
Introduction
The effective randomness zoo

Randomness and complexity
Randomness for computable measures
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Laurent Bienvenu
sous la direction de Bruno Durand et Alexander Shen
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Suppose you flip a 0/1-coin 10000 times, and you get the sequence
of outcomes:

0000000000000000000000000000000000000000000000000 . . .

You now take another coin, do the same, and get:

1111111110111111111111111101111011111111111111111 . . .

You take a third coin, do the same, and get:

00001100111100110011111100110000001100111100111100 . . .
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None of these three sequences seem “random”, for different
reasons.

Classical probability theory is unable to express this: all three
sequences have the same probability of occurence as any other
one

Can we give a rigorous definition of a “random object”?

Yes (at least for some objects), and this is what effective
randomness is about!

In this thesis: effective randomness for finite and infinite
binary sequences
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What does it mean for an individual sequence to be random?

Answer n◦1 (von Mises 1919, Church, Ville ≈ 1940, Schnorr 1971)

random = unpredictable

Answer n◦2 (Martin-Löf 1966)

random = typical

Answer n◦3 (Solomonoff, Kolmogorov, Chaitin ≈ 1960)

random = hard to describe
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Effective randomness: how?

What does it mean for an individual sequence to be random?

Answer n◦1 (von Mises 1919, Church, Ville ≈ 1940, Schnorr 1971)

random = unpredictable by a computer program

Answer n◦2 (Martin-Löf 1966)

random = typical w.r.t. computable properties

Answer n◦3 (Solomonoff, Kolmogorov, Chaitin ≈ 1960)

random = hard to describe by a short computer program

These 3 approaches are often refered to as: unpredictability
paradigm, typicalness paradigm and incompressibility paradigm,
respectively.
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Each of these 3 paradigms yields different models/concepts.

unpredictability paradigm → prediction games

typicalness paradigm → “statistical” tests

incompressibility paradigm → Kolmogorov complexity
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Prediction games (intuition)
We consider games where a player tries to guess the bits of a binary
sequence. Player wins if his predictions are accurate. The sequence
is random if no computer program can make accurate predictions.
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Statistical tests (intuition)
A random sequence should satisfy all the properties of high
probabilities, e.g. a random sequence should contain about as
many zeros than ones.
We restrict our attention to properties that can be checked by
computers; for each such properties, we can design a program that
tests it (in the above example, a program counting the number of
zeros), which we call statistical test. A sequence is random if no
test fails on it.
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Kolmogorov complexity (intuition)
A random sequence should contain no pattern whatsoever. Hence
(if the sequence is finite) there should be no way to write a short
computer program that generates the sequence. We call
Kolmogorov complexity of a sequence the length of the shortest
program that generates it (it is in some sense the ideal compressed
form of the sequence) and we say that a finite sequence is random
if its Kolmogorov complexity is high.
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In this thesis:

comparison between different models of prediction (result:
frequency unstability = exponential gain of money)
[Proposition 1.4.13, Theorem 1.4.16]

how predictability relates to Kolmogorov complexity
(necessary/sufficient conditions on complexity to get
unpredictability) [Section 2.2]

necessary/sufficient conditions in terms of feasible
compressibility [Section 2.3]

stability of randomness notions w.r.t. the probability measure
[Chapter 3]
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For finite binary sequences, there is no sharp line between
“random” and “not random”

For infinite binary sequences, we will be able to give various
definitions of randomness.
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Let’s play!
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Games, Part I: the von Mises-Church model

Let us consider the following (infinite) prediction game, where a
player wants to guess the bits of an infinite binary sequence.

The bits of the sequence are written on cards, facing down

The player tries to predict the values of these cards in order.
At each move, he can decide to select a bit or simply ask to
see the card

The player wins the infinite game if (1) he selects infinitely
many bits during the game (2) the sequence of selected bits is
biased i.e. contains more than 50% of zeros or more than 50%
of ones
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Definition

An infinite sequence α is said to be Church stochastic if no
computable selection rule selects from α an infinite biased
subsequence.

As argued by Ville, this definition is a bit too weak.
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Games, Part II: the Ville-Schnorr model

We now consider a refined version of the previous prediction game.
Instead of the binary choice select/read, the player can now bet
money on the value of the bits.

The bits of the sequence are written on cards, facing down

Player starts with a capital of 1

The player tries to predict the values of these cards in order.
At each move, he makes a prediction on the value of the next
bit and bets some amount of money (between 0 and what he
currently has).

Then the bit is revealed. If his guess was correct, Player
doubles his stake; if not, he loses his stake.

The player wins if his capital tends to +∞ during the game
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Introduction
The effective randomness zoo

Randomness and complexity
Randomness for computable measures

Unpredictability notions
Typicalness notions

Definition

An infinite sequence α is said to be computably random if no
computable strategy allows the Player to win the game.

How does the notion of computable randomness compare to that
of Church stochasticity?
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Church stochasticity vs computable randomness

Theorem (Ville 1939)

Computable randomness is strictly stronger than Church
stochasticity

Theorem (Schnorr 1971)

A computable selection rule selecting a biased subsequence can be
converted into a betting strategy which wins exponentially fast
(exponentially in the number of non-zero bets).

Theorem

Selection of a subsequence with bias δ
⇔ exponentially winning strategy, with exp. factor 1−H(1/2 + δ)
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Kolmogorov-Loveland randomness and stochasticity

One can strengthen Church stochasticity and computable
randomness by considering games where the Player can guess the
bits in any order.

This yields the stronger notions of Kolmogorov-Loveland
stochasticity and Kolmogorov-Loveland randomness.
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Here we want to formalize the idea that a sequence is non-random
if it fails some statistical test.

For us, a statistical test will be a sequence U0,U1,U2, . . ., where

each Ui is a set of infinite sequences which can computably
generated

the measure of the Ui tends to 0

A sequence α fails the test if it belongs to all Ui .
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all sequences

U0 U1 U2

sequences rejected by the test

Laurent Bienvenu Caractérisations de l’aléatoire par les jeux



Introduction
The effective randomness zoo

Randomness and complexity
Randomness for computable measures

Unpredictability notions
Typicalness notions

Two types of tests

Martin-Löf tests: the measure of Un is bounded by a
computable function ε(n)

Schnorr tests: the measure of Un is computable

Definition

An infinite sequence is Martin-Löf random if it fails no Martin-Löf
test.
An infinite sequence is Schnorr random if it fails no Schnorr test.
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Theorem

Martin-Löf randomness implies KL-randomness (hence implies
KL-stochasticity, computable randomness, Church stochasticity)

Theorem

Computable randomness implies Schnorr randomness
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We have discussed unpredictability and typicalness. Let us move
on to the last paradigm: incompressiblity.

Incompressibility paradigm

A finite binary sequence is random if it does not have a description
shorter than itself.
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Definition

The Kolmogorov complexity of a finite binary sequence x is the
length of the shortest program which outputs x .

Roughly speaking, the complexity of x lies between 0 and size(x).

complexity(x) ≈ 0 ↔ x highly compressible

↔ x not very random

complexity(x) ≈ size(x) ↔ x incompressible

↔ x quite random

We use two types of Kolmogorov complexity for a string x : C (x)
(plain complexity) and K (x) (prefix complexity). They are equal
up to a logarithmic term.
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How complex are random sequences?
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For Martin-Löf randomness, the situation is well understood:

Theorem (Levin-Schnorr ≈ 1970)

A sequence α is Martin-Löf random if and only if for all n:

K (α0 . . . αn) ≥ n − O(1)
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For computable and Schnorr randomness, the situation is radically
different:

Theorem (Muchnik et al. 1998, Merkle 2003)

There exists a computably random sequence α such that for any
computable nondecreasing unbounded function (= order
function) h, we have:

C (α0 . . . αn) ≤ log n + h(n)

Note that this is very low: if we remove the term h(n), the
condition forces α to be a computable binary sequence!
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So....

Martin-Löf random sequences are of (almost) maximal
complexity.

Computably random, Schnorr random, and Church stochastic
sequences can have very low complexity.

What about KL-stochastic sequences?
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Introduction
The effective randomness zoo

Randomness and complexity
Randomness for computable measures

Randomness and Kolmogorov complexity
Randomness and compression

So....
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Martin-Löf random sequences are of (almost) maximal
complexity.

Computably random, Schnorr random, and Church stochastic
sequences can have very low complexity.

What about KL-stochastic sequences?
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It turns out that KL-stochastic sequences must have high
complexity.

Theorem (Merkle, Miller, Nies, Reimann, Stephan 2005)

If a sequence α is KL-stochastic, then,

lim
n→+∞

K (α0 . . . αn)

n
= 1

(KL-stochastic sequences have pretty high complexity)

Looking at things from another angle: if K (α0 . . . αn) < sn for
some s < 1 and infinitely many n, then there exists a computable
non-monotonic selection rule which selects an infinite sequence
with bias δ > 0.

How do s and δ relate? (Asarin, Durand and Vereshchagin for
finite sequences).
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A precise result for infinite sequences:

Theorem

If a sequence α is such that K (α0 . . . αn) < sn for some s < 1 and
infinitely many n, then: there exists a computable non-monotonic
selection rule which selects a an infinite sequence of bias as close
as we want to δ, where δ is such that H(1/2 + δ) = s.

The proof involves the game-theoretic argument we saw earlier:

First, we construct a strategy that succeeds exponentially fast.

Then, we transform this strategy into a selection rule.
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Merkle: there exist computably random, Schnorr random, and
Church stochastic sequences of very low complexity.
Roughly speaking, this means that there is no necessary condition
on the complexity for these notions of randomness.

Can we find a sufficient one?

Trivially, the Levin-Schnorr condition K (α0 . . . αn) ≥ n − O(1) is a
sufficient condition. Can we do better than that? That is, some
condition of type K (α0 . . . αn) ≥ n − h(n) for some unbounded
function h?

For Schnorr randomness: yes. For Church stochasticity: no
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Theorem

There exists an order function h such that if
K (α0 . . . αn) ≥ n − h(n) for all n, then α is Schnorr random.

(indeed, one can take h to be the inverse of the busy beaver
function)

Theorem

There exists no such function for Church stochasticity.
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Like we said, the Kolmogorov complexity K (x) of a finite
sequence x can be seen as the size of an ideal compression of x .
Unfortunately(?), there is no way to perform effectively this ideal
compression.

.... so maybe effective randomness is not so effective after all? In
any case, the non-computability of Kolomogorov complexity is a
serious obstacle for practical applications.

One way to overcome this problem is to give up on the hope to
find the best compression, and consider instead the compression
obtained by a good compressor (Cilibrasi and Vitanyi).

Here we will not study a particular compressor. Rather, we want to
give the most general defintion of a compressor that captures the
idea of compression.
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Definition

A compressor is a computable one-to-one function from the set of
finite sequences to itself.

Given a compressor Γ, we get a computable upper bound CΓ of
Kolmogorov complexity by setting CΓ(x) = |Γ(x)|.

Similarly we can find compressors Γ that give computable upper
bounds of K , and we then set KΓ(x) = |Γ(x)|.
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We now look again at the complexity of random sequences, where
this time we use approximations by compression.

For example, what are the sequences α such that

(∀Γ) KΓ(α0 . . . αn) ≥ n − O(1) ?

Martin-Löf sequences satisfy this condition.

In fact, this condition characterizes Martin-Löf randomness!
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Another very interesting fact is that some notions like Schnorr
randomness which seemed rather unrelated to Kolmogorov
complexity can be nicely characterized with its approximations by
compression:

Theorem

A sequence α is Schnorr random if for all Γ and all computable
order function h, one has KΓ(α0 . . . αn) ≥ n − h(n)− O(1).

Some similar characterizations exist for other notions of
randomness that are not related to Kolmogorov complexity (weak
randomness, computable Hausdorff dimension, etc.)
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So far we have discussed effective randomness w.r.t. the uniform
measure, where bits are chosen independently, with a probability
distribution (1/2, 1/2).

What about other effective randomness w.r.t. other probability
measures?

All randomness notions (Martin-Löf randomness, Schnorr
randomness, computable randomness, etc.) can be extended to
arbitrary computable probability measures. For stochasticity
notions, it is not so simple, as they rely on the Law of Large
Numbers, which holds only for very specific measures.

We are interested in the following problem: how fragile are notions
of randomness? Precisely, how much can we modify the measure
without changing the randomness notions?
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Generalized Bernoulli measures

Suppose now that each bit αn of the sequence is chosen
independently from the other, but with a probability distribution
(1/2 + δn, 1/2− δn).

This induces a probability measure, called generalized Bernoulli
measure of parameter (1/2 + δn)n∈N.
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Kakutani’s theorem

Theorem (Kakutani 1948)

1 A generalized Bernoulli measure of parameter (1/2 + δn)n∈N is
equivalent (i.e. has the same events of probability 0) to the
uniform measure if and only if∑

n∈N
δ2
n < +∞

2 When ∑
n∈N

δ2
n = +∞

there exists an X which has probability 1 for the Bernoulli
measure of parameter (1/2 + δn)n∈N and probability 0 for the
uniform measure.
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Kakutani’s theorem: effective versions

Theorem (Vovk 1987)

1 A computable generalized Bernoulli measure of parameter
(1/2 + δn)n∈N has the same Martin-Löf random sequences as
the uniform measure if and only if∑

n∈N
δ2
n < +∞

2 When ∑
n∈N

δ2
n = +∞

the class of Martin-Löf sequences the Bernoulli measure of
parameter (1/2 + δn)n∈N and the class of Martin-Löf random
sequences for the uniform measure are disjoint.
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Kakutani’s theorem: effective versions

Theorem

The Kakutani-Vovk criterion holds for computable randomness and
Schnorr randomness as well.

The proof uses a game theoretic argument: transform a winning
strategy for a measure into a winning strategy for the other
measure.
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Stochasticity on the other hand is robust beyond the
Kakutani-Vovk criterion.

Theorem (Van Lambalgen, Shen ≈ 1988)

Let µ be a generalized Bernoulli measure of parameter
(1/2 + δn)n∈N such that lim δn = 0. Then, the set of (Church or
KL) stochastic sequences has µ-probability 1.

Corollary

This separates stochasticity notions from randomness notions

Proof: choose a sequence at random w.r.t. the generalized
Bernoulli measure µ of parameter (1/2 + 1√

n+4
). Then with

µ-probability 1, we get a stochastic sequence, and with
µ-probability 1 we get a non-random sequence (by the
Kakutani-Vovk criterion).
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General case: a strange hierarchy

µCR = νCR

µMLR = νMLR

µ and ν are equivalent

µSR = νSR
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Links with computable analysis

A classical result on the set of infinite binary sequences:

Theorem

Let µ and ν be two measures. The following are equivalent:

1 µ and ν have the same nullsets

2 µ and ν have the same Gδ nullsets

3 µ and ν have the same closed nullsets

Can we effectivize this, replacing “measures” by “computable
measure”, Gδ by “effective Gδ” and closed by “effectively closed”?
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For the first part, yes

Theorem

Two computable measures that have the same effective Gδ nullsets
have the same nullsets.

For the second one, no!

Theorem

Two computable measures can have the same effectively closed
nullsets without having the same nullsets.
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Conclusion.....
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Very strong links between unpredictability, typicalness,
complexity, compressibility, etc.

What remains of all this at a more “feasible level”? (e.g.
when we consider objects in LOGSPACE, P, etc.)

A quite complete picture of the link between Kolmogorov
complexity of the initial segments and randomness notions

Some work remains to be done for higher randomness notions
(essentially weak-2-randomness and Martin-Löf-2-randomness)

Can we use the results on computable measures to study
measure-invariant notions (such as lowness)?

KL randomness = Martin-Löf randomess????
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Thank you

Spasibo
Merci

Köszönöm
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	Introduction
	Effective randomness: why?
	Effective randomness: how?

	The effective randomness zoo
	Unpredictability notions
	Typicalness notions

	Randomness and complexity
	Randomness and Kolmogorov complexity
	Randomness and compression

	Randomness for computable measures
	Generalized Bernoulli measures
	General case


