
HAL Id: tel-00332425
https://theses.hal.science/tel-00332425v1
Submitted on 21 Oct 2008 (v1), last revised 23 Mar 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Game-theoretic approaches to randomness:
unpredictability and stochasticity.

Laurent Bienvenu

To cite this version:
Laurent Bienvenu. Game-theoretic approaches to randomness: unpredictability and stochasticity..
Other [cs.OH]. Université de Provence - Aix-Marseille I, 2008. English. �NNT : �. �tel-00332425v1�

https://theses.hal.science/tel-00332425v1
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE PROVENCE

U.F.R. M.I.M.

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET INFORMATIQUE E.D. 184

THÈSE

présentée pour obtenir le grade de

Docteur de l’Université de Provence

Spécialité : Informatique

par

Laurent BIENVENU

sous la direction de Bruno DURAND et Alexander SHEN

Titre :

CARACTÉRISATIONS DE L’ALÉATOIRE PAR LES JEUX :

IMPREDICTIBILITÉ ET STOCHASTICITÉ

soutenue publiquement le 4 avril 2008

JURY

M. Eugène ASARIN Université de Paris 7 Rapporteur

M. Bruno DURAND Université de Provence Directeur de thèse

M. Peter GACS Boston University Rapporteur

M. Serge GRIGORIEFF Université de Paris 7 Examinateur

M. Alexander SHEN CNRS & LIF, Marseille Directeur de thèse

M. Vladimir VOVK Royal Holloway College, London Examinateur

Contents

Remerciements iii

Résumé de la thèse v

Introduction xiii

1 Randomness notions 1

1.1 Notation and basic definitions . 1

1.2 The Cantor space: probability, topology and computability 3

1.2.1 The topology . 3

1.2.2 Effectivizing the topology . 4

1.2.3 Lebesgue measure . 5

1.3 The typicalness paradigm . 5

1.3.1 Martin-Löf tests . 6

1.3.2 Schnorr randomness . 8

1.3.3 Weak randomness . 9

1.3.4 Effective Hausdorff dimension 9

1.4 The unpredictability paradigm . 12

1.4.1 Stochasticity . 12

1.4.2 Computable randomness . 14

1.4.3 Stochasticity via martingales 16

1.5 Typicalness vs unpredictability . 24

1.5.1 When typicalness implies unpredictability 24

1.5.2 When unpredictability implies typicalness 26

1.6 Schnorr randomness and normal numbers 33

1.7 Non-monotonicity for selection rules and martingales 35

1.8 Randomness and Baire category . 40

1.9 Relations between randomness notions 42

2 Randomness and Kolmogorov complexity 45

2.1 Kolmogorov complexity . 45

2.1.1 Plain Kolmogorov complexity 45

2.1.2 Prefix-free Kolmogorov complexity 54

i

ii Contents

2.2 Infinite random sequences via Kolmogorov complexity 61
2.2.1 Martin-Löf randomness vs Kolmogorov complexity 61
2.2.2 Computable randomness and Schnorr randomness vs Kol-

mogorov complexity . 71
2.2.3 Effective Hausdorff dimension vs Kolmogorov complexity . . 80
2.2.4 Stochasticity vs Kolmogorov complexity 82

2.3 Computable upper bounds of Kolmogorov complexity 88
2.3.1 Motivation, definitions . 88
2.3.2 Some particular computable upper bounds 91
2.3.3 Randomness via computable upper bounds 96

3 Randomness for computable measures 107

3.1 Extending notions of randomness to computable measures 107
3.2 Generalized Bernoulli measures . 111

3.2.1 Definition . 112
3.2.2 Kakutani’s theorem . 112
3.2.3 Constructive versions of Kakutani’s theorem 113
3.2.4 Applications to stochasticity 116

3.3 Equivalence and consistency for arbitrary measures 120
3.3.1 Consistency . 120
3.3.2 A classification of equivalence relations 121
3.3.3 Counter-examples . 124

Bibliography 137

Index 142

Remerciements

Je tiens avant toute chose à remercier mes directeurs de thèse, Bruno Durand et
Alexander (Sasha) Shen.

Bruno le premier m’a fait confiance en acceptant de me prendre comme stagiaire
de Master avant même de m’avoir rencontré. De lui j’ai appris énormément de
choses, et même si nos domaines d’intérêt ont un peu divergé au cours de ma thèse,
il a toujours veillé à ce que cette dernière se passe dans les meilleures conditions;
de cela je lui suis infiniment reconnaissant.

Sasha, par son enthousiasme, sa gentillesse, sa patience et son intelligence, a
fait de mes années de thèse une période captivante, en partageant sans cesse ses
nombreuses idées et questions. Je souhaite de tout coeur que notre collaboration
et surtout notre amitié se prolonge bien au-delà de ces trois ans passés ensemble à
Marseille.

Je tiens ensuite à remercier Serge Grigorieff. Le remercier d’abord pour ses
cours passionnés et passionnants (pour lesquels j’ai traversé la moitié de Paris en
courant un jour de grève de la RATP !) qui m’ont fait découvrir les splendeurs de
la complexité de Kolmogorov. Le remercier également pour son oreille attentive et
son soutien indéfectible lors des périodes de doute que j’ai pu rencontrer au cours
de ma thèse. Le retrouver trois ans après mon Master dans mon jury de soutenance
est pour moi un honneur et une grande joie.

Depuis que j’ai eu la chance de le rencontrer à la conférence STACS 2006, Wolf-
gang Merkle a été un collaborateur exceptionnel, tant par ses qualités humaines que
scientifiques. De nombreux résultats de cette thèse sont issus de cette collaboration
qui j’espère n’en est qu’à ses débuts.

Je remercie vivement les autres membres de mon jury: Eugène Asarin et Peter
Gacs, qui ont généreusement accepté d’être les rapporteurs du manuscrit, ainsi que
Vladimir Vovk. Merci à eux d’avoir pu se libérer pour assister à la soutenance
malgré un emploi du temps que je sais chargé.

En espérant n’oublier personne, je remercie aussi: les excellents professeurs que
j’ai pu avoir tout au long de mon cursus et qui m’ont donné le goût de la science et de
la recherche (un grand merci notamment à Jacques Mazoyer et Marianne Delorme);
mes co-auteurs: David Doty, Andrei A. Muchnik, Mathieu Sablik, Frank Stephan,
Nicolay Vereshchagin; tous les membres de l’équipe Escape pour les discussions

iii

iv Remerciements

animées du coin café; Martine, Sylvie et Nathalie, qui m’ont tant de fois sorti de
situations délicates, toujours avec patience et bonne humeur; Audrey Romano et
tous les participants de Vitascience pour le projet que nous avons mené, adoucis-
sant grandement cette pénible exprérience que constitue le CIES; Rod Downey et
Denis Hirschfeldt pour avoir mis leur excellent livre en libre accès, ce dont j’ai
grandement profité; merci également à l’Association for Symbolic Logic pour son
soutien financier, qui m’a permis de me rendre à la conférence “Logic Complexity
and Randomness” à Buenos Aires en janvier 2007.

Enfin, je remercie par dessus tout mes amis, ma famille et ma belle-famille,
pour ces innombrables bons moments que nous avons partagés et qui font que la
vie vaut la peine d’être vécue. J’ai aujourd’hui une pensée toute particulière pour
ma femme Meghyn et mon frère Thomas, qui ont eux aussi débuté une thèse peu
après moi. Je leur souhaite tout le bonheur possible dans cette belle aventure.

Résumé de la thèse

Théorie effective de l’aléatoire: motivations

Cette thèse est une contribution à la théorie effective de l’aléatoire, également con-
nue sous le nom de théorie algorithmique de l’aléatoire. Le but de cette théorie est
de donner un sens à l’idée intuitive d’objet aléatoire.

Commençons par illustrer les motivations de cette théorie par un exemple tiré
de la “vie courante”. Imaginons une entreprise commercialisant des suites de
bits aléatoires (par exemple des suites de 1010 bits gravées sur DVD). Cette en-
treprise promeut ses DVD comme “contenant des suites de bits aléatoires, générés
par un processus véritablement aléatoire” (comme par exemple la désintégration
d’éléments radioactifs). Nous sommes intéressés par de telles suites, que nous
souhaitons utiliser comme source de hasard pour un algorithme probabiliste (par
exemple pour un test de primalité). Nous commandons donc à cette entreprise une
suite de 1010, et nous reçevons un DVD contenant la suite

0101010101010101010101.... (01 répété 5 milliards de fois)

Le moins que l’on puisse dire est que nous ne sommes pas satisfaits par cette
suite. Nous écrivons donc une lettre de réclamation, dans laquelle nous nous
plaignons que la suite que nous avons reçue n’est absolument pas aléatoire, et
demandons à être remboursés. Nous reçevons alors la réponse suivante:

“Madame, Monsieur. Nous avons bien reçu votre lettre au sujet de la suite de
bits aléatoires que vous nous avez achetée. Nous sommes navrés qu’elle ne vous ait
pas donné satisfaction. Cependant, nous ne comprenons pas votre affirmation que
cette suite n’est pas aléatoire. En effet, cette suite a la même probabilité d’occurence
que n’importe quelle autre suite de longueur 1010. En conséquence, toute propriété
de cette suite qui vous fait douter de sa nature aléatoire n’est que pure cöıncidence.”

On en conviendra, cette réponse n’est pas satisfaisante. L’argument employé
comme quoi cette suite a la même probabilité d’occurence que toute autre suite est
tout-à-fait correct mais malgré cela, notre intuition persiste à dire que cette suite
n’est pas aléatoire. Comment pouvons-nous l’expliquer rigoureusement ? Et cette
question en amène une autre: quel type de garantie l’entreprise peut-elle offrir sur
les suites de bits qu’elle vend afin de gagner la confiance de ses clients ?

v

vi Résumé de la thèse

Ces questions sont de nature philosophique, et n’admettent donc pas de réponse
unique. La théorie effective de l’aléatoire ne constitue qu’une tentative parmi
d’autres de répondre à ces questions. En fait, au sein même de cette théorie,
diverses réponses sont envisagées. Cependant, elles partagent toutes le même leit-
motiv:

Un objet individuel est aléatoire s’il n’existe aucune façon calculable de

prouver qu’il n’est pas aléatoire.

Ceci veut dire que toutes les définitions effectives d’objet aléatoire sont des
définitions négatives: on donne d’abord une définition effective (calculable) d’objet
non-aléatoire, puis on définit un objet aléatoire comme étant un objet qui n’est pas
non-aléatoire.

Il reste à préciser ce que l’on entend par “calculable”. La thèse de Church-
Turing, presque universellement acceptée aujourd’hui, affirme que “calculable” doit
être compris comme “calculable par machine de Turing” (ou tout autre modèle
de calcul équivalent). Ainsi, toute la théorie effective de l’aléatoire se base sur la
théorie de la calculabilité.

Structure de cette thèse

Dans cette thèse on étudie la théorie effective de l’aléatoire pour les suites binaires,
finies ou infinies. Le premier chapitre présente diverses défintions de suite binaire
aléatoire. On peut classer ces dernières en deux grandes catégories: les notions de
typicalité et les notions d’imprédictibilité.

Les notions de typicalité – basées sur la théorie de la mesure – formalisent l’idée
intuitive qu’une suite binaire infinie satisfait toutes les propriétés de probabilité 1
pouvant être testées de façon “effective”. Les deux principales notions de cette
catégorie sont l’aléatoire au sens de Martin-Löf et l’aléatoire au sens de Schnorr.
On présente également le concept de dimension de Hausdorff effective. Bien qu’un
peu trop faible pour définir le concept de suite aléatoire, la dimension de Hausdorff
effective permet d’associer à toute suite binaire infinie un réel entre 0 et 1 mesurant
son degré d’aléatoire (0 signifiant “pas du tout aléatoire”, et 1 signifiant “assez
aléatoire”).

Comme on peut s’en douter, les notions d’imprédictibilité expriment le fait
qu’une suite binaire infinie est aléatoire s’il n’existe aucune façon “effective” d’en
prédire les bits. Historiquement, le premier modèle formalisant cette intuition fut
le modèle de règle de sélection, introduit par von Mises. Une règle de sélection est
un procédé qui, étant donnée une suite binaire infinie, en sélectionne une sous-suite
(qui peut être finie ou infinie). Un point important est qu’une règle de sélection
ne doit pas pouvoir connâıtre la valeur d’un bit avant de prendre la décision de
le sélectionner ou non. Von Mises souscrivait à l’idée que la probabilité d’un
évènement est la fréquence asymptotique d’occurence de cet évènement lorsque
l’on repète une expérience une infinité de fois. Il définit donc une suite binaire in-

vii

finie aléatoire comme étant une suites dont toutes les sous-suites infinies obtenues
par une règle de sélection effective (la notion de calculabilité n’étant pas connue du
temps des travaux de von Mises) satisfont la Loi des Grands Nombres (i.e. com-
prennent asymptotiquement autant de zéros que de uns). Ville montra par la suite
que cette définition est en réalité trop faible, certaines suites aléatoires au sens
de von Mises ayant des propriétés clairement non-aléatoires (comme par exemple
des suites dont tous les préfixes contiennent plus de zéros que de uns). Plutôt
qu’aléatoire, nous utilisons un autre terme, celui de suites “stochastiques”, pour
désigner de telles suites. Nous présenterons deux classes de suites stochastiques:
les suites Church-stochastiques (pour lesquelles on considère des règles de sélection
monotones, sélectionnant les bits de gauche à droite), et les suites Kolmogorov-
Loveland-stochastiques (pour lesquelles on considère des règles de sélection qui
peuvent sélectionner les bits dans un ordre quelconque). Afin d’affiner le modèle
de von Mises et le concept d’imprédictibilité, Schnorr (dans la continuité des idées
de Ville) proposa un modèle plus général, dans lequel un joueur tente de prédire
les bits d’une suite binaire infinie en pariant de l’argent sur leurs valeurs, dou-
blant sa mise quand il a raison, la perdant quand il a tort. Le joueur gagne si
son capital tend vers l’infini au cours de la partie. La suite binaire infinie est dite
imprédictible si aucune stratégie calculable ne permet au joueur de gagner con-
tre cette suite. Comme pour la stochasticité, deux classes de suites imprédictibles
sont présentées: les suites récursivement aléatoires (en anglais “computably ran-
dom”) pour lesquelles le joueur parie sur les bits de gauche à droite, et les suites
Kolmogorov-Loveland aléatoires, pour lesquelles le joueur peut parier sur les bits
dans un ordre quelconque.

Bien que toutes les notions d’aléatoires mentionnées ci-dessus soient distinctes
(ceci est déjà connu et sera expliqué au fur et à mesure de cette thèse), elles peuvent
toutes être caractérisées en termes de jeux, sur le modèle des suites récursivement
aléatoires. Ceci montre que typicalité et imprédictibilité sont intrinsèquement liées,
et permet de donner une classification précise des différentes notions d’aléatoire.
En particulier, on montrera qu’une suite infinie est non-stochastique s’il existe une
stratégie calculable permettant de gagner de l’argent exponentiellement vite (par
rapport au nombre de coups où le joueur mise un montant d’argent strictement
positif). Ce résultat avait été obtenu auparavant par Schnorr, mais nous donnerons
un résultat quantitatif, reliant précisément la vitesse des stratégies gagnantes au
biais des sous-suites sélectionnées.

Un autre concept relié à la Loi des Grands Nombres est celui de normalité. Un
nombre réel est dit normal dans une certaine base si la suites de ses décimales dans
cette base a la propriété que tous les motifs (i.e. suites finies de chiffres) apparaissent
avec la même fréquence (asymptotiquement). Un nombre est dit absolument normal
s’il est normal dans toute base entière. Becher et Figueira ont prouvé qu’il existait
un nombre absolument normal calculable. Nous donnons une preuve alternative de
ce résultat comme illustration des concepts et résultats présentés dans ce premier
chapitre.

Le chapitre se termine par une brève discussion portant sur les liens entre
aléatoire et théorie des catégories de Baire. Bien qu’elles aient pour mesure 1,
toutes les classes “raisonnables” de suites aléatoires sont maigres au sens de Baire.

viii Résumé de la thèse

Dans le second chapitre, nous revenons à la question de l’aléatoire pour les
suites binaire finies. Nous commençons par introduire la notion fondamentale de
complexité de Kolmogorov, introduite indépendamment et presque simultanément
par Solomonoff, Kolmogorov et Chaitin. La complexité de Kolmogorov d’une suite
binaire finie est définie comme étant la taille du plus court programme qui la génère.
Il est facile de voir que la complexité de Kolmogorov d’une suite est comprise entre 0
et (en gros) sa longueur. Intuitivement, une suite finie aléatoire doit être difficile
à décrire, tandis qu’une suite non-aléatoire présente une certaine régularité (sinon,
sur quel critère pourrait-on la juger non-aléatoire ?) et donc admet une description
plus courte qu’elle-même. Cette intuition montre que la complexité de Kolmogorov
est une bonne mesure du caractère aléatoire d’une suite binaire finie.

On présente deux variantes de la complexité de Kolmogorov: la complexité
de Kolmogorov dite “pleine” et la complexité de Kolmogorov “préfixe”. Nous en
donnons les principales propriétés, notamment le fait que la majorité des suites
finies ont une complexité quasi-maximale (i.e. proche de leur longueur), ce qui est
bien sûr le moins que l’on puisse attendre d’une mesure d’aléatoire. Nous expliquons
également pourquoi aucune de ces deux complexités n’est calculable.

La seconde partie du chapitre étudie les liens entre la complexité de Kolmogorov
et les notions d’aléatoire introduites au chapitre précédent. Nous commençons par
les suites aléatoires de Martin-Löf, pour lesquelles la situation est bien comprise.
En effet, le théorème fondamental de Levin et Schnorr fournit un critère précis
(c’est-à-dire une condition nécessaire et suffisante) pour cette notion: une suite
binaire infinie est aléatoire au sens de Martin-Löf si tous ses segments initiaux
ont une complexité préfixe plus grande que leur longueur, à une constante ad-
ditive près. Nous présentons également le théorème de Miller et Yu, qui donne
une caractérisation similaire en termes de complexité de Kolmogorov pleine. Le
rapport à la complexité de Kolmogorov est moins limpide pour les autres notions
d’aléatoire. En particulier, les notions de suite récursivement aléatoire, de suite
Schnorr aléatoire, et de suite Church stochastique sont en quelque sorte “orthog-
onales” à la complexité de Kolmogorov. En effet, il existe des suites qui sont
Schnorr aléatoires, récursivement aléatoires et Church stochastiques et dont les
segments initiaux ont une complexité de Kolmogorov très faible; et inversement, ils
existe des suites dont les segments initiaux ont une complexité élevée et qui ne sont
ni Schnorr aléatoires, ni récursivement aléatoires, ni Church stochastiques. Nous
donnons cependant une condition suffisante pour les suites Schnorr aléatoires en
termes de complexité préfixe, et nous montrons que cette condition n’est suffisante
ni pour les suites récursivement aléatoires ni pour les suites Church stochastiques.
Le cas des suites Kolmogorov-Loveland stochastiques est également intéressant. Un
résultat récent de Merkle, Miller, Nies, Reimann et Stephan montre qu’une suite
Kolmogorov-Loveland stochastique doit avoir une forte complexité de Kolmogorov.
Plus précisément, le rapport “complexité sur longueur” de ses segments initiaux
doit tendre vers 1. Nous étudions la stochasticité de Kolmogorov-Loveland du
point de vue inverse: si le rapport “complexité sur longueur” d’une suite ne tend
pas vers 1, il est possible d’en sélectionner (de façon non-monotone) une sous-suite
biaisée; quel lien y-a-t’il entre le biais des sous-suites sélectionnées et la limite

ix

inférieure du rapport “complexité sur longueur” ? Cette question fut étudiée par
Asarin, Durand et Vereshchagin dans le cas des suites binaires finies, mais leurs
résultats ne sont pas directement applicables aux suites infinies. En combinant
les techniques de Merkle et al. avec la caractérisation de la stochasticité par les
jeux (prouvée au Chapitre 1), nous donnons une borne inférieure précise pour le
biais maximal des sous-suites sélectionnées (borne dont nous prouvons l’optimalité
au Chapitre 3). Nous discutons également les interprétations de ces résultats en
termes de dimension de Hausdorff effective.

La complexité de Kolmogorov n’étant pas calculable, on est en droit de se de-
mander en quoi il est légitime d’en faire la notion centrale de la théorie “effective”
de l’aléatoire. De plus, ceci donne peu d’espoir de lui trouver une quelconque
application pratique. Une façon de contourner le problème est de considérer des
approximations calculables de la complexité de Kolmogorov. La complexité d’une
suite finie est définie comme étant la longueur de sa plus courte “description”, qui
peut également être vue comme étant sa plus courte forme compressée. Il n’y a
pas en général de méthode effective pour trouver cette meilleure compression, mais
il est possible d’en trouver une raisonnable en compressant la suite par un algo-
rithme classique de compression (par exemple Lempel-Ziv ou Burrows-Wheeler).
La longueur de la suite compressée ainsi obtenue est alors une approximation de
la complexité de Kolmogorov de la suite initiale. Plus précisément, elle en est une
borne supérieure. Cette approche fut utilisée par Cilibrasi et Vitanyi pour des ap-
plications pratiques (classification de données notamment). La dernière partie de
ce chapitre reprend cette approche, d’un point de vue assez théorique toutefois.
Nous réexaminons les liens entre l’aléatoire et la complexité lorsque l’on remplace
la complexité de Kolmogorov par ses bornes supérieures calculables. De façon
surprenante, toutes les caractérisations des suites aléatoires de Martin-Löf restent
vraies dans ce contexte. En particulier, le théorème de Levin-Schnorr reste vrai si
l’on remplace la complexité de Kolmogorov par ine borne supérieure calculable bien
choisie. Ceci permet même de donner une preuve simple du théorème de Miller et
Yu. Mieux encore, certaines classes de suites d’a#léatoire, comme par exemple les
suites Schnorr aléatoires, qui semblaient présenter peu de liens avec la complexité
de Kolmogorov (comme expliqué plus haut), se caractérisent de façon fort naturelle
en termes de bornes supérieures calculables.

Les deux premiers chapitres traitent de la théorie effective de l’aléatoire pour la
mesure uniforme (de Lebesgue), pour lesquels les bits sont choisis indépendamment
les uns des autres, et où chaque bit a exactement une chance sur deux d’être 0. Le
troisième et dernier chapitre généralise l’étude de la théorie effective de l’aléatoire à
toutes les mesures de probabilité calculables. Hormis la stochasticité, toutes les no-
tions d’aléatoire discutées plus haut peuvent être adaptées à des mesures calculables
quelconques. Informellement, la question principale étudiée dans ce chapitre est la
suivante: “Jusqu’à quel point peut-on changer la mesure de probabilité sans affecter
les notions d’aléatoire ?” Par exemple, quelles sont les mesures de probabilité dont
les suites Martin-Löf aléatoires sont les mêmes que les suites Martin-Löf aléatoires
pour la mesure uniforme ? Cette question est liée à la notion d’équivalence entre
mesures. En théorie classique des probabilités, deux mesures sont équivalentes si

x Résumé de la thèse

elles ont les mêmes ensembles de mesure 0 (intuitivement, tout évènement improb-
able pour l’une est improbable pour l’autre). On peut donner une version effective
de cette notion, en disant que deux mesures sont “effectivement équivalentes” si
elles admettent les mêmes suites aléatoires. Bien sûr, avec ce schéma, différentes
notions d’aléatoires induisent (a priori) différentes relations d’équivalence.

La première partie du chapitre est consacrée aux relations d’équivalence pour
une classe de mesures particulière: les mesures de Bernoulli généralisées. Elles
correspondent à la situation où les bits d’une suite binaire infinie sont choisis
indépendamment les uns des autres, mais la distribution de probabilité entre 0
et 1 dépend de la position du bit dans la suite. En théorie classique des proba-
bilités, il existe un critère bien connu pour déterminer si deux mesures de Bernoulli
gńéralisées sont équivalentes: le théorème de Kakutani. Nous étendons les travaux
de Muchnik, Semenov, Uspenski, et Vovk, pour montrer que le critère de Kaku-
tani est également valide pour toutes les relations d’équivalence effectives que nous
considérons. Pour prouver ce résultat, nous utilisons un argument basé sur la
théorie des jeux: si deux mesures de Bernoulli généralisées satisfont le critère de
Kakutani, il est possible de transformer de façon effective une stratégie gagnante
par rapport l̀a première mesure en une stratégie gagnante pour la seconde mesure.
Des applications de cette classe de mesures sont également présentées: nous mon-
trons comment elles peuvent être utilisées pour prouver que la classe des suites
Kolmogorov-Loveland stochastiques est strictement plus grande que la classe des
suites Martin-Löf aléatoires (un résultat de van Lambalgen et Shen). Nous les util-
isons aussi pour prouver l’optimalité des bornes (présentées au Chapitre 2) reliant
le défaut d’léatoire d’une suite au biais de ses sous-suites sélectionnées.

Bien que toutes les relations d’équivalences effectives que nous étudions cöıncident
sur la classe des mesures de Bernoulli généralisées calculables, ce n’est plus vrai
dans le cas général (avec des mesures calculables quelconques). Dans le reste du
chapitre, nous donnons une classification complète des relations d’équivalence effec-
tives. Pour cela, nous utilisons diverses notions de calculabilité “pure”, comme les
degrés de Turing hauts et l’hyperimmunité. Un résultat important de cette classifi-
cation est que deux mesures calculables ayant les mêmes suites Martin-Löf aléatoires
sont nécessairement équivalentes, mais la réciproque n’est pas vraie. Autre résultat
remarquable: alors que deux mesures sur l’espace de Cantor sont classiquement
équivalentes si elles ont les mêmes fermés de mesure nulle, ceci n’est plus vrai
quand on passe au point de vue constructif. Précisément, il n’est pas vrai que
deux mesures calculables ayant les mêmes fermés effectifs de mesure nulle sont
nécessairement équivalentes. Enfin, on remarquera le fait que les implications en-
tre les différentes relations d’équivalence effectives ne sont aucunement liées aux
notions d’aléatoire sous-jacentes.

Principales contributions

Pour résumer ce qui précède, les principaux résultats originaux de cette thèse sont
les suivants:

• Nous donnons une analyse quantitative du résultat de Schnorr affirmant

xi

qu’une stratégie gagnant exponentiellement vite peut être transformée en
règle de sélection qui sélectionne une sous-suite infinie biaisée (Théorème 1.4.16).
Nous utilisons ce résultat pour donner des bornes précises reliant le défaut
d’aléatoire des suites binaires infinies au biais maximal des sous-suites sélectionnées
(Théorème 2.2.31). Ce travail a été publié dans [8].

• Nous donnons une preuve originale du fait que les suites aléatoires de Schnorr
ne sont pas toutes Church-stochastiques: nous donnons pour cela une con-
dition sur la complexité de Kolmogorov des segments initiaux qui est suff-
isante pour les suites Schnorr aléatoires, et insuffisante pour les suites Church
stochastiques (Proposition 2.2.20 et Théorème 2.2.21). Le cas particulier des
suites approchables par le bas est également traité (Proposition 2.2.24).

• Nous présentons une nouvelle approche de la théorie effective de l’aléatoire
basée sur les bornes supérieures calculables de la complexité de Kolmogorov
(Section 2.3), et on montre qu’elles fournissent un cadre unifié dans lequel on
peut exprimer de nombreuses notions d’aléatoire. Ce travail a fait l’objet de
la publication [10].

• Nous prouvons une version constructive du théorème de Kakutani (Théorème3.2.5)
en utilisant des arguments de théorie des jeux. Ce théorème généralise des
résultats antérieurs, et peut être utilisé pour prouver le théorème de Kakutani
classique. Ce résultat figure dans l’article [7].

• Nous donnons une classification complète des relations d’équivalence effectives
induites par les différentes notions d’aléatoire sur l’espace des mesures de
probabilité calculables (Sous-section 3.3.2). Ce travail a été publié dans [9].

xii Résumé de la thèse

Introduction

Effective randomness

This thesis is a contribution to the field of effective randomness, also known as algo-
rithmic randomness. The purpose of this theory is to give a mathematical meaning
to the idea of a “random object”.

To understand the motivation of this theory, let us start with a “real-life” ex-
ample. Imagine a company whose business is to sell sequences of random bits (say,
sequences of 1010 bits burnt on a DVD), which they advertise as “Genuine random
bits, generated by some truly random process” (radioactive decay for example).
We are interested in buying such a sequence, which we want to use as a source
of randomness for a probabilistic algorithm (e.g. primality testing). We order a
sequence from this company, and we receive a DVD containing the sequence

0101010101010101010101.... (repeated five billion times)

Needless to say that we are particularly unsatisfied by this sequence, so we
write the company a letter in which we complain that the sequence they sent is not
random at all, asking for our money back. Their answer is the following:

“Dear sir or madam. We received your letter about the sequence of random
bits you have purchased. We are sorry that it did not give you full satisfaction.
However, we do not understand your claim that this sequence is “not random”.
Indeed, this sequence has the same probability of occurrence as any other sequence
of length 1010, so whatever property this sequence has that makes you question its
random nature is just a coincidence.”

Somehow, we are still not satisfied. Their argument that this sequence has the
same probability of occurence as any other one is correct, but we still think that
our sequence is not random. How can we explain this formally? A related question
is: if a company wants to sell sequences of random bits, what kind of guarantee can
they offer to earn trust from their potential customers?

These questions are somewhat philosophical, hence there is no unique way to
answer them. Effective randomness is only one possible attempt to get a decent
answer. Actually, even within effective randomness, there are different answers to

xiii

xiv Introduction

these questions. However, they all have the same leitmotiv:

An individual object is random if there is no computable way to prove

its non-randomness

This means that all the effective definitions of randomness are negative defini-
tions: one first gives a definition of (computable) non-randomness for individual
objects, and then defines a random object to be an object that is not non-random.

It remains to explain what we mean by “computable”. The Church-Turing
thesis, which is almost universally accepted nowadays, tells us that “computable”
should be understood as “computable by a Turing machine” (or any equivalent
model of computation). Thus, the whole field of effective randomness relies on
classical computability theory.

Structure of this thesis

This thesis is concerned with the algorithmic randomness of binary sequences, finite
or infinite. The first chapter presents several possible definitions of “random binary
sequences”. They can be classified into two categories: notions of typicalness and
notions of unpredictability.

Typicalness notions of randomness rely on the intuition – based on measure
theory – that a random infinite sequence should satisfy all the properties of proba-
bility 1 that can be “effectively tested”. The two main definitions in this category
are Martin-Löf randomness and Schnorr randomness. We also present the concept
of effective Hausdorff dimension. Although it is a little too weak to fully define
what a random sequence is, effective Hausdorff dimension allows us to assign to
every infinite sequence a real number between 0 and 1 measuring the degree of
randomness of the sequence (0 meaning “not random at all” and 1 meaning “quite
random”).

As one can guess, unpredictability notions express the fact that an infinite bi-
nary sequence is random if there is no “effective way” to predict its bits. The first
model to support this intuition is the model of selection rules introduced by von
Mises. A selection rule is a process which, given an infinite binary sequence, selects
from it a subsequence (which can be finite or infinite). An important restriction
is that the selection rule should not be able to look at a bit before making the
decision to select it or not. Von Mises, who was motivated by the frequency ap-
proach to randomness, defined an infinite sequence to be “random” if all the infinite
subsequences selected from it by an effective selection rule satisfy the Law of Large
Numbers. As shown by Ville, this model is too weak; some sequences have this
property and yet can hardly be called random. Hence, instead of “random”, we
will use another term, “stochastic”, for sequences having this property. Two vari-
ations of stochasticity will be presented: Church stochasticity, where the selection
rules select bits in order (from left to right), and Kolomogorov-Loveland stochastic-
ity, where the selection rules can select the bits in any order. To refine the concept

xv

of unpredictability, Schnorr (elaborating on the ideas of Ville) proposed a more gen-
eral model. He considered an infinite gambling game, where a player bets money
on the bits of an infinite sequence, losing his stake when he is wrong, doubling its
stake when he is right. The player wins if his capital grows unboundedly during
the game. A sequence is unpredictable if no computable betting strategy allows the
player to win. Similarly to stochasticity, two notions of unpredictability are defined:
computable randomness, for which we consider the betting strategies which bets on
all the bits in order, and Kolmogorov-Loveland randomness, for which we consider
betting strategies that can be on the bits in any order.

Although all the notions of randomness we just mentioned are different (which
will be explained throughout this thesis), they can all be characterized in terms
of betting strategies. This proves that typicalness and unpredictability are closely
related, and yields a classification of randomness notions. In particular, we show
that a random sequence is not stochastic if and only if there exists a computable
betting strategy which, betting on this sequence, has a capital which increases
exponentially in the number of non-zero bets made. This fact was proven earlier
by Schnorr, but we provide a careful analysis (based on a compactness argument)
of the relation between the maximal rate of success of betting strategies and the
maximal bias of the infinite selected subsequences.

Another concept related to the Law of Large Numbers is normality. A real
number is said to be normal in a certain base if its expansion in this base forms
a sequence of digits in which all patterns of a given length appear with the same
frequency. A number is absolutely normal if it is normal in all bases. Becher and
Figueira proved that there exists a computable normal number. We provide an
alternative proof of this fact as an illustration of the concepts presented earlier.

The first chapter ends with a brief discussion of effective randomness from the
point of view of Baire category. Although they have measure 1, all reasonable
classes of random sequences turn out to be meager.

In the second chapter, we return to effective randomness for finite binary se-
quence. We start by introducing the fundamental notion of Kolmogorov complex-
ity, defined independently and almost simultaneously by Solomonoff, Kolmogorov
and Chaitin. The Kolmogorov complexity of a finite binary sequence is defined
as the length of the shortest program which outputs this sequence. It is easy to
see that the Kolmogorov complexity of a finite sequence is roughly between 0 and
its length. Intuitively, a random finite sequence should be hard to describe while
a non-random one should contain some kind of pattern or regularity (otherwise,
what could possibly make us think that it is not random?) hence should have a
description shorter than itself. This makes Kolmogorov a powerful tool to measure
the degree of randomness of a finite binary sequence.

We present two versions of Kolmogorov complexity: the plain version and the
prefix version. We discuss their basic properties, among which the fact that most
strings have maximal complexity (i.e. close to their length), which is the least we
can ask from a measure of randomness. We also explain why neither version of
Kolmogorov complexity is computable.

The second part of the chapter studies the interaction between Kolmogorov

xvi Introduction

complexity and the notions of randomness for infinite sequences. We start with
Martin-Löf randomness, for which the situation is well understood. Indeed, the
celebrated Levin-Schnorr theorem provides a precise criterion (i.e. a necessary and
sufficient condition) for this notion: an infinite binary sequence is Martin-Löf ran-
dom if and only if all its initial segments have prefix complexity greater than their
length, up to an additive constant. We also present the recent Miller-Yu theorem,
which provides a similar characterization in terms of plain complexity (stonger ver-
sions of Martin-Löf randomness are also discussed). The situation regarding Kol-
mogorov complexity is not so simple for other notions of randomness. In particular,
computable randomness, Schnorr randomness and Church stochasticity are in some
sense orthogonal to Kolmogorov complexity. Indeed, there exist Schnorr random,
computably random, and Church stochastic sequences of very low Kolmogorov com-
plexity, and there exist sequences of very high complexity which are not computably
random, not Schnorr random and not Church stochastic. We can nonetheless give
a sufficient condition for Schnorr randomness in terms of prefix complexity, and we
show that this condition is not sufficient for computable randomness nor for Church
stochasticity, obtaining a new proof of the separation of these concepts (originally
obtained by Wang). The case of Kolmogorov-Loveland stochasticity is also inter-
esting. A recent result of Merkle, Miller, Nies, Reimann and Stephan states that a
Kolmogorov-Loveland sequence must have high Kolmogorov complexity. More pre-
cisely, the ratio “complexity over length” of its initial segments must tend to 1. We
investigate the reverse direction of this fact: if the ratio does not tend to 1, i.e. its
limit inferior is smaller than 1, then it is possible to select (non-monotonically) an
infinite biased subsequence. How does the bias of the selected subsequences relate
to the inferior limit of the ratio “complexity over length”? The same question was
previously studied by Asarin, Durand and Vereshchagin for finite strings, but their
work could not be directly applied to infinite ones. Combining the techinques of
Merkle et al. with the characterization of stochasticity via betting strategies proven
in Chapter 1, we provide a precise lower bound for this maximal bias (which we
prove to be optimal in Chapter 3). An interpretation of this result in terms of
effective Hausdorff dimension is also given.

As Kolmogorov complexity is not computable, one can question its legitimity as
the central notion of “effective randomness”. Also, this non-computability a priori
rules out any hope of practical applications. A way to avoid this problem is to
consider computable approximations of Kolmogorov complexity. The complexity
of a finite string is the length of its shortest “description”, which can also be seen
as the “shortest compressed form” of the string. In general, there is no way to
find this best compression, but we can try to get a reasonable one by running our
favorite lossless compression algorithm (e.g. Lempel-Ziv, Burrows-Wheeler...) on
the sequence. The length of the compressed string is then an approximation of the
Kolmogorov complexity of the original string. More precisely, it is an upper bound,
because a better way to compress it might very well exist. This approach was for
example followed by Cilibrasi and Vitanyi for practical purposes. The last part of
the chapter studies this approach but still from a rather theoretical viewpoint. We
reexamine the interaction between randomness and Kolmogorov complexity when
Kolmogorov complexity is replaced by its computable upper bounds. Perhaps sur-

xvii

prisingly, all the characterizations of Martin-Löf randomness remain true in this
setting. In particular, the Levin-Schnorr criterion for Martin-Löf randomness re-
mains true if one replaces the prefix Kolmogorov complexity by a well-chosen upper
bound. This even allows us to give a simple proof of the Miller-Yu criterion. Even
better, some notions of randomness, like Schnorr randomness, that seem unrelated
to Kolmogorov complexity (as explained above) admit very natural characteriza-
tions in terms of computable upper bounds.

The first two chapters focus on randomness with respect to the uniform measure
for which the bits are chosen independently and both values 0 and 1 have probability
1/2. The last chapter extends the study of effective randomness to all computable
probability measures. Stochasticity aside, all notions of randomness can be adapted
to any such measure. Informally, the main question studied in the chapter is “how
much can we modify the measure without changing the notions of randomness?”
For example, what are the measures whose Martin-Löf random sequences are the
same as the Martin-Löf sequences for the uniform measure? This question is related
to that of equivalence of measures. In classical probability theory, two measures
are said to be equivalent if they have the same sets of measure 0 (informally, every
unlikely event for one measure is unlikely for the other). We can define effective
versions of this equivalence relation, by saying that two measures are “effectively
equivalent” if they have the same random elements. Of course, different notions of
randomness induce different equivalence relations.

The first part of the chapter studies equivalence relations for a particular class
of measures: generalized Bernoulli measures. They correspond to the situation
where the bits are chosen independently but where the probability distribution
of a bit depends on its position in the sequence. In classical probability theory,
there exists a well-known criterion for the equivalence of two generalized Bernoulli
measures: Kakutani’s theorem. Extending the work of Muchnik, Semenov and
Uspenski, and of Vovk, we prove that Kakutani’s criterion holds for all the effective
equivalence relations we consider. To prove this, we use a game-theoretic argument:
if two measures satisfy Kakutani’s criterion, we show that every winning betting
strategy for a measure can be transformed into a winning betting strategy for the
second measure. Applications of generalized Bernoulli measures to stochasticity
are presented. We show how they can be used to prove that Kolmogorov-Loveland
stochasticity is weaker than Martin-Löf randomness (a result of van Lambalgen and
Shen). We also use them to prove the optimality of the bounds (given in Chapter
2) relating randomness deficiency to the biases of selected subsequences.

While all the effective equivalence relations we consider coincide when restricted
to generalized Bernoulli measures, this is no longer the case for arbitrary com-
putable measures. The rest of the chapter provides a complete classification of the
equivalence relations, whose proof involves various notions of computability the-
ory, like hyperimmunity or highness. An interesting result in this classification is
that two computable measures which have the same class of Martin-Löf random
elements are equivalent in the classical sense, but the converse is not true. Also,
two measures on the Cantor space which have the same closed nullsets are equiva-
lent in the classical sense, but this fact cannot be effectivized: we prove that two

xviii Introduction

computable measures which have the same effectively closed sets need not be equiv-
alent. Another very interesting fact is that the implications between the different
equivalence relations are completely unrelated to the implications of the underlying
notions of randomness.

Main contributions

To sum up, the main original contributions of this thesis are the following.

• We give a quantitative analysis of how an exponentially winning betting strat-
egy can be transformed into a selection rule which selects an infinite biased
subsequence (Theorem 1.4.16). We use this result to give precise bounds
expressing how biased the (non-monotonically selected) subsequences can be
given the degree of non-randomness of the sequence (Theorem 2.2.31). This
work was published in [8]

• We provide an original proof for the separation of Schnorr randomness and
Church stochasticity: we state a condition on the Kolmogorov complexity
of the initial segments which is sufficient for Schnorr randomness but not for
Church stochasticity (Proposition 2.2.20 and Theorem 2.2.21). The particular
case of the left-c.e. sequences is studied (Proposition 2.2.24).

• We present a new approach of effective randomness based on computable
approximations of Kolmogorov complexity (Section 2.3), and we show that
they provide a unified framework for many notions of randomness. This work
was published in [10].

• We prove a constructive version of Kakutani’s theorem (Theorem 3.2.5) using
game-theoretic arguments. This generalizes earlier results and can even be
used as an alternative proof of Kakutani’s theorem. This result appears in [7].

• We give a complete classification of constructive equivalence relations in-
duced by randomness notions on computable probability measures (Subsec-
tion 3.3.2). This work was published in [9].

Chapter 1
Randomness notions

This chapter presents a survey of the most popular notions of algorithmic random-
ness. They arise from two principles: typicalness and unpredictability. Although
their formulations are very different, we will see that these two principles are in
fact closely related. In particular, the game-theoretic notion of martingale, which
we use to support the unpredictability principle, turns out to be sufficient to char-
acterize all the notions of randomness that we will introduce, and this allows us to
classify them hierarchically. An interesting application of effective randomness to
the construction of absolutely normal real numbers is also presented.

1.1 Notation and basic definitions

We assume that the reader is familiar with basic computability notions, like com-
putable functions, computable sets, computably enumerable sets, Turing reduction,
oracle etc. We write α ≤T β if α is Turing-reducible to β. We denote by 0′ the
oracle for the halting problem. If A is a computably enumerable set, for some fixed
enumeration of A, we denote by A[t] the elements of A which are enumerated dur-
ing the first t steps of the enumeration. If f is a computable function, given an
input x, we write f(x) ↓ to express that f(x) is defined. Moreover, for t ∈ N, we
write f(x)[t] ↓ to express that f(x) is defined and the computation of f(x) requires
at most t steps of computation.

We denote the set of strings (i.e. finite sequences of zeros and ones, which we
also call words) by 2<ω. We denote by w(i) the i-th bit of w (by convention there
is a 0-th bit), by w↾n the string made of the first n bits of w (with the convention
w↾n= w if n > |w|), by ww′ the concatenation of two strings w and w′, and by ǫ
the empty word. The length of a word w is denoted by |w|. The prefix order on
strings is denoted by ⊑ where w ⊑ w′ if |w| ≤ |w′| and for all i < |w|, w(i) = w′

(i)

(w is then said to be a prefix of w′). The corresponding strict order is denoted
by ⊏. A subset of A of 2<ω is said to be prefix-free if any two elements of A
are uncomparable for the prefix-order. Given a property P on strings, the set of

1

2 Chapter 1. Randomness notions

minimal strings satisfying this property is the set of strings satisfying P such that
none of their prefixes satisfy P. The lexicographic order is denoted by ≤lex. We
will frequently need to identify strings with integers. To do so, we will use the
function Bin, where Bin(0) = ǫ, Bin(1) = 0, Bin(2) = 1, Bin(3) = 00, Bin(4) = 01,
Bin(5) = 10, Bin(6) = 11, Bin(7) = 000, etc. Bin is a computable bijection, we
denote by Bin−1 its inverse. Notice that |Bin(n)| = ⌊log2(n + 1)⌋ for all n. We ab-
breviate ⌊log2⌋ by log. The number of zeros (resp. of ones) in a string w is denoted
by #0(w) (resp. #1(w)).

We call Cantor space, and denote it by 2ω, the set of infinite binary se-
quences. We will use greek letters α, β, . . . to name elements of this set. We denote
by α(i) the i-th bit of a sequence α, and by α↾n the prefix of α of length n (i.e.
α↾n= α(0) . . . α(n−1)). We also extend the prefix order to express that a string is
a prefix of an infinite sequence, i.e. we have w ⊏ α for some w ∈ 2<ω and α ∈ 2ω

if for all i < |w|, w(i) = α(i). We also extend the lexicographic order to 2<ω ∪ 2ω,
where for all x, y ∈ 2<ω ∪ 2ω, x ≤lex y if and only if for every finite prefix x′ of x,
there exists a finite prefix y′ of y such that x′ ≤lex y′. We usually denote with
calligraphic letters U , V, X , etc. the subsets of 2ω. For X ⊆ 2ω, we denote by X̄
the complement of X in 2ω. The sequence 0ω (resp. 1ω) is the infinite sequence α
such that α(i) = 0 (resp. α(i) = 1) for all i.

We extend the notion of computable function from N to N to functions from D
to D′ whenever D and D′ can be identified in a computable way to N or a subset
of N. This includes for example N × N, 2<ω, Q, {0, 1} etc. An infinite binary
sequence α ∈ 2ω is computable if it is computable when seen as a function from
N to {0, 1}. A function g : D → R is computable if there exists a computable
function h : D×N → Q such that for all (x, t) ∈ D×N,

∣∣h(x, t)− g(x)
∣∣ ≤ 2−t (that

is, g can be effectively approximated by a rational-valued function with any givem
precision). A function g : D → R is left-computably enumerable (left-c.e.
for short) if there exists a computable function h : D × N → Q such that for all
x ∈ D, the sequence (h(x, t))t∈N is non-decreasing and converges to g(x). Note
that if f : D → R is left-c.e. , the set {(x, q) ∈ D × Q : f(x) > q} is c.e. A real
number r is left-c.e. if the constant function r is left-c.e. A sequence α ∈ 2ω is
left-c.e. if it is the binary expansion of a left-c.e. real r ∈ [0, 1). Equivalently, it is
left-c.e. if it is the pointwise limit of a computable sequence (wn)n∈N of strings that
is non-decreasing for the lexicographic order.

For functions from N to N (or R), we will extensively use the O and o notation.
Given two functions f, g : N → N, we say that f = O(g) if there exists a constant c >
0 such that f(n) ≤ c g(n) for all n. We say that f = o(g) if for all c > 0,
f(n) ≤ c g(n) for almost all n. When we write a formula like f(n) ≤ g(n)+O(h(n))
without quantifiers, we mean that there exist a constant c such that for all n: f(n) ≤
g(n) + c h(n). We say that a function f dominates a function g if f(n) ≥ g(n) for
almost all n. An order is a non-decreasing unbounded function h : N → N. Given

1.2. The Cantor space: probability, topology and computability 3

a order f , we define the function f−1 by

f−1(k) = min{n ∈ N : f(n) ≥ k}

which itself is an order. Notice that if f is computable, f−1 is computable as well.

1.2 The Cantor space: probability, topology and com-
putability

As we want to approach randomness from a computability point of view, we nat-
urally study randomness on the central space of computability theory: the Cantor
space. It is possible to define randomness for many other spaces (see Levin [36],
Gacs [21], Hoyrup and Rojas [24]), but this will not be discussed in this thesis. We
begin our discussion by a quick review of the topological properties of the Cantor
space.

1.2.1 The topology

The canonical topology on the Cantor space is the product topology (the Cantor
space can be viewed as the product of countably many copies of {0, 1} each of them
endowed with the discrete topology). The product topology is generated by the
cylinders [w] (where w ∈ 2<ω) defined by:

[w] = {α ∈ 2ω : w ⊏ α}

As the cylinders form a basis for the product topology, every open set can be written
as a union of cylinders, i.e. as

⋃
w∈A[w] for some A ⊆ 2<ω. For any A ⊆ 2ω, we

abbreviate
⋃

w∈A[w] by [A], which we call the open set generated by A.

Remark 1.2.1. It should be noticed that for any two strings w and w′, if w ⊑ w′,
then [w′] ⊆ [w] (and if w and w′ are incomparable for the prefix order, then [w]
and [w′] are disjoint). Hence, when writing an open set as a union of cylinders⋃

w∈A[w], one can remove from A all the strings w′ such that there exist w ⊏ w′ in
A. We obtain a subset A′ of A such that [A′] = [A] and A′ is prefix-free (according
to our terminoloy, A′ is the set of minimal strings in A). This proves that every
open set is generated by a prefix-free set of strings.

Remark 1.2.2. Another important fact is that every cylinder [w] is also a closed
set. Indeed, the complement of [w] is the set of sequences α such that w is not a
prefix of α. But this is equivalent to say that one of the strings of length |w| that
are different from w is a prefix of α. Hence 2ω \ [w] =

⋃{[u] : u -= w ∧ |u| = |w|}
is open.

Recall also that the Cantor space is metrizable, via the Cantor distance

∂C(α, β) = 2−min{i: α(i) $=β(i)}

4 Chapter 1. Randomness notions

1.2.2 Effectivizing the topology

In order to define effective randomness, we will need to restrict our attention to
topological objects in the Cantor space that can be effectively (i.e. computably)
described. The most fundamental objects of that category are effectively open sets:

Definition 1.2.3. An open set U ⊆ 2ω is call an effectively open set or a
computably enumerable open set (which we abbreviate by c.e. open set)
if there exists a computably enumerable subset {ui : i ∈ N} of 2<ω such that

U =
⋃

i∈N

[ui]

Remark 1.2.4. We saw above that any open set U of the Cantor set can be written
as U = [A], where A is a prefix-free subset of 2<ω. The effective version of this
remark holds true: in the above definition, we can assume that the ui’s form a
prefix-free set. Indeed, whenever some ui is enumerated, if there exists j < i such
that uj ⊑ ui, then ui can be omitted (as [ui] ⊆ [uj]), and if there exists j < i such
that ui ⊑ uj, then instead of ui, one can enumerate all the extensions of ui of length
|uj | that are different from uj.

We also define:

Definition 1.2.5. A sequence (Un)n∈N of open sets is called a computable se-

quence of c.e. open sets if there exists a sequence of subsets An = {u(n)
i :

i ∈ N} of 2<ω which are computably enumerable uniformly in n and such that

Un =
⋃

i∈N

[u
(n)
i]

for all n.

Remark 1.2.6. Similarly to Remark 1.2.6, we can assume in the above definition

that for all n, the set {u(n)
i : i ∈ N} is prefix-free.

1.2.3 Lebesgue measure

Of course, if we want to talk about randomness, we will have to talk about prob-
ability measures. Most of the work in algorithmic randomness is focused on ran-
domness with respect to the uniform measure, also known as Lebesgue measure.
The Lebesgue measure of a subset X of 2ω (denoted by λ(X)) is the probability
that α ∈ X when α is generated by independent tosses of a balanced coin. Hence,
the measure λ([w]) of every cylinder [w] must be 2−|w|. We can then extend λ to a
larger class of subsets of 2ω as follows. Let X ⊆ 2ω. The outer measure λ∗ of X is
the quantity:

λ∗(X) = inf

{
∑

w∈A

2−|w| : A ⊆ 2<ω ∧ X ⊆
⋃

w∈A

[w]

}

The inner measure of X is then defined as λ∗(X) = 1 − λ∗(X̄).

1.3. The typicalness paradigm 5

Definition 1.2.7. Let X ⊆ 2ω. If λ∗(X) = λ∗(X), then X is said to be mea-
surable, and its measure λ(X) is defined to be λ∗(X). If X has measure 0, it is
called a nullset.

All Borel subsets of 2ω are Lebesgue measurable, which is all we need for the rest
of this thesis as the subsets of 2ω we will consider are all Borel sets. In Chapter 3,
we will discuss effective randomness with respect to other probability measures but
until then, each time we talk about “measure”, we implicitely mean “Lebesgue
measure”.

1.3 The typicalness paradigm

The first satisfactory definition of effective randomness for an infinite sequence (still
considered to be the best nowadays) was given by P. Martin-Löf [42]. Martin-Löf’s
intuition was the following: a random infinite binary sequence α should belong to
no subset of 2ω that has probability 0. In other words, it should satisfy all the
laws that have probability 1, like the Law of Large Numbers or the Law of Iterated
Logarithm. Of course, stated like that, this is impossible because α belongs to the
singleton {α} which has probability 0. Hence, instead of requiring α to avoid all
nullsets, Martin-Löf called “random” the sequences that avoid all effective nullsets.

Typicalness paradigm.

An infinite binary sequence is random if it belongs to no effective nullset.

1.3.1 Martin-Löf tests

Of course, there are many ways to interpret this paradigm, as there is no unique for-
malization of the concept of “effective nullset” (see the discussion below on Schnorr’s
critique of Martin-Löf randomness). Here is how Martin-Löf understood it:

Definition 1.3.1. A Martin-Löf test is a computable sequence (Un)n∈N of c.e.
open sets such that for all n, λ(Un) ≤ 2−n.
For every Martin-Löf test (Un)n∈N, every subset of

⋂
n∈N

Un is called a Martin-
Löf nullset.
A sequence α ∈ 2ω is said to be Martin-Löf random if it belongs to no Martin-
Löf nullset. We denote by MLR the set of Martin-Löf random sequences.

The term 2−n in this definition is arbitrary. Any other computable function
tending to 0 would yield the same notion of randomness:

Lemma 1.3.2. Let f : N → R be a computable function with limn f(n) = 0. A
sequence α is Martin-Löf random if and only if for every computable sequence of
c.e. open sets (Un)n∈N such that λ(Un) ≤ f(n) for all n, α /∈ ⋂

n Un

6 Chapter 1. Randomness notions

Proof. Let f : N → R. Suppose a sequence α is not Martin-Löf random i.e. it
belongs to the intersection of a computable sequence of c.e. open sets {Un : n ∈ N}
such that λ(Un) ≤ 2−n. Since f is computable, for all n, one can effectively find an
integer k(n) such that 2−k(n) ≤ f(n). Then, (Uk(n))n∈N is a computable sequence
of c.e. open sets such that λ(Uk(n)) ≤ f(n) for all n, and α ∈ ⋂

n Uk(n). Conversely,
let {Vn : n ∈ N} be a computable sequence of c.e. open sets such that λ(Vn) ≤ f(n)
for all n and α ∈ ⋂

n Vn. Since f tends to 0, for all n, one can effectively find some
integer k′(n) such that f(k′(n)) ≤ 2−n. Then, the sequence (Vk′(n))n∈N is a Martin-
Löf test, whose intersection contains α, hence α is not Martin-Löf random.

Informally, a sequence α ∈ 2ω is not Martin-Löf random if for any given preci-
sion ε, one can, uniformly in ε, provide an open subset U ⊆ 2ω of measure smaller
than ε which contains α. Of course, for any Martin-Löf test {Un : n ∈ N}, the set
of sequences that belong to

⋂
n∈N

Un (we say that these sequences are covered by
the test) has measure 0. And since there are only countably many Martin-Löf tests
(by the computability requirement), the class MLR has measure 1.

There are several reasons why Martin-Löf’s definition of randomness is con-
sidered to be the best one. The main reason is that, similarly to the notion of
computability which came from many definitions (Recursive functions, Turing ma-
chines, lambda-calculus, Markov model, etc.) later proven equivalent, Martin-Löf
randomness arises naturally from different intuitions one can have on randomness
(see later the “unpredictability paradigm” and “incompressibility paradigm”). An-
other reason for the popularity of this notion is the existence of a universal element
in the objects used to characterize it, a property that none of the other notions of
randomness we will consider have.

Proposition 1.3.3. There exists a universal Martin-Löf test, that is a Martin-Löf
test (Vn)n∈N such that

α ∈ MLR ⇔ α /∈
⋂

n∈N

Vn

This means that among Martin-Löf nullsets, there is actually a largest one,
which is exactly the set of sequences that are not Martin-Löf random.

Proof. First, notice that one can effectively enumerate Martin-Löf’s tests: given
an index for a computable sequence of c.e. open sets (W)i∈N, one can enumerate
the Wi until a stage t such that λ(Wi[t]) > 2−i for some i ∈ N. In that case, the
enumeration is stopped before stage t. Now, given an enumeration of Martin-Löf

tests U (n) (by this we mean that for all n, (U (n)
i)i∈N is an Martin-Löf test and all

Martin-Löf tests appear in the sequence), we set

Vn =
⋃

k∈N

U (k)
n+1+k

The Vn form a computable sequence of c.e. open sets (a computable union of c.e.
open sets is obviously an open set as a computable union of c.e. subsets of 2<ω is

1.3. The typicalness paradigm 7

a c.e. subset of 2<ω) and for all n:

λ (Vn) ≤
∑

k∈N

λ
(
U (k)

n+1+k

)
≤

∑

k∈N

2−n−k−1 ≤ 2−n

Finally, if α /∈ MLR, α belongs to a Martin-Löf nullset, i.e. for some m, α ∈⋂
k∈N

U (m)
k . But then for all k > m, U (m)

k ⊆ Vk−m−1, hence α ∈ ⋂
n∈N

Vn.

#

In classical probability theory, the Borel-Cantelli lemma asserts that, given
a sequence of sets (An)n∈N such that

∑
n λ(An) < +∞, the set of sequences α

that belong to infinitely many An has measure 0. Martin-Löf randomness can be
characterized by an effectivization of this result:

Theorem 1.3.4 (Solovay [55], Shen [54]). A sequence α ∈ 2ω is Martin-Löf
random if and only if for every computable sequence of c.e. open sets (Un)n∈N

such that
∑

n λ(Un) < +∞, α belongs only to finitely many Un.

Proof. First, it is easy to see that a sequence α which has this property is Martin-
Löf random. Indeed, a Martin-Löf test is a computable sequence of c.e. open sets
(Un)n∈N such that λ(Un) ≤ 2−n for all n. In particular, this implies

∑
n λ(Un) < +∞.

Hence, if α has the above effective Borel-Cantelli property, it cannot belong to the
intersection of the Un.

Conversely, let (Un)n∈N be a computable sequence of c.e. open sets such that∑
n λ(Un) < C for some C ∈ N. Given k ∈ N, the set

Vk = {α ∈ 2ω : α belongs to at least k sets Un}

is a c.e. open set (uniformly in N) and has measure at most C/k. By Lemma 1.3.2,
the intersection of the Vk is a Martin-Löf nullset. By definition of the Vk, this
intersection is exactly the set of sequences that belong to infinitely many Un. Hence,
any Martin-Löf random sequence belongs to finitely many Un. #

1.3.2 Schnorr randomness

In [52], Schnorr raised a criticism against Martin-Löf randomness, arguing that
it is not effective enough. Schnorr was motivated by a game/prediction point of
view, and he noticed that the knowledge that α ∈ U for a c.e. open set of small
measure is not enough to predict effectively the bits of α. We will come back to this
later, when we will discuss the unpredictability paradigm. For now, let us just give
the definition of Schnorr randomness. It is similar to the definition of Martin-Löf
randomness, but in the underlying notion of test, we require the open sets to have
exactly measure 2−n.

8 Chapter 1. Randomness notions

Definition 1.3.5. A Schnorr test is a computable sequence {Un : n ∈ N} of
c.e. open sets such that for all n, λ(Un) = 2−n.
For every Schnorr test {Un : n ∈ N}, any set contained in intersection

⋂
n∈N

Un is
called a Schnorr nullset.
A sequence α ∈ 2ω is said to be Schnorr random if it belongs to no Schnorr
nullset. We denote by SR the set of Schnorr random sequences.

Here again, 2−n can be replaced by any positive computable function tending
to 0.

Lemma 1.3.6. A sequence α ∈ 2ω is not Schnorr random if and only if it belongs
to the intersection of a computable sequence of c.e. open sets (Un)n∈N such that the
measure of Un is computable uniformly in n and tends to 0.

Proof. The “only if” part is immediate as 2−n is computable uniformly in n and
tends to 0 as n tends to +∞. For the “if” part, suppose that there exists a
computable sequence of c.e. open sets (Un)n∈N whose intersection contains α and
such that f(n) = λ(Un) is computable uniformly in n and tends to 0. For all n, one
can effectively find some integer k(n) such that f(k(n)) < 2−n. Set f ′ = f(k(n)),
and Vn = Uk(n). Then, the Vn is a c.e. open set uniformly in n with λ(Vn) =
f ′(n) < 2−n (and f ′ is computable), and α ∈ ⋂

n Vn. All we need to do is to make
each Vn bigger so its measure attains 2−n. Fix an n. We construct by induction an
increasing sequence (Ai)i∈N of finite subsets of 2<ω such that for all i:

λ(Vn ∪ [Ai]) < 2−n < λ(Vn ∪ [Ai]) + 2−i (1.1)

Set A0 = ∅. If Ai has been constructed, since λ(Vn), so is λ(Vn ∪ [Ai]), and so
is λ(Vn ∪ [Ai]∪ [B]) for any given finite subset B of 2<ω. Hence, one can effectively
find a B satisfying

λ(Vn ∪ [Ai] ∪ [B]) < 2−n < λ(Vn ∪ [Ai] ∪ [B]) + 2−i−1

Set Ai+1 = Ai ∪ B, completing the induction. Since all the steps of the induction
are effective, the union A of the Ai is a c.e. subset of 2<ω, hence V ′

n = Vn ∪ [A] is a
c.e. open set containing Vn (hence containing α) and

λ(Vn ∪ [A]) = lim
i→∞

λ(Vn ∪ [Ai]) = 2−n

by equation (1.1). Hence, the V ′
n form a Schnorr test covering α, i.e. α is not

Schnorr random.

1.3.3 Weak randomness

Weak randomness, as it was introduced by Kurtz [32] (it is sometimes called Kurtz
randomness) is also based on the typicalness paradigm, but understood in the
opposite way: instead of avoiding all effectively null sets, a sequence should be
random if it belongs to all effective sets of measure 1:

1.3. The typicalness paradigm 9

Definition 1.3.7. A sequence α ∈ 2ω is weakly random if it belongs to all c.e.
open sets of measure 1. We denote by WR the set of weakly random sequences.

It turns out that, although it is interesting to study, this notion of randomness
cannot be completely satisfactory as a weakly random sequence need not satisfy
the Law of Large Numbers. We will prove this in the sequel.

1.3.4 Effective Hausdorff dimension

General definition

Hausdorff dimension was introduced by F. Hausdorff [22] as an attempt to assign a
dimension to every subset of a metric space. For example, in the space R3 (endowed
with the Euclidean distance), it is our intuition that a point, a circle, a sphere and a
ball have dimension respectively 0, 1, 2 and 3. The notion of measure is too coarse
to make this distinction, as the first three objects are nullsets (for Lebesgue mea-
sure). Hausdorff dimension on the other hand allows us to formalize our intuition.

In great generality, in a metric space (X , d), we define for all E ⊆ X , δ > 0 and
s > 0:

Hs
δ (E) = inf

{
∑

k∈N

diam(Ak)
s

}

where the infimum is taken over the sequences (Ak)k∈N of subsets of X that cover
E (i.e. E ⊆ ⋃

k Ak) and such that all Ak all have a diameter of at most δ. For a
fixed s, this quantity is non-decreasing as δ tends to 0, and we set

Hs(E) = lim
δ→0

Hs
δ (E)

Clearly Hs(E) is non-decreasing as s tends to 0. In fact, it can be shown that for
every space E , there exists a threshold s0 such that Hs(E) = 0 for all s > s0 and
Hs(E) = +∞ for all s < s0. We call Hausdorff dimension of E , and we denote
by dim(E) this threshold s0. This definition of dimension works for the objects
we mentionned above (point, circle etc). More interestingly, the dimension of a
set needs not be an integer. For example, the Hausdorff dimension of von Koch’s
snowflake is log(4)/ log(3). For more on Hausdorff dimension on general metric
spaces, see the standard reference Falconer [17].

Hausdorff dimension in the Cantor space

The particular topology of the Cantor space makes the study of Hausdorff dimension
simple. First, notice that the definition of the Cantor distance ∂C (see page 4), every
subset of 2ω has a diameter of type 2−k with k ∈ N ∪ {+∞}. Moreover, if A has
diameter 2−k, all its elements have a common prefix of length k. Calling w this
prefix, we have A ⊆ [w]. But [w] itself has diameter 2−k. Hence, in the above
definition of Hs

δ , we can restrict our attention to the particular case where δ is a
negative power of 2 and the Ak are cylinders. This implies:

10 Chapter 1. Randomness notions

Proposition 1.3.8. Let E be a subset of 2ω. We have Hs(E) = 0 if and only if
for all ε > 0, there exists a family ([wk])k∈N of cylinders such that E ⊆ ⋃

k∈N
[wk]

and
∑

k 2−s|wk| < ε The dimension dim(E) is then the infimum over those s for
which Hs(E) = 0.

We now make things effective:

Definition 1.3.9. Let s > 0. A constructive s-test is a computable sequence
(An)n∈N of c.e. subsets of 2<ω such that for all n:

∑

w∈An

2−s|w| ≤ 2−n

A set E ⊆ 2ω is constructively s-null if there exist a constructive s-test
(An)n∈N such that E ⊆ [An] for all n.
The constructive dimension of a set E ⊆ 2ω is defined by

cdim(E) = inf {s > 0 : E is constructively s-null }

For any 1-test (An)n∈N, the computable sequence of c.e. open sets ([An])n∈N

form a Martin-Löf test. This means that if α ∈ 2ω is a Martin-Löf random sequence,
the singleton {α} is not constructively 1-null, hence has constructive Hausdorff
dimension of at least 1. This can seem a little suprising at first (since the classical
dimension of a singleton is always 0), but this is exactly the same phenomenon as
for Martin-Löf randomess: a singleton {α} always has measure 0 but if α is Martin-
Löf random, it cannot be covered effectively by smaller and smaller open sets. From
now on, for a given sequence α ∈ 2ω, we abbreviate cdim({α}) by cdim(α).

One can also define an even stronger notion of s-tests, computable s-tests, which
leads to computable Hausdorff dimension.

Definition 1.3.10. Let s > 0. A computable s-test is a computable sequence
(An)n∈N of computable subsets of 2<ω such that for all n:

∑

w∈An

2−s|w| ≤ 2−n

A set E ⊆ 2ω is computably s-null if there exist a computable s-test (An)n∈N

such that E ⊆ [An] for all n.
The computable dimension of a set E ⊆ 2ω is defined by

dimcomp(E) = inf {s > 0 : E is computably s-null }

Let us make a few remarks about dimension. First, one should notice that, from
the very definition of computable, constructive and classical Hausdorff dimension,
for all E ⊆ 2ω, one has:

dim(E) ≤ cdim(E) ≤ dimcomp(E)

1.4. The unpredictability paradigm 11

Also, it is clear that all three notions of dimension are monotonic in the sense
that if E ⊆ E ′ then dim(E) ≤ dim(E ′) (and the same holds true for constructive
dimension). This allows us to prove:

Remark 1.3.11. Every subset E of 2ω has a dimension (classical, constructive, or
computable) lying between 0 and 1.

The fact that the dimension is non-negative comes from the definition. To
see that the dimension of any E is no greater than one it suffices to prove that
cdim(2ω) = 1 as dim(E) ≤ cdim(E) ≤ cdim(2ω). As 2ω contains Martin-Löf random
sequences, 2ω cannot be covered by any constructive 1-test, hence cdim(2ω) ≥ 1.
Let now s be a rational number greater than 1. For all n, we can uniformly compute
an integer kn such that 2(1−s)kn ≤ 2−n (as s > 1). For all n, let An be the set of
strings of length kn. Clearly, [An] covers 2ω for all n and

∑

w∈Ak

2−s|w| = 2kn 2−s kn = 2(1−s)kn ≤ 2−n

Hence (An)n∈N is a coomputable s-test covering 2ω, meaning that 2ω is construc-
tively s-null. Being true for all s > 1, this proves that dimcomp(2

ω) ≤ 1 (hence
cdim(2ω) ≤ 1 and dim(2ω) ≤ 1).

1.4 The unpredictability paradigm, selection rules, mar-
tingales and strategies

Another way of apprehending randomness is via the so-called unpredictability paradigm.
According to this paradigm, the essence of a random experiment is that no reason-
able prediction can be made on its outcomes.

Unpredictability paradigm.

An infinite binary sequence is random if it is impossible to effectively predict its
bits with good accuracy.

This point of view especially makes sense from a game-theoretic perspective.
In a gambling game (head-tail, roulette...), players make bets on the outcome of a
random trial. The sequence is random (at least, sufficiently random from the bank’s
point of view) if one cannot predict the future outcomes (given the past outcomes)
with a good success rate. We shall present different notions of randomness that are
based on this intuition.

1.4.1 Stochasticity

To modelize the notion of prediction, imagine that the bits of an infinite sequence α
are written on cards (one bit per card) which lie on a table, face down. We try
to guess the value of the first card, then the first card is revealed. We then try to
predict the value of the second card, which is then revealed and so on (of course,

12 Chapter 1. Randomness notions

at each stage we can use the previously revealed bits to make our prediction). The
Law of Large Numbers tells us that if the sequence is actually random, we should
be right as often as we are wrong, asymptotically (that is, the limit of the success
rate should tend to 50%). Thus, we could define a notion of randomness by saying
that a sequence is random if there is no computable way to make predictions with
an upper limit of success that exceeds 50%. But we need to correct this intuition a
little. Indeed, suppose the bits of α are actually chosen at random, except for the
α(i) where i is a power of 2, which are all equal to 0. Clearly the sequence should
not be considered random as we can predict these bits with certainty. However,
the density of such bits is negligeable in the whole sequence. Hence, in this case,
our limit success rate will still be of 50%. This can be corrected by allowing the
player to make a guess only if he wants to. That is, at each move, the player can
either make a guess or simply ask to see the value of the card without making any
guess. In the above example, this solves the problem, as we will the player will
then only make a prediction the values of the α(i)’s when i is a power of 2. This
leads to a notion of randomness called Church stochasticity (the idea of selection
rule was proposed by von Mises [59], but it was Church who suggested to consider
only computable ones) which we now formalize.

Definition 1.4.1. A selection rule is a total function σ : 2<ω →
{select,scan}

For any w ∈ 2<ω, σ(w) represents the choice made by the player at stage n = |w|
when the first n bits he has seen are w(0), . . . , w(n−1). For all w ∈ 2<ω, we denote
by σ[w] the sequences of bits selected after having read w. We formally define it
by induction on |w|: σ[ǫ] = ǫ and if σ[w] is already defined, for all ι ∈ {0, 1}:

• if σ(w) = scan, set σ[wι] = σ[w]

• if σ(w) = select, set σ[wι] = σ[w]ι

For a fixed α ∈ 2ω, the sequence of strings
(
σ[α↾n]

)
n∈N

is non-decreasing for the
prefix order ⊑. Hence, either it is stationnary, in which case we set σ[α] to be the
limit of the sequence. Or the sequence is not stationnary, in which case the σ[α↾n]
are all prefixes of an infinite binary sequence, which we call σ[α]. In both cases,
σ[α] is called the subsequence of α selected by σ.

We are ready to define Church stochasticity.

Definition 1.4.2. A sequence α is Church stochastic if for every total com-
putable selection rule, either β = σ[α] is finite, or it satisfies

lim
n→+∞

#0(β↾n)

n
=

1

2

We denote by ChStoch the set of Church stochastic sequences.

1.4. The unpredictability paradigm 13

Although this notion is interesting, it can hardly be considered a suitable notion
of effective randomness. Indeed, Ville [58] was able to show that there exists a
sequence α that is Church stochastic and such that for all n, #0(α↾n) > #1(α↾n).
The set of sequences having this property is highly “effective”, and has measure 0
by the Law of Iterated Logarithm (which states that the quantity #0(α ↾n) −
#1(α ↾n) should more or less oscillate between −√

2n log log n and
√

2n log log n
with probability 1). We will now see how Church stochasticity can be improved by
considering betting strategies instead of selection rules. This leads us to the notion
of computable randomness.

1.4.2 Computable randomness

In order to define computable randomness, we consider again the situation where
we are trying to predict the values of the bits of a sequence α all the bits of which
are initially hidden. But this time, instead of the binary choice select/scan, we
will allow the player to bet some amount of money on the values of the bits. The
game goes as follows. Initially, the player starts with a positive capital. During the
n-th move, the player (based on his knowledge of the first n−1 bits) bets an amount
of money – which can be anything between 0 and his current capital – on the value
of the n-th bit. The bit is then revealed. If his guess was correct, the player doubles
his stake; otherwise he loses his stake. The player is said to succeed against α
if his capital takes on arbitrarily large values throughout the infinite game. In
order to make things completely formal, we introduce the fundamental notion of
martingale.

Definition 1.4.3. A martingale is a function d : 2<ω → R+ such that for all
w ∈ 2<ω:

d(w) =
d(w0) + d(w1)

2

we say that d is normed if d(ǫ) = 1.

Intuitively, a martingale represents the capital of a player during the game, the
condtion d(w0) + d(w1) = 2d(w) ensuring that the game is fair. More precisely,
d(w) represents the capital of the player after betting on the first n = |w| bits of a
sequence whose prefix of length n is w. For example, if d(ǫ) = 1, d(0) = 3/2 and
d(1) = 1/2, this means that the player bets that the value of the first bit is 0 with
a stake of 1/2. Accordingly we set:

Stake(d, u) = d(u0) − d(u) and Bet(d, u) =
Stake(d, u)

d(u)

where we let Bet(d, u) = 0 when d(u) = 0.

In this notation, Stake(d, u) represents the amount of money that d, having
read u, bets on the value of the next bit to be 0. This amount can be negative:
if d bets an amount a on the value 1, this can be seen as a bet on the value 0
with stake −a. Bet(d, u) represents the fraction of the capital d bets after having

14 Chapter 1. Randomness notions

read u, with the same convention that Bet(d, u) can be negative. Notice that for
all u ∈ 2<ω:

d(u0) = d(u) + Stake(d, u) = (1 + Bet(d, u))d(u)

and
d(u1) = d(u) − Stake(d, u) = (1 − Bet(d, u))d(u)

Remark 1.4.4. The notion of “martingale” is fundamental in probability theory,
where it can be defined with a very high level of generality (using filtrations of
sigma-algebras; see for example Jacod and Protter [25]). The above definition of
“martingale” is a very particular case of the classical notion.

Remark 1.4.5. In the sequel, we will very often use the following simple fact: any
finite sum of martingales is a martingale; and for every sequence (dn)n∈N of mar-
tingales and every sequence (rn)n∈N of nonnegative real numbers, if

∑
n rn dn(ǫ) <

+∞, then
∑

n rn dn is a martingale.

Definition 1.4.6. For a martingale d and a sequence α ∈ 2ω we define

d̄(α) = lim sup
n→+∞

d(α↾n)

A martingale succeeds on a sequence α if d̄(α) = +∞. We call success set
of d, and denote by Succ(d), the set of sequences on which d succeeds.

This allows us to give the following definition:

Definition 1.4.7. A sequence α ∈ 2ω is computably random if there is no
computable martingale that succeeds on it. We denote by CR the set of computably
random sequences.

It is not immediately clear why this is a notion of randomness i.e. that the set
of computably random sequences has measure 1. We will discuss this in a moment
(see page 25). For now, we make an important remark:

Remark 1.4.8. The notion of computable randomness remains the same if we de-
fine the success of a martingale by lim d(α↾n) = +∞ instead of lim sup d(α↾n) =
+∞. To see this, imagine that a player has a strategy ensuring his capital reaches
arbitrarily large values. Each time his capital reaches a certain threshold (say 2),
he puts half of his capital on a “bank account” and keep playing with the rest,
making the same bets in terms of fraction of the capital. Then the capital will
grow unboundedly again, reach the threshold etc. The capital on the bank account
is then non-decreasing and unbounded, ensuring that the limit of the capital is +∞.

Remark 1.4.9. The notion of computable randomness remains the same if we
replace “computable martingale” by “computable normed martingale” in the defini-
tion. This is because if d is a computable martingale that succeeds on α, the initial
capital d(ǫ) is computable, hence the martingale d′ = d/d(ǫ) is computable, normed,
and also succeeds against α as d′(α↾n) is equal to d(α↾n) up to a multiplicative con-
stant.

1.4. The unpredictability paradigm 15

Another important fact about computable randomness is that, unlike Martin-
Löf tests for Martin-Löf randomness, there is no universal element:

Proposition 1.4.10. There exists no computable martingale d such that
Succ(d′) ⊆ Succ(d) for every computable martingale d′. In other words, there
is no computable martingale d that succeeds on every sequence α that is not com-
putably random. In fact, for every computable martingale d, there exists α ∈ 2ω

that is computable and that is not in Succ(d).

Proof. We prove the second part of the proposition, which implies the first one
(because a computable α is obviously not computably random!). This is done by
diagonalizing against d, by induction. Let c be an integer such that d(ǫ) < c. Set
w(0) = ǫ. For all n, suppose that w(n) is already defined and d(w(n)) < c. Then,
by the fairness condition, there exists ι ∈ {0, 1} such that d(w(n)ι) < c and such
a ι can be found effectively since d is computable. Then, set w(n+1) = w(n)ι. The
w(n) form an increasing sequence for the prefix order, hence by calling α the infinite
sequence whose prefixes are the w(n) (α is computable by construction), we have
d(α↾n) < c for all n. #

1.4.3 Stochasticity via martingales

We presented computable randomness as an improvement of the notion of Church
stochasticity, hence implicitely stating that selection rules were in a sense a par-
ticular kind of martingales. We now explain why this is the case. A sequence is
non-stochastic if we can extract from it a subsequence that does not satisfy the Law
of Large Numbers. As one can easily guess, we will make money by betting on the
bits of this selected subsequence. The question is: how to use the information that
a sequence does not satisfy the Law of Large Numbers to make money by betting
on its bits? Let us first introduce some piece of notation. The bias of a sequence
α ∈ 2ω is defined by

Bias(α) = lim sup
n→+∞

∣∣∣∣
#0(α↾n)

n
− 1

2

∣∣∣∣

A sequence α does not satisfy the Law of Large Numbers if Bias(α) > 0.
We will also need the following definition:

Definition 1.4.11. Let s ∈ [0, 1]. We say that a martingale s-succeeds against
a sequence α if

lim sup
n→+∞

d(α↾n)

2(1−s)n
= +∞

A martingale is s-succesful if it succeeds exponentially fast. Moreover, the
smaller s is, the faster the success of d. How is this related to stochasticity? Let
us start with a simple example. Suppose we are betting (in an infinite game) on
the outcomes of a coin that our opponent thinks is balanced, but we happen to
know that the coin is in fact biased, namely the probability of each outcome to
be 0 is 1

2 + δ for some 0 < δ < 1
2 that we know. There should obviously be a way

16 Chapter 1. Randomness notions

to take advantage of that extra information, but what strategy should we use? To
maximize our expectancy, it seems like a good idea to bet all the money we have
on the value 0. But this is in fact a very bad strategy since if we do this on each
coin toss, the outcome 1 will eventually happen and we will lose everything. Let
us think more about what we should do. First, the best bet to make should be
proportional to the amount we have: if the best move is to bet 0.3 when our capital
is 1, it certainly is to bet 3 if our capital is 10 (this is just a change of scale). Also,
since the coin tosses are independent, the best decision should be independent of
the stage of the game. Hence we should always bet the same fraction ρ of our
capital. In that case, after n bets on a sequence α, a simple computation shows
that our capital will be

(1 + ρ)#0(α↾n) (1 − ρ)#1(α↾n)

If α is truly picked “at random” where each bit is chosen independently and has
probability (1

2 + δ) to be 0, the Law of Large Numbers tells us that for n large
enough #0(α↾n) (resp. #1(α↾n)) will be close to (1

2 + δ)n (resp. to (1
2 − δ)n) hence

our capital should be close to

(1 + ρ)(
1
2
+δ)n (1 − ρ)(

1
2
−δ)n =

[
(1 + ρ)(

1
2
+δ) (1 − ρ)(

1
2
−δ)

]n

Lemma 1.4.12. The maximum of the function ρ 3→ (1+ρ)(
1
2
+δ) (1−ρ)(

1
2
−δ) (resp.

its logarithm ρ 3→ (1
2 + δ) log(1 + ρ) + (1

2 − δ) log(1 − ρ)) is achieved for ρ = 2δ.

(this is proved by simply taking the derivative).

Hence, if we apply the strategy consisting in betting the fraction 2δ of our
current capital at each stage of the game, and still under the hypothesis that each
bit of α has a probability 1

2 + δ to be 0, by the Law of Large Numbers, we get with
probability 1:

d(α↾n) = (1 + 2δ)(
1
2
+δ)n+o(n) (1 − 2δ)(

1
2
−δ)n+o(n)

= 2(1−s)n+o(n) with s = 1 −
(1

2
+ δ

)
log(1 + 2δ) −

(1

2
− δ

)
log(1 − 2δ)

The value of s in this formula is related to Shannon’s entropy. Recall that the
Shannon entropy function is defined, for x ∈ [0, 1] by

H(x) = −x log(x) − (1 − x) log(1 − x)

In the above formula, we can write s = H (1/2 + δ). Note that the function
δ 3→ H (1/2 + δ) is a decreasing bijection of [0, 1/2] onto [0, 1].

The above argument works just as well if we only know the sequence we are
about to bet against does not satisfy the Law of Large Numbers:

Proposition 1.4.13. Let α be a sequence whose bias is greater than or equal to
δ > 0. There exists a martingale d, computable with oracle δ, such that for all
s > H

(
1
2 + δ

)
, d s-succeeds against α.

1.4. The unpredictability paradigm 17

Proof. Let α be a sequence of bias greater or equal to δ > 0. Without loss of
generality suppose that α is biased towards 0, that is lim sup #0(α↾n)

n ≥ (1
2 +δ). Let

d be the martingale such that at each move bets a fraction 2δ of its current capital on
the value 0 (that is, for all u ∈ 2<ω, d(u0) = (1+2δ)d(u) and d(u1) = (1−2δ)d(u)).
Clearly, the martingale d is computable with oracle δ, and for every n:

d(α↾n) = (1 + 2δ)#0(α↾n)(1 − 2δ)#1(α↾n)

Thus
log d(α↾n)

n
=

#0(α↾n)

n
log(1 + 2δ) +

#1(α↾n)

n
log(1 − 2δ)

and thus

lim sup
n→+∞

log d(α↾n)

n
≥

(1

2
+ δ

)
log(1 + 2δ) −

(1

2
− δ

)
log(1 − 2δ)

≥ 1 −H
(

1

2
+ δ

)

This completes the proof.
#

As a first corollary, we get the following unrelativized proposition.

Corollary 1.4.14. Let α be a sequence of bias δ > 0. For all s > H
(

1
2 + δ

)
,

there exists a computable martingale d that s-succeeds against α.

Proof. Let s > H
(

1
2 + δ

)
and let s′ be rational such that s > s′ > H

(
1
2 + δ

)
. Let

δ′ be such that s′ = H
(

1
2 + δ′

)
(notice that δ′ is computable since s′ is, H being a

computable function with computable inverse). Applying Proposition 1.4.13 to α
and δ′, we get the existence of a martingale d′, computable with oracle δ′ (hence
computable since δ′ itself is computable) such that d′ t-succeeds on α for all t > s′.
In particular, d′ s-succeeds on α. #

And as a corollary of this corollary, we get:

Corollary 1.4.15. If α is computably random, it is Church stochastic.

Proof. Let α be a sequence that is not Church stochastic, that is, there exists a
total computable selection rule σ such that σ[α] is biased. Then, by the above
Corollary 1.4.14, there exists a martingale d that succeeds on σ[α]. Let d′ be the
martingale that bets nothing on bits that σ scans, and bets what d bets on bits
that σ selects. Precisely, for all w ∈ 2<ω, if σ(w) = scan, d′(w0) = d′(w1) =
d′(w) and if σ(w) = select, d′(w0) = (1 + Bet(d, σ[w]))d′(w) and d′(w1) = (1 −
Bet(d, σ[w]))d′(w). Then, d′ is computable and

lim sup
n

d′(α↾n) = lim sup
n

d
(
σ[α]↾n

)
= +∞

#

18 Chapter 1. Randomness notions

Schnorr [52] proved a result in the other direction: if there is a martingale
that wins exponentially fast against a sequence α, then there exists a computable
selection rule that selects from α a biased sequence β (hence α is not Church
stochastic). Schnorr’s result is purely qualitative, that is it does not say how the
speed of success of the martingale and the bias of the extracted subsequence relate
to each other. We will prove the following quantitative version of Schnorr’s theorem:

Theorem 1.4.16. Let d be a martingale that s-succeeds against a sequence
α ∈ 2ω. Then, there exists a selection rule σ, computable with oracle s, such
that Bias(σ[α]) ≥ δ where δ is such that H

(
1
2 + δ

)
= s.

Proof. The basic idea of the proof is the following: by an argument of Ambos-Spies
et al. [2], the above theorem would be easier to prove if d always bet the same
fraction of its capital on 0 i.e. for all w: Bet(d, w) = q, where q is a fixed constant
in [−1, 1]. Indeed, in this case, we have for all n:

d(α↾n) = (1 + q)#0(α↾n)(1 − q)#1(α↾n)

i.e.
log d(α↾n)

n
=

#0(α↾n)

n
log(1 + q) +

#1(α↾n)

n
log(1 − q)

Setting δ = Bias(α), we conclude that

lim sup
n→+∞

log d(α↾n)

n
≤

(
1

2
+ δ

)
log(1 + q) +

(
1

2
− δ

)
log(1 − q)

By definition of s:

lim sup
n→+∞

log d(α↾n)

n
≥ 1 − s

It follows that

1 − s ≤
(

1

2
+ δ

)
log(1 + q) +

(
1

2
− δ

)
log(1 − q)

The function x 3→
(

1
2 + δ

)
log(1 + x) +

(
1
2 − δ

)
log(1 − x) achieving its maximum

for x = 2δ, we then have

1 − s ≤
(

1

2
+ δ

)
log(1 + 2δ) +

(
1

2
− δ

)
log(1 − 2δ)

i.e.

s ≥ H
(

1

2
+ δ

)

Thus, the sequence α is biased with bias at least δ. Therefore, it suffices to use the
selection rule that selects every bit to get the desired result.

Unfortunately, our martingale d is not restricted as above, hence we cannot
directly apply this argument. However, since the values of the bets lie in the

1.4. The unpredictability paradigm 19

interval [−1, 1], which is compact, we argue by a dichotomy technique that there
must be some some condensation point ρ̄ in the neighbourhood of which bets are
often successfull. Applying Ambos-Spies et al.’s technique to this condensation
point, we get the desired result.

We start with a slight generalization of Ambos-Spies et al.’s argument:

Lemma 1.4.17. Suppose d is a martingale that s-succeeds on a sequence α ∈ 2ω,
and such that for all n, Bet(d, α ↾n) ∈ [q1, q2] where q1 and q2 are nonnegative
constants. Then, Bias(α) ≥ η for any η such that

(1

2
+ η

)
log(1 + q2) +

(1

2
− η

)
log(1 − q1) ≤ 1 − s

Subproof. Let η ∈ [0, 1] satisfying the condition of the lemma. Suppose for the sake
of contradiction that Bias(α) = η′ < η. When a bit of α is 0, the capital of α is
multiplied by at most (1+q2) (maximal gain, by assumption on the bets) and when
a bit of α is 1, the capital of α is multiplied by at most (1 − q1) (minimal loss, by
assumption on the bets). Thus

d(α↾n) ≤ (1 + q2)
#0(α↾n)(1 − q1)

#1(α↾n)

which implies

lim sup
n→+∞

log d(α↾n)

n
≤

(
1

2
+ η′

)
log(1 + q2) +

(
1

2
− η′

)
log(1 − q1) (1.2)

by definition of the bias.

But since d s-succeeds against α, we derive from (1.2):

1 − s ≤
(

1

2
+ η′

)
log(1 + q2) +

(
1

2
− η′

)
log(1 − q1)

<

(
1

2
+ η

)
log(1 + q2) +

(
1

2
− η

)
log(1 − q1) since η′ < η

and this contradicts the assumption on η.

Let us denote by ρi the i-th bet made by d while playing against α (i.e. ρi =
Bet(d, α↾i)) and we let ρ̃i be ρi if αi = 0 and ρ̃i = −ρi if αi = 1. With this notation,
we have for all n

d(α↾n) =
n−1∏

i=0

(1 + ρ̃i) (1.3)

By definition of s-success, we know that:

lim sup
n→+∞

d(α↾n) 2(s−1)n = +∞ (1.4)

20 Chapter 1. Randomness notions

From (1.3) and (1.4), we get:

lim sup
n→+∞

n−1∏

i=0

2(s−1)(1 + ρ̃i) = +∞ (1.5)

Recall that for all i, ρi ∈ I0 = [−1, 1]. Thus, at least one of the following holds:

lim sup
n→+∞

∏

0≤i<n
ρi∈[−1,0]

2(s−1)(1 + ρ̃i) = +∞ or lim sup
n→+∞

∏

0≤i<n
ρi∈[0,1]

2(s−1)(1 + ρ̃i) = +∞

Indeed, if both quantities above are bounded, then
∏n−1

i=0 2(s−1)(1 + ρ̃i) is nec-
essarily bounded, contradicting (1.5). Suppose for example that the first one is
unbounded. We then set I1 = [−1, 0], and we see that, again, at least one of the
following holds:

lim sup
n→+∞

∏

0≤i<n
ρi∈[−1,−1/2]

2(s−1)(1 + ρ̃i) = +∞ or lim sup
n→+∞

∏

0≤i<n
ρi∈[−1/2,0]

2(s−1)(1 + ρ̃i) = +∞

We repeat this argument infinitely many times, by induction, dividing each time
the interval Im into two halves, and choosing Im+1 to be one of these halves that
satisfies

lim sup
n→+∞

∏

0≤i<n
ρi∈Im+1

2(s−1)(1 + ρ̃i) = +∞

The sequence of intervals (Im)m∈N is decreasing and for all m, the length of Im is
2−m+1. Hence, by compactness, their intersection is a singleton {ρ̄}.

We distinguish two cases:

Case 1: ρ̄ = 2δ. In this case, since we can compute δ with oracle s, we can also
compute ρ̄, and also all the sequence intervals (Im)m∈N (since we know ρ̄, we know
for each m in which half of Im it is located).

Let σ be the selection rule that proceeds by stages. At the beginning of stage
N , we compute m such that Im = [am, bm] (by symmetry, we can suppose without
loss of generality that 0 ≤ am ≤ bm) satisfies

(1

2
+ δ − 1

N

)
log(1 + bm) −

(1

2
− δ +

1

N

)
log(1 − am) ≤ 1 − s (1.6)

Such an m can be found since

limn→+∞

(
1
2 + δ − 1

N

)
log(1 + bm) −

(
1
2 − δ + 1

N

)
log(1 − am)

=
(

1
2 + δ − 1

N

)
log(1 + 2δ) −

(
1
2 − δ + 1

N

)
log(1 − 2δ)

<
(

1
2 + δ

)
log(1 + 2δ) −

(
1
2 − δ

)
log(1 − 2δ) = 1 − s

1.4. The unpredictability paradigm 21

Knowing this m, σ selects during stage N all the bits αi for which ρi ∈ Im =
[am, bm]. By definition of am, bm, knowing that d s-succeeds on the selected bits, we
can apply Lemma 1.4.17 (with η = δ − 1/N , q1 = am and q2 = bm), which asserts
that if we stayed in stage N forever, the bias would be at least δ − 1/N . Hence,
at some point, we will have selected a finite sequence with a proportion of at least
1
2 + δ − 2/N . As soon as this happens, we move on to stage N + 1. Hence, at each
stage, we will get closer to having bias δ, and we achieve it in the limit.

Case 2: ρ̄ -= 2δ. In this case, let m be such that Im = [am, bm] satisifes

(1

2
+ δ

)
log(1 + bm) −

(1

2
− δ

)
log(1 − am) ≤ 1 − s

Such an m can be found since

limn→+∞

(
1
2 + δ

)
log(1 + bm) −

(
1
2 − δ

)
log(1 − am)

=
(

1
2 + δ

)
log(1 + ρ̄) −

(
1
2 − δ

)
log(1 − ρ̄)

< 1 −H
(

1
2 + δ

)
by Lemma 1.4.12

Let σ be the selection rule that selects a bit αi whenever Bet(d, α↾n) ∈ Im. We
can apply Lemma 1.4.17 with η = δ, q1 = am and q2 = bm, remembering that
d s-succeeds when restricted to the bits on which its bet belongs to Im (this by
definition of Im), and the desired result follows.

#

As we did with Propostion 1.4.13, we can state an unrelativized version of the
theorem we just proved:

Corollary 1.4.18. If there exists a computable martingale d that s-succeeds
against a sequence α ∈ 2ω then for all δ′ such that H

(
1
2 + δ′

)
> s there exists

a computable selection rule σ, computable with oracle s, such that Bias(σ[α]) ≥ δ′.

Proof. It suffices to proves this for δ′ computable. If δ′ is computable, let s′ be
such that H

(
1
2 + δ′

)
= s′. One has s′ > s, and s′ is computable since δ′ is. Since d

s-succeeds, it s′-succeeds and then one can apply Theorem 1.4.16 to (δ′, s′) to get
the result. #

The careful reader will notice that we claimed a stronger result in the intro-
duction: we said that a sequence is Church stochastic if and only if there is no
computable martingale which succeeds exponentially fast in the number of non-
zero bets. In Theorem 1.4.16 and its corollaries, we used the stronger assumption
of s-success (meaning that the martingale succeeds exponentially simply in the
number of bets). Let us now prove the full result. Let α ∈ 2ω and d a computable
martingale which s-succeeds “in the number of non-zero bets”, meaning that:

lim sup
n→+∞

∏

0≤i<n
ρi∈[−1,0)∪(0,1]

2(s−1)(1 + ρ̃i) = +∞

22 Chapter 1. Randomness notions

(using the same notation as before). Then,

lim sup
n→+∞

∏

0≤i<n
ρi∈[−1,0)

2(s−1)(1 + ρ̃i) = +∞ or lim sup
n→+∞

∏

0≤i<n
ρi∈(0,1]

2(s−1)(1 + ρ̃i) = +∞

And we proceed by dichotomy like in the proof of Theorem 1.4.16, ensuring that
we never select a bit on which d makes a zero bet. The rest of the proof is identical.

1.5 Typicalness vs unpredictability

So far, we have discussed two philosophical approaches to randomness: typicalness
and unpredictability. The obvious question is: how are these two approaches re-
lated? Is it atypical to be predictable? Conversely, to what extent can a player use
atypicalness to make accurate predictions? This is what we discuss in this section.

1.5.1 When typicalness implies unpredictability

As one might expect, it is atypical for a sequence α ∈ 2ω to be predictable: the
probability to make large amounts of money by betting on a sequence is very small;
a fact that is quantified by the fundamental Ville’s inequality (also known as Kol-
mogorov’s inequality): for any fixed r > 0, the player has at most a probability 1/r
to ever multiply his initial capital by r.

Theorem 1.5.1 (Ville [58]). Let d be a martingale. For all r > 0, one has:

λ
{
α ∈ 2ω : ∃n d(α↾n) ≥ r d(ǫ)

}
≤ 1/r

To prove this theorem, we first show:

Lemma 1.5.2. Let d be a martingale and let A be a prefix-free set of strings. Then:
∑

w∈A

2−|w|d(w) ≤ d(ǫ)

Subproof. Since
∑

w∈A 2−|w|d(w) is the supremum of
∑

w∈A′ 2−|w|d(w) over finite
subsets A′ ⊆ A, it suffices to prove this for A finite. We proceed by induction on
l = max{|w| : w ∈ A}. For l = 0 this is trivial. Assume this holds for l and let A
be a finite prefix-free set of strings whose length is bounded by l + 1. Let us set
A0 = {v ∈ 2<ω : 0v ∈ A} and A1 = {v ∈ 2<ω : 1v ∈ A}. Define also the martingales
d0 and d1 by d0(v) = d(0v) and d1(v) = d(1v) for all v ∈ 2<ω (it is easy to check
that these are indeed martingales). Now:

∑

w∈A

2−|w|d(w) =
∑

v∈A0

2−|0v|d(0v) +
∑

v∈A1

2−|1v|d(1v)

≤ 1

2

∑

v∈A0

2−|v|d0(v) +
1

2

∑

v∈A1

2−|v|d1(v)

1.5. Typicalness vs unpredictability 23

Since the maximal length of strings in A0 (resp. A1) is at most l by definition,
we can apply this induction hypothesis, and we get:

∑

w∈A

2−|w|d(w) ≤ 1

2
d0(ǫ) +

1

2
d1(ǫ) =

1

2
d(0) +

1

2
d(1) = d(ǫ)

Proof (of Theorem 1.5.1). Let r > 0 and

U =
{
α ∈ 2ω : ∃n d(α↾n) ≥ r d(ǫ)

}

It is clear from its definition that U is an open set. We now let A be the set of
minimal words w having the property d(w) ≥ r d(ǫ). A is prefix-free and U = [A].
Thus:

λ(U) =
∑

w∈A

2−|w| ≤ 1

r d(ǫ)

∑

w∈A

2−|w|d(w)

(the inequality holds since by definition of A, d(w) ≥ r d(ǫ) for all w ∈ A). Applying
Lemma 1.5.2, we get that

∑
w∈A 2−|w|d(w) ≤ d(ǫ) which, together with the above

inequality, implies the desired result. #

From Ville’s inequality, we immediately get the following theorem, which illus-
trates how (in some sense) typicalness implies unpredictability.

Theorem 1.5.3. For all martingales d, λ
(
Succ(d)

)
= 0.

Proof. This is because Succ(d) =
⋂

n∈N
Uk where

Uk =
{
α ∈ 2ω : ∃n d(α↾n) ≥ k d(ǫ)

}

and we know from Ville’s theorem that for all k, λ(Uk) ≤ 1/k. #

Since there are only countably many computable martingales, the union of
their success sets has measure 0. Hence, the complement of this union, which by
definition is the set of computably random sequences, has measure 1. One can
effectivize this by proving that for every computable martingale, the set Succ(d) is
in fact a Martin-Löf nullset (which implies MLR ⊆ CR). In fact, one can prove
this for a larger class of martingales:

Theorem 1.5.4. Let d be a left-c.e. martingale. Then Succ(d) is a Martin-Löf
nullset.

Proof. Let d be a left-c.e. martingale. Without loss of generality, we can assume
that the initial capital d(ǫ) is smaller than 1 (up to dividing d by a large enough
integer, which does not change its left-c.e. property). For all k, the set

Vk =
{
α ∈ 2ω : ∃n d(α↾n) > 2k

}

24 Chapter 1. Randomness notions

is a c.e. open set, uniformly in k. This is because the set

D = {(w, q) : w ∈ 2<ω ∧ q ∈ Q ∧ d(w) > q}

is c.e. Since d(ǫ) ≤ 1, it follows from Ville’s theorem that for all k, λ(Vk) ≤ 2−k.
Hence (Vk)k∈N is a Martin-Löf test, and Succ(d) ⊆ ⋂

k Vk. #

Like we said, this immediately implies:

Corollary 1.5.5. If α ∈ 2ω is Martin-Löf random, it is computably random.

Proof. Let α be a sequence that is not computably random. There exists a martin-
gale d such that α ∈ Succ(d) which is a Martin-Löf nullset by the above theorem. #

1.5.2 When unpredictability implies typicalness

We now investigate the relation between unpredictability and typicalness in the
reverse direction. The central question is: how can we turn the information that
a sequence α belongs to a set of small measure into a martingale that will win
money on α? First, we will not care about effectivity, and we will show that
unpredictability implies typicalness in the sense that any nullset can be covered by
the success set of some martingale:

Theorem 1.5.6 (Ville [58]). For every X ⊆ 2ω such that λ(X) = 0, there exists
a martingale d such that X ⊆ Succ(d).

In order to prove this, we first show how to make money if we know that the
sequence we are playing against belongs to an open set of small mesure.

Proposition 1.5.7. Let U be an open subset of 2ω. There exists a martingale dU
with initial capital d(ǫ) = λ(U) such that for every α ∈ U , the sequence (d(α↾n))n∈N

becomes eventually equal to 1.

Hence, the smaller λ(U) is, the more profit (relatively to its initial capital)
d makes.

Proof. First suppose that U is a cylinder, i.e. U = [u] for some u ∈ 2<ω. Let du be
the martingale that starts with a capital λ(U) = 2−|u| and at step k, for all k, bets
all its money on the value uk (and stops betting for k ≥ |u|). Formally:

du(w) =






2−|u|+|w| if w ⊑ u
1 if u ⊑ w
0 otherwise

It is easy to check that du works for U = [u]. Now, in the general case, U is a union
of cylinders, i.e. can be written as U = [A] where A is a prefix-free set of strings
(hence λ(U) =

∑
u∈A 2−|u|). Let dU be the martingale defined by

dU =
∑

u∈A

du

1.5. Typicalness vs unpredictability 25

with du defined in the particular case above. We have dU (ǫ) =
∑

u∈A 2−|u| = λ(U)
and d is a martingale as a weighted sum of martingales. Moreover, if α ∈ U , then
α as a prefix v in A, hence for all n ≥ |v|, dU (α↾n) = dv(α↾n) = 1 by definition
of dv. This completes the proof. #

In the sequel, we will keep using the notations introduced in this proof: du

the doubling strategy for a word u with initial capital 2−|u| and dU the martingale
whose existence is asserted by Proposition 1.5.7. Moreover, for a set of words D,
we sometimes abbreviate d[D] by dD.

We can now prove Theorem 1.5.6:

Proof (of Theorem 1.5.6). Let X ⊆ 2ω be a nullset. By definition of Lebesgue
measure, for all n, there exists an open set Un of measure at most 2−n containing X .
Consider the martingale

d =
∑

n∈N

2n dU2n

This is a martingale as a weighted sum of martingales with initial capital

d(ǫ) =
∑

n∈N

2n λ(U2n) ≤
∑

n∈N

2−n ≤ 2

Now, for all α ∈ X , α belongs to all U2n, hence supk dU2n(α↾k) = 1, hence supk d(α↾k

) ≥ 2n for all n. This implies α ∈ Succ(d). #

Martin-Löf randomness via martingales

We have already seen with Theorem 1.5.4 that the success set of a left-c.e. mar-
tingale is a Martin-Löf nullset. We now prove the converse of this result hence
proving:

Theorem 1.5.8. A sequence α is not Martin-Löf if and only if some left-c.e.
martingale succeeds on it.

Proof. By Theorem 1.5.4, it only remains to prove that if α is not Martin-Löf
random, some left-c.e. martingale succeeds on it. This is in fact simply the effective
version of the proof of Theorem 1.5.6. If (Un)n∈N is a Martin-Löf test covering α,
set

d =
∑

n∈N

2n dU2n

It only remains to show that d is left-c.e. This is because for a string u the martin-
gale du is computable uniformly in u, hence for an effectively open set U generated
by a prefix-free set of strings A, dU =

∑
u∈A du is left-c.e. as it is the limit over t of∑

u∈A[t] du. Since the Un are uniformly c.e., the martingale d above is left-c.e. The
rest of the proof is identical to the proof of Theorem 1.5.4. #

26 Chapter 1. Randomness notions

Schnorr randomness via martingales

In order to give a characterization of Schnorr randomness in terms of computable
martingale, we first prove the following characterization à la Borel-Cantelli.

Lemma 1.5.9. The following are equivalent for every α ∈ 2ω:
(a) α is not Schnorr random.
(b) There exists a uniformly computable sequence (Dn)n∈N of finite sets of strings
such that λ([Dn]) ≤ 2−n for all n, and such that α belongs to infinitely many Dn.

Proof. (a) ⇒ (b). If α is not Schnorr random, then there exists by definition a
computable sequence of c.e. prefix-free sets (An)n∈N of strings such that λ(An) =
2−n for all n. Given n, we partition An into finite sets (Ai

n)i∈N in such a way that
for all i, λ([Ai

n]) ≤ 2−n−2i. This can be done as follows: in a standard enumeration
of An, find stages t0 < t1 < t2 < ... such that An \An[ti] (An minus its enumeration
up to stage ti) has measure at most 2−n−2i−1. Set A0

n = An[t0] and inductively
Ai

n = An[ti] \ (A0
n ∪ ...∪Ai−1

n). The Ai
n are as wanted. Moreover, the partition can

be done effectively (and uniformly in n) since we know precisely the measure of An.
Now, set Dn =

⋃
i+j=n+1 Aj

i . Clearly α is in infinitely many Dn, and for all n:

λ([Dn]) ≤
n+1∑

i=0

λ([An+1−i
i]) ≤

n+1∑

i=0

2−i−2(n+1−i) ≤ 2−n

(b) ⇒ (a). If α is in infinitely many such Dn, then α belongs to

⋂

N∈N

⋃

n≥N

[Dn]

For all N , AN =
⋃

n≥N Dn is a c.e. subset of 2<ω (uniformly in N), hence [An] is a
c.e. open set. Moreover, λ([AN]) is computable (uniformly in n) as the measure of
the [Dn] is computable and exponentially decreasing. Finally, λ([AN]) tends to 0
as n tends to infinity, since λ([AN]) ≤ ∑

n≥N 2−n. Taking Vn = [An], for all n, we
get a Schnorr test that covers α, hence α is not Schnorr random.

Like we said above, if a sequence α is covered by a Schnorr test, we can use
this Schnorr test to predict the bits of α, i.e. α is not computably random. We
can prove a little more than that: if a sequence is not Schnorr random, then there
exists a martingale that succeeds on it with computable speed.

Theorem 1.5.10 (Schnorr [52]). The following are equivalent for every α ∈ 2ω:
(a) α is not Schnorr random.
(b) There exists a computable martingale d and a computable order h such that
d(α↾n) ≥ h(n) for infinitely many n.

Proof. (a) ⇒ (b). If α is not random, by Lemma 1.5.9, there exists a computable
sequence of finite sets of strings (Dn)n∈N such that λ([Dn]) ≤ 2−n for all n and
α is in infinitely many [Dn]. Up to replacing some elements of Dn by all their

1.5. Typicalness vs unpredictability 27

extension, we can assume that for all n, all elements of Dn have the same length
f(n), with f a computable function which we can assume to be increasing. Let d
be the martingale defined by

d(w) =
∑

n∈N

n dDn(w)

Since λ([Dn]) ≤ 2−n, we have dDn(w) ≤ 2−n+|w| for all w, hence d is indeed a
martingale and is computable. Moreover, if n is such that α ↾f(n)∈ Dn, then by
definition of dDn : dDn(α↾f(n)) = 1 and thus d(α↾f(n)) ≥ n dDn(α↾f(n)) ≥ n. This
happen for infinitely many n. And if we set k = f−1(n), we have d(α↾k) ≥ f−1(k)
for infinitely many k. Since f−1 is an order, we are done.
(b) ⇒ (a). Suppose there exists a computable martingale d and a computable
order h such that d(α ↾n) ≥ h(n) for infinitely many n. For all k, set Ik =
{n ∈ N : h(n) ∈ [2k, 2k+1)} (clearly the Ik form a partition of N) and set
Dk = {w : |w| ∈ Ik ∧ d(w) ≥ h(|w|)}. Since for w ∈ Ik, h(|w|) ≥ 2k, one can
apply Ville’s theorem (Theorem 1.5.1) to get λ([Dk]) ≤ 2−k. The Dk are finite
and uniformly computable, and α belongs to infinitely many Dk by definition. The
result follows from Lemma 1.5.9. #

If d(α↾n) ≥ h(n) for some computable order h and infinitely many n, then in
particular d succeeds against α. Hence:

Corollary 1.5.11. If α ∈ 2ω is computably random, it is Schnorr random.

It seems from Theorem 1.5.10 that Schnorr randomness should be weaker than
computable randomness. This fact however is not immediate, and was actually an
open question for some time (see Lutz [39]). It was finally proved by Wang [62]; in
Chapter 2, we will use Kolmogorov complexity to separate these concepts.

Weak randomness via martingales

Weak randomness admits a characterization in terms of martingales that is the dual
of the one for Schnorr randomness:

Theorem 1.5.12 (Wang [61]). The following are equivalent for every α ∈ 2ω:
(a) α is not weakly random.
(b) There exists a computable martingale d and a computable order h such that
d(α↾n) ≥ h(n) for all n.

In order to prove this theorem, let us prove the analogue of Lemma 1.5.9:

Lemma 1.5.13. The following are equivalent for every α ∈ 2ω:
(a) α is not weakly random.
(b) There exists a uniformly computable sequence (Dn)n∈N of finite sets of strings
such that λ([Dn]) ≤ 2−n for all n, and such that α belongs to all Dn.

28 Chapter 1. Randomness notions

Proof. (a) ⇒ (b). Suppose α is not weakly random. There exists a c.e. open set U
of measure 1 such that α /∈ U . Let A be a c.e. prefix-free set such that U = [A]. For

all i, let ti be the first stage in the enumeration of A such that λ
([

A[ti]
])

≥ 1−2−i.

The ti can be found effectively. For all i, the set 2ω \
[
A[ti]

]
is clopen hence can

be written as a finite union of cylinders [Di] with Di a finite subset of 2<ω. Di

can be computed from A[ti] hence can be computed effectively. Moreover, for all i,

λ
([

Di

])
≤ 2−i and α ∈ [Di].

(b) ⇒ (a). The [Dn] form a uniform sequence of clopen sets. Their intersection
is thus an effectively closed set of measure 0. Since α belongs to this intersection,
by definition of weak randomness, α is not weakly random.

The rest of the proof is identical to the proof of Theorem 1.5.10 using Lemma 1.5.13
instead of Lemma 1.5.9 and replacing all the “for infinitely many n” by “for all n”.

Corollary 1.5.14. If α ∈ 2ω is Schnorr random, it is weakly random.

Proof. This immediately follows from Theorem 1.5.10 and Theorem 1.5.12. #

It seems rather clear from the respective characterizations of Schnorr random-
ness and weak randomness by martingales that the second one should be stricly
weaker than the first. We will show this in Section 1.8.

Effective Hausdorff dimension via martingales

It turns out that Hausdorff dimension – both effective and non-effective – on the
Cantor space also admits a very natural characterization in terms of martingales.
Let us first state it for the non-effective version:

Theorem 1.5.15 (Lutz [40]). For every X ⊆ 2ω:

dim(X) = inf {s : ∃d martingale which s-succeeds on all α ∈ X}

Proof. Let d be a martingale – which we can assume to be normed – that s-succeeds
on all α ∈ X , and let us show that dim(X) ≤ s. Let s′ > s. For all n, set

An =
{
w ∈ 2<ω minimal s.t. d(w) ≥ 2(1−s′)|w|+n

}

By definition of s-success X ⊆ [An] for all n. Moreover, since An is by definition
prefix-free, we can apply Lemma 1.5.2 and we get

∑

w∈An

2−|w|d(w) ≤ d(ǫ) = 1

Hence, by definition of An:

∑

w∈An

2−|w|2(1−s′)|w|+n ≤ 1 i.e.
∑

w∈An

2−s′|w| ≤ 2−n

1.5. Typicalness vs unpredictability 29

which by Proposition 1.3.8 implies that Hs′(X) = 0. We have proven this for all
s′ > s, hence dim(X) ≤ s.

Conversely, suppose that dim(X) ≤ s. We need to show that for all s′ > s, some
martingale d s′-succeeds on all elements of X . Let s′ > s. We have Hs′(X) = 0,
hence for all n, by Proposition 1.3.8, there exists a prefix-free set of strings An such
that X ⊆ [An] and

∑
w∈An

2−s′|w| ≤ 2−n. Set

d =
∑

n∈N

∑

w∈An

2(1−s′)|w|dw

d is a weighted sum of martingales and

d(ǫ) =
∑

n∈N

∑

w∈An

2(1−s′)|w|2−|w| ≤
∑

n∈N

∑

w∈An

2−s′|w| ≤
∑

n∈N

2−n ≤ 2

Thus d is a martingale, and for all α ∈ X , for all n, α has a prefix v in An. For that
prefix, d(v) ≥ 2(1−s′)|v|+ndv(v) = 2(1−s′)|v|+n. Hence, for all n, for infinitely many
k, d(α↾k) ≥ 2(1−s′)k+n. This means that d s′-succeeds against α. #

This theorem can be effectivized both for constructive and computable dimen-
sion.

Theorem 1.5.16 (Lutz [40]). For every X ⊆ 2ω:

cdim(X) = inf {s : ∃d left-c.e. martingale which s-succeeds on all α ∈ X}

dimcomp(X) = inf {s : ∃d comp. martingale which s-succeeds on all α ∈ X}

(the first part of this theorem is due to Lutz [41], where the author actually
uses the characterization by left-c.e. martingales as a definition).

Proof. The proof is almost the same as for Theorem 1.5.15. Just notice that, for s′

rational, if the An are uniformly c.e then d is left-c.e. The case of computable
dimension requires a little more work. In the above proof, if s′ is rational, and
if the familiy An is uniformly computable, take any s′′ > s′. Let then d′ be the
martingale defined by

d′ =
∑

n∈N

∑

w∈An

2(1−s′′)|w|dw

d′ is a martingale that s′′-succeeds on all α ∈ X for the same reason as above.
It remains to show that d′ is computable. Let u be a string and k > 0. We
approximate d′(u) by ∑

n≤k

∑

w∈An
|w|≤k

2(1−s′′)|w|dw(u)

(which is computable uniformly in (u, k) as a finite sum of uniformly computable
terms). It remains to estimate the difference between d′(u) and this approximation.

30 Chapter 1. Randomness notions

First, truncating the fisrt sum results in an error of at most 2−k+|u| since for all n,∑
w∈An

2(1−s′′)|w|dw(u) ≤ 2−n+|u|. For the second sum, note that

∑

w∈An
|w|>k

2(1−s′′)|w|dw(u) ≤
∑

w∈An
|w|>k

2(−s′′)|w|+|u|

≤ 2−(s′′−s′)k+|u|
∑

w∈An

2−s′|w|

≤ 2−(s′′−s′)k+|u|−n

Hence the total error we are making is of order O(2−(s′′−s′)k) which computably
tends to 0. And since we can construct such a martingale d′ for s′, s′′ arbitrarily
close to s, we get the desired result.

#

Corollary 1.5.17. For every Schnorr random sequence α, dimcomp(α) = 1.

Proof. Suppose dimcomp(α) < 1. By Theorem 1.5.16, there exists a rational number
s < 1 and a computable martingale d such that d(α ↾n) ≥ 2(1−s)n for infinitely
many n. And since n 3→ 2(1−s)n is clearly a computable order, by Theorem 1.5.10,
α is not Schnorr random. #

Recalling our previous discussion on how the Law of Large Numbers, Church
stochasticity and computable martingales relate, we get from the above theorem:

Proposition 1.5.18. (i) Let α ∈ 2ω such that Bias(α) ≥ δ > 0. We have
dimcomp(α) ≤ H

(
1
2 + δ

)
< 1.

(ii) Let α ∈ 2ω. α is Church stochastic if and only if for every infinite subse-
quence β extracted from α by a computable selection rule, dimcomp(β) = 1 (in
particular, if α is Church stochastic, then dimcomp(α) = 1).

Proof. (i) Suppose Bias(α) ≥ δ. By Corollary 1.4.14, for all s > H
(

1
2 + δ

)
, there

exists a computable martingale that s-succeeds against α, hence dimcomp(α) ≤ s.
Since s can be taken arbitrarily close to H

(
1
2 + δ

)
, we get the result.

(ii) First assume that α is not Church stochastic. By definition, there exists
a computable selection rule that extracts from α an infinite sequence β with δ =
Bias(β) > 0. By the above part (a), this implies dimcomp(β) ≤ H

(
1
2 + δ

)
< 1.

Conversely, suppose that some computable selection rule σ extracts from α an
infinite sequence β = σ[α] such that s = dimcomp(β) < 1. Take s < s′ < 1
computable. By Corollary 1.4.18, there exists a computable selection rule σ′ such
that Bias(σ′[β]) ≥ δ′ where δ′ is such that H

(
1
2 + δ′

)
= s′. We claim that the

composition of two computable selection rules is itself a computable selection rule.
Indeed, given two computable selection rules σ and σ′, define σ′′ by

σ′′(u) =

{
select if σ(u) = select and σ′(σ[u]) = select

scan otherwise

1.6. Schnorr randomness and normal numbers 31

then σ′′ is computable, and σ′′[α] = σ′
[
σ[α]

]
. Here, if we set σ′′ = σ′ ◦ σ, we have

Bias(σ′′[α]) = Bias(σ′[β]) ≥ δ′ > 0, hence α is not Church random. #

1.6 Schnorr randomness and normal numbers

In this section, we present an interesting application of the notions and theorems
introduced in this chapter. We will see how Schnorr randomness can be applied to
prove the following result: there exists a computable absolutely normal number1. A
number x ∈ [0, 1] is said to be normal in base b if in its decimal representation in
base b, every word w over the alphabet {0, 1, . . . , b−1} appears with limit frequency
b−|w|. We say that x is absolutely normal if it is normal in base b for all integer
b ≥ 2. By the Law of Large Numbers, we know that the set of absolutely normal
numbers has measure 1. It is also easy to construct in a computable way a real
x that is normal in a given base. However, proving the existence of a computable
absolutely normal number is non-trivial. This was first achieved by Becher and
Figueira [5], although it seems that Turing [56] had given an almost complete proof
of that result (see Becher et al. [6] for an account of the history of this problem).
In order to avoid heavy notation and tedious details, we will only give a high-level
argument, decomposing it into several steps.

Step 1. Suppose x is not normal in some base b, i.e. some word w (denote its
length by k) appears in the expansion xb of x in base b with a ‘limsup frequency”
greater than b−k. Grouping the digits of x in base b by blocks of size k, this is
equivalent to say that some digit in the expansion of x in base b′ = bk appears with
“limsup frequency” greater than 1/b′.

Step 2. We now have the expansion of xb′ of x in base b′, which is an infinite
sequence of digits in Σ = {0, . . . , b′ − 1}, with a digit that infinitely often appears
significatively more than it should. We now use Proposition 1.4.13 to design a
strategy that makes money on this type of sequence. Let us just extend the notion
of martingale to Σω as a function d : Σω → R+ satisfying d(w)(#Σ) =

∑
σ∈Σ d(wσ)

for all strings w over the alphabet Σ. The method used in the proof of Proposi-
tion 1.4.13 can be adapted as follows: if a symbol τ ∈ Σ appears with a “limsup
frequency” at least 1/b′ + δ for some rational δ > 0, we use the strategy that at
each move bets a fraction

(
b−1

b

)
δ of its capital on the value τ . A simple calculation

shows that this strategy succeeds exponentially fast.

Step 3. Recall the characterization of Schnorr randomness in terms of mar-
tingales (Theorem 1.5.10): a sequence is not Schnorr random if some computable
martingale succeeds on it with some fixed computable speed (represented by a
computable order). The exponential functions are in particular orders, hence the
martingale we constructed in Step 2 asserts that the expansion of x in base b′ is not

1at the time of writing this thesis, the proof of this theorem which I present here could not be
found in the literature, but some people I discussed with were aware of it. I therefore make no
paternity claim.

32 Chapter 1. Randomness notions

a Schnorr random element of Σω. Hence, one can construct, like in Theorem 1.5.10,
a Schnorr test in Σω that covers xb′ .

Step 4. Since Σω and 2ω are more or less isomorphic as representations of [0, 1]
(it is at this point of the proof that we skip some tedious details, since technically
one needs to take care of the “more or less” part of this statement), in an effective
way, i.e. one can go from one to the other via a computable isomorphism. Hence,
the Schnorr test constructed in Step 3 can effectively be turned into a Schnorr test
in 2ω that covers the expansion x2 of x is base 2.

Step 5. We now use again Theorem 1.5.10, but in the opposite direction, i.e.
from the Schnorr test of 2ω we got in Step 4, we can construct a computable mar-
tingale – which can be taken normed – that succeeds against the representation x2

of x in 2ω.

Step 6. The construction we made during the last 5 steps was made for a
particular base b′, a particular digit τ of {0, . . . , b′ − 1} and a particular rational δ.
However, this construction is uniform i.e. at each step the constructions are effective
given these three parameters. Hence, from such a triple (b′, τ, δ) one can construct a
normed martingale d(b′,τ,δ) that succeeds against all x ∈ [0, 1] whose representation
xb′ in base b′ has a limsup frequency of the digit τ that is greater than 1/b′ + δ.
The effective nature of the construction allows us to compute a mixture of all such
strategies: let (b′n, τn, δn) be a computable enumeration of all triples (b′, τ, δ) with
b′ ≥ 2, τ ∈ {0, . . . , b′ − 1} and δ ∈ Q; consider:

d∗ =
∑

n∈N

2−n d(b′n,τn,δn)

Then d∗ is a martingale (as a weighted sum of martingales with initial capital no
greater than 2) that is computable (by the above argument) and succeeds against
all representations in base 2 of reals in [0, 1] that are not absolutely normal.

Step 7. To conclude the argument, we apply Proposition 1.4.10: there exists a
computable sequence α ∈ 2ω such that α /∈ Succ(d∗). Hence, by construction of d∗,
α is the representation in base 2 of a number y ∈ [0, 1] that is absolutely normal.
Moreover, y is computable since α is.

1.7 Non-monotonicity for selection rules and martin-
gales

A stronger model of selection rules and martingales was introduced by Kolmogorov [29]
and Loveland [38]: in that model, the player is allowed to read (resp. select, bet
on) the bits in any order, with however the restriction that he should not select
(resp. bet on) a bit that he has already seen. This insight leads to the notions of
non-monotonic rules and non-monotonic martingales which, as we will see later on,
can have for some purposes much more power than their monotonic counterparts.

1.7. Non-monotonicity for selection rules and martingales 33

Definition 1.7.1. A non-monotonic selection rule is a function
σ : 2<ω → N × {select,scan}.

σ(w) = (k, select) (resp. σ(w) = (k, scan)) means that having sequentially
read the bits w(0), . . . , w(|w|−1), the selection rule decides to select (resp. scan) the
n-th bit of the sequence. To describe how a select rule runs on a sequence, we adapt
the formalism of monotonic select rules by adding an history of the previously read
bits, together with their positions in the sequence (which are forbidden for selection
for the rest of the game).

Let σ be a non-monotonic selection rule. We run σ on a sequence α as follows.
Set β(0) = ǫ, w(0) = ǫ, h(0) = ∅. The β(n), w(n) and h(n) will represent respec-
tively the bits selected, the bits seen, and the positions visited before stage n. By
induction, for all n ≥ 0:

• if σ(w(n)) = (k, scan), set β(n+1) = β(n), w(n+1) = w(n)αk and hn+1 =
h(n) ∪ {k}

• if σ(w(n)) = (k, select), and k ∈ h(n) (forbidden selection), set β(n+1) = β(n),
w(n+1) = w(n)αk and hn+1 = h(n) ∪ {k}

• if σ(w(n)) = (k, select), and k /∈ h(n), set β(n+1) = β(n)αn, w(n+1) = w(n)αk

and hn+1 = h(n) ∪ {k}

Like in the case of monotonic selection rules, the sequence of strings (β(n))n∈N is
non-decreasing for the prefix order ⊑. Hence, either it is stationnary, in which case
we set β to be the limit of the sequence. Or the sequence is not stationnary, in which
case the β(n) are all prefixes of an infinite binary sequence, which we call β. In both
cases, β is called the subsequence of α selected by σ, and we denote it by σ[α].

Definition 1.7.2. A sequence α is Kolmogorov-Loveland stochastic (KL-
stochastic for short) if for every total computable non-monotonic selection rule,
either β = σ[α] is finite, or it satisfies

lim
n→+∞

#0(β↾n)

n
=

1

2

We denote by KLStoch the set of Kolmogorov-Loveland stochastic sequences.

Similarly to non-monotonic selection rules, we could define non-monotonic mar-
tingales for non-monotonic betting games. However, martingales are classically de-
fined as being real-valued functions. Since at each move of the game we also need
to specify the position of the bit we are going to bet on, we prefer the term strategy.
And since we have in mind a characterization of KL-stochasticity via strategies, we
define the notion of strategy as follows:

Definition 1.7.3. A strategy is a function

S : 2<ω → N ×
(
{scans} ∪ [−1, 1]

)

34 Chapter 1. Randomness notions

S(w) = (n, ρ), with ρ ∈ [−1, 1] means that, having sequentially read the bits
w(0), . . . , w(|w|−1), the strategy decides to bet a fraction ρ of its current capital on
the value of the n-th bit of the sequence to be 0 (with the same convention as
before that a negative value of ρ means a bet on the value 1 of a fraction (−ρ)
of the current capital). S(w) = (n, scan) means that S simply decides to read
the n-th bit without betting anything. It first seems that this is equivalent to
S(w) = (n, 0), but in the sequel, we will need to make the distinction as we will be
interested in strategies with a capital that is exponential in the number of bets, but
not necessarily in the number of moves. In order to run a strategy on a sequence α,
we will need the following objects. Before the n-th move is made, w(n) will denote
the string made of bits previously seen (with w(0) = ǫ), h(n) the set of positions that
were previously visited (with h(0) = ∅), W (n) the current capital (with W (0) = 1)
and N (n) the number of bets previously made (i.e. the number of moves among the
first n when the strategy did not choose to scan a bit but rather to bet money on
it), with N (0) = −1 by convention. We proceed by induction:

• if S(w(n)) = (k, scan), set w(n+1) = w(n)αk, hn+1 = h(n) ∪ {k}, W (n+1) =
W (n) and N (n+1) = N (n).

• if S(w(n)) = (k, ρ), and k ∈ h(n) (forbidden position) set w(n+1) = w(n)αk,
hn+1 = h(n) ∪ {k}, W (n+1) = W (n) and N (n+1) = N (n).

• if S(w(n)) = (k, ρ), and k /∈ h(n), set w(n+1) = w(n)αk, hn+1 = h(n) ∪ {k},
N (n+1) = N (n) + 1 and W (n+1) = (1 + ρ)W (n) if αk = 0, and W (n+1) =
(1 − ρ)W (n) if αk = 1.

We will write Wn(α, S) for the capital of S after the (n − 1)-th move when
playing against α. We will write Vn(α, S) for the capital of S after the (n − 1)-th
bet during the game against α i.e. formally Vn(α, S) = Wi(α, S) where i is the
smallest integer such that N (i) = n − 1.

A strategy S succeeds on a sequence α if lim supn Wn(α, S) = +∞, or equiv-
alently if lim supn Vn(α, S) = +∞. This allows us to define Kolmogorov-Loveland
randomness:

Definition 1.7.4. A sequence α ∈ 2ω is Kolmogorov-Loveland random
(KL-random for short) if no total computable strategy succeeds on α. We denote
by KLR the set of KL-random sequences.

Remark 1.7.5. The analogue of Remark 1.4.8 holds for Kolmogorov-Loveland ran-
domness as well: replacing lim sup by lim in the definition of success for a strategy
does not affect the notion of KL-randomness.

Since non-monotonic selection rules and strategies generalize respectively mono-
tonic selection rules and martingales, it is clear that KL-stochasticity implies Church
stochasticity and that KL-randomness implies computable randomness.

Proposition 1.7.6. If α ∈ 2ω is Kolmogorov-Loveland stochastic, it is Church
stochastic. If α ∈ 2ω is Kolmogorov-Loveland random, it is computably random.

1.7. Non-monotonicity for selection rules and martingales 35

Remark 1.7.7 (Merkle). Another important fact about KL-randomness and stochas-
ticity is that if one allows partial computable strategies (resp. partial computable
non-monotonic selection rules), the definition remains unchanged. To see this, con-
sider a partial computable strategy S that succeeds on a sequences α, i.e. S makes
an infinite amount of money by betting against α. Thus, either S makes an infinite
amount of money by betting on bits in even positions or it makes an infinite amount
of money by betting on the bits in odd positions (or both). Suppose, without loss of
generality the first holds. Then, turn S into a strategy S′ which simulates S and
does the following:

• when S bets on an even bit, S′ bets the same thing (same fraction of its capital
on the same bit)

• when S bets on an odd bit, S′ scans this bit

• between two actions of the above two types, when waiting for the computation
of S to terminate, S′ scans odd bits of the sequence, “for free”

Then the strategy S′ is total (if S does not terminate, it keep scanning odd bits
forever, hence always does something), and makes an infinite amount of money on
even bits as S does. A similar argument holds for KL-stochasticity, see Merkle [45]
for a detailed discussion.

Also, the fact that stochasticity can be expressed via an exponential winning
condition is still true in the non-monotonic setting. Let us extend the concept of
s-success to strategies:

Definition 1.7.8. A strategy S s-succeeds on a sequence α ∈ 2ω if

lim sup
n→+∞

Wn(α, S)

2(1−s)n
= +∞

S weakly s-succeeds on α if

lim sup
n→+∞

Vn(α, S)

2(1−s)n
= +∞

The notion of s-success expresses a gain of money that is exponential in the
number of moves, while for weak s-success it is only exponential in the number of
bets, all the moves of type scan being made for free.

The following theorem expresses how the notion of weak s-success relates to
selection rules:

36 Chapter 1. Randomness notions

Theorem 1.7.9. (i) Let α ∈ 2ω. If there exists a computable non-monotonic
selection rule σ that selects an infinite β = σ[α] with Bias(β) ≥ δ > 0 then there
exists a strategy S, computable with oracle δ, such that for all s > H

(
1
2 + δ

)
,

S weakly s-succeeds against α.

(ii) If there exists a computable strategy S that weakly s-succeeds against a se-
quence α ∈ 2ω then there exists a non-monotonic selection rule σ, computable
with oracle s, such that Bias(σ[α]) ≥ δ where δ is such that H

(
1
2 + δ

)
= s.

Proof. (i) Let σ be a computable non-monotonic selection rule selecting a subse-
quence β such that Bias(β) ≥ δ > 0. Without loss of generality, suppose that

lim sup
n→+∞

#0(β↾n)

n
≥ 1

2
+ δ

Let then S be the strategy that follows σ and:

• when σ scans a bit, S scans it too

• when σ selects a bit, S bets a fraction ρ = 2δ on the value of this bit to be 0

S is computable with oracle δ and

Vn(α, S) = (1 + 2δ)#0(β↾n)(1 − 2δ)#1(β↾n)

and this, by the same computation as in the proof of Proposition 1.4.13, implies
that S weakly s-succeeds on α for all s > H

(
1
2 + δ

)
.

(ii) This is just an easy adaptation of Theorem 1.4.16 to the non-monotonic setting.
#

The second part of this theorem shows, similarly to the monotonic case, that
KL-randomness implies KL-stochasticity.

Corollary 1.7.10. If α ∈ 2ω is Kolmogorov-Loveland random, it is Kolmogorov-
Loveland stochastic.

We will see in Chapter 3 that this inclusion cannot be reversed. Another inter-
esting question is how these new notions compare to Martin-Löf randomness. Here
is a partial answer to this question:

Proposition 1.7.11. If α ∈ 2ω is Martin-Löf random, it is Kolmogorov-Loveland
random.

Proof. This is because Theorem 1.5.1 also holds true in the non-monotonic set-
ting, i.e. for a fixed strategy S and constant c > 0, the measure of Un = {α ∈
2ω : ∃n Wn(α, S) ≥ 2n} is bounded by 2−n (since by convention a strategy starts
with capital 1). From a measure-theoretic point of view, this is rather obvious: if
the bits of α are chosen randomly and independently, by symmetry, the order of

1.8. Randomness and Baire category 37

the bets should not influence the expectancy of the game (for the reader who does
not find this convincing, one can also notice that given α and S, the sequence of
Wn(α, S) is a nonnegative martingale in the classical sense and then it suffices to
apply Doob’s inequality – see for example Jacod and Protter [25] – to get the re-
sult). And as for the monotonic case, if S is computable Un is effectively open. The
Un are thus a Martin-Löf test covering all the sequences on which S succeeds. #

The question whether the converse of this proposition holds true is one of the
most fundamental open questions in the field of algorithmic randomness.

1.8 Randomness and Baire category

Both (Lebesgue) measure and Hausdorff dimension can be seen as evaluations of
how big a set is. Another well-known approach is Baire category. The central
theorem of this theory is the so-called Baire category theorem, which asserts that
given a compact (or complete metric) space X , any countable intersection of dense
open subsets of X is dense in X . Equivalently, if we call nowhere dense a subset
of X whose closure has empty interior, the Baire category theorem tells us that a
countable union of nowhere dense subsets of X has empty interior. Any countable
union of nowhere dense subsets of X is then said to be meager in X . In a sense,
a meager set is the topological analogue of a nullset. In particular, a subset of a
meager set is meager, and a countable union of meager sets is meager. The com-
plement of a meager set is said to be comeager.

In the same way we defined random sequences as sequences satisfying all “effec-
tive” properties of measure 1 (getting different classes for different interpretations
of the word “effective”), we can define various classes of sequences which satisfy
all “effective” co-meager properties. The following notion will be sufficient for our
purposes (for a more complete discussion on genericity, see Jockusch [26]):

Definition 1.8.1 (Kurtz [32]). A sequence α is weakly generic if it belongs to
every dense c.e. open set. We denote by WG the set of weakly generic sequences.

As there are only countably many effectively open sets, the intersection of all
dense effectively open sets is non-empty. More precisely, with the above terminol-
ogy, the set of weakly generic sequences is comeager, i.e. intuitively “topologically
big”. How random are (or can be) the elements of this set? The answer is: they
are not random at all! To see this, define for example the set

Uk = {α ∈ 2ω : (∃n ≥ k) #0(α↾n) > 2 #1(α↾n)}

It is clear that for all k, Uk is a c.e. open subset of 2ω. Moreover, it is dense since for
all cylinder [w], w0ω ∈ [w] ∩ Uk. Hence, any weakly generic sequence α belongs to
all Uk, which means that for infinitely many n, α↾n contains twice more zeros than
ones. This is enough to prove that no weakly generic sequence α can be Church
stochastic. Refining this argument, we can prove:

38 Chapter 1. Randomness notions

Proposition 1.8.2. dimcomp(WG) = 0

Proof. To prove this, we use the characterization of computable dimension pre-
sented in Theorem 1.5.16. We need to prove that for all s > 0, there exists a
computable martingale d which s-succeeds on every weakly generic sequence. Let
s be a positive rational. Let ρ < 1 be a rational such that (1 + ρ) > 2(1−s). Let d
be the computable martingale which at each moves bet the fraction ρ of its capital
on the value 0, i.e. formally:

d(w) = (1 + ρ)#0(w)(1 − ρ)#1(w)

for all w ∈ 2<ω. For all k, set

Uk = {α ∈ 2ω : (∃n ≥ k) d(α↾n) ≥ 2(1−s)n+k}

It is clear that Uk is a c.e. open set. We claim that is it dense. For each cylinder
[w], the sequence w0ω is in Uk ∩ [w] because:

d(w0n) ≥ (1 − ρ)|w|(1 + ρ)n

and since 2(1−s)n = o((1 + ρ)n), for n large enough the right-hand side is greater
than 2(1−s)(|w|+n)+k. Hence, Uk intersects every open cylinder hence is dense. Now,
if α is any weakly generic sequence, it must belong to all Uk, which by definition
means that d s-succeeds on α. Since this is true for all α ∈ WG, this proves
dimcomp(WG) ≤ s. And since this is true for all s, dimcomp(WG) = 0. #

Since any Church stochastic (a fortiori: KL-stochastic, Schnorr random, com-
putably random, Martin-Löf random) sequence has computable dimension 1, this
means that the classes MLR, CR and SR, ChStoch, KLStoch are all disjoint
from WG. And since WG is comeager, this means that they are all meager. You
may have noticed that the class WR is not in this list. Here is why:

Proposition 1.8.3. Every weakly generic sequence is weakly random.

Given how non-random weak generic sequences are, this definitely rules out
weak randomness as a suitable notion of randomness.

Proof. If α is weakly generic, it belongs to all dense c.e. open sets. Since all c.e.
open sets of measure 1 are dense, α belongs to all of them, i.e. α is weakly random
by definition. #

Corollary 1.8.4. The class WR is comeager, and some of its elements have
computable dimension 0.

Proof. Since WG is comeager and WG ⊆ WR, WR is comeager. And all elements
of WG have computable dimension 0 by Proposition 1.8.2. #

1.9. Relations between randomness notions 39

1.9 Relations between randomness notions

Before moving on to the next chapter, where we are going to introduce the funda-
mental notion of Kolmogorov complexity, we sum up all the relations between the
randomness notions we have defined in this chapter.

For a sequence α ∈ 2ω, the following implications hold. Moreover, no other im-
plication is true in general, except a possible equivalence between ML-randomness
and KL-randomness. As we have not proven all these implications (and non-
implications) yet, we also provide a table indicating where to find the proofs in
this thesis, together with the reference where the result was originally proven.

40 Chapter 1. Randomness notions

α ∈ MLR

α ∈ KLR

α ∈ KLStoch α ∈ CR

cdim(α)=1 α ∈ ChStoch α ∈ SR

dimcomp(α)=1
α ∈ WR

MLR =⇒ KLR Proposition 1.7.11 Muchnik et al. [50]

KLR =⇒ KLStoch Corollary 1.7.10 folklore

KLStoch =⇒ cdim = 1 Theorem 2.2.31 Merkle et al. [47]

KLStoch =⇒ ChStoch Proposition 1.7.6 trivial

CR =⇒ ChStoch Corollary 1.4.15 folklore

CR =⇒ SR Corollary 1.5.11 Schnorr [52]

cdim = 1 =⇒ dimcomp = 1 page 11 trivial

ChStoch =⇒ dimcomp = 1 Proposition 1.5.18 folklore

SR =⇒ dimcomp = 1 Proposition 1.5.17 folklore

SR =⇒ WR Corollary 1.5.14 folklore

KLStoch =⇒/ WR Corollary 3.2.12 Merkle et al. [47]

CR =⇒/ cdim = 1 Proposition 2.2.29 Muchnik et al. [50]

cdim = 1 =⇒/ ChStoch Proposition 2.2.29 folklore

SR =⇒/ ChStoch Corollary 2.2.23 Wang [61]

WR =⇒/ dimcomp = 1 Corollary 1.8.4 folklore

Chapter 2
Randomness and Kolmogorov

complexity

In this chapter, we introduce the fundamental notion of Kolmogorov complexity
and discuss some of its important properties (for a very complete survey, see Li and
Vitanyi [37]). Intuitively, Kolmogorov complexity measures the “random content”
of finite discrete objects, hence allowing us to define which ones are random and
which ones are not. We will discuss two versions of Kolmogorov complexity: the
plain version and the prefix version. We then discuss how the randomness notions
we have studied in the previous chapter are related to Kolmogorov complexity.
As we will see some of these notions (like Martin-Löf randomness) admit elegant
characterizations in terms of Kolmogorov complexity, while others (like computable
randomness, Schnorr randomness) do not. In the last part of the chapter, we will
consider computable upper bounds of Kolmogorov complexity. As we will see, this
turns out to be a rather unifying point of view, as one can express many more
notions of randomness with this setting than with Kolmogorov complexity alone.

2.1 Kolmogorov complexity

2.1.1 Plain Kolmogorov complexity

Definition of plain Kolmogorov complexity

In parallel to the attempts made to define randomness for infinite binary strings,
a very elegant and powerful theory of complexity and randomness for finite ob-
jects emerged in the late 1960’s from the work of Solomonoff, Kolmogorov and
Chaitin. The central notion that came out of their work is now known as Kol-
mogorov complexity (or algorithmic complexity). The intuition behind this notion
is the following. A finite object is not random if it has some kind of pattern, i.e.
part of the information it contains is redundant. Such an object should then admit
a description shorter than itself (the description taking advantage of the redun-
dancy). And conversely, if an object admits a description shorter than itself, this
means that it contains some redundant information, hence is not random. This is

41

42 Chapter 2. Randomness and Kolmogorov complexity

what we call the uncompressibility paradigm:

Uncompressibility paradigm.

A finite object is random if there exists no shorter description of it than itself.

More generally, to measure how random (or non-random) an object is, it is
natural to define the complexity of an object by the size of its shortest description.

All this is highly informal though, and we need to give a precise definition of
what we mean by “description”, as an informal one leads to the famous Berry’s
paradox. To understand this paradox, consider the following:

“the smallest positive integer that cannot be described by less than three-hundred
ASCII characters”

Since there are only finitely many descriptions of less than 300 characters (at
most 256300), there must be some positive integers that cannot be described with
less than that. Hence, we can consider the smallest of them. But then, the definition
we wrote above describes it completely and yet has less than 300 characters, a
contradiction.

Once again, computability theory allows us to state a rigorous definition.

Definition 2.1.1. A machine is a partial computable function M : 2<ω → 2<ω.
We usually call “programs for M” the elements of dom(M). Let M be a machine,
and w ∈ 2<ω. We set:

CM (w) = min{|p| : p ∈ 2<ω ∧ M(p) = w}

with the convention that CM (w) = +∞ if there is no p such that M(p) = w.
We call CM (w) the Kolmogorov complexity of w with respect to the
machine M .

In this definition, M can be seen as a decompression algorithm, and a p such
that M(p) = w as a compressed version of w for this decompression algorithm.
The Kolmogorov complexity of w with respect to M measures how much remains
of w after compression. Notice that for the moment, we do not worry about the
feasibility of the compression (we will come back to this in Section 2.3)

Of course, the above definition depends on the chosen machine M whereas we
would like to have a universal definition of complexity. The following easy but
fundamental theorem will allow us to give one.

Theorem 2.1.2 (Additive Optimality for C). There exists an additively op-
timal machine, i.e., a machine U such that for every machine M :

CU ≤ CM + O(1)

In other words, the machine U is better than any other at describing any string,
up to an additive constant. Let us prove the above theorem briefly:

2.1. Kolmogorov complexity 43

Proof. Let {Me}e∈N be a computable enumeration of machines. Let U be the
machine defined on strings of type 0e1p (with p ∈ 2<ω) by U(0e1p) = Me(p). It
is clear that U is partial computable, and for all strings w ∈ 2<ω: if for some
e ∈ N and p ∈ 2<ω one has Me(p) = w, then U(0e1p) = w. This means that
CU ≤ CMe + (e + 1) for all e ∈ N.

#

For the rest of this thesis, we fix an additively optimal machine U and we define
the Kolmogorov complexity as follows:

Definition 2.1.3. For all strings w ∈ 2<ω we set C(w) = CU(w), and we call this
quantity the Kolmogorov complexity of w.

We sometimes use the term plain Kolmogorov complexity to distinguish it
from prefix Kolmogorov complexity which we will define later. Also, we will some-
times talk about the complexity C(n) of an integer n: this is just an abbreviation
of C(Bin(n)).

The Kolmogorov complexity function depends on the particular machine U we
fixed, but by Theorem 2.1.2, if U′ is another optimal machine, the difference |CU −
CU′ | is bounded by a constant. It can seem strange at first to define an integer-
valued function w 3→ C(w) up to a bounded additive term, but we have to keep in
mind that Kolmogorov complexity is an asymptotic theory. For example, it does
not really make sense to say that C(10101101001001) = 7 because once again the
value C(10101101001001) depends on U which we did not define explicitely. Hence,
in the sequel, all the statements we will make that involve Kolmogorov complexity
will be “up to an additive constant”.

Some important properties of plain Kolmogorov complexity

One first important property that should be noticed from the above optimality
theorem is that the plain Kolmogorov complexity of a string w never exceeds its
length (up to an additive constant):

Proposition 2.1.4. There exists a constant c > 0 such that C(w) ≤ |w| + c for
all strings w.

Proof. This is just an application of Theorem 2.1.2, with M being the identity
machine (for which CM (w) = |w| for all w). #

This is of course rather intuitive since one can always “describe” a string by
giving it explicitly.

Here is another application of the optimality theorem. It states that the image
f(w) of w via a computable function f has complexity no bigger that w, up to an
additive constant. This is natural, as to describe w, one only needs to give f and
w (and the description of f is independent of w).

44 Chapter 2. Randomness and Kolmogorov complexity

Proposition 2.1.5. Let f : 2<ω → 2<ω be a computable function. For all
strings w, C(f(w)) ≤ C(w) + O(1).

Proof. Let U be the above optimal machine and let M be the machine defined
by M(p) = f(U(p)). Then, if U(p) = w, then M(p) = f(w). This proves
that CM (f(w)) ≤ C(w) for all w. Applying Theorem 2.1.2, we get C(f(w)) ≤
CM (f(w)) + O(1) ≤ C(w) + O(1). #

Although simple, this proposition is very useful. We will frequently use it in
the sequel, most of the time implicitly: whenever we show that a string w′ can be
obtained by a simple transformation of w, where the function performing the trans-
formation does not depend on w, w′, we will conclude that C(w′) ≤ C(w) + O(1).
Here is an example of the usefulness of this argument. We would like to define the
Kolmogorov complexity of a pair of strings u, v. To do so, we define it as being the
quantity C(〈u, v〉) where 〈., .〉 is a computable encoding (i.e. injection) of 2<ω×2<ω

into 2<ω (the Cantor bijection is such an encoding). One can be concerned about
the fact that it then depends of the particular encoding we chose. Well, it does,
but only up to an additive constant. Indeed, if 〈., .〉1 and 〈., .〉2 are two different
encodings, given two strings u and v, one can get 〈u, v〉2 from 〈u, v〉1, simply by
a decoding 〈u, v〉1 to get u and v and then re-encoding them as 〈u, v〉2. Hence,
C(〈u, v〉2) ≤ C(〈u, v〉1) + O(1). By symmetry, C(〈u, v〉2) = C(〈u, v〉1) + O(1).
Hence, we fix a particular encoding 〈., .〉 once and for all and we define the com-
plexity of a pair as the complexity of its encoding.

By the way, how large is the complexity of a pair of strings? As one can expect,
not much bigger than the sum of their complexities. However, the precise statement
of this fact involves a additional logarithmic factor.

Proposition 2.1.6. Let u, v ∈ 2<ω. One has C(u, v) ≤ C(u) + C(v) +
O

(
min(log C(u), log C(v))

)

Proof. Where does this logarithmic term come from? It seems that if we have a
shortest program q′ for u and a shortest program q′′ for v, then q = q′q′′ contains
enough information to retrieve u and v, hence C(u, v) ≤ |q′| + |q′′| = C(u) + C(v).
However, this is too naive: if we are given q and we want to compute u and v, we
first need to split q into its two parts q′ and q′′. But, not knowing q′ nor q′′, we
do not know where to split q. There could exist another way to split q into two
parts p′ and p′′ (with p′ and p′′ in dom(U)) leading to a different pair U(p′), U(p′′).
Hence, some additional information is needed to decode q = q′q′′. Providing |q′| or
|q′′| is enough, as if we know either of those, we know where to split r. Let M be
the machine whose domain is contained in {0k1r : k ∈ N, r ∈ 2<ω and |r| ≥ k} and
which does the following. On input 0k1r, M splits r into two parts: r = pq with
|p| = k. Then, it computes l = Bin−1(p). Then, it splits q into two parts q = q′q′′

with |q| = l. Finally, it outputs 〈U(q′), U(q′′)〉. It is easy to see that M is indeed
computable. Let u, v ∈ 2<ω. Let q′ be a shortest program for u and q′′ a shortest

2.1. Kolmogorov complexity 45

program for v (i.e. U(q′) = u, U(q′′) = v, C(u) = |q′|, and C(v) = |q′′|). Then, on
input 0|Bin(|q′|)|1Bin(|q′|)q′q′′, the machine M exactly outputs 〈u, v〉. Thus:

C(u, v) ≤ CM (u, v) + O(1)

≤ 2
∣∣Bin

(
|q′|

)∣∣ + |q′| + |q′′| + O(1)

≤ C(u) + C(v) + O(log C(u))

By symmetry, C(v, u) ≤ C(u) + C(v) + O(log C(v)). And since C(u, v) =
C(v, u) + O(1), the theorem is proved. #

Incompressible strings

Now that we have a universal measure of complexity, it is natural to look back
at our original goal: to give a good definition of randomness for finite objects.
Kolmogorov complexity allows us to do this: an finite string is random if its Kol-
mogorov complexity is maximal. However, since the Kolmogorov complexity of
a given string w depends on the particular choice of the machine U, we need to
introduce a parameter in the defintion.

Definition 2.1.7. We say that a string w is k-incompressibleC (where k ∈ N) if
C(w) ≥ |w| − k.

This definition is nice, but there is one thing we need to check, namely that
most strings are incompressible (it would be quite strange to have a definition of
“randomness” which a string chosen at random has a high probability not to have).
The next proposition is comforting: this is indeed the case.

Proposition 2.1.8 (C-counting theorem).
(i) There are at most 2k − 1 strings w such that C(w) < k.
(ii) If the bits of a string w of length n are chosen independently with probabilities
(1/2, 1/2), then for all k ∈ N, the probability that C(w) ≥ |w| − k is greater than
1 − 2−k.

Proof. (i) is a simple counting argument: there are 2i programs for U of length i.
A fortiori there are at most 2i programs of length i in the domain of U. Hence,
there are at most 20 + 21 + 22 + ... + 2k−1 = 2k − 1 programs of length smaller than
k in the domain of U. Consequently, the image set of these programs by U, which
is by definition the set of strings w with complexity lower than k, has cardinality
at most 2k − 1.
(ii) is an easy consequence of (i). For a string w of size n, the probability that
C(w) < n− k is equal to 1

2n #{w : |w| = n ∧C(w) < n− k} which by (i) is smaller
than 1

2n (2n−k − 1) that is smaller than 2−k. #

Non-computability of Kolmogorov complexity

Well, all this theory sounds very nice, but before we continue on, the reader should
be warned that it has a major drawback.

46 Chapter 2. Randomness and Kolmogorov complexity

Proposition 2.1.9. The Kolmogorov complexity function w 3→ C(w) is not com-
putable.

Proof. The proof is inspired by Berry’s paradox. Suppose C is computable. This
would allow us to find effectively for every k, the least string (in the length-
lexicographic order, say) that has Kolmogorov complexity greater than k (in some
sense,“the smallest string that cannot be described in less than k bits”). Call this
string wk. Since wk can be computed using k only, and since k written in binary
has length about log k, it follows that C(wk) ≤ log k+O(1). But for k large enough,
this contradicts the definition of wk. The completely formal argument is as follows:
let M be the machine such that M(Bin(k)) = wk for all k. We have for all k,
CM (wk) ≤ |Bin(k)| ≤ log k + O(1). By the optimality theorem (Theorem 2.1.2)
we have C(wk) ≤ CM (wk) + O(1) ≤ log k + O(1) for all k. But this contradicts
C(wk) > k for k large enough. #

The same kind of argument allows us to prove the following result that will be
useful in the sequel:

Proposition 2.1.10. The function B defined by B(k) = max{n ∈ N : C(n) ≤ k}
dominates any computable function f .

Proof. Suppose the contrary, that is there exists a computable function f such
that f(k) > B(k) for infinitely many k. Then for infinitely many k, f(k) + 1 has
complexity greater than k. But since f is computable, for all k, C(f(k) + 1) ≤
log k + O(1), a contradiction. #

Fortunately, the function C can be “computed” in a weaker sense. Namely, it
is enumerable from above.

Proposition 2.1.11. The function C is enumerable from above, i.e., there exists
a total computable C(.)[.] : 2<ω × N → N such that for all w ∈ 2<ω the sequence
C(w)[0], C(w)[1], C(w)[2], ... is non-increasing and converges to C(w).

Proof. Let c be a constant such that C(w) ≤ |w|+c for all c (such a constant exists
by Proposition 2.1.4). For all w ∈ 2<ω, set C(w)[0] = |w| + c. Now, given a string
w, run all the programs p for U (the additively optimal machine) in parallel. For all
t > 0, define C(w)[t] to be the minimal length of all programs which output w in
less than t steps of computation (if there is no such program, set C(w)[t] = |w|+c).
Clearly, C(w)[t] is uniformly computable in k, is nonincreasing, and converges to
C(w) as t tends to +∞ as the shortest program will eventually be found. #

The non-computability of C can be stated in a more precise way: C is exactly
as uncomputable as the halting problem.

Theorem 2.1.12. The Turing degree of the Kolmgorov complexity function C
is 0′ (i.e. C ≤T 0′ and 0′ ≤T C).

2.1. Kolmogorov complexity 47

Proof. Let B be the function defined in Proposition 2.1.10. We will prove:

0′ ≤T B ≤T C ≤T 0′

(C ≤T 0′). This part is easy. Let U be the additively optimal machine for C.
We know that there exists a constant c such that C(w) ≤ |w| + c for all w ∈ 2<ω

(Proposition 2.1.4) Given a string w, one can compute with oracle 0′ the set of
p ∈ 2<ω of length at most |w| + c such that U(p) ↓= w. This set is non-empty and
the length of its shortest element gives us exactly C(w).

(B ≤T C). By Proposition 2.1.11, for any w ∈ 2<ω, C(w) is the limit of a non-
decreasing sequence (hence eventually constant) sequence C(w)[t] where C(.)[.] is
computable. Thus, for all n, using C as an oracle, one can find a tn such that
C(w)[tn] = C(w) for all w of length n. Moreover, for all t′ ≥ t(n), C(w)[t′] =
C(w) for all w of length n. Thus, given t′ ≥ tn, one can compute C(w) for all
w of length n and then find one of complexity at least n (there must exist one
by Proposition 2.1.8). Thus, for all t′ ≥ tn, C(t′) > n − c for some constant c
independent of n. By definition of B, this implies B(n) ≤ tn+c for all n. Hence, for
all n:

B(n) = max{k ≤ tn+c : C(k) ≤ n}
since tn is computable (uniformly in n) from C, this proves that B is computable
from C.

(0′ ≤T B). Suppose we know B. Given e ∈ N and q ∈ 2<ω, we want to know
whether Me(q) halts (Me being the e-th machine in some standard enumeration).
Suppose it does; let t(e, q) be the computation time of Me(q). It is clear that t(e, q)
can be computed from e and q hence C(t(e, p)) ≤ C(e, p) ≤ |e| + |q| + c log |e| for
some constant c > 0 indepedent of e, p. Hence, t(e, p) ≤ B(|e| + |q| + c log |e|) by
definition of B. Hence, for all e, q, Me(q) halts if and only if it halts in at most
B(|e| + |q| + c log |e|) steps of computation. Hence, with B as an oracle, one can
decide the halting problem.

#

Conditional complexity

In Proposition 2.1.5, we have seen that if we can transform a string u into a string v
by a simple computable function f , then one roughly gets C(u) ≤ C(v). But our
intuition tells us that there is a much stronger link between u and v than a simple
inequality on their complexities. Indeed, in this situation, u is simple when v is
known. This leads to the notion of conditional Kolmogorov complexity.

Definition 2.1.13. Let M : 2<ω × 2<ω → 2<ω be a two-variable machine. The
conditional Kolmogorov complexity of u knowing v, with respect to
M , denoted CM (u|v) is defined as:

CM (u|v) = min{|p| : p ∈ 2<ω ∧ M(p, v) = u}

48 Chapter 2. Randomness and Kolmogorov complexity

It is easy to prove, similarly to the unconditional case, that there exists a
two-variable machine M such that for all M ′, for all u, v ∈ 2<ω, CM (u|v) ≤
CM ′(u|v) + O(1). We chose such a machine once for all, calling it U2, and for
all u, v ∈ 2<ω we define the Kolmogorov complexity of u knowing v as the quantity
CU2(u|v).

This way, if f is a computable function, we have for all v ∈ 2<ω: C(f(v)|v) =
O(1). Indeed, let M be the two-variable function defined by M(p, v) = f(v). We
have for all v: CM (f(v)|v) = 0 as M(ǫ, v) = f(v). Thus, by additive optimality:
C(f(v)|v) = O(1).

The most important theorem regarding conditional complexity is the so-called
theorem of symmetry of information, which refines Proposition 2.1.6

Theorem 2.1.14 (Symmetry of information, Levin and Kolmogorov [63]). For
all u, v ∈ 2<ω:

C(u, v) = C(u) + C(v|u) + O(log C(u, v))

To prove this theorem, we need the following (simple yet important) lemma. It
states that given a finite set of strings A, all elements of A have complexity at most
log(#A) plus the complexity of A seen as a c.e. set.

Lemma 2.1.15. Let A be a finite subset of 2<ω. Let a be an index of A as a c.e.
subset of 2<ω. For all w ∈ A, we have C(w) log(#A) + O(C(a)).

Proof. Let w ∈ A. To describe w, it suffices to give a and the position i of w
within the c.e. enumeration of A. Hence, C(w) ≤ C(i, a) ≤ log(i) + O(C(a)) ≤
log(#A) + O(C(a)).

Proof of Theorem 2.1.14. We first prove C(u, v) ≤ C(u)+C(v|u)+O(log C(u, v)).
The proof is very similar to the proof of Proposition of 2.1.6. Let M be the machine
of domain {0k1r : k ∈ N, r ∈ 2<ω and |r| ≥ k} which does the following. On input
0k1r, M splits r into two parts: r = pq with |p| = k. It computes l = Bin−1(p), and
splits q into two parts q = q′q′′ with |q| = l. Then, it computes w = U(q′), and then
w′ = U2(q

′′, w). Finally, it outputs 〈w, w′〉. Let u, v ∈ 2<ω. Let q′ be a shortest
program for u and q′′ a shortest program for v (i.e. U(q′) = u, U2(q

′′, u) = v,
C(u) = |q′|, and C(v|u) = |q′′|). Then, on input 0|Bin(|q′|)|1Bin(|q′|)q′q′′, the machine
M exactly outputs 〈u, v〉. Thus:

C(u, v) ≤ CM (u, v) + O(1) ≤ 2
∣∣Bin

(
|q′|

)∣∣ + |q′| + |q′′| + O(1)

≤ C(u) + C(v|u) + O(log C(u))

≤ C(u) + C(v|u) + O(log C(u, v))

We now prove the more difficult part: C(u, v) ≥ C(u)+C(v|u)+O(log C(u, v)).
Let u, v ∈ 2<ω. Set k0 = C(u, v) and k1 = C(u). Let A be the set

A = {(w, w′) ∈ 2<ω × 2<ω : C(w, w′) ≤ k0}

2.1. Kolmogorov complexity 49

Notice that #A ≤ 2k0+1, and that an index for A as a c.e. set can be computed
from k0. Notice also that by definition, (u, v) ∈ A. For all w ∈ 2<ω, set Aw = {w′ ∈
2<ω : (w, w′) ∈ A}, and set l = log(#Au). Then, set B = {w ∈ 2<ω : #Aw ≥ 2l}.
An index for B a c.e. set can be computed from k0 and l. Also, by definition:

2l #B ≤ #A hence #B ≤ 2k0+1−l

Since u ∈ B, we have, by Lemma 2.1.15:

C(u) ≤ log(#B) + O(C(k0, l)) ≤ k0 + 1 − l + O(log k0 + log l) ≤ k0 − l + O(log k0)

(the last inequality comes from the fact that l = log(#Au) ≤ log(#A) ≤ k0 + 1).
Hence:

l ≤ k0 − C(u) + O(log k0) = k0 − k1 + O(log k0) (2.1)

Now, suppose we know k0, u, and #Au. To find v, it suffices to enumerate A until
we find all the w′ such that (u, w′) ∈ A i.e. all the w′ in Au (we know when to
stop because we know the cardinal of Au), and then give the position of v among
the elements of Au. If u is known, an index for Au can be found from an index
for A, which itself can be computed from k0. Hence, applying Lemma 2.1.15 with
condition u:

C(v|u) ≤ log(#Au) + O(log k0) ≤ l + O(log k0) ≤ k0 − k1 + O(log k0)

(the second inequality follows from (2.1)). By definition of k0 and k1:

C(v|u) ≤ C(u, v) − C(u) + O(log C(u, v))

#

2.1.2 Prefix-free Kolmogorov complexity

In the proof of Proposition 2.1.6, we explained that given two programs p and q for
a machine M which output respectively u and v, the simple concatenation r = pq
does not contain enough information to compute the pair (u, v). To do so, some
extra information on where to split r is necessary. Suppose now that M has the
particular property to have a prefix-free domain: given two programs p ⊏ p′ for
M , at most one of them halts. In this case, r = pq can be decoded without extra
information: it suffices to consider all the possible splittings r = p′q′ of r and run in
parallel all the computations of (M(p′), M(q′)). At most one of them can halt, since
otherwise this would contradict the prefix-freeness of the domain of M . Hence, the
programs for M are “auto-delimited”: any concatenation of such programs can be
decoded without extra information. Restricting our attention to this particular
kind of machines, we can define the notion of prefix-free Kolmogorov complexity.

Definition 2.1.16. A machine M : 2<ω → 2<ω is said to be prefix-free if its
domain is prefix-free. For a prefix-free machine M , the Kolmogorov complexity
with respect to M is denoted by KM instead of CM .

50 Chapter 2. Randomness and Kolmogorov complexity

It is easy to see that prefix-free machines can effectively be enumerated. In-
deed, given an index for a machine, one can enumerate its graph, stopping the
enumeration if at some point adding a new (p, M(p)) to the graph contradicts the
prefix-freeness property (the enumeration is stopped before this happens). Hence,
using the same argument as for plain complexity, we get the existence of an addi-
tively optimal machine among those that are prefix-free:

Theorem 2.1.17 (Additive Optimality for K). There exists a prefix-free ma-
chine V such that for every prefix-free machine M , KV ≤ KM + O(1)

We fix an additive machine V once for all, and we set K = KV. For all w ∈ 2<ω,
K(w) is called prefix Kolmogorov complexity of w.

Since a prefix-free machine is a particular kind of machine, we have by the
additive optimality theorem for C:

C(w) ≤ CV(w) + O(1) = K(w) + O(1)

for all w ∈ 2<ω. Hence the prefix-free complexity is always bigger (up to an additive
constant) than the plain one. However, not much bigger:

Lemma 2.1.18. For all w ∈ 2<ω, K(w) ≤ C(w) + 2 log(C(w)) + O(1)

Proof. Let M be the machine whose domain is contained in {0k1r : k ∈ N, r ∈
2<ω and |r| ≥ k} and which does the following. On an input 0k1r, it splits r into
two parts r = pq with |p| = k. Then, it computes l = Bin−1(p). If |q| = l, it
outputs U(q) (if defined). If not, M(0k1r) is undefined. The machine M is prefix-
free: if it halts on two programs 0k1r ⊑ 0k′

1r′, then one must have k = k′, hence
r ⊑ r′. Moreover, M splits r into r = pq with |p| = k. Hence r′ = pq′ with q ⊑ q′.
But by definition of M , the fact that M halts on 0k1r (resp.0k′

1r′) means that
|q| = Bin−1(p) (resp. |q′| = Bin−1(p)). Hence q is a prefix of q′ and has the same
length, hence q = q′. We have proven that 0k1r = 0k′

1r′.

Now, let w ∈ 2<ω and q a shortest program for U which outputs w. Let
p = Bin(|q|) (this implies |p| = log(|q|) + O(1)) and k = |p|. Then by definition
M(0k1pq) = U(q) = w. Thus:

KM (w) ≤ k + 1 + |p| + |q|
≤ 2|p| + |q| + 1

≤ |q| + 2 log |q| + O(1)

≤ C(w) + 2 log C(w) + O(1)

#

Prefix Kolmogorov complexity shares many properties with C, including the
following:

2.1. Kolmogorov complexity 51

Theorem 2.1.19. K is not computable, its Turing degree is 0′.
K is enumerable from above, i.e. there exists a computable function K(.)[.] such
that for all w ∈ 2<ω, K(w) is the limit of the nonincreasing sequence (hence
eventually constant) (K(w)[t])t∈N.

Proof. The proof is the same as for C. #

Proposition 2.1.20. Let f : 2<ω → 2<ω be a computable function. For all w,
K(f(w)) ≤ K(w) + O(1).

Proof. The proof is the same as for C. #

Conditional prefix complexity

We can also define conditional prefix complexity similarly to the plain complexity
case. It suffices to consider the class of two-variable machines M having the prop-
erty that for all v, the set of {p : (p, v) ∈ dom(M)} is prefix-free. Then taking an
additively optimal machine V2 among those, we can set

K(u|v) = min{|p| : V2(p, v) = u}

As C and K are equal up to a logarithmic factor (Lemma 2.1.18), one can
rewrite the symmetry of information theorem (Theorem 2.1.14):

Theorem 2.1.21 (Symmetry of information). For all u, v ∈ 2<ω:

K(u, v) = K(u) + K(v|u) + O(log K(u, v))

In fact, a much more precise theorem holds for K: for all u, v ∈ 2<ω, K(u, v) =
K(u) + K(v|u, K(u)) + O(1) (see Gacs [18]). However, Theorem 2.1.21 will be
sufficient for our purposes.

Kraft-Chaitin’s theorem

Dealing with prefix Kolmogorov complexity can seem a little tedious. For plain
complexity, when we want to give an upper bound on C(w), we typically construct
a particular machine M and estimate the complexity CM (w) (see section on plain
complexity). For prefix complexity, the same approach requires to build a ma-
chine M which is additionally prefix-free, a property that is not so easy to check.
There is a way to avoid this problem, using the so-called Kraft-Chaitin theorem,
which we now present.

In information and coding theory, Kraft’s theorem (first proven in [30]) asserts
that given a prefix-free set of strings {pi : i ∈ N}, it holds that

∑
i 2

−|pi| ≤ 1. This
is easy to see as

∑
i 2

−|pi| is the measure of the open set generated by the pi. The
Kraft-Chaitin theorem tells us that conversely, given a subset {ni : i ∈ N} of N

such that
∑

i 2
−ni ≤ 1, there exists a prefix-free set of words {pi : i ∈ N} such that

|pi| = ni for all i and the pi can be found effectively given the ni:

52 Chapter 2. Randomness and Kolmogorov complexity

Theorem 2.1.22 (Kraft-Chaitin theorem; Levin [34], Chaitin [13]). Let (ni)i∈N

be a computable sequence of nonnegative integers, such that
∑

i∈N
2−ni ≤ 1. There

exists a computable sequence of strings (pi)i∈N such that the set of pi is prefix-free
and for all i: |pi| = ni.

Proof. This theorem can be seen as a two-player infinite game. Player (I) will play
the role of the sequence (ni)i∈N and player (II) the role of the sequence (pi)i∈N. At
stage s of the game, player (I) plays an integer ns, and player (II) answers by a string
ps. There are constraints on this game: for all s, one must have

∑s
i=0 2−ni ≤ 1 and

the set {pi : 0 ≤ i ≤ s} must be prefix-free. Player (I) wins the game if he plays
according these rules and at some stage Player (II) has to break them. Player (II)
wins if he can keep the game going forever without breaking the rules. We claim
that Player (II) has a computable winning strategy (which proves the theorem).
It works as follows. Suppose that at the beginning of stage s, (II) has already
computed a finite list of cylinders

Ls = [us
0], [u

s
1], . . . , [u

s
ks

]

satisfying the following properties:

(a) |us
0| < |us

1| < . . . < |us
ks
|

(b) the cylinders [us
0], . . . , [u

s
ks

], [p0], . . . , [ps−1] are pairwise disjoint.

(c)
∑ks

j=0 2−|us
j | = 1 − ∑s−1

i=0 2−|pi| = 1 − ∑s−1
i=0 2−ni

(initially, L0 = ∅). Now, at stage s, (I) plays an integer ns. We distinguish two
cases.

Case 1. There exists a j such that |us
j | = ns. In this case, (II) plays ps = us

j

and remove the cylinder [us
j] from the list Ls to get Ls+1. It is clear that the prop-

erties (a), (b) and (c) are preserved by this operation.

Case 2. Otherwise, let j ≤ 0 be the biggest integer such that |us
l | ≤ ns. Note

that there must exist such a l. If not, this would mean that ns is stricly smaller
than all |us

j |, hence:

2−ns >

ks∑

j=0

2−|us
j | = 1 −

s−1∑

i=0

2−ni

which implies
∑s

i=0 2−ni > 1, i.e. (I) would have broken the rules.
In this case, (II) plays ps = us

l 0
ns−|us

l |, removes us
l from Ls and replaces it by

the list of cylinders

L′ = {[us
l 0

m1] : 1 ≤ m ≤ ns − |us
l | − 1}

to get Ls+1. Notice that the above list L′ of intervals, together with [ps], form a
partition of the cylinder [us

l], hence the properties (b) and (c) are preserved. More-
over, (a) is also preserved because the intervals in L′ are of increasing length, and

2.1. Kolmogorov complexity 53

by definition of l, there is no us
j whose length is between |us

l | + 1 and ns.

Since the property (b) is preserved at all stages and implies in particular that
p0, . . . , ps is a prefix-free list of strings for all s, this is a winning strategy for (II).
Morevover, all the steps of the strategy are effective.

#

This theorem is particularly useful, as it allows us to build prefix-free machines
implicitly:

Corollary 2.1.23. Let
(
(wi, ni)

)
i∈N

be computable sequence of elements of 2<ω×N

such that
∑

i 2
−ni ≤ 1. There exists a computable sequence of strings (pi)i∈N such

that the pi form a prefix-free set, and a machine M with domain {pi : i ∈ N} such
that for all i, |pi| = ni and M(pi) = wi.

Proof. Since the ni form a computable sequence, by the Kraft-Chaitin theorem,
there exists a computable sequence (pi)i∈N such that pi form a prefix-free set and
for all i: |pi| = ni. Let M be the machine which works as follows. On an input
p ∈ 2<ω, M enumerates the set {pj : j ∈ N} until it finds an i such that pi = p
and then outputs wi (if no such i is found, M(p) is undefined). #

Hence, when given a computable sequence {(wi, ni) : i ∈ N} such that
∑

i 2
−ni ≤ 1,

if one is interested in the existence of a prefix-free machine M such that KM (wi) ≤
ni for all i, but does not care about the exact behaviour of M , one can invoke
the Kraft-Chaitin theorem to get the machine M , without having to give a precise
specification for it. From Corollary 2.1.23, one easily gets:

Corollary 2.1.24. Let L be a c.e. subset of 2<ω × N such that

∑

(w,n)∈L

2−n < +∞

Then for all (w, n) ∈ L: K(w) ≤ n + O(1).

Proof. Let i 3→ (wi, ni) be a computable enumeration of L. Let c be an integer
such that

∑
i 2

−ni < 2c. This means
∑

i 2
−(ni+c) ≤ 1. Hence, applying Corol-

lary 2.1.23 to {(wi, ni + c) : i ∈ N}i∈N, there exists a prefix-free machine M such
that KM (wi) ≤ ni + c for all i. By additive optimality, K(wi) ≤ ni + O(1) for
all i. #

We call Kraft-Chaitin set any c.e. set L satisfying the conditions of Corol-
lary 2.1.24.

Using Kraft-Chaitin theorem, we can prove the following (somewhat surprising)
result: among all the sequences (an)n∈N of real numbers that are uniformly left-c.e.
(that is, the function n 3→ an is left-c.e) and such that

∑
n an < +∞, there are

some that majorize all the others up to a multiplicative constant, and (2−K(n))n∈N

is an example of such a sequence.

54 Chapter 2. Randomness and Kolmogorov complexity

Theorem 2.1.25 (Levin).
(i) The sequence (2−K(n))n∈N is uniformly left-c.e. and

∑
n∈N

2−K(n) ≤ 1.
(ii) For every uniformly left-c.e sequence (an)n∈N of real numbers such that∑

n an < +∞, one has an = O(2−K(n)) (i.e. K(n) ≤ − log(an) + O(1) for all n).

Proof. (i) One has
∑

n 2−K(n) =
∑

n 2−K(Bin(n)) ≤ ∑
w 2−K(w). But for all w,

K(w) is the length of some program p of V, the additively optimal machine for pre-
fix complexity (namely, p is the shortest element of dom(V) such that V(p) = w).
Hence:

∑
w 2−K(w) ≤ ∑

p∈dom(V) 2−|p|. But dom(V) is a prefix-free set by definition

of prefix-free machines. Hence, by Kraft’s theorem,
∑

p∈dom(V) 2−|p| ≤ 1.
(ii) Let a : N × N → R be a witness that (an)n∈N is uniformly left-c.e. that is,
a is computable and for all n, the sequence of reals (an(t))t∈N is non-decreasing
and converges to an. Set for all n, t, bn(t) = ⌊− log an(t)⌋ and bn = ⌊− log an⌋.
It is easy to see that the sequence of reals (2−bn)n∈N is uniformly left-c.e. (wit-
nessed by limt→+∞ 2−bn(t) = 2−bn , the function being non-decreasing) and that∑

2−bn < +∞. We construct a Kraft-Chaitin set L as follows: first enumerate
in L all the couples (Bin(n), bn(0)). Then, each time ones finds n, t such that
bn(t) < bn(t − 1) (i.e. when the approximation of bn gets better), one enumerates
(Bin(n), bn(t)) into L. Let us check that L is indeed a Kraft-Chaitin set. Clearly, L
is computably enumerable. Moreove, notice that for all n, the elements (Bin(n), k)
that are enumerated into L all satisfy k ≥ bn since they are all of type k = bn(t)
for some t, and bn(t) ≥ bn for all t. Notice also that for all n, (Bin(n), bn) ∈ L, as
bn(t) is a nonincreasing sequence of integers that converges to bn, hence reaches bn

at some point. Thus:

∑

n,k
(Bin(n),k)∈L

2−k ≤
∑

n∈N

∑

k≥bn

2−k

≤
∑

n∈N

2−bn+1

< +∞
Hence by Corollary 2.1.24, for all n ∈ N, since (Bin(n), bn) ∈ L, we have K(n) =

K(Bin(n)) ≤ bn + O(1). Hence an = O(2−bn) = O(2−K(n)). #

Remark 2.1.26. The same argument shows that if f : 2<ω → R is a left-c.e.
function such that

∑
w∈2<ω f(w) < +∞, then for all w: K(w) ≤ − log f(w)+O(1)

for all w (this is just because we can identify 2<ω to N).

The K-counting theorem

We have seen that a string of length n has plain complexity at most n + O(1),
and that most strings have a complexity close to this value (see Proposition 2.1.8)
i.e. most strings are k-incompressibleC with a small k. How high can be the
prefix complexity of a string of length n? We already know that it is at most
n+2 log n+O(1) (see Lemma 2.1.18). The precise bound is: n+K(n)+O(1), and
most strings of length n have a prefix complexity that is close to this value.

2.2. Infinite random sequences via Kolmogorov complexity 55

Proposition 2.1.27 (K-Counting theorem).
(i) For all w ∈ 2<ω, K(w) ≤ |w| + K(|w|) + O(1).
(ii) #{w ∈ 2<ω : |w| = n ∧ K(w) ≤ n + K(n) − k} = O(2n−k)

Proof. (i) Let f : 2<ω → R defined by f(w) = 2−|w|−K(|w|). It is left-c.e. since K
is enumerable from above. Moreover:

∑

w∈2<ω

f(w) =
∑

w∈2<ω

2−|w|−K(|w|)

=
∑

n

∑

|w|=n

2−n−K(n)

=
∑

n

2n 2−n−K(n)

≤ 1

(ii) We will prove the equivalent statement:

#{w ∈ 2<ω : |w| = n ∧ 2−K(w) ≥ 2n−K(n)−k} = O(2n−k)

For all n, set an =
∑

|w|=n 2−K(w). It is clear that an is uniformly left-c.e as K is
enumerable from above. By Theorem 2.1.25(i), it holds that

∑
n an ≤ 1. Hence,

by Theorem 2.1.25(ii), there exists a constant c such that an ≤ 2−K(n)+c for all n.
Thus, for all n

#{w ∈ 2<ω : |w| = n ∧ 2−K(w) ≥ 2n−K(n)−k} ≤ 2n−k+c

since, if it is not the case, then

an =
∑

|w|=n

2−K(w)

> 2n−k+c 2n−K(n)−k

> 2−K(n)+c

which contradicts an ≤ 2−K(n)+c.
#

2.2 Characterizing (or not) infinite random sequences
via Kolmogorov complexity

At this stage, we have introduced various notions of randomness for infinite se-
quences, and a measure of complexity/randomness for finite ones (Kolmogorov
complexity). The immediate question that comes to mind is how these notions are
related, i.e. if the defintions of randomness for infinite sequences can be expressed
in terms of Kolmogorov complexity. This is what we shall discuss in this section.
As we will see, Martin-Löf randomness has very elegant characterizations in terms
of Kolmogorov complexity (both plain and prefix-free) while the situation is more
complicated for other notions, like computable or Schnorr randomness. This is yet
another reason for the popularity of Martin-Löf randomness.

56 Chapter 2. Randomness and Kolmogorov complexity

2.2.1 Martin-Löf randomness vs Kolmogorov complexity

Martin-Löf ’s oscillation theorems

Knowing the concept of Kolmogorov complexity, a first attempt to define random-
ness for infinite sequences could be the following: “an infinite sequence α is ran-
dom if all the strings α(i), α(i+1), ..., α(j) it contains are c-incompressible for some
c (which does not depend on i, j)”. But this is obviously too naive as a truly ran-
dom sequence should contain arbitrarily long substrings of zeroes (in particular,
a Martin-Löf random sequence does). One could refine this idea by requiring the
sequence α to have maximal plain Kolmogorov complexity on all its initial segment,
i.e., formally: there exists some c > 0 such that C(α↾n) ≥ n− c for all n. However,
this is still too naive, as there exists no such sequence!

Proposition 2.2.1 (Martin-Löf [42]). Let α ∈ 2ω. There exist infinitely many n
such that C(α↾n) ≤ n − log n.

Proof. Let α ∈ 2ω be a fixed sequence. Let n be fixed, and let w = α↾n be the prefix
of α of size n. We can see w as the binary writing of some natural number, hence
let k be such that w = Bin(k). Remember that |w| = log(k + 1). Now, consider
the prefix α↾k of α. We claim that α(n+1)...α(k) is enough to reconstruct the whole
α↾k (up to a finite amount of additional information). Indeed, from α(n)...α(k), one
can compute its length, which is equal to k − n = k − log(k + 1). But the function
k 3→ k − log(k + 1) is almost one-to-one, in the sense that every element of N has
at most 2 pre-images. Hence, k can be retrived from k − log(k + 1) together with
another bit of information (in the case there are two possible pre-images). Now,
from k, one can compute w since Bin is a computable bijection. It only remains to
concatenate w and α(n)...α(k) to get α↾k. All this means that

C(α↾k |α↾[n,k−1]) ≤ O(1)

and hence

C(α↾k) ≤ C(α↾[n,k−1]) + O(1) ≤ k − log(k + 1) + O(1)

#

In fact, Martin-Löf proved a much more general result:

Theorem 2.2.2 (Martin-Löf [42]). Let f : N → N be a computable function
such that

∑
n∈N

2−f(n) = +∞. Then there are infinitely many n for which
C(α↾n |n) ≤ n − f(n). Moreover, if the function f is such that C(n|n − f(n)) ≤
O(1) then for infinitely many n’s, C(α↾n) ≤ n − f(n).

We omit the proof of this theorem.

Since no sequence can have maximal plain complexity on all its initial segments,
we can try to define a notion of randomness by weakening this naive requirement.
We can do this in different ways:

2.2. Infinite random sequences via Kolmogorov complexity 57

• We could use K in place of C, requiring K(α↾n) ≥ n − O(1) for all n. This
indeed weakens the condition as K is greater than C.

• We could weaken the maximality condition by requiring C(α ↾n) to be big
enough for all n, say greater than n − f(n) for some well-chosen function f ,
computable or not.

• We could require C(α↾n) to be maximal not all the time but only infinitely
often.

We will discuss these three approaches.

The Levin-Chaitin theorem

The first of the three ideas we just mentioned does work.

Proposition 2.2.3. The class R = {α ∈ 2ω : K(α↾n) ≥ n−O(1)} has Lebesgue
measure 1.

Proof. For all k ∈ N, let Ak = {α ∈ 2ω : (∃n) K(α↾n) ≤ n − k}. A sequence is not
in R if and only if it belongs to all Ak. We need to show that the intersection of
all Ak has measure 0. In fact:

Lemma 2.2.4. For all k, the measure of the set

Ak = {α ∈ 2ω : (∃n) K(α↾n) ≤ n − k}

is at most 2−k.

Subproof. Fix k ∈ N. Let Ak is an open set, generated by the set of strings

Ak = {w ∈ 2<ω : K(w) ≤ |w| − k}

Let A′
k be the set of minimal elements of Ak (which as usual ensures that A′

k is
prefix-free and [A′

k] = [Ak]). For all w ∈ A′
k, let pw be the shortest program p such

that V(p) = w (by definition of K, this implies K(w) = |pw|). We then have

λ(Ak) =
∑

w∈A′

k

2−|w|

≤
∑

w∈A′

k

2−K(w)−k (by definition of Ak)

≤ 2−k
∑

w∈A′

k

2−|pw|

Moreover, since the pw are in the domain of V they form a prefix-free set which
implies

∑
w∈A′

k
2−|pw| ≤ 1.

The theorem follows immediately from this lemma.
#

58 Chapter 2. Randomness and Kolmogorov complexity

In the above proof, it is easy to see that the sequence {Ak : k ∈ N} is a
computable sequence of c.e. open sets. And since there is a constant c such that
λ(Ak) ≤ c 2−k for all k, they in fact form a Martin-Löf test. This means that any
Martin-Löf random sequence α must satisfy K(α↾n) ≥ n − O(1) for all n. In fact,
this characterizes Martin-Löf random sequences!

Theorem 2.2.5 (Schnorr [53], Levin [35]). A sequence α ∈ 2ω is Martin-Löf
random if and only if K(α↾n) ≥ n − O(1).

Proof. By the above discussion, it only remains to prove that if α is not Martin-Löf
random, then it is not true that K(α↾n) ≥ n−O(1) for all n. Let {Un : n ∈ N} be a
Martin-Löf test that covers α. We can assume by Lemma 1.3.2 that λ(Un) ≤ 2−2n−1

for all n. We can also assume, by Remark 1.2.6, that for all n: Un =
⋃

i[u
(n)
i] where

the set {u(n)
i : i ∈ N} is c.e. uniformly in n. Hence,

∑
i 2

−|u
(n)
i | = λ(Un) ≤ 2−2n−1.

We claim that the set
(
u

(n)
i , |u(n)

i | − n
)
i,n∈N

is a Kraft-Chaitin set. Indeed, it is
computably enumerable and:

∑

i,n

2−|u
(n)
i |+n =

∑

n

2n
∑

i

2−|u
(n)
i |

≤
∑

n

2n 2−2n−1

≤ 1

Hence, by Corollary 2.1.24, K(u
(n)
i) ≤ |u(n)

i | − n + O(1) for all n, i. But α is

covered by (Un)n∈N, hence for all n, there exists i such that u
(n)
i ⊑ α i.e. u

(n)
i = α↾k

for some k. For such an k, one has K(α↾k) ≤ k − n − O(1). Since we can do this
for arbitrarily large n, this proves that K(α↾k) ≥ k − O(1) is not true. #

The Miller-Yu theorem

Despite Martin-Löf’s oscillation theorem (Theorem 2.2.2), is there still hope that
Martin-Löf randomness could be characterized by plain Kolmogorov complexity?
This was a longstanding open question, recently answered affirmatively by Miller
and Yu.

Theorem 2.2.6 (Miller and Yu [49]). The following are equivalent for every se-
quence α ∈ 2ω:
(a) α is Martin-Löf random
(b) C(α↾n) ≥ n − K(n) − O(1)
(c) For every computable function f such that

∑
n 2−f(n) < +∞, C(α↾n) ≥

n − f(n) − O(1).

Remark 2.2.7. The equivalence of (a) and (b) was proven earlier in [19].

2.2. Infinite random sequences via Kolmogorov complexity 59

Proof. (a) ⇒ (b): if α is Martin-Löf random random, then by Theorem 2.2.5, K(α↾n

) ≥ n − O(1). Moreover, by Proposition 2.1.27, K(α↾n) ≤ C(α↾n) + K(n) + O(1).
It follows that C(α↾n) + K(n) + O(1) ≥ n − O(1), hence the result.

(b) ⇒ (c): Suppose (b) does not hold. Then for infinitely many n, C(α↾n) ≤
n − K(n). For an given n, the set

Un = [{w : |w| = n ∧ C(w) ≤ n − K(n)}]

is a c.e. open set that contains α and its measure is O(2−n) by Proposition 2.1.8.
Since

∑
n 2−K(n) < +∞, we can apply Theorem 1.3.4 and we get that α is not

Martin-Löf random.

(c) ⇒ (a): this is the hard part of the theorem. We will provide a proof
in Section 2.3, using computable upper bounds of Kolmogorov complexity. For an
elementary proof that requires only very basic knowledge of Kolmogorov complexity,
see [11].

#

Kolmogorov randomness and strong Chaitin randomness

Another way to sidestep Martin-Löf’s oscillation theorem is to require that a ran-
dom sequence has maximal plain complexity not for all n but only for infinitely
many. This leads to the notion of Kolmogorov-randomness.

Definition 2.2.8. A sequence α ∈ 2ω is Kolmogorov random if
C(α↾n) ≥ n − O(1) for infinitely many n.

It is not immediately clear why this is a notion of randomness, i.e. why the
class of Kolmogorov random sequences actually has measure 1. This comes from
the following classical lemma.

Lemma 2.2.9 (Fatou’s lemma). Let ε ∈ [0, 1]. Let (An)n∈N be a family of sub-
sets of 2ω infinitely many of which have measure at most ε. Then the measure
of lim infn(An) is at most ε, where lim infn(An) denotes the class of those α that
belong to all but finitely many An.

Subproof. This is because

lim inf
n

(An) =
⋃

n∈N

⋂

k≥n

Ak

Set for all n Bn =
⋂

k≥n Ak. The Bn form a non-decreasing sequence of sets each of
which has measure at most ε (this because, by the hypothesis, for all k there exists
k′ ≥ k such that the measure of Ak′ is at most ε and Bk ⊆ Ak′ by definition) and
whose union is lim infn(An). Hence, λ (lim infn(An)) = limn λ(Bn) ≤ ε

Proposition 2.2.10. The class of Kolmogorov random sequences has measure 1.

60 Chapter 2. Randomness and Kolmogorov complexity

Proof. If α is not Kolmogorov random, then for all c, for almost all n, C(α↾n) <
n − c. This is equivalent to say that the complement of the class of Kolmogorov
random sequences is exactly

⋂

c∈N

lim inf
n

(Ac
n)

where Ac
n is the set of sequences α such that C(α↾n) < n − c. For every c, n, the

set Ac
n has measure at most 2−c; this is because Ac

n is an open set generated by
the w ∈ 2<ω of length n such that C(w) ≤ n − c and by the C-counting theorem
(Proposition 2.1.8), there are at most 2n−c such strings. Hence, by Lemma 2.2.9,
the measure of lim infn(Ac

n) is at most 2−c for all c. This, by the above formula,
proves that the class of non-Kolmogorov random sequences has measure 0. #

It turns out that Kolmogorov randomness is stronger than Martin-Löf random-
ness. It is in fact equal to 0′-Martin-Löf randomness, which is the class of sequences
we obtain if we relativize the definition of Martin-Löf to 0′. Adding computational
power allows more Martin-Löf tests, hence the notion of 0′-Martin-Löf random-
ness is stronger than Martin-Löf randomness. This was proven independently by
Miller [48] and Nies, Stephan and Terwijn [51].

Theorem 2.2.11 (Miller [48], Nies et al. [51]). A sequence α ∈ 2ω is Kolmogorov
random if and only if it is 0′-Martin-Löf random.

Proof of ⇒. Assume that a sequence α ∈ 2ω is not 0′-Martin-Löf random. This
means that for all k, α is covered by a 0′-c.e. open set Uk of measure at most
2−k. We fix a k for now and we carry out the proof uniformly in k. Let Ak be a
0′-c.e. prefix-free set of strings such that Uk = [Ak]. By a classical characterization
of 0′-computability, Ak is limit computable i.e. it can be written as the pointwise
limit over t of finite prefix-free subsets Ak(t) uniformly computable in k, t (we can
moreover assume that the measure of [Ak(t)] is less than 2−k for all t). Since
α ∈ [Ak], α ∈ [Ak(t)] for all t large enough, say greater than some n. Since
α ∈ Ak(n), we have [α↾t] ⊆ [Ak(t)] for all t ≥ n. Since [Ak(t)] has measure at most
2−k, there are at most 2t−k strings w of length t such that [w] ⊆ [Ak(n)]. Hence, for
all t ≥ n, α↾t can be described by its index N in this set of strings (which written
in binary has length t − k) and k. Note that this is possible only because Ak(t) is
computable in k, t, and that there is no need to give t in the description as it can
be retrieved from N and k. Thus, for all t ≥ N , C(α↾t) ≤ t − k + 2 log k. This
being true uniformly in k, we have proven that (∃∞n C(α↾n) ≥ n − O(1)) fails to
hold.

#

In order to prove the converse, we first prove an effective version of Lemma 2.2.9:

2.2. Infinite random sequences via Kolmogorov complexity 61

Proposition 2.2.12. Let (Ac
n)n,c∈N be a computable family of finite subsets of 2<ω

having the property that for all c, there are infinitely many n such that λ([Ac
n]) ≤

2−c. Then, the set ⋂

c∈N

lim inf
n

([Ac
n])

is a 0′-Martin-Löf nullset.

Proof. We already know from the proof of Proposition 2.2.9 that for all c, lim infn(Ac
n)

has measure at most 2−c. To prove the result, we need to cover, uniformly in c, the
set lim infn(Ac

n) by a 0′-c.e. open set of measure, say, 2−c+1.
For all n, c, set

Bc
n =

⋂

k≥n

[Ac
k]

For every c, the Bc
n form a non-decreasing sequence of subsets of 2ω whose union is

lim infn(Ac
n). Hence, lim infn([Ac

n]) is the disjoint union of the sets Bc
n+1 \ Bc

n.
Notice that

Bc
n+1 \ Bc

n =




⋂

k≥n+1

[Ac
k]



 \ [Ac
n] =

⋂

k≥n+1

([Ac
k] \ [Ac

n])

All the [Ac
k] \ [Ac

n] are clopen sets uniformly computable in c, n, k. Hence, the
measure of

⋂
k≥n+1([A

c
k]\[Ac

n]), which is the limit over N the nonincreasing sequence
⋂N

k=n+1([A
c
k] \ [Ac

n]) (all the term are computable uniformly in c, k, n,N), can be
computed with oracle 0′. And thus, one can find using oracle 0′ (and uniformly in
c) an Nc such that

λ

(
Nc⋂

k=n+1

[Ac
k] \ [Ac

n]

)
≤ 2 λ

(
+∞⋂

k=n+1

[Ac
k] \ [Ac

n]

)

Hence, for all n, c, the set Vc
n =

⋂Nc
k=n+1([A

c
k] \ [Ac

n]) is a 0′-computable clopen set
which covers Bc

n+1 \ Bc
n and has at at most twice its measure. Hence, setting

Uc =
⋃

n∈N

Vc
n

we obtain a 0′-c.e. open set which covers lim infn([Ac
n]) which has at most twice

its measure, that is at most 2−c+1. As we have performed this construction uni-
formly in c, the sequence of sets (Uc)c∈N forms a 0′-Martin-Löf test that covers⋂

c∈N
lim infn([Ac

n]). #

How does this help us proving a 0′-Martin-Löf random sequence is Kolmogorov
random? Suppose that α ∈ 2ω is not Kolmogorov random. By definition this
means that the quantity C(α↾n)−n tends to −∞. In other words, for any given c,
α belongs to almost all Ac

n – i.e. belongs to lim infn([Ac
n]) – where

Ac
n = {w ∈ 2<ω : |w| = n ∧ C(w) < n − c}

62 Chapter 2. Randomness and Kolmogorov complexity

By the C-counting theorem (Proposition 2.1.8), we know that there are at most
2n−c elements in Ac

n, and consequently that the measure of [Ac
n] is at most 2−c.

We would like to apply Proposition 2.2.12 to the Ac
n to conclude, but here the

Ac
n are not computable in c, n (they are only computably enumerable) and the

computability of the Ac
n is essential in the proof of Proposition 2.2.12. To overcome

this difficulty, following Nies et al. [51], we are going to use a trick to make the
Ac

k almost computable. This “trick” involves a classical theorem of computability
theory, the Low Basis Theorem, proven by Jockusch and Soare in [27]. Recall that
a sequence β ∈ 2ω is low if β′ ≤T 0′.

Theorem 2.2.13. Every non-empty effectively closed subset of 2ω contains a low
element.

Proof. Let C be an effectively closed subset of 2ω, and let U be its complement.
Assume that an oracle machine M and an input x are fixed. The computation of
M with oracle β on x may terminate or not depending on oracle β. Let us consider
the set T (M, x) of all β ∈ 2ω such that Mβ(x) terminates (for fixed machine M
and input x). This set is an effectively open set (if the termination happens, it
happens due to finitely many oracle values). This set together with U may cover
the entire 2ω; this means that Mβ(x) terminates for all β ∈ C. If it is not the case,
we can add T (M, x) to U and get a bigger effectively open set U ′ that still has
non-empty complement and such that Mβ(x) does not terminate for all β /∈ U ′.
This operation guarantees (in one of two ways) that termination of the computation
Mβ(x) does not depend on the choice of β (in the remaining non-empty effectively
closed set).

This operation can be performed for all pairs (M,x) sequentially. Note that
if U ∪ T (M, x) covers the entire space 2ω, this happens at some finite stage (com-
pactness), so 0′ is enough to find out whether it happens or not, and on the next
step we have again some effectively open (without any oracle) set. So 0′-oracle is
enough to say which of the computations Mβ(x) terminate (as we have said, this
does not depend of the choice of β). Therefore any such β is low (the universal
β-enumerable set is 0′-decidable). And such an β exists since the intersection of the
decreasing sequence of non-empty closed sets is non-empty (by compactness). #

We can now finish the proof of Theorem 2.2.11.

Proof of part (⇐) of Theorem 2.2.11. Let F be the class of functions f : 2<ω →
2<ω such that:

• ∀w ∈ 2<ω f(w) ≤ C(w)

• ∀k ∈ N # {w ∈ 2<ω : f(w) < k} ≤ 2k

Because the first condition imposes some computable bound on the size of F (w)
(one must have f(w) ≤ |w| + O(1)), the class F can easily be encoded in 2ω: for
example f can be encoded by concatenating all the strings 0f(w)1Bin−1(w) for all
w ∈ 2<ω. Moreover, this encoding F ′ of F is a effectively closed subset of 2ω as the
two above conditions are both of type ∀xP (x) with P a computable predicate: for

2.2. Infinite random sequences via Kolmogorov complexity 63

the second one this is obvious; and the first one is equivalent to ∀t f(w) ≤ C(w)[t].
Finally, F ′ is not empty as it contains C itself. Hence, the Low Basis Theorem
applies, and there exists a function F ∈ F such that F ′ ≤T 0′ (here F ′ means the
halting problem relativized to F). We use this particular F to prove the result.
Suppose α is not Kolmogorov random. This means that the quantity C(α↾n) − n
tends to −∞. A fortiori, F (α↾n) − n tends to −∞ as by definition F ≤ C. We set
for all integers c, n:

Ac
n = {w ∈ 2<ω : |w| = n ∧ F (w) < |w| − c}

with this notation, we have, like in the proof of Propostion 2.2.10:

α ∈
⋂

c∈N

lim inf
n→+∞

([Ac
n])

and we know by construction of F that Ac
n has at most 2n−c elements, hence [Ac

n]
has measure at most 2−c for all n. The Ac

n are uniformly computable with oracle
F . Thus, we can apply Proposition 2.2.12 relativized to F , and we get that

⋂

c∈N

lim inf
n→+∞

([Ac
n])

is a F ′-Martin-Löf nullset. But since F ′ ≤T 0′, we are done.
#

Another way to define randomness by having infinitely many prefixes of maximal
Kolmogorov complexity is to use prefix complexity. As we saw earlier, if |w| = n,
the maximum value of K(w) is n + K(n) + O(1). This yields the definition:

Definition 2.2.14. A sequence α ∈ 2ω is strongly Chaitin random if
K(α↾n) ≥ n + K(n) − O(1) for infinitely many n.

By the K-counting theorem (Proposition 2.1.27), for any given n there are
O(2n−c) strings w of length n such that K(w) ≤ n + K(n) − c. Hence, with the
same argument as for Proposition 2.2.10, we see that the class of strongly Chaitin
random sequences has measure 1. In fact, it is rather easy to see that for all c,
there exists a c′ such that K(w) ≥ |w|+K(|w|)−c ⇒ C(w) ≥ |w|−c′, hence strong
Chaitin randomness implies Kolmogorov randomness. The question whether these
two classes coincide was open for quite some time. At the time of writing this
thesis, a positive answer to this question has been announced by J. Miller. His
proof involves some delicate concepts (such as lowness for Ω) which go beyond the
scope of this thesis.

A particular ML-random sequence: Chaitin’s Ω

The Levin-Schnorr characterization of Martin-Löf random sequences as sequences
all of whose prefixes have (almost) maximal prefix Kolmogorov complexity tells
us that they do not have any pattern of any kind. Therefore, although these
sequences form a class of measure 1, it seems difficult to provide an explicit example.
Remarkably, Chaitin was able to give a natural and beautiful such example, whose
properties will turn out useful in the sequel.

64 Chapter 2. Randomness and Kolmogorov complexity

Definition 2.2.15 (Chaitin [12]). Let V be the additively optimal machine for K.
The sequence Ω ∈ 2ω is the (infinite) binary expansion of the real number:

∑

p∈dom(V)

2−|p|

Notice that this sum is indeed convergent as dom(V) is prefix-free (by Kraft’s
theorem). One can also see the sum as the Lebesgue measure of the open set gener-
ated by dom(V) (for this reason, Ω is sometimes referred to as a halting probability,
and we will often identify Ω to the real number it represents). The sequence Ω has
the following remarkable properties:

Theorem 2.2.16.

(i) Ω is left-c.e.
(ii) Ω is Martin-Löf random
(iii) The Turing degree of Ω is 0′

Proof. (i) This is because dom(V) is a c.e. subset of 2<ω, hence:

Ω = lim
t→+∞

∑

p∈dom(V)[t]

2−|p|

meaning that Ω is the limit of a computable non-decreasing sequence of reals (i.e.
Ω is left-c.e.)

(ii) To prove that Ω is Martin-Löf random, we are going to prove that for all n,
K(Ω ↾n) ≥ n − O(1), concluding by the Levin-Schnorr theorem (Theorem 2.2.5).
Suppose we know Ω↾n, which seen as a real number is a dyadic r such that Ω ∈
[r, r + 2−n]. Knowing this r, we enumerate dom(V) until we find a stage tn such
that ∑

p∈dom(V)[tn]

2−|p| ∈ [r, r + 2−n]

Since Ω itself is in [r, r + 2−n], this means:

∑

p∈dom(V)\dom(V)[tn]

2−|p| ∈ [0, 2−n]

Thus, for all p ∈ dom(V)\dom(V)[tn], we have |p| ≥ n. In other words, dom(V)[tn]
contains all the elements p ∈ dom(V) that have length smaller than n. Hence, if we
compute {V(p) : p ∈ dom(V)[tn]} and we take the first wn ∈ 2<ω which is not in
this set, we have K(wn) ≥ n. And since knowing Ω↾n is enough to find w, we have

K(Ω↾n) ≥ K(wn) − O(1) ≥ n − O(1)

This proves that Ω is Martin-Löf random.

2.2. Infinite random sequences via Kolmogorov complexity 65

(iii) Ω being left-c.e., it is in particular 0′-computable. Conversely, the argu-
ment we used to prove (ii) shows that knowing the first n bits of Ω is enough to
find all the strings w such that K(w) < n. Hence, with oracle Ω, the predicate
K(w) < n is computable uniformly in n, w. Hence, K ≤T Ω. Combining this with
Theorem 2.1.19, we get 0′ ≤T Ω. #

By definition, Ω being left-c.e. means that there exists a computable sequence
of strings (ws)s∈N that is non-decreasing for ≤lex and that pointwise converges to Ω.
Hence, it seems that if we ran a program computing this sequence of strings, we
would get after some time a string that coincides with Ω on a long prefix, hence we
would have generated true randomness with a computer. The following proposition
tells us that this might not be such a good idea: the time needed to get n bits of
Ω right is a function of n that majorizes every computable function.

Proposition 2.2.17. Let (ws)s∈N be a computable sequence of strings that is non-
decreasing for ≤lex and pointwise converges to Ω. For all n, set

T (n) = min{s : ws >lex Ω↾n}

The function T is non-decreasing and dominates every computable function.

Proof. Let f be a computable function. Let n such that f(n) ≥ T (n). Given such
an n, one can compute wf(n). Since we have

Ω↾n≤lex wT (n) ≤lex wf(n) ≤lex Ω

(the first inequality comes from the definition of T , the second one from the fact
that the sequence of ws is non-decreasing for ≤lex, and the third one by the fact
that Ω is the pointwise limit of the ws), the first n bits of wf(n) coincide with those
of Ω. Hence for any such n:

K(Ω↾n) ≤ K(wf(n), n) ≤ K(n) + O(1) ≤ O(log n)

Since K(Ω↾n) ≥ n − O(1) for all n, there are only finitely many n that can satisfy
the above inequality, hence finitely many n such that f(n) ≥ T (n). Hence, T
dominates f . #

2.2.2 Computable randomness and Schnorr randomness vs Kol-
mogorov complexity

As we just saw, Martin-Löf random sequences can be nicely and simply character-
ized in terms of the Kolmogorov complexity of their initial segments (which more or
less need to have close-to-maximal complexity). Is it possible to give such a charac-
terization for computable randomness or Schnorr randomness? Since these notions
are weaker than Martin-Löf randomness, one could expect a characterization in-
volving a weaker condition on the complexity of the initial segments, something like
“α is computably random iff K(α) ≥ n − f(n)” for some function f . It turns out
that the situation is radically different. Indeed, the concepts of computable and

66 Chapter 2. Randomness and Kolmogorov complexity

Schnorr randomness are somewhat orthogonal to Kolmogorov complexity, as there
exists some computably random sequences of very small Kolmogorov complexity
and some sequences of high complexity that are not Schnorr random. The following
result of Merkle1 illustrates the first part of this statement:

Theorem 2.2.18 (Merkle [44]). There exists a computably random sequence α
such that, for every computable order h, K(α ↾n |n) ≤ h(n) + O(1). Moreover,
there exists such a sequence α that is 0′-computable.

This is quite a contrast to Theorem 2.2.5! Let us have a look at the proof.

Proof. The idea of the proof is the following. In order to make a computably
random sequence, we will play the role of the bank, and we need to defeat an
infinite number of players: those that have a total computable betting strategy. Of
course, we cannot (effectively) find out without extra information who these players
are since the set

{n : the n-th partial computable function is total}

is not computable, but we will see how to deal with this.

We already know how to defeat one given player, by the diagonalization tech-
nique presented in Propostion 1.4.10. This also tells us how to defeat a finite number
of players: if d0, . . . , dn are martingales, then for any n-uple c0, . . . , cn of positive
real numbers, d = c0d0 + . . .+cndn is a martingale such that Succ(di) ⊆ Succ(d) for
all i ≤ n. Hence, diagonalizing against d, we can defeat all the di at the same time.
Here, the situation is slightly more complicated since we have to defeat infinitely
many players. The idea of the construction is the following. We start by enumerat-
ing all normed partial computable martingales (dn)n∈N (i.e. we enumerate partial
computable functions d such that d(ǫ) = 1 and if d(w0) and d(w1) are defined, then
d(w) is defined and is the average of these two quantities). Then, we take a sequence
0 = N0 < N1 < N2 < . . . of natural numbers (to be specified later). We split N into
intervals Ik = [Nk, Nk+1). During the stages n ∈ Ik of the construction of α, we will
only diagonalize against the weighted sum

∑
i∈Pk

2−i−Nidi where Pk is the set of
i ≤ k such that the martingale di is defined on all strings of length Nk+1. The factor
2−i−Ni ensures that by the time di starts being taken into account in the diagonal-
ization, it has not made much money (namely less than 2−i). The diagonalization
thus ensures that none of the di succeeds (we will give the details in a moment).
How do we perform the construction of α while keeping the Kolmogorov complex-
ity of its prefixes small? We take a sequence 0 < N0 ≤ N1 ≤ N2... that grows
very fast (faster than any computable function) but such that the complexity of
Nk does not exceed k (for this we will use Proposition 2.1.10). Hence, for all stages
n < Nk, to compute αn we only need to know which of the first k players are still
playing (this represent an amount of information of k bits) and their corresponding

1Some similar results appeared in [33]

2.2. Infinite random sequences via Kolmogorov complexity 67

factor 2−Ni−i (which represents an amount K(N0) + K(N1) + ... + K(Nk) of infor-
mation). We conclude by arguing that k and K(Nk) are very small relatively to Nk.

Here are the formal details of the proof. Let {dk : n ∈ N} be an enumeration of
partial computable normed martingales . It is rather easy to see that these functions
can be effectively enumerated. Let Tot = {n ∈ N : dk is total}. Let B′ : N → N

be the function defined by B′(k) = max{n ∈ N : K(n) ≤ k} which for the same
reason as the function B defined in Proposition 2.1.10 dominates any computable
function and is 0′-computable (see proof of Theorem 2.1.12). Set Nk = B′(k) + 1
for all k.

The diagonalization between stage Nk and stage Nk+1 − 1 is performed against
a linear combination of the {di : i ∈ Pk} where

Pk =
{
i ∈ N :

(
i ≤ k

)
∧

(
∀w s.t. |w| ≤ Nk+1 di(w) ↓

)}

Notice that for all i, i belongs to Tot if and only if it belongs to almost all Pk.

Construction. We construct the sequence α by induction where after step k
of the induction α↾Nk

is constructed. Suppose we have already defined α↾Nk
. To

construct α↾Nk+1
, pick a w ∈ 2<ω of length Nk+1 − Nk such that:

∑

i∈Pk

2−Ni−idi(α↾Nk
w) < 2−(k+1) +

∑

i∈Pk

2−Ni−idi(α↾Nk
)

Such a w must exist by the fairness condition of martingales. Notice that if
Nk, Nk+1 and Pk are known, w can be found effectively since for all i ∈ Pk the
restriction of di to the strings of length at most Nk+1 is total computable. Set
α↾Nk+1

= α↾Nk
w.

Verification. By definition of the Pk, we have for all k: Pk+1 ⊆ Pk ∪ {k + 1}.
Hence, for all k:

∑

i∈Pk+1

2−Ni−idi(α↾Nk+1
) ≤ 2−Nk+1−k−1dk+1(α↾Nk+1

) +
∑

i∈Pk

2−ni−idi(α↾Nk+1
)

≤ 2−Nk+1−k−12Nk+1 +
∑

i∈Pk

2−Ni−idi(α↾Nk+1
)

≤ 2−(k+1) + 2−(k+1) +
∑

i∈Pk

2−Ni−idi(α↾Nk
)

≤ 2−k +
∑

i∈Pk

2−Ni−idi(α↾Nk
)

This proves that the sequence
(∑

i∈Pk
2−Ni−idi(α↾Nk

)
)

k∈N

is bounded.

Suppose that α is not computably random. This means that there exists a
normed martingale dj (j ∈ Tot) such that limn dj(α↾n) = +∞ hence in particular

68 Chapter 2. Randomness and Kolmogorov complexity

limk dj(α↾Nk
) = +∞. Since j ∈ Tot, j belongs to almost all Pk thus for almost all

k: ∑

i∈Pk

2−Ni−idi(α↾Nk
) ≥ 2−Nj−jdj(α↾Nk

)

and the right-hand side of this inequality tends to +∞. This is a contradiction
because

∑
i∈Pk

2−Ni−idi(α↾Nk
) is bounded. Hence α is computably random.

It remains to evaluate the Kolmogorov complexity of the initial segments of α.
Let n ∈ N. Let k be such that n ∈ (Nk−1, Nk], that is k = B′−1(n). To compute
α↾n, as we said above, we only need to know P0, . . . , Pk−1 and N0, . . . , Nk. Thus:

K(α↾n |n) ≤
∑

i<k

K(Pi) +
∑

i≤k

K(Ni) + O(1)

By construction of the Ni and Pi, K(Pi) = O(i) and K(Ni) = O(i) for all i. Hence

K(α↾n) = O(k2) = O
(
(B′−1(n))2

)

Since B′ grows faster that any computable function, B′−1 is an order which grows
slower that any computable one, hence this is also the case for n 3→ (B′−1(n))2.

Finally, notice that the sequence α is 0′-computable. This is because both the
sequence (Nk)k∈N and (Pk)k∈N are 0′-computable, and the construction is com-
putable when these two sequences are given as an oracle. #

Since a sequence is Martin-Löf random if and only if K(α ↾n) ≥ n − O(1)
(Theorem 2.2.5), we get as an immediate corollary:

Corollary 2.2.19. Computable randomness is weaker than Martin-Löf random-
ness.

The theorem we just proved tells us how low the Kolmogorov complexity of the
initial segments of a computably random (or Schnorr random reals) can be, and
this allowed us to separate Martin-Löf randomness from computable randomness
and Schnorr randomness. We now turn our attention to the dual question: can
a sequence α ∈ 2ω have segments of high Kolmogorov complexity and yet be not
computably random, or not Schnorr random? Similarly, can we find a sufficient
condition on the Kolmogorov complexity of the initial segments for a sequence to be
computably or Schnorr random? The following proposition provides a first answer
for Schnorr randomness.

Proposition 2.2.20. (i) For every computable order h, there exists a non-Schnorr
random sequence β such that K(β↾n) ≥ n − h(n) − O(1) for all n.
(ii) If β is not Schnorr random, there exists a computable order g such that
K(β↾n) ≤ n − g(n) + O(1) for infinitely many n.

2.2. Infinite random sequences via Kolmogorov complexity 69

Proof. (i) Let h be a given order. The idea is simple: we are going to splice zeros in
a sparse way into some Martin-Löf random sequence. Set f = h−1. f is computable
since h is. We take a Martin-Löf random sequence α (by the Levin-Schnorr theorem
it satisfies K(α↾n) ≥ n−O(1)) and we insert zeros into α at places f(0) < f(1) < ...
and we call β the resulting sequence:

β = α(0)α(1)...α(f(0)−1) 0 α(f(0))α(f(0)+1)...α(f(1)−1) 0 α(f(1))...

Since f is computable, the inserted zeros carry no information. Hence, for all n, if we
call kn the number of zeros among the first n bits of β that come from the insertion
(we easily see that kn = f−1(n − kn) ≤ f−1(n)), we have K(β ↾n) = K(α↾n−kn).
But since α is Martin-Löf random, K(α↾n−kn) ≥ n − kn − O(1). Thus:

K(β↾n) ≥ n − kn ≥ n − f−1(n) ≥ n − h(n) + O(1)

And of course β is not Schnorr random as one can predict with certainty all the
inserted bits. hence it is easy to construct a computable martingale d such that
d(α) ≥ 2h−1(n) for all n, and n 3→ 2h−1(n) is an order as h−1 is.
(ii) We postpone the proof of this part, as it is a direct corollary of Theorem 2.3.26
below.

#

The second part of the above proposition gives us a sufficient condition for
Schnorr randomness: let h be an order that is dominated by all computable orders;
if K(α↾n) ≥ n − h(n) − O(1) for all n, then α is Schnorr random. We now prove
that there is no such sufficient condition for computable randomness. In fact, not
even for Church stochasticity!

Theorem 2.2.21. Let h be any order (non necessarily computable). There exists a
sequence α ∈ 2ω which is not Church stochastic (a fortiori not computably random)
such that K(α↾n) ≥ n − h(n) − O(1) for all n.

The idea of the proof is the following. We take a very fast growing function
F : N → N and, like in the previous proof, we insert zeros into a Martin-Löf random
sequence α (which we will chose later) at positions F (0), F (1), If F grows
fast enough, this will ensure that the resulting sequence β has high Kolmgorov
complexity, as the set of inserted zeros will be sparse. To make β not Church
stochastic, we define a selection rule that selects the bits in positions F (i). However,
F might not be computable, hence the selection rule might not know when to
perform the selections. To overcome this difficulty, we pick a random sequence α
which contains enough information to compute F . This is made possible by the
Kučera-Gács theorem:

Theorem 2.2.22 (Kučera [31], Gács [20]). For every sequence α ∈ 2ω, there
exists β ∈ MLR such that α ≤T β.

70 Chapter 2. Randomness and Kolmogorov complexity

We do not provide the proof of this theorem, referring the reader to the original
papers, or to [46] for an elegant proof using a martingale argument.

Back to our construction, given our fast growing function F , we can take a
random α which computes F and insert zeros in α at positions F (i). However,
this still not enough. Indeed, we want to have a monotonic computable selection
rule σ that selects the bits in positions F (i). If a zero is inserted at position n,
the selection rule will only know α↾[0,n−1] before making its decision to select the
n-th bit or not. And this might not be enough as the number of bits of α which
are necessary to figure out that n ∈ range(F) might exceed n. Hence, instead of
inserting a zero at position n = F (i), we insert it at a later position n′ = F ′(i)
ensuring that reading α↾n′ gives the selection rule enough information and time to
figure out that n′ ∈ range(F ′).

Proof of Theorem 2.2.21. The detailed proof goes as follows. First, let us introduce
a useful piece of notation. If Z is a subset of N, and α, β are two elements of 2ω, we
call Z-join of α and β, and denote by α⊕Z β, the element of 2ω we get by merging
α and β, placing the bits of β in positions i’s such that i ∈ Z. Formally,

(α ⊕Z β)(i) =

{
α(|Z̄∩{0..i−1}|) if i /∈ Z

β(|Z∩{0..i−1}|) if i ∈ Z

If Z = 2N+1, we have α⊕Z β = α(0)β(0)α(1)β(1)..., and we abbreviate α⊕Z β by
α⊕β. If F : N → N is a non-decreasing function, we abbreviate α⊕F (N)β by α⊕F β.

Let h be an order. Let F = h−1. By the Kučera-Gács theorem, let α ∈ MLR

such that F ≤T α. We call Φ the Turing reduction such that F = Φα, i.e., for all n,
Φα(n) = F (n). For all n ∈ N, set

F ′(n) = F (n) + n + min
{
t ∈ N : (∀k ≤ n) Φα↾t(k)[t] ↓= F (k)

}

(where Φα↾t(k)[t] is the result of the computation of Φ(n) using only the first t bits
of α and during at most t steps of computation, which may be undefined). Notice
that F ′ is increasing, F ′ > F and F ′ ≤T α.

We set β = α ⊕F ′ 0ω i.e. we insert zeros in α at positions F ′(0) < F ′(1) <
F ′(2) < We now define a total computable (monotonic) selection rule σ which,
when running on β, selects the bits in positions F ′(0), F ′(1), . . . and only these bits.

On an input w ∈ 2<ω, σ does the following:

1. First, it computes the finite string u corresponding to w from which the bits
previously selected by σ have been deleted (in other words, u = σ[w] where
σ is the dual of σ which scans whenever σ selects and vice-versa).

2. It computes the set
A = {k ≤ |u| : Φu(k)[|u|] ↓}

and then finds the largest integer m such that [0, m] ⊆ A.

2.2. Infinite random sequences via Kolmogorov complexity 71

3. For all n ≤ m, it computes

tn = min{t ∈ N : (∀k ≤ n) Φu↾t(k)[t] ↓}

and then

B = {Φu(n)[|u|] + n + tn : n ≤ m}

4. Finally, if |w| ∈ B, σ(w) = select; otherwise, σ(w) = scan.

Let us now verify that σ is as desired. First, notice that σ is computable (this
is clear) and is total as the above algorithm only involves bounded computations.
Let us now prove that if σ runs on α ⊕F ′ 0ω, it only selects the bits of positions
F ′(0) < F ′(1) < F ′(2) < . . . (which are all zeros hence β is not Church stochastic).

By induction, suppose that after reading β↾n, σ has exactly selected the bits in
positions F ′(0), . . . , F ′(i− 1) where i is the largest integer such that F ′(i− 1) < n.
Then, the above step 1 produces u = α ↾(n−i). The step 2 produces a set A of
integers k for which α↾(n−i) and n− i steps of computation are enough to compute
F (k). Thus, by definition of F ′, the set B constructed at step 3 can only contain
elements in the range of F ′. Since σ only selects the next bit if the position of
this bit belongs to B, we have proven that σ will never make a bad selection. It
remains to prove that it never misses a selection of a bit whose position belongs to
the range of F ′. Suppose n = F ′(i), then by definition of F ′:

n − i = F ′(i) − i ≥ min
{
t ∈ N : (∀k ≤ i) Φα↾t(k)[t] ↓= F (k)

}

Thus, at step 2 of the algorithm, all j ≤ i are in A and at step 3, F ′(i) ∈ B. Hence,
the bit of position n will indeed be selected.

We have proven that when running on β, σ selects an infinite subsequence of
zeros, hence β is not Church stochastic. To complete the proof, it remains to
evaluate the Kolmogorov complexity of the prefixes of β. In the above argument,
for n ∈ N and i the largest integer such that F ′(i − 1) < n, the string β↾n is made
of α↾(n−i) in which zeros have been inserted in positions F ′(0), . . . , F ′(i − 1). One
can retrieve α↾(n−i) from β ↾n, simply by running σ on β ↾n and deleting the bits
selected by σ, hence K(α↾(n−i)) ≤ K(β↾n). Since α is Martin-Löf random, we have

K(β↾n) ≥ K(α↾(n−i)) ≥ n − i − O(1) ≥ n − F ′−1(n) − O(1)

(the last inequality coming from the definition of i). Remember that F = h−1 and
F ′ dominates F , hence F ′−1 is dominated by F−1 and F−1 ≤ h + O(1). Hence,
K(β↾n) ≥ n − h(n) − O(1) for all n, which completes the proof.

#

Corollary 2.2.23. Schnorr randomness does not imply Church stochasticity.
Since computable randomness implies both Schnorr randomness and Church chas-
ticity, this in particular means that Schnorr randomness is weaker than computable
randomness.

72 Chapter 2. Randomness and Kolmogorov complexity

Proof. Let h be an order that is dominated by any computable order (such as
B−1 where B is the function defined in Proposition 2.1.10. By Theorem 2.2.21,
there exists β ∈ 2ω such that is not Church stochastic and such that K(β ↾n) ≥
n − h(n) − O(1) for all n. By Proposition 2.2.20, this second property guarantees
that β is Schnorr random. #

Adapting the proof of Theorem 2.2.21, we can prove that there exists a left-c.e.
sequence α which has high complexity and yet is not Church stochastic:

Proposition 2.2.24. There exists a left-c.e. sequence α ∈ 2ω which is not Church
stochastic and such that for every computable order h, K(α↾n) ≥ n− h(n)−O(1)
(implying in particular that α is Schnorr random).

This improves a result of Merkle et al. [47] who proved this theorem for a
stronger notion of stochasticity (Mises-Wald-Church stochasticity, which is defined
like Church stochasticity, but allowing partial computable selection rules).

Proof. The idea is to insert zeros in Ω, which we know is random and can com-
pute a function which dominates any computable one. Indeed, given a computable
sequence (ws)n∈N that is non-decreasing for ≤lex and pointwise converges to Ω,
the function T defined in Proposition 2.2.17 (computable from Ω) dominates every
computable function. Define for all n:

F (n) = n + 1 + T (n) = n + 1 + min{s : ws >lex Ω↾n}

and take β = Ω ⊕F 0ω. We claim that this α has the desired properties.
First, we need to check that α is left-c.e. For all s, set Ωs = ws0

ω and

F s(n) = n + 1 + min{t : wt >lex Ωs↾n} for all n

The F s form a uniformly computable sequence of non-decreasing functions, which
satisfy F s ≤ F s+1 for all s, and pointwise converge to the above function F . Hence,
α is the pointwise limit of the sequence αs = Ωs ⊕F s 0ω. This sequence is clearly
uniformly computable and pointwise converges to α. To prove that α is left-c.e.,
we need to prove that (αs)s∈N is non-decreasing for the lexicographic order. This
is a consequence of the following simple lemma:

Lemma 2.2.25. (i) Let F be some non-decreasing function, and β, β′ two elements
of 2ω such that β ≤lex β′. Then, β ⊕F 0ω ≤lex β′ ⊕F 0ω

(ii) Let F and G be two non-decreasing functions such that F ≤ G. For all β ∈ 2ω,
β ⊕F 0ω ≤lex β ⊕G 0ω

Subproof. Part (i) is straightforward. For part (ii), observe that F ≤ G means that
one goes from β ⊕F 0ω to β ⊕G 0ω by moving the inserted zeros to the right. And
since for any strings u, v, w we have u0vw ≤lex uv0w, the result follows.

Hence, in our construction, we have for all s:

αs = Ωs ⊕F s 0ω ≤lex Ωs+1 ⊕F s 0ω ≤lex Ωs+1 ⊕F s+1 0ω = αs+1

2.2. Infinite random sequences via Kolmogorov complexity 73

Hence, α is left-c.e. The proof that α is not Church stochastic is somewhat
similar to the proof of Theorem 2.2.21. Let σ be the selection rule which on an
input u does the following:

1. First, it computes the finite string u′ corresponding to u from which the bits
previously selected by σ have been deleted

2. Then, it computes ws, where s = |u′| and finds the shortest common prefix v
of u′ and ws

3. For all n ≤ |v|, it computes

tn = min{t : wt >lex v↾n}

and then computes the set

B = {n + 1 + tn : n < |v|}

4. If |u| ∈ B, then σ(u) = select; otherwise σ(u) = scan.

It is clear that σ is total. It remains to prove that, when running on α = Ω⊕F 0ω,
σ selects exactly the bits in positions F (0) < F (1) < Let n ∈ N, and i be the
largest integer such that F (i− 1) < n. By induction, suppose that after running σ
on α↾n, the selected bits are exactly those in positions F (0), . . . , F (i − 1). In the
above algorithm, if u = α↾n, u′ = Ω↾n−i, hence v ⊑ Ω, hence by definition of F , the
set B constructed at step 3 only contains elements in the range(F), hence σ never
selects a bit in a position which is not in range(F). On the other hand, if n = F (i),
u′ = Ω↾F (i)−i hence at step 2, ws = wF (i)−i. By definition of F , F (i) − i > T (i)
hence

Ω↾i≤lex wT (i) ≤lex ws ≤lex Ω

(the first inequality comes from the definition of T). Hence, ws coincides with Ω on
at least the first i bits, which means that v computed at step 2 has at least length i,
hence at step 3, the computed set B contains F (i), and hence at step 4 the bit of
position F (i) is selected.

Finally, like in the proof of Theorem 2.2.21, we can prove that K(α ↾n) ≥
n − F−1(n) − O(1) for all n. Since F dominates every computable function (by
definition of F and because T does, see Proposition 2.2.17), the function F−1 is an
order that is dominated by any computable one. #

Combining Proposition 2.2.24 with Proposition 2.2.20, we get:

Corollary 2.2.26. There exists a left-c.e. sequence α which is Schnorr random
but not computably random.

74 Chapter 2. Randomness and Kolmogorov complexity

2.2.3 Effective Hausdorff dimension vs Kolmogorov complexity

In this section, we present the elegant result of Mayordomo [43] who, elaborating
on the work of Staiger, Ryabko and others, proved that constructive Hausdorff
dimension can be characterized in terms of Kolmogorov complexity.

Theorem 2.2.27 (Mayordomo [43]). For every sequence α ∈ 2ω:

cdim(α) = lim inf
n→+∞

K(α↾n)

n

Remark 2.2.28. Since K and C only differ by a logarithmic factor, this theorem
is also true with C is place of K.

Proof. We first prove that cdim(α) ≤ lim inf K(α↾n)
n . Let s be a rational such that

lim inf K(α↾n)
n < s. For all k, there are infinitely many n such that K(α↾n) ≤ sn−k.

Let for all k

Ak = {w ∈ 2<ω : K(w) ≤ s|w| − k}

Ak is a c.e. set of strings uniformly in k. Moreover, by Kraft-Chaitin’s theorem:

∑

w∈Ak

2−s|w|+k ≤
∑

w∈Ak

2−K(w) ≤ 1

Hence ∑

w∈Ak

2−s|w| ≤ 2−k

Thus, (Ak)k∈N is a constructive s-test that covers α. This means that cdim(α) ≤ s.
Conversely, let s be a rational number such that s > cdim(α). By definition of
cdim(α), let (An)n∈N be an s-test that covers α that is for all n α ∈ [An] and∑

w∈An
2−s|w| ≤ 2−n. We build a Kraft-Chaitin set L as follows. Each time a

string w is enumerated in some An with n > 0, we enumerate (w, s|w|) into L. This
makes L a Kraft-Chaitin set since

∑

(w,k)∈L

2−k =
∑

w∈
S

An

2−s|w| ≤
∑

n>0

∑

w∈An

2−s|w| ≤
∑

n>0

2−n ≤ 1

Hence by Kraft-Chaitin’s theorem, if w ∈ ⋃
n>0 An, K(w) ≤ s|w| + O(1). Since α

has infinitely many prefixes in
⋃

n>0 An, this proves lim inf K(α↾n)
n ≤ s. #

We have seen that every Martin-Löf random sequence has constructive dimen-
sion 1. Comparing the Levin-Schnorr theorem (Theorem 2.2.5) for Martin-Löf
randomness and Mayordomo’s theorem for constructive dimension, we see that the
Kolmogorov complexity point of view also explains well why this is true. The con-
verse of this result is not true: a sequence of constructive dimension 1 needs not be
Martin-Löf random. Indeed, not even Church stochastic.

2.2. Infinite random sequences via Kolmogorov complexity 75

Proposition 2.2.29. (i) A sequence of constructive dimension 1 needs not be
Church stochastic nor Schnorr random (a fortiori, computably random).
(ii) A computably random sequence (a fortiori: Church stochastic, Schnorr ran-
dom) may have constructive dimension 0.

Proof. (i) By Theorem 2.2.21, there exists a sequence α which is not Church
stochastic and such that K(α↾n) ≥ n − log n − O(1) for all n (hence by the above
theorem, it has constructive dimension 1). Also, by and Proposition 2.2.20, there
exists a non-Schnorr sequence β such that K(β↾n) ≥ n − log n − O(1) for all n.
(ii) By Theorem 2.2.18, there exists a sequence α which is computably random and
satisfies K(α ↾n |n) ≤ log n + O(1) for all n. Hence, K(α ↾n) = O(log n), which
means by the above theorem that α has constructive dimension 0. #

2.2.4 Stochasticity vs Kolmogorov complexity

We just saw in Theorem 2.2.18 that some computably random sequences are of
very low Kolmogorov complexity (i.e. their prefixes are all of low Kolmogorov com-
plexity). As computable randomness implies Church stochasticity, this implies that
Church stochasticity is also somewhat orthogonal to Kolmogorov complexity: high
Kolmogorov complexity does not imply Church stochasticity and Church stochas-
ticity does not imply high Kolmogorov complexity. Quite surprisingly, introducing
non-monotonicity in the definition of stochasticity completely changes this situa-
tion: a Kolmogorov-Loveland stochastic sequence needs to have high Kolmogorov
complexity. Kolmogorov had conjectured that there existed a Kolmogorov-Loveland
stochastic sequence α such that K(α↾n) = O(log n). This conjecture was refuted
by Muchnik et al. [50] who proved that any Kolmogorov-Loveland stochastic se-
quence α satisfies K(α↾n) ≥ n−o(n) for infinitely many n. Elaborating on Muchnik
et al.’s techniques, Merkle et al. were able to prove that in fact:

Theorem 2.2.30 (Merkle et al. [47]). For any Kolmogorov-Loveland stochastic
sequence α: K(α↾n) ≥ n − o(n) for all n (or equivalently, cdim(α) = 1).

In other words, if K(α↾n) ≤ rn for some r < 1 and infinitely many n, then one
can select from α (in a non-monotonic way) a subsequence β such that Bias(β) > 0.
However, Merkle et al.’s paper does not give any relation between r and the maxi-
mal Bias(β) one can obtain by computable non-monotonic selection. The relation
between the randomness deficiency and the maximal bias of selected subsequences
was studied for finite binary sequences by Asarin [3], Durand and Vereshchagin [16].
In what follows, we will study this problem for infinite binary sequences. Combining
the techniques we developed in Chapter 1 to characterize Church stochasticity by
martingales with Merkle et al.’s approach, we will prove the following improvement
of Theorem 2.2.30:

Theorem 2.2.31. Let α ∈ 2ω and s such that cdim(α) ≤ s. There exists a
non-monotonic selection rule σ, computable with oracle s such that, setting δ =
Bias

(
σ[α]

)
, we have H

(
1
2 + δ

)
≤ s.

76 Chapter 2. Randomness and Kolmogorov complexity

Both papers [47] and [16] use the same main three techniques, which are already
present in [50]:

1. Splitting technique. Any sequence (finite or infinite) which has a linear
randomness deficiency can be split into a finite number of subsequences such that
at least two of the subsequences have a linear randomness deficiency relatively to
the other ones.

2. Competing strategies. Given two finite sequences u and v with known
randomness deficiencies (say, respectively K(u) = |u| − d1 and K(v) = |v| − d2),
one can construct (the construction depending only on d1 and d2, not on (u, v))
two strategies (the concept of strategy is formalized below) S1 and S2 such that:
S1 reads v and bets on u, S2 reads u and bets on v, and either S1 multiply its
initial capital by a least 2d1 or S2 multiply its initial capital by at least 2d2 . Hence,
a good way to predict the bits of a string w with some random deficiency is to
use the above technique 1 to split w into pieces such that two of them have some
randomness deficiency and apply technique 2.

3. Converting a strategy into a selection rule. If a betting strategy wins
on a sequence (finite or infinite) an amount of money which is expontential in the
number of bets, one can construct from this strategy a selection rule which selects
a biased subsequence.

In turn, we will use these three techniques. Our improvement of Theorem 2.2.30
mainly comes from the precise quantitative results we have given in Chapter 1 re-
garding the conversion of an exponentially successful strategy (martingale) into a se-
lection rule (see Theorem 1.4.16, which can easily be adapted to the non-monotonic
case). The rest of this section will be devoted to the proof of Theorem 2.2.31.

The splitting argument yields the following result:

Proposition 2.2.32. Let α ∈ 2ω and s be such that cdim(α) ≤ s. There exists a
computable co-infinite Z ⊆ N such that, writing α = (β ⊕ β′) ⊕Z γ, we have:

cdimγ(β) ≤ s and cdimγ(β′) ≤ s

(where cdimγ is the dimension relative to the oracle γ).

Proof. First, we prove the following inequality (which was initially proven by Merkle
et al. [47]):

∀β′, β′′ ∈ 2ω cdim(β′ ⊕ β′′) ≥ 1

2
cdim(β′) +

1

2
cdimβ′

(β′′) (2.2)

2.2. Infinite random sequences via Kolmogorov complexity 77

This equation follows from the sequence of inequalities:

cdim(β ⊕ β′′) = lim inf
n

K
(
(β′ ⊕ β′′)↾2n

)

2n

= lim inf
n

K(β′↾n) + K(β′′↾n |β′↾n) + O(log n)

2n

≥ lim inf
n

K(β′↾n) + Kβ′

(β′′↾n) + O(log n)

2n

≥ 1

2
cdim(β′) +

1

2
cdimβ′

(β′′)

The first line comes from Theorem 2.2.27, the second from the symmetry of
information for K (Theorem 2.1.21), the third from the easy fact that K(w|β′↾n) ≤
Kβ′

(w) + O(log n) for all w, and the last one from Theorem 2.2.27 again (and its
relativization to β′).

To obtain Proposition 2.2.32 from the inequality (2.2), let α ∈ 2ω and s such
that cdim(α) ≤ s. Let us set t = inf{cdimγ(β) : ∃ Z recursive s.t. α = β ⊕Z γ}. It
is clear that t ≤ s (since s is attained for Z = ∅). We distinguish two cases:

Case 1: t = s. We then write α = α′ ⊕ α′′. By (2.2), we have:

s = cdim(α) ≥ 1
2cdim(α′) + 1

2cdimα′

(α′′)

s = cdim(α) ≥ 1
2cdim(α′′) + 1

2cdimα′′

(α′)

But by definition of t: cdimα′

(α′′) ≥ t = s, and cdimα′′

(α′) ≥ t = s. Thus,
cdim(α′) ≤ s and cdim(α′′) ≤ s. We then get the desired result writing α =
(α′ ⊕ α′′) ⊕∅ 0ω.

Case 2: t < s. In this case, let β, γ ∈ 2ω and Z recursive be such that
α = β ⊕Z γ and cdimγ(β) ≤ s+t

2 . Then write β = β′ ⊕ β′′, and let X1, X2, Y1, Y2 be
the recursive subsets of N such that α = β′⊕X1 (β′′⊕X2 γ) and α = β′′⊕Y1 (β′⊕Y2 γ).
Relativizing (2.2) to the oracle γ, we get:

s+t
2 ≥ cdimγ(β) ≥ 1

2cdimγ(β′) + 1
2cdim(β′⊕Y2

γ)(β′′)
s+t
2 ≥ cdimγ(β) ≥ 1

2cdimγ(β′′) + 1
2cdim(β′′⊕X2

γ)(β′)

By definition of t, cdim(β′⊕Y2
γ)(β′′) ≥ t and cdim(β′′⊕X2

γ)(β′) ≥ t. Hence,
cdimγ(β′) ≤ s and cdimγ(β′′) ≤ s, as desired.

#

Once we have split our sequence α into two sequences of dimension at most
dim(α) (we forget about the oracle γ for now), we prove the existence of a strategy
that succeeds exponentially fast on α:

Proposition 2.2.33. Let β′, β′′ ∈ 2ω and s such that cdim(β′) ≤ s and
cdim(β′′) ≤ s. There exists a strategy S, computable with oracle s, such that

for all t > s, lim sup Vn(β′⊕β′′,S)

2(1−t)n = +∞.

78 Chapter 2. Randomness and Kolmogorov complexity

Proof. Up to relativizing everything to the oracle s, we can assume that s is com-
putable. Let then (sk)k∈N be a computable decrasing sequence of rational numbers
such that s ≤ sk ≤ s + 1/k. Set for all k:

Ak = {w ∈ 2<ω : K(w) ≤ sk|w| − 3k}
(which is a c.e. subset of 2<ω, uniformly in k). By Theorem 2.2.27, dim(β′) ≤ s
precisely means that β′ belongs to all [Ak] (and the same for β′′). Similarly to the
proof of Theorem 1.5.15, the martingale

∑

k

∑

u∈Ak

2(1−sk)|u|+2kdu

t-succeeds on both β′ and β′′ for all t > s. However, this martingale is only left-
c.e, so we need to come up with a more effective way to make money on β′ ⊕ β′′.
For all k, let t′k (resp. t′′k) be the first stage of the enumeration of Ak such that
Ak[t

′
k] contains a prefix of β′ (resp. β′′). Clearly, the sequence of t′k (resp. t′′k) is

computable with oracle β′ (resp. β′′). The key idea (introduced by Muchnik et
al. [50]) is that either t′k ≤ t′′k infinitely often, or t′′k ≤ t′k infinitely often. Suppose
for the rest of the proof that the first case holds. Then, with oracle β′′, we get a
sequence of time bounds t′′k such that β′ has a prefix in Ak[t

′′
k] for infinitely many k.

Thus, the martingale ∑

k

∑

u∈Ak[t′′k]

2(1−sk)|u|+2kdu

is β′′-computable and t-succeeds on β′ for all t > s. Actually, in order to be
completely rigorous, we will need a slight variation of this martingale. Let

d1 =
∑

k

∑

u∈Ak[t′′k]

2(1−sk)|u|+2kd[k]
u

where d
[k]
u is the martingale which, like du, bets all its money on u(i) at stage i, but

waits for the k-th stage to start playing. Formally:

d[n]
u (w) =

{
2−|u| if |w| ≤ n

2−|u|du(w)/du(w↾n) if |w| ≥ n, with convention 0/0 = 0

In particular, d
[n]
u (u) ≥ 2−n for all n, u.

Lemma 2.2.34. The above martingale d1 is computable with oracle β′′, it t-succeeds
on β′ for all t > s.

Subproof. For all w and all k:
∑

u∈Ak[t′′k]

2(1−sk)|u|+2kd[k]
u (w) ≤

∑

u∈Ak

2(1−sk)|u|+2k 2−|u|+|w|

≤
∑

u∈Ak

2(−sk)|u|+2k 2|w|

≤
∑

u∈Ak

2−K(u)−k2|w|

≤ 2−k 2|w|

2.2. Infinite random sequences via Kolmogorov complexity 79

Hence, d1(w) is a series of terms which are computable with oracle β′′ and decrease
exponentially. Hence, d1(w) is computable with oracle β′′ (uniformly in w). More-
over, by assumption, β′ has a prefix in infinitely many of the Ak[t

′′
k]. If w = β′↾n is

in Ak[t
′′
k], we have:

d1(w) ≥ 2(1−sk)|w|+2kd[k]
w (w) ≥ 2(1−sk)|w|+2k 2−k = 2(1−sk)|w|+k

Since this happens for infinitely many k, and since the sk then to s, this proves
that d1 t-succeeds on β′ for all t > s.

We are now ready to construct the strategy S1 satifying the conclusions of
Proposition 2.2.33. S1 plays against β′ ⊕ β′′. It bets on the bits of β′ according
to the martingale d1, and scans the bits of β′′ when necessary to get the oracle
information to compute d1. More precisely, if S1 has already applied d1 on β′↾n, it
scans enough bits of β′′ to compute t′′0, . . . , t

′′
n+1. Then, it computes

d1(β↾n 0) − d1(β↾n) =
n+1∑

k=0

∑

u∈Ak[t′′k]

2(1−sk)|u|+2k
(
d[k]

u (β↾n 0) − d[k]
u (β↾n)

)

The first sum is bounded all the martingales of type d
[k]
u with k > n + 1 involved

in the definition of d1 satisfy d
[k]
u (β↾n 0) = d

[k]
u (β↾n). Then, S1 bets the fraction

ρ =
d1(β↾n 0) − d1(β↾n)

d1(β↾n)

of its current capital that the value of the bit β′
(n) is 0.

This way, we have for all n: Vn(β′ ⊕ β′′, S1) = d1(β
′↾n). Since d1 t-succeeds on

β′ for all t > s, we have for all t > s:

lim sup
Vn(β′ ⊕ β′′, S1)

2(1−t)n
= +∞

And in the symmetric case where t′′k ≤ t′k for infinitely many k, we use the
strategy S2 which uses the bits of β′ to compute and apply on β′′ the martingale

d2 =
∑

k

∑

u∈Ak[t′k]

2(1−sk)|u|+2kd[k]
u

and for the same reason, we then have:

lim sup
Vn(β′ ⊕ β′′, S2)

2(1−t)n
= +∞

#

The last part of the proof is the following proposition:

80 Chapter 2. Randomness and Kolmogorov complexity

Proposition 2.2.35. If there exists a computable strategy S such that

lim sup
n

Vn(α, S)

2(1−s)n
= +∞

then there exists a non-monotonic selection rule σ, computable with oracle s, such
that Bias(σ[α]) ≥ δ where δ is such that H

(
1
2 + δ

)
= s.

Proof. This is a straightforward adaptation of Theorem 1.4.16 to the non-monotonic
case. Given a strategy s satifying the above proposition, let σ be the selection rule
which visits the same bits as S, scanning whenever S scans and on the bits on which
S bets, σ uses the compactness argument presented in the proof of Theorem 1.4.16,
which allows it to select a subsequence of bias at least δ (where δ is such that
s = H

(
1
2 + δ

)
). #

Our toolbox is now complete, and we can prove Theorem 2.2.31:

Proof of Theorem 2.2.31. Let α be a sequence of constructive dimension at most s,
and let δ ≥ 0 be such that H

(
1
2 + δ

)
= s. Up to relativizing everything to s,

suppose that s is computable. By Proposition 2.2.32, there exists a computable
co-infinite Z ⊆ N such that, writing α = (β′ ⊕ β′′) ⊕Z γ, we have:

cdim(γ)(β′) ≤ s and cdim(γ)(β′′) ≤ s

Relativizing Proposition 2.2.33 to the oracle γ, there exist two strategies S1 and S2

computable with oracle γ such that

either lim sup
n

Vn(β′ ⊕ β′′, S1)

2(1−s)n
= +∞ or lim sup

n

Vn(β′ ⊕ β′′, S2)

2(1−s)n
= +∞

One can transform S1 (resp. S2) into a computable strategy S′
1 (resp. S′

2) which
plays on α = (β′ ⊕ β′′) ⊕Z γ by following S1 (resp. S2) on the bits of positions
n /∈ Z and scanning bits in positions n ∈ Z whenever some bits of γ are needed to
compute the action of S1 (resp. S2). Since no bet is made while scanning the bits
of γ, this implies that Vn(α, S′

1) = Vn(β′ ⊕ β′′, S1) and Vn(α, S′
2) = Vn(β′ ⊕ β′′, S2)

for all n. Hence:

either lim sup
n

Vn(α, S′
1)

2(1−s)n
= +∞ or lim sup

n

Vn(α, S′
2)

2(1−s)n
= +∞

Hence, either S′
1 or S′

2 has the desired property. #

One can interpret Theorem 2.2.31 in terms of effective dimension:

Proposition 2.2.36. For all sequence α ∈ 2ω, there exists a non-monotonic
selection rule, computable with oracle cdim(α), which selects from α an infinite
sequence β such that dimcomp(β) ≤ cdim(α)

Proof. Let s = cdim(α) and δ ≥ 0 such that H
(

1
2 + δ

)
= s. By Theorem 2.2.31,

there exists a selection rule σ, computable with oracle s, which selects an infinite
subsequence with bias at least δ. By Proposition 1.5.18, we have dimcomp(β) ≤
H

(
1
2 + δ

)
= s. #

2.3. Computable upper bounds of Kolmogorov complexity 81

2.3 Computable upper bounds of Kolmogorov complex-
ity: a unifying concept

2.3.1 Motivation, definitions

We saw in the previous section that Kolmogorov complexity, whether plain or pre-
fix, is not computable. This can be considered problematic for two reasons. First,
one can question the use of Kolmogorov complexity as the central notion of effective
randomness. Second, if we care about possible practical applications of Kolmogorov
complexity, its non-computability is definitely a major obstacle. Can we overcome
it? The Kolmogorov complexity of a string can be seen as the length of its shortest
compressed form, although this shortest compressed form cannot be found effec-
tively. What we can do is to give up on the hope to find the best compressed
form, only hoping to find a “good one”. After all, there exists rather good data
compressors (gzip, bzip...) that we use all the time in our daily lives. Given one of
those, one can get an approximation of C: for a string w run a compressor on it,
and compute the length of the compressed output w′. This is only an upper bound
of C(w), but at least it is computable! This approach was followed by Cilibrasi
and Vitanyi in their work on data clustering via a distance based on Kolmogorov
complexity (see for example Cilibrasi and Vitanyi [14]).

In this section, we take a new look at algorithmic randomness where, instead
of Kolmogorov complexity, we use computable upper bounds of Kolmogorov com-
plexity as a primitive notion. One can expect that any computable upper bound
approximates Kolmogorov complexity very poorly. As we will see, this is indeed the
case. However, quite surprisingly, we will show that many notions of randomness
can be characterized using computable upper bounds of Kolmogorov complexity,
even those for which Kolmogorov complexity alone does not work (e.g. Schnorr and
weak randomness). We start by the basic definition.

Definition 2.3.1. A computable upper bound (or c.u.b) of C is a total
computable function Ĉ : 2<ω → N ∪ {+∞} such that C(w) ≤ Ĉ(w) + O(1) for all
w ∈ 2<ω. A computable upper bound of K is a total computable function
K̂ : 2<ω → N∪{+∞} such that K(w) ≤ K̂(w)+O(1) for all w ∈ 2<ω. We denote
by C (resp. K) the class of computable upper bounds of C (resp. of K).

Let us first notice that the Kraft-Chaitin theorem provides a simple character-
ization of c.u.b. for K.

Proposition 2.3.2. A computable function f : 2<ω → N is a c.u.b. for K if and
only if ∑

w∈2<ω

2−f(w) < +∞

Proof. If f is a c.u.b. for K then is particular f ≥ K − O(1) hence
∑

w∈2<ω

2−f(w) ≤ 2O(1)
∑

w∈2<ω

2−K(w) < +∞

82 Chapter 2. Randomness and Kolmogorov complexity

Conversely, if
∑

w 2−f(w) < +∞, we can apply Corollary 2.1.24 to the set
{(w, f(w)) : w ∈ 2<ω} (which is computable hence in particular c.e.) and we get
K(w) ≤ f(w) + O(1) for all w ∈ 2<ω. #

We will use this proposition extensively in the sequel.

Like we said above, there is no computable upper bound for Kolmogorov com-
plexity which is a good approximation for all strings.

Proposition 2.3.3. Let h : N → N be a total computable increasing function.
There exists no computable upper bound Ĉ ∈ C of C such that Ĉ(w) ≤ h(C(w)) +
O(1). The same statement holds with K in place of C.

Proof. This proof is also inspired by Berry’s paradox. Since C ≤ Ĉ +O(1), for each
k ∈ N, there are only finitely many strings w such that Ĉ(w) ≤ k. Now, define
a machine M : 2<ω → 2<ω as follows: for all p ∈ 2<ω set M(p) to be the first
string w in the length-lexicographic order such that Ĉ(w) ≥ h(2|p|) + |p|. Then,
for all p, we have C(M(p)) ≤ |p| + O(1) (by Proposition 2.1.5), which implies that
Ĉ(M(p)) ≤ h(C(M(p))) + O(1) is not true. The proof for K in place of C is
identical. #

What if we only want a computable upper bound which is good only for infinitely
many strings? For plain complexity, this is very easy to do. It suffices to take
Ĉ(w) = |w|, which works because most strings have a plain complexity which is
close to their length. For prefix complexity this is less obvious since most strings
of a given size n have prefix complexity close to n + K(n). And if we want to get
close to this, we need to find a good upper bound for K(n), and we are back to
square 1. Such an upper bound for K can nonetheless be constructed:

Proposition 2.3.4 (Solovay). There exists K̂ ∈ K such that K̂(w) ≤ K(w)+O(1)
for infinitely many w ∈ 2<ω.

Proof. Let S be the set

{〈p, w, t〉 : V(p) outputs w in exactly t steps}

where 〈., ., .〉 is any computable encoding of 2<ω × 2<ω × N into 2<ω. The set S is
clearly computable. For all 〈p, w, t〉 ∈ S, we set K̂(〈p, w, t〉) = |p| and for all other
strings K̂ takes the value +∞. K̂ is computable since S is. Moreover, K̂ is a c.u.b.
for K: if V(p) outputs w in exactly t steps of computation, then the knowledge of p
is sufficient to retrieve w and t, thus K(〈p, w, t〉) ≤ K(p) + O(1) ≤ |p| + O(1) (the
inequality K(p) ≤ |p| + O(1) holds because p ∈ dom(V)). Now, for all w ∈ 2<ω,
let pw be a shortest program of V which outputs w, and let tw be the computation
time of V(pw). We have K(pw) ≥ |pw| − O(1). Indeed, from the shortest program
q of V which outputs pw, one can compute pw and then w, thus |pw| = K(w) ≤
|q| + O(1) = K(pw) + O(1). Hence, we have for all w:

K(〈pw, w, tw〉) ≥ K(pw) + O(1) ≥ |pw| + O(1) ≥ K̂(〈pw, w, tw〉) + O(1)

2.3. Computable upper bounds of Kolmogorov complexity 83

hence K̂ is as desired.

#

Another drawback of computable upper bounds of Kolmogorov complexity is
that there is no optimal one. Indeed, let us define a preorder = on C by

∀ Ĉ1, Ĉ2 ∈ C

(
Ĉ1 = Ĉ2

)
⇔

(
∀w ∈ 2ω Ĉ1(w) ≤ Ĉ2(w) + O(1)

)

and similarly an order = on K. A best computable upper bound of C (resp. of K)
would be a minimal element in (C,=) (resp. (K,=)) Such a minimal element does
not exist:

Proposition 2.3.5. (C,=) and (K,=) are lower semilattices with no minimal
element.

Here the term semilattice is a slight abuse of terminology since = is only a pre-
order: to make the statement completely rigorous one technically needs to consider
the quotients of C and K by the equivalence relation induced by the conjunction of
= and >.

Proof. The fact that any two elements Ĉ1 and Ĉ2 have a greatest lower bound is
easy: this greatest lower bound is min(Ĉ1, Ĉ2). It is computable, majorizes C up to
an additive constant as Ĉ1 and Ĉ2 do, and is obviously greater than any function
that is majorized by both Ĉ1 and Ĉ2. The proof that there is no minimal element
is very similar to the one of Proposition 2.3.3. Let Ĉ1 ∈ C. Let M be the total
machine such that M(p) is the shortest string w of length greater than |p| satisfying
Ĉ1(w) ≥ 2|p|. Then, CM (M(p)) ≤ |p| ≤ Ĉ1(M(p))/2 for all p. Now, notice that
CM is an upper bound for C (this is by the optimality theorem). We can also see
that CM is computable: for all p, |M(p)| ≥| p| by definition. Hence, given a string
w, one can compute CM (w) by computing CM (p) for all |p| ≤ |w| (which is possible
because M is total computable) and returning the length of the shortest p such
that M(p) = w (or +∞ if there is no such p). Let now Ĉ2 ∈ C be a lower bound
for Ĉ1 and CM . We have Ĉ2 = Ĉ1 and the inequality in in fact strict since for all
p: Ĉ2(M(p)) ≤ CM (M(p)) ≤ Ĉ1(M(p))/2. #

Since there is no optimal computable upper bound for Kolmogorov complexity,
and since there is no good reason to study a particular one, the class of computable
upper bounds will be considered in the sequel as a whole. That is, we will mainly
make statements like: “for all computable upper bounds for C etc etc.”. Notice
that this approach does not allow us to give a reasonable definition of randomness
for finite strings as for every string w there exists a computable upper bound Ĉ
such that Ĉ(w) = 0. Despite all this, computable upper bounds are enough to
characterize various notions of randomness for infinite sequences, as we shall now
see.

84 Chapter 2. Randomness and Kolmogorov complexity

2.3.2 Some particular computable upper bounds

Before we move on to the discussion on how effective randomness can be described
via computable upper bounds of Kolmogorov complexity, let us briefly review a
few examples of how we can obtain computable upper bounds for Kolmogorov
complexity.

Trimming the enumeration from above

As we saw earlier with (Proposition 2.1.11), the Kolmogorov complexity C(w) of
a string w is the limit of a nonincreasing sequence (C(w)[t])t∈N

where C(w)[t] is
uniformly computable in (t, w). To get a computable upper bound of C, it suffices
to bound this enumeration from above by a computable function. Fix a total
computable function f : 2<ω → N, and define C [f] for all w ∈ 2<ω by

C [f](w) = C(w)[f(w)]

By definition, C [f] is total computable and is an upper bound for C since
C(w)[t] ≥ C(w) for all (t, w). We define K [f] for all total computable functions f
in the same fashion.

It turns out that this is a good way to build computable upper bounds for
Kolmogorov complexity. Indeed, for any computable upper bound Ĉ, one can find
a computable function f such that C [f] approximates C better than Ĉ (and the
same is true for prefix-complexity).

Proposition 2.3.6. For every Ĉ ∈ C, there exists a total computable func-
tion f : 2<ω → N such that C [f] ≤ Ĉ + O(1). In other words, the class
{C [f] : f computable} is downward dense in (C,=). Similarly, the class {K [f] :
f computable} is downward dense in (K,=).

Proof. Given some Ĉ ∈ C, and let c > 0 be such that C ≤ Ĉ + c. Then, take

f : w 3→ min {t : C(w)[t] ≤ Ĉ(w) + c}

It is clear that f is total computable and by definition, C [f](w) ≤ Ĉ(w) + c for
all w. The proof is identical for prefix complexity. #

Approximation via compression

The approach of Cilibrasi and Vitanyi in [14] was to approximate Kolmogorov
complexity by compression. As we want to study this approach from a theoretical
point of view, we need to give a formal definition of a compressor. The intuitive
understanding of a compressor is a procedure that maps a word to a code for
that word, where the mapping is one-to-one and hence in principle invertible. For
compressors that are to be applied in practice, in addition one will surely require
that coding and decoding are efficient and that redundant sources will be mapped
to reasonably short codes; however, these latter requirements will not be considered

2.3. Computable upper bounds of Kolmogorov complexity 85

here. We consider a most general notion of compressor where one simply requires
that the compressor is a computable one-to-one function.

Definition 2.3.7. A compressor is a partial computable function Γ :2 <ω → 2<ω

which is one-to-one and has computable domain. A compressor is said to be prefix-
free if its range is prefix-free.

Now, fix a compressor Γ. We claim that the function CΓ : 2<ω → N ∪ {+∞}
defined by

CΓ(w) = |Γ(w)|

(with the convention CΓ(w) = +∞ if w /∈ dom(Γ)) is a c.u.b. for C. Indeed, it is
computable since Γ is partial computable with computable domain. Moreover, let
M be the machine that performs the decompression algorithm i.e. on an input p,
M computes all the values Γ(w) in parallel until it finds a u such that Γ(u) = p,
and then outputs u. We have for all w ∈ dom(Γ): M(Γ(w)) = w, hence CM (w) ≤
|Γ(w)| = CΓ(w). And by the optimality theorem, C(w) ≤ CM (w)+O(1) ≤ CΓ(w)+
O(1). And since we set CΓ(w) = +∞ for all w /∈ dom(Γ), this proves that C ≤
CΓ + O(1). The same holds with K in place of C.

Proposition 2.3.8. The class {CΓ : Γ compressor} is downward dense in (C,=).
The class {CΓ : Γ prefix-free compressor} is downward dense in (K,=).

Proof. Let Ĉ be a c.u.b. for C and let c > 0 be such that C(w) ≤ Ĉ(w) + c for
all w ∈ 2<ω. We build a compressor Γ as follows. Given w ∈ 2<ω, we run U in
parallel on all the programs p such that |p| ≤ Ĉ + c, until we find one (call it q)
such that U(q) = w (such a q exists by definition of Ĉ and c). Set Γ(w) = q. It is
clear that Γ is total computable. Moreover, by definition, for all w: |Γ(w)| ≤ Ĉ + c.
The proof is the same for the prefix complexity case (with V in place of U), and
the inclusion range(Γ) ⊆ dom(V) (which follows from the construction) ensures the
prefix-freeness of range(Γ). #

Time-bounded Kolmogorov complexity

Another way to produce upper bounds for Kolmogorov complexity is to put a bound
on the running times of programs.

Definition 2.3.9. Let t : N → N be a function. The time-bounded plain
complexity with bound t is defined by:

Ct(w) = inf{|p| : U(p)[t(|w|)] ↓= w}

and the time-bounded prefix complexity with bound t by:

Kt(w) = inf{|p| : V(p)[t(|w|)] ↓= w}

86 Chapter 2. Randomness and Kolmogorov complexity

Remark 2.3.10. For a fixed computable time bound t, the function Ct (resp. Kt)
depends on the particular choice of U, more than up to an additively bounded term.
However, the statements we will make about time-bounded Kolmogorov complexity
will not depend on U and V.

It is easy to see that for any computable time bound t, Ct and Kt are com-
putable. Indeed, given a string w, one can compute C(w) by computing U(p) during
t(|w|) steps for all programs p of length at most t(|w|) and return the length of the
shortest such p which outputs w within this time frame. The reason we can consider
only programs of size at most t(|w|) is that during t(|w|) steps of computation, U

can read at most t(|w|) hence if it halts on a program q of length l > t(|w|), then
it also halts (returning the same value) on a prefix p of q of length at most t(|w|)
(corresponding to the bits of q read by U to compute U(q)). The same proof works
for Kt.

Proposition 2.3.11. The class {Ct : t computable} is downward dense in (C,=).
The class {Kt : t computable} is downward dense in (K,=).

Proof. Let Ĉ ∈ C, and c a constant such that C ≤ Ĉ + c. Let n ∈ N. For each of
the strings wi (0 ≤ i < 2n−1) there exists a program pi of length at most Ĉ(wi)+c
such that U(pi) = wi. Ĉ being computable, the pi can be found effectively. It then
suffices to take t(n) to be the maximum of the computation times of the U(pi); we
then have Ct ≤ Ĉ + c. The same proof works for the Kt. #

Decidable machines

Recall the definition of Kolmgorov complexity for a machine M :

CM (w) = min{|p| : M(p) = w}

The Kolmogorov complexity is defined as being CU for some fixed optimal ma-
chine U. The non-computability of C can be seen as a consequence of the unde-
cidability of the halting problem for U. In the above definition, suppose that the
machine M has the particular following property:

Definition 2.3.12. A machine M is said to be decidable if dom(M) is a com-
putable subset of 2<ω.

Suppose also that M is surjective i.e. there is no string w for which CM (w) =
+∞. Then, the function CM is computable. Indeed, given w ∈ 2<ω, one can
sequentially compute all the M(p) for p ∈ dom(M) in order (which is possible
because dom(M) is computable) and we output the length of first p such that
M(p) = w (we know that we will eventually find one since M is surjective). This
is exactly CM (w). And since by the optimality theorem, C ≤ CM + O(1), CM is a
c.u.b. for C. And if M is decidable surjective and has prefix-free domain, KM is a
c.u.b. for K.

2.3. Computable upper bounds of Kolmogorov complexity 87

Remark 2.3.13. Notice that the surjectivity of decidable machines is not a strong
assumption, as we can easily turn a decidable machine into a surjective one without
changing CM by more than an additively bounded term. Indeed, given a decidable
machine M , consider the machine M ′ defined by M ′(0p) = M(p) and M ′(1p) = p
for all p ∈ 2<ω. Then, M ′ is decidable, surjective, and CM ′ ≤ CM + 1

Unlike the other classes of upper bounds presented above, Kolmogorov complex-
ity with respect to surjective decidable machines is not downward dense in (C,=)
or (K,=).

Proposition 2.3.14. The class {CM : M surjective decidable} is not dowmward
dense in (C,=). The class {KM : M surjective prefix-free decidable} is not
dowmward dense in (K,=).

Proof. We prove this for prefix complexity, using the particular c.u.b. K̂ for K con-
structed in the proof of Proposition 2.3.4. Recall that it is defined by K̂(〈p, w, t〉) =
|p| if V(p) outputs w after exactly t steps of computation (and K̂ takes the value
+∞ on all other strings). Recall also the definition of the function B′ (defined
page 73): for all k ∈ N, B′(k) is the biggest integer n such that K(n) ≤ k. Finally,
recall that B′ dominates every computable function (Proposition 2.1.10 adapted to
K). Suppose for the sake of contradiction that there exists a prefix-free decidable
machine M such that KM (w) ≤ K̂(w) + c for some constant c and all w. For all n,
set

l(n) = max{|M(p)| : p ∈ dom(M) ∧ |p| ≤ n}
It is clear that l is computable since dom(M) is decidable, and by definition: if for
some string w we have |w| > l(n), then KM (w) > n.

For all k, let pk be a shortest program such that V(pk) = B′(k) (notice that by
definition of b′ this implies |pk| ≤ k) and tk be the computation time of V(pk). We
then have:

KM (〈pk, B
′(k), tk〉) ≤ K̂(〈pk, B

′(k), tk〉) + c

≤ |pk| + c

≤ k + c

Hence, by definition of l:

∣∣〈pk, B
′(k), tk〉

∣∣ ≤ l(k + c)

for all k. Hence, the function k 3→ l(k + c) dominates k 3→ |〈pk, B
′(k), tk〉|, which

is a contradiction since B′ dominates every computable function. This finishes the
proof for prefix complexity, and the proof for plain complexity is identical.

#

However, surjective decidable machines satisfy a slightly weaker version of down-
ward density:

88 Chapter 2. Randomness and Kolmogorov complexity

Proposition 2.3.15. For every Ĉ ∈ C (resp. K̂ ∈ K), and every computable
order h, there exists a surjective decidable machine M (resp. a surjective prefix-
free decidable machine M) such that CM (w) ≤ max(h(|w|), Ĉ(w))+O(1) for all w
(resp. KM (w) ≤ max(h(|w|), K̂(w)) + O(1) for all w).

Proof. Let Ĉ ∈ C and h a computable order. By Proposition 2.3.8, there exists
a compressor Γ such that |Γ(w)| ≤ Ĉ(w) + O(1) for all w. We first transform Γ
into a compressor Γ′ which never compresses a string of length n by a string of
length smaller than h(n). To do so, it suffices to add some useless digits when Γ
compresses a string too well. More precisely, set

Γ′(w) =

{
0Γ(w) if |Γ(w)| ≥ h(|w|)
1h(|w|)−Γ(w)0Γ(w) if |Γ(w)| < h(|w|)

Γ′ is computable and is one-to-one. Hence, Γ′ is a compressor. It moreover
satisfies Γ′(w)| = 1 + max(h(|w|),Γ(w)). We now build a decidable machine M
which computes the inverse of Γ′. On an input 0q, M computes Γ(w) for all w in
the domain of Γ such that h(|w|) ≤ |q| (there are finitely many such w), and if it
finds among them a u such that Γ(u) = q, it outputs u (otherwise M(0q) stays
undefined). On an input 1k0r, M computes m = |r| + k, and then computes Γ(w)
for all w in the domain of Γ such that h(|w|) = m (there are finitely many such w),
and if it finds among them a v such that Γ(v) = r, it outputs v (otherwise M(!k0r)
stays undefined). It is easy to see that the domain of M ′ is decidable, and that
M(Γ′(w)) = w for all w ∈ 2<ω. This implies

CM (w) ≤ |Γ′(w)| ≤ 1 + max(h(|w|), |Γ(w)|) ≤ max(h(|w|), Ĉ(w)) + O(1)

It then suffices to turn M into a surjective decidable machine according to the
technique described in Remark 2.3.13. This finishes the proof for plain complexity.
The proof for prefix complexity is the same; just notice that if Γ is a prefix-free
compressor, then Γ′ is too. #

2.3.3 Randomness via computable upper bounds

We now discuss how we can use computable upper bounds of Kolmogorov com-
plexity to characterize various notions of randomness. We will be able to give such
a characterization for Martin-Löf randomness, 0′-Martin-Löf randomness, Schnorr
randomness, weak randomness, and computable dimension.

Martin-Löf randomness

The first natural attempt to define randomness via computable upper bounds of
Kolmogorov complexity is to adapt the Levin-Schnorr characterization of Martin-
Löf randomness in terms of Kolmogorov complexity: we can call “random” a se-
quence α such that for every c.u.b. K̂ of K we have K̂(α↾n) ≥ n − O(1). Quite
surprisingly, this is equivalent to Martin-Löf randomness:

2.3. Computable upper bounds of Kolmogorov complexity 89

Theorem 2.3.16. A sequence α ∈ 2ω is Martin-Löf random if and only if for all
K̂ ∈ K: K̂(α↾n) ≥ n − O(1)

Proof. One direction is easy: if α is Martin-Löf random, then by the Levin-Schnorr
theorem we have K(α↾n) ≥ n − O(1) which a fortiori is true for any upper bound
K̂ in place of K.

Suppose conversely that α is not Martin-Löf random. We will need the following
lemma stating that every c.e open set, or even computable sequence of c.e. open
sets, can be generated by a computable set of cylinders (instead of a c.e. set of
cylinders):

Lemma 2.3.17. For every computable family of c.e. open sets (Un)n∈N of 2ω, there
exists a computable sequence of computable subsets (An)n∈N of 2<ω such that for
all n, Un = [An]. One can moreover assume that the An are prefix-free.

Subproof. Given an effectively open subset U of 2ω, generated by a c.e. subset A
of 2<ω (that is, U =

⋃
w∈A[w]). We construct a c.e. subset A′ of 2<ω as follows. Fix

an enumeration of A. If at stage t a word u is enumerated into A, we enumerate
all the extensions u′

i of u of length t + |u| (for 0 ≤ i ≤ 2t − 1), which in particular
implies [u] =

⋃
i[u

′
i]. This way, we have [A′] = [A] = U . Moreover, A′ is in fact a

computable subset of 2<ω. Indeed, to check if some word v belongs to A′, it suffices
to check, for every prefix u of v whether u is enumerated in A at stage |v| −| u|.
This can be done effectively, and v is in A′ if and only if such a prefix is found. It
is easy to see that this construction can be done uniformly given an index for A,
hence the result (the fact that the An can be taken to be prefix-free is obvious, see
Remark 1.2.6) .

To finish the proof of 2.3.16, since α is not Martin-Löf random, there exists a
Martin-Löf test (Un)n∈N such that α ∈ ⋂

n Un. By the above lemma, one can assume
that the Un are generated by a computable family (An)n∈N of computable prefix-free
subsets of 2<ω. Let K̂ be defined as follows. For all w ∈ 2<ω, set K̂(w) = |w| − k
where k is the largest l ≤ |w| such that w ∈ A2l, and set K̂(w) = +∞ if there exists
no such l. We then have:

∑

w∈2<ω

2−
bK(w) =

∑

k∈N

∑

w∈A2k

2−|w|+k

≤
∑

k∈N

2k
∑

w∈A2k

2−|w|

≤
∑

k∈N

2kλ(U2k)

≤
∑

k∈N

2k 2−2k

< +∞
which proves that K̂ is indeed a c.u.b. for K (Proposition 2.3.2). And since α is
in [A2k] for all k, this means that for all k, there exists n such that α↾n∈ A2k and
hence K̂(α↾n) ≤ n − k.

90 Chapter 2. Randomness and Kolmogorov complexity

#

It should be noted that in the above proof, we only use a particular upper bound
K̂ which works for all α /∈ MLR. Thus, we have in fact proven:

Proposition 2.3.18. There exists K⋆ ∈ K such that, for any α ∈ 2ω, the following
are equivalent:
(a) α is Martin-Löf random
(b) K⋆(α↾n) ≥ n − O(1)

Remark 2.3.19. There are in fact infinitely many functions K⋆ which make this
equivalence true. They form an ideal in (K,=): if K⋆⋆ = K⋆ is another element of
K, the condition

(b′) K⋆⋆(α↾n) ≥ n − O(1)

is clearly implied by (a) and implies (b), and thus is equivalent to both.

Proposition 2.3.18 will play the key role in the proof of the Miller-Yu theorem.
Remember that we postponed the part (c) ⇒ (a) in the proof of Theorem 2.2.6.
We now provide the proof of this result, which we slightly reformulate using the
characterization of K stated in Proposition 2.3.2.

Proposition 2.3.20. If a sequence α ∈ 2ω is such that

∀K̂ ∈ K C(α↾n) ≥ n − K̂(n) − O(1)

then α is Martin-Löf random.

Proof. Suppose α is not Martin-Löf random. For all n, c ∈ N define

Ac
n = {u ∈ 2<ω : |u| = n ∧ K⋆(u) ≤ |u| − 2c}

and ac
n = #Ac

n. Notice that ac
n ≤ 2n−2c by a simple counting argument. More-

over, since K⋆ ≥ K:
∑

n an 2−n 22c ≤ 1, and hence
∑

c

∑
n ac

n 2−n 2c ≤ 1. Set
for all n, bn =

∑
c ac

n2c. Since ac
n ≤ 2n−2c for all (n, c), bn is computable (as

the sum of an exponentially decreasing computable series) uniformly in n. One
has

∑
n bn2−n ≤ 1. Thus, by an elementary inversion of summations argument,∑

n(b1 + ... + bn)2−n < +∞. Let then G be the (computable) function defined
by G(n) = n − log(b1 + ... + bn), which, by the previous inequality, satisfies∑

2−G(n) < +∞.

Now, let w be of length n and such that K⋆(w) ≤ |w| − 2c. In other words,
w belongs to Ac

n, hence can be described by c together with its position in the
enumeration of

⋃
n Ac

n where for all n, the elements of Ac
n are enumerated before

those of Ac
n+1 (this can be done since the Ac

n’s are uniformly computable). Hence:

C(w) ≤ 2 log c + log(ac
1 + ac

2... + ac
n) + O(1)

≤ 2 log c + log(2−cb1 + 2−cb2 + ... + 2−cbn) + O(1) (definition of bn)

≤ 2 log c − c + n − G(n) + O(1) (definition of G)

2.3. Computable upper bounds of Kolmogorov complexity 91

By Proposition 2.3.18, and definition of the Ac
n, as α is not Martin-Löf random,

then for arbitrarily large c, for infinitely many n, α ↾n∈ Ac
n which by the above

discussion implies C(α ↾n) ≤ 2 log c − c + n − G(n) + O(1). This finishes the
proof. #

It should be noticed that in this proof, we also implicitly use a computable
upper bound for C. Indeed, given w of length n, let Ĉ(w) be the minimum value
of 2 log c − c + n − G(n) + O(1) over the c such that w ∈ Ac

n (this is effectively
computable). The above proof tells us that if α is not Martin-Löf random, then
Ĉ(α↾n) ≤ n−G(n)−O(1) fails to hold. Moreover, this Ĉ works for any α /∈ MLR.
Calling C⋆ this c.u.b. and K⋆ the above function G, we can sum up the different
characterizations of Martin-Löf randomness à la Miller-Yu:

Theorem 2.3.21. There exist C⋆ ∈ C and K⋆ ∈ K such that the following are
equivalent for all α ∈ 2ω:
(a) α is Martin-Löf random
(b) C(α↾n) ≥ n − K(n) − O(1)
(c) C⋆(α↾n) ≥ n − K⋆(n) − O(1)

In fact, there are nine statements of that sort that we can make, using all the
possible combinations of C/C⋆/(for all Ĉ ∈ C) and K/K⋆/(for all K̂ ∈ K). Since
the above (b) is the strongest and (c) the weakest of such statements and since they
are both equivalent to being Martin-Löf random, all the nine statements express
Martin-Löf randomness. For example, it is true that α is Martin-Löf random if and
only if (∀Ĉ ∈ C) (∀K̂ ∈ K) Ĉ(α↾n) ≥ n − K̂(n) − O(1).

Notice also that, like in Remark 2.3.19, there are infinitely many functions C⋆

and K⋆ which make the equivalence (a) ⇔ (b) ⇔ (c) of Theorem 2.3.21 true, and
they form an ideal in (C × K,= × =). Indeed, for all (C⋆⋆, K⋆⋆) ∈ C × K such that
C⋆⋆ = C⋆ and K⋆⋆ = K⋆, the condition

(c′) C⋆⋆(α↾n) ≥ n − K⋆⋆(n) − O(1)

is implied by (b) and implies (c), hence is equivalent to both. This justifies our
choice to use the same name K⋆ both in Proposition 2.3.18 and Theorem 2.3.21.
We can indeed assume that these functions are the same: if K⋆

1 works for Propo-
sition 2.3.18 and K⋆

2 works for Theorem 2.3.21, then K⋆
0 = min(K⋆

1 , K⋆
2) works for

both.

Quite surprisingly, even Kolmogorov randomness, which we now know to be
equivalent to 0′-Martin-Löf randomness, can be characterized by computable upper
bounds.

Theorem 2.3.22. There exists C⋆ ∈ C such that the following are equivalent for
every sequence α ∈ 2ω:
(a) α is 0′-Martin-Löf random
(b) (∀Ĉ ∈ C) Ĉ(α↾n) ≥ n − O(1) for infinitely many n
(c) C⋆(α↾n) ≥ n − O(1) for infinitely many n

92 Chapter 2. Randomness and Kolmogorov complexity

Proof. (a) ⇒ (b) follows directly from Theorem 2.2.11. (b) ⇒ (c) is trivial. To
see that (c) ⇒ (a), it suffices to notice that the proof of the the part (⇒) of
Theorem 2.2.11, we implicitly use a computable upper bound for C. Indeed, we
use the function C⋆ such that C⋆(w) is the minimum over k ≤ |w| of |w|−k+2 log k
for those k such that [w] ⊆ [Ak(|w|)] (we can set by convention C⋆(w) = +∞ if
there exists no such k). C⋆ is computable as [Ak(|w|)] is a clopen set uniformly
computable in k, w.

#

Remark 2.3.23. Here again, the functions C⋆ making the equivalence of Theo-
rem 2.3.22 true form an ideal in (C,=).

We mentionned earlier (page 69) the very recent result of Miller who showed
that a sequence α is 0′-Martin-Löf random if and only if K(α↾n) ≥ n+K(n)−O(1)
for infinitely many n. The following theorem is an analogue of Miller’s result in
terms of computable upper bounds (and is not a direct consequence of Miller’s
theorem).

Theorem 2.3.24. There exists K∗ ∈ K such that the following are equivalent for
all α ∈ 2ω:
(a) α is 0′-Martin-Löf random
(b) (∀K̂ ∈ K) K̂(α↾n) ≥ n + K∗(n) − O(1) for infinitely many n
(c) K∗(α↾n) ≥ n + K∗(n) − O(1) for infinitely many n

Proof. Let K̂0 be a computable upper bound of K such that K̂0(w) ≤ K(w)+O(1)
for infinitely many strings w (whose existence is asserted by Proposition 2.3.4). For
all n ∈ N, we effectively find a tn such that:

• for all w ∈ 2<ω of length n, K(w)[tn] ≤ K̂0(w)

• for all w ∈ 2<ω of length n, K(w)[tn] ≤ C⋆(w) + K̂(w) + e where C⋆ is the
c.u.b. for C of Theorem 2.3.22 and e is a constant such that K(w) ≤ C(w) +
K(|w|)+e for all w ∈ 2<ω (whose existence is asserted by Proposition 2.1.27).

• (∀k ≤ n) #{w ∈ 2<ω : |w| = n ∧ K(w)[tn] ≤ n + K(n)[tn] − k} ≤ 2n−k+e′

where e′ the constant hidden in the O(2n−k) in Proposition 2.1.27(ii).

Such a tn exists because K(w)[t] tends to K(w) as t tends to infinity, and if
K(w)[t] = K(w), the three conditions are satisfied: the first one because K ≤ K̂,
the second one because K(w) ≤ C(w) + K(|w|) + c ≤ C⋆(w) + K̂(w) + c for all
w ∈ 2<ω, and the third one by Proposition 2.1.27). The fact that n 3→ tn is com-
putable comes from the computability of K(.)[.] and K̂.

Finally, set for all w ∈ 2<ω of length n:

K∗(w) = K(w)[tn]

Let us now check that K∗ works.

2.3. Computable upper bounds of Kolmogorov complexity 93

(a) ⇒ (b). Suppose that (b) fails, i.e. there exists some K̂ ∈ K such that
K̂(α↾n) − n − K∗(n) tends to −∞. For all integers n, c, set

Ac
n = {w ∈ 2<ω : |w| = n ∧ K̂(w) ≤ n + K∗(n) − c − e′}

As usual, we have α ∈ ⋂
c lim infn([Ac

n]) and the Ac
n are uniformly computable in

c, n (since K̂ and K∗ are computable. We claim that for any c, there are infinitely
many n such that λ([Ac

n]) ≤ 2−c. This is because by construction, we have K∗ ≤ K̂0

and for infinitely many n, K̂0(n) ≤ K(n). For all those n, we have K∗(n) ≤ K(n)
and hence

#(Ac
n) = #{w ∈ 2<ω : |w| = n ∧ K̂(w) ≤ n + K∗(n) − c − e′}

≤ #{w ∈ 2<ω : |w| = n ∧ K(w) ≤ n + K(n) − c − e′}
≤ 2n−c

Hence, we can apply Proposition 2.2.12 to the Ac
n, which tells us that α is not

0′-Martin-Löf random.

(b) ⇒ (c) is trivial.

(c) ⇒ (a). Suppose that α is not 0′-Martin-Löf random. Then by Theo-
rem 2.3.22 the quantity C⋆(α ↾n) − n tends to −∞. By construction, for all w,
K∗(w) ≤ C⋆(w)+K∗(|w|)+c, hence K∗(α↾n)−n−K∗(n) ≤ C(α↾n)−n+c, which
tends to −∞. This proves that (c) fails to hold.

#

Remark 2.3.25. The set of K∗ ∈ K making the equivalence in Theorem 2.3.24
work is downward dense in (K,=). Indeed, given some K̂ ∈ K, it suffices to replace
in the above proof “K(w)[tn] ≤ K̂0(w)” by “K(w)[tn] ≤ min(K̂0(w), K̂(w))” in the
definition of tn. We do not know whether the set of such K∗ form an ideal.

Schnorr randomness and weak randomness

Theorem 2.3.26. The following are equivalent for every sequence α ∈ 2ω:
(a) α is Schnorr random
(b) For every K̂ ∈ K and every computable order h: K̂(α↾n) ≥ n − h(n) − O(1)

Proof. (a) ⇒ (b) Suppose that (b) does not hold, i.e. there exists a computable
order h and a c.u.b. K̂ of K such that K̂(α↾n) ≤ n − h(n) for infinitely many n.
For all k, set

Dk = {w ∈ 2<ω : h(|w|) = k ∧ K̂(w) ≤ |w| − k}
Dk is uniformly computable since K̂ and h; it is finite since h is an order (the
number of values n for which h(n) = k is finite for all k). Moreover, by definition,
α ∈ [Dk] for all k. Finally, we have λ([Dk]) ≤ 2−k by Lemma 2.2.4. Hence, using
Lemma 1.5.9, we have proven that α is not Schnorr random.

94 Chapter 2. Randomness and Kolmogorov complexity

(b) ⇒ (a) Suppose conversely that α is not Schnorr random. Using Lemma 1.5.9
again, there exists a uniformly computable sequence (Dk)k∈N of finite subsets of
2<ω such that λ([Dk]) ≤ 2−k for all k, and α ∈ [Dk] for infinitely many k. Using
the (now) standard trick of taking all the extensions of a string of a certain length
to generate the same open cylinder, we can assume that for all k, the elements of
Dk have the same length f(k) and we can also assume that f is increasing. Now,
define K̂ by K̂(w) = |w| − k/2 where k is the largest l ≤ |w| such that w ∈ Dl, and
K̂(w) = +∞ if there exists no such l. Clearly K̂ is computable and by the same

kind of argument as in the proof of Theorem 2.3.16, we have
∑

w 2−
bK(w) < +∞,

hence K̂ is a c.u.b. for K̂. By assumption, for infinitely many k, α ∈ [Dk] i.e.
there exists an n such that α↾n∈ Dk. For such k, n, we have K̂(α↾n) ≤ n − k/2.
But we also know that n = f(k) or equivalently k = f−1(n). In other words,
K̂(α↾n) ≤ n − f−1(n)/2 for infinitely many n. Since f is increasing f−1/2 is an
order, which completes the proof.

#

A corollary of this is that the Kolmogorov complexity of the prefix of length n
of a not Schnorr random sequence gets further and further from n with computable
speed.

Corollary 2.3.27. If α is not Schnorr random, there exists a computable order
h such that K(α↾n) ≤ n − h(n) for infinitely many n.

Proof. This is exactly the part (b) ⇒ (a) in the above theorem, together with the
fact that K ≤ K̂. #

We saw above that Schnorr randomness and weak randomness had dual char-
acterizations in terms of martingales (Theorem 1.5.10 and Theorem 1.5.12). The
same kind of duality holds for their characterizations in terms of c.u.b. of K:

Theorem 2.3.28. The following are equivalent for every sequence α ∈ 2ω:
(a) α is weakly random
(b) For every K̂ ∈ K and every computable order h: K̂(α↾n) ≥ n − h(n) − O(1)
for infinitely many n.

Proof. The proof is almost exactly the same as the previous one: just use Lemma 1.5.13
in place of Lemma 1.5.9 and replace all the “infinitely many” by “for all”. #

And as a corollary of this theorem, we get:

Corollary 2.3.29. If α is not weakly random, there exists a computable order h
such that K(α↾n) ≤ n − h(n) for all n.

2.3. Computable upper bounds of Kolmogorov complexity 95

Computable dimension

Finally, we present a characterization of computable dimension in terms of com-
putable upper bounds.

Theorem 2.3.30. For every sequence α ∈ 2ω:

dimcomp(α) = inf
bK∈K

lim inf
n→+∞

K̂(α↾n)

n

Proof. First suppose that dimcomp(α) < s for some s ∈ Q. By definition, there
exists a computable s-test (An)n∈N such that α ∈ [An] for all n. We set for all
string w: K̂(w) = s|w| − k/2 where k is the largest l ≤ |w| such that w ∈ Al and
K̂(w) = +∞ if there exists no such l. K̂ is computable and

∑

w∈2<ω

2−
bK(w) =

∑

k∈N

∑

w∈Ak

2−s|w|+k/2

≤
∑

k∈N

2k/2
∑

w∈Ak

2−s|w|

≤
∑

k∈N

2k/2 2−k by definition of a s-test

< +∞

Hence K̂ is a c.u.b. for K, and since α ∈ [Ak] for all k, we have

∀k ∃n K̂(α↾n) ≤ sn − k/2 and thus lim inf
n→+∞

K̂(α↾n)

n
≤ s

Conversely, suppose that for some K̂ and some s ∈ Q one has

lim inf
n→+∞

K̂(α↾n)

n
< s

We set for all k ∈ N:

Ak = {w ∈ 2<ω : K̂(w) ≤ s|w| − k}

Clearly, α ∈ [Ak] for all k. We claim that the Ak form a computable s-test. First,
they are uniformly computable since K̂ is. Second, we have for all k:

∑

w∈Ak

2−s|w| ≤
∑

w∈Ak

2−
bK(w)−k ≤ 2−k

∑

w∈Ak

2−K(w) ≤ 2−k

This proves that dimcomp(α) ≤ s. #

96 Chapter 2. Randomness and Kolmogorov complexity

Randomness via particular upper bounds

All the results of this section can be rephrased in terms of the particular upper
bounds we presented above (via compression, computable time bounds, decidable
machines, etc.), thanks to their “downward density” property (see Proposition 2.3.8,
Proposition 2.3.11, Proposition 2.3.15). Here are a few examples of such reformu-
lations:

Lemma 2.3.31. A sequence α ∈ 2ω is Martin-Löf random if and only if for every
(surjective) prefix-free decidable machine M , KM (α↾n) ≥ n − O(1)

Proof. If α is Martin-Löf random, then K(α ↾n) ≥ n − O(1), hence a fortiori
KM (α ↾n) ≥ n − O(1). Conversely, if α is not Martin-Löf random, then by
Theorem 2.3.16, there exists K̂ ∈ K such that K̂(α ↾n) − n takes on arbitrar-
ily large negative values. By Proposition 2.3.15, there exists a surjective decid-
able machine M such that KM (w) ≤ max(|w|/2, K̂(w)) + O(1) for all n. Then,
KM (α↾n) − n ≤ max(−n/2, K̂(α↾n) − n) + O(1). Hence, KM (α↾n) − n takes on
arbitrarily large negative values.

Lemma 2.3.32. There exists a compressor Γ and a prefix-free compressor Ξ such
that a sequence α is Martin-Löf random if and only if CΓ(α↾n) ≥ n−KΞ(n)−O(1).

Proof. By Theorem 2.3.21, there exist C⋆ ∈ C and K⋆ ∈ K such that α is Martin-
Löf random if and only if C⋆(α↾n) ≥ n − K⋆(n) − O(1). By Proposition 2.3.8, let
Γ be a compressor such that CΓ ≤ C⋆ + O(1) and Ξ a prefix-free compressor such
that KΞ ≤ K⋆ +O(1). We can conclude by the remark made in page 100: any pair
Ĉ, K̂ ∈ C × K such that Ĉ ≤ C⋆ + O(1) and K̂ ≤ K⋆ + O(1) also works for the
equivalence in Theorem 2.3.21.

Lemma 2.3.33. A sequence α is Schnorr random if and only if for every com-
putable time bound t and every computable order h, Kt(α↾n) ≥ n − h(n) − O(1).

Proof. If α is Schnorr random, then by Theorem 2.3.26, for all k̂ ∈ K, for al com-
putable orders h, K̂(α↾n) ≥ n− h(n)−O(1). This is in particular true for the Kt,
with t computable. Conversely, if α is not Schnorr random, there exists K̂ ∈ K

and a computable order h such that K̂(α↾n) − n + h(n) takes on arbitrarily large
negative values. Take a computable time bound t such that Kt ≤ K̂ +O(1) (which
is possible according to Proposition 2.3.11). Then, Kt(α↾n) − n + h(n) takes on
arbitrarily large negative values.

The time-bounded version of Theorem 2.3.22 was already stated in Nies et
al. [51], and the time-bounded version of Theorem 2.3.30 appeared in Hitchcock [23].

Chapter 3

Randomness for computable measures

In the previous chapters, we have defined several notions of effective randomness
for Lebesgue measure. Most of them can be extended to arbitrary computable
Borel probability measures, except for the stochasticity notions since they rely on
a frequency approach which does not make sense for some measures.

In probability theory, two measures are said to be equivalent if they have the
same nullsets. From the effective randomness viewpoint, we can effectivize this idea
by saying that two measures are “effectively equivalent” if they have the same ran-
dom sequences. Hence, every notion of randomness induces an equivalence relation
on computable probability measures. This chapter studies the different implications
between these equivalence relations. We first focus on a particular set of measures,
the so-called generalized Bernoulli measures. For this class, Kakutani’s theorem
gives a criterion for classical equivalence. We extend Kakutani’s theorem to all
effective equivalence relations (part of this task was already done in the work of
Vovk and Muchnik), and we use it to separate Kolmogorov-Loveland stochasticity
from other randomness notions.

The rest of the chapter is devoted to the classification of effective equivalence
relations in the case of arbitrary computable probability measure.

3.1 Extending notions of randomness to computable
measures

In this chapter, we want to extend some of the notions of randomness we have
seen so far (Martin-Löf randomness, computable randomness, Schnorr random-
ness and weak randomness) to a larger class of computable measures. Since their
definitions all involve Borel sets (Gδ for the first three, open and closed sets for
weak randomness), we will only consider Borel probability measures. The following
theorem, which is a particular case of Caratheodory’s extension theorem (see for
example [4]), asserts that any such measure can be constructed by specifying only
the measure of each cylinder.

97

98 Chapter 3. Randomness for computable measures

Theorem 3.1.1. Let m : 2<ω → R+ be a function such that m(ǫ) = 1 and for
all w ∈ 2<ω, m(w) = m(w0) + m(w1). There exists a unique Borel probability
measure µ on 2ω such that for all w ∈ 2<ω, µ([w]) = m(w).

In the sequel, we will often identify a measure µ with the function w 3→ µ([w])
and we will abbreviate µ([w]) by µ(w)

A property which we used repeatedly in the previous chapters for Lebesgue
measure is that for a Lebesgue-measurable set X ⊆ 2ω, λ(X) is the infimum, over
the open sets U containing X , of λ(U). Equivalently, λ(X) is the supremum, over
the closed sets C contained in X , of λ(U). Any measure having this property is
called regular. A classical theorem of measure theory asserts that on any locally
compact Hausdorff space that has a countable basis, all Borel measures are regular
(see for example Cohn [15]). Since 2ω is metric compact and does have a countable
basis (the cylinders [w] for all w ∈ 2<ω for example):

Theorem 3.1.2 (Regularity of Borel measures). Every Borel measure µ on 2ω is
regular, i.e. for all X ⊆ 2ω:

µ(X) = inf {µ(U) : U open ∧ X ⊆ U}

Since this is the only type of measures we will consider in this chapter, we will
abbreviate “Borel probability measure on the Cantor space” by “measure”.

The central notions studied in this chapter are equivalence and consistency.

Definition 3.1.3. Let µ and ν be two measures. They are said to be equivalent,
which we write µ ∼ ν, if they have the same nullsets, i.e. for all X ⊆ 2ω,
µ(X) = 0 ⇔ ν(X) = 0. They are said to be consistent if there is no set X ⊆ 2ω

such that µ(X) = 0 and ν(X) = 1.

The following lemma will be a useful criterion for equivalence and consistency:

Lemma 3.1.4. Let µ and µ′ be two measures and c a positive constant. If for all
ε > 0 there exists a set X ⊆ 2ω such that µ(X) < ε and ν(X) > c − ε, then there
exists a set Y ⊆ 2ω such that µ(Y) = 0 and ν(Y) ≥ c.

Proof. Under this assumption, for all n there exists a set Xn such that µ(Xn) < 2−n

and µ′(Xn) > c − 2−n Consider the set

Y = lim sup
n

(Xn) =
⋂

n∈N

⋃

k>n

Xk

(Y is the set of sequences α that belong to infinitely many Xn). For all n, we have:

µ

(
⋃

k>n

Xk

)
≤

∑

k>n

µ(Xk) ≤
∑

k>n

2−k ≤ 2−n

3.1. Extending notions of randomness to computable measures 99

and thus µ(Y) = 0. On the other hand, for all n:

ν

(
⋃

k>n

Xk

)
≥ ν(Xn′) ≥ c − 2−n′

for all n′ > n

Hence ν
(⋃

k>n Xk

)
≥ c. Since the sequence

(⋃
k>n Xk

)
is nonincreasing in k, the

measure of their intersection Y is the limit of their measures, which are all greater
or equal to c. Thus, ν(Y) ≥ c.

Definition 3.1.5. A computable measure on the Cantor space 2ω is a measure
µ such that the function w 3→ µ(w) is computable.

With this definition, we can canonically extend the notions of randomness re-
lying on tests. A µ-Martin-Löf test (resp. a µ-Schnorr test) will be a
computable sequence (Un)n∈N of c.e. open sets such that µ(Un) ≤ 2−n for all n
(resp. µ(Un) = 2−n for all n). To extend computable randomness, we first need to
generalize the notion of martingale.

Definition 3.1.6. Let µ be a measure. A µ-martingale is a function
d : 2<ω → R+ such that for all w ∈ 2<ω:

d(w)µ(w) = d(w0)µ(w0) + d(w1)µ(w1)

Like in the Lebesgue case, a µ-martingale represents the capital of a player
who bets money on the values of the bits of α, where the relation between d(w),
d(w0), and d(w1) ensures that the game is fair if α is chosen at random w.r.t.
the probability measure µ. In this game, during the n-th move, having read the
n − 1 first bits w = α↾n−1 of α, the player bets a fraction ρ ∈ [0, 1] of his current
capital on a value for the bit α(n). Suppose for example that he guesses that
the value of αn will be 1. If his bet is wrong, he loses his stake, i.e. d(w0) =
(1−ρ)d(w). If his guess is correct, he wins his stake multiplied by a fairness factor:

d(w1) =
(
1 + ρ

µ(w0)
µ(w1)

)
d(w). Hence, in general there is an assymetry between the

potential gain and the potential loss at each move (this was not the case for Lebesgue
measure) which we will need to take into account when manipulating µ-martingales.
In particular, we need to adapt the notation Bet/Stake of page 15. We do this as
follows:

Let d be a µ-martingale for some measure µ. For any u ∈ 2<ω, let

Stake+(d, u) = d(u) − min(d(u0), d(u1)) and Bet+(d, u) =
Stake+(d, u)

d(u)

where we let Bet+(d, u) = 0 in case d(u) = 0. Furthermore, let

Guess(d, u) =

{
0 if d(u0) ≥ d(u1)

1 if d(u0) < d(u1)

100 Chapter 3. Randomness for computable measures

Guess tells us on which value d bets, Stake+ is the amount of money he bets
on this value (as opposed to the Stake function, we have Stake+(d, u) ≥ 0 for all u)
and Bet+ is the fraction of the capital Stake+ represents.

Like in the case of Lebesgue measure, we say that a µ-martingale d succeeds on
a sequence α if lim sup d(α↾n) = +∞.

Remark 3.1.7. Ville’s inequality (Theorem 1.5.1) holds for any measure µ: the
µ-measure of the set of sequences α such that supn d(α↾n) ≥ c is bounded by 1/c
(the proof is a straightforward adaptation of the uniform case). Hence the success
set of a µ-martingale has µ-measure 0.

We can now call µ-computably random as sequence α ∈ 2ω such that no
computable µ-martingale succeeds on α.

Remark 3.1.8. It is easy to check that the characterizations of Martin-Löf, Schnorr
and weak randomness still hold for arbitrary computable measures: a sequence α is
µ-Martin-Löf random iff no left-c.e. µ-martingale succeeds on α; α is µ-Schnorr
random (resp. µ-weakly random) iff there exists no computable µ-martingale d and
no computable order h such that d(α ↾n) ≥ h(n) for infinitely many n (resp. for
all n).

Proposition 3.1.9. If µ and ν are two measures, the function d : 2<ω → R+

defined by

d(w) =
µ(w)

ν(w)

is a normed ν-martingale.
Conversely, for any normed ν-martingale d, there exists a measure µ such that
the above equation is satisfied for all w.

Remark 3.1.10. In the above proposition, it may be the case that ν(w) = 0 and
µ(w) > 0. In that case, we set by convention d(w) = µ(w)/ν(w) = +∞, meaning
that d = µ/ν immediately succeeds. If µ(w) = 0 and ν(w) = 0 we set d(w) =
µ(w)/ν(w) = 1.

Proof. The first part is just a simple computation. For the second part, it suffices
to check that given a measure ν and a normed ν-martingale d, the product µ = d ν

is a measure (this also is an easy computation). #

The ν-martingale µ/ν has a natural intuitive meaning which is a generalization
of our discussion on page 17. If we are betting on the values of a sequence α. Your
opponent (the bank/casino) thinks α has been chosen at random according to the
probability ν. However, we have some inside information which tells us that α was
in fact chosen at random with respect to some other measure µ. The ν-martingale
d = µ/ν represents the best betting strategy we can use to take advantage of this
information, in the sense that if α is indeed chosen at random according to µ, then d
majorizes on α any other ν-martingale (up to a multiplicative constant):

3.2. Generalized Bernoulli measures 101

Lemma 3.1.11. Let µ and ν be two measures, d the ν-martingale d = µ/ν, and d′

be some other ν-martingale. We have, with µ-probability 1:

d′(α↾n) = O
(
d(α↾n)

)

Proof. Let µ, ν, d and d′ be as above. The “up to a multiplicative constant” in
the statement allows us to assume that d′ is normed. Hence, by Proposition 3.1.9,
there exists a measure ξ such that d′ : ξ/ν. For all n, we have:

d′(α↾n) =
ξ(α↾n)

ν(α↾n)
=

ξ(α↾n)

µ(α↾n)

µ(α↾n)

ν(α↾n)
=

(
ξ(α↾n)

µ(α↾n)

)
d(α↾n)

By Proposition 3.1.9, ξ/µ is a µ-martingale. Hence, by Ville’s inequality, with
µ-probability 1, one has ξ(α↾n)/µ(α↾n) = O(1). #

This correspondence between measures and martingales will be omnipresent in
this chapter, as we will frequently see things from a game-theoretic viewpoint.

3.2 Generalized Bernoulli measures

We begin our study by considering a particular class of measures: generalized
Bernoulli measures. This is perhaps the most natural class of Lebesgue-like mea-
sures: while Lebesgue measure on 2ω corresponds to a random trial where all the
bits are chosen independently with probability distribution (1/2, 1/2), a general-
ized Bernoulli measure corresponds to a trial where all the bits are chosen indepen-
dently, but possibly with different probability distributions (the term “generalized”
distinguishing them from Bernoulli measures, for which all the bits are chosen in-
dependently and all have the same probability distribution (p, 1 − p) for some p).

3.2.1 Definition

The formal definition of generalized Bernoulli measures is the following.

Definition 3.2.1. The generalized Bernoulli measure of parameter (pi)i∈N

is the measure µ such that for all w ∈ 2<ω:

µ(w) =
∏

i<|w|
wi=0

pi

∏

i<|w|
wi=1

(1 − pi)

This measure µ is said to be strongly positive if there exists some η > 0 such
that pi ∈ [η, 1 − η] for all i.

Remark 3.2.2. It is easy to see that a generalized Bernoulli measure of parameter
(pi)i∈N is computable if and only if the pi form a computable sequence of computable
real numbers.

102 Chapter 3. Randomness for computable measures

3.2.2 Kakutani’s theorem

Theorem 3.2.3 (Kakutani [28]). Let µ and ν be two strongly positive generalized
Bernoulli measures of respective parameters (pi) and (qi).
If

∑
i(pi − qi)

2 < +∞, then µ and ν are equivalent. If
∑

i(pi − qi)
2 = +∞, then

µ and ν are inconsistent.

Proof. We only prove the second part of the theorem for now since we will get the
first part as a corollary of stronger results later on (see page 124). We follow the
proof given in Muchnik et al. [50]. Suppose µ and µ′ are two generalized Bernoulli
measures of respective parameters (pi)i∈N and (qi)i∈N. By the strong positivity
hypothesis, let ε be such that ε ≤ pi ≤ 1 − ε and ε ≤ qi ≤ 1 − ε

Let ν be the the generalized Bernoulli measure of parameter (pi+qi

2)i∈N. We
have for all i:

(
pi + qi

2

)2

= piqi

(
1 +

(pi − qi)
2

4piqi

)
≥ piqi

(
1 +

(pi − qi)
2

4ε2

)

and

(
(1 − pi) + (1 − qi)

2

)2

= (1 − pi)(1 − qi)

(
1 +

(pi − qi)
2

4(1 − pi)(1 − qi)

)

≥ (1 − pi)(1 − qi)

(
1 +

(pi − qi)
2

4ε2

)

Thus, for all w ∈ 2<ω of length n:

ν(w)2 ≥ µ(w)µ′(w)
n−1∏

i=0

(
1 +

(pi − qi)
2

4ε2

)

The limit when n tends to +∞ of the product term in the above equation is +∞
(because

∑
i(pi − qi)

2 = +∞), hence for any fixed M > 0 one can find N such
that ν(w)2 ≥ Mµ(w)µ′(w) for all w of length N . Let A be the set of strings w of
length N such that µ(w) ≥ µ′(w). For any such string w, we have ν(w)2 ≥ Mµ′(w)2

i.e. ν(w) ≥
√

Mµ′(w). Thus, µ′([A]) ≤ ν([A])/
√

M ≤ 1/
√

M . On the other hand,
for all strings w of length N that is not in A, we have ν(w)2 ≥ Mµ(w)2 hence by
the same argument we have µ(2ω \ [A]) ≤ 1/

√
M . Since we can find such an [A] for

arbitrarily large M , applying Lemma 3.1.4 (with c = 1), this proves that µ and µ′

are inconsistent. #

3.2.3 Constructive versions of Kakutani’s theorem

An effective version of Kakutani’s theorem was obtained by V. Vovk.

Theorem 3.2.4 (Vovk [60]). Let µ and ν be computable strongly positive gener-
alized Bernoulli measures of respective parameters (pi)i∈N and (qi)i∈N.
If

∑
i(pi − qi)

2 < +∞, then µMLR = νMLR. If
∑

i(pi − qi)
2 = +∞, then

µMLR ∩ νMLR = ∅.

3.2. Generalized Bernoulli measures 103

One of the main results of this chapter is that Vovk’s theorem can be extended to
computable randomness, to Schnorr randomness, and (almost) to weak randomness:

Theorem 3.2.5. Let µ and ν be computable strongly positive generalized
Bernoulli measures of parameter (pi)i∈N and (qi)i∈N, respectively.

(i) The following are equivalent. (ii) The following are equivalent.
(a)

∑
i(pi − qi)

2 < +∞ (a)
∑

i(pi − qi)
2 = +∞

(b) µ and ν are consistent (b) µ and ν are inconsistent
(c) µ ∼ ν (c) µ and ν are not equivalent
(d) µMLR = νMLR (d) µMLR ∩ νMLR = ∅
(e) µCR = νCR (e) µCR ∩ νCR = ∅
(f) µSR = νSR (f) µSR ∩ νSR = ∅
(g) µWR = νWR (g) µSR ∩ νWR = µWR ∩ νSR = ∅

Remark 3.2.6. The item (g) of part (ii) cannot be strengthened to µWR∩νWR.
In fact, given any two computable strongly positive generalized Bernoulli measures
µ and ν, we always have µWR ∩ νWR -= ∅. This is because the class WG of
generic sequences is included in both (the argument we used for Proposition 1.8.3
works for any computable strongly positive generalized Bernoulli measure).

Some of the implications of this theorem hold for any pair (µ, ν) of computable
measures. These will be proven in the next section (Theorem 3.3.1 and Theo-
rem 3.3.2). For now, we will prove the implications of this theorem that are specific
to the Bernoulli case, waiting for the next section to give the full proof (page 123).

Proposition 3.2.7. Let µ and ν be two computable strongly positive general-
ized Bernoulli measures of parameter (pi)i∈N and (qi)i∈N, respectively, such that∑

i(pi− qi)
2 < +∞. Let d be a computable µ-martingale and α be a sequence such

that lim d(α↾n) = +∞. Then there exists a (not necessarily normed) computable
ν-martingale d′ such that for all n it holds that ln d(α↾n) ≤ d′(α↾n) + O(1).

Proof. We first consider the ν-martingale that satisfies

Guess(d′, u) = Guess(d, u) and Stake+(d′, u) = Bet+(d, u) .

for all u ∈ 2<ω. This means than whenever d bets a fraction ρ of its capital on a
value of a bit, d′ bets an amount ρ on that value (e.g. if d bets 10% of its capital,
d′ bets 0.1 units of money).

For the moment, assume that d′ may incur debts, i.e., d′ is allowed to take
negative values. We will see later on how to modify d′ to make it positive while
still successful on α.

For ease of notation, let ρn = Bet+(d, α↾n). For each n, there are three cases:

104 Chapter 3. Randomness for computable measures

d(α↾n+1)/d(α↾n) d′(α↾n+1) − d′(α↾n)

Guess(d, α↾n) -= αn 1 − ρn −ρn

Guess(d, α↾n) = αn = 0 1 + ρn
1−pn

pn
ρn

1−qn

qn

Guess(d, α↾n) = αn = 1 1 + ρn
pn

1−pn
ρn

qn

1−qn

By letting xn be equal to −ρn, or ρn
pn

1−pn
, or ρn

1−pn

pn
in the three different cases,

respectively, the entries in the table above can be rewritten as follows.

d(α↾n+1)/d(α↾n) d′(α↾n+1) − d′(α↾n)

Guess(d, α↾n) -= αn 1 + xn xn

Guess(d, α↾n) = αn = 0 1 + xn xn

(
1 + qn−pn

pn(1−qn)

)

Guess(d, α↾n) = αn = 1 1 + xn xn

(
1 + pn−qn

qn(1−pn)

)

By induction it follows for all n, that

d(α↾n) =

n−1∏

k=0

(1 + xk) .

By strong positivity, choose η > 0 such that all pi and qi are contained in the inter-
val [η, 1−η] and let m = ⌈η−1⌉. Then by definition all xn are in the interval [−1, m].
Let c be a constant such that for all x ∈ [−1, m], ln(1 + x) ≤ x − c x2.

ln d(α↾n) = ln

n−1∏

k=0

(1 + xk) =

n−1∑

k=0

ln(1 + xk) ≤
n−1∑

k=0

xk −
n−1∑

k=0

c x2
k . (3.1)

Concerning the martingale d′, for all n and for all three cases discussed above,
we have

xn − m2|xn||pn − qn| ≤ d′(α↾n+1) − d′(α↾n) ,

hence, by induction, it follows for all n that

n−1∑

k=0

xk −
n−1∑

k=0

m2|xk||pk − qk| ≤ d′(α↾n) . (3.2)

Next let c′ =
√∑∞

i=0(pi − qi)2 and choose a constant c′′ such that for all t ≥ 0,

m2c′
√

t ≤ ct + c′′ .

Then we obtain by the Cauchy-Schwarz inequality

n−1∑

k=0

m2|xk||pk − qk| ≤ m2

√√√√
n−1∑

k=0

(pk − qk)2

√√√√
n−1∑

k=0

x2
k

= m2c′

√√√√
n−1∑

k=0

x2
k

≤ c

(
n−1∑

k=0

x2
k

)
+ c′′

3.2. Generalized Bernoulli measures 105

Together with (3.1) and (3.2), this yields

ln d(α↾n) ≤ d′(α↾n) + c′′ .

Recall that up to now, we have assumed that d′ is a normed ν-martingale of a
special type that is allowed to incur debts. Furthermore, by assumption, we have

lim
n

d(α↾n) = +∞ , hence lim
n

d′(α↾n) = +∞ ,

and thus there is a natural number M such that −M < d′(α↾n) for all n. Hence,
d′′ = d′ + max(c′′, M + 1) is a ν-martingale that for all n satisfies 1 ≤ d′′(α ↾n)
and ln d(α↾n) ≤ d′′(α↾n). Finally let d′′′ be the ν-martingale that Guess(d′′′, u) =
Guess(d′′, u) for all u, and Stake+(d′′′, u) = Stake+(d′′, u) if d′′(u) ≥ 1, and Stake+(d′′′, u) =
0 otherwise. The ν-martingale d′′′ is then positive on every u ∈ N and by definition,
for all n:

d′′′(α↾n) = d′′(α↾n) ≥ ln d(α↾n)

The ν-martingale d′′′ is as desired.

#

Corollary 3.2.8. Let µ and ν be two computable strongly positive general-
ized Bernoulli measures of parameter (pi)i∈N and (qi)i∈N, respectively, such that∑

i(pi − qi)
2 < +∞. Then µCR = νCR, µSR = νSR and µWR = νWR.

Proof. Let us first prove this for computable randomness. Let α /∈ µCR. By defi-
nition, there exists a computable µ-martingale d such that lim supn d(α↾n) = +∞.
By Remark 1.4.8 (which can be easily adapted to the setting of arbitrary com-
putable measures), we can assume that limn d(α↾n) = +∞. By Proposition 3.2.7,
there exists a computable ν-martingale d′ such that d′(α↾n) ≥ ln d(α↾n) which in
particular implies limn d′(α↾n). Hence, α /∈ νCR. By symmetry, we have proven
that µCR = νCR. The argument is almost the same for Schnorr randomness: if
α /∈ µSR, as we said in Remark 3.1.8 there exists a computable µ-martingale d and
a computable order h such that d(α↾n) ≥ h(n) for infnitely many n. By Proposi-
tion 3.2.7, there exists a computable ν-martingale d′ such that d′(α↾n) ≥ ln d(α↾n)
for all n, which in particular implies d′(α↾n) ≥ ln h(n) for infinitely many n. And
since n 3→ ln h(n) is a computable order, this proves α /∈ νSR. The proof for
weak randomness is the same as for Schnorr randomness, just replacing “infinitely
many n” by “for all n”. #

3.2.4 Applications to stochasticity

The effective version of Kakutani’s theorem turns out very useful in the study of
stochasticity. The central theorem in this direction is the following.

Theorem 3.2.9 (Shen [54], after van Lambalgen [57]). Let µ be a computable
strongly positive generalized Bernoulli measure of parameter (pi)i∈N, such that the
pi tend to 1/2. Then µMLR ⊆ KLStoch.

106 Chapter 3. Randomness for computable measures

To prove this theorem, we will use the following result of classical probability
theory (for a proof, see for example Alon and Spencer [1]).

Lemma 3.2.10 (Azuma’s inequality). Let X0, . . . ,Xn−1 be random variables tak-
ing their values in R such that for all k, |Xk+1−Xk| ≤ c and E(Xk+1|X0, . . . , ,Xk) =
Xk. For all n ∈ N and m > 0, we have the following inequality:

Pr
[
|Xn − X0| > m

]
< 2 exp

(−m2

2nc2

)

Proof of Theorem 3.2.9. Let µ be a computable generalized Bernoulli measure of
parameter (pi)i∈N where the pi tend to 1/2. Let σ be a computable non-monotonic
selection rule. We pick a sequence α at random with respect to the probability
measure µ and we run σ on α. Let i0, i1, . . . be the positions of the bits selected
from α by σ. The ik are random variables of parameter α which take their values
in N ∪ {⊥}, where ik = ⊥ means that the subsequence selected from α by σ has
length less than k.

We define a sequence of random variables (Xσ
n)n∈N by setting Xσ

0 = 0 and for
all n:

Xσ
n+1 =

{
#0(αi0 . . . αin) −

∑n
k=0 pik if in -= ⊥

Xσ
n otherwise

By definition of µ, the sequence (Xσ
n)n∈N satisfies the hypotheses of Azuma’s

inequality, with c = 1. This allows us to prove:

Lemma 3.2.11. If α is µ-Martin-Löf random we have

lim
n→+∞

Xσ
n

n
= 0

Subproof. Suppose this is not the case, i.e. there exists some rational δ > 0 such
that |Xσ

n(α)| ≥ δn for infinitely many n. In other words, for infinitely many n, α
belongs to Un where we define for all n:

Un = {β ∈ 2ω : |Xσ
n(β)| ≥ δn}

By Azuma’s inequality (with c = 1), for all n, µ(Un) ≤ 2 exp
(
−δ2n

2

)
This implies

that
∑

n µ(Un) < +∞. Moreover, it is easy to see that the Un are open sets, and
that they are computably enumerable (uniformly in n) as σ is computable. Thus,
by Theorem 1.3.4 (which can easily be adapted to any computable measure), no
µ-Martin-Löf random sequence can belong to infinitely many Un, contradicting the
fact that α is µ-Martin-Löf random.

To conclude the proof of Theorem 3.2.9, let α by µ-Martin-Löf random. Let σ
be a computable non-monotonic selection rule that selects an infinite subsequence
from α. We have by the above lemma:

lim
n→+∞

Xσ
n(α)

n
= 0

3.2. Generalized Bernoulli measures 107

i.e.

lim
n→+∞

(
#0(αi0 . . . αin)

n
−

∑n
k=0 pik

n

)
= 0 (3.3)

But since the pi tend to 1/2:

lim
n→+∞

∑n
k=0 pik

n
=

1

2
(3.4)

By (3.3) and (3.4), we have:

lim
n→+∞

#0(αi0 . . . αin)

n
=

1

2

which precisely means that the subsequence selected from α by σ satisfies the Law
of Large Numbers. This being true for all computable non-monotonic selection rules
that select an infnite subsequence from α, we have proven that α is Kolmogorov-
Loveland stochastic.

#

As it turns out, Shen’s theorem even allows us to separate λ-weak randomness
from Kolmogorov-Loveland stochasticity. Indeed, Merkle et al. [47] constructed a
particular computable generalized Bernoulli measure of parameter (pi)i∈N such that
the pi tend to 1/2 but

∑
i(pi − 1

2)2 = +∞, whose Martin-Löf random elements are
not λ-weakly random (but are Kolmogorov-Loveland stochastic by Shen’s theorem).
In fact, thanks to Theorem 3.2.5, we can strengthen this result: any generalized
Bernoulli measure of this type works!

Corollary 3.2.12. Let µ be a computable generalized Bernoulli measure of pa-
rameter (pi)i∈N such that the pi tend to 1/2 and

∑
i(pi − 1/2)2 = +∞. Then

µMLR ⊆ KLStoch and µMLR ∩ λWR = ∅. This in particular means that
KL-stochasticity does not imply λ-weak randomness.

Proof. We have just proven that µMLR ⊆ KLStoch. To see that µMLR ∩
λWR = ∅, apply Theorem 3.2.5 (part (ii), implication (a) ⇒ (g)) to µ and ν = λ

to prove that µSR ∩ λWR = ∅. A fortiori, µMLR ∩ λWR = ∅. #

Using Azuma’s inequality, we can also prove that the bound H
(

1
2 + δ

)
in The-

orem 2.2.31 is optimal:

Theorem 3.2.13. Let α be a µ-Martin-Löf random sequence, where µ is the
generalized Bernoulli measure of constant parameter 1

2 + δ where δ is a positive
rational. Then:
(i) cdim(α) ≤ H

(
1
2 + δ

)

(ii) Every subsequence β selected from α by a computable non-monotonic selection
rule satisfies Bias(β) ≤ δ.

Proof. Let α be a µ-Martin-Löf random sequence. To prove (i) we argue that the
number of zeros in α↾n is roughly (1/2+ δ)n for all n, and that a string of length n
with (1/2 + δ)n zeros has a Kolmogorov complexity of at most H

(
1
2 + δ

)
n. We

start with the first assertion:

108 Chapter 3. Randomness for computable measures

Lemma 3.2.14. #0(α↾n) =
(

1
2 + δ

)
n + o(n)

Subproof. Let (Yn)n∈N be the random variables defined, for a β chosen at random
according to µ, by Yn = #0(β↾n) − (1/2 + δ)n. The Yn satisfy the conditions of
Azuma’s inequality (with measure µ understood, and c = 1). Hence for all n, the
open set

Un =
{

β ∈ 2ω : |Yn(β)| ≥ n2/3
}

(which is c.e. uniformly in n) has µ-measure at most 2 exp
(
−n1/3

2

)
. Thus,

∑
n µ(Un) < +∞.

Hence by Theorem 1.3.4, α belongs to only finitely many Un, which means:

#0(α↾n) =

(
1

2
+ δ

)
n + O(n2/3)

Lemma 3.2.15. Let w be a string of length n, and s = #0(w)
n . The following

inequality holds: C(w) ≤ H (s) n + O(log n).

Subproof. w can be described by its position in the set

A = {u ∈ 2<ω : |u| = n ∧ #0(u) = sn}

i.e. we have by Lemma 2.1.15:

C(w) ≤ log(#A) + log(C(A))

≤ log(#A) + O(log(n))

≤ log

(
n

sn

)
+ O(log n)

≤ H (s)n + O(log n)

(the last inequality follows from Stirling’s formula).

By the two above lemmas, we have C(α↾n) ≤ H
(

1
2 + δ

)
n + o(n) for all n. By

Theorem 2.2.27 (and Remark 2.2.28), it follows that cdim(α) ≤ H
(

1
2 + δ

)
.

The part (ii) of the proof is very similar to the proof of Theorem 3.2.9. Fix
a computable non-monotonic selection rule σ. We pick a sequence β at random
with respect to the probability measure µ and we run σ on β. Let i0, i1, . . . be the
positions of the bits selected from β by σ. The ik are random variables of parameter
β which take their values in N ∪ {⊥}. We define a sequence of random variables
(Xσ

n)n∈N by setting Xσ
0 = 0 and for all n:

Xσ
n+1 =

{
#0(β(i0) . . . β(in)) −

(
1
2 + δ

)
n if in -= ⊥

Xσ
n otherwise

By definition of µ, the sequence (Xσ
n)n∈N satisfies the hypotheses of Azuma’s

inequality. Hence, the open set

Vn = {β ∈ 2ω : |Xσ
n(β)| ≥ n2/3}

3.3. Equivalence and consistency for arbitrary measures 109

(which is c.e. uniformly in n) has µ-measure at most 2 exp
(
−n1/3

2

)
. Thus,

∑
n µ(Vn) <

+∞. Hence by Theorem 1.3.4, our µ-Martin-Löf random sequence α belongs to only
finitely many Un, which means

∣∣∣∣#0(α(i0) . . . α(in)) −
(

1

2
+ δ

)
n

∣∣∣∣ = O
(
n2/3

)

In other words, if the selected subsequence γ = α(i0)α(i1) . . . is infinite, it satisfies
Bias(γ) = δ. This being true for every computable non-monotonic selection rule σ,
we are done. #

3.3 Equivalence and consistency for arbitrary measures

We now turn to the general case of arbitrary computable measures. Given a notion
of randomness, two measures are “effectively consistent” if their classes of random
sequences are not disjoint, and “effectively equivalent” if they have the same random
sequences. We first classify the different effective consistency relations, for which
the picture is quite simple. As we will see, things get much more complicated for
effective equivalence relations.

3.3.1 Consistency

Effective consistency relations induced by Martin-Löf randomness, Schnorr ran-
domness and computable randomness are equivalent to classical consistency:

Theorem 3.3.1. Let µ and ν be computable measures. The following are equiva-
lent:
(a) µ and ν are inconsistent
(b) µMLR ∩ νMLR = ∅
(c) µCR ∩ νCR = ∅
(d) µSR ∩ νSR = ∅
(e) µWR ∩ νSR = ∅

Proof. Since for any given measure µ one has

µMLR ⊆ µCR ⊆ µSR ⊆ µWR

the implications (e) ⇒ (d) ⇒ (c) ⇒ (b) are immediate. Moreover, the class of
µ-Martin-Löf sequence having measure 1 for every µ, the implication (b) ⇒ (a)
follows directly. It remains to prove the implication (a) ⇒ (e). Let µ and ν be two
inconsistent measures i.e. there exists a set X such that µ(X) = 0 and ν(X) = 1.
Fix ε > 0. By regularity of µ, for all n, there exists an open set U that contains X
and such that µ(U) < ε (and of course ν(U) = 1 since U contains X). But since
the cylinders form a basis for the topology, U is a countable union of cylinders:
U =

⋃+∞
i=0 [wi]. We have

1 = ν (Un) = ν

(
+∞⋃

i=0

[wi]

)
= lim

N→+∞
ν

(
N⋃

i=0

[wi]

)

110 Chapter 3. Randomness for computable measures

Hence, taking N large enough, the set V =
⋃N

i=0[wi] satisfies µ(V) < ε (since V ⊆ U)
and ν(V) > 1 − ε. What we have proven is that for all ε > 0 there exists a finite
union V of cylinders that has µ-measure smaller than ε and ν-measure greater than
1 − ε.

Now, consider the procedure which given n enumerates all the finite subsets A
of 2<ω and returns the first one such that µ([A]) < 2−n and ν([A]) > 1− 2−n. This
procedure will eventually find such an A by the above discussion. Moreover, this
procedure is computable as the finite subsets of 2<ω can be computably enumerated
and µ and ν are computable measures. Hence, there exists a uniformly computable
sequence (An)n∈N of finite subsets of 2<ω such that µ([An]) < 2−n and ν([An]) >
1 − 2−n for all n. Now, consider the set

Y = lim sup
n

([An]) =
⋂

n∈N

⋃

k>n

[Ak]

For any given n, the set Wn =
⋃

k>n[Ak] is a c.e. open set, uniformly in n.
Moreover, one has µ(Wn) ≤ ∑

k>n 2−k ≤ 2−n. Moreover, µ(Wn) is computable
(uniformly in n) as the measure of [Ak] decreases exponentially in k. Hence, the
sequence (Wn)n∈N is a µ-Schnorr test, which implies µSR ∩ Y = ∅. On the other
hand, for all n, ν(Wn) = 1 as ν(Wn) ≥ ν([An′]) ≥ 1 − 2−n′

for all n′ > n. Being
a c.e. open set of ν-measure 1, Wn must contain all ν-weakly random sequences.
This being true for all n, we have νWR ⊆ Y. Together with µSR ∩ Y = ∅, this
implies µSR ∩ νWR = ∅. #

3.3.2 A classification of equivalence relations

The effective equivalence relations induced by Martin-Löf randomness, Schnorr ran-
domness, computable randomness and weak randomness can be classified as follows.

Theorem 3.3.2. For all computable probability measures µ and ν, the following
implications hold. Except for the transitive closure of the implications shown, no
other implication is true in general.

µCR = νCR

↓
µMLR = νMLR µSR = νSR

ց ւ
µ ∼ ν

↓
µWR = νWR

Remark 3.3.3. The implication structure between the different equivalence rela-
tions stated in this theorem is surprising in so far as it does not reflect the impli-
cations that hold between the underlying notions of randomness (see page 43).

The rest of this chapter will be devoted to the proof of this theorem. In this
section, we prove that all the above implications hold, while the next section will

3.3. Equivalence and consistency for arbitrary measures 111

deal with the construction of counter-examples for all the other possible implica-
tions.

One of the implications of Theorem 3.3.2 was already present in the work of
Muchnik et al.:

Proposition 3.3.4 (Muchnik et al. [50]). Let µ and ν be measures. If µCR =
νCR, then µMLR = νMLR.

Proof. Let µ and ν be two measures that have the same computably random se-
quences. Let α be a sequence that is not µ-Martin-Löf random. We shall prove
that α is not ν-Martin-Löf random either. We can assume that α is µ-computably
random, for if it was not, then by the hypothesis it would not be ν-computably
random, hence not ν-Martin-Löf random and we would be done. Since α is not µ-
Martin-Löf random, by Theorem 1.5.8 (which can be adapted in a straightforward
way to any computable measure), there exists a normed left-c.e. µ-martingale d
such that lim supn d(α↾n) = +∞. By Proposition 3.1.9, there exists a measure ξ

such that d = ξ/µ. Notice that this makes ξ left-c.e. For all n, we have:

d(α↾n) =
ξ(α↾n)

µ(α↾n)
=

ξ(α↾n)

ν(α↾n)

ν(α↾n)

µ(α↾n)

The term ν(α ↾n)/µ(α ↾n) is upper-bounded by a constant. This is because ν/µ
is a computable µ-martingale (Proposition 3.1.9), and we have assumed that α is
µ-computably random. Hence the divergence of lim supn d(α ↾n) comes from the
term ξ(α↾n)/ν(α↾n) in the above equation i.e. one must have

lim sup
n

ξ(α↾n)

ν(α↾n)
= +∞

But ξ/ν is a ν-martingale (Proposition 3.1.9), and it is left-c.e. as ξ is left-c.e. and
ν is computable. This means that a left-c.e. ν-martingale succeeds on α, hence α

is not ν-Martin-Löf random (Theorem 1.5.8). #

Proposition 3.3.5. Let µ and ν be two computable measures.
(i) If µMLR = νMLR, then µ ∼ ν.
(ii) If µSR = νSR, then µ ∼ ν.

Proof. The proof is very similar to that of Theorem 3.3.1, therefore we only sketch
this one. We prove (i) and (ii) at the same time. Suppose that µ and ν are
not equivalent. By symmetry we may assume that there exists a set X such that
µ(X) = 0 and ν(X) > 0. Let q be a rational number such that ν(X) > q > 0.
Given n, it is possible to find effectively (and uniformly in n) a finite subset An of
2<ω such that µ([An]) < 2−n and ν([An]) > q − 2−n. Then, the set

Y = lim sup
n

([An]) =
⋂

n∈N

⋃

k>n

[Ak]

112 Chapter 3. Randomness for computable measures

satisfies µ(Y) = 0 and ν(Y) ≥ q. The set
⋃

k>n[Ak] is a c.e. open set (uniformly
in n) whose µ-measure is computable (uniformly in n) and smaller than 2−n. Hence,
the family

(⋃
k>n[Ak]

)
n∈N

is a µ-Schnorr test whose intersection is Y, hence µSR∩
Y = ∅ (and a fortiori µMLR ∩ Y = ∅). But since ν(Y) > 0 its intersection with
νMLR (which has ν-measure 1) is non-empty. Any sequence α ∈ 2ω that belong
to this intersection witnesses the fact that µMLR -= νMLR and µSR -= νSR. #

Time is now ripe to give the full proof of Theorem 3.2.5:

Proof of Theorem 3.2.5. (i). By Corollary 3.2.8, we have (a) ⇒ (e) and (a) ⇒ (f).
By Theorem 3.3.2: (e) ⇒ (d), (d) ⇒ (c), (f) ⇒ (c), and (c) ⇒ (g). The implication
(g) ⇒ (b) comes from Theorem 3.3.1 (part (a) ⇒ (e)). Finally, (b) ⇒ (a) is exactly
the part of Kakutani’s theorem that we have proven.

(ii) The equivalence of (b), (d), (e), (f) and (g) holds by Theorem 3.3.1. (a) ⇒
(b) is the part of Kakutani’s theorem that we have proven, (b) ⇒ (c) is trivial, and
(c) ⇒ (a) is exactly the implication (a) ⇒ (c) of part (i). #

It turns out that Theorem 3.2.5 (which we have now fully proven) implies Kaku-
tani’s theorem:

Proof of Theorem 3.2.3. Given two strongly positive generalized Bernoulli mea-
sures µ and ν, it suffices to take an oracle β ∈ 2ω that computes their respective
parameters and relativize Theorem 3.2.5 to β. #

3.3.3 Counter-examples

We now turn to the more delicate task of showing that all other implications be-
tween the equivalence relations we study do not hold. When constructing corre-
sponding counter-examples, the sets introduced in the following definition will play
a crucial role.

Definition 3.3.6. For computable measures µ and ν and for k ∈ R+, let

Lk
µ/ν =

{
α ∈ 2ω : sup

n

µ(α↾n)

ν(α↾n)
≥ k

}
and L∞

µ/ν =
⋂

k∈N

Lk
µ/ν

Since for all µ, ν the ratio µ/ν is a ν- martingale, by Ville’s inequality, one has:

ν(Lk
µ/ν) ≤ 1/k and ν(L∞

µ/ν) = 0

If µ and ν are computable, the second part of the above statement can be made
even more precise:

Lemma 3.3.7. Let µ and ν be computable measures. We have L∞
µ/ν ∩ νCR = ∅ (a

fortiori, L∞
µ/ν ∩ νMLR = ∅ and ν(L∞

µ/ν) = 0).

Proof. This is because µ/ν is a computable ν-martingale.

3.3. Equivalence and consistency for arbitrary measures 113

The equivalence relations between µ and ν that we study in this chapter are
closely related to the set L∞

µ/ν .

Proposition 3.3.8. For every pair µ and ν of computable measures the following
equivalences hold.

(i) µ ∼ ν if and only if µ(L∞
µ/ν) = ν(L∞

ν/µ) = 0

(ii) µMLR = νMLR if and only if L∞
µ/ν ∩ µMLR = L∞

ν/µ ∩ νMLR = ∅

(iii) µCR = νCR if and only if L∞
µ/ν ∩ µCR = L∞

ν/µ ∩ νCR = ∅

Proof. For all three equivalences the “only if” direction is immediate from Lemma 3.3.7.
Let us now prove the “if” directions. By symmetry for assertion (i) it suffices to
demonstrate that every set that is ν-null is also µ-null, and similarly for the two
other assertions it suffices to demonstrate µMLR ⊆ νMLR and µCR ⊆ νCR,
respectively.

Lemma 3.3.9. For every open set U and all measures µ and ν it holds that

µ
(
U ∩ Lk

µ/ν

)
≤ k ν(U) .

Subproof. By additivity of measures, it suffices to prove this for cylinders. Let

w ∈ 2<ω, and let us prove that µ
(
[w] ∩ Lk

µ/ν

)
≤ k ν([w]). If [w]∩Lk

µ/ν = ∅, we are

done. Otherwise, let α ∈ [w]∩Lk
µ/ν . By definition, this means that w is a prefix of

α and for all n, µ(α↾n)/ν(α↾n) ≤ k which in particular implies µ(w) ≤ k ν(w). A

fortiori, µ
(
[w] ∩ Lk

µ/ν

)
≤ k ν([w]).

We return to the proof of Proposition 3.3.8:

(i) Suppose µ(L∞
µ/ν) = ν(L∞

ν/µ) = 0, and let X be a set such that ν(X) = 0.
For given k ∈ N, by regularity, let U be an open set that contains X and such
that ν(U) ≤ 1/k2. Then we have

µ(X) ≤ µ(U)

≤ µ
(
U ∩ Lk

µ/ν

)
+ µ(U ∩ Lk

µ/ν)

≤ µ(Lk
µ/ν) + k ν(U) (by Lemma 3.3.9)

≤ µ(Lk
µ/ν) + 1/k

This is true for all k, we can let k tend to +∞, and we get µ(X) ≤ µ(L∞
µ/ν).

And by assumption, µ(L∞
µ/ν) = 0.

(ii) Suppose L∞
µ/ν ∩µMLR = L∞

ν/µ ∩ νMLR = ∅. Let α /∈ νMLR. In case α is

a member of L∞
µ/ν , by assumption α /∈ µMLR holds and we are done. Otherwise,

114 Chapter 3. Randomness for computable measures

there is a nonzero natural number k such that α /∈ Lk
µ/ν . Fix a ν-Martin-Löf

test {Un}n∈N where α ∈ ⋂
n Un and a computable function (n, i) 3→ un,i such that

for all n, the set Un is the disjoint union of the basic open sets [un,1], [un,2], For
all n, let

Vn =
⋃

{[un,i] : i ∈ N and µ(un,i) ≤ k ν(un,i)} .

Then {Vn}n∈N is a uniformly effectively sequence of open sets which, by defini-
tion, satisfies µ(Vn) ≤ k ν(Un) for all n, hence {Vn}n∈N is a µ-Martin-Löf test by
Lemma 1.3.2. But α /∈ Lk

µ/ν , hence for all n, µ(α↾n) ≤ k ν(α↾n) hence α ∈ Vn for

all n and thus α ∈ ⋂
n Vn, and consequently α /∈ µMLR.

(iii) Suppose L∞
µ/ν ∩ µCR = L∞

ν/µ ∩ νCR = ∅. Let α /∈ νCR, i.e., there is
a µ-martingale that succeeds on A and thus, by Proposition 3.1.9, there exists a
computable measure ξ such that

lim sup
n→∞

ξ(α↾n)

ν(α↾n)
= +∞ . (3.5)

In case A is a member of L∞
µ/ν , by assumption α /∈ µCR holds and we are done.

Otherwise, the quotients µ(α↾n)/ν(α↾n) are bounded from above and (3.5) remains
valid with ν replaced by µ, which by Proposition 3.1.9 implies α /∈ µCR.

#

Proposition 3.3.8 will be extremely useful in the construction of counter-examples.
In fact we will use a slight variation of it. Indeed, we will give several constructions
of measures µ where we only define the values of µ(u) for words u whose length is a
power of 3. First notice that if a function u 3→ m(u) is computable when restricted
to the words whose length is a power of 3, and if the condition

m(u) =
∑

{w: |w|=3|u|}

m(w)

is satisfied for all such words, then m canonically extends to a computable measure
µ (for the words u such that 3s < |u| < 3s+1, set inductively (in decreasing order
of length) µ(u) = m(u0) + m(u1)). Similarly, if a function u 3→ d(u) is computable
when restricted to the words whose length is a power of 3, and if the condition

(3|u|+1 − 3|u|)d(u) =
∑

{w: |w|=3|u|}

d(w)

is satisfied for all such words, then d canonically extends to a computable λ-
martingale.

That said, we need to make sure that things still work if we restrict our attention
to words whose length is a power of 3. But this is quite naturally the case, as the
cylinders [u] generated by such words form a basis for the topology of 2ω. For
example, if U is an effectively open set, one can give an enumeration of U with
such cylinders: instead of enumerating a cylinder [w] where 3s < |w| < 3s+1, just
enumerate {[u] : w ⊏ u and |u| = 3s+1}. Based on this observation, we introduce
the following definition.

3.3. Equivalence and consistency for arbitrary measures 115

Definition 3.3.10. Let µ and ν be computable measures. Then for every k ∈ R+

we put

L̂k
µ/ν =

{
α ∈ 2ω : sup

n

µ(α↾3n)

ν(α↾3n)
≥ k

}
and L̂∞

µ/ν =
⋂

k∈N

L̂k
µ/ν .

Then we get the desired variant of Proposition 3.3.8.

Proposition 3.3.11. For every pair µ and ν of computable measures the following
equivalences hold.

(i) µ ∼ ν if and only if µ(L̂∞
µ/ν) = ν(L̂∞

ν/µ) = 0,

(ii) µMLR = νMLR if and only if L̂∞
µ/ν ∩ µMLR = L̂∞

ν/µ ∩ νMLR = ∅,

(iii) µCR = νCR if and only if L̂∞
µ/ν ∩ µCR = L̂∞

ν/µ ∩ νCR = ∅.

Similarly, one obtains the following characterizations of Schnorr randomness and
weak randomness, which can be verified by using savings martingales as discussed
in Remark 1.4.8.

Proposition 3.3.12. Let µ be a computable measure. A sequence α is µ-Schnorr
random if and only if there exists no computable µ-martingale d and computable
order g such that d(α↾3n) ≥ g(n) for infinitely many n.
A sequence α is µ-weakly random if and only if there exists no computable µ-
martingale d and computable order g such that d(α↾3n) ≥ g(n) for all n.

As a further step towards the construction of counter-examples, we show the
following proposition.

Proposition 3.3.13. Let α ∈ λSR, and suppose that α is 0′-computable. There
exists a computable measure µ such that α /∈ µSR and

L̂∞
µ/λ = ∅ and L̂∞

λ/µ = {α} .

Proof. We will in fact construct a computable λ-martingale d such that: d(α↾3n)
tends to 0 as n tends to infinity, in such a way that d(α↾3n) ≤ 1/n for infinitely many
n and if β -= α, d(β↾3n) will be eventually constant. Then, setting µ(u) = λ(u)d(u)
for all words u, µ will be as desired. By the above discussion, we will only define
d(u) for those words u whose length is a power of 3, which we do by stages: at
stage s, d(u) will be defined for all words u of length 3s.

Since α is 0′ computable, it is the pointwise limit of a sequence of words {ws}s∈N.
We can moreover assume that lims→+∞ |ws| = +∞, that |ws| ≤ 3s for all s, and
that ws is a prefix of α for infinitely many s.

Let E = {u12|u| : u ∈ 2<ω}. Notice that every λ-Schnorr random sequence has
only finitely many prefixes in E. Hence, up to changing a finite number of its bits,

116 Chapter 3. Randomness for computable measures

we can assume that α has no prefix in E. Let us now proceed to the construction
of d.

S tage s = 0. Set d(ǫ) = d(0) = d(1) = 1.

S tage s + 1. Suppose d(u) is defined for a word u of length 3s. We define d(u′)
for every extension u′ of u of length 3s+1 as follows:

• if u is not an extension of ws, set d(u′) = d(u)

• if u is an extension of ws, and u′ is not in E (i.e. u′ -= u12|u|) set d(u′) = d(u)
s+1

and then set d(u12|u|) in such a way that the average value of

{d(u′) : u ⊏ u′ and |u′| = 3s+1}

is equal to d(u↾3s)

We turn to the verification.

Claim 1: The function n 3→ d(β↾3n) is eventually constant for all β -= α. Proof:
if β -= α, there exists s0 such that if s > s0, ws is not a prefix of β (because the
sequence ws pointwise converges to α -= β), and thus, by construction of d, for all
s > s0, d(β↾3s) = d(β↾3s0).

Claim 2: The function n 3→ d(α↾3n) tends to 0 and d(α↾3n) ≤ 1/n for infinitely
many n. Proof: this is a direct consequence of the definition of d. Since α has no
prefix in E, by construction of d, one has for all s either d(α↾3s+1) = d(α↾3s) or
d(α↾3s+1) = d(α↾3s)/(s + 1). Hence; s 3→ d(α↾3s) is non-increasing and is smaller
than 1/s for all s such that ws is a prefix of α, which happens infinitely often.

Let us now consider µ = λ d. By the above discussion, L̂∞
µ/λ = ∅, L̂∞

λ/µ = {α}.
Moreover, if we consider the µ-martingale d′ = λ

µ we see that for infinitely many s,

d′(α↾3s) ≥ s. Hence, by Proposition 3.3.12, α /∈ µSR.
#

Proposition 3.3.14. (i) There exists a computable measure µ such that λ ∼ µ
and nonetheless λMLR -= µMLR, λCR -= µCR, λSR -= µSR.
(ii) There exists a computable measure µ such that λMLR = µMLR and λCR -=
µCR.
(iii) There exists a computable measure µ such that λCR = µCR and λSR -=
µSR.

Proof. (i) Let α be an 0′-computable member of λMLR (such as Chaitin’s constant
Ω). Let µ be, by Proposition 3.3.13, a computable measure such that L̂∞

µ/λ = ∅,
L̂∞

λ/µ = {α} and α /∈ µSR. Since λ({α}) = 0, by Proposition 3.3.11, we have

λ ∼ µ. Moreover, since α ∈ λMLR ⊂ λCR ⊂ λSR, and α /∈ µSR, it follows that

3.3. Equivalence and consistency for arbitrary measures 117

λMLR -= µMLR, λCR -= µCR, λSR -= µSR.

(ii) Let β be an 0′-computable sequence such that β ∈ λCR \ λMLR. Such
a sequence exists by Theorem 2.2.18, where we constructed a 0′-computable se-
quence that was λ-computably random, but nonetheless had prefixes of very low
Kolmogorov complexity (hence by Schnorr theorem was not λ-Martin-Löf random).
By Proposition 3.3.13, there exists a computable measure µ such that L̂∞

µ/λ = ∅,
L̂∞

λ/µ = {β} and β /∈ µSR (a fortiori β /∈ µCR). By Proposition 3.3.11, we have

λMLR = µMLR (since β /∈ λMLR) and λCR -= µCR (since β ∈ λCR \ µCR).

(iii) By Corollary 2.2.26, there exists a sequence γ which is left-c.e. (hence
0′-computable) and not Church stochastic (hence non-computably random) and
Schnorr random. Let γ be such a sequence. By Proposition 3.3.13, there exists
a computable measure µ such that L̂∞

µ/λ = ∅, L̂∞
λ/µ = {γ} and γ /∈ µSR. By

Proposition 3.3.11, we have λCR = µCR (since γ /∈ λCR) and λSR -= µSR

(since γ ∈ λSR \ µSR).
#

Proposition 3.3.15. There exists a computable measure µ such that λSR =
µSR, λCR -= µCR and λMLR -= µMLR

Proof. First, we prove the following lemma.

Lemma 3.3.16. Let µ and ν be two computable measures and α ∈ 2ω. If α ∈
νSR\µSR, then there exists a computable order g such that ν(α↾3n)

µ(α↾3n) ≥ g(n) infinitely
often.

Subproof. Let α ∈ νSR \µSR. By Proposition 3.1.9, and Proposition 3.3.12, there

exists a computable measure ξ and a computable order g such that ξ(α↾3n)
µ(α↾3n) ≥ g(n)

for infinitely many n. Since α ∈ νSR and since
√

g is a computable order, for almost

all n, ξ(α↾3n)
ν(α↾3n) ≤

√
g(n). Hence, for infinitely many n: ν(α↾3n)

µ(α↾3n) ≥ ξ(α↾3n)
µ(α↾3n)

ν(α↾n)
ξ(α↾3n) ≥

g(n)√
g(n)

=
√

g(n).

Let Ω be Chaitin’s constant, which is in λMLR. We will construct, in a very
similar way as for Proposition 3.3.13 a computable measure µ such that L̂∞

µ/λ
= ∅,

L̂∞
λ/µ = {Ω} but this time, we want Ω to be µ-Schnorr random. By the above

lemma, it will be sufficient to ensure that λ(Ω↾3n)
µ(Ω↾3n) tends to infinity more slowly than

any computable order. Hence, we will again construct a λ-martingale d such that
limn d(Ω↾3n) = 0 and if β -= Ω, d(β↾3n) will be eventually constant, ensuring that
d(Ω↾3n) decreases very slowly.

Since Ω is a left-c.e. sequence, let (ws)s∈N be a sequence of words, increasing
for the lexicographic order and such that Ω is the pointwise limit of this sequence.
We transform (ws)n∈N into a reduced form (w′

s)n∈N as follows. Set w′
0 = ǫ. Then,

by induction, if w′
0, . . . , w

′
s are already defined, w′

s+1 is defined to be the shortest
prefix of ws+1 that does not belong to w′

0, . . . , w
′
s. This way, the sequence (w′

s)n∈N

is computable (since (w′
s)n∈N is) and has the following properties:

118 Chapter 3. Randomness for computable measures

Lemma 3.3.17.

(a) For all s, all the strict prefixes of w′
s belong to w′

0, . . . , w
′
s−1.

(b) (w′
s)n∈N is increasing for the lexicographic order.

(c) All prefixes of Ω appear in the sequence (w′
s)n∈N.

(d) (w′
s)n∈N pointwise converges to Ω.

(e) |ws| ≤ s for all s.

Subproof. (a) For all s, by definition of w′
s, the prefix u of w′

s of length |w′
s| − 1

belongs to w′
0, . . . , w

′
s−1. We get the desired result by induction.

(b) We prove by induction that w′
0 <lex . . . <lex w′

t. Suppose this is true
at stage t. For sake of contradiction, suppose this is not true at stage t + 1 i.e.
w′

t+1 ≤lex w′
s for some s ≤ t. Hence

w′
t+1 ≤lex w′

s ≤lex ws ≤lex wt+1

(the second inequality comes from the definition of w′
s, the third one from the fact

that the w are increasing). Since w′
t+1 is a prefix of wt+1, the above inequalities

tell us that w′
t+1 is also a prefix of w′

s. But by (a), this means that w′
t+1 = w′

r for
some r < s. This contradicts the definition of w′

t+1.
(c) Let u be a prefix of Ω. Since the sequence (ws)s∈N pointwise converges to

Ω, there exists some t such that for all s ≥ t, u is a prefix of ws. On the other
hand, by (b) the sequence (w′

s)n∈N is increasing for ≤lex, it has no repetition, hence
limt |wt| = +∞. Let r ≥ t such that |wr| ≥ |u|. Then, w′

r is a prefix of wr (by
definition), and is longer than u, which is also a prefix of wr (since r ≥ t). Hence, u
is a prefix of w′

r. Applying (a), this tells us that u appears in the sequence (w′
s)n∈N.

(d) This is a direct consequence of (b) and (c).
(e) This follows from (a) and a straightforward induction.

We now return to the proof of Proposition 3.3.15. Like in the proof of Propo-
sition 3.3.13, we set E = {u12|u| : u ∈ 2<ω}. Clearly, Ω has only finitely many
prefixes in E, so up to modifying it on a finite numer of bits, we can assume that
it has no prefix in E.

We construct a computable λ-martingale d such that d(Ω ↾3s) tends to 0 slowly
(this will be made precise below), and if β -= Ω, d(β↾n) is eventually constant:

S tage s = 0. Set d(ǫ) = d(0) = d(1) = 1.

S tage s + 1. Suppose d(u) is defined for a word u of length 3s. We define d(u′)
for every extension u′ of u of length 3s+1 as follows:

• if u is not an extension of w′
s, set d(u′) = d(u)

• if u is an extension of w′
s, and u′ is not in E (i.e. u′ -= u12|u|) set d(u′) = 1

|w′

s|+1

and then set d(u12|u|) in such a way that the average value of

{d(u′) : u ⊑ u′ and |u′| = 3s+1}

is equal to d(u)

3.3. Equivalence and consistency for arbitrary measures 119

It is not obvious that the second case is always well defined: we need to make
sure that d(u) ≥ 1

|w′

s|+1 when u is an extension of w′
s of length 3s (i.e. d needs

to have enough capital at u to distribute among the extensions of u). We prove
this using Lemma 3.3.17, by induction. This is clearly true for s = 0. For the
induction step, suppose this is true for some all t < s. Let u be an extension of
w′

s of length 3s. By Lemma 3.3.17, there exists t < s such that w′
t is a the prefix

of w′
s of length |w′

s| − 1 (since the sequence w′ is increasing for the lexicographic
order, this also implies that none of the w′

r for t < r < s are prefixes of u). By
the induction hypothesis, we have d(u↾3t) ≥ 1

|w′

t|+1
. By construction of d, we then

have d(u↾3t+1) ≥ 1
|w′

t|+1
. For all t < r < s, since w′

r is not a prefix of u, still by

construction of d, d(u↾3r+1) = d(u↾3r). This means that d(u↾3s) = d(u↾3t), hence
d(u↾3s) ≥ 1

|w′

t|+1
≥ 1

|w′

s|+1 , which completes the induction.

Let us now check that d is as desired. Let α ∈ 2ω. For all s, we have d(α↾3s+1) =
d(α↾3s), unless w′

s is a prefix of α. Since the w′
s pointwise converge to Ω, if α -= Ω,

α has only finitely many prefixes in (w′
s)n∈N, hence d(α↾3s) is eventually constant

(and positive by construction). Let us now study the behaviour of d(Ω ↾3s). By
Lemma 3.3.17, there exist t0 < t1 < t2 < . . . such that Ω↾i= w′

ti for all i (and if s is
not a ti, w′

s is not a prefix of Ω. By construction of d, it is easy to check that for all i:
d(Ω↾3ti+1) = 1

|wti+1| = 1
i+1 and for all s ∈ (ti, ti+1], d(Ω↾3s) = d(Ω↾3ti+1) = 1

i+1 .

Hence, d(Ω↾3s) is nonincreasing and tends to 0 as s tends to +∞. However, it tends
to 0 very slowly:

Lemma 3.3.18. For every computable order g, d(Ω↾3s) ≥ 1/g(s) for almost all s.

Subproof. Suppose that there exists a computable order g such that d(Ω ↾3s) ≤
1/g(s) for infinitely many s. Pick such an s. Let i be such that s ∈ (ti, ti+1]. We
have by the above discussion:

1

i + 1
= d(Ω↾3ti+1) = d(Ω↾3s) ≤ 1

g(s)
≤ 1

g(ti + 1)

Hence for infinitely many i, g(ti + 1) ≤ i + 1, which implies ti < g−1(i + 1). Set
ri = g−1(i + 1) for all i. The sequence of ri is computable. Moreover, for all i such
that ri > ti (which happen infinitely often), Ω↾i is a prefix of w′

ri
because

Ω↾i= w′
ti ≤lex w′

ri
≤lex Ω

Therefore, for all such i, Ω ↾i can be retrieved from ri, which implies K(Ω ↾i) ≤
K(ri) + O(1) ≤ K(i) + O(1) ≤ O(log i). This can only happen for finitely many i,
a contradiction.

We finally put everything together. We define the measure µ by µ(w) =
d(w)λ(w) for all w ∈ 2<ω. It is computable since d is (and it is a measure by
Proposition 3.1.9). It remains to show that µ satisifes the conclusion of the Theo-

rem. First, Second, we have seen that d(Ω↾3s) (which is equal to µ(Ω↾3s)
λ(Ω↾3s)) tends to

0, hence λ(Ω↾3s)
µ(Ω↾3s) tends to +∞, hence Ω /∈ µCR. Since Ω ∈ λMLR (and a fortiori

120 Chapter 3. Randomness for computable measures

Ω ∈ λCR), this proves that λMLR -= µMLR and λCR -= µCR. To see that
λSR = µSR, we use Lemma 3.3.16. We have seen that s 3→ d(β↾3s) is eventually
constant for β -= Ω. For all β -= Ω, by Lemma 3.3.16: β ∈ λSR ⇔ µSR. For Ω, the
ratio λ(Ω↾3s)

µ(Ω↾3s) (equal to 1
d(Ω↾3s)) tends to +∞ but, by Lemma 3.3.18, slower than any

computable order. Hence, Ω ∈ µSR. This proves that λSR = µSR and completes
the proof. #

Proposition 3.3.19. There exist a computable measure µ such that µ and λ are
consistent and λWR -= µWR

Proof. Let δ be the measure such that δ({0ω}) = 1 (which is clearly computable).
Set µ = δ/2 + λ/2. λ and µ are consistent: let X ⊆ 2ω. If 0ω ∈ X , then µ(X) =
1/2+λ(X)/2 and if 0ω /∈ X , µ(X) = 1/2+λ(X)/2. In both cases, it is impossible to
have µ(X) = 0 and λ(X) = 1. On the other hand, 0ω ∈ µWR and 0ω /∈ λWR. #

We now come to our last counter-example.

Proposition 3.3.20. There exists a computable probability measure µ such that
µWR = νWR and µ ∼/ ν.

Despite the fact that weak randomness is not a very good notion of randomness,
this result is particularly interesting. Indeed, by regularity, two Borel measures on
2ω are equivalent if and only if they have the same closed nullsets. The above
proposition shows that this cannot be effectivized: two computable Borel measures
on 2ω can have the same effectively closed nullsets and yet not be equivalent (indeed,
having the same weakly random sequence exactly means having the same effectively
closed sets).

Proof. We will construct a computable measure µ such that λ and µ have the same
weakly random sequences and yet are not equivalent. As in the proof of Propo-
sition 3.3.15, the construction will be done by constructing a λ-martingale d and
setting µ = d λ. And here again, we will only define d on words the length of which
is a power of 3, the values on the other words being implicitely defined.

Our proof involves 0′-Martin-Löf randomness, and its characterization by com-
putable upper bounds for C proven in Theorem 2.3.22: there exists a c.u.b C⋆ of C
such that every α is 0′-Martin-Löf randomness if and only if C⋆(α↾n) ≥ n − O(1)
for infinitely many n.

In fact, in the rest of the proof, we will require C⋆ to have another property: we
would like to have C⋆(u12|u|v) ≤ 2|u|+ |v|+O(1) for all words u, v. We can assume
that it is the case. Indeed, for all u, v ∈ 2<ω, we have C(u12|u|v) ≤ |u| + |v| +
O(log |u|). Hence, if we define a function Ĉ on 2<ω by Ĉ(u12|u|v) = 2|u| + |v|, and
Ĉ(w) = +∞ if w is not of this type, we get a c.u.b. for C. Taking C⋆⋆ = min(Ĉ, C⋆),
we get a computable upper bound for C which satisfies the above property and can
replace C⋆ in Theorem 2.3.22 (according to Remark 2.3.23)

3.3. Equivalence and consistency for arbitrary measures 121

The set of 0′-Martin-Löf random sequences has measure 1, and by definition of
C⋆, is equal to the nested countable union

⋃

c∈N

{α : ∃∞n C⋆(α↾n) ≥ n − c}

Thus, there exists some c0 ∈ N such that

R = {α : ∃∞n C⋆(α↾n) ≥ n − c0}

has positive λ-measure.

For all α ∈ 2ω, define the function hα by

hα(s) = #
{
0 ≤ t < s : ∃n ∈ (3t, 3t+1] C⋆(α↾n) ≥ n − c0

}

If α ∈ R, hα is an order. If α /∈ R, hα is eventually constant. As proven by
Nies, Stephan and Terwijn [51], if α ∈ R, then there is no computable order g such
that g ≤ hα. Suppose otherwise. Then

α ∈
{

β ∈ 2ω : ∀s #{k ≤ 3s : C⋆(β↾k) ≥ k − c0} ≥ g(s)
}

Notice that the right-hand-side of the above relation is an effectively closed set,
which by definition of C⋆ and Theorem 2.3.22 contains only 0′-λ-Martin-Löf ran-
dom sequences. This is a contradiction since by the Low Basis theorem, every
non-empty effectively closed class contains a 0′-computable sequence.

We now construct the martingale d. Set d(0) = d(1) = 1. Suppose d(u) is
defined for all u of length 3s. Define inductively d on words of length 3s+1 as
follows. Let u be a word of length 3s. For all extension w of u such that |w| = 3s+1

and which is different from u1(3s+1−3s):

• if there exists some n ∈ (3s, 3s+1] such that C⋆(w ↾n) ≥ n − c0, set d(w) =
d(u)/2

• otherwise, set d(w) = d(u)

Clearly, d is computable. There are three cases for the behavior of d. If
α /∈ R and α has finitely many prefixes in E, there are finitely many n such that
C⋆(α↾n) ≥ n− c0, hence d(α↾3s+1) = d(α↾3s) for almost all s, by construction of d.
If α /∈ R and α has infinitely many prefixes in E, then α has prefixes of type u12|u|

for arbitrarily long u. But for all such u, the complexity of an extension uv satisfies
C⋆(u12|u|v) ≤ 2|u|+ |v|+ O(1) the right-hand side being smaller than |u12|u|v| − c0

for u long enough. And thus, for such a long u, by construction of d one will have
d(u12|u|v) = d(u12|u|) for all v. Finally, if α ∈ R, it is in particular 0′-λ-Martin-Löf
random hence there are only finitely many prefixes of α of type u12|u|. Thus, up to
a fixed positive multiplicative constant: d(α↾3s) = 2−hα(s) for all s (by construction
of d). Notice that in all the above cases n 3→ d(α↾3n) is bounded from above.

122 Chapter 3. Randomness for computable measures

Set µ = d λ. Let us prove that µ is as desired.

Claim 1: µ is computable. Proof: this is obvious since d is.

Claim 2: µ and λ are not equivalent. Proof: by definition, λ(R) > 0. On the
other hand, d′ = 1/d = λ/µ is a µ-martingale (Proposition 3.1.9) which on every
α ∈ R satisfies d′(α↾3s) = 2hα(s) for all s up to a positive multiplicative constant.
Since hα is an order when α ∈ R, this proves that d′ succeeds on all α ∈ R. Hence,
R∩ µCR = ∅ and thus µ(R) = 0.

Claim 3: µWR ⊆ λWR. Proof: let α /∈ λWR. There exists a computable λ-
martingale d0 and a computable order g such that d0(α↾3n) ≥ g(n) for all n. Since

on every α, d(α ↾3n) = µ(α↾3n)
λ(α↾3n) is bounded from above, say by a constant r > 0,

the µ-martingale d1 = d0
λ
µ satisfies d1(α↾n) ≥ 1

rd0(α↾n) ≥ g(n)
r . This proves that

α /∈ µWR.

Claim 4: λWR ⊆ µWR. Proof: suppose α /∈ µWR, and let us show that
α /∈ λWR. Since α /∈ µWR, by there exists a computable µ-martingale d2 and a
computable order f such that d2(α↾n) ≥ f(n) for all n.

We distinguish two cases. If α /∈ R, we have seen that d(α ↾3n) = µ(α↾3n)
λ(α↾3n) is

eventually constant, hence bounded from above, say by a constant r′ > 0 and thus,
with the same argument as above, the λ-martingale d3 = d2

µ
λ satisfies d3(α↾3n) ≥

g′(n)
r for all n. Since g′(n)

r is an order, this implies α /∈ λWR.

In the second case, i.e. α ∈ R, observe that d2
d′ is a (computable) λ-martingale.

Since α ∈ R, α is in particular 0′-Martin-Löf random, hence d2(α↾3n)
d′(α↾3n) is bounded

from above, say by a constant r′′ > 0. Hence:

d′(α↾3n) = d2(α↾3n)
d′(α↾3n)

d2(α↾3n)
≥ f(n)

r′′

Recall that d′(α↾3s) = 2hα(s). It follows that

2hα(s) ≥ f(3s)

r′′

and hence

hα(s) ≥ log
(f(3s)

r′′

)

But log
(

f(3s)
r′′

)
is an order, which contradicts the fact that hα majorizes no com-

putable order. Hence, the second case cannot happen (and the first does yield
α /∈ λWR).

Putting Claim 3 and Claim 4 together, this finishes the proof. #

Bibliography

[1] N. Alon and J. Spencer. The probabilistic method. Wiley-Interscience, second
edition, 2000.

[2] K. Ambos-Spies, E. Mayordomo, Y. Wang, and X. Zheng. Resource-bounded
balanced genericity, stochasticity and weak randomness. In Symposium on
Theoretical Aspects of Computer Science (STACS 1996), volume 1046 of Lec-
ture Notes in Computer Science, pages 63–74. Springer, 1996.

[3] E. Asarin. Some properties of Kolmogorov ∆-random sequences. Theory of
Probability and its Applications, 32:507–508, 1987.

[4] R. Ash. Probability and measure theory. Academic Press, second edition, 1999.

[5] V. Becher and S. Figueira. An example of a computable absolutely normal
number. Theoretical Computer Science, 270(1-2):947–958, 2002.

[6] V. Becher, S. Figueira, and R. Picchi. Turing’s unpublished algorithm for
normal numbers. Theoretical Computer Science, 377(1-3):126–138, 2007.

[7] L. Bienvenu. Constructive equivalence relations for computable probability
measures. In Computer Science - Theory and Applications, First International
Computer Science Symposium in Russia (CSR 2006), volume 3967 of Lecture
Notes in Computer Science, pages 92–103. Springer, 2006.

[8] L. Bienvenu. Kolmogorov-Loveland stochasticity and Kolmogorov complexity.
In Symposium on Theoretical Aspects of Computer Science (STACS 2007),
volume 4393 of Lecture Notes in Computer Science, pages 260–271. Springer,
2007.

[9] L. Bienvenu and W. Merkle. Effective randomness for computable probability
measures. In International Conference on Computability and Complexity in
Analysis (CCA 2006), volume 167 of Electronic Notes in Computer Science,
pages 117–130, 2007.

[10] L. Bienvenu and W. Merkle. Reconciling data compression and Kolmogorov
complexity. In International Colloquium on Automata, Languages and Pro-

123

124 Bibliography

gramming (ICALP 2007), volume 4596 of Lecture Notes in Computer Science,
pages 643–654. Springer, 2007.

[11] L. Bienvenu, W. Merkle, and A. Shen. A simple proof of Miller-Yu theorem.
Accepted for publication in Fundamenta Informaticae.

[12] G. Chaitin. Information-theoretical characterizations of recursive infinte
strings. Theoretical Computer Science, 2:45–48, 1976.

[13] G. Chaitin. Incompleteness theorems for random reals. Advances in Applied
Mathematics, 8:119–146, 1987.

[14] R. Cilibrasi and P. Vitanyi. Clustering by compression. IEEE Transactions
on Information Theory, 51(4), 2005.

[15] D. Cohn. Measure theory. Birkhäuser Boston, 1994.

[16] B. Durand and N. Vereshchagin. Kolmogorov-Loveland stochasticity for finite
strings. Information Processing Letters, 91(6):263–269, 2004.

[17] K. Falconer. The geometry of fractal sets. Cambridge Unversity Press, 1985.

[18] P. Gács. On the symmetry of algorithmic information. Soviet Mathematics
Doklady, 15:1477–1480, 1974.

[19] P. Gács. Exact expressions for some randomness tests. Z. Math. Log. Grdl.
M., 26:385–394, 1980.

[20] P. Gács. Every set is reducible to a random one. Information and Control,
70:186–192, 1986.

[21] P. Gács. Uniform test of algorithmic randomness over a general space. Theo-
retical Computer Science, 341(1-3):91–137, 2005.

[22] F. Hausdorff. Dimension und äusseres Mass. Mathematishce Annalen, 79:157–
179, 1919.

[23] J. Hitchcock. Effective fractal dimension: foundations and applications. PhD
dissertation, Iowa State University, Ames, 2003.

[24] M. Hoyrup and C. Rojas. Computability of probability measures and Martin-
Löf randomness over metric spaces. http://arxiv.org/abs/0709.0907.

[25] J. Jacod and P. Protter. Probability Essentials. Springer, 2003.

[26] C. Jockusch. Degrees of generic sets. In F. Drake and S. S. Wainer, editors,
Recursion theory: its generalizations and applications. Cambridge Unversity
Press, 1980.

[27] C. Jockusch and R. Soare. Π0
1 classes and degrees of theories. Transaction of

the American Mathematical Society, 173:33–56, 1972.

http://arxiv.org/abs/0709.0907

Bibliography 125

[28] S. Kakutani. On equivalence of infinite product measures. Annals of Mathe-
matics, 49(214-224), 1948.

[29] A. Kolmogorov. On tables of random numbers. Sankhya Series A, 25:369–376,
1963.

[30] L. Kraft. A device for quantizing, grouping, and coding amplitude modulated
pulses. Master’s thesis, Massachusetts Institute of Technology, 1949.

[31] A. Kučera. Measure, Π0
1 classes, and complete extensions of PA. Lecture Notes

in Mathematics, 1141:245–259, 1985.

[32] S. Kurtz. Randomness and genericity in the degrees of unsolvability. PhD
dissertation, University of Illinois at Urbana, 1981.

[33] J. Lathrop and J. Lutz. Recursive computational depth. Information and
Computation, 153(1):139–172, 1999.

[34] L. Levin. Some theorems on the algorithmic approach to probability theory and
information theory. Dissertation in mathematics, Moscow, 1971.

[35] L. Levin. The concept of random sequence. Doklady Akademii Nauk SSSR,
212:548–550, 1973.

[36] L. Levin. Randomness conservation inequalities; information and independence
in mathematical theories. Information and Control, 61:15–37, 1984.

[37] M. Li and P. Vitanyi. An introduction to Kolmogorov complexity and its appli-
cations. Graduate Texts in Computer Science. Springer, second edition, 1997.

[38] D. Loveland. A new interpretation of the von mises concept of random se-
quence. Z. Math. Log. Grdl. M., 12:279–294, 1966.

[39] J. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer
and System Sciences, 44:220–258, 1992.

[40] J. Lutz. Dimension in complexity classes. SIAM Journal on Computing,
32:1236–1259, 2003.

[41] J. Lutz. The dimensions of individual strings and sequences. Information and
Computation, 187:49–79, 2003.

[42] P. Martin-Löf. The definition of random sequences. Information and Control,
9:602–619, 1966.

[43] E. Mayordomo. A Kolmogorov complexity characterization of constructive
Hausdorff dimension. Information Processing Letters, 84:1–3, 2002.

[44] W. Merkle. The complexity of stochastic sequences. In IEEE Conference on
Computational Complexity (Complexity 2003), pages 230–235. IEEE Computer
Society, 2003.

126 Bibliography

[45] W. Merkle. The Kolmogorov-Loveland stochastic sequences are not closed
under selecting subsequences. Journal of Symbolic Logic, 68:1362–1376, 2003.

[46] W. Merkle and N. Mihailovic. On the construction of effective random sets. In
Mathematical Foundations of Computer Science (MFCS 2002), volume 2420,
pages 568–580, 2002.

[47] W. Merkle, J. S. Miller, A. Nies, J. Reimann, and F. Stephan. Kolmogorov-
Loveland randomness and stochasticity. Annals of Pure and Applied Logic,
138(1-3):183–210, 2006.

[48] J. S. Miller. Every 2-random real is Kolmogorov random. Journal of Symbolic
Logic, 69(3):907–913, 2004.

[49] J. S. Miller and L. Yu. On initial segment complexity and degrees of random-
ness. Transaction of the American Mathematical Society, to appear.

[50] A. A. Muchnik, A. Semenov, and V. Uspensky. Mathematical metaphysics of
randomness. Theoretical Computer Science, 207(2):263–317, 1998.

[51] A. Nies, F. Stephan, and S. Terwijn. Randomness, relativization and Turing
degrees. Journal of Symbolic Logic, 70:515–535, 2005.

[52] C. Schnorr. Zufälligkeit und Wahrscheinlichkeit, volume 218 of Lecture Notes
in Mathematics. Springer-Verlag, Berlin-Heidelberg-New York, 1971.

[53] C. Schnorr. Process complexity and effective random tests,. Journal of Com-
puter and System Sciences, 7:376–388, 1973.

[54] A. Shen. On relations between different algorithmic definitions of randomness.
Soviet Mathematics Doklady, 38:316–319, 1989.

[55] R. Solovay. Draft of a paper (or series of papers) on Chaitin’s work. Unpub-
lished notes, 215 pages, 1975.

[56] A. Turing. A note on normal numbers. In J. Britton, editor, Collected works
of Alan Turing, pages 117–119. North Holland, Amsterdam, 1992.

[57] M. van Lambalgen. Random sequences. PhD dissertation, University of Ams-
terdam, Amsterdam, 1987.

[58] J. Ville. Etude critique de la notion de collectif. Gauthiers-Villars, Paris, 1939.

[59] R. von Mises. Grundlagen der wahrscheinlichkeitsrechnung. Mathematische
Zeitschrift, 5:52–99, 1919.

[60] V. Vovk. On a criterion for randomness. Soviet Mathematics Doklady,
294(6):1298–1302, 1987.

[61] Y. Wang. Randomness and Complexity. PhD dissertation, University of Hei-
delberg, 1996.

Bibliography 127

[62] Y. Wang. A separation of two randomness concepts. Information Processing
Letters, 69(3):115–118, 1999.

[63] A. Zvonkin and L. Levin. The complexity of finite objects and the development
of the concepts of information and randomness by means of the theory of
algorithms. Russian Mathematical Surveys, 25(6):83–124, 1970.

Index

α↾n, 2

α ⊕Z β, 76

≤lex, 2

≤T , 1

⊑, 2

[w], 3

|w|, 1

w↾n, 1

#0(w), 2

0′, 1

#1(w), 2

2<ω, 1

2ω, 2

Bet(d, u), 15

Bet+(d, u), 109

Bin, 2

C, 47

CM , 46

C(w)[t], 51

CR, 15

cdim, 11

dimcomp, 11

ChStoch, 14

C, 89

dim, 10

ǫ, 1

H, 18

K, 54

KM , 54

K(w)[t], 55

KLR, 37

KLStoch, 36

K, 89

λ, 5

Lk
µ/ν , 124

L̂k
µ/ν , 126

L∞
µ/ν , 124

L̂∞
µ/ν , 126

log, 2
MLR, 6
Ω, 69
SR, 8
σ[α], 13
Stake(d, u), 15
Stake+(d, u), 109
Succ, 15
U, 47
V, 54
WG, 41
WR, 9

absolutely normal (number), 34
additively optimal machine, 47
Azuma’s inequality, 116

bias, 17
Borel-Cantelli lemma, 7

c.e. open set, 4
c.u.b, 89
Cantor

distance, 4
space, 2

capital, 37
Church stochastic, 14
compressor, 92

prefix-free, 92
computable dimension, 11
computable measure, 109
computable upper bound, 89
computably random, 15

128

Index 129

constructive dimension, 11
cylinder, 3

decidable machine, 94
dimension

computable, 11
constructive, 11
Hausdorff, 10

domination, 3

effectively open set, 4
equivalent measures, 108

generalized Bernoulli measure, 112

Hausdorff dimension, 10

Kakutani’s theorem, 112
Kolmogorov complexity, 46

conditional, 52
plain, 47
prefix, 54

Kolmogorov-Loveland
random, 37
stochastic, 36

Kraft-Chaitin
set, 58
theorem, 56

Lebesgue measure, 5
left-c.e.

function, 2
real number, 2
sequence, 2

Levin-Schnorr theorem, 63

machine, 46
decidable, 94
prefix-free, 54

Martin-Löf
nullset, 6
random, 6
test, 6
universal test, 7

martingale, 14
normed, 14
success, 15

measurable set, 5

normal (number), 34
nullset, 5

order, 3

prefix, 2
order, 1

prefix-free
compressor, 92
machine, 54
set, 2

random
computably, 15
Kolmogorov, 65
Kolmogorov-Loveland, 37
Martin-Löf, 6
Schnorr, 8
weakly, 9

regular (measure), 108

s-success, 17
s-test

computable, 11
constructive, 11

Schnorr
nullset, 8
random, 8
test, 8

selected subsequence, 13
selection rule, 13

non-monotonic, 36
stochastic

Church, 14
Kolmogorov-Loveland, 36

strategy, 37
capital, 37

string, 1
success, 15

set, 15

test
Martin-Löf, 6
Schnorr, 8

typicalness paradigm, 5

unpredictability paradigm, 12

130 Index

Ville
inequality, 24

weakly generic, 41
weakly random, 9
word, 1

Résumé

Cette thèse est une contribution à l’étude des différentes notions effectives d’aléatoire
pour les objets individuels (essentiellement les suites binaires finies ou finies). Dans
le premier chapitre nous considérons les approches de l’aléatoire par la théorie des
jeux (martingales et stratégies) que nous comparons à l’approche historique par les
fréquences qui remonte au début du 20ème siècle avec les travaux de von Mises. Le
résultat principal de ce chapitre est une relation explicite entre la vitesse de gain
d’une martingale (ou stratégie) sur une suite binaire et le biais des sous-suites ex-
traites. Le second chapitre porte sur les liens existant entre les différentes définitions
d’aléatoire pour les suites binaires infinies et la notion de complexité de Kolmogorov,
définie comme étant la taille du plus court programme qui génère un objet donné.
De nombreux résultats sont déjà connus dans ce domaine. Nous présentons une ap-
proche nouvelle, en utilisant non pas la complexité de Kolmogorov elle-même, mais
ses bornes supérieures calculables. Cette approche est unificatrice, en ce sens qu’elle
permet de caractériser précisément une grande variété de notions d’aléatoire, dont cer-
taines pour qui la complexité de Kolmogorov échoue. Le troisième et dernier chapitre
étudie l’extension des notions effectives d’aléatoire à des mesures de probabilité calcula-
bles quelconques, et plus particulièrement les relations d’équivalence qu’elles induisent
sur ces mesures (où deux mesures sont équivalentes si elles ont les mêmes éléments
aléatoires). Une preuve constructive (par les martingales) du théorème de Kakutani
(qui caractérise l’équivalence entre les mesures de Bernoulli généralisées) y est notam-
ment obtenue. Enfin, nous discutons en toute généralité (c’est-à-dire pour des mesures
quelconques) les relations d’équivalence induites, dont nous donnons une classification
complète.

Summary

This thesis is a contribution to the study of the different notions of effective random-
ness for individual objects (mainly binary sequences, finite or infinite). In the first
chapter, we consider various game-theoretic approaches to randomness (via martin-
gales and strategies), and we compare them to the historical approach by frequency
stability, which goes back to the work of von Mises in the beginning of the 20th century.
The principal result of the first chapter is an explicit relation between the “speed of
success” of a martingale (or strategy) on a sequence and the bias of the selected sub-
sequences. The second chapter focuses on the links between the various randomness
notions for infinite sequences and the notion of Kolmogorov complexity (or program-
size complexity), defined to be the size of the shortest program which outputs a given
finite object. Many results are already known in this direction. We present a new
approach, using computable upper bounds of Kolmogorov complexity instead of Kol-
mogorov complexity itself. This turns out to be a very unifying approach, in the sense
that it allows us to characterize a wide variety of randomness notions, even some for
which Kolmogorov complexity fails. The third and last chapter studies the extension of
all randomness notions to wider classes of probability measures, and more specifically
the equivalence relations induced by the randomness notions (where we say that two
measures are equivalent if they have the same random sequences). A constructive proof
of Kakutani’s theorem (a criterion of equivalence for generalized Bernoulli measures)
is presented. Finally, in great generality (i.e. for arbitrary computable measures), we
give a complete hierarchical classification of the induced equivalence relations.

	PageDeGarde_These.pdf
	main.pdf
	Remerciements
	Résumé de la thèse
	Introduction
	Randomness notions
	Notation and basic definitions
	The Cantor space: probability, topology and computability
	The topology
	Effectivizing the topology
	Lebesgue measure

	The typicalness paradigm
	Martin-Löf tests
	Schnorr randomness
	Weak randomness
	Effective Hausdorff dimension

	The unpredictability paradigm
	Stochasticity
	Computable randomness
	Stochasticity via martingales

	Typicalness vs unpredictability
	When typicalness implies unpredictability
	When unpredictability implies typicalness

	Schnorr randomness and normal numbers
	Non-monotonicity for selection rules and martingales
	Randomness and Baire category
	Relations between randomness notions

	Randomness and Kolmogorov complexity
	Kolmogorov complexity
	Plain Kolmogorov complexity
	Prefix-free Kolmogorov complexity

	Infinite random sequences via Kolmogorov complexity
	Martin-Löf randomness vs Kolmogorov complexity
	Computable randomness and Schnorr randomness vs Kolmogorov complexity
	Effective Hausdorff dimension vs Kolmogorov complexity
	Stochasticity vs Kolmogorov complexity

	Computable upper bounds of Kolmogorov complexity
	Motivation, definitions
	Some particular computable upper bounds
	Randomness via computable upper bounds

	Randomness for computable measures
	Extending notions of randomness to computable measures
	Generalized Bernoulli measures
	Definition
	Kakutani's theorem
	Constructive versions of Kakutani's theorem
	Applications to stochasticity

	Equivalence and consistency for arbitrary measures
	Consistency
	A classification of equivalence relations
	Counter-examples

	 Bibliography
	 Index

	quatrieme-de-couv.pdf

