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Introduction

"A picture is worth one thousand words". This proverb comes from Confucius � a Chinese
philosopher before about 2500 years ago. Now, the essence of these words is universally under-
stood. A picture can be magical in its ability to quickly communicate a complex story or a set
of ideas that can be recalled by the viewer later in time.

Visual information plays an important role in our society, it will play an increasingly pervasive
role in our lives, and there will be a growing need to have these sources processed further. The
pictures or images are used in many application areas like architectural and engineering design,
fashion, journalism, advertising, entertainment, etc. The emergence of new technologies allows
generating information easily under visual forms, leading everyday to an increasing number of
generated digital images. Thus it provides the necessary opportunity for us to use the abundance
of images. However, the knowledge will be useless if one can't �nd it. In the face of the substantive
and increasing apace images, how to search and to retrieve the images that we interested with
facility is a fatal problem: it brings a necessity for image retrieval systems.

Image retrieval consists of the techniques used for query speci�cation and retrieval of images
from a digital image collection. It is considered as a part of the �eld of Information Retrieval
(IR), a large and mature research area. IR is the �eld that deals with �the representation, storage,
organization and access to information items�. The purpose of information retrieval is to provide
the user with easy access to the information items of interest. Image retrieval has become
an active research and development domain since the early 1970s [1]. During the last decade
the research on image retrieval became of high importance. The most frequent and common
means for image retrieval is to index them with text keywords. Text annotation is obtained by
manual e�ort, transcripts, captions, embedded text, or hyperlinked documents. In these systems,
keyword and full text searching may be enhanced by natural language processing techniques to
provide great potential for categorizing and matching images. Today, some famous text-based
image search engines can be found in Internet, for example: Google Image Search1, Altavista
Image Search2, Corbis3, Ditto4, Lycos Image Search5, Picsearch6, Behold7 and Cortina8, etc.

Text-based search techniques are the most direct, accurate, and e�ective methods for �nding
�unconstrained" images. These images are generally organized loosely by category, such as
animals, natural scenes, people, and so on. All image indexing is done by human indexers who list
the important objects in an image and other terms by which users may wish to access it. Although

1http://images.google.com/
2http://www.altavista.com/image/
3http://pro.corbis.com/
4http://www.ditto.com/
5http://search.lycos.com/
6http://www.picsearch.com/
7http://www.behold.cc/
8http://cortina.ece.ucsb.edu/

9
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this technique seems to be simple, with the arriving of the era �information explosion", the wide
dissemination and use of visual information are inevitable. Every day, thousands upon thousands
of visual information, particularly, digital images, come into being. Manual annotation of these
images becomes rapidly laborious and fastidious. So it becomes more and more impractical and
ine�cient while facing to large volumes of images. In addition, images are rich in content, and
the capability of manual annotation is limited. For some special domains, for example, crime
prevention, medical diagnosis, land analysis, trademark retrieval, tra�c sign recognition, etc,
very often, textual information is not su�cient. The natural annotating language can not depict
an image exactly and minutely.

So to overcome the di�culties due to the huge data volume, people start to pay attention
to image itself. As we know, visual features of the images also provide a description of their
content. The second image retrieval method, content-based image retrieval (CBIR), emerged as a
promising mean for retrieving images and browsing large images databases. Content-based image
retrieval has been a topic of intensive research in recent years. It is the process of retrieving images
from a collection based on automatically extracted features. It is the part of pattern recognition
that can help to resolve many problems such as: optical character recognition (OCR), zip-code
recognition, tra�c sign recognition, bank check recognition, industrial parts inspection, medical
image computer-aided diagnoses, retina recognition, iris recognition, face recognition, �ngerprint
recognition, palm recognition, document recognition, gait or gesture recognition, image indexing,
etc. It allows users search interesting image by specifying image queries. The query can be an
example, sketches, visual features (e.g., color, texture and shape), and even the arranging spatial
structure of features. One or more features can be used in a speci�c application. For example, in
a satellite information system, the texture features are important, while shape and color features
are more important in trademark recognition systems. Once the features have been extracted,
the retrieval becomes a task of measuring similarity between image features.

Many content-based image search systems have been developed for various applications. Com-
mon query mechanisms provided by user interface are: query by keyword, query by sketching,
query by example, browsing by categories, feature selection and weighting, retrieval re�ning and
relevance feedback. Today, some CBIR engines can be found in Internet, for example: Webseek9,
IKONA10, VIPER11, CBIR Project12, ALIPR13, Tiltomo14, CIRES15, RETIN16, MFIRS17, Re-
trievr18, Multimedia Analysis and Retrieval Systems19 and Xcavator20, etc.

Although the image retrieval results by CBIR engines are inferior to the results by text-based
engines very much, it is a great realization of the computer vision and machine intelligence. By
exploring the synergy between textual and visual features, these image search systems may be
further improved.

The generic system architecture for a content-based image retrieval system is included in
Figure 1.

9http://persia.ee.columbia.edu:8008/
10http://www-rocq.inria.fr/cgi-bin/imedia/cbir-gen.cgi/
11http://viper.unige.ch/
12http://infolab.stanford.edu/IMAGE/
13http://www.alipr.com/
14http://www.tiltomo.com/
15http://amazon.ece.utexas.edu/~qasim/research.htm/
16http://www-etis.ensea.fr/Equipes/MIDI/Image/retin-interactive-image-search-engine/
17http://www.pilevar.com/m�rs/
18http://labs.systemone.at/retrievr/
19http://www.ifp.uiuc.edu/~qitian/MARS.html
20http://www.xcavator.net/
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Figure 1: Content-based image retrieval system

Although the closed interaction loop (including users), the supporting database components
for retrieval and indexing, the integration with multimedia features, the e�cient user interfaces
for query speci�cation and image browsing are absolutely necessary in image retrieval system,
the essence of a good CBIR system is the methods of feature extraction and similarity measure.

Features extraction is a process of transforming the input data into the set of features. An
image includes a large amount of data and it is suspected to be notoriously redundant (much data,
but not much information) then the input data of the image will be transformed into a reduced
representation set of features (also named features vector). If the extracted features are carefully
chosen it is expected that the features set will provide the relevant information from the input
data in order to perform the desired task using this reduced representation instead of the full
size input. There are two general methods for image classi�cation and retrieval: intensity-based
(color and texture) and geometry-based (shape). The representation of the extracted features is
the so called descriptor.

Similarity measure is a distance function that associates a numeric value with (a pair of)
descriptors.

Among the various forthcoming retrieval systems, we can encounter MPEG-7. Formally
named �Multimedia Content Description Interface�, MPEG-7 aims at managing data in the way
that content information can be retrieved easily. It is under development by the Moving Picture
Coding Experts Group (MPEG) that is a working group of ISO/IEC21 standards organization.
It is in charge of the development of international standards for video and/or audio compres-
sion, decompression, processing and representation. This group has also developed well-known
standards that are MPEG-1, MPEG-2 and MPEG-4. These 3 standards make content available
but MPEG-7 enables to �nd the desired content in a database. MPEG-7 visual description tools
consist of basic structure and descriptions that cover basic visual features: color, texture, shape,
motion and localization[2, 3]. The use of shape as a visual cue in image retrieval is less developed

21Stands for International Standards Organization/International Electro-technical Committee.



12 CONTENTS

than the other visual features, mainly because of the inherent complexity of representing it. Yet,
with respect to other features, like color and texture, shape is probably the most important prop-
erty that is perceived about objects; it is much more e�ective in semantically characterizing the
content of an image. And it is also an important characteristic to identify and distinguish objects
[4, 5]. Shape and silhouette provide signi�cant cues for human visual perception. Considerable
amount of information exists in two dimensional shapes of objects which enable us to recognize
objects without using further information. This has been documented in a vast literature in
cognitive psychology or biological neuroscience. It is thus no surprise that shape-based approach
is popular in computer vision, too [4, 6]. So retrieval by shape has the potential of being the
most e�ective search technique in many application �elds.

There are two main steps involved in shape feature extraction: shape segmentation and shape
feature extraction. In order to use shape as a tool for image indexing and retrieval, shapes will
often be determined �rst applying segmentation to an image. Shapes must be identi�ed in, and
extracted from an image. Shape segmentation is considered to be one of di�cult aspects of
image retrieval based on syntactical patterns owing to the complexity of the individual object
shape, background and the existence of noise and occultation. Fortunately, there exists a large
part of literature describing di�erent techniques and approaches for shape segmentation, such
as region growing, edge detection and texture-based techniques. Image segmentation is one
of the most important and widely researched topics in image analysis. Accurate segmentation
algorithms are fundamental for shape feature extraction. Although this classic topic has been
studied in a great deal of literatures, in some cases accurate shape detection will require human
intervention because segmentations are very di�cult to be completely automate, especially for
some miscellaneous images. Image segmentation is beyond the scope of this thesis.

The thesis focuses on shape-based feature extraction and its similarity measure. These tech-
nologies have wide applications. Besides image retrieval, they can be developed for object recog-
nition, image alignment and registration, computer vision, image understanding, processing of
pictorial information, video/image compression, and so on. However, these technologies are
also a di�cult problem and the performance of most existing approaches cannot meet people's
requirements, especially when applied on a general database. The principal reason is that no
current algorithm of shape-based feature extraction and similarity measure is exactly consistent
with the perception of human.

We assume that the shapes have been segmented from an image. The representation of a
shape may be a boundary contour by a set of coordinates, or be a region (silhouette) by a 2-D
function. The goal of shape feature extraction is to attain a shape descriptor.

This descriptor is some set of numbers that are produced to describe a given shape. The
shape may not be entirely reconstructed from the descriptor, but the descriptor for di�erent
shapes should be di�erent enough that the shapes can be discriminated. The better descriptor
is, using certain similarity measure, the greater the di�erence in the descriptors of signi�cantly
di�erent shapes and the lesser the di�erence for similar shapes. Further more, the better shape
descriptor is invariant to shape translation, rotation, scaling, a�ne and non-rigid transforms; at
the same time, it is robust to partial occultation, distortions and corruptions due to the noise.
In addition, compactness and simplicity of shape descriptors are necessary for minimizing the
storage overhead and the extraction time. Well, we know that it is a notorious di�cult task!

Many shape description and similarity measure techniques can be found in the literatures.
These techniques adopt di�erent approaches for describing shapes. For general shape description,
the reviews are given in [7, 8, 4, 9].

The contents of the thesis are summarized and structured as two parts.
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Part 1:

� Study of the fundamental concepts about shapes (Chapter 1).

� Classi�cation and study of the methods of shape-based feature extraction and similarity
measure (Chapter 2).

Part 2:

� Proposal of two new a�ne invariant contour-based descriptors (Chapter 3).

� Proposal of a new shape-based descriptor (Chapter 4).

Then, after these developments, a conclusion will be given.
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Chapter 1

Fundamental Concepts

In this chapter, the fundamental concepts about shape feature extraction and similarity measure
are presented. These concepts involve the shape representations and normalization, shape pa-
rameters, the de�nition of similarity distance of shape descriptors, the techniques of similarity
measures and the evaluations of retrieval results.

1.1 Shape representation

A shape of a physical object is its external form or contour, the geometry of its external surfaces
or contours, the boundary between the objects interior and the exterior. Shape is the outline
or characteristic surface con�guration of the object. A shape can be represented by its contour,
region or �nite points set:

� Contour is only the boundary information that is exploited for shape representation; it is
a continuous curve in the plane.

� Region is all the pixels within a shape which are taken into account to obtain the shape
representation; it may consist of either a single region or a set of regions as well as some
holes in the object.

� Finite point set is the distinct points on the edge of an object which are taken to obtain the
shape representation; it holds some important points or lines on a shape that are sensitive
to human vision.

So there are 3 research objects for a shape: contour-based, region-based and �nite point set-based
shape representation [10].

Contour-based shape descriptors make use of only the boundary information, ignoring the
shape interior content. Examples to contour-based shape descriptors include Fourier descriptors
[11, 12, 13], wavelet descriptors [14, 15, 16], curvature scale space descriptor [17], etc. Since they
are computed using only boundary pixels, in general, their computational complexity is low and
the sizes of their features are compact. Moreover the contour can be considered as a digital
curve, so one can apply a great deal of the computational geometry methods into the analysis
of a contour. However, these descriptors cannot well represent shapes for which the complete
boundary information is not su�cient or not available such as objects with holes, partially
occulted objects, and complex objects consisting of multiple disconnected regions. They may
also be easily being corrupted by noise. In addition, as the contour is a set of ordering points

17
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along the boundary of a shape, it is a hard work to segment and extract a contour in a real
image.

Region-based shape descriptors exploit both boundary and interior pixels of the shape. Exam-
ples of region-based shape descriptors include region moment descriptor [10, 18], grid descriptor
[19], shape matrix [20, 21], etc. Since the region-based shape descriptor makes use of all pixels
constituting the shape within a frame, it can describe diverse shapes e�ciently in a single de-
scriptor. It is also robust to minor deformation along the boundary of the object and to shape
distortions. Moreover the segmentation of regions is much easier than that of contours. How-
ever, the size of region-based feature is usually great. It leads to an increasing computational
complexity of feature extraction and similarity measure.

Finite point set-based shape descriptor represents a set of points sampled from an output of
edge detector applied to an object. Finite point set is also called collection of points. Examples
of �nite point set-based shape descriptors include shape contexts [22], voting schemes [7], etc.
They are not required to order the points one by one. They can extract the features of an object
with several holes and even with several parts. The key idea of the similarity measure is actually
to �nd the right correspondence of the points between the two shapes. It is very easy to be
achieved because of segmenting a set of points of a shape without ordering them. So the �nite
point sets-based shape descriptor is feasible in practice.

(a)

(b) (c) (d) (e)

(a) Original image; (b) region of object; (c) multi-contours of object; (d) outline contour of
object; (e) collection of points of object.

Figure 1.1: Illustration of region, multi-contours, contour and collection of points of an object
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Figure 1.1(a) is Olympic Flame, one of 2008 Beijing Olympic mascot. Via region segmentation
and edge following, we obtain its region in (b), all of its contours in (c), its outline contour in
(d) and one of its collection of points in (e).

Region is a binary image, where each object point is one and the background is zero. In
shape recognition �eld, it is of particular interest to consider the case where the general function
f(x, y) is

f(x, y) =

{
1 if (x, y) ∈ D
0 otherwise

(1.1)

where D is the domain of the binary shape.

Contour is the collection of all the edge points of a region. An object represented by Figure
1.1(c) is called multi-contours representation, and by Figure 1.1(d) is called outline contour
representation. Considering the complexity of representation and computation, in general, the
contour of an object is its outline contour. In this thesis, all the concepts and methods about
contour are the outline contour except specially indicated.

A contour is a closed curve, the discrete parametric equation in Cartesian coordinate system
is

Γ(n) = (x(n), y(n)) (1.2)

where n ∈ [0, N − 1]; a contour may be parametrized with any number N of vertices and
Γ(N) = Γ(0). For simplicity, we may use Pn(xn, yn) instead of Pn(x(n), y(n)) to represent a
point.

Equal arc length normalization, is also called equidistance normalization. All the distances
between a pair of successive vertices on a contour are equal. In the equal arc length parametric
equation, x(s) and y(s) are the parametric coordinate functions, sampled at equidistance of
values of s. The equal arc length normalization is a simplest and commonest way to represent a
contour and it best preserves the boundary topological structure.

The arc length parameter transforms linearly under any linear transformation up to the
similarity transform. Translation and rotation do not a�ect the arc length; scaling scales the
parameter by the same amount. The arbitrary choice of a starting point only introduces a shift
in the parameter. Due to these invariance properties of the arc length, it is usually used for
parametrizing object contours undergoing the similarity transformation. To normalize a contour
with equal arc length is not a di�cult task; however, there are some remarkable problems. We
will talk about them as followings.

We may normalize a contour using linear interpolation to equal arc length parametric equation
with the number of vertices equalling M by the following steps:

1. Calculate the arc length function L(µ) according to original parametric equation Eq. 1.2:

L(µ) =
µ∑
n=0

√
(xn+1 − xn)2 + (yn+1 − yn)2 (1.3)

where µ ∈ [0, N − 1] and the last point PN (xN , yN ) is assumed to be the same as the �rst point
P0(x0, y0).

So the perimeter O of the contour is L(N − 1).
2. Assume d is the distance of a pair of successive sampled points on the contour with equal

arc length normalization, then d = O/M , M is the number of points on normalized contour.



20 CHAPTER 1. FUNDAMENTAL CONCEPTS

3. Without loss of generality, the �rst point P ′0 on the normalized contour is the �rst point
P0 on the original contour. For seeking for the q th (q ∈ [1,M − 1]) normalized point P ′q on the
contour, the distance between the �rst point and the point P ′q should be equal to q·d. So we
search for arc length function L(µ) from µ=0, to �nd the �rst point whose arc length is greater
than q·d. We assume this point is r th point Pr on the original contour point sequence. The
point P ′q(x

′
q, y
′
q) must be between the Pr(xr, yr) and Pr−1(xr−1, yr−1). Assume a is the distance

between the points Pr and Pr−1, a = L(r)− L(r − 1); b is the distance between the points Pr−1

and P ′q: b = q · d− L(r − 1). Then:{
x′q = b

a(xr − xr−1) + xr−1

y′q = b
a(yr − yr−1) + yr−1

(1.4)

So points collection P ′s(x
′
s, y
′
s), s ∈ [0,M − 1], composes equidistance normalized contour.

The equal arc length contour parametric equation is represented by:

Γ(s) = (xs, ys) (1.5)

where s ∈ [0,M − 1].
The di�erence of a perfect equal arc length contour parametric equation (Eq. 1.5) from

general contour parametric equation (Eq. 1.2), consists in that the equal values of s are the
equal distance between two successive points.

Analyzing the procedure of the equidistance normalization, we �nd that the distances of a pair
of successive vertices on an equidistance normalized contour by the above method is sometimes
not exactly equal, practically, when the contour is badly perturbed by noise. We can �nd it in
Figure 1.2.

(a) (b)

(a) Equidistance normalization by the number 128 of points; the dots are the sampled points by
equidistance normalization; (b) zoomed part near the circle in (a): the bold line is the partial
original contour; the dots are the sampled points by equidistance normalization.

Figure 1.2: Equidistance normalization

Clearly, the distance d1, d2, d3 and d4 are not equal in Figure 1.2(b). Let us calculate the
standard deviation of the total 128 distances along the contour: assume the mean distance of
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two successive vertices is D :

D =
1
N

N−1∑
n=0

dn (1.6)

where dn is the distance between points Pn and Pn+1. Then the standard deviation S is:

S =

√√√√ 1
N

N−1∑
n=0

(dn −D)2 (1.7)

In Figure 1.2, D=25.69, S=2.71; then the ratio of standard deviation over mean distance
S
D = 10.5%.

The result shows that the ratio of standard deviation over mean distance is over 10% after
equidistance normalization. Clearly, using the parameter s replacing the arc length will bring
great error when we calculate some contour function, e.g. the curvature function.

Due to the fact that digital contour represented by new sampled points is not the original
digital contour, then the line between a pair of new successive vertices is only a chord of the
original contour. In general, the length between two points along the original contour is not equal
to the length of the chord between the two same points. Theoretically, there are no methods to
normalize a digital contour to exact equidistant vertices except the number of normalized points
is in�nite. What we can do is to try decreasing these errors. The following two methods can
improve the normalization precision.

The �rst method is to repeat the same normalization procedure several times. Table 1.1 gives
the results of mean distance, standard deviation and the ratio of standard deviation over mean
distance by di�erent number of repeating equidistance normalization.

Number of iterated
equidistance
normalization

Mean distance
D

Standard deviation
S

S/D

1 25.69 2.71 10.5%

2 24.51 2.16 8.8%

3 23.75 1.59 6.7%

4 23.21 1.20 5.2%

5 22.65 1.15 5.1%

6 22.19 0.96 4.3%

7 21.94 0.49 2.2%

8 21.84 0.24 1.1%

9 21.79 0.12 0.6%

10 21.74 0.08 0.4%

Table 1.1: Evaluation of S/D with the numbers of iterated normalization

Table 1.1 shows that, increasing the number of iterating equidistance normalization, the
distance standard deviation and the ratio of mean deviation distance decrease, i.e. the distances
between any two successive points are more and more uniform.

Figure 1.3 is the result of iterating 10 times equidistance normalization. As we see, the
distance between a pair of successive vertices is much more uniform than that in Figure 1.2. The
cost is that it loses more detail information than a single equidistance normalization in Figure
1.2: this is illustrated by some new normalized points deviating original contour.
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(a) (b)

(a) The bold line is the original contour; the dots are the sampled points by iterating 10 times
equidistance normalization; (b) zoomed part near the circle in (a).

Figure 1.3: Iterating 10 times equidistance normalization

The second method is to increase the number of normalized points. Table 1.2 gives the
results of mean distance, standard deviation and ratio of standard deviation over mean distance
for equidistance normalization with di�erent number of points. This table shows that, increasing
the number of normalized points, decrease the ratio of standard deviation over mean distance
S/D, i.e. the distance is more uniform.

The number of
normalized points

Mean distance
D

Standard deviation
D

S/D

256 13.23 0.97 7.3%

512 6.74 0.40 6.0%

768 4.53 0.25 5.5%

1024 3.43 0.16 4.8%

2048 1.75 0.07 3.9%

Table 1.2: Evaluation of S/D with di�erent number of points

Figure 1.4 shows the points set of the contour with 256 normalized points. Comparing with
Figure 1.2, the distance is more uniform by increasing N . It preserves almost all the details of
its original contour. The cost is also clear: it uses more data to represent a contour. So it will
be more computation time consumming.

Therefore, equidistance normalization is not reliable to some contour function related to arc
length. To get the precise function values, we will talk about it in Subsection 2.2.4. Although
arc length parameter is invariant to shape translation, rotation and scaling, it is nonlinearly
transformed under an a�ne transformation, and would not be a suitable parameter in this
situation. We will propose a new normalization for a�ne invariance in Chapter 3.
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(a) (b)

(a) The dots are the sampled points by equidistance normalization; (b) zoomed part near the
circle in (a).

Figure 1.4: Equidistance normalization to 256 points

1.2 Shape parameters

Basically, shape-based image retrieval consists of the measuring of similarity between shapes rep-
resented by their features. Some simple geometric features can be used to describe shapes. Usu-
ally, the simple geometric features can only discriminate shapes with large di�erences; therefore,
they are usually used as �lters to eliminate false hits or combined with other shape descriptors
to discriminate shapes. They are not suitable to be stand alone shape descriptors. A shape can
be described by di�erent aspects. These shape parameters are Center of gravity, Axis of least
inertia, Digital bending energy, Eccentricity, Circularity ratio, Elliptic variance, Rectangularity,
Convexity, Solidity, Euler number, Pro�les, Hole area ratio. They will be introduced in this
section.

1.2.1 Center of gravity

The center of gravity is also called centroid. Its position should be �xed in relation to the shape.
If a shape is represented by its region function Eq. 1.1, its centroid (gx, gy) is:{

gx = 1
N

∑N
i=1 xi

gy = 1
N

∑N
i=1 yi

(1.8)

where N is the number of point in the shape, (xi, yi) ∈ {(xi, yi) | f(xi, yi) = 1}.
If a shape is represented by its contour Eq. 1.2, the position of its centroid is given below:{

gx = 1
6A

∑N−1
i=0 (xi + xi+1)(xiyi+1 − xi+1yi)

gy = 1
6A

∑N−1
i=0 (yi + yi+1)(xiyi+1 − xi+1yi)

(1.9)

where A is the contour's area and

A =
1
2

∣∣∣∣∣
N−1∑
i=0

(xiyi+1 − xi+1yi)

∣∣∣∣∣ (1.10)
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The position of shape centroid is �xed with di�erent points distribution on a contour. One
can notice that the position of the centroid in Figure 1.5 is �xed no matter how the points
distribution is.

(a) (b)

The dots are points distributed on contour by uniformly (a) and non-uniformly (b). The star is
the centroid of original contour; the inner dot is the centroid of sampled contour.

Figure 1.5: Centroid of contour

So using Eq. 1.9, we can obtain the genuine centroid of a contour under whatever the contour
is normalized.

1.2.2 Axis of least inertia

The axis of least inertia is unique to the shape. It serves as a unique reference line to preserve
the orientation of the shape. The axis of least inertia (ALI) of a shape is de�ned as the line for
which the integral of the square of the distances to points on the shape boundary is a minimum.

Since the axis of inertia pass through the centroid of a contour, to �nd the ALI, transfer
the shape and let the centroid of the shape be the origin of Cartesian coordinate system. Let
x sin θ−y cos θ = 0 be the parametric equation of ALI. The slope angle θ is estimated as follows:

Let α be the angle between the axis of least inertia and the x-axis. The inertia is given by
[23, 24]:

I =
1
2

(a+ c)− 1
2

(a− c) cos(2α)− 1
2
bsin(2α)

where a =
∑N−1

i=0 x2
i , b = 2

∑N−1
i=0 xiyi, c =

∑N−1
i=0 y2

i .
Hence,

dI

dα
= (a− c) sin(2α)− b cos(2α)

d2I

dα2
= 2(a− c) cos(2α) + 2b sin(2α)

Let dI/dα = 0, we obtain

α =
1
2

arctan
(

b

a− c

)
, −π

2
< α <

π

2
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The slope angle θ is given by

θ =

{
α+ π

2 if d2I
dα2 < 0

α otherwise

1.2.3 Average bending energy

Average bending energy BE is de�ned by

BE =
1
N

N−1∑
s=0

K(s)2

where K(s) is the curvature function, s is the arc length parameter, and N is the number of
points on a contour [4]. In order to compute the average bending energy more e�ciently, Young
et. al. [25] did the Fourier transform of the boundary and used Fourier coe�cients and Parseval's
relation.

One can prove that the circle is the shape having the minimum average bending energy.

1.2.4 Eccentricity

Eccentricity is the measure of aspect ratio. It is the ratio of the length of major axis to the length
of minor axis. It can be calculated by principal axes method or minimum bounding rectangle
method.

Principal axes method

Principal axes of a given shape can be uniquely de�ned as the two segments of lines that cross
each other orthogonally in the centroid of the shape and represent the directions with zero cross-
correlation [26]. This way, a contour is seen as an instance from a statistical distribution. Let
us consider the covariance matrix C of a contour:

C =
1
N

N−1∑
i=0

(
xi − gx
yi − gy

)(
xi − gx
yi − gy

)T
=
(
cxx cxy
cyx cyy

)
(1.11)

where

cxx = 1
N

∑N−1
i=0 (xi − gx)2

cxy = 1
N

∑N−1
i=0 (xi − gx)(yi − gy)

cyx = 1
N

∑N−1
i=0 (yi − gy)(xi − gx)

cyy = 1
N

∑N−1
i=0 (yi − gy)2

G(gx, gy) is the centroid of the shape. Clearly, here cxy = cyx.

The lengths of the two principal axes equal the eigenvalues λ1 and λ2 of the covariance matrix
C of a contour, respectively.

So the eigenvalues λ1 and λ2 can be calculated by

det(C − λ1,2I) = det

(
cxx − λ1,2 cxy

cyx cyy − λ1,2

)
= (cxx − λ1,2)(cyy − λ1,2)− c2xy = 0

So
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λ1 = 1

2

[
cxx + cyy −

√
(cxx + cyy)

2 − 4
(
cxxcyy − c2xy

)]
λ2 = 1

2

[
cxx + cyy +

√
(cxx + cyy)

2 − 4
(
cxxcyy − c2xy

)]
Then, eccentricity can be calculated:

E = λ2/λ1 (1.12)

Minimum bounding rectangle

Minimum bounding rectangle is also called minimum bounding box. It is the smallest rectangle
that contains every point in the shape. For an arbitrary shape, eccentricity is the ratio of the
length L and width W of minimal bounding rectangle of the shape at some set of orientations.
Elongation, Elo, is an other concept based on eccentricity (cf. Figure 1.6):

Elo = 1−W/L (1.13)

Figure 1.6: Minimum bounding rectangle and corresponding parameters for elongation

Elongation is a measure that takes values in the range [0, 1]. A symmetrical shape in all axes
such as a circle or square will have an elongation value of 0 whereas shapes with large aspect
ratios will have an elongation closer to 1.

1.2.5 Circularity ratio

Circularity ratio represents how a shape is similar to a circle [8]. There are 3 de�nitions:

� Circularity ratio is the ratio of the area of a shape to the area of a circle having the same
perimeter:

C1 =
As
Ac

(1.14)

where As is the area of the shape and Ac is the area of the circle having the same perimeter
as the shape. Assume the perimeter is O, so Ac = O2/4π. Then C1 = 4π · As/O2. As 4π
is a constant, so we have the second circularity ratio de�nition.
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� Circularity ratio is the ratio of the area of a shape to the shape's perimeter square:

C2 =
As
O2

(1.15)

� Circularity ratio is also called circle variance, and de�ned as:

Cva =
σR
µR

(1.16)

where µR and σR are the mean and standard deviation of the radial distance from the centroid
(gx, gy) of the shape to the boundary points (xi, yi), i ∈ [0, N−1]. They are the following formulae
respectively:

µR =
1
N

N−1∑
i=1

di and σR =

√√√√ 1
N

N−1∑
i=1

(di − µR)2

where di =
√

(xi − gx)2 + (yi − gy)2.
The most compact shape is a circle. See Figure 1.7.

Figure 1.7: Circle variance

1.2.6 Ellipse variance

Ellipse variance Eva is a mapping error of a shape to �t an ellipse that has an equal covariance
matrix as the shape: Cellipse = C (cf. Eq.1.11). It is practically e�ective to apply the inverse
approach yielding.

We assume

Vi =
(
xi − gx
yi − gy

)
d′i =

√
V T
i · C

−1
ellipse · Vi

µ′R =
1
N

N−1∑
i=1

d′i and σ′R =

√√√√ 1
N

N−1∑
i=1

(d′i − µ′R)2

Then

Eva =
σ′R
µ′R

(1.17)

Comparing with Eq. 1.16, intuitively, Eva represents a shape more accurately than Cva, cf.
Figure 1.8.
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Figure 1.8: Ellipse variance

1.2.7 Rectangularity

Rectangularity represents how rectangular a shape is, i.e. how much it �lls its minimum bounding
rectangle:

Rectangularity = AS/AR

where AS is the area of a shape; AR is the area of the minimum bounding rectangle.

1.2.8 Convexity

Convexity is de�ned as the ratio of perimeters of the convex hull OConvexhull over that of the
original contour O [26]:

Convexity =
OConvexhull

O
(1.18)

Figure 1.9: Illustration of convex hull

The region R2 is a convex if and only if for any two points P1, P2 ∈ R2, the whole line segment
P1P2 is inside the region. The convex hull of a region is the smallest convex region including it.
In Figure 1.9, the outline is the convex hull of the region.
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In [26], the authors presented the algorithm for constructing a convex hull by traversing the
contour and minimizing turn angle in each step.

1.2.9 Solidity

Solidity describes the extent to which the shape is convex or concave [27] and it is de�ned by

Solidity = As/H

where, As is the area of the shape region and H is the convex hull area of the shape. The solidity
of a convex shape is always 1.

1.2.10 Euler number

Euler number describes the relation between the number of contiguous parts and the number of
holes on a shape. Let S be the number of contiguous parts and N be the number of holes on a
shape. Then the Euler number is:

Eul = S −N

For example

Euler Number equal to 1, -1 and 0, respectively.

1.2.11 Pro�les

The pro�les are the projection of the shape to x-axis and y-axis on Cartesian coordinate system.
We obtain two one-dimension functions:

Prox(i) =
jmax∑
j=jmin

f(i, j) and Proy(j) =
imax∑
i=imin

f(i, j)

where f(i, j) represents the region of shape Eq. 1.1. See Figure 1.10.

Figure 1.10: Pro�les
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1.2.12 Hole area ratio

Hole area ratio HAR is de�ned as

HAR =
Ah
As

where As is the area of a shape and Ah is the total area of all holes in the shape. Hole area ratio
is most e�ective in discriminating between symbols that have big holes and symbols with small
holes [28].

The properties about translation, scaling and rotation of these simple geometric features are
summarized in Table 1.3.

Simple Geometric Features Invariance
Translation Scaling Rotation

Average bending energy
√

×
√

Eccentricity
√ √ √

Circularity ratio
√ √ √

Ellipse variance
√ √ √

Rectangularity
√ √ √

Convexity
√ √ √

Solidity
√ √ √

Euler Number
√ √ √

Pro�les
√ √

×
Hole area ratio

√ √ √

Table 1.3: Properties of simple geometric features

1.3 Shape similarity measures

Shape matching is a central problem in visual information systems, computer vision, pattern
recognition and robotics. Shape matching deals with transforming a pattern, and measuring
the resemblance with another pattern using some metrics. Shape similarity measures are an
essential ingredient in shape matching. We can observe two particular research directions in
this area, however, both are essential. The �rst one follows the subject of retrieval e�ectiveness,
where the goal is to achieve query results complying with the user's expectations (measured by
the precision and recall scores). As the e�ectiveness is obviously dependent on the semantics of
similarity measure, we require the possibilities of similarity measuring as rich as possible, thus,
the measure should not be limited by properties regarded as restrictive for similarity modeling.
Following the second direction, the similarity measures should be as e�cient (or fast) as possible,
because the number of objects in a database can be large and the similarity scores are often
expensive to compute [29, 30, 31].

Shape similarity measures should be in accord with out visual perception. This property
leads to the following requirements:

� it should be universal in the sense that it allows us to identify or distinguish objects of
arbitrary shapes, i.e., no restrictions on shapes are assumed.
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� it should permit recognition of perceptually similar objects that are not mathematically
identical.

� it should abstract from distortions, e.g. digitization noise, segmentation errors and partial
occultation.

� it should not depend on scaling, orientation, position of objects, a�ne transform and
perspective distortions.

In mathematics, the similarity and dissimilarity measure are de�ned as following [31]:

Let a model object O ∈ U , where U is a universal model. Let s : U ×U 7→ R be a similarity
measure, where s(Oi, Oj) is considered as a similarity score of objects Oi and Oj . In many cases
it is more suitable to use a dissimilarity measure d : U × U 7→ R equivalent to a similarity
measure s as s(Q,Oi) > s(Q,Oj)⇐⇒d(Q,Oi) < d(Q,Oj).

In this section di�erent similarity measurements are described in details.

1.3.1 Distance metric space

It is known that human observers judge images as similar if they show similar objects. The com-
puter vision judges objects similarity by computing the distance of shape features. A similarity
measure assigns a lower distance (or higher score) to more similar objects, and vice versa. In
general, a metric distance is necessary to e�ectively organize database items through multidi-
mensional vectors. The distance metric space is de�ned as following [5]: a space RN is a metric
space if for any of its two elements x and y, there exists a distance d(x, y), that satis�es the
following properties:

� d(x, y) ≥ 0 (non-negativity or positivity)

� d(x, y) = 0 if and only if x = y (identity or re�exivity)

� d(x, y) = d(y, x) (symmetry)

� d is continuous

� one major di�erence should cause a greater dissimilarity than some minor ones

� d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

This triangle inequality is a kind of transitivity property; it says if x, y are similar and y, z are
similar, then also x and z are similar.

The representation of shape feature is usually called shape descriptor. A shape descriptor is
comprised by a set of vectors. So shape similarity distance is essentially the distance of vectors.
Assuming A = (a0, a1, . . . , an−1) and B = (b0, b1, . . . , bn−1) are the query and target feature
vectors respectively, there are many classical methods to compute the vector distance in metric
space.
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Minkowski-form distance metric (Lp)

The Minkowski-form distance is de�ned based on the Lp norm as:

dp(A,B) =

(
N−1∑
i=0

|ai − bi| p
)1/p

(1.19)

When p = 1, d1(A,B) is 1-norm distance L1. It more colorfully called city block distance,
taxicab norm or Manhattan distance, because it is the distance a car would drive in a city laid
out in square blocks (if there are no one-way streets). Manhattan distance dMan between two
vectors A, B measured along axes at right angles. See Figure 1.11(a).

dMan(A,B) =
N−1∑
i=0

| ai − bi | (1.20)

When p = 2, d2(A,B) is Euclidean distance dEu. It is the �ordinary" distance between two
vectors. See Figure 1.11(b).

dEu(A,B) =

√√√√N−1∑
i=0

(ai − bi)2 (1.21)

When p → ∞, we get in�nity norm distance L∞. It is also called Chebyshev distance.
Chebyshev distance is a metric de�ned on a vector space where the distance between two vectors
is the greatest of their di�erences along any coordinate dimension. It is also known as chessboard
distance: See Figure 1.11(a).

L∞(A,B) = max
0≤i≤N−1

{| ai − bi |} (1.22)

Cosine distance

The cosine distance computes the di�erence in direction, irrespective of vector lengths. The
distance is given by the angle between the two vectors.

dcos(A,B) = 1− cosθ = 1− A ·BT

‖A‖ · ‖B‖
= 1−

∑N−1
i=0 aibi√∑N−1

i=0 a2
i

√∑N−1
i=0 b2i

(1.23)

Cosine distance only takes angle into account. As a result, two vectors with the same direction
have the same cosine distance to any other vector, see Figure 1.11(c).
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(a)                                               (b)                                               (c)
(a) Manhattan distance dMan = d11 +d12 and in�nity norm distance L∞ = max(d12, d11) = d12;

(b) Euclidean distance dEu =
√

(x1 − x2)2 + (y1 − y2)2; (c) vector A and A1 have the same
cosine distance to vector B.

Figure 1.11: Distance de�nition

χ2 statistics distance

The χ2 statistics distance is de�ned as

Dχ2(A,B) =
1

2N

N−1∑
i=0

(ai − bi)2

(ai + bi)

Measures how unlikely it is that one element in a vector is drawn from the population repre-
sented by the other.

Kullback-Leibler Divergence distance (KL)

DKL(A,B) =
N−1∑
i=0

ailog
ai
bi

It is robust with respect to noise.

Je�rey Divergence distance (JD)

DJD(A,B) =
N−1∑
i=0

(
ailog

ai
bi

+ bilog
bi
ai

)
It is symmetric regarding KL.

Quadratic-form distance (QF)

Considering similarity across elements in vectors, the de�nition of quadratic-form distance is
following:

DQF (A,B) =
√

(A−B) · S · (A−B)T

where S = [sij ] is a similarity matrix, sij denotes similarity (ground distance) between elements
ai and bj . Some ground distance functions are de�ned as the following:
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(a) sij = 1 − dij/dmax, where dij is the distance between ai (i th element in A) and bj (j
th

element in B), dmax is maximum dij .

(b) sij = exp(−σ(dij/dmax)2), where σ is positive constant; dij is same as that in (a).

Mahalanobis Distance

The Mahalanobis distance takes into account the covariance among the variables in calculating
distances. With this measure, the problems of scale and correlation inherent in the Euclidean
distance are no longer an issue. To understand how this works, consider that, when using Eu-
clidean distance, the set of equidistant points from a given location is a sphere. The Mahalanobis
distance stretches this sphere to correct for the respective scales of the di�erent variables, and
to account for correlation among variables.

The Mahalanobis distance between two vectors A and B from the same distribution which
has covariance matrix C is de�ned as:

dMan =
√

(A−B) · C−1 · (A−B)T

Hausdor� distance

Informally, the Hausdor� distance between two sets of vectors, A and B, is the longest distance
you would have take from an arbitrary point in A to the corresponding nearest point in B, i.e.
choose a point in A, and the distance to the closest point in B is equal to or less than the
Hausdor� distance. See Figure 1.12.

This distance function:

dHau(A,B) = max
{

max
b∈B

[
min
a∈A

(d(a, b))
]
,max
a∈A

[
min
b∈B

(d(a, b))
]}

Figure 1.12: Hausdor� distance

The Hausdor� distance is not transformation invariant and also not robust against noise.
The advantage of using this metric is that partial matching is possible.
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Edit distance

Edit distance between two objects is de�ned as the number of basic operations (insertion, deletion
and substitution) needed to transform one representation into another [32]. It is for computation
between a pair of ordered sets of vectors. This way, the di�erences between shapes can be
computed in terms of editing costs.

To measure edit distance, we use the methods of Hamming distance, Levenshtein distance,
Damerau-Levenshtein distance and Jaro-Winkler distance, etc.

1.3.2 Non-metric distance space

We have the experience: a child resemble somewhat his mother as well as his father. However,
in general, the parents do not resemble each other. That is: both the similarity distances
between the child and his mother d(Child,Mother) and the similarity distances between the
child and his father d(Child, Father) are small; whereas the similarity distances between the
parents d(Mother, Father) is large. So we can not assure that it holds the triangle inequality:
d(Child,Mother)+d(Child, Father)≥d(Mother, Father). Let us look at the other example
given in Figure 1.13 [33]: as the man and the centaur are partial similar, so the distance from
the man to the centaur is small; similarly, the centaur and the horse are partial similar, the
distance from the centaur to the horse is also small, but, clearly the distance from the man
to the horse is large. In general, the result is: d(man, centaur)+d(centaur, horse)<d(man,
horse). It does not hold the triangle inequality. These two examples show that human similarity
perception does not hold in metric space.

Figure 1.13: Illustration of non-respect of the triangle inequality

As a matter of fact, the distance between two shapes, as perceived by human beings, is
not a metric distance. Non-metric measures have been used mainly in the areas of multimedia
databases and information retrieval. A common reason for their usage is their better robust-
ness�a robust measure is resistant to outliers, that is, to anomalous or �noisy� objects and it
can neglect some portions of the measured objects which appear the most dissimilar.

Elastic matching distance is non-metric distance in common use. For similarlity-based mea-
sure, the two shapes are similar with perception of human. In some cases, one of these two shapes
may be a transformation of the other shape by rigid-transform which can be represented exactly
by mathematic methods, for example, translation, rotation, scaling, shear and even perspective.
Whereas in more other cases, this transformation can't be represented mathematically, for ex-
ample, the non-rigid transform, distortion by noise and\or occultation. To get a better result of
similarlity-based measure, the elastic matching is a very e�cient method. To realize the elastic
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matching, dynamic space warping (DSW) is a very e�ective algorithm which based on dynamic
programming. Unlike the Euclidean distance, DSW is based on non-rigid alignment between the
points of the two vectors. Now, we present a brief description of the DSW algorithm.

Let A = {a1,a2, · · · ,aN} and B = {b1,b2, · · · ,bN} be two �nite sets, aα and bα, α ∈ [1, N ],
are the scalars or vectors. To align two sequences using DTW we construct an N -by-N matrix D
where the (ith, jth) element of the matrix contains the distance d (ai,bj) between the two points
ai and bj (This distance can be de�ned by any ways; typically the Euclidean distance is used).
Each matrix element (i, j) corresponds to the alignment between the points ai and bj. Then,
another N -by-N matrix, DT , is constructed to �nd the optimal correspondence between the
points of the two sets. This matrix DT is also called DSW table. The columns of DT represent
the points of one set and the rows represent the points of the other. Initially, the elements of
DT are set as

DTinitial(n,m) =

{
0, max(1, n− w + 1) 6 m 6 min(N,n+ w − 1)
∞, otherwise

where n,m ∈ 〈1, N〉, w is a prede�ned diagonal width for DT as illustrated in Figure 1.14, and
max(α, β) and min(α, β) are the maximum and minimum values of α and β, respectively. Only
the elements of DT that fall within w are updated during the DSW search. This initialization of
DT avoids computing the distances between all the points of two sets and restricts the distance
computation to only those points which are more likely to correspond to each other. Therefore,
the computational complexity is largely reduced while more meaningful correspondences are
obtained.

Starting at an arbitrary point for both sets A and B, the DSW table DT is searched through
a prede�ned diagonal window of width w, left-to-right and top-to-bottom, starting from the
upper-left element, as shown in Figure 1.14.

Figure 1.14: Dynamic space warping (DSW) table

The �rst row and �rst column elements are initialized as the distance d between the corre-
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sponding points. Then, the rest of the w-diagonal elements of DT are updated as

DT (n,m) = D(n,m) + min


DT (n− 1,m)
DT (n− 1,m− 1)
DT (n,m− 1)

where n, m ∈ 〈1, N〉.
The least cost path through the DSW table DT is the value of element DT (N,N), which

corresponds to the best matching between the two sets according to the selected starting points.
However, it is clear that the established correspondence is sensitive to the starting point of each
set. In order to achieve starting point (or rotation) invariance, it is su�cient to �x the starting
point of one set and shift the other set point by point. Moreover, invariance to the mirror
transformation can be obtained by �ipping the points of one set and repeat the search for the
N starting points again. The �nal least cost correspondence is taken as the minimum value of
DT (N,N) among all 2N runs of the DSW table search, denoted by DTmin. Then, the elastic
matching distance

dDSW = DTmin/LAB

where LAB is the length of the least-cost path through the DSW table. In Figure 1.14 for
example, the least-cost path passes through 12 grids, so LAB=12.

Generally, we can obtain a non-metric distance by a linear combination of other distances
where at least one is non-metric, or we can multiply non-metric distances. Some examples of
non-metric distance are represented in [34].

On the other hand, as introduced above, a metric distance is necessary to e�ectively organize
database items through multidimensional index structures. The two di�erent metric contrasting
requirements are therefore set for shape matching. They are concerned respectively, with �tting
human perception and with the e�ciency of data organization and indexing. To cope with both
requirements two distinct distance measures have been de�ned by [5]: using distance metric
space to measure partial similarity and non-metric space to measure total similarity.

The desirable distance measure should re�ect human perception. That is to say, perceptually
similar images should have smaller distance between them and perceptually di�erent images
should have larger distance between them. So to choose the method of similarity measure, it
depends on the required properties, the particular matching problem and the application.

1.4 Evaluations of retrieval results

To evaluate the performance of di�erent algorithms for image retrieval, an e�ective performance
measurement is necessary. The performance measurements are usually based on statistics of
the subjective tests. Di�erent performance measurements often use di�erent subjective tests,
resulting in di�erent de�nitions of retrieval accuracy. In this section we describe some common
retrieval e�ectiveness measurement.

1.4.1 Recall and precision pair

The recall and precision pair (RPP) is perhaps the most widely used retrieval performance
measurement in literature. For each query, the system returns a ranked list. Each item in
the list is determined as either relevant or not according to the subject test results. Then the
e�ectiveness is measured by recall and precision. Recall measures the ability of retrieving relevant
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items from the database. It is de�ned as the ratio of the number of relevant items retrieved over
the total number of relevant items in the database. Precision measures the retrieval accuracy
and is de�ned as the ratio of the number of relevant items retrieved over the number of total
items retrieved.

recall = ](relevant items retrieved)/](relevant items in database)

precision = ](relevant items retrieved)/](retrieved items)

]{α} denotes getting the number of the value α.

If we assume a is the number of relevant items retrieved, b is the number of non-relevant
items retrieved, c is the number of relevant items non-retrieved in a database, then

recall =
a

a+ c
and precision =

a

a+ b

So recall ∈ [0, 1], precision ∈ [0, 1].
The precision normally decreases while increasing the recall. This is because in the pro-

cess of trying to retrieve all relevant items to a query, some irrelevant items are also retrieved.
Thus the recall and the corresponding precision value are used together to indicate the retrieval
e�ectiveness of a system.

1.4.2 Percentage of weighted hits

The percentage of weighted hits (PWH) is similar to the recall measurement in RPP. However,
instead of measuring recall based on binary relevance value as in RPP, PWH assigns a weighted
relevance value wi to each item in the dataset [35]. The weight wi is manually obtained as
follows: we have a group of humans and a database. Initially, all items in the database start
with zero weight. Each time a human selects a set of items which resemble to a certain query,
the weights of these items for this query are increased by one. Thus, the weight wi of an item
is equal to the number of humans who selected it as relevant or similar to a query. In this way,
the items that many humans pick have a greater weight than those items which are chosen only
little times.

For each query, a �xed number of items are retrieved by a system. Then the percentage of
weighted hits P is de�ned as the following:

P =

∑n
i=1wπ(i)∑N
j=1wj

where n is the number of items retrieved by the system; π(i) is the items retrieved by a test
system; N is the total number of items in the database; wπ(i) and wj are the weights of subjects
selecting item π(i) and j as relevant to the query.

To indicate the average performance of a system, many queries should be performed and the
average percentage of weighted hits over these queries is used as the retrieval e�ectiveness of the
system.
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1.4.3 Percentage of similarity ranking

In percentage of similarity ranking (PSR) measurement, each subject assigns a similarity rank
to each item in the dataset based on the item's similarity to the query, rather than only assigns
relevance/irrelevance as in RPP and PWH [36]. The �nal result of the subject test is a matrix
{Qj(i, k)}, where Qj(i, k) indicates the percentage of people that ranked i th item in the k th

position to query j. From Qj(i, k), we can calculate the mean value p̄j(i) and standard deviation
σj(i), representing the average ranking of the i th item to given query j and a measure of agreement
about a ranking close to p̄j(i), respectively. If for a query j, a retrieval algorithm returns an item i
at rank Pj(i), then the agreement between the algorithm ranking and human ranking is measured
by the percentage similarity ranking Sj(i):

Sj(i) =
Pj(i)+

σj(i)

2∑
k=Pj(i)−

σj(i)

2

Qj(i, k)

The plot of Sj(i) as a function of Pj(i) shows the retrieval performance of a retrieval algorithm.
High Sj(i) indicates high retrieval accuracy of the algorithm.

1.4.4 Average of normalized modi�ed retrieval rank

The average of normalized modi�ed retrieval rank (ANMRR) is an objective measure used by
MPEG-7 to evaluate the retrieval performance [37]. This measure combines the precision and
recall measure to obtain a single objective value. To use this measure, the queries and ground
truth sets are chosen manually. For each query a set of ground truth items that are most relevant
to the query are identi�ed. The ground truth items are not ordered in any way. A good descriptor
is expected to retrieve all the ground truth items for a given query image.

Let the number of ground truth items for a given query q be NG(q), �rst K(q) items are
retrieved for query q by the tested retrieval system, a suitable K(q) is determined by K(q) =
min(4 · NG(q), 2 · GTM) and GTM is the maximum of NG(q) for all queries of the database.
For each ground truth image itemk that is retrieved in the top K(q) retrieval, a rank value
Rank(itemk) is attached. The Rank(itemk) is the retrieval rank of the ground truth image.
The rank of the �rst retrieved item is one and the last is K(q). A rank of (K(q) + 1) is assigned
to each of the ground truth items, which are not in the �rst K(q) retrievals.

Then the normalized modi�ed retrieval rank (NMRR) is de�ned by

NMRR(q) =

∑NG(q)
k=1

Rank(itemk)
NG(q) − 0.5− NG(q)

2

K(q) + 0.5− 0.5 ·NG(q)
(1.24)

The NMRR is in the range of [0, 1] and smaller values represent a better retrieval performance.
For example, for the query q, the ground truth items are Iq1, Iq2, · · · Iq10, that is NG(q) = 10.
The ideal result is that the top 10 retrievals are these ground truth items Iq1, Iq2, · · · Iq10, then
their retrieval ranks are Rank(Iq1) = 1, Rank(Iq2) = 2, · · · ,Rank(Iq10) = 10, respectively. So

the numerator in Eq. 1.24:
∑10

k=1
Rank(Iqk)

10 − 0.5− 10
2 = 0.

ANMRR is de�ned as the average NMRR over a range of queries, and is given by

ANMRR =
1
NQ

NQ∑
q=1

NMRR(q)

where NQ is the number of query items.
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1.5 Conclusion

In this chapter, some fundamental concepts used in shape-based image description and retrieval
have been introduced. First we have proposed an approach of contour equidistance normalization
and discussed some remarkable problems about this normalization. We have compared the nor-
malized precision and cost under di�erent contour normalization methods. Some common shape
parameters have been introduced: but these parameters representing certain shape geometric fea-
tures can only discriminate shapes with large di�erences, they are not suitable to be standalone
shape descriptors. We have introduced the usually used distance and similarity measure. Since
the perception of human does not hold in a metric distance, a simple elastic matching method
in non-metric space has also been presented in this section. Finally, the evaluation methods of
retrieval system performance were de�ned.

All these presented fundamental concepts cover shape normalization, simple geometric fea-
tures, similarity measure and evaluation methods. All of them construct the base of shape-based
feature extraction and similarity measure. In the next chapter, we will focus on the existing
algorithms of shape-based feature extraction and representation.



Chapter 2

Shape-based feature extraction and
representation

2.1 Introduction

Pattern recognition is the ultimate goal of most computer vision research. Shape feature extrac-
tion and representation are the bases of object recognition. It is also a research domain which
plays an important role in many applications ranging from image analysis and pattern recogni-
tion, to computer graphics and computer animation. The feature extraction stage produces a
representation of the content that is useful for shape matching. Usually the shape representation
is kept as compact as possible for the purposes of e�cient storage and retrieval and it integrates
perceptual features that allow the human brain to discriminate between shapes. E�cient shape
features must present some essential properties such as:

� identi�ability: shapes which are found perceptually similar by human have the same feature
di�erent from the others.

� translation, rotation and scale invariance: the location, rotation and scaling changing of
the shape must not a�ect the extracted features.

� a�ne invariance: the a�ne transform performs a linear mapping from 2D coordinates to
other 2D coordinates that preserves the "straightness" and "parallelism" of lines. A�ne
transform can be constructed using sequences of translations, scales, �ips, rotations and
shears. The extracted features must be as invariant as possible with a�ne transforms.

� noise resistance: features must be as robust as possible against noise, i.e., they must be
the same whichever be the strength of the noise in a give range that a�ects the pattern.

� occultation invariance: when some parts of a shape are occulted by other objects, the
feature of the remaining part must not change compared to the original shape.

� statistically independent: two features must be statistically independent. This represents
compactness of the representation.

� reliable: as long as one deals with the same pattern, the extracted features must remain
the same.

41
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In general, shape descriptor is some set of numbers that are produced to describe a given shape
feature. A descriptor attempts to quantify shape in ways that agree with human intuition (or
task-speci�c requirements). Good retrieval accuracy requires a shape descriptor to be able to
e�ectively �nd perceptually similar shapes from a database. Usually, the descriptors are in the
form of a vector. Shape descriptors should meet the following requirements:

� the descriptors should be as complete as possible to represent the content of the information
items.

� the descriptors should be represented and stored compactly. The size of descriptor vector
must not be too large.

� the computation of distance between descriptors should be simple; otherwise the execution
time would be too long.

So an e�cient shape descriptor should have the following properties: accessibility, large scope,
uniqueness and stability .

� accessibility describes how easy (or di�cult) it is to compute a shape descriptor in terms
of memory requirements and computation time.

� scope indicates the class of shapes that can be described by the method.

� uniqueness describes whether a one-to-one mapping exists between shapes and shape de-
scriptors.

� stability describes how stable a shape descriptor is to �small� changes in shape.

Shape feature extraction and representation plays an important role in the following categories
of applications:

� shape retrieval: searching for all shapes in a typically large database of shapes that are
similar to a query shape. Usually all shapes within a given distance from the query are
determined or the �rst few shapes that have the smallest distance.

� shape recognition and classi�cation: determining whether a given shape matches a model
su�ciently, or which of representative class is the most similar.

� shape alignment and registration: transforming or translating one shape so that it best
matches another shape, in whole or in part.

� shape approximation and simpli�cation: constructing a shape of fewer elements (points,
segments, triangles, etc.), that is still similar to the original.

Many shape description and similarity measurement techniques have been developed in the past.
A number of new techniques have been proposed in recent years. There are 3 main di�erent
classi�cation methods as follows:

� Contour-based methods and region-based methods [2]. This is the most common and
general classi�cation and it is proposed by MPEG-7. It is based on the use of shape
boundary points as opposed to shape interior points. Under each class, di�erent methods
are further divided into structural approaches and global approaches. This sub-class is
based on whether the shape is represented as a whole or represented by segments/sections
(primitives).
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� Space domain and transform domain. Methods in space domain match shapes on point
(or point feature) basis, while feature domain techniques match shapes on feature (vector)
basis.

� Information preserving (IP) and non-information preserving (NIP). IP methods allow an
accurate reconstruction of a shape from its descriptor, while NIP methods are only ca-
pable of partial ambiguous reconstruction. For object recognition purpose, IP is not a
requirement.

Various algorithms and methods are documented in a vast literatures. In this thesis, for sake
of application conveniences, we reclassify them according to the processing methods. The whole
hierarchy of the classi�cation is shown in Figure 2.1.
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Figure 2.1: An overview of shape description techniques

Without being complete, in the following chapter, we will describe and group a number of
these methods together.



44 CHAPTER 2. SHAPE-BASED FEATURE EXTRACTION AND REPRESENTATION

2.2 One-dimensional function for shape representation

The one-dimensional function which is derived from shape boundary coordinates is also often
called shape signature [38, 13]. The shape signature usually captures the perceptual feature of the
shape [39]. Complex coordinates, Centroid distance function, Tangent angle (Turning angles),
Curvature function, Area function, Triangle-area representation and Chord length function are
the commonly used shape signatures.

Shape signature can describe a shape all alone; it is also often used as a preprocessing to
other feature extraction algorithms, for example, Fourier descriptors, wavelet description. In this
section, the shape signatures are introduced.

2.2.1 Complex coordinates

A complex coordinates function is simply the complex number generated from the coordinates
of boundary points, Pn(x(n), y(n)), n ∈ [1, N ]:

z(n) = [x(n)− gx] + i[y(n)− gy]

where (gx, gy) is the centroid of the shape, given by Eq. 1.9.

2.2.2 Centroid distance function

The centroid distance function is expressed by the distance of the boundary points from the
centroid (gx, gy) (Eq. 1.9) of a shape

r(n) = [(x(n)− gx)2 + (y(n)− gy)2]1/2

Due to the subtraction of centroid, which represents the position of the shape, from boundary
coordinates, both complex coordinates and centroid distance representation are invariant to
translation.

2.2.3 Tangent angle

The tangent angle function at a point Pn(x(n), y(n)) is de�ned by a tangential direction of a
contour [40]:

θ(n) = θn = arctan
y(n)− y(n− w)
x(n)− x(n− w)

since every contour is a digital curve; w is a small window to calculate θ(n) more accurately.

Tangent angle function has two problems. One is noise sensitivity. To decrease the e�ect of
noise, a contour is �ltered by a low-pass �lter with appropriate bandwidth before calculating the
tangent angle function. The other is discontinuity, due to the fact that the tangent angle function
assumes values in a range of length 2π, usually in the interval of [−π, π] or [0, 2π]. Therefore θn
in general contains discontinuities of size 2π. To overcome the discontinuity problem, with an
arbitrary starting point, the cumulative angular function ϕn is de�ned as the angle di�erences
between the tangent at any point Pn along the curve and the tangent at the starting point P0

[41, 42]:

ϕ(n) = [θ(n)− θ(0)]
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In order to be in accordance with human intuition that a circle is �shapeless�, assume t =
2πn/N , then ϕ(n) = ϕ(tN/2π). A periodic function is termed as the cumulative angular deviant
function ψ(t) and is de�ned as

ψ(t) = ϕ(
N

2π
t)− t t ∈ [0, 2π]

N is the total number of contour points.
In [43], the authors proposed a method based on tangent angle. It is called tangent space

representation. A digital curve C simpli�ed by polygon evolution is represented in the tangent
space by the graph of a step function, where the x-axis represents the arc length coordinates
of points in C and the y-axis represents the direction of the line segments in the decomposition
of C. For example, �gure 2.2 shows a digital curve and its step function representation in the
tangent space.

Figure 2.2: Digital curve and its step function representation in the tangent space

2.2.4 Contour curvature

Curvature is a very important boundary feature for human to judge similarity between shapes. It
also has salient perceptual characteristics and has proven to be very useful for shape recognition
[44]. In order to use K(n) for shape representation, we quote the function of curvature, K(n),
from [45, 46] as:

K(n) =
ẋ(n)ÿ(n)− ẏ(n)ẍ(n)

(ẋ(n)2 + ẏ(n)2)3/2
(2.1)

Therefore, it is possible to compute the curvature of a planar curve from its parametric
representation. If n is the normalized arc-length parameter s, then Eq. 2.1 can be written as:

K(s) = ẋ(s)ÿ(s)− ẏ(s)ẍ(s) (2.2)

As given in Eq. 2.2, the curvature function is computed only from parametric derivatives,
and, therefore, it is invariant under rotations and translations. However, the curvature measure
is scale dependent, i.e., inversely proportional to the scale. A possible way to achieve scale
independence is to normalize this measure by the mean absolute curvature, i.e.,

K ′(s) =
K(s)

1
N

∑N
s=1 |K(s)|

where N is the number of points on the normalized contour.
When the size of the curve is an important discriminative feature, the curvature should be

used without the normalization; otherwise, for the purpose of scale-invariant shape analysis, the
normalization should be performed.

An approximate arc-length parametrization based on the centripetal method is given by the
following [46]:
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Let P =
∑N

n=1 dn be the perimeter of the curve and L =
∑N

n=1

√
dn, where dn is the

length of the chord between points pn and pn+1, n=1, 2, . . . , N-1. The approximate arc-length
parametrization relations:

s1 = 0;

sk = sk−1 +
P
√
dk−1

L , k = 2, 3, . . . , N .
Starting from an arbitrary point and following the contour clockwise, we compute the curva-

ture at each interpolated point using Eq. 2.2. Convex and concave vertices will imply negative
and positive values, respectively (the opposite is veri�ed for counterclockwise sense). Figure
2.3 is an example of curvature function. Clearly, as a descriptor, the curvature function can
distinguish di�erent shapes.

(a) Contours normalized to 128 points; the dots marked star are the starting points on the
contours; (b) curvature functions; the curvature is computed clockwise.

Figure 2.3: Curvature function

2.2.5 Area function

When the boundary points change along the shape boundary, the area of the triangle formed
by two successive boundary points and the center of gravity also changes. This forms an area
function which can be exploited as shape representation. Figure 2.4 shows an example. Let S(n)
be the area between the successive boundary points Pn, Pn+1 and center of gravity G.

(a) Original contour; (b) the area function of (a).

Figure 2.4: Area function

The area function is linear under a�ne transform. However, this linearity only works for
shape sampled at its same vertices.
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2.2.6 Triangle-area representation

The triangle-area representation (TAR) signature is computed from the area of the triangles
formed by the points on the shape boundary [47, 48]. The curvature of the contour point
(xn, yn) is measured using the TAR as follows.

For each three consecutive points Pn−ts(xn−ts , yn−ts), Pn(xn, yn), and Pn+ts(xn+ts , yn+ts),
where n ∈ [1, N ] and ts ∈ [1, N/2− 1], N is even. The signed area of the triangle formed by
these points is given by:

TAR(n, ts) =
1
2

∣∣∣∣∣∣
xn−ts yn−ts 1
xn yn 1
xn+ts yn+ts 1

∣∣∣∣∣∣ (2.3)

When the contour is traversed in counter clockwise direction, positive, negative and zero val-
ues of TAR mean convex, concave and straight-line points, respectively. Figure 2.5 demonstrates
these three types of the triangle areas and the complete TAR signature for the hammer shape.

Figure 2.5: Three di�erent types of the triangle-area values and the TAR signature for the
hammer shape

By increasing the length of the triangle sides, i.e., considering farther points, the function of
Eq. 2.3 will represent longer variations along the contour. The TARs with di�erent triangle sides
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can be regarded as di�erent scale space functions. The total TARs, ts ∈ [1, N/2− 1], compose
a multi-scale space TAR.

Figure 2.6 shows the multi-scale space TAR function and its dynamic space warping (DSW)
matching (cf. Subsection 1.3.2). In (a), the correspondent points on the model contour to these
on the query contour are consistent with human perception after DSW matching.

(a) The query contour (left) and the model contour (right); (b) the multi-scale space TAR
function of the model contour; (c) the multi-scale space TAR function of the query contour; (d)
dynamic space warping (DSW) matching table of the multi-scale space TAR functions (b) and
(c).

Figure 2.6: Dynamic space warping (DSW) matching

In [48], authors show that the multi-scale space TAR is relatively invariant to the a�ne
transform and robust to non-rigid transform. The computation complexity of the TAR stage is
O(N2).

2.2.7 Chord length function

The chord length function is derived from shape boundary without using any reference point.
For each boundary point p, its chord length function is the shortest distance between p and
another boundary point p' such that line pp' is perpendicular to the tangent vector at p [38].
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The chord length function is invariant to translation and it overcomes the biased reference
point (which means the centroid is often biased by boundary noise or defections) problems.
However, it is very sensitive to noise, there may be drastic burst in the signature of even smoothed
shape boundary.

2.2.8 Discussions

A shape signature represents a shape by a 1-D function derived from shape contour. To obtain
the translation invariant property, they are usually de�ned by relative values. To obtain the scale
invariant property, normalization is necessary. In order to compensate for orientation changes,
shift matching is needed to �nd the best matching between two shapes. Having regard to
occultation, Tangent angle, Contour curvature and Triangle-area representation have invariance
property. In addition, shape signatures are computationally simple.

Shape signatures are sensitive to noise, and slight changes in the boundary can cause large
errors in matching. Therefore, it is undesirable to directly describe shape using a shape signa-
ture. Further processing is necessary to increase its robustness and reduce the matching load.
For example, a shape signature can be simpli�ed by quantizing the signature into a signature
histogram, which is rotationally invariant.

2.3 Polygonal approximation

Polygonal approximation can be set to ignore the minor variations along the edge, and instead
capture the overall shape. This is useful because it reduces the e�ects of discrete pixelization
of the contour. In general, there are two methods to realize it. One is merging, the other is
splitting [49].

2.3.1 Merging methods

Merging methods add successive pixels to a line segment if each new pixel that is added doesn't
cause the segment to deviate too much from a straight line.

Distance threshold method

Choose one point as a starting point, on the contour, for each new point that we add, let a line
go from the starting point to this new point. Then, we compute the squared error for every point
along the segment/line. If the error exceeds some threshold, we keep the line from the start point
to the previous point and start a new line.

In practice, the most of practical error measures in use are based on distance between vertices
of the input curve and the approximation linear segments. The distance dk(i, j) from curve vertex
Pk = (xk, yk) to the corresponding approximation linear segments (Pi, Pj) is de�ned as follows
(cf. Figure 2.7):

dk(i, j) =
|(xj − xi)(yi − yk)− (xi − xk)(yj − yi)|√

(xj − xi)2 + (yj − yi)2
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Figure 2.7: Illustration of the distance from a point on the boundary to a linear segment

Tunneling method

If we have thick boundaries rather than single-pixel thick ones, we can still use a similar approach
called tunneling. Imagine that we're trying to lay straight rods along a curved tunnel, and that
we want to use as few as possible. We can start at one point and lay as long a straight rod as
possible. Eventually, the curvature of the �tunnel� won't let us go any further, so we lay another
rod and another until we reach the end.

Both the distance threshold and tunneling methods can do polygonal approximation e�-
ciently. However, the great disadvantage is that the position of starting point will a�ect greatly
the approximate polygon.

Polygon evolution

The basic idea of polygons evolution in [50] is very simple: in every evolution step, a pair of
consecutive line segments (the line segment is the line between two consecutive vertices) s1,s2 is
substituted with a single line segment joining the endpoints of s1 and s2.

The key property of this evolution is the order of the substitution. The substitution is done
according to a relevance measure K given by

K(s1, s2) =
β(s1, s2)l(s1)l(s2)
l(s1) + l(s2)

,

where β(s1, s2) is the turn angle at the common vertex of segments s1, s2 and l(α) is the length of
α, α = s1 or s2, normalized with respect to the total length of a polygonal curve. The evolution
algorithm is assuming that vertices which are surrounded by segments with a high value of
K(s1, s2) are important while those with a low value are not. Figure 2.8 is an example.

Figure 2.8: A few stages of polygon evolution according to a relevant measure



2.3. POLYGONAL APPROXIMATION 51

The curve evolution method achieves the task of shape simpli�cation, i.e., the process of
evolution compares the signi�cance of vertices of the contour based on a relevance measure.
Since any digital curve can be regarded as a polygon without loss of information (with possibly a
large number of vertices), it is su�cient to study evolutions of polygonal shapes for shape feature
extraction.

2.3.2 Splitting methods

Splitting methods work by �rst drawing a line from one point on the boundary to another. Then,
we compute the perpendicular distance from each point along the boundary segment to the line.
If this exceeds some threshold, we break the line at the point of greatest distance. We then
repeat the process recursively for each of the two new lines until we don't need to break any
more. See Figure 2.9 for an example.

Figure 2.9: Splitting methods for polygonal approximation

This is sometimes known as the ��t and split� algorithm. For a closed contour, we can �nd
the two points that lie farthest apart and �t two lines between them, one for one side and one
for the other. Then, we can apply the recursive splitting procedure to each side.

2.3.3 Discussions

Polygonal approximation technique can be used as a simple method for contour representation
and description. The polygon approximation have some interesting properties:

� it leads to simpli�cation of shape complexity with no blurring e�ects.

� it leads to noise elimination.

� although irrelevant features vanish after polygonal approximation, there is no dislocation
of relevant features.

� the remaining vertices on a contour do not change their positions after polygonal approxi-
mation.

Polygonal approximation technique can also be used as preprocessing method for further extract-
ing features from a shape.
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2.4 Spatial interrelation feature

Spatial interrelation feature describes the region or the contour of shape by the relation of their
pixels or curves. In general, the representation is done by using their geometric features: length,
curvature, relative orientation and location, area, distance and so on.

2.4.1 Adaptive grid resolution

The adaptive grid resolution (AGR) was proposed by [51]. In the AGR, a square grid that is
just big enough to cover the entire shape is overlaid on a shape. A resolution of the grid cells
varies from one portion to another according to the content of the portion of the shape. On the
borders or the detail portion on the shape, the higher resolution, i.e. the smaller grid cells, are
applied; on the other hand, in the coarse regions of the shape, lower resolution, i.e. the bigger
grid cells, are applied.

To guarantee rotation invariance, it needs to convert an arbitrarily oriented shape into a
unique common orientation. First, �nd the major axis of the shape. The major axis is the
straight line segment joining the two points P1 and P2 on the boundary farthest away from each
other. Then we rotate the shape so that its major axis is parallel to the x-axis. This orientation
is still not unique as there are two possibilities: P1 can be on the left or on the right. This
problem is solved by computing the centroid of the polygon and making sure that the centroid
is below the major axis, thus guaranteeing a unique orientation.

Let us now consider scale and translation invariance. We de�ne the bounding rectangle (BR)
of a shape as the rectangle with sides parallel to the x and y axes just large enough to cover the
entire shape (after rotation). Note that the width of the BR is equal to the length of the major
axis. To achieve scale invariance, we proportionally scale all shapes so that their BRs have the
same �xed width (pixels).

The method of computation of the AGR representation of a shape applies quad-tree decom-
position on the bitmap representation of the shape. The decomposition is based on successive
subdivision of the bitmap into four equal-size quadrants. If a bitmap-quadrant does not consist
entirely of part of shape, it is recursively subdivided into smaller and smaller quadrants until we
reach bitmap-quadrants, i.e., termination condition of the recursion is that the resolution reaches
that one prede�ned. Figure 2.10(a) is an example of AGR.

(a) Adaptive Grid Resolution (AGR) image; (b) quad-tree decomposition of AGR.

Figure 2.10: Adaptive resolution representations

To represent the AGR image, in [51], quad-tree method is applied. Each node in the quad-
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tree covers a square region of the bitmap. The level of the node in the quad-tree determines
the size of the square. The internal nodes (shown by gray circles) represent �partially covered�
regions; the leaf nodes shown by white boxes represent regions with all 0s while the leaf nodes
shown by black boxes represent regions with all 1s. The �all 1s� regions are used to represent the
shape, Figure 2.10(b). Each rectangle can be described by 3 numbers: its center C = (Cx, Cy)
and its size (i.e. side length) S. So each shape can be mapped to a point in 3n-dimensional
space (n is the number of the rectangles occupied by the shape region).

Due to the fact that the normalization before computing AGR, AGR representation is in-
variant under rotation, scaling and translation. It is also computationally simple.

Figure 2.11: Flowchart of shape divided by bounding box
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2.4.2 Bounding box

Bounding box computes homeomorphisms between 2D lattices and its shapes. Unlike many
other methods, this mapping is not restricted to simply connected shapes but applies to arbitrary
topologies [52].

To make bounding box representation invariant to rotation, a shape should be normalized
by the same method as for AGR (Subsection 2.4.1) before further computation. After the
normalization, a shape S is a set of L pixels, S =

{
pk ∈ R2|k = 1, 2, · · · , L

}
and also write

|S| = L. The minimum bounding rectangle or bounding box of S is denoted by B(S); its width
and height, are called w and h, respectively.

Figure 2.11 shows the algorithm �owchart based on bounding box that divides a shape S into
m (row)× n (column) parts. The output B is a set of bounding boxes.

An illustration of this procedure and its result is shown in Figure 2.12.

(a) Compute the bounding box B(S) of a pixel set S ; (b) subdivide S into n vertical slices;
(c) compute the bounding box B(Sj) of each resulting pixel set Sj , where j = 1, 2, · · · , n; (d)
subdivide each B(Sj) into m horizontal slices; (e) compute the bounding box B(Sij) of each
resulting pixel set Sij , where i = 1, 2, · · · ,m.

Figure 2.12: The �ve steps of bounding box splitting

To represent each bounding box, one method is that partial points of the set of bounding
boxes are sampled. Figure 2.13 shows an example.

Figure 2.13: A sample points on lattice and examples of how it is mapped onto di�erent shapes

If v = (vx, vy)T denotes the location of the bottom left corner of the initial bounding box of

S, and uij = (uijx , u
ij
y ) denotes the center of sample box Bij , then the coordinates(

µijx
µijy

)
=

 (
uijx − vx

)
/w(

uijy − vy
)
/h


provide a scale invariant representation of S. Sampling k points of an m × n lattice therefore
allows to represent S as a vector

r =
[
µi(1)j(1)
x , µi(1)j(1)

y , · · · , µi(k)j(k)x , µi(k)j(k)y

]
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where i(α) < i(β) if α < β and likewise for the index j.

Bounding box representation is a simple computational geometry approach to compute home-
omorphisms between shapes and lattices. It is storage and time e�cient. It is invariant to
rotation, scaling and translation and also robust against noisy shape boundaries.

2.4.3 Convex hull

The approach is that the shape is represented by a serie of convex hulls. The convex region
has be de�ned in Sebsection 1.2.8. The convex hull H of a region is its smallest convex region
including it. In other words, for a region S, the convex hull conv(S) is de�ned as the smallest
convex set in R2 containing S. In order to decrease the e�ect of noise, common practice is to
�rst smooth a boundary prior to partitioning.

The representation of the shape may be obtained by a recursive process which results in a
concavity tree. See Figure 2.14. Each concavity can be described by its area, chord (the line
connects the cut of the concavity) length, maximum curvature, distance from maximum curvature
point to the chord. The matching between shapes becomes a string or a graph matching.

(a) Convex hull and its concavities; (b) concavity tree representation of convex hull.

Figure 2.14: Illustrates recursive process of convex hull

Convex hull representation has a high storage e�ciency. It is invariant to rotation, scaling and
translation and also robust against noisy shape boundaries (after �ltering). However, extracting
the robust convex hulls from the shape is where the shoe pinches. [53, 54] and [55] gave the
boundary tracing method and morphological methods to achieve convex hulls respectively.

2.4.4 Chain code

Chain code is a common approach for representing di�erent rasterized shapes as line-drawings,
planar curves, or contours. Chain code describes an object by a sequence of unit-size line segments
with a given orientation [8]. Chain code can be viewed as a connected sequence of straight-line
segments with speci�ed lengths and directions [56].

Basic chain code

Freeman [57] �rst introduced a chain code that describes the movement along a digital curve
or a sequence of border pixels by using so-called 8-connectivity or 4-connectivity. The direction
of each movement is encoded by the numbering scheme {i|i = 0, 1, 2, · · · , 7} or {i|i = 0, 1, 2, 3}
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denoting a counter-clockwise angle of 45◦ × i or 90◦ × i regarding the positive x -axis, as shown
in Figure 2.15.

(a) Chain code in eight directions (8-connectivity); (b) chain code in four directions (4-
connectivity).

Figure 2.15: Basic chain code direction

By encoding relative, rather than absolute position of the contour, the basic chain code is
translation invariant. We can match boundaries by comparing their chain codes, but with the two
main problems: 1) it is very sensitive to noise; 2) it is not rotationally invariant. To solve these
problems, di�erential chain codes (DCC) and resampling chain codes (RCC) were proposed.

Di�erential chain codes (DCC) is encoding di�erences in the successive directions. This can
be computed by subtracting each element of the chain code from the previous one and taking
the result modulo n, where n is the connectivity. This di�erencing allows us to rotate the object
in 90-degree increments and still compare the objects, but it doesn't get around the inherent
sensitivity of chain codes to rotation on the discrete pixel grid.

Re-sampling chain codes (RCC) consists in re-sampling the boundary onto a coarser grid
and then computing the chain codes of this coarser representation. This smoothes out small
variations and noise but can help compensate for di�erences in chain-code length due to the
pixel grid.

Vertex chain code (VCC)

To improve chain code e�ciency, in [56] the authors proposed a chain code for shape repre-
sentation according to vertex chain code (VCC). An element of the VCC indicates the number
of cell vertices, which are in touch with the bounding contour of the shape in that element's
position. Only three elements �1�, �2� and �3� can be used to represent the bounding contour of
a shape composed of pixels in the rectangular grid. Figure 2.16 shows the elements of the VCC
to represent a shape.

Figure 2.16: Vertex chain code
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Chain code histogram (CCH)

Iivarinen and Visa derive a chain code histogram (CCH) for object recognition [58]. The CCH
is computed as hi = ]{i∈M, M is the range of chain code}, ]{α} denotes getting the number of
the value α.

The CCH re�ects the probabilities of di�erent directions present in a contour.
If the chain code is used for matching it must be independent of the choice of the starting

pixel in the sequence. The chain code usually has high dimensions and is sensitive to noise and
any distortion. So, except the CCH, the other chain code approaches are often used as contour
representations, but is not as contour attributes.

2.4.5 Smooth curve decomposition

In [5], the authors proposed smooth curve decomposition as shape descriptor. The segment
between the curvature zero-crossing points from a Gaussian smoothed boundary are used to
obtain primitives, called tokens. The feature for each token is its maximum curvature and its
orientation. In Figure 2.17, the �rst number in the parentheses is its maximum curvature and
the second is its orientation.

(a) (b)

(a) θ is the orientation of this token; (b) an example of smooth curve decomposition.

Figure 2.17: Smooth curve decomposition

The similarity between two tokens is measured by the weighted Euclidean distance. The
shape similarity is measured according to a non-metric distance. Shape retrieval based on token
representation has shown to be robust in the presence of partially occulted objects, translation,
scaling and rotation.

2.4.6 Symbolic representation based on the axis of least inertia

In [59], a method of representing a shape in terms of multi-interval valued type data is proposed.
The proposed shape representation scheme extracts symbolic features with reference to the axis
of least inertia, which is unique to the shape. The axis of least inertia (ALI) of a shape is de�ned
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as the line for which the integral of the square of the distances to points on the shape boundary
is a minimum (cf. Subsection 1.2.2).

Once the ALI is calculated, each point on the shape curve is projected on to ALI. The two
farthest projected points say E1 and E2 on ALI are chosen as the extreme points as shown in
Figure 2.18. The Euclidean distance between these two extreme points de�nes the length of ALI.
The length of ALI is divided uniformly by a �xed number n; the equidistant points are called
feature points. At every feature point chosen, an imaginary line perpendicular to the ALI is
drawn. It is interesting to note that these perpendicular lines may intersect the shape curve at
several points. The length of each imaginary line in shape region is computed and the collection
of these lengths in an ascending order de�nes the value of the feature at the respective feature
point.

Figure 2.18: Symbolic features based axis of least inertia

Let S be a shape to be represented and n the number of feature points chosen on its ALI. Then
the feature vector F representing the shape S, is in general of the form F = [f1 , f2 , ..., ft , ..., fn ],
where ft = {dt1 , dt2 , · · · dtk} for some tk ≥ 1.

The feature vector F representing the shape S is invariant to image transformations viz.,
uniform scaling, rotation, translation and �ipping (re�ection).

2.4.7 Beam angle statistics

Beam angle statistics (BAS) shape descriptor is based on the beams originated from a boundary
point, which are de�ned as lines connecting that point with the rest of the points on the boundary
[60].

Let B be the shape boundary. B = {P1, P2, · · · , PN} is represented by a connected sequence
of points, Pi = (xi, yi), i = 1, 2, · · · , N, where N is the number of boundary points. For each

point Pi, the beam angle between the forward beam vector Vi+k =
−−−−→
PiPi+k and backward beam

vector Vi−k =
−−−−→
PiPi−k in the k th order neighborhood system, is then computed as (see Figure

2.19, k=5 for example)

Ck(i) = (θVi+k − θVi−k)

where θVi+k = arctan
yi+k − yi
xi+k − xi

, θVi−k = arctan
yi−k − yi
xi−k − xi
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Figure 2.19: Beam angle at the neighborhood system 5 for a boundary point

(a) Original contour; (b) noisy contour; (c), (d) and (e) are the BAS plot 1st, 2nd and 3rd moment,
respectively.

Figure 2.20: The BAS descriptor for original and noisy contour

For each boundary point Pi of the contour, the beam angle Ck(i) can be taken as a random
variable with the probability density function P (Ck(i)). Therefore, beam angle statistics (BAS),
may provide a compact representation for a shape descriptor. For this purpose, mth moment of
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the random variable Ck(i) is de�ned as follows:

E[Cm(i)] =
(N/2)−1∑
k=1

Cmk (i) · Pk(Ck(i)) m = 1, 2, · · ·

In the above formula E indicates the expected value. See Figure 2.20 as an example.
Beam angle statistics shape descriptor captures the perceptual information using the statisti-

cal information based on the beams of individual points. It gives globally discriminative features
to each boundary point by using all other boundary points. BAS descriptor is also quite stable
under distortions and is invariant to translation, rotation and scaling.

2.4.8 Shape matrix

Shape matrix descriptor is an M × N matrix to present a region shape. There are two basic
modes of shape matrix: Square model [21] and Polar model [20].

Square model shape matrix

Square model of shape matrix, also called grid descriptor [61, 21], is constructed by the following:
for the shape S, construct a square centered on the center of gravity G of S ; the size of each side
is equal to 2L, L is the maximum Euclidean distance from G to a point M on the boundary of
the shape. Point M lies in the center of one side and GM is perpendicular to this side.

Divide the square into N ×N subsquares and denote Skj , k, j = 1, · · · , N , the subsquares of
the constructed grid. De�ne the shape matrix SM = [Bkj ],

Bkj =

{
1⇔ µ(Skj ∩ S) ≥ µ(Skj)/2
0 otherwise

where µ(F ) is the area of the planar region F. Figure 2.21 shows an example of square model of
shape matrix.

(a) Original shape region; (b) square model shape matrix; (c) reconstruction of the shape region.

Figure 2.21: Square model shape matrix

For a shape with more than one maximum radius, it can be described by several shape
matrices and the similarity distance is the minimum distance between these matrices. In [21],
authors gave a method to choose the appropriate shape matrix dimension.
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Polar model shape matrix

Polar model of shape matrix is constructed by the following steps. Let G be the center of gravity
of the shape, and GA is the maximum radius of the shape. Using G as center, draw n circles
with radii equally spaced. Starting from GA, and counterclockwise, draw radii that divide each
circle into m equal arcs. The values of the matrix are same as in square model shape matrix.
Figure 2.22 shows an example, where n = 5 and m =12. Its polar model of shape matrix is

PSM =


1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1
1 0 0 0 0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0 0 0 0 0



Figure 2.22: Polar model shape

Polar model of shape matrix is simpler than square model because it only uses one matrix
no matter how many maximum radii are on the shape. However, since the sampling density is
not constant with the polar sampling raster, a weighed shape matrix is necessary. For the detail,
refer to [20].

The shape matrix exists for every compact shape. There is no limit to the scope of the shapes
that the shape matrix can represent. It can describe even shapes with holes. Shape matrix is
also invariant under translation, rotation and scaling of the object. The shape of the object can
be reconstructed from the shape matrix; the accuracy is given by the size of the grid cells.

2.4.9 Shape context

In [22], the shape context has been shown to be a powerful tool for object recognition tasks. It
is used to �nd corresponding features between model and image.

Shape contexts analysis begins by taking N samples from the edge elements on the shape.
These points can be on internal or external contours. Consider the vectors originating from
a point to all other sample points on the shape. These vectors express the appearance of the
entire shape relative to the reference point. This descriptor is the histogram of the relative polar
coordinates of all other points:
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hi(k) = ] {Q 6= Pi : (Q− Pi) ∈ bin(k)}

An example is shown in Figure 2.23. (c) is the diagram of log-polar histogram that has 5 bins for
the polar direction and 12 bins for the angular direction. The histogram of a point Pi is formed
by the following: putting the center of the histogram bins diagram on the point Pi, each bin
of this histogram contains a count of all other sample points on the shape falling into that bin.
Note on this �gure, the shape contexts (histograms) for the points marked by ◦ (in (a)), � (in
(b)) and / (in (a)) are shown in (d), (e) and (f), respectively. It is clear that the shape contexts
for the points marked by ◦ and �, which are computed for relatively similar points on the two
shapes, have visual similarity. By contrast, the shape context for / is quite di�erent from the
others. Obviously, this descriptor is a rich description, since as N gets large, the representation
of the shape becomes exact.

(a) and (b) Sampled edge points of two shapes; (c) diagram of log-polar histogram bins used in
computing the shape contexts; (d), (e) and (f) shape contexts for reference sample points marked
by ◦, � and / in (a) and (b), respectively. (Dark=large value).

Figure 2.23: Shape context computation and graph matching

Shape context matching is often used to �nd the corresponding points on two shapes. It
has been applied to a variety of object recognition problems [22, 62, 63, 64]. The shape context
descriptor has the following invariance properties:

� translation: the shape context descriptor is inherently translation invariant as it is based
on relative point locations.

� scaling: for clutter-free images the descriptor can be made scale invariant by normalizing
the radial distances by the mean (or median) distance between all point pairs.

� rotation: it can be made rotation invariant by rotating the coordinate system at each point
so that the positive x-axis is aligned with the tangent vector.
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� shape variation: the shape context is robust against slight shape variations.

� few outliers: points with a �nal matching cost larger than a threshold value are classi�ed
as outliers. Additional `dummy' points are introduced to decrease the e�ects of outliers.

2.4.10 Chord distribution

The basic idea of chord distribution is to calculate the lengths of all chords in the shape (all
pair-wise distances between boundary points) and to build a histogram of their lengths and
orientations [65]. The �lengths� histogram is invariant to rotation and scales linearly with the
size of the object. The �angles� histogram is invariant to object size and shifts relative to object
rotation. Figure 2.24 gives an example of chord distribution.

(a) Original contour; (b) chord lengths histogram; (c) chord angles histogram (each stem covers
3 degrees).

Figure 2.24: Chord distribution

2.4.11 Shock graphs

Shock graphs is a descriptor based on the medial axis. The medial axis is the most popular
that has been proposed as a useful shape abstraction tool for the representation and modeling of
animate shapes. Skeleton and medial axes have been extensively used for characterizing objects
satisfactorily using structures that are composed of line or arc patterns. Medial axis is an image
processing operation which reduces input shapes to axial stick-like representations. It is as the
loci of centers of bi-tangent circles that �t entirely within the foreground region being considered.
Figure 2.25 illustrates the medial axis for a rectangular shape.

Figure 2.25: Medial axis of a rectangle de�ned in terms of bi-tangent circles

We notice that the radius of each circle is variable. This variable is a function of the loci of
points on the medial axis. We call this function as the radius function.

A shock graph is a shape abstraction that decomposes a shape into a set of hierarchically
organized primitive parts. Siddiqi and Kimia de�ne the concept of a shock graph [66] as an
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abstraction of the medial axis of a shape onto a directed acyclic graph (DAG). Shock segments
are curve segments of the medial axis with monotonic �ow, and give a more re�ned partition of
the medial axis segments. Figure 2.26 is for example.

Figure 2.26: Shock segments

The skeleton points are �rst labeled according to the local variation of the radius function
at each point. Shock graph can distinguish the shapes but the medial axis cannot. Figure 2.27
shows two examples of shapes and their shock graphs.

Figure 2.27: Examples of shapes and their shock graphs

To calculate the distance between two shock graphs, in [67], the authors employ a polynomial-
time edit-distance algorithm. It shows this algorithm has the good performances for boundary
perturbations, articulation and deformation of parts, segmentation errors, scale variations, view-
point variations and partial occultation. However the authors also indicate the computation
complexity is very high. The matching shape typically takes about 3-5 minutes on an SGI
Indigo II (195 MHz), which limits the number of shapes that can be practically matched.

2.4.12 Discussions

Spacial feature descriptor is a direct method to describe a shape. These descriptors can apply the
theory of tree-based (Adaptive grid resolution and Convex hull), statistic (Chain code histogram,
Beam angle statistics, Shape context and Chord distribution) or syntactic analysis (Smooth curve
decomposition) to extract or represent the feature of a shape. This description scheme not only
compresses the data of a shape, but also provides a compact and meaningful form to facilitate
further recognition operations.

2.5 Moments

The concept of moment in mathematics evolved from the concept of moment in physics. It is an
integrated theory system. For both contour and region of a shape, one can use moment's theory
to analyze the object.
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2.5.1 Boundary moments

Boundary moments, analysis of a contour, can be used to reduce the dimension of boundary
representation [55]. Assume shape boundary has been represented as a 1-D shape representation
z(i) as introduced in Section 2.2, the r th moment mr and central moment µr can be estimated
as

mr =
1
N

N∑
i=1

[z(i)]r and µr =
1
N

N∑
i=1

[z(i)−m1]r

where N is the number of boundary points.
The normalized moments m̄r = mr/(µ2)r/2and µ̄r = µr/(µ2)r/2 are invariant to shape trans-

lation, rotation and scaling. Less noise-sensitive shape descriptors can be obtained from

F1 =
(µ2)1/2

m1
, F2 =

µ3

(µ2)3/2
and F3 =

µ4

(µ2)2
,

The other boundary moments method treats the 1-D shape feature function z(i) as a random
variable v and creates a K bins histogram p(vi) from z(i). Then, the r th central moment is
obtained by

µr =
K∑
i=1

(vi −m)r p(vi) and m =
K∑
i=1

vip(vi)

The advantage of boundary moment descriptors is that it is easy to implement. However, it is
di�cult to associate higher order moments with physical interpretation.

2.5.2 Region moments

Among the region-based descriptors, moments are very popular. These include invariant mo-
ments, Zernike moments, Radial Chebyshev moments, etc.

The general form of a moment function mpq of order (p+ q) of a shape region can be given
as:

mpq =
∑
x

∑
y

Ψpq(x, y)f(x, y) p, q = 0, 1, 2 · · ·

where Ψpq is known as the moment weighting kernel or the basis set ; f(x, y) is the shape region
Eq. 1.1.

Invariant moments (IM)

Invariant moments (IM) are also called geometric moment invariants. Geometric moments, are
the simplest of the moment functions with basis Ψpq = xpyq, while complete, is not orthogonal
[57]. Geometric moment function mpq of order (p+ q) is given as:

mpq =
∑
x

∑
y

xpyqf(x, y) p, q = 0, 1, 2 · · ·

The geometric central moments, which are invariant to translation, are de�ned as:

µpq =
∑
x

∑
y

(x− x̄)p (y − ȳ)q f(x, y) p, q = 0, 1, 2 · · ·
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where x̄ = m10/m00 and ȳ = m01/m00

A set of 7 invariant moments (IM) are given by [57]:

φ1 = η20 + η02

φ2 = (η20 − η02)2 + 4η2
11

φ3 = (η30 − 3η12)2 + (3η21 − η03)2

φ4 = (η30 + η12)2 + (η21 + η03)2

φ5 = (η30 − 3η12)(η30 + η12)
[
(η30 + η12)2 − 3(η21 + η03)2

]
+ (3η21 − η03)(η21 + η03)

·
[
3(η30 + η12)2 − (η21 + η03)2

]
φ6 = (η20 − η02)

[
(η30 + η12)2 − (η21 + η03)2

]
+ 4η2

11(η30 + η12)(η21 + η03)
φ7 = (3η21 − η03)(η30 + η12)

[
(η30 + η12)2 − 3(η21 + η03)2

]
+ (3η12 − η03)(η21 + η03)

·
[
3(η30 + η12)2 − (η21 + η03)2

]
where ηpq = µpq/µ

γ
00 and γ = 1 + (p+ q)/2 for p+ q = 2, 3, · · ·

IM are computationally simple. Moreover, they are invariant to rotation, scaling and trans-
lation. However, they have several drawbacks [10]:

� information redundancy: since the basis is not orthogonal, these moments su�er from a
high degree of information redundancy.

� noise sensitivity: higher-order moments are very sensitive to noise.

� large variation in the dynamic range of values: since the basis involves powers of p and q,
the moments computed have large variation in the dynamic range of values for di�erent
orders. This may cause numerical instability when the image size is large.

Algebraic moment invariants

The algebraic moment invariants are computed from the �rst m central moments and are given
as the eigenvalues of prede�ned matrices, M[j,k], whose elements are scaled factors of the central
moments [68]. The algebraic moment invariants can be constructed up to arbitrary order and
are invariant to a�ne transformations. However, algebraic moment invariants performed either
very well or very poorly on the objects with di�erent con�guration of outlines.

Zernike moments (ZM)

Zernike Moments (ZM) are orthogonal moments [10]. The complex Zernike moments are derived
from orthogonal Zernike polynomials:

Vnm(x, y) = Vnm(r cos θ, sin θ) = Rnm(r) exp(jmθ)

where Rnm(r)is the orthogonal radial polynomial:

Rnm(r) =
(n−|m|)/2∑

s=0

(−1)s
(n− s)!

s!×
(
n−2s+|m|

2

)
!
(
n−2s−|m|

2

)
!
rn−2s

n = 0, 1, 2, · · · ; 0 ≤ |m| ≤ n; and n− |m| is even.
Zernike polynomials are a complete set of complex valued functions orthogonal over the unit

disk, i.e., x2 + y2 ≤ 1. The Zernike moment of order n with repetition m of shape region f(x, y)
(Eq. 1.1) is given by:



2.5. MOMENTS 67

Znm =
n+ 1
π

∑
r

∑
θ

f(r cos θ, r sin θ) ·Rnm(r) · exp(jmθ) r ≤ 1

Zernike moments (ZM) have the following advantages [69]:

� rotation invariance: the magnitudes of Zernike moments are invariant to rotation.

� robustness: they are robust to noise and minor variations in shape.

� expressiveness: since the basis is orthogonal, they have minimum information redundancy.

However, the computation of ZM (in general, continuous orthogonal moments) pose several
problems:

� coordinate space normalization: the image coordinate space must be transformed to the
domain where the orthogonal polynomial is de�ned (unit circle for the Zernike polynomial).

� numerical approximation of continuous integrals: the continuous integrals must be approx-
imated by discrete summations. This approximation not only leads to numerical errors in
the computed moments, but also severely a�ects the analytical properties such as rotational
invariance and orthogonality.

� computational complexity: computational complexity of the radial Zernike polynomial
increases as the order becomes large.

Radial Chebyshev moments (RCM)

The radial Chebyshev moment of order p and repetition q is de�ned as [70]:

Spq =
1

2πρ(p,m)

m−1∑
r=0

2π∑
θ=0

tp(r) · exp(−jqθ) · f(r, θ)

where tp(r) is the scaled orthogonal Chebyshev polynomials for an image of size N ×N :
t0(x) = 1
t1(x) = (2x−N + 1)/N

tp(x) =
(2p− 1)t1(x)tp−1(x)− (p− 1)

{
1− (p− 1)2

N2

}
tp−2(x)

p
, p > 1

ρ(p,N) is the squared-norm:

ρ(p,N) =
N

(
1− 1

N2

)(
1− 22

N2

)
· · ·
(

1− p2

N2

)
2p+ 1

p = 0, 1, · · · , N − 1

and m = (N/2) + 1.
The mapping between (r, θ) and image coordinates (x, y) is given by:

x =
rN

2(m− 1)
cos(θ) +

N

2

y =
rN

2(m− 1)
sin(θ) +

N

2
Compared to Chebyshev moments, radial Chebyshev moments possess rotational invariance

property.
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2.5.3 Discussions

Besides the previous moments, there are other moments for shape representation, for exam-
ple, homocentric polar-radius moment [71], orthogonal Fourier-Mellin moments (OFMMs) [72],
pseudo-Zernike Moments [73], etc. The study shows that the moment-based shape descriptors
are usually concise, robust and easy to compute. It is also invariant to scaling, rotation and trans-
lation of the object. However, because of their global nature, the disadvantage of moment-based
methods is that it is di�cult to correlate high order moments with a shape's salient features.

2.6 Scale space approaches

In scale space theory a curve is embedded into a continuous family {Γσ : σ ≥ 0} of gradually
simpli�ed versions. The main idea of scale spaces is that the original curve Γ = Γ0 should get
more and more simpli�ed, and so small structures should vanish as parameter σ increases. Thus
due to di�erent scales (values of σ), it is possible to separate small details from relevant shape
properties. The ordered sequence {Γσ : σ ≥ 0} is referred to as evolution of Γ. Scale-spaces �nd
wide application in computer vision, in particular, due to smoothing and elimination of small
details.

A lot of shape features can be analyzed in scale-space theory to get more information about
shapes. Here we introduced 2 scale-space approaches: curvature scale-space (CSS) and intersec-
tion points map (IPM).

2.6.1 Curvature scale-space

The curvature scale-space (CSS) method, proposed by F. Mokhtarian in 1988, was selected as
a contour shape descriptor for MPEG-7. This approach is based on multi-scale representation
and curvature to represent planar curves. For convenience, we copy the nature parametrization
equation (Eq. 1.2) as following:

Γ(µ) = (x(µ), y(µ)) (2.4)

An evolved version of that curve is de�ned by

Γσ(µ) = (X(µ, σ), Y (µ, σ))

where X(µ, σ) = x(µ) ∗ g(µ, σ) and Y (µ, σ) = y(µ) ∗ g(µ, σ), ∗ is the convolution operator, and
g(µ, σ) denotes a Gaussian �lter with standard deviation σ de�ned by

g(µ, σ) =
1

σ
√

2π
exp(

−µ2

2σ2
)

Functions X(µ, σ) and Y (µ, σ) are given explicitly by

X(µ, σ) =
ˆ ∞
−∞

x(v)
1

σ
√

2π
exp(

−(µ− v)2

2σ2
)dv

Y (µ, σ) =
ˆ ∞
−∞

y(v)
1

σ
√

2π
exp(

−(µ− v)2

2σ2
)dv

The curvature of is given by



2.6. SCALE SPACE APPROACHES 69

k(µ, σ) =
Xµ(µ, σ)Yµµ(µ, σ)−Xµµ(µ, σ)Yµ(µ, σ)

(Xµ(µ, σ)2 − Yµ(µ, σ)2)3/2

where

Xµ(µ, σ) =
∂

∂µ
(x(µ) ∗ g(µ, σ)) = x(µ) ∗ gµ(µ, σ)

Xµµ(µ, σ) =
∂2

∂µ2
(x(µ) ∗ g(µ, σ)) = x(µ) ∗ gµµ(µ, σ)

Yµ(µ, σ) =
∂

∂µ
(y(µ) ∗ g(µ, σ)) = y(µ) ∗ gµ(µ, σ)

Yµµ(µ, σ) =
∂2

∂µ2
(y(µ) ∗ g(µ, σ)) = y(µ) ∗ gµµ(µ, σ)

Note that σ is also referred to as a scale parameter. The process of generating evolved versions
of Γσ as σ increases from 0 to ∞ is referred to as the evolution of Γσ. This technique is suitable
for removing noise and smoothing a planar curve as well as gradual simpli�cation of a shape.

The function de�ned by k(µ, σ) = 0 is the CSS image of Γ. Figure 2.28 is a CSS image
examples.

(a)

(b)

(a) Evolution of Africa: from left to right σ = 0(original), σ = 4, σ = 8 and σ = 16, respectively;
(b) CSS image of Africa.

Figure 2.28: Curvature scale-space image

The representation of CSS is the maxima of CSS contour of an image. Many methods for
representing the maxima of CSS exist in the literatures [74, 75, 46] and the CSS technique has
been shown to be robust contour-based shape representation technique. The basic properties of
the CSS representation are as follows:

� it captures the main features of a shape, enabling similarity-based retrieval;
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� it is robust to noise, changes in scale and orientation of objects;

� it is compact, reliable and fast;

� It retains the local information of a shape. Every concavity or convexity on the shape has
its own corresponding contour on the CSS image.

Although CSS has a lot of advantages, it does not always give results in accordance with human
vision system. The main drawbacks of this description are due to the problem of shallow concav-
ities/convexities on a shape. It can be shown that the shallow and deep concavities/convexities
may create the same large contours on the CSS image. In [76, 77], the authors gave some methods
to alleviate these e�ects.

2.6.2 Intersection points map

Similarly to the CSS, many methods also use a Gaussian kernel to progressively smooth the curve
relatively to the varying bandwidth. In [78], the authors proposed a new algorithm, intersection
points map (IPM), based on this principle, instead of characterizing the curve with its curvature
involving 2nd order derivatives, it uses the intersection points between the smoothed curve and
the original. As the standard deviation of the Gaussian kernel increases, the number of the
intersection points decreases. By analyzing these remaining points, features for a pattern can
be de�ned. Since this method deals only with curve smoothing, it needs only the convolution
operation in the smoothing process. So this method is faster than the CSS one with equivalent
performances. Figure 2.29 is an example of IPM.

(a) An original contour; (b) an IPM image in the (u, σ) plane. The IPM points indicated by
(1)�(6) refer to the corresponding intersection points in (a).

Figure 2.29: Example of the IPM

The IPM pattern can be identi�ed regardless of its orientation, translation and scale change.
It is also resistant to noise for a range of noise energy. The main weakness of this approach is
that it fails to handle occulted contours and those having undergone a non-rigid deformation.

2.6.3 Discussions

As multi-resolution analysis in signal processing, scale-space theory can obtain abundant infor-
mation about a contour with di�erent scales. In scale-space, global pattern information can
be interpreted from higher scales, while detailed pattern information can be interpreted from
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lower scales. Scale-space algorithm bene�t from the boundary information redundancy in the
new image, making it less sensitive to errors in the alignment or contour extraction algorithms.
The great advantages are the high robustness to noise and the great coherence with human
perception.

2.7 Shape transform domains

The transform domain class includes methods which are formed by the transform of the detected
object or the transform of the whole image. Transforms can therefore be used to characterize
the appearance of images. The shape feature is represented by the all or partial coe�cients of a
transform.

2.7.1 Fourier descriptors

Although, Fourier descriptor (FD) is a 40-year-old technique, it is still considered as a valid
description tool. The shape description and classi�cation using FD either in contours or regions
are simple to compute, robust to noise and compact. It has many applications in di�erent areas.

One-dimensional Fourier descriptors

In general, Fourier descriptor (FD) is obtained by applying Fourier transform on a shape signa-
ture that is a one-dimensional function which is derived from shape boundary coordinates (cf.
Section 2.2). The normalized Fourier transformed coe�cients are called the Fourier descriptor of
the shape. FD derived from di�erent signatures has signi�cant di�erent performance on shape
retrieval. As shown in [38, 75], FD derived from centroid distance function r(t) outperforms
FD derived from other shape signatures in terms of overall performance. The discrete Fourier
transform of r(t) is then given by

an =
1
N

N−1∑
t=0

r(t)exp
(
−j2πnt
N

)
, n = 0, 1, · · · , N − 1

Since the centroid distance function r(t) is only invariant to rotation and translation, the
acquired Fourier coe�cients have to be further normalized so that they are scaling and start
point independent shape descriptors. From Fourier transform theory, the general form of the
Fourier coe�cients of a contour centroid distance function r(t) transformed through scaling and
change of start point from the original function r(t)(o) is given by

an = exp(jnτ) · s · a(o)
n

where an and a
(o)
n are the Fourier coe�cients of the transformed shape and the original shape,

respectively, τ is the angles incurred by the change of start point; s is the scale factor. Now
considering the following expression:

bn =
an
a1

=
exp(jnτ) · s · a(o)

n

exp(jτ) · s · a(o)
1

=
a

(o)
n

a
(o)
1

exp[j(n− 1)τ ] = b(o)n exp[j(n− 1)τ ]

where bn and b
(o)
n are the normalized Fourier coe�cients of the transformed shape and the original

shape, respectively. If we ignore the phase information and only use magnitude of the coe�cients,
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then |bn| and
∣∣∣b(o)n ∣∣∣ are the same. In other words, |bn| is invariant to translation, rotation, scaling

and change of start point.

The set of magnitudes of the normalized Fourier coe�cients of the shape {|bn| , 0 < n < N}
are used as shape descriptors, denoted as

{FDn, 0 < n < N} .

One-dimensional FD has several nice characteristics such as simple derivation, simple nor-
malization and simple to do matching. As indicated by [75], for e�cient retrieval, 10 FDs are
su�cient for shape description.

Region-based Fourier descriptor

The region-based FD is referred to as generic FD (GFD), which can be used for general appli-
cations. Basically, GFD is derived by applying a modi�ed polar Fourier transform (MPFT) on
shape image [79, 39]. In order to apply MPFT, the polar shape image is treated as a normal
rectangular image. The steps are

1. the approximated normalized image is rotated counter clockwise by an angular step su�-
ciently small.

2. the pixel values along positive x-direction starting from the image center are copied and
pasted into a new matrix as row elements.

3. the steps 1 and 2 are repeated until the image is rotated by 360°.

The result of these steps is that an image in polar space plots into Cartesian space.

Figure 2.30 shows the polar shape image turning into normal rectangular image.

(a) (b)

(a) Original shape image in polar space; (b) polar image of (a) plotted into Cartesian space.

Figure 2.30: The polar shape image turns into normal rectangular image.

The Fourier transform is acquired by applying a discrete 2D Fourier transform on this shape
image.

pf(ρ, φ) =
∑
r

∑
i

f(r, θi)exp[j2π(
r

R
ρ+

2πi
T
φ)]
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where 0 ≤ r =
√

[(x− gx)2 + (y − gy)2] < R, and θi = i(2π/T ); 0 ≤ ρ < R, 0 ≤ φ < T . (gx, gy)
is the center of mass of the shape; R and T are the radial and angular resolutions. The acquired
Fourier coe�cients are translation invariant. Rotation and scaling invariance are achieved by the
following:

GFD =
{
|pf(0, 0)|
area

,
|pf(0, 1)|
|pf(0, 0)|

, · · · , |pf(0, n)|
|pf(0, 0)|

, · · · , |pf(m, 0)|
|pf(0, 0)|

, · · · , |pf(m,n)|
|pf(0, 0)|

}
where area is the area of the bounding circle in which the polar image resides. m is the maximum
number of the radial frequencies selected and n is the maximum number of angular frequencies
selected. m and n can be adjusted to achieve hierarchical coarse to �ne representation require-
ment.

For e�cient shape description, in the implementation of [79], 36 GFD features re�ecting
m = 4 and n = 9 are selected to index the shape. The experimental results have shown
GFD as invariant to translation, rotation, and scaling. For obtaining the a�ne and general
minor distortions invariance, in [79], the authors proposed Enhanced Generic Fourier Descriptor
(EGFD) to improve the GFD properties.

2.7.2 Wavelet transform

A hierarchical planar curve descriptor is developed by using the wavelet transform [80]. This
descriptor decomposes a curve into components of di�erent scales so that the coarsest scale
components carry the global approximation information while the �ner scale components contain
the local detailed information. The wavelet descriptor has many desirable properties such as
multi-resolution representation, invariance, uniqueness, stability, and spatial localization. In
[81], the authors use dyadic wavelet transform deriving an a�ne invariant function. In [82], a
descriptor is obtained by applying the Fourier transform along the axis of polar angle and the
wavelet transform along the axis of radius. This feature is also invariant to translation, rotation,
and scaling. At same time, the matching process of wavelet descriptor can be accomplished
cheaply.

2.7.3 Angular radial transformation

The angular radial transformation (ART) is based in a polar coordinate system where the sinu-
soidal basis functions are de�ned on a unit disc. Given an image function in polar coordinates,
f(ρ, θ), an ART coe�cient Fnm (radial order n, angular order m) can be de�ned as [83]:

Fnm =
ˆ 2π

0

ˆ 1

0
Vnm(ρ, θ)f(ρ, θ)ρdρdθ

Vnm(ρ, θ) is the ART basis function and is separable in the angular and radial directions so
that:

Vnm(ρ, θ) = Am(θ)Rn(ρ)

The angular basis function, Am, is an exponential function used to obtain orientation invariance.
This function is de�ned as:

Am(θ) =
1

2π
ejmθ
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Rn, the radial basis function, is de�ned as:

Rn(ρ) =

{
1 if n = 0
2 cos(πnρ) if n 6= 0

In MPEG-7, twelve angular and three radial functions are used (n < 3,m < 12). Real parts of
the 2-D basis functions are shown in Figure 2.31.

Figure 2.31: Real parts of the ART basis functions

For scale normalization, the ART coe�cients are divided by the magnitude of ART coe�cient
of order n = 0,m = 0.

MPEG-7 standardization process showed the e�ciency of 2-D angular radial transforma-
tion. This descriptor is robust to translations, scaling, multi-representation (remeshing, weak
distortions) and noises.

2.7.4 Shape signature harmonic embedding

A harmonic function is obtained by a convolution between the Poisson kernel PR(r, θ) and a
given boundary function u(Rejφ). Poisson kernel is de�ned by

PR(r, θ) =
R2 − r2

R2 − 2Rr cos(θ) + r2

The boundary function could be any real- or complex-valued function, but here we choose
shape signature functions for the purpose of shape representation. For any shape signature
s[n], n = 0, 1, · · · , N − 1, the boundary values for a unit disk can be set as

u(Rejφ) = u(Rejω0n) = s[n]

where ω0 = 2π/N , φ = ω0n.
So the harmonic function u can be written as

u(rejθ) =
1

2π

ˆ 2π

0
u(Rejφ)PR(r, φ− θ)dφ (2.5)

The Poisson kernel PR(r, θ) has a low-pass �lter characteristic, where the radius r is inversely
related to the bandwidth of the �lter. The radius r is considered as scale parameter of a multi-
scale representation [84]. Another important property is PR(0, θ) = 1, indicating u(0) is the
mean value of boundary function u(Rejφ).

In [84], the authors proposed a formulation of a discrete closed-form solution for the Pois-
son's integral formula Eq. 2.5, so that one can avoid the need for approximation or numerical
calculation of the Poisson summation form.
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As in Subsection 2.7.1, the harmonic function inside the disk can be mapped to a rectilinear
space for a better illustration. Figure 2.32 shows an example for a star shape. Here, we used
curvature as the signature to provide boundary values.

(a) Example shape; (b) harmonic function within the unit disk; (c) rectilinear mapping of the
function.

Figure 2.32: Harmonic embedding of curvature signature

The zero-crossing image of the harmonic functions is extracted as shape feature. This shape
descriptor is invariant to translation, rotation and scaling. It is also robust to noise. Figure
2.33 is for example. The original curve is corrupted with di�erent noise levels, and the harmonic
embeddings show robustness to the noise.

(a) Original and noisy shapes; (b) harmonic embedding images for centroid distance signature.

Figure 2.33: centroid distance signature harmonic embedding that is robust to noisy boundaries

At same time, it is more e�cient than CSS descriptor. However, it is not suitable for similarity
retrieval, because it is unconsistent to non-rigid transform.

2.7.5 <-Transform

The <-Transform to represent a shape is based on the Radon transform. The approach is
presented as follow. We assume that the function f is the domain of a shape, cf. Eq. 1.1. Its
Radon transform is de�ned by:

TR(ρ, θ) =
ˆ ∞
−∞

ˆ ∞
−∞

f(x, y)δ(x cos θ + y sin θ − ρ)dxdy

where δ(.) is the Dirac delta-function:

δ(x) =

{
1 if x = 0
0 otherwise
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θ ∈ [0, π] and ρ ∈ (−∞,∞). In other words, Radon transform TR(ρ, θ) is the integral of f
over the line L(ρ,θ) de�ned by ρ = x cos θ + y sin θ.

Figure 2.34 is an example of a shape and its Radon transform.

Figure 2.34: A shape and its Radon transform

The following transform is de�ned as <-transform:

<f (θ) =
ˆ ∞
−∞

T 2
R(ρ, θ)dρ

where TR(ρ, θ) is the Radon transform of the domain function f . In [85], the authors show the
following properties of <f (θ):

� periodicity: <f (θ ± π) = <f (θ)

� rotation: a rotation of the image by an angle θ0 implies a translation of the <-transform
of θ0: <f (θ + θ0).

� translation: the <-transform is invariant under a translation of the shape f by a vector
−→u = (x0, y0).

� scaling: a change of the scaling of the shape f induces a scaling in the amplitude only of
the <-transform.

Given a large collection of shapes, one <-transform per shape is not e�cient to distinguish from
the others because the <-transform provides a highly compact shape representation. In this
perspective, to improve the description, each shape is projected in the Radon space for di�erent
segmentation levels of the Chamfer distance transform. Chamfer distance transform is introduced
in [86, 87] (See Appendix A for detail).

Given the distance transform of a shape, the distance image is segmented into N equidistant
levels to keep the segmentation isotropic. For each distance level, pixels having a distance value
superior to that level are selected and at each level of segmentation, an <-transform is computed.
In this manner, both the internal structure and the boundaries of the shape are captured.

Since a rotation of the shape implies a corresponding shift of the <-transform. Therefore, a
one-dimensional Fourier transform is applied on this function to obtain the rotation invariance.
After the discrete one-dimensional Fourier transform F, <-transform descriptor vector is de�ned
as follows:
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RTD = (
F<1(

π

M
)

F<1(0)
, · · · ,

F<1(
iπ

M
)

F<1(0)
, · · · , F<

1(π)
F<1(0)

, · · · ,
F<N (

π

M
)

F<N (0)
, · · · ,

F<N (
iπ

M
)

F<N (0)
, · · · , F<

N (π)
F<N (0)

)

where i∈ [1,M ], M is the angular resolution. F<α is the magnitude of Fourier transform to
<-transform. α ∈ [1, N ], is the segmentation level of Chamfer distance transform.

2.7.6 Shapelets descriptor

Shapelets descriptor was proposed to present a model for animate shapes and extracting mean-
ingful parts of objects. The model assumes that animate shapes (2D simple closed curves) are
formed by a linear superposition of a number of shape bases. A basis function ψ(s;µ, σ) is de-
�ned in [88]: µ ∈ [0, 1] indicates the location of the basis function relative to the domain of the
observed curve, and σ is the scale of the function ψ. Figure 2.35 shows the shape of the basis
function ψ at di�erent σ values. It displays variety with di�erent parameter and transforms.

Figure 2.35: Each shape base is a lobe-shaped curve

The basis functions are subject to a�ne transformations by a 2Ö 2 matrix of basis coe�cients:

Ak =
[
ak bk
ck dk

]
The variables for describing a base are denoted by bk = (Ak, µk, σk) and are termed basis
elements. The shapelet is de�ned by

γ(s; bk) = Akψ(s;µk, σk)

Figure 2.35 (b,c,d) demonstrates shapelets obtained from the basis functions ψ by the a�ne
transformations of rotation, scaling, and shearing respectively, as indicated by the basis coe�cient
Ak. By collecting all the shapelets at various µ, σ, A and discretizing them at multiple levels,
an over-complete dictionary is obtained

∆ = {γ(s; bk ) : ∀b; aγ0, a > 0} .

A special shapelet γ0 is de�ned as an ellipse.
Shapelets are the building blocks for shape contours, and they form closed curves by linear

addition:

Γ(s) =
[
x0

y0

]
+

K∑
k=1

[
ak bk
ck dk

]
ψ(s;µk, σk) + n(s)
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Here (x0, y0) is the centroid of the contour and n is residue.

A discrete representation B = (K,b1,b2, · · · ,bK), shown by the dots in second row of Figure
2.36, represents a shape. B is called the �shape script� by analogy to music scripts, where each
shapelet is represented by a dot in the (µ, σ) domain. The horizontal axis is µ ∈ [0, 1] and the
vertical axis is the σ. Large dots correspond to big coe�cient matrix

A2
k = a2

k + b2k + c2k + d2
k

Figure 2.36: Pursuit of shape bases for an eagle contour

Clearly, computing the shape script B is a non-trivial task, since ∆ is over-complete and
there will be multiple sets of bases that reconstruct the curve with equal precision. [88] gave
some pursuit algorithms to use shapelets representing a shape.

2.7.7 Discussions

As a kind of global shape description technique, shape analysis in transform domains takes the
whole shape as the shape representation. The description scheme is designed for this representa-
tion. Unlike the spacial interrelation feature analysis, shape transform projects a shape contour
or region into an other domain to obtain some of its intrinsic features. For shape description,
there is always a trade-o� between accuracy and e�ciency. On one hand, shape should be de-
scribed as accurate as possible; on the other hand, shape description should be as compact as
possible to simplify indexing and retrieval. For a shape transform analysis algorithm, it is very
�exible to accomplish a shape description with di�erent accuracy and e�ciency by choosing the
number of transform coe�cients.

2.8 Summary table

For convenience to compare these shape feature extraction approaches in this chapter, we sum-
marize their properties in Table 2.1.
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Table 2.1: Properties of shape feature extraction approaches 
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Frankly speaking, it is not equitable to a�rm a property of an approach by rudely speaking
�good� or �bad�. Because certain approaches have great di�erent performances under di�erent
conditions. For example, the method area function is invariant with a�ne transform under the
condition of the contours sampled at its same vertices; whereas it is not robust to a�ne transform
if the condition can't be contented. In addition, some approaches have good properties for certain
type shapes; however it is not for the others. For example, the method shapelets representation is
especially suitable for blobby objects, and it has shortcomings in representing elongated objects.
So the simple evaluations in this table are only as a reference. These evaluations are drawn by
assuming that all the necessary conditions have been contented for each approach.

2.9 Conclusion

In this chapter we made a study and a comparison the methods of shape-based feature extraction
and representation. About 40 techniques for extraction of shape features have been shortly de-
scribed and compared. Unlike the traditional classi�cation, the approaches of shape-based feature
extraction and representation were classi�ed by their processing approaches. These processing
approaches included shape signatures, polygonal approximation methods, spatial interrelation
feature, moments approaches, scale-space methods and shape transform domains: in such way,
one can easily select the appropriate processing approach. A synthetic table has been established
for a fast and global comparison of the performances of these approaches.

Extracting a shape feature in accordance with human perception is not an easy task. Due
to the fact that human vision and perception are an extraordinary complicated system, it is a
utopia to hope that the machine vision has super excellent performance with small complexity.
In addition, choosing appropriate features for a shape recognition system must consider what
kinds of features are suitable for the task. There exists no general feature which would work best
for every kind of images.

In the next chapters, we will propose three approaches about shape-based feature extractions
and representations. The �rst two approaches proposed in Chapter 3, are used for the purpose of
a�ne invariance; the last approach proposed in Chapter 4, is aimed at similarity-based measure.
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Chapter 3

A�ne invariant shape description: two
approaches

3.1 Introduction

Shape distortion, arising from observing an object under arbitrary orientations, can be most
appropriately described as a perspective transformation [54]. However, when the dimensions of
the object are small compared to the distance from the camera to the object, a weak perspective
can be assumed. In this case, the orthographic projection may be used as an approximation
to the perspective projection, and the perspective distortion of the object can be modeled by
shearing in the image plane. Furthermore, the a�ne transformation, which consists of rotation,
translation, scaling, and shearing (skewing) transformations, may be used as an approximation
to the perspective transformation [89].

Numerous shape representations have been suggested to recognize shapes under a�ne trans-
forms. The most commonly used ones are a�ne arc length [90], enclosed area [91], a�ne invari-
ant Fourier descriptors [89], moment invariants [92], curvature scale space [93, 94], linear signal
space decomposition [95], triangular kernel [96] and dyadic wavelet transform [16, 91, 81]. In
these methods, the basic idea is to use a parametrization which is robust with respect to a�ne
transforms.

In this chapter, to extract an a�ne invariant attribute, two new algorithms are proposed
based on equal area contour normalization. We analyze the relation of original contour and its
�ltered contour, by choosing the appropriate �lter scale parameter, and then we extract a�ne
invariant features. Experimental results indicate that the proposed methods are una�ected by
boundary starting point variations and a�ne transforms even in the case of high deformations
and serious noise contamination on the shapes.

The rest of the chapter is organized into four main parts. First, the background of a�ne
transformation is introduced in Section 3.2. Second, we propose a method of equal area contour
normalization in Section 3.3. Third, an approach of scale-controlled area di�erence shape de-
scriptor is proposed and studied in Section 3.4. Fourth, the other a�ne invariant descriptor, the
enclosed area a�ne invariant function, is proposed and its implementation details are studied in
Section 3.5. For each method, a conclusion is locally given and �nally, the comparison of the two
proposed methods is discussed and the content of the chapter is summarized in Section 3.6.

83



84 CHAPTER 3. AFFINE INVARIANT SHAPE DESCRIPTION: TWO APPROACHES

3.2 Background of a�ne transformation

Consider a parametric closed curve Γ(µ) = (x(µ), y(µ)) with parameter µ in a plane. A point on
the curve under an a�ne transformation becomes{

xa(µ) = ax(µ) + by(µ) + e

ya(µ) = cx(µ) + dy(µ) + f
(3.1)

Eq. 3.1 can be rewritten in matrix form as follows:[
xa(µ)
ya(µ)

]
=
[
a b
c d

] [
x(µ)
y(µ)

]
+
[
e
f

]
= A

[
x(µ)
y(µ)

]
+B (3.2)

where xa(µ) and ya(µ) represent the coordinates of the transformed shape. Translation is repre-
sented by matrix B, while scaling, rotation and shear are re�ected in matrix A. The corresponding
values of coe�cients of A respective to di�erent transformations can be found in the following
matrices:

AScaling =
[
Sx 0
0 Sy

]
, ARotation =

[
cosθ −sinθ
sinθ cosθ

]
, AShear =

[
1 k
0 1

]
If Sx is equal to Sy, AScaling represents uniform scaling, i.e., the length and width of the

contour change with same proportion. θ is the rotation angle of the contour. k is the parameter
of skewing degree. A shape is not deformed under rotation, uniform scaling and translation.
However, non-uniform scaling and shear contribute to shape deformation under general a�ne
transforms.

As introduced in Chapter 1, the arc length parameter observed on a closed contour transforms
linearly under any linear transformation up to the similarity transform. Translation and rotation
do not a�ect the arc length; scaling changes the parameter by the same amount. An arbitrary
choice of a starting point only introduces a shift in the parameter. However, the arc length is
nonlinearly transformed under an a�ne transform and would not be a suitable parameter in this
situation [91].

There are two parameters which are linear under a�ne transforms. They are the a�ne arc
length and the enclosed area.

The �rst parameter can be derived from the properties of determinants. It is de�ned as
follows:

τ =
ˆ β

α

[
x′(s)y′′(s)− x′′(s)y′(s)

]1/3
ds (3.3)

where x(s) and y(s) are the coordinates of points on the contour and α and β are the curvilinear
abscissa of two points on it.

The second a�ne invariant parameter is the enclosed area, which is based on the property
of a�ne transforms: under a�ne mapping, all areas are changed in the same ratio. Based on
this property, Arbter et al. [89] de�ned a parameter ψ, which is linear under a general a�ne
transform, as follows:

ψ =
1
2

ˆ β

α

∣∣x(s)y′(s)− x′(s)y(s)
∣∣ ds (3.4)

where x(s) and y(s) are the coordinates of points on the contour with the origin of the system
located at the centroid of the contour and α and β the curvilinear abscissa of two points on it.
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The parameter ψ is essentially the cumulative sum of triangular areas produced from connecting
the centroid to pairs of successive vertices on the contour.

The two parameters, τ and ψ, are linear under a general a�ne transformation, since they
are scaled with respect to their images under an a�ne transform. They can be made com-
pletely invariant by simply normalizing them with respect to either the total a�ne arc length
or the enclosed area of the contour. So, both the a�ne invariant parameters can be used to
parametrize object contours. However, they have di�erent properties and can be chosen based
on the application.

The �rst and second derivatives are required in the computation of the a�ne arc length τ .
It is well known that the derivatives are very sensitive to noise. Therefore, if the contours are
heavily corrupted by noise, a smoothing process must be performed before parametrizing the
contours, using the a�ne arc length as a parameter.

In the second parameter, the centroid of the contour must be used as the origin of the system
in order to make the parametrization translation invariant. As a result, this parameter can be
used only if the contours are closed. It cannot be used in the case of occulted objects.

(a) The image of the top view of a plane; (b) the contour of image (a); (c) a part of contour
(b) normalized by equidistant vertices; (d) a part of contour (b) normalized by iso-area; (e) the
image of rear top view of the plane; (f) the contour of the image (e); (g) a part of contour (f)
normalized by equidistant vertices; (h) a part of contour (f) normalized by iso-area.

Figure 3.1: The comparison of equidistant vertices normalization and iso-area normalization

3.3 Iso-area normalization

All points on a contour could be expressed in terms of the parameter of index points along the
contour curve starting from a speci�ed point. With a�ne transforms, the position of each point
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changes and it is possible that the number of points between two speci�ed points changes too.
So if we parametrize the contour using the equidistant vertices, the index of point along the
contour curve will change under a�ne transforms. For example, Figure 3.1(a) is the top view of
a plane, and (e) is its rear top view, so (e) can be considered as one of possible a�ne transforms
of image (a). Via region segmentation or edge following, we obtain the contours of the two plane
views (b) and (f). (c) and (g) are parts of the contours (b) and (f) normalized by equidistant
vertices respectively. In Figure 3.1(c), the number of points on the segment between the points
A and B is 21; however, the number is 14 in the same segment in Figure 3.1(g). So the contour
normalized by equidistant vertices is variant under possible a�ne transforms.

In order to make it invariant under a�ne transforms, a novel curve normalization approach
is proposed. This provides an a�ne invariant description of object curves at low computational
cost, while at the same time preserving all information on curve shapes. We call this approach
as iso-area normalization (IAN).

All points on a shape contour could be expressed in terms of the function , Γ̂(m) = (x̂(m), ŷ(m)),
m ∈ [0, M − 1] where variable m is measured along the contour curve from a speci�ed starting
point. M is the total number of points on the contour. The steps of IAN are presented as follows:

1. Normalize to N points with equidistant vertices. The new function is Γ̄(µ) = (x̄(µ), ȳ(µ))
and all the points on the contour are P̄µ, where µ ∈ [0, N − 1]. Point P̄N (x̄(N), ȳ(N)) is
assumed to be the same as the �rst point P̄0(x̄(0), ȳ(0)).

2. Calculate its centroid G using Eq. 1.9.

3. Transfer the contour to make its centroid G the origin of the coordinates system.

4. Compute the area of the contour using the formula:

S =
1
2

N−1∑
µ=0

|x̄(µ)ȳ(µ+ 1)− x̄(µ+ 1)ȳ(µ)| (3.5)

where 1
2 |x̄(µ)ȳ(µ+ 1)− x̄(µ+ 1)ȳ(µ)| is the area of the triangle whose vertices are centroid

G, P̄µ(x̄(µ), ȳ(µ)) and P̄µ+1(x̄(µ+ 1), ȳ(µ+ 1)) (cf. Figure 3.2).

Dots (•) are the vertex of equidistant vertices normalization, and squares (�) are the point P of
iso-area normalization. G is the centroid of the contour.

Figure 3.2: The method of iso-area normalization

5. Let the number of points on the contour after IAN also be N, of course, any other number
of points could be chosen. Therefore, after IAN, each enclosed area Spart de�ned by any
two successive points on the contour and the centroid G is equal to Spart = S/N .
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6. Suppose all the points on the contour after IAN are Pt. Let Γ(t) = (x(t), y(t)) represent the
corresponding contour, where t ∈ [0, N −1]. Select point P̄0(x̄(0), ȳ(0)) on the equidistant
vertices normalization as the starting point P0(x(0), y(0)) of the IAN. On segment P0P̄1,
we seek a point P1(x(1), y(1)), so that the area s(0) of the triangle whose vertices are
P0(x(0), y(0)), P1(x(1), y(1)) and G(0, 0) is equal to Spart. If there is no point to satisfy
this condition, we seek the point P1 on the segment P̄1P̄2. So area s(0), which is the sum
of the areas of triangle P̄0P̄1G and triangle P̄1P1G , is equal to Spart. If again there is yet
no point to satisfy the condition, we continue to seek for the point in the next segment
until the condition is satis�ed. This point P1 is the second point on the iso-area normalized
contour.

7. From point P1(x(1), y(1)), we use the same method to calculate all the other points
Pt(x(t), y(t)), t ∈ [2, N − 1] along the contour. Because the area of each enclosed zone, for
example, the polygon Pt[P̄µP̄µ+1 · · · ]Pt+1G, t ∈ [0, N − 2] is equal to Spart, the total area
of N − 1 polygon is (N − 1) · Spart. According to the step 5, the area s(N − 1) of the last
zone PN−1[P̄µP̄µ+1 · · · P̄N−1]P0G is exactly equal to:

s(N − 1) = S − (N − 1) · Spart = N · Spart − (N − 1) · Spart = Spart

From Figure 3.2 we know that the area of triangle PtPt+1G is approximately equal to the area
Spart of polygon Pt[P̄µP̄µ+1 · · · ]Pt+1G if the two points P̄µ and P̄µ+1 are close enough or the
number N of the points on the contour is large enough. Therefore, we can use the points Pt,
t ∈ [0, N − 1] to replace the points P̄µ, µ ∈ [0, N − 1]. The contour with the vertices Pt is the
contour normalized by IAN.

According to subsection 3.2, after this normalization, the number of vertices on the segment
between two appointed points is invariant under a�ne transforms. Figure 3.1(d) and (h) are
the same parts of Figure 3.1(c) and (g), respectively. We notice that the distance between
the consecutive points is not uniform. In Figure 3.1(d), the number of points between points
A and B is 23, this number is also 23 in Figure 3.1(g). Therefore, after applying IAN, the
index of the points on a contour can remain stable with their positions under a�ne transforms.
This property will be very advantageous when extracting the robust attributes of a contour and
decreasing complexity in the measurement of similarity.

We can also use IAN with other algorithms, to improve their robustness against a�ne trans-
forms. For example, before applying the curvature scale space (CSS) algorithm [45], the contour
can be normalized by IAN: Figure 3.3 shows an example. (a) and (d) are visualized original con-
tours normalized by equidistant vertices and by IAN; (b) and (e) are a�ne transformed contours
of (a) and (d) normalized by equidistant vertices and by IAN; (c) are CSS images of (a) and
(b); (f) are CSS images of (d) and (e). In these CSS images the light lines are the CSS images
of original contours; the bold lines are the CSS images of a�ne transformed contours. σ is the
standard deviation of Gaussian �lter and µ is the index of the points on the shapes. We notice
that, under a�ne transform, the CSS image extracted from the contour normalized by IAN is
more stable than that coming from the contour normalized by equidistant vertices. Clearly, this
is bene�cial when calculating the similarity between two CSS attributes.
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Figure 3.3: The comparison of CSS images coming from the contours normalized by equidistant
vertices and by IAN

3.4 Scale-controlled area-di�erence shape descriptor (SCAD)

In this section, we propose an IAN-based shape representation and description well adapted to
pattern recognition, particularly in the context of a�ne shape transformations. The proposed
approach operates from a single closed contour. The comparison result of two scale-space contours
forms a shape descriptor. For more detail information, please refer to our paper [77].

3.4.1 Inspiration of psychophysics

A multiscale shape representation of an object where the shape variations are expressed with
respect to a given scale, provides di�erent information about the object. We take Figure 3.4 as
an example.

(a) Beetle original contour; (b) (c) and (d) are higher scale representations of the beetle.

Figure 3.4: Multiscale shape representation

When we observe the Figure 3.4(b) or (c), without doubt, it is also a beetle. It shows
that although (a) and (b), or (a) and (c) are not exactly the same, (b) and (c) contain the
main information that is needed to distinguish the beetle. This so-called main information
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is the essential segment information. The human vision distinguishes the object only from
characteristics of main segments [97]. These segment characteristics include the segment length,
the segment curving degree and segment curving direction, etc.

Therefore, extracting correctly the information of the original shape as essential segment,
expressing it with the reasonable mathematical format and enabling di�erent shapes to be com-
pared quantitatively, are the key objects of this algorithm.

As introduced in Section 2.6, in the curvature scale space (CSS) approach, the Gaussian
�ltering and the computation of curvature zero-crossing points are the basic algorithms. The
CSS image consists of several arches, each related to a concavity or a convexity of the curve. In
many applications, the maxima of these arches are used to represent the contour of an object.
To construct the CSS image of a digital curve, its curvature zero-crossing points should be
determined at di�erent scales of smoothing. In Gaussian smoothing, there will be two curvature
zero-crossing points on every concave or convex part of the shape and as the curve becomes
smoother these points approach each other. The locations of each zero-crossing at di�erent
levels of scale create an arch in the CSS image. At a certain level of smoothing when the
segment is �lled, the two points join and represent the maximum of the relevant arch. The
height of this arch then re�ects the depth and size of the concavity or convexity. The deeper and
larger a segment is, the higher is the maximum. The resulting shape descriptor is very compact
and extensive tests [98] reveal that the method is quite robust with respect to noise, scale and
orientation. Because of these advantages, the CSS shape descriptor has been included as one of
the two shape descriptors in the ISO/IEC MPEG-7 standard [8].

As shown in [99], however, it does not always give results in accordance with human vision
system. The main drawbacks of this description are due to the problem of shallow concavi-
ties/convexities on the shape. It can be shown that the shallow and deep concavities/convexities
may create the same large arches on the CSS image. Therefore, a shallow concavity/convexity
may be matched with a deep one during the CSS matching [76].

The analysis of the ambiguities of CSS clearly shows that the algorithm only focuses to the
position of the maxima of the in�exion points, but it neglects curvature strength, which is the
essential characteristic segment between both in�exion points. Therefore, it cannot distinguish
between a shallow concavity with a deep one.

We know that the curved segments and the straight lines are the basic essential segments of a
shape [5, 100]. If we can divide a shape reasonably into several segments and extract these basic
essential segments as the attributes from each one, using these attributes as shape descriptors
will be reasonable. This consideration is on a shape characterization point of view. Based on the
multiscale analysis, dividing the essential segments and extracting the description of attributes
essential segments on the shape will be expatiated on the following section.

The so-called essential segment is situated between two key points in the shape contour.
Obviously, in order to represent the entire shape with the essential segments, the selection of key
points is very important. In other words, the selection of key points is not the �nal goal; its goal
is to extract the attribute of essential segments that are located between each pair of key points
on the contour. Each contour consists of several essential segments. These essential segments
should have the following properties:

� Property 1: each essential segment should denote the macroscopic attribute of a part of
the shape, but not the �ne details.

� Property 2: the sign of curvatures of most points on an essential segment is consistent.
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� Property 3: the order of each essential segment on a shape contour plays a vital role for
describing the whole shape.

From an analysis based on above properties, we use higher scale to simplify the shape and to
retain the macroscopic part of original shape, thus we obtain Property 1. In order to obtain the
curving direction of each segment, we may compute the curvature of each segment, thus obtaining
Property 2. In the proposed descriptor, the order of succession of each essential segment on a
shape contour is one of the retrieving attributes of the shape, namely the Property 3.

We assume that shapes have already been extracted from images in the form of closed se-
quences of points. The proposed approach consists in 5 steps: 1) shape IAN normalization,
2) scale-controlled �ltering with the threshold of segment-length, 3) short segments merging or
removing, 4) scale-controlled shapes registration, 5) extraction of essential segment attributes.

IAN normalization as a general method have been explained in Section 3.3. We will introduce
the last 4 steps in details as the followings.

3.4.2 Scale-controlled �ltering

In order to remove the �ne-drawn details in the shape, and only retain the main body of shape
that takes part in the main function for shape retrieval, we use a �lter to simplify the shape.
Both Gaussian �ltering and Fourier transform may achieve this goal [101]. Here, a delicate
task is selecting the right threshold for stopping �ltering and thus de�ning the level of shape
simpli�cation. If high frequency components are �ltered slightly, see Figure 3.4(b), then the
change of details in the shape may a�ect, in some particular context, the result of the machine
recognition. Otherwise, if the high frequency components are �ltered highly, see Figure 3.4(d),
then the shape distorts very much, so that it becomes hard to recognize the original shape. The
experimental studies indicate that choosing an appropriate threshold, based on observations of a
minimal segment-length between two curvature zero-crossing points, is a good basis for de�ning
the strength of �ltering, and allows extraction of an appropriate shape.

As introduced in CSS, with σ decreasing, the number of curvature zero-crossing points in-
creases: the segment-length between the curvature zero-crossing points goes shorter and the
shape distorts more slightly and vice versa. In other words, the threshold of segment-length �xes
the distortion degree of the original shape.

Regarding a shape S, the stopping condition for �ltering is that there are not two consecutive
segments that are shorter than a threshold L. If this condition cannot be reached, then increase σ
once more and �lter again until the condition is matched. In order to reduce the computational
complexity, we use a dichotomic approach. The �ow chart of the algorithm is shown on Figure
3.5. It also includes a limit threshold on weak variance of σ.

To compare the computational complexity of SCAD with CSS in multiscale �ltering, suppose
the precision of �lter scale is ∆σ, use the dichotomic approach, when the condition of segment-
length threshold is reached, σ is between minimum σB and maximum σG, then the number of
�lterings and the curvature computing is

Ts = 1 + log2(σG/∆σ)
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Figure 3.5: The �owchart of dichotomic approach

In the traditional CSS method, in order to obtain the CSS picture, the �lter scale needs
to increase gradually with the precision ∆σ, then the maximum number of �ltering and the
curvature computing is:

TCmax = σG/∆σ

For example, if ∆σ = 0.125, σG = 64, σB = 0, then Ts = 10, TCmax = 512.
Therefore, dichotomic approach may increase greatly the computation e�ciency.

After scale-controlled �ltering with the threshold of segment-length and curvature computing,
we obtain a simpli�ed shape composed by the basic essential segments, see Figure 3.6.
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(a) (b)

(a) The original contour; (b) the scale-controlled �ltered contour. The dots (•) on the contour
are the curvature zero-crossing points.

Figure 3.6: The examples of result of scale-controlled �ltering

3.4.3 Short segments merging and removing

In Figure 3.6, we take notice of the short segments on the contour. Clearly, the short segments
cannot represent the main characteristic of a shape. In Subsection 3.4.2, in order to maintain the
main characteristics of a shape, we use the threshold condition that two consecutive segments are
shorter than a threshold. Therefore, it is possible that some independent short segments remain
on the shape. These short segments may a�ect the result of the machine recognition. According
to the states of essential segment Property 1, the short segments must be removed or merged.

The removing and merging algorithms are as follows:

Chord AD connects two key points A, D, which are the neighborhood points of short segment
BC. If all the points on the segment AD are on the same side of the chord AD, as shown on
Figure 3.7(a), the key points B and C are deleted. Thus, the three segments a, b and c will
merge into the long segment m, see Figure 3.7(b). If the points on the segment AD are located
on the two sides of chord AD, Figure 3.7(c), take the middle point E between the points B and
C to replace them. Thus, the three segments a, b and c merge into two longer segments m and
n, Figure 3.7(d).

Figure 3.7: Example of short segments merging and removing

After this step, Figure 3.6(b) turns into Figure 3.8. Notice that there are not very short
segments on the contour.
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Figure 3.8: The �ltered contour Figure 3.6(b) after merging or removing short segment

3.4.4 Essential segments registration

After the previous steps, the shape is transformed from the original shape that had rich details
to the main outline only. We superpose Figure 3.6(a) and Figure 3.8 in the same picture and
mark the key points on the original and �ltered shape, as shown on Figure 3.9.

Figure 3.9: The contours of Figure 3.6(a) and Figure 3.8 drawn together

After Gaussian �ltering, the coordinate of contour points may be displaced. In order to com-
pare the changes between the two contours, at �rst, we carry on essential segments registration.
Because the change degree of each point after �ltering is not the same, therefore the process of
registration is realized segment by segment.

Figure 3.10: Scale-controlled essential segments registration

On Figure 3.10(a), so is a segment on an original contour, sf is the corresponding segment on
the �ltered contour. KPo1, KPon are the key points on the original contour, and their respective



94 CHAPTER 3. AFFINE INVARIANT SHAPE DESCRIPTION: TWO APPROACHES

coordinates are (xo1, yo1), (xon, yon); KPf1, KPfn are the corresponding key points on the
�ltered contour, their respective coordinates are (xf1, yf1), (xfn, yfn); there are n points on
both segment so and sf . On the �ltered contour, the points set between KPf1 and KPfn is

M = {Pi(xi, yi), i = 1, 2, · · · , n}

The registration algorithm from segment sf to segment so is as follows:{
∆x1 = xf1 − xo1
∆y1 = yf1 − yo1

and

{
∆xn = xfn − xon
∆yn = yfn − yon

Let M ′ = {P ′i (x′i, y′i), i = 1, 2, · · · , n} be the set of registered points, so{
x′i = xi − (∆x1

n−i
n + ∆xn in)

y′i = yi − (∆y1
n−i
n + ∆yn in)

After registration, the segment sf in Figure 3.10(a) turns to the segment s′f in (b). The key
points KPo1 and KPf1 superpose, KPon and KPfn are same.

Figure 3.11 shows the contours in Figure 3.9 of original and �ltered registering. We denote
each essential segment on the contour, namely s1, s2, · · · , s15 respectively.

Figure 3.11: The original and �ltered contours after registering

3.4.5 Extraction of essential segment attributes

According to di�erent purposes, we can extract di�erent attributes from the essential segments.
These attributes include the segment-length, the rotation angle of the segment [100], the direction
change between the neighboring essential segments, the average (or the highest) curvature of a
segment, the segment deepness and so on. We will use the multiscale characteristic and propose
the method for extracting the attributes that are robust against a�ne transformation.

As Figure 3.11 shows, the e�ect of �lter is di�erent on di�erent essential segments. The
segments with details, for example, s1, s4 and s10, change more than the smooth segments after
�ltering. While the smoothest segments on the original shape, for example, s3 and s6 change
slightly after the �lter. The cause is that the low-pass �lter a�ects high frequency components
more than low frequency components. In addition, the geometric heat equation, which is a kind
of curvature deformation, clearly shows that the intensity of movement of a point on a segment is
proportional to the value of curvature at that point [102]. Measuring and expressing the change
degree is the content of scale-controlled area-di�erence shape descriptor (SCAD). To quantify
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the change degree, we detail the algorithm as follows: in Figure 3.12, the two segments C1 and
C2 come from the original and �ltered contours respectively. Because they are between pairs of
corresponding zero-crossing points, the number of points on both segments is always the same,
so we can calculate the area between both segments point by point.

Figure 3.12: The area between original and �ltered segments

Let P be a point on the original contour and P ′ the corresponding point on the �ltered
contour. If the coordinates of the points P (t), P (t + 1), P ′(t) and P ′(t + 1) are (x(t), y(t)),
(x(t + 1), y(t + 1)), (x′(t), y′(t)) and (x′(t + 1), y′(t + 1)) respectively, therefore, the area Π(t)
de�ned by the 4 points is:

Π(t) =
1
2
| [x(t)y(t+ 1)− x(t+ 1)y(t)] +

[
x(t+ 1)y′(t+ 1)− x′(t+ 1)y(t+ 1)

]
+
[
x′(t+ 1)y′(t)− x′(t)y′(t+ 1)

]
+
[
x′(t)y(t)− x(t)y′(t)

]
|

The SCAD value of the j th segment can now be de�ned as:

vj =
1
Lj

tj+1−1∑
t=tj

Π(t)

where tj is the starting point on the j th segment and tj+1 is the end point on it; Lj is the arc
length of the j th �ltered segment.

Then we de�ne the SCAD-based descriptor as:

TSCAD = {(nj , vj) , j = 0, 1, 2, · · · ,m− 1}

where m is the number of essential segments on the shape and nj is the curvilinear abscissa of
the j th essential segment.

Figure 3.13 represents the SCAD-based descriptor of the shape Figure 3.6(a), where s1, s2, · · · , s15

are the corresponding essential segments. (n1, v1) and (n10, v10), for example, are the descriptor
of segments s1 and s10 respectively.
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Figure 3.13: The SCAD-based descriptor of Figure 3.6(a)

3.4.6 Properties of SCAD

Each key contour points de�ned by the SCAD algorithm, is obtained by the Gaussian �ltering
and computation of curvature zero-crossing points. It is quite the same as the CSS algorithm.
The SCAD algorithm yields the same important properties that the CSS algorithm has [76]:

1. it re�ects properties of the human visual system perception, thus o�ering good generaliza-
tion.

2. it is robust to noise and changes in scale and orientation.

3. it is compact, reliable and fast.

To create the CSS image, the scale σ increases constantly, until all the curvature zero-crossing
points on the shape vanish. This increases the computation time. For SCAD, as the �lter scale
is decided by the segment-length between the curvature zero-crossing points, we can control the
contour to retain appropriate shape and reduce the computational complexity.

Furthermore, the SCAD is robust with a�ne transforms. Figure 3.14 shows an example
that the SCAD representations have a great correlation between the original and the a�ne
transformed one.

(a) Original contour; (b) one of its a�ne transformed contour; (c) their SCAD-based descriptors.
Diamond (�) represents the SCAD points of original contour and dot (•) represents the SCAD
points of a�ne transformed contour.

Figure 3.14: SCAD-based descriptor of the original contour and its a�ne transform
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3.4.7 Conclusion about SCAD

The proposed technique, SCAD, makes use of the essential segments of contour coordinates at
appropriate scale levels. The scale level is decided according to the shortest arc-length on a
contour. The result of comparing every original segment with the corresponding �ltered segment
de�nes the SCAD descriptor. This new approach can be used to retrieve objects undergoing an
a�ne transformation. Moreover the proposed method has the supplementary advantage of a low
computational complexity.

3.5 Enclosed area a�ne invariant function descriptor

In this section, for the two-dimensional object silhouettes, we present a one-dimensional de-
scriptor which in theory remains absolutely invariant under a�ne transforms. The proposed
descriptor operates on iso-area normalization. We prove that for any linearly �ltered contour,
the area of a triangle, whose vertices respective are the centroid of the contour and a pair of suc-
cessive points on the normalized contour, remains linear under a�ne transforms. Experimental
results indicate that the proposed method is una�ected by boundary starting point variations
and a�ne transforms even in the case of high deformations and serious noise contamination on
the shapes. For more detail information, please refer to our paper [103].

3.5.1 Normalized partial area vector (NPAV)

To extract an a�ne invariant attribute, we begin with an iso-area normalized contour (Section
3.3) and look for the existing relations between the partial area Spart, a�ne transforms and
low-pass �ltering.

� THEOREM1:

If Γa(µ) = (xa(µ), ya(µ)) is the transformed version of a curve Γ(µ) = (x(µ), y(µ)) under an
a�ne transform A, where µ is an arbitrary parameter, Γaf (µ) = (xaf (µ), yaf (µ)) notes that
Γa(µ) is �ltered by a linear low-pass �lter F. If Γf (µ) = (xf (µ), yf (µ)) notes that Γ(µ) is �ltered
by the same low-pass �lter F, Γfa(µ) = (xfa(µ), yfa(µ)) refers to the transformed version of
Γf (µ) under the same a�ne transform A. The curve Γaf (µ) is then the same as curve Γfa(µ).
In other words: F (A(Γ(µ))) = A(F (Γ(µ))) (cf. Figure 3.15).

Figure 3.15: Illustration of theorem1

PROOF:
For the entire contour, we transfer its center of gravity to the origin of the system. So in

a�ne transform Eq. 3.1, the translation e and f can be removed. Therefore, the a�ne transform
can be represented by two simple formulae:
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{
xa(µ) = ax(µ) + by(µ)
ya(µ) = cx(µ) + dy(µ)

(3.6)

The computation starts by convolving each coordinate of the curve Γa(µ) with a linear low-
pass �lter F whose impulse response is g(µ). In the continuous form this leads to:

xaf (µ) = xa(µ) ∗ g(µ) = [ax(µ) + by(µ)] ∗ g(µ)

= ax(µ) ∗ g(µ) + by(µ) ∗ g(µ) = axf (µ) + byf (µ) (3.7)

where ∗ denotes the convolution. Likewise

yaf (µ) = cxf (µ) + dyf (µ) (3.8)

From a comparison of Eq. 3.7, 3.8 and Eq. 3.6, it is clear that point (xaf (µ), yaf (µ)) is
the same as point (xf (µ), yf (µ)) transformed by the a�ne transform A. So curve Γaf (µ) is the
same as curve Γfa(µ). Theorem1 indicates that exchanging the computation order between a�ne
transform and �ltering does not change the result.

� THEOREM2:

For any a�ne transform of a closed contour, using IAN sets parameter t to produce the curve
Γa(t) = (xa(t), ya(t)). If area sp(t) is the area of an enclosed sector whose vertices are a pair of
successive points and the centroid of the contour and if Γaf (t) = (xaf (t), yaf (t)) indicates that
Γa(t) is �ltered by a low-pass �lter F, then the changes in enclosed areas sp(t) on the Γaf (t) are
linear with a�ne mapping. See Figure 3.16.

Figure 3.16: Illustration of theorem2

PROOF:
From section 3.3, we know the enclosed area sp(t) of the triangle on the �ltered a�ne contour

whose vertices are (xaf (t), yaf (t)), (xaf (t+ 1), yaf (t+ 1)) and the centroid G is

sp(t) =
1
2
|xaf (t)yaf (t+ 1)− xaf (t+ 1)yaf (t)| (3.9)
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Due to THEOREM1, {
xaf (t) = xfa(t) = axf (t) + byf (t)
yaf (t) = yfa(t) = cxf (t) + dyf (t)

and {
xaf (t+ 1) = xfa(t+ 1) = axf (t+ 1) + byf (t+ 1)
yaf (t+ 1) = yfa(t+ 1) = cxf (t+ 1) + dyf (t+ 1)

Therefore from Eq. 3.9,

sp(t) = 1
2 | [axf (t) + byf (t)] [cxf (t+ 1) + dyf (t+ 1)]
− [axf (t+ 1) + byf (t+ 1)] [cxf (t) + dyf (t)] |

= 1
2 | adxf (t)yf (t+ 1) + bcxf (t+ 1)yf (t)
−adxf (t+ 1)yf (t)− bcyf (t+ 1)xf (t) |

= 1
2 |ad− bc| · |xf (t)yf (t+ 1)− xf (t+ 1)yf (t)|

(3.10)

Observing Eq. 3.10, sp(t) is just linearly proportional by a scale factor |ad− bc|. Accordingly,
we have proved that enclosed areas sp(t) are linear with a�ne mapping.

� DEDUCTION:

The proportion v′(t) of enclosed areas sp(t) with the total area S of the �ltered contour is
preserved under general a�ne transforms.

PROOF: According to Eq. 3.10, the total area S of the �ltered contour is:

S =
1
2
|ad− bc| ·

N−1∑
t=0

|xf (t)yf (t+ 1)− xf (t+ 1)yf (t)|

So

v′(t) = sp(t)/S
= |xf (t)yf (t+ 1)− xf (t+ 1)yf (t)| /

∑N−1
t=0 |xf (t)yf (t+ 1)− xf (t+ 1)yf (t)| (3.11)

Eq. 3.11 indicates that v′(t) is not related to the a�ne parameters a, b, c and d. Therefore
v′(t) is preserved under general a�ne transforms.

We refer to vector

v(t) =
[
v′(t)− 1/N

]
(3.12)

as the normalized partial area vector (NPAV). We can deduce a major property of v(t): the
integration of v(t) is equal to zero.

PROOF:

N−1∑
t=0

v(t) =
N−1∑
t=0

[
v′(t)− 1

N

]
=

N−1∑
t=0

sp(t)
S
−
N−1∑
t=0

1
N

=
S

S
− N

N
= 0

Figure 3.17 is an example of NPAV. The contour is normalized to 512 points by IAN.



100 CHAPTER 3. AFFINE INVARIANT SHAPE DESCRIPTION: TWO APPROACHES

(a) The contour of a butter�y; (b) the NPAV of the contour (a).

Figure 3.17: An example of NPAV

As theorem2 and its deduction show that, in all cases, even those with severe a�ne trans-
formation, the function sp(t) is also preserved. Only the amplitude changes under general a�ne
transforms; the NPAV v(t) has an a�ne-invariant feature. In the following section, we will
present the results of our experiments which evaluate the property of the proposed algorithm.

3.5.2 Experimental results of NPAV

In this section, we will evaluate the behavior of NPAV v(t) in relation to a�ne transforms, IAN
and noise by presenting various experimental results. We consider the results of our experiments
on the MPEG-7 CE-shape-1 database which consists of 1400 shapes semantically classi�ed into
70 classes [104] and the database of 20 planes that is presented in [16].

To measure the similarity between two NPAVs, we use circular correlation function. The
circular correlation function is de�ned by:

R(v1(t), v2(t)) =
N−1
max
n=0

[∑N−1
t=0 v1(t)v2(s)
‖v1‖ · ‖v2‖

]
, s = mod(t+ n,N) (3.13)

where ‖•‖ is the norm; vα(t), α = 1, 2, are two NPAVs of contours as de�ned by Eq. 3.12.

3.5.2.1 NPAV and number of points normalized by IAN

We �rst test the e�ect of di�erent number of points normalized by IAN to NPAV on MPEG-7
CE-Shape-1 database. The number of points on the contour is respectively normalized to 64, 128
and 256. In this experiment, we use Gaussian low-pass �lter with standard deviation σ = 10.
As we know, for a same low-pass �lter, the shorter a signal is, the lower the relative band width
is, i.e., the more high-frequencies are �ltered.

Figure 3.18 shows the original and the a�ne contours of the pattern in Figure 3.17(a) with
various numbers of points and their NPAVs. We notice that for the contour with lesser points,
its NPAV function is smoother, and vice versa.
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(a)-(c) are the original and a�ne contours normalized to 64, 128 and 256 respectively; (d)-(f)
are the NPAVs of the two contours in (a)-(c) respectively.

Figure 3.18: Illustration of the robustness of NPAV under the contour normalized to di�erent
number of points

Although the NPAVs of the contour with di�erent numbers of points are very di�erent from
each other, under the same number of points normalized by IAN the NPAV of the a�ne contour
and that of original contour are almost identical. So under a�ne transform, NPAV remains
invariant with di�erent number of normalized points on a contour.

Furthermore, we calculate the statistic results. For each shape in MPEG-7 CE-shape-1
database, the average correlations between the NPAV of the original shape and that of its a�ne
transform and this under the number of points 64, 128 and 256 are presented in Table 3.1.

The number of points Average
correlation coe�cient

64 0.985

128 0.992

256 0.993

Table 3.1: Correlation under di�erent normalized number of points

This experiment shows that under the di�erent number of points normalized by IAN, the
NPAV changes slightly under a�ne transforms and the greater the number of normalized points
on a contour are, the lesser they are a�ected by a�ne transforms.

3.5.2.2 NPAV and position of starting point

In this section, we investigate the correlation between the di�erent starting positions with certain
a�ne transform. Suppose the position of the starting point (SP) is located on di�erent positions
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`1', `2', see Figure 3.19(a) and (b). These positions are respectively located at 12.5% and 37.5%
from the original starting with 100% corresponding to the total number of points. Suppose the
contour is normalized to 256 points. Figure 3.19(c) and (d) show the e�ect of di�erent starting
points to the NPAV of the original and a�ne contours.

(a) and (b) are the original and the a�ne contours with the starting point located at position '1'
and '2', respectively. The star (F) is the position of the starting point on the original contour;
the dot (•) is the position of the starting point on the a�ne transformed contour. (c) and (d)
are the NPAVs of the two contours with di�erent positions for the starting point in (a) and (b),
respectively.

Figure 3.19: Illustration of the robustness of a NPAV with various positions of the starting point

As obvious from Figure 3.19, the NPAV of various starting point positions are topologically
identical except for a `circular' delay. In this way, a shift in the starting point is equivalent to a
circular delay in the NPAV.

We further calculate the statistical results. To calculate the correlation between the NPAV
of the original contour and that of its a�ne transforms with a shift of starting point. For all the
shapes in MPEG-7 CE-shape-1 database, the average correlations of the various starting point
positions under the same number of points normalized by IAN are presented in the Table 3.2.

Starting point shift Average
correlation coe�cient

12.5% 0.989

37.5% 0.974

Table 3.2: Correlation under di�erent positions of starting point

As it can be seen in Table 3.2, the position of the starting point on the contour does not
a�ect the robustness of the NPAV.
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3.5.2.3 NPAV versus scale and rotation transforms

Scale and rotation transforms are the important intuitive correspondences for a variety of shapes.
Unsensitivity to these transforms must be regarded as a necessary condition that every shape
descriptor should satisfy. In order to study the retrieval performance in term of the scale change
and rotation of images, we use the test-sets Part A that is de�ned in CE-Shape-1 database during
the standardization process of MPEG-7 [98]. The test-sets Part A includes the following two
parts test. The result of test-sets Part A is the average of the two parts test results.

To test robustness to scaling, i.e., Part A-1, we create a database in which there are 70 basic
shapes coming from the 70 di�erent classes and 5 derived shapes from each basic shape by scaling
digital images with factors 2, 0.3, 0.25, 0.2, and 0.1. Thus in the database, there are 420 shapes.
Each of the 420 images was used as a query image. A number of correct matches were computed
in the top 6 retrieved images. Thus, the best possible result is 2520 matches.

To test robustness to rotation, i.e., Part A-2, we create a database including 420 shapes also.
The 70 basic shapes are the same as in Part A-1 and 5 derived shapes from each basic shape by
rotation with angles: 9, 36, 45, 90 and 150 degrees. As same as Part A-1, each of the 420 images
was used as a query image. The best result is 2520 matches.

The similarity rate in each experiment is calculated by taking the ratio of correct matches over
the maximum number of possible matches. Table 3.3 indicates the similarity rate of comparison
of NPAV descriptor with the reported results of the contour descriptors Tangent space [43],
Curvature scale space (CSS) [105] and Wavelet [80].

It's clear from Table 3.3 that NPAV descriptor is comparable to other contour descriptors on
this database.

Data Set Tangent space [43] CSS [105] Wavelet [80] NPAV

Part A1 88.65 89.76 88.04 88.65

Part A2 100 99.37 97.46 99.92

Part A 94.33 94.57 92.75 94.29

Table 3.3: Comparison of the retrieval results of di�erent methods on MPEG-7 CE-Shape-1 Part
A test

(a)-(c) are original contours; (d)-(f) are the scale version with factor 0.1 of (a)-(c), respectively.

Figure 3.20: Illustration of scale vision
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Some shapes obtained by scaling with the factor 0.1 are too small, Figure 3.20 presents the
original object and its scaled version with factor 0.1. The scaled contours change a lot comparing
to their original contours, therefore, it is hard to obtain quite correct matches on these objects.

3.5.2.4 NPAV and Noise

When we resample the edge of an object, the original shape is a�ected by noise and defects,
which are caused by �uctuations on the boundary. The obtained shape is noisy. To simulate
a more realistic noise in the context of pattern recognition, we propose a dedicated algorithm
resumed in Appendix B.

To reduce the e�ect of noise, the curve is �rst smoothed. In this study the standard deviation
of the �lter is set to σ=2 in accordance with our experimentations. The NPAVs and their shape
contaminated by the random uniform noise with di�erent SNR are presented in Figure 3.21.

(a)-(d) are the contours contaminated by di�erent noise power; (e)-(h) are the NPAVs of contours
in (a)-(d), respectively.

Figure 3.21: Demonstration of NPAV under the condition of di�erent SNR

This study reveals that the NPAV is robust to boundary noise and irregularities, even in
the presence of severe noise. It is clear that, as the noise amplitude increases, the contours
become more and more fuzzy. In order to calculate the average correlation coe�cient, we do the
experiments by contaminating the test contours with random uniform noise ranging from high
to low SNR a�ecting the database. Table 3.4 shows the average correlation coe�cient of all the
NPAVs of shapes in the database under di�erent SNR.

SNR Average
correlation coe�cient

40dB 0.964

35dB 0.963

30dB 0.949

25dB 0.898

Table 3.4: Correlation under di�erent SNR
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It is clear from the results shown in Table 3.4 that the performances stay remarkable when
the shapes are severely contaminated by noise. This shows that NPAV is suitable for use in noisy
conditions.

3.5.2.5 NPAV and a�ne transforms

The experiment used real airplane images to test the discrimination power of the proposed a�ne
invariance descriptor. The experiment uses the same set of twenty model plane images used in
[16]. The silhouettes of these model plane images were subject to random a�ne transform to
produce the test images. The model plane images and the test images are illustrated in Figure
3.22.

Figure 3.22: The database of plane models (a) and their corresponding a�ne transform images
(b).

The NPAV calculated from the boundary of each test image is compared with NPAV calcu-
lated from the models using the correlation function de�ned in Eq. 3.13. Table 3.5 gives the best
four matches for each test image. The best four matches are listed in four columns, where the
best match is listed in the �rst column in bold. For each test, the value of the correlation function
between this test image and a model (the model number is the number between parentheses) is
listed. The results show that the test images are identi�ed correctly.

By analyzing the experimental results, one can notice that NPAV is quite robust with respect
to scaling, to orientation, to a�ne transforms, to the location of starting point and to noise.
Therefore, NPAV can be used to characterize a pattern for recognition purposes.
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1 2 3 4

(1) 0.985 (1) 0.810 (9) 0.755 (19) 0.707 (18)

(2) 0.922 (2) 0.919 (8) 0.730 (6) 0.724 (10)

(3) 0.987 (3) 0.764 (2) 0.716 (5) 0.516 (8)

(4) 0.990 (4) 0.808 (11) 0.706 (20) 0.705 (10)

(5) 0.952 (5) 0.688 (3) 0.634 (8) 0.625 (2)

(6) 0.987 (6) 0.833 (10) 0.773 (13) 0.723 (18)

(7) 0.982 (7) 0.695 (13) 0.646 (14) 0.639 (17)

(8) 0.972 (8) 0.786 (2) 0.659 (5) 0.638 (16)

(9) 0.987 (9) 0.886 (10) 0.792 (1) 0.749 (19)

(10) 0.925 (10) 0.823 (4) 0.772 (19) 0.771 (6)

(11) 0.967 (11) 0.797 (4) 0.718 (20) 0.606 (15)

(12) 0.984 (12) 0.570 (6) 0.570 (7) 0.569 (17)

(13) 0.907 (13) 0.668 (6) 0.637 (7) 0.632 (1)

(14) 0.982 (14) 0.812 (15) 0.622 (16) 0.613 (7)

(15) 0.969 (15) 0.800 (16) 0.746 (11) 0.701 (20)

(16) 0.962 (16) 0.764 (20) 0.714 (15) 0.704 (11)

(17) 0.780 (17) 0.760 (12) 0.621 (7) 0.585 (13)

(18) 0.990 (18) 0.970 (19) 0.859 (10) 0.759 (9)

(19) 0.991 (19) 0.984 (18) 0.848 (10) 0.762 (9)

(20) 0.995 (20) 0.770 (11) 0.696 (4) 0.659 (16)

Table 3.5: The best four NPAV matches between the test images and the model images

3.5.3 Conclusion about NPAV

A new method of extracting invariants of a shape under a�ne transform is proposed in this
section. Our representation is based on the association of two parameters: the a�ne arc length
and the enclosed area, viz., we normalize a contour to a�ne invariance by the iso-area. We
then prove two theorems and a deduction. They reveal that, for a �ltered contour, the partial
enclosed area is linear under a�ne transforms. We further de�ne the a�ne-invariance vector:
the normalized partial area vector (NPAV). A number of experiments applied to the MPEG-7
CE-shape-1 database and real images database demonstrate that NPAV is quite robust with
respect to a�ne transforms and noise, even in the presence of severe noise.

3.6 Conclusion

In this chapter, we have made a comprehensive study of a�ne invariant shape descriptions based
on iso-area normalization (IAN). First we introduced the representation of a�ne transformation
and some a�ne invariant parameters about shape contours. And then an approach of IAN of
a contour has been presented in details. Finally, two a�ne invariant shape descriptors based
on IAN are proposed: scale-controlled area-di�erence shape descriptor (SCAD) and normalized
partial area vector (NPAV).

With inspiration from psychophysics where the human vision distinguishes the object only
from characteristics of main segments, we proposed the �rst descriptor SCAD. This proposed
descriptor has three major contributions: 1) it compares the same segment under di�erent scales



3.6. CONCLUSION 107

representation; 2) it chooses the appropriate scales by applying a threshold to the shape shortest-
segment; 3) it proposes the algorithm and the conditions of merging and removing the short
segments. This proposed method is robust under a�ne transformations with low computational
complexity.

We have de�ned the second a�ne invariant descriptor, NPAV. We then prove and demon-
strate, by two proposed theorems, that for any linearly �ltered contour, the area of a triangle,
whose vertices respectively are the centroid of the contour and a pair of successive points on the
normalized contour, remains linear under a�ne transforms. So the relation between a �ltering
and a�ne transformation is set up. In theory, NPAV remains absolutely invariant under a�ne
transformations. Experimental results, executed on the MPEG-7 CE-Shape-1 and twenty plane
model images commonly used in the literature, indicate that the proposed method is una�ected
by boundary starting point variations and a�ne transforms even in the case of high deformations
and serious noise contamination on the shapes.

In the next chapter, a shape-based image description and similarity measure approach will
be proposed for similarity-based image retrieval.
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Chapter 4

Chord context descriptor

In this chapter, we propose a new e�ective shape descriptor, chord context, for shape description
in content-based image retrieval. For a given shape, the chord context describes a frequency
distribution of chord lengths with di�erent orientations. The basic idea of chord context is to
calculate the lengths of all parallel chords with the same interval in a shape, and to build a
histogram of their lengths in each direction. The sequence of extracted feature vectors forms the
feature matrix for a shape descriptor. Because all the viewpoint directions, considered with a
certain angle interval, are chosen to produce the chord length histogram, this representation is
unlike conventional shape representation schemes, where a shape descriptor has to correspond
to key points such as maxima of curvature or in�ection points, for example, Smooth Curve De-
composition [5], Convex Hull [106] and Curvature Scale Space (CSS) [45, 17], etc. The proposed
method needs no special landmarks or key points. There is also no need for certain axes of a
shape. The proposed descriptor scheme is able to capture the internal details, speci�cally holes,
in addition to capturing the external boundary details.

A similarity measure is de�ned over chord context according to their characteristics and it
con�rms e�ciency for shape retrieval from a database. The proposed method of shape descriptor
and retrieval is shown to be invariant under image transformations, rotations, scaling and to be
robust to non-rigid deformations, occultation and boundary perturbations by noise. In addi-
tion, the size of the descriptor attribute is not very great; it has low-computational complexity
compared to other similar methods.

Several experiments have been conducted on the MPEG-7 CE-1 database [16], COIL-100
database and Kimia silhouettes [67, 107]. The results demonstrate the feasibility of the chord
context descriptor methodology and also highlight its advantages over other existing methodolo-
gies. For more detail information, please refer to our paper [108].

The remainder of this chapter is organized as follows. First the principle of chord context
and similarity measure of chord context are presented. Then we demonstrate the experimental
results obtained in our approach, as well as the comparisons with other existing approaches.
Finally, this chapter conclusion is formulated and presented.

4.1 Chord context

This section details the proposed method, chord context, for extracting attributes from the
contour or silhouette of a shape. It then proposes a method of measuring similarities between
two shapes.

109
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4.1.1 Feature extraction

Chord context analysis corresponds to �nding the distribution of all chord lengths in di�erent
directions in a given shape. So for each direction, we observe all the chords in the shape. Figure
4.1 shows an example of chords in direction θ. The bold lines are the chords of the shape.

Figure 4.1: Representation of chords in direction θ with the interval ∆ρ

A set of lines T (ρ, θ) is de�ned by

ρ = x cos(θ − π/2) + y sin(θ − π/2), θ ∈ [0, π] and ρ ∈ (−∞,+∞)

The chords are de�ned by the parts of these lines within the domain of the binary shape (see
Eq. 1.1). So a shape can be represented by a discrete set of chords sampled from its silhouette.
Considering di�erent angles θ, the number and length of chords obtained in di�erent directions
may not be the same, except in the case of a circle. One way to capture this information is to
use the distribution of chord lengths in the same direction in a spatial histogram.

Concretely, let us assume that the set of chords in directions θi are represented by C =
{ci,n | n ∈ [1, Ni]}, where Ni is the number of the chords in the direction θi. Let L(ci,n) be the
length of chord ci,n. So we can compute a histogram hi in direction θi by

hi=
[
h1
i , h

2
i , · · · , h l

i , · · · h
Li,max

i

]
(4.1)

where hli = ] {L(ci,n) ∈ bin(l)} l ∈ [1, Li,max], Li,max is the longest chord in direction θi.

In order to capture the details of a shape, the interval ∆ρ of ρ, i.e., the distance between
two parallel chords, should not be great. In practice, ∆ρ = Lmax/(50 ∼ 100), where Lmax is the
length of the longest axis of the shape. The histogram hi of Figure 4.1 in direction θi is shown
in Figure 4.2.
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Figure 4.2: Histogram of chord lengths in direction θi for the shape shown in Figure 4.1

An excessive number of very short chords is counted when line T is close to a tangent along
the edge of the shape (see Figure 4.3). This is because a scraggy edge is produced by the minor
disturbances resulting from digitization noise or normalization of the image to a certain size. In
fact, these uncertain short chords are harmful to our shape descriptor, so we remove these very
short chords directly. Empirical tests show that, if the largest size of the shape is 128 pixels,
then we can consider the set of chords whose length is shorter than 4 to be too short. So they
should be discarded. In Figure 4.2, the �rst 3 bins should be removed.

Figure 4.3: Illustration of producing very short chords

With θ increasing from 0 to 179 degrees, all the chords in di�erent directions in the silhouette
can be recorded. If we divide the orientation range [0, 179] into D′, then we can obtain D′

histograms hi, i ∈ [0, D′ − 1]. They form a matrix M arranged by a set of histograms with
column vector hi according to the order of angles:

M = [h0,h1, · · · ,hD′−1]

The matrix M extracted from the shape in Figure 4.1 is shown in Figure 4.4. The abscissa is
the direction (here each value covers 2 degrees); the y-axis is the length of chords. A matrix
element is the number of equal length chords whose direction and length are given by the value
of abscissa and y-axis, respectively.
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Figure 4.4: The combination of the chord length histograms of the shape in Figure 4.1 with all
orientations

The value in each row of the matrix M is the number of the chords with same length in
di�erent directions; and each column is the chord length histogram in the same direction.

Directly using this matrix as shape descriptor is not very attractive: it will be too large.
For example, in an image with 128 × 128 pixels, the longest possible chord in the shape is
128 ×

√
2 ≈ 181. So, if D′ = 90, the size of the matrix will be 181 × 90 = 16290. Clearly, it

is not appropriate as a direct feature of a shape. In order to reduce the size of the matrix M,
at the same time, make the extracted feature invariant with scale transforms, we normalize this
matrix M as follows:

1. Find the maximum of non-zero bin L′ for all the histograms in the matrix M . In Figure
4.4, for example, L′max = 112. Then remove all the bins that are greater than L′max, and
form a matrix M ′ with dimension L′max ×D′:

M ′ =
[
h′0,h

′
1, · · · ,h′D′−1

]
2. For the next normalization, we expand the matrix M ′ to matrix M ′′, using a wrap-around

e�ect:

M ′′ =
[
h′D′−2,h

′
D′−1,h

′
0,h

′
1, · · ·h′D′−1,h

′
0,h

′
1

]
3. The matrixM ′′ is subsampled by the bicubic algorithm interpolation down to a new matrix

F with the dimension L×D. For convenience, D is even. The bicubic algorithm interpola-
tion means that the interpolated surface is continuous everywhere and also continuous in
the �rst derivative for all directions. Thus, the rate of change in the value is continuous.
The feature matrix F can be represented by:

F = [f0, f1, · · · , fD−1]

where fi, i ∈ [0, D − 1], is a L dimensions column vector given by fi =
[
f1
i , f

2
i , · · · , fLi

]T
.

The feature matrix F is the attribute of the shape; we call it �chord context descriptor�.
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If L = 30 and D = 36, the chord context derived from Figure 4.1 is shown in Figure 4.5.
Each column is the normalized histogram in a given direction.

Figure 4.5: Chord context of Figure 4.1 with 30 rows and 36 columns

The experiment in section 4.2 shows that chord context as the feature of a shape can retain
the visual invariance to some extent.

4.1.2 Evaluation of chord context descriptor

In determining the correspondence between shapes, we aim to meet the distance between two
feature matrices. In this study we present an approach directly with Character Matrix Distance
(CMD) and then we improve it by introducing the Perpendicular Chord Length Eccentricity
(PCLE).

4.1.2.1 Character Matrix Distance

In the �rst phase, we calculate all the distances between the query feature matrix and the model
feature matrix while circularly shifting its histograms one by one. Similar shapes have similar
histograms in a same direction, and the arrangement order of these histograms is also similar . To
calculate the distance between two attributes of shapes, we �rst calculate the distance between
each corresponding histogram, according to their arrangement orders, and then calculate the sum
of all these distance values. Regarding rotation invariance, we shift the model feature matrix by
one histogram, i.e. change the direction used to obtain the histograms, and repeat the same step
to calculate the sum of all the values of these distances between the two feature matrices.

We assume that the query feature matrix is FQ and the model feature matrix is FM . FQ and
FM are given by

FQ = [fq0, fq1, · · · , fqD−1] and FM = [fm0, fm1, · · · , fmD−1 ]

According to subsection 4.1.1, fαi, where α is q or m, i ∈ [0, D − 1], is an L dimensions
column vector

fαi =
[
fα1

i , fα
2
i , · · · , fαLi

]T
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So the set of similarity distance is given by

DistFFQ,FM (n) =
D−1∑
i=0

DistH(fqi, fmj), j = mod(i+ n,D) (4.2)

where n ∈ [0, D − 1] is the number of shifts applied to each histogram in the model feature
matrix. The formula shows that the set of similarity distance is the sum of the distance DistH
between two corresponding normalized histograms in two feature matrices.

To quantify the similarity between two histograms, as introduced in Chapter 1, there are
many methods being reported: Minkowski-form, Kullback-Leibler Divergence, Je�rey Diver-
gence, Quadratic-form, χ2 statistics, etc. Due to the properties of the chord context histograms:

� they have the same number of bins;

� the value in each bin has great variances; some of values are even zeros, cf. Figure 4.2.

We compare χ2 statistics distance

DistHχ2(fqi, fmj) =
1

2L

L∑
k=1

(
fqki − fmk

j

)2(
fqki + fmk

j

)
and our proposed distance formula de�ned here by

DistH(fqi, fmj) =

 0, fqki = 0 and fmk
i = 0, k ∈ [1, L]

1
L

∑L
k=1

|fqki −fmkj |
max(fqki ,fmkj )

, otherwise

on the database of Kimia silhouettes with 216 shapes [67]. This database is shown in Appendix
C.1. For convenience, we consider the minimum value of the distance set as the similarity distance
and call it Character Matrix Distance (CMD).

CMDFQ,FM =
D−1
min
n=0

DistFFQ,FM (n) (4.3)

The comparison result of precision versus recall is shown in Figure 4.6 (cf. Subsection 1.4.1).

Figure 4.6: The precision-recall diagrams for indexing into the database of Kimia silhouettes
with 216 shapes

It is clear from Figure 4.6, that our proposed distance formula is better than χ2 statistics on
this similarity measure.
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4.1.2.2 Perpendicular chord length eccentricity

In order to improve the accuracy of the similarity measure, we propose a new concept, Perpen-
dicular Chord Length Eccentricity (PCLE) as following:

PCLE(i) =

{∥∥fi − fi+(D/2)

∥∥ i ∈
[
0, D2 − 1

]∥∥fi − fi−(D/2)

∥∥ i ∈
[
D
2 , D − 1

] (4.4)

where ‖•‖ is the norm; fi, i ∈ [0, D − 1] (D is even) are vectors of a feature matrix. They are
also normalized histograms of chord length in a shape. So Eq. 4.4 is the Euclidean distance
between any two chord length histograms of perpendicular direction. As the symmetric norm,
we have

PCLE(i+
D

2
) = PCLE(i), i ∈ [0,

D

2
− 1]

Clearly, PCLE represents the perpendicular direction chord feature in a shape. To compare
the query's PCLE PQ and the model's PCLE PM , we de�ne the distance between PQ and PM
as follows:

D_PCLEPQ,PM (n) =
D−1∑
i=0

|PQ(i)− PM (j)|
max(PQ(i), PM (j))

, j = mod(i+ n,D)

where n is the number of shifts applied to each histogram in the model PCLE as in Eq. 4.2.
Intuitively, we assume that, in general, if shape S1 is more similar to shape S2 than shape S3,

then the smallest value of D_PCLEPS1
,PS2

is less than the smallest value of D_PCLEPS1
,PS3

.
So we can use D_PCLE to adjust the similarity distance of the Character Matrix Distance

(CMD) to improve retrieval precision and recall. The combined similarity metric of shape query
and shape model is computed using a weighted sum:

SDQ,M = α · CMDFQ,FM + (1− α)
D−1
min
n=0

(D_PCLEPQ,PM (n)) (4.5)

where α ∈ [0, 1].
Let us explain this hypothesis by the following experiments, where we have used α = 0.85.

First let us look at the experiment running on the Kimia silhouettes set of 99 shapes [67]. This
database is shown in Appendix C.2. Figure 4.7 shows the two retrieval results from querying
the `Quadruped' category. One shows the retrieval results only with the similarity distance of
Character Matrix Distance (CMD) (Eq. 4.3) and the other with the combined similarity metric
weighted sum SD (Eq. 4.5). Each shape is matched against all the other shapes in the database.
As there are 11 shapes in the `Quadruped' category, up to 10 nearest neighbors can be retrieved
from the same category. We count in the nth (n from 1 to 15) nearest neighbors the number
of times that the test image is correctly classi�ed. The best possible result is 110 matches
(except the query itself) in all 10 nearest matches. With the similarity metric CMD, we found
63 matches in the �rst ten retrieved shapes, recall is 63/110=57.3%, and there were 70 matches
in the �rst �fteen retrieved shapes. Whereas with the similarity metric SD, we found 80 matches
in the �rst ten retrieved shapes, recall is 80/110=72.7%, and there were 85 matches in the �rst
�fteen retrieved shapes. The result shows that the recall rate in the �rst ten retrieved shapes
was improved by 15.4 percentage points for the `Quadruped' cluster when we used the similarity
metric SD instead of CMD. It also shows a good performance rate when compared with [109],
[59] and [85] which has the same retrieval results of 51 matches in the �rst ten retrieved shapes.
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The 11 quadruped shape queries in the dataset are shown in the �rst column. The 10 nearest
retrieved shapes for each query are shown in order (from small similarity distance to large simi-
larity distance) in the 3rd column by their similarity metric CMD and SD. The next �ve matches
are shown in the 4th column for completeness.

Figure 4.7: Illustration of retrieval results from the `Quadruped' category in Kimia silhouettes
set of 99 shapes
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Let us look at the statistical results. We compare the retrieval result using CMD to that
using similarity metric SD by calculating precision versus recall in the Kimia silhouette datasets
of 99 and 216 shapes [67]. The results are shown in Figure 4.8.

Figure 4.8: The precision-recall diagrams for indexing into the database of Kimia silhouettes
with (a) 99 shapes and (b) 216 shapes

The experimental results show signi�cant superiority of SD compared to CMD in retrieval
process.

4.2 Experimental evaluations of chord context matching

In this section, we present the results obtained during a shape recognition process to study the
comparative performances of the proposed algorithm. We show that the chord context matching
is e�ective in the presence of commonly occurring visual transformations like scale changes,
boundary perturbations, viewpoint variation, non-rigid transform and partial occultation. We
also compare its results with ten other well-known algorithms. All the experiments are conducted
on the standard database: MPEG-7 CE-shape-1 database (1400 shapes) [2], Columbia University
Image Library Coil-100 database (7200 images) [110], and 3 databases of Kimia silhouettes [67].
In all the experiments, the feature matrix was normalized to 30 bins and 36 directions; the
similarity measure uses Eq. 4.5 with α = 0.85.

4.2.1 Scale and rotation transforms

In order to study retrieval performance in terms of scale changes and image rotations, we use the
test-sets Part A introduced in Chapter 3. One can recall that the MPEG-7 CE-Shape-1 database
consisting of 1,400 shapes semantically classi�ed into 70 classes.

The similarity rate in each experiment was calculated by taking the ratio of correct matches to
the maximum number of the relevants to rotation and scaling. Table 4.1 indicates the similarity
rate of comparison by the chord context descriptor with the reported results of certain studies:
Tangent space [43], Curvature scale space (CSS) [105], Zernike moments[111], Wavelet [80] and
Beam angle statistics (BAS) [60]. Note that the proposed descriptor has the best performance
in all the experiments.
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Data Set Tangent
space [43]

CSS
[105]

Zernike
moments[111]

Wavelet
[80]

BAS
[60]

Chord
context

Part A1 88.65 89.76 92.54 88.04 90.87 99.37

Part A2 100 99.37 99.60 97.46 100 100

Part A 94.33 94.57 96.07 92.75 95.44 99.69

Table 4.1: Comparison of the retrieval results of di�erent methods on MPEG-7 CE-Shape-1 Part
A test

The results show that chord context is very resistent to scale and rotation transforms. Re-
viewing the extracted attribute algorithm in section 4.1, we are not surprised by the almost
perfect results. The attribute matrix is obtained by the statistic of all the chord lengths of a
shape in all directions. The rotation of the shape a�ects the attribute matrix only when shifting
the chord length histograms. In the similarity measure, we have considered this point and com-
pared the two attribute matrices by shifting the histograms of either matrix. The rotation of
plane shapes does not a�ect the retrieval result. Since we normalize all the images to a certain
size before extracting their features, the scale transform of a shape does not signi�cantly a�ect
the retrieval result.

4.2.2 Boundary perturbations by noise

The query shape can be perturbed by di�erent noises. This may simply result from digitiza-
tion. As a reminder, to �ght perturbations resulting from shape digitization, and in order to
alleviate the in�uence of boundary perturbation, we have removed the very short chords in at-
tribute matrices. To evaluate the performance of chord context when boundary perturbations
are present, we use noisy images with di�erent noise powers as queries to retrieve the relevant
image in a database. We generate a 20 sub-database test-set based on MPEG-7 CE-Shape-1. In
each sub-database, there are 70 shapes from 70 di�erent classes according to their orders in the
database, i.e., all the shapes belong to di�erent classes in each sub-database. The query shapes
are all 70 shapes in each sub-database subjected to noise with 4 di�erent noise powers. Thus,
the best possible result in each sub-database is 70 matches for each noise power. To simulate
the boundary perturbations by noise, we shift the positions of certain boundary points selected
randomly. In this experiment, 50% boundary points are shifted on a shape. The amplitude of
this shift is controlled by a uniform random value. Suppose the average distance of all the points
on the edge of a shape to its centroid is D. We then de�ne the signal-to-noise ratio (SNR) as
follow:

SNR = 20 log
D

r
(dB)

where r is the largest deviation of the points on the edge. Figure 4.9 shows an example of an
original shape and its contaminated shapes produced by random uniform noise with SNR equal
to 30dB, 25dB, 20dB and 15dB.
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From left to right, the original and the resulting noised shapes at an SNR of 30dB, 25dB, 20dB
and 15dB.

Figure 4.9: Examples of noisy shapes from a model in MPEG-7 CE-Shape-1

Table 4.2 shows the average similarity rates of the 20 Sub-Databases at 4 SNRs.

SNR(dB) 30 25 20 15

Average Similarity Rate (%) 99.9 99.8 99.1 82.9

Table 4.2: Average similarity rates of the 20 sub-databases at SNR of 30dB, 25dB, 20dB and
15dB

From the results in Table 4.2, we notice that using noise to disturb boundaries does not
produce signi�cant di�erences between similar shapes. As the chord context descriptor utilizes
the edge as well as the region feature of a shape, it can bear boundary disturbances due to noise
to certain extent.

4.2.3 Partial occultation

In general, a global descriptor is not robust when a shape is partially occulted. Since the chord
context descriptor has the statistical information for a shape, this drawback is alleviated to
some extent. To evaluate robustness to partial occultation we ran experiments using the same
sub-databases as mentioned in Subsection 4.2.2. We occulted the shapes, applying 4 di�erent
percentages of occultation from the left, Figure 4.10(a), or right, Figure 4.10(b), respectively to
them, in raster-scan order. The occultation percentages were 5%, 10%, 15% and 20%. Each
occulted shape is retrieved in its sub-database as a query. Thus, the best result in each sub-
database is 70 matches for one occultation.

(a) Left side occulted objects; they are occulted by 5%, 10%, 15% and 20%;
(b) Right side occulted objects; they are occulted by 5%, 10%, 15% and 20%.

Figure 4.10: Examples of occulted shapes from a model in MPEG-7 CE-Shape-1

Table 4.3 shows the average similarity rate of the 20 sub-databases on the 4 partial examples
of occultation.



120 CHAPTER 4. CHORD CONTEXT DESCRIPTOR

Occultation (%) 5 10 15 20

Average left 99.5 91.3 78.6 58.7
Similarity Right 98.9 94.1 80.7 64.6
Rate (%) Average 99.2 92.7 79.7 61.7

Table 4.3: Average similarity rates of the 20 sub-databases at shape occultation of 5%, 10%, 15%
and 20%

It is clear from Table 4.3, that small occultations do not signi�cantly a�ect chord context.
However, the problem of signi�cant occultation remains to be explored. The results show that
chord context are robust to minor occultation.

4.2.4 Similarity-based evaluation

The performance in similarity-based retrieval is perhaps the most important of all tests per-
formed. In order to demonstrate the performance of chord context when deformed parts are
present, we turn to three shape databases. All three databases were provided by Kimia's group
[67, 107].

4.2.4.1 Experiment 1

The �rst database is Kimia silhouettes database which contains 25 images from 6 categories (cf.
Appendix C.3). Each row shows instances of a di�erent object category.

This property has been tested by shape contexts [22], Sharvit et. al [107], Gdalyahu et. al
[112] and Ling et. al [113]. The retrieval results are summarized as the number of �rst, second,
and third closest matches that fall into the correct category. The results are listed in Table 4.4.
It shows that our proposed method outperforms the �rst 3 reported methods. For the fourth
approach, chord context is slightly better than it in the Top 2 closest matches.

Methods Top 1 Top 2 Top 3

Sharvit et. al [107] 23/25 21/25 20/25

Gdalyahu et. al [112] 25/25 21/25 19/25

Belongie et. al [22] 25/25 24/25 22/25

Ling et. al [113] 25/25 24/25 25/25

Chord context 25/25 25/25 23/25

Table 4.4: Comparison of the retrieval results of di�erent methods on the Kimia silhouettes with
25 shapes

4.2.4.2 Experiment 2

The second database contains 99 images from nine categories with 11 shapes in each category
(cf. Appendix C.2). It has been tested by D.S. Guru [59], Shape contexts [22], Bernier [109] and
Tabbone [85]. Each shape was used as a query to which all other shapes were compared and thus
9,801 shape comparisons were made. Ideal results would be that the 10 closest matches (except
the query itself) belong to the same category. The results are summarized by precision-recall
diagrams in Figure 4.11. The proposed method shows better precision and recall rate than the
other methods.
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Figure 4.11: Comparison of precision and recall rates of di�erent methods on the Kimia Data
Set of 99 shapes

4.2.4.3 Experiment 3

The third database contains 216 images from 18 categories with 12 shapes in each category (cf.
Appendix C.1). All the shapes were selected from the MPEG-7 test database. It has been tested
by shape contexts [22]. As in the case of second database, a comparison of the results of our
approach to the shape context method is given in Figure 4.12. As we see in Figure 4.12, the two
precision/recall curves cross. This means that the shape contexts [22] method performs better for
small answer sets, while our proposed method performs better for larger answer sets. According
to [114], the method achieving higher precision and recall for large answer sets is considered to
be the best, so our method is better than shape contexts in this database.

Figure 4.12: Comparison of precision and recall rates of di�erent methods on the Kimia Data
Set of 216 shapes

From the above results, we see that chord context produces outstanding performance in the
presence of non-rigid deformations.

4.2.5 Viewpoint variations

For a better evaluation in the realistic context of image retrieval with industrial vision where the
picture of an object from real world is converted and observed from di�erent viewpoints, we have
performed tests on shapes extracted directly from pictures. To test the retrieval performance of
the proposed method in the presence of viewpoint changes, we turned to the Columbia University
Image Library Coil-100 3D object dataset1. This dataset contains 7,200 color images of 100
household objects and toys. These 100 object are shown in Figure 4.13.

1http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
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Figure 4.13: Columbia University Image Library Coil-100 3D object

Each object was placed on a turntable with rotations in azimuth of 0 through 360 with 5
increments, resulting in 72 images per object. We have converted the color images to gray scale
images, and then into shapes by using the same grey-value threshold settings for the whole set.
Since the shapes are projections of 3D objects by a simple grey-value threshold, not only their
silhouettes can change from one viewpoint to another; the lighting and object textures may also
di�er. Figure 4.14 shows some examples. The �rst row shows the original images and the second
row shows their corresponding silhouettes as produced by grey-value threshold. In 1st and 2nd

columns, the duck's silhouettes change signi�cantly due to a change of viewpoint. In the 3rd and
4th columns, the red pepper's silhouettes change signi�cantly due to a di�erence in lighting. In
5th and 6th columns, the tin's silhouettes change signi�cantly due to a change in textures.

Figure 4.14: 6 images taken as an example from the COIL-100 3D object dataset

In the following subsections we present two experiments showing the performance of the
proposed method on these test sets.

4.2.5.1 Experiment 1

First we compare our approach to the shape context [115] in Coil-100 3D object database.
We have converted the color images into shapes, then selected 3 images per object with a 15°
viewpoint interval. In this experiment, the 3 images of each object are the viewpoints of 0°,
15° and 30°, respectively. To measure performance, we counte the number of times the closest
match is a rotated view of the same object. Our result is 285/300. The result reported in [115]
is 280/300.
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(a) An example objet with all azimuths in sub-database1

(b) An example objet with all azimuths in sub-database2

(c) An example objet with all azimuths in sub-database3

(d) An example objet with all azimuths in sub-database4

(e) An example objet with all azimuths in sub-database5

(f) An example objet with all azimuths in sub-database6

(g) An example objet with all azimuths in sub-database7

Figure 4.15: The model examples in the 7 sub-databases coming from Coil-100 3D object
database
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4.2.5.2 Experiment 2

In second experiment, we have generated 7 sub-databases in which we selected 5 to 17 consecutive
viewpoints per object in Coil-100 3D object database, for a total from 500 to 1,700 images
respectively. We use the middle viewpoint images in a sub-database as a query to retrieve in
them. Figure 4.15 shows the model examples in the 7 sub-databases. For each query, the ideal
number to retrieve is 5 to 17 in the 7 sub-databases, respectively. The results are shown in the
Table 4.5 and Figure 4.16.

Figure 4.16: Precision and recall rates in the 7 Sub-databases on Coil-100 3D object dataset

These results are very encouraging, since they indicate that we can perform satisfactory
retrieval with mean average precision of more than 91% for view angle di�erences of under
20°: see the results of Sub-database1-3. For viewpoint di�erence of less than 40°, the retrieved
precision is more than 71%: see the results of Sub-database7. Note that this is done exclusively
on shape images (without using any intensity information). Clearly, if other information and a
more specialized feature set were used, even higher precision scores could be achieved.

4.3 Conclusion

We have presented and evaluated a new approach, the "chord context", for shape recognition
problem which is simple and easy to apply. This approach brings two major contributions:
1) de�ning a new algorithm which can capture the main feature of a shape, from either its
contour or a region; 2) proposing an assistant similarity measure algorithm the "Perpendicular
Chord Length Eccentricity" (PCLE) which can help to improve retrieval precision and recall to
some extent. In our experiments, we have demonstrated invariance to several common image
transforms, such as scaling, rotation, boundary perturbations, minor partial occultation and
non-rigid deformations. Furthermore, the last evaluation on real-world objects emphasizes the
advantages of our approach in the context of machine vision applications.

The main advantages of the proposed descriptor for retrieving images are summarized in the
following two points: the �exibility and the accuracy. About �exibility, chord context can handle
various types of 2D queries, even if the shape has holes or is composed of several parts. It is
robust to noise and minor occultation. So this method doesn't need sophisticate segmentation
algorithms to be used. About accuracy, the proposed method has the advantage of achiev-
ing higher retrieval accuracy than other methods in the literature evaluated on MPEG-7 CE-1
database, Coil-100 database and the Kimia silhouettes datasets retrieval test.
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Conclusion

In this thesis, we have studied, analyzed, introduced and compared di�erent algorithms for
shape-based feature extraction and similarity measure: this work has lead to three approaches
for shape-based feature extraction.

For the purposes of understanding the problems and issues involved in shape representations
and similarity measures, some fundamental concepts have been introduced. In general, a shape
can be represented by its contour, region or �nite point set. We have proposed an approach
for contour equidistance normalization and discussed some remarkable problems about this nor-
malization. And then we studied some common shape parameters representing certain shape
geometric features that can only discriminate shapes with large di�erences, but are not suitable
to be standalone shape descriptors. Some distance functions, operating in a metric distance, that
were usually used in similarity measure have been introduced. Since the perception of human
does not hold in a metric distance, a simple elastic matching method in non-metric space has
also been presented in this part. The evaluation methods for retrieval system performances were
de�ned.

After introducing the ideal properties of the shape features and descriptions, we made a
study and a comparison of the methods for shape-based feature extraction and representation.
About forty techniques for extraction of shape features have been described and compared.
The description of the methods was classi�ed by their processing approaches. These processing
approaches include shape signatures, polygonal approximation methods, spatial interrelation
feature, moments approaches, scale-space methods and shape transform domains: in such way,
one can easily select the appropriate processing approach. To summarize this description, a
synthetic table comparing their performances has also been established. Extracting a shape
feature in accordance with human perception is not an easy task. Due to the fact that human
vision and perception are an extraordinary complicated system, it is a utopia to hope that the
machine vision has super excellent performance with small complexity. In addition, choosing
appropriate features for a shape recognition system must consider what kinds of features are
suitable for the task.

We have proposed two approaches for a�ne invariant shape descriptions. Both descriptors
are based on iso-area normalization (IAN). With inspiration from psychophysics, we proposed
the �rst descriptor, viz., scale-controlled area-di�erence shape descriptor (SCAD). The proposed
descriptor is a vector with components issued for each segment and the ratio of the corresponding
area and its �ltered segment. This method has three major contributions:

1. it compares the same segment under di�erent scales representation;

2. it chooses the appropriate scales by applying a threshold to the shape shortest-segment;

3. it proposes the algorithm and the conditions of merging and removing the short-segments.
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We then de�ned the second a�ne invariant descriptor, NPAV. We proved and demonstrated,
by two proposed theorems, that for any linearly �ltered contour, the area of a triangle, whose
vertices respectively are the centroid of the contour and a pair of successive points on the nor-
malized contour, remains linear under a�ne transforms. So the relation between a �ltering and
a�ne transformation is set up. In theory, NPAV remains absolutely invariant under a�ne trans-
formations. Experimental results indicate that the proposed method is una�ected by boundary
starting point variations, a�ne transforms and serious noise contamination on the shapes. Com-
paring the approaches SCAD and NPAV, we found that the SCAD descriptor is more compact
than the NPAV descriptor but the performance of NPAV is much better than SCAD.

The other proposed approach is the "chord context" shape descriptor. This approach makes
the statistics of the lengths of all parallel chords in a shape, with the same interval, and it builds
a histogram of their lengths in each direction. This method has two major contributions:

1. de�nition of a new algorithm which can capture the main feature of a shape, from either
its contour or a region;

2. proposition of an assistant similarity measure algorithm Perpendicular Chord Length Ec-
centricity (PCLE) which can help to improve retrieval precision and recall to some extent.

The main strengths of the proposed descriptor are �exibility and accuracy. Experimental results
demonstrate that chord context shape representation is invariant with several common images
transforms, such as scaling, rotation, boundary perturbations, minor partial occultation and non-
rigid deformations. Furthermore, an evaluation on real-world objects emphasizes the advantages
of this approach in the context of machine vision applications.

As a future work, we aim, on one hand, to bene�t from the multi-scale and statistic aspects
of our approaches to extract the attributes and, on the other hand, to apply elastic matching for
similarity measurement. Indeed, the multi-scale analysis is consistent with visual perception and
statistic methods have good advantage to similarity measures; in other way, the elastic matching
has an interesting property for �nding optimal alignment between two shape descriptors. Con-
sidering that NPAV has abundant patterns at multiple scales, it is well-adapted for multi-scale
analysis. From the other point of view, the chord context method is a statistical approach and it
o�ers excellent performances on similarity-based measures, but unfortunately, it has no special
operations that resist a�ne transforms, so the challenge will be to �nd a�ne-invariant features.
With the previous considerations, once that these two tools will have been improved, they will
be combined jointly with elastic matching to provide an e�cient shape-based pattern recognition
tool.



Appendix

A. Distance transform (DT)

Distance transform is such an operation which measures the distance of non-edge pixels to
the nearest edge pixel while the edge pixels get the value zero. The purpose of the distance
transformation is to produce numeric image whose pixels are labeled with distance between
each of them and their closet border pixel. It is important that the DT used in the matching
algorithm is a reasonably good approximation of the Euclidean distance. One approximation
of the Euclidean distance is the chamfer metric [86, 116]. The chamfer 3/4 distance can be
calculated sequentially by a two-pass algorithm. First, a distance image is created such that
each boundary pixel is set to zero and each non boundary pixel is set to in�nity. The forward
pass modi�es the distance image as follows:

for i=2, 3, · · · , rows do
for j=2, 3, · · · , columns do
vi,j = min(vi−1,j−1 + 4, vi−1,j + 3, vi−1,j+1 + 4, vi,j−1 + 3, vi,j)

Similarly, the backward pass operates as follows:
for i=rows-1, rows-2, · · · , 1 do
for j=columns-1, columns-2, · · · , 1 do
vi,j = min(vi+1,j+1 + 4, vi+1,j + 3, vi+1,j−1 + 4, vi,j+1 + 3, vi,j)

where the vi,j is the value of the pixel in position (i, j).
One example of edge map and distance map is illustrated in Figure 17.

Figure 17: Examples of chamfer 3/4 distance image

B. Contour noise simulation

The general method for noise simulation on a contour is to shift the x, y coordinates of the
points on a contour independently. In this way, the order of some points on the contour probably
becomes confused, causing self-intersection (cf. Figure 18).
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Résumé 
 

Dans le contexte de la reconnaissance de forme et de l’observation de similarité d’un objet parmi d’autres, les 
caractéristiques de forme extraites de son image sont des outils puissants. En effet la forme de l’objet est habituellement 
et fortement liée à sa fonctionnalité et son identité. S’appuyant sur cette forme, un éventail de méthodes par extraction 
de caractéristiques et mesures de similarité a été proposé dans la littérature. De nombreuses et diverses applications sont 
susceptibles d'utiliser ces caractéristiques de forme. L’invariance géométrique et la résistance aux déformations sont des 
propriétés importantes que doivent posséder ces caractéristiques et mesures de similarité. 

Dans cette thèse, trois nouveaux descripteurs de forme sont développés. Les deux premiers, celui par différence de 
surfaces et  contrôlée par l’échelle (SCAD) et celui correspondant au vecteur de surfaces partielles normalisées (NPAV), 
sont fondés sur une normalisation "iso-surface" (IAN). SCAD est un vecteur dont les éléments sont les différences de 
surface entre les principaux segments  du contour original et contour filtré. Ces segments sont définis par des ensembles 
de points entre chaque paire de points de courbure nulle, relative au contour filtré et au contour original. En nous 
appuyant sur deux théorèmes que nous proposons et en prenant en considération surface partielle, transformée affine et 
filtrage linéaire, nous avons défini le second descripteur, NPAV. Nous prouvons alors, que pour tout contour filtré 
linéairement, la surface d'un triangle, dont les sommets sont le barycentre du contour et une paire de points successifs 
sur le contour normalisé, reste linéaire sous toutes les transformations affines. Ainsi est établie une relation entre filtrage 
et transformation affine. Les deux descripteurs SCAD et NPAV ont la propriété d'invariance aux transformations affines. 
Comparant les deux approches SCAD et NPAV, SCAD s'avère plus compact que NPAV mais les performances de 
NPAV sont meilleures que celles de SCAD. La dernière approche proposée est la représentation par "contexte des 
cordes". Cette représentation décrit une distribution des longueurs de cordes selon une orientation. L’histogramme 
représentant ce contexte des cordes est compacté et normalisé dans une matrice caractéristique. Une mesure de 
similarité est alors définie sur cette matrice. La méthode proposée est insensible à la translation, à la rotation et au 
changement d'échelle; de plus, elle s’avère robuste aux faibles occultations, aux déformations élastiques et au bruit. En 
outre, son évaluation sur des objets réels souligne tous ses atouts dans le contexte des applications de la vision. 

Ces nouveaux descripteurs de forme proposés sont issus d'une recherche et d'études menées sur une quarantaine de 
techniques de la littérature. Contrairement à la classification traditionnelle, ici, les approches de descripteurs de forme 
sont classées selon leurs approches de traitement: ceci facilite ainsi le choix du traitement approprié. Une description et 
une étude de ces approches est ici fournie, et nous reprenons certaines d’entre elles dans une évaluation comparative 
avec les nôtres et ce sur différentes bases de données 

 
Mots-clefs: Extraction d'attributs, mesures de similarité, descripteur de forme, reconnaissance de formes 

 
Abstract 

 
For object recognition and similarity retrieval, object shape features are powerful because shape is usually strongly 

linked to object functionality and identity. A wide range of shape-based feature extraction and similarity measures 
methods are proposed in literature, moreover various applications are likely to use shape features. For shape-based 
feature extraction and similarity measure, geometric invariance and deformation resistibility are important issues. 

This thesis develops three new shape descriptors. The first two descriptors, scale-controlled area-difference shape 
descriptor (SCAD) and normalized partial area vector (NPAV), are based on iso-area normalization (IAN). SCAD is a 
vector whose elements are the area differences between the main corresponding segments of original contour and its 
filtered version. These main segments are defined by the set of points between each pair of curvature zero-crossing 
points of the filter contour for a given scale. Based on two proposed theorems taking into consideration partial areas, 
affine transforms and low pass filtering, we define the second affine invariant descriptor, NPAV. We then prove that for 
any linearly filtered contour, the area of a triangle, whose vertices respectively are the centroid of the contour and a pair 
of successive points on the normalized contour, remains linear under affine transforms. So the relation between a 
filtering and affine transformation is set up. Both SCAD and NPAV have the good property of affine invariance. 
Comparing the approaches SCAD and NPAV, the SCAD descriptor is more compact than the NPAV descriptor and the 
performance of NPAV is much better than SCAD. The other proposed approach is chord context shape representation. 
Chord context describes a frequency distribution of chord lengths with different orientations. The histogram which 
represents the chord context is compacted and normalized into a feature matrix. A similarity measure is defined on the 
basis of this feature matrix according to its characteristics. The proposed method is shown to be unaffected by shape 
translation, rotation and scaling; at the same time, it is robust to minor occultation, non-rigid deformations, distortions 
and corruption due to noise. Furthermore, an evaluation on real-world objects emphasizes the advantages of this 
approach in the context of machine vision applications. 

These new shape descriptors are proposed based on the extensive investigation and study of about forty existing 
techniques. In this thesis, unlike the traditional classification, all these approaches of shape-based feature extraction and 
representation are classified by their processing approaches: in such way, one can easily select the appropriate 
processing approach. A description and the study of these approaches are developed, and some of them are used in 
comparative experiments, on different data bases with ours. 

 
Keywords: Feature extraction, similarity measures, shape descriptor, shape retrieval  


