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Introduction

Nowadays, the presence of hardware and software systems in our lives becomes per-

vasive. These systems are often used in application where failure is unacceptable,

such as digital controllers supervising critical functions of cars, airplanes, medical

instruments, or even software platforms guaranteeing privacy and reliability of elec-

tronic commerce applications, just to mention some examples. Ensuring reliability

has effects in reducing the cost of software systems: the National Institute of Stan-

dards and Technologies (NIST) has estimated that bugs in software cost the U.S.

economy about 59.5 billion dollars and that 80% of the cost of developing software

goes into identifying and correcting defects (see NIST, 2002).

Testing and simulation are the most widespread techniques to identify bugs.

They both involve making experiments before deploying the system in the field. In

the case of hardware circuits, these methods typically inject signals at certain points

and observe the resulting signals, whereas, for software, simulation and testing usu-

ally involve providing certain inputs and observing the corresponding outputs. Both

of these methods, however, lack in terms of checking all the possible interactions,

hence certifying the absence of pitfalls is rarely possible. Since these two methods

both focus on probable execution paths (or behaviors), they are incapable of spot-

ting bugs which are revealed by paths with a low probability of execution. Such

methods alone, as a matter of fact, are clearly inadequate for ensuring the quality

not just of critical systems, but also of the software we use every day. Paradoxically,

the more successful a software is, the more it will be used, and the more probable

bugs not detected by testing will be reported by users, determining a decrease of

the customer satisfaction.

A very attractive and increasingly appealing alternative to simulation and testing

is the approach of formal verification. Formal methods refer to the use of techniques

from logic and discrete mathematics to specification, design, construction, and anal-

ysis of computer systems and software. They seem to be the ideal complement to

v



vi Introduction

testing since they can consider all possible behaviors of software. The verification

of a system is done by providing a formal proof on an abstract formal model of the

system, the correspondence between the formal model and the nature of the sys-

tem being otherwise known by construction. Despite their promise, formal methods

have difficulties in being widely accepted by industry, mainly because of the lack

of “off-the-shelf” tools which assist the software developer to apply formal methods

in a convenient way, without being overwhelmed with too many details concerning

mathematical notations or models. Augmenting the degree of automation seems to

be the key to make formal methods economically feasible and to ultimately meet

industrial standards.

The Context

The aim of formal verification is to verify in a formal way whether a system satisfies

certain properties; hence, the starting point in order to apply methods and tech-

niques coming from this field is to give a formal representation of the system and of

the properties to be checked. The term reactive system usually identifies a system

that changes its actions, outputs and conditions/status in response to stimuli from

within or outside it. A common framework for the representation of reactive systems

is provided by transition systems; furthermore, temporal logics are convenient lan-

guages to formally express the properties to be checked. Temporal logics are often

classified according to whether time is assumed to have linear or branching structure;

in the former case there are logics such as propositional Linear time Temporal Logic

LTL, whereas in the latter Computational Tree Logics CTL and CTL⋆, µ-calculus

and so on. In Manna and Pnueli (1995) and many other writings, the authors have

extensively shown how a mixture of first-order logic and LTL is sufficient to precisely

state verification problems for the class of reactive systems. Theories in first-order

logic model the (possibly infinite) data structures used by a reactive system while

LTL specifies its (dynamic) behavior. The combination of LTL and first-order logic

allows one to specify infinite-state systems and the subtle ways in which their data

flow influences the control flow.

We can distinguish two different approaches in formal verification; a first ap-

proach, sometimes called deductive verification, consists of using a formal version of

logical reasoning about the system to prove its correctness; it usually relies on soft-

ware (called theorem provers) such as Coq (Coq, 2006), Isabelle/HOL (Nipkow et al.,
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2002), Nqthm (Boyer and Moore, 1997), PVS (Owre et al., 1992), and STeP (Manna

et al., 1994). This process is in general only partially automated and is driven by the

user’s understanding of the system to validate, but relies on fully automated pro-

cedures (from now on called decision procedures) for some subproblems. Although

theoretical limitations forbid complete automatization, an advantage of deductive

verification is that it can be used for reasoning about infinite-state systems.

On the other hand, the second approach, called model checking (see Merz, 2001

for an overview and Burkart et al., 2001; Clarke et al., 1999 for further details on

this topic), is a technique for verifying finite-state concurrent systems by, roughly

speaking, exploring exhaustively the mathematical model used to represent the sys-

tem itself. One of the benefit of model checking is that verification can be done

completely automatically. Model checking techniques are widely used for verifying

finite-state systems, but in the last decade researcher made many efforts to extend

these techniques also to infinite-state systems.

The approaches of deductive verification and model checking are however not

necessarily disjoint. For example, in Sipma et al. (1999), an integration between

classic tableaux and automated deduction techniques is shown, whereas Pnueli et al.

(2001) presents a method for the automatic verification of a class of parametrized

systems by using both model checking and deductive techniques, and finally Säıdi

and Shankar (1999) shows how to define within a single framework proof strategies

combining deductive proof construction, model checking, and abstraction. More

details about the interplay between deductive verification and model checking tech-

niques can be found also in Bjørner (1998).

The Satisfiability Problem

In deductive verification, the process of proving correctness of a system is usually

only partially automated; however, it relies on decision procedures for some sub-

problems. A standard technique of deductive verification is based on the deductive

invariance rule that consists in reducing the validity of certain temporal formulae

to the validity of first-order sentences modulo a background theory (see Manna and

Pnueli, 1995). This suggests that finding decidable fragments of first-order theories

is of paramount importance.

Decision procedures for fragments of first-order theories are typically used for

eliminating subgoals represented, for instance, as sequents modulo a background

first-order theory which usually axiomatize standard datatypes commonly used in
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programs such as arrays, lists, bit-vectors and so on. The declarative approach,

required to enable the programmer to express the properties to be checked, led to

the development of tools (see, e.g., Flanagan et al., 2002; Jackson and Vaziri, 2000)

based on (extensions of) first-order logic. These tools take in input a program with

some annotations written in (an extension of) first-order logic and produce a set of

formulae of (a fragment of) first-order logic whose satisfiability implies that a bug

is present in the code. In order to check for satisfiability, a procedure capable of

handling the generated proof obligations must be available.

Combination Discharging proof obligations arising in software verification and

eliminating subgoals in verification with proof assistants reduce to the problem of

proving the unsatisfiability of a quantifier-free sentence with a complex Boolean

structure modulo a background theory. This is the main reason to study the con-

straint satisfiability problem and to study the decidability of fragments of first-order

theories. Moreover, since problems deriving from software verification involve het-

erogeneous domains which are axiomatized by different theories, modularity in com-

bining and re-using algorithms and concrete implementation of already developed

decision procedures becomes crucial. The combination and integration of existing

decision procedures are non trivial tasks mainly because of the heterogeneity of the

techniques used by the component decision procedures. If we consider the theories

which are suitable for software verification, decision procedures are obtained in many

different ways: sometimes (e.g., when dealing with the empty theory, the theories of

lists or of arrays) Superposition Calculus decides constraint satisfiability (Armando

et al., 2003), but in many other cases ad hoc procedures are needed. In this context

the problem of combining decision procedures naturally arises.

Satisfiability Modulo Thoeries solvers Satisfiability Modulo Theories solvers

(SMT solvers for short) are systems dealing with the problem of the satisfiability

of Boolean combinations of ground literals with respect to background theories for

which specialized decision procedures exist. Such background theories have disjoint

signatures in the existing implementations, and among them there are the theories

of lists, arrays, bit-vectors, and Linear Arithmetic; among SMT solvers we can find

tools such as:

– Argo-lib (http://www.matf.bg.ac.yu/~janicic/argo/);

– Barcelogic Tools (http://www.lsi.upc.edu/~oliveras/bclt-main.html);

http://www.matf.bg.ac.yu/~janicic/argo/
http://www.lsi.upc.edu/~oliveras/bclt-main.html
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– CVC3 (http://www.cs.nyu.edu/acsys/cvc3/);

– haRVey (http://www.loria.fr/equipes/cassis/softwares/haRVey/);

– Math-SAT (http://mathsat.itc.it/);

– Simplics (http://fm.csl.sri.com/simplics/);

– Yices (http://yices.csl.sri.com/);

– Z3 (http://research.microsoft.com/projects/z3/).

The general idea is to integrate a Boolean solver (usually based on DPLL algo-

rithm) with a constraint satisfiability procedure for a first-order theory T (see, e.g.,

Nieuwenhuis et al., 2006). The systems are based on a loop consisting of the follow-

ing steps: (i) the input formula ϕ which has to be tested for satisfiability modulo T is

“abstracted” into a propositional formula ϕp; (ii) the Boolean solver enumerates the

propositional assignment satisfying ϕp that can be “re-instantiated” as a conjunc-

tion of literals; (iii) each conjunction of literals is checked for T -satisfiability. The

advantage of this idea is that the satisfiability procedure is not invoked whenever

the inconsistency can be detected at a propositional level.

Conflict sets are used to refine the above schema and to minimize the (generally

unavoidable) exponential blow-up determined by the exponentially many calls to

the decision procedure for the involved theory. Conflict sets allow to lead the DPLL

procedure to prune all the satisfiable propositional assignments that are eventually

unsatisfiable modulo the involved theory; this technique is very useful in practice,

and makes these systems well-performing. Many techniques arose recently to over-

come the difficulties of dealing with conflict sets, in particular in a combination

context (see, e.g., Bozzano et al., 2006).

For further information about implemented systems for combination and initia-

tives on this area, we refer the interested reader to the web page of the Satisfiability

Modulo Theory Library (http://combination.cs.uiowa.edu/smtlib/).

Model Checking

The term model checking represents a collection of techniques for the automatic

analysis of concurrent systems. A model checker takes in input a description of the

(usually finite-state) system to be analyzed and a certain number of properties, often

expressed as formulae of temporal logic, and either confirms that the property hold

or not; in the latter case it is expected to show a counterexample, i.e. a run of the

http://www.cs.nyu.edu/acsys/cvc3/
http://www.loria.fr/equipes/cassis/softwares/haRVey/
http://mathsat.itc.it/
http://fm.csl.sri.com/simplics/
http://yices.csl.sri.com/
http://research.microsoft.com/projects/z3/
http://combination.cs.uiowa.edu/smtlib/
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system that violates the property. A brief review of (some of) the main techniques

for model checking of finite and infinite-state systems is provided in the following;

however, since the literature in the field is extremely vast, this review should not be

regarded as exhaustive.

Model Checking of Finite-State Systems The main disadvantage of model

checking is the state explosion problem that can occur if the system being verified

has many components that can make transitions in parallel. Many efforts have been

done by researcher to overcome this issue and to avoid the enumeration of all the

possible states, and different techniques are currently used for (finite-state) model

checking.

The close connection between temporal logics and automata is the basis for one of

the decision procedures for satisfiability and model checking for propositional LTL.

The theory of automata over infinite words and trees was initiated by Büchi (1962);

Rabin (1969), whereas Vardi (1991); Vardi and Wolper (1986) first proposed the use

of ω-automata for automated verification, showing how the model checking problem

for LTL could be formulated in terms of language containment between ω-automata.

Automata-theoretic characterizations of branching-time logics (see Bernholtz et al.,

1994) are based on tree automata; in this context, alternating automata allow for a

rather uniform presentation of decision procedure for both linear and branching-time

logics.

The so-called global model checking techniques for branching-time logics such as

CTL rely on the evaluation of (greatest or least) fixed points (see, e.g., Clarke et al.,

1986). One can associate to a given formula the set of states in which the formula

is true; in this way, Boolean connectives are replaced by set-theoretic operations,

and (greatest or least) fixed points (of operators obtained by combining Boolean

operators and inverse images) take the place of temporal connectives; in the finite-

state case, these fixed points can be effectively computed.

In the original implementation of the model checking algorithm, transition rela-

tions were represented explicitly by adjacency lists. In systems with many concurrent

parts, however, the number of states in the global state transition graph was too

large to handle. In contrast with explicit model checking techniques, the symbolic

model checking technique arose to deal with the state explosion problem (see, e.g.,

Burch et al., 1992). The idea is to exploit the relationship between temporal oper-

ators and fixed points to build a Boolean formula ϕB out of the temporal property
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ϕ such that the underlying sets of states associated to the two formulae coincide.

In this way, using suitable data structures, such as BDDs, that efficiently handle

the operations needed to compute ϕB , the model checking problem is reduced to

a tautology test in propositional logic. Symbolic model checking techniques allow

to verify much larger systems then explicit model checking (see Burch et al., 1992;

McMillan, 1992b).

Although symbolic model checking has traditionally been associated with BDDs,

other representations of Boolean functions have been considered. This is the case of

bounded model checking technique (Biere et al., 1999), that relies on the observation

that state sequences of some fixed length k can be represented using k copies of the

variables used to represent a single state. The existence of a state sequence of a fixed

length k that represents a run of the transition system satisfying the propositional

LTL property ϕ is reduced to the satisfiability of a certain propositional formula,

which can be efficiently decided by using a SAT solver.

Other approaches to the state explosion problems are represented by partial-order

reduction techniques (see, e.g., Katz and Peled, 1988; McMillan, 1992a; Overman,

1981). A common model for representing concurrent software is the interleaving

model, in which all of the events in a single execution are arranged in a linear order.

The partial-order reduction techniques make it possible to decrease the number of

interleaving sequence relying on the consideration that often specifications cannot

distinguish between interleaving sequences in which two independent events are ex-

ecuted in different orders. Correctness arguments are often simplified by appealing

to some form of symmetry in the system: if a transition system is invariant under

permutation (i.e., permuting individual values does not affect the overall behavior),

techniques of symmetry reductions can be applied to obtain an equivalent transition

system that is much smaller than the original (see, e.g. Clarke et al., 1993; Ip and

Dill, 1993).

Although techniques such as symbolic model checking, partial-order reduction,

and symmetry reduction attempt to cope with the state explosion problem, the

dimension of the state space can be easily greater that 10100 states even if few hun-

dred Boolean variables are involved. Model checking must therefore be performed

on rather abstract models. The idea behind abstraction techniques (see, e.g. Ben-

salem et al., 1992; Clarke et al., 1994; Cousot and Cousot, 1977; Loiseaux et al.,

1995; Long, 1993) is that it is rarely necessary to consider the system in full detail

in order to check some given property. This idea can be formalized as an abstraction
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relation that induces an abstract model in which failure of the property implies the

failure of the property in the original model. Abstraction-based approaches are not

entirely automatic methods; on the other hand, an interesting form of abstraction,

called predicate abstraction, where predicates of interest at the concrete level are

mapped to Boolean variables at the abstract level, is the base for many approaches

to software model checking.

Model Checking of Infinite-State Systems Many complex aspects are of cru-

cial importance in modern software systems, such as manipulation of data over un-

bounded domains (integers, reals, and so on), dynamic memory structures (creation

and deletion of objects, pointer manipulations), synchronization between concur-

rent processes, parametrization, real-time modeling. Infinite-state model checking

studies methods for the verification of abstract models that involve features such

as those mentioned above. Widely known models for representing infinite-state sys-

tems are, e.g., Basic Parallel Processes, context-free processes, pushdown processes,

counter machines, Petri nets. More recently, a term rewriting formalism called Pro-

cess Rewrite System that generalizes all this models has been introduced in Mayr

(1998).

Many techniques for the model checking of infinite-state systems are based on

abstraction techniques (see, e.g. Bouajjani et al., 2004; Graf and Säıdi, 1997) and

many efforts are devoted to automated data abstraction methods, following the

idea to combine predicate abstraction with counterexample-guided abstraction refine-

ment, also known as CEGAR (see, e.g. Clarke et al., 2000). Automated abstraction-

refinement techniques are currently implemented in many tools, including SLAM,

developed at Microsoft Research (see Ball and Rajamani, 2001), and BLAST (see

Henzinger et al., 2003). CEGAR consists of the following steps:

abstraction a finite set of predicates is chosen, and an abstract model is built

automatically out of the “concrete” model as a finite or push-down automaton

whose states represent truth assignments for the chosen predicates;

verification the abstract model is checked for the desired property. If the property

holds on the abstract model (i.e., the abstract model is “error-free”), so it is

the original model, thus the procedure stops; otherwise an abstract counterex-

ample is produced;

refinement it is checked automatically if the abstract counterexample corresponds
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to a concrete counterexample in the original model. If so, then the property

does not hold on the original model and the procedure stops; otherwise, the

abstract model is too coarse, and the failure to concretize the abstract coun-

terexample automatically guides the selection of new predicates to “refine” the

abstract model; the procedure continues to step verification.

The refinement phase might lead to the generation of a completely new abstract

model; lazy abstraction techniques (Henzinger et al., 2002) are used to refine the

abstract model “locally”. In the verification phase, spurious counterexamples (i.e.,

abstract runs falsifying the property that are not feasible in the original model)

can be generated because the set of predicates chosen for the abstraction does not

contain enough information on the original model. The information obtained by such

counterexamples is used to refine the abstract model in order to avoid such spurious

runs. Recently, it has been shown that techniques for computing interpolants can

be used to guide the refinement phase (see, e.g., Henzinger et al., 2004; McMillan,

2005).

Other approaches to infinite-state model checking are represented by techniques

based on automata. Regular model checking (see Bouajjani et al., 2000) is being de-

veloped for algorithmic verification of several classes of infinite-state systems whose

configurations can be modeled as (finite or infinite) words or trees over a finite alpha-

bet. This approach has been adopted for dealing with various classes of systems such

as counter systems, pushdown systems, FIFO channels systems, and parametrized

networks of process. Since state-space exploration techniques are no more applicable

in the context of infinite-state model checking, techniques for computing the effect

of arbitrarily long sequences of transition such as quotienting, acceleration, and

widening arose (see, e.g., Bouajjani et al., 1997, 2000, 2004; Esparza and Schwoon,

2001).

Many other techniques are developed in the field of model checking of infinite-

state systems. To name but a few challenging tasks, in order to reason about pro-

grams with pointers and dynamic management of the memory, the approaches are

mainly based on the use of fragments of separation logic (see, e.g., Brookes, 2004;

O’Hearn, 2007), translation to counter automata (see, e.g., Bouajjani et al., 2005,

2006), and graph rewriting (see, e.g., Heckel, 1998). Several groups are developing

approaches for termination analysis, i.e. automatic verification of program termi-

nation (see, e.g., Bradley et al., 2005; Cook et al., 2005; Tiwari, 2004). Parametric

verification intends to verify systems comprising a network of arbitrary number
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of identical or similar components running concurrently; typical examples of such

systems are mutual exclusion, cache coherence, and broadcast protocols (see, e.g.,

Abdulla and Jonsson, 1998; Abdulla et al., 1999; German and Sistla, 1992).

Our Contribution

The main contribution of this thesis is twofold: on the one hand, as far as satisfi-

ability problems are concerned, we show the close connection between combination

results for the constraint satisfiability problem for non-disjoint theories and the “tem-

poralization” of a first-order theory. On the other hand, we present a framework

that allows for a declarative approach to model checking of infinite-state systems.

Finally, a decidability result for the universal fragment of (extension of) the theory

of arrays with dimension is presented.

Temporalization and Satisfiability Temporal logics are widely used for rea-

soning about concurrent programs because they offer primitives for expressing time

relationships concisely. Hence, to the aim of helping software engineers in writing

concise and abstract specifications capable of expressing the evolution of reactive

systems, the problem of “adding a temporal dimension” (in a sense similar to that

investigated in Finger and Gabbay, 1992) to a decidable fragment of a first-order

theory with identity immediately originates. This problem is considered in the first

part of this thesis.

The undecidability of quantified modal logics over a discrete flow was discovered

by D. Scott already in the sixties. Recent works isolated quite interesting fragments

of quantified LTL which are computationally better behaved (see Gabbay et al.,

2003 for a survey). However such fragments are often insufficient for verification;

in this respect, a more promising restriction is to prohibit the interplay between

quantifiers and temporal operators (see Manna and Pnueli, 1995). We have taken

a similar approach by enriching the extensional part of the language so to be able

to model infinite data structures manipulated by systems. This leads us to consider

satisfiability of quantifier-free LTL formulae built up from a first-order signature

Σ and models with constant domain consisting of a sequence {Mi}i of first-order

models of a Σ-theory T . Furthermore, symbols in Σ and free variables were divided

into two groups. The former are interpreted rigidly whereas the latter flexibly in the

Mi’s. This approach was already taken in the seminal paper Plaisted (1986), where
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the author established a decidability result when the quantifier-free fragment of T

is decidable and the flexible symbols are considered as free symbols by the theory

T . By using recent techniques and results from the combination literature, we were

able to attack the problem in its full generality and derive both the undecidability

in the unrestricted case and the decidability under the ‘combinability’ hypotheses

for T (see Ghilardi, 2004). Such hypotheses, besides decidability of the universal

first-order fragment, were compatibility over a locally finite subtheory in the rigid

subsignature.

The local finiteness requirement is then weakened to Noetherianity. The combi-

nation procedure is more complex than in the locally finite case, since the exhaustive

enumeration of guessings can no more be used to abstract away the exchange of now

(possibly) infinitely many literals between the component theories and the combina-

tion results in Ghilardi (2004) do not apply. The exchange mechanism is formalized

by residue enumerators, i.e. computable functions returning entailed positive clauses

in the shared theory. This leads us to show the decidability of the satisfiability prob-

lem for quantifier-free LTL formulae modulo a first order theory T , when T is an

effectively Noetherian and Tr-compatible extension of Tr. The decidability result is

then extended to any modal/temporal logic whose propositional relativized satisfia-

bility problem is decidable. Finally, we show that our ‘combinability’ requirements

related to Noetherianity are met by any extension with a free unary function symbol

of a stably infinite theory.

A Declarative Approach to Model Checking The second contribution of this

thesis is a framework that allows for a declarative approach to model checking of

infinite-state systems; such a framework is based on techniques coming from the

combination field. We enrich the framework built for “temporalized” satisfiability

by adding on top of it the capability to encode transition systems. We derive un-

decidability and decidability results for the model checking of safety properties by

lifting combination methods for (non-disjoint) theories in first-order logic. The un-

decidability of the safety model checking problem follows (under mild hypotheses)

by a well-known reduction to the reachability problem for Minsky machines (see

Minsky, 1961). Under the same compatibility and local finiteness hypotheses, the

model checking problem for quantifier-free safety properties is shown to be decid-

able. The proof of this result suggests how decision procedures for the constraint

satisfiability problem of theories in first-order logic and algorithms for checking the
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satisfiability of propositional LTL formulae can be integrated. This facilitates the

employment of efficient Satisfiability Modulo Theories solvers in the model check-

ing of infinite-state systems. The decidability result for safety properties is finally

generalized to full LTL properties.

Arrays with Dimension Since its introduction in McCarthy (1962), the theory

of arrays has played a very important role in Computer Science. Unfortunately,

as many previous works (see, e.g., Bradley, 2007; Bradley et al., 2006; Jaffar, 1981;

Mateti, 1981; Suzuki and Jefferson, 1980) have already observed, the theory of arrays

alone or even extended with extensional equality between arrays (as in Armando

et al., 2003; Stump et al., 2001) is not sufficient for many applications of verification.

For example, the works in Jaffar (1981); Mateti (1981); Suzuki and Jefferson (1980)

tried to extend the theory to reason about sorted arrays. More recently, works in

Bradley (2007); Bradley et al. (2006) have shown the decidability of the satisfiability

problem for a restricted class of (possibly quantified) first-order formulae that allows

one to express many important properties about arrays.

As the last contribution of this thesis we consider the theory of arrays with

extensionality whose indexes have the algebraic structure of Presburger Arithmetic,

and extend it with additional (function or predicate) symbols expressing important

features of arrays (e.g., the dimension of an array or an array being sorted). We give a

method to integrate two decision procedures for the constraint satisfiability problem,

one for the theory of arrays and one for Presburger Arithmetic, with instantiation

strategies that allow us to reduce the constraint satisfiability problem of (extensions

of) the theory of arrays with dimension to the problem decided by the two available

procedures. Our approach to show the correctness of a non-deterministic version

of the decision procedure for the constraint satisfiability problem for the theory of

arrays with dimension is inspired by model-theoretic methods for combinations of

satisfiability problems (see Ghilardi, 2004).

While non-deterministic procedures are useful for showing correctness, they are

not suited for implementation. We address implementation issues in two ways.

First, for certain extensions of the base theory, it is possible to significantly reduce

the non-determinism by using rewriting-based methods to build decision procedures

(see, e.g., Armando et al., 2003, 2007). Since rewriting-based methods are sensitive

to the axiomatization of the theories and they are not applicable to all extensions

considered in this work, we adapt ideas developed in the Satisfiability Modulo The-
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ories (SMT) community to design practical decision procedures for all extensions of

the theory of arrays with dimension. In particular, we exploit the insight in Boz-

zano et al. (2006) of using a Boolean solver to efficiently implement the guessing

phase required by the non-deterministic procedures. This paves the way to re-use

the optimizations for efficiency already available in SMT solvers and is the second

(and main) way to solve non-determinism.

Overview

Chapter 1, after introducing the formal preliminaries about first-order logic, dis-

joint combination, and model theory (Section 1.1), presents in Section 1.2 the key

definitions that are used to develop the following two chapters. Section 1.3 reviews

some results in the field of (non-disjoint) combination of decision procedures for the

constraint satisfiability problem that are useful in order to have a better insight

into the contents of this thesis. In this context, the new result in Subsection 1.3.3

shows that, under suitable compatibility requirements, the property of being an ef-

fectively Noetherian extension is modular. Subsection 1.3.4 is dedicated to readers

interested in having a deeper understanding of the mathematical issues related to

the notions introduced in Section 1.2. Finally, Sections 1.4 and 1.5 present some

examples of theories satisfying the compatibility requirements and an entirely new

class of theories amenable for being used in the combination context.

Chapter 2 is devoted to the study of what happens if we “add a temporal dimen-

sion” (in the sense discussed above) to a decidable fragment of a first-order theory

with identity. Section 2.1 presents the syntax and semantic of LTL(Σa)-sentences

and introduces the key notion of data-flow theories. In Section 2.2, a reduction to

the constraint satisfiability problem for unions of (signature disjoint) theories in a

first-order framework proves the undecidability of the (ground) satisfiability prob-

lem for (totally flexible) data-flow theories even if the underlying first-order theory

has decidable constraint satisfiability problem. Decidability is obtained by adding a

compatibility requirement; the result is first shown relying on the local finiteness of

the rigid (i.e., time-independent) signature (Section 2.3), and then also under weaker

Noetherianity hypotheses (Section 2.4). Finally, Section 2.5 shows how these results

can be extended to any modal/temporal logic whose propositional relativized satis-

fiability problem is decidable.

Chapter 3 presents the framework for model checking of infinite-state systems.
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After introducing the notion of LTL-system specification used to encode transition

systems, the model checking problem is addressed (Section 3.1). Section 3.2 shows

that, even if the compatibility requirement is fulfilled, the ground model checking

problem for an LTL-system specification based on a totally rigid data-flow theory is

undecidable; this result is obtained through a simple reduction to the (undecidable)

reachability problem of Minsky machines. Under the local finiteness requirement of

the rigid signature, it is first shown that the (ground) model checking problem for

safety properties is decidable, and then it is proved the decidability of its general-

ization to full LTL properties (Section 3.3). Section 3.4 provides examples to which

our algorithm can be successfully applied.

Finally, Chapter 4 gives decidability results for the universal fragments of (ex-

tensions of) the theory of arrays with dimension. After a brief presentation of some

motivations and the intuition behind arrays with dimensions (Section 4.1), the non-

deterministic decision procedure is presented in Section 4.2 where the complexity of

the problem is also analyzed. Section 4.3 shows the decidability of the constraint

satisfiability problem for some interesting extensions of the theory of arrays with

dimensions. Finally, Section 4.4 is devoted to address some of the problems arising

in the implementation of the procedures presented, both by using the rewriting-

approach to build satisfiability procedures and relying on Satisfiability Modulo The-

ories solvers.

Many results of this thesis have been already published. More in detail, the results

stated in Chapter 2 regarding the locally finite case were published in Ghilardi et al.

(2007b), whereas the ones in the same chapter involving Noetherianity (as well as

the content of Section 1.5) can be found in Ghilardi et al. (2007c). Moreover, the

decidability of the model checking problem for safety properties shown in Chapter 3

was published in Ghilardi et al. (2007b), while its generalization to full LTL prop-

erties is unpublished. Finally, the work about the theory of arrays with dimension

presented in Chapter 4 was published in Ghilardi et al. (2007a).



Chapter 1

Non-Disjoint Combination

Many areas of computer science (such as software and hardware verification, ar-

tificial intelligence, knowledge representation and even computational algebra) are

interested in the study and in the development of combination and integration tech-

niques for existing decision procedures: this is so because there is a need to reason

in heterogeneous domains, so that modularity in combining and re-using algorithms

and concrete implementations becomes crucial. The key ingredient in such cases is

the Nelson-Oppen method (see Nelson and Oppen, 1979; Oppen, 1980; Tinelli and

Harandi, 1996), which was originally designed in order to combine decision proce-

dures for the universal fragment of first-order theories whose signature shares only

the equality predicate.

Recently it has been shown how to apply the Nelson-Oppen method also in case

the signature of the theories involved are non-disjoint (see Ghilardi, 2004; Ghilardi

et al., 2006; Nicolini, 2007). The aim of this chapter is manyfold. First of all, after

fixing the standard background on first-order logic, disjoint combination, and model

theory, we give all the fundamental definitions that will be used in the rest of the

thesis. Secondly, we review the extensions to the non-disjoint case of the Nelson-

Oppen method in order to have a better insight into the results of Chapters 2

and 3 (in this context, a new modularity property is also proved). Thirdly, some

mathematical observations that help deeply understand the notion introduced in the

first part of the chapter are presented. Finally, some examples of theories fulfilling

the ‘combinability’ requirements are given together with an entirely new class of

theories amenable for being used in the combination context.

1
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1.1 Formal preliminaries

The following subsections present some formal preliminaries for first-order logic, a

brief review of the combination schema for the constraint satisfiability problem for

theories over disjoint signatures, and some basic facts in model theory that will be

used in the rest of this thesis.

1.1.1 First-Order Logic

A signature Σ is a set of functions and predicate symbols (each endowed with the

corresponding arity). We assume the binary equality predicate symbol ‘=’ to be

always present in any signature Σ (so, if Σ = ∅, then Σ does not contain other

symbols than equality). To avoid confusion, we use the symbol ≡ (instead of =) in

the metalanguage to mean identity of syntactic expressions. The signature obtained

from Σ by adding a set a of new constants (i.e., 0-ary function symbols) is denoted

by Σa. Σ-terms, Σ-atoms, Σ-literals, Σ-clauses, and (elementary) Σ-formulae are

defined in the usual way (we will omit the prefix Σ when it is clear from the context).

A positive clause is a disjunction of atoms. A constraint is a conjunctions of literals.

Terms, literals, clauses and formulae are called ground whenever no variable appears

in them. Formulae without free variables are sentences. A Σ-theory T is a set of

sentences (called the axioms of T ) in the signature Σ. A formula is quantifier-free

(or open) iff it does not contain quantifiers. The universal (resp., existential) closure

of a formula ϕ is the sentence obtained by adding to ϕ a prefix of universal (resp.,

existential) quantifiers binding all variables which happen to have a free occurrence

in ϕ.

In the following, letters ϕ,ψ, . . . are used for formulae; the following notations

will be used below: ϕ(x) means that the set of free variables in ϕ is contained in

the finite set x whereas ϕ(a/x) (or, simply, ϕ(a) leaving the x implicit) means that

ϕ(a) is the formula obtained from ϕ(x) by the componentwise replacement of the

free variables in x with the constants in a.

From the semantic side, we have the standard notion of a Σ-structure M =

(M,I): this is nothing but a support set M endowed with an arity-matching inter-

pretation I of the function and predicate symbols from Σ. We use fM (resp. PM)

to denote the interpretation of the function symbol f (resp. predicate symbol P )

in the structure M (the equality predicate = is always interpreted as the identity

relation over M). Truth of a Σ-formula in M is defined in any one of the standard
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ways (so that truth of a formula is equivalent to truth of its universal closure). We

let ⊥ denote an arbitrary formula which is true in no structure. A formula ϕ is

satisfiable in M iff its existential closure is true in M.

A Σ-structure M is a model of a Σ-theory T (in symbols M |= T ) iff all the

sentences of T are true in M. If ϕ is a formula, T |= ϕ (‘ϕ is a logical consequence

of T ’) means that ϕ is true in all the models of T (T |= ϕ is equivalent to T |= ∀xϕ,

where ∀xϕ is the universal closure of ϕ). A Σ-theory T is complete iff for every

Σ-sentence ϕ, either ϕ or ¬ϕ is a logical consequence of T ; T is consistent iff it has

a model, i.e., T 6|= ⊥. A sentence ϕ is T -consistent iff T ∪ {ϕ} is consistent.

A theory is universal iff it has universal closures of open formulae as axioms.

A Σ-theory T admits quantifier elimination iff for every formula ϕ(x) there is a

quantifier-free formula ϕ′(x) such that T |= ϕ(x) ↔ ϕ′(x). There are many well-

known theories eliminating quantifiers (see Chang and Keisler, 1990), e.g., Linear

(Integer1 or Rational) Arithmetics, Real Arithmetics, acyclic lists, and any theory

axiomatizing enumerated datatypes.

The constraint satisfiability problem for the constraint theory T is the problem

of deciding whether a Σ-constraint is satisfiable in a model of T (or, equivalently, T -

satisfiable).2 In the following, we use free constants instead of variables in constraint

satisfiability problems, so that we (equivalently) redefine a constraint satisfiability

problem for the theory T as the problem of establishing the consistency of T ∪Γ for

a finite set Γ of ground Σa-literals (where a is a finite set of new constants). For the

same reason, from now on, by a ‘Σ-constraint’ we mean a ‘ground Σa-constraint’,

where the finite set of free constants a should be clear from the context (if not

explicitly mentioned).

If Σ0 ⊆ Σ is a subsignature of Σ and if M is a Σ-structure, the Σ0-reduct

of M is the Σ0-structure M|Σ0
obtained from M by forgetting the interpretation

of function and predicate symbols from Σ \ Σ0. A Σ-embedding (or, simply, an

embedding) between two Σ-structuresM = (M,I) and N = (N,J ) is any mapping

µ : M −→ N among the corresponding support sets satisfying the condition

M |= ϕ iff N |= ϕ (1.1)

1For integer arithmetic, infinite predicates expressing equivalence modulo n must be included in
the language in order for quantifiers to be eliminable.

2Notice that the complementary constraint unsatisfiability problem (i.e. the problem of deciding
whether a finite set of Σ-literals is unsatisfiable in all the models of T ) is easily reduced to the
problem of deciding whether T |= ϕ holds, for quantifier-free ϕ.
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for all ΣM -atoms ϕ (here M is regarded as a ΣM -structure, by interpreting each

additional constant a ∈ M into itself and N is regarded as a ΣM -structure by

interpreting each additional constant a ∈ M into µ(a)). Notice the following facts:

(a) as we have equality in the language, an embedding is an injective function;

(b) an embedding µ : M −→ N must be an algebraic homomorphism, that is

for every n-ary function symbol f and for every a1, . . . , an ∈ M , we must have

fN (µ(a1), . . . , µ(an)) = µ(fM(a1, . . . , an));
3 (c) for an n-ary predicate symbol P we

must have (a1, . . . , an) ∈ P
M iff (µ(a1), . . . , µ(an)) ∈ P

N . It is easily seen that an

embedding µ : M −→ N can be equivalently defined as a mapping µ : M −→ N

satisfying (a)-(b)-(c) above.

If M ⊆ N and if the embedding µ : M −→ N is just the identity inclusion

M ⊆ N , we say that M is a substructure of N or that N is an extension of M.

In case (1.1) holds for all first order formulae, the embedding µ is said to be an

elementary embedding. Correspondingly, in case µ is also an inclusion, we say that

M is an elementary substructure of N or that N is an elementary extension ofM.

1.1.2 Disjoint Combination

Suppose we are given two first-order theories T1 and T2 over the signatures Σ1 and

Σ2 respectively (notice that it may happen that the signatures Σ1 and Σ2 are non-

disjoint). If we are able to solve the constraint satisfiability problem in both T1 and

T2, we wonder whether it is possible to solve the same problem in T1 ∪ T2.

In order to be able to re-use any existing decision procedure, it is useful to adopt

a so-called black-box approach. This means the following: we assume that a decision

procedure DP1 solves the constraint satisfiability problem for the theory T1 and a

decision procedure DP2 solves the constraint satisfiability problem for the theory T2.

The provers DP1 and DP2 can exchange information only externally, according to a

protocol to be specified: in any case, DP1 and DP2 cannot be internally modified.

One of the simplest methodologies for the combination of decision procedures

following the black-box approach is represented by the Nelson-Oppen procedure (see

Nelson and Oppen, 1979), which was originally designed only for the disjoint sig-

natures case. The Nelson-Oppen procedure can be summarized essentially in two

steps, namely the purification preprocessing and the exchange loop.

Purification. The preprocessing step consists in the transformation of the initial

3To see this, apply (1.1) to the ΣM -atom f(a1, . . . , an) = a, where a ∈M is just fM(a1, . . . , an).
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finite set Γ of (Σ1 ∪ Σ2)
c-ground literals into a set

Γ1 ∪ Γ2

where, for some c′, Γ1 is a set of Σ
c,c′

1 -ground literals and Γ2 is a set of Σ
c,c′

2 -

ground literals. This transformation preserves satisfiability; in standard im-

plementations, purification is linear (equations c = t, for new constants c and

alien subterms t, are successively added).

Exchange Loop. Whenever the decision procedure DPi (i ∈ {1, 2}) finds a dis-

junction A1 ∨ · · · ∨ An (n ≥ 1) of ground Σ
c,c′

0 -atoms (here Σ0 = Σ1 ∩ Σ2)

such that Γi ∪ {¬A1, . . . ,¬An} is Ti-unsatisfiable but Γj ∪ {¬A1, . . . ,¬An}

is Tj-satisfiable (i, j ∈ {1, 2}, i 6= j), then chooses nondeterministically k ∈

{1, . . . , n} and updates the current constraints by Γ1 := Γ1 ∪ {Ak} and Γ2 :=

Γ2 ∪ {Ak}.

The exchange loop is non-deterministic, thus obviously case splitting and back-

tracking mechanisms are required. Notice however that, if the theories Ti are Σ0-

convex, the exchange of atoms becomes deterministic. Following Tinelli (2003),

a theory T on the signature Σ is said to be Σ0-convex (Σ0 ⊆ Σ) iff whenever

T ∪ Γ |= A1 ∨ · · · ∨ An (for a finite set of (Σ ∪ A)-literals Γ, for n ≥ 1 and for

ground (Σ0 ∪ A)-atoms A1, . . . , An), there is k ∈ {1, . . . , n} such that T ∪ Γ |= Ak.

The procedure returns “unsatisfiable” if, for all backtracks, Γ1 (or Γ2) eventually

becomes unsatisfiable modulo T1 (modulo T2, respectively). Otherwise, if there is a

backtrack such that the loop terminates without finding any inconsistency, it returns

“satisfiable”.

The deterministic Nelson-Oppen procedure is guaranteed to be terminating and

complete under the following assumptions:

(i) Σ1 and Σ2 are disjoint;

(ii) the theories T1 and T2 are Σ0-convex;

(iii) they admit only non trivial models (i.e. only models having cardinality bigger

than 1).

The latter is not a real limitation: indeed, it is easy to adjust the deterministic

procedure in order to drop it. In the non deterministic case, we can eliminate

assumption (iii) and weaken the convexity assumption (ii) to:
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(ii’) the theories T1 and T2 are stably infinite.

Here a theory T over the signature Σ is said to be stably infinite iff any quantifier-

free Σ-formula ϕ which is satisfiable in a model of T is satisfiable in a model of T

whose domain is infinite. It is interesting to notice that theories which are both

convex and do not admit trivial models are also stably infinite (see Barrett et al.,

2002).

1.1.3 Basic Facts in Model Theory

In this subsection standard background in model theory will be recalled; for further

information, we refer the reader to classical textbooks such as Chang and Keisler

(1990); Hodges (1993). Given a Σ-structure M = (M,I) and a subset C ⊆ M ,

the substructure of M generated by C is the substructure obtained from M by

restricting I to the subset {tM(c) | c ⊆ C and t(x) is a Σ-term} (here tM is the

function interpreting the term t inM). In case this substructure coincides withM,

we say that C is a set of generators for M; moreover, if C is finite, we say that M

is finitely generated (by the generators C).

If C is a set of generators forM, the diagram ∆(M) ofM (w.r.t. Σ, C) consists of

all ground ΣC-literals that hold inM; analogously, the elementary diagram ∆e(M)

of M (w.r.t. Σ, C) consists of all ground ΣC-sentences that hold in M (often C is

not specified at all, in these cases it is assumed to coincide with the whole carrier

set of M).

Diagrams (in combination with the compactness of the logical consequence re-

lation) will be repeatedly used in the proofs of the main results of this thesis. A

typical standard use is the following: suppose that we want to embed M into a

model of a theory T , then it is sufficient to check that T ∪∆(M) is consistent. This

argument is justified by Robinson’s Diagram Lemma (see Chang and Keisler, 1990),

which relates embeddings and diagrams as follows.

Lemma 1.1.1 (Robinson’s Diagram Lemma). Let M be a Σ-structure generated

by a set C, and let N be another Σ-structure; then M can be embedded (resp.

elementarily embedded) into N iff N can be expanded to ΣC-model of the diagram

∆(M) (resp. of the elementary diagram ∆e(M)) of M w.r.t. Σ, C.

Since the technique used for proving Lemma 1.1.1 is simple, we sketch it. If we

have an expansion of N to a ΣC-structure (to be called N again for simplicity),

then, since every element of the support ofM is of the kind tM(c) for some c ⊆ C,
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we can define the embedding µ by putting µ(tM(c)) := tN (cN ): this is well-defined

and it is an embedding precisely because N |= ∆(M). Conversely, if we have the

embedding µ, then we can get the desired expansion by taking cN := µ(c) for all

c ∈ C.

Since a surjective embedding is just an isomorphism, the argument just sketched

shows also the following fact:

Lemma 1.1.2. If two Σ-structuresM, N are both generated by a set C and if one

of them, say N , satisfies the other’s diagram (w.r.t. Σ, C), then the two structures

are ΣC-isomorphic.

Ground formulae are invariant under embeddings in the following sense.

Lemma 1.1.3. LetM = (M,I) be a Σ-structure that can be embedded into another

Σ-structure N . For all ground ΣM -sentences ϕ, we have that

M |= ϕ ⇔ N |= ϕ,

where N is extended to a ΣM -structure by interpreting each a ∈ M by its image

under the embedding.

Next lemma states the well-known property (called submodel-completeness) of

theories enjoying quantifier-elimination:

Lemma 1.1.4. Suppose that T ⋆ is a Σ0-theory enjoying quantifier elimination and

that ∆(R) is a diagram of a substructure R = (R,J ) of a model M of T ⋆; then the

ΣR-theory T ⋆ ∪∆(R) is complete.

Proof. By Robinson’s Diagram Lemma 1.1.1, the models of T ⋆∪∆(R) are the models

of T ⋆ endowed with a Σ0-embedding from R. One such model is M; we show that

any other model M′ satisfies the same ΣR-sentences as M (we assume without

loss of generality the Σ0-embedding from R into M′ to be an inclusion). Pick an

arbitrary ΣR-sentence ϕ(c) (where the c are parameters from the set of generators of

R used in order to build ∆(R)): this sentence is equivalent, modulo T ⋆, to a ground

ΣR-sentence ϕ⋆(c). Since truth of ground sentences is preserved by substructures

(cf. Lemma 1.1.3), we have the following chain of equivalences

M′ |= ϕ(c)⇔M′ |= ϕ⋆(c)⇔ R |= ϕ⋆(c)⇔M |= ϕ⋆(c)⇔M |= ϕ(c),

showing our claim.
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Next result is also part of basic classical model theory: a proof of it can be easily

deduced from Craig’s Interpolation Theorem (alternatively, a direct proof using a

double chain argument is possible, see Chang and Keisler, 1990, pp. 141-142):

Theorem 1.1.5 (Robinson’s Joint Consistency Theorem). Let H1,H2 be, respec-

tively, consistent Θ1,Θ2-theories and let Θ0 be the signature Θ1 ∩Θ2. Suppose that

there is a complete Θ0-theory H0 such that H0 ⊆ H1 and H0 ⊆ H2; then H1 ∪H2 is

a consistent Θ1 ∪Θ2-theory.

1.2 Compatible Theories

We recall some notions used to develop results for the non-disjoint combination of

theories (see, e.g., Baader and Ghilardi, 2006; Baader et al., 2006; Ghilardi, 2004;

Ghilardi and Santocanale, 2003; Ghilardi et al., 2006). We refer the reader to Ghi-

lardi (2004) for more information and for the proofs of side claims we are making

in this section (these side claims will never be used within this thesis, but might be

useful for a better insight into the notions we are going to introduce).

Definition 1.2.1 (T0-compatibility – Ghilardi, 2004). Let T be a theory in the

signature Σ and let T0 be a universal theory in a subsignature Σ0 ⊆ Σ. We say that

T is T0-compatible iff T0 ⊆ T and there is a Σ0-theory T ∗
0 such that

(i) T0 ⊆ T
⋆
0 ;

(ii) T ⋆0 has quantifier elimination;

(iii) every model of T0 can be embedded into a model of T ⋆0 ;

(iv) every model of T can be embedded into a model of T ∪ T ⋆0 .

The requirements (i) to (iii) make the theory T ⋆0 unique, provided it exists (T ⋆0
is nothing but the so-called model completion of T0, see Chang and Keisler, 1990).4

In principle, we do not need to have a characterization of T ⋆0 , the mere informa-

tion of its existence is enough for our decision procedures to be sound and complete

and to implement them. As for T0 itself, it is usually sufficient to take as T0 the

set of universal Σ0-sentences which are logical consequence of T (for instance, this

4The standard definition of model completion (adopted also in Ghilardi, 2004) is slightly different,
but can be proved to be equivalent to the above one in the case of universal theories, see the
Appendix B of Ghilardi (2003) for details.
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will be always the case for the temporal logic decision problems analyzed in this

thesis). No information will be needed on axiomatizations of T0 to run our decision

procedures too, we shall just need qualitative information on properties of T0, such

as local finiteness, Noetherianity, etc. (see below).

A lot of examples of theories fitting Definition 1.2.1 can be easily obtained as

follows: suppose that T ∗
0 is a Σ0-theory that eliminates quantifiers and take T be any

theory whatsoever in a bigger signature such that T ⊇ T ∗
0 . Then T is T0-compatible,

if we take as T0 the theory having as axioms all the universal Σ0-sentences which

are logical consequences of T ⋆0 .

Of course, the key requirements in Definition 1.2.1 are requirements (iii) and

(iv). Such requirements trivialize in the case considered in the last paragraph; to

understand what they mean, notice that (by Robinson’s Diagram Lemma 1.1.1 and

by compactness) they are equivalent to the following statements:

(iii’) every Σ0-constraint which is satisfiable in a model of T0 is satisfiable also in a

model of T ⋆0 ; 5

(iv’) every Σ-constraint which is satisfiable in a model of T is satisfiable also in a

model of T ⋆0 ∪ T .6

These requirements are nothing but a generalization of the stable infiniteness

requirement of the Nelson-Oppen combination procedure (see Nelson and Oppen,

1979; Tinelli and Harandi, 1996): in fact, if T0 is the empty theory in the empty

signature, T ⋆0 is the theory axiomatizing an infinite domain, so that (iii’) holds

trivially and (iv’) is precisely stable infiniteness.

Other examples of T0-compatible theories are given in Ghilardi (2004): for in-

stance, any extension (in a richer functional signature and by means of equational

axioms) of the theory BA of Boolean algebras is BA-compatible.

1.2.1 Locally Finite Theories

T0-compatibility is used in order to obtain the completeness of combination algo-

rithms; for termination, local finiteness and Noetherianity are the relevant require-

ments.

5Equivalently, T0 and T ⋆
0 entail the same universal Σ0-sentences.

6Equivalently, T and T ∪ T ⋆
0 entail the same universal Σ-sentences.
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Definition 1.2.2 (Local Finiteness). We say that Σ0-theory T0 is locally finite iff Σ0

is finite and, for every finite set of free constants a, there are finitely many ground

Σ
a
0-terms t1, . . . , tka such that for every further ground Σ

a
0-term u, we have that

T0 |= u = ti (for some i ∈ {1, . . . , ka}). If such t1, . . . , tka are effectively computable

from a (and ti is computable from u), then T0 is said to be effectively locally finite.

If Σ0 is finite and does not contain any function symbol, then any Σ0-theory

is effectively locally finite; among effectively locally finite theories we have Boolean

algebras, Linear Integer Arithmetic modulo a fixed integer, Arrays, and theories

axiomatizing enumerated datatypes.

The main way in which local finiteness is exploited lies in the computation of fi-

nite representatives sets of ground atoms, clauses and formulae7 in finitely expanded

signatures. This means the following (e.g. in the case of atoms): consider the sig-

nature Σ
a
0, obtained from Σ0 by expanding it with finitely many free constants a.

Thanks to effective local finiteness of T0, it is possible to compute finitely many

Σ
a
0-atoms ψ1(a), . . . , ψm(a) such that for any further Σ

a
0-atom ψ(a) there is some i

such that T0 |= ψi(a)↔ ψ(a). These atoms ψ1(a), . . . , ψm(a) are called representa-

tives (modulo T0-equivalence) because they can freely replace arbitrary Σ
a
0-atoms in

computational considerations.

1.2.2 Noetherian Theories

Local finiteness is a quite strong requirement: in many cases a much weaker require-

ment is sufficient. This requirement is called a ’Noetherianity’ requirement, because

it generalizes standard conditions from abstract algebra.

In abstract algebra, the adjective Noetherian is used to describe structures that

satisfy an ascending chain condition on congruences (see, e.g., MacLane and Birkhoff,

1988): since congruences can have special representations, Noetherianity concerns,

e.g., chains of ideals in the case of rings and chains of submodules in the case of

modules. Although this is somewhat non-standard, we may take a more abstract

view and say that a variety (i.e. an equational class of structures) is Noetherian iff

finitely generated free algebras satisfy the ascending chain condition for congruences

or, equivalently, iff finitely generated algebras are finitely presented. Now, congru-

ences over finitely generated free algebras may be represented as sets of equations

among terms. This allows us to equivalently re-state the Noetherianity of varieties

7Recall that when we say that a formula is ground we mean that it does not contain variables,
neither free nor bounded.
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as “there are no infinite ascending chains of sets of equations modulo logical con-

sequence”. This observation was the basis for the abstract notion of Noetherian

Fragment introduced in Ghilardi et al. (2006), here adapted for an arbitrary first-

order theory.

Definition 1.2.3 (Noetherian Theory). A Σ0-theory T0 is Noetherian if and only

if for every finite set of free constants a, every infinite ascending chain

Θ1 ⊆ Θ2 ⊆ · · · ⊆ Θn ⊆ · · ·

of sets of ground Σ
a
0-atoms is eventually constant modulo T0, i.e. there is an n such

that T0 ∪Θn |= A, for every natural number m and atom A ∈ Θm.

Natural examples of Noetherian theories are the first-order axiomatization (in

equational logic) of varieties such as K-algebras, K-vector spaces, and R-modules,

where K is a field and R is a Noetherian ring (see MacLane and Birkhoff, 1988 for

further details). Abelian semigroups are also Noetherian (see Chenadec, 1986, The-

orem 3.11). Notice that, since any extension (in the same signature) of a Noetherian

theory is also Noetherian, any theory extending the theory of a single Associative-

Commutative symbol is Noetherian. This shows that the family of Noetherian the-

ories is important for verification because theories axiomatizing integer addition or

multiset union formalize crucial aspects of a system to be verified (e.g., multisets

may be used to check that the result of some operations like sorting on a collection

of objects yields a permutation of the initial collection).

Before being able to describe our new combination method, we need to introduce

some preliminary notions. In the remaining of this section, we fix two theories T0 ⊆ T

in their respective signatures Σ0 ⊆ Σ.

Definition 1.2.4 (T0-basis). Given a finite set Θ of ground clauses (built out of

symbols from Σ and possibly further free constants) and a finite set of free constants

a, a T0-basis for Θ w.r.t. a is a set ∆ of positive ground Σ
a
0-clauses such that

(i) T ∪Θ |= C, for all C ∈ ∆ and

(ii) if T ∪Θ |= C then T0 ∪∆ |= C, for every positive ground Σ
a
0-clause C.

Notice that only constants in a may occur in a T0-basis for Θ w.r.t. a, although

Θ may contain constants not in a.
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Definition 1.2.5 (Residue Enumerator). Given a finite set a of free constants, a

T -residue enumerator for T0 w.r.t. a is a computable function Res
a
T (Γ) mapping a

Σ-constraint Γ to a finite T0-basis for Γ w.r.t. a.

If Γ is T -unsatisfiable, then without loss of generality a residue enumerator can

always return the singleton set containing the empty clause. The concept of (Noethe-

rian) residue enumerator is inspired by the work on partial theory reasoning (see,

e.g., Baumgartner et al., 1992) and generalizes the notion of deduction complete

procedure of Kirchner et al. (2005). Given a residue enumerator for constraints (cf.

Definition 1.2.5), it is always possible to build one for clauses (this will be useful for

the combination method, see below).

Lemma 1.2.6. Given a finite set a of free constants and a T -residue enumerator

Res
a
T for T0 w.r.t. a, there exists a computable function Res

a
T (Θ) mapping a finite

set of ground clauses Θ to a finite T0-basis of Θ w.r.t. a.

Proof. We proceed as follows. First of all, let us convert Θ into its disjunctive

normal form
∨

i Γi. Let ∆i := Res
a
T (Γi); we claim that ∆, namely the conversion

into conjunctive normal form of
∨

i∆i, is a T0-basis for Θ w.r.t. a. Indeed, Defini-

tion 1.2.4(i) is verified since, for each i, T ∪ Γi |= ∆i (because ∆i is a T0-basis for

Γi), so it follows T ∪
∨

i Γi |=
∨

i∆i, hence T ∪ Θ |= ∆ (recall that ∆ is logically

equivalent to
∨

i∆i). Moreover, Definition 1.2.4(ii) is verified because T ∪Θ |= C iff

T ∪
∨

i Γi |= C if and only if, for each i, T ∪ Γi |= C, hence, for each i, T0 ∪∆i |= C

(again because ∆i is a T0-basis for Γi), and finally T0 ∪∆ |= C.

If T0 is Noetherian, then it is possible to show that a finite T0-basis for Γ w.r.t.

a always exists, for every Σ-constraint Γ and for every set a of constants, by using

the following

Lemma 1.2.7. Every infinite ascending chain of sets of positive ground Σ
a
0-clauses

is eventually constant for logical consequence modulo a Noetherian Σ-theory T0.

Proof. By contradiction, suppose not; in this case it is immediate to see that there

are infinitely many positive ground T0-clauses C1, C2, . . . such that for all i the clause

Ci is not a logical consequence of T0 ∪ {C1, . . . , Ci−1}.

Let us build a chain of trees T0 ⊆ T1 ⊆ T2 ⊆ · · · , whose nodes are labeled by

ground Σ
a
0-atoms as follows. T0 consists of the root only, which is labeled ⊤. Suppose

Ti−1 is already built and consider the clause Ci ≡ B1 ∨ · · · ∨ Bm. To build Ti, do
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the following for every leaf K of Ti−1 (let the branch leading to K be labeled by

A1, . . . , Ak): append new sons to K labeled B1, . . . , Bm, respectively, if Ci is such

that T0 ∪ {A1, . . . , Ak} 6|= Ci (if this is not the case, do nothing for the leaf K).

Consider now the union tree T =
⋃
Ti: since, whenever a node labeled Ak+1

is added, Ak+1 is not a logical consequence w.r.t. T0 of the formulae labeling the

predecessor nodes, by the Noetherianity of T0 all branches are then finite and by

König lemma the whole tree is itself finite. This means that for some index j, the

examination of clauses Ci (for i > j) did not yield any modification of the already

built tree. Now, Cj+1 is not a logical consequence of T0 ∪ {C1, . . . , Cj}: this means

that there is a Σ
a
0-structure M which is a model of T0 and in which all atoms of

Cj+1 are false and the C1, . . . , Cj are all true. By induction on i = 0, . . . , j, it is

easily seen that there is a branch in Ti whose labeling atoms are true in M: this

contradicts the fact that the tree Tj has not been modified in step j + 1

Unfortunately, a basis for a Noetherian theory is not always computable; this

motivates the following

Definition 1.2.8. A theory T is an effectively Noetherian extension of T0 if and

only if T0 is Noetherian and there exists a T -residue enumerator for T0 w.r.t. every

finite set a of free constants.

For example, the theory of commutative K-algebras is an effectively Noetherian

extension of the theory of K-vector spaces, where K is a field (see Ghilardi et al.,

2006; Nicolini, 2007 for details). Locally finite theories and Linear Real Arithmetic

are further examples taken from the literature about automated theorem proving.

The class of locally finite theories is (strictly) contained in that of Noetherian

theories: to see this, it is sufficient to notice that, once fixed a finite set of free

constants a, only finitely many representatives over a are equivalent (modulo the

locally finite theory) to any arbitrary set of atoms over a. From this, it is obvious

that any infinite ascending chain of sets of such atoms must be eventually constant.

Under the hypotheses that T0 is effectively locally finite and its extension T has

decidable constraint satisfiability problem, it is straightforward to build a T -residue

enumerator for T0.

The case of Linear Real Arithmetic can be treated as follows (see Nicolini, 2007

for further details). Let us consider the signature Σ = {0,+,−, {fr}r∈R,≤} where 0

is a constant, − and fr are unary function symbols, + is a binary function symbol,

≤ is a binary predicate symbol, and Σ0 = Σ \ {≤}. We consider the theory T≤
R

=
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ThΣ(R), i.e. the set of all Σ-sentences true in R, which is seen as an R-vector space

equipped with a linear ordering, where the fr’s represent the external product so

that terms are all equivalent to homogeneous linear polynomials. Finally, let TR be

ThΣ0(R), i.e. the set of all Σ0-sentences true in R, which is seen as an R-vector space

without the ordering (so TR is the theory of the R-vector spaces, not reduced to {0}).

The Noetherianity of TR follows from general algebraic properties (see, e.g., MacLane

and Birkhoff, 1988). A T≤
R

-residue enumerator for TR can be obtained as follows.

Let Γ = {C1, . . . , Cm} be a set of inequalities, i.e. Σ-atoms whose main predicate

symbol is ≤. By Definition 1.2.4, the Σ0-basis for Γ is the set of all the (disjunctions

of) equalities implied by Γ. Actually, to compute a basis, it is sufficient to identify

the set of implicit equalities in Γ, i.e. the equalities C=
i such that T≤

R
|= Γ → C=

i

(here C=
i is obtained from Ci by substituting ≤ with =). This is so because (i) T≤

R

is Σ0-convex (i.e. if T≤
R
|= Γ→ (e1 ∨ · · · ∨ en), then there exists i ∈ {1, . . . , n} such

that T≤
R
|= Γ → ei, for n ≥ 1 and equalities e1, . . . , en) and (ii) given a system of

inequalities Γ, if ∆ is the collection of all the implicit equalities of Γ and e is an

equality such that T≤
R
|= Γ → e, then TR |= ∆→ e (see Lassez and McAloon, 1992

for full details, Nicolini, 2007 for the adaptation to our context). The interest of

implicit equalities is that they can be easily identified by using the Fourier-Motzkin

variable elimination method (see Lassez and Maher, 1992 for details on how to do

this).

1.3 Combination Results for Non-Disjoint Theories

In first two subsections, we review the combination results of Ghilardi (2004), taking

into consideration also further extensions from Ghilardi et al. (2006): the main

results presented here (Theorems 1.3.1 and 1.3.3) will not be used in the remaining

part of this thesis. Nevertheless, they might be useful in order to understand the role

played within combination problems by the notion introduced so far. Moreover, the

reader should notice that the proofs of Theorems 1.3.1 and 1.3.3 are given here by

introducing Lemmas 1.3.2 and 1.3.8 that slightly extend the corresponding lemmas

in Ghilardi (2004); Ghilardi et al. (2006). These two lemmas will be used in order

to prove the results presented in Chapters 2 and 3.

In the third subsection, some properties regarding the notions presented are

proved; more in detail, we first recall the proof of Ghilardi (2004, Theorem 5.2

and Proposition 4.4) stating a “ground interpolation” property for T0-compatible
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theories and the modularity of the T0-compatibility notion. Furthermore, we present

a new result showing the modularity of the property of being effectively Noetherian

extension.

Finally, the last subsection collects some remarks of mathematical interest that

can help the reader have a better insight in the notion of T0-basis, local finiteness,

and noetherianity.

1.3.1 The Locally Finite Case

Suppose we are given theories T1, T2 in signatures Σ1,Σ2 and suppose that con-

straint satisfiability problem is decidable for both T1 and T2; what can we say about

constraint satisfiability problem for the (Σ1 ∪Σ2)-theory T1 ∪ T2? In general, not so

much: constraint satisfiability problem in T1 ∪ T2 can be undecidable, even if the

shared signature Σ1 ∩ Σ2 is empty (see Bonacina et al., 2006). We look for suffi-

cient conditions making this ‘decidability transfer result’ available. We first state

the following basic combination result:

Theorem 1.3.1 (Ghilardi, 2004). Suppose that the theories T1, T2 (in signatures

Σ1,Σ2) both have decidable constraint satisfiability problem; then the (Σ1 ∪ Σ2)-

theory T1 ∪ T2 also has decidable constraint satisfiability problem in case T1, T2 are

both T0-compatible for some universal and effectively locally finite (Σ1 ∩ Σ2)-theory

T0 contained in T1, T2.

As pointed out in Section 1.2, to get concrete applications of Theorem 1.3.1 it is

sufficient to take any theories T1, T2 extending a locally finite quantifier eliminating

theory T ⋆0 in the shared signature Σ1 ∩ Σ2 (the T0 fitting the hypotheses of Theo-

rem 1.3.1 is then the theory whose axioms are all the universal consequences of T ⋆0 ):

examples of such a T ⋆0 include Boolean algebras, Linear Integer Arithmetic modulo

n, the theory of dense total orders without endpoints, and any theory axiomatizing

enumerated datatypes. Another family of applications (covering the fusion decid-

ability transfer result for global consequence relation in modal logic, see Wolter,

1998) arises by taking as T1, T2 equational extensions of the theory BA of Boolean

algebras (in this case, the hidden T ⋆0 is the theory of atomless Boolean algebras, see

Ghilardi, 2004 for details). Finally, it should be clear that Theorem 1.3.1 extends

Nelson-Oppen combination result for disjoint signatures (take T0 to be the empty

theory and T ⋆0 to be the theory of an infinite domain).
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The algorithm LFComb suggested by the plain proof of Theorem 1.3.1 consists

in the following three steps:

Step 1. The input (Σ1∪Σ2)-constraint Γ is purified , in the sense that, by repeatedly

adding to it equations like c = t (here t is a term occurring in Γ and c is a

fresh constant), an equisatisfiable constraint Γ1 ∪ Γ2 is produced, where Γi is

a Σi-constraint for i = 1, 2;

Step 2. A maximal Σ
c
0-constraint ∆ is guessed (here Σ0 is the shared signature

Σ1∩Σ2, whereas the c’s are the free constants occurring in both Γ1 and Γ2). A

Σ
c
0-constraint ∆ is maximal iff for every Σ

c
0-atom ψ, ∆ contains a literal which

is T0-equivalent either to ψ or to ¬ψ (notice that maximal constraints are

computable, and finitely many modulo T0, thanks to effective local finiteness

of T0).

Step 3. Return “satisfiable” iff Γ1 ∪∆ is T1-satisfiable and Γ2 ∪∆ is T2-satisfiable;

return “unsatisfiable” iff all guessing ∆ fail.

If there is a (Σ1 ∪Σ2)
c-structureM which is a model for T1 ∪ T2 ∪ Γ1 ∪ Γ2 then

clearly the algorithm LFComb returns “satisfiable”. Conversely, if the algorithm

returns “satisfiable”, then there exist Σ
c
i -structures Ni such that Ni |= Ti ∪ Γi and

Ni’s share the same Σ
c
0-atoms (i ∈ {1, 2}). The existence of the (Σ1∪Σ2)

c-structure

model for T1 ∪ T2 ∪Γ1 ∪Γ2 is stated by the following lemma, which slightly extends

Lemma 9.4 in Ghilardi (2004), in the case I = {1, 2} and a1 = a2 = ∅.

Lemma 1.3.2. Let Σ
c,ai

i (for i ∈ I) be signatures (expanded with free constants

c, ai), whose pairwise intersections are all equal to a certain signature Σ
c
0 (that is,

we have Σ
c,ai

i ∩ Σ
c,aj

j = Σ
c
0 for all distinct i, j ∈ I). Suppose we are also given Σi-

theories Ti which are all T0-compatible, where T0 ⊆
⋂

i Ti is a universal Σ0-theory;

let finally {Ni = (Ni,Ii)}i∈I be a sequence of Σ
c,ai
i -structures which are models of

Ti and satisfy the same Σ
c
0-atoms. Under these hypotheses, there exist a

⋃

i(Σ
c,ai
i )-

structure M |=
⋃

i Ti such that for each i, Ni has a Σ
c,ai
i -embedding into M.

Proof. By Robinson’s Diagram Lemma 1.1.1 and Lemma 1.1.2 (and up to a partial

renaming of the support sets), the fact that the Ni satisfy the same Σ
c
0-atoms is

another way of saying that they share the same Σ
c
0-substructure generated by the c

(let us call R = (R,J ) this substructure); by T0-compatibility, we may also freely

assume that Ni |= Ti ∪ T
⋆
0 . Notice also that, by Lemma 1.1.4 above, the theory

T ⋆0 ∪∆(R) is complete, where ∆(R) is the diagram of R as a Σ0-structure.
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Again by Robinson’s Diagram Lemma 1.1.1, we only need to show that the union

of the elementary diagrams ∆e(Ni) is consistent (here ∆e(Ni) is the elementary

diagram of Ni as a Σ
c,ai

i -structure).8

By compactness, we can freely assume that the index set I is finite, let it be

{1, . . . , k} and let us argue by induction on k. The case k = 1 is trivial. For k > 1,

we use Robinson’s Joint Consistency Theorem 1.1.5 as follows.

By renaming some elements in the supports if needed, we can freely suppose that

the sets N1 \ R and (N2 ∪ · · · ∪ Nk) \ R are disjoint. Given the hypotheses of the

lemma on the signatures Σ
c,ai
i , we can apply the Joint Consistency Theorem 1.1.5

to the theories ∆e(N1) and ∆e(N2)∪ · · · ∪∆e(Nk): in fact, they are both consistent

(the latter by induction) and they both contain the complete subtheory T ⋆0 ∪∆(R)

in the shared subsignature. This proves that ∆e(N1) ∪ · · · ∪ ∆e(Nk) is consistent,

as desired.

1.3.2 The Noetherian Case

As remarked in Ghilardi et al. (2006), a backtracking version of the combined de-

cision algorithm can be sound and complete (although not terminating) even in

case T0 lacks the local finiteness requirement. In order to re-gain termination, a

Noetherianity requirement can be used, witness the following result:

Theorem 1.3.3 (Ghilardi et al., 2006). Suppose that the theories T1, T2 (in signa-

tures Σ1,Σ2) both have decidable constraint satisfiability problem; then the (Σ1∪Σ2)-

theory T1∪T2 also has decidable constraint satisfiability problem in case there is some

universal and Noetherian (Σ1∩Σ2)-theory T0 such that T1, T2 are both T0-compatible

effectively Noetherian extensions of T0.

Since the theory T0 is not locally finite, we can no more use guessings. However,

a slightly different proof of Theorem 1.3.1 suggests an alternative algorithm, based

on propagation instead of guessing. Even better, instead of propagating entailed

positive clauses (such as in Ghilardi, 2004), a splitting mechanism with backtracking

can be used, as suggested in Ghilardi et al. (2006). To this aim, the following

procedure NComb is introduced:

Step 1. The input (Σ1∪Σ2)-constraint Γ is purified , in the sense that, by repeatedly

adding to it equations like c = t (here t is a term occurring in Γ and c is a

8We need the elementary diagrams here, and not just diagrams, because we want the model
being defined to be a model of

S

i Ti.
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fresh constant), an equisatisfiable constraint Γ1 ∪ Γ2 is produced, where Γi is

a Σi-constraint for i = 1, 2;

Loop. If Res
c
Ti

(Γi) contains the empty clause (here the c’s are the free constants

occurring in both Γ1 and Γ2), then update the current constraints by Γ1 :=

Γ1 ∪{⊥} and Γ2 := Γ2 ∪ {⊥}. Otherwise, pick a Σ
c
0-clause C in Res

c
Ti

(Γi) (let

C be A1 ∨ · · · ∨An, for n ≥ 1) such that Γj ∪ {¬A1, . . . ,¬An} is Tj-satisfiable

(for i, j ∈ {1, 2}, j 6= i); choose nondeterministically k ∈ {1, . . . , n} and update

the current constraints by Γ1 := Γ1 ∪ {Ak} and Γ2 := Γ2 ∪ {Ak}.

Step 3. If Γ1 and Γ2 do not contain ⊥ then return “satisfiable”; if all backtracks

fail, return “unsatisfiable”.

Notice that backtracking is not needed if T1 and T2 are both Σ0-convex theories,

because in this case we can limit ourselves to positive unit clauses in the Loop.

The procedure NComb generate a tree labeled by sets of ground Σ
c
0-atoms (for

the sake of simplicity, in this context we include the inconsistent proposition ⊥

among atoms). The root is labeled with the empty set and leaves are the unique

nodes whose label set can contain ⊥. The successors of an internal node labeled by

Λ are of the following kind:

(i) a single leaf labeled by Λ∪ {⊥} if Res
c
Ti

(Γi ∪Λ) contains the empty clause for

some i ∈ {1, 2};

(ii) otherwise, nodes labeled by Λ ∪ {A1}, . . . ,Λ ∪ {Ak} if the Σ
c
0-clause C chosen

by the algorithm is A1 ∨ · · · ∨Ak.

Proposition 1.3.4 (Termination). The procedure NComb always terminates.

Proof. It is easy to see that the algorithm terminates if T0 is a Noetherian theory.

Indeed, suppose by contradiction that the algorithm does not stop. In this way the

tree generated by the execution of the procedure (see above), which is a finitely

branching tree by construction, is not finite and thus it has an infinite branch by

König lemma. This means that there is an infinite chain of sets of ground Σ
c
0-atoms

Λ1 ⊆ Λ2 ⊆ · · · ⊆ Λn ⊆ . . . where Λi is the label of a node that belongs to that

infinite path, Λi+1 = Λi ∪ {Ai} and T0 ∪ Λi 6|= Ai (recall that T0 is contained both

in T1 and T2 and that the clause C containing Ai is such that Tj ∪Λi 6|= C for some

j ∈ {1, 2}). Contradiction, since T0 is Noetherian.
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Proposition 1.3.5 (Soundness). If the procedure NComb returns “unsatisfiable”,

then the purified constraint Γ1 ∪ Γ2 is (T1 ∪ T2)-unsatisfiable.

Proof. We consider the tree generated by the execution of the procedure. The thesis

consists of proving that, if all the leaves contain ⊥, then the purified constraint Γ1∪Γ2

is (T1 ∪ T2)-unsatisfiable. The proof applies an inductive argument on the tree.

Consider a node labeled with Λ which is the parent of a leaf whose label contains

⊥: by construction the empty clause belongs to Res
c
Ti

(Γi ∪ Λ) for some i ∈ {1, 2},

thus Γi ∪ Λ is Ti-unsatisfiable by Definitions 1.2.4 and 1.2.5, and so Γ1 ∪ Γ2 ∪ Λ is

(T1 ∪ T2)-unsatisfiable.

Consider now a tree whose leaves are labeled with sets containing ⊥ and whose

root is labeled by Λ. Suppose now, by inductive hypothesis, that each child of the

root (labeled by Λ∪ {Aj}) is such that Γ1 ∪ Γ2 ∪Λ∪ {Aj} is (T1 ∪ T2)-unsatisfiable

(j ∈ {1, . . . , k}). Γ1∪Γ2∪Λ∪{Aj} is (T1∪T2)-unsatisfiable for each j iff Γ1∪Γ2∪Λ∪

{A1 ∨ · · · ∨Ak} is (T1 ∪ T2)-unsatisfiable: this means that our inductive hypothesis

entails the (T1∪T2)-unsatisfiability of Γ1∪Γ2∪Λ∪{A1∨· · ·∨Ak}. By construction,

our internal nodes are labeled by Λ ∪ {A1}, . . . ,Λ ∪ {Ak} iff the Σ
c
0-clause chosen

by the algorithm is A1 ∨ · · · ∨ Ak; hence, by construction and by Definitions 1.2.4

and 1.2.5, there exists an i ∈ {1, 2} such that Ti ∪Γi∪Λ |= A1 ∨ · · · ∨Ak, thus being

A1 ∨ · · · ∨ Ak a logical consequence of Γ1 ∪ Γ2 ∪ Λ w.r.t. T1 ∪ T2. From the two

considerations above it follows that Γ1 ∪ Γ2 ∪ Λ is (T1 ∪ T2)-unsatisfiable itself.

The thesis follows from the consideration that, when we run the procedure for

the pure constraint Γ1 ∪ Γ2, by construction the root of the tree is labeled by the

empty set.

To prove the completeness of the procedure NComb we need to introduce the

following

Definition 1.3.6. Given a set of index I, a set B⋆ of positive ground Σ
c
0-clauses is

said to be saturated iff for every i ∈ I and for every positive ground Σ
c
0-clause C it

happens that:

Ti ∪ Γi ∪ B
⋆ |= C ⇒ C ∈ B⋆.

We are now in the position of proving the following

Lemma 1.3.7 (Completeness). If the procedure NComb returns “satisfiable”, then

the purified constraint Γ1 ∪ Γ2 is (T1 ∪ T2)-satisfiable.
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Proof. If NComb returns “satisfiable”, then the tree generated by the execution of

the procedure (see above) contains a (finite, by Proposition 1.3.4) branch labeled by

sets of Σ
c
0-atoms Λ1 ⊆ Λ2 ⊆ · · · ⊆ Λn such that Λi does not contain ⊥ (1 ≤ i ≤ n).

We define B⋆ := {C | C is a positive ground Σ
c
0-clause such that T1 ∪Γ1 ∪Λn |= C}.

We claim that B⋆ is saturated; this can be proved by showing that, for each

positive and ground Σ
c
0-clause, T1 ∪ Γ1 ∪ Λn |= C iff T2 ∪ Γ2 ∪ Λn |= C. If T1 ∪

Γ1 ∪ Λn |= C then T2 ∪ Γ2 ∪ Λn |= C because (i) by Definitions 1.2.4 and 1.2.5,

T1 ∪ Γ1 ∪ Λn |= C implies that T0 ∪ Res
c
T1

(Γ1 ∪ Λn) |= C and (ii) since Λn is the

label of a leaf (thus, by construction, the loop of the procedure NComb terminates)

T2 ∪ Γ2 ∪ Λn |= Res
c
T1

(Γ1 ∪ Λn). The converse holds for the same reasons.

Moreover, B⋆ does not contain the empty clause because, since Λn does not

contain ⊥ and Λn is the label of a leaf, then Res
c
Ti

(Γi ∪ Λn) does not contain the

empty clause, hence Γi ∪ Λn is Ti-satisfiable.

Since B⋆ is saturated and does not contain the empty clause, then Lemma 1.3.9

applies with I = {1, 2} and a1 = a2 = ∅, thus the (T1 ∪ T2)-satisfiability of Γ1 ∪ Γ2

obtains.

The statement of next lemma extends the statement of Lemma 9.3 in Ghilardi

(2004) and is proved in the same way.

Lemma 1.3.8. Let Ti be Σi-theories (for i ∈ I) and let Σ0 be a subsignature of all

the Σi’s. Let

Γ1, . . . ,Γi, . . . (i ∈ I)

be sets of ground Σ
ai,c
i -clauses (here ai, c are free constants); suppose that B⋆ is a

saturated set of positive ground Σ
c
0-clauses that does not contain the empty clause.

Then there are Σ
ai,c

i -structures Mi such that Mi |= Ti ∪ Γi ∪ B
⋆; moreover, the

Σ
c
0-substructures generated by the elements (denoted by) c coincide for all theMi’s.

Proof. A set of ground Σ
c
0-literals is said to be exhaustive iff it contains, for every

ground Σ
c
0-literal A, either A itself or its negation. The statement of the lemma

is proved if we are able to find an exhaustive set ∆ of ground Σ
c
0-literals which

is consistent with Ti ∪ Γi ∪ B
⋆ for each i ∈ I. In this case, in fact, given models

Mi |= Ti ∪ Γi ∪B
⋆ ∪∆, we have that the Σ

c
0-substructures generated by c in all the

Mi’s all have diagram ∆, consequently they are Σ
c
0-isomorphic (and can be made

coincident by suitable renaming).

We shall adapt the notion of productive clause used in nowadays refutational

completeness proofs for resolution or paramodulation based calculi. Consider any
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strict total terminating order on ground Σ
c
0-atoms and extend it to a strict total

terminating order > for positive ground Σ
c
0-clauses by taking standard multiset

extension. We shall define increasing sets ∆+
C (varying C ∈ B⋆) of ground Σ

c
0-atoms

as follows. Recall that, as the empty clause is not in B⋆, all positive clauses in B⋆

are of the kind A ∨A1 ∨ · · · ∨An (n ≥ 0).

The definition is by transfinite induction on >. Say that the clause C ≡ A∨A1∨

· · · ∨An from B⋆ is productive iff (i) {A} > {A1, . . . , An} and (ii) A1, . . . , An 6∈ ∆+
<C

(where ∆+
<C is

⋃

D<C ∆+
D). Now, if C is productive, we let ∆+

C to be ∆+
<C ∪ {A},

otherwise ∆+
C is simply ∆+

<C .

Let ∆+ be
⋃

C∈B⋆ ∆+
C and ∆ be ∆+∪{¬A | A is a ground Σ

c
0-atom not belonging

to ∆+}. By construction, ∆ |= B⋆, so we simply need to show that Ti ∪ Γi ∪∆ is

consistent for each i ∈ I. We need a preliminary claim.

Claim. If the clause A ∨ A1 ∨ · · · ∨ An is productive and A is the maximum atom

in it, then A1, . . . , An 6∈ ∆+; this is evident, as the Ai’s could only be produced by

clauses smaller than A ∨A1 ∨ · · · ∨An.

Suppose now that Ti ∪ Γi ∪ ∆ is not consistent. Then there are ground atoms

B1, . . . , Bm 6∈ ∆+ and productive clauses

C1 ≡ A1 ∨A11 ∨ · · · ∨A1k1

· · ·

Cn ≡ An ∨An1 ∨ · · · ∨Ankn

(with maximum atoms A1, . . . , An, respectively), such that

Ti ∪ Γi ∪ {A1, . . . , An} |= B1 ∨ · · · ∨Bm.

By trivial logical manipulations, it follows that

Ti ∪ Γi ∪ {C1, . . . , Cn} |=
∨

i,j

Aij ∨B1 ∨ · · · ∨Bm.

As C1, . . . , Cn are clauses in B⋆ and as B⋆ is saturated, the clause

D ≡
∨

i,j

Aij ∨B1 ∨ · · · ∨Bm

is also in B⋆. By construction (anyway, either D is productive or not) some of the
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atoms {A11, . . . , Ankn , B1, . . . , Bm} are in ∆+. By the claim, A11, . . . , Ankn cannot

be there, so one of the Bj ’s is in ∆+, contradiction.

If we put together Lemmas 1.3.2 and 1.3.8, we get the following

Lemma 1.3.9. Suppose we are given the following data:

(i) I is a (possibly infinite) set of indexes;

(ii) Σ
c,ai
i (for i ∈ I) are signatures (expanded with free constants c, ai), whose

pairwise intersections are all equal to a certain signature Σ
c
0 (that is, we have

Σ
c,ai
i ∩ Σ

c,aj

j = Σ
c
0 for all distinct i, j ∈ I);

(iii) Ti are Σi-theories (for i ∈ I) which are all T0-compatible, where T0 ⊆
⋂

i Ti is

a universal Σ0-theory;

(iv) {Γi}i∈I are sets of ground Σ
c,ai
i -clauses;

(v) B⋆ is a saturated set of positive ground Σ
c
0-clauses not containing the empty

clause.

If the above data are given, then there exists a
⋃

i(Σ
c,ai

i )-structureM |=
⋃

i(Ti∪Γi).

Equivalently: there exist Σ
c,ai

i -structures Mi (i ∈ I) satisfying Ti ∪ Γi, whose Σ
c
0-

reducts coincide.

Proof. By Lemmas 1.3.2 and 1.3.8.

1.3.3 Interesting Properties

In this subsection three interesting properties will be investigated. We firstly re-

call two properties from Ghilardi (2004) used for the development of the results in

Chapter 3, and then we present a new modularity result.

Ground Interpolation The following lemma (which is a variant of Ghilardi,

2004, Theorem 5.2) intuitively states that a property of ground interpolation holds

for T0-compatible theories.

Lemma 1.3.10. Suppose that T0, T1, T2 are Σ0-, Σ1-, and Σ2-theories (respectively)

such that Σ0 = Σ1 ∩Σ2, T1 is T0-compatible, and T2 is T0-compatible; if the ground

Σ
a1,c
1 -sentence ψ1(a1, c) and the ground Σ

a2,c
2 -sentence ψ2(a2, c) (here the tuples of

free constants a1, a2, c are pairwise disjoint) are such that ψ1(a1, c) ∧ ψ2(a2, c) is
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(T1 ∪ T2)-inconsistent, then there is a ground Σ
c
0-sentence ψ0(c) such that T1 |=

ψ1(a1, c)→ ψ0(c) and T2 |= ψ0(c)→ ¬ψ2(a2, c).

Proof. By compactness, it is sufficient to show that the set Ψ of ground Σ
c
0-sentences

ψ0(c) such that T1 |= ψ1(a1, c)→ ψ0(c) is not T2-consistent with ψ2(a2, c). Suppose

it is, hence there is a T2-modelM2 of Ψ∪{ψ2(a2, c)}. Let R be the Σ0-substructure

of M generated by the c’s and let ∆(R) be its diagram. We claim that ∆(R) is

T1-consistent with ψ1(a1, c): this is because, if ψ0(c) is a ground Σ
c
0-sentence true in

R and not consistent with ψ1(a1, c), then ¬ψ0(c) would be in Ψ and hence would be

true in R, contradiction. Since ∆(R) is T1-consistent with ψ1(a1, c), there is a model

M1 of T1 (having R as a substructure) in which ψ1(a1, c) is true. By Lemma 1.3.2

(take I = {1, 2}), the models M1,M2 embed, over R, into a model M of T1 ∪ T2;

but then M is also a model of ψ1(a1, c) ∧ ψ2(a2, c) (because ψ1(a1, c) and ψ2(a2, c)

are ground, cf. Lemma 1.1.3), a contradiction.

Modularity of T0-compatibility The following lemma proves that T0-compati-

bility is a modular property. This result can be found in Ghilardi (2004, Proposition

4.4): we report the proof here.

Lemma 1.3.11. If T0, T1, T2 are Σ0-, Σ1-, and Σ2-theories (respectively) such that

Σ0 = Σ1 ∩ Σ2, T1 is T0-compatible, and T2 is T0-compatible, then T1 ∪ T2 is T0-

compatible too.

Proof. Take a modelM = (M,I) of T1 ∪ T2 and embeds its Σi-reducts into models

Mi = (Mi,Ii) of Ti ∪ T
⋆
0 (i = 1, 2). We can freely suppose that the embeddings

are inclusions and that we have M = M1 ∩ M2 for supports. Now T ⋆0 ∪ ∆(M)

is a complete theory by Lemma 1.1.4 (here ∆(M) is the diagram of M as a Σ0-

structure), hence by Robinson Joint Consistency Theorem 1.1.5 there is a model

N = (N,J ) of ∆e(M1)∪∆e(M2). It follows that N is a (Σ1 ∪Σ2)
M1∪M2-model of

T1 ∪ T2 ∪ T
⋆
0 and that there are ΣM

i -embeddings µi :Mi −→ N . In particular, for

b ∈M , we have µ1(b) = bN = µ2(b); let us call µ the common restriction of µ1 and

µ2 to M . We show that µ is a (Σ1 ∪ Σ2)-embedding of M into N . Observe in fact

that for every n-ary Σi-function symbol f and for every n-tuple b of elements from

the support of M, we have9

µ(fM(b)) = µi(f
Mi(b)) = fN (µi(b)) = fN (µ(b));

9Here, if b = (b1, . . . , bn), we write µ(b) for the tuple (µ(b1), . . . , µ(bn)).
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analogously, for every n-ary Σi-predicate symbol P , we have

M |= P (b) iff Mi |= P (b) iff N |= P (µi(b)) iff N |= P (µ(b)).

This proves that µ :M−→ N is a (Σ1 ∪ Σ2)-embedding.

Modularity of Noetherian Extensions The fact that T0-compatibility is a

modular property is proved in Ghilardi (2004, Proposition 4.4) and it is also shown

in this thesis (cf. Lemma 1.3.11), hence one can ask whether the property of being

effectively Noetherian extension is modular as well. It turns out that the question

has a positive answer in case the involved theories are T0-compatible, as stated by

the following

Theorem 1.3.12. Let T1 and T2 be theories (in signatures Σ1 and Σ2 respectively)

that are effectively Noetherian and T0-compatible extensions of the same Σ0-theory

T0 (Σ0 = Σ1 ∩ Σ2). Then the (Σ1 ∪ Σ2)-theory T1 ∪ T2 is an effectively Noetherian

(and T0-compatible) extension of T0.

The above theorem is proved by showing that Algorithm 1 gives a (T1 ∪ T2)-

residue enumerator for T0. First of all, let us show that the Algorithm 1 terminates.

This is stated by the following

Lemma 1.3.13. Algorithm 1 always terminates.

Proof. We have to prove that the test at line 10 eventually succeeds. To this aim

we recall the fact (proved in Lemma 1.2.7) that every infinite ascending chain of

sets of positive ground Σ
a,c
0 -clauses is eventually constant for logical consequence

w.r.t. a Noetherian theory T0. The test at line 10 eventually have to succeed by

the following reason: if we let B0,B1,B2, . . . be the values of the local variable

B after each execution of the loop, we have that T0 ∪ B
i+1 |= Bi, for each i, by

Definition 1.2.4(ii). Thus, if we let Di :=
⋃

j≤i Bj, then the sequence

D1,D2,D3, . . .

is increasing and hence eventually constant modulo T0, which means that also the

above mentioned test eventually succeeds.

Consider the (finite, by the lemma above) sequence

B0,B1, . . . ,Bh
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Algorithm 1 (T1 ∪ T2)-residue enumerator for T0

Require: Γ (Σ1 ∪ Σ2)-constraint
1: procedure Res

a
T1∪T2

(Γ)
2: Γ1 ∪ Γ2 ← Purify(Γ) ⊲ c constants occurring in both Γi’s
3: B′ ← ∅
4: repeat
5: B ← B′

6: for all i ∈ {1, 2} do
7: Bi ← Res

a,c
Ti

(Γi ∪ B)
8: end for
9: B′ ←

⋃

i Bi
10: until

∧

iDp-ti(B ∧ ¬B
′) = “unsatisfiable”

11: return Res
a
T1

(B′)
12: end procedure

of values of the local variable B after each execution of the loop. We need the

following preliminary lemma

Lemma 1.3.14. Bh is a T0-basis for Γ1 ∪ Γ2 w.r.t. a ∪ c (where c’s are the free

constants occurring in both Γ1 and Γ2).

Proof. We have to prove that Definition 1.2.4(i) and (ii) hold on the set of ground

positive Σ
a,c
0 -clause Bh, i.e. that the following conditions hold:

(i) T1 ∪ T2 ∪ Γ1 ∪ Γ2 |= C, for all C ∈ Bh and

(ii) if T1∪T2∪Γ1∪Γ2 |= C then T0∪B
h |= C, for every positive ground Σ

a,c
0 -clause

C.

Let us prove (i) by induction on Bi. T1∪T2∪Γ1∪Γ2 |= C for all C ∈ B0 since B0 = ∅.

Let us assume for induction hypothesis that T1 ∪ T2 ∪ Γ1 ∪ Γ2 |= C for all C ∈ Bj

(0 ≤ j < h). Since by construction for each C ∈ Bj+1 there is an i ∈ {1, 2} such that

Ti∪Γi∪B
j |= C, from the induction hypothesis it follows that T1∪T2∪Γ1∪Γ2 |= C.

We now prove (ii). We assume that Bh does not contain the empty clause

(otherwise (ii) clearly holds). By contradiction, suppose that there exists a positive

ground Σ
a,c
0 -clause Ĉ such that T1 ∪ T2 ∪ Γ1 ∪ Γ2 |= Ĉ and T0 ∪ B

h 6|= Ĉ. We will

show that there exists a (Σ1 ∪Σ2)
a,c-structureM such thatM |= T1 ∪ T2 ∪ Γ1 ∪ Γ2

and such that M |= ¬Ĉ.

To this aim, consider the set B⋆ := {C | C is a positive ground Σ
a,c
0 -clause such
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that T0 ∪ B
h |= C}. Let us prove that B⋆ is saturated, i.e.

T1 ∪ Γ1 ∪ B
⋆ |= C ⇒ C ∈ B⋆ and

T2 ∪ Γ2 ∪ B
⋆ |= C ⇒ C ∈ B⋆

for each positive ground Σ
a,c
0 -clause.

To see that B⋆ is saturated, we proceed as follows. Consider a positive ground

Σ
a,c
0 -clause C such that T1∪Γ1∪B

⋆ |= C. By construction of B⋆ this implies that T1∪

Γ1 ∪B
h |= C; since T1 ∪B

h−1 |= Bh because the condition of line 10 holds, it follows

that T1 ∪ Γ1 ∪ B
h−1 |= C, hence T0 ∪ Res

a,c
T1

(Γ1 ∪ B
h−1) |= C (by Definitions 1.2.4

and 1.2.5) thus, a fortiori, T0 ∪ Res
a,c
T1

(Γ1 ∪ B
h−1) ∪ Resa,cT2

(Γ2 ∪ B
h−1) |= C, so

T0 ∪ B
h |= C (by definition of Bh); this means that C ∈ B⋆. The other condition

follows analogously.

Now we can use the construction of Lemma 1.3.8 to obtain an exhaustive set

of ground Σ
a,c
0 -literals ∆ out of B⋆ such that ∆ |= B⋆, ∆ is consistent both with

T1 ∪ Γ1 and with T2 ∪ Γ2, and finally ∆ |= ¬Ĉ. Let Ĉ ≡ A1 ∨ · · · ∨ Ak (k ≥ 1);

to produce the required ∆ out of B⋆, it is sufficient to consider any strict total

terminating order on ground Σ
a,c
0 -atoms such that A1 < A2 < · · · < Ak and every

other Σ
a,c
0 -atom is greater than Ak (this order exists by the well-ordering principle

and by the fact that any well-order can always be extended to a well-order by adding

a new minimum element). It is easy to see that the construction of Lemma 1.3.8

produces an exhaustive set ∆ out of B⋆ such that ∆ |= B⋆, ∆ is consistent both

with T1∪Γ1 and with T2∪Γ2, and finally ∆ |= ¬Ĉ. The last property can be shown

by observing that none of the Ai’s belong to ∆+. By contradiction, if An ∈ ∆+ for

some n ∈ {1, . . . , k}, it follows that An is the maximum atom in a productive clause

C ′ belonging to B⋆; our requirement on the order on the ground Σ
a,c
0 -atoms implies

that the atoms of C ′ are among the Ai’s, thus C ′ |= Ĉ hence B⋆ |= Ĉ, contradicting

the fact that T0 ∪B
h 6|= Ĉ (recall that B⋆ := {C | C is a positive ground Σ

a,c
0 -clause

such that T0 ∪ B
h |= C}).

So we have obtained Σ
a,c
i -structures Ni which are model of the T0-compatible

theories Ti and that satisfy the same Σ
a,c
0 -atoms (i ∈ {1, 2} and Σ0 = Σ1∩Σ2). The

contradiction will follow from Lemma 1.3.2 that states that there exists a (Σ1∪Σ2)
a,c-

structureM such thatM |= T1∪T2 and Ni has a Σ
a,c
i -embedding intoM. Because

of the Σ
a,c
i -embeddings, from Ni |= ¬Ĉ it follows that M |= ¬Ĉ, but since M |=

T1∪T2∪Γ1∪Γ2,M |= Ĉ (we recall that T1∪T2∪Γ1∪Γ2 |= Ĉ by our hypothesis).
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We are now in the position of proving that Algorithm 1 gives a (T1 ∪T2)-residue

enumerator for T0. This is stated by the following

Lemma 1.3.15. Res
a
T1

(Bh) is a T0-basis for Γ w.r.t. a.

Proof. We start showing that, for each purified (Σ1 ∪ Σ2)-constraint Γ1 ∪ Γ2, the

following conditions hold on the set of ground positive Σ
a
0-clause Res

a
T1

(Bh):

(i) T1 ∪ T2 ∪ Γ1 ∪ Γ2 |= C, for all C ∈ ResaT1
(Bh) and

(ii) if T1 ∪ T2 ∪ Γ1 ∪ Γ2 |= C then T0 ∪ Res
a
T1

(Bh) |= C, for every positive ground

Σ
a
0-clause C.

Since, by Lemma 1.3.14, T1 ∪ T2 ∪ Γ1 ∪ Γ2 |= C for each clause C ∈ Bh and

T1 ∪ B
h |= Res

a
T1

(Bh), it follows that T1 ∪ T2 ∪ Γ1 ∪ Γ2 |= C, for all C ∈ ResaT1
(Bh).

As far as (ii) is concerned, if T1∪T2∪Γ1∪Γ2 |= C then T0∪B
h |= C for every positive

ground Σ
a
0-clause (Lemma 1.3.14 proves that the above condition holds for all the

positive ground Σ
a,c
0 -clauses), hence a fortiori T1∪B

h |= C, thus T0∪Res
a
T1

(Bh) |= C

by Definitions 1.2.4 and 1.2.5.

To conclude the proof, it is sufficient to notice that, since Γ1 and Γ2 are produced

out of Γ by purification, they are in the form Γ1(b) and Γ2(b) for some (finite) set

of free constants b occurring neither in Γ nor in a; indeed, Γ1(b) and Γ2(b) are such

that ∃x (Γ1(x)∧Γ2(x)) is logically equivalent to Γ. Hence, for every positive ground

Σ
a
0-clause C, T1∪T2∪Γ1(b)∪Γ2(b) |= C iff T1∪T2∪∃x (Γ1(x)∧Γ2(x)) |= C (because

b ∩ a = ∅) iff T1 ∪ T2 ∪ Γ |= C.

1.3.4 Mathematical Remarks

The following subsection presents some results of mathematical interest that are

useful to have a better insight in some notion presented so far. However, since

the content of this subsection is not used to develop the results of this thesis, the

reader who is not interested can freely skip it. In this subsection will be investigated

the conditions under which a nice property of T0-basis holds, and the semantic

counterpart of the notion of local finiteness and Noetherianity.

BC Property A desirable property of T0-basis is the following:

Property (BC). Let Θ be a set of ground Σ
c
0-clauses and ∆ is a T0-basis for Θ

w.r.t. a. ∆ is a T0-basis for Θ also w.r.t. a ∪ b in case b is disjoint from a and c.
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Unfortunately, the property BC (loosely related to the well-known Beck-Che-

valley condition – see, e.g., Makkai and Reyes, 1977 for further details) is not directly

implied by Definition 1.2.4, but it holds if we impose some further requirements

(below, positive formulae mean formulae in which negation does not occur).

Fact. If T is T0-compatible and quantifier elimination for T ⋆0 is such that every

positive universal formula ∀xϕ(a, x) is equivalent modulo T ⋆0 to a positive quantifier-

free formula ψ(a), then Property BC holds.

Proof. Let ∆ be a T0-basis for Θ w.r.t. a; in order to show that ∆ is a T0-basis for Θ

w.r.t. a∪b we have simply to show that Definition 1.2.4(ii) holds (Definition 1.2.4(i)

is obvious), hence we want to show that if C(a, b) is a positive ground Σ
a,b
0 -clause

such that T ∪ Θ |= C(a, b), then T0 ∪ ∆ |= C(a, b). This can be seen by the

following sequence of implications: T ∪ Θ |= C(a, b) implies that T ∪ Θ |= ψ(a)

(being ψ(a) the positive quantifier-free formula such that T ⋆0 |= ∀xC(a, x)↔ ψ(a)),

hence T ∪ Θ |=
∧

i Ci(a) (being
∧

i Ci(a) the conjunctive normal form of ψ(a)) and

so T0∪∆ |=
∧

i Ci(a) (recall that ∆ is a T0-basis for Θ w.r.t. a), thus T0∪∆ |= ψ(a),

which finally implies that T0 ∪ ∆ |= C(a, b). The first implication holds because

T ∪Θ |= C(a, b) implies that T ∪ T ⋆0 ∪Θ |= C(a, b), hence T ∪ T ⋆0 ∪Θ |= ∀xC(a, x)

(since b is disjoint from both a and c) and so T ∪T ⋆0 ∪Θ |= ψ(a), which finally implies

T ∪ Θ |= ψ(a) by Definition 1.2.1(iv). A similar argument can be used for the last

implication: T0 ∪∆ |= ψ(a) implies that T ⋆0 ∪∆ |= ψ(a), hence T ⋆0 |= C(a, b), which

finally implies T0 ∪∆ |= C(a, b) by Definition 1.2.1(iii).

We remark that all the examples considered in this thesis of effectively Noethe-

rian extensions of a theory T0, when T0 is not locally finite, admit T0-bases satisfying

Property BC.

Locally Finite Theories In the following, for the sake of readability, we often

do not distinguish between elements of a structure and their names in an expanded

signature. Now we want to give a semantic characterization of the universal theories

that are locally finite. In particular, the following holds (cf. Subsection 1.1.3 for the

definition of finitely generated structure):

Theorem 1.3.16. Let T0 be a universal first-order theory. Then T0 is locally finite

if and only if every finitely generated model of T0 is finite.

In order to prove the theorem above, we need to introduce the following
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Definition 1.3.17. A Σ0-theory T0 is almost locally finite iff Σ0 is finite and, for

every finite set of free constants a, there is a finite set of ground Σ
a
0-terms Ta such

that for every further ground Σ
a
0-term t, we have that T |= t = t1 ∨ · · · ∨ t = tn

where ti ∈ Ta.

Proposition 1.3.18. Let T0 be a universal Σ0-theory. Then T0 is almost locally

finite iff every finitely generated model of T0 is finite.

Proof. The ‘only if’ case is obvious. For the converse, let M := 〈M,I〉 be a finite

Σ
a
0-structure generated by the parameters a (for the sake of simplicity, we assume

that Σ0 contains only function symbols); sinceM is finite and generated by a, then

M := {t1(a), . . . , tn(a)}. We define the multiplication table δM ofM as follows:

δM :=
∧

ti∈M,f∈Σ

{
f(t1, . . . , tk) = tk+1 | M |= f(t1, . . . , tk) = tk+1

}
.

Notice that, since M is a finite structure generated by a, its multiplication table is

a (finite) conjunction of Σ
a
0-literals;

10 moreover, every model of δM generated by a

is a quotient ofM.

Let us now prove that there exist finitely many models of T0 generated by a. By

contradiction, suppose that

M1,M2, . . . ,Mn, . . .

are all the infinitely many models of T0 generated by a. Since T0 is a universal theory

(hence is preserved by substructures), T0 ∪{¬δM1 ,¬δM2 , . . . } is inconsistent, hence

by compactness

T0 |= δMi1
∨ · · · ∨ δMim

,

thus the models of T0 generated by a are finitely many (at most as many as the

quotients ofMi1 , . . . ,Mim).

Let M1 := 〈M1,I1〉, . . . ,Ms := 〈Ms,Is〉 be the set of all the models of T0

generated by a up to isomorphism. Let us build a finite set Ta of Σ
a
0-terms such that,

for each i ∈ {1, . . . , s}, Mi ⊆ {t
Mi | t ∈ Ta}. It is easy to see that such a Ta exists;

moreover, for every further ground Σ
a
0-term t, we have that T0 |= t = t1∨· · ·∨ t = tn

where ti ∈ Ta. Indeed, suppose by contradiction that there exists a Σ
a
0-term t and a

10For example, if (i) Σ0 := {f, g} (where f and g are unary function symbols), (ii) a := {a},
(iii) M = {f(a), a}, and (iv) fM(f(a)) = a, fM(a) = f(a), gM(f(a)) = gM(a) = a, then δM is
f(f(a)) = a ∧ f(a) = f(a) ∧ g(f(a)) = a ∧ g(a) = a.
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model N of T0 such that N |= t 6= u for every u ∈ Ta; since T0 is a universal theory,

the substructure of N generated by a is among M1, . . . ,Ms, thus, by construction

of Ta, N |= t = u for some u ∈ Ta.

Proposition 1.3.19. Let T be a universal Σ0-theory. Then T0 is almost locally

finite iff T0 is locally finite.

Proof. The ‘if’ case is obvious. For the converse, let Ta be the set of ground Σ
a
0-terms

such that for every further ground Σ
a
0-term t, we have that T0 |= t = t1∨ · · · ∨ t = tn

where ti ∈ Ta (see Definition 1.3.17). We know from the proof of Proposition 1.3.18

that there exist finitely many models of T0 generated by a, namely M1, . . . ,Mk.

For each k-tuple u := 〈u1, . . . , uk〉 of Σ
a
0-terms ui ∈ Ta, we define the set of ground

Σ
a
0-terms T (u) := {t | M1 |= u1 = t, . . . ,Mk |= uk = t}. Let T ′

a be the set of ground

Σ
a
0-terms obtained by choosing one element (if exists) in every T (u) varying u in

Ta × · · · × Ta
︸ ︷︷ ︸

k times

(it is easy to see that T ′
a contains at most |Ta|

k elements).

It follows that, for every ground Σ
a
0-term t, there exists a Σ

a
0-term u ∈ T ′

a such

that Mi |= t = u for every i ∈ {1, . . . , k}. Indeed, given a Σ
a
0-term t, from the

almost locally finiteness hypothesis we have that T0 |= t = t1 ∨ · · · ∨ t = tn where

ti ∈ Ta, hence we have thatM1 |= t = tj1, . . . ,Mk |= t = tjk (tji ∈ {t1, . . . , tn}), thus

T (〈tj1 , . . . , tjk〉) 6= ∅. Consider now the element u added in T ′
a from T (〈tj1 , . . . , tjk〉);

it follows that, for each i ∈ {1, . . . , k}, Mi |= t = u since Mi |= t = tji and

Mi |= u = tji . Hence it follows that T0 |= t = u; indeed, suppose by contradiction

that there exists a model N of T0 such that N |= t 6= u. Since T0 is universal, the

substructure of N generated by a is one of the Mi’s; contradiction.

Theorem 1.3.16 now easily follows from Propositions 1.3.18 and 1.3.19.

Noetherian Universal Horn Theories Now we want to give a semantic char-

acterization of the universal Horn theories that are Noetherian. By universal Horn

theory we mean a set of sentences that are universal closures of formulae of the kind

ψ1 ∧ · · · ∧ ψn → ϕ

where the ψi’s are atoms and ϕ is an atom. Once again, in the following we often

do not distinguish between elements of a structure and their names in an expanded

signature.
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Let Σ0 be a signature (for the sake of simplicity, we assume that Σ0 contains

only function symbols), T0 be a universal Horn Σ0-theory, a be a (possibly infinite)

set of free constants, and finally let P be a set of ground Σ
a
0-atoms. We define the

following congruence ∼ over the set of ground Σ
a
0-terms T :

t ∼ u iff T0 ∪ P |= t = u

It is easy to see that, since T0 is a universal Horn theory, T/∼ is a model of T0 ∪ P .

Given a structure M isomorphic to T/∼, the pair 〈a, P 〉 is called a presentation

of M, and the a’s are called the generators of M. If a and P are finite, M is

said to be finitely presented. Notice that every structure M = 〈M,I〉 admits a

presentation; indeed, consider the set ∆+(M) of all ΣM -atoms that hold in M:

clearly, 〈M,∆+(M)〉 is a presentation of M.

Theorem 1.3.20. Let T0 be a universal Horn Σ0-theory. T0 is Noetherian if and

only if every finitely generated model of T0 is finitely presented.

Proof. If T0 is Noetherian, clearly every presentation 〈a, P 〉 of a finitely generated

model of T0 is equivalent to a finite one. For the converse, let

Θ1 ⊆ Θ2 ⊆ · · · ⊆ Θn ⊆ · · ·

be a chain of sets of ground Σ
a
0-atoms, and

P :=
⋃

i

Θi.

The pair 〈a, P 〉 is a presentation of the model T/∼ built as above. Since T/∼ is

finitely generated, it admits a finite presentation, say 〈a, P ′〉.11 By construction of

T/∼, it follows that P =
⋃

iΘi is equivalent to the finite P ′ modulo T0, thus the

chain of Θi’s is eventually constant modulo T0.

1.4 Examples

This section simply collects examples of theories satisfying the requirements of the

notions presented in Section 1.2 (further details can be found in this thesis and in

Ghilardi, 2003, 2004; Nicolini, 2007).

11For the sake of simplicity, we assume that the generators a of the two presentations 〈a, P 〉 and
〈a, P ′〉 are the same. If not, it is possible to adapt the proof using a compactness argument.
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T0-compatible Theories

1. T ∗
0 is a Σ0-theory that eliminates quantifiers and T is any theory whatsoever

in a bigger signature such that T ⊇ T ∗
0 . Then T is T0-compatible (taking

as T0 the theory having as axioms all the universal Σ0-sentences which are

logical consequences of T ⋆0 ). Theories that admits quantifier elimination are,

for example:

– The theories of Integer, Rational, and Real Arithmetic;

– The theory of acyclic binary lists (see Ghilardi, 2003, Appendix A);

– Any theory axiomatizing enumerated datatypes.

2. T0 is any theory that satisfies the requirements of Definition 1.2.1, and T is

an extension of T0 with free function symbols only. Then T is T0-compatible.

For example, T0 can be:

– The pure theory of equality (T ⋆0 is the theory of infinite sets);

– The theory of integral domains (T ⋆0 is the theory of algebraically closed

fields), the theory of torsion free abelian groups (T ⋆0 is the theory of

divisible torsion free abelian groups);

– The theory of Boolean algebras (T ⋆0 is the theory of atomless Boolean

algebras);

– Any universal and locally finite Horn theory T0 (in a finite signature)

such that the amalgamation property holds for models of T0 (see Wheeler,

1976).12

3. Other examples:

– T is the theory of Rational or Real Arithmetic, T0 is the theory of linear

orders;

– T is the theory of Real Arithmetics, T0 is the theory of Real Arithmetics

without the ordering;

– T is any stably infinite theory over a signature including a free unary

function symbol f , T0 is the empty theory over the signature {f} (cf.

Section 1.5);

12The amalgamation property state that, if M1,N1,N2 are models of T0 and µ1 : M1 −→ N1,
µ2 : M1 −→ N2 are embeddings, then there are a model M2 of T0 and embeddings ν1 : N1 −→ M2

and ν2 : N2 −→ M2 such that ν1µ1 = ν2µ2.
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– T is the theory of modal algebras, T0 is the theory of Boolean algebras;

– T is the theory of K-algebras, T0 is the theory of K-vector spaces (where

K is a field).

Locally Finite Theories

– Any theory over a finite signature not containing function symbols (e.g., or-

ders);

– Any theory axiomatizing enumerated datatypes;

– The theories of Arrays and Records;

– The theory of Linear Integer Arithmentic modulo a fixed integer;

– The theory of Boolean algebras.

Noetherian Theories

– The theory of Integer Offsets;

– The theories of K-algebras, K-vector spaces, and R-modules (where K is a

field and R is a Noetherian ring);

– The theory of Abelian semigroups;

– The theory of a single Associative-Commutative symbol (see Chenadec, 1986);

– The empty theory of a free unary function symbol (cf. Section 1.5);

– Any extension (in the same signature) of a Noetherian theory.

Effectively Noetherian Extensions

– T is the theory of Real Arithmetics, T0 is the theory of Real Arithmetics

without the ordering;

– T is the theory of K-algebras, T0 is the theory of K-vector spaces (where K

is a field);

– T is any stably infinite theory over a signature including a free unary function

symbol f whose constraint satisfiability is decidable, T0 is the empty theory

over the signature {f} (cf. Section 1.5);
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– Any theory T with decidable constraint satisfiability problem which is com-

patible with an effectively locally finite theory T0.

1.5 The Theory of a Free Unary Function Symbol

By collecting the observations above, it is easy to identify pairs of theories (T, T0)

such that T0 ⊆ T and T is a T0-compatible effectively Noetherian extension of T0.

Here, we consider an entirely new (and somewhat remarkable) class of theories to

obtain such pairs (T, T0) of theories.

Let f be a unary function symbol. If T is a theory, then Tf is the theory obtained

from T by adding f to its signature (as a new free function symbol). So, e.g., if E

the empty theory over the empty signature, Ef denotes the empty theory over the

signature {f}.

Proposition 1.5.1. Ef is Noetherian.

Proof. By contradiction, suppose that there is a chain Θ1 ⊆ Θ2 ⊆ · · · ⊆ Θn ⊆ · · ·

of sets of ground Σa-atoms which is not eventually constant for logical consequence

w.r.t. T . Without loss of generality, we can assume that Θ1 ⊆ Θ2 ⊆ · · · ⊆ Θn ⊆ · · ·

is such that for each i there exists a Σa-atom ℓi ∈ Θi such that T ∪Θi−1 6|= ℓi.

Notice that, since f is a unary function symbol, each element of the infinite

sequence {ℓi}i∈N of Σa-atoms is a Σ{ai,aj}-atom (for some ai, aj ∈ a). Thus, since

a is finite, we can extract an infinite subsequence of ground Σ{a,b}-atoms (for some

fixed elements a, b ∈ a) inducing an infinite ascending chain Θ1|Σ{a,b} ⊆ Θ2|Σ{a,b} ⊆

· · · ⊆ Θn|Σ{a,b} ⊆ · · · which is not eventually constant for logical consequence w.r.t.

T (here Θi|Σ{a,b} is the collection of all the ground Σ{a,b}-atoms occurring in Θi).

Suppose that a Σ{a,b}-atom of the kind ℓ := fm(a) = fn(a) occurs in such an

infinite subsequence (here m 6= n otherwise T |= ℓ, contrary to our choice of these

atoms). Notice that T ∪ ℓ is such that there are only finitely many Σ{a}-terms that

are not logically equivalent w.r.t. T ∪ ℓ, which implies that every infinite ascending

chain of sets of ground Σ{a}-atoms is eventually constant for logical consequence

w.r.t. T ∪ ℓ (the same argument apply to atoms of the kind ℓ := fm(b) = fn(b)).

Suppose now that a Σ{a,b}-atom of the kind ℓ := fm(a) = fn(b) belongs to such

an infinite chain of Σ{a,b}-atoms. The only Σ{a,b}-atoms of the form fm
′
(a) = fn

′
(b)

not implied by T∪ℓ are such that either (i) m−n 6= m′−n′ or (ii) m′ < m and n′ < n.

It is clear that there are only finitely many atoms of the kind (ii); for (i), notice that
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fm(a) = fn(b) ∧ fm
′
(a) = fn

′
(b) implies that fm+n′

(a) = fn+n′
(b) = fm

′+n(a) and

that fn+m′
(b) = fm+m′

(a) = fn
′+m(b) (where m + n′ 6= m′ + n by (i)), so we are

reduced to the first case.

The arguments above imply that the chain

Θ1|Σ{a,b} ⊆ Θ2|Σ{a,b} ⊆ · · · ⊆ Θn|Σ{a,b} ⊆ · · ·

is eventually constant for logical consequence w.r.t. T . Contradiction.

In the following we assume the reader is familiar with the fundamentals of Super-

position Calculus SP ,) as explained for instance in Nieuwenhuis and Rubio (2001)

(see also the Appendix for a very brief overview on this topic). We shall be especially

interested in the saturation (modulo redundancy) SP(Γ) of a finite set of ground

literals Γ: we recall that this can be achieved by SP in finitely many steps with

respect to any reduction ordering. In fact, on this kind of inputs, SP behaves like

standard Knuth-Bendix completion (with simplification). We just fix the relevant

facts for future reference:

Lemma 1.5.2 (Nieuwenhuis and Rubio, 2001). Let Γ be a consistent13 ground con-

straint; given any reduction ordering total on ground terms, the saturation SP(Γ)

of a Γ consists of a finite set R of equations and a finite set I of inequations such

that:

(i) Γ is logically equivalent to I ∪R;

(ii) the equation in R (once oriented from left to right) form a convergent ground

rewriting system;

(iii) every equation l = r ∈ R is in normal form with respect to R \ {l → r};

(iv) the inequations in I are in R-normal form;

(v) every positive clause C is a logical consequence of Γ iff there is a disjunct s = t

in C such that s and t have the same R-normal form.

For the last claim, notice that free theories are convex,14 hence we have that

Γ |= C holds iff there is an equation s = t in C such that Γ |= s = t and the latter

holds iff s and t have the same R-normal form.
13If Γ is not consistent, SP(Γ) just consists of the empty clause.
14A theory T is said to be convex iff whenever for a constraint Γ we have T ∪ Γ |= A1 ∨ · · · ∨An

(here the Ai are atoms and n ≥ 1), then there is i such that T ∪ Γ |= Ai. Among examples of
convex theories, we have all Horn theories.
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We recall that a theory T is stably infinite (see, e.g., Nelson and Oppen, 1979;

Tinelli and Harandi, 1996) iff it is E-compatible, or, equivalently, iff any T -satisfiable

constraint is satisfiable in a model of T whose domain is infinite.

Proposition 1.5.3. If T is stably infinite and has decidable constraint satisfiability

problem, then Tf is an effectively Noetherian extension of Ef .

Proof. Let Γ be a Tf -constraint (we write Γ(a, b) to emphasize that the free constants

occurring in Γ are in the tuple a, b): we want to compute an Ef -basis of Γ w.r.t. a.

Notice that Tf = T ∪Ef : since both theories are stably infinite and their intersection

is E, Nelson-Oppen results apply. In particular, the following is a decision procedure

for Tf -consistency of Γ (see, e.g., Ghilardi, 2004; Nelson and Oppen, 1979; Tinelli

and Harandi, 1996):

(a) produce a T -constraint H(a, b, c) and an Ef -constraint L(a, b, c) such that Γ(a, b)

is logically equivalent to ∃x(H(a, b, x)∧L(a, b, x)) (this is a standard purification

step);

(b) guess an (a, b, c)-arrangement G(a, b, c) (an (a, b, c)-arrangement is a set of lit-

erals containing for each c1, c2 ∈ a ∪ b ∪ c either c1 = c2 or c1 6= c2);

(c) check H(a, b, c) ∧ G(a, b, c) for T -satisfiability and L(a, b, c) ∧ G(a, b, c) for Ef -

satisfiability;

(d) output satisfiable iff both tests are successful and unsatisfiable iff they fail for

all arrangements.

The correctness of the procedure is obvious, its completeness is due to the fact that,

given a T -model M for H(a, b, c) ∧ G(a, b, c) and an Ef -model N for L(a, b, c) ∧

G(a, b, c), one can produce out of them a Tf -model G whose reducts to the signa-

tures of T and of Ef are such that M and N respectively embed into them. The

argument is the following: one can suppose that M, N to be both infinite and of

the same cardinality (by stable infiniteness and Löwenheim-Skolem theorem). Then,

one can simply glue them because (up to renaming) they agree on the interpreta-

tion of the shared constants a, b, c. Notice that stable infiniteness of a theory T

can be formulated either by saying that every constraint is satisfiable in an infinite

model of T or by saying that every model of T embeds into an infinite model of

T (the equivalence of the two statements follows from the diagram theorem and

compactness).
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Notice that the Ef -satisfiability test for L(a, b, c) ∧ G(a, b, c) can be obtained

through Superposition: when doing that, we use a lexicographic path ordering (see

Baader and Nipkow, 1998) induced by a precedence giving the b, c’s higher prece-

dence with respect to both f and the a’s. As a consequence, Lemma 1.5.2(v) imme-

diately implies the following:

Claim. Let BG(a) be the set of equations from SP(L(a, b, c)∧G(a, b, c)) not involving

the b, c. We have that a positive clause C(a) is a logical consequence of L(a, b, c) ∧

G(a, b, c) iff BG(a) |= C(a).

We now show that
∨

GBG(a) is an Ef -basis for Γ(a, b) with respect to a (the

index G ranges over all arrangements for which the consistency tests in (c) are both

positive).15

That Tf ∪ {Γ(a, b)} |=
∨

GBG(a) is clear: by (a), Γ(a, b) is logically equivalent

to ∃x(H(a, b, x) ∧ L(a, b, x)), the latter is equivalent to ∃x(H(a, b, x) ∧ L(a, b, x) ∧
∨

GG(a, b, x)) and finally L(a, b, c) ∧
∨

GG(a, b, c) entails
∨

GBG(a).

Conversely, suppose that C(a) is a positive Ef -clause such that Tf ∪{Γ(a, b)} |=

C(a); we need to show that BG(a) |= C(a) for any given arrangement G(a, b, c)

(such that both consistency tests in (c) are positive). We first show that L(a, b, c)∧

G(a, b, c) |= C(a): to see this, let N be an arbitrary model of L(a, b, c) ∧ G(a, b, c).

Since the first consistency test in (c) is positive, there is a T -modelM of H(a, b, c)∧

G(a, b, c): by the above Nelson-Oppen combination argument, there is a model G

of Tf whose reducts to the signatures of T and of Ef are such that M and N

respectively embed into them. Since G is a model of Tf and of Γ(a), G |= C, hence

also N |= C (because N embeds into the Ef -reduct of G); being N arbitrary, this

means that L(a, b, c) ∧ G(a, b, c) |= C(a). But now the above Claim shows that

BG(a) |= C(a).

To the aim of proving Theorem 1.5.6, we need to introduce the theory E⋆f and to

prove that it admits quantifier elimination. The theory E⋆f in the signature consisting

of a unary function symbol f says the following:

(i) for each positive integer n there exist infinite elements x such that fn(x) = x

and fm(x) 6= x (for all 0 < m < n);

(ii) every element x is of the form f(y) for infinitely many y.

15Of course, if there are none of them, the index set is empty and
W

G BG(a) is the empty
disjunction, namely ⊥. Formally, the notion of an Ef -basis requires a set of clauses, hence

W

GBG(a)
should be brought in conjunctive normal form.
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E⋆f is a consistent theory: this is shown by producing a chain of Ef -models whose

union is a model of E⋆f (the first model of the chain consists of infinitely many loops

of any finite size, the (i+ 1)th model is obtained by adding an f -predecessor to any

element of the ith model).

Lemma 1.5.4. The theory E⋆f admits quantifier elimination; moreover, every model

of Ef embeds into a model of E⋆f .
16

Proof. We first show how to reduce the whole statement of the lemma to the fol-

lowing

Claim. Suppose that Γ(a, b1, . . . , bk) is a constraint satisfying the following condi-

tions: (i) the free constant a occurs in all literals from Γ; (ii) Γ is saturated (i.e.

SP(Γ) = Γ) with respect to the lexicographic path ordering induced by the prece-

dence

a > b1 > · · · > bk > f.

Then E⋆f |= ∀y1 · · · ∀yk∃x Γ(x, y1, . . . , yk).

If the Claim holds, we can eliminate quantifiers from any simply primitive for-

mula ∃xG(x, y1, . . . , yk) as follows: first, saturate G(a, b1, . . . , bk) and then, keep

only the literals not involving a (or output ⊥ if the saturation produces the empty

clause). The Claim shows also that every model M of Ef embeds into a model of

E⋆f : in fact, E⋆f is consistent and hence (by the above argument) consistent with the

diagram ofM.

Thus, it only remains to prove the Claim: let Γ(a, b1, . . . , bk) be a constraint

satisfying the two conditions of the Claim. By our choice of the reduction ordering,

it is straightforward to see that (a) fn(a) > fm(bi) for each bi and n,m ≥ 0 and

(b) fn(c) > fm(c) iff n > m for each constant c. Now, since Γ is saturated and all

literals from Γ contains an occurrence of a, we see that Γ is either of the kind

{fm(a) = u, fm−k1(a) 6= u1, . . . , f
m−kn(a) 6= un}

or of the kind

{fm1(a) 6= u1, . . . , f
mn(a) 6= un}

(here n,m,mi ≥ 0 and 0 < ki ≤ m). Indeed, by contradiction, suppose that two

equalities involving a occur in Γ or that the equality fm(a) = u and an inequality of

16The reader interested in a purely model-theoretic proof of the model-completability of the
‘loop-free extension’ of Ef can consult Hodges (1993).
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the kind fm+k(a) 6= t occur in Γ; in both cases, by our hypothesis of the ordering,

a occurs in the maximum term of the equations, thus a reduction rewriting rule

would apply, contradicting the fact that Γ is saturated. To simplify the matter

further, notice that we can get rid of the case in which the equation fm(a) = u does

not appear, because we can add it freely, taking as u the constant bk+1 which is

not among the original b1, . . . , bk (proving the claim for this case would in fact be

stronger).

We now distinguish two cases, depending on the form of the term u occurring in

the only equation fm(a) = u of Γ:

(i) a does not occur in u (that is, u is of the form f l(bj)): the constraint Γ is

{fm(a) = u, fm−k1(a) 6= u1, . . . , f
m−kn(a) 6= un}.

Pick a modelM of E⋆f and for simplicity let us indicate directly with b1, . . . , bk

a given k-tuple of elements of the support of M: we must show that we can

find a so thatM |= Γ(a, b1, . . . , bk). Notice that any term t not involving a is of

the kind f j(bi) and hence gets interpreted as a specific element ofM (that we

still call t), because b1, . . . , bk have been assigned an interpretation. We let X

be the set of such terms among the u, u1, . . . , un (notice that the complement

set {u, u1, . . . , un} \X is formed by terms of the kind f j(a), where j < m).17

By induction, we define elements am, am−1, . . . , a1, a0 in the following way:

we let am to be u and, when defining ai−1 we choose it in such a way that

fM(ai−1) = ai and ai−1 is different from all interpretations of elements from

X and also from am, . . . , ai: this is possible by the second group of axioms for

E⋆f . If we let a to be a0, it is clear thatM |= Γ(a, b1, . . . , bk) holds (saturation

prevents the constraint from containing inconsistent inequations like t 6= t).

(ii) a occurs in u (that is, u is of the form fm−l(a), for 0 < l ≤ m): the constraint

Γ is

{fm(a) = fm−l(a), fm−k1(a) 6= u1, . . . , f
m−kn(a) 6= un}.

Again we pick a modelM of E⋆f , a k-tuple b1, . . . , bk of elements from the sup-

port ofM, and we still follow the convention of indicating with t the resulting

interpretation of terms t of the kind f j(bi) (we also collect in a set called X

17We cannot have j ≥ m, otherwise the constraint would not be saturated (a rewriting demodu-
lation applies).
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these terms). We have to find a in such a way thatM |= Γ(a, b1, . . . , bk) holds.

By the first group of axioms for E⋆f , it is possible to pick a loop of length l

formed by elements am−1, . . . , am−l which are pairwise distinct from each other

and also distinct from the interpretations of the terms in X. We then define,

by induction, elements am−l, am−l−1, . . . , a1, a0 as in the previous case, starting

from the already defined element am−l. If we finally take a to be a0, we can

ensure the condition M |= Γ(a, b1, . . . , bk).

Proposition 1.5.5. If T is stably infinite, then Tf is Ef -compatible.

Proof. We need to show that:

(i) Ef ⊆ E
⋆
f ;

(ii) E⋆f has quantifier elimination;

(iii) every model of Ef can be embedded into a model of E⋆f ;

(iv) every model of Tf can be embedded into a model of Tf ∪E
⋆
f .

We already know that (i) to (iii) hold from Lemma 1.5.4.

To show (iv), let M0 = (M0,I0) be a model of Tf = T ∪ Ef . Take models

M1,M2 such that: (1) M1 is an infinite model of T such that the reduct of M0

to the signature Σ of T embeds into M1 (it exists because T is stably infinite); (2)

M2 is a model of E⋆f such that the reduct ofM0 to the signature {f} of Ef embeds

into M2 (it exists by (iii) above).

We are now in the position of applying Lemma 1.3.2: we take I := {1, 2},

c := M0, Σ1 := Σ, Σ2 := {f}, Σ0 := ∅, a1 := a2 := ∅, T1 := T , T2 := E⋆f , T0 := E.

The hypotheses of Lemma 1.3.2 are satisfied because T1, T2 are both stably infinite

(alias E-compatible), hence there existsM |= T ∪E⋆f such thatM0 has a Σ ∪ {f}-

embedding into M: in fact, for i = 1, 2, M0 has a Σi-embedding into Mi and the

latter ΣM0
i -embeds into M.

We are now ready to characterize our new class of theories.

Theorem 1.5.6. Let T be a theory with decidable constraint satisfiability problem.

If T is stably infinite, then Tf is an effectively Noetherian extension of Ef , which is

also Ef -compatible.
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Proof. By Propositions 1.5.3 and 1.5.5.

This result is a first step towards the integration in our framework of some

theories that are useful for verification. For example, the theory of integer offsets

can be seen as an extension of the theory of a loop-free unary function symbol (see,

e.g., Armando et al., 2007). Properties of hardware systems can be expressed in a

mixture of temporal logic – e.g., LTL or CTL – and the theory of integer offsets (see

Bryant et al., 2002). Our decidability results on “temporalized” first-order theories

below (cf. Theorems 2.4.5 and 2.5.4) can then be used to augment the degree of

automation of tools attempting to solve this kind of verification problems.

1.6 Conclusions

In this chapter we have presented the basic definitions that will be used in the

following and we have reviewed the combination results for the non-disjoint case

that inspire the rest of the thesis. For the ease of the reader, we have collected a

series of examples of theories fitting our ‘combinability’ hypotheses.

Two original contributions are also included: first, we have shown that, under

suitable hypothesis of T0-compatibility, the property of being an effective Noetherian

extension of a theory is modular. Secondly, an important class of stably infinite theo-

ries extending the empty theory over a single unary function symbol has been shown

to satisfy the hypotheses for the decidability of both the non-disjoint combination

schema and, as we will show in the next chapter, the satisfiability of “temporalized”

first-order theories.
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Chapter 2

Satisfiability in Temporal and

Modal Logics

One of the aim of this thesis is to study reactive systems by combining temporal op-

erators and a first-order language. Since full first-order temporal logics are known

to be highly undecidable (even Π1
1-complete), researchers concentrated on finding

fragments having good computational properties, such as the decidable monodic

fragments investigated in, e.g., Degtyarev et al. (2006); Gabbay et al. (2003); Hod-

kinson et al. (2000). Although such fragments may also be used in verification,

widely adopted formalisms for the specification of reactive or distributed systems

(e.g., the one proposed in Manna and Pnueli, 1995 or the Temporal Logic of Actions

in Lamport, 1994) are such that the temporal part, used to describe the dynamic

behavior of the systems, is parametric with respect to the underlying language of

first-order logic, and theories in first-order languages with equality are often needed

to formalize the data structures manipulated by the systems. While the expressive-

ness of these formalisms helps in writing concise and abstract specifications, it is not

clear how these can be amenable to automated analysis, since we will show that the

fragments so obtained are in general recursively enumerable.

The work presented in this chapter contributes towards the solution of this prob-

lem, by analyzing what happens when we “add a temporal dimension” (in a sense

similar to that investigated in Finger and Gabbay, 1992) to a decidable fragment of

a first-order theory with identity. In the following, relying on the techniques devel-

oped in the previous chapter, we derive an undecidability result and then we identify

suitable condition that allows to transfer the decidability of first-order fragments to

43
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their temporalized version.

2.1 Temporalizing a First-Order Theory

As argued in Manna and Pnueli (1995, page 48), for most applications it is sufficient

to fix a first-order signature Σ and to deal with formulae obtained by applying

temporal and Boolean operators (but no quantifiers) to first-order Σ-formulae: the

resulting formulae are called state-quantified formulae in Manna and Pnueli (1995)

and are formally introduced as follows.

Definition 2.1.1 (LTL(Σa)-Sentences). Given a signature Σ and a (finite or infinite)

set of free constants a, the set of LTL(Σa)-sentences is inductively defined as follows:

(a) if ϕ is a first-order Σa-sentence, then ϕ is an LTL(Σa)-sentence and (b) if ψ1, ψ2

are LTL(Σa)-sentence, so are ψ1 ∧ ψ2, ψ1 ∨ ψ2, ¬ψ1, Xψ1, �ψ1, ♦ψ1, ψ1Uψ2.

Notice that free constants are allowed in the definition of an LTL(Σa)-sentence.

This is quite conventional: since we prefer not to use free variables, free constants

handle variables and parameters of the system to be modeled.

Let us now discuss semantic issues. It is clear that an LTL(Σa)-structure must

be a family of Σa-structures M = {Mn = (Mn,In)}n∈N indexed by the natural

numbers; when we fix also a background Σ-theory T , these structures will be taken

to be models of T . The main question is the following: what should the various

Mn share? A first requirement is that they should share their domains, that is

we assume the Mn to be constant, i.e. all equal to each other. Although different

semantics, with increasing and even distinct domains, have been proposed in the

literature (see, e.g., Bräuner and Ghilardi, 2007), the constant domain assumption

is rather common in computer science applications.

Definition 2.1.2. Given a signature Σ and a set a of free constants, an LTL(Σa)-

structure (or simply a structure) is a sequence M = {Mn = (M,In)}n∈N of Σa-

structures. The set M is called the domain (or the universe) and In is called the

nth level interpretation function of the LTL(Σa)-structure.1

When considering a background Σ-theory T , the structuresMn = (Mn,In) will

be taken to be models of T (further requirements will be analyzed later on).

1In more detail, In is such that In(P ) ⊆Mk for every predicate symbols P ∈ Σ of arity k, and
In(f) : Mk −→ M for each function symbol f ∈ Σ of arity k.
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Definition 2.1.3. Given an LTL(Σa)-sentence ϕ and t ∈ N, the notion of “ϕ being

true in the LTL(Σa)-structure M = {Mn = (M,In)}n∈N at the instant t” (in

symbolsM |=t ϕ) is inductively defined as follows:

– if ϕ is an first-order sentence, M |=t ϕ iff Mt |= ϕ;

– M |=t ¬ϕ iffM 6|=t ϕ;

– M |=t ϕ ∧ ψ iffM |=t ϕ and M |=t ψ;

– M |=t ϕ ∨ ψ iffM |=t ϕ or M |=t ψ;

– M |=t Xϕ iffM |=t+1 ϕ;

– M |=t �ϕ iff for each t′ ≥ t,M |=t′ ϕ;

– M |=t ♦ϕ iff for some t′ ≥ t,M |=t′ ϕ;

– M |=t ϕUψ iff there exists t′ ≥ t such thatM |=t′ ψ and for each t′′, t ≤ t′′ < t′

⇒ M |=t′′ ϕ.

The definition above is well given because, if the main connective of the formula

is a Boolean operator, the definition of truth of an LTL(Σa)-sentence coincides with

truth clause of Tarski semantics for first order languages. Let ϕ be an LTL(Σa)-

sentence; we say that ϕ is true inM or, equivalently, thatM satisfies ϕ (in symbols

M |= ϕ) iffM |=0 ϕ.

Let us now better examine the problem of the relationship between the interpre-

tations In in an LTL(Σa)-structure: there are two radically opposite alternatives to

cope with this problem. The customary Kripkean semantics for modal logics mostly

deals with purely relational signatures and leave the interpretation of the predicate

symbols flexible, i.e. time-dependant: no relationship among Im(P ) and In(P ) is

assumed for n 6= m. By contrast, constants are usually interpreted rigidly according

to the orthodox Kripkean viewpoint, that is we have Im(c) = In(c) for all m,n and

for all constants c.

On the other hand, the verification literature tends to consider the opposite

solution: free constants are flexible (because the system variables are subject to

change during runs) and symbols from Σ are rigidly interpreted, because they are

supposed to model datatypes endowed with the corresponding time-independent

operations (such as sum and successor for integers, read/write for arrays, etc.).
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While keeping the same motivations of the verification literature, we adopt here a

more elaborated point of view, according to which certain symbols are declared rigid

and the remaining ones are declared flexible (i.e. time-dependent). We believe that

there are various reasons supporting this choice. First of all, flexible interpretations

are already used within the verification literature, where not only variables, but also

propositions expressing program locations are in fact interpreted in a time-dependent

way (to this aim, the Booleans sort is introduced in order to assimilate program lo-

cations to flexible variables). Moreover, reactive systems are supposed to interact

with the environment and the environment action is somewhat unpredictable, to the

point that it is better to model it through flexible function symbols - these function

symbols obeying only to the constraints expressed by the background theory T or

by the nondeterministic transition relation of the system (to see an example of what

we mean, cf. the functions in and out within the water level controller example

discussed in Section 3.4 below). Even predicates or function symbols expressing

the internal evolution of the system may be subject to time change. Consider for

instance a mutual exclusion protocol, like the ‘bakery’ protocol: here the set of pro-

cessors wanting to enter into the critical section is variable and the ticket-assigning

function is time-dependent too, for example because it need complete reset once

the resource have been obtained (cf. again Section 3.4 for details). In these exam-

ples, the constrained flexibility approach we propose identifies the good abstraction

level for the specification of the system behavior. Finally, there are also technical

reasons supporting our proposal: big decidability problems in model checking arise

when even minimal infinite states descriptors enter into the picture (cf. the proof

of Theorem 3.2.1 below) and our setting allows to model the system by grouping

problematic descriptors into two categories, the rigid and the flexible ones. As we

shall see, if we succeed in keeping the rigid part of the specification relatively simple

(i.e. ‘locally finite’), then we do not loose the nice properties of the reasoning about

finite-state specifications.

Definition 2.1.4. A data-flow theory is a 5-tuple T = 〈Σ, T,Σr, a, c〉 where Σ is

a signature, T is a Σ-theory (called the underlying theory of T ), Σr is the rigid

subsignature of Σ, a is a set of free constants (called system variables), and c is a

set of free constants (called system parameters).

Σr is said to be the rigid subsignature of the data-flow theory; the constants c

will be rigidly interpreted, whereas the constants a will be interpreted in a time-

dependant way. A data-flow theory T = 〈Σ, T,Σr, a, c〉 is totally flexible iff Σr is
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empty and is totally rigid iff Σr = Σ.

Definition 2.1.5. An LTL(Σa,c)-structureM = {Mn = (M,In)}n∈N is appropriate

for a data-flow theory T = 〈Σ, T,Σr, a, c〉 iff for all m,n ∈ N, for all function symbol

f ∈ Σr, for all relational symbol P ∈ Σr, and for all constant c ∈ c, we have

Mn |= T, In(f) = Im(f), In(P ) = Im(P ), In(c) = Im(c).

The satisfiability problem for T is the following: given an LTL(Σa,c)-sentence ϕ,

decide whether there is an LTL(Σa,c)-structure M appropriate for T such that

M |= ϕ. The ground satisfiability problem for T is similarly introduced, but ϕ is

assumed to be ground.

Notice that appropriate structures are such that the equality symbol is always

interpreted as the identity relation, since the equality is included in every signature

(hence also in the rigid signature Σr).

2.1.1 Recursive Enumerability of the Validity Problem

In general, the validity problem for first-order LTL with constant domains is Π1
1-

complete (see Bräuner and Ghilardi, 2007; Gabbay et al., 2003 for the upper and

lower bound respectively). Since in our context we forbid any interplay between first-

order quantifiers and temporal operators, the question whether the validity problem

for LTL(Σa)-sentences belongs is Π1
1-complete as well naturally arises. Given the

data-flow theory T = 〈Σ, ∅,Σr, a, c〉 and the LTL(Σa,c)-sentence ϕ, we are interested

in deciding whether each LTL(Σa,c)-structure M appropriate for T is such that

M |= ϕ. Indeed, we briefly sketch the proof of the fact that this problem is Σ0
1-

complete (i.e., recursively enumerable); to this aim, we rely on the notion of PLTL-

formulae that will be introduced below in Subsection 2.3.1.

From a bijective correspondence between propositional letters and first-order

first-order Σa,c-sentence that are atoms or whose main connective is a quantifier, we

define by recursion in the natural way the bijection [[ · ]] (called propositional abstrac-

tion in the following) between LTL(Σa,c)-sentences and PLTL-formulae.2 Let Ĝ be

the set of all guessings over the propositional letters occurring in the propositional

2More precisely, let µ be the correspondence between propositional letters and first-order Σa,c-
sentence that are atoms or whose main connective is a quantifier; we define the propositional
abstraction [[ϕ ]] of ϕ in the following way: (i) if ϕ is a ground atom or its main connective is a
quantifier, then [[ϕ ]] = µ(ϕ); (ii) if ϕ is of the kind ◦ψ where ◦ ∈ {¬, X,�,♦}, then [[ϕ ]] = ◦[[ψ ]];
(iii) if ϕ is of the kind ψ1 ◦ ψ2 where ◦ ∈ {∧,∨, U}, then [[ϕ ]] = [[ψ1 ]] ◦ [[ψ2 ]].
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abstraction [[ϕ ]] of ϕ. We have that ϕ is satisfiable in an LTL(Σa,c)-structure M

appropriate for T iff there exist G1, . . . , Gk (Gi ∈ Ĝ) such that (i) [[ϕ ]]∧�(
∨k
i=1Gi)

is PLTL-satisfiable and (ii)
∧

[[Gi ]]
−1
i is satisfiable (where [[ · ]]−1

i is the inverse of the

function [[ · ]] in which every flexible symbol s ∈ Σa \ Σr is renamed to si).

The ‘only if’ case is trivial, whereas for the converse we can argue as follows.

From (i) there exists an infinite sequence of Boolean assignments V := V0 → V1 →

· · · → Vn → . . . that is a PLTL model for [[ϕ ]] ∧ �(
∨k
i=1Gi); by (ii), there exists a

structureM such thatM |=
∧k
i=1[[Gi ]]

−1
i . LetMi be the Σ

a,c
i -reduct ofM (where

Σ
a,c
i is obtained from Σa.c by renaming to si each flexible symbol s ∈ Σa \Σr). Let

us build the sequence N := N0 → N1 → · · · → Nn → . . . such that Ni = Mj iff

Vi |= Gj (j ∈ {1, . . . , k}). By construction, N is appropriate for T , and by adapting

Lemma 2.3.3 below, it can be easily seen that N |= ϕ.

Since the satisfiability problem for propositional LTL is decidable (more precisely

it is PSPACE-complete, see Sistla and Clarke, 1985) and the satisfiability problem

for first-order logic is Π0
1-complete (i.e., co-recursively enumerable), it follows from

the argument above that the satisfiability problem for LTL(Σa)-sentences is Π0
1-

complete, hence the validity problem for LTL(Σa)-sentences is Σ0
1-complete. This

argument applies also to the validity problem for LTL(Σa)-sentence modulo a data-

flow theory T = 〈Σ, T,Σr, a, c〉 where T is recursively axiomatized. In such a case,

condition (ii) above becomes (ii’)
∧

[[Gi ]]
−1
i is

⋃k
i=1 T

i-satisfiable, where T i is ob-

tained from T by renaming every flexible symbol s ∈ Σ \Σr occurring in the axioms

of T in si.

In the following, we focus on classes of data-flow theories whose satisfiability

problem for LTL(Σa)-sentences is decidable.

2.1.2 Some Classes of Data-Flow Theories and Further Assump-

tions

To study the ground satisfiability problem for data-flow theories, it is useful to dis-

tinguish three different classes of data-flow theories of increasing expressiveness and

to lift to the temporal level the properties of (first-order) theories ensuring modu-

larity (with respect to unions of theories) of decidability of constraint satisfiability

problem (cf. Subsections 1.2.1 and 1.2.2 in Chapter 1).

Let Σ be a finite signature; an enumerated datatype theory in the signature Σ

is the theory consisting of the set of sentences which are true in a finite given fixed

Σ-structure M = (M,I) (we require M to have the additional property that for



2.1. Temporalizing a First-Order Theory 49

every m ∈M there is c ∈ Σ such that cM = m). It is easy to see that an enumerated

datatype theory has a finite set of universal axioms and enjoys quantifier elimination.

Definition 2.1.6. A data-flow theory T = 〈Σ, T,Σr, a, c〉 is said to be finite state

iff it is totally rigid and T is an enumerated datatype theory.

Notice that enumerated datatype theories are locally finite, but not conversely;3

thus, in order to generalize finite-state systems, one can require the underlying

theory to be locally finite. We also want to drop the total rigidity requirement and

weaken the quantifier elimination property of enumerated datatype theories to a

compatibility requirement (recall Definition 1.2.1):

Definition 2.1.7. A data-flow theory T = 〈Σ, T,Σr, a, c〉 is said to be locally finite

compatible iff there is a universal and effectively locally finite Σr-theory Tr such that

T is Tr-compatible.

Notice that, from our discussion in Section 1.2, it follows that a totally flexible

data-flow theory is locally finite compatible in case its underlying theory is stably

infinite.

We can get a further generalization by weakening local finiteness to Noetherianity

(in the sense of Definition 1.2.8):

Definition 2.1.8. A data-flow theory T = 〈Σ, T,Σr, a, c〉 is said to be Noethe-

rian compatible iff there is a Σr-universal theory Tr such that T is an effectively

Noetherian and Tr-compatible extension of Tr.

Definitions 2.1.7 and 2.1.8 refer to a Σr-theory Tr such that T is Tr-compatible.

Although this is not relevant for the proofs of the results in this thesis, we notice that

if such a theory Tr exists, then one can always take Tr to be the theory axiomatized

by the universal Σr-sentences which are logical consequences of T .

We completed our conceptual setting: we need however to restrict it considerably,

in order to be able to provide positive results. This is partially done by means of

the following further assumption, to be kept in mind for the whole chapter.

Assumption 2.1.9. We shall concentrate on ground satisfiability problems. For

this reason, we assume the underlying theory T of a data-flow theory T =

〈Σ, T,Σr, a, c〉 to have decidable constraint satisfiability problem.

3For instance, the theory of dense linear orders is locally finite but cannot be the theory of a
single finite structure, because finite linear orders are not dense.
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We will see that this assumption alone is not sufficient to guarantee the decid-

ability of the ground satisfiability problem for data-flow theories (cf. Section 2.2).

Fortunately, the problem becomes decidable (cf. Sections 2.3 and 2.4) when the

underlying theory T of a data-flow theory T = 〈Σ, T,Σr, a, c〉 satisfies the same

requirements for the correctness of the combination schema of Section 1.3.

2.2 Undecidability of the Satisfiability Problem

We show that the decidability of the (ground) satisfiability problem for (totally

flexible) data-flow theories implies the decidability of the constraint satisfiability

problem for unions of (signature disjoint) theories in a first-order framework. This

reduction proves undecidability, as shown in Bonacina et al. (2006) (in fact, both

recent and long standing literature – see, e.g., Nelson and Oppen, 1979; Tinelli and

Harandi, 1996 – impose further requirements, such as stable infiniteness, on the

component theories to obtain positive decidability transfer results of the constraint

satisfiability problem).

Theorem 2.2.1. There exists a totally flexible data-flow theory T whose ground

satisfiability problem is undecidable.

Proof. We must define a data-flow theory T = 〈Σ, T,Σr, a, c〉 such that Σr = ∅,

i.e. T is totally flexible, and the constraint satisfiability problem of T is decidable,

according to Assumption 2.1.9.

To define a suitable T , the following two facts about combinations of theories

are crucial:

(i) there exist theories T1, T2 whose constraint satisfiability problem is decidable,

whose signatures Σ1,Σ2 are disjoint and such that the constraint satisfiability

problem of T1 ∪ T2 is undecidable (this is shown in Bonacina et al., 2006);

(ii) let T be a Σ-theory whose constraint satisfiability problem is decidable and Σ′

be a signature such that Σ′ ⊇ Σ. If we consider T as a Σ′-theory, then the

constraint satisfiability problems of T is still decidable (this is proved in, e.g.,

Ganzinger, 2002; Tinelli and Zarba, 2005).

Consider now theories T1, T2 as in (i) above and let us define a new Σ-theory T

as follows:

Σ := Σ1 ∪Σ2 ∪ {P} and T := {P → ψ | ψ ∈ T1} ∪ {¬P → ψ | ψ ∈ T2},
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where P is a fresh 0-ary predicate symbol (or, otherwise said, a fresh propositional

letter). We claim that the constraint satisfiability problem for the Σ-theory T is

decidable. In fact, given a Σ1∪Σ2∪{P} constraint Γ, we first guess the truth value

of P and add either P or ¬P to Γ, accordingly. At this point, we are left with

the problem of solving a constraint satisfiability problem of the (Σ1 ∪ Σ2 ∪ {P})-

theory Ti for either i = 1 or i = 2. This is decidable by fact (ii) above: the constraint

satisfiability problem of the Σi-theory Ti is decidable by assumption and the symbols

from Σj ∪ {P} (j 6= i) are free for Ti.

We now show that the ground satisfiability problem for T is undecidable by iden-

tifying a particular class of ground LTL(Σa,c)-sentences whose satisfiability cannot

be decided. We assume that there are infinitely many system parameters (whereas

the cardinality of the set of system variables is irrelevant). We claim that it is

not possible to decide the T -satisfiability of the following type of ground LTL(Σc)-

sentences:

P ∧ Γ1 ∧X(¬P ∧ Γ2), (2.1)

where Γi is a finite conjunction of Σ
c
i -literals (for i = 1, 2) and the c are the free

constants of the data-flow theory T (i.e. the rigid system parameters). In fact,

if (2.1) is satisfiable (in the sense of Definition 2.1.5) then it is easy to build a

model (in first-order semantics) for T1 ∪ T2 satisfying Γ1 ∪Γ2, and also the converse

holds. Thus the satisfiability of the sentences of the kind described in (2.1) is

reduced to the satisfiability w.r.t. T1 ∪ T2 of the arbitrary constraint Γ1 ∪ Γ2: this

is undecidable by fact (i) above (notice that the satisfiability of pure constraints,

like Γ1∪Γ2, is equivalent to satisfiability of arbitrary (Σ1 ∪Σ2)-constraints, because

every constraint is equisatisfiable with an effectively built pure constraint, see, e.g.,

Baader and Tinelli, 2002; Ghilardi, 2004).

2.3 Decidability and Locally Finite Data-Flow Theories

Let T = 〈Σ, T,Σr, a, c〉 be a given data-flow theory. The arguments underlying the

proof of Theorem 2.2.1 suggest that the undecidability of the ground satisfiability

problem for T arises precisely for the same reasons leading to the undecidability of

combined constraint satisfiability problems in the first-order framework. The hope

is that the same (or similar) requirements yielding the decidability of the constraint

satisfiability problem in unions of theories will also give the decidability of the ground

satisfiability problem for T . It turns out that this is indeed the case for both locally
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finite and Noetherian theories (cf. Subsections 1.2.1 and 1.2.2 in Chapter 1).

Theorem 2.3.1. The ground satisfiability problem for a locally finite compatible

data-flow theory is decidable.

Below, we give two constructive proofs of this theorem. The former is based on

an eager reduction to the satisfiability problem for propositional LTL. The latter

consists in a lazy integration between a standard tableau algorithm for the satis-

fiability problem of propositional LTL and a decision procedure for the constraint

satisfiability problem in the background (first-order) theory T .

2.3.1 Propositional Linear Time Temporal Logic

Propositional L-formulae (or PLTL-formulae or simply propositional formulae) are

built up from a set of propositional letters L by using Boolean connectives and the

temporal operators X,�,♦, U . We use letters α, β, . . . for propositional formulae.

The semantics for PLTL is the standard one: we recall it for the sake of completeness.

A PLTL-Kripke model V = {Vn}n for L is a sequence of Boolean assignments

Vn : L −→ {0, 1} (n ∈ N).

Given such a Kripke model and a propositional formula α, the notion of α being

true at instant t ∈ N in V is recursively defined as follows (this is parallel to Defini-

tion 2.1.2):

– if p ∈ L, V |=t p iff Vt(p) = 1;

– V |=t ¬α iff V 6|=t α;

– V |=t α ∧ β iff V |=t α and V |=t β;

– V |=t α ∨ β iff V |=t α or V |=t β;

– V |=t Xα iff V |=t+1 α;

– V |=t �α iff for each t′ ≥ t, V |=t′ α;

– V |=t ♦α iff for some t′ ≥ t, V |=t′ α;

– V |=t αUβ iff there exists t′ ≥ t such that V |=t′ β and for each t′′, t ≤ t′′ < t′

⇒ V |=t′′ α.
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We say that α is satisfied in V iff V |=0 α (in general, if the subscript of |= is

omitted, it is intended to be equal to 0).

2.3.2 Eager Reduction to Propositional LTL-Satisfiability

In the rest of this section, let T = 〈Σ, T,Σr, a, c〉 be a locally finite compatible data-

flow theory. We prove Theorem 2.3.1 by a reduction to satisfiability in propositional

linear temporal logic (PLTL, from now on). The syntactic relationship between

first-order and propositional LTL-formulae is given by the notion of abstraction.

Definition 2.3.2 (PLTL-Abstraction). Given a signature Σa and a set of proposi-

tional letters L (of the same cardinality as the set of ground Σa-atoms), let [[ · ]] be a

bijection from the set of ground Σa-atoms into L. By translating identically Boolean

and temporal connectives, the map is inductively extended to a bijective map (also

called [[ · ]]) from the set of ground LTL(Σa)-sentences onto the set of propositional

L-formulae.

Given a ground LTL(Σa)-sentence ϕ, we call [[ϕ ]] the PLTL-abstraction of ϕ.

Given a set Θ of ground LTL(Σa)-sentences, [[ Θ ]] denotes the set {[[ϕ ]] | ϕ ∈ Θ}.

The following straightforward lemma explains why PLTL-abstractions are relevant

for satisfiability checking of LTL(Σa)-sentences.

Lemma 2.3.3. Let L be a set of propositional letters, Σ be a signature, a be a set of

free constants, and [[ · ]] be a PLTL-abstraction function mapping ground LTL(Σa)-

sentences into propositional L-formulae. Suppose we are given a ground LTL(Σa)-

sentence ϕ, a Kripke model V for L (based on N as a temporal flow) and an LTL(Σa)-

structure M = {Mn}n∈N such that for every t ∈ N and for every Σa-ground atom ℓ

occurring in ϕ we have

Mt |= ℓ iff Vt([[ ℓ ]]) = 1.

Then we have also

M |=t ϕ iff V |=t [[ϕ ]],

for every t ∈ N.

Proof. The proof is by an easy induction on the complexity of the subformulae ψ
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occurring in ϕ. The condition

M |=t ψ iff V |=t [[ψ ]]

is obvious if ψ is an atom, and follows directly from the induction hypothesis if it is

of the kind ψ1 ∧ ψ2, ψ1 ∨ ψ2, ¬ψ.

We concentrate now on subformulae ψ of the kind Xψ1, �ψ1, and ψ1Uψ2. Our

induction hypothesis is that, for every Σa-ground atom ℓ occurring in ϕ we have

Mt |= ℓ iff Vt([[ ℓ ]]) = 1 and, for each proper subformula ψ′ of ψ, we have that

M |=t ψ
′ iff V |=t [[ψ′ ]]. Suppose ψ is of the kind Xψ1, we want to show that

M |=t Xψ1 iff V |=t [[Xψ1 ]]. We first show that if M |=t Xψ1 then V |=t [[Xψ1 ]].

If M |=t Xψ1 then M |=t+1 ψ1 thus, by induction hypothesis, V |=t+1 [[ψ1 ]] and

thus V |=t [[Xψ1 ]]. The converse holds because, if V |=t [[Xψ1 ]], then V |=t+1 [[ψ1 ]]

and, again by induction hypothesis,M |=t+1 ψ1 and so M |=t Xψ1.

Let us show that M |=t �ψ1 iff V |=t [[�ψ1 ]]. If M |=t �ψ1 then M |=i ψ1

for each i ≥ t, thus by induction hypothesis, V |=i [[ψ1 ]] for each i ≥ t, thus

V |=t [[�ψ1 ]]. Analogously, the converse holds.

Finally, let us show thatM |=t ψ1Uψ2 iff V |=t [[ψ1Uψ2 ]]. IfM |=t ψ1Uψ2 there

exists k ≥ t such that M |=k ψ2 and such that, for every t ≤ i < k, M |=i ψ1.

Applying the inductive hypothesis we obtain that V |=k [[ψ2 ]] and, for every t ≤ i <

k, V |=i [[ψ1 ]]. Thus V |=t [[ψ1Uψ2 ]] obtains. The converse holds by an analogous

argument.

The key to define a reduction to the satisfiability problem in PLTL is guessing.

Definition 2.3.4 (S-Guessing). Given a signature Σ and a finite set of Σ-atoms S,

an S-guessing G is a Boolean assignment to members of S (we view G as the set

{ϕ | ϕ ∈ S and G(ϕ) is assigned to true} ∪ {¬ϕ | ϕ ∈ S and G(ϕ) is assigned to

false}).

Indeed, guessing must take into account rigid constants: each guessing of atoms

over flexible symbols must be “compatible” with the guessing of atoms over rigid

symbols. Formally, this is ensured as follows.

By definition of locally finite compatible data-flow theory T = 〈Σ, T,Σr, a, c〉,

there must exist a theory Tr such that Tr ⊆ T is effectively locally finite. So, given

a finite subset c0 of c, it is possible to compute a finite set S of ground Σ
c0
r -atoms

which are representative modulo T -equivalence of all ground Σ
c0
r -atoms: for this
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choice of S, an S-guessing is called a rigid c0-guessing . Now, let Ŝ be any finite set

of Σa,c-atoms and G be a rigid c0-guessing: an Ŝ-guessing Ĝ is G-compatible iff G ∪ Ĝ

is T -satisfiable. The set of G-compatible Ŝ-guessings is denoted by C(Ŝ,G).

Theorem 2.3.1 is an immediate consequence of the well-known fact that PLTL-

satisfiability is decidable and the following proposition:

Proposition 2.3.5. Let T = 〈Σ, T,Σr, a, c〉 be a locally finite compatible data-flow

theory. Let L be a set of propositional letters and [[ · ]] be a PLTL-abstraction func-

tion mapping ground LTL(Σa,c)-sentences into propositional L-formulae. A ground

LTL(Σa,c)-sentence ϕ is satisfiable in an LTL(Σa,c)-structure M appropriate for T

iff there exists a rigid c0-guessing G such that the propositional formula

[[ϕ ]] ∧�
∧

ψ∈G

[[ψ ]] ∧� (
∨

Ĝ∈C(At(ϕ),G)

∧

ψ∈Ĝ

[[ψ ]]) (2.2)

is satisfiable in a PLTL-Kripke model (here c0 is the subset of the set c of system

parameters occurring in ϕ and At(ϕ) is the set of Σa,c-atoms occurring in ϕ).

Proof. The ‘only if’ is immediate from Lemma 2.3.3. The converse can be derived

from Lemma 1.3.2. Suppose that the PLTL-formula (2.2) is satisfiable in a Kripke

model V = {Vn}n∈N for a certain rigid c0-guessing G. This means that for every

n there is Ĝn ∈ C(At(ϕ),G) such that V |=n

∧

ψ∈G [[ψ ]] ∧
∧

ψ∈Ĝn
[[ψ ]]. Since Ĝn is

G-compatible, there is a Σa,c0-structure Mn which is a model of T ∪ Ĝn ∪ G; by

Lemma 1.3.2, the Mn can be Σa,c0-embedded into Σa,c-structures M′
n such that

M′ := {M′
n}n∈N is appropriate for T .4 The Mn can be seen as Σa,c-structures by

interpreting rigid parameters c\c0 arbitrarily (but in the same way in allMn). Since

truth of ground literals is preserved through embeddings,M′
n is again a model of Ĝn

for every n. But then Lemma 2.3.3 ensures that M′ |= ϕ, given that V |= [[ϕ ]].

Example 2.3.6 (Plaisted, 1986). Let T = 〈{>}, Tlo, {>}, a, c〉 be a data-flow theory,

where Tlo is the theory of strict linear orders and > is a binary predicate symbol.

Since Tlo (i) is universal, (ii) admits as a model completion the theory of dense

linear order without endpoints and (iii) is effectively locally finite, then T is a locally

finite compatible data-flow theory; moreover, it is easy to check that the constraint

4Lemma 1.3.2 is used with I := N, and Ti := T , but symbols from Σ \Σr are disjointly renamed
when building the signature Σi for the ith copy of T (the same observation applies also to the flexible
constants a). In this way, a model of

S

i Ti is the same thing as a sequence of models {M′
n}n∈N of

T whose Σr-reducts coincide.
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satisfiability problem for Tlo is decidable. We are interested to check the satisfiability

of the following LTL(Σa)-sentence:5

ϕ :≡ a > b ∧ b > c ∧ (♦a = c ∨ ♦c > a)

Indeed, the solution to this satisfiability problem depends on how we classify the

symbols a, b, and c. Notice that the set At(ϕ) of atoms in ϕ is {a > b, b > c, a =

c, c > a}. Now, let us consider two cases according to how a, b, c are considered as

flexible or rigid.

1. a = {b} and c = {a, c}. The set of representative Σc-atoms is {a > c, a =

c, c > a}. The rigid c-guessings which are consistent w.r.t. Tlo are therefore

the following:

G1 :={a > c, a 6= c, c 6> a},

G2 :={a 6> c, a = c, c 6> a},

G3 :={a 6> c, a 6= c, c > a}.

We omitted to consider the rigid c-guessings which are not Tlo-satisfiable be-

cause every Tlo-unsatisfiable c-guessing G leads to the inconsistency of the

formula (2.2) since there is no G-compatible At(ϕ)-guessing. Consider now

the first two conjuncts of (2.2) for each Gi:

G1: from

[[ a > b ]] ∧ [[ b > c ]] ∧ (♦[[ a = c ]] ∨ ♦[[ c > a ]]) ∧

∧ �([[ a > c ]] ∧ ¬[[ a = c ]] ∧ ¬[[ c > a ]])

we obtain

([[ a > b ]] ∧ [[ b > c ]] ∧ ♦[[ a = c ]] ∧�[[ a > c ]] ∧�¬[[ a = c ]] ∧�¬[[ c > a ]])∨

∨([[ a > b ]] ∧ [[ b > c ]] ∧ ♦[[ c > a ]] ∧�[[ a > c ]] ∧�¬[[ a = c ]] ∧�¬[[ c > a ]])

Each disjunct is easily found PLTL-unsatisfiable because of the inconsis-

tency between the underlined part of the formula.

5The formula is obtained by negating a > b ∧ b > c→ �(a > c)
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G2: from

[[ a > b ]] ∧ [[ b > c ]] ∧ (♦[[ a = c ]] ∨ ♦[[ c > a ]]) ∧

∧ �(¬[[ a > c ]] ∧ [[ a = c ]] ∧ ¬[[ c > a ]])

we obtain

([[ a > b ]] ∧ [[ b > c ]] ∧ ♦[[ a = c ]] ∧�¬[[ a > c ]] ∧�[[ a = c ]] ∧�¬[[ c > a ]])∨

∨([[ a > b ]] ∧ [[ b > c ]] ∧ ♦[[ c > a ]] ∧�¬[[ a > c ]] ∧�[[ a = c ]] ∧�¬[[ c > a ]])

The second disjunct is easily found PLTL-unsatisfiable because of the

inconsistency between the underlined part of the formula. We are left

to check the PLTL-unsatisfiable of the following formula obtained by

considering all G2-compatible guessings:

[[ a > b ]] ∧ [[ b > c ]] ∧ ♦[[ a = c ]] ∧�¬[[ a > c ]] ∧�[[ a = c ]] ∧�¬[[ c > a ]]∧

∧ �







(
¬[[ a > b ]] ∧ [[ b > c ]] ∧ [[ a = c ]] ∧ ¬[[ c > a ]]

)
∨

∨
(
[[ a > b ]] ∧ ¬[[ b > c ]] ∧ [[ a = c ]] ∧ ¬[[ c > a ]]

)
∨

∨
(
¬[[ a > b ]] ∧ ¬[[ b > c ]] ∧ [[ a = c ]] ∧ ¬[[ c > a ]]

)







which is easily found PLTL-inconsistent by observing the underlined lit-

erals.

G3: from

[[ a > b ]] ∧ [[ b > c ]] ∧ (♦[[ a = c ]] ∨ ♦[[ c > a ]]) ∧

∧ �(¬[[ a > c ]] ∧ ¬[[ a = c ]] ∧ [[ c > a ]])

we obtain

([[ a > b ]] ∧ [[ b > c ]] ∧ ♦[[ a = c ]] ∧�¬[[ a > c ]] ∧�¬[[ a = c ]] ∧�[[ c > a ]])∨

∨([[ a > b ]] ∧ [[ b > c ]] ∧ ♦[[ c > a ]] ∧�¬[[ a > c ]] ∧�¬[[ a = c ]] ∧�[[ c > a ]])

The first disjunct is easily found PLTL-unsatisfiable because of the incon-

sistency between the underlined part of the formula. We are left to check

the PLTL-unsatisfiable of the following formula obtained by considering
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all the G3-compatible guessings:

[[ a > b ]] ∧ [[ b > c ]] ∧ ♦[[ c > a ]] ∧�¬[[ a > c ]] ∧�¬[[ a = c ]] ∧�[[ c > a ]]∧

∧�







(
¬[[ a > b ]] ∧ [[ b > c ]] ∧ ¬[[ a = c ]] ∧ [[ c > a ]]

)
∨

∨
(
[[ a > b ]] ∧ ¬[[ b > c ]] ∧ ¬[[ a = c ]] ∧ [[ c > a ]]

)
∨

∨
(
¬[[ a > b ]] ∧ ¬[[ b > c ]] ∧ ¬[[ a = c ]] ∧ [[ c > a ]]

)







which is easily found PLTL-inconsistent by observing the underlined lit-

erals.

Since there is no rigid guessing such that the formula (2.2) is PLTL-satisfiable,

we are entitled to conclude that ϕ is unsatisfiable in any LTL(Σ{b},{a,c})-

structure appropriate for T .

2. a = {a, b, c} and c = ∅. Since there are no system parameters, all the At(ϕ)-

guessings which are Tlo-satisfiable are trivially compatible with every rigid

c-guessing. It easy to check that the corresponding instance of (2.2) is PLTL-

satisfiable. Hence, by Theorem 2.3.1, we conclude that ϕ is satisfiable in an

LTL(Σ{a,b,c},∅)-structure appropriate for T .

Proposition 2.3.5 gives an algorithm to solve the ground satisfiability problem for

T , when T is a locally finite compatible data-flow theory. For the PLTL-satisfiability

test, one may use any decision procedure for PLTL-satisfiability based on tableaux,

automata, or temporal extensions of resolution. Such an algorithm can be regarded

as an eager reduction algorithm, in the sense that it produces an instance of a

PLTL-satisfiability problem. The drawback is that the resulting PLTL-satisfiability

problem may be quite large. The main advantage is that both decision procedures

for the constraint satisfiability problem of the underlying locally finite theory and

decision procedures for PLTL can be used ‘off-the-shelf’. In the following, we con-

sider a procedure which is likely to scale up more smoothly at the price of a finer

grain integration between the constraint reasoner in the background theory and the

PLTL satisfiability solver.

2.3.3 A Lazy Tableau Procedure

We describe a lazy approach to solve the ground satisfiability problem for data-flow

theories by extending the classic approach to temporal propositional satisfiability
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adopted in the Tableaux community. The key idea is to lift the definition of Hintikka

sets to ground LTL(Σa,c)-sentences of the form (2.2) of Proposition 2.3.5. The

soundness and completeness proof of the resulting algorithm (cf. Corollary 2.3.12

below) is immediate from Proposition 2.3.5 and basic properties of tableaux for

PLTL (see, e.g., Manna and Pnueli, 1995, Section 5.5).

As before, let us fix a locally finite compatible data-flow theory T = 〈Σ, T,Σr, a, c〉.

A ground LTL(Σa,c)-sentence is in Negation Normal Form (NNF) iff it is built up

from LTL(Σa,c)-literals by using ∨,∧,X,�, U . It can be shown that every ground

LTL(Σa,c)-sentence is logically equivalent to a formula in NNF.6

Definition 2.3.7. Given a ground LTL(Σa,c)-sentence ϕ in NNF, the closure of ϕ

is the set cl(ϕ) containing:

(i) all subformulae of ϕ and all negations of atoms occurring in ϕ;

(ii) a representative set (modulo T -equivalence) of Σ
c0
r -literals, where c0 is the

finite set of system parameters occurring in ϕ;

(iii) formulae of the form X(ψUχ), where ψUχ is a subformula of ϕ;

(iv) formulae of the form X�ψ, where �ψ is a subformula of ϕ.

Notice that cl(ϕ) is finite and has cardinality O(max(n, k(c0))), if n is the length

of ϕ and k(c0) is the cardinality of a representative set of Σ
c0
r -literals.

Definition 2.3.8. Given a ground LTL(Σa,c)-sentence ϕ in NNF, a Hintikka set for

ϕ is a subset H ⊆ cl(ϕ) such that:

(i) for every atom ψ ∈ cl(ϕ), H contains either ψ or ¬ψ;

(ii) the set of literals from H is T -satisfiable;

(iii) if ψ1 ∧ ψ2 ∈ H, then (ψ1 ∈ H and ψ2 ∈ H);

(iv) if ψ1 ∨ ψ2 ∈ H, then (ψ1 ∈ H or ψ2 ∈ H);

(v) if ψ1Uψ2 ∈ H, then (ψ2 ∈ H or (ψ1 ∈ H and X(ψ1Uψ2) ∈ H));

(vi) if �ψ ∈ H, then (ψ ∈ H and X�ψ ∈ H).

6For simplicity (and ignoring efficiency problems), we include � but not the ‘release operator’
ϕRψ := ¬(¬ϕU¬ψ) (this operator can be defined in terms of � and U as �ψ ∨ (ψU(ϕ ∧ ψ))).
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We are now in the position to define a Hintikka graph, which will be used as the

key data structure to define the tableau procedure.

Definition 2.3.9. The Hintikka graph H(ϕ) of ϕ is the directed graph having as

nodes the Hintikka sets for ϕ and as edges the pairs H → H ′ such that

(i) H ′ ⊇ {ψ | Xψ ∈ H};

(ii) H and H ′ contain the same ground Σ
c0
r -literals.

Definition 2.3.10. A strongly connected subgraph (scs) of H(ϕ) is a set C of nodes

of H(ϕ) such that for every H,H ′ ∈ C there is a (non-empty) H(ϕ)-path from H to

H ′ whose nodes all belong to C.7

Definition 2.3.11 (Manna and Pnueli, 1995). An scs C is fulfilling iff for every

ψ1Uψ2 ∈ cl(ϕ) there is H ∈ C such that either ψ1Uψ2 6∈ H or ψ2 ∈ H.

A node H in H(ϕ) is initial iff ϕ ∈ H.

Corollary 2.3.12. A ground LTL(Σa,c)-sentence ϕ in NNF is satisfiable in an

LTL(Σa,c)-structure M appropriate for T iff there is a H(ϕ)-path leading from an

initial node into a fulfilling scs.

An observation about the complexity of the lazy procedure is in order. When

the set of representative Σ
c0
r -atoms has polynomial size, one can derive a PSPACE-

decision procedure (provided that the T -constraint satisfiability problem is also

PSPACE) from the above Corollary. The crucial point is to avoid the explicit con-

struction of the Hintikka graph and explore it ‘on-the-fly’ by using well-known tech-

niques of the PLTL literature (see, e.g., Sistla and Clarke, 1985).

2.4 Decidability and Noetherian Compatible Data-Flow

Theories

Below, we focus on the ground satisfiability problem in the Noetherian compatible

case. Before developing our decision procedure, a preliminary notion is required.

Definition 2.4.1 (ϕ-Guessing). Let ϕ be a ground LTL(Σa,c)-sentence. A ϕ-

guessing is a Boolean assignment to literals of ϕ (we view a guessing as the set

{ℓ | ℓ is an atom occurring in ϕ and ℓ is assigned to true} ∪ {¬ℓ | ℓ is an atom

occurring in ϕ and ℓ is assigned to false}).

7In particular, for H = H ′, we see that an scs cannot consist of a single not self-accessible node.
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Algorithm 2 The satisfiability procedure for the Noetherian compatible case

Require: ϕ ground LTL(Σa,c)-sentence
1: procedure NSat(ϕ)
2: for all ϕ-compatible sets of ϕ-guessings G(ϕ) do
3: B ← ∅
4: repeat
5: B′ ← B
6: for all Gi ∈ G(ϕ) do
7: Bi ← Res

c
T (Gi ∪ B)

8: end for
9: B ←

⋃

i Bi
10: until Dp-t(B′ ∧ ¬B) = “unsatisfiable”
11: if Dp-t(B) = “satisfiable” then
12: return “satisfiable”
13: end if
14: end for
15: return “unsatisfiable”
16: end procedure

We say that a (non-empty) set of ϕ-guessings G(ϕ) := {G1, . . . , Gk} is ϕ-compat-

ible if and only if [[ϕ ∧�
∨k
i=1Gi ]] is PLTL-satisfiable.

Let T = 〈Σ, T,Σr, a, c〉 be a Noetherian compatible data-flow theory. The pro-

cedure NSat (cf. Algorithm 2) takes a ground LTL(Σa,c)-sentence ϕ as input and

returns “satisfiable” if there is an appropriate LTL(Σa,c)-structure M for T such

thatM |= ϕ; otherwise, it returns “unsatisfiable”. The procedure relies on a decision

procedure for the PLTL-satisfiability problem in order to recognize the ϕ-compatible

sets of ϕ-guessings (cf. the outer loop of NSat). Moreover, Dp-t is a decision pro-

cedure for the satisfiability problem of arbitrary Boolean combinations of atoms of

the theory T (i.e., it is capable of checking the T -satisfiability of sets of ground Σa,c-

clauses and not only of ground Σa,c-literals). Notice that Dp-t can be implemented

by Satisfiability Modulo Theories solvers (see, e.g., Nieuwenhuis et al., 2006 or the

survey in Ranise and Tinelli, 2006). Finally, Res
c
T is the T -residue enumerator for

Tr w.r.t. c.

In the outer loop of NSat, all the possible ϕ-compatible sets of ϕ-guessings are

enumerated. Let G(ϕ) := {G1, . . . , Gn} be the current set of ϕ-guessings. The local

variable B is initialized to the empty set (line 3) and then updated in the inner

loop (lines 4-10) as follows: the Tr-bases Bi for Gi ∪ B w.r.t. c are computed (for

i = 1, . . . , n), and the new value of B is set to
⋃

i Bi (line 5 saves in B′ the old value of
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B). The inner loop is iterated until B is logically equivalent to B′ modulo T . At this

point, if B is T -consistent, the procedure stops and returns “satisfiable”; otherwise

it tries another ϕ-compatible set of ϕ-guessings. If for all ϕ-compatible sets of ϕ-

guessings the B’s returned after the execution of the inner loop are T -inconsistent,

the procedure returns “unsatisfiable”.

Indeed, the termination of NSat is a consequence of the Noetherianity of the

underlying theory of T by using the fact that every infinite ascending chain of sets of

positive ground Σ
c
r-clauses is eventually constant for logical consequence; formally,

is stated by the following

Lemma 2.4.2. The procedure NSat always terminates.

Proof. Since the number of literals occurring in ϕ is finite, there is only a finite

number of ϕ-guessings, and thus there is a finite number of sets of ϕ-guessings G(ϕ).

So, it remains to prove that the inner loop of lines 4-10 of Algorithm 2 terminates;

to this aim we recall the fact (proved in Lemma 1.2.7) that every infinite ascending

chain of sets of positive ground Σ
c
r-clauses is eventually constant for logical conse-

quence w.r.t. a Noetherian theory Tr. The test on line 10 eventually have to succeed

by the following reason: if we let B0,B1,B2, . . . be the values of the local variable

B after each execution of the loop, we have that Tr ∪ B
i+1 |= Bi, for each i, by

Definition 1.2.4(ii). Thus, if we let Di :=
⋃

j≤i Bj, then the sequence

D1,D2,D3, . . .

is increasing and hence eventually constant modulo Tr ⊆ T , which means that also

the above mentioned test eventually succeeds.

The following two lemmas state the correctness of the procedure NSat.

Lemma 2.4.3 (Soundness). Let T = 〈Σ, T,Σr, a, c〉 be a Noetherian compatible

data-flow theory and ϕ be a ground LTL(Σa,c)-sentence. If NSat(ϕ) returns “satis-

fiable”, then there is an LTL(Σa,c)-structureM appropriate for T such thatM |= ϕ.

Proof. If NSat(ϕ) returns “satisfiable”, then there exists a (non-empty) set of ϕ-

guessings G(ϕ) := {G1, . . . , Gn} that are ϕ-compatible, i.e. such that [[ϕ∧�(
∨

iGi) ]]

is satisfiable (as usual, with a little abuse of notation, we confuse the set Gi with

the conjunction of the literals occurring in it). NSat(ϕ) will produce the list of sets
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of positive ground Σ
c
r-clauses

B0
1, . . . ,B

0
n,B

1
1 , . . . ,B

1
n, . . . ,B

h
1 , . . . ,B

h
n,

such that:

– B0, . . . ,Bh,Bh+1 are the values of the local variable B in the iterations of the

inner loop (we have B0 = ∅,B1 =
⋃

i B
0
i , . . . ,B

h+1 =
⋃

i B
h
i );

– for j = 0, . . . , h and for i = 1, . . . , n, the set Bji is a Tr-basis for Gi ∪ B
j w.r.t.

c,

– Bh+1 is T -consistent and logically equivalent to Bh modulo T .

Let B⋆ := {C | T ∪ Bh |= C and C is a positive ground Σ
c
r-clause}; notice that B⋆

does not contain the empty clause, moreover we claim that for every positive ground

Σ
c
r-clause C and for each i ∈ {1, . . . , n}, we have

T ∪Gi ∪ B
⋆ |= C ⇒ C ∈ B⋆. (2.3)

In fact, if T ∪ Gi ∪ B
⋆ |= C, then T ∪ Gi ∪ B

h |= C and so, by Definition 1.2.4(ii)

Tr ∪ B
h
i |= C; but then Tr ∪ B

h+1 |= C, meaning that T ∪ Bh |= C (because

Bh+1 is logically equivalent to Bh) and finally C ∈ B⋆ by the definition of the

latter. Let V := V0 → V1 → · · · → Vn → . . . be the infinite sequence of Boolean

assignments that is a PLTL model for [[ϕ ∧�(
∨

iGi) ]]. Let us consider the infinite

sequence {G′
n}n∈N of guessings such that G′

n := Gi and V |=n [[Gi ]] (this is well-

set since for every n ≥ 0 there exists only one Gi such that V |=n [[Gi ]]). By

(2.3) and by Lemma 1.3.9,8 we obtain an infinite sequenceM0, . . . ,Mi, . . . of Σa,c-

structures such that (i) they all have the same support M and Mi|Σ
c
r

= Mj |Σ
c
r

(i, j ∈ N); (ii) Mi |= T ∪ G′
i. These Mi consequently form an LTL(Σa,c)-structure

M := {Mi}i∈N that, by construction, for every atom ℓ occurring in ϕ satisfies the

condition: M |=i ℓ iff V |=i [[ ℓ ]]. Applying Lemma 2.3.3 we have that M |=0 ϕ,

because V |=0 [[ϕ ]], thusM |= ϕ obtains.

8Lemma 1.3.9 is used with I := N, and Ti := T , but symbols from Σ \Σr are disjointly renamed
when building the signature Σi for the ith copy of T (the same observation applies also to the flexible
constants a). In this way, a model of

S

i Ti is the same thing as a sequence of models {M′
n}n∈N of

T whose Σ
c
r-reducts coincide.
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Lemma 2.4.4 (Completeness). Let T = 〈Σ, T,Σr, a, c〉 be a Noetherian compatible

data-flow theory and ϕ be a ground LTL(Σa,c)-sentence. If there is an LTL(Σa,c)-

structure M appropriate for T such that M |= ϕ, then NSat(ϕ) returns “satisfi-

able”.

Proof. Let M = {Mn = (M,In)}n∈N be an LTL(Σa,c)-structure appropriate for T

such thatM |= ϕ. Let us consider the set of ϕ-guessings G(ϕ) := {G1, . . . Gk} defined

as follows: Gi ∈ G(ϕ) iff there exists an n such that M |=n Gi. It is easy to verify

that G(ϕ) is ϕ-compatible, i.e. that [[ϕ ∧ �(
∨

iGi) ]] is satisfiable (here Gi ∈ G(ϕ)).

In fact, the PLTL structure V that satisfies the condition V |=n [[ ℓ ]] iffM |=n ℓ for

every atom ℓ occurring in ϕ is a model for [[ϕ ∧�(
∨

iGi) ]] by Lemma 2.3.3.

When examining the set of ϕ-guessings G(ϕ), the procedure Dp-ltl produces a

(finite, by Lemma 2.4.2) list of sets of positive ground Σ
c
r-clauses

B0
1, . . . ,B

0
k,B

1
1 , . . . ,B

1
k, . . . ,B

h
1 , . . . ,B

h
k ,

such that:

– B0, . . . ,Bh,Bh+1 are the values of the local variable B in the iterations of the

inner loop (we have B0 = ∅,B1 =
⋃

i B
0
i , . . . ,B

h+1 =
⋃

i B
h
i );

– for j = 0, . . . , h and for i = 1, . . . , k, the set Bji is a Tr-basis for Gi ∪ B
j w.r.t.

c;

– Bh+1 is logically equivalent to Bh modulo T .

We need to show that Bh is T -consistent. To this aim it is sufficient to observe (by

induction on j ≤ h) that the a Σ
c
r-clause belonging to Bj is true in M0 (in fact in

all the Mn, because the symbols of Σ
c
r are rigidly interpreted): this is obvious for

j = 0 and for j > 0 it is a direct consequence of the fact that every Gi is true in

some Mn, by induction hypothesis and Definition 1.2.4(i).

The lemmas above yield our main decidability result.

Theorem 2.4.5. The ground satisfiability problem for Noetherian compatible data-

flow theories is decidable.

The theories considered in the previous section (especially, those in Section 1.5)

satisfy the hypothesis of the theorem above.
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2.5 Extensions to Abstract Temporal Logics

By considering the proof of the correctness of NSat, it becomes evident that only

very few of the characteristic properties of LTL are used. It turns out that a simple

generalization of NSat can be used to decide satisfiability problems of “temporal-

ized” extensions of Noetherian theories whose flow of time is not linear, for example

branching as in CTL.

In order to formalize the observation above, we regard modal/temporal operators

as functions operating on powerset Boolean algebras. In this way, logics for various

flows of time, such as CTL, Propositional Dynamic Logic (PDL), and the µ-calculus

fall within the scope of our result (see Baader et al., 2002 for a similar approach).

Definition 2.5.1. An abstract temporal signature9 I is a purely functional signature

extending the signature BA of Boolean algebras.10 An abstract temporal logic L is a

class of I-structures, whose Boolean reducts are powerset Boolean algebras. Given an

I-term t, deciding whether t 6= 0 is satisfied in some member of L is the satisfiability

problem for L. Given I-terms t, u, deciding whether u = 1 & t 6= 0 is satisfied in

some member of L is the relativized satisfiability problem for L.

In many cases (such as the one of LTL, CTL, PDL, and µ-calculus), it is possible

to reduce the relativized satisfiability problem to that of satisfiability (by using

the so-called “master modality”); however, there are logics for which the latter is

decidable whereas the former is undecidable (see Gabbay et al., 2003).

Definition 2.5.2 (I(Σa)-sentence). Given a signature Σ, a (finite or infinite) set of

free constants a, and an abstract temporal signature I, the set of I(Σa)-sentences

is inductively defined as follows: (a) if ϕ is a first-order Σa-sentence, then ϕ is an

I(Σa)-sentence, (b) if ϕ1, ϕ2 are I(Σa)-sentences, so are ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2,¬ϕ1, and

(c) if ψ1, . . . , ψn are I(Σa)-sentences and O ∈ I \BA has arity n, then O(ψ1, . . . , ψn)

is a I(Σa)-sentence.

When I is LTL, I(Σa,c)-sentences coincide with LTL(Σa,c)-sentences (cf. Def-

inition 2.1.1). We defined an abstract temporal logic L (based on I) as a class

9From the modal/temporal literature viewpoint, the adjective “intensional” might be preferable
to “abstract temporal”. We have chosen the latter, in order to emphasize that our results are
deemed as significant for a class of logics whose modalities concern flows of time.

10This signature contains two binary function symbols for meet and join, a unary function sym-
bol for complement, and two constants for zero and one (the latter are denoted with 0 and 1,
respectively).
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of I-structures based on powerset Boolean algebras: such structures (also called

I-frames) will be denoted with F = (℘(F ), {OF}O∈I\BA).

Definition 2.5.3. Let a signature Σ, a set a of free constants, and an abstract

temporal signature I be given; an I(Σa)-structure (or simply a structure) is a pair

formed by an I-frame F = (℘(F ), {OF}O∈I\BA) and a collection M = {Mn =

(M,In)}n∈F of Σa-structures (all based on the same domain).

An I(Σa)-sentence ϕ is true in the I(Σa)-structure (F ,M) at t ∈ F (noted

F ,M |=t ϕ) iff the following holds: (a) if ϕ is a first-order sentence, then F ,M |=t ϕ

holds iff Mt |= ϕ and (b) if the main operator of ϕ is a Boolean connective, truth

of ϕ is defined in a truth-table manner; (c) if ϕ is of the kind O(ψ1, . . . , ψn), then

F ,M |=t ϕ holds iff t ∈ OF ({u | F ,M |=u ψ1}, . . . , {u | F ,M |=u ψn}).

If a data-flow theory T is given, we say that an I(Σa)-structure is appropriate

for T iff it satisfies the requirements of Definition 2.1.5. The (ground) satisfiability

problem for an abstract temporal logic L (based on I) and for a data-flow theory

T is now the following: given a (ground) I(Σa)-sentence ϕ, decide whether there

is a I(Σa)-structure (F ,M) appropriate for T , such that F ∈ L and such that

F ,M |=t ϕ holds for some t.

Theorem 2.5.4. The ground satisfiability problem for T and L is decidable if (i)

T is Noetherian compatible and (ii) the relativized satisfiability problem for L is

decidable.

When I is LTL, this result simplifies to Theorem 2.4.5. To prove Theorem 2.5.4,

it is possible to re-use NSat (cf. Algorithm 2) almost ‘off-the-shelf’, by preliminarily

adapting the definition of PLTL-abstraction function [[ · ]] (cf. Definition 2.3.2) to L

in the following (obvious) way.

Definition 2.5.5 (I-Abstraction). Given a signature Σa and an abstract temporal

signature I containing a set of constants K (of the same cardinality as the set of

ground Σa-atoms), let [[ · ]] be a bijection from the set of ground Σa-atoms into K.

By translating Boolean and temporal operators into the appropriate functions of I,

the map is inductively extended to a bijective map (also called [[ · ]]) from the set of

ground I(Σa)-sentences onto the set of I-terms.

It turns out that only the compatibility of guessings should be changed: a finite

set of ϕ-guessings G(ϕ) := {G1, . . . , Gk} is ϕ-compatible if and only if the relativized



2.5. Extensions to Abstract Temporal Logics 67

satisfiability problem

[[ϕ ]] 6= 0 & [[
k∨

i=1

Gi ]] = 1

is satisfiable in L.

The following lemmas prove Theorem 2.5.4.

Lemma 2.5.6 (Soundness). Let T = 〈Σ, T,Σr, a, c〉 be a Noetherian compatible

data-flow theory, L be an abstract temporal logic and ϕ be a ground I(Σa,c)-sentence.

If NSat(ϕ) returns “satisfiable”, then there is an I(Σa,c)-structure (F ,M) appro-

priate for T such that F ∈ L and F ,M |=t ϕ holds for some t.

Proof. If NSat(ϕ) returns “satisfiable”, then there is a (non-empty) set of ϕ-guess-

ings G(ϕ) := {G1, . . . , Gn} that are ϕ-compatible, i.e. such that the relativized

satisfiability problem [[ϕ ]] 6= 0 & [[
∨k
i=1Gi ]] = 1 is satisfiable in the abstract tempo-

ral logic L. The proof runs as in the case of Lemma 2.4.3, with the exception that we

consider (instead of a PLTL model) an I-frame F = (℘(F ), {OF}O∈I\BA) for L that

satisfies [[ϕ ]] 6= 0 and [[
∨k
i=1Gi ]] = 1. Let us consider the set {G′

n}n∈F of guessings

such that G′
n := Gi and n ∈ [[Gi ]]

F (this is well-set since for every n ∈ F there

exists only one Gi such that n belongs to [[Gi ]]
F ). By Lemma 1.3.9,11 we obtain

a set M := {Mn = (M,In)}n∈F of Σa,c-structures such that (i) Mi|Σ
c
r

= Mj |Σ
c
r

(i, j ∈ F ) and (ii) Mi |= T ∪G′
i (i ∈ F ).

(F ,M) is an I(Σa,c)-structure appropriate for T that, by construction, for ev-

ery atom ℓ occurring in ϕ satisfies the condition: M |=n ℓ iff i ∈ [[ ℓ ]]F . We want

to show that F ,M |=n ϕ iff n ∈ [[ϕ ]]F (the thesis follows since there exists at

least an element n ∈ F such that n ∈ [[ϕ ]]F , because F satisfies [[ϕ ]] 6= 0). This

can be done by induction on the complexity of the subformulae ψ occurring in

ϕ. The condition is obvious if ψ is an atom, and follows directly from the in-

duction hypothesis if it is of the kind ψ1 ∧ ψ2, ψ1 ∨ ψ2, ¬ψ. Suppose now ψ is

of the kind O(ψ1, . . . , ψn), we want to show that F ,M |=i O(ψ1, . . . , ψn) iff i ∈

[[O(ψ1, . . . , ψn) ]]F . The ‘only if’ case is argued as follows: F ,M |=i O(ψ1, . . . , ψn)

implies i ∈ OF ({u | F ,M |=u ψ1}, . . . , {u | F ,M |=u ψn}), thus, by induction

hypothesis, i ∈ OF ([[ψ1 ]]F , . . . , [[ψn ]]F ), hence i ∈
(
O([[ψ1 ]], . . . , [[ψn ]])

)F
, and fi-

nally, by Definition 2.5.5 of I-Abstraction, i ∈ [[O(ψ1, . . . , ψn) ]]F . The ‘if’ case is

11Lemma 1.3.9 is used with I := F , and Ti := T , but symbols from Σ \Σr are disjointly renamed
when building the signature Σi for the ith copy of T (the same observation applies also to the
flexible constants a). In this way, a model of

S

i Ti is the same thing as a set of models {M′
n}n∈F

of T whose Σ
c
r-reducts coincide.
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analogous.

Lemma 2.5.7 (Completeness). Let T = 〈Σ, T,Σr, a, c〉 be a Noetherian compatible

data-flow theory, L be an abstract temporal logic and ϕ be a ground I(Σa,c)-sentence.

If there is an I(Σa,c)-structure (F ,M) appropriate for T such that F ∈ L and such

that F ,M |=t ϕ holds for some t, then NSat(ϕ) returns “satisfiable”.

Proof. The proof can be easily obtained from the proof of Lemma 2.4.4: indeed,

using the new definition of compatible guessing, observe that the condition stating

that, for every atom ℓ occurring in ϕ, n ∈ [[ ℓ ]]F iff F ,M |=n ℓ still holds; this

implies, by the induction argument used in the proof of the previous lemma, that F

satisfies [[ϕ ]] 6= 0 and [[
∨

iGi ]] = 1.

While Theorem 2.4.5 is relevant to augment the degree of mechanization of

deductive approaches for the verification of reactive systems based on LTL (e.g., the

one put-forward in Manna and Pnueli, 1995), one may wonder about the relevance

of its generalization, i.e. Theorem 2.5.4. To see its usefulness, consider Temporal

Logic of Actions (TLA, see Lamport, 1994). For such a specification formalism, it is

difficult to reuse techniques and tools for (classic) temporal/modal logic since TLA

features some non-standard characteristics which are quite useful for practitioners

(see Merz, 2003 for an extensive discussion on this and related issues). On the

other hand, deductive verification of TLA specifications can be supported by proof

assistants (see, e.g., Merz, 1999). While applying the inference rules of TLA, it has

been observed in Merz (2003) that some of the resulting sub-goals may belong to a

fragment of TLA which is equivalent to the modal logic S4.2 (see, e.g., Blackburn

et al., 2002). Now, the relativized satisfiability problem for this logic is decidable (see

again Blackburn et al., 2002) so that NSat can be used to automatically discharge

some of the sub-goals, whenever the data-flow theory formalizing the data structure

manipulated by the system modelled in TLA is Noetherian compatible.

2.6 Conclusions and Related Work

In this chapter, we have considered first-order LTL. We have studied the decidabil-

ity of the “temporalized” satisfiability problem for quantifier-free formulae modulo

a background first-order theory axiomatizing the extensional part of the language.

The key technique to obtain our results is a reduction to constraint satisfiability

problems in unions of first-order theories over non-disjoint signature: this reduction
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allowed us to derive undecidability results, but also decidability results, through

suitable adaptations of extensions of the Nelson-Oppen schema (see, e.g., Bonacina

et al., 2006; Ghilardi, 2004). In case a local finiteness requirement of the theory over

the rigid signature is fulfilled, we have reduced the satisfiability problem for “tem-

poralized” first-order theories to satisfiability in propositional LTL. When Noethe-

rianity comes into play, instead, the combination turns out to be more complex and

needs an exchange mechanism which relies on the use of residue enumerators. Fi-

nally, the decidability result has been extended to any modal/temporal logic whose

propositional relativized satisfiability problem is decidable.

The undecidability of quantified modal logic over a discrete flow was discovered

by D. Scott already in the sixties. Recent works isolated quite interesting fragments

of quantified LTL which are computationally better behaved (see Gabbay et al.,

2003 for a survey). In this chapter, we have taken a similar approach to the one

in Manna and Pnueli (1995) by forbidding the interplay between quantifiers and

temporal operators and by enriching the extensional part of the language so to

be able to model infinite data structures manipulated by systems. An approach

similar to ours was already taken in the seminal paper Plaisted (1986), where the

author established a decidability result when the quantifier-free fragment of T is

decidable and the flexible symbols are considered as free symbols by the theory T .

By using recent techniques and results from the combination literature, we were able

to attack the problem in its full generality and derive both the undecidability in the

unrestricted case and the decidability under the ‘combinability’ hypotheses for T of

Ghilardi (2004).
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Chapter 3

Model Checking

Although it is well-known that full first-order temporal logics are highly undecidable,

in Manna and Pnueli (1995) the authors have shown that a combination of first-

order logic and LTL is needed in order to precisely state verification problems for

the class of reactive systems. In that kind of combined formalism, the role of first-

order theories is to describe (possibly infinite) data structures used by the system,

whereas LTL is used to specify the behavior of the system during the flow of time.

It turns out that this combined formalism is expressive enough to write concise and

abstract specifications. In this context the problem of identifying useful fragments

amenable of automated analysis immediately arises.

In this chapter, after proving an undecidability result, we concentrate on the

problem of deriving sufficient condition for guaranteeing the decidability of the model

checking problem. To this aim, we rely on the framework introduced in the previous

chapter enriched with the capability of expressing transition system through LTL-

system specification.

3.1 LTL-System Specifications and the Model Checking

Problem

In order to introduce model checking problems, we need some preliminary notions.

Definition 3.1.1. Given two signatures Σr and Σ such that Σr ⊆ Σ, we define the

one-step signature as follows:

Σ ⊕
Σr

Σ := ((Σ \ Σr) ⊎ (Σ \ Σr)) ∪ Σr,

71
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where ⊎ denotes disjoint union.

In order to build the one-step signature Σ⊕Σr Σ, we first consider two copies

of the symbols in Σ \ Σr; the two copies of s ∈ Σ \ Σr are denoted by s0 and s1,

respectively. Notice that the symbols in Σr are not renamed. Also, arities in the

one-step signature Σ⊕Σr Σ are defined in the obvious way: the arities of the symbols

in Σr are unchanged and if n is the arity of s ∈ Σ \ Σr, then n is the arity of both

s0 and s1. The one-step signature Σ⊕Σr Σ will be also written as
⊕2

Σr
Σ; similarly,

we can define the n-step signature
⊕n+1

Σr
Σ for n > 1 (our notation for the copies of

(Σ \Σr)-symbols extends in the obvious way, that is we denote by s0, s1, . . . , sn the

n+ 1 copies of s).

Given a data-flow theory T = 〈Σ, T,Σr, a, c〉, the one-step signature Σa,c⊕Σ
c
r
Σa,c

is appropriate to express constraints about the dynamic behavior of a system dur-

ing one time unit. In fact, the transition relation of a system must be able to

simultaneously refer to the structures representing the state of the system in two

consecutive time instants. In this respect, non-rigid symbols are duplicated whereas

rigid symbols are left unchanged.

We now define the concepts of one-step structure and one-step theory, which are

the semantic counterparts of the one-step signature introduced above (cf. Defini-

tion 3.1.1).

Definition 3.1.2. Given two signatures Σr and Σ such that Σr ⊆ Σ, two Σ-

structures M0 = 〈M,I0〉 and M1 = 〈M,I1〉 whose Σr-reducts are the same,1 the

one-step (Σ⊕Σr Σ)-structure

M0 ⊕
Σr

M1 := 〈M,I0 ⊕
Σr

I1〉

is defined as follows:

– for each function or predicate symbol s ∈ Σ \ Σr, we have (I0⊕Σr I1)(s
0) :=

I0(s) and (I0⊕Σr I1)(s
1) := I1(s);

– for each function or predicate symbol s ∈ Σr, we have (I0⊕Σr I1)(s) := I0(s).

If ϕ is a Σ-formula, the (Σ⊕Σr Σ)-formulae ϕ0, ϕ1 are obtained from ϕ by re-

placing each symbol s ∈ Σ \ Σr by s0 and s1, respectively. The one-step theory is

nothing but a combination of a theory T with a partially renamed copy of itself.

1Recall from Section 1.1 that this means that I0(s) = I1(s) for all s ∈ Σr.
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Definition 3.1.3. Given two signatures Σr and Σ such that Σr ⊆ Σ, the theory

T ⊕Σr T is defined by {ϕ0 ∧ ϕ1 | ϕ ∈ T}.

We will write
⊕2

Σr
T instead of T ⊕Σr T ; the n-step theories

⊕n+1
Σr

T (for n > 1)

are similarly defined.

Let now T = 〈Σ, T,Σr, a, c〉 be a data-flow theory whose parameters and whose

system variables are finite. A transition relation for the data-flow theory T is a

(Σa,c⊕Σ
c
r
Σa,c)-sentence δ: we usually write such formula as δ(a0, a1) to emphasize

that it contains the two copies of the system variables a (on the other hand, the

system parameters c that are not duplicated will never be displayed). Examples of

transition relations are the tautological transition δ⊤ := ⊤ and the idle transition:

δI :=
∧

a

(a0 = a1) ∧
∧

P

∀x(P 0(x)↔ P 1(x)) ∧
∧

f

∀x(f0(x) = f1(x)),

where a ranges over free constants in a, P over predicate symbols in Σ \ Σr, and f

over function symbols in Σ \Σr.

An initial state description for a data-flow theory T = 〈Σ, T,Σr, a, c〉 – with

finitely many system variables and parameters – is simply a Σa,c-sentence ι(a) (as it

was the case for transition relations, the system parameters c will not be displayed

also for state descriptions).

Definition 3.1.4 (LTL-System Specification and Model Checking). An LTL-system

specification is a data-flow theory T = 〈Σ, T,Σr, a, c〉 (having finitely many sys-

tem variables and system parameters) endowed with a transition relation δ(a0, a1)

and with an initial state description ι(a). An LTL(Σa,c)-structure M = {Mn =

(M,In)}n∈N is a run for such an LTL-system specification iff it is appropriate for T

and moreover it obeys the transition δ and the initial state description ι, meaning

that:

(i) Mn⊕Σ
c
r
Mn+1 |= δ(a0, a1), for every n ≥ 0;

(ii) M0 |= ι(a).

The model checking problem for the LTL-system specification (T , δ, ι) is the follow-

ing: given an LTL(Σa,c)-sentence ϕ, decide whether there is a run M for (T , δ, ι)

such that M |= ϕ.2 The ground model checking problem for (T , δ, ι) is similarly

introduced, but ϕ is assumed to be ground.

2Notice that usually the model checking problem is taken to be the complement of our model
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Roughly speaking, the satisfiability problem for data-flow theories (cf. Defini-

tion 2.1.5) is equivalent to the model checking problem for LTL-system specifications

endowed with tautological transition and tautological initial state description (there

is a little difference, however, due to the fact that the satisfiability problem is relative

to data-flow theories having possibly infinitely many system parameters and vari-

ables, whereas LTL-system specifications must have finitely many system variables

and parameters).

An important subclass of model checking problems is the following: the (syn-

tactic) safety model checking problem is the model checking problem for formulae of

the form

♦υ,

where υ is a Σa,c-sentence. Since υ is meant to describe the set of unsafe states, we

say that the LTL-system specification (T , δ, ι) is safe for υ iff the model checking

problem for ♦υ has a negative solution. This implies that �¬υ is true for all runs

of (T , δ, ι).

3.1.1 The Seriality Property

In the literature about model checking (especially, for finite-state systems), it is

usually assumed the seriality of the transition relation, i.e. that every state of the

system must have at least one successor state (see, e.g., Clarke et al., 1999 for

more details). Unfortunately, it is difficult to find an effective formulation of such

a requirement in our framework because the states of the system (T , δ, ι) are the

models of the (first-order) theory underlying T . Below, we give a non-effective

formulation for seriality in our framework. Fortunately, as we shall see, there exist

simple and effective methods to ensure it.

Definition 3.1.5. An LTL-system specification (T , δ, ι), based on the data-flow

theory T = 〈Σ, T,Σr, a, c〉, is said to be serial iff for every Σa,c-structure M0 =

(M,I0) which is a model of T , there is another Σa,c-structureM1 = (M,I1) (still a

model of T ) such that (M1)|Σc
r

= (M2)|Σc
r

and M0⊕Σ
c
r
M1 |= δ(a0, a1).

In order to be able to ensure the above requirement for concrete situations, the

following observations are useful:

checking problem, i.e. it is taken to be the problem of deciding whether a given sentence is true
in all runs. As far as we are concerned with decidability/undecidability issues, the difference is
immaterial (for complexity questions, one must take the complementary classes). Our choice is
motivated by the need of having a homogeneous terminology with satisfiability problems.
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(i) if the transition relation δ consists of the conjunction of (possibly guarded)

assignments of the form P ∧ a1 = t0(a0) where P is the condition under which

the assignment is executed, then δ is serial (this is the case, for instance, of

the water level controller example discussed in Section 3.4);

(ii) δ is serial when it is implied by the idle transition, i.e. in case T ⊕Σr T |= δI → δ

(this is equivalent to T |= δ♯, where δ♯ is obtained from δ by replacing the copies

s1, s2 of every flexible symbol by s);3

(iii) every transition δ can be ‘adjusted’ in order to make it serial; to this end, it is

sufficient to add a fresh 0-ary relational symbol E (standing for ‘error’) to Σ

and replace δ by

δE := (¬E0 ∧ δ ∧ ¬E1) ∨ (¬E0 ∧E1) ∨ (E0 ∧ E1).

3.1.2 Some Classes of LTL-Systems and Further Assumptions

In Subsection 2.1.2 of Chapter 2, we have introduced three different classes of data-

flow theories of increasing expressiveness so to study the satisfiability problem for

data-flow theories. Here, we introduce the corresponding classes of LTL-systems so

to study the decidability of the safety model checking problem.

Definition 3.1.6. An LTL-system specification based on a data-flow theory T =

〈Σ, T,Σr, a, c〉 is said to be finite state iff T is totally rigid and T is an enumerated

datatype theory.

Finite state LTL-system specifications are investigated by traditional symbolic

model checking literature (see Clarke et al., 1999) and are efficiently handled by

state-of-the-art tools like NuSMV (see Cimatti et al., 2002).

Definition 3.1.7. An LTL-system specification based on a data-flow theory T =

〈Σ, T,Σr, a, c〉 is said to be locally finite compatible iff there is a Σr-universal and

effectively locally finite theory Tr such that T is Tr-compatible.

As for compatible theories, from our discussion in Section 1.2 in Chapter 1, it

follows that an LTL-system based on totally flexible data-flow theory is locally finite

compatible in case its underlying theory is stably infinite.

3If the constraint satisfiability problem of T is decidable and if δ is ground (as it is the case for
some of the examples considered in this chapter), the condition T |= δ♯ can be effectively checked.
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Definition 3.1.8. An LTL-system specification based on a data-flow theory T =

〈Σ, T,Σr, a, c〉 is said to be Noetherian compatible iff there is a Σr-universal theory

Tr such that T is an effectively Noetherian and Tr-compatible extension of Tr.

Since we are interested in positive results for safety model checking problems, we

need to make some restrictions; we first of all assume the following (which completes

Assumption 2.1.9 from Subsection 2.1.2 in Chapter 2):

Assumption 3.1.9. For any LTL-system specification (T , δ, ι) (considered in the

rest of this chapter) we assume that:

(i) the underlying theory of T has decidable constraint satisfiability problem;

(ii) the transition relation δ and the initial state description ι are ground sentences;

(iii) (T , δ, ι) is serial.

3.2 Undecidability and Noetherian Data-Flow Theories

Even under the above assumption, the ground model checking problem for an LTL-

system specification based on a totally rigid data-flow theory is undecidable: this

is a standard result that can be obtained through a simple reduction to the (un-

decidable) reachability problem of Minsky machines (see Ebbinghaus et al., 1994;

Minsky, 1961). We give details below for the sake of completeness.

A two registers Minsky machine is a finite set P of instructions (also called a

program) for manipulating configurations seen as triples (s,m, n) of natural num-

bers, where s represents the machine state and m,n the contents of the two registers.

There are four possible kinds of instructions, inducing transformations on the con-

figurations as explained in Table 3.1.

A P-transformation is a transformation induced by an instruction of P on a

certain configuration. For a Minsky machine P, we write (s,m, n)→⋆
P

(s′,m′, n′) to

say that it is possible to reach configuration (s′,m′, n′) from (s,m, n) by applying

finitely many P-transformations. Given a Minsky machine P and an initial config-

uration (s0,m0, n0), the problem of checking whether a configuration (s′,m′, n′) is

reachable from (s0,m0, n0) (i.e., if (s0,m0, n0)→
⋆
P

(s′,m′, n′) holds or not) is called

the (second) reachability (configuration) problem. It is well-known (see Chagrov and

Zakharyaschev, 1997) that there exists a (two-register) Minsky machine P and a

configuration (s0,m0, n0) such that the second reachability configuration problem is

undecidable.
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N. Instruction Transformation

I s→ (t, 1, 0) (s,m, n)→ (t,m+ 1, n)

II s→ (t, 0, 1) (s,m, n)→ (t,m, n+ 1)

III s→ (t,−1, 0)[(t′, 0, 0)] if m 6= 0 then (s,m, n)→ (t,m− 1, n)
else (s,m, n)→ (t′,m, n)

IV s→ (t, 0,−1)[(t′, 0, 0)] if n 6= 0 then (s,m, n)→ (t,m, n − 1)
else (s,m, n)→ (t′,m, n)

Table 3.1: Instructions and related transformations for (two-registers) Minsky Ma-
chines

Theorem 3.2.1. There exists a totally rigid and Noetherian compatible LTL-system

specification (T , δ, ι), whose ground safety model checking problem is undecidable.

Proof. The proof consists of two steps. First, we need to define a totally rigid data-

flow theory T which is expressive enough to encode unbounded counters and which

satisfies our Assumption 3.1.9(i) above. Second, we must define the encoding of a

Minsky machine into an LTL-system specification based on T so that the second

reachability problem of such machine can be represented as a safety model checking

problem. This immediately gives the undecidability of the latter, as desired.

Let us consider the ΣC-theory TC , where

– ΣC consists of two unary function symbols s, p and a constant 0;

– TC contains all ΣC-sentences which are true in the structure (Z, s, p, 0) of the

Integers with zero, successor, and predecessor.4

Notice that TC is Noetherian, though not locally finite. Indeed, the Noetherianity of

TC can be argued from the following arguments: (i) the pure theory of equality over

the signature containing a unary function symbol is Noetherian (cf. Proposition 1.5.1

from Section 1.5 in Chapter 1); (ii) any extension (over a signature augmented of a

finite number of constant symbols) of a Noetherian theory remains Noetherian; (iii)

every ΣC-formula is TC -logically equivalent to a (ΣC \ {p})-formula).5 Moreover,

the constraint satisfiability problem of TC is decidable by quantifier elimination (it

is straightforward to adapt the algorithm for the naturals in Enderton, 1972). TC

4It is possible to use also the structure given by N, 0, successor, and predecessor (the latter is
turned into a total function by putting p(0) := 0).

5In particular, every chain of sets of ΣC -atoms is TC-equivalent to a chain of sets of (ΣC \ {p})-
atoms. Since this latter has to be eventually constant for logical consequence w.r.t. TC , so it is the
former.
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can be seen as a ‘minimal’ theory where to encode an unbounded counter as it is

required in order to express the instructions of the Minsky machines of Table 3.1

(below, we abbreviate s(· · · (s
︸ ︷︷ ︸

n times

(0) · · · )) with the numeral n).

We define the totally rigid data-flow theory T as follows: TC is underlying theory,

there are three system variables {a1, a2, a3}, and no parameters. Since T is totally

rigid, it is completely determined by its underlying theory, its systems variables,

its parameters, and there is no need to specify a rigid subsignature, because all

predicate and function symbols are rigid.

We are now in the position to define the encoding of a second reachability problem

for a Minsky machine into an LTL-system based on T : we do it for a Minsky machine

P and for a configuration (s0,m0, n0) such that P-reachability from (s0,m0, n0) is

undecidable.

The transition δ is the disjunction of the following ground sentences:

– for each P-instruction s→ (t, 1, 0) of the first kind, δ contains the disjunct

a0
1 = s ∧ a1

1 = t ∧ a1
2 = s(a0

2) ∧ a
1
3 = a0

3;

– for each P-instruction s→ (t, 0, 1) of the second kind, δ contains the disjunct

a0
1 = s ∧ a1

1 = t ∧ a1
2 = a0

2 ∧ a
1
3 = s(a0

3);

– for each P-instruction s→ (t,−1, 0)[(t′, 0, 0)] of the third kind, δ contains the

disjuncts

(
a0

2 6= 0 ∧ a0
1 = s ∧ a1

1 = t ∧ a1
2 = p(a0

2) ∧ a
1
3 = a0

3

)
∨

∨
(
a0

2 = 0 ∧ a0
1 = s ∧ a1

1 = t′ ∧ a1
2 = a0

2 ∧ a
1
3 = a0

3

)
;

– for each P-instruction s → (t, 0,−1)[(t′, 0, 0)] of the fourth kind, δ contains

the disjuncts

(
a0

3 6= 0 ∧ a0
1 = s ∧ a1

1 = t ∧ a1
2 = a0

2 ∧ a
1
3 = p(a0

3)
)
∨

∨
(
a0

3 = 0 ∧ a0
1 = s ∧ a1

1 = t′ ∧ a1
2 = a0

2 ∧ a
1
3 = a0

3);
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– finally, δ contains also the idle disjunct

a0
1 = a1

1 ∧ a
1
2 = a0

2 ∧ a
1
3 = a0

3

(this disjunct is added in order to make the transition serial).

Let ι be the ground sentence a1 = s0 ∧ a2 = m0 ∧ a3 = n0. We claim that, for

a given configurations (s′,m′, n′), we have that (s0,m0, n0) →
⋆
P

(s′,m′, n′) iff the

formula

♦(a1 = s′ ∧ a2 = m′ ∧ a3 = n′)

is satisfied in a run of (T , δ, ι). The ‘only if’ implication of the claim is trivial. For

the converse, suppose that there is a runM of (T , δ, ι) such that

M |=k a1 = s′ ∧ a2 = m′ ∧ a3 = n′

for some k ≥ 0. First, notice that one may freely assume that a non-idle disjunct of

δ is true in the ith transition step for 0 ≤ i ≤ k−1 (otherwise we can simply remove

that step and get a smaller k). Second, as the data-flow theory T is totally rigid,

only the interpretation of the system variables a1, a2, a3 can be different at each time

instant - the ΣC-reduct of the various Mi being always the same. Such a reduct

contains an (elementary) substructure which is isomorphic to the standard model

(Z, s, p, 0) of integers (this is the substructure whose support is the collection of the

interpretations of the numerals); moreover, as the system variables take values in the

positive subset of that substructure at the initial instant, it is impossible for them

to get values outside it for the whole run (to see this, just make an inspection to the

definition of the transition δ). This immediately yields (s0,m0, n0) →
⋆
P

(s′,m′, n′),

as desired.

3.3 Decidability and Locally Finite Data-Flow Theories

In order to be able to give decidability results for the (safety) model checking prob-

lem, we need to introduce the following preliminary definitions about one-step for-

mulae.

Definition 3.3.1. A ground (Σa,c⊕Σ
c
r
Σa,c)-sentence δ is said to be purely left

(purely right) iff for each symbol s ∈ Σ \ Σr, we have that s1 (s0, resp.) does
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not occur in δ. We say that δ is pure iff it is a Boolean combination of purely left

or purely right atoms.

Given a formula δ(a0, a1), it is always possible (see, e.g., Ghilardi, 2004) to obtain

an equisatisfiable formula δ̂(a0, a1, d0) which is pure by introducing “fresh” constants

that we call d0 (i.e., d0 ∩ (a0 ∪ a1) = ∅) to name “impure” subterms. Usually, δ̂ is

called the purification of δ. Let A1, . . . , Ak be the atoms occurring in δ̂(a0, a1, d0).

Definition 3.3.2 (δ̂-assignment). A δ̂-assignment is a conjunction B1 ∧ · · · ∧ Bk

(where Bi is either Ai or ¬Ai, for 1 ≤ i ≤ k), such that B1 ∧ · · · ∧ Bk → δ̂ is a

propositional tautology.

Since δ̂ is pure, we can represent a δ̂-assignment V in the form V l(a0, a1, d0) ∧

V r(a0, a1, d0), where V l is a purely left conjunction of literals and V r is a purely

right conjunction of literals.

3.3.1 Safety Model Checking

Fortunately, the safety model checking problem is decidable for locally finite com-

patible LTL-system specifications. In the rest of this section, let T = 〈Σ, T,Σr, a, c〉

be a locally finite compatible data-flow theory, (T , δ, ι) be an LTL-system specifi-

cation based on T , and υ(a) be a ground Σa,c-sentence. The related safety model

checking problem amounts to checking whether there exists a run M = {Mn}n∈N

for (T , δ, ι) such thatM |=n υ(a) for some n ≥ 0: if this is the case, we say that the

system is unsafe since there is a bad run of length n.

We can ignore bad runs of length n = 0, because the existence of such runs can be

preliminarily decided by checking the ground sentence ι(a)∧υ(a) for T -satisfiability.

So, for n ≥ 1, taking into account the seriality of the transition, a bad run of length

n+ 1 exists iff the ground (
⊕n+2

Σ
c
r

Σa,c)-sentence

ι0(a0) ∧ δ0,1(a0, a1) ∧ δ1,2(a1, a2) ∧ · · · ∧ δn,n+1(an, an+1) ∧ υn+1(an+1) (3.1)

is
⊕n+2

Σ
c
r
T -satisfiable, where ι0(a0) is obtained by replacing each flexible symbol

s ∈ Σ \ Σr with s0 in ι(a) (the system variables a are similarly renamed as a0);

δi,i+1(ai, ai+1) is obtained by replacing in δ(a0, a1) the copy s0 and s1 of each flex-

ible symbol s ∈ Σ \ Σr with si and si+1 respectively (the two copies a0, a1 of the

system variables a are similarly renamed as ai, ai+1); and υn+1(an+1) is obtained by

replacing each flexible symbol s ∈ Σ \ Σr with sn+1 in υ(a) (the system variables
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a are similarly renamed as an+1). For the sake of simplicity, we will write formula

(3.1) by omitting the superscripts of ι, δ, and υ (but we maintain those of the system

variables a).

Now, for a given n + 1, an iterated application of the main combination result

in Ghilardi (2004) and the fact that T0-compatibility is a modular property (see

again Ghilardi, 2004) yield the decidability of the satisfiability of formula (3.1).

Unfortunately, this is not sufficient to solve the model checking problem for LTL-

system specifications since the length of a run is not known apriori. To solve this

problem, instead of considering the transition relation δ we focus on its purification

δ̂ (cf. Section 3.3). By the fact that δ and δ̂ are equisatisfiable, a bad run of length

n+ 1 exists iff the ground sentence

ι(a0) ∧
n∧

i=0

(V l
i+1(a

i, ai+1, di) ∧ V r
i+1(a

i, ai+1, di)) ∧ υ(an+1) (3.2)

is
⊕n+2

Σr
T -satisfiable, where d0, d1, . . . , dn are n+ 1 copies of the fresh constants d0

and V1, . . . , Vn+1 range over the set of δ̂-assignments. Since Tr is locally finite, there

are finitely many ground Σ
c,a0,a1,d0

r -literals which are representative (modulo Tr-

equivalence) of all Σ
c,a0,a1,d0

r -literals. A guessing G(a0, a1, d0) (cf. Definition 2.3.4)

over such literals will be called a transition Σr-guessing .

Definition 3.3.3. The safety graph associated to the LTL-system specification

(T , δ, ι) based on the locally finite compatible data-flow theory T is the directed

graph defined as follows:

– the nodes are the pairs (V,G) where V is a δ̂-assignment and G is a transition

Σr-guessing;

– there is an edge (V,G)→ (W,H) iff the ground sentence

G(a0, a1, d0) ∧ V r(a0, a1, d0) ∧W l(a1, a2, d1) ∧H(a1, a2, d1) (3.3)

is T -satisfiable.

The initial nodes of the safety graph are the nodes (V,G) such that ι(a0) ∧

V l(a0, a1, d0) ∧G(a0, a1, d0) is T -satisfiable; the terminal nodes of the safety graph

are the nodes (V,G) such that V r(a0, a1, d0) ∧ υ(a1) ∧G(a0, a1, d0) is T -satisfiable.

In formula (3.3) we follow our convention of writing only the system variable

renamings (flexible symbols being renamed accordingly). More in detail: we make
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three copies s0, s1, s2 of every flexible symbol s ∈ Σ \ Σr. Both V r and W l might

contain in principle two copies s0, s1 of s: the two copies in V r keep their original

names, whereas the two copies in W l are renamed as s1, s2, respectively. However,

V r is a right formula (hence it does not contain s0) and W l is a left formula (hence

it does not contain s1): the moral of all this is that only the copy s1 of s occurs

after renaming, which means that (3.3) is after all just a plain Σa0,a1,a2,d0,d1-sentence

(thus, it makes sense to test it for T -satisfiability). Notice that the Skolem constants

d0 of V r are renamed as d1 in W l.

The decision procedure for safety model checking relies on the following fact.

Proposition 3.3.4. The system is unsafe iff either ι(a) ∧ υ(a) is T -satisfiable or

there is a path in the safety graph from an initial to a terminal node.

Proof. Recall from Subsection 3.3.1 that a bad run of length n + 1 exists iff the

ground sentence

ι(a0) ∧
n∧

i=0

(V l
i+1(a

i, ai+1, di) ∧ V r
i+1(a

i, ai+1, di)) ∧ υ(an+1) (3.2)

is (
⊕n+2

Σr
T )-satisfiable, where the Vi+1 range over the set of δ̂-assignments.

Preliminary to the main argument of the proof, which is based on interpolations,

let us better analyze the shape of the formula (3.2) with particular attention to

symbols occurring in the various literals. In formula (3.2), each symbol s ∈ Σ \ Σr

can occur in n + 2 copies s0, s1, . . . , sn+1 and the locations of these copies are the

following:

(i) s0 can only occur in ι(a0) ∧ V l
1 (a0, a1, d0);

(ii) si can only occur in V r
i (ai−1, ai, di−1) ∧ V l

i+1(a
i, ai+1, di), for i = 1, . . . , n;

(iii) sn+1 can only occur in V r
n+1(a

n, an+1, dn) ∧ υ(an+1).

Now, we are ready to develop the main argument of the proof. Suppose that

the system is unsafe. Then, either there is a bad run of length 0 or the formula

(3.2) is satisfiable in a model N of
⊕n+2

Σr
T for some n > 0. For i = 0, . . . , n,

let Gi+1(a
0, a1, d0) be the Σr-transition guessing realized by (ai, ai+1, di) in N (by

this, we mean the set of representative Σ
c,a0,a1,d0

r -literals ψ(a0, a1, d0) such that

N |= ψ(ai, ai+1, di)). With this choice for the Gi’s, the satisfiability of (3.2) in
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N guarantees the existence of the path

(V1, G1)→ (V2, G2)→ · · · → (Vn+1, Gn+1) (3.4)

from the initial node (V1, G1) to the terminal node (Vn+1, Gn+1) within the safety

graph.

Viceversa, suppose that there is a path such as (3.4) and that, by contradiction,

the system is safe. In particular, this means that the formula

ι(a0) ∧ V l
1 (a0, a1, d0) ∧ V r

1 (a0, a1, d0) ∧ · · ·

· · · ∧ V l
n+1(a

n, an+1, dn) ∧ V r
n+1(a

n, an+1, dn) ∧ υ(an+1)

is not (
⊕n+2

Σr
T )-satisfiable. If we apply the interpolation Lemma 1.3.10 to the T0-

compatible theories T and
⊕n+1

Σr
T (the hypotheses of Lemma 1.3.10 hold by the

modularity Lemma 1.3.11), we get a ground Σ
c,a0,a1,d0

r -sentence ψ1(a
0, a1, d0) such

that

T |= ι(a0) ∧ V l
1 (a0, a1, d0)→ ψ1(a

0, a1, d0) (3.5)

and such that

ψ1(a
0, a1, d0)∧V r

1 (a0, a1, d0)∧· · ·∧V l
n+1(a

n, an+1, dn)∧V r
n+1(a

n, an+1, dn)∧υ(an+1)

(3.6)

is not (
⊕n+1

Σr
T )-satisfiable. Since G1(a

0, a1, d0) is a transition Σr-guessing, G1 rep-

resents a maximal choice of representative Σ
a0,a1,d0

r -literals, hence we must have

either T |= G1 → ψ1 or T |= G1 → ¬ψ1 (that is, T |= ψ1 → ¬G). The latter

contradicts (3.5) and the fact that the node (V1, G1) is initial in the safety graph.

The former, together with (3.6) implies that the formula

G1(a
0, a1, d0)∧V r

1 (a0, a1, d0)∧· · ·∧V l
n+1(a

n, an+1, dn)∧V r
n+1(a

n, an+1, dn)∧υ(an+1)

is not (
⊕n+1

Σr
T )-satisfiable. We now repeat the argument: we apply the interpolation

Lemma 1.3.10 to the T0-compatible theories T and
⊕n

Σr
T and we get a ground

Σ
c,a1,a2,d1

r -sentence ψ2(a
1, a2, d1) such that

T |= G1(a
0, a1, d0) ∧ V r

1 (a0, a1, d0) ∧ V l
2 (a1, a2, d1)→ ψ2(a

1, a2, d1) (3.7)
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and such that

ψ2(a
1, a2, d1)∧V r

2 (a1, a2, d1)∧· · ·∧V l
n+1(a

n, an+1, dn)∧V r
n+1(a

n, an+1, dn)∧υ(an+1)

(3.8)

is not (
⊕n

Σr
T )-satisfiable. Since G2(a

1, a2, d1) is a transition Σr-guessing, we must

have that either T |= G2 → ψ2 or T |= G2 → ¬ψ2. The latter contradicts (3.7)

and the existence of an edge (V1, G1) → (V2, G2). The former, together with (3.8)

implies that the formula

G2(a
1, a2, d1)∧V r

2 (a1, a2, d1)∧· · ·∧V l
n+1(a

n, an+1, dn)∧V r
n+1(a

n, an+1, dn)∧υ(an+1)

is not (
⊕n

Σr
T )-satisfiable. Continuing in this way, we obtain the T -unsatisfiability

of the formula

Gn+1(a
n, an+1, dn) ∧ V r

n+1(a
n, an+1, dn) ∧ υ(an+1)

thus contradicting the fact that the node (Vn+1, Gn+1) is final in the safety graph.

Theorem 3.3.5. The ground safety model checking problem for a locally finite com-

patible LTL-system specification is decidable.

For complexity, the same remarks given at the end of Subsection 2.3.3 in Chap-

ter 2 apply here too.

3.3.2 Model Checking

This section extend the results of the previous section by showing that the model

checking problem is indeed decidable for locally finite compatible LTL-system spec-

ifications. To this aim we simply enrich the safety graph with Hintikka sets in order

to check whether a run satisfies the property expressed by an LTL(Σa,c)-sentence

ϕ. The proofs are quite similar to the ones in the previous section; an additional

argument based on compactness is however needed to obtain the result.

We briefly recall some notational conventions from the previous section. The

formula ϕi(ai) is obtained from the formula ϕ(a) by replacing each flexible symbol

s ∈ Σ\Σr with si (the system variables a are similarly renamed as ai). Analogously,

δi,i+1(ai, ai+1) is obtained by replacing in δ0,1(a0, a1) the copy s0 and s1 of each

flexible symbol s ∈ Σ \Σr with si and si+1 respectively (again, the two copies a0, a1
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of the system variables a are similarly renamed as ai, ai+1). The notational con-

vention applies also to set of literals (meaning that, for example, V i,i+1(ai, ai+1, di)

is obtained by replacing each literal ℓ0,1(a0, a1, d0) occurring in V 0,1(a0, a1, d0) with

ℓi,i+1(ai, ai+1, di)). For the sake of readability, we will usually omit the superscripts

of formulae and sets of formulae (but we maintain those of the system variables).

We are now ready to introduce our main definition:

Definition 3.3.6. The LTL(Σa,c)-graph for the ground LTL(Σa,c)-sentence ϕ and

associated to the LTL-system specification (T , δ, ι) based on the locally finite com-

patible data-flow theory T is the directed graph defined as follows:

– the nodes are the pairs (H,V,G) where H is a Hintikka set for ϕ, V is a

δ̂-assignment and G is a transition Σr-guessing;

– there is an edge (H1, V1, G1)→ (H2, V2, G2) iff

(i) the ground sentence

G1(a
0, a1, d0)∧V r

1 (a0, a1, d0)∧V l
2 (a1, a2, d1)∧G2(a

1, a2, d1)∧Lt(H2(a
1))

(3.9)

is T -consistent, where Lt(H(a)) is the set of Σa,c-literals occurring in

H(a);

(ii) H2 ⊇ {ϕ | Xϕ ∈ H1}.

The initial nodes of the graph are the nodes (H,V,G) such that ϕ ∈ H and ι(a0) ∧

Lt(H(a0)) ∧ V l(a0, a1, d0) ∧G(a0, a1, d0) is T -consistent.

Recalling Definition 2.3.9 of Hintikka graph and 2.3.10 of strongly connected

subgraph (scs), we introduce the following

Definition 3.3.7. An scs C of the LTL(Σa,c)-graph for ϕ is fulfilling if and only if

the set of nodes {Hi | (Hi, Vi, Gi) ∈ C} is a fulfilling scs of the Hintikka graph H(ϕ)

of ϕ.

Lemma 3.3.8 (Completeness). Let ϕ be a ground LTL(Σa,c)-sentence and (T , δ, ι)

be an LTL-system specification. If there is a run M for (T , δ, ι) such that M |= ϕ

then there exists a path without repeated nodes into the LTL(Σa,c)-graph for ϕ leading

from an initial node into a fulfilling scs.
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Proof. LetM be a run for (T , δ, ι) such thatM |= ϕ; without loss of generality, we

can consider M a run for 〈T , δ̂, ι〉 by appropriately interpreting the fresh constants

introduced by the purification of δ. Let us define the following sets

– Hi = {ψ ∈ cl(ϕ) | M |=i ψ};

– Vi = {Aj ∈ At(δ̂) | Mi⊕ΣrMi+1 |= Aj} ∪ {¬Aj | Aj ∈ At(δ̂) and

Mi⊕ΣrMi+1 |= ¬Aj};

– Gi = {ℓ | ℓ is a Σ
c,a0,a1,d0

r -literal and Mi⊕ΣrMi+1 |= ℓ}.

Consider the sequence {Ni} where Ni = (Hi, Vi, Gi). We want to show that

N0 → N1 → . . . is a path in the LTL(Σa,c)-graph for ϕ. First of all, we show that

the LTL(Σc,a0,a1,a2,d0,d1)-sentence

Gi(a
0, a1, d0) ∧ V r

i (a0, a1, d0) ∧ V l
i+1(a

1, a2, d1) ∧Gi+1(a
1, a2, d1) ∧ Lt(Hi+1(a

1))

(3.10)

is T -satisfiable for every i ∈ N. By definition of Hi, Vi, and Gi it follows that

Mi ⊕
Σr

Mi+1 ⊕
Σr

Mi+2 |= (3.10).

Let N = (Mi⊕ΣrMi+1⊕ΣrMi+2)
|Σ

c,a0,a1,a2,d0,d1

i+1

, where Σi+1 = {si+1 | s ∈ Σ \

Σr}∪Σr; since, with a little abuse of notation, N is a Σc,a0,a1,a2,d0,d1-structure that is

a model for T and that verifies (3.10), it follows that (3.10) is T -satisfiable. Secondly,

Xψ ∈ Hi iff M |=i Xψ iff M |=i+1 ψ iff ψ ∈ Hi+1, thus Hi+1 ⊇ {ψ | Xψ ∈ Hi} for

each i.

We show that N0 = (H0, V0, G0) is an initial node. In fact, ϕ ∈ H0 because

M |=0 ϕ and, obviously, ϕ ∈ cl(ϕ). Moreover, ι(a0) ∧ Lt(H0(a
0)) ∧ V l

0 (a0, a1, d0) ∧

G0(a
0, a1, d0) is T -consistent. In fact, by construction, M0⊕ΣrM1 |= ι(a0) ∧

Lt(H0(a
0))∧ V l

0 (a0, a1, d0)∧G0(a
0, a1, d0). Again, let N = (M0⊕ΣrM1)

|Σ
c,a0,a1,d0

0

,

where Σ0 = {si+1 | s ∈ Σ\Σr}∪Σr; since N is a Σc,a0,a1,d0-structure that is a model

for T and that verifies the constraint we are considering, it follows that the latter is

T -satisfiable.

Since the nodes of the LTL(Σa,c)-graph for ϕ are in a finite number, there exists

a node Nk = (Hk, Vk, Gk) that occurs infinitely often in the path N0 → N1 → . . . we

are considering. Notice that C = {Nk, Nk+1, . . . } is an scs in LTL(Σa,c)-graph for ϕ

because the node Nk occurs infinitely often. Moreover, CH(ϕ) = {Hi | (Hi, Vi, Gi) ∈
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C} is an scs of H(ϕ) because Hk → Hk+1 → · · · is a path in H(ϕ) (by our definition

of edge between Nk and Nk+1) and because Hk occurs infinitely often. Finally, CH(ϕ)

is fulfilling because if ψ1Uψ2 ∈ cl(ϕ), then eitherM 6|=k ψ1Uψ2, or there exists j ≥ k

such that M |=j ψ2, i.e. such that ψ2 ∈ Hj.

The path N0 → · · · → Nk is therefore a path into the LTL(Σa,c)-graph for

ϕ leading from an initial node into a fulfilling scs; finally, it can be easily turned

into a path without repeated nodes simply by discarding all the nodes between two

repeated nodes (notice that the path so obtained is still a path in in the LTL(Σa,c)-

graph for ϕ).

Lemma 3.3.9 (Soundness). Let ϕ be a ground LTL(Σa,c)-sentence and (T , δ, ι) be

an LTL-system specification. If there exists a path without repeated nodes into the

LTL(Σa,c)-graph for ϕ leading from an initial node into a fulfilling scs, then there is

a run M for (T , δ, ι) such that M |= ϕ.

Proof. Let N0 → · · · → Nk be the path from an initial node into a fulfilling scs C;

moreover, let Nk → · · · → Nk+s a path covering (possibly with repetitions) all the

nodes in C. Consider the path

N0 → · · · → Nk → · · · → Nk+s → · · · → Nn → · · ·

within the LTL(Σa,c)-graph obtained by cyclically repeating Nk, . . . , Nk+s in the tail

(that is, we take, for i > k + s, the node Ni to be Nk+p, where p is the reminder of

the integer division between i− k and s+ 1).

Let us consider the following set of formulae

Θi = T i ∪ Lt(Hi(a
i)) ∪Gi(a

i, ai+1, di) ∪ Vi(a
i, ai+1, di)

where T i = {ψi | ψ ∈ T}.

We want to prove that Θ = {ι(a0)} ∪
⋃

iΘi is consistent. By contradiction,

suppose not; hence, by compactness for first-order logic, there exists a finite subset
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of Θ which is inconsistent. This implies that there exists n such that the formula

ι(a0) ∧ Lt(H0(a
0)) ∧ V l

0 (a0, a1, d0) ∧G0(a
0, a1, d0) ∧

∧ V r
0 (a0, a1, d0) ∧ V l

1 (a1, a2, d1) ∧G1(a
1, a2, d1) ∧ Lt(H1(a

1)) ∧

∧ V r
1 (a1, a2, d1) ∧ V l

2 (a2, a3, d2) ∧G2(a
2, a3, d2) ∧ Lt(H2(a

2)) ∧

· · ·

∧ V r
n−1(a

n−1, an, dn−1) ∧ V l
n(a

n, an+1, dn) ∧Gn(a
n, an+1, dn) ∧ Lt(Hn(a

n))

is (
⊕n+1

Σr
T )-unsatisfiable. Since N0 is initial, the formula

ι(a0) ∧ Lt(H0(a
0)) ∧ V l

0 (a0, a1, d0) ∧G0(a
0, a1, d0)

is T -satisfiable. If we apply the interpolation Lemma 1.3.10 to the T0-compatible

theories T and
⊕n+1

Σr
T (the hypotheses of Lemma 1.3.10 hold by the modularity

Lemma 1.3.11), we get a ground Σ
c,a0,a1,d0

r -sentence ψ1(a
0, a1, d0) such that

T |= ι(a0) ∧ Lt(H0(a
0)) ∧ V l

0 (a0, a1, d0) ∧G0(a
0, a1, d0)→ ψ1(a

0, a1, d0)

and such that

ψ1(a
0, a1, d0) ∧ V r

0 (a0, a1, d0) ∧ V l
1 (a1, a2, d1) ∧G1(a

1, a2, d1) ∧ Lt(H1(a
1)) ∧

∧ V r
1 (a1, a2, d1) ∧ V l

2 (a2, a3, d2) ∧G2(a
2, a3, d2) ∧ Lt(H2(a

2)) ∧

· · ·

∧ V r
n−1(a

n−1, an, dn−1) ∧ V l
n(a

n, an+1, dn) ∧Gn(a
n, an+1, dn) ∧ Lt(Hn(a

n))

is (
⊕n

Σr
T )-unsatisfiable. Being ψ1(a

0, a1, d0) a ground Σ
c,a0,a1,d0

r -sentence and rep-

resenting G0(a
0, a1, d0) a maximal choice of representative ground Σ

c,a0,a1,d0

r -literals,

it follows that G0(a
0, a1, d0)→ ψ1(a

0, a1, d0), hence

G0(a
0, a1, d0) ∧ V r

0 (a0, a1, d0) ∧ V l
1 (a1, a2, d1) ∧G1(a

1, a2, d1) ∧ Lt(H1(a
1)) ∧

∧ V r
1 (a1, a2, d1) ∧ V l

2 (a2, a3, d2) ∧G2(a
2, a3, d2) ∧ Lt(H2(a

2)) ∧

· · ·

∧ V r
n−1(a

n−1, an, dn−1) ∧ V l
n(a

n, an+1, dn) ∧Gn(a
n, an+1, dn) ∧ Lt(Hn(a

n))

is (
⊕n

Σr
T )-unsatisfiable. Being the nodes N0 and N1 connected in the LTL(Σa,c)-
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graph, it follows that

G0(a
0, a1, d0) ∧ V r

0 (a0, a1, d0) ∧ V l
1 (a1, a2, d1) ∧G1(a

1, a2, d1) ∧ Lt(H1(a
1))

is T -satisfiable. Again, if we apply the interpolation Lemma 1.3.10 to the T0-com-

patible theories T and
⊕n

Σr
T we we get a ground Σ

c,a0,a1,d0

r -sentence ψ2(a
1, a2, d1)

such that

T |= G0(a
0, a1, d0)∧ V r

0 (a0, a1, d0) ∧ V l
1 (a1, a2, d1) ∧G1(a

1, a2, d1) ∧Lt(H1(a
1))→

→ ψ2(a
1, a2, d1)

and such that

ψ2(a
1, a2, d1) ∧ V r

1 (a1, a2, d1) ∧ V l
2 (a2, a3, d2) ∧G2(a

2, a3, d2) ∧ Lt(H2(a
2)) ∧

· · ·

∧ V r
n−1(a

n−1, an, dn−1) ∧ V l
n(a

n, an+1, dn) ∧Gn(a
n, an+1, dn) ∧ Lt(Hn(a

n))

is (
⊕n−1

Σr
T )-unsatisfiable. Being ψ2(a

1, a2, d1) a ground Σ
c,a1,a2,d1

r -sentence and rep-

resenting G1(a
1, a2, d1) a maximal choice of representative ground Σ

c,a1,a2,d1

r -literals,

it follows that G1(a
1, a2, d1)→ ψ2(a

1, a2, d1), hence

G1(a
1, a2, d1) ∧ V r

1 (a1, a2, d1) ∧ V l
2 (a2, a3, d2) ∧G2(a

2, a3, d2) ∧ Lt(H2(a
2)) ∧

· · ·

∧ V r
n−1(a

n−1, an, dn−1) ∧ V l
n(a

n, an+1, dn) ∧Gn(a
n, an+1, dn) ∧ Lt(Hn(a

n))

is (
⊕n−1

Σr
T )-unsatisfiable. By repeatedly applying the above argument, we obtain

that the formula

Gn−1(a
n−1, an, dn−1) ∧ V r

n−1(a
n−1, an, dn−1) ∧

∧ V l
n(a

n, an+1, dn) ∧Gn(a
n, an+1, dn) ∧ Lt(Hn(a

n))

is T -unsatisfiable. But, if n ≤ k + s, this contradicts the hypothesis that

(Hn−1, Vn−1, Gn−1)→ (Hn, Vn, Gn) is an edge in the LTL(Σa,c)-graph; if n > k + s

it contradicts the hypothesis that (Hk+p1, Vk+p1, Gk+p1)→ (Hk+p2, Vk+p2, Gk+p2) is

an edge in the LTL(Σa,c)-graph, where p1 (resp. p2) is the reminder of the integer
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division between n− 1− k (resp. n− k) and s+ 1.

Thus there exists a structureM such that M |= Θ. This structure can be seen

as an LTL(Σa,d,c)-structure M = {Mn = (M,In)}n∈N appropriate for the data-

flow theory T , such that Mn⊕ΣrMn+1 |= δ̂(a0, a1, d0) (hence Mn⊕ΣrMn+1 |=

δ(a0, a1)) for every n ≥ 0, and such that M0 |= ι(a).

It remains to prove that M |= ϕ, i.e. we prove by induction on the complexity

of ψ (where ψ ∈ cl(ϕ)) that for every i it holds that:

ψ ∈ Hi ⇒ M |=i ψ (3.11)

where Hi is the first component of the node Ni = (Hi, Vi, Gi) in the (infinite) path

we are considering. In particular, we get M |=0 ϕ, because ϕ ∈ H0 (since H0 is

initial). The condition (3.11) is obvious if ψ is a literal or if it is of the kind ψ1 ∧ψ2,

ψ1 ∨ψ2 (by definition of Hintikka set and since, by construction,Mi |= Lt(Hi(a))).

If ψ is of the kind Xψ1, then Xψ1 ∈ Hi implies that ψ1 ∈ Hi+1, so it follows

that M |=i+1 ψ1 by induction hypothesis, and thus M |=i Xψ1 obtains. If ψ is of

the kind �ψ1, then �ψ1 ∈ Hi implies ψ1 ∈ Hj for each j ≥ i, so it follows that

M |=j ψ1 for each j ≥ i by induction hypothesis, and thusM |=i �ψ1.

Suppose now ψ is of the kind ψ1Uψ2. Let us consider the following two cases:

– If i < k there are two subcases to consider: (i) ψ1Uψ2 ∈ Hk and ψ1 ∈ Hj for

every i ≤ j < k; (ii) there exists l < k such that ψ2 ∈ Hl and ψ1 ∈ Hj for every

i ≤ j < l. For the case (i) we can conclude that M |=i ψ1Uψ2 by induction

hypothesis and by the fact that M |=k ψ1Uψ2 (see the case i ≥ k below),

whereas for (ii) we can conclude by induction hypothesis that M |=i ψ1Uψ2;

– Let CH(ϕ) = {Hi | (Hi, Vi, Gi) ∈ C} (we remind that CH(ϕ) is a fulfilling scs

of H(ϕ) by hypothesis). If i ≥ k, since ψ1Uψ2 ∈ Hi and since the scs CH(ϕ)

is fulfilling, there exists H ∈ CH(ϕ) such that ψ2 ∈ H.6 Such an H occurs

in the infinite list Hi,Hi+1, . . . , because this list includes all the nodes from

CH(ϕ). Thus there exists the minimum j ≥ i such that ψ2 ∈ Hj; for this j, the

definition of a Hintikka set and of an edge in the Hintikka graph gives ψ1 ∈ Hl

for every i ≤ l < j, thus by induction hypothesisM |=i ψ1Uψ2 obtains.

6This is by the definition of a Hintikka set and of an edge in the graph H(ϕ): notice that ψ1Uψ2

is inherited by all the nodes of a path within H(ϕ) starting with Hi, unless the path meets a node
to which ψ2 belongs. Now a path covering the whole CH(ϕ) must meets such a node, because CH(ϕ)

is fulfilling.
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As an immediate corollary of the Lemmas 3.3.8 and 3.3.9 we obtain the following

Theorem 3.3.10. The ground model checking problem for a locally finite compatible

LTL-system specification is decidable.

3.4 Some Examples

In this section, we provide examples to which the algorithm suggested by Proposi-

tion 3.3.4 can successfully be applied in order to formally verify safety properties.

For the convenience of the reader, we recall the axioms of the theory Tdlo of dense

linear order since the examples below rely on suitable extensions of it (here and in

the following x < y stands for x ≤ y ∧ x 6= y)

∀x∀y∀z (x ≤ y ∧ y ≤ z → x ≤ y)

∀x∀y (x ≤ y ∨ y ≤ x)

∀x∀y (x ≤ y ∧ y ≤ x→ x = y)

∀x∀y (x < y → ∃z (x < z ∧ z < y))

Example 3.4.1 (Sofronie-Stokkermans, 2006). Consider a water level controller

modeled as follows:

– changes in the water level by inflow/outflow are represented as functions in

and out depending on the water level l and on the time instant; alarm and

overflow levels lalarm < loverflow are known;

– if the water level l is such that l ≥ lalarm at a given state, then a valve is opened

and the water level changes at the next observable time by l′ = in(out(l));

– if l < lalarm then the valve is closed; the water level changes at the next

observable time by l′ = in(l).

The dependency of the functions in and out on the time instant means precisely

that they can be modeled as flexible function symbols depending only on the water

level. However, functions in and out cannot be completely uninterpreted, we impose
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the following restrictions on them:

∀x (x < lalarm → in(x) < loverflow) (3.12)

∀x (x < loverflow → out(x) < lalarm) (3.13)

Under such restrictions we want to show that from an initial state where l < lalarm

the water level always remains below loverflow.

Let us fix the notation in order to formalize the problem in our framework. We

consider the data-flow theory T = 〈Σ, T,Σr, a, c〉 such that

– Σ = {in, out, lalarm, loverflow, <} where in, out are two unary function symbols,

lalarm, loverflow are two constant symbols, < is a binary predicate symbol;

– Σr = {lalarm, loverflow, <};

– T = T ⋆r ∪{(3.12), (3.13)} where T ⋆r is the theory of dense linear orders without

endpoints endowed with the further axiom lalarm < loverflow. In other words,

T ⋆r is made of the axioms of Tdlo and of the following axioms:

∀x∃y x < y

∀x∃y y < x

lalarm < loverflow

– l is the only system variable and there are no system parameters (that is,

a := {l} and c := ∅).

It can be shown that the constraint satisfiability problem for T is decidable, that T ⋆r

admits quantifier elimination (thus it is the model completion of its universal frag-

ment Tr), and that Tr is effectively locally finite: hence it follows that T is a locally

finite compatible data-flow theory. We consider now the LTL-system specification

(T , δ, ι) where δ is

δ :≡
(
lalarm ≤ l

0 → l1 = in0(out0(l0))
)
∧

∧
(
l0 < lalarm → l1 = in0(l0)

)

and ι is l < lalarm. Finally, notice that δ is a purely left (Σa⊕Σr Σa)-formula.

We are interested in the safety model checking problem in which the unsafe state

is described by the formula υ given by loverflow < l. Using the procedure suggested
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by Theorem 3.3.5 we can prove that the system is safe, i.e. that there is no run

M for (T , δ, ι) such that M |= ♦υ. We can observe that the task in practice is

not extremely hard from a computational point of view, even if, accordingly to

Definition 3.3.3, the graph is made of 232 × 21 nodes. In fact, since our transition

relation δ is a purely left formula, we can consider only T -consistent nodes (i.e, nodes

(V,G) such that V ∧G is T -consistent); indeed, recalling Definition 3.3.3 of safety

graph, T -inconsistent nodes (i) cannot be initial nodes and (ii) cannot be reached

by any path in the safety graph (it is easy to see that such nodes cannot have any

incoming edge). Since there are just 50 nodes (modulo T -equivalence) which are T -

consistent, at most 502 satisfiability tests are required to check whether a terminal

node is reachable from an initial one. Moreover, by using suitable heuristics and

strategies, the problem becomes computationally even easier: indeed, instead of

considering all the edges of the safety graph, it is sufficient to build just the paths

starting from the initial nodes or ending in a terminal node (namely applying a

forward/backward search strategy). In the former case, it turns out that 26 nodes

(modulo T -equivalence) of the safety graph are reachable from an initial node, none

of them being a terminal node. In the latter, just 12 nodes are reachable from a

terminal node, obviously none of them being an initial node. Hence the dimension

of the problem is tractable (other details can be found in the Appendix).

One might ask if the axioms (3.12) and (3.13) are really needed in order to

guarantee the safety of the system, or, instead, if it is sufficient to consider just the

instantiations of the two axioms above to the water level at the current time. In

such a case, T is simply the theory of dense linear order without endpoints endowed

with the axiom lalarm < loverflow; moreover, we have to insert the instances into

the transition in such a way they are always satisfied during the flow of time, thus

obtaining the new transition

δ′ :≡ lalarm ≤ l
0 → l1 = in0(out0(l0)) ∧

∧ l0 < lalarm → l1 = in0(l0) ∧

∧ l0 < lalarm → in0(l0) < loverflow ∧

∧ l0 < loverflow → out0(l0) < lalarm

In such a system, it is straightforward to see that there is a path into the safety
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graph from an initial to a terminal node. Consider for example the following path:

(V0, G0) −→ (V1, G1)

where

V0(a
0, a1) :≡

l0 < lalarm ∧ l
0 < loverflow ∧ l

1 = in0(out0(l0)) ∧ l1 = in0(l0)∧

∧ in0(l0) < loverflow ∧ out
0(l0) < lalarm

G0(a
0, a1) :≡ l0 < lalarm < l1 < loverflow

and

V1(a
0, a1) :≡

lalarm < l0 ∧ l0 < loverflow ∧ l
1 = in0(out0(l0)) ∧ l1 = in0(l0)∧

∧¬(in0(l0) < loverflow) ∧ out0(l0) < lalarm

G1(a
0, a1) :≡ lalarm < l0 < loverflow < l1.

It is easy to check that (V0, G0) is an initial node and that (V1, G1) is a terminal

node; moreover G0(a
0, a1) ∧ V1(a

1, a2) ∧ G1(a
1, a2) is T -consistent (when checking

details, remember that our transition δ is a purely left formula).

The aim of the following three examples is to use our techniques to analyze

the safety of the well-known Lamport’s mutual exclusion “Bakery” algorithm. This

algorithm can be modeled by a locally finite compatible (and also totally rigid)

LTL-system specification in case the number of processors is known (finite state LTL-

system specifications are – at least in principle – not enough because the number

of tickets is unbounded). Examples 3.4.2 and 3.4.3 give a first formalization which

directly fit into our framework in case the number of processor is known; these

examples can be useful to have a better insight into Example 3.4.4 that shows how

to deal with the case of an unknown number of processor.

Example 3.4.2. Consider the Lamport’s mutual exclusion “Bakery” algorithm and

fix a number n of processors or individuals. In a first approximation, we consider

that every individual is always in the queue, waiting to be served (as soon as an

individual is served, it goes back in the last position of the queue).

Let us fix the notation in order to formalize the problem in our framework. We

consider the data-flow theory T = 〈Σ, T,Σr, a, c〉 such that

– Σ = {S,<} where S is a unary predicate symbol and < is a binary predicate
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symbol;

– Σr = {<} and Tr is the theory of dense linear order without endpoints; in

other words, Tr is made of the axioms of Tdlo and of the following axioms:

∀x∃y x < y

∀x∃y y < x

– T = Tr;

– ai’s are the system variables and there are no system parameters (i.e., a =

{a1, . . . , an}, c = ∅).

Intuitively, ai represents the ticket associated to the ith individual and S(x) for-

malizes that x is served. It is straightforward to see that the constraint satisfiability

problem for T is decidable, T is Tr-compatible (since Tr admits quantifier elimina-

tion) and Tr is effectively locally finite, thus T is a locally finite compatible data-flow

theory.

The initial state condition ι(a) is in the form

ai1 < · · · < ain ∧ S(ai1) ∧ ¬S(ai2) ∧ · · · ∧ ¬S(ain)

where ij ∈ {1, . . . , n} and if j 6= k then ij 6= ik. The unsafe states are described by

the formula υ(a) :=
∨

i6=j

(
S(ai)∧S(aj)

)
which says that at least two individuals are

in the critical section at the same time. Finally, the transition relation δ(a0, a1) is

obtained from the conjunction of the following

n∧

i=1

(

S0(a0
i )→ ¬S

1(a1
i ) ∧

n∧

j=1

a0
j < a1

i

)

(3.14)

n∧

i=1

(

¬S0(a0
i )→ a1

i = a0
i

)

(3.15)

n∧

i=1

(∨

i6=j

a0
j < a0

i → ¬S
1(a1

i )
)

(3.16)

whose intuitive meaning is the following

(3.14) if an individual is served, it goes back in the last position of the queue;

(3.15) if an individual is not served, it maintains its position in the queue;
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(3.16) if an individual is not first in the queue, is not served.

Example 3.4.3. Consider the Lamport’s mutual exclusion “Bakery” algorithm and

fix a number n of processors or individuals. This time, individuals are not forced

to be always in the queue: more precisely, as soon as one is served, gets out of the

queue and can non-deterministically choose when come back in the last position of

the queue.

Let us fix the notation in order to formalize the problem in our framework. We

consider the data-flow theory T = 〈Σ, T,Σr, a, c〉 such that

– Σ = {S,<, 0} where S is a unary predicate symbol, < is a binary predicate

symbol and 0 is a constant;

– Σr = {<, 0} and Tr is the theory of dense linear orders with a minimum named

0;

– T = Tr ∪ {¬S(0)};

– ai’s are the system variables and there are no system parameters (i.e., a =

{a1, . . . , an}, c = ∅).

Intuitively, ai represents the ticket associated to the ith individual (or being

out of the queue if the ticket is equal to 0) and S(x) formalizes that x is served.

Again, it is straightforward to see that the constraint satisfiability problem for T

is decidable, T is Tr-compatible (since Tr admits quantifier elimination) and Tr is

effectively locally finite, thus T is a locally finite compatible data-flow theory.

The initial state condition is a formula of the kind

a1 = 0 ∧ · · · ∧ an = 0.

The unsafe states are described by the formula υ(a) :=
∨

i6=j

(
S(ai) ∧ S(aj)

)
which

says that at least two individuals are in the critical section at the same time. Finally,

the transition relation δ(a0, a1) is obtained from the conjunction of the following

n∧

i=1

(

S0(a0
i )→ a1

i = 0
)

(3.17)

n∧

i=1

(

¬S0(a0
i ) ∧ a

0
i 6= 0→ a1

i = a0
i

)

(3.18)
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n∧

i=1

(∨

i6=j

(a0
j < a0

i ∧ a
0
j 6= 0)→ ¬S1(a1

i )
)

(3.19)

n∧

i=1

(

a0
i = 0→ a1

i = 0 ∨
∧

j 6=i

a0
j < a1

i

)

(3.20)

n∧

i6=j=1

(

a0
i = a0

j ∧ a
0
i = 0→ a1

i = 0 ∨ a1
j = 0 ∨ a1

i 6= a1
j

)

(3.21)

whose meaning is the following

(3.17) if an individual is served, it gets rid of the ticket (thus quits the queue);

(3.18) if an individual is not served while is in the queue, the ticket is preserved;

(3.19) if an individual is not first in the queue, is not served;

(3.20) if an individual is out of the queue, it non-deterministically choose to remain

out of the queue or to join the queue in the last position.

(3.21) if two individuals are out of the queue, then either one of them remains out

of the queue or they will assigned different tickets ((3.20) ensures that they

will join the queue in the last positions).

Example 3.4.4. In case the number of involved processors is unknown, we can build

for the problem an appropriate T , which is ‘almost’ a locally finite compatible (not

totally rigid anymore) LTL-system specification. We said ‘almost’ because T violates

our Assumption 3.1.9 from Subsection 3.1.2 in that it has a non-ground transition

(some first-order variables are universally quantified in it). We then produce out

of T (by skolemization and instantiation) a locally finite compatible LTL-system

specification T ′ which is safe iff T is safe. Safety of T ′ can then be easily checked

through our techniques. Before analyzing formal details, we point out that the

peculiar features of T that make the whole construction to work are purely syntactic

in nature and do not need human intervention to be noticed: they basically consist

of the finiteness of the set of terms of certain sorts in the skolemized Herbrand

universe.

We deal with a sorted language:7 indeed, we have two sorts, namely P and

O. The former is the sort representing the individuals (i.e the involved processes),

7There are no problems in extending our results to the many-sorted case.



98 Chapter 3. Model Checking

whereas the latter is used in order to represent tickets. Let us consider the following

data-flow theory T = 〈Σ, T,Σr, a, c〉:

– Σ is a sorted signature containing a unary predicate symbol S of sort P , a

binary predicate symbol <: O × O, two constant symbols 0 and 1 of sort O,

and a unary function symbol f : P → O;

– T axiomatizes, over the sort O, the theory of dense total orders with named

distinct endpoints; in other words, T is made of the axioms of Tdlo and of the

following axioms

∀x (0 ≤ x)

∀x (x ≤ 1)

0 < 1

Moreover, the behavior of the function f is constrained by the following further

axioms for T :

∀x∀y (f(x) = f(y)→ x = y ∨ f(x) = 1) (f is “almost-injective”)

∀x (f(x) = 1→ ¬S(x))

– Σr contains the symbols {0, 1, <};

– there are no system parameters (i.e. c := ∅) and there is just one system

variable t, which is of sort O (i.e. a := {t}).

In order to give an intuitive explanation of what we are modeling, we can think

of the values of t at two consecutive instants as the range in which the values of the

tickets produced by the “ticket machine” in that interval of time can vary, whereas

f can be seen as the function that associates to every individual its current ticket

(f is time-dependent, hence flexible, because the ticket is changed after it has been

used). We have at our disposal an infinite amounts of tickets whose values are in

the interval [0, 1]; every individual is inserted into a queue according to the value

of its ticket (the value 1 has the meaning of being out of the queue). Finally, the

predicate S models the set of the individuals that are in the critical section.

We leave the reader to check that the constraint satisfiability problem for T is

decidable and that T is Tr-compatible for a suitable universal locally finite Σr-theory
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Tr:
8 it follows that T is a locally finite compatible data-flow theory.

We can associate to T an LTL-system specification (T , δ, ι) in the following

manner: the initial condition is described by the formula

ι :≡ ∀x (f(x) = 1) ∧ t = 0,

whereas the transition δ is obtained from the conjunction of the following (implicitly

universally quantified) formulae:

t0 < t1 < 1 (3.22)

S0(x)→ f1(x) = 1 (3.23)

¬S0(x) ∧ f0(x) 6= 1→ f1(x) = f0(x) (3.24)

f0(x) < f0(y)→ ¬S1(y) (3.25)

f0(x) = 1→ f1(x) = 1 ∨ (t0 ≤ f1(x) ∧ f1(x) < t1 ∧ ¬S1(x)) (3.26)

The meaning of the above formulae is the following:

(3.22) the range of the values of the tickets produced by the “ticket machine” is

strictly increasing during the flow of time;

(3.23) an individual is removed from the queue immediately after having joined the

critical section;

(3.24) if an individual is in the queue and it is not in the critical section, then its

ticket is preserved;

(3.25) if an individual is not the first in the queue, it cannot enter the critical section;

(3.26) if an individual is not in the queue, it can remain out of the queue or it can

take a ticket (without being immediately served).

The unsafe states are described by the formula

υ :≡ ∃x∃y (x 6= y ∧ S(x) ∧ S(y)).

8Take as Tr the theory of linear orders with named distinct endpoints (this admits as a model
completion T ⋆

r , which is the theory of an infinite set over the sort P and of dense linear orders with
named distinct endpoints over the sort O).
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Since ι, δ, υ all violate our Assumption 3.1.9 because they are not ground, the prob-

lem needs to be reformulated (in a safety/unsafety preserving way!) in order to

become tractable with our techniques.

Consider the data-flow theory T ′ = 〈Σ, T,Σr, {t}, {c1, c2}〉, which is like T except

that two new system parameters c1, c2 of sort P have been added. We first skolemize

the formula υ into the ground formula

υ′ :≡ c1 6= c2 ∧ S(c1) ∧ S(c2),

then we instantiate the initial condition ι obtaining

ι′ :≡ t = 0 ∧ f(c1) = 1 ∧ f(c2) = 1.

Finally we instantiate also the transition δ, thus getting the ground formula δ′ which

is the conjunctions of (3.27)-(3.33) below:9

t0 < t1 < 1 (3.27)

(S0(c1)→ f1(c1) = 1) ∧ (S0(c2)→ f1(c2) = 1) (3.28)

(¬S0(c1) ∧ f
0(c1) 6= 1→ f1(c1) = f0(c1)) ∧

∧ (¬S0(c2) ∧ f
0(c2) 6= 1→ f1(c2) = f0(c2))

(3.29)

f0(c1) < f0(c2)→ ¬S
1(c2) (3.30)

f0(c2) < f0(c1)→ ¬S
1(c1) (3.31)

f0(c1) = 1→ f1(c1) = 1 ∨ (t0 ≤ f1(c1) ∧ f
1(c1) < t1 ∧ ¬S1(c1)) (3.32)

f0(c2) = 1→ f1(c2) = 1 ∨ (t0 ≤ f1(c2) ∧ f
1(c2) < t1 ∧ ¬S1(c2)) (3.33)

(T ′, δ′, ι′) is now an LTL-system specification matching Assumption 3.1.9; moreover

(T ′, δ′, ι′) is locally finite compatible for the reasons explained above.

It is not difficult to see that there exists a bad run for (T , ι, δ) (w.r.t. υ) if

and only if there exists a bad run for (T ′, ι′, δ′) (w.r.t. υ′): the key observation

to show this is that one can restrict the interpretation of the sort P in a bad run

for (T ′, ι′, δ′) so that it consists only on the two individuals c1, c2. By applying the

algorithm from Proposition 3.3.4, since ι′ ∧ υ′ is T -inconsistent and since δ′ ∧ υ′

9Observe that all quantifiers in ι, δ are of sort P and that there are no ground terms in the
signature of T ′ of that sort, apart from the Skolem constants c1, c2. Notice that some instances of
δ have been removed, because they are tautological modulo T .
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is (T ⊕Σr T )-inconsistent, it follows that (T ′, ι′, δ′) is safe w.r.t. υ′: consequently,

(T , ι, δ) is safe w.r.t. υ too.

Remark. Suppose that an LTL-system specification T = 〈Σ, T,Σr, a, c〉 satisfies the

following requirements:

(i) the initial state condition, the transition relation and the formula representing

the safe state are universal closures of open formulae (for the sake of simplicity,

we assume that all the quantifiers bind variables over a unique sort, say S);

(ii) the axioms of the theory T are of the kind ∀xSϕ where ϕ does not contain any

quantifier binding variables over the sort S;

(iii) the terms of sort S contained in the Herbrand universe obtained from Σa,c

augmented with the symbols from the Skolemization of the negation of the

formula representing the safe states are in a finite number and made of rigid

symbols only.

Then the technique used in Example 3.4.4 applies in order to produce out of T (by

skolemization and instantiation) a locally finite compatible LTL-system specification

T ′ which is safe iff T is safe. Again, notice that the peculiar features of T that make

the whole construction to work are purely syntactic in nature and do not need human

intervention to be noticed.

3.5 Conclusions and Related Work

In this chapter, we have studied the decidability of the model checking problem for

quantifier-free formulae modulo a background first-order theory axiomatizing the

extensional part of the language. We have also recalled the undecidability of the

model checking problem by a reduction to the reachability problem of Minsky ma-

chines (see Minsky, 1961). Moreover, we have given the decidability of the (ground)

model checking problem, when this is restricted to safety properties modulo back-

ground theories that are compatible (see Ghilardi, 2004) with a locally finite theory

over the rigid signature, and then we have extended this result in order to be able to

take into account any temporal property. We have also exemplified our techniques

on some examples.

Since the literature on model checking is extremely vast (see the introduction

of this thesis to have but a few references), we shall make here a comparison only
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with works that are somewhat related to our model-theoretic viewpoint inspired

by combination. The paper Demri (2006) makes an extensive review on constrained

LTL that can be seen as a form of model checking for possibly infinite-state systems.

This form of model checking does not allow flexible symbols (apart from system

variables); moreover, specific fixed purely relational structures plays there the role

played by the models of the underlying first-order theories in our approach. In this

context, some of the results in Demri (2006) could be seen as specializations of our

results to totally rigid LTL-system specifications. Other results and techniques from

Demri (2006) (and also from the recent paper Demri et al., 2006) should nevertheless

be seriously taken into account for integration in our settings. A similar observation

applies to the rewriting techniques used in Cyrluk and Narendran (1994) in order

to obtain decision procedures for interesting (but very special) classes of formulae.

An integration of classic tableaux and automated deduction techniques is pre-

sented in Sipma et al. (1999). While sharing the goal of combining model checking

algorithms and deductive techniques, Sipma et al. (1999) provides a uniform frame-

work in which performing such combination with no guarantee on the complete

automation of the resulting combination. Similarly, Maidl (2001) describes a combi-

nation of tableaux and automated deduction techniques to automatically solve the

model checking problem of classes of parametrized theories. Although we share some

use of tableaux and automated deduction techniques, Maidl (2001) does not reduce

the problem to combination problems in first-order theories.

The approach in de Moura et al. (2002) shares an important distinguishing fea-

ture with ours, namely the reduction of safety model checking problems to constraint

satisfiability modulo first-order theories. Our main contribution (Theorems 3.3.5

and 3.3.10) identifies precise conditions under which this reduction, not necessarily

limited to safety properties, yields a complete decision procedure (notice however

that our safety graph is not just an approximation of the graph of the states of the

system, because pairs of states are taken into account when building it).

Finally, a long line of research in model checking infinite-state systems, begun

with the seminal work in Graf and Säıdi (1997), goes under the name of “abstract-

check-refine”, featuring a combination of finite-state model checking and decision

procedures for first-order theories. A common feature with our work is the empha-

sis on using decision procedures for the satisfiability problem in first-order theories.

However, we are more concerned with precisely characterizing the termination of the

model checking algorithm while the abstract-check-refine techniques focus on practi-
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cal usability. Furthermore, for such techniques to scale-up, the decision procedures

are required to compute interpolants (see, e.g., Henzinger et al., 2002; McMillan,

2005) and this may be indeed a difficult task. Instead, our approach should allow

one to more easily leverage SMT solvers by designing suitable refinements of the

algorithm suggested by Proposition 3.3.4 and Lemmas 3.3.8 and 3.3.9.



104 Chapter 3. Model Checking



Chapter 4

Arrays with Dimension

This chapter is devoted to the study of extensions of the theory of arrays in order

to derive decidability result for their universal fragments. Since its introduction in

McCarthy (1962), the theory of arrays has played a very important role in Computer

Science. Hence, it is not surprising that many papers (see, e.g., Armando et al., 2003;

Bradley et al., 2006; Downey and Sethi, 1978; Jaffar, 1981; Mateti, 1981; Reynolds,

1979; Stump et al., 2001; Suzuki and Jefferson, 1980) have been devoted to its

study in the context of verification and many reasoning techniques, both automatic

(see, e.g., Armando et al., 2003) and manual (see, e.g., Reynolds, 1979), have been

developed to reason in such a theory.

Unfortunately, as many previous works (see, e.g., Bradley et al., 2006; Jaffar,

1981; Mateti, 1981; Suzuki and Jefferson, 1980) have already observed, the theory

of array alone or even extended with extensional equality between arrays (as in

Armando et al., 2003; Stump et al., 2001) is not sufficient for many applications

of verification. For example, the works in Jaffar (1981); Mateti (1981); Suzuki and

Jefferson (1980) tried to extend the theory to reason about sorted arrays. More

recently, works in Bradley (2007); Bradley et al. (2006) have shown the decidability

of the satisfiability problem for a restricted class of (possibly quantified) first-order

formulae that allows one to express many important properties about arrays.

In this chapter we prove decidability results for extensions of the theory of ar-

rays with dimension, being the decidability of the universal fragment of the latter

already given in Nicolini (2007). We properly extend that result considering more

expressive fragments and taking into account issues related to the implementation of

the developed procedures and their integration into tools that are already available.

105
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4.1 Arrays with Dimension

An array is a data structure that consists of a group of elements having a single name.

Elements in the array are usually numbered and individual elements are accessed by

their index (i.e. numeric position). We consider two main types of arrays which are

natively supported by imperative languages (such as C): fixed-size and dynamically-

allocated arrays. A fixed-size array occupies a contiguous area of storage that never

changes during run-time and whose fixed dimension is known at compile-time. In

contrast, the size of the memory reserved to dynamically-allocated arrays can be

unknown at compile-time and may change at runtime, even though this may be an

expensive operation involving the copy of the entire content of an array (consider,

e.g., the C’s function realloc applied to a malloc’ed array). Actually, there exists a

third type of arrays called dynamic, which are supported by interpreted (such as, for

example, the Perl language) and object-oriented programming languages (see, e.g.,

the C++’s std::vector or the ArrayList classes of Java API and .NET Framework)

in which memory handling is usually hidden. A detailed discussion of such a data

structure is beyond the scope of this chapter. Here, it is sufficient to observe that

dynamic arrays can be efficiently implemented by imposing an appropriate memory

allocation policy on dynamically-allocated arrays (see, e.g., Brodnik et al., 1999).

For all types of arrays, their elements have usually the same type.

After the declaration/allocation, the content of an array is in general not initial-

ized, both in the case of fixed-size or dynamically-allocated arrays (in this context,

recall the difference between the C’s functions malloc and calloc). To formal-

ize this, we introduce a distinguished element ⊥ (for undefined), which is distinct

from every other element in arrays, and assume that any array contains ⊥ at every

position except one, after creation. This distinguished position is the capacity of

an array a (minus 1, since 0 is used to identify the first element of a), i.e. how

many elements a will be able to store. Under this assumption, the situation where

a predefined element is used to fill the array after declaration can be simulated by

using an appropriate sequence of assignments. In our formal model, we abstract

from memory and efficiency issues and assume the capability of storing an element

e at an arbitrary index i of an array a, by allocating (only) the necessary extra

space when i is bigger than the actual size of a; the resulting array is denoted with

store(a, i, e). In this way, we can formalize the capacity of an array as the function

dim returning the smallest index, after which no more elements of the array exist.

For simplicity, we will talk about the ‘dimension’ of an array instead of its capacity.
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To summarize, we have chosen to formalize dynamically-allocated arrays while

abstracting away any considerations about memory handling. The reader may won-

der why we have taken such a decision. The answer is twofold. First, dynamically-

allocated arrays are at the core of many algorithms and abstract datatypes (such as

heaps, queues, and hash tables). So, the availability of a procedure (cf. Section 4.2)

to reason about such a type of arrays would greatly help the task of verifying many

programs. The second reason is that dynamically-allocated arrays more accurately

model heaps, i.e. the areas of memory where pointer-based data structures are dy-

namically allocated. For example, as observed in McPeak and Necula (2005), the

absence of aliasing in linked lists can be specified by using an axiom for injectivity

of the function modelling the heap. It is possible to extend dynamic arrays with

a recognizer for “injective arrays”, where ⊥ models the null-pointer, and obtain a

decision procedure also for this theory (cf. Subsection 4.3.1). As another example,

consider Separation Logic as introduced in Reynolds (1979). The key feature of this

logic is its capability to support “local reasoning” by formalizing heaps as partial

function from addresses to values and introducing new logical connectives, such as

the separating conjunction P ⋆Q that asserts that P and Q hold for disjoint portions

of a certain heap. Indeed, the partial function modelling heaps can be turned into

total functions by using the standard trick of returning an undefined value whenever

they are undefined. In this sense, heaps can naturally be seen as dynamic arrays,

which can be extended with a “domain” function, returning the set of non-⊥ ele-

ments. We will see that also this extension of the theory of arrays with dimension

is decidable (cf. Subsection 4.3.2); this can also be seen as a first step in the di-

rection of providing automatic support for Separation Logic by decision procedures

developed in first-order logic.

We are now in the position to discuss the simple mathematical model underlying

dynamic arrays. Given a set A, by Arr(A) we denote the set of finite arrays with

natural numbers as indexes and whose elements are from A. An element of Arr(A)

is a sequence a : N −→ A∪{⊥} eventually equal to ⊥ (here ⊥ is an element not in A

denoting an “undefined” value). In this way, for every array a ∈ Arr(A) there is a

smallest index n ≥ 0, called the dimension of a, such that the value of a at index j is

equal to ⊥ for j ≥ n. We do not require any value of a at k < n to be distinct from

⊥: this is also the reason to use the word ‘dimension’ rather than ‘length’. There

is just one array whose dimension is zero which we indicate by ε and call it the

empty array. Since many applications of verification require arithmetic expressions
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on indexes of arrays, we introduce Presburger Arithmetic P over indexes: any other

decidable fragment of Arithmetic would be a good alternative. Thus the relevant

operations on our arrays include addition over indexes, read, write, and dimension.

Below, we will consider a theory, denoted by ADP, capable of formally expressing

the properties described above.

4.1.1 Arrays with Dimension as a Combined Theory

We work in many-sorted first-order logic with equality and we assume the basic

syntactic and semantic concepts as in, e.g., Gallier (1986).

A signature Σ is a non-empty set of sort symbols together with a set of function

symbols and a set of predicate symbols (both equipped with suitable lists of sort

symbols as arity). The set of predicate symbols always contains a symbol =S for

equality for every sort S (we usually omit its subscript). To avoid confusion, we

use the symbol ≡ (instead of =) in the metalanguage to mean identity of syntactic

expressions.

From the semantic side, a Σ-structure M consists of non-empty and pairwise

disjoint domains SM for every sort S, and interprets each function symbol f and

predicate symbol P as functions fM and relations PM, respectively, according to

their arities. We use fM (resp. PM) to denote the interpretation of the function

symbol f (resp. predicate symbol P ) in the structure M (the equality predicate

=S is always interpreted as the identity relation over the sort S). All the remaining

notions from Subsection 1.1.1 in Chapter 1 can be easily adapted.

Formally, the theory ADP can be seen as a combination of two well-known

theories: P and the theory Ae of arrays with extensionality (see, e.g., Armando

et al., 2003), extended with a function for the dimension which takes an array and

returns a natural number. Because of the function for dimension, the combination is

non-disjoint and cannot be handled by classical combination schemas such as Nelson

and Oppen (1979). Nevertheless, following Ghilardi (2004), it is convenient to see

ADP as a combination of P with a theory of array with dimension Adim : Adim

extends Ae (both in the signature and in the axioms), but is contained in ADP,

because in Adim indexes are only endowed with a discrete linear poset structure. In

this way, we have that ADP = Adim ∪ P and the theories Adim and P share the

well-known complete theory T0 of natural numbers endowed with zero and successor

(see, e.g., Enderton, 1972): this theory admits quantifier elimination, so that the

T0-compatibility hypothesis of Ghilardi (2004) needed for the non-disjoint Nelson-
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Oppen combination is satisfied. Unfortunately, the combination result in Ghilardi

(2004) cannot be applied to ADP for mainly two reasons. First, T0 is not locally

finite (see, e.g., Ghilardi, 2004 for details). Secondly, Adim is a proper extension of

the theory Ae, hence the decision procedures for the Ae-satisfiability problem (such

as, e.g., the one in Armando et al., 2003) must be extended. In the rest of the

chapter, we will show that it is sufficient to use decision procedures for the P- and

Ae-satisfiability problem to solve the ADP-satisfiability problem, provided that a

suitable pre-processing of the input set of literals is performed.

We now introduce the basic theories of interests for this chapter.

T0 has just one sort symbol index, the following function and predicate symbols:

0 : index, s : index → index, and <: index × index. It is axiomatized by

the following formulae:1

y 6= 0→ ∃z(y = s(z)) (4.1)

x < s(y)↔ (x < y ∨ x = y) (4.2)

¬(x < 0) (4.3)

x < y ∨ x = y ∨ y < x (4.4)

x < y → ¬(y < x) (4.5)

x < y → (y < z → x < z) (4.6)

where x, y and z are variables of sort index. This theory admits elimination

of quantifiers and it is complete (see Enderton, 1972 for details).

P is the well-known Presburger Arithmetic (see, e.g., Enderton, 1972) over indexes.

The signature is that of T0 extended with the function symbol for addition + :

index × index → index, written infix. Since P is not finitely axiomatizable

(see again Enderton, 1972), we assume as axioms all the sentences valid in the

standard model of natural numbers. Notice that T0 ⊂ P.

A is the theory of arrays (see, e.g., Armando et al., 2003) which has the following

signature:

– sort symbols: index,elem,array and

1Here and in the following, we omit the outermost universal quantification for the sake of read-
ability.
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– function symbols: select : array × index → elem and store : array×

index× elem→ array

and it is axiomatized by the following formulae:

select(store(a, i, e), i) = e (4.7)

i 6= j → select(store(a, i, e), j) = select(a, j) (4.8)

Ae is the theory of arrays with extensionality (see, e.g., Armando et al., 2003)

which has the same signature of A and it is axiomatized by (4.7), (4.8), and

the axiom of extensionality:

∀i(select(a, i) = select(b, i))→ a = b (4.9)

The converse implication is an obvious consequence of the congruence of equal-

ity; hence, there is no need to explicitly take it into account since we work in

(many-sorted) first-order logic with equality. Notice also that A ⊂ Ae.

Adim is the simple theory of arrays with dimension whose signature is the union

of the signatures of T0 and Ae extended with the following three symbols:

⊥ : elem, ε : array, and dim : array → index. It is axiomatized by the

axioms in T0, those in Ae, and the following formulae:

dim(a) ≤ i→ select(a, i) = ⊥ (4.10)

dim(a) = s(i)→ select(a, i) 6= ⊥ (4.11)

dim(ε) = 0 (4.12)

Notice that T0 ⊂ Adim and Ae ⊂ Adim .

ADP is the theory of arrays with dimension whose signature is the union of the

signatures of Adim and P and is axiomatized by the axioms in Adim and all

valid sentences in P.

The theories T0 and P are decidable (see Enderton, 1972); moreover, the con-

straint satisfiability problem for the theories A and Ae is decidable (see Armando

et al., 2003). These are important observations for the results presented in this

chapter, since the decision procedure for ADP-satisfiability will assume the avail-

ability of two decision procedures for the constraint satisfiability problems of P and
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A. The theories Ae, Adim , and ADP admit a particular subclass of models, which

we call the standard ones and are exactly those introduced above in order to moti-

vate the definition of ADP. Formally, a standard model is the model induced by a

pair (A,κ), where A is a set of elements and κ is a distinguished element of A as

explained in the following definition.

Definition 4.1.1. Let A be a set and κ be an element of A. The standard model

of ADP induced by the pair (A,κ) is the ΣADP -structureM such that

(i) the sort index is interpreted in M as N and the symbols 0, <, s,+ have their

natural meaning;

(ii) the sort elem is interpreted inM as A and the constant ⊥ is interpreted as κ;

(iii) the sort array is interpreted in M as the set of functions a : N −→ A such

that there is some na ∈ N for which we have a(m) = κ whenever m ≥ na;

moreover, the constant ε is interpreted as the constant function with value κ;

(iv) dimM(a) is the smallest n ∈ N such that a(m) = κ holds for all m ≥ n;

(v) we have selectM(a, i) := a(i) and

storeM(a, i, e)(n) :=







a(n) if n 6= i,

e otherwise.

The standard models of Ae and Adim can be defined in a similar way by taking

the ΣAe- and ΣAdim
-reduct (respectively) of ADP-standard models; notice that the

dimension of the empty array is 0 and the dimension of a non-empty array is the

successor of the index of the last element different from ⊥. Of course, when investi-

gating constraint satisfiability we are mainly interested in satisfiability of constraints

in standard models and we shall in fact prove that a constraint is satisfiable in a

model of ADP if and only if it is satisfiable in a standard model (cf. Lemma 4.2.7

below).

4.2 A Decision Procedure for Arrays with Dimension

In the rest of the chapter, we assume the availability of two decision procedures

solving the A- and P-satisfiability problems; we will see how to reduce to these
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latter the ADP-satisfiability problem. In order to introduce the reader into the

details of the procedure, we consider an example which illustrates some key ideas.

Example 4.2.1. Consider the problem of checking the ADP-satisfiability of

dim(a) = n ∧ dim(b) = m ∧ b = store(a, n, e) ∧

∧ e 6= ⊥ ∧ m > 0 ∧ n = m+ 1
(4.13)

where a, b,m, n, e are free constants of appropriate sorts. To detect the unsatisfi-

ability of (4.13), it is crucial to derive that m < n in Presburger Arithmetic. In

fact, we can detect the Ae-unsatisfiability of b = store(a, n, e) ∧ e 6= ⊥ in (4.13) and

select(b, n) = ⊥, which is a logical consequence of (4.10) and dim(b) = m < n =

dim(a). If we were not able to derive facts in Presburger Arithmetic, we would have

failed to show the ADP-unsatisfiability of (4.13).

The capability of deriving all facts entailed by a constraint can be problem-

atic, since we only assume the availability of a decision procedure to solve the

P-satisfiability problem without further capabilities. To overcome this difficulty,

we will transform the problem of checking a logical consequence into a satisfiability

problem, i.e. if ϕ and ψ are two constraints in P, then in order to check P∪{ϕ} |= ψ,

we will check the P-unsatisfiability of ϕ ∧ ¬ψ. Indeed, it will be necessary to guess

the entailed constraint ψ. This is a standard technique in the field of combining de-

cision procedures (see, e.g., Ghilardi, 2004), which allows us to abstractly describe

our decision procedure and more easily prove its correctness.

4.2.1 The Architecture

The overall schema of the decision procedure for the ADP-satisfiability problem is

depicted in Figure 4.1.

The module Flatten pre-processes the literals in the input constraint so as to

make them flat and easily recognizable as belonging to one theory among those

used to define ADP (cf. Section 4.1.1), i.e. T0, P, Ae, or Adim . The module E-

instantiation produces suitable instances of the extensionality axiom, i.e. (4.9), so

that a simpler decision procedure for theA-satisfiability problem (with respect to one

for Ae) is assumed available. The module G-instantiation is non-deterministic and

guesses sufficiently many facts which are potentially entailed by the constraints in

P. The modules DPP and DPA implement the decision procedures for Presburger

Arithmetic and for the constraint satisfiability problem for the theory of arrays
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Flatten

DPP DPA

sat/unsat

all sat?

E-inst. G-inst.

Figure 4.1: The architecture of the decision procedure for ADP

(without extensionality). The module ‘all sat?’ returns “satisfiable” if both decision

procedures for P and A returned “satisfiable”; otherwise returns “unsatisfiable”.

Now, we are ready to describe the internal workings of each module in detail.

Flattening

It is well-known that it is possible to transform a constraint ϕ into an equisatisfiable

constraint ϕ′ containing only flat literals in linear time by introducing sufficiently

many fresh constant symbols to name subterms (see, e.g., Armando et al., 2003). In

our case, we assume that the module Flatten in Figure 4.1 transforms (in linear time)

a set of arbitrary literals over the signature Σ
a
ADP into an equisatisfiable set of flat

literals on the signature Σ
c
ADP , for some set c ⊇ a of constants (the constants in c\a

are said to be fresh). Notice that a flattened set of literals L over a simple expansion

of ΣADP can be represented as a set-theoretic union LAdim
∪LP , where LAdim

collects

all the literals from L over a simple expansion of ΣAdim
and LP collects all the literals

from L over a simple expansion of ΣP (thus LAdim
∩LP contains precisely the literals

from L over a simple expansion of ΣT0).

E-instantiation closure

The module E-instantiation finds enough instances of the axiom (4.9) for extension-

ality of arrays so that it can be eliminated without compromising the correctness of

the decision procedure for ADP.

Definition 4.2.2 (E-instantiation closed set of literals). A set L of ground flat

literals is E-instantiation closed if and only if the following condition is satisfied:

1. if a 6= b ∈ L, with a, b : array, then {select(a, i) = e1, select(b, i) = e2, e1 6=

e2} ⊆ L for some constants i : index, e1, e2 : elem;
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It is not difficult to see that, given a set of ground flat literals L, there exists

an ADP-equisatisfiable set LE ⊇ L that contains the Skolemization of some logical

consequences of Ae ∪ L and is E-instantiation closed.

Lemma 4.2.3. There exists a linear time algorithm which takes a set L of flat

literals over the signature Σ
a
ADP and returns an E-instantiation closed set LE of flat

literals over the signature Σ
c
ADP such that (i) L ⊆ LE , (ii) L and LE are ADP-

equisatisfiable, and (iii) a ⊆ c.

The signature Σ
c
ADP of LE is a proper simple expansion of the signature Σ

a
ADP of

L, because Skolem constants are fresh. It is straightforward to see that, if L contains

n literals, at most 3n new literals are sufficient to obtain an E-instantiation closed

set of literals containing L. Under the assumption that producing a new literal takes

constant time, there exists a linear time algorithm to compute E-instantiation closed

sets.

G-instantiation closure

The module G-instantiation is non-deterministic and it is responsible to produce

suitable instances of the axioms about the dimension of arrays, i.e. (4.10) and

(4.11), and to guess enough facts of P entailed by the input constraint so as to

guarantee the correctness of the overall decision procedure for ADP-satisfiability.

Definition 4.2.4 (G-instantiation closed set of literals). A set L of ground flat

literals is G-instantiation closed if and only if the following conditions are satisfied:

1. if ε occurs in L, then dim(ε) = 0 ∈ L;

2. if dim(a) = i ∈ L, with a : array and i : index, then {i = 0} ⊆ L or

{e 6= ⊥, select(a, j) = e, s(j) = i} ⊆ L for some constants j : index and

e : elem;

3. if i, j occur in L, with i, j : index, then i = j ∈ L or i 6= j ∈ L;

4. if i, j occur in L, with i, j : index and i 6= j ∈ L, then i < j ∈ L or j < i ∈ L;

5. if {dim(a) = i, i ≤ j} ⊆ L, with a : array and i, j : index, then {select(a, j) =

⊥} ⊆ L (here i ≤ j stands for i < j or i = j).

Given a set of literals, it is always possible to compute an equisatisfiable G-

instantiation closed set in (non-deterministic) polynomial time.
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Lemma 4.2.5. There exists a non-deterministic polynomial time algorithm which

takes as input a set L of ground flat literals over a signature Σ
a
ADP and returns a

G-instantiation closed set LG of flat literals over the signature Σ
c
ADP such that (i)

L ⊆ LG, (ii) L and LG are ADP-equisatisfiable, and (iii) a ⊆ c.

Proof. Let m be the number of literals in L of the form dim(ak) = dak
where dak

is

a constant of sort index. Let us consider a set b = {j1, . . . , jm, e1, . . . , em} of fresh

constants, where jk : index, ek : elem, and k ∈ {1, . . . ,m}. A G-instantiation LG

of L can be computed by sequentially executing the following three steps:

1. for each pair i, j of constants of sort index in a ∪ b ∪ {0}, exactly one of the

atoms i = j and i 6= j is added to LG , and in the latter case either i < j or

j < i is also added;

2. for each literal dim(ak) = dak
∈ LG, then:

(a) if 0 = dak
∈ LG or 0 ≡ dak

, then add {jk = 0, ek = ⊥} to LG ;

(b) if 0 < dak
∈ LG , then add {s(jk) = dak

, select(ak, jk) = ek, ek 6= ⊥} to LG .

3. if {dim(a) = i, i ≤ j} ⊆ LG, then add {select(a, j) = ⊥} to LG .

There are two important observations. First, each new constant jk : index (k ∈

{1, . . . ,m}) denotes the predecessor of the dimension of ak, when the latter is guessed

to be different from 0 (if the dimension of ak is guessed to be 0, then jk is set to

zero). Second, each new constant ek : elem (k ∈ {1, . . . ,m}) denotes the result of

reading the content of array ak at position jk.

These two observations together with the fact that the process described above

to build LG closely follows Definition 4.2.4 should make it clear that L is ADP-

satisfiable if and only if there exist a set LG which is G-instantiation closed and

ADP-satisfiable. The non-deterministic polynomial time result is obtained by a

straightforward inspection of the process described above.

It is easy to check that one obtains a set of both E- and G-instantiation closed

set of literals by invoking first the E- and then the G-instantiation module.

4.2.2 The Algorithm

Algorithm 3 gives a (non-deterministic) decision procedure to solve the ADP-satis-

fiability problem. Without loss of generality (cf. Subsection 4.2.1), we assume that

L contains only flat literals.
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Algorithm 3 The (extensible) decision procedure for ADP

Require: L set of flat literals
T←− {A,P}

1: procedure DPADP(L)
2: LE ← E-instantiation(L)
3: for all LG ∈ G-instantiation(LE ) do
4: if

∧

T∈T

(
DPT (LG

T ) = “satisfiable”
)

then
5: return “satisfiable”
6: end if
7: end for
8: return “unsatisfiable”
9: end procedure

The function DPT , for T ∈ {ADP,A,P}, denotes a decision procedure to solve

the T -satisfiability problem, i.e. DPT takes a set L of literals over (a simple expansion

of) the signature ΣT and returns “satisfiable” when L is T -satisfiable; “unsatisfi-

able”, otherwise. If L is a set of flat literals, then

LT := {ℓ | ℓ ∈ L is a Σ
a
T -literal},

where T ∈ {A,P}. So, for example, LG
P is the subset of the literals in LG over a

simple expansion of the signature ΣP (for the sake of readability, when it is clear

from the context, the term “simple expansion” will be omitted). The set T in

Algorithm 3 contains the names of the theories for which a decision procedure for

the T -satisfiability problem is assumed available.

Let L be a set of flat literals over the signature ΣADP to be checked for ADP-

satisfiability. The decision procedure DPADP first computes the E-instantiation LE of

L (recall from Lemma 4.2.3 that this can be done in linear time). Then, it enumerates

all possible G-instantiations (cf. the for each loop in Algorithm 3). If it is capable

of finding a G-instantiation LG such that its literals in LG
P over the signature ΣP

are P-satisfiable and its literals in LG
A over the signature ΣA are A-satisfiable, then

DPADP returns the ADP-satisfiability of the input set L of literals. Otherwise, if

all possible G-instantiations are enumerated and the test of the conditional in the

body of the loop always fails, DPADP returns the ADP-unsatisfiability of the input

set L of literals.

Theorem 4.2.6. The constraint satisfiability problem for ADP is NP-complete.

The proof is based on the following considerations: (i) the constraint satisfia-
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bility problem for the theory of Presburger Arithmetic reduces to the Integer Lin-

ear Programming problem; (ii) both Integer Linear Programming and constraint

satisfiability for the theory of array are known to be NP-complete problems (see,

e.g., Schrijver, 1986; Stump et al., 2001 respectively); (iii) the size of the E- and

G-instantiation closed set is polynomially bounded with respect to the size of the

original constraint. From (i) and (ii) it follows the NP-hardness of the problem,

whereas from (iii) and the correctness of DPADP (Theorem 4.2.8) it follows that the

problem is in NP, hence the thesis.

4.2.3 Correctness of the Procedure

The termination of DPADP is obvious, since the computation of LE terminates (cf.

Lemma 4.2.3) and there are only finitely many possible sets LG to be considered in

the for each loop of Algorithm 3 (cf. Lemma 4.2.5).

The soundness and completeness of DPADP are consequences of the following

combination lemma:

Lemma 4.2.7 (Combination). Let L be an E- and G-instantiation closed set. Then

the following conditions are equivalent:

(i) L is satisfiable in a standard model of ADP;

(ii) L is ADP-satisfiable;

(iii) LA is A-satisfiable and LP is P-satisfiable.

Proof. Since the implications (i) ⇒ (ii) ⇒ (iii) are trivial, it is sufficient to show

that (iii) ⇒ (i) to conclude the proof.

Let M′ be a structure such that M′ |= A∪ LA and N be a structure such that

N |= P ∪LP . Since P is complete, we are entitled to assume that N is the standard

structure of natural numbers N. We are now ready to build a standard model M

for ADP ∪ L out of M′ as follows. We take elemM to be elemM′
and ⊥M to be

⊥M′
; the free constants occurring in L are interpreted as follows:

(A) for each constant i : index occurring in LP , let iM := iN ;

(B) for each constant e : elem occurring in LA, let eM := eM
′
;
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(C) for each constant a : array occurring in LA, we define aM to be the sequence

{en} such that

en :=







select(a, i)M
′

if n = iM for some i occurring in LP ,

⊥M otherwise.

The construction in (C) is well-defined; indeed, if two constants i1 and i2 of sort

index occurring in LP are interpreted into the same element in M, then iN1 = iN2 ;

since L is G-instantiation closed, the atom i1 = i2 is in LP (and hence in LA) and

so M′ |= select(a, i1) = select(a, i2).

Now, we show that for each ℓ ∈ L, we have M |= ℓ. This is obvious for ℓ ∈ LP

and for ℓ of the form e1 = e2 or e1 6= e2, with e1, e2 : elem. We are left to consider

the following cases depending on the form of ℓ:

(i) select(a, i) = e. M |= ℓ because of (A), (B) and (C);

(ii) a1 = a2, with a1, a2 : array. M |= ℓ because aM
′

1 = aM
′

2 , so select(a1, i)
M′

=

select(a2, i)
M′

for each constant i : index occurring in LP . Hence, aM1 = aM2
by (C);

(iii) store(a1, i, e) = a2. M |= ℓ by considering an argument similar to that used

for case (ii);

(iv) a1 6= a2, with a1, a2 : array. M |= ℓ since

{select(a1, i) = e1, select(a2, i) = e2, e1 6= e2} ⊆ LA

by Definition 4.2.2 of E-instantiation closed set of literals and M′ |= LA and

hence select(a1, i)
M 6= select(a2, i)

M because of (i). As a consequence, we have

aM1 6= aM2 .

(v) dim(a) = i. We consider two sub-cases, according to Definition 4.2.4(2):

– if i = 0 ∈ LP or i ≡ 0, then it is sufficient to prove that for each integer

n, en is equal to ⊥M where {en} = aM. If n = jM for some constant

j : index such that

{i < j} ⊆ LP or {i = j} ⊆ LP ,
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then, since L is G-instantiation closed, select(a, j) = ⊥ ∈ LA hence en =

⊥M by (C); otherwise, en = ⊥M by (C).

– if i 6= 0 ∈ LP , then for each integer n ≥ iM, en = ⊥M by a similar

argument to the one used for the previous sub-case. In fact, we observe

that since L is G-instantiation closed, s(j) = i is in LP for some constant

j : index, and both select(a, j) = e and e 6= ⊥ must also be in LA,

therefore the thesis follows from (B), (C) and (i).

Now, we are able to state and prove the correctness of DPADP .

Theorem 4.2.8. DPADP is a decision procedure for the ADP-satisfiability problem,

i.e. for any set L of flat literals, L is ADP-satisfiable if and only if DPADP(L)

returns “satisfiable”. Furthermore, DPADP decides the satisfiability problem in the

standard models of ADP.

Proof. If L is ADP-satisfiable, then it is obvious that DPADP(L) returns “satisfi-

able”. We are left with the task of proving that the converse holds. We will prove

that when DPADP(L) returns “satisfiable”, then L is satisfiable in a standard model

ofADP. If DPADP(L) returns “satisfiable”, then DPADP has found a G-instantiation

LG of LE at some iteration of the for each loop in Algorithm 3. The set LG is such

that

LG
A is A-satisfiable and LG

P is P-satisfiable.

From these two facts, the existence of a standard ADP-model of LG immediately

follows by using Lemma 4.2.7 above.

4.3 Extensions of the Theory of Arrays with Dimension

We now show the decidability of the constraint satisfiability problem for some in-

teresting extensions of ADP.

As observed in McPeak and Necula (2005), certain properties of pointer-based

data structures, such as no-aliasing, can be specified by using first-order axioms.

The first extension of ADP is obtained by adding an axiom recognizing injective

arrays (which, according to McPeak and Necula, 2005, may characterize memory

configurations where pointers satisfy the no-aliasing property) and then showing

how to extend the decision procedure for ADP by an instantiation strategy so as
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to consider enough (ground) instances of the injectivity axiom. We notice that the

decidability of a similar problem in Bradley et al. (2006) was left open and finally

stated as undecidable in Bradley (2007): we are capable of deriving a decidability

result since we use a richer theory that identifies a more restricted class of models.

The second extension of ADP we consider is again motivated by applications in

program verification. As already observed in Reynolds (1979), it is quite helpful to

regard arrays as functions equipped with an operator to compute their domains. This

is used, for example, to define the semantics of separating connectives (supporting

local reasoning) in Separation Logic (see Reynolds, 2002). So, we extend ADP with

a set of axioms characterizing a function which, given an array a, returns the domain

D of a, i.e. D is a set of indexes such that select(a, i) 6= ⊥ for i in D. We regard this

as a first step in the direction of providing automatic support for Separation Logic

by decision procedures developed in first-order logic.

The section concludes taking into account some other interesting extensions,

which exemplify the flexibility of our approach and are all relevant for applications

as discussed in, e.g., Bradley et al. (2006).

4.3.1 Injective Arrays

We extend the (empty) set of predicate symbols in ADP by the unary predicate

symbol Inj : array which, intuitively, recognizes injective arrays, i.e. arrays con-

taining unique elements, with the exception of the undefined element ⊥. To formalize

the intuitive meaning of Inj, we extend the set of axioms of ADP by the following

definition:

Inj(a) ↔ ∀i, j(select(a, i) = select(a, j)→ i = j ∨ select(a, i) = ⊥) (4.14)

where a is an implicitly universally quantified variable of sort array. Let ADP inj be

the theory obtained by extendingADP with axiom (4.14). Notice that, since the new

predicate Inj has an explicit definition in the theory ADP inj, every model for ADP

extends uniquely to a model for ADP inj (see, e.g., van Dalen, 1989). Furthermore,

standard models of ADP inj will be those models of ADP inj whose reduct is a standard

model of ADP.

In order to obtain a decision procedure for ADP inj, it is necessary to find suit-

able extensions of Definitions 4.2.2 and 4.2.4 so that enough instances of (4.14)

are considered and the results of the available decision procedures for A and P are
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conclusive about the satisfiability of the original constraint in the extended theory.

We formalize the meaning of “enough instances” for this extension of ADP in the

following two definitions.

Definition 4.3.1 (Einj-instantiation closed set of literals). A set L of ground flat

literals is Einj-instantiation closed if and only if L is E-instantiation closed (cf. Defi-

nition 4.2.2) and the following condition is satisfied:

1. if ¬Inj(a) ∈ L, then {select(a, i) = e, select(a, j) = e, i < j, e 6= ⊥} ⊆ L for

some constants e : elem, i, j : index.

Definition 4.3.2 (Ginj-instantiation closed set of literals). A set L of ground flat

literals is Ginj-instantiation closed if and only if L is G-instantiation closed (cf. Def-

inition 4.2.4) and the following conditions are satisfied:

1. if Inj(a) ∈ L then, for each constant i of sort index occurring in L, select(a, i) =

⊥ ∈ L or {select(a, i) = e, e 6= ⊥} ⊆ L for some constant e : elem;

2. if {Inj(a), i < j, select(a, i) = e1, select(a, j) = e2, e1 6= ⊥, e2 6= ⊥} ⊆ L, then

e1 6= e2 ∈ L.

Lemmas 4.2.3 and 4.2.5 can be easily adapted to the theory ADP inj, taking

into consideration the additional requirements of Definitions 4.3.1 and 4.3.2. A

decision procedure DPADP inj
for ADP inj can be obtained from DPADP by replacing

the modules for E- and G-instantiation in Figure 4.1 with those taking into account

Definitions 4.3.1 and 4.3.2. We are now ready to state and prove the correctness of

DPADP inj
.

Theorem 4.3.3. DPADP inj
is a decision procedure for the ADP inj-satisfiability prob-

lem. Furthermore, DPADP inj
decides the constraint satisfiability problem in the stan-

dard models of ADP inj.

Proof. Soundness is trivial. Regarding the key point for completeness, suppose we

are given an Einj- and a Ginj-instantiation closed finite set of literals

L = LADP ∪ Linj

(here Linj is the set of literals from L involving the predicate Inj) such that LA

is A-consistent and LP is P-consistent. The construction of Lemma 4.2.7 yields a

standard modelM of ADP satisfying LADP . We are left to prove that the expansion
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of M to a model of ADP inj is a model of Linj. But this is easy by Definitions 4.3.1

and 4.3.2.

4.3.2 Arrays with Domain

We equip arrays with a function computing their domain, i.e. the set of indexes

at which they store “defined” values, i.e. values distinct from ⊥. To this end, we

need to formalize a very simple theory of sets of indexes, which is a straightforward

extension of that used in Armando et al. (2003). Let S∅ be the theory whose sort

symbols are bool and set, whose function symbols are true, false : bool, ∅ : set,

mem : index × set → bool, ins : index × set → set, and whose axioms are the

following:

mem(i, ∅) = false (4.15)

mem(i, ins(i, s)) = true (4.16)

i1 6= i2 → mem(i1, ins(i2, s)) = mem(i1, s) (4.17)

true 6= false ∧ ∀x : bool (x = true ∨ x = false) (4.18)

where i, i1, i2 are implicitly universally quantified variables of sort index and s is

an implicitly universally quantified variable of sort set. Moreover, we will call S∅−
the theory given by the axioms (4.15), (4.16), and (4.17).

Intuitively, ∅ denotes the empty set, mem is the test for membership of an index

to a set, ins adds an index to a set if it is not already in the set. The constants true and

false allow us to encode the membership predicate with the Boolean valued function

mem. It is possible to use Lemma 4.4.2 below to see that the constraint satisfiability

problem for S∅ is decidable (by Superposition Calculus).2 Hence, from now on,

we consider the availability of a decision procedure for the constraint satisfiability

problem of S∅ in addition to those for A and P.

Since we want to be able to compare sets by using the membership predicate

mem, we need to consider the theory S∅e obtained from S∅ by adding the following

2Indeed, given a Σ
a

S∅
-constraint L, we produce the set of clauses I⋆

L by instantiating the axiom

(4.18) to each constant of sort bool occurring in L; clearly S∅∪L and S∅
−∪I⋆

L∪L are equisatisfiable.
A straightforward inspection of the clauses produced in the saturation process given in the proof of
Lemma 4.4.2 allows to conclude that SP terminates on S∅

− ∪ I⋆
L ∪ L, hence the decidability result

obtains.
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axiom of extensionality for sets:

∀i(mem(i, s1) = mem(i, s2))→ s1 = s2 (4.19)

where s1, s2 are implicitly universally quantified variables of sort set. The standard

models of the theory S∅e are the models in which the sort set is interpreted as the set

of (characteristic functions of) finite subsets of the interpretation of the sort index.

We are now in the position to give a precise definition of the extension of ADP

by the domain function for arrays. Let ADPdom be the theory obtained by extending

the (disjoint) union of ADP with S∅e by the function symbol dom : array → set

together with the following axiom:

select(a, i) = ⊥ ↔ mem(i, dom(a)) = false (4.20)

where i and a are implicitly universally quantified variables of sort index and array,

respectively. Again, notice that a standard model of ADP ∪S∅e can be expanded in

a unique way to a model (called standard as well) of ADPdom.

In order to obtain a decision procedure for the constraint satisfiability problem

of ADPdom, it is necessary to find suitable extensions of Definitions 4.2.2 and 4.2.4

so that enough instances of axioms (4.19) and (4.20) are considered and the results

of the available decision procedures for the constraint satisfiability problems of A,

P, and S∅ are conclusive about the satisfiability of the original constraint in the

extended theory. We formalize the meaning of “enough instances” for axioms (4.19)

and (4.20) in the following definitions.

Definition 4.3.4 (Eset-instantiation closed set of literals). A set L of ground flat

literals is Eset-instantiation closed if and only if L is E-instantiation closed (cf. Def-

inition 4.2.2) and the following condition is satisfied:

1. if s1 6= s2 ∈ L, with s1, s2 constants of sort set, then {mem(i, s1) = b1,

mem(i, s2) = b2, b1 6= b2} ⊆ L for some constants b1, b2 : bool, i : index.

Definition 4.3.5 (Gdom-instantiation closed set of literals). A set L of ground flat

literals is Gdom-instantiation closed if and only if L is G-instantiation closed (cf.

Definition 4.2.4) and the following conditions are satisfied:

1. if a literal of the kind dom(a) = sa belongs to L, then for each constant i of

sort index occurring in L, select(a, i) = ⊥ ∈ L or {select(a, i) = e, e 6= ⊥} ⊆ L

for some constant e : elem;
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2. if {select(a, i) = ⊥, dom(a) = sa} ⊆ L then {mem(i, sa) = b, b 6= true} ⊆ L for

some constant b : bool; otherwise, if {select(a, i) = e, e 6= ⊥, dom(a) = sa} ⊆

L then mem(i, sa) = true ∈ L;

Lemmas 4.2.3 and 4.2.5 can be easily adapted to the theory ADPdom. The

decision procedure DPADPdom
for the theory ADPdom is obtained from DPADP by

(i) replacing the modules for E- and G-instantiation in Figure 4.1 with those taking

into account Definitions 4.3.4 and 4.3.5 and by (ii) adding the decision procedure

for S∅ to the set of decision procedures available to the schema in Algorithm 3, i.e.

by setting T to {A,P,S∅}.

Theorem 4.3.6. DPADPdom
is a decision procedure for the ADPdom-satisfiability

problem. Furthermore, DPADPdom
decides the satisfiability problem in the standard

models of ADPdom.

Since the arguments used in the proof of the theorem above are quite similar to

the ones used in Theorem 4.2.8, we omit the proof.

4.3.3 Further Extensions of ADP

To show the flexibility of our approach, we consider here some further extensions of

ADP whose satisfiability problem can be checked by augmenting the decision proce-

dure of Section 4.2 with suitable instantiation strategies. The extensions considered

below are all relevant for applications as discussed, e.g., in Bradley et al. (2006). It

is remarkable that the decision procedures for the constraint satisfiability problem

for the various extensions considered below can simply be obtained by modifying

the modules for E-instantiation and G-instantiation in Figure 4.1.

Prefixes

We consider the new binary predicate symbol ⊑: array × array and we extend

the set of axioms of ADP by adding the following sentence:

a ⊑ b ↔ ∀i(i < dim(a)→ select(a, i) = select(b, i)) (4.21)

where i is a variable of sort index, a and b are implicitly universally quantified

variables of sort array. We denote the extended theory with ADPpfx. Intuitively,

a is a prefix of b whenever a ⊑ b holds.



4.3. Extensions of the Theory of Arrays with Dimension 125

In order to obtain a decision procedure for the ADPpfx-satisfiability problem, we

need to extend the definitions of E- and G-instantiation closed sets of literals.

Definition 4.3.7 (Epfx-instantiation closed set of literals). A set L of ground flat

literals is Epfx-instantiation closed if and only if L is E-instantiation closed (cf. Def-

inition 4.2.2) and the following conditions are satisfied:

1. if a 6⊑ b ∈ L, then {select(a, i) = e1, select(b, i) = e2, e1 6= e2, i < da, da =

dim(a)} ⊆ L for some constants i, da : index, e1, e2 : elem;

2. if a ⊑ b ∈ L, then da = dim(a) ∈ L for some constant da : index.

Definition 4.3.8 (Gpfx-instantiation closed set of literals). A set L of ground flat

literals is Gpfx-instantiation closed if and only if L is G-instantiation closed (cf. Def-

inition 4.2.4) and the following condition is satisfied:

1. if {a ⊑ b, i < da, da = dim(a)} ⊆ L then {select(a, i) = e, select(b, i) = e} ⊆ L

for some constant e : elem.

A decision procedure DPADPpfx
for the constraint satisfiability problem ofADPpfx

can be obtained from DPADP by simply replacing the modules for E-instantiation

and G-instantiation in Figure 4.1 with those taking into account Definitions 4.3.7

and 4.3.8 above.

The soundness and completeness of DPADPpfx
are obtained with arguments which

are similar to that for injective arrays in Subsection 4.3.1. As a consequence, here

we only state the main result without providing proofs.

Theorem 4.3.9. DPADPpfx
is a decision procedure for the ADPpfx-satisfiability prob-

lem. Furthermore, DPADPpfx
decides the satisfiability problem in the standard models

of ADPpfx.

Iterators

We consider two finite sets {mapf 1, . . . ,mapf n} and {f1, . . . , fn} of fresh unary

function symbols such that mapf k : array → array and fk : elem → elem

(k ∈ {1, . . . , n}). We extend the set of axioms of ADP by adding a finite number of

sentences of the following form:

select(mapf k(a), i) = fk(select(a, i)) (4.22)

fk(⊥) = ⊥, (4.23)
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where i and a are implicitly universally quantified variables of sort index and ar-

ray, respectively (k ∈ {1, . . . , n}). We denote the extended theory with ADPmap.

Intuitively, mapf k(a) can be seen as an application of the higher-order function map,

which is routinely used in many functional languages, such as ML or Haskell, i.e.

mapf k(a) is equivalent to (map fk a).

In order to obtain a decision procedure for the ADPmap-satisfiability problem,

we need to extend the definition of of E-instantiation closed set of literals.

Definition 4.3.10 (Gmap-instantiation closed set of literals). A set L of ground

flat literals is Gpfx-instantiation closed if and only if L is G-instantiation closed (cf.

Definition 4.2.4) and the following conditions are satisfied:

1. if b = mapf k(a) ∈ L, then {select(a, i) = e1, fk(e1) = e2, select(b, i) = e2} ⊆ L

for some constants e1, e2 : elem;

2. fk(⊥) = ⊥ ∈ L (k ∈ {1, . . . , n}).

A decision procedure DPADPmap for ADPmap can be obtained from DPADP by re-

placing the module for G-instantiation in Figure 4.1 with that taking into account the

Definition 4.3.10 above and by extending the decision procedure for A-satisfiability

to cope with the uninterpreted function symbols fk’s which have been added to the

signature of ADP. This latter modification can be obtained for free in the rewriting-

based approach to satisfiability procedures (as explained in Armando et al., 2003) or

by combining à la Nelson-Oppen (see Nelson and Oppen, 1979; Tinelli and Harandi,

1996) the decision procedure for A with one for the theory of equality (see, e.g.,

Nelson and Oppen, 1980).

The soundness and completeness of DPADPmap are obtained with arguments

which are similar to that for injective arrays in Subsection 4.3.1. As a consequence,

here we only state the main result without providing proofs.

Theorem 4.3.11. DPADPmap
is a decision procedure for the ADPmap-satisfiability

problem. Furthermore, DPADPmap
decides the satisfiability problem in the standard

models of ADPmap.

Sorting

We consider the new binary predicate symbol �: elem × elem and we extend

the axioms of ADP by adding sentences stating that � is a total order over the

sort elem. We also add the unary predicate symbol Sorted over the sort array,
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recognizing those arrays which are sorted in ascending order according to the total

order � (with the exception of ⊥ element). We also extend the set of axioms by

adding the following sentence:

Sorted(a)↔ ∀i, j
(

i < j →






select(a, i) � select(a, j) ∨

select(a, i) = ⊥ ∨

select(a, j) = ⊥






)

(4.24)

where a is an implicitly universally quantified variable of sort array.

In order to obtain a decision procedure for the ADPord-satisfiability problem, we

need to extend the definitions of E- and G-instantiation closed sets of literals.

Definition 4.3.12 (Eord-instantiation closed set of literals). A set L of ground flat

literals is Eord-instantiation closed if and only if L is E-instantiation closed (cf. Def-

inition 4.2.2) and the following condition is satisfied:

1. if ¬Sorted(a) ∈ L, then {select(a, i) = e1, select(a, j) = e2, e1 6= ⊥, e2 6= ⊥, i <

j, e1 6� e2} ⊆ L for some constants e1, e2 : elem, i, j : index.

Definition 4.3.13 (Gord-instantiation closed set of literals). A set L of ground

flat literals is Gord-instantiation closed if and only if L is G-instantiation closed (cf.

Definition 4.2.4) and the following conditions are satisfied:

1. if Sorted(a) ∈ L then, for each constant i of sort index occurring in L,

select(a, i) = ⊥ ∈ L or {select(a, i) = e, e 6= ⊥} ⊆ L for some constant

e : elem;

2. if {Sorted(a), select(a, i) = e1, select(a, j) = e2, i < j, e1 6= ⊥, e2 6= ⊥} ⊆ L,

then e1 � e2 ∈ L.

A decision procedure DPADPord
for ADPord can be obtained from DPADP by

replacing the modules for E- and G-instantiation in Figure 4.1 with those taking

into account the Definitions 4.3.12 and 4.3.13 above and by replacing the decision

procedure for A with a decision procedure obtained by combining à la Nelson-Oppen

(see Nelson and Oppen, 1979; Tinelli and Harandi, 1996) the decision procedure for

A with one for the theory of total order (see, e.g., Bjørner et al., 1997).

The soundness and completeness of DPADPord
are obtained with arguments which

are similar to that for injective arrays in Subsection 4.3.1. As a consequence, here

we only state the main result without providing proofs.
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Theorem 4.3.14. DPADPord
is a decision procedure for the ADPord-satisfiability

problem. Furthermore, DPADPord
decides the satisfiability problem in the standard

models of ADPord.

All the extensions considered above can be combined together in order to obtain

a decidable fragment which is very expressive and able to cope with many properties

of interest for the field of software verification.

4.4 Implementation Issues

The following section is devoted to address some of the problems arising in the im-

plementation of the procedures presented above. The key issue is how to efficiently

handle the non-determinism introduced by the various G-instantiation modules con-

sidered above (cf. Definitions 4.2.4, 4.3.2 and 4.3.5). An ad hoc solution to this

problem for the theory of arrays with domains will be given by using the rewriting-

approach to build satisfiability procedures. Unfortunately, this solution is not gen-

eral since, for example, the theory of arrays augmented with the injective axiom

does not seem to be amenable to such an approach without resorting to suitable ex-

tensions of the calculus to handle cancellation axioms (see, e.g., Rusinowitch, 1989)

which are not implemented in state-of-the-art provers. A more general solution,

relying on the use of Satisfiability Modulo Theories solvers will then be described

which is capable of coping with all the extensions considered above.

4.4.1 A Rewriting-based Procedure for ADPdom

An alternative to the model-theoretic approach described in Subsection 4.3.2 is rep-

resented by the rewriting-approach to satisfiability procedures described in Armando

et al. (2003), which allows us to better handle the non-determinism introduced by

the guessing. In fact, we can use the Superposition Calculus (from now on denoted

by SP , see Nieuwenhuis and Rubio, 2001 and also the Appendix for a very brief

overview) to build a decision procedure for the constraint satisfiability problem in

the union of the theories Ae and S∅e extended with axiom (4.20). Such a procedure

is then combined with a decision procedure for the constraint satisfiability problem

in P to build a decision procedure for ADPdom.

In Armando et al. (2003), it is shown how to use SP to build decision procedures

for the constraint satisfiability problem of theories axiomatized by a finite set of first-

order clauses. The key observation is that, in order to show that SP is a decision
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procedure, it is sufficient to prove that SP terminates on the set of clauses obtained

by the union of the axioms of the theory and an arbitrary set of ground and flat

literals. According to Armando et al. (2003), SP terminates also for some of the

theories considered in this chapter, e.g., A and S∅− (when considered in isolation).

Modularity results in Armando et al. (2007) allow us to conclude that SP also

terminates for the union A ∪ S∅−. Unfortunately, this is not enough since our goal

is to build a decision procedure for the ADPdom-satisfiability problem whose set of

axioms also contains (4.18) and (4.20).

As a preliminary step to applying SP , we need to partially instantiate axioms

(4.18) and (4.20) with the constants of sort array and bool occurring in L. This

is so because SP does not seem to terminate on theories axiomatizing enumerated

datatypes such as the Booleans (see Bonacina et al., 2006 for a discussion on this

point).

Definition 4.4.1. Let L be a set of ground and flat ΣAe∪S∅-literals; we define IL

to be the following set of (partial) instances of axioms (4.18) and (4.20):

select(a, x) 6= ⊥ ∨mem(x, dom(a)) 6= true

select(a, x) = ⊥ ∨mem(x, dom(a)) = true

b = true ∨ b = false

true 6= false

for each dom(a) = s in L and for each constant b : bool occurring in L.

Along the lines of Armando et al. (2003), to build a decision procedure for the

ADPdom-satisfiability problem it is necessary to show that SP terminates on the

class of clauses obtained by the union of ground flat literals and the axioms which

have not been completely instantiated, namely those in A, S∅−, and those in IL.

Lemma 4.4.2. SP terminates on A∪ S∅− ∪ IL ∪ L for every finite set L of ground

and flat ΣA∪S∅-literals.

Proof. Let L be a set of ground and flat ΣA∪S∅-literals. The clauses in the saturation

of A∪ S∅− ∪ IL ∪ L by SP can only be of type

i) the empty clause;

ii) the clauses in A, i.e.
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a) select(store(x, y, z), y) = z;

b) select(store(x, y, z), w) = select(x,w) ∨ y = w;

iii) clauses of the following kind (n,m ≥ 0):

a) select(a, x) = select(a′, x) ∨ x = i1 ∨ · · · ∨ x = in ∨ j1 ⊲⊳ j
′
1 ∨ · · · ∨ jm ⊲⊳ j′m;

b) select(a, i) = e ∨ j1 ⊲⊳ j
′
1 ∨ · · · ∨ jm ⊲⊳ j′m;

c) store(a, i, e) = a′ ∨ j1 ⊲⊳ j
′
1 ∨ · · · ∨ jm ⊲⊳ j′m;

d) a ⊲⊳ a′ ∨ j1 ⊲⊳ j
′
1 ∨ · · · ∨ jm ⊲⊳ j′m;

e) e ⊲⊳ e′ ∨ j1 ⊲⊳ j
′
1 ∨ · · · ∨ jm ⊲⊳ j′m;

f) j1 ⊲⊳ j
′
1 ∨ · · · ∨ jm ⊲⊳ j′m;

derived by considering only A ∪ L, or of type

i’) the empty clause;

ii’) the clauses in S∅−, i.e.

a) mem(x, ins(x, z)) = true;

b) mem(x, ins(y, z)) = mem(x, z) ∨ x = y;

c) mem(x, ∅)) 6= true;

iii’) clauses of the following kind (n,m ≥ 0):

a) mem(x, s) = mem(x, s′) ∨ x = i1 ∨ · · · ∨ x = in ∨ j1 ⊲⊳ j
′
1 ∨ · · · ∨ jm ⊲⊳ j′m;

b) mem(i, s) = b ∨ j1 ⊲⊳ j
′
1 ∨ · · · ∨ jm ⊲⊳ j′m;

c) ins(i, s) = s′ ∨ j1 ⊲⊳ j
′
1 ∨ · · · ∨ jm ⊲⊳ j′m;

d) s ⊲⊳ s′ ∨ j1 ⊲⊳ j
′
1 ∨ · · · ∨ jm ⊲⊳ j′m;

e) b ⊲⊳ b′ ∨ j1 ⊲⊳ j
′
1 ∨ · · · ∨ jm ⊲⊳ j′m;

f) j1 ⊲⊳ j
′
1 ∨ · · · ∨ jm ⊲⊳ j′m;

derived by considering only S∅− ∪ L, or of type

iv) clauses in IL and constraint involving the function dom:

a) select(a, x) 6= ⊥∨mem(x, dom(a)) 6= true;

b) select(a, x) = ⊥∨mem(x, dom(a)) = true;
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c) b = true ∨ b = false;

d) false 6= true;

e) dom(a) = s.

v) non-unit clauses:

a) select(a, x) 6= ⊥∨mem(x, t) 6= true∨x = i1∨· · ·∨x = in∨j1 ⊲⊳ j
′
1∨· · ·∨jm ⊲⊳

j′m where t is either s or dom(a′);

b) select(a, x) = ⊥∨mem(x, t) = true∨x = i1∨· · ·∨x = in∨j1 ⊲⊳ j
′
1∨· · ·∨jm ⊲⊳

j′m where t is either s or dom(a′);

c) mem(x, t1) 6= true ∨ mem(x, t2) = true ∨ x = i1 ∨ · · · ∨ x = in ∨ j1 ⊲⊳

j′1 ∨ · · · ∨ jm ⊲⊳ j′m where ti is either si or dom(ai);

d) select(a, x) 6= ⊥∨select(a′, x) = ⊥∨x = i1∨· · ·∨x = in∨j1 ⊲⊳ j
′
1∨· · ·∨jm ⊲⊳

j′m;

vi) non-unit ground clauses:

a) t1 6= ⊥∨ t2 6= true∨ j1 ⊲⊳ j
′
1∨· · ·∨ jm ⊲⊳ j′m where t1 is either e or select(a, i)

and t2 is b or mem(i, s) or mem(i, dom(a));

b) t1 = ⊥∨ t2 = true∨ j1 ⊲⊳ j
′
1∨· · ·∨ jm ⊲⊳ j′m where t1 is either e or select(a, i)

and t2 is b or mem(i, s) or mem(i, dom(a));

c) t1 6= true ∨ t2 = true ∨ j1 ⊲⊳ j
′
1 ∨ · · · ∨ jm ⊲⊳ j′m where tk is bk or mem(i, sk)

or mem(i, dom(ak));

d) t1 6= ⊥∨t2 = ⊥∨j1 ⊲⊳ j
′
1∨· · ·∨jm ⊲⊳ j′m where tk is either ek or select(ak, i);

e) e 6= ⊥ ∨ b = true ∨ j1 ⊲⊳ j
′
1 ∨ · · · ∨ jm ⊲⊳ j′m;

f) e1 6= ⊥ ∨ e2 6= ⊥ ∨ j1 ⊲⊳ j
′
1 ∨ · · · ∨ jm ⊲⊳ j′m;

g) b1 ⊲⊳ v1 ∨ b2 ⊲⊳ v2 ∨ false = true ∨ · · · ∨ false = true
︸ ︷︷ ︸

k times

∨j1 ⊲⊳ j
′
1 ∨ · · · ∨ jm ⊲⊳ j′m

where v1, v2 ∈ {true, false} and k ≤ 16N2 (N is the number of constant

symbols of sort bool);

h) dom(a) = s ∨ j1 ⊲⊳ j
′
1 ∨ · · · ∨ jm ⊲⊳ j′m.

derived by considering the instances of axioms (4.18) and (4.20) in IL.

In fact, by termination results in Armando et al. (2003), the clauses that can be

generated by the exhaustive application of the rules of SP to A ∪ L and to S∅− ∪ L
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can only be of type i) - iii) and i’) - iii’), respectively.3 It is clear that no more clauses

will be generated by the saturation process between clauses of the kind (i),(ii),(iii)

and (i’),(ii’),(iii’).

Let us consider the clauses of type iv), i.e. instances of the axioms (4.18) and

(4.20) and constraints involving the function dom. The superposition calculus can

only generate clauses of types v) and vi) as shown below:

– Inferences between a clause in iv) and a clause in ii) or iii): inferences between

iv.a) and iii.a), iii.b), iii.d) give clauses respectively in v.a), vi.a), and v.a);

inferences between iv.b) and iii.a), iii.b), iii.d) give clauses respectively in v.b),

vi.b), and v.b); inferences between iv.e) and iii.d) give a clause in vi.h).

– Inferences between a clause in iv) and a clause in ii’) or iii’): inferences be-

tween iv.c) and iii’.e) give a clause in vi.g); inferences between iv.d) and iii’.e)

give a clause in iii’.f): in fact, because of the ordering, the literal b ⊲⊳ b′ in

iii’.e) have to be equal to false = true, thus the inference would give a clause

of the kind true 6= true ∨ j1 ⊲⊳ j
′
1 ∨ · · · ∨ jm ⊲⊳ j′m which will be immediately

simplified by the Deletion rule into a clause of the kind iii’.f) because of the

chosen strategy.

– Inferences between a clause in iv) and a clause in iv): inferences between iv.a)

and iv.b) give a clause in v.c) or v.d) (depending on the chosen ordering on

the function symbols); inferences between iv.e) and iv.a), iv.b) give a clause

in v.a) and v.b) respectively; inferences between iv.e) and itself give a clause

in iii’.d).4

– Inferences between a clause in iv) and a clause in v): inferences between iv.a)

and v.b), v.c), v.d) give clauses respectively in v.c) or v.d) (again depending

on the chosen ordering on the function symbols), v.a), and v.a); inferences

between iv.b) and v.a), v.c), v.d) give clauses respectively in v.c) or v.d), v.b),

and v.b); inferences between iv.e) and v) give clauses which are still in v).

– Inferences between a clause in iv) and a clause in vi): inferences between

iv.a) and vi.b), vi.c), vi.d), iv.f) give clauses respectively in vi.c) or vi.d),

vi.a), vi.a), and vi.a); inferences between iv.b) and vi.a), vi.c), vi.d), vi.h)

3It is easy to see that the saturation with the clause ii’.c) do not generate any additional clause
since ∅ is minimal in the chosen precedence.

4Notice that no inference between iv.c) and iv.d) can occur because, if so, the constant b should
be equal to false, thus the clause iv.c) would have already been removed by the Deletion rule.



4.4. Implementation Issues 133

give clauses respectively in vi.c) or vi.d), vi.b), vi.b), and vi.b); inferences

between iv.c) and vi.c) give clauses which are in vi.g) (in this case, t1, t2 have

to be constant symbols); inferences between iv.c) and vi.g) give clauses which

are still in vi.g); inferences between iv.d) and vi.g) give clauses in vi.g) or

iii’.e): in fact, if an inference between iv.d) and vi.g) occur, then, because

of the ordering, vi.g) have to be a clause of the kind false = true ∨ false =

true ∨ · · · ∨ j1 ⊲⊳ j
′
1 ∨ · · · ∨ jm ⊲⊳ j′m, thus a clause with one less occurrence of

the literal false = true will be produced (see inferences between iv.d) and iii’.e)

above); inferences between iv.e) and vi) give clauses which are still in vi).5

– Inferences between a clause in v) and a clause in ii) or iii): inferences between

v.a) and iii.a), iii.b), iii.d) give clauses respectively in v.a), vi.a), and v.a);

inferences between v.b) and iii.a), iii.b), iii.d) give clauses respectively in v.b),

vi.b), and v.b); inferences between clauses in v.d) and iii.a), iii.b), iii.d) give

clauses respectively in v.d), vi.d), and v.d).

– Inferences between a clause in v) and a clause in ii’) or iii’): inferences between

v.a) and iii’.a), iii’.b), iii’.d) give clauses respectively in v.a), vi.a), and v.a);

inferences between v.b) and iii’.a), iii’.b), iii’.d) give clauses respectively in v.b),

vi.b), and v.b); inferences between v.c) and iii’.a), iii’.b), iii’.d) give clauses

respectively in v.c), vi.c), and v.c).

– Inferences between a clause in v) and a clause in v): all the clauses produced

are still in v).

– Inferences between a clause in v) and a clause in vi): inferences between v)

and vi.h) give clauses in v); all other inferences still give clauses in vi).

– Inferences between a clause in vi) and a clause in ii) or iii): inferences between

vi.a) and iii.a), iii.b), iii.d), iii.e) give clauses in vi.a); inferences between vi.b)

and iii.a), iii.b), iii.d) give clauses in vi.b); inferences between vi.b) and iii.e)

give clauses in vi.b) or in vi.e) depending of the sign of the literal e ⊲⊳ e′ in

iii.e) (notice that if e = ⊥ is maximal in vi.b), then t2 have to be a constant

of sort bool); inferences between vi.d) and iii.a), iii.b), iii.d) give clauses in

vi.d); inferences between vi.d) and iii.e) give clauses in vi.d) or in vi.f) again

depending of the sign of the literal e1 ⊲⊳ e2 in iii.e); inferences between vi.e)

5Notice that no inference can occur between iv.d) and vi.c) because a literal of the kind false =
true cannot be maximal in vi.c); the same argument apply also to clauses of the kind vi.e).
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and iii.e) still remain in vi.e); inferences between vi.f) and iii.e) still remain in

vi.f).

– Inferences between a clause in vi) and a clause in ii’) or iii’): inferences be-

tween vi.a) and iii’.a), iii’.b), iii’.d), iii’.e) give clauses in vi.a); inferences be-

tween vi.b) and iii’.a), iii’.b), iii’.d), iii’.e) give clauses in vi.b) (notice that

no inference can occur between vi.b) and iii’.e) if the sign of b ⊲⊳ b′ in iii’.e)

is negative because the literal t2 = true cannot be maximal in vi.b) if t2 is

a constant of sort bool); inferences between vi.c) and iii’.a), iii’.b), iii’.d)

give clauses in vi.c); inferences between vi.c) and iii’.e) give clauses in vi.g);

inferences between vi.g) and iii’.e) give clauses in vi.g).

– Inferences between a clause in vi) and a clause in vi): all the clauses produced

are still in vi) with the exception of the inferences between vi.h) and itself

which give clauses of the kind iii’.d).

Actually, a clause of the form C ′ := ⊥ 6= ⊥∨C (resp. C ′ := true 6= true∨C) will

be produced in many of the cases considered above. However, notice that an appli-

cation of the Reflection rule produces the clause C which immediately subsumes C ′

(because of the strategy gives higher priority to the simplification rules). Moreover,

since the precedence of the constant ⊥ (resp. true) is less than all other constant of

sort elem (resp. bool), it is clear that any clause derived from C ′ is subsumed by

the clause obtained applying the same derivation from C.

According to the rewriting approach of Armando et al. (2003), we can immedi-

ately conclude that SP behaves as a satisfiability procedure for A∪S∅−∪IL, because

of the refutation completeness of SP .

Let us call ASD the theory axiomatized by Ae ∪ S
∅
e ∪ {(4.20)}. The following

lemma is needed to prove the correctness of the decision procedure for ADPdom.

Lemma 4.4.3. Let L be an Eset-instantiation closed set of ΣA∪S∅-literals. Then, L

is ASD-satisfiable if and only if L is (A ∪ S∅− ∪ IL)-satisfiable.

Proof. The ‘only if’ case is trivial, since the theory A ∪ S∅− is a subtheory of ASD,

and the sentences in IL are obtained by instantiating the axioms (4.18), (4.20).

For the ‘if’ case, suppose that L is satisfied in a model M′ of A ∪ S∅− ∪ IL. We

define the following binary relation ∼

– to hold over arrayM′
whenever selectM

′
(a1, i) = selectM

′
(a2, i) for all i ∈

indexM′
;
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– to hold over setM′
to hold whenever, for all i ∈ indexM′

, memM′
(s1, i) =

trueM
′
if and only if memM′

(s2, i) = trueM
′
;

– to coincide over the sort boolM
′
with the equivalence relation induced by the

partition into the two subset {trueM
′
},boolM

′
\ {trueM

′
};

– to coincide with the identity relation over each domain of M′ different from

arrayM′
, setM′

and boolM
′
.

The relation ∼ is clearly an equivalence relation; we now show that it is a ΣA∪S∅-

congruence. It is straightforward to verify that ∼ is faithful with respect to selectM
′
,

storeM
′
, and memM′

. Given s1 ∼ s2, we need to show that, for all j ∈ indexM′
,

insM
′
(j, s1) ∼ insM

′
(j, s2). This condition is easily verified, recalling the definition

of ∼ and the fact that M′ is a model for the axioms (4.16) and (4.17).

We set M := M′�∼. It is simple to check that M |= Ae ∪ S
∅
e . We fix the

interpretation inM of the function dom as follows: for each element a ∈ arrayM,

domM(a) is the set such that, for every i ∈ indexM, memM(i, domM(a)) = trueM if

and only if selectM(a, i) = ⊥M. The definition of ∼ is sufficient to verify that domM

is well-defined; moreover, the definition of domM clearly implies that M |= (4.20),

thusM is a model of ADPdom.

To conclude the proof, it is sufficient to check thatM |= L. By construction, all

the equalities between constants over the sort index, elem, array, bool, and set

hold in M; moreover, all the literals of the kind select(a, i) = e, store(a, i, e) = b,

mem(i, s) = e, and ins(i, s1) = s2 are satisfied for the same reason. Inequalities

between constant of sort array are verified because L is E-instantiation closed,

while inequalities between contents of sort elem and index trivially hold.

If a literal of the kind b1 6= b2 is in L (b1, b2 constants of sort bool), then, since

IL contains the clauses b1 = true ∨ b1 = false and b2 = true ∨ b2 = false, we can

freely suppose that M |= b1 = true and M |= b2 = false, thus M |= b1 6= b2. If a

literal of the kind s1 6= s2 is in L (s1, s2 constants of sort set), then, since L is an

Eset-instantiation closed set of literals, L′ := {mem(s1, i) = b1,mem(s2, i) = b2, b1 6=

b2} ⊆ L for some constants b1, b2 : bool and i : index, thus clearly M |= L′ (see

above) and soM |= s1 6= s2.

Finally, if the literal dom(a) = s is in L, IL contain the clauses {select(a, x) 6=

⊥ ∨ mem(x, dom(a)) 6= true, select(a, x) = ⊥ ∨ mem(x, dom(a)) = true}. Since

M′ |= IL ∪ L then, for each i ∈ indexM′
, selectM

′
(aM

′
, i) 6= ⊥M′

if and only

if memM′
(i, sM

′
) = trueM

′
. By construction we have that, for each i ∈ indexM,
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selectM(aM, i) 6= ⊥M if and only if memM(i, sM) = trueM, which precisely means

that domM(aM) = sM.

Below, we denote with DPSP the function taking a set L of ground ΣA∪S∅-

literals, computing IL and then invoking SP on the clauses A ∪ S∅− ∪ IL ∪ L. If

the empty clause is derived by SP , then DPSP returns “unsatisfiable”; otherwise,

it returns “satisfiable”. Hence, the new variant of the decision procedure DPADPdom

for the theory ADPdom can be obtained from DPADP by replacing the module for E-

instantiation in Figure 4.1 with a module for Eset-instantiation (cf. Definition 4.3.4)

and by invoking DPSP and DPP in Algorithm 3, i.e. by setting T to {SP ,P}.

Now, we can state and prove the correctness of the new version of DPADPdom
.

Theorem 4.4.4. DPADPdom
is a decision procedure for the ADPdom-satisfiability

problem.

Proof. According to the result in Theorem 4.3.6, an Eset- and a Gdom-instantiation

closed finite set of literals

L = LADP ∪ LS∅ ∪ Ldom (4.25)

is ADPdom-satisfiable whenever LA, LP and LS∅ are A-, P- and S∅-satisfiable,

respectively (here Ldom is the set of literals from L involving the function dom). From

now on, we assume that the set of literals (4.25) is only Eset- and a G-instantiation

closed. We still assume that LP is P-satisfiable and (this is the new fact due to

Lemma 4.4.3) that LA ∪ LS∅ ∪ Ldom is ASD-satisfiable. Now, consider a model M

of ASD ∪ LA ∪ LS∅ ∪ Ldom: looking at this model, we can add to LA ∪ LS∅ more

literals true in M (let them be L̂A ∪ L̂S∅), in such a way that

L̂ = (LADP ∪ L̂A) ∪ (LS∅ ∪ L̂S∅) ∪ Ldom

is Eset- and Gdom-instantiation closed (notice in fact that the newly introduced literals

do not contain new constants of sort index); now, L̂ ⊇ L satisfies the requirements

of Theorem 4.3.6 and is ADPdom-satisfiable.

4.4.2 An SMT-based algorithm

We present an algorithm which integrates our instantiation-based schema into an

SMT solver by adapting the ideas described in Bozzano et al. (2006), where a
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Algorithm 4 An SMT solver for ADP-satisfiability

Require: ϕ quantifier-free Σ
a
ADP-formula

1: procedure Smt(ϕ)
2: ϕ← flatten(ϕ)
3: ϕ← ϕ ∧ e-inst(ϕ) ∧ g2-inst(ϕ)
4: ϕ← ϕ ∧ g3,4-inst(ϕ)
5: ϕp ← fol2prop(ϕ)
6: while Bool-satisfiable(ϕp) do
7: βp ← pick total assign(ϕp)
8: LG ← g5-inst(prop2fol(βp))
9: (ρA, πA)← DPA(LG

A)
10: (ρP , πP)← DPP(LG

P)
11: if (ρA = “satisfiable” ∧ ρP = “satisfiable”) then
12: return “satisfiable”
13: else
14: if ρA = “unsatisfiable” then ϕp ← ϕp ∧ ¬fol2prop(πA)
15: if ρP = “unsatisfiable” then ϕp ← ϕp ∧ ¬fol2prop(πP)
16: end if
17: end while
18: return “unsatisfiable”
19: end procedure

Boolean solver is used in order to efficiently handle the guessing phase of non-deter-

ministic procedures.

The decision procedure described in Algorithm 4 relies on two simple functions.

The former is a propositional abstraction function, i.e. a bijective function fol2prop

which maps a ground first-order formula ϕ into a Boolean formula ϕp as follows:

fol2prop maps Boolean atoms into themselves, ground atoms into fresh Boolean

atoms, and is homomorphic with respect to Boolean operators. The second function,

prop2fol (called, the refinement) is the inverse of fol2prop. In the following, the

procedure DPT is a decision procedure for the constraint satisfiability problem for

T , where T is A or P. If a constraint L is T -satisfiable, DPT returns (“satisfiable”, ∅),

otherwise it returns (unsat , π) where π ⊆ L and π is a T -unsatisfiable set, called the

(theory) conflict set. The associated (theory) conflict clause is ¬π.

The algorithm runs as follows. First of all, the function flatten transforms, by

introducing sufficiently many fresh constants to name subterms, the input formula ϕ

into an equisatisfiable formula of the kind ϕu∧ϕs, where ϕu is a constraint containing

just positive flat equalities (including the literal dim(ε) = 0) and ϕs is a Boolean
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combination of equalities between constants. Then, according to Definitions 4.2.2

and 4.2.4, we add to the input formula ϕ some of its logical consequences with

respect to ADP. More in detail, we have

ϕ←− ϕ ∧ e-inst(ϕ) ∧ g2-inst(ϕ)

ϕ←− ϕ ∧ g3,4-inst(ϕ)

where the functions e-inst, g2-inst and g3,4-inst are such that

– e-inst(ϕ) is the conjunction of the formulae a 6= b → (select(a, i) = e1 ∧

select(b, i) = e2 ∧ e1 6= e2) for each constants a, b : array such that a = b

occurs in ϕ (cf. Definition 4.2.2);

– g2-inst(ϕ) is the conjunction of the formulae i = 0 ∨ (e 6= ⊥ ∧ select(a, j) =

e ∧ s(j) = i) for each constants a : array, i : index such that dim(a) = i

occurs in ϕ (cf. Definition 4.2.4(2)); and

– g3,4-inst(ϕ) is the conjunction of the clauses of the kind i < j ∨ i = j ∨ j < i

for each constant i, j : index occurring in ϕ (cf. Definition 4.2.4(3) and (4)).

At this point, ϕ contains almost all the atoms needed to eventually obtain E- and

G-instantiation closed sets of literals; the only missing closure is w.r.t. condition (5)

of Definition 4.2.4. This will be done by the function g5-inst in the loop, as it will

be clear in a moment.

The while loop is iterated until there exists a propositional assignment βp which

satisfies the propositional abstraction ϕp of ϕ. The propositional assignment βp is

refined, thus obtaining a constraint which is (deterministically) closed under condi-

tion (5) of Definition 4.2.4 by the function g5-inst, and then passed to the decision

procedures for Presburger Arithmetic DPP and for the constraint satisfiability prob-

lem for the theory of arrays DPA. If both procedures return (“satisfiable”, ∅), then

the algorithm stops returning satisfiability; otherwise, as it is customary in lazy

SMT solvers (see, e.g., Bozzano et al., 2006), the corresponding conflict clause is

used to prune the search space in order to avoid enumerating useless guesses, i.e. all

those sharing the same conflict set.

The correctness of the procedure can be obtained along the lines of the Delayed

Theory Combination algorithm in Bozzano et al. (2006). The main differences lie in

showing that the pre-processing steps preserve the ADP-equisatisfiability and that
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LG is an E- and G-instantiation closed set of literals so that Lemma 4.2.7 above can

be re-used.

Finally, we notice that all the extensions considered in Subsection 4.3.3 can be

easily integrated in Algorithm 4 by adapting the g∗’s functions in order to mirror

the extensions in the definition of G-instantiation closed sets.

4.5 Conclusions and Related Work

In this chapter we have considered extensions of the theory of arrays which are rele-

vant for many important applications such as program verification. These extensions

are such that the indexes of arrays have the algebraic structure of Presburger Arith-

metic and the theory of arrays is augmented with axioms characterizing additional

symbols such as dimension, injectivity, or the domain of definition of arrays. We have

obtained the decidability of the constraint satisfiability problem for all the consid-

ered extensions by a combination of decision procedures for the theories of arrays and

Presburger Arithmetic with various instantiation strategies based both on model-

theoretic and rewriting-based methods. We have also described techniques for the

efficient implementation of the non-deterministic decision procedures by adapting

techniques developed in the SMT community.

The work most closely related to the topic of this chapter is Bradley et al.

(2006), where a syntactic characterization of a class of full first-order formulae is

considered, which turns out to be expressive enough to specify many properties of

interest about arrays. The main difference is that we have a semantic approach to

extending A by considering a well-chosen class of first-order structures. This allows

us to get a more refined characterization of some properties of arrays, yielding, for

example, the decidability of the constraint satisfiability problem for the extension

of A with the injectivity axiom (cf. Subsection 4.3.1). The decidability of a similar

problem was firstly left open in Bradley et al. (2006) and finally proved undecidable

in Bradley (2007): this is so because the class of models (associated to a set of

axioms) is larger than the one considered in this work. Moreover, in Bradley (2007),

a decidability result for a guarded fragment of Partial Arrays (i.e., arrays in which

elements may be undefined) is given; this fragment is expressive enough to encode

some of the properties covered by our combination framework (such as, for example,

sortedness).

Our instantiation strategy based on Superposition Calculus (cf. Subsection 4.4.1)
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has a similar spirit of the work Ganzinger and Korovin (2004), where equational

reasoning is integrated in instantiation-based theorem proving. The main difference

with Ganzinger and Korovin (2004) is that we solve the state-explosion problem,

due to the recombination of formulae caused by the use of standard superposition

rules (see, e.g., Nieuwenhuis and Rubio, 2001), by deriving a new termination result

for an extension of A as recommended by the rewriting approach to satisfiability

procedures of Armando et al. (2003). This allows us to re-use efficient state-of-

the-art theorem provers without the need to implement a new inference system as

required by Ganzinger and Korovin (2004).



Conclusions and Future Works

In this thesis we have investigated how combination methods for the constraint

satisfiability problem for non-disjoint theories can be successfully applied to give

decidability results for: (i) (fragments of) theories of interest for the field of software

verification (such as extensions of the theory of arrays with dimension), (ii) the

satisfiability problem for “temporalized” fragments of first-order theories, and (iii)

the model checking problem for infinite-state systems.

First of all, as far as the satisfiability problem for “temporalized” fragments of

first-order theories is concerned, we have dealt with the satisfiability problem for

data-flow theories, i.e. for fragments of first-order theories endowed with a temporal

dimension (in a sense similar to that introduced in Finger and Gabbay, 1992). Even

if we focused on the quantifier-free fragment of theories whose constraint satisfiability

problem is decidable, we have shown the undecidability of the (ground) satisfiability

problem for (totally flexible) data-flow theories. This limitative result is obtained

through a reduction to the constraint satisfiability problem for unions of (signature

disjoint) theories in a first-order framework. The analysis of the causes that lead

to undecidability suggested a strong relationship between the ground satisfiability

problem for data-flow theories and the constraint satisfiability problem for first-order

theories over non-disjoint signature; this relationship allowed us to derive sufficient

conditions in order to guarantee decidability results.

Secondly, we have enriched the framework for dealing with the satisfiability prob-

lem for data-flow theories in such a way that it becomes possible to encode tran-

sition relations. The framework so obtained allows a declarative approach to the

model checking problem for (possibly) infinite-state systems. By a straightforward

reduction to the reachability problem for Minksy machines, we have shown that

the Noetherianity hypothesis, sufficient to guarantee the decidability of the ground

satisfiability problem for data-flow theories, is not anymore sufficient to avoid un-

decidability of the ground model checking problem. However, under the stronger
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local finiteness hypothesis of the theory over the time-independent signature, we

have been able to decide the ground model checking problem first when considering

safety properties, and then the entire class of temporal properties.

The last contribution of this thesis concerns decidability results for the con-

straint satisfiability problem for interesting extensions of the theory of arrays with

dimension. To this aim, we have developed a uniform framework based on instan-

tiation strategies and on combination of decision procedures for Linear Arithmetic

over indexes and (the universal fragment of) arrays; this two ingredients are used to

eliminate the extensions in favor of the available decision procedures. We have also

addressed some of the problems arising in the implementation of the procedures

presented, both by using the rewriting-approach to build satisfiability procedures

and relying on the use of SMT solvers.

As far as future works are concerned, on the one hand we plan to generalize the

conditions guaranteeing the decidability of the satisfiability problem for data-flow

theories following the argument used to show that the validity problem for LTL(Σa)-

sentences is recursive enumerable; this should allow us to enlarge the scope of our

techniques and to include in our framework, among others, some of the results of

Sofronie-Stokkermans (2006). On the other hand, there are two main lines of future

work concerning the model checking problem. First, we intend to investigate how

to exploit SMT solvers to solve model checking problems; the design of suitable

heuristics to efficiently explore the safety and LTL(Σa,c)-graphs should be the key

to show the viability of our approach. Second, we intend to find termination results

for model checking modulo richer background theories (e.g., Presburger Arithmetic).

We believe that this can be achieved by considering transition relations satisfying

certain requirements as it is done in, e.g., Demri et al. (2006). Finally, as far as the

extensions of the theory of arrays with dimension are regarded, we plan to implement

the SMT-based algorithm that we have developed and perform some experimental

evaluations. In particular, this should allow us to compare the relative benefits of

the two variants of the decision procedure for the theory of arrays with dimensions

on some significant problems.
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Superposition Calculus: an Overview

From now on, we consider only universal, finitely axiomatized theories, whose signa-
tures are finite. Without loss of generality, we assume that signatures contain only
function symbols, because any atom P (t1, . . . , tn) with predicate symbol P other
than equality can be written as an equation p(t1, . . . , tn) = true, where p is a fresh
function symbol and true a fresh constant symbol, and this transformation preserves
satisfiability (see, e.g., Nieuwenhuis and Rubio, 2001).

In the following, = denotes equality, ≡ denotes identity, l, r, u, t are terms,
v,w, x, y, z are variables, all other lower case letters are constant or function sym-
bols. A fundamental feature of the Superposition Calculus (from now on, SP) is the
usage of a term reduction ordering (TRO) ≺ (see, e.g., Baader and Nipkow, 1998)
which is total on ground terms. The ordering ≺ is extended to literals in such a
way that only maximal sides of maximal instances of literals are considered when
applying the expansion rules of Figure 2. The most commonly used orderings are
the Knuth-Bendix ordering (KBO) and the lexicographic path ordering (LPO).

A clause C is redundant with respect to a set S of clauses if either C ∈ S or
S can be obtained from S ∪ {C} by a sequence of application of the contraction
rules of Figure 3. An inference is redundant with respect to a set S of clauses if
its conclusion is redundant with respect to S. A set S of clauses is saturated with
respect to SP if every inference of SP with a premise in S is redundant with respect
to S. A derivation is a sequence S0, S1, . . . , Si, . . . of sets of clauses where at each
step an inference of SP is applied to generate and add a clause (see expansion
rules in Figure 2) or to delete or reduce a clause (see contraction rules in Figure 3).
A derivation is characterized by its limit, defined as the set of persistent clauses
S∞ =

⋃

j≥0

⋂

i>j Si. A derivation S0, S1, . . . , Si, . . . with limit S∞ is fair with
respect to SP if for every inference in SP with premises in S∞, there is some j ≥ 0
such that the inference is redundant in Sj.

Theorem (Nieuwenhuis and Rubio, 2001). If S0, S1, . . . is a fair derivation of SP,
then (i) its limit S∞ is saturated with respect to SP, (ii) S0 is unsatisfiable iff the
empty clause is in Sj for some j, and (iii) if such a fair derivation is finite, i.e. it
is of the form S0, . . . , Sn, then Sn is saturated and logically equivalent to S0.
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Superposition
Γ⇒ ∆, l[u′] = r Π⇒ Σ, u = t

(Γ,Π⇒ ∆,Σ, l[t] = r)σ
(i), (ii), (iii), (iv)

Paramodulation
Γ, l[u′] = r ⇒ ∆ Π⇒ Σ, u = t

(l[t] = r,Γ,Π⇒ ∆,Σ)σ
(i), (ii), (iii), (iv)

Reflection
Γ, u′ = u⇒ ∆

(Γ⇒ ∆)σ
(v)

Eq. Factoring
Γ⇒ ∆, u = t, u′ = t′

(Γ, t = t′ ⇒ ∆, u = t′)σ
(i), (vi)

Legenda: a clause ¬A1 ∨ · · · ∨ ¬An ∨ B1 ∨ · · · ∨ Bn is written in sequent style as
{A1, . . . , An} ⇒ {B1, . . . , Bm} (where the Ai’s and Bj ’s are literals), equality is the
only predicate symbol, σ is the most general unifier of u and u′, u′ is not a variable
in Superposition and Paramodulation, L is a literal, and the following hold:

(i) uσ 6� tσ, (ii) ∀L ∈ Π ∪ Σ : (u = t)σ 6� Lσ, (iii) l[u′]σ 6� rσ, (iv) ∀L ∈ Γ ∪
∆ : (l[u′] = r)σ 6� Lσ, (v) for all L ∈ Γ ∪ ∆ : (u′ = u)σ 6≺ Lσ, and (vi) for all
L ∈ Γ : uσ 6� Lσ, and for all L ∈ {u′ = t′} ∪∆ : (u = t)σ 6≺ Lσ.

Figure 2: Expansion Inference Rules of SP.

Subsumption
S ∪ {C,C ′}

S ∪ {C}
if Cϑ ⊆ C ′ for some substitution
ϑ

Simplification
S ∪ {C[l′], l = r}
S ∪ {C[rϑ], l = r}

if l′ ≡ lϑ, rϑ ≺ lϑ, and
∀L ∈ C[lϑ] : (lϑ = rϑ) ≺ L

Deletion
S ∪ {Γ⇒ ∆, t = t}

S

where C and C ′ are clauses and S is a set of clauses.

Figure 3: Contraction Inference Rules of SP .

We say that SP is refutationally complete since it is possible to derive the empty
clause with a finite derivation from an unsatisfiable set of clauses (see (ii) of theorem
above). The proof of this theorem (see Nieuwenhuis and Rubio, 2001, but also
Bachmair and Ganzinger, 1990, 1994) relies on the creation of a convergent rewriting
system from the set of all the ground instances of a saturated set of clauses. If the
empty clause does not belong to the saturation, a model for S0 can be built from
the set of all the ground terms identified by the equivalence relation deriving from
the rewriting rules.
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The Water Level Controller Example

This section presents more details about Example 3.4.1. We recall that we are
considering a data-flow theory T = 〈Σ, T,Σr, a, c〉 such that

– Σ = {in, out, lalarm, loverflow, <} where in, out are two unary function symbols,
lalarm, loverflow are two constant symbols, < is a binary predicate symbol;

– Σr = {lalarm, loverflow, <};

– T = Tr ∪

{

∀x (x < lalarm → in(x) < loverflow),

∀x (x < loverflow → out(x) < lalarm)

}

where Tr is the theory of dense linear orders without endpoints endowed with
the further axiom lalarm < loverflow.

– l is the only system variable and there are no system parameters (that is,
a := {l} and c := ∅).

The LTL-system specification is (T , δ, ι) where δ is

δ(l0, l1) :≡
(
lalarm ≤ l

0 → l1 = in0(out0(l0))
)
∧

∧
(
l0 < lalarm → l1 = in0(l0)

)

and the initial state condition is

ι(l) :≡ l < lalarm.

Finally, the unsafe states are represented by the formula ν(l) :≡ loverflow ≤ l.

Figures 4 and 5 presents the set of T -consistent δ̂ assignment and transition Σr

guessings. Since the transition relation δ is a purely left formula, from now on we
consider only T -consistent nodes (i.e, nodes (V,G) such that V ∧G is T -consistent);
indeed, recalling Definition 3.3.3 of safety graph, T -inconsistent nodes (i) cannot be
initial nodes and (ii) cannot be reached by any path in the safety graph (it is easy
to see that such nodes cannot have any incoming edge).

(a) l0 < lalarm l0 6= lalarm lalarm 6< l0 l1 = in0(out0(l0)) l1 = in0(l0)
(b) l0 < lalarm l0 6= lalarm lalarm 6< l0 l1 6= in0(out0(l0)) l1 = in0(l0)
(c) l0 6< lalarm l0 = lalarm lalarm 6< l0 l1 = in0(out0(l0)) l1 = in0(l0)
(d) l0 6< lalarm l0 = lalarm lalarm 6< l0 l1 = in0(out0(l0)) l1 6= in0(l0)
(e) l0 6< lalarm l0 6= lalarm lalarm < l0 l1 = in0(out0(l0)) l1 = in0(l0)
(f) l0 6< lalarm l0 6= lalarm lalarm < l0 l1 = in0(out0(l0)) l1 6= in0(l0)

Figure 4: T -consistent δ̂ assignments
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(1) l1 < l0 < lalarm < loverflow (13) l1 < lalarm < l0 < loverflow

(2) l1 = l0 < lalarm < loverflow (14) l1 = lalarm < l0 < loverflow

(3) l0 < l1 < lalarm < loverflow (15) lalarm < l1 < l0 < loverflow

(4) l0 < l1 = lalarm < loverflow (16) lalarm < l0 = l1 < loverflow

(5) l0 < lalarm < l1 < loverflow (17) lalarm < l0 < l1 < loverflow

(6) l0 < lalarm < l1 = loverflow (18) lalarm < l0 < l1 = loverflow

(7) l0 < lalarm < loverflow < l1 (19) lalarm < l0 < loverflow < l1

(8) l1 < l0 = lalarm < loverflow (20) l1 < lalarm < l0 = loverflow

(9) l0 = l1 = lalarm < loverflow (21) l1 = lalarm < l0 = loverflow

(10) l0 = lalarm < l1 < loverflow (22) lalarm < l1 < l0 = loverflow

(11) l0 = lalarm < l1 = loverflow (23) lalarm < l0 = l1 = loverflow

(12) l0 = lalarm < loverflow < l1 (24) lalarm < l0 = loverflow < l1

(25) l1 < lalarm < loverflow < l0

(26) l1 = lalarm < loverflow < l0

(27) lalarm < l1 < loverflow < l0

(28) lalarm < l1 = loverflow < l0

(29) lalarm < loverflow < l1 < l0

(30) lalarm < loverflow < l0 = l1

(31) lalarm < loverflow < l0 < l1

Figure 5: T -consistent transition Σr guessings

The first column of Figure 6 presents the initial nodes, i.e. the nodes satisfying
the initial condition ι(l0) :≡ l0 < lalarm, whereas the second column presents the
final nodes, i.e. the nodes satisfying ν(l1) :≡ loverflow ≤ l

1.

(F) (V(e), G(23))

(I) (V(a), G(1)) (F) (V(e), G(23))

(I) (V(b), G(1)) (F) (V(e), G(24))

(I) (V(a), G(2)) (F) (V(f), G(24))

(I) (V(b), G(2)) (F) (V(e), G(28))

(I) (V(a), G(3)) (F) (V(f), G(28))

(I) (V(b), G(3)) (F) (V(e), G(29))

(I) (V(a), G(4)) (F) (V(f), G(29))

(I) (V(b), G(4)) (F) (V(e), G(30))

(I) (V(a), G(5)) (F) (V(f), G(30))

(I) (V(b), G(5)) (F) (V(e), G(31))

(F) (V(f), G(31))

Figure 6: T -consistent initial (I) and final (F) nodes
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Let us now mimic a forward-search strategy for the exploration of the safety
graph. Applying Definition 3.3.3 and recalling that the transition relation is a purely
left formula, there is an edge between two nodes (V,G) and (W,H) iff

G(l0, l1) ∧W (l1, l2) ∧H(l1, l2)

is T -satisfiable. Table 1 presents the nodes that can be reached in one transition
step from an initial node. Each row of the table should be intended as follows: any
node on the left-side can reach in one transition step any node on the right-side. We
discover that, besides the initial nodes, also the nodes marked with an asterisk sign
(⋆) can be reached.

(V(a), G(1)), (V(b), G(1)), (V(a), G(1)), (V(b), G(1)),

(V(a), G(2)), (V(b), G(2)), (V(a), G(2)), (V(b), G(2)),

(V(a), G(3)), (V(b), G(3)), =⇒ (V(a), G(3)), (V(b), G(3)),

(V(a), G(5)), (V(b), G(5)) (V(a), G(4)), (V(b), G(4)),

(V(a), G(5)), (V(b), G(5))

(V(c), G(8))
⋆, (V(d), G(8))

⋆,

(V(a), G(4)), (V(b), G(4)) =⇒ (V(c), G(9))
⋆, (V(d), G(9))

⋆,

(V(c), G(10))
⋆, (V(d), G(10))

⋆

Table 1: T -consistent nodes reachable in one step from the initial nodes

We iterate the same procedure over the nodes discovered in the previous step to
collect the nodes that are reachable in two transition steps. Again, newly discovered
nodes are marked with an asterisk sign (⋆).

(V(a), G(1)), (V(b), G(1)),

(V(a), G(2)), (V(b), G(2)),

(V(c), G(8)), (V(d), G(8)) =⇒ (V(a), G(3)), (V(b), G(3)),

(V(a), G(4)), (V(b), G(4)),

(V(a), G(5)), (V(b), G(5))

(V(c), G(8)), (V(d), G(8)),

(V(c), G(9)), (V(d), G(9)) =⇒ (V(c), G(9)), (V(d), G(9)),

(V(c), G(10)), (V(d), G(10))

(V(e), G(13))
⋆, (V(f), G(13))

⋆,

(V(e), G(14))
⋆, (V(f), G(14))

⋆,

(V(c), G(10)), (V(d), G(10)) =⇒ (V(e), G(15))
⋆, (V(f), G(15))

⋆,

(V(e), G(16))
⋆, (V(f), G(16))

⋆,

(V(e), G(17))
⋆, (V(f), G(17))

⋆

Table 2: Further T -consistent nodes reachable in two steps from the initial nodes
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The third iteration of the process does not reach new nodes, hence the set of
nodes collected till now is exactly the set of nodes that are reachable from an initial
node. Since this set does not contain any final node, we can conclude that the system
is safe.

(V(a), G(1)), (V(b), G(1)),

(V(a), G(2)), (V(b), G(2)),

(V(c), G(13)), (V(d), G(13)) =⇒ (V(a), G(3)), (V(b), G(3)),

(V(a), G(4)), (V(b), G(4)),

(V(a), G(5)), (V(b), G(5))

(V(c), G(8)), (V(d), G(8)),

(V(c), G(14)), (V(d), G(14)) =⇒ (V(c), G(9)), (V(d), G(9)),

(V(c), G(10)), (V(d), G(10))

(V(e), G(13)), (V(f), G(13)),

(V(c), G(15)), (V(d), G(15)), (V(e), G(14)), (V(f), G(14)),

(V(c), G(16)), (V(d), G(16)), =⇒ (V(e), G(15)), (V(f), G(15)),

(V(c), G(17)), (V(d), G(17)) (V(e), G(16)), (V(f), G(16)),

(V(e), G(17)), (V(f), G(17))

Table 3: Further T -consistent nodes reachable in three or more steps from the initial
nodes

Finally, Table 4 mimic the result of a backward-search strategy, i.e. collects all
the nodes that can reach a final node of the safety graph. Since from the result
presented in table it turns out that only final nodes can reach final nodes, the ex-
ploration stops immediately. The fact that no final node is initial allows to conclude
again the safety of the system.

(V(e), G(23)), (V(f), G(23)), =⇒ (V(e), G(23)), (V(f), G(23))

(V(e), G(28)), (V(f), G(28))

(V(e), G(23)), (V(f), G(23)), =⇒ (V(e), G(24)), (V(f), G(24))

(V(e), G(28)), (V(f), G(28))

(V(e), G(24)), (V(f), G(24)), =⇒ (V(e), G(28)), (V(f), G(28))

(V(e), G(31)), (V(f), G(31))

(V(e), G(24)), (V(f), G(24)), =⇒ (V(e), G(29)), (V(f), G(29))

(V(e), G(31)), (V(f), G(31))

(V(e), G(24)), (V(f), G(24)), =⇒ (V(e), G(30)), (V(f), G(30))

(V(e), G(31)), (V(f), G(31))

(V(e), G(24)), (V(f), G(24)), =⇒ (V(e), G(31)), (V(f), G(31))

(V(e), G(31)), (V(f), G(31))

Table 4: T -consistent nodes that can reach final nodes
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sn If s ∈ Σ for some signature Σ, sn denotes the nth copy of s (see
one-step/n-step signature), page 72

Σ
a
T The expansion of the signature ΣT with the finite set of constants

a (if T is specified, ΣT denotes the signature of the theory T ),
page 2

SP Superposition calculus, page 35

Tdlo The theory of dense linear order, page 91

Tlo The theory of strict linear orders, page 55
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to satisfiability procedures. Information and Computation, 183(2):140–164, 2003.

Alessandro Armando, Maria P. Bonacina, Silvio Ranise, and Stephan Schulz. New
results on rewrite-based satisfiability procedures. ACM Transactions on Compu-
tational Logic, 2007. (To appear).

Franz Baader and Silvio Ghilardi. Connecting many-sorted theories. Journal of
Symbolic Logic, 2006. (To appear).

Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge Uni-
versity Press, United Kingdom, 1998.

Franz Baader and Cesare Tinelli. Deciding the word problem in the union of equa-
tional theories. Information and Computation, 178(2):346–390, 2002.

Franz Baader, Carsten Lutz, Holger Sturm, and Frank Wolter. Fusions of description
logics and abstract description systems. Journal of Artificial Intelligence Research,
16:1–58, 2002.

Franz Baader, Silvio Ghilardi, and Cesare Tinelli. A new combination procedure
for the word problem that generalizes fusion decidability results in modal logics.
Information and Computation, 204(10):1413–1452, 2006.

155



156 Bibliography

Leo Bachmair and Harald Ganzinger. On restrictions of ordered paramodulation
with simplification. In M. E. Stickel, editor, Proceedings of 10th International
Conference on Automated Deduction (CADE 1990), volume 449 of Lecture Notes
in Computer Science, pages 427–441, Kaiserslautern (Germany), 1990. Springer-
Verlag.

Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem proving
with selection and simplification. Journal of Logic and Computation, 4(3):217–
247, 1994.

Thomas Ball and Sriram K. Rajamani. The slam toolkit. In G. Berry, H. Comon,
and A. Finkel, editors, Proceedings of the 13th International Conference on Com-
puter Aided Verification (CAV 2001), volume 2102 of Lecture Notes in Computer
Science, pages 260–264, Paris (France), 2001. Springer-Verlag.

Clark W. Barrett, David L. Dill, and Aaron Stump. A generalization of Shostak’s
method for combining decision procedures. In A. Armando, editor, Proceedings
of the 4th International Workshop on Frontiers of Combining Systems (FroCoS
2002), volume 2309 of Lecture Notes in Computer Science, pages 132–147, Santa
Margherita Ligure (Italy), 2002. Springer-Verlag.

Peter Baumgartner, Ulrich Furbach, and Uwe Petermann. A unified approach to
theory reasoning. Research Report 15–92, Universität Koblenz-Landau, Koblenz
(Germany), 1992. Fachberichte Informatik.

Saddek Bensalem, Ahmed Bouajjani, Claire Loiseaux, and Joseph Sifakis. Prop-
erty preserving simulations. In G. von Bochmann and D. K. Probst, editors,
Proceedings of the 4th International Workshop on Computer Aided Verification
(CAV 1992), volume 663 of Lecture Notes in Computer Science, pages 260–273,
Montreal (Canada), 1992. Springer-Verlag.

Orna Bernholtz, Moshe Y. Vardi, and Pierre Wolper. An automata-theoretic ap-
proach to branching-time model checking. In D. L. Dill, editor, Proceedings of 6th
International Conference on Computer Aided Verification (CAV 1994), volume
818 of Lecture Notes in Computer Science, pages 142–155, Stanford (CA, USA),
1994. Springer-Verlag.

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Masahiro Fujita, and Yun-
shan Zhu. Symbolic model checking using SAT procedures instead of BDDs. In
Proceedings of the 36th Conference on Design Automation (DAC 1999), pages
317–320, New Orleans (LA, USA), 1999. ACM Press.

Nikolaj Bjørner, Mark E. Stickel, and Tomás E. Uribe. A practical integration
of first-order reasoning and decision procedures. In W. McCune, editor, Proceed-
ings of the 14th International Conference on Automated Deduction (CADE 1997),



Bibliography 157

volume 1249 of Lecture Notes in Computer Science, pages 101–115, Townsville
(Australia), 1997. Springer-Verlag.

Nikolaj S. Bjørner. Integrating Decision Procedures for Temporal Verification. PhD
thesis, Department of Computer Science, Stanford University, Stanford (CA,
USA), 1998.

Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cambridge
University Press, 2002.

BLAST. BLAST: Berkeley Lazy Abstraction Software Verification Tool. http://

mtc.epfl.ch/software-tools/blast/.

Maria P. Bonacina, Silvio Ghilardi, Enrica Nicolini, Silvio Ranise, and Daniele Zuc-
chelli. Decidability and undecidability results for Nelson-Oppen and rewrite-based
decision procedures. In U. Furbach and N. Shankar, editors, Proceedings of the 3rd
International Joint Conference on Automated Reasoning (IJCAR 2006), volume
4130 of Lecture Notes in Computer Science, pages 513–527, Seattle (WA, USA),
2006. Springer-Verlag.

Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability analysis of push-
down automata: Application to model-checking. In A. W. Mazurkiewicz and
J. Winkowski, editors, Proceedings of the 8th International Conference on Con-
currency Theory (CONCUR 1997), volume 1243 of Lecture Notes in Computer
Science, pages 135–150, Warsaw (Poland), 1997. Springer-Verlag.

Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili. Regular
model checking. In A. E. Emerson and A. P. Sistla, editors, Proceedings of the 12th
International Conference on Computer Aided Verification (CAV 2000), volume
1855 of Lecture Notes in Computer Science, pages 403–418, Chicago (IL, USA),
2000. Springer-Verlag.

Ahmed Bouajjani, Peter Habermehl, and Tomás Vojnar. Abstract regular model
checking. In R. Alur and D. A. Peled, editors, Proceedings of the 16th International
Conference on Computer Aided Verification (CAV 2004), volume 3114 of Lecture
Notes in Computer Science, pages 372–386, Boston (MA, USA), 2004. Springer-
Verlag.

Ahmed Bouajjani, Peter Habermehl, Pierre Moro, and Tomás Vojnar. Verifying
programs with dynamic 1-selector-linked structures in regular model checking.
In N. Halbwachs and L. D. Zuck, editors, Proceedings of the 11th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2005), volume 3440 of Lecture Notes in Computer Science, pages 13–29,
Edinburgh (UK), 2005. Springer.

http://mtc.epfl.ch/software-tools/blast/
http://mtc.epfl.ch/software-tools/blast/


158 Bibliography

Ahmed Bouajjani, Marius Bozga, Peter Habermehl, Radu Iosif, Pierre Moro, and
Tomás Vojnar. Programs with lists are counter automata. In T. Ball and R. B.
Jones, editors, Proceedings of the 18th International Conference on Computer
Aided Verification (CAV 2006), volume 4144 of Lecture Notes in Computer Sci-
ence, pages 517–531, Seattle (WA, USA), 2006. Springer-Verlag.

Robert S. Boyer and J. Strother Moore. A Computational Logic Handbook. Academic
Press, second edition, 1997.

Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi A. Junttila,
Silvio Ranise, Peter van Rossum, and Roberto Sebastiani. Efficient theory com-
bination via boolean search. Journal of Information and Computation, 204(10):
1493–1525, 2006.

Aaron R. Bradley. Safety Analysis of Systems. PhD thesis, Department of Computer
Science, Stanford University, Stanford (CA, USA), 2007.

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Termination of polynomial
programs. In R. Cousot, editor, Proceedings of the 6th International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI 2005), volume
3385 of Lecture Notes in Computer Science, pages 113–129, Paris (France), 2005.
Springer-Verlag.

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decidable about
arrays? In A. E. Emerson and K. S. Namjoshi, editors, Proceedings of the 7th
International Conference on Verification, Model Checking, and Abstract Interpre-
tation (VMCAI 2006), volume 3855 of Lecture Notes in Computer Science, pages
427–442, Charleston (SC, USA), 2006. Springer-Verlag.
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