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Abstract

This thesis considers the problem of reconstructing a surface from scattered points sampled

on a physical shape. Our contribution is the development of a surface reconstruction

method based on the Radial Basis Functions (RBF) approach which uses Voronoi tools in

order to filter noise, reconstruct using different level of details and obtain a smaller final

representation.

Recent improvements in automated shape acquisition have stimulated a profusion of

surface reconstruction techniques over the past few years for computer graphics and reverse

engineering applications. Data collected from scanning processes of physical objects are

often provided as large point sets scattered on the surface object.

Functional based approaches where the surface is reconstructed as the zero-set of a

function are standard. And the RBF approach has shown successful at reconstructing

surfaces from point sets scattered on surfaces of arbitrary topology. The implicit function

is defined as a linear combination of compactly supported radial basis functions.

We reduce the number of basis functions in order to obtain a more compact representa-

tion and to reduce the evaluation time. Reducing the number of basis function is equivalent

to reduce the number of points (centers) where the functions are centered. Our aim consist

in selecting a "little" set of relevant centers. In order to reduce the number of centers while

maintaining decent fitting accuracy, we relax the one-to-one correspondence between the

centers and the data points which is the rules in most of the RBF approaches. We depart

from previous work by using as centers of basis functions a set of points located on an

estimate of the medial axis. Those centers are selected among the vertices of the Voronoi

diagram of the sample data points. Being a Voronoi vertex, each center is associated with

a maximal empty ball. We use the radius of this ball to adapt the support of each radial

basis function.

Our method can fit a user-defined budget of centers: the user can define the number of

centers, i.e. the size of the representation and our algorithm will adapt the level of detail

to this number using filtering and clustering or greedy selection.



Abstract Abstract

Keywords
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Surface, zero-Level sets, Radial basis functions, Voronoi, Medial axis, λ-Medial axis.
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Résumé

Cette thèse s’inscrit dans la problématique de la reconstruction de surfaces à partir de

nuages de points. Les récentes avancées faites dans le domaine de l’acquisition de formes

3D à l’aide de scanners donnent lieu à de nouveaux besoins en termes d’algorithmes de

reconstruction. Il faut être capable de traiter de grands nuages de points bruités tout en

donnant une représentation compacte de la surface reconstruite.

La surface est reconstruite comme le niveau zéro d’une fonction. Représenter une

surface implicitement en utilisant des fonctions de base radiales (Radial Basis Functions)

est devenu une approche standard ces dix dernières années. Une problématique intéressante

est la réduction du nombre de fonctions de base pour obtenir une représentation la plus

compacte possible et réduire les temps d’évaluation.

Réduire le nombre de fonctions de base revient à réduire le nombre de points (cen-

tres) sur lesquels elles sont centrées. L’objectif que l’on s’est fixé consiste à sélectionner

un "petit" ensemble de centres, les plus pertinents possible. Pour réduire le nombre de

centres tout en gardant un maximum d’information, nous nous sommes affranchis de la

correspondance entre centres des fonctions et points de donnée, qui est imposée dans la

quasi-totalité des approches RBF. Au contraire, nous avons décidé de placer les centres sur

l’axe médian de l’ensemble des points de donnée et de montrer que ce choix était approprié.

Pour cela, nous avons utilisé les outils donnés par la géométrie algorithmique et approx-

imé l’axe médian par un sous-ensemble des sommets du diagramme de Voronoi des points

de donnée. Nous avons aussi proposé deux approches différentes qui échantillonnent de

manière appropriée l’axe médian pour adapter le niveau de détail de la surface reconstruite

au budget de centres alloué par l’utilisateur.

Mots-clés

Reconstruction, Approximation, Interpolation, Régularisation, Multirésolution, Surface

implicite, Ensemble de niveaux zéro, Base de fonctions radiales, Axe médian, Voronoi,

λ-Medial axis.
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General Introduction General Introduction

0.1 Motivations

T
heoretical and practical advances in signal acquisition and processing explain the

rapid development of multimedia applications and the evolution of the informations

manipulated: sound, images, videos and now 3D geometric models. The 3D models, by

adding one dimension to the signal, allow to represent the reality or to (re-)invent it. 3D

geometric models bring in addition to images and videos several specificities like interactiv-

ity, advanced rendering, viewpoint management. 3D models are not yet part of the mass

market, although many applications benefit directly or indirectly to a large audience:

• Medical applications : computer aided diagnostic, therapy and surgery planning and

monitoring require geometric physical modeling of organs and tissues of the human

body. The current methods commonly resort to 3D images in order to extract a

geometric description of the organs and lesions. Some example issues are the man-

agement of the lesions, that is the identification, characterization, reporting, storage

and follow-up. An example: tumor detection in the brain (Fig.1:top right) needs a

segmentation of the ill area and a geometric characterization such volume and growth

speed in order to anticipate over the disease evolution and to plan surgery.

• Engineering : computer aided design (CAD) and simulation, which replace physical

prototypes and experiences by geometric models and numerical computations, have

been shown to considerably increase the productivity of the engineers. One example

is the simulation of physical properties during car crashes in order to avoid real crash

tests. An other example is numerical fluid simulation of an aircraft wing. We can

distinguish forward from reverse engineering. In forward engineering a 3D model

is created with CAD modeling tools starting from the sketch of an artist or from

a list of requirements elaborated by the engineers. There is therefore no need for

surface reconstruction in this case. In reverse engineering, the engineers start from

an existing physical shape which comes either from physical modeling (e.g. a clay

sculpture made by an artist), from an existing industrial product for which there is

no access to the physical model (e.g. the product has been made a long time ago,

or has been made by a competitor), or from a manufacturing process. In the latter

case the goal is to measure the manufactured shape to check if it meets the initial

tolerances and therefore the quality standards.

• Cultural heritage: from researchers to end users, applications using 3D models in the

history and art field are developed. The creation of virtual museums allows the art

and culture diffusion in the entire world. On an other side, the art digitalization is a

powerful tool for the historians. This allows long time preservation but also virtual

restoration or a certain understanding of the artist work/technique, for example by

detecting the artist gesture. The digital Michelangelo project works on the creation

of a long-term digital archive of some important cultural artifacts (such as the David

of Michelangelo (fig.1:middle left));
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Figure 1: Application examples.

• Video games : one of the most inventive industries in 3D geometric modeling/processing.

Video games seek for realistic or expressive rendering and for rapid interactivity with

the user (frame rate is critical). Thus a lot of work is done on 3D models in order

to find realism of the shape, gestures, character feelings. For these issues, it is of-

ten simpler to request for surface reconstruction than to reproduce the reality from

scratch. This is even more true for animated characters for which the poses and

gestures are notoriously difficult to reproduce. For articulated objects, a solution is
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to model the skeleton of the object and then to animate each part of the skeleton. An

other solution is to perform motion capture. Motion capture involves measuring an

object position and orientation in physical space by using sensors. Then the motion

is reproduced on a 3D model. The objects of interest include human and non-human

bodies, facial expressions,etc.

• Movies : for the movie industry time has come where 3D modeling is easier and

cheaper for some photorealistic scenes, as well as for special effects. In terms of

needs for reconstruction there are a lot of acquisition methods like camera tracking.

Furthermore, using 3D animated models make possible to prototype, in real time,

the different scenes of a movie and thus to create a 3D story board.

• Topography : The growing popularity of GPS-driven navigation systems have rekin-

dled the interested in the accelerated 3D modeling of large scale environments, like

cities. An other application of 3D model is in the optimized land resource manage-

ment. 3D model allow to work on reliable and detailed information describing the

spatial distribution of soils, geology, topography. The data are acquired from satellite

image, from sonar. In addition to GPS and soil studies, some users need 3D geo-

graphic informations for urbanism, army, telecommunications and urban transport.

The visualization is important but also the possibility to perform simulation: earth

movements, air or sea current, for example.

Although all applications mentioned above require specific processes, they can be clas-

sified by their final goal which is pure visualization, simulation or calculation. One common

trend between these three classes of applications is the ever increasing need for accuracy,

be it for high definition realistic rendering or for accurate computation and simulations.

An object can be defined in several levels: semantic (abstract), mathematical or digi-

tal. On a computer, the object representation must be finite thus a discretization must be

performed in order to convert a real object to its digital representation.

In this thesis we investigate the topic of surface reconstruction from data acquired onto

a physical object.

Depending on the techniques used, the output of a scanning process can be simply a set

of points (unstructured data), but it can be also a profile, a range image or a volumetric

output (structured data). The standard acquisition techniques can be roughly divided into

two main categories: acquisition by contact or acquisition without contact. In the first case,

the shape is acquired by touching the object surface on each relevant side with an ad-hoc

instrument. We are interested by the second class of techniques where the shape is acquired

by indirect techniques based on a couple source/sensor. The energy is emitted by the source

and the sensor measure the return of the signal. Generally, the acquisition system is an

active optical system composed of a laser source and a sensor (fig.2) [RCM+01]. The source

emits a certain illuminant pattern and the sensor acquires returned marks reflected by the
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Figure 2: Bimba con nastrino. Sculpture digitized by a Minolta V910 laser scanner.

object surface. The source scans regularly the space and the system returns a 2D matrix

possibly sparse, called range image, identifying points on the surface. More precisely, a

range image is a list of 3D coordinates in a given reference frame, i.e a point cloud, for

which no specific order is required.

Scanning an object consists of set of complex tasks which are commonly referred to as

the 3D scanning pipeline (Fig.3).

Figure 3: Scanning pipeline. Left to right: Acquisition (the physical object is acquired by
several scanning process in order to cover all the surface), registration and merging.

• Acquisition of range images (Fig.2). One single view is not enough to reconstruct the

whole surface due to occlusions, shadows,etc. Thus the main issue is to decide on

the set of range images: number, position, specifications, resolution, so as to obtain

a complete sampling of the surface. The point set should cover the whole surface

with no holes and densely enough with respect to the local feature size. Note that

a partial overlapping is necessary for the next step in order to find common features

in two successive range images.

• Registration of range maps (Fig.4). Each range image is taken independently, hence

defined in a local coordinate frame which is relative to the current sensor location.
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The registration is the process to find the rigid transformations (translations, rota-

tions) to apply to each range image in order to register all the points in a single

coordinate frame.

Thus, correspondence between the different range image must be found, that is sev-

eral common feature points must be detected either automatically or manually. For

automatically registering two unstructured 3D point sets, ranges images, the clas-

sical approach is to perform an ICP (Iterative Closest Point). Generally, the ICP

algorithm is performed for all pairs of successive range images and then for all the

range images together.

After registration, some parts of the range images which correspond to the same

surface area mildly overlap.

• Merging. The issue is to build a single, non redundant surface out of the many,

partially overlapping range images. That is, to reconstruct the surface of the scanned

object.

• Processing. The quality of the reconstructed mesh can be improved by a series of

tasks commonly referred to as geometry processing: denoising, smoothing and fairing.

In some cases it may also be desirable to edit the mesh manually so as to perform

some modification (deformations, blending,...);

• Simplification. The reconstructed mesh is often overly complex and there may be a

certain redundancy in the vertices with respect to the physical shape digitized, or for

the targeted application. The mesh can be simplified by decimation or remeshing so

as to reach a user-defined complexity expressed in number of primitives.

Figure 4: Registration. Top: Four range images of the Bimba con nastrino (18 range
images were necessary to scan the sculpture). Bottom left: the range images are merged.
Bottom right: detail of the braid.
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0.2 Goals

Our work takes place in the merging step aforementioned. From the point sets sampled by

the scanner and registered, our aim is to reconstruct a discrete representation of the object

surface. This issue is known as the surface reconstruction problem in the literature.

Recent improvements in automated shape acquisition have stimulated a profusion of

surface reconstruction techniques over the past few years for computer graphics and reverse

engineering applications. Data collected from scanning (fig.2) processes of physical objects

are often provided as large point sets scattered on the surface object.

The main difficulties encountered during surface reconstruction may come from two

sources: the shape of the object or the data acquired. On the one hand, the shape may

have a non trivial topology or sharp features. On the other hand, the data sampled may

be noisy, the sampling may be non adapted and the point set may be large, if not massive.

Noise: The scanning pipeline is entangled with noise, which translates into an uncertainty

over the location of points and even over their physical existence. All sources of noise are

not known, therefore it is hard to get a precise knowledge of the nature of the noise.

Generally, the noise may come from two sources:

• Acquisition: There is uncertainty from the physical measure, as the sensor involves

physical and electronic devices. All electronic devices suffer from electronic noise to

a greater or lesser extent. In scanners, this noise has its greatest effect in low light

level detection, i.e. while scanning the dark areas of objects. The optical devices

(laser, lenses) are also sources of noise due to their uncertainty in their properties

(wavelength, geometry and material of lenses).

Other noise may come from the material of the scanned object. When a laser beam

enters a marble block, for example, it creates a volume of scattered light whose

apparent centroid is below the marble surface. The reflected spot seen by the range

camera is shifted away from the laser source. Since most laser triangulation scanners

operate by detecting the center of this spot, the shift causes a systematic bias in

derived depth.

• Registration: range images may not coincide for noise or sampling reasons. Thus the

alignment may be wrong or simply inacurrate and then produces a set of different

layers where the range images overlap.

Moreover, selecting the n viewpoints is not easy: the overlapping rate of the range

images must be sufficient but not too redundant. For example, Some surface regions can

not be captured: they are visible from the emitter but not by the receiver and vice versa

(fig.5). Thus the user selection of mildly overlapping patches is non trivial, In most of the

cases, a first set of range images is measured which allow the user to decide if others scans

are necessary.
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Figure 5: One of acquisition problem: hiding area. The visibility area of the emitter (pink)
and the sensor/receiver (green). Some surface regions may be visible from the emitter and
not visible from the receiver and vice versa.

Figure 6: Reconstructing the Bimba con nastrino. The registration and fusion stages have
been made with Minolta’s software). Some holes appear (right) where the scan can not
capture the shape (deep area)

Non adapted sampling: One important issue is to obtain a good sampling. A good

sampling is a point set which density locally adapts to the local geometry of the surface.

Beside the limited accuracy of the scanner, the main difficulty come from the facts that the

acquisition process is performed manually, and that the user has no a priori knowledge over

the shape except from visual inspection. Some parts of the surface object can therefore be

over-sampled (areas with a large overlapping rate of the pair of successive range images)

whereas some other parts may be under-sampled (hidden area or the surface region tangent

to the laser beam) (see Fig.6).
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0.3 Contributions

The contribution of this thesis is the development of a surface reconstruction method based

on the Radial Basis Functions (RBF) approach. We use Voronoi tools in order to filter

noise, reconstruct using different level of details and obtain a smaller final representation.

Among many techniques devoted to surface reconstruction, functional based approaches

where the surface is reconstructed as the zero level set of a function are highly popular.

The reconstruction process amounts to search for a function whose zero level set passes

though or near the data points. The implicit function is defined as a linear combination

of compactly supported radial basis functions. We depart from previous work by using as

centers of basis functions a set of points located on an estimate of the medial axis, instead

of the input data points. Those centers are selected among the vertices of the Voronoi

diagram of the sample data points. Being a Voronoi vertex, each center is associated with

a maximal empty ball. We use the radius of this ball to adapt the support of each radial

basis function.

Our method can fit a user-defined budget of centers in two ways. In the first case,

the selected subset of Voronoi vertices is filtered using the notion of lambda medial axis,

then clustered to fit the allocated budget. In the second case, the set of centers is selected

among the Voronoi vertices with a greedy algorithm.

The combination of radial basis functions and Voronoi-based surface reconstruction

allows us to reconstruct a smooth and watertight surface by approximating the signed

distance to the sampled surface defined all around the sampled shape. Furthermore, our

choice for the centers allows reducing the center number to obtain a more compact repre-

sentation in term of centers, coefficients and supports. The user can define the number of

centers, i.e. the size of the representation and our algorithm will adapt the level of detail

to this number using filtering and clustering, or greedy selection.

0.4 Outline

This thesis is organized as follow, the first part outlines the theoretical framework under-

lying surface reconstruction and presents a state of the art in surface reconstruction from

point set. The second part is devoted to present our contributions.
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Chapter 1

Introduction

Definition 1.1. A surface S ⊂ R
3 is a 2-manifold embedded in R

3. Each point p ∈ S

has a neighborhood homeomorphic to an open disk or to an open halfdisk of R
2. The points

with neighborhoods homeomorphic to an open halfdisk constitute the boundary of S.

We first define the main classes of surface representations. In the following, we consider

oriented manifold surfaces. These surfaces divide the space into two subspace: a bounded

volume tagged as inside and an unbounded volume tagged as outside.

1.1 Surface Representations

In computer graphics a large variety of geometric representations has been used for recon-

struction, modeling, editing and rendering of 3D objects.

We can define a surface representation as a data structure which allows performing

various operations:

• visualization of the surface;

• query: determine if a given point is inside or outside the surface, compute the

distance to the surface,...;

• modification: a surface can be deformed, blended with an other surface or animated;

• evaluation of differential quantities at a given point on the surface (first derivative,

curvature,...).

The required properties of a given surface representation may vary according to the

targeted applications: from ease of visualization to data structure suitable to geometry

processing, through ease of modification and animation.

We define two main classes of surface representations: explicit and implicit. An explicit

formulation describes the precise location of the surface as a set of primitives or functions.

An implicit definition represents the surface as an isocontour of a scalar function.
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1.1.1 Explicit Representation

A 3D model can be defined by a collection of primitives such as points and triangles. By

adding connectivity relationships between the primitives we may obtain a mesh. When the

surface patches are spline surfaces, the surface representation is parametric.

Most explicit surface representations share common properties: In general the surface

can be rendered efficiently but it is difficult to perform certain geometric operations such

as determining if a given point is inside or outside the surface, or blending together two

surfaces.

We now describe three of the main explicit surface representations with their strengths

and weaknesses.

Remarks: terrain modeling is a particular case of explicit surface. The surface is

represented as the graph of a function of two variables f : R
2 → R. This definition fails to

represent all the surfaces (like watertight). Thus we can not summary explicit surfaces as

terrains.

1.1.1.1 Collections of Primitives

A point-based surface representation is a sampling of a surface, resulting in 3D positions,

optionally with associated normal vectors or auxiliary surface properties such as color or

physical attributes.

Figure 1.1: Point sample representation. Three different point sampling densities for the
Bimba model. Top: three point sets: 25K, 74K and 640K points. Bottom: a point set
with 2013K points and a closeup of the ear.

The point set must be dense enough to faithfully represent the shape (fig.1.1). The

point density must be adapted in order to obtain a compact representation and avoid
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redundancy.

Surface splats have been proposed in order to bridge the gaps between neighboring

point samples. The points are enriched with normal vectors and a radii, turning them into

object-space circular disks. A locally optimal adaptation to the curvature of the underlying

surface is provided by elliptical splats (fig.1.2). The latter are defined by two tangential

axes and their respective radii. Optimal local approximation is achieved if the two axes

are aligned to the principal curvature directions of the underlying surface and the radii are

inversely proportional to the corresponding minimum and maximum curvatures.

Figure 1.2: Surface splats (image taken from [?]).

Despite its simplicity, the splat surface representation requires a dense sampling even

in smooth regions: if splats are small compared to spacing then gaps result.

1.1.1.2 Meshes

A mesh is composed by a geometry and a connectivity, respectively a collection of primitives

and a set of relationships between these primitives (fig.1.3).

Triangle meshes (fig.1.3:left) are the most common surface representations in many

applications due to their simplicity and flexibility. More formally, the surface is defined as

a simplicial complex with vertices, edges and facets.

Definition 1.2. A 3-dimensional simplicial complex is a collection of simplices of dimen-

sion at most 3 in R
3 such that all simplices spanned by vertices of the complex belong to the

complex and the intersection of any two simplices is either empty or is a simplex belonging

to both simplices.

When the facets differ from triangles as polygons with arbitrary degrees the mesh is

polygonal (fig.1.3:left).

1.1.1.3 Parametric Surfaces

Parametric representations such as spline surfaces [Far02] are defined as functions mapping

planar domains Ω to R
3.
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Figure 1.3: Three different meshes of the Bimba. Left: Triangle mesh. Right: Quadrangle
mesh.

Definition 1.3. For parametric representation, the surface is represented by a two

dimensional function f : R
2 → R

3 which maps a two dimensional parameter domain Ω

into a three dimensional space. Surfaces are represented as :

f(u, v) = (x(u, v), y(u, v), z(u, v)). (1.1)

As the function f is a homeomorphism from Ω to the surface, several kinds of surface,

such as the ones with handles, may not be represented by a single parametric function.

Theses surfaces are represented by a set of parametric surface patches which are stitched

together with geometric continuity conditions [Far02]. Examples of such parametric rep-

resentations include B-splines, Bézier surfaces, Coons patches and non-uniform rational

B-splines (NURBS).

1.1.2 Implicit Representations

The surface is defined as an isocontour of a scalar function R3 f : R
3 → R, i.e. the zero

level set of f (fig.1.4).

Definition 1.4. The surface S′ is represented implicitly as the zero-set of a function f , i.e

S =
{

p ∈ R
3, f(p) = 0

}

(1.2)

Note that a surface is this way non uniquely determined as the isocontour of several

functions may correspond to the same surface. Knowing a surface, a common choice for

the function f is the signed distance function to the surface.
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Figure 1.4: Implicit representation. The Bimba surface (gold) is defined as the zero-set of a
function f , positive outside and negative inside. The colors on the cutting plane represent
the function values (cold tones for negative values, warm tones for positive values and white
for zero values).

1.1.3 Comparison

Location query Point location queries are easier for implicit representations than for for

explicit representations. Assuming the surface being defined as the zero-set of a function

f , a point p can be located by a simple evaluation of f at p: p is inside if f(p) < 0 and

outside if f(p) > 0 (fig.1.4). Point location for an explicit representation such as a triangle

mesh without boundary is more difficult, as it requires to know a point q inside the surface

(or outside) and a relevant data structure in order to check if the segment pq intersects the

surface.

Visualization Explicit surface representations are in general easy to visualize, as it

amounts to iterate and render over all primitives or surface patches. Conversely, implicit

surface representations are considerably harder to render as it requires a discretization step

in order to generate a set of simple primitives. This in fact amounts to convert the implicit

representation into an explicit one, restricted to one or several user-defined isovalues. The

isovalues of the implicit function are commonly discretized into triangles using surface ex-

traction algorithms like the marching cubes [LC87, Blo94] or using meshing technique such

as the Delaunay-based surface mesher elaborated by Rineau et al [?].

Texture mapping may be required for the visualization process. This operation is not

trivial and needs a parametrization of the surface. Thus, the parametric representation is

the only one which allows direct texture mapping.

Modification Modelisation and animation of 3D models require a set of operations such

as rigid transformations, deformations, blending and Boolean operations. The main surface
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representations listed above mainly differ by the type of control available over the geometry

and topology for each operation.

Mesh and parametric representations provide control over the topology of the object.

For example, during local distortion of a mesh, the connectivity can be updated while

maintaining strict consistency conditions to preserve a manifold surface structure. On the

other side, topology modification, like adding or removing handle, may be difficult. For

parametric representation the topology can be controlled explicitly. However a modifica-

tion of the object such as deformation or topology change can require modifications of the

domain Ω in order to avoid strong distortion and inconsistencies.

Finally, while implicit surface representations can represent surfaces with arbitrary

topology, it is hard to predict the topology changes during deformation. Boolean surface

operations are simpler for implicit than for explicit surface representations.

Evaluation Computing differential quantities at a given point is notoriously difficult for

surfaces defined by a collection of primitives or by a mesh [?]. Conversely when a surface

is defined by functions, be they parametric or implicit, the tangents, the normal and the

curvatures can be evaluated at any point.

1.2 Surface Reconstruction

Figure 1.5: Reconstruction pipeline. The Bimba sculpture (left) is scanned to obtain a point
set, P , scattered on the surface object (middle). Then the surface, S, of the sculpture is
reconstructed (right) (a surface S′ is obtained).

The input of a the reconstruction algorithm is a point set P = {pi}i=1..n measured

on the surface S either manually or via a physical process such as 3D scanning (fig.2).

We assume that the original surface S is smooth and that the sampling is dense enough,

especially near features such as edges, points and bumps. The output of the reconstruction

algorithm is a representation S′ of the surface S.

The reconstructed surface S′ may interpolate or approximate the data points P (fig.1.6).
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Figure 1.6: Curve reconstruction. Left : the data points are interpolated by the blue curve.
Right : the data points are approximated by the blue curve.

In the interpolating case, the surface S′ must pass through all data points P . Note that

the solution is not unique (Fig.1.7) it depend on the approach chosen.

Figure 1.7: Different curves which interpolate the data points (piecewise constant, linear,..
interpolation)

Conversely, in the approximating case, the surface S′ must pass close but not necessarily

through the data points P .

For both cases the surface reconstruction problem is inherently an ill-posed problem,

as an infinite number of surfaces could satisfy the constraints listed above. A common idea

to reconstruct the most plausible surface is to infer geometric or physical properties for the

measured surface. For example, geometric properties ensure that the reconstructed surface

has to be smooth. Physical properties ensure that the surface has a minimum curvature

by minimizing during reconstruction an energy functional.

Reconstruction methods can be roughly classified into two main classes : Delaunay

based (sec.2.1) or functional based (sec.2.2).

The mesh based reconstruction algorithms establish connections between samples which

are neighbors on the surface. These approaches used on geometric constructions which
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defines a simplicial complex on these samples, typically the Delaunay triangulation or its

dual the Voronoi diagram.

In the functional based approaches, the approximated surface S′ is formulated implicitly

as the zero level set of a function f defined all over the space or locally. In most cases, the

computed function f is an approximation of the signed distance function to the surface S

(see [TO02] for a survey).

It remains several important approaches which may not be classified as Delaunay based

or functional based. These approaches consist in finding the min/max cut of a graph; or

are based on statistical measures or involve deformable models.

The difficulty of the reconstruction process is to deal with non smooth surfaces, with

noisy data,... The aim is to obtain a watertight surface, with a compact representation

and to have an algorithm with the fewest parameters.
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Surface Reconstruction from Points

I
n the following, we restrict ourselves to the reconstruction techniques which take as

input a set of unorganised points P = {pi}i=1..n assumed to lie on or near the surface

S of an unknown object. The result of the reconstruction algorithm is a surface S′ that

approximates S. The representation (Chap.1.1) used for S′ depend on the reconstruction

method chose.

2.1 Delaunay Based Surface Reconstruction

A popular approach is to reconstruct a surface using a Delaunay triangulation of the input

point set or using its dual the Voronoi diagram. The main idea is the following: when the

surface is sampled densely enough, the points which are closed in 3D should be closed on

the surface. Therefore the Delaunay triangulation, which encodes the Euclidean distance

between the sample points in 3D is the tool of choice for establishing their neighborhood

relationships on the surface.

Figure 2.1: Delaunay based curve approximation. Left: the blue points are sampled on a
red curve. Right:the Delaunay triangulation of the point set contains a piece-wise linear
approximation of the curve

In general the Delaunay-based approaches sculpt the Delaunay triangulation of the sam-

ple points. More precisely, a subcomplex interpolating the sampled surface is extracted

from the Delaunay triangulation by greedily eliminating facets from the tetrahedra ac-

cording to geometric criteria such as the area of the triangular facets (fig.2.1, see [?] for a
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survey).

2.1.1 α-Shapes

The α-shapes have been introduced by Edelsbrunner’s and Mücke’s in 1994 [EM94]. Given

a finite point set P , and a real parameter α, the α-shape of P is a polyhedral surface

which is not necessarily connected (fig.2.2). The set of real numbers α leads to a family of

α-shapes.

Figure 2.2: Reconstruction using α-shapes. The input points (blue) with α-balls centered
on them. From left to right: the parameter α is increasing. The black edges compose the
α-complex and the α-shape is the boundary of the green area.

Definition 2.1. Given 0 ≤ α ≤ ∞. Let a α-ball be an open ball with radius α. A certain

α-ball Bα is called empty if Bα ∩ P = ∅.

Remark: A 0-ball is a point. An ∞-ball is an open half-space.

Definition 2.2. The α-complex is the Delaunay triangulation restricted to α-ball. The

points p, q ∈ P are connected by a straight edge if there is a ball Bα that passes through p

and q, and all other point of P lie strictly outside Bα.

In other words, given a finite set of points P and α, the α-complex of P is the dual

complex of the Voronoi diagram of P restricted to the union of balls Bα(P ). Each restricted

Voronoi cell is the intersection of the original Voronoi cell with the ball of its generating

point.

By construction the α-complex is a sub-complex of the Delaunay complex for every

α ≤ 0. With increasing α more and more cells of the Delaunay complex appear in the

α-complex (fig.2.2). A family of shapes can be derived from a Delaunay triangulation of

the point set P ; where the parameter α controls the level of detail. The 3D α-shape is

defined as the union of the cells of the α-complex. The α-shape degenerates to the point-set

P when α→ 0. On the other hand, the α-shape for α→ ∞ is the convex hull of S.

The α-shapes method consists of three steps: first, a triangulation of the point set is

computed, then the α radius is selected and at last, the simplexes that are to be included

in the reconstructed shape are identified.
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This approach allows fast, accurate, and efficient calculations of volume and surface

area. One drawback is that the sampling needs to be more or less uniform.

α-shapes are based on an underlying triangulation that may be a Delaunay triangulation

in case of basic α-shapes or on a regular triangulation in case of weighted α shapes. The

α-shapes can be extended to deal with weights [?] by using a pseudo distance measure.

The power distance is defined as the square of the Euclidean distance minus the weights.

Let p1 and p2 two points with weight w1 ans w2:

d((p1, w1), (p2, w2)) = ‖p1 − p2‖
2 − w1 − w2 (2.1)

The power distance is zero if and only if two spheres are orthogonal.

2.1.2 Crust

The Crust algorithm, also called Voronoi filtering, for surface reconstruction was designed

by Amenta and Bern [AB98].

This algorithm relies the notion of the poles and medial axis (see Annex9).

For the reconstruction problem, points are measured on a surface of an input shape.

In 2D, if the sampling density of the shape goes to infinity, the vertices of the 2D Voronoi

diagram approach the medial axis (see proof in [?]). However, a similar result does not

hold in 3D. Some Voronoi vertices may lie very close to the surface and thus far from the

medial axis.

Figure 2.3: Tetrahedron configurations in 3D. The orange tetrahedron corresponds to a
Voronoi vertex far from the medial axis. The green tetrahedron corresponds to a Voronoi
vertex near the medial axis, i.e. a pole. The poles are guaranteed to converge to the medial
axis.

In [AB98], Amenta and Bern observe that if some Voronoi vertices remain far from the
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medial axis, some other ones, so-called poles, lie close to the medial axis.

Figure 2.4: Pole. One point p, its Voronoi cell and 2 poles v1 and v2. Left: in 2D case.
Right: in 3D case.

In the following we note Vp = VP,p the cell associated to p in the Voronoi diagram of

the point of P .

Definition 2.3. The set of poles is a subset of Voronoi vertices. At most 2 poles can be

extracted for each Voronoi cell Vp, which means that for each point p ∈ P correspond at

most two poles. Let Vp be a bounded Voronoi cell. The first pole v1 is the Voronoi vertex

in Vp with the largest distance to the sample point p. The second pole is the Voronoi vertex

v2 in Vp furthest away from p in the opposite half space of v1, i.e such that the vector −→pv1

and the vector −→pv2 make an angle larger than π
2 (Fig.2.4).

Boissonnat and Cazals [?] and Amenta et al. [ACK01] show that under strict conditions,

a smooth original surface and a dense sampling, the poles can lead to a good approximation

of the medial axis (see proof in [AB98]). Besides, the vector vertex-pole provides a good

approximation of the normal of the original surface (fig.2.4).

Algorithm: Assuming a certain sampling density on the surface, the algorithm consists

in four steps :

• Compute Voronoi diagram of P ;

• For each p ∈ P find its poles (v+, v−), let V (P ) be the set of poles;

• Compute Delaunay triangulation T of P ∪ V (P );

• Return all faces in T with vertices in P as an approximation S′ of the surface S

Besides an approximation of the surface, the algorithm provides an approximate medial

axis of the S as the set of facets in T which are not in the approximate surface.
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Figure 2.5: Crust in 2D. The blue input points P , the green Voronoi vertices V (P ), all
the gray Delaunay edges and, highlighted, the Delaunay edges between points of P (red).
Right: two details. Top closeup image, the antennas are under sampled: the reconstruction
failed. Bottom close up the image, the spurs are well sampled: the shape is reconstructed.

The Crust algorithm was one of the first surface reconstruction algorithm to provide

theoretical guarantees.

2.1.3 Power Crust

The Power Crust algorithm combines concepts of medial axis, Voronoi diagram, and power

diagram. As the Crust it assumes that the sampling density is higher where there is more

detail. It extends to handle noise, sharp corners, and non-watertight surfaces.

Algorithm :

1. Compute the Voronoi diagram of sample points;

2. Determine which Voronoi vertices are poles;

3. Compute the power diagram of the poles weighted by the radius of their polar ball;

4. Determine which poles are interior and exterior;

5. Return the union of the power diagram cells of the inside poles.

The algorithm provides an estimate of the interior medial axis. The power diagram

to define the adjacencies of the polar ball centers, i.e. the poles. Subsets of inner (resp.

outer) poles whose power diagram cells share a face are connected with a dual weighted

Delaunay face. These faces form a simplicial complex, the power shape, analogous to the

medial axis.
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2.1.4 Cocone

The cocone algorithm was designed by Amenta et al [ACDL02] as an improvement over the

Crust algorithm. The cocone algorithm computes a set of candidate triangles containing

the restricted Delaunay triangulation Ds(P ). The cocone can be seen as the restricted

Delaunay triangulation of the input points enlarged by co-cones.

Figure 2.6: Co-cone in 2D and 3D. The co-cone of a sample point p on a curve together
with the Voronoi cell of the sample point and its pole v+.

Algorithm:

• Compute the Delaunay triangulation of P ;

• For every sample point p ∈ P , approximate the normal of S at p using the pole of

the Voronoi cell Vp in V (P ) (like in sec.2.1.2);

• For each sample point p select a set of candidate triangles.

Follows, let p ∈ P a sample point. The co-cone at p is defined as the intersection of Vp,

the Voronoi cell of p, with the complement of a double cone with apex p and fixed opening

angle around the approximate normal at p.

A triangle t in D(P ) is candidate for p if its dual Voronoi edge e intersects the co-cones of

p (fig 2.6). If the sampling density is sufficiently high, these candidate triangles lie close to

the original surface S. A subsequent manifold extraction step extracts a manifold surface

out of this set of candidate triangles.

The Cocone algorithm demands a single Delaunay triangulation in contrast to the Crust

algorithm. We can notice some problems with practical data, due to undersampling, noise

or non-smoothness. For example, the estimated normals may not be correct, leading to a

wrong choice for the triangles.
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Tight cocone [DG03] attempts to fill such holes by labeling Delaunay tetrahedra as in

or out, based on the initial approximation of the surface. It removes all outside tetrahedra,

and take the boundary of the inside tetrahedra to get a surface S′.

2.1.5 Flow Complex

The flow complex is a data structure that can be used to structure a finite set of points in

R
3. The flow complex is closely related to the Delaunay triangulation, but neither complex

is a subcomplex of the other. The striking difference is that it seems much easier to extract

a surface or cavity model from the flow complex than from the Delaunay triangulation.

Figure 2.7: Flow complex. From left to right: 1. The local minima ⊖, saddle points ⊙ and
local maxima ⊕ of the distance function induced by the sample points (local minima). 2.
Some orbits of the flow induced by the sample points (blue). 3. The stable manifolds of
the saddle points. 4. The stable manifolds of the local maxima.

The main idea is to study where a point in R
3 flows when following the direction of

steepest ascent of the distance function to the sample points. It turns out that all points

flow into a local maximum (fig.2.7). The set of all points that flow into a critical point

is called the stable manifold of this critical point. the collection of all stable manifolds is

called the flow complex of the sample points. The reconstructed surface is the union of

the stable manifolds of the maxima.

Algorithm: The flow complex is not a subcomplex of the Delaunay D(P ) triangulation

though D(P ) can be used to compute the flow complex. This computation is quite involved

and makes use of the recursive structure of the stable manifolds.

2.1.6 EigenCrust

The EigenCrust was proposed by Kolluri et al. [KSO04] in order to produce watertight

surface.

In this approach, the Delaunay tetrahedralization of the sample points is computed,

then a variant of spectral graph partitioning is performed to decide whether each tetrahe-

dron is inside or outside the original object, i.e whether a pole is inside or outside. At the

end, the reconstructed surface triangulation is the set of triangular faces where inside and

outside tetrahedra meet.
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The Eigencrust algorithm handles undersampling, noise, and outliers by using a spectral

graph partitioner to obtain a robust tetrahedra classification.

A pole graph (fig.2.8) is constructed. The nodes represent the poles. There is an edge

e(i,j) between two poles vi and vj if:

1. the poles are neighbors in the Delaunay triangulation of the poles, or

2. the two poles share a vertex.

Figure 2.8: Pole graph. The negative weighted egdes (orange) and the positives ones (dark
green). The weight is large if the maximal balls intersect deeply. (The input point (blue)
and the poles (green))

The edges, e(i,j), of the graph are weighted according to the likelihood that the two

poles lie on the same side of the surface. In case 1, the weight is positive. In the case 2,

the weight is negative (respectively the green and the orange edges in the figure 2.8). The

weighted graph is represented by the pole matrix, L(i, j) = −w(i, j). The eigen vector

associated to the smallest eigen value of the pole matrix L determines a division of the

graph into two subgraphes containing inside and outside poles.

In addition to be Delaunay based, the Eigencrust can be seen as a graph cut algorithm

(sec.2.3.1). The Normalized Cut is performed, the pole graph is partitioned using two

criteria: minimizing sum of weights of the cut edges and cutting the graph into two pieces

of equal size.

2.2 Functionnal Based Surface Reconstruction

The surface S may be defined by functions implicitly (see sec.1.1). The object surface, S,

is characterized by

S =
{

x ∈ R
3 : f(x) = 0

}

, (2.2)

where f is the signed distance from x to the surface object S.

S is unknown, the distance function can not be computed exactly, thus an approxi-

mation must be performed. The problem is now to define the (signed) distance function

f .
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Usually the signed distance function is approximated as a composition (weighted sum)

of simple primitives fi (such as blobs, quadric, radial basis function,...) to find a scalar

function such that all data points are close to an isocontour of the scalar function. The

distance function may be defined globally or locally.

For some applications, computing the function f all over the space is not necessary and

partitioning the space into inside or outside area is sufficient. In this case, the method try

to reconstruct an indicator function instead of distance function (sec.2.2.6).

Functional based approaches are robust when the data points are unorganized and non

uniform. However their computation costs are often high for large data sets since the

construction is global which results in solving a large linear system.

2.2.1 Tangent Planes Estimation

Hoppe et al. [HDD+92] proposed a signed distance function f based on an estimation

of the oriented tangent planes. For each data point pi, a tangent plane is computed by

least-squares approximation based on a principal component analysis (PCA) on the k

nearest neighbors of pi (Fig.2.9). A consistent orientation is obtained by solving a graph

optimization problem with a minimum spanning tree (MST). The signed distance function

at a point q ∈ R
3 is approximated by the distance between q and the nearest tangent

plane. As the sampling ideally should be proportional to the curvature in some sense,

Figure 2.9: Signed Distance function. For a given point q, its nearest neighbor p in the set
of input point (blue) is found then the distance d to the estimated tangent plane in p is
computed.

Curless Levoy [?] propose a modification which is one of the best results in practice.

These algorithms require a uniform sampling at least locally since otherwise the k

nearest neighbors may be almost collinear, resulting in a poor estimation of the tangent

plane.

In [?], Boissonnat an Cazals proposed a smooth surface reconstruction via natural

neighbor interpolation of distance functions. This method combines Voronoi diagrams and

implicit functions. It works in any dimension and is suitable for surfaces of arbitrary topol-

ogy and non-uniform sampling. Given a Delaunay triangulation, the neighborhood of a

vertex is naturaly defined as the set of vertices connected to that vertex. This information
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Figure 2.10: Natural Neighbors. Point x has 8 natural neighbors. The red cell is created
when the point x is added to the Voronoi diagram (green). The normalized surface of the
pink area correspond to the coordinate of x according to pi

is of combinatorial nature and can be made quantitative using the so-called natural coordi-

nates. The natural coordinate of a point x according to a point p− i of P is the normalized

measure of the region of withdrawn from pi if x is added in the Voronoi diagram (fig.2.10)

2.2.2 Skeleton Based Implicit Model

Blinn [Bli82] developed the first skeleton-based implicit model which is now called Blobby

Model. A skeleton is composed of a collection of geometrical primitives such as points or

lines. which can be represented by a tree or a graph. Each primitives is associated to a

potential function, v(x), which decreases according to the distance from the primitive to

x.

In the blobby model approach, the skeleton is formed by a set of points P = {pi}. The

potential functions are defined by a class of Gaussian function Di centered at each point

pi of the skeleton (2.3).

Di(x) = bi ∗ exp(−ai · ri(x)
2) (2.3)

where ai and bi are scalar value, respectively the spread and the mean of Di, and ri(x) =

‖x− pi‖. In the case of a spherically symmetric field, ri(x) is the euclidean distance from

x to the skeleton point pi.

Muraki et al [Mur91] proposed a reconstruction algorithm based on the blobby model.

The surface S′ is defined implicitly as the zero-level set of a field function f expressed as a

linear combination of three-dimensional Gaussian kernels with different means and spreads

(called Blobby Primitives) (2.4).

f(x) =
N
∑

i=1

Di(x) (2.4)

Muraki’s approach is to make an initial fit between a blob and the data, and to divide

the blob into two blobs so as to increase the goodness of the fit by solving an energy
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minimization problem (2.5) (Fig.2.11):

E =

n
∑

i=1

(f(pi) − iso)2 (2.5)

where iso is a field value and f a field function. This algorithm needs a partitioning of the

Figure 2.11: Blobby Model. The transformation of a "Blobby Model" with the number of
primitives N . From left to right : N = 1, 2, 35, 243

space into inside and outside as the algorithm might be modeling the outside instead of

the inside.

Although the output is always watertight, bubbly-shaped, the convergence rate is very

slow and the algorithm is computationally expensive. To handle this problem, Tsingos et

al [?] reduce the computation time by using the medial axis which brings more relevant

information to chose the skeleton points, i.e. the primitives.

In their algorithm, the medial axis is defined as the set of points that are the farthest

inside the object. In order to extract the medial axis, a (Chamfer) distance map is com-

puted. This map is based upon a voxel approximation of the object using a 3D grid and a

voxel labeling as inside or outside.

The points are selected in the medial axis point with a greedy algorithm: candidate

points are added where the reconstruction is not accurate enough. In this approach, the

field function f is radial and compactly supported.

2.2.3 Surface Fitting

Another approach is to perform some type of surface fitting with a polynomial [?] or an

algebraic surface [?] to the data.

The main idea is to choose a model such as polynomial (quadric, B-splines,...) and to

seek for the best parameters of the model in order to fit the data points. More precisely,

the function/model f is fitted to the data P by minimizing the squared distances between

the points pi and the model f , i.e. by minimizing a least squares error (2.6) :

f∗ = argminf (

n
∑

i=1

(fi − f(pi))
2) (2.6)
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Several approaches add a regularization term to the error in order to smooth the result.

The error to minimize is defined as:

E(f) =
n
∑

i=1

(fi − f(pi))
2 + λD(‖f‖) (2.7)

where λ is the regularization parameter which allows to tune the smoothness of the result

and D is a differential operator which brings an a priori on the kind of desired smoothness.

These approaches are global, that is, for example the quantity of smoothness is the same

for all shapes.

Othake et al [OBT+03] proposed a quadric fitting which preserve sharp features by

using a multi level partition of unity and three kinds of fitting model. The surface is

defined locally with quadric functions that are blended together globally by partition of

unity.

Partition of Unity "Divide and conquer" is the main idea behind the Partition of

Unity approach. The main idea consists of breaking the domain Ω into M smaller mildly

overlapping subdomains {Ωi}i=1..M where the problem can be solved locally. On each

subdomain Ωi, the data are first approximated, and the local solutions fi are blended

together using a weighting sum of local subdomain approximations (2.8).

f(x) =
M
∑

i=1

wi(x)fi(x). (2.8)

The weights wi are smooth functions and sum up to one everywhere on the domain. Then

determine the continuity of the global reconstruction function f . The condition
∑M

i=1wi =

1 can be obtained from any set of smooth functions Wi by a normalization process:

wi(x) =
Wi(x)

∑n
j=1Wj(x)

. (2.9)

In [OBT+03], the fitting strategy is adapted to each cell of the octree.According to the

number of points and distribution of associated normals, different functions are used to

perform a local fitting.

The local fitting strategy depends on the number of points in a given cell and on the

distribution of normals of those points. At a given cell the most appropriate of these three

local approximations is used: a general 3D quadric fitting, a bivariate quadratic polynomial

fitting in local coordinates, or a piecewise quadric surface that fits an edge or a corner. In

order to detect sharp features, a clustering of the normal is performed (Fig.2.12).
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Figure 2.12: Multilevel partition of unity implicit. Left: an octree is computed according
to the distribution of the data points (blue). For each cell of the octree, a quadric surface
(light pink) is fitted to the points contained in a ball centered at the cell. The type
of quadrics fitted is chosen according to the distribution of the points. Then, the local
reconstructions are blended to obtain the surface (dark pink). Right: illustration of the
case where an edge is detected by normal clustering.

2.2.4 Moving Least Squares

The idea of the Moving Least Square (MLS) approach [PK81] comes from the least squares

technique to fit a surface to a set of points described section 2.2.3.

Given a point cloud P , the surface S′ is reconstructed by applying a projection operator

ψ that moves the points in the vicinity of P onto the inferred surface S. The surface S′ is

thus defined as the set of fixed points of the projection operator.

Definition 2.4. The Moving Least Square surface for a point cloud P ⊆ R
3 is defined as

the set of stationary points of a certain projector function ψ : R
3 → R

3:

S = {x ∈ B : ψ(x) = x} , (2.10)

where B is a tubular neighborhood of the MLS surface.

The tubular neighborhood (fig.2.13:Left), B, can be defined as an union of balls centered

at the points pi.

B =
{

x ∈ R
3 : ‖x− pi‖ < rB

}

. (2.11)

Let x be a point in a neighborhood of P . A local reference plane Hx for x is determined

by minimizing a local weighted sum of squared distance of the points pi to the plane Hx:

E~n,q(x) =

N
∑

i=1

(~n · (pi − q))2 θ(|pi − q|), (2.12)

where ~n is the unit normal to Hx, q = x + d~n the projected point of x on Hx, d is
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Figure 2.13: Moving least squares. Left: the tubular neighborhood B of the blue point
set. Right: A local reference plane Hx for the points x (red) is determined by minimizing
a local weighted sum of squared distances of the points pi (blue and green) to the plane
Hx. q (orange) is the projection of x onto Hx.

the distance from x to the plane and θ is a radially symmetric, positive and monotically

decreasing weight function. The algorithm minimizes iteratively the energy function E~n,q

in order to find ~n and q to determine the projector Φ.

Several definitions have been proposed for defined the projector function ψ and θ. The

projection algorithm is also derived in several variants.

Alexa et al. [ABCO+01] proposed to add a polynomial fitting step which can be ap-

plied after the map ψ. The local reference plane Hx is used to compute a local bivariate

polynomial approximation f : R
3 → R of the surface in a neighborhood of x, using local

coordinates. The weighted energy is defined by:

E =

N
∑

i=1

(f(xi, yi) − di)
2 θ(|pi − q|), (2.13)

where (xi, yi) are the coordinates of the input points pi in the local reference plane Hx and

di is the distance from pi to the plane. Alexa uses cubic or quartic polynomials for f ,

since they experienced surface oscillation artifacts with higher degree polynomials.

In the Adaptive MLS (AMLS) [?], the weight θ is adapted to the local feature size (lfs)

in order to adapt the weight to the local geometry of the point cloud.

In [?], Reuter et al. presented an alternative projection operator based upon the En-

riched Reproducing Kernel Particle Approximation (ERKPA), that allows not only to re-

produce polynomials, but also some richer functions with discontinuous derivatives. A user

specifies the locations of the discontinuities that generate the sharp features in the result-

ing point set surface. A compactly supported enrichment function with a user-specifiable

support size allows controlling the influence domain of the sharp feature (fig.2.14).
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Figure 2.14: Surface reconstruction with sharp edges by MLS vs. ERKPA

2.2.5 Radial Basis Functions

About 20 years ago, in an extensive survey, Franke [FN80] identified Radial Basis Functions

(RBF) as an relevant method to solve scattered data interpolation problems. RBFs are used

to reconstruct smooth, manifold surfaces from point-cloud data and to repair incomplete

meshes.

The surface is defined as the zero level set of a function f defined from a class of basis

functions Φ : R
3 × R

3 → R, as a linear combination

f(x) =
m
∑

j=1

αjΦ(x, cj), (2.14)

where {cj}j=1...m denotes a set of m points and {αj}j=1...m denotes a set of unknown

weights to be solved for.

As the invariance according to the rotation and the translation is required, the function

Φ defined as a radial function Φ(x, c) = φ(‖x− c‖) where c is a center and φ : R → R can

be linear, biharmonic or polyharmonic.

Reconstruction using RBFs provides us with smooth implicit interpolating surface,

since, both the implicit solution and its zero level set share the same continuity properties

as the ones of the basis function Φ.

Many RBF-based surface reconstruction algorithm have been proposed [CFB97, DTS00,

OBS03, TI04, CBC+01, Sch95, BL97, Buh03, ?, OBS03, OBS04, Wen02, Wen95, Wu95].

As our approach is based on RBF, we will review the corresponding state of the art in

chapter 3.

2.2.6 Indicator Function

In [?], Kazhdan developed a surface reconstruction technique in which solve for an indicator

function (2.15) of the shape (fig.2.15). Let O be the object such that S is its boundary.

χO(p) =

{

0 if p /∈ O

1 if p ∈ O
(2.15)
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Figure 2.15: Poisson surface reconstruction. Left: the input point with theirs normals.
The value of the indicator function χO are 0 outside and 1 inside the object. Right: the
indicator gradient is ∇χO non zero on a neighborhood of the input points.

Algorithm: Given a set of input points P and their oriented normals, the algorithm

constructs an octree which is used to estimate a vector field of the normals. The indicator

function f is then computed by solving a Poisson equation, where the normal field ~n is

specified as the gradient of the indicator function:

∇f(x) = ~n(x) ∀x ∈ R
3. (2.16)

By using the divergence operator, the equation (2.16) became:

∆f(x) = (div)~n(x) ∀x ∈ R
3. (2.17)

The divergence of the vector field is computed on the cells of the octree and the equation

(2.17) is solved by a Fast Fourier Transform (FFT) and a multiscale linear solver [?].

In [?], Schall et all proposed a variant of the Poisson reconstruction called adaptative

Fourier-based surface reconstruction. This approach is based on the partition of unity and

they perform an error guided subdivision of the input data points. The decomposition

of the space is based on an octree. A local solution is computed as a local characteristic

function for the points inside the cell using Kazhdan global approach. But since the

points inside a cell do not represent a solid, the characteristic function may not be really

computed using the Poisson global approach. To avoid surface parts created which are

not represented by points, the solution is to subdivide the octree cells if the resulting

local approximation inside the cell is not accurate enough. By iterating this procedure,

overlapping local characteristic functions are computed for each octree leaves for each part

of the input with a user-defined accuracy. The final reconstruction is then obtained by

combining the local approximations using the partition of unity approach and extracting

the surface using a polygonization algorithm.

This algorithm is faster than the one of kazhdan but the characteristic function is only
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determined closed to the surface and not for the whole volume.

2.3 Others

2.3.1 Graph Cut Based Reconstruction

Recent research on combinatorial energy minimization has shown that globally optimal

solutions to discrete volumetric segmentation problems can be found efficiently by refor-

mulating them into a maximum flow / minimum cut problem of a specific spatial graph

structure.

Figure 2.16: Min cut in 2D. Given a graph with valued edges (e, we), find min cut between
source and sink.

An undirected graph G = 〈V, E〉 is defined as a set of nodes (vertices V) and a set

of undirected edges (E) that connect these nodes. An example of such graph is shown in

Figure 2.16. Each edge e ∈ E in the graph is assigned a nonnegative weight (cost) we. There

are also two special nodes called sink and source. A cut is a subset of edges C ⊂ E such

that the sink and the source become separated on the induced graph G(C) = 〈V, E \ C〉.

Each cut has a cost which is defined as the sum of the costs of the edges that it severs:

cost =
∑

e∈C

we. (2.18)

The minimum cut problem on a graph is to find a cut that has the minimum cost

among all cuts.

Hornung and Kobbelt [AH06] present a volumetric method for reconstructing watertight

triangle meshes from arbitrary point clouds (Fig.2.17) in which normal orientation is not

required. Their approach uses an unsigned distance function, hence no requirement about

the local surface orientation.

The figure 2.17 describes the algorithm. First, the input points, P , are inserted into a

volumetric grid. This leads to a grid with a sparse set of occupied voxels. A confidence map

is computed: at each voxel v is associated a probability φ(v) that the surface intersects v.

A crust containing the surface is computed using morphological dilation and a medial axis
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Figure 2.17: Reconstruction process in 2D

approximation. The unknown surface is supposed to lie in the voxel crust Vcrust between

the outer boundary Vext and the inner boundary Vint. A unsigned distance function is

computed by volumetric diffusion. A spatial graph structure G is embedded within the

voxel grid. In G, a graph node is associated with each voxel face, and a weighted graph

edge is created for each voxel edge, such that each voxel contains an octahedral subgraph.

G is weighted such that small edge weights for high confidence voxels and vice versa. The

boundaries are connected a sink and a source node, respectively. Computing the min-cut

of this graph yields the surface Sopt .

2.3.2 Statistical Based Reconstruction

Statistical approaches were proposed to deal with noise in the input points and to recon-

struct a piecewise surface.

Assuming a given real-world scene S and a measurement D, the data, i.e. the input

points. Then the probability space of Ω = ΩS × ΩD, the set of all possible real-world

scenes and of all possible measurements of them, is considered. The measurement D is

created from S by a process involving statistical errors. Note that assuming an unbiased

measurement process, the most probable original scene is still the measurement itself.

The Bayesian statistics approach to this problem is defining a probability distribution

P (S) over the set of all possible original scenes. Then, we can apply Bayes rule to invert

the measurement process in a statistical sense. The probability of a reconstruction S being

the original scene given measurement D is computed as:

P (S|D) =
P (D|S)P (S)

P (D)
(2.19)

where P (D|S) is the probability distribution of the likelihood of measurements D being

made of scenes S and P (S) is the probability distribution. Note that P (S) is usually not
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Figure 2.18: Bayesian point cloud reconstruction

be an exact probabilistic model of all potentially measured scenes but only a description

of partial prior knowledge or belief of reasonable models. Prior probabilities are the key

to any Bayesian reconstruction technique. They define what artifacts are considered noise

and thus what the reconstructed scene will look like.

In order to find the most likely reconstruction, the scene S is determined by maximizing

P (S|D), called maximum a posteriori solution SMAP. As the denominator in Equation

(2.19) is only a normalization constant, not depending on S, it is sufficient to compute:

SMAP = arg max
S

P (S|D) = arg max
S

PS|D)P (S) (2.20)

The challenge is to define probabilistic model of the measurement process and of the prior.

In the Bayesian point Cloud Reconstruction [?], let an original scene be a set of n points

chosen according to the probability density P (S). A measurement process deletes some of

the original points, leaving m ≤ n measured points D. Then, random noise is added to

the remaining points according to a density p(D|S) (Fig.2.18(b)).

To invert the measurement process in a statistical sense, an estimate point cloud S

with size n ≥ m is constructed.

After this initialization, the algorithm seek for a reconstructed surface S′ that maximize

the posterior probability p(S′|D) by numerical optimization.

The prior model include both assumptions on continuous properties as well as discrete

properties for representing sharp features. The objects are assumed to consists of piecewise

smooth patches separated by sharp boundaries. The priors consists of three main ingredi-

ents: density priors, smoothness priors and priors for estimating sharp features (2.21).

P (S) =
1

Z
Pdensity(S)Psmooth(S)Pdescrete(S)w(S) (2.21)

where Z is a normalization constant and w(S) is a box function such that w(x) = 1 if x is

inside the box and 0 outside .

2.3.3 Deformable models

Deformable models have been first introduced by Kass et al. in late 80s [KWT88], for the

purpose of image segmentation. It has been proved successful in surface reconstruction

from point cloud for medical applications.
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The approaches based on deformable models combine knowledge from mathematics,

physics and mechanics. The surface is obtained as the final sate of the evolution of a given

surface. A deformable model is a geometric object whose shape can change over time

(fig.2.19). The deformation behavior of a deformable model is governed by variational

principles (VPs) and/or partial differential equations (PDEs).

Figure 2.19: Active contours in 2D. The curve S is approximated dynamically by a family
of curves S(t), t = 0 . . . n. The curve S(t) evolves to S(t+ 1) according to F ~N

The deformation algorithm is based on three components: the geometric representation

(explicit, implicit or parametric), the evolution law and the topology control. As the

evolution law is known, the topology may be constrained to not change.

The evolution law is governed by a partial differential equation. The approach considers

a family of surfaces S(p, t) in R
3 , where p parameterizes the surface and t is the time, that

evolve according to the following PDE (2.22):

∂S

∂t
= F (S,N,K, f, ....), (2.22)

where F is an evolution functional, N is the surface normal, K is the surface curvature and

f is a function of the internal or/and external force. The initial condition is S(t = 0) = S0

and S0 is some initial closed surface.

Generally, the deformation involves a data term and a regularization term. The data

term drives the model deformation toward the boundary and the regularization term en-

forces a smooth behavior of the model.

Algorithm based on deformable models have been used to reconstruct surfaces from

point sets.

There is a lot of algorithms based on Deformable Models. Several of them perform
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a surface reconstruction from point set. For example, Zhao et al. [ZOF01] proposed a

weighted minimal surface model based on the potential functional related to the distance

to the points. Notes that this approach, called level set was originally introduced by Osher

and Sethian [OS88], where an initial surface is continuously deformed in order to fit the

data points. The evolution is guided by the gradient of the functional F until reaching an

equilibrium.

At each step, every point x of the surface S(t) evolves toward the interior of the surface,

along the normal direction to S(t) at point x, with a displacement speed that is proportional

to:

−∇d(x) · ~n+ t(x) (2.23)

K denotes the mean curvature of the surface at x and ~n is the inner normal at x.The tension

of the surface represented by the second term t(x) is not linear, so that the evolution process

requires a huge number of steps before reaching its equilibrium.

Chaine [?], in the geometric convection algorithm, incrementally sculpts the Delaunay

triangulation of the input point. The sculpting strategy is a discrete algorithm equivalent to

the evolution equation of Zhao. This algorithm is based on the 3D Delaunay triangulation

and on an oriented watertight pseudo-surface maintained during evolution.

Figure 2.20: Geometric convection in 2D. From left to right: (a) Initialization of the curve
by the convex hull of the point set. (b) The curve is updated. (c) An edge block a cavity.
(d) the resulting curve.

At the beginning the pseudosurface is initialized as the convex hull of the point set

(Fig.2.20(a)) and then the pseudosurface is deformed using a set of geometric and topo-

logical operations (Fig.2.20(b)). The convection process corresponds to the first term of

the evolution equation (2.23) proposed by Zhao. A possible extension of the algorithm is

proposed in which the second term of the equation (2.23) is not explicitly rejected. This

approach allow to resolves undetected pockets (Fig.2.20(c)).

In [?], Sharf et al present a deformable model that uses an explicit evolving front tech-

nique for reconstruction of a 3D model. Their model includes multiple competing evolving

fronts at different locations that approach towards the finer local features of the target

shape only after reconstructing the coarse global features (fig.2.21). The front evolution

is guided by a scalar-field representing the distance from the point set (in outward normal

direction). Thus, the front evolution is adapted to the local feature size of the shape.
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Figure 2.21: Reconstruction with a deformable model. From left to right (3 first images):
Growing of a watertight (genus 0) mesh model inside the point cloud of the dragon. Right:
the handle between the body and the tail is attached and the model is projected onto the
point cloud.
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Chapter 3

Radial Basis Functions

R
adial Basis Functions (RBF) were first introduced by Broomhead and Lowe in the

neural network literature [BL88]. Then, the RBF techniques became standard tools

for pattern recognition [Kir01], statistical learning [HTF01] and, about 20 years ago, in an

extensive survey, Franke [FN80] identified radial basis functions as accurate tools to solve

scattered data interpolation/approximation problems.

Among the many techniques developed for surface reconstruction with implicit meth-

ods, the RBF approach has shown successful at reconstructing surfaces from point sets

scattered on surfaces S of arbitrary topology. Furthermore, the reconstructed surface S′ is

watertight, holes are filled.

Remarks: Carr et al. in [CFB97] proposed to fit skull surface using RBF algorithm in

order to repairing defect, usualy hole in the skull with cranial implant (cranioplasty).

The RBF methods can be seen as variational problems [Duc77] which mathematical

properties have been widely explored [Buh03, Isk04, Wen04].

3.1 Least-Squares Approximation

Definition 3.1. The least-squares approximation problem is formulated as follows.

Given X = {xi}i=1...n a set of n points in R
3 and n scalar numbers F = {fi}i=1...n find a

function in F = {f : R
3 → R} satisfying the approximation condition:

f∗ = arg min
f∈F

E(f), (3.1)

where E is the energy functional given by the least-squares error :

E(f) =

n
∑

i=1

(fi − f(xi))
2 . (3.2)

A common approach is to reduce the space of functions where the optimal function is

searched to a finite subset, generated by a finite set of basis functions Φj : R
3 × R

3 → R,
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as a linear combination:

f(x) =
m
∑

j=1

αjΦj(x), (3.3)

where {αj}j=1...m denotes a set of unknown weights to be determined.

Definition 3.2. We called constraints the set of points, X = {xi}, where the function

value, fi, is specified.

Therefore, minimizing the energy (3.2) consists in solving a linear system with least-

squares technique. That is, to determine the vector α = {α1, . . . , αn} by solving a linear

system

Gt
X,ΦGX,Φα = F (3.4)

where

GX,Φ









Φ1(x1) Φ2(x1) . . . Φn(x1)
...

...
. . .

...

Φ1(xn) Φ2(xn) . . . Φn(xn)









(3.5)

3.1.1 Regularization Theory

When the reconstruction problem is ill-posed, a solution to solve it is to add a prior term in

the energy functional. The main idea underlying regularization theory is a solution can be

obtained from a variational principle which contains both the data and the prior regularity

information. The prior wishes on the function regularity can be a surface with a minimum

curvature or with a minimum area.

That is, a regularization term Er(f) is added to the least square term, Es(f), in the

energy functional E (3.2). Thus, the energy functional is defined as (3.6)

Eλ(f) = Es(f) + λEr(f) (3.6)

where Es(f) =
∑n

i=1 (f(xi) − fi)
2 is the least square error, Er is the regularity prior term

and λ is positive scalar value, called regularization parameter, which allows to tune the

degree of smoothness. When λ→ 0, the surface closely fits the constraints. Conversely for

largest values of λ, the surface approximates the data points by increasing the regularity

of the function (fig.3.1).

Figure 3.1: Regularization theory. From left to right the λ value increase.
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In most cases, the regularization term is defined using a linear differential operator, D:

Er = ‖Df‖2 (3.7)

The problem to be solved is the minimization problem (3.1) with an energy functional

Eλ which is λ-dependent (3.8), λ is fixed.

Eλ =
n
∑

i=1

(fi − f(xi))
2 + λ‖Df‖2. (3.8)

3.1.2 Interpolation Problem

In the case of interpolation problem, the function f must verify all the constraints, i.e. the

least square error must be zero thus f satisfies E(f) = 0.

Definition 3.3. Interpolation problem :

Given X = {xi}i=1...n a set of n points and n scalar numbers F = {fi}i=1...n, find a

function f : R
3 → R satisfying the interpolation constraints :

f(xi) = fi ∀i = 1 . . . n. (3.9)

So by definition, the function f is such that

fi =

m
∑

j=1

αjΦj(xi) ∀xi ∈ X (3.10)

The reconstruction problem thus consists in determining the vector α = [α1, . . . , αn]

by solving a linear system of equations given by the constraints (3.9):

GX,Φ · α = F. (3.11)

where GX,Φ and F are the same than in (5.9).

The problem has a solution if m ≥ n, the solution is unique if m = n.

3.2 Radial Basis Functions

In the RBF approach, the basis functions are centered on some particular points called

centers. Let C = {ci}i=1...m be a set of centers. The functions Φ in (3.3) are then of the

form:

Φj(x) = Φ(x, cj). (3.12)

For geometric application, we require the solution to be invariant by rigid transforma-

tion. We constrain the solution to be stable to translation and rotation of the point set.
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The function Φ is thus restricted to the set of radial functions :

Φ(x, cj) = φ(‖x− cj‖) (3.13)

where φ : R
+ → R and ‖.‖ denote the Euclidean distance.

All the RBF theory was developed in the interpolation problem case (sec.3.1.2) and the

centers of the RBF are chosen to coincide with the constraints (3.14).

ci = xi ∀i = 1 . . . n (3.14)

In the following, the functions Φi in (3.13) are then of the form:

Φi(x) = Φ(‖x− xi‖) ∀i = 1 . . . n. (3.15)

This choice allows the system (3.11) to be square. That is the matrix GX,Φ is square:

GX,Φ =









φ(‖x1 − x1‖) φ(‖x1 − x2‖) . . . φ(‖x1 − xn‖)
...

...
. . .

...

φ(‖xn − x1‖) φ(‖xn − x2‖) . . . φ(‖xn − xn‖)









(3.16)

The main question is: how can we be sure that the interpolation matrix GX,Φ is non

singular ?

Micchelli [Mic86] has shown the distance matrix generated by distinct points to be invertible

for several useful choices of φ. A good overview was done by Buhmann [Buh03] , Dyn [?] and

Powell [?]. One of the most attractive features of radial basis function methods is the fact

that, for most choice of basis functions φ, a unique interpolant is guaranteed under rather

mild conditions on the centers but this is not always the case. For example, one important

exception to this statement is the Thin plate spline introduced by Duchon in order to

produce an approximation which minimize the curvature in 2D. The thin plate spline, in

2D, is the solution to a variational problem: the minimization of the integral (3.17):

∫

R2

(

∂f

∂x1∂x1

)2

+ 2

(

∂f

∂x1∂x2

)2

+

(

∂f

∂x2∂x2

)2

(3.17)

Remarks: this integral can be seen as a norm of a differential operator, i.e it can be

formulated as ‖D2(f)‖. Thus, it is possible to link this problem to the regularization

theory (see sec.3.1.1) [Hay99].

Duchon has shown that solving for thin-plate splines through known points in two di-

mensions is equivalent to interpolating these points using the biharmonic radial basis func-

tion φ(r) = r2log(|r|) (fig.3.2(e)). In three dimensions, the thin-plate solution is equivalent

to interpolating these points using the triharmonic function φ(r) = |r|3 (fig.3.2(f)).

Notice that this theory was developed in general dimension and a class of basis functions
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was proposed in order to minimize (3.18)

∫

Rd

∑

|α|=m

m!

α!
(Dαf)2dRd. (3.18)

Using this kind of basis functions (3.17), the corresponding matrix GX,Φ naturally

define quadric form :

QX,φ : (α1, · · · , αn) 7−→ αTGX,φα (3.19)

on R but these forms are positive definite only on a proper subspace of R
n

To handle this problem, a multivariate polynomial q can be added to the weighted sum

(3.20) in order to ensure positive definiteness of the solution, i.e the space of admissible

function is augmented by the space, P
d
m, of polynomial of order up to m.

f(x) =
n
∑

j=1

αjφ(‖x− xj‖) + q(x) q ∈ P
d
m (3.20)

Let {qk}k=0...l be a basis of P
d
m, thus f is expressed as

f(x) =

n
∑

j=1

αiφ(‖x− xj‖) +

l
∑

k=1

βkqk(x). (3.21)

Notice that the interpolation problem (3.10) give us n equation with n + dim(Pd
m) un-

knowns.

Thus, extra equation are necessary to cover the right number of variables and unknowns.

These equations will come from requiring polynomial reproduction. That is, if the data

come from a polynomial q ∈ P
d
m, the interpolant must coincide with q, i.e f(x) ≡ q(x) (see

proofs in [?, Buh03]).

This condition requires additional equations involving α as well as some conditions on

GX,φ itself [Buh03] and leads to a class of functions: conditionally definite positive.

Definition 3.4. let φ : Ω × Ω → R is a conditionally positive definite function of

order m on Ω ⊂ R
d, iff for any choice of finite subsets X ⊂ Ω of n different points the

value

αTGX,φα =

n
∑

j,k=1

αjαkφ(xj , xk) (3.22)

of the quadric form (3.19) is positive, provided that the vector α = (α1, .., αn) has the

additionnal property
n
∑

j=1

αjq(xj) = 0 ∀q ∈ P
d
m (3.23)

where P
d
m is the set of d-variate polynomials p of order up to m.

Let φ be conditionally definite positive of order d, The function f defined in Eqn. (3.21)
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is the unique solution to the interpolation problem:

{

∑n
j=1 αiφ(‖xi − xj‖) +

∑l
k=1 βkqk(xi) ∀i = 1 . . . n

∑n
j=1 αjqk(xj) = 0 ∀k = 0..l

(3.24)

Thus the interpolation system (3.24) can be expressed with matrix as

(

GX,φ QX

Qt
X 0

)(

α

β

)

=

(

F

0

)

(3.25)

where GX,φ is the same matrix as (3.5), α = [αi]i=1...n, β = [βk]k=1...l and

QX =









q1(x1) q2(x1) . . . ql(x1)
...

...
. . .

...

q1(xn) q2(xn) . . . ql(xn)









(3.26)

Proof: The system (3.25) is uniquely solvable.

Let (α, β) be a pair of vector that solve the homogeneous system with matrix (3.16). We

have GX,φα+Qβ = F and Qtα = 0.

Multiplying the first with αt, we obtain αtGX,φα+ αtQβ = 0.

Transposing the second equation we obtain αtQ = 0.

Thus αtGX,φα + 0 = 0 and from the conditional positive definiteness of GX,φ we deduce

α = 0.

We are left with Qβ = 0. As X is P
d
m-nondegenerate, this implies β = 0.

�

Examples of radial basis functions

• Linear (fig.3.2(a)):

φ(r) = r (3.27)

Notice that the linear (3.27) basis function corresponds, in one dimension, to the

piecewise linear interpolation that is the simplest case of spline interpolation.

• Multiquadrics (fig.3.2(b)):

φ(r) =
√

r2 + ρ2 ρ ∈ R (3.28)

• Inverse multiquadrics (fig.3.2(d)):

φ(r) =
1

√

r2 + ρ2
ρ ∈ R (3.29)
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(a) Linear function:φ(r) = r (b) Multiquadric: φ(r) =
√

r2 + c2

(c) Gaussian function φ(r) = e−ρ∗r2

(d) Inverse multiquadric φ(r) = 1
√

r2+ρ2

(e) Thin plate spline: φ(r) = r2log(r) (f) Triharmonic: φ(r) = r3

Figure 3.2: Different class of RBF

• Gaussian functions (fig.3.2(c)):

φ(r) = e−ρ∗r2

ρ ∈ R (3.30)

(the common basis function in neural network).

The inverse multiquadrics and the Gaussian function share a common property: they are

both localized function, i.e. with a bounded support (fig.??).

Notice that the RBF width are usually fixed to some value which is proportional to the

max between the chosen centers.
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The figure 3.3 show different reconstruction of the same point set using the different

class of RBF described above.

(a) Linear function (b) Multiquadric

(c) Gaussian (d) Inverse multiquadric

(e) Thin Plate function (f) Triharmonic

Figure 3.3: Curve Reconstruction using different basis functions. For each different class of
RBF, the same set of blue points is reconstructed. The resulting red curve is constructed
as a mixture of the basis functions.

3.3 RBF Surface reconstruction

The RBF approach approximates the surface S as the zero-level set of a function f (see

sec.1.1.2). The reconstructed surface S′ is defined as

S =
{

x ∈ R
3 : f(x) = 0

}

(3.31)
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where f(x) is expressed as a weighted sum of basis function φ centered on some points cj

called centers. Thus the equation (3.3) become

f(x) =
n
∑

j=0

αjφ(‖x− cj‖) (3.32)

Input: P = {pi}i=1...n a set of n points measured on the surface S.

3.3.1 Constraints

By definition, the function f should vanish on points of S . In absence of noise, as the

points pi are measured on the surface S, all the fi are fixed to 0. Thus, the input of the

reconstruction algorithm is the set of constraint points P associated with n scalar values

{fi} such that fi = 0.

The reconstruction then deal with solving the minimizing the energy (3.1) reformulated

as follow :

E(f) =
n
∑

i=1



fi −
m
∑

j=0

αjφ(‖pi − cj‖)





2

. (3.33)

To avoid the trivial solution α =
−→
0 , several interior and exterior constraints are added

where the function f does not vanish (fig.3.3.1). The additional constraints are called off-

constraints. For each off-constraint qk ∈ Q, we assign to f a signed value fk = ±d(qk, P ),

Figure 3.4: Additional off-surface points along the surface normals.

where d(qk, P ) is the distance from qk to the point set P . TheN constraintsX = {xi}i=1...N

are now composed of the set P , the n input points, and the set Q, the off-constraints.

Typically, 2 off-constraints are added for each constraint p ∈ P , thus N ≈ 3n.

Remarks: normals to the surface S need to be known in order to compute the off-

constraints.
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Figure 3.5: All the constraints points. The colors represent the function values (cold tones
for negative, hot tones for positive values and green for the zero values).

3.3.2 Centers

Most approaches locate the centers at the constraints points, therefore the number of

centers is such that m = N .

ci = xi ∀i = 1 . . . N (3.34)

The minimization process (3.1) reduces to solving a N×N linear system which requires

O(N3) machine operations and 0(N2) bits for storage. Then, each evaluation of f(x) re-

quires O(N) operations. This approach is therefore not suitable to a number of constraints

greater than several thousands. To reduce the computational complexity, one first idea

is to reduce the number of constraints. Notice that since most algorithms use the same

points as constraints and as centers, this also leads to center reduction. This approach is

commonly called center reduction in the literature.

3.3.2.1 Center Reduction

Some constraint points are relevant while some others are redundant or even completely

irrelevant. Therefore deal with fewer constraints points is useful.

Constraint reduction consists in approximating, with the desired accuracy, all input data

using fewer constraints but significant constraints. If the function f are defined to be

centered on the constraint points, then reducing the constraints is equivalent as reducing

the centers.

A greedy algorithm is proposed in [CBC+01]: centers are iteratively added at locations

where the fitting error is maximum until a satisfactory accuracy is reached.

The interpolation system (3.11) is solved using only the selected centers/constraints

and the fitting accuracy is evaluated on all the input points.
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Figure 3.6: Center reduction as performed by [CBC+01].

3.3.3 Basis functions

All functions listed in the section ?? have a unbounded support. The corresponding equa-

tions lead to a dense linear system, therefore recovering a solution is tractable only for

small data sets. In order to obtain a sparse interpolation matrix, Compactly Supported

RBFs (CSRBF) have been introduced by Wendland in [Wen95]. A lot of CSRBFs used

for reconstruction was proposed in the literature [Sch95, Wu95]. Note that these basis

functions are not suited for the reconstruction from inhomogeneously sampled surfaces.

Here follow two examples of CSRBF (Fig. 3.7):

• Wu function φ(r) = (1 − r)2+(2 + r)

• Wendland function φ(r) = (1 − r)4+(1 + 4r)

where the symbol "+" denotes (x)+ = x if x > 0 else (x)+ = 0

(a) Wendland function :φ(r) = (1−r)2+(2+r) (b) Wu function : φ(r) = (1 − r)2+(2 + r)

Figure 3.7: Two compactly supported RBF.

The size of the support is important. Besides acting on the sparsity of the matrix, it

infer on the property of the reconstructed function. The lager the support, the smoother the

function, as it shown on the figure 3.8, but the more dense the matrix. Trade smoothness

for the sparsity of the matrix must be found. Typically, the support size is the same for

all the basis function.

Ohtake [OBS04] proposed to locally adapt the support of the basis functions. A support

σj is then be associated at each center cj . This approach is done in addition to a center

selection procedure according to the support σj . The selection is made in order to have an

amount of overlap of the cover less than a certain threshold.
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(a) support size = 1 (b) support size = 2 (c) support size = 3

(d) support size = 1 (e) support size = 2 (f) support size = 3

Figure 3.8: Curve Reconstruction using CSRBF with different supports size. The same
set of blue points is reconstructed. The resulting red curve is constructed as a mixture of
basis functions. Top : Wendland function. Bottom: Wu function.

We can notice that radially symmetric functions are not suited to piecewise smooth

surface reconstruction. Dinh et al. [DTS00] tryed to overcome this issue by using anisotropic

basis functions. But we can notice that as the basis function are smooth, the function

solution is smooth too even in case of extreme anisotropy. As we know, the only approaches

which reconstruct piecewise smooth surfaces are based on a decomposition of the space.

3.3.4 In practice

The RBF approach is quite simple in theory, it can be summarized by solving a linear

system, however the system is large in practice. The naive approach requires O(N3)

machine operations to solve the system and 0(N2) bits for storage. Several strategies was

proposed: data reduction, for example the center reduction (sec.3.3.2.1), or making the

matrix sparse with compactly supported RBF (sec.3.3.3). In the following, we present

some other approaches for fast evaluation with dense matrix or fast reconstruction based

on space decomposition techniques.

3.3.4.1 Evaluation

When the input point set is large but sparse, CSRBF may not well suited. Thus poly-

harmonic basis functions must be used. In the case of globally supported basis functions,

like polyharmonic RBF, m evaluation of f(x) requires O(mN) operations, where N is the

number of constraints.

In [CBC+01] Carr and Beatson proposed to performs fast evaluation using Fast Mul-
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tipole Method (FMM). This algorithm reduce the computational cost of the evaluation:

a reconstructed function, which is the sum of N polyharmonic radial basis function, is

evaluated at m ≥ N points with O(m+N logN) operations.

The main idea of this approach is the fact that when computation are performed an

exact precision is neither required nor expected. Thus, approximations based on far field

and near field expansions are performed. The centers are clustered, and for a given eval-

uation point x, the evaluation is approximate in the clusters far from x and is computed

directly for clusters near from x.

Figure 3.9: Illustration of fast evaluation. A RBF is evaluated at regular intervals lying
between the dashed evaluation accuracy bands either side of the actual function.

To perform the approximations two parameters were introduced: a fitting accuracy and

an evaluation accuracy. The fitting accuracy specifies the maximum allowed deviation of

the fitted RBF value from the specified value at the interpolation nodes. The evaluation

accuracy specifies the precision with which the fitted RBF is then evaluated.

Remarks: the development of the FFM methods is very complex.

3.3.4.2 Domain Decomposition and Multilevel Methods

The original data set is subdivided into several smaller data set. The problem is then solve

iteratively on each cluster. In addition to allow piecewise smooth surface reconstruction,

domain decomposition approaches allow to deal with very large point set and to perform

local reconstruction. At last, the underlying data structure give a multiscale representation.

Partition of Unity Wendland, in a theoritical survey [Wen02], combine the Partition

of Unity (see sec.2.2.3) method and the radial basis functions. Then, Tobor et al. [TI04]

proposed an efficient algorithm based on this idea.

Let Ω be a bounding box of the input point set. Ω is divided into M "slithly" overlap-

ping subdomains {Ωi}i=1...M such as Ω ⊂ ∪iΩi (fig.3.10). On each subdomain Ωi, a local

RBF reconstruction is performed, i.e. a function fi is computed. Then, the global solution
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Figure 3.10: Partition of unity. Left: The space is subdivided according to the number of
points in each cell. Right: the tree corresponding to the different levels which the leaf are
the final subdomains.

f is constructed by blending together all the local function fi, thus f is defined as

f(x) =
M
∑

i=1

fi(x)wi(x) (3.35)

where the wi are weight function. In order to perform a partition of unity algorithm, the

weight must verify the condition
∑M

i=1wi = 1. This condition is obtained from any other

set of smooth functions Wi by a normalization procedure:

wi(x) =
Wi(x)

∑M
j=1Wj(x)

∀i = 1 . . .M (3.36)

TheWi functions are defined as the composition of a distance function and a decay function.

This algorithm can be mixed with a greedy selection of the center: a notion of residual

and a root-mean-square error is introduced in order to evaluate the fitting accuracy. Then

new centers are added in subdomains where the error is too important. Thus, although

it is not explicitly a multiresolution method, this approach could be used to establish a

multiscale representation by using the intermediate solutions.
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Multilevel Adaptive CSRBF Othake et al [OBS03, OBS04, ?] presented a multilevel

and adaptive method using compactly supported RBF which the support size is defined

locally.

Given a set of n input point P equipped with normals. The centers, C = {ci}i=1..m are

chosen among P such that m < n.

Single level approximation: This approach is not purely RBF based. The reconstruction

is made in 2 steps. First, a local approximation by least square fitting is performed, then

a radial basis function algorithm is done to recover the small details.

The function solution f is formulated as

f(x) =
∑

ci

[gi(x) + λi]φσi
(‖x− ci‖) (3.37)

where the unknowns are the function gi and the weights λi. The gi function is a local

approximation of P in {x ∈ R
3|‖x − ci‖ ≤ σi} a small neighborhood of ci. Then we

determine the set {λi} from m interpolation conditions:

f(ci) = 0 (3.38)

The zero-level set of
∑

ci
gi(x)φσ(‖x − ci‖) approximate P . For each ci, the φσi

function,

centered on pi, is compactly supported with a support size scalable according to the center

density in a neighborhood or ci.

φσi
(x) = φ(

x

σi
) ∀i = 1 . . . n (3.39)

The equation (3.37) can be rewritten as

f(x) =
∑

pi

gi(x)φσi
(‖x− ci‖) +

∑

pi

λiφσi
(‖x− ci‖) (3.40)

The first term of the right-hand side of (3.40) can be considered as a base approximation

and the second term represents local details.

The centers ci and their influence region determined by σi are selected in order to

obtain a "good" covering of the data points with an amount of overlap greater than a

certain threshold. A confidence value on each data point is also used. This confidence

value is an input of the algorithm.

Multilevel approximation: Using an octree, the point set P is clustered. At each cell

corresponds a basis function, i.e. a center which is the centroid of the points in the cell.

Then a coarse to fine reconstruction approach is performed. The function f (3.37) at

the level k is computed according to the function computed at the level k − 1:

fk(x) = fk−1(x) + ok(x) (3.41)
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Figure 3.11: Multi-scale interpolation of the Stanford dragon model. from left to right:
four first levels of the multi-scale hierarchy. Top row: the spheres corresponding to the
support of the rbf. Bottom row: the zero level set of the interpolating function.

where f0(x) = −1 and ok is an offsetting function, the residual of the k − 1 level recon-

struction:

ok(x) =
∑

pk
i ∈P

k

[gk
i (x) + λk

i ]φ
k
σi

(‖x− pk
i ‖) (3.42)

Pk is the set of centers at the level k approximated by fk . In the first level, P1 corresponds

to the subdivision of the bounding box into height equal octant, i.e P1 contains height

centers. Pk is obtained by subdividing each leafs of Pk−1

3.4 Generalized Radial Basis Functions

All the previous approaches locate centers both at the input data points and at the off-

surface constraints.The main advantages of these methods are that the matrix is squared,

symmetric and that with "small" additional constraints there is an unique solution.

Another idea to further reduce the number of centers while maintaining decent fitting

accuracy is to relax the one-to-one correspondence between the centers and the constraints

and their localization. This approach is called Generalized Radial Basis Functions (GRBF)

in the neural networks community [PG89a, BL88, PG89b].

Let m be a user-defined number of centers, possibly located anywhere in space, and N

the number of constraints, such that m << N . The function f can be expressed as:

f(x) =

m
∑

j=1

αjφ(‖x− cj‖), (3.43)

and thus the matrix of the least-squares system (5.9), with size N ×m, is formulated as
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follows:

GX,C,φ =









φ(‖x1 − c1‖) φ(‖x− 1 − c2‖) . . . φ(‖x1 − cm‖)
...

...
. . .

...

φ(‖xN − c1‖)) φ(‖xN − c2‖) . . . φ(‖xN − cm‖)









(3.44)

Therefore, the size of the matrix to be inverted and stored is now m ×m, independently

of the number of constraints. O(m) operations are now required for a single point-wise

evaluation.

It is possible to take into account as much as constraints we want, i.e as much informa-

tion it desired. However, each term of the matrix Gt
X,C,φGX,C,φ of the system (5.9) being

a sum of contributions arising from each constraint, the number of constraints conditions

the cost for assembling the matrix.

In the classical approaches using RBF, the degrees of freedom are the basis function

(compactly supported or not, its order of continuity,...) and the number of centers, i.e. of

constraints.

For the generalized RBF, there are additional degrees of freedom. Besides the number

of centers, we can chose their location. Let m be the desired number of centers. In the

neural network field, several strategies are proposed: the easiest way to chose m centers is

to take randomly m points in the space. Alternatively, the m points can be selected after

a clustering process on a set of candidate centers. We can note also the Movable centers

[PG89a] approach which consists in determining centers adaptively with a gradient descent

technique. In the same way, we can choses the constraints number and location apart from

the centers.

In ours work, we exploit one of the most important degrees of freedom offered: the

location of centers and constraints to obtained a satisfactory trade-off between number of

centers and fitting accuracy. In addition to this choice, we propose use compactly supported

RBF which the support is adapted to the local geometry of the point set P . Our aim being

to obtain a compact representation with a reconstruction algorithm with few parameters.
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Chapter 4

Introduction

A
lthough Voronoi-based reconstruction has long been criticized for its computational

burden, recent developments in the implementation of fast algorithms have alleviated

this issue. As an example, computing the Delaunay of 50K points takes 1s using the CGAL

library [FGK+00]. The efficiency and the accuracy theses methods still depend heavily on

the quality of the sampling and on the differential and topological properties of the sur-

face. In particular, sparsity, redundancy, noisiness of the sampling, or non-smoothness and

boundaries of the surface makes the surface reconstruction a challenging problem. Besides,

Voronoi-based reconstruction methods generally fail to produce watertight surfaces.

Radial basis functions, on the other hand, still have issues with picking the right non-

zero constraints (to avoid disconnected components), and with efficiently computing the

weights. Functions with unbounded support give the best reconstruction results, but also

lead to dense matrices. The only viable solution to this problem so far is the multipole

expansion for polyharmonic functions developed by Carr et al. [CFB97]. Unfortunately

this approach is notoriously intricate and difficult to reproduce. Compactly supported

functions lead to sparse matrices [Wen95]. However, finding a proper support size for

the functions in case of irregularly sampled surfaces is difficult. Besides, when the basis

functions is compactly supported, the computed function is only defined in the vicinity of

the input data points.

A recent trend is to perform a set of local reconstructions, which may be mixed with

quadric or higher-order jet fitting, and to blend them using the partition of unity [TI04,

OBS04]. Although a great deal of effort has been put into the elaboration of multi-level

techniques with local reconstructions to deal with large data sets, less effort has been

spent at improving the compactness of the representation by center selection and opti-

mization [CFB97, TI04, OBS04].

4.1 Contributions

Our approach combines both worlds of Voronoi based and radial basis function reconstruc-

tion and eliminates some of the aforementioned shortcomings. The sampled surface S is

still reconstructed as the zero-level of a function f expressed as a linear combination of

63



Overview Introduction

radial basis functions. The main advance in our method is to use radial basis functions

centered at vertices of the Voronoi diagram of the data points. More precisely, the centers

of the radial basis functions are chosen among a subset of those Voronoi vertices, which

are called poles. Under certain sampling conditions, the poles are known to be closed to

the medial axis of the sampled surface S [AB98]. Furthermore, each pole is the center of a

Delaunay ball hereafter called polar ball. A polar ball is a maximal ball empty of sampled

points. Such a ball is close to a maximal ball in R
3 \ S. Considering that any smooth

surface S can be viewed as the envelope of the maximal balls in R
3 \ S, using poles as

centers for radial basis functions is a rather natural idea. Furthermore, in our reconstruc-

tion process, we use the radius of each polar ball as a guidance for choosing the support

of the corresponding basis functions. Hence, the support of each basis functions is locally

adapted to the geometry and topology of the sampled shape. Also, because the radius

of each polar ball is a good estimate of the distance between the pole and the sampled

surface, we use this radius to set, as additional constraints, the value of the function f at

the poles. This leads to a reconstruction technique with the following features:

• The surface is represented as the zero-level set of a signed function, which is a good

approximation of the signed distance field to the surface.

• The function is defined as a weighted combination of locally supported radial func-

tions; the number of basis functions is independent from the number of input points

and typically significantly smaller. The function can thus be evaluated faster than

when using traditional (even compactly supported) RBF.

• While the computation of the weights potentially takes into account all input data

points as constraints, the size of the system matrix only depends on the number of

centers, not on the number of constraints.

• A filtering of the poles based on the notion of λ-medial axis allows the surface to

degrade gracefully with noise.

In comparison with Voronoi-based reconstruction, the most important advantages of our

technique are the resilience to noise and the construction of a smooth watertight surface

that approximates all data points. In comparison to the common compactly supported

RBF, fewer centers are used for the same accuracy. This leads to faster computation of the

weights and faster evaluation of the function. Using poles associated with their Voronoi

ball radius as additional constraints leads to a better approximation of the distance field

to the surface, and to fewer topological issues such as superfluous connected components

away from the input points.

4.2 Overview

The problem to solve is the following: given a point set P = {pi}i=1..n ⊂ R
3 measured of

a surface S. We want to construct a surface S′ that approximates S. The surface S′ is
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defined as the zero level set of a function f . f is expressed as a weighted sum of compactly

supported radial basis function. In our algorithm, we explore the degree of freedom of

the generalized radial basis function approach: center number and location, constraints

number and location and the basis functions.

The plan of this part is as follow. The chapter 5 contains an overview of our algorithm.

In the chapter 6, we detail the different strategies for the centers choice. We then provide

in section 7 the detail of the implementation of the constraints classification and the matrix

construction. Finally, the chapter 8 contains several results which illustrate all our choices.
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Chapter 5

Algorithm

G
iven a set of input points P = {pi}i=1..n ⊂ R

3 measured on a surface S, we want to

construct a surface S′ that approximates S.

We recall that we restrict to the case where the surfaces divide the space into two subspace:

a bounded volume tagged as inside and an unbounded volume tagged as outside.

Our approach is RBF based (see. chapter 3), the surface S′ is defined as the zero level

set of an unknown function f . f is defined as a weighted sum of radial basis functions:

f(x) =
n
∑

j=0

αjφ(‖x− cj‖). (5.1)

As the input points P are supposed to lie on the surface, the value fi of the function f

at the points pi is set to zero (5.2):

fi = f(pi) = 0, ∀i = 1 . . . n. (5.2)

Our aim is to find the α vector in (5.1) in order to minimize the energy functional:

E(f) =

n
∑

i=1



fi −
m
∑

j=0

αjφ(‖pi − cj‖)





2

. (5.3)

The main idea of our algorithm is to use Generalized RBF (see section 3.4) with cen-

tering the φ function on some Voronoi Vertices. Our reconstruction must be adapted to

the number of centers, m, fixed by the user.

Our algorithm proceeds as follows: we first compute the Delaunay triangulation of the

input points and in the same time its dual, the Voronoi diagram. Our algorithm then

refines a subset of the Voronoi vertices. In the first stage, poles are extracted from the

Voronoi vertices and are classified as inside or outside. In the second stage, the m centers

are selected to sample a part of the medial axis.The selection is performed by filtering,

then clustering the set of poles or by selecting the pole with a greedy algorithm.

In the first case, the poles are filtered in order to adjust the level of detail to the budget
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of centers and clustered in order to achieve a center distribution nicely spread on the medial

axis. In the second case, the m poles are selected in order to achieve at the same time a

nice sampling of the medial axis adjusting the level of detail to the budget of centers.

We choose as radial basis function a Gaussian-like function with a compact support [Wen95],

where the support size is locally adapted. As constraints, we impose the function f to be

zero at the data points and to be non zero at the center points. A value set at a center point

approximates the signed distance from this point to the sampled surface. The weights are

obtained by computing the best least squares approximation of the values of the function

f to data points and the constraint points.

We structure this section by the main components of the reconstruction algorithm,

namely the choices made for the centers, for the constraints and for the radial basis func-

tions. At last, we present the system to be solved.

5.1 Centers

The centers of the basis functions are selected from the vertices of the Voronoi diagram of

the input points. We recall that Every sample point p ∈ P generates a Voronoi cell and

the vertices of the cell furthest away from p on the two sides of the surface are the poles

of p. Each pole is the center of a Delaunay ball called polar ball (see sec.2.1.2). A polar

ball is a maximal ball empty of sampled points. Such a ball is close to a maximal ball in

R
3 \ S.

The main idea is that a solids can be roughly approximated (exact in the limit) as a

union of balls: the Medial Axis Transform.

Definition 5.1. The medial axis transform (MAT) of a smooth surface S is the repre-

sentation of the surface by the set of maximal balls included in one of the two component

of R
3\S (fig.5.1)

Considering that any smooth surface S can be viewed as the envelope of the maximal

balls in R
3 \ S, using poles as centers for radial basis functions is a rather natural idea.

Let m be the user-defined budget of centers. Generally, the number of poles is greater

than m, and we must select m relevant poles as centers in order to form a sampling of the

medial axis, M(S). There are two challenges to compute this sampling:

• the medial axis is highly unstable with respect to small details of the shape (fig.5.2);

• only a discreet approximation of the medial axis is known and its sampling is depen-

dent of the distribution of the input points.

We thus construct the set of centers as a sampling of a part of the medial axis M(S).

Indeed, if m is small, there is no hope to reconstruct very small details and thus we need

to remove the poles which correspond to the smallest details. Notes that small details are

not distinguishable from noise. Furthermore, our sampling density had to be independent
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(a) MAT in 2D. The outside and the inside
component.

(b) MAT 3D. the inside component.

Figure 5.1: Medial Axis Transform (MAT)

from the distribution of the data points, thus we propose to perform a sampling according

to a sizing field function.

The sizing field function, ssf, is defined on the medial axis. The sizing field function,

sff, is constructed by associating at each point of the medial axis of the surface S, M(S),

the radius of the maximal ball centered on it. This function is continue on each component

of the medial axis.

In the chapter 6, the selection of the m centers is detailed.

Figure 5.2: Instability of the medial axis. Left: a smooth surface and its inside medial axis
(black). Right: the same surface with noise added and its (unstable) inside medial axis.
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Figure 5.3: Sizing field on medial axis in 3D. The colors represent the sizing field values;
cold tones for the minimum and warm tones for the maximal ones)

5.2 Constraints

We take as constraints both the input points where the function f is specified to be zero,

and a set of additional constraints where f is specified to be non-zero. Recall that our

goal is to consider as an approximation of the shape the zero-level set of f . Therefore,

we wish to define a signed function f which is positive outside the shape, negative inside

and with a non-zero gradient close to the sampled surface. A good candidate is a function

approximating the signed distance function to the sampled shape where the distance is

positive for points outside the shape and negative inside (Fig.5.4).

Figure 5.4: 2D shape (black) and the computed function. Colors range from cold color
tones for positive distance values to hot color tones for negative distance values.

As we have seen in the section 2.1.2, the poles are shown to exhibit interesting proper-

ties:

• if vi is a pole of the cell V (pi, P ), the direction vipi is a good approximation of the
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normal at pi;

• the radius of the Delaunay ball centered at vi is a good approximation of the distance

from vi to the sampled surface.

Thus, poles can be used as a constraints in order to approximate a distance function to

the sampled surface. It remains however to determine the sign of this value, and therefore

to classify the poles as inside or outside.

Pole Classification Pole classification is the process of labeling the poles as inside or

outside the surface. Common approaches use an algorithm to propagate the pole labels

through the graph built from adjacency relationships between the poles. In our implemen-

tation, we classify the poles using a variant of the algorithm proposed by Amenta [ACK01].

This variant, due to F.Cazals (internal communication), is more efficient and more robust

against to noise. During the classification process, a location tag (inside, outside and un-

determined) and a confidence value are attributed to each pole. If the confidence of a pole

is lower than a certain threshold, the pole will not be taken into account as a constraint.

The algorithm is detailed in the section 7.1.

5.3 Basis Functions

Recall the reconstructed surface is required to be independent of Euclidean transformation.

The function Φ is thus restricted to the set of radial functions (see sec.3.2):

Φ(x, ci) = φ(‖x− ci‖) (5.4)

where ‖.‖ denotes the Euclidean distance and φ : R
+ → R.

We chose to use a Gaussian-like function with a compact support [Wen95] where the

support size is locally adapted.

As illustrated by figures section 3.3.3, the support size of the basis function impact on the

reconstruction result (fig.5.5). The support size allow to adjust the reconstruction to the

geometry of the curve (continuity, connexity,....).

In the examples figure 5.5, the support is global thus it is difficult adapt the reconstruc-

tion to the local geometry of the shape. Different local supports can be used to handle this

problem (fig.5.5(d)).

As centers are poles, each center ci, has a corresponding to a scalar value, ri, the radius

of its polar ball. Our function of choice φ is compactly supported, and the support size si

for the function centered on ci is computed using to ri. The φ function (5.4) centered on

ci is scaled according to the local support si:

φi(‖x− ci‖) = φ(
‖x− ci‖

si
). (5.5)
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(a) support size = 1 (b) support size = 2 (c) support size = 3

(d) variable size of local supports

Figure 5.5: The set of blue points is reconstructed using the Wendland functions (red
curve). Top: For each figure the size of the supports changes but the support is the same
for all the basis functions. Bottom: For each figure the size of the supports are the same
excepted for two of the points where the support grow.

We want to use a class of radial basis function φj compactly supported in order to

obtain a sparse matrix and to perform efficient evaluations. Furthermore, we want a

class of smooth basis function since the basis function determine the smoothness of the

approximant. A family of piecewise polynomial functions with local support was proposed

φ(r) =

{

P (r) if 0 ≤ r ≤ 1

1 if r ≥ 1
(5.6)

where p denotes a univariate polynomial. Wendland have proposed several basis functions

of minimal degree. We chose for our implementation the following function:

φ(r) = (1 − r)4+(1 + 4r), (5.7)

where the symbol + means (x)+ = x if x > 0 and (x)+ = 0 otherwise. This function is

smooth (C2) and Gaussian like (Fig.5.5).
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5.4 System Resolution

The centers are a set {cj}j=1...m of m points in R
3. The constraints are the set {pi}i=1...N

of N points where the value of f is known.

To solve the reconstruction problem, the energy (5.8) is minimized.

E(f) =

n
∑

i=1

(fi − f(xi))
2 . (5.8)

Thus the problem consists in solving a linear system with least-squares technique, i.e. to

determine the vector α = {α1, . . . , αn} by solving a linear system

Gt
X,ΦGX,Φα = F (5.9)

where G be the matrix [φj(‖pi − cj‖)]i=1..N,j=1..m and F be the vector [fi]i=1..N . The

constraints points {pi}i=1..N include both the n input points and the additional off surface

points where we specify the function f value.

G =









φ1(‖p1 − c1‖) . . . φm(‖p1 − cm‖)
...

...
. . .

φ1(‖pN − c1‖) . . . φm(‖pN − cm‖)









(5.10)

An approximation using the least squares method implies solving the system (??). With

the new notations, the system is

GtG · α = GtF. (5.11)

The size of the matrix is m×m, where m is the number of centers. The use of compactly

supported functions φi leads to a sparse matrix with about 90% zero elements. In the

section 7.2, different construction of the matrix are detailed.
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Chapter 6

Centers

L
et m be the user-defined budget of centers. The centers of the radial basis functions are

selected from the vertices of the Voronoi diagram of the input points. More precisely,

the centers are selected among the set of poles. As the number of poles is, typically, greater

than m, a selection of m relevant poles must be performed.

We propose two strategies to sample a part of the medial axis M(S): either a filtering

followed by a clustering, or a greedy selection of the centers.

The filtering of the poles is based on the notion of the λ-medial axis. The filtering step

allow to remove the small features or the noise and the clustering is designed to distribute

the final budget of centers on the λ-medial axis with a proper sampling density.

The greedy selection consists in selecting the m poles associated with the largest maximal

ball radii. For each selected pole v, we disqualify the poles which the maximal ball intersect

deeply the maximal ball of v.

Our aim is to perform an adaptive sampling of M(S) to obtain m points on the medial

axis such that the hull of the union of inside (respectively outside) maximal balls centered

on these points is an approximation of S.

Figure 6.1: Sizing field function on the medial axis in 2D. Left (red): at each point corre-
spond a pole. Right (green): after resampling.
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The surface S is unknown, thus we do not have a continuous representation of the medial

axis of S. However, we can approximate the medial axis by a subset of the Voronoi vertices

(see sec.2.1.2), i.e. the set of poles approximates the medial axis. We can also approxiamate

the sizing field function on the medial axis by the radius value of the maximal ball centered

on the poles.

Figure 6.2: Distribution of the maximal balls. A set of blue point measured on a sphere
with a bump and the set of the inside poles (green). Left: The distribution of the poles
is highly dependent in the distribution of the input points Right: 6 centers (pink) are
selected, their maximal ball make a good covering of the shape. The distribution of the
center does not depend on the distribution of the input points.

The distribution of the poles on the approximate medial axis is highly dependent of

the distribution of the input points (Fig.6.1:Left). The distribution of the maximal balls

centered on the centers need to be relevant, i.e. satisfy a minimum of overlapping (Fig.6.2).

Thus, a resampling of the medial axis (a sff discretization) is necessary to adapt the

sampling density to the local geometry and the desired number of centers.

Besides the local geometry, the sampling must be adapted to m. If m is small, there is

no hope to reconstruct very small details. We need to disqualify the poles which correspond

to the smallest details (which are not distinguishable from noise). Indeed, small details

correspond to the smallest maximal ball (see the bump on the fig.6.2). Therefore, a filtering

of the poles, according to their maximal balls, had to be performed in order to adapt the

sampling to the level of detail fixed by the desired number of centers.

In summary, we want to sample a part of the medial axis adapted to the level of detail

and with a density independent from the distribution of the input points. We propose two

strategies:
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• we perform a filtering (sec.6.1.1) and a clustering (sec.6.1.2). The filtering of the poles

is based on the notion of the λ-medial axis in order to remove the small features or

the noise and the clustering is designed to distribute the final budget of centers on

the λ-medial axis with a proper sampling density.

• we perform a greedy selection (sec.8.5) of m poles. Beginning by the poles with the

larger radius, we then disqualify all the poles such that their support intersect deeply

the selected pole. The selection stops when m poles are selected to be the centers. We

obtain a centers set distribution adapted to the geometry of the shape. In addition

the level of detail is adapted to the centers budget m, while poles corresponding to

the smallest polar ball are not selected if m is too small.

6.1 Filtering and Clustring

6.1.1 Medial Axis Filtering

A major problem arises in the computation of the approximation of the medial axis of a

sampled shape from the Voronoi vertices of the data points: the medial axis is known to

be highly unstable with respect to small details of the shape. This means that even if two

objects are very close for instance in term of the Hausdorff distance, they may have very

different medial axis (Fig.5.2).

Thus, the set of poles extracted from the Voronoi diagram of a sampled surface is very

unstable with respect to noise as well. Several approaches have been proposed to tackle

this problem [AM96, DZ03, CL05].

In our work, we follow the recent work of Chazal and Lieutier [CL05], which defines

the notion of λ-medial axis.

λ-Medial Axis For any point x, we denote by Γ(x) the set points of surface S that are

closest to x.

Γ(x) = {y ∈ ∂S, d(x, y) = d(x, S)} . (6.1)

The medial axis of S can be viewed as the set of points x ∈ S such that |Γ(x)| ≥ 2. For

each point p, Γ(x) is the smallest enclosing ball. We define the real-valued function γ(x)

as the radius of the smallest ball enclosing of Γ(x). The λ-medial axis Mλ is defined as :

Mλ = {x ∈ S|γ(x) > λ} . (6.2)

Remarks: the medial axis is equivalent to M0 and Mλ is a closed subset of the medial

axis.

Chazal and Lieutier have shown that for any value of λ which is not a singular value of

the map λ 7−→Mλ, the λ-medial axis of a surface is stable under small perturbations and

can be estimated from a dense sampling. Roughly speaking, restricting the λ-medial axis

with increasing value of λ, smooths out both small features and noise.

77



Filtering and Clustring Centers

Figure 6.3: λ-medial axis criterion: the radius of the minimum enclosing ball (orange) has
to be greater than λ. Relative λ-medial axis: the ratio of the radii of the two balls must
be greater than λr ∈ [0 . . . 1]

Angle and Distance Removing Criterion Attali and Montanvert [?, ?] proposed a

scale-invariant "removing" criterion based on a bisector angle and the thickness (Fig. 6.4).

Let v be a point on the medial axis. The thickness is defined by the radius ρ(v) of the

Figure 6.4: A 2D shape and Bisector angle α(v) and thickness ρ(v)

maximal ball centered at the point v. The bisector angle is defined by the maximal angle

α(v), between v and the two of the contact points where the maximal ball centered on v

touches the surface S.

Noisy vertices of the medial axis are characterized by a small bisector angle and a small
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Figure 6.5: Poles to be removed by filtering.

thickness. Therefore two thresholds are proposed, α0 and ρ0.

The simplification consists in keeping the skeleton points v such that

α(v) > α0 or ρ(v) > ρ0 (6.3)

Remarks: the relation between λ, α and ρ is given by (6.4).

γ(v) = ρ(v) × sin

(

α(v)

2

)

(6.4)

Relative λ Criterion The relation (6.4) leads to an other criterion to filter the medial

axis, call the relative λ. The filtering is performed with the ratio between ρ(v) and γ(v).

That is the ratio between the raddii of the minimum enclosing ball and of the maximal

ball (Fig.6.3).

The figure 6.5 illustrates the interest of the ratio criteria. With a λ-medial axis filtering

the two poles, x1 and x2 are removed since the radius of their minimum enclosing ball are

the same, γ(x1) = γ(x2). With the ratio criteria, the poles x1 may be removed whereas x2

may not removed since the ratio γ(x2)
ρ(x2) >>

γ(x1)
ρ(x1) .

Our implementation We use the idea of λ-medial axis to perform the pole filtering in

order to smooth noise and adapt the level of detail of the reconstruction to the allocated

budget of centers. More precisely, this means that we determine the value λ suitable to the

sampled shape and to the budget of centers, and filter out the poles which are not close

to the λ-medial axis. To estimate if a pole v is close to the λ-medial axis, we compute the

radius γ(v) of the smallest ball enclosing the set Γ(v) of sample points closest to v. Poles

with radius γ(v) smaller than λ are discarded (fig.?? and ??). Note that if the λ value is

to large, some details are missed like the antenna of the butterfly for λ=0.01 (fig.??).

The figure ?? show examples of filtering We can notice that generaly the best suited

filtering is to combine the two criteria (fig.6.6(e)).
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(a) λ-medial axis λ = 0.005 (b) λ-medial axis λ = 0.01

(c) Relative λ-medial axis λr = 0.1 (d) Relative λ-medial axis λr = 0.8

(e) Both filtering λ= 0.005 and λr =
0.5

Figure 6.6: Different filtered medial axis with λ criteria and ratio criteria. The figures show
the poles after a medial axis filtering (red for the inside poles and green for the outside
ones). To get a better sense of these parameters: the diagonal length of the bounding box
of the input point set is 1.4.

6.1.2 Poles Clustering

Let m be the desired number of center. The filtered set of poles now forms a set of possible

centers, PC. Generally, the size of PC remains larger than m. Therefore, we must select

the m more relevant generator from PC, more relevant generator points means a set of m

points which is a subsampling of PC with several properties.

Remarks: the set PC form a good approximation of the filtered medial axis of the surface

S. But a sampling which is highly dependent of the distribution of the input points. In

order to select m centers from PC, we perform a k-means clustering over the set of possible
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Figure 6.7: Two dimensional example: Lloyd algorithm with a uniform density. A cen-
troidal Voronoi diagram allow a nearest neighbor partition. The red points are the Eu-
clidean centroids.

centers [Mac67].

Remainder: Our goal is to obtain a sampling of the λ-medial axis according to the local

sizing field function, sff. More precisely, in the center set, the distance between a center

and its nearest neighbor need to be proportional to the sff, i.e. to the the radius of the

maximal ball centered on it.

6.1.2.1 Clustering

Definition 6.1. A k-clustering is a partition of a domain, Ω, into k clusters, {Ωi}i=1...k,

according to a certain density function defined on the domain.

At each cluster Ωi is associated a generator ωi, for example the centroïd of the cluster.

To perform a clustering consist in minimizing an energy on the entire space :

E =

∫

Ωi

∫

x∈Ωi

ρ(x)(x− ωi)
2dx (6.5)

where ρ : R
3 → R is a density function.

In order to find the minimum of this energy, two operations are performed successively

until convergence (illustrated on the figure 6.8):

• Given a set of generators {ωi}i=1..k. Optimize the cluster bound by minimizing the

energy E.
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Figure 6.8: Clustering algorithm . Data : a set of n sample points and an integer k, the
desired number of generators/clusters.

• Given a clusters bound {Ωi}i=1..k. Optimize the position of the generators {ωi}i=1..k.

For a given partition, the optimal position of the generator is given by 6.6.

ωi =

∫

x∈Ωi
xρ(x)dx

∫

x∈Ωi
ρ(x)dx

(6.6)

Density Function The density function, ρ, is induced by a sizing function, µ. The

sizing function defines a desired distance between a generator and its nearest neighbor (in

the set of generator). More precisely, we know that the density function ρ(x) must be

proportional to 1
m(x)d+2 to obtain a cluster density matching the field µ in a underlying

space of dimension d.

ρ(x) =
1

m(x)d+2
(6.7)

Indeed, the integrated quantity in (6.5) had to be without dimension thus ρ is (d + 2)

dimensional, where d is the dimension of the space. Indeed, the dimension of the quadrature

term dx is the dimension of the space d and (x− ci)
2 is 2 dimensional.

At the convergence, all the cluster must have the same contribution int the energy

(6.5), i.e. equipartitioning of the energy [DFG99].

In our work, we want a sizing function µ(x) at a given point x equals to the sizing field

function ssf(x) defined in the section 5.1. As the medial axis, M(S), is 2 dimensional of
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a 3D-Surface S, we can define the density function ρ with the following equation:

ρ(x) =
1

ssf(x)4
. (6.8)

Notes that d(x), the quadrature term is defined by the piece of surface corresponding

to x.

6.1.2.2 The discrete case

Recalls that we want to perform clustering to sample the filtered medial axis without

knowledge about the medial axis surface. However, we have a filtered sampling, PC, of

an approximation of the medial axis. Thus, the clustering is performed on the sampled

points, PC = vj .

Let us define a clustering algorithm in the discrete case. The clustering over the filtered

set PC performes a decomposition of the space into clusters. The set of the PC points is

partitioned into clusters {Ci}i=1..k. Each cluster put together all the points which hold a

same feature, i.e. all the points close according to a given similarity measure (fig.6.9).

(a) Samples points (b) Space partitioning (c) Clusters and generators

Figure 6.9: 5-clustering of the green points: the space is partitioned into five clusters
delimited by the pink lines. A generator is associated at each cluster.

At each cluster Ci is associated a generator ci (Fig.6.9(c)). This generator can be the

centroïd of the cell, the barycenter of the set of samples points contained in the cell or one

of the point of PC.

In the discrete case, the integral (6.5) is approximated by a discrete sum (6.9):

E =
∑

Ci

∑

vj∈Ci

ρj(vj − ci)
2d(vj) (6.9)

where ρj is a density value associated at each points vj and d(pj) is the quadrature term

defined as the surface of medial axis corresponding to the pj .

In order to find the minimum of this energy, like the continuous case, two minimizations

are performed successively until convergence:

• Given a set of generators {ci}i=1..k. The clusters {Ci}i=1..k are computed to minimize

the energy E.
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• Given a set of clusters {Ci}i=1..k. The generators {ci}i=1..k are computed such that

they minimize E using the equation 6.10.

ci =

∑

vj∈Ci
vjρjd(vj)

∑

vj∈Ci
ρjd(vj)

(6.10)

Local Density Function The density value ρj associated to the point vj ∈ PC is defined

like the ρ function in the continuous case (6.8). As the discrete value of the ssf(vj) is rj ,

the radius of the polar ball centered on vj , we obtain the following equation:

ρj =
1

r(vj)d+2
(6.11)

In our case d = 2, because the filtered poles approximate the medial axis, which is a

generically a two-dimensional manifold.

ρj =
1

r(vj)4
(6.12)

Quadrature Term The quadrature term expresses the poles distribution. More pre-

cisely, given a pole vi, the term d(vi) takes into account the local density of the poles in

the neighborhood of vi.

A space quadrature of the space is performed in order to associate at each pole vi its

contribution. We want to compute the part of the medial axis which correspond to vi

(fig.6.10:Left).

Let vi be a pole. We compute the area of the intersection of the filtered medial axis

and the Voronoi cell of vi in the Voronoi diagram of the poles.

Most of the Voronoi cell shapes like a pencil (oblong) (fig.6.10). Therefore, the cell

volume can be approximated by Volume(filtered medial axis
⋂

cell(vi)) ∗ r(vi). This ap-

proximation allowes us to compute an approximation of the area d(vi) with V (vi)
r(vi)

, where

V (vi) is the volume of the Voronoi cell of vi in the Voronoi diagram of the (filtering) poles

and r(vi) is the radius of the maximal ball.

6.1.2.3 Experiments

Distance between two poles Two poles may be close but their respective radius can

be very different. Therefore, these two poles may not be in the same cluster. We chose to

compute the distance between two poles not in 3D but in 4D. More precisely, we add the

radius as the fourth poles coordinates:

d((vi, ri), (vj , rj))
2 = ‖vi − vj‖

2 − (ri − rj)
2. (6.13)

Initialization Problem The clustering algorithm is strongly dependent on the choice

of the k generators initializations. To overcome this problem, the initialization must take
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Figure 6.10: Quadrature term approximation (detail of the butterfly wing). Left: Voronoi
diagram of the poles (green), we want to compute quadrature term (red segment size) for
the red point. Right: The volume of the orange Voronoi cell can be approximated by the
product of the surface of the red segment and the radius of the green maximal ball.

into account the desired density. We are going to perform several clustering successively

such that, at each iteration:

• the generator number k increase,

• the initial generator set is constructed according to the final generator set of the

previous iteration.

At the end of the iteration l, the generator set is Rl =
{

cli
}

i=1..k
, i.e. a set C l =

{

Cl
i

}

i=1..k

of clusters. For the next iteration l+1, the set of generators Rl+1 is initialized with Rl and

a set of k
2 new generators. This k

2 points are located in the area where there is a deficit

of density. We evaluate the local density at each ci by computing the ratio between the

distance from ci to its nearest neighbor in Rl and µ(ci). We add a new generator for each
k
2 generators which own the largest ratio.

The algorithm stops when the number of clusters is equal to m.

Non Uniform Clustering vs Uniform Clustering In this paragraph, we want to

justify the use of a non uniform clustering.

The uniform clustering is performed using a uniform density function, i.e. ρ(x) =

1 ∀x ∈ Ω.

In the figure 6.12, we can compare the resulting center set after a uniform clustering

(left) and a non uniform clustering (right). The model used for is a ball with two bump

(Fig.6.11), the two bump are subsampled while the ball is oversampled. When a uniform

clustering is performed, the generator distribution depends on the sample distribution.

That is the centers distribution is related to the sampling density of the data points and,

therefore, we obtain not enough centers in the bump area (fig.6.12 right). In contrast, our

non uniform clustering allow us to better distribute the centers: the part of the medial axis

where the local sizing field is small are more finely sampled (fig.6.12 left). The figure 6.13,

by drawing the inside maximal ball, shows more clearly the effect of the two clusterings.
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Figure 6.11: Left : a ball with 2 bumps. Right : all the extracted poles (oranges for the
inside poles and green for the outside ones).

Figure 6.12: Left: the centers after a uniform clustering. Right: the centers after a non
uniform clustering. (red for the inside centers and green for the outside ones)

After convergence of the clustering procedure, the centroid of each cluster is replaced

by the closest pole within its cluster, so that the final centers are guaranteed to be located

near the medial axis of the sampled surface.

6.2 Greedy Selection

Recalls, let m be the desired number of centers and a PC the set of possible centers, i.e.

the set of poles. We want to obtain a center set such that the center points sample a part

of the medial axis of S. The center set density had to be independent from the distribution

of the centers. The choice of centers must be adapted to the level of detail given by m
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Figure 6.13: Left: centers after a uniform clustering. Right: centers after a non uniform
clustering. (red for the inside maximal ball and green for the outside centers)

(fig.6.1:Right).

The main idea is to perform a greedy selection of the centers according to the sizing

field function, sff. In other word, the distance between a center c and its nearest neighbor

in the center set must be proportional to ssf(c). The proportionality coefficient depends on

a user defined maximum overlapping rate ρ between the polar ball of two selected centers.

We do not know the exact medial axis surface, i.e. the sizing field function, however

we know a discrete approximation of the medial axis as the pole set, PC. For each pole v,

the sizing field function is approximated by the radius of the polar ball centered at v, i.e.

ssf(v) = rv.

Our idea is to perform a greedy algorithm such that relevant poles are selected and

the redundant ones are disqualified. The density of the center points must be conversely

proportional to the sizing field function, i.e the bigger the radii the fewer poles we want

(Fig.6.2). In order to obtain a relevant density, when a pole is selected to be a center,

several poles are disqualified.

The poles are added iteratively in the set of centers until the center set size reaches m,

beginning by the ones associated to the larger radius. Let vi be a selected pole. The closest

pole to vi may be disqualified, that is all the poles contained vj in the vi-polar ball are

candidate for the disqualification.

Our approach is to check if the polar ball intercept deeply the vi-polar ball are disqual-

ified. In order to test the deeply intersection of two polar ball, we compare the volume of

the intersection of the two polar balls V ol(Si ∩ Sj) with volume of the smallest polar ball

V ol(Sj) (Fig.6.15).

Notes that, as illustrates the figure 6.14, either the distance from the pole vj and vi

(Fig.??) or the difference between the radii of the corresponding polar balls (Fig.??) are

not discriminant.

An user defined overlapping rate threshold ρ allows to decide if a pole is disqualified or
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(a) The polar ball radius is not discriminant (b) The distance to vi is not discriminant

(c) The 2 poles are not disqualified but the pole vk is
selected only if the the budget of center is sufficient.

Figure 6.14: Greedy selection. Different cases of polar ball intersections. Let vi be a
selected pole. According to the intersection between the polar ball the poles vj and vk are
disqualified (red ones) or not (green one).

not. When the number of selected centers reach m, several poles non disqualified and non

selected may remain. These poles are associated to a too small radius for the user defined

number of centers.

Therefore, the center set is adapted to the desired density and to the level of detail

given by the center budget (Fig.??).

Algorithm First, we sort the poles according to its radii. Then, select the pole with the

larger radius and disqualify the poles which maximal sphere intersect deeply the maximal

sphere of the selected pole. More precisely, let p be the selected pole and S be the maximal

ball of Sp. For each pole v in Sp, if the volume of the intersection of Sp and Sv, the

v maximal sphere, is greater than ρ × V ol(Sv) the pole v is disqualified; where ρ is a

parameter : the threshold of the overlapping rate. That is the set of disqualified Dp is

Dp = {v ∈ Sp|V ol(Sv ∩ Sp) > ρ× V ol(Sv)} (6.14)
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Figure 6.15: Given a selected poles p and a pole v, the volume of the red area is compared
to the volume of Sv.

As it shown on the figure 6.16, the value of ρ determine the level of details. a trade

between the level of detail and the overlaping of the balls may be found. Notes when ρ = 1

(Fig.6.16(a)) the m selected centers are the m poles associated to the largest polar ball.

(a) ρ = 1 (b) ρ = 0.8 (c) ρ = 0.5

Figure 6.16: Examples of greedy selection for a bumped sphere (10K input points). 300
centers are selected using the greedy selection (inside centers and their polar balls in red
and the outside centers in green).
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Chapter 7

Implementation

G
iven a set of input points P = {pi}i=1..n ⊂ R

3 measured on a surface S, we want to

construct a surface S′ that approximates S.

We recall that we restrict to the case where the surfaces divide the space into two subspace:

a bounded volume tagged as inside and an unbounded volume tagged as outside.

The reconstructed surface S′ is defined as

S′ =
{

x ∈ R
3 : f(x) = 0

}

(7.1)

where f(x) is expressed as a weighted sum of basis function φ centered on a set of center

points cj (7.2).

f(x) =
n
∑

j=0

αjφ(‖x− cj‖) (7.2)

The function solution, i.e. the vector of coefficients α, is computed by minimizing a least

squares error (7.3):

f∗ = arg min
f∈F

E(f). (7.3)

Given a set of N constraints {xi}i=1..N where the function f is known. The minimiza-

tion consist in solving the following linear system:

GtG · α = GtF. (7.4)

where G = [φ(‖xi − cj‖)]i=1...N,j=1...m.

Our algorithm proceeds as follows:

1. Compute the Delaunay triangulation of the input points;

2. Extract the set of poles from the Voronoi vertices;

3. Classify the poles as inside or outside;

4. Select the centers points from the set of poles;

5. Assemble the matrix G;
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6. Solve the system.

We are going to detail the implementation of the step 3, the poles classification algo-

rithm, and 5, the construction of the matrix in an efficient way.

7.1 Poles Classification

Recall the set of poles is a subset of Voronoi vertices.

Given a point p ∈ P , let Vp = VP,p be its bounded Voronoi cell in the Voronoi diagram of

the point of P . Two poles are extracted for each bounded cell Vp (see sec.2.1.2). The first

pole v1 is the Voronoi vertex in Vp with the largest distance to the sample point p. The

second pole is the Voronoi vertex v2 in Vp furthest away from p in the opposite half space

of v1.

Note that if the Voronoi cell Vp is unbounded p own a unique pole, Voronoi vertex the

furthest away fron p in Vp.

Figure 7.1: Voronoi cell in 2D and 3D

If the sampling is dense enough, the vectors ~pvi are a good approximation of the normal

to the surface at the point p (Fig.7.1). Thus, if the sampling is dense enough v1 and v2 lie

on each side of the surface.

As we use poles as additional constraints, poles vi need to be labeled inside or outside

in order to affect a sign to the value fi = f(vi).

To avoid deal with infinite Voronoi cells, a set of bounding points, B, lying on an

augmented of the P convex hull, are added to the input point set P (Fig.7.2). Therefore,

the all Voronoi cell of the input points are bounded, i.e. at each point p ∈ P correspond

two poles.

A pole graph (Fig.7.3) may be is constructed. The graph nodes represent the poles and

there is an edge joining two poles vi and vj if:
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Figure 7.2: The Voronoi diagram of the input points set augmented by the bounding box
points (red points)

1. vi and vj are the two poles of a given Voronoi cell Vp,

2. vi and vj are neighbor in the Voronoi diagram of the input points, P. That is the

dual Delaunay tetrahedra associated to vi and vj are adjacent in the Delaunay tri-

angulation of the input points.

Note that in the case 1, the probability of the poles to be on opposite side of the surface

is hight. Conversely, in the case 2 the poles vi and vj can be either in the same side or not

but it is most probable that the poles are lying on the same side (Fig.7.3).

The main idea of the labeling algorithms is to associate at each poles a probability mea-

sure on a temporary label. More precisely, the labels and their probability are propagated

in the poles graph. The points of B are used to initialize the algorithm.

In [ACK01] (see sec.2.1.2), the labels are propagated using the two manners described

above. The algorithm used a priority queue containing the poles with a non definitive

label. The priority is based on the label probabilities.

In order to initialize the algorithm, the poles of the bounding points are labeled as outer

with a probability equal to one. Then the pair (label, probability) is propagated utile all

the poles are labeled. The pole with the highest probability get a definitive label and is

removed from the priority queue.

Let v and u be two poles, φ(v, u) is defined as the angle between the polar ball of u

and v (Fig. 7.4). The labeling algorithm is the following :

Let v1 be a pole with a definitive label.
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Figure 7.3: Edges of the poles graph in 2D. There are two king of edges joining two poles.
Orange edges when the 2 poles share a vertex (case 1) and Green edges, Voronoi edges,
when the poles are neighboor in the Voronoi diagram (case 2)

• In the case 1: the temporary label of v2 is fixed to the opposite v1 label with a

probability computed from the cosines of φ (Fig. 7.4(a)).

• In the case 2: the temporary label of v2 is fixed to the v1 label with a probability

proportional to the cosines of φ (Fig. 7.4(b)).

(a) two maximal balls shallowly
intersect

(b) two maximal balls deeply in-
tersect

Figure 7.4: The two cases of maximal ball intersection. Left: when the two poles are on
each side of the surface. Right: when the two poles are on the same side of the surface.
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This classification method assumes some conditions over the sampling : ǫ-sampling (see

appendix .6) . Recalls a sample is an ǫ-sampling when the distance from any surface point

x to the nearest sample point is at most a small constant ǫ times the distance to the medial

axis.

As the point set is scattered on the surface, we can not guarantee such sampling conditions,

and therefore do not use the original version of this algorithm. The selection of outer versus

inner labels can fail with undersampling, noise, or lack of smoothness of the surface S.

Some heuristics which characterize the "shape" of Voronoi cells used have been introduced

to discard poles. If the cells are not long and skinny, they are rejected.

Algorithm:

Algorithm PolesClassification

Input: The Voronoi Diagram of the input points P

Output: A set of labeled poles

1. for all poles v

2. do initialize in(v) = out(v) = 0

3. insert p in the priority queue Qfor each pole v adjacent to points of B

4. do out(v) = 1

5. Update Priority(v) in Q

6. while Q is not empty

7. do Remove the top element v of Q

8. if in(v) > out(v)

9. then label(v) = in and tmp(v) = in(v)

10. else label(v) = out and tmp(v) = out(v)

11. for each input point p of which v is the pole

12. do let u be the other pole of p

13. opp(label(v))(u) = max(tmp(v) ∗ wuv; opp(label(v))(u))

(∗ opp(in) = out, opp(out) = in, wpq = cos(φ) (Fig.7.4(b)) ∗)

14. Update Priority(u)

15. for each deeply intersecting neighboring poles u

16. do (label(v))(u) = max(tmp(v) ∗ wpq; (label(v))(u))

(∗ wpq = cos(φ) (Fig.7.4(b)) ∗)

17. Update Priority(u) in Q

In the Eigen crust [KSO04] (see sec.2.1.6), the classification algorithm consists in a

normalized cut in the pole graph described above. The eigen vector corresponding to the

smallest eigen value determines a division of the graph into two subgraph containing inside

and outside poles.

In our algorithm, we perform a variant, due to F.Cazals (internal communication), more

efficient and more robust against to noise. In the two approaches presented above, only

the poles are took into account. Our approach is to label the poles and at the same time
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to orient the normals at the input points. We use a priority queue, Q, in which the nodes

are either poles or vertices of Delaunay triangulation. More precisely are either a pole with

a temporary label and a probability or a point with an temporary oriented normal and a

a probability.

7.2 Computation of the Matrix

Given a set of N constraints, {xi}i=1...N associated with N scalar values F = fii=1...N , a set

of m centers, {cj}j=1...m with an associated radius rj , and a class of basis functions, φ. Our

problem is to find a function f minimizing the energy functional (7.3). The minimization

consist in solving linear system Gα = F , where G is given by (7.6), in the least squares

sens, i.e. solving the system (7.5).

GtG · α = GtF. (7.5)

where G is given by:

G =









φ1(‖x1 − c1‖) . . . φm(‖x1 − cm‖)
...

...
. . .

φ1(‖xN − c1‖) . . . φm(‖xN − cm‖)









(7.6)

A challenge is to compute efficiency the matrix G or GtG.

Notations: In the following, given a center cj , φ(‖x − cj‖) = φj(x). Recalls φj is a

compactly supported function defined as (7.7):

φj(x) = (1 −
‖x− cj‖

‖Sj‖
)4+(1 + 4

‖x− cj‖

‖Sj‖
), (7.7)

where the symbol + means (x)+ = x if x > 0 and (x)+ = 0 otherwise. Sj is the supporting

ball of φj , centered on cj , that is φj(x) = 0 ∀x /∈ Sj . The size of the support, ‖Sj‖, is a

constant time the radius of the polar ball centered in cj .

‖Sj‖ = cst ∗ rj (7.8)

7.2.1 Trivial Method

The trivial method constructs the matrix G (7.6) by computing φj(xi) for all center cj and

all constraints xi. Then, we can compute the matrix A = GtG = [ai,j ], i, j = 1..m

ai,j =
N
∑

k=1

φi(xk)φj(xk) (7.9)
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7.2.2 Selective Method

As the radial basis function φj are compactly supported, the matrix G and also the matrix

GtG are sparse.

In practice, only about ten percent of matrix coefficients are not zero. Therefore, it would

be interesting to compute only non zero coefficients.We can note that ai,j (7.9) is zero when

the supports Si and Sj do not intersect (fig.7.5)

Figure 7.5: Input points (blue) and centers (green). The support of φi and φj (Si and Sj)
intersect and share several centers so ai,j 6= 0. The support of φi and φk (Si and Sk) does
not intersect so ai,k = 0.

ai,j =

{

0 Si ∩ Sj = ∅
∑

x∈Si∩Sj
φi(x)φj(x) else

∀x ∈ X (7.10)

Our idea is to go through the centers and seek for the constraints contained in the

support of two centers.

Data Structures :

For each center cj , the constraints x contained in Sj are listed. In order to seek for the

constraints in Sj we construct a kdtree over the constraints. This kdtree allows us to not

visit all constraints. The constraints are visited according to their increasing distance to

ci and the algorithm stop when the current constraints xi is such that ‖xi − cj‖ > ‖Sj‖.

Note that the values φi(x) are precomputed for all x ∈ Si during the computation of

the diagonal term. The centers are sorted according to their support and the centers with

the smallest support are processed first.
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Figure 7.6: Given a center ci, a list of constraints (yellow points) is constructed using
kdtree. Only the constraints in the green area are visited.

Algorithm : The algorithm MatrixConstruction describes the matrix construction:

Algorithm MatrixConstruction

(∗ Construct the matrix A = GtG and the vector b = GtF . ∗)

1. for all ci

2. Compute the ith diagonal term ai,i of the matrix A

3. Compute the ith coordinate of the vector B = (Gtf)i.

4. All constraints belonging to the support Si are put in a list Li.

5. for all cj such that i < j < m

6. do A[i][j] = 0

7. if Si ∩ Sj 6= ∅

8. then for all constraints x in Li

9. if x ∈ Sj

10. then A[i][j]+ = φi(x) × φj(x)

11. A[j][i] = A[i][j]

12.

7.2.3 Dual Method

In the previous algorithm, we perform a double loop on the centers. Given a centers ci

with a large support Si which contain n constraints (with n sufficient large). Suppose that

Si intersect slightly Sj , the support of cj , about s constraints in common (s < n). In order

to compute ai,j , the n constraints contained in Si are tested to be in Sj , i.e. n tests while

only s terms in the sum (7.9).

Therefore, it may be more interesting to perform the dual method. The idea now is to
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go thought the constraints and seek for the centers which contain x in their support. In

the following, we call this centers x-relevant centers.

(a) the point is located in DTC. (b) Propagation in the centers triangulation.

Figure 7.7: Dual method. Input points (red), the centers (black) and the Delaunay trian-
gulation of centers (gray).

The dual method consists in a loop over the constraints, for each constraint a list of

x-relevant centers is constructed. A center is tagged x-relevant when its support contains

the current constraint x (fig.7.7(a)).

To avoid a greedy algorithm which test all centers for each constraints, a Delaunay

triangulation of centers (DC) is implemented. The "current" constraint, x, is located in a

cell C of the DC . The cell C is used as a base for traversal algorithm in order to collect all

centers which contain the currant constraint in their support (fig.7.7(b)).

A stack of candidates cells is constructed to collect the x-relevant centers. A candidate

cell satisfying this two conditions

• at least one on its vertices is x-relevant centers

• at least one on its vertices have not been visited yet for the current constraint x

The propagation in the centers triangulation, DC , stop when there is no candidates cells

anymore. This strategy suppose that the x-relevant centers for a given constraint is con-

nexe.

Data Structures :

The Delaunay triangulation of the centers, DC , allows to structure the center set with

neighborhood relation. Given a constraints x, DC allows to collect the centers close to x

by a traversal algorithm.

The localization in DC may be expensive if the search start with an arbitrary cell of

the triangulation. We, thus, initialize the search with the cell of the previous current

constraint. In order to obtain a good initialization, the constraints are structured in a

space filling curve. A space filing curve is a line passing through every point in a space,
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in a particular order, according to some algorithm. Note that curves pass through points

once only (fig.7.8(a)).

(a) Space filling curve in 3D (b) Set of constraints points (c) Space filling curve on the
constraints

Figure 7.8: Space filling curve is a "continuous curve" in 3-dimensional space.

Algorithm : The algorithm MatrixConstruction2 performs a loop over the constraints

{xi} in order to find for each of then all the centers which their support contains it.

Algorithm MatrixConstruction2

Input: X a set of constraints structured as a space filling curve sfc and DC a triangulation

of the centers.

Output: The matrix A = GtG and the vector b = GtF with the 2nd method.

1. Initialization to zero of A[i][j] and b[i],i, j = 1..m.

2. for all sfc box sfci

3. do for all constraints x ∈ sfci

4. do Locate x in DC .

5. Let C the cell which contains x.

(∗ Seek after the x-relevant centers ∗)

6. push C is a cellStack

7. while cellStack non empty

8. do pop the first cell Ck in cellStack

9. for all neighbor tetrahedra T of Ck

10. do for all vertex ci of C‖

11. do if ci have not been seen yet for x

12. then Tag ci as seen

13. if ‖x− ci‖ < ‖Si‖

14. then Tag ci as x-relevant

15. add x in x-relevant centers list
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16. compute and store φi(x)

17. if at least one of vertices is x-relevant

18. then add T in cellStack

19.

20. for all center pairs (ci, cj) in x-relevant centers list

21. do Update the values A[i][j]

22.
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Chapter 8

Results

W
e have implemented our algorithm in C++. The Voronoi diagram and Delaunay

triangulation are computed using the CGAL library [FGK+00]. The linear system

is solved using the TAUCS library [Tol01]. We use a Delaunay-based surface mesher

elaborated by Rineau et al [?].

8.1 Fitting Accuracy

To evaluate the fitting accuracy, we use the Taubin distance [Tau94] from the input points

(8.1)

Err(f) =
1

N

N
∑

i=1

(

fi − f(pi)

‖∇f(pi‖

)2

. (8.1)

This error is a sum of first order approximation of the Euclidean distance between the

input points set P and the zero level set of the function f . Since the gradient can vanish

or go to infinity with compactly supported basis functions, we need to use a threshold S1

such that :

Errt(f) =
1

N

N
∑

i=1

(

fi − f(pi)

Γ(‖∇f(pi‖)

)2

, (8.2)

where :

Γ(g) =

{

S1 if g < S1

g if S1 < g

8.2 Algorithm Sequence

Figure 8.2 summarizes all steps of our algorithm on a 2D shape.

1. all poles are extracted and classified from the Voronoi diagram (Fig.8.2(b));

2. poles are filtered (Fig.8.2(c));
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Figure 8.1: Error function. 1/Γ function.

3. poles are clustered into centers (Fig.8.2(d)) in order to selected an user defined num-

ber of centers. The set of centers is relevant if the hull of the set of inner (resp.outer)

polar ball are a good approximation of the shape (Fig.8.2(e));

4. the 2D scalar function is computed and the zero-level set is extracted (Fig.8.2(f)).

As a typical example for our algorithm, we detail the timings of each reconstruction

step for the David head model (100K points) (Fig.8.3).

1. Point insertion in the Delaunay triangulation: 6.3s;

2. Extraction of 19K poles: 3.4s ;

3. Classification (94K inside poles and 93K outside poles): 7s (Fig.8.3(b));

4. Greedy selection of 20k centers with ρ = 0.2 : 8s (Fig.8.3(d));

5. Assembling the linear system: 680s;

Note that there is 98% of zero coefficients;

6. Solving the linear system: 78s.

The least square mean error is about 9.4× 10−008 and the size of the rbf file (center point

- support - coefficient) is six times smaller than the mesh file (points - triangles).

In our current implementation, most of the time is spent assembling the linear system,

specifically finding all pairs of centers whose supports intersect a constraint. Although the

use of a 3D Delaunay triangulation avoids the naive exhaustive search (see sec.7.2).

The algorithm allows to reconstruct 3D model with an hight genius like the Filgree

model (Fig.8.4) with a genius of 65. As the RBF approach produce a watertight surface,

it is well suited to fill hole, as illustrate the figure 8.5.
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(a) 100k points measured on the surface (b) 4k poles (green outside, red inside)

(c) 1500 filtered poles -filtering with λ =
0.005 and λr = 0.5

(d) 400 selected centers (red inside, green
outside)

(e) 400 selected centers with the polar balls (f) Reconstructed curve (black). The color
map represent the function values (cold
tones for positive, hot tones for negative val-
ues and white for the zero values)

Figure 8.2: Algorithm sequence in 2D with filtering and clustering.

8.3 Choice of the Centers

The importance of our choice for the centers is shown graphically by Figure 8.6. We

plot the error against the number of centers for our method and for the common method

where constraints and centers coincide. In the common method, the set of data points is

subsampled and the off constraints are taken along the normals estimated at the subsam-

pled points. Figure 8.7 illustrates several reconstructions of the Dinosaur with increasing

number of centers corresponding to error plotted on the figure 8.6 (green curve).

As the figure 8.8 depicts, our function is defined all over the space around the sampled

shape. In contrast, when compactly supported radial basis functions are centered at the
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(a) 100k points measured on the surface (b) Poles set (green outside, orange inside)

(c) Selected centers with the inside polar
balls (red inside, green outside)

(d) 20K selected centers (red inside, green
outside)

(e) Reconstructed surface with a cutting
plane on which the f values are represented.

(f) Reconstructed surface

Figure 8.3: Algorithm sequence in 3D with greedy selection.

input data points, the function is only defined in a tubular neighborhood of the sampled

surface.
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Figure 8.4: Reconstruction of the Filgree model (80K points) with 13K centers. Fitting
accuracy: 2.8 × 10−6. Left: the 80k input points; Right: the reconstructed surface.

(a) Original surface with holes (pink area)
coming from several hidden area

(b) The reconstructed surface without any
holes

Figure 8.5: Holes filling. Reconstruction of the Bimba model (100K points) with 11K
centers obtained with clustering.
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Figure 8.6: Plot of the error against the number of centers (from 1K and 5K) for the
Dinosaur model (15k input points). The red curve corresponds to the common method.
The green curve corresponds to our approach (with filtering and clustering).

Figure 8.7: Reconstruction sequence of the Dinosaur with increasing number of centers.
From left to right: original, then reconstruction with 1K, 3K, 4K and 5K centers.

8.4 Filtering and Clustering

The pole filtering step is useful to adapt the level of detail to the user-defined number of

centers (Fig. 8.9), as well as to improve robustness against noise. It also shows the effect

of filtering when the allocated budget of centers is low.

For the hand model, 7k centers do not allow to reconstruct all the details. The clustering

promotes the centers associated to the small polar ball, indeed the desired centers density

is proportional to the sizing field function, sff(x) thus there is more centers in the area
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Figure 8.8: Reconstructed function. The colors represent the function values (cold tones
for positive, hot tones for negative values and white for the zero values). Left: the recon-
structed function for the common approach; The function does not vanish only in a tubular
neighborhood of the point set. Right: the reconstructed function for our method.

Figure 8.9: Effect of the filtering step on the Hand model (50K input points). The number
of centers is m = 7K obtained by clustering. From left to right : without filtering the poles
filtered with λ = 0.01, λ = 0.02 and λ = 0.03 (to get a better sense of these parameters, the
diagonal length of the bounding box of the input point set is 1.2 and the radius maximal
value is 0.4).

where sff(x) is small than in the area where sff(x) is large. The figure 8.10 illustrates

the center radii distribution for different filtering following by a clustering. The peak at

the origin is due to the clustering which promotes the small radii. The filtering step allows

to smooth down the peak and thus to obtain a distribution adapted to the center budget.

The curves plotted in figure 8.11 show the distribution of the radii for each recon-

structions illustrated on the figure 8.12 and the radii distribution for all the poles without

filtering and with a filtering. In the graphs 8.11(b) and 8.11(c), we can note that an uni-

form clustering leads to the same radii distribution than the pole radii distribution whereas

a non uniform clustering produces a center set with a radii distribution independent from

the poles radii distribution, i.e. from the input point distribution.

The figure 8.12 illustrate the interest of the two steps filtering and then clustering.

A uniform clustering (Fig.8.12(a) and 8.12(c)) leads to a center set with a large density

in the middle of the shape where the input point density is important (Fig.8.4) . Con-

versely, a non uniform clustering allow to obtain a center set better distributed on the

shape but if m is to small this leads to disconnected shape (Fig.8.12(b)). The filtering step
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Figure 8.10: Filtering effect on the distribution of the center ball radii. The curves represent
the radii distributions of 7K centers obtained by clustering with different filtering. Each
curve correspond to a reconstruction on the figure 8.9

(a) Distribution of the radii (b) Detail of distribution of the
radii (focus on the smallest radii)

(c) Detail of distribution of the
radii (focus of the 4 kind of se-
lections)

Figure 8.11: Radii distribution for the clustering/filtering approach. The Filgree Model
(50k input points and 11k poles), 5k centers are selected with clustering. The clustering
step may followed a filtering or not and the clustering may be uniform or not.

handle this problem by disqualifying the centers associated with the smallest ball. The

budget of centers may then used for area with larger sff values (Fig.8.12(c).

Figure 8.14 illustrates an extreme example with a substantial amount of noise due to

the misregistration of three range maps. Moreover, the sampling is highly non isotropic

and non uniform due to the acquisition system.

Figure 8.14 depicts the main stages of our algorithm applied to a noisy point set sampled

on a hand. Although noise in the input data points leads to misclassified poles (Fig.8.14(a)),

the λ-medial axis is stable under such perturbations, and theses misclassified poles are

filtered (Fig.8.14(b)).
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(a) Uniform clustering (b) Non uniform cluster-
ing

(c) Uniform clustering
with filtering λ = 0.01

(d) Non uniform cluster-
ing with filtering λ =
0.01

Figure 8.12: Filtering and clustering interest. Filgree Model (50k input points and 11k
poles), 5k centers are selected with clustering. The clustering step may followed a filtering
or not and the clustering may be uniform or not. Top the reconstructed surfaces. Bottom:
the set of centers with the red inside polar ball.

Figure 8.13: Noisy hand model (90K input points). The input points result from registering
three range maps.

8.5 Greedy Selection

The greedy selection allows to select a set of centers well distributed. That is a centers set

with a distribution independent of the sampling and adapted to the level of detail fixed by

the user defined budget of centers.

The figure 8.15 illustrate the choice of the centers according to the centers budget.

Figure 8.15(:left), the centers budget is sufficient and the knot is well reconstructed. Con-

versely, figure 8.15(:right) as the center budget is not enough, the poles corresponding to

the smallest polar ball may not be selected and thus some outside poles, between the two
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(a) orange inside poles with their polar balls
and green outside poles (88K poles, some of
them being misclassified);

(b) Filtered poles

(c) 2K centers after filtering and clustering
(red inside centers with their polar balls and
green outside centers

(d) reconstructed hand

Figure 8.14: Noisy hand model (90K input points).

Figure 8.15: Greedy selection (ρ = 0.6) on the knot model (6K input points, 12K poles)
Left: reconstruction with 2k centers. Right: reconstruction with 1K centers.

fibers, associated with small polar ball are not qualified. Thus, the fibers are not separated.

In contrast to the clustering, the greedy selection promotes the largest polar ball and

the smallest polar ball are selected only if the the center budget is sufficient. The figure

8.16 show different reconstruction for a fixed overlapping rate threshold, ρ = 2
3 .

The figure 8.17 show different reconstruction with 11k centers with different value of
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(a) Reconstructed surface

(b) Inner center polar balls and the outer centers

Figure 8.16: Effect of the greedy selection on the Filgree model (80K input points). The
number of centers is form the left to the right 5K, 10K, 15 and 18K. The overlapping rate
threshold is ρ = 0.6

ρ. If the overlapping rate threshold ρ is large the reconstructed surface is smooth. Indeed,

(a) ρ = 0.1 (b) ρ = 0.3 (c) ρ = 0.6 (d) ρ = 0.9

Figure 8.17: ρ effect on the greedy selection on the Hand model (50K input points). The
number of centers is 11K.

the polar ball overlapping is more important and so there is less discontinuities. However

the large ρ value, the less detailed is the reconstruction. We need to find the good trade

off.

8.6 Selection Methods Comparisions
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(a) Filtering and clustering λ = 0.01, m =
5k

(b) Greedy Selection ρ = 0.1, m = 5k

(c) Filtering and clustering λ = 0.01, m =
10k

(d) Greedy Selection ρ = 0.1, m = 10k

Figure 8.18:



Chapter 9

Conclusion et Perspectives

Conclusion

In this thesis, we have presented a new approach for reconstructing surfaces from scattered

points, combining generalized radial basis functions and Voronoi-based surface reconstruc-

tion.

In contrast to the Voronoi-based approaches, our method creates a smooth and watertight

surface, similarly to the RBF approaches. The resulting function is an approximation of

the signed distance to the sampled surface defined all around the sampled shape, instead

of being defined only in a small neighborhood as in previous work.

Our approach relies on a theoretically sound framework for pole extraction and λ-medial

axis filtering. This framework provides us with reliable estimates of the normal at each

data point, with an approximation of the distance to the sampled surface at each pole,

as well as with a filtering method based on the stable λ-medial axis. As a result we can

reduce the number of parameters for our algorithm to two: the number of centers, and λ,

used to filter the medial axis.

In addition to filtering and clustering of the poles, we have proposed a other approach to

select the basis function centers. This approach is simplest and consist in a greedy selection

of the poles based on the polar balls overlapping.

The two methods produced different results as they do not promote the same kind of cen-

ters. However, for each of them we obtain a center set approximating a part of the medial

axis with a density not dependent on the input points density.

Future Work

In terms of efficiency, the only stage which impairs scalability is the assembling of the final

matrix. We are expect to greatly improve this aspect by an optimized implementation or

using new geometric data structure.

In our study the medial axis filtering stage allows us to adapt the level of details to a

user-defined budget of centers, the value for λ being fixed experimentally. In the greedy

selection, the parameter ρ had to be fixed experimentally too, however the value of ρ is
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more intuitive than the λ value while ρ define the desired maximum overlapping rate.

In a future work, it will be interesting to investigate how to automatically adjust these

parameter to accommodate for the allocated budget of centers.
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Voronoi, Delaunay

.1 Voronoi Diagram

Definition .1. The Voronoi diagram of a point set P is a cellular decomposition of the

space in regions of nearest neighborhood. Every Voronoi cell corresponds to exactly one

point p ∈ P and contains all points in the space that are closer to p than to any other

points in P .

V (p, P ) = {x ∈ Ω : ∀q ∈ P‖x− p‖ ≤ ‖x− q‖}. (1)

Figure 1: 2D Voronoi diagram

.2 Delaunay Triangulation

The dual of the Voronoi diagram V or(P ) is called the Delaunay triangulation Del(P ).

Definition .2. Delaunay triangulation:

Whenever a collection V1 . . . Vk of Voronoi cells, corresponding to points p1 . . . pk, has a

non-empty intersection, the simplex whose vertices are p1 . . . pk belongs to the Delaunay

triangulation. In particular, the convex hull of four points in P defines a Delaunay tetra-

hedron if the common intersection of the corresponding Voronoi cells is not empty. Analo-

gously, the convex hull of three or two points defines a Delaunay face or a Delaunay edge,
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respectively, if the intersection of their corresponding Voronoi cells is not empty. Every

point in P is a Delaunay vertex. The term Delaunay simplex can denote either a Delaunay

vertex, edge, face or tetrahedron.

See Figure 3 for a 2D example of a Delaunay triangulation.

Figure 2: 2D Delaunay triangulation

.3 Restricted Delaunay

Definition .3. The restricted Delaunay triangulation Del|S (P ) is the set of facets of the

Delaunay triangulation whose dual edges intersect the surface.

A ball centered on S that circumscribes a facet of Del|S (P ) is called a surface Delaunay

ball. Its interior does not contain points of P

.4 Power Diagram and Regular Triangulation

The concepts of Voronoi Diagrams and Delaunay triangulations can be generalized to sets

of weighted points. A weighted points p ∈ R
3 is a pair of a point and a weight, (z, r). Every

weighted point gives rise to a distance function, namely a the power distance function,

π(z,r) : R
3 → R, x 7−→ ‖x− z‖2 − r (2)

Replacing the euclidean distance by the power distance respectively yields the power

diagram and the regular triangulation instead of the Voronoi diagram and the Delaunay

triangulation.
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Figure 3: 2D Restricted Delaunay Triangulation.

125



Power Diagram and Regular Triangulation Voronoi, Delaunay

126



Medial Axis and Local Feature Size

.5 Medial Axis

Definition .4. Maximal ball:

Let O be a shape ∈ R
3 with a boundary S = ∂O. A ball B, included in R

3, is said to be a

maximal ball if there exists no other ball included in R
3 and containing B (fig.4).

Definition .5. Medial axis:

The medial axis M of S is the topological closure of the set of points of R
3 that have at

least two nearest neighbors on S. Every point in M is the center of a maximal ball (fig.4).

Figure 4: Inside Medial Axis. A 2D shape (red) and its inside medial axis (black).

A profusion of methods have been proposed to extract the medial axis. The exact

computation of the medial axis is difficult in general. Thus the medial axis of an object has

traditionally been extracted from a discrete boundary-based representation of the object.

Voronoi diagrams turn out to be useful for this approximation.

Skeleton :The medial axis of a surface S is closely related to the skeleton of R
3\S, which

consists of the centers of maximal spheres included in R
3\S. Here maximal is meant with

respect to inclusion among spheres. For a smooth surface S the closure of the medial axis

is actually equal to the skeleton of R
3\S.
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.6 Least Feature Size

The local feature size is a function lfs : S → R that assigns to each point in S its distance

to the medial axis of S. An immediate consequence of the triangle inequality is that the

local feature size of smooth surface is Lipschitz continuous with Lipschitz constant 1.

The function lfs can be seen as a measure of the local thickness of an object. Ambi-

guities arise in reconstruction processes as soon as the samples are not dense enough wrt

to the local feature size of the shape.

A sample is an ǫ-sampling when the distance from any surface point x to the nearest

sample point is at most a small constant ǫ times the distance to the medial axis.
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Abstract
This thesis considers the problem of reconstructing a surface from scattered points sampled on

a physical shape. Our contribution is the development of a surface reconstruction method based

on the Radial Basis Functions (RBF) approach which uses Voronoi tools in order to filter noise,

reconstruct using different level of details and obtain a smaller final representation.

Recent improvements in automated shape acquisition have stimulated a profusion of surface

reconstruction techniques over the past few years for computer graphics and reverse engineering

applications. Data collected from scanning processes of physical objects are often provided as large

point sets scattered on the surface object.

Functional based approaches where the surface is reconstructed as the zero-set of a function are

standard. And the RBF approach has shown successful at reconstructing surfaces from point sets

scattered on surfaces of arbitrary topology. The implicit function is defined as a linear combination

of compactly supported radial basis functions.

We reduce the number of basis functions in order to obtain a more compact representation and

to reduce the evaluation time. Reducing the number of basis function is equivalent to reduce the

number of points (centers) where the functions are centered. Our aim consist in selecting a "little"

set of relevant centers. In order to reduce the number of centers while maintaining decent fitting

accuracy, we relax the one-to-one correspondence between the centers and the data points which

is the rules in most of the RBF approaches. We depart from previous work by using as centers of

basis functions a set of points located on an estimate of the medial axis. Those centers are selected

among the vertices of the Voronoi diagram of the sample data points. Being a Voronoi vertex,

each center is associated with a maximal empty ball. We use the radius of this ball to adapt the

support of each radial basis function.

Our method can fit a user-defined budget of centers: the user can define the number of centers,

i.e. the size of the representation and our algorithm will adapt the level of detail to this number

using filtering and clustering or greedy selection.

Keywords

Reconstruction, Approximation, Interpolation, Regularization, Multiresolution, Implicit Surface,

zero-Level sets, Radial basis functions, Voronoi, Medial axis, λ-Medial axis.

Résumé
Cette thèse s’inscrit dans la problématique de la reconstruction de surfaces à partir de nuages

de points. Les récentes avancées faites dans le domaine de l’acquisition de formes 3D à l’aide de

scanners donnent lieu à de nouveaux besoins en termes d’algorithmes de reconstruction. Il faut être

capable de traiter de grands nuages de points bruités tout en donnant une représentation compacte

de la surface reconstruite.

La surface est reconstruite comme le niveau zéro d’une fonction. Représenter une surface

implicitement en utilisant des fonctions de base radiales (Radial Basis Functions) est devenu une

approche standard ces dix dernières années. Une problématique intéressante est la réduction du

nombre de fonctions de base pour obtenir une représentation la plus compacte possible et réduire

les temps d’évaluation.

Réduire le nombre de fonctions de base revient à réduire le nombre de points (centres) sur
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lesquels elles sont centrées. L’objectif que l’on s’est fixé consiste à sélectionner un "petit" ensemble

de centres, les plus pertinents possible. Pour réduire le nombre de centres tout en gardant un

maximum d’information, nous nous sommes affranchis de la correspondance entre centres des

fonctions et points de donnée, qui est imposée dans la quasi-totalité des approches RBF. Au

contraire, nous avons décidé de placer les centres sur l’axe médian de l’ensemble des points de

donnée et de montrer que ce choix était approprié.

Pour cela, nous avons utilisé les outils donnés par la géométrie algorithmique et approximé

l’axe médian par un sous-ensemble des sommets du diagramme de Voronoi des points de donnée.

Nous avons aussi proposé deux approches différentes qui échantillonnent de manière appropriée

l’axe médian pour adapter le niveau de détail de la surface reconstruite au budget de centres alloué

par l’utilisateur.

Mots-clés

Reconstruction, Approximation, Interpolation, Régularisation, Multirésolution, Surface implicite,

Ensemble de niveaux zéro, Base de fonctions radiales, Axe médian, Voronoi, λ-Medial axis.
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