Planetary migration in Solar System formation - TEL - Thèses en ligne Access content directly
Theses Year : 2006

Planetary migration in Solar System formation

Migration planétaire au cours de la formation du Système Solaire

Abstract

Planetary migration seems to be unavoidable during planet formation in protoplanetary disks. Gravitational interactions between the planet embryos and the gas disk make the angular momentum of the embryo decrease, so that it spirals towards the central star. As the migration timescale is shorter than the disk life time, no planet should survive (chapters 1 and 2). In this thesis, we try to find mechanisms that prevent or slow down migration.

In chapter 3, we show that a jump in the gas disk density stops migration and acts like a planet trap. Trapped there, a massive solid core may accrete a gaseous atmosphere and give birth to a giant planet. The planet is then massive enough to repel the gas and open a gap around its orbit. Through analysis of computer simulations, we enlighten the role of pressure effects in this process in chapter 4 ; a new generalized gap opening criterion is derived. After the presentation of a new, reliable and performing algorithm for numerical simulations in chapter 5, we use it in chapter 6 to study the migration of a giant planet and its influence on the disk evolution. The formation of a cavity appears to be less easy than previously expected, but we find a way of preventing migration. Last, in chapter 7, we focus on the case of Jupiter and Saturn, and we find in which conditions the interactions between both planets prevent their migration.
La migration planétaire est un phénomène apparemment inévitable lors de la formation des planètes dans les disques protoplanétaires. Les interactions gravitationnelles entre les embryons de planète et le disque de gaz font décroître le moment cinétique de l'embryon, qui spirale vers l'étoile centrale. Le temps de migration étant plus court que la durée de vie du disque, aucune planète ne devrait survivre (chapitres 1 et 2). Dans cette thèse, nous essayons de trouver des mécanismes qui empêchent ou ralentissent la migration.

Dans le chapitre 3, nous montrons qu'un saut dans le profil de densité du disque de gaz bloque la migration et agit comme un piège à planète. Ainsi bloqué, un coeur solide massif peut accrèter une atmosphère gazeuse et devenir une planète géante. La planète est alors assez massive pour repousser le gaz et ouvrir un sillon autour de son orbite. En analysant des simulations numériques, nous mettons en évidence le rôle des effets de pression dans ce processus dans le chapitre 4 ; un nouveau critère unifié d'ouverture du sillon en découle. Après la présentation dans le chapitre 5 d'un nouvel algorithme fiable et performant pour réaliser des simulations numériques, nous l'utilisons dans le chapitre 6 pour étudier la migration d'une planète géante et son impact sur l'évolution du disque. La formation d'une cavité s'avère moins facile que prévu, mais une possibilité d'arrêter la migration apparaît. Enfin, dans le chapitre 7, nous étudions le cas de Jupiter et Saturne, et trouvons dans quelles conditions les interactions entre les deux planètes en empêchent la migration.
Fichier principal
Vignette du fichier
PhD-Thesis_CRIDA.pdf (8.39 Mo) Télécharger le fichier

Dates and versions

tel-00330414 , version 1 (14-10-2008)

Identifiers

  • HAL Id : tel-00330414 , version 1

Cite

Aurélien Crida. Planetary migration in Solar System formation. Astrophysics [astro-ph]. Université Nice Sophia Antipolis, 2006. English. ⟨NNT : ⟩. ⟨tel-00330414⟩
380 View
464 Download

Share

Gmail Facebook X LinkedIn More