoid this, we employ the following

argument. We claim that proving correctness of a given protocol only for two tasks, one writer

and one reader, is sufficient, provided the effect of other tasks on these two tasks is taken into

account.

But what is the “effect of other tasks”? In the case where a protocol of Section 7.4 is used

only for a single writer/reader link, the buffers are not shared with the other tasks. Therefore, the

only way the other tasks influence the writer/reader pair in question is by preemption. We will

show how to model this influence, although we are not going to model preemption explicitly.

Having eliminated the problem of infinite number of tasks, we still have the problem of data

types. Our buffering protocols are able to convey any data type. However, in order to use model-

checking directly, variables must take values in a finite domain. To solve this problem we use

the technique of uninterpreted functions [BD94], which allows to replace the unknown data type

with a fixed number of distinct values. This number is the maximum number m of distinct values

that can be present in the system at the same time. To implement this idea, we replace the data

type with a n-vector of booleans, such that 2n ≥ m.
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The general architecture of the model we shall use for model-checking is shown in Fig-

ure 7.23. The model has four components. An event generator component which produces the

events of the tasks. A component modeling the ideal semantics. A component modeling the

behavior of the buffering protocol. A preservation monitor component which compares the two

behaviors and checks whether they are “equivalent” (where the notion of equivalence is to be

defined).

The above described approach, using the model based paradigm, is interesting because it

provides means to verify the preservation of semantics in a larger extend. One can use this

scheme to generate sequences of inputs and compare the results of the protocol in question with

respect to an automaton representing some “ideal” behavior, or some behavior under test.

preservation
monitor

ideal semantics

event generator

buffering protocol
execution with a

Figure 7.23: Architecture of the model used in model-checking.

Event generator model

A task τi is modeled by three events, ri, bi and ei, corresponding to the release, beginning of

execution and end of execution of (an instance of) the task, respectively. In the ideal semantics,

these three events occur simultaneously. In the real implementation, these events follow a cyclic

order

ri → bi → ei → ri → bi → ei → · · · ,

which corresponds to two facts. First, that each task instance is first released, then starts execution

and finally ends execution. Second, that when a new instance is released the previous instance

has finished, which is our schedulability assumption. Notice that although preemption may occur

between bi and ei, they are not modeled explicitly.

The scheduling policy is captured by placing restrictions on the possible interleavings of the

above events. Let us first show how to model static-priority scheduling. Let τ1 be the high-

priority task and τ2 be the low-priority task. Then, we know that neither b2 nor e2 can occur

between r1 and e1. Indeed, τ2 cannot start before τ1 finishes. Also, if τ2 has already started when

r1 occurs then it is preempted, thus, will not finish before τ1 finishes. These ordering restrictions

can be modeled using the finite-state automaton shown in Figure 7.24.3

The automaton has five states. The state labeled “false” corresponds to the violation of the

static-priority scheduling assumption. In other words, the legal orderings of the events ri, bi, ei

3 For simplicity, the automaton shown in the figure assumes that no two events can occur simultaneously. This

assumption can be lifted but it results in a more complicated automaton which is not shown.
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only 1 only 2

r1
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b2, e2

b1
b1 b2

Figure 7.24: Assumptions modeling static-priority scheduling: p1 > p2.

are those orderings where the “false” state is not reached. For example, r2r1b1e1b2e2 is legal, but

r2r1b2e2 is not. The other four states correspond to the cases where no task, only one task, or

both tasks have been released.

EDF scheduling can be modeled in a similar way. Let τ1 be the task with the smaller deadline

and τ2 be the task with the larger deadline. Figure 7.25 shows an automaton modeling this

case. Again, when state “false” is reached the EDF scheduling assumption is violated. Note

that the restrictions imposed by the automaton of Figure 7.25 are weaker than those imposed

by the automaton of Figure 7.24. For example, the sequence r2r1b2e2b1e1 is accepted by the

former automaton but not by the latter. This sequence corresponds to the case where the absolute

deadline of τ1 is greater than the one of τ2, thus, τ2 is not preempted.

Ideal semantics model

The other three models are described in the synchronous language LUSTRE. In fact, this is the

language we used for model-checking. In LUSTRE, as we have seen, variables denote infinite

sequences of values, the flows. The ideal semantics for the case τ1 → τ2 can be described in

LUSTRE as shown in Figure 7.26. A similar model can be built for the case τ1
−1
→ τ2.

The boolean flows r1 and r2 model the events r1 and r2. That is, event r1 occurs when and

only when r1 is “true”, and similarly for r2. These flows are generated by the event generator

model presented previously.

The flow val models the values written by the writer task. It is an n-vector of booleans, ac-

cording to the abstraction technique explained previously. This flow is also generated externally,
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Figure 7.25: Assumptions modeling EDF scheduling: d1 < d2.

ideal1 = if r1 then val else (init -> pre ideal1);

ideal2 = if r2 then ideal1 else (init -> pre ideal2);

Figure 7.26: The ideal semantics described in LUSTRE: the case τ1 → τ2.
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node Low_to_High(r1, r2, e1: bool; w_val: boolˆn)

returns (r_val: boolˆn);

var buff_0, buff_1: boolˆn;

curr, prev: bool;

let

curr = false -> if r1 then not pre curr else pre curr;

prev = false -> if r2 then not curr else pre prev;

buff_0 = if e1 and curr then w_val else (init -> pre buff_0);

buff_1 = if e1 and not curr then w_val else (init -> pre buff_1);

r_val = if prev then buff_0 else buff_1;

tel

Figure 7.27: The low-to-high protocol described in LUSTRE.

in a totally non-deterministic manner (i.e., all possible values are explored in model-checking).

The flow ideal1 models the output of the writer task. The output is initialized to value

init, also provided externally (this is the LUSTRE expression init -> ...). The output is

updated to val every time r1 occurs. Otherwise it keeps its previous value (pre ideal1).

The flow ideal2 models the input of the reader task. The input is initialized to init and

is updated to the output of the writer every time r2 occurs. Otherwise it keeps its previous value.

Buffering protocol model

The buffering protocol is also modeled in LUSTRE. Figure 7.27 shows the model for the low-to-

high protocol. Similar models are built for the other protocols.

The model is a LUSTRE node, similar to a C function. The node takes as inputs boolean

flows r1, r2, e1 (corresponding to events r1, r2, e1) and n-vector boolean flow w_val (cor-

responding to the output of the writer) and returns the flow r_val (corresponding to the input of

the reader). The flows buff_0, buff_1, curr, prev are internal variables correspond-

ing to the double buffer and boolean pointers manipulated by the protocol (see Figure 7.5).

Although event e1 is not a trigger of the low-to-high protocol, it is used in the modeling in

order to update the double buffer: the latter is updated when e1 occurs, i.e., when the writer task

finishes.

Preservation monitor model

The preservation monitor is also modeled in LUSTRE, as shown in Figure 7.28. The monitor

verifies whether the input of the reader task in the ideal semantics, ideal2, is always equal

to the input of the reader task as this is produced by the Low_to_High node (vecteq is a

function that checks equality of vectors). The only subtlety is that this check is performed only
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verif_period = until(b2, e2);

prop = if verif_period

then vecteq(ideal2, Low_to_High(r1, r2, e1, ideal1))

else true;

Figure 7.28: Model checking described in LUSTRE.

at certain moments in time, and in particular during the interval from the beginning until the end

of execution of the reader task. This interval is captured by the boolean flow verif_period.

Indeed, outside this interval the values of the reader input in the ideal and real semantics are

generally different.

Verification using LESAR

We performed model-checking of the models described above using LESAR, the model-checker

associated to the LUSTRE tool-suite [RHR91]. For the first two cases, the verification of the hi-

to-low and low-to-hi protocols, the model checker, replied with TRUE PROPERTY, i.e., that the

protocol is always equal to the ideal semantics, in less than half minute time and using almost

100.000 states for this computation. On the other hand, for the hi-to-low with unit-delay, the

computation time was more than 4 minutes, the use of states exceeded the 520.000 and the result

was also TRUE PROPERTY.

The above computation time and state space, is for the verification of our protocols given

that we assert static-priority scheduling, i.e., that the generated releases, starts and ends of the

tasks have fixed priorities, as seen in Figure 7.24. However, using the EDF scheduling policy

there is a bigger “freedom” in the generation of those events, resulting to larger computation time

and state space. Indeed, for the verification of the hi-to-low protocol with a unit-delay, with an

EDF scheduler, the computation time is more than 40 minutes and the state space reaches the

1.700.000 states, to prove the TRUE PROPERTY as before.

Proof of correctness of the optimized buffering schemes, harmonic case

A manual proof of this should be possible but for simplicity we merely adapt our model-checking

proof of the general case by extending to periodic systems with appropriate periods. Figure 7.29

shows the buffering scheme for this model.

The pat value contains the computed buffer index pattern from Equation 7.1. The nodes

Iinc, Ieq etc. implement integer arithmetic in boolean arrays. Thus the cnt variable counts

out the source task occurrences and is the correct width (mdivn) such that it resets to zero when

the occurrences match. The value mdivn is thus log2 (Tj/Ti) so for example for communica-

tion from Task τ1 to τ3 mdivn is 2 and only every fourth emission is read (controlled by the

bitfrom flag). The idx value is the index into the pat array and is incremented on each

significant source event. The actual buffer index bufi is read out of the pat array and used to

select which buffer (bufsin) to use. The Bget and Bset routines index an array of buffers
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node singlebuf3_p21b(const t, t0, t2, b, b2, mdivn: int;

fromev, toev, fromact, tobeg: B;

fromval: T; bufsin: Tˆb)

returns (toval: T; bitfrom: B; bufsout: Tˆb; idx: Bˆt;

cnt: Bˆmdivn; bufi, bufo: Bˆb2);

var c1, c2: B; pat: Bˆb2ˆt2; cntnext: Bˆmdivn;

idxnext: Bˆt; even: T;

let

pat = indxs(t, t2, b2);

cntnext, c2 = Iinc(mdivn, pre cnt);

cnt = Iminusone(mdivn) ->

if ist(fromev) then cntnext else pre cnt;

bitfrom = Ieq(mdivn, cnt, Izero(mdivn));

idxnext, c1 = Iinc0(t0, t, pre idx);

idx = Iminusone(t) ->

if ist(fromev) and ist(bitfrom) then idxnext

else pre idx;

bufi = Bget(t2, t, b2, pat, idx);

even = if ist(fromact) and ist(bitfrom)

then fromval else (init -> pre even);

bufsout = BsetT(b, b2, bufsin, bufi, even);

bufo = if ist(toev) then bufi else flsˆb2 -> pre bufo;

toval = if ist(tobeg)

then if ist(fromact) and ist(bitfrom)

then fromval

else BgetT(b, b2, bufsin, bufo)

else (init -> pre toval);

tel

Figure 7.29: Single buffer scheme for periods in powers of 2
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using boolean arrays as indices. The appropriate buffer is then written to (bufsout) and the

buffer index is latched for the receiving process in bufo. The correct value is then read out of

the buffer when the receiving task begins execution (tobeg).

This model-checks correctly for n = 3 but is too big to verify for T4 = 8. Partial verification

is possible and all subsets are true for n = 4. Since there are no irregularities in this construction

(each case is built by extending the previous one in a regular way) we can conclude that the

scheme is correct for all n. For systems with contiguous priorities in powers of 2 we can thus

implement our buffering mechanism using the same number of single buffers as we would need

double buffers in the general case.

Buffering for consecutive powers of two, atomic case

Using the same code as in Figure 7.29, but replacing the buffer pattern pat with the buffer

pattern implied by B(i)/2 and updating the priority conditions to reflect the new scheduling

constraints model-checks correctly for the n = 3 case. Again, we are only able to partially verify

the mechanism for four tasks.

Model-checking can also be used to prove correctness of the optimized versions, however,

this can be done a priori only for a given, rather than arbitrary, set of tasks. We have followed this

approach and modeled the buffering schemes for the harmonic multi-periodic case (Sections 7.6

and 7.6.2). In both cases, we have managed to model-check completely only systems of n = 3
tasks. The model gets too large for LESAR to handle for n = 4. We did manage, however, to

partially verify the n = 4 case, selecting various subsets of the model and proving them correct.

Since there are no irregularities in these schemes (each case is built by extending the previous

one in a regular way) we can expect the scheme to be correct for all n.

7.7.2 Proof of correctness of the dynamic buffering protocol

In this section we will prove the correctness of the protocol DBP (Section 7.5.1). In this case,

model-checking is not directly applicable, since we have an arbitrary number of reader tasks.

Instead, we provide a “manual” proof.

What we want to prove is semantical preservation, that is, that for any possible arrival pattern

and values written by the writer, the values read by the readers in the ideal semantics are equal

to the values read by the readers in the implementation, assuming DBP is used. More formally,

consider a reader τi and let ti be the time when an arbitrary instance of τi is released. We denote

this instance by τ ti
i . Let t′i ≥ ti be the time when τ ti

i reads. Let τw be the writer task. For the

moment, let us assume that τw is released at least twice before time ti. We relax this assumption

later in this section.

Let t ≤ ti be the last time before ti that an instance of τw was released. We denote this

instance by τ t
w. Let te > t be the time that τ t

w produces its output and finishes. Let y(t) be the

output of τ t
w. Let t′ < t be the last time before t that an instance of the writer τw was released.

This instance is denoted τ t′

w . It finishes execution at time t′e > t′. Let y(t′) be the output of τ t′

w .

Figure 7.30 illustrates the notation defined above. Notice that the order of events shown in the

figure is just one of the possible orders.
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Figure 7.30: Illustration used in the proof of DBP.

Lower-priority reader without unit-delay

Suppose, as a first case, that the reader τi has a lower priority than the writer τw and we have

τw → τi. Let x(ti) be the value read by τ ti
i . The ideal semantics states that x(ti) = y(t). We

want to show that this equality holds in the implementation as well.

Let us first handle the case where the writer is never released before time ti. In this case, y(t)
is equal to the default output of τw. Also, when τ ti

i is released, R[i] is set to 1, which is the

initial value of current (Figure 7.17). R[i] is not modified in the interval [ti, t
′
i]. Thus, at

time t′i, τi reads the value stored in buffer B[1]. This is the default output of τw, since no buffer

has been written by the writer yet.

Let us now turn to the case where the writer is released at t < ti. Recall that the writer

chooses upon release a “free” position in the buffer array where it will write to (Figure 7.17).

Such a free position always exists by the pigeon-hole principle, as already mentioned. Let jt be

the position that τ t
w chooses. Let Rt, pt and ct be the values of R, previous and current at

time t, right after the execution of the assignments previous := current and current

:= .... Then, by definition of DBP, the following hold:

pt 6= jt and ∀i ∈ [1..n].Rt[i] 6= jt and ct = jt.

te ≥ t is the time when τ t
w writes: let Bte be the value of B after this write operation4. Then,

since current is not modified between t and te and ct = jt, we also have:

Bte [jt] = y(t).

Now consider the reader τ ti
i . Again, current is not modified between t and ti, thus, we

have:

Rti [i] = ct = jt.

τ ti
i reads the value

Bt′
i [Rt′

i [i]] = Bt′
i [Rti [i]] = Bt′

i [jt].

This is because R[i] is not modified between ti and t′i.
To show that τ ti

i read the correct value y(t), we must show that Bt′
i [jt] = Bte [jt], that is, that

the position jt is not over-written between te and t′i. This is because only the writer can write

into B[jt] and in order to do so it must choose jt as a free position. Since the writer does not

4 Notice that in Figure 7.30 we have te < ti but this need not be the case. We could also have te > ti.
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arrive in the interval [te, ti], it suffices to show that free(jt) is false in the interval [ti, t
′
i]. This

is because R[i] equals jt in all this interval.

Lower-priority reader with unit-delay

Suppose, next, that the reader τi has a lower priority than the writer τw and we have a link with

a unit-delay: τw
−1
→ τi. Again, let x(ti) be the value read by τ ti

i . The ideal semantics states that

x(ti) = y(t′). We want to show that this equality holds in the implementation as well.

Let us first handle the case where the writer is released not more than once before time ti.
In this case, y(t′) is equal to the default output of τw. Also, when τ ti

i is released, R[i] is set

to 1, which is the value of previous at this point. Indeed, either the writer has never been

released yet and previous is equal to its initial value 1, or the writer has been released once

and previous is set to the initial value of current, which is also 1. R[i] is not modified in

the interval [ti, t
′
i]. Thus, at time t′i, τi reads the value stored in buffer B[1]. If the writer has not

been released before ti then B[1] holds the default output of τw. If the writer has been released

once before ti then it has not written to B[1]: to do so, it must choose 1 as a free position to

assign to current, however, 1 is not free because previous=1.

Let us now turn to the case where the writer is released twice before ti. Upon arrival of the

writer at time t′, a free position in the buffer array is chosen to write to: let this position be jt′ .

Let also Rt′ , pt′ and ct′ be the values of R, previous and current at time t′, right after the

execution of the assignments to previous and current. Then, by definition of DBP, the

following hold:

pt′ 6= jt′ and ∀i ∈ [1..n].Rt′ [i] 6= jt′ and ct′ = jt′ .

t′e ≥ t′ is the time when τ t′

w writes: let Bt′e be the value of B after this write operation. Then,

since current is not modified between t′ and t′e and ct′ = jt′ , we also have:

Bt′e [jt′ ] = y(t′).

On the next arrival of the writer at time t, new assignments will be made to the pointers

previous and current. Let jt be the new free position chosen. Let Rt, pt and ct be the

values of R, previous and current at time t, right after the assignments to previous and

current. Then, the following hold (mention also that current = ct′ = jt′ remains unchanged

from time t′e and until before the assignments at time t):

pt = ct′ and pt 6= jt and ∀i ∈ [1..n].Rt[i] 6= jt and ct = jt

When the reader arrives at time ti, R[i] is set to previous. previous is not modified

between t and ti, thus, the value of R[i] at time ti is equal to pt:

Rti [i] = pt = ct′ = jt′ .

R[i] is not modified between ti and t′i. Thus, τ ti
i reads the value

Bt′
i [Rt′

i [i]] = Bt′
i [Rti [i]] = Bt′

i [jt′ ].
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To show that τ ti
i reads the correct value y(t′), we must show that Bt′

i [jt′ ] = Bt′e [jt′ ], that is,

that the position jt′ is not over-written between t′e and t′i. This is because only the writer can

write into B[jt′] and in order to do so it must choose jt′ as a free position. Since the writer does

not arrive in the interval [t′e, t], it suffices to show that free(jt′) is false in the interval [t, t′i].
In the interval [t, ti], free(jt′) is false because previous equals jt′ . In the interval [ti, t

′
i],

free(jt′) is false because R[i] equals jt′ .

Higher-priority reader (with unit-delay)

Now consider the case where τ ti
i is a higher-priority task. Thus, the link is τw

−1
→ τi. Let again

x(ti) be the value read by τ ti
i . We must show that x(ti) = y(t′).

The case where the writer is released not more than once before time ti is identical to the

corresponding case in Section 7.7.2. We thus omit it and turn directly to the case where the

writer is released twice before ti. Let ct′ be the value of current that is chosen at time t′.
Since current is not modified between t′ and t, we have:

pt = ct′ .

The value y(t′) is written in buffer position ct′ and this is not modified until t, when the writer

is released next. At this point, pt 6= jt, or ct′ 6= jt, thus, this position is not over-written by the

instance τ t
w.

previous is not modified between t and ti, thus, we have:

P ti [i] = pt = ct′ .

P[i] is not modified between ti and t′i, thus, at time t′i, τ ti
i reads the value

Bt′
i [P t′

i [i]] = Bt′
i [P ti [i]] = Bt′

i [pt] = Bt′
i [ct′ ].

To show that τ ti
i reads the correct value y(t), we must show that the position ct′ is not over-

written by any instance of the writer until time t′i. Notice that no instance of the writer is released

between t and ti, by definition of t and ti. Also, if an instance of the writer is released between

ti and t′i, this instance cannot execute before τ ti
i finishes, because it has lower priority than τ ti

i .

7.8 Buffer requirements: lower bounds and optimality of

DBP

In this section we study the buffer requirements of semantics-preserving implementations. First,

we provide lower bounds on the number of buffers required in the worst case, that is, the maxi-

mum number of buffers required for any possible arrival/execution pattern. These lower bounds

are equal to the number of buffers used by DBP, thus, the corresponding numbers of buffers are

both necessary and sufficient. Second, we show that DBP is using buffers optimally not just in

the worst case (i.e., worst arrival pattern) but in any arrival pattern.
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108 976543210

writer

reader 1

reader 2

Figure 7.31: N + 1 buffers are necessary in the worst case (N is the number of readers).

7.8.1 Lower bounds on buffer requirements and optimality of DBP in the

worst case

We begin this section with a concrete example, for the sake of understanding. Consider the

scenario of Figure 7.31, where there is one writer task and two lower-priority reader tasks without

unit-delay. The writer τw has period Tw = 2 and the readers τ1 and τ2 have periods T1 = 3
and T2 = 5, respectively. We assume static-priority, rate-monotonic scheduling [LL73], where

priorities are ordered according to the inverse of the periods. That is: pw > p1 > p2. In this

example, we need 3 = 2 + 1 buffers. The three buffers are used to store the outputs of the first,

second and third occurrences of τw, respectively. The first output is needed by the first occurrence

of both τ1 and τ2. The second output is needed by the second occurrence of τ1. The third buffer

is necessary because when τw starts writing at time 4, τ2 may not have finished reading from the

first buffer yet. Note that in the above example the rate-monotonic assumption is not required,

only that the writer has the higher priority is sufficient to generate the described results.

We now provide generalized scenarios and bounds. We consider again the situation of Sec-

tion 7.5: one writer, N1 lower-priority readers without unit-delay, N2 lower-priority readers with

unit-delay, and M higher-priority readers (with unit-delay). Again we let N = N1 + N2.

First, consider the case M = N2 = 0 (i.e., there is no unit-delay). We claim that N + 1 =
N1 +1 buffers are required in the worst case. Consider the scenario shown in Figure 7.32. There

are N+1 arrivals of the writer and one arrival of each reader. We assume that when the (N+1)-th
arrival of the writer occurs, none of the readers has finished execution. This is possible, because

the readers have lower priority from the writer and they can be preempted on every new release

of it. Moreover, the schedulability assumption is not violated. In the figure we show the lifetime

of each buffer: for i= 1, ..., N , buffer B[i] is used from the moment of the i-th arrival of the

writer until the (N +1)-th arrival. A buffer is needed at the last arrival so that the writer does not
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rw rwr1 r2 rw

...

rN rw

B[N]

B[2]

B[1]

B[N+1]

. . .

Figure 7.32: Worst-case scenario for N + 1 buffers: N lower-priority readers without unit-delay.

rw rwr1 r2 rw

...

rN rw

B[N]

B[2]

B[1]

B[N+1]

rw

B[N+2]

. . .

Figure 7.33: First worst-case scenario for N +2 buffers: N lower-priority readers without unit-delay and

at least one higher-priority reader (with unit-delay).

corrupt the data stored in one of the other buffers.

Next, consider the case M > 0 and N2 = 0 (i.e., there is a unit-delay). Then, N1 + 2 buffers

are required in the worst case. This can be shown using a slight modification of the previous

scenario, by adding one more occurrence of the writer at the end: this is shown in Figure 7.33.

The last buffer B[N + 2] is needed because none of the first N + 1 buffers can be used: buffers

B[1..N ] are used by the N lower-priority readers and buffer B[N + 1] stores the previous value

which may be needed when a higher-priority reader with unit-delay arrives (the latter is not

shown in the figure).

Finally, consider the case M = 0 and N2 > 0 (i.e., there is again a unit-delay). Then, N + 2
buffers are required in the worst case, where N = N1 + N2. A worst-case scenario is shown in

Figure 7.34. In the first part of this scenario N1 lower-priority readers without unit-delay arrive,

interlaced with N1 occurrences of the writer. This requires N1 buffers. Next, N2 lower-priority

readers with unit-delay arrive, interlaced with N2 + 1 occurrences of the writer as shown in the

figure. This requires N2 + 1 buffers since the previous values are used by the readers: reader r′1
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Figure 7.34: Second worst-case scenario for N + 2 buffers: N = N1 + N2, N1 lower-priority readers

without unit-delay and N2 lower-priority readers with unit-delay.

uses B[N1 + 1], ..., and reader r′N2
uses B[N1 + N2]. The last writer cannot over-write any of

the first N1 + N2 buffers since they are used by readers that have not yet finished. The last writer

cannot over-write buffer B[N1 +N2 +1] either, since this stores the previous value which may be

needed when a lower-priority reader with unit-delay arrives (the latter is not shown in the figure).

These lower bounds show that DBP is optimal in the worst case, that is, in the “worst”

arrival/execution pattern. In the next subsection we show that DBP actually has a stronger opti-

mality property, in particular, it uses buffers optimally in any arrival/execution pattern.

7.8.2 Optimality of DBP for every arrival/execution pattern

The protocol DBP is in fact optimal not only in the worst case, but for every arrival/execution

pattern, in the following sense:

for every task graph, for every arrival/execution pattern of the tasks, and at any time

t, the values memorized by DBP at time t are precisely those values necessary in

order to preserve the semantics.

We proceed into formalizing and proving this result.

Let ρ be an arrival/execution pattern: ρ is a sequence of release, begin and end events in

real-time (i.e., we know the times of occurrence of each event). We will assume that all writer

tasks occur at least once in ρ, at time 0, and output their respective default values. This is simply

a convention which simplifies the proofs that follow.

For an arrival/execution pattern ρ and for some time t, we define needed(ρ, t) to be the set

of all outputs of writer tasks occurring in ρ that are still needed at time t. Formally, needed(ρ, t)
is defined to be the set of all y such that y is the output of THE writer task τw occurring in ρ at

some time tw, and one of the following two conditions holds:
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1. There exists a link τw → τi, task τi is released in ρ after tw and before the next occurrence

of τw (if it exists), and τi finishes after t.

2. There exists a link τw
−1
→ τi, there is a second occurrence of τw in ρ at time t′w, where

tw < t′w, τi is released after t′w and before the next occurrence of τw (if it exists), and τi

finishes after t.

We assume that outputs y are indexed by the writer identifier and occurrence number, so that

no two outputs are equal and needed(ρ, t) contains all values that have been written. This is not

a restricting assumption since in the general case the domain of output values will be infinite,

thus, there is always a scenario where all outputs are different.

needed(ρ, t) captures precisely the minimal set of values that must be memorized by any

protocol so that semantics are preserved. Another way of looking at the definitions above is that

needed(ρ, t) contains all outputs whose lifetime extends from some point before t to some point

after t. Notice that needed(ρ, t) is clairvoyant in the sense that it can “see” in the future, after

time t. For instance, needed(ρ, t) “knows” whether a reader τi will occur after time t or not, and

if so, whether this will be before the next occurrence of τw.

Obviously, a real implementation cannot be clairvoyant, unless it has some knowledge

of the arrival/execution pattern. This motivates us to define another set of outputs, denoted

maybeneeded(ρ, t). The latter contains all outputs that may be needed, given the knowledge up

to time t. Formally, maybeneeded(ρ, t) is defined to be the set of all y such that y is the output

of some writer task τw occurring in ρ at some time tw, and one of the following two conditions

holds:

1. There exists a link τw → τi, such that, if there is a second occurrence of τw in ρ at time t′w,

with tw < t′w < t, then there is an occurrence of τi at time ti, with tw < ti < t′w, and τi

finishes after t.

2. There exists a link τw
−1
→ τi, such that, if there is a second and a third occurrence of τw in

ρ at times t′w and t′′w, with tw < t′w < t′′w < t, then there is an occurrence of τi at time ti,
with t′w < ti < t′′w, and τi finishes after t.

The intuition is that y may be needed because the reader task τi may perform a read operation,

say, right after time t. It should be clear that for any ρ and t, needed(ρ, t) ⊆ maybeneeded(ρ, t).
We want to compare the values stored by DBP to the above sets. To this end, we define

DBPused(ρ, t) as the set of all values stored in some buffer B[i] of DBP at time t, when DBP is

executed on the arrival/execution pattern ρ, such that free(i) is false5 (recall that the predicate

free is defined in Figure 7.17).

We then have the following result.

5 When implementing DBP, there is the option of pre-allocating the worst-case number of buffers or allocating

buffers on-the-fly, that is, during execution, as necessary. This is a usual time vs. space trade-off. To avoid such

implementation considerations, we have included in the above definition of DBPused(ρ, t) the requirement that

free(i) be false, which means that, even if B[i] has been pre-allocated, its contents are not needed anymore.

146 Verimag — November 2006 Christos Sofronis



7.8. Buffer requirements: lower bounds and optimality of DBP

Theorem 1 For any arrival/execution pattern ρ and any time t,

DBPused(ρ, t) ⊆ maybeneeded(ρ, t).

Proof:

Consider some y in DBPused(ρ, t). There must be some position j such that free(j) is

false and the value of B[j] at time t is y. This value was written by the writer τw at time tw < t.
We reason by cases:

1. free(j) is false because previous=j. This means that there is a reader task τi com-

municating with τw with a unit-delay link τw
−1
→ τi. We must show that Condition 2 in

the definition of maybeneeded(ρ, t) holds. We consider the following cases, depending on

how many times τw was released before t:

• τw is not released before t. This means that previous = j = 1 and B[j] holds

the default value y0.

• τw is released only once before t. When this happens, previous is set to current

which is equal to 1, since this is the first release of τw. Thus, again B[j] holds the

default value y0.

• τw is released at least twice before t, and the last two times where at tw < t′w < t. At

t′w, previous is set to current which equals j at that point. Thus, B[j] holds

the value y written by the instance of τw released at tw.

In none of the three cases above there is more than one occurrence of τw after tw, thus

Condition 2 in the definition of maybeneeded(ρ, t) holds.

2. free(j) is false because there is some i ∈ [1..N1] such that R[i]=j. This means

that the reader τi communicates with τw via a link without unit-delay, τw → τi. Since

R[i] 6=null, τi is released at least once before t and it has not finished at time t. Suppose

τi is released last at time ti < t. When this happens, R[i] is set to current which

equals j at that point. Condition 1 in the definition of maybeneeded(ρ, t) holds since tw is

the last occurrence (if any) of the writer before time ti and τi finishes after time t.

3. free(j) is false because there is some i∈ [N1 + 1..N1 + N2] such that R[i]=j. This

means that the reader τi communicates with τw via a link with unit-delay, τw
−1
→ τi. This

case is similar to Case 1 above.

The above result shows that DBP never stores redundant data, only data that may be needed.

In the absence of any knowledge about the future (which is unknown if arrival/execution patterns

are not known), this is the best that can be achieved, if we are to preserve semantics. However,

we can also show that DBP is not too far from the ideal case.
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7.8.3 Exploiting knowledge about future task arrivals

As we have seen in Section 7.5.3, the a priori knowledge of the release times of the tasks can be

used to build a static schedule where DBP can refer to for buffer assignments during execution.

This static schedule, however, is not sufficient to make DBP optimal in the number of buffers

used. This is because DBP is not clairvoyant, as explained before, therefore, it does not exploit

knowledge about future task arrivals, even when such knowledge is available. In this section we

describe how such knowledge can be used. Let us first explain the technique in the multi-periodic

case.

We equip DBP with a predicate isNeeded(t) which is true when the value produced by the

writer τw at time t is needed by a forthcoming reader. This predicate can be computed based on

the periods of writer and reader tasks. For this, we also need the function l(i, t), defined below:

l(i, t) = ⌊
⌊t/Ti⌋ Ti

Tw

⌋ Tw (7.2)

where Tw is the period of the writer task τw and Ti is the period of the reader task τi. l(i, t)
is equal to the last time that τw was released before the last arrival of τi before t. Intuitively, this

function shows which data of the writer is needed by reader i if this reader is to be executed at

time t.
Then we can define the predicate isNeeded(t) as follows:

isNeeded(t) = ∃t′ > t.∃i.[(∃τw → τi ∧ t = l(i, t′)) ∨ (∃τw
−1
→ τi ∧ t = l(i, t′) − Tw)] (7.3)

We can now modify DBP as shown in Figure 7.35, in order to avoid assigning buffers to cases

where the output of the writer is not needed.

Writer:

• When τw is released on time t:
if isNeeded(t) then

previous := current

current := some j∈[1..N+2] such that free(j)

else

previous := current

current := null

endif

• While τw executes and current6=null, it writes to B[current].

Figure 7.35: The protocol DBP.

A similar technique can be applied to other cases apart from multi-periodic where the order

of task arrivals is known. The difference will be that the predicate isNeeded(t) must be
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defined in a different way: when a writer is released at time tw, we check if there is a release of a

reader between time tw and time t′w − 1, where t′w is the next release of writer after tw. If there is

such a release of a reader, then isNeeded(tw)=true and the standard procedure is followed.

is the above redundant???

In addition to the previous, as we saw in Section 7.5.3, DBP protocol can be applied to

tasks with known arrival patterns as well. In that case the predicate isNeeded(t) is given

by a known function with respect to relative arrivals of readers and the writer; when a writer

is released at time tw, we check if there is the release of a reader between time tw and time

t′w − 1, where t′w is the next release of writer after tw. If there is such a release of a reader, then

isNeeded(t)=true and the standard procedure is followed.

7.9 Related Work

Before we conclude this Chapter, we discuss a number of related works. First we present the

code generation method that the tool REAL-TIME WORKSHOP applies for SIMULINK and its

current limitations. Next, we discuss the paper [BFMSV05] extensively, since it includes the

closest work to ours. Finally, we discuss a number of other related works.

Code generation for SIMULINK/STATEFLOW models using REAL-TIME WORKSHOP.

The documentation of MathWorks’ code generator REAL-TIME WORKSHOP claims that the tool

builds code that reproduces the deterministic behavior of the model, provided tasks are peri-

odic and periods are multiples of each other6. The documentation does not describe how this is

achieved, however, evidence can be found in some restrictions imposed on multi-rate SIMULINK

diagrams. For instance, SIMULINK requires that a rate-transition block must be inserted every

time we have different rates between two connected blocks.

A Rate-transition block behaves as a unit-delay block, in the case where a “slow” writer

communicates data to a “fast” reader. In this case the block executes in the rate of the writer

but with the priority of the reader. The block will copy the output of the writer and provide it to

the reader upon his execution. Also a delay of 1 will be added in that communication, i.e., the

reader will always read the previous last result of the writer. On the other hand if a “fast” writer

sends data to a “slow” reader the rate-transition block acts like a zero-order hold block , i.e., it

is executed in the rate of the reader but with the priority of the writer, thus having always the

correct value needed by the writer.

However, this solution imposes the use of multi-periodic tasks and moreover that the reader

and the writer always have multiple periods, otherwise this solution fails. Note also, that the

above solution implies that the scheduling is done according to the rate monotonic priority

scheme [LL73], where the faster one task is executed, the higher priority it has.

6 Quoting from Section “Mapping Model Execution to the Target Environment” of [Mat]: “A correctly executing

application will generate deterministic results that are identical to the results produced by the model in simulation.

To achieve correct execution, the model’s sample rates must be mapped into corresponding tasks executing in the

target environment.” See the section titled “Models with Multiple Sample Rates” of the Real-Time Workshop user

guide, available at http://www.mathworks.com/access/helpdesk/help/toolbox/rtw/ug/.
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Our solution is more general since it applies also to event-triggered applications, to arbitrary

priority assignments, as well as to the EDF scheduling algorithm. Moreover, our solution is

memory-optimal when extended to many readers and writers.

Memory bounds on the implementation of synchronous programs. [BFMSV05] presents

work similar in spirit to ours, however, with a number of differences. The main focus

of [BFMSV05] is to provide upper bounds on the memory required by any inter-task communi-

cation protocol so that the synchronous semantics are preserved. Our emphasis is instead on the

development of communication schemes that achieve optimal memory bounds.

More specifically, the differences between the two works are the following. First, regarding

the setting:

• We work with a known scheduling policy (static-priority or EDF). In [BFMSV05], no

assumption is made about the scheduling policy.

• We require no knowledge of the minimum inter-arrival time (MIT) or deadline of tasks.

However, we do require schedulability. In [BFMSV05], it is assumed that the MIT and

deadline of each task is known. Schedulability is also assumed, in the sense that the dead-

line of each task is respected. The deadline of a task can be greater than its MIT, which

means that the schedulability assumption in [BFMSV05] is weaker than ours.

• We assume that all tasks run on a single processor. In [BFMSV05], no a-priori assumption

is made about the execution platform.

Then, regarding the memory requirements:

• We provide protocols that use buffers optimally.

• The bounds provided in [BFMSV05] are generally not tight. For example, in a static-

priority (SP) setting with one writer and N = 2 readers, where both readers have lower

priority than the writer, where the periods are Tw = 2, T1 = 3, T2 = 5, and the deadlines

are equal to the periods, we require 3 buffers whereas the upper bound calculated by the

formulas provided in [BFMSV05] is 4.

Finally, regarding the communication schemes:

• DBP is lock-free, meaning that tasks do not block on reads or writes: the only thing that can

suspend execution of a task is preemption by another, higher-priority task. DBP requires

atomic manipulations of global pointers upon task releases. These can be handled by the

operating system or by some special interrupt-handling routine with the highest priority.

• [BFMSV05] considers single-processor, “multi-processor” (many processors with central-

ized pointer manipulations) or “distributed” (many processors with decentralized pointer

manipulations) implementations. For single-processor implementations, both lock-free

and locking methods are considered. In the lock-free methods, the assumption is that
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scheduling ensures that the producer has always higher priority than the consumer. This

implies that there can be no cycles in the graph of producers/consumers and that this graph

is topologically ordered in order to assign the priorities. The main impact of this assump-

tion is that a consumer task which comes after a long chain of producers will have a very

low priority, thus, it cannot handle “urgent” events. In contrast, in our work we make no

assumption on the relative priorities of producer and consumer, provided that a unit delay

is present when the producer has lower priority than the consumer.

In summary, one can say that the setting of [BFMSV05] is more general than ours, however,

it also requires more knowledge (minimum inter-arrival times, deadlines). Our protocol has

optimal memory requirements while the upper bounds provided in [BFMSV05] are not tight

(this is to be expected given that their setting is more general).

Other Related Work. [LM87] introduces the synchronous dataflow model (SDF) and provides

methods for static scheduling and code generation on single-processor or multi-processor archi-

tectures. This work has been extended in a number of directions, including buffer optimizations

(e.g., see [BML96, MB04]). SDF can be viewed as a subclass of the model we consider in this

paper, in the sense that only multi-periodic designs can be described in SDF. On the other hand,

SDF descriptions are more high-level and must generally be unfolded into a more basic model

such as ours. A major difference with our work, however, is that [LM87, BML96, MB04] aim for

static, cyclic schedules, whereas we aim for multi-task applications that use dynamic, preemptive

scheduling.

[Nat06] considers the problem of minimizing the cost of adding unit-delay or zero-order-hold

blocks in SIMULINK diagrams. The main difference with our work is that the focus of [Nat06]

is cost minimization and not preservation of semantics. Indeed, by adding or removing blocks as

the above, the semantics generally change. In contrast, we start from a fixed set of such blocks

and do not attempt a modification. We only perform optimizations at the implementation level

and not at the design level.

[RB04] proposes a method of distribution of synchronous programs and preserves the ideal

semantics by introducing delays in the early (high-level) design stages.

Our work is also related to a set of papers that propose lock-free inter-task communication

schemes, for instance [CB97, HPS02]. Although our methods are lock-free (only manipulations

of pointers are atomic, writes and reads need not be), it is different from the protocols proposed in

the above works. The latter preserve the integrity and often also the “freshness” of data, meaning

that the reader consumes the latest complete value produced by the writer. This value does not

always correspond to the value defined by the zero-time semantics. Another difference, which is

the basic characteristic of our work, is that the protocols are based on pointer manipulations that

happen upon task release, and not task execution, as is the case of the above protocols.

We should also note that our work has different objectives from the research done in the con-

text of real-time scheduling theory (e.g., see [LL73, HKO+93, ABD+95, SSRB98]). Real-time

scheduling theory is concerned with checking schedulability of a set of tasks in various settings.

Our concern is not schedulability, but preservation of semantics. We assume that the system is
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schedulable (something that can be checked using existing scheduling techniques such as those

in the works cited above) and we develop preservation schemes that rely on this assumption.

7.10 Conclusions

In this Chapter we studied the problem of semantics-preserving implementations of synchronous

programs on single-processor, multi-tasking execution platforms with preemptive scheduling

policies such as static-priority or EDF. We proposed a set of buffering protocols for inter-task

communication that preserve the synchronous semantics, that is, guarantee that the behavior of

the executed code will be the same (in terms of streams of output values) to the behavior of the

synchronous program. We proved this using model-checking as well as “manual” techniques.

We also proved that our generalized protocol (for the many writers-many readers case), DBP, is

optimal with respect to memory requirements.
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Conclusions and Perspectives

The success of the SIMULINK/STATEFLOW toolkit is largely a result of the fact that a designer

can model the system coupled with the environment and simulate its execution. This success

shows that the industry of embedded control systems needs a complete approach starting from the

high-level conceptualization of the system until the final implementation in the target platform.

Such an approach raises a number of important issues, especially in the domain of safety-

critical applications (avionics and automotive being two examples). We need model-checking

capabilities for verification purposes and when moving towards the execution platform, we need

an implementation methodology that preserves properties of the high-level design. Moreover,

efficiency of implementations in terms of memory usage or time performance is a must.

This is exactly the problem that this thesis treats and proposes solutions to. Indeed we pro-

pose a complete chain from top to bottom for the design and implementation of embedded control

systems. This is a three-layered approach, starting from the design using a high-level modeling

and simulation tool, in particular SIMULINK/STATEFLOW, and going down to the execution in a

single-processor, multi-tasking preemptive platform, while preserving the synchronous seman-

tics of the model all-along. We use LUSTRE as an intermediate language, because it provides a

formal modeling framework, rich with tools such as model-checkers, test-generators and code-

generators.

This work opens many directions for future research. Some general directions, in the context

of the overall model-based design effort at VERIMAG, are the following:

• Enlarging the set of high-level models in the picture of Figure 2.1. We have considered

SIMULINK and STATEFLOW. Another high-level modeling formalism (or rather, collec-

tion of formalisms) is the Unified Modeling Language (UML) and its various extensions,

such as SysML1. This language, coming from the software engineering domain rather than

control, addresses somewhat different concerns, which explains the interest of the industry

in it. At the same time, UML brings different challenges to an automated, semantics-

preserving implementation process, and this, independently of whether LUSTRE is consid-

ered or not as an intermediate point.

1 see http://www.omgsysml.org/
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• Enlarging the set of execution platforms. We now understand relatively well the imple-

mentation of synchronous models on single-processor platforms, single-tasking or multi-

tasking. Some initial work has been also done for distributed platforms, such as the Time-

Triggered Architecture or TTA [CCM+03], which is a synchronous execution platform,

and for multi-periodic applications. A lot remains however to be done in this direction.

For instance, we still need to cover loosely synchronous [BCG+02] or asynchronous ar-

chitectures with preemptive scheduling for more general task arrival patterns. Also we can

study the implementation in a distributed architecture equipped with a CAN or Flexray

bus, or a network of different buses connected through gateways.

Some directions more specifically related to the work done in this thesis are the following:

• Our translation method from SIMULINK to LUSTRE is restricted to the discrete-time part

of SIMULINK. A natural extension would be to consider continuous-time SIMULINK as

well. This is not a trivial problem, as it includes in essence the entire issue of relating

continuous-time and discrete-time systems, with the theory of sampling and other major

control-theoretic results. Some recent work in this direction has been done in [CB02,

KC06].

• Both translations of SIMULINK and STATEFLOW are “one-way”, in two senses: first, we

do not currently translate LUSTRE into SIMULINK (or STATEFLOW), and second, we do

not map the results provided by LUSTRE-based tools such as the LESAR model-checker

back to the original model. Both limitations are serious, in particular the second one, since

it obliges the user to “look under the hood”, so to speak, and inspect the results of the

analysis at the LUSTRE level. This requires familiarity with the LUSTRE language, which

SIMULINK/STATEFLOW users often lack.

• Our study of static analysis methods for STATEFLOW is only preliminary. In particular, the

techniques proposed in Chapter 5 have not been implemented. They should be, as well as

tested on a number of case studies. This would provide feedback in order to validate and

improve these methods.

• Another, more ambitious goal, is to develop dynamic model-checking algorithms for State-

flow, that are specific for the semantical problems of STATEFLOW (e.g., stack-overflow or

confluence). Model-checking for STATEFLOW is generally undecidable and so is check-

ing these properties, however, optimizations with respect to general model-checking algo-

rithms are probably possible.

• The prototype tool S2L that implements the algorithms studied in Chapter 4 can be further

extended to translate more blocks from the SIMULINK library that initially were not con-

sidered. In addition to that, newer releases of SIMULINK add new features and change the

input file representation of the model. Further study should be done in such additions and

incorporate those changes in the tool.
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• The buffering protocols we proposed in Chapter 7 rely on support from the operating sys-

tem, in particular regarding the management of pointers to the buffers upon arrivals of

task-triggering events. Methods to implement this mechanism on current RTOSs in an

efficient way (i.e., with minimal overhead) should be studied. One possibility for imple-

menting the mechanism without changing the RTOS kernel is to build special high-priority

interrupt handling routines that are executed upon arrival of the triggering events and ma-

nipulate the pointers. This solution should be evaluated with respect to others, in particular

those that rely on a modification of the kernel.

• In Chapter 7, we proposed only a simple and limited method to decompose synchronous

programs into tasks. This problem should be studied thoroughly.

• In the context of multi-tasking implementation of synchronous programs on preemptive

execution platforms, we can consider relaxing the schedulability assumption, to allow mul-

tiple instances of the same task to be active at the same time.

• More generally, our multi-tasking implementation scheme relies on external methods and

tools for scheduling and schedulability analysis. We can consider connecting the two in

a “feedback loop”, where information from the scheduler and schedulability analyzer is

provided to the code generator, in order to optimize the final solution.
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Appendix A

Help messages by the S2L and SF2LUS tools

The help message provided by the S2L tool when this one is invoked from command line is the

one appearing in the Figure A.1

While the output of the SF2LUS program gives the following help message:
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Simulink to Lustre Jan05

Usage: s2l <OPTIONS>... <FILE.mdl>

Translates a simulink model to Lustre

where options can be

-p,--pollux Generates Lustre code for the Pollux

Lustre compiler

-d,--debug Provides debug information to standard

output

-m Generates a MainNode that folds the

entire model

-mp, --monoperiodic All the flows in the lustre program will

have the same clock

--side-effects In case S-Function produce side effects

they are distinguished external function

calls

--choose-system Choose the subsystem to tranlslate if not

the entire model.

-o <fileName> The lustre output file name

--sf-lustre-file The Lustre file of the SF

-f,--fullnames The names of nodes and certain variables

correspond to their path

--varnames Output the correspondence of the variable

names in the lustre file

-xml Translates the model to XML and exits.

-v,--version Prints the version of the program

--help Display this help and exit

report bugs at Christos.Sofronis@imag.fr

Figure A.1: The help message provided by the S2L tool.
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Stateflow to Lustre (c) VERIMAG 2004

Convert Stateflow into Lustre.

Syntax:

sf2lus <options> file.mdl

Bug reports and enquiries to: "Paul Caspi" <Paul.Caspi@imag.fr>

Options:

-r13 Matlab version 13

-r14 Matlab version 14 (default)

-kw <str> Add a keyword to the keyword identifier

list

-nkw <str> Remove a keyword from the keyword

identifier list

-paths Use full path names for states

-no_paths Do not set -paths automatically

-I <dir> Append a directory to the search path

-include <file> Add a file to be included

-o <file> Name of output file, (default: stdout)

-mws <file> Name of Matlab workspace emulation file

-margin <int> Set the margin for formatted output

-max_indent <int> Set the maximum indent for formatted

output

-text_limit <int> Limit output strings to this number of

characters

-pollux Use Pollux modifications (default)

-nbac Use Nbac modifications

-reluc Use Reluc modifications

-scade Use Scade modifications

-names Use state names in variables

-ids Use state ids in variables

-names_ids Use both names and state ids in variables

-long_names Use unabrreviated names

(eg. "s" -> "state")

-no_self_init Top level graph does not provide

initialization

-ess <int> Event stack size

-sends Enable sends to specific state

(events become ints)
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-errstate Add error output variable

-junc_states Treat junctions as states

-create_missing Add missing data to data dictionary

-missing_scope <scope> Scope for missing data

(default: INPUT_DATA)

-missing_datatype <type> Data type for missing data

(default: double)

-no_constants Omit workspace constants from output

-emulate_time Provide internal time value

-start_time <float> Start time for emulated time

-time_increment <float> Time increment for emulated time

-real_time Provide real time value (in external

C code)

-varprefix <str> Prefix all variables (for namespace

conflict avoidance)

-prefix <str> Prefix all names (used for comparisons

with lesar)

-suffix <str> Suffix all names (used for comparisons

with lesar)

-observe <expr> Add observer node for given expression

-no_observers Don’t read observer file

-consistency Add state consistency observer

(sets -states_visible)

-counters Add loop counters to junctions

(sets -junc_states)

-unroll Unroll loops according to loop counters

-trace Add trace output

-trace_inputs <int> Number of inputs to add to trace output

-trace_locals <int> Number of locals to add to trace output

-export_cvs Export condition variables (set if

function call events)

-states_visible Make state variables visible for toplevel

graph

-temps_visible Make temporary variables visible for

toplevel graph

-stubs_visible Make stub nodes visible in output

(won’t compile)

-locals_visible Make chart locals outputs

-no_typecheck Do not typecheck generated nodes

-no_sequence Do not sequence generated nodes

-no_normalize Do not normalize generated nodes
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-input_bools_ints Transform input booleans into ints

(for luciole)

-write_now Write output as generated (debug)

-g Enable debug printouts

-gp Enable parser debug printouts

-v Set debug level

-help Display this list of options

--help Display this list of options

Figure A.2: The help message provided by the SF2LUS tool.
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Appendix B

One-to-one translation of a SIMULINK

model to XML

As mentioned in Chapter 4, the first step of the S2L tool is the translation of the SIMULINK

model to an equivalent (in the sense of the information contained in both representations) XLM

document. This is done with the use of the fr.verimag.mdl2xml package as we saw in the

tool’s architecture in Figure 6.1. In this Appendix we demonstrate an example for this translation.

Figure B.1 shows a SIMULINK model file. However, since the length of that file (and there-

fore of the translated XML file) is too big we provide only some segments of them. Figure B.2

shows XML file that represents the SIMULINK model file (and that will be fed to the S2L tool to

continue with the translation to LUSTRE).

We can see clearly from this example that the produced XML file does not contain in-

formation that are irrelevant to the translation to LUSTRE, such the ScreenColor and

PaperOrientation properties of the source file, or the Position of the blocks. How-

ever, this is an option that can be disabled and produce an XML that is completely identical in

terms of information.
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Model {

Name "CombinatorialLogic"

Version 5.0

...

System {

Name "CombinatorialLogic"

Location [182, 292, 787, 577]

Open on

ModelBrowserVisibility off

ModelBrowserWidth 200

ScreenColor "white"

PaperOrientation "landscape"

PaperPositionMode "auto"

PaperType "usletter"

PaperUnits "inches"

ZoomFactor "100"

ReportName "simulink-default.rpt"

Block {

BlockType Inport

Name "Set"

Position [35, 88, 65, 102]

SampleTime "1"

Interpolate off

}

...

Line {

Labels [0, 0]

SrcBlock "Reset"

SrcPort 1

DstBlock "Mux"

DstPort 2

}

...

}

}

Figure B.1: The initial model file of the example of the translation to XML.
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<?xml version=’1.0’ encoding=’UTF-8’?>

<xml>

<Model>

<property name="Name" value="CombinatorialLogic"/>

<property name="Version" value="5.0"/>

...

<System>

<property name="Name" value="CombinatorialLogic"/>

<Block>

<property name="BlockType" value="Inport"/>

<property name="Name" value="Set"/>

<property name="Position" value="[35 88 65 102]"/>

<property name="SampleTime" value="1"/>

<property name="Interpolate" value="off"/>

</Block>

...

<Line>

<property name="SrcBlock" value="Reset"/>

<property name="SrcPort" value="1"/>

<property name="DstBlock" value="Mux"/>

<property name="DstPort" value="2"/>

</Line>

...

</System>

</Model>

</xml>

Figure B.2: The resulting XML file.
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