
HAL Id: tel-00337558
https://theses.hal.science/tel-00337558v1
Submitted on 7 Nov 2008 (v1), last revised 5 Jan 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Un calcul de réécriture de graphes: applications à la
biologie et aux systèmes autonomes

Oana Andrei

To cite this version:
Oana Andrei. Un calcul de réécriture de graphes: applications à la biologie et aux systèmes autonomes.
Informatique [cs]. Institut National Polytechnique de Lorraine - INPL, 2008. Français. �NNT : �. �tel-
00337558v1�

https://theses.hal.science/tel-00337558v1
https://hal.archives-ouvertes.fr

Institut National

Polytechnique de Lorraine

Département de formation doctorale en informatique

École doctorale IAEM Lorraine

Un calcul de réécriture de graphes:
applications à la biologie et aux systèmes

autonomes

THÈSE

présentée et soutenue publiquement le 5 Novembre 2008

pour l’obtention du

Doctorat de l’Institut National Polytechnique de Lorraine

(spécialité informatique)

par

Oana Andrei

Composition du jury

Rapporteurs : Jean-Pierre Banâtre Professeur, Université de Rennes 1, France

Jean-Louis Giavitto Directeur de Recherche, IBISC, CNRS, France

Examinateurs : Paolo Baldan Professeur, Université de Padova, Italie

Horatiu Cirstea Mâıtre de Conférences, Université Nancy 2, France

Marie-Dominique Devignes Chargée de Recherche CNRS, Habilitée, Nancy, France

Hélène Kirchner Directeur de Recherche, INRIA Bordeaux, France

Dorel Lucanu Professeur, Université “Al.I.Cuza”, Iaşi, Roumanie

Jean-Yves Marion Professeur, École des Mines de Nancy, France

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Mis en page avec LATEX

Contents

Introduction 1

1 Preliminary Notions 9

1.1 Binary relations and their properties . 9
1.2 Abstract Reduction Systems . 10
1.3 First-order Term Rewriting . 11

1.3.1 Term Algebra . 11
1.3.2 Equational Theories . 13
1.3.3 Term Rewriting . 13

1.4 Elements of Category Theory . 15
1.5 Labeled Graphs . 17
1.6 Graph Transformation . 18
1.7 Strategic Rewriting . 19

2 An Abstract Biochemical Calculus 25

2.1 Introduction . 25
2.1.1 The γ-calculus and HOCL . 25
2.1.2 The ρ-Calculus . 27
2.1.3 Towards an Abstract Biochemical Calculus 28
2.1.4 Structure of the Chapter . 29

2.2 Syntax . 29
2.2.1 Structured Objects . 29
2.2.2 Abstractions . 30
2.2.3 Abstract Molecules . 31
2.2.4 Subobjects, Submolecules, Substitutions, Matching 32
2.2.5 Worlds . 35
2.2.6 Structures of Worlds or Multiverses 35

2.3 Small-Step Semantics . 36
2.3.1 Basic Semantics . 36
2.3.2 Making the Application Explicit 37
2.3.3 On the Local Confluence . 39
2.3.4 First Cool Down, then Heat Up . 39

2.4 Adding Strategies to the Calculus . 40
2.4.1 Strategies as Abstractions . 41
2.4.2 Call-by-Name in the Calculus with Strategies 43
2.4.3 Correctness of the Encoding of Strategies as Abstractions 44

i

Contents

2.4.4 Extending the Semantics with Strategies and Failure Recovery . . 47
2.4.5 Persistent Strategies . 47
2.4.6 Overview of the Syntax and the Semantics of the Calculus with

Strategies . 49
2.5 Synchronous Big-Step Semantics . 50
2.6 Possible Strategies for the Calculus . 51
2.7 Comparison with the γ-Calculus and HOCL 52
2.8 Conclusions and Perspectives . 53

3 Port graph rewriting 55

3.1 Introduction . 55
3.2 Port Graphs . 56
3.3 Port Graph Morphisms and Node-Morphisms 57
3.4 Port Graph Matching and Submatching 59

3.4.1 General Definition . 59
3.4.2 A Submatching Algorithm . 60

3.5 Port Graph Rewrite Rules . 68
3.6 Port Graph Rewriting Relation . 70
3.7 Strategic Port Graph Rewriting . 72
3.8 Weak Port Graphs . 73
3.9 On the Confluence of Port Graph Rewriting 75
3.10 Comparison with Bigraphical Reactive Systems 79
3.11 Conclusions and Perspectives . 80

4 The ρpg-Calculus: a Biochemical Calculus Based on Strategic Port Graph

Rewriting 83

4.1 Introduction . 83
4.2 Syntax . 83
4.3 Semantics . 87

4.3.1 Evaluation Rules as Port Graph Rewrite Rules 87
4.3.2 The Application Mechanism as Port Graphs Rewrite Rules 88

4.4 Conclusions . 90

5 Term Rewriting Semantics for Port Graph Rewriting 91

5.1 Introduction . 91
5.2 Term Encoding of Port Graphs . 92

5.2.1 An Algebraic Signature for Port Graphs 92
5.2.2 A Term Algebra for Port Graphs 92

5.3 pg-Rewrite Rules . 94
5.4 Extending the pg-Rewrite Rules . 94
5.5 Auxiliary Operations and Reduction Relations 96

5.5.1 Instantiation of a Node-Morphism 96
5.5.2 Node-Morphism Application . 96
5.5.3 Rules for Ensuring Well-Formedness 97

ii

Contents

5.5.4 Computing the Canonical Form . 98
5.6 The pg-Rewriting Relation . 99
5.7 Operational Correspondence . 101
5.8 Relation to the ρ-Calculus . 103

5.8.1 Comparison with the Higher-Order Calculus for Graph Transfor-
mation . 104

5.8.2 The Relation between the ρpg-Calculus and the ρtpg-Calculus . . . 104
5.9 Conclusions . 105

6 Case Studies for the ρpg-calculus 107

6.1 Autonomic Computing . 107
6.1.1 Strategy-Based Modeling of Self-Management 108
6.1.2 Towards Embedding Runtime Verification in the Model 113

6.2 Molecular Graphs. Biochemical Networks 114
6.2.1 Modeling Molecular Complexes as Port Graphs 115
6.2.2 Biochemical Network Generation by Strategic Rewriting 118
6.2.3 Comparisons with Related Formalisms 119

6.3 Conclusions and Perspectives . 121

7 Runtime Verification in the ρpg-Calculus 123

7.1 Introduction . 123
7.2 CTL for Port Graphs and Port Graph Rewriting 125

7.2.1 Port Graph Expressions . 125
7.2.2 Structural Formulas . 126
7.2.3 State and Path Formulas . 128

7.3 Embedding Verification in the ρpg-Calculus: the ρvpg-Calculus 131
7.3.1 Syntax . 131
7.3.2 Semantics . 137
7.3.3 Application in Modeling Autonomous Systems 144

7.4 Conclusions and Perspectives . 145

Conclusions and Perspectives 147

A Internal Evaluation Rules for the Application in the ρpg-Calculus 149

A.1 Matching . 149
A.2 Replacement . 167

B Overview of the TOM System 171

C Implementation of the EGFR Signaling Pathway Fragment using TOM 175

Bibliography 183

iii

Contents

iv

Introduction

In this thesis we develop a higher-order calculus based on port graph
rewriting for describing molecules, reaction patterns, and biochemical net-
work generation. This calculus is an extension of the chemical model by
considering structured objects. Then we obtain a natural specification of
concurrency and of controlling mechanisms by expressing rewrite strategies as
objects of the calculus. We introduce the structure of port graphs and we show
how the principles of the biochemical calculus instantiated for port graphs are
expressive enough for modeling systems with self-organizing and emergent
properties. In addition, strategic rewriting techniques open the way to reason
about the computations and to verify properties of the modeled systems.

Motivation: from Chemical to Biochemical Computations

Since the early ages of computer science researchers were interested in nature-inspired
computational models which led, for instance, to neural networks [MP43], cellular au-
tomata [Neu66], and Lindenmayer systems [Lin68]. By the time the development in the
theoretical computer science accelerated, the simplicity of the basic principles of chem-
istry inspired researchers to abstract a computational paradigm for programming, the
chemical programming model or the chemical metaphor, in terms of molecules, solutions
of molecules and reactions. In the following we review this computational paradigm,
and afterwards we present a way of moving to a biological dimension of the model by
considering structured molecules. The result is an abstract biochemical calculus which
can be instantiated for various structures and extended with verification features.

The Chemical Metaphor

The chemical computation metaphor emerged as a computation paradigm over the last
three decades. This metaphor describes computation in terms of a chemical solution in
which molecules representing data freely interact according to reaction rules. Chemical
solutions are represented by multisets and the computation proceeds by rewritings, which
consume and produce new elements according to some rules. Several reactions occur
in parallel if they do not compete for the same data. Hence multisets represent the
fundamental structure of the chemical computation models. The chemical computational
model was proposed by [BM86] using the Gamma formalism. The goal of this work was
to capture the intuition of computation as a global evolution of a collection of atomic
values interacting freely. The generality of the rules ensures a great expressive power
and, in a direct manner, computational universality. More generally, the structured

1

Introduction

multisets defined in [FM98] can be seen as a syntactic facility allowing the organization
of explicit data, and providing a notation leading to higher-level programs manipulating
more complex data structures.

The CHemical Abstract Machine (CHAM) formalism [BB92] extends the Gamma
formalism by introducing the notion of sub-solution enclosed in a membrane, together
with a classification of the rules as heating rules (for rearranging a solution such that
reaction can take place), cooling rules (for removing useless molecules after a reaction
took place), or ordinary reaction rules. This formalism was designed as a model of
concurrency and as a specific style for defining the operational semantics of concurrent
systems.

In AlChemy [FB96], the molecules are normalized λ-terms [Bar84] and a reaction
between two molecules corresponds to a β-reduction. The underlying motivation of this
system was to develop a formal understanding of self-maintaining organizations inspired
by biological systems.

The γ-calculus [BFR04, Rad07] was designed as a basic higher-order calculus devel-
oped on the essential features of the chemical paradigm. It generalizes the chemical
model by considering the reactions as molecules as well. The Higher-Order Chemical
Language (HOCL) [BFR06c, BFR06a, BFR07] extends the γ-calculus with programming
elements. These formalisms were proved to be well-suited for modeling autonomous sys-
tems and for grid programming.

Membrane systems or P systems [Pau02] are another example of chemical model. They
represent an abstract model of parallel and distributed computing inspired by cell com-
partments and molecular membranes. A cell is divided into various compartments, each
compartment with a different task, with all of them working simultaneously to accom-
plish a more general task for the whole system. The membranes of a P system determine
regions where multisets of objects and evolution rules can be placed. The objects evolve
according to the rules associated with each region, and the regions cooperate in order to
maintain the proper behavior of the whole system. P systems provide a nice abstraction
for parallel systems, and a suitable framework for distributed and parallel algorithms.
Membrane computing is directly inspired by the cell biology and uses new and useful
ideas: localization, hierarchical structures, distribution, and communication. P systems
provide an elegant and powerful computation model, able to solve computationally hard
problems in a feasible time and useful to model various biological phenomena [PRC08].

MGS is another formalism based on the chemical model [GM01, Gia03, Spi06]. It
was designed to represent and manipulate local transformations of entities structured by
abstract topologies [GM01]. A set of entities organized by an abstract topology is called
a topological collection. The collection types range in MGS from sets and multisets
to more structured types. MGS has the ability to nest topologies in order to describe
biological systems. Using transformation on multisets, MGS is a formalism unifying
biologically inspired computational models like Gamma, P systems, or Lindenmayer
systems.

Multiset rewriting lies at the core of these formalisms. It is a special case of rewriting
where the function symbols are both associative and commutative. Several frameworks
provide efficient environments for applying multiset rewriting rules, possibly following

2

some evaluation strategies. All the formalisms mentioned above are particular artificial
chemistry instances based on the rewriting mechanism. An artificial chemistry is “a man-
made system which is similar to a real chemical system” [DZB01]. Formally, an artificial
chemistry is defined by a set of all possible molecules, a set of collision (or reaction) rules
representing interactions among the molecules, and an algorithm describing how rules
are applied on a fixed set of molecules.

Towards a Biochemical Calculus

A natural extension of the chemical metaphor is to add a biological flavor by provid-
ing the molecules with a particular structure and with association (complexation) and
dissociation (decomplexation) capabilities. In living cells, molecules like nucleic acids,
proteins, lipids, carbohydrates can combine based on their structural properties to form
more complex entities. Biochemistry as a science focuses heavily on the role, function,
and structure of such molecules. In a computer representation, the data structures that
best describe these molecules range from lists through trees and graphs to more complex
containers [Car05a].

Moving from chemistry to biochemistry by using an adequate structure for molecules
capable of expressing connections between them was shown in [CZ08] to be very compu-
tationally interesting. It was proved that by adding basic association and dissociation
capabilities of entities (for complexation and decomplexation respectively) to a minimal
process algebra-based formalism for modeling chemistry increases the computational
power such that a Turing complete computational model is obtained. This result en-
couraged us to believe that adding association and dissociation capabilities for molecules
represents an essential feature for passing from a minimal chemical model to a biochem-
ical one. In addition, it justifies our aim of defining a biochemical calculus by extending
the minimal chemical model proposed by the γ-calculus with a structure for molecules
that permits the expression of connections between molecules and operations concerning
such connections.

A Biochemical Calculus based on Port Graph Rewriting

An Abstract Biochemical Calculus

The passage from a chemical model to a biochemical one and the gain in expressivity it
may provide motivated us in the work presented in this thesis. We propose a calculus
which extends the γ-calculus through a more powerful abstraction capability that con-
siders for matching not a sole variable but a whole structured molecule. We assume that
the structure considered for molecules, in general denoted by Σ, also permits them to
connect. This approach is similar to the definition of the ρ-calculus [CK01] as an exten-
sion of the λ-calculus and first-order term rewriting. The result is a rewriting calculus
with higher-order capabilities based on the chemical metaphor with structured molecules
having connective capabilities and reaction rules over such molecules; we called it the
ρ〈Σ〉-calculus. Based on the connectivity features of the Σ-structured molecules, we con-

3

Introduction

sider the ρ〈Σ〉-calculus to be a biochemical extension of the γ-calculus, hence the name
Abstract Biochemical Calculus.

The first-class citizens of the ρ〈Σ〉-calculus are structured objects as molecules, abstrac-
tions as rewrite rules over molecules or other abstractions, and abstraction applications.
The structured objects and the abstractions are defined at the same level as molecules.
Following the same principles as in the chemical model, a juxtaposition of molecules in
a multiset represents also a molecule. We abstract the environment where molecules
are floating using an operator that groups them in a world. An interaction between an
abstraction and a molecule may take place in multiple ways due to all possible matching
solutions between the abstraction and the molecule. As a consequence a world can have
several evolution possibilities and we collect them all in a structure of alternative worlds
called multiverse.

The high expressive power of the ρ〈Σ〉-calculus allows us to model some control on
composing or choosing the application order of rules based on the notions of strategy
and strategic rewriting. We encode strategies as particular abstractions and include
them in the calculus at the same level as the other molecules. In addition, strategies
permit us to exploit failure information.

Port Graphs as Structures for Biological Molecules

In [AIK06] we explored graph models for simulating a chemical reactor in TOM based
on the work on the GasEl project [BCC+03, BIK06, Iba04]. This project was devel-
oped using rule-based systems and strategies for the problem of automated generation
of kinetics mechanisms following the artificial chemistry approach. Both for a chemical
reactor in [AIK06] and for modeling protein interactions in [AK07b], molecules are rep-
resented as graphs where the nodes correspond to atoms and to proteins respectively,
and the reactions rules create or break bonds between the nodes. On the basis of these
works, we highlight a graph structure where the nodes have points, called ports, for at-
taching the edges, thus providing an explicit partitioning of nodes connectivity. In this
thesis we identify a general class of directed graphs allowing multiple edges and loops,
where a node label is a triple of node identifier, node name and set of ports, while an
edge label is the ordered pair of source port and target port. We call such graphs port
graphs (or multigraphs with ports) and we define a suitable (strategic) rewriting relation
on them [AK07a]. We also provide an axiomatization of port graphs and port graph
rewriting using a suitable first-order term algebra and a corresponding term rewriting
relation.

The concept of port for graphs is not a novelty. It can be seen as a refinement of
the connectivity information for nodes. In particular, an inspiring starting point for our
work on port graphs was the graphical formalism presented in [BYFH06] for modeling
biochemical networks where the protein complexes are represented by typed attributed
graphs and classes of reactions are modeled by graph transformation rules. In the same
vein, another inspiring formalism for us was the κ-calculus [DL04]; this is a language of
formal proteins which models complexes as graphs-with-sites and their interactions as
a particular graph-rewriting operation. It uses an algebraic notation in the style of the

4

π-calculus [Mil99] and bonds are represented in molecular complexes by shared names.
Proteins are abstracted as boxes with interaction sites on the surface having particular

states. Hence by adding a refinement on the ports and calling them sites with at most
one edge attached to each port, port graph rewriting becomes suitable for modeling the
interactions of molecular complexes. Each site has a state indicating the connection
availability. We call this variation of port graphs used for modeling molecular complexes
molecular graphs [AK07b]. In Figure 0.1 we illustrate in the middle a reaction pattern
that applied on the left molecular graph creates an edge (called bond in the biochemical
framework) as we can see in the molecular graph on the right. This example is extracted
from a larger example developed in Section 6.2.1 which models a fragment of the epider-
mal growth factor receptor (EGFR) signaling pathway. The protagonists of the example
are four signal proteins denoted by S with S.S their dimerized form, two receptor pro-
teins R and one adapter protein A. Sites are represented differently according to their
state: filled circles for bound sites and empty circles for free ones.

5:S
12

1

3:R

2
3

4

1

4:R

2

3
4

1:S.S

2

2:S.S

2

2 2

1

1

1

1
k:S.S

22

i:R

2

j:R

24 4

r

1 1

k:S.S

22

i:R

2

j:R

24 4

1 1

5:A
12

1

3:R

2
3

4

1

4:R

2

3
4

1:S.S

2

2:S.S

2

2 2

1

1

1

1

Figure 0.1: Two molecular graphs related by a complexation reaction

As already seen in the example above, modeling molecules by using the structure of
port graphs endows them with connection capabilities. This motivates us in instantiating
the abstract structure Σ in the ρ〈Σ〉-calculus with port graphs. In consequence, we obtain
a biochemical calculus based on strategic port graph rewriting, the ρpg-calculus. Port
graphs represent a unifying structure for representing all kinds of abstract molecules in
the ρpg-calculus. In addition, the operations behind the application mechanism, match-
ing and replacement, usually defined at the metalevel of a rewriting calculus, are ex-
pressible using appropriate nodes and port graph transformations. By restricting the
port graphs to molecular graphs, we obtain a calculus for modeling biochemical net-
works [AK08a].

Since the γ-calculus and the HOCL were shown to be well-suited formalisms for mod-
eling autonomous systems [Rad07], we also investigate the suitability of the ρpg-calculus
calculus for such an application [AK08c, AK08b]. In particular the use of strategy as
objects (molecules) in the calculus helps a system self-managing and coordinating the
behaviors of its components. This study is also relevant for modeling biological systems
because of their highly complex and autonomous behavior. We use the ρpg-calculus for
modeling a fragment of the EGFR signaling pathway as well. Also in the context of mod-
eling autonomic systems we analyze the possibility of embedding verification features in
the calculus based on its higher-order capabilities.

5

Introduction

Beyond Simulation: Embedding the Biochemical Calculus with Runtime Verification

In the context of modeling autonomous systems, runtime verification is useful for recover-
ing from problematic situations, i.e., for the self-healing property. Typical requirements
one may want a system to satisfy concern the occurrence, consequence or invariance
of particular structural or behavioral properties. Such types of requirements are also
interesting for verifying biochemical models [CRCFS04, MRM+08].

Thanks to the possibility of encoding strategies as objects of the calculus and to the
multiverse construct which considers all possible ways of interaction between an abstrac-
tion and a molecule, we endow the ρpg-calculus with an automated method for validating
the behavior of the system with respect to some initial design requirements or properties.
We express the requirements as formulas in a standard temporal logic that is well suited
for reasoning on port graph reduction, the Computational Tree Logic (CTL) [CGP00].
The atomic propositions are structural formulas based on port graph expressions which
we encode by means of some adequate rewrite strategies. Then we verify that the mod-
eled system satisfies an atomic proposition using the evaluation mechanism of the rewrite
strategies. We put the temporal formulas at the same level as the system description in
the ρpg-calculus and we obtain a runtime verification technique which allows the running
system to detect its own failures. In addition, the modeled system can be provided with
recovery strategies for tackling the failure of initial requirements.

In conclusion, we propose a higher-order biochemical formalism based on strategic
rewriting on specific structures which is designed not only for simulating the evolution
of a system in time, but also for verifying the systems structure and evolution with
respect to given requirements.

Outline of the Thesis

The thesis is organized as follows:

Chapter 1 We review basic notions and concepts on rewriting and strategies that we
use in the thesis.

Chapter 2 We propose an Abstract Biochemical Calculus called the ρ〈Σ〉-calculus, with
Σ describing the structure of molecules. We introduce its syntax and semantics
stepwise, starting from the basic intuition, then making the application of an
abstraction to a molecule explicit. We then define strategies as abstractions in
the calculus.

Chapter 3 We define the structure of port graphs, a matching algorithm for port graphs,
port graph rewrite rules and a rewriting relation on port graphs. We also study
the confluence property for port graph rewriting.

Chapter 4 Based on the structure of port graphs, we instantiate the ρ〈Σ〉-calculus to
obtain a biochemical calculus based on strategic port graph rewriting. We illustrate
the expressivity power of the port graph structure by defining the matching and

6

the replacement mechanisms in the calculus via evaluation rules on port graphs
which are detailed in Appendix A.

Chapter 5 We give an operational semantics for the port graph rewriting based on
algebraic terms over a suitable order-sorted signature. This term encoding of port
graphs and port graph rewriting permits us to instantiate the ρ-calculus to obtain
a rewriting calculus for terms encoding port graphs.

Chapter 6 We illustrate the suitability of the ρpg-calculus for modeling autonomous
systems thanks to the strategies encoded as molecules in the calculus. We also in-
stantiate the ρpg-calculus with the particular molecular graph structure of proteins
for modeling a fragment of the epidermal growth factor receptor (EGFR) signaling
pathway and give the main ideas of the corresponding implementation in TOM
described in Appendix C.

Chapter 7 We extend the syntax and the semantics of the calculus with a class of
temporal formulas for verifying the satisfiability of the formulas. We obtain in this
way a biochemical calculus with runtime verification capabilities. We illustrate
the advantages of the runtime verification on some biological examples with an
emphasis on the self-healing property of biological systems.

We end the thesis with some final conclusions and perspectives.
In Figure 0.2 we provide a diagrammatic view of the relations between the concepts

we introduced in each chapter.

7

In
tr

o
d
u
ct

io
n

used in

γ-calculus ρ-calculus

port graphs

port graph

rewriting

Σ

algebraic terms

ρ〈Σ〉-calculus

ρpg-calculus

encoded as encoded as

based on

instance of instance of

pg-rewriting

applied to

autonomic computing

ρvpg-calculus

biochemical networks

ρtpg-calculus

Chapter 3

Chapter 2

Chapter 4

Chapter 5

Chapter 7

Chapter 6

applied to

applied to

used in

used in

instance of

extended to

based on

Figure 0.2: The relations between the concepts and the chapters in the thesis

8

1 Preliminary Notions

We present in this chapter the necessary background concerning term rewriting, graph
rewriting and strategic rewriting.

1.1 Binary relations and their properties

In the following we review basic definitions and notations, as well as usual properties of
binary relations [BN98].

Definition 1 (Binary relations). Given two binary relations R ⊆ A×B and S ⊆ B×C,
their composition is defined by

R ◦ S = {(a, c) | ∃b ∈ B.(a, b) ∈ R ∧ (b, c) ∈ S}

Let → be a binary relation on a set A. We denote by:

• →0 the identity on A,

• →n the n-fold composition of →, →n=→ ◦ →n−1, for every n > 0,

• →= the reflexive closure of →, →==→ ∪ →0,

• ← is the inverse of →, ←= {(y, x) | x→ y},

• ↔ the symmetric closure of →, ↔=→ ∪ ←

• →+ the transitive closure of →, →+= ∪n>0 →
n,

• →∗ the reflexive transitive closure of →, →∗=→0 ∪ →+,

• ↔∗ the reflexive transitive symmetric closure of →.

Definition 2 (Reducibility). Let → be a relation over a set A. An element x in A
is reducible if there exists an element y in A such that x → y; x is irreducible (or in
normal form) if it is not reducible. A normal form of x is any irreducible element y such
that x →∗ y. Two elements x and y in A are joinable if there exists z in A such that
x→∗ z and y →∗ z and we denote it by x ↓ y.

Definition 3 (Properties of binary relations). Let → be a relation over a set A. The
relation → is called:

• locally confluent if x→ y1 and x→ y2 implies y1 ↓ y2;

9

1 Preliminary Notions

• confluent if x→∗ y1 and x→∗ y2 implies y1 ↓ y2;

• strongly normalizing (or terminating) if there is no infinite sequence
x0 → x1 → . . .;

• normalizing if every element in A has a normal form;

• convergent if it is confluent and terminating.

Proving the confluence of a relation is in general difficult. But if the relation is
terminating, is sufficient to show that the relation is locally confluent.

Theorem 1 (Newman’s Lemma [New42]). A strongly terminating relation is confluent
if it is locally confluent.

1.2 Abstract Reduction Systems

Usually an abstract reduction system is described by a set and a binary relation over
that set. For the purpose of this thesis, in particular for reasoning later on the notion
of strategies, we adopt the more general definitions from [KKK08] based on the notion
of graph. These definitions allow one to describe the possible different ways an object is
reached from another one.

Definition 4 (Abstract reduction system). An abstract reduction system (ARS) is a
labelled oriented graph (O,S). The nodes in O are called objects, the oriented edges in
S are called steps.

Definition 5 (Derivation). For a given ARS A:

1. A reduction step is a labelled edge φ together with its source a and target b. This
is written a _φ

A b, or simply a _φ b when unambiguous.

2. An A-derivation or A-reduction sequence is a path π in the graph A.

3. When it is finite, π can be written a0 _φ0 a1 _φ1 a2 . . . _φn−1 an and we say
that a0 reduces to an by the derivation π = φ0φ1 . . . φn−1; this is also denoted by
a0 _π an. The source of π is the singleton {a0} denoted by dom(π). The target
of π is the singleton {an} and it is denoted by [π](a0).

4. A derivation is empty when its source and target are the same. The empty deriva-
tion issued from a is denoted by ida.

5. The concatenation of two derivations π1;π2 is defined when π1 is finite and dom(π2) =
[π1](dom(π1)) as follows:

π1;π2 : dom(π1) _π1

A dom(π2) _π2

A [π2]([π1](dom(π1)))

10

1.3 First-order Term Rewriting

Note that an A-derivation is the concatenation of its reduction steps. The concatena-
tion of π1 and π2 when it exists, is a new A-derivation.

The following definitions generalize classical properties of a relation to an ARS.

Definition 6 (Termination). For a given ARS A = (O,S) we say that:

• A is terminating (or strongly normalizing) if all its derivations are of finite length;

• an object a in O is normalized when the empty derivation is the only one with
source a (e.g., a is the source of no edge);

• a derivation is normalizing when its target is normalized;

• an ARS is weakly terminating if every object a is the source of a normalizing
derivation.

Definition 7 (Confluence). An ARS A = (O,S) is confluent if for all objects a, b, c in
O, and all A-derivations π1 and π2, when a _π1 b and a _π2 c, there exist d in O and
two A-derivations π3, π4 such that c _π3 d and b _π4 d.

1.3 First-order Term Rewriting

This section contains the basic notions on first-order term algebra and term rewrit-
ing [BN98, GM92].

1.3.1 Term Algebra

A many-sorted signature is a pair (S,F) where S is a set of sorts and F a set of sorted
function symbols, F = {FS1...Sn,S | S1, . . . Sn, S ∈ S}. For f ∈ FS1...Sn,S we use the
notation f : S1 . . . Sn → S. An order-sorted signature is a triple (S,≤,F) such that
(S,F) is a many-sorted signature and (S,≤) is a partially ordered set, and the function
symbols satisfy a monotonicity condition: if f ∈ FS1...Sn,S ∩ FS′1...S′n,S′ and Si ≤ S′i for
all i, 1 ≤ i ≤ n, then S ≤ S′. In the following, for presenting term rewriting we consider
only many-sorted signatures; a complete introduction on order-sorted algebra can be
found in [GM92].

When f ∈ FS1...Sn,S , we say that f has the rank 〈S1 . . . Sn, S〉, arity S1 . . . Sn, and sort
S. If n = 0, then f is called a constant. If f has the arity S . . . S of a variable size, then
f is variadic. In general, when S is a singleton, the arity of a function symbol is reduced
to a number.

Let (S,F) be a many-sorted signature and X = {XS}S∈S be an S-sorted family of
disjoint sets of variables.

Definition 8. The set of terms of sort S over the signature (S,F) and the set of
variables X , denoted T (F ,X)S, is the smallest set containing XS such that f(t1, . . . , tn)
is in T (F ,X)S whenever f : S1 . . . Sn → S and ti ∈ T (F ,X)Si for 1 ≤ i ≤ n, n ≥ 0.
Then T (F ,X) =

⋃

T (F ,X)S∈S is the term algebra generated by the signature (S,F)
and the set of variables X .

11

1 Preliminary Notions

The top symbol of a term is denoted Head(t). The set of variables occurring in a
term t is denoted by Var(t). If Var(t) is empty, t is called a ground term. T (F) is the
set of all ground terms. We may omit sort names when they are clear from the context.
A term t ∈ T (F ,X) is said to be linear if each variable in t occurs at most once.

Let N be the set of natural numbers, N+ the set of non-zero naturals. The set of
finite sequences of non-zero natural numbers N

∗
+ is defined as p = ǫ | n | p.p, where ǫ

represents the empty sequence and n ∈ N+. For all p, q ∈ N
∗
+, p is a prefix of q if there

is r ∈ N
∗
+ such that q = p.r.

The set of positions Pos(t) of the term t is recursively defined as follows:

• ǫ ∈ Pos(t) is the head position of t.

• For all p ∈ Pos(t) and all i ∈ N
∗
+, p.i ∈ Pos(t) if and only if 1 ≤ i ≤ |arity(f)|

where f ∈ F is the symbol at the position p of t.

We call subterm of t at the position p ∈ Pos(t) the term denoted t|p which satisfies the
following condition:

∀p.r ∈ Pos(t), r ∈ Pos(t|p) : Head(t|p.r) = Head((t|p)|r)

We denote t[s]p the term t where the subterm at the position p has been replaced by
the term s.

Example 1. The set of Peano integers can be described by a signature consisting of a
single sort S = {Nat} and a set of function symbols:

F = {s : Nat→ Nat, 0 : → Nat, plus : Nat Nat→ Nat}
for succesor, zero, and addition operations. The set of positions of the term
plus(s(0), s(s(0))) is Pos(t) = {ǫ, 1 , 2, 1.1, 2.1, 2.1.1} which corresponds respectively
to the subterms plus(s(0), s(s(0))), s(0), s(s(0)), 0, s(0) and 0.

A substitution σ is a mapping from each variable in a finite subset {x1, . . . , xk} of
X to a term of the same sort in T (F ,X), written σ = {x1 7→ t1, . . . , xk 7→ tk}. We
define the domain of σ as dom(σ) = {x1, . . . , xk}. The application of a substitution σ
to a term t, denoted by σ(t) simultaneously replaces all occurrences of variables by their
respective σ-images. The composition of two substitutions σ and µ is denoted σµ and
(σµ)(t) = σ(µ(t)) for any term t. We say that σ instantiates x if x ∈ dom(σ).

A substitution σ is more general than a substitution σ′ if there is a substitution δ such
that σ′ = δσ. In this case we write σ . σ′. We also say that σ′ is an instance of σ.

Two terms are unifiable if there is a substitution σ such that σ(s) = σ(t). Then σ is
a most general unifier (mgu) for s and t if for any other unifier σ′ of s and t, σ . σ′.

Example 2. On the example on Peano integers above we consider a set of variables
{x, y} and a substitution σ = {x 7→ 0, y 7→ s(0)}. Then for t = plus(s(x), s(y)) we have
σ(t) = plus(s(0), s(s(0))).

Definition 9 (Matching). We say that a term t matches a term t′, or t′ is an instance
of t, if there is a substitution σ such that t′ = σ(t).

12

1.3 First-order Term Rewriting

We usually refer to t as the pattern and to t′ as the subject of the matching. This type
of matching is known as syntactical matching. Syntactical matching is always decidable.
It is linear on the size of the pattern, if this last one is a linear term. Otherwise, matching
is linear on the size of the subject.

1.3.2 Equational Theories

An equality or axiom over a term algebra T (F ,X) is a pair of terms 〈l, r〉, denoted by
l = r, where l and r are terms of the same sort. Given a set of axioms E, we denote
by ←→E the symmetric binary relation over T (F ,X) defined by s ←→E t if there is
an axiom l = r in E, a position p in s and a substitution σ such that s|p = σ(l) and
t = s[σ(r)]p. The reflexive and transitive closure of ←→E , denoted by ∗

←→E , is the
equational theory generated by E, or briefly, the equational theory E.

Some theories we mention in this thesis are defined below for a binary operator f :

(A) Associativity f(f(x, y), z) = f(x, f(y, z))
(C) Commutativity f(x, y) = f(y, z)
(I) Idempotency f(x, x) = x

(Ue) Unit f(x, e) = f(e, x) = x

We can combine these theories to obtain for instance associative with unit element
(AU), associative-commutative (AC), or associative-commutative with unit element (ACU)
theories. In addition, an equational theory E is called a permutative theory if for every
equation s←→E t, the number of occurrences of every symbol in s is the same as in t.

Deciding whether two arbitrary terms are equal in an equational theory is known as
the word problem in this theory.

The notion of matching can be generalized to take into account the fact that terms
can be equal modulo a given equational theory. We say that a term t matches modulo
E a term s if there exists a substitution σ such that s ∗

←→E σ(t).
In contrast to the syntactical matching problem, matching modulo an equational the-

ory is undecidable in general [BS01]. When they can be decided, the available algorithms
may have a considerable complexity. Well-known examples are matching modulo asso-
ciativity and commutativity.

1.3.3 Term Rewriting

Let (S,F) and X denote as usual a many-sorted signature and a variable set as before.

Definition 10 (Rewrite rule). A rewrite rule for the term algebra T (F ,X) is an oriented
pair of terms, denoted l → r, where l and r are terms in T (F ,X). We call l and r
respectively right-hand side and left-hand side of the rule.

A term rewrite system is a set R of rewrite rules for T (F ,X).

Sometimes we add labels to rules to identify them. A labeled rewrite rule has the form
id : l→ r.

Some restrictions are usually imposed on a rewrite rule l→ r:

13

1 Preliminary Notions

• Var(r) ⊆ Var(l) (the set of variables from the right-hand side is a subset of the
set of variables of the left-hand side),

• l 6∈ X (the left-hand side is not a variable),

• l and r are of the same sort.

Definition 11 (Rewrite Relation). Let R be a rewrite system over T (F ,X). The rewrite
relation associated to R over T (F ,X) is denoted →R and is defined as follows: t→Rs if
there exists a position p in t, a rewrite rule l → r in R and a substitution σ such that
t|p = σ(l) and s = t[σ(r)]p. The subterm t|p is an instance of the left-hand side l and it
is called a redex.

Example 3. The operator plus for Peano integers can be defined by the following term
rewrite system:

R =

{

r1 : plus(0, y) → y
r2 : plus(s(x), y) → s(plus(x, y))

The term t = plus(s(0), s(s(0))) is normalized by the following derivation:

plus(s(0), s(s(0)))→s(plus(0, s(s(0))))→s(s(s(0)))

The properties of a term rewrite system R are those of the relation →R. All these
properties, in particular termination and confluence are undecidable in general. This
is not surprising because term rewriting is at least as expressive as Turing machines.
Indeed, Turing machines can be expressed as a single rewrite rule [Dau92].

However, there are methods for deciding these properties for specific classes of term
rewrite systems. For example, termination of a term rewrite system can be proved
through the use of an appropriate simplification ordering thanks to the theorem below.
A rewrite order is a compatible order over the set of terms. A simplification order is a
rewrite order which contains the strict subterm relation.

Theorem 2. [Der82] Let F be a signature with a finite set of symbols. A term rewrite
system R over T (F ,X) terminates if there is a simplification order ≻ such that l ≻ r
for each rule l→ r ∈ R.

Confluence can be decided for terminating term rewrite systems by applying the New-
man’s lemma which assures that local confluence implies the confluence for these systems.
Local confluence can be decided by testing the joinability of critical pairs [BN98].

Definition 12 (Critical Pair). Let l→r and g→d be two rules with disjoint sets of
variables. We call a critical pair in the rule g → d over l → r at the non variable
position p ∈ Pos(l), the pair (σ(r), σ(l)[σ(d)]p) such that σ is a most general unifier of
g and l|p.

If every critical pair is joinable, the term rewrite system is locally confluent. Since the
number of critical pairs in a finite term rewrite system is also finite, local confluence is
decidable.

Conditional rewrite systems arise naturally in some of the specifications adopted in
this thesis.

14

1.4 Elements of Category Theory

Definition 13 (Conditional Rewriting). A conditional term rewrite system is a set of
conditional rewrite rules R over a set of terms T (F ,X). Each rewrite rule is of the form
l→r if s1→t1, . . . , sk→tk with l, r, s1, . . . , sk, t1, . . . tk ∈ T (F ,X).

• For all rules in R term rewrite system Var(r) ∪ Var(c) ⊆ Var(l), where c is an
abbreviation for the conditional part of the rule, s1→t1, . . . , sk→tk.

• Each tj in c is a ground normal form with respect Ru, which contains all rules in
R without their conditional part.

Definition 14. Given a conditional rewrite system R, a term t rewrites to a term t′,
which is denoted as usual t→Rt

′ if there exists a conditional rewrite rule l→r if c, a posi-
tion ω in t, and a substitution σ satisfying t|ω = σ(l), and σ(s1)→Rut1, . . . , σ(sk)→Rutk.

We now introduce the notion of rewriting modulo a set of equations. When the axioms
of an equational theory can be oriented into a canonical term rewrite system, the rewrite
rules can be used for solving the word problem in such theory. However, there are
equalities that cannot be oriented without loosing the termination property. A typical
example is the commutativity axiom. In this case, equational reasoning needs a different
rewrite relation which works on term equivalence classes modulo these non-orientable
equalities.

Definition 15 (Rewriting Modulo Equivalence Classes). Given a term rewrite system
R and a set of axioms E, the term t rewrites into the term s by R modulo E, denoted
t −→R/E s, if there is a rule l → r ∈ R, a term u, a position p in u and a substitution

σ, such that t
∗
←→E u[σ(l)]p and s

∗
←→E u[σ(r)]p.

The relation −→R/E is not satisfactory with respect to efficiency because in order to
rewrite a term, it is necessary to search in the whole equivalence class modulo E. Such
a search is even harder in the case of infinite equivalence classes. In order to solve this
problem, a weaker relation has been proposed by [PS81], and generalized by [JK86], in
which matching is replaced by matching modulo an equational theory. This relation is
called rewriting modulo an equational theory and is denoted →R,E .

In practice, the most used equational theory is associativity and commutativity. The
relation →R,E is called in this case rewriting modulo associativity and commutativity
(AC). The efficiency of matching modulo AC is essential for the performance of rewriting
modulo AC. However, matching modulo AC is know to the a NP-Hard problem [BKN87]
and it can have an exponential number of solutions.

1.4 Elements of Category Theory

We review a few elements from the category theory [Mac98] needed in this thesis. We
recall the definitions of category, functor, pushout, and strict symmetric strict monoidal
category.

Definition 16 (Category). A category C is given by:

15

1 Preliminary Notions

• A class of objects denoted by Obj(C).

• A class of morphisms (or arrows) denoted by Arr(C), where each morphism f has
a unique source object A and target object B, with A and B objects of C. We
denote by C(A,B) the class of all morphisms from the object A to the object B.

• A composition law ◦ : C(A,B)×C(B,C)→ C(A,C) which is associative, that is

if f ∈ C(A,B), g ∈ C(B,C), h ∈ C(C,D) then h ◦ (g ◦ f) = (h ◦ g) ◦ f.

• An identity morphism idA ∈ C(A,A) for all objects A which is a neutral element
for ◦, that is

∀f ∈ C(A,B) f ◦ idA = f = idB ◦ f.

A functor is a morphism of categories.

Definition 17 (Functor). A functor F from a category C to a category D, written
F : C→ D, consists of two functions:

• the object function which assigns to each object A in C an object F (A) in D, and

• the arrow function which assigns to each arrow f : A → B of C an arrow F (f) :
F (A)→ F (B) in D,

such that
F (idA) = idF (A), F (g ◦ f) = F (g) ◦ F (f)

Definition 18 (Pushout). Given in C a pair of arrows f : A → B and g : A → C, a
pushout of f and g consists of an object D and two arrows h1 : C → D and h1 : B → D
for which the following two conditions are satisfied:

(commutativity) The diagram below commutes:

A
f //

g

��

B

h1

��
C

h2

// D

(universality) For every object D′ and arrows i1 : B → D′ and i2 : C → D′ such that
i1 ◦ f = i2 ◦ g, there is a unique port graph morphism D → D′ the diagrams (2)
and (3) below commute respectively.

A

(1)

f //

g

��

B

h1

�� i1

��

(2)C

(3)

h2 //

i2 ''PPPPPPPPPPPPPP D

 A
AA

AA
AA

A

D′

16

1.5 Labeled Graphs

Definition 19 (Strict symmetric strict monoidal category). A strict symmetric strict
monoidal category (sssmc) (B,+, e) is a category B equipped with a bifunctor + : B ×
B → B called the tensor product or disjoint sum, and an object e called the unit object
or identity object which satisfy:

1. the class of objects Ob(B) is a commutative monoid with respect to + with the
neutral element e, (i.e., + is associative, commutative, with neutral element),

2. for every f ∈ B(a, b) and g ∈ B(a′, b′) the sum f + g is in B(a + a′, b + b′) and
satisfies the following axioms:

(C1) (f + g) + h = f + (g + h),

(C2) ide + f = f = f + ide,

(C3) ida + idb = ida+b,

(C4) (f + g); (u+ v) = f ;u+ g; v,

(C5) f + g = g + f for any f, g ∈ Arr(B).

1.5 Labeled Graphs

Definition 20 (Labeled graph). A label alphabet L = (LV ,LE) is a pair of sets of node
labels and edge labels. A (finite) graph over L is a tuple G = (V,E, sG, tG, lG) where:

• V is a set {v1, . . . , vk} of elements called nodes (or vertices),

• E is a set {e1, . . . , em} of elements of the Cartesian product V × V called edges,

• sG, tG : E → V are the source ant target functions respectively, and

• lG = (lGV , l
G
E) is the labeling function for nodes (lGV : V → LV) and edges (lGE : E →

LE).

If G is a graph, we usually denote by VG its node set and by EG its edge set.
An edge of the form (v, v) is called a loop. For an edge (u, v), u and v are called end

nodes with u the source and v the target; moreover we say that u and v are adjacent or
neighbouring nodes, with v neighbour of u. An edge is incident to a node if the node is
one of its end nodes. An edge is multiple if there is another edge with the same source
and target; otherwise it is simple. A multigraph is a graph allowing multiple edges and
loops. A path in a sequence of nodes {v1, . . . , vn} such that (v1, v2), . . ., (vn−1, vn) are
edges of the graph.

An adjacency list for a node is given by a list of pairs consisting of a neighbour and the
corresponding edge label. If a node has no neighbour then its adjacency list is empty.

A subgraph of a graph G is a graph whose node and edge sets are subsets of those of
G. A subgraph H of a graph G is said to be induced if, for any pair of vertices v and u
of H, (v, u) is an edge of H if and only if (v, u) is an edge of G. In other words, H is an
induced subgraph of G if it has all the edges that appear in G over the same vertex set.

17

1 Preliminary Notions

A graph morphism f : G→ H is a pair of functions fV : VG → VH and fE : EG → EH
which preserve sources, targets, and labels while preserving adjacency, i.e., which satisfies
fV ◦ t

G = tH ◦ fE , fV ◦ sG = sH ◦ fE , lHV ◦ fV = lGV , lHE ◦ fE = lGE .
A partial graph morphism f : G→ H is a total graph morphism from some subgraph

dom(f) of G to H, with dom(f) called the domain of f .
The composition of two (partial) graph morphisms is defined by the composition of

the components, and the identities as pairs of component identities.
The category having labeled graphs as objects and graph morphisms as arrows is called

Graph. By restricting the arrows to partial morphisms, a new category is obtained
called GraphP.

1.6 Graph Transformation

We briefly describe in this section the intuition behind graph transformation and the
algebraic approach, also called “double-pushout approach” [Roz97, EEKR97, EKMR97].

A graph transformation rule L ; R consists of two graphs L and R called the left-
and right-hand side respectively, and a partial graph morphism between. The partial
graph morphism provides a correspondence between elements of the left-hand side and
elements of the right-hand side. Graphically this correspondence is provided by some
unique identifiers associated to nodes.

Definition 21 (Graph transformation rule). In the DPO approach a production p :
L← K → R is a pair of graph homomorphisms l : K → L and r : K → R where L,K,R
are finite graphs and are called the left-hand side, the interface and the right-hand side
respectively. A graph transformation systems is a finite set of graph transformation
rules.

A graph direct derivation can be formalised in the categorical setting as a single
pushout SPO [EHK+97] or double pushout DPO [CMR+97]. We present here the
double pushout approach, which historically was the first one to be proposed.

Definition 22 (Direct derivation). A direct derivation from G to H using a production
p : L← K → R exists if and only if the diagram below can be constructed,

L

��

Koo

��

// R

��
G Doo // H

where both squares are required to be pushouts in the category Graph. In this case D
is called the context graph.

Given a production, the graph K can be seen as an “interface”, in the sense that it is
not affected by the rewrite step itself, but it is necessary for specifying how the right-
hand side R is glued with the graph D. Intuitively, the context graph D is obtained
from the given graph G by deleting all elements of G which have a pre-image in L but

18

1.7 Strategic Rewriting

not in K. The second pushout diagram models the insertion into H of all elements of R
that do not have a pre-image in K.

In general, as presented in [Sch97], the application of a graph transformation rule
L ; R to a graph G, called host graph, produces a new graph G′ according to the
following steps:

1. Find a matching morphism m for L in G (hence m(L) is a subgraph of G).

2. Remove the subgraph m(L) from G resulting in the context graph G−.

3. Add m(R) to the context graph G−.

4. Reconnect m(R) and G−.

The differences between various approaches for graph replacement arise mainly in the
last step, depending on the mechanism chosen for establishing connections between new
and old nodes. Two particular problems are handled at this stage ([CMR+97, Sch97]).
The first one refers to whether or not noninjective matching is allowed. For example, if
two different nodes L are matched to one node in the host graph, and one of the two
nodes is deleted and the other preserved, will the node in the host graph be deleted or
preserved? The second problem concerns the dangling edges in the host graph which
are unmatched edges with one endpoint deleted by the transformation rule. These two
problematic situations are referred to as the identification and the dangling problem
respectively.

The problem of finding a match for a given rule is an instance of the subgraph ho-
momorphism problem which is known to be NP complete [Meh84]. In fact there many
definitions for graphs and graph transformation depending on the motivations and the
context of the application. There are several algorithms available for general graph pat-
tern matching, let us mention here a few works [Ull76, LV02, Zün96, Val02]. Among the
existing tools for graph transformation we mention AGG [ERT97], PROGRES [SWZ97],
and Clean [PE93]. More information on the application domains and tools for graph
transformation can be found in [EEKR97].

1.7 Strategic Rewriting

The notion of strategy used in this thesis is fundamental in rewriting. We give here a
general presentation of the main ideas following the approach based on abstract reduction
systems [KKK08].

A term rewrite system R or a graph transformation system G generates an abstract
reduction system whose nodes are terms or graphs respectively, and whose oriented edges
are rewriting steps or direct derivations. Then a derivation in R or in G is a path in the
underlying graph of the associated abstract reduction system. The notions of strategy
and strategic rewriting have been introduced in order to control such derivations.

Definition 23 (Abstract strategy). For a given ARS A:

19

1 Preliminary Notions

1. An abstract strategy ζ is a subset of the set of all derivations (finite or not) of A.

2. Applying the strategy ζ on an object a, denoted by [ζ](a), consists of the set of all
objects that can be reached from a using a derivation in ζ:
[ζ](a) = {b | ∃π ∈ ζ such that a _π b} = {[π](a) | π ∈ ζ}.
When no derivation in ζ has for source a, we say that the strategy application on
a fails.

3. Applying the strategy ζ on a set of objects consists in applying ζ to each element a
of the set. The result is the union of [ζ](a) for all a.

4. The domain of a strategy is the set of objects that are source of a derivation in ζ:

dom(ζ) =
⋃

δ∈ζ

dom(δ)

5. The strategy that contains all empty derivations is Id = {ida | a ∈ O}.

Remark that, following from the previous definition, a strategy is not defined on all
objects of the ARS, hence it is a partial function. A strategy that contains only infinite
derivations from a source {a} applies to the object a and returns the empty set. The
empty set of derivations is a strategy called Fail; its application always fails.

The formalisation of abstract reduction systems and abstract strategies allows then
to define properties like termination (all relevant derivations are of finite length) and
confluence (all relevant derivations lead to the same object).

Definition 24 (Termination under strategy). For a given abstract reduction system
abstract reduction system A = (O,S) and a strategy ζ:

• A is terminating under ζ if all derivation in ζ are of finite length;

• An object a in O is ζ-normalized when the empty derivation is the only one in ζ
with source a;

• A derivation is ζ-normalizing when its target is ζ-normalized;

• An ARS is weakly ζ-terminating if every object a is the source of a ζ-normalizing
derivation.

Definition 25 (Weak confluence under strategy). An ARS A = (O,S) is weakly conflu-
ent under a strategy ζ if for all objects a, b, c in O and all derivations in A-derivations
π1 and π2 in ζ, when a→π1b and a→π2c there exists d in O and two derivations π′3, π

′
4

in ζ such that π′3 : a→c→d and π′4 : a→b→c

Definition 26 (Strong confluence under strategy). An ARS A = (O,S) is strongly
confluent under a strategy ζ if for all objects a, b, c in O and all A-derivations π1 and
π2 in ζ, when a→π1b and a→π2c there exists d in O and two derivations π3 and π′4 in ζ
such that c→π3d and b→π4d and π4;π1, π3;π2 ∈ ζ.

20

1.7 Strategic Rewriting

It is now possible to give the definition of strategic rewriting:

Definition 27 (Strategic rewriting). Given an abstract reduction system A = (O,S)
and a strategy ζ, a strategic rewriting derivation (or rewriting derivation under strategy
ζ) is an element of ζ.

If the abstract reduction system A is generated by a term rewrite system R, a strategic
rewriting step under ζ is a rewriting step t→R

ω t
′ that occurs in a derivation of ζ.

If A is generated by a graph transformation system, a strategic graph rewriting step ζ
is a direct derivation G→ H.

A strategy can be described by enumerating all its elements or more suitably by a strat-
egy language. Various approaches have been followed, yielding slightly different strat-
egy languages such as ELAN [KKV95, BKKR01b], Stratego [Vis01], TOM1 [BBK+07a,
BBK+07c] or more recently Maude [MOMV05]. All these languages provide flexible and
expressive strategy languages where high-level strategies are defined by combining low
level primitives. We describe below the main elements of the TOM strategy language
that are of interest in this thesis.

Following [KKK08], we can distinguish two classes of constructs in the strategy lan-
guage: the first class allows construction of derivations from the basic elements, namely
the rewrite rules. The second class corresponds to constructs that express the control,
especially left-biased choice (or first). Moreover, the capability of expressing recursion
in the language brings even more expressive power.

Elementary constructor strategies. An elementary strategy is either Identity which
corresponds to the set Id of all empty derivations, Fail which denotes the empty set of
derivations Fail, or a set of rewrite rules R which represents one-step derivations with
rules in R. Sequence(ζ1, ζ2), also denoted by ζ2; ζ1, is the concatenation of ζ1 and ζ2

whenever it exists: for a given object a in an ARS A, [ζ1; ζ2](a) = [ζ2]([ζ1](a)).

Control constructor strategies. A few constructions are needed to build derivations,
branching and to take into account the structure of the objects.

first First(ζ1, ζ2) applies the first strategy if it does not fail, otherwise it applies the
second strategy; it fails if both strategies fail. Remark this is a deterministic choice,
more precisely, the left-biased choice.
[First(ζ1, ζ2)](a) = [ζ1](a) if [ζ1](a) does not fail else [ζ2](a).

not Not(ζ) fails if the strategy ζ does not fail, and it does nothing if ζ fails:
[Not(ζ)](a) = a if [ζ](a) fails else it fails.

if then else IfThenElse(ζ1, ζ2, ζ3) applies the first strategy: if it does not fail, it applies
the second strategy, else it applies the third strategy; it fails if both strategies ζ2

and ζ3 fail.
[IfThenElse(ζ1, ζ2, ζ3)](a) = [ζ2](a) if [ζ1](a) does not fail else [ζ3](a).

1http://tom.loria.fr

21

http://tom.loria.fr

1 Preliminary Notions

fixpoint The µ recursion operator (comparable to rec in OCaml) is introduced to allow
the recursive definition of strategies. µx.ζ applies the derivation in ζ with the
variable x instantiated to µx.ζ, i.e., µx.ζ = ζ[x← µx.ζ]

The strategies Sequence and First extend naturally to be applicable to a list of
strategies.

All these strategies are then composed to build other useful strategies. A composed
strategy is for instance Try(ζ) = First(ζ, Id) which applies ζ if it can, and applies the
identity strategy Id otherwise. Similarly, the Repeat combinator is used in combina-
tion with the fixpoint operator to iterate the application of a strategy: Repeat(ζ) =
µx.Try(ζ;x).

If the objects in the ARS have a hierarchical structure (or term-like), then strategies
are applied only on the top position and strategies such as bottom-up, top-down or
leftmost-innermost are higher-order features that describe how rewrite rules should be
applied. The basic control constructors for such strategies on terms are the following:

all subterms All(ζ) denotes the set of all derivations in ζ. On a term t, All(ζ) applies
the strategy ζ on all immediate subterms:
[All(ζ)](f(t1, ..., tn)) = f(t′1, ..., t

′
n) if [ζ](ti) = t′i for all i, 1 ≤ i ≤ n, and fails if

there exists i such that [ζ](ti) fails.

one subterm One(ζ) gives a way to select one derivation in ζ that does not fail if it
exists. On a term t, One(ζ) applies the strategy ζ on the first immediate subterm
of t where ζ does not fail:
[One(ζ)](f(t1, ..., tn)) = f(t1, ..., t′i, ..., tn) if [ζ](ti) = t′i and for all j, 1 ≤ j < i,
[ζ](tj) = ∅, and fails if for all i, [ζ](ti) fails.

The All and One combinators are used in combination with the fixpoint operator to
define tree traversals. For example, we have TopDown(ζ) = µx.Sequence(ζ,All(x)): the
strategy ζ is first applied on top of the considered term, then the strategy TopDown(ζ)
is recursively called on all immediate subterms of the term.

In addition to the strategy First, ELAN has two more strategies for describing the
choice of strategies to apply from a set of strategies:

don’t know dk(ζ1, . . . , ζn) denotes the set of all derivations in ζ1, . . ., ζn. It fails if all
strategies fail.

don’t care dc(ζ1, . . . , ζn) denotes the set of all derivations of a non-failing strategy ζi.
It fails if all strategies fail.

Other high-level strategies implement term traversal and normalization on terms and
are well-known in the term rewrite system literature:

TopDown(ζ) = ζ;All(TopDown(ζ))
BottomUp(ζ) = All(BottomUp(ζ)); ζ)
OnceTopDown(ζ) = Choice(ζ,One(OnceTopDown(ζ)))
OnceBottomUp(ζ) = Choice(One(OnceBottomUp(ζ)), ζ)
Innermost(ζ) = Repeat(OnceBottomUp(ζ))
Outermost(ζ) = Repeat(OnceTopDown(ζ))

22

1.7 Strategic Rewriting

Example 4. Some examples of strategy application are:

[Choice(a→ b, a→ c)](a) = {b}
[Choice(a→ c, a→ b)](b) = ∅
[Try(b→ c)](a) = {a}
[Repeat(Choice(b→c, a→b))](a) = {c}
[TopDown(a→ b)](f(g(a, d), h(h(a)))) = {f(g(b, d), h(h(b)))}

23

1 Preliminary Notions

24

2 An Abstract Biochemical Calculus

2.1 Introduction

In this chapter we introduce an abstract model of biochemical computation. The model
is based on the principles of the chemical model as modeled by the γ-calculus and the
principles of the rewriting calculus, and it combines rewriting on multisets of abstract
structures with higher-order features from λ-calculus.

The chemical metaphor was proposed as a computational paradigm in the Γ language
in [BM86]. It describes computations in terms of a chemical solution in which molecules
representing data interact according to reaction rules. Chemical solutions are repre-
sented by multisets and the reaction rules by rewrite rules on such multisets. Then
the computation proceeds by applications of rewrite rules which consume and produce
new elements according to the conditions and transformations specified by the reactions
rules. This model was used as a basis for defining the CHemical Abstract Machine
(CHAM) [BB92].

In order to understand the particular features of the Abstract Biochemical Calculus we
propose in this chapter, first we present the chemical model as modeled by the γ-calculus
and HOCL, then the rewriting calculus. In a third step we talk about the passage to a
biochemical model.

2.1.1 The γ-calculus and HOCL

The γ-calculus [BFR04, Rad07] was designed as a basic higher-order calculus developed
on the essential features of the chemical paradigm. It generalizes the chemical model by
considering the reactions as molecules as well. The fundamental structure is the multiset.
The syntax of the calculus defines a molecule as either a variable x ∈ X , an abstraction
γ〈p〉.M , a solution 〈M〉, or a multiset of solutions. A γ-abstraction is a function with
only one argument, a variable from a set X . We call these arguments patterns in order
to emphasize the motivation of the definition of our calculus later on.

Molecules M ::= X | γ〈P〉.M | M,M | 〈M〉
Patterns P ::= X

Figure 2.1: The syntax of the γ-calculus

The associative and commutative properties of the multiset construct helps simulating
the Brownian movement of molecules in a solution. When an abstraction comes into

25

2 An Abstract Biochemical Calculus

contact with an inert solution, a reaction takes place according to the following rewrite
rule, called the γ-reduction:

(γ〈x〉.M), 〈N〉 →γ M [x := N] if 〈N〉 is inert

where a solution is inert if it contains only abstractions and variables or only solutions
and variables. The semantics of the γ-calculus contains, in addition to the above rule,
two more rules for expressing reactions in a context. The locality and solution rules state
that any rewriting operation on a given molecule also operates on a larger multiset and
solution respectively.

The higher-order nature of the γ-calculus allows the encoding of some programming
elements in the calculus as complex expressions as one can do in the λ-calculus, like
for instance boolean operators, integers, identifiers for molecules, pairs of molecules, or
recursivity. However these constructs are not always practical and expressive enough
for modeling more complex programs. One aim of the chemical programming model as
proposed by the authors of the γ-calculus is to model complex and large autonomous
systems. In order to cope with this problem, the Higher-order Chemical Language
(HOCL) [BFR06c, BFR06a, BFR07] was introduced. It extends the γ-calculus with
the programming elements enumerated above, with conditional reactions and atomic
capture (for reactions with n arguments), and, most importantly, with the following
richer language of patterns P:

P ::= X | ω | ident = P | P,P | 〈P〉

For any patterns P, P1, P2 ∈ P and molecules M,M1,M2 ∈M, ω matches any molecule
including the empty molecule, ident = P matches any molecule named ident that
matches P , the pattern P1, P2 matches any molecule M1,M2 such that Pi matches
Mi, for i = 1, 2, and 〈P 〉 matches any solution 〈M〉 such that P matches M . Then
an abstraction takes the form γ⌊C⌋P.M with C a condition; a condition is a molecule
that should be evaluated to a constant true (representing the γ-abstraction γ〈x〉⌊x⌋.x)
for the reaction to take place. An abstraction is consumed by a γ-reduction; hence it
is called a one-shot reaction rule. Then, based on the recursion mechanism encoded
by a constant let rec, n-shot reaction rules are defined as reaction rules which are not
consumed by a γ-reduction.

Example 5. Let us consider some examples of molecules in the γ-calculus together with
some possible reductions. We use integers and the operation of addition on integers _+_
which can be encoded by suitable molecules following the same lines as in the λ-calculus.

1. 〈γ〈x〉.(x+ 1), 〈1〉〉, γ〈r〉.〈r + 1〉, 〈1〉 →γ 〈2〉, γ〈r〉.〈r + 1〉, 〈1〉 →γ 〈2〉, 〈2〉

2. γ〈y〉.(γ〈x〉.(x+ y), 〈b〉), 〈γ〈x〉.x, 〈a〉〉 →γ γ〈y〉.(γ〈x〉.(x+ y), 〈b〉), 〈a〉 →γ

γ〈x〉.(x+ a), 〈b〉 →γ b+ a

26

2.1 Introduction

2.1.2 The ρ-Calculus

The first version of the rewriting calculus (or the ρ-calculus) was introduced by H. Cirstea
and C. Kirchner [CK01] to give a semantics of the rewrite based language ELAN [CK98].
In [CKL02] a simplified version of the rewriting calculus was proposed. The ρ-calculus ex-
tends first-order term rewriting and the λ-calculus. From the λ-calculus, the ρ-calculus
inherits its higher-order capabilities and the explicit treatment of functions and their
applications. It was introduced to make all the basic ingredients of rewriting explicit
objects, in particular the notions of rewrite rule (or abstraction) “_ _ _”, rule applica-
tion “_ _”, and structure of results “_ ≀ _”. In the ρ-calculus, the usual λ-abstraction
λx.t is replaced by a rule abstraction p _ t, where p and t are two arbitrary terms, with
p called a pattern, and the free variables of p are bound in t. The ρ-calculus generalizes
the λ-calculus by abstracting over a pattern instead of a simple variable. This kind of
generalization is a key feature in our approach.

The syntax is defined in Fig. 2.2 where X is the set of variables and K is the set
of function symbols. The operator “_ ≀ _” groups terms together into structures, and,
depending on the chosen theory for this operator, it provides lists, sets or multisets to
represent multiple results.

Terms T ::= X | K | P _ T | T T | T ≀ T

Patterns P ⊆ T

Figure 2.2: The syntax of ρ-calculus

The small-step reduction semantics of the ρ-calculus is defined by the two evaluation
rules in Fig. 2.3. If σ is a substitution solution of the matching problem p ≪ t3, then
the application of the rewrite rule to t3 evaluates to σ(t2). The set of patterns P is not a
priori fixed (P is a parameter of the calculus), and the matching power of the ρ-calculus
can be regulated using arbitrary theories. Therefore the semantics of the calculus and
its properties depend essentially on these parameters.

(ρ) (p _ t2)t3 →ρ σ1(t2) ≀ . . . ≀ σn(t2) ≀ . . . with σi ∈ Sol(p≪ t3)

(δ) (t1 ≀ t2)t3 →δ t1t3 ≀ t2t3

Figure 2.3: The semantics of the ρ-calculus

An important feature of the ρ-calculus is its capability of encoding rewrite strate-
gies as shown in [CKLW03]. The basic strategies are the rewrite rules. An immediate
application of the use of rewrite strategies in the ρ-calculus is the encoding of condi-
tional rewriting [CK01]. The ρ-calculus has been proved confluent for linear algebraic
patterns [CF07].

27

2 An Abstract Biochemical Calculus

Example 6. Let us consider some ρ-terms over a set of constants a, b, variables x, y,
the addition operation _ + _, and their reductions [CK01]:

1. (y _ ((x _ x+ y) b)) ((x _ x) a)→ρ (y _ (b+ y)) ((x _ x) a)→ρ

(y _ (b+ y)) a→ρ b+ a
The ρ-term (y _ ((x _ x+y) b)) ((x _ x) a) corresponds to the second γ-molecule
from Example 5.

2. (((x _ x+ 1) _ (1 _ x)) (a _ a+ 1)) 1→ρ (1 _ a) 1→ρ a
The ρ-term (((x _ x+1) _ (1 _ x)) (a _ a+1)) 1 does not have a corresponding
standard rewrite rule of λ-term.

2.1.3 Towards an Abstract Biochemical Calculus

One difference between chemical and biochemical models comes from the usual repre-
sentation of molecules in a biochemical model as stateful entities which can join to each
other in a process called complexation or association [CZ08]. In consequence, in a bio-
chemical model a molecule can be viewed as an abstract object with an internal structure
describing, among other features, all possible connections with other molecules.

We extend the chemical model by considering an abstract structure Σ for the molecules
and for the computation rules. The structure Σ should permit the modeling of connec-
tions between objects as well as the actions of creating and removing such connec-
tions. The result is a calculus based on rewriting structured molecules which we call
the ρ〈Σ〉-calculus. The first-class citizens of the ρ〈Σ〉-calculus are Σ-structured objects,
rewrite rules over structured objects, and rule application. This calculus generalizes the
λ-calculus, the γ-calculus and the HOCL through a more powerful abstraction power
that considers for matching not only a variable or a pattern from a restricted pattern
language, but a more generic object built over an algebraic structure and a set of vari-
ables. The ρ〈Σ〉-calculus also encompasses the rewriting calculus [CK01] and the term
graph rewriting calculus [BBCK05] by considering the tree-like structure of terms and
the graph-like structure of termgraphs respectively as special structures.

The ρ〈Σ〉-calculus is designed as a formalism for modeling complex systems with dy-
namical topology where the entities in a state have a particular structure and they
interact in a concurrent manner according to a behavior described by rewrite rules.
Thanks to the intrinsic parallel nature of rewriting on disjoint redexes and decentral-
ized rule application, we model a kind of Brownian motion, a basic principle in the
chemical model consisting in “the free distribution and unspecified reaction order among
molecules” [BRF04], if we consider structured objects as molecules.

By considering the ρ〈Σ〉-calculus as a modeling framework for a system we gain in
expressivity by choosing convenient descriptions of the states, and we dispose of a great
flexibility in modeling the system dynamics. For instance, rules can be consumed when
applied and new rules can be created by the application of other rules. Then, instead of
having a non-deterministic (and possibly non-terminating) behavior of the application
of abstractions, one may want to introduce some control to compose or to choose the
rules to apply. The notion of abstraction proves to be powerful enough to express such

28

2.2 Syntax

control, thanks to the notions of strategy and strategic rewriting. In addition, strategies
allow exploiting failure information.

2.1.4 Structure of the Chapter

In this chapter we present the syntax and the semantics of an abstract biochemical
calculus. In Section 2.2 we define the syntax of the basic entities of the calculus. We
continue in Section 2.3 with the definition of the small-step reduction semantics of the
calculus based on three stages: heating, application, and cooling. In Section 2.4 we
define strategies as objects of the calculus and prove the correctness of their definitions.
Then, we refine the calculus such that we recover from a failing application with the
initial interacting strategy and structured object. As an application for strategies, we
define persistent strategies which are not consumed by interactions. In Section 2.5 we
define the big-step reduction semantics of the calculus such that the failing interactions
are invisible in the evolution of the system. We end up with some discussion on other
possible strategies to define in the calculus in Section 2.6 and comparisons with the γ-
calculus and HOCL in Section 2.7, as well as some conclusions and ideas for future work
in Section 2.8.

2.2 Syntax

In the following we describe stepwise all the elements defining the syntax of the calculus
as well as the substitution application and the matching.

2.2.1 Structured Objects

We model the states of a system by structured objects described by the objects of a
particular fixed category Σ. Following the biochemical intuition, the objects are in
a Brownian motion like floating in a biochemical soup thus forming together also a
structured object. We simulate the Brownian motion by considering a juxtaposition
operation on two structured objects which builds also a structured object. Formally, we
consider a strict symmetric strict monoidal category (an sssmc) SSSMCΣ = (Σ,_ _, ε)
with _ _ : Σ× Σ→ Σ a bifunctor for juxtaposing two structured objects, and ε the
empty object with the condition that the arrows of Σ satisfy the axioms of an sssmc.
Let T denote the set of axioms defining the sssmc and let O denote Obj(SSSMCΣ).
The arrows of SSSMCΣ are the arrows of Σ which satisfy the axioms in T.

Since the bifunctor _ _ corresponds to an associative and commutative operator on
structured objects, we can see it as a variadic operator and we usually represent it in
infix form with no parenthesis.

Example 7. By instantiating the category Σ, we obtain particular structured objects
as follows:

Multisets of constants. Consider Σ a small category with Ob(Σ) a set of constants.
Then, take an arrow, different from the identity, for each pair of distinct objects,

29

2 An Abstract Biochemical Calculus

and an identity arrow for each object. Then, for instance, if a, b, c, d ∈ Ob(Σ), then
aba, c, bdbbb, cabbacccb are examples of multisets. Remark that this structure does
not have intrinsic features for expressing connections between objects; hence it is
more suitable for a chemical model than a biochemical one.

Multisets of terms. If instead of constants as above we consider algebraic terms over a
given first-order signature F and a set of variables, we obtain multisets of terms.
Let a, b, c, f, g, h ∈ F , with a, b, c constants, f and g unary, and h binary. Then
f(c) f(c) g(h(a, c)) h(a, g(f(b))) and g(a) are two multisets of terms.

Graphs. We consider the category of graphs Graph whose objects are graphs and whose
arrows are graph morphisms. Then the bifunctor _ _ corresponds to a disjoint
sum of graphs, and ε to the empty graph.

Multisets of term graphs. Based on the algebra describing a graph, we obtain term
graphs if we consider in addition an operation on nodes which associate them a
fixed outgoing incidence degree (arity), no constraints on the incoming incidence
degree, an order on the outgoing incident edges, and a unique node as root. As for
graphs, a morphism must preserve all these operations. If the number of incoming
incidence degree for each node is maximum 1, then we obtain terms.

We consider a particular of subclass of objects in O as variables, and we denote it by
XO. The exact definition of variables in a structured object depends on each particular
instance of Σ. We denote by Var(O) the class of variables occurring in the structure of
an object O.

By considering an arbitrary category Σ for describing structured objects, our approach
can be considered as a lighter version of the high-level replacement systems [EGPP99]
which are formulated for an arbitrary category with a distinguished class of morphisms.
The high-level replacement systems were introduced as a generalization for the algebraic
approach to graph grammars to different kinds of high-level structures, such as hyper-
graphs, algebraic specifications, place/transition Petri nets, hierarchical graphs used for
statecharts, or jungles used for parallel logic programming [EGPP99, Sch99].

2.2.2 Abstractions

We define a first-order abstraction as an ordered pair of two structured objects in O,
with the first one called the left-hand side and the second one called the right-hand side,
equipped with a morphism between the two sides. The morphism specifies a transforma-
tion of the object in the left-hand side into the object in the right-hand side. We denote
by Ao the set of first-order abstractions:

A0 ::= {(O1, f, O2) | O1, O2 ∈ O, f ∈ SSSMCΣ(O1, O2)}

For an abstraction A, we usually denote by LA and RA the left- and right-hand side
respectively. We represent an abstraction (O1, f, O2) as the left-hand side followed by a
new operator ⇒ not occurring in structured objects of Σ, and the right-hand side, i.e.,

30

2.2 Syntax

O1
f
⇒ O2. Unless necessary, we usually do not specify the morphism between the two

sides of an abstraction. Hence we can also define A0 as follows:

A0 ::= O ⇒ O

Example 8. The first-order abstractions defined on the sssmc constructed for the cat-
egory of graphs with partial morphisms GraphP correspond to the concept of graph
transformations formalized using the single-pushout (SPO) approach.

We define a morphism on first-order abstractions g : (LA
f
⇒ RA) → (LA′

f ′
⇒ RA′) as

a pair of morphisms on structured objects 〈gL : LA → LA′ , gR : RA → RA′〉 such that
gR ◦ f = f ′ ◦ gL. Then we can define a category Abs0(O) of first-order abstractions over
O with Ao the class of objects, and morphisms on first-order abstractions as arrows.

The class of abstraction of second-order is defined as:

A2 = {(A, g,A′) | A,A′ ∈ A0, g ∈ Abs0(O)(A,A′)}

or Ao ⇒ Ao for short.

2.2.3 Abstract Molecules

The main idea of this calculus is to have all entities at the same level, either objects
representing states of the system, or abstractions representing different behaviors of the
system, or their interactions. We call such an entity an abstract molecule. We define
gradually the class of abstract molecules in order to include abstractions whose left-
hand sides are structured objects and right-hand side are abstract molecules, as well as
abstraction whose both sides are first-order abstraction.

Let M0 be a category with Ob(M0) = O∪A0∪A2, and Arr(M0) = Arr(SSSMCΣ)∪
Arr(Abs0(O)). Then based on M0 and using the same bifunctor _ _ as before, and
ε the empty object, we can construct a first sssmc for abstract molecules SSSMCM0

.
Let M0 denote the class of objects of SSSMCM0

.
We can now define abstractions with structured objects in the left-hand side and

abstract molecules in the right-hand side, where the morphism between the two sides is
a morphism between structured objects:

A1 = {(O, f,M) | O ∈ O,M ∈ Ob(SSSMCM0
), f ∈M0(O,M)}

For short, we can represent the class of such abstractions as O ⇒M0.
Based on these two new classes of abstractions, we consider a new category M with

Ob(M) = Ob(M0) ∪ A1, and Arr(M0) = Arr(SSSMCΣ) ∪ Arr(Abs0(O)). Then,
similarly to the construction of SSSMCM0

, we consider the sssmc associated to M
whose objects are exactly the abstract molecules. LetM denote the class of the objects
of SSSMCM.

We remark that, following the procedure above, we can iteratively construct abstrac-
tions and molecules of higher-order.

31

2 An Abstract Biochemical Calculus

Having the abstract molecules constructed using categorical concepts, below we give
their schematic definition which we will use in the rest of the chapter where we no longer
make reference to the categorical concepts. Let X denote the union of XO with a class of
variables for any kind of abstract molecule. Then the syntax of the object of the calculus
is the following:

A0 ::= O ⇒ O
A2 ::= A0 ⇒ A0

M0 ::= O | A0 | A2 | M0 M0

A1 ::= O ⇒M0

M ::= X | M0 | A1 | M M

An abstraction in A1 or A2 has a distinguished main arrow operator ⇒, the one
defining the morphism between the two sides of the abstraction.

As we already said, T denotes the set of axioms defining the sssmc properties of
the structured objects and the morphisms between them. In consequence T generates a
structural congruence relation between the objects in O. Since abstractions and abstract
molecules are constructed based on structured objects, it is natural that we extend the
structural congruence relation over abstract molecules.

Definition 28 (Structural congruence on abstract molecules). The structural congru-
ence relation on abstract molecules is the smallest congruence relation closed with respect
to _ _ (juxtaposition) on sets of abstract molecules that extends the structural congru-
ence =T on structured objects over Σ, hence satisfying the following axioms:

M1 M2 =T M2 M1

M1 ε =T M1

(M1 M2) M3 =T M1 (M2 M3)

for all M1,M2,M3 ∈M.

The juxtaposition operator as axiomatized by the theory T constructs multisets.
Equivalently, we may consider that the juxtaposition corresponds to a variadic oper-
ator, hence parenthesis are no longer needed. If one wants a different type of collection,
new axioms must be added and/or removed from T. For instance if we remove the strict
symmetric aspect of the monoidal category (i.e., the commutativity), we obtain lists;
whereas if we add an axiom for idempotence, we obtain sets.

2.2.4 Subobjects, Submolecules, Substitutions, Matching

Any structured object O which is neither a variable nor a constant operator from Σ can
be decomposed into two structured objects O1 and O2 glued together based on a relative
position of one with respect to the other. A position is described by a neighborhood
information. We denote such a decomposition by O1⌊O2⌋B and we call O1 a context, O2

a subobject or submolecule, and B a neighborhood information.
An abstraction has also a particular structure given by the structure of its sides and

the arrow, hence it can be decomposed into a context, submolecule, and neighborhood

32

2.2 Syntax

information. Let us consider for instance the abstraction L ⇒ R. If we decompose
each side as L−⌊L1⌋B′ and R−⌊R1⌋B′′ , then the abstraction L⇒ R has a decomposition
(L− ⇒ R−)⌊L1 ⇒ R1⌋B′⇒B′′ .

Example 9 (Graphs). Let us consider Σ the category of graphs. We illustrate in Fig-

ure 2.4 a decomposition of a first-order abstraction on graphs L
f
⇒ R into the submolecule

L1
f ′
⇒ R1, the context L−

f ′′
⇒ R−, and the neighborhood information B′

f ′′′
⇒ B′′ where B′

consists of the edges (1, 4) and (3, 4), B′′ consists of the edge (4, 3), and f ′′′ maps the
edge (3, 4) to the edge (4, 3). We remark that f is decomposed into the three morphism
f ′ on the submolecules, f ′′ on the contexts, and f ′′′ on the neighborhood information.

f ′
⇒

4 4

1 2

3

1 2

3

1 2

3
4

f
⇒

1 2

3
4

f ′′
⇒

Figure 2.4: A decomposition of a first-order abstraction on graphs

Due to the non-hierarchical structure of graphs, in a decomposition of a graph molecule
we can switch the context with the submolecule and obtain the same initial graph
molecule as we can see in the example above. In general for a non-hierarchical structure,
we have that O1⌊O2⌋B is equivalent to O2⌊O1⌋B, with B the “inverse” B. For graphs, we
have B = B.

Example 10 (Algebraic terms or term graphs). If Σ describes algebraic terms or term
graphs, the objects have a hierarchical structure and we can no longer switch the context
with the subobject and get a valid object: the position of a subobject relatively to the
context is defined relatively to the root of the term. In addition, since the algebraic
operators for terms are not necessarily variadic and the arguments of an operator are
ordered, a placeholder is needed for defining a context term. For instance the term
h(a, g(f(b))) can be decomposed into the context term h(a, g(_)) with _ the place holder,
and f(b) the subobject (or subterm) at the position 2.1 since f(b) is the first argument of
g, and g(_) is the second argument of h. The neighborhood information B is given by the
position of the placeholder in the context term with respect to the root. Consequently,
this decomposition of the term h(a, g(f(b))) is denoted by h(a, g(_))⌊f(b)⌋2.1.

33

2 An Abstract Biochemical Calculus

The only type of binder in the ρ〈Σ〉-calculus is the abstraction. Hence the notions of
free and bound variables are similar to those in the ρ-calculus, i.e., in O ⇒ M the free
variables of O are bound in M .

Definition 29 (Free and bound variables). Given an abstract molecule M , its set of
free variables FV (M) and its set of bound variables BV (M) are defined as follows:

• if M = X then FV (M) = {X} and BV (M) = ∅;

• if M = O then FV (M) = Var(O) and BV (M) = ∅;

• if M = M1 ⇒ M2 then FV (M) = FV (M2) \ FV (M1) and BV (M) = BV (M2) ∪
BV (M1) ∪ FV (M1);

• if M = M1 M2 then FV (M) = FV (M1) ∪ FV (M2) and BV (M) = BV (M1) ∪
BV (M2).

As in any calculus involving binders, we work modulo the α-convention and modulo
the hygiene-convention of Barendregt [Bar84], i.e. free and bound variables have different
names.

Definition 30 (Substitution). A substitution σ is a mapping from the set of variables X
to the set of abstract molecules M, σ : X 7→ M. We write it as {X1 7→ M1, . . . , Xn 7→
Mn} if there are only finitely many variables not mapped to themselves. It uniquely
extends to a homomorphism from M to M.

The application of a finite substitution σ = {X1 7→M1, . . . , Xn 7→Mn} on an abstract
molecule M , σ(M), is obtained by substituting Mi for Xi, 1 ≤ i ≤ n, using appropriate
variable renaming for avoiding the capture of free variables [CK01].

Given an abstract molecule, we are interested in transforming some of its submolecules
which match particular characteristics. Such characteristics describe a pattern. The
process of identifying its location in the given molecule and mapping it to a subobject is
called submatching. If the transformation concerns the entire molecule, i.e., the pattern
must be identified to the molecule via a substitution, then only a mapping between the
elements of the pattern and those of the submolecule has to be provided, and the process
is called matching.

Definition 31 (Submatching modulo T). A submatching equation modulo T is an
ordered pair of abstract molecules M ≺≺T M

′. A solution of the submatching equation is a
triple (σ,M ′′,B) with σ a substitution, M ′′ an abstract molecule, and B the neighborhood
information such that M ′′⌊σ(M)⌋B =T M

′. We call a submatching problem M ≺≺T M
′ a

matching problem if σ(M) =T M
′ or, equivalently, the context M ′′ is the empty molecule,

and we denote it rather by M ≪ M ′. We usually denote by ς a submatching solution,
and by Sol(M ≺≺T M

′) the set of all solutions of the submatching equation M ≺≺T M
′.

With every instantiation of the structure Σ of the objects and T, a submatching
algorithm modulo T should also be provided.

34

2.2 Syntax

Usually, a submatching algorithm will consider as molecules of the same order for
a submatching equation, i.e., of the form O1 ≺≺ (O2 M) or (O1 ⇒ O2) ≺≺ (O3 ⇒
O4). We introduce this restriction for submatching in order to provide a meaningful
transformation for abstractions later.

2.2.5 Worlds

We define the world construct by placing abstract molecules in an environment where
they can interact freely. In other words, a world is an encapsulation of an abstract
molecule existing in a state of the modeled system. The environment is “aware” of all
abstract molecules it contains. We represent this knowledge by considering a permutative
variadic operator [] constructing a world which takes as arguments all abstract molecules
in the environment. We denote by [M] a world containing the abstract molecule M ∈M.
If M is a juxtaposition of m variables, n structured objects from O and p abstractions,
then the world [M] is a construct based on (m+n+ p) components. The class of worlds
V is defined as follows:

V ::= Y | [M]

where Y is a set of variables.
An intuitive graphical representation for the environment as a world considers a rect-

angular box acting as a container, somehow providing an intuition of an environment.
We illustrate in Figure 2.5 a world consisting of two structured objects and three ab-
stractions.

A2
O1

A1

A3
O2

Figure 2.5: Box-based representation of a world consisting of the abstractions A1, A2,
and A3, and the structured objects O1 and O2.

2.2.6 Structures of Worlds or Multiverses

There may be different ways for a system to evolve from a world (a state) via a successful
interaction between two molecules. In order to collect all possible evolution results we
introduce a permutative variadic operator { } for building a structure of worlds by
juxtaposing them. A structure of worlds is also called a multiverse (or meta-universe,
since a world can also be named a universe). The possible worlds within a multiverse
are called alternative worlds. Let W denote the class of multiverses. Then a multiverse
consists either of a variable in a set Z, a juxtaposition of worlds, or a juxtaposition of

35

2 An Abstract Biochemical Calculus

multiverses.
W ::= Z | {V . . .V} | {W . . .W}

The underlying theory of the operator { } is given by the following structural congru-
ence:

Definition 32 (Structural congruence on worlds). The structural congruence relation
on multiverses is the smallest congruence relation satisfying the propriety of { } of being
variadic and the following flattening axioms:

{{V 1
1 . . . V

1
n1
} . . . {V k

1 . . . V
k
nk
}} ≡ {V 1

1 . . . V
1
n1
. . . V k

1 . . . V
k
nk
}

{{V1 . . . Vn} V
′

1 . . . V
′
m} ≡ {V1 . . . Vn V

′
1 . . . V

′
m}

Overview of the Basic Syntax of the Calculus

In Figure 2.6 we summarize the syntax of the calculus as defined until now which includes
structured objects, abstractions, abstract molecules, worlds and multiverses.

(Structured objects) O

(First-order abstractions) A0 ::= O ⇒ O

(Second-order abstractions) A2 ::= A0 ⇒ A0

M0 ::= O | A0 | A2 | M0 M0

A1 ::= O ⇒M0

(Abstract molecules) M ::= X | M0 | A1 | M M

(Worlds) V ::= Y | [M]

(Multiverse) W ::= Z | {V . . .V} | {W . . .W}

Figure 2.6: The basic syntax of the ρ〈Σ〉-calculus

2.3 Small-Step Semantics

2.3.1 Basic Semantics

The semantics of the ρ〈Σ〉-calculus corresponds to a system whose initial state is a world
of the form [A1 . . . An O1 . . . Om], with n,m ≥ 0. Every abstraction can interact non-
deterministically with an abstract molecule in the same world. Such interaction may
produce a meaningful result if the matching equation between the left-hand side of the
abstraction and the abstract molecule is valid; otherwise the unsuccessful interaction is
just expressing the Brownian motion modeled by the permutative juxtaposition operator.

36

2.3 Small-Step Semantics

Let A be an abstraction described by LA ⇒ RA with ξ the morphism embedded in the
arrow operator, and let M be an abstract molecule such that there exists a submatching
solution ς ∈ Sol(LA ≺≺M) with ς = (σ,M ′,B); the existence of a submatching solution
ensures the success of the interaction. The interaction between the abstraction A and
the abstract molecule M produces to a transformation of M according to A by replacing
in M the submolecule σ(LA) by σ(RA) using the neighborhood information B updated
according to ξ. Therefore if M has a decomposition M ′⌊σ(LA)⌋B, then the result of
transforming M according to A is the abstract molecule that can be decomposed as
M ′⌊σ(RA)⌋ξ(B) also denoted by ς(M).

An interaction between an abstraction and an abstract molecule is described by one
of the rules bellow:

A M −→ {[ς1(RA)] . . . [ςn(RA)]} if Sol(LA ≺≺M) = {ς1, . . . , ςn}

A M −→ A M otherwise

Figure 2.7: The basic semantics of the ρ〈Σ〉-calculus

A successful application of an abstraction A on the abstract molecule M , both entities
in the same world, reduces to a structure of alternate worlds (or substates) {[M1] . . . [Mn]}
such that Sol(LA ≺≺ M) = {ς1, . . . , ςn} and ςi(RA) = Mi. A matching failure means
that the interaction of the two entities is not possible; hence the initial abstraction and
the structured object are returned unchanged. This approach is similar to the one in
AlChemy [FB96], where if two molecules (represented as typed λ-expressions) randomly
collide in a reaction and their types are incompatible, then the reaction is considered
elastic, i.e., it does not take place.

2.3.2 Making the Application Explicit

The evaluation rules given in Figure 2.7 provide the main idea of the application of
an abstraction as a one-step rewriting. We did not specify how the matching and re-
placement operations, i.e., the effective application of the abstraction, are performed,
since these operations, usually defined at the metalevel of the calculus, depend on the
structure Σ of objects, a parameter of the calculus.

We refine the semantics of the interactions in order to understand which are the
actors and to better control the application process. Let us come back to the situation
where the application is not successful (the matching fails): the interaction is elastic
and the initial actors are returned. We introduce a second level of internal organization
and processing where appropriate tests can be performed. We define an application
operator which permits isolating an abstract molecule M and an abstraction A randomly
chosen for interaction. Hence, besides allowing different tests to be performed during
the application, the application operation also isolates or blocks the access of other
abstractions to the two interacting entities. An application world is constructed using

37

2 An Abstract Biochemical Calculus

the application operator @ which takes as arguments an abstraction and an abstract
molecule M . The corresponding box-based representation uses a rectangular box with
rounded corners for the application where the abstraction is placed in a rectangular
dotted box (see Figure 2.8 for an example).

We extend the syntax of worlds in order to include application worlds as components:

Vapp ::= A0@M | A1@M | A2@M

V ::= Y | [M] | [M Vapp]

Using a similar mechanism as in the CHAM, an interaction takes place in a system
after a preparation procedure which restructures the system, a heating process. The
heating isolates an abstraction A and an abstract molecule M in an application world.
This is expressed by the following evaluation rule:

(Heating) h : [N A M] −→ [N A@M] (2.1)

In the heating rule above we explicit the context [N _] under which the interaction
takes place in order to prevent such a reduction to occur under an operator different
from the [].

Another equivalent representation of this heating rule is given in Figure 2.8 using
boxes. Once an abstraction A and an abstract molecule M are non-deterministically
chosen, they are placed together in an application box preparing them for effective
application.

N

A A−→h

M

N

M

Figure 2.8: Box-based representation of the application of the heating rule 2.1 on a world
consisting of an abstraction A, and two abstract molecules M and N

Then the steps computing the application of the isolated abstraction A on the abstract
molecule M , including the matching and the substitution application (replacement) op-
erations, are expressed by the following application evaluation rules:

(Application) a : A@M −→ {[ς1(RA)] . . . [ςn(RA)]}

if Sol(LA ≺≺M) = {ς1, . . . , ςn} (2.2)

(ApplicationFail) af : A@M −→ A M if Sol(LA ≺≺M) = ∅ (2.3)

When the application of an abstraction on a structured object successfully takes place
in the current state of the system, a cooling rule, the counterpart of the heating rule, is in

38

2.3 Small-Step Semantics

charge of rebuilding the state of the system by plugging the result of the rewriting in the
environment. The context consisting of molecules not participating at the interaction is
replicated for each result by the following evaluation rule:

(Cooling) c : [N {[M1] . . . [Mn]}] −→ {[N M1] . . . [N Mn]} (2.4)

2.3.3 On the Local Confluence

The chemical model is highly non-deterministic: on one hand, due to the intrinsic non-
deterministic interaction strategy for choosing the abstract molecules to heat up, and,
on the other hand, due to the choice of the submatching solution. By considering a
structure of all possible results of an application we have eliminated the non-determinism
provided by multiple solutions for submatching. But still, the remaining degree of non-
determinism makes the calculus non locally confluent. Let us see an example:

[A1 A2 O]

hwwooooooooooo

h ''OOOOOOOOOOO

[A1@O A2] [A1 A2@O]

The world consisting of two abstractions A1 and A2 and a structured object O is
heated up giving rise to two possibilities corresponding to each of the two abstractions
to be applied on O. In the particular case when the critical pair raised by the two
abstractions is joinable, the reduction converges, but, in general, it does not converge.
Therefore the rewriting relation induced by the reduction rules giving the basic semantics
of the abstract biochemical calculus is not locally confluent. In such conditions, usually
the confluence can be enforced by using appropriate evaluation strategies. In Section 2.4
we provide means of adding strategies to the calculus in order to control the interactions
between abstractions and structured objects.

2.3.4 First Cool Down, then Heat Up

Let us analyze in the following the conditions for heating and cooling a world and the
importance of their succession in time. The heating and cooling reduction rules give rise
to the following critical pair:

[M {[M1 A O][M2] . . . [Mn]}]

h
��

c
++XXXXXXXXXXXXXXXXXXXXXX

[M{[M1 A@O][M2] . . . [Mn]}] {[M M1 A O][M M2] . . . [M Mn]}

If we consider that A@O −→a {[N1] . . . [Nk]}, the critical pair above is joinable since
on one hand:

[M {[M1 A@O][M2] . . . [Mn]}] −→a

39

2 An Abstract Biochemical Calculus

[M {[M1 {[N1] . . . [Nk]}][M2] . . . [Mn]}] −→c

[M {{[M1 N1] . . . [M1 Nk]}[M2] . . . [Mn]}] ≡

[M {[M1 N1] . . . [M1 Nk][M2] . . . [Mn]}] −→c

{[M M1 N1] . . . [M M1 Nk][M M2] . . . [M Mn]}

and on the other hand:

{[M M1 A O][M M2] . . . [M Mn]} −→h

{[M M1 A@O][M M2] . . . [M Mn]} −→a

{[M M1 {[N1] . . . [Nk]}][M M2] . . . [M Mn]} −→c

{{[M M1 N1] . . . [M M1 Nk]}[M M2] . . . [M Mn]} ≡

{[M M1 N1] . . . [M M1 Nk][M M2] . . . [M Mn]}

If A@O −→af A O we still obtain joinability. This result assures us that the order
of reduction using heating or cooling is not important. In order to follow a biochemical
intuition as well as for the sake of simplicity, we decide then to give a higher priority
of application to the cooling evaluation rule. Therefore a world is heated up only after
cooling down the multiverse it belongs to.

Overview of the Semantics of the Calculus with Explicit Application

In Figure 2.9 we group all evaluation rules of the calculus where the application between
an abstraction and an abstract molecule is made explicit.

(Heating) h : [N A M] −→ [N A@M]

(Application) a : A@M −→ {[ς1(RA)] . . . [ςn(RA)]}

if Sol(LA ≺≺M) = {ς1, . . . , ςn}

(Application Fail) af : A@M −→ A M if Sol(LA ≺≺M) = ∅

(Cooling) c : [N {[M1] . . . [Mn]}] −→ {[N M1] . . . [N Mn]}

Figure 2.9: The semantics of the ρ〈Σ〉-calculus with explicit application

2.4 Adding Strategies to the Calculus

The intrinsic parallelism of the rewriting on disjoint redexes using the abstractions avail-
able in a world can be changed by considering a control mechanism or an order of ap-
plication over the abstractions. Rewrite strategies provide such control in a rule-based
framework. In this section, we define strategies as objects of the calculus, using the basic
constructs, as one can do in the λ-calculus or the γ-calculus. For such definition we use

40

2.4 Adding Strategies to the Calculus

a similar approach to the one used in [CKLW03] where rewrite strategies are encoded by
rewrite rules. The definitions of the strategy objects are given together with the proofs
of their correctness with respect to the semantics of the abstract strategies they encode.
Then, thanks to strategies, new extensions for the calculus are possible, for instance to
catch a failure in the application or to define persistent strategies.

2.4.1 Strategies as Abstractions

Let us consider for the rewrite strategies given in Sect. 1.7 the following objects (aliases):
id for Id, fail for Fail, first for First, seq for _; _, not for Not, ifThenElse for
IfThenElse, try for Try, repeat for Repeat. The application operator for strategies
_ from Sect. 1.7 corresponds to the construct @.

In the following, when we want to emphasize the use of strategies as abstractions, we
replace the symbol for abstraction by the symbol for strategy S in any evaluation rule.

We first extend the syntax of the abstract molecules with the failure object, stk. This
failure object stk is the result of a failing application of an abstraction to an abstract
molecule:

(ApplicationFail) af : A@M −→ {[stk]} if Sol(LA ≺≺M) = ∅ (2.5)

We call an extended abstraction or strategy an abstraction whose right-hand side may
contain the application construct.

Let S, S1, S2 denote strategies. We encode the strategies Id, Fail, _; _, and First as
the following aliases for extended abstractions respectively:

id , X ⇒ X

fail , X ⇒ stk

seq(S1, S2) , X ⇒ S2@(S1@X)
first(S1, S2) , X ⇒ (S1@X) (stk⇒ (S2@X))@(S1@X)

not(S) , X ⇒ first(stk⇒ X,X ′ ⇒ stk)@(S@X)
ifThenElse(S1, S2, S3) , X ⇒ first(stk⇒ S3@X,X ′ ⇒ S2@X)@(S1@X)

The failure of the application of an abstract strategy as defined in Section 1.7 is
represented by the empty set. However, we define the failure of the application of a
strategy in the ρ〈Σ〉-calculus not by an empty set but by the singleton containing the
failure object stk, i.e., a structure with a world {[stk]}. Explicit failure provides more
expressivity to the strategy objects in the ρ〈Σ〉-calculus. By considering a strategy with
the failure object as the left-hand side, we can catch and tackle appropriately the failure
of the application of another strategy.

In Figures 2.10 and 2.11 we give the representation using boxes of the strategies seq

and first.
The objects corresponding to the two composed abstract strategies Try and Repeat

are then easily defined based on the strategies first, try, and seq, as already seen in

41

2 An Abstract Biochemical Calculus

S2

S1

X
seq(S1, S2) , X ⇒

Figure 2.10: Box-based representation of the strategy seq

X

first(S1, S2) , X ⇒ stk⇒

S1

X

S2

X

S1

Figure 2.11: Box-based representation of the strategy first

the general case of abstract strategies in Section 1.7:

try(S) , first(S, id)
repeat(S) , try(seq(S, repeat(S)))

Since we consider all possible results of an application and we can apply a strategy
on an application world as it is the case for the definition of seq, we need an evaluation
rule that distributes the application of a strategy to each world in a structure:

(AppCooling) ac : S@{[M1] . . . [Mn]} −→ {[S@M1] . . . [S@Mn]} (2.6)

The name of the rule comes from the fact that it has the characteristics of a cooling rule
by plugging into the context (here, an application world) the elements of a structure of
worlds.

A second rule is needed for flattening a world consisting only of a multiverse:

(Flattening) f : {[{[M1] . . . [Mn]}]} −→ {[M1] . . . [Mn]} (2.7)

If a failure occurs during the application process, we handle it explicitly. We remove
a world containing the failing object if it is the only world in a multiverse juxtaposed to

42

2.4 Adding Strategies to the Calculus

another multiverse (rule (2.8)), or if it is juxtaposed to another world (rule (2.9)), hence
behaving as a neutral element for the juxtaposition of multiverses and worlds:

stk1 : {[stk]} W ′ −→ W ′ (2.8)

stk2 : [stk] V ′ −→ V ′ (2.9)

For instance, the first stk evaluation rule can be used to reduce the application of a
strategy first(S1, S2) on an object O when at least one of the molecules S1@O and
(stk⇒ (S2@X))@(S1@X) reduces to the failure object stk.

2.4.2 Call-by-Name in the Calculus with Strategies

We consider a call-by-name evaluation strategy for the calculus which prevent any reduc-
tion inside an abstraction. In the following we motivate the choice of such an evaluation
strategy.

We saw that the definition of a strategy may contain application worlds. Let us see
what happens if an evaluation rule (either (2.2), (2.5), or (2.6)) is applied inside an
abstraction. Let us consider for instance the world [X ⇒ S2@S1@X O]. Then the
heating rule and the application rule overlap as follows:

[X ⇒ S2@S1@X O]

a

�� h **UUUUUUUUUUUUUUUUU

[X ⇒ S2@{[stk]} O]

ac

��

[(X ⇒ S2@S1@X)@O]

a

��
[X ⇒ {S2@stk} O]

h
��

[{[S2@S1@O]}]

≡

[(X ⇒ {S2@stk})@O]

a

��

{[S2@S1@O]}

[{[{S2@stk}]}]

a,≡

��
{[stk]}

If in particular the left-hand sides of S1 and S2 are not variables nor the failure
constant stk, and the sequential application of S1 followed by S2 on O succeeds, then
the right-branch reduces to something different from {[stk]}.

The left branching leads to an unwanted result obtained by reducing too early in
the right-hand side of the abstraction. Another unwanted branching is eliminated from
the beginning thanks to typing the abstract molecules: since S1@X is not a structured
object, the application rule cannot be used for reducing S2@S1@X. In conclusion, for

43

2 An Abstract Biochemical Calculus

an expression S2@S1@M the priority of the application operator @ goes from right to
left, that is we parenthesize S2@S1@M as S2@(S1@M).

2.4.3 Correctness of the Encoding of Strategies as Abstractions

We state that our encoding of rewrite strategies as abstractions in the ρ〈Σ〉-calculus is
correct with respect to the semantics of abstract strategies as given in Section 1.7. For ζ
a rewrite strategy and S its encoding in the calculus, we say that the encoding is correct
if it preserves the solutions. The correctness of the encoding depends on the correctness
of the definition of reducing an abstraction and an abstract molecule with respect to the
rewriting relation defined on abstract molecules.

Proposition 1 (Correctness of id and fail). The objects id and fail are correct en-
codings of the abstract strategies Id and Fail respectively.

Proof. Let M be an abstract molecule. Firstly, on one side [Id](M) reduces to the
a singleton consisting of the element M , whereas, on the other side, id@M , (X ⇒
X)@M −→a {[M]}; hence, equal results modulo some syntactic notations.

Secondly, on one side, the application of the abstract strategy Fail on M reduces to
the empty set. On the other side fail@M , (X ⇒ stk)@M −→a {[stk]} and {[stk]}
has the same properties as the empty set with respect to the set union operation, i.e.,
neutral element for juxtaposition as defined by the rules (2.8) and (2.9).

Proposition 2 (Correctness of seq). If the extended abstractions S1 and S2 are correct
encodings of the abstract strategies ζ1 and ζ2 respectively, then seq(S1, S2) is a correct
encoding of the abstract strategy Sequence(ζ1, ζ2).

Proof. Let M be an abstract molecule. From the hypothesis, if the application of the
strategy ζ1 on M is successful, i.e. [ζ1](M) = {M1, . . . ,Mn}, n ≥ 1, then we have the
reduction S1@M −→∗ {[M1] . . . [Mn]}.

Let [ζ2](Mi) = {Mi1, . . . ,Miki}, for 1 ≤ i ≤ p ≤ n, and [ζ2](Mj) = ∅, for p < j ≤ n.
It follows that:

S2@Mi −→
∗ {[Mi1] . . . [Miki]} for 1 ≤ i ≤ p,

and
S2@Mj −→

∗ {[stk]} for p < j ≤ n.
The reduction corresponding to the application of the strategy seq(S1, S2) on M is

the following:

seq(S1, S2)@M , (X ⇒ S2@(S1@X))@M −→a

{[S2@(S1@M)]} −→∗

{[S2@{[M1] . . . [Mn]}]} −→ac

{[{[S2@M1] . . . [S2@Mn]}]} −→∗

{[{{[M11] . . . [M1k1
]} . . . {[Mp1] . . . [Mpkp]} {[stk]} . . . {[stk]}}]} ≡

{[{[M11] . . . [M1k1
] . . . [Mp1] . . . [Mpkp] [stk] . . . [stk]}]} −→∗stk1,stk2

{[{[M11] . . . [M1k1
] . . . [Mp1] . . . [Mpkp]}]} −→f

44

2.4 Adding Strategies to the Calculus

{[M11] . . . [M1k1
] . . . [Mp1] . . . [Mpkp]}

We obtain the same result as for applying the strategy ζ1; ζ2 to M since [ζ1; ζ2](M) =
⋃

l=1,n

ζ2(Ml) =
⋃

i=1,p

ζ2(Mi) and ζ2(Mj) = ∅ for all j, p < j ≤ n.

If [ζ2](Mi) = ∅ for all i, 1 ≤ i ≤ n, then [ζ1; ζ2](M) = ∅. Following the same reasoning
as above, S2@Mi −→

∗ {[stk]} for all i, 1 ≤ i ≤ n, and therefore seq(S1, S2)@M reduces
to the failure {[stk]}.

Let now consider the case when the application of the first strategy fails, [ζ1](M) = ∅.
By definition, [ζ1; ζ2](M) = ∅. From the hypothesis, the failure of the first strategy
corresponds to the reduction S1@M −→∗ {[stk]}. Since S2 is an encoding of the strategy
ζ2, the left-hand side of S2 is different from stk, then

S2@{[stk]} −→ac {S2@stk} −→∗ {{[stk]}} ≡ {[stk]}

Proposition 3 (Correctness of first). If the extended abstractions S1 and S2 are
correct encodings of the abstract strategies ζ1 and ζ2 respectively, then first(S1, S2) is
a correct encoding of the abstract strategy First(ζ1, ζ2).

Proof. Let M be an abstract molecule. From the hypothesis, if the application of the
strategy ζ1 on M is successful, i.e. [ζ1](M) = {M1, . . . ,Mn}, n ≥ 1, then we have

S1@M −→∗ {[M1] . . . [Mn]}

and

(stk⇒ (S2@M))@(S1@M) −→∗

(stk⇒ (S2@M))@{[M1] . . . [Mn]} −→ac

{[(stk⇒ (S2@X))@M1] . . . [(stk⇒ (S2@X))@Mn]} −→∗

{{[stk]} . . . {[stk]}} ≡ {[stk] . . . [stk]} ≡ {[stk]}

On one hand, the application of the strategy First(ζ1, ζ2) on M produces the result
of the application of ζ1 on O since it does not fail. On the other hand, the reduction
corresponding to the application of the strategy first(S1, S2) on M is the following:

first(S1, S2)@M , (X ⇒ (S1@X) (stk⇒ (S2@X))@(S1@X))@M −→a

{[(S1@M) (stk⇒ (S2@M))@(S1@M)]} −→∗

{[{[M1] . . . [Mn]} {[stk]}]} −→stk1

{[{[M1] . . . [Mn]}]} −→f

{[M1] . . . [Mn]}

Therefore the encoding has the same behavior when the application of the first strategy
does not fail on M .

45

2 An Abstract Biochemical Calculus

Now, if [ζ1](M) = ∅, hence S1@M −→∗ {[stk]}. Then

(stk⇒ (S2@M))@(S1@M)

−→∗ (stk⇒ (S2@M))@{[stk]} −→ac

{[(stk⇒ (S2@M))@stk]} −→a

{{[S2@M]}} ≡ {[S2@M]}

On one hand we have that [First(ζ1, ζ2)](M) = [ζ2](M), and on the other hand the
application of its encoding reduces to the same result as follows:

first(S1, S2)@M , (X ⇒ (S1@X) (stk⇒ (S2@X))@(S1@X))@M −→a

{[(S1@M) (stk⇒ (S2@M))@(S1@M)]} −→∗

{[{[stk]} {[S2@M]}]} −→stk1

{[{[S2@M]}]} −→f

{[S2@M]}

Proposition 4 (Correctness of not). If the extended abstraction S is a correct encoding
of the abstract strategy ζ, then not(S) is a correct encoding of the abstract strategy
Not(ζ).

Proof. Let M be an abstract molecule. From the hypothesis, if the application of the
strategy ζ on M is successful, i.e. [ζ](M) = {M1, . . . ,Mn}, n ≥ 1, then we have:

S@M −→∗ {[M1] . . . [Mn]}

Then on one side [Not(ζ)](M) = ∅, and on the other side:

not(S)@M −→∗ {[first(stk⇒M,X ′ ⇒ stk)@(S@M)]} −→∗ {[stk]}

But if the application of the strategy ζ on M fails, then [ζ](M) = ∅, and [Not(ζ)](M) =
M ; whereas, S@M −→∗ stk and not(S)@M −→∗ {[M]}.

Proposition 5 (Correctness of ifThenElse). If the extended abstractions S1, S2, S3 are
correct encodings of the abstract strategies ζ1, ζ2, ζ3 respectively, then ifThenElse(S1, S2, S3)
is a correct encoding of the abstract strategy IfThenElse(ζ1, ζ2, ζ3).

Proof. Let M be an abstract molecule. From the hypothesis, if the application of the
strategy ζ1 on M is successful, then S@M reduces to something different from {[stk]}.
Then on one side [IfThenElse(ζ1, ζ2, ζ3)](M) = [ζ2](M), and on the other side:

ifThenElse(S1, S2, S3)@M −→∗

{[first(stk⇒ S3@M,X ′ ⇒ S2@M)@(S@M)]} −→∗ {[S2@M]}

Now, if the application of the strategy ζ1 on M fails, then [IfThenElse(ζ1, ζ2, ζ3)](M) =
[ζ3](M); whereas, S1@M −→∗ stk and ifThenElse(S1, S2, S3)@M −→∗ {[S3@M]}.

46

2.4 Adding Strategies to the Calculus

Remark 1. If S is a correct encoding of an abstract strategy ζ, then try(S) and
repeat(S) are correct encodings of Try(ζ) and Repeat(ζ) respectively.

The following theorem summarizes the previous results on the correctness of encoding
the strategies.

Theorem 3. For every strategy object S obtained by combining the primitive strategy
objects id, fail, seq, first, not, ifThenElse and for every abstract molecule M , a
successful computation of S@M yields a structure of worlds {[M1] . . . [Mn]} such that
each abstract molecule Mi is obtained from M by strategic rewriting under the strategy
S.

2.4.4 Extending the Semantics with Strategies and Failure Recovery

Based on the strategy definitions, we can reformulate the main reduction rule modeling
the interaction between a strategy S and an abstract molecule M in a world using a
failure catching mechanism:

(HeatingR) hr : [N S M] −→ [N seq(S, try(stk⇒ S M))@M] (2.10)

A reduction using the rule (2.10) proceeds in one of the following ways:

• if S@M reduces to the failure construct stk, then the strategy try(stk ⇒ S M)
restores the initial molecules subject to reduction;

• if S@M succeeds, then the application of the strategy try(stk ⇒ S M) does not
change the result.

We call this improved reduction heating with recovery and stk⇒ S M a recovery rule.
The two molecules S and M from the right-hand side of the recovery rule cannot be
heated before the rule is applied since they are arguments of the arrow construct and
not juxtaposed in a world. Hence there is no risk of recursive reduction using this heating
rule.

The behavior presented above for the heating with recovery rule is possible under the
assumption that the strategies in a world should not return the failure object stk.

Remark 2. The heating with recovery rule (2.10) is just an example of tackling a match-
ing failure occurred in the application process. Instead of just recovering the interacting
abstraction S and abstract molecule M , one can imagine other ways of tackling a failure
in the interaction, for instance by modifying M or even S.

2.4.5 Persistent Strategies

At this level of definition of the calculus, a strategy is consumed by a non-failing interac-
tion with an abstract molecule M . One advantage is that, since we work with multisets,
a strategy can be given a multiplicity, and each interaction between the strategy and an
abstract molecule M consumes one occurrence of the strategy. This permits controlling
the maximum number of times an interaction can take place.

47

2 An Abstract Biochemical Calculus

Sometimes it may be suitable to have persistence of strategies. In this case, the strat-
egy should not be consumed by the reduction. For this purpose, we define the persistent
strategy combinator that applies a strategy given as argument and, if successful, repli-
cates itself:

S! , seq(S,
first(stk⇒ stk,

X ⇒ (X S!)
)

)

However, for instance (O ⇒ stk)@O′ reduces to {[stk]} if O matches O′. The ab-
straction is applied successfully but the result is saying that the application failed. The
contradictory situation comes from the fact that we allow the use of the application
failure information as an explicit object. This example shows that the great expressive
power we gained by making the failure an explicit object can lead to an unexpected be-
havior if not handled with caution. As a consequence we restrict the use of persistence
such that any strategy that produces stk cannot be made persistent. Such strategies are
the ones built using abstractions with stk as right-hand side.

The following result proves that the persistent strategy combinator is correctly defined
under the previously given condition.

Proposition 6. Let M be an abstract molecule and S a strategy such that any ab-
straction occurring in S does not have stk as right-hand side. If S@M −→∗ {[stk]}, then
S! M −→hr−→

∗ {[S! M]}, else, if S@M −→∗ {[M1] . . . [Mn]}, n ≥ 1, i.e., the application
does not fail, then S! M −→hr−→

∗ {[S! M1] . . . [S! Mn]}.

Proof. Let S2 denote the strategy try(stk⇒ (S! M)) and S3 the strategy first(stk⇒
stk, X ⇒ X S!). Then we have the reduction:

S! M −→hr seq(S!, try(stk⇒ (S! M)))@M = seq(S!, S2)@M = {[S2@(S!@M)]} =

{[S2@(seq(S, S3)@M)]} −→∗ {[S2@({@S3@(S@M)})]} −→ac

{[{S2@(S3@(S@M)}]} −→f {S2@(S3@(S@M)}

If S@M −→∗ {[stk]}, then:

S3@(S@M) −→∗ S3@{[stk]} −→d {S3@stk} −→∗ {{[stk]}} ≡ {[stk]}

and

S! M −→hr−→
∗ {S2@(S3@(S@M))} −→∗ {S2@{[stk]}} −→ac

{{S2@stk}} ≡ {S2@stk} −→∗ {{[S! M]}} ≡ {[S! M]}

Else, if S@M −→∗ {[M1] . . . [Mn]}, with n ≥ 1, then:

S3@(S@M) −→∗ S3@{[M1] . . . [Mn]} −→d {S3@M1 . . . S3@Mn} −→
∗

{{[S! M1]} . . . {[S! Mn]}} ≡ {[S! M1] . . . [S! Mn]}

48

2.4 Adding Strategies to the Calculus

and

S! M −→hr−→
∗ {[{S2@(S3@(S@M))}]} −→∗

{[{S2@{[S! M1] . . . [S! Mn]}}]} −→ac

{[{{S2@(S! M1) . . . S2@(S! Mn)}}]} −→∗

{[{{{[S! M1]} . . . {[S! Mn]}}}]} ≡

{[{[S! M1] . . . [S! Mn]}]} −→f {[S! M1] . . . [S! Mn]}

Remark 3. If we consider that a successful application of a strategy to an abstract
molecule does not consume the strategy, then the strategies are persistent by definition
and we no longer need to define the persistent combinator for strategies. However,
the current approach gives us the freedom of providing some strategies with a persistent
behavior, while others exist in a limited number of occurrences, hence they are consumed
by applications.

2.4.6 Overview of the Syntax and the Semantics of the Calculus with

Strategies

In Figure 2.12 we give the syntax of the calculus with strategies.

(Structured objects) O

(First-order abstractions) A0 ::= O ⇒ O

(Second-order abstractions) A2 ::= A0 ⇒ A0

M0 ::= O | A0 | A2 | M0 M0

A1 ::= O ⇒M0

(Abstract molecules) M ::= X | M0 | S | M M

(Strategies S ::= A0 | A1 | A2

or extended abstractions) | stk⇒ stk | stk⇒M

| X ⇒ stk | X ⇒M

| X ⇒ Vapp | X ⇒ Vapp Vapp

(Application worlds) Vapp ::= S@M | S@Vapp | S@W

(Worlds) V ::= Y | [M] | [M Vapp] | [M W]

(Multiverse) W ::= Z | {V . . .V} | {W . . .W}

Figure 2.12: The syntax of the ρ〈Σ〉-calculus with strategies

49

2 An Abstract Biochemical Calculus

In Figure 2.13 we review the evaluation rules of the calculus where an abstraction is
generalized to a strategy.

(HeatingR) hr : [N S M] −→ [N seq(S, try(stk⇒ S M))@M]

(Application) a : S@M −→ {[ς1(RS)] . . . [ςn(RS)]}

if Sol(LS ≺≺M) = {ς1, . . . , ςn}

(ApplicationFail) af : S@M −→ {[stk]} if Sol(LS ≺≺M) = ∅

(Cooling) c : [M {[M1] . . . [Mn]}] −→ {[M M1] . . . [M Mn]}

(AppCooling) ac : S@{[M1] . . . [Mn]} −→ {[S@M1] . . . [S@Mn]}

(Flattening) f : {[{[M1] . . . [Mn]}]} −→ {[M1] . . . [Mn]}

Figure 2.13: The semantics of the ρ〈Σ〉-calculus with strategies

2.5 Synchronous Big-Step Semantics

Definition 33 (Evolution step). An evolution step for a world [N S M] is a reduction
corresponding to the sequential composition of three stages corresponding to reduction
using evaluation rules as follows:

1. the heating rule (2.10):

[N S M] −→ [N seq(S, try(stk⇒ S M))@M]

2. the union of the application rules (2.2) and (2.5), the distributing rule (2.6), the
flattening rule (2.7), and the stk rules (2.8) and (2.9), and modulo the structural
congruence relation on worlds given in Definition 32:

[N seq(S, try(stk⇒ S M))@M] −→∗ [N {[M1] . . . [Mn]}]

3. the cooling rule (2.4):

[N {[M1] . . . [Mn]}] −→ {[N M1] . . . [N Mn]}

An evolution step is silent (or non-observable), denoted by
τ
−→, if the recovery rule

stk⇒ S M is applied during the second stage. In other words, the strategy S chosen to
be applied on M fails. An evolution step is visible if it is not silent.

Definition 34 (Inert and stable worlds). We say that a world V is inert if either:

• ∃ O1, . . . , Om ∈ O such that V ≡ [O1 . . . Om] or

50

2.6 Possible Strategies for the Calculus

• ∃ S1, . . . , Sn ∈ S of the same order such that V ≡ [S1 . . . Sn].

We say that a world V = [S1 . . . Sn O1 . . . Om] is stable if it can evolve only by silent
steps.

A multiverse is inert (resp. stable) if every composite world is inert (resp. stable).

In other words, a world is inert if it consists only of a multiset of structured objects
from O or of a multiset of non-interacting strategies, and it is stable if all abstract
molecules are irreducible with respect to the rest of the strategies in that world.

Definition 35 (Big one-step reduction of a world). A big one-step reduction of a world
is induced by finitely many silent evolution steps and one visible evolution step. We

denote it by Z⇒ or
S
Z⇒ for (τ

−→)∗ −→ and (τ
−→)∗ −→S respectively if the successfully

applied strategy is relevant.

By suppressing the silent steps, we obtain an equivalent model but smaller in size.
The choice of the strategy and the abstract molecule for heating should be fair [CGP00]
in the sense that if a strategy is chosen infinitely often for application, then the other
strategies as well must be chosen infinitely often. If a world contains more than one
strategy, we do not want only one strategy to be applied over and over again since, in
particular, if it is not applicable, the system will never evolve.

Informally, the big-one-step reduction relation between a strategy S and an abstract
molecule M states that:

[S M] Z⇒ {[M1] . . . [Mn]} if [S](M) = {M1, . . . ,Mn}, n ≥ 1

We need such big step reduction level in the ρ〈Σ〉-calculus instantiated for port graphs
in order to verify in Chapter 7 the satisfiability of a temporal formula only after cooling
and before heating a world.

The big-one-step reduction of a multiverse corresponds to big-one-step reduction of a
maximum number of worlds such that at least one world is reducible in a big-one-step:

Definition 36 (Big-one-step reduction of a multiverse). We say that a multiverse
{V1 . . . Vn} reduces synchronously in a big-one-step into the multiverse W , written
{V1 . . . Vn} Z⇒W , if there is a partition {i1, . . . , ip} ∪ {ip+1, . . . , in} of {1, . . . , n}, with
1 ≤ p ≤ n, where:

• Vik Z⇒Wi, for all k, 1 ≤ k ≤ p, and

• Vil is stable, for all l, p+ 1 ≤ l ≤ n,

such that W ≡ {Wi1 . . .WipVip+1
. . . Vin}.

2.6 Possible Strategies for the Calculus

One possible extension of the calculus is to benefit from the intrinsic concurrent nature
of rewriting [Mes92]. In this way, all possible interactions can take place in parallel in

51

2 An Abstract Biochemical Calculus

a world modeling the Brownian motion – an essential aspect in the chemical model. A
parallel strategy should take several abstractions and apply them on an abstract molecule
if their left-hand sides match disjoint parts of the molecule. Then for each particular
structure Σ, one has to define the disjointness of two submolecule in an abstract molecule.

By adding more control using strategies to group the application of abstractions,
we can formalize other types of parallelism. A strategy of interest for regulating the
parallelism when modeling real systems and biological ones in particular, concerns a
stochastic dimension on choosing the abstractions to apply. A formal description of the
stochastic application of rewrite rules (abstraction) can be found in [Spi06].

We get sequential application of abstractions by using for instance the don’t care
strategy from the ELAN language [BKKR01a]: it chooses from a given set of strategies
a non-failing strategy for the current state of the system; if it groups all strategies
from the state, then the evolution of the system is sequential since only one strategy is
applied in each evolution step. In [SMC+08] a stochastic sequential strategy is defined
for P systems based on the Gillespie’s stochastic simulation algorithm [Gil77] where the
rule are assigned probabilities that may change during the simulation. In addition, the
concepts of probabilistic rewriting and probabilistic strategies have already been studied
in [BK02, BG06].

Other parallel strategies used in rule-based biologically-inspired models of computation
are for instance those inspired by the different control mechanisms available for the P
systems, the models of the membrane calculus [Pau02]. In [IYD05] the authors review
some notions of parallelism for P systems. In terms of the calculus we have presented
in this chapter, for k the number of strategies applicable on the structured objects in a
world and n ≤ k, the following parallel reductions can be considered:

n-Max-Parallel specifying that a maximal set of at most n strategies is applied in a
step and no larger subset is applicable;

≤ n-Parallel specifying that any subset of at most n strategies is applied;

n-Parallel specifying that any subset of exactly n strategies is applied (this is also called
bounded parallelism).

2.7 Comparison with the γ-Calculus and HOCL

In this section we compare the expressivity of the abstract biochemical calculus with
respect to the γ-calculus and HOCL which it generalizes.

The major aspect this generalization concerns is the use of rewrite rules on structured
objects in the ρ-calculus style instead of variable abstractions like in the λ-calculus. The
HOCL considers a large class of patterns which are suitable renamings of often very
complex λ-expressions. However, we gain on expressive power in the ρ〈Σ〉-calculus by
considering a more abstract class of patterns.

In the γ-calculus, the conditions on the reductions due to the encapsulation of so-
lutions impose an innermost application strategy. The ρ〈Σ〉-calculus does not have an

52

2.8 Conclusions and Perspectives

encapsulation constructor for abstract molecules, but this syntactic lack is prevailed upon
adding strategies in the calculus. Still, the reduction in the ρ〈Σ〉-calculus uses an evalu-
ation strategy, the call-by-name evaluation, which forbids the reduction under an arrow
operator in an abstraction. The use of structured patterns enriches the ρ〈Σ〉-calculus
with the capability of encoding strategies as abstractions. This opened the possibility
of defining various strategies for controlling the evolution of a state.

In a first stage, HOCL extends the γ-calculus with two high-level constructs: the
conditions on reactions and atomic capture (several arguments for a γ-abstraction).
The use of strategies allows the definition of abstractions with Boolean conditions since
we can define the congruence relation on Booleans. We did not formalize conditional
abstractions here, but the approach is similar for the one in the ρ-calculus for encoding
conditional rewriting [CK01] where a conditional rewrite rule l _ r if c is represented
by the ρ-term l _ (True _ r)cρ where True is a constant and cρ the ρ-term describing
the reduction of the term c to a Boolean constant, either True or False.

We also remark that the persistent strategies correspond to n-shot reaction rules in
the γ-calculus which are reaction rules not consumed by a reduction.

We did not consider the extension of HOCL with negative of infinite multiplicities for
molecules [BFR06b, Rad07], but this is also possible for the ρ〈Σ〉-calculus using a similar
approach.

2.8 Conclusions and Perspectives

In this chapter we have introduced a higher-order calculus based on the classical chemical
metaphor. By allowing complex patterns for reaction and a rich structure for describ-
ing molecules and possible connections between them, we provide the calculus with an
additional biological flavor.

This chapter presents the foundational part of the thesis. In the next chapters we will
instantiate the structure Σ with the structure of port graphs and the transformation of
the structured molecules with the port graph rewriting relation as defined in Chapter 3.
The main features of the resulting calculus are reviewed in Chapter 4 together with the
proof that port graphs represent a unifying structure for representing port graph rewrite
rules and for describing operationally the application of a port graph rewrite rule on a
port graph. Then, in Chapter 7, the biochemical calculus on port graphs is enriched
with verification features, an approach that could be used for other structures as well.

Perspectives

To conclude this chapter, we would like to point out some future directions related to
the work presented here.

• An interesting research direction is to see how the topological structures consid-
ered in MGS [GM02a, Spi06] can fit in the calculus presented here. The topological
structures and their transformations were shown to be useful in modeling dynami-

53

2 An Abstract Biochemical Calculus

cal systems with a dynamical structure [Gia03] (for membrane systems in [GM02b]
for instance and a real biological example in [SM05]).

• In the semantics of the ρ〈Σ〉-calculus an abstraction is applied locally on the object
representing the physical structure of the state of the modeled system since we
solve a submatching equation between the left-hand side of an abstraction and an
abstract molecule. But what if we want an abstraction to be applied globally on
an abstract molecule? For instance, we want a rule to find a pattern M , keep it
and delete everything else in the world. If we consider the abstraction MN ⇒M ,
it will provide all possible results of matching N with molecules in the world not
matched by M . Of course this will provide the intended result, but we will also
obtain other solutions corresponding to partial contexts. We could handle this
problem by considering two types of abstraction, global and local ones, whereas,
in the semantics, the evaluation rules describing their applications will consider
solutions of a matching equation and a submatching equation respectively. Then
the example of abstraction above should be a global one. We should analyze the
implications of differentiating the abstractions in this way.

• The current approach for modeling the interaction between an abstraction A and
an abstract molecule M is first to heat them up, and only then test if A is ap-
plicable on M (i.e., if the left-hand side of A submatches M) and if positively,
apply it. Another approach worth considering is to move the test of applicability
of an abstraction inside the heating rule; then the application rule will never fail.
However, such test of applicability of an abstraction on an abstract molecule no
longer works as wanted for strategies since the left-hand side of a strategy may be
a variable and the submatching problem always has a solution. Then the prob-
lem that should be solved is to determine the application conditions for different
strategy constructors.

• In Section 2.6 we have mentioned some possible ways of parallel evolution for
systems. We shall investigate how these can be expressed as rewrite strategies,
and, if successful, how to encode them as strategies in the ρ〈Σ〉-calculus.

54

3 Port graph rewriting

3.1 Introduction

Graphs are data structures (or abstract data types) widely used for describing complex
structures, like UML diagrams, microprocessor design, XML documents, communication
networks, data and control flow, neural networks, biological systems, etc., in a direct and
intuitive way. For complex systems, in addition to providing a static description, trans-
formations of graphs allow the modeling of their dynamic evolution in a uniform manner.
Computing by graph transformation is not limited to programming, specification or im-
plementation by graph transformation, it is a fundamental concept also for concurrency
and distribution, for visual modeling and model transformation, for graph algorithms
and computational models in general [EP05]. Different approaches have been proposed
to formalize graph transformation and applications [Roz97, EEKR97, EKMR97].

In this chapter we study a particular class of graphs, where nodes have explicit con-
nection points called ports with the edges attached to specific ports of nodes. This graph
structure is inspired by the molecular complexes formed in protein-protein interactions
in a biochemical network: a protein is characterized by a collection of small patches on
its surface, called functional domains or sites, and two proteins can bind at such sites.
Then a protein with its collection of sites is modeled by a node with ports, and a bond
between two proteins by an edge in a port graph. The objective of this chapter is to
formally define port graphs, port graph submatching, port graph rewrite rules and a port
graph rewrite relation such that we can instantiate the Abstract Biochemical Calculus
introduced in Chapter 2. The result is a calculus on port graphs presented in Chapter 4
with applications in modeling autonomous systems and biochemical networks.

We start by defining port graphs in Section 3.2 and we continue with the definition of
a port graph morphism and the subsequent definitions of composition and subgraphs, in
Section 3.3. We also introduce a particular port graph morphism defined only on nodes
which will be used for encoding the correspondence between elements of the left-hand
side and elements of the right-hand side of a port graph rewrite rule. In Section 3.4 we
define the submatching and matching equations for port graphs and we provide a sound
and complete submatching algorithm. In the next two sections, 3.5 and 3.6, we give the
definition of port graph rewrite rules and define a rewrite relation on port graphs. Then,
in Section 3.7 we briefly show how we obtain a strategic port graph rewrite relation by
instantiating the definitions for abstract reduction systems and abstract strategies from
Chapter 1. For the situations where we can or need to specify partial information about
the ports in nodes in a port graph rewrite rule, we define weak port graphs in Section 3.8
and adapt the port graph rewrite relation defined earlier. In Section 3.9 we study the
confluence of the port graph rewrite relation based on known results on hypergraphs.

55

3 Port graph rewriting

We end up with a comparison with the bigraphical reactive systems in Section 3.10.

3.2 Port Graphs

We start by defining the way ports are associated to node names via a signature.

Definition 37 (P-Signature). A p-signature is a pair of sets of names ∇ = 〈∇N ,∇P〉
where:

• ∇N is a set of node names and

• ∇P is a set of port names,

such that each node name N comes with a finite set of ports Interface(N) ⊆ ∇P .

Note that, by definition, the port names associated to a node name are pairwise
distinct.

In what follows the symbols a, b, c, . . . range over the set ∇P of constant port names,
A,B,C, . . . range over the set ∇N of constant node names, the symbols x, y, z, . . . range
over the set XP of port name variables, and the symbols X,Y, Z, . . . range over the set of
node name variables XN . All symbols can be indexed. We denote by ∇X the p-signature
associating to a node name in ∇N ∪ XN an interface (finite set of port names) from
∇P ∪ XP . We extend the definition of Interface over variable node names such that
Interface(X) ⊆ ∇P ∪ XP for all X ∈ XN .

Definition 38 (Port Graph). Given a fixed p-signature ∇X , a labeled port graph over
∇X is a tuple G = 〈VG, EG, lvG, leG, sG, tG〉 where:

• VG is a finite set of nodes;

• EG is a finite set of edges, EG = {〈(v1, p1), (v2, p2)〉 | vi ∈ VG, pi ∈ Interface(lvG(vi))∪
XP}};

• lvG : VG → ∇N ∪ XN is the labeling function for nodes,

• leG : EG → (∇P ∪ XP)2 is the labeling function for edges such that
leG(〈(v1, p1), (v2, p2)〉) = (p1, p2);

• sG, tG : EG → (VG× (∇P ∪XP)) the source and target functions respectively, such
that, for e ∈ EG with e = 〈(v1, p1), (v2, p2)〉, sG(e) = (v1, p1) and tG(e) = (v2, p2).

We represent the nodes by unique identifiers which are non-empty words over literal
symbols {i, j, k, . . .} and integers. For instance, i.j.1, 2, 1.3 are three node identifiers.
The identifiers must be unique because we allow several nodes to have the same name.

We denote by Id(G) the set of literal symbols occurring in the node identifiers in
G and by Var(G) we denote the set Id(G) to which we add the set of name variables
occurring in G .

56

3.3 Port Graph Morphisms and Node-Morphisms

In Figure 3.1 we illustrate two views of a port graph: on the left, we use the classical
drawing of a labeled multigraph, while on the right, we emphasize the ports. We will
use the latter more suggestive representation for port graphs by representing a node as
a box with the identifier and the name placed outside the box and the port as small
points on the surface of the box.

< 1:A || a, b, c >

a
c

b

e

d

a

1:A 4:C

2:B
3:A

< 3:A || a, b, c >< 2:B || e >

< 4:C || d >

(a,e) (b,e)

b

(d,c)

(b,a) (a,d)

c

Figure 3.1: Two views of a port graph

A port graph can transformed into multigraph whose nodes are the old ports which
have an associated information about the identity and name of the node they belonged
to.

We motivate in the following the formalization of port graphs and port graph rewriting.
This is closely related to the abstraction level we consider when modeling the structure
and behavior of a particular system. The systems we want to model are based on
entities interacting, connecting in particular, based on their internal components. If we
decentralize the concept of node with ports, the global view of the system is weakened,
making less obvious the main actors in the system. Take for instance the case of protein
complexes: the reactions are described in terms of two proteins binding at some specific
sites; we can express the same operation by saying that two specific sites of some specific
proteins are binding, but the emphasis goes mainly to sites, instead of the proteins.

3.3 Port Graph Morphisms and Node-Morphisms

In this section we introduce concepts related to port graphs necessary for defining later
the transformations of port graphs. We start by defining port graph morphisms used for
relating two port graphs with the particular aim of defining the submatching relation.
We also see some particular instances of such morphisms.

A port graph morphism relates the elements of two port graphs by preserving sources
and targets of edges, constant node names and associated interfaces up to a variable
renaming.

Definition 39 (Port graph morphism). Given two port graphs G and H over ∇X with
Var(H) ⊆ Var(G), a port-graph morphism f : G → H is a pair of function f = 〈fV :
VG → VH , fE : EG → EH〉 which satisfies the following requirements:

• for each v ∈ VG, lvG(v) =ψ (fV ◦ lvH)(v) provided that lvG(v) /∈ XN and (fV ◦
lvh)(v) /∈ XN ;

57

3 Port graph rewriting

• for each v ∈ VG, if Interface(lvG(v)) = {p1, . . . , pi, x1, . . . , xj , y1, . . . , yl} with
i, j, l ≥ 0, then Interface((fV ◦ lvH)(v)) = {p1, . . . , pi+j , z1, . . . , zl} with 0 ≤ k ≤ j
such that {y1, . . . , yl} =ψ {z1, . . . , zl}

• for each e ∈ EG, if leG(e) = 〈(v1, p1), (v2, p2)〉, then (fE ◦ leH)(e) =
〈(fV (v1), p′1), (fV (v2), p′2)〉 with p′i ∈ Interface(fV (vi)), such that pi =ψ p

′
i.

where ψ is a variable renaming.

Definition 40 (Port subgraph). A port graph morphism f : G → H is an inclusion
(also denoted by f : G →֒ H) if fV (v) = v and fE(e) = e for all v ∈ VG and e ∈ EG up
to a variable renaming. Then G is a port subgraph of H which is denoted by G ⊆ H.

We say that a port subgraph G of H is a full port subgraph if for any two ports in G
connected by an edge e in H, the edge e is also in G.

Definition 41 (Induced port subgraph). Given a port graph morphism f : G → H,
f(G) is called the induced port subgraph of H.

Definition 42 (Composition of port graph morphisms). Let f : G→ H and g : H → I
two port graph morphisms. Then their composition h : G→ I usually denoted by g◦f (or
f ; g) is the pair of function h = 〈hV : VG → VI , hE : EG → EI〉 defined by hV = gV ◦ fV
and hE = gE ◦ fE.

As in the case of classical graph morphisms, the composition operation on port graph
morphisms is associative with the identity morphism as neutral element.

Definition 43 (Particular port graph morphisms). Let f = 〈fV , fE〉 : G→ H be a port
graph morphism. We say that f is a monomorphism (or mono or injective morphism)
if fV and fE are both injective. We say that f is a epimorphism (or epi or surjective
morphism) if fV and fE are both surjective.

If f is mono and epi, i.e., both fV and fE are bĳective, then f is an isomorphism (or
iso) and we write G ∼= H; in addition, we denote by [G] = {H | H ∼= G} the isomorphism
class of G.

In the following we introduce a particular graph morphism that maps a node from a
graph to a set of nodes of another graph.

Definition 44 (Node-morphism). Given two port graphs G and H over ∇X with Var(H) ⊆
Var(G), a node-morphism ξ : G→ H is a function ξ : VG → P(VH).

If ξ1 : G → H and ξ2 : H → I are two node-morphisms, then their composition is a
node-morphism ξ2 ◦ ξ1 : G→ I defined as follows:

(ξ2 ◦ ξ1)(a) =
⋃

b∈ξ1(a)

ξ2(b), ∀a ∈ VG

By convention, if ξ1(a) = ∅, then (ξ2 ◦ ξ1)(a) = ∅.
The identity node-morphism ξ : G → G associates to a node the singleton containing

the same node: ξ(v) = {v}, ∀v ∈ VG.

58

3.4 Port Graph Matching and Submatching

We extend a node-morphism ξ : VG → P(VH) over the edges of G, by defining
ξ : EG → P(EH) as follows:
for e ∈ EG with e = 〈(v, p), (u, r)〉,

• if ξ(v) = {v1, . . . , vk} and ξ(u) = {u1, . . . , un}, k, n ≥ 1, then
ξ(e) = {〈(vi, p), (uj , r)〉 | p ∈ Interface(vi), r ∈ Interface(uj)};

• if ξ(v) = ∅ or ξ(u) = ∅ then ξ(e) = ∅.

We use the notations G
f
−→ H and G

ξ
=⇒ H for a port graph morphism f : G→ H and

a node-morphism ξ : G→ H respectively.

Remark 4. A port graph morphism g : G → H can be seen as a node morphism that
associates to each element x from G the singleton {g(x)}. The composition of a node-

morphism with a port graph morphism G
g
→ H

ξ
⇒ I is a node morphism G

ξ◦g
=⇒ I defined

as follows:
(ξ ◦ g)(v) = ξ(g(v)), ∀v ∈ VG
(ξ ◦ g)(e) = ξ(g(e)), ∀e ∈ EG

Conversely, the composition of a port graph morphism with node morphism G
ξ
⇒

H
g
→ I is also a node morphism G

g◦ξ
=⇒ I defined as follows:

∀v ∈ VG, (g ◦ ξ)(v) =

{

{g(v1), . . . , g(vn)} , if ξ(v) = {v1, . . . , vn}, n ≥ 1

∅ , if ξ(v) = ∅

∀e ∈ EG, (g ◦ ξ)(e) =

{

{g(e1), . . . , g(em)} , if ξ(e) = {e1, . . . , em}, m ≥ 1,

∅ , if ξ(e) = ∅

3.4 Port Graph Matching and Submatching

3.4.1 General Definition

Let L and G be two port graphs over the same p-signature ∇X such that they do not
have common node identifiers, node name variables, nor port name variables.

Definition 45 (Submatching). We say that L strictly submatches G if there is a de-
composition of G as g(L) ∪G− ∪ B where:

• g : L → G is a port graph morphism called the submatching morphism such that
g(L) is a full subgraph of G;

• G− is a port graph called the context, with G− = G\g(L), given by the set of nodes
VG− = VG \ Vg(L), and the set of edges EG− = {〈(u, p), (v, r)〉 ∈ EG | u, v ∈ VG−};

• B is a set of edges (called bridges) which have one endpoint in the context graph
and the other in the matched subgraph.

59

3 Port graph rewriting

We then write G = G−[g(L)]B.

We denote the submatching problem between a pattern port graph L and a subject port
graph G by L ≺≺ G. The solutions of the submatching problem have the form (g,G−,B)
and we call them submatchers. Then by Sol(L ≺≺ G) we denote the set of all solutions
for the submatching problem.

In general, we assume that for any submatching problem L ≺≺ G, the set of variables
and node identifiers occurring in each port graph are disjoints, i.e., Var(L)∩Var(G) = ∅
and Id(L) ∩ Id(G) = ∅. If it is not the case we rename appropriately the variables
and the node identifiers such that this condition is met. We assume that all ports with
variable names in the same port graph are pairwise distinct.

We call the matching and the submatching strict when the matched subgraph g(L)
must be a full induced port sugbraph of G. A non-strict submatching considers a fourth
component of the decomposition of G along a port graph L and a port graph morphism
g represented by a set of unmatched edges from G with both endpoints in g(L). We
usually denote by Ue the set of unmatched edges. Then g(L) ∪ Ue is a full induced port
subgraph of G and we write G = G−[g(L)]UeB .

Formally, the sets of bridges and unmatched edges are defined as follows:

B = {e ∈ EG | (sG(e) ∈ G− ∧ tG(e) ∈ g(L)) ∨ (sG(e) ∈ g(L) ∧ tG(e) ∈ G−)}

Ue = {e ∈ EG | e /∈ g(L) ∧ sG(e) ∈ g(L) ∧ tG(e) ∈ g(L)}

We obtain the usual definition of matching between the pattern port L graph and the
subject port graph G from the definition of the submatching where the context is empty,
or equivalently, where the submatching morphism is in fact an isomorphism.

Definition 46 (Matching). We say that L strictly matches G if there is a port graph
isomorphism g : L→ G. We denote the matching problem between a pattern port graph
L and a subject port graph G by L≪ G.

The matching is non-strict if the port graph morphism g is a monomorphism and only
gV is required to be surjective. Then G is decomposed as the port graph g(L) and the
set of unmatched edges (i.e., edges without a pre-image in L).

3.4.2 A Submatching Algorithm

In order to provide a submatching algorithm on object port graphs, we represent a port
graph by the set of labeled nodes and the set of (possibly empty) adjacency equations
(or lists). A labeled node is defined by the tuple consisting of the node identifier, node
name, and interface. An adjacency equation is defined by the source node identifier and
the set of neighbors, where a neighbor is given by the target node identifier and the set
of edges (pairs of ports):

N ::= id : nname : {pname, . . . , pname}
Eq ::= (id⌢(pname, pname)∗)∗

60

3.4 Port Graph Matching and Submatching

We use the symbol S to range over sets of any kind, the symbol N to range over sets of
labeled nodes, the symbol E to range over sets of adjacency equations, and the symbols
s, n, and e to range over elements of a generic set, over nodes, and over adjacency
equations respectively. All these symbols can be indexed.

Example 11. The port graph drawn in Figure 3.2, let us denote it by G, has the
following encoding:

• the set of labeled nodes:

{1 : A : {a, b}, 2 : B : {e}, 3 : A : {a, b, c}, 4 : C : {d}}

• the set of adjacency equations:

{1 ::= (1⌢∅), (2⌢(a, e), (a, e), (b, e)), (3⌢(b, a)), (4⌢∅);
2 ::= (1⌢∅), (2⌢∅), (3⌢∅), (4⌢∅);
3 ::= (1⌢∅), (2⌢∅), (3⌢∅), (4⌢(a, d));
4 ::= (1⌢(d, b)), (2⌢∅), (3⌢∅), (4⌢∅)}

a b

e

d

a

1:A 4:C

2:B
3:A

b

G

c

Figure 3.2: An example of port graph

Definition 47 (Pre-solution of the port graph submatching problem). We say that
(σ,N,E) is a pre-solution of the submatching problem (N1, E1) ≺≺ (N2, E2) if:

1. σ : Id(N1) ∪ XN ∪ XP → Id(N2) ∪ ∇ is a substitution defined on the set of node
identifiers, node name variables, and port name variables occurring in (N1, E1);

2. σ(N1) ⊆ N2, σ(E1) ⊆ E2, i.e., σ((N1, E1)) is a subgraph of (N2, E2);

3. E = E2 \ σ(E1), N = N2 \ σ(N1).

If (N1, E1) and (N2, E2) encode the port graphs G1 and G2 respectively, and (σ,N,E)
is a pre-solution of the submatching problem (N1, E1) ≺≺ (N2, E2), then we can easily
find the corresponding solution for the submatching problem G1 ≺≺ G2. Therefore we

61

3 Port graph rewriting

will use also the term of submatching solution for a pre-solution unless it is not clear
from the context.

In the following we present the submatching algorithm. We encode the submatching
problem (N1, E1) ≺≺ (N2, E2) given as input to the submatching algorithm as a 5-tuple
N1 ≺≺ N2 HE1 ⋆ E2I ∅ � ∅ on which the rules of the algorithm can be applied. The
terms involved in the submatching algorithm, called matching terms, have the structure
“_ H_ ⋆_I _ � _” with the following meaning for each argument:

(1st) a list (conjunction) of matching equations obtained recursively by decomposing
and solving matching equations and by traversing the port graph based on the
neighboring information;

(2nd & 3rd) two sets of adjacency equations providing the neighboring information for
each side of the matching equations in the first position;

(4th) a set of nodes that will form the context port graph, extracted from matching sets
of nodes of different sizes;

(5th) the (partial) substitution constructed from solving the matching equations in the
first argument.

We consider that a matching term is in a normal form if either the first argument has
the value false, or the first argument has the value true (i.e., there are no more matching
equations) and the first list of adjacency equations is empty. Hence the two possible
normal forms of a matching term are false HE′1 ⋆ E

′
2I N

′
� σ′ and true H∅ ⋆ E′2I N

′
� σ.

We group the rules in three sets according to their type of modification on terms:
decomposing (D1−9), solving (S1−3), and cleaning (C1−2). A common feature for all
decomposing and solving rules is that each of the rule attempts to solve the first/leftmost
matching equation of the list from the first position of the term.

In the following we present in detail each set of rules.
The decomposing rules act only on the first matching equation in the list by de-

composing or deleting it, or by giving a failure result for the submatching. We denote
by M a list of matching equations.

The rule (D1) decomposes the matching equation between two sets of nodes, ports,
neighbors, or edges into a conjunction of two matching equations provided that each set
is non-empty and at most one set is a singleton. We impose this condition such that this
rule should not apply on matching two elements which can be seen as singletons. For S
a set, we denote by |S| the number of its elements.

(D1) (S1 ≺≺ S2) ∧M HE1 ⋆ E2I N � σ →
∨

s1∈S1

s2∈S2

(s1 ≺≺ s2) ∧ (S1 \ {s1}) ≺≺ (S2 \ {s2}) ∧M HE1 ⋆ E2I N � σ

if |S1| ≥ 1, |S2| ≥ 1, |S1|+ |S2| ≥ 3

Submatching a non-empty set against an empty set leads to failure:

(D2) (S ≺≺ ∅) ∧M HE1 ⋆ E2I N � σ → false HE1 ⋆ E2I N � σ
if |S| ≥ 1

62

3.4 Port Graph Matching and Submatching

When submatching two sets of nodes, with the pattern set empty, then the subject
set belongs to the context port graph, hence this set is moved to the context nodes
component of the match term.

(D3) (∅ ≺≺ N2) ∧M HE1 ⋆ E2I N � σ →M HE1 ⋆ E2I N ∪N2 � σ

Whereas when submatching two sets of neighbors or edges with the pattern set empty,
the matching equation is simply deleted. As we will see later, the information on this
non-empty set is not lost.

(D4) (∅ ≺≺ S) ∧M HE1 ⋆ E2I N � σ →M HE1 ⋆ E2I N � σ

A matching equation between an empty set of ports and a non-empty set of ports
leads to failure because two matched nodes must have at least their port sets of equal
size:

(D5) (∅ ≺≺ P) ∧M HE1 ⋆ E2I N � σ → false HE1 ⋆ E2I N � σ

A matching equation between two nodes is decomposed in three matching equations
corresponding to the three components: the identifier, the name, and the set of ports.

(D6) (id1 : nname1 : P1 ≺≺ id2 : nname2 : P2) ∧M HE1 ⋆ E2I N � σ →
(id1 ≺≺ id2) ∧ (nname1 ≺≺ nname2) ∧ (P1 ≺≺ P2) ∧M HE1 ⋆ E2I N � σ

For building the matching equations in the case of weak port graphs, we extract from
the subject node a set of ports of the same size with that of the set of ports in the
pattern node. Then the set of ports resulting as a difference is appended along with the
node identifier and name to an extra argument of the match term:

(D6bis) (id1 : nname1 : P1 ≺≺ id2 : nname2 : P2) ∧M HE1 ⋆ E2I N#N0 � σ →
∨

P2=P ′
2
,P ′′

2

|P1|=|P ′2|

(id1 ≺≺ id2) ∧ (nname1 ≺≺ nname2) ∧ (P1 ≺≺ P
′
2) ∧M

HE1 ⋆ E2I N#N0 ∪ {id2 : nname2 : P ′′2 }� σ

The following two rules are instances of the usual decomposition rule for operators
with fixed arity. The first one is for matching two neighbors, and the second one for
matching two edges.

(D7) (id⌢1 S1 ≺≺ id
⌢
2 S2) ∧M HE1 ⋆ E2I N � σ →

(id1 ≺≺ id2) ∧ (S1 ≺≺ S2) ∧M HE1 ⋆ E2I N � σ

(D8) (p1, p2) ≺≺ (p3, p4) ∧M HE1 ⋆ E2I N � σ →
p1 ≺≺ p3 ∧ p2 ≺≺ p4 ∧M HE1 ⋆ E2I N � σ

Matching different constants yields a failure, otherwise the matching equation is
deleted:

(D9) a ≺≺ b ∧M HE1 ⋆ E2I N � σ →
if (a 6= b) then false HE1 ⋆ E2I N � σ
else M HE1 ⋆ E2I N � σ

63

3 Port graph rewriting

Each of the solving rules is applied if the left-hand side of a matching equation is
a variable. The current substitution is extended with a mapping of the variable to the
constant in the right-hand side of the matching equation, and every occurrence of the
variable is replaced by the constant in the whole matching term.

The first solving rule is applied on node identifiers. In addition to the above mentioned
behavior, the matching equation is replaced by a new matching equation between the
right-hand sides of the adjacency equations of the two identifiers.

(S1) (x≪ id) ∧M HE1;x = H1;E2 ⋆ E3; id = H2;E4I N � σ →
(H1{x 7→ id} ≪ H2) ∧M{x 7→ id} H(E1;x = H1;E2){x 7→ id} ⋆ E3; v = H2;E4I
N � σ ∪ {x 7→ id}

The following two rules handle matching between node names and port names:

(S2) (x≪ nname) ∧M HE1 ⋆ E2I N � σ →
(M{x 7→ nname} HE1{x 7→ nname} ⋆ E2I N � σ ∪ {x 7→ nname}

(S3) (x≪ p) ∧M HE1 ⋆ E2I N � σ →
(M{x 7→ p} HE1{x 7→ p} ⋆ E2I N � σ ∪ {x 7→ p}

The cleaning rule (C1) is applied when all matching equations are solved. It deletes
common sets of neighbors from the adjacency equations of the same identifier in order
to obtain the (rest of) edges of the context and the bridges.

(C1) true HE1; id = H;E2 ⋆ E3; id = H ′, H,H ′′;E4I N � σ →
true HE1; id = ∅;E2 ⋆ E3; id = H ′, H ′′;E4I N � σ

We saw that some decomposition rules transform a matching term into a disjunction
of matching terms. The disjunction is a commutative and associative operator. In
addition, we define the matching terms having the first component equal to false as
identity elements by removing them using the rule (C2):

(C2) (false HE1 ⋆ E2I N � σ) ∨ T → T

Example 12. We show below a few steps of the execution of the submatching algo-
rithm for the pattern port graph in Figure 3.3 and for the subject port graph G from
Example 11.

Firstly we give the encoding of the pattern as a pair of a set of nodes and a set of
adjacency equations respectively:

N1 = {(i : X : {x1, x2}), (j : Y : {y})}

and
E1 = {i ::= (i⌢∅), (j⌢(x1, y), (x2, y)); j ::= (i⌢∅), (j⌢∅)}

Let G = (N2, E2). Then the submatching problem (N1, E1) ≺≺ (N2, E2) is reduced as
follows:

64

3.4 Port Graph Matching and Submatching

x z

y

i:X

j:Y

Figure 3.3: An example of a port graph used as pattern in a matching problem

N1 ≺≺ N2 HE1 ⋆ E2I ∅� ∅ →D1

(i : X : {x1, x2}) ≺≺ (1 : A : {a, b})∧

(j : Y : {y}) ≺≺ (2 : B : {e}, 3 : A : {a, b, c}, 4 : C : {d}) HE1 ⋆ E2I ∅� ∅
∨

. . .

The result contains three more matching terms corresponding to matching equations
between the node i in the pattern and the nodes 2, 3, and 4 from G. We continue
showing the reduction for the first matching equation:

(i : X : {x1, x2}) ≺≺ (1 : A : {a, b})∧

(j : Y : {y}) ≺≺ (2 : B : {e}, 3 : A : {a, b, c}, 4 : C : {d}) HE1 ⋆ E2I ∅� ∅ →D6

i ≺≺ 1 ∧X ≺≺ A ∧ ({x1, x2} ≺≺ {a, b})∧

(j : Y : {y}) ≺≺ (2 : B : {e}, 3 : A : {a, b, c}, 4 : C : {d}) HE1 ⋆ E2I ∅� ∅ →S1

((1⌢∅), (j⌢(x1, y), (x2, y))) ≺≺ ((1⌢∅), (2⌢(a, e), (a, e), (b, e)))

∧ (X ≺≺ A) ∧ ({x1, x2} ≺≺ {a, b})∧

(j : Y : {y}) ≺≺ (2 : B : {e}, 3 : A : {a, b, c}, 4 : C : {d}) HE1{i 7→ 1} ⋆ E2I ∅� {i 7→ 1}

And the reduction continues.

This example illustrates the complexity of the reductions due to solving submatch-
ing problems between sets. Clearly, the submatching algorithm presented here is not
designed to be very efficient. We just presented a simple and very intuitive algorithm
for solving a submatching problem. More efficient algorithms are available in the graph
literature, in particular for tools implementing graph transformations like PROGRES
(PROgramming with Graph REwriting Systems) [SWZ97] and AGG (Attributed Graph
Grammars) [ERT97]. We could use the existing results on efficiently implementing
graph transformations to provide a implementation for port graph transformation; this
is possible by considering the equivalent definition of a port graph as a graph with an
appropriate labeling function including the port names in labels. In consequence the
complexity of the usual problems on graphs is the same for port graphs. However, we
should perform a thorough analysis on the implementation differences and performances
to see if it is also efficient on graphs obtained from port graphs.

65

3 Port graph rewriting

Lemma 1. The submatching algorithm terminates.

Proof. Since the cleaning rules are applied on matching terms already reduced using
decomposing and solving rules, we separate the termination proof in a first stage for the
decomposing and solving rules, and in a second stage for the cleaning rules.

In order to show that the rewriting system given by the decomposing and solving rules
terminates, we define a reduction order on matching terms as follows:

MT ′ > MT ′′ if φ(MT ′) > φ(MT ′′)

where:

• φ(M HE1 ⋆ E2I N � σ) = (|V ar(M)|+ |V ar(E1)|, symb(M));

• (n1, n2) > (m1,m2) if n1 > m1 or n1 = m1 and n2 > m2;

• |S| computes the size of the set S taken as argument;

• V ar return the set of variables occurring in the argument;

• symb(M) computes the number of symbols in M that are not logical connectives:

– symb({s1, . . . , sn}) = n − 1 + symb(s1) + . . . + symb(sn) for {s1, . . . , sn} a
generic set

– symb(∅) = 0

– symb(T1 ≺≺ T2) = symb(T1) + symb(T2)

– symb(M1 ∧ . . . ∧Mn) = symb(M1) + . . .+ symb(Mn)

– symb(MT1 ∨ . . . ∨MTn) = max{symb(MT1), . . . , symb(Mn)}

– symb(false) = 0

– symb(f(t1, . . . , tn)) = 1+symb(t1)+ . . .+symb(tn) for f an operator of arity
n

We prove the termination of the rewriting system consisting of the decomposing and
the solving rules by showing that l > r for every rule l → r (if cond) in the matching
algorithm. For the decomposing rules we analyze only the second component computed
by φ since these rules do not eliminate variables. Whereas for the solving rules we
analyze only the first component. Let φ1 and φ2 denote the two components of φ.

(D1) φ2(l) = symb(S1)+symb(S2)+symb(M) = (n−1)+symb(s1
1)+ . . .+symb(sn1)+

(m− 1) + symb(s1
2) + . . .+ symb(sm2) + symb(M)

φ2(r) = max{symb(s1) + symb(s2) + symb(S1 \ {s1}) + symb(S2 \ {s2}) | s1 ∈
S1, s2 ∈ S2} = (n− 2) + symb(s1

1) + . . .+ symb(sn1) + (m− 2) + symb(s1
2) + . . .+

symb(sm2) + symb(M)

(D2) φ2(l) = symb(S) + symb(∅) + symb(M)
φ2(r) = symb(false) = 0

66

3.4 Port Graph Matching and Submatching

(D3) φ2(l) = symb(∅) + symb(N2) + symb(M) > 1 + symb(M)
φ2(r) = symb(M)

(D4) φ2(l) = symb(∅) + symb(S) + symb(M) > 1 + symb(M)
φ2(r) = symb(M)

(D5) φ2(l) = symb(∅) + symb(P) + symb(M) > 0 φ2(r) = symb(false) = 0

(D6) φ2(l) = symb(id1 : nname1 : P1) + symb(id2 : nname2 : P2) + symb(M) =
1 + symb(id1) + symb(nname1) + symb(P1) + 1 + symb(id2) + symb(nname2) +
symb(P2) + symb(M)
φ2(r) = symb(id1) + symb(nname1) + symb(P1) + symb(id2) + symb(nname2) +
symb(P2) + symb(M)

(D7) φ2(l) = symb(id⌢1 S1 ≺≺ id⌢2 S2) + symb(M) = 1 + symb(id1) + symb(S1) + 1 +
symb(id2) + symb(S2) + symb(M)
φ2(r) = symb(id1) + symb(S1) + symb(id2) + symb(S2) + symb(M)

(D8) φ2(l) = symb((p1, p2) ≺≺ (p3, p4)) + symb(M) = 1 + symb(p1) + symb(p2) + 1 +
symb(p3) + symb(p4) + symb(M)
φ2(r) = symb(p1) + symb(p2) + symb(p3) + symb(p4) + symb(M)

(D9) φ2(l) = symb(a ≺≺ b) + symb(M) = symb(a) + symb(b) + symb(M)
φ2(r) = max{0, symb(M)}

(S1−3) φ1(l) = φ1(r) + 1.

In all cases above, indeed φ(l) > φ(r).
For the cleaning rule (C1), the number of symbols of the second argument of a match-

ing term is strictly decreasing, while the rule (C2) decreases the number of components
in a disjunction of matching terms

Theorem 4. Any matching term M HE1 ⋆ E2I N � σ has a unique normal form with
respect to the rules (D1−9), (S1−3), (C1−2) consisting of a disjunction of matching
terms in normal form.

If the normal form of the matching term N1 ≺≺ N2 HE1 ⋆ E2I N � σ corresponding to
the submatching problem (N1, E1) ≺≺ (N2, E2) has the form:

1. false HE1 ⋆ E2I N � σ, then the submatching problem does not have solutions;

2.
∨

i=1,n

true H∅ ⋆ EiI Ni � σi, n ≥ 1, then each tuple (σi, Ni, Ei), for i = 1, n, is a

pre-solution of the submatching problem.

Proof. We proved the termination of the set of rules in Proposition 1, hence a normal
form always exists. The decomposition rules are direct consequences of the decomposi-
tion rules for syntactic matching and matching modulo associativity, commutativity and

67

3 Port graph rewriting

neutral element. Then the application of each decomposition rule does not introduce
unexpected solutions nor looses any solution. By construction the solving rules simulate
a traversal of the pattern port graph.

In the following we prove that each of the matching rules preserves the set of solutions
of the submatching problem. Let us consider a one-step rewriting of a generic matching
term using the submatching algorithm:

M HE1 ⋆ E2I N � σ →
∨

i

M ′ HEi1 ⋆ E
i
2I N

′
� σ′

The application of a matching rule preserves the set of solutions for the submatching
problem if there exists a substitution σo such that:

1. σ′ = σo ∪ σ,

2. E2 \ σo(E1) = Ei2 \ E
i
1 for all i, and

3. N ∪ rhsNodes(M) \ σo(lhsNodes(M)) = N ′ ∪ rhsNodes(M ′) \ lhsNodes(M ′)

where lhsNodes and rhsNodes return the sets of nodes from the left-hand side and right-
hand sides of all matching equations in conjunction respectively.

We do not consider the rules involving a matching failure since the submatching prob-
lem involved has no solution.

The rules (D1), (D4), (D6), (D7), (D8), (D9), (C1) do not modify the sets of nodes
in the matching equations and σo is empty. The rule (D3) is the only one to act on the
fourth component of a matching term, by appending to it the set of nodes subject in a
matching equation where the pattern is the empty set; hence the condition 3 above is
verified. For a rewriting step using the rule (D3), the substitution σo is also empty.

For each of the solving rules (S1), (S2), and (S3), the substitution σ0 consists of one
mapping, {x 7→ id}, {x 7→ nname}, and {x 7→ p} respectively and the condition 3 on
nodes is verified since M ′ is different from σ0(M) by a matching equation that is not
considered in computing lhsNodes and rhsNodes, i.e., lhsNodes(M ′) = lhsNodes(σ0(M).

All matching rules except the cleaning rule (C1) and the rules involving a match-
ing failure verify by construction the condition 2 on the preservation of solutions since
σ0(E1) = Ei1 and E2 = Ei2, for all i. Then cleaning rule (C1) removes common parts
from E1 and E2, where σo(E1) = E1, hence the difference specified by the condition 2
remains constant after an one-step rewriting.

In conclusion, the application of the matching rules is terminating and solution pre-
serving, which proves the theorem.

3.5 Port Graph Rewrite Rules

Definition 48 (Port graph rewrite rule I). A port graph rewrite rule is given by two
port graphs L,R over a p-signature ∇X and a node-morphism ξ : VL → P(VR), denoted

by L ⇒ R or L
ξ

=⇒ R, such that Var(R) ⊆ Var(L) and Id(R) ⊆ Id(L). The port
graphs L and R are called the left- and right-hand side of the rule respectively, and ξ the
correspondence morphism.

68

3.5 Port Graph Rewrite Rules

Remark 5. In the context of the definition above we informally present in the following
some particular operations the rules may perform on nodes:

1. if there is a node v ∈ VL with ξ(v) = {v}, then v is not modified by the rule;

2. if there is a node v ∈ VL with ξ(v) = ∅ then the node v is deleted by the rule;

3. if there is a node v ∈ VL with ξ(v) = {v1, v2}, then the rule duplicates or splits the
node;

4. if there is a node u ∈ VR such that ξ−1({u}) is defined and ξ−1({u}) = {v1, . . . , vk}
and ξ(vi) = {u}, for all i = 1, .., k, it means that the rule merges the nodes
v1, . . . , vk into u;

5. if there is a node u ∈ VR and v1, . . . , vk are all the nodes in VL, with k ≥ 2, such
that u ∈ ξ(v1) ∩ . . . ∩ ξ(vk) and there exists i, 1 ≤ i ≤ k such that vi splits up,
then the rule partially merges the nodes v1, . . . , vk into u.

We can represent a port graph rewrite rule as a port graph if we define a node encoding
the node-morphism ξ giving the correspondence between the nodes of L and the nodes
of R:

Definition 49 (Port graph rewrite rule II). A port graph rewrite rule L ⇒ R is a
port-graph consisting of:

• two port-graphs L and R over a p-signature ∇X called, as usual, the left- and
right-hand side respectively, such that Var(R) ⊆ Var(L) and Id(R) ⊆ Id(L),

• one special “arrow” node, ⇒, that has a port for each port in L which is preserved
in R, and the black hole port, named bh,

• edges from L to ⇒ mapping each port in L uniquely to a port of ⇒ if it is not
deleted, and to bh otherwise,

• edges from ⇒ to R, mapping each port different bh to a port in R.

such that the correspondence of a port from L to ports from R is expressed by the edges
incident to the arrow node.

Expressing a port graph rule as a port graph is very well-suited for graphical repre-
sentation. However, for studying the properties of the port graph rewriting relation, in
this section we use the first definition for port graph rewrite rules given by Definition 48.

Definition 50 (Port graph rewrite system). A port-graph rewrite systems (over a p-
signature ∇X) is a finite set of port-graph rewrite rules (over a p-signature ∇X).

Example 13. We illustrate in Figure 3.4 four port-graph rewrite rules: (a) decomposing
a node with two ports both connected to the same port of another node into two nodes,
each with a port, (b) deleting a node and its ports, (c) deleting two edges, and (d)
merging two nodes.

69

3 Port graph rewriting

x z

y

i:X

j:Y

x z

y

i.1:X.1

j:Y

i.2:X.2

1 2
3

x z

y

i:X

j:Y

y

j:Y

bh
3

x z

y

i:X

j:Y

x z

y

i.1:X.1

j:Y

i.2:X.2

1 2
3

x z

y

i:X

j:Y

x z
y

i.j:X.Y

1 2
3

(a) (b)

(c) (d)

Figure 3.4: Port-graph rewrite rules

3.6 Port Graph Rewriting Relation

Let L ⇒ R be a port graph rewrite rule and G a port graph such that there is a
submatching morphism g for L in G.

The rewriting step corresponding to applying L⇒ R to G can be decomposed in the
following smaller steps as illustrated in Figure 3.5:

1. find the submatching morphism g, the context G−, and the bridges B (their ori-
entation is not important in the drawing),

2. identify the left-hand side of the rule with an isomorphic subgraph in G,

3. translate the bridges following the arrow node ⇒,

4. remove the arrow node and the isomorphic subgraph g(L) which is now discon-
nected from the context graph.

The delicate point of applying L ⇒ R to G is to properly define the replacement of
g(L) by g(R) in G and the way g(R) is reconnected with G.

Usually in graph transformation the matching must ensure a dangling condition which
guarantees that the endpoints of edges in G− are preserved (not deleted) by the rule
application. A bridge or an unmatched edge is not dangling if the endpoint v from
gV (LV) is not deleted by the application, i.e., ξ(v) 6= ∅.

If a bridge of an unmatched edge has an endpoint in g(L) that is changed by the rewrite
rule, then it cannot be simply reconnected to g(R) during the replacement. However,

70

3.6 Port Graph Rewriting Relation

L R
G

L R g(L)

g(R)
g(L)g(R)

g(L)g(R)

G-
G- G-

G-

B

B

Bg
Bg

(1)

(2)

(3)(4)

Figure 3.5: Rewriting steps

by extending the node-morphism ξ on edges provides a way of reconnecting; we call this
operation arrow-translation and it is needed for bridges or unmatched edges. We denote
by ⇓ e the translation of an edge which is nothing else but ξ(e). Thanks to the concept
of node-morphism and its extension on edges we allow dangling edges in our framework
of rewriting port graphs.

If we consider the second definition of the port graph rewrite rule, the arrow node
⇒ together with the incident edges trace the change of the endpoints of bridges or un-
matched partial nodes. The arrow-translation operation takes an arrow node⇒ together
with all incident edges and an edge 〈(v, p), (u, p′)〉 such that one endpoint of the edge,
let this be (u, p′), is the source of an edge (p′, r) incident to ⇒, and it returns the set of
edges 〈(v, p), (wi, p′i)〉 for (wi, p′i) a target of the edge with the source r in the arrow node.
In Figure 3.6 we illustrate a graphical representation of the arrow-translation operation.

(u,p')

(w,p')

r
(u,p')

(w,p')

r

(v,p) (v,p)

G

g(L)
g(R)

g(L)
g(R)

G

Figure 3.6: An arrow-translation example

Definition 51. Given a port graph rewrite system R, a port graph G rewrites to a port
graph G′, denoted by G⇒R G

′, if there exist:

• a port graph rewrite rule L⇒ R in R and

71

3 Port graph rewriting

• a solution (g,G−,B) of the submatching problem L ≺≺ G

such that G = G−[g(L)]B and G′ = G−[g(R)]⇓gB, where by ⇓g B we denote the arrow-
translation of bridges using the arrow node and its incident edges instantiated by the
submatching morphism g.

We note that this definition gives the condition for rewriting a port graph using a
rewrite rule, as well as the construction of the resulting port graph.

We can now define the application of a matcher σ = (g,G−,B) resulted from a sub-
matching problem L ≺≺ G on R as σ(R) = G−[g(R)]⇓gB.

If we consider in Definition 51 a non-strict port-graph morphism g, then a new set
of edges is identified, the set of unmatched edges Ue. Consequently, we have G =
G−[g(L)]UeB and G = G−[g(R)]⇓gUe⇓gB

.

Example 14. We illustrate in Figure 3.7 a result of the application of the rule given in
Figure 3.4 on the port graph G based on the following decomposition:

• the submatching morphism: g(i) = 1, g(j) = 2, g(X) = A, g(Y) = B, g(x) = a,
g(z) = b, g(y) = e,

• the context graph G− consists of the nodes identified by 3 and 4 and the edge
〈(3, a), (4, d)〉, and

• the bridges 〈(1, b), (3, a)〉 and 〈(4, d), (1, b)〉.

Then both bridges are modified by the arrow-translation because they both have an
endpoint belonging to a node that is split up by the rule application.

a b

e

d

a

1.1:A.1
4:C

2:B
3:A

b

1.2:A.2

a b

e

d

a

1:A 4:C

2:B
3:A

b

G G'

c c

Figure 3.7: An application of the port graph rewrite rule from Figure 3.4 (a) on a port
graph G resulting in a port graph G′

3.7 Strategic Port Graph Rewriting

Based on the definition of abstract strategic rewriting from Chapter 1, we can formalize
strategic port graph rewriting.

72

3.8 Weak Port Graphs

Definition 52 (Strategic port graph rewriting). Given an abstract reduction system
A = (OR,SR) generated by a port graph rewrite system R, and a strategy ζ of A,
a strategic port graph rewriting derivation (or port graph rewriting derivation under
strategy ζ) is an element of ζ.

A strategic port graph rewriting step under ζ is a rewriting step G→R G
′ that occurs

in a derivation of ζ.

The idea of imposing some sequencing conditions on the application of graph transfor-
mation can be traced back to the programmed graph grammars introduced in [Bun79]
which consider imperative control structures. Later, the authors of PROGRES not only
considered these imperative deterministic control structures for applying graph trans-
formations, but they defined them in a Prolog-like style using depth-first search and
backtracking [Sch97, SWZ97] in order to control the non-deterministic choice of rule
application.

3.8 Weak Port Graphs

Sometimes we only have some partial information about the ports of nodes; or, for the
sake of simplicity, we consider in a port graph rewrite rule only the ports relevant for
the transformation. We introduce a restriction of port graphs where only a subset of the
ports in the interface of a node name is considered. We call such subset RelevantInterface
and the port graphs are called weak port graphs. In the following we adjust accordingly
the definitions of morphisms and rewriting relation on weak port graphs.

Definition 53 (Weak port graph). A weak port graph G over a p-signature ∇ is a port
graph with the following restriction: the port set (interface) of each node v ∈ VG is a
subset of Interface(lvG(v)). We denote by RelevantInterface(v) the port set associated to
each node v ∈ VG.

Definition 54 (Weak port graph morphism). A weak port graph morphism is a port
graph morphism f : G → H with a weak condition on the equality of interfaces of two
mapped nodes:

for each v ∈ VG, RelevantInterface(lvG(v)) ⊆ RelevantInterface((fV ◦ lvH)(v))

Following closely the definition in Section 3.3, the weak counterpart definitions can be
easily deduced, in particular, the notions of weak port graph rewrite rule, weak subgraph,
and weak submatching.

A weak port-graph morphism implies the existence of a set of unmatched partial node
interfaces, correspondingly a set of unmatched partial nodes Un:

Un = {v ∈ gV (VL) | Interface(lvH(v)) \ RelevantInterface(v) 6= ∅}

Let L ⇒ R be a weak port graph rewrite rule weakly submatching a port graph G
using the following decomposition:

G = G−[g(L) ∪ Un]B

73

3 Port graph rewriting

Then the result of applying the rewrite rule based on this submatching has the form:

G′ = G−[g(R) ∪ V]⇓gB where V ∈⇓g Un

since the application of the arrow-translation may have give different choices of destina-
tion of unmatched ports.

Obviously, for a weak non-strict port-graph morphism, we have:

G = G−[g(L) ∪ Un]UeB and G′ = G−[g(R) ∪ V]⇓gUe⇓gB
where V ∈⇓g Un

a

c

b

e

d

a

1.1:A.1
4:C

2:B
3:A

b

1.2:A.2

a
c

b

e

d

a

1:A 4:C

2:B
3:A

b

a

c

b

e

d

a

1.1:A.1
4:C

2:B
3:A

b

1.2:A.2 1:A

G

I

G"

c

c

c

a

c

b

e

d

a

1.1:A.1
4:C

2:B
3:A

b

1.2:A.2

G'

c

Figure 3.8: An application of the port graph rewrite rule given in Figure 3.4 (a) on G
resulting in two port graphs G′ and G′′ with an intermediate port graph I

Example 15. In Figure 3.8 we illustrate a port graph resulting from rewriting G (also
given in Figure 6.1) using the rule given in Figure 3.4 (a). The resulting port graphs
G′ and G′′ are obtained by splitting the node 1, choosing to place the unmatched port
c in 1.1 and in 1.2 respectively, and then redirecting the two bridges 〈(4, d), (1, c)〉 and
〈(1, b), (3, a)〉 to 1.1 and 1.2 respectively. In the intermediate step we emphasize the

74

3.9 On the Confluence of Port Graph Rewriting

incidence of the node 4 to the unmatched partial node 1 with the the port set {c}. The
node-substitution may map this partial node to either of the two resulting nodes 1.1 and
1.2. Therefore two solutions are possible.

3.9 On the Confluence of Port Graph Rewriting

In this section we analyze the confluence property for port graph rewriting systems based
on the approach used in [Plu05] for hypergraph rewriting systems. First we introduce the
category of port graphs where we define the concept of direct derivation corresponding
to the one-step port graph rewriting. Then we give informally the conditions that port
graph rewriting systems must satisfy in order to be locally confluent.

Let PGraph be the category having labeled port graphs over a fixed p-signature ∇
as objects and port graph morphisms and node-morphisms as arrows.

We define a particular pushout in the category PGraph based on the classical defi-
nition of pushout from [Mac98].

Definition 55 (Alternating pushout). Given a node-morphism A⇒ B and a port-graph
morphism A → C, a port graph D together with a port graph morphism B → D and a
node-morphism C ⇒ D is an alternating pushout of A⇒ B and A→ C if the following
conditions are satisfied:

Commutativity A ⇒ B → D = A → C ⇒ D or, diagrammatically, the following
diagram commutes:

A

(1)

+3

��

B

��
C +3 D

Universality For all port graphs D′, port graph morphism B → D′ and node-morphism
C ⇒ D′ such that A ⇒ B → D′ = A → C ⇒ D′, there is a unique port
graph morphism D → D′ such that B → D → D′ = B → D′ and C ⇒
D → D′ = C ⇒ D′ (i.e., the diagrams (2) and (3) below commute respectively).

A

(1)

+3

��

B

��

��

(2)C

(3)

+3

#+PPPPPPPPPPPPPP

PPPPPPPPPPPPPP D

 A
AA

AA
AA

A

D′

Remark 6. An alternating pushout in PGraph is a pushout if we view the port graph
morphisms as node-morphism mapping a node to the singleton containing its image.

The construction of an alternating pushout is based on the set-theoretical construction
of pushouts as given in [Ehr79] . Let ξ : A⇒ B be a node-morphism and g : A→ C an
injective port graph morphism. Then an alternating pushout

75

3 Port graph rewriting

A
ξ +3

g

��

B

g∗

��
C

ξ∗
+3 D

can be constructed as follows:

• VD = (VB + VC)/≈ where ≈ is the equivalence relation generated by the relation
∼ defined by g(v) ∼ ξ(v) for all v ∈ VA. Then, for u ∈ VB + VC , the equivalence
class of u with respect to ≈ is defined as:

[u] =

{

{g(u)} if u ∈ VB
{v} if u ∈ VC \ Vg(A)

Remark that the first case covers as well the situation of a node u ∈ Vg(A) since
there exists a node v ∈ VA such that g(v) = u, and ξ(v) = {v1, . . . , vn} ⊆ VB.
Hence [u] = {[v1], . . . , [vn]}.

In other words, for u ∈ VA, the equivalence g(v) ∼ ξ(v) implies that the represen-
tative of the equivalence class of g(v) and ξ(v) is (g ◦ ξ)(v) defined in Section 3.3.

• ED = (EB +EC)/≈ where ≈ is the equivalence relation generated by the relation
∼ defined by g(e) ∼ ξ(e) for all e ∈ EA. Then for e ∈ EB + EC :

– if e ∈ EB, then [e] = e,
– if e ∈ EC , sC(e) ∈ Vg(A), tC(e) /∈ Vg(A), and ξ(g−1(sC(e))) = ∅, then [e] is not

defined;
– if e ∈ EC , tC(e) ∈ Vg(A), sC(e) /∈ Vg(A), and ξ(g−1(tC(e))) = ∅, then [e] is not

defined;
– if e ∈ EC , sC(e) ∈ Vg(A), tC(e) /∈ Vg(A), and ξ(g−1(sC(e))) = {v1, . . . , vk},

then [e] = {e1, . . . , ek} where sD(ei) = g(vi) and tD(ei) = tC(e), for all
i = 1, k;

– if e ∈ EC , tC(e) ∈ Vg(A), sC(e) /∈ Vg(A), and ξ(g−1(tC(e))) = {v1, . . . , vk},
then [e] = {e1, . . . , ek} where tD(ei) = g(vi) and sD(ei) = sC(e), for all
i = 1, k.

• ξ∗ : C ⇒ D and g∗ : B → D are the node and port graph morphism respectively
sending each element to its equivalence class, that is, ξ∗(x) = [x] and g∗(x) = [x]
separately for nodes and edges.

Definition 56 (Derivation). Let G and H be two port graphs, L
ξ

=⇒ R a port graph
rewrite rule, and g : L→ G an injective port graph morphism. Then G directly derives
H by ξ and g, denoted by G⇒ξ,g H if the following alternating pushout exists:

L
ξ +3

g

��

R

g∗

��
G

ξ∗
+3 H

76

3.9 On the Confluence of Port Graph Rewriting

A derivation from a port graph G to a port graph H, denoted by G⇒∗ H, is a sequence
of direct derivations G = G0 ⇒ G1 ⇒ . . .⇒ Gn = H for some n ≥ 0.

We remark that the construction given for the alternating pushout above corresponds

to a port graph rewriting of G into H using the port graph rewrite rule L
ξ

=⇒ R and the
submatching morphism g.

Corollary 1 (Correspondence between rewrite relation and direct derivation). Let G

and H be two port graphs, L
ξ

=⇒ R a port graph rewrite rule, and g : L→ G an injective
port graph morphism. Then G rewrites to H using ξ and g if and only G directly derives
H by ξ and g.

Informally, we say that two direct derivations are parallel independent if and only if the
left-hand sides of the two rules may overlap in G only on elements not changed by either
rule. Then, no matter the order of sequential application of the two direct derivations on
a port graph, the resulting port graphs are the same, i.e., if ∆i : G⇒ξi,gi Hi, i = 1, 2 are
independent direct derivations, then there exists a port graph H such that H1 ⇒ξ2,g2

H
and H2 ⇒ξ1,g1

H. This result concerning the commutativity of the application of two
parallel independent direct derivations is proved in [Plu05] for hypergraphs.

Let Li
ξi⇒ Ri, i = 1, 2, be two port graph rewrite rules. The two one-step rewrites (or

direct derivations) G ⇒ξi,gi Hi, i = 1, 2, with g1 6= g2 if ξ1 = ξ2 are independent if the
intersection of the left-hand sides of r1 and r2 in G consists of elements not changed by
the rule application. If the two steps are independent and G = g1(L1) ∪ g2(L2), then
the pair of the two rewrites is a critical pair. A critical pair H1 ⇐ G ⇒ H2 is joinable
if there exist two isomorphic port graphs I1 and I2 such that Hi ⇒

∗ Ii.
The joinability of all critical pairs of a port graph rewrite system does not guarantee

local confluence (as it does for term rewrite systems). In the following we illustrate a
situation inspired from [Plu05] when the joinability condition of a critical pair does not
suffice for assuring local confluence. Let us consider the port graph rewrite rule given in
Figure 3.9 where the node identifiers, node names, and ports are all variables.

ξ
=⇒

z

x y

z

yx

Figure 3.9: A port graph rewrite rule

Then the critical pair from Figure 3.10 is clearly joinable since the two resulting port
graphs are isomorphic.

But when we embed such critical pair into a context, we may loose the isomorphism,
hence the local confluence, as illustrated in Figure 3.11. The problem is that a node or

77

3 Port graph rewriting

=⇒ξ,g2
⇐=ξ,g1

Figure 3.10: Example of critical pair produced by the port graph rewrite rule in Fig-
ure 3.9

port endpoints of a bridge and preserved by both derivations correspond to two nodes
or ports which cannot be related by an isomorphism.

=⇒ξ,h2
⇐=ξ,h1

Figure 3.11: Example of embedding the critical pair from Figure 3.10 into a context that
does not preserve local confluence

Then the joinability condition of a critical pair H1 ⇐ξ,g1
G ⇒ξ,g2

H2 must be
strengthen such that for each node v in G preserved by both direct derivations as the
same set of nodes {v1, . . . , vn}, n ≥ 1, there are derivations H1 ⇒

∗ I1 and H2 ⇒
∗ I2 and

an isomorphism f : I1 → I2 such that the set {v1, . . . , vn} has a decomposition into V ′

and V ′′ with

• all nodes in I1 and I2 derived from the nodes in V ′ are related by the isomorphism
f , and

• all nodes from V ′′ are deleted during the derivations.

This condition is called strong joinability.
Then the results on the local confluence and confluence proved for hypergraph rewrit-

ing system in [Plu05] can be also used for port graphs rewriting systems, as well as for
weak port graph rewriting systems.

Lemma 2 (Confluence). A port graph rewriting system is locally confluent if all its
critical pairs are strongly joinable. If in addition the port graph rewriting system is
terminating, then it is confluent.

78

3.10 Comparison with Bigraphical Reactive Systems

3.10 Comparison with Bigraphical Reactive Systems

Bigraphical reactive systems (BRSs) are a graphical model of computation where con-
nectivity as well as locality are important [Mil01, JM04, Mil06]. A bigraph consists of a
forest of trees describing the positions of the computational objects in the system, called
place graph, and a hypergraph describing the links or connections between the objects,
called link graph. Then a reaction rule in a BRS is pair of bigraphs, a redex represented
by a pattern of nesting and linkage, and a reactum indicating how the reaction changes
the pattern. Via such reaction rules, BRSs represent a suitable formalism for modeling
mobile connectivity (by changing the link graph) and mobile locality (by changing the
place graph).

An object in a bigraph is represented by a node with a fixed number of ports for
connecting with other nodes given by an associated control. The set of all possible
controls for the nodes of a bigraph represents its signature. In addition, since the locality
and connectivity aspects are independent, nodes can be nested and the ports are linked
independently of the nesting.

Port graphs are a variation of bigraphs where: the nodes are labeled with controls
of fixed arity but (corresponding to the set of ports), the controls are all atomic (no
nesting), the link graph is just a graph, not hypergraph (an edge connects exactly two
ports of nodes). However, the ports in port graphs do not have a fixed incidence degrees,
whereas for bigraphs the incidence degree of a port is of 1 or 0 (when the port is free).

The application of a reaction rule on a bigraph is based on decomposing the bigraph
into the redex of the reaction rule, a context, and some discrete parameter, and then
replacing the redex by the reactum. The problem of finding such decomposition, called
matching, is tackled in [BDGM07] by using a class of basic bigraphs and operators for
decomposing bigraph and then, based on such decompositions for both the redex and the
bigraph to be transformed, by identifying inductively the redex and the context. The
ways the matching problem is treated for bigraphs and for port graphs seem equivalent
modulo the additional expressivity of the bigraphical formalism: the matching problem
is reduced in both cases to finding a redex, a context, a parameter; the functionality of
such a parameter is similar to the notion of the set of bridges used for port graphs. In
consequence, by investigating more closely the decomposition-based matching algorithm
provided for bigraphs might provide a more efficient, if not more elegant, matching
algorithm for port graphs. However, we have defined more expressive reaction rules
for port graphs which specify splitting a node, whereas in bigraphical systems we can
only duplicate a node. It should be interesting to investigate what modification such a
splitting operation would imply in the categorical model of bigraphs.

Based on the existing works on bigraphs and bigraphical reaction systems, we could
improve the mathematical theory of port graphs using category theory, as well as, borrow
techniques for defining extensions for port graphs, like, for instance, from the stochastic
bigraphs [KMT08].

We have identified the structure of port graphs independently from the already existing
bigraphs, in the context of modeling protein interactions, hence as a formalism based on
the necessary information for modeling such biochemical processes. Adding the nesting

79

3 Port graph rewriting

capabilities to nodes as for bigraphs, would then allows us to model other types of
biological interactions; take, for instance, the example of membrane budding where
molecules living inside a cell are transported to other cells which is already formalized
in the context of stochastic bigraphs [KMT08]. Nonetheless, other interesting examples
motivating the necessity of adding nesting to port graphs and not needing all specific
features of bigraphs should be envisaged.

3.11 Conclusions and Perspectives

In this chapter we have formalized the structure of port graphs, the (sub)matching
problem on port graphs, and a port graph rewriting relation. We have also analyzed
the confluence the port graph rewriting relation based on some classical results on hy-
pergraphs. The submatching and the rewriting relation defined for port graphs in this
chapter are then used for instantiating the Abstract Biochemical Calculus in the next
chapter to obtain a rewriting calculus for port graphs.

There is still work to be done in formalizing the mathematical foundations for port
graph rewriting using elements of category theory, in particular to analyze the suitabil-
ity of the port graph structure as a high-level structure in the context of High-Level
Replacement Systems. Then, we should test which HRL-conditions are satisfied in the
category of port graphs, such that we could benefit from the existing results in HLR
systems, for instance on parallelism.

Recently, Lambers, Ehrig and Tanetzer [LET08] established some sufficient criteria
for the applicability and non-applicability of sequences of graph transformation rules on
a graph without trying to apply the whole rule sequence explicitly. In particular, this
work fits in the context of finding properties of the strategic port graph rewriting, where
the sequence combinator on port graph rewrite rule is a basic one. What needs to be
done is to study the approach from [LET08] on graphs, adapt it for sequences of port
graph rewrite rules, and then for other port graph rewrite strategies. Moreover, the
problem of finding applicability criteria for rewrite strategies is also of great interest in
the term rewriting community.

Another future direction, a more pragmatic one, concerns the (sub)matching prob-
lem on port graphs and finding a matching algorithm as much as efficient as possible.
One possible solution is to relate port graph matching to bigraph matching; however,
port graphs have a much more simpler structure than the bigraphs, hence a matching
algorithm for bigraphs could be sometimes not very efficient for port graphs. Also some
general algorithms for graph pattern matching could be considered [Ull76, ST99, LV02,
Val02, Zün96]. Due to the structure of port graphs which is richer than the structure of
a graph and, in the same time, is a particular kind of bigraph, it seems that a match-
ing algorithm for port graphs will be situated somewhere in between classical matching
algorithms for graphs and matching algorithms for bigraphs.

As already mentioned during the comparison with the bigraphical reactive systems,
we should consider the stochastic dimension for port graph rewriting systems as it was
done for bigraphs [KMT08]. This perspective comes naturally since port graphs are

80

3.11 Conclusions and Perspectives

biologically-inspired, and hence, their applications to modeling biological systems should
consider stochastic aspects.

81

3 Port graph rewriting

82

4 The ρpg-Calculus: a Biochemical Calculus

Based on Strategic Port Graph Rewriting

4.1 Introduction

In Chapter 2 we have introduced an Abstract Biochemical Calculus, the ρ〈Σ〉-calculus,
modeling interactions between abstract molecules over a structure described by the ob-
jects of a category Σ. In this chapter we instantiate the ρ〈Σ〉-calculus by PGraph:
we consider the port graph structure and the port graph rewriting relation defined in
Chapter 3 for the abstract molecules and their interactions respectively. The result is
a port graph rewriting calculus, called the ρpg-calculus. The syntax and the semantics
is identical. The structure of port graph brings more expressivity in the representation
of the objects of the calculus as port graphs. As a consequence, we are able to define
evaluation rules for matching and replacement using appropriate nodes and port graph
transformations.

In the following we present the main features of the syntax (Section 4.2) and the
semantics (Section 4.3) of the calculus brought by the structure of port graphs.

4.2 Syntax

We introduce stepwise all the elements defining the syntax of the calculus. We start by
defining the object port graphs as port graphs and the abstractions (port graph rewrite
rules) as port graphs as well. All entities of the calculus are presented graphically this
time.

Nodes

A node is described by a unique identifier, a name, and a set of ports. The node identifiers
are either integers, lowercase letters from i to n, or concatenations of them. The node
names are strings in uppercase that can be indexed by or concatenated with integers,
and concatenations of names. The names of the ports are strings in lowercase possibly
indexed by integers. Let id, pname, and nname range over the sets of node identifiers,
port names, and node names.

The syntax for ports and nodes is the following:

Ports P ::= • pname

Nodes N ::= XN | id : nname : P+

83

4 The ρpg-Calculus: a Biochemical Calculus Based on Strategic Port Graph Rewriting

A port is a point with a port name. A node is either a variable or an entity with an
unique identifier, a node name, and a set of ports. Graphically a node is represented as
a box with points on the surface corresponding to the ports.

Object Port Graphs

We model the states of a system by port graphs called object port graphs which can be
either a variable, an empty port graph, a node, two juxtaposed object port graphs, a
node with a loop on the same port, a node with an edge connecting two different ports,
or two connected object port graphs:

Objects Port Graphs O ::= XO variables

| ε empty graph

| N node

| O O juxtaposition

| N ·__ loop

| N hh self-connection

| O· ��· O connection

Abstractions

A first-order abstraction in the ρpg-calculus consists of two object port graphs for the
left- and the right-hand sides, and an arrow node embedding the correspondence between
the two sides. The arrow node has two particular ports, a handler port p0 and a black
hole port port bh. Some restrictions must be imposed on the connectivity of these two
types of ports. A handler port can be connected only to another handler port, and a
black hole port can only be the target of an edge whose source is neither a handler port
nor a black hole port.

Based on Definition 49, a first-order abstraction from A0 is a port graph constructed
as follows:

• the arrow node has a port for each port in the left-hand side which is preserved in
the right-hand side, the black hole port and the handler port;

• an edge connects each preserved port p from the left-hand side to their correspond-
ing port of the arrow node which in turn connects to the corresponding ports of p
in the right-hand side;

• the deleted ports from the left-hand side are connected to the black hole.

For abstractions from A1, the handlers of the arrow nodes of the first-order abstrac-
tions in the right-hand sides are connected to the handler of the arrow node of the
abstraction.

84

4.2 Syntax

For second-order abstractions A′ ⇒ A′′ from A2, the main arrow node connects ports
distinct from the black hole from the main arrow of A′ to ports of the main arrow of A′′

according to the morphism between the two abstractions.
The abstractions are graphically defined as follows:

A0 ::= ⇒

...

��((��((
O

...

66 FF

O

A1 ::= ⇒

...

��&& ��&&
O

...

77 GG

O A+
0

A2 ::= ⇒

...

��'' ��''
A0

...

66 FF

A0

where A+
0 stands for one or more first-order abstractions.

We identify the main arrow node of an abstractions as the arrow node whose handler
is not put in correspondence with another arrow node. Hence, in an abstraction, the
handler of the main arrow cannot be the target or the source of an edge whose source
or target respectively is an arrow node.

By construction, an abstraction is a connected port graph.

Example 16. In Figure 4.1 we illustrate an abstraction from A1 which specifies that a
node with any name and with two ports both connected to a port of another node splits
into two nodes, each one having a port, the connections being preserved. In addition,
the abstraction introduces a new abstraction that splits in a similar way any node having
the same name as the one already split by the abstraction. Here we draw the wiring
using dashes so as to make a clear distinction from the edges in the left- and right-hand
sides of an abstraction.

k.1 : X.1

j : Y

x1 x2

i : X

x1 x2

i.1 : X.1 i.2 : X.2

x2

x1

x2

x1

⇒⇒

y

j : Y

y

k : X

k.2 : X.2

Figure 4.1: An abstraction with explicit wirings that specifies the splitting of a node
identified by the couple of variables i : X connected to a node j : Y and
introduces a rule for splitting any node having the same name as i

85

4 The ρpg-Calculus: a Biochemical Calculus Based on Strategic Port Graph Rewriting

Port Graph Molecules

Let X be a set of variables. The set G of all elementary ρpg-objects of the calculus, called
port graph molecules, is schematically defined by:

G ::= X | O | A0 | A1 | A2 | G G | ε

Using the structure of port graphs for instantiating the parametric structure Σ in the
ρ〈Σ〉-calculus, we obtain the definition of port graph molecules.

Based on the particular structure of port graphs, we define a structural congruence
on port graph molecules.

Definition 57 (Structural congruence on port graph molecules). The structural con-
gruence on port graph molecules in a simple world is the smallest congruence closed with
respect to a permutation of the ports of a node, to permutative juxtaposition __ and to
edge connection, hence satisfying the following axioms:

i : name : (p1, . . . , pk) ≡ i : name : (pπ(1), . . . , pπ(k)) for any permutation of size k

O1· ��·O2 ≡ O2· ·�� O1

G ε ≡ G

G1 . . . Gn ≡ Gπ(1) . . . Gπ(n) for any permutation of size n

Worlds

We recall that a world is a container representing the port graph molecules in an envi-
ronment. The environment is “aware” of all nodes it contains and connections between
them. In order to express this awareness, we attach to each node in an object port graph
an auxiliary handler port, usually denoted by p0. Then we define the operator [] as a
node with a handler port, and a world is a port graph where the handler of the node []
is connected to the handlers of the main arrows of all abstractions and to the handlers
of all nodes of the object port graphs which are not part of abstractions. We recall that
this node [] corresponds to a permutative variadic operator.

A world has the following graphical representation:

[]

{{ ��
...

��''
A . . . A O

or, equivalently:

[]

...

xx��
...

��&&
A+ O

86

4.3 Semantics

or just an object port graph if there are no abstractions in the state:

[]

...

		��
O

In writing, we use the notation [G] for a world containing a port graph molecule G ∈ G.
For instance, the corresponding notations for the three port graphs drawn previously are
[A . . .A O], [A+ O], and [O] respectively.

Let Y be a set of variables. Then the set V of worlds is defined as follows:

V ::= Y | [G]

Multiverse

We introduce a node with a handler port for the operator { } which builds a structure
of worlds (or multiverse). The handler of the node { } is connected to the handlers of
all component worlds. A structure of worlds consists either of a variable in a set Z, a
world, or a multiset of structured of worlds:

W ::= Z | {V . . .V} | {W . . .W}

Similarly to worlds, the notation {W W} stands for the following port graph:

{ }

~~||
||

||
||

 B
BB

BB
BB

B

W . . . W

The underlying theory for multiset structure of the operator { } is follows the lines
of the structural congruence defined in the abstract case in Section 2.2.6 based on the
structural congruence for port graph molecules from Definition 57.

4.3 Semantics

4.3.1 Evaluation Rules as Port Graph Rewrite Rules

The ρpg-calculus expresses the evolution of a system whose initial state is a world of the
form {[A1 . . . An O]}, with Ai an abstraction, for all i, 1 ≤ i ≤ n, n ≥ 0, and O an object
port graph. The successful interaction between an abstraction and a port graph molecule
gives rise to a port graph transformation. We instantiate the evaluation rules from the
ρ〈Σ〉-calculus (Figure 2.7) with port graph molecules. The solving of the submatching

87

4 The ρpg-Calculus: a Biochemical Calculus Based on Strategic Port Graph Rewriting

problem as well as the application of the matcher are defined at the meta-level of the
calculus based on the port graph rewriting relation defined in Section 3.6.

(L⇒ R) G −→ {[ς1(R)] . . . [ςn(R)]} if Sol(L ≺≺ G) = {ς1, . . . , ςn} (4.1)

A G −→ A G otherwise (4.2)

The heating and cooling rules have now a representation based on port graphs. The
heating rule is the following port graph rewrite rule:

h : []

����
��

��
�

...

��''

−→ []

��
A G @

...

��''
A

>>~~~~~~~
G

The cooling rule is represented by the following port graph rewrite rule:

[]

����
��

��
��

 A
AA

AA
AA

A
{ }

||yy
yy

yy
yy

y

""E
EE

EE
EE

EE

c : G { }

~~}}
}}

}}
}}

 B
BB

BB
BB

B
−→ []

		��

. . . []

		��
[]

��

. . . []

��

G G1 G Gn

G1 Gn

The semantics of the ρ〈Σ〉-calculus including strategies can be easily instantiated using
port graphs and all auxiliary operators for modeling the interaction correspond to nodes
with ports. In particular, the failure construct stk is a node with a handler port.

4.3.2 The Application Mechanism as Port Graphs Rewrite Rules

All steps computing the application of an abstraction to an object port graph, including
the (sub)matching and the replacement operations, are expressible using port graphs
by considering some more auxiliary nodes (matching nodes, for instance) and extending
the reduction relation with some graphical evaluation rules. This mechanism can be
internalized in the calculus. Since this construction is quite technical, we present the
evaluation rules in Appendix A. In this section we give only the main ideas of the
evaluation rules.

The idea of using port graphs for encoding the calculus itself, the application and re-
sults, and now for encoding the matching algorithm as well, was inspired by the encoding
of the ρ-calculus using Interaction Nets and Bigraphical Nets [FMS06].

88

4.3 Semantics

Matching Nodes

We consider two types of matching nodes:

1. ≪ for matching two ports; its handler port is the target of the edge connecting to
the pattern port and, in the same time, it is the source of the edge connecting to
the port subject to be matched;

2. ≪ for matching two sets of ports; all ports from the pattern are connected to the
handler of ≪, which is in turn connected to all ports from the subject.

When a matching node connect handlers ports in both pattern and subject, then we
say that we match nodes.

We consider two different matching nodes since we want to make a distinction when
the matching node≪ connects two singletons. A similar condition was used also in the
matching algorithm given for port graph in Chapter 3 in the decomposition rule D1.
We add the following port subgraph constructs to the set of elementary objects of the
calculus:

Node matching N· ��·≪ · ��·N

Node set matching ≪

...

��''
N+

...

66 DD

N+

| ≪

...

		��
N+

| ≪

N+

...

HH VV

Port matching
•

pname · ��·≪ · ��·
•

pname

Port set matching ≪

...

��''
P+

...

66 EE

P+

| ≪

...

		��
P+

| ≪

P+

...

HH VV

Internal Rules for Matching and Replacement

In Appendix A we give the rules handling the matching and the replacement using port
graph transformations. Besides the graphical representation, we also provide a term-like
notation based on the algebraic signature from Chapter 5 where we emphasize the match-
ing problem as a term matching and not as a matching node. We consider a substitution
node connected to the main arrow node of the abstraction applied corresponding to the
substitution built during the matching process. We denote it generically by σ. We do
not represent the edges, the nodes, and the ports not relevant to the application of a
reduction rule, and they are unchanged. For each internal evaluation rule we described
its application result in terms of the rules from the matching algorithm for port graphs
given in Chapter 3, or in terms of the definition of arrow-translation. Also we impose
an application order in terms of a partial relation on the rules application priority.

89

4 The ρpg-Calculus: a Biochemical Calculus Based on Strategic Port Graph Rewriting

4.4 Conclusions

In this chapter we have seen how the Abstract Biochemical Calculus is instantiated for
the structure of port graphs. This structure brings more flexibility to the calculus by
permitting the encoding of meta-level operations like matching and replacement used in
the application as evaluation rules. This proves once more the universality of the port
graph structure, in addition to the possibility of encoding a port graph rewrite rule as a
port graph as we have shown in Chapter 3.

In [FMS06] the authors propose bigraphical nets for encoding the ρ-calculus in the
context of defining efficient reduction strategies; in particular they use bigraphical nets to
model the matching in the ρ-calculus. A bigraphical net is a combination between inter-
action nets and bigraphs, such that the controls associated to nodes have a distinguished
principal port and the interactions occur between principal ports. Then an interesting
future work would concern the study of a biochemical calculus on bigraphs and the suit-
ability of bigraphical nets or general bigraph to express matching and replacement in
the calculus as we already done for the ρpg-calculus.

90

5 Term Rewriting Semantics for Port

Graph Rewriting

5.1 Introduction

In this chapter we define a function encoding port graphs as algebraic terms, port graphs
rewrite rules as term rewrite rules, and the port graph rewrite relation defined in Chap-
ter 3 as a term rewrite relation. The motivation of this encoding is to obtain an imple-
mentable operational semantics for port graph rewriting.

An axiomatization of labeled graphs as algebraic data types was introduced in [Mes96]
in the context of presenting the Rewriting Logic, and its implementation Maude in
particular, as a semantic framework for different models of concurrency. Using an object-
oriented approach, a node is an object with a name (or identifier) and two attributes:
the first one for the data element representing the label, and the second one for the
adjacency list consisting of the the immediate neighbors in the graph. The nodes of
a graph must fulfill two requirements: different node objects must have different node
names (as usual for any object-oriented system), and the node names occurring in the
adjacency lists of objects must be present in the graph (to avoid dangling pointers).
For the more delicate problems of node creation and node deletion, some solutions are
presented. For node creation the solution presented considers creating fresh names by
conveniently appending numbers to the node names. Whereas for node deletion, a new
attribute is added to each node object which counts the references to itself; then a node
with zero reference count becomes garbage, and then deleted. However, this solution
is not always appropriate since it assumes that a graph cannot contain a disconnected
node.

As we will see in this chapter, for encoding a port graph we separate the set of nodes
from the set of edges grouped in adjacency lists. However, we could as well consider
to include the adjacency list in the nodes, but the representation would then be quite
heavily for a node with many ports and many outgoing edges.

Concerning the node creation, we consider the same solution as the one presented
in [Mes96] to preserve the uniqueness of the identifiers of the nodes. Related to the
problem of dangling edges, we have showed in Chapter 3 how in a port graph rewrite
rule each node from the left-hand side deleted by the rule is mapped to the empty set of
nodes. For the term encoding we introduce a special node • called the black hole (or sink)
and we replace a deleted node in an intermediate step by a black hole. The behavior of
a black hole consists in deleting itself along with the incident edges. In a similar way we
use the black hole to replace in an intermediary step a deleted port as well. Hence, the
dangling edges are deleted using some particular intermediate and transparent operation

91

5 Term Rewriting Semantics for Port Graph Rewriting

as we will see later in this chapter.
This chapter is structured as follows. We start by defining in Section 5.2 an algebraic

signature and the encoding of port graphs as terms over this signature with appropriate
conditions for well-formedness and canonical form. In Section 5.3 we encode port graph
rewrite rules as term rewrite rules. We prepare the definition of the encoding of the port
graph rewriting relation by extending the term rewrite rules with variables in order to
handle the context within a rule is applied (Section 5.4) and by defining some auxiliary
operations and reduction relations necessary for in the replacement process (Section 5.5).
In Section 5.6 we define the encoding of the port graph rewriting relation and we prove
it correct and complete with respect to the port graph rewriting relation in Section 5.7.
In Section 5.8 we embed the term approach on port graph rewriting in the rewriting
calculus obtaining a term rewriting calculus for port graphs.

5.2 Term Encoding of Port Graphs

5.2.1 An Algebraic Signature for Port Graphs

We define an order-sorted signature Σ = (S, <,F) for encoding port graphs. In order
to eliminate redundancies, we represent a port graph as a pair consisting of the set of
node labels and the set of adjacency lists instead of the sets of nodes labels and edges.
An adjacency list for a node is the list of its neighbors with the corresponding edges as
pairs of ports.

The sort set S consists of sorts for each component or set of components needed for
encoding a port graph as an algebraic term:

S = {Id, Name, Port, Node, Edge, Neighbor , AdjacencyEq, PortSet, NodeSet,

EdgeSet, NeighborSet, AdjacencyEqSet, PGraph}

The subsort relation is defined by X < XSet for X ∈ {Port, Node, Edge, Neighbor ,
AdjacencyEq, PGraph}, i.e. each term of sort X can be seen as a set with a single
element.

The set of operation symbols F allowing to describe the port graph structure is given in
Figure 5.1 where X takes sort values from the set {Node, Edge, Neighbor , AdjacencyEq}.
The associative-commutative operator _,_ (union) is overloaded on each of the set sorts,
and ǫX denotes the identity element (the empty set) for the union operation _,_ on the
sort X. We use ǫ instead of ǫX whenever the sort X can be easily deduced from the
context. The constant operator • is overloaded as well, it can be an Id-, a Port- or a
Node-sorted term.

5.2.2 A Term Algebra for Port Graphs

Let X be an (S, <)-sorted family of variables. Let TΣ and TΣ(X) denote the algebra of
ground terms and the algebra of terms with variables in X respectively generated by the
signature Σ.

92

5.2 Term Encoding of Port Graphs

• : −→ Id • : −→ Port • : −→ Node ǫX : −→ XSet

, : XSet XSet −→ XSet [ACU(ǫX)]

〈_ : _ || _〉 : Id Name PortSet −→ Node

(_,_) : Port Port −→ Edge

⌢ : Id EdgeSet −→ Neighbor

_ ≏ _ : Id NeighborSet −→ AdjacencyEq

_L_M : NodeSet AdjacencyEqSet −→ PGraph

Figure 5.1: The operation set F

Definition 58 (Encoding port graphs as terms). We encode a port graph G = (V,E)
as an algebraic term E(G) = T1LT2M of sort PGraph where:

• T1 ∈ TΣ,NodeSet(X) represents the set of all node labels in G, and

• T2 ∈ TΣ,AdjacencyEqSet(X) is the set of adjacency equations providing the neighbors
for each node in V (if any) and the pairs of ports corresponding to the incident
edges.

Example 17. The port graph G illustrated in Figure 3.1 is encoded as the following
term:

E(G) = (〈1 : A || a, b, c〉, 〈2 : B || e〉, 〈3 : A || a, b, c〉, 〈4 : C || d〉)L
1 ≏ (2⌢(a, e), (b, e)), (3⌢(b, a))),
2 ≏ ǫ,
3 ≏ 4⌢(a, d),
4 ≏ 1⌢(d, c) M

Additionally, algebraic terms encoding port graphs must satisfy two structural prop-
erties in order to be considered well-formed. These two properties are also mentioned
in [Mes96] for the axiomatizating graphs as algebraic data types.

Definition 59 (Well-formed terms). A term t ∈ TΣ,PGraph(X) is well-formed if:

• each node identifier occurs at most once in the node set, in the adjacency equa-
tion set as left-hand side of an adjacency equation, in the neighbor set of a node
identifier;

• each node identifier or port occurring in the adjacency equation set must also occur
in the node set (i.e., there should be no “dangling edges”).

We also impose a canonical form (a representative of each equivalence class modulo
ACU) for the terms encoding port graphs, in order to eliminate useless information as
follows:

Definition 60 (Canonical form). A term t ∈ TΣ,PGraph(X) is in canonical form if:

93

5 Term Rewriting Semantics for Port Graph Rewriting

• the right-hand sides of adjacency equations are non-empty sets of neighbors;

• only non-empty set of edges occur in neighbor terms.

Example 18. The term in canonical form corresponding to G is the following:

(〈1 : A || a, b, c〉, 〈2 : B || e〉, 〈3 : A || a, b, c〉, 〈4 : C || d〉)L
1 ≏ (2⌢(a, e), (b, e)), (3⌢(b, a))),
3 ≏ 4⌢(a, d),
4 ≏ 1⌢(d, c) M

5.3 pg-Rewrite Rules

For all rewrite rules over TΣ,PGraph(X), according to Definition 48, we impose node
identifiers occurring in the left-hand side to be variables. We say that a rewrite rule over
TΣ,PGraph(X) is well-formed if both t1 and t2 are well-formed. We call pg-rewrite rule a
well-formed rewrite rule over TΣ,PGraph(X).

Definition 61 (Encoding port graph rewrite rules as term rewrite rules). Given a labeled
(weak) port graph rewrite rule L ; R, we encode it as a term rewrite rule E(L ; R) =
t _ t′ with t and t′ the canonical forms of E(L) and E(R) respectively.

The encoding of a (weak) port graph rewrite rule is an pg-rewrite rule since, by
definition, the term encoding a port graph is well-formed.

The node-morphism from nodes of the left-hand side to nodes of the right-hand side
of an pg-rewrite rule can be extracted automatically by means of an analysis on each
identifier occurrences. We call this procedure GetMap. It produces a set of elementary
mappings from TΣ,Node(X) to TΣ,NodeSet(X) for each node occurring in the left-hand side
of the rule. Identity mappings are usually omitted. The node-morphism for a port graph
rewrite rule is encoded as in the following example.

Example 19. The encoding of the port graph rewrite rule (a) given in Figure 3.4 is:

(〈i : X || x, z〉, 〈j : Y || y〉)Li ≏ j⌢(x, y), (z, y)M _

(〈i.1 : X.1 || x〉, 〈i.2 : X.2 || z〉, 〈j : Y || y〉)L(i.1 ≏ j⌢(x, y)), (i.2 ≏ j⌢(z, y))M

with the node-morphism

ξ = {〈i : X || x, z〉 7→ (〈i.1 : X.1 || x〉, 〈i.2 : X.2 || z〉)),
〈j : Y || y〉 7→ 〈j : Y || y〉}

5.4 Extending the pg-Rewrite Rules

After encoding port graphs and their transformation rules, we continue with some
preparatory steps before encoding the port graph rewriting relation into a term rewriting
relation.

94

5.4 Extending the pg-Rewrite Rules

In a first step we customize the rewrite rules on TPGraph(X) before applying them. In
order to model port graph rewriting using algebraic terms, we need to handle the context
of the port graph in which the replacement is performed. This is done by a systematic
enrichment of rewrite rules with extension variables that help storing the context and
applying rewrite steps in subterms. This is a usual method employed when performing
rewriting modulo associativity and commutativity [KM01]. We usually denote by W
an extension variable and by t the extension of term t. For each rewrite rule t1 _
t2, extension variables are appended to set-sorted terms to produce the extended rule
(t1 _ t2). An extension variable is added to each set-sorted subterm in the left-hand
side (and accordingly in the right-hand side). This technical construction is formalized
in the definition below. For this operation we consider also the trivial node-morphisms,
t 7→ t with t ∈ TΣ,Node(X).

Definition 62 (Extending an pg-rewrite rule). The extension of a pg-rewrite rule
t1 _ t2, where ξ is its node-morphism, consists in adding extension variables for the
set operators according to the following steps:

1. Extend the node-morphism in the case of weak port graphs
If ξ = {ξ1, . . . , ξm} then its extension is ξ = {ξ1, . . . , ξm}. For each elemen-
tary node-morphism ξk = {〈i : t || P 〉 〈i1 : t1 || P1〉, . . . , 〈in : tn || Pn〉 with
P, P1, . . . , Pn ∈ TΣ,PortSet(X), its extension is:

ξk = 〈i : t || P,W1, . . . ,Wn〉 〈i1 : t1 || P1,W1〉, . . . , 〈in : tn || Pn,Wn〉

where {Wk}k=1..n are pairwise distinct and fresh extension variables of sort PortSet.
If ξk = 〈i : t || P 〉 • then ξk = 〈i : t || P,W 〉 •, with W a fresh extension
variable of sort PortSet.

2. Extend the left-hand side of the rule
If t1 = N1LA1M, its extension is t1 = N1LA1M where:

• N1 is obtained from N1 by replacing each Node-term by its extension as com-
puted for the node-morphism and appending a fresh extension variable of sort
NodeSet;

• A1 is obtained from A1 by adding a new extension variable for each term of
sort EdgeSet, NeighborSet, AdjacencyEqSet.

3. Extend the right-hand side of the rule
If t2 = N2LA2M and t1 = (u1, . . . , um,W1)La1, . . . , al,W2M then t2 = N2LA2M where:

• N2 = (ξ(u1), . . . , ξ(u1)) ↓R,W1, {〈i : v || P 〉 ∈ N2 | i /∈ dom(ξ)}, where R are
the rules for transforming a term in canonical form;

• A2 = A2, (a1 \ a1), . . . , (al \ al) where \ computes the difference between adja-
cency equations which consists in removing the edges appearing in the right-
hand side from the left-hand side (for example (X ≏ (Y⌢x, L1), L2) \ (X ≏
Y⌢x)) = (X ≏ (Y⌢L1), L2)).

95

5 Term Rewriting Semantics for Port Graph Rewriting

Example 20. The extension of the rule given in Example 19 is:

(〈i : X || x, z,W p
1 ,W

p
2 〉, 〈j : Y || y,W p

3 〉,W
n
4)L(i ≏ (j⌢((x, y), (z, y),W e

5)),W h
6),W a

7 M _

(〈i.1 : X.1 || x,W p
1 〉, 〈i.2 : X.2 || z,W p

2 〉, 〈j : Y || y,W p
3 〉,W

n
4)L(i.1 ≏ j⌢(x, y)),

(i.2 ≏ j⌢(z, y)), (i ≏ (j⌢W e
5),W h

6),W a
7 M

with the node-morphism ξ = (〈i : X || x, z,W p
1 ,W

p
2 〉) 7→ 〈i.1 : X.1 || x,W p

1 〉, 〈i.2 :
X.2 || z,W p

2 〉), (〈j : Y || y,W p
3 〉) 7→ {〈j : Y || y,W p

3 〉) where the extension variables
Wi have appropriate set sorts. The exponents used for the extension variables indicate
their set sort: p for PortSet, n for NodeSet, e for EdgeSet, h for NeighborSet, a for
AdjacencyEqSet.

5.5 Auxiliary Operations and Reduction Relations

In this section we define some operations necessary for the definition of the rewriting
relation.

5.5.1 Instantiation of a Node-Morphism

Let σ be a substitution and ξ a node-morphism. We denote by ξσ the instantiation by
σ of variables occurring in ξ computed component-wise:

{ti 7→ ti1, . . . , t
i
ki | i ∈ I}

σ = {σ(ti) 7→ σ(ti1), . . . , σ(tik) | i ∈ I}

5.5.2 Node-Morphism Application

The application of a node-morphism ξ to a term encoding a port graph as we have
introduced in in Definition 44 consists in applying sequentially each elementary node
mapping of ξ on the term. This is achieved by reducing the term ξ(NLAM) using the
term rewrite system A from Figure 5.2. In the following we explain each rule from A.
An elementary node mapping is propagated inside an PGraph-sorted term using the rule
(Propagate), inside the set of adjacency equations of neighbors using the rule (Distribute),
and then applied on each of them. The application of a node-morphism on an adjacency
equation using the rule (ApplySrc) (or a neighbor using the rule (ApplyTar)) transforms
it in n adjacency equations (neighbors respectively), one for each corresponding node in
the right-hand side of the mapping, and propagates the node-morphism application on
the set of neighbors. We illustrate the node-morphism application in Example 21.

Proposition 7. A is strongly terminating and confluent.

Proof. The reduction of ξ(NLAM) using A terminates since ξ is a finite set of mappings
and each mapping traverses the term NLAM using the rules (Propagate), (Distribute), and
(ApplySrc), to be eliminated in the end by the rule (ApplyTar).

96

5.5 Auxiliary Operations and Reduction Relations

i : Id; t, t1, . . . , tn : Node; N,T : NodeSet; A : AdjacencyEqSet; S1, . . . , Sk : XSet;

V : NeighborSet; E : EdgeSet

(Propagate) {t 7→ T}NLAM→ NL{t 7→ T}AM

(Distribute) {t 7→ T}(S1, . . . , Sk)→ {t 7→ T}S1, . . . , {t1 7→ t2}Sk

(ApplySrc) {t 7→ t1, . . . , tn}(i ≏ V)→

if id(t) 6= i then i ≏ ({t 7→ t1, . . . , tn}V)

else id(t1) ≏ ({t 7→ t1, . . . , tn}V), . . . , id(tn) ≏ ({t 7→ t1, . . . , tn}V)

(ApplyTar) {t 7→ t1, . . . , tn}(i⌢E)→

if id(t) 6= i then i⌢E else id(t1)⌢E, . . . , id(tn)⌢E

Figure 5.2: Rules for node-morphism application (A)

Since all mappings in ξ are pairwise distinct on the mapped node, there are no critical
pairs among the rules in A. Hence A is locally confluent, and, since it is terminating, A
is also confluent.

After applying a node-morphism on a PGraph-term, the resulting term may be neither
well-formed, nor in canonical form, or it may contain black holes. For this purpose we
define in the following reductions for cleaning and computing the canonical form.

5.5.3 Rules for Ensuring Well-Formedness

Let W be the rewrite system defined by the rules presented in Figure 5.3. These rules
transform terms with respect the condition of well-formedness of PGraph-sorted terms
specified in Definition 59 as follows:

(w1) deletes the adjacency equations for black holes;

(w2) deletes the black hole neighbors;

(w3) deletes extra-edges (edges whose endpoints do not appear among the ports of the
connected nodes).

The extra-edges may occur after the application of the node-morphism according to
(ApplySrc) and (ApplyTar) on adjacency equations and neighbors respectively, without
checking the connectivity between the new nodes. For v a node identifier, ports(v) will
return the set of ports of the node. This condition could be avoided by considering
PGraph-sorted terms in both sides of the rule (w3) with the set of nodes containing the
term encoding the node identified by v, and the set of adjacency equations containing the
sides of the rule (w3) respectively. In the particular case of the black hole, ports(•) = ∅.

In Example 21 we illustrate a reduction using the rules in W.

97

5 Term Rewriting Semantics for Port Graph Rewriting

u, v : Id, t1, t2 : NeighborSet, t3, t4 : EdgeSet, p, r : Port

(w1) • ≏ t1 → ǫAdjacencyEq

(w2) •⌢t3 → ǫNeighbor

(w3) (v ≏ t1, (u⌢t3, (p, r), t4), t2)→ (v ≏ t1, (u⌢t3, t4), t2)

if p /∈ ports(v) or r /∈ ports(u)

Figure 5.3: Rules for reducing a term to a well-formed term (W)

Proposition 8. W is strongly terminating and confluent.

Proof. W terminates since every rule is just removing a term element of a set-like term
and the terms are finite.
W is locally confluent since the two critical pairs produced by (w1) with (w3) and

(w2) with (w3) are joinable:

• ≏ t1, (u⌢t3, (p, r), t4), t2

w1

vvmmmmmmmmmmmmmmmm

w3 **VVVVVVVVVVVVVVVVV

ǫ • ≏ t1, (u⌢t3, t4), t2
w1

��
ǫ

v ≏ t1, (•⌢t3, (p, r), t4), t2

w2
uukkkkkkkkkkkkkkk

w3 **UUUUUUUUUUUUUUUUU

v ≏ t1, t2 v ≏ t1, (•⌢t3, t4), t2

w2

��
v ≏ t1, t2

W is terminating and locally confluent, hence W is confluent.

A direct consequence of the result above is that any term t has a unique normal form
with respect to the reduction relation induced by W, which we denote by t↓W .

5.5.4 Computing the Canonical Form

Let C be the rewrite system defined by the rules in Figure 5.4. These rules transform
terms in the canonical form specified by Definition 60 as follows:

(c1) merges nodes having the same identifier into one node by merging their port sets;

(c2) deletes a neighbor with empty set of edges;

98

5.6 The pg-Rewriting Relation

(c3) merges the associated sets of edges for identical neighbors;

(c4) deletes adjacency equations with empty set of neighbors;

(c5) merges adjacency equations having the same identifier in the first component into
one adjacency equation by merging the sets in the second component.

v : Id, n : Name, t1, t2 : PortSet, t3, t4 : NeighborSet, t5, t6 : EdgeSet

(c1) 〈v : n || t1〉, 〈v : n || t2〉 → 〈v : n || t1, t2〉

(c2) v⌢ǫEdge → ǫNeighbor

(c3) (v⌢t5), (v⌢t6) → v⌢t5, t6

(c4) v ≏ ǫNeighbor → ǫAdjacencyEq

(c5) (v ≏ t3), (v ≏ t4) → v ≏ t3, t4

Figure 5.4: Rules for computing a canonical form (C)

Using the same proof technique as for Proposition 8, we can prove the following result:

Proposition 9. C is strongly terminating and confluent.

Proof. C is terminating since each rule decrements the number of elements in a set-like
term. The both critical pairs between (c2) and (c3), and between (c4) and (c5) are
obviously joinable, hence C is locally confluent.

We denote by t ↓C the unique normal form of a term t with respect to the reduction
relation induced by C.

5.6 The pg-Rewriting Relation

We are now ready to define the pg-rewriting relation. Operationally, we apply extended
rewrite rules which allow us to deal only with rule application at the root position of
terms.

Definition 63 (pg-rewriting relation). A term t of sort PGraph rewrites to a term t′

using a pg-rewrite rule r : t1 _ t2 with r : t1 _ t2 and ξ = GetMap(r), which is denoted

by t
r
_ t′, if there exists a substitution σ, a solution of the ACU-matching problem

t1 ≪ t, such that t′ = ξσ(σ(t2))↓W↓C. We call this relation pg-rewriting and we say that
t pg-rewrites to t′ by r.

Example 21. We present here a result of pg-rewriting the term t = E(G) from Exam-
ple 17 encoding the port graph from Figure 3.1, using the rewrite rule t1 _ t2 given in

99

5 Term Rewriting Semantics for Port Graph Rewriting

Example 19 and extended in Example 20 which encodes the port graph rewrite rule (a)
from Figure 3.4. This result of the pg-rewriting corresponds to the port graph rewriting
depicted in Figure 3.8.

1. one solution of the matching problem t1 ≪ t is given by the substitution:

σ = {i 7→ 1, X 7→ A, x 7→ a, z 7→ b, j 7→ 2, Y 7→ B, y 7→ e, W p
1 7→ ǫ,

W p
2 7→ c, W p

3 7→ ǫ, Wn
4 7→ (〈3 : A || a, b, c〉, 〈4 : C || d〉), W e

5 7→ ǫ,

W h
6 7→ 3⌢(b, a), W a

7 7→ ((3 ≏ 4⌢(a, d)), (4 ≏ 1⌢(d, c))}

2. we instantiate t2 by σ:

σ(t2) = (〈1.1 : A.1 || a〉, 〈1.2 : A.2 || b, c〉, 〈2 : B || e〉, 〈3 : A || a, b, c〉, 〈4 : C || d〉)L
1.1 ≏ 2⌢(a, e),
1.2 ≏ 2⌢(b, e), (3⌢(b, a)),
3 ≏ 4⌢(a, d),
4 ≏ 1⌢(d, c) M

and we note the occurrence of the node identifier 1 in the adjacency equation set
which is no longer a valid node identifier in this term;

3. we instantiate the node-morphism ξ by σ:

ξσ = 〈1 : A || a, b, c〉 7→ 〈1.1 : A.1 || a〉, 〈2.2 : A.2 || b, c〉,
〈2 : B || e〉 7→ {〈2 : B || e〉

4. we apply the instantiated node-morphism on σ(t2):

ξσ(σ(t2)) →+
A (〈1.1 : A.1 || a〉, 〈1.2 : A.2 || b, c〉, 〈2 : B || e〉, 〈3 : A || a, b, c〉,
〈4 : C || d〉)L
1.1 ≏ 2⌢(a, e),
1.2 ≏ 2⌢(b, e), 3⌢(b, a),
3 ≏ 4⌢(a, d),
4 ≏ 1.1⌢(d, c), 1.2⌢(d, c) M

with (ApplyTar) being the last rule used in the reduction on 4 ≏ 1⌢(d, c);

5. we compute the well-formed term using W:

ξσ(σ(t2)) ↓W = (〈1.1 : A.1 || a〉, 〈1.2 : A.2 || b, c〉, 〈2 : B || e〉, 〈3 : A || a, b, c〉,
〈4 : C || d〉)L
1.1 ≏ 2⌢(a, e),
1.2 ≏ 2⌢(b, e), 3⌢(b, a),
3 ≏ 4⌢(a, d),
4 ≏ 1.2⌢(d, c) M

using the reduction 4 ≏ 1.1⌢(d, c), 1.2⌢(d, c)
(ExtraEdges)
−−−−−−−−→ 4 ≏ 1.2⌢(d, c) since the

port c does not occur in the port set of the node identified by 1.1, but it occurs in
the port set of the node identified by 1.2;

100

5.7 Operational Correspondence

6. in the end we compute the canonical form using C; however no rule is applied:

ξσ(σ(t2)) ↓W↓C = ξσ(σ(t2)) ↓W

The above solution σ of the matching problem leads to the result term ξσ(σ(t2)) ↓W↓C
which in fact is the term encoding of the port graph G′ in Figure 3.8.

Proposition 10. If t pg-rewrites to t′ and t is a well-formed term in canonical form
then t′ is well-formed and in canonical form.

Proof. The uniqueness of the occurrences of a node identifier in the node set is ensured
by the normalization with respect to (c1), in the adjacency equation set as left-hand side
of an adjacency equation by the normalization with respect to (c5), and in the neighbor
set by the normalization with respect to (c3).

Since t is well-formed, the application of a pg-rewrite rule does not introduce new
node identifiers in the adjacency equation list without introducing them as well in the
node set. The occurrences of ports that no longer exist (since the node they were placed
in was deleted) are removed from the adjacency equation set using the rules (w1) and
(w2). In addition, the normalization with respect to the rule (w3) ensures the exclusive
presence of edges with valid ports.

The rules (c2) and (c4) eliminate adjacency equations with empty sets of neighbors
and neighbors with empty sets of edges.

In conclusion, since t′ is irreducible with respect to W and C by definition, it results
that t′ is well-formed and in canonical form.

Remark 7. Since a port graph rewrite rule has a port graph representation, then the
encoding presented here for the port graph rewriting relation handles as well all types
of abstraction considered in the ρpg-calculus (Chapter 4).

5.7 Operational Correspondence

In this section we show that the encoding of the weak port graph rewrite relation from
Chapter 3 as a term rewriting relation is sound and complete.

Theorem 5 (Operational correspondence).

1. Let G,G′ be two port graphs, r a weak port graph rewrite rule and m a port graph
morphism such that G

r
; G′ using m. Then there exists a substitution σ and a

term t′ such that E(G)
E(r)
−_ t′ using the substitution σ and t′ = E(G′).

G
r
m

///o/o/o/o/o/o/o/o/o

E
��

G′

E
��

E(G) = t
E(r)

∃σ
// ∃t′

101

5 Term Rewriting Semantics for Port Graph Rewriting

2. Let G be port graph, t = E(G), t1 _ t2 a pg-rewrite rule, and t′ such that t
t1_t2
−_ t′

with σ the solution of the matching t1 ≪ t used in the rewriting. Then there exist

a) a weak port graph rewrite rule r satisfying E(r) = t1 _ t2,

b) a port graph morphism that can be constructed using σ and the structures of
t and G, and

c) a port graph G′ such that G
r
; G′ using the matching morphism m and

E(G′) = t′.

E(G) = t
t1_t2
σ

// t′

G

E

OO

∃r s.t. E(r)=t1_t2

∃m
///o/o/o/o/o/o/o/o/o/o/o/o/o ∃G′

E

OO

Proof. 1) We start by encoding the weak port graph rewrite rule r = G1 ; G2 as
E(r) = t1 _ t2 and extending it.

Let us compute a substitution σ′ based on the matching morphism m. For each
mapping of the type m(i) = i′, with Interface(i) = (n, P) and Interface(i′) = (n′, P ′) we
define σ′(i) = i′, and if n is variable then σ′(n) = n′. While for each mapping m(p) = p′

with p, p′ : Port, if p is variable then σ′(p) = p′.
At this point σ′(t1) contains as variables only extension variables which capture sets

of nodes, ports, adjacency equations, neighbors, and edges. By solving the matching
problem σ′(t1)≪ t we recover a substitution σ′′ for the extension variables. During the
solving process of the matching problem σ′(t1) ≪ t, we replace a matching equation
u≪ v with u, v ∈ TΣ,Node(X) by ξ(u)≪ ξ(v) and solve it. This ensures us to choose the
same partition for the port sets as for the unmatched partial nodes in the port graph
rewriting process.

Let us define σ as the composition of σ′ and σ′′. Then the mapping ξσ is built to mimic
the connection process between nodes of G− and m(G2) by handling the unmatched
partial nodes, the unmatched edges and the bridges. The unmatched partial nodes are
replaced by their correspondents, the endpoints of unmatched edges are updated, and
the dangling bridges are redirected by applying ξσ to σ(t2). Consequently, ξσ(σ(t2)) is a
representation of G−[m(G2)]m(ξ)(Un),m(ξ)(Ue),m(ξ)(B). Then normalization with respect to
the rules inW corresponds to removing deleted nodes and ports and their incident edges.
In the end, we make sure the term is well-formed and in canonical form by normalizing
with respect to the rules in C. We thus get a term t′ which is indeed E(G′).

2) Let us first define recursively the inverse operation of the encoding E , which we denote
by E−1:

E−1(NLAM) = (E−1(N), E−1(A)), if NLAM is well-formed and in canonical form

E−1(T1, . . . , Tk) = {E−1(T1), . . . , E−1(Tk)}, for T1, . . . , Tk a set-like term

E−1(〈i : n || P 〉 = i with Interface(i) = (n, E−1(P))

102

5.8 Relation to the ρ-Calculus

E−1(p) = p

E−1(i ≏ N1, . . . , Nk) = E−1(i ≏ N1) ∪ E−1(i ≏ Nk)

E−1(i ≏ j⌢(p1, r1), . . . , (pk, rk)) = {(i⌢p1, j
⌢r1), . . . , (i⌢pk, j⌢rk)}

E−1(t1 _ t2) = E−1(t1) ; E−1(t2)

Let G1 ; G2 = E−1(t1 _ t2), and let σ′ be the restriction of σ on non-extension
variables (hence it maps variable node identifiers, node names and ports). If we consider
the set of nodes encoded by t1, the substitution σ′ and the identity mapping for the rest
of the node identifiers, node names, and ports not in the domain of σ′, we are able to
construct the corresponding matching morphism for G1 and G.

Let t′1 be a term obtained from t1 by keeping only the structure along with the node
identifiers, node names, and extension variables; then, once they are instantiated by σ:

• the subterms 〈i : n || W 〉 encode unmatched partial nodes,

• the extension variable of sort NodeSet encodes the context nodes,

• the subterms i ≏ (j⌢W1),W2 encode unmatched edges and bridges if i, j 6= •,

• the extension variable of sort NeighborSet encodes bridges and context edges.

Since E−1(σ(t1)) = G and E−1(σ(t1)) = m(G1), we saw above that G is a composition
of m(G1), unmatched partial nodes and edges, bridges, and a context graph. Hence we
can write G = G−[m(G1)]Un,Ue,B.

The ACU-matching algorithm returns all solutions for the extension variables corre-
sponding to all partitions of the port sets in the unmatched partial nodes. Since among
all solutions, the substitution σ is chosen, then ξσ provides the right partition of the port
sets needed for updating the unmatched partial nodes via the node-morphism in the port
graph rewriting. Hence we obtain a resulting graphG′ = G−[m(R)]m(ξ)(Un),m(ξ)(Ue),m(ξ)(B)

which is encoded by t′.

There is also a correspondence between all possible results of rewriting a port graph
G using a rule G1 ; G2 and a morphism m, and possible results of rewriting t = E(G)
using t1 _ t2 = E(G1 ; G2) since all solutions of the matching t1 ≪ t have as common
basis the encoding of m, but different mappings for the extension variables. Hence,
while the application for port graphs of the node-morphism on unmatched partial nodes
produces k results, the application of node-morphism for a term produces a term and
the k solutions arise from different solutions of the ACU-matching problem with the
extension variables.

5.8 Relation to the ρ-Calculus

Based on the encoding of the port graph rewriting relation as defined in Section 5.6, we
instantiate the ρ-calculus for terms encoding port graphs as follows:

103

5 Term Rewriting Semantics for Port Graph Rewriting

• take for K the operation symbols in F with the partial ordered set of sorts (S, <)
and for X an (S, <)-sorted family of variables;

• consider as patterns well-formed terms in canonical form in TΣ,PGraph(X);

• consider only port graph rewrite rules corresponding to the possible types of ab-
straction in the ρpg-calculus (Chapter 4).

We benefit in addition of the structure operator which allows grouping rules or results
of applications.

As for the semantics, while (δ) dealing with the distributivity of the application over
structures is taken as such from the ρ-calculus, we need a new rule for the application
of a rewrite rule t1 _ t2 on a well-formed term t3 in canonical form as follows:

(ρtpg) (t1 _ t2) t3 →ρ S(ς1(t2)) ≀ . . . ≀ S(ςn(t2)),

if Sol(t1 ≪ t3) = {σ1, . . . , σn}, ξ = GetMap(t1 _ t2), ςi = σi ◦ ξ
σi

where t1 _ t2 is the extended rule associated to t1 _ t2, the matching problem is solved
using an ACU-matching algorithm, and S is a strategy which reduces a term to its normal
form with respect to rewriting systems W and C, i.e., to a canonical well-formed term.

We obtain this way a term rewriting calculus for port graphs, which is an instance of
ρ-calculus, and we call it the ρtpg-calculus.

5.8.1 Comparison with the Higher-Order Calculus for Graph Transformation

M. Fernandez, I. Mackie, and J. S. Pinto introduced in [FMP07] a higher-order calculus
for graph Transformation Using a syntax based on the Combinatory Reduction Systems
(CRSs) [Klo80] and on the equational notation for term-graph rewriting. In this calculus
a (hyper)graph is a term of the form η[x1, x2, . . . , xn].{s | t} where s is a set of variables
representing the interface of the graph (the nodes where the graph may be glued with
other graphs), t the list of edges (with each edge given by its label and endpoints),
and the binder η hiding all nodes x1, x2, . . . , xn that are not in the interface. Then for
L⇒ R a graph transformation rule, L and R are encoded by two terms l and r as above
such that their interfaces define a mapping between the nodes of L and R. The graph
transformation rule is transformed basically into a rule of the form Z(l)⇒ Z(r) with Z
a metavariable corresponding to the context.

In this chapter, we have encoded port graphs as algebraic terms over a first-order
signature. However, by adding context variables, we have obtained an extension of a
port graph rewrite rule in the similar way as in the higher-order calculus for graph
transformation.

5.8.2 The Relation between the ρpg-Calculus and the ρtpg-Calculus

In Figure 5.5 we review the relations between the calculi we developed until now:

104

5.9 Conclusions

• the ρ〈Σ〉-calculus generalizing the γ-calculus based on the pattern matching idea
from the ρ-calculus on an arbitrary structure described by Σ;

• the ρpg-calculus instantiating the ρ〈Σ〉-calculus using the port graph structure and
the port graph rewriting relation;

• the ρtpg-calculus as a rewriting calculus on algebraic terms encoding port graphs.

Therefore the ρpg-calculus is based on the ρtpg-calculus in a similar way the ρ〈Σ〉-
calculus is based on the ρ-calculus.

used in

γ-calculus ρ-calculus

port graphs

port graph

rewriting

ρtpg-calculus

Σ

algebraic terms

ρ〈Σ〉-calculus

ρpg-calculus

encoded as encoded as

based on

instance of instance of

instance of

pg-rewriting

based on

used in

used in

Figure 5.5: Relations between the ρ〈Σ〉-calculus, the ρpg-calculus, and the ρtpg-calculus

5.9 Conclusions

In this chapter we provided a sound and complete axiomatization of port graphs and
port graph rewriting using terms from a suitable first-order algebra and a term rewriting
relation. A term encoding a port graph consists of two subterms, one for the set of node
labels, and the other for the set of adjacency equations for each node. We have defined a
rewriting relation such that the rewrite rules are applied at the top position of terms. As
a consequence, we have instantiated the ρ-calculus with the algebraic signature for port
graphs, the class of patterns and abstractions corresponding to the abstractions used in
the ρpg-calculus, and the pg-rewriting relation, and we obtained a rewriting calculus for
terms encoding port graphs.

105

5 Term Rewriting Semantics for Port Graph Rewriting

In the implementation of port graphs using TOM [BBK+07b] for modeling the bio-
chemical example presented in Chapter 6, we preferred a representation similar to the
one in [Mes96]: a set of terms encoding the nodes as identifier, name, and list of imme-
diate neighbors. The main lines of this implementation are presented in Appendix C.
We have used an encoding more efficient for programming by representing a port graph
by its node set and each edge by a pointer to the target port associated to the source
port. The gain in efficiency is provided by the pointers introduced in [BB07] for a term
graph rewriting implementation which handles cyclic term graphs as well. In addition,
the use of pointers and TOM’s maximal sharing is very important in order to cope with
computer representation of large terms. A further development of this implementation
would be to generalize to rewriting terms encoding port graphs. We could benefit from
the traversal strategies in TOM to improve the implementation, in particular the research
of particular patterns.

The encoding we presented here is focused on port graphs and port graph rewriting,
nevertheless it can be used for graphs and graph rewriting. The syntax proposed by
higher-order calculus for graph transformation based on CRSs is more general and ex-
pressive since the aim of the calculus is to encompass graph and term-graph rewriting
systems [Plu99], Interaction Nets [Laf90], Interaction Systems [AL94], non-deterministic
nets [Ale99], and process calculus. In consequence, based on the similarity between the
ways of encoding graphs as as we did and using the CRS-based syntax in [FMP07], we
could imagine a calculus based on port graph rewriting for simulating the other graphical
formalisms mentioned above. In particular, the Interaction Nets represent a formalism
that could be easily encoded by port graphs since an agent (a node) has distinguished
ports.

106

6 Case Studies for the ρpg-calculus

In this chapter we analyze two applications for the ρpg-calculus. In the first part we show
that the extension from higher-order chemical model to the biochemical calculus based
on strategic port graph rewriting preserves the good properties of modeling autonomous
systems. We illustrate its expressivity for modeling properties of such systems using an
example of a mail delivery system. In the second part we instantiate the ρpg-calculus
for modeling interactions between proteins and generating a biochemical network. The
motivation of this second case study comes naturally from the biological inspiration
model for port graphs.

6.1 Autonomic Computing

Autonomic computing [KC03] refers to self-manageable systems initially provided with
some high-level instructions from administrators. This is a concept introduced in 2001
with an intended biological connotation: the simplest biological example is that of the
human nervous system where the brain does not need to handle all low-level still vital
functions of the body. The four most-important aspects of self-management as presented
in [KC03] are self-configuration, self-optimization, self-healing, and self-protection.

This idea of biologically inspired formalism gained much interest with the recent de-
velopment of large scale distributed systems such as service infrastructures and Grids.
For such systems, there is a crucial need for theories and formal frameworks to model
computations, to define languages for programming and to establish foundations for
verifying important properties of these systems. Several approaches contributed to this
ambitious goal. Without exhaustivity, let us mention in particular the brane calcu-
lus [Car05b, DP04] and the bigraphical reactive systems [Mil06], but also several for-
malisms inspired from biology such as [CG00, RPS+04, LT07, QLF+06].

The chemical programming as formalized by HOCL uses the chemical reaction metaphor
to express the coordination of computations and it proved to be well-suited for modeling
self-organizing and autonomic systems or grids in particular [BFR06a, BFR07]. Beyond
the chemical programming idea, another approach presented in [CBL04], called the Or-
ganic Grid, is similarly a radical departure from current approaches and is inspired by
the self-organization property of complex biological systems.

In this section, we propose port graphs as a formal model for distributed resources.
Each resource is modeled by a node with explicit connection points called ports. We
model the lack of global information, the autonomous and distributed behavior of com-
ponents by a multiset of port graphs and rewrite rules which are applied locally, con-
currently, and non-deterministically. Moreover strategic port graph rewriting takes into
account control on computations by allowing us to chain rewrite rules. By moving from

107

6 Case Studies for the ρpg-calculus

port graph rewriting to the ρpg-calculus, we are able to express rules and strategies as
port graphs and so to rewrite them as well. The ρpg-calculus also permits the design of
rules that create new rules. We apply this formalism for a mail delivery system example
borrowed from [BRF04] and illustrate through this example the additional expressivity
brought by strategic rewriting. This work was presented in [AK08c, AK08b].

6.1.1 Strategy-Based Modeling of Self-Management

In autonomic computing, systems and their components reconfigure themselves auto-
matically according to directives (rules and strategies) given initially by administrators.
Based on these primary directives and their acquired knowledge along the execution,
the systems and their components seek new ways of optimizing their performance and
efficiency via new rewrite rules and strategies that they deduce and include in their own
behavior. Since there is no ideal system, functioning problems and malicious attacks or
failure cascades may occur, and the systems must be prepared to face them and to solve
them. In the following, we show how the properties of self-configuration, self-healing,
self-protection and self-optimization can be handled by the autonomic mail delivery sys-
tem inspired from [BRF04] and modeled using the ρpg-calculus. For this purpose some
additional rewrite rules are defined.

In addition to the previously presented concepts, we assume a few more information
available in the nodes and ports, which corresponds to existing notions in graph theory.
In particular, each port has a degree information that counts the number of incoming
and outgoing edges connecting it to other nodes of the object port graph. In our running
example, this information allows us to express, through conditions in the rules, that a
port is saturated, or on the contrary that it has no incident edge. Graphically, we
represent the condition that a port has the incidence degree 0 by a slashed dangling
edge connected to the port. If we do not consider the incidence degree information for
the ports, the previous condition correspond to a negative application condition in the
graph transformation framework [HHT96].

Example 22 (A mail delivery system). In order to illustrate our approach and the pro-
posed concepts, we develop the example of a mail delivery system borrowed from [BRF04].
It consists of a network of several mail servers, each with its own address domain; the
clients send messages for other clients first to their server domain, which in turn forwards
them to the network and recovers the messages sent to its clients. Servers are distributed
resources with connections between them, when sending and receiving the messages.

In Figure 6.1 we illustrate an initial configuration of the mail delivery system. The
network is a node with several ports, each port being connected to at most one server. A
server node has a handler port for connecting to the network, and several ports for the
clients. A client node has a handler port for connecting to a server. All client, server and
network nodes have two ports for the incoming and outgoing messages respectively. Mes-
sages are nodes with only one port and their names have the form (rec @ domain # m)
where rec is the identifier of the recipient client, domain is the identifier of the server
domain, and m the body of the message. If redundant, the domain and/or the client

108

6.1 Autonomic Computing

identifiers are removed (when arrived in the server domain or at the client). In the
system, the server identified by 5 is disconnected from the network node, hence it is in
a crashed state.

s2
s4

s3c1in

1:Network2:Server7:Client

h
s1

h

3:Server

h

4:Server

5:Server

h

h

c2

in

6:Client

h

out

out

c1

c2

in

8:Client

h

out

m'

8@4#m

6@2#n

in i/o
in

in
in

in

9:Client

h

out
c1

out

out

out

out

Figure 6.1: A mail system configuration

The evolution of the distributed system is modeled via port graph transformations,
themselves expressed by port graph rewrite rules and the generated rewriting relation.
To support intuition, in the mail system example, rules express what happens when a
client sends a mail to a client in the same network.

c

k:Serveri:Client

hout j@k#m in c

k:Serveri:Client

hout j@#min

c

k:Serveri:Client

hout j@l#m out c

k:Serveri:Client

hout j@l#mout
if k<>l

c

k:Serveri:Client

hin i@#min c

k:Serveri:Client

hin m in

out

k:Server

 j@l#m h

i:Network

s out

k:Server

 j@l#mh

i:Network

s i/oi/o

in

k:Server

 j@k#mh

i:Network

s i/o in

k:Server

 j@#m h

i:Network

s i/o

r1

r2

r3

r4

r5

Figure 6.2: Basic rules for the mail delivery system

109

6 Case Studies for the ρpg-calculus

We illustrate in Figure 6.2 the basic rules for the mail system. Since the correspondence
between the left- and right-hand sides of the rules are the identities, we simplify the
graphs by not detailing the arrow node. A mail sent by a client goes to its server: if the
mail is sent to a client in the same server domain then it goes to the input port by r1,
otherwise to the outgoing port by r2. By rule r3 a server forwards a mail to a client if
he is the recipient. Rule r4 specifies that a server forwards a mail to the network if its
recipient is not in the domain, while rule r5 specifies that the network forwards a mail
to the appropriate server according to the server domain information contained in the
mail.

Self-configuration

The self-configuration is simply described by the concurrent application of the five rules
given in Figure 6.2 using the reduction semantics of the ρpg-calculus.

Rule r6 in Figure 6.3 specifies that a client recipient of a mail telling him to migrate
to a server k′ does so if the server k′ has a free client port. We model a free client port
on the server k′ by a condition on its degree, specifying that there is no incident edge to
that port. In a more visual way, we pictured this condition with a slashed edge. But how
to deal with mails that will probably arrive later on the server k for the client i? The
problem is solved by introducing in the system a new rule that will update the address
of the migrating clients. It is possible that the application of a rewrite rule on a port
graph introduces, besides modifying the port graph, a new rewrite rule. In addition,
before a client migrates, he must get all mails addressed to him that are already on the
server; this is modeled via the strategy first(repeat(r3), r6).

Another interesting problem may concern the operations of replacing a server by two
or more server or, in the other way around, replace a group of servers by one server.
Then biologically inspired port graph rules from Figure 3.4 (a) and (d) for splitting and
merging nodes could be applied as well for servers.

Self-healing

An autonomic system detects when a server crashes and the connection of the crashed
server to the network is cut. It is expected to repair the problem of the clients connected
to the crashed server and of the mails that were about to be sent from that particular
server. Rule r7 creates a temporary server named TServer as a copy of the crashed
server and connects it to the network (assuming there is a procedure checking if a server
failed). The arrow node of the rule encodes the correspondence of all ports of the server
node k, and consequently, all connections with the crashed server are recovered by the
temporary server. Note that, for simplifying the graphical representation, we do not
include all edges incident to the arrow node, but just the relevant ones.

Since the server replacing the crashed one is temporary, all the clients must try rapidly
to connect to other servers which are not fully occupied (rule r8). We graphically
express that the server node j has a free client port, i.e., with no incident edges. The

110

6.1 Autonomic Computing

k:Server

h

i:Network

s

k.0:TServer

h

i:Network

s

k.0:TServer

h

i:Network

s1

l:Client

h

c c'

j:Server

hs2

r8

k.0:TServer

h

i:Network

s1c c'

j:Server

hs2

l:Client

h

 l@k#m l@j#m

l.0:TServer

h

i:Network

s j@k#m out i/o r9

l.0:TServer

h

i:Network

s j@k#mout i/o

l.0:TServer

h

i:Network

s j@k#m in i/o r10

l.0:TServer

h

i:Network

s j@k#min i/o

k.0:TServer

in

l:Client

h cin l@#m
r11

k.0:TServer

in

l:Client

h cin m

k:Server

i:Client

c

h

k':Server

c'

j:Network

s1 s2h h

k:Server

c

k':Server

i:Client

c'

h

i:Network

s1 s2h h

r6

 i@k#m i@k'#m

k:Server

h

 move(k')in

r7
if failure(k)

Figure 6.3: Rules for self-configuration and self-healing in the mail delivery system

mails are forwarded to the network node via the rules r9 and r10. But all this must
not happen before sending the mails already there to the clients of the crashed server
(rule r11). Instead of simply adding all these rules to the system, we add the strategy
r7; repeat(r11); repeat(first(r8, r9, r10)). By composing these rules in a strategy,
the recovery from the server crash is assured. A rule should delete the temporary server
when it no longer has clients nor pending messages.

Self-protection

When a spam arrives at a server node, the filtering rule r12 deletes it, assuming that
the server has a procedure for deciding when a mail is a spam. The rules r13 and r14

111

6 Case Studies for the ρpg-calculus

are analogous to r12 but for a client node and a network node, assuming as well that
both entities have their own spam detection procedure. In order to limit spam sending,
the rule r14 should have a higher priority than r5, and the rule r12 a higher priority
than r3. Then we replace r3 and r12 by try(r12); r3, and r5 and r13 by try(r14); r5.

When a client receives a mail and, based on a spam decision procedure, concludes that
the mail is a spam, it deletes the mail and provides the server with a new rule specifying
that from now on the server node should delete all mails of this kind. This behavior is
specified by the rule r15 in Figure 6.4.

k:Server

c

l:Client

in m
r15

if isSpamForClient(m)

h

k:Server

c

l:Client

inh

k:Server

 i@#min

k:Server

in

k:Server

in j@#m
r12

k:Server

in
if isSpamForServer(m)

l:Client

in m

i:Network

i/o j@k#m

r13

r14

l:Client

in

i:Network

i/o

if isSpamForClient(m)

if isSpamForNetwork(m)

Figure 6.4: Rules for self-protection in the mail delivery system

Self-optimization

Assuming that a server can determine when it is saturated, i.e., when it reaches the
maximal load of incoming messages, a particular type of server for equilibrating the load
of the saturated server is created by rule r16. Such an auxiliary server has a handler
for connecting to the network node and to the saturated server node, and a port for
incoming messages. We call a server with an associated server for equilibrating the load,
an optimized server. Then, when the network has a message to dispatch to an optimized
server, if the number of incoming messages in(k) on the optimized server is smaller that
the incoming messages in(k.0) on its associated server, then the message goes to k (rule
r17), else it goes to k.0 (rule r18). Since an auxiliary server is created due to an overload
of incoming messages, it is obvious that the next message(s) from the network node will
be dispatched to the auxiliary node; hence rule r18 will be executed before rule r17,
which is expressed by the strategy first(r18, r17). A message is dispatched from k.0
to k (rule r19) when in(k) < in(k.0). If an optimized server fails, then the rule r20

112

6.1 Autonomic Computing

creates a temporary server similarly to rule r7 which in addition recovers all messages
on the auxiliary server which it deletes.

k:Server

h

i:Network

s
r20

k.0:TServer

h

i:Network

s

k:Server

h

k:Server

h

i:Network

s

k.0:EServer

h

i:Network

s

k:Server

h

in

if isSaturated(k)

k.0:EServer

h

i:Network

s

k:Server

h

in

 j@k#m
k.0:EServer

h

i:Network

s

k:Server

h

in

 j@#m

i/o i/o

in

if in(k) < in(k.0)

k.0:EServer

h

i:Network

s

k:Server

h

in

 j@k#m
k.0:EServer

h

i:Network

s

k:Server

h

in j@#m

i/o i/o

in

if in(k) >= in(k.0)

k.0:EServer

h

k:Server

h

in
 j@#m

in

k.0:EServer

h

k:Server

h

in

 j@#m
in

if in(k) < in(k.0)

k.0:EServer

h

in

in

r16

r17

r18

r19

in

in

if failure(k)

Figure 6.5: Rules for self-optimization in the mail delivery system

6.1.2 Towards Embedding Runtime Verification in the Model

We have shown in the previous section how a particular autonomic system can be mod-
eled using the ρpg-calculus. The model should also ensure formally that the intended

113

6 Case Studies for the ρpg-calculus

self-managing specification of the system helps indeed preserving the properties of the
system. Some properties can be verified by checking the presence of particular port
graphs and we can easily encode them as object port graphs, abstractions, or strategies,
hence as entities of the ρpg-calculus. Consequently, the properties can be placed at the
same level as the specification of the modeled system and they can be tested at any time.

One possibility of embedding verification in the model consists in associating a recovery
strategy for each strategy modeling a behavior of the system. Let recovery(S) denote
the recovery strategy for S. Then instead of S we have first(S, recovery(S)). If the
recovery strategy is id then we obtain try(S) which avoids a failure, whereas using fail

as recovery strategy does not change the failure if the strategy S fails. Of course, what
needs to be done is to determine which are the recovery strategies for each strategy of
the system.

Another possiblity of embedding verification in the model consists in expressing an
invariant of the system as a port graph rewrite rule with identical sides, G⇒ G, testing
the presence of a port graph G. The failure of the invariant is handled by a failure port
graph STK that does not allow the execution to continue. The strategy verifying such
an invariant is then:

first(G⇒ G,X ⇒ STK)!
For instance in our running example, this strategy is useful to ensure the persistency
of a given critical server of the network, or may be used also to check that there is
always a minimal number of servers available in the network. From another perspective,
we express the unwanted occurrence of a object port graph G in the system using the
strategy:

(G⇒ STK)!
In both cases above, instead of yielding the failure STK signaling that a property of

the system is not satisfied, the problem can be “repaired” by associating to each property
the necessary rules or strategies to be inserted in the system in case of failure. Such ideas
need to be further explored since they open a wide field of possibilities for combining
runtime verification and self-healing in ρpg-calculus. In particular, we show in Chapter 7
how we can increase the expressivity of the ρpg-calculus by embedding a particular set
of formulas in a suitable temporal logic to the syntax and adjusting correspondingly the
reduction semantics in order to verify such formula in parallel with the evolution of the
modeled system.

6.2 Molecular Graphs. Biochemical Networks

Port graphs provide a modeling formalism for molecular complexes by restricting the
connectivity of a port (called site in the biological model) to at most one other port; we
call such restricted port graphs molecular graphs. We instantiate the Abstract Biochem-
ical Calculus with the structure of molecular graphs to obtain a Calculus of Molecular
Graphs (CMG) [AK08a]. The first-citizens of the CMG are molecular graphs, molecular
graph rewrite rules, and their interactions.

In [AK07b], we already introduced the basic ideas of the graph rewriting and strategic

114

6.2 Molecular Graphs. Biochemical Networks

rewriting for modeling biochemical networks. We also gave an encoding via term rewrit-
ing which provided us for free a term rewriting calculus for biochemical systems. In the
same paper, we illustrated the biological motivation for using this formalism with an ex-
ample based on the epidermal growth factor receptor (EGFR) signaling pathway. With
respect to the result of this preliminary work, in this section we present the calculus
of molecular graphs where the rules and the strategies are first-class elements. We also
illustrate its expressive power provided by its higher-order features that may capture
behaviors of systems capable of self-management. However further work is needed to
understand whether this corresponds to actual biological models.

6.2.1 Modeling Molecular Complexes as Port Graphs

The behavior of a protein is given by its functional domains that determine which other
protein it can bind to or interact with. These domains are usually abstracted as sites
that can be bound or free, visible or hidden. A protein is characterized by the collection
of interaction sites on its surface. Proteins can connect at specific sites by low energy
bounds forming molecular complexes. A biochemical system is represented as a discrete
system consisting of interacting components which give rise to structural and behavioral
transformation of the components and of the system as a whole. Such a system is
dynamic, has an emergent behavior, is highly concurrent and non-deterministic.

In the following we show how molecular complexes can be represented by some par-
ticular graphs, and how their interactions can be modeled by graph rewrite rules and a
rewriting relation on such graphs.

Molecular Graphs

We represent molecular complexes as a particular class of port graphs. For a given
biological model, we can extract a p-signature by associating to each protein name its
site names.

Definition 64 (Molecular graph). A molecular graph is a port graph over a p-signature
whose ports have states and each port can be the endpoint of at most one edge. The ports
are called sites and the edges bonds. Graphically, the state of a site is represented as a
filled circle for bound, an empty circle for free, and a slashed circle for hidden.

Example 23. We consider a fragment of the EGFR signaling pathway, an example
oftenly studied by various formalisms, for instance the κ-calculus [DL04, LT07]. The
protagonists of this model are:

• the signal protein EGF situated outside the cell acting as a ligand,

• the transmembrane protein EGFR with two extracellular sites and two intracellular
sites as a receptor, and

• the adapter protein SHC situated inside the cell.

115

6 Case Studies for the ρpg-calculus

Using the same graphical representation as for port graphs, we represent a protein as an
empty box having the identifier placed at the exterior and the sites as small points on the
surface of the box. Then the three types of proteins above are represented graphically
as below:

1

EGF

2 1

EGFR

2

3
4

SHC

12

In Figure 6.6 we illustrate in the left side a molecular graph representing the initial
state of the system that will be studied throughout this section. The molecular graph
in the right side represents an intermediary state where two signal proteins are already
bound forming a dimer which in turn binds to a receptor.

7:SHC
12

15:EGFR
2

3
4

1 6:EGFR
2

3
4

1.2:EGF.EGF

2

3.4:EGF.EGF

2

2 2

G'

7:SHC
12

15:EGFR
2

3
4

1 6:EGFR
2

3
4

1

1:EGF

2

1

2:EGF

2

1

3:EGF

2

1

4:EGF

2

G

1

1

1

1

Figure 6.6: Initial and intermediate molecular graphs in the EGFR model

Rewriting Molecular Graphs

Definition 65 (Molecular graph rewrite rule). A molecular graph rewrite rule is a port
graph rewrite rule where the left- and right-hand sides are molecular graphs. A molecular
graph rewrite systems is a finite set of molecular graph rewrite rules.

We note that a molecular graph rewrite rule is not a molecular graph, but a port graph,
since the arrow node does not satisfy the constraint of the maximum one incidence degree
for its ports.

In the case of molecular graph rewrite rules we represent the edges incident to the
arrow node only if the correspondence it embeds is ambiguous.

Example 24. In Figure 6.7 we present the molecular graphs rewrite rules for the EGFR
signaling pathway:

(r1) two signaling proteins form a dimer represented as a single node;

116

6.2 Molecular Graphs. Biochemical Networks

(r2) an EGF dimer and a receptor bind on free sites;

(r3) two receptors activated by the same EGF dimer bind creating an active dimer
RTK;

(r4) an active dimer RTK activates itself by attaching phosphate groups;

(r5) an activated RTK binds to an adapter protein activating it as well.

k:EGF.EGF

1

i:EGF

j:EGF

1

2

2

22

4

i:EGF.EGF

j:EGFR

i:EGF.EGF

j:EGFR

1

2

4 1

2

r1 r2

i:EGFR

2

j:EGFR

24 4

r3

1 1

k:EGF.EGF

22

i:EGFR

2

j:EGFR

24 4

1 1

2

2
1

1

i.j:EGF.EGF

3

i:EGFR

2

j:EGFR

2

i:EGFR

j:SHC

1
2

3

r4 r5

3

i:EGFR

2

j:EGFR

2

i:EGFR

j:SHC

1
2

3

Figure 6.7: The reaction patterns in the EGFR signaling pathway fragment

The rewriting relation induced by a set of molecular graph rewrite rules is similar
to the port graph rewrite relation up to the constraints imposed on molecular graphs
as particular port graphs. In a similar way, the strategic molecular graph rewriting is
defined based on the strategic port graph rewriting.

Example 25. We illustrate in Figure 6.8 two possible results of applying the rewrite
rule r2 on the molecular graph G’.

7:SHC
12

15:EGFR
2

3
4

1 6:EGFR
2

3
4

1.2:EGF.EGF

2

3.4:EGF.EGF

2

2 2

1

1

1

1

7:SHC
12

15:EGFR
2

3
4

1 6:EGFR
2

3
4

1.2:EGF.EGF

2

3.4:EGF.EGF

2

2 2

1

1

1

1

7:SHC
12

15:EGFR
2

3
4

1 6:EGFR
2

3
4

1.2:EGF.EGF

2

3.4:EGF.EGF

2

2 2

1

1

1

1

G' G" G'''

Figure 6.8: G” and G”’ are obtained from G’ by rewriting using the rule r2 on different
subgraphs

117

6 Case Studies for the ρpg-calculus

6.2.2 Biochemical Network Generation by Strategic Rewriting

Strategic rewriting is a suitable formalism for modeling the highly concurrent and non-
deterministic behavior of complex systems in general. Strategies were already used for
a chemical application, more precisely for modeling automated generation of the kinetic
mechanism in the GasEl project [BCC+03, BIK06, Iba04] in an ELAN-based implemen-
tation and then in a TOM-based implementation. A first link between strategies and
computation models inspired by biology is presented in [ACL06] where highly parallel
control mechanisms in membrane systems are expressed by means of rewrite strategies.

A biochemical system as a particular complex system is not completely described by
its components and the way they interact by means of reactions, but also by the behavior
of the system as a whole. Modeling the generation of a biochemical network amounts
to defining how a set of reaction patterns is applied on a collection (set or multiset) of
molecules. Strategic rewriting provides a formal model for expressing the control on the
reaction rule application.

Usually, given an initial molecular graph describing the structure a biological system
and the set of reaction patterns (as rewrite rules) describing its behavior, the correspond-
ing biochemical network is constructed by repeatedly applying the reaction patterns to
every state of the system until no new states are obtained or a termination condition is
satisfied.

Example 26. In the calculus of molecular graphs, for the system corresponding to the
EGFR pathway fragment described in the previous examples, the initial state of the is
a world consisting of the molecular graph G and several strategies built upon the five
reaction rules. G can be also written as the following juxtaposition of molecular graphs
(or nodes in this particular situation):

1:EGF 2:EGF 3:EGF 4:EGF 5:EGFR 6:EGFR 7:SHC,

We see in the following a few examples of strategies for generating the biochemical
network. The most straightforward way of modeling the biochemical network for the
EGFR signaling pathway fragment presented here is to consider the juxtaposition of the
reaction rules as persistent strategies. Hence the initial state of the system is the simple
world [r1! r2! r3! r4! r5! G]. Then any of the five rules is applied exhaustively. We can
easily prove that the system will reach a stable state since the number of free binding
sites decreases or remains constant with every successful rule application.

The strategy first can be used to specify a higher priority in the application of
two rules; for instance, first(r2, r1) is saying that an EFG dimer binds a receptor as
soon as it is created. Then the initial state is [first(r2, r1)! r3! r4! r5! G]. We can
slightly modify this state such that r3 is not persistent: [first(r2, r1)! r3 r4! r5! G].
This means that the rule r3 is consumed when creating the active dimer RTK; having
only one instance of such rule allows the creation of only one active dimer RTK.

The execution can be separated in two stages: the first one is concerned with the
extracellular interactions between the signals and the receptors, hence the reactions r1,
r2 and r3, while the second one with the RTK pathway, hence the reactions r4, r5. If

118

6.2 Molecular Graphs. Biochemical Networks

we consider that r2 has a higher application priority over r1, and any reaction from the
first stage has priority over any reaction from the second stage, then the initial world of
the system is:

[first(first(r2, r1), r3) first(first(r2, r1), r4) first(first(r2, r1), r5) G]
For every such initial state, the interactions take place non-deterministically and con-

currently, and all will reduce to a state of equilibrium where no more rules can be applied.
For each of the states above, an equilibrium state contains the molecular graph H given
in Figure 6.9 or G”’ from Figure 6.8.

7:SHC
12

1
5:EGFR

2
3

4

1 6:EGFR
2

3
4

1.2:EGF.EGF

2

3.4:EGF.EGF

2

2 2

1

1

1

1

Figure 6.9: The molecular graph H for the EGFR signaling pathway fragment in the
equilibrium state

Modeling Self-Management Properties of Biological System

In this paragraph we simply suggest some capabilities made available by the expressive
power of the calculus of molecular graphs. They need to be further explored in the
context of biological systems.

The occurrence of a molecular graph pattern P in the state of the system may indicate
that a specific action should be included in the system behavior along with a possible
change of the molecular graph pattern. Such adaptive situation can be easily specified
in the calculus by an abstraction (P ⇒ G′ A) that creates a new abstraction A to
handle the situation. For instance, if a virus characterized by a pattern PV appears in
the system, then the application of the abstraction PV ⇒ A will delete the virus and
introduce an abstraction to repair the possible damage the virus produced.

Another high-level capability of the calculus is represented by second-order abstrac-
tions which can transform abstractions on molecular graphs; for instance, at a certain
moment all such abstractions involving a particular protein must be changed to take
into account a mutation of the protein.

6.2.3 Comparisons with Related Formalisms

Using graph rewriting and rule-based formalisms for modeling biological systems has
already been done by several authors. A review of such rule-based formalisms can be

119

6 Case Studies for the ρpg-calculus

found in [HFB+06] with emphasis on the capability of representing the topology of
complexes.

An inspiring starting point for our work was the graphical formalism BioNetGen pre-
sented in [BYFH06] for modeling biochemical networks where the protein complexes are
represented by typed attributed graphs, and classes of reactions are modeled by graph
transformation rules. This model considers also quantitative information on reactions.
Our approach, developed on a rule-based modeling framework and extensively using ex-
pressive graphical representations (like the one of [BYFH06]), focuses on providing in
addition a strategic rewriting dimension and higher-order capabilities. These two aspects
allow a flexible modeling for the generation of biochemical networks.

The κ-calculus [DL04] is a language of formal proteins which models complexes as
graphs-with-sites and their interactions as a particular graph-rewriting operation. The
bonds are represented in complexes by shared label names. A reaction is restricted
to at most one complexation or decomplexation. Such a requirement is quite restric-
tive, but expressive enough to allow non-linear reaction like modeling the synthesis or
degradation of proteins. The algebraic notation used for the κ-calculus is based on
the π-calculus [Mil99] rather that on graphs in order to express the combinatorics of
the interactions between proteins. A step forward, bioκ-calculus [LT07] combines the
κ-calculus with the brane calculi [Car05b] providing a more expressive formalism by
modeling the effects of protein interactions on the interaction capabilities of membranes.

The two formalisms BioNetGen and the κ-calculus are both based on a visual graph
representation and on a rule-based semantics as the calculus we propose. We use the
same approach to get a new calculus that differentiates itself through the control defined
by strategies and the higher-order capabilities.

Pathway Logic [EKL+04] is a rewriting system formalism, where proteins and cells
are modeled by algebraic terms, and reactions by term rewrite rules. It is designed
to work on two levels of abstraction, one concerning the protein states, and the other
concerning the protein-protein interactions handled by means of graph rewriting. The
Maude [CDE+02] system is used for implementing Pathway Logic, providing executabil-
ity of the specifications and analytic tools. The first-order term encoding for port graphs
defined in Chapter 5 is close to the Pathway Logic approach to use use algebraic terms
and rewrite rules for modeling molecules and reactions respectively. There is a differ-
ence in the representation of graphs: we use a set of nodes and a set of adjacency lists,
whereas in Pathway Logic the graph representation is based on a set of nodes and a set
of edges.

We also provide a term-rewriting implementation using TOM based on a very similar
idea used for the encoding in Chapter 5. In addition, we use the pointers introduced in
TOM for rewriting term-graphs; this way each bound site (or port) in the interface of a
protein has an associated pointer to the node and site it is connected. The pointers ensure
the well-formedness of graphs since the condition of no dangling edges is equivalent to
the condition of no dangling pointers. We also benefit from the rewrite strategies in TOM
for expressing the biochemical network generation as well as to express more complex
rules. We give details of the implementation in Appendix C after reviewing the main
features of TOM in Appendix B.

120

6.3 Conclusions and Perspectives

In addition to the formalism introduced by Pathway Logic for modeling protein inter-
actions, we propose a higher-order calculus which permits the expression of control of
rewrite rule applications inside the calculus.

While on the one side the ρpg-calculus is capable of modeling interactions between
biochemical entities like proteins, on the other side we are obviously able to model as
well chemical reactions (like the ones in [AIK06]): atoms represent the nodes, the valence
of an atom gives the number of identical ports, and chemical bonds between atoms are
edges.

6.3 Conclusions and Perspectives

In the first part of this chapter we saw that the biochemical calculus instantiated for
the structure of port graphs has, as expected, the same expressivity power for modeling
autonomous systems as the higher-order chemical language. HOCL is a well-suited model
of computation for the specification of complex computing infrastructures such as Grids
or large autonomous systems. As a future direction, we should consider the expressivity
the ρpg-calculus can provide by considering a port graph structure for the resources and
by controlling the order of interactions.

In the second part of the chapter, we showed that the ρpg-calculus is not only a
biologically-inspired calculus but it is well-suited for modeling biochemical networks. We
described the evolution of a biochemical system using several “different” strategies. The
plurality of such strategies raises questions on the possibility of defining a comparison
relation on strategies with the aim of finding the smaller, canonical or most efficient
strategy between two strategies. In order to handle these problems one has to make
intensive use of theoretical tools and skills in rewriting theory. A starting point for
approaching this problem is the simplification process of strategies introduced in [FGK03]
concerning the termination problem for strategic rewriting. The usefulness of solving
such problems, both from the theoretical and application point of view, makes this
direction interesting for future study.

Strategic rewriting opens many possibilities for modeling different aspects of biological
systems at different abstraction levels. In particular, we plan to explore the capabilities of
this formalism to model and reason about the adaptability and flexibility of cell behavior.
We do not limit our aim to modeling some well-known biological systems, but to help
understand their behavior and deduce new organization and behavioral principles. In
the same vein as Păun in [Pau06], we consider that reasoning at the level of strategies
of computing (rewrite strategies), rather than at the tactic level (rewrite rules), is an
incentive direction of formally studying biological systems.

We focused in this section on interactions between proteins at the level of functional
domains. However, the model we propose can be easily tuned to represent other types
of biomolecular interactions, such as protein-DNA or protein-lipid interactions [FBH05].

Cellular membranes can also form complexes, called tissues, due to the binding pro-
teins on their surfaces. This kind of complex can be studied in (mem)brane-based
formalisms like for instance the Brane Calculus [Car05b] or the Membrane Comput-

121

6 Case Studies for the ρpg-calculus

ing [Pau02]. The latter one already has models based on the tissue-like structure, the
Population P Systems [BG04] for example. A population P system with active cells
has the following characteristics: each cell contains a multiset of objects and two cells
connect based on particular internal objects, bonds can be added or deleted by rules
acting on the population, the objects in a cell are subject to transformation by the rules
internal of that particular cell or by communication rules between cells, and the cells
are subject to differentiation, division, or death rules. We remark that the port graph
structure and the port rewrite rules are well-suited for modeling population P system
with active cells. Moreover, the behavior of a P system is governed by various control
mechanisms[Pau02, IYD05], for instance maximal or bounded parallel rewriting, maxi-
mal parallel rewriting with priorities and/or promoters and inhibitors. In some cases, we
can express the control mechanisms by usual rewrite strategies, but in many cases new
strategies or more general concepts like the strategy controllers [AL08] need to be defined.
An interesting research direction is to adapt the ρpg-calculus for the population P sys-
tems with active cell with applications in modeling the immune system [BFFM06, SC01]
which is a particular example of autonomous system.

122

7 Runtime Verification in the ρpg-Calculus

7.1 Introduction

In Chapter 3 we have defined the structure of port graph, port graph rewrite rules and
a rewriting relation for port graphs. We have designed this formalism for modeling
complex systems with dynamical topology whose components interact in a concurrent
and distributed manner. Nodes with ports represent components (objects), while edges
communication channels. Then port graph rewrite rules are used for modeling the inter-
actions between some entities or nodes capable of creating connections among them at
specific points (ports), breaking connections, merging, splitting, or deleting nodes, or any
combination of these operations. A dynamic system whose initial state is represented
by a port graph structure evolves according to a set of port graph rewrite rules leading
to change in the its structure over time. In Chapter 4 we have defined a higher-order
formalism, the ρpg-calculus, where we reason about the description of the state and the
description of the system’s behavior at the same level. This allowed us to add more
expressive power in modeling a system via port graph rewrite rules that may introduce
other port graph rewrite rules and via strategies for controlling the application order of
a set of port graph rewrite rules. We then have shown the capabilities of the ρpg-calculus
to model autonomous systems and biochemical networks. After defining a formal speci-
fication framework for such systems, the next step that comes naturally is to provide an
automated method for validating the behavior of the system with respect to some initial
design requirements or properties.

In this chapter our aim is to endow the calculus with a method of verifying a given set
of requirements for a modeled system. A particularly relevant formalism for expressing
properties of dynamic systems is temporal logic. Therefore we express the requirements a
system behavior has to meet as temporal formulas in a suitable logic and we put them at
the same level as the system description. Then the behavior of the system is dynamically
verified to satisfy the given requirements based on the semantics of the chosen temporal
logic. We obtain a runtime verification technique which allows the running system to
detect its own failures. Usually, this verification technique increases the confidence in the
correctness of the system behavior with respect to its formal specification. In particular,
for autonomous systems, runtime verification is useful for recovering from problematic
situation, hence for the self-healing property.

In order to reason about the evolutions of the structure of system states in time,
we consider a standard temporal logic that is well-suited for reasoning on port graph
reduction, the Computational Tree Logic (CTL) [CGP00]. The atomic propositions are
structural formulas which we encode by means of some adequate rewrite strategies and
we verify that the modeled system satisfies them using the evaluation mechanism of

123

7 Runtime Verification in the ρpg-Calculus

the rewrite strategies. Then the CTL formulas constructed on these atomic propositions
allow us to formulate requirements about the dynamic properties of the modeled system.
For instance we can express an invariant property p as the CTL formula AG(p) (i.e., for
all possible executions, at any moment, p is true), whereas a fatality property as AF(p)
for p an atomic proposition (i.e., for all possible executions, there is a moment when p
is true).

In the following we motivate the choice of CTL as temporal logic for performing
runtime verification in the ρpg-calculus. On one hand, the idea of using of the strat-
egy formalism for ensuring the satisfiability of CTL formulas came from [BMR07]. In
this paper TOM strategies are used for expressing temporal properties of the method
code in a program with predicates as basic strategies (set of rules). Then a terminat-
ing non-failing strategy ensures that the encoded CTL formula is true. On the other
hand, CTL has already been used for querying and validation of molecular interactions
[CRCFS04, PC03, BRJ+05, MRM+08]. For instance, in [CRCFS04] the authors showed
the expresiveness of CTL for formalizing a wide variety of biological queries on the
possible behaviors of a biochemical system. Some typical biological queries are identi-
fied and they concern reachability of particular states from an initial state, properties
about pathways (reachability of a state under a certain constraint), stability properties.
Later, in [MRM+08] the authors identified temporal logic patterns for expressing bio-
logical queries concerning occurrence/exclusion, consequence, sequence, and invariance
of cellular events. These patterns cover all biological queries identified in [CRCFS04].

There are also various works on temporal logics for verifying graph transformation
systems, for instance the µL2 temporal logic [BCKK04]. Our goal is not to provide
a new temporal logic for verifying properties of a port graph transition system, but
to study a technique of embedding the temporal formulas in the state of the system
together with behavior of the system, and reason on the satisfaction of the formulas as
the system evolves.

The structure of the chapter is as follows. We start with an overview of the concepts
from CTL adjusted for a system whose initial state has the structure of a port graph
and whose behavior is described by a port graph rewrite system (Section 7.2). The
particularity comes from the treatment of atomic propositions as structural formulas over
port graphs. Then we model the evolution of such a system by a transition system where
the states are port graphs and the transition relation is defined using the (strategic) port
graph rewrite relation. In Section 7.3 we extend the syntax of the ρpg-calculus with a set
of CTL formulas that guard the worlds and multiverses. Then we extend the semantics
of the ρpg-calculus for testing the satisfiability of formulas guarding the worlds and the
multiverses with respect to the initial world of the modeled system. In particular, we
define the satisfaction of a structural formula on a state of the system as the successful
application of an appropriate strategy on the state. At the end of the section we illustrate
the approach by some formulas encoded in the newly defined calculus, the ρvpg-calculus,
for a biological system modeled using the ρpg-calculus. We end the chapter with some
conclusions and perspectives.

124

7.2 CTL for Port Graphs and Port Graph Rewriting

7.2 CTL for Port Graphs and Port Graph Rewriting

In this chapter we review the syntax and semantics of CTL from a port graph rewriting
perspective. The difference from the classical definition comes from the particular set
of atomic propositions we consider, as well as from the associated definition of the
satisfaction relation.

In a first stage we define a set of formulas for reasoning locally about subgraphs.
An elementary formula is represented by a port graph expression; then we combine
port graph expressions using Boolean connectors to obtain structural formulas. The
satisfaction problem of a port graph expression is equivalent to a matching problem; in
consequence, the satisfaction problem for a structural formula is decomposed to several
satisfaction problems for port graph expressions. In a second stage, we review the
CTL formulas [CGP00] using path quantifiers and temporal operators together with the
corresponding satisfaction relation for reasoning on port graph rewriting.

7.2.1 Port Graph Expressions

We consider the same domains for the node identifiers, node names, and port names
given by a p-signature ∇ as in Chapter 3. We briefly recall their construction in the
following. Node identifiers are constructed based on integers, variables, and sequential
composition (hence Id∗, where Id = Int ∪VarId). Let ∇ = 〈∇N ,∇P〉 be a p-signature,
and X = (XN ,XP) a pair of sets of variables names for nodes and ports. Then ∇X

denotes the p-signature 〈∇N ∪XN ,∇N ∪XN 〉. The node names can be constant strings
(capital letters) from ∇N , variables from XN , and sequential compositions of a node
name and an integer, or sequential composition of two node names. The port names can
be constant strings from ∇P or variables (lower case letters) from XP .

A port graph expression can be associated to each construct of a port graph defined
in Chapter 4: the empty graph, a node, composition of graphs by juxtaposition and
connection between two ports, and self-connection on different ports and on a same
port. Figure 7.1 summarizes these constructs.

Let σ : X → Int∗∪∇ be a substitution from variables to constants for node identifiers,
node names, and port names respectively. We usually denote by σ∗ the extension of σ
over port graph expressions. We define the satisfaction relation of port graph expressions
using the structural congruence relation ≡ defined on port graph molecules given by
Definition 57.

Definition 66 (Satisfaction of port graph expressions). A port graph G satisfies a port
graph expression γ if and only if there exists a substitution σ such that G ≡ σ∗(γ), which
we denote by G |=σ γ.

Remark that a port graph expression γ is satisfied by a port graph G if γ corresponds
to a port graph which matches G, i.e., Sol(γ ≪ G) 6= ∅. It follows that a port graph
expression γ is not satisfied by G, denoted by G 6|=σ γ, if Sol(γ ≪ G) = ∅.

125

7 Runtime Verification in the ρpg-Calculus

Node identifier expressions ξ ::= n, n ∈ Int constant node identifier

| i, i ∈ VarId variable node identifier

| ξ1.ξ2 composed node identifier

Node name expressions α ::= A, A ∈ ∇N constant node name

| X, X ∈ XN variable node name

| α1.α2 composed node name

| α.n, n ∈ Int composed node name

Port name expressions β ::= a, a ∈ ∇P constant port name

| x, x ∈ XP variable port name

Port name list expressions β ::= ε empty list

| β port name expression

| β, β list concatenation

Port graph expressions γ ::= ε empty graph

| ξ : α : β node

| γ1 γ2 juxtaposition

| γ1 · ��· γ2 connection

| γ ·__ loop

| γ ee self connection

Figure 7.1: Port graph expressions

7.2.2 Structural Formulas

Based on the port graph expressions defined above and on the Boolean connectors, we
introduce in the following the structural formulas whose satisfaction we intend to verify
on the states of a system. These formulas represent the atomic propositions for a model.

Definition 67 (Structural formulas). Given ∇X a p-signature, the set of structural
formulas, denoted by FS(∇X), is constructed inductively as follows:

• ⊤ and ⊥ are structural formulas;

• any port graph expression γ is a structural formula;

• if ϕ, ϕ1, and ϕ2 are structural formulas, then ¬ϕ, ϕ1 ∧ϕ2, ϕ1 ∨ϕ2, ϕ1 → ϕ2, and
◊ϕ are structural formulas.

In Figure 7.2 we give the grammar generating the set of structural formulas FS(∇X).
The Boolean operators ⊤, ⊥, ¬, ∧, ∨, → are the usual operators from propositional

logic for “true”, “false”, “not”, “and”, “or”, and “implies” respectively. The somewhere

126

7.2 CTL for Port Graphs and Port Graph Rewriting

Structural formulas ϕ ::= ⊤ true

| ⊥ false

| γ port graph expression

| ¬ϕ negation

| ϕ1 ∧ ϕ2 conjunction

| ϕ1 ∨ ϕ2 disjunction

| ϕ1 → ϕ2 implication

| ◊ϕ somewhere modality

Figure 7.2: Structural formulas for port graphs

operator ◊ requires that the property holds on a fragment or port subgraph of the
state. As already known, we can consider only the Boolean operators ⊥, ¬, and ∨; then
combinations of these operators give produce the other Boolean operators, ⊤, ∧, and→.

Definition 68 (Structural satisfaction). The satisfiability of a structural formula ϕ ∈
FS(∇X) by a port graph G, denoted by G |= ϕ, is defined inductively as follows:

G |= ⊤

G 6|=⊥

G |= γ ⇔ ∃σ such that G |=σ γ

G |= ¬ϕ ⇔ G 6|= ϕ

G |= ϕ1 ∧ ϕ2 ⇔ G |= ϕ1 and G |= ϕ2

G |= ϕ1 ∨ ϕ2 ⇔ G |= ϕ1 or G |= ϕ2

G |= ϕ1 → ϕ2 ⇔ G 6|= ϕ1 or G |= ϕ2

G |= ◊ϕ ⇔ ∃G′ ⊑ G such that G′ |= ϕ

Whereas a structural formula γ is satisfied by a port graph G if γ corresponds to a
port graph matching G, G structurally satisfies a formula ◊γ is γ corresponds to a port
graph submatching G.

Proposition 11. G |= ◊γ if and only if Sol(γ ≺≺ G) 6= ∅.

Proof. By definition G |= ◊γ if and only if ∃G′ ⊑ G such that G′ |= γ, and G′ |= γ if
and only if ∃σ such that G′ |=σ γ. But G′ |=σ γ is equivalent by definition to G′ ≡ σ∗(γ),
i.e., σ ∈ Sol(γ ≺≺ G).

The following proposition states that the structural satisfaction is up to the structural
congruence relation on port graphs given by Definition 57. The proof is immediate using
induction over the structure of ϕ.

Proposition 12. If G |= ϕ and G ≡ G′ then G′ |= ϕ.

127

7 Runtime Verification in the ρpg-Calculus

7.2.3 State and Path Formulas

The models for CTL are labeled transitions systems or Kripke structures where each
state is labeled by the set of the satisfied atomic proposition.

Definition 69 (Kripke structure [CGP00]). Given a set of atomic propositions AP , a
Kripke structure over AP is a construct K = (S,Rt, L) where:

1. S is a finite set of states,

2. Rt ⊆ S × S is a total relation called the transition relation, i.e., for all s ∈ S,
∃s′ ∈ S such that sRts

′,

3. L : S → 2AP is the labeling function associating to each state s ∈ S the set of
those atomic proposition in AP that hold in the state s.

Sometimes the Kripke structure must specify a set of initial sets of states. A path in
the structure K from a state s is an infinite sequence of states π = s0s1s2 . . . such that
s = s0 and Rt(si, si+1) holds for all i ≥ 0. The notation πi refers to the suffix of π
starting from the element of the i-th position.

We define the semantics of CTL for port graphs with respect to an adequate Kripke
structure. In this case, the atomic propositions for a state are structural formulas on
port graphs. However, we do not associate to a state a label consisting of the set of the
satisfied atomic propositions, since we can test the satisfaction of such a proposition by
using a submatching algorithm.

We can easily associate a Kripke structure to a (strategic) rewriting system by follow-
ing the same lines as for rewrite theories in Rewriting Logic [EMS04].

Definition 70 (Model for CTL for port graph rewriting). A model for CTL for port
graphs over a p-signature ∇X and the port graph rewriting system R is a Kripke structure
system M = (Ob(PGraph),→•R, LPGraph) where:

• Ob(PGraph) is the set of states given by the set of objects in the category of port
graphs PGraph,

• →R is the one-step rewriting relation defined by R on Ob(PGraph),

• →•R is the total relation associated to→R which adds a self-loop for each irreducible
or terminal state G (i.e., G cannot be further rewritten using rules in R);

• LPGraph : Ob(PGraph) → P(FS(∇X)) that maps each port graph G to a set of
structural formulas that hold in G, that is, LPGraph(G) = {ϕ ∈ FS(∇X) | G |= ϕ}.

Definition 71 (Model for CTL for strategic port graph rewriting). A model for CTL for
port graphs over ∇X and S(R) with strategic port graph rewriting is a Kripke structure
system M = (Ob(PGraph),→•S , LPGraph) where:

• (PGraph) is the set of states given by the set of objects in the category PGraph,

128

7.2 CTL for Port Graphs and Port Graph Rewriting

• →S(R) is the one-step strategic rewriting relation defined by a set S(R) of strategies
built upon R on Ob(PGraph),

• →•S(R) is the total relation associated to →S(R) which adds a self-loop for each

irreducible state G (i.e., G cannot be rewritten using strategies in S(R));

• LPGraph : Ob(PGraph) → P(FS(∇X)) that maps each port graph G to a set of
structural formulas that hold in G, that is, LPGraph(G) = {ϕ ∈ FS(∇X) | G |= ϕ}.

If in the definition of an abstract reduction system we consider that the objects are
equivalence classes of port graphs and the steps are one-step port graph rewritings
defining the transition relation, we obtain a port graph reduction system (PGRS). We
remark that every model for CTL for port graphs as above has an underlying port
graph reduction system generated by the port graph rewriting system R. Therefore
we can borrow all definitions from abstract reduction systems on paths, derivations,
concatenation of derivations, strategy, strategy application, and strategy derivation.

Let G be the initial port graph. The computational tree associated to a modelM over
∇X and R with G the initial state, denoted by M(R, G), is obtained by unwinding the
structure into a possibly infinite tree with G as the root. Then whenever we consider
a path, we refer to a path in this tree starting from the root if not otherwise specified.
The state formulas and the path formulas refer to structural properties of states and
to properties of the branching structure of the underlying graph respectively. The path
quantifiers A and E help describing the branching structure in the computation tree,
while the path operators (X, F, G, U, R) help describing properties of a path in such a
tree. A property of a path is formulated using five basic operators:

• X (neXt time) requires that a property has to hold in the next state of the path;

• G (Globally or always) requires that a property has to hold at every state on the
path;

• F (Finally, eventually, or in the Future) requires that a property eventually has to
hold somewhere on the path;

• U (Until) takes two properties as arguments, and it requires that the first property
has to hold until some state where the second property holds;

• R (Release) is also binary and it requires that the second property holds along the
path until and including the state where the first property holds.

In the following we give the usual syntax of CTL [CGP00]] where we consider the
structural formulas defined previously as atomic propositions. The syntax of the CTL
formulas for port graphs is summarized in Figure 7.3.

Definition 72 (State and path formulas). The sets of state formulas and path formulas
are defined as follows:

• any structural formula is a state formula;

129

7 Runtime Verification in the ρpg-Calculus

• if ψ is a path formula, then Aψ and Eψ are state formulas;

• if φ, φ1, φ2 are state formulas, then ¬φ, φ1∧φ2, φ1∨φ2, φ1 → φ2 are state formulas;

• if φ, φ1, φ2 are state formulas, then Xφ, Gφ, Fφ, φ1Uφ2, φ1Rφ2 are path formulas.

In CTL there is a minimal set of operators such that all formulas can be expressed
using them. One such minimal set is {⊥,¬,∨,EX,EG,EU}.

State formulas φ ::= ϕ structural formula

| ¬φ negation

| φ1 ∧ φ2 conjunction

| φ1 ∨ φ2 disjunction

| φ1 → φ2 implication

| Aψ for all paths

| Eψ exists a path

Path formulas ψ ::=

| Xφ on the next state in the path

| Gφ globally on the path

| Fφ somewhere on the path

| φ1Uφ2 until

| φ1Rφ2 release

Figure 7.3: Formulas in CTL for port graphs

The semantics of CTL for port graphs with respect to a model M is similar to the
one of CTL. If φ is a state formula, the notation M, G |= φ means that φ holds at the
state G in the model M. Similarly, if ψ is a path formula, then the notation M, π |= ψ
means that ψ holds along the path π in the model M, while the notation M, πk |= φ
means that φ holds in the state on the k-th position of the path π in M.

Definition 73 (Temporal satisfaction). The satisfiability of formulas in CTL for port
graphs in a model M is defined inductively as follows, for G a state in M and π a path:

M, G |= ¬φ ⇔ M, G 6|= φ

M, G |= φ1 ∧ φ2 ⇔ M, G |= φ1 and M, G |= φ2

M, G |= φ1 ∨ φ2 ⇔ M, G |= φ1 or M, G |= φ2

M, G |= φ1 → φ2 ⇔ M, G 6|= φ1 or M, G |= φ2

M, G |= Aψ ⇔ for every path π starting from G, M, π |= ψ

M, G |= Eψ ⇔ there is a path π starting from G such that M, π |= ψ

130

7.3 Embedding Verification in the ρpg-Calculus: the ρvpg-Calculus

M, π |= Xφ ⇔ M, π1 |= φ

M, π |= Gφ ⇔ for all k ≥ 0, M, πk |= φ

M, π |= Fφ ⇔ there exists k ≥ 0 such that M, πk |= φ

M, π |= φ1Uφ2 ⇔ there exists a k ≥ 0 such that M, πk |= φ2 and

for all 0 ≤ i < k, M, πi |= φ1

M, π |= φ1Rφ2 ⇔ for all j ≥ 0, if for every i < j M, πi 6|= φ1 then

M, πj |= φ2

7.3 Embedding Verification in the ρpg-Calculus: the

ρvpg-Calculus

We extend the ρpg-calculus by including a subset of CTL formulas in the syntax and by
defining a new big-step reduction semantics which extends the big-step reduction relation
of the ρpg-calculus with verification of formulas; we call this calculus the ρvpg-calculus.
The structural formulas are represented as strategies, hence their satisfiability is tested
based on the evaluation mechanism available for strategies. For temporal formulas new
objects need to be added to the syntax.

7.3.1 Syntax

We add to the syntax of the ρpg-calculus the formulas to be verified along the reduction
of structures of worlds. We define the state and path formulas as objects of the calculus.

Structural Formulas

The structural formulas we consider for ρvpg-calculus correspond to structural formulas in
CTL for port graphs in disjunctive or conjunctive normal form constructed inductively
from port graph expressions and usual logical connectives from predicate logic:

ϕ ::= ⊤ | ⊥ | ◊γ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2

Any port graph expression γ must be quantified by a somewhere modality in order
to be a structural formula since a formula ◊γ supposes solving a submatching problem
which is supported currently in the ρpg-calculus.

The port graph expressions used in the structural formulas presented for CTL for
port graphs in Section 7.2 correspond to object port graphs. But they can be easily
extended to port graph molecules since the arrow and application operators, ⇒ and @,
are represented as nodes.

Verification of Structural Formulas using Strategies

We represent a structural formula by a strategy. Assuming that any port graph expres-
sion γ can be seen as a port graph molecule in the calculus, we define the mapping τ

131

7 Runtime Verification in the ρpg-Calculus

from structural formulas to strategies as follows:

τ(⊤) = id

τ(⊥) = fail

τ(◊γ) = γ ⇒ γ

τ(¬ϕ) = not(τ(ϕ))

τ(ϕ1 ∧ ϕ2) = seq(τ(ϕ1), τ(ϕ2))

τ(ϕ1 ∨ ϕ2) = first(τ(ϕ1), τ(ϕ2))

τ(ϕ1 → ϕ2) = X ⇒ seq(τ(ϕ1), first(stk⇒ X, τ(ϕ2)))@X

Proposition 13. Let ϕ be a structural formula in the ρvpg-calculus and G a port graph
molecule. Then τ(ϕ)@G reduces either to {[G]} or to {[stk]}.

Proof. We proceed by structural induction on ϕ.

• If (ϕ = ⊤), then τ(ϕ)@G = id@G = (X ⇒ X)@G −→∗ {[G]}.

• If (ϕ =⊥), then τ(ϕ)@G = fail@G = (X ⇒ stk)@G −→∗ {[stk]}.

• If (ϕ = ◊γ), then τ(ϕ)@G = (γ ⇒ γ)@G. There are two possibilities: either
γ submatches G, and, in consequence (γ ⇒ γ)@G −→∗ {[G]}, or γ does not
submatch G, hence (γ ⇒ γ)@G −→∗ {[stk]}.

• If (ϕ = ¬ϕ′), then

τ(ϕ)@G = not(τ(ϕ′))@G −→∗ {[first(stk⇒ G,X ⇒ stk)@(τ(ϕ′)@G)]}

By induction hypothesis, either τ(ϕ′)@G −→∗ {[stk]} and, in consequence
τ(ϕ)@G −→∗ {[G]}, or τ(ϕ′)@G −→∗ {[G]}, hence τ(ϕ)@G −→∗ {[stk]}.

• If (ϕ = ϕ1 ∧ ϕ2), then τ(ϕ)@G = seq(τ(ϕ1), τ(ϕ2)) = τ(ϕ2)@τ(ϕ1)@G. If
τ(ϕ1)@G reduces to {[stk]}, then τ(ϕ)@G reduces to {[stk]} as well; otherwise,
τ(ϕ1)@G reduces to {[G]}, then τ(ϕ2)@{[G]} −→ac {[τ(ϕ2)@G]}; and since, by
induction hypothesis, τ(ϕ2)@G reduces to either {[G]} or {[stk]}, we obtain the
same result for the reduction of τ(ϕ)@G.

• If (ϕ = ϕ1 ∨ ϕ2), then τ(ϕ)@G = first(τ(ϕ1), τ(ϕ2)). If τ(ϕ1)@G reduces to
{[stk]}, then the result of reducing τ(ϕ)@G coincides with the result of reducing
τ(ϕ2)@G which, by induction hypothesis, is either {[G]} or {[stk]}. If τ(ϕ1)@G
reduces to {[G]}, then this is also the result of reducing τ(ϕ)@G.

• If (ϕ = ϕ1 → ϕ2), then

τ(ϕ)@G = (X ⇒ seq(τ(ϕ1), first(stk⇒ X, τ(ϕ2)))@X)@G −→∗

{[seq(τ(ϕ1), first(stk⇒ G, τ(ϕ2)))@G]}

132

7.3 Embedding Verification in the ρpg-Calculus: the ρvpg-Calculus

If τ(ϕ1)@G −→∗ {[stk]} then the reduction continues with:

first(stk⇒ G, τ(ϕ2)))@{[stk]} −→∗ {[G]}

where the first argument of the strategy first(stk⇒ G, τ(ϕ2))) is applied.

If τ(ϕ1)@G −→∗ {[G]} then the second argument of the strategy first(stk ⇒
G, τ(ϕ2))) is applied, hence, by induction hypothesis, the result of the reduction
is either {[G]} or {[stk]}.

Intuitively, if the application of the strategy encoding ϕ on a port graph G fails, then
the formula is not satisfied by G.

Proposition 14 (Correctness of the encoding). Let G be a port graph molecule and ϕ
a structural formula in the ρvpg-calculus. If G |= ϕ then τ(ϕ)@G −→∗ {[G]}, otherwise,
if G 6|= ϕ then τ(ϕ)@G −→∗ {[stk]}.

Proof. We prove the proposition inductively on the structure of the formula ϕ.

• If ϕ = ⊤, G |= ⊤ is always true, and τ(⊤)@G = id@G −→∗ {[G]}.

• If ϕ =⊥, G 6|=⊥ is always true, and τ(⊥)@G = fail@G −→∗ {[stk]}.

• If ϕ = ◊γ such that G |= ◊γ, then Sol(γ ≺≺ G) 6= ∅. In consequence, τ(ϕ)@G =
(γ ⇒ γ)@G −→∗ {[G]}. Otherwise, if G 6|= ◊γ, then γ does not submatch G,
hence τ(ϕ)@G −→∗ {[stk]}.

• If ϕ = ¬ϕ′ such that G |= ¬ϕ′, then G 6|= ϕ′, hence, by induction hypothesis,
τ(ϕ′)@G −→∗ {[stk]}. Then

τ(ϕ)@G = not(τ(ϕ′))@G −→∗ {[first(stk⇒ G,X ⇒ stk)@(τ(ϕ′)@G)]} −→∗

{[first(stk⇒ G,X ⇒ stk)@stk]} −→∗ {[G]}

But if G¬ |= ¬ϕ′, then G |= ϕ′, and, by induction hypothesis, τ(ϕ′)@G −→∗ {[G]}.
Then τ(ϕ)@G −→∗ {[first(stk⇒ G,X ⇒ stk)@G]} −→∗ {[stk]}.

• If ϕ = ϕ1 ∧ ϕ2 such that G |= ϕ1 ∧ ϕ2, then G |= ϕ1 and G |= ϕ2. Then,
by induction hypothesis, both τ(ϕ1)@G and τ(ϕ1)@G do not reduce to {[stk]};
from Proposition 13 it follows that they both reduce to G. And since τ(ϕ)@G =
seq(τ(ϕ1), τ(ϕ2))@G = τ(ϕ2)@τ(ϕ1)@G, then τ(ϕ)@G reduces to {[G]}.

But if G 6|= ϕ1 ∧ ϕ2, then G |= ¬ϕ1 ∨ ¬ϕ2, which implies that G 6|= ϕ1 or G 6|= ϕ1.
Hence either τ(ϕ1)@G −→∗ {[stk]} or τ(ϕ2)@G −→∗ {[stk]}. In consequence
τ(ϕ)@G = seq(τ(ϕ1), τ(ϕ2))@G −→∗ {[stk]}.

133

7 Runtime Verification in the ρpg-Calculus

• If ϕ = ϕ1 ∨ ϕ2 such that G |= ϕ1 ∨ ϕ2, then G |= ϕ1 or G |= ϕ2. Then, by
induction hypothesis, at least one of τ(ϕ1)@G and τ(ϕ1)@G do not reduce to
{[stk]}; from Proposition 13 it follows that at least of the them reduces to G. And
since τ(ϕ)@G = first(τ(ϕ1), τ(ϕ2))@G then τ(ϕ)@G reduces to {[G]}.

If G 6|= ϕ1 ∨ ϕ2, then G |= ¬ϕ1 ∧ ¬ϕ2, which implies that G 6|= ϕ1 and G 6|= ϕ1.
Hence both τ(ϕ1)@G and τ(ϕ2)@G reduce to {[stk]}. In consequence τ(ϕ)@G =
first(τ(ϕ1), τ(ϕ2))@G −→∗ {[stk]}.

• If ϕ = ϕ1 → ϕ2 such that G |= ϕ1 → ϕ2, then G |= ¬ϕ1 ∨ ϕ2, hence G 6|= ϕ1 or
G |= ϕ2. By induction hypothesis, we have τ(ϕ1)@G −→∗ {[stk]} or τ(ϕ2)@G −→∗

{[G]}.

By definition, τ(ϕ)@G = (X ⇒ seq(τ(ϕ1), first(stk⇒ X, τ(ϕ2)))@X)@G which
reduces to {[seq(τ(ϕ1), first(stk ⇒ G, τ(ϕ2)))@G]}. If τ(ϕ1)@G −→∗ {[stk]}
then τ(ϕ)@G will reduce to {[G]}, but if τ(ϕ1)@G −→∗ {[G]}, then τ(ϕ)@G will
reduce to {[τ(ϕ2)@G]} which reduces to {[G]}.

But if G 6|= ϕ1 → ϕ2, then G |= ¬(¬ϕ1 ∨ ϕ2), hence G |= ϕ1 and G 6|= ϕ2. By
induction hypothesis, we have τ(ϕ1)@G −→∗ {[G]} and τ(ϕ2)@G −→∗ {[stk]}.
Then τ(ϕ)@G will reduce to {[τ(ϕ2)@G]} which reduces to {[stk]}.

Proposition 15 (Completeness of the encoding). Let G be a port graph molecule and
ϕ a structural formula in the ρpg-calculus. If τ(ϕ)@G −→∗ {[G]} then G |= ϕ, otherwise,
if τ(ϕ)@G −→∗ {[stk]} then G 6|= ϕ.

Proof. We proceed by structural induction on ϕ.

• If ϕ = ⊤, then it is only possible to have τ(⊤)@G = id@G −→∗ {[G]}, and by
definition G |= ⊤ is always true.

• If ϕ =⊥, then it is always the case that τ(⊥)@G = fail@G −→∗ {[stk]} and, by
definition, G 6|=⊥.

• If ϕ = ◊γ such that τ(ϕ)@G −→∗ {[G]}, then, since τ(ϕ)@G = (γ ⇒ γ)@G it
follows that Sol(γ ≺≺ G) 6= ∅, hence, by definition, G |= ◊γ.

• If ϕ = ¬ϕ′ such that τ(ϕ)@G −→∗ {[G]}, then τ(ϕ′)@G −→∗ {[stk]}, hence
G 6|= ϕ′. It follows that G |= ¬ϕ′, i.e., G |= ϕ.

If τ(ϕ)@G −→∗ {stk} then τ(ϕ′)@G −→∗ {stk}, hence G |= ϕ′ hence G 6|= ¬ϕ′,
i.e., G 6|= ϕ.

• If ϕ = ϕ1 ∧ ϕ2 such that τ(ϕ)@G −→∗ {[G]} then
seq(τ(ϕ1), τ(ϕ2))@G = τ(ϕ2)@τ(ϕ1)@G, i.e., τ(ϕ1)@G −→∗ {[G]} and
τ(ϕ2)@G −→∗ {[G]}. By induction hypothesis, G |= ϕ1 and G |= ϕ2, therefore
G |= ϕ1 ∧ ϕ2.

But if τ(ϕ)@G −→∗ {[stk]}, then either τ(ϕ1)@G −→∗ {[stk]} or τ(ϕ2)@G −→∗

{[stk]}. By induction hypothesis, G 6|= ϕ1 or G 6|= ϕ2, in consequence G 6|= ϕ1∧ϕ2.

134

7.3 Embedding Verification in the ρpg-Calculus: the ρvpg-Calculus

• If ϕ = ϕ1 ∨ ϕ2 such that τ(ϕ)@G −→∗ {[G]}, then
first(τ(ϕ1), τ(ϕ2))@G −→∗ {[G]} which means that either τ(ϕ1)@G −→∗ {[G]}
or τ(ϕ2)@G −→∗ {[G]}. This is equivalent, by induction hypothesis, with G |= ϕ1

or G |= ϕ2, hence G |= ϕ1 ∨ ϕ2.

But if τ(ϕ)@G −→∗ {[stk]}, it follows that τ(ϕ1)@G −→∗ {[stk]} and
τ(ϕ2)@G −→∗ {[stk]}. By induction hypothesis we obtain G 6|= ϕ1 and G 6|= ϕ2,
hence G |= ¬ϕ1 and G |= ¬ϕ2, equivalent to G |= (¬ϕ1)∧(¬ϕ2), which is equivalent
to G 6|= ϕ1 ∨ ϕ2.

• If ϕ = ϕ1 → ϕ2 such that τ(ϕ)@G −→∗ {[G]}, then
τ(ϕ)@G = (X ⇒ seq(τ(ϕ1), first(stk⇒ X, τ(ϕ2)))@X)@G −→∗

{[seq(τ(ϕ1), first(stk⇒ G, τ(ϕ2)))@G]} −→∗ {[G]}. It follows that
τ(ϕ1)@G −→∗ {[G]} and τ(ϕ2)@G −→∗ {[G]}. Then, by induction hypothesis,
G |= ϕ1 and G |= ϕ2, which implies that G |= ϕ1 → ϕ2.

If τ(ϕ)@G −→∗ {[stk]} then τ(ϕ1)@G −→∗ {[G]} and τ(ϕ1)@G −→∗ {[stk]}. By
induction hypothesis, G |= ϕ1 and G 6|= ϕ2; this is equivalent to G |= ϕ1 ∧ ¬ϕ2

which is equivalent to G |= ¬(¬ϕ1 ∨ ϕ2), hence G 6|= ϕ1 → ϕ2.

Remark 8. Since the conjunction and the disjunction are commutative then we also
have:

τ(ϕ1 ∧ ϕ2) = seq(τ(ϕ2), τ(ϕ1))

τ(ϕ1 ∨ ϕ2) = first(τ(ϕ2), τ(ϕ1))

Obviously, this does not imply that the strategy operators seq and first are commu-
tative.

Since we can consider for instance {⊥,¬,∨} as a minimal set of boolean operators
such that they can define the other boolean operators like ⊤, ∧, →, then we can deduce
some equalities between the strategies encoding the structural formulas. For instance,
since ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2) and ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2 we have respectively:

seq(τ(ϕ1), τ(ϕ2)) = not(first(not(τ(ϕ1)), not(τ(ϕ2))))

X ⇒ seq(τ(ϕ1), first(stk⇒ X, τ(ϕ2)))@X = seq(not(ϕ1), ϕ2)

We can continue replacing the strategy not by the abstraction it denotes such that we
have only the strategies seq and first.

Example 27 (Verifying the absence of a virus in a biological system). A usual problem
in modeling a biological system possibly exposed to viruses is to detect their presence
as soon they enter the system. In other words, we do not want that a particular virus
described by a pattern γ occurs in a state of the system, hence the state should not
satisfy the formula ¬γ.

135

7 Runtime Verification in the ρpg-Calculus

This problem has also an alternative solution which does not use the logical negation.
In the conditions of heating with recovery, we add in the world corresponding to the
state of the system an abstraction γ ⇒ γ. If at any moment the virus pattern γ occurs
in the system, the abstraction will eventually successfully apply, hence it will no longer
occur in the sequel worlds since it is consumed by the application. Then the absence of
the virus pattern γ in a state is assured by the presence of the abstraction γ ⇒ γ, in
consequence we do not test the satisfiability of the formula ¬γ, but the satisfiability of
the “positive” formula ◊(γ ⇒ γ). Remark that this procedure is possible since we allow
abstractions to be applied on other abstractions.

CTL Formulas in the ρvpg-calculus

We include in the ρvpg-calculus the temporal formulas built upon the structural formulas
defined previously and the CTL operators: AX, EX, AF, EF, AG, EG, AU, EU, AR, ER. In
addition, since ϕ is a structural formula verifiable on the port graph molecule contained
by a world, and we have also the concept of a structure of worlds or multiverse, we use
ϕ as structural formula on worlds, and for a multiverse we use the path quantifiers A
and E for quantifying over a structural formula on worlds. Hence the set of formulas we
define for the ρvpg-calculus is the following:

F1 ::= ϕ

F2 ::= Aϕ | Eϕ

F3 ::= AXϕ | EXϕ | AFϕ | EFϕ | AGϕ | EGϕ | A(ϕUϕ) | E(ϕUϕ) | A(ϕRϕ) | E(ϕRϕ)

Fv ::= F1 | F3 | ¬Fv | Fv ∨ Fv | Fv ∧ Fv

Fw ::= F2 | F3 | ¬Fw | Fw ∨ Fw | Fw ∧ Fw

Guarded Worlds and Multiverses

We guard the worlds and the multiverses with formulas from F :

Dv ::= |= Fv | |=? Fv | 6|= Fv | Dv Dv

FV ::= V Dv

Dw ::= |= Fw | |=? Fw | 6|= Fw | Dw Dw

FW ::= W Dw | {FV . . .FV} | {FW . . .FW}

where:

• V |= F (W |= F) corresponds to a world V (resp. multiverse W) where F holds,

• V |=? F (W |=? F) corresponds to a world V (resp. multiverse W) on which the
satisfaction of a formula F being tested, and

136

7.3 Embedding Verification in the ρpg-Calculus: the ρvpg-Calculus

• V 6|= F (W 6|= F) corresponds to a world V (resp. multiverse W) where F does
not hold.

The structural congruence relation on worlds and multiverses extends naturally on
guarded worlds and guarded multiverses:

V1 D ≡ V2 D if V1 ≡ V2

W1 D ≡W2 D if W1 ≡W2

for any D and D′ guards on a world or on a multiverse respectively.
Since any formula F ∈ Fv can be expressed as a conjunction of formulas from F1∪F3,

F = F1 ∧ . . . ∧ Fk, k ≥ 1, we can decompose the guard considering F as a formula into
a juxtaposition of k guards with the formulas F1, . . . , Fk. For instance,

|=? (F1 ∧ . . . ∧ Fk) ≡ |=? F1 . . . |=? Fk

In the following we consider only guards over elementary formulas in F1 ∪ F3 and
F2 ∪ F4 since the satisfaction of a composed formula is reduced to the satisfaction in
parallel of all component elementary formulas.

A multiverse guarded by a formula F which does not have the form Aϕ or Eϕ is
equivalent to the juxtaposition of the component worlds guarded by F :

{W1 . . .Wn} |=? F ≡ {W1 |=? F . . .Wn |=? F} if F 6= Aϕ ∨ F 6= Eϕ

7.3.2 Semantics

We consider that for each evolution step the choice of a strategy to apply among all
available in a world is deterministic. This choice must also be fair. If a world contains
more than one strategy, we do not want only one strategy to be chosen for interaction;
in particular, if it is not applicable, the system will never evolve, never giving the chance
to the other strategies to be (possibly successfully) applied.

Satisfaction of Structural Formulas on a World and on a Multiverse

The satisfaction of a structural formula ϕ by a port graph molecule in a world can be
easily verified by evaluating the encoding strategy τ(ϕ) on the port graph molecule. We
extend then use of a structural formula for a world by defining [G] |= ϕ if G |= ϕ. We
encode the formula ϕ as a strategy on a world:

Svϕ = [X]⇒ ifThenElse(τ(ϕ), X1 ⇒ [X] |= ϕ,X2 ⇒ [X] 6|= ϕ)@X

Proposition 16. Let [G] be a world and ϕ a structural formula. Then Svϕ@V reduces
to [G] |= ϕ if G |= ϕ and to [G] 6|= ϕ otherwise.

Proof. Since G 6|= ϕ is equivalent to the failure of the application of the strategy τ(ϕ) on
G, the result stated by the proposition is given by the definition of the strategy operator
ifThenElse.

137

7 Runtime Verification in the ρpg-Calculus

We consider that a world V guarded by a structural formula ϕ is equivalent to the
guarded world resulting from the application of the strategy Svϕ on V :

V |=? ϕ ≡ Svϕ@V

If the molecular port graph G contained by the world V satisfies the structural formula
ϕ, i.e., τ(ϕ)@G −→∗ {[G]}, then the satisfaction problem V |=? ϕ is reduced to V |= ϕ
by computing Svϕ@V . Otherwise, if V does not satisfy ϕ, i.e., τ(ϕ)@G −→∗ {[stk]}, then
the satisfaction problem V |=? ϕ is reduced to V 6|= ϕ.

When we deal with a multiverse, we need to universally or existentially quantify a
structural formula. We use the path quantifiers A and E also for quantifying over the
worlds in a multiverse to say that:

• Aϕ is satisfied by a multiverse W if ϕ is satisfied in each world from W ;

{V1 . . . Vn} |= Aϕ⇔ ∀i, 1 ≤ i ≤ n, Vi |= ϕ

• Eϕ is satisfied by a multiverse W if ϕ is satisfied in one world from W :

{V1 . . . Vn} |= Eϕ⇔ ∃i, 1 ≤ i ≤ n, Vi |= ϕ

We encode the formulas Aϕ and Eϕ as strategies on worlds and multiverses. In order
to test the satisfiability of ϕ on W we define a strategy whose application on W reduces
to a positive or negative answer. Let this be Sw

Aϕ defined as a left-biased choice between
a strategy defined on a multiverse containing a single world and a strategy defined on
an arbitrary multiverse:

Sw
Aϕ = first(S1, S2)

S1 = {[X]} ⇒ ifThenElse(τ(ϕ), X1 ⇒ {[X]} |= Aϕ,X2 ⇒ {[X]} 6|= Aϕ)@X

S2 = {[X] Z} ⇒

ifThenElse(τ(ϕ), X1 ⇒ {[X] |= ϕ Sw
Aϕ@Z}, X2 ⇒ {[X] Z} 6|= Aϕ)@X

We define the strategy Sw
Eϕ for testing the satisfiability of Eϕ in a multiverse W also

as a left-biased choice similarly to Sw
Aϕ:

Sw
Eϕ = first(S3, S4)

S3 = {[X]} ⇒ ifThenElse(τ(ϕ), X1 ⇒ {[X]} |= Eϕ,X2 ⇒ {[X]} 6|= Eϕ)@X

S4 = {[X] Z} ⇒

ifThenElse(τ(ϕ), X1 ⇒ {[X] Z} |= Eϕ,X2 ⇒ {[X] 6|= ϕ Sw
Eϕ@Z})@X

Proposition 17. Let W = {[G1] . . . [Gn]} be a multiverse, and ϕ a structural formula.
Then Sw

Aϕ@W reduces to either W |= Aϕ if Gi |= ϕ for all i, 1 ≤ i ≤ n, and to W 6|= Aϕ
otherwise.

138

7.3 Embedding Verification in the ρpg-Calculus: the ρvpg-Calculus

Proposition 18. Let W = {[G1] . . . [Gn]} be a multiverse, and ϕ a structural formula.
Then Sw

Eϕ@W reduces to either W |= Eϕ if there exists i, 1 ≤ i ≤ n, such that Gi |= ϕ,
and to W 6|= Eϕ otherwise.

The proofs of the previous two propositions use the result stated by Proposition 14
and the definition of the strategy operator ifThenElse.

Then, similarly for a guarded world, we consider that a multiverse W guarded by
a formula Aϕ or Eϕ is equivalent to the result of applying the strategy Sw

Aϕ or Sw
Eϕ

respectively on the multiverse:

W |=? Aϕ ≡ Sw
Aϕ@W W |=? Eϕ ≡ Sw

Eϕ@W

The satisfiability test of a structural formula for a multiverse W is propagated by the
strategies Sw

Aϕ and Sw
Eϕ inside the multiverse such that we obtain a multiverse of worlds

guarded by satisfied or non-satisfied formulas. We then regroup the information on the
satisfaction based the following congruences:

{V |= ϕ W |= Aϕ} ≡ {V W} |= Aϕ
{V 6|= ϕ W |= Aϕ} ≡ {V |= ϕ W 6|= Aϕ} ≡ {V W} 6|= Aϕ
{V 6|= ϕ W 6|= Eϕ} ≡ {V W} 6|= Eϕ
{V 6|= ϕ W |= Eϕ} ≡ {V |= ϕ W 6|= Eϕ} ≡ {V W} |= Eϕ

Reduction Relation on Guarded Worlds and Multiverses

We define now the reduction relation ⇛ between guarded worlds and multiverses. For
V |=? F the initial guarded world, if at any step in the reduction we have W |= F
(W 6|= F), it means that the initial world V satisfies F (does not satisfy F respectively).

AXϕ and EXϕ

If a world V having a guard |=? AXϕ reduces in a step to the multiverse W ,
the guard reduces as well to |= AXϕ if every world in W satisfies ϕ, or 6|= AXϕ
otherwise. We reason similarly for a world guarded by |=? EXϕ by testing if the
multiverse the world reduces to in a step contains a world satisfying ϕ.

V |=? AXϕ⇛ first(W |= Aϕ⇒W |= AXϕ,W 6|= Aϕ⇒W 6|= AXϕ)@(W |=? Aϕ)

if V Z⇒W (7.1)

V |=? EXϕ⇛ first(W |= Eϕ⇒W |= EXϕ,W 6|= Eϕ⇒W 6|= EXϕ)@(W |=? Eϕ)

if V Z⇒W (7.2)

AGϕ

If a formula AGϕ is being tested on a simple world [G] then in the next state it
remains under testing if the formula ϕ is satisfied by G, or it becomes unsatisfied
otherwise.

[G] |=? AGϕ⇛ ifThenElse(τ(ϕ), X1 ⇒W |=? AGϕ,X2 ⇒W 6|= AGϕ)@G

if [G] Z⇒W (7.3)

139

7 Runtime Verification in the ρpg-Calculus

Remark 9. The satisfaction problem of a formula of the type AGϕ, EGϕ, AFϕ,
or EFϕ for a world [G] irreducible with respect to the reduction relation Z⇒ is
equivalent to the satisfaction problem of the structural formula ϕ for G. If we
consider for instance the formula AGϕ and the irreducible world [G], then we have:

[G] |=? AGϕ ≡ ifThenElse(τ(ϕ), X1 ⇒ [G] |= AGϕ,X2 ⇒ [G] 6|= AGϕ)@G

if [G] is Z⇒ -irreducible

Since a formula guarding a multiverse is distributed to each component worlds, at
any moment we can regroup the information on the satisfaction of the formula on
each world in order to find the satisfaction information on the multiverse in the
following situations:

{V 6|= AGϕ W |=? AGϕ} ≡ {V |=? AGϕ W 6|= AGϕ} ≡ {V W} 6|= AGϕ

{V 6|= AGϕ W |= AGϕ} ≡ {V |= AGϕ W 6|= AGϕ} ≡ {V W} 6|= AGϕ

{V 6|= AGϕ W 6|= AGϕ} ≡ {V W} 6|= AGϕ

{V |= AGϕ W |= AGϕ} ≡ {V W} |= AGϕ

EGϕ
The reduction in the ρvpg-calculus of a world guarded by a formula EGϕ is similar to
the reduction of a world guarded by AGϕ. This similarity is due to the reasoning
at the level of one world, hence the universal and existential quantification are
equivalent. Obviously, this kind of similarity no longer happens in the case of a
guarded mutiverse.

[G] |=? EGϕ⇛ ifThenElse(τ(ϕ), X1 ⇒W |=? EGϕ,X2 ⇒W 6|= EGϕ)@G

if [G] Z⇒W (7.4)

The information on the satisfaction or in-satisfaction of a formula EGϕ in a mul-
tiverse is regrouped as follows:

{V 6|= EGϕ W 6|= EGϕ} ≡ {V W} 6|= EGϕ

{V 6|= EGϕ W |= EGϕ} ≡ {V |= EGϕ W 6|= EGϕ} ≡ {V W} |= EGϕ

AFϕ

When testing the satisfiability of a formula AFϕ on a world [G], if G satisfies ϕ,
then we conclude that the formula is satisfied at this point, otherwise the formula
continues to be tested.

[G] |=? AFϕ⇛

ifThenElse(τ(ϕ), X1 ⇒W |= AFϕ,X2 ⇒W |=? AFϕ)@G if [G] Z⇒W (7.5)

140

7.3 Embedding Verification in the ρpg-Calculus: the ρvpg-Calculus

We reassemble the information on the satisfaction of a formula AFϕ on a multiverse
as follows:

{V |= AFϕ W |= AFϕ} ≡ {V W} |= AFϕ

{V |= AFϕ W 6|= AFϕ} ≡ {V 6|= AFϕ W |= AFϕ} ≡ {V W} 6|= AFϕ

{V 6|= AFϕ W 6|= AFϕ} ≡ {V W} 6|= AFϕ

EFϕ
The reduction in ρvpg-calculus of a world guarded by a formula EFϕ is similar to
the reduction of a world guarded by AFϕ on the same basis as for EGϕ and AGϕ.

[G] |=? EFϕ⇛

ifThenElse(τ(ϕ), X1 ⇒W |= EFϕ,X2 ⇒W |=? EFϕ)@G if [G] Z⇒W (7.6)

The satisfaction information for EFϕ is grouped in a multiverse as follows:

{V |= EFϕ W |=? EFϕ} ≡ {V |=? EFϕ W |= EFϕ} ≡ {V W} |= EFϕ

{V |= EFϕ W 6|= EFϕ} ≡ {V 6|= EFϕ W |= EFϕ} ≡ {V W} |= EFϕ

{V |= EFϕ W |= EFϕ} ≡ {V W} |= EFϕ

{V 6|= EFϕ W 6|= EFϕ} ≡ {V W} 6|= EFϕ

A(ϕ1Uϕ2)
If the second structural formula ϕ2 is satisfied by G, then the formula A(ϕ1Uϕ2) is
satisfied. Otherwise, if in addition ϕ1 is satisfied by G then we are still in a state
where the first property holds whereas the second does not, hence we keep testing
the formula in the next states. If both structural formulas ϕ1 and ϕ2 are do not
hold in G, then the formula A(ϕ1Uϕ2) does not hold.

[G] |=? A(ϕ1Uϕ2)⇛

ifThenElse(τ(ϕ2),

X1 ⇒W |= A(ϕ1Uϕ2),

X2 ⇒ (ifThenElse(τ(ϕ1),

X3 ⇒W |=? A(ϕ1Uϕ2),

X4 ⇒W 6|= A(ϕ1Uϕ2))@G))@G

if [G] Z⇒W (7.7)

If the current world [G] is irreducible with respect to Z⇒, then the formula A(ϕ1Uϕ2)
holds if and only if ϕ2 holds:

[G] |=? A(ϕ1Uϕ2) ≡

ifThenElse(τ(ϕ2), X1 ⇒ [G] |= A(ϕ1Uϕ2), X2 ⇒ [G] 6|= A(ϕ1Uϕ2))@G

if [G] is Z⇒ -irreducible

141

7 Runtime Verification in the ρpg-Calculus

We reassemble partial information on the satisfaction of a formula A(ϕ1Uϕ2) inside
a multiverse:

{V 6|= A(ϕ1Uϕ2) W |=? A(ϕ1Uϕ2)} ≡ {V |=? A(ϕ1Uϕ2) W 6|= A(ϕ1Uϕ2)}

≡ {V W} 6|= A(ϕ1Uϕ2)

{V 6|= A(ϕ1Uϕ2) W 6|= A(ϕ1Uϕ2)} ≡ {V W} 6|= A(ϕ1Uϕ2)

{V |= A(ϕ1Uϕ2) W |= A(ϕ1Uϕ2)} ≡ {V W} |= A(ϕ1Uϕ2)

{V 6|= A(ϕ1Uϕ2) W |= A(ϕ1Uϕ2)} ≡ {V |= A(ϕ1Uϕ2) W 6|= A(ϕ1Uϕ2)}

≡ {V W} 6|= A(ϕ1Uϕ2)

E(ϕ1Uϕ2)
Again the reasoning over the satisfaction of the formula E(ϕ1Uϕ2) on a world is
similar to the one for the counterpart universally quantified formula.

[G] |=? E(ϕ1Uϕ2)⇛

ifThenElse(τ(ϕ2),

X1 ⇒W |= E(ϕ1Uϕ2),

X2 ⇒ (ifThenElse(τ(ϕ1),

X3 ⇒W |=? E(ϕ1Uϕ2),

X4 ⇒W 6|= E(ϕ1Uϕ2))@G))@G

if [G] Z⇒W (7.8)

The result on the satisfaction of E(ϕ1Uϕ2) on a Z⇒-irreducible world is similar to
case of A(ϕ1Uϕ2).

The satisfaction of a formula E(ϕ1Uϕ2) on a multiverse is deduced from the satis-
faction information on the component worlds as follows:

{V |= E(ϕ1Uϕ2) W |=? E(ϕ1Uϕ2)} ≡ {V |=? E(ϕ1Uϕ2) W |= E(ϕ1Uϕ2)}

≡ {V W} |= E(ϕ1Uϕ2)

{V |= E(ϕ1Uϕ2) W |= E(ϕ1Uϕ2)} ≡ {V |= E(ϕ1Uϕ2) W |= E(ϕ1Uϕ2)}

≡ {V W} |= E(ϕ1Uϕ2)

{V 6|= E(ϕ1Uϕ2) W 6|= E(ϕ1Uϕ2)} ≡ {V W} 6|= E(ϕ1Uϕ2)

{V |= E(ϕ1Uϕ2) W |= E(ϕ1Uϕ2)} ≡ {V W} |= E(ϕ1Uϕ2)

A(ϕ1Rϕ2)
The formula A(ϕ1Rϕ2) does not hold if both ϕ1 and ϕ2 hold or do not hold in the
same time. If ϕ2 holds in the current world [G] and ϕ1 does not, then the formula
A(ϕ1Rϕ2) continues to be tested in the next state. Whereas if ϕ2 does not hold in
the current world, but held in the previous one if we are not in the initial state,

142

7.3 Embedding Verification in the ρpg-Calculus: the ρvpg-Calculus

and ϕ1 holds, then A(ϕ1Rϕ2) holds.

[G] |=? A(ϕ1Rϕ2)⇛

ifThenElse(τ(ϕ2),

X1 ⇒ (ifThenElse(τ(ϕ1),

X2 ⇒W 6|= A(ϕ1Rϕ2),

X3 ⇒W |=? A(ϕ1Rϕ2))@G),

X4 ⇒ ifThenElse(τ(ϕ1),

X5 ⇒W |= A(ϕ1Rϕ2),

X6 ⇒W 6|= A(ϕ1Rϕ2))@G))@G

if [G] Z⇒W (7.9)

If the current world [G] is irreducible with respect to Z⇒, then the formula A(ϕ1Rϕ2)
holds if and only if ϕ2 holds and ϕ1 does not hold:

[G] |=? A(ϕ1Rϕ2) ≡

ifThenElse(τ(¬ϕ1 ∧ ϕ2), X1 ⇒ [G] |= A(ϕ1Rϕ2), X2 ⇒ [G] 6|= A(ϕ1Rϕ2))@G

if [G] is Z⇒ -irreducible

The information on the satisfaction of a formula A(ϕ1Rϕ2) inside a multiverse is
regrouped as follows:

{V 6|= A(ϕ1Rϕ2) W |=? A(ϕ1Rϕ2)} ≡ {V |=? A(ϕ1Rϕ2) W 6|= A(ϕ1Rϕ2)}

≡ {V W} 6|= A(ϕ1Rϕ2)

{V 6|= A(ϕ1Rϕ2) W 6|= A(ϕ1Rϕ2)} ≡ {V W} 6|= A(ϕ1Rϕ2)

{V |= A(ϕ1Rϕ2) W |= A(ϕ1Rϕ2)} ≡ {V W} |= A(ϕ1Rϕ2)

{V 6|= A(ϕ1Rϕ2) W |= A(ϕ1Rϕ2)} ≡ {V |= A(ϕ1Rϕ2) W 6|= A(ϕ1Rϕ2)}

≡ {V W} 6|= A(ϕ1Rϕ2)

E(ϕ1Rϕ2)
The reduction is defined similarly to the one for A(ϕ1Rϕ2) where we replace the
formula A(ϕ1Rϕ2) by E(ϕ1Rϕ2).

Model

If we instantiate an abstract reduction system with port graph molecules as objects and
the big-one-step reduction relation from the ρpg-calculus as the transition relation, we
obtain a higher-order port graph reduction system. We stress that the obtained reduction
system is of higher-order in order to distinguish from the port graph reduction system
associated to a port graph rewriting system. In the following we define a model for the
CTL based on a higher-order port graph reduction system.

143

7 Runtime Verification in the ρpg-Calculus

Definition 74 (Model). A model over ∇X for the ρpg-calculus is a Kripke structure
system Kpg = (Q, Z⇒•, LQ) where:

• (Q, Z⇒) is a higher-order port graph reduction with:

– Q is the set of states, each state consisting of a multiverse;

– Z⇒• is the big-step reduction relation of the ρpg-calculus which adds a self-loop
for every irreducible state;

• LQ : Q → P(FS(∇X)) that maps to each state W the set of structural formulas
it satisfies, i.e., LQ(W) = {Aϕ | ϕ ∈ FS(∇X) such that W |= Aϕ} ∪ {Eϕ | ϕ ∈
FS(∇X) such that W |= Eϕ}.

In the following we define the satisfaction of a formula φ in a model Kpg with W the
initial state:

• for φ ∈ F3, we have Kpg,W |= φ if there exists W ′ irreducible with respect to Z⇒
such that W |=? φ⇛∗ W ′ |= φ;

• for φ either AGϕ, A(ϕ1Uϕ2), or A(ϕ1Rϕ2), we have Kpg,W |= φ until reaching any
state W ′ such that W |=? φ⇛∗ {W1 |=? φ . . .Wn |=? φ} and W ′ ≡ {W1 . . .Wn};

• for φ either EGϕ, E(ϕ1Uϕ2), or E(ϕ1Rϕ2), we have Kpg,W |= φ until reaching any
state W ′ such that W |=? φ ⇛∗ {W1 |=? φ FW} and W ′ consists of W1 and all
multiverses occurring in the guarded multiverse FW ;

• for φ either AFϕ or EFϕ, we have Kpg,W |= φ if there exists W ′ such that
W |=? φ⇛∗ W ′ |= φ;

• for φ either AXϕ or EXϕ, we have Kpg,W |= φ if there exist W ′ such that
W |=? φ⇛W ′ |= φ.

7.3.3 Application in Modeling Autonomous Systems

In an autonomous system, if a failure occurs, the system has the capability of auto-
repairing himself. In the context of the ρvpg-calculus, a failure can be tested by the
in-satisfaction of a temporal formula. Then, as soon as the formula is marked as unsat-
isfied, a reparation rule becomes applicable and it may remove the unsatisfied formula,
introduce some new port graph objects or strategies or modify the existing one, or even
add a new formula for guarding the execution from that moment on.

In a first step, when an evaluation rule of the ρvpg-calculus finds the satisfaction or
insatisfaction of a formula, this information has to be pumped into the current worlds.
Let us consider for instance the rule (7.3) concerning the reduction with the formula
AGϕ. We replace the rule X2 ⇒ W 6|= AGϕ by X2 ⇒ (X ′ ⇒ (X ′ 6|= AGϕ)@W) 6|= AGϕ.
This is possible if we extend the syntax of the calculus by adding guards from Dv in
worlds.

Then, each world has to be equipped with a strategy to handle such information
on the (in)satisfaction of a formula. A typical example of an abstraction handling the

144

7.4 Conclusions and Perspectives

insatisfaction of a formula φ is X 6|= ϕ⇒ G X |=? φ where G may consist of object port
graphs or strategies for repairing the problem that produced the insatisfaction of the
formula. Therefore each formula guarding the evolution of the modeled system should
come with the corresponding port graph molecules for repairing or improving the system.
Let us see below two examples from a biological system where the port graph respect
the conditions imposed for molecular graphs:

1. We can handle the insatisfaction of an invariant stating that there is no virus
described by a structural formula Virus; then the invariant has the form AG¬Virus
and the associated repairing strategy could be:

X 6|= AG¬Virus ⇒ XAntibiotic |=? AG¬Virus

which introduces an antibiotic in the system, or, something simpler:

XVirus 6|= AG¬Virus ⇒ X |=? AG¬Virus

which removes the virus.

2. A formula of the type A(ϕ1Uϕ2) can be used to ensure the constant existence
of a signal protein described by ϕ1 before a molecular complex described by ϕ2

is formed. If at any moment we have V 6|= A(ϕ1Uϕ2), it means that the signal
protein disappeared from the system. Then a repairing strategy would be:

X 6|= A(ϕ1Uϕ2)⇒ X M |=? A(ϕ1Uϕ2)

which introduces the molecule M for ensuring the presence of the signal (for M
such that M |= ϕ1).

These examples illustrate our initial motivation of integrating temporal formulas to
worlds and multiverses such that we can not only see if a formula is satisfied, but also to
give the possibility to the system to react to such information, either positive or negative,
i.e., to self-manage its behavior as response to some tests.

7.4 Conclusions and Perspectives

In this chapter we have embedded in the ρpg-calculus a runtime verification technique
for a particular set of CTL formulas. As a consequence, beyond a simulation formalism
for a dynamic systems, the obtained calculus, the ρvpg-calculus, provides an automatic
method for modeling self-management properties. This result can be easily generalized
for the Abstract Biochemical Calculus provided that we make precise the set of structural
formulas for abstract molecules.

There are several extensions worth considering for increasing the expressivity of the
ρvpg-calculus. We summarize them in the following.

The structural formulas for the ρvpg-calculus do not contain a port graph expression γ.
A formula γ supposes a matching of the current state with the pattern described by γ,

145

7 Runtime Verification in the ρpg-Calculus

which translates into the global application concept already mentioned in the possible
extensions for the semantics of the ρpg-calculus, but not currently supported. Whereas
a formula ◊γ supposes a submatching verification, hence a local application of a partic-
ular abstraction as defined in the ρpg-calculus. A solution of this problem is to consider
the possible approach mentioned in the perspectives of the Chapter 2, i.e, to consider
two ways of applying an abstraction on a molecule: locally (corresponding to the cur-
rent approach by solving a submatching problem) or/and globally (corresponding to a
matching problem). If we allow the two types of application by considering two distinct
operators for application (to see if this information should be encoded in the abstraction
itself to be then passed to the application operator), then we can verify a formula γ on
a port graph G by applying globally on G the strategy γ ⇒ γ; then for the somewhere
modality, i.e., ◊γ, the strategy γ ⇒ γ should be applied locally.

For the current form of the ρvpg-calculus we have considered only a particular set of
CTL formulas. In a first stage we should investigate which formulas from CTL can
be added as guards in the ρvpg-calculus. Then, in a second stage, we should move the
more expressive logic CTL* and investigate the possibility of embedding the satisfaction
relation for some formulas in the calculus.

For expressing more structural properties on the port graphs, new strategies should
be defined. For instance a strategy that traverses a port graph in order to verify if every
node satisfies a particular formula; such a strategy will permit us to define universally
quantified structural formulas.

146

Conclusions and Perspectives

Conclusions

In this dissertation, we defined a biochemical calculus that fits the needs of modeling
biological interactions and autonomous systems, explored its expressivity and studied
some of its properties. Our approach departs from the classical chemical model, its high-
level formalization, and the use of strategic graph rewriting for modeling biochemical
networks.

The basic entities of the abstract biochemical calculus (or ρ〈Σ〉-calculus) are molecules
over a structure Σ which endows them with connectivity capabilities, abstraction over
such structured molecules and abstraction application. The major difference from the
chemical model is provided by the structure of molecules and the possibility of defining
abstraction over complex patterns. From the computational point of view, we designed
this calculus to model concurrent interactions between abstractions and molecules. With
the help of strategic rewriting, some interactions may be designed with more control.
Thanks to the expressivity of the biochemical aspect of the ρ〈Σ〉-calculus, we encoded
strategies as objects of the calculus.

We identified a graph structure and formalized it as port graphs with a correspond-
ing matching algorithm and rewriting relation. In parallel, we provided an encoding of
port graphs and the port graphs rewriting as algebraic terms over a first-order signature
and term rewriting. We then used the structure of port graphs to instantiate the ab-
stract biochemical calculus. The result is a biochemical calculus based on strategic port
graph rewriting. In the context of this calculus we showed the universality of the port
graph structure for expressing abstractions and metalevel operations like matching and
replacement used in the application of an abstraction to a molecule.

We validated our biochemical model based on strategic port graph rewriting in practice
on the example of an autonomous system and on a fragment of a biochemical system.
The application to autonomous computing is inherited from the higher-order chemical
model and the biological application represents one of the motivating aspects of this
thesis. We saw that the port graph structure is well-suited for modeling both types of
application and, in addition, the strategic rewriting allows us to model self-management
properties of the autonomic systems and to generate biochemical networks.

In the end, we proved once more the extensibility and expressivity of the calculus by
embedding a runtime verification technique. The main motivation raised in the context
of modeling self-healing properties in autonomic computing. We were able to put into
practice runtime verification in the calculus thanks to the capabilities of the calculus for
encoding strategies and handling failure.

147

Conclusions and Perspectives

Perspectives

A first improvement of the calculus could be the definition of new strategies for control-
ling the interactions between molecules. We have briefly presented some possible parallel
strategies in Chapter 2, but further study needs to be done on encoding them as well
as finding other strategies. The suitable balance between controlled and uncontrolled
interactions is an interesting question to address for a given application and biological
systems may provide us with valuable intuitions.

On the long term, the work on the calculus introduced in this thesis is concerned
with the problem of adequacy of the strategies for describing biochemical systems and
self-management properties of autonomous systems in general. We think that the use
of strategies can help biologists and computer scientists to better understand the be-
havior of such systems, their self-management properties for instance, to deduce new
organization and behavioral principles, as well as to define new bio-inspired computa-
tional models. For this purpose, we should try to model as many relevant examples of
biological systems as possible and see if their behavior can be described using existing
strategies or if new strategies should be defined.

The calculus we proposed in this thesis is a qualitative formalism. An extension of
the calculus could be to endow it with a quantitative semantics. In particular for the
ρpg-calculus it should be easy to define a stochastic rewriting relation on port graphs,
since it was already done for bigraphs [KMT08]. Then we should also integrate stochastic
rewriting strategies. In the context of modeling biochemical networks, the stochastic
dimension of the model will allow us the derivation of more realistic quantitative models
as ODE-based models or stoichiometric models.

Another direction worth pursuing involves the similarity of port graphs to bigraphs.
On one hand we could enrich the port graph rewriting formalism by adapting results,
properties and applications on bigraphs. On the other hand, we could define a bio-
chemical calculus based on the bigraphical reactive systems, study its properties and
expressivity and see if we could express the application of a bigraphical reaction rule
via bigraphical transformations as we can do with port graphs. Also concerning alterna-
tive structures for instantiating the abstract biochemical calculus, we should investigate
which of the existing examples inspired from the literature on high-level replacement
systems could provide the calculus with interesting applications.

It would be very useful to have an implementation of the biochemical calculus. In
a first stage we should consider the implementation of the chemical model [Rad07]. In
a second stage we should provide an implementation for port graph rewriting. In this
thesis we have defined an operational semantics for port graph rewriting based on term
rewriting, and we implemented it in TOM for molecular graphs; however, the current
implementation is not very efficient for large port graphs. We already have some ideas for
improving its efficiency, either by using TOM’s library on term-graphs or by considering
more efficient matching algorithms for general graphs or for bigraphs. Our graph-based
formalism is visual, so hopefully easy to understand. We should take advantage of this
aspect by providing as well a graphical interface to ease the visualization of port graphs
and their transformation.

148

A Internal Evaluation Rules for the

Application in the ρpg-Calculus

A.1 Matching

Start Matching

The rule ι1 in Figure A.1 starts the matching process. When an abstraction is applied
on an object port graph, a matching node ≪ connects the handlers of all nodes from
the left-hand side of the abstraction and the handlers of all nodes of the subject port
graph. This rules is applied only one time, at the beginning of the matching.

−→ι1

k1 : N ′1

@

km : N ′m

. . .

⇒

[]

i1 : N1

. . .

in : Nn

k1 : N ′1

@

km : N ′m

. . .

⇒

[]

i1 : N1

. . .

in : Nn ≪

Figure A.1: Internal evaluation rule ι1: Start matching

Match Sets of Nodes

The matching node ≪ between two sets of node handlers reduces to a matching node
≪ between two node handlers and a matching node ≪ between the remaining sets of
nodes. For every possible pair of node handlers, one from the left-hand side and the
other from the right-hand side, a new world is created, hence it results a multiset of
worlds.

In Figure A.2 we illustrate graphically the rule, while above we describe it schemati-
cally using a term syntax. This rule corresponds to the decomposition rule (D1) from
the matching algorithm on port graphs given in Chapter 3.

[(〈i1 : N1 || h〉, . . . , 〈in : Nn || h〉)≪ (〈k1 : N ′1 || h〉, . . . , 〈km : N ′m || h〉)]

149

A Internal Evaluation Rules for the Application in the ρpg-Calculus

−→ι2

[{[〈i1 : N1 || h〉 ≪ 〈k1 : N ′1 || h〉,

(〈i2 : N2 || h〉, . . . , 〈in : Nn || h〉)≪ (〈k2 : N ′2 || h〉, . . . , 〈km : N ′m || h〉)]

. . .

[〈i1 : N1 || h〉 ≪ 〈km : N ′m || h〉,

(〈i2 : N2 || h〉, . . . , 〈in : Nn || h〉)≪ (〈k1 : N ′1 || h〉, . . . , 〈km−1 : N ′m−1 || h〉)]

. . .

[〈in : Nn || h〉 ≪ 〈k1 : N ′1 || h〉,

(〈i1 : N1 || h〉, . . . , 〈in−1 : Nn−1 || h〉)≪ (〈k2 : N ′2 || h〉, . . . , 〈km : N ′m || h〉)]

. . .

[〈in : Nn || h〉 ≪ 〈km : N ′m || h〉,

(〈i1 : N1 || h〉, . . . , 〈in−1 : Nn−1 || h〉)≪ (〈k1 : N ′1 || h〉, . . . , 〈km−1 : N ′m−1 || h〉)]}]

If the pattern set of nodes is empty, then the subject set of nodes belongs to the
context graph; then the matching node ≪ is simply deleted.

ǫ≪ (〈k1 : N ′1 || h〉, . . . , 〈km : N ′m || h〉) −→ι3 (〈k1 : N ′1 || h〉, . . . , 〈km : N ′m || h〉)

Whereas if the subject set of nodes is empty, then the matching fails.

(〈i1 : N1 || h〉, . . . , 〈in : Nn || h〉)≪ ǫ, σ −→ι4 (〈i1 : N1 || h〉, . . . , 〈in : Nn || h〉)≪ ǫ, stk

These two rules ι3 and ι4, illustrated in Figure A.3 and Figure A.4, have a lower
priority than ι2, and they correspond to the matching rules (D3) and (D2) respectively.

In Figure A.5 we illustrate the evaluation rule which replaces a set matching node
≪ between two singletons by a matching node ≪. This rule has a lower priority in
application than the rule ι2.

〈i : N || h〉≪ 〈k : N ′ || h〉 −→ι5 〈i : N || h〉 ≪ 〈k : N ′ || h〉

Match Nodes

We investigate now the ways a matching node connecting the handlers of two nodes
(which we denote by the pattern node and the subject node) is transformed.

We consider first the case when the pattern node has a variable name. In the rule ι6
from Figure A.6 both the pattern node and the subject node have ports. Then the substi-
tution is extended with the assignment of the node identifier and name of the subject to
the variable identifier and name of the pattern. The matching node is transformed into

150

A
.1

M
a
tch

in
g

−→ι2

i1 : N1

k1 : N ′1

@

km : N ′m

. . .

. . .

in : Nn

⇒

[]

i1 : N1

km : N ′m

i1 : N1

km : N ′m

.

≪ ≪

@ @

. . .

. . .

. . .

. . .

k1 : N ′1

in : Nn in : Nn

k1 : N ′1
⇒⇒

[] []

i1 : N1

km : N ′m

i1 : N1

km : N ′m

.

@ @

. . .

. . .

. . .

. . .

k1 : N ′1

in : Nn in : Nn

k1 : N ′1
⇒⇒

[] []

[]

{ }

≪ ≪

.

. . .
· · ·

≪≪
≪

≪

≪

Figure A.2: Internal evaluation rule ι2: Decompose a matching between two sets of nodes

151

A Internal Evaluation Rules for the Application in the ρpg-Calculus

...

≪

−→ι3
...

Figure A.3: Internal evaluation rule ι3: Empty set of nodes as pattern

−→ι4

...

σ

≪

⇒

...

⇒ stk

Figure A.4: Internal evaluation rule ι4: Empty set of nodes as subject

−→ι5≪ ≪

Figure A.5: Internal evaluation rule ι5: Match singletons of nodes

a matching node connecting the sets of ports of the two nodes. In addition, the handler
of the instantiated pattern node is no longer connected to the handler of the arrow node,
but to the black hole of the arrow node. We do not replace i by k for the matched node
from the pattern because we want to have well-formed nodes, where all node identifiers
are pairwise distinct. This rule corresponds to the collective behavior of the matching
rules (D6), (S2), and (S1) without pursuing the matching on the neighbors.

〈i : X || h〉 ≪ 〈k : A || h〉,

(〈i : X || h, p1, . . . , pn〉, 〈j :⇒ || h, bh, p′1, . . . , p
′
n〉, 〈k : A || h, r1, . . . , rm〉)L

i ≏ j⌢(h, h), (p1, p
′
1), . . . , (pn, p′n)M

σ

−→ι6

〈i : A || p1, . . . , pn〉 ≪ 〈k : A || r1, . . . , rm〉,

(〈i : A || h, p1, . . . , pn〉, 〈j :⇒ || h, bh, p′1, . . . , p
′
n〉, 〈k : A || h, r1, . . . , rm〉)L

i ≏ j⌢(h, bh), (p1, p
′
1), . . . , (pn, p′n)M

σ ∪ {i 7→ k,X 7→ A}

152

A.1 Matching

−→ι6

k : A

⇒

i : X

≪

σ

⇒

k : Ak : A

≪

σ′

. . .

...
...

...

. . .

...

where σ′ = σ ∪ {i 7→ k,X 7→ A}

Figure A.6: Internal evaluation rule ι6: Match variable node

If both the pattern and the subject nodes do not have ports, then, obviously, no
matching node for sets of ports is introduced. The evaluation rule is given in Figure A.7
and it corresponds to the collective behavior of the matching rules (S2) and (S1) without
pursuing the matching on the neighbors.

〈i : X || h〉 ≪ 〈k : A || h〉,
(〈i : X || h〉, 〈j : ⇒ || h, bh〉, 〈k : A || h〉)Li ≏ j⌢(h, h)M
σ
−→ι7

(〈i : A || h〉, 〈j : ⇒ || h, bh〉, 〈k : A || h〉)Li ≏ j⌢(h, bh)M
σ ∪ {i 7→ k,X 7→ A}

−→ι7

k : A

⇒

i : X

≪

σ

⇒

k : A

σ′

k : A

where σ′ = σ ∪ {i 7→ k,X 7→ A}

Figure A.7: Internal evaluation rule ι7: Match variable node without ports

In Figure A.8 the pattern (subject) node does not have ports whereas the subject
(pattern) node does. This situation yields a matching failure and we represent it by
replacing the substitution node with a stk node. If the subject node does not have port,
then the rule is he following:

〈i : X || h〉 ≪ 〈k : A || h〉,

(〈i : X || h, p1, . . . , pn〉, 〈j : ⇒ || h, bh, p′1, . . . , p
′
n〉, 〈k : A || h〉)L

153

A Internal Evaluation Rules for the Application in the ρpg-Calculus

i ≏ j⌢(h, h), (p1, p
′
1), . . . , (pn, p′n)M

σ

−→ι8

〈i : X || h〉 ≪ 〈k : A || h〉,

(〈i : X || h, p1, . . . , pn〉, 〈j : ⇒ || h, bh, p′1, . . . , p
′
n〉, 〈k : A || h〉)L

i ≏ j⌢(h, h), (p1, p
′
1), . . . , (pn, p′n)M

stk

and for the other case, the rule is the following:

〈i : X || h〉 ≪ 〈k : A || h〉,
(〈i : X || h〉, 〈j : ⇒ || h〉, 〈k : A || h, r1, . . . , rm〉)Li ≏ j⌢(h, h)M
σ
−→ι9

〈i : X || h〉 ≪ 〈k : A || h〉,
(〈i : X || h〉, 〈j : ⇒ || h〉, 〈k : A || h, r1, . . . , rm〉)Li ≏ j⌢(h, h)M
stk

The rule ι8 corresponds to the matching rules (D2) and (D6), while the rule ι9 corre-
sponds to the matching rules (D5) and (D6).

−→ι9

k : A

⇒

i : X

≪

σ
...

k : A

⇒

i : X

≪

σ. . .

...

k : A

⇒

i : X

≪

...

k : A

⇒

i : X

≪

. . .

...

stk

stk

−→ι8

Figure A.8: Internal evaluation rules ι8 and ι9: Match variable node when exactly one of
the pattern and the subject nodes does not have ports besides the handler
but the other does

154

A.1 Matching

If the pattern node has a constant name equal to that of the subject node, the trans-
formation is similar with the one for variable node names except that the substitution
is extended only for assigning the identified of the subject node to the identifier of the
pattern node. But if the constant name of the pattern node if different from that of the
subject node, the matching fails and the stk node replaces the substitution node.

The rules ι10 and ι11 in Figure A.9 consider the case of constant node names with
non-empty sets of ports. For equal node names the rule is:

〈i : A || h〉 ≪ 〈k : A || h〉,
(〈i : A || h, p1, . . . , pn〉, 〈j : ⇒ || h, bh, p′1, . . . , p

′
n〉, 〈k : A || h, r1, . . . , rm〉)L

i ≏ j⌢(h, h), (p1, p
′
1), . . . , (pn, p′n)M

σ
−→ι10

〈i : A || p1, . . . , pn〉 ≪ 〈k : A || r1, . . . , rm〉,
(〈i : A || h, p1, . . . , pn〉, 〈j : ⇒ || h, bh, p′1, . . . , p

′
n〉, 〈k : A || h, r1, . . . , rm〉)L

i ≏ j⌢(h, bh), (p1, p
′
1), . . . , (pn, p′n)M

σ ∪ {i 7→ k}

whereas, for distinct node names, a failure node is produced:

〈i : A || h〉 ≪ 〈k : B || h〉,
(〈i : A || h, p1, . . . , pn〉, 〈j : ⇒ || h, bh, p′1, . . . , p

′
n〉, 〈k : B || h, r1, . . . , rm〉)L

i ≏ j⌢(h, h), (p1, p
′
1), . . . , (pn, p′n)M

σ
−→ι11

(〈i : A || h, p1, . . . , pn〉, 〈j : ⇒ || h, bh, p′1, . . . , p
′
n〉, 〈k : B || h, r1, . . . , rm〉)L

i ≏ j⌢(h, h), (p1, p
′
1), . . . , (pn, p′n)M

stk
if A 6= B

These rules corresponds to the collective behavior of the matching rules (D6), (D9),
and (S1) (only for ι10 and ι12).

The evaluation rules in Figure A.10 apply when matching nodes without ports:

〈i : A || h〉 ≪ 〈k : A || h〉,
(〈i : A || h〉, 〈j :⇒ || h, bh〉, 〈k : A || h〉)Li ≏ j⌢(h, h)M
σ
−→ι12

(〈i : A || h〉, 〈j :⇒ || h, bh〉, 〈k : A || h〉)Li ≏ j⌢(h, bh)M
σ ∪ {i 7→ k}

and

〈i : A || h〉 ≪ 〈k : B || h〉,

(〈i : A || h〉, 〈j :⇒ || h, bh〉, 〈k : B || h〉)Li ≏ j⌢(h, h)M

σ

155

A Internal Evaluation Rules for the Application in the ρpg-Calculus

−→ι11

⇒

≪

σ

⇒

k : A

≪

σ′

. . .

...
...

...

. . .

...

i : A

k : A

where σ′ = σ ∪ {i 7→ k}

k : A

⇒

≪

σ. . .

...
...

i : A k : B

⇒

≪

. . .

...
...

i : A k : B

stk
if A 6= B

−→ι10

Figure A.9: Internal evaluation rules ι10 and ι11: Match constant node with ports

−→ι13

(〈i : A || h〉, 〈j :⇒ || h, bh〉, 〈k : B || h〉)Li ≏ j⌢(h, h)M

stk

if A 6= B

When exactly one of the pattern node and the subject node does not have ports, and
both nodes have constant names, the evaluation rules ι14 and ι15 from Figure A.11 are
applicable and they are represented using terms as follows:

〈i : A || h〉 ≪ 〈k : B || h〉,

(〈i : A || h, p1, . . . , pn〉, 〈j :⇒ || h, bh, p′1, . . . , p
′
n〉, 〈k : B || h〉)L

i ≏ j⌢(h, h), (p1, p
′
1), . . . , (pn, p′n)M

σ

−→ι14

〈i : A || h〉 ≪ 〈k : B || h〉,

(〈i : A || h, p1, . . . , pn〉, 〈j :⇒ || h, bh, p′1, . . . , p
′
n〉, 〈k : B || h〉)L

i ≏ j⌢(h, h), (p1, p
′
1), . . . , (pn, p′n)M

stk

156

A.1 Matching

−→ι13

k : A

⇒

≪

σ

⇒

k : A k : A

σ′

where σ′ = σ ∪ {i 7→ k}

i : A

if A 6= B⇒

≪

i : A k : B

stk

⇒

≪

σ

i : A k : B

−→ι12

Figure A.10: Internal evaluation rules ι12 and ι13: Match constant node without ports

and for the other case, the rule is the following:

〈i : A || h〉 ≪ 〈k : B || h〉,

(〈i : A || h〉, 〈j :⇒ || h〉, 〈k : B || h, r1, . . . , rm〉)Li ≏ j⌢(h, h)M

σ

−→ι15

〈i : A || h〉 ≪ 〈k : B || h〉,

(〈i : A || h〉, 〈j :⇒ || h〉, 〈k : B || h, r1, . . . , rm〉)Li ≏ j⌢(h, h)M

stk

The rule ι14 has the same behavior as the matching rules (D6) and (D2), while ι15

has the same behavior as the matching rules (D6) and (D5).

Match Sets of Ports

A matching node between two sets of ports is decomposed in smaller matching problems.
For a port from the pattern set and for each port in the subject set a new simple world
is created where the two ports are being matched and the rest of the sets of ports as
well. The corresponding evaluation rule is given in Figure A.12 and the term-like syntax
in the following:

[x1, . . . , xn≪ a1, . . . , am]

157

A Internal Evaluation Rules for the Application in the ρpg-Calculus

−→ι15
⇒

≪

σ
...

⇒

≪

σ. . .

...

⇒

≪

...

⇒

≪

. . .

...

stk

stk

i : A k : B

i : A k : B i : A k : B

i : A k : B

−→ι14

Figure A.11: Internal evaluation rules ι14 and ι15: Match constant node when exactly
one of the pattern and the subject nodes does not have ports besides the
handler but the other does

−→ι16

[{[(x1 ≪ a1), (x2, . . . , xn≪ a2, . . . , am)]

. . .

[(x1 ≪ am), (x2, . . . , xn≪ a1, . . . , am−1)]

. . .

[(xn ≪ a1), (x1, . . . , xn−1 ≪ a2, . . . , am)]

. . .

[(xn ≪ am), (x1, . . . , xn−1 ≪ a1, . . . , am−1)]}]

If the pattern set of ports is empty, then the matching fails (Figure A.13):

ǫ≪ a1, . . . , am, σ −→ι17
a1, . . . , am, stk

And similarly, if the subject set of ports is empty, then the matching fails (Figure A.14):

x1, . . . , xm≪ ǫ, σ −→ι18
x1, . . . , xm, stk

158

A
.1

M
a
tch

in
g

...

⇒

@

...

x1

xn

...≪

a1

am

[]

@

≪

⇒

x1 a1

xn

...
am

≪

⇒

x1

xn

a1

@

≪
≪

am

...

...

· · ·

@

⇒
⇒

@

· · ·

{ }

[]

[] [] [][]

· · ·

≪

x1 a1

am

≪

xn

...
≪

x1 a1

≪

...

xn am

...

−→ι16

...

Figure A.12: Internal evaluation rule ι16: Match sets of ports

159

A Internal Evaluation Rules for the Application in the ρpg-Calculus

...
...≪

stkσ

−→ι17

Figure A.13: Internal evaluation rule ι17: Empty set of ports as pattern

−→ι18... ≪
...

stkσ

Figure A.14: Internal evaluation rule ι18: Empty set of ports as subject

We replace a matching node between two singletons with a matching node between
two ports (Figure A.15):

〈i : A || x〉≪ 〈k : A || a〉 −→ι19
〈i : A || x〉 ≪ 〈k : A || a〉

−→ι19≪x a x a≪

Figure A.15: Internal evaluation rule ι19: Match singletons of ports

The evaluation rule ι16 corresponds to the matching rule (D1), ι17 to (D5), and ι18 to
(D2). In addition, the rules ι17, ι18, and ι19 have a lower application priority than ι16.

Match Ports

If the pattern is a variable port, then for a neighbor of the variable port, and for each
neighbor of the subject port, a new intermediary world is created where the neighbor
nodes and ports are matched (Figure A.16). This rule ι20 corresponds to the behavior of
the matching rules (S1) and (S3) for visiting the neighbors. The term-like representation
is the following:

[〈i : A || x〉 ≪ 〈k : A || a〉

〈i : A || x〉, 〈j : Y || h, y〉, 〈k : A || a〉, 〈k1 : B1 || h, a1〉, . . . , 〈kn : Bn || h, an〉L

i ≏ j⌢(x, y),

k ≏ k⌢1 (a, a1), . . . , k⌢n (a, an)M

σ]

160

A.1 Matching

−→ι20

[{[〈i : A || x〉 ≪ 〈k : A || a〉,

〈j : Y || h〉 ≪ 〈k1 : B1 || h〉,

〈j : Y || y〉 ≪ 〈k1 : B1 || a1〉

〈k : A || x〉, 〈j : Y || h, y〉, 〈k : A || a〉, 〈k1 : B1 || h, a1〉, . . . , 〈kn : Bn || h, an〉L

k ≏ k⌢2 (a, a2), . . . , k⌢n (a, an)M

σ ∪ {x 7→ a1}],

. . . ,

[〈i : A || x〉 ≪ 〈k : A || a〉,

〈j : Y || h〉 ≪ 〈kn : Bn || h〉,

〈j : Y || y〉 ≪ 〈kn : Bn || an〉

〈k : A || x〉, 〈j : Y || h, y〉, 〈k : A || a〉, 〈k1 : B1 || h, a1〉, . . . , 〈kn : Bn || h, an〉L

k ≏ k⌢1 (a, a1), . . . , k⌢n−1(a, an−1)M

σ ∪ {x 7→ an}]}]

If the variable port has neighbors, but the subject port does not, the matching fails
(Figure A.17). The rule ι21 resembles the matching rule (D2).

〈i : A || x〉 ≪ 〈k : A || a〉
〈i : A || x〉, 〈j : Y || h, y〉, 〈k : A || a〉Li ≏ j⌢(x, y)M
σ
−→ι21

〈i : A || x〉 ≪ 〈k : A || a〉
〈i : A || x〉, 〈j : Y || h, y〉, 〈k : A || a〉Li ≏ j⌢(x, y)M
stk

If the pattern port and the subject port have no neighbors or all their neighbors as
matched, then the connection of the pattern port to the arrow node is passed to the
subject port, and the matching for the variable port is finished (Figure A.18). The rule
ι22 has the same behavior as the matching rule S3 and it has a lower application priority
than ι20 and ι21.

〈i : A || x〉 ≪ 〈k : A || a〉
〈i : A || x〉, 〈k : A || a〉, 〈j :⇒ || p〉Li ≏ j⌢(x, p)M
σ
−→ι22

〈i : A || a〉, 〈k : A || a〉, 〈j :⇒ || p〉Lk ≏ j⌢(a, p)M
σ ∪ {x 7→ a}

161

A
In

te
rn

a
l

E
v
a
lu

a
ti

o
n

R
u
le

s
fo

r
th

e
A

p
p
li
ca

ti
o
n

in
th

e
ρ
p
g
-C

a
lc

u
lu

s

where σi = σ ∪ {x 7→ ai}, for all i, 1 ≤ i ≤ n

k : A

⇒

≪
x a

σ

j : Y
k1 : B1 kn : An

. . .
y

a1 an

i : A

−→ι20

k : A

⇒

x a

j : Y
k1 : B1 kn : An

. . .

@

≪

≪

≪

y
a1 an

k : A

⇒

x a

≪

@

k1 : B1

a1 . . .

kn : An

j : Y

≪

≪

y

an

. . .

σ1 σn

i : A i : A

[]

{ }

[][]

@

[]

Figure A.16: Internal evaluation rule ι20: Match a variable port

16
2

A.1 Matching

−→ι21

⇒

≪
x a

σ

j : Y

k : A

⇒

≪
x a

j : Y

stk

i : A i : Ak : A

y y

Figure A.17: Internal evaluation rule ι21: Match a variable port with a neighborless port

i : Ak : A

⇒

≪
x a

σ

k : A

⇒

a

σ′

a

where σ′ = σ ∪ {x 7→ a}

−→ι22

i : A

Figure A.18: Internal evaluation rule ι22: Match successfully a variable port

The following internal evaluation rule is similar to ι23 for a constant port name as
pattern (see Figure A.19):

[〈i : A || a〉 ≪ 〈k : A || a〉

〈i : A || a〉, 〈j : Y || h, y〉, 〈k : A || a〉, 〈k1 : B1 || h, a1〉, . . . , 〈kn : Bn || h, an〉L

i ≏ j⌢(a, y),

k ≏ k⌢1 (a, a1), . . . , k⌢n (a, an)M]

−→ι23

[{[〈i : A || a〉 ≪ 〈k : A || a〉,

〈j : Y || h〉 ≪ 〈k1 : B1 || h〉,

〈j : Y || y〉 ≪ 〈k1 : B1 || a1〉

〈k : A || a〉, 〈j : Y || h, y〉, 〈k : A || a〉, 〈k1 : B1 || h, a1〉, . . . , 〈kn : Bn || h, an〉L

k ≏ k⌢2 (a, a2), . . . , k⌢n (a, an)M],

. . . ,

[〈i : A || x〉 ≪ 〈k : A || a〉,

163

A
In

te
rn

a
l

E
v
a
lu

a
ti

o
n

R
u
le

s
fo

r
th

e
A

p
p
li
ca

ti
o
n

in
th

e
ρ
p
g
-C

a
lc

u
lu

s

−→ι23

k : A

⇒

≪

a

σ

j : Y
k1 : B1 kn : An

. . .
y

a1 an

i : A

k : A

⇒

a

j : Y
k1 : B1 kn : An

. . .

@

≪

≪

≪

y
a1 an

k : A

⇒

a

≪

@

k1 : B1

a1 . . .

kn : An

j : Y

≪

≪

y

an

. . .

σ1 σn

i : A i : A

[]

{ }

[][]

@

[]

a

a a

Figure A.19: Internal evaluation rule ι23: Match a constant port

16
4

A.1 Matching

〈j : Y || h〉 ≪ 〈kn : Bn || h〉,

〈j : Y || y〉 ≪ 〈kn : Bn || an〉

〈k : A || x〉, 〈j : Y || h, y〉, 〈k : A || a〉, 〈k1 : B1 || h, a1〉, . . . , 〈kn : Bn || h, an〉L

k ≏ k⌢1 (a, a1), . . . , k⌢n−1(a, an−1)M]}]

When matching two constant ports with different names, a failure is raised (see Fig-
ure A.20):

〈i : A || a〉 ≪ 〈k : A || b〉
〈i : A || x〉, 〈j : Y || h, y〉, 〈k : A || b〉L M
σ
−→ι24

〈i : A || a〉 ≪ 〈k : A || b〉
〈i : A || a〉, 〈j : Y || h, y〉, 〈k : A || b〉L M
stk
if a 6= b

−→ι24

k : A

⇒

≪

σ

k : A

⇒

≪

stk

a ab b
if a 6= b

i : A i : A

Figure A.20: Internal evaluation rule ι24: Failure at matching a constant port

Similar to rule ι21, the rule ι25 corresponds to the situation where the matching fails
if the pattern port has neighbors, but the subject port does not (Figure A.21):

〈i : A || a〉 ≪ 〈k : A || a〉
〈i : A || a〉, 〈j : Y || h, y〉, 〈k : A || a〉Li ≏ j⌢(a, y)M
σ
−→ι25

〈i : A || x〉 ≪ 〈k : A || a〉
〈i : A || x〉, 〈j : Y || h, y〉, 〈k : A || a〉Li ≏ j⌢(a, y)M
stk

If both the pattern port and the subject port are constant and they do not have
(unmatched) neighbors, the matching for the variable port is successfully finished (Fig-
ure A.22).

〈i : A || a〉 ≪ 〈k : A || a〉
〈i : A || a〉, 〈k : A || a〉, 〈j :⇒ || p〉Li ≏ j⌢(a, p)M
−→ι26

〈i : A || a〉, 〈k : A || a〉, 〈j :⇒ || p〉Lk ≏ j⌢(a, p)M

165

A Internal Evaluation Rules for the Application in the ρpg-Calculus

−→ι25

k : A

⇒

≪

a

σ

k : A

⇒

≪

a

stk

a a

j : Y j : Y

i : A i : A

Figure A.21: Internal evaluation rule ι25: Failure at matching a constant neighborless
port

σ

k : A

⇒

≪

a

σ

a
k : A

⇒

aa

i : A i : A

−→ι26

Figure A.22: Internal evaluation rule ι26: Successfully matching a constant port without
ports

Handling Failure

When a node stk is connected to the main arrow node of the abstractions, as a witness of
a matching failure, all edges and nodes in the simple world are deleted: first the matching
nodes with the incident edges, then the edges between nodes in the object port graphs
of the abstraction, and, in the end, the nodes of the left- and right-hand sides and the
abstraction and of the object port graph. Such rules have the highest priority over all
matching rules and they correspond to the matching rule (C2).

Propagate the Substitution on Node and Port Names

In Figure A.23 we give the rules that apply the existing substitution on node and port
names. The rules ι27 and ι28 can be applied at anytime. However, for avoiding variable
clashes during matching, these rules applying substitution should be applied with the
highest priority.

〈i : X || h〉, 〈j : ⇒ || h〉Li ≏ j⌢(h, bh)M, σ −→ι27

〈i : A || h〉, 〈j : ⇒ || h〉Li ≏ j⌢(h, bh)M, σ
if σ(X) = A

166

A.2 Replacement

and
〈i : || x〉, 〈j : ⇒ || p〉Li ≏ j⌢(x, p)M, σ −→ι28

〈i : || a〉, 〈j : ⇒ || p〉Li ≏ j⌢(x, p)M, σ
if σ(x) = a

if σ(X) = A⇒
σi : X

⇒
σ

x

⇒
σi : A

⇒
σ

a

−→ι27

−→ι28

ii

if σ(x) = a

Figure A.23: Internal evaluation rules ι27 and ι28: Applying the substitution on node
and port names

A.2 Replacement

After all evaluation rules describing the matching are exhaustively applied, the replace-
ment rules can be applied.

The rule in Figure A.24 describes the procedure of translating a bridge. The node
i comes from the matched subgraph of the subject G, and the node j is either from
the context port graph or from the matched subgraph too. Since the node i′ from the
instantiated right-hand side will replace the node i, the edge (i, j) is translated into
(i′, j). The orientation of the edge between i and j is no relevant, however it is the same
with the one for the edge between i′ and j in the right-hand side of the rule. In the
term-like representation, we consider that i is the source node.

〈i : A || a〉, 〈j : B || b〉, 〈k :⇒ || p〉, 〈i′ : A′ || a′〉L
i ≏ j⌢(a, b), k⌢(a, p),
k ≏ i′⌢(p, a′)M
−→ι29

〈i : A || a〉, 〈j : B || b〉, 〈k :⇒ || p〉, 〈i′ : A′ || a′〉L
i′ ≏ j⌢(a′, b),
i ≏ k⌢(a, p),
k ≏ i′⌢(p, a′)M

The instantiated nodes from the right-hand side of the applied abstraction are properly
connected to the application node, instead of the arrow node (see Figure A.25). The
substitution is applied on node identifiers only in the nodes from the right-hand side of
the abstractions during the replacement, since, otherwise, different nodes with the same

167

A Internal Evaluation Rules for the Application in the ρpg-Calculus

a′

⇒

i : A

j : B

i′ : A′

⇒

i : A

j : B

i′ : A′

−→ι29

a

b

p

a′

a

b

p

Figure A.24: Internal evaluation rule ι29: Translating a bridge

identifier may occur in the port graph. The evaluation rule ι30 has a lower priority than
ι29.

〈j : @ || h〉, 〈k :⇒ || p〉, 〈i′ : A′ || a′, h〉Lk ≏ i′⌢(p, a′)M, σ −→ι30

〈j : @ || h〉, 〈k :⇒ || p〉, 〈σ(i′) : A′ || a′〉Lj ≏ i′⌢(h, h)M, σ

−→ι30

⇒ ⇒

@ @

i′ : A′

σ

σ(i′) : A′

σ

Figure A.25: Internal evaluation rule ι30: Replacement

After the matching process, the handlers of the matched nodes from the left-hand
side of the applied abstraction are connected to the black hole of the main arrow of the
abstraction. The rule ι31 from Figure A.26 deletes all these nodes.

〈i : A || h〉, 〈j : ⇒ || h, bh〉Li ≏ j⌢(h, bh)M −→ι31
〈j : ⇒ || h, bh〉L M

⇒
i : A

−→ι31 bh
bh⇒

Figure A.26: Internal evaluation rule ι31: Deleting a matched node

After all bridges are translated, the nodes from the matched subgraph in the subject

168

A.2 Replacement

port graph are also deleted by repeated reductions using the rule ι32:

〈i : A || a〉, 〈k : ⇒ || p〉Li ≏ k⌢(a, p)M −→ι32
〈k : ⇒ || p〉LM

−→ι32
⇒

i : A

⇒

Figure A.27: Internal evaluation rule ι32: Removing the nodes from the matched sub-
graph after all bridges are translated

The evaluation rule ι33 moves every node connected to the application node in the
simple world above, while the rule ι34 removes the arrow node and the substitution,
as well as the application node (Figure A.28). These rules as well as ι32 have a lower
priority than the other replacement rules. Also, ι34 has a lower application priority than
ι32 and ι33.

−→ι34

@

[]

−→ι33

[]

@

⇒

@

σ

[]

[]

Figure A.28: Internal evaluation rules ι33 and ι34: Removing the application node and
the arrow node

169

A Internal Evaluation Rules for the Application in the ρpg-Calculus

170

B Overview of the TOM System

TOM1[BBK+07a] is a language extension which adds strategic rewriting capabilities to
Java. A TOM program is the combination of a host program in Java with code fragments
delimited by some special purpose constructs to define term rewrite systems.

The functionalities introduced by TOM are syntactic matching, associative matching
with unit axioms, anti-patterns [KKM07], conditional rewriting, support for built-in
data-types, XML transformation facilities, and a modular strategy library. TOM has
been used to implement various applications but one of the biggest applications is the
TOM compiler itself, written in TOM and Java.

The constructs of the TOM language useful for our purposes are the following:

• %match corresponds to an extension of switch/case construct in functional pro-
gramming languages, which allows discriminating among a list of patterns.

• ‘ (the backquote construct) is used to build terms from Java values.

• %strategy groups rules to form the basic building blocks for constructing more
complex strategies, e.g. innermost, outermost, top down, etc..

Therefore, a program is a list of TOM constructs interleaved with some sequences
of characters (from the ocean language). During the compilation process, all TOM
constructs are translated and replaced by instructions of the host-language.

The following example shows how the addition of Peano integers can be defined. This
supposes the existence of a data-structure and a mapping (defined using %op) where
Peano integers are constructed using zero and successor : the integer 3 is denoted by
suc(suc(suc(zero))) for example.

public class PeanoExample {

%op Term zero() { ... }

%op Term suc(Term) { ... }

...

Term plus(Term t1, Term t2) {

%match(t1, t2) {

x,zero -> { return ‘x; }

x,suc(y) -> { return ‘suc(plus(x,y)); }

}

}

void run() {

System.out.println("plus(1,2) = " +plus(‘suc(zero),‘suc(suc(zero))));

}

}

1http://tom.loria.fr

171

http://tom.loria.fr

B Overview of the TOM System

In this example, given two terms t1 and t2 (that represent Peano integers), the eval-
uation of plus returns the sum of t1 and t2. This is implemented by pattern matching:
t1 is matched by x, t2 is possibly matched by the two patterns zero and suc(y). When
zero matches t2, the result of the addition is x (with x = t1, instantiated by matching).
When suc(y) matches t2, this means that t2 is rooted by a suc symbol: the subterm y
is added to x and the successor of this number is returned, using the ‘ construct. The
definition of plus is given in a functional programming style, but the plus function
can be used in Java to perform computations. This example illustrates how the %match

construct can be used in conjunction with the considered native language.
In order to transform terms, it is necessary to state a relation between a TOM signa-

ture (the set of operation symbols in the corresponding term rewrite system) and Java
objects. This relation is a mapping, either defined by hand or through an auxiliary tool,
called Gom [Rei07], which is distributed with the TOM environment. Gom automatically
generates the data structure implementation for a given term signature.

It is possible to define preferred canonical forms for algebraic terms in Gom through
the hook mechanism [Rei07]. Hooks in Gom can contain TOM and Java code, which is
executed every time a new term is created. Hooks are executed until a normal form for
the term created is reached. In the code that follows we show an example of the use of
hooks. The code implements constant folding: every time a term rooted by Add and Mul

has subterms of sort Nat, in a small language for arithmetic expressions.

module Expressions

imports String int

abstract syntax

Bool = True()

| False()

| Eq(lhs:Expr, rhs:Expr)

Expr = Id(stringValue:String)

| Nat(intValue:int)

| Add(lhs:Expr, rhs:Expr)

| Mul(lhs:Expr, rhs:Expr)

Add:make(l,r) {

%match(Expr l, Expr r) {

Nat(lvalue), Nat(rvalue) -> { return ‘Nat(lvalue + rvalue); }

}

}

Mul:make(l,r) {

%match(Expr l, Expr r) {

Nat(lvalue), Nat(rvalue) -> { return ‘Nat(lvalue * rvalue); }

}

}

The use of strategies in TOM is illustrated by the following example:

import eval.mydsl.types.*;

import tom.library.sl.*;

public class Eval {

172

%include { sl.tom }

%gom {

module mydsl

imports int String

abstract syntax

Expr = val(v:int)

| var(n:String)

| plus(Expr*)

| mult(Expr*)

}

%strategy EvalExpr() extends ‘Identity() {

visit Expr {

plus(l1*,val(x),l2*,val(y),l3*) -> {

return ‘plus(l1*,l2*,l3*,val(x + y));

}

mult(l1*,val(x),l2*,val(y),l3*) -> {

return ‘mult(l1*,l2*,l3*,val(x * y));

}

plus(v@val(_)) -> {

return ‘v;

}

mult(v@val(_)) -> {

return ‘v;

}

}

}

public static void main(String[] args) throws VisitFailure {

Expr e = ‘plus(val(2), var("x"), mult(val(3), val(4)), var("y"), val(5));

Expr res = (Expr) ‘Innermost(EvalExpr()).visit(e);

System.out.println(e + "\n" + res);

}

}

Above, symbols defined in the %gom signature followed by * are “list” symbol. They
are associative with unit functions, where the empty list is the neutral element. The
declaration EvalExpr corresponds to a term rewrite system which simplifies expres-
sions. Variables followed by * match lists of elements. It is meant to be applied on any
sub-expression but not in top positions. We choose to apply the rewrite system in an
innermost way.

TOM also offers the possibilities of representing and rewriting term graphs. Term-
graphs are represented as terms with pointers where the pointers are specified using
label constructors. These pointers are defined by a relative path inside the term [BM08].
Using the Gom option --termgraph or --termpointer, it is possible to automatically
generate from a signature the extended version for term graphs or terms with point-
ers respectively. As the Tom terms are implemented with maximal sharing, so are
the term graphs. For every sort T, two new constructors are added to the program:

173

B Overview of the TOM System

LabT(label:String, term:T) for labeling a position in the term, and
RefT(label:String) for a pointer to a labeled position. Then a cyclic term can be
defined as follows:

Term cyclicTerm = ‘LabTerm("l",f(RefTerm("l")));

174

C Implementation of the EGFR Signaling

Pathway Fragment using TOM

The GOM Syntax for Molecular Graphs

A node is specified by an identifier, a name and a list of ports, a port by a name, a list
of neighbors, and a state, a neighbor by a reference to node and a set of pointers to
ports. The node substitution is a pair of a node and a list of nodes; it corresponds to an
elementary mapping defined by a node morphism. A port graph is then a list of nodes
and a structure collects all possible resulting port graph during rewriting. Each list is
constructed using a associative variadic operator with neutral element.

module term

imports String int

abstract syntax

Structure = struct(Structure*)

| Nodes(n:NodeList)

NodeList = concN(Node*)

Node = node(id:Uid, plist:PortList)

Uid = uid(uid:String, name:String)

PortList = concP(Port*)

Port = port(name:String, neighlist:NeighbourList, state:State)

State = b() | v() | h()

NeighbourList = concNG(Neighbour*)

Neighbour = neighbour(node:Node, ports:PortList)

NodeSubstitution = nodeSubstitution(before:Node, after:NodeList)

NodeSubstitutionList = concNS(NodeSubstitution*)

In a molecular graph, a port (or site) can only be connected to maximum one other
port. We consider a list of neighbors for a port in order to cover the case when the
port is not connected which corresponds to an empty list of neighbors, concNG(). The
restriction of the incidence degree on a port is maintained thanks to the state associated
to the port. If the state of a port is b() for bound, it means that the port is already
connected, and in consequence it is not considered for an interaction where it would be
connect to another port.

175

C Implementation of the EGFR Signaling Pathway Fragment using TOM

When a node list is constructed or an insertion or appending operation is performed
on a node list, we make sure that no duplicates are introduced. This is possible by
adding hooks for modifying the creation operation for a list of nodes. In a similar way
we forbid the insertion of duplicates in lists of ports and neighbors.

concN:make_insert(node, nodes) {

%match(Node node, NodeList nodes) {

n@LabNode(i, node(uid(i,name), _)),

concN(x@LabNode(i1, node(uid(i1,name1), _)), list*) -> {

if (‘name.compareTo(‘name1) < 0) {

return ‘realMake(n, realMake(x, list*));

}

else if (‘name.compareTo(‘name1) > 0) {

return ‘realMake(x, concN(n, list*));

}

else {

if (‘i.compareTo(‘i1) < 0) {

return ‘realMake(n, realMake(x, list*));

}

else {

return ‘realMake(x, realMake(n, list*));

}

}

}

n@node(uid(_,name), _),

concN(x@node(uid(_,name1), _), list*) -> {

if (‘name.compareTo(‘name1) <= 0) {

return ‘realMake(n, realMake(x, list*));

}

else {

return ‘realMake(x, concN(n, list*));

}

}

}

}

For restructuring the terms after an arrow translation operation we use the rules

hook. This construct enables to define a set of conditional rewrite rules over the current
module signature. These rules are applied systematically using a leftmost innermost
strategy. Thus, the only terms that can be produced and manipulated in the Tom
program are normal with respect to the defined system.

module term:rules() {

// merge the port lists of two identical nodes

concN(a*, LabNode(id, node(uid(id, name), concP(sl1*))), b*,

LabNode(id, node(uid(id, name), concP(sl2*))), c*)

->

concN(a*, LabNode(id, node(uid(id, name), concP(sl1*, sl2*))), b*, c*)

176

// merge the neighbours of the same port

concP(a*, LabPort(id, port(p, concNG(nl1*), s)), b*,

LabPort(id, port(p, concNG(nl2*), s)))

->

concP(a*, LabPort(id, port(p, concNG(nl1*, nl2*), s)), b*)

// merge the references to ports of two identical neighbours

concNG(nl1*, neighbour(RefNode(x), concP(sl1*)), nl2*,

neighbour(RefNode(x), concP(sl2*)), nl3*)

->

concNG(nl1*, neighbour(RefNode(x), concP(sl1*, sl2*)), nl2*, nl3*)

// remove a neighbour with an empty list of ports

concNG(nl1*, neighbour(RefNode(x), concP()), nl2*)

->

concNG(nl1*, nl2*)

// eliminate duplicates in a structure of nodes

struct(a*, x, b*, x, c*) -> struct(a*, x, b*, c*)

}

A signal (EGF), a receptor (EGFR) and an adapter (SHC) are represented in TOM
as follows:

node(uid("1", "EGF"), concP(port("s1", concNG(), v())),

port("s2", concNG(), h()))

node(uid("5", "EGFR"), concP(port("s1", concNG(), v()),

port("s2", concNG(), v()),

port("s3", concNG(), h()),

port("s4", concNG(), h())))

node(uid("7", "SHC"), concP(port("s1", concNG(), v()),

port("s2", concNG(), h())))

The initial molecular graph contains in addition to the above proteins three more
signal proteins identified by uid("2", "EGF"), uid("3", "EGF"), uid("4", "EGF"),
and a receptor protein uid("6", "EGFR").

For each protein we add labels to each node and port in order to use pointers for
representing bonds. For instance, a signal protein is labeled as follows:

Node nodeEGF1 =

LabNode("1", node(uid("1", "EGF"),

concP(LabPort("s1", port("s1", concNG(), v())),

LabPort("s2", port("s2", concNG(), h())))));

The molecular graph is constructed using seven nodes with labels as above:

Structure mgraph = ‘struct(Nodes(concN(nodeEGF1,nodeEGF2,nodeEGF3,nodeEGF4,

nodeEGFR5, nodeEGFR6, nodeSHC7)));

177

C Implementation of the EGFR Signaling Pathway Fragment using TOM

Arrow Translation

We implement the application of a node morphism on both on the source and the target
of an edge based on the rules described in Figure 5.2. For each pair of node – set of
nodes in the node morphism, we first reduce the term with a strategy innermost for
applying the node substitution on the sources, and then, in a second step, we reduce the
obtained term using the innermost strategy for the targets.

NodeList interm = rhs;

%match(NodeSubstitutionList nodeSubsts) {

concNS(_*, x, _*) -> {

try {

interm = (NodeList)‘InnermostId(ApplyNodeSubst1(x)).visit(interm);

interm = (NodeList)‘InnermostId(ApplyNodeSubst2(x)).visit(interm);

} catch (VisitFailure e) {

System.out.println("Error at ApplyNodeSubst: " + e);

}

}

}

return interm;

We do not give the details here of the strategies ApplyNodeSubst1(e:NodeSubstitution)

and ApplyNodeSubst2(e:NodeSubstitution) since they are too technical.

Reaction Rules

For each of the five reaction patterns followed the same steps in the implementation. We
give some details here for the first reaction, the dimerization of two EGF proteins.

The reaction pattern as described graphically in Figure 6.7 is implemented as the
following strategy:

%strategy EGFDimerizationStrat(c:Collection) extends Identity() {

visit Structure {

Nodes(concN(

nl1*,

LabNode(i, node(uid(i,"EGF"),

concP(LabPort("s1", port("s1", concNG(), v())),

LabPort("s2", port("s2", concNG(), h()))))),

nl2*,

LabNode(j, node(uid(j,"EGF"),

concP(LabPort("s1", port("s1", concNG(), v())),

LabPort("s2", port("s2", concNG(), h()))))),

nl3*)) -> {

NodeSubstitutionList nodeSubsts = ‘concNS();

NodeList rhs =

‘concN(

178

nl1*,

LabNode(i, node(uid(i,"EGF"),

concP(LabPort("s1",

port("s1", concNG(neighbour(RefNode(j),

concP(RefPort("s1")))), b())),

LabPort("s2", port("s2", concNG(), v()))))),

nl2*,

LabNode(j, node(uid(j,"EGF"),

concP(LabPort("s1",

port("s1", concNG(neighbour(RefNode(i),

concP(RefPort("s1")))),b())),

LabPort("s2", port("s2", concNG(), v()))))),

nl3*);

c.add(‘Nodes(nodeSubstApp.applyAll(rhs, nodeSubsts)));

}

}

}

It searches two nodes EGF with the first port visible, and it connects them by adding
to each visible port a reference to the other one. The collection taken as argument is
used for gathering all possible results of the matching.

This strategy is included in a class EGFDimerization. This class contains also a
method apply which takes a structure and returns it reduced with the strategy
EGFDimerization.

Then in the main Java program we have the following strategy that tries to apply the
first reaction rule and returns the structure of all possible results if any, otherwise it
returns the input structure:

%strategy Rule1() extends Identity() {

visit Structure {

x@Nodes[] -> {

EGFDimerization r = new EGFDimerization();

Structure s = ‘struct(r.apply(x));

%match(s) {

struct() -> { return ‘x; }

_ -> { return s; }

}

}

}

}

In a similar way we implement the strategies Rule2, Rule3, Rule4, Rule5 for the
reaction patterns r2, r3, r4, r5 respectively.

Generating the Biochemical Network using Strategies

One strategy that generates the biochemical networks is:

seq(repeat(first(r2, r1)), seq(r3, seq(r4, r5)))

179

C Implementation of the EGFR Signaling Pathway Fragment using TOM

Taking into account that in TOM the sequence strategy operator is variadic and that
Choice is the same as first, the implementation of this strategy is the following:

Structure result = (Structure)‘Sequence(

RepeatId(_struct(ChoiceId(Rule2(), Rule1()))),

RepeatId(_struct(Rule3())),

RepeatId(_struct(Rule4())),

RepeatId(_struct(Rule5()))).visit(mgraph);

We tested other strategies mentioned in the Chapter 6. For instance, after reduc-
ing only with the first strategy Rule1() we obtained three possible molecular graphs
corresponding to the possibilities of connected two by two the EGF proteins.

Let us present here the result. We implemented also in the TOM program a pretty-
printer method, hence the initial molecular graph is printed as follows:

<1:EGF||(s1->v),(s2->h)>, <2:EGF||(s1->v),(s2->h)>,

<3:EGF||(s1->v),(s2->h)>, <4:EGF||(s1->v),(s2->h)>,

<5:EGFR||(s1->v),(s2->v),(s3->h),(s4->h)>,

<6:EGFR||(s1->v),(s2->v),(s3->h),(s4->h)>, <7:SHC||(s1->v),(s2->h)>

The successful result of reducing the initial molecular graphs with the strategy Rule1()
is:

1)

<1:EGF||(s1->2^s1),(s2->v)>,

<2:EGF||(s1->1^s1),(s2->v)>, <3:EGF||(s1->4^s1),(s2->v)>,

<4:EGF||(s1->3^s1),(s2->v)>,

<5:EGFR||(s1->v),(s2->v),(s3->h),(s4->h)>,

<6:EGFR||(s1->v),(s2->v),(s3->h),(s4->h)>, <7:SHC||(s1->v),(s2->h)>

2)

<1:EGF||(s1->3^s1),(s2->v)>, <2:EGF||(s1->4^s1),(s2->v)>,

<3:EGF||(s1->1^s1),(s2->v)>, <4:EGF||(s1->2^s1),(s2->v)>,

<5:EGFR||(s1->v),(s2->v),(s3->h),(s4->h)>,

<6:EGFR||(s1->v),(s2->v),(s3->h),(s4->h)>, <7:SHC||(s1->v),(s2->h)>

3)

<1:EGF||(s1->4^s1),(s2->v)>, <2:EGF||(s1->3^s1),(s2->v)>,

<3:EGF||(s1->2^s1),(s2->v)>, <4:EGF||(s1->1^s1),(s2->v)>,

<5:EGFR||(s1->v),(s2->v),(s3->h),(s4->h)>,

<6:EGFR||(s1->v),(s2->v),(s3->h),(s4->h)>, <7:SHC||(s1->v),(s2->h)>

The result of the biochemical network generation consists of 24 molecular graphs. We
give below the first ones.

1)

<1:EGF||(s1->2^s1),(s2->v)>, <2:EGF||(s1->1^s1),(s2->v)>,

<3:EGF||(s1->4^s1),(s2->5^s1)>, <4:EGF||(s1->3^s1),(s2->6^s1)>,

<5:EGFR||(s1->3^s2),(s2->6^s2),(s3->7^s1),(s4->h)>,

<6:EGFR||(s1->4^s2),(s2->5^s2),(s3->v),(s4->h)>,

<7:SHC||(s1->5^s3),(s2->v)>

2)

180

<1:EGF||(s1->2^s1),(s2->v)>, <2:EGF||(s1->1^s1),(s2->v)>,

<3:EGF||(s1->4^s1),(s2->5^s1)>, <4:EGF||(s1->3^s1),(s2->6^s1)>,

<5:EGFR||(s1->3^s2),(s2->6^s2),(s3->v),(s4->h)>,

<6:EGFR||(s1->4^s2),(s2->5^s2),(s3->7^s1),(s4->h)>,

<7:SHC||(s1->6^s3),(s2->v)>

3)

<1:EGF||(s1->2^s1),(s2->v)>, <2:EGF||(s1->1^s1),(s2->v)>,

<3:EGF||(s1->4^s1),(s2->6^s1)>, <4:EGF||(s1->3^s1),(s2->5^s1)>,

<5:EGFR||(s1->4^s2),(s2->v),(s3->7^s1),(s4->h)>,

<6:EGFR||(s1->3^s2),(s2->v)> &&(s2->v),(s3->v),(s4->h)>,

<7:SHC||(s1->5^s3),(s2->v)>

4)

<1:EGF||(s1->2^s1),(s2->v)>, <2:EGF||(s1->1^s1),(s2->v)>,

<3:EGF||(s1->4^s1),(s2->6^s1)>, <4:EGF||(s1->3^s1),(s2->5^s1)>,

<5:EGFR||(s1->4^s2),(s2->v),(s3->v),(s4->h)>,

<6:EGFR||(s1->3^s2),(s2->v),(s3->7^s1),(s4->h)>,

<7:SHC||(s1->6^s3),(s2->v)>

5)

<1:EGF||(s1->3^s1),(s2->5^s1)>, <2:EGF||(s1->4^s1),(s2->v)>,

<3:EGF||(s1->1^s1),(s2->6^s1)>, <4:EGF||(s1->2^s1),(s2->v)>,

<5:EGFR||(s1->1^s2),(s2->6^s2),(s3->7^s1),(s4->h)>,

<6:EGFR||(s1->3^s2),(s2->5^s2),(s3->v),(s4->h)>,

<7:SHC||(s1->5^s3),(s2->v)>

6)

<1:EGF||(s1->3^s1),(s2->5^s1)>, <2:EGF||(s1->4^s1),(s2->v)>,

<3:EGF||(s1->1^s1),(s2->6^s1)>, <4:EGF||(s1->2^s1),(s2->v)>,

<5:EGFR||(s1->1^s2),(s2->6^s2),(s3->v),(s4->h)>,

<6:EGFR||(s1->3^s2),(s2->5^s2),(s3->7^s1),(s4->h)>,

<7:SHC||(s1->6^s3),(s2->v)>

7)

...

181

C Implementation of the EGFR Signaling Pathway Fragment using TOM

182

Bibliography

[ACL06] Oana Andrei, Gabriel Ciobanu and Dorel Lucanu – “Expressing Control
Mechanisms in P systems by Rewriting Strategies”, Workshop on Membrane
Computing (H. J. Hoogeboom, G. Paun, G. Rozenberg and A. Salo-

maa, eds.), Lecture Notes in Computer Science, vol. 4361, Springer, 2006,
p. 154–169. 118

[AIK06] Oana Andrei, Liliana Ibanescu and Hélène Kirchner – “Non-intrusive
Formal Methods and Strategic Rewriting for a Chemical Application.”, Al-
gebra, Meaning, and Computation, Essays Dedicated to Joseph A. Goguen
on the Occasion of His 65th Birthday (K. Futatsugi, J.-P. Jouannaud

and J. Meseguer, eds.), Lecture Notes in Computer Science, vol. 4060,
Springer, 2006, p. 194–215. 4, 121

[AK07a] Oana Andrei and Hélène Kirchner – “A Rewriting Calculus for Multi-
graphs with Ports.”, Proceedings of RULE’07, 2007. 4

[AK07b] — , “Graph Rewriting and Strategies for Modeling Biochemical Networks.”,
SYNASC ’07: Proceedings of the Ninth International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Computing, IEEE Computer
Society, 2007, p. 407–414. 4, 5, 114

[AK08a] — , “A Biochemical Calculus Based on Strategic Graph Rewriting”, Pre-
proceedings of the 3rd International Conference on Algebraic Biology, 2008.
5, 114

[AK08b] — , “A Higher-Order Graph Calculus for Autonomic Computing”, Graph
Theory, Computational Intelligence and Thought. A Conference Celebrating
Martin Charles Golumbic’s 60th Birthday, 2008. 5, 108

[AK08c] — , “Strategic Port Graph Rewriting for Autonomic Computing”, TFIT,
2008. 5, 108

[AL94] Andrea Asperti and Cosimo Laneve – “Interaction Systems”, HOA
(J. Heering, K. Meinke, B. Möller and T. Nipkow, eds.), Lecture
Notes in Computer Science, vol. 816, Springer, 1994, p. 1–19. 106

[AL08] Oana Andrei and Dorel Lucanu – “Strategy-Based Proof Calculus for
Membrane Systems”, Proceedings of the 7th International Workshop on
Rewriting Logic and its Applications, 2008. 122

183

Bibliography

[Ale99] Vladimir Alexiev – “Non-deterministic Interaction Nets”, Thesis, Univer-
sity of Alberta, 1999. 106

[Bar84] Henk Barendregt – The Lambda-Calculus, its syntax and semantics, sec-
ond edition ed., Studies in Logic and the Foundation of Mathematics., El-
sevier Science Publishers B. V. (North-Holland), Amsterdam, 1984. 2, 34

[BB92] Gérard Berry and Gérard Boudol – “The Chemical Abstract Machine.”,
Theoretical Computer Science 96 (1992), no. 1, p. 217–248. 2, 25

[BB07] Emilie Balland and Paul Brauner – “Term-graph rewriting in Tom us-
ing relative positions.”, Pre-proceedings of 4th International Workshop on
Computing with Terms and Graphs - TERMGRAPH, 2007. 106

[BBCK05] Clara Bertolissi, Paolo Baldan, Horatiu Cirstea and Claude Kirch-

ner – “A Rewriting Calculus for Cyclic Higher-order Term Graphs.”, Elec-
tronic Notes in Theoretical Computer Science 127 (2005), no. 5, p. 21–41.
28

[BBK+07a] Emilie Balland, Paul Brauner, Radu Kopetz, Pierre-Etienne Moreau

and Antoine Reilles – “Tom: Piggybacking rewriting on java”, Proceedings
of the 18th Conference on Rewriting Techniques and Applications, Lecture
Notes in Computer Science, vol. 4533, Springer-Verlag, 2007, p. 36–47. 21,
171

[BBK+07b] Emilie Balland, Paul Brauner, Radu Kopetz, Pierre-Etienne Moreau

and Antoine Reilles – “Tom: Piggybacking Rewriting on Java.”, RTA’07
(F. Baader, ed.), Lecture Notes in Computer Science, vol. 4533, Springer,
2007, p. 36–47. 106

[BBK+07c] — , Tom Manual, LORIA, Nancy (France), version 2.5 ed., July 2007. 21

[BCC+03] Olivier Bournez, Guy-Marie Côme, Valérie Conraud, Hélène Kirchner

and Liliana Ibanescu – “A Rule-Based Approach for Automated Gener-
ation of Kinetic Chemical Mechanisms.”, Rewriting Techniques and Appli-
cations (RTA 2003) (R. Nieuwenhuis, ed.), Lecture Notes in Computer
Science, vol. 2706, Springer, 2003, p. 30–45. 4, 118

[BCKK04] Paolo Baldan, Andrea Corradini, Barbara König and Bernhard König

– “Verifying a Behavioural Logic for Graph Transformation Systems”, Elec-
tronic Notes in Theoretical Computer Science 104 (2004), p. 5–24. 124

[BDGM07] Lars Birkedal, Troels Christoffer Damgaard, Arne J. Glenstrup and
Robin Milner – “Matching of Bigraphs”, Electronic Notes in Theoretical
Computer Science 175 (2007), no. 4, p. 3–19. 79

184

Bibliography

[BFFM06] Luca Bianco, Federico Fontana, Giuditta Franco and Vincenzo Manca

– “P Systems for Biological Dynamics”, Applications of Membrane Com-
puting (G. Ciobanu, M. J. Pérez-Jiménez and G. Paun, eds.), Natural
Computing Series, Springer, 2006, p. 83–128. 122

[BFR04] Jean-Pierre Banâtre, Pascal Fradet and Yann Radenac – “Higher-
Order Chemical Programming Style”, UPP (J.-P. Banâtre, P. Fradet,
J.-L. Giavitto and O. Michel, eds.), Lecture Notes in Computer Science,
vol. 3566, Springer, 2004, p. 84–95. 2, 25

[BFR06a] — , “A Generalized Higher-Order Chemical Computation Model”, Elec-
tronic Notes in Theoretical Computer Science 135 (2006), no. 3, p. 3–13.
2, 26, 107

[BFR06b] — , “Generalised multisets for chemical programming”, Mathematical
Structures in Computer Science 16 (2006), no. 4, p. 557–580. 53

[BFR06c] — , “Towards chemical coordination for grids”, SAC (H. Haddad, ed.),
ACM, 2006, p. 445–446. 2, 26

[BFR07] — , “Programming Self-Organizing Systems with the Higher-Order Chem-
ical Language”, International Journal of Unconventional Computing 3
(2007), no. 3, p. 161–177. 2, 26, 107

[BG04] Francesco Bernardini and Marian Gheorghe – “Population P Systems”,
Journal of Universal Computer Science 10 (2004), no. 5, p. 509–539. 122

[BG06] Olivier Bournez and Florent Garnier – “Proving Positive Almost Sure
Termination Under Strategies”, RTA (F. Pfenning, ed.), Lecture Notes in
Computer Science, vol. 4098, Springer, 2006, p. 357–371. 52

[BIK06] Olivier Bournez, Liliana Ibanescu and Hélène Kirchner – “From Chem-
ical Rules to Term Rewriting.”, Electronic Notes in Theoretical Computer
Science 147 (2006), no. 1, p. 113–134. 4, 118

[BK02] Olivier Bournez and Claude Kirchner – “Probabilistic Rewrite Strate-
gies. Applications to ELAN”, RTA (S. Tison, ed.), Lecture Notes in Com-
puter Science, vol. 2378, Springer, 2002, p. 252–266. 52

[BKKR01a] Peter Borovanský, Claude Kirchner, Hélène Kirchner and Christophe
Ringeissen – “Rewriting with Strategies in ELAN: A Functional Seman-
tics”, Int. J. Found. Comput. Sci. 12 (2001), no. 1, p. 69–95. 52

[BKKR01b] Peter Borovanský, Claude Kirchner, Helene Kirchner and Christophe
Ringeissen – “Rewriting with strategies in ELAN: a functional semantics”,
International Journal of Foundations of Computer Science 12 (2001), no. 1,
p. 69–98. 21

185

Bibliography

[BKN87] Dan Benanav, Deepak Kapur and Paliath Narendran – “Complexity of
Matching Problems”, J. Symb. Comput. 3 (1987), no. 1/2, p. 203–216. 15

[BM86] Jean-Pierre Banatre and Daniel Le Metayer – “A New Computational
Model and Its Discipline of Programming.”, Tech. Report RR-566, INRIA,
1986. 1, 25

[BM08] Emilie Balland and Pierre-Etienne Moreau – “Term-Graph Rewriting
Via Explicit Paths”, RTA (A. Voronkov, ed.), Lecture Notes in Computer
Science, vol. 5117, Springer, 2008, p. 32–47. 173

[BMR07] Emilie Balland, Pierre-Etienne Moreau and Antoine Reilles – “Byte-
code Rewriting in Tom”, Electronic Notes in Theoretical Computer Science
190 (2007), no. 1, p. 19–33. 124

[BN98] Franz Baader and Tobias Nipkow – Term Rewriting and All That., Cam-
bridge University Press, 1998. 9, 11, 14

[BRF04] Jean-Pierre Banâtre, Yann Radenac and Pascal Fradet – “Chemical
Specification of Autonomic Systems”, IASSE, ISCA, 2004, p. 72–79. 28,
108

[BRJ+05] Grégory Batt, Delphine Ropers, Hidde de Jong, Johannes Geiselmann,
Radu Mateescu, Michel Page and Dominique Schneider – “Validation
of qualitative models of genetic regulatory networks by model checking:
analysis of the nutritional stress response in scherichia coli”, Bioinformatics
21 (2005), no. 1, p. 19–28. 124

[BS01] Franz Baader and Wayne Snyder – “Unification Theory”, Handbook of
Automated Reasoning (J. A. Robinson and A. Voronkov, eds.), Elsevier
and MIT Press, 20001, p. 445–532. 13

[Bun79] Horst Bunke – “Programmed Graph Grammars”, Graph-Grammars and
Their Application to Computer Science and Biology (V. Claus, H. Ehrig

and G. Rozenberg, eds.), Lecture Notes in Computer Science, vol. 73,
Springer, 1979, p. 155–166. 73

[BYFH06] M. L. Blinov, J. Yang, J. R. Faeder and W. S. Hlavacek – “Graph
Theory for Rule-Based Modeling of Biochemical Networks.”, Transactions
on Computational Systems Biology VII (C. Priami, A. Ingólfsdóttir,
B. Mishra and H. R. Nielson, eds.), Lecture Notes in Computer Science,
vol. 4230, Springer, 2006, p. 89–106. 4, 120

[Car05a] Luca Cardelli – “Abstract Machines of Systems Biology.”, Transactions
on Computational Systems Biology III (C. Priami, E. Merelli, P. P. Gon-

zalez and A. Omicini, eds.), Lecture Notes in Computer Science, vol. 3737,
Springer, 2005, p. 145–168. 3

186

Bibliography

[Car05b] — , “Brane Calculi.”, Computational Methods in Systems Biology, Inter-
national Conference CMSB 2004, Paris, France, May 26-28, 2004, Revised
Selected Papers (V. Danos and V. Schächter, eds.), Lecture Notes in
Computer Science, vol. 3082, Springer, 2005, p. 257–278. 107, 120, 121

[CBL04] Arjav J. Chakravarti, Gerald Baumgartner and Mario Lauria –
“Application-Specific Scheduling for the Organic Grid”, GRID (R. Buyya,
ed.), IEEE Computer Society, 2004, p. 146–155. 107

[CDE+02] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Nar-
ciso Martí-Oliet, José Meseguer and Jose F. Quesada – “Maude: spec-
ification and programming in rewriting logic.”, Theoretical Computer Sci-
ence 285 (2002), no. 2, p. 187–243. 120

[CF07] Horatiu Cirstea and Germain Faure – “Confluence of Pattern-Based Cal-
culi”, RTA (F. Baader, ed.), Lecture Notes in Computer Science, vol. 4533,
Springer, 2007, p. 78–92. 27

[CG00] Luca Cardelli and Andrew D. Gordon – “Mobile ambients.”, Theoretical
Computer Science 240 (2000), no. 1, p. 177–213. 107

[CGP00] Edmund M. Clarke, Orna Grumberg and Doron A. Peled – Model
Checking, MIT Press, 2000. 6, 51, 123, 125, 128, 129

[CK98] Horatiu Cirstea and Claude Kirchner – “The Rewriting Calculus as a
Semantics of ELAN”, ASIAN (J. Hsiang and A. Ohori, eds.), Lecture
Notes in Computer Science, vol. 1538, Springer, 1998, p. 84–85. 27

[CK01] — , “The Rewriting Calculus - Part I and II”, Logic Journal of the IGPL
9 (2001), no. 3, p. 427—498. 3, 27, 28, 34, 53

[CKL02] Horatiu Cirstea, Claude Kirchner and Luigi Liquori – “Rewriting Cal-
culus with(out) Types”, Electronic Notes in Theoretical Computer Science
71 (2002), p. 3–19. 27

[CKLW03] Horatiu Cirstea, Claude Kirchner, Luigi Liquori and Benjamin Wack

– “Rewrite strategies in the rewriting calculus.”, Electronic Notes in Theo-
retical Computer Science 86 (2003), no. 4, p. 593–624. 27, 41

[CMR+97] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig,
Reiko Heckel and Michael Löwe – “Algebraic Approaches to Graph
Transformation - Part I: Basic Concepts and Double Pushout Approach.”,
Handbook of Graph Grammars and Computing by Graph Transforma-
tions, Volume 1: Foundations (G. Rozenberg, ed.), World Scientific, 1997,
p. 163–246. 18, 19

[CRCFS04] Nathalie Chabrier-Rivier, Marc Chiaverini, Vincent Danos François
Fages and Vincent Schächter – “Modeling and querying biomolecular

187

Bibliography

interaction networks.”, Theoretical Computer Science 325 (2004), no. 1,
p. 25–44. 6, 124

[CZ08] Luca Cardelli and Gianluigi Zavattaro – “On the Computational
Power of Biochemistry”, AB’08 (K. Horimoto, G. Regensburger,
M. Rosenkranz and H. Yoshida, eds.), Lecture Notes in Computer Sci-
ence, vol. 5147, Springer-Verlag, 2008, p. 65–80. 3, 28

[Dau92] Max Dauchet – “Simulation of Turing Machines by a Regular Rewrite
Rule”, Theoretical Computer Science 103 (1992), no. 2, p. 409–420. 14

[Der82] Nachum Dershowitz – “Orderings for Term-Rewriting Systems”, Theo-
retical Computer Science 17 (1982), p. 279–301. 14

[DL04] Vincent Danos and Cosimo Laneve – “Formal Molecular Biology.”, The-
oretical Computer Science 325 (2004), no. 1, p. 69–110. 4, 115, 120

[DP04] Vincent Danos and Sylvain Pradalier – “Projective Brane Calculus.”,
CMSB (V. Danos and V. Schächter, eds.), Lecture Notes in Computer
Science, vol. 3082, Springer, 2004, p. 134–148. 107

[DZB01] Peter Dittrich, Jens Ziegler and Wolfgang Banzhaf – “Artificial
Chemistries - A Review.”, Artificial Life 7 (2001), no. 3, p. 225–275. 3

[EEKR97] H. Ehrig, G. Engels, H.-J. Kreowski and G. Rozenberg (eds.) –
Handbook of Graph Grammars and Computing by Graph Transformations,
Volume 2: Applications, Languages, and Tools, World Scientific, 1997. 18,
19, 55

[EGPP99] Hartmut Ehrig, M. Gajewsky and Francesco Parisi-Presicce – “High-
level replacement systems applied to algebraic specifications and Petri nets”,
Handbook of Graph Grammars and Computing by Graph Transformations,
Volume 3: Concurrency, Parallelism, and Distribution (H. Ehrig, H.-J.
Kreowski, U. Montanari and G. Rozenberg, eds.), World Scientific,
1999, p. 341–399. 30

[EHK+97] Hartmut Ehrig, Reiko Heckel, Martin Korff, Michael Löwe, Leila
Ribeiro, Annika Wagner and Andrea Corradini – “Algebraic Ap-
proaches to Graph Transformation - Part II: Single Pushout Approach and
Comparison with Double Pushout Approach”, Handbook of Graph Gram-
mars and Computing by Graph Transformations, Volume 1: Foundations
(G. Rozenberg, ed.), World Scientific, 1997, p. 247–312. 18

[Ehr79] Hartmut Ehrig – “Introduction to the Algebraic Theory of Graph Gram-
mars (A Survey).”, Graph-Grammars and Their Application to Computer
Science and Biology (V. Claus, H. Ehrig and G. Rozenberg, eds.), Lec-
ture Notes in Computer Science, vol. 73, Springer, 1979, p. 1–69. 75

188

Bibliography

[EKL+04] Steven Eker, Merrill Knapp, Keith Laderoute, Patrick Lincoln and
Carolyn L. Talcott – “Pathway Logic: Executable Models of Biological
Networks.”, Electronic Notes in Theoretical Computer Science 71 (2004),
p. 144—161. 120

[EKMR97] H. Ehrig, H.-J. Kreowski, U. Montanari and G. Rozenberg (eds.) –
Handbook of Graph Grammars and Computing by Graph Transformations,
Volume 3: Concurrency, Parallelism, and Distribution, World Scientific,
1997. 18, 55

[EMS04] Steven Eker, Jose Meseguer and Ambarish Sridharanarayanan –
“The Maude LTL Model Checker”, Electronic Notes in Theoretical Com-
puter Science 71 (2004), p. 162–187. 128

[EP05] Hartmut Ehrig and Ulrike Prange – “Modeling with Graph Transforma-
tion”, Advances in Multiagent Systems, Robotics and Cybernetics: Theory
and Practice. Proceedings of Intern. Conf. on Systems Research, Informat-
ics and Cybernetics (G. Lalsker and J. Pfalzgraf, eds.), 2005. 55

[ERT97] Claudia Ermel, Michael Rudolf and Gabriele Taentzer – “The AGG
Approach: Language and Environment”, Handbook of Graph Grammars
and Computing by Graph Transformations, Volume 2: Applications, Lan-
guages, and Tools (H. Ehrig, G. Engels, H.-J. Kreowski and G. Rozen-

berg, eds.), World Scientific, 1997, p. 551–603. 19, 65

[FB96] Walter Fontana and Leo W. Buss – “The barrier of objects: From dynami-
cal systems to bounded organizations.”, Boundaries and Barriers. (J. Casti

and A. Karlqvist, eds.), Addison-Wesley, 1996, p. 56–116. 2, 37

[FBH05] James R. Faeder, Michael L. Blinov and William S. Hlavacek – “Graph-
ical rule-based representation of signal-transduction networks.”, Proceedings
of the 2005 ACM Symposium on Applied Computing (SAC), Santa Fe, New
Mexico, USA (H. Haddad, L. M. Liebrock, A. Omicini and R. L. Wain-

wright, eds.), ACM, 2005, p. 133–140. 121

[FGK03] Olivier Fissore, Isabelle Gnaedig and Hélène Kirchner – “Simplification
and termination of strategies in rule-based languages.”, PPDP, ACM, 2003,
p. 124–135. 121

[FM98] Pascal Fradet and Daniel Le Métayer – “Structured Gamma.”, Sci.
Comput. Program. 31 (1998), no. 2-3, p. 263–289. 2

[FMP07] Maribel Fernández, Ian Mackie and Jorge Sousa Pinto – “A Higher-
Order Calculus for Graph Transformation”, Electronic Notes in Theoretical
Computer Science 72 (2007), no. 1, p. 45–58. 104, 106

189

Bibliography

[FMS06] Maribel Fernández, Ian Mackie and François-Régis Sinot – “Interaction
Nets vs. the rho-calculus: Introducing Bigraphical Nets.”, Electronic Notes
in Theoretical Computer Science 154 (2006), no. 3, p. 19–32. 88, 90

[Gia03] Jean-Louis Giavitto – “Invited Talk: Topological Collections, Transforma-
tions and Their Application to the Modeling and the Simulation of Dynam-
ical Systems”, RTA (R. Nieuwenhuis, ed.), Lecture Notes in Computer
Science, vol. 2706, Springer, 2003, p. 208–233. 2, 54

[Gil77] Daniel T. Gillespie – “Exact stochastic simulation of coupled chemical
reactions.”, J. Phys. Chem. 81 (1977), no. 25, p. 2340–2361. 52

[GM92] Joseph A. Goguen and Jose Meseguer – “Order-Sorted Algebra I: Equa-
tional Deduction for Multiple Inheritance, Overloading, Exceptions and
Partial Operations.”, Theoretical Computer Science 105 (1992), no. 2,
p. 217–273. 11

[GM01] Jean-Louis Giavitto and Olivier Michel – “MGS: a Rule-Based Program-
ming Language for Complex Objects and Collections.”, Electronic Notes in
Theoretical Computer Science 59 (2001), no. 4, p. 286–304. 2

[GM02a] — , “Data Structure as Topological Spaces”, UMC (C. Calude, M. J.
Dinneen and F. Peper, eds.), Lecture Notes in Computer Science, vol.
2509, Springer, 2002, p. 137–150. 53

[GM02b] — , “The Topological Structures of Membrane Computing”, Fundam. In-
form. 49 (2002), no. 1–3, p. 123–145. 54

[HFB+06] William S. Hlavacek, James R. Faeder, Michael L. Blinov, Richard G.
Posner, Michael Hucka and Walter Fontana – “Rules for Modeling
Signal-Transduction Systems.”, Science STKE 334 (2006). 120

[HHT96] Annegret Habel, Reiko Heckel and Gabriele Taentzer – “Graph Gram-
mars with Negative Application Conditions”, Fundam. Inform. 26 (1996),
no. 3/4, p. 287–313. 108

[Iba04] Liliana Ibanescu – “Programmation par règles et stratégies pour la généra-
tion automatique de mécanismes de combustion d’hydrocarbures polycy-
cliques”, Thesis, Institut National Polytechnique de Lorraine, 2004. 4, 118

[IYD05] Oscar H. Ibarra, Hsu-Chun Yen and Zhe Dang – “On various notions of
parallelism in P Systems”, Int. J. Found. Comput. Sci. 16 (2005), no. 4,
p. 683–705. 52, 122

[JK86] Jean-Pierre Jouannaud and Hélène Kirchner – “Completion of a set of
rules modulo a set of equations.”, SIAM Journal of Computing 15 (1986),
no. 4, p. 1155 – 1194. 15

190

Bibliography

[JM04] Ole Hogh Jensen and Robin Milner – “Bigraphs and mobile processes
(revised)”, Tech. Report 580, University of Cambridge, February 2004. 79

[KC03] Jeffrey O. Kephart and David M. Chess – “The Vision of Autonomic
Computing”, IEEE Computer 36 (2003), no. 1, p. 41–50. 107

[KKK08] Claude Kirchner, Florent Kirchner and Hélène Kirchner – “Strate-
gic Computations and Deductions”, Festchrift in honor of Peter Andrews,
Studies in Logic and the Foundation of Mathematics, Elsevier, 2008. 10,
19, 21

[KKM07] Claude Kirchner, Radu Kopetz and Pierre-Etienne Moreau – “Anti-
Pattern Matching.”, Proceedings of the 16th European Symposium on Pro-
gramming - ESOP’07, Lecture Notes in Computer Science, vol. 4421,
Springer, 2007, p. 110–124. 171

[KKV95] Claude Kirchner, Hélène Kirchner and Marian Vittek – “Designing
Constraint Logic Programming Languages using Computational Systems.”,
Principles and Practice of Constraint Programming. The Newport Papers.
(P. Van Hentenryck and V. Saraswat, eds.), MIT Press, 1995, p. 131–
158. 21

[Klo80] Jan Willem Klop – “Combinatory Reduction Systems”, Thesis, CWI, Am-
sterdam, 1980. 104

[KM01] Hélène Kirchner and Pierre-Etienne Moreau – “Promoting rewriting to a
programming language: a compiler for non-deterministic rewrite programs
in associative-commutative theories.”, J. Funct. Program. 11 (2001), no. 2,
p. 207–251. 95

[KMT08] Jean Krivine, Robin Milner and Angelo Troina – “Stochastic Bigraphs”,
The 24th Conference on the Mathematical Foundations of Programming
Semantics, 2008. 79, 80, 148

[Laf90] Yves Lafont – “Interaction Nets”, POPL, 1990, p. 95–108. 106

[LET08] Leen Lambers, Hartmut Ehrig and Gabriele Taentzer – “Sufficient Cri-
teria for Applicability and Non-Applicability of Rule Sequences”, Interna-
tional Workshop on Graph Transformation and Visual Modeling Techniques
(GTVMT), 2008. 80

[Lin68] Aristid Lindenmayer – “Mathematical models for cellular interaction in
development”, Journal of Theoretical Biology I and II (1968), no. 18,
p. 280–315. 1

[LT07] Cosimo Laneve and Fabien Tarissan – “A simple calculus for proteins
and cells.”, Electronic Notes in Theoretical Computer Science 171 (2007),
no. 2, p. 139–154. 107, 115, 120

191

Bibliography

[LV02] Javier Larrosa and Gabriel Valiente – “Constraint Satisfaction Algo-
rithms for Graph Pattern Matching”, Mathematical Structures in Computer
Science 12 (2002), no. 4, p. 403–422. 19, 80

[Mac98] Saunders Mac Lane – Categories for the Working Mathematician, 2nd ed.,
Graduate Texts in Mathematics, Springer, 1998. 15, 75

[Meh84] Kurt Mehlhorn – Data Structures and Algorithms 2: Graph Algorithms
and NP-Completeness, Monographs in Theoretical Computer Science. An
EATCS Series, vol. 2, Springer, 1984. 19

[Mes92] José Meseguer – “Conditioned Rewriting Logic as a United Model of
Concurrency.”, Theoretical Computer Science 96 (1992), no. 1, p. 73–155.
51

[Mes96] — , “Rewriting Logic as a Semantic Framework for Concurrency: a Progress
Report”, CONCUR (U. Montanari and V. Sassone, eds.), Lecture Notes
in Computer Science, vol. 1119, Springer, 1996, p. 331–372. 91, 93, 106

[Mil99] Robin Milner – Communicating and Mobile Systems: the Pi-Calculus,
Cambridge University Press, 1999. 5, 120

[Mil01] — , “Bigraphical Reactive Systems.”, CONCUR (K. G. Larsen and
M. Nielsen, eds.), Lecture Notes in Computer Science, vol. 2154, Springer,
2001, p. 16–35. 79

[Mil06] — , “Pure bigraphs: Structure and dynamics.”, Inf. Comput. 204 (2006),
no. 1, p. 60–122. 79, 107

[MOMV05] Narciso Martí-Oliet, José Meseguer and Alberto Verdejo – “Towards
a strategy language for Maude”, Proceedings Fifth International Workshop
on Rewriting Logic and its Applications, WRLA 2004, Barcelona, Spain,
March 27 – April 4, 2004 (N. Martí-Oliet, ed.), Electronic Notes in The-
oretical Computer Science, vol. 117, Elsevier, 2005, p. 417–441. 21

[MP43] W. S. McCullough and W. Pitts – “A logical calculus for the ideas im-
manent in nervous activity”, Bulletin of Mathemathical Biophysics 5 (1943),
p. 115–133. 1

[MRM+08] Pedro T. Monteiro, Delphine Ropers, Radu Mateescu, Ana T. Fre-

itas and Hidde de Jong – “Temporal logic patterns for querying dynamic
models of cellular interaction networks”, Bioinformatics 24 (2008), no. 16,
p. 227–233. 6, 124

[Neu66] John Von Neumann – Theory of Self-Reproducing Automata, University of
Illinois Press, Champaign, Illinois, 1966. 1

[New42] M.H.A. Newman – “On theories with combinatorial definition of "equiva-
lence"”, Annals of Mathematics 43 (1942), no. 2, p. 223–243. 10

192

Bibliography

[Pau02] Gheorghe Paun – Membrane Computing. An Introduction, Springer, 2002.
2, 52, 122

[Pau06] — , “Twenty Six Research Topics About Spiking Neural P Systems.”, Avail-
able at the P Systems Web Page: http://psystems.disco.unimib.it.,
2006. 121

[PC03] Sabine Peres and Jean-Paul Comet – “Contribution of Computational
Tree Logic to Biological Regulatory Networks: Example from Pseudomonas
Aeruginosa”, CMSB (C. Priami, ed.), Lecture Notes in Computer Science,
vol. 2602, Springer, 2003, p. 47–56. 124

[PE93] Marinus J. Plasmeĳer and Marko C. J. D. van Eekelen – Functional
Programming and Parallel Graph Rewriting, Addison-Wesley, 1993. 19

[Plu99] Detlef Plump – “Term Graph Rewriting”, Handbook of Graph Grammars
and Computing by Graph Transformations, Volume 2: Applications, Lan-
guages, and Tools (H. Ehrig, G. Engels, H.-J. Kreowski and G. Rozen-

berg, eds.), World Scientific, 1999, p. 3–61. 106

[Plu05] — , “Confluence of Graph Transformation Revisited”, Processes, Terms
and Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan Willem
Klop, on the Occasion of His 60th Birthday (A. Middeldorp, V. van

Oostrom, F. van Raamsdonk and R. C. de Vrĳer, eds.), Lecture Notes
in Computer Science, vol. 3838, Springer, 2005, p. 280–308. 75, 77, 78

[PRC08] Gheorghe Paun and Francisco José Romero-Campero – “Membrane
Computing as a Modeling Framework. Cellular Systems Case Studies”, SFM
(M. Bernardo, P. Degano and G. Zavattaro, eds.), Lecture Notes in
Computer Science, vol. 5016, Springer, 2008, p. 168–214. 2

[PS81] Gerald E. Peterson and Mark E. Stickel – “Complete Sets of Reductions
for Some Equational Theories.”, J. ACM 28 (1981), no. 2, p. 233–264. 15

[QLF+06] Zhengwei Qi, Minglu Li, Cheng Fu, Dongyu Shi and Jinyuan You – “Mem-
brane Calculus: a formal method for Grid transactions”, Concurrency and
Computation: Practice and Experience 18 (2006), no. 14, p. 1799–1809. 107

[Rad07] Yann Radenac – “Programmation “chimique” d’ordre supérieur”, Thèse
de doctorat, Université de Rennes 1, April 2007. 2, 5, 25, 53, 148

[Rei07] Antoine Reilles – “Canonical Abstract Syntax Trees”, WRLA’06, vol. 176,
Electronic Notes in Theoretical Computer Science, no. 4, 2007, p. 165–179.
172

[Roz97] G. Rozenberg (ed.) – Handbook of Graph Grammars and Computing by
Graph Transformations, Volume 1: Foundations, World Scientific, 1997.
18, 55

193

Bibliography

[RPS+04] Aviv Regev, Ekaterina M. Panina, William Silverman, Luca Cardelli

and Ehud Y. Shapiro – “BioAmbients: an abstraction for biological com-
partments.”, Theoretical Computer Science 325 (2004), no. 1, p. 141–167.
107

[SC01] L. A. Segel and I. R. Cohen (eds.) – Design Principles for the Im-
mune System and Other Distributed Autonomous Systems, Oxford Univer-
sity Press, 2001. 122

[Sch97] Andy Schürr – “Programmed Graph Replacement Systems.”, Handbook
of Graph Grammars and Computing by Graph Transformations, Volume 1:
Foundations (G. Rozenberg, ed.), World Scientific, 1997, p. 479–546. 19,
73

[Sch99] H.J. Schneider – “Describing systems of processes by means of high-level
replacement”, Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 3: Concurrency, Parallelism, and Distribution
(H. Ehrig, H.-J. Kreowski, U. Montanari and G. Rozenberg, eds.),
World Scientific, 1999, p. 401–450. 30

[SM05] Antoine Spicher and Olivier Michel – “Using Rewriting Techniques in the
Simulation of Dynamical Systems: Application to the Modeling of Sperm
Crawling”, International Conference on Computational Science (1) (V. S.
Sunderam, G. D. van Albada, P. M. A. Sloot and J. Dongarra, eds.),
Lecture Notes in Computer Science, vol. 3514, Springer, 2005, p. 820–827.
54

[SMC+08] Antoine Spicher, Olivier Michel, Mikolaj Cieslak, Jean-Louis Giavitto

and Przemyslaw Prusinkiewicz – “Stochastic P systems and the simula-
tion of biochemical processes with dynamic compartments”, Biosystems 91
(2008), no. 3, p. 458–472. 52

[Spi06] Antoine Spicher – “Transformation de collections topologiques de dimen-
sion arbitraire. Application à la modélisation de systèmes dynamiques”,
Thesis, Université d’Évry, 2006. 2, 52, 53

[ST99] Ron Shamira and Dekel Tsura – “Faster Subtree Isomorphism”, Journal
of Algorithms 33 (1999), no. 2, p. 267–280. 80

[SWZ97] Andy Schürr, Andreas J. Winter and Albert Zündorf – “The PRO-
GRES Approach: Language and Environment.”, Handbook of Graph
Grammars and Computing by Graph Transformations, Volume 2: Applica-
tions, Languages, and Tools (H. Ehrig, G. Engels, H.-J. Kreowski and
G. Rozenberg, eds.), World Scientific, 1997, p. 479–546. 19, 65, 73

[Ull76] J. R. Ullman – “An Algorithm for Subgraph Isomorphism”, Journal of the
ACM 23 (1976), no. 1, p. 31–42. 19, 80

194

Bibliography

[Val02] Gabriel Valiente – Algorithms on Trees and Graphs, Springer, 2002. 19,
80

[Vis01] Eelco Visser – “Stratego: A Language for Program Transformation based
on Rewriting Strategies. System Description of Stratego 0.5.”, Rewriting
Techniques and Applications (RTA’01) (A. Middeldorp, ed.), Lecture
Notes in Computer Science, vol. 2051, Springer-Verlag, May 2001, p. 357–
361. 21

[Zün96] Albert Zündorf – “Graph Pattern Matching in PROGRES”, TAGT (J. E.
Cuny, H. Ehrig, G. Engels and G. Rozenberg, eds.), Lecture Notes in
Computer Science, vol. 1073, Springer, 1996, p. 454–468. 19, 80

195

Bibliography

196

List of Figures

0.1 Two molecular graphs related by a complexation reaction 5
0.2 The relations between the concepts and the chapters in the thesis 8

2.4 A decomposition of a first-order abstraction on graphs 33
2.5 Box-based representation of a world consisting of the abstractions A1, A2,

and A3, and the structured objects O1 and O2. 35
2.6 The basic syntax of the ρ〈Σ〉-calculus . 36
2.7 The basic semantics of the ρ〈Σ〉-calculus 37
2.8 Box-based representation of the application of the heating rule 2.1 on a

world consisting of an abstraction A, and two abstract molecules M and N 38
2.9 The semantics of the ρ〈Σ〉-calculus with explicit application 40
2.10 Box-based representation of the strategy seq 42
2.11 Box-based representation of the strategy first 42
2.12 The syntax of the ρ〈Σ〉-calculus with strategies 49
2.13 The semantics of the ρ〈Σ〉-calculus with strategies 50

3.1 Two views of a port graph . 57
3.2 An example of port graph . 61
3.3 An example of a port graph used as pattern in a matching problem 65
3.4 Port-graph rewrite rules . 70
3.5 Rewriting steps . 71
3.6 An arrow-translation example . 71
3.7 An application of the port graph rewrite rule from Figure 3.4 (a) on a

port graph G resulting in a port graph G′ 72
3.8 An application of the port graph rewrite rule given in Figure 3.4 (a) on G

resulting in two port graphs G′ and G′′ with an intermediate port graph I 74
3.9 A port graph rewrite rule . 77
3.10 Example of critical pair produced by the port graph rewrite rule in Figure 3.9 78
3.11 Example of embedding the critical pair from Figure 3.10 into a context

that does not preserve local confluence . 78

4.1 An abstraction with explicit wirings that specifies the splitting of a node
identified by the couple of variables i : X connected to a node j : Y and
introduces a rule for splitting any node having the same name as i 85

5.1 The operation set F . 93
5.5 Relations between the ρ〈Σ〉-calculus, the ρpg-calculus, and the ρtpg-calculus 105

197

List of Figures

6.1 A mail system configuration . 109
6.2 Basic rules for the mail delivery system 109
6.3 Rules for self-configuration and self-healing in the mail delivery system . . 111
6.4 Rules for self-protection in the mail delivery system 112
6.5 Rules for self-optimization in the mail delivery system 113
6.6 Initial and intermediate molecular graphs in the EGFR model 116
6.7 The reaction patterns in the EGFR signaling pathway fragment 117
6.8 G” and G”’ are obtained from G’ by rewriting using the rule r2 on

different subgraphs . 117
6.9 The molecular graph H for the EGFR signaling pathway fragment in the

equilibrium state . 119

7.1 Port graph expressions . 126
7.2 Structural formulas for port graphs . 127
7.3 Formulas in CTL for port graphs . 130

A.1 Internal evaluation rule ι1: Start matching 149
A.2 Internal evaluation rule ι2: Decompose a matching between two sets of

nodes . 151
A.3 Internal evaluation rule ι3: Empty set of nodes as pattern 152
A.4 Internal evaluation rule ι4: Empty set of nodes as subject 152
A.5 Internal evaluation rule ι5: Match singletons of nodes 152
A.6 Internal evaluation rule ι6: Match variable node 153
A.7 Internal evaluation rule ι7: Match variable node without ports 153
A.8 Internal evaluation rules ι8 and ι9: Match variable node when exactly

one of the pattern and the subject nodes does not have ports besides the
handler but the other does . 154

A.9 Internal evaluation rules ι10 and ι11: Match constant node with ports . . 156
A.10 Internal evaluation rules ι12 and ι13: Match constant node without ports . 157
A.11 Internal evaluation rules ι14 and ι15: Match constant node when exactly

one of the pattern and the subject nodes does not have ports besides the
handler but the other does . 158

A.12 Internal evaluation rule ι16: Match sets of ports 159
A.13 Internal evaluation rule ι17: Empty set of ports as pattern 160
A.14 Internal evaluation rule ι18: Empty set of ports as subject 160
A.15 Internal evaluation rule ι19: Match singletons of ports 160
A.16 Internal evaluation rule ι20: Match a variable port 162
A.17 Internal evaluation rule ι21: Match a variable port with a neighborless port163
A.18 Internal evaluation rule ι22: Match successfully a variable port 163
A.19 Internal evaluation rule ι23: Match a constant port 164
A.20 Internal evaluation rule ι24: Failure at matching a constant port 165
A.21 Internal evaluation rule ι25: Failure at matching a constant neighborless

port . 166

198

List of Figures

A.22 Internal evaluation rule ι26: Successfully matching a constant port with-
out ports . 166

A.23 Internal evaluation rules ι27 and ι28: Applying the substitution on node
and port names . 167

A.24 Internal evaluation rule ι29: Translating a bridge 168
A.25 Internal evaluation rule ι30: Replacement 168
A.26 Internal evaluation rule ι31: Deleting a matched node 168
A.27 Internal evaluation rule ι32: Removing the nodes from the matched sub-

graph after all bridges are translated . 169
A.28 Internal evaluation rules ι33 and ι34: Removing the application node and

the arrow node . 169

199

	Introduction
	Preliminary Notions
	Binary relations and their properties
	Abstract Reduction Systems
	First-order Term Rewriting
	Term Algebra
	Equational Theories
	Term Rewriting

	Elements of Category Theory
	Labeled Graphs
	Graph Transformation
	Strategic Rewriting

	An Abstract Biochemical Calculus
	Introduction
	The -calculus and HOCL
	The -Calculus
	Towards an Abstract Biochemical Calculus
	Structure of the Chapter

	Syntax
	Structured Objects
	Abstractions
	Abstract Molecules
	Subobjects, Submolecules, Substitutions, Matching
	Worlds
	Structures of Worlds or Multiverses

	Small-Step Semantics
	Basic Semantics
	Making the Application Explicit
	On the Local Confluence
	First Cool Down, then Heat Up

	Adding Strategies to the Calculus
	Strategies as Abstractions
	Call-by-Name in the Calculus with Strategies
	Correctness of the Encoding of Strategies as Abstractions
	Extending the Semantics with Strategies and Failure Recovery
	Persistent Strategies
	Overview of the Syntax and the Semantics of the Calculus with Strategies

	Synchronous Big-Step Semantics
	Possible Strategies for the Calculus
	Comparison with the -Calculus and HOCL
	Conclusions and Perspectives

	Port graph rewriting
	Introduction
	Port Graphs
	Port Graph Morphisms and Node-Morphisms
	Port Graph Matching and Submatching
	General Definition
	A Submatching Algorithm

	Port Graph Rewrite Rules
	Port Graph Rewriting Relation
	Strategic Port Graph Rewriting
	Weak Port Graphs
	On the Confluence of Port Graph Rewriting
	Comparison with Bigraphical Reactive Systems
	Conclusions and Perspectives

	The pg-Calculus: a Biochemical Calculus Based on Strategic Port Graph Rewriting
	Introduction
	Syntax
	Semantics
	Evaluation Rules as Port Graph Rewrite Rules
	The Application Mechanism as Port Graphs Rewrite Rules

	Conclusions

	Term Rewriting Semantics for Port Graph Rewriting
	Introduction
	Term Encoding of Port Graphs
	An Algebraic Signature for Port Graphs
	A Term Algebra for Port Graphs

	pg-Rewrite Rules
	Extending the pg-Rewrite Rules
	Auxiliary Operations and Reduction Relations
	Instantiation of a Node-Morphism
	Node-Morphism Application
	Rules for Ensuring Well-Formedness
	Computing the Canonical Form

	The pg-Rewriting Relation
	Operational Correspondence
	Relation to the -Calculus
	Comparison with the Higher-Order Calculus for Graph Transformation
	The Relation between the pg-Calculus and the tpg-Calculus

	Conclusions

	Case Studies for the pg-calculus
	Autonomic Computing
	Strategy-Based Modeling of Self-Management
	Towards Embedding Runtime Verification in the Model

	Molecular Graphs. Biochemical Networks
	Modeling Molecular Complexes as Port Graphs
	Biochemical Network Generation by Strategic Rewriting
	Comparisons with Related Formalisms

	Conclusions and Perspectives

	Runtime Verification in the pg-Calculus
	Introduction
	CTL for Port Graphs and Port Graph Rewriting
	Port Graph Expressions
	Structural Formulas
	State and Path Formulas

	Embedding Verification in the pg-Calculus: the pgv-Calculus
	Syntax
	Semantics
	Application in Modeling Autonomous Systems

	Conclusions and Perspectives

	Conclusions and Perspectives
	Internal Evaluation Rules for the Application in the pg-Calculus
	Matching
	Replacement

	Overview of the TOM System
	Implementation of the EGFR Signaling Pathway Fragment using TOM
	Bibliography

