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eXtensible Markup Language

XML

markup language to represent tree-shaped data

XML data big bang !

standard for data exchange and data storage
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Tree representation
DVDs

DVD DVD

year director

name birthday

awardstitle title year director
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name birthday name birthday
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Loulou 1980
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eXtensible Markup Language
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markup language to represent tree-shaped data

XML data big bang !

standard for data exchange and data storage

Tree representation
DVDs

DVD DVD

year director

name birthday

awardstitle title year director

name birthday

writer

name birthday name birthday
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award award

Trees are ordered and unranked.
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XML Queries

Queries

access XML data, transform XML documents

node selection in XML trees

n-ary queries select set of n-tuples of nodes
◮ n = 1: unary queries
◮ n = 2: binary queries
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XML Queries

Queries

access XML data, transform XML documents

node selection in XML trees

n-ary queries select set of n-tuples of nodes
◮ n = 1: unary queries
◮ n = 2: binary queries

Example (Select all triples (title,year,director name))
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year director
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name birthday
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award award
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Logics and Automata to Query XML Trees

FO,MSO (yardstick logics but high query evaluation complexity)

FO-relatives
◮ temporal logics (LibkinN03,BarceloL05,ABDGGMR05)
◮ navigational language XPath (W3C, GottlobKP02, Marx04,

tenCate06,...)

MSO-relatives
◮ µ-calculus (BarceloL05)
◮ Monadic Datalog (GottlobK04)
◮ query automata (NevenS99)
◮ node-selecting automata (Neven00,FrickGK03, NiehrenPTT06)

Combination Logics (Schwentick00, ArenasBL07)

pattern-matching approach: XDuce/CDuce
(HosoyaP03,BenzakenCF03), Spatial Logic TQL
(CardelliG02,BonevaTT05)
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Logics and Automata to Query XML Trees

FO,MSO (yardstick logics but high query evaluation complexity)

FO-relatives
◮ temporal logics (LibkinN03,BarceloL05,ABDGGMR05)
◮ navigational language XPath (W3C, GottlobKP02, Marx04,

tenCate06,...)

MSO-relatives
◮ µ-calculus (BarceloL05)
◮ Monadic Datalog (GottlobK04)
◮ query automata (NevenS99)
◮ node-selecting automata (Neven00,FrickGK03, NiehrenPTT06)

Combination Logics (Schwentick00, ArenasBL07)

pattern-matching approach: XDuce/CDuce
(HosoyaP03,BenzakenCF03), Spatial Logic TQL
(CardelliG02,BonevaTT05)

Only a few logics are well-suited to express n-ary queries
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Objectives

Two popular approaches:

Navigational Approach

Pattern-matching approach
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Objectives

Two popular approaches:

Navigational Approach

How to define a navigation-based n-ary query language?

expressiveness vs query evaluation complexity

composition language: from binary to n-ary queries

application to XPath-based n-ary query languages

Pattern-matching approach

satisfiability problem

is there an expressive decidable TQL fragment that can define n-ary
queries?

adaptation to ordered trees

automata-based satisfiability algorithm
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Outline

1 Composing Binary Queries
1 definitions
2 expressiveness, query evaluation
3 application to n-ary XPath logics

2 The Spatial Logic TQL
1 Examples, Definition
2 Expressiveness, Satisfiability
3 Tree Automata with Global Constraints

3 Summary and Perspectives
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Outline

PART I: Composing Binary Queries
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Trees and Queries

Trees

Trees are finite, unranked and ordered over a finite alphabet
Σ = f , g , a, b . . . .

f

g g g g

a b a a a

Queries
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Trees and Queries

Trees

Trees are finite, unranked and ordered over a finite alphabet
Σ = f , g , a, b . . . .
Unary Relations: nodes(t) , root(t) , (laba(t))a∈Σ

Binary Relations: ns , ns∗ , ch , ch∗

Queries

Let n ∈ N. An n-ary query q maps trees t to n-tuples of nodes

q(t) ⊆ nodes(t)n
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The navigational language XPath

to navigate and select sets of nodes in XML trees

by defining path expressions

complex counting conditions

CoreXPath: navigational core (GottlobKP02)
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The navigational language XPath

Example: select all director names

ch :: DVD/ch :: director/ch :: name

DVDs
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year director

name birthday

awardstitle title year director

name birthday
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name birthday name birthday
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DVDs
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The navigational language XPath

Example: select all awarded director names

ch :: DVD[ch :: awards]/ch :: director/ch :: name

DVDs

DVD DVD

year director

name birthday

awardstitle title year director

name birthday

writer

name birthday name birthday

writer

award awardname
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Expressions of CoreXPath and their semantics

Axis self, ch, ch+, ns, ns+

ch−1, (ch−1)+, ns−1, (ns−1)+

Steps Axis::a
Axis::∗

Composition P1/P2

Union P1 ∪ P2

Tests P [T ]

Path existence P
Negation not T
Conjunction T1 and T2
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Expressions of CoreXPath and their semantics
Axis self, ch, ch+, ns, ns+

ch−1, (ch−1)+, ns−1, (ns−1)+

J.Kt ⊆ nodes(t) × nodes(t)

Steps JAxis::aKt = {(v1, v2) | v1 Axis v2 and v2 ∈ laba(t)}
JAxis::∗Kt = {(v1, v2) | v1 Axis v2}

Composition JP1/P2K
t = JP1K

t ◦ JP2K
t

Union JP1 ∪ P2K
t = JP1K

t ∪ JP2K
t

Tests JP [T ]Kt = {(v1, v2) ∈ JPKt | v2 ∈ JT Kt
test

}

J.Kt
test

⊆ nodes(t)

Path existence JPKt
test

= {v | (v , v ′) ∈ JPKt}
Negation Jnot T Kt

test
= nodes(t) − JT Kt

test

Conjunction JT1 and T2K
t
test

= JT1K
t
test

∩ JT2K
t
test
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How to turn XPath into an n-ary query language?
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How to turn XPath into an n-ary query language?

use path expressions p to navigate

use node variables x1, x2, . . . , xn to select n-tuples
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x2

x3

p1

p2 p3
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How to turn XPath into an n-ary query language?
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Idea of the composition language

use path expressions to navigate

use variables x1, x2, . . . , xn to select output n-tuples

composition operator ◦ to compose queries

x1

x2

x3

p1

p2 p3
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Idea of the composition language

use binary queries from some binary query language L to navigate

use variables x1, x2, . . . , xn to select output n-tuples

composition operator ◦ to compose queries
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Idea of the composition language

use binary queries from some binary query language L to navigate

use variables x1, x2, . . . , xn to select output n-tuples

composition operator ◦ to compose queries

Example (Composition of CoreXPath expressions)

ch∗ ::title
︸ ︷︷ ︸

/ x / ns ::year
︸ ︷︷ ︸

/ y / ns ::director/ch ::name
︸ ︷︷ ︸

/ z

↓ ↓ ↓
q1 ◦ x ◦ q2 ◦ y ◦ q3 ◦ z

where q1, q2, q3 ∈ CoreXPath.
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The composition language Comp(L)

Syntax of composition formulas Comp(L)

We start from L a binary query language, and Var a set of variables.

φ := q q ∈ L
| x variable
| φ ◦ φ composition
| [φ] test
| φ ∨ φ disjunction

thanks to variables, you can define n-ary queries

Ans(φ, t): set of answers.
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Query Evaluation

Query evaluation problem

Input: a tree t, a formula φ(x1, . . . , xn) ∈ Comp(L)

Output: Ans(φ, t)
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Query Evaluation

Query evaluation problem

Input: a tree t, a formula φ(x1, . . . , xn) ∈ Comp(L)

Output: Ans(φ, t)

Polynomial-time query evaluation

The number of n-tuples of nodes is exponential in |t| and:

|Ans(φ, t)| << |t|n

one needs polynomial-time query evaluation:

poly(|t|, |φ|, |Ans(φ, t)|)
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Query Evaluation Algorithm for Compnvs(L)

Non-variable sharing fragment

variable sharing: q ◦ x ◦ q′ ◦ y ◦ q′′ ◦ x

disallow variable sharing: φ1 ◦ φ2 → Var(φ1) ∩ Var(φ2) = ∅

Compnvs(L) = Comp(L) + non-variable sharing

related to acyclicity of conjunctive queries (Yannakakis81)
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Query Evaluation Algorithm for Compnvs(L)

Non-variable sharing fragment

variable sharing: q ◦ x ◦ q′ ◦ y ◦ q′′ ◦ x

disallow variable sharing: φ1 ◦ φ2 → Var(φ1) ∩ Var(φ2) = ∅

Compnvs(L) = Comp(L) + non-variable sharing

related to acyclicity of conjunctive queries (Yannakakis81)

Theorem

Query evaluation for Compnvs(L) is in PTIME if query evaluation for L is
in PTIME.
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Query Evaluation Algorithm for Compnvs(L)

Non-variable sharing fragment

variable sharing: q ◦ x ◦ q′ ◦ y ◦ q′′ ◦ x

disallow variable sharing: φ1 ◦ φ2 → Var(φ1) ∩ Var(φ2) = ∅

Compnvs(L) = Comp(L) + non-variable sharing

related to acyclicity of conjunctive queries (Yannakakis81)

Theorem

Query evaluation for Compnvs(L) is in PTIME if query evaluation for L is
in PTIME.

Idea (Yannakakis81): process the formula recursively:

1 at each step, check if there is a solution → remain linear in |Ans(φ, t)|

2 use memoization to avoid redundant calculus
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Expressiveness

Two yardstick logics, FO and MSO

MSO= FO+ set quantification

formulas ψ(x1, . . . , xn) ∈ FO (MSO) define n-ary queries

FOn = n-ary FO queries

MSOn = n-ary MSO queries
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Expressiveness

Two yardstick logics, FO and MSO

MSO= FO+ set quantification

formulas ψ(x1, . . . , xn) ∈ FO (MSO) define n-ary queries

FOn = n-ary FO queries

MSOn = n-ary MSO queries

Theorem

FOn = Compnvs(FO2)
MSOn = Compnvs(MSO2)

Remark

It uses folklore result from finite model theory based on the Shelah’s
decomposition method. (Schwentick’00 or Marx’05 for instance).
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n-ary XPath Extensions (I)

Conditional XPath (Marx’04)

extends CoreXPath with a “while” operator (axis :: l [test])+

CXPath = FO2

query evaluation of a path expression p is in O(|p|.|t|)
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path expressions p + non-variable sharing
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n-ary XPath Extensions (I)

Conditional XPath (Marx’04)

extends CoreXPath with a “while” operator (axis :: l [test])+

CXPath = FO2

query evaluation of a path expression p is in O(|p|.|t|)

n-ary Conditional XPath

path expressions p + non-variable sharing
p ::= axis :: l | p/p | p[test] | p ∪ p | (axis :: l [test])+ | x ∈ Var

linear-time back and forth translations into Compnvs(CXPath)

→ captures FOn

→ query evaluation in time O(|p|.|t|2.(1 + |Ans(p, t)|))

Remark: query evaluation of FO 0-ary queries is PSPACE-complete
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n-ary XPath Extensions (II)

XPath 2.0

extends XPath (1.0) with:
path intersection p1 ∩ p2

path complement compl(p)
variables x
quantification for x in p1 return p2

captures FOn modulo linear-time

CoreXPath2.0 formalized by ten Cate and Marx (07)
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n-ary XPath Extensions (II)

XPath 2.0

extends XPath (1.0) with:
path intersection p1 ∩ p2

path complement compl(p)
variables x
quantification for x in p1 return p2

captures FOn modulo linear-time

CoreXPath2.0 formalized by ten Cate and Marx (07)

Application of the composition language

to define a syntactic fragment of CoreXPath2.0

FOn-expressive

with query evaluation problem in O(|p|.|t|3 + |p|.|t2|.|Ans(p, t)|)
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Outline

PART II: The Spatial Logic TQL
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TQL Examples

DVDs

DVD DVD

year director

name birthday

awardstitle title year director

name birthday

writer

name birthday name birthday

writer

award award
Loulou 1980

Pialat 1925 Pialat 1925 ... ...

Trafic 1971

Tati 1907 Lagrange 1917

Example (Check if there is an awarded movie)

DVDs[ | DVD[ | awards[ ]] | ]
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TQL Examples

DVDs

DVD DVD

year director

name birthday

awardstitle title year director

name birthday

writer

name birthday name birthday

writer

award award
Loulou 1980

Pialat 1925 Pialat 1925 ... ...

Trafic 1971

Tati 1907 Lagrange 1917

DVD

year director

name birthday

awardstitle writer

name birthday award award
Loulou 1980

Pialat 1925 Pialat 1925 ... ...

Example (Select all awarded movies)

φ(X ) = DVDs[ | X ∧ DVD[ | awards[ ]] | ]
↓

tree variable
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TQL Examples

DVDs

DVD DVD

year director

name birthday

awardstitle title year director

name birthday

writer

name birthday name birthday

writer

award award
Loulou 1980

Pialat 1925 Pialat 1925 ... ...

Trafic 1971

Tati 1907 Lagrange 1917

director

name birthday

director

name birthday

Pialat 1925 Tati 1907

writer

name birthday name birthday

writer

Pialat 1925 Lagrange 1917

Example (Select all pairs of (director ,writer))

φ(X ,Y ) = DVDs[ | DVD[ |year [ ]|X |Y | ]| ]
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TQL Examples

DVDs

DVD DVD

year director

name birthday

awardstitle title year director

name birthday

writer

name birthday name birthday

writer

award award
Loulou 1980

Pialat 1925 Pialat 1925 ... ...

Trafic 1971

Tati 1907 Lagrange 1917Pialat Pialat

Example (Select all names of persons who are both director and
writer)

φ(X ) = DVDs[ | DVD[ |director [name[X ]| ]|writer [name[X ]| ]| ]| ]
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TQL Examples

DVDs

DVD DVD

year director

name birthday

awardstitle title year director

name birthday

writer

name birthday name birthday

writer

award award
Loulou 1980

Pialat 1925 Pialat 1925 ... ...

Trafic 1971

Tati 1907 Lagrange 1917Tati

Example (Select all director names who is not a writer)

φ(X ) = DVDs[ | DVD[ |director [name[X ]| ]|writer [name[¬X ]| ]| ]| ]
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TQL Examples

DVDs

DVD DVD

year director

name birthday

awardstitle title year director

name birthday

writer

name birthday name birthday

writer

award award
Loulou 1980

Pialat 1925 Pialat 1925 ... ...

Trafic 1971

Tati 1907 Lagrange 1917Tati

Tree (dis)equality tests

main difficulty of TQL satisfiability problem

incomparable to FO fragments with data-value comparison
(BojanczykDMSS06)
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Hedge Algebra HΛ

Λ: countable set of labels

hedge = ordered sequence of unranked trees
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Hedge Algebra HΛ

Λ: countable set of labels

hedge = ordered sequence of unranked trees

constant 0: empty hedge

unary symbols a ∈ Λ:

a( . . . ) = a

. . .
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Hedge Algebra HΛ

Λ: countable set of labels

hedge = ordered sequence of unranked trees

constant 0: empty hedge

unary symbols a ∈ Λ:

a( . . . ) = a

. . .

binary symbol |

| =
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TQL: Syntax and Semantics

empty hedge 0
location α[φ] α ⊆ Λ (co)finite
concatenation φ|φ′
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TQL: Syntax and Semantics

empty hedge 0
location α[φ] α ⊆ Λ (co)finite
concatenation φ|φ′

truth
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negation ¬φ

tree variable X
recursion variable ξ
least fixpoint µξ.φ
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TQL: Syntax and Semantics
semantics modulo ρ : TreeVars → TΛ and δ : RecVars → 2HΛ

set-based semantics: J.Kρ,δ ⊆ HΛ

empty hedge 0
location α[φ] α ⊆ Λ (co)finite
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TQL: Syntax and Semantics
semantics modulo ρ : TreeVars → TΛ and δ : RecVars → 2HΛ

set-based semantics: J.Kρ,δ ⊆ HΛ

empty hedge J0Kρ,δ = {0}
location Jα[φ]Kρ,δ = {a(h) | h ∈ JφKρ,δ, a ∈ α}
concatenation Jφ|φ′Kρ,δ = {h|h′ | h ∈ JφKρ,δ, h

′ ∈ Jφ′Kρ,δ}

truth
conjunction φ ∧ φ′

negation ¬φ

tree variable X
recursion variable ξ
least fixpoint µξ.φ
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TQL: Syntax and Semantics
semantics modulo ρ : TreeVars → TΛ and δ : RecVars → 2HΛ

set-based semantics: J.Kρ,δ ⊆ HΛ

empty hedge J0Kρ,δ = {0}
location Jα[φ]Kρ,δ = {a(h) | h ∈ JφKρ,δ, a ∈ α}
concatenation Jφ|φ′Kρ,δ = {h|h′ | h ∈ JφKρ,δ, h

′ ∈ Jφ′Kρ,δ}

truth J K = HΛ

conjunction Jφ ∧ φ′K = JφK ∩ Jφ′K
negation J¬φK = HΛ\JφK

tree variable X
recursion variable ξ
least fixpoint µξ.φ
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TQL: Syntax and Semantics

semantics modulo ρ : TreeVars → TΛ and δ : RecVars → 2HΛ

set-based semantics: J.Kρ,δ ⊆ HΛ

empty hedge J0Kρ,δ = {0}
location Jα[φ]Kρ,δ = {a(h) | h ∈ JφKρ,δ, a ∈ α}
concatenation Jφ|φ′Kρ,δ = {h|h′ | h ∈ JφKρ,δ, h

′ ∈ Jφ′Kρ,δ}

truth J K = HΛ

conjunction Jφ ∧ φ′K = JφK ∩ Jφ′K
negation J¬φK = HΛ\JφK

tree variable JX Kρ,δ = {ρ(X )}
recursion variable JξKρ,δ = δ(ξ)
least fixpoint Jµξ.φKρ,δ =

⋂
{S ⊆ HΛ | JφKρ,δ[ξ 7→S] ⊆ S}

E.Filiot Logics for n-ary Queries in Trees 2008, October 23 / 38



Examples with fixpoint

Example (Select all subtrees reachable from the root by following
an ’a’-path)

φ(X ) = µξ.( a[ |ξ| ] ∨ X )

X

a
a

a
a

a
a
a
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Examples with fixpoint

Example (Select all subtrees reachable from the root by following
an ’a’-path)

φ(X ) = µξ.( a[ |ξ| ] ∨ X )

X

a
a

a
a

a
a
a

Example (anbn)

µξ.(a[0]|ξ|b[0] ∨ 0)
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Examples with fixpoint

Example (Select all subtrees reachable from the root by following
an ’a’-path)

φ(X ) = µξ.( a[ |ξ| ] ∨ X )

X

a
a

a
a

a
a
a

Example (anbn)

µξ.(a[0]|ξ|b[0] ∨ 0)

vertical recursion → regular tree languages

horizontal recursion → context-free word languages

E.Filiot Logics for n-ary Queries in Trees 2008, October 24 / 38



A Decidable Fragment: Bounded TQL

Satisfiability problem

Input: TQL formula φ Output: ∃h∃ρ∃δ, h ∈ JφKρ,δ?

E.Filiot Logics for n-ary Queries in Trees 2008, October 25 / 38



A Decidable Fragment: Bounded TQL

Proposition

Satisfiability of TQL formulas is undecidable.
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Proposition

Satisfiability of TQL formulas is undecidable.

Bounded TQL

recursion variables are guarded by some α[.]
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A Decidable Fragment: Bounded TQL

Proposition

Satisfiability of TQL formulas is undecidable.

Bounded TQL

recursion variables are guarded by some α[.]

µξ.( a[ |ξ| ] ∨ X ) → guarded
µξ.(a[0]|ξ|b[0] ∨ 0) → not guarded
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Proposition

Satisfiability of TQL formulas is undecidable.

Bounded TQL
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Proposition
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Bounded TQL

recursion variables are guarded by some α[.]

add Kleene star φ∗ for horizontal recursion
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A Decidable Fragment: Bounded TQL

Proposition

Satisfiability of TQL formulas is undecidable.

Bounded TQL

recursion variables are guarded by some α[.]

add Kleene star φ∗ for horizontal recursion

Jφ∗Kρ = 0 ∪
⋃

i>0

JφKρ| . . . |JφKρ
︸ ︷︷ ︸

i times
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A Decidable Fragment: Bounded TQL

Proposition

Satisfiability of TQL formulas is undecidable.

Bounded TQL

recursion variables are guarded by some α[.]

add Kleene star φ∗ for horizontal recursion
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A Decidable Fragment: Bounded TQL

Proposition

Satisfiability of TQL formulas is undecidable.

Bounded TQL

recursion variables are guarded by some α[.]

add Kleene star φ∗ for horizontal recursion

restriction negative variables: only a bounded number of
disequality tests along the paths
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A Decidable Fragment: Bounded TQL

Proposition

Satisfiability of TQL formulas is undecidable.

Bounded TQL

recursion variables are guarded by some α[.]

add Kleene star φ∗ for horizontal recursion

restriction negative variables: only a bounded number of
disequality tests along the paths

b[X | µξ.(¬X ∧ a[ξ] ∨ 0)] → not bounded

(¬X )∗ | X | (¬X )∗ → bounded

b

t

a
a
a

a
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A Decidable Fragment: Bounded TQL

Proposition

Satisfiability of TQL formulas is undecidable.

Bounded TQL

recursion variables are guarded by some α[.]

add Kleene star φ∗ for horizontal recursion

restriction negative variables: only a bounded number of
disequality tests along the paths
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A Decidable Fragment: Bounded TQL

Proposition

Satisfiability of TQL formulas is undecidable.

Bounded TQL

recursion variables are guarded by some α[.]

add Kleene star φ∗ for horizontal recursion

restriction negative variables: only a bounded number of
disequality tests along the paths

no negative occurences of Kleene star and |
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Expressiveness and Satisfiability of Bounded TQL

Theorem

1 Bounded TQL sentences capture MSO.
2 Satisfiability of bounded TQL is decidable (in 3NEXPTIME).
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Expressiveness and Satisfiability of Bounded TQL

Theorem

1 Bounded TQL sentences capture MSO.
2 Satisfiability of bounded TQL is decidable (in 3NEXPTIME).

◮ 2EXPTIME / EXPTIME-hard when no negated variables occur
◮ EXPTIME for sentences
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Expressiveness and Satisfiability of Bounded TQL

Theorem

1 Bounded TQL sentences capture MSO.
2 Satisfiability of bounded TQL is decidable (in 3NEXPTIME).

◮ 2EXPTIME / EXPTIME-hard when no negated variables occur
◮ EXPTIME for sentences

The proof is by reduction to emptiness of bounded TAGEDs.

E.Filiot Logics for n-ary Queries in Trees 2008, October 26 / 38



Bottom-up Tree Automata for Binary Trees

Σ: finite alphabet

Q: set of states

F ⊆ Q: set of final states

∆: rules of the form f (q1, q2) → q or a → q
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Bottom-up Tree Automata for Binary Trees

Σ: finite alphabet

Q: set of states

F ⊆ Q: set of final states

∆: rules of the form f (q1, q2) → q or a → q

Example (variable-free satisfiable Boolean formulas)

a tree and a successful run transitions
∧

∨

0 1

∧

∨

1 0

1

0 → q0 1 → q1

∧(qb1
, qb2

) → qb1∧b2

∨(qb1
, qb2

) → qb1∨b2

final states
F = {q1}

E.Filiot Logics for n-ary Queries in Trees 2008, October 27 / 38



Bottom-up Tree Automata for Binary Trees

Σ: finite alphabet

Q: set of states

F ⊆ Q: set of final states

∆: rules of the form f (q1, q2) → q or a → q

Example (variable-free satisfiable Boolean formulas)

a tree and a successful run transitions
∧

∨

0 q0 1

∧

∨

1 0

1

0 → q0 1 → q1

∧(qb1
, qb2

) → qb1∧b2

∨(qb1
, qb2

) → qb1∨b2

final states
F = {q1}

E.Filiot Logics for n-ary Queries in Trees 2008, October 27 / 38



Bottom-up Tree Automata for Binary Trees

Σ: finite alphabet

Q: set of states

F ⊆ Q: set of final states

∆: rules of the form f (q1, q2) → q or a → q

Example (variable-free satisfiable Boolean formulas)

a tree and a successful run transitions
∧

∨

0 q0 1 q1

∧

∨

1 0

1

0 → q0 1 → q1

∧(qb1
, qb2

) → qb1∧b2

∨(qb1
, qb2

) → qb1∨b2

final states
F = {q1}

E.Filiot Logics for n-ary Queries in Trees 2008, October 27 / 38



Bottom-up Tree Automata for Binary Trees

Σ: finite alphabet

Q: set of states

F ⊆ Q: set of final states

∆: rules of the form f (q1, q2) → q or a → q

Example (variable-free satisfiable Boolean formulas)

a tree and a successful run transitions
∧

∨ q1

0 q0 1 q1

∧

∨

1 0

1

0 → q0 1 → q1

∧(qb1
, qb2

) → qb1∧b2

∨(qb1
, qb2

) → qb1∨b2

final states
F = {q1}

E.Filiot Logics for n-ary Queries in Trees 2008, October 27 / 38



Bottom-up Tree Automata for Binary Trees

Σ: finite alphabet

Q: set of states

F ⊆ Q: set of final states

∆: rules of the form f (q1, q2) → q or a → q

Example (variable-free satisfiable Boolean formulas)

a tree and a successful run transitions
∧

∨ q1

0 q0 1 q1

∧

∨

1 q1 0

1

0 → q0 1 → q1

∧(qb1
, qb2

) → qb1∧b2

∨(qb1
, qb2

) → qb1∨b2

final states
F = {q1}

E.Filiot Logics for n-ary Queries in Trees 2008, October 27 / 38



Bottom-up Tree Automata for Binary Trees

Σ: finite alphabet

Q: set of states

F ⊆ Q: set of final states

∆: rules of the form f (q1, q2) → q or a → q

Example (variable-free satisfiable Boolean formulas)

a tree and a successful run transitions
∧

∨ q1

0 q0 1 q1

∧

∨

1 q1 0 q0

1

0 → q0 1 → q1

∧(qb1
, qb2

) → qb1∧b2

∨(qb1
, qb2

) → qb1∨b2

final states
F = {q1}

E.Filiot Logics for n-ary Queries in Trees 2008, October 27 / 38



Bottom-up Tree Automata for Binary Trees

Σ: finite alphabet

Q: set of states

F ⊆ Q: set of final states

∆: rules of the form f (q1, q2) → q or a → q

Example (variable-free satisfiable Boolean formulas)

a tree and a successful run transitions
∧

∨ q1

0 q0 1 q1

∧

∨ q1

1 q1 0 q0

1

0 → q0 1 → q1

∧(qb1
, qb2

) → qb1∧b2

∨(qb1
, qb2

) → qb1∨b2

final states
F = {q1}

E.Filiot Logics for n-ary Queries in Trees 2008, October 27 / 38



Bottom-up Tree Automata for Binary Trees

Σ: finite alphabet

Q: set of states

F ⊆ Q: set of final states

∆: rules of the form f (q1, q2) → q or a → q

Example (variable-free satisfiable Boolean formulas)

a tree and a successful run transitions
∧

∨ q1

0 q0 1 q1

∧

∨ q1

1 q1 0 q0

1 q1

0 → q0 1 → q1

∧(qb1
, qb2

) → qb1∧b2

∨(qb1
, qb2

) → qb1∨b2

final states
F = {q1}

E.Filiot Logics for n-ary Queries in Trees 2008, October 27 / 38



Bottom-up Tree Automata for Binary Trees

Σ: finite alphabet

Q: set of states

F ⊆ Q: set of final states

∆: rules of the form f (q1, q2) → q or a → q

Example (variable-free satisfiable Boolean formulas)

a tree and a successful run transitions
∧

∨ q1

0 q0 1 q1

∧ q1

∨ q1

1 q1 0 q0

1 q1

0 → q0 1 → q1

∧(qb1
, qb2

) → qb1∧b2

∨(qb1
, qb2

) → qb1∨b2

final states
F = {q1}

E.Filiot Logics for n-ary Queries in Trees 2008, October 27 / 38



Bottom-up Tree Automata for Binary Trees

Σ: finite alphabet

Q: set of states

F ⊆ Q: set of final states

∆: rules of the form f (q1, q2) → q or a → q

Example (variable-free satisfiable Boolean formulas)

a tree and a successful run transitions
∧ q1

∨ q1

0 q0 1 q1

∧ q1

∨ q1

1 q1 0 q0

1 q1

0 → q0 1 → q1

∧(qb1
, qb2

) → qb1∧b2

∨(qb1
, qb2

) → qb1∨b2

final states
F = {q1}

E.Filiot Logics for n-ary Queries in Trees 2008, October 27 / 38



Tree Automata with Global Equalities and
Disequalities

A tree automaton A with global equalities and disequalities (TAGED)
is given by:

Σ alphabet
Q set of states
F set of final states
∆ set of rules







tree automaton
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Tree Automata with Global Equalities and
Disequalities

A tree automaton A with global equalities and disequalities (TAGED)
is given by:

Σ alphabet
Q set of states
F set of final states
∆ set of rules







tree automaton

=A ⊆ Q2 reflexive and symmetric relation
on a subset of Q

6=A ⊆ Q2 irreflexive and symmetric relation
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Successful Runs

qf ∈ F

q =A q′

t t ′

=⇒

=

t t ′
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Successful Runs

qf ∈ F

q 6=A q′

t t ′

=⇒

6=

t t ′
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Successful Runs

qf ∈ F

q 6=A q′

t t ′

=⇒

6=

t t ′

equalities and disequalities can be tested arbitrarily faraway

different from usual Automata with Constraints where tests are
local (BogaertT92, DauchetCC95, KariantoL07)

E.Filiot Logics for n-ary Queries in Trees 2008, October 29 / 38



Example: {f (t, t) | t ∈ TΣ}

f

f

f

a a

a

f

f

a a

a

Σ = {f , a}

Q = {q, qf , q1, q2}

F = {qf }

∆ =

a → q
f (q, q) → q
f (q, q) → q1

f (q, q) → q2

f (q1, q2) → qf

q1 =A q2
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f q

a q a q

a q

f q2

f q

a q a q

a q

Σ = {f , a}

Q = {q, qf , q1, q2}

F = {qf }
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a → q
f (q, q) → q
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Example: {f (t, t) | t ∈ TΣ}

f qf

f q1

f q

a q a q

a q

f q2

f q

a q a q

a q

Σ = {f , a}

Q = {q, qf , q1, q2}

F = {qf }

∆ =

a → q
f (q, q) → q
f (q, q) → q1

f (q, q) → q2

f (q1, q2) → qf

q1 =A q2
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Example: {f (t, s) | t, s ∈ TΣ, t 6= s}

f qf

f q1

f q

a q a q

a q

f q2

f q

a q a q

a q

Σ = {f , a}

Q = {q, qf , q1, q2}

F = {qf }

∆ =

a → q
f (q, q) → q
f (q, q) → q1

f (q, q) → q2

f (q1, q2) → qf

q1 6=A q2
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Some properties of TAGEDs

Proposition

TAGED-recognizable languages are closed by union and intersection,
but not by complement;

Membership is NP-complete;

TAGED are not determinizable (counter-example {f (t, t) | t ∈ TΣ});

Universality is undecidable.
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Some properties of TAGEDs

Proposition

TAGED-recognizable languages are closed by union and intersection,
but not by complement;

Membership is NP-complete;

TAGED are not determinizable (counter-example {f (t, t) | t ∈ TΣ});

Universality is undecidable.

Emptiness Problem

Input: a TAGED A Output:L(A) 6= ∅?

Theorem

Emptiness is:

EXPTIME-complete for positive TAGED (6=A = ∅)

decidable in NEXPTIME for negative TAGED (=A = ∅)

decidable in linear-time for positive TAGED such that =A⊆ idQ
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Bounded TAGEDs

Definition

A bounded TAGED is a pair (A, k) where A is a TAGED and k ∈ N is a
natural number.
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Bounded TAGEDs

Definition

A bounded TAGED is a pair (A, k) where A is a TAGED and k ∈ N is a
natural number.

Definition (Successful Runs)

Additional condition: along any branch, the number of states from
dom(6=A) is smaller than k.

E.Filiot Logics for n-ary Queries in Trees 2008, October 32 / 38



Bounded TAGEDs

Definition

A bounded TAGED is a pair (A, k) where A is a TAGED and k ∈ N is a
natural number.

Definition (Successful Runs)

Additional condition: along any branch, the number of states from
dom(6=A) is smaller than k.

By using a pumping technique one can show that:

Theorem

Emptiness of bounded TAGEDs is decidable in 2NEXPTIME.

E.Filiot Logics for n-ary Queries in Trees 2008, October 32 / 38



Emptiness of bounded TAGED: Sketch of Proof

Idea: if the automaton accepts a tree t then t is not too big (its size is bounded in |A|).
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Emptiness of bounded TAGED: Sketch of Proof

Idea: if the automaton accepts a tree t then t is not too big (its size is bounded in |A|).

Lemmata

=A⊆ idQ is always possible

in a successful run, same (sub)run below same states of =A

pumping technique preserving the constraints induced by =A
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Idea: if the automaton accepts a tree t then t is not too big (its size is bounded in |A|).

Lemmata

=A⊆ idQ is always possible

in a successful run, same (sub)run below same states of =A

pumping technique preserving the constraints induced by =A

Algorithm

1 find a tree and a run satisfying the constraints from =A but maybe not from 6=A

2 test whether (and its run) can be repaired (polynomial algorithm)

3 if the test fails, choose another tree.
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Emptiness of bounded TAGED: Sketch of Proof

Idea: if the automaton accepts a tree t then t is not too big (its size is bounded in |A|).

Lemmata

=A⊆ idQ is always possible

in a successful run, same (sub)run below same states of =A

pumping technique preserving the constraints induced by =A

Algorithm

1 find a tree and a run satisfying the constraints from =A but maybe not from 6=A

2 test whether (and its run) can be repaired (polynomial algorithm)

3 if the test fails, choose another tree.

Termination

If the automaton accepts a tree, then it accepts a repairable tree satisfying the
contraints from =A whose size is exponential in |A| and k .
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TQL to TAGED

TAGED for hedges over an infinite alphabet

extends hedge automata (Murata’99) with global tests;

transititions α(L) → q where L ⊆ Q∗;

lift all the results via a binary encoding of hedges.
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TQL to TAGED

TAGED for hedges over an infinite alphabet

extends hedge automata (Murata’99) with global tests;

transititions α(L) → q where L ⊆ Q∗;

lift all the results via a binary encoding of hedges.

Bounded TQL → Bounded TAGED

new construction;

two difficulties: variables and hedge operations;

states: sets of subformulas α[φ], X ,¬X ;

variables are added non-deterministically to the states;

hedge operations are interpreted as operations on state languages

{. . . ,X , . . . } =A {. . . ,X , . . . }

{. . . ,X , . . . } 6=A {. . . ,¬X , . . . }
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Outline

Conclusion
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Summary of the contributions

Query composition (FNTT, PODS’07)

extends the navigational XPath paradigm to n-ary queries

simple acyclicity notion

FO-complete and polynomial n-ary XPath languages
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Summary of the contributions

Query composition (FNTT, PODS’07)

extends the navigational XPath paradigm to n-ary queries

simple acyclicity notion

FO-complete and polynomial n-ary XPath languages

TQL (FTT,CSL’07)

tree pattern language for hedges

decidable fragment with tree variables

by reduction to TAGED (FTT, DLT’08)

new automaton construction
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Some Perspectives

Query composition

query answering algorithms specific to Comp(ch, ch∗, laba)

streaming (GauwinCNT08), enumeration (collaboration with
O.Gauwin, A.Durand, ANR Enum)
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streaming (GauwinCNT08), enumeration (collaboration with
O.Gauwin, A.Durand, ANR Enum)

TQL

lower bounds (TQL + TAGED)

guarded fragment

... or at least, a decidable fragment closed by negation

query inclusion ∀x (φ(x) → ψ(x)) iff not ∃x , φ(x) ∧ ¬ψ(x).
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Some Perspectives

Query composition

query answering algorithms specific to Comp(ch, ch∗, laba)

streaming (GauwinCNT08), enumeration (collaboration with
O.Gauwin, A.Durand, ANR Enum)

TQL

lower bounds (TQL + TAGED)

guarded fragment

... or at least, a decidable fragment closed by negation

query inclusion ∀x (φ(x) → ψ(x)) iff not ∃x , φ(x) ∧ ¬ψ(x).

emptiness of full TAGED

application to security protocols (C.Vacher,F.Jacquemard, F.Klay)
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Outline

Thank You
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