ifL
ZINRIA

Logics for n-ary Queries in
Trees

Emmanuel Filiot

INRIA Lille Nord-Europe, Mostrare Project
University of Lille 1, LIFL

USTL Ph.D. Defense, 2008, October

supervisors: Sophie Tison and Jean-Marc Talbot

E.Filiot Logics for n-ary Queries in Trees 2008, October 1/38

eXtensible Markup Language

XML
@ markup language to represent tree-shaped data
@ XML data big bang !

@ standard for data exchange and data storage

E.Filiot Logics for n-ary Queries in Trees

2008, October

2/38

eXtensible Markup Language

XML
@ markup language to represent tree-shaped data
@ XML data big bang !

@ standard for data exchange and data storage

Tree representation

4
E.Filiot Logics for n-ary Queries in Trees 2008, October 2/38

eXtensible Markup Language

XML
@ markup language to represent tree-shaped data
@ XML data big bang !

@ standard for data exchange and data storage

Tree representation

E.Filiot Logics for n-ary Queries in Trees

2008, October

v
2/38

eXtensible Markup Language

XML
@ markup language to represent tree-shaped data
@ XML data big bang !

@ standard for data exchange and data storage

Tree representation

Trees are ordered and unranked.

E.Filiot Logics for n-ary Queries in Trees

2008, October

v
2/38

XML Queries

Queries
@ access XML data, transform XML documents
@ node selection in XML trees
@ n-ary queries select set of n-tuples of nodes

» n = 1. unary queries
» n = 2: binary queries

E.Filiot Logics for n-ary Queries in Trees

2008, October

3/38

XML Queries

Queries
@ access XML data, transform XML documents
@ node selection in XML trees
@ n-ary queries select set of n-tuples of nodes

» n = 1. unary queries
» n = 2: binary queries

Example (Select all directors)

E.Filiot Logics for n-ary Queries in Trees

XML Queries

Queries
@ access XML data, transform XML documents
@ node selection in XML trees
@ n-ary queries select set of n-tuples of nodes

» n = 1. unary queries
» n = 2: binary queries

Example (Select all triples (title,year,director name))

E.Filiot Logics for n-ary Queries in Trees

Logics and Automata to Query XML Trees

@ FO,MSO (yardstick logics but high query evaluation complexity)
@ FO-relatives
» temporal logics (LibkinN03,BarceloL05, ABDGGMRO05)
» navigational language XPath (W3C, GottlobKP02, Marx04,
tenCate06,...)
@ MSO-relatives

» p-calculus (BarceloL05)

Monadic Datalog (GottlobK04)

query automata (NevenS99)

node-selecting automata (Neven00,FrickGK03, NiehrenPTTO06)

@ Combination Logics (Schwentick00, ArenasBL07)

@ pattern-matching approach: XDuce/CDuce
(HosoyaP03,BenzakenCF03), Spatial Logic TQL
(CardelliG02,BonevaTTO05)

vV vy

E.Filiot Logics for n-ary Queries in Trees 2008, October 4 /38

Logics and Automata to Query XML Trees

@ FO,MSO (yardstick logics but high query evaluation complexity)
@ FO-relatives
» temporal logics (LibkinN03,BarceloL05,ABDGGMRO05)
» navigational language XPath (W3C, GottlobKP02, Marx04,
tenCate06,...)
® MSO-relatives

u-calculus (BarceloL05)

Monadic Datalog (GottlobK04)

query automata (NevenS99)

node-selecting automata (Neven00,FrickGK03, NiehrenPTT06)

@ Combination Logics (Schwentick00, ArenasBL07)

@ pattern-matching approach: XDuce/CDuce
(HosoyaP03,BenzakenCF03), Spatial Logic TQL
(CardelliG02,BonevaTTO05)

v

vV vy

Only a few logics are well-suited to express n-ary queries

E.Filiot Logics for n-ary Queries in Trees 2008, October 4 /38

Objectives
Two popular approaches:

Navigational Approach

Pattern-matching approach

E.Filiot Logics for n-ary Queries in Trees

2008, October

=
5/ 38

Objectives
Two popular approaches:
Navigational Approach

How to define a navigation-based n-ary query language?

Pattern-matching approach

&
E.Filiot Logics for n-ary Queries in Trees 2008, October 5/38

Objectives

Two popular approaches:

Navigational Approach

How to define a navigation-based n-ary query language?

@ expressiveness vs query evaluation complexity
@ composition language: from binary to n-ary queries

@ application to XPath-based n-ary query languages

Pattern-matching approach

E.Filiot Logics for n-ary Queries in Trees 2008, October

5/ 38

Objectives

Two popular approaches:

Navigational Approach

How to define a navigation-based n-ary query language?

@ expressiveness vs query evaluation complexity
@ composition language: from binary to n-ary queries

@ application to XPath-based n-ary query languages

Pattern-matching approach

@ satisfiability problem

@ is there an expressive decidable TQL fragment that can define n-ary
queries?

4
E.Filiot Logics for n-ary Queries in Trees 2008, October 5/38

Objectives

Two popular approaches:

Navigational Approach

How to define a navigation-based n-ary query language?

@ expressiveness vs query evaluation complexity
@ composition language: from binary to n-ary queries

@ application to XPath-based n-ary query languages

Pattern-matching approach
@ satisfiability problem
@ is there an expressive decidable TQL fragment that can define n-ary
queries?

@ adaptation to ordered trees

@ automata-based satisfiability algorithm

v

E.Filiot Logics for n-ary Queries in Trees 2008, October 5/38

Outline

© Composing Binary Queries
@ definitions
@ expressiveness, query evaluation
© application to n-ary XPath logics

@ The Spatial Logic TQL
©® Examples, Definition
@ Expressiveness, Satisfiability
© Tree Automata with Global Constraints

© Summary and Perspectives

E.Filiot Logics for n-ary Queries in Trees

2008, October

6/38

Outline

PART I: Composing Binary Queries

E.Filiot Logics for n-ary Queries in Trees 2008, October 7/38

Trees and Queries

Trees

Trees are finite, unranked and ordered over a finite alphabet
> =f,g,ab....

Queries

J

2008, October 8 /38

E.Filiot Logics for n-ary Queries in Trees

Trees and Queries
Trees

Trees are finite, unranked and ordered over a finite alphabet
> =f,g,ab....

Unary Relations: nodes(t)

Queries

J

2008, October 8 /38

E.Filiot Logics for n-ary Queries in Trees

Trees and Queries
Trees

Trees are finite, unranked and ordered over a finite alphabet
> =f,g,ab....

Unary Relations: nodes(t) , root(t)

Queries

J

2008, October 8 /38

E.Filiot Logics for n-ary Queries in Trees

Trees and Queries
Trees

Trees are finite, unranked and ordered over a finite alphabet
> =f,g,ab....

Unary Relations: nodes(t) , root(t) , (lab.(t)).cx

Queries

J

2008, October 8 /38

E.Filiot Logics for n-ary Queries in Trees

Trees and Queries

Trees

Trees are finite, unranked and ordered over a finite alphabet
> =f,g,ab....

Unary Relations: nodes(t) , root(t) , (labs(t))aex
Binary Relations: ns

Queries

J

2008, October 8 /38

E.Filiot Logics for n-ary Queries in Trees

Trees and Queries

Trees

Trees are finite, unranked and ordered over a finite alphabet
> =f,g,ab....

Unary Relations: nodes(t) , root(t) , (labs(t))aex
Binary Relations: ns , ns*

Queries

J

2008, October 8 /38

E.Filiot Logics for n-ary Queries in Trees

Trees and Queries

Trees

Trees are finite, unranked and ordered over a finite alphabet
> =f,g,ab....

Unary Relations: nodes(t) , root(t) , (labs(t))aex
Binary Relations: ns , ns* , ch

Queries

J

2008, October 8 /38

E.Filiot Logics for n-ary Queries in Trees

Trees and Queries

Trees

Trees are finite, unranked and ordered over a finite alphabet
> =f,g,ab....

Unary Relations: nodes(t) , root(t) , (labs(t))aex
Binary Relations: ns , ns* , ch , ch”

Queries

J

2008, October 8 /38

E.Filiot Logics for n-ary Queries in Trees

Trees and Queries
Trees

Trees are finite, unranked and ordered over a finite alphabet
> =f,g,ab....

Unary Relations: nodes(t) , root(t) , (labs(t))aex

Binary Relations: ns , ns* , ch , ch*

Queries

Let n € N. An n-ary query g maps trees t to n-tuples of nodes

q(t) C nodes(t)"

E.Filiot Logics for n-ary Queries in Trees 2008, October

8/ 38

The navigational language XPath

@ to navigate and select sets of nodes in XML trees
@ by defining path expressions

@ complex counting conditions

@ CoreXPath: navigational core (GottlobKP02)

E.Filiot Logics for n-ary Queries in Trees 2008, October 9 /38

The navigational language XPath

Example: select all director names
ch :: DVD/ch :: director /ch :: name J

E.Filiot Logics for n-ary Queries in Trees 2008, October 9 /38

The navigational language XPath

Example: select all director names
ch :: DVD /ch :: director /ch :: name J

E.Filiot Logics for n-ary Queries in Trees 2008, October 9 /38

The navigational language XPath

Example: select all director names
ch :: DVD /ch :: director /ch :: name J

E.Filiot Logics for n-ary Queries in Trees 2008, October 9 /38

The navigational language XPath

Example: select all director names
ch :: DVD/ch :: director /ch :: name J

E.Filiot Logics for n-ary Queries in Trees 2008, October 9 /38

The navigational language XPath

Example: select all awarded director names
ch :: DVD|ch :: awards|/ch :: director/ch :: name J

E.Filiot Logics for n-ary Queries in Trees 2008, October 9 /38

Expressions of CoreXPath and their semantics

Axis self,ch,ch™, ns,nst
ch™ (ch™H)F, ns1, (ns~1)*

Steps Axis::a
Axis:
Composition P1/P;
Union P U P
Tests P[T]

Path existence P
Negation not 7
Conjunction 71 and 75

E.Filiot Logics for n-ary Queries in Trees 2008, October 10 / 38

Expressions of CoreXPath and their semantics

Axis

Steps

Composition
Union
Tests

Path existence
Negation
Conjunction

E.Filiot

self, ch,ch™, ns, ns™
ch™t, (ch™H)* ns~1, (ns~1)*+

[.]* € nodes(t) x nodes(t)

[Axis::a]t = {(v1,v2) | vi Axis vo and v, € lab,(t)}
[Axis::x]t = {(v1,v2) | vi Axis v}

[P1/P2]" = [P1]* o [P2]*

[Py U Pgﬂt = HPlﬂt U HP2ﬂt

[PIT]]* = {(v1,v2) € [P]* | v2 € [T]{est}

[H]gest g nOdeS(t)

[Pltess = {v | (v,V)) € [P]}
[[nOt Tﬂgest - nOdeS(t) o HTﬂgest
[[71 and 7—2}]5(:% - [[7—1]:(% N [[/]’2]}{(%

Logics for n-ary Queries in Trees 2008, October

10 / 38

How to turn XPath into an n-ary query language?

E.Filiot Logics for n-ary Queries in Trees 2008, October 11 /38

How to turn XPath into an n-ary query language?

@ use path expressions p to navigate J

@ use node variables xj, x5, ..., X, to select n-tuples

E.Filiot Logics for n-ary Queries in Trees 2008, October 11 /38

How to turn XPath into an n-ary query language?

@ use path expressions p to navigate
@ use node variables x1, xo, ..., x, to select n-tuples
Example (All triples (title,year,director name))
d(x,y,2z) = J

E.Filiot Logics for n-ary Queries in Trees 2008, October 11 /38

How to turn XPath into an n-ary query language?

@ use path expressions p to navigate
@ use node variables x1, xo, ..., x, to select n-tuples
Example (All triples (title,year,director name))
o(x,y,z) = ch” : title J

E.Filiot Logics for n-ary Queries in Trees 2008, October 11 /38

How to turn XPath into an n-ary query language?

@ use path expressions p to navigate
@ use node variables x1, xo, ..., x, to select n-tuples
Example (All triples (title,year,director name))
o(x,y,z) = ch™ : title/x J

E.Filiot Logics for n-ary Queries in Trees 2008, October 11 /38

How to turn XPath into an n-ary query language?

@ use path expressions p to navigate
@ use node variables x1, xo, ..., x, to select n-tuples
Example (All triples (title,year,director name))
o(x.y,z) = ch” : title/x/ns :: year J

E.Filiot Logics for n-ary Queries in Trees 2008, October 11 /38

How to turn XPath into an n-ary query language?

@ use path expressions p to navigate

@ use node variables x1, xo, ..., x, to select n-tuples J
Example (All triples (title,year,director name))
o(x.y,z) = ch”™ :: title/x/ns :: year/y J

E.Filiot Logics for n-ary Queries in Trees 2008, October 11 /38

How to turn XPath into an n-ary query language?

@ use path expressions p to navigate
@ use node variables x1, xo, ..., x, to select n-tuples
Example (All triples (title,year,director name))
o(x,y,z) = ch” : title/x/ns :: year/ns :: director/ch :: name J

E.Filiot Logics for n-ary Queries in Trees 2008, October 11 /38

How to turn XPath into an n-ary query language?

@ use path expressions p to navigate
@ use node variables x1, xo, ..., x, to select n-tuples
Example (All triples (title,year,director name))
o(x,y,z) = ch™ : title/x/ns :: year/ns :: director/ch :: name/z J

E.Filiot Logics for n-ary Queries in Trees 2008, October 11 /38

How to turn XPath into an n-ary query language?

@ use path expressions to navigate J

@ use node variables xj, x5, ..., X, to select n-tuples

E.Filiot Logics for n-ary Queries in Trees 2008, October 12 /38

How to turn XPath into an n-ary query language?

@ use path expressions to navigate
@ use node variables x1, xo, ..., x, to select n-tuples
Example (All triples (title,year,director name))
o(x,y,2) = J

E.Filiot Logics for n-ary Queries in Trees 2008, October 12 /38

How to turn XPath into an n-ary query language?

@ use path expressions to navigate
@ use node variables x1, xo, ..., x, to select n-tuples
Example (All triples (title,year,director name))
¢(x,y,z) =ch::DVD J

E.Filiot Logics for n-ary Queries in Trees 2008, October 12 /38

How to turn XPath into an n-ary query language?

@ use path expressions to navigate

@ use node variables x1, xo, ..., x, to select n-tuples J
Example (All triples (title,year,director name))
o(x,y,z) = ch:: DVD|[ch:: title /] J

E.Filiot Logics for n-ary Queries in Trees 2008, October 12 /38

How to turn XPath into an n-ary query language?

@ use path expressions to navigate

@ use node variables x1, xo, ..., x, to select n-tuples J
Example (All triples (title,year,director name))
oO(x,y,z) = ch::DVD]ch:: title/x|[ch:: year/y] J

E.Filiot Logics for n-ary Queries in Trees 2008, October 12 /38

How to turn XPath into an n-ary query language?

@ use path expressions to navigate

@ use node variables x1, xo, ..., x, to select n-tuples J
Example (All triples (title,year,director name))
o(x,y,z) = ch:: DVD|ch:: title/x][ch:: year/y][ch :: director /ch :: name/z| J

E.Filiot Logics for n-ary Queries in Trees 2008, October 12 /38

Idea of the composition language
@ use path-expressions to navigate

@ use variables xi, x, ..., X, to select output n-tuples

@ composition operator o to compose queries

X2 mxg

E.Filiot Logics for n-ary Queries in Trees 2008, October 13 /38

Idea of the composition language

@ use binary queries from some binary query language L to navigate
@ use variables xi, x, ..., X, to select output n-tuples

@ composition operator o to compose queries

X2 M}@

E.Filiot Logics for n-ary Queries in Trees 2008, October 13 /38

Idea of the composition language

@ use binary queries from some binary query language L to navigate
@ use variables xi, x, ..., , X, to select output n-tuples

@ composition operator o to compose queries

Example (Composition of CoreXPath expressions)

wtitle) x / ns:year | y / ns:director/ch::name | z
N——

! ! !

a1 © X © qz ©c y o as © z

where g1, o, g3 € CoreXPath.

E.Filiot Logics for n-ary Queries in Trees 2008, October 13 /38

The composition language Comp(L)

Syntax of composition formulas Comp(L)

We start from L a binary query language, and Var a set of variables.

q gel

X variable

poop composition
] test

oV P disjunction

@ thanks to variables, you can define n-ary queries

@ Ans(¢, t): set of answers.

E.Filiot Logics for n-ary Queries in Trees 2008, October

14 / 38

Query Evaluation

Query evaluation problem
@ Input: a tree t, a formula ¢ (x;,....x,) € Comp(L)
@ Output: Ans(o, 1)

E.Filiot Logics for n-ary Queries in Trees 2008, October 15 / 38

Query Evaluation

Query evaluation problem
@ Input: a tree t, a formula ¢ (x;,....x,) € Comp(L)
@ Output: Ans(o. 1)

Polynomial-time query evaluation

@ The number of n-tuples of nodes is exponential in |¢| and:
Ans(@, £)] << |¢]"
@ one needs polynomial-time query evaluation:

poly([t],], [Ans(6, £)])

E.Filiot Logics for n-ary Queries in Trees 2008, October

15/ 38

Query Evaluation Algorithm for Comp"**(L)

Non-variable sharing fragment
@ variable sharing: goxoqg' oyoqg’ox
o disallow variable sharing: ¢1 0 ¢ — Var(¢1) N Var(py) = @
® Comp"™*(L) = Comp(L) + non-variable sharing

o related to acyclicity of conjunctive queries (Yannakakis81)

E.Filiot Logics for n-ary Queries in Trees 2008, October

16 / 38

Query Evaluation Algorithm for Comp"**(L)

Non-variable sharing fragment
@ variable sharing: goxoqg' oyoqg’ox
o disallow variable sharing: ¢1 0 ¢ — Var(¢1) N Var(py) = @
® Comp"™*(L) = Comp(L) + non-variable sharing

o related to acyclicity of conjunctive queries (Yannakakis81)

Theorem

Query evaluation for Comp"”(L) is in PTIME if query evaluation for L is
in PTIME.

E.Filiot Logics for n-ary Queries in Trees 2008, October 16 / 38

Query Evaluation Algorithm for Comp"**(L)

Non-variable sharing fragment
@ variable sharing: goxoqg' oyoqg’ox
o disallow variable sharing: ¢1 0 ¢ — Var(¢1) N Var(py) = @
® Comp"™*(L) = Comp(L) + non-variable sharing

o related to acyclicity of conjunctive queries (Yannakakis81)

Theorem

Query evaluation for Comp"”(L) is in PTIME if query evaluation for L is
in PTIME.

Idea (Yannakakis81): process the formula recursively:

© at each step, check if there is a solution — remain linear in |Ans(¢, t)]

@ use memoization to avoid redundant calculus

E.Filiot Logics for n-ary Queries in Trees 2008, October 16 / 38

Expressiveness

Two yardstick logics, FO and MSO
@ MSO= FO+ set quantification
@ formulas ¢(x1,...,x,) € FO (MSO) define n-ary queries

@ FO, = n-ary FO queries
@ MSO, = n-ary MSO queries

E.Filiot Logics for n-ary Queries in Trees 2008, October

17 / 38

Expressiveness

Two yardstick logics, FO and MSO
@ MSO= FO+ set quantification
o formulas ¢)(x;....,x,) € FO (MSO) define n-ary queries

@ FO, = n-ary FO queries
@ MSO, = n-ary MSO queries

Theorem

FO, = Comp™(FO)
MSO, = Comp™*(MSO5)

Remark

It uses folklore result from finite model theory based on the Shelah's
decomposition method. (Schwentick’00 or Marx'05 for instance).

E.Filiot Logics for n-ary Queries in Trees 2008, October

17 / 38

n-ary XPath Extensions (I)

Conditional XPath (Marx'04)

@ extends CoreXPath with a “while” operator (axis :: /[test])"
® CXPath = FO,

@ query evaluation of a path expression pis in O(|p|.|t])

E.Filiot Logics for n-ary Queries in Trees 2008, October 18 / 38

n-ary XPath Extensions (I)

Conditional XPath (Marx'04)

@ extends CoreXPath with a “while” operator (axis :: /[test])"
® CXPath = FO,

@ query evaluation of a path expression pis in O(|p|.|t])

n-ary Conditional XPath

@ path expressions p + non-variable sharing
p == axis:: || p/p | p[test] | pUp | (axis :: I[test])™

E.Filiot Logics for n-ary Queries in Trees 2008, October 18 / 38

n-ary XPath Extensions (I)

Conditional XPath (Marx'04)

@ extends CoreXPath with a “while” operator (axis :: /[test])"
® CXPath = FO,

@ query evaluation of a path expression pis in O(|p|.|t])

n-ary Conditional XPath

@ path expressions p + non-variable sharing
p == axis: || p/p| pltest] | pUp | (axis :: I[test])T | x € Var

E.Filiot Logics for n-ary Queries in Trees 2008, October 18 / 38

n-ary XPath Extensions (I)

Conditional XPath (Marx'04)

@ extends CoreXPath with a “while” operator (axis :: /[test])™
® CXPath = FO,

@ query evaluation of a path expression pis in O(|p|.|t])

n-ary Conditional XPath
@ path expressions p + non-variable sharing
p == axis: || p/p| pltest] | pUp | (axis :: I[test])T | x € Var
@ linear-time back and forth translations into Comp"'*(CXPath)
@ — captures FO,

@ — query evaluation in time O(|p|.|t[?.(1 + |Ans(p, t)]))

Remark: query evaluation of FO 0-ary queries is PSPACE-complete

E.Filiot Logics for n-ary Queries in Trees 2008, October 18 / 38

n-ary XPath Extensions (l1)

XPath 2.0
@ extends XPath (1.0) with:
path intersection pi M po

path complement compl(p)
variables X

quantification for x in py return po
@ captures FO, modulo linear-time

@ CoreXPath2.0 formalized by ten Cate and Marx (07)

E.Filiot Logics for n-ary Queries in Trees 2008, October

19 /38

n-ary XPath Extensions (l1)

XPath 2.0
@ extends XPath (1.0) with:
path intersection pi M po

path complement compl(p)
variables X

quantification for x in py return po
@ captures FO, modulo linear-time

@ CoreXPath2.0 formalized by ten Cate and Marx (07)

Application of the composition language
@ to define a syntactic fragment of CoreXPath2.0

@ FO,-expressive

@ with query evaluation problem in O(|p|.|t> + |p|.|t?|.|Ans(p, t)])

E.Filiot Logics for n-ary Queries in Trees 2008, October 19 / 38

Outline

PART Il: The Spatial Logic TQL

E.Filiot Logics for n-ary Queries in Trees 2008, October 20 / 38

TQL Examples

) () @ o) @) em) @) () @) @) o o
CRORCIORONO OROICO

Example (Check if there is an awarded movie)

DVDs|_ | DVDI_ | awards[_]] |]

E.Filiot Logics for n-ary Queries in Trees 2008, October 21 /38

TQL Examples

Example (Check if there is an awarded movie)

DVDs[_ | DVDI- | awards[-]] | -]

E.Filiot Logics for n-ary Queries in Trees 2008, October 21 /38

TQL Examples

Example (Select all awarded movies)

»(X) = DVDs[- | X AN DVDI | awards[.]] | -]
!

tree variable

E.Filiot Logics for n-ary Queries in Trees 2008, October 21 /38

TQL Examples

@ 1980

Example (Select all pairs of (director, writer))

#(X,Y) = DVDs[_ | DVD[|year[]|X|Y|]|]

E.Filiot Logics for n-ary Queries in Trees 2008, October 21 /38

TQL Examples

) () @ o) @) em) @) () @) @) o o
= @ O O OROICO

Example (Select all names of persons who are both director and
writer)

»(X) = DVDs[. | DVD|_|director[name[X]|_]|writer[name[X]|_]|-]|-]

g o o Onoriaci T P
E.Filiot Logics for -ary Queries in Trees 2008, 21 /38

TQL Examples

) () @ o) @) em) @) () @) @) o o
CRORCIORONO (o) Gomed (o)

Example (Select all director names who is not a writer)

#(X) = DVDs[_ | DVD|_|director[name[X]|_]|writer[name[-X]|_]|-]|]

E.Filiot Logics for n-ary Queries in Trees 2008, October 21 /38

TQL Examples

@)) @f @n) @ em) @) OO o) @ em)
CRCORCIONONO (o) Gomed (o)

Tree (dis)equality tests
@ main difficulty of TQL satisfiability problem

@ incomparable to FO fragments with data-value comparison
(BojanczykDMSS06)

E.Filiot Logics for n-ary Queries in Trees 2008, October 21 /38

Hedge Algebra H,

@ /\: countable set of labels
@ hedge = ordered sequence of unranked trees

E.Filiot Logics for n-ary Queries in Trees 2008, October 22 /38

Hedge Algebra H,

@ /\: countable set of labels
@ hedge = ordered sequence of unranked trees
@ constant 0: empty hedge

E.Filiot Logics for n-ary Queries in Trees 2008, October 22 /38

Hedge Algebra H,

@ /\: countable set of labels

@ hedge = ordered sequence of unranked trees
@ constant 0: empty hedge

@ unary symbols a € A:

a(_— "~ .. _—) a
—_ —_

E.Filiot Logics for n-ary Queries in Trees 2008, October 22 /38

Hedge Algebra H,

@ /\: countable set of labels

@ hedge = ordered sequence of unranked trees
@ constant 0: empty hedge

@ unary symbols a € A:

a() = a

@ binary symbol |

E.Filiot Logics for n-ary Queries in Trees 2008, October 22 /38

TQL: Syntax and Semantics

empty hedge 0
location alg] a C A (co)finite
concatenation o|¢’

E.Filiot Logics for n-ary Queries in Trees

2008, October

23 /38

TQL: Syntax and Semantics

empty hedge 0

location alg] a C A (co)finite
concatenation o|¢’

truth -

conjunction ONG

negation -0

E.Filiot Logics for n-ary Queries in Trees 2008, October 23 /38

TQL: Syntax and Semantics

empty hedge
location
concatenation

truth
conjunction
negation

tree variable

recursion variable
least fixpoint

E.Filiot

alg] a C A (co)finite

Logics for n-ary Queries in Trees 2008, October

23 /38

TQL: Syntax and Semantics

@ semantics modulo p : TreeVars — Tp and 0 : RecVars — 2/
@ set-based semantics: [.], 5 C Hp

empty hedge
location
concatenation

truth
conjunction
negation

tree variable

recursion variable
least fixpoint

E.Filiot

0
alg] a C A (co)finite
¢l¢’

Logics for n-ary Queries in Trees 2008, October

23 /38

TQL: Syntax and Semantics

@ semantics modulo p : TreeVars — Tp and 0 : RecVars — 2/
@ set-based semantics: [.], 5 C Hp

empty hedge
location
concatenation

truth
conjunction
negation

tree variable

recursion variable
least fixpoint

E.Filiot

[0] 5.6 = {0}
[[Q[@]ﬂp,(; {a(h) ’ he Hcﬂ]pﬁﬂ ac O‘}
[¢1¢']ps = {hIh" | heldlps b €[]0}

SN
¢

X

§
pé-¢

Logics for n-ary Queries in Trees 2008, October 23 /38

TQL: Syntax and Semantics

@ semantics modulo p : TreeVars — Tp and 0 : RecVars — 2/

@ set-based semantics: [.], 5 C Hp

empty hedge
location
concatenation

truth
conjunction
negation

tree variable

recursion variable
least fixpoint

E.Filiot

[[Oﬂp,é
[[(1[@]]}/),6
[[Cf) ’ ‘?’)/ﬂ p,0

[
[o A ¢l
[=¢]

X

§
pE-¢

{0}
{a(h) [h e [d]ps,a€at
{hlh" | he[o]ps, b €[d s}

Ha
[o] N [¢]
HA\[¢]

Logics for n-ary Queries in Trees 2008, October 23 /38

TQL: Syntax and Semantics

@ semantics modulo p : TreeVars — Ty and 0 : RecVars — 2/
@ set-based semantics: [.], 5 C Ha

empty hedge [0] . = {0}

location laldll,s = {a(h) | heldlps acal
concatenation [6l¢]ps = {hlh | heldlps b €[d s}
truth [= Ha

conjunction [ond] = [o]N][d]

negation [l = Ha\[¢]

tree variable X1, = {p(X)}

recursion variable [¢],s = 0(¢)

least fixpoint [1€-0lps = (WS C Ha | [8],61c—5 € S}

&
E.Filiot Logics for n-ary Queries in Trees 2008, October 23 /38

Examples with fixpoint

Example (Select all subtrees reachable from the root by following

an ’a’-path) A

L
LL L L

6(X) = p&.(alleld v X)

E.Filiot Logics for n-ary Queries in Trees 2008, October 24 / 38

Examples with fixpoint

Example (Select all subtrees reachable from the root by following
an ’a’-path) A

LL L L

$(X) = n&.(allel] v X) ?

Example (2"b")

p&-(a[0]/€[b[0] v 0)

E.Filiot Logics for n-ary Queries in Trees 2008, October 24 / 38

Examples with fixpoint

Example (Select all subtrees reachable from the root by following
an ’a’-path) A

$(X) = pe(alleld v X) ’

LL L L

Example (2"b")

p&-(a[0]/€[b[0] v 0)

@ vertical recursion — regular tree languages

@ horizontal recursion — context-free word languages

E.Filiot Logics for n-ary Queries in Trees 2008, October 24 / 38

A Decidable Fragment: Bounded TQL

Satisfiability problem
Input: TQL formula ¢ Output: Jhipo. he [0],s? J

E.Filiot Logics for n-ary Queries in Trees 2008, October 25 /38

A Decidable Fragment: Bounded TQL
Proposition
Satisfiability of TQL formulas is undecidable. J

E.Filiot Logics for n-ary Queries in Trees 2008, October 25 /38

A Decidable Fragment: Bounded TQL
Proposition
Satisfiability of TQL formulas is undecidable. J

Bounded TQL
@ recursion variables are guarded by some /.| J

E.Filiot Logics for n-ary Queries in Trees 2008, October 25 /38

A Decidable Fragment: Bounded TQL
Proposition
Satisfiability of TQL formulas is undecidable.

Bounded TQL
@ recursion variables are guarded by some /.|

pé.(al-lgl] v X) — guarded
wé.(a[0]l¢|b[0] V 0) — not guarded

E.Filiot Logics for n-ary Queries in Trees 2008, October 25 /38

A Decidable Fragment: Bounded TQL
Proposition
Satisfiability of TQL formulas is undecidable. J

Bounded TQL
@ recursion variables are guarded by some /.| J

E.Filiot Logics for n-ary Queries in Trees 2008, October 25 /38

A Decidable Fragment: Bounded TQL
Proposition
Satisfiability of TQL formulas is undecidable.

Bounded TQL
@ recursion variables are guarded by some /.|

@ add Kleene star ¢* for horizontal recursion

E.Filiot Logics for n-ary Queries in Trees 2008, October 25 /38

A Decidable Fragment: Bounded TQL
Proposition
Satisfiability of TQL formulas is undecidable.

Bounded TQL
@ recursion variables are guarded by some /.|

@ add Kleene star ¢* for horizontal recursion

lo*], :OUU[[O/). I[#],

i>0
i times

E.Filiot Logics for n-ary Queries in Trees 2008, October

25 /38

A Decidable Fragment: Bounded TQL
Proposition
Satisfiability of TQL formulas is undecidable.

Bounded TQL
@ recursion variables are guarded by some /.|

@ add Kleene star ¢* for horizontal recursion

E.Filiot Logics for n-ary Queries in Trees 2008, October 25 /38

A Decidable Fragment: Bounded TQL

Proposition
Satisfiability of TQL formulas is undecidable.

Bounded TQL
@ recursion variables are guarded by some /.|
@ add Kleene star ¢ for horizontal recursion

@ restriction negative variables: only a bounded number of
disequality tests along the paths

E.Filiot Logics for n-ary Queries in Trees 2008, October 25 /38

A Decidable Fragment: Bounded TQL

Proposition

Satisfiability of TQL formulas is undecidable.

Bounded TQL

@ recursion variables are guarded by some /.|
@ add Kleene star ¢ for horizontal recursion

@ restriction negative variables: only a bounded number of
disequality tests along the paths

bIX | p&(—=X Aalg]l v 0)] — not bounded

(-X)" | X | (-X)" — bounded

Qmmmy ==

E.Filiot

Logics for n-ary Queries in Trees

2008, October 25 / 38

A Decidable Fragment: Bounded TQL

Proposition
Satisfiability of TQL formulas is undecidable.

Bounded TQL
@ recursion variables are guarded by some /.|
@ add Kleene star ¢ for horizontal recursion

@ restriction negative variables: only a bounded number of
disequality tests along the paths

E.Filiot Logics for n-ary Queries in Trees 2008, October 25 /38

A Decidable Fragment: Bounded TQL

Proposition
Satisfiability of TQL formulas is undecidable.

Bounded TQL
@ recursion variables are guarded by some /.|
@ add Kleene star ¢ for horizontal recursion

@ restriction negative variables: only a bounded number of
disequality tests along the paths

@ no negative occurences of Kleene star and |

E.Filiot Logics for n-ary Queries in Trees 2008, October 25 /38

Expressiveness and Satisfiability of Bounded TQL

Theorem

© Bounded TQL sentences capture MSO.
@ Satistiability of bounded TQL is decidable (in SNEXPTIME).

E.Filiot Logics for n-ary Queries in Trees 2008, October 26 / 38

Expressiveness and Satisfiability of Bounded TQL

Theorem

© Bounded TQL sentences capture MSO.
@ Satistiability of bounded TQL is decidable (in SNEXPTIME).

» 2EXPTIME / EXPTIME-hard when no negated variables occur
» EXPTIME for sentences

E.Filiot Logics for n-ary Queries in Trees 2008, October 26 / 38

Expressiveness and Satisfiability of Bounded TQL

Theorem

© Bounded TQL sentences capture MSO.
@ Satistiability of bounded TQL is decidable (in SNEXPTIME).

» 2EXPTIME / EXPTIME-hard when no negated variables occur
» EXPTIME for sentences

The proof is by reduction to emptiness of bounded TAGEDs.

E.Filiot Logics for n-ary Queries in Trees 2008, October 26 / 38

Bottom-up Tree Automata for Binary Trees

@ J_: finite alphabet

@ (Q: set of states

@ F C @: set of final states

@ A: rules of the form f(g1,92) — gora— g

E.Filiot Logics for n-ary Queries in Trees 2008, October 27 / 38

Bottom-up Tree Automata for Binary Trees

@ J_: finite alphabet

@ (: set of states

@ [C @: set of final states

@ A: rules of the form f(g1,92) — gora— g

Example (variable-free satisfiable Boolean formulas)

a tree and a successful run transitions
A
O—q0 1—aq
/\ AN abys Gby) — Goynb,
/\/\ A V(Qby > Gby) — Qbyvbs
0 1 \//\1 final states
PN F={aq}

1 0

v

E.Filiot Logics for n-ary Queries in Trees 2008, October 27 / 38

Bottom-up Tree Automata for Binary Trees

@ J_: finite alphabet

@ (: set of states

@ [C @: set of final states

@ A: rules of the form f(g1,q2) — gora— g

Example (variable-free satisfiable Boolean formulas)

a tree and a successful run transitions
A
0O—q 1—aq
/\ A(qbla qbg) — by Aby
\Vi A v(qbp qb2) 7 4 Vb,
/\ /\
0 qo 1 v 1 final states
1/\0 F = {ql}

v

E.Filiot Logics for n-ary Queries in Trees 2008, October 27 / 38

Bottom-up Tree Automata for Binary Trees

@ J_: finite alphabet

@ (: set of states

@ [C @: set of final states

@ A: rules of the form f(g1,q2) — gora— g

Example (variable-free satisfiable Boolean formulas)

a tree and a successful run transitions
A
O—q 1—aq
/\(qb17 qbz) - qb1/\b2
V A V(Gbys Gby) — Qbyvb,
0 qo0 1aqr v 1 final states
PN F= {ql}
1 0

v

E.Filiot Logics for n-ary Queries in Trees 2008, October 27 / 38

Bottom-up Tree Automata for Binary Trees

@ J_: finite alphabet

@ (: set of states

@ [C @: set of final states

@ A: rules of the form f(g1,q2) — gora— g

Example (variable-free satisfiable Boolean formulas)

a tree and a successful run transitions
A
O—q 1—aq
/\(qb17 qbz) - qb1/\b2
Vo q1 A V(Gbys Gby) — Qbyvib
0 qo0 1aqr v 1 final states
PN F= {ql}
1 0

v

E.Filiot Logics for n-ary Queries in Trees 2008, October 27 / 38

Bottom-up Tree Automata for Binary Trees

@ J_: finite alphabet

@ (Q: set of states

@ [C @: set of final states

@ A: rules of the form f(g1,92) — gor a— g

Example (variable-free satisfiable Boolean formulas)

a tree and a successful run transitions
N

0O—q 1—aq
/\(qb17 qbz) - qb1/\b2

Vo q1 A V(Gbys Gby) — Qbyvib
/\
0 qo 1 g1 \//\ 1 final states
s F={aq}
1 (e} 0

v

E.Filiot Logics for n-ary Queries in Trees 2008, October 27 / 38

Bottom-up Tree Automata for Binary Trees

@ J_: finite alphabet

@ (: set of states

@ [C @: set of final states

@ A: rules of the form f(g1,92) — gor a— g

Example (variable-free satisfiable Boolean formulas)

a tree and a successful run transitions
VAN
/\ 0—q 1—aq
A Gbys Gby) — Gy by
Vg A V(Gby, Gb,) — Abyvb,
s /\
0 qo e v 1 final states
s F=Aam}
L g 0 qo

v

E.Filiot Logics for n-ary Queries in Trees 2008, October 27 / 38

Bottom-up Tree Automata for Binary Trees

@ J_: finite alphabet

@ (: set of states

@ [C @: set of final states

@ A: rules of the form f(g1,92) — gor a— g

Example (variable-free satisfiable Boolean formulas)

a tree and a successful run transitions
VAN
/\ 0—q 1—aq
A Gbys Gby) — Gy by
Vg A V(Gby, Gb,) — Abyvb,
s /\
0 qo e Vo 1 final states
s F=Aam}
L g 0 qo

v

E.Filiot Logics for n-ary Queries in Trees 2008, October 27 / 38

Bottom-up Tree Automata for Binary Trees

@ 2 finite alphabet

@ (: set of states

@ [C @: set of final states

@ A: rules of the form f(g1,q2) — gora— g

Example (variable-free satisfiable Boolean formulas)

a tree and a successful run transitions
A

0O—q 1—aq
/\(qb17 qbz) - qb1/\b2

Vg A V(Qby > Gby) — Qbyvbs
/\ /\
0 qo lagp Va 1 7 final states
/\ F= {ql}
L a1 0 qo

v

E.Filiot Logics for n-ary Queries in Trees 2008, October 27 / 38

Bottom-up Tree Automata for Binary Trees

@ 2 finite alphabet

@ (: set of states

@ [C @: set of final states

@ A: rules of the form f(g1,q2) — gora— g

Example (variable-free satisfiable Boolean formulas)

a tree and a successful run transitions
A

0O—q 1—aq
/\(qb17 qbz) - qb1/\b2

Va1 A g1 V(Qbys Gby) — Gbyvb
/\ /\
0 qo lagp Va 1 7 final states
/\ F= {ql}
L a1 0 qo

v

E.Filiot Logics for n-ary Queries in Trees 2008, October 27 / 38

Bottom-up Tree Automata for Binary Trees

@ 2 finite alphabet

@ (: set of states

@ [C @: set of final states

@ A: rules of the form f(g1,q2) — gora— g

Example (variable-free satisfiable Boolean formulas)

a tree and a successful run transitions
A qu

0O—q 1—aq
/\(qb17 qbz) - qb1/\b2

Va1 A g1 V(Qbys Gby) — Gbyvb
/\ /\
0 qo lagp Va 1 7 final states
/\ F= {ql}
L a1 0 qo

v

E.Filiot Logics for n-ary Queries in Trees 2008, October 27 / 38

Tree Automata with Global Equalities and
Disequalities

A tree automaton A with global equalities and disequalities (TAGED)
is given by:

alphabet

set of states

set of final states
set of rules

tree automaton

> mo M

E.Filiot Logics for n-ary Queries in Trees 2008, October 28 / 38

Tree Automata with Global Equalities and
Disequalities

A tree automaton A with global equalities and disequalities (TAGED)
is given by:

> alphabet
() set of states
: tree automaton

F set of final states
A set of rules

=, C Q2 reflexive and symmetric relation

on a subset of @

#4C Q@ irreflexive and symmetric relation

E.Filiot

Logics for n-ary Queries in Trees 2008, October 28 / 38

Successful Runs

quF

E.Filiot Logics for n-ary Queries in Trees 2008, October 29 /38

Successful Runs

quF

AAN A A

E.Filiot Logics for n-ary Queries in Trees 2008, October 29 /38

Successful Runs

quF

g #a q

@ equalities and disequalities can be tested arbitrarily faraway

@ different from usual Automata with Constraints where tests are
local (BogaertT92, DauchetCC95, KariantoL07)

E.Filiot Logics for n-ary Queries in Trees 2008, October 29 /38

Example: {f(t,t) | te Ty}

o> ={f, a}
‘ @ @ —=19.9r.91. 92}
° F={ar}
() O N
a—q

(9.9)
OO ONNO fgz-ggw

q.q9

(
ONO) ()

E.Filiot Logics for n-ary Queries in Trees 2008, October 30 /38

Example: {f(t,t) | te Ty}

o> ={f, a}
‘ @ @ —=19.9r.91. 92}
° F={ar}
() O N
a—q

(9.9)
OO ONNO fgz-ggw

q.q9

(
Co (&)) ()

E.Filiot Logics for n-ary Queries in Trees 2008, October 30 /38

Example: {f(t,t) | te Ty}

o> ={f, a}
‘ @ @ —=19.9r.91. 92}
° F={ar}
() O N
a—q

(9.9)
OO ONNO fgz-ggw

q.q9

(
SHED) ()

E.Filiot Logics for n-ary Queries in Trees 2008, October 30 /38

Example: {f(t,t) | te Ty}

o> ={f, a}
‘ @ @ —=19.9r.91. 92}
° F={ar}
() O N
a—q

(9.9)
DN ONNONNO fgz-ggw

q.q9

(
SHED) ()

E.Filiot Logics for n-ary Queries in Trees 2008, October 30 /38

Example: {f(t,t) | te Ty}

o> ={f, a}
‘ @ @ —=19.9r.91. 92}
° F={ar}
() O N
a—q

(9.9)
DT ENONNO fgz-ggw

q.q9

(
SHED) ()

E.Filiot Logics for n-ary Queries in Trees 2008, October 30 /38

Example: {f(t,t) | te Ty}

o> ={f, a}
‘ @ @ —=19.9r.91. 92}
° F={ar}
© O N
a—q

(9.9)
DT ENONNO fgz-ggw

q.q9

(
SHED) ()

E.Filiot Logics for n-ary Queries in Trees 2008, October 30 /38

Example: {f(t,t) | te Ty}

o> ={f, a}
‘ @ @ —=19.9r.91. 92}
° F={ar}
© O
a—q

(9.9)
O ENOEND fgz-ggw

q.q

(
SHED o (9

E.Filiot Logics for n-ary Queries in Trees 2008, October 30 /38

Example: {f(t,t) | te Ty}

o> ={f, a}
G @ @ —=19.9r.91. 92}
° F={ar}
© O
a—q

(9.9)
O ENOEND fgz-ggw

q.q

(
SHED o (9

E.Filiot Logics for n-ary Queries in Trees 2008, October 30 /38

Example: {f(t,s) | t,sc Ty, t+#s}

o> ={f, a}
G @ @ —=19.9r.91. 92}
° F={ar}
© O
a—q

(9.9)
O ENOEND fgz-ggw

q.q9

(
SHED o (9

@
Q
=
RS
>
Q
N

E.Filiot Logics for n-ary Queries in Trees 2008, October 30 /38

Some properties of TAGEDs
Proposition

@ TAGED-recognizable languages are closed by union and intersection,
but not by complement;

® Membership is NP-complete;
@ TAGED are not determinizable (counter-example {f(t.t) | t € Ts});
@ Universality is undecidable.

E.Filiot Logics for n-ary Queries in Trees 2008, October 31/38

Some properties of TAGEDs
Proposition

@ TAGED-recognizable languages are closed by union and intersection,
but not by complement;

® Membership is NP-complete;
@ TAGED are not determinizable (counter-example {f(t.t) | t € Ts});

@ Universality is undecidable.

Emptiness Problem
Input: a TAGED A Output:/[(A) # &7

Theorem
Emptiness is:
© EXPTIME-complete for positive TAGED (#, = &)
@ decidable in NEXPTIME for negative TAGED (=, = ©)
@ decidable in linear-time for positive TAGED such that =,C idg

4

E.Filiot Logics for n-ary Queries in Trees 2008, October 31/38

Bounded TAGEDs

Definition

A bounded TAGED is a pair (A, k) where Ais a TAGED and k € N is a
natural number.

E.Filiot Logics for n-ary Queries in Trees 2008, October 32 /38

Bounded TAGEDs

Definition
A bounded TAGED is a pair (A, k) where Ais a TAGED and k € N is a
natural number.

Definition (Successful Runs)

Additional condition: along any branch, the number of states from
dom(#4) is smaller than k.

E.Filiot Logics for n-ary Queries in Trees 2008, October 32 /38

Bounded TAGEDs

Definition
A bounded TAGED is a pair (A, k) where Ais a TAGED and k € N is a
natural number.

Definition (Successful Runs)

Additional condition: along any branch, the number of states from
dom(#4) is smaller than k.

By using a pumping technique one can show that:

Theorem
Emptiness of bounded TAGEDs is decidable in 2NEXPTIME. J

E.Filiot Logics for n-ary Queries in Trees 2008, October 32 /38

Emptiness of bounded TAGED: Sketch of Proof

Idea: if the automaton accepts a tree ¢ then t is not too big (its size is bounded in |Al).

E.Filiot Logics for n-ary Queries in Trees 2008, October 33 /38

Emptiness of bounded TAGED: Sketch of Proof

Idea: if the automaton accepts a tree ¢ then t is not too big (its size is bounded in |Al).

Lemmata
@ =,C idg is always possible
@ in a successful run, same (sub)run below same states of =4

@ pumping technique preserving the constraints induced by =4

E.Filiot Logics for n-ary Queries in Trees 2008, October 33 /38

Emptiness of bounded TAGED: Sketch of Proof

Idea: if the automaton accepts a tree ¢ then t is not too big (its size is bounded in |Al).
Lemmata

@ =,C idg is always possible

@ in a successful run, same (sub)run below same states of =4

@ pumping technique preserving the constraints induced by =4

Algorithm

© find a tree and a run satisfying the constraints from =, but maybe not from #,

@ test whether (and its run) can be repaired (polynomial algorithm)
© if the test fails, choose another tree.

E.Filiot Logics for n-ary Queries in Trees 2008, October 33 /38

Emptiness of bounded TAGED: Sketch of Proof

Idea: if the automaton accepts a tree ¢ then t is not too big (its size is bounded in |Al).
Lemmata

@ =,C idg is always possible

@ in a successful run, same (sub)run below same states of =4

@ pumping technique preserving the constraints induced by =4

Algorithm

© find a tree and a run satisfying the constraints from =, but maybe not from #,
@ test whether (and its run) can be repaired (polynomial algorithm)

© if the test fails, choose another tree.

Termination

If the automaton accepts a tree, then it accepts a repairable tree satisfying the
contraints from =, whose size is exponential in |A| and k.

E.Filiot Logics for n-ary Queries in Trees 2008, October 33 /38

TQL to TAGED

TAGED for hedges over an infinite alphabet
@ extends hedge automata (Murata'99) with global tests;
@ transititions o(L) — g where L C Q7;

@ lift all the results via a binary encoding of hedges.

E.Filiot Logics for n-ary Queries in Trees 2008, October 34 /38

TQL to TAGED

TAGED for hedges over an infinite alphabet
@ extends hedge automata (Murata'99) with global tests;
@ transititions (L) — g where L C Q%;

@ lift all the results via a binary encoding of hedges.

Bounded TQL — Bounded TAGED
@ new construction;

@ two difficulties: variables and hedge operations;

E.Filiot Logics for n-ary Queries in Trees 2008, October

34 /38

TQL to TAGED

TAGED for hedges over an infinite alphabet
@ extends hedge automata (Murata'99) with global tests;
@ transititions o(L) — g where L C Q7;
@ lift all the results via a binary encoding of hedges.

Bounded TQL — Bounded TAGED
@ new construction;

two difficulties: variables and hedge operations;
states: sets of subformulas a[¢]|, X, —X;

variables are added non-deterministically to the states;

LX) =4 LX)
LooX, o h #a L =X, 0

°
°
@ hedge operations are interpreted as operations on state languages
°
°

E.Filiot Logics for n-ary Queries in Trees 2008, October 34 /38

Outline

Conclusion

E.Filiot Logics for n-ary Queries in Trees 2008, October 35 /38

Summary of the contributions

Query composition (FNTT, PODS’07)
@ extends the navigational XPath paradigm to n-ary queries
@ simple acyclicity notion

@ FO-complete and polynomial n-ary XPath languages

E.Filiot Logics for n-ary Queries in Trees 2008, October 36 / 38

Summary of the contributions

Query composition (FNTT, PODS’07)
@ extends the navigational XPath paradigm to n-ary queries
@ simple acyclicity notion

@ FO-complete and polynomial n-ary XPath languages

TQL (FTT,CSL’07)
@ tree pattern language for hedges
@ decidable fragment with tree variables
@ by reduction to TAGED (FTT, DLT'08)

@ new automaton construction

E.Filiot Logics for n-ary Queries in Trees 2008, October 36 / 38

Some Perspectives

Query composition
® query answering algorithms specific to Comp(ch,ch™, lab,)

@ streaming (GauwinCNTO08), enumeration (collaboration with
O.Gauwin, A.Durand, ANR Enum)

E.Filiot Logics for n-ary Queries in Trees 2008, October 37 /38

Some Perspectives

Query composition
® query answering algorithms specific to Comp(ch,ch™, lab,)

@ streaming (GauwinCNTO08), enumeration (collaboration with
O.Gauwin, A.Durand, ANR Enum)

TQL
@ lower bounds (TQL + TAGED)

@ guarded fragment

E.Filiot Logics for n-ary Queries in Trees 2008, October 37 /38

Some Perspectives

Query composition
® query answering algorithms specific to Comp(ch,ch™, lab,)

@ streaming (GauwinCNTO08), enumeration (collaboration with
O.Gauwin, A.Durand, ANR Enum)

TQL
@ lower bounds (TQL + TAGED)
@ guarded fragment
@ ... or at least, a decidable fragment closed by negation

® query inclusion Vx (¢(x) — (X)) iff not I, o(x) A —(X).

E.Filiot Logics for n-ary Queries in Trees 2008, October 37 /38

Some Perspectives

Query composition
® query answering algorithms specific to Comp(ch,ch™, lab,)

@ streaming (GauwinCNTO08), enumeration (collaboration with
O.Gauwin, A.Durand, ANR Enum)

TQL
@ lower bounds (TQL + TAGED)
@ guarded fragment
@ ... or at least, a decidable fragment closed by negation
@ query inclusion Vx (o(x) — (X)) iff not 3%, o(x) A —1)(X).
@ emptiness of full TAGED
@ application to security protocols (C.Vacher,F.Jacquemard, F.Klay)

E.Filiot Logics for n-ary Queries in Trees 2008, October 37 /38

Outline

Thank You

E.Filiot Logics for n-ary Queries in Trees 2008, October 38 /38

