# Logics for $n$-ary Queries in Trees 

Emmanuel Filiot

INRIA Lille Nord-Europe, Mostrare Project University of Lille 1, LIFL

Ph.D. Defense, 2008, October
supervisors: Sophie Tison and Jean-Marc Talbot

## eXtensible Markup Language

## XML

- markup language to represent tree-shaped data
- XML data big bang!
- standard for data exchange and data storage


## eXtensible Markup Language

## XML

- markup language to represent tree-shaped data
- XML data big bang!
- standard for data exchange and data storage


## Tree representation



## eXtensible Markup Language

## XML

- markup language to represent tree-shaped data
- XML data big bang!
- standard for data exchange and data storage


## Tree representation



## eXtensible Markup Language

## XML

- markup language to represent tree-shaped data
- XML data big bang!
- standard for data exchange and data storage


## Tree representation



Trees are ordered and unranked.

## XML Queries

## Queries

- access XML data, transform XML documents
- node selection in XML trees
- $n$-ary queries select set of $n$-tuples of nodes
- $n=1$ : unary queries
- $n=2$ : binary queries


## XML Queries

## Queries

- access XML data, transform XML documents
- node selection in XML trees
- $n$-ary queries select set of $n$-tuples of nodes
- $n=1$ : unary queries
- $n=2$ : binary queries


## Example (Select all directors)



## XML Queries

## Queries

- access XML data, transform XML documents
- node selection in XML trees
- $n$-ary queries select set of $n$-tuples of nodes
- $n=1$ : unary queries
- $n=2$ : binary queries


## Example (Select all triples (title,year,director name))



## Logics and Automata to Query XML Trees

- FO,MSO (yardstick logics but high query evaluation complexity)
- FO-relatives
- temporal logics (LibkinN03,BarceloL05,ABDGGMR05)
- navigational language XPath (W3C, GottlobKP02, Marx04, tenCate06,...)
- MSO-relatives
- $\mu$-calculus (BarceloL05)
- Monadic Datalog (GottlobK04)
- query automata (NevenS99)
- node-selecting automata (Neven00,FrickGK03, NiehrenPTT06)
- Combination Logics (Schwentick00, ArenasBL07)
- pattern-matching approach: XDuce/CDuce
(HosoyaP03,BenzakenCF03), Spatial Logic TQL
(CardelliG02,BonevaTT05)


## Logics and Automata to Query XML Trees

- FO,MSO (yardstick logics but high query evaluation complexity)
- FO-relatives
- temporal logics (LibkinN03,BarceloL05,ABDGGMR05)
- navigational language XPath (W3C, GottlobKP02, Marx04, tenCate06,...)
- MSO-relatives
- $\mu$-calculus (BarceloL05)
- Monadic Datalog (GottlobK04)
- query automata (NevenS99)
- node-selecting automata (Neven00,FrickGK03, NiehrenPTT06)
- Combination Logics (Schwentick00, ArenasBL07)
- pattern-matching approach: XDuce/CDuce (HosoyaP03, BenzakenCF03), Spatial Logic TQL (CardelliG02,BonevaTT05)

Only a few logics are well-suited to express $n$-ary queries

## Objectives

Two popular approaches:

## Navigational Approach

## Pattern-matching approach

## Objectives

Two popular approaches:

## Navigational Approach

How to define a navigation-based $n$-ary query language?

## Pattern-matching approach

## Objectives

Two popular approaches:

## Navigational Approach

How to define a navigation-based $n$-ary query language?

- expressiveness vs query evaluation complexity
- composition language: from binary to $n$-ary queries
- application to XPath-based $n$-ary query languages


## Pattern-matching approach

## Objectives

Two popular approaches:

## Navigational Approach

How to define a navigation-based $n$-ary query language?

- expressiveness vs query evaluation complexity
- composition language: from binary to $n$-ary queries
- application to XPath-based $n$-ary query languages


## Pattern-matching approach

- satisfiability problem
- is there an expressive decidable TQL fragment that can define $n$-ary queries?


## Objectives

Two popular approaches:

## Navigational Approach

How to define a navigation-based $n$-ary query language?

- expressiveness vs query evaluation complexity
- composition language: from binary to $n$-ary queries
- application to XPath-based $n$-ary query languages


## Pattern-matching approach

- satisfiability problem
- is there an expressive decidable TQL fragment that can define $n$-ary queries?
- adaptation to ordered trees
- automata-based satisfiability algorithm


## Outline

(1) Composing Binary Queries
(1) definitions
(2) expressiveness, query evaluation
(3) application to $n$-ary XPath logics
(2) The Spatial Logic TQL
(1) Examples, Definition
(2) Expressiveness, Satisfiability
(3) Tree Automata with Global Constraints
(3) Summary and Perspectives

## Outline

## PART I: Composing Binary Queries

## Trees and Queries

## Trees

Trees are finite, unranked and ordered over a finite alphabet $\Sigma=f, g, a, b \ldots$.


## Queries

## Trees and Queries

## Trees

Trees are finite, unranked and ordered over a finite alphabet $\Sigma=f, g, a, b \ldots$.
Unary Relations: nodes $(t)$


## Queries

## Trees and Queries

## Trees

Trees are finite, unranked and ordered over a finite alphabet $\Sigma=f, g, a, b \ldots$.
Unary Relations: $\operatorname{nodes}(t), \operatorname{root}(t)$


## Queries

## Trees and Queries

## Trees

Trees are finite, unranked and ordered over a finite alphabet $\Sigma=f, g, a, b \ldots$.
Unary Relations: $\operatorname{nodes}(t), \operatorname{root}(t),\left(\operatorname{lab}_{a}(t)\right)_{a \in \Sigma}$


## Queries

## Trees and Queries

## Trees

Trees are finite, unranked and ordered over a finite alphabet $\Sigma=f, g, a, b \ldots$.
Unary Relations: nodes $(t), \operatorname{root}(t),\left(\operatorname{lab}_{a}(t)\right)_{a \in \Sigma}$
Binary Relations: ns


Queries

## Trees and Queries

## Trees

Trees are finite, unranked and ordered over a finite alphabet $\Sigma=f, g, a, b \ldots$.
Unary Relations: $\operatorname{nodes}(t), \operatorname{root}(t),\left(\operatorname{lab}_{a}(t)\right)_{a \in \Sigma}$
Binary Relations: ns, ns*


## Queries

## Trees and Queries

## Trees

Trees are finite, unranked and ordered over a finite alphabet $\Sigma=f, g, a, b \ldots$.
Unary Relations: nodes $(t), \operatorname{root}(t),\left(\operatorname{lab}_{a}(t)\right)_{a \in \Sigma}$
Binary Relations: ns, ns* , ch


## Queries

## Trees and Queries

## Trees

Trees are finite, unranked and ordered over a finite alphabet $\Sigma=f, g, a, b \ldots$.
Unary Relations: nodes $(t), \operatorname{root}(t),\left(\operatorname{lab}_{a}(t)\right)_{a \in \Sigma}$
Binary Relations: ns, ns* , ch , ch*


## Queries

## Trees and Queries

## Trees

Trees are finite, unranked and ordered over a finite alphabet $\Sigma=f, g, a, b \ldots$.
Unary Relations: $\operatorname{nodes}(t), \operatorname{root}(t),\left(\operatorname{lab}_{a}(t)\right)_{a \in \Sigma}$
Binary Relations: ns, ns*, ch, ch*

## Queries

Let $n \in \mathbb{N}$. An $n$-ary query $q$ maps trees $t$ to $n$-tuples of nodes

$$
q(t) \subseteq \operatorname{nodes}(t)^{n}
$$

## The navigational language XPath

- to navigate and select sets of nodes in XML trees
- by defining path expressions
- complex counting conditions
- CoreXPath: navigational core (GottlobKP02)


## The navigational language XPath

## Example: select all director names

 ch :: DVD/ch :: director/ch :: name

## The navigational language XPath

## Example: select all director names

ch :: DVD/ch :: director/ch :: name


## The navigational language XPath

## Example: select all director names

 ch :: DVD/ch :: director/ch :: name

## The navigational language XPath

## Example: select all director names

 ch :: DVD/ch :: director/ch :: name

## The navigational language $\times$ Path

## Example: select all awarded director names

 ch :: DVD[ch :: awards]/ch :: director/ch :: name

## Expressions of CoreXPath and their semantics

Axis
self, ch, $\mathrm{ch}^{+}$, ns, $\mathrm{ns}^{+}$ $\mathrm{ch}^{-1},\left(\mathrm{ch}^{-1}\right)^{+}, \mathrm{ns}^{-1},\left(\mathrm{~ns}^{-1}\right)^{+}$

| Steps | Axis::a <br> Axis::* |
| :--- | :--- |
|  | Composition |
| $P_{1} / P_{2}$ |  |
| Union | $P_{1} \cup P_{2}$ |
| Tests | $P[\mathcal{T}]$ |

Path existence $\quad P$
Negation not $\mathcal{T}$
Conjunction $\quad \mathcal{T}_{1}$ and $\mathcal{T}_{2}$

## Expressions of CoreXPath and their semantics

Axis

$$
\text { self, ch, } \mathrm{ch}^{+}, \mathrm{ns}, \mathrm{~ns}^{+}
$$

$$
\mathrm{ch}^{-1},\left(\mathrm{ch}^{-1}\right)^{+}, \mathrm{ns}^{-1},\left(\mathrm{~ns}^{-1}\right)^{+}
$$

$$
\llbracket . \rrbracket^{t} \subseteq \operatorname{nodes}(t) \times \operatorname{nodes}(t)
$$

Steps

Composition
Union
Tests

$$
\begin{aligned}
& \llbracket \text { Axis::a } \rrbracket^{t}=\left\{\left(v_{1}, v_{2}\right) \mid v_{1} \text { Axis } v_{2} \text { and } v_{2} \in \operatorname{lab} b_{a}(t)\right\} \\
& \llbracket \text { Axis::* } \rrbracket^{t}=\left\{\left(v_{1}, v_{2}\right) \mid v_{1} \text { Axis } v_{2}\right\} \\
& \llbracket P_{1} / P_{2} \rrbracket^{t}=\llbracket P_{1} \rrbracket^{t} \circ \llbracket P_{2} \rrbracket^{t} \\
& \llbracket P_{1} \cup P_{2} \rrbracket^{t}=\llbracket P_{1} \rrbracket^{t} \cup \llbracket P_{2} \rrbracket^{t} \\
& \llbracket P[\mathcal{T}] \rrbracket^{t}=\left\{\left(v_{1}, v_{2}\right) \in \llbracket P \rrbracket^{t} \mid v_{2} \in \llbracket \mathcal{T} \rrbracket_{\text {test }}^{t}\right\}
\end{aligned}
$$

$\llbracket \cdot]_{\text {test }}^{t} \subseteq \operatorname{nodes}(t)$
Path existence

$$
\llbracket P \rrbracket_{\text {test }}^{t}=\left\{v \mid\left(v, v^{\prime}\right) \in \llbracket P \rrbracket^{t}\right\}
$$

Negation
Conjunction

## How to turn XPath into an $n$-ary query language?

## How to turn XPath into an $n$-ary query language?

- use path expressions $p$ to navigate
- use node variables $x_{1}, x_{2}, \ldots, x_{n}$ to select $n$-tuples



## How to turn XPath into an $n$-ary query language?

- use path expressions $p$ to navigate
- use node variables $x_{1}, x_{2}, \ldots, x_{n}$ to select $n$-tuples


## Example (All triples (title, year,director name))

$\phi(x, y, z)=$

E.Filiot

Logics for $n$-ary Queries in Trees
2008, October
11 / 38

## How to turn XPath into an $n$-ary query language?

- use path expressions $p$ to navigate
- use node variables $x_{1}, x_{2}, \ldots, x_{n}$ to select $n$-tuples


## Example (All triples (title,year,director name)) <br> $\phi(x, y, z)=c^{*}::$ title


E.Filiot

Logics for $n$-ary Queries in Trees
2008, October
11 / 38

## How to turn XPath into an $n$-ary query language?

- use path expressions $p$ to navigate
- use node variables $x_{1}, x_{2}, \ldots, x_{n}$ to select $n$-tuples


## Example (All triples (title,year,director name))

$\phi(x, y, z)=c h^{*}::$ title $/ x$

E.Filiot

Logics for $n$-ary Queries in Trees
2008, October
11 / 38

## How to turn XPath into an $n$-ary query language?

- use path expressions $p$ to navigate
- use node variables $x_{1}, x_{2}, \ldots, x_{n}$ to select $n$-tuples


## Example (All triples (title,year,director name))

$\phi(x, y, z)=$ ch* $^{*}::$ title $/ x / \mathrm{ns}::$ year

E.Filiot

Logics for $n$-ary Queries in Trees
2008, October
11 / 38

## How to turn XPath into an $n$-ary query language?

- use path expressions $p$ to navigate
- use node variables $x_{1}, x_{2}, \ldots, x_{n}$ to select $n$-tuples


## Example (All triples (title,year,director name))

$\phi(x, y, z)=$ ch $^{*}::$ title $/ x / \mathrm{ns}::$ year $/ y$

E.Filiot

Logics for $n$-ary Queries in Trees
2008, October
11 / 38

## How to turn XPath into an $n$-ary query language?

- use path expressions $p$ to navigate
- use node variables $x_{1}, x_{2}, \ldots, x_{n}$ to select $n$-tuples


## Example (All triples (title, year,director name))

$\phi(x, y, z)=c h^{*}::$ title/x/ns :: year/ns :: director/ch :: name

E.Filiot

Logics for $n$-ary Queries in Trees
2008, October
11 / 38

## How to turn XPath into an $n$-ary query language?

- use path expressions $p$ to navigate
- use node variables $x_{1}, x_{2}, \ldots, x_{n}$ to select $n$-tuples


## Example (All triples (title, year,director name))

$\phi(x, y, z)=$ ch* $^{*}::$ title/x/ns :: year/ns :: director/ch :: name/z

E.Filiot

Logics for $n$-ary Queries in Trees
2008, October
11 / 38

## How to turn XPath into an $n$-ary query language?

- use path expressions to navigate
- use node variables $x_{1}, x_{2}, \ldots, x_{n}$ to select $n$-tuples



## How to turn XPath into an $n$-ary query language?

- use path expressions to navigate
- use node variables $x_{1}, x_{2}, \ldots, x_{n}$ to select $n$-tuples


## Example (All triples (title,year,director name))

$\phi(x, y, z)=$

E.Filiot

Logics for $n$-ary Queries in Trees
2008, October
12 / 38

## How to turn XPath into an $n$-ary query language?

- use path expressions to navigate
- use node variables $x_{1}, x_{2}, \ldots, x_{n}$ to select $n$-tuples


## Example (All triples (title,year,director name)) <br> $\phi(x, y, z)=c h:: D V D$


E.Filiot

Logics for $n$-ary Queries in Trees
2008, October
12 / 38

## How to turn XPath into an $n$-ary query language?

- use path expressions to navigate
- use node variables $x_{1}, x_{2}, \ldots, x_{n}$ to select $n$-tuples


## Example (All triples (title,year,director name)) <br> $\phi(x, y, z)=$ ch $:: D V D[$ ch $::$ title $/ x]$


E.Filiot

Logics for $n$-ary Queries in Trees
2008, October
12 / 38

## How to turn XPath into an $n$-ary query language?

- use path expressions to navigate
- use node variables $x_{1}, x_{2}, \ldots, x_{n}$ to select $n$-tuples


## Example (All triples (title,year,director name)) <br> $\phi(x, y, z)=$ ch $:: D V D[$ ch $::$ title $/ x][$ ch $::$ year $/ y]$


E.Filiot

Logics for $n$-ary Queries in Trees
2008, October
12 / 38

## How to turn XPath into an $n$-ary query language?

- use path expressions to navigate
- use node variables $x_{1}, x_{2}, \ldots, x_{n}$ to select $n$-tuples


## Example (All triples (title,year,director name)) <br> $\phi(x, y, z)=$ ch $:: D V D[c h::$ title/x][ch :: year/y][ch :: director/ch :: name/z]


E.Filiot

Logics for $n$-ary Queries in Trees
2008, October
12 / 38

## Idea of the composition language

- use path expressions to navigate
- use variables $x_{1}, x_{2}, \ldots, x_{n}$ to select output $n$-tuples
- composition operator $\circ$ to compose queries



## Idea of the composition language

- use binary queries from some binary query language $L$ to navigate
- use variables $x_{1}, x_{2}, \ldots, x_{n}$ to select output $n$-tuples
- composition operator $\circ$ to compose queries



## Idea of the composition language

- use binary queries from some binary query language $L$ to navigate
- use variables $x_{1}, x_{2}, \ldots, x_{n}$ to select output $n$-tuples
- composition operator $\circ$ to compose queries


## Example (Composition of CoreXPath expressions)


where $q_{1}, q_{2}, q_{3} \in$ CoreXPath.

## The composition language $\operatorname{Comp}(L)$

Syntax of composition formulas Comp( $L$ )
We start from $L$ a binary query language, and $V$ ar a set of variables.


- thanks to variables, you can define $n$-ary queries
- $\operatorname{Ans}(\phi, t)$ : set of answers.


## Query Evaluation

## Query evaluation problem

- Input: a tree $t$, a formula $\phi\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{Comp}(L)$
- Output: $\operatorname{Ans}(\phi, t)$


## Query Evaluation

Query evaluation problem

- Input: a tree $t$, a formula $\phi\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{Comp}(L)$
- Output: Ans $(\phi, t)$


## Polynomial-time query evaluation

- The number of $n$-tuples of nodes is exponential in $|t|$ and:

$$
|\operatorname{Ans}(\phi, t)| \ll|t|^{n}
$$

- one needs polynomial-time query evaluation:

$$
\operatorname{poly}(|t|,|\phi|,|\operatorname{Ans}(\phi, t)|)
$$

## Query Evaluation Algorithm for Comp ${ }^{\text {nvs }}(L)$

Non-variable sharing fragment

- variable sharing: $q \circ x \circ q^{\prime} \circ y \circ q^{\prime \prime} \circ x$
- disallow variable sharing: $\phi_{1} \circ \phi_{2} \rightarrow \operatorname{Var}\left(\phi_{1}\right) \cap \operatorname{Var}\left(\phi_{2}\right)=\varnothing$
- Comp ${ }^{\text {nvs }}(L)=\operatorname{Comp}(L)+$ non-variable sharing
- related to acyclicity of conjunctive queries (Yannakakis81)


## Query Evaluation Algorithm for Comp ${ }^{\text {nvs }}(L)$

Non-variable sharing fragment

- variable sharing: $q \circ x \circ q^{\prime} \circ y \circ q^{\prime \prime} \circ x$
- disallow variable sharing: $\phi_{1} \circ \phi_{2} \rightarrow \operatorname{Var}\left(\phi_{1}\right) \cap \operatorname{Var}\left(\phi_{2}\right)=\varnothing$
- Comp ${ }^{\text {nvs }}(L)=\operatorname{Comp}(L)+$ non-variable sharing
- related to acyclicity of conjunctive queries (Yannakakis81)

Theorem
Query evaluation for Comp ${ }^{\text {nvs }}(L)$ is in PTIME if query evaluation for $L$ is in PTIME.

## Query Evaluation Algorithm for Comp ${ }^{\text {nvs }}(L)$

## Non-variable sharing fragment

- variable sharing: $q \circ x \circ q^{\prime} \circ y \circ q^{\prime \prime} \circ x$
- disallow variable sharing: $\phi_{1} \circ \phi_{2} \rightarrow \operatorname{Var}\left(\phi_{1}\right) \cap \operatorname{Var}\left(\phi_{2}\right)=\varnothing$
- Comp ${ }^{\text {nvs }}(L)=\operatorname{Comp}(L)+$ non-variable sharing
- related to acyclicity of conjunctive queries (Yannakakis81)


## Theorem

Query evaluation for $C^{\text {Comp }}{ }^{\text {nvs }}(L)$ is in PTIME if query evaluation for $L$ is in PTIME.

Idea (Yannakakis81): process the formula recursively:
(1) at each step, check if there is a solution $\rightarrow$ remain linear in $|\operatorname{Ans}(\phi, t)|$
(2) use memoization to avoid redundant calculus

## Expressiveness

Two yardstick logics, FO and MSO

- $\mathrm{MSO}=\mathrm{FO}+$ set quantification
- formulas $\psi\left(x_{1}, \ldots, x_{n}\right) \in \mathrm{FO}(\mathrm{MSO})$ define $n$-ary queries
- $\mathrm{FO}_{n}=n$-ary FO queries
- $\mathrm{MSO}_{n}=n$-ary MSO queries


## Expressiveness

## Two yardstick logics, FO and MSO

- $\mathrm{MSO}=\mathrm{FO}+$ set quantification
- formulas $\psi\left(x_{1}, \ldots, x_{n}\right) \in \mathrm{FO}(\mathrm{MSO})$ define $n$-ary queries
- $\mathrm{FO}_{n}=n$-ary FO queries
- $\mathrm{MSO}_{n}=n$-ary MSO queries


## Theorem

$$
\begin{array}{ll}
F O_{n} & =\operatorname{Comp}^{n v s}\left(\mathrm{FO}_{2}\right) \\
M S O_{n} & =\operatorname{Comp}^{n v v}\left(\mathrm{MSO}_{2}\right)
\end{array}
$$

## Remark

It uses folklore result from finite model theory based on the Shelah's decomposition method. (Schwentick'00 or Marx'05 for instance).

## n-ary XPath Extensions (I)

## Conditional XPath (Marx'04)

- extends CoreXPath with a "while" operator (axis:: /[test]) ${ }^{+}$
- CXPath $=\mathrm{FO}_{2}$
- query evaluation of a path expression $p$ is in $O(|p| \cdot|t|)$


## n-ary XPath Extensions (I)

## Conditional XPath (Marx'04)

- extends CoreXPath with a "while" operator (axis:: /[test]) ${ }^{+}$
- CXPath $=\mathrm{FO}_{2}$
- query evaluation of a path expression $p$ is in $O(|p| \cdot|t|)$
$n$-ary Conditional XPath
- path expressions $p+$ non-variable sharing

$$
p::=\text { axis }:: /|p / p| p[\text { test }]|p \cup p|(\text { axis }:: I[\text { test }])^{+}
$$

## n-ary XPath Extensions (I)

## Conditional XPath (Marx'04)

- extends CoreXPath with a "while" operator (axis:: /[test]) ${ }^{+}$
- CXPath $=\mathrm{FO}_{2}$
- query evaluation of a path expression $p$ is in $O(|p| \cdot|t|)$
$n$-ary Conditional XPath
- path expressions $p+$ non-variable sharing

$$
p::=\text { axis }:: I|p / p| p[\text { test }]|p \cup p|(\text { axis }:: /[\text { test }])^{+} \mid x \in \operatorname{Var}
$$

## n-ary XPath Extensions (I)

## Conditional XPath (Marx'04)

- extends CoreXPath with a "while" operator (axis:: /[test]) ${ }^{+}$
- CXPath $=\mathrm{FO}_{2}$
- query evaluation of a path expression $p$ is in $O(|p| \cdot|t|)$
$n$-ary Conditional XPath
- path expressions $p+$ non-variable sharing

$$
p::=\text { axis }:: l|p / p| p[\text { test }]|p \cup p|(\text { axis }:: /[\text { test }])^{+} \mid x \in \operatorname{Var}
$$

- linear-time back and forth translations into Comp ${ }^{\text {nvs }}$ (CXPath)
- $\rightarrow$ captures $\mathrm{FO}_{n}$
- $\rightarrow$ query evaluation in time $O\left(|p| \cdot|t|^{2} .(1+|\operatorname{Ans}(p, t)|)\right)$

Remark: query evaluation of FO 0-ary queries is PSPACE-complete

## n-ary XPath Extensions (II)

## XPath 2.0

- extends XPath (1.0) with:
path intersection $\quad p_{1} \cap p_{2}$
path complement $\operatorname{compl}(p)$
variables
quantification
for $x$ in $p_{1}$ return $p_{2}$
- captures $\mathrm{FO}_{n}$ modulo linear-time
- CoreXPath2.0 formalized by ten Cate and Marx (07)


## $n$-ary XPath Extensions (II)

## XPath 2.0

- extends XPath (1.0) with: path intersection $\quad p_{1} \cap p_{2}$
path complement $\operatorname{compl}(p)$
variables
quantification for $x$ in $p_{1}$ return $p_{2}$
- captures $\mathrm{FO}_{n}$ modulo linear-time
- CoreXPath2.0 formalized by ten Cate and Marx (07)

Application of the composition language

- to define a syntactic fragment of CoreXPath2.0
- $F O_{n}$-expressive
- with query evaluation problem in $O\left(|p| \cdot|t|^{3}+|p| \cdot\left|t^{2}\right| \cdot|\operatorname{Ans}(p, t)|\right)$


## Outline

## PART II: The Spatial Logic TQL

## TQL Examples



Example (Check if there is an awarded movie)

$$
D V D s[-\mid D V D[-\mid \text { awards[-]] | _] }
$$

## TQL Examples



Example (Check if there is an awarded movie)
DVDs[- | DVD[- | awards[-]] | -]

## TQL Examples



Example (Select all awarded movies)

$$
\begin{aligned}
& \phi(X) \\
& \downarrow
\end{aligned}
$$

tree variable

## TQL Examples



Example (Select all pairs of (director, writer))

$$
\phi(X, Y)=D V D s\left[-\left|D V D\left[-|y e a r[-]| X|Y|_{-}\right]\right|-\right]
$$

## TQL Examples



Example (Select all names of persons who are both director and writer)

$$
\phi(X)=\operatorname{DVDs}[-\mid \operatorname{DVD[-|\text {director}[\text {name}[X]|-]|\text {writer}[\text {name}[X]|-]|-]|-]}
$$

## TQL Examples



Example (Select all director names who is not a writer)

$$
\phi(X)=\operatorname{DVDs}[-\mid \operatorname{DVD[-|\text {director}[\text {name}[X]|-]|\text {writer}[\text {name}[\neg X]|-]|-]|-]}
$$

## TQL Examples



## Tree (dis)equality tests

- main difficulty of TQL satisfiability problem
- incomparable to FO fragments with data-value comparison (BojanczykDMSS06)


## Hedge Algebra $H_{\lambda}$

- $\wedge$ : countable set of labels
- hedge $=$ ordered sequence of unranked trees


## Hedge Algebra $H_{\lambda}$

- $\wedge$ : countable set of labels
- hedge $=$ ordered sequence of unranked trees
- constant 0 : empty hedge


## Hedge Algebra $H_{\lambda}$

- $\wedge$ : countable set of labels
- hedge $=$ ordered sequence of unranked trees
- constant 0 : empty hedge
- unary symbols $a \in \wedge$ :



## Hedge Algebra $H_{\lambda}$

- $\wedge$ : countable set of labels
- hedge $=$ ordered sequence of unranked trees
- constant 0: empty hedge
- unary symbols $a \in \wedge$ :

- binary symbol



## TQL: Syntax and Semantics

empty hedge
location
concatenation

0
$\alpha[\phi]$
$\phi \mid \phi^{\prime}$

$$
\alpha \subseteq \wedge \quad \text { (co)finite }
$$

## TQL: Syntax and Semantics

empty hedge
location
concatenation
truth
conjunction
negation
$\phi \mid \phi^{\prime}$


## TQL: Syntax and Semantics

```
empty hedge
location
concatenation
\alpha[\phi]
\alpha\subseteq^ (co)finite
truth
conjunction
negation
```


tree variable
recursion variable
least fixpoint


## TQL: Syntax and Semantics

- semantics modulo $\rho:$ TreeVars $\rightarrow T_{\Lambda}$ and $\delta:$ RecVars $\rightarrow 2^{H_{\Lambda}}$
- set-based semantics: $\llbracket . \rrbracket_{\rho, \delta} \subseteq H_{\Lambda}$
empty hedge location
concatenation
truth
conjunction
negation

0
$\alpha[\phi]$
$\alpha \subseteq \wedge \quad(\mathrm{co})$ finite
tree variable recursion variable least fixpoint

## TQL: Syntax and Semantics

- semantics modulo $\rho$ : TreeVars $\rightarrow T_{\Lambda}$ and $\delta:$ RecVars $\rightarrow 2^{H_{\Lambda}}$
- set-based semantics: $\llbracket . \rrbracket_{\rho, \delta} \subseteq H_{\Lambda}$
empty hedge
location
concatenation
truth
conjunction
negation

$$
\begin{array}{ll}
\llbracket 0 \rrbracket_{\rho, \delta} & =\{0\} \\
\llbracket \alpha[\phi] \rrbracket_{\rho, \delta} & =\left\{a(h) \mid h \in \llbracket \phi \rrbracket_{\rho, \delta}, a \in \alpha\right\} \\
\llbracket \phi \mid \phi^{\prime} \rrbracket_{\rho, \delta} & =\left\{h\left|h^{\prime}\right| h \in \llbracket \phi \rrbracket_{\rho, \delta}, h^{\prime} \in \llbracket \phi^{\prime} \rrbracket_{\rho, \delta}\right\}
\end{array}
$$

tree variable recursion variable least fixpoint
$\phi \wedge \phi^{\prime}$
$\neg \phi$
$X$
$\xi$
$\mu \xi \cdot \phi$

## TQL: Syntax and Semantics

- semantics modulo $\rho$ : TreeVars $\rightarrow T_{\Lambda}$ and $\delta:$ RecVars $\rightarrow 2^{H_{\Lambda}}$
- set-based semantics: $\llbracket . \rrbracket_{\rho, \delta} \subseteq H_{\Lambda}$
empty hedge
location
concatenation
truth
conjunction
negation
tree variable
recursion variable
least fixpoint

$$
\llbracket 0 \rrbracket_{\rho, \delta}=\{0\}
$$

$$
\llbracket \alpha[\phi] \rrbracket_{\rho, \delta}=\left\{a(h) \mid h \in \llbracket \phi \rrbracket_{\rho, \delta}, a \in \alpha\right\}
$$

$$
\llbracket \phi \mid \phi^{\prime} \rrbracket_{\rho, \delta}=\left\{h\left|h^{\prime}\right| h \in \llbracket \phi \rrbracket_{\rho, \delta}, h^{\prime} \in \llbracket \phi^{\prime} \rrbracket_{\rho, \delta}\right\}
$$

$$
\llbracket-\rrbracket=H_{\Lambda}
$$

$$
\llbracket \phi \wedge \phi^{\prime} \rrbracket=\llbracket \phi \rrbracket \cap \llbracket \phi^{\prime} \rrbracket
$$

$$
\llbracket \neg \phi \rrbracket \quad=H_{\Lambda} \backslash \llbracket \phi \rrbracket
$$

$X$
$\xi$
$\mu \xi \cdot \phi$

## TQL: Syntax and Semantics

- semantics modulo $\rho$ : TreeVars $\rightarrow T_{\Lambda}$ and $\delta:$ RecVars $\rightarrow 2^{H_{\Lambda}}$
- set-based semantics: $\llbracket \cdot \|_{\rho, \delta} \subseteq H_{\wedge}$

| empty hedge | $\llbracket 0 \rrbracket_{\rho, \delta}$ | $=\{0\}$ |
| :--- | :--- | :--- |
| location | $\llbracket \alpha\left[\phi \rrbracket_{\rho, \delta}\right.$ | $=\left\{a(h) \mid h \in \llbracket \phi \rrbracket_{\rho, \delta}, a \in \alpha\right\}$ |
| concatenation | $\llbracket \phi \mid \phi^{\prime} \rrbracket_{\rho, \delta}$ | $=\left\{h\left\|h^{\prime}\right\| h \in \llbracket \phi \rrbracket_{\rho, \delta}, h^{\prime} \in \llbracket \phi^{\prime} \rrbracket_{\rho, \delta}\right\}$ |
|  | $\llbracket-\rrbracket$ | $=H_{\wedge}$ |
| truth | $\llbracket \phi \wedge \phi^{\prime} \rrbracket$ | $=\llbracket \phi \rrbracket \cap \llbracket \phi^{\prime} \rrbracket$ |
| conjunction | $\llbracket \neg \phi \rrbracket$ | $=H_{\wedge} \backslash \llbracket \phi \rrbracket$ |
| negation |  |  |
|  |  |  |
| tree variable | $\llbracket X \rrbracket_{\rho, \delta}$ | $=\{\rho(X)\}$ |
| recursion variable | $\llbracket \xi \rrbracket_{\rho, \delta}$ | $=\delta(\xi)$ |
| least fixpoint | $\llbracket \mu \xi \cdot \phi \rrbracket_{\rho, \delta}$ | $=\bigcap\left\{S \subseteq H_{\Lambda} \mid \llbracket \phi \rrbracket_{\rho, \delta[\xi \mapsto S] \subseteq S\}} \subseteq\right.$ |

## Examples with fixpoint

Example (Select all subtrees reachable from the root by following an 'a'-path)

$$
\phi(X)=\mu \xi \cdot(a[-|\xi|-] \vee X)
$$



## Examples with fixpoint

Example (Select all subtrees reachable from the root by following an 'a'-path)


Example ( $a^{n} b^{n}$ )

$$
\mu \xi \cdot(a[0]|\xi| b[0] \vee 0)
$$

## Examples with fixpoint

Example (Select all subtrees reachable from the root by following an 'a'-path)
$\phi(X)=\mu \xi \cdot(a[-|\xi|-] \vee X)$


Example ( $a^{n} b^{n}$ )

$$
\mu \xi \cdot(a[0]|\xi| b[0] \vee 0)
$$

- vertical recursion $\rightarrow$ regular tree languages
- horizontal recursion $\rightarrow$ context-free word languages


## A Decidable Fragment: Bounded TQL

## Satisfiability problem

Input: TQL formula $\phi \quad$ Output: $\exists h \exists \rho \exists \delta, h \in \llbracket \phi \rrbracket_{\rho, \delta}$ ?

## A Decidable Fragment: Bounded TQL

## Proposition

Satisfiability of TQL formulas is undecidable.

## A Decidable Fragment: Bounded TQL

## Proposition

Satisfiability of TQL formulas is undecidable.

## Bounded TQL

- recursion variables are guarded by some $\alpha[$.


## A Decidable Fragment: Bounded TQL

## Proposition

Satisfiability of TQL formulas is undecidable.

## Bounded TQL

- recursion variables are guarded by some $\alpha[$.

$$
\begin{array}{lll}
\mu \xi \cdot(a[-|\xi|-] \vee X) & \rightarrow & \text { guarded } \\
\mu \xi \cdot(a[0]|\xi| b[0] \vee 0) & \rightarrow & \text { not guarded }
\end{array}
$$

## A Decidable Fragment: Bounded TQL

## Proposition

Satisfiability of TQL formulas is undecidable.

## Bounded TQL

- recursion variables are guarded by some $\alpha[$.


## A Decidable Fragment: Bounded TQL

## Proposition

Satisfiability of TQL formulas is undecidable.

## Bounded TQL

- recursion variables are guarded by some $\alpha[$.
- add Kleene star $\phi^{*}$ for horizontal recursion


## A Decidable Fragment: Bounded TQL

## Proposition

Satisfiability of TQL formulas is undecidable.

## Bounded TQL

- recursion variables are guarded by some $\alpha[$.
- add Kleene star $\phi^{*}$ for horizontal recursion

$$
\llbracket \phi^{*} \rrbracket_{\rho}=0 \cup \bigcup_{i>0} \underbrace{\llbracket \phi \rrbracket_{\rho}|\ldots| \llbracket \phi \rrbracket_{\rho}}_{i \text { times }}
$$

## A Decidable Fragment: Bounded TQL

## Proposition

Satisfiability of TQL formulas is undecidable.

## Bounded TQL

- recursion variables are guarded by some $\alpha[$.
- add Kleene star $\phi^{*}$ for horizontal recursion


## A Decidable Fragment: Bounded TQL

## Proposition

Satisfiability of TQL formulas is undecidable.

## Bounded TQL

- recursion variables are guarded by some $\alpha[$.
- add Kleene star $\phi^{*}$ for horizontal recursion
- restriction negative variables: only a bounded number of disequality tests along the paths


## A Decidable Fragment: Bounded TQL

## Proposition

Satisfiability of TQL formulas is undecidable.

## Bounded TQL

- recursion variables are guarded by some $\alpha[$.
- add Kleene star $\phi^{*}$ for horizontal recursion
- restriction negative variables: only a bounded number of disequality tests along the paths
$b[X \mid \mu \xi \cdot(\neg X \wedge a[\xi] \vee 0)] \rightarrow$ not bounded
$(\neg X)^{*}|X|(\neg X)^{*} \rightarrow$ bounded



## A Decidable Fragment: Bounded TQL

## Proposition

Satisfiability of TQL formulas is undecidable.

## Bounded TQL

- recursion variables are guarded by some $\alpha[$.
- add Kleene star $\phi^{*}$ for horizontal recursion
- restriction negative variables: only a bounded number of disequality tests along the paths


## A Decidable Fragment: Bounded TQL

## Proposition

Satisfiability of TQL formulas is undecidable.

## Bounded TQL

- recursion variables are guarded by some $\alpha[$.
- add Kleene star $\phi^{*}$ for horizontal recursion
- restriction negative variables: only a bounded number of disequality tests along the paths
- no negative occurences of Kleene star and


## Expressiveness and Satisfiability of Bounded TQL

## Theorem

(1) Bounded TQL sentences capture MSO.
(2) Satisfiability of bounded TQL is decidable (in 3NEXPTIME).

## Expressiveness and Satisfiability of Bounded TQL

Theorem
(1) Bounded TQL sentences capture MSO.
(2) Satisfiability of bounded TQL is decidable (in 3NEXPTIME).

- 2EXPTIME / EXPTIME-hard when no negated variables occur
- EXPTIME for sentences


## Expressiveness and Satisfiability of Bounded TQL

## Theorem

(1) Bounded TQL sentences capture MSO.
(2) Satisfiability of bounded TQL is decidable (in 3NEXPTIME).

- 2EXPTIME / EXPTIME-hard when no negated variables occur
- EXPTIME for sentences

The proof is by reduction to emptiness of bounded TAGEDs.

## Bottom-up Tree Automata for Binary Trees

- $\Sigma$ : finite alphabet
- $Q$ : set of states
- $F \subseteq Q$ : set of final states
- $\Delta$ : rules of the form $f\left(q_{1}, q_{2}\right) \rightarrow q$ or $a \rightarrow q$


## Bottom-up Tree Automata for Binary Trees

- $\Sigma$ : finite alphabet
- Q: set of states
- $F \subseteq Q$ : set of final states
- $\Delta$ : rules of the form $f\left(q_{1}, q_{2}\right) \rightarrow q$ or $a \rightarrow q$

Example (variable-free satisfiable Boolean formulas)
a tree and a successful run
transitions

$$
\begin{aligned}
& 0 \rightarrow q_{0} \quad 1 \rightarrow q_{1} \\
& \wedge\left(q_{b_{1}}, q_{b_{2}}\right) \rightarrow q_{b_{1} \wedge b_{2}} \\
& \vee\left(q_{b_{1}}, q_{b_{2}}\right) \rightarrow q_{b_{1} \vee b_{2}}
\end{aligned}
$$

final states

$$
F=\left\{q_{1}\right\}
$$

## Bottom-up Tree Automata for Binary Trees

- $\Sigma$ : finite alphabet
- Q: set of states
- $F \subseteq Q$ : set of final states
- $\Delta$ : rules of the form $f\left(q_{1}, q_{2}\right) \rightarrow q$ or $a \rightarrow q$

Example (variable-free satisfiable Boolean formulas)
a tree and a successful run
transitions


$$
\begin{aligned}
& 0 \rightarrow q_{0} \quad 1 \rightarrow q_{1} \\
& \wedge\left(q_{b_{1}}, q_{b_{2}}\right) \rightarrow q_{b_{1} \wedge b_{2}} \\
& \vee\left(q_{b_{1}}, q_{b_{2}}\right) \rightarrow q_{b_{1} \vee b_{2}} \\
& \quad \text { final states } \\
& F=\left\{q_{1}\right\}
\end{aligned}
$$

## Bottom-up Tree Automata for Binary Trees

- $\Sigma$ : finite alphabet
- Q: set of states
- $F \subseteq Q$ : set of final states
- $\Delta$ : rules of the form $f\left(q_{1}, q_{2}\right) \rightarrow q$ or $a \rightarrow q$

Example (variable-free satisfiable Boolean formulas)


## Bottom-up Tree Automata for Binary Trees

- $\Sigma$ : finite alphabet
- Q: set of states
- $F \subseteq Q$ : set of final states
- $\Delta$ : rules of the form $f\left(q_{1}, q_{2}\right) \rightarrow q$ or $a \rightarrow q$

Example (variable-free satisfiable Boolean formulas)


## Bottom-up Tree Automata for Binary Trees

- $\Sigma$ : finite alphabet
- $Q$ : set of states
- $F \subseteq Q$ : set of final states
- $\Delta$ : rules of the form $f\left(q_{1}, q_{2}\right) \rightarrow q$ or $a \rightarrow q$


## Example (variable-free satisfiable Boolean formulas)



## Bottom-up Tree Automata for Binary Trees

- $\Sigma$ : finite alphabet
- $Q$ : set of states
- $F \subseteq Q$ : set of final states
- $\Delta$ : rules of the form $f\left(q_{1}, q_{2}\right) \rightarrow q$ or $a \rightarrow q$

Example (variable-free satisfiable Boolean formulas)
a tree and a successful run

transitions

$$
\begin{aligned}
& 0 \rightarrow q_{0} \quad 1 \rightarrow q_{1} \\
& \wedge\left(q_{b_{1}}, q_{b_{2}}\right) \rightarrow q_{b_{1} \wedge b_{2}} \\
& \vee\left(q_{b_{1}}, q_{b_{2}}\right) \rightarrow q_{b_{1} \vee b_{2}}
\end{aligned}
$$

final states

$$
F=\left\{q_{1}\right\}
$$

## Bottom-up Tree Automata for Binary Trees

- $\Sigma$ : finite alphabet
- $Q$ : set of states
- $F \subseteq Q$ : set of final states
- $\Delta$ : rules of the form $f\left(q_{1}, q_{2}\right) \rightarrow q$ or $a \rightarrow q$

Example (variable-free satisfiable Boolean formulas)
a tree and a successful run

transitions

$$
\begin{aligned}
& 0 \rightarrow q_{0} \quad 1 \rightarrow q_{1} \\
& \wedge\left(q_{b_{1}}, q_{b_{2}}\right) \rightarrow q_{b_{1} \wedge b_{2}} \\
& \vee\left(q_{b_{1}}, q_{b_{2}}\right) \rightarrow q_{b_{1} \vee b_{2}}
\end{aligned}
$$

final states

$$
F=\left\{q_{1}\right\}
$$

## Bottom-up Tree Automata for Binary Trees

- $\Sigma$ : finite alphabet
- Q: set of states
- $F \subseteq Q$ : set of final states
- $\Delta$ : rules of the form $f\left(q_{1}, q_{2}\right) \rightarrow q$ or $a \rightarrow q$


## Example (variable-free satisfiable Boolean formulas)


transitions


$$
\begin{aligned}
& 0 \rightarrow q_{0} \quad 1 \rightarrow q_{1} \\
& \wedge\left(q_{b_{1}}, q_{b_{2}}\right) \rightarrow q_{b_{1} \wedge b_{2}} \\
& \vee\left(q_{b_{1}}, q_{b_{2}}\right) \rightarrow q_{b_{1} \vee b_{2}}
\end{aligned}
$$

final states

$$
F=\left\{q_{1}\right\}
$$

## Bottom-up Tree Automata for Binary Trees

- $\Sigma$ : finite alphabet
- Q: set of states
- $F \subseteq Q$ : set of final states
- $\Delta$ : rules of the form $f\left(q_{1}, q_{2}\right) \rightarrow q$ or $a \rightarrow q$


## Example (variable-free satisfiable Boolean formulas)


transitions


$$
\begin{aligned}
& 0 \rightarrow q_{0} \quad 1 \rightarrow q_{1} \\
& \wedge\left(q_{b_{1}}, q_{b_{2}}\right) \rightarrow q_{b_{1} \wedge b_{2}} \\
& \vee\left(q_{b_{1}}, q_{b_{2}}\right) \rightarrow q_{b_{1} \vee b_{2}}
\end{aligned}
$$

final states

$$
F=\left\{q_{1}\right\}
$$

## Bottom-up Tree Automata for Binary Trees

- $\Sigma$ : finite alphabet
- Q: set of states
- $F \subseteq Q$ : set of final states
- $\Delta$ : rules of the form $f\left(q_{1}, q_{2}\right) \rightarrow q$ or $a \rightarrow q$


## Example (variable-free satisfiable Boolean formulas)

a tree and a successful run

transitions

$$
\begin{aligned}
& 0 \rightarrow q_{0} \quad 1 \rightarrow q_{1} \\
& \wedge\left(q_{b_{1}}, q_{b_{2}}\right) \rightarrow q_{b_{1} \wedge b_{2}} \\
& \vee\left(q_{b_{1}}, q_{b_{2}}\right) \rightarrow q_{b_{1} \vee b_{2}}
\end{aligned}
$$

final states

$$
F=\left\{q_{1}\right\}
$$

## Tree Automata with Global Equalities and Disequalities

A tree automaton $A$ with global equalities and disequalities (TAGED) is given by:
$\left.\begin{array}{ll}\sum & \text { alphabet } \\ Q & \text { set of states } \\ F & \text { set of final states } \\ \Delta & \text { set of rules }\end{array}\right\}$ tree automaton

## Tree Automata with Global Equalities and Disequalities

A tree automaton $A$ with global equalities and disequalities (TAGED) is given by:
$\Sigma$ alphabet
$Q$ set of states
$F$ set of final states
$\Delta$ set of rules
$\begin{array}{ll}=_{A} \subseteq Q^{2} & \text { reflexive and symmetric relation } \\ \neq A \subseteq \subseteq Q^{2} \quad & \text { on a subset of } Q\end{array}$

## Successful Runs



## Successful Runs



## Successful Runs



- equalities and disequalities can be tested arbitrarily faraway
- different from usual Automata with Constraints where tests are local (BogaertT92, DauchetCC95, KariantoL07)


## Example: $\left\{f(t, t) \mid t \in T_{\Sigma}\right\}$



- $\Sigma=\{f, a\}$
- $Q=\left\{\boldsymbol{q}, \boldsymbol{q}_{f}, \boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\}$
- $F=\left\{\boldsymbol{q}_{\boldsymbol{f}}\right\}$
- $\Delta=$

$$
\begin{aligned}
& a \rightarrow q \\
& f(\boldsymbol{q}, \boldsymbol{q}) \rightarrow \boldsymbol{q} \\
& f(\boldsymbol{q}, \boldsymbol{q}) \rightarrow q_{1} \\
& f(q, q) \rightarrow q_{2} \\
& f\left(q_{1}, q_{2}\right) \rightarrow q_{f}
\end{aligned}
$$

- $q_{1}=A \quad q_{2}$


## Example: $\left\{f(t, t) \mid t \in T_{\Sigma}\right\}$



- $\Sigma=\{f, a\}$
- $Q=\left\{\boldsymbol{q}, \boldsymbol{q}_{f}, \boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\}$
- $F=\left\{\boldsymbol{q}_{\boldsymbol{f}}\right\}$
- $\Delta=$

$$
\begin{aligned}
& a \rightarrow q \\
& f(\boldsymbol{q}, \boldsymbol{q}) \rightarrow \boldsymbol{q} \\
& f(q, q) \rightarrow q_{1} \\
& f(q, q) \rightarrow q_{2} \\
& f\left(q_{1}, q_{2}\right) \rightarrow q_{f}
\end{aligned}
$$

- $q_{1}=A \quad q_{2}$


## Example: $\left\{f(t, t) \mid t \in T_{\Sigma}\right\}$



- $\Sigma=\{f, a\}$
- $Q=\left\{\boldsymbol{q}, \boldsymbol{q}_{f}, \boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\}$
- $F=\left\{\boldsymbol{q}_{\boldsymbol{f}}\right\}$
- $\Delta=$

$$
\begin{aligned}
& a \rightarrow q \\
& f(\boldsymbol{q}, \boldsymbol{q}) \rightarrow \boldsymbol{q} \\
& f(\boldsymbol{q}, \boldsymbol{q}) \rightarrow q_{1} \\
& f(q, q) \rightarrow q_{2} \\
& f\left(q_{1}, q_{2}\right) \rightarrow q_{f}
\end{aligned}
$$

- $q_{1}=A \quad q_{2}$


## Example: $\left\{f(t, t) \mid t \in T_{\Sigma}\right\}$



- $\Sigma=\{f, a\}$
- $Q=\left\{\boldsymbol{q}, \boldsymbol{q}_{f}, \boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\}$
- $F=\left\{\boldsymbol{q}_{\boldsymbol{f}}\right\}$
- $\Delta=$

$$
\begin{aligned}
& a \rightarrow q \\
& f(\boldsymbol{q}, \boldsymbol{q}) \rightarrow \boldsymbol{q} \\
& f(q, q) \rightarrow q_{1} \\
& f(q, q) \rightarrow q_{2} \\
& f\left(q_{1}, q_{2}\right) \rightarrow q_{f}
\end{aligned}
$$

- $q_{1}=A \quad q_{2}$


## Example: $\left\{f(t, t) \mid t \in T_{\Sigma}\right\}$



- $\Sigma=\{f, a\}$
- $Q=\left\{\boldsymbol{q}, \boldsymbol{q}_{f}, \boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\}$
- $F=\left\{\boldsymbol{q}_{\boldsymbol{f}}\right\}$
- $\Delta=$

$$
\begin{aligned}
& a \rightarrow q \\
& f(\boldsymbol{q}, \boldsymbol{q}) \rightarrow \boldsymbol{q} \\
& f(\boldsymbol{q}, \boldsymbol{q}) \rightarrow q_{1} \\
& f(q, q) \rightarrow q_{2} \\
& f\left(q_{1}, q_{2}\right) \rightarrow q_{f}
\end{aligned}
$$

- $q_{1}=A \quad q_{2}$


## Example: $\left\{f(t, t) \mid t \in T_{\Sigma}\right\}$



- $\Sigma=\{f, a\}$
- $Q=\left\{\boldsymbol{q}, \boldsymbol{q}_{f}, \boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\}$
- $F=\left\{\boldsymbol{q}_{\boldsymbol{f}}\right\}$
- $\Delta=$

$$
\begin{aligned}
& a \rightarrow q \\
& f(\boldsymbol{q}, \boldsymbol{q}) \rightarrow \boldsymbol{q} \\
& f(\boldsymbol{q}, \boldsymbol{q}) \rightarrow q_{1} \\
& f(q, q) \rightarrow q_{2} \\
& f\left(q_{1}, q_{2}\right) \rightarrow q_{f}
\end{aligned}
$$

- $q_{1}=A \quad q_{2}$


## Example: $\left\{f(t, t) \mid t \in T_{\Sigma}\right\}$



- $\Sigma=\{f, a\}$
- $Q=\left\{\boldsymbol{q}, \boldsymbol{q}_{f}, \boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\}$
- $F=\left\{\boldsymbol{q}_{f}\right\}$
- $\Delta=$

$$
\begin{aligned}
& a \rightarrow q \\
& f(\boldsymbol{q}, \boldsymbol{q}) \rightarrow \boldsymbol{q} \\
& f(\boldsymbol{q}, \boldsymbol{q}) \rightarrow q_{1} \\
& f(\boldsymbol{q}, \boldsymbol{q}) \rightarrow q_{2} \\
& f\left(q_{1}, q_{2}\right) \rightarrow q_{f}
\end{aligned}
$$

- $q_{1}={ }_{A} q_{2}$


## Example: $\left\{f(t, t) \mid t \in T_{\Sigma}\right\}$



- $\Sigma=\{f, a\}$
- $Q=\left\{\boldsymbol{q}, \boldsymbol{q}_{f}, \boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\}$
- $F=\left\{\boldsymbol{q}_{\boldsymbol{f}}\right\}$
- $\Delta=$

$$
\begin{aligned}
& a \rightarrow q \\
& f(\boldsymbol{q}, \boldsymbol{q}) \rightarrow \boldsymbol{q} \\
& f(\boldsymbol{q}, \boldsymbol{q}) \rightarrow q_{1} \\
& f(\boldsymbol{q}, \boldsymbol{q}) \rightarrow q_{2} \\
& f\left(q_{1}, q_{2}\right) \rightarrow q_{f}
\end{aligned}
$$

- $q_{1}={ }_{A} q_{2}$


## Example: $\left\{f(t, s) \mid t, s \in T_{\Sigma, t} \neq s\right\}$



- $\Sigma=\{f, a\}$
- $Q=\left\{\boldsymbol{q}, \boldsymbol{q}_{f}, \boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\}$
- $F=\left\{\boldsymbol{q}_{\boldsymbol{f}}\right\}$
- $\Delta=$

$$
\begin{aligned}
& a \rightarrow q \\
& f(\boldsymbol{q}, \boldsymbol{q}) \rightarrow \boldsymbol{q} \\
& f(\boldsymbol{q}, \boldsymbol{q}) \rightarrow q_{1} \\
& f(\boldsymbol{q}, \boldsymbol{q}) \rightarrow q_{2} \\
& f\left(q_{1}, q_{2}\right) \rightarrow q_{f}
\end{aligned}
$$

- $q_{1} \not F_{A} \quad q_{2}$


## Some properties of TAGEDs

## Proposition

- TAGED-recognizable languages are closed by union and intersection, but not by complement;
- Membership is NP-complete;
- TAGED are not determinizable (counter-example $\left\{f(t, t) \mid t \in T_{\Sigma}\right\}$ );
- Universality is undecidable.


## Some properties of TAGEDs

## Proposition

- TAGED-recognizable languages are closed by union and intersection, but not by complement;
- Membership is NP-complete;
- TAGED are not determinizable (counter-example $\left\{f(t, t) \mid t \in T_{\Sigma}\right\}$ );
- Universality is undecidable.


## Emptiness Problem

```
Input: a TAGED A Output: }L(A)\not=\varnothing\mathrm{ ?
```

Theorem
Emptiness is:

- EXPTIME-complete for positive TAGED $\left(\not F_{A}=\varnothing\right)$
- decidable in NEXPTIME for negative TAGED ( $=A=\varnothing$ )
- decidable in linear-time for positive TAGED such that $=A \subseteq i d_{Q}$


## Bounded TAGEDs

## Definition

A bounded TAGED is a pair $(A, k)$ where $A$ is a TAGED and $k \in \mathbb{N}$ is a natural number.

## Bounded TAGEDs

## Definition

A bounded TAGED is a pair $(A, k)$ where $A$ is a TAGED and $k \in \mathbb{N}$ is a natural number.

## Definition (Successful Runs)

Additional condition: along any branch, the number of states from $\operatorname{dom}\left(\nexists_{A}\right)$ is smaller than $k$.

## Bounded TAGEDs

## Definition

A bounded TAGED is a pair $(A, k)$ where $A$ is a TAGED and $k \in \mathbb{N}$ is a natural number.

## Definition (Successful Runs)

Additional condition: along any branch, the number of states from $\operatorname{dom}(\neq A)$ is smaller than $k$.

By using a pumping technique one can show that:

## Theorem

Emptiness of bounded TAGEDs is decidable in 2NEXPTIME.

## Emptiness of bounded TAGED: Sketch of Proof

Idea: if the automaton accepts a tree $t$ then $t$ is not too big (its size is bounded in $|A|$ ).

## Emptiness of bounded TAGED: Sketch of Proof

Idea: if the automaton accepts a tree $t$ then $t$ is not too big (its size is bounded in $|A|$ ).
Lemmata

- $=_{A} \subseteq i d_{Q}$ is always possible
- in a successful run, same (sub)run below same states of $=A$
- pumping technique preserving the constraints induced by $=_{A}$


## Emptiness of bounded TAGED: Sketch of Proof

Idea: if the automaton accepts a tree $t$ then $t$ is not too big (its size is bounded in $|A|$ ).

## Lemmata

- $=_{A} \subseteq i d_{Q}$ is always possible
- in a successful run, same (sub)run below same states of $=A$
- pumping technique preserving the constraints induced by $=_{A}$

Algorithm
(1) find a tree and a run satisfying the constraints from $={ }_{A}$ but maybe not from $\neq A$
(2) test whether (and its run) can be repaired (polynomial algorithm)
(3) if the test fails, choose another tree.

## Emptiness of bounded TAGED: Sketch of Proof

Idea: if the automaton accepts a tree $t$ then $t$ is not too big (its size is bounded in $|A|$ ).

## Lemmata

- $={ }_{A} \subseteq i d_{Q}$ is always possible
- in a successful run, same (sub)run below same states of $=A$
- pumping technique preserving the constraints induced by $=_{A}$


## Algorithm

(1) find a tree and a run satisfying the constraints from $={ }_{A}$ but maybe not from $\neq A$
(2) test whether (and its run) can be repaired (polynomial algorithm)
(3) if the test fails, choose another tree.

## Termination

If the automaton accepts a tree, then it accepts a repairable tree satisfying the contraints from $=_{A}$ whose size is exponential in $|A|$ and $k$.

## TQL to TAGED

TAGED for hedges over an infinite alphabet

- extends hedge automata (Murata'99) with global tests;
- transititions $\alpha(L) \rightarrow q$ where $L \subseteq Q^{*}$;
- lift all the results via a binary encoding of hedges.


## TQL to TAGED

TAGED for hedges over an infinite alphabet

- extends hedge automata (Murata'99) with global tests;
- transititions $\alpha(L) \rightarrow q$ where $L \subseteq Q^{*}$;
- lift all the results via a binary encoding of hedges.


## Bounded TQL $\rightarrow$ Bounded TAGED

- new construction;
- two difficulties: variables and hedge operations;


## TQL to TAGED

TAGED for hedges over an infinite alphabet

- extends hedge automata (Murata'99) with global tests;
- transititions $\alpha(L) \rightarrow q$ where $L \subseteq Q^{*}$;
- lift all the results via a binary encoding of hedges.


## Bounded TQL $\rightarrow$ Bounded TAGED

- new construction;
- two difficulties: variables and hedge operations;
- states: sets of subformulas $\alpha[\phi], X, \neg X$;
- variables are added non-deterministically to the states;
- hedge operations are interpreted as operations on state languages
- $\{\ldots, X, \ldots\}=A \quad\{\ldots, X, \ldots\}$
- $\{\ldots, X, \ldots\} \neq A \quad\{\ldots, \neg X, \ldots\}$


## Outline

## Conclusion

## Summary of the contributions

## Query composition (FNTT, PODS'07)

- extends the navigational XPath paradigm to $n$-ary queries
- simple acyclicity notion
- FO-complete and polynomial n-ary XPath languages


## Summary of the contributions

## Query composition (FNTT, PODS'07)

- extends the navigational XPath paradigm to $n$-ary queries
- simple acyclicity notion
- FO-complete and polynomial n-ary XPath languages


## TQL (FTT,CSL’07)

- tree pattern language for hedges
- decidable fragment with tree variables
- by reduction to TAGED (FTT, DLT'08)
- new automaton construction


## Some Perspectives

## Query composition

- query answering algorithms specific to $\operatorname{Comp}\left(\mathrm{ch}, \mathrm{ch}^{*}\right.$, lab $\left.{ }_{a}\right)$
- streaming (GauwinCNT08), enumeration (collaboration with O.Gauwin, A.Durand, ANR Enum)


## Some Perspectives

## Query composition

- query answering algorithms specific to $\operatorname{Comp}\left(c h, h^{*}, l \mathrm{lab}_{a}\right)$
- streaming (GauwinCNT08), enumeration (collaboration with O.Gauwin, A.Durand, ANR Enum)


## TQL

- lower bounds (TQL + TAGED)
- guarded fragment


## Some Perspectives

## Query composition

- query answering algorithms specific to $\operatorname{Comp}\left(c h, h^{*}, l a b_{a}\right)$
- streaming (GauwinCNT08), enumeration (collaboration with O.Gauwin, A.Durand, ANR Enum)


## TQL

- lower bounds (TQL + TAGED)
- guarded fragment
- ... or at least, a decidable fragment closed by negation
- query inclusion $\forall \bar{x}(\phi(\bar{x}) \rightarrow \psi(\bar{x}))$ iff not $\exists \bar{x}, \phi(\bar{x}) \wedge \neg \psi(\bar{x})$.


## Some Perspectives

## Query composition

- query answering algorithms specific to $\operatorname{Comp}\left(c h, h^{*}, l \mathrm{lab}_{a}\right)$
- streaming (GauwinCNT08), enumeration (collaboration with O.Gauwin, A.Durand, ANR Enum)


## TQL

- lower bounds (TQL + TAGED)
- guarded fragment
- ... or at least, a decidable fragment closed by negation
- query inclusion $\forall \bar{x}(\phi(\bar{x}) \rightarrow \psi(\bar{x}))$ iff not $\exists \bar{x}, \phi(\bar{x}) \wedge \neg \psi(\bar{x})$.
- emptiness of full TAGED
- application to security protocols (C.Vacher,F.Jacquemard, F.Klay)


## Outline

## Thank You

