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Introduction

We are dealing with interpolation problems with growth estimates on entire functions and
some of their applications to harmonic analysis.

Let A(C) be the space of all entire functionsa subharmonic positive function aod},(C)
the space of functiong € A(C) for which there exist constants > 0, B > 0 such that one has
the estimate

1f(2)] < AePP®) forall z € C.

Theses spaces are clearly algebras under the ordinary product of functions, they are known as
Hormander algebras (sed).

Let {«;} be a discrete sequence of complex numbérs;} a sequence of positive integers
and{w;,;};0<1<m,; @ doubly indexed sequence of complex numbers for wich there exist constants
A’ >0, B’ > 0 such that

mj;—1

D fwj| < AePe) ] forall ;.

=0
The interpolation problems we are dealing with may be summarized as follows. Under what
conditions does there exist a functigre A,(C) such that

fO(ay)
[!
This problem is closely related to the fundamental principle in the solution space of homoge-
neous convolution equations, that is, with the expression of solutions of such an equation (called
mean-periodic functions) through its elementary solutions, exponentials monomials.
The question of interpolation with growth estimate was studied by A.F. Leon28; Q)
in the space Ex{L) of all entire functions of exponential type, which coresponds to the case
p(z) = |2|.
Another important example is(z) = | Im z| + In(1 + |z|?). The resulting spacél,(C) is
then the spacé€’(R) of Fourier transforms of distributions with compact support on the real line.
Interpolation problems in these spaces were studied by W.A. Squiré4,id9.
We impose o two conditions :
(@) In(1 + |2]?) = O(p(2)).
(b) there exist constants;, C; > 0 such thatz — w| < 1 impliesp(w) < Cip(z) + Cs.
The interest of these two conditions lies in their consequences. Condition (a) implies, (gt
contains all polynomials while condition (b) implies thdt(C) is stable under differentiation.

5

=w,,;, forall jandforall0 <! <m;?
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Actually, thanks to condition (b), if € A,(C) then the derivatives satisfy the stronger property

> @
100 < e
1=0 ’

for all z € C, whereA and B are some positive constants.
Let W, (C) be the space of measurable functigrsatisfying, for some constaat > 0,

[ latPerOane) <,

C

whered )\ denotes the Lebesgue measure. As a consequence of condition (b), we have the equality
W,(C) N A(C) = A,(C).

This equality shows how the?*-estimates are related to the growth condition we are dealing with.
We point out the papef7] where C.A. Berenstein and B.A.Taylor showed thétiander’s the-
orem about the existence of solutions of the inhomogeneous Cauchy-Riemann equation with
L?-estimates was a powerful tool that could be used to simplify the study of interpolation prob-
lems in Hbrmander’s algebras. We will often use these techniques in our work.

The weight(z) = |z| andp(z) = | Im 2| +In(1 + |2|?) obviously satisfy conditions (a) and
(b). Another important example of weightz$z) = |z|?, p > 0. In this caseA,(C) is the space
of functions of ordeK p and of finite type.

We may consider more rapidly growing weights, such@s = e*I” with 0 < p < 1. Note
that because of condition (b), we must hawe(z) = O(|z|).

Now consider a sequenge; } ;cy of distinct complex numbers witla;| — oo and attribute
to each pointy; a multiplicity m; € N*. The collection of pair$” = {(a;, m;)};en is called a
multiplicity variety.

Let A(V') be the space of doubly indexed sequeriées- {w;,} jen<i<m,; Of cOmplex num-
bers. It may be seen as the space of holomorphic functiois. oFhere is a natural restriction
map

Ry : A(C) — A(V)
defined by

0
Rv(f) = {f l(' )}jeN,OSij-

As we mentioned before, for afl € A,(C), we have

Z ‘f | < A Bp( aJ

=0
In particular, if we denote by, (V) the space of allV = {w;,};0<i<m, € A(V) for which
there exist constantd > 0 andB > 0 such that one has the estimate

mj;—1

D fwjal < AePPe) - forall j,
=0
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then
Ry (Ay(C)) C Ap(V).

We will say thatl” = {(«;,m;)};en iS an interpolating variety for,(C) (or to simplify, that

V is A,-interpolating) if for alllW = {w;};0<i<m; € Ap(V), there existf € A,(C) verifying

fO(ay)

= wj,, for all j and for all0 < [ < m;. In other words) is A,-interpolating if and

Ry (Ap(C)) = Ap(V).
We are mainly concerned with the two following questions :
Question 1: Under what conditions oW is it true that it is an interpolating variety fot,(C) ?
Question 2: What is the image afd,,(C) under the restriction maR ?

We begin by giving answers to both questions in Chapter 2 in the particular caseWigere
a finite union of interpolating varieties.

Let us look more closely at Question 1. We have an analytic characterization of interpolating
varieties given by C.A. Berenstein an B.Q. Li.They showed that a multiplicity vafiety-
{(aj,m;)}; is A,-interpolating if and only if there existg € 4,(C) having everyx; as a zero
of orderm; and verifying

‘f(mj)(()éj” > €€—Cp(aj)

with constantg, C' > 0 independent of (see B)).

We are specially interested in the problem of finding purely geometric conditions which
depend only on the distribution of the points and that would enable us to decide whether a mul-
tiplicity variety is interpolating or not by direct computation.

In this direction, Berenstein and Li, in the same paper, showed that whensvexdial (i.e.
p(z) = p(|z|)) and doubling (i.ep(2z) < 2p(z)) thenV = {(a;, m;)} en is A,-interpolating if
and only if

, forall j,

a .
Z my, In _lasl +m;ln|a;| = O(p(a;))
|, — oy
0<|ap—ayj|<|aj]
and .
Z myIn — = O(p(r)).
o ||
ag|<r

In the present work, we usedfimander'sL.?-estimates to the solution of tlieequation, as
in the works by Berndtsson-Ortega-Caif@] and Hartmann-Massaned2]] to find a geometric
answer to Question 1.

In Chapter 3, we apply this method to give geometric characterizatioss-ofterpolating
varieties for different classes of radial weights. In particular, we give a new proof in the case
where the weight is radial an doubling and we solve the problenpfoy = ¢/*! and more
generally wherin p(e”) is convex andn p(r) is concave.

In Chapter 4, we obtain a geometric description of interpolating varieties for the weight
p(z) = |Im 2| + In(1 + |2|?) and for more general Beurling weights.
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Chapter 5 is dedicated to Question 2 in the case whaseradial and doubling. We use
Hormander's theorem witli?-estimates to give an explicit description®f,(.A,(C)). Given a
multiplicity variety V' (which is not a uniqueness set tdy,(C)) and a doubly indexed sequence
W e A,(V), the necessary and sufficient condition thate R (A,(C)) is obtained in terms
of the growth of the divided differences with respecit@and tolV'.

As we said before, these interpolation problems are generally studied because of their appli-
cation to harmonic analysis. We explore this aspect in Chapter 64 lhet Young function (for
exampled(x) = z#, u > 1) and consider the spadg (C) of all entire functions ot with infra-
6-exponential growth. We are interested in the solutiprs F,(C) of the convolution equation
T x f = 0, calledT-mean-periodic functions, whef@is in the topological dual of(C). We
use the explicit description of the restriction map found in Chapter 5 to get an explicit represen-
tation formula for7-mean-periodic functions as a convergent series of exponential-polynomials
solutions of the formx'e®i#, 0 < | < m; where then; are the zeros of the Fourier-Borel tran-
form of T"andm; are their order of multiplicity. These series converge after an Abel-summation
process. Whe = {(a;,m;)}; is an interpolating variety, the convergence no longer requires
an Abel-summation.

Finally, in Chapter 7, we give some results about Question 1 in the multivariate case, when
V' is a discrete sequence @f. Berenstein and Li described the interpolating discrete sequences
for A,(C") as zeros of an entire map = (f1,---, f»), f; € A,(C"), where the jacobian
determinant off” verifies a certain lower bound. Therefore, when looking for a control on the
density of a discrete interpolating variety, we are led to the transcendegzaliBproblem, that
is, the problem of the existence of an upper bound on the zero set of an entire ma@"ftom
C™. This problem was studied by B.Q. Li and B.A.Taylor (s&4&]]. We give a new look on
the proof of the existence of such an upper bound when we count the zeros where the jacobian
determinant off’ is bounded below and of its corollary : a necessary condition on interpolating
discrete varieties. On the other hand, we give a sufficient geometric conditionpvh@radial
and doubling weight growing more rapidly thesi*. In the case wherg(z) = |z|?, this condition
is that the sequence is uniformly separated.

We conclude this introduction by pointing out that Chapters from 2 to 7 may be read indepen-
dently while all preliminary definitions and useful known results about interpolation problems in
A,(C) are collected in Chapter 1.



CHAPTER 1

Preliminaries

1.1. Definitions and notations

DEFINITION 1.1.1. A subharmonic functiop : C — R, is called a weight if it satisfies
the two following conditions.

(W1) In(1 + |2[*) = O(p(2)).
(w2) There exist constants,;, C; > 0 such thatz — w| < 1 impliesp(w) < Cip(z) + Cs.

Note that condition (w2) implies tha{z) = O(e“l*!) for someA > 0.

DEFINITION 1.1.2. We say that the weightis radial if p(z) = p(|z|) and that is doubling if
there exists” > 0 such thap(2z) < Cp(z) forall z € C.

REMARK 1.1.3. It is easy to see that property (w2) is satisfied whenever radial and
doubling.

Let A(C) be the space of all entire functions, we consider the space
A,(C) = {f € AC): VzeC, |f(2)| < AePP for someA > 0, B > O}.
Note thatA4,(C) can be seen as the union of the Banach spaces

Ap5(C) = {f € AC), Iflls := sup [f(2)le™PP®) < oo}

and has a structure of an (LF)-space when endowed with the the inductive limit topology. Let
W, (C) be the space of measurable functigrsich that for someé’ > 0,

[ lo@Pe ) < o
C

whered) denotes the Lebesgue measure. The usefulness of conditions (wl) and (w2) lie in the
following properties.

LEMMA 1.1.4.
(i) A,(C) contains all polynomials.
(i) Foranyf € A,(C), there are constantd > 0 and B > 0, such that

— | /()
2|

=0
In particular, A,(C) is stable under differentiation.
(i) W,(C)N A(C) = A,(C).

< AePP?) forall z € C..
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PROOF
() Thisis an obvious consequence of condition (wl).
(i) By the Cauchy inequality we have, for alle C and alll € N,

‘ fO(z)
!

< 2 max [£(O)]

= [¢—2]<2

!
Condition (w2) implies the existence of constardts- 0 and B > 0 such that

max |f(¢)] < AP,

I¢—z[<2

Property (ii) follows then immediately.

(i) Let f € A,(C). Thanks to condition (w1) there exist constardts> 0 andC' > 0 such
that for all = € C,

A
2 _—Cp(z) <
|f(2)]e R ESFRE

We readily deduce that € W,(C). Conversely, letf € W,(C) N A(C) and letC' > 0 be such
that

/ F(O2ePOa(C) < oo.
D(z,1)

Using the mean-value inequality, then Cauchy-Schwarz inequality and finally condition (w2), we
have
1
VOIEEY NGNS
D(z,1)

™

1 2-Ch(0) )1/2( Cw(©) )1/2
<2 ([ poreerong) ([ emon)

< AeBP(Z),
whereA and B are positive constants. |
Here are some examples of weights.

EXAMPLES 1.1.5.

e p(z) = In(1+ |z*) + [Im z|. ThenA,(C) is the space of Fourier transforms of distri-
butions with compact support on the real line.

e p(z) =1In(1 +|z[*). ThenA,(C) is the space of all the polynomials.

e p(2) = |z|. ThenA,(C) is the space of entire functions of exponential type.

e p(2) = |2|% a > 0. ThenA,(C) is the space of all entire functions of ordera and
finite type.

e p(z)=cI"0<a <1,

DEFINITION 1.1.6. We call a multiplicity varietyl” a collection of pairg«;, m;), where
a; are distinct points oC andm; € N* are the multiplicities at the points; and either the
collection is finite orjo;;| — co. We say that € V' to indicate that is one of the pointsy;.
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For a non-zero functiorf, we denote byZ( f) the collection of zeros of with their respective
multiplicities.

Let Vi = {(aj,m;)};>0 andVa = {(Bx, nx) }x>0 be two multiplicity varieties. We say that
Vi C Vo if {a;};>0 is a subsequence ¢fj; }.>o and, for the corresponding indices, we have
m; < ng.

From now onV = {(a;, m;)};en Will denote a multiplicity variety such thady;| — oco. We
consider the spaces
A(V) ={W ={wji}jeno<icm; C C},
m;—1
A, (V) = {W € A(V), Vi eN, Y |wj| < AeP) for somed > 0,B > 0}.

=0

Note thatA4, (V) can also be seen as the union of the Banach spaces
mj—l

A, 5(V)={W € A(V), |[W|p :=sup Z |wj7l|€—Bp(z) < oo}
1=0

j>0
and has a structure of an (LF)-space with the the inductive limit topology. Define the restriction
mapRy by
Ry : A(C) — A(V)
D (v,
P {M} |
! JEN,0<I<m;—1

In view of Lemma 1.1.4 (ji), it is clear th&® (A4,(C)) C A, (V).
We now define the counting function and the integrated counting function that will be used
to describe the geometric conditions.

DEFINITION 1.1.7. Let V' = {(«;, m;)} ;en be a multiplicity variety. For € C andr > 0

we set
ny(z,r) = Z m;

|z—ayj|<r

and

" n(z,t) —n(z,0)
Ny(z,r) = /0 , dt +n(z,0)Inr

= Z mjln#—i—n(z,O)lnr.
|2 — oy

0<|z—ay|<r
When there is no ambiguity, we will simply writ€ z, ) = ny (z,r) andN(z,r) = Ny(z, 7).

Throughout the manuscript,, B andC' will denote positive constants and their actual value may

change from one occurrence to the ngxtt) < G(t) means that there exist constartsB > 0,

not depending on such thatF'(t) < AG(t) + B while F ~ G means that” < G < F. The

notation D(z,r) will be used for the Euclidean disk of centerand radius-. We will write

of = % of = % ThenAf = 400 f denotes the laplacian gt
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1.2. Interpolating varieties

DEFINITION 1.2.1. We say thatl” is an interpolating variety ford,(C) (or that it is.A,-
interpolating) if for every doubly indexed sequen@e;; }jen 0<i<m;, Of cOmplex numbers such
that, for some positive constarisand B and for allj € N,

m;—1

1=0

we can find an entire functiofi € A,(C), with

fO(ey)
l!

forall j € Nand0 <1 < m,;.

We may equivalently define thd,-interpolating varieties by the property thRf, maps
A,(C) onto A,(V).

We are collecting next several known properties about interpolating varieties, most of them
are necessary conditions. We refer the reade2 t8[7, 44, 4%for further details.

LEMMA 1.2.2. Let f be a non zero function inl,(C) and setl” = Z(f). Then for certain
constants4, B > 0 we have

Ny(0,R) <A+ B In‘@)ép(z) forall R > 0.

PROOF We setm = ny(0,0) and we apply Jensen’s formula to the functing—) in the
zm
disk D(0, R).
Fm(0)

m!

27
NV(O,R):/ In | f(Re™)|dd — 1n | .
0

As for all 0 € [0, 27], we have| f(Re?)| < AePr(E<) we readily deduce the desired estimate,
Ny (0,R) < A+ B maxp(z).

|z|=R
]
LEMMA 1.2.3. LetV = {(a;,m;)}jen be an interpolating variety. Then there exists a non
zero functionf € A,(C) such thatV” C Z(f).
PROOF AsV is an interpolating variety, there exists A,(C) such that
e gV () =0for0 <1< my, exceptg™—Y(ag) =1,
e ¢gV(a;)=0forallj#0andallo <1< m,.
Setf(z) = (2 — ap)g(z). ThenV C Z(f) and by property (wl) of the weight, it is clear that
fe A(C). |

From Lemmas 1.2.2 and 1.2.3, we immediately deduce the following corollary.
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COROLLARY 1.2.4. Assume thal’ is an interpolating variety fotd,(C). Then there exist
constants4, B > 0 such that

Ny(0,R) < A+ B |1rr‘1z_au>}%p(z), forall R > 0.

REMARK 1.2.5. Whenever the weight is radial, the latter necessary condition may be re-
written as follows. For some constamsB > 0,

(1) Ny(0,R) < A+ Bp(R), forall R > 0.

A standard feature of the spacds(C) is that the interpolation can be performed in a stable
way. It is stated precisely in the following lemma.

LEMMA 1.2.6.V is an interpolating variety ford, (C) if and only if, for all B > 0, there exist
A > 0andB’ > 0such that for alllV € A, 5(V), there existf € A, 5 (C) with Ry (f) =W
and || f5 < AW |5

See for exampleZ, Lemma 2.2.6.] for a proof based on the Baire Category Theorem.

THEOREM 1.2.7. Assume that’ = {(«;,m;)}, is an interpolating variety fot4d,(C). Let
R, be positive numbers satisfying

(2) |z —a;| < Rj = p(z) < CL+ Cy p(ay),

whereC; andC, are positive constants not dependingjohen the following condition holds.
For some constantd, B > 0,

(3) Ny (o), R;) < A+ B p(oy), forall j.

REMARK 1.2.8. In view of property (w2) of the weighp, we can always assume; > e
for all j. Thus, whenevel’ is an interpolating variety fo4,,(C), the following condition is
necessary. For some constantsB > 0,

(4) Nv(Oéj, 6) S A + Bp(OCj)a fOI‘ a" ]
In particular, the multiplicities necessarily verify
(5) m; < A+ Bp(a;), forallj.

In the case wherg is doubling and radial, we are allowed the larger numbBgrs= |«;|. In that
case, the following condition is necessary : for some constants > 0,

(6) N(aj,]a;]) < A+ Bp(a;), foralljeN.
PROOF. Proof of Theorem 1.2.7
Lemma 1.2.6 gives a sequengg }; such that

(mi=1),
(1) f}l)(ak) =0, for all k£ and for all0 < < my, exceptfj (2) =1.

(i) for certain constantd, B > 0 not depending o, |f;(z)| < AePPE).
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Setg;(z) = (2 — «;)f;(2). In view of property (w2) there exist constans B > 0 (not
depending on) such that for alk € C, we have
1g;(2)] < AeBlp(z)+p(ay)]
9" (o)
Besides,g](.”(ak) = 0 for all & and for all0 <1 < my andjm—'J
j.
in the diskD(«;, R;) we obtain

= 1. Applying Jensen’s

formula to the functio 9;(2) _
(z —ay)m
2T ]
Ny(aj, Ry) —/ In|g;(; + Rye™®)|db.
0

By definition of R, for all @ € [0, 27], |g;(a; + R;e®)| < AeBP(d) for certain constantd, B >
0. We readily deduce the estimate (3). |

DEFINITION 1.2.9. We say thafl” is weakly separated if there exist constaAts> 0 and
B > 0 such that

) 5, < AePres)
for all 7, where

6]' := inf {1, llcr;lég |O{j - ak|)}
is called the separation radius.

REMARK 1.2.10.The disksD(«;, 6,/2) are pairwise disjoint and because< 1, there exist
constantsA, B > 0 such that for allj > 0 and for allz, ¢ in D(a;, §;), we haveer*) < AeBr©),

LEMMA 1.2.11.1f V is an interpolating variety then it is weakly separated.

PROOF Lemma 1.2.6 gives a sequence of functigris}; such that
o fi(ay) =1forall k # j andf;l)(aj) =0forall0 <l <m,.
e Forallz € C, |f;(2)| < AePP®), whereA, B > 0 don’t depend ory.
Setg;(z) = % If |z — a;| < 1, then by the maximum principle
Z — j J
5 < sw 1O] < e,
using property (w2) of the weight. For &ll## j such thafoy, — a;| < 1, we have
o — [ = |g;(an)| < AePPe),
This conludes the proof of the lemma. |

LEMMA 1.2.12.1f, for certain constantsi, B > 0 we have); ' < AePP(*) for all j, then
there exists a constant > 0 such that

Ze_Cp(aj) < 00.

J
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In particular, this holds wherv is weakly separated.

PROOF Thanks to property (wl) of the weight there exists a consfant- 0 such that
/ e PR d)(2) < co. In view of Remark 1.2.10, we have,
C

/ ePHIIN(2) > 3 / PPN (2)
C j JD(,05/2)

> ZAQ—DBP(%‘)(;J? > Ae—Cp(a))
J

§>0
whereC > 0 is a certain constant. [ |
LEMMA 1.2.13.1f (3) holds with somez; > 1, thenV is weakly separated.

PrROOF. Fix j and leto; # «; be such thafa; — oy| = infiyj |a; — au]. If oy — oy > 1,
thend; = 1. Otherwisey,; = |a; — oy and the following inequalities hold

N(ay, Ry) > Z mklnizmjln l :mjlnﬁzm%.
0<|an— |Oék — al| |Oéj — Oél’ (5j (Sj ’
ag—o|<R;
Since by condition (3) and property (w2) of the weight,
N(ay, R)) < A+ Bp(ou) < A+ Bp(ay),
we readily deduce the desired estimate. |

Note that Lemma 1.2.11 may be obtained as a corollary of Theorem 1.2.7 and Lemma 1.2.13.

Let us now state an important theorem given by Berenstein and Li, which will be very useful
throughout our work. It provides an analytic characterizatiopAgfinterpolating varieties for
general weightp.

THEOREM 1.2.14. (see[3, Corollary 3.5) A multiplicity varietyV' = {(a;,m;)}; is A,-
interpolating if and only if there exists € A,(C') such thatV” C Z(f) and for some constants
e, C >0

M) (v
‘fj—(aj)) > ce ") forall 5.
m;!

This leads us to the following observations.

REMARK 1.2.15. (i) Letpandg be two weights such that< ¢. If V' is A, -interpolating
then it isA,-interpolating (replace the defining functigrin Theorem 1.2.14 by™).
(i) If {(a;,m;)};>0 is Ap-interpolating then for any € N*, {(a;, Nm;)} ;>0 is alsoA4,-
interpolating.

When constructing interpolating entire functionsdp(C) in Chapters 3, 4, 5 and 7,@dmander’s
theorem giving the existence of a solution to the Cauchy-Riemann equatiori.wéktimates
will be a very strong tool. Let us conclude this chapter by stating this result.
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THEOREM 1.2.16. (se€g[22]) Let 2 be an open subset @f, ¢ be a subharmonic function in
2 andv a measurable function if2 such that

/ (=) 2e#DdA(2) < oo.
Q

Then, there is function € L} .(Q2) such thau = v, in the sense of distributions, and

loc

Me_¢(z) z v(2)Pe P dN(z
/9(1+|z|2)2 dX( >§/QI (2)] dA(2).



CHAPTER 2

Finite union of interpolating varieties

Introduction

Recall that the weak separation is a necessary condition for a multiplicity variety to be in-
terpolating (see Lemma 1.2.11). The union of two interpolating varieties is clearly not weakly
separated in general thus it is not necessarily an interpolating variety. Nevertheless, if we assume
that the union is weakly separated then it is interpolating. That is what we are going to prove in
Section 2.1.

If V is an interpolating variety, then by definition, the trace4f(C) on V' is the space
A,(V). How can we describe the trace 4f,(C) on a finite union of interpolating varieties ?
That is the problem we are concerned with in Section 2.2. We will show that a discrete sequence
V' of the complex plane is the union efinterpolating sequences for thedknander algebras
A,(C) if and only if the trace of4,(C) on V' coincides with the space of functions énfor
which the divided differences of order— 1 are uniformly bounded. The analogous result holds
in the unit disk for Korenblum-type algebras.

2.1. When a finite union of interpolating varieties is an interpolating variety
This result appear ir30] in the multivariate case with simple multiplicities.

THEOREM2.1.1. Assume that, - - - |V, are interpolating varieties ford,,(C). ThenV =
Vi U---V, is an interpolating variety if and only if it is weakly separated.

PROOF We may assume without loss of generality that 2. We will denote byA andT”
two discrete sequences@f We will denote bym, andm., the respective multiplicities affected
to eachA € A andy € I'. We will denote byl, = {(A\,my)}rea andVy = {(v,m)} er
the corresponding multiplicity varieties. We assume that V; is weakly separated. We may
assume without loss of generality that the intersectioh ahdI” is empty.

Let W = {wxi}rero<iem, € Ap(Vi) andZ = {2, }1ero<icm, € A,(V2) be the values to
interpolate. We want to constru¢t € A,(C) andf; € A,(C) such that

I !
[! I
Then settingf = f; + f, itis clear that

fo fo
TO\):w/\’l’ A€EA, O§l<m,\andl—'()\):z%l, yel, 0<1<m,,

(A) =wxry, A€, 0<1<my, (v)=0, yeI', 0<I<m,,

() =20, 7€, 0<1I<m,, (AN) =0, e A,0<I<my.

17



18 2. FINITE UNION

in other wordsRv, v, (f) = W U Z.
Let us show how to construgti (the construction off> will be of course similar reversing
the roles ofl; and15).
By Lemma 1.2.6, we can find a sequeHcé, } \cx such that
- Gf\l) ! S (my+1—1)!
—(v) = (-1 ) S R A —
) =) =D =) (= 111
(i) |GA(2)] < AeBlPN+pE),
whereA, B > 0 don’t depend on\.
The existence of the sequence of interpolating functigiis} ., needs a justification : ac-
cording to condition (5), we have

,forally e I'and0 < [ < m,,.

(m,\ +1— 1)'
(m)\ — 1)'['
Besides, the weak separationigfu 1V, means that for alh € A and ally € T,

w _ )\‘fmrl < AeBlPN)+p()]

< 2m>\+l < OQMmA+Mmy < AeB[P(A)‘*‘P(W)}'

We have then verified that the coefficients interpolated by the funafigrias the correct growth
and this completes the proof of the existence of the sequHCE\ A -
Now, setF)(z) =1 — (z — \)™G, for all A € A. We clearly have

F)\()\> =1, (F)\)(l)<)\) = O, 1 <1< m,y.

Besides, notice that, has the same derivatives as the funciien- \)~"* in the pointsy up to
orderm, — 1. Thus,F} verifies

FP() =0, VyeT, YO<I<m,.

According to Remark 1.2.15(ii), we know thét\, 2m,) } is an interpolating variety. Thus there
exists a functior € A,(C) such that

HO(\) =0, 0<1<2m,, except H™)()\) =1.
H{(z)
() Hy(\) =1, H(”(}\) =0, 1<1<my,

(i) [Hx(2)] < AeBp for some constantd, B > 0 not depending on.

Property (ii) comes from the fact that for — \| > 1, it is clear thaqHA( )| < ]H( )| and

for |z — A| < 1, by the maximum principle, we havé/, (z)| < sup|._y_, Ae?” (© < AePP® py
property (w2) of the weight.

We deduce that
() |(FxHy)(z) < AeBPMTPEL 0 for all z € C whereA, B > 0 don’'t depend on,
(i) (F\Hy)(\) =1 and (F\H)\)D(\) =0, forall1l <1< my.
Applying once again Lemma 1.2.6, for alf > 0, there exists a sequence of functions
{h} e such that

Then the function,(z) = satisfies the following conditions :
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O
i B
(i) RPN) =0, X e A\{A}, 0<I<my,
(i) |ha(2)] < AePP?). whereA and B don't depend on.
Finally, we set

= wk’leM”(’\), 0<l<m,y

fr=>_ FxHhye "™

320

where) is chosen large enough so that the sum converges, according to Lemma 1.2. 1.

2.2. The trace ofA,(C) on a finite union of interpolating varieties

This is a joint work with X. Massaneda and J. Ortega-@ettiwill appear in the proceedings
of the international conference 'New Trends in Harmonic and Complex Analysis’ held May 7-12,
2007 in Voss, Norway (se&¥§]).

We will restrict ourselves to the case of simple multiplicities though with similar techiques
it should be possible to extend this result to an Hermite-type interpolation problem with multi-
plicites, along the lines of[1].

2.2.1. Divided differences.

DEFINITION 2.2.1. Let A be a discrete sequence @handw a function given omA. The
divided differences ab are defined by induction as follows
Aow(/\l) = u)()q) s
Ajil(,U()\Q, ey >\j+1> - Ajflw(/\b ey )\])

AJW(Al,aAJ"Fl) = )\‘_A'_l_Al
J

J =1

For anyn € N, denote

n

A" = {(Myee oy A) €AX - XA N # N if G # K,

and consider the set”'~'(A) consisting of the functions im(A) with divided differences of
ordern uniformly bounded with respect to the weighti.e., such that for som8 > 0

sup  |AM W\, .. Ay [e BRG] o

REMARK 2.2.2. We have the inclusion&'(A) € X} 7'(A) C --- € XJ)(A) = A,(A).
To see this assume thatA) € X(A), i.e., there exist® > 0 such that

C N Sup An_lw(/\%"'?)‘n—i—l) — An_lw()\la" ,)\n) %
(M, Ant1)EATTL Ani1l — A
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Then, given(\y,...,\,) € A" and taking\!, ..., \Y from a finite set (for instance the first
A € A different of all \;) we have

. An_ICU()\l, ceey )\n) - A”_lw()\?, )\1, ceey )\nfl)

A" oA, ) = (An — A5+
! Ap — A0 0
Ao A, 1) — AT (A A L A
+ w( 1) M\ 3 1) - w( 25 \1» ) 2) ()\nfl . )\g) 4t
)\nfl - )\2
AP0 A ) — AP0
w( n—1> ) Ny 1) w( n’ ) 1)<)\1_)\2)+An—1w()\2"”’/\(1))
A —AY
Then a direct estimate and (w1) show that for sabhe- 0 there is a constank'(\9,..., \2)

such that
A" 1w(A,. . )| < C (ean<A9>+-~+p<An>1 N eBLv(Aa,1>+--~+p<A1>}>

< K()\% . )\2)63[11(/\1)+---+p(>\n)]7
and the statement follows.

The main result of this note is modelled after Vasyunin’s description of the sequémntédse
unit disk such that the trace of the algebra of bounded holomorphic fundiiénsn A equals
the space of (hyperbolic) divided differences of ordefsee f6], [47]). The analogue in our
context is the following.

THEOREM2.2.3 (Main Theorem)The identityR x (A,(C)) = X'~ '(A) holds if and only if
A is the union of: A interpolating sequences.

Note that the statement of the theorem wheg: 1 is just the definition of an interpolating
sequence.

2.2.2. General properties.We begin by showing that one of the inclusions of Theorem 2.2.3
is inmediate.

PROPOSITION2.2.4. For all n € N, the inclusionR (A, (C)) ¢ X~'(A) holds.
PrROOF Let f € A,. Let us show by induction of > 1 that, for certain constant$, B > 0
AT f (21, .., 25)| < AeBlPEI+ ()] forall (z,...,2;) € C/.
As f € A,,we havg A% f(z)] = |f(z1)| < AeBrt1),
Assume that the property is true fgrand let(zy,...,2;41) € C/* Fix 21,...,z; and
considerz;;; as the variable in the function
Aj_lf(ZQ, ey ZjJrl) — Aj_lf(zl, Ce 72]‘)

Zj+1 — 21

Ajf(zl, Ce ,Zj+1) =
By the induction hypothesis,

< A(eB[P(zz)—s-...-s-p(sz)} + eB[P(Z1)+-~-+P(Zj)]) < 2AeBIPE)+tp(zi1)]




2.2. THE TRACE OFA,(C) ON A FINITE UNION OF INTERPOLATING VARIETIES 21

Thus, if |21 — 21| > 1, we easily deduce the desired estimate. EQr; — z;| < 1, by the
maximum principle and (w2):
AT f(21,...,2541)] <24 sup e Blp(21)++p(2)) +p(€)]
|§—z1]=1
< AeBHPo)p(z1)+4p(2)+p(2j+1)]

DEFINITION 2.2.5. A sequence& is weakly separatedf there exist constants > 0 and
C > 0 such that the disk®(\, ce=“PM), X € A, are pairwise disjoint.

REMARK 2.2.6. If A is weakly separated thexi) (V) = X'(V), foralln € N,
To see this it is enough to prove (by induction) tb?éi‘i(A) C X(A) foralln € N. For
n = 0 this is trivial. Assume now thak)(A) € X'~'(A). Givenw(A) € X)(A) we have
Ao, A1) — AT (L)
Ant1 — A1
< 24 (BrO)pn++pnin)]
o€
LEMMA 2.2.7.Letn > 1. The following assertions are equivalent:
(a) A is the union of» weakly separated sequences,
(b) There exist constants> 0 andC' > 0 such that

sup #[A N D\, ee PN < n .
AEA

|A"w()\1, ce 7/\n+1)| =

(©) X;71(A) = XJ(A).

PROOF (a)=-(b). This is clear, by the weak separation.

(b) =(a). We proceed by induction gh= 1,...,n. Forj = 1, it is again clear by the
definition of weak separation. Assume the property trugjferl. Let1 > ¢ > 0 andC > 0
be such thagup, ., #[A N D(\, ee=PM)] < j. Pute’ = e~ %% /2 andC’ = D,C. By Zorn’s
Lemma, there is a maximal subsequengeC A such that the disk®(\, e’e=C"?WN), X € A,
are pairwise disjoint. In particulak; is weakly separated. For amy € A \ A;, there exists
A € A; such that

D\, ee PN N D(a, e CP)) £ (),
otherwiseA; would not be maximal. Theh € D(a, ee=¢?(®), since
A —a| < 'e” PN 4 e CP@) < ge=Cple),

by (W2). ThusD(a,ee~“P(®) contains at mosf — 1 points of A \ A;. We use the induction
hypothesis to conclude that\ A, is the union ofj — 1 weakly separated sequences and, by
consequence) is the union ofj weakly separated sequences.

(b)=(c). It remains to see that~'(A) C X7(A). Givenw(A) € X7~'(A) and points
A1y Ans1) € A1 we have to estimatA”w(\y, ..., \,.1). Under the assumption (b), at
least one of these + 1 points is not in the diskD(\;, ee=“?*1)). Note thatA™ is invariant by
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permutation of the: + 1 points, thus we may assume that — A, | > ce~“?*1), Using the
fact thatw(A) € X]~'(A), there are constani$, B > 0 such that

|A"’1w(/\2, cee )\n+1)| + |An71W()\1, RN /\n)|

’)‘1 - )‘n+1’
é AeB[p()‘l)++p()\n+1)]

|A”w()\1, ey )\n+1)‘ S

(c)=(b). We prove this by contraposition. Assume that for@&lk > 0, there exists\ € A
such that#[A N D(\, ce~“PN)] > n. SinceA has no accumulation points, for any fix€d> 0,
we can extract from\ a weakly separated subsequertte= {a'},cy such that#[(A \ £) N
D(a!,1/1e=“P@))] > n for all I. Let us call),,..., )\ the points ofA \ £ closest toa/,
arranged by increasing distance. In order to construct a sequénges X'~'(A)\ X7'(A), put

n—1
wlal) =TJ(a' = X)), foralla! € £
j=1

w\) =0if A€ A\ L.

Toseethab(A) € X" !(A) letus estimatd\"'w(\, ..., \,) forany givenvectof);, ..., \,) €
A™. We don't need to consider the case where the points are distant, thfiss agakly sepa-
rated, we may assume that at most one of the points 45 i@n the other hand, it is clear that
A" w(A, ..., \,) = 0if all the points are i\ \ £. Then, taking into account that"! is in-
variant by permutation, we will only consider the case wheres somen! € £and);, ..., \,_;
are inA '\ L. In that case,

IA" YW, A, 0] = |w(a |H|a AL

<1

Y

as desired.
On the other hand, a similar reasoning yields

Y ’I’L7

AWLMo |H ol — AL = |af — AL|7L > geCp(ed),

Using (w2), for any constan® > 0, and choosmg? = B(nDy + 1), we have
|A"W(AL, -, AL l)|e_B(p(All””'*p(m*p(“l)) > e PP 400
We finally conclude that(A) ¢ X7(A). |
As a corollary we obtain again another proof of Lemma 1.2.11 stated in Chapter 1 :
COROLLARY 2.2.8.If A is an interpolating sequence, then it is weakly separated.

PROOF. If Ais an interpolating sequence, th&n (A,(C)) = X)(A). On the other hand, by
Proposition 2.2.4R (A,(C)) € X}(A). ThusX?(A) = X}(A). We conclude by the preceding
lemma applied to the particular case-= 1. |
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LEMMA 2.2.9.LetA4,..., A, be weakly separated sequences. There exist positive constants
a,b, By, By ande > 0, a subsequencé C A; U---UA, anddisksDy = D(\, 7)), A € L, such
that
(l) A U---UA, CUyerDy
(i) ace PPN <y < bee PP forall A € £
(iii) dist(Dy, Dy) > ace BPW forall A\, N € £, X # N,
(iv) #(A;, N Dy) <1forallj=1,....,nandX € L.

PROOE Let0 < € <« 1 andC > 0 be constants such that

(8) A = N| > ge=@/PolpN)—Eo) VAN € Aj, A#E N, Vi=1,...,n,
whereD, > 1 andE, > 0 are given by (w2).
We will proceed by induction ok = 1, ...,n to show the existence of a subsequefigec

A, U---UA, and constant§’, > C', B, > 0 such that:
() AU UA, CUxe, DN, RE),

(i1), 2 3Fe PN =Bre < RE < gom P

k—1
2-(i+2) < 2/76—029()\)57

7=0

(ii1),  dist(D(\, RY), D(X, RY,)) > 273%ee= PN =B forany \, X' € Ly, A # ).

The constant§’, and By, are chosen, in view of (w2), so th@yp(\) + By < Crrip(N) +
By1 whenevel A — X'| < 1.

Then it suffices to chosé = £,,, ry = R}, a = e Pr273" b =2/7, By = C,, and By = C.
Asr, < e PNe itis clear thatD(), ry) contains at most one point of eadh hence the lemma
follows.

Fork = 1, the property is clearly verified with; = A, andR} = e=“?MN¢ /4,

Assume the property true farand splitC, = M; U My andA,,; = N; UN;, where

My ={Ne Ly : DO\ R+ 273520 CpN =By q A,y £ 0],
Ni = A 0 | DA R + 2738 2= Cor)=Br),

AEL
M? - Ek \ M17
No = Agir \ M1

Now, we putl,,,; = £;, UN, and define the radiR’;+1 as follows:

RE 4 273622 Chp(N=Bx jf X € My,
R’)f\-&-l _ Rl)c\ if \ e M2,
9—3k=3 2= Cr1P(N)~Bi+1 if A €N,
It is clear that
A1U"'UA’€+1C U D()\7R])€\+l)

)\Gﬁk+1
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and, by the induction hypothesis,
k
9=3k=3 o =Cr1P(\)+Brt1) < R’)f\+1 < ce—Cr(N) Z 9—3j—2 < 2/78670}7()‘).
=0

In order to proveiii), take now\, \' € Li.1, A # X. We will verify that
dist(D(A, Ry™), DN, RY)) = A = XN| = Ry — Ry > 27 BgeCranp =B

by considering different cases.
If \, N € L, andp(\) < p(\'), then

dist(D(X, REFD) DX, REFY)) > [\ — X| — RY — RY, — 273k 1= Crp(N)-Bi

Assume now\, \' € N, andp()\) < p()\'). Condition (1.2.10) implieg\ — \'| > ee= P,
hence

dist(D(\, REY), DN, REFL)) > (1 — 273 2)ge =P,

If X\ € M, and)\' € A there exists? € N, such that) — 8| < RS, There is no restriction
in assuming thath — \’'| < 1. Then, using (1.2.10) ofi, \’ € Ay, we have

N=N|>[8-=N|=-|A=0] > ce—C/Do(p(B)—Eo) _ R];—H > ce PN _ R§\+1 )
The definition of R} together with the estimate; ™ < 2/7ze=CP™ yield

dist(D(\, REFY) DN, REFL)) > ge=CPN — g Rk pEH
> ce—CPN) _ QRI)C\ — 97 3k=1_=Ckp(N) =By, _ 9=3k=3_,=Crr1p(\') =Byt

> g Op(N) _ %ge*CP(A) — 973k =Crp(N) =By, > 867010()\)(3/4 _ 2731@)’

as required.
Finally, if A € M, and)\ € N, again, assuming thax — \'| < 1, we have
dist(D(X, R™), DN, RY™)) = [A = N| = Ry — 273 BgemCrap)=Bins
> 9—3k=2_,=Cip(\) =By, _ 9=3k=3_,~Cip(X)~ By

> 9~ 3k=32,=Cp(\).

2.2.3. Proof of Theorem 2.2.3. NecessityAssumeR, (A,(C)) = X~*(A), n > 2. Using
Proposition 2.2.4, we hav&?~'(V') = X(V), and by Lemma 2.2.7 we deduce thiat=
A U---UA,, whereA, ..., A, are weakly separated sequences. We want to show that\each
is an interpolating sequence.
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Letw(A;) € Ay(A;) = XJ(A;). LetUyes D, be the covering of\ given by Lemma 2.2.9.
We extendu(A;) to a sequence(A) which is constant on eadh, N A; in the following way:

AT N o) i DyNA; = {a}.

We verify by induction that the extended sequence iéfﬁTl(A) for all k. It is clear that it
belongs taX)(A). Assume tha € X~*(A) and considefa, ..., o) € A”. If all the points

are in the samé, thenA*~lw(ay,. .., a;) = 0, SO we may assume that € D, anday, € Dy
with A #£ ). Then we have
o1 — | > age” PP,
by Lemma 2.2.9 (iii). With this and the induction hypothesis it is clear that for certain constants
AB>0
AF2y(ag, .. o) — AR 20 (g, .., a)

a1 — O

|Ak_1w(a1, o) =
< AeBlplar)++plar)]

In particularw(A) € X7~'(A), and by assumption, there existe .A,(C) interpolating the
valuesw(A). In particularf interpolatesv(A;).

2.2.4. Proof of Theorem 2.2.3. SufficiencyAccording to Proposition 2.2.4 we only need
to see that' ' (A) C Ra(A,(C)).

Assume that\ = A; U---U A, whereAq, ..., A, are interpolating sequences. Recall that
each/; is weakly separated (see Corollary 2.2.8 or Lemma 1.2.11). Consider also the covering
of A given by Lemma 2.2.9.

LEMMA 2.2.10.There exist constant$, B > 0 and a sequencgFy } e, C A,(C) such that
F(a)— 1 ikaEAﬂD)\
MY 0 ifaeAnDy, V£
|F(2)] < AeBPNTPE) - forall 2 € C.

PROOF Fix A € £ and definev(A) by
[ (a—p) if a¢ AN D,

W(O{) = BEANDy
0 if € AN D,.

By Lemma 2.2.9 (iii), we havén — 3| > cee=“P(®) wheneverr ¢ AN Dy, 3 € AN D,. Since
#(A N D,) < n we deduce that

w(a)] < (ce) e
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Recall that); is an interpolating sequence for gll= 1, ..., n, thus, using Lemma 1.2.6, there
exist an-indexed sequencgfy ; }acc e C Ap(C) such that for alk € C,

|fr4(2)] < AePPE)
hHjla) = H (@—B)"if a ¢ A0 Dy,
BEAND),

with the constants! and B independent oh.
The sequence of functioqd, } ¢ defined by

FA(Z):H 1- JI G-8hi)

] 1 ﬁEAﬁD)\
has the desired properties. [ |

LEMMA 2.2.11. For all D > 0, there existD’ > 0 and a sequencéG) } e C A,(C) such
that

Gi(a) = eV if o € AN D,.
G (2)] < AePPVPPE) - forall 2 € C,

whereA, B > 0 do not depend ol.

PROOF In this proofD’ denotes a constant depending/omut not on), and its actual value
may change from one occurrence to the other.

Let A € £. Assume, without loss of generality, that, N A; = {a,;} for all j. As A,
is an interpolating sequence aald) < AePP(ex1) py Lemma 1.2.6 there exists a sequence
{ha1}r C A,(C) such that

h/\,l(Oé,\,l) = er(,\)

|hai(2)] < AePPE) forall z € C.

SettingH ) 1(z) = hy1(z), we haveH ) (1) = PP Now, asA, is A,-interpolating and
ePPX) — Hy ()] [Hya(axy) — Hyi(ang)|

— < AeD/P(O‘)\,Q)’
laxg — anq| laxa — anl o

there exists a sequen¢g, >}, C A,(C) such that

ePPN) — H,y 1 (ans)
Q2 — Q)1
|hao(2)| < AePPE) forall z € C.

h,\,2(06,\,2) =
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SettingH) 2(z) = ha1(z) + ha2(2) (2 — ax1). We have

H,\,2(Oé,\,1) = Hx,z(Oém) = PPV,
We proceed by induction to construct a sequence of functiérs}, C A,(C) such that

ePPN — Hy i 1(ang)
Qg — 04,\,1) s (Oé,\,k - Oé,\,kq)
lhar(z)] < AP forall z € C.

h)\,k(a)\,k) = (

Then the function defined W)“k(Z) = H)\7k,1(2)+h,\,k(2)(2—06)\71) R (Z—CY)\J{;,l) verifies

Hyp(axy) = -+ = Hyplang) = PPV,

Finally, we setG) = H) ,,. |
To proceed with the proof of the inclusiot) ' (A) C Rx(A,(C)), letw(A) € X1 (A).

Fix A\ € LandletAN D, = {a,...,a;}, k < n. We first consider a polynomial interpolat-
ing the valuesu(ay), ..., w(a):

Py(2) = A%(an) + Alw(ar, an)(z = ar) + -+ A w(an, ) [[(2 = V).

Notice thatP, € A,, sincew(A) € X;'~'(A) and by properties (w1) and (w2) we have
|Py(2)] < Alz[FePPlant+plan)] < geBIP)+P(]

Now, define
f= Z F\G\Pye PPV,

AeL
whereD is a large constant to be chosen later on.
By the preceding estimates 6#, and P, there exist constantd, B > 0 not depending on
D and a constanb” > 0 such that, for alk € C, we have

1F(2)] < AeP'p(2) Z e(B=D)p(N)
\eL

In view of Lemma 1.2.12, chosind large enough, the latter sum converges @rel A,(C).
To verify that f interpolatesv(A), leta € A and let) be the (unique) point of such that
a € Dy. Then,f(a) = Gy(a)Py(a)e PP = Py(a) = w(a), as desired.

2.2.5. Similar results in the disk. The previous definitions and proofs can be adapted to
produce analogous results in the disk. To do so one just needs to replace the Euclidean distance
used inC by the pseudo-hyperbolic distance

= 2,0 €D,
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and the Euclidean divided differences by their hyperbolic version
SCw(N) = w(N),
Aj_l(,eJ()\Q, ey )\j+1) - Aj_l(,U()\l, . 7)\])

Aj1—A1

T—X1Aj 11

In this context a functiow : D — R, is aweightif
(wd1) There is a constarit’ > 0 such thats(z) > Klﬂ(%m)-
(wd2) There are constani3, > 0 and £, > 0 such that whenever(z, () < 1 then

P(2) < Doo(C) + Ep.
The model for the associated spaces
Ay ={f € HD) : sup|f(2)|e"P*® < oo for someB > 0},
zeD

5jW(>\1,...,)\j+1) = ] Z 1.

is the Korenblum algebrd—>°, which corresponds to the choiee?*) = 1 — |z|. The interpo-
lating sequences for this and similar algebras have been characteri¢&tand [32].
With these elements, and replacing the factorsa by ;== when necessary, we can follow
the proofs above and, mutatis mutandis, show that Theorem 2.2.3 also holds in this situation.
The only point that requires further justification is the validity of Lemmas 1.2.6 and 1.2.12
for the weightsp. Lemma 1.2.6 is a standard consequence of the open mapping theorem for
(LF)-spaces applied to the restriction nf&p, and the same proof as ig,[Lemma 2.2.6] holds.
Applying this Lemma to the sequenceg(A) defined by

1N =
V) =
“A(X) {0 if A £\

we have functiong, € A, interpolating these values and with growth control independeit of
Sincel = |f\(A\) — fa(N)], an estimate on the derivative ¢f shows that for somé' > 0 and

e > 0 the pseudohyperbolic disk3; (\,ee M) = {z € D : p(2,\) < e~9?N} are pairwise
disjoint. In particular the sum of their areas is finite, hence

D (1= AN < too
AEA
From this and condition (wd1) we finally obtain Lemma 1.2.6.



CHAPTER 3

Geometric conditions on interpolating varieties for radial weights

The results of this chapter are published in Journal of Geometric Analysis48ge [

Introduction

We are interested in finding a geometric description on an interpolating variety, depend-
ing only on the distribution of its points, which would enable us to decide whetherAt,{is
interpolating by a direct calculation.

The geometric conditions will be given in termsigf (z, ), the integrated counting function
of the points ofi” (see Definition 1.1.7).

Whenp is radial and doubling (see Definition 1.1.2), C.A. Berenstein and B.(B]lgdve a
geometric characterization of,-interpolating varieties, namely,

(i) N(aj,ley]) = O(p(a;)) whenj — oo;
(i) N(0,7) = O(p(r)) whenr — cc.

A. Hartmann and X. Massaneda (s&d]] gave a proof of this theorem based on the

estimates for the solution to tlieequation, provided that

(9) p(z) = O(|=]*Ap(2)).

Note that we can always regularigénto a smooth function (see Remark 3.0.12 below).

We will use theL?-techniques to give a proof of the same result without the assumption (9)
(see Theorem 3.1.3). When the condition (9) is satisfied, we will prove that (ii) is no longer
needed and that (i) is necessary and sufficient (see Theorem 3.1.4).

In [3], Berenstein and Li also studied rapidly growing radial weights, allowing infinite order
functions inA,(C), asp(z) = ¢*l, and more generally weights such thap(e”) is convex. They
gave sufficient conditions as well as necessary ones.

We will give a characterization of interpolating varieties for the wejght = ¢!*/ and more
generally for weightg such thatp(z) = O(Ap(z)) (see Theorem 3.1.6) and also for radial
whenln p(e") is convex andn p(r) is concave for large (see Theorem 3.1.7).

In particular, we will show that” is A, .;-interpolating if and only if

N(aj,e) = O(el“l), when j — oc.

The difficult part in each case is the sufficiency. As® 21], we will follow a Bombieri-
Hormander approach based bfrestimates on the solution to theequation. The scheme will
be the following: the condition on the density gives a smooth interpolating funétiarnth a
good growth such that the support®@f” is far from the pointga;} (see Lemma 3.2.1). Then
we are led to solve the@-equation:0u = —9F with L?-estimates. To do so, we need to construct

29
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a subharmonic functio® with a convenient growth and with prescribed singularities on the
pointsa;. Following Bombieri [L1], the fact thate™" is not summable near the poinfs; }
forcesu to vanish on the points; and we are done by defining the interpolating entire function
by u + F.

The delicate point of the proof is the construction of the functiont is done in two steps:
first we construct a functiofi, behaving likeln |z — ;| neara; with a good growth and with a
control onAUj, (the laplacian of/y), thanks to the conditions on the density and the hypothesis
on the weight itself. Then we add a functidhsuch thatAlV is large enough so that = Uy+W
is subharmonic.

Throughout this chapter, we will assume that the wejgistradial.

REMARK 3.0.12. The weightp may be regularized as i2], Remark 2.3] by replacing by
its average over the dig@(z, 1). Thus we may suppogeto be of clas€? when needed.

We have collected the statements of the main results in Section 3.1. In Section 3.2, we
show how to construct the smooth interpolating functiorand how the problem reduces in
constructing the subharmonic functioh Finally, in Section 3.3, we give the proofs of the main
results and we show how to actually construct the function

3.1. Main results

We begin by giving a sufficient condition for a multiplicity varietyto be interpolating.

THEOREM3.1.1. If condition (4) holds and for some constants B > 0,
R
(10) / n(0,0)dt < Ap(R)+ B, forall R> 0,
0

thenV is interpolating for.A,(C).
REMARK 3.1.2. In fact, we have
R
[ a0t = Y my(R~ o)) < RN(O. R)
0 oy |[<R

Consequently, the necessary condition (1) implies that for some constalits- 0,
R
(11) / n(0,t)dt < ARp(R) + B, forall R > 0.
0

Note that the necessary condition ((11) and (4)) differ from the sufficient condition ((10) and (4))
by a factorR in (11).

Adapting our method to the doubling case we find the characterization given by Berenstein
and Li [3, Corollary 4.8]:

THEOREM3.1.3. Assume to be radial and doubling.
V is interpolating for.A,(C) if and only if conditiong1) and (6) hold.
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The theorem holds if we repladé(a;, |o;|) by N (o, Cle|) for any constan€ > 0. Note
that radial and doubling weights satisfyr) = O(r*) for somea > 0. In other words, they have
at most a polynomial growth. Examples of radial and doubling weightg@je= |z|*(In(1 +
121%))?, a > 0,3 > 0, but forp(z) = |2|*, we may give a better result:

THEOREM3.1.4. Assume thap(z) = O(|z]*Ap(z)) and
(w3) there exists constants;, C; > 0, such thatz — w| < |z| impliesp(w) < Cip(z) + Cs.
ThenV is interpolating for.A4,,(C) if and only if condition(6) holds.

REMARK 3.1.5. (i) We don’t need to assume thats radial in this theorem.
(ii) Itis easy to see that radial and doubling weights satisfy condition (w3).
(i) Theorem 3.1.4 applies tp(z) = |z|*, « > 0. For this weight and with the extra
assumption that there is a functigne A,(C) such thatt" C Z(f), it was shown in
([44, Theorem 3]) that condition (6) is sufficient and necessary.

Next we are interested in the case whegrows rapidly, allowing infinite order functions in
A,(C). A fundamental example ig(z) = el.

In [3], Berenstein and Li studied this weight and more generally those for whigfe") is
convex. They gave sufficient conditions (Corollaries 5.6 and Corollary 5.7) as well as necessary
ones (Theorem 5.14, Corollary 5.15).

The following result gives a characterization in particular for the weigh} = ¢/*l.

THEOREM3.1.6. Assume that(z) = O(Ap(z2)).
ThenV is interpolating for.A,(C) if and only if condition(4) holds.

The next theorem will give a characterization wheis radial,q(r) = In p(e") is convex and

70 = ;’/((’;)) is increasing (for large). If we setu(r) = Inp(r), we haveT)) ——. Thus, the
last condition means that(r) is concave for large. We recall that the conveX|ty of implies

thatp(r) > Ar + B, for someA, B > 0 (see B, Lemma 5.8]).

The weightsp(z) = |z|%, @ > 0 andp(z) = ¢! satisfy these conditions. Examples of
weights for which Theorem 3.1.7 applies but not any of Theorems 3.1.3, 3.1.4 or 3.h(6)are
elfl”, 0 < a < 1andp(z) = elles+=1 551,

THEOREM 3.1.7. Assume thap is a radial weight and that for a certain, > 0 it satisfies
the following properties
e ¢(r) :==1Inp(e")is convex onln g, oo|;
e ¢'(Inrg) > 0and —+— ,(1 |s increasing orjrg, oo|.

ThenV is interpolating forAp( ) if and only if the following condition holds:

(12) JA > 0,3B > 0, Y|a;| > 19, N(o;, max( e)) < Ap(a;) + B.

The theorem holds if we replamﬂ| ‘”‘ ) by ((f'TJ' ) for any constan€ > 0.
Qj a;
Whenp(z) = |z|%, conditions (12) and (6) are the same and wper) = e/*/, conditions
(12) and (4) are the same.
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Specializing Theorem 3.1.7, we get the following corollaries.

COROLLARY 3.1.8. Letp(z) = eI, 0 < a < 1. V is interpolating for.4,(C) if and only if
the following condition holds:

(13) JA>0,3B >0, Vj, N(aj,|a;]'™*) < Ap(ay) + B.
COROLLARY 3.1.9. Letp(z) = e(+:")1” 3 > 1, V is interpolating for.4,,(C) if and only
if the following condition holds:

(14) JA > 0,3B >0, Vj, N(aj,|aj|[In(1+ |oy]?)] ) < Ap(ay) + B.

3.2. Preliminary results

We first construct a smooth interpolating function with the right growth.

LEMMA 3.2.1.Supposé” = {(a;, m;)}; is weakly separated. Givell = {w;,}jen0<i<m;—1 €
A, (V), there exists a smooth functidnsuch that

(i) for some constantd > 0 and B > 0, |F(z)| < AePP), |0F(2)| < AePPR) for all
z € C;
(i) The support 0D F is contained in the union of the annuli

S
A;={z€C: 5J§|z—aj|§5j};

. FO(q; .
(iii) # =w;;forall j eN,0<1<m; —1.

A suitable functionF’ is of the form
m;—1
|2 — oy?
F(z) =) X<TJ) wia(z = ay),
j J 1=0
whereX’ is a smooth cut-off function witlt' (z) = 1if || < 1/4andX (z) = 0if |z| > 1. See
[21] for details of the proof.

Now, when looking for a holomorphic interpolating function of the fofme= I + u, we are
led to thed-problem

Ou = —OF.
The interpolation problem is then reduced to the following:

LEMMA 3.2.2.If V = {(oy,m;)}, is weakly separated and if there exists a subharmonic
functionU satisfying for certain constant$, B > 0,
() U(z) < Ap(z) + Bforall z € C; B
(i) —U(z) < Ap(z) + B for z in the support oD F;
(i) U(z) ~m;ln|z — a;]* neara;,
thenV is A, -interpolating.
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PROOF Let W = {w;;};jen0<i<m,—1 DEINAL(V). AsV is weakly separated, there exists a
smooth interpolating functio” satisfying the properties in Lemma 3.2.1. Using properties (ii)
in Lemma 3.2.2, (ii) in Lemma 3.2.1 and (w1), we see that there exists a colstand such
that

/ |0F |2V =EP() g)\(2) < 0.
o

Hormander’s theorem 1.2.16 giveé,”é’ functionu such thabu = —0F and

(15) / |u(z) ‘2 T ()d)\(z) < 1/ ’6F|267U(z)*Ep(z) d\(2)
(1+ ]z\ —2 /e '

Settingf = u + F, itis clear thatf € A(C). Moreover, by condition (iii) in Lemma 3.2.2, near
a;, e Y3 (2 — a;)tis not summable fob < I < m; — 1, so we have necessaril§’) (a;) = 0 for

S ()

all j and0 <! <m; — 1 and consequentfy:= v + F'is = Wil

In view of property (iii) in Lemma 1.1.4, it only remains to show that W, (C). It suffices
to show thatF" € W,(C) andu € W,(C).

Condition (ii) in Lemma 3.2.1 gives constams B > 0 such that, for alk € C, |F(z)| <
AePP2) | By condition (w1), chosing a constafit> 0 large enough, we obtain

/ F(2)PeCP9d(2) < oo,
C

in other wordsF' € W,(C).
By properties (i) in Lemma 3.2.2 and (w1), there exist a constant 0 such that, for all
z € C,

—-U(z
e~ Dr(z) < e—()'
[P
Therefore,
—Ep(2)
/ lu(z)[PePTERE) gy (2 / [u(z) dA(2) < 0.
1 + |z!
This shows that e W,(C) and concludes the proof. |

3.3. Proofs of the main theorems

We will use a smooth cut-off functio” with X(z) = 1if |z| < 1/4 andX(z) = 0 if
lz| > 1.

REMARK 3.3.1. In the proofs of the sufficiency part, we may need to assume that fgy all
we havela;| > a for a suitablez > 0. This will be done without loss of generality up to a linear
transform and in view of property (b) of the weight.

PROOF OFTHEOREM 3.1.1.

By Lemma 1.2.13, condition (4) implies the weak separation. So we are done if we construct
a functionU satisfying the conditions of Lemma 3.2.2.

SetX;(z) = X(|z — a;]?).
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In order to construct the desired function we begin by defining
Up(z) = ijXj(z) In|z — a4
j

Note that there is locally a finite number of non vanishing terms in the sum and that each term
(and consequently) is nonpositive. It is also clear thék(z) — m; In |z — «;|? is continuous
nearq;.

We want to estimate-U, on the support of I/, and the “lack of subharmonicity” df,,, then
we will add a correcting term to obtain the functidnof the lemma.

Suppose is in the support 0 . We want to show that Uy (z) < p(z). Letk be the unique
integer such thal < |2 — ay| < 6. Then

1 1 1
—Up(z) <2 Z mjln|—:2mkln——l—2 Z m;In

|z—a|<1 |Z B ak| J#k,|z—a;|<1
Using that|z — ay| > % and that forj # & we have
lag — ;] <[z — o] + [z —ag] < 2[2 =y,
we obtain that

(16) —Up(z) <2In

s T 2N (ay,2) S plow) S p(2).
k

The last inequalities follows from condition (4), the weak separation (7) and property (b) of the
weightp.
Now we want to get a lower bound @kl (z). We have

AUy(z) = ijXj(z)Aln |z — ay)?
J

+ 8Re <Z m;0X;(2)01In |z — aj|2> + 4277@05%]-(2) In|z — a;]%

J J

The first sum is a positive measure and on the supporéstpfand 99.X;, we see that /2 <
|z — aj| < 1. Consequently, for a certain constant- 0 we have

AUy(z) = —(n(z,1) = n(z,1/2)) = —yn(z,1) = —(n(0, |2] + 1) = n(0, |2 — 1)).
We setn(0,t) = 0if t <0,
t+1 t
ft) = /t n(0, s)ds, g(t) = /0 f(s)ds and W(z) = g(|z]).

-1
Let us compute the Laplacian @f, taking the derivatives in the sense of distributions

AW (=) = —g/(12]) + g"(|2]) = g"(|2]) = £'(Jz]) = n(0, |2 + 1) = n(0, 2] — 1.

2|
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The functionU defined by
U(z) = Uo(2) + YW (2)

is then clearly subharmonic. On the other hand, using condition (10) and (b) we have the follow-
ing inequalities:

|z|+1
f(s) <2n(0,s+1), W(z)=yg(lz]) < 2/1 n(0, s)ds < p(z).

Sincel, < 0 itis clear thatU satisfies condition (i) of Lemma 3.2.2. Using the estimate (16)
and the fact thalll” is nonnegative we see thdtsatisfies condition (ii). Finally as condition (jii)
is also already fulfilled by/, andW is continous, it is also fulfilled by/. |

PROOF OFTHEOREM 3.1.3.

Necessity.n view of Remark 3.1.5 and Remark 1.2.8, we apply Theorem 1.2.7 itk
|a;| and we readily obtain the necessity of (6). Condition (1) is necessary by Corollary 1.2.4.

Sufficiency.By Lemma 1.2.13, condition (6) implies the weak separation. We will proceed
as in Theorem 3.1.1, constructing a functi@rsatisfying (i), (ii) and (iii) from Lemma 3.2.2.
Thanks to the doubling condition, we can control the wejgintdiscsD(«;, |c;|) instead of just
D(a;,e) in the general case. We will construgy as in the previous theorem, except that we
now takeX’;'s with supports of radius- |o;:

Set
16]z — o;?
) (),
! ;]
and introduce the negative function

Up(z) = Z m;X;(z) In —2

Whenz is in the support 0B F, let k be the unique integer such th%t < |z — ag| < o.
Repeating the estimate o/ (z), we have

| || |
—UO(Z)SQ Z mJIHWSkaIH(S—k+2 Z | lmjln J
bt}

jl
lz—ay|<—= 0<|ag—a;|<—-

2y — ;]

We have% < |ax| whenevetay, — o] < |a—23| We deduce the inequalities

(17) —Up(z) <21In !

s+ 2N (o, lag|) S plax) S p(2).
k

Again, the last inequalities follow from condition (4), the weak separation (7) and property (b)
of the weightp.
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We estimateAUy(z) as before except that noWX;(2)| < ﬁ and|00X;(z)| < ﬁ On

the support of these derivativ&-:l%LI <|z—oq4 < ‘Ojle and% < |aj| < 2|z|. We deduce that
n(0,2]z]) = n(0, 5)

|22
To construct the correcting terhiy set

f(t):/o n(0, s)ds, g(t):/o fij)ds and 17 (2) = g(2]:]).

Finally, to estimate the Laplacian &f, we writet = 2|z|. We have

£(t) = /Otn((), §)ds — /Oli n(0, 5)ds + /;n(O,s)ds <in (07 ;l) +t (1 - i) n(0,1).

Thus,
ro -2 o L0 (n(O,t) —n (0, %))
and
AW@ZnQMﬂéma%

Now, the desired function will be of the form
U(2) = Uo(2) + W (2),
where~ is a positive constant sufficiently large. The following inequalities are easy to see:

t
70 < (0.0, g0) < [ "0as = n(0.5).
0
Thus, by condition (1) and the doubling condition,
0 < W(z) < N(0,2|z]) Sp(22) S p(2).
We conclude thal/ satisfies all the desired conditions. [ ]

PROOF OFTHEOREM 3.1.4.

NecessityRecalling Remark 1.2.8, we apply once again Theorem 1.2.7 to deduce the neces-
sity of condition (6).

SufficiencyThe proof is the same as for Theorem 3.1.3, we only change the estimatéon
and the correcting ter’. Let us have a new look &tUy(z).

(18) AUz - Y

Joesl
|Z_04.7'|§TJ
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If the sum is not empty, let;, be the point appearing in the sum with the largest modulus. For
all o; such thatz — o] < % we have

la; — oy < |z —ag| + |2 — o] < lo:f’ + ’OZ’ < ’O;k‘
We deduce that o
n(ag, 55)
AU, >_ 727
O(Z> ~ |Z|2
Besides,
|| 1 ||
)< R E ‘In———— <N < .

logl
0<‘Otj—()ék‘§aTk

Note that|z — ay| < % implies that|z — a,| < |z|. Thus by condition (w3) we havgay,) <
p(z). Finally we get
AU 2 R 2 ).
Then we take
U(z) = Uo(z) + vp(2)
where~ is a positive constant chosen large enough. |

PROOF OFTHEOREM 3.1.6. We already know by Theorem 1.2.7 that condition (4) is nec-

essary.
Let us consider the functiali, that we constructed in the proof of Theorem 3.1.1. Again, we
only change the estimate @x/, and the correcting terii’. We find

(29) AUy(z) 2 —n(z,1).
If n(z,1) #0, letay, beinD(ag,1). Then

n(z,1) < nlayg,2) < my + : _11n2 Z m; In ﬁ S N(ag, e) < plag) < p(2).
0<|og—a;]<2
The function
U(z) = Uo(z) +vp(2),
with v > 0 large enough has the desired properties. |

PROOF OFTHEOREM 3.1.7.

We setc := inf(¢/(Inrg), 1) andy(r) r

~ ¢(lnr)’

CLAM 3.3.2.
(i) Letr > 2r. Thency(r) < r and

e(r)

jz] < ¢
2

implies that@ <Y(r+xz) < 2¢Y(r);
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(i) Forall r > ro,
p(r+4(r)) <ep(r).

Assuming this claim true for the moment, let us proceed with the proof of Theorem 3.1.7.
Necessityln view of Theorem 1.2.7, it suffices to show that = +(|«;|) satisfy condition (2).
Let |a;| > ro andw be such thafw — a;| < R;. Thus|w| < |a;|+(|e;|) and as a consequence
of (ii) of the claim, we obtain

p(w) < p(lag] + ¢ (Jey]) < ep(lag]).

Sufficiency.We may assume thét;| > r, for all j (see Remark 3.3.1). We apply Lemma
1.2.13 to deduce that is weakly separated. We repeat the proof of Theorems 3.1.4 and 3.1.3,
replacing|«;| by cy(]e;]). More precisely, we set

16|z — oz-|2>
Xi(z) =X ——L-
=% (i
and we define the negative function

16]2 — o2
Us(z) = ;ijj(Z) In %

We use (i) of Claim 3.3.2 to obtain that wheneyer- o;| < M we have

D(l2]) < ooyl + |2 = ) < 2¢(Jey);
¥(lay
0D < o) 12— ayl) < (2l
Adapting the inequality (17) whe% < |z — ax| < & and applying condition (12) we find

1
~Un(2) < 21 = + 2N (g, c(l) S pla) S p(2).
k

Let us now find a lower bound fakU, on C. By analogy to (18) and the inequalities following
we obtain

i 1 N ()
A%@”5|%%2%wawmvz CENE

whereq, is one of the points appearing in the sum with the largest modulus. Recall that
|2 —ar] < P(lauf)e/4 < d(|z])e/2 < o(]2])
and consequently from (ii) of Claim 3.3.2 we deduce that

plar) < p(lzl + |z — aul) < p(lz[ + ¥(12]) < ep(2).
Finally, we apply condition (12)

AU (2) > —2E)_
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Let us compute the Laplacian ofz) = e in terms of the convex function. Setting
r=|zl,

Ap(z) = p’q(ﬁr) +p"(r) = Mp(r) 4 ¢"(Inr)

o(r) > [¢'(Inr)]?

: BEATOS

We readily deduce that
AUy(z) > —yAp(2)
for somey > 0. As in the preceding proofs, the functién(z) = Uy(z) + yp(z) satisfies the
properties stated in Lemma 3.2.2. [ |
PROOF OFCLAIM 3.3.2.Letr > ry. A computation gives
: ¢ (In(r)) —¢"(Inr)
V(r) = .

= P
Recall thaty” is nonnegative. Besides asis increasing we havg (Inr) > ¢'(Inry) > ¢. We
deduce thab < ¢/(r) < <. Note that we also have the inequality(r) < r.

Assume now- > 27 and let|z| < 4. Then

cCY\Tr r

lr+x| >r— d;( ) > 527"0.

We can now use the mean value theorem and the preceding estimates to write
x W(r

wir+2) —pir) < 2 < A

We easily deduce (i).
To prove (i), putu(t) = g(Int) = Inp(t). We haveu'(t) = 5 < 5y forallt >

r > ro because) is increasing onrg, co[. Applying the mean value theorem again, we obtain

u(r 4+ (r)) —u(r) < 1. We deduce that
p(r+3(r) = "I Op(r) < ep(r). =






CHAPTER 4

A geometric characterisation of interpolating varieties for Beurling weights

The results of this chapter are joint work with X. Massaneda and J. Orteg&-Cérdy were
published in Transactions of the American Mathematical Soci&#})([

Introduction

Let £(R) be the space of smooth functionsRrand let€’(R) be its dual, the space of distri-
butions with compact support dR. It is well known that the spac& (R) of Fourier transforms
of distributions in€’(R) coincides with the algebra of entire functiofisuch that

[F()] < O+ [o]) eI,

whereA, B, C' > 0 may depend orf (see B, Theorem 1.4.15]).

The origin of the interest iS’(R)-interpoIation lies in its relationship with convolution equa-
tions and, in particular, with the density of exponential familfe8*},c, in the space of solu-
tionsg € £(R) of equations of typg: x g = 0, u € £'(R). Any solutiong to the convolution
equation is the limit of linear combinations pf** } \., whereA is the zero set of.. If moreover
the sequenca is (‘f’(R)-interpoIating then the series that represengsjoys better convergence
properties. For more on this relationship s&g pr [2, Chapter 6] (in particular Theorem 6.1.11).

For the weightp(z) = |[Imz| + In(1 + |2|?), Ehrenpreis and Malliavin gave a necessary
geometric condition which turns out to be sufficient provided thista zero sequence of a slowly
decreasing function (se&§, Theorem 4]). Later Squires, probably unaware of Ehrenpreis and
Malliavin’s result (which was stated in terms of solutions to convolution equations), proved the
same result45, Theorem 2].

In this chapter, we are giving a geometric characterizatio@fm)-interpolating sequences
(Theorem 4.1.2). The characterization shows in particular that the geometric condition given by
Ehrenpreis & Malliavin and Squires is also sufficient whenever the sequence is contained in the
region

|Im 2| < C'log(1+ |z]?).
In general, however, their condition alone is not sufficient.

A similar characterization is obtained for the more general Beurling weights. These weights
appear naturally in the context of convolution equations when one replaces distributions with
compact support with Beurling-Bjck ultradistributions of compact support (s&€]). They are
not necessarily subharmonic, but we will prove that they are equivalent to a subharmonic weight
(see Lemma 4.3.2).

This chapter is organised as follows. In Section 4.1 we give the definition and some properties
of Beurling weights then we state our main result. In Section 4.2 we prove that the geometric

41
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conditions of Theorem 4.1.2 are necessary, while in Section 4.3 we show that they are also
sufficient.

4.1. Main result
DEFINITION 4.1.1. A Beurling weight is a function

p(2) = [Im z[ + w([2]),

wherew(t) is a subadditive increasing continuous function, normalized wfth) = 0 and such
that:

(c) log(1+1t) Sw(t)fort > 1.
< w(t)
(d) /0 n tht < 0.

1

Canonical examples of such weights are givendf$) = log(1 + ?) andw(t) = 7, v €
(0,1).
Beurling weights satisfy the following additional properties:

(e) For everyc > 0 there exist® > 0 such thap(¢) < Cp(z) if ¢ € D(z, cp(2)).

(f) Fore > 0 small enough, there existS(¢) > 0 such that ifz € D((,ep(¢)) then
p(¢) < C(e)p(z). Also,C(e) tends to 1 as goes to 0.

(9) Forz € R* big enough, the functiow(z) does not oscillate too much. More precisely,
for fixedC' > 0, if y € (z — Cw(x),x + Cw(x)) thenl/2 < w(y)/w(x) < 2 for = big
enough.

Properties (e) and (f) follow easily from the subadditivity«af Property (g) follows from the
subadditivity and the fact that(xz) = o(|z|/log|z|) (see L0, Lemma 1.2.8]): for any €
(x — Cw(x),z + Cw(x))
w(rz—Cw(r)) Sw(y) <w(z+ Cuw(zr)) <w(r — Cw(r)) +w(2Cw(z)) <
<w(z—Cuw(r)) +w(2Cz/logz) < 2w(xr — Cw(x)).
We are ready to state our main result. For convenience, a multiplicity variety will be denoted
by V' = {(A\,m,) }aea WhereA is a discrete sequence of complex numbers.

THEOREMA4.1.2. A multiplicity varietyV = {(\, m,)}.ea iS A,-interpolating if and only if:
(i) There isC > 0 such that

(20) Ny(Ap(A) <Cp(A)  VA€A
(i) The following Carleson-type condition holds
| Im A
21 —
@ = D DR r

AEA,| Im A[>w(|A])

Since the Poisson kernel atin the corresponding half-plane (upper half-planéif A > 0
and lower half-plane whehn \ < 0) is P(\,z) = 222/ a restatement of condition (ii) is that

=2
the measure > md has bounded Poisson balayage.
A Im A|>w(|A])




4.2. NECESSARY CONDITIONS 43

REMARK 4.1.3. Notice that for sequences within the region|Im z| < w(|z|) , condi-
tion (20) (shown to be necessary by Ehrenpreis & Malliavin and Squires) provides a complete
characterization. However, this is not the case in general, i.e. condition (21) does not follow
from (20), as it is shown in the following example. Take the sequéncentained in the sector
A ={z € C; |Rez| < Imz} and having in each segmefitn z = 2"} N A exactly2" equis-
paced points. Then satisfies condition (20) (basically A, t) < ¢t fort < p(\)) forall A € A,
but it does not satisfy (21) (it is not even a Blaschke sequence).

4.2. Necessary conditions
LetV = {(\, my)}rea be a multiplicity variety.
PropPosITION4.2.1. If V is A,-interpolating, then conditioii20) holds.

PrROOF. Property (e) of the weight shows that we may consifler= p(«a;) in Theorem
1.2.7. Thus this is a rephrasing of condition (3) in Theorem 1.2.7. |

The necessity of condition (21) is an immediate consequence of the following proposition.
Assume that\ N R = (); otherwise move the horizontal line so that it does not touch any of the
points inA. Let H denote the upper half-plane.

PrROPOSITION4.2.2. If V is A, -interpolating, then there exists > 0 such that

Z my log :

N eANH
NN

1
Y, < Cp(A) forall A e ANH.

Of course an analogous result could be given for any upper:(Imz > a}) or lower
({z : Im z < a}) half plane.

PROOF Letz = z + iy and consider the Poisson transformeft|):

u(z) == Plol(z) = / _ywlth o,

r (T —1)+y°
which converges by (d). Defind = exp(u + i@), wherea is a harmonic conjugate af
By Lemma 1.2.6, there exist a sequence of functighg e such that

(i) fi”()\’) =0forall N € A\ {A\} and all0 < < m), exceptf\(\) = 1.

(i) Forallz € C, |fr(2)| < AePP) whereA, B > 0 don't depend on.
Given)\ € AN H, define .
() = DO

(H(2))"

with My, M, to be chosen. It is clear thaj, is holomorphic inH. On the other hand, for allin
the upper half planglog | H (z)|—w(| Re z|)| < A+ B|Im 2|, see L0, Lemma 1.3.11]. Moreover
lw(|Rez|) — w(|z|)] < w(|Imz]) < A+ B|Imz|, thus|log |H(z)| — w(|z])| < A+ B|Imz|.
Therefore, ifM; andM; are big enoughy,, is bounded il by a constant which does not depend

onA\:
|h)\(2)| < CeMp(z)—Ml Im z— M3 log |H(z)| SJ 1.
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Also,
|h/\()\>| — efMl Im A—Mslog |H ()| > epr()\).

Now apply Jensen’s Formula in the half-plane to the functign
log ()] = [ POvo)log (o) do — [ GO OAloglha(C),
R H

¢

— -1
whereP(\, z) denotes the Poisson kernel a@d\, ¢) = log i—g_‘ is the Green function in

H with pole in \.
Sinceh, vanishes om\ \ {\}, Jensen’s Formula and the estimates above yield

A= NI-
E my log h ;\, < Sup10g|h/\| _10g|h>\()‘)| gp()‘)
N eANH B ®
N#£N

REMARK 4.2.3. The necessary condition of Proposition 4.2.2 can be seen as a Carleson type
condition; it can be rewritten as

|BA(A)| > 6e7“PM X e ANH,

whereB denotes the Blaschke producthhof { (X, m,) }xeanm, and

Bi(z) = B@)(j _ ;)m

It can also be seen as density conditions for the counting function associated to the hyperbolic
metric in the half-plane. Letting = >, _, - mJ, and using the distribution function we have

— 2! -1 1 t
3 malog|” :/log dv(C) :/ () g
ACANH A H 0 ¢

z—¢

o
where
DH(z,t):{g‘:)z%g‘<t}, and ny(z,t) == v(Dy(z,1))

is the number of points af in the pseudohyperbolic disk of “center’and “radius”t (actually
1“ > Im z and radius;2; Im z).

ProposITION4.2.4. If V' is A,-interpolating, then conditioii21) holds.

PrRoOOF DefineA, = AN {Im z > w(|z|)}. Givenz € R considerA € A, such that
|z — A| = infy, |z — A[. Then

AN=XN| < A=+ |z =N|=|A—a| + |z = N| < 2]z = X,

| Tm | | Tm |
Z m)\/ — N2 =2 Z mk'l)\_;\/’?

)\IGA )\/€A+

and therefore
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The estimatéog ¢~ > 1 — ¢ for t € (0,1) shows that

| Tm A|| Tm | A= N
MNeAy NeA

N#X N#X

-1

Sincep(A) ~ |Im A| for A € A,, it is clear, using Proposition 4.2.2, that this implies
condition (20). |

4.3. Sufficient conditions

We split the sequence into three pieces, according to the non-isotropy of the yeigbn-
sider the regions

Qo= {z€C:|Im 2| <w(2|)}
Q,={z€C:Im z > w(|z])}
Q. ={zeC:Im 2z < —w(|z])},

and define\y = AN Qy, Ay = ANQandA_ = ANQ_. LetalsoVy = {(A,mx)}renos
Vi = {()"mk)}AGAJr andV_ = {<)" mA)}z\EA,-

Recall that condition (20) implies th&t is weakly separated (see Lemma 1.2.13). Thus, itis
enough to prove that each pielce, V_, 1, of the varietyV’ is A, -interpolating. This is because a
weakly separated union of a finite number4f-interpolating varieties is alsd,-interpolating
(see Theorem 2.1.1 in Chapter 2). Itis also clear that the varigtiesndV ~ can be dealt with
similarly.

We start with another easy consequence of condition (20).

LEMMA 4.3.1. If condition (20) holds, then there exists C' > 0 such that
ny(z,ep(z)) < Cp(z),Vz € C.
PROOF Whenz = X € A, this is immediate from the estimate
/p(” ny (A, 1/2p(A)) — 1
1/2(3) t
Whenz ¢ A, then letz: > 0 be such that € D(z,ep(z)) implies
D(z,ep(2)) € D(¢,1/2p(C)),

which exists by property (f) of the weight. Take € D(z,ep(z)) (if there is no such\ the
estimate is obviously true). Then, by the previous case and property (e) of the weight

ny(z,ep(2)) < ny (A, 1/2p(\)) S p(A) S p(2).

dt < Ny(\, p(N).
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4.3.1. Case ofA,. We would like to prove thaty, = {(A,mx)}ren, iS Ap-interpolating
using ao-scheme as in Chapter 3 and 4. This is easier if we can regularize the weight in the
following way.

LEMMA 4.3.2. There existg subharmonic irC such that(z) ~ p(z) and
(22) 1/p(2) S Ap(z) if [Tz < 2w(]2]).

The fact thap ~ p clearly implies that4,(C) = A;(C) and the interpolating varieties for
A,(C) andA;(C) are the same.

PrRoOFR We will constructp(z) = | Im z| + r(z), wherer satisfies the following properties:
(i) » > 0 andp is subharmonic irt,
(i) r(z) =0if |Im z| > 10w(|2|).
(i) 1/p(z) < Ap(z) andr(z) ~ w(|z|) if [Im z| < 2w(|z]).
In order to construct, we partition the real line into intervals, defined in the following
way.
Letzy > 1, 41 = 2, + w(z,) forn > 1 andz,, = —x_, forn < —1. Setly = [z_1, 4],
I, = [z, xpyq] fOrn > 1 andl, = [x,_1, z,] for n < —1. Denote byw, the length of,,.
We consider two measures@ The first one is the usual length measdran R, which we
splitdv =}, dv,, with dv,, = dx|;,. The second one is defined as a sum of convolutions of the
dv,’s: let

() = (57 | oz = a)a) dm ),

whereD,, = D(0,10w,,), and definely = ) d,.
Notice that wherr is at a distance of,, smaller tharew,,, we can use property (g) of the

Beurling weights to deduce that(z) ~ 1/w(|z]) ~ 1/p(z). Hencedu(z) ~ dm(z)/p(z).
Define

r(z) = / log |z — wl(dju(w) — dv(w)).

SinceA|Im z| = dv we haveAp = du > 0.
Let S,, denote the support ¢f,. Let

rn(2) ::[Clog|z—w|(d,un(w)—di/n(w)) :/S log|z—w|d,un(w)—/ log |z — z|dx

I,
Using the definition of.,, and reversing the order of integration we get

rn(z) = M (z)dzx,
In
where

1
M(x> - 1007'('@721 /D(x,IOwn) log ‘Z N w’dm(w) N log ‘Z B m‘ 2 0

In particular,” in non-negative irC.
If z ¢S, andz € I, log |z — w| is harmonic inD(z, 10w, ), hencer,(z) = 0
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Suppose now € D(z,,3w,). Then, for eachx € I,,, |z — z| < 4w,, and

1 |2 — w|
M(z) > / log dm(w) 2 1.
(@) 1007w3 Yo <|w—z|<10wy, |z — | (w) =

Thus,r,(2) 2 w, 2 w(|z]).
If = € S, using that.,, andv,, have the same masgz,, ), we obtain

/ﬁ%ﬂz—uﬁwu4w>—dmxw»fzAjmgﬁ@;SWuu4w>+dmxw»:s
[ o2 =5 )+ ) 5 ol

Since|Im z| < 2w(|z|), z belongs at most to a finite number 6f’s and at least to one
D(z,, 10w, ), by property (g) of the Beurling weights, we are done. |

Let us prove now thak; is As-interpolating. In view of Lemma 4.3.2, we assume that there
existC' > 0 such that, for alk with | Im z| < 2w(]z|),
1
— < CAp(2).
p(z) )
Consider the separation radiji given by Remark 1.2.10.
Given a sequence of valulig = {wy }aca0<i<m, € A,(V), define the smooth interpolating

function N
P = Y X (E50).

AEAQ

my—1

wherepy(2) = > wy(z — \)! andX is a smooth cut-off function witht’| < 1, X' (x) = 1 if
=0
|z] <1landX(z)=0if |z] > 2.
Itis clear thatF")()\)/I! = wy,;, and thatF” has the characteristic growth f,(C) functions:

the support oft" is contained inJ, D, and forz € D,

my—1

[F(2)] < ) Jwag| < Ce?®) < eFP0),

=0

There is also a good estimate OR'. Its support is the union of the annuli
C)\:{ZGCZ(S)\§|Z—>\|§25,\},

and forz € C),

8F m L
0z ’< Z |wM||X|—<eCp()<er()

for K big enough.
Altogether, there existg > 0 such that

(23) / |F(2)]2e ") < 0 | / |0F (2)]2e™ ") < o0 .
C C
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Now, when looking for a holomorphic interpolating function of the fofrs= ' — u, we are led
to theo-problem

ou = OF
which we solve using Brmander’s theorem 1.2.16. We applgthander’s theorem with
vs(z) = Bp(z) +v(2)
where( > 0 will be chosen later on and
1
v(z) = m logz—)\Q——/ log |z — ¢|?dm(()] .
(2) E%A[r = 0 oy 1~ P )]

Heree is a fixed small constant to be determined later on.
Integrating by parts the equality

o 010 d0 log |a|? if |a| >
logla —re”|” — = ) .
0 27 log r if Ja] <r

one sees that far € C andr > 0:

1 log |22 +1— [ if || <r
loglal? — — [ log|¢Pdm(¢) = " "
oglal? = = [ togl¢Pam(© {0 o
D(a,r)
Thus
|z = AP |z = AP
v(z) = Z m,\[log oy tl— 55 ]
N e2p?(N) e2p?(N)

In particularv < 0 andAv(z) = 0if z ¢ UyD(\ ep(N)). Forz € UyD(\ ep(\)) we have
| Im z| < 2w(]|z]) and

. e )
Av(z)> ) 2200 2 > p?(z) p*(2) :

A A—z|<ep(A) A A—z|<C(e)p(z)

As observed in Lemma 4.3.1, with small enoughn(z,C(e)p(z)) < p(z), thus Av(z) =

—1/p(2). This and (22) show thatg is subharmonic ifs is chosen big enough.
Also, we deduce from (c) that for amy/ > (:

, —¥p _
ul?e ™ PPdm < U 2__ ¢ dm < OF e 8dm .
C C (14 12]?) C
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We need to contral; on the support of F'. Forz € Cy,

52172(/\)
Ua(z) =Bp(a)l < D, maleg—ig
NA—2[<ep(V)
2P () 2P (Y)
:m,\log ‘2—)\‘2 + Z mys logm
Niz=N|<ep(X)
P
C(e)’p*(2)

SpN+ Y mylog
NN —2ZCEp(2)
NEA

CLAIM 4.3.3. For ¢ small enoughV(z, C(e)p(z)) < p(z) for all z € supp(OF).

T Sp(2) + N(2,C(e)p(2))

Assuming the claim we haves(z) — Bp(z)| < Kp(z) onsupp(9F). Therefore, for3 large
enough

/ lu|?e P Pdm < / |OF|*e 5 dm < / |OF|*e™"Pdm < oo .
C C C

This shows that: € W, (C) and we already know thd@t € W,(C). Therefore,f := F —u €
W,(C)N A,(C) = A,(C) (see Lemma 1.1.4).

Sincee s ~ |z — A\|7?™ around each\, alsou®(\) = 0forall A € A, 1 =0,...,my — 1,
and thereforgf© () /Il = FO()\)/I! = wy,, as required.

Proof of the claim: Assumez € C) and observe that(z,t) = 0 for ¢t < J, and that
n(z,t) < myfor oy, <t < 26, SinceD(z,t) C D(\ t+ 20,) and|z| < |\ + 2J,, we have
(changing intos = ¢ + 20,)

28 C(e)p(z) .
NeCEpE) < [ Tras [ HEDZm
2

O

dt <
N t

C(e)p(z)+26x n )\,S —m
< p(A) +/ %%A
455 S A

CEPE+25n () 5) _
So+ [ MR s £ 50 + NOLCEDN).
465, s/2

From the properties of the weight and the hypothesis we have finally thasfoall
N(z,C(e)p(2)) S p(A) < p(2).

4.3.2. Case of\*. According to Theorem 1.2.14, it is enough to construct a funatios
A,(C) such that’, ¢ Z(G) and

G (V)]
m,\!
for some constants k£ > 0. In fact, the hypotheses of Theorem 1.2.14 require the weighbe

subharmonic, and our weights are not necessarily so. Nevertheless, by Lemma 4.3.2, there exists
a subharmonic weight equivalent tgp, and we may apply Theorem A o

ds

AN

>ee PN e Ay
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Take any entire functiod’ such thatZ (F') = V... Since the necessary conditions imply that
V., satisfies the Blaschke conditionlfi we can consider also the Blaschke product

B(z) = II(Z_§)mﬁ 2 e H

Nehy C T A
Define
F(z)
log‘ ‘ Imz>0
¢(z) = B(z)
log |F(2)] Im 2z <0.

LEMMA 4.3.4. ¢ is harmonic outside the real axis, subharmonic@©mand its Laplacian is
uniformly bounded.

PROOF It is clear, by definition, that) is harmonic onC \ R. In order to prove thab is
subharmonic oif, it is enough to check the mean inequality foe R. We have

2

27
o(z) = log |F(z)| < QL/ log |F(x +re'?)|df < ZL o(x + re?)dp.
T Jo

T Jo
SinceA log |F| = 0 aroundR, it is enough to compute the Laplacian of

1
0

Im z <0.
Being
\ 12

1 1 zZ—A
log ——— = = 1 ]
®1B()| 3 2 mlog| T3

AeA+

it will be enough to compute the Laplacian of each term

Imz>0
0 Im z <0.

Itis clear thavy, /0x = 0 OnR, henceAqyy, = 9?1, /dy?. Sincey, is continuous aroung,
this Laplacian has a magnitude equivalent to the jump of the first derivativg dfhe derivative
of the Green function on the half-plane with respect to the normal diregtisnthe Poisson
kernel:

al‘z—Xz ~ 4Im A
oy 81N =0 |z — A]>’
Therefore
Im A
Ap(z) =4 Z m)\| B\E dx,

which is bounded by hypothesis. |
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Define
U(z) = N|Im z| — ¢(2).
Observe tha\¥(z) = N dz — A¢(z) dx, thus according to the previous Lemmal ~ dx

whenN € Nis big enough. In this situation, according &2] Lemma 3], there exists a multiplier
associated t@, i.e., an entire function such that:

(a) Z(h) is a separated sequence containefl in
(b) Given any= > 0, |h(z)| ~ exp(¥(z)) for all pointsz such thatl(z, Z(h)) > e.
Define nowG = hF'. Itis clear thaiG € A,(C):

1G(2)] < V() Hog|F(2)] < oW (2)+e(2) < oNp(2) » e C.

It is also clear that,. C Z(G), sinceV, C Z(F).
In order to prove that there existC' > 0 such that

(mx)
(24) ‘G—(A)‘ > ge PN
m,\!

p(A)

consider then the disjoint disk3, = D(\,d,), 6y = S EENEDY given by Lemma 4.3.1(i). Since
A, isfar fromZ(h), the estimate

G(2)] = |h(2)|e?@|B(2)] = "™ #|B(2)] 2 € D,
holds.
CLAIM 4.3.5. There exist€ > 0 such thal B(z)| > ee~“P(*), » € 9D,.

Assuming this we hav&?(z)| = e~ P2 for all z € 9D,. Define thery(z) = G(2)/(z —
A\)™ . Itis clear thaty is holomorphic, non-vanishing iby, and|g(z)| = e=®™ for z € 9D,
By the minimum principle

e
my-
as desired.

Proof of the claim: As observed in Remark 4.2.3(b), the estimate we want to prove is equiv-

alentto

1
/ M dt <p(z)  z€aD,.
0
This is proved like Claim 4.3.3, except replacing the Euclidean disks by the hyperbolic ones. We

have 1 26 1
A _
/ nH(’Z7t) dt S m/\dt+/ nH(Z7t) my dt
0 3 5y 25, t

The first term is controlled by()). In order to control the second term observe thatz,¢) C
Dy (), £22); hence changing the variable inte= 2% we get

7 146 1465
1 . 1 o _£2
/ TLH(Z,t) my dt S ’I’I,H(A,S) my 1 5>\2 dS.
265, t 38 8—5)\ (1—(5)\>
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There is no restriction in assuming that< 1/2. Thenlf’;‘;g2

With this and condition (ii) in Theorem 4.1.2 we obtain

1 1 _
/ —”H(f’t) dt < p(\) + / (A s) =y o
0 0

S

> 26, and therefore — §, > s/2.

Sincep()) < p(z), we will be done as soon as we prove that

/lwd5<m,
0

S
There exist® > 0 (independent o) such thatDy (A, 5) C D(\, p(N)). Then

5
ng(A, s) — p(N)
/o f Z my log —-~ v S Z my 10g|>\ V]

0<|2=27 <5 A=N 0<|2=27 <5

A—N A—N
p(A)
S ) mxlog’A 3 < NP £ 0.
0<|A=N]<p(N)

For the remaining part we use condition (ii) in Theorem 4.1.2 and the estimate! ~ 1t
for§ <t < 1. Takingx = Re A we have

/ nH(/\s (A, s) —my <Z |ImA||{mA’| -
5

|Im A|| Im )\’|
< Z N PR VRS < [Im A = p(N).
AN



CHAPTER 5

The trace of A,(C) on a multiplicity variety when p is radial and doubling

The results of this section are to appear in Michigan Mathematical Journal.

Introduction

Let V. = {()\;,m;)}; be a multiplicity variety and leW = {w;;};o<i<m; be a doubly
indexed sequence of complex values. We assume that the wegyradial and doubling. In this
chapter, we are concerned with the following question : Under what conditioli$ does there
exist an entire functiorf € A,(C) such that

fO(ay)
il

In other words, what is the image &f,(C) by the restriction mafR, ?

In [7], Berenstein and Taylor described the sp&se(.A,(C)) in the case where there exists
a functiong € A,(C) such thal” = Z(g). They used groupings of the pointsiéfwith respect
to the connected components of the §glz)| < cexp(—Bp(z))}, for somes, B > 0 and the
divided differences with respect to this grouping.

The main aim of this chapter is to determine more explicitely the sfaee4,(C)) in the
more general case where condition (1) is satisfied. We know that (1) is verified whénéver
not a uniqueness set fot, (C), that is, wherl” C Z( f) for a non-zero functiorf in A,(C) (see
Lemma 1.2.2). We refer td.P] and [28] for similar results in the case whepéz) = |z|*.

Asin[7] and [12], the divided differences will be important tools. Our condition will involve
the divided differences with respect to the intersection¥ ofith discs centered at the origin.
To be more precise, the main theorem, stated in the case of simple multiplicities, for the sake of
simplicity, is the following :

THEOREM5.0.6. Assume that” verifies condition(1). ThenW = {w;}, € Ry (A,(C)) if
and only if for allR > 0,

Y we [ R/ — an)| < APPH,

log|<R lon | <R,n#k

= Wj1, VJ, Vo<l < mj?

whereA, B > 0 are positive constants only dependinglomndiV .

We will denote by/lp(V) the space of sequencds = {w,}, satisfying the above condi-
tion. We will show that in generaRy (A, (C)) c A,(V), thus, we may consider the restriction
mapRy : A,(C) — A, (V). In this context, the theorem states that condition (1) implies the
surjectivity of Ry, .

53
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On the other hand, we will prove that condition (1) is actually equivalent to saying/tist
not a uniqueness set or, in other words, it is equivalent to the non-injectivity,of

As a corollary of the main theorem, we will find the sufficency in the geometric characteri-
zation of interpolating varieties given in Theorem 3.1.3.

As in Chapter 3, the difficult part of the proof of the main theorem is the sufficiency and we
will again follow a Bombieri-Hirmander approach based bfrestimates on the solution to the
0-equation. The condition oW/ gives a smooth interpolating functidn with a good growth,
using a partition unity and Newton polynomials (see Lemma 5.3.5). Then we are led to solve
the 0 equation :0u = —0F with L?-estimates, using #fmander theorem 1.2.16. To do so,
we need to construct a subharmonic functiérwith a convenient growth and with prescribed
singularities on the points; (see Lemma 5.3.6). Following Bombied ], the fact thate=
is not summable near the poinfs;} forcesu to vanish on the pointe; and we are done by
defining the interpolating entire function ky+ F'.

This chapter is organised as follows ; In Section 5.1, we give some preliminary definitions
about divided differences and Newton polynomials, then we define the various spaces that we
will need to describe the trace gf,(C) on V. We state our main results in Section 5.2 and we
prove them in Section 5.3.

5.1. Preliminaries and definitions

We will throughout this chapter assume tpas radial and doubling (see Definition 1.1.2).

LetV = {(«;, m;)};en+ be a multiplicity variety. We will say thalt” is a uniqueness set for
A,(C) if there is no functionf € A,(C), except the zero function, such tiatC Z(f).

It is clear by Lemma 1.2.2 that wheneVéris not a uniqueness set fat, (C), condition (1)
holds. We will lately show that the converse property holds.

It is also clear that the restriction map

Ry : Ap(C) — A (V)
l
a .
e {#}jpgkmj
is injective if and only ifl” is a uniqueness set fot,(C).
Our aim is to describe the trace &f,(C) on V' or, in other words, the spadey (A,(C)),
provided that condition (1) is verified.

5.1.1. Divided differences and Newton polynomialsTo any W = {w;,}jen+0<i<m; €
A(V'), we associate the sequence of divided differerie@$) = {¢;:};0<i<m; defined by in-
duction as follows :

We will denote by

q
II,(2) = H(z —ay)™ forallg > 1.
k=1
¢11=wyy, forall 0 <i<m —1,

b0 = Wq,0 — qul(zq)
o qul(zq) ’




5.1. PRELIMINARIES AND DEFINITIONS 55

P (z9) -1 I—j
Wy, — 4 llg = - Zj:o (ljj)!Héflj)(Zq)(éq,j

(bq,l =

for1 <l <m,—1

Hq—l(zq>
where
q-1 /m;—1 j—1
Ppa(z) =) (Z dju(z — o) ] (= - Zt)””) :
j=1 \ =0 t=1

REMARK 5.1.1. Actually, P, is the polynomial interpolating the values; at the pointsy;
with multiplicity m;, for 1 < j < ¢. Itis the unique polynomial of degree; + --- +m, — 1
such that

l
P o)
TR
foralll <j <gand0 <! <m;—1.
EXAMPLES 5.1.2. o Let Wy = {01,01,m,-1}j0<1<m; -
j—1
Using the fact thaP;(z) must coincide with(z — o)™ H(z — «;)™ and iden-
k=2

tifying the coefficient in front o™ ++mi-1+=1 'we find :

9251,1 = ¢1,2 == ¢1,m1—2 - 07 ¢1,m1—1 = 17
and, forj > 2,0 <1 <m; -1,

Jj—1

015 = (a1 —ay) " ] e —an) ™™,

k=2
e In the special case where; = 1 for all j andIW = {w;};, we have for allj > 1,
i
¢; = Zwk H (ar —ap)™t
k=1 1<I<g,l#k
To compute the coefficients, we may use the fact tAgt) must coincide with the

J
Lagrange polynomia ~w, [] %
Oy — O

n=1 1<k<j,k#n

and identify the coefficient in front

of 271,

5.1.2. The spacesl,(V) and jp(V). Let us denote byd, (V) the subspace of(V') con-
sisting of the elementd” € A(V') verifying : for alln € N, for all «; such thafa;| < 27,

(25) VO <1 <my—1, [¢[2"Fmttmi) < Aexp(Bp(2")),
whereA and B are positive constants only dependinglomandV .

LEMMA 5.1.3. Assumey; = 0. Then, condition (1) holds if and only if
Wo = {61300m, 1 }j0<1<m; € Ap(V).
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PROOF Suppose that (1) is verified. Lete N, 0 < |o;| < 2" and0 <[ < m; — 1. We
have by definition,

n

9 J
N(O, 2") _ Z my, In +my 1n(2") Z In <2n(m1+~-~+mg’) H |ak|—mk> ’

0<|ay|<2n e k=2
J J
‘¢j,l| _ |Oéj’mj_l_1 H ‘Oék’_mk < 2n(mj—l—1) H |Oék|_mk < exp(N(O, 2n>>2—n(m1+-~~+mj_1+l+1).
k=2 k=2

We readily obtain the estimate (25), using thal, 2") < A + B p(2").
Conversely, let: be an integer. Using the estimate (25) when 2 is the number of distinct
points{ay} in D(0,2") andl = m; — 1, we have

J
N(0,2") = In <2n(m1+...+mj) H |ak|—mk> = ln(gn(m1+...+m]’)|¢j’mj_1|) < A+ Bp(2").

k=2

Then, we deduce the estimate fi(0, R) using the above one witt'~! < R < 2" and the
doubling property op. [ |

Now, let us denote byflp(V) the subspace ofl(1/) consisting of the elemenid” € A(V)
verifying
(26) Vi, YO <T<my =1, |gpullag[ T < Aexp(Bp(ay)),

whereA and B are positive constants only dependinglomandV .
If we define the norm

IWls =sup sup eyl |02 exp (- Bpa).
J Sismy—

Then the spaceé:tp(v) can also be seen as an (LF)-space that is an inductive limit of the
Banach spaces

App(V) = {W € A(V), [W]|5 < oo}

LEMMA 5.1.4. We have the following inclusion

A,(V) C Ay(V).
If condition(1) is satisfied then i
Ap(V) = A,(V).
PROOF. Let W ¢ A,(V) and letn € N be such thae"' < |a,| < 2. Then for all
0 <1 < mj, we have
Wﬂ,’aj’(l+m1+...+mj,1) < |¢j’l‘2n(l+m1+...+mj71)

< Aexp(Bp(2")) < Aexp(Bp(a;)).
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This proves the first inclusion. To prove the second part of the lemma, observe thatfar A
for all |a;| < 2™ and for all0 <! < m;, we have
on IH+my+-4mj 1
| | > log (—> )

Assume now that condition (1) is fulfilled and tHat < fip(V), then

‘¢j,l|2n(l+ml+~..+m]‘71) < ’¢j’l‘|aj‘l+m1+...+mj,1 exp(N(O, 2n))
< Aexp(Bp(a;)) exp(Bp(2")) < Aexp(Bp(2")).

@7) N@O2)= > mklog

|ag|<2m

log

Ia |<le;]

We have proved thdl’ € A, (V) |

We are now ready to state the main results.

5.2. Main results
LetV = {(a;,m;)};en- be a multiplicity variety.
PROPOSITIONS.2.1. The restriction operatofR, mapsA,(C) continously intad, (V).
PROPOSITIONS.2.2. Under the assumption of condition (14,,(V) is a subspace ofl, (V).
PrROPOSITIONS.2.3. If conditions(1) and (6) are verified, therﬁp(V) = A,(V) = A, (V).
THEOREMA.2.4. If condition(1) holds, then
A, (V) = A,(V) = Ry (4,(C)).

The combination of Proposition 5.2.3 and Theorem 5.2.4 shows easily the sufficiency in

Theorem 3.1.3.
Using the results given so far, we may already deduce next theorem :

THEOREMS.2.5. The following assertions are equivalent :

(i) V is not a uniqueness set fot, (C).

(i) The mapRy is not injective.

(iif) 'V verifies condition (1).

(iv) The sequencl’y = {61,j01,m,1}j,0<i<m, PElONGS toR 1 (A,(C)).

In particular, it shows that condition (1) is equivalent to the existence of a funttio, (C)
such that” C Z(f). Combined with Theorem 5.2.4, it shows thatRif is not injective, then it
is surjective and that, if the image containg, then it contains the whold,, (V).

PROOF OFTHEOREM5.2.5. As we mentioned before, it is clear that (i) is equivalent to (ii)
and that (i) implies (iii).

(iv) implies (i) : We have a functiorf € A, (C) notidentically equal t0 such thatf V) (a;) =
0 forall j # 1 and for all0 <! < m;. The functiong defined byg(z) = (2 — o) f(2) belongs
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to A, (C), thanks to property (wl) of the weighf and vanishes on every, with multiplicity at
leastm;.
(iii) implies (iv) :
Up to a translation, we may suppose that= 0. By Lemma 5.1.3, we know that/, €
A,(C). By Theorem 5.2.4\; € Ry (A,(C)).
|

5.3. Proof of the main results

PROOF OFPROPOSITIONS.2.1. We will first recall some definitions about the divided dif-
ferences and about Newton polynomials. We refer the read@r @hapter 6.2] or23, Chapter
6] for more details.

Let f € A(C) andz,...,z, be distinct points ofC. The ¢th divided difference of the
function f with respect to the points,, . . ., z, is defined by

Aq_lf(xl,...,xq):Zf(aj) I @-="

1<k<qk#j

and the Newton polynomial of of degree; — 1 is

P(z) = Z N7 f(ay,a) [ ]2 = ).

It is the unique polynomial of degree— 1 such thatP,(z) = f(z;) forall 1 < j <.
Whenz;, 1 < j < q are each one repeatédimes, the divided differences are defined by

Ity —1
A" T (T o, Ty e Bty ey Ly, Ly -ey L)
—— ————— ——
ll lq,1 lq
1 al1+'~~+l]-

= AT (2, xy).
Ll ol - oal (1 )
The corresponding Newton polynomial is the unique polynomial of degree: - [, —1 such
that, forall0 < j <gand0 <[ <[; -1,

PO (z;) = fO(x).
We have the following estimate

LEMMA 5.3.1.[2, Lemma 6.2.9.]
Letf € A(C),Qanopensetof,d > 0andzy, -,z inQy = {z € Q: d(z,Q° > d}.

Then
k—1

_ 2
|Ak 1f(§171,...,.1'k)| < gk—1 Sup|f(z)|
z€Q

Let B > 0 be fixed andf € A, 5(C).
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Let n be a fixed integer. Lefn,;| < 2" and0 < I < m; — 1. We consider the divided
differences off with respect to the points,, - - - , o, eachoy, 1 < k < j — 1 repeatedn,, times
ando; repeated times.. Denote by/;;, = m, + --- + m;_; + [, the divided differences are

ij,l = A]wj’lf<041, ey Oy . 7Zj—17 “euy Zj—l; Oéj, couy Oéj).
N—— N ——— N —

m1 times m;_1 times 1+1 times

Using Lemma 5.3.1 witl2 = D(0,2"%2), § = 2"+ k = M;, + 1, we have

|pial < 27"M5t|| fll g exp(Bp(27+2)) < 27| £l g exp(B'p(27)).
Thus,
IRv(H)lls < flls

and this concludes the proof of Proposition 5.2.1.

Before proceeding with the proofs of the main results, we need the following lemmas :

LEMMA 5.3.2. Condition (1) implies that there exist constamtsB > 0 such that, for all
R >0,

n(0,R) < A+ B p(R).
PROOF Using the fact that the weightis doubling, we have

2R n(0,t)
n(0,R) <2 Tdt < 2N(0,2R) < A+ Bp(2R) < A+ B p(R).
R

LEMMA 5.3.3. Let W be an element ofA(V') and ¢ be in N*. We suppose that for all
1 <j <g, foralln € Nsuchthatz,| <2"andforall0 <! <m; — 1, we have

|2 Fmattmim) < A exp(Bp(27)),

whereA and B are positive constants only dependingiérand IV
Then, there exist constants B > 0 only depending o and I/, such that, for alln € N
and|z| < 2m,

~+o0 1) q
POz . .
S PN < gexp(mp(ary) Y a2,

1=0 j=1

400 )
Z 11" (2)] < 9n+2)(mi+tmyg)
l! -

=0
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PROOF If |z| < 2" thenforj =1,--- ¢, |z — a;] < 2"*2,

m;—1

q
S Z n+2 Y(mi+-mji_1) Z |¢] ’2(n+2)l

A exp(Bp(Z”)) Z 92(ma+--+m;)

=1

IN

and
q

()| = [ 1z = oy < 22meesma),
j=1
Now for |z| < 27, if |z —w| < 2, then|w| < 2"*!, By the preceding inequalities and Cauchy
inequalities, for all > 0,

1Pq” (2)] 1 1 n - 2(my4--+m;)
< o1 | max [ Fy(w)] < EAGXP(BP(Q ))ZQ e

l! |z—w|<2 :
7j=1
We readily obtain the desired estimate f§r Using Cauchy estimates once again for the function
11, we obtain the second inequality. [ |

PROOF OFPROPOSITION5.2.2. We assume that condition (1) holds. Wet= {w;,};o<i<m,—1 €

. _ POz
A, (V). Letq > 1 andn be the integer such that—! < |z,| < 2". We know that%
for every0 <! < m,_,. By the preceding lemma,

mg—1 |P(l) q
Z Jwg,| < Z | < Aexp(Bp(2) > 2mbetm),
j=1
By Lemma 5.3.2;m; + ---m; < n(0,|o;|) < Ap(a;) + B. Using thatg < n(0, |z,]) <
Ap(z,) + B, we obtain

mg—1

Z lwqa| < Aexp(Bp(2")) < Aexp(Bp(z)),

that isiW € A, (V). |
PROOF OFTHEOREM5.2.3. We assume that conditions (1) and (6) are fulfilled. We already

haveA,(V) c A,(V) by Proposition 5.2.2.
Before proving the reverse inclusion, we need some useful consequences of (1) and (6) :

LEMMA 5.3.4. There exist constantd, B > 0 such that, for all; € N* and for alln € N
such thata;| < 2", we have

(Bp(2)), 2104 < Aoy exp(Bp(2"))
(i) Joy|™ < Acxp(Bp(ay),
(ii)) TTi2) oy — ax ™™ < Aexp(Bp(2r))2nimt=tmi-),
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PROOEF (i) It's a direct consequence of condition (1) and inequality (27).
(i) It is a simple consequence of condition (6) :

mjIn oy < N(ay, o)) < Ap(ay) + B.

(iif) Using condition (6), we have

7j—1
S oS 8 v, 0, < Ap(ay) + B
| — vl | — oul
k—1 J 0< o —aj| <]y J
We deduce that
j—1
[Tl — sl ™ < Aexp(Bp(ay)) |-+
k=1
< Ag7nlmitmic) exp(Bp(27))
using (i). |

Let W = {w;}j0<i<m,—1 bEINA,(V). In order to show thall” verifies (25), we are going
to use Lemma 5.3.3 and show by inductiongor 1 the following property :
For alln € N such thatz,| < 2™ and forall0 <! <m, — 1,

|¢q’l|2n(l+m1+...+mq,1) < Aexp(Bp(?”)),

whereA and B are positive constants only dependinglomandV .
qg=1:for|a;| <2"and0 <! <m; — 1, we have

|614] = |wiy| < Aexp(Bp(ar)) < Aexp(Bp(ozl))2_"12”m1 < Aexp(Bp(Q"))Q_"l

using Lemma 5.3.4, (i) and (ii).
Suppose the property true for< j < ¢ — 1. Letn € N be such thafz,| < 2".
Again, we proceed by induction dn0 <[/ <m, — 1.
[ =0:byLemmas5.3.3and 5.3.2, we have

q—1
|P,—1(24)] < Aexp(Bp(2")) Z QAmitdmy) < (g — 1)22(mattman1) < A exp(Bp(2")).
j=1
By Lemma 5.3.4 (iii),
q—1
y1(z)l " = [ ] 120 — sl ™ < Aexp(Bp(27))2 mmttmay)
k=1

We deduce that
|¢q,0| < AGXp(Bp(Q"))2—”(m1+~-~+mq,1)'
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Suppose the estimate true for< j; < [ — 1, using both inequalities of Lemma 5.3.3 and
Lemma 5.3.2, we have

-1 H(l 1])
Z T cbq]! < Aexp(Bp(2"))
and 0
P (z)
[~ < Aexp(Bp(2").
As for [ = 0, we use Lemma 5.3.4 (iii) to complete the proof. |

PROOF OFTHEOREMb5.2.4. We already showed the necessity in Proposition 5.2.1. Let us
prove the sufficiency.

We assume condition (1). L&Y = {w;,};0<i<m,;—1 be an element Qﬂp(V).

Let X be a smooth cut-off function such th&t(x) = 1 if |z| < 1andX(z) = 0if |z| > 4.

SetX,(z) = X(Qz,n) forn € N, pg = Xy andp, 1 = X,,.1 — &,. Itis clear that the family
{p,}» form a partition of unity, that the support &, is contained in the disk:| < 2"*! and
that the support of,, is contained in the annuly@" ! < |z| < 2"t} forn > 1.

We will denote byg, the number of distinct points; in D(0,2"), thatis :¢, = Z|aj\§2" 1.

LEMMA 5.3.5. There exists &> functionF on C such that, for certain constants, B > 0,

FO(q,
lga") =wj, forall j e N,0 <1 <m;—1.
(i) forall = € C, |F(2)] < AePr()
(i) OF =00onD(0,1) and for anyn > 2 and2"2 < |z| < 2",

qn

OF (z)| < A2 nmittma) TT |5 — o |7 eBPE"),
0F(2)| < i

k=1
PrROOFE We set
an 2
n>2
where
mj—l jfl

z(zw—% )H(z—awmk
Jj=1 =0 k=1

It is the Newton polynomial we mentioned in Remark 5.1.1.
(i) : Forallj > 1and0 <[ <m; — 1, if a; is in the support op,,_o, thean(fL)(aj) = llw;.
Thus

FO(ay) Z (Z Cf pn 2 (a;)klw;, k’)

n>2

—ZClk"wjk an ozk =llw,;.
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(ii) : For z > 1, letn > 2 be the integer such that—2 < |z| < 2"~1. Then, we have :

F(2) = pn2(2) Py, (2) + pn1(2) By, (2)-
Forall0 < j < ¢,, we have|a;| < 2" and|z — a;| < 2"*!. Using Lemmas 5.3.3 and
condition (1), we have
[Py, (2)] S exp(Bp(2")) < Aexp(Bp(2")) < Aexp(Bp(z)).
The same estimation holds féy, ., thus,

|F(2)| < exp(Bp(2))-
(iii) Now, we want to estimatéF.
Itis clear thatF'(z) = P,,(2) onD(0, 1).
Let|z| > 1 andn the integer such that*~2 < |z| < 2"~!. We have

OF (2) = Opn—2(2) Py, (2) + Ipn-1(2) Py, (2).
Sincez is outside the supports 6fY,,_; and ofoX,,_;, we have

qn

OF (2) = =0X,-9(2) (P, 1 (2) = Py, (2) = [ [ (2 — an)™ Gu(2)

k=1

where
an+1

Gol2) = =0%,a() > [ (z—a)™ (2 Bialz - aj>l> .

Fork < gu41, |2z — ax| < 2™2, thus, using the estimate given by (25) then Lemma 5.3.2, we
show that

dn+1
(G (=) Aexp(Bp(21)2nmterton y 7 gttty
jZQn+1
< exp(Bp(2"))2 e,
We readily obtain the desired estimate. |

Now, when looking for a holomorphic interpolating function of the fofme= I + u, we are
led to theo-problem
Ou = —OF.
The interpolation problem is then reduced to the following lemma.

LEMMA 5.3.6. Let F' be the function given by Lemma 5.3.5. There exists a subharmonic
functionU such that, for certain constant$, B > 0,
(i) U(z) ~ m;log|z — a;]* neara;,
(i) U(z) < Ap(z) + Bforall z € C.
(i) |OF(2)[?e V() < AePPE) forall 2 € C.
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Admitting this lemma for a moment, we proceed with the proof of Theorem 5.2.4.
Using properties (iii) in Lemma 5.3.6 and (w1l), we see that there exists a coistan0
such that

/ |0F [2e”VO=EPE g)\(2) < 0.
C

Hormander’s theorem 1.2.16 giveﬁ?(é functionu such thabu = —9F and

)—Ep(z) 1 _
(28) / [u2) d\(z) < = / OF [2e~UE=EP() g)(2).
1+] \ 2 Je

Settingf = u + F, itis clear thatf € A(C). Moreover, by condition (i) in Lemma 5.3.6, near
a;, e Y@ (2 — a;)tis not summable fob < I < m; — 1, so we have necessaril§’) (a;) = 0 for

fO(ey)

all j and0 <1 <m; — 1 and consequentfy:= u + F'is ——= = Wit

In view of property (iii) in Lemma 1.1.4, it only remains to show tlfat W, (C). It suffices
to show thatF" € W,(C) andu € W, (C).

Condition (i) in Lemma 5.3.5 gives constams B > 0 such that, for alk € C, |F(z)| <
AePP2) By condition (w1), chosing a constafit> 0 large enough, we obtain

/ |F(2)Pe= PR dA(2) < oo
C

in other words F' € W,(C).
By properties (ii) in Lemma 5.3.6 and (w1), there exist a constant 0 such that, for all
z € C,

-U(z
e~ Pr(2) < e—().
(4 [P)?
Therefore,
—Ep(2)
/ lu(z) e PTERE) gy (2 / [u(2) dA(2) < 0.
1 + |z[
This shows that. e W,(C) and concludes the proof of Theorem 5.2.4. |

PROOF OFLEMMA 5.3.6. For the sake of simplicity and up to a homotethy, we may assume
that |ay| > 2 for all o, # 0. Besides, in the definition of the following functiomg, we will
assumey; # 0, otherwise, we may add the termm In || to eachV,,. We set

Z m; log |Z_T]’

0<|aj]<2n

an 2

First, we will show that” verifies (i), (||) and (iii). Then, we will estimaté&}’ from below
and add a correcting teriy. The subharmonic functioti will be of the formV + W.

then
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(i) Let |ay| be such tha2™ ! < |ay| < 2™+ For2m—! < |z| < 2™+

V(2) = pm1(2)Vini1(2) + pm(2)Vinta(2) + pimsa (2) Ving s (2)-
As thep,’s form a partition of unity, it is clear thalt' (z) — my, In |z — y|? is continuous in a
neighborhood ofy,.
Note thatl” is smooth on{|z| < 2} since we have assumed that|al}| > 2.
(i) Let n > 2 and2" 2 < |z| < 271, then
V(Z> - pn—Q('Z)Vn(Z) + pn—l(z)vn—i-l(z)-

For all|a;| < 2", we havelz — a;| < 2", Thus,

Finally, we obtain that
V(2) < N(0,2""1) + N(0,2"%) < p(2") < p(2)
by condition (1) and the doubling property of the weight
(iii) We have
—V(z)/2 = Z m; In ‘Z|04j(|l | + pnt1(2) Z m; In
-

loj|<2m 2”<‘O¢j|§2"+1

|

|z —ay|

Note that for al™ < |o;| < 2"+, we haqu — ;] > 2" =271 =27~1 We obtain

(2)/2 < Z mjln a|+ln4 Z m;
]

loj|<2m 2" <oy |<2n L

<In <2n(m1+"'m%) H |z — ozj\mJ) + In(A exp(Bp(2"))

j=1

(29)

for certain constantsl, B > 0 using Lemma 5.3.2. Finally, combining this inequality with (iii)
of Lemma 5.3.5, we obtain

OF (2)] exp(=V (2)/2) < exp(Bp(2")) S exp(Bp(2)).
Now, in order to get a lower bound of the laplacian, we computg z) :

AV =Y pu oAV, +2Re (Zapn 28V> + ) 00pn_2V.

n>2 n>2

The first sum is positive since evevy is subharmonic.

Let us estimate the second and the third sums, that we will denote respectivgly bgnd
C(z). Forn > 2 and2"2 < |z| < 2"7!, sincez is outside the supports &8, 3 and ofdx,,_;,
we have
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B(2) =2Re [0X,_5(2)0 (Vi (2) — Vipa(2))] |
C(2) =00X,5(2) (Va(2) = Va1 (2)) -

12
Va(2) = Va(2) = ) m; log =5
J

27 <oy | <2nt1

OVals) = Vars() = 3 my—

z—ay’
<o |<2ntl
and ) )
10X, 2(2)| S o0 00X, _5(2)| < o

For z in the support 0b.x,, 5, we havez| < 271, and for2" < |a;| < 271,271 < |z —q | <
2"+2_Thus, we obtain that

‘85.)(”72(2) (Vn+1(Z) _ Vn(2>) | < TL(O, 2”+1) _ n(O, 2”)

~ 2277, ’
and 11
B n(0,2" ) — n(0,2"
10X, —2(2)0 (Var1(2) = Va(2)) | S ( 2)% 22
Finally,
AV(Z) - _n(o’ 2n+1) _ TL(O, 2”) > _n(o, 23|Z|) - n((), 2|Z|)
~ 92n ~ | 2|2 '

To construct the correcting teri/, we begin by putting

' " f(s)
flt) = / n(0,s)ds, g(t) = / =2 dsand W(z) = g(2%|z]).
0 0
The following inequalities are easy to see :

f(8) < tn(0,8), g(t) < /tM

ds = N(0, s).
0o S

Thus, by condition (1),
W(z) < N(0,2°[2]) S p(2°2) < p(2)
Finally, to estimate the laplacian &, we will denotet = 23z|.

AW = 1) +o'0) = ()~ L),
ft) = /0 n(0, s)ds = /04 n(0, s)ds +[ n(0,s)ds < in(O, Z) +t(1— i)n(o,t).
Thus, 4
7o)~ <o~ 19> Lo, n0, 1)



5.3. PROOF OF THE MAIN RESULTS

and

Now, the desired function will be of the form
U(z) =V(z) + aW(z),

whereq is a positive constants chosen big enough.
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CHAPTER 6

Expansion in series of exponential polynomials of mean-periodic functions

This chapter is a joint work with H. Ouerdiane. The main results are anounced in C.R. Acad.
Sci. Sr. | Math. (see3#f)).

Introduction

A periodic functionf with periodt may be defined in terms of convolution equation as a
function satisfying the convolution equation

(6¢ — do) * f =0,

while a function with zero average over an interval of length 0 satisfies the convolution
equation

pxf=0,
t/

2
wherey is defined by p, f >= % f(z)dz. From the observation that the second notion is
—t/2
more natural from the point of view 01{ experimental physics, Delsartes generalized the concept of
periodic functions by introducing irlp] the notion of "mean-periodic” functions as the solutions
of homogeneous convolution equations.

In this paper, we are dealing with the fundamental principle, that is, with the expression
of mean-periodic function through series of exponentials polynomials. We refer the interested
reader to b, 6, 8, 18, 4Bfor more about this subject.

Let 0 be a Young function ané* its Legendre transform (see Definitions 6.1.1 and 6.1.2
below). A canonical example of a Young functiorvis) = z*, i > 1, thenf*(z) = x* where

1 1
Ll
I v
The mean-periodic functions will lie in the spagg(C) of all functionsf € A(C) such that
(30) sup | f(z)]e”"" " < oo,
zeC

for all constantsn > 0.

We will also consider the limit case whefér) = z. In this case, the associated conjugate
function#* is formally infinite. Therefore, no growth condition of the type (30) is involved and
we putFy(C) = A(C).

We will say thatf € Fy(C) is a mean-periodic function if, for a certain non zero analytic
functionalT' € F,(C), f verifies the convolution equation

(32) Txf=0.
In this case, we say thdtis T-mean-periodic.
69
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For example, if we denote b{y, },. the zeros of the Fourier-Borel transform Bfand m,
their order of multiplicity, then all exponential monomial&“*, with j < m; areT-mean-
periodic functions (see Lemma 6.2.4). Then, every convergent series whose general term is a
linear combination of such exponential monomials is al§éraean-periodic function.

Our main result (see Theorem 6.2.5) states roughly that the converse holds, provided that we
apply an Abel-summation procedure in order to make the sum convergent. In fact, we prove that
anyT-mean-periodic functiorf € F,(C) admits the following expansion as a convergent series
in fe((C)

my—1 k
(32) FE =YY e [Z €Zaij,j,l(Z)] 7
ko 1=0

j=1

where P, ;; are polynomials of degree m;, explicitely given by (46) and (47) in terms of
V' = {(aw, my) }x. Moreover, the coefficients, ; verify the growth condition (37) and can be
explicitly computed in terms of and7'. As we will see, the key result used here is the explicit
description of the image of the restriction operatoioonbtained in Chapter 5.

WhenV = {(ay, mi)}x IS an interpolating variety, the convergence of the series doesn't
require any Abel-summation procedure, we simply obtain thatamgean-periodic function
[ € Fy(C) admits the following expansion as a convergent serie (i)

mg—1 j
(33) fle) =326 3 duy,
k =0

where the coefficientd;, ; verify the growth estimate (49) (see Theorem 6.4.2).

These results generalize those obtainedjinyhere the authors considered the c&5€C) =
A(C). In fact, they showed that, giveéfi € H'(C)), there exists a sequence of indidgs=
1 < ky < --- such that any’’-mean periodic functiorf € A(C) admits a unique expansion,
convergent in4(C), of the form

mg—1 j
I

(34) =33 =Y 4y
7=0

n>1 by <k<kny1 J

In (34), the sum converges by grouping the terms rather than by an Abel-summation process.
But in general, the sequenég, },, is not explicit, except in the case whéhis an interpolating
variety, where the sequengg = n works, thus formula (34) leads to (33).

This chapter is organized as follows : Section 6.1 is devoted to preliminary definitions and
useful results from functional analysis. The main results are stated in section 6.2 and the proof
of the main theorem is given in section 6.3. Finally, in section 6.4, we study the particular case
whenV is an interpolating variety.

6.1. Preliminaries and definitions

DEFINITION 6.1.1. A function 6 : [0, +oo[— [0, 400 is called a Young function if it is
convex, continuous, increasing and verifi¢8) = 0 andr = o(0(r)) whenr — +o0.
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DEFINITION 6.1.2. Let#d be a Young function. The Legendre transfathof 6 is the function

defined by
0*(x) = sup(txz — 6(t)).
t>0

Note that the Legendre transform of a Young function is a Young functiorféng 6. We
refer the reader ta2f] for further details.

Throughout the papef,will denote either the functiofi(x) = z or a Young function.

For anym > 0, considerEy ,,,(C), the Banach space of all functioris= .A(C) such that

1/ llo.m == sup |f(2)]e” ) < 400
z€

and define

Go(C) = Upen-Ey,n(C)
endowed with the inductive limit topology. It is clear ti@tC) is an algebra under the ordinary
multiplication of functions.

REMARK 6.1.3. Whenf(z) = z*, u > 1, the spacej,(C) coincides withA,(C) where
p(z) = |z|*. Itis the space of all entire functions of ord€ry and of finite type. In particular,
wheny = 1, Gy(C) is the space of all entire functions of exponential type, usually denoted by
Exp(C). Note that wher () = z*, ;1 > 1, then¢*(z) = = where{ + 1 = 1.

We define the spacg,(C) as follows :

(i) In the case wheré(z) = =, we putFy(C) = A(C), the space of all entire functions
endowed with the topology of uniform convergence on every compactt. oft is a Féchet-
Schwartz space (seg]].

(ii) In the case wheré is a Young function, we denote

Fo(C) = Npen+ Eg 1/,(C)

endowed with the projective limit topology. The spa€gC) is a nuclear Fechet space (see
[19]), hence it is a Fechet-Schwartz space.

For any fixedt € C, andl € N, we will denote by); ¢ the exponential monomial — z'e®=.
It is easy to see thal/; € F»(C). In the next we denote h§;(C) the strong topological dual
of FQ(C)

Let us recall some definitions and properties from functional analysis. We ref@} for|
further details in the case (i) and tbd for the case (ii).

To any fixedu € C, define the translation operatgron 7, (C) by

(ruf)(2) = f(z +u),forall f € F»(C)andz e C.

It's easy to see that,(C) is invariant under these translation operators.
For all.S € F)(C) andf € Fy(C), the functionz —< S,7.f >, where< , > denotes the
duality bracket, is an element & (C). Therefore, for anys € F;(C), the mapSx : F(C) —
Fy(C) defined by
Sx f(z) =< S, 1.f >
is a convolution operator, i.e., it is linear, continuous and commute with any translation operator.
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For anyS € F;(C), the Fourier-Borel transform df, denoted by’ (.S) is defined by
L(S)(&) =< S,e* >,
whereet = M, ¢ is the functionz € C — €.

For any two elementS§ andU of F(C), the convolution product « U € F;(C) is defined

by
Ve Fy(C), <SU f>=<S,Uxf>.

Moreover for anyS, U € F,(C)
LS*xU)=L(S)LU)
Under this convolution/;(C) is a commutative algebra admittig, the Dirac measure at
the origin, as unit.

PROPOSITIONG.1.4. The Fourier-Borel transfornt is a topological isomorphism between
the algebrasF,(C) andGy(C).

6.2. Main results

Throughout the rest of the chapter, Btbe a fixed non-zero element &f(C). Our main
goal in this section is to show that any functigre F,(C) satisfying the equation

(35) Txf=0
can be represented as convergent series of exponential-polynomials which are them-selves solu-
tion of (35).

DEFINITION 6.2.1. We say that a functiorf € F,(C) is T-mean-periodic if it satisfies the
equation (35).

Denote byd the entire function irg,(C) defined byd = L£(T"). Before going further, let us
show the following division property :

LEMMA 6.2.2. Leth € A(C) andg € Gy(C). If g is not identically zero and if = gh €
g9<(C), thenh € gg((C)

PROOF Up to a translation, we may assume théb) # 0. Let us apply the minimum
modulus theorem and it’s corollary given ig, [Lemma 2.2.11] to the functiog in the disc of
center) and radiu™ e, wheren is any positive integer.

As g € Gy(C), there existp € N* andC,, > 0 (not depending omn) such that

< O,
‘5@%6\9(8\_ p€

Thus, there exists, > 0 (not depending on) andR,,, 2" < R,, < 2"! such that

; > —0(p2")
Juin 9(&)] = epe
Letn € Nand|¢| = R,. As f € Gy(C), there existg > 0 andC, > 0 (not depending om),
such that
|F(E)] < Coe ).
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Using the convexity ofl and the fact tha#(0) = 0, we have
1 1 1 1
0(p2") = 0(5p2"") < 562" + 50(0) = S6(P2"™).

If we assume, for example, that> ¢, we deduce that

W) = 17O - < Srerenione) < 0,

19O ~ & B

Now letz € C, be such that"! < |z| < 2" < R,,. By the maximum modulus theorem,
|h(2)| < Bp€9(p2"+1) < Bp€9(4p|2|)_
This proves thak € G,y(C). [

COROLLARY 6.2.3. In the case wheré has no zeros, the only mean-periodic functjor
Fy(C) is the zero function.

PROOF Assume thafb has no zeros. Theh € A(C) and, by Lemma 6.2.2; € Go(C). By
Proposition 6.1.45 = (£)~!(3) € F(C). Then, we haves « T' = T'x S = d,. If we assume
T f=0,thenjy f =f=0. |

We will throughout the rest of the paper assume thagas zeros, and denote them|by| <
|O./1| S S |Oék| S ---,ak#ak/ Ifki%k’/

We will denote bym, be the order of multiplicity ofb at«,, and we will consider the multi-
plicity variety V' = Z(¥) = {(ax, my) }ren-

LEMMA 6.2.4. (i) For all £ € C andl € N, we have< T, M, >= &0 (¢).
(if) Each exponential monomial/; ,,, , for 0 <[ < my, is T-mean-periodic.

PROOF To prove (i), we proceed by induction én> 0. The property is true fof = 0 by
definition of the Fourier-Borel transform @f.
Suppose the property true for Let ¢ € C be fixed. Let us verify that the function

My — M, .
e S converges inFy(C) to M., whenu tends to0. For allz € C andu < 1,

2 (uz)"?
uz Z i

n>2

u
we have
e — 1

u

< |ul|z|?€.

This implies that

Mieyu(2) — Mie(2)
u

e —1

_ MH—LE(Z) = |Zle§z| < |U||Z|l+2€(1+|ﬂ)|z‘,

—Z

Therefore, et Ye converges td;, ¢ for the topology ofF,(C) whenu tends to.
From this, we obtain

oW — 0 <T Mery>—<T, M, >
(I)(l+1) (g) = lim (& + U’) (g) — lim P L,E+ ) 1,¢
u—0 u u—0 u
M e — M,
—lim < T, =2 T S T M >,

u—0 u
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by continuity ofT". This completes the proof of (i).
In order to prove (ii), it is sufficient to see that

! l
Tt My (2) =< T, 7. My o >= ™Y CP2' ™" < T, My 0, >= ™Y " CP2' "0 (ay,).
n=0 n=0

Our main theorem states roughly thaimean-periodic functions are series of linear combi-
nations of the exponential monomial$ ,, :

THEOREM6.2.5. (i) Any T-mean-periodic functiotf € Fy(C) admits the following expan-
sion as a convergent series ff(C)

mg—1 k
(36) f(z) = Z Z Ch,l [ e Py ju(2)

k>0 1=0 j=

?

where P, ;, are the polynomials of degree m; given by (46) and (47). The coefficienis
verify the following estimate

mg—1
(37) Vm >0, ) el (Z || (o] + 1)(m1+'"+mkl+l)> < +o0
=0

k>0
and are given by
Ceg =< Sk, f >
whereS;,; € F;(C) is defined by

T

1

L(Sk)(€) = (€ —an) || (€ — an)™.

1

(if) Conversely, any such serie whose coefficiepisatisfy the estimat@7) converges i, (C)
to a functionf solving the equatio(35).

S
Il

COROLLARY 6.2.6. Assume that all the multiplicities,. are equal tol. Then
(i) any T-mean-periodic functiorf € F»(C) admits the following expansion as a convergent
series inF,(C)

(38) fE =) |y e ]I (a—an™|,

k>0 j=0 0<n<k,n#j
where the coefficients, satisfy the following estimate
(39) Vm > 0, Z Pl ey | (Jag] + 1) 7 < 4o
k>0

and are given by
C =< Ska f >
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whereS), € F;(C) is defined by
k—1
L(S)(€) = [ (€ = an)™.
n=0

(if) Conversely, any such series whose coefficiepsatisfy the estimatg@9) converges irf,(C)
to a functionf solving the equatio(35).

6.3. Proof of the main theorem

It will be a crucial point in the proof of the main theorem, to determine the image of the
restriction operatop defined ong,(C) by

l
plg) = {%C:k)}kzo,ogkmm g € Go(C).

We choose to denote this operator in this chaptep bgther thariR, to simplify the notations.
As an immediate consequence of Lemma 6.2.2, we have the following lemma.

LEMMA 6.3.1. The kernel of the restriction operatpiis the ideal generated b¥y in G4(C)},
ie.,

Kerp = {®g, g € Go(C)}.

We are going to use a characterization, obtaine@1h pf the elements = {ax; }reno<i<m,_,
belonging top(Gs(C)). This characterization is given in terms of growth conditions involving
the divided differences (se3] for further details about divided differences).

To any discrete doubly indexed sequence= {ax;}reno<i<m, Of COMplex numbers, we

associate the sequence of divided differen&és) = {bx;}reno<i<m,- We recall that they are
the coefficients of the Newton polynomials,

q

k—1 mk—l
(40) Q&) =Y T - an™ ( > b6 - ak>l) :
=0

k=0 n=0
defined, for any; > 1, as the unique polynomial of degree + - - - + m, — 1 such that

O]
qu—('ak)—ak,l, for 0<k<gand0<I!I<my—1.
When all the multiplicitiesn; = 1, we may give a simple formula for the coefficienis:

k

bk:Zaj H (o — )™t

j=0  0<n<k,n#j
In the general case, se&7] we define them by induction :
by =ayforall 0 <l <m; —1,

by o — o — Qr=1(u)
k,O Hk_l(ak) Y
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QL (ax) -1 1 k)
ag,] — - Zn: a=mi I, ()b
bk,l: : 0 (tzmt k71 ’ forlglgmk—l

Hkq(oék)

where we have denoted by
k

(&) = [ [ (€ = an)™ forall k > 0.

n=0
In [37], we showed that the elements= {a, }ren0<i<m, DelONGing top(Gy(C)) are precisely
those verifying the growth condition

sup sup  |bpg|(Jo| 4 1)t tme-rHg=fmlard) o 4 og
k>0 0<l<my,

for a certainm > 0, whereb = {by; }r.0<i<m, = ¥ (a).
In order to give a topological structure to this space, let us denotg,hy1") the Banach
space of all doubly indexed sequences of complex nuniber$by.; } ren o<i<m, Such that

16]lg.m = sup sup |bgg|(Jog| + 1)m™ - Fme-rte=dmlon) o 4 o
keN 0<i<my,

Let us consider the spacéy (V) = ¥ '(By,.(V)), that is, the space of all doubly indexed
sequences of complex numbers- {ay; }ren+ 0<i<m, SUch that

|V (a)]lg.m < +o0.

It is easy to see thatly,,,(V') endowed with the nornfjal/g., = [|¥(a)le.m IS @ Banach space
and that? is an isometry from4, (V') into By ., (V).
Now, we define the spaces

Ag(V) = Upen=Ag (V) andBy(V') = Upen+Bop(V)

endowed with the topology of inductive limit of Banach spaces.
We define the linear map

a=VopoL:FHC)— Be(V).
PROPOSITION6.3.2. The mapx is continuous and surjective.

PROOF. By Proposition 6.1.4, we know thdt : F,(C) — G,(C) is a topological isomor-
phism.
The fact that the operator

P Go(C) — Ap(V)
is continuous and surjective are easy consequences of Proposition 5.2.1 and Theorem 5.2 4.
Finally, by construction, it is clear that

v o AQ(V) — BQ(V)

is a topological isomorphism.
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Recall thatF,(C) is a Fechet-Schwartz space, therefore it is reflexive. Then, the transpose
o! of v is defined from the strong dual & (V"), denoted by3)(V'), into F4(C).
In the next lemma, we will characterize the dual spagg/).

LEMMA 6.3.3. The spacd3, (1) is topologically isomorphic through the canonical bilinear
form

+oo mk—l

<, b>= Z Z CkakJ

k=0 =0
to the spac&, (V') = N,en+-Cy,(V') endowed with the projective limit topology, where, forzall
Cy (V) is the Banach space of the sequences{cy; }r>0.0<i<m, Such that

mp—1
(42) ||C||/97p = Zeﬁ(plakl) (Z x| (o] + 1)—(m1+“'+mk—1+l)> < +o0.
1=0

k>0

Moreover,Cy(V) is a Fréchet-Schwartz space.
PROOF. Let us show that : Cy(V') — Bj(V') defined by

—+00 mk—l

Ble)(b) =< e;b>=>" > criby

k=0 [=0
is a topological isomorphism.
Let ¢ = {cki}ro<iem, De an element ofy(V) andb = {bx}ro<icm, € Bop(V), for a
certainp. For anyk > 0, we have, by definition offb||s ,,

mk—l mk—l

37 bracidl < P[5l ST fopil(jay] + 1)TmEma),

=0 =0
Using the estimate (41), we see that the sum converges (absolutely) and that

| <e,b> | < clly,llbllosp-

This shows the continuity of. Let B*! be the doubly indexed sequencetiefined by (using
the Kronecker symbols) :

(42) BN = {6kj5ln}j,0§n<mj-

We easily see thab*! € B, (V). For allk and0 < I < my, we haver,; =< §(c), B¥ >. Itis
then clear that is injective. Conversely, to an element Bj(1/), consider the doubly indexed
sequence = {ck, }x.0<i<m, defined by

Cr =<V, Bk’l >
We verify thatc € Cy(V). letp € N* be fixed and definé = {by.;}x.0<1<m, bY

Bk,l = eﬁ(pakl)lck_vl|(|ak| + 1)—(m1+~--+mk_1+l) if Chol £0, Bk,l — 0 otherwise
Ck,l

Itis clear that) € By, (V) and thatb||s,, < 1.
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Therefore, all the finite sequendes = "1 S " b, B satisfy
165 o < 1.
Denoting by||v||, the operator norm, we have, for &,
| <v, 6" > < Wl flop < V]

On the other hand,

K mkfl mg—1

<1/,EK Z by < v, B~ — Ze (plakl) Z !Ckl! ‘ak’+ ) (my+-tmy_ 1+l)7

k=0 [=0
by definition ofby, ;. Letting K tend to infinity, we obtain that € Cy,,(V') and that
(43) lello < 1]l

Consider now an element= {b;;}r.0<i<m, Of Bs,(V) and putb® = Zk 0 Dk Ly BEL
Let ¢ be an integer strictly larger thgn Note that by convexity of, for all k& the foIIowing
inequality holds

(44) —0(qlax|) + 0(plax]) < —(1 —p/q)0(qlax|).
Using this inequality, we find

b — bKHe,q < 1bllo,p Sup e Olalar)+H0(lorl) < HbHapef(lfp/q)@(q\axD.
>K

We readily deduce that® converges té when K tends towards infinity and thak(c) = v.

The continuity of3~! is a direct consequence of the inequality (43). We have provedthat
is a topological isomorphism.

In order to prove thafy (V') is a FEéchet-Schwartz space, in view & [Proposition 1.4.8.],
it is sufficient to see that, for any< N*, the canonical injection

ip : Copt1 (V) — Cﬁyp(v)

is compact. Le{c"},, be a sequence of element<iy,.; (V') such that, for alk, ||c"||g 11 < 1.
It suffices to show that one can extract a subsequen¢e'¢f, converging inCy (V).

It is easy to see that, for all € N and0 < I < m, the sequencécy, }, is bounded. Thus,
up to taking a subsequence, we may assume without loss of generality, tlainverges to a
certaincg; € C. Puttinge = {ck; }r.o<i<m,,,» We readily see thate Cy 1 (V) and||c||gp+1 < 1.

Let us verify that|c* — ||y, tends to) whenn tends to infinity. We assume thmk| — 00,
otherwise, the result is trivial. Then, again using inequality (44) we findethat:)—0((p+1)lax)
tends to0 whenk tends towards infinity. Let > 0. For a certaink’ € N and for allk > K,
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elox) =0 Hllex) < € Thus, for alln € N,

mp—1
Z efwlal) <Z ey — exg] (o] + 1)—(m1+'“+mk—1+l)>

k> K 1=0

mk—l
: —(mit-+my—
SZ Z O ((p+1)|ak]) ( Z ’CZ,l — ¢l (|ag] + 1) (ma+-+my 1+l))

E>K 1=0

DO ™

€ €
<Zlle” = clloprr < Z (1" lloprr + llcllopra) <
4 4

Moreover, for a certaidvV € N and for alln > N, we have

K-1 mi—1
Z efPlakl) (Z |kt — cral (o] + 1)_(m1+”'+m’“‘1+l)) <
k=0 1=0

Finally, forn > N, [|c* — ¢[|g, < €.

DN ™

From now on, we will identify3; (1) with the spac&,(1"). The duality is given by, for all
c= {Ck,l}k,0§l<mk € CQ(V)and for allb = {bk,l}k,0§l<mk € BQ(V),

+o0 mk—l

(45) <cb>= Z Z Ch,1bk 1.

k=0 [=0
The next step is to prove the following lemma :

LEMMA 6.3.4. (i) o' is a topological isomorphim onto its image ahd o' = (Ker «)°, the
orthogonal space of Keti .
(i Kera={T*U, U e Fy(C)}.
(iii) (Ker a)°=Ker Tx = {f € F4(C) | T * f = 0}.

PROOF (i) From Proposition 6.3.2y is a surjective continuous linear map. Therefarejs a
topological isomorphism onto its image ahd o = (Ker «)° (see R, Proposition 1.4.12]).
(il) Recalling Remark 6.3.1, we have

Kera =Ker (po L) = L7 (Kerp) = {T x L7 (g), g € Go(C)}) = {T U, U e F)(C)}.
(iii) Let f be an element of (Kex)°. For allz € C,
(Tx f)z)=<T,1.f >=<T,0, % f >=<T*0,, f >=0,

using the fact thal” x §, € Ker a.
Conversely, leff € F»(C) be such thai’ x f = 0 and letU € F;(C). We have

<TxU f>=<UTxf>=0.

This shows thaf €(Ker «)° and concludes the proof of the lemma.
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Let us proceed with the proof of Theorem 6.2.5.

(i) Let f € F4(C) be aT-mean-periodic function, that ig, € Ker Tx. From Lemmas 6.3.4
and 6.3.3, there is a unique sequeneeCy(V) such thatf = a'(c).

For z € C, denoting by, the Dirac measure at we have

f(z) =<0, f >=<0,,a'(c) >=< c¢,a(d,) >=< ¢, V(p(g.)) >

where we have denoted gy = £(4.), that is, the function igj,(C) defined byg. (¢) = .
Let us comput&(p(g.)) = b(2) = {bk.(2) }k.0<i<m,, Which is an element df, (V). By well
know formulas about Newton polynomials (See, for examp|®jefinition 6.2.8]), we have, for

k € N, and denoting by
1 o™

@aa?’

J

for0 <1 < my,

k
ka(Z) — 8171171_ mk 1= lal (Z 7% H (04]' _ aﬂ)l) — Zezajpk,j,l<z>>

0<n<k,n#j

where we have denoted by

mr—1
(46) Py iz Z Z| aZmJ—l i < H () — an) ™™ (a; — ak)(l+1)>

0<n<k—1n#j

and, for0 <1 < my,

Lo
(47) Prri(2) = Z %@lf‘ ( H (ap — an)_mn> .

i=0 0<n<k—1

Thus,

1) =3 (Z_ %zbk,z(z)) =2 (Z_ cmZemﬂ'Pk,j,mz)) .

k>0 =0 k>0 =0
So, the equality (38) is established.
Let us verify the convergence ify(C) of the series.
Case wherd)(z) = z. Here,F7(C) = A(C). We have to verify that the serie converges
uniformly on every compact of. Letp € N*andz € C, |z| < p.
(6)] = |e*] < P, that is,

HQZHH,I? <L
Thus, by continuity ofl o p, there exist$’ € N* andC), > 0 such that
16(2) |0 < Collgzllo, < Co

For allk > 0, we have

mg—1

Z Ck,zbk,z(z)

=0

mg—1

<62 logr > leral(Jog] + 1)~ CmtFmemtfllan)
=0
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We obtain
m—1 mg—1
sup Z Crabri(2)| < Cp Z |cxa| (log] + 1)~ (matFme—1tD b(e'len)
|z|<p

Recalling thatc € Cyj(V'), the right term is the general term of a convergent serie, thus, the
right-hand side of (38) is convergentf(C). Moreover,

mg—1
b )| D cnabi(2)| < Golielly
|z|<p k>0 _
Case wherd is a Young function
For anyp € N*, observe that
lg:llo < € 5.

Thus, by continuity oft o p, there existg’ € N* andC,, > 0 such that
16(=)lor < Cpllgallp < Cpe” G,

Forallk > 0 andz € C, we have

mg—1

Z Ck,zbk,z(z)
1=0

mg—1

<62 logr Y ekl (Jo| 4 1yt tmetle=0Wlowh
=0

We obtain
mg—1 mg—1
sup Z Crabri(2)] e TG < ¢ 0 > Ll (lag + 1)yttt 0@ e,
#€ =0

As in the previous case, we deduce that the right-hand side of (38) is absolutely convergent in
Fy(C). Moreover,

mkfl

Z Z Ck,lbk,z(z)

k>0 | =0

sup

< Cpllelly -
zeC

In order to find an explicit formula for the coefficients;, consider the elemeni3*! of B,(C)
defined by (42) and observe that, by the definition of the Newton polynomials (see (40)) with
respect to the coefficients &f*!, for all ¢ > k, we have

k

Qq(€) = (€ =)' | [(€ — )™

l

and forq < k, Q, = 0. We readily deduce that(S, ;) = ¥ o po L(Sy;) = B*.
Now, for allk € Nand0 <[ < my,

|
—

Il
=)

< Sk,l7 f >=< Sk:,h Oét(C) >=< a(SkJ)? c>=< Bk’l, C >= Cp.

(i) The converse part is easily deduced from the proof of (i) and Lemma 6.2.4.
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6.4. Case of an interpolating variety
DEFINITION 6.4.1. We say thatl” is an interpolating variety fo€,(C) if, for any doubly
indexed sequence= {ay, }ren+ 0<i<m, SUCh that, for a certaim > 0,

mg—1

sup Z |ag|e D) < oo,
keN 1=

there exists a functiop € Gy(C) such that, for alk and all0 <[ < m;, — 1,

l
«
9 (l'k) =

We assume from now on that = Z(®) is an interpolating variety fog,(C). Then we have
the following result :

THEOREM6.4.2. (i) Any T-mean-periodic functiotf € Fy(C) admits the following expan-
sion as a convergent series ff(C)

mg—1

l
(48) FE) =0 Y du

k>0 =0
where the coefficients, ; verify the following estimate :

mg—1
(49) Zeg(m‘akl) (Z |dk,l|) < 400
=0

k>0
for everym > 0. Moreover, for allk € Nand0 < I < m;, we have the equality
dyg =< Ty, [ >
whereT},; € F,(C) is defined by

L(Te)(€) = P()(€ — o)™ (mu /2™ (auy)),

(if) Conversely, any such series whose coefficigptssatisfy these estima{d9) converges in
F»(C) to a functionf solving the equatio31).

Note thatL(T ;) € Go(C) by Proposition 6.2.2.

REMARK 6.4.3. In the case wheré(z) = z, this is also a consequence & [Theorem
6.2.6.].

We will denote by.Ajy,,, (V) the space of all doubly indexed sequences of complex numbers
a = {ag, }ren0<i<m, Such that
mp—1
— —0(m|a])
allg,m := sup ar,le < 400
[[all sup ; ||

and

AQ(V) - UpGN*AQ,p<V)
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endowed with the strict inductive limit of Banach spaces.
We define the linear map

a=poL:FyC)— Ay(V).
PROPOSITION6.4.4. The mapy is continuous and surjective.

PROOF Itis sufficient to show that the map: Gy(C) — Ay(V) is surjective and continuous.
The surjectivity follows from the fact that is an interpolating variety.

In order to show the continuity, let € Gy ,,(C) and letz € C. By the Cauchy estimates
applied to the disc of centerand radiu, for all | € N,
g(=)]_ 1

< o sup [g(§)].
I 2! je_21<2

For|¢ — z| < 2, we have
(9] < llgllope” P < [lgllo,pe” @ PED < [gllg et/ 2P el /202010

by convexity of. Thus,

o0

2

=0
In particular, we deduce thatg) € Ay ,(V) and that

g'(z)

T < 2||g|lg.pet/ 2Pl rlzD.

10(9) 025 < 2|lgllope/20.

The continuity ofp follows from the last inequality and the surjectivity from the definition 6.4.1.
|
We need to characteriz4, (1), the strong dual ofd, (V).

LEMMA 6.4.5.The spaced; (V') is topologically isomorphic to the spag® (V') = Nyen=Co (V)
endowed with the projective limit topology, where, for@alD, (1) is the Banach space of the
sequences8 = {dx }ro<i<m, Such that

mp—1
(50) |d||‘9117 Z 0(plak) (Z |dkl|(|04k:|+1) (mi+-+mp_ 1+l)> < 400.

k>0 =0

Moreover,Dy (V) is a Fréechet-Schwartz space.

The proof is similar to the one of Lemma 6.3.3. Lemma 6.3.1 still holds with the new defini-
tion of .

We are now ready to prove Theorem 6.4.2.

By Lemma 6.3.1, an§’-mean-periodic functiorf is the image by’ of a uniqued € A, (V).
We have, for alk € C,

k>0 =0
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To compute the coefficients, ; :
< Ty, | >=< Ty, ' (d) >=< d,a(Tyy) >= dy;.
The last equality follows from the observation that
a(Ty,) = B*.

The rest of the proof is similar to the one of Theorem 6.2.5.

Let us recall some results about interpolating varieties that enables one to determine whether
V' is interpolating or not. The following is a rephrasing of the analytic characterization given in
1.2.14. The spaces of entire functions considered are slightly different, but is clear how to adapt
these results to our spaces.

THEOREM 6.4.6. LetV = Z(®) = {(ax,mx)}r. ThenV is an interpolating variety for
Gy(C) if and only if, there are constants> 0 andm > 0 such that, for allk,
‘(I)(mk)(ak)

We also have a geometric characterization of interpolating varieties, in terms of the distribu-
tion of the points{ (ax, my) }«.
Adapting [3, Corollary 4.8] or Theorem 3.1.3 to our spaces :

THEOREM6.4.7. V is an interpolating variety fo,(C) if and only if conditions

(51) JA>0,3Im >0 VR>0, N(0,R) < A+6(mR)
and

(52) JdJA >0, Im >0 Vk e N, N(ag, |ax]) < A+ 0(m|ag|)

hold.

Actually, since in our cas® = Z(®) and® € G,(C), condition (51) is necessarily verified
(see Lemma 1.2.2). Thug, is an interpolating variety if and only if condition (52) holds.

REMARK 6.4.8. We can obtain Theorem 6.4.2 as a corollary of Theorem 6.2.5, using the
density condition (52). This second proof is rather technical, we will skip it here. Let us just give
the correspondence between the coefficieptsinddy, ;

mp—1
dy = Z Cryi Of ! ( H (ar — O-/n)_mn)

1=l 0<n<k—-1

oo mj—1
+ 2 Z Cj,z'@;”“l_l< 11 (Oék—an)_m"(ak—aj)‘(”l)>7

j=k+1 =0 0<n<j—1,n#k

(53)

the convergence of the second sum being a consequence of conditions (52) and (51).
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In the case where ath;, = 1, we have

o

dk:ch H (o, — )7t

j=k  0<n<jn#k
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CHAPTER 7

The multivariate case

Introduction

The results of this chapter are published38][and [39].

Here, we are concerned with the interpolation problem in several variables. C.A. Berenstein
and B.Q. Li described the interpolating discrete sequenced f(€") as zeros of an entire map
F = (fi,--,fn), f; € A,(C"), where the jacobian determinant bfverifies a certain lower
bound (see Theorem 7.2.1).

B.Q. Li and B.A. Taylor, in B1], proved that anyA,-interpolating discrete sequente =
{a,}; verifiesn(r, V) = O((supy, =, p(2))") wheren(r, V') denotes the number of points &t
within the ball of centef and radius-. This makes the link between the interpolation problem
and the transcendentakBout problem, that is, the problem of the existence of an upper bound
for the zero set of an entire map.

The classical Bzout theorem states thatdf, . . ., A,, are algebraic varieties then the degree
of the intersectiom; N - - - A, is smaller than the product of the degrees.

When f is an entire function of one variable, an application of Jensen’s formula shows that
for anya > 1, there exists a consta6t > 0 such that

n(r, Z(f)) < Clog sup |F(z)].
|z|=ar

By analogy with the number of zeros of a polynomial, this suggestsldgatip,_,, |F(z)]
plays the role of the degree. The transcendenéaldBit problem is the natural question, in the
case wherd’ = (fy,---, f,) is an entire map front™ dansC", wether

|z|=ar

n(r, F7(0)) < C <log sup \F(z)\) .

A counter-example by Cornalba and Shiffman (se®)[shows that this is not the case in general.
They proved that for any positive functiof(r) wuch thatS(r) T +oo, there exists a map
F : C? — C? of order zero, with

n(r, F~(0))

S(r)

However, if we only count the non-degenerate zeros, that is, those where the jacobian determinant
is not too small, then it is possible to find an upper bound in terms of the growth of the function.
This was proved in31]. We are going to give a new look on the proof using the techniques

developed in37]. Combining this result with the analytic characterisation/tinterpolating
discrete sequences given by Berenstein and Li, this will enable us to give a new look on the

— 4-00.
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proof of the necessary condition on at-interpolating sequence given by Li and Taylor (see
Corollary 7.4.3). This is the object of Section 7.4.

But before getting to that, we give some definitions in Section 7.1 and we state some general
properties about interpolating sequences in Section 7.2. They are often an extension of the one
variable case. In Section 7.3, we give a sufficient geometric condition for a discrete sequence
in C™ to be interpolating ford,(C") whenp is a radial and doubling weight growing more
rapidly than|z|?. In the case wherg(z) = |z|?, this condition is that the sequence is uniformly
separated. To our knowledge, there is no geometric sufficient and necessary condition known yet
in several variables, even in th case where the weightadial and doubling.

7.1. Definitions and notations
We will use the following standard notations. For= (z,...,z,) € C", let |z| =
- 1
(>, 12:/%)'2. We denote the standardaller form by3 = £00|z|* and 8, = Eﬁk. We

denote byB(a, r) the euclidian bal{z € C" / ||z — al| < r}.
A plurisubharmonic functiop : C* — [0, 00) is called a weight if it satisfies the following
conditions :

(W1) log(1 + [2[*) = O(p(2))-
(W2) There exist constants; andCs such thap(z) < Cip(w) + Cy wheneverz — w| < 1.

Let A(C") be the space of all of entire functions @fi and
A, (C") ={f € AC") : 3A,B>0/|F(2)] < Aexp(Bp(z)), Vz € C"}.

LetV = {a;};en be a discrete variety i@" i.e., a sequence @" such thata ;| — oo when
j — oo. Let us define

Ap(V) ={W ={w;}jen CC : 3A, B >0/ |wy| < Aexp (Bp(ay)), Vj € N}.

DEFINITION 7.1.1. We will say thatV” is A,-interpolating if for everyl € A,(V), there is
afunctionf € A,(C") such thatf(«;) = w; forall j € N.

We denote byR the restriction map :
Ry Ay (C") — A, (V)
f = A{f(e)}
In other terms}/ is A,-interpolating if and only ifRy mapsA,(C™) onto A,(V).

DEFINITION 7.1.2. Let V = {¢; } e be a discrete variety df”.
We will say that{«;} is weakly separated if there existC' > 0 such that for alk # j,

laj — ag| > eexp (=B p(ay)).
and we will say that” is uniformly separated if there exists> 0 such that for alk # 7,

laj — ag| > e.
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For B > 0, we set
ApB(C") = {f € A(C") / ||F|lp < +o0}

where

1Flls = sup |F ()| exp (=B p(2))

zeCm
Then A, 5(C™) with this norm is a Banach space and we have
A,(C) = [ A5 (C).
JEN

The spaced, (C™), endowed with the topology of inductive limit, has a structure of an (LF)-space

(see 5] or [27])).

Now, letV = {«;} be a discrete variety &™ and set
App(V) ={W = {w;}; CC: [W]p < +00}
where
W[5 = sup w;| exp (=B p(ay)) -
jeN
In the same way4, (V') with this norm is a Banach space and
A,(V) = Ans(V).
jeN

A, (V) endowed with the topology of inductive limit is another (LF)-space.

For a holomorphic mapg’ = (f1,..., f.) : C* — C", we denote by/r(z) the determinant
of the jacobian matrix of" in the pointz, Z(F') the pre-image of by F' and

Mp(r) = sup [F(z)|.
z€B(0,r)

If V' is a discrete subsét”, we denote by:(r, V') the number of points of the sétn B(0, r).
C,, will denote a constant only dependingnlts actual value may vary from one occurrence
to another.
7.2. General properties of interpolating discrete varieties

Berenstein and Li gave an analytic characterization of interpolating discrete varieties gener-
alising Theorem 1.2.14 :

THEOREM7.2.1. ([4, Corollary 2.7) LetV = {a;};en be a discrete variety of”. ThenV’
is an interpolating variety ford,(C") if and only if there exist functionsf;, ..., f, in A,(C")
such that, denoting by = (f1,--- , fa),

V CcZ(F)
and for some, B > 0,
|Jr(aj)| > € exp (—Bp(a;)), forall j € N.
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REMARK 7.2.2. Theorem 7.2.1 implies that whenevéis an interpolating variety fad,,(C"),
it is also an interpolating variety fot,(C") if p(z) = O(q(2)).

LEMMA 7.2.3.V is an interpolating variety fot4,,(C") if and only if, for all B > 0, there
existA > 0 and B > 0 such that for alliW € A, 5(V), there existf € A, (C") with
Ry (f) =W and||F|[p < A[|W||5.

See [L3], page 456, for a proof based on the open mapping theorem for (LF)-spac$s or [
page 169, for a proof based on the Baire-category theorem.
Thanks to property (W2)4,(C") is closed under differentiation and more precisely :

LEMMA 7.2.4.1f f € A, 5(C"), thenfork =1,...,n of € A, pc, and

, 8zk
of
— < BCY) ||F B.
52| <eswenirs
PROOF Letz € C". Using Cauchy formula,
ﬁz) _ L f(Zla---7Zk71,2’k+U,Zk+1,---,2’n)du
aZk- 20 lu|=1 U2
< max |f()] < | Flls exp (B Cip(2) + B ).

LEMMA 7.2.5.If V is a discrete interpolating variety fad,(C"), thenV is weakly sepa-
rated.

PrRoOOF Using Lemma 7.2.3, we can find a sequefifg >, such thatf; (o) = 1, f;(ax) =
0 forall k£ # j and
1fi(z)] < AePPe) L e Cm,
with A, B > 0 not depending orj.
Forj # k, supposéa; — a;| < 1, then

1= 1fy(ay) — o) < Joy — o] sup  max [9 )
z€B(aj,1) = n|0z
Foreach =1,...,n,
OF (] < a8 < peBotar
82[ - -
by property (W2). [ |

LEMMA 7.2.6.1f V = {«;} is weakly separated, then there exiéts> 0 such that
Ze—Cp(Oéj) < 0.
>0

The proof is the same as in one variable (See Lemma 1.2.12).
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THEOREM7.2.7.([39])
LetVi,--- .V, be discrete interpolating varieties fof,(C"). ThenV =1, U--- UV, isan
interpolating variety for4,(C") if and only if V' is weakly separated.

PROOF We may assume without loss of generality that 2. and that the intersection of
Vi andV; is empty. LetW = {wy}ren, € Ay(Vi) andZ = {z,}.cv, € A,(V5) be the values to
interpolate. We want to construgt € A,(C") and f, € A,(C™) such that

fl(A):wkv )\G‘/l, andfl(/y):()? 76‘/27

fo(7) = 2y, v € Vo, andfa(A) =0, Ae Vi
Then settingf = fi + f,, itis clear that
fA) =wy, AeViandf(y) =z, 7€ Vs,

in other words py, v, (f) = W U Z.
Let us show how to construgti (the construction off> will be of course similar reversing
the roles ofl; and15).
Recall that by the weak separation, there exist constants> 0 such that for all € V; anf
~v € V,, we have
’)\ _ ’y| > ce—Cr()

Using Lemma 1.2.6, we can find a sequence of funct{@hnsg; } xca o<i<» Such that

: 1 .
(|) GAJ(’}/) = m |f |<’Y — )\)ll Z E/\/ﬁ@*CP('Y)
(i) |Gri(z) < AePPE) whereA, B > 0 don’'t depend on (or ).
We have denoted blyy — \); thel-th coordinate ofy — A. Now Set

ﬁ MiGag) -

=1

For ally € T, there existd € {1,--- ,n} such that(y — \)G,,(y) = 1. Thus,F\(y) = 0.
Besides, it is clear thatf) (\) = 1 and that, for certain constants B > 0, we have

Gz ) < AeP [p(2)+p(N)]

using property (W1) of the weight.
Applying again Lemma 1.2.6, for all/ > 0, there exists a sequence of functidrs } such
that
() 7a(N) = wyeM,
(i) hy(N) =0, forall X € Vi, X # A,
(iii) |ha(2)| < AePP) ] for all z € C*, whereA and B don’t depend on\.
Finally, we set

fi= ZF,\h,\e_Mp(A)
§>0
where) is chosen large enough so that the sum converges according to Lemma 7.2.68
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7.3. A sufficient condition

LetV = {«;} be a discrete variety 08". We consider the separation radius

o = mf(;% lag — o, 1).

THEOREM7.3.1. Letp > 2, p a weight such thafz|* = O(p(z)) andV = {«;} a discrete
variety onC".

If V satisfies the following condition : there exist two constabgs> 0 and D; > 0 such
that

1 4
~3 lOg— < Dy+ D1|Oéj|p_2 forall k € N,
Ok O,

thenV is an interpolating variety for4,,(C").

REMARK 7.3.2. It's obvious that this condition implies the weak separation. Actually, it
means that the points; have to be "separated enough”.

Of course, by the previous result, the theorem is still trué i weakly separated and is a
finite reunion of varieties satisfying this condition.

An immediate corollary of this theorem is

COROLLARY 7.3.3. Letp be a weight such that|? = O(p(z)).
Any uniformly separated discrete variety Gfi is an interpolating variety ford, (C").
In particular, N" is interpolating forA.» (C").

REMARK 7.3.4. This corollary is also a consequence of a result due to P. Thomas and X.
Massaneda :33, Corollary 5.2].

They showed the following result which is more precise in the case whieje= |z|* :

if V"= {a;} is uniformly separated, then there exigts > 0 such that forB > B, the
restriction map

pB : A|Z|27B((Cn) — A\zF,B(V)
f=AF(a))}

is onto.

In particular, that implies thalt” is an interpolating variety fod.;-(C") and therefore, for
Ap(C") if 2> = O(p(2)).

On the other hand, as a consequencéd ofheorem 3.1.1], we can see tf¥tis a uniqueness
set for the space, that we will denoteJA}lew of holomorphic functions of€” such that for some
A>0,

[f(2)] < Aexp(7|z])
wherer < 7 is a fixed real number. Whenevefz) = o(|z|), A,(C") C AT,. ThenN" is a
uniqueness set fod,,(C") and therefore cannot bé,-interpolating.

Let us mention another sufficient condition given by A. Hartmann and X. Massaneda.

THEOREM 7.3.5. [21, Corollary 6.3.] Let p be a doubling and radial weight such that
p(2)8 < c|z]*(100p(z)) for somec > 0. LetV = {«;}; a discrete variety irC. If there
exist a constant’ > 0 such that
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(i) N(0,R) < Cp(R).
(i) N(aj,|aj]) < Cp(a;) forall j € N. ThenV is A,-interpolating.

This sufficient condition and ours are different. For example, for the weight= |2|?, a
unformly separated sequence verifies the hypothesis of Theorem 7.3 but not those of Theorem
7.3.5. On the other hand, it is possible to find a non-uniformly separated sequence verifying
the hypothesis of Theorem 7.3.5 but not those of Theorem 7.3 2de®gmarks 1 and 2]. In
particular, neither of these two sufficient conditions are necessary.

PROOF OFTHEOREM 7.3.1. Letn be aC* function satisfying
(i) 0<n(z) <1 VzecCn

(i) n(z)=0 if |2 >

(i) n(z)=1 1if |z| <

For a(p, q)-form~(z) = Z v1.0(2)dzr A dzy, || will denoten%x vr.0(2)]-

) ) [1=p,|J|=q
If g is aC® function onC", we set

Let M > 0 such that
sup [0n(z)] < M, sup [9n(z)| < M and sup [09n(z)| < M.
zeCn zeCn zeCn
_y
Wy
(i) nj(ay) =1, mi(a;) =0Vk # j,
(i) () =1 if |z —a; < %,
(i) ;(z) =0 if |z—a; > %

The function;(z) = n(z ) for j € N will satisfy :

LEMMA 7.3.6. LetV = {a,} be ap-weakly separated discrete variety Gft
and{w;} € A,(V).
Then, we can find a positiv&® function F" on C" satisfying
() Fla;) =w; VjeN, _
(i) 3A, B >0 /|F(z)| < AePPR) | |OF(2)| < AePr@for 2 € C7,
o forz € C*\ U,y Blay, %), 9F(2) =0,
o for 2 € Uy Blay, %), 9F(2) = 0.
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PROOF There exist constants > 0 andB; > 0 such that, for alj € N,
1> §; > e e Bl
and constantsl, > 0 and B, > 0 such that, for allj € C™,
lw;| < AgeB2Pled),
PutF'(z) = >,y «;(2)w;. Then obviouslyF'(a;) = w; forall j € N.
Note that the ball$3(«;, %) are disjoint.
If e C"\ | Bloy. %), thena(z) = 0 andda(z) = 0.
jEN

If 35 € N such that € B(c, 6—) (j is then unique), we have

|Oé(Z>’ = Oéj(Z)|wj| S |U)J‘ S A2 eBQp(O‘J)
with property (W2), < A,eP2C2¢P2010(2),
We also have

9a(2)] = Doy (=) wy| < M1l < MA2 (B 1 By play)

J €1

A
- 2 exp((31 + 32)02)6(314-32)01 P(Z)‘
1

Besides, ifiz — a;| < — 5 , Oafz) = |

Let us proceed Wlth the proof of the theorem.

Let W = {w;} € A,(V). The preceding lemma gives an interpolatitfy function
satisfying the desired growth condition. The next step will be to solvé gguatiordu = —0F
with § satisfying the same growth condition and vanishinglanThen it suffices to tak¢ =
F + wu to have the desired interpolating function.

To solve the) equation, we use dtmander’s theorem :

THEOREM 7.3.7. (see[22]) Lety be a plurisubharmonic function i€". For every(0, 1)-
form + with C* coefficients orC" and such thaty = 0, there is aC> function 3 such that
Jp =~ and

@O (14 2F) NG < [ hE)PetPaG).

We will apply this theorem withy = —da. The essential point is to find a plurisubharmonic
functiony not summable on the points of V' and such that the right integral is finite. This will
force the solutior to vanish on/.

To begin, put

Za] ) log |z — a;]*".
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This function has almost the desired properties except that it is not plurisubharmonic.

estimate its "lack of plurisubharmonicity” by estimating its Levi-form:

We want a lower bound of this term.
< /\/\>—n2a] L(log |z — aj|*)A, A)
da;(z) Dlog |z — aj]* | <
A
zj: Z 8Zk azl an

D (
+n210g|z—a]| Z 8,2]82; A

For everyj, log |z — «;| is plurisubharmonic so the first term is positive.
Let us denote by\(z) the second term and b¥(z) the third term.

If z€C"\ UB(% %) orif z € UB(%, %), thenA(z) = B(z) = 0.

+ 2n Re

5 d;
If 2z € B(aj,—’)\B(a],ZJ) that i ISZ <l|z—q4] < j , then

M S% fork=1,...,n
GZk (Sj
|2 .
B _ Gz ag)zlg 1 Siforl: o
0z |z — oy|? |z — oy 6
Thus, we obtain
SnM
|A(z)] < IA? < 8nM (Do + Diloy|*~%) AP

< 8nM(D0 + 272D (1 + |zl 2) A

Let us estimaté3(z).

0%a;(2)

M
021,07 2

62’

J

< fork,l=1,...,n

4
J

log |2 — a5 = 2log =
J

95

We will
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We deduce that

1 4

[B(2)] < 20 M g5 log = [A* < 20.M (Dy + Doy *) |A]?

j J
< 2n M (Do + 2°72D1)(1 + |a|* ) A%,

Finally, we obtain that
<c(<£)A, >\> > K (|2[72 + 1) |A\* whereK = 8nM(Dy +2°-2D).
Now, we add a function with a Levi-form "positive enough” to make the sum positive. Set
0=+ K (|2 +|2*) .
A simple calculation shows that
(L(|2[)NA) > |2]P2|A)F and (L£(|z]*)A, A) = |A]* for A € C™.

Therefore, from24, Theorem 2.9.11}p is almost everywhere equal to a plurisubharmonic func-
tion. We can assume thatis plurisubharmonic.
¢ satisfies the following conditions :

0(2) < K (|2 + |2) < Kp(=),

exp(—¢(z)) ~ in a neighborhood of;.

|2 — oy
Let us take the functiof’” given by Lemma 7.3.6 and considéry(z)|* exp(—¢(z)). If z belongs
to the support 0D F', there is a (unique) such that

0.

ﬁ<’z_g,’<_
1 72

then,

4
—¢(2) = a;(z) log < 2nlog — < Kip(a;) < KiCip(2) + K1Cs

2=y 5=
soexp(—¢(z)) < exp(—@(2)) < Ky exp(Ksp(z)) and finally,
|OF (2)]? exp(—¢(2)) < A?Kyexp ((2B + K3)p(z)) forall z € C".
By property (0.1)Jog(1 + |2]?) = O(p(z)) thus, if we choosé3; large enough,
DF(2)[2 exp(—6(=)) exp(— Bip(2)) dA() < +oc.
(Cn
From Hormander theorem, we can find’& function $ such thav3 = —9F and

/ |3|2e= () e~ Buip(z)
o (L)

d\(z) < +oo,
i.e: taking B, large enough,

I= 182 ?R)e=B2P2) )\ (2) < +o0.
(Cn
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1

~ o ez So we have necessaril{c;) = 0 for all

Recall that locally near every;, ¢~ %)
7.
Setf = F' + (3. f is then holomorphic o€, andf(c;) = F(a;) = C; for all j.

The last step is to verify that has the desired growth condition.
By the mean value inequality,

|ﬂMsiL(uwwwwslAwawww

+— |B(w)| dA(w).
Un JB(z,1)

Let us estimate the two integrals that we dengtand/,. Forw € B(z, 1),
|F(w)| < AeBr) < AeBC2 (BC1p(2)

Then,
I, < AeBC2BCIp(2)

To estimatel,, we use Cauchy-Schwarz inequality,
I < Jy Js

where

[NIE

Jf{/ |B(aw) Pe =B 3 (o)
B(z,1)

N

Jy= { / £+ Ba(w) ) (1)
B(z,1) J

Un

N

J1 < [ |B(w)[2e= @) =B2W) g\ (w) | < +o0.
cn 1

Forw € B(z,1), using property (W2),

ePw)+B2p(w) e(f(+B2)p(w) < e(k‘FBQ)CZe(I?‘FBQ)CI p(z)

then there are two positive constartsand B; such that/, < A;eP(2).
Finally, takingA; = max(Ae® | ['/2A;) and By = max(B C}, Bs), we have

|F(2)| < ApeP#l),

Thenf is in A,(C"). |
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7.4. On the transcendental Bzout problem

THEOREM7.4.1. Let I be an entire map fror€" to C". Let¢ be a positive function o@™.
Settingp(r) = sup ¢(z), we assume that is increasing and

|z|<r
~ B
Mp(r) < A (gb(r)) ,  Wwhered and B are positive constants

Let Z,(F) = {a;};>0 be the zeros of verifying
1
Jr(a;)| > ——.
| F( ])| = ¢(aj)
Then, ifr is large enough so thdbg ¢(r) > 1 etr’ > r, we have

2n

g = D (log o)

(r'—r

n(r, Zy(F)) < Cy
An immediate application of Theorem 7.4.1, we find the following results that were proved
previously by Li and Taylor (see[]).
COROLLARY 7.4.2. Let Z(F) = {a,};>0 be the zeros of verifying
| Tr(az)| > eMp(|a;)~7.
Then for allae > 1, there exists a constant, > 0 such that
n(r,V) < Cylog(Mp(ar))".
We are also led to the following necessary condition for interpolating discrete varieties.

COROLLARY 7.4.3. LetV = {a;};>0 be an interpolating discrete variety fot,(C"). Then,
for all o > 1, there exists’, > 0 such that

n(r,V) < Ca(p(ar))".

Proof of Theorem 7.4.1.
Let F: C" — C" be an entire map non identiqually equal to zero. et r > 0 (r will be
chosen large enough when needed).

LEMMA 7.4.4. There exists a constant, > 0 such that, for ally > 0 (v may depend on),

2
r’"

Gy M (777 log M(r).

/ i9010g |[F|2 A (00| F )" < C,
B(0,r)
PROOR We setr, =1 — k™ fork € 1,2,...,n and

[k:/ 100 10g |FI2 A (108) 7)1 A By
B(O,Tk)
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Using Lemma 1.2.237], we obtain the estimates

1 A5 . -
I < m/ (ri_y — |2*)%i001og |[F|* A (i00|F|*V)*" By
k—1 k B(0,rg—1)
1 - § _
— o | P00 10 [FPAi0D(r, [N 0L A
(re—y —77) B(0,r41)

|[F[1i001og | FI* A (00| FI*")*™* A Bk

(0,rk—1)

< 8ri (n—k+1) /
B (7”1%71 - 7"1%)2 B
Mp(r')®

(r' —r)? k=t

After iteration, we get

< 8n?

n—1 MF(T,)%/(N_I)
(r' — 7)2(=1) 1
We still have to estimaté,. Repeating the above argument we have

1
e 1 F? -
s . o los 1P|

flog | FI2| = log™ |FP? + log™ |
and log |F|* = log" |F|* — log™ |F|*
with log™ |F|* = sup(log | F|?,0)
and log™ |F|* = —inf(log | F|?,0).

We may assume up to a translation th&0) # 0. Then

I, < (8n?)

Il S 8n3

Thus

!
log [P < 1 [ log | F)PAA)
" o)
We deduce that
12n__n
[ o IF@PANG) < [ Jog® [F(2)PdAG) - " log [ F(0)
B(0,r) B(0,r) n!
and consequently,
12n__n
/ [log | F(2)[2| dA(2) < 2 / log* | F/(2)[2dA(2) — —— log |F(0)
B(O,T‘/) B(OJ’,) n

< C, log Mg (r')r"".
Finally,

12n
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REMARK 7.4.5. We may also find this kind of estimates ibqg.
Let us recall the following theorem which gives a quantitative inverse function theorem.

THEOREM7.4.6.[37] Let F' : C* — C™ be an entire map and let > r > 0.
Letz, € B(0,r) with Jp(z0) # 0. ThenF in injective onB(z,, S) where

S = Co(r' — )" " Mp(r') " Jr(20)]
and F'((B(z, §)) contains a ballB(F(z), S') where
S = 07/100/ o 7“)2nMF(7’I)72n+1‘JF(Z())’Q.

PROPOSITION7.4.7. For v > 0, we have

> WUrl@p <
acF~1(0)nB(0,r)

r/2n

n—1 4n(n—1 —4n(n—1
Cor™  Mp(a'y " o M) = 1) 0

PROOF Letr; = T';". A computation shows that the measures

i00log |z|* A (i00)z|*7)" !
and
7] 2N (z)
are the same up to a constant. Using Lemma 7.4.4, we deduce that

[ AR ) i) <
B(0,r1)

2
r"

Foralla € F~1(0) N B(0,r), by Theorem 7.4.6F is injective onB(a, S). In particular, the
balls B(a, £) are pairwise disjoint. Moreovef;(B(a, %)) containsB(0, 5’). Thus

(54)

coy ™" MF(T’)27(”_1) log Mp(r').

/B ‘F’72n+2(n71)7‘JF(2)‘2d)\(z) > /B( S)|F‘2n+2(n1)’7’JF’2d>\(Z)
) @2

(0,71) a€F=1(0)NB(0,r

2 ‘2’72n+2(n71)7d>\(2)
O

aeF~1(0)NB(0,r)

soat Y s,

acF—1(0)nB(0,r)

The desired results follows by replacisgby its value given in Theorem 7.4.6 and using the
inequality (54). |
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To complete the proof of Theorem 7.4.1, we only need to apply Proposition 7.4.7 with
1

4(n —1)log gf;(r’) '

’Y g
We obtain

n(r, Zg(f)) <et > |5 ()| P55 < Cu(log F(r))" (' — r) msieh

a€VNB(0,r)

12n

CEDE






Further questions

On the spacef’(R)

The trace of £/(R) on a variety V

Let us putp(z) = | Im 2| 4 In(1 + |2|). We know that4,,(C) = £'(R), the space of Fourier
transforms of distributions with compact support on the real line.

In Chapter 4, we gave a complete geometric descriptiod,ginterpolating varieties. We
now want to know more about Question 2, that is, to describe the imadg(af) by the restric-
tion mapRy .

In [7], Berenstein and Taylor considered the case whete Z( f) with f € A,(C) andf is
slowly decreasing, i.e. there is a constdnt- 0 such that for al: € R,

max{|f(z + 1)t € R, |t| < Aln(1+ |z|)} < (A + |z|)~

They described the tracy (.A,(C)) in terms of divided differences after grouping the points
of V.= Z(f) in connected componen{d’, }, of the set{|g(z)| < cexp(—Bp(z))}, for some
e, B>0.

We would like to find an explicit description, like we did for radial and doubling weights in
Chapter 3. To apply a similar method, we need to impose some natural geometric conditions on
V.

One of these conditions would be tHatlies in the logarithmic strip about the real axis, i.e.,
there is a constamt > 0 such that

| Ima;| < Aln(1+ |oy) Vj €N

(such a variety is called hyperbolic). This includes the case where all the points lie on the real
axis. Note that whe# is hyperbolicp(a;) ~ In(1 + |a;) and Theorem 4.1.2 may be re-written
in simpler terms V" is A, -interpolating if and only if There i€’ > 0 such that

N(oj,In(1+ |oy|)) < Cln(1 + |oy) Vj € N.

The other condition would be a control on the number of points lying in D(z, In(1 + |z|)),

x € RbylIn(1 + |z|). This property holds for zeros of slowly decreasing functiong,jiC). In

the case of radial and doubling weights (Chapter 5), we covered the complex plane by increasing
disks centered at the origin. If we want to apply the same techniques in the present case, we shall
need an adapted covering of the part of the complex plane lying near the real axis.

Application to mean-periodic functions
103
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By Paley-Wiener’ theorem, the Fourier transform, that we will denoteFbys an isomor-
phism betweeg’(R) and.A,(C).

Let u € £'(R). We say thatf € £(R) is u-mean -periodic if it verifies the convolution
equation

uxf=0.

Denote byV = {(aj,m;)} = Z(F(u)). As in [7], knowing the trace of’(R) give a rep-
resentation of.-mean-periodic functions in series of exponential monomial that converges after
grouping with respect to the componefits, },. A geometric description ok (C) would give a
more explicit series, on the model of the ones given in Chapter 6. Let us mention that by the gen-
eral theory of convolution operator$;(;:) being slowly decreasing (or invertible) is equivalent
to the surjectivity of'x. Also, V' being hyperbolic is equivalent to the existence of a continous
right inverse forl'x.

Non-homogeneous convolution equations
In Chapter 6, we studied homogeneous convolution equations

Txf=0,T¢cFC), T#0, f € Fy(C).

In our situation, the Fourier-Borel transforinof 7" is invertible (see Lemma 6.2.2). Therefore,
it is known from the general theory that the operatermaps’;(C) onto itself. In other words,
for anyg € Fy(C), the equation

I'xf=g
has at least one solutioh € Fy(C). As we described the kernel @ in Theorem 6.2.5, we
would completely solve the non-homogenous equation if we found a way to construct a particular
solution. In a joint work project with H. Ouerdiane, we use a series representation ffz) to
try to construct an explicit solution. We already have some partial results in the particular cases
whereg is the monomiak*, k € N. The idea is then to deduce a solution in the general case
9(z) = > ,en 9x=" by linearity and convergence.

The multivariate case

Let us consider the case of radial and doubling weights. In Chapter 7, we discussed discrete
varieties inC™ and we gave sufficient geometric conditions as well as necessary ones in terms of
the counting functions.

These counting functions still have a sense in several variables. According to the work by
A. Hartmann and X. Massaneda, the conditiofi®), R) = 0(p(R)) andN (o, |o;|) = 0(p(e;))
that are necessary and sufficient in one variable turn out to be still sufficient but not necessary in
several variables (se2]], Chapters 3 and 7). Can we find similar conditions in several variables
that would be necessary and sufficient ? What would play the role of the counting functions ? The
analytic characterization given by Berenstein and Li (see Theorem 7.2.1) shows that whenever
V = {o;} is A,-interpolating, then for alk € C”, |u| = 1 and for all j, N,(«a;, |a;]) <
A+ Bp(a;), whereA, B > 0 are independent gfand ofu and where we have denoted by

Nu(aj,lash) = > I W :

|Cj7k‘|

ap=a;+uljk
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This condition is not sufficent since it clearly doesn’'t imply the necessary conditi@n?) =
O(p(R)™) but how far is it from being sufficient ?

A simpler problem is to consider the particular case where the points afe regularly
distributed (in a sense that remains to be explicited). The fact that a uniformly separated discrete
variety is.A,-interpolating whem(z) = |z|* suggests that a condition in the more general case

p(z) = |z|°, p > 2 would be a separation of ordgr;|'~*/2.
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