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Chapter 1

Introduction

In many domains, scientists and engineers are used to conducting the study of systems

or signals with respect to some characteristic scales of time (or space, energy, . . . ). Such

scales serve as a reference for characterizing the properties of the signal or system. For

instance, a physicist is often naturally confronted with a characteristic scale of time (a

period, for example) or space (the size of a structure), and a chemist usually has natural

reference scales of time (reaction time, equilibrium time) and space (length of chemical

bonds, crystalline patterns or polymer chains). Similarly, in signal analysis, one com-

monly aims at identifying a correlation length and works with samples several correlation

lengths apart, which are considered to be independent.

Scale invariance implies to adopt exactly the opposite perspective. The notion of scale

invariance, or scaling, refers to signals or systems for which no scale can be singled

out or identified to play a characteristic role. Equivalently, this amounts to saying that all

scales are of equal importance, or that all scales play an equivalent role. From a signal

analysis point of view, this implies a major change of paradigm: Rather than identifying

scales playing a characteristic role, one has to identify and characterize the mechanisms

relating different scales.

Scale invariant signals have been involved in a large variety of applications and in the

analysis of data of very different nature, ranging from natural phenomena — physics

(hydrodynamic turbulence [75, 121, 128], statistical physics [28, 98], roughness of sur-

faces [147]), biology (human heart beat rhythms [114, 116], physiological signals or im-

ages), geology (fault repartition [71]) — to human activities — computer network traffic

[135, 143], texture image analysis [53, 96, 147], population geographical repartition [72],

social behaviors or financial markets [124], to name but a few.

Scale invariance is intimately tied to power laws, and practical scaling analysis mostly

amounts to detecting such power laws and measuring the exponents that characterize

them. Historically, it has been associated with invariance to dilatation of the expected

average power Γ(ν) of a signal, which implies the absence of a characteristic frequency

ν in the signal. The power spectral density then has to verify
Γ(ν2)
Γ(ν1) = f

(
ν2
ν1

)
, ∀ν1, ν2,

and therefore, f
(
ν3
ν1

)
= f

(
ν3
ν2

)
· f
(
ν2
ν1

)
. It follows for 1d signals that f and consequently

also Γ are power laws Γ(ν) ∼ C|ν|−γ . Therefore, practically, scale invariance has been

defined and analyzed through the power law behavior of standard spectrum estimates
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Γ̂(ν).

The first major model for scale invariance is fractional Brownian motion (fBm) BH(t).
This process is Gaussian and self-similar, which means that its (finite dimensional) distri-

butions are exactly identical to those of a dilated and rescaled version a−HBH(at) for all

a > 0. As a result, the process and its dilated versions are statistically indistinguishable.

These scale invariance properties are fully controlled by the single parameter H, called

the Hurst parameter or self-similarity parameter. Due to its simplicity – Gaussian and

entirely controlled by one single parameter – fBm became an attractive and commonly

used model for stochastic scale invariance.

By definition, fBm is a nonstationary process and is long range dependent when H > 0.5.

This poses major theoretical and practical difficulties for (spectrum based) interpreta-

tion and analysis. In their celebrated and seminal works, Flandrin [70] and Tewfik [166]

showed that the coefficients of the dyadic wavelet transform of fBm form stationary se-

quences and are practically uncorrelated as long as the analyzing wavelet has sufficient

vanishing moments Nψ ≥ H + 1
2 , while exactly reproducing the scale invariance prop-

erties of the process through power law behaviors across scales of their moments that

are entirely controlled by H. Due to these key properties, the dyadic wavelet transform

became the predominant scaling analysis tool and has since been used massively in

applications for the estimation of the self-similarity parameter H.

Fractional Brownian motion constitutes a very satisfactory model for scale invariance,

since it connects all statistical moments of dilated versions for any positive dilation factor

a by one single parameter H. This has, however, soon been noticed to be too restrict-

ing in many situations, since it does often not match scale invariance observed in data,

hence the need for richer models. Therefore, in practice, one often prefers the second

major model, constituted by the more general and useful class of multiplicative cascade

processes. These processes are non Gaussian and feature more flexible scale invariance

properties since, for a restricted range of dilation factors and a finite range of statistical

orders, the moments of dilated versions of the process are related through power laws

with different exponents. This deeply connects to their multifractal properties. They are

characterized by a dense and rich variety of fractal distributions of local singularities in

their trajectories1, which constitutes a strong link between scaling analysis and multifrac-

tal analysis.

The change in model induces two major variations in analysis: First, accounting for the ex-

tra flexibility provided by multiplicative cascade processes, the single parameter H must

be replaced with a whole collection of parameters, called the multifractal attributes. Sec-

ond, recent theoretical results show that for a relevant and accurate analysis of the scal-

ing and multifractal properties of data, wavelet coefficients need to be replaced with new

multiresolution quantities, called wavelet Leaders [89, 92]. At the outset of this work, the

first and only practical implementation of wavelet Leaders was obtained for 1d signals by

Lashermes in [8, 107, 110]. He demonstrated that practical 1d wavelet Leaders preserve

key theoretical functional analysis properties and considered them for the analysis of hy-

drodynamic turbulence data. Yet, a number of key questions remained unanswered.

Therefore, the first main goal of the present work is to study the properties of wavelet

Leader based multifractal analysis. This constitutes the core material of Part I of this

manuscript. To this end, we introduce in Chapter 2 the state of the art of scaling and

1In contrast, the trajectories of fBm have identical locally singular behavior everywhere.
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multifractal analysis, the relevant mathematical definitions and analysis tools, estimation

procedures and common model processes. Then, we investigate in Chapters 3 to 5 a

number of central statistical issues that have never been addressed so far: How do

wavelet Leaders actually work in practice, and what are the practical implications of finite

size effects with respect to their (infinite resolution) theoretical definition? What is the

form of their marginal or bivariate distribution? These questions concern primary prop-

erties of wavelet Leaders and are accounted for in Chapter 3. The main conclusions are

that meaningful Leaders can be practically obtained, but their precise analytical statisti-

cal characterization remains limited. Therefore, numerical simulations constitute the core

methodology for the study of estimation procedures: — What statistical performance

can be achieved in practice, and how does it compare to those of wavelet coefficients?

This central question is investigated in Chapter 4.1. It leads to the main conclusion that

wavelet Leaders do have significantly superior performance than wavelet coefficients and

are hence to be preferred in practice. Moreover, we study two effects of major importance

in applications: — What are the origins of the so-called linearization effect in practical

estimation? (Chapter 5.2) — Are estimations robust with respect to quantization of

data? (Chapter 5.3). The characterization of the properties of wavelet Leaders and

wavelet Leader based analysis in Chapters 3 to 5 constitutes one of the contributions of

the present work.

The second main goal of the present work is the extension of wavelet Leader based

multifractal analysis to higher dimensional signals. Nowadays, in a large number of ap-

plications of very different natures, the data collected by sensors for analysis consist of

images, i.e., are naturally bi-dimensional signals. This is mostly due to the recent and sig-

nificant progresses achieved in digital sensor, fast rate and high resolution camera and

video camera design. For a number of these applications the corresponding statistical

analysis of the images amounts to performing texture characterization. This is the case

notably for clouds or rainfalls analyses in geophysics [147, 155], bio-medical diagnosis

for human body rhythms or structure (bones, tissues, mammography,. . . ) [93, 116, 158],

universe or galaxy structures in astronomy [162], growth phenomena in physics [57, 142]

or texture classification in computer vision [136, 185], to name but a few examples. There

is an increasing number of research articles which suggest that texture characterization

should be conducted within the mathematical framework of scaling or multifractal anal-

ysis. However, practical tools with reasonable calculation cost and tight mathematical

support are lacking, and important theoretical questions related with the multifractal anal-

ysis of textures have never been clearly stated before: Can wavelet Leaders be practi-

cally extended to the analysis of higher dimensional signals, and what are the statistical

performance? (Chapter 2.5 and Chapter 4.2) — Can the analysis of texture images

(measures) be conducted in the same framework as the analysis of processes? How can

wavelet Leader based analysis be modified to address this difficulty? What are the theo-

retical and practical implications of such a modification? (Chapter 5.1). The operational

definition and the implementation and validation of a 2d wavelet Leader analysis, the gen-

eral theoretical and practical investigation of related difficulties and the proposed practical

solutions and tools to characterize and overcome them represent another contribution of

this work. It leads to the overall conclusion that wavelet Leader based multifractal anal-

ysis of images is practically feasible and exhibits satisfactory performance. The study of

these issues and the aforementioned ones for 1d signals occupies Part I of the present

manuscript.
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An important consequence of the change of model from fBm to multifractal multi-

plicative cascades is that little can be said theoretically about the statistical performance

of the analysis procedures. Whereas for fBm, asymptotical results (in the limit of large

observation durations) can be established (see e.g., [4, 26, 52, 84, 169]), this is in gen-

eral not possible for cascade processes. The lack of results is mainly due to the fact

that their construction consists of multiplicative martingales and is extremely involved.

What is more, such mathematical models result in stochastic processes with strong de-

pendence and heavy tailed, strongly non Gaussian marginal distributions. As a result,

analytical derivation of the statistical performance of analysis procedures is not feasible,

even asymptotically, and the formulation of relevant definitions for estimators, confidence

intervals or tests is in itself an issue. This implies that practitioners are lacking tools to

assess the confidence they should grant to the obtained estimates. Along the same line,

no hypothesis tests validating the precise multifractal nature and properties of the data

under analysis are available, while this issue turns out to be mentioned as crucial in most

contributions where multifractal analysis is used. For instance, there is so far no sta-

tistical procedure available in the literature that enables to decide whether real-life data

are better described by finite variance self-similar processes (such as fractional Brow-

nian motion) or by truly multifractal multiplicative cascade processes. Answering such

questions is of major both theoretical and practical importance. The inferred understand-

ing of the (physical, biological, . . . ) phenomena producing the data under analysis may

be dramatically changed: Self-similar processes are indeed deeply related to random

walks and additive phenomena, while most multifractal processes are historically tied to

multiplicative structures. Also, both the number of parameters that need to be matched

and the computational complexities that need to be handled for these different classes of

models are radically different. However, despite the huge collection of research articles

describing the practical use of multifractal analysis on real-life data, the state-of-the-art

tools to assess confidence in estimates and decision making remained, at the outset of

this work, the experience and eyes of the practitioners. This makes up for considerable

practical limitations of the analysis tool.

The third main goal of this manuscript is to overcome such limitations. To this end,

we propose in Part II of the present work the use of nonparametric bootstrap tech-

niques [56, 64, 104, 195]. The principles of these techniques are stated in Chapter

6. The proposed procedures are inspired by wavelet domain bootstrap, pioneered in

[137, 151]. The contribution lies in the adaptation of bootstrap resampling and estimation

to match the specificities of multifractal analysis and to account for the difficult statisti-

cal context. This is addressed by an original blocks of wavelet Leaders in the time- (or

space-) scale plane bootstrap (Chapter 7). The construction is based on commonly ac-

cepted intuitions deduced from the key properties of the dyadic wavelet transform for fBm

[4, 6, 70, 77, 137, 166, 169]. This bootstrap procedure is in turn used for the design of

confidence intervals (Chapter 8), the construction of statistical tests for multifractal mod-

els (Chapter 9) and for stationarity of multifractal attributes (Chapter 10). Their relevance

is validated by means of numerical simulations. The use of bootstrap for multifractal

analysis has never been reported before and these procedures represent, to the best

of our knowledge, the only practically available confidence interval and statistical test

procedures with satisfactory performance for scaling and multifractal analysis, readily ap-

plicable to single finite length observations of real-world data.

The attempt to study the theoretical validity of bootstrap for multifractal analysis collides

with the limited amount of theory on the statistics of estimation procedures that is avail-
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able in this context and precisely motivates its use. This is further amplified for wavelet

Leader based analysis, since their statistical description remains difficult even for the

model case of Gaussian and independent coefficients. The key issue turns out to be

the theoretical characterization of the dependence of wavelet coefficients and Leaders

for non Gaussian self-similar and multiplicative cascade processes. Therefore, we revisit

in Chapter 11 the common heuristic of assuming that the vanishing moments Nψ — re-

sponsible for weak correlation of wavelet coefficients for fBm — play a similar key role

for more general processes. We establish analytical results on the dependence structure

of multiresolution quantities, for both self-similar and multiplicative cascades processes,

and validate them by numerical simulation. The implications for bootstrap are investi-

gated numerically in Chapter 11.4. The results indicate that common intuitions need to

be partly revised: The number of vanishing moments of the analyzing wavelet does in-

deed in general reduce the correlation among wavelet coefficients, yet it does not affect

or control their dependence. These results have, to our knowledge, never been clearly

reported elsewhere and have strong implications for practical analysis and applications.

They represent another original contribution of the present work.

Part III of the present work is dedicated to applications based on the bootstrap and

wavelet Leader based analysis procedures. In Chapter 12, we show them at work on real-

life data produced by hydrodynamic turbulence experiments. Hydrodynamic turbulence is

the scientific domain that gave birth to the concept of multifractal [75]. The seminal works

by Yaglom and Mandelbrot in the 60s and 70s indeed proposed to describe the celebrated

Richardson energy cascade of turbulence flows by means of multiplicative cascade split

and multiply iterative constructions. It has since been recognized that velocity or dissipa-

tion turbulence fields possess scale invariance properties and are better described with

multifractal models than with self-similar ones. It remains, however, to decide which pre-

cise multiplicative model better fits the data, an open and controversial issue. Answering

such a question is of theoretical importance as it may help to better understand the phys-

ical mechanisms at work in the development of turbulence flows. The bootstrap based

confidence intervals and hypothesis tests enable us to revisit this old question.

In Chapter 13, we investigate the application of wavelet Leader based multifractal anal-

ysis to texture image classification. We propose to replace commonly used features for

characterizing their regularity, which are often obtained by heuristic arguments and anal-

ysis methods, with 2d wavelet Leader based multifractal attributes, and employ them for

the classification of a large texture image database. Results indicate the relevance of

multifractal attributes for texture image regularity characterization.

Finally, in Chapter 14, we conclude on the present work and state further issues and

perspectives.
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2.1 Scale Invariance: Intuitions 11

In this chapter, we introduce the main concepts of scale invariance, self-similarity and

scaling analysis, and the mathematical definitions and notions of multifractal analysis. We

define and characterize the related analysis tools and practical estimation procedures,

and we introduce self-similar and multiplicative cascade model processes and discuss

their properties. The goal of this chapter is to give an overview on the main theoretical

and practical notions and consequences of these mathematical concepts. Therefore, the

chapter consists mostly of a synthetic overview presentation of the state of the art on the

topic.

The main contribution of this chapter lies in the synthetic overview exposition itself. It also

contains a couple of contributions on precise technical points. These are clearly stated in

the text, and their detailed proofs are annexed in Appendices A and B.

Without loss of generality, most of the definitions will be stated in 1d for convenience of

notation.

2.1 Scale Invariance: Intuitions

2.1.1 1/f processes

Historically, scale invariance had been tied to 1/f stochastic 2nd order stationary pro-

cesses, sometimes as well called 1/f noise since used for modeling thermal noise in

electronics: Let X denote the signal under analysis, and Γ̂X(ν, tk) any standard spectrum

estimation procedure, such as the average over sliding time windows (centered around

times tk) of smoothed periodograms or Welch estimator. Scale invariance is related to a

power law behavior of the spectrum estimate with respect to frequency over a wide range

of frequencies, ν ∈ [νm, νM ], νM/νm ≫ 1:

1

n

n∑

k=1

Γ̂X(ν, tk) ≃ C|ν|−γ , γ > 0, (2.1)

where C is a positive constant. Therefore, no frequency in (νm, νM ) plays a privileged

role, and the spectrum is covariant with respect to (w.r.t.) dilatation: ΓX(aν) = a−γΓX(ν).
Equivalently, no characteristic scale is present in the auto-covariance function1 of the pro-

cess: cX(τ) = |a|1−γcX(aτ).

There exist two ways of reading Eq. (2.1), depending on the actual range [νm, νM ],
namely long range dependence and local self-similarity. The first is obtained by fixing

the lower characteristic frequency to νm = 0 and has strong links to self-similarity. The

latter is obtained by letting the high characteristic frequency go to infinity, νM = +∞. It

has a strong link with the local regularity of the trajectories of X(t) and deeply relates to

multifractal analysis (cf. Section 2.4).

2.1.1-a) Long range dependence (LRD)

Let us first explore the power law behavior in the limit of |ν| → 0 or, equivalently, |τ | → ∞:

1From now on, and throughout this manuscript, we refer to the auto-covariance function of a process as

its covariance function. When the term covariance function is used for the cross-covariance, this is clearly

and explicitly stated. Similarly, we refer to the auto-correlation function as the correlation function.
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Definition 2.1 (Long range dependence) A second-order stationary process with finite

variance X(t) is called long range dependent (LRD) if its power spectral density ΓX(ν)
behaves, in the limit of |ν| → 0, as:

ΓX(ν) ∼ C|ν|−γ , (2.2)

with 0 < γ < 1 and C a positive constant [33, 153].

Equivalently, this means that the covariance function,

cX(τ) ∼ C̃|τ |−α, |τ | → ∞, 0 < α < 1, α = 1 − γ, (2.3)

decays very slowly in the limit |τ | → ∞ (C̃ being a positive constant), such that:

∫ +∞

A
cX(τ)dτ = +∞, (2.4)

for any 0 < A < +∞.

A direct and major practical consequence of LRD is that estimation becomes very difficult.

For instance, the variance of the sample mean µ̂N = 1
N

∑
n=1Xn decays as Varµ̂N ∼

CN−α with 0 < α < 1 as N → ∞, hence much slower than the common N−1. In

general, for higher order sample moment estimation, such as variance, the estimations

are strongly biased and have very slowly decreasing variance [33, 153].

2.1.1-b) Scale invariance, fractal trajectories and local regularity

Let us now explore the other limit, when the covariance function (equivalently, power

spectral density) displays power law behavior for small time lags |τ | → 0 (equivalently,

large frequencies |ν| → ∞).

Suppose that the covariance function takes the form

cX(τ) = EX(t+ τ)X(t) ∼ C(1 − |τ |2h), |τ | → 0, (2.5)

which implies ΓX(ν) ∼ C|ν|−(2h+1), |ν| → +∞. Notice that then, h describes the local

regularity of the trajectories of X(t): The closer h to 0, the more irregular the trajectories,

the larger h, the smoother they are. In the case of a Gaussian process, we can be more

precise: The trajectories have Hausdorff dimension 2 − h, and are h̃ < h Hölder (for

precise definitions of Hölder regularity and Hausdorff dimension, see Section 2.4). For a

covariance function as in Eq. (2.5), the increments X(t + τ) − X(t) of the process are,

for small time lags τ , characterized by [84]:

E|X(t+ τ) −X(t)|2 ∼ C|τ |2h, |τ | → 0. (2.6)

This locally singular behavior of X intimately relates scale invariance to multifractal anal-

ysis (cf. Section 2.4).

2.1.2 Practical definition of scale invariance and scaling analysis

A number of authors have proposed to enlarge or enrich the notion of scale invariance

[2, 4, 5, 6]: Scale invariance is now commonly and operationally defined as the power law

behaviors of (the time average of the q−th power of) multiresolution quantities, labeled
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TX(a, t), with respect to the analysis scale a, for a given (large) range of scales a ∈
(am, aM ), aM/am ≫ 1:

1

na

na∑

k=1

|TX(a, k)|q ≃ cqa
ζ(q). (2.7)

With respect to Eq. (2.1), the definition in Eq. (2.7) implies two major changes in

paradigms:

1. Standard spectral estimates are replaced with multiresolution quantities TX(a, t).
These are quantities describing the content of X around a time position t, and a

scale a. Standard examples for the TX(a, t) are given by wavelet, increment or box-

aggregated coefficients. Qualitatively, the analysis scale a acts as the inverse of the

frequency: a ∼ ν0/ν (ν0 being an arbitrary constant). The multiresolution quantities

TX(a, t) can therefore be seen as some sort of spectral estimates. For instance, for

wavelet coefficients, it can be shown that:

ETX(a, t)2 =

∫
ΓX(ν)a|ψ̃0(aν)|2dν, (2.8)

where ψ̃0 is the Fourier transform of the mother wavelet [1, 6, 7, 12].

2. The second statistical order q = 2 is replaced with a whole range of (positive and

negative) statistical orders q.

It has been shown that scale invariance as in Eq. (2.7) can fruitfully be modeled with

self-similar [153] and/or multifractal processes [145].

Definition 2.2 (Scaling analysis) The aim of scaling analysis is to validate the existence

of power law behaviors as in Eq. (2.7), and to measure the scaling exponents ζ(q) that

characterize them.

Essentially, analysis and estimation procedures consist in tracking straight lines and esti-

mating slopes in log-log plots, as suggested by Eq. (2.7) above. The estimated exponents

can in turn be used for the physical understanding of the data or of the systems producing

them or are involved in standard signal processing tasks such as detection, hypothesis

testing, identification or classification.

The link of scaling analysis and multifractal analysis is made explicit in Section 2.5.3.

2.1.3 Scale invariance and self-similarity

The central theoretical notion of scale invariance is that of self-similarity: The whole re-

sembles the part, and the part resembles the whole. Therefore, the (statistical) informa-

tion that can be obtained from an object is independent of the scale of observation. The

paradigm and most popular examples of self-similar objects are probably given by frac-

tals – objects that show the same geometric features at a (typically discrete) set of scales.

Fig. 2.1 shows the famous von Koch curve as an example of a fractal object: It is clear

that the essential information on the nature of such objects can not be gathered by mea-

surements on a fixed scale (where we essentially observe that the object is constructed

from equilateral triangles) but only by identifying the mechanisms relating different scales

(from which one can, for example, deduce that the curve has infinite length and a fractal

box-counting dimension of log 4/ log 3).

In the next section, we are interested in stochastic versions of this deterministic scheme.
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iteration 0

iteration 1

iteration 2

iteration n

Figure 2.1: Von Koch curve. Iterative construction principle of the von Koch curve (left),

and the curve after n = 6 iterations. In the limit n → ∞, the curve has infinite length and

a box-counting dimension of log 4/ log 3. This essential information on the geometrical

nature of the object has to be deduced from the mechanisms relating different scales. It

can not be obtained by measurements at a fixed observation scale.

2.2 Statistical Self-Similarity and H-sssi Processes

The most important and commonly used models for random self-similarity are self-similar

processes.

2.2.1 Self-similar process

Definition 2.3 (Self-similar process) A process {X(t), t ∈ R+} is said to be self-similar

(H-ss) if and only if for all a > 0 [69, 153]:

X(t)
fdd
= a−HX(at). (2.9)

The symbol
fdd
= means that the process X(t) and the process a−HX(at) have the same

finite dimensional distributions, that is, for all a > 0 and n ∈ N and t1 < t2 < · · · < tn,

[X(t1), X(t2), · · · , X(tn)]
d
= a−H [X(at1), X(at2), · · · , X(atn)], (2.10)

where
d
= stands for equality in distribution. The parameter H > 0 is called the self-

similarity parameter or Hurst parameter. The definition implies that one can not statis-

tically distinguish the process X(t) from the dilated process a−HX(at), for any dilation

factor a > 0.

A first direct consequence of self-similarity is that all finite moments of X(t) display power

law behaviour2:

E|X(t)|q = |t|qHE|X(1)|q, ∀t > 0, ∀q : E|X(t)|q < +∞, (2.11)

2By convention, and without loss of generality, X(0) ≡ 0.
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which will play a central role in parameter estimation procedures. It follows that there-

fore, any self-similar process X(t) is by definition non stationary. Let us note that the

theorem of Lamperti provides an interesting theoretical connection between self-similar

and stationary processes: If {X(t), t ∈ R+} is a self-similar process, then {Z(t) =
exp(−Ht)X(exp(t)), t ∈ R} is a stationary process, and if {Z(t), t ∈ R} is a stationary

process, then {X(t) = tHZ(ln t), t ∈ R+} is a self-similar process [39, 105].

2.2.2 Self-similar process with stationary increments: H-sssi process

In practice, the non stationarity of self-similar processes is problematic from both model-

ing and analysis points of view. Therefore, one usually considers the sub-class of self-

similar processes with stationary increments (H-sssi processes).

2.2.2-a) Definition

Definition 2.4 (Stationary increments) A process X(t) is said to have stationary incre-

ments if and only if

δτX(t)
fdd
= δτX(0), ∀τ ≥ 0. (2.12)

where δτX(t) are the increments of X(t):

δτX(t) = X(t+ τ) −X(t). (2.13)

The self-similarity of X(t) translates to the δτX(t):

δτX(t)
fdd
= a−HδaτX(at), ∀a > 0, (2.14)

just as the power law behavior of the moments:

E|δτX(t)|q = |τ |qHE|δ1X(0)|q, ∀t, τ > 0. (2.15)

H-sssi processes, as well as their increments, have mean zero. If the process X(t) has

finite variance (fv), its covariance is given by:

EX(t)X(s) =
E|X(1)|2

2

(
|t|2H + |s|2H − |t− s|2H

)
, (2.16)

from which follows that:

0 < H < 1, (2.17)

since the covariance function is positive definite. It is also easy to show that then, the

covariance function of the increments is given by [153]:

EδτX(t+ s)δτX(t) =
E|X(1)|2

2

(
|s+ τ |2H + |s− τ |2H − 2|s|2H

)
. (2.18)
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2.2.2-b) H-sssi process and long range dependence

For s ≫ τ , the auto-covariance function of the increments of a H-sssi process (cf. Eq.

(2.18)) behaves as:

EδτX(t+ s)δτX(t) ≃ Cs2(H−1)τ2E|X(1)|2H(2H − 1), H 6= 1

2
, s≫ τ. (2.19)

Consequently, the increments of a H-sssi process form a long range dependent process

when the self-similarity parameter is in the range:

1

2
< H < 1 (2.20)

which corresponds to Definition 2.1 and Eq. (2.3) with γ = 2H − 1 and α = 2(1 − H),
respectively. This establishes a strong link between the asymptotic property of long range

dependence and self-similarity.

Although H-sssi processes are non stationary, one commonly says that they are long

range dependent if 1
2 < H < 1, and heuristically associates a spectrum ∼ |ν|−(2H+1) with

them.

2.2.2-c) H-sssi process, fractal trajectories and local regularity

Eq. (2.15) implies that H-sssi processes display local power law behavior as in Eq. (2.6):

E|X(t+ τ) −X(t)|2 = EX(1)2|τ |2H . (2.21)

Hence, H characterizes the local regularity of X(t) everywhere, and the local regular-

ity is the same all along the trajectory. These properties strongly connect H-sssi and

multifractal analysis. This will be explained in Section 2.4.

2.2.3 H-sssi processes: Examples

In the present work, we exclusively consider processes with finite variance (fv). In partic-

ular, empirical studies will concentrate on the (Gaussian) fractional Brownian motion, and

the (non Gaussian) Rosenblatt process.

2.2.3-a) Fractional Brownian motion (fBm)

Fractional Brownian motion (fBm)BH(t) constitutes the archetype of fvH-sssi processes.

It is the only Gaussian finite variance self-similar process with stationary increments [153],

and it is fully defined by the self-similarity parameter H ∈ (0, 1), up to a multiplicative

factor. Therefore, it is a LRD process when H ∈ (0.5, 1). Reintroduced and made popular

much later by Mandelbrot [121], it has first been studied by Kolmogorov in the context

of turbulent flows in the early 40s [100]. Fractional Brownian motion can equivalently be

defined as:

BH(t) = kH

∫ ∞

−∞

(
(t− x)

H
2
−1

+ − (−x)
H
2
−1

+ ds

)
dB(x), (2.22)

where kH is a normalizing constant (e.g. such that EBH(1)2 = 1), x+ = max{x, 0} for

x ∈ R and B(t), t ∈ R, is a standard Brownian motion3 [153]. The increment process of

3Note that for H = 0.5, this is to be interpreted as an integral representation of standard Brownian motion.
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Figure 2.2: Trajectories and increments of H-sssi processes. Trajectories (left),

quantile-quantile plots versus standard normal (quantiles given by abscissa) of normal-

ized empirical distributions of increments (center), and normalized empirical distributions

of increments (right) for fBm (top, H = 0.7) and ROS (bottom, H = 0.7): Whereas the

increments of fBm are Gaussian, they are strongly non Gaussian and skewed for ROS.

fractional Brownian motion is commonly referred to as fractional Gaussian noise (fGn).

The reader is referred to [153] and references therein for more details. For numerical

synthesis procedures in 1d and 2d, see e.g. [27, 153] and [163], respectively.

2.2.3-b) Rosenblatt Process (ROS)

There also exist fv non Gaussian H−sssi processes, the most well known being the

Rosenblatt process (ROS) [146]. The Rosenblatt process, with H ∈ (1/2, 1), is defined

as

ZH(t) = kH

∫ ′

R2

{∫ t

0
(s− u)

H
2
−1

+ (s− v)
H
2
−1

+ ds

}
dB(u)dB(v), (2.23)

where kH is a normalizing constant (e.g. such that EZH(1)2 = 1),
∫ ′

R2 denotes the double

Wiener-Itô integral and
′

denotes that the integral is not taken over the diagonal (i.e.,

u 6= v). B(t), t ∈ R, stands for the standard Brownian motion and x+ = max{x, 0} for

x ∈ R . For further technical details on the definition, properties and numerical simulation

procedures, the reader can consult e.g., [10] and references therein. The two major

properties of the Rosenblatt process of interest in this manuscript are as follows: ROS has

exactly the same covariance function as fBm but more complex higher order dependence.

Also, ROS has a non Gaussian highly skewed marginal distribution (as illustrated from

numerical simulations for its increments in Fig. 2.2). Finally, since it is defined only for

H ∈ (1/2, 1), ROS is always an LRD process.

2.2.3-c) α-stable motion.

For sake of completeness, we mention another class of self-similar stationary increment

processes, which is given by the α-stable processes. They will not be considered any

further in this thesis, and the interested reader is referred to e.g. [153].
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2.3 Wavelets and H-sssi Processes

Many different practical methods have been proposed for scaling analysis and for the es-

timation of the self-similarity parameter H. A prominent place is occupied by the discrete

wavelet transform (DWT). It will also play a key role in the definition of practical proce-

dures for performing a multifractal analysis (see Section 2.5). Therefore, we concentrate

on this method, and the reader is referred to e.g. [33] for an overview of methods.

2.3.1 Wavelet transform in 1d

The original idea of the wavelet transform is to provide a decomposition of the signal X(t)
in the time-scale plane [43, 55, 117]. It compares the signal by means of inner products

to a set of analyzing functions or reference patterns that are obtained, by time shift and

dilation (change of scale) operations, from an elementary function ψ0(t), referred to as

the mother wavelet. The mother wavelet has to fulfill the admissibility condition
∫

R

ψ0(t)dt ≡ 0, (2.24)

and is chosen such that its energy remains mostly concentrated in a narrow support

both in the time and frequency domains. It is characterized by its number of vanishing

moments, a strictly positive integer Nψ ≥ 1 defined as:

∀l = 0, 1, . . . , Nψ − 1 :

∫

R

tlψ0(t)dt ≡ 0, and

∫

R

tNψψ0(t)dt 6= 0. (2.25)

The mother-wavelet, and its derivatives up to order Nψ, have fast exponential decays in

the time domain.

Continuous wavelet transform. Let ψa,t(u) denote the template of ψ0(t) dilated to

scale a and translated to position u:

ψa,t(u) =
1√
a
ψ0

(
u− t

a

)
. (2.26)

The continuous wavelet transform (CWT) is defined trough its coefficients:

CX(a, t) = 〈ψa,t|X〉 =

∫

R

X(u) ψa,t(u) du. (2.27)

The CWT is a very rich (redundant) representation of X(t), since it maps a time signal

– hence a signal whose information can be entirely represented in the time domain – in

the time-scale domain. Therefore, it is natural to ask whether one can restrict the number

of coefficients while keeping all the information of the signal in the wavelet representation.

Discrete wavelet transform. At a first reading, the discrete wavelet transform (DWT)

can be seen as such a sampling of the time-scale plane by keeping only wavelet coeffi-

cients for dilations to scales and translations to positions:

a = 2j , t = k2j . (2.28)

The DWT is, however, much more than that: It is constructed in such a way that the

collection of templates of ψ0:

{ψj,k(t) = 2−j/2ψ0(2
−jt− k), j ∈ Z, k ∈ N} (2.29)
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forms an orthonormal basis of L2(R), i.e.:

X(t) =
∑

j,k

〈X|ψj,k〉ψj,k(t) =
∑

j,k

DX(j, k)ψj,k(t) (2.30)

where the DX(j, k) are the discrete wavelet transform coefficients:

DX(j, k) = 〈ψj,k|X〉 =

∫

R

X(t) 2−j/2ψ0(2
−jt− k) dt. (2.31)

The solution to finding mother wavelets ψ0(t) that satisfy these constraints is embed-

ded in the so-called multiresolution theory [55, 117]. It relies on the design of a scaling

function φ0(t), from which the mother wavelet ψ0(t) yielding the orthonormal basis can be

constructed. Moreover, discrete time quadrature mirror filters H0(k) and G0(k) can be as-

sociated with the scaling function φ0(t) and the mother wavelet ψ0(t), respectively, except

at the first scale. This gives rise to fast algorithms. The absence of discrete time filters

for the first scale makes it theoretically necessary to perform a projection step, which is

often omitted in practice [3, 172].

For the definition of the DWT in 2d in the next section, we prefer, for convenience, a

notation that translates to the 1d case as: φ0 ↔ ψ
(0)
0 and ψ0 ↔ ψ

(1)
0 .

2.3.2 Wavelet transform in 2d

Continuous wavelet transform. The continuous wavelet transform in 2d is con-

structed in a similar way as the 1d CWT [14, 117]. It is defined by its coefficients:

CX(a, t) = 〈ψa,t|X〉 =

∫

R2

X(u) ψa,t(u) du, t,u ∈ R2. (2.32)

Discrete wavelet transform. The construction of the discrete wavelet transform in 2d

is, however, slightly different from the 1d case. Its lower approximation and the detail

coefficients are given by:

D
(m)
X (j,k) = 〈ψ(m)

j,k |X〉, m = 0, 1, 2, 3, k ∈ N2 (2.33)

where the collection {ψ(m)
j,k , j ∈ Z,k ∈ N2,m = 0, 1, 2, 3} forms a basis of L2(R2). For the

general theory on the design of such functions ψ(m), the reader is referred to [14]. Here,

we will restrict ourselves to the following definition: A 2d orthonormal DWT can be prac-

tically defined via the use of 4 bi-dimensional filters G(m)(k1, k2), m = 0, 1, 2, 3 obtained

as tensor products of the quadrature mirror filters H0 and G0 (low-pass and high-pass,

respectively) defining a 1d orthonormal DWT. By convention, G(0)(k1, k2) = H0(k1)H0(k2)
corresponds to the 2d low pass filter providing a lower approximation, while G(m), m =
1, 2, 3, correspond to the high pass filters yielding the wavelet coefficients: G(1)(k1, k2) =
G0(k1)H0(k2), G

(2)(k1, k2) = H0(k1)G0(k2) and G(3)(k1, k2) = G0(k1)G0(k2).
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2.3.3 Normalization of wavelet coefficients and practical implementation

Normalization of wavelet coefficients. For scaling analysis, it is more suitable (cf.

[2, 24]) to re-normalize the standard L2-norm wavelet coefficients according to a L1-

norm:

dX(j, k) = 2−j/2DX(j, k), (2.34)

d
(m)
X (j,k) = 2−jD(m)

X (j,k), k ∈ Z2, m = 1, 2, 3. (2.35)

We will refer to dX as the (discrete) wavelet coefficients of X.

Practical implementation. There exist a certain number of families of mother wavelets

for the definition of a DWT [14, 117]. Throughout this manuscript, we will make use of

the family of Daubechies wavelets [54]. These wavelets have compact support, and the

associated discrete time filters have minimum length.

The codes for the 1d DWT that are used for obtaining the results presented in this

manuscript have been implemented in MATLAB c© by ourselves. The 2d DWT is performed

using (a corrected version of) the Rice Wavelet Toolbox (www.dsp.rice.edu/software/

rwt.shtml).

2.3.4 Properties for finite variance H-sssi processes

The wavelet coefficients of a fv H-sssi process X(t) have the following properties (e.g.

[4]):

P1 If Nψ ≥ 1, the coefficients {dX(j, k), k ∈ N} form a stationary process.

P2 The coefficients {dX(j, k), k ∈ N} reproduce the scaling property Eq. (2.9):

dX(j, k)
fdd
= 2jHdX(0, k). (2.36)

P3 The correlation function of the coefficients dX(j, k) and dX(j, k′) behaves as4:

EdX(j, k)dX(j, k′) ∼ C|k − k′|2(H−Nψ), |k − k′| → ∞, (2.37)

for large time lags |k − k′|. This is a direct consequence of the specific covariance

structure of fvH-sssi processes Eq. (2.16). Therefore, the coefficients {dX(j, k), k ∈
Z} are not LRD if:

Nψ ≥ H +
1

2
. (2.38)

Hence, the wavelet coefficients exactly reproduce the scaling properties of X(t) while

getting rid of the statistically difficult context of X(t) (LRD and non-stationary): They

form stationary and only weakly correlated sequences. The first is a consequence of

the fact that the family of analyzing wavelets itself exhibits a scale invariance feature,

since obtained by a dilation operation, the latter of the (sufficient) number of vanishing

moments of the mother wavelet. Combining (P1) and (P2) gives, for all finite moments

∀q > 0 : E|dX(0, ·)|q <∞:

E|dX(j, ·)|q = E|dX(0, ·)|q︸ ︷︷ ︸
cq

·2jqH . (2.39)

4This can be written more generally for coefficients at different scales j and j′ as in Eq. (11.2), cf. [70].

www.dsp.rice.edu/software/rwt.shtml
www.dsp.rice.edu/software/rwt.shtml


2.4 Multifractal Analysis: Theory 21

Finally, for the specific case of fBm:

P4 The marginal distributions of the coefficient of fBm are Gaussian with zero mean

and variances σ2(j) = VardX(j, ·):

dX(j, ·) ∼ N (0, σ(j)).

This explains and underlines the predominant role that the discrete wavelet coefficients

play in both theoretical and practical analysis of scale invariance, notably for q = 2.

2.4 Multifractal Analysis: Theory

2.4.1 Scale invariance, higher order statistics and multifractal analysis

Self-similarity is a very demanding property, as it implies exact invariance to dilatation

for all scale factors a > 0 of all finite dimensional distributions, therefore involving all

statistical orders of the process (cf. Eq. (2.9)). This is in practice often too restrictive a

model, be it because of practical estimation problems for large statistical orders, or due

to the nature of the process under analysis. Therefore, investigation of scale invariance

is sometimes restricted to the statistical order 2, and to a certain range of scale factors

only: This is precisely the intuition and definition of 1/f processes in Eq. (2.1), which is

in some sense practically convenient, since it allows to model and analyze a wider range

of scale invariance. It is, however, as well a weak model in the sense that it gives only a

coarse description of the scale invariance properties of a process in terms of the second

statistical order and is by definition blind to any aspects involving higher order statistics.

One definition of statistical scale invariance – which is at the same time stronger and

more flexible – is obtained by relaxing the self-similarity property in a similar way as in

the practical definition in Section 2.1.2: First, scale invariance has to hold only for a

restricted range of scaling factors a ∈ (am, aM ), aM/am ≫ 1, rather than for all a > 0.

Second, the (single) self-similarity parameter H is replaced with the function ζ(q), called

the scaling function or the scaling exponents of X(t):

Definition 2.5 (Scale invariant stationary increment process) Suppose X(t) is a pro-

cess with stationary increments. Then it is scale invariant if

E|X(at)|q = |a|ζ(q)E|X(t)|q (2.40)

for a range of scales a ∈ (am, aM ), aM/am ≫ 1 and some range of statistical orders q.

This implies for the increment process:

E|δτX(t)|q = |τ |ζ(q)E|δ1X(0)|q, 0 < τm < τ < τM <∞. (2.41)

Comparing this definition with that of H-sssi (Def. 2.3 plus Def. 2.4), we see that Eq.

(2.41) is highly reminiscent of Eq. (2.15), with ζ(q) = qH. A central difference lies in the

fact that in Eq. (2.41) the single parameterH is replaced with a function ζ(q), which can in

general be non linear, ζ(q) 6= qH, and hence represents a whole collection of parameters

for the characterization of the process.

The analysis of processes that satisfy Eqs. (2.40) and (2.41) is often conducted in the
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framework of multifractal analysis (MFA). Multifractal analysis studies how the (pointwise)

local regularity of X fluctuates in time (or space). It therefore starts from a point of view

that is a priori different from that of scaling analysis. We will, however, see that although

the starting points look very different at first, scaling and multifractal analysis have a

strong link, and that multifractal analysis will bring us back to Eqs. (2.40) and (2.41) in

the limit of small scales am, τm → 0. Let us now introduce the notions and concepts

of multifractal analysis. For general and exhaustive theoretical accounts for multifractal

analysis, the reader is referred to e.g. [86, 87, 145].

2.4.2 Local regularity of functions

Definition 2.6 (Pointwise Regularity) A function f(t), f : Rd → R is Cα(t0) with α > 0,

denoted as f ∈ Cα(t0), if there exist C > 0, ε > 0 and a polynomial Pt0(τ) of order strictly

smaller than α such that:

if |τ | ≤ ε, |f(t0 + τ) − Pt0(τ)| ≤ C|τ |α. (2.42)

If such a polynomial Pt0(τ) exists, it is unique. Its constant part is always given by Pt0(0) =
f(t0).

Definition 2.7 (Hölder exponent) The Hölder exponent hf (t0) of f at t0 is

hf (t0) = sup{α : f ∈ Cα(t0)}. (2.43)

Heuristically, if f has Hölder exponent h(t0) at t0, one can write
∣∣f(t0 + τ) − (f(t0) + a1(t0)τ + a2(t0)τ

2 + · · · + aN (t0)τ
N )
∣∣ ≤ C(t)|τ |hf (t0), (2.44)

withN < α. Intuitively, the Hölder exponent therefore gives a much finer account to the lo-

cal regularity of a function, in between the notions ”differentiable” and ”continuous”. Most

interestingly, if Pt0(τ) = f(t0) reduces to a constant5, the Hölder exponent characterizes

the power law behavior of the increments at t0:

|f(t0 + τ) − f(t0)| ≤ C(t0)|τ |hf (t0). (2.45)

Hölder exponent and singularities. The Hölder exponent generalizes the heuristic

definition of ”singularity” that we introduced in Section 2.1.1-b): If f has Hölder exponent

h(t0) = hf (t0) < 1 at t0, then f has at t0 either a cusp-type singularity (cf. Fig. 2.5, top

left):

|f(t0 + τ) − f(t0)| ∼ C|τ |h(t0), (2.46)

or an oscillating singularity (or chirp-type singularity, cf. Fig. 2.5, top right):

|f(t0 + τ) − f(t0)| ∼ C|τ |h(t0) sin

(
1

|τ |β
)
, (2.47)

with oscillation exponent β > 0. Conversely, if f has either a cusp or an oscillating

singularity at t0 and 1 > h(t0) > 0, then h(t0) = hf (t0) is the Hölder exponent of f at t0.

Note that the converse can only hold for h(t0) > 0, since in Def. 2.7 Hölder exponents

are positive. Technically, the definition of negative Hölder exponents is feasible but much

more involved. This is beyond the scope of this work [91, 178]. Nonetheless, note that

the heuristic |f(t0 + τ) − f(t0)| ∼ C|τ |h(t0), τ → 0 stays valid with negative exponents

h(t0) < 0.

5This case is most interesting, since it can always be reached by differentiating enough times.
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2.4.3 Multifractal spectrum

The aim of multifractal analysis is to provide a description of the collection of Hölder

exponents h of the function f . Since the Hölder exponent may jump from one point to

another, describing them for each time instance in form of a function hf (t) is rather mean-

ingless. Therefore, multifractal analysis provides a global description of the regularity of

the function of f in form of a multifractal spectrum (also called the singularity spectrum).

It describes the ”size” of the set of points for which the Hölder exponent takes a certain

value h. The measure for ”size” most commonly taken is the Hausdorff dimension and

gives rise to the Hausdorff spectrum (which we will associate with and call the multifractal

spectrum). It describes the collection of Hölder exponents h(t) by mapping to each value

of h the Hausdorff dimension D(h) of the collection of points ti at which hf (ti) = h:

Definition 2.8 (Iso-Hölder sets) The iso-Hölder set If (h) is the collection of points ti for

which the Hölder exponent takes a certain value h.

If (h) = {ti|hf (ti) = h}. (2.48)

For defining the Hausdorff dimension, we first have to recall the definition of a Hausdorff

measure:

Definition 2.9 (Hausdorff measure) Let S ⊂ Rd, ε > 0, and let γε(S) be ε-coverings

of S, that is, bounded sets {cn}n∈N of radius |cn| ≤ ε (maximal distance between two

elements of cn) that cover S: S ⊂ γε(S). Let Cε(S) be the collection of all ε-coverings

γε(S) of S. The δ-dimensional Hausdorff measure of S is:

mδ(S) = lim
ε→0

inf
Cε(S)

∑

γε(S)

|cn|δ. (2.49)

It can be shown that either mδ(S) = 0 if δ < δc, or mδ(S) = +∞ if δ > δc. The Hausdorff

dimension of S is defined as the critical value δc:

Definition 2.10 (Hausdorff dimension) The Hausdorff dimension dimH(S) of S ⊂ Rd is

given by:

dimH(S) = inf
δ
{mδ(S) = +∞} = sup

δ
{mδ(S) = 0}. (2.50)

The multifractal spectrum assigns now to each Hölder exponent – as a measure of its

geometric importance – the Hausdorff dimension of the set of points that share the same

exponent h:

Definition 2.11 (Multifractal spectrum) The multifractal spectrum of a function f is de-

fined as the Hausdorff dimension of the iso-Hölder sets If (h):

Df (h) = dimH(If (h)). (2.51)

By convention, if h′ is not a Hölder exponent of f , Df (h
′) = −∞. Following [145], we

consider the multifractal spectrum of a process to be the multifractal spectrum of each

of his realizations. We will not distinguish any more between functions and processes

in what follows, and we will simply speak of multifractal spectrum, for both functions and

processes. For more technical details, the reader is referred to [145].

Therefore, the goal of multifractal analysis is to determine the multifractal spectrum.

It describes a local property, the point-wise regularity of a function, globally through the

geometrical importance of different Hölder exponents, disregarding any information on

their precise geometric repartition.
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2.4.4 Multifractal classification of processes

Functions and processes are classified by the properties of their multifractal spectra.

2.4.4-a) Homogenous processes

In this manuscript, we will only consider homogenous processes, that is, processes X(t)
for which the Hölder exponents hX(t) are homogeneously distributed on the support of

X(t):

Definition 2.12 (Homogenous function or process) A function or process X(t) is call-

ed homogenous if it has the same multifractal spectrum on all nonempty open sets of its

support [106].

For such processes, it can be shown that hX(t) is either a constant, or discontinuous

everywhere. This definition excludes processes which are smoother in some regions

than in others: For instance, it excludes multifractional processes, for which the Hölder

exponent is a regular, smooth function which takes a different value for each point of the

support [31, 32]. Hence, their multifractal spectrum is DX(h) = 0 if ∃t : hX(t) = h, i.e. if h
is a Hölder exponent of the process, and −∞ elsewhere. Therefore, multifractal analysis

is of no interest for their description.

2.4.4-b) Monofractal processes

Definition 2.13 (Monofractal function or process) A function or processes X(t) in Rd

for which hX(t) is a constant, ∀t : hX(t) = H, is called monofractal.

The multifractal spectrum of monofractal processes reduces to:

DX(h) =

{
d h = H

−∞ h 6= H.

The fv H-sssi processes fBm and ROS (cf. Subsection 2.2.3) are monofractal processes

and have Hölder exponent hX(t) = H everywhere.

2.4.4-c) Multifractal processes

Multifractal functions or processes are commonly defined as follows:

Definition 2.14 (Multifractal function or process) A function or process X(t) is called

multifractal if it contains more than one Hölder exponent h that is living on a support with

non-zero Hausdorff dimension.

Technically, however, it is more precise to distinguish between functions or processes

X(t) that contain more than one Hölder exponent h, termed multi-Hölder, and functions

or processes that do in addition contain more than one Hölder exponent that lives on a

support with non-zero Hausdorff dimension [85].

All homogenous processes X whose Hölder exponents hX(t) are not constant fall into

this category. Their Hölder exponents hX(t) are discontinuous everywhere and hence are

highly variable and change widely from point to point, and from sample path to sample
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path. In contrast to multifractional processes, multifractal processes have many different

Hölder exponents on any subinterval, and are hence interesting for multifractal analysis.

In this manuscript, we will only consider multifractal multiplicative cascade (MMC) pro-

cesses [95, 121, 145], which represent the multifractal model processes that are quasi-

exclusively used in practical applications. They are defined in Section 2.7.

2.5 Multifractal Formalism

A key practical issue consists in estimating the multifractal spectrum DX(h) from a sin-

gle finite length observation of data X. This can not be undertaken by direct application

of Def. 2.11, since this would involve measuring hX(t) at each time instant t, which

is practically intractable: The Hölder exponent hX(t) of multifractal processes X(t) is

discontinuous everywhere and hence practically inaccessible to direct local numerical

determination. Because of the finite resolution of data, each sample of the observation

represents a subinterval of t, which contains many different Hölder exponents of X (the-

oretically, all of them are present on any subinterval). One therefore has to resort to

mathematical formulas which allow, under certain mathematical hypotheses, to obtain

the spectrum DX(h) from quantities that can be numerically calculated. Such formulas

are called multifractal formalisms.

Recently, it has been shown that this can be achieved using the so-called wavelet Leader

multifractal formalism [8, 89, 92, 110]. For it to be well defined, the measure or func-

tion X(t) has to be bounded, which implies that the wavelet Leaders (defined below) are

bounded. A sufficient condition for X(t) to be bounded is that it is uniform Hölder (cf. e.g.

[90, 178, 182]).

Definition 2.15 (Uniform Regularity) A function or process X(t) is said to belong to Cε,
ε ∈ R, when its wavelet coefficients satisfy:

∃C > 0 : ∀j, k |dX(j, k)| ≤ C2jε. (2.52)

A uniform regularity exponent hmin can hence be defined:

hmin = sup{ε : X ∈ Cε}. (2.53)

Definition 2.16 (Uniform Hölder) A function or process X(t) is said to be uniformly

Hölder if hmin > 0.

In turn, hmin > 0 implies:

∀t0, h(t0) ≥ hmin,

and yields that X(t) is uniform Hölder, hence is continuous, hence is bounded, hence

possesses finite wavelet Leaders in the limit of fine scales. These implications are strict.

Therefore, we assume throughout this manuscript that X(t) is uniform Hölder.

The uniform Hölder condition may seem rather restrictive in practice. This is in particular

the case for the multifractal analysis of images, since they consist of an intensity local

average that can naturally be seen as the approximation, at a given resolution level, of

a positive measure: There is hence a priori no guarantee that they are in the class of

bounded functions. This practical limitation will be addressed in Section 5.1.
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Figure 2.3: Definition of Wavelet Leaders: 1d. The wavelet Leader LX(j, k) (’◦’) is

defined as the largest coefficient |dX(·, ·)| (’•’) within the time neighborhood 3λj,k over all

finer scales 2j
′
< 2j (area in gray, truncated at fine scales).

2.5.1 Wavelet Leaders

Wavelet Leaders consist of multiresolution quantities that advantageously replace wavelet

coefficients in multifractal analysis since they possess significant theoretical and practical

qualities for the construction of a multifractal formalism.

In this manuscript, we only consider the analysis of 1d and 2d signals. Therefore,

we only provide the theoretical definition of 1d and 2d wavelet Leaders. The general nd

definition can be found in [89, 90, 92].

We assume that the mother wavelet ψ0(t) has a compact time support, and that the

quadrature mirror filters H0(k), G0(k) have finite impulse responses. This condition is

fulfilled for the Daubechies bases used in this work [55].

Definition 1d. Let us define dyadic intervals as:

λj,k =
[
k2j , (k + 1)2j

)
.

Also, let 3λ denote the union of the interval λ with its 2 adjacent dyadic intervals:

3λj,k = λj,k−1 ∪ λj,k ∪ λj,k+1.

Following [89], we define wavelet Leaders as:

LX(j, k) = sup
λ′⊂3λ

|dX,λ′ |. (2.54)

This definition means that the wavelet Leader LX(j, k) consists of the largest wavelet

coefficient |dX(j′, k′)| computed at all finer scales 2j
′ ≤ 2j within a narrow time neighbor-

hood, (k − 1) · 2j ≤ 2j
′
k′ < (k + 2) · 2j . The definition is illustrated in Fig. 2.3.

Definition 2d. Let us introduce a dyadic indexing of squares as:

λj,k1,k2 =
{
[k12

j , (k1 + 1)2j), [k22
j , (k2 + 1)2j)

}
.

The union of 9 such neighbor intervals is denoted as:

3λj,k1,k2 =
⋃

n1,n2={−1,0,1}
λj,k1+n1,k2+n2 .
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Figure 2.4: Definition of Wavelet Leaders: 2d. The wavelet Leader LX(j, k1, k2) at

scale 2j and position (k1, k2) (black cross) is defined as the largest of the wavelet co-

efficients |d(m)
X (j′, k′1, k

′
2)|, m = 1, · · · , 3 (’•’, ’•’ and ’•’) within a spatial neighborhood of

(k1, k2) and within all finer scale 2j
′ ≤ 2j (red volume, truncated at fine scales). The

wavelet coefficients over which the supremum is taken are marked by fat dots.

2d wavelet Leaders are defined as [89]:

LX(j, k1, k2) = sup
m,λ′⊂3λj,k1,k2

|d(m)
X (λ′)|, (2.55)

This definition is illustrated in Fig. 2.4 and means that the Leader LX(j, k1, k2) is obtained

as the largest amongst the wavelet coefficients |d(m)
X (j′, k′1, k

′
2)|, m = 1, 2, 3 existing in a

(narrow) spatial neighborhood of (k1, k2), at any finer scale 2j
′ ≤ 2j .

Key properties. Under the uniform Hölder regularity condition, wavelet Leaders are

hierarchical quantities, i.e., (by construction) monotonously increasing with analysis scale

2j , and they accurately measure local Hölder exponents of the function f or sample path

X. These are the central properties underlying their use as multiresolution quantities for

multifractal analysis [89, 92]: If X is uniform Hölder and has Hölder exponent h(t0) ≥ 0
at t0, then, on condition that Nψ > h and when 2jk = t0:

LX(j, k) ∼2j→0 2jh(t0), (2.56)

where Xa ∼a→0 Ya means that lima→0Xa = lima→0 Ya. Therefore, the wavelet Leader

exactly reproduces the Hölder exponent of X at t0 by a local power law behavior in the

limit of fine scales (2j → 0). The general validity of this local power law behavior, in all

cases and for all processes, is the key property ensuring the validity and relevance of the

multifractal formalism developed below. For the theoretical proof, see [89, 92].
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2.5.2 Wavelet Leader Multifractal Formalism (WLMF)

Let us, for fixed analysis scales a = 2j , form the time (space) averages of (the q-th powers

of) the LX(j, k), referred to as the structure functions:

SL(j, q) =
1

nj

nj∑

k=1

LX(j, k)q. (2.57)

Here, nj denotes the number of LX(j, k) available at scale 2j . Following intuitions orig-

inally developed in [76] for an increment based multifractal formalism, Eq. (2.56) above

suggests that the wavelet Leader structure functions SL(j, q) possess power law behavior

with respect to scales in the limit of small scales:

SL(j, q) ≃ Fq2
jζL(q), 2j → 0. (2.58)

This relation establishes a clear and deep connection between the property of scale in-

variance and the analysis tool constituted by multifractal analysis: Indeed, Eq. (2.58) is

highly reminiscent of Eq. (2.7), postulated as the (practical) definition of scale invariance,

with wavelet Leaders as multiresolution quantities. Therefore, we call the function ζL(q)
the scaling exponents6 of X.

Legendre spectrum. The function q → ζL(q) is necessarily concave (cf. [92]). There-

fore, it can be replaced with its Legendre transform without loss of information, since this

transformation is bijective for concave functions:

DL(h) = min
q 6=0

(d+ qh− ζL(q)). (2.59)

The function DL(h) is called the Legendre spectrum of X.

Under the uniform Hölder regularity condition for X that is assumed to hold, it can be

shown that DL(h) provides a tight upper bound for the multifractal spectrum D(h):

D(h) ≤ DL(h) = min
q 6=0

(d+ qh− ζL(q)). (2.60)

Multifractal formalism. The wavelet Leader multifractal formalism (WLMF) asserts

that this inequality turns into an equality:

∀h, D(h) = DL(h) = min
q 6=0

(d+ qh− ζL(q)), (2.61)

and therefore that the Legendre spectrum of X can be interpreted in terms of the Hölder

singularities of X.

Eq. (2.61) constitutes the relation that is used in practice for the numerical calculation

of the multifractal spectrum D(h): In applications, one tries to estimate the Legendre

spectrum D(h), which is the only quantity that is numerically accessible. Estimation pro-

cedures are defined in Section 2.6.

6Note that in the context of theoretical multifractal analysis, ζL(q) is generally referred to as the scaling

function.



2.5 Multifractal Formalism 29

2.5.3 Multifractal analysis versus scaling analysis

Strictly speaking, multifractal analysis aims at measuring the multifractal spectrum D(h),
while scaling analysis (cf. Def. 2.2) rather concentrates on scaling exponents ζ(q). Be-

cause of the general validity of the WLMF Eq. (2.61) for most commonly used scaling

processes (fv H-sssi and MMC processes), the scaling exponents and the multifractal

spectrum are closely related one to the other via a Legendre transform. Hence, the power

law behaviors in Eqs. (2.7) and (2.58) together with Eq. (2.61) constitute the fundamen-

tal relations establishing the connection between scale invariance and multifractality. The

multifractal formalism explains why the terms multifractal analysis and scaling analysis

are often used one for the other in practical situations.

2.5.4 Validity of the WLMF

Obviously, the WLMF relation Eq. (2.61) is not valid in general, for all functions and all

realizations of stochastic processes: A first necessary condition is that the multifractal

spectrum D(h) of X(t) is a concave function, and a second necessary condition is that

X(t) is a bounded function, X ∈ L0, such that wavelet Leaders are finite.

The conditions of validity of Eq. (2.61) are, in fact, not very well known. Nevertheless,

it has been proven that the WLMF Eq. (2.61) is strictly valid for most classes of func-

tions and processes X(t) practically used in applications. In particular, it is exact for finite

variance H-sssi processes such as fBm or ROS (cf. Section 2.2.3) [92]. For advanced

discussions of this question, the reader is referred to [89, 90, 92, 178]

Legendre spectrum in applications. In applications, one tries to estimate the Legen-

dre spectrum, without being in general able to determine the relevance and validity of its

interpretation in terms of a multifractal spectrum. In what follows, we will not distinguish

any more between the multifractal spectrum D(h) of X(t) and its Legendre spectrum

DL(h) for estimation procedures and in applications, and refer to the Legendre spectrum

DL(h) as the multifractal spectrum of X(t).
Let us note that regardless of its interpretation, the Legendre spectrum constitutes an

important quantity in applications. It can be shown that for X(t) uniform Hölder, the Leg-

endre spectrum DL(h) is independent of the precise choice of mother wavelet ψ0(t) (on

condition that Nψ is larger than the largest singularity exponent encountered in X(t), cf.

[92] for a detailed account). This shows that it constitutes a quantity that is intimately

related to properties of X(t) and can hence be used in applications for detection, classi-

fication and identification tasks, without explicit reference to the validity of the WLMF.

2.5.5 Other multifractal formalisms

Wavelet coefficient based multifractal formalism (WCMF). Previous multifractal for-

malisms were based on increments or wavelet coefficients instead of wavelet Leaders.

They are obtained by replacing wavelet Leaders LX in Eq. (2.57) (and subsequently
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Figure 2.5: Analysis of cusp-type and oscillating singularities. Analysis of cusp-type

(left) and chirp-type (right) singularities (top row) with wavelet coefficients (center row)

and Leaders (bottom row): Whereas wavelet Leaders reproduce the Hölder exponent by

a power law LX(j, t0) ∼ C2jh(t0) for both the cusp- and the chirp-type singularity, this is

not the case for wavelet coefficients for the chirp-type singularity.

through Eqs. (2.58) to Eqs. (2.61)) with wavelet coefficients dX :

Sd(j, q) =
1

nj

nj∑

k=1

|dX(j, k)|q ≃ Fq2
jζd(q), 2j → 0, (2.62)

Dd(h) = min
q 6=0

(d+ qh− ζd(q)), (2.63)

D(h) = Dd(h) (WCMF). (2.64)

In contrast to the WLMF, the WCMF does not hold for all multiplicative martingale pro-

cesses and fails to provide the practitioners with a correct analysis of the entire multifractal

spectrum:

1. First, in contrast to wavelet Leaders, for which Eq. (2.56) is of general validity,

wavelet coefficients are not appropriate for measuring Hölder exponents for oscil-

lating singularities, because they are not hierarchical quantities. This is illustrated

in Fig. 2.5 (see also [110])7. Therefore, the WCMF can not hold for processes

containing such singularities.

7Lashermes [110] actually provides the first practical illustration for the case of general singularities. He
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2. Second, since wavelet coefficients are sparse quantities and mainly centered a-

round the zero value, the WCMF suffers from a major practical drawback since

structure functions Eq. (2.62) are numerically unstable for negative statistical or-

ders q. Consequently, they can not be used for the estimation of the decreasing

part of the multifractal spectrum, which is associated with negative orders q via

the multifractal formalism. In contrast, wavelet Leaders are, for X uniform Hölder,

practically always positive and do allow the exploration of positive and negative sta-

tistical orders q, hence of the entire multifractal spectrum (cf. [110] for illustrations,

Chapter 3 for a statistical characterization of wavelet Leaders, and Chapter 4 for

estimation performance comparisons between the WLMF and the WCMF).

Historically, the first multifractal formalism was proposed in [76], based on increments

TX(a, t) = δaτ0X(t) (cf. Eq. (2.13)) as multiresolution quantities. Increments can be

seen as some sort of wavelets, referred to as poor man’s wavelets, with specific mother

wavelet ψ0(t) = δ(t + τ0) − δ(t). Higher order increments are obtained by taking incre-

ments of increments, and the corresponding mother wavelets by convolutions of ψ0 with

itself. Therefore, the increment based multifractal formalism suffers from the same draw-

backs, stated in 1. and 2. above, as the WCMF. In addition, the specific mother wavelets

have very poor frequency resolution. Despite these major disadvantages, the increment

based multifractal formalism is still used in practice by physicists.

Wavelet coefficient modulus maxima based multifractal formalism (MMMF). An-

other multifractal formalism, based on the Modulus Maxima Wavelet Transform (MMWT),

has been previously proposed to resolve the numerical instability issue for negative q of

the WCMF, initially for the analysis of 1d signals [24, 117, 130]. It is also commonly used

in the context of turbulence, for instance (see e.g., [19, 24, 129]). The solution relies

on the use of the coefficients of a continuous wavelet transform, from which a skeleton,

consisting of maxima along scales lines, is extracted. The wavelet coefficients living on

this skeleton are then involved in the computation of the structure functions. This tech-

nique has also been extended to image analysis, at the price of significant computational

(2d-CWT + 2d-skeleton) and conceptual (maxima lines become maxima manifolds) com-

plexities [16, 17].

On top of the practical difficulties related to its implementation and its computational cost,

the MMMF, be it 1d or 2d, despite its showing satisfactory experimental results, is still

lacking a theoretical mathematical support, such as provided for the WLMF in [89, 92].

We will not study the MMMF in this manuscript. For more details, the reader is referred

to [16, 17, 24, 117].

2.6 Multifractal Analysis: Estimation

2.6.1 Moments - scaling exponents

Eqs. (2.7) and (2.58) above suggest that the scaling exponents can be estimated by linear

regressions in log-log coordinates, i.e. by linear regressions of Y (j, q) = log2 S
L(j, q) vs.

considers the case t = 1/2, which is the only point that falls exactly on the dyadic grid on all scales. Fig.

2.5 demonstrates this for t = 1/3, which is not on the dyadic grid for finite length observations (and hence

potentially more difficult). It confirms that Leaders reproduce Hölder exponents for both cusp and chirp-type

oscillating singularities, while coefficients do not.
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j = log2 2j over the range of scales j ∈ [j1, j2] for which scale invariance is evidenced:

ζ̂L(q) =

j2∑

j=j1

wj log2 S
L(j, q), (2.65)

Weights in linear regressions. The weights wj have to satisfy the constraints
∑j2

j1
jwj

≡ 1 and
∑j2

j1
wj ≡ 0 and can be expressed as wj = bj

V0j−V1

V0V2−V 2
1

with Vi =
∑j2

j1
jibj , i =

0, 1, 2. The positive numbers bj are freely selectable and reflect the confidence granted

to each Y (j, q) = log2 S
L(j, q).

In the present work, we perform either non-weighted, ordinary linear fits (bj = 1, denoted

by w0), or weighted fits, following [4]: bj = nj (denoted by w1), where nj is the number

of coefficients at scale j. These weighted w1 regressions are based on Gaussian and

independence assumptions for the coefficients. Alternative choices are reported in [173,

180]. The relative performance of w0 and w1 is studied in Section 4.1.4.

2.6.2 Cumulants

The structure functions Eq. (2.57) consist of time averages and can be read as sample

mean estimators for the ensemble averages ELX(j, ·)q. This heuristic analysis was first

proposed using increments as multiresolution quantities in [44] and further developed

for continuous wavelet coefficients in [60]. Here, we further extend this interpretation to

wavelet Leaders. Hence, Eq. (2.58) is rewritten as:

ELX(j, ·)q = Fq2
jζL(q). (2.66)

For the range of qs (necessarily including q = 0) where ELX(j, ·)q < ∞, a standard

generating function expansion yields:

ln Eeq lnLX(j,·) =

∞∑

p=1

CL(j, p)
qp

p!
, (2.67)

where the CL(j, p) stand for the cumulants of order p ≥ 1 of the random variables

lnLX(j, ·). Combining Eqs. (2.66) and (2.67) compels the CL(j, p) to take the follow-

ing scale dependence:

∀p > 1, CL(j, p) = cL0,p + cLp ln 2j , (2.68)

and thus implies:

ln Eeq lnLX(j,·) =

∞∑

p=1

cL0,p
qp

p!
︸ ︷︷ ︸

lnFq

+

∞∑

p=1

cLp
qp

p!
︸ ︷︷ ︸
ζL(q)

ln 2j . (2.69)

Hence,

ζL(q) =

∞∑

p=1

cLp
qp

p!
= cL1 q + cL2

q2

2
+ cL3

q3

6
+ · · · , (2.70)

and the knowledge of ζL(q) (and therefore also of DL(h), cf. Section 2.6.3-c) below) can

be rephrased in terms of the coefficients cLp , called the log-cumulants.
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Eq. (2.68) suggests that estimations can be performed by means of linear regressions in

ln 2j vs. CL(j, q) coordinates:

ĉLp = (log2 e) ·
j2∑

j=j1

wjĈ
L(j, p), (2.71)

where the estimates ĈL(j, p) for the cumulants of lnLX(j, ·) are obtained from standard

sample cumulant estimators (see, for instance, [97]):

ĈL(j, p) = m̂L(j, p) −
p−1∑

n=1

(
p− 1

n− 1

)
ĈL(j, n)m̂L(j, n− k). (2.72)

Here, the m̂L(j, p) = 1
nj

∑nj
k=1 lnLX(j, ·)p are the sample raw moments of lnLX(j, ·).

The triplet (cL1 , c
L
2 , c

L
3 ) gathers most of the information, related to ζL(q), practically avail-

able from empirical data: cL1 measures the linear part of ζL(q) (cL1 = H for H-sssi pro-

cesses, and cL1 plays the equivalent role of H for MMC processes), cL2 the first departure

from linearity, and cL3 and higher terms a more complicated departure of ζL(q) from lin-

earity. For applications, such a set of attributes is highly advantageous: For practical

purposes such as detection or classification of data from multifractal features, manip-

ulating and comparing the functions ζL(q) is not comfortable. For instance, detecting

departure from linearity of ζL(q) would be intricate when based directly on ζL(q), since it

would have to involve multiple estimates of ζL(q), which are likely to be strongly depen-

dent. In contrast, this can in first approximation be meaningfully cast into the detection

of departure of c2 from the zero value. Approximation of ζL(q) and DL(h) with a limited

number of cLp can hence significantly simplify the classification or detection tasks based

on MF attributes.

We note, however, that the expansion in Eq. (2.70) is not of strict general validity for all

processes. Notably, one condition is that the derivatives dp/dqpζL(q) of ζL(q) exist in the

neighborhood of q = 0, which is not fulfilled for all processes. One example for which

the log-cumulant development of ζL(q) is not valid are the log-stable cascades, used as

a model for turbulence intermittency, for which ζL(q) = α1−qα
1−q , 0 < α < 2 [155]. Another

example is given by α-stable motion, for which ζL(q) = qH, but only for the range of

statistical orders −1 < q < α, 0 < α < 2 (see e.g. [153]). We choose to exclude these

types of models and to restrict ourselves, throughout this manuscript, only to processes

for which Eq. (2.70) is valid up to at least p = 3.

2.6.3 Multifractal spectrum

2.6.3-a) Legendre transform

Eq. (2.61) indicates that estimations of the multifractal spectrum DL(h) can be obtained

by numerical Legendre transform of the scaling exponent estimates ζ̂L(q):

D̂L(h) = min
q 6=0

(d+ qh− ζ̂L(q)). (2.73)

For some practical purposes, however, estimates Eq. (2.73) are not very useful. The

numerical Legendre transform of the estimates ζ̂L(q) for a certain discrete range of orders



34 Scale Invariance and Multifractal Analysis

q does not enable to assign one specific position in the spectrum DL(h) to each value

ζ̂L(q). This is, for instance, very limiting for the design of nonparametric confidence

intervals (cf. Chapter 8). Therefore, it is in practice often advantageous to resort to

parametric estimators for DL(h).

2.6.3-b) Direct determination of the multifractal spectrum

Chhabra et al. [49] proposed a method for direct determination of the multifractal spec-

trum that is obtained without explicit numerical Legendre transformation. The parametric

form (DL(q), hL(q)) of the spectrum is estimated by linear regression of U(j, q) and V (j, q)
versus j:

D̂L(q) = 1 +

j2∑

j=j1

wjU(j, q), (2.74)

ĥL(q) =

j2∑

j=j1

wjV (j, q), (2.75)

where

U(j, q) = log2 nj +

nj∑

k=1

Rq(j, k) log2R
q(j, k), (2.76)

V (j, q) =

nj∑

k=1

Rq(j, k) log2 L(j, k), (2.77)

Rq(j, k) =
L(j, k)q∑nj
k=1 L(j, k)q

. (2.78)

The derivation of Eqs. (2.74-2.78) is sketched in [49] and has been fully detailed in Ap-

pendix B. This parametric form for estimation of DL(h) is mainly used in this manuscript.

2.6.3-c) A log-cumulant expansion of the multifractal spectrum

The multifractal spectrum admits a polynomial expansion around its maximum, para-

metrized by the log-cumulants cLp :

DL(h) = d+
cL2
2!

(
h− cL1
cL2

)2

+
−cL3
3!

(
h− cL1
cL2

)3

+
−cL4 + 3cL3

2
/cL2

4!

(
h− cL1
cL2

)4

+ . . . (2.79)

This result constitutes an original contribution of this work. The derivation is detailed

in Appendix A. The result shows that at first order, p = 2, DL(h) is approximated as a

parabola: DL(h) = d − (h − cL1 )2/(2cL2 ). The log-cumulants cLp therefore admit a mean-

ingful interpretation: cL1 corresponds to the location of the maximum of DL(h), cL2 to its

width, while cL3 is an asymmetry parameter and cL4 − 3cL3
2
/c2 a flatness term.

The reduced set of parameters {cL1 , cL2 , cL3 , cL4 } can therefore be regarded as a relevant

approximation of DL(h) and hence as a meaningful and relevant summary of the multi-

fractal properties of X.
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2.6.4 Coefficient and increment based estimation

The estimations of ζ(q), D(h) and cp can also be based on increments or wavelet coeffi-

cients, mutatis mutandis, by replacing wavelet Leaders with increments or wavelet coef-

ficients in the estimation procedures Eq. (2.65), Eqs. (2.71–2.72) and Eqs. (2.74–2.78).

We use the superscripts I , d and L to distinguish between increment, wavelet coefficient

and Leader based estimation, respectively. When it is clear from the context on which

quantities estimation is based, or when a distinction is irrelevant, we drop these super-

scripts. The respective performance of these estimation procedures will be investigated

in Chapter 4 and Section 5.3.

2.7 Multifractal Processes: Multiplicative Cascade Processes

In this section, we introduce some of the most commonly used multifractal processes

and discuss their properties. The most famous constructions of multifractal processes

are based on multiplicative martingales [95, 121, 145]. They are commonly referred to as

multiplicative cascade processes. In this manuscript, we choose to call them multifractal

multiplicative cascade (MMC) processes, to further emphasize their difference with re-

spect to (monofractal) fv H-sssi processes. Indeed, the starting point for the construction

of MMC processes can be seen in the need for a class of processes with richer scale

invariance and multifractal properties than H-sssi processes. Whereas for H-sssi pro-

cesses, everything is controlled by one single parameter H, this central role is taken by

a function ϕ(q) for MMC processes, which accounts for more flexibility. It depends on

the precise definition of the cascade process and characterizes both the scale invariance

and multifractal properties of the process.

For an overview of MMC processes, the reader is referred to, e.g., [45].

2.7.1 Cascades

2.7.1-a) Canonical Mandelbrot Cascades (CMC)

The multiplicative cascades of Mandelbrot (CMC) constitute the archetype of multifractal

processes and have for long been the only example of multifractal processes practically

available. They have been introduced by Yaglom [186], who tried to mimic the energy

transfer in turbulence phenomena following the celebrated energy cascade based heuris-

tic analysis of turbulence flows by Richardson [144]. Their construction is based on an

iterative split-and-multiply random procedure on an interval, which matches the physical

intuitions beyond the vorticity stretching mechanisms at work in turbulence flows. In the

1970s, Mandelbrot studied the properties of these models and fruitfully gathered them in

the unified framework of multiplicative martingales [121, 145].

Definition. CMC are constructed by the following iterative procedure. The construction

starts from a uniform unit mass on the interval ]0, 1[. First, the interval is cut into two

intervals of equal size8, ]0, 1
2 [ and ]12 , 1[. Then a random mass is attributed to each of

the intervals by multiplying the original masses with random multiplier W11,W12
i.i.d∼ pW ,

respectively, i.e., the interval on the left has mass 1
2W11, and the interval on the right 1

2W12.

8We concentrate on the binary case, which we use as model processes in Chapters 4 and 8. More

generally, CMC can be defined as a b-ary cascade, b ≥ 2.
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Figure 2.6: Canonical Mandelbrot Cascade. Iterative construction principle of CMC

and the resulting Qr(t) (Eq. (2.80)) after 12 iterations.

Now this procedure is applied to both intervals: both are cut in two equal parts, and the

mass of each of the resulting subintervals is multiplied with a multiplier, which is drawn

i.i.d. from pW for each subinterval. Then the procedure is iterated on the subintervals,

and so on and so forth. The construction of CMC is illustrated in Fig. 2.6.

The multipliers have to be strictly positive random variables, W > 0, and they have to

satisfy the constraint EW = 1, ensuring that the cascade conserves mass in average.

Let the multipliers for the jth iteration be denoted by Wjk, k = 1, · · · , 2j . The measure

Qr(t) at resolution r = 2−J (i.e., after J iterations) is defined as:

Qr(t) =
∏

j=1,··· ,J, {k: t∈[2jk,2j(k+1)[}
Wjk. (2.80)

Extension to higher dimension. The definition of CMC, given above for an interval on

the real line R, can easily be extended to intervals in higher dimensions d, i.e. hypercubes

in Rd. The iterative construction principle remains the same: Starting from a uniform unity

mass on [0, 1]d, the unit hypercube is divided into 2d sub-hypercubes with side length 1
2 , 2d

multipliers W
i.i.d.∼ pW are drawn and determine the mass of each sub-hypercube. Then

the operation is iterated for each of the sub-hypercubes, and so on and so forth.

Motion. Scaling and multifractal properties. Let us define the function:

ϕ(q) = − log2 EW q, (2.81)

which has the following properties: It is concave in q, and it satisfies: ϕ(0) = 0, ϕ(1) = 0
(conservation of mass). Kahane and Peyrière [95] showed that on condition that:

ϕ′(1−) > −d, (2.82)
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the limit:

A(t) = lim
r→0

∫ t

0
Qr(u)du. (2.83)

is a well-defined process. It is referred to as the CMC motion. From a practical point of

view, this limit can of course never be reached numerically, since the iteration process has

to be stopped after finite time, hence for r > 0. One supposes then that the number of

iterations is large enough to observe the same properties on the synthesized realizations

as one would observe on the limit process A(t).
A(t) exhibits scaling properties of the form of Eqs. (2.7) and (2.58) for q−c < q < q+c and

for the discrete scaling factors a = 2j :

1

na

na∑

k=1

LA(a, k)q ≃ cq|a|ζ
L(q), (2.84)

with ζL(q) = λ(q) for q ∈ [q−∗ , q
+
∗ ], (2.85)

where λ(q) = dq + ϕ(q). (2.86)

Outside the range [q−∗ , q
+
∗ ], ζL(q) behaves as a linear function of q. The critical orders q−∗

and q+∗ are defined in Section 2.8 (Eqs. (2.129) and (2.130)). The range of finite moments

[q−c , q
+
c ] is defined in Section 2.7.1-d) (Eqs. (2.114) and (2.115)).

The multifractal spectrum of A(t) can be derived from the Legendre transform D(h) =
minq 6=0(1 + qh− λ(q)) of λ(q) = dq + ϕ(q) as:

D(h) =

{
D(h), if D(h) ≥ 0,
−∞, otherwise.

(2.87)

One commonly associates a multifractal spectrum DQ(h) with the limit measureQr(t), r →
0:

DQ(h) = D(h+ d). (2.88)

In this work, we will use binary CMC as (easy to generate and control) examples of

multifractal images (i.e., processes in 2d). We will use two specific choices of multipli-

ers W , namely log-Normal (CMC-LN) and log-Poisson (CMC-LP) multipliers, which are

commonly used in applications, notably in hydrodynamic turbulence (see e.g. [45]).

Example 1: CMC-LN. For the construction of CMC-LN, log-Normal multipliers W =
2−U are used, i.e. U ∼ N (m,σ) is Gaussian with mean m and variance σ2, and therefore:

ϕ(q) = mq − σ2 ln(2)/2q2. Conservation of mass, EW = 1, implies σ2 = 2m/ ln(2) and

thus:

ϕ(q) = mq(1 − q) (2.89)

ζL(q) = mq(1 − q) + dq for q ∈ [q−∗ , q
+
∗ ] (2.90)

DL(h) = d− (h− d−m)2

4m
(2.91)

c1 = m+ d, c2 = −2m (2.92)

∀p ≥ 3 : cp ≡ 0. (2.93)

Hence, CMC-LN is seen as a simple multifractal process, since departure of its ϕ(q) and

ζ(q) from a linear behavior in q simplifies to a 2nd order polynomial form. Departure
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from linearity in q is hence fully controlled by the single parameter c2, and the multifractal

spectrum consists of a simple parabola.

Example 2: CMC-LP. The construction of CMC-LP uses log-Poisson multipliers W =

2γ exp (ln(β)πλ), where πλ is a Poisson random variable with parameter λ = −γ ln(2)
(β−1) . Its

scaling and multifractal characteristics are therefore given by:

ϕ(q) = −γq +
γ(βq − 1)

β − 1
(2.94)

ζL(q) = (d− γ)q +
γ(βq − 1)

β − 1
for q ∈ [q−∗ , q

+
∗ ] (2.95)

DL(h) = d+
γ

β − 1
+
γ + h− d

lnβ
·
[
ln

(
(γ + h− d)(β − 1)

γ lnβ

)
− 1

]
(2.96)

c1 = γ

(
ln(β)

β − 1
− 1

)
+ d (2.97)

cp = − γ

β − 1
(− ln(β))p , p ≥ 2. (2.98)

Further examples. In this manuscript, we choose to use the two specific CMC

constructions CMC-LN and CMC-LP described above as representatives of simple (c3 ≡
0) and more elaborated (c3 6= 0) multifractal models. We note that other constructions

have been proposed in the literature, such as the log-stable cascades [155], which have

been widely used as model processes in the context of hydrodynamic turbulence. They

will not be considered in this manuscript. For more details on other examples and possible

choices of multipliers, we refer to e.g. [45] and references therein.

Limitations. The CMC construction suffers from important practical drawbacks that

have been recognized since their first uses:

- The split/multiply construction results in discrete scale invariance, such that only

specific dilation factors a = 2j can be used in Eqs. (2.7) and (2.58),

- increments are not stationary,

- Qr(t) is only positive valued, and A(t) has only positive variation. Hence, they are

inappropriate models for many physical signals.

CMC remained, however, the only known multifractal synthetic reference processes used

in applications up to the mid 90s, when several approaches were proposed to overcome

these limitations. One of these propositions consists in constructing continuous time mul-

tifractal cascades, involving infinitely divisible stochastic integrals. The reader is referred

to [156] for the precise definition and further details. In this manuscript, we choose to

concentrate on another approach, which was proposed in [30].

2.7.1-b) Compound Poisson Cascades (CPC)

Following intuitions by Barral and Mandelbrot [30] and theoretical developments by Bar-

ral [29], compound Poisson cascades (CPC) were proposed to overcome some of the

drawbacks of CMC. In short, the construction of compound Poisson cascades replaces

the deterministic geometric grid underlying the construction of Mandelbrot’s multiplicative

cascades – responsible for discrete scale invariance and non stationary increments –
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Figure 2.7: Compound Poisson Cascade. Illustration of the construction of a com-

pound Poisson cascade (top line), one realization of Qr(t) (second line), and one real-

ization of compound Poisson motion A(t) (third line) and of fractional Brownian motion in

multifractal time VH(t) (bottom).

with a random (Poisson point process) grid. Compound Poisson cascades are defined

as:

Qr(t) = C
∏

(ti,ri)∈Cr(t)
Wi, r > 0, (2.99)

where

Cr(t) = {(t′, r′) : r ≤ r′ ≤ 1, t− r′/2 ≤ t′ ≤ t+ r′/2} (2.100)

is a cone, (ti, ri) consists of a 2d Poisson point process on the rectangle I = {(t′, r′) :
r ≤ r′ ≤ 1,−1/2 ≤ t′ ≤ T + 1/2} with intensity measure dm(t, r), Wi are positive i.i.d.

multipliers associated with points (ti, ri), and C = C(r, t) is a normalizing constant such

that EQr(t) = 1. The construction of CPC is illustrated in Fig. 2.7.

It can be shown that CPC satisfy the following key resolution equation:

EQr(t)
q = exp (−ϕ(q)m(Cr(t))), (2.101)

with m(Cr(t)) =
∫
Cr(t) dm(t′, r′) and:

ϕ(q) = c((1 − EW q) − q(1 − EW )), (2.102)

where c is an arbitrary positive constant. If dm(t, r) = g(r)drdt, the process Qr(t) (and

therefore the increments of the motion processes A(t) and VH(t) defined below) are
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stationary. In this manuscript, we only consider the choice9 proposed in [22, 23]:

g(r)dr = c(dr/r2 + δ{1}(dr)), (2.103)

where δ{1}(dr) denotes a point mass at r = 1. Then, Eq. (2.101) simplifies to the power

law:

EQr(t)
q = rϕ(q), (2.104)

and it can also be shown that the correlation is given by [46, 47]:

EQr(t)Qr(s) = |t− s|ϕ(2), |t− s| > r. (2.105)

Compound Poisson Motion (CPM). On condition that ϕ(1−) ≥ −1, compound Pois-

son motion (CPM) A(t) is a well-defined process:

A(t) = lim
r→0

∫ t

0
Qr(s)ds. (2.106)

With the choice Eq. (2.103), the increments of A(t) are stationary, and CPM exhibits

scaling properties of the form of Eqs. (2.7) and (2.58) [46]:

ELA(a, t)q ≃ cq|a|λ(q), (2.107)

with λ(q) = q + ϕ(q), (2.108)

for q−c < q < q+c (cf. Section 2.7.1-d), Eqs. (2.114) and (2.115)). From the results proven

in [30], we can infer that the multifractal spectrum D(h) of A(t) can be derived from the

Legendre transform D(h) = minq 6=0(1 + qh− λ(q)) of λ(q) as:

D(h) =

{
D(h), if D(h) ≥ 0,
−∞, otherwise.

(2.109)

As for CMC, one commonly associates a multifractal spectrum DQ(h) with the limit mea-

sure Qr(t), r → 0:

DQ(h) = D(h+ 1). (2.110)

The scaling exponents are given by:

ζL(q) = λ(q) for q ∈ [q−∗ , q
+
∗ ], (2.111)

and behave as a linear function of q beyond the range [q−∗ , q
+
∗ ] (cf. Section 2.8, Eqs.

(2.129) and (2.130)).

Example: Log-Normal multipliers. In this work, we will only consider CPC with log-

Normal multipliers W = exp(Y ), where each Y ∼ N (µ, σ) is an independent Gaussian

random variable (r.v.) with mean µ and variance σ2. Then, the form of ϕ(q):

ϕ(q) = c

[(
1 − exp

(
µq +

σ2

2
q2
))

− q

(
1 − exp

(
µ+

σ2

2

))]
, (2.112)

9Other choices are possible, leading to cascades with different properties, cf. e.g. [46].
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is such that the cumulant expansion of ζL(q) yields a non zero c3 [46, 47]. More precisely,

the log-cumulants of CPM have the following explicit expressions:

c1 = 1 − c

(
µ+ 1 − exp

(
µ+

σ2

2

))

c2 = −c(µ2 + σ2)

c3 = −c(µ3 + 3µσ2).

These expressions of the log-cumulants of order p of A(t) have been obtained by our-

selves from Eq. (2.112). Note that for higher orders than the first three cp stated here,

log-cumulants are also non-zero, p ≥ 4 : cp 6= 0.

2.7.1-c) Infinitely Divisible Cascades

Since compound Poisson distributions belong to the more general class of infinitely di-

visible distributions, the product Eq. (2.99) can be generalized to the exponential of a

continuous random measure. This defines the infinitely divisible cascades (IDC):

Qr(t) = C exp

(∫

Cr(t)
dM(t′, r′)

)
.

Here, C is a normalizing constant such that EQr(t) = 1, and Cr(t) and dm(t, r) are often

defined as for CPC to ensure power law behaviors and stationary increments10. In a

similar manner as for CMC and CPC, the corresponding motion A(t) can be defined:

A(t) = lim
r→0

∫ t

0
Qr(s)ds. (2.113)

Despite theoretical interests, these processes remain rarely used in applications and dif-

ficult and time consuming to synthesize. We will not consider IDC any further in this

manuscript. For more details, the reader is referred to e.g. [22, 46].

2.7.1-d) Finiteness of moments

The range of statistical orders [q−c , q
+
c ] for which the moments of the wavelet Leaders of

the multiplicative cascades are defined is given by [95]:

q+c = sup{q ≥ 1 : q + ϕ(q) ≥ d}, (2.114)

q−c = inf{q ∈ R : EW q ≤ ∞}. (2.115)

2.7.1-e) Limitations

Any of the processes Qr(t) and A(t) defined above are in practice often not rich enough

to model empirical data: Qr(t) is by construction only positive valued, and consequently,

A(t) has in addition only positive valued variations. For many physical signals, however,

model processes need to take on both positive and negative values, and possess both

positive and negative variations.

10Again, other choices for dm(t, r) are possible and lead to different properties.
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2.7.2 Processes

2.7.2-a) Fractional Brownian Motion in Multifractal Time (CPM-MF-fBm)

Subordinating fractional Brownian motion BH(t) to compound Poisson motion A(t) yields

the so-called fractional Brownian motion in multifractal time (CPM-MF-fBm) [124, 145]:

VH(t) = BH(A(t)). (2.116)

CPM-MF-fBm is usually a more realistic model process than CPC or CPM, since it takes

values in R and has both positive and negative valued variations. With the choice Eq.

(2.103) for the intensity measure of the cascade, VH has stationary increments and ex-

hibits scaling properties of the form of Eqs. (2.7) and (2.58) for q−c < q < q+c [46, 47]:

ELVH (a, t)q ≃ cq|a|λ(q), (2.117)

with λ(q) = qH + ϕ(qH), (2.118)

with ϕ(q) given by Eq. (2.112). Its moments are finite for q−c < q < q+c , the qc being defined

by Eqs. (2.114) and (2.115) by replacing q with qH, i.e., qVHc = qc/H. The multifractal

spectrum D(h) of VH(t) can be derived from the Legendre transform D(h) of λ(q) as:

D(h) = D(h) if D(h) ≥ 0, and D(h) = −∞ otherwise [30]. The scaling exponents are

given by: ζL(q) = λ(q) for q ∈ [q−∗ , q
+
∗ ], and behave as a linear function of q beyond

the range [q−∗ , q
+
∗ ] (cf. Section 2.8, Eqs. (2.129) and (2.130)). The log-cumulants cVHp of

the compound motion process VH(t) are related to the log-cumulants cAp of the motion

process A(t) by:

cVHp = HpcAp . (2.119)

The CPM-MF-fBm construction therefore provides us with a theoretically controlled mul-

tifractal process with a priori prescribed non zero c3 and stationary increments [46, 47].

2.7.2-b) Multifractal Random Walk (mrw)

The cascade measures Qr(t) can also be involved in the theoretical definition of a true

continuous time multifractal random walk according to [22, 23, 138]:

ZH(t) =

∫

R

Qr(s)dBH(s). (2.120)

The definition of such a continuous time process is, however, intricate and requires further

developments. Hence, in practice, it is defined from the following discrete-time ad-hoc

construction [21], which we simply refer to as multifractal random walk (mrw):

X(k) =

n∑

k=1

GH(k) exp(ω(k)). (2.121)

In this definition, the process GH(k) consists of the increments of fBm with parameter

H > 1/2: GH(k) = BH(k + 1) −BH(k). The process ω is independent of GH , Gaussian,

with the following specific covariance:

cov(ω(k1), ω(k2)) =

{
β ln

(
L

|k1−k2|+1

)
if |k1 − k2| < L

0 otherwise,
(2.122)
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with β > 0. The form of this covariance, which is in no way intuitive, has been chosen to

mimic the one observed for CMC. By construction, mrw has stationary increments and is

non Gaussian. It exhibits scaling properties of the form of Eqs. (2.7) and (2.58) for the

range q−c < q < q+c (cf. Section 2.7.1-d), Eqs. (2.114) and (2.115)) [46, 47]:

ELX(a, t)q ≃ cq|a|λ(q), (2.123)

with λ(q) = q + ϕ(qH), (2.124)

where

ϕ(q) = βq − β2q2/2. (2.125)

The scaling exponents are given by: ζL(q) = λ(q) for q ∈ [q−∗ , q
+
∗ ],and behave as a

linear function of q beyond the range [q−∗ , q
+
∗ ] (cf. Section 2.8, Eqs. (2.129) and (2.130)).

Hence, c1 = H +β, c2 = −β2 and cp ≡ 0 for all p ≥ 3. Its multifractal spectrum is given by

the Legendre transform D(h) of λ(q) as: D(h) = D(h) if D(h) ≥ 0, and −∞ otherwise.

Hence, as for CMC-LN, mrw is often seen as a simple multifractal process: The departure

of its ζL(q) from a linear behavior in q simplifies to a 2nd order polynomial form and is fully

controlled by the single parameter c2, and its multifractal spectrum is given by a parabola.

2.7.2-c) Random Wavelet Cascades (RWC)

(Dyadic) Random Wavelet Cascades (RWC) [15] have been introduced to mimic the scale

invariance properties of CMC. These specific cascade constructions define directly a

process. They are based on a rather particular construction, since the scaling properties

(as practically observed through for instance a wavelet coefficient based analysis, Eqs.

(2.7) or (2.62)) are in some sense directly prescribed to the wavelet coefficients. It is the

coefficients themselves that are the product of (i.i.d.) multipliers and define the cascade

process. Starting from a first scale j = 0 at which there is only one coefficient dj=0,k=1, the

dyadic tree of wavelet coefficients is constructed by the following iteration: Draw, for each

coefficient dj−1,k at scale j−1, two independent identically distributed random multipliers

W1 and W2, giving rise to 2 new coefficients dj,2k = W1 · dj−1,k and dj,2k+1 = W1 · dj−1,k,

and assign a random sign to them. Hence, the wavelet coefficient at scale j is given by:

dj,k = εj,k

j∏

j′=0

Wj′ (2.126)

where εj,k is a random sign and the Wj′ are the i.i.d. random multipliers corresponding

to the position (j, k) in the cascade. The process is then obtained by the inverse wavelet

transform. The convergence condition and the scaling and multifractal properties of the

cascade are prescribed by the function:

ϕ(q) = − log2 EW q. (2.127)

In this manuscript, we will use RWC exclusively for an analytic study of the dependence

structure of wavelet coefficients in Section 11.2.1. For more details on the construction,

for conditions and proofs of convergence and for further properties, see e.g. [15].

2.7.3 Practical implementation

The practical implementation of the synthesis procedures in MATLAB
R© is due to the mem-

bers or alumni of the research group Sisyphe at the Laboratoire de Physique de l’Ecole

Normale Supérieure de Lyon, in particular P. Chainais, P. Abry and S.G. Roux.
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2.8 H-sssi Processes versus Multifractal Multiplicative Cas-

cade Processes

The (monofractal) fv H-sssi processes and the multifractal multiplicative cascade pro-

cesses amount to the two major scale invariant process classes and constitute the pro-

cesses that are quasi-exclusively used in applications. Both classes satisfy the key rela-

tion11 [92]:

ELX(a, t)q ∼ cq|a|λ(q) (2.128)

In this section, we collect the key differences between these classes with respect to Eq.

(2.128).

Scaling exponents, log-cumulants and multifractal spectrum. The first key differ-

ence lies in the fact that for fv H-sssi processes, λ(q) is a linear function in q, whereas

for MMC processes it is nonlinear in q:

λ(q) = qH (fv H-sssi processes)

λ(q) 6= qH (MMC processes).

Therefore, whereas the scale invariance properties of H-sssi processes are entirely con-

trolled by one single parameter H, this involves a collection of parameters for MMC pro-

cesses. This translates to log-cumulants as:

c1 = H, ∀p ≥ 2 : cp ≡ 0 (fv H-sssi processes)

∃p ≥ 2 : cp 6= 0 (MMC processes),

i.e., for fv H-sssi processes, all log-cumulants except c1 are equal to the zero value,

whereas for MMC processes, there exists at least one non-zero log-cumulant cp of order

p ≥ 2. This fact greatly facilitates the practical design of test procedures aiming at dis-

criminating these two process classes (cf. Chapter 9).

The difference is also reflected by the fact that the multifractal spectrum of fv H-sssi pro-

cesses reduces to one single point (D(h) = d if h = H, and −∞ otherwise), whereas for

MMC processes, the multifractal spectrum is non trivial.

Integral scale. The second key difference is that for H-sssi processes, Eq. (2.128) is

fulfilled for all (fine and coarse) scales,

0 < a <∞,

whereas for MMC processes, this is only true for fine scales a → 0, since the cascade

construction has to start at a certain scale. In practice, this means that Eq. (2.128) is

only verified for

0 < a < ã,

where ã is called the integral scale [75].

In this manuscript, we choose not to study the role of the integral scale: All of the theoret-

ical studies and numerical simulation studies in this manuscript suppose that the signal

or process has only one integral scale.

11We restrict ourselves here to processes with stationary increments.
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Finiteness of moments. The third key difference resides in the range of q for which

Eq. (2.128) is valid. For fv H-sssi processes, this is the case for12 q ∈ R [92]. For MMC

processes, Eq. (2.128) is only valid for the range q ∈ [q−c , q
+
c ] defined by Eqs. (2.114) and

(2.115), with −∞ < q−c and q+c < +∞.

Linearization effect. Finally, for MMC processes, the sample moments behave as13:

1

na

∑

t

LX(a, t)q ∼ cq|a|ζ
L(q),

where ζL(q) ≡ λ(q) only within the further restricted range of statistical orders q ∈
[q−∗ , q

+
∗ ]:

−∞ < q−c < q−∗ < q < q+∗ < q+c < +∞,

The values of q−∗ and q+∗ are conjectured in [108] to be given by the following expressions:

q+∗ = sup{q ≥ 0 : d+ q
d

dq
λ(q) − λ(q) = 0}, (2.129)

q−∗ = inf{q ≤ 0 : d+ q
d

dq
λ(q) − λ(q) = 0}, (2.130)

Beyond the range q ∈ [q−∗ , q
+
∗ ], the function ζL(q) is necessarily linear in q. Therefore,

sample moment estimators behave as if moments would only be finite for q ∈ [q−∗ , q
+
∗ ]

[11, 108]. This is called the linearization effect and will be further discussed in Section

5.2.

We will throughout this manuscript – with the exception of Section 5.2 – only consider the

range of statistical orders q ∈ [q−∗ , q
+
∗ ], and processes for which: |q−∗ |, |q+∗ | > 2.

12Note that when wavelet Leaders are replaced with wavelet coefficients in Eq. (2.128), the range of q is

reduced to −d < q < ∞.
13For H-sssi processes, ζL(q) ≡ qH for q ∈ R.
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Wavelet Leaders are a recent development and have been shown to possess signif-

icant theoretical and practical advantages over other multiresolution quantities, such as

wavelet coefficients, for performing multifractal analysis (see [89, 92] and Section 2.5.5).

Theory for wavelet Leaders exclusively concentrates on their function space and local

regularity characterization properties. Therefore, despite them being backed up by a

solid mathematical framework from a functional analysis perspective, nothing is known

on their statistical properties, although these are of key importance in applications. Even

more elementary, the consequences of passing from the theoretical infinite resolution

definition Eq. (2.54) of wavelet Leaders to practical implementations, necessarily based

on finite resolution data and limited by a finest available scale, have never been clearly

investigated.

Therefore, the first aim of this chapter is to investigate at which scale the sup over all finer

scales in the definition of wavelet Leaders is practically attained — and hence wavelet

Leaders are obtained — for finite resolution data, and to characterize the implications for

multifractal attribute estimation. This is accounted for in Section 3.1.

Second, we aim at providing analytical results for the statistical properties of wavelet

Leaders. To this end, we first state the general form of the marginal and bivariate dis-

tribution of wavelet Leaders. Motivated by the key role of wavelet coefficients for fBm,

we further characterize these distributions for this specific process and propose marginal

and bivariate distribution models. These studies make up the core of Section 3.2 and

constitute the only analytical statistical characterization of wavelet Leaders available in

the literature at present.

For convenience, we choose to limit the study in this chapter to the 1d case only. Similar

results can be obtained for the 2d case.

3.1 Fine Scale Propagation and Finite Size Effects

The theoretical definition of the wavelet Leader LX(j, k) Eq. (2.54), involves taking the

sup of wavelet coefficients at all finer scales j′ ≤ j, j′ → −∞. In practical implementa-

tions, however, this sup can only be taken over finer scales until the finest available scale.

With the notations used in this manuscript, the finest scale is given by j = 1. Therefore,

the first issue to address in practice is: Where are wavelet Leaders obtained in practical

implementations? Or, to put it more precisely: At which scale j is the number of available

fine scales j′, 1 ≤ j′ < j, large enough such that the sup is practically attained, and the

wavelet Leader LX(j, k) actually has the properties of a wavelet Leader? We choose

to call this discrepancy between theoretical definition and practical implementation the

fine scale cutoff. To characterize its implications, we propose in Section 3.1.1 to study

the fine scale propagation probability, defined as the probability that a wavelet Leader

LX(j, k) takes its value at a scale j′ ≤ j. Then, we investigate the impact on actual esti-

mation quality by comparison of wavelet Leader and wavelet coefficient based structure

functions in Section 3.1.2.

3.1.1 Fine scale propagation probability

The wavelet Leader L(j, k) equals by definition the magnitude of one (the largest) of the

wavelet coefficients d(j′, k′) in the neighborhood 3λj,k. We define the fine scale propaga-

tion probability as the probability πj(j
′) that a wavelet Leader L(j, k) takes on its value at
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Figure 3.1: Wavelet Leaders: Propagation of wavelet coefficients for fBm. Frac-

tion πj(j
′) of wavelet coefficients at scale j′ that become wavelet Leaders at scale j,

πj(j
′) = Pr[LX(j, ·) = |dX(j′, ·)|] for fBm with H = 0.3, 0.6, 0.9 (left, center, right column,

respectively) at scales j = 5 (top row) and j = 9 (bottom row). Shown are the mean (’×’)

and 1.96 standard deviation error bars (red solid vertical lines) of πj(j
′), obtained over 100

realizations of fBm of sample size N = 215, respectively.

scale j′:
πj(j

′) = Pr[L(j, k) = |d(j′, ·)|], (3.1)

that is, as the probability that L(j, k) equals the wavelet coefficient |d(j′, k′)| ∈ 3λj,k at

scale j′. In other words, πj(j
′) expresses the probability that a wavelet coefficient at

scale j′ becomes a wavelet Leader at scale j — or, how far are wavelet coefficients from

fine scales likely to propagate towards coarser scales.

Empirically, the fine scale propagation probability Eq. (3.1) is evaluated by calculating

the wavelet coefficients dX(j, k) and the wavelet Leaders LX(j, k), determining, for each

LX(j, k), the scale j′(j) of the corresponding wavelet coefficient dX(j′, k′) → LX(j, k),
and calculating π̂j(j

′) = #j′(j)/nj , where nj is the number of wavelet Leaders at scale

j.

3.1.1-a) H-sssi processes

Fig. 3.1 shows fine scale propagation probabilities, obtained as means over 100 realiza-

tions of fBm of sample size N = 215 using Daubechies wavelets with Nψ = 3, for scales

j = 5 (top row) and j = 9 (bottom row). The left column corresponds to H = 0.3, the

center column to H = 0.6, and the right column to H = 0.9.

First, we observe that for H fixed, πj=5(j
′) ≈ πj=5+4(j

′ + 4) shifted to coarser scales1,

with the exception of H = 0.3, for which there is a significant increase of πj=5(j
′ = 1) due

to fine scale cutoff.

1The main difference is in the size of error bars: There are significantly less wavelet Leaders at scale

j = 9 than at j = 5, hence decreased estimation quality at the larger scale.
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Figure 3.2: Wavelet Leaders: Propagation of wavelet coefficients for mrw.

Fraction πj(j
′) of wavelet coefficients at scale j′ that become wavelet Lead-

ers at scale j, πj(j
′) = Pr[LX(j, ·) = |dX(j′, ·)|] for mrw with (c1, c2) =

(0.6,−0.01), (0.6,−0.08), (0.8,−0.01), (0.8,−0.08) (1st, 2nd, 3rd, 4th column, respectively)

at scales j = 5 (top row) and j = 9 (bottom row). Shown are the mean (’×’) and 1.96 stan-

dard deviation error bars (red solid vertical lines) of πj(j
′), obtained over 100 realizations

of mrw of sample size N = 215, respectively.

Second, the probability for wavelet coefficients to propagate far into coarse scales de-

creases with increasing H, hence πj(j
′ = j) ≫ πj(j

′ < j) as H → 1. In contrast, πj(j
′)

spreads over a larger support of j′ for H small: Indeed, whereas for H = 0.9 πj(j
′) ≈ 0

for j − j′ ≥ 3, for H = 0.3 πj(j
′) ≈ 0 only for j − j′ ≥ 6. This observation can be inter-

preted as follows: For fBm, wavelet coefficients are distributed as d(j, ·) ∼ N (0, σ(j)) with

σ(j) ∼ 2jH (cf. Section 2.3.4). Since σ(j) increases faster with j for H large than for H
small, the probability that the magnitude of a wavelet coefficient at scale j is larger than

the magnitude of a wavelet coefficient at scale j′ < j is larger for large H. Therefore, it is

more likely for a wavelet coefficient to propagate far into coarse scales when H is small.

3.1.1-b) Multifractal multiplicative cascade processes

Fig. 3.2 shows fine scale propagation probabilities, obtained as means over 100 real-

izations of mrw of sample size N = 215 using Daubechies wavelets with Nψ = 3, for

scales j = 5 (top row) and j = 9 (bottom row). The first column corresponds to mrw

with (c1, c2) = (0.6,−0.01) (weakly multifractal, small H), the second one to (0.6,−0.08)
(strongly multifractal, small H), the third one to (0.8,−0.01) (weakly multifractal, large H)

and the rightmost one to (0.8,−0.08) (strongly multifractal, large H).

First, we observe that, as for fBm, πj=5(j
′) ≈ πj=5+4(j

′ + 4) shifted to coarser scales,

hence πj(j
′) does, for a fixed set of process parameters, not depend on the absolute

value of j and depends only on the difference j − j′. Similar results can be obtained at

other scales j.
Second, the probability for wavelet coefficients to propagate far into coarse scales de-

creases with increasing c1, hence πj(j
′ = j) ≫ πj(j

′ < j) when c1 = 0.8, whereas πj(j
′)
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spreads over a larger support of j′ for c1 small. This is consistent with the previous ob-

servations for fBm, since for multifractal processes, c1 plays a role equivalent to that of H
for H-sssi processes.

Third, the probability of propagating far into coarse scales increases when c2 becomes

more negative. This can be interpreted by the fact that a more negative c2 implies more

heavy-tailed marginals of wavelet coefficients, hence an increased probability of observ-

ing a wavelet coefficient with large magnitude, capable of propagating far into coarse

scale.

Finally, let us note that the influence of c1 on πj(j
′) is larger than that of c2 (a c2 of −0.01

representing very weak, one of −0.08 very strong departure from monofractal).

3.1.1-c) Conclusions

The study of fine scale propagation probabilities leads us to the following conclusions.

Fine scale cutoff affects wavelet Leaders at fine scales. In practice, only wavelet Leaders

above a certain scale j > 3 − 6 are free of the influence of limited fine scale resolution.

The number of fine scales polluted by the cutoff depends on H for H-sssi, on c1 for

multiplicative cascade multifractal processes and, less significantly, also on c2 for the

latter. In particular, the smaller H or c1, the larger the number of fine scales that are

affected. Therefore, the number of scales concerned by this effect can in practice be

circumvented and controlled by (fractionally) integrating the process by an order α, hence

artificially increasing H or c1 in a controlled way by α2.

3.1.2 Practical implications of finite size effects

The previous section showed that finite size effects lead to pollution of wavelet Leaders

for a certain number of fine scales: Fig. 3.1 and 3.2 suggest that in the best case, only the

3 finest scales are polluted, i.e. πj(j
′) ≈ 0 for j − j′ ≥ 3, but for other process parameter

settings, this can concern up to 6 or 7 fine scales. However, the probabilities πj(j
′) only

capture the difference between the scale at which a wavelet Leader lives, and the scale

at which its sup is reached, and they do not measure the difference in magnitude of the

sup due to fine scale cutoff. Therefore, πj(j
′) does not directly characterize the alteration

of the distribution of wavelet Leaders or structure functions and, consequently, estimation

quality. For this reason, Fig. 3.3 compares (the log of) structure functions log2 S(j, q = 1),
as involved in parameter estimation (top row), and structure functions minus their theo-

retical slope log2 S(j, q = 1)− jζ(q = 1) (bottom row), based on wavelet coefficients (blue

solid lines and ’◦’) and Leaders (red solid lines and ’×’), to regression lines over large

scales. Shown are results for fBm (left column) and mrw (right column) for typical process

parameter settings.

We observe that, for both processes, wavelet coefficient based structure functions dis-

play linear behavior only from the second or third fine scale on. This phenomenon has

nothing to do with fine scale cutoff – which does not exist for wavelet coefficients – but

is a consequence of the fact that the initialization step in the calculation of the wavelet

coefficients is omitted (cf. [3, 172]).

For both processes, wavelet Leader based structure functions are perfectly straight lines

only from one scale higher on than wavelet coefficients based ones. This indicates that

2This can be practically performed using the procedures introduced in Section 5.1.3.
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Figure 3.3: Structure functions for fBm and mrw. Mean over 1000 realizations of

structure functions log2 S(j, q = 1) (top) rectified by theoretical slope log2 S(j, q = 1) −
jζ(q = 1) (bottom) for wavelet coefficients (blue solid lines and ’◦’) and Leaders (red solid

lines and ’×’) for fBm (H = 0.6, left) and mrw ((c1, c2) = (0.6,−0.03), right) and sample

size N = 218 (coarse scales are not shown). The solid black lines correspond to ordinary

linear regressions over the scales j ∈ [5, 10].

fine scale cutoff practically pollutes only one or two fine scales of wavelet Leaders more

than are already polluted by omitting the initialization step of the wavelet transform. Sim-

ilar results – not reported here for space reasons – are obtained for other processes and

process parameter settings.

Complementary results and discussions for the 2d case are reported in Section 4.2.2.

3.1.3 Conclusions

We conclude that wavelet Leaders are in practice penalized by finite size effects, since

roughly one or two fine scales more than for wavelet coefficients depart from linear be-

havior and should not be considered for estimation of multifractal attributes. Hence, the

linear regression range for wavelet Leader based estimation should not start below the

scale jL1 = jd1 + 1.

Although one additionally polluted scale for wavelet Leaders as compared to wavelet

coefficients may seem a small price to pay, this can in practice constitute a severe lim-

itation, in particular for small sample sizes, when only a very limited number of scales

are available. Also, at scale j1 there are roughly as many wavelet coefficients (Leaders)

and hence statistical information as at all coarser scales j > j1 together. The impact on

estimation performance will be further quantified in Section 4.1.5.

Finally, the alteration of structure functions at fine scales introduces additional practical

difficulties for the validation of the range of scales over which scale invariance actually

exist.
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3.2 Some Statistical Properties for Wavelet Leaders

3.2.1 Marginal and bivariate characterization

The characterization of wavelet Leaders considered in the literature is exclusively limited

to their function space and local regularity analysis properties, and no theoretical result

on their statistical properties is available in the literature at present. Therefore, in this

section, we state the general form of the marginal and bivariate cumulative distribution

functions of wavelet Leaders. This provides us with heuristic arguments concerning the

dependence of wavelet Leaders with respect to the dependence of wavelet coefficients,

suggesting that they are of the some order.

3.2.1-a) Marginal distributions

From the definition of wavelet Leaders Eq. (2.54), LX(j, k) = supλ′∈3λj,k
|dX,λ′ |, the gen-

eral expression for the marginal cumulative distribution FLj,k(γ) = Pr [LX(j, k) < γ] of the

wavelet Leader Lj,k = LX(j, k) can immediately be written as:

FLj,k(γ) = F|d3λj,k |(γ, γ, · · · , γ). (3.2)

Here F|d3λj,k | denotes the joint cumulative distribution function of the absolute value of

all the wavelet coefficients |d(j, k)| situated within the neighborhood 3λj,k. Hence, the

marginal distribution of the wavelet Leader L(j, k) depends on the joint distribution of

all wavelet coefficients within the neighborhood 3λj,k. Note that in theory, it therefore

involves the joint distribution of an infinity of wavelet coefficients, since the sup is taken

over all finer scales j′ ≤ j and hence till the limit j′ → −∞. In practice, only a finite

number of wavelet coefficients at scale j ≥ 1 are involved, and the limit can not be

reached. The influence of this fine scale cut off is discussed above in Section 3.1.

3.2.1-b) Bivariate distributions

In the same spirit, we can write the general form of the bivariate cumulative distribution

FLj,k,Lj′,k′ (α, β) = Pr
[
L(j, k) < α,L(j′, k′) < β

]

of the two wavelet Leaders Lj,k = Lj,k and Lj′,k′ = Lj′,k′ . Let us define the sets A =
3λj,k ∩ 3λj′,k′ , B = 3λj,k\3λj′,k′ and C = 3λj′,k′\3λj,k as illustrated in Fig. 3.4. Then, the

bivariate cumulative distribution is given by:

FLj,k,Lj′,k′ (α, β) = F|dA|;|dB|;|dC | (min(α, β);α;β) . (3.3)

Here F|dA|;|dB|;|dC | stands for the joint cumulative distribution function of the absolute value

of the wavelet coefficients |d(j, k)| within the union of the neighborhoods 3λj,k ∪ 3λj′,k′ ,
and |dX | stands for the collection of wavelet coefficients |d(j, k)| for which (j, k) ∈ X .

We can hence distinguish three different cases for FLj,k,Lj′,k′ (α, β): First, the neighbor-

hoods do not overlap and A is empty. Second, one of the neighborhoods is a subset

of the other neighborhood, in which case either B or C is empty, depending on whether

j < j′ or j′ < j. Third, the neighborhoods do overlap but none of them is a subset of the

other (this is the situation illustrated in Fig. 3.4). In the last situation, there are only two

possible configurations: The neighborhoods share either one or two wavelet coefficients

at j′ (if j ≥ j′) or j (if j′ ≥ j).
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Figure 3.4: Wavelet Leaders and neighborhoods 3λj,k, 3λj′,k′ . Dyadic grid of wavelet

Leaders (’•’), wavelet Leaders LX(j, k) (’◦’) and LX(j′, k′) (’⋄’), neighborhoods 3λj,k
(red frame) and 3λj′,k′ (blue frame), and A = 3λj,k ∩ 3λj′,k′ (green region), B =
3λj,k\3λj′,k′ (red region) and C = 3λj′,k′\3λj,k (blue region).

3.2.1-c) Dependence: Intuitions

Fig. 3.4 and Eq. (3.3) suggest the following heuristic: The dependence of the wavelet

Leaders L(j, k) and L(j′, k′) is not larger than the largest dependence between a wavelet

coefficient in 3λj,k and a wavelet coefficient in 3λj′,k′ . Clearly, this intuition is not fruitful in

the case when the two neighborhoods overlap, since then there are wavelet coefficients

in 3λj,k and in 3λj′,k′ that are identical. It suggests, however, that the dependence of two

wavelet Leaders whose neighborhoods are far apart in time decays roughly at the same

speed as the dependence of wavelet coefficients at comparable distance.

Note that no mathematically rigorous results, such as an upper bound for the covariance

of wavelet Leaders, has been obtained for this intuition. This demands for further theo-

retical work. The difficulty resides in the sup in the definition of wavelet Leaders, making

standard bounds such as Cauchy-Schwartz ineffective.

3.2.1-d) Numerical evidence for correlation

Numerical evidence supports the intuition that dependence of wavelet Leaders is qualita-

tively similar to dependence of wavelet coefficients for large time lags. Fig. 3.5 shows, as

a function of time lags, means of correlation coefficients for the absolute value of wavelet

coefficients and for wavelet Leaders, ρ|d|(k − k′) = E|dX(j,k)||dX(j,k′)|−E|dX(j,k)|E|dX(j,k′)|
Std|dX(j,k)|Std|dX(j,k′)|

and ρL(k − k′) = ELX(j,k)LX(j,k′)−ELX(j,k)ELX(j,k′)

StdLX(j,k)StdLX(j,k′)
, at a common scale j = 3. Results

are obtained as means over 100 realizations of fBm (H = 0.7, left) and mrw ((c1, c2) =
(0.7,−0.05), center and right) of sample size N = 214 (Daubechies’ wavelet, Nψ = 3).

We observe that for fBm, correlation of wavelet coefficients pertains only in a very narrow

time neighborhood and then decays extremely fast. Correlation of wavelet Leaders is
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Figure 3.5: Correlation coefficients of wavelet coefficients and Leaders. Correlation

coefficients ρ(k − k′) of absolute value of wavelet coefficients |dX(j, ·)| (’◦’) and Leaders

LX(j, ·) (’×’) as a function of lag k − k′ for fBm (H = 0.7, left) and mrw ((c1, c2) =
(0.7,−0.05), center) at scale j = 1, obtained as means over 100 realizations of sample

size N = 214. Log-log plot of correlation coefficients as in center plot (right).

significant in a time neighborhood only slightly larger than for wavelet coefficients, and

goes to zero very fast with increasing time lag. For mrw, the magnitude of the correlation

of wavelet Leaders is slightly larger than that of wavelet coefficients (cf. Fig. 3.5, cen-

ter). However, the correlation of wavelet coefficients and Leaders are characterized by

the same power law type behavior and decay, for large time lags, roughly at the same

rate (cf. Fig. 3.5, right). Both observations support the intuition that for large time lags,

wavelet coefficients and Leaders have qualitatively equivalent dependence.

The dependence structure of wavelet coefficients and Leaders for H-sssi and MMC pro-

cesses will be subject to more detailed investigations in Chapter 11.

3.2.2 Marginal and bivariate characterization for fBm

The results in Eqs. (3.2) and (3.3) are interesting in themselves since they state the

general form of the cumulative distributions of wavelet Leaders. In this subsection, we

concentrate on such results for the specific case of fBm, with the following motivations:

First, fBm represents the statistically most comfortable (since Gaussian) scale invariant

model process. Hence, it is the most promising candidate process for the derivation of

practically exploitable expressions for Eqs. (3.2) and (3.3). Second, fBm is the only scal-

ing process for which exhaustive asymptotic theory on the statistics of wavelet coefficients

is available [70] (cf. Section 2.3.4: stationarity (P1), weak correlation (P3), Gaussian (P4)

and precise reproduction of scale invariance). These properties highly facilitate the sta-

tistical analysis of estimation procedures and make up for a major advantage of wavelet

coefficients for the analysis of fBm, since they enable the derivation of statistical inference

procedures [4, 26, 52, 84, 169]. Hence, the interest of investigating this specific case for

wavelet Leaders.

From the properties P1 and P4, we can directly state the marginal cumulative distri-
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bution functions of the absolute value of the wavelet coefficients |d(j, ·)|,

F|dj |(γ) = Pr[|dX(j, ·)| ≤ γ] = 1 − Pr[|dX(j, ·)| > γ] =

= 1 − 2 · Pr[dX(j, ·) > γ] = 2 · Pr[dX(j, ·) < γ] − 1 =

= erf

(
γ√

2σ(j)

)
,

by making use of stationarity, symmetry around 0 of the marginals of dX(j, ·), and the fact

that the marginals of dX(j, ·) are Gaussian. Hence, the absolute values of the wavelet

coefficients have half-Normal distributions, and E|dj | =
√

2
πσ(j) and Var|dj | = π−2

π σ(j).

As stated above (cf. Eq. (3.2)), the marginal distributions of the LX(j, k) involve the

joint distribution of all wavelet coefficients in 3λj,k. Whereas the joint distributions of the

wavelet coefficients can be written in closed form if their covariance is explicitly known,

this is not the case for their absolute value, since there is no closed form expression for

joint half-Normal distributions. Therefore, we add the following simplifying assumption:

A1 The wavelet coefficients of fBm are independent.

Clearly, A1 is a rather strong assumption, since it implies, together with P1 and P4,

independent Gaussian wavelet coefficients. We will, however, see that the resulting dis-

tribution model perfectly fits with empirical distributions for fBm.

3.2.2-a) Marginal distribution model

From property P4 and under assumption A1, the marginal distributions of the LX(j, k)
Eq. (3.2) simplify to:

FLj (γ) =

j∏

m=j1

(
F|dm|(γ)

)3·2(j−m)

=

j∏

m=j1

(
erf

(
γ√

2σ(m)

))3·2(j−m)

, (3.4)

since at each scale j′ ≤ j, there are 3 ·2(j−j′) wavelet coefficients dX(j′, ·) in 3λj,k. There-

fore, even in the simple model case of independent and Gaussian wavelet coefficients,

the marginal distributions of wavelet Leaders do not have a simple closed form expres-

sion3. The form of the model distribution Eq. (3.4) indicates non Gaussian, but not heavy

tailed or sub-exponential distributions for wavelet Leaders.

Fig. 3.6 plots numerical evaluations of Eq. (3.4) against the empirical distributions of

LX(j, ·) from single realizations of fBm (sample size N = 220, Daubechies’ wavelet with

Nψ = 3) with H = 0.3, 0.6, 0.9 (top, center and bottom rows, respectively) at the scales

j = 1, 3, 5, 7 (first, second, third and fourth column, respectively). The finest scale is nat-

urally j1 = 1, and estimates of the standard deviations σ(j) are used for evaluating Eq.

(3.4). First, we observe that the fits are perfect, regardless of the scale j, and of the pro-

cess parameter H. The latter observation is important in so far as H controls the (long

range) dependence of the process. Even for very significant long range dependence

(H = 0.9), the model Eq. (3.4) based on independent wavelet coefficients fits the data

perfectly, hence indicating that the wavelet coefficients display only residual correlations,

and that these residual correlations do not significantly alter the marginal distributions of

the wavelet Leaders. Second, Fig. 3.6 shows that both the empirical distributions and the

distribution model are non Gaussian, at all scales j and for any H.

3In particular, j1 → −∞ in theory, hence an infinite product in Eq. (3.4).
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Figure 3.6: Wavelet Leader marginal distribution model for fBm. Wavelet Leader

LX(j, ·) marginal empirical probability distributions (blue solid lines) and probability dis-

tribution model Eq. (3.4) (red dashed lines, numerically evaluated) for fBm H = 0.3 (top

row), H = 0.6 (center row) and H = 0.9 (bottom row) at scales j = 1, 3, 5, 7 (1st, 2nd, 3rd

and 4th column, respectively).

3.2.2-b) Bivariate distribution model

From tedious but straightforward geometrical considerations, mostly consisting of evalu-

ations of the number of wavelet coefficients in the regions A, B and C in Fig. 3.4, and

under P1, P4 and A1, the joint cdf Eq. (3.3) of L(j, k) and L(j′, k′) is derived as (assuming

j ≥ j′ without loss of generality):

FLj,k,Lj′,k′ (α, β) =

j′∏

m=j1

(
erf

(
min(α, β)√

2σ(m)

))θ2j′−i
·
(
erf

(
α√

2σ(m)

))3·2j−m−θ2j′−i

·

(3.5)

(
erf

(
β√

2σ(m)

))(3−θ)2j′−i

·
j∏

n=j′+1

(
erf

(
α√

2σ(n)

))3·2j−n

.

(3.6)
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The first term in Eq. (3.5) involves wavelet coefficients in A, the second and fourth term

correspond to B, the third term corresponds to C (cf. Fig. 3.4), and θ is given by:

θ = max

(
0, 2 + 3 · 2j−j′−1 −

∣∣∣∣k′ −
(
k − 1

2

)
2j−j

′ − 1

2

∣∣∣∣
)
. (3.7)

Hence, under assumption A1, the Lj,k and Lj′,k′ are independent if:

∣∣∣∣k′ − k · 2j−j′ + 2j−j
′−1 − 1

2

∣∣∣∣ ≥ 3 · 2j−j′−1 + 2

Then, FLj,k,Lj′,k′ (α, β) = FLj (α) · FLj′ (β). In other words, if wavelet coefficients (be they

Gaussian or not) are independent, wavelet Leaders are m-dependent. This is a direct

consequence of the fact that the neighborhoods 3λj,k and 3λj′,k′ of two wavelet Leaders

that are far enough apart do not intersect4.

Finally, we conclude that the form of both the Eqs. (3.4) and (3.5) do not suggest to

be directly useful for further analytic statistical characterization of wavelet Leaders or

estimation procedure. This needs to be further investigated.

3.2.3 Conclusions and perspectives

The results in this section lead us to the following conclusions. First, wavelet Leaders are

in general non Gaussian. This suggests that for fBm, it may be advantageous to stay with

(Gaussian) wavelet coefficients, which allow extensive statistical characterization of esti-

mation procedures [4, 26, 52, 84, 169]. This does not take into account actual practical

estimation performance, which will be the subject of the following Chapter 4. Eq. (3.2)

indicates, nonetheless, that wavelet Leaders do in practice not introduce heavy-tailed or

sub-exponential marginals if they are not already present for wavelet coefficients. Sec-

ond, the covariance of wavelet Leaders has heuristically similar decay as the covariance

of the absolute value of the wavelet coefficients from which they are constructed. Hence,

qualitatively, wavelet Leaders do not seem to considerably increase practical difficulties

resulting from dependence. A more precise statement demands for further theoretical

investigations. Finally, the nonlinear nature of wavelet Leaders leads to (marginal and

bivariate) distributions that appear not to be directly exploitable for further analytic char-

acterization of wavelet Leaders or estimation procedures. Even in the simplest model

case of independent and Gaussian wavelet coefficients, results as in Eqs. (3.4) and

(3.5) do not seem to be directly useable for analytic statistical characterization of wavelet

Leader based estimation.

4For instance, the neighborhoods of two wavelet Leaders Lj,k and Lj,k′ at a common scale j do not

intersect as soon as |k − k′| ≥ 3.
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Although multifractal analysis has been extensively used in various applications in-

volving 1d and 2d data of very different natures, the statistical properties and performance

of estimation procedures remain poorly studied. Most of the literature concentrates on the

estimation of the Hurst parameter for H-sssi processes based on (discrete) wavelet coef-

ficients, for which important analytical results have been obtained. For fBm, for which the

statistics of the wavelet coefficients can be widely characterized analytically (cf. Section

2.3.4), theoretical results for the estimator of H based on ζ(2) have been obtained. It can

be shown that this estimator is quasi optimal, with performance close to the Cramer-Rao

bound, and that estimates are Gaussian. Also, the estimates ζ̂(q), q > 0 are (asymptoti-

cally) Gaussian, and their bias and standard deviation can be calculated analytically (e.g.

[169]). However, no comparable results have been obtained for multifractal processes,

due to the absence of theoretical statistical characterization of wavelet coefficients for

such processes. What is more, no theoretical results have been obtained for wavelet

Leader based estimation, be it for Gaussian H-sssi or for multifractal processes, since

no analytical characterizations of wavelet Leaders other than the ones presented in the

previous Chapter 3 are available at present.

Given this absence of analytical results for estimation procedures and the vast variety

of applications, it is surprising that only very few numerical studies of the statistical perfor-

mance of multifractal parameter estimation are available. For 1d signals, some important

practical characterizations have been obtained recently for wavelet coefficient and Leader

based estimation, mainly in the works by Lashermes et al. [8, 107, 108, 109, 110, 148].

They demonstrate by means of numerical simulations for 1d signals that the two key

functional analysis properties of wavelet Leaders, predicted by theory, hold in practice:

Wavelet Leaders enable to estimate ζ(q), q < 0 and hence the decreasing part of the Leg-

endre spectrum D(h), and they can cope with oscillating singularities1, whereas wavelet

coefficients fail rather drastically in both cases. Nevertheless, these qualitative results

leave most performance issues of practical importance unanswered: How do the respec-

tive performance of wavelet coefficient and Leader based estimation procedures com-

pare? How do they depend on sample size? Do they depend on process parameters,

and if yes, what is the nature of this dependence? The first aim of this chapter is precisely

to study these and related issues in detail. This is reported in Section 4.1.

In this manuscript, we propose the extension of wavelet Leader based multifractal

analysis to 2d images, based on a practical implementation of 2d wavelet Leaders Eq.

(2.55). Although the feasibility of practically implementing a 2d WLMF had been shown

in [110], no relevant implementation of this 2d multifractal formalism existed until now.

Hence, no results are available for investigating the practical relevance of the WLMF for

image data: Can the proposed procedures provide relevant estimates of multifractal at-

tributes for standard size images? Do they, for instance, practically enable the estimation

of a non-zero c2 or c3? Therefore, the second aim of this chapter is to validate, by means

of numerical simulations, the statistical performance of a 2d wavelet Leader based mul-

tifractal analysis, and to compare it to that obtained by a wavelet coefficient based one.

This is addressed in Section 4.2, together with a discussion of practical limitations of the

2d WLMF.

Note that it would have been imaginable to combine the results and discussions in Sec-

tions 4.1 and 4.2 for 1d and 2d data, respectively, and to present them jointly. However,

in an increasing number of applications, the data involved in analysis consists of images,

1See also Fig. 2.5.
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due to significant progresses in high-resolution digital imaging. Also, the 2d WLMF has

never been practically implemented before and constitutes an original contribution of this

work. For these reasons, we choose to investigate the 1d and the 2d case separately.

Finally, the ultimate goal of the present chapter can be seen in providing an answer

to the following questions: Do the estimation procedures proposed in Section 2.6 ex-

hibit satisfactory statistical performance, and should one prefer wavelet coefficients or

Leaders for the estimation of multifractal attributes of signals or images? The numerical

results presented in Sections 4.1 and 4.2 enable us to conclude on this question and

suggest that overall, wavelet Leader based estimation significantly outperforms wavelet

coefficient based one and practically enables the precise multifractal characterization for

both signals and images. Results presented in this chapter have been partly reported in

[173, 175, 177, 179, 180, 182].

4.1 Statistical Performance of Estimation Procedures: Sig-

nals

4.1.1 Estimation performance: Preliminary results

Before diving into the details of the statistical performance and properties of the estima-

tion procedures for 1d signals, we choose to present some qualitative overview results,

similar to those that can be found in [8, 107, 108, 109, 110, 148]. These results allow us,

on one hand, to appreciate the overall performance of wavelet coefficient and Leaders

based estimation, and on other hand, to draw first preliminary conclusions which sub-

sequently help us to concentrate on a more detailed analysis of the different aspects of

statistical performance.

For convenience, we denote ”wavelet coefficient (Leader) based estimation” briefly by dX
(LX ), respectively. Also, we will distinguish wavelet coefficient (Leader) related quantities

by superscripts d (L), respectively.

Fig. 4.1 summarizes mean estimations for fBm (H = 0.8, top row) and CPM-MF-fBm

((c1, c2, c3) = (0.8,−0.08, 0.031), bottom row) for sample size N = 214, for dX (left column)

and LX (right column), obtained by numerical simulation with NMC = 1000 realizations.

In each subfigure, the subplots correspond to estimations for ζ(q) (top left), D(q) h(q)
(top right), and c1, c2, c3 (bottom), obtained with linear regressions with weights w1 over

scales (j1, j2) = (3, 11). The figure compares the theoretical attributes (blue solid lines) to

mean over Monte Carlo realizations of estimates (black solid lines) and shows the upper

and lower 5% quantiles of the Monte Carlo distributions of the estimates (red solid lines).

The subplots for cp additionally show boxplots of these Monte Carlo distributions (black

solid lines: median, upper and lower quartiles; black dashed-dotted lines: support of the

distributions).

Fig. 4.1 indicates that the estimations of ζ(q), D(q) and h(q) for q > 0 (this corre-

sponds to the increasing part of the spectrum D(h(q))) for both dX and LX are very close

to each other and to the theoretical values, for both the mono- (fBm) and multifractal

(CPM-MF-fBm) process. Similarly, the estimations of c1 are roughly equivalent for both

processes.

In contrast, the estimations for c2 and c3, capturing the deviation from monofractal, are

significantly better for LX for both processes. In particular, Monte Carlo confidence inter-
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vals for c2 and c3 of CPM-MF-fBm exclude the zero value. This indicates that non-zero c2
and c3 can indeed be estimated from data by the wavelet Leader based procedure. Also,

for dX , the estimates of ζ(q), D(q) and h(q) for q < 0 (corresponding to the decreasing

part of the spectrum D(h(q))) are disconnected from the theoretical values and meaning-

less, whereas for LX , estimates closely follow the theoretical values. This behavior for dX
for q < 0 is systematic and due to numerical instabilities of structure functions for negative

orders q (see e.g. [107] and Section 2.5.5). Therefore, we will not further discuss dX for

q < 0 here.

First conclusions. These results suggest the following preliminary conclusion. The

fact that dX can not be used for exploring negative statistical orders q, together with them

having significantly inferior performance for the estimation of c2 and c3, makes them rather

inadequate for practically performing a multifractal analysis of multifractal processes. It

would, for instance, be very difficult to decide, based on dX , whether the multifractal

spectrum of CPM-MF-fBm is symmetric or not (either from D(h(q)) directly, or from c3),

whereas the Monte Carlo based 90% confidence interval for c3 for LX excludes the value

zero, giving strong evidence to the fact that the spectrum is not symmetrical.

Let us now proceed to a more detailed analysis.

4.1.2 Numerical simulation study

4.1.2-a) Monte Carlo simulations

To evaluate the performance of both the wavelet coefficient and Leader based estimation

procedures Eq. (2.65), Eq. (2.71) and Eqs. (2.74–2.75), we apply them to a large

number NMC of 1d realizations of sample size N of mono- and multifractal processes X
with known and a priori controlled multifractal properties and attributes. The estimations

θ̂ are performed for all possible combinations of ranges of scales [j1, j2], j2 − j1 ≥ 2 for

linear regressions, and for both ordinary (w0) and weighted (w1) linear regressions (cf.

Section 2.6). For each multifractal attribute θ and parameter setup, we evaluate the bias

(b):
b̂θ = ÊMC θ̂ − θ, (4.1)

the standard deviation (s):

ŝθ = ŜtdMC θ̂ =

√
ÊMC θ̂2 −

(
ÊMC θ̂

)2
(4.2)

and the (root) mean squared error (mse):

m̂seθ =

√
b̂2θ + ŝ2θ, (4.3)

of the estimation, where ÊMC stands for mean over Monte Carlo realizations. Notice that

b̂θ, ŝθ and m̂seθ depend on j1, j2, wi, N , d or L, the process and the process parameters

(explicit notation taking into account these dependences are omitted here for convenience

of notation).

Finally, we define the minimum (root) mean squared error (mmse) for given wi, N , d or

L, process and process parameters:

m̂mseθ = inf
[j1,j2]

m̂seθ, (4.4)
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Figure 4.1: Estimation performance. Wavelet coefficient (left column) and Leader (right

column) based estimation for fBm (top row) and CPM-MF-fBm (bottom row) for N = 214

and w1 over (j1, j2) = (3, 11). The subplots correspond to ζ(q) (to left), D(q), h(q) (top

right) and cp (bottom). Shown are the theoretical values of the attributes (solid blue),

means of estimates overNMC = 1000 Monte Carlo realizations (solid black, ’•’) and upper

and lower 5% quantiles of Monte Carlo distributions (solid red vertical and horizontal

bars).

which quantifies the best possible estimation performance based on dX or on LX for

given process setup and regression weights. The mmse is a quantity that can not be

assessed in practice apart from by numerical simulations on synthetic processes, since

the optimal (j1, j2) are in general unknown in practice: The couple (j1, j2) is usually fixed

by eye based on the experience of the practitioner. By precisely avoiding the practical

regression range selection issue, the mmse therefore provides a basis for a fair and

objective performance comparison.

4.1.2-b) Simulation and process parameters

Simulation parameters. For the numerical simulation presented here, we use Daube-

chies wavelets with Nψ = 3 vanishing moments (the influence of Nψ on estimation has

been studied elsewhere, e.g. [4, 6, 12, 70], and will not be considered here). The sim-

ulation parameters are set to NMC = 1000 and N ∈ {210, 214, 218}, and the multifractal
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attributes considered are θ ∈ {c1, c2, c3, ζ(q), D(q), h(q)} for q ∈ {−3,−2,−1, 1, 2, 3}.

fBm. The self-similarity parameter of (monofractal) Gaussian fractional Brownian mo-

tion is set to H ∈ {0.1, 0.2, · · · , 0.9} and therefore includes H = 0.5 (ordinary Brownian

motion with independent increments) and the range H > 0.5 for which the process is long

range dependent.

ROS. The self-similarity parameter of the non Gaussian fv H-sssi Rosenblatt process

is set to H ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.

CPM. The process parameters for compound Poisson motion are set to µ = −0.005
and σ2 ∈ {0.01, 0.03, 0.05, 0.07, 0.09} − µ2, such that it has second log-cumulant c2 ∈
{−0.01,−0.03,−0.05,−0.07,−0.09}.

CPM-MF-fBm. The parameters of CPM-MF-fBm are set to H ∈ {0.5, 0.6, 0.7, 0.8, 0.9},

µ = −0.005 and σ2 ∈ {0.01, 0.03, 0.05, 0.07, 0.09} − µ2, such that c1 is in the range

[0.51, 0.95], c2 ∈ {−0.01,−0.03,−0.05,−0.07,−0.09}, and c3 is in the range [0.0001, 0.0012].

mrw. The process parameters (H,β) of mrw are set such that c1 ∈ {0.6, 0.7, 0.8, 0.9}
and c2 ∈ {−0.01,−0.03,−0.05,−0.07,−0.09}.

The definitions and the scaling and multifractal properties of the above fv H-sssi pro-

cesses are stated in Section 2.2.3, and those of MMC processes CPM, CPM-MF-fBm

and mrw in Sections 2.7.1-b), 2.7.2-a) and 2.7.2-b), respectively.

4.1.2-c) A note on the presented results

The simulation study we conduct includes a total of 64 different process (parameter) set-

tings. For each of these settings, 3 sample sizes N and two different linear regression

weights (w0) and (w1) are considered, and for each of these now 64 × 3 × 2 settings, we

calculate the bias, standard deviation and mean squared error for a total of 21 estimates.

If we in addition consider that for the three sample sizes, the largest available scales are

j2,max ∈ {7, 11, 15} and thus there are {15, 45, 91} combinations of (j1, j2) for performing

the linear regressions, it is obvious that it would be rather meaningless and, for space

reasons, as well impossible to present these results in all detail within this manuscript

(the author leaves it to the reader to calculate the total number of table entries this would

require).

The goal of this numerical study is to characterize the impact of the different factors

that potentially influence estimation performance: The precise range of scales chosen

for linear regressions, the weights used in linear regressions, the precise nature of the

estimate, the sample size, the nature of the processes or the precise value of process

parameters. The presentation of the numerical results in the following sections therefore

aims at systematically disentangling the effects of the various factors that potentially in-

fluence estimation performance. Hence, we will proceed in the following way: For each

issue evoked above and grouped in the following sections, we will present a selection of

results that are representative and illustrate the discussions and conclusions, valid for the

entire simulation study. For the reader who is interested in more details, a large collection

of results is available upon request.

Also, since the multifractal attributes ζ(q), D(h) and cp are closely related to each other

and essentially measure the same aspects of data, we concentrate on results for ζ(q)
and cp only in the following sections.
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fBm ζ(2) c1 c2
H dX LX dX LX dX LX

0.1 0.085 0.019 0.050 0.011 0.024 0.005

0.2 0.055 0.009 0.033 0.004 0.026 0.004

0.3 0.045 0.017 0.026 0.022 0.025 0.003

0.4 0.037 0.026 0.022 0.020 0.025 0.003

0.5 0.032 0.040 0.021 0.011 0.025 0.005

0.6 0.032 0.039 0.020 0.006 0.025 0.003

0.7 0.031 0.033 0.017 0.007 0.024 0.003

0.8 0.027 0.031 0.016 0.009 0.025 0.004

0.9 0.025 0.031 0.015 0.010 0.025 0.005

ROS ζ(2) c1 c2
H dX LX dX LX dX LX

0.6 0.036 0.034 0.020 0.016 0.027 0.008

0.7 0.053 0.062 0.024 0.025 0.027 0.011

0.8 0.070 0.082 0.032 0.033 0.028 0.015

0.9 0.081 0.089 0.039 0.030 0.033 0.022

Table 4.1: Minimum mse for H-sssi processes. Best case estimation performance

(mmse) for Gaussian fBm (top) and non Gaussian ROS (bottom) for different values of

the self-similarity parameter H. Estimations are performed for sample size N = 214 using

weighted linear regressions with weights w1.

4.1.3 Estimation performance: Minimum mean squared error

The goals of this section are to provide guidelines for deciding for which processes and

for which process parameters wavelet coefficient or Leader based procedures are to be

preferred, and to study which performance these procedures can achieve in practice, de-

pending on the process nature and parameters. To this end, we compare the mmse ob-

tained for Gaussian H-sssi, non Gaussian H-sssi processes, and multifractal processes

for various different process parameter settings.

4.1.3-a) H-sssi processes

We choose to base performance comparisons for fBm and ROS on the multifractal at-

tributes ζ(2), c1 and c2: ζ(2) is classically considered for the estimation of H, c1 is the

log-cumulant equivalent of H (for H-sssi, c1 = H), and c2 measures first departure from

H-sssi (i.e., c2 = 0 for fv H-sssi). Results are summarized in Tab. 4.1 for sample size

N = 214 and weighted regression w1 for fBm (top) and ROS (bottom).

Relative performance of wavelet coefficients and Leaders. The following observa-

tions are valid for both Gaussian fBm and non Gaussian ROS. First, for estimating ζ(2),
dX perform slightly better than LX for H ≥ 0.5, and LX better than dX for H < 0.5. The

first observation is consistent with the fact that dX are close to optimal for the estima-

tion of H for H-sssi processes. The latter observation, LX better than dX for H < 0.5,

therefore seems surprising at first. It can be interpreted in the light of results presented
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Figure 4.2: qq plots fBm versus ROS. Quantile-quantile plots of the empirical distri-

butions of wavelet coefficients dX(j, ·) (left column) and Leaders LX(j, ·) (right column)

against standard Normal for fBm (top row) and ROS (bottom row) (j = 3, H = 0.7,

N = 215).

in Section 3.1 as follows: It is known that the estimation of H can be biased for small

and medium sample sizes, and the bias of dX and LX are in principle comparable if the

same range of scales are chosen for regressions. Results in Section 3.1 suggest that

wavelet Leader based structure functions do not behave linearly in log-log coordinates

at fine scales due to fine scale cutoff. This non-linear behavior of the structure functions

can, though not meaningful, be used for adjusting for bias by choosing an appropriate

regression range at medium or fine scales. For wavelet coefficients, this is not the case,

and bias can only be reduced by performing linear fits at coarse scales, hence increas-

ing standard deviation. Thus, in this particular setting, the mmse measure allows LX to

”cheat” on dX by choosing a regression range that no practitioner would select since the

structure functions in this range are curved.

For the estimation of c1, the performance of dX and LX are similar, with slightly smaller

overall mmse for LX . The gain in performance is, however, small. The situation is com-

pletely different for the estimation of c2, for which LX significantly outperforms dX , with

mmse gains of up to nearly one order of magnitude. Note, however, that when it is known

that the process underlying the analysis is H-sssi, there is no particular interest in esti-

mating c2, since c2 ≡ 0.

Relative estimation performance for fBm and ROS. We observe that the non Gauss-

ian nature of ROS significantly decreases estimation performance as compared to fBm,

for both dX and LX . This additional estimation difficulties for ROS can be interpreted in

the following ways: First, the marginals of wavelet coefficients dX(j, ·) and wavelet Lead-

ers LX(j, ·) of ROS are strongly non Gaussian and skewed (cf. Figure 4.2). Second,

whereas the absolute values of wavelet coefficients |dX(j, ·)|, on which estimations are

based, are only weakly correlated for fBm, this turns out not to be the case for ROS (cf.

analysis and discussion in Chapter 11.1).

Influence of H on estimation performance for H-sssi processes. Tab. 4.1 sug-
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gests that, for ROS, there is a general increase of mmse with increasing H, for both

wavelet coefficient and Leader based estimation, and for all estimates. For fBm, the

situation is more complicated: Whereas wavelet Leader based estimation performance

degrades with increasing H for ζ(2) and stays constant for c1 and c2, wavelet coefficient

based estimation performance increases with H for both ζ(2) and c1 and stays constant

for c2. Hence, there is a clear impact of the precise value ofH on the best case estimation

performance. This is studied in more detail in Subsection 4.1.7.

4.1.3-b) Multifractal processes

For comparing performance for multifractal processes, we investigate estimates for ζ(−2)
and c3 in addition to the attributes chosen above for H-sssi processes: ζ(−2) represents

estimates involving negative statistical moments q, and c3 measures the second order de-

parture from monofractal by capturing the asymmetry of the multifractal spectrum, when

c2 captures its width. Results are summarized in Tab. 4.2 for sample size N = 214 and

weighted regression w1 for CPM (top), CPM-MF-fBm (center) and mrw (bottom).

Relative performance of wavelet coefficients and Leaders. Tab. 4.2 suggests that

for the estimation of ζ(2), dX perform in general slightly better than LX , with the exception

of CPM-MF-fBm and mrw when c1 is close to 0.5, for which LX are preferable. Similarly,

the performance of dX and LX are practically equivalent for the estimation of c1, with

slightly better overall performance for LX , in particular for mrw. The gain in performance

is, however, small.

In contrast, for the estimation of c2 and c3, wavelet Leader based estimation significantly

outperforms wavelet coefficient based one, with mmse gains of up to one order of mag-

nitude. These observations are consistent with those obtained for H-sssi processes.

Nevertheless, Tab. 4.2 seem to suggest that measurements of non-zero c3 (for CPM and

CPM-MF-fBm) are difficult to obtain in practice. Even with wavelet Leaders, mmse are

one order of magnitude larger than the c3 to be estimated. However, the values of c3
considered here are very small, and if c3 and the sample size N are sufficiently large,

a non-zero c3 can be statistically significantly measured: This is illustrated in Fig. 4.1,

where a c3 ≈ 0.03 is non-ambiguoulsy distinguished from zero value for sample size

N = 215 using wavelet Leader based estimation. This is not feasible with coefficient

based estimation, since the MC confidence interval has span three orders of magnitude

larger than the value of c3.

Let us also appreciate the performance of wavelet Leader based estimations of ζ(−2),
which display mmse close to those of ζ(2) for all processes and parameter settings.

Hence, estimation for negative statistical moments does not pose any particular prob-

lems for wavelet Leaders as compared to positive statistical moments.

Influence of cp on estimation performance. Tab. 4.2 suggests that for CPM and

CPM-MF-fBm, an increase of |cp| and hence stronger departure from monofractal leads

overall to increased mmse, for both dX and LX . Note that it is impossible to disentangle

the influence of increase or decrease of one particular cp for these processes, since the

cp, p ≥ 1 6= 0 can not all be independently controlled by two (three) process parameters,

respectively.

Similarly, for mrw, mmse are significantly larger for strongly negative c2 values and thus

strong departure from monofractal. The precise value of c1 has little to no effect onmmse.
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CPM ζ(−2) ζ(2) c1 c2 c3
c1 c2 c3 dX LX dX LX dX LX dX LX dX LX

1.005 −0.01 0.0001 − 0.067 0.034 0.041 0.032 0.027 0.042 0.011 0.186 0.007

1.015 −0.03 0.0004 − 0.077 0.039 0.053 0.033 0.031 0.042 0.016 0.187 0.011

1.025 −0.05 0.0007 − 0.087 0.045 0.066 0.035 0.034 0.043 0.019 0.185 0.017

1.035 −0.07 0.0010 − 0.101 0.056 0.077 0.036 0.037 0.044 0.023 0.193 0.024

1.046 −0.09 0.0013 − 0.110 0.065 0.086 0.038 0.040 0.044 0.027 0.193 0.032

CPM-MF-fBm ζ(−2) ζ(2) c1 c2 c3
c1 c2 c3 dX LX dX LX dX LX dX LX dX LX

0.552 −0.05 0.0004 − 0.067 0.058 0.034 0.024 0.021 0.058 0.012 0.287 0.014

0.643 −0.05 0.0004 − 0.058 0.049 0.047 0.021 0.023 0.041 0.012 0.256 0.014

0.736 −0.05 0.0005 − 0.043 0.043 0.054 0.019 0.020 0.027 0.011 0.171 0.012

0.832 −0.05 0.0006 − 0.042 0.041 0.050 0.017 0.018 0.029 0.011 0.153 0.012

0.928 −0.05 0.0007 − 0.044 0.046 0.051 0.018 0.018 0.028 0.012 0.133 0.013

0.707 −0.01 0.0001 − 0.037 0.032 0.035 0.017 0.007 0.026 0.004 0.135 0.004

0.722 −0.03 0.0003 − 0.041 0.037 0.046 0.018 0.014 0.026 0.008 0.128 0.008

0.736 −0.05 0.0005 − 0.043 0.043 0.054 0.019 0.020 0.027 0.011 0.171 0.012

0.752 −0.07 0.0007 − 0.057 0.055 0.051 0.020 0.020 0.039 0.014 0.199 0.017

0.767 −0.09 0.0009 − 0.077 0.067 0.059 0.020 0.018 0.055 0.022 0.305 0.032

mrw ζ(−2) ζ(2) c1 c2 c3
c1 c2 c3 dX LX dX LX dX LX dX LX dX LX

0.600 −0.05 0 − 0.054 0.058 0.050 0.028 0.019 0.029 0.011 0.134 0.011

0.700 −0.05 0 − 0.064 0.054 0.061 0.030 0.009 0.028 0.009 0.130 0.012

0.800 −0.05 0 − 0.066 0.051 0.060 0.030 0.009 0.028 0.011 0.129 0.012

0.900 −0.05 0 − 0.062 0.048 0.058 0.027 0.010 0.028 0.012 0.130 0.012

0.700 −0.01 0 − 0.040 0.034 0.038 0.019 0.007 0.025 0.005 0.128 0.004

0.700 −0.03 0 − 0.051 0.046 0.050 0.026 0.007 0.026 0.008 0.129 0.008

0.700 −0.05 0 − 0.064 0.054 0.061 0.030 0.009 0.028 0.009 0.130 0.012

0.700 −0.07 0 − 0.071 0.065 0.065 0.034 0.012 0.030 0.012 0.133 0.017

0.700 −0.09 0 − 0.074 0.075 0.060 0.039 0.015 0.034 0.015 0.140 0.023

Table 4.2: Minimum mse for multifractal processes. Best case estimation performance

(mmse) for CPM (top), CPM-MF-fBm (center rows) and mrw (bottom) for different com-

binations of log-cumulants cp. Estimations are performed for sample size N = 214 using

weighted linear regressions with weights w1.

Relative estimation performance for CPM, CPM-MF-fBm and mrw. The impact of

process nature – A(t) (CPM) vs. VH(t) (CPM-MF-fBm) vs. ZH(t) (mrw) – should ideally

be evaluated by comparisons for one common setup of values for cp. This is, however,

not possible since cp ≡ 0, p ≥ 3 for mrw whereas these log-cumulants are non-zero for

CPM and CPM-MF-fBm, and since c1 > 1 for CPM whereas c1 < 1 for CPM-MF-fBm

and mrw. Nevertheless, Tab. 4.2 suggests that for common sample size N , estimation

performance is overall practically comparable for the three processes and vary, for each

estimate, less than one order of magnitude among different processes, regardless of the
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Process ζ(2) c1 c2
dX LX dX LX dX LX

fBm c1 = 0.7 0.031 0.033 0.017 0.007 0.024 0.003

ROS c1 = 0.7 0.053 0.062 0.024 0.025 0.027 0.011

mrw c1 = 0.7 c2 = −0.05 0.054 0.061 0.030 0.009 0.028 0.009

Table 4.3: Minimum mse for H-sssi and multifractal processes. Best case estimation

performance (mmse) for Gaussian fBm (first line) and non Gaussian ROS (second line)

and non Gaussian multifractal mrw (third line) with common c1 = 0.7. Estimations are

performed for sample size N = 214 using weighted linear regressions with weights w1.

precise values of process parameters.

4.1.3-c) Mono- versus multifractal processes

Let us finally compare mmse performance for monofractal fBm and ROS to that for mul-

tifractal mrw for one common c1 = 0.7 and c2 = −0.05 for mrw, and with estimation

parameters and sample size set as above. Tab. 4.3 summarizes mmse for estimation of

ζ(2), c1 and c2 based on wavelet coefficients and Leaders for these three processes. It

suggests that, first, estimation performance is better for fBm than for ROS and mrw for

all estimates and both wavelet coefficients and Leaders. Second, for wavelet coefficient

based estimation, mmse are larger for multifractal mrw than for non Gaussian H-sssi

ROS, whereas for wavelet Leader based estimation, the situation is converse: estimation

performance is better for multifractal mrw than for ROS.

4.1.3-d) Conclusions

The minimum mean squared error results presented in this section lead us to the fol-

lowing conclusions. The best case estimation performance is practically equivalent for

wavelet coefficient and Leader based estimation of ζ(2) and c1 for both (Gaussian or non

Gaussian) H-sssi and for multifractal processes. Therefore, if it is a priori known that

the process under analysis is H-sssi, the estimation of the self-similarity parameter H
should be based on wavelet coefficients, since the comparable performance of wavelet

coefficient and Leader based procedures does not justify the additional complexity of

wavelet Leaders. In contrast, wavelet Leader based estimation of cp, p ≥ 2 significantly

outperform wavelet coefficient based one. Also, estimates of ζ(q < 0) involving negative

statistical orders are relevantly estimated when using wavelet Leaders, whereas they can

not be measured using wavelet coefficients. Therefore, wavelet Leaders based estima-

tions have to be employed for a relevant multifractal analysis in any situation in which it

can not be a priori ensured that data are H-sssi. Also, their use is practically mandatory

for the discrimination of mono- vs. multifractal models, and among different multifractal

models.

Estimation is significantly more difficult for non Gaussian H-sssi processes than it is

for Gaussian fBm. Similarly, estimation is more difficult for the multifractal processes con-

sidered, and estimation performance decreases with increasing departure from monofrac-

tal. These results can be interpreted in the light of result presented in Chapter 11, which
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suggest that statistical properties of wavelet coefficients are more difficult for these pro-

cesses than they are for fBm.

The conclusions for H-sssi processes being practically coherent, we use fBm with

moderateH = 0.7 as a model example for monofractal processes in the following sections

and only resort to ROS when its non Gaussian nature is explicitly a concern for the

topic studied. Also, no significant difference in estimation performance for the multifractal

processes considered being observed, we employ mrw as our multifractal model process

in the following sections: It is easy to simulate and ensures independent control of c1 and

c2. We set them to (moderate) values c1 = 0.7 and c2 = −0.05.

4.1.4 Weighted versus ordinary linear regressions

The weighted regressions w1 have been suggested for wavelet coefficient based estima-

tions for fBm and are asymptotically optimal for this process (see e.g. [4]). It is, however,

not clear whether they should be preferred over ordinary regressions w0 for other pro-

cesses or for wavelet Leader based estimation. Tab. 4.4 summarizes mmse results for

fBm (top, H = 0.7) and mrw (bottom, c1 = 0.7, c2 = −0.05) of sample size N = 214 for

ordinary (w0) and weighted (w1) linear regression (for additional results and alternative

choices for weights, see [173, 180]). It suggests that for fBm, estimations using weighted

regression clearly and systematically outperform their ordinary regression based counter-

parts, for both wavelet coefficient and Leader based estimation. The performance gains

of w1 over w0 reach up to a factor of 2 for fBm. Tab. 4.4 (bottom) also indicates similar

conclusions for multifractal mrw: Weighted regression results in general in better perfor-

mance than ordinary regression and achieves performance gains over w0 of up to a factor

of 2. This is remarkable since for such processes, the assumptions for the derivation of

w1 (notably Gaussian and independent coefficients at each scale) are not valid and there-

fore, weights w1 are clearly suboptimal.

Conclusions. We conclude that for both mono- and multifractal processes, and for

both wavelet coefficient and Leader based estimation, weighted linear regressions with

weights w1 are preferable over ordinary linear regressions.

fBm ζ(−2) ζ(2) c1 c2 c3
H weights dX LX dX LX dX LX dX LX dX LX

0.70 w0 − 0.042 0.038 0.044 0.024 0.013 0.040 0.005 0.205 0.002

w1 − 0.037 0.031 0.033 0.017 0.007 0.024 0.003 0.118 0.002

mrw ζ(−2) ζ(2) c1 c2 c3
c1 c2 weights dX LX dX LX dX LX dX LX dX LX

0.7 −0.05 w0 − 0.049 0.062 0.065 0.034 0.010 0.049 0.014 0.236 0.009

w1 − 0.064 0.054 0.061 0.030 0.009 0.028 0.009 0.130 0.012

Table 4.4: Estimation performance for ordinary versus weighted linear regressions.

Performance (mmse) of wavelet coefficient and Leader based estimation for fBm (top)

and mrw (bottom) using ordinary (w0, first line) and weighted (w1, second line) linear

regressions and sample size N = 214.
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fBm - H = 0.7
ζ(2) c1 c2

j1 = 2 j1 = 3 j1 = 2 j1 = 3 j1 = 2 j1 = 3
dX LX dX LX dX LX dX LX dX LX dX LX

b −0.023 −0.053 −0.011 −0.018 −0.009 −0.029 −0.002 −0.011 −0.004 0.000 −0.006 0.003
s 0.021 0.019 0.032 0.028 0.014 0.009 0.022 0.013 0.035 0.003 0.053 0.004

mse 0.031 0.056 0.034 0.033 0.017 0.030 0.022 0.017 0.035 0.003 0.054 0.005

mrw - c1 = 0.7, c2 = −0.05
ζ(2) c1 c2

j1 = 2 j1 = 3 j1 = 2 j1 = 3 j1 = 2 j1 = 3
dX LX dX LX dX LX dX LX dX LX dX LX

b −0.041 −0.062 −0.030 −0.038 −0.029 −0.034 −0.019 −0.025 0.008 0.000 0.004 0.006
s 0.035 0.034 0.052 0.049 0.015 0.011 0.023 0.016 0.040 0.010 0.060 0.013

mse 0.054 0.070 0.060 0.061 0.033 0.036 0.030 0.029 0.041 0.010 0.060 0.015

Table 4.5: Performance for fixed regression ranges. Estimation performance for fixed

regression ranges j1 = {2, 3}, j2 = 11 for fBm (top) and mrw (bottom) with sample size

N = 214, and weighted regressions w1. Shown are bias (first line), standard deviation

(second line) and mean squared error (third line) for wavelet coefficient (left) and Leader

(right) based estimation procedures for both regression ranges.

4.1.5 Estimation performance: Fixed regression range

The results in Chapter 3.1 suggest that for dX and LX , inspection of the structure func-

tions do not necessarily lead to the same conclusions on the range of scales that should

be involved in linear regressions. Indeed, wavelet Leaders need a number of fine scales

for initialization before practically becoming Leaders that are uninfluenced by the fine

scale cutoff. This translates to a non-linear behavior of structure functions at fine scales

for wavelet Leaders, whereas wavelet coefficients are not subject to such limitations if the

DWT has been properly initialized [3, 172]. Thus, j1 would in practice typically be chosen

larger for LX than for dX .

The goal of this section is to account for this discrepancy and to study the relative per-

formance of coefficient and Leader based estimation for their ”natural” regression range

setup, i.e. regression ranges as they would be chosen by a practitioner, rather than the-

oretically best achievable performance as discussed above. Tab. 4.5 summarizes results

for fBm (top) and mrw (bottom), for which inspection of the structure functions (not shown

here) suggest j1 = 2 for coefficients and j1 = 3 for Leaders. Results are obtained for

sample size N = 214, weighted regressions w1 and for linear regressions over scales

(j1, j2) = (2, 11) and (j1, j2) = (3, 11). Shown are bias (first line), standard deviation

(second line) and mean squared error (third line) for wavelet coefficient (left) and Leader

(right) based estimation.

Bias vs. j1. Tab. 4.5 suggests that the bias for any estimate and for both processes

is consistently smaller for j1 = 3 than for j1 = 2. This is in agreement with observations

reported in [171] for wavelet coefficients and H-sssi processes.

The results indicate that when the same regression range is chosen for both dX and LX ,

i.e. jd1 = jL1 = 2 or 3, the bias bd of coefficient based estimation is (with the exception of

c2) consistently smaller than the bias bL for LX for both processes, and significantly so
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for fBm. However, if the structure function inspection based scales jd1 = 2 and jL1 = 3 are

chosen for linear regressions, bd ≈ bL. Therefore, in practice, Leader based estimation

would usually not be more biased than coefficient based one.

Standard deviation vs. j1. Tab. 4.5 suggests that no matter what j1 is chosen for

dX or LX , LX has consistently smaller standard deviation than dX for both the Gaus-

sian H-sssi fBm and the multifractal mrw. This difference is especially pronounced for

the estimation of c2, for which LX achieve standard deviation gains of up to one order of

magnitude.

Also, standard deviations are obviously smaller for j1 = 2 than for j1 = 3, for any estimate

and for both processes, since the effective number of samples actually used in estimation

is larger. Therefore, the choice of j1 can be interpreted as a bias-variance tradeoff, as

has been discussed in [171] for wavelet coefficients and H-sssi processes.

Mean squared error vs. j1. Overall estimation performance in terms of mean squared

error, capturing the interplay of bias and standard deviation, suggests that for dX , mse
are smaller for j1 = 2, for LX , mse are smaller for j1 = 3. This confirms the structure

function based practical choice of scales for linear regressions. Also, when choosing

equal regression range for dX and LX , i.e. jd1 = jL1 , dX have smaller mse than LX for

the estimation of ζ(2) and c1 for j1 = 2, whereas for j1 = 3, the situation is converse, and

LX have overall slightly better performance than dX . For the estimation of c2, LX consis-

tently perform better. For scales jd1 = 2 and jL1 = 3, practically suggested by structure

functions, the estimation of ζ(2) and c1 based on wavelet coefficients and Leaders display

comparable performance, whereas LX achieve performance gains of up to one order of

magnitude for the estimation of c2. These observations are valid for both monofractal and

Gaussian fBm and multifractal mrw.

Conclusions. The results, obtained for a practically realistic estimation setup, are

in good agreement with the best case performance study discussed above: Wavelet

coefficient and Leader based procedures have approximately equivalent performance for

the estimation of ζ(q), q > 0 and c1, and wavelet Leaders bring substantial performance

gains for the estimation of c2, for both monofractal and multifractal processes. Therefore,

conclusions are similar: Wavelet coefficient based estimation is to be preferred over a

wavelet Leader based one exclusively for the estimation of the self-similarity parameter

ofH-sssi processes. In general, for the multifractal analysis of real-world data of unknown

nature, the use of wavelet Leaders is indispensable.

4.1.6 Sample size and statistical performance

The goal of this subsection is to study the behavior of wavelet coefficient and Leader

based estimation procedures with respect to sample size N . To this end, Tab. 4.6

summarizes estimation performance for fBm (first and second part) and mrw (third and

fourth part) for dX (first and third part) and LX (second and fourth part) and sample sizes

N ∈ {210, 214, 218}. Shown are bias b (first line), standard deviation s (second line) and

mean squared error mse (third line). Estimations are performed using linear regressions

with weights w1 over the scales j1 = 3 to j2 ∈ {7, 11, 15}, respectively.

Bias and sample size. We observe that the bias decreases systematically with in-
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fBm dX
H ζ(−2) ζ(2) c1 c2
0.7 210 214 218 210 214 218 210 214 218 210 214 218

b − − − −0.061 −0.011 −0.004 −0.005 −0.002 −0.001 −0.056 −0.006 −0.001

s − − − 0.172 0.032 0.007 0.118 0.022 0.005 0.284 0.053 0.012

mse − − − 0.182 0.034 0.008 0.118 0.022 0.005 0.289 0.054 0.012

fBm LX
H ζ(−2) ζ(2) c1 c2
0.7 210 214 218 210 214 218 210 214 218 210 214 218

b 0.029 0.030 0.029 −0.051 −0.018 −0.013 −0.018 −0.011 −0.010 −0.005 0.003 0.004

s 0.122 0.025 0.006 0.143 0.028 0.007 0.064 0.013 0.003 0.022 0.004 0.001

mse 0.126 0.039 0.029 0.152 0.033 0.014 0.066 0.017 0.010 0.022 0.005 0.004

mrw dX
c1 c2 ζ(−2) ζ(2) c1 c2

0.7 −0.05 210 214 218 210 214 218 210 214 218 210 214 218

b − − − −0.103 −0.034 −0.024 −0.022 −0.019 −0.019 −0.057 0.001 0.006

s − − − 0.209 0.050 0.015 0.123 0.022 0.005 0.272 0.056 0.013

mse − − − 0.232 0.061 0.028 0.125 0.030 0.019 0.278 0.056 0.015

mrw LX
c1 c2 ζ(−2) ζ(2) c1 c2

0.7 −0.05 210 214 218 210 214 218 210 214 218 210 214 218

b 0.045 0.056 0.059 −0.092 −0.039 −0.031 −0.033 −0.024 −0.023 −0.011 0.005 0.007

s 0.168 0.040 0.013 0.176 0.048 0.015 0.074 0.016 0.004 0.046 0.013 0.004

mse 0.174 0.069 0.060 0.199 0.062 0.034 0.081 0.029 0.024 0.047 0.014 0.008

Table 4.6: Sample size and estimation performance. Estimation performance for fBm

(first and second parts) and mrw (third and fourth parts) for wavelet coefficient (first and

third parts) and Leader (second and fourth parts) based estimation procedures and sam-

ple sizes N ∈ {210, 214, 218}. Shown are bias b (first line), standard deviation s (second

line) and (root) mean squared error mse (third line) for weighted (w1) linear regressions

from j1 = 3 to j2 ∈ {7, 11, 15}.

creasing sample size, for both dX and LX , and for both mono- and multifractal processes.

For ζ(2) for dX and fBm, this is consistent with the fact that the coefficient based estimator

of H of H-sssi processes is asymptotically unbiased [4, 169]. These results thus suggest

that this is as well true for LX and for multifractal processes. We note, however, that for

dX , the decrease in bias is less significant for multifractal mrw, and also that it is less

significant for LX than for dX .

Standard deviation and sample size. The results indicate that for both dX and LX ,

and for both mono- and multifractal processes, standard deviation decreases with in-

creasing sample size N and is in a first approximation roughly proportional to
√
N .

Looking more into detail, standard deviations decrease overall more slowly for multifractal

mrw than for fBm, indicating stronger correlation and hence smaller effective sample size

increase with increasing N , for both dX and LX .

Mean squared error and sample size. The mse decreases systematically with in-

creasing sample size for all estimates, for both dX and LX , and for both processes. This
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decrease is in general more slowly for wavelet Leader based estimation than for coeffi-

cient based one: Whereas for N ∈ {210, 214} and for both processes, LX is more efficient

than dX for estimation of ζ(2) and c1, this is the converse forN = 218, for which dX display

smaller mse. For the estimation of c2, LX perform consistently better for both processes

and regardless of sample size N , however with decreasing performance gain over dX
when N is growing larger.

Finally, results and conclusions for different regression ranges not reported here for space

reasons, notably for j1 = 2, are similar and consistent with what is reported here for

j1 = 3, the main difference being that mse gains for Leader based estimation of ζ(2) and

c1 for sample size N ∈ {210, 214} are smaller for j1 = 2 than for j1 = 3.

Conclusions. The results indicate that performance gain with increasing sample size

is less pronounced for LX than for dX : Whereas for medium and small sample size,

LX outperforms dX consistently, for large sample size, estimation of the self-similarity

attributes ζ(2) or c1 is more relevant for dX . Also, although estimation of the multifractal

attribute c2 remains significantly better for all sample sizes reported here when based

on wavelet Leaders, the difference in performance between dX and LX decreases with

increasing N . One could hence imagine (very) large sample sizes (and specific process

parameter setups) for which wavelet coefficients and Leaders would eventually display

equivalent performance for the estimation of c2. However, note that the largest sample

size, N = 218, considered here is rarely available in practice, where signals are typically

shorter2. Still, a more detailed account for the influence of sample size on estimation

performance would demand for exploration of more different and larger sample sizes N

4.1.7 Process parameters and statistical performance

It has been observed [4, 169] that the standard deviation of wavelet coefficient and ζ(2)
based estimation of H for (Gaussian) H-sssi processes does practically not depend on

the precise value of H (although it has been shown theoretically that there is a very small

dependence, cf. [58, 59]). This is indeed a strong and desirable property, since it highly

facilitates the design of statistical procedures, and has been exploited for instance for the

design of statistical tests in [170]. For wavelet Leader based estimation, this property

has not yet been analyzed for H-sssi processes. Neither are there studies for multifractal

processes or other estimates ζ(q) or cp, for both Leader and coefficient based estimation.

This section aims at numerically investigating these issues.

To this end, we study the standard deviations Eq. (4.2) of wavelet coefficient and Leader

based estimation of θ ∈ {ζ(q), c1, c2, c3} as a function of process parameters λ (λ = H
for fBm and ROS, λ = {c1, c2} for mrw). Let us denote these standard deviations by

sθ,fBm(H), sθ,ROS(H), sθ,mrw(c1) and sθ,mrw(c2) respectively, and use the superscripts d

and L to distinguish between wavelet coefficients and Leaders.

As observed above in Sections 4.1.3 and 4.1.6, the standard deviations sθ depend both

on the precise estimate θ and on the sample size N . We expect, however, that varying

N does not change the nature of the function sθ(λ), but results only in a change of

scale. What is more, we will see below that sθ(λ) is of the same nature for all ζ(q)
and for c1. Therefore, in order to be able to compare the nature of the functions sθ,·(λ)
for different sample sizes N and different estimates θ, we define the following rescaled

2One example for which very large real-world samples are available is turbulence, where state-of-the-art

measurements reach 224 samples.
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standard deviations:

s̃θ,·(λ) = sθ,·(λ)/
1

Nλ

Nλ∑

i=1

sθ,·(λi), (4.5)

where Nλ is the number of values taken by the parameter and numerically investigated.

4.1.7-a) H-sssi processes: fBm and ROS

Fig. 4.3 summarizes rescaled standard deviations s̃θ for fBm (Subfigure (a)) and ROS

(Subfigure (b)). Shown are s̃θ for wavelet coefficient (top rows, blue solid lines) and

Leader (bottom rows, red solid lines) based estimation of θ = c2 and θ = c3 (center

and right columns, respectively), and superpositions of s̃θ for estimates θ ∈ {ζ(q), c1}
(qd ∈ {1, 2, 3}, qL ∈ {−3,−2,−1, 1, 2, 3}) (left column). In addition, s̃θ are superposed for

different sample sizes (N ∈ {210, 214, 218} for fBm, N ∈ {210, 214} for ROS).

The superpositions show that the nature of s̃θ does indeed not depend on sample size: s̃θ
for different sample sizes N , as shown in each of the subplots, superpose perfectly well.

What is more, s̃θ is of the same nature for θ = ζ(q) for all q and for c1: Superpositions of

s̃θ for these estimates (left column) display the same behavior with H, for both fBm and

ROS. In contrast, the curves s̃c2 and s̃c3 are different.

A key observation lies in the fundamental difference between s̃dθ(H) and s̃Lθ (H) as func-

tions of H: Heuristically, the s̃dθ(H) vary only weakly with H (they are ”flat”), whereas the

s̃Lθ (H) have significant slopes and hence systematic variation with H, for both processes

and any estimate θ. In order to further explore its nature, we propose the following model

for s̃θ(H):
f(λ) = α · λβ, (4.6)

with λ = H. This arbitrary model is used to heuristically evaluate the order of the depen-

dence on λ. The parameter α is a proportionality factor between sθ(λ) and λβ and thus

depends both on sample size and θ and is of no further particular interest here, whereas

the parameter β quantifies the (non linear) dependence of sθ(λ) on λ. Notice that β is

invariant under rescaling C · sθ(λ). The model Eq. (4.6) is least-square fitted to the raw

standard deviations sθ(λ). It has been verified to show good fit for both fBm, ROS (and

mrw), and it is observed that the fit parameter β does not vary significantly with sample

size N . What is more, β is consistently equal for θ = ζ(q) for any q and for c1. Hence, this

confirms the statements on the nature of dependence on sample size and parameters

from above. We translate these fits to the rescaled standard deviations s̃θ(λ) by using

for β the mean of the β from fits to the raw standard deviations sθ. The parameter α is

chosen in analogy with the definition of s̃θ in Eq. (4.5) by setting 1/Nλ
∑Nλ

i=1 f(λi) = 1.

The resulting models are shown as thick black lines in Fig. 4.3. For fBm, βdθ,fBm ≈ 0

is close to zero for all estimates θ, hence confirming that sdθ,fBm(H) is practically inde-

pendent of H. In contrast, βLθ,fBm is up to two orders of magnitude larger than βdθ,fBm.

This indicates much stronger dependence of estimation performance on H for LX than

for dX .

However, βdθ,ROS ≫ βdθ,fBm, hence dependence of standard deviation onH for dX is much

stronger for ROS than for fBm. This is in particular the case for estimates of ζ(q) and c1.

Similarly, βLθ,ROS > βLθ,fBm, but increase of dependence on H for ROS with respect to

fBm is less pronounced for LX than for dX . Nevertheless, βLθ,ROS > βdθ,ROS consistently,

and significantly so for c2 and c3.
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Conclusions. The results illustrate that wavelet Leader based estimation perfor-

mance for H-sssi processes displays in general a strong dependence on H, be the pro-

cess Gaussian or not, and regardless of the precise estimate θ. Also, wavelet coefficient

based estimation is practically independent of H for Gaussian H-sssi processes only. For

non Gaussian H-sssi processes, s̃dθ(H) is a nonlinear function of H for estimation of ζ(q)
and c1. We suggest that this dependence on H is due to dependence between wavelet

coefficients d2
X : Results presented in Chapter 11 indicate indeed stronger residual de-

pendence of coefficients for non Gaussian H-sssi than for fBm.

4.1.7-b) Multifractal process: mrw

Fig. 4.4 shows superpositions of rescaled standard deviations s̃θ,mrw(c1) (Subfigure (a))

and s̃θ,mrw(c2) (Subfigure (b)) for mrw and sample sizes N ∈ {210, 214, 218}. Shown

are s̃θ,mrw for wavelet coefficient (top rows, blue solid lines) and Leader (bottom rows,

red solid lines) based estimation of θ = c2 and θ = c3 (center and right columns, re-

spectively), and superpositions of s̃θ for estimates θ ∈ {ζ(q), c1} (qd ∈ {1, 2, 3}, qL ∈
{−3,−2,−1, 1, 2, 3}) (left column). The solid black lines correspond to models Eq. (4.6)

with λ = |cp|. As before, we obtained β by least square fits to raw standard deviations

sθ,mrw(c1) and sθ,mrw(c2). The results indicate that sdθ,mrw(c1) does only weakly depend

on c1 for θ = ζ(q) and θ = c1, and that it is practically independent of c1 for θ = c2 and

θ = c3. In contrast, the sLθ,mrw(c1) show more significant dependence on c1 for any param-

eter θ. In comparison with sLθ,fBm(H) and sLθ,ROS(H) for H-sssi processes, the influence

of c1 on wavelet Leader based estimation performance for mrw is, however, moderate,

with βLθ,mrw ≈ 0.25 as compared to βLθ,· ≈ 0.6 − 2.2 for fBm and ROS. Also, sdθ,mrw(c2) is

only weakly dependent on c2 for θ = ζ(q) and θ = c1, and practically independent of c2
for θ = c2 and θ = c3. In contrast, sLθ,mrw(c2) display more significant dependence on c2,

moderately so for θ = ζ(q) and θ = c1, and very strongly for θ = c2 and θ = c3.

Conclusions. We conclude that, first, sLθ,mrw display stronger dependence on c1 and

c2 than sdθ,mrw. Second, whereas sdc2,mrw and sdc3,mrw are practically independent of the

precise values of c1 and c2, c1 and c2 have strong (non linear) influence on sLc2,mrw and

sLc3,mrw. Hence, in this perspective, one could conclude that statistical procedures or

tests based on c2 or c3 should use wavelet coefficient based estimates. However, as

discussed above, it is precisely for these estimates that dX display poor performance,

whereas wavelet Leader based estimates are excellent.

4.1.7-c) Conclusions

Overall, the results reported above suggest that the independence of process parameters

of coefficient based estimation performance can not in general be validated: It is in fact

reminiscent only to Gaussian H-sssi processes. In this particular case, wavelet coeffi-

cients may therefore substantially ease the design of statistical procedures as compared

to wavelet Leaders, which show a strong non linear dependence on H. In the general

case, the dependence of performance on process parameters makes the design of such

procedures intricate, for both dX and LX , demanding for either precise models or esti-

mates of the dependence, which are unavailable at present. These facts justify the use

of nonparametric methods such as bootstrap, as proposed in Chapter 7.
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Figure 4.3: H of fBm and ROS and estimation performance. Rescaled standard

deviations s̃θ(H) for fBm (a) and ROS (b) for dX (first rows) and LX (second rows).

Each subplot shows superpositions of s̃θ(H) for sample sizes N ∈ {210, 214, 218} (fBm)

and N ∈ {210, 214} (ROS), for θ = c2 (center columns), θ = c3 (right columns) and

θ ∈ {ζ(q), c1} (qd ∈ {1, 2, 3}, qL ∈ {−3,−2,−1, 1, 2, 3}) (left columns), and the fitted

model Eq. (4.6) (black line, ’•’). Estimations of θ are obtained using j1 = 3, j2 = 7, and

weighted regressions w1.
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Figure 4.4: c1, c2 of mrw and estimation performance. Rescaled standard de-

viations s̃θ,mrw(c1) (a) and s̃θ,mrw(c2) (b) for dX (first rows) and LX (second rows).

Each subplot shows superpositions of s̃θ(H) for sample sizes N ∈ {210, 214, 218} for

θ = c2 (center columns), θ = c3 (right columns) and θ ∈ {ζ(q), c1} (qd ∈ {1, 2, 3},

qL ∈ {−3,−2,−1, 1, 2, 3}) (left columns), and the fitted model Eq. (4.6) (black line, ’•’).

Estimations of θ are obtained using j1 = 3, j2 = 7, and weighted regressions w1.
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4.1.8 Gaussianity of estimates

The fact that wavelet coefficients are Gaussian for fBm (P4 in Section 2.3.4, cf. e.g. [4])

highly facilitates their statistical analysis for this specific process. This property has in-

spired detailed analytical work on the statistical properties of the estimation procedures

in this setting, and has been used in the design of statistical inference procedures (e.g.

[4, 70, 169, 170]). In Section 3.2, we reported results that suggest that wavelet Leaders

of fBm do not inherit this comfortable property from wavelet coefficients, and that their

distributions are non Gaussian3. This constitutes one of the reasons why analytical re-

sults on statistical properties of wavelet Leaders are difficult to obtain, even in the case

of Gaussian fBm. Also, as soon as one leaves the special case of fBm, there is no rea-

son for wavelet coefficients – and even less for wavelet Leaders – to be Gaussian: Fig.

4.2, for instance, clearly indicates that for the non Gaussian H-sssi Rosenblatt process,

the empirical distributions of both coefficients and Leaders are highly non Gaussian, with

stronger non Gaussianity for Leaders than for coefficients. This is in general as well the

case for multifractal processes and makes – together with potentially complicated depen-

dence structure of wavelet coefficients and Leaders – the analytical study of estimation

procedures difficult.

Independently of these issues, it is, in practice, important to have knowledge on in how

far the distributions of the estimates θ are Gaussian or not: Indeed, many (asymptot-

ical) statistical tests and procedures are based on Gaussian theory. In the context of

multifractal analysis, estimates are obtained by linear regressions over a range of scales

that increases as sample size N increases. Hence, we expect the distributions of the

estimates to approach a Normal limiting distribution as N grows large if structure func-

tions behave nicely and are sufficiently independent at different scales. To investigate

this issue, Fig. 4.5 summarizes quantile-quantile plots of the empirical distributions of the

wavelet coefficient and Leader based estimates of ζ(2) and c2 (centered and normalized

to unit variance) against the standard Normal distribution for fBm (Subfigure (a)) and mrw

(Subfigure (b)), and for sample sizes N = 210 (top rows) and N = 218 (bottom rows). Es-

timates are obtained using weighted (w1) linear regressions with j1 = 3 and j2 ∈ {7, 15},

respectively.

Fig. 4.5 (a) shows that for fBm, the distributions of ζ̂(2) are Gaussian for both small and

large N , for both wavelet coefficients and Leaders. In contrast, the distributions of both

wavelet coefficient and Leader based estimates of c2 display some degree of non Gaus-

sianity (in kurtosis for dX and skewness for LX ) for small sample size, and approach

Gaussian only for the large sample size.

For mrw, Fig. 4.5 (b) suggests that conclusions are similar to fBm: The distributions of

ζ̂(2) are close to Gaussian already for the small sample size, and distributions of ĉ2 are

non Gaussian for small N and approach Gaussian for large N , for both coefficient and

Leader based estimation.

Conclusions. For the sample sizes and process parameters considered here, there

is no clear evidence that estimates based on wavelet coefficients have distributions sig-

nificantly closer to Gaussian than wavelet Leader based ones, although the distributions

of the wavelet coefficients themselves are in general closer to Gaussian than those of

wavelet Leaders.

3Clearly, the sup of Gaussian r.v.s is not Gaussian.
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fBm: H = 0.7
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mrw: c1 = 0.7, c2 = −0.05
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Figure 4.5: Gaussianity of estimates. Quantile-quantile plots against standard normal

of Monte Carlo distributions of estimates of ζ(2) (first (dX ) and second (LX ) column) and

c2 (third (dX ) and fourth (LX ) column) for fBm (a) and mrw (b) and sample size N = 210

(first rows) and N = 218 (second rows), respectively.
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4.2 Statistical Performance of Estimation Procedures: Images

4.2.1 Numerical simulations

The goal of this section is to practically validate the 2d multifractal analysis based on

practical implementations of 2d wavelet Leaders Eq. (2.55), and to compare the perfor-

mance to that obtained for wavelet coefficient based estimation. To this end, we apply the

respective estimation procedures Eq. (2.65), Eq. (2.71) and Eqs. (2.74–2.75) to a large

number NMC of realizations of synthetic stochastic 2d processes of size N × N with a

priori known and controlled multifractal properties.

4.2.1-a) Synthetic multifractal processes

The synthetic reference processes chosen for numerical validation of 2d multifractal anal-

ysis estimation procedures are fractional Brownian motion (fBm) and canonical Man-

delbrot cascades with log-Normal multipliers (CMC-LN) and with log-Poisson multipliers

(CMC-LP) (cf. Sections 2.2.3 and 2.7.1-a), respectively). They provide us with simple yet

representative examples of a Gaussian monofractal process, and of log-Normal (c3 = 0)

and non log-Normal (c3 6= 0) multifractal processes, respectively. The CMC-LN and CMC-

LP multifractal reference processes are obtained by fractionally integrating directly the

cascades Qr(t) by an order α = 0.5 to ensure minimum regularity. This is a necessary

prerequisite for the validity of the wavelet Leader multifractal formalism (WLMF), since

Qr(t) of CMC are not uniform Hölder (cf. Definition 2.16). A more precise theoretical and

practical account for the minimum regularity conditions assumed to hold for the images

will be given in Section 5.1.

4.2.1-b) Simulation setup

Parameters for numerical simulations are set to NMC = 500 and N = 1024. All re-

sults are obtained with Daubechies’ wavelets with Nψ = 2 vanishing moments. It has

been checked that using wavelets with larger Nψ yields identical results and conclusions.

Linear regressions are performed over the scales 23 ≤ 2j ≤ 27 with weights w1, as sug-

gested by Section 4.1.4 for 1d signals. The process parameters are fixed to H = 0.7 for

fBm, and for CMC such that (c1, c2, c3) = (0.513,−0.025, 0) (for CMC-LN, i.e. m = 0.0125))
and (c1, c2, c3) = (0.538,−0.080, 0.014) (for CMC-LP, i.e. β = 0.8395, γ = 0.4195).

4.2.2 Structure functions

Fig. 4.6 shows, for fBm (left) and CMC-LP (right), means over Monte Carlo realizations

of structure functions log2 S(2j , q) for q = 2 (top row) and for q = −2 (second row), and

the deviations of the structure functions from their theoretical slope, log2 S(2j , q)− j ·ζ(q),
for q = 2 (third row) and q = −2 (bottom row). The 95% asymptotic confidence limits are

obtained by Monte Carlo simulation. For wavelet coefficients, only positive qs are shown,

as structure functions diverge for negative qs.
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Figure 4.6: Structure functions for 2d synthetic processes. Structure functions

log2 S(2j , q) for q = 2 (top row) and q = −2 (second row), and deviation of structure

functions from theoretical slope, log2 S(2j , q) − j · ζ(q), for q = 2 (third row) and q = −2
(bottom row), obtained by mean over Monte Carlo realizations for fBm (left) and CMC-LP

(right); ’◦’ correspond to wavelet Leader, ’×’ to wavelet coefficient based estimations.

The error bars correspond to 1.96 Monte Carlo standard deviation.

4.2.2-a) Scaling range

A first investigation (top and second row) suggests that for both wavelet coefficients and

Leaders, structure functions display scaling behavior as in Eqs. (2.7) and (2.58) over the

range of scales 22 ≤ 2j ≤ 27. A closer look at the deviations from the theoretical slope

(third and last row) confirms this observation for wavelet coefficients. However, it reveals

that for wavelet Leaders, log2 S(2j , q) becomes a linear function of j only for 2j ≥ 23.

As for 1d signals, this can be interpreted through the fact that, theoretically, a Leader is

defined as the sup of coefficients at all finer scales down to infinitely fine scales, whereas

practically, the sup can be taken only down to the finest available, first scale. Hence, in

practice, wavelet Leaders need fine scales for initialization, whereas wavelet coefficients

do not (cf. Section 3.1).

4.2.2-b) Projection step

The non-scaling behavior of S(2j , q) of coefficients at the first scale j = 1 is due to the fact

that the pre-filtering or projection step theoretically necessary for a clean wavelet analysis

has been omitted (cf. [3, 172]).
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Figure 4.7: Estimates ζ(q) and D(h) for 2d synthetic processes. Estimates ζ(q)
(top) and D(h) (bottom) for fBm (left) and CMC-LP (right), obtained from wavelet Leaders

(’◦’) and coefficient (’×’), by mean over Monte Carlo simulation, and theoretical attributes

(solid black, ’•’). The error bars correspond to 1 Monte Carlo standard deviation. The

error bars for coefficient based estimates for D(h) are not shown for better visibility of

the spectra. The insert for D(h) of fBm corresponds to the area shaded around the

theoretical spectra location.

4.2.2-c) Regressions

We observe further that the error bars for structure functions for CMC-LP are substan-

tially larger than those for fBm, suggesting a smaller variability of the S(2j , q) and better

subsequent estimation performance for the latter, monofractal process. Moreover, it is in-

teresting to note that whereas the error bars for fBm behave approximately as 1/
√
nj , this

is not the case for CMC-LP, where the size of the confidence intervals varies only slightly

with j. This confirms that the choice of weights for weighted linear fits, as proposed in

[179], is appropriate for fBm. Though not optimal for multiplicative cascades, it has been

shown to perform better than non-weighted regression for 1d signals (cf. Section 4.1).

Additional results not reported here indicate that this remains valid for 2d images.

4.2.3 Performance of parameter estimation

We quantify the performance of the estimators θ̂ ∈ {ζ̂(q), ĉp} by their bias (b):

b̂θ = ÊMC θ̂ − θ, (4.7)

standard deviation (s):

ŝθ = ŜtdMC θ̂ =

√
ÊMC θ̂2 −

(
ÊMC θ̂

)2
(4.8)

and (root) mean squared error (mse):

m̂seθ =

√
b̂2θ + ŝ2θ, (4.9)
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where ÊMC stands for mean over Monte Carlo realizations.

Estimation performance results are summarized in Tab. 4.7 and illustrated in Fig.

4.7, for both wavelet coefficients and Leaders, for medium size images (N = 1024). In

addition, Tab. 4.7 shows complementary results for large images of CMC-LP (N = 2048).

Overall, we observe that Leader based estimations are more efficient than coefficient

based ones.

4.2.3-a) Positive statistical moments q

For q > 0, both dX and LX have approximately equal mean squared error and stan-

dard deviation. Wavelet coefficient based estimations have slightly better performance

for monofractal fBm and weakly (c2 = −0.025 being relatively small) multifractal CMC-LN

while wavelet Leader based ones have better performance for multifractal CMC-LP.

4.2.3-b) Negative statistical moments q

For q ≤ −1, the ζ̂d(q) are not meaningful as they exhibit very large mse. Therefore, a

wavelet coefficient based multifractal analysis of images allows to explore exclusively the

range q > −1 and thus, in practice, only the increasing part of the multifractal spectrum

D(h). In contrast, the wavelet Leader based procedure permits a complete analysis of the

multifractal properties of an image, and notably of the decreasing part of the multifractal

spectrum (cf. Fig. 4.7).

4.2.3-c) Log-cumulants

Tab. 4.7 shows that the ĉLp exhibit consistently smaller standard deviation and mean

squared error than the ĉdp . Whereas the difference in performance is only small for the

estimation of c1, it becomes more significant for c2 and c3, with gains in mse of up to more

than one order of magnitude for LX . This is of crucial importance, since non-zero c2 and

c3 discriminate fv H-sssi from MMC processes. Furthermore, for N = 2048, Tab. 4.7

(last line) enables to deduce that an asymptotic 85% confidence interval for the Leader

based estimation of c3 excludes zero, hence that the real c3 is different from zero with

high probability. To the best of our knowledge, this is the first time that the statistically

significant estimation of non-zero c3 has been achieved on multifractal images. It also

clearly shows that for images of smaller size, the estimation of the parameter c3, a fortiori

of higher order cp, should be used with care: Confidence intervals might be so large that

they may not exclude 0, even if the parameters are non zero.

4.2.3-d) Self-similar vs. multiplicative cascade processes

For both the wavelet Leader and coefficient based procedures, estimation is more difficult

for multifractal CMC-LN and CMC-LP than for fBm, resulting in larger mse for estimations

on the multifractal process.

4.2.3-e) Dependence on process parameters

Results for (2d) images reported here are complementary to those obtained for 1d signals

in Section 4.1.7, and are obtained by the same procedure detailed therein. Hence, we
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Figure 4.8: H of 2d fBm and estimation performance. Rescaled standard deviations

s̃θ(H) for fBm for dX (first row) and LX (second row) for θ = c2 (right column), and

θ ∈ {ζ(q), c1} (qd ∈ {1, 2, 3}, qL ∈ {−3,−2,−1, 1, 2, 3}) (left columns), and the fitted

model Eq. (4.6) (black line, ’•’). Estimations of θ are obtained using j1 = 3, j2 = 7, and

weighted regressions w1 (N = 1024). A clear dependence is visible for wavelet Leaders,

and less pronounced for wavelet coefficients.

compare standard deviations through the (arbitrary) model Eq. (4.6):

f(λ) = α · λβ,

where λ is the parameter as a function of which the dependence is explored.

Figure 4.8 confirms and extends the results obtained for 1d signals: For fBm, the stan-

dard deviations of wavelet coefficient based estimates of ζ(q), q ≥ 0 or cp do not (or only

very weakly) depend on H. In contrast, for wavelet Leader based estimation, there is a

clear and strong dependence on the parameter H.

Figure 4.9 illustrates the corresponding results for standard deviations for estimation of

ζ(q), c1 and c2 for CMC-LN, as a function of the parameters c1 (top) and c2 (bottom). Con-

clusions are essentially similar: The dependence on c1 and c2 of the standard deviation

of ζ̂d(q), ĉd1 et ĉd2 is weak, whereas it is much more pronounced for wavelet Leader based

estimation.

4.2.4 Discussion

Numerical simulations, equivalent to those reported above, have been performed on other

multifractal processes and lead to similar conclusions: Wavelet coefficients do not allow

to meaningfully explore negative qs and thus to measure the decreasing part of the spec-

trumD(h) whereas wavelet Leaders do; Estimation of cp is better when based on Leaders

than on coefficients, and significantly so for cp, p ≥ 2.

4.2.4-a) Selection of scaling range

We have seen in Sections 3.1 and 4.2.2 that the range of scales over which the linear fits

are to be performed are likely to be narrower (requiring the use of a larger j1) for wavelet

Leaders than for wavelet coefficients. For practical multifractal analysis and real-world
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Figure 4.9: c1, c2 of 2d CMC-LN and estimation performance. Rescaled standard

deviations s̃θ,CMC−LN (c1) (a) and s̃θ,CMC−LN (c2) (b) for dX (first rows) and LX (second

rows), for θ = c2 (right column) and θ ∈ {ζ(q), c1} (qd ∈ {1, 2, 3}, qL ∈ {−3,−2,−1, 1, 2, 3})

(left column), and the fitted model Eq. (4.6) (black line, ’•’). Estimations of θ are obtained

using j1 = 3, j2 = 7, and weighted regressions w1 (N = 1024).

images, the choice of this regression range is a crucial, difficult and controversial issue,

further complicated by the use of Leaders.

4.2.4-b) Vanishing moments of the wavelet

Another critical practical issue is the choice of the number of vanishing moments Nψ

of the wavelet with which the data are analyzed. Condition Nψ > h, where h is the

largest singularity exponent present in the data, is expected to be sufficient for a relevant

multifractal analysis (cf. Eq. (2.56)). However, in practice, the choice of Nψ results from

a trade-off: A larger Nψ stabilizes the estimates of the negative q structure functions and

enables to get rid of potentially superimposed smooth trends such as polynomial, hence

improves estimation and brings robustness; A largerNψ also implies a larger time support

for the wavelet and thus produces border effects of wider size, such that no coefficients
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may remain unaffected at large scales, hence in itself degrades estimation performance.

Therefore, a reasonable practical rule of thumb is to choose the smallest Nψ for which

the estimated multifractal attributes do not significantly change when Nψ is increased (i.e,

remain within confidence intervals, emphasizing again the need for and the importance

of such confidence intervals).

4.2.4-c) Real-world data and multifractal analysis

In Section 2.5, we recalled how the estimates of ζ(q), cp, D(q) and h(q) are theoretically

intimately tied to the multifractal spectrum D(h) of the field X and hence to the analysis

of its local regularity fluctuations. This relation is known to hold theoretically for all the

synthetic images used here for numerical simulations and illustrations. For real-world

images, this interpretation in terms of multifractal spectrum and singularity description

might not always be completely relevant. However, this, in no way, prevents practitioners

to make use of the measured ζ(q), cp, D(q) and h(q) to analyze the data in terms of a less

mathematically stringent formulation of scale invariance property, or to perform standard

image processing tasks such as classification or retrieval based on such quantities.

4.2.4-d) Analysis of real-world images and computational costs

The performance of the wavelet Leader based estimation procedures are illustrated on

a real-world image of size 1024 × 768, taken by the author of this manuscript with a

standard digital camera. The image and estimation results are shown in Fig. 8.2 in

Chapter 8, together with confidence intervals obtained with the method proposed therein.

Results demonstrate that the procedure can be readily applied to real-world images for

their complete multifractal characterization. The procedures have also been applied to a

large database of real-world texture images in a classification task. This is reported in

Chapter 13 and further demonstrates the practical relevance of the 2d WLMF.

The 2d WLMF is simple both conceptually (2d DWT, Leaders and linear regressions)

and practically (very low computational cost, with respect to both time and memory, of

the order of a 2d DWT). The entire estimation procedure with wavelet Leaders takes

less then a minute on a standard PC, whereas the same estimation with 2d MMWT (cf.

Section 2.5.5) increases computation time by a factor larger than 20.

4.2.5 Conclusions

The present section shows that the 2d Wavelet Leader Multifractal Formalism outper-

forms significantly the previous propositions based on 2d DWT in estimation performance,

and 2d MMWT in computation time, memory cost and implementation complexity. It is

fast and efficient since simply based on a 2d orthogonal DWT. The procedure is backed

up by a strong mathematical framework and enables – thanks to the use of wavelet Lead-

ers – an accurate and complete characterization of the (ir)regularities of the texture of an

image, under the minimum regularity conditions assumed to hold for the images.
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fBm - N = 1024

DWT LWT

θ theo b s mse b s mse

ζ(−2) −1.400 −2.061 2.315 3.100 0.012 0.022 0.025

ζ(−1) −0.700 −0.195 0.544 0.578 0.005 0.011 0.012

ζ(1) 0.700 −0.001 0.010 0.010 −0.004 0.012 0.013

ζ(2) 1.400 −0.002 0.021 0.021 −0.007 0.025 0.026

c1 0.700 −0.001 0.012 0.012 −0.004 0.011 0.012

c2 0.000 0.000 0.029 0.029 0.001 0.003 0.003

c3 0.000 0.001 0.150 0.150 −0.001 0.001 0.001

CMC LN - N = 1024

DWT LWT

θ theo b s mse b s mse

ζ(−2) −1.075 −2.081 2.514 3.264 0.036 0.035 0.050

ζ(−1) −0.525 −0.169 0.576 0.600 0.018 0.017 0.025

ζ(1) 0.500 −0.017 0.014 0.023 −0.020 0.018 0.027

ζ(2) 0.975 −0.035 0.032 0.047 −0.042 0.032 0.059

c1 0.512 −0.018 0.015 0.024 −0.018 0.017 0.026

c2 −0.025 0.003 0.031 0.031 −0.001 0.007 0.007

c3 0.000 0.006 0.152 0.152 −0.000 0.004 0.004

CMC LP - N = 1024

DWT LWT

θ theo b s mse b s mse

ζ(−2) −1.256 −1.859 2.507 3.121 0.029 0.064 0.070

ζ(−1) −0.580 −0.138 0.546 0.563 0.010 0.025 0.027

ζ(1) 0.500 −0.016 0.017 0.023 −0.007 0.021 0.022

ζ(2) 0.933 −0.031 0.036 0.047 −0.013 0.045 0.046

c1 0.538 −0.019 0.018 0.027 −0.008 0.022 0.023

c2 −0.080 +0.007 0.032 0.033 0.003 0.015 0.015

c3 0.014 −0.009 0.152 0.152 −0.003 0.013 0.013

CMC LP - N = 2048

DWT LWT

θ theo b s mse b s mse

c1 0.538 −0.017 0.010 0.019 −0.006 0.012 0.013

c2 −0.080 0.007 0.016 0.018 0.002 0.009 0.009

c3 0.014 −0.002 0.075 0.075 −0.002 0.008 0.009

Table 4.7: Estimation performance for 2d synthetic processes. Bias b, standard de-

viation s and root mean squared error mse of wavelet coefficient (center columns) and

Leader (columns on the right) based estimation for 2d fBm (top), CMC LN (center top)

and CMC LP (center bottom) for N = 1024, and for CMC LP (bottom) for N = 2048. The

columns on the left identify the parameters and their theoretical values.
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4.3 Conclusions and Perspectives

In this chapter, numerical simulation results for the wavelet coefficient and Leader based

estimation of multifractal attributes for both (Gaussian and non-Gaussian) monofractal

and different multifractal processes, and for both 1d and 2d data, have been presented

and discussed. The aims were manifold: First, analyzing and comparing statistical per-

formance of wavelet coefficient and Leader based estimation for various processes and

multifractal attributes; Second, disentangling the impact of estimation parameters (regres-

sion range and weights) and sample size on estimation performance; Third, quantifying

the influence of process nature (Gaussian vs. non Gaussian H-sssi, mono- versus multi-

fractal processes) and parameters on estimation performance, and fourth, characterizing

their impact on the distributions of the estimates (standard deviation and departure from

Gaussian).

The contributions of this chapter lie, on one hand, in the systematic empirical statisti-

cal performance analysis for wavelet coefficient and wavelet Leader based multifractal

analysis, and, on other hand, in the validation of the 2d WLMF. These numerical results

illustrate effects that have never been clearly stated elsewhere before and provide prac-

titioners with performance references and clear practical guidelines for the multifractal

analysis of signals and images in applications.

Let us state the key findings and the main conclusions of this chapter.

2d WLMF. The proposed 2d WLMF is practically operational and enables a relevant

multifractal characterization of images with reasonable computational cost. It constitutes

the first and only procedure that is based on a solid mathematical ground and enables

to practically perform a multifractal analysis of images. The performance is significantly

better than those of DWT or CWT coefficient based methods formerly proposed in the

literature.

H-sssi and MMC processes. For the estimation of the self-similarity parameter in

H-sssi data, wavelet coefficient and Leader based procedures have comparable perfor-

mance. Hence, if it can be a priori ensured that the process under analysis is H-sssi,

wavelet coefficients are to be preferred over wavelet Leaders, which add extra (imple-

mentational) complexity and practical difficulties (selection of regression range).

For performing multifractal analysis in any other situation, however, wavelet Leader based

procedures are to be clearly preferred over wavelet coefficient based ones, since wavelet

Leader based procedures achieve significant performance gains over wavelet coefficient

based ones for the estimation of attributes characterizing the departure from monofrac-

tal, and in particular so for cp, p ≥ 2. This constitutes an original and important result

that has, to our knowledge, never been clearly stated elsewhere before and opens the

way towards the design of efficient statistical tests (cf. Chapters 9 and 10). Also, esti-

mates involving negative statistical orders q can only be obtained with Leaders, as has

been reported by Lashermes et al. (e.g. [107]). The results presented in this chapter

demonstrate in addition that such estimates display performance comparable to those for

positive statistical orders. Consequently, only wavelet Leader based estimation can be

used to precisely characterize the multifractal nature of data, to discriminate monofractal

from multifractal models, or to discriminate among different multifractal models. Hence,

Leader based estimations have to be consulted as soon as it is not known a priori that

the data are H-sssi.

Also, estimation performance is significantly decreased for multifractal processes as op-

posed to Gaussian monofractal processes. The results heuristically indicate that the
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further from monofractal the processes (i.e., the larger the values of |cp| for p ≥ 2), the

more difficult the estimation of multifractal attributes. Similarly, multifractal attribute esti-

mation is more difficult for non Gaussian than for Gaussian H-sssi processes.

Gaussianity of estimates and dependence on process parameters. The distribu-

tions of estimates based on wavelet Leaders were not found to be significantly further

from Gaussian than those based on wavelet coefficients for the sample sizes considered

here. It is conjectured that for smaller sample size, they may be. This point requires

further numerical or analytical investigations.

The standard deviation for both wavelet coefficient and Leader based estimation does

in general depend on the precise value of the process parameters in a non linear man-

ner. The only exception is the particular case of wavelet coefficient based estimation of

H for fBm, for which standard deviations are practically independent of H. The depen-

dence of standard deviations is in general significantly larger for wavelet Leaders than for

wavelet coefficients. This difference – the variance of the estimates for wavelet coefficient

based estimation depending weakly on the quantities to be estimated, those for wavelet

Leader based estimation significantly – constitutes an original and important result that

has, to the best of our knowledge, never been reported before, be it for 1d signals or for

2d images. At a first glance, this comes to the disadvantage of wavelet Leaders, since

the dependence complicates confidence interval and test constructions for the estimates.

The difficulty is, however, put in perspective by the other results reported in this section:

Statistical performance of wavelet Leader based estimation is usually significantly better

than for wavelet coefficient based estimation. This dependence also justifies the use of

techniques such as bootstrap, as proposed in Chapter 7.

This statistical disadvantage is – together with the practically more difficult validation of

ranges of scales over which scale invariance occurs, hence determination of scales to be

involved in linear regressions – the main price to pay for the use of Leaders. The issue

demands for further numerical and analytical analysis, in particular in the perspective of

models that could be exploitable for the design of statistical procedures and tests.

Overall, the results lead us to the conclusion that due to their significantly better mul-

tifractal attribute estimation performance, wavelet Leaders are to be practically preferred

for the multifractal analysis of signals and images. Wavelet coefficient based estimates,

which can be obtained as a side product without noteworthy extra computational effort,

should nonetheless be consulted in a complementary way for the validation of scaling in

the data and for the selection of the scaling range, and for the estimation of ζ(2) and c1.
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In this chapter, we are interested in three theoretical questions of major importance

for practical multifractal analysis through the multifractal formalism developed in Section

2.5.

First, we account for one limitation of the wavelet Leader multifractal formalism that

is due to the fact that it can only be meaningfully applied to data that belong to the

bounded function class. This constitutes indeed a severe practical limitation, in partic-

ular for the analysis of images, which can be naturally interpreted as approximations of

positive measures and do hence not fulfill this requirement. We theoretically state the

problem and propose methods for practically evaluating to which function class data be-

long, and whether they fulfill the bounded function requirement. Based on these results,

we elaborate on a modification of the WLMF (proposed earlier for the MMMF [16, 17, 57]

and involving a pseudo-fractional integration) that can be applied to data that do not fulfill

this requirement, and discuss its properties and limitations. This is addressed in Section

5.1. The proposed methods as well as the theoretical characterization of the problem are

original and are seen as a major contribution to practical multifractal analysis. This work

has been reported in [9, 91, 90, 178, 182].

The goal of Section 5.2 is to study the linearization effect, a phenomenon in multi-

fractal analysis that determines the order of statistical moments that can be involved in

the practical multifractal analysis of data. Though of fundamental practical importance,

the origins of this phenomenon are still not well understood theoretically. Based on em-

pirical studies, we obtain original results that indicate that the linearization effect can be

explained through the combination of arguments involving extreme values, heavy tailed

marginal distributions and the dependence structure of multifractal processes. We see

these results as an important contribution and as an empirical basis for theoretically link-

ing the linearization effect to the multifractal properties of the data. This work has been

reported in [11].

In an important number of applications, notably those involving image data, the data

under analysis can be subject to (severe) quantization in amplitude. Though of crucial im-

portance in practice, the characterization of the impact of such quantizations on practical

multifractal analysis, and in particular of the respective robustness of different multiresolu-

tion quantities against quantization effects, has, to our knowledge, never been accounted

for in the literature. This is addressed in Section 5.3, and has been reported in [181].

5.1 Measures and Fractional Integration

The wavelet Leader multifractal formalism is well-defined for bounded functions only (cf.

Section 2.5). However, a digital image can naturally be seen as the approximation, at a

given resolution level, of a positive measure. There is hence a priori no guarantee that

images fall into the class of bounded functions, and it is indeed commonly reported in

the literature dedicated to empirical multifractal analysis that images are not in the class

of bounded functions [134]. Answering the question whether an image is a bounded

function or not is hence a mandatory prerequisite for practical application of the wavelet

Leader multifractal analysis. Therefore, the first goal of the present section is to propose

a method that enables to practically decide whether this condition is fulfilled or not. This

is described in Section 5.1.2. To our knowledge, this is the first time that such a method

is obtained.

Along the same line, there is a priori no guarantee that actual digital images should belong
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to any Lq(R2) space, q ≥ 1, nor to the space of bounded variation (BV) functions (i.e.,

its gradient is a bounded measure). Many image processing algorithms are, nonethe-

less, based on models that assume that the image belongs to one or combinations of

such function spaces. Thus, the second goal of this section is to propose a procedure for

practically evaluating to which function space a given real-world image belongs. This is

presented in Section 5.1.1.

The fact that the WLMF can only be applied to images within the bounded function class

is rather restrictive in practice. Therefore, the third goal of this section is to address the

bounded function requirement. We propose a solution – consisting of a modified WLMF

that is based on heuristics reported in [16, 17, 57] – which enables a characterization of

images not belonging to the class of bounded functions. The characterization is deeply

related to the intrinsic regularity properties of these images. At the same time, the ap-

proach can be used to account for the function space issue evoked above. It makes

use of a pseudo-fractional integration in the wavelet domain and can be obtained without

noteworthy additional computational effort. The solution is detailed in Section 5.1.3. It

has, to our knowledge, never been obtained and reported before for the WLMF.

Finally, we discuss the theoretical and practical implications of such approaches with re-

spect to the multifractal characterization of images. These have never been clearly stated

elsewhere before.

The work presented in this section has been obtained in collaboration with Stéphane

Jaffard (Univerité Paris XII) and published in [9, 90, 91, 178, 182].

5.1.1 Classes of images

Let Sd(2j , q) denote the wavelet coefficient based structure functions (Eq. (2.62)):

Sd(2j , q) =
1

3nj

3∑

m=1

∑

k1,k2

|d(m)
X (j, k1, k2)|q,

and let us define, for q > 0,

ζd(q) = lim inf
2j→0

lnSd(2j , q)/ ln 2j . (5.1)

Then, ζd(q) > 0, q ≥ 1, indicates that the image X is in Lq(R2) [182]. Hence, estimates

ζ̂d(q) (cf. Eq. (2.65)) contain important information on the precise function space to which

the image belongs: For instance, with q = 1, ζd(1) > 0 implies that X is in L1(R2). In

addition, when ζd(1) > 1, this indicates that X belongs to the class of bounded variations

images. Conversely, when X is a measure, this necessarily yields ζd(1) ≥ 0. For q = 2,

ζd(2) > 0 implies that X is in L2(R2) (e.g. [178, 182]).

Therefore, estimates of ζd(q) help practitioners to decide whether or not the image X
can be embedded in models underlying many image processing algorithms, such as the

Osher-Rudin-Fatemi model (or any of its declinations) [125, 149]. Indeed, all these mod-

els rely on the underlying assumption that the image considered belongs to a certain

function space (or a sum of two functions spaces).

Examination of large sets of real world images reveals that a small proportion of images

are characterized with ζd(2) < 0, with confidence intervals (computed with the method

proposed in Chapters 7 and 8) clearly validating the negativity for the estimate. Also,

ζd(1) is positive for most images (as expected for positive measures), but 0 < ζd(1) < 1
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for a large proportion of images, which are hence not within the bounded variation class.

These statements are further supported by the examination of a large image database,

consisting of 1000 texture images and described in Chapter 13. Results obtained for

these 1000 images are presented in Tab. 5.2 and Fig. 5.2 and clearly confirm the con-

clusions drawn from the examination of other real-world images.

For illustration purposes, we also note that the images in Fig. 5.1 are characterized by:

ζd(1) = 0.03 ± 0.02 and ζd(2) = 0.05 ± 0.04 (Fig. 5.1, left), ζd(1) = −0.21 ± 0.03 and

ζd(2) = −0.49±0.04 (Fig. 5.1, center), and ζd(1) = −0.08±0.03 and ζd(2) = −0.17±0.08
(Fig. 5.1, right).

Estimation performance of ζ̂d(q) have been largely addressed in Chapter 4 and will not

be further discussed here. In Section 5.1.3, we will propose a practical procedure for

increasing ζd(q) such that ζd(1) > 1 and/or ζd(2) > 0.

5.1.2 Uniform regularity

As noted in the introduction, there is no guarantee that real-world images should fall into

the class of bounded functions, which would permit a straightforward application of the

wavelet Leader multifractal formalism. A digital image consists of local averages (for each

pixel) of light intensity, and can hence be naturally seen as the approximation, at a given

resolution level, of a positive measure, and not of a bounded function. We recall that

a (two-dimensional) measure µ is a linear form on C(R2): ∃C > 0, such that ∀f with

compact support (see e.g. [178, 182]):

|〈µ|f〉| ≤ C sup |f |.

The wavelet coefficients of µ satisfy:

|d(m)
µ (j,k)| = 2−2j |〈µ|ψ(m)

j,k 〉| ≤ C2−2j ,

and can hence grow exponentially when j → −∞. Then, the wavelet Leaders can be

infinite, and the WLMF can not be directly applied. We note that this difficulty is not spe-

cific to images, but also appears for signals (1d) that can be seen as discretized versions

of measures (such as dissipation signals in turbulence [121], and rainfall precipitation in

meteorology [155]). Also, all multifractal formalisms proposed at present suffer from this

same problem and can not be applied to unbounded measures.

The difficulty can be related to the existence of negative Hölder exponents in the mea-

sures. The precise definition of negative Hölder exponents requires theoretical develop-

ments beyond the scope of this section (this is addressed in [178, 182]). We only recall

here that the underlying singularity heuristic yet remains the same: |X(t)−X(t0)| ∼|t−t0|→0

|t − t0|h. The presence of negative Hölder exponents in data has been reported in, for

instance, [134].

WLMF and unbounded functions. In practice, any image – since obtained through

a practical acquisition system and hence necessarily finite valued – will yield empirical

wavelet Leaders with finite value, be the bounded function condition satisfied or not. For

functions that do not belong to the bounded function class, they do, however, not have

any theoretical significance and take on arbitrary values, since the signature of nega-

tive Hölder exponents persists. Therefore, when the wavelet Leader based multifractal

formalism is applied to images that do not respect the bounded function requirement, it



5.1 Measures and Fractional Integration 97

CMC-LN CMC-LP

hmin −0.304 −0.391

ĥmin

mean −0.342 −0.395
std 0.126 0.117
bias −0.038 −0.004
mse 0.132 0.117

Table 5.1: Estimation performance for hmin. Mean estimation performance of ĥmin (Eq.

(5.2)), obtained for 500 realizations of CMC-LN (left column) and CMC-LP (right column)

of size N×N = 1024×1024. The first line gives the theoretical value for hmin, the second,

third, fourth and last line summarize the mean, standard deviation (std), bias and (root)

mean squared error (mse) of the estimate, respectively.

produces results that are meaningless. Moreover, practitioners have little or no means to

decide a posteriori whether wavelet Leaders are meaningful or not and this needs to be

checked a priori.

A sufficient condition for the WLMF to be well-defined is that the image is uniform Hölder

(cf. Def. 2.16) and hence that the minimum regularity exponent hmin > 0. The notation

hmin (cf. Eq. (2.53)) is justified by the fact that hmin > 0 for X implies for the Hölder

exponents hX(t0) of X that ∀t0 : hX(t0) ≥ hmin. If X(t) is uniformly Hölder, it is a con-

tinuous function, hence bounded, hence possesses finite wavelet Leaders in the limit of

fine scales.

Estimation of hmin. The exponent hmin can practically be obtained through the quan-

tities [91, 178, 182]:

dMX (j) = sup
m,k1,k2

|d(m)
X (j, k1, k2)|,

consisting of the largest wavelet coefficient at the scale j. Then, hmin is given by:

hmin = lim inf
2j→0

ln dMX (j)

ln 2j
.

This is a direct consequence of Eqs. (2.52) and (2.53) in the definition of uniform regu-

larity. Practically, this amounts to measuring linear slopes in log-log coordinates, yielding

the estimate:

ĥmin =
∑

j

wj log2 d
M
X (j), (5.2)

where wj are the linear regression weights as defined in Section 2.6.

Performance evaluation. To evaluate the performance of the estimator ĥmin, we ap-

ply it to a large number NMC of 2d CMC-LN and CMC-LP cascades Qr, for which the

theoretical hmin is known and controlled a priori. The process parameters are fixed as in

Section 4.2.1-b). Estimation parameters are set to NMC = 500, N × N = 1024 × 1024,

Daubechies wavelets with Nψ = 2, and ordinary (w0) regression involving the scales

j ∈ [1, 3]. Results are reported in Tab. 5.1. They indicate that the estimator Eq. (5.2)

has satisfactory statistical performance to practically enable determination of whether for

a real-world image hmin is close to zero or negative.

Real-world images and hmin. Examination of real-world images shows that they often

exhibit negative hmin. This is illustrated in Fig. 5.1 for three example images, taken by
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Figure 5.1: Estimation of hmin for real-world images. Estimation of hmin for (gray level

versions of) images of fern leaves (left), trees in winter (center) and a forest in summer

(right). Shown are the images (top, taken by ourselves with a standard digital camera),

the coefficients log2 d
M
X (j) as a function of scale j (bottom, blue solid and ’◦’), linear fits

(bottom, black solid and dashed lines) and the estimated values for ĥmin.

median std < 0 < 1

ζ̂d(1) 0.61 0.29 5.5% 96.5%

ζ̂d(2) 0.95 0.59 9.2% -

ĥmin −0.03 0.27 53.4% -

Table 5.2: Function space and uniform regularity. Mean estimates of ζ̂d(q = 1) (first

line), ζ̂d(q = 2) (second line) and ĥmin (bottom line) for the 1000 gray level texture images

in the database in [185] (cf. Chapter 13): Median (left column) and standard deviations

(second column) of estimates, fraction (in %) of estimates smaller than 0 and smaller than

1 (third and fourth column, respectively).

ourselves with a standard digital camera. The estimates of hmin for their gray level ver-

sions clearly indicate that these three images are not uniform Hölder.

A systematic examination of the texture image database described in Chapter 13 further

reveals that negative hmin do actually occur systematically in real-world images (cf. Tab.

5.2 and Fig. 5.2): For the 1000 textures images in this database, the minimum regularity

exponents hmin are distributed around the zero value, and a large fraction of the images

has negative hmin. The results suggest that more than one half of them are not uniform

Hölder.

This calls for a modification of the wavelet Leader based multifractal formalism proposed

in Section 2.5 for bounded functions. This is the subject of the next section.

5.1.3 Fractional and pseudo-fractional integration

One way to overcome the negative hmin issue and to return to the study of bounded

(actually uniform Hölder) functions, to which the WLMF formalism described in Section
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Figure 5.2: Function space and uniform regularity evaluation: Histograms. His-

tograms of ĥmin (left), ζ̂d(q = 1) (center), and ζ̂d(q = 2) (right), obtained for the 1000

gray level texture images in the database in [185] (cf. Chapter 13). The black vertical line

corresponds to the median of the estimates.

2.5 can be applied, is to fractionally integrate the image with a sufficient order. This has

been abundantly used for instance in [16, 17, 57] for the MMMF (cf. Section 2.5.5).

The fractional integration (of order α) of a function or measure X is defined in the

Fourier domain as:

(ÎαX)(ξ) = (1 + |ξ|2)α/2X̂(ξ). (5.3)

If X is a positive measure on R2, fractional integration of order α > 2 is always sufficient

for IαX to be uniform Hölder. In practice, a smaller order can be sufficient [90, 178, 182]:

Proposition 5.1 If X is a measure with hmin < 0, then IαX is uniform Hölder as soon

as α > −hmin.

5.1.3-a) Pseudo-fractional integration and multifractal formalism

From a practical point of view, the fractional integration of an image can be difficult and

disadvantageous in applications: It demands non negligible computational effort and is

likely to introduce numerical errors due to border effects. Instead of actually computing

the fractionally integrated version of X and then applying the wavelet Leader multifractal

formalism to IαX, we propose a modified version of the WLMF that combines both oper-

ations into a single one, as follows.

i) First compute the 2d wavelet coefficients d
(m)
X (j, k1, k2) (Eq. 2.35) and replace them

with:

d
(m),α
X (j, k1, k2) = 2αjd

(m)
X (j, k1, k2).

This amounts to computing the wavelet coefficients of ĨαX, a pseudo-fractionally inte-

grated version of X, whose local and global regularity properties are identical to that of

IαX as soon as α > −hmin.

ii) Then, calculate the wavelet Leaders of these new wavelet coefficients:

LαX(j, k1, k2) = sup
m,λ′⊂3λj,k1,k2

|d(m),α
X (λ′)|. (5.4)

Such modified wavelet Leaders LαX are equivalent to wavelet Leaders LIαX computed

from IαX, in the sense that if IαX has Hölder exponent h at t0 then, when 2−jk is the
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closest dyadic point of t0, LαX(j, k1, k2) ∼2j→0 2jh (see Eq. 2.56).

iii) Finally, compute new structure functions (cf. Eq. (2.57)):

SLα (j, q) =
1

nj

∑

k1,k2

LαX(j, k1, k2)
q (5.5)

They behave as power law w.r.t. the analyzing scale 2j , in the limit of fine scales 2j → 0 :

SLα (j, q) ≈ Gαq 2jζα(q). (5.6)

The spectrum of IαX is therefore given by:

Dα(h) = min
q 6=0

(1 + qh− ζα(q)). (5.7)

5.1.3-b) Spectrum of the original image

The method we proposed consists in fixing α > −hmin and then applying the WLMF to

the image ĨαX, which is uniform Hölder, to obtain the spectrum Dα(h). Therefore, it is

natural to ask how Dα(h) can be interpreted, and what the link is between Dα(h) and the

original image X.

Commonly, the spectrum Dα(h) of IαX, for a fixed and a priori chosen α > −hmin,

is used as a characterization of a translated version of the multifractal spectrum of the

image X. In other words, it amounts to associating with the original image X a spectrum

D(h) via:

D(h) = Dα(h+ α), α > −hmin. (5.8)

It is important to be aware of the fact that this heuristic faces two limitations. First, a func-

tion D(h) is not systematically obtained by this procedure since translations Dα(h + α)
for different values of α > −hmin might not superimpose and can hence not define a

function D(h). We note that in this case, the original image X contains oscillating sin-

gularities (cf. Eq. (2.47)). The discrepancy between translations Dα(h + α) for different

values of α > −hmin can be theoretically related to the oscillation parameter β in Eq.

(2.47). A precise analysis of these issues is beyond the scope of this section and can

be found in [90, 91, 178]. Nevertheless, we note that the modified WLMF therefore po-

tentially opens perspectives for the practical detection and measurement of oscillating

singularities in real-world data by comparing translated versions Dα(h + α) for different

values of α > −hmin. This demands for further theoretical and empirical investigations

and will not be discussed here.

Second, the function D(h) can not in general be related to the multifractal properties of

X. Let us suppose that the multifractal formalism holds for IαX when α > −hmin, and

that it contains only cusp-type singularities (cf. Eq. (2.46)) and no oscillating singularities.

Then, the multifractal spectra of IαX and IβX, α, β > −hmin, can be obtained from each

other by a simple translation of α − β, and the same is true for their Legendre spectra.

Therefore, one can naturally associate a Legendre spectrum D(h) with them through Eq.

(5.8). However, in contrary to the above heuristic, it can not in general be interpreted

as the spectrum of X when hmin < 0, since X is not uniform Hölder and therefore, its

multifractal spectrum (Def. 2.11) is not defined.

Despite such restrictions, the function D(h) obtained by Eq. (5.8) for large enough values

of α > −hmin, is deeply related to the intrinsic properties the original image X and can be
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used as such. In particular, it corresponds exactly to the spectrum of the original image

X if X is uniform Hölder and does not contain oscillating singularities.

Finally, we note that fractional integration also increases the ζd(q) (the counterpart of

the heuristic translation in Eq. 5.8 reads ζdα(q) = ζd(q) + αq), hence ensuring, for large

enough α, that ζdα(1) > 1 and/or ζdα(2) > 0. Similarly, it increases H or c1 by α and can

hence reduce fine scale cutoff effects (cf. Section 3.1).

5.1.4 Conclusions and perspectives

In this section, we proposed a practical solution for determining which function class

an image belongs to, and for verifying whether a real-world image actually fulfills the

bounded function condition for meaningful application of the WLMF or not. We proposed

a modification of the WLMF that can be applied to images for which the bounded function

condition is not fulfilled. Combined together, these methods enable the practical multifrac-

tal characterization of images. We note that the modified WLMF opens new perspectives

for the detection and measurement of oscillating singularities in real-world data, an impor-

tant issue in applications that has, to our knowledge, never been addressed before. This

has not been explored in this section and demands for further theoretical and empirical

work1.

The issues discussed in this section also show that although wavelet coefficients offer a

restricted analysis only of the multifractal properties of an image (see Sections 2.5.5 and

4.1), a number of useful pieces of information can still be extracted from the wavelet coef-

ficient based structure functions and from the largest wavelet coefficients at each scale.

This leads to the conclusion that wavelet coefficients are providing preliminary informa-

tion regarding the regularity properties of X and should hence be used before applying

the wavelet Leader multifractal formalism, and in a complementary manner, rather than

with the usual competition perspective.

1A first practical approach and first empirical results (with Stéphane G. Roux, ENS Lyon) are preliminary

and not reported here.
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5.2 Linearization Effect

5.2.1 Position of the problem

In practice, multifractal analysis essentially amounts to measuring a collection of scaling

law exponents, which are then related to the multifractal spectrum via the multifractal

formalism (cf. Sections 2.5.2 and 2.5.3). Practical multifractal analysis is based on the

structure functions2 and states that they behave as (cf. Eqs. (2.58) and (2.62)):

SN (a, q) =
1

na

na∑

k=1

|TX(a, ak)|q ≃ cqa
ζ(q), as a→ 0, (5.9)

where, for the present section, TX(a, t) = δaτ0X(t) = X(t + aτ0) − X(t) are the incre-

ments3 of the data under analysis X(t) at scale a, N is the sample size of X(t) and

na = N/a the number of increment coefficients available at scale a. Estimation of the

scaling exponents ζ(q) is commonly performed by linear fits in log-log coordinates as in

Eq. (2.65).

It can be further shown that for a number of commonly used multifractal processes (no-

tably within the class of MMC processes with stationary increments):

E|TX(a, t)|q ≃ Cqa
λ(q), as a→ 0, (5.10)

for 0 < q < q+c = sup{q : E|TX(a, t)|q <∞}, where:

λ(q) = q + ϕ(q). (5.11)

The function ϕ(q) is strongly related to the details of the multiplicative construction un-

derlying the definitions of such processes (see Section 2.7, Eqs. (2.81), (2.102), (2.125),

(2.127)).

Since sample averages Eq. (5.9) are naturally used as estimates for the ensemble av-

erages, it has long and largely been believed in the applied multifractal literature that the

functions ζ(q) and λ(q) in Eq. (5.9) and Eq. (5.10) were identical, at least for 0 < q ≤ q+c ,

hence that the scaling exponents ζ(q) were related to the details of the definitions of

the processes X(t). However, after the seminal works of Molchan [127], Ossiander and

Waymire [134] on Mandelbrot multiplicative cascades [121], it is now being realized that

the two functions λ(q) and ζ(q) coincide, surprisingly, only on the narrow range of powers

0 < q ≤ q+∗ with q+∗ < q+c as defined in Eq. (2.129). Moreover, ζ(q) is known to behave

as a linear function for q > q+∗ . This is referred to as the linearization effect. These ob-

servations have been confirmed in a comprehensive empirical study by Lashermes et al.

[108] who conjectured that this phenomenon is intrinsic to all multifractal processes and

measures and that the value of q+∗ is given by Eq. (2.129). This confusing association

has often been misleading in the use of scaling exponents for real-life data analysis.

In a number of significant contributions, whose most prominent are [123] (Chapter 9) and

[122], Mandelbrot relates negative singularity observation and supersampling issues, in-

timately tied to the linearization effect, to the intrinsically heavy tail nature of multiplicative

2We prefer in this section to keep explicit reference to the dependence of quantities on the sample size

N , denoted by the subscript N .
3Here τ0 stands for an (arbitrary) time unit which is, by consistency with the definition of wavelet coeffi-

cients, chosen as the inverse of the sampling frequency.
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Figure 5.3: Linearization effect. ζ̂(q) versus q, observed over 1000 realizations (left)

and averaged over all realizations (middle), together with the curve λ(q) (solid dotted

curve), the dashed line expands the linear behavior observed at large q. Right: averaged

slope, characterizing this linear behavior, as a function of log2N . Observe that it does

not depend on N and is found to be very close to h+
∗ ≃ 0.64 (red dashed line).

cascades. The present section aims at contributing to the analysis and a better under-

standing of the origins and causes of the differences in nature of these two different

functions of q: λ(q) and ζ(q). We propose to explain this effect through an argument

involving extreme values, the intrinsic heavy tail nature of marginal distributions and the

dependence structure of multifractal processes. The work in this section has been ob-

tained in collaboration with Vladas Pipiras (University of North Carolina, Chapel Hill) and

reported in [11].

5.2.2 Numerical simulations and linearization effect

We choose to consider here a particular class of multifractal processes, the compound

Poisson motions (CPM) A(t), chosen because their increments {TA(a, t), t ∈ R} form

stationary processes, for each analysis scale a, and since their multifractal properties are

well known ([30], see Section 2.7.1-b)). Notably, the function λ(q) in Eqs. (5.10) and

(5.11) is given by Eqs. (2.108) and (2.102).

Numerical simulations. All numerical simulations reported below were conducted over

NMC = 1000 independent realizations of CPM, with various ϕ(q) and various data lengths

(N = 210, . . . , 218), within a single integral scale. Plots and results are presented for the

specific ϕ(q) based on lognormal multipliersW (cf. Section 2.7.1-b), Eq. (2.112)), yielding

numerically q+c ≃ 13.8, q+∗ ≃ 6.8 (obtained by Eq. (2.129)) and h+
∗ ≃ 0.64 (as computed

from Eq. (5.14), see below). However, the results presented here are conjectured to hold

for all choices of ϕ(q).

Linearization effect. The estimation procedure Eq. (2.65) based on increments has

been applied to NMC realizations of CPM. First, we observe that, for each and every

realization of CPM, ζ̂(q) is close to λ(q) at small qs, i.e., 0 ≤ q ≤ qN while it behaves

linearly in q, for large qs, i.e., ζ̂(q) = αN + βNq, for q ≥ qN :

ζ̂(q) ≃
{

λ(q), if q ≤ qN ,
αN + βNq, if q ≥ qN ,

(5.12)

where αN , βN and qN are r.v.s whose means are found not to depend on N [108]. This is

illustrated in Fig. 5.3, left plot. Second, averaging over the NMC realizations, we observe
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Figure 5.4: Structure functions versus extrema. Two sides of Relation (5.16): Scatter

plots (top row) and empirical distribution functions (bottom row; ’◦’: left side of Eq. (5.16);

’⋄’: right side of Eq. (5.16)), for j = 5 with (left to right) q = 2, 7(≃ q+∗ ), 20.

(Fig. 5.3, middle plot) that4 ÊMC ζ̂(q) is close to λ(q) at small qs but behaves linearly in q,
at large qs. Third, we observe that the slope and intercept of this average linear behavior

do not vary (or only extremely slowly vary) when N is increased (estimated slopes as a

function of N are reported in Fig. 5.3, right plot). Such observations can be gathered as

follows: ÊMC ζ̂(q) ≃ ζ(q), where

ζ(q) =

{
λ(q), if q ≤ q+∗ ,
1 + qh+

∗ , if q > q+∗ ,
(5.13)

h+
∗ = min h{DA(h) = 0}, q+∗ = (dDA/dh)h=h+

∗
. (5.14)

It is worth mentioning again that one necessarily has q+∗ ≤ q+c , and q+∗ is often far smaller

than q+c . The equations above are fully consistent with the results in [127, 134] that

were previously obtained for the specific case of Mandelbrot cascades. It is formulated

as a general conjecture for multifractal processes in [108]. It can appear paradoxical as

ensemble averages (in Eq. (5.10)) and time averages (in Eq. (5.9)) differ.

5.2.3 Extreme values and heavy tails

Structure functions and extreme values. Simple algebra yields that the structure

functions SN (2j , q) are driven by the largest increment at scale a = 2j ,

Mnj (2
j) = max{|TA(2j , 2jk)|, k = 1, . . . , nj} (5.15)

for fixed N , in the limit q → +∞:

SN (2j , q) ≃ 1

nj
(Mnj (2

j))q,

4
ÊMC stands for means over NMC realizations.
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Figure 5.5: Extreme value distribution fits. Empirical distributions of the maxima

Mnj (2
j) as in (5.15) (solid black line) and their best GEV fits (dashed red lines) for scales

a = 2j with j = 4, 6, 8.

or, equivalently:

log2 SN (2j , q) ≃ − log2 nj + q log2Mnj (2
j). (5.16)

The moments of TA(a, t) = A(t + aτ0) − A(t) are finite only up to order 0 < q < q+c ,

and therefore the variables TA(a, t) have heavy tails (see e.g. [160] or [69], Chapter 8,

for an introduction to heavy tailed distributions). Be they independent, the order q for

which Mnj (2
j) takes the control of SN (2j , q) should be such that TA(a, t)q has infinite

mean, i.e., when q ≥ q+c . Fig. 5.4 illustrates that the relevance of (5.16) actually starts for

q ≃ q+∗ ≤ q+c .

Extreme value distributions. It is well-known that the distributions of maxima of i.i.d.

random variables are modeled by extreme value distributions [69]. In the present study,

the variables TA(a, t) have heavy tails, hence so do the |TA(a, t)|q, q > 0. Therefore, the

maximum taken over independent |TA(a, tk)|, k = 1, ..., na, would theoretically follow a

Frechet distribution with a power law tail x−q
+
c as x → +∞ [69]. For a given realization

of CPM, the |TA(a, tk)|q, k = 1, ..., na, entering the sums SN (2j , q), are, by construction of

CPM, dependent so that the limit distribution of their maxima is not theoretically known.

Therefore, we chose to fit the distribution of Mnj (2
j), separately at each scale a = 2j ,

using the generalized extreme value (GEV) probability density distribution, whose cumu-

lative distribution function reads [69]:

Fξ,σ,µ(x) = exp
{
− [1 + ξ((x− µ)/σ)]−1/ξ

}
.

Extreme value fits. Fig. 5.5 clearly indicates a satisfactory agreement between the

empirical distribution functions of Mnj (2
j) and the GEV distribution. Moreover, Fig. 5.6

(left plot) shows unambiguously that the estimated parameter ξ depends neither on the

scale 2j nor on the sample size N :

ξj,N ≃ ξ0. (5.17)

Simple algebra shows that the tail of the GEV probability density function is controlled by

the exponent 1/ξ. The estimated 1/ξ0 turns out to be very far from the exponent q+c that

would be expected under independence of the TA(a, tk) and happens to be consistently

close to q+∗ (cf. Fig. 5.6, left plot). Similar observations can be obtained from the tails of

the empirical distributions of |TA(a, t)|.
Moreover, Fig. 5.6 (middle plots) clearly shows that the coefficients µj,N and σj,N are
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Figure 5.6: Extreme value fits and multifractal properties. log2 ξj,N (’+’) (left plot)

log2 σj,N (’◦’) and log2 µj,N (’⋄’) (middle plots) versus j, for various N . The horizontal

dashed (red) line (left plot) corresponds to − log2 q
+
∗ , while the diagonal one (middle plot)

has slope h+
∗ (intercept being arbitrary). Right plot: estimated slopes for log2 σj,N (’◦’)

and log2 µj,N (’⋄’) do not vary significantly with N and are close to h+
∗ (dashed, red line).

characterized by power law behaviors, with respect to the scales 2j , where the multiplica-

tive factors depend on N , while the power law exponents do not and turn out to be equal

to h+
∗ , for all N (cf. Fig. 5.6, right plot):

µj,N ≃ µ0,N2jh
+
∗ , σj,N ≃ σ0,N2jh

+
∗ . (5.18)

These findings (Eqs. (5.17) and (5.18)) are consistent with the analyses recently pro-

posed in [131]. Combined together, the observations above yield:

{Mnj (2
j)}j=j1,...,j2

d≃ {2jh+
∗ (σ0,NΛjξ0 + µ0,N )}j=j1,...,j2 , (5.19)

where each Λjξ0 is a random variable drawn from the same Fξ0,1,0 GEV distribution, which

does not depend on j.

Linearization effect: Slope h+
∗ . Combining the definition of ζ̂(q) (Eq. (2.65)) with

empirical results Eqs. (5.16) and (5.19) implies, as q → +∞,

ζ̂(q) =
∑

wj log2 SN (2j , q)
d≃ −

∑
wj log2 nj

+qh+
∗
∑

jwj + q
∑

wj log2(σ0,NΛjξ + µ0,N )

≃ 1 + q
(
h+
∗ +

∑
wj log2(σ0,NΛjξ + µ0,N )

)
,

since nj ≃ N2−j yields −∑j wj log2 nj ≃ 1. In itself, it explains the linearization effect

observed for each realization.

Moreover, taking the average over realizations yields:

ÊMC ζ̂(q) ≃ 1 + qh+
∗ + q

∑
wj ÊMC log2(c0,NΛj + d0,N ).

Since ÊMC log2(σ0,NΛjξ + µ0,N ) does not depend on j and
∑
wj ≡ 0, this explains the

linearization effect observed as an average over realizations, cf. Eq. (5.13):

ÊMC ζ̂(q) ≃ 1 + qh+
∗ . (5.20)
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Linearization effect: Critical order q+∗ . On the one hand, the empirical results re-

ported above suggest a power law tail behavior x−q
+
∗ /q for the variables |TA(a, t)q|, ob-

served from a single realization, and therefore, that they behave as if they exhibit infinite

mean when q & q+∗ . This explains that the maximum Mnj (2
j)q takes control of the sum

Sn(q, 2
j) at q+∗ . On the other hand, we observed in Fig. 5.3 that ζ(q) evolves continuously

and without discontinuity from λ(q) at small qs, to 1 + qh+
∗ for large qs. This implies and

explains the existence of a critical order q+∗ and defines it as:

λ(q+∗ ) = 1 + q+∗ h
+
∗ .

Using the Legendre transform in Eq. (5.14), this can be rewritten in clear agreement with

the definition Eq. (5.14) as well as with the conjecture in [108] (stated in Eq. (2.129)), as:

1 + q+∗ (dλ/dq)q=q+∗ − λ(q+∗ ) = 0. (5.21)

These two different arguments explain separately that the linearization effect starts to

occur when q & q+∗ .

5.2.4 Conclusions and perspectives

Multifractal properties and extreme values. Observations Eq. (5.19), indicating that

Mnj (2
j) ≃ CN2jh

+
∗ ,as a = 2j → 0, where CN is a suitable random variable, are strikingly

consistent with the multifractal paradigm. Indeed, recall that multifractal analysis asso-

ciates with each time position t a Hölder exponent as |TA(a, t)| ≃ c(t)ah(t), as a → 0.

Then, the largest increments (hence the maxima) are observed in the limit a → 0 for the

smallest h, that is where A(t) is the most singular. By the definition Eq. (5.14), such

smallest exponent is h+
∗ .

Heavy tails, dependence and linearization effect. The analyses reported here show

that the existence of the linearization effect is a combined consequence of two major

properties of CPM: Their increments are heavy tailed and possess a specific depen-

dence structure resulting from the multiplicative construction.

Perspectives. First, it is conjectured that the present analyses of the linearization

effect holds for all multifractal processes and not only CPM or those resulting from mul-

tiplicative constructions (such as CMC or IDC, cf. Sections 2.7.1-a) and 2.7.1-c), re-

spectively). Indeed, multifractal processes will in general gather the two key ingredients

mentioned above: Heavy tails and a form of time dependence structure, which the multi-

fractal spectrum characterizes in an indirect way. Second, a full and relevant multifractal

analysis needs to be based on wavelet Leaders rather than on increments and involves

both positive and negative qs [89, 92], see also Section 2.5.5). It is of interest to un-

derstand how these relations between multifractality, heavy tails, dependence, extreme

values and linearization effect extend to this more accurate framework and accommo-

date the negative qs. Indeed, it is conjectured in [108] that for negative statistical orders

q, which are practically accessible by wavelet Leader based estimation, there is a nega-

tive critical order q−∗ = infq{1 + q dλ(q)
dq − λ(q) = 0} (cf. Eq. (2.130)), q−c < q−∗ , below which

ζ(q) and λ(q) do not coincide. Preliminary results show that similar arguments apply, with

minima mnj (2
j) and q−∗ , h−∗ replacing maxima Mnj (2

j) and q+∗ , h+
∗ , respectively. These

two research directions need further investigation.
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5.3 Data Quantization and Multifractal Analysis

Most stochastic models used to describe scaling in real-life data are continuous time

and continuous valued processes. However, for most applications, the analyzed data

are sampled in time. The impact of this sampling on the estimation of the multifractal

parameters has been analyzed in various articles (e.g., [70, 126, 172]) and will not be

considered here. In a number of situations, the data available for the analysis also present

quantization in amplitude. This is very often the case in Image Processing where the

necessarily limited sizes of images yield quantized boundary lines separating various

regions in the image, as illustrated in Fig. 5.7. An informative example is provided by the

analysis of crack propagations, where the data consist of boundary lines that split images

into two binary regions. It is conjectured that the characteristics of the crack propagation

can be inferred from the analysis of the scaling properties of these boundary lines (cf.

[118, 154] for a thorough description of this application). Because it is often needed that

a large number of such images are captured along time, this may in addition impose that

sensors are used at poor resolution levels, hence resulting into the fact that the boundary

lines are available for the analysis only through (possibly severely) quantized versions.

The same limitation may also pertain for the high-speed acquisition of one dimensional

signals, as illustrated in Fig. 5.8.

So far, the impact of this quantization on the statistical performance of the procedures

aiming at estimating multifractal attributes, defined in Section 2.6, received little attention.

Its characterization precisely constitutes the aim of the present section.

One of the main goals of this section consists in studying the robustness against quan-

tization that the choice of a particular multiresolution quantity brings (or not) to multifractal

analysis. To this end, we compare the performance of analysis procedures designed from

different multiresolution quantities, namely first and second order increments – motivated

by the fact that they have been and still are used in practice for multifractal analysis by

many physicists – wavelet coefficients and wavelet Leaders. The work reported in this

section has been obtained in collaboration with Stéphane G. Roux (ENS Lyon) and pub-

lished in [181].

5.3.1 Quantization

In general, a quantizer can be defined as a set of intervals D = {Di, i ∈ I} covering

a space (e.g. the real line R) together with a set of levels Y = {yi, i ∈ I}, so that

the quantizer q is given by q(x) = yi ⇔ x ∈ Di. Quantization is often viewed as a

decomposition of the signal x = x̃− z into the quantized signal x̃ and quantization noise

or quantization error z = x̃− x, i.e.:

x̃ = x+ z. (5.22)

The quality of quantization is usually assessed by some distortion measure based on

this difference signal, for instance the mean squared (quantization) error, or a signal to

(quantization) noise ratio.

In contrast to Nyquist sampling, quantization is a non linear operation and thus much

more intricate to study, since linear system theory does not apply directly. The theory

of quantization has been developed roughly over the last 60 years. Most results come

from information theory and are typically focussing on the study of (average) distortion

versus rate – (average) number of bits per input sample – of quantization. Another line
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of research adopts a more statistical point of view and studies the statistical distributions

of input and quantized signals. It establishes, for instance, quantization theorems – in

analogy to sampling theorems – stating conditions on the band limit nature of the charac-

teristic function of the input process for perfect reconstruction of the input process (or its

moments). For more details on the theory of quantization, the reader is referred to e.g.

[78, 184] and references therein.

The point of view we adopt in this section is mainly guided by the two applications we

evoked in the introduction and has to be appropriate for giving answers to the following

practically relevant issues: Given that the signal we want to analyze is quantized, what is

the influence on the estimation of multifractal attributes? Which multiresolution quantities

should be chosen? What can be done to limit the influence of quantization on estimation

performance in multifractal analysis?

In this setting, we typically do not have any flexibility in choosing an optimal quantization

scheme. For instance, an image of a crack will always give rise to a signal that is uni-

formly quantized, with quantization interval width fixed by the resolution of the camera (as

illustrated in Fig. 5.7). Therefore, information theoretical considerations in terms of (opti-

mal) rate and distortion do not seem very relevant. Also, as a consequence of the difficult

statistical context posed by scale invariant processes (e.g. non stationarity), an analytical

statistical point of view may not be very helpful in answering the questions stated above.

Therefore, we will mainly resort to numerical simulations. We choose to concentrate on
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the study of the estimator for the log-cumulant cp (Eq. (2.71)) for multifractal trajectories

that are subject to quantization. The numerical results enable us to give a frequency-

domain interpretation of the (non)robustness of certain multiresolution quantities against

quantization, and to provide precise practical guidelines for multifractal analysis of signals

subject to amplitude quantization.

5.3.2 Quantization and multifractal analysis: Numerical study

5.3.2-a) Quantization

We consider uniform quantization over the real axis, with an infinite number of levels and

quantization interval width ∆. The quantized version X∆(n) of the original discrete-time

signal X(n) is therefore defined as:

X∆(n) = [X(n)/∆] · ∆, (5.23)

where [·] denotes the rounding operation. We measure the quantization level (in bit) by:

b = − log2 ∆. (5.24)

Note that this quantization level measure is absolute in the sense that it simply expresses

the number of bits necessary to (fixed rate) code the quantized unit interval, and does

not take into account a measure of the variability of the signal. This absolute measure is

chosen for the following reason: The non stationary nature of scaling processes makes

it difficult to give a meaningful definition of a measure taking into account characteristics

of the signal for one particular scaling process, for instance a signal to quantization noise

ratio. What is more, even if we could define such a measure (in average) for one process,

it would not allow us to meaningfully compare quantization levels for two different pro-

cesses since the processes will in general have different average time evolutions of their

statistics (mean, variance, flatness etc.). Therefore, quantitative and qualitative compar-

isons are restricted to comparisons between different quantization levels for one given

process with fixed parameters, for which the quantization level b is a sufficient measure.

For this reason, we will as well present results for one multifractal process with fixed

(multifractal) parameter setup only. Similar results have been obtained for other mono- or

multifractal processes.
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5.3.2-b) Multiresolution quantities

Our main goal is to study the relative robustness towards quantization of estimation pro-

cedures Eq. (2.71) based on different multiresolution quantities TX(a, k) of X(k). We

consider increments (cf. Eq. (2.13)) of orders 1 and 2 for dyadic analysis scales a = 2j ,
discrete wavelet coefficients (Eq. (2.34)) and wavelet Leaders (Eq. (2.54)). For conve-

nience, they are denoted as follows:

T
(I1)
X (2j , t) = δ2jτ0X(t) = X(t+ 2jτ0) −X(t), (5.25)

T
(I2)
X (2j , t) = δ2jτ0(δ2jτ0X(t)) = X(t+ 2 · 2jτ0) − 2X(t+ 2jτ0) +X(t), (5.26)

T
(d)
X (2j , t) = dX(j, k) = 〈ψj,k|X〉, (5.27)

T
(L)
X (2j , t) = LX(j, k) = sup

λ′⊂3λj,k

|dλ′ |, (5.28)

where τ0 stands for an (arbitrary) time unit which is, by consistency with the definition of

wavelet coefficients, chosen as the inverse of the sampling frequency.

5.3.2-c) Thresholding

The estimation of log-cumulants Eq. (2.71) is based on the log of the multiresolution

quantities. Therefore, it is necessary to remove coefficients that take the value zero.

This thresholding operation is performed by considering only coefficients that satisfy

|TX(a, k)| > ε in Eq. (2.71), where ε is the machine precision.
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5.3.2-d) Numerical simulations

The impact of quantization on the estimation procedures, with multiresolution quantities

Eqs. (5.25–5.28), is assessed by applying them to a large number NMC of realizations of

mrw at different quantization levels b and studying their relative performance. All results

presented here are obtained using Daubechies wavelets with Nψ = 2, using NMC =
1000 realizations of size N = 214, with process parameters (H,β) = (0.72,

√
0.08), i.e.,

(c1, c2) = (0.8,−0.08) (cf. Section 2.7.2-b)).

The estimation performance are assessed by the (root) mean squared error:

mse =

√(
ÊMC ĉp − cp

)2
+ V̂arMC ĉp,

where ÊMC and V̂arMC denote the sample mean and sample variance over Monte Carlo

realizations, respectively.

5.3.3 Quantization impacts

5.3.3-a) Distributions of ln |TX(2j , ·)|

Let us first study the empirical distributions of ln |TX(2j , ·)|. Fig. 5.10 compares the

empirical distributions of ln |TX(2j , ·)| (for a given j) for non quantized and quantized at

level b signals. We observe that while quantization does not have any visible impact on

the distributions of ln |T (d)
X (2j , ·)| and ln |T (L)

X (2j , ·)|, the distributions of ln |T (I1)
X (2j , ·)| and

ln |T (I2)
X (2j , ·)|, obtained from quantized data, are lattice and significantly different from the

distribution obtained for the non quantized signal. This will, in turn, affect the estimation

of the Ĉ(j, p).

5.3.3-b) Ĉ(j, p) as linear functions of j

The estimation procedure Eq. (2.71) is based on the fact that for scale invariant pro-

cesses, the cumulants C(j, p) of ln |TX(2j , ·)| (Eq. (2.72)) behave as linear functions of

j for some range of scales 2j (cf. Eq. (2.68)). Let us now investigate the impact of

quantization on this central element of the estimation procedure. Fig. 5.11 compares

the means over Monte Carlo realizations of Ĉ(j, 1) and Ĉ(j, 2) as functions of j, for non

quantized data and for data quantized at different levels b. It yields a central observation:

Quantization affects Ĉ(j, p) at fine scales first, and then at coarser and coarser scales as

∆ increases (equivalently b decreases). Also, we observe that this impact is much more

dramatic for increments than for wavelet coefficients and Leaders. Whereas for incre-

ments the influence of quantization propagates very fast up to the coarsest scale as ∆
increases, it remains restricted to fine scales for wavelet coefficients and Leaders, leav-

ing the coarser scales unchanged and usable to perform the linear regressions yielding

ĉp. For wavelet coefficients and Leaders, a meaningful range of scales for linear regres-

sion can still be found for quantizations significantly below b = 5 for ĉ1 and b = 8 for ĉ2,

whereas for increments, linear regression is meaningless already for b = 7 for ĉ1 and

b = 12 for ĉ2.
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Figure 5.11: Ĉ(j, p) as linear functions of j. Ĉ(j, 1) (left column) and Ĉ(j, 2) (right

column) vs. j for non quantized data (dashed dotted line) and data quantized at different

levels b (solid lines).
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Figure 5.12: Band pass filters. Fourier transforms of the mother wavelets |2j0Ψ0(2
j0ν)|

versus j = − log2(ν) for Daubechies (Nψ = 2) (solid dotted line), Increments of first (solid

line) and second (dashed line) orders.

Interpretation of altered scaling behavior. This can be understood as follows. The

increments T
(I1)
X (2j , t) and T

(I2)
X (2j , t) can be read as wavelet coefficients obtained with

specific mother-wavelets: ψ0(t) = δ(t+τ0)−δ(t) and ψ0(t) = −δ(t+2τ0)+2δ(t+τ0)−δ(t),
respectively. Such ψ0 possess respectively Nψ = 1 and Nψ = 2 vanishing moments and

are commonly referred to as poor man’s wavelets, because they act as band pass filters

whose Fourier transforms Ψ0(ν) are poorly localized in frequency, compared to those

of standard mother wavelets, such as the Daubechies. This is illustrated in Fig. 5.12

where the Fourier transforms of the increments are compared to that of a Daubechies

wavelet (Nψ = 2). For simplicity the frequency axis is in octaves j = − log2 ν. For

small frequencies, the behavior of the Fourier transforms is controlled by Nψ according

to |Ψ0(ν)| ∼ C · |ν|Nψ , |ν| → 0. For large frequencies, |Ψ(d)
0 (ν)| is characterized by a

good frequency localization. In contrast, the filter responses of increments are given

by |Ψ(I1)
0 (ν)| ∼ |sin(πν)| and |Ψ(I2)

0 (ν)| ∼ sin(πν)2 and show much poorer frequency

localizations with important side lobes whose amplitudes do not decrease. This poor

frequency localization turns out to have a significant impact on the robustness of the

multifractal parameter estimation procedures against quantization.

Indeed, Eq. (5.22) evokes that quantization mimics noise superimposition to the orig-

inal non quantized data x. Fig. 5.11 suggests that this noise z mostly contributes at fine

scales, or equivalently, at high frequencies. Hence, any estimates involving such scales

are poor whatever the chosen multiresolution quantity. However, the well-localized in fre-

quency nature of the wavelet band pass filters significantly limits the contamination of

larger scales by the noise. Therefore, restricting the linear regressions to larger scales

yields satisfactory estimates. Conversely, the poor frequency localization of the incre-

ment band pass filters results in a significant pollution of the large scales by the fine scale

noise. This implies that, to perform estimation, one has to restrict the regression range

to much larger scales, if there are any left that are not polluted, which hence significantly

degrades estimation performance.

5.3.3-c) Statistical performance

Increments. T
(I1)
X (2j , ·) and T

(I2)
X (2j , ·) take on fewer and fewer different discrete val-

ues as ∆ increases, until eventually they only consists of 0 or ∆ values. Then, since the

TX(a, k) are thresholded at machine precision ε, Ĉ(j, 1) = E ln |T (I)
X (2j , ·)| → ln∆ and
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Figure 5.13: Quantization and statistical performance. mse of ĉ1 (left column) and ĉ2
(right column), obtained for a fixed regression range j1 = 5, j2 = 11 (top row), and for the

optimal regression range j1, j2 (bottom row). The symbols ( ⊳ , � , × , ◦) correspond to

(increments of order 1, increments of order 2, wavelet coefficients, wavelet Leaders).

Ĉ(j, 2) = Var ln |T (I)
X (2j , ·)| → 0 (cf. Fig. 5.11, top row and second row). In turns, the

final log-cumulant estimates become ĉ1 = 0 and ĉ2 = 0, no matter what values c1 and c2
actually take. Hence, the estimations based on T

(I1)
X and T

(I2)
X become meaningless for

severely quantized signals. Therefore, their statistical performance for large ∆ will not be

discussed here any further. Ultimately, as ∆ approaches infinity, a similar effect occurs

for all TX however, at significantly higher ∆ than for increments.

Fixed regression range. Fig. 5.13 (top row) compares the mse of the estimations

of c1 and c2, using a fixed regression range, at coarse scales j1 = 5 and j2 = 11. For

non quantized signal (i.e., the number of bits tends to infinity), we observe that increment

and wavelet coefficient based estimators achieve comparable performance, whereas the

wavelet Leader based estimation is better, and significantly so for c2, in agreement with

results reported in Chapter 4. When the signal is quantized, the performance of the

increment based procedures degrade dramatically and fast when b decreases, whereas

the wavelet coefficient and Leader based estimations maintain their performance over an

impressive range of coarse quantization levels: For c1, the performance of the increment

based procedures start degrading at b = 15, while that of wavelet coefficient and Leader

based procedures do at b = 9, a factor of ≈ 60 in ∆, with a difference in mse of up

to a factor 7. For c2, the situation is similar: The performance of the increment based

procedures start degrading as soon as b = 13, while that of coefficients and Leaders are

maintained up to b = 7 and b = 10, respectively, a factor of ≈ 60 in ∆, with a difference

in mse of up to a factor 10. Further, we note that the mse mainly reproduces standard

deviation, apart from at severe quantization levels, where the bias becomes dominant.

Optimal regression range. In practice, the range of scales used to perform the linear

regressions yielding the final estimates ĉp is not fixed a priori but by visual inspection of
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Figure 5.14: Optimal regression range. Optimal j1 and j2 to obtain minimal mse for ĉ1
(solid lines) and ĉ2 (dashed lines) vs. b.

Ĉ(j, p) vs. j in order to determine a region in which the scaling model is valid. Fig. 5.13

(bottom row) shows themse obtained by choosing the regression range such that themse
of the estimation is minimal. Since the quantization affects the estimates Ĉ(j, p) starting

at fine scale, we force j1 and j2 to be non-decreasing as ∆ increases, in order to avoid

meaningless estimates obtained at scales heavily affected by quantization. Comparing

top and bottom rows in Fig. 5.13, we observe that, as expected, estimation can in general

be improved by choosing an appropriate regression range. Whereas for increments, this

improvement is small and confined to b > 14, relevant estimates of c1 and c2 are obtained

still at b = 5 when using wavelet coefficients or Leaders, a significant improvement com-

pared to the fixed regression range performance. We note further that whereas wavelet

Leaders consistently outperform wavelet coefficients for sufficiently large b, their perfor-

mance eventually degrades faster for very heavily quantized signals.

Finally, Fig. 5.14 shows the optimal regression ranges. As expected, increasing ∆ forces

j1 to increase, restricting the estimation to coarser and coarser scales. This happens

much earlier for increments than for wavelet coefficients and Leaders.

Conclusions. These analyses lead us to conclude that increments can not be used

when the data are quantized, even for low quantization levels. We found that wavelet

coefficients and Leaders are significantly more robust to quantization than increments

of any order. By choosing an appropriate range of scales for regression, the effects of

quantization on ĉp can be circumvented even for coarse ∆ levels when using wavelet

coefficients and Leaders, whereas this is not the case for increments.

5.3.4 Conclusions and perspectives

We showed here that signal quantization can significantly impair multifractal analysis.

Mostly, it pollutes the finest scales, hence implying a restriction towards the largest scales

of the range of scales used in the linear regression involved in multifractal parameter esti-

mation. However, we demonstrated that choosing mother wavelets with a good frequency

resolution contains the noise pollution to as low as possible scales, hence limiting the

necessary narrowing of the regression range and the estimation performance degrada-

tion. Conversely, the absence of localization of the frequency response of the increment

based band pass filters results in a stronger narrowing of the regression range for a given

quantization level and hence in poor performance. Therefore, wavelet coefficients and

Leaders are to be preferred over increments of any orders to analyze quantized data.

Also, we showed that wavelet Leaders consistently outperform wavelet coefficients for
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non quantized data as well as for a large range of quantization levels. It is only for very

heavily quantized signals that wavelet coefficients eventually become more robust than

wavelet Leaders. These results provide the practitioners with a careful framework for real

life data analysis, in situations where amplitude quantization occurs.

An automatic selection of the most relevant regression range of scales given a quan-

tization level is an open and practically important issue. Also, the impact of quantization

in image processing in situations where textures are described using multifractal models,

but where the amplitudes are quantized, would constitute an important continuation of

this work.
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Part II

Bootstrap and Multifractal Analysis:
Theory and Practice
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Scaling analysis and multifractal analysis in practice mostly amount to measuring

scaling exponents ζ(q), log-cumulants cp and the multifractal spectrum D(h) from a fi-

nite size observation. The theoretical and practical characterization of the corresponding

estimation procedures have been the topic of Part I of this manuscript. In real life applica-

tions, however, practical interest lies as much in the confidence that can be granted to an

estimate as in the estimate itself. Equivalently, statistical tests validating the precise mul-

tifractal properties of the data under analysis are a major practical concern. Surprisingly,

and despite its increasing popularity, multifractal analysis suffers here from a significant

difficulty: Little is known theoretically on the statistical performance of the estimation pro-

cedures commonly used in practice. When X is a Gaussian self similar process, these

statistical performance can be studied, and asymptotic results have been obtained (for

instance, in [4, 26, 52, 84, 169]). However, for the more general and useful case of MMC

processes and for non Gaussian H-sssi processes, no theoretical statistical performance

study is available. This is primarily a consequence of the fact that most stochastic mul-

tifractal processes practically used are defined from multiplicative martingales. The con-

struction of such mathematical models is exceptionally intricate and gives rise to strongly

dependent and heavy tailed (hence strongly non Gaussian) stochastic processes. The

statistical performance of the analysis procedures hence turn out to be too difficult for

analytic derivation (even asymptotically). Hence, in practice, no tools for assessing the

confidence that can be accorded to the obtained estimates are available, although in

real-life applications, this is as much of practical interest as the estimate itself.

Therefore, we propose here the use of Bootstrap as a solution to overcome such diffi-

culties [64]. The use of bootstrap has never been reported before for multifractal analysis.

Also, the proposed bootstrap estimation schemes constitute, to our knowledge, the only

procedures on-hand that can actually be applied to finite size observations for practi-

cally assessing confidence in multifractal attribute estimates and affirming the multifractal

nature of data with satisfactory statistical performance.

The goal of Chapters 6 and 7 in this part of the manuscript is the definition of a

relevant bootstrap resampling scheme that fits the requirements and specific context of

multifractal analysis. The key idea is the use of bootstrap in the wavelet domain, rather

than in the domain in which the data live, hence passing – according to commonly ac-

cepted intuitions based on the decorrelation properties of the wavelet transform for fBm

[4, 6, 77, 70, 166, 169] – from in general non stationary processes with intricate depen-

dence structure to stationary series of wavelet coefficients that are expected to be only

weakly correlated. The idea of bootstrap in the wavelet domain is not new and has been

used for the generation of surrogate time series [13, 40, 41, 137, 151, 152] and spa-

tial patterns [183]. The originality of the proposed bootstrap lies in the fact that it takes

into account the particularities of multifractal analysis — hence concentrating on wavelet

domain properties rather than surrogate data creation — and in the specific block con-

struction that intuitively match key aspects of wavelet Leader based multifractal analysis.

This bootstrap resampling scheme can in turn be used for the design of confidence

intervals for multifractal attributes, and of statistical tests aiming at rejecting hypothesis

formulated on the multifractal properties of the data under analysis. Their definition and

empirical validation are the goals of Chapter 8, and of Chapter 9 and 10, respectively. The

practical relevance of these procedures is assessed by means of numerical simulations

for several synthetic multifractal processes. The empirical results indicate satisfactory

performance.

The sparseness of theoretical results for the statistical performance of multifractal at-
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tribute estimation procedures not only causes the above mentioned practical limitations

due to the lack of procedures for assessing confidence in estimates or significance of

hypothesis on multifractal properties, but also prevents the theoretical validation of the

bootstrap procedures proposed to overcome such difficulties: Some of the conditions for

validity of bootstrap, related to finiteness of moments and to the structure of the estimator,

can be verified relatively easily in the context of multifractal analysis and will be accounted

for in Chapter 7. However, the theoretical results available at present do not enable the

validation of the condition on the dependence of multiresolution coefficients involved in

bootstrap resampling. Therefore, and further motivated by the empirical bootstrap perfor-

mance results, the aim of Chapter 11 is to establish elements of theory for characterizing

the dependence structure of multiresolution quantities for H-sssi and MMC processes.

The analytic results are backed up with numerical simulations and suggest that the key

role which the number of vanishing moments of the analyzing wavelet plays in multifractal

analysis has to be seen in a new light: Whereas the (sufficiently large) number of van-

ishing moments is indeed responsible for weak correlation of wavelet coefficients, it is

ineffective in controlling higher order dependence.
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This chapter states the basic facts about the bootstrap which we need in the following

Chapter 7 for defining the bootstrap procedure for multifractal analysis. It sketches the

general idea of the bootstrap principle, its manifestation and consistency for the i.i.d.

case, and describes in more detail procedures for dependent data. Also, it synthesizes

theoretical results on the consistency of block bootstrap estimation for dependent data,

and theoretical and practical considerations for the choice of an optimal block size.

6.1 Bootstrap Principle

The bootstrap is a computer-intensive statistical technique that was first introduced by

Efron nearly 30 years ago [64]. It has since found numerous applications in which it out-

performed conventional approaches, or provided answers in problems too complex for

conventional solutions to exist (cf. [83, 190, 191, 192, 194] for recent applications, and

[187, 189, 195, 196] for an overview on the topic). It is recently gaining popularity due to

continuously growing computer facilities.

Typically, the bootstrap is involved in inference problems where one would like to charac-

terize the statistical properties of the estimator for a population parameter of the random

process underlying the data, without making strong assumptions on the structure of the

random process, as in the following situation: Let the sample XN = {x1, · · · , xN} be a

finite size realization of the random process {Xn}, i.e. of a sequence of random variables

(r.v.) X1, X2, · · · with unknown joint (population) distribution F . Suppose that the param-

eter of interest is the population parameter θ, which depends on the unknown population

distribution F , θ = θ(F ). Also, suppose that an estimator for θ based on the sample XN ,

θ̂N = t(XN ), has been fixed. Many inference problems are concerned with the statisti-

cal characterization of θ̂N with respect to θ (for instance, accuracy of θ̂N – bias, mean

squared error, etc.) and hence demand for knowledge of the sampling distribution of

θ̂N − θ. However, since the joint distribution of the sample XN is unknown, the sampling

distribution of θ̂N−θ is unknown. The bootstrap approach to solving this type of problems

is the following:

1. First, construct an estimate of the joint distribution F from the sample XN . In the

simplest case, the estimate is the empirical distribution of the sample.

2. Second, create a bootstrap sample or resample X ∗
N by suitably sampling from the

estimate of the population. In the simplest case, this is an i.i.d. random sample

from the estimate of the population. Then, approximate the relation between the

population and the sample by the relation between the sample and the bootstrap

sample X ∗
N .

In other words: Use the relation between sample and a suitably constructed resample

– hence between θ̂N = t(XN ) and θ̂∗N = t(X ∗
N ) – to reproduce the relation between

population and sample – hence between θ and θ̂N – assuming1:

θ̂N − θ
d≈ θ̂∗N − θ̂N .

1The above equation is of course only meaningful in the heuristic sense of the distribution of θ̂∗
N − θ̂N

being ”close” to the distribution of θ̂N − θ. Formal results for rescaled versions of these distributions can

be obtained for specific situations. Typically, they measure ”closeness” by asymptotic convergence of the

distributions to the same limit distribution, and by the rate of convergence.
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The estimate θ̂N = t(XN ) depends only on the sample XN . Also, since X ∗
N depends only

on the sample XN , so does the bootstrap estimate θ̂∗N = t(X ∗
N ). Therefore, θ̂N and θ̂∗N

can always be calculated in practice.

This principle is common to all bootstrap methods and, more generally, resampling tech-

niques. Different bootstrap methods and their particular properties arise from the exact

definition of the central parts of the principle: How is the estimate for the population con-

structed from the sample? How are the bootstrap samples obtained from this estimate?

The term bootstrap resampling commonly refers jointly to the construction of the popu-

lation estimate and sampling from the estimate, hence to the construction of a bootstrap

sample from the sample of observations. The next section gives an overview of the most

important bootstrap methods and some of their properties.

6.2 Bootstrap Resampling

6.2.1 Bootstrap for i.i.d. data

The bootstrap principle is most intuitive and explicit in the case when the sample XN =
{x1, · · · , xN} consists of realization of i.i.d. random variables with common marginal dis-

tribution P. The sample therefore has joint distribution FN = PN , and any population

parameter of interest is a functional of the marginal distribution only, θ = θ(P ).
Let θ̂N = t(x1, · · · , xN ) be an estimator of θ, and suppose we are interested in the distri-

bution of θ̂N − θ, which we call GN . The distribution GN is unknown since P and θ are

unknown. The bootstrap approach for estimation of GN in the i.i.d. case is:

1. First, construct an estimate P̂N of P from the available data XN = {x1, · · · , xN}.

Commonly, P̂N is chosen to be the empirical distribution function of the sample,

P̂N (y) =
1

N

N∑

n=1

h(y − xn),

where h(·) denotes the Heaviside (step) function2. This gives rise to the nonpara-

metric i.i.d. bootstrap and corresponds to Efron’s original resampling plan [64].

Alternatively, if a plausible parametric model for P is available, P̂N can be obtained

by fitting a model distribution to the sample XN . This alternative choice of P̂N gives

rise to the parametric bootstrap.

2. Second, reproduce the relation between the population and the i.i.d. sample XN by

drawing an i.i.d. bootstrap sample X ∗
N = {x∗1, · · · , x∗N} from the estimated distribu-

tion P̂N :

X ∗
N = {x∗1, · · · , x∗N} : x∗n

i.i.d.∼ P̂N .

For the nonparametric i.i.d. bootstrap, this corresponds simply to random drawing,

with replacement, samples xn from the original sample XN .

The bootstrap version of θ̂N = t(x1, · · · , xN ) is θ̂∗N = t(x∗1, · · · , x∗N ). The conditional dis-

tribution G̃N of θ̂∗N − θ̂N is usually approximated by its empirical distribution, which is ob-

tained numerically by simulation, i.e., drawing a large number R of resamples X ∗(r)
N , r =

2The Heaviside function is defined as: h(t) = 1 for t ≥ 0, and h(t) = 0 for t < 0
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1, · · · , R, and calculating bootstrap estimates θ̂
∗(r)
N , r = 1, · · · , R. Then:

GN (y) ≈ G̃N (y) =
1

R

R∑

r=1

h(y − (θ̂
∗(r)
N − θ̂N )).

It can be shown that under mild conditions on P and on the nature of θ̂, the conditional

distribution G̃N of θ̂∗N − θ̂N is a consistent estimator of the distribution GN of θ̂N − θ.
For instance, if the parameter of interest is the centered and scaled sample mean TN =√
N(x̄N −µ)/σ and its bootstrap version is T ∗

N =
√
N(x̄∗N − x̄N )/ŜtdNX, it can be shown

[38, 161] that if the variance of the population exists, σ2 = Varx <∞, then:

sup
y

|P ∗(T ∗
N ≤ y) − P (TN ≤ y)| = o(1) a.s. as N → ∞.

Also, under some additional conditions (existence of third moment and non-degeneracy

of the population distribution):

sup
y

|P ∗(T ∗
N ≤ y) − P (TN ≤ y)| = O(N−1(log logN)1/2) a.s. as N → ∞,

and therefore, not only is the bootstrap approximation a consistent estimator, but it is

more accurate than the standard normal approximation, which is of order O(N−1/2) only.

Extensive accounts for the i.i.d. bootstrap can be found in, e.g., [25, 48, 56, 65, 68, 81,

119, 157].

6.2.2 Bootstrap for dependent data

In many practical situations, data display some form of dependence, and this is also in

general the case for empirical quantities involved in estimation procedures in multifractal

analysis. In such situations, the simple i.i.d. bootstrap is inappropriate and fails in gen-

eral. To appreciate why, consider the seminal work of Singh [161], which investigates the

specific case of the centered and scaled sample mean for m-dependent data. The work

shows that the i.i.d. bootstrap distribution of the centered and scaled sample mean does

converge to a normal distribution, but with a variance that is different from the variance of

the distribution of the centered and scaled sample mean. The i.i.d. bootstrap resampling,

consisting in drawing with replacement one observation at a time, entirely ignores the

dependence structure of the data and hence the lag-covariance terms in the asymptotic

variance of the (centered and rescaled) sample mean.

6.2.2-a) Model based bootstrap

The model based bootstrap is a simple way to extend the i.i.d. bootstrap to dependent

data. It can be used when the data admits specific model assumptions, such as:

Xn = f(Xn−1, · · · , Xn−p;π) + εn,

where π is a vector of parameters, and {εn} is a sequence of i.i.d. random variables,

independent of the random variables {X1, · · · , Xp}, with common distribution3, or such

3For instance, this could be an AR(p) process.
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as (linear) regression models [56]. If such model assumptions are applicable, the i.i.d.

bootstrap can be used by applying it to the i.i.d. innovations εn, rather than applying it to

the dependent original sample. After estimation of the parameters π̂ and the residuals ε̂n
from the estimated model, a bootstrap sample is obtained by i.i.d. bootstrap resampling

from the residuals ε̂n (cf. [67], [74] or [101] for more details):

X∗
n = f(X∗

n−1, · · · , X∗
n−p; π̂) + ε∗n.

6.2.2-b) Block bootstrap

The model based bootstrap is only applicable in the specific cases where the data admit

rather strong model assumptions. In many practical situations, such assumptions are

not justified, or there is not enough structural knowledge on the data available. Alterna-

tively, block bootstrap methods are applicable to dependent data in a nonparametric and

model-free manner. The key idea is to resample blocks of consecutive samples instead

of resampling one observation at a time as in the i.i.d. bootstrap. Consequently, the

dependence structure of the original data is preserved within each block. Under certain

assumptions, the block bootstrap asymptotically reproduces the dependence structure of

data generated by a weakly dependent process.

Block bootstrap methods are popular for statistical inference for dependent data, since

they do not require many structural assumptions for the data. There exist many variants

of block bootstrap, for instance [42] and [79] (Nonoverlapping Block Bootstrap (NBB)),

[102] and [115] (Moving Block Bootstrap (MBB)), [140] (Circular Block Bootstrap (CBB))

or [141] (Stationary Block Bootstrap (SBB)).

An extensive account for all of these methods would go beyond the scope of this syn-

thetic overview (cf. [104] and references therein for more details). In what follows, we will

therefore concentrate only on the most popular and efficient block bootstrap methods.

[104] shows numerically and analytically that the MBB and CBB outperform the NBB and

SBB in terms of mean squared error in many situations. Therefore, we concentrate in this

section on the MBB and in particular the CBB method and describe them in more detail.

Also, we provide a short synthesis of conditions for asymptotic consistency and related

theoretical aspects. An extensive account for theoretical and practical properties of these

methods, as well as their limitations, can be found in [104] and the references therein.

6.2.2-b)-1 Moving Block Bootstrap (MBB) Let X1, X2, · · · be a sequence of station-

ary random variables, and XN = {x1, · · · , xN} an observation of sample size N . Let the

estimator of interest be of the form4 θ̂N = t(FN ), where FN is the empirical distribution

function of XN , and t(FN ) is a real-valued functional of FN . Let l ≤ N be an integer, and

suppose for simplicity that N is a multiple of l, N/l = m ∈ N. Define the blocks Bi of l
consecutive observations starting at xi:

Bi = {xi, · · · , xi+l−1}, 1 ≤ i ≤ N − l + 1.

Let {B∗
1, · · · ,B∗

m} be a simple random sample of blocks, drawn independently with re-

placement from the collection of available blocks {B1, · · · ,BN−l+1}, and let the samples

4This class of estimator depends only on the one-dimensional (marginal) empirical distribution and in-

cludes estimators such as, for instance, the sample mean and M-estimators of location and scale.
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in the blocks B∗
i be denoted by B∗

i = {x∗(i−1)l+1, · · · , x∗il}. Then, the moving block boot-

strap sample is given by:

X ∗
N = {B∗

1, · · · ,B∗
m} = {x∗1, · · · , x∗N}.

The bootstrap version of the estimator θ̂N is given by θ̂∗N = t(F ∗
N ), where F ∗

N is the em-

pirical density function of X ∗
N . Finally, the sampling distribution of θ̂N − θ is approximated

by the empirical distribution of θ̂∗N − θ̂N . It is obtained by drawing R bootstrap resamples

X ∗(r)
N , r = 1, · · · , R and calculating R bootstrap estimates θ̂

∗(r)
N , r = 1, · · · , R.

6.2.2-b)-2 Circular Block Bootstrap (CBB) The MBB resampling suffers from an un-

desirable boundary effect: Whereas observations xi, l ≤ i ≤ N− l−1 at the center of the

sample are in exactly l of the blocks, the l − 1 observations at the beginning and those

at the end of the sample are in less than l of the blocks and are hence less likely to be

within a bootstrap sample than those at the center. A simple solution to this boundary

problem [140] is to periodically extend the sample XN by the l− 1 first data points, giving

the ”circularized” sample:

X̃N = {x1, · · · , xN , x1, · · · , xl−1}.

The circular block bootstrap (CBB) is given by MBB on the circularized sample X̃N , and

hence assigns the same probability mass to each of the observations xi.

6.3 Theoretical and Practical Aspects of Block Bootstrap Meth-

ods

6.3.1 Consistency under the smooth function model

Theoretical accounts for the consistency and performance of block bootstrap methods

exist for different specific cases, for instance in the seminal works [102] and [115] for the

MBB. We choose to summarize a result, taken from [104], providing sufficient conditions

for consistency for block bootstrap estimation for parameters and estimators such as

defined for multifractal analysis.

Suppose that {Yn}n∈Z is a real-valued stationary random process in Rd1 , f : Rd1 →
Rd2 is a Borel measurable function, and suppose that the population parameter of interest

and its estimator are of the form θ = H(Ef(Yn)) and θ̂N = H(N−1
∑N

n=1 f(Yn)). Here,H :
Rd2 → Rd is a smooth function in the neighborhood of Ef(Yn). Hence, both the population

parameter θ and its estimator are smooth functions of population and sample means,

respectively, of the transformed sequence {Xn = f(Yn)}n∈Z. This model is commonly

called the smooth function model (see [37] and [81]). For estimators belonging to this

class, [104] (Theorem 4.1) gives the following sufficient conditions for the consistency of

the block bootstrap distribution function estimator:

√
N(θ̂∗N − θ̂N ) =

√
N(H(Ê∗

Nf(Y ∗)) −H(ÊNf(Y )))

of the sampling distribution of:

√
N(θ̂N − θ) =

√
N(H(ÊNf(Y )) −H(Ef(Y ))) :
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C0 The block size l is chosen such that l goes to infinity as the sample size N grows to

infinity, but at a slower rate than N : l → ∞, l/N → 0 as N → ∞.

C1 H is differentiable in a neighborhood NH = {x ∈ Rd : ||x − EX1|| < 2η} of EX for

some η > 0;
∑

|α|=1 |DαH(EX1)| 6= 0, and the first-order partial derivatives of H
satisfy a Lipschitz condition of order κ > 0 on NH .

C2 The moments of the transformed variables {Xn = f(Yn)} are finite up to some order

2 + δ, δ > 0:

E||X||2+δ <∞. (6.1)

C3 The dependence decays sufficiently fast:

∞∑

m=1

α(m)δ/(2+δ) <∞, (6.2)

where α(m) is the α-mixing coefficient at lag m for the time series of transformed

variables {Xn = f(Yn)} (see e.g. [63]).

6.3.2 Block size: Theory and practice

Performance of block bootstrap estimators depend on the block size l, since the sampling

distribution of an estimator depends on the joint distribution of {x1, · · · , xN}. Hence, the

block size l must grow to infinity with sample size N to eventually capture the depen-

dence structure of the whole sequence {Xn}n≥1. Also, consistency of block bootstrap

estimators is usually linked to conditions on the block size of type C0, obligating l to grow

at a slower rate than N .

In practice, having to choose an appropriate block size is one of the main drawbacks of

block bootstrap methods, since little of practical use is known for this choice. From a

theoretical point of view, there exist results on the optimal rate β, l ∼ Nβ, with 0 < β < 1
typically depending on the type of estimator of interest. Also, for specific cases, expres-

sions for the optimal (in terms of mean squared error) block size can be obtained (see

[104] for an overview). Such results are, however, not very useful in most real-world

cases: First, optimal rate results do not help in small sample situations since they only

give the rate at which l should grow with N , but not the exact size for fixed N . Second,

mean squared error expansions typically require much more structural knowledge of the

process than is available in many practical situations. Some authors proposed nonpara-

metric plug-in methods, based on bootstrap after bootstrap or subsampling, for estimation

of a ”good” block size [104]. Such methods are, however, computationally very expensive

and thus often of limited use in practice. Therefore, in practice, the block size l is often

chosen empirically, for instance by numerical inspection of the dependence properties of

the data, or by analogy with estimation problems similar to the real-world problem, i.e. by

resorting to synthetic model processes and simulation.
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Scale invariant processes are in general non stationary and possess intricate depen-

dence structure and power law type correlations. In a statistical analysis and modeling

perspective, these properties represent major difficulties. Indeed, any of these proper-

ties are decisive against the straightforward applicability of (standard) bootstrap meth-

ods: Stationarity is an essential requirement for (direct) application of any resampling

technique, and the bootstrap fails for non stationary data. Power law type correlation

is a significant difficulty for application of resampling techniques and is likely to violate

the mixing conditions for bootstrap consistency. Although alternative techniques such as

subsampling could theoretically cope with intricate dependence such as LRD (cf. e.g.

[104] and references therein), they add extra practical difficulties due to additional renor-

malization constants, and are in general not second order correct1. Therefore, it is no

good to attempt the construction of bootstrap samples from realizations of scale invariant

processes.

In contrast, the wavelet coefficients of scaling processes with stationary increments are

stationary2. The wavelet coefficients of fBm are only weakly correlated and expected to

fulfill mixing conditions for bootstrap consistency [4, 6, 70, 166, 169]. For other scale in-

variant processes (non Gaussian H-sssi and MMC processes), practically no result was

known at the time this chapter was started (see, a contrario, [77]). We therefore suppose

that wavelet coefficients of such processes have similarly dependence as for fBm (as

suggested for the covariance in [77]). Hence, the discrete wavelet coefficients of scaling

processes are assumed to fulfill the prerequisites for bootstrap.

Therefore, we propose in this chapter the use of wavelet domain bootstrap for scaling and

multifractal analysis. The contributions lie in the definition of two original block bootstrap

resampling schemes: First, the definition of a wavelet domain time (1d) and space (2d)

block bootstrap resampling, and second, the definition of time-scale (1d) and space-scale

(2d) block bootstrap resampling in the time (space) scale plane of the discrete wavelet

transform (DWT).

This work has been reported and used in [173, 174, 175, 179, 180, 182].

7.1 Multifractal Attribute Estimation and Bootstrap

7.1.1 Bootstrap in the wavelet domain

DWT domain bootstrap was first introduced in [137, 151]. The aim was the creation of

surrogate data from time series and long range dependent time series. Percival [137]

coined the term wavestrapping for this approach. Wavestrapping is based on the as-

sumption that the difficult statistical context in the time domain can be circumvented by

passing through the wavelet domain: The approach uses nonparametric i.i.d. bootstrap

for the creation of bootstrap samples of the wavelet coefficients and the approximation

coefficients, hence assuming independence of both the wavelet and the approximation

coefficients. Then, bootstrap samples of the original time series are obtained by inverse

wavelet transform. The use of wavestrapping has been reported in [40, 41, 183]. Mod-

ified versions have been adopted in [13] and [152], where a stationary bootstrap and a

scale-by-scale block bootstrap are proposed for the creation of bootstrap resamples of

1In fact, their convergence is often worse than that of the Normal approximation.
2The restriction to processes with stationary increments can be further relaxed to processes with station-

ary N -th order increments, under condition that N ≤ Nψ, where Nψ is the number of vanishing moments of

the analyzing wavelet.
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hierarchical processes and of inertial sensor noise time series, respectively. The initial

goal – the creation of surrogate time series – remained the same.

For multifractal analysis purposes, wavestrapping needs to be modified to account for

the following particularities: First, the key of multifractal analysis is that the (functional

analysis) characterization of the process is based directly on its wavelet Leaders [89,

92]. Therefore, the creation of surrogate trajectories from bootstrap samples of wavelet

coefficients by inverse wavelet transform is irrelevant. Also, it is – with the exception

of certain special cases – unlikely that this would result in time series that reproduce

the multifractal properties of the original process. What is more, estimations are based

on quantities defined directly in the wavelet domain. Hence, bootstrap samples need to

reproduce the statistical properties of the wavelet coefficients and Leaders. Therefore,

the residual dependence of wavelet coefficients and the potential structural inter-scale

dependence of Leaders should be taken into account, since they may have significant

impact on the statistical properties of the estimators.

Therefore, we propose to base bootstrap estimation for multifractal attributes on DWT

domain block bootstrap samples of wavelet coefficients and Leaders. The procedure will

be defined in detail in Section 7.2.

7.1.2 Bootstrap and structure functions

Since the logarithm of the expectation of the structure functions S(j, q) and the expecta-

tion of cumulants C(j, p) theoretically display a linear dependence with scale j (cf. Eqs.

(2.58) and (2.68)), model based bootstrap, i.e. bootstrap resampling of centered resid-

uals of a linear model, could be applied. Such an approach would have the advantage

of being computationally much less demanding than DWT domain bootstrap, since boot-

strap samples would consist of only a few structure function residuals. It encounters,

however, severe practical limitations and difficulties:

1. The information available in the sample of coefficients is reduced to only a few

structure function values: Indeed, for a sampleX of lengthN , there are only roughly

log2N structure function and cumulant values and hence residuals. In practical

multifractal analysis, the number of available (dyadic) scales exceeds very rarely the

value 20 and is usually in the neighborhood of the value 10, but can be significantly

smaller: For some applications, for instance for many biomedical signals and for

images, typical sample sizes are of the order of N = 128, hence resulting in less

than 6 available scales.

2. The structure functions and cumulants (and their linear model residuals) form het-

eroscedastic samples, since based on dyadic wavelet trees, for which the number

of coefficients (involved in the calculation of structure functions) decreases with

increasing scale j. The heteroscedasticity is (asymptotically) known only for Gaus-

sian self similar processes [169], for which consequently bootstrap methods for

heteroscedastic residuals (cf. [56]) could be used. In general, it is unknown. Al-

though bootstrap procedures for unknown heteroscedasticity have been proposed

[73, 120], this constitutes a major technical difficulty for model based bootstrap re-

sampling of structure functions.

3. The definition of wavelet Leaders Eqs. (2.54) and (2.55) is likely to introduce addi-

tional dependence between wavelet Leaders at different scales and hence structure
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function and cumulant linear model residuals. Together with heteroscedasticity and

a small number of available scales, dependent residuals constitute a major practical

difficulty for applying bootstrap to the linear regression model.

4. Finally, bootstrap resampling of the samples of structure functions and cumulants

can not provide bootstrap estimations on the structure functions and cumulants, and

can hence not be used for constructing, for instance, confidence limits for structure

functions.

To conclude, theoretical and practical difficulties and limitations suggest that in the spe-

cific context of multifractal analysis, model based bootstrap for structure functions is im-

practicable.

7.2 Wavelet Domain Block Bootstrap Resampling and Estima-

tion Procedures

In this section, we define the wavelet domain block bootstrap resampling and estima-

tion procedures for multifractal analysis: First, we define how the bootstrap sample of

wavelet Leaders L∗
X = {L∗

X(j, k)} (L∗
X = {L∗

X(j, k1, k2)}) is obtained from the collection

of Leaders LX = {LX(j, k)} (LX = {LX(j, k1, k2)}) (Sections 7.2.1 and 7.2.2). Then, we

describe how bootstrap estimates are obtained from the bootstrap sample of Leaders L∗
X

(Section 7.2.3). For clarity reasons, we prefer to define wavelet domain block bootstrap

resampling separately for the two practically most important cases, namely for 1d (sig-

nals) and for 2d (images) data. The definitions can be readily extended to the general

n-dimensional data case without any theoretical or practical difficulties, as will become

obvious from the definitions in 1d an 2d. The equivalent procedures for wavelet coeffi-

cient based estimation are obtained by replacing wavelet Leaders LX = {LX(j, k)} with

wavelet coefficients DX = {dX(j, k)} in the definitions, mutatis mutandis.

The wavelet domain block bootstrap resampling for multifractal analysis should ideally

ensure bootstrap samples with (asymptotically) the same dependence – both in time and

in scale – as in the original sample of Leaders, by appropriate block construction. Since

wavelet coefficients and Leaders at a given scale j form stationary processes, blocks can

extend over a certain time length for capturing time dependence. However, coefficients or

Leaders at different scales j and j′ do not have the same marginal distributions, and con-

sequently any model-free block resampling must not mix coefficients at different scales.

The general solution for model-free block bootstrap in the wavelet domain is therefore

given by blocks with certain time length that extend over a certain range of scales, and

resampling that assures that blocks appear at the same range of scales in the bootstrap

samples as they do in the original sample. The number of practically available scales

in multifractal analysis being relatively small (typically, smaller than 20), we choose not

to consider blocks extending over a fraction of the number of available of scales in this

manuscript, and study only the two extreme cases: In the first one, which we call time

block (T-B), blocks extend only in time direction and hence consist of coefficients from

the same scale only. In the second one, which we term time-scale block (TS-B), blocks

have a certain time length and extend over all available scales – they hence consist of all

coefficients within a certain time interval.

Chronologically, since little is known on the inter-scale dependence of wavelet Leaders,

the conceptually simpler and easier to implement T-B construction has been defined first
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Figure 7.1: Time block bootstrap. Illustration of time block bootstrap resampling

for N = 26 and l = 4. On top, the set of original coefficients (’•’) in the time-scale

plane. The coefficients marked by circles belong to the time blocks Bj=2,k(2) (’◦’)

and Bj=1,k(6) (’◦’) at scales j = 2 and j = 1, respectively. The bootstrap resam-

ple {L∗
X(j, 1), · · · , L∗

X(j, nj)} at scale j consists of the coefficients that lie within the

mj = ⌈njl ⌉ blocks Bj,k(b), b = 1, · · · ,mj drawn independently and with replacement from

the collection of available blocks at scale j. The final bootstrap sample L∗
X = {L∗

X(j, k)}
is composed of the bootstrap samples {L∗

X(j, 1), · · · , L∗
X(j, nj)} at all available scales j.

[173, 174, 179]. The practically more complex TS-B construction was defined afterwards

from heuristic arguments based on the key properties of wavelet Leaders [182, 175].

7.2.1 Time block and space block bootstrap resampling

The time (or space) block bootstrap sample L∗
X = {L∗

X(j, k)} (L∗
X = {L∗

X(j, k1, k2)}) is

obtained by circular block bootstrap resampling of Leaders, at each scale j independently.

Hence, the blocks are made up of a vector of l (a square of l × l) consecutive (neighbor-

ing) circularized Leaders at a common scale j. Therefore, the time block (space block)

bootstrap aims at constructing bootstrap samples that asymptotically reproduce residual

correlation between Leaders of the same scale, while blinding out any potential inter-scale

correlation.

7.2.1-a) Definition of time block bootstrap resampling: 1d

Let {LX(j, 1), · · · , LX(j, nj)} be the time series of the nj Leaders at the scale j. Define

{LX(j, nj + 1), · · · , LX(j, nj + l− 1)} = {LX(j, 1), · · · , LX(j, l− 1)}, and the circularized
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sample of Leaders {LX(j, 1), · · · , LX(j, nj + l − 1)}. Let

Bj,k = {LX(j, k), · · · , LX(j, k + l − 1)}, 1 ≤ k ≤ nj

be the block of l consecutive Leaders, starting at LX(j, k). Suppose, for convenience3,

that nj/l = mj ∈ N . Then, the bootstrap sample {L∗
X(j, 1), · · · , L∗

X(j, nj)} at scale j
is composed of the collection of mj · l = nj Leaders within a random sample of blocks

{B∗
j,1, · · · ,B∗

j,mj
}, drawn independently and with replacement from the collection of avail-

able blocks {Bj,1, · · · ,Bj,nj}:

{L∗
X(j, 1), · · · , L∗

X(j, nj)} = {B∗
j,1, · · · ,B∗

j,mj}.

The final bootstrap sample L∗
X = {L∗

X(j, k)} is the union of the bootstrap samples

{L∗
X(j, 1), · · · , L∗

X(j, nj)} for all available scales j:

L∗
X = {{L∗

X(j = 1, ·)}; · · · ; {L∗
X(j = jmax, ·)}} .

The time block bootstrap resampling procedure is illustrated in Fig. 7.1.

7.2.1-b) Definition of space block bootstrap resampling: 2d

Let {LX(j, k1, k2)}n1,j ,n2,j

k1,k2=1 be the collection of the n1,j ·n2,j Leaders at the scale j, and con-

sider the circularized collection {LX(j, k1 mod n1,j , k2 mod n2,j)}n1,j+l−1,n2,j+l−1
k1,k2=1 . Let

Bj,k1,k2 = {LX(j, k′1, k
′
2)}k1+l−1,k2+l−1

k′1=k1,k′2=k2
, 1 ≤ k1 ≤ n1,j , 1 ≤ k2 ≤ n2,j

be the square of l · l neighboring circularized Leaders. Suppose, for simplicity4, that

n1,j · n2,j/l
2 = mj ∈ N . Then, the bootstrap sample {L∗

X(j, ·, ·)} at scale j is com-

posed of the collection of l2 ·mj = n1,j · n2,j Leaders within a random sample of blocks

{B∗
j,1,1, · · · ,B∗

j,mj ,mj
}, drawn independently and with replacement from the collection of

available blocks {Bj,1,1, · · · ,Bj,n1,j ,n2,j}:

{L∗
X(j, 1, 1), · · · , L∗

X(j, n1,j , n2,j)} = {B∗
j,1,1, · · · ,B∗

j,mj ,mj}.

The final bootstrap sample is the union of the bootstrap samples for all available scales

j:
L∗
X = {{L∗

X(j = 1, ·, ·)}; · · · ; {L∗
X(j = jmax, ·, ·)}} .

7.2.2 Time-scale block and space-scale block bootstrap resampling

In contrast to the time blocks, which ”extend” only over one scale and hence produce

bootstrap samples for which any potential inter-scale dependence is whitened out, the

time-scale (or space-scale) blocks extend over all available scales. Hence, they preserve

inter-scale correlations for coefficients within a certain time neighborhood, determined

by the block size. Such a block construction is expected to be particularly well adapted

3If nj/l /∈ N, mj is defined as mj = ⌈nj/l⌉.
4If n1,j · n2,j/l2 /∈ N, mj is defined as mj = ⌈n1,j · n2,j/l2⌉.
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Figure 7.2: Time-scale block bootstrap for signals. Illustration of time-scale block

bootstrap resampling for N = 26 and l = 23. On top, the set of original coefficients (’•’)

in the time-scale plane. The coefficients marked by circles (’◦’) belong to the time-scale

block Bk(1). The bootstrap resample L
∗(r)
X (bottom) consists of the coefficients that lie

within the m = ⌈N2l ⌉ = 4 time-scale blocks Bk(b), b = 1, · · · ,m, drawn independently and

with replacement from all available overlapping circular time-scale blocks.

for wavelet Leaders: First, the definition of wavelet Leaders heuristically enlarges depen-

dence for different time positions k and k′ and in particular for different scales j and j′

(cf. Sections 3.1 and 3.2), hence appropriateness of block constructions for capturing

inter-scale dependence. Second, time-scale blocks ensures that bootstrapped Leaders

retain one of their key properties for multifractal analysis, namely that they are hierarchi-

cal quantities and hence non-decreasing with increasing scale. An example for such a

block for two-dimensional observations is illustrated in Fig. 7.3.

7.2.2-a) Definition of time-scale block bootstrap resampling: 1d

Let k denote the time index for the discrete time observation X[k] = X(kTs) at sampling

period Ts and let k′ be the time indices of the wavelet Leaders LX of X at scale j′.
Then, the time-scale block of Leaders Bk is defined as the collection of time-circularized

Leaders in the stripe of time length 2l extending over all scales in the time-scale plane,

centered at time k :

Bk = {LX(j′, k′ mod nj′) : |k − k′2j
′ | ≤ l, 1 ≤ j′ ≤ jmax}, 1 ≤ k ≤ N.

The bootstrap sample L∗
X is composed of the concatenation in time of the Leaders

L∗
X(j, k) within a random sample of m = ⌈N2l ⌉ blocks of Leaders B∗, drawn independently
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Figure 7.3: Illustration of space-scale block construction. The space-scale block of

Leaders Bk1,k2 at position (k1, k2) consists of the collection of Leaders (fat black dots ’•’)

that are within a box with square base of base length of 2l pixel, centered at (k1, k2) and

extending over all scales (red volume).

and with replacement from the available blocks {B1, · · · ,BN}:

L∗
X = {B∗

1, · · · ,B∗
m}.

The definition of a time-scale block and of a bootstrap sample is illustrated in Fig. 7.2.

7.2.2-b) Definition of space-scale block bootstrap resampling: 2d

Suppose the image is of size N1 × N2. The space-scale blocks of Leaders are de-

fined as 3D boxes with a square base of side length of 2l pixels and extending over all

scales. The Leaders lying within such a box form one space-scale block. The blocks are

constructed overlapping and from space-circularized Leaders, i.e. from LcX(j, k1, k2) =
LX(j, k1 modn1,j , k2 modn2,j). More precisely, the collection of Leaders LX(j′, k′1, k

′
2)

that form a space-scale block Bk1,k2 , of 2l× 2l pixels square base and located at position

(k1, k2), is given by:

Bk1,k2 = {LX(j′, k′1 modn1,j′ , k
′
2 modn2,j′) :

|k1 − k′12
j′ | ≤ l, |k2 − k′22

j′ | ≤ l, 1 ≤ j′ ≤ jmax}. (7.1)

This definition of a space-scale block is illustrated in Fig. 7.3.
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Figure 7.4: Estimation and bootstrap estimation scheme. From the data, the dis-

crete wavelet coefficients and wavelet Leaders are computed (top left). From the wavelet

Leaders, structure functions SL(j, q) and ĈL(j, p) are calculated (middle left) and the

corresponding estimates for the multifractal parameters θ ∈ {ζ(q), D(q), h(q), cp} are

obtained (bottom left). From the sample of wavelet Leaders LX , a large number R of

bootstrap samples of wavelet Leaders L∗(r)
X , r = 1, · · · , R are generated by T-B or TS-B

bootstrap: Each bootstrap sample is obtained by drawing at random, with replacement,

time (scale) blocks of Leaders from the set of available overlapping, circularized blocks of

Leaders (top right). From these R bootstrap samples, bootstrap structure function esti-

mations SL(j, q)∗ and ĈL(j, p)∗ are obtained (middle right). From the bootstrap structure

function estimations SL(j, q)∗ and ĈL(j, p)∗, bootstrap multifractal attribute estimates are

calculated (bottom right). The empirical distributions of bootstrap estimates are used for

e.g. confidences interval construction (center and bottom left, in red). (Results are ob-

tained as means over 1000 realizations of CPM-MF-fBm of sample size (estimations in

black, theoretical values in blue). Bootstrap percentile confidence limits (see Chapter 8)

are estimated from R = 399 bootstrap samples per realization).

The bootstrap sample L∗
X is composed of the Leaders L∗

X(j, k1, k2) within a random

sample of m = ⌈
√
N1·N2
2l ⌉ blocks of Leaders B∗, drawn independently and with replace-

ment from the available space-scale blocks {B1,1, · · · ,BN1,N2}:

L∗
X = {B∗

1,1; · · · ;B∗
m,m}.

The Leaders L∗
X(j, k1, k2) are concatenated in space, such that each resampled Leader

remains located at its original scale j.

7.2.3 Bootstrap estimation and bootstrap inference

Bootstrap inference for quantities such as confidence intervals, statistical tests, bias or

mean squared error estimates etc., characterizing statistical properties of the estimates
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and structure functions θ̂ ∈ {ζ̂(q), ĉp, D̂(q), ĥ(q), S(j, q), Ĉ(j, p)}, are based on the empiri-

cal distributions of the bootstrap estimates, θ̂∗(r) ∈ {ζ̂(q)∗(r), ĉ∗(r)p , D̂(q)∗(r), ĥ(q)∗(r), S(j, q)∗(r),
Ĉ(j, p)∗(r)}, r = 1, · · · , R. The bootstrap estimates θ̂∗(r) are obtained by applying the

estimation procedures defined in Section 2.6 to R bootstrap samples of Leaders L∗(r)
X ,

r = 1, · · · , R.

The final multifractal attribute estimation and bootstrap estimation procedure can hence

be summarized as follows:

1. First, calculate the Leaders LX from the observation X, and apply the estimation

procedures defined in Section 2.6 to obtain structure function and multifractal at-

tribute estimates θ̂ ∈ {ζ̂(q), ĉp, D̂(q), ĥ(q), S(j, q), Ĉ(j, p)}.

2. Second, create a large number R of bootstrap samples of Leaders L∗(r)
X , r =

1, · · · , R, following the bootstrap resampling procedures described above (Sections

7.2.1 and 7.2.2).

3. Third, apply the estimation procedures defined in Section 2.6 to each of these boot-

strap samples of Leaders L∗(r)
X to obtain a collection of structure function and mul-

tifractal attribute bootstrap estimates θ̂∗(r), r = 1, · · · , R.

4. Finally, use the relation between estimates and the empirical distribution of the boot-

strap estimates:

θ̂∗ − θ̂

to approximate the relation between the parameters and the sampling distribution

of the estimates:

θ̂ − θ

and for bootstrap inference, i.e. for the construction of confidence intervals or sta-

tistical tests, or for the estimation of bias or mean squared error etc..

The outline of this estimation, bootstrap resampling and bootstrap estimation procedure

is illustrated in Fig. 7.4 for a 1d signal. The precise definition of confidence intervals and

statistical tests based on this bootstrap approximation of the sampling distribution of the

structure function and multifractal attribute estimators will be considered in Chapters 8, 9

and 10.

7.2.4 Double bootstrap

Bootstrap can be used to estimate the accuracy of the bootstrap estimate θ̂∗ itself. This

”bootstrapping the bootstrap”, i.e. application of bootstrap to the bootstrap estimation it-

self, is commonly referred to as double bootstrap (see e.g. [35, 36, 56, 66]).

The double bootstrap estimates θ̂∗∗ of the bootstrap estimate θ̂∗(r) are obtained by apply-

ing the bootstrap procedure5 in Section 7.2.3 to the bootstrap sample L∗(b)
X : First, apply

the resampling procedures in Section 7.2.1 or Section 7.2.2 S times to the bootstrap

sample of Leaders L∗(r)
X to obtain S double bootstrap samples of Leaders L∗∗(r,s)

X , s =
1, · · · , S. Second, apply the estimation procedures of Section 2.6 to each of these dou-

ble bootstrap samples of Leaders L∗∗(r,s)
X to obtain a collection of structure function and

5The first step can obviously be skipped, since it corresponds to the second step of the initial bootstrap

estimation and hence is already calculated.
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multifractal attribute double bootstrap estimates θ̂∗∗(r,s), s = 1, · · · , S.

One example in which double bootstrap is used are pivoted (or studentized) statistics

(e.g. [35, 36]):

Sθ =
θ̂ − θ

σ̂∗θ
, (7.2)

where σ̂∗θ = Ŝtd∗θ̂∗ is a bootstrap estimation of the standard deviation of θ̂. The idea be-

hind this normalization is the elimination of free parameters in the statistics: For instance,

if θ̂ is Gaussian, Sθ has no free parameter. The bootstrap version of this statistic is given

by:

S
∗(r)
θ =

θ̂∗(r) − θ̂

σ̂
∗∗(r)
θ

, r = 1, · · · , R, (7.3)

where σ̂
∗∗(r)
θ = Ŝtd∗∗θ̂∗∗(r,·) is the double bootstrap standard deviation estimate of θ̂∗(r).

The double bootstrap can also be used for coverage error correction for bootstrap confi-

dence intervals or size error correction for statistical tests (cf. adjusted bootstrap confi-

dence intervals and test acceptance regions in Sections 8.1.2 and 9.1.3, respectively).

7.3 Statistical Aspects of Bootstrap Resampling for Multifrac-

tal Analysis

This section discusses the conditions for consistency of the circular block bootstrap (cf.

Section 6.3.1) for the time block and time-scale bootstrap sampling and estimation that

we defined in the previous section: Applicability of the smooth function model conditions

C1 to structure function, cumulant, and multifractal attribute estimation; Condition of finite

moments C2; Theoretical and practical choice of block size. The study of the dependence

conditions C3 is postponed to Chapter 11.

7.3.1 C1: Smooth function model

7.3.1-a) Structure functions

It is easy to see that the logarithm of structure functions, Y (j, q) = log2 (E [LX(j, ·)q]), falls

into the smooth function model class by identifying f(y) = yq and H(x) = log(x), hence

Y (j, q) = H(Ef(LX(j, ·))) and Ŷ (j, q) = H( 1
nj

∑nj
k=1 f(LX(j, k))) (cf. Section 6.3.1).

Also, they satisfy the additional conditions C1: The (n-th order) derivatives of H(x) exist

on R+, dn

dxnH(x) = (n− 1)! · (−1)(n−1) · x−n. Since for the scaling processes considered

here, 0 < ELX(j, ·)q at least for some range of q centered around q = 0, the derivatives

of H(x) do exist around Ex = Ef(y) = ELX(j, ·)q.

7.3.1-b) Cumulants

The cumulants Ĉ(j, p) (cf. Eq. (2.72)) of Y = lnLX(j, ·) are smooth functions of the

sample moments of Y and therefore also belong to the smooth function model class. Let

us denote them by CYp for convenience and let us, for instance, express the first three of
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them in terms of the raw moments of Y by identifying fk(Y ) = Y k:

CY1 = Ef1(Y )

CY2 = Ef2(Y ) − (Ef1(Y ))2

CY3 = 2(Ef1(Y ))3 − 3Ef1(Y )Ef2(Y ) + Ef3(Y ).

Hence, the functions H(·) for the first three cumulants are, by setting zk = Efk(Y ):

HCY1
(z1) = z1

HCY2
(z1, z2) = z2 − z2

1

HCY3
(z1, z2, z3) = 2z3

1 − 3z1z2 + z3.

Also, the HCYp
satisfy the conditions C1, since they are twice differentiable w.r.t. zi, and

since the partial derivatives w.r.t. zp are in general non-zero (cf. Eq. (2.72)):

d

dzp
HCYp

(z1, · · · , zp) =
d

dzp
zp −

p−1∑

k=1

(
p− 1

k − 1

)
HCY

k
(z1, · · · , zk)zp−k =

d

dzp
zp = 1.

7.3.1-c) Linear fits: Multifractal attribute estimations

Finally, notice that the multifractal attribute estimation for ζ(q) and cp (Eqs. (2.65) and

(2.71)) are within the smooth function model and satisfy C1, since they are deterministic

linear combinations of the smooth functions of means Y (j, q) = log2 S(j, q) and Ĉ(j, p).

Conclusions. To conclude, (log of) structure functions, cumulants and multifractal

attributes are within the smooth function model and satisfy the additional conditions C1.

7.3.2 C2: Finiteness of moments

7.3.2-a) Structure functions

The moment condition, E||X||2+δ < ∞, for structure functions SL(j, q) translates to the

finite moment condition for the wavelet Leaders:

ELX(j, ·)q(2+δ) <∞, 0 < δ. (7.4)

Self-similar processes with stationary increments. For fv H-sssi processes, the

moments of all orders exist. Hence, if δ <∞, the condition Eq. (7.4) is fulfilled for:

−∞ < q <∞.

Multifractal multiplicative cascade processes. For MMC processes, the range for

which moments of Leaders theoretically exist is finite, −∞ < q−c < 0 < q+c < +∞ (cf.

Section 2.7.1-d)). Therefore, the condition Eq. (7.4) is only fulfilled for the range of

statistical orders:
q−c

2 + δ
< q <

q+c
2 + δ

.

MMC processes and linearization effect. Notice that in practice, the wavelet Leaders

of MMC processes behave as if their moments would exist only in a narrower range of



144 Bootstrap Resampling and Estimation for Multifractal Analysis

statistical orders q ∈ [q−∗ , q
+
∗ ] ⊂ [q−c , q

+
c ] (linearization effect, Section 2.8, Eqs. (2.129) and

(2.130), and Section 5.2). This phenomenon remains a controversial theoretical issue

and has in practice been subject mainly to empirical studies. Therefore, it is at present

not clear in how far it has impact on the asymptotic consistency of the block bootstrap for

structure functions, i.e., if the range of statistical orders q for fulfilling the finite moment

condition C2 has to be narrowed to:

q−c
2 + δ

<
q−∗

2 + δ
< q <

q+∗
2 + δ

<
q+c

2 + δ
.

Empirical elements for answering this question are stated in Section 8.3.6.

7.3.2-b) Cumulants

For cumulants C(j, p), the finite moment condition C2, E||X||2+δ <∞ translates to a finite

moment condition for the log of the wavelet Leaders:

E[(lnLX)p(2+δ)] <∞, 0 < δ. (7.5)

From Eq. (2.70), it follows that equivalently, the derivative dp(2+δ)/dqp(2+δ)ζ(q) of ζ(q) have

to exist in the neighborhood of q = 0. Therefore, for most practically relevant processes

and for those considered in this manuscript, this condition is fulfilled6.

7.3.2-c) Linear fits: Multifractal attribute estimations

Finally, the moment conditions for structure functions S(j, q) and cumulants C(j, p) di-

rectly translate to scaling exponents ζ(q) and log-cumulants cp, consisting of linear com-

binations of S(j, q) and C(j, p), respectively.

Conclusions. To conclude, (the logarithm of) structure functions, cumulants and multi-

fractal attributes satisfy the moment condition C2 within some neighborhood of q = 0 and

for some p ≥ 1 for most practically relevant process classes.

7.3.3 C3: Dependence structure

The dependence condition C3 is not fulfilled for LRD processes [103]. As stated above,

this is precisely the underlying motivation for placing estimation and bootstrap procedures

in the wavelet domain. No results on the dependence structure of wavelet coefficients

for MMC processes were known when the work presented in this chapter was started.

Therefore, we study the dependence structure of wavelet coefficients and its implications

for bootstrap in Chapter 11.

7.3.4 Block size

The choice of the block size is critical for the performance of block bootstrap methods.

For certain simple estimators and for situations where sufficient structural knowledge on

the data is available, mean squared error expansions can be obtained and exploited for

6Note that this is not valid in general for all processes and excludes, for instance, log-stable cascades

[155] and α-stable motion [153] (see Section 2.6.2). Such processes are not considered in this manuscript.
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choosing the block size. For asymptotic consistency of the block bootstrap the block size

l has to go to infinity as the sample size N goes to infinity, slower than N , at a rate Nβ,

0 < β < 1 (Condition C0). The optimal rates β can differ for different types of estimators.

(cf. Section 6.3.2 and references therein).

The block size choice for block bootstrap estimation for multifractal analysis is con-

fronted with the following difficulties:

• Too little is known theoretically on the statistics and dependence of wavelet Lead-

ers for choosing a (close to mean squared error) optimal block size (cf. Section

3.2). Also, in practice, such theoretical results would still involve knowledge on the

precise process properties (for instance, H-sssi or MMC process, and parameter

values), which are in general unavailable in most practical situations.

• Practical multifractal analysis demands for estimates involving many statistical or-

ders q. Also, it involves different types of estimates, such as (moment based) struc-

ture functions, cumulants, and linear fits. Theoretically, the optimal block size is

different for all of these estimates7.

• Finally, for the time-scale (space-scale) block bootstrap, it is not immediately clear

how the time length (space occupation) of the blocks relates to an optimal block

size, since blocks extend as well over scales and do not contain the same number

of discrete coefficients at different scales.

Also, (bootstrap) estimation in multifractal analysis meets the following particularities that

have to be considered for block size choice in practice:

• The sample size in multifractal analysis practically spans only roughly three orders

of magnitude, since a relevant multifractal analysis of signals (images) smaller than

roughly N ≈ 29 (N × N ≈ 29 × 29) is difficult due to the very limited number of

scales available for linear regressions (due to border effects, jmax ≈ 5, depending

on Nψ chosen), and since signals (images) larger than N ≈ 222 (N × N ≈ 211 ×
211) are rarely encountered in practical multifractal analysis. Therefore, whereas it

remains important from a theoretical point of view, choosing a rate β < 1 for block

size evolution with sample size N that is optimal is not a crucial issue in practical

multifractal analysis, and it is preferable from a practical point of view to concentrate

on the small sample properties.

• The practical usability of the bootstrap estimation procedures for multifractal analy-

sis would be rather limited due to computation time if for each estimate a different

block size was used, making a different bootstrap resampling for each estimate nec-

essary. Since the number of estimates for practical multifractal characterization can

easily attain the order of 100 or more, depending on how many different values of q
have to be considered, it is usually preferable to reuse the same bootstrap samples

and hence block size for all estimates.

For these reasons, the block size for block bootstrap estimation for multifractal analysis is

fixed empirically by numerical simulation on synthetic H-sssi and MMC processes, and

7If, for instance, we consider the in practice relatively small number of 10 values for q, this sums up to a

total of thirty estimates ζ(q), D(q), h(q) plus the structure functions, and for each of them a (different) optimal

block size would have to be chosen.
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based on heuristic arguments. Also, the same block size is used for any of the multi-

fractal attribute estimates. The block size choice is described in the next paragraphs. It

gives good empirical results for structure functions and multifractal attribute estimates for

Gaussian H-sssi processes, and for multifractal attribute estimates for non Gaussian H-

sssi and MMC processes. Numerical results for confidence intervals and hypothesis tests

will be given in Chapter 8 and Chapters 9 and 10, respectively. Some numerical results,

similar to those underlying the empirical block size choice stated in the next paragraphs,

will be presented in Chapter 11 for validating their robustness, in the context of related

issues.

7.3.4-a) Time block and space block bootstrap

Numerical simulations for fv H-sssi and MMC processes show that the residual correla-

tion of wavelet coefficients at a given scale j is approximately of the order of magnitude of

the time support of the wavelet chosen for analysis. Hence, heuristically, blocks for small

samples should be roughly the size of the time (space) support of the analysing wavelet,

which is 2 ·Nψ. The block size of the time block and space block bootstrap is set to:

l = 2 ·Nψ. (7.6)

For scales at which the number of coefficients is practically too small for block bootstrap,

nj < 2l, the block size is divided by 2 until nj ≥ 2l.

7.3.4-b) Time-scale block and space-scale block bootstrap

The philosophy of the time-scale (space-scale) blocks is to create bootstrap samples that

reproduce the across-scales behavior of wavelet Leaders (cf. Sections 2.5 and 7.2.2).

Hence, the time (space) support of the time (space) scale blocks should be sufficiently

large to ensure that it extends over all available scales or over all scales involved in linear

regressions for multifractal attribute estimation: l > 2j2 . Numerical simulations show that

a good empirical choice is:

l ≈ ⌈C ·Nβ⌉ (7.7)

with β = 2
3 and C ≈ 0.6, which corresponds to l = 26 for N = 210 and l = 210 for N = 216.

7.4 Conclusions and Perspectives

In this chapter, we defined wavelet domain time block bootstrap resampling and time-

scale block bootstrap resampling (and the equivalent procedures in 2d). From a concep-

tion point of view, the TS-B bootstrap heuristically has an edge over the T-B bootstrap,

since the blocks are constructed in such a way that they capture time-scale dependence

within a certain time neighborhood, and over all scales. Therefore, it seems particularly

well adapted for wavelet Leader based estimation. It is, however, practically more difficult

to implement than the T-B bootstrap, especially for higher dimensional data, due to the

border effects of the wavelet transform and related issues8.

We have also discussed the possibility of a more general block construction, consisting of

8It is, for instance, not immediately obvious how to ensure a n out of n bootstrap procedure for coarse

scales where only few coefficients are left.
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blocks with certain time length spanning only over a certain range of scales. Though po-

tentially interesting, such constructions add additional practical difficulties as compared

to the TS-B and are not considered in this manuscript.
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In a large number of applications, bootstrap has been used for confidence interval

design. Bootstrap confidence intervals were found useful in situations and for data of di-

verse nature, typically too involved for analytic constructions. This has, for instance, been

reported in [56, 190, 191, 192, 195, 196]. For multifractal analysis, no confidence inter-

vals are available in practice. This is mainly due to the involved statistical properties of

multifractal processes, which are largely responsible for the lack of statistical performance

results for parameter estimation procedures. The only exception is the specific case of

GaussianH-sssi processes, where asymptotic constructions for the self-similarity param-

eter have been obtained. This absence of confidence intervals constitutes a major limi-

tation for the practical multifractal analysis of real-world data and in applications, where

they are often appreciated as being at least as important as the estimates themselves.

It is hence natural to consider the nonparametric bootstrap resampling and estimation

procedures for multifractal analysis that we proposed in the previous Chapter 7 for the

construction of confidence intervals for multifractal attributes. Therefore, the aim of the

present chapter is to define bootstrap confidence intervals for multifractal attributes, and

to assess their practical reliability, precision and applicability.

The work presented in this chapter has been reported in [173, 179, 180, 182].

8.1 Bootstrap Confidence Intervals for Multifractal Analysis

A level (or coverage) (1−α) confidence interval (CI) [θ̂l, θ̂r] for the real-valued population

parameter θ ∈ {ζ(q), D(q), h(q), cp} is constructed by finding values θ̂l, θ̂r for which:

Pr
(
θ̂l ≤ θ ≤ θ̂r

)
= 1 − α. (8.1)

Hence, confidence interval construction implies knowledge of the distribution of θ̂ − θ in

order to be able to find the values θ̂l, θ̂r that verify Eq. (8.1). This distribution of θ̂ − θ
is, however, unknown. Therefore, we approximate it by the distribution of the bootstrap

version θ̂∗− θ̂, which is obtained using the bootstrap estimation procedure defined in Sec-

tion 7.2.3, based on the multifractal analysis specific block bootstrap resampling defined

in Section 7.2.1 and in Section 7.2.2. This bootstrap distribution approximation is then

used for the construction of bootstrap confidence intervals.

It is clear from Eq. (8.1) that there exists in general an infinity of level (1 − α) confi-

dence interval constructions if the distribution of θ̂ is continuous, and there is a large

number of possible nonparametric bootstrap CI definitions proposed in the literature

[56, 61, 80, 195]. They can be cast into two classes: First, simple bootstrap CI are

directly based on the distribution of θ̂∗ − θ̂. They are conceptually simple and easy to

implement and computationally inexpensive since they are based on one single boot-

strap layer and hence also only on a ”first order” bootstrap distribution approximation,

which may in practice result in coverage error [56, 195]. The second class, called dou-

ble bootstrap CI, uses a second layer of bootstrap estimation in order to define more

accurate bootstrap distribution approximations, or to correct for coverage error in simple

bootstrap CI. Commonly used definitions involve pivoting or studentizing of the bootstrap

distribution, bootstrap estimation of a variance stabilizing transform, or double bootstrap

based bias correction of the simple bootstrap CI limits (cf. e.g. [35, 56, 66, 195]). Double

bootstrap CI therefore have the potential of being more precise than simple bootstrap CI.

However, they also substantially increase computational load and conceptual complexity
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due to the additional ”bootstrapping the bootstrap” layer.

Among the large number of classical nonparametric bootstrap CI definitions proposed in

the literature, we select three simple bootstrap CI (Normal, basic and percentile CI) and

three double bootstrap CI (studentized, adjusted basic and adjusted percentile CI) as be-

ing representative for each respective class. These CI are defined in the remainder of

this section.

8.1.1 Simple bootstrap confidence intervals

8.1.1-a) Normal (asymptotic) bootstrap confidence interval

The simple (1 − α) Normal (or asymptotic) bootstrap confidence interval is based on the

assumption that θ̂ has an (approximately) Normal distribution centered around θ. It uses

the bootstrap standard deviation estimates σ̂∗θ = Ŝtd
∗
θ̂∗ and is defined as:

CInorθ,(1−α) =
[
θ̂ − q(α

2
)σ̂

∗, θ̂ + q(α
2
)σ̂

∗
]
, (8.2)

where qα is the α quantile of the standard Normal distribution.

8.1.1-b) Basic bootstrap confidence interval

The (1−α) basic bootstrap CI is derived from the definition of the equi-tailed (1−α) limits

for θ̂ − θ,

Pr(θ̂ − θ ≤ tα
2
) = Pr(θ̂ − θ ≥ t1−α

2
) =

α

2
, (8.3)

where tα is the α-quantile of θ̂ − θ. Rewriting Eq. (8.3) leads to:

θ̂ − t1−α
2
≤ θ ≤ θ̂ − tα

2
, (8.4)

and, by plugging in the bootstrap estimates1 t̂α = θ̂∗α − θ̂, this becomes:

CIbasθ,(1−α) =
[
2θ̂ − θ̂∗1−α

2
, 2θ̂ − θ̂∗α

2

]
, (8.5)

where θ̂∗α is the α quantile of the empirical distribution of the bootstrap estimates θ̂∗.

8.1.1-c) Percentile bootstrap confidence interval

The (1−α) percentile bootstrap confidence interval is defined directly from the α quantiles

θ̂∗α of the empirical distribution of the bootstrap estimates θ̂∗:

CIperθ,(1−α) =
[
θ̂∗α

2
, θ̂∗1−α

2

]
. (8.6)

It can be derived from Eq. (8.3) by assuming that there exists a (unknown) variable

transformation for which the transformed distribution of θ̂−θ is symmetric, without explicit

recourse to this transformation [56].

1Note that Eq. (8.2) is obtained from Eq. (8.4) similarly, by plugging in the Normal assumption bootstrap

estimates, i.e., the quantiles of N (0, σ̂∗), for t̂α.
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8.1.2 Double bootstrap confidence intervals

8.1.2-a) Studentized bootstrap confidence interval

The studentized bootstrap CI is a basic bootstrap CI for the studentized random variable

Sθ = θ̂−θ
σ̂∗ (Eq. (7.2)), where σ̂∗ = Ŝtd

∗
θ̂∗ is the bootstrap estimate of the standard

deviation of θ̂. Hence, it is based on the probability implication of Eq. (8.3) for the random

variable Sθ rather than θ̂ − θ. The studentized bootstrap CI is defined as:

CIstuθ,(1−α) =
[
θ̂ − σ̂∗S∗

θ,(1−α
2
), θ̂ − σ̂∗S∗

θ,(α
2
)

]
, (8.7)

where σ̂∗S∗
θ,(α) is the α quantile of the empirical distribution of the bootstrap version of

Sθ, S
∗
θ = θ̂∗−θ̂

σ̂∗∗ (Eq. (7.3)). Studentizing attempts to produce a random variable Sθ whose

distribution no longer depends on unknowns (or at least depends on less unknowns),

through (empirical) normalization by the standard deviation. If accurate standard devia-

tion estimations are available, it is expected that the distribution of this random variable is

better reproduced by the distribution of its bootstrap version [56].

8.1.2-b) Adjusted basic bootstrap confidence interval

The basic bootstrap confidence limits Eq. (8.5) are in general not exact in the sense they

do not exactly reproduce the probability implication Eq. (8.3), since the distribution of

θ̂∗ − θ̂ is only an approximation of the distribution of θ̂ − θ. For instance, for the upper

basic limit:

Pr(θ̂∗α
2
≤ 2θ̂ − θ) =

α′

2
6= α

2
(8.8)

in practice, and similarly for the lower limit. The idea behind the adjusted bootstrap con-

fidence interval is to use a second layer of bootstrap to ”adjust” the upper (respectively,

lower) limit such that it approximately fulfills the probability implication Eq. (8.3), i.e. to

find a γ(α) such that:

Pr(θ̂∗γ(α
2
) ≤ 2θ̂ − θ) =

α

2
. (8.9)

This is achieved by using the double bootstrap version:

p(r) = Pr∗(θ̂∗∗(r,·) ≤ 2θ̂∗(r) − θ̂), r = 1, · · · , R, (8.10)

and setting:

γ
(α

2

)
= pα

2
. (8.11)

where pα is the α quantile of the empirical distribution of p [56]. Equivalently, for the lower

adjusted basic limit this gives:

γ
(
1 − α

2

)
= p1−α

2
, (8.12)

and hence:

CIadjbθ,(1−α) =
[
2θ̂ − θ̂∗γ(1−α

2
), 2θ̂ − θ̂∗γ(α

2
)

]
. (8.13)
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8.1.2-c) Adjusted percentile bootstrap confidence interval

The adjusted percentile confidence interval uses double bootstrap correction of the upper

and lower limits of the percentile bootstrap confidence interval Eq. (8.6), in the same

spirit as the adjusted basic confidence interval Eq. (8.13) does for the basic bootstrap

confidence limits Eq. (8.5), by double bootstrap estimation of γ:

Pr(θ ≤ θ̂∗γ(α
2
)) = Pr(θ̂∗γ(1−α

2
) ≥ θ) = α. (8.14)

using the double bootstrap version:

p(r) = Pr∗(θ̂∗∗(r,·) ≥ θ̂), r = 1, · · · , R. (8.15)

Then,

γ(α) = pα,

where pα is the α quantile of the empirical distribution of p, and the adjusted percentile

bootstrap confidence interval is given by [56]:

CIadjpθ,(1−α) =
[
θ̂∗γ(α

2
), θ̂

∗
γ(1−α

2
)

]
. (8.16)

8.2 Validation of Bootstrap Confidence Intervals

The quality of the nonparametric bootstrap confidence intervals for multifractal attributes

defined in Section 8.1 may depend on many factors. In order to check whether the CI

work, to compare them and to study how they are affected by parameters such as sample

size, process nature and parameters, the attribute and the CI definition, we need to define

how we assess ”quality” for CI. The analytical verification of bootstrap confidence intervals

in terms of e.g. consistency of bootstrap quantile estimation is not feasible for multifractal

analysis, since it would require knowledge of the distributions of both θ̂ − θ and θ̂∗ − θ̂,
which are not accessible. Also, such (asymptotic) results would give little information

only on practical CI quality for typical real-world sample sizes. Therefore, we validate the

reliability of the confidence intervals defined in Section 8.1 by numerical simulations. To

this end, we apply the estimation and bootstrap estimation procedures to a large number

NMC of realizations of H-sssi and MMC processes with known and a priori controlled

multifractal attributes θ ∈ {ζ(q), D(q), h(q), cp}, and use the bootstrap CI calculated for

each realization to assess their statistical properties.

8.2.1 Empirical coverage of confidence intervals

The defining and most important property of a confidence interval is given by Eq. (8.1),

stating that a (1−α) confidence interval CIθ,(1−α) for a parameter θ should contain θ with

probability 1 − α:

Pr
(
θ ∈ CIθ,(1−α)

)
= 1 − α. (8.17)

Hence, it is natural to verify this key property for the estimated confidence intervals.

Therefore, we evaluate the reliability of the bootstrap confidence limits CIθ,(1−α) defined

in Section 8.1 by their empirical coverage, which is defined as:

Cθ,(1−α) = ÊNMC
I
{
θ ∈ CIθ,(1−α)

}
, (8.18)
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where I {·} is the indicator function of the event {·}, and ÊNMC
stands for mean over

Monte Carlo realizations. Consequently, the empirical coverage consists of the empirical

probability that the parameter θ lies in the estimated confidence region and hence ideally

equals 1 − α. It can be verified by numerical simulations and can therefore serve as a

practical measure for the reliability of the confidence interval.

Since it is likely that the estimation for θ ∈ {ζ(q), D(q), h(q), cp} are biased (see Chap-

ter 4, e.g. Tab. 4.5 and 4.6), we also define the bias corrected empirical coverage:

Cbcθ,(1−α) = ÊNMC
I

{
θ +

(
ÊNMC

θ̂ − θ
)
∈ CIθ,(1−α)

}
, (8.19)

The bias corrected coverage allows to assess the performance of the confidence limits

without the contribution of a potential bias2 in the estimation of θ.

8.2.2 Further quality measures for confidence intervals

In addition to the empirical coverage of CI, one can define complementary statistical

characterizations for investigation of the tail probabilities, CI size, or asymmetry. For

instance, the empirical coverage of the lower and the upper limits of the CI, i.e., the

empirical counterparts of Pr
(
θ̂l ≥ θ

)
and Pr

(
θ̂r ≤ θ

)
, should ideally be the same and

both equal to α
2 . Also, the size of CI, LCIθ = θ̂r − θ̂l, can be useful to compare different

CI if they have the same (empirical) coverage: The one with the smaller size is in general

preferable, since it further restricts the interval within which the parameter θ lies with

probability equal to the (empirical) coverage.

We have numerically investigated such quality measures for bootstrap confidence

limits for multifractal attributes. However, no clear conclusions could be obtained from the

results. Therefore, we will not further consider them in this manuscript.

8.3 Performance of Bootstrap Confidence Intervals

The goal of this section is to study the practical relevance of bootstrap CI estimation for

multifractal attributes, and to check whether these CI exhibit satisfactory performance.

Also, it investigates some multifractal analysis specific aspects related to bootstrap CI

estimation and aims at providing elements of answers to the following questions:

- Does bootstrap perform better than Gaussian expansions (Section 8.3.1)?

- Which of the bootstrap CI in Section 8.1 is to be preferred for multifractal analysis

(Section 8.3.2)?

- Is bootstrap CI estimation more difficult for wavelet Leaders than for wavelet coeffi-

cients (Section 8.3.3)?

- How relevant are bootstrap CI for H-sssi and MMC processes, respectively? (Sec-

tion 8.3.4)?

2We note that results not reported here show that the difference between Cθ,(1−α) and Cbcθ,(1−α) is in gen-

eral small. This is also clear from results reported in Chapter 4, demonstrating that the statistical performance

of estimation procedures for multifractal analysis is mostly determined by standard deviation/variability of the

estimates, whereas the bias remains relatively small.
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- Which of the bootstrap resampling procedures – T-B (Section 7.2.1) or TS-B (Sec-

tion 7.2.2) – is to be preferred, and in which situation (Section 8.3.5)?

- Does the precise nature of the multifractal attribute have an impact on bootstrap CI

performance (Section 8.3.6)?

- Does sample size play a critical role for bootstrap CI relevance (Section 8.3.7)?

To this end, Tab. 8.1, 8.2 and 8.3 summarize empirical coverage results for 1d signals.

The presentation of results in three different tables aims at helping to disassociate the

different questions as far as possible. Although effort has been put into disassociating

the different topics in the discussion, this is obviously not always completely achievable,

accounting for some minor redundancy or overlap in the results and discussions.

Results for 2d signals (images) are presented in Tab. 8.4 and discussed separately in

Section 8.3.8.

8.3.1 Gaussian expansion vs. bootstrap for wavelet coefficients

For wavelet coefficients of fBm, analytic expressions for the (asymptotic) distributions of

structure functions S(j, q) and the scaling exponent estimates ζ̂(q), q > 0 can be obtained

[4, 70] and in turn used for CI construction. The goal of this section is to investigate the

relevance of these asymptotic CI – together with those of bootstrap CI – for H-sssi and

MMC processes, and to compare their relative performance.

8.3.1-a) Gaussian expansion for wavelet coefficients of fBm

The variance σ2
G(j, q), q > 0, of the wavelet coefficient structure functions Sd(j, q) can be

expressed as [4]:

σ2
G(j, q) = Var log2 S(j, q) =

(log2 e)
2

nj

(
√
πΓ

(
q +

1

2

)
/Γ

(
q + 1

2

)2

− 1

)
, (8.20)

by using a standard approximation formula for change of variable Y = f(X), σ2
Y ≃

|f ′(EX)|2σ2
X , and assuming that wavelet coefficients at a given scale are uncorrelated

and Gaussian. Further assuming that wavelet coefficients at different scales are uncor-

related, the variance V (q) of the wavelet coefficient based estimates of ζ(q) for fBm is

given by:

V (q) ≡
j2∑

j=j1

w2
jσ

2
G(j, q), (8.21)

and does not demand for estimation of any quantity. The variance V (q) can in turn be

used for the construction of an (asymptotic) Gaussian (1−α) confidence interval for ζ(q),
which is defined as:

CIGζ(q),(1−α) =
(
ζ̂(q) + q(α

2
)

√
V (q), ζ̂(q) + q(1−α

2
)

√
V (q)

)
, (8.22)

where qα is the α quantile of the standard normal distribution N (0, 1).
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Cθ N = 29 N = 212 N = 215

α = 0.05 fBm mrw fBm mrw fBm mrw

θ per G per G per G per G per G per G

ζ(1) 87.8 91.6 91.5 85.5 88.2 89.2 89.7 71.0 89.9 88.2 72.5 30.0

ζ(2) 85.1 91.4 90.8 81.1 87.4 88.9 89.6 59.0 88.1 86.8 82.2 35.2

ζ(3) 83.9 91.6 91.0 78.3 84.6 89.4 90.5 53.7 86.7 87.7 88.9 32.7

ζ(4) 82.3 92.1 90.4 77.2 83.4 90.0 91.9 50.5 86.3 89.2 92.6 28.4

ζ(5) 82.0 92.7 90.5 76.8 82.3 90.9 92.7 48.6 84.6 90.4 92.1 26.2

Table 8.1: Gaussian expansion and bootstrap confidence interval coverage for

wavelet coefficients. Empirical coverages (in %) of 100·(1−α) = 95% Gaussian (G) and

percentile bootstrap (per) confidence intervals for wavelet coefficient based estimation

and fBm (H = 0.8) and mrw ((H,β2) = (0.75, 0.08)) of sample size N ∈ {29, 212, 215}, ob-

tained for NMC = 3000 realizations. Estimation is performed using Daubechies wavelets

with Nψ = 3 and weighted (w1) linear regressions over the scales j ∈ [3, log2(N) − 4].
The bootstrap CI are estimated from R = 200 T-B bootstrap samples. For each estimate

and sample size, empirical coverages closest to the target coverage of 95% are marked

in bold

8.3.1-b) Gaussian expansion vs. bootstrap confidence interval

Tab. 8.1 compares the performance of the Gaussian (G) confidence intervals Eq. (8.22)

for ζ(q) and wavelet coefficient based estimation to the performance of their percentile

bootstrap counterparts (per) Eq. (8.6). It summarizes empirical coverages Eq. (8.18)

obtained forNMC = 3000 realizations of fBm (H = 0.8) and mrw ((H,β2) = (0.75, 0.08)) of

sample size N ∈ {29, 212, 215}. The percentile bootstrap CI are obtained by T-B bootstrap

(Section 7.2.1), using R = 200 bootstrap samples per realization. The nominal target

coverage is 100 · (1 − α) = 95%.

Tab. 8.1 shows that for (Gaussian) fBm, the analytic Gaussian confidence intervals

systematically have empirical coverages closer to the target coverage than their bootstrap

counterparts, hence outperforming them. Nonetheless, the performance of the bootstrap

confidence intervals are close to those of Gaussian CI, in particular for large sample size

N and small statistical orders q.
However, for (non Gaussian and multifractal) mrw, the analytic Gaussian CI fail rather

drastically, with coverages of the order of only 30% for large sample size (N = 215).

Clearly, some of the assumptions on which Eq. (8.21) is based – Gaussian coefficients,

decorrelated in time and decorrelated between scales – are violated for mrw3. In con-

trast, the bootstrap CI estimation for mrw has satisfactory empirical coverage of 85− 90%
in average, comparable to bootstrap CI empirical coverage for fBm.

Conclusions. These results lead us to the following conclusions: First, in the case of

wavelet coefficient based estimation of ζ(q), q > 0 for fBm, analytic Gaussian confidence

limits are slightly more reliable and easier to calculate than bootstrap confidence limits

and should hence be preferred. Second, for non Gaussian or multifractal processes, the

3For small sample size N = 29, the situation appears to be less dramatic for the Gaussian CI, with

coverages of 77 − 86% as compared to 90 − 92% for the bootstrap CI. This is due to V (q) being close to

the true variance of ζ̂(q) by coincidence for this sample size and process parameter choice, despite violated

assumptions for V (q).
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Gaussian expansions fail dramatically. Third, the bootstrap confidence intervals for coef-

ficient based estimation are highly relevant for both fBm and, in particular, (non Gaussian

and multifractal) mrw. This is, to the best of our knowledge, the first nonparametric CI

procedure with satisfactory performance for non Gaussian and multifractal processes.

8.3.2 Comparison of different bootstrap confidence interval methods

The aim of this section is to validate, first, whether simple or double bootstrap CI esti-

mations are to be preferred for multifractal attributes, and second, which of the precise

definitions of simple (double) bootstrap CI are most relevant for multifractal attributes.

Tab. 8.2 compares the performance of the simple and double bootstrap confidence inter-

vals defined in Section 8.1. It summarizes bias corrected empirical coverages Eq. (8.19)

obtained for NMC = 1000 realizations of fBm (H = 0.8) and mrw ((H,β2) = (0.72, 0.08))
of sample sizes N = 212, for both wavelet coefficient and Leader based estimation. The

bootstrap confidence intervals are obtained by T-B bootstrap (Section 7.2.1), withR = 599
primary bootstrap samples per realization, and S = 50 double bootstrap samples per pri-

mary bootstrap sample. The nominal target coverage is 100 · (1 − α) = 95%. For each

estimate, empirical coverages closest to target coverage are marked in bold in Tab. 8.2.

The following statements are valid for both wavelet coefficient and for wavelet Leader

based estimations:

First, Tab. 8.2 shows that for fBm, double bootstrap CI are slightly more relevant than sim-

ple bootstrap CI, having average empirical coverages of 92% (89%) for double bootstrap,

as opposed to 89% (82%) for simple bootstrap confidence intervals for wavelet coefficient

(Leader) based estimation. For mrw, the difference in empirical coverage between simple

and double bootstrap CI is not significant, all being in average close to the target value of

95%.

Second, whereas for fBm, there is no significant difference in performance between the

simple bootstrap CI nor, bas and per, for mrw, the percentile bootstrap CI per has overall

coverage slightly closer to the target than nor and bas
Third, for fBm, the adjusted percentile bootstrap CI adjp has overall coverage slightly

closer to the target than stu and adjb, whereas for mrw, there is overall no significant

difference in empirical coverage of the double bootstrap CI.

Conclusions. We conclude that for multifractal analysis, double bootstrap confidence

intervals are in practice not worth the severe increase of computational load by a factor S,

since they are not more relevant than single bootstrap CI for multifractal processes and

only slightly so for fBm. Also, among the simple bootstrap CI considered, the conceptually

simple percentile bootstrap CI shows overall best empirical coverage and is hence to be

preferred. Therefore, we will in the sequel of this chapter only consider the percentile

confidence interval.

8.3.3 Bootstrap for wavelet coefficients versus wavelet Leaders

As compared to wavelet coefficients, wavelet Leaders may introduce two additional poten-

tial difficulties with respect to bootstrap estimation (cf. results and discussions in Chapter

3 and Section 7.2): First, their marginal distributions are non Gaussian, and second, they

may introduce additional dependence in time, and between scales. Hence, bootstrap CI
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Cbcθ - N = 212 - α = 0.05 - T-B

fBm dX LX
θ nor bas per stu adjb adjp nor bas per stu adjb adjp

ζ(2) 88.5 86.3 87.3 89.0 90.5 92.5 78.6 79.5 78.2 85.1 88.0 90.1

D(2) 91.1 90.4 91.5 90.2 94.3 93.4 89.7 83.7 88.6 89.1 93.9 92.4

h(2) 88.4 85.2 87.0 88.1 90.1 92.5 79.0 78.9 81.1 85.6 87.0 91.5

c1 88.6 89.3 88.3 91.5 92.9 93.9 78.2 77.9 77.3 83.4 90.0 92.6
c2 90.3 92.3 89.7 91.1 93.3 93.8 86.8 83.4 85.5 88.0 91.7 91.1

mrw dX LX
θ nor bas per stu adjb adjp nor bas per stu adjb adjp

ζ(2) 96.0 93.1 96.4 95.1 96.1 97.9 93.7 92.4 93.1 96.7 97.0 98.4

D(2) 88.8 78.7 93.3 84.3 89.4 85.5 84.1 76.5 90.3 86.6 89.9 87.5

h(2) 91.1 84.0 94.4 89.7 93.4 92.7 87.9 83.3 91.0 91.1 93.6 93.4

c1 97.3 97.0 96.1 98.2 98.3 99.5 97.4 97.4 96.3 99.2 99.1 99.6
c2 94.6 93.8 93.4 92.5 93.9 95.6 95.2 91.5 94.5 95.1 95.5 96.9

Table 8.2: Simple and double bootstrap confidence interval coverage. Bias cor-

rected empirical coverage Cbcθ (in %) of 100 · (1 − α) = 95% simple (nor, bas, per) and

double (stu, adjb, adjp) bootstrap confidence intervals for wavelet coefficient (dX , left)

and Leader (LX , right) based confidence interval estimation for fBm (top, H = 0.8) and

mrw (bottom, (H,β2) = (0.72, 0.08)) of sample size N = 212. Results are obtained using

NMC = 1000 realizations, Daubechies wavelets with Nψ = 3, and weighted (w1) linear

regressions over the scales j ∈ [3, 8]. The bootstrap CI are estimated from R = 599
T-B bootstrap samples per realization, and S = 50 double bootstrap samples per single

bootstrap sample. For each estimate, empirical coverages closest to the target coverage

of 95% are marked in bold.

estimation might be more difficult for wavelet Leaders in some situations. The investiga-

tion and clarification of this point is the precise aim of this section.

Tab. 8.3 summarizes bias corrected empirical coverages Eq. (8.19) for both wavelet

coefficient and Leader based estimation of percentile CI Eq. (8.6), for both T-B and

TS-B bootstrap resampling (cf. Section 7.2.1 and 7.2.2). Results are obtained using

NMC = 1000 realizations of fBm (H = 0.8) and mrw ((H,β2) = (0.72, 0.08)) of sample

size N ∈ {212, 215}, with R = 199 bootstrap samples per realization. The nominal target

coverage is 100 · (1 − α) = 90%. Additional results can be found in Tab. 8.2.

Tab. 8.3 indicates that for fBm and N = 212, bootstrap percentile CI estimation is

slightly but systematically better for wavelet coefficients than for wavelet Leaders, regard-

less of which resampling procedure (T-B or TS-B) is employed: Empirical coverages of

bootstrap confidence intervals for wavelet Leader based estimation is consistently further

below target coverage than empirical coverages of CI for coefficient based estimation. An

interpretation of this result can be given by noting that for fBm, wavelet coefficients are

Gaussians, whereas wavelet Leaders are not and hence present extra difficulties for boot-

strap estimation. For fBm and sample size N = 215, the situation is less clear, and there

is no systematic difference in confidence interval relevance between wavelet coefficient

and Leader based estimation. Also, for mrw and any of the sample sizes considered,

bootstrap CI (T-B or TS-B) for wavelet coefficient and Leader based estimation do overall

have comparable empirical coverages.
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These observations are in agreement with results for fBm and mrw and N = 212 in Tab.

8.2 for T-B bootstrap resampling based estimation of different simple and double boot-

strap confidence intervals: Whereas for fBm, (simple and double) bootstrap confidence

intervals are overall slightly more relevant for wavelet coefficient based estimation than

for wavelet Leader based estimation, there is no such difference for mrw, for which em-

pirical coverages of bootstrap CI for wavelet coefficient based estimation are very close

to those for wavelet Leader based estimation.

Conclusions. The results in Tab. 8.3 and Tab. 8.2 lead us to the conclusion that

for fBm and small sample sizes, bootstrap confidence interval estimation is slightly more

difficult for wavelet Leaders than for wavelet coefficients. For MMC processes and for

larger sample sizes, there is no significant difference in CI performance between wavelet

coefficient and Leader based estimation. This can be interpreted as a consequence of

dependence structures and marginal distributions that are more complicated for wavelet

Leaders than for wavelet coefficients for fBm, but similar for mrw.

8.3.4 Bootstrap for H-sssi vs. MMC processes

Due to different marginal and dependence properties forH-sssi and and MMC processes,

bootstrap CI estimation might be more difficult or relevant for the one or the other process

class. The discussion of such topics is the precise goal of this section.

For wavelet coefficient based estimation, Tab. 8.3 indicates that empirical coverages

are comparable for the H-sssi process fBm and the MMC process mrw, with overall per-

formance being slightly better for mrw than for fBm for small sample size (N = 212). This

is in agreement with Tab. 8.1 and Tab. 8.2, where empirical coverages of T-B bootstrap

confidence intervals for wavelet coefficient based estimation are overall slightly closer to

target coverage for mrw than for fBm (N = 212).

Results in Tab. 8.3 show (in agreement with Tab. 8.2) that for wavelet Leader based

estimation, bootstrap confidence intervals are more reliable for multifractal mrw than for

monofractal fBm: empirical coverages are systematically closer to the target value of 90%
for mrw than for fBm.

We conclude that the nature of the process under analysis – H-sssi or MMC – has an

impact on the quality of bootstrap CI estimation: empirical coverages of bootstrap CI are

slightly closer to nominal value for mrw than for fBm for wavelet coefficient based esti-

mation, and more significantly so for wavelet Leader based estimation. We propose an

explanation and interpretation of this observation in Chapter 11.

8.3.5 T-B vs. TS-B bootstrap

The T-B and TS-B (Sections 7.2.1 and 7.2.2, respectively) bootstrap resampling proce-

dures for multifractal analysis use substantially different block constructions, potentially

resulting in different bootstrap estimation performance for multifractal analysis due to dif-

ferent dependence and structural assumptions. The aim of this section is to investigate

the impact of choosing T-B or TS-B bootstrap resampling on the quality of bootstrap CI

estimation.

Wavelet coefficient based estimation. Tab. 8.3 indicates that for fBm, TS-B confi-

dence intervals are overall more relevant than T-B CI: Empirical coverages of TS-B CI are
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systematically closer to target coverage of 90% than those of the T-B CI. The difference

in empirical coverage between T-B and TS-B is small (1− 7%) for small sample size, and

more pronounced for large samples (4−10%). Also, the empirical coverages of the T-B CI

fluctuate significantly with the multifractal attribute considered (74 − 90% for N = 212 and

76 − 96% for N = 215), whereas those of the TS-B CI remain relatively stable (80 − 83%
for N = 212 and 82 − 87% for N = 215).

For mrw, these differences between T-B and TS-B CI empirical coverages are even more

pronounced: 2 − 9% (N = 212) and 1 − 10% (N = 215). Also, the empirical coverages of

the T-B CI fluctuate rather dramatically with the multifractal attribute considered (76−99%
for N = 212 and 82 − 100% for N = 215), whereas those of the TS-B CI remain relatively

constant (81 − 91% for N = 212 and 85 − 92% for N = 215).

Wavelet Leader based estimation. Tab. 8.3 shows that for both fBm and mrw, TS-

B confidence intervals for wavelet Leader based estimation are more relevant than T-B

CI: Empirical coverages of TS-B CI are systematically closer to target coverage of 90%
than those of the T-B CI. The difference in empirical coverage between T-B and TS-B is

relatively small for small sample size (2 − 8% for fBm and 3 − 12% for mrw), and more

significant for large samples (4 − 14% for fBm and 6 − 12% for mrw). Also, the empirical

coverages of the T-B CI fluctuate significantly with the multifractal attribute considered,

whereas those of the TS-B CI remain relatively constant.

Conclusions. We conclude that for both wavelet coefficient and Leader based esti-

mation of bootstrap confidence intervals for multifractal attributes, TS-B bootstrap is to

be preferred over T-B bootstrap: TS-B CI do achieve better overall empirical coverage,

and are more robust with respect to both multifractal attribute choice and sample size, in

particular for MMC processes.

8.3.6 Bootstrap performance and multifractal attributes

Overall, we observe that there is only little difference in CI empirical coverages between

different multifractal attributes (cf. Tab. 8.3). However, the results in Tab. 8.3 illustrate the

following important points:

First, bootstrap confidence intervals remain relevant for scaling exponents of negative

statistical order ζ(q < 0), with empirical coverages similar to those of CI for other multi-

fractal attributes.

Second, empirical coverages of the wavelet coefficient based bootstrap CI for c3 are rel-

atively poor as compared to CI for other multifractal attributes. This may be due to the

fact that coefficient based estimation ĉd3 of c3 has very poor statistical performance (see

Chapter 4, e.g. Tab. 4.2 and 4.4).

Third, for mrw and TS-B bootstrap resampling, empirical coverages of bootstrap CI for

ζ(q) are dropping as q increases and approaches the critical value q = q+∗ = 5. Never-

theless, empirical coverages remain satisfactory for ζ(q = q+∗ = 5) (83 − 87% for target

coverage 90%). This constitutes important evidence in favor of a hypothesis that it is not

the critical statistical order q+∗ encountered through the linearization effect (cf. Sections

2.8 and 5.2), but the statistical order q+c > q+∗ – for which, by definition of the process, mo-

ments become infinite – that plays the central role for bootstrap consistency (cf. Section

7.3.2-a)).
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fBm N = 212 N = 215

dX LX dX LX
θ T TS T TS T TS T TS

ζ(−2) − − 66.0 72.4 − − 71.0 83.8

ζ(1) 78.4 81.6 69.6 75.6 80.6 87.4 71.6 85.2

ζ(2) 76.6 80.6 69.0 74.0 79.4 85.8 71.8 83.8

ζ(3) 75.4 79.4 69.0 73.6 78.2 83.8 73.6 84.0

ζ(5) 74.0 78.4 70.4 72.6 75.8 82.2 76.6 84.4

D(−2) − − 75.6 80.8 − − 80.6 84.2

D(2) 89.8 87.4 89.8 86.8 95.6 86.4 95.0 85.0

h(−2) − − 67.4 73.8 − − 73.0 83.6

h(2) 75.0 79.8 71.6 74.0 77.6 84.0 76.4 85.2

c1 76.2 83.2 66.8 75.2 80.2 87.0 71.4 85.4

c2 79.0 83.4 77.2 79.8 79.0 85.2 82.8 87.6

c3 78.2 82.6 83.4 88.6 78.6 82.4 88.4 91.0

mrw N = 212 N = 215

dX LX dX LX
θ T TS T TS T TS T TS

ζ(−2) − − 96.8 84.6 − − 99.4 87.0

ζ(1) 98.8 89.8 98.0 88.4 100.0 91.2 100.0 91.6

ζ(2) 97.0 88.8 97.2 88.4 99.6 92.4 100.0 91.0

ζ(3) 95.2 88.2 94.6 86.6 98.2 90.0 98.8 88.4

ζ(5) 89.2 87.0 91.2 83.4 94.8 85.4 95.0 86.4

D(−2) − − 88.6 84.8 − − 93.0 81.6

D(2) 89.8 87.4 89.8 86.8 95.6 86.4 95.0 85.0

h(−2) − − 90.0 80.0 − − 96.8 84.8

h(2) 90.8 87.0 92.4 86.2 96.6 88.8 97.8 89.2

c1 98.4 91.0 99.0 89.8 99.6 89.4 100.0 92.0

c2 82.6 84.6 93.4 89.0 93.0 86.8 99.6 93.4

c3 76.4 81.2 93.6 90.2 82.4 83.8 95.8 88.4

Table 8.3: T-B and TS-B bootstrap confidence interval coverage. Bias corrected em-

pirical coverage Cbcθ (in %) of 100·(1−α) = 90% percentile (per) bootstrap confidence inter-

vals for wavelet coefficient (dX , left columns) and Leader (LX , right columns) based con-

fidence interval estimation for fBm (top, H = 0.8) and mrw (bottom, (H,β2) = (0.72, 0.08))
of sample sizes N = 212 (left) and N = 215 (right). Results are obtained using

NMC = 1000 (N = 212) and NMC = 500 (N = 215) realizations, Daubechies wavelets

with Nψ = 3, and weighted (w1) linear regressions over the scales j ∈ [3, log2(N) − 4].
The bootstrap CI are estimated from R = 199 bootstrap samples per realization.
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8.3.7 Bootstrap performance and sample size

Tab. 8.3 shows that for T-B bootstrap based CI, empirical coverages systematically in-

crease when the sample size is increased. Whereas for fBm larger sample size results

in better empirical coverages, for mrw, this results in CI that are too conservative (i.e. too

large, resulting in empirical coverages close to 100%), hence better CI coverage for small

sample size, in contradiction to what would be expected if CI estimation was consistent.

In contrast, empirical coverages of TS-B bootstrap based CI do not necessarily increase

with increasing sample size, but rather converges to target coverage: Whereas for fBm

(dX and LX ) and mrw (LX ) this also results in an increase in empirical coverages – since

CI are too small for N = 212 – empirical coverages remain overall constant for mrw (dX ),

for which empirical coverages closely reproduce the target coverage of 90% already for

N = 212.

Conclusions. We conclude that whereas the T-B bootstrap based estimation of boot-

strap CI has a trend to overestimate the variability of multifractal attribute estimates when

the sample size N increases, resulting in too conservative confidence intervals for large

N , the TS-B bootstrap based estimation produces CI with empirical coverages converg-

ing to target coverage as N increases.

8.3.8 Bootstrap performance for multifractal analysis of images

The aim of this section is to validate bootstrap multifractal attribute confidence interval es-

timation for 2d signals (images), hence revisiting some of the points discussed above for

1d signals, leading in general to similar conclusions, while leaving other ones out: Since

it is practically difficult to significantly vary the sample size for 2d multifractal analysis,

we do not consider the influence of sample size here. Also, we do not revisit Gaussian

expansion results, since results are rather drastic for 1d signals and there is no reason

that this would be different for images. Also, we concentrate on the percentile bootstrap

CI only.

Tab. 8.4 summarizes bias corrected empirical coverages Eq. (8.19) of percentile con-

fidence intervals Eq. (8.6) obtained by the T-B and TS-B bootstrap resampling (Section

7.2.1 and 7.2.2, respectively) for both wavelet coefficient and Leader based estimation.

Results are obtained using NMC = 500 2d realizations of fBm (H = 0.7), fractionally

integrated (by α = 0.5) Qr(t) of CMC-LN (m = 0.0125, i.e. (c1, c2) = (0.513,−0.025)) and

CMC-LP (β = 0.8395, γ = 0.4195, i.e. (c1, c2, c3) = (0.538,−0.080, 0.014)) of sample sizes

N × N = 210 × 210, and using R = 99 bootstrap samples per realization. The nominal

coverage is 100 · (1 − α) = 90%.

Wavelet coefficients vs. wavelet Leaders. First, we observe that for fBm, both T-B

and TS-B based confidence intervals are more relevant for coefficients than for Leader

based estimation, with on average 5% (T-B) and 10% (TS-B) smaller coverage errors for

dX than for LX . Second, for multifractal CMC, TS-B CI have better empirical coverages

for coefficient than for Leader based estimation, with coverage errors smaller by approxi-

mately 10% on average, whereas for T-B based CI, there is no significant difference.

We conclude that – as for (1d) signals – bootstrap CI estimation is slightly more difficult

for Leaders than for coefficients, in particular for (Gaussian and monofractal) fBm.



8.3 Performance of Bootstrap Confidence Intervals 163

fBm CMC LN CMC LP

dX LX dX LX dX LX
T TS T TS T TS T TS T TS T TS

ζ(−2) − − 73.8 79.4 − − 89.0 79.6 − − 86.4 80.8

ζ(−1) − − 75.0 79.8 − − 87.6 79.4 − − 89.8 82.0

ζ(1) 80.8 91.8 74.0 79.0 94.6 88.4 88.2 78.6 97.8 89.0 95.2 82.6

ζ(2) 80.6 88.8 73.8 78.6 94.0 86.4 87.6 77.6 98.4 89.2 95.2 81.2

c1 81.0 94.4 74.2 78.8 94.2 88.2 88.4 77.6 97.2 88.2 94.8 81.0

c2 83.6 87.8 81.2 82.0 86.0 89.2 85.6 80.8 87.8 89.8 89.6 81.2

c3 − − − − 85.8 88.2 85.4 82.2 84.4 88.2 85.0 83.0

Table 8.4: T-B and TS-B bootstrap confidence interval coverage for images. Bias

corrected empirical coverage Cbcθ (in %) of 100 · (1 − α) = 90% percentile (per) boot-

strap confidence intervals for wavelet coefficient (dX , left columns) and Leader (LX , right

columns) based confidence interval estimation for 2d fBm (left, H = 0.8), (fractionally

integrated by α = 0.5 Qr(t) of) CMC-LN (center, (c1, c2) = (0.513,−0.025)) and CMC-LP

(right, (c1, c2, c3) = (0.538,−0.080, 0.014)) of sample sizes N ×N = 210 ×210. Results are

obtained using NMC = 500 realizations, Daubechies wavelets with Nψ = 2, and weighted

(w1) linear regressions over the scales j ∈ [3, 7]. The bootstrap CI are estimated from

R = 99 bootstrap samples per realization.

H-sssi vs. MMC processes. Tab. 8.4 shows that for T-B bootstrap CI estimation,

performance is slightly better for (multifractal) CMC than for fBm, with coverage errors

smaller by approximately 5% (dX ) and 10% (LX ). For TS-B bootstrap CI estimation, the

difference is less significant. Also, there is no significant difference in CI coverages be-

tween log-Normal and log-Poisson CMC and hence, a change in marginal distribution of

the multipliers of the MMC processes (LN vs. LP) does not significantly impact CI perfor-

mance.

We conclude that, as for (1d) signals, the bootstrap CI for (2d) images are slightly more

relevant for MMC processes than for H-sssi processes.

T-B vs. TS-B bootstrap. The results in Tab. 8.4 indicate that the difference be-

tween T-B and TS-B bootstrap based CI coverages remain overall small. Nevertheless,

for wavelet coefficient based estimation and both fBm and CMC, TS-B bootstrap based

CI display better empirical coverages than T-B based ones, with coverage errors of ap-

proximately 2 − 4% (TS-B) and 2 − 9% (T-B). The situation is similar for wavelet Leader

based estimation for fBm, whereas for CMC, TS-B bootstrap based CI are slightly less

relevant than T-B bootstrap based CI. Also, while TS-B based CI empirical coverages

remain constant regardless of which precise multifractal attribute is considered, T-B CI

coverages display larger variation with multifractal attributes.

We conclude that similarly to (1d) signals, TS-B bootstrap CI perform overall slightly bet-

ter than T-B based CI for multifractal analysis of (2d) images.

Multifractal attributes. Finally, confidence interval estimations for negative statistical

orders q, ζ(q < 0), are highly relevant and produce empirical coverages comparable to

the overall coverages for other multifractal attributes. Also, for 2d signals, there is not

significant difference in CI performance among the multifractal attributes considered.
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Figure 8.1: Bootstrap confidence intervals for one single realization of CPM-MF-

fBm and CMC-LN. Estimation for one single realization of CPM-MF-fBm (left, N = 215,

(c1, c2, c3) = (0.8,−0.08, 0.0311)) and 2d CMC-LN (right, N ×N = 210 × 210, (c1, c2, c3) =
(0.538,−0.08, 0.014), obtained from Qr(t) by fractional integration of order α = 0.5): Esti-

mates (solid black, ’•’) of structure functions S(j, q = 2) (top left), cumulants C(j, p = 2)
(top right), scaling exponents ζ(q) (center left), multifractal spectrum D(h) (center right)

and log cumulants cp (bottom) based on wavelet Leaders. The corresponding theoretical

values are drawn in solid blue. The percentile bootstrap confidence intervals (in red) are

obtained using R = 399 T-B bootstrap samples, and for α = 0.05. The boxplots (bottom

line) are based on the bootstrap estimates ĉ∗p and show the lower and upper quartile,

median and support of their empirical distributions. Confidence intervals exclude zero

values, illustrating that the proposed procedures do discriminate zero from non-zero val-

ues for those parameters, a non trivial result for c3 (cf. discussion in Chapter 4).

8.3.9 Conclusions: Overall performance of bootstrap CI estimation

Difference in empirical coverages between process classes, confidence interval construc-

tions, coefficients and Leaders, multifractal attributes, sample sizes and block bootstrap

resampling being relatively small, let us conclude with an overall appreciation of boot-

strap CI estimation performance for multifractal attributes. The results reported in Tab.

8.1 to 8.4 illustrate that, for the processes and sample sizes considered, bootstrap CI es-

timation has satisfactory performance, for both (1d) signals and (2d) images: Coverage

errors remain moderate and mostly constrained to 5 − 10% for both wavelet Leader and

coefficient based estimation, and for both H-sssi and MMC processes. Nonetheless, in

some situations, coverage errors can be significantly larger, for instance, for Leader and

T-B based confidence intervals for fBm when sample size is small.

8.4 Conclusions and Perspectives

In this section, we defined nonparametric bootstrap confidence intervals for multifrac-

tal attributes, based on T-B and TS-B bootstrap resampling of wavelet coefficients and
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Figure 8.2: Analysis of real-world image. Real world image (left) and estimates ob-

tained from its gray level version: Structure functions (top right) for q = −2 and q = 2,

scaling exponents ζ̂(q) and spectrum D(h) (bottom right), log-cumulant estimates (ta-

ble). Estimates are obtained using fractional integration of order α = 0.5 to ensure min-

imum regularity, Daubechies wavelet (Nψ = 3) and ordinary (w0) fits over the scales

23 ≤ 2j ≤ 26, for which structure functions log2 S(2j , q) are approximately linear functions

of j. Percentile confidence intervals (red vertical and horizontal bars) are obtained with

TS-B bootstrap and R = 99.

Leaders, and validated and compared their respective performance by means of numeri-

cal simulations based on synthetic 1d and 2d H-sssi and MMC processes. The proposed

nonparametric bootstrap confidence interval estimation procedures are – to the best of

our knowledge and apart from one singular special case (wavelet coefficient based es-

timation of ζ(q), q > 0, for fBm) – the only such procedures for multifractal attributes

available at present. In particular, they are the only procedures available that produce

confidence intervals with satisfactory performance for non Gaussian or MMC scaling pro-

cesses, and that are relevant for wavelet Leader based estimation.

The procedures are readily applicable to single finite size realizations of 1d or 2d pro-

cesses. This is illustrated in Fig. 8.1 for one 1d realization of CPM-MF-fBm (left), and

one 2d realization of CMC-LN (right).

The results presented in this section show that the computationally demanding double

bootstrap confidence limit methods are not worth the extra effort for multifractal analysis,

achieving only marginal performance gains with respect to conceptually simple and com-

putationally inexpensive simple bootstrap CI methods. In particular, the results lead us

to the conclusion that the percentile bootstrap confidence limit is a good compromise

between overall performance for different multifractal attributes, and computational cost.

Also, TS-B bootstrap produces overall better results than T-B bootstrap. Yet, conceptually

higher complexity as well as implementation (for instance, consideration of border effects

across scale) and memory cost issues make it less clear whether TS-B bootstrap is to be

preferred over T-B in practice. Finally, the results reported here also confirm the empirical

choice of block size proposed in Section 7.3.4.

We conclude that for both 1d and 2d, for (Gaussian monofractal) H-sssi and for (non
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Gaussian multifractal) MMC processes, and for both wavelet Leader and coefficient based

estimation, bootstrap confidence intervals should in practice be based on TS-B bootstrap,

and on simple bootstrap CI constructions.

Analysis of a real-world image. We illustrate the performance of the wavelet Leader

based estimation procedures on (the gray level version of) a real-world image of size

1024 × 768, taken by the author of this manuscript with a standard digital camera. It con-

sists of natural fern leaves (cf. Fig. 8.2, left) in reference to the synthetic fern image

used as a paradigm for the concept of fractal. Fig. 8.2 (right) shows structure functions

(top row), scaling exponents (bottom left) and the spectrum (bottom right) estimated from

this image with the 2d WLMF, and the corresponding TS-B bootstrap confidence inter-

vals. Results on log-cumulants are summarized in the table below the figure. Results

demonstrate that the method can be readily applied to real-world images for their com-

plete multifractal characterization.

Further issues. Finally, the results indicate some unexpected behaviors of bootstrap

CI estimation performance that demand for further investigation: First, T-B bootstrap CI

do not seem to converge to correct size and empirical coverage as sample size increases,

but rather tend to become too conservative.

Second, bootstrap CI estimation performance is overall better for (multifractal and non

Gaussian) mrw and CMC than for (monofractal and Gaussian) processes. This is rather

surprising, in particular for wavelet coefficient based estimation, since wavelet coeffi-

cients for fBm are known to be Gaussian and only weakly correlated, whereas they are

necessarily non Gaussian for MMC processes. Therefore, switching from fBm to an MMC

process should theoretically hinder (bootstrap) estimation, in contrast to what numerical

simulations indicate.

Third, investigation of bootstrap estimations for structure functions (reported in Chapter

11) shows that the variability of structure functions is dramatically underestimated by the

bootstrap for MMC processes, though bootstrap estimation quality remains correct for

multifractal attributes.

These issues lead us to study theoretically and numerically the dependence structure of

wavelet coefficients and Leaders for MMC processes. These results are summarized in

Chapter 11, together with bootstrap relevant discussions.
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A key practical issue in multifractal analysis consists in deciding which scaling model

better fits the data. In much of the literature related to practical analysis of scaling (or

multifractal) properties of empirical data, practitioners are trying to assess whether the

data they analyze are better described by self-similar with stationary increments (H-sssi)

processes, or by multifractal processes. Such a systematic concern corresponds to both

theoretical and practical preoccupations:

First, while H-sssi processes are deeply tied to additive random walks, the most promi-

nent and practically useful examples of multifractal processes are multifractal multiplica-

tive cascade (MMC) processes and based on recursive multiplicative constructions. Thus,

one can naturally imagine that the (physical or biological) mechanisms underlying the

data are likely to be significantly different for data that can be associated with additive or

with multiplicative structures.

Second, while the scaling properties of H-sssi processes are entirely described by a

single parameter H, referred to as the self-similarity parameter, those of multifractal pro-

cesses involve a whole collection of such parameters. Since the goal of practitioners

consists in relating these scaling parameters to physical parameters controlling the data

or the experiment, there is a need to decide on the actual number of independent param-

eters (multifractal attributes) to be involved.

Third, while practitioners often prefer MMC models whose increased number of param-

eters brings extra degrees of freedom and hence better fits of the data, this additional

flexibility is achieved at the price of significantly increased practical difficulties. Indeed,

while H-sssi processes correspond to a well-defined fully parametric class of stochastic

additive processes mostly depending on a single (self-similarity) parameter, MMC pro-

cesses fall into a much broader and less well-defined class of processes involving a

larger number of parameters, for which the derivation of estimation or hypothesis test

procedures and the assessment of their statistical performance is much more delicate.

These arguments (addition vs. multiplication, single vs. many parameters, significant ex-

tra technical and practical difficulties in estimation and modeling) underline the need for

practical procedures helping in deciding whether MMC processes are needed to model

data, or whether the data are satisfactorily well modeled by self-similar ones.

Along the same line, and for similar reasons, practitioners often need to validate the pre-

cise multifractal nature and properties of the data under analysis, i.e, to decide whether

a simple multifractal model satisfactorily matches the data or if a more elaborate model

is to be involved.

Yet, this issue received no systematic or detailed study, and no statistical procedure val-

idating the precise multifractal nature and properties of the data under analysis is avail-

able.

Therefore, the goal of the present chapter is precisely to define statistical tests aiming at

deciding whether data under analysis belong to a certain precise process class or not.

The hypothesis tests rely on the combination of the three key ingredients log-cumulants,

wavelet Leaders and nonparametric bootstrap: We use nonparametric block bootstrap

resampling of wavelet Leaders and coefficients as robust means for obtaining approxi-

mate null distributions of test statistics for hypothesis tests on the log-cumulants cp, and

end up with a robust and powerful practical test procedure for the analysis of a single and

finite length observation of empirical data.

The chapter is organized as follows. The statistical tests are described in Section 9.1,

which gives a precise statement of the problem we consider (Section 9.1.1), gathers ba-
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sics and notations for hypothesis tests (Section 9.1.2) and defines the nonparametric

bootstrap tests, together with six different bootstrap acceptance regions for the tests that

we analyze and compare (Section 9.1.3). In order to assess the statistical performance

(significances, p-values and powers) of the proposed bootstrap tests, large sets of numer-

ical simulations have been performed. The corresponding methodology, the simulation

set up, as well as the multifractal processes used to conduct the numerical simulations,

are presented in Section 9.2. The results are presented in Section 9.3, where we dis-

cuss test performance for discrimination of H-sssi and MMC models (Section 9.3.1), of

different MMC models (Section 9.3.3), and test performance for non GaussianH-sssi pro-

cesses (Section 9.3.4). Further developments, conclusions and perspectives are found

in Section 9.4.

The work presented in this chapter has been reported in [174, 175, 179].

9.1 Testing Statistical Hypothesis on log Cumulants

9.1.1 Formulation of the test problem

As pointed out in the introduction, a crucial practical issue in applications lies in deciding

whether the data should be described by monofractal processes or with multifractal mod-

els, and also, which precise multifractal model should be used1. Whereas for (monofrac-

tal) H-sssi processes, the scaling exponents take the specific form ζ(q) = qH, for most

multifractal processes of interest, ζ(q) is a non linear (concave) function of q. Therefore,

we use this property, without loss of generality, as a definition for multifractal processes.

Note that such a definition is not strictly correct (cf. [89, 145] and Section 2.4.4 for a

mathematically correct definition) but nevertheless sufficient for most applications2.

Based on this practical or operational definition, discriminating between the two classes

of models mostly amounts to deciding on the linearity of ζ(q) with respect to q. This

is where the use of the log-cumulants is of central interest since for H-sssi processes

ζ(q) = qH and hence ∀p ≥ 2 : cp ≡ 0, while for most multifractal processes of practical

interest c2 6= 0. Thus, monofractal (finite variance H-sssi) is defined as ∀p ≥ 2, cp ≡ 0,

and accordingly, c2 6= 0 defines multifractal. Also, this enables to discriminate between

simple (cp ≡ 0, p ≥ 3) or more elaborate multifractal models. Hence, the log-cumulants

c1, c2, c3, provide us with central attributes to quantify the multifractal nature of the data.

This is why we want to test cp = cp,0 against the two sided alternative cp 6= cp,0.
Eventually, the specific case c2,0 = 0 is seen as the test of mono- versus multi-fractal, and

the case c3,0 = 0 as a test of simple (log-Normal) against more complicated (log-Poisson

or higher order) multifractal model.

9.1.2 Statistical tests

The tests are constructed for the null hypothesis:

H0 : cp = cp,0, (9.1)

1We restrict our discussion to processes with finite variance, cf. Sections 2.2.3 and 2.8 (last paragraph),

and to processes for which the cumulant expansion Eq. (2.70) is valid up to at least p = 3.
2This excludes for instance Lévy stable self-similar processes [88] or random wavelet series [20] which

are of theoretical interest but remain difficult to use in applications.
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postulating that the true value of cp is cp,0, against the double sided alternative cp 6= cp,0.

They are based on the basic and on the studentized test statistics:

t̂B = ĉp − cp,0, t̂S =
ĉp − cp,0
σ̂∗

, (9.2)

where σ̂∗ stands for the bootstrap estimate of the standard deviation of ĉp. The studen-

tized test statistic attempts to make the random variable t̂S pivotal, i.e., to remove the

unknown parameter σ from the distribution of ĉp. Large values of the observed test statis-

tic t̂ indicate evidence against H0, as is common convention for statistical tests [113].

Definition. A significance (1 − α) test rejects H0 when the probability of observing t̂
under the null hypothesis is smaller than α. More precisely, the test dα is:

dα =

{
1 if t̂ /∈ T(1−α)

0 otherwise.
(9.3)

where T(1−α) is the acceptance region of the test. The acceptance region T(1−α) is defined

by:

Pr{t ∈ T(1−α)|PH0
t } = 1 − α, (9.4)

based on the distribution of the test statistic under H0, called the null distribution:

PH0
t (τ) = Pr(t̂ < τ |H0). (9.5)

Significance and p-value. The quantity α is called the level or significance of the test

and equals the error rate in rejecting H0.

The critical value of α for which the observed test statistic t̂ would be regarded as just

decisive against H0 is called the p-value or significance p of t̂,

p = (α|dα = 0, dα+ε = 1) , ε > 0. (9.6)

Under H0, the p-value ideally has a uniform distribution on [0, 1], yielding its interpretation

as an error rate: If t̂ were regarded as just decisive against H0, then this is equivalent to

a procedure that rejects H0 with error rate p [56]. It therefore quantifies the plausibility of

rejecting H0 having observed t̂.

Power. When performing a test, one may commit two types of errors: First, one may

reject H0 when it is true (error of the first kind), which ideally happens with probability

equal to the significance α. Second, one may accept H0 : cp = cp,0 when it is false (error

of the second kind) and a certain alternative cp,A is true. The probability of rejecting H0

when it is false and a certain alternative cp,A is true is called the power β of the test

against this specific alternative.

A good test should have both low probability of rejecting H0 when it is true (i.e., small

α), and high probability when H0 is false (i.e. large β), which are antagonistic goals. It is

common practice to preset the significance α and then select a test with power β as large

as possible.

For more details on hypothesis tests, the reader is referred to e.g. [113].
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Rejection
Regions

c2 = −0.01

H0 : c2 = 0
Acceptance
Region

Figure 9.1: Illustration of bootstrap hypothesis test. Estimated null distribution and

(1 − α) basic bootstrap test for the second log-cumulant of mrw (single realization): The

hypothesis H0 is rejected if the observed value t̂ of the test statistic is within the rejection

regions, i.e., outside the interval T̂ bas
(1−α) = [t̂∗α

2
, t̂∗1−α

2
].

9.1.3 Nonparametric bootstrap tests

The definition of the test Eq. (9.3) is based on the distribution of the test statistic under

H0 Eq. (9.5), which is unknown in most situations and in practice often approximated

by parametric models. Due to the lack of plausible and robust models for H-sssi and

multifractal processes, we use the nonparametric block bootstrap resampling and esti-

mation defined in Chapter 7 to obtain estimates of the null distribution of t̂ and construct

nonparametric bootstrap tests [56, 82, 188, 193, 194, 195, 196].

9.1.3-a) Bootstrap null distribution estimation

The nonparametric bootstrap estimate of the null distribution Eq. (9.5) is given by the

empirical distributions P̂H0
t of the bootstrap versions t̂∗B and t̂∗S of the test statistics t̂B and

t̂S [56, 82, 195, 196], defined as:

t̂∗B = ĉ∗p − ĉp, (9.7)

t̂∗S =
ĉ∗p − ĉp

σ̂∗∗
, (9.8)

P̂H0
t (τ) =

1 +
∑R

r=1 h
(
τ − t̂∗(r)

)

R+ 1
, (9.9)

where h(·) is the Heaviside (step) function. The fact that cp,0 is replaced with ĉp in the

bootstrap versions t̂∗B and t̂∗S of the test statistics t̂B and t̂S ensures that their empirical

distributions P̂H0
t approximately satisfy H0 [82].

The null distribution estimate Eq. (9.9) can now be used for determining approximate

limits of the acceptance regions T̂(1−α) Eq. (9.4), and in turn performing the test Eq. (9.3)

and estimating the p-value Eq. (9.6). A typical bootstrap distribution, obtained for c2 (for

mrw) and the basic bootstrap test procedure (whose acceptance region is defined in Eq.

(9.11) below) are illustrated in Fig. 9.1.

9.1.3-b) Bootstrap test acceptance regions

As we consider tests against double-sided alternatives, double-sided acceptance regions

T(1−α) are used in the present work, that is, acceptance regions with finite lower and up-
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per limits. There exists a large number of nonparametric bootstrap tests in the literature,

producing different acceptance regions (cf. [56] for an overview). We analyze 6 different

significance α bootstrap tests, including simple, computationally inexpensive, and more

sophisticated, computationally more demanding double bootstrap methods: The asymp-

totic bootstrap test uses simple symmetric acceptance regions, employing only the boot-

strap standard deviation estimations. The basic and percentile tests employ quantiles of

the empirical bootstrap distributions Eq. (9.9) of t̂∗B. The studentized test uses quan-

tiles of the empirical distributions of the pivoted test statistic t̂∗S . The adjusted basic and

adjusted percentile tests use the double bootstrap estimations to correct for a bias in

the limits of the acceptance regions of the basic and percentile tests. The three latter

methods are potentially more efficient, however at the price of a costly double bootstrap

layer.

Asymptotic (Normal) bootstrap test. Assuming t̂B (Eq. (9.2)) to be approximately

Normal under H0, the bootstrap standard deviation estimate σ̂∗ is used to construct the

equi-tailed and symmetric acceptance region:

T̂ nor
(1−α) = [q(α

2
)σ̂

∗ + cp,0,−q(α
2
)σ̂

∗ + cp,0], (9.10)

where qα is the α quantile of the standard Normal distribution.

Basic bootstrap test. The bootstrap distribution Eq. (9.9) of t̂∗B is used directly to

define the equi-tailed acceptance region:

T̂ bas
(1−α) = [t̂∗B,(α

2
), t̂

∗
B,(1−α

2
)], (9.11)

where t̂∗B,(α) is the empirical α-quantile of Eq. (9.9) for t̂∗B.

Percentile bootstrap test. The percentile test is constructed by inversion of a per-

centile confidence interval [ĉ∗p, (α
2
), ĉ

∗
p, (1−α

2
)] (Eq. (8.6)) for the parameter cp, and has ac-

ceptance region:

T̂ per
(1−α) = [−t̂∗(1−α

2
),−t̂∗(α

2
)]. (9.12)

Studentized bootstrap test. The studentized test is a basic bootstrap test for the

pivoted test statistic t̂S (Eq. (9.2)). The method thus demands a double bootstrap for

calculating the standard deviation estimates σ̂∗∗ and has acceptance region:

T̂ stu
(1−α) = [t̂∗S, (α

2
), t̂

∗
S, (1−α

2
)]. (9.13)

Adjusted p-value for basic bootstrap test. If the usual error rate interpretation of p is

to be valid, the p-value must be uniformly distributed on [0, 1] under H0. This is, however,

not guaranteed for composite null hypotheses, neither for approximate null models as in

Eq. (9.9). The adjusted p-value method aims at estimating an improved p-value that is

more nearly uniformly distributed than the unadjusted one. It treats p as the observed

test statistic and estimates its distribution by resampling under the null model [56]. The

double-sided adjusted p-value is given by:

pbasadj = 2min
(

Pr{pbas∗ ≤ pbas|F̂θ}, Pr{pbas∗ > pbas|F̂θ}
)
. (9.14)

Here, pbas is the p-value of the basic bootstrap test, and the pbas∗ are its bootstrap resam-

ples, obtained by double bootstrap. The acceptance region is given by:

T̂ adjbas
(1−α) = {t : pbasadj ≥ α}. (9.15)
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dα =

{
1 if t̂ /∈ T̂(1−α)

0 otherwise.
p = (α|dα = 0, dα+ε = 1) , ε > 0

Normal: T̂ nor
(1−α) = [q(α

2
)σ̂

∗ + cp,0,−q(α
2
)σ̂

∗ + cp,0]

Basic: T̂ bas
(1−α) = [t̂∗B,(α

2
), t̂

∗
B,(1−α

2
)]

Percentile: T̂ per
(1−α) = [−t̂∗(1−α

2
),−t̂∗(α

2
)]

Studentized: T̂ stu
(1−α) = [t̂∗S, (α

2
), t̂

∗
S, (1−α

2
)]

Adjusted Basic: T̂ adjbas
(1−α) = {t : pbasadj ≥ α}

Adjusted Percentile: T̂ adjper
(1−α) = {t : pperadj ≥ α}

Table 9.1: Overview of significance α bootstrap tests. Overview of significance α
bootstrap tests and their corresponding acceptance regions Eqs. (9.10–9.13), (9.15) and

(9.16).

Adjusted p-value for percentile bootstrap test. The adjusted p-value for the per-

centile bootstrap test is given by Eq. (9.14) by replacing pbas and pbas∗ with the p-value

of the percentile bootstrap test pper and its corresponding bootstrap resamples pper∗, re-

spectively. It has acceptance region:

T̂ adjper
(1−α) = {t : pperadj ≥ α}. (9.16)

The bootstrap tests, p-values and acceptance regions considered in this work are sum-

marized in Tab. 9.1.

Hypothesis tests versus confidence intervals. There is a form of duality between

hypothesis tests for parameters and confidence intervals for these parameters in the

sense that – for a prescribed level α – a confidence region includes parameters that

are not rejected by an appropriate hypothesis test [56]. In this sense, the percentile

test acceptance region T̂ per
(1−α) is obtained by inversion of a percentile confidence limit

Eq. (8.6) for cp, and the studentized test acceptance region T̂ stu
(1−α) by inversion of a stu-

dentized confidence region Eq. (8.7) for cp, and the tests reject H0 if cp,0 is outside the

corresponding confidence regions.

9.1.3-c) Advanced comments on hypothesis tests

For sake of completeness, let us further note that α, p and β are only properly defined if

the null hypothesis is simple, i.e. when the null distribution PH0
t is completely specified

by H0. In most parametric and all nonparametric situations, H0 is composite and whole

families of distributions satisfy H0. Then, the quantities α, p and β can not be well defined

[113]. Therefore, the nonparametric bootstrap test constitutes an approximation, consist-
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ing in the use of one distribution out of the family of distributions satisfying H0 for test

construction.

9.2 Validation of bootstrap tests on log-cumulants

9.2.1 Numerical simulation study

We evaluate the statistical performance of the proposed bootstrap test procedures by

applying them to a large number NMC of realizations of four different synthetic stochastic

processes with a priori known and controlled multifractal properties and log-cumulant

values cp. For each realization, each test procedure defined above provides us with 2

outputs: The decision d̂α, and the p-value of the observed test statistic. From averages

over realizations, we evaluate the actual significances, p-values and powers of the tests

and compare them with the theoretical targets, and against each other. The aim of this

numerical study is to address the following issues: Do the bootstrap test procedures

described above exhibit satisfactory statistical performance? Should one prefer wavelet

coefficients or wavelet Leaders for testing mono- vs. multi-fractal, and for testing different

multifractal models? What precise design of the acceptance region Eqs. (9.10–9.13),

(9.15) and (9.16) yields the best statistical performance?

9.2.2 Performance under H0: Actual significance and p-value

A first set of experiments is run to evaluate the actual significances and p-values of the

procedures. For that, we test the hypothesis H0 : cp = cp,0 when this hypothesis is true.

We obtain NMC estimates d̂α and p̂ for each of the proposed tests and nominal α.

The actual significances α̂MC of the tests are estimated as (ÊMC denotes the average

over Monte Carlo realizations):

α̂MC = ÊMC{d̂α|cp ≡ cp,0} (9.17)

and should ideally equal the nominal significance α.

The actual p-values p̂ should ideally be uniformly distributed on [0; 1], if the null distribution

estimation is appropriate and sufficiently accurate. Therefore, the average actual p-values

p̂MC of the tests, estimated as:

p̂MC = ÊMC{p̂|cp ≡ cp,0}, (9.18)

should be close to 1/2, and the empirical distributions of p̂ should be uniform.

Note that due to the duality of confidence interval and test acceptance region construc-

tions for bas, per, nor and stu, the actual significances α̂MC for tests H0 : cp,0 = cp can

be read as empirical coverages of the corresponding bootstrap confidence intervals as:

Ccp,(1−α) = 100 · (1 − α̂MC)%. (9.19)

For the same reason, any of the empirical coverage results for θ = cp in Chapter 8 can

be read as actual significances of the equivalent tests for H0 : cp,0 = cp:

α̂MC = 1 − 1

100
Ccp,(1−α), (9.20)

and therefore, also the corresponding conclusions in Chapter 8 apply to the equivalent

bootstrap hypothesis tests under H0.
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c2 fBm dX - N = 212 dX - N = 215

α nominal 0.05 0.10 0.15 0.20 0.25 0.05 0.10 0.15 0.20 0.25

nor 0.10 0.18 0.23 0.29 0.35 0.07 0.13 0.18 0.24 0.29

bas 0.08 0.16 0.23 0.30 0.34 0.07 0.13 0.18 0.23 0.29

per 0.12 0.19 0.26 0.31 0.37 0.08 0.12 0.18 0.24 0.30

stu 0.08 0.16 0.23 0.29 0.34 0.06 0.12 0.17 0.22 0.27

adjb 0.07 0.13 0.20 0.24 0.29 0.10 0.15 0.19 0.26 0.30

adjp 0.11 0.17 0.22 0.26 0.30 0.10 0.15 0.19 0.25 0.31

c2 fBm LX - N = 212 LX - N = 215

α nominal 0.05 0.10 0.15 0.20 0.25 0.05 0.10 0.15 0.20 0.25

nor 0.13 0.20 0.27 0.32 0.38 0.18 0.27 0.34 0.40 0.46

bas 0.17 0.22 0.29 0.34 0.40 0.24 0.34 0.41 0.48 0.54

per 0.14 0.21 0.28 0.34 0.40 0.12 0.21 0.28 0.34 0.39

stu 0.12 0.19 0.26 0.30 0.34 0.20 0.30 0.38 0.44 0.50

adjb 0.14 0.19 0.22 0.28 0.34 0.30 0.33 0.40 0.46 0.51

adjb 0.12 0.15 0.19 0.25 0.30 0.16 0.17 0.24 0.29 0.34

Table 9.2: Actual significances of bootstrap tests on c2: fBm. Actual significances

α̂MC of bootstrap tests for c2,0 = c2, using wavelet coefficients and Leaders, for fBm

(c2,0 = c2 = 0). Nominal significances and results closest to nominal values are marked

in bold.

9.2.3 Performance under HA: Power

A second set of experiments is run to evaluate the powers of the procedures. For that,

we test the hypothesis H0 : cp = cp,0 when an alternative HA : cp = cp,A 6= cp,0 is true.

The actual powers of the tests on H0 : cp = cp,0 against a certain alternative cp,A 6= cp,0
are estimated as:

β̂MC(cp,A, α) = ÊMC{d̂α|cp,0, cp = cp,A}, (9.21)

and the larger, the better. With cp = cp,0 = 0 and p = 2, this essentially evaluates the

ability of the tests to reject self-similarity in favor of multifractal, and with p = 3, to reject a

simple (log Normal) multifractal model against a more complicated one.

9.3 Performance of Bootstrap Tests

9.3.1 Testing monofractal versus multifractal model

The goal of this section is to validate tests H0 : c2 = 0 aiming at rejecting the monofractal

model. To this end, we make use of fractional Brownian motion (fBm, cf. Section 2.2.3-a))

and multifractal random walk (mrw, cf. Section 2.7.2-b)), chosen because they provide us

with simple yet representative examples of monofractal (Gaussian H-sssi) processes (for

fBm, c2 ≡ 0 and H0 : c2 = c2,0 = 0 is true), and non Gaussian multifractal processes (for

mrw, c2 6= 0 and H0 : c2 = c2,0 = 0 is not true), respectively. This work has been reported

in [174].

Experimental set-up. Results are obtained for sample sizes N ∈ {212, 215}, us-

ing Daubechies wavelets with Nψ = 3 vanishing moments. Estimation is performed
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c2 fBm

dX LX
212 215 212 215

nor 0.43 0.48 0.42 0.36

bas 0.44 0.48 0.39 0.32

per 0.42 0.47 0.41 0.41

stu 0.44 0.49 0.42 0.34

adjb 0.46 0.46 0.43 0.31

adjp 0.44 0.46 0.47 0.42

Table 9.3: Mean p-value of bootstrap tests on c2 for fBm. Mean p-value p̂MC of

bootstrap tests for c2,0 = c2, using wavelet coefficients and Leaders for fBm (c2,0 = c2 =
0). Results closest to the theoretical value E p = 1/2 are marked in bold.

with weighted (w1) linear regressions over scales (j1, j2) = (3, log2(N) − 4). Boot-

strap estimations are based on T-B bootstrap (cf. Section 7.2.1) with R = 599, S = 50
for N = 212, and R = 399, S = 25 for N = 215. Nominal significances are set to

α ∈ {0.05, 0.1, 0.15, 0.2, 0.25}. The process parameter for fBm is set to H = c1 = 0.8.

For the simulations of the powers against multiple alternatives (cf. Fig. 9.2 and Tab. 9.4),

we make use of mrw for the range of parameter settings β2 = −c2 ∈ {0.01, 0.02, · · · , 0.08}
(H = 0.72).

Significance and p-value. Tab. 9.2 summarizes actual significances for tests on c2
for fBm (c2,0 = c2 = 0). The numerical results indicate that overall, α̂MC is satisfactorily

close to nominal α for the proposed methods. The tests employing wavelet coefficients

reproduce the nominal α slightly better than those using wavelet Leaders, in particular for

large sample size. Also, while for tests based on wavelet coefficients, no clear preference

can be given to any of the particular acceptance regions, the per and the adjp method

perform slightly better than the others for tests based on wavelet Leaders.

The average actual p-values p̂MC of the tests are summarized in Tab. 9.3 for c2. They

suggest that the expected uniform (mean 1/2) distributions are satisfactorily reproduced

for all acceptance regions. Therefore, the error rate interpretation of the estimate p̂ of

p is approximately valid for the proposed procedures. Also, while the adjusted methods

generally improve results – as expected – for small sample size N = 212, they appear to

be much less decisive for larger sample size. This may be due to the smaller number of

double bootstrap resamples (S = 25) used in the latter case.

These results (actual significances close to nominal, p-values approximately uniformly

distributed) indicate that the nonparametric bootstrap null distribution estimations Eq.

(9.9) are valid approximations to the real null distributions of the test statistics.

Power. Tab. 9.4 summarizes the powers β̂MC(c2,A, α) of the bootstrap tests H0 :
c2 = 0 for the particular alternative HA : c2 = c2,A = −0.08. It shows that wavelet Leader

based tests on c2 are much more powerful than wavelet coefficient based ones: Whereas

the tests employing wavelet Leaders achieve powers up to 0.7 for N = 212 and small α,

and approximately 1 for N = 215, wavelet coefficient based procedures have only powers

of 0.2 and 0.55, respectively. As expected, test power increases with increasing sample

size N . Tab. 9.4 also shows that the percentile and adjusted percentile methods have

consistently the largest powers.
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β̂MC(c2,A, α) dX - N = 212 dX - N = 215

α nominal 0.05 0.10 0.15 0.20 0.25 0.05 0.10 0.15 0.20 0.25

nor 0.16 0.25 0.31 0.38 0.42 0.45 0.55 0.62 0.67 0.71

bas 0.13 0.21 0.28 0.35 0.40 0.40 0.50 0.57 0.62 0.66

per 0.22 0.30 0.36 0.41 0.47 0.48 0.59 0.66 0.71 0.75

stu 0.13 0.18 0.25 0.32 0.37 0.29 0.41 0.50 0.57 0.61

adjb 0.12 0.18 0.24 0.30 0.35 0.46 0.53 0.58 0.63 0.66

adjp 0.19 0.27 0.33 0.38 0.43 0.55 0.60 0.66 0.71 0.74

β̂MC(c2,A, α) LX - N = 212 LX - N = 215

α nominal 0.05 0.10 0.15 0.20 0.25 0.05 0.10 0.15 0.20 0.25

nor 0.61 0.71 0.78 0.82 0.85 0.97 0.99 0.99 0.99 0.99

bas 0.53 0.63 0.69 0.74 0.78 0.96 0.97 0.98 0.99 0.99

per 0.70 0.80 0.84 0.87 0.89 0.98 0.99 0.99 1.00 1.00

stu 0.45 0.56 0.62 0.67 0.71 0.90 0.94 0.96 0.97 0.98

adjb 0.49 0.56 0.61 0.67 0.71 0.97 0.97 0.98 0.98 0.99

adjp 0.66 0.71 0.76 0.81 0.84 0.99 0.99 0.99 0.99 0.99

Table 9.4: Power of bootstrap tests of H0 : c2 ≡ 0. Actual power β̂MC(c2,A, α) vs.

significance of bootstrap tests of H0 : c2 ≡ 0 for mrw (c2,A = c2 =−0.08), using wavelet

coefficients (top) and Leaders (bottom). Best results are marked in bold.

The superiority of the wavelet Leader based procedures in terms of test power is also

clearly demonstrated in Fig. 9.2, summarizing the powers of the bootstrap tests bas (top,

for N = 212 and N = 215, R = 199), per and stu (bottom, N = 215), R = 199, S = 50)

of H0 : c2 = 0 for a set of alternatives c2 = c2,A ∈ {−0.08,−0.07, · · · ,−0.01}. For

N = 212, the wavelet Leader based bas test achieves practically useful power as soon

as c2,A ≤ −0.05, whereas the powers of wavelet coefficient based procedure do not

differ by much from the significance α for the whole range of alternatives. Similarly, for

N = 215, the powers of the wavelet Leader based tests approach 1 relatively quickly as

c2 departs from zero and remain large over a wide range of alternatives, whereas those

of wavelet coefficient based procedures remain low – of the order of the power of wavelet

Leader based tests for the (one order of magnitude) smaller sample size N = 212. Also,

and most importantly for applications, Fig. 9.2 indicates that the powers of the wavelet

Leader based tests remain significantly above those of the wavelet coefficient based tests

for alternatives close to the null value c2,0 = 0. Finally, Tab. 9.4 suggests that the per tests

are consistently more powerful than the bas and the double bootstrap stu tests.

Conclusions. We conclude that both wavelet Leader and coefficient based tests

of mono- vs. multi-fractal satisfactorily reproduce target significance. Yet, the wavelet

Leader based procedures significantly outperform wavelet coefficient based ones in terms

of test power. Therefore, tests of mono- vs. multi-fractal models should be based on

wavelet Leaders. Also, the simple per test, having overall best performance, is in practice

to be preferred over computationally more demanding double bootstrap tests. For this

reason, we will mainly concentrate on the per test in the rest of this chapter.
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Figure 9.2: Power of bootstrap tests of H0 : c2 ≡ 0. Actual power β̂MC(c2,A, α) of

bootstrap test of H0 : c2 ≡ 0 for mrw against various alternatives c2,A = c2, obtained for

nominal significances α = 0.05: basic test (top) for sample size N = 212 (top left) and

N = 215 (top right), percentile test (bottom left) and studentized test (bottom right) for

sample size N = 215. Blue solid lines and ’◦’ stand for wavelet coefficients, red solid lines

and ’×’ for wavelet Leaders based tests.

9.3.2 Testing c2 for a multifractal process

The aim of this section is to investigate whether the proposed bootstrap tests on c2 re-

produce nominal performance for multifractal processes, that is, when the null hypoth-

esis c2,0 = c2 6= 0 is true. To this end, we make use of multifractal random walk

(mrw, cf. Section 2.7.2-b)), with process parameters set to (H,β) = (0.72,
√

0.08), i.e.

(c1, c2) = (0.8,−0.08). We use the experimental set-up as described in Section 9.3.1.

Results for test performance under H0 : c2 = −0.08 are given in Tab. 9.5 (actual sig-

nificances), Tab. 9.6 (average actual p-values), and Fig. 9.3 (empirical distributions of

p-values). Overall, they lead to the same conclusions as those obtained in the previous

section for test performance under H0 for fBm: Wavelet coefficients and Leaders based

tests reproduce target significance equivalently well, both having actual significances sat-

isfactorily close to nominal α. No clear preference can be given to any of the particular

acceptance regions for wavelet coefficients, yet per and the stu perform slightly better

for wavelet Leaders based tests. Also, the average actual p-values p̂MC of the tests re-

produce the expected uniform (mean 1/2) distributions satisfactorily, hence approximate

validity of the error rate interpretation of the estimate p̂ of p, and practically satisfactory

nonparametric bootstrap null distribution estimations Eq. (9.9).

Conclusions. We conclude that both wavelet Leader and coefficient based tests

on c2 satisfactorily reproduce nominal significance under H0 for multifractal mrw. This

further emphasizes the relevance of the test for mono- versus multi-fractal proposed in

the previous section. Additional results for significance and power of tests on c2, obtained

for a different multifractal process (CPM-MF-fBm), are reported in Tab. 9.7 and lead to
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c2 mrw dX - N = 212 dX - N = 215

α nominal 0.05 0.10 0.15 0.20 0.25 0.05 0.10 0.15 0.20 0.25

nor 0.06 0.12 0.17 0.22 0.28 0.05 0.10 0.15 0.20 0.25

bas 0.07 0.12 0.18 0.24 0.29 0.05 0.12 0.18 0.23 0.29

per 0.07 0.13 0.19 0.24 0.30 0.05 0.10 0.14 0.19 0.24

stu 0.07 0.12 0.17 0.23 0.27 0.04 0.10 0.16 0.22 0.28

adjb 0.06 0.09 0.14 0.19 0.24 0.08 0.13 0.18 0.24 0.28

adjp 0.07 0.11 0.15 0.20 0.25 0.08 0.10 0.14 0.20 0.24

c2 mrw LX - N = 212 LX - N = 215

α nominal 0.05 0.10 0.15 0.20 0.25 0.05 0.10 0.15 0.20 0.25

nor 0.06 0.12 0.17 0.23 0.27 0.07 0.14 0.19 0.24 0.30

bas 0.10 0.16 0.21 0.26 0.31 0.10 0.18 0.24 0.30 0.36

per 0.05 0.10 0.14 0.20 0.25 0.05 0.10 0.16 0.21 0.26

stu 0.06 0.11 0.16 0.21 0.25 0.06 0.12 0.18 0.23 0.28

adjb 0.09 0.12 0.16 0.19 0.23 0.15 0.16 0.23 0.26 0.32

adjp 0.04 0.06 0.09 0.12 0.16 0.08 0.08 0.14 0.16 0.22

Table 9.5: Actual significances of bootstrap tests on c2: mrw. Actual significances

α̂MC of bootstrap tests for c2,0 = c2, using wavelet coefficients and Leaders, for mrw

(c2,0 = c2 = −0.08). Nominal significances and results closest to nominal values are

marked in bold.

similar conclusions.

9.3.3 Testing the multifractal log-Normal model

Applying the bootstrap test procedures with the choice of null hypothesis H0 : c3 = c3,0 ≡
0 provides indications for deciding whether a log-Normal multifractal process or a more

sophisticated multifractal model is to be used to describe the data under study. Indeed,

for a log-Normal process, such as mrw, ∀p ≥ 3, cp = 0. Although in itself, c3 = 0 does not

prove that data follow a log-Normal process, this is a very valuable and practically useful

information (cf. [179] and Chapter 12). Therefore, the goal of this section is to study the

c2 mrw

dX LX
212 215 212 215

nor 0.47 0.49 0.49 0.47

bas 0.47 0.48 0.46 0.43

per 0.47 0.50 0.50 0.50

stu 0.48 0.49 0.50 0.47

adjb 0.49 0.46 0.50 0.44

adjp 0.50 0.49 0.56 0.52

Table 9.6: Mean p-value of bootstrap tests on c2. Mean p-value p̂MC of bootstrap tests

for c2,0 = c2, using wavelet coefficients and Leaders for mrw (c2,0 = c2 = −0.08). Results

closest to the theoretical value E p = 1/2 are marked in bold.



180 Bootstrap Hypothesis Tests

0 0.5 1
0

0.5

1

1.5 Normal        

0 0.5 1
0

1

2

3 Basic         

0 0.5 1
0

0.5

1

1.5 Percentile    

0 0.5 1
0

0.5

1

1.5 Studentized   

0 0.5 1
0

1

2

3 Adj Basic     

0 0.5 1
0

0.5

1

1.5 Adj Percentile

Figure 9.3: Empirical distributions of p-values of bootstrap tests for mrw. Empirical

distributions of the p-values p̂ of the bootstrap tests for c2,0 = c2, obtained for mrw (c2,0 =
c2 = −0.08, N = 215) using Leaders.

relevance and statistical performance of such tests and to investigate whether they can

detect departure from zero values for c3. To this end, we use the multifractal process

CPM-MF-fBm (see Section 2.7.2-a)), whose c3 6= 0 can be set a priori. This work has

been reported in [179].

Experimental set-up. Results are obtained for sample sizeN = 215, using Daubechies

wavelets with Nψ = 3 vanishing moments and weighted (w1) linear regressions over the

range of scales (j1, j2) = (3, log2(N) − 4). Bootstrap estimations use T-B bootstrap (cf.

Section 7.2.1) with R = 399, S = 50, and nominal significance is set to α = 0.05. The

parameters of CPM-MF-fBm are fixed such that (c1, c2, c3) = (0.8,−0.08, 0.0311).

Results. Results for actual significances α̂MC (by setting c3,0 = c3 = 0.0311) and

powers β̂MC (c3,0 = 0) are summarized in Tab. 9.7 (right). They indicate that for any of

the tests on c3, the nominal significance of α = 0.05 is satisfactorily reproduced. The

wavelet Leader based tests have actual significances slightly closer to nominal α than

their wavelet coefficient based counterparts, and are hence more reliable for testing c3.

The difference between per and stu test actual significances is not decisive.

Second, the results demonstrate that wavelet Leader based tests of H0 : c3 = 0 against

c3,A 6= 0 are much more powerful than wavelet coefficient based ones: Whereas wavelet

coefficient based test powers practically equal the actual significance, wavelet Leader

based test powers can in practice allow to detect true departure from zero values for c3.

This is in particular the case for the per test, which is 30% more powerful than stu.

Finally, the results demonstrate that detection of true departure from zero is much more

difficult for c3 than for c2: While the wavelet Leader based per test for H0 : c2 = 0
has power larger than 0.9 for the alternative c2,A = −0.03 (cf. Fig. 9.2, bottom left),

the corresponding test for H0 : c2 = 0 has power smaller than 0.4 for the alternative

c3,A = 0.0311.

9.3.4 Non Gaussian finite variance H-sssi processes and bootstrap tests

The results and discussions of the previous two sections demonstrate that the nonpara-

metric bootstrap tests defined in Section 9.1.3 are efficient for discriminating between
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CPM-MF-fBm c2 = −0.08 c3 = 0.0311

N = 215 dX LX dX LX

H0 per stu per stu per stu per stu

cp,0 = cp α̂MC 0.07 0.05 0.05 0.05 0.10 0.10 0.07 0.06

cp,0 = 0 β̂MC 0.57 0.40 1.00 0.96 0.13 0.11 0.39 0.28

Table 9.7: Actual significance and power of bootstrap tests for CPM-MF-fBm. Actual

significances α̂MC (top) and powers β̂MC(cp,A, α) (bottom) for CPM-MF-fBm and p = 2
(left) and p = 3 (right). The nominal significance is α = 0.05. Best results are marked in

bold.

Gaussian finite variance H-sssi and non Gaussian MF processes (tests on c2), as well

as between simple and more elaborate multifractal models (tests on c3). In the present

section, we further investigate the performance of the test procedures when applied to

non Gaussian finite variance H-sssi processes, and compare them to those for Gaussian

fBm. The Rosenblatt process (ROS, see Section 2.2.3-b)) will be used as a very exam-

ple for such processes. The goal of this study is to validate whether the proposed test

procedures remain reliable for non Gaussian H-sssi processes, and whether they can

discriminate non Gaussian H-sssi from non Gaussian multifractal processes. For sake

of completeness, we also report results for tests on c1. This work has been reported in

[175].

Experimental set-up. The bootstrap test procedures are applied to NMC = 500 real-

izations of length N = 215 of fBm and ROS with H = 0.7. Results are obtained using

Daubechies wavelets withNψ = 3 and weighted (w1) regressions over the range of scales

(j1, j2) = (3, 8). Bootstrap estimation is performed using both T-B and TS-B bootstrap

(Sections 7.2.1 and 7.2.2, respectively) and R = 199 bootstrap samples per realization.

The nominal significance is set to α = 0.05.

Significance. For H-sssi processes, the bias can be dominating over variability in es-

timation performance for Leaders (cf. Chapter 4, e.g. Tab. 4.5 or 4.6), hence potentially

altering actual significances of the tests. Therefore, we prefer in this section, in analogy to

bias-corrected empirical coverage for confidence intervals (cf. Eq. (8.19)), the alternative

actual significance definition α̂MC = ÊMC{d̂α|cp,0 = ÊMC ĉp}.

Results are reported in Tab. 9.8 and indicate that although actual significances are overall

satisfactory for both processes, it is closer to nominal value α for fBm than for ROS. This

is in particular true for c1, for which actual significances are relatively far from the nominal

value for ROS. For c2 and c3, the key attributes in discriminating mono- vs. multi-fractal

models, the difference in actual significance between fBm and ROS is smaller. Sec-

ond, wavelet coefficient based tests reproduce nominal significance closer than wavelet

Leader based procedures for both H-sssi processes and in particular so for ROS. This

is consistent with findings on confidence interval coverage for fBm (cf. Section 8.3.4).

Finally, Tab. 9.8 suggests that TS-B bootstrap results in more accurate tests (actual sig-

nificances closer to nominal) than T-B for wavelet Leaders, whereas there is such no

difference for wavelet coefficients.

Power. Fig. 9.4 shows rejection rates (powers) β̂MC of tests H0 : cp = cp,0 for fBm (top

row) and ROS (bottom row) for both wavelet Leaders (solid red lines) and wavelet coeffi-
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cients (dashed blue lines), based on TS-B bootstrap resampling. The powers β̂MC of the

tests equal the probabilities of rejecting cp,0 (given by the abscissa) when the alternatives

cp (i.e. (c1, c2, c3) = (0.7, 0, 0)) are true. Thus, for p = 2, 3, β̂MC quantifies the capability

of the test to reject a multifractal hypothesis when the data are self-similar fBm or ROS.

Fig. 9.4 demonstrates that wavelet Leader based tests display larger powers than wavelet

coefficient based ones, and significantly so for the parameters c2 and c3 which discrim-

inate mono- from multi-fractal, and simple from more elaborate multifractal models, re-

spectively. However, switching from Gaussian fBm to non Gaussian ROS results in a

non negligible decrease in test powers. Therefore, it is significantly more difficult to reject

a multifractal hypothesis when the data are non Gaussian H-sssi processes than when

they are Gaussian H-sssi.

Conclusions. From actual significance results, we conclude that although test perfor-

mance remains satisfactory, bootstrap estimation is more difficult for the non-Gaussian

Rosenblatt process than for fBm, resulting in less accurate nonparametric bootstrap tests.

Alternative and additional results on bootstrap estimation and confidence interval estima-

tion performance for fBm and ROS have been obtained by us and reported in [175] and

lead to similar conclusions: Bootstrap estimation is more difficult and less accurate for

non Gaussian than for Gaussian H-sssi processes. These results motivate studying the

dependence structure of wavelet coefficients and Leaders for non Gaussian H-sssi pro-

cesses. This is discussed in Chapter 11.

Irrespectively of the efficiency of bootstrap procedures, the non Gaussian nature of ROS

causes a significant decrease in test powers (equivalently, increase in confidence inter-

val sizes), resulting in increased difficulties in discriminating between multifractal and non

Gaussian self-similar models. This is consistent with findings in Chapter 4, demonstrating

substantially better estimation performance for fBm than for ROS (see e.g. Tab. 4.1).

Finally, wavelet Leader based tests do have significantly larger powers than wavelet co-

efficient based ones also for non Gaussian H-sssi processes.

fBm dX LX
bias corrected T-B TS-B T-B TS-B

c1 0.06 0.06 0.12 0.08

c2 0.06 0.08 0.07 0.04

c3 0.07 0.09 0.05 0.06

ROS dX LX
bias corrected T-B TS-B T-B TS-B

c1 0.12 0.11 0.24 0.14

c2 0.06 0.07 0.15 0.11

c3 0.08 0.09 0.15 0.12

Table 9.8: Bootstrap test significances for fBm and ROS. Actual significances α̂MC

of T-B and TS-B based bootstrap bootstrap tests for wavelet coefficient (left) and Leader

(right) based estimation, for fBm (top) and ROS (bottom). The nominal significance is

α = 0.05.
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Figure 9.4: Bootstrap test rejection rates for fBm and ROS. Rejection rate β̂MC of

bootstrap tests for fBm (top) and ROS (bottom) for wavelet coefficients (blue dashed) and

Leaders (red solid). The true values cp are (c1, c2, c3) = (0.7, 0, 0), the null values cp,0
are given by the abscissa. The target significance of the tests is set to α = 5%. It is

significantly more difficult to reject a multifractal hypothesis when data are non Gaussian

ROS than when they are Gaussian fBm.

9.4 Conclusions and Perspectives

We have constructed a practical procedure that enables to test a given a priori chosen

multifractal property: H0 : cp = cp,0. Obviously, the choice H0 : c2 = c2,0 ≡ 0 can be

seen as a test of mono- versus multi-fractal (indeed, it is conjectured, that c2 = 0 ⇒
∀p ≥ 3, cp = 0). Also, the choice H0 : c3 = c3,0 ≡ 0 can be seen as a practical test

of a simple (log-Normal) multifractal model against a more elaborate one. We showed

from numerical simulations on synthetic multifractal processes that such tests possess

satisfactory statistical performance.

The results discussed above show that the proposed nonparametric bootstrap proce-

dures for testing H0 : cp = cp,0 present satisfactory performance in reproducing the tar-

geted significances and p-values, equivalently for wavelet coefficients and wavelet Lead-

ers.

Wavelet Leader based tests have consistently by far larger powers than the wavelet co-

efficient based ones and are thus clearly preferable. A wavelet coefficient based analy-

sis would have poor performance in detecting that the analyzed data do depart from a

(monofractal or simple multifractal) model. Conversely, a wavelet Leader based test re-

jects H0 with high probability, even in situations where the alternative is close to the null

value.

The choice of the type of acceptance region has little impact on the actual significances

α̂MC and on the empirical distributions of the p-values, with a slight preference how-

ever for the percentile and adjusted percentile methods. These methods obtain as well

the largest powers, hence, overall, they are to be preferred. Furthermore, the adjusted

method requires the calculation of double bootstrap resamples, increasing the computa-

tional cost for the bootstrap by a factor S, without bringing significant improvements. For

instance, on a standard PC, the bootstrap estimation and test procedures for c1, c2 for
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Figure 9.5: Bootstrap p-value function estimation. P-value function estimate from

Monte Carlo simulation (dashed) and bootstrap estimates from single realization (solid)

vs. a potentially observable value c̃2, obtained for mrw (c2 = −0.08, c2,0 = 0) using

wavelet Leaders. The symbols (� , ⊲ , × , ◦) stand for (nor, bas, per, stu) acceptance

regions, respectively.

a single observation of sample size N = 212 (215) requires approximately 1.6 (2.7) sec-

onds for simple bootstrap methods and 21.3 (48.4) seconds for double bootstrap methods

(R = 399, S = 25). It is possible that the results obtained with double bootstrap methods

could be slightly improved by using a larger number S of double bootstrap resamples,

however at the cost of further increasing computational load considerably.

The use of TS-B bootstrap brings (slightly) better actual significances, mainly for wavelet

Leader based tests, at the price of increased complexity with respect to T-B bootstrap.

We conclude that tests for H0 : cp = cp,0 should be based on wavelet Leaders and per-

centile acceptance regions and TS-B bootstrap.

Practical test procedure. A MATLAB c© procedure, designed by the author, imple-

ments the proposed multifractality test procedures. To the best of our knowledge, this is

the first and only practical multifractal model test that can actually be applied to a single

observation of data with finite length. We see this result as an important contribution to

empirical multifractal analysis.

Further developments. In addition to obtaining d̂α and p̂, our practical test proce-

dure also outputs, from a single realization, an approximate p-value as a function of a

potentially observable value c̃p. This is done by (numerically) inverting the estimated null

distribution:

p̂(c̃p) = 2 · min
(
P̂ T0 (γ); 1 − P̂ T0 (γ)

)
(9.22)

with γ = c̃p − cp,0 for test statistic t̂B, and γ =
c̃p−cp,0
σ̂∗ for t̂S . Examples of such p-value

functions are depicted in Fig. 9.5, together with an estimate from numerical simulation.

For all acceptance regions, we observe that the functions p̂(c̃p) match satisfactorily well

the one obtained from Monte Carlo simulations. Such p-value functions can be seen as

a useful help for the practitioner. Indeed, the narrower the functions, the more powerful

the tests.

Along another line, alternative test statistics such as T = |cp − cp,0| and one-sided

tests have also been studied. Results yield similar conclusions as for the test statistics

considered above and are therefore not reported here.
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Perspectives and open issues. When analyzing real data, power functions such

as those proposed in Fig. 9.2 can usefully complete the test procedure. They can be

estimated by numerical simulations on synthetic multifractal processes whose parameters

and size fit those of the data under analysis. Methods for estimating the power of a test

against specific alternatives from a single realization can further improve the practical test

procedures [34].

Finally, the results on bootstrap test performance for non Gaussian H-sssi processes

demand for closer investigation of the statistical properties of wavelet coefficients and

Leaders for such processes. Results on their dependence structure (cf. Chapter 11)

represent a first step in this direction.
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In the practical multifractal analysis of empirical data, there has been, and there still

is, an important controversy: Do scaling actually exist in data, or are they rather the con-

sequence of non stationarities that conspire to mimic scaling behavior? To contribute to

answering this question, let us first clarify the issue. There exist two major classes of

stochastic processes used to model scale invariance: Self-similar and multifractal multi-

plicative cascade processes. Both classes consist of non stationary processes, and there

is hence no contradiction between scale invariance and non stationarity in that respect.

The controversy between scale invariance and non stationarity can in fact be cast in the

following three categories: First, scaling actually exist but a smooth trend (in the mean

or variance, for example), hence a non stationarity, is superimposed to the data and is

likely to impair the analysis; Second, scaling exist in data but their parameters exhibit

some form of variability with respect to time, for instance due to a change in experimental

conditions; Third, scaling are not present in data but a strong non stationary variability is

confused with a scaling property.

The first category has been addressed in a number of research papers (cf. [169] and the

references therein) and will not be further considered here. The second and third cat-

egories are much more involved as a non stationary variability can correspond to many

different realities. Nevertheless, their detection is of crucial practical importance, since

the blind analysis of such time series is likely to produce misleading interpretations of

scaling.

The discrimination of true scaling against various forms of non stationary variability can

be addressed with the following heuristic: When data possess true scaling properties,

scaling exponents estimated over the entire time series or over non overlapping adjacent

windowed time series are statistically consistent. Conversely, when scaling exponents

obtained over non overlapping adjacent subsets of the data are not statistically consis-

tent, this can only be the signature of some form of non stationarity, whatever its precise

and a priori unknown nature. This heuristic is illustrated in Fig. 10.1. Therefore, the issue

of testing scale invariance against non stationarity can be meaningfully recast into a test

of time constancy of scaling exponents estimated over adjacent non overlapping subsets

of the analyzed time series. This is precisely the intuition developed in [170], where a

time constancy test is proposed for the (wavelet coefficient based) second order estima-

tion of the Hurst parameter of Gaussian H-sssi processes. The test is briefly described

in Section 10.1.1.

Yet, the use of this test formulation is exclusively limited to the singular case of Gaussian

H-sssi processes, and no equivalent procedure is available for validating true scaling for

the more valuable class of multifractal processes. Therefore, the aim of this chapter is

to extend such an approach to testing for the time constancy of attributes of multifrac-

tal process. This implies the following major changes in test goals and methodology:

First, the second order (q = 2) scaling exponent – sufficient for the Gaussian self-similar

case considered in [170] – has to be replaced with a whole collection of multifractal at-

tributes, related to both positive and negative statistical orders q. Second, estimations

are no longer based on wavelet coefficients but on wavelet Leaders. Third, multifractal

processes make up for a large class of stochastic processes with a plurality of poorly

studied statistical properties. Consequently, the design of statistical tests is significantly

more complicated for multifractal processes. Moreover, the statistics underlying the test

can – as opposed to the Gaussian H-sssi case – no longer be obtained analytically.

To cope with these issues, we propose the use of an original nonparametric block boot-

strap test design, based on the bootstrap procedures defined in Section 7.2. The test pro-
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Figure 10.1: Illustration of heuristic for time constancy of multifractal attributes.

When data possess true scaling properties, multifractal attributes estimated over non

overlapping adjacent windowed time series are statistically consistent (shown are here

scaling exponents ζ(m)(q), obtained over M = 4 windows.). Conversely, if they are not,

this is the signature of some form of non stationarity. The illustration is based on one

single realization of mrw (N = 212, (c1, c2) = (0.7,−0.08)).

cedure employs an original ”bootstrap on subsets” and ”subsets on bootstrap” approach,

which enables the effective estimation of a relevant null distribution for test formulation.

We end up with a practical and operational nonparametric test procedure, that exhibits

satisfactory statistical performance and that can be applied to a single observation of em-

pirical data to assess the true existence of scaling.

The work presented in this chapter has been reported in [176].

10.1 Bootstrap Time Constancy Test

10.1.1 A test for time constancy of the Hurst parameter

In [170], a uniformly most powerful invariant test for the time constancy of the Hurst

parameter H of Gaussian H-sssi processes is devised and analyzed. The test is con-

structed from wavelet coefficient based estimates Ĥ(m), obtained from adjacent non over-

lapping subsets X(m) of X, and relies on Gaussianity, independence and (analytically)

known statistics of the estimates. Notably, the variance of the estimates is known a priori

and is independent of the true H. The test statistic reads:

TH =

M∑

m=1

1

σ2
(m)


Ĥ(m) −

∑M
n=1

Ĥ(n)

σ2
(n)∑M

n=1
1

σ2
(n)




2

. (10.1)

Under the null hypothesis (H constant), its distribution is known exactly, which enables

the formulation of the test.
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10.1.2 Extension to multifractal processes and bootstrap test principle

To adapt the test to multifractal processes, we have to extend it to any multifractal at-

tributes θ ∈ {ζ(q), cp}, whose estimations are based on wavelet Leaders. Let θ denote

the multifractal attribute under test. From the time series X to be analyzed, M wavelet

Leader based subset estimates θ̂(m) of θ are obtained from adjacent non overlapping

subsets X(m). Assessing the time constancy of θ then amounts to testing the hypothesis

that the random variables {θ̂(m),m = 1, . . . ,M} have identical mean:

H0 : θ(1) = θ(2) = · · · = θ(M). (10.2)

Yet, this generalization of the test induces two severe difficulties:

1. Variances σ2
(m) for the θ̂(m) are no longer known a priori and are likely to depend on

the parameter values (see Section 4.1.7).

2. The null distribution of the test statistics Tθ is no longer known a priori.

To overcome these severe difficulties in the test formulation, we propose to base the test

on resamples of wavelet Leaders {L∗
X}, obtained from the sample of Leaders {LX} by

a specific resampling approach which is detailed in the following Sections 10.1.3 and

10.1.4.

10.1.3 Bootstrap test statistic

For convenience, let us denote resamples and samples of wavelet Leaders by {LX(j, k)∗}
and {LX(j, k)}, respectively. The test statistic consists of a modified version of Eq. (10.1).

It is based on bootstrap variance estimates for the unknown variances, and on the Graybill

Deal estimator instead of the maximum likelihood estimator of the consensus mean:

Tθ =

M∑

m=1

1

σ̂2∗
(m)


θ̂(m) −

∑M
n=1

θ̂(n)

σ̂2∗
(n)∑M

n=1
1

σ̂2∗
(n)




2

. (10.3)

The test statistic estimation procedure is sketched in Tab. 10.1 (left):

First, the set of Leaders {LX(j, k)} is cut into M subsets {LX(m)
(j, k)}, corresponding to

the subsets X(m). The subset estimates θ̂(m) are computed by applying Eqs. (2.65) and

(2.71) to the {LX(m)
(j, k)}.

Second, the variance estimates σ̂2∗
(m) for each θ̂(m) are obtained by T-B and TS-B boot-

strap resampling from each subset {LX(m)
(j, k)}, yielding R bootstrap samples:

{(LX(m)
(j, k))∗(r)}, r = 1, · · · , R

per subset. Then the estimation procedures defined in Section 2.6 are used on each of

these resamples to obtain the bootstrap subset estimates θ̂(m)
∗(b). Finally, the variance

estimates σ̂2∗
(m) for θ̂(m) are given by the bootstrap sample variances: σ̂2∗

(m) = V̂ar
∗
θ̂(m)

∗(·).
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10.1.4 Bootstrap null distribution estimation

A bootstrap estimate of the distribution of the test statistic Tθ under H0 is obtained from

the empirical distribution of the bootstrap counterpart of Eq. (10.3):

T ∗
θ =

M∑

m=1

1

σ̂2∗∗
(m)


θ̂

∗
(m) −

∑M
n=1

θ̂∗
(n)

σ̂2∗∗
(n)∑M

n=1
1

σ̂2∗∗
(n)




2

. (10.4)

The null distribution estimation procedure is summarized in Tab. 10.1 (right):

The subset estimates θ̂
∗(b)
(m) are obtained by, first, T-B or TS-B bootstrap sampling from the

complete set {LX(j, k)} of Leaders, yielding the R resamples:

{L∗(r)
X (j, k)}, r = 1, · · · , R,

and then, cutting each of these resamples into M subsets:

{(L∗(r)
X (j, k))(m)},

from which θ̂
∗(r)
(m) are obtained by the estimation procedures defined in Section 2.6. Let us

emphasize that resampling from the complete set of Leaders, rather than from subsets,

is a crucial issue, as it ensures that the θ̂∗(m) all have the same conditional distributions

and thus that T ∗
θ reproduces the statistics of Tθ under H0, shall X satisfy H0 or H1 (this

is illustrated in Fig. 10.3 and discussed in Section 10.2.4-c) below).

The variance estimates σ̂
2∗∗(r)
(m) of θ̂

∗(r)
(m) are obtained by first applying T-B or TS-B bootstrap

sampling to each {L∗(r)
X (j, k)}, giving the S double bootstrap resamples {L∗∗(r,s)

X (j, k)},

s = 1, · · · , S, per bootstrap sample {L∗(r)
X (j, k)}. Each of these double bootstrap sam-

ples is in turn cut into M subsets {(L∗∗(r,s)
X (j, k))(m)}, enabling the computation of the

double bootstrap subset estimates θ̂
∗∗(r,s)
(m) . Finally, the double bootstrap sample variance

estimates are computed: σ̂
2∗∗(r)
(m) = V̂ar

∗∗
θ̂
∗∗(r,·)
(m) .

10.1.5 Bootstrap test

The test is now readily formulated as:

dθ =

{
1 if Tθ > T ∗

θ,C

0 otherwise,
(10.5)

where the test critical value T ∗
θ,C is the (1 − α) quantile of the empirical distribution of T ∗

θ ,

for a certain preset significance level α. The critical value of α for which the observed test

statistic Tθ would be regarded as just decisive against H0 is called the p-value pθ of Tθ.

10.2 Performance Assessment and Results

10.2.1 Numerical simulation study

To evaluate the performance of the proposed test procedures, we apply them to a large

number NMC of realizations of length N of multifractal random walk (mrw) (see Section
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{LX}
cut

��

∗ // a{L∗(r)
X }aa
cut

��

∗ // {L∗∗(r,·)
X }
cut

��

{LX(m)
} ∗ //

estimate

��

{(LX(m)
)∗}

estimate

��

{(L∗(r)
X )(m)}
estimate

��

{(L∗∗(r,·)
X )(m)}
estimate

��

θ̂(m)

��

θ̂(m)
∗ → σ̂∗(m)

t|

θ̂
∗(r)
(m)

��

θ̂
∗∗(r,·)
(m) → σ̂

∗∗(r)
(m)

s{

Tθ T
∗(r)
θ

r = 1, · · · , R

�� ��

�� ��

�� ��

�� ��

Table 10.1: Bootstrap resampling scheme for time constancy test. Procedure for ob-

taining Tθ (left) and T ∗
θ (right) from the wavelet Leaders {LX(j, k)} of X. ”cut”, ”estimate”

and ”∗” stand for cutting a set into M subsets, computing estimates θ̂ from Eqs. (2.65)

and (2.71), and T-B or TS-B bootstrap resampling as in Section 7.2, respectively.

2.7.2-b)), chosen here because it is easy to simulate, and because its multifractal at-

tributes can be conveniently controlled. The simulation parameters are set to NMC =
1000, N = 215, R = S = 99 and α = 0.1. For multifractal attribute estimation, we use

Daubechies wavelets with Nψ = 3. Weighted (w1) regressions are performed over the

range of scales (j1, j2): j1 = 3 and j2(M) = log2N − log2M − (2Nψ − 1) (cf. [179]).

The multifractal parameters (specified below) are chosen to correspond to realistic situa-

tions observed in actual data (for instance, c2 ≈ −0.025 is a commonly accepted value in

turbulence, cf. [44, 179]).

10.2.2 Performance assessment

The performance of the test procedures, given that a certain hypothesis H(·) is true, are

assessed by their mean rejection rates and p-values,

d̄
H(·)

θ = ÊMC{dθ|H(·)} (10.6)

p̄
H(·)

θ = ÊMC{pθ|H(·)}, (10.7)

where ÊMC stands for the mean over Monte Carlo simulations. We choose to consider

here only results obtained for θ ∈ {c1, c2} and M ∈ {2, 4} with equal subset lengths.

Similar results can be obtained for cp, p ≥ 3 and ζ(q), other choices of M , and splitting

into subsets of non equal length.

10.2.3 Performance under H0

The performance under H0 are studied on processes with constant multifractal attributes

(c1, c2). Tab. 10.2 summarizes results for three different sets of parameters: (c1, c2) =
(0.75,−0.01) (left), (c1, c2) = (0.8,−0.02) (center) and (c1, c2) = (0.75,−0.08) (right) for

T-B bootstrap (top) and TS-B bootstrap (bottom). They indicate that the mean rejection

rates d̄H0
θ are overall close to the preset significance level α = 0.1 for both c1 and c2,

and for all three parameter settings. Furthermore, the mean p-values p̄H0
θ are close to

0.5, indicating a satisfactory null distribution estimation. Indeed, under H0, the p-value
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H0

T-B

(c1, c2) (0.75,−0.01) (0.8,−0.02) (0.75,−0.08)
θ c1 c2 c1 c2 c1 c2

M = 2
d̄H0
θ 0.113 0.143 0.075 0.139 0.022 0.052

p̄H0
θ 0.478 0.469 0.530 0.485 0.618 0.551

M = 4
d̄H0
θ 0.177 0.224 0.103 0.173 0.014 0.056

p̄H0
θ 0.432 0.379 0.512 0.432 0.687 0.560

H0

TS-B

(c1, c2) (0.75,−0.01) (0.8,−0.02) (0.75,−0.08)
θ c1 c2 c1 c2 c1 c2

M = 2
d̄H0
θ 0.125 0.137 0.122 0.143 0.128 0.110

p̄H0
θ 0.470 0.469 0.468 0.462 0.463 0.501

M = 4
d̄H0
θ 0.214 0.216 0.193 0.227 0.138 0.116

p̄H0
θ 0.426 0.406 0.423 0.400 0.463 0.477

Table 10.2: Mean rejection rates under null hypothesis. Mean rejection rates d̄H0
θ and

p-values p̄H0
θ of the tests underH0 for (c1, c2) = (0.75, −0.01) (left), (c1, c2) = (0.8, −0.02)

(center) and (c1, c2) = (0.75,−0.08) (right) for T-B bootstrap (top) and TS-B bootstrap

(bottom). Under H0, it is expected that d̄H0
θ ≈ α = 0.1, and p̄H0

θ ≈ 0.5.

would be uniformly distributed between 0 and 1 if the test was based on the exact null

distribution of the test statistic.

Yet, there are minor discrepancies in the observed test sizes that slightly depend on

process parameters: For T-B, actual significances consistently become smaller (and p-

values larger) as c2 becomes more negative (and hence, the process is further from

monofractal). For TS-B, observed test sizes are slightly above nominal (and p-values be-

low 0.5), independently of process parameters. Results not reported here show that these

slight discrepancies are mainly due to small differences between the variance σ̂2
(m) of

θ̂(m) (as measured from numerical simulations) and its bootstrap estimate σ̂∗2(m): Whereas

σ̂∗∗2(m) ≈ σ̂∗2(m) for both T-B and TS-B, σ̂∗2(m) ≥ σ̂2
(m) for T-B, and σ̂∗2(m) ≤ σ̂2

(m) for TS-B. The

origins of these differences can be interpreted in the light of result obtained in Chapter

11.

The results lead us to the conclusion that the empirical distribution of T ∗
θ is a practically

satisfactory approximation of the null distribution of Tθ under H0, and that it is robust with

respect to the precise values of the multifractal parameters.

10.2.4 Performance under H1

To study the powers of the proposed tests, we need to define an alternative hypothesis.

One could imagine many forms of non stationary processes, a number of them being

likely to mimic scaling behaviors when analyzed blindly over the entire time series. Here,

we study one of the simplest such alternatives: processes possess piece-wise constant

multifractal attributes. H1 is thus analyzed with an alternative consisting of the concatena-

tion of two truly multifractal processes of equal length with different multifractal attributes

(c
(i)
1 , c

(i)
2 )i=1,2. Two cases are investigated.
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Figure 10.2: Mean rejection rates under alternative hypothesis: Test power. Test

decisions d̄c1 (solid red lines) and d̄c2 (dashed blue lines) for T-B (left) and TS-B (right)

under H1(c1) (top) and H1(c2) (bottom) for M = 2 (circles) and M = 4 (squares, T-B only)

as a function of c
(1)
p − c(2)p . The horizontal solid black line indicates the preset significance

level α.

10.2.4-a) Non constant c1, constant c2

In the first case, which we denote H1(c1), we set c
(1)
1 6= c

(2)
1 and c

(1)
2 ≡ c

(2)
2 = c2, i.e., c2

is constant, while c1 is not. Thus, d̄c1 assesses the power of the test for time constancy

of c1, and d̄c2 should ideally reproduce the preset significance α. The parameters are

set to c2 = −0.02 and c
(1)
1 = {0.70, 0.72, · · · , 0.80}, c

(2)
1 = 0.8. Fig. 10.2 (top) shows

test decisions d̄c1 (solid red line) and d̄c2 (dashed blue line) as a function of the step size

c
(1)
1 −c(2)1 . The rightmost points c

(1)
1 −c(2)1 = 0 correspond to the mean rejection rates under

H0 of Tab. 10.2 (right). Fig. 10.2 (top) demonstrates that d̄c1 increases fast with |c(1)1 −c(2)1 |
and thus that the test is powerful: When c

(1)
1 − c

(2)
1 = −0.04 (c

(1)
1 = 0.76, c

(2)
1 = 0.8),

corresponding to values that are in practice considered as being very close, the test

rejects the time constancy hypothesis for c1 with a probability above 0.6 (M = 2) and

close to 0.5 (M = 4). Conversely, the mean test decisions d̄c2 reproduce closely the

preset significance level α and remain constant when c
(1)
1 − c

(2)
1 varies, indicating that

the time constancy test for c2 is not subject to cross-influence from changes in c1. We

conclude, first, that the test for time constancy of c1 is powerful, and second, that the test

for constancy of c2 closely reproduces the level α, independently of c
(1)
1 − c

(2)
1 .
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10.2.4-b) Constant c1, non constant c2

In the second case, which we denote H1(c2), we set c
(1)
2 6= c

(2)
2 and c

(1)
1 ≡ c

(2)
1 = c1, i.e.,

c1 is constant, while c2 is not. Therefore, d̄c2 assesses the power of the test for time con-

stancy of c2. The parameters are set to c1 = 0.75 and c
(1)
2 = {−0.11,−0.09, · · · ,−0.01},

c
(2)
2 = −0.01. Fig. 10.2 (bottom) shows test decisions d̄c1 (solid red line) and d̄c2 (dashed

blue line) as a function of the step size c
(1)
2 − c

(2)
2 . Exchanging the roles of d̄c1 and d̄c2 ,

conclusions are similar to those obtained under H1(c1): Satisfactory power of the test

for time constancy of c2, and insensitivity of the test on c1 with respect to level change

c
(1)
2 − c(2)2 for T-B bootstrap. For TS-B bootstrap, d̄c1 slightly increases with increasing |c2|.

10.2.4-c) Null distribution estimation under H1

Fig. 10.3 shows bootstrap test critical values (as defined in Eq. (10.5)) T ∗
c1,C

under H1(c1)
(left) and T ∗

c2,C
under H1(c2) (right). The circles and the bars correspond, respectively,

to ÊMCT
∗
θ,C and to 1.64 · ŜtdMCT

∗
θ,C . We observe that the T ∗

cp,C
do not depend on the

step size c
(1)
p − c

(2)
p and thus on the precise hypothesis H1. Moreover, the T ∗

cp,C
equal

the critical values under H0 (given by the rightmost points). This demonstrates that the

empirical distribution of T ∗
θ (Eq. (10.3)) under H1 provides us with a robust and accu-

rate null distribution estimation, as test design demands. Also, this illustrates that the

specific bootstrap ”resample and cut” procedure is efficient for approximate null distribu-

tion estimation, and that discrepancies in test size under H0(c1) and H0(c2) are due to

small differences between the variance of θ̂(m) and bootstrap variance estimations σ̂∗2(m),

as discussed above.

10.3 Conclusions and Perspectives

We have devised a practical procedure for discriminating the existence of true scaling

properties against non stationarities. It consists of a bootstrap based test for the con-

stancy along time of wavelet Leader based multifractal parameter estimates. We have

shown, by means of numerical simulations, that this bootstrap based test procedure is

reliable and powerful. Notably, the empirical distribution of T ∗
θ under H1 yields a robust

estimation of the null distribution, a central feature for relevant test design. Our procedure

successfully addresses this nontrivial issue by combining a ”split then bootstrap” for Tθ
and a ”bootstrap then split” for T ∗

θ . Notably, it possesses significant power in detecting

the occurrence of a change in a given multifractal parameter. The procedure can be used

to test for time constancy of any multifractal attribute and can be applied to a single ob-

servation of real data with unknown statistical characteristics. It has heavy computational

cost (due to double bootstrap) but remains, to the best of our knowledge, the only proce-

dure practically available. The impact of choosing M remains to be discussed in terms of

trade-off for type-II errors: A test with too small M may miss non stationarities, choosing

M too large results in a lack of power due to poor estimations, hence the existence of an

optimal M for a given but unknown alternative hypothesis. The procedure can be further

extended to testing the constancy along time of the whole structure functions (S(2j , q),
Ĉ(2j , p)) or to testing jointly the constancy of a vector of multifractal attributes.
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Figure 10.3: Critical values of time constancy tests. Bootstrap test critical values T ∗
θ,C

under H1 (mean value ’◦’, 1.64σT ∗
θ,C

bars, obtained through Monte Carlo simulations):

T ∗
c1,C

under H1(c1) (top left) and H1(c2) (bottom left), T ∗
c2,C

under H1(c2) (top right) and

H1(c1) (bottom right) for T-B (a) and TS-B (b) (M = 2).
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An important issue in practical applications concerns the dependence structure of

multiresolution quantities, such as increments, wavelet coefficients or wavelet Leaders,

for scale invariant (H-sssi and MMC) processes. Despite their being widely used in prac-

tical scaling and multifractal analysis, little is known on their dependence, and results

mostly concentrate on the covariance or correlation of wavelet coefficients. In his semi-

nal work, Flandrin [70] showed that wavelet coefficients of fBm are short range dependent

(SRD) — i.e. fast decay of correlation, in contrast to long range dependent (LRD), cf. Def.

2.1 — on condition that the analyzing wavelet has enough vanishing moments Nψ:

Nψ > H +
1

2
, (11.1)

be the process LRD or not. This is a direct consequence of the correlation structure of fi-

nite variance (fv) H-sssi processes (Eq. (2.16)) and hence also valid for non Gaussian fv

H-sssi processes (cf. Section 2.3.4, P3). Also, increments are a special case of wavelets

(referred to as ”poor man wavelets”, cf. Section 2.5.5), and their order P acts as their

number of vanishing moments Nψ. Therefore, higher order increments of order P fulfill

Eq. (11.1) with Nψ = P [117]. For Gaussian fBm, Condition (11.1) also implies weak

dependence, i.e. weak correlation only of higher orders of coefficients. Processes other

than fBm received only marginal attention (see, a contrario, [77] for the covariance of

wavelet coefficients for a specific multifractal processes class, and [15] for the correlation

of the logarithm of wavelet coefficients for a specific multifractal cascade process), and

the results in [70] have in practice commonly been heuristically associated with other pro-

cesses than fBm. Also, to the knowledge of the author, no dependence results beyond

(first order) correlation/covariance are available. Therefore, the following key practical

questions remain unanswered:

Are results similar to those obtained in [70] for fBm valid for the correlation of multireso-

lution quantities of (finite variance) non Gaussian H-sssi processes? What if the process

is a multifractal multiplicative cascade? Most importantly, do such results extend to the

dependence structure of multiresolution quantities of such processes?

Answering such questions is interesting in itself and deserves per se being studied. Since

estimators are based on sample moments such as Eqs. (2.7) and (2.58), this has major

importance in applications because empirical moments have poor performance for LRD

data ([33, 153], see Section 2.1.1-a)). Besides other practical implications, the answers

may give new insights in the bootstrap performance reported in the previous three chap-

ters. Also, they may provide a starting point for considering the theoretical validity and

performance of the bootstrap procedures defined in Chapter 7.

Therefore, the first goal of the present chapter is to analyze the role Nψ takes in con-

trolling the correlation of wavelet coefficients of non Gaussian H-sssi processes and of

multifractal multiplicative cascade processes, and to compare it to the key role it plays

for Gaussian H-sssi processes by Eq. (11.1). The second goal is to investigate whether

this result extends to the correlation of the absolute value of wavelet coefficients, |dX |,
and to correlation of higher orders q of wavelet coefficients, |dX |q, thus to their depen-

dence structure. In the same spirit, we investigate the dependence, hence correlations

and correlations of higher orders q, of wavelet Leaders LX and LqX . These are the topics

of Sections 11.1 to 11.3. We obtain both analytic and numerical results for the depen-

dence of wavelet coefficients and wavelet Leaders, for both H-sssi and MMC processes.

They indicate that, under conditions such as Eq. (11.1), wavelet coefficients are indeed

only weakly correlated, but they are in general strongly dependent – and so are wavelet



200 Dependence Structure of Multiresolution Quantities

Leaders – in the sense that their absolute values and q-th orders have LRD-like power

law type correlations.

The second goal of this chapter is the study of the implications of such results on

wavelet domain block bootstrap for multifractal analysis. This is discussed in Section

11.4.

The publication of the results presented in this chapter is in preparation [139, 168].

Some of the results in Sections 11.1 to 11.3 have been obtained in collaboration with

Béatrice Vedel (LAMA, Université de Bretagne Sud, Vannes). This is stated explicitly in

the text.

11.1 Finite Variance H-sssi Processes

The correlation function of wavelet coefficients of fv H-sssi processes is given by [70]:

EdX(j, k)dX(j′, k′) ∼ |2jk − 2j
′
k′|2H−2Nψ , |2jk − 2j

′
k′| → ∞, (11.2)

and hence decays fast under the condition given by Eq. (11.1). Let us examine the gener-

ality of this property of the dyadic wavelet transform – dramatic decrease of correlation for

fv H-sssi processes – for the absolute value of wavelet coefficients |dX |, and for Leaders

LX .

11.1.1 Fractional Brownian motion. Gaussian finite variance H-sssi pro-
cess

Let us first consider the Gaussian case and investigate correlations of the absolute value

of wavelet coefficients |dX | and Leaders LX of fractional Brownian motion.

11.1.1-a) Covariance of the absolute value of wavelet coefficients

For ease of notation, let us write X = dX(j, k), Y = dY (j′, k′), σ2
x = VardX(j, k) and

σ2
y = VardY (j′, k′). Since the wavelet coefficients of fBm are Gaussian ([70], see Section

2.3.4, property P4), we can write their bivariate distribution:

fX,Y (x, y) =
1

2πσxσy
√

1 − ρ2
exp

(
− z

2(1 − ρ2)

)
, (11.3)
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where ρ =
Cov(X,Y )

σxσy
and z =

x2

σ2
x

− 2ρxy

σxσy
+
y2

σ2
y

. Then, the correlation of the absolute

value of two wavelet coefficients is calculated as:

E|X||Y | =

∫ ∞

−∞

∫ ∞

−∞
|x||y|fX,Y (x, y)dxdy =

=
1

2πσxσy
√

1 − ρ2

∫ ∞

−∞

∫ ∞

−∞
|x||y| exp


−

x2

σ2
x
− 2ρ xy

σxσy
+ y2

σ2
y

2
√

1 − ρ2


 dxdy =

=
σx

2π3/2σ2
y

√
1 − ρ2

∫ ∞

−∞
2σy

√
π(1 − ρ2)|y| exp

(
− y2

2σ2
y(1 − ρ2)

)
+ · · ·

· · · +
√

2πρ
√

1 − ρ2y|y| exp

(
− y2

2σ2
y

)
erf

(
ρy√

2σy
√

1 − ρ2

)
dy =

=
σx
√

1 − ρ2

πσy

∫ ∞

−∞
|y| exp

(
− y2

2σ2
y(1 − ρ2)

)
dy + · · ·

· · · +
2σxρ√
2πσ2

y

∫ ∞

0
y2 exp

(
− y2

2σ2
y

)
erf

(
ρy√

2σy
√

1 − ρ2

)
dy =

=
2σXσy(1 − ρ2)3/2

π
+

σXσyρ

π
√

1 − ρ2

(
2
√

1 − ρ2 arctan

(
ρ√

1 − ρ2

)
+ 2ρ(1 − ρ2)

)

=
2σXσy
π

(
√

1 − ρ2 + ρ arctan

(
ρ√

1 − ρ2

))
.

The covariance of the absolute value of two wavelet coefficients is therefore:

Cov(|X|, |Y |) = E|X||Y | − E|X|E|Y | =
2σXσy
π

(
√

1 − ρ2 − 1 + ρ arctan

(
ρ√

1 − ρ2

))
,

(11.4)

and the correlation coefficient is given by:

ρ̃ =
Cov(|X|, |Y |)
Std|X|Std|Y | =

2

π − 2

(
√

1 − ρ2 − 1 + ρ arctan

(
ρ√

1 − ρ2

))
. (11.5)

Therefore, as illustrated in Fig. 11.1, the absolute values of wavelet coefficients |dX | al-

ways have a correlation coefficient smaller than that of the wavelet coefficients dX them-

selves:

ρ̃ =
Cov(|X|, |Y |)
Std|X|Std|Y | ≤ ρ =

Cov(X,Y )

σXσY
.

Let us finally study the behavior of the correlation for large time lags at fixed scale j. From

Eq. (11.2), it is clear that (with τ = |2jk − 2j
′
k′|):

ρ ∼ τ−α, τ → ∞, α > 0

with α = 2Nψ − 2H, and that the dX are hence LRD if 0 < α < 1. The development of

Eq. (11.5) for τ → ∞ (ρ→ 0) is:

ρ̃ =
1

π − 2

(
ρ2 +

1

12
ρ4

)
+ O(ρ6), ρ→ 0 (11.6)

∼ τ−2α +
1

12
τ−4α + O(τ−6α), τ → ∞. (11.7)
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Therefore, we can distinguish three cases for the correlation of the absolute value of

wavelet coefficients of fractional Brownian motion:

1. If the coefficients dX are short range dependent (1 < α or H < 0.5), so are their

absolute values |dX |.
2. If the coefficients dX are LRD with 0.5 < α < 1 (i.e. 0.5 < H < 0.75), their absolute

values |dX | are short range dependent : ρ̃ ∼ τ−α
′
, 1 < α′ = 2α.

3. If the coefficients dX are LRD with 0 < α < 0.5 (i.e. 0.75 < H < 1), their absolute

values |dX | are LRD with 0 < α′ < 1.

We note that a similar calculation as described here for the covariance of |dX | for fBm

has been obtained in [132].

11.1.1-b) Numerical study of large time lag correlation: Scaling analysis

Analytic calculations of the correlation of wavelet Leaders LX seem to be difficult to obtain

(see e.g. Section 3.2), even in the textbook case of Gaussian fBm. Also, analytic results

for dependence of wavelet coefficients are difficult to obtain for the non Gaussian H-

sssi Rosenblatt process and for the MMC processes considered in later sections of this

chapter. Hence, for their exploration, we need to resort to numerical results.

Eq. (11.2) shows that for fvH-sssi processes, wavelet coefficients at a given scale are

correlated with (fast) power law decay for large time lags, controlled by H and Nψ. Also,

numerical evidence in Fig. 3.5 suggests that (absolute values of) wavelet coefficients

and wavelet Leaders at a given scale have power law like decay of correlation, hence

indicating scale invariance (and potentially LRD-like correlations) for these time series.

The state of the art tool for the estimation of the parameter of the power law like correlation

of potentially LRD time series is discrete wavelet coefficient based estimation of ζ(2) as

in Eq. (2.65) [4]. It relates to γ (Def. 2.1) and α (Eq. (2.3), and as above) as:

α = 2 − ζ(2) and γ = ζ(2) − 1.

We apply this estimator, with N ′
ψ = 4 vanishing moments, to the time series {dX(J, · · · )},

{|dX(J, · · · )|q} or {LX(J, · · · )q} of wavelet coefficients or Leaders at scale J , obtained

with Nψ vanishing moments from the process X(t) under analysis. Rather than α̂ or γ̂
– and with reminiscence to fv H-sssi processes (and in particular Section 2.2.2-b)) – we

use the equivalent estimate1:

Ĥ = ζ̂(2)/2. (11.8)

The actual existence of scale invariance in these time series is validated for each case

we consider by inspection of the corresponding structure functions. The final estimates

are obtained as:

H̃ = ÊNMC
Ĥ, (11.9)

i.e., means over estimations for a large number NMC of series of wavelet coefficients

(Leaders) at scale J , calculated from NMC different realizations of the process X. To

distinguish H̃ for the different time series, we use the superscripts d, |d|q and Lq for

{dX(J, · · · )}, {|dX(J, · · · )|q} and {LX(J, · · · )q}, respectively, and omit the double super-

script ( )q when q = 1. Similarly, we use a subscript (·) for indicating the number of

vanishing moments Nψ of the wavelet used for analyzing the process X(t).

1Hence, we speak of LRD in the time series of wavelet coefficients or Leaders if: 0.5 < Ĥ < 1, and say

that they are weakly correlated or SRD otherwise.
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Figure 11.1: Correlation coefficient of magnitude of Gaussian random variables.

Illustration of Eq. (11.5): Correlation coefficient ρ(|X|, |Y |) of magnitude of correlated

Gaussian r.v.s versus correlation coefficient ρ(X,Y ) of correlated Gaussian r.v.s (red solid

line). Mean of estimates of ρ(|X|, |Y |) for 500 realizations of Gaussian samples of size

N = 1000 with correlation coefficient ρ(X,Y ) (’◦’).

11.1.1-c) Correlation of multiresolution quantities: Numerical results

Fig. 11.2 (top row) presents results obtained by this numerical simulation study for dX
(△), |dX | (◦) and LX (×) at scale J = 3 for fBm with HfBm = H = 0.8. Equivalent results,

not reported here, can be obtained at different scales J . It summarizes structure functions

SdJ(j, 2), S
|d|
J (j, 2) and SLJ (j, 2) for Nψ = 1 and Nψ = 2 (left and center plots, respectively),

and mean estimations of H Eq. (11.9) as a function of the number of vanishing moments

Nψ ∈ {1, 2, 3} (plot on the right).

Fig. 11.2 (top left and center) indicates that the structure functions SdJ(j, 2), S
|d|
J (j, 2) and

SLJ (j, 2) behave linearly in log-log coordinates for coarse scales, hence indicating scale

invariance for the series of wavelet coefficients and Leaders and validating the estimation

of H̃. First, we observe that for Nψ = 1, the dX are LRD with H̃d
1 ≈ HfBm = 0.8, as

predicted by theory: Since a wavelet with Nψ = 1 is identical to the first order increment,

the wavelet coefficients dX ressemble the increment process of fBm, hence fractional

Gaussian noise (fGn) with corresponding H = HfBm. The absolute values |dX | are less

correlated with H̃
|d|
1 ≈ 0.6 < H̃d

1 , which is exactly conform to Eqs. (11.5) and (11.7) since

2H̃d
1 − 1 ≈ 0.6. Nonetheless, the |dX | are LRD for Nψ = 1. Second, for Nψ ≥ 2, both the

time series dX and |dX | are only weakly correlated, with H̃d
≥2 ≈ H̃

|d|
≥2 ≈ 0.5, in agreement

with [70] and Eq. (11.5). Finally, the time series of wavelet Leaders LX display similar

correlation as |dX |, H̃L
(·) ≈ H̃

|d|
(·) : Hence, wavelet Leaders of fBm form LRD sequences for

Nψ = 1, and are only weakly correlated (and not LRD) when Nψ ≥ 2.

We conclude that for fBm, the results of [70] on the role of Nψ for weak correlation of

wavelet coefficients translates to their absolute value and to their wavelet Leaders.
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Figure 11.2: Correlation of coefficients and Leaders of H-sssi processes. Structure

functions log2 S(j, q = 2) for second order scaling analysis of wavelet coefficients dX(J =
3, ·) (black dashed-dotted lines and ’⊳’), |dX(J = 3, ·)| (blue solid lines and ’◦’), and

Leaders LX(J = 3, ·) (red dashed lines and ’�’) for fBm (top) and ROS (bottom) with

H = 0.8 and vanishing moments Nψ = 1 (left column) and Nψ = 2 (center column) for

obtaining dX from the process X(t). The column on the right summarize the estimates

of the parameter H̃ (Eq. (11.9)) as a function of Nψ. Results are obtained as means

over NMC = 100 realization of fBm and ROS (H = 0.8) of sample size N = 216, with

regressions performed at coarse scales.

11.1.2 Rosenblatt process. Non Gaussian finite variance H-sssi processes

Fig. 11.2 (bottom row) presents results obtained by numerical simulations as conducted

for fBm for the non Gaussian H-sssi Rosenblatt process with HROS = H = 0.8. Shown

are structure functions SdJ(j, 2), S
|d|
J (j, 2) and SLJ (j, 2) for Nψ = 1 and Nψ = 2 (first and

second plot, respectively), and mean estimations of H̃ as a function of the number of

vanishing moments Nψ ∈ {1, 2, 3} (plot on the right) for dX (△), |dX | (◦) and LX (×) at

scale J = 3.

The structure functions display linear behavior in log-log coordinates for coarse scales

for dX , |dX | and LX and therefore indicate scale invariance for these time series, hence

relevance of estimation of H̃ as proposed in Section 11.1.1-b).

For Nψ = 1, the dX are LRD with H̃d
1 ≈ HROS = 0.8, interpretable in a similar way as

for fBm: wavelet coefficients for Nψ = 1 mimic the increment process of ROS, which is

LRD with H = HROS . For Nψ ≥ 2, the time series dX are – as for fBm – only weakly

correlated, with H̃d
≥2 ≈ 0.5. These findings confirm the extensions of the results in [70] to

fv non Gaussian H-sssi processes – weak correlation of wavelet coefficients of fv H-sssi
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processes under condition Eq. (11.1) – and are consistent with theory, since the covari-

ance functions of any fv H-sssi process are identical. However, we observe that for ROS,

the time series |dX | remain LRD when Nψ ≥ 2, with H̃ |d| only slightly smaller than HROS .

Also, H̃ |d| does not significantly decrease with increasing Nψ. Hence, the results for |dX |
for fBm do not in general extend to non Gaussian H-sssi processes: While Eq. (11.1)

ensures weak correlation only of wavelet coefficients for any H-sssi process, this comes

together with weak dependence exclusively for the Gaussian fBm. Finally, the time series

of wavelet Leaders LX display similar correlation as those of |dX |: H̃L ≈ H̃ |d|. Hence,

wavelet Leaders of ROS form LRD sequences, regardless of how many vanishing mo-

ments Nψ the wavelet used in the wavelet transform possesses.

Theoretical results. A formal proof of these numerical indications, based on incre-

ments, is under current investigation, in collaboration with B. Vedel. Its final version is not

ready at the time this text is being written and is hence omitted. This is a joint work with

B. Vedel who, after numerical simulations by the author, obtained preliminary analytical

results for the covariance of increments of ROS. The results suggest that the covariance

of the first and second order increments of ROS X(t), X
(1)
τ (t) = X(t + τ) − X(t) and

X
(2)
τ (t) = X

(1)
τ (t + τ) −X

(1)
τ (t), to the power q = 2 decays, in the limit of τ → 0 (or also,

equivalently, |t− s| → ∞), as:

lim
τ→0

EX
(P )
τ (t)2X

(P )
τ (s)2 − EX

(P )
τ (t)2EX

(P )
τ (s)2

τ4−αROS = C|t− s|−αROS , (11.10)

where αROS = 2 − 2HROS . Hence, their covariance has algebraic LRD-like power law

decay with H̃ = HROS . The publication of these results is in preparation [139].

11.1.3 Conclusions

The analytic and numerical results presented in this section lead to the following conclu-

sions. For Gaussian fBm, wavelet coefficients dX are SRD if Nψ ≥ H + 1
2 . This result

immediately translates to any finite variance H-sssi processes, since it is based only on

the covariance structure Eq. (2.16) of such processes [70]. For Gaussian fBm, weak cor-

relation also implies weak dependence. However, this is not necessarily similar for non

Gaussian H-sssi processes, and numerical simulations indicate indeed that this is not

the case: Higher orders of wavelet coefficients |dX | are in general long range dependent,

regardless of the precise choice of Nψ.

Finally, the numerical results suggest that the time series formed by the wavelet Leaders

LX have similar (large time lag) covariance behavior as |dX |. Therefore, it is as well in

general long range dependent, with the exception of fBm when Nψ ≥ H + 1
2 .

Hence, fBm represents a specific case because it is a Gaussian process, and weak corre-

lation of wavelet coefficients for fv H-sssi processes should not in general be interpreted

as weak dependence, since this is only valid for fBm.

11.2 Multifractal Multiplicative Cascade Processes

To our knowledge, the only results on dependence of multiresolution quantities for MMC

processes (cf. Section 2.7) available in the literature are the work of Arneodo et al. [15]

and of Gonçalves and Riedi [77]: In [15], the authors study the time correlation of the
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logarithm of wavelet coefficients, log |dX(j, ·)|, for dyadic Random Wavelet Cascades (cf.

Section 11.2.1), in a perspective of estimation of c2 in cascade processes. They show

that correlations between the logarithm of wavelet coefficients at distance τ decay as

∼ c2 log2 τ . In [77], results for the large time lag correlation decay of wavelet coefficients

dX(j, ·) are obtained for compound multifractal motion processes, such as CPM-MF-fBm.

Note, however, that no such process was actually defined at the time of the publica-

tion of this paper. They obtain results on the influence of Nψ on the correlation decay

of wavelet coefficients dX , similar to those obtained in [70] for fBm. For CPM-MF-fBm,

their result suggests fast decay of correlation under condition that Nψ ≥ ζ(2)
2 , where

ζ(q) = qH + ϕ(qH) are the scaling exponents of the CPM-MF-fBm (cf. Section 2.7.2-a)).

Therefore, the goal of this section is to characterize the role of Nψ and the correlation

of (the q-th powers of) the absolute value of coefficients |dX |q and Leaders LqX for multi-

fractal multiplicative cascade processes. In Section 11.2.1, we calculate analytically the

covariance of |dX(j, ·)|q for (dyadic) Random Wavelet Cascades (RWC), in the same spirit

as the results in [15] for log |dX(j, ·)|. This original result gives indications for the role of

the function ϕ(q) for the decay of (higher order) correlation for multiresolution quantities

of MMC processes. In Section 11.2.2, we derive results for the decay of correlation of in-

crements of first and second order, and of their absolute value taken to the q-th power, for

compound Poisson motion (CPM). Together with our results for RWC in Section 11.2.1,

this enables us to postulate a conjecture for the large time lag decay behavior of the

correlation of (q-th powers of the absolute value of) wavelet coefficients and Leaders for

MMC processes in general. Section 11.2.3 validates these analytic results by numerical

results (cf. Section 11.1.1-b)) for dX , |dX |, |dX |q and LX , LqX of MMC processes.

11.2.1 Random wavelet cascades: Dependence structure of wavelet coef-
ficients

11.2.1-a) Random wavelet cascades

The particular construction of RWC [15] (see Section 2.7.2-c)) implies that, on the one

hand side, the marginal distributions of the wavelet coefficients can be written imme-

diately (for laws stable w.r.t. multiplication, cf. Eq. (2.126)), making explicit analytic

calculations feasible. On the other hand side, the time series of wavelet coefficients (or

increments) at each scale j are non stationary, hence certain theoretical and practical

difficulties for the investigation of dependence. Despite these particularities, analytic re-

sults obtained on RWC can give important indications for properties of other multifractal

multiplicative cascade type processes. For instance, [15] calculates (some time average

of) the correlation of log |dX(j, k)| and log |dX(j, k + 2jτ)| and shows that it behaves as

∼ c2 log2(τ) for 2−j ≪ τ < 1, where c2 is the second log-cumulant of the cascade and

depends on the specific choice of the multipliers W . Exactly the same logarithmic decay

behavior of correlations of the logarithm of wavelet coefficients has been observed on

empirical time series such as instant velocity in hydrodynamic turbulence experiments.
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11.2.1-b) Covariance for statistical orders q

In this subsection, we calculate analytically the covariance of two wavelet coefficients

|dj,k|q = |dX(j, k)|q and |dj,k′ |q = |dX(j, k′)|q to the q-th power in RWC2. For convenience,

we use the notations for geometry introduced in [15]:

∆x = 2−j∆k

∆k = 2p.

Also, let us write γ(q) = EW q, hence: ϕ(q) = − log2 EW q = − log2 γ(q) (cf. Eq. (2.127)).

Let d denote the scale at which two coefficients |dj,k|q and |dj,k′ |q have their first multiplier

in common. Since the expectation of the product of independent r.v.s equals the product

of their expectations, the correlation of |dj,k|q and |dj,k′ |q is given by:

E|dj,k|q|dj,k′ |q =
∏

# common W

EW 2q
j′

∏

# not common W

EW q
j′ =

(
EW 2q

)d · (EW q)2(j−d) , (11.11)

and, since:

E|dj,k|qE|dj,k′ |q =

j−1∏

j′=0

EW q
j′

j−1∏

j′=0

EW q
j′ = (EW q)2j , (11.12)

their covariance is given by:

Cov
(
|dj,k|q, |dj,k′ |q

)
= (EW q)2j

[(
EW 2q

(EW q)2

)d
− 1

]
= γ(q)2j

[(
γ(2q)

γ(q)

)d]
, (11.13)

and hence, the process |d(j, ·)| is non stationary since d depends on k and k′. In [15], it is

proposed to form time averages of the covariance of log |dj,k|, log |dj,k′ | over all positions

k, k′ with dyadic difference 2p. The approach translates to |dj,k|q as:

Cq(j, 2
p) = 2−j

2j−2p∑

k=1

Cov (|dj,k|q, |dj,k+2p |q) . (11.14)

Denote byNj,2p(d) the number of pairs of coefficients dj,k and dj,k+2p that have a common

parent at the same scale d and hence the same contribution to Cq(j, 2
p). Then, Cq(j, 2

p)
simplifies to:

Cq(j, 2
p) = 2−j

j−1∑

d=0

Nj,2p(d)γ(q)
2j

[(
γ(2q)

γ(q)

)d
− 1

]
. (11.15)

It can be shown that Nj,2p(d) has the following properties [15]:

Nj,2p(d) = 0 for d ≥ j − p (11.16)

Nj,2p(d) = Nj−p,1(d) (11.17)

Nj,1(d) = 2d, (11.18)

2As stated before in Section 2.8, we only consider covariance of coefficients within one integral scale.

Beyond integral scale, correlations are trivially zero, since multiplicative cascades/trees are not connected.
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and, by using these properties one after the other:

Cq(j, 2
p) = 2−j

j−p−1∑

d=0

Nj,2p(d)γ(q)
2j

[(
γ(2q)

γ(q)

)d
− 1

]
(11.19)

= 2−j
j−p−1∑

d=0

2pNj−p,1(d)γ(q)
2j

[(
γ(2q)

γ(q)

)d
− 1

]
(11.20)

= 2p−j
j−p−1∑

d=0

2dγ(q)2j

[(
γ(2q)

γ(q)

)d
− 1

]
(11.21)

= 2p−jγ(q)2j
j−p−1∑

d=0

2d

[(
γ(2q)

γ(q)

)d
− 1

]
. (11.22)

Now, using
∑N

n=0 a
n = aN+1−1

a−1 and grouping power law terms in (·)p, we have:

Cq(j, 2
p) = 2p−jγ(q)2j




2j−p
(
γ(2q)
γ(q)2

)j−p
− 1

2γ(2q)
γ(q)2

− 1
− (2j−p − 1)


 = (11.23)

= γ(q)2γ(q)2j

2γ(2q)−γ(q)2

[(
γ(2q)
γ(q)2

)j (
γ(q)2

γ(2q)

)p
+ 2 · 2−j

(
γ(2q)
γ(q)2

− 1
2

)
2p − 2γ(2q)

γ(q)2
+ 1

]
(11.24)

= −γ(q)2j + γ(q)2γ(2q)j

2γ(2q)−γ(q)2 ·
(
γ(q)2

γ(2q)

)p
+ 2−jγ(q)2j · 2p. (11.25)

Finally, substituting ∆x = 2−j2p and ϕ(q) = − log2 γ(q):

Cq(j,∆x) = −γ(q)2j + 2j
γ(q)2γ(2q)j

2γ(2q) − γ(q)2
∆x2 log2 γ(q)−log2 γ(2q) + γ(q)2j∆x(11.26)

= A+B · ∆xϕ(2q)−2ϕ(q) + C · ∆x, (11.27)

with constants:

A = −2−2jϕ(q) (11.28)

B = 2j
2−2ϕ(q)2−jϕ(2q)

2 · 2−ϕ(2q) − 2−2ϕ(q)
(11.29)

C = 2−2jϕ(q). (11.30)

Since ϕ(0) = ϕ(1) = 0 and ϕ(q) is a concave function, ϕ(2q) − 2ϕ(q) < 0 (at least) for

q ≥ 1. Hence, when ∆x is small, 2−j < ∆x≪ 1 and for q ≥ 1:

Cq(j,∆x) ∼ ∆xϕ(2q)−2ϕ(q). (11.31)

If in addition j ≫ 1, Eq. (11.31) is also valid for larger ∆x, 2−j < ∆x < 1, since:

C

B
=

21−ϕ(2q)+2ϕ(q) − 1

2j(1−ϕ(2q)+2ϕ(q))
≈ 0, (11.32)

and 1 − ϕ(2q) + 2ϕ(q) > 1.

Therefore, the (time average Eq. (11.13) of the) covariance function of |dX(j, ·)|q and

|dX(j, k′)|q has power law like decay:

Cov|dj,k|q|dj,k′ |q ≈ c|k − k′|ϕ(2q)−2ϕ(q). (11.33)
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Conclusions. The covariance of the absolute value of wavelet coefficients of RWC

does not decay exponentially, but it has algebraic decay. Therefore, the wavelet coef-

ficients |dX(j, ·)|q have in general strongly LRD-like power law type covariance, since

ϕ(2q)−2ϕ(q) ∈ [−1, 0] for some range of q (cf. Section 11.2.3, Eq. (11.60)). The precise

decay rate is entirely controlled by the behavior of the process-dependent function ϕ(q).

11.2.2 Compound Poisson motion: Dependence structure of increments

The specific construction of RWC makes explicit calculations of the (higher order) covari-

ance of wavelet coefficients possible. For other MMC processes, however, such analytic

calculations do not seem to be feasible for wavelet coefficients. Therefore, in this section,

we derive analytical results for the correlation of the increments of compound Poisson

motion A(t) = limr→0

∫ t
0 Qr(u)du [22, 23] (Section 2.7.1-b), Eq. (2.106)). We suggest

that results translate to wavelet coefficients through the role of the number of vanishing

moments, since the P -th order increment has Nψ = P vanishing moments. This heuristic

is validated numerically in Section 11.2.3.

11.2.2-a) Correlation of increments

Increments of order 1. Let us denote λ = ϕ(2) (cf. Eq. (2.102)). For convenience, let

us assume that t > s + τ and that r < t − s − τ , such that we can drop the limit and the

explicit reference to r in what follows. The first order increment of A(t) is defined as:

A(1)
τ (t) = A(t+ τ) −A(t) =

∫ t+τ

t
Qr(u)du. (11.34)

Since EQr(t)Qr(s) = exp (−ϕ(2)m(Cr(t) ∩ Cr(s))) = |t− s|ϕ(2) ([46, 47], cf. Eq. (2.105)),

the correlation of A
(1)
τ (t) and A

(1)
τ (s) is:

C
A

(1)
τ

(t, s) = EA(1)
τ (t)A(1)

τ (s) = E

∫ t+τ

t

∫ s+τ

s
Qr(u)Qr(v)dudv = (11.35)

=

∫ t+τ

t

∫ s+τ

s
EQr(u)Qr(v)dudv =

∫ t+τ

t

∫ s+τ

s
(u− v)λdudv. (11.36)

Changing variables to α = u− v and β = u+v
2 , the integral can be solved as:

C
A

(1)
τ

(t, s) =

∫ t−s

t−s−τ
αλ(−t+ s+ τ + α)dα+

∫ t−s+τ

t−s
αλ(t− s+ τ − α)dα = (11.37)

=

∫ t−s

t−s−τ
αλ+1 − (t− s− τ)αλdα−

∫ t−s+τ

t−s
αλ+1 − (t− s+ τ)αλdα =(11.38)

=
1

(λ+ 2)(λ+ 1)

[
(t− s− τ)λ+2 + (t− s+ τ)λ+2 − 2(t− s)λ+2

]
, (11.39)

which, for t− s≫ τ behaves as:

C
A

(1)
τ

(t− s) ≈ c(t− s)λτ2 + O(τ4) (11.40)

≈ c(t− s)ϕ(2) (τ fix). (11.41)
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Therefore, the correlation of increments of order 1 of CPM has algebraic (power law) de-

cay and is – since mostly ϕ(2) ∈ [−1, 0] – in general LRD like.

Increments of order 2. The second order increment of A(t) is given by:

A(2)
τ (t) = A(1)

τ (t+ τ) −A(1)
τ (t) =

∫ t+2τ

t+τ
Qr(u)du−

∫ t+τ

t
Qr(u)du. (11.42)

In contrast to the first order increment A
(1)
τ (t), A

(2)
τ (t) can hence be negative. Let us

suppose that t− s > 2τ . The correlation of A
(2)
τ (t) and A

(2)
τ (s) is:

C
A

(2)
τ

(t, s) = EA(2)
τ (t)A(2)

τ (s) = (11.43)

= 2EA(1)
τ (t)A(1)

τ (s) − EA(1)
τ (t)A(1)

τ (s+ τ) − EA(1)
τ (t+ τ)A(1)

τ (s)(11.44)

and can hence be expressed in terms of C
A

(1)
τ

(·, ·) in Eq. (11.39). Similarly, successive

higher order increments can be calculated (see below). Substituting from Eq. (11.39)

and grouping terms gives:

C
A

(2)
τ

(t− s) =
1

(λ+ 2)(λ+ 1)

[
−(t− s− 2τ)λ+2 + 4(t− s− τ)λ+2− (11.45)

−6(t− s)λ+2 + 4(t− s+ τ)λ+2 − (t− s+ 2τ)λ+2
]

(11.46)

which, in the limit t− s≫ τ , behaves as:

C
A

(2)
τ

(t− s) ≈ c(t− s)λ−2λ(λ− 1)τ4 + O(τ6) (11.47)

≈ c(t− s)ϕ(2)−2 (τ fix). (11.48)

Therefore, since ϕ(2) < 0, the correlation of increments of order 2 of CPM has algebraic

decay, but is not LRD like.

Increments of order P . The correlations C
A

(P+1)
τ

(t−s) and C
A

(P )
τ

(t−s) of the (P+1)st

and P th order increments, respectively, are related by the recursion:

C
A

(P+1)
τ

(t− s) = −C
A

(P )
τ

(t− s− τ) + 2C
A

(P )
τ

(t− s) − C
A

(P )
τ

(t− s+ τ), (11.49)

as can easily be seen from A
(P+1)
τ (t) = A

(P )
τ (t+τ)−A(P )

τ (t). It can hence be shown that:

C
A

(P )
τ

(t− s) =
1

(λ+ 2)(λ+ 1)

2P∑

n=0

(−1)n
(
n

P

)
[t− s+ (n− P )τ ]λ+2 , |t− s| > Pτ,

(11.50)

which, in the limit t− s >> τ , behaves as:

C
A

(P )
τ

(t− s) ≈ c(t− s)λ+2−2P . (11.51)

Therefore, the increment processes have algebraic power law type decay and are SRD

on condition that:

Nψ = P >
ϕ(2) + 2

2
+ 1/2 =

ζ(2)

2
+ 1/2. (11.52)

Since ϕ(2) < 0, this practically means Nψ ≥ 2.
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11.2.2-b) Correlation of wavelet coefficients

In the previous paragraph, we showed that it is possible to calculate exactly the correla-

tion function for increments of compound Poisson motion. These can then be used for

understanding the large time lag correlation behavior and deriving results such as Eq.

(11.52). For other MMC processes or for wavelet coefficients, such an explicit calculation

could not be obtained. However, it is possible to show that the covariance function of

finite variance, stationary increment, and scale invariant processes (the MMC processes

considered in this manuscript fall into this category, with the exception of CMC, for which

increments are not stationary) necessarily is of the form:

f(t) + f(s) − f(t− s) with f(t) = |t|γ , 0 < γ < 2.

By a Fourier domain argument, similar to that used in [70], it can then be argued (cf. [77]

for a particular example) that for such processes, wavelet coefficients dX are SRD on

condition that:

Nψ >
ζ(2)

2
+ 1/2.

11.2.2-c) Higher order correlations of increments

Let us now investigate (higher order) correlations of the absolute value of the increments.

Increments of order 1. Since by construction Qr(t) > 0, the first order increments are

always positive and hence, the correlation of |A(1)
τ (t)| and |A(1)

τ (s)| equals the correlation

of A
(1)
τ (t) and A

(1)
τ (s):

C|A(1)
τ |(t− s) = C

A
(1)
τ

(t− s), (11.53)

and hence, for 1 > t− s >> τ (cf. Eqs. (11.40) and (11.41)):

C|A(1)
τ |(t− s) ≈ c(t− s)ϕ(2)τ2 + O(τ4). (11.54)

Also, it is possible to characterize the correlation of A
(1)
τ (t)q and A

(1)
τ (s)q:

Theorem 11.1 (Increments of order 1, q ≥ 1 an integer) Let 1 ≤ q < q+c /2 be an inte-

ger, t > 0, s > 0 and τ > 0 be such that s > t+ τ and |t− s− τ | < 1. One has:

|t− s+ τ |ϕ(2q)−2ϕ(q) ≤ EA
(1)
τ (t)qA

(1)
τ (s)q

C(q)τ2(q+ϕ(q))
≤ |t− s− τ |ϕ(2q)−2ϕ(q).

In particular, there exists C(q) > 0 such that, for 0 < t− s < 1, one has:

lim
τ→0

EA
(1)
τ (t)qA

(1)
τ (s)q

|τ |2(q+ϕ(q))
= C(q)|t− s|ϕ(2q)−2ϕ(q). (11.55)

Note that since ϕ(1) = 0, this corresponds exactly to what is obtained in Eq. (11.54) for

q = 1. Moreover, the constantC(q) can be calculated fromC(q)|τ |2(q+ϕ(q)) =
(
EA

(1)
τ (1)q

)2
.

For q /∈ N, an exact result for scaling has not been obtained. Yet, the the following

inequalities can be obtained, showing that the exact power law behaviors for integer q
extend to real q, at least in the limit |t− s| → 0:
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Theorem 11.2 (Increments of order 1, q ≥ 1 real) Let 1 ≤ q < q+c /2 be a real number.

There exist 0 < C1(q), C2(q) < ∞, depending only on q, such that, for s > t > 0 and

|t− s| < 1, one has:

C1(q)|t− s|c(ϕ(2q)−2ϕ(q)) ≤ lim
τ→0

EA
(1)
τ (t)qA

(1)
τ (s)q

|τ |2(q+ϕ(q))
≤ C2(q)|t− s|ϕ(2q)−2ϕ(q). (11.56)

Eq. (11.56) can be rewritten as3:

lim
|t−s|→0

lim
τ→0

EA
(1)
τ (t)qA

(1)
τ (s)q

|τ |2(q+ϕ(q))
≈ O|t− s|ϕ(2q)−2ϕ(q). (11.57)

It is conjectured that the double-inequality in Eq. (11.56) turns to an equality:

Conjecture 11.1 (Increments of order 1, q ≥ 1 real) Let 1 ≤ q+c /2 ≤ q be a real num-

ber. There exists 0 < C(q) < ∞, depending only on q, such that, for s > t > 0 and

|t− s| < 1, one has:

lim
τ→0

EA
(1)
τ (t)qA

(1)
τ (s)q

|τ |2(q+ϕ(q))
≤ C(q)|t− s|ϕ(2q)−2ϕ(q). (11.58)

The detailed proof of Theorem 11.1 has been obtained by the author in collaboration

with B. Vedel, that of Theorem 11.2 is due to B. Vedel. They are sketched in Appendices

C.1 and C.2, respectively.

Increments of order 2. The same kind of geometric arguments used in the proof of

Theorem 11.1 can be used for proofing the following proposition:

Proposition 11.1 (Increments of order 2, q = 2) Let q = 2 and |t − s + 2τ | > 0. There

exists a constant C > 0 such that:

lim
τ→0

EA
(2)
τ (t)2A

(2)
τ (s)2

EA
(2)
τ (t)2EA

(2)
τ (s)2

= lim
τ→0

EA
(2)
τ (t)2A

(2)
τ (s)2

C|τ |2(2+ϕ(2))
= |t− s|(ϕ(4)−2ϕ(2)). (11.59)

The detailed mathematical proof of Proposition 11.1 is due to B. Vedel. Its final version is

not ready at this time and is hence not reported in this manuscript.

The publication of the results on the dependence structure of increments of CPM obtained

in this section is in preparation [168].

11.2.3 Dependence structure for multifractal multiplicative cascade pro-
cesses: Conjecture and numerical results

The results in Sections 11.2.1-b) and 11.2.2, derived for wavelet coefficients of RWC and

for increments of CPM, suggest the following conjecture:

3The notation in Eq. (11.58) stands for: The exponent β = (ϕ(2q) − 2ϕ(q)) is the only β such that:

0 < lim|t−s|→0 limτ→0

„

EA
(1)
τ (t)qA

(1)
τ (s)q

|τ |2(q+ϕ(q))

«

/
`

|t − s|β
´

< ∞
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Conjecture 11.2 Let 1 ≤ q < q+c /2. There exists C(q) > 0 such that, for 0 < |t − s| < 1,

one has:

lim
a→0

E|TX(a, k)|q|TX(a, k′)|q
|a|2(q+ϕ(q))

= C(q)|t− s|ϕ(2q)−2ϕ(q).

Hence, increasing the number of vanishing moments Nψ does not impact the decrease

of correlation.

The exponent ϕ(2q) − 2ϕ(q) can be written as:

ϕ(2q) − 2ϕ(q) =
∑

p≥2

cp(2
p − 2)

qp

p!
, (11.60)

where the cp are the log-cumulants. Therefore, the first log-cumulant c1 (having the role

that H has for H-sssi processes) does not intervene at all, and the decay of correlation

is entirely controlled by the multifractal properties of the process, captured by cp, p ≥ 2.

Also, for a log-normal MMC process (for which ∀p ≥ 3 : cp ≡ 0), the conjecture reduces

to:

ϕ(2q) − 2ϕ(q) = c2q
2. (11.61)

Therefore, taking the notation H̃ = ϕ(2q)−2ϕ(q)
2 +1 of Section 11.1.1-b) (Eq. (11.9)): H̃ → 1

for q → 0, H̃ → 0.5 for q → q+∗ /
√

2 =
√
− 1
c2

— hence, 0.5 < H̃ < 1 for 0 < q < q+∗ /
√

2.

Since analytical results are limited to the ones derived in the previous subsections, we

resort to empirical studies for validating the conjecture for other MMC processes, and for

wavelet coefficients and Leaders. Results are obtained using numerical simulations, as

described in Section 11.1.1-b) (wavelet based estimation on the time series {dX(J, · · · )},

{|dX(J, · · · )|q} or {LX(J, · · · )q} of wavelet coefficients or Leaders of the process X(t)
at scale J), using the following MMC processes and process parameter settings: CPM

and CPM-MF-fBm (µ = −0.3, σ2 = 0.0504, H = 0.7077, c = 1; hence (c1, c2, c3) =
(1.06,−0.14, 0.072) and (0.75,−0.070, 0.036), respectively); mrw with (c1, c2) = (0.8,−0.05)
of sample size N = 216.

Results are presented in Fig. 11.3 and 11.4 (the results for CPM and mrw in Fig. 11.4

are obtained for larger sample size N = 221). Fig. 11.3 summarizes structure functions

SdJ(j, 2), S
|d|
J (j, 2) and SLJ (j, 2) for Nψ = 1 and Nψ = 2 (first and second column, re-

spectively), and mean estimations of H (Eq. (11.9)) as a function of vanishing moments

Nψ ∈ {1, 2, 3} for dX (△, 11.3 only), |dX | (◦) and LX (×) at scale J = 3 (third column)

for CPM (top row), CPM-MF-fBm (center row) and mrw (bottom row). Fig. 11.4 presents

mean estimations of H̃ (Eq. 11.9) for |dX |q (blue solid lines) and LqX (red dashed lines)

at scale J = 3 for CPM (top row), CPM-MF-fBm (center row) and mrw (bottom row), to-

gether with predictions from the conjecture Eq. (11.60) (fat black solid lines with dots), as

a function of Nψ for q = 2 (left column), and as a function of q for Nψ = 2 (right column).

Equivalent results, not reported here, can be obtained at different scales J .

Fig. 11.3 (left columns) shows that the structure functions SdJ(j, 2), S
|d|
J (j, 2) and SLJ (j, 2)

do behave linearly in log-log coordinates for coarse scales, hence indicating scale invari-

ance for the series of wavelet coefficients and Leaders and validating the estimation of

the parameter H̃. Fig. 11.3 (right column) indicates that for Nψ = 1, the time series of

coefficients dX possess LRD-like power law type correlations with H̃d
1 ≈ 0.75 for CPM-

MF-fBm and mrw, and H̃d
1 ≈ 0.95 for CPM. For Nψ ≥ 2, the time series of coefficients

display weak correlation only for all MMC processes considered here, with H̃d
≥2 ≈ 0.5 (cf.
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Fig. 11.3, right column). This is in agreement with the analytic result, obtained for incre-

ments and the process CPM, in Eq. (11.52), and with the arguments in Section 11.2.2-b).

Fig. 11.3 (right column) and Fig. 11.4 (left column) suggest that the time series |dX | and

|dX |2 do, in contrast, display (strong) LRD-like power law correlations, regardless of the

precise choise of Nψ: The estimated values for H̃ are between 0.8 and 0.9 and do not

significantly decrease with increasing Nψ. Also, Fig. 11.4 (left) shows that the estimated

values for H̃ for different values of Nψ are largely in agreement with the predictions from

Conjecture 11.2.

Fig. 11.4 (right column) indicates that the time series of coefficients at orders q, |dX |q,
are not SRD: They possess LRD-like power law type correlations, whose estimated H̃
can be large and close to 1. This confirms predictions from Conjecture 11.2, which are,

for all orders q, in close agreement with estimations for CPM and mrw, and in satisfactory

agreement for CPM-MF-fBm. Discrepancies between estimations and the conjecture can

be explained by the fact that Conjecture Eq. 11.2 and the Eqs. (11.55) and (11.59) only

contain the leading term ϕ(2q) − 2ϕ(q) that dominates in the limit τ → 0 and |t− s| large

(respectively, a → 0 and |k − k′| large). In practice, the higher order terms play a role,

since the limit can not be assessed numerically. For CPM-MF-fBm, these discrepancies

are stronger because sample size is relatively small, due to limitations that the practical

simulation of this process imposes – hence, we are practically further away from the limit.

Finally, Fig. 11.4 (right) suggests that the time series of wavelet Leaders LqX display cor-

relations very similar to those of |dX |q, H̃Lq ≈ H̃ |d|q . Hence, the same observations as for

|dX |q are obtained for LqX : Wavelet Leaders of MMC processes are in general not SRD

but display strong LRD-like power law (higher order) correlations, regardless of the num-

ber of vanishing moments Nψ. Also, estimations of H̃ for wavelet Leaders are in close

agreement with predictions from the conjecture.

11.3 Discussion and Conclusion

The analytical and empirical results stated in the previous sections lead us to the following

conclusions.

The key result for wavelet coefficients of fractional Brownian motion [70] is a singular

situation and unfortunately not general : For fBm, wavelet coefficients are only weakly

correlated if:

Nψ > H + 1/2,

and Gaussianity implies short range dependence at any order.

For finite variance non Gaussian H-sssi processes and MMC processes with stationary

increments, wavelet coefficients are also only weakly correlated if:

Nψ >
ζ(2)

2
+ 1/2.

This is a consequence of the particular form of the covariance of such processes. How-

ever, for these processes, weak correlation does not imply weak correlation at all orders:

The q-th order time series of coefficients |dX |q display in general strong LRD-like power

law type correlation. In particular, this is also the case for the time series d2
X involved in

the estimation of the self-similarity parameter of H-sssi processes.

Moreover, LRD-like power law type correlations are unaffected by the precise number of

vanishing moments Nψ chosen for the analyzing wavelet, which proves to have no impact
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on higher order correlation decay of wavelet coefficients.

These results have, to the best of our knowledge, never been clearly reported and inves-

tigated elsewhere and have significant implications in practical estimation procedures.

Their consequences with respect to bootstrap estimation will be investigated in the next

section.

Finally, the empirical results suggest that the dependence structure of time series of

wavelet Leaders is similar to that of wavelet coefficients, since correlations of LqX are

close to those of |dX |q. In particular, when LRD like power law type correlations are

present for wavelet coefficients, their wavelet Leaders do not alter their decay.
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Figure 11.3: Correlation of coefficients and Leaders of multifractal processes.

Structure functions log2 S(j, q = 2) for wavelet coefficients of wavelet coefficients dX(J =
3, ·) (black dashed-dotted lines and ’⊳’), |dX(J = 3, ·)| (blue solid lines and ’◦’), and

of wavelet coefficients of wavelet Leaders LX(J = 3, ·) (red dashed lines and ’�’) for

CPM (top row), CPM-MF-fBm (center row) and mrw (bottom row) with vanishing mo-

ments Nψ = 1 (left columns) and Nψ = 2 (center columns) of the wavelet analyzing the

processes. The column on the right summarize the parameter H̃ (Eq. (11.9)) estimated

on this structure functions, as a function of Nψ of the wavelet analyzing the processes.

Results are obtained as means over 100 realization of fBm and ROS of sample size

N = 216, and with N ′
ψ = 4 for analyzing dX(J = 3, ·), |dX(J = 3, ·)| and LX(J = 3, ·).

Process parameters are set to (µ, σ2) = (−0.3, 0.05) and H = 0.708 for CPM(-MF-fBm)

and (H,β2) = (0.8, 0.05) for mrw.
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Figure 11.4: Correlation of q-th order of coefficients and Leaders of multifractal

processes. Estimates of parameter H̃ (Eq. (11.9)) of wavelet coefficients |dX(J =
3, ·)|q (blue solid lines and ’◦’), and of wavelet coefficients of Leaders LX(J = 3, ·)q (red

dashed lines and ’×’) as a function of vanishing moments Nψ of the wavelet analyzing the

processes (left column, q = 2) and as a function of q (right column, Nψ = 2) for CPM (top

row), CPM-MF-fBm (center row) and mrw (bottom row). The black solid line with dots ’•’
corresponds to the Conjecture 11.2. Shown are means and 1.96 standard deviation error

bars obtained for 100 realizations of sample sizes N = 221 (CPM and mrw) and N = 218

(CPM-MF-fBm) of wavelet based (N ′
ψ = 4) estimations of H̃. Process parameters are set

to (µ, σ2) = (−0.3, 0.05) and H = 0.708 for CPM(-MF-fBm) and (H,β2) = (0.7, 0.05) for

mrw.
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11.4 Implications for Wavelet-Domain Block Bootstrap

In the previous sections, we presented analytic and empirical results that show that

wavelet coefficients and Leaders do in general – and with the singular exception of frac-

tional Brownian motion – display complicated and severe dependence structures, mostly

LRD-like power law type higher order correlations. These results potentially have im-

portant consequences for the wavelet domain block bootstrap estimation procedures we

proposed in Chapter 7, and may shed new light on bootstrap estimation performance (cf.

Chapters 8 to 10). The aim of this section is to investigate and clarify these issues.

11.4.1 Block bootstrap and long range dependence

Theory. Lahiri [103, 104] describes the behavior of block bootstrap methods when the

time series violate the mixing conditions Eq. (6.2). More specifically, he considers the

case of a zero mean real-valued stationary random process {Xn}n∈Z that has autoco-

variance function r(m) = EXiXi+m ∼ m−α, m → ∞ with 0 < α < 1 and that is therefore

long range dependent (cf. Section 2.1.1-a), Def. 2.1 and Eq. (2.3)). Then, the variance of

the sample mean X̄N = 1
N

∑N
n=1Xn decays at rate slower than O(N−1), and the scaling

factor N/dN for the centered sample mean:

TN = N(X̄ − µ)/dN ,

has to be of order smaller thanN1/2 in order to converge to a non-degenerate distribution.

More precisely, it has to be defined as dN ∼
√
N2−γα, i.e. N/dN ∼ Nγα/2, where γ

is the Hermite rank of the process {X}, which is defined as follows4. Suppose f is

the instantaneous transform for which {X} is obtained from a Gaussian process {Y },

Xi = f(Yi). Then, the Hermite rank γ of {X} is the smallest p ∈ N for which the inner

product of the Hermite polynomial5 Hp of order p and the function f ′ = f−EX is not zero

[62, 104, 164, 165]: γ = infp : 〈f ′,Hp〉 6= 0.

Lahiri shows that the moving block bootstrap (MBB) version of the normalized sample

mean:

T ∗
N = N(X̄∗ − X̄)/dN ,

does not converge to the same limit distribution as normalized sample mean TN . Whereas

TN has a non-degenerate limit distribution6 for any γ ≥ 1, T ∗
N has a degenerate limit.

Heuristically, this is because the bootstrap sample is composed of independent blocks,

therefore forcing the variance of the bootstrap sample mean to go to zero too fast.

For the specific case when γ = 1 and hence when TN has a Gaussian limit distribution,

the problem can be circumvented by appropriate scaling of T ∗
N , and the MBB version with

modified scaling factor:

T̃ ∗
N = T ∗

N · dN√
N/l · dl

,
dN√
n/l · dl

= F (α, γ,N, l)

has the same limit distribution as TN [103]. Note that the definition of such scaling factors

requires that the LRD parameter α is known.

4Note that 0 < α < 1/γ for a process of Hermite rank γ, cf. [62, 164, 165].
5The Hermite polynomial of order p ∈ Z

+ is defined as Hp(x) = (−1)k exp(x2/2) d
k

dxk exp(−x2/2), x ∈ R.
6Under some additional conditions, cf. [62, 164, 165].
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In the case γ > 1, no appropriate modification T̃ ∗
N of the bootstrap version of the sample

mean exists [103]. Therefore, any MBB version of the normalized sample mean has a

limit distribution that is different from the limit distribution of TN , and the MBB fails rather

drastically.

Multifractal analysis. The non Gaussian finite variance H-sssi processes, such as

ROS, are exactly in this framework and have Hermite rank γ > 1. Also, MMC processes

do have LRD-like power law covariance (within the integral scale) and are hence in this

framework. We conjecture that for most fv MMC processes, γ = 1 since they are close

to log Normal processes whose Hermite rank is 1. We showed in the previous sections

that wavelet coefficients |dX |q and Leaders LqX of fv non Gaussian H-sssi and MMC

processes potentially do have LRD-like power law dependence structure. Therefore, they

are in the above framework. Although it is not clear how γ of X translates to the Hermite

rank γ|dX |q and γL
q

of |dX |q and LqX , the results in [103] indicate that the wavelet domain

block bootstrap procedures, which are defined without modified normalization constants

dN and dl, are supposed to fail to reproduce the distribution of the structure functions:

Sd(j, q) =
1

nj

nj∑

k=1

|dX(j, k)|q

SL(j, q) =
1

nj

nj∑

k=1

LX(j, k)q,

regardless of the precise value of γ|dX |q and γL
q
.

In contrast, the results in Chapters 8 to 10 show that bootstrap estimation performance is

very satisfactory for scaling exponents (and log-cumulants):

ζ̂(q) =
∑

j

wj log2 S(j, q),

for a wide range of process parameters, sample sizes and statistical orders q. Therefore, it

remains to be understood why empirical bootstrap estimation performance is satisfactory

for ζ̂(q), when it is supposed to theoretically fail to reproduce the limiting distribution of

S(j, q). This is the subject of the remainder of this section. In particular, we will investigate

the following issues: What is the role of the log, and does bootstrap estimation work for

Y (j, q) = log2 S(j, q)? Which roles do the linear fits
∑

j wjY (j, q) play?

11.4.2 Numerical simulation study

To answer such questions, we apply the estimation procedures for S(j, q) and ζ(q) (Eqs.

(2.57) and (2.65)) and the corresponding T-B and TS-B bootstrap estimation procedures

(cf. Section 7.2) to a large number NMC = 1000 of realizations of sample size N of

(Gaussian H-sssi) fBm and (non Gaussian multifractal) mrw. We calculate (means ÊMC

over NMC realizations of) bootstrap standard deviations:

σ̂∗Y (j, q) = ÊMC Ŝtd
∗
log2 S

∗(j, q), (11.62)

σ̂∗ζ (q) = ÊMC Ŝtd
∗
ζ̂(q)∗, (11.63)

and compare them to Monte Carlo standard deviations:

σ̂Y (j, q) = ŜtdMC log2 S(j, q), (11.64)

σ̂ζ(q) = ŜtdMC ζ̂(q), (11.65)
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obtained over Monte Carlo realizations. Process parameters are set to H = 0.8 for fBm,

and (c1, c2) = (0.8,−0.01) (weakly multifractal) and (c1, c2) = (0.8,−0.1) (strongly mul-

tifractal) for mrw. The sample size is set to N ∈ {210, 216}, hence one small and one

large sample size, the analyzing Daubechies wavelet has Nψ = 3 vanishing moments,

and weighted (w1) linear regressions are performed over scales (j1, j2) = (3, 7). Boot-

strap estimations are obtained for R = 99 bootstrap samples per realization, and the

block size l is varied over a large range: For T-B bootstrap estimation, the block sizes

are lT ∈ {1, 3, 6, 12, 24, 48, 96, 192, (384, 768, 1536, 3072)} (the block sizes in brackets are

only used for large sample size N = 216), and for TS-B, lTS ∈ {16, 32, 64, 128, 256} for

N = 210, and lTS ∈ {64, 128, 256, 512, 1024, 2048, 4096} for N = 216. Results are reported

in Fig. 11.5 to 11.8 and discussed below.

11.4.3 Bootstrap estimation and logarithm of structure functions

Fig. 11.5 summarizes Monte Carlo and bootstrap standard deviations σ̂Y (j, q) and σ̂∗Y (j, q)
(Eqs. (11.64) and (11.62), respectively) of log2 S

d(j, q = 2) (left column), log2 S
L(j, q =

−2) (center column) and log2 S
L(j, q = 2) (right column). Bootstrap estimations are ob-

tained from T-B (1st and 3rd line) and TS-B (2nd and 4th line) bootstrap samples. Results

are shown as a function of scale j, and parametrized by block size l.

fBm. The results for fBm (Fig. 11.5, top) show that:

σ̂∗Y (j, q) ≈ σ̂Y (j, q)

as soon as block sizes are large enough to capture residual dependence (typically, l ≥
2Nψ = 6). This indicates that block bootstrap estimations for log2 S(j, q) are efficient,

and is in agreement with results in Section 11.1.1, showing that wavelet coefficients and

Leaders of fBm are not LRD7.

mrw. Results for mrw in Fig. 11.5 (bottom) demonstrate that:

σ̂∗Y (j, q) < 0.5σ̂Y (j, q),

and therefore, the T-B and TS-B bootstrap procedures fail to correctly estimate the stan-

dard deviations of log2 S(j, q): Bootstrap standard deviation estimations are at best 50%
of the actual (Monte Carlo) standard deviations. These best case results for log2 S(j, q)
are achieved with largest block size tested (l = 1536 for T-B and l = 4096 for TS-B) and

are far from bootstrap estimation performance for multifractal attributes as reported in

Chapters 8 to 10.

Conclusions. We conclude that bootstrap estimation for the logarithm of structure

functions, Y (j, q) = log2 S(j, q), works as expected for fBm, and fails rather drastically for

mrw, for which the results obtained in Section 11.2 indicate that wavelet coefficients and

Leaders at a given scale display LRD-like power law type dependence structure.

7We note that increased bootstrap estimation errors for large scales j are due to decreasing number of

coefficients nj with increasing scale, eventually forcing the adaptation of block size: As soon as the sample

size is of the order of twice the block size, nj ≈ 2l, the block size is halved for this and all higher scales:

lnew = lold/2.
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Figure 11.5: Standard deviation and bootstrap estimation for Y (j, q) = log2 S(j, q).
Monte Carlo standard deviation estimations of Y (j, q) = log2 S(j, q), σ̂Y (j, q) (bold blue

solid lines, ’•’) and mean of bootstrap standard deviation estimations σ̂∗Y (j, q) (red solid

lines) for fBm (top, H = 0.8) and mrw (bottom, (c1, c2) = (0.8,−0.1)) and sample size N =
216. The first and third line correspond to T-B, the second and fourth to TS-B bootstrap

estimation; the left, center and right column correspond to wavelet coefficient (q = 2) and

Leader (q = −2 and q = 2) based estimation, respectively. Bootstrap estimation curves

are indexed by the block size l employed.
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11.4.4 Bootstrap estimation and linear fits: Scaling exponents

Fig. 11.6 summarizes Monte Carlo and bootstrap standard deviations σ̂ζ(q) and σ̂∗ζ (q)

for ζd(q = 2) (left column), ζL(q = −2) (center column) and ζL(q = 2) (right column)

for T-B bootstrap sampling as a function of block size lT (graduated in log2(lT /Nψ); the

leftmost points correspond to l = 1). The subplots correspond to fBm (top, H = 0.8) and

mrw ((c1, c2) = (0.8,−0.01), center, and (c1, c2) = (0.8,−0.1), bottom). Shown are results

for different sample sizes N = 210 and N = 216 (first and second lines of the subplots,

respectively). Fig. 11.7 shows the corresponding results for TS-B resampling (block size

lTS graduated in log2(lTS)).

fBm. Fig. 11.6 and 11.7 (top) illustrate that for fBm and for certain block sizes lT and

lTS (discussed below):

σ̂∗ζ (q) ≈ σ̂ζ(q),

for large sample size. For small sample size, bootstrap estimation performance remains

satisfactory. This indicates that the T-B and TS-B block bootstrap estimation procedures

are efficient for ζ(q) of fBm. These empirical findings are consistent with and confirm

results of the previous Section 11.4.3, and Section 11.1.1.

mrw. Fig. 11.6 and 11.7 (center and bottom) show that for mrw:

σ̂∗ζ (q) ≈ σ̂ζ(q),

for certain block sizes lT and lTS (cf. below). This is consistent with bootstrap estimation

performance for multifractal attributes reported in Chapters 8 to 10. Together with the

findings for Y (j, q) in the previous subsection, these empirical results indicate that the

linear fits in ζ̂(q) =
∑

j wj log2 S(j, q) must play an important role for bootstrap estimation

for multifractal attributes of MMC processes.

Block size. Fig. 11.6 illustrates that the optimal block size lT for T-B bootstrap estima-

tion for ζ(q) slightly depends on the process type, parameters and sample size, but is of

the order ≈ 2Nψ (in agreement with the heuristic choice Eq. (7.6)). It is important to note

that for mrw, the optimal l decreases with increasing sample size N or departure from

monofractal (i.e., increasing |c2|), hence bootstrap samples of coefficients capture less of

their dependence: For large lT , the T-B bootstrap overestimates the variance of ζ(q).
The best block size lTS for TS-B bootstrap estimation for ζ(q) (cf. Fig. 11.6) corresponds

exactly to the heuristic choice proposed in Eq. (7.7), regardless of sample size, process

type and process parameters. Varying the block size changes performance only slightly,

and there is no range of block sizes for which bootstrap variance estimations ”overshoot”:

Block size variation consistently changes performance in the same way for both fBm and

mrw, regardless of sample size and precise choice of process parameters.

Finally, for mrw and for both T-B and TS-B, optimal block sizes for estimation of σ̂ζ are

smaller than for estimation of σ̂Y : Hence, best performance for σ̂ζ involve deliberate

under-estimations for σ̂Y .

Conclusions. We conclude that bootstrap estimation for ζ(q) provides satisfactory

results not only for fBm, but also for mrw. The TS-B procedure has an edge over T-B in

terms of robustness with respect to changes in mono-/multifractal and sample size. Since

for mrw, bootstrap estimation for S(j, q) and Y (j, q) are not consistent, the linear fits must

play an important role for satisfactory estimation performance for ζ(q).
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Figure 11.6: Scaling exponent standard deviation and T-B bootstrap estimation.

Monte Carlo standard deviation estimations σ̂ζ(q) (blue dashed lines) and means of T-

B bootstrap standard deviation estimations σ̂∗ζ (q) (red solid lines and ’◦’) for ζ(q) as a

function of block size l: fBm (top, H = 0.8), mrw (center, (c1, c2) = (0.8,−0.01)), mrw

(bottom, (c1, c2) = (0.8,−0.1)). The first line corresponds to sample size N = 210, the

second line to sample size N = 216. The left, center and right column correspond to

wavelet coefficient (q = 2) and Leader (q = −2 and q = 2) based estimation, respectively.
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Figure 11.7: Scaling exponent standard deviation and TS-B bootstrap estimation.

Monte Carlo standard deviation estimations σ̂ζ(q) (blue dashed lines) and means of TS-

B bootstrap standard deviation estimations σ̂∗ζ (q) (red solid lines and ’◦’) for ζ(q) as a

function of block size l: fBm (top, H = 0.8), mrw (center, (c1, c2) = (0.8,−0.01)), mrw

(bottom, (c1, c2) = (0.8,−0.1)). The first line corresponds to sample size N = 210, the

second line to sample size N = 216. The left, center and right column correspond to

wavelet coefficient (q = 2) and Leader (q = −2 and q = 2) based estimation, respectively.
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11.4.5 Bootstrap estimation and inter-scale dependence

From the definition of ζ̂(q) (cf. Eq. (2.65)):

ζ̂(q) =
∑

j

wjY (j, q)


=

∑

j

wj log2

(
1

nj

nj∑

k=1

|TX(j, k)|q
)
 ,

it is clear that the variance σ̂2
ζ (j, q) of ζ̂(q) and its bootstrap estimation σ̂2∗

ζ (j, q) can be

written as:

σ̂2
ζ (q) =

∑

j

w2
j σ̂

2
Y (j, q) +

∑

j

∑

j′ 6=j
wjwj′CovY (j, q)Y (j′, q), (11.66)

σ̂2∗
ζ (q) =

∑

j

w2
j σ̂

2∗
Y (j, q) +

∑

j

∑

j′ 6=j
wjwj′Cov∗Y ∗(j, q)Y ∗(j′, q). (11.67)

Thus, it is composed of two terms: The first term
∑

j w
2
j σ̂

2(∗)
Y (j, q) is entirely due to the

variances σ̂Y (j, q) of the logarithm of the structure functions (and their bootstrap coun-

terparts, respectively). The second term is due to inter-scale dependence (ISD) of the

multiresolution quantities and will be called the ISD term in what follows.

We can investigate the contribution of the ISD term indirectly by comparing the actual

variances σ̂2
ζ (q) and σ̂2∗

ζ (q) to the versions:

σ̃2
ζ (q) =

∑

j

w2
j σ̂

2
Y (j, q), (11.68)

σ̃2∗
ζ (q) =

∑

j

w2
j σ̂

2∗
Y (j, q), (11.69)

which assume independence between different scales, hence zero ISD.

Fig. 11.8 shows results for σ̂ζ(q) and σ̃ζ(q) (blue dashed and black dashed-dotted hor-

izontal lines, respectively), and for their TS-B bootstrap counterparts σ̂∗ζ (q) and σ̃∗ζ (q)
(red solid lines with circles and red dashed-dotted lines with crosses, respectively) as a

function of block size lTS (i.e. log2(lTS)). Results are obtained for fBm (top) and mrw

(bottom, (c1, c2) = (0.8,−0.1)) and sample size N = 216. Note that results for T-B boot-

strap estimation are not shown, since T-B bootstrap samples entirely blind out any ISD by

construction and therefore: σ̂∗ζ (q) ≡ σ̃∗ζ (q).

fBm. We observe that for fBm, ISD slightly increases actual variances of ζ(q) since:

σ̃ζ(q) < σ̂ζ(q).

The increase is of the order of 5% (12%) for wavelet coefficients (Leaders), thus slightly

larger for wavelet Leaders.

For the block size choice lTS = 210 (cf. above and Eq. (7.7)):

σ̂∗ζ (q) − σ̃∗ζ (q) ≈ σ̂ζ(q) − σ̃ζ(q).

Therefore, the TS-B bootstrap samples completely capture the ISD for fBm.
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mrw. For mrw, we observe that ISD has a very pronounced negative contribution to

actual variances of ζ(q):

σ̃ζ(q) >> σ̂ζ(q),

and the inter-scale covariance contribution strongly decreases variances of linear fits:

σ̂ζ(q) ≈ 1
8 σ̃ζ(q).

In contrast to what is observed for fBm, TS-B bootstrap samples capture the ISD for mrw

only partially. The fraction that is captured in the bootstrap samples increases with in-

creasing blocklength lTS and is of the order σ̂∗ζ (q) ≈ 1
3 σ̃

∗
ζ (q) (lTS = 210).

Conclusions. We conclude that for fBm, TS-B bootstrap samples capture all the inter-

scale dependence present in the original sample of coefficients or Leaders. For mrw,

however, they capture ISD only partly. T-B bootstrap samples ignore all ISD by construc-

tion.
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Figure 11.8: Interscale dependence and bootstrap estimation: TS-B BS. Stan-

dard devations σ̂ζ(q) and σ̃ζ(q) =
∑

j w
2
j σ̂Y (j, q) (blue dashed and black dashed-

dotted horizontal lines, respectively), and TS-B bootstrap estimations σ̂∗ζ (q) and σ̃∗ζ (q) =∑
j w

2
j σ̂

∗
Y (j, q) (red solid lines with ’◦’, and red dashed-dotted lines with ’×’, respectively)

as a function of block size lTS (graduated as log2 lTS). Results are obtained for fBm (top,

H = 0.8) and mrw (bottom, (c1, c2) = (0.8,−0.1)) and sample size N = 216 for wavelet

coefficients (q = 2, left column) and Leaders (q = −2 and q = 2, center and right column,

respectively).
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11.4.6 Discussion, conclusions and perspectives

The empirical findings presented above lead to the following conclusions. For fBm, de-

pendence are (very) weak, and the proposed bootstrap procedures do not encounter any

theoretical or practical difficulties: The variances of log2 S(j, q) are correctly estimated

since the range of time dependence of coefficients is short. The ISD term in linear fits,

arising from inter-scale dependence of coefficients, is correctly reproduced by the TS-B

resamples. Since it is very small, the error introduced by the T-B procedure can be ig-

nored, and both block bootstrap procedures correctly estimate the variances of ζ̂(q).
For MMC processes, the bootstrap procedures fail to estimate the variances of log2 S(j, q),
and bootstrap variance estimates σ̂∗Y (j, q) are significantly smaller than actual (Monte

Carlo) variances σ̂Y (j, q). Nevertheless, bootstrap variance estimations for ζ̂(q) are highly

satisfactory. This can be interpreted as follows. For such processes, the ISD term is very

significant and has a very strong negative contribution to variances of ζ̂(q). Due to the

LRD-like power law type dependence structure, the bootstrap samples can not reproduce

the entire time dependence, and idem for the ISD, and the two under-estimation effects

compensate each other for certain block sizes:

- For T-B bootstrap samples, who entirely ignore ISD, the block size has to be chosen

very small, resulting in very strongly underestimated variances σ̂Y (j, q) to compen-

sate for completely blinding out the ISD term. It is shown above that this compen-

sation effect, taking place for block size lT ≈ 2Nψ, is rather stable with respect to

sample size and process parameters.

- The TS-B bootstrap samples reproduce the ISD partly. This underestimation of ISD

precisely counterbalances the effect of underestimation of σ̂Y (j, q). This compen-

sation is, in certain limits, robust with respect to block size lTS . Most importantly,

for the block size lTS as defined in Eq. (7.7), this happens independently of sample

size N and process parameters.

From these empirical findings, we can of course not conclude whether estimations are

asymptotically consistent for N → ∞, and theoretical results would be needed. Heuris-

tically, for the T-B bootstrap, there is empirical evidence against this by noting that when

passing from weakly (and small sample size) to strongly multifractal (and large sample

size), the best performance block size reduces to lT → 1 to compensate for increased

importance of ISD – this is the lower limit for block size and hence leaves no more margin

for when departure from monofractal and sample size are further increasing. For the TS-

B bootstrap, empirical evidence is in favor of asymptotic consistency: Results are robust

with respect to changes in block size, and stable with respect to sample size increase.

To conclude, empirical results show that the block bootstrap estimations for multifrac-

tal attributes have satisfactory performance for the sample sizes and process parameter

ranges typically encountered in practice and considered here for numerical study. Theory

and asymptotic results as well as further numerical results are needed for a better under-

standing of these empirical findings for MMC processes, and for potential improvements

of the block constructions, or for definitions of alternative inference procedures.
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In this work, we are also interested in a number of applications, involving real-world

data of very different nature, some of which will be presented in more detail in this part

of the manuscript. The aim is to demonstrate how the above developed methods can be

fruitfully used for the analysis of real world data and in applications.

The tools we propose in this work have been used in an application aiming at detect-

ing, from functional Magnetic Resonance Imaging (fMRI) data, which parts of the human

brain are activated by a given stimulus type. This work was conducted in collaboration

with the group of P. Ciuciu at NeuroSpin, CEA, and at Functional Neuroimaging Insti-

tute, Paris, France. They designed and performed the experiments and the fMRI data

measurements, as well as the final detection step. Detection is based on multifractal at-

tribute estimates, obtained from voxel-per-voxel fMRI time series with the tools proposed

in this work. The tools enable, first, to evidence multifractal signatures in the fMRI sig-

nals, which is an original result in itself and has never been clearly stated before. Second,

it provides relevant attribute estimates for the effective discrimination of ongoing (”back-

ground”) brain activity against task-related brain activity. This application is reported in

[50, 51].

Another application we considered involves the multifractal analysis of baro-reflex

data, in collaboration with E. Pereira de Souza Neto (anesthesiologist at the Hospital of

Lyon, France). The data consist of jointly recorded arterial pressure and cardiac rhythms.

The application aims at differentiating between baro-reflex activity under different pre-

defined medical conditions, and at practically characterizing these different situations.

To account for the specific nature of the bivariate data in this application, we propose

a wavelet inter-spectrum estimator, acting as a scale invariance - adapted alternative

to a (Fourier domain based) inter-spectrum. This specific tool is not reported in this

manuscript. Together with the multifractal analysis procedures proposed here, it enables

a relevant characterization of baro-reflex data and can be fruitfully used in standard test

procedures commonly accepted in the biomedical community. The publication of the

method and the results for this application are in preparation.

Furthermore, the methods proposed in this work were involved in an application con-

cerning the characterization of turbulence intermittency data, and for the classification of

texture images. We choose to present these applications in detail below in Chapter 12

and Chapter 13, respectively.
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Most of the seminal ideas of the concept of multifractal were introduced in the study

of hydrodynamic turbulence. One of the first models proposed for the description turbu-

lence flows was based on monofractal fractional Brownian motion [100]. It is nowadays

commonly accepted that velocity or dissipation turbulence fields are better modeled with

multifractal multiplicative cascades. A number of multifractal models have been proposed,

the most prominent being the log-Normal model [99], the log-Poisson (or She-Lévêque)

model [159], and the log-stable cascade model [155]. However, it remains to validate

which of these multifractal models better fits the data. A relevant answer to this contended

question can contribute to a better theoretical understanding of the physical mechanisms

responsible for occurrence of turbulence flows.

The goal of this chapter is to revisit this issue by applying wavelet Leader based mul-

tifractal analysis and bootstrap hypothesis tests to real-life data from two major hydro-

dynamic turbulence experiments. We choose to concentrate on the log-Normal and the

log-Poisson multifractal model. Although discrimination of the log-stable cascade model

would be of interest, it is not considered here since the log-cumulant expansion Eq. (2.70)

is not relevant for this cascade (cf. Section 2.6.2).

The work presented in this chapter has been conducted in collaboration with Stéphane

G. Roux (ENS Lyon) and reported in [179].

12.1 Multifractal Analysis in Hydrodynamic Turbulence

12.1.1 Turbulence and scaling: A short survey

Fluid motions are described by (partial differential) equations, such as Navier-Stokes,

mass conservation, state and thermodynamic equations. However, for most natural flows,

the fluctuations of the fluid parameters (velocity, density, pressure, temperature) appear

highly erratic, unpredictable and random. After the early work of Richardson in the twen-

ties [144], the heuristic understanding of hydrodynamic turbulence relates these erratic

fluctuations to a transfer of energy from large flow scales (where it is injected by an exter-

nal forcing) to small flow scales (where it is dissipated by viscous friction mechanisms).

For thorough introductions to turbulence, the reader is referred to, e.g., [75, 128]. This

energy cascade based heuristic analysis of turbulence flows is deeply associated with

scale invariance: Between the coarse injection scale and the fine dissipation scale, no

characteristic scale can be identified. It lead to the use of stochastic processes with

built-in scaling properties for turbulence modeling. In 1941, Kolmogorov proposed one

of the first stochastic descriptions of turbulence based on fractional Brownian motion, a

Gaussian self-similar, hence strictly monofractal (c1 = H = 1
3 , cp ≡ 0, p ≥ 2) process

[100]. However, after the seminal work by Yaglom, the energy transfer from coarse to

fine scales mechanism has often been modeled via split/multiply iterative random pro-

cedures, that match the physical intuitions beyond the vorticity stretching mechanisms

at work in turbulence flows [75]. Mandelbrot in the seventies fruitfully gathered these

models in the unified framework of multiplicative martingales and studied their proper-

ties [121] (see also [95]). Nowadays most practitioners agree on the existence of scale

invariance in turbulence data and, following the analyses of Parisi and Frisch [76], on

its multifractal nature. However, a major open issue consists in deciding which particu-

lar multifractal process better models turbulence flows. A large variety of cascades has

been proposed over the last 30 years, each trying to better fit experimental data and/or to
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Model c1 c2 c3

LN 0.3708 -0.0250 0.0000

LP 0.3814 -0.0365 0.0049

Table 12.1: Multifractal models for turbulence. Canonical values of cp for the log-

Normal Obukov-Kolmogorov 62 (LN) and She-Lévêque log-Poisson (LP) models.

Jet turbulence Eulerian velocity signal (ChavarriaBaudetCiliberto95)

Figure 12.1: Jet turbulence signal. A part of the jet turbulence longitudinal Eulerian

velocity signal in [150].

better account for a specific fluid flow property and yielding a different prediction for the

multifractal spectrum. Let us concentrate on two amongst the most popular such mod-

els. In 1962, Obukhov and Kolmogorov [99, 133] proposed a model mostly based on a

law of large numbers argument and referred to as the log-Normal multifractal model. It

predicts that ζ(q) = c1q + c2q
2/2 and hence that cp ≡ 0 for p ≥ 3. More recently, She

and Lévêque [159] proposed an alternative construction based on the central assumption

that energy dissipation gradients must remain finite within turbulence flows. It is referred

to as the log-Poisson model and yields a multifractal process with all non zero cps. The

canonical values of c1, c2, c3 for the log-Normal Obukov-Kolmogorov 62 and She-Lévêque

log-Poisson models are given in Tab. 12.1.

Discriminating between the log-Normal and log-Poisson models hence requires the use

of tools providing us with an accurate estimate for the c3 parameter and with a statis-

tical test aiming at rejecting the null hypothesis H0 : c3 ≡ 0. These are, according to

the numerical results reported in Chapter 4, provided by wavelet Leaders1, and by the

nonparametric bootstrap hypothesis tests in Chapter 9.

12.1.2 Turbulence data and estimation parameters

Data description. In the present contribution, we analyze large turbulence data sets

from two different experiments. They consists of high quality, high sampling rate and

long observation duration longitudinal Eulerian velocity signals, measured with hot-wire

anemometry techniques. The first set is obtained from a jet turbulence experiment, with

approximate (Taylor scale based) Reynolds number Rλ ≃ 580, [150]. A part of this signal

is shown in Fig. 12.1. It has been made available to us by C. Baudet (LEGI, Université

Joseph Fourier, INPG, CNRS, Grenoble, France). The second data set consists of wind-

1Wavelet Leaders have also been used for the measurement of multifractal spectra of major turbulence

data sets in [111], in a similar perspective.
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Data set Jet Wind-Tunnel

Taylor based Reynolds number ≃ 580 ≃ 2000
Number of runs = 79 = 24

Duration (in samples) per run = 220 = 220

Duration (in integral scales) ≃ 27 ≃ 27

Integral Scale (in samples) ≃ 213 ≃ 213

Taylor Scale (in samples) ≃ 26 ≃ 24

Table 12.2: Turbulence data sets. Description of the 1d Eulerian velocity data sets

analyzed in this contribution.

tunnel turbulence (1995 campaign, cf. [94]), with Rλ ≃ 2000, made available to us by Y.

Gagne (LEGI, Université Joseph Fourier, INPG/CNRS, Grenoble, France). The descrip-

tion of the data is summarized in Tab. 12.2 (it is worth mentioning that these data sets

consist of 79 and 24 million samples, respectively!).

0 5 10 15

!10

0

S
L

j

0 5 10 15

0

0.5

1

1.5 C
L

j

Figure 12.2: Turbulence data structure functions. Structure functions (on the left,

q = 2) and Cumulant estimates (on the right, p = 2), based on wavelet Leaders, for one

single run of jet turbulence data (N = 220). The bootstrap confidence limits (in solid red)

are obtained with the percentile method and α = 0.05. The confidence limits confirm the

choice of regression range, j ∈ [9, 13].

Scaling range selection. According to turbulence common understanding, the power

law behavior associated with scale invariance takes place in the so called inertial range

of scales. It spreads from above the Taylor scale to below the integral scale, which are

estimated at (in sample numbers) 26 and 213 for the jet data set and 24 and 213 for the

wind tunnel data set, respectively. The corresponding turbulence velocity structure func-

tions, for one jet turbulence run with N = 220, are plotted in Fig. 12.2 for illustration

purposes. However, choosing the range of scales where the linear regression needs

to be performed remains an involved question. Two categories of arguments, leading

to slightly different regression ranges, are opposed: Use of a goodness-of-fit tool, e.g.

based on confidence intervals as shown in Fig. 12.2, to select a range of scales well

inside the inertial range where the power law model holds; Selection of a range of scales

such that ζ(3) = 1 (as this is a theoretical requirement, the so-called Karman-Howarth

results [75], in the ideal case of 3D data collected on homogeneous isotropic stationary

turbulence). The latter choice amounts to performing the linear fit in a slightly lower range

of scales than the former one. The use of wavelet Leaders to perform multifractal anal-
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Jet turbulence data

p 1 2 3

ĉp 0.3041 −0.0206 −0.0001

lowper 0.2866 −0.0255 −0.0020
highper 0.3214 −0.0158 0.0018

lowstu 0.2835 −0.0259 −0.0023
highstu 0.3257 −0.0140 0.0023

Wind tunnel data

p 1 2 3

ĉp 0.3515 −0.0259 0.0006

lowper 0.3421 −0.0293 −0.0011
highper 0.3609 −0.0223 0.0024

lowstu 0.3408 −0.0296 −0.0014
highstu 0.3622 −0.0216 0.0028

Table 12.3: Turbulence data multifractal attribute estimates. Jet turbulence (top) and

wind tunnel turbulence (bottom) wavelet Leader based estimates of log cumulants cp,
together with T-B bootstrap confidence limits. The results are averaged over runs.

ysis makes this question even more involved. In the present work, we chose the former

solution and will not further discuss this issue which remains, however, strongly debated

amongst practitioners. Careful analysis of structure functions and confidence intervals

leads to the choices (j1, j2) = (9, 13) for the jet turbulence data set and (j1, j2) = (6, 10)
for wind tunnel turbulence.

Estimation parameters. The remaining estimation parameters are set to: ordinary lin-

ear regressions (w0), Daubechies wavelets with Nψ = 3, and T-B bootstrap with R = 399,

S = 50, α = 0.05.

12.1.3 Results and conclusions

From the structure functions (cf. Fig. 12.2), estimates for the multifractal attributes

ζ(q), D(h), cp are computed for each run with N = 220. They are shown, for a single

run, in Fig. 12.3, together with their 95% T-B bootstrap percentile confidence intervals.

Estimates and confidence intervals confirm that the data are multifractal: ζ(q) is not a lin-

ear function of q, the multifractal spectrum D(h) has support on an whole range of Hölder

exponents h, and the confidence interval for c2 excludes the zero value.

Wavelet Leader based estimates for c1, c2, c3 averaged across the entire data sets for

both jet and wind tunnel turbulence are reported in Tab. 12.3, together with their T-B

bootstrap based confidence intervals. It shows that confidence limits based on percentile

or studentized statistics are extremely close. Furthermore, it indicates that the estimated

cp are close but not equal for the two data sets: This can be either due to difficulties in

the regression range selection or to the difference in Reynolds numbers (and can hence

be related to the much debated issue in turbulence of universal values for multifractal
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Figure 12.3: Turbulence data multifractal attribute estimates. Estimates (in solid

black, ’•’) of scaling exponent ζ(q) (top left), multifractal spectrum D(h) (top right) and

log cumulants cp (bottom row), based on wavelet Leaders, for one single run of jet tur-

bulence data (N = 220). The bootstrap confidence limits (in solid red) are obtained with

the percentile method and α = 0.05. The boxplots (bottom row) are obtained on the boot-

strap estimates ĉ∗p and show the lower and upper quartile, median, and support of their

empirical distributions.

attributes at infinite Reynolds numbers, [75]).

Tab. 12.4 (left columns) shows the results of the Leader and T-B bootstrap based

hypothesis tests on c2 = 0. Both data sets unambiguously reject monofractality, with

extremely low p-values. The percentile and the studentized tests are in close agree-

ment. This is consistent with results in Tab. 12.3 where confidence intervals for c2 clearly

exclude the zero value. The relevance of these results is further strengthened by the

statistical performance of the tests on synthetic processes, as reported and discussed

before (cf. Tab 9.2): With only N = 215 samples, Leaders based tests possess sufficient

power for rejecting c2 = 0 when c2,A is in the order of magnitude of the ĉ2 reported in Tab.

12.3. Hence, this confirms that turbulence data select multifractal multiplicative cascade

models as opposed to monofractal ones.

Tab. 12.4 (right columns) shows the results of the Leader boostrap based hypothesis

tests on c3 = 0. For both data sets, only a low fraction of the runs rejects the hypothesis

c3 = 0. The corresponding p-values remain large, indicating a strong risk of incorrect

rejection, if one decides to reject c3 = 0. Percentile and studentized statistics based tests

are in good agreement. This is consistent with results in Tab. 12.3 where confidence

intervals for c3 do include the zero value. Note moreover that the estimates for c3 are in

agreement with value zero up to the fourth digit for both data sets, as opposed to results

for c1 and c2 that slightly differ from one data set to the other. Numerical simulations

reported before clearly indicate that non-zero c3 values can be estimated from data (e.g.

Fig. 4.1). Moreover, they show that the tests possess satisfactory power even for small

c3,A when only N = 215 samples are available, as opposed to the N = 220 samples of

the turbulence data sets used here (cf. Tab. 9.7). Therefore, the results reported in the
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Jet turbulence Data

Model: c2,0 = 0 Model: c3,0 = 0

Rejectper 98.8 Rejectper 18.8%

Rejectstu 98.8 Rejectstu 15.0%

p-valueper 0.0049 p-valueper 0.36
p-valuestu 0.0052 p-valuestu 0.37

Wind tunnel Data

Model: c2,0 = 0 Model: c3,0 = 0

Rejectper 100 Rejectper 20.8%

Rejectstu 100 Rejectstu 20.8%

p-valueper 0.005 p-valueper 0.33
p-valuestu 0.005 p-valuestu 0.36

Table 12.4: Testing monofractality and simple multifractality. Jet turbulence (top)

and wind tunnel turbulence (bottom) wavelet Leader based T-B bootstrap hypothesis tests

of monofractality c2,0 = 0 (left) and of simple multifractality c3,0 = 0 (right). The signifi-

cance is α = 0.05. The results are averaged over runs.

present contribution are strongly in favor of the conclusion that turbulence c3 can be con-

sidered to be practically zero.

To finish with, hypotheses tests reported in Tab. 12.5 indicate that both data sets

strongly reject the She-Lévêque log-Poisson model and that the log-Normal Obukhov-

Kolmogorov 62 one is clearly preferred: The c2 and c3 values of the former are rejected

for almost all runs, for both data sets and both by percentile and studentized bootstrap

tests, with very small p-values, whereas the log-Normal model c2 and c3 values are re-

jected for only a small fraction of runs and have large p-values.

Our conclusions — c3 = 0 — are in agreement with results reported in [18], confirm-

ing and strengthening them by the analysis of two different major turbulence data sets

and by the use of a better mathematically grounded tool (wavelet Leader) and of a statis-

tically more meaningful (bootstrap confidence intervals and hypothesis tests) framework.

Similar results have been obtained in [111].
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Jet turbulence Data

Model: LN c2,0 = −0.0250 c3,0 = 0.0000
Rejectper 42.5% 18.8%

Rejectstu 40.0% 15.0%

p-valueper 0.23 0.36
p-valuestu 0.22 0.37

Model: LP c2,0 = −0.0365 c3,0 = 0.0049
Rejectper 98.8% 95.0%

Rejectstu 98.8% 87.5%

p-valueper 0.005 0.009
p-valuestu 0.005 0.026

Wind tunnel Data

Model: LN c2,0 = −0.0250 c3,0 = 0.0000
Rejectper 16.6% 20.8%

Rejectstu 8.3% 20.8%

p-valueper 0.43 0.33
p-valuestu 0.47 0.36

Model: LP c2,0 = −0.0365 c3,0 = 0.0049
Rejectper 100% 95.8%

Rejectstu 100% 87.5%

p-valueper 0.005 0.034
p-valuestu 0.005 0.043

Table 12.5: Testing the log-Normal and the log-Poisson Models. Jet turbulence

(top) and wind tunnel turbulence (bottom) wavelet Leader based T-B bootstrap hypothesis

tests of c2, c3 of the log-Normal (LN) and the log-Poisson (LP) models. The significance

is α = 0.05. The results are averaged over runs.
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In this chapter, we are interested in texture classification. The characterization of tex-

tures is now often envisaged by measuring the fluctuations (with respect to space) of the

regularity of the amplitude of the image. In an important number of research articles, it is

argued that such regularity characterizations should rely on the mathematical framework

of multifractal analysis [53, 96, 136, 158, 185]. For instance, Xu et al. [185] propose a

texture descriptor, termed the multifractal spectrum vector (MFS) that aims at providing

a viewpoint and illumination invariant description of the texture characteristics of images,

based on histograms of pixel-per-pixel local estimates of exponents of power laws, for

increasing pixel neighborhoods of some measurement functions (one example is the en-

ergy of the gradients).

The goal of this chapter is to propose a classification procedure that is based on the

multifractal attributes obtained with the tools defined in Chapter 2, and to validate this ap-

proach. To this end, we make use of the large database of high resolution images in [185].

It is described in Section 13.1. We obtain results that show that the multifractal analysis

tools provide us with attributes that enable the effective discrimination of images of differ-

ent textures. The performance of the multifractal feature-based classification compares

– though not using any specific feature selection or fine tuning – very favorably against

those reported in [185].

13.1 High-resolution Texture Image Database

To evaluate the MFS approach, Xu et al. apply it to a large database of high resolution

texture images that they set up themselves1 [185]. It consists of 1000 digital 1280 ×
960 pixel gray level images of 25 different non-traditional textures, such as fruits, plants,

floor textures or fabric. Each of these 25 classes contains 40 un-calibrated images of

the respective texture, taken from different viewpoints and distances, and for varying

illumination conditions. The database has been made available to us by the authors, and

will serve us in this chapter as a reference for real-world texture images. For convenience,

we refer to the jth image in the ith class by the index (i, j), i = 1, · · · , 25 and j = 1, · · · , 40.

Fig. 13.1 shows, for 8 out of the 25 classes of the database, one example image out of

the 40 samples per class.

Multifractal attribute estimation: 2 examples. Fig. 13.2 shows wavelet Leader

based structure functions and estimates of ζ(q) and D(q), h(q) for two example images

of the database. Estimation parameters are set to: pseudo-fractional integration of order

α = 1, Daubechies wavelets with Nψ = 2, ordinary (w0) regressions involving scales

j = [3, 6]. Bootstrap estimates are obtained with TS-B bootstrap and R = 99.

The inspection of structure functions (Fig. 13.2, left) indicates that the images do in-

deed display scale invariance properties, since they exhibit linear behavior with scale j
over a large range of scales. Also, the estimates of scaling exponents and the spectrum

(Fig. 13.2, center and right, respectively) suggest that the images are characterized by

multifractal properties: The functions ζ(q) are clearly non-linear in q, and the estimated

spectrum has support on a large range of values h.

These results clearly indicate that a scale invariance or multifractal approach is pertinent

for the characterization of texture images in this database. This motivates their use for

the estimation of features for texture image classification.

1Their method is not further detailed here, and its description can be found in [185].
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Figure 13.1: High resolution texture image database. One example image out of the

40 samples per class for 8 out of the 25 classes of the image database in [185]. From

left to right, and from top to bottom: Farfalle, apples, shrubbery, wood deals, grass, fallen

leaves, gravel, fabric.

13.2 Multifractal Analysis based Texture Image Classification

In this section, we propose to base texture image classification on feature vectors made

up of the multifractal attributes of the images. The procedure is evaluated for the image

database in [185] described in the previous section. To allow quantitative comparisons

with the results obtained in [185], we use the same k-nearest neighbor (k-NN) classifica-

tion as described therein.

As mentioned before (cf. Sections 2.5.4 and 5.1.3-b)), the estimates of scaling ex-

ponents, log-cumulants and the Legendre spectrum can be fruitfully used as relevant

quantities for characterizing data, without explicit interpretation in terms of the Hölder

singularities in the data. For automated classification tasks, as considered below, or for

batch analyses on large databases, this is natural, since it is practically not feasible to

inspect structure functions for each image in the database, and there is no guarantee

that linear fits are justified for the a priori fixed range of scales2. Therefore, in this clas-

sification application, we use the multifractal attribute estimates without explicit reference

to the validity of the multifractal formalism.

13.2.1 Feature vectors

The multifractal attribute feature vectors we propose consist of (wavelet Leader or wavelet

coefficient based) estimates of ζ(q)/q, D(q), h(q) (qL ∈ {−4,−3,−2,−1, 1, 2, 3, 4}, qd ∈
{1, 2, 3, 4}) and c1, c2, c3. Each feature vector X(i,j) is composed of these multifractal at-

tribute estimates for the image (i, j), obtained for Daubechies wavelets with Nψ = 2 and

Nψ = 3 and for the ranges of scales in regressions: (j1, j2) ∈ {(1, 3), (2, 4), (3, 5), (4, 6)},

plus the intercepts of these regression lines at the origin3.

The multifractal attribute estimates are obtained with pseudo-fractional integration of or-

der α = 1. This is justified by the uniform regularity characterization of the database,

2This is also due to the absence of methods for the automatic selection of scales over which scaling is

observed, hence the necessity to fix the range of scales for linear regressions a priori.
3Hence, we consider at total 240 (432) attributes per wavelet coefficient (Leader) based feature vector.
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Figure 13.2: Estimation for example texture images. Wavelet Leader based estimates

of structure functions, scaling exponents and spectra for two examples of images in the

database in [185] (shown on top). The first line corresponds to the image shown on the

left, the bottom line to the image on the right. Estimations are performed with pseudo-

frational integration of order α = 1, Daubechies wavelets with Nψ = 2, ordinary (w0)

regressions involving scales j ∈ [1, 3]. Bootstrap estimates are obtained with TS-B boot-

strap and R = 99, and a confidence level of 90%.

reported in Section 5.1 (Fig. 5.2, left), which shows that for most images in the database,

the estimated ĥmin > −1.

13.2.2 Nearest neighbor classification and performance evaluation

For convenience, we briefly recall the principle of k-NN classification, and state how clas-

sification performance is evaluated.

The images in each class i are divided into a set of T training images, which we choose

to index by (m, j̃), where m = i indicates the image class of the training images, and

j̃ = 1, · · · , T . All the other images, which we call test images, remain to be classified.

The k-NN classification of a test image (i, j) is obtained by the following procedure:

1. Calculate for the test image (i, j) the L1 norm distances di,j(m, j̃) between its fea-



13.2 Multifractal Analysis based Texture Image Classification 245

ture vector X(i,j) and the feature vectors of all training images X(m,j̃):

di,j(m, j̃) = ||X(i,j) − X(m,j̃)||1.

2. Sort the distances di,j(·, ·) in increasing order:

di,j(m(1), j̃(1)) ≤ di,j(m(2), j̃(2)) ≤ di,j(m(3), j̃(3)) ≤ · · · ,

and keep the k training images which are at smallest distance:

di,j(m(1), j̃(1)) ≤ di,j(m(2), j̃(2)) ≤ · · · ≤ di,j(m(k), j̃(k)).

3. Determine the class m′ to which the majority of these k training images at smallest

distance, (m(n), j̃(n)), n = 1, · · · , k, belong.

4. The image class î that is assigned to the test image (i, j) is given by this majority

class m′:
î = m′.

If there is no majority because more than one class are similarly well represented

among these k training images, the class î whose training images in the k-NN

sample have smallest average distance to the test image (i, j) is assigned to the

test image (i, j).

Since the number k of nearest neighbors used in [185] is not stated for the results re-

ported therein, we choose to set the number of nearest neighbors arbitrarily to k = 1.

Hence, the estimated class î for the test image (i, j) is the class m of the training image

(m, j̃) whose feature vector has smallest distance to the feature vector of the test image

(i, j).

If for the test image (i, j) the assigned class î ≡ i, it is correctly classified. The probability

of correct classification for each class is defined as the fraction of test images in this class

that are correctly classified. The probability of correct classification for the database is

then given by the mean of the probabilities of correct classification of its classes.

Finally, note that probabilities of correct classification naturally depend on the choice of

the training samples. Therefore, the estimated probabilities of correct classification are

evaluated for randomly selected training samples, and the mean estimated probabilities

of correct classifications are calculated over M such random selections.

13.2.3 Results

The mean estimated probabilities of correct classification (for M = 50) of the multifractal

attribute based classification are reported in Fig. 13.3 (top), as a function of the number

of training images T per class. Shown are mean estimated probabilities of correct classi-

fication for the best class, i.e., the class with largest mean estimated probability of correct

classification among all classes in the database (left), for mean estimated probability of

correct classification for all classes (center) and for the worst class (right), and for feature

vectors composed of wavelet coefficient (blue circles) and wavelet Leader (red crosses)

based multifractal attribute estimates, respectively. As a performance reference, we re-

produce in Fig. 13.3 (bottom) the results reported in [185] (these figures are taken from
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Figure 13.3: Classification results. Mean estimated probabilities of correct classifica-

tion, obtained by k-nearest neighbor classification, for best class (left) all classes (center)

and worst class (right) for the texture image database in [185], as a function of the num-

ber of training images per class T : Mean estimated probabilities of correct classification

for wavelet coefficient (top, ’◦’) and Leaders (top, ’×’) based features; Mean estimated

probabilities of correct classification for MFS classification (’◦’ [185]), the (H+L)/(S+R)

method in [112] (red circles), and the V-Z method in [167] (’⋄’). The figures on the bottom

row are taken from [185].

the article): Xu et al. chose to compare their MFS based classification (blue squares) to

the (H+L)/(S+R) method proposed in [112] (red circles), and the V-Z method proposed in

[167] (black diamonds). For details on these last two methods, we refer the reader to the

corresponding references. The results indicate that classification based on multifractal

attributes compares very favorably against the other methods proposed in [185] for this

texture image database: Mean estimated probabilities of correct classification for dX are

similar or above those of the (H+L)/(S+R) method, for which [185] reports the best results

among the three methods therein. Mean estimated probabilities of correct classification

for LX are slightly below those of dX , but remain similar or better than those of the MFS

method, and better than those obtained by the V-Z method.

13.3 Conclusions and Perspectives

The results reported above lead us to the conclusion that multifractal attribute estimates,

as obtained by the methods defined in Section 2.6, are highly relevant for the character-

ization of texture images. Used as features for classification, they give rise to effective

image classification schemes whose peformance compare very favorably against those

of schemes previously proposed in the literature. What is more, the results have been

obtained here without any specific feature selection or fine tuning, such as principal com-

ponents analysis (PCA). The feature vectors may therefore contain redundant attributes,

and results not reported here show that this is indeed the case: For instance, using

estimates obtained for one wavelet (Nψ) only does not significantly alter classification

results. Also, some features may be numerically dominated by others and hence ineffec-



13.3 Conclusions and Perspectives 247

tive, though potentially discriminative. For example, the log-cumulants cp of order p ≥ 2
usually take on values that are relatively close to zero, as compared to other attributes,

such as D(q ≈ 0). Furthermore, no optimization of the number k of nearest neighbors

has been performed, which has been a priori and arbitrarily set to k = 1. Such issues

demand further investigation and represent a large potential for further improving texture

image probability of correct classifications for the proposed method.

The classification approach has reasonably low computational cost, and the processing

of the 1000 high-resolution images takes approximately 5 hours on a standard PC. We

note that computation time can be effectively halved by using feature vectors consisting

of estimates for only one wavelet (Nψ). Then, calculation of feature vectors takes roughly

10 seconds only per image.

Furthermore, the database made available to the authors by Xu et al. consists actually

of 2000 images (50 classes instead of 25), of which only one half (25 classes) are used

here and in [185]. We also processed this larger database. Results are not reported here,

since we lack a reference for classification performance. Along the same line, preliminary

analysis of other texture image databases have been performed.

Finally, it would be interesting to validate whether multifractal analysis enables to perform

image classification at a higher semantic level, commonly referred to as scene recognition

(i.e., discrimination of e.g. images of houses, landscapes, etc.). This is of importance in

a large number of applications in, for instance, automatized image retrieval and computer

vision. Such a procedure may be considered by combining the feature vectors proposed

here with the image function space and uniform regularity estimates ζ̂d(q) and ĥmin de-

fined in Section 5.1.

We would like to express our gratitude to Xu et al. – and in particular to Hui Ji – for

making their database available to us, and for fruitful discussions.
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A short while before this work was undertaken, a new multifractal analysis tool had

been introduced in the mathematical literature related to the theory of multifractal anal-

ysis by S. Jaffard [89, 92]: The wavelet Leaders. It had been proven to bring significant

improvements in the precise analysis of the regularity of functions, hence mostly from a

functional analysis perspective. Yet, at the outset of this thesis, most of the practical and

statistical properties of this wavelet Leader based multifractal formalism remained poorly

known. Now that we arrive at the end of this manuscript, let us take a moment to con-

clude on what results have been obtained in the present thesis work.

The detailed and systematic study of the behavior, practical use and statistical perfor-

mance of this multifractal analysis tool constitutes one of the central contributions of this

work. A first 1d implementation had been previously made available, and the practical

effectiveness of the functional analysis theoretical results had been demonstrated. At

present, we dispose of operational well controlled implementations of wavelet Leader

based multifractal analysis procedures for both (1d) signal and (2d) image. Their sta-

tistical performance have been systematically investigated and are well understood and

documented. Notably, they possess significantly better performance than previous formu-

lations based either on discrete or on continuous wavelet transforms. This enhancement

is particularly significant for the analysis and estimation of the scaling attributes that con-

vey the key differences between self-similar processes and multiplicative cascades, i.e.,

between the two major classes of stochastic processes used to model scale invariance

in applications. Therefore, this leads us to conclude that while wavelet coefficients per-

form satisfactorily in estimation problems for self-similar processes, wavelet Leaders are

needed for a relevant analysis of multiplicative cascades and hence indispensable for

an actual practical discrimination between these two categories of processes. Also, it

has been shown here that the estimation of advanced multifractal attributes (e.g., the

third log cumulant c3) is feasible. Such conclusions had never been arrived at and have

been validated clearly and unambiguously. However, the use of wavelet Leaders comes

with restrictions: It can be applied directly only to a subclass of functions, namely, that

of functions characterized only with positive Hölder exponents. Yet, for many real-life

data, for both images and signals, these conditions are not necessarily fulfilled a pri-

ori. As a matter of fact, it is an important challenge to decide a priori whether real data

fall in this class or not, as a direct application of wavelet Leaders to data outside this

class yields results whose irrelevance may turn difficult to detect a posteriori for practi-

tioners. Another central contribution of the present work consists of a clear formulation of

this difficulty together with a detailed and comprehensive study of the solution, proposed

earlier for other multifractal analysis tools, here tailored to wavelet Leaders and relying

on (pseudo)-fractional integration. Also, these investigations lead us to conclude that

wavelet coefficient based analyses should be conducted prior to wavelet Leader based

one, and in a complementary manner, rather than in the usually envisioned competition

perspective. An operational implementation of these completive analysis tools and of the

corresponding modified wavelet Leader multifractal analysis tool is now incorporated in

our standard toolbox.

At the time we started with this work, no statistical procedures for assessing confidence

in estimates and for performing tests was available in multifractal analysis. In this thesis,

we studied the potential of bootstrap to contribute to solutions for these issues. We have

proposed two bootstrap approaches and considered them for the formulation of confi-

dence intervals, hypothesis tests and time constancy tests of multifractal attributes. The



251

originality of our contribution lies in performing bootstrap directly in the time-scale plane,

over blocks of wavelet coefficients or Leaders, with no attempt (nor necessity) to recon-

struct a time domain signal (hence avoiding the burden of practically inverting the discrete

wavelet transform). Also, blocks are shaped to match the intrinsically time-scale nature

of the dependence structure of any multiresolution quantity. Operational implementations

of the wavelet Leaders and bootstrap based multifractal analysis procedures are hence

available for both (1d) signals and (2d) images. Numerical simulation results demonstrate

that these bootstrap procedures for multifractal attributes have satisfactory performance.

The procedures can therefore be practically and effectively used for statistical inference

in multifractal analysis. It has been shown here that the wavelet Leaders conjoint and

enhanced with bootstrap analyses enable – for the first time – an accurate and sharp

practical multifractal characterization and discrimination of single observations of real

data. Beyond, the theoretical analyses we have conducted on the dependence structure

of multiresolution quantities for multifractal multiplicative cascades lead us to question the

validity of bootstrap if applied independently at each scale. This opens room for further

developments and research aiming at understanding why bootstrap procedures, when

used in a multiresolution manner, i.e., combining scales, yield such satisfactory practical

performance.

In addition, these theoretical analyses significantly renewed the understanding of the

interplay between the number of vanishing moments (involved in the multiresolution anal-

ysis of data) and the dependence structure of multiresolution quantities (increments,

wavelet coefficients, wavelet Leaders): Increasing the number of vanishing moments

does decrease correlation range, but does not in general decrease dependence (or higher

order correlation) range, as opposed to what happens for the specific Gaussian fractional

Brownian motions. These conclusions have never been unequivocally validated before

and overturn common comprehension respective to the specific role that multiresolution

quantities play for scaling processes.

The main hurdle for advancing the theoretical understanding of estimation in multifractal

analysis is related to the fact that multifractal processes constitute a large class, com-

prising processes with a rich variety of statistical properties that remain poorly studied.

Therefore, we believe that solutions toward progress will need to concentrate on particu-

lar case studies for specific multifractal processes, backed up by numerical simulations,

rather than aiming at the class of multifractal processes in its whole generality. In this

spirit, we have conducted case studies of the linearization effect or of the dependence

structures of increments for the particular example of compound Poisson motions. The

results obtained on such specific cases are then expected to promote further insights on

the properties of much larger classes of multifractal processes and can hence be used

to formulate the core of conjectures that are assumed to hold within larger classes of

processes. Numerical simulations can then be fruitfully used to assess the generality of

these conjectures, by scanning systematically various classes of processes. In turn, nu-

merical simulations often provide material for further theoretical analyses. We consider

that numerical simulations and theoretical case studies are also to be envisioned in a

complementary perspective rather than in different ways of conducting researches that

exclude each other. These aspects make up for the main difficulties in this domain, and

they also explain why multifractal analysis is such an extremely interesting and rich play-

ground.

Though not constituting the core of the material presented in this manuscript, applica-
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tions remain a central concern of the present work. In Chapters 12 and 13, we have

illustrated that the proposed wavelet Leader and bootstrap based multifractal analysis

procedures are effective for applications of very different natures. At present, we dispose

of a wavelet Leader based multifractal analysis tool which is well documented in terms

of performance and usage. It can be readily and systematically applied, including in sit-

uations where knowledge and control of the properties and limitations of the procedures

are primary preconditions, such as in robotics or in automation. Also, it can by now be

involved in applications where fundamental concern lies in inference from the data under

analysis, as is the case in, for instance, most medical applications. What is more, the

procedures can now be readily used for the characterization of (2d) images for detection,

identification or classification tasks. Notable, voluminous databases of large size images

can be efficiently scanned, given the very low computational load of the proposed tools.

Therefore, multifractal analysis constitutes by now a novel tool for Image processing. The

exploration of this potential is just about to start and promises exciting new perspectives.

Finally, this work lead to the development, implementation and validation of a number of

tools for wavelet Leader and bootstrap based multifractal analysis of signals and images.

They form the core of a MATLAB c© based toolbox that will be published on the web page

of the author.



Appendix A

A log cumulant expansion of the
multifractal spectrum

We will show that the spectrum allows an expansion of the type D(h) = fcp(h) around its

maximum, where fcp(h) is a function in h, parametrized by the log-cumulants cp. For the

first orders, the log-cumulants cp will have a meaningful interpretation in this expansion.

The starting point is the polynomial expansion1 of ζ(q) Eq. (2.70) with log-cumulants cp,
for q ≃ 0 and on condition that ELqX <∞:

ζ(q) =
∑

p≥1

cp
qp

p!
, (A.1)

and the expression of D(h) given by the multifractal formalism Eq. (2.61):

D(h) = min
q 6=0

(d+ qh− ζ(q)), (A.2)

where d is the dimension in which the data live. Deriving Eq. (A.2) w.r.t. q and solving for

the minimum gives the parametric forms:

h(q) = ζ ′(q) =
∑

p≥1

cp
q(p−1)

(p− 1)!
= c1 +

∑

p≥2

cp
q(p−1)

(p− 1)!
(A.3)

D(h(q)) = d+ qζ ′(q) − ζ(q) = d+
∑

p≥2

cp(p− 1)
qp

p!
= d+

∑

p≥2

cp
qp

(p− 2)! · p . (A.4)

With a slight abuse of notation, we will write D(q) instead of D(h(q)) for convenience.

Expressions of the derivatives of D(q) and h(q). In order to find a development of

D(h) in h around its maximum, we need the successive derivatives in q of D(q) and h(q):

d(n)D

dq(n)
= D(n)(q) =

∑

p≥n
cp(p− 1)

q(p−n)

(p− n)!
, n ≥ 1,

d(n)h

dq(n)
= h(n)(q) =

∑

p≥n+1

cp
q(p−n−1)

(p− n− 1)!
= cn+1 +

∑

p≥n+2

cp
q(p−1)

(p− 1)!
, n ≥ 0.

1Written either for wavelet Leaders, or for other multiresolution quantities such as increments, contin-

uous wavelet coefficients or discrete wavelet coefficients as in [44], [60] or e.g. [180], respectively. For

convenience, any superscript L, d or I is dropped since irrelevant for the derivation.
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Maximum of D(h). Let us assume that the maximum of D(h) is d: maxD(h) ≡ d.

Since D(h) is a concave function, it only has one maximum. From Eq. (A.4), it is obvious

that the maximum of D(q) is taken at q = 0. Eq. (A.3) gives the corresponding value for

h: h(q = 0) = c1. Therefore, the maximum of D(h) = D(h(q)) is taken at h = c1.

Development of D(h) around its maximum at h = c1. Noting that D(h) = D(h(q)),
and denoting derivatives with respect to q by a ′, and derivatives with respect to h by a ∗,
we have:

dD

dq
=

dD

dh

dh

dq
= D∗(1)h′(1)

d2D

dq2
=

d

dq

[
dD

dh

dh

dq

]
=
dD

dh

d2h

dq2
+

(
dh

dq

)2 d2D

dh2
= D∗(1)h′(2) +D∗(2)

(
h′(1)

)2

d3D

dq3
=

d

dq

[
d2D

dq2

]
= · · · = D∗(1)h′(3) + 3h′(2)h′(1)D∗(2) +D∗(3)

(
h′(1)

)3

d4D

dq4
=

d

dq

[
d3D

dq3

]
= · · ·

= D∗(1)h′(4) +
[
4h′(3)h′(1) + 3h′(2)h′(2)

]
D∗(2) + 6h′(2)

(
h′(1)

)2
D∗(3) +D∗(4)

(
h′(1)

)4
.

Substituting the values of the derivatives h′(n) and D′(n) at the maximum of the spectrum,

i.e. at q = 0, in these equations:

h(q = 0) = c1

h′(n)(q = 0) = cn+1, n ≥ 0

D(q = 0) = d

D′(1)(q = 0) = 0

D′(n)(q = 0) = (n− 1)cn, n ≥ 2

we can solve for the coefficients D∗(p) = dpD
dhp

∣∣
h=c1

in a development of D(h) around c1,

D(h) = D(c1) +
∑

p≥1

(h− c1)
p

p!

dpD

dhp

∣∣∣∣
h=c1

:

D′(1)(0) = D∗(1) · h′(1) = 0 · c2 = 0 ⇒ D∗(1) = 0

D′(2)(0) = D∗(1)h′(2) +D∗(2) (h′(1)
)2

= 0 · c2 +D∗(2)c22 = c2 ⇒ D∗(2) =
1

c2
D′(3)(0) = 0 · c4 + 3c3c2

1
c2

+D∗(3)c32 = 2c3 ⇒ D∗(3) = −c3
c32

D′(4)(0) = 0 + 1
c2

[4c4c2 + 3c23] − 6c3c
2
2
c3
c32

+ c42D
∗(4) = 3c4 ⇒ D∗(4) = −c4

c42
+

3c23
c52

.

The polynomial expansion of the spectrum around its maximum is therefore given by:

D(h) = d+
c2
2!

(
h− c1
c2

)2

+
−c3
3!

(
h− c1
c2

)3

+
−c4 + 3c23/c2

4!

(
h− c1
c2

)4

+ . . . (A.5)
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Direct determination of the
multifractal spectrum

Chhabra et al. [49] proposed a method for direct determination of the multifractal spec-

trum without explicit resort to the Legendre transform. We will give here a detailed deriva-

tion of this useful estimation procedure. It is based on Eq. (2.66) and the multifractal

formalism Eq. (2.61):

EL(j, k)q = Fq(2
j)ζ

L(q), (B.1)

D(h) = min
q 6=0

(d+ qh− ζL(q)), (B.2)

where d is the dimension in which the data lives. Derivation of Eq. (B.2) with respect to

q, and solving for the minimum of the right hand side gives:

h(q) =
d

dq
ζ(q) = ζ ′(q), (B.3)

D(q) = d+ qζ ′(q) − ζ(q). (B.4)

Solving for h(q) = ζ′(q). Taking the log2 in Eq. (B.1) gives:

log2 EL(j, k)q = κq + jζ(q), κq = log2 Fq. (B.5)

After reordering and taking the derivative with respect to q we have:

jζ ′(q) = −κ′q + (log2 EL(j, k)q)′ (B.6)

=
1

ln 2
(ln EL(j, k)q)′ − κ′q (B.7)

=
1

ln 2

(EL(j, k)q)′

EL(j, k)q
− κ′q (B.8)

=
1

ln 2

EL(j, k)q lnL(j, k)

EL(j, k)q
− κ′q (B.9)

=
EL(j, k)q log2 L(j, k)

EL(j, k)q
− κ′q. (B.10)
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Finally, by replacing the expectations with sample means, we obtain the estimator Eq.

(2.75) for h(q) = ζ ′(q), given by the linear fit of Eq. B.10 vs. j:

ĥ(q) =

j2∑

j=j1

wj

1
nj

∑nj
k=1 L(j, k)q log2 L(j, k)

1
nj

∑nj
k=1 L(j, k)q

−
j2∑

j=j1

wjκ
′
q

︸ ︷︷ ︸
=0

(B.11)

=

j2∑

j=j1

wj

∑nj
k=1 L(j, k)q log2 L(j, k)∑nj

k=1 L(j, k)q
(B.12)

=

j2∑

j=j1

wj

nj∑

k=1

Rq(j, k) log2 L(j, k)

︸ ︷︷ ︸
V (j,q)

, Rq(j, k) =
L(j, k)q∑nj
k=1 L(j, k)q

(B.13)

=

j2∑

j=j1

wjV (j, q). (B.14)

Solving for D(q) = 1 + qζ′(q) − ζ(q). From Eqs. (B.5) and (B.10), we have:

jζ(q) = −κq + log2 EL(j, k)q, (B.15)

jqζ ′(q) = q
EL(j, k)q log2 L(j, k)

EL(j, k)q
(B.16)

=
EL(j, k)q log2 L(j, k)q

EL(j, k)q
. (B.17)

Combining these with Eq. (B.4), we have:

j(D(q) − d) = κq +
EL(j, k)q log2 L(j, k)q

EL(j, k)q
− log2 EL(j, k)q. (B.18)

Finally, by replacing the expectations with sample means, the last equation gives the

estimator for D(q) Eq. (2.74) as the linear fit of Eq. (B.18) versus j:

D̂(q) = d+

j2∑

j=j1

wj

1
nj

∑nj
k=1 L(j, k)q log2 L(j, k)q

1
nj

∑nj
k=1 L(j, k)q

− log2

1

nj

nj∑

k=1

L(j, k)q

= d+

j2∑

j=j1

wj

1
nj

∑nj
k=1 L(j, k)q log2 L(j, k)q − 1

nj
(
∑nj

k=1 L(j, k)q)(log2

∑nj
k=1 L(j, k)q)

1
nj

∑nj
k=1 L(j, k)q

+

+ log2 nj

= d+

j2∑

j=j1

wj

∑nj
k=1 L(j, k)q log2 L(j, k)q − L(j, k)q log2

∑nj
k=1 L(j, k)q∑nj

k=1 L(j, k)q
+ log2 nj

= d+

j2∑

j=j1

wj

nj∑

k=1

Rq(j, k) log2R
q(j, k) + log2 nj

= d+

j2∑

j=j1

wjU(j, q) + log2 nj .
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Proofs of Theorem 11.1 and
Theorem 11.2

Let us, for convenience of notation, write Aqτ (t) = A
(1)
τ (t)q for the increments of order one.

The proofs of these results rely on a lemma of Bacry and Muzy for IDC motion [23]:

Let us put ϕ(·) = ψ(−i·) and let ωr be defined by Qr = eωr . For t, t′ ≥ 0, we define

Cr(t, t′) = Cr(t) ∩ Cr(t′),

where Cr(t) is the cone in Eq. (2.100).

Lemma C.1 Let q ∈ N∗,
→
tq = (t1, t2, ..., tq) with t1 ≤ t2 ≤ ... ≤ tq and

→
pq = (p1, p2, ..., pq).

The characteristic function of the vector {wr(tm)}1≤m≤q is

E

(
e

Pq
m=1 ipmP (Cr(tm))

)
= e

Pq
j=1

Pj
k=1 α(j,k)ρr(tk−tj)

where

ρr(t) = m(Cr(0, t)),
and

α(j, k) = ψ(rk,j) + ψ(rk+1,j−1) − ψ(rk,j−1) − ψ(rk+1,j)

and

rk,j =

{∑j
m=k pm, for k ≤ j,

0 for k > j.

Moreover
q∑

j=1

j∑

k=1

α(j, k) = ψ

(
q∑

k=1

pk

)
.

This result can be rewritten as

EQp1r (t1)Q
p2
r (t2)...Q

pm
m (tm) = e

Pq
j=1

Pj
k=1 β(j,k)ρr(tk−tj)
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where

β(j, k) = ϕ(rk,j) + ϕ(rk+1,j−1) − ϕ(rk,j−1) − ϕ(rk+1,j)

and
q∑

j=1

j∑

k=1

β(j, k) = ϕ

(
q∑

k=1

pk

)
.

C.1 Proof of Theorem 11.1

Since EAτ
2q < ∞, one has EAτ

q(t)Aτ
q(s) < ∞ and, using the monotone convergence

theorem for the 4th equality:

EAτ
q(t)Aτ

q(s) = E

(
lim
r1→0

∫ t+τ

t
Qr1(x)dx

)q (
lim
r2→0

∫ s+τ

s
Qr2(y)dy

)q

= E

q∏

i=1

lim
r1,i→0

lim
r2,i→0

∫ t+τ

t
Qr1,i(xi)dxi

∫ s+τ

s
Qr2,i(yj)dyj

= E lim
r→0

q∏

i=1

∫ t+τ

t
Qr(xi)dxi

∫ s+τ

s
Qr(yi)dyi

= lim
r→0

E

q∏

i=1

∫ t+τ

t
Qr(xi)dxi

∫ s+τ

s
Qr(yi)dyi

= lim
r→0

∫

[t,t+τ ]q

∫

[s,s+τ ]q
E

q∏

i=1

Qr(xi)Qr(yi)d(x1, ..., xq)d(y1, ..., yq)

By symmetry, it comes:

EAτ
q(t)Aτ

q(s) = (q!)2 lim
r→0

∫

D1

∫

D2

E

q∏

i=1

Qr(xi)Qr(yi)d(x1, ..., xq)d(y1, ..., yq).

where D1 = {t ≤ x1 ≤ x2, ... ≤ xq ≤ t+ τ} and D2 = {s ≤ y1 ≤ y2 ≤ ... ≤ yq ≤ s+ τ}.

Let us now fix r < s − t − τ . We put ∆+
r = {(t, z) ∈ R2; z > r}. We want to compute

I = E
∏q
i=1Qr(xi)Qr(yi) for t ≤ x1 ≤ x2, ... ≤ xq ≤ t+τ and s ≤ y1 ≤ y2 ≤ ... ≤ yq ≤ s+τ .

Using Lemma C.1, it comes:

I = e
Pq
j=1

Pj
k=1 β(j,k)ρr(xk−xj)e

Pq
j=1

Pj
k=1 β(j+q,k+q)ρr(yk−yj)e

Pq
j=1

Pq
k=1 β(j,k+q)ρr(yk−xj).

(C.1)

Doing this, we have written I as the product of 3 terms. The estimation of the term

with ρr(yk − xj , ) will give us the behaviour in |t − s|ϕ(2q)−2ϕ(q) while the computation of

the other terms – which do not depend on |t− s| – will give us the factor |τ |2(q+ϕ(q)).

More precisely, let us put:

J = e
Pq
j=1

Pq
k=1 β(j+q,k)ρr(yj−xk)
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Since r < s − t − τ , ρr(yk − xj) = − ln |yk − xj | with s − t − τ ≤ |yk − xj | ≤ s − t + τ .

Besides,

q∑

j=1

q∑

k=1

β(j + q, k) =

2q∑

j=1

j∑

k=1

β(j, k) −
q∑

j=1

j∑

k=1

β(j, k) −
q∑

j=1

j∑

k=1

β(j + q, k + q).

But, here, pm = 1, rk,j = j − k + 1 and β(j, k) depends only on k − j. Finally, we obtain:

q∑

j=1

q∑

k=1

β(j + q, k) = ϕ(2q) − 2ϕ(q)

and

|s− t+ τ |ϕ(2q)−2ϕ(q) ≤ J ≤ |s− t− τ |ϕ(2q)−2ϕ(q).

Hence,

|s− t+ τ |ϕ(2q)−2ϕ(q) lim
r→0

L(r, τ) ≤ EAτ
q(t)Aτ

q(s) ≤ |s− t− τ |ϕ(2q)−2ϕ(q) lim
r→0

L(r, τ)

with:

L(r, τ) = (q!)2
∫

D1

∫

D2

e
Pq
j=1

Pj
k=1 β(j,k)ρr(xk−xj)e

Pq
j=1

Pj
k=1 β(j+q,k+q)ρr(yj−yk).

Note that limr→0 L(r, τ) is well defined, since L(·, τ) is an increasing function of r bounded

by
EAτ q(t)Aτ q(s)

|s−t−τ |c(ϕ(2q)−2ϕ(q))(q!)2
.

Lemma C.2

lim
r→0

L(r, τ) = (EAτ
q(t))2 = C(q)|τ |2(q+ϕ(q)).

PROOF. It is known that EAτ
q(t) = C̃(q)|τ |q+ϕ(q). But, again, we can write

EAτ
q(t) = lim

r→0

∫

t≤x1,...,xq

E

q∏

i=1

Qr(xi)d(x1, ..., xq)

= (q!) lim
r→0

∫

D1

E

q∏

i=1

Qr(xi)d(x1, ..., xq)

which gives EAτ
q(t)EAτ

q(s) = limr→0 L(r, τ).

Replacing limr→0 L(r, τ) with C(q)|τ |2(q+ϕ(q), we obtain:

|s− t+ τ |ϕ(2q)−2ϕ(q) ≤ Aτ
q(t)Aτ

q(s)

C(q)|τ |2(q+ϕ(q))
≤ |s− t− τ |ϕ(2q)−2ϕ(q).
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C.2 Proof of Theorem 11.2

We consider the case q > 1, q /∈ N. Let us put q = m+ ε with m = [q] and 0 < ε < 1. One

can write:

EAτ
q(s)Aτ

q(t) = EAτ
m−1(s)Aτ

m−1(t)Aτ
1+ε(s)Aτ

1+ε(t).

Again Aτ
m−1(s)Aτ

m−1(t) can be written as a multiple integral. Also, a classical Hölder

inequality yields to:

Aτ
1+ε(t) =

(∫ t+τ

t
Qr(x)dx

)1+ε

≤ τ ε
∫ t+τ

t
Q1+ε
r (x)dx.

Hence, one gets:

EAτ
q(s)Aτ

q(t) ≤ lim
r→0

τ2ǫ

∫

D
E

m−1∏

i=1

Qr(xi)Qr(yi)Qr(xm)1+εQr(ym)1+εd(x1, ..., xm)d(y1, ..., ym)

(C.2)

where D = [t, t+ τ ]m × [s, s+ τ ]m. From Lemma C.1, one can write again:

E

m−1∏

i=1

Qr(xi)Qr(yi)Qr(xm)1+εQr(ym)1+ε

as the product of three terms. The term:

J = e
Pq
j=1

Pq
k=1 β(j+q,k)ρr(yj−xk)

is majorated by |t− s+ τ |ϕ(2q)−2ϕ(q) and the integral on D of the other ones by τ2ϕ(q)+2m.

Finally, one gets:

EAτ
q(s)Aτ

q(t) ≤ τ2ετ2ϕ(q)+2m|t− s+ τ |ϕ(2q)−2ϕ(q) ≤ τ2q+2ϕ(2q)|t− s+ τ |ϕ(2q)−2ϕ(q).

To obtain the minoration, we write:

EAτ
q(s)Aτ

q(t) = EAτ
m(s)Aτ

m(t)Aτ
ε(s)Aτ

ε(t).

with

Aτ
ε(t) =

(∫ t+τ

t
Qr(x)dx

)ε
≥ τ ε−1

∫ t+τ

t
Qεr(x)dx.

With the same arguments as before, we get:

EAτ
q(s)Aτ

q(t) ≥ C(q)τ2q+2ϕ(q)|t− s+ τ |ϕ(2q)−2ϕ(q)

where C(q) > 0 depends only on q.
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Wendt, “Wavelet decomposition of measures: Application to multifractal analysis

of images,” in Proc. NATO-ASI Conf. on Unexploded Ordnance Detection and

Mitigation, to appear, Springer, 2008.

[J] Herwig Wendt and Patrice Abry, “Bootstrap tests for the time constancy of multi-

fractal attributes,” in 33rd IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), Las Vegas, USA, 2008.

[K] Patrice Abry, Vladas Pipiras, and Herwig Wendt, “Extreme values, heavy tails and

linearization effect: A contribution to empirical multifractal analysis,” in 21st GRETSI

Symposium on Signal and Image Processing, Troyes, France, 2007.
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114(2):207–227, 1999.

[89] S. Jaffard. Wavelet techniques in multifractal analysis. In M. Lapidus and M. van

Frankenhuijsen, editors, Fractal Geometry and Applications: A Jubilee of Benoı̂t

Mandelbrot, M. Lapidus and M. van Frankenhuijsen Eds., Proceedings of Symposia

in Pure Mathematics, volume 72(2), pages 91–152. AMS, 2004.

[90] S. Jaffard, P. Abry, S.G. Roux, B. Vedel, and H. Wendt. The contribution of wavelets

in multifractal analysis. In Proc. ISFMA Zhuhai Summer school Wavelets and Ap-

plications, 2008. To appear.

[91] S. Jaffard, P. Abry, H. Wendt, S.G. Roux, and B. Vedel. Wavelet analysis of multi-

fractal measures. In preparation., 2008.

[92] S. Jaffard, B. Lashermes, and P. Abry. Wavelet leaders in multifractal analysis.

In T. Qian, M.I. Vai, and X. Yuesheng, editors, Wavelet Analysis and Applications,

pages 219–264, Basel, Switzerland, 2006. Birkhäuser Verlag.
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Résumé : L’invariance d’échelle constitue un paradigme souvent avancé pour l’analyse et la
modélisation de données expérimentales issues d’applications de natures différentes. L’analyse
multifractale fournit un cadre conceptuel pour ses études théorique et pratique. Dans ce con-
texte, l’objectif de cette thèse réside dans l’apport à l’analyse multifractale, de l’utilisation des
coefficients d’ondelettes dominants, d’une part, et des techniques statistiques de type boot-
strap, d’autre part. Dans la première partie de ce travail, les propriétés et performances statis-
tiques de procédures d’analyse multifractale construites à partir de coefficients dominants sont
étudiées et caracterisées. Il est notamment montré qu’elles se comparent favorablement à celles
obtenues à partir de coefficients d’ondelettes. De plus, une extension aux signaux bidimen-
sionnels (images) est proposée et validée. En complément sont étudiées plusieurs difficultés
théoriques, d’importance cruciale pour une réelle mise en oeuvre pratique de l’analyse multi-
fractale : régularité minimale et espaces fonctionnels, effet de linearisation, robustesse vis-à-vis
d’éventuelles quantifications des données. La deuxième partie de ce travail de thèse s’intéresse à
la construction, pour les attributs multifractals, d’intervalles de confiance et de tests d’hypothèse,
à partir de techniques ’bootstrap’. L’originalité de notre approche réside dans la mise en œuvre
du bootstrap par construction de blocs temps-échelle dans le plan des coefficients d’ondelettes.
Cette procédure, validée par simulations numériques, permet d’obtenir des intervalles de con-
fiance et d’effectuer des tests d’hypothèses à partir d’une seule observation des données, de
longueur finie. Une étude précise des structures de dépendance des coefficients d’ondelettes et
coefficients dominants complète ce travail. Elle montre notamment que l’augmentation du nom-
bre de moments nuls de l’ondelette d’analyse, qui, pour le mouvement brownien fractionnaire,
permet de réduire la portée de la structure de dépendance de longue à courte, est inopérante
pour les cascades multiplicatives multifractales : si l’augmentation du nombre de moments nuls
décorrèle effectivement les coefficients d’ondelette, elle échoue à faire disparaı̂tre la dépendance
longue. Enfin, les procédures d’analyse multifractale par coefficients dominants et bootstrap sont
illustrées sur deux applications : la turbulence hydrodynamique et la classification de texture
d’images.

Mots clefs : Analyse multifractale, Invariance d’échelle, coefficients d’ondelettes dominants,

Analyse multirésolution, Bootstrap, Intervalles de confiance, Tests d’hypothèse, Turbulence hy-

drodynamique, Traitement d’image.

Abstract: Scale invariance constitutes a paradigm that is frequently used for the analysis and
modeling of empirical data in various applications of very different natures. Multifractal analysis
provides a conceptual framework for its theoretical and practical studies. The aim of this thesis is
to investigate the benefits of the use of wavelet Leaders, on one hand, and bootstrap methods,
for practical multifractal analysis. In the first part of this work, the statistical properties and per-
formance of wavelet Leader based multifractal analysis procedures are studied. It is shown that
they compare very favorably to those obtained by wavelet coefficient based ones. Moreover, a
practical extension to two dimensional signals (images) is validated. In addition, a number of the-
oretical questions of fundamental practical importance in applications are investigated: Function
space embedding models and minimum regularity, linearization effect, robustness with respect to
quantization of the data. The second part of this thesis proposes bootstrap based procedures
for statistical inference in multifractal analysis. These procedures are validated by numerical sim-
ulations and permit the construction of confidence intervals and hypothesis tests for multifractal
attributes, from one single finite length observation of data. This is achieved by an original time-
scale block bootstrap approach in the wavelet domain. This work is further completed by the
detailed study of the dependence structures of wavelet coefficients and wavelet Leaders. Notably,
it is shown that the number of vanishing moments of the analyzing wavelet, which permits to con-
vert long range to weak dependence for fractional Brownian motion, is ineffective for multifractal
multiplicative cascades: Increasing the number of vanishing moments still controls the correlation
of wavelet coefficients, but has no effect on their long range dependence structure. Finally, the
wavelet Leader and bootstrap based multifractal analysis tools are applied to hydrodynamic tur-
bulence data, and to texture image classification.

Keywords: Multifractal analysis, Scale invariance, Wavelet Leaders, Multiresolution analysis,

Bootstrap, Confidence intervals, Hypothesis tests, Hydrodynamic turbulence, Image processing.
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