

11 juillet 2007

Effets cohérents et résonants dans un cristal dopé aux ions erbium : oscillations cohérentes de population et transparence induite électromagnétiquement

Elisa Baldit,

directeurs de thèse : Ariel Levenson, Kamel Bencheikh

Laboratoire de Photonique et de Nanostructures, Marcoussis groupe PHOTONIQ

Effets cohérents et résonants....

manipuler la lumière avec la lumière ... besoin de la matière

🔌 Effets cohérents et résonants

- contrôle de l'absorption et de la dispersion
- réponse exacerbée

...pour faire

- Ralentissement de la lumière
- Mémoires optiques / quantiques
- Effets non linéaires "géants"

Résonant Cohérent Matière condensée Cristaux dopés aux ions Terre Rare faible interaction avec la matrice cristalline propriétés proches des milieux dilués > largeurs naturelle & homogène fines > résonances : structure hyperfine

EIT Ham et al. OL 1995

¹⁶⁷Er³⁺ résonance à 1.5 μm structure hyperfine

Plan de l'exposé

Er:YSO

- Ralentissement de la lumière
 - Définition
 - Oscillations cohérentes de population
 - Résultats
- Transparence induite électromagnétiquement
 - Définition
 - Identification de systèmes en Λ
 - Premiers résultats
- Conclusions et perspectives

ralentissement de la lumière

définition

oscillations cohérentes de population dispositif et résultats expérimentaux

Onde monochromatique et paquet d'onde

Vitesse de phase $v_{\phi} = \omega/k = c/n$ Vitesse de groupe $v_{a} = \partial \omega/\partial k]_{\omega o}$

$$V_{g} = \frac{C}{n_{0} + \omega_{0} \left(\frac{\partial n}{\partial \omega}\right)_{\omega_{0}}} = \frac{C}{n_{g}}$$

 $\frac{\partial n}{\partial \omega} \gg 1 \qquad \qquad v_g \ll c$

dispersion

ralentissement

Ralentissement

Relations de Kramers Krönig

fenêtre de transparence ⇔ forte dispersion ⇔ fort ralentissement

 Effets non résonants cristaux photoniques, cavités couplées automodulation de phase..

Effets non cohérents
 Raman
 creusement spectral...

Effets résonants et cohérents

Transparence induite électromagnétiquement

		milieu	vg
Hau et al.	Nature(1999)	Na BEC	17m/s

Oscillations Cohérentes de Population

		milieu	vg
Bigelow et al.	PRL90(2003)	Ruby	57m/s
Baldit et al.	PRL95(2005)	Er:YSO	3m/s
Palinginis et al.	OE13(2005)	GaAsQW	550m/s

Oscillations cohérentes de population CPO

Absorption à ω_P + δ

$$\alpha = \alpha_{inc} - \alpha_{coh}$$

M. Sargent, Phys. Reports **43** 223 (1978) R. Boyd *et al.,* PRA **24**, 411 (1981)

Besoin : résonance

Interférences temporelles pompe sonde

-0000- -00000- -0000- -00000

Oscillation de la population

$$\Delta n = \Delta n_0 + \underline{\Delta n_{-1}} e^{i \delta t} + \Delta n_1 e^{-i \delta t}$$

important si $\delta < \gamma_{nat} = 1/T$

Oscillations cohérentes de population

Dispositif expérimental

ω

Résultats ralentissement

δδ

Résultats ralentissement

δδ

 Ralentissement mesure directe (propagation d'impulsions ms) et indirecte

> v_{g} = 2.7 m/s @ 2.1 mW/cm² Transmission : 40 %

- Inversion de population v_g = -20 m/s
 gain + ingénierie du temps d'arrivée de l'impulsion
- Utilisation originale de l'élargissement inhomogène ⇒ accordabilité (v_q, Transmission)

oscillations cohérentes de population

transparence induite électromagnétiquement

- Pas de transparence totale en théorie
- $\begin{array}{l} \text{ Importance de T}_{1} / \gamma_{nat} \\ \text{ Expériences à T}_{ambiante} \end{array}$
- Perspectives : semi conducteurs

- Transparence totale
- $\begin{array}{l} \hspace{0.1 cm} \text{Importance de T}_{_2} \\ \gamma_{_h} \hspace{0.1 cm} \text{optique/hyperfin} \end{array}$
- Ralentissement => mémoire

Transparence induite électromagnétiquement Définition

Identification de systèmes en Λ dans ¹⁶⁷Er³⁺:YSO

Dispositif et premiers résultats expérimentaux

Transparence induite électromagnétiquement

 Interférences quantiques des probabilités 1→3

 $1 \rightarrow 3 \rightarrow 2 \rightarrow 3$

• état noir $|atome\rangle = \alpha |1\rangle + \beta |2\rangle$

Possibilités :•Ralentissement •Arret de la lumière

Besoins:

Résonances

Cohérence

EIT: S.E. Harris, Physics Today 50, 36 (1997) e 11 juillet 2007

champ cristallin YSO interaction hyperfine

Trouver les niveaux et les temps caractéristiques

- Creusement spectral coll. LAC V. Crozatier, I. Lorgeré, F. Bretenaker, JL Legouët
- Résonance paramagnétique électronique coll. LCAES O. Guillot-Noël P. Goldner

Creusement spectral et structure hyperfine V. Crozatier, I. Lorgeré, F. Bretenaker, JL Legouët LAC

- Possibilité de retrouver la structure hyperfine
- Repérer les anti-trous en Λ tels que $\omega = \omega_{p} \pm \delta_{12}$

Exemple de Spectre

- difficultés d'interprétation
 - nombre de niveaux
 - probabilité de transition

$$-\delta_{hf} < \Gamma_{inh} < \delta_{hf}$$

 difficile de retrouver les systèmes en Λ

Résonance Paramagnétique Electronique O. Guillot Noël P. Goldner LCAES

^{nat}Er:YSO ~6 K \rightarrow éclatement hyperfin du fondamental

14 niveaux hyperfins au lieu de 16

Guillot Noël et al. PRB 74, 214409 (2006) soutenance 11 juillet 2007

13 anti-trous en Λ repérés optiquement

Systèmes en A étudiés

pompe

0,0

0,2

Dispositif expérimental

Résultats expérimentaux

Premières caractérisations spectroscopiques de ¹⁶⁷Er³⁺ : Y₂SiO₅

- Identification de 13 systèmes en Λ
 - Creusement spectral LAC
 - + Résonance paramagnétique LCAES
- Temps de vie des populations
 - T_1 optique =10 ms
 - T₁hyperfin ~190 ms

Premiers résultats de Transparence Induite

- Dispositif expérimental accordable adapté à ¹⁶⁷Er³⁺: Y₂SiO₅
 - Modulation AM+ filtrage FP
- Spectres montrant une transparence sur 2 systèmes en Λ ~ 400 kHz

Court terme

- Optimisation configuration expérimentale (puissances, recouvrement)
- Exploration des 11 autres systèmes (rapports de branchement)
- Préparation des systèmes en Λ (population, B, T₂)

Long terme

Application de l'EIT mémoire et effets non linéaires géants

Préparation et temps de vie

 $|3\rangle$ Idée : préparer dans l'état noir COUPLAGE SONDE Pr³⁺:YSO Turukhin *et al.* PRL88 (2002). 2 ┝<mark>┝</mark>┝- |1⟩ Préparation incohérente 8 Anti-trou amplitude (u.a.) 28 ms : population 7 6 pompel 5 $|1\rangle$ maximale sonde . 3 2 60 0 20 40 80 100 120 temps (ms) 1^{er} résultat 28 ms 400 kHz couplage pompe (n.a.) soutenance 11 juine **AO2 AO1** 2,7MHz sonde $\omega_{P} + v_{RF}$ 21H7

oscillations cohérentes de population

transparence induite électromagnétiquement

Merci

