. Hull, Solution Boxes: Box: x=[-0.5, 0] y= Non Solution Boxes: Box: x=[-2, -1] y=, Undefined Boxes: Box: x=

R. Calm, M. A. Sainz, P. Herrero, and J. Vehi, Joaquim Armen- gol, 5th IFAC Symposiumon Robust Control Design (ROCOND06), 2006.

P. Herrero, L. Jaulin, J. Vehí, and M. A. Sainz, Interval analysis, constraint propagation, 2005.

J. Armengol, J. Vehí, M. A. Sainz, and P. Herrero, International Conference on Integrated Modeling and Analysis in Applied Control and Automation, 2004.

C. Abdallah, P. Dorato, D. Famularo, and W. Yang, Robust nonlinear feedback design via quantifier elimination theory, International Journal of Robust and Non-Linear Control, vol.9, pp.817-822, 1999.

J. Armengol, Application of Modal Interval Analysis to the Simulation of The Behaviour of Dynamic Systems with Uncertain Parameters, p.114, 1999.

J. Armengol, J. Vehí, M. ´. Sainz, and P. Herrero, Fault detection in a pilot plant using interval models and multiple sliding time windows, 5th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS 2003, p.121, 2003.

J. Armengol, J. Vehí, M. ´. Sainz, and P. Herrero, Industrial application of a fault detection tool based on interval models, International Conference on Integrated Modeling and Analysis in Applied Control and Automation, p.121, 2004.

K. Balakrishnan, V. Honavar, and P. Basso, Intelligent diagnosis systems Optimal search for the global maximum of functions with bounded seminorm, Journal of Intelligent Systems SIAM J. Numer. Anal, vol.8, issue.9, pp.239-290, 1985.

F. Benhamou and F. Goualard, Universally Quantified Interval Constraints, p.29, 2000.
DOI : 10.1007/3-540-45349-0_7

F. Benhamou and W. Older, Applying interval arithmetic to real, integer, and boolean constraints, The Journal of Logic Programming, vol.32, issue.1, pp.1-24, 1997.
DOI : 10.1016/S0743-1066(96)00142-2

F. Benhamou, F. Goualard, L. Granvilliers, and J. F. Puget, Revising hull and box consistency, Proc. Sixteenth Int. Conf. on Logic Programming (ICLP'99), p.21, 1999.

F. Benhamou, F. Goualard, E. Languenou, and M. Christie, Interval constraint solving for camera control and motion planning, ACM Transactions on Computational Logic, vol.5, issue.4, pp.732-767, 2004.
DOI : 10.1145/1024922.1024927

M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and fault-tolerant control, p.115, 2003.

L. Bordeaux and E. Monfroy, Beyond NP: Arc-Consistency for Quantified Constraints, Proceedings CP-2002, 2002.
DOI : 10.1007/3-540-46135-3_25

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.3314

L. Bordeaux, E. Monfroy, and F. Benhamou, Improved bounds on the complexity of kb-consistency, Proceedings of 17th Int. Joint Conf. on Artificial Intelligence, p.25, 2001.

C. Brown, Quantifier Elimination by Partial Cylindrical Algebraic Decomposition, p.15, 2004.

R. Calm, Análisis intervalar modal: su construcción teórica, implementación y posibilidades de aplicación a la simulación y al control, 2006.

R. Calm, M. Sainz, P. Herrero, J. Vehi, and J. Armengol, PARAMETER IDENTIFICATION WITH QUANTIFIERS, 5th IFAC Symposiumon Robust Control Design, p.72, 2006.
DOI : 10.3182/20060705-3-FR-2907.00121

J. R. Casas, J. C. Matos, J. A. Figueiras, J. Vehí, O. García et al., Bridge nonitoring and assessment under uncertainty via interval analysis, Proceedings of the 9th International Conference On Structural Safety And Reliability -ICOSSAR 2005 9th, 0191.

C. Chauvin and M. Müller, An application of quantifier elimination to mathematical biology, p.16, 1951.

C. Chauvin, M. Muller, and A. Weber, An application of quantifier elimination to mathematical biology, In Computer Algebra in Science and Engineering.World Scientific, issue.2, pp.287-296, 1994.

C. Consortium, Advanced decision support system for chemical/petrochemical manufacturing processes, p.189, 2000.

C. Free and . Ide, The open source, Code, 2006.

H. Collavizza, F. Delobel, and M. Rueher, Comparing Partial Consistencies, Reliable Computing, vol.5, pp.1-16, 1999.
DOI : 10.1007/978-94-017-1247-7_17

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.8787

G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition, 2nd GI Conf. Automata Theory and Formal Languages, pp.134-189, 1975.

M. Dao, Proj2D Solver . http://www.istia.univ-angers.fr, pp.79-144, 2005.

M. Dao, X. Baguenard, and L. Jaulin, Projection d'ensembles pour l'estimation de parameters, la conception de robot et la commande robuste, p.29, 2003.

J. H. Davenport and J. Heintz, Real quantifier elimination is doubly exponential, Journal of Symbolic Computation, vol.5, issue.1-2, pp.29-35, 1988.
DOI : 10.1016/S0747-7171(88)80004-X

URL : http://doi.org/10.1016/s0747-7171(88)80004-x

E. Davis, Understanding line drawings of scenes with shadows, editor, The Psychology of Computer Vision, p.16, 1975.

J. De-guzman, Spirit Framework . http://spirit.sourceforge, p.155, 2006.

V. F. Demyanov and V. N. Malozemov, Introduction to minimax, 1990.

P. Dorato, Quantified multivariate polynomial inequalities. The mathematics of practical control design problems, IEEE Control Systems Magazine, vol.20, issue.5, pp.48-58, 2000.
DOI : 10.1109/37.872903

P. Dorato, P. Yang, and C. Abdallah, Robust Multi-Objective Feedback Design by Quantifier Elimination, Journal of Symbolic Computation, vol.24, issue.2, pp.153-159, 1997.
DOI : 10.1006/jsco.1997.0120

B. Eckel, Thinking in C++, 2000.

G. Elkaim and R. Kelbley, Control Architecture for Segmented Trajectory Following of a Wind-Propelled Autonomous Catamaran, AIAA Guidance, Navigation, and Control Conference and Exhibit, p.137, 2006.
DOI : 10.2514/6.2006-6782

G. Elkaim, B. Woodley, and R. Kelbley, Model free subspace hinfinity control for an autonomous catamaran, Proceedings of the ION/IEEE Position, Location, and Navigation Symposium, ION/IEEE PLANS2006, p.137, 2006.

M. Fliess, J. Lévine, P. Martin, and P. Rouchon, Flatness and defect of non-linear systems: introductory theory and examples, International Journal of Control, vol.4, issue.6, pp.61-1327, 1995.
DOI : 10.1109/9.73561

J. Flórez, P. Herrero, M. A. Sainz, and J. Vehi, Visualization of implicit surfaces using quantified set inversion, Proceedings IntCP 2005 . 72, p.190, 2005.

S. García-reyero and J. L. Martínez, Modal intervalar arithmetic implementation using floating point emulation. Workshop on Applications of Interval Analysis to Systems and Control with special emphasis on recent advances in Modal Interval Analysis (MISC 99), pp.211-223, 1999.

J. Garloff, Convergent bounds for the range of multivariate polynomials, Interval Mathematics, vol.12, pp.37-56, 1985.
DOI : 10.1007/3-540-16437-5_5

J. Garloff, I. Gent, and T. Walsh, The bernstein algorithm Beyong NP: The QSAT phase transition, Proceedings of ECAI, pp.154-168, 1993.

A. Goldsztejn, Verified projection of the solution set of parametric real systems, Proc of 2nd International Workshop on Global Constrained Optimization and Constraint Satisfaction (COCOS'03), p.28, 2003.

A. Goldsztejn, A Right-Preconditioning Process for the Formal???Algebraic Approach to Inner and Outer Estimation of AE-Solution Sets, Reliable Computing, vol.7, issue.2, pp.443-478, 2005.
DOI : 10.1007/s11155-005-0404-x

A. Goldsztejn and L. Jaulin, Inner approximation of the range of vector-valued functions, Reliable Computing, vol.29, p.192, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00835191

A. Goldsztejn, D. Daney, M. Rueher, and P. Taillibert, Modal intervals revisited: A mean-value extension to generalized intervals, First International Workshop on Quantification in Constraint Programming, p.51, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00990048

E. Hansen, AN OVERVIEW OF GLOBAL OPTIMIZATION USING INTERVAL ANALYSIS, Marcel Dekker, vol.4, issue.66, pp.95-107, 1992.
DOI : 10.1016/B978-0-12-505630-4.50021-3

E. Hansen and S. Sengupta, Bounding solutions of systems of equations using interval analysis, BIT, vol.17, issue.2, p.29, 1981.
DOI : 10.1007/BF01933165

P. Herrero and L. Jaulin, Modal Control of a SailBoat, 2006.

P. Herrero, L. Jaulin, M. Sainz, and J. Vehi, Quantified set inversion algorithm, Proceedings 2nd International Workshop on Interval Mathematics and Constraint Programming IMCP-2004, pp.272-279, 2004.
DOI : 10.1007/s11155-005-0044-1

URL : https://hal.archives-ouvertes.fr/hal-00518707

P. Herrero, L. Jaulin, M. Sainz, and J. Vehi, Quantified set inversion with applications to control, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508), p.72, 2004.
DOI : 10.1109/CACSD.2004.1393872

URL : https://hal.archives-ouvertes.fr/hal-00518707

P. Herrero, L. Jaulin, M. Sainz, and J. Vehi, Inner and outer approximation of the polar diagram of a sailboat. Interval analysis, constraint propagation, p.137, 2005.

P. Herrero, J. Vehí, M. ´. Sainz, and L. Jaulin, Quantified Set Inversion Algorithm with Applications to Control, Reliable Computing, vol.10, issue.1, pp.369-382, 2005.
DOI : 10.1007/s11155-005-0044-1

URL : https://hal.archives-ouvertes.fr/hal-00518707

P. Herrero, L. Jaulin, M. Sainz, and J. Vehi, Sailboat control using set computation and feedback linearization, Automatica, p.137, 2006.

H. Hong, Improvements in CAD-based quantifier elimination, p.15, 1990.

H. Hong, Quantifier Elimination for Formulas Constrained by Quadratic Equations via Slope Resultants, The Computer Journal, vol.36, issue.5, pp.440-449, 1993.
DOI : 10.1093/comjnl/36.5.439

H. Hong, Symbolic-numeric methods for quantified constraint solving, International Symposium on Scientific Computating, Computed Arithmetic and Validated Numerics, 1995.

E. Horowitz, S. Sahni, and S. Rajasekaran, Computer Algorithms -C++, p.66, 1997.

N. I. Ioakimidis, REDLOG-aided derivation of feasibility conditions in applied mechanics and engineering problems under simple inequality constraints, Journal of Mechanical Engineering, vol.50, issue.1 2, pp.58-69, 1999.

L. L. Jaulin, Reliable minimax parameter estimation, Applied Mathematics and Computation, vol.7, issue.3, pp.231-246, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00845159

L. Jaulin and E. Walter, Set inversion via interval analysis for nonlinear bounded-error estimation, Automatica, vol.29, issue.4, pp.1053-1064, 1993.
DOI : 10.1016/0005-1098(93)90106-4

L. Jaulin and ´. E. Walter, Guaranteed tuning, with application to robust control and motion planning, Automatica, vol.32, issue.8, pp.1217-1221, 1996.
DOI : 10.1016/0005-1098(96)00050-7

L. Jaulin and E. Walter, Guaranteed parameter bounding for nonlinear models with uncertain experimental factors, Automatica, vol.35, issue.5, pp.849-856, 1999.
DOI : 10.1016/S0005-1098(98)00209-X

L. Jaulin, M. Kieffer, O. Didrit, and ´. E. Walter, Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics, p.95, 2001.
DOI : 10.1007/978-1-4471-0249-6

URL : https://hal.archives-ouvertes.fr/hal-00845131

L. Jaulin, I. Braems, and E. Walter, Interval methods for nonlinear identification and robust control. CDC2002 -Conference on Decision and Control -La Vegas, p.81, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00845884

M. Jirstrand, Nonlinear Control System Design by Quantifier Elimination, Journal of Symbolic Computation, vol.24, issue.2, pp.137-152, 1997.
DOI : 10.1006/jsco.1997.0119

W. Kahan, Lecture notes on the status of IEEE standard 754 for binary floating point arithmetic, p.160, 1996.

E. W. Kaucher, Interval Analysis in the Extended Interval Space IR, Computing, vol.28, issue.2, pp.3349-3387, 1980.
DOI : 10.1007/978-3-7091-8577-3_3

R. B. Kearfott, Interval analysis: Interval fixed point theory, Optimization, vol.3, pp.4851-4879, 2001.
DOI : 10.1007/0-306-48332-7_231

O. Lhomme, Consistency techniques for numerical CSPs, Internation Joint Conference on Artificial Intelligence (IJCAI), pp.232-238, 1993.

S. Maccallum, Solving Polynomial Strict Inequalities Using Cylindrical Algebraic Decomposition, The Computer Journal, vol.36, issue.5, pp.432-438, 1988.
DOI : 10.1093/comjnl/36.5.432

K. Makino and M. Berz, Taylor models and other validated functional inclusion methods, International Journal of Pure and Applied Mathematics, vol.4, pp.379-456, 2003.

S. Malan, M. Milanese, and M. Taragna, B/sup 3/ algorithm for robust performances analysis in presence of mixed parametric and dynamic perturbations, [1992] Proceedings of the 31st IEEE Conference on Decision and Control, pp.128-133, 1992.
DOI : 10.1109/CDC.1992.371776

S. Malan, M. Milanese, and M. Taragna, Robust Analysis and Design of Control Systems Using Interval Arithmetic**A previous version of this paper was presented at the 13th IFAC World Congress, which was held in San Francisco, CA, during 30 June-5 July, 1996. The Published Proceedings of this IFAC Meeting may be ordered from: Elsevier Science Limited, The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, U.K. This paper was recommended for publication in revised form by Associate Editor F. Callier under the direction of Editor R.F. Curtain., Automatica, vol.33, issue.7, pp.1363-1372, 1997.
DOI : 10.1016/S0005-1098(97)00028-9

. Micelab, Fstar Remote System, 2005.

S. Microsystems, FDLIBM: Freely distributable LIBM, p.160, 1996.

R. E. Moore, Interval Analysis, pp.26-118, 1966.

A. Neumaier, Interval Methods for Systems of Equations, p.28, 1990.
DOI : 10.1017/CBO9780511526473

K. Nickel, Optimization using interval mathematics, p.95, 1986.

R. J. Patton, P. M. Frank, and R. N. Clark, Issues of fault diagnosis for dynamic systems, p.115, 2000.
DOI : 10.1007/978-1-4471-3644-6

S. Perl, Perl Language Quantified constraints under perturbation, Journal of Symbolic Computation, vol.33, issue.25, pp.493-505, 2001.

S. Ratschan, Approximate Quantified Constraint Solving, AQCSAQCS.html, vol.26, issue.81, p.144, 2002.

S. Ratschan, Approximate quantified constraint solving by cylindrical box decomposition, Reliable Computing, vol.8, issue.1, pp.21-42, 2002.
DOI : 10.1023/A:1014785518570

S. Ratschan, Continuous First-Order Constraint Satisfaction with Equality and Disequality Constraints, Proc. 8th International Conference on Principles and Practice of Constraint Programming, no. 2470 in LNCS, pp.680-685, 2002.
DOI : 10.1007/3-540-46135-3_45

S. Ratschan, Convergent approximate solving of first-order constraints by approximate quantifiers, ACM Transactions on Computational Logic, vol.5, issue.2, p.26, 2003.
DOI : 10.1145/976706.976709

S. Ratschan, Efficient solving of quantified inequality constraints over the real numbers, ACM Transactions on Computational Logic, vol.7, issue.4, p.29, 2003.
DOI : 10.1145/1183278.1183282

S. Ratschan, Solving Existentially Quantified Constraints with One Equality and Arbitrarily Many Inequalities, Proceedings of the Ninth International Conference on Principles and Practice of Constraint Programming , no. 2833 in LNCS, pp.615-633, 2003.
DOI : 10.1007/978-3-540-45193-8_42

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.3665

S. Ratschan, RSOLVER. http://rsolver.sourceforge, pp.79-81, 2005.

. Sailbot, Autonomous Sailboat Competition, 2006.

M. Sainz, E. Gardeñes, and L. Jorba, Formal solutions to systems of linear or non-linear equations, Reliable Computing, vol.8, issue.3, pp.189-211, 2002.
DOI : 10.1023/A:1015561212728

M. Sainz, E. Gardeñes, L. M. Jorba, P. Herrero, J. Vehi et al., Interval estimations of solution sets to real-valued systems of linear or non-linear equations Solving problems on minimax optimization, PARA'04 Workshop on State-of-Art in Scientific Computing, pp.283-305, 2002.
DOI : 10.1023/A:1016385132064

M. Sainz, P. Herrero, J. Vehi, and J. Armengol, Continuous minimax optimization using modal intervals, Journal of Mathematical Analysis and Applications, vol.339, issue.1, p.98, 2006.
DOI : 10.1016/j.jmaa.2007.04.003

M. Sainz, P. Herrero, J. Vehi, and J. Armengol, An extended interval inclusion test for proving first-order logic formulas over the reals, Journal of Applied Mathematics and Computation, p.51, 2006.

M. ´. Sainz, J. Armengol, J. Vehí, and P. Herrero, Detección de fallos en procesos reales basada en modelos intervalares y múltiples ventanas temporales deslizantes, Computación y Systemas, vol.6, pp.94-102, 2002.

D. Samharoud, Constraint consistency techniques for continuous domains, p.16, 1995.

S. P. Shary, A new technique in systems analysis under interval uncertainty and ambiguity, Reliable Computing, vol.8, issue.5, pp.321-418, 2002.
DOI : 10.1023/A:1020505620702

D. G. Sotiropoulos, Solving discrete minimax problems using interval arithmetic, International Conference on Optimization: Techniques and Applications (ICOTA, p.95, 2004.

V. Stancu, A. Puig, &. Quevedo, and J. , Model-based robust fault detection using a forward backward test. Interval Analysis and Constraint Propagation for Applications IntCP, p.118, 2003.

B. L. Stevens and F. Lewis, Aircraft Control and Simulation, Aircraft Engineering and Aerospace Technology, vol.76, issue.5, p.90, 1993.
DOI : 10.1108/aeat.2004.12776eae.001

T. Sturm, Reasoning over Networks by Symbolic Methods, Applicable Algebra in Engineering, Communication and Computing, vol.10, issue.1, pp.79-96, 2000.
DOI : 10.1007/s002000050123

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.4889

A. Tarski, A Decision Method for Elementary Algebra and Geometry, p.13, 1951.
DOI : 10.1007/978-3-7091-9459-1_3

A. Trepat, Completacion reticular del espacio de intervalos. Tesina de Licenciatura, p.51, 1982.

J. Vehí, Anàlisi i Disseny de Controladors Robustos Mitjançant Intervals Modals, Catalonia, Spain, vol.4, p.28, 1998.

J. Vehí, J. Rodellar, M. ´. Sainz, and J. Armengol, Necessary and sufficient conditions for robust stability using modal intervals, 42nd Midwest Symposium on Circuits and Systems (Cat. No.99CH36356), pp.673-676, 1999.
DOI : 10.1109/MWSCAS.1999.867727

J. Vehí, J. Rodellar, M. ´. Sainz, and J. Armengol, Analysis of the robustness of predictive controllers via modal intervals, Reliable Computing, vol.6, issue.3, pp.281-301, 2000.
DOI : 10.1023/A:1009982530323

V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N. Kavuri, A review of process fault detection and diagnosis, Computers & Chemical Engineering, vol.27, issue.3, pp.293-311, 2003.
DOI : 10.1016/S0098-1354(02)00160-6

A. Vicino, A. Tesi, and M. Milanese, Computation of nonconservative stability perturbation bounds for systems with nonlinearly correlated uncertainties, IEEE Transactions on Automatic Control, vol.35, issue.7, pp.835-841, 1990.
DOI : 10.1109/9.57025

Y. Wang, Semantic tolerance modeling based on modal interval analysis, Proceedings of NSF Workshop on Reliable Engineering Computing, p.192, 2006.

M. Zettler and J. Garloff, Robustness analysis of polynomials with polynomial parameter dependency using Bernstein expansion, IEEE Transactions on Automatic Control, vol.43, issue.3, pp.425-431, 1998.
DOI : 10.1109/9.661615

S. Zuche, Z. Huang, and M. A. Wolfe, An interval maximum entropy method for a discrete minimax problem, Applied Mathematics and Computation, vol.87, pp.49-68, 1997.

S. Zuhe, A. Neumaier, and M. Eiermann, Solving minimax problems by interval methods, BIT, vol.9, issue.4, pp.742-751, 1990.
DOI : 10.1007/BF01933221