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7 Rue Reńe Descartes, 67084 Strasbourg CEDEX, France.

Interpolation in Ḧormander Algebras
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Introduction

We are dealing with interpolation problems with growth estimates on entire functions and
some of their applications to harmonic analysis.

LetA(C) be the space of all entire functions,p a subharmonic positive function andAp(C)
the space of functionsf ∈ A(C) for which there exist constantsA ≥ 0,B ≥ 0 such that one has
the estimate

|f(z)| ≤ AeBp(z) for all z ∈ C.

Theses spaces are clearly algebras under the ordinary product of functions, they are known as
Hörmander algebras (see [2]).

Let {αj} be a discrete sequence of complex numbers,{mj} a sequence of positive integers
and{wj,l}j,0≤l<mj

a doubly indexed sequence of complex numbers for wich there exist constants
A′ ≥ 0,B′ ≥ 0 such that

mj−1∑
l=0

|wj,l| ≤ A′eB
′p(αj), for all j.

The interpolation problems we are dealing with may be summarized as follows. Under what
conditions does there exist a functionf ∈ Ap(C) such that

f (l)(αj)

l!
= wj,l, for all j and for all0 ≤ l < mj ?

This problem is closely related to the fundamental principle in the solution space of homoge-
neous convolution equations, that is, with the expression of solutions of such an equation (called
mean-periodic functions) through its elementary solutions, exponentials monomials.

The question of interpolation with growth estimate was studied by A.F. Leont’ev ([29, 30])
in the space Exp(C) of all entire functions of exponential type, which coresponds to the case
p(z) = |z|.

Another important example isp(z) = | Im z| + ln(1 + |z|2). The resulting spaceAp(C) is
then the spacêE ′(R) of Fourier transforms of distributions with compact support on the real line.
Interpolation problems in these spaces were studied by W.A. Squires in [44, 45].
We impose onp two conditions :

(a) ln(1 + |z|2) = O(p(z)).
(b) there exist constantsC1, C2 > 0 such that|z − w| ≤ 1 impliesp(w) ≤ C1p(z) + C2.

The interest of these two conditions lies in their consequences. Condition (a) implies thatAp(C)
contains all polynomials while condition (b) implies thatAp(C) is stable under differentiation.
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6 INTRODUCTION

Actually, thanks to condition (b), iff ∈ Ap(C) then the derivatives satisfy the stronger property
∞∑
l=0

|f
(l)(z)

l!
| ≤ AeBp(z)

for all z ∈ C, whereA andB are some positive constants.
LetWp(C) be the space of measurable functionsg satisfying, for some constantC > 0,∫

C
|g(z)|2e−Cp(z)dλ(z) <∞,

wheredλ denotes the Lebesgue measure. As a consequence of condition (b), we have the equality

Wp(C) ∩ A(C) = Ap(C).

This equality shows how theL2-estimates are related to the growth condition we are dealing with.
We point out the paper [7] where C.A. Berenstein and B.A.Taylor showed that Hörmander’s the-
orem about the existence of solutions of the inhomogeneous Cauchy-Riemann equation with
L2-estimates was a powerful tool that could be used to simplify the study of interpolation prob-
lems in Ḧormander’s algebras. We will often use these techniques in our work.

The weightsp(z) = |z| andp(z) = | Im z|+ ln(1+ |z|2) obviously satisfy conditions (a) and
(b). Another important example of weight isp(z) = |z|ρ, ρ > 0. In this caseAp(C) is the space
of functions of order≤ ρ and of finite type.

We may consider more rapidly growing weights, such asp(z) = e|z|
ρ

with 0 < ρ ≤ 1. Note
that because of condition (b), we must haveln p(z) = O(|z|).

Now consider a sequence{αj}j∈N of distinct complex numbers with|αj| → ∞ and attribute
to each pointαj a multiplicitymj ∈ N∗. The collection of pairsV = {(αj,mj)}j∈N is called a
multiplicity variety.

LetA(V ) be the space of doubly indexed sequencesW = {wj,l}j∈N,0≤l<mj
of complex num-

bers. It may be seen as the space of holomorphic functions onV . There is a natural restriction
map

RV : A(C) → A(V )

defined by

RV (f) = {f
(l)(αj)

l!
}j∈N,0≤l<mj

.

As we mentioned before, for allf ∈ Ap(C), we have
∞∑
l=0

|f
(l)(αj)

l!
| ≤ AeBp(αj).

In particular, if we denote byAp(V ) the space of allW = {wj,l}j,0≤l<mj
∈ A(V ) for which

there exist constantsA > 0 andB > 0 such that one has the estimate
mj−1∑
l=0

|wj,l| ≤ AeBp(αj), for all j,
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then
RV (Ap(C)) ⊂ Ap(V ).

We will say thatV = {(αj,mj)}j∈N is an interpolating variety forAp(C) (or to simplify, that
V isAp-interpolating) if for allW = {wj,l}j,0≤l<mj

∈ Ap(V ), there existf ∈ Ap(C) verifying
f (l)(αj)

l!
= wj,l, for all j and for all0 ≤ l < mj. In other words,V is Ap-interpolating if and

only if
RV (Ap(C)) = Ap(V ).

We are mainly concerned with the two following questions :
Question 1: Under what conditions onV is it true that it is an interpolating variety forAp(C) ?
Question 2: What is the image ofAp(C) under the restriction mapRV ?

We begin by giving answers to both questions in Chapter 2 in the particular case whereV is
a finite union of interpolating varieties.

Let us look more closely at Question 1. We have an analytic characterization of interpolating
varieties given by C.A. Berenstein an B.Q. Li.They showed that a multiplicity varietyV =
{(αj,mj)}j isAp-interpolating if and only if there existsf ∈ Ap(C) having everyαj as a zero
of ordermj and verifying

|f (mj)(αj)|
mj!

≥ εe−Cp(αj), for all j,

with constantsε, C > 0 independent ofj (see [3]).
We are specially interested in the problem of finding purely geometric conditions which

depend only on the distribution of the points and that would enable us to decide whether a mul-
tiplicity variety is interpolating or not by direct computation.

In this direction, Berenstein and Li, in the same paper, showed that wheneverp is radial (i.e.
p(z) = p(|z|)) and doubling (i.e.p(2z) ≤ 2p(z)) thenV = {(αj,mj)}j∈N isAp-interpolating if
and only if ∑

0<|αk−αj |≤|αj |

mk ln
|αj|

|αk − αj|
+mj ln |αj| = O(p(αj))

and ∑
0<|αk|≤r

mk ln
r

|αk|
= O(p(r)).

In the present work, we use Hörmander’sL2-estimates to the solution of thē∂ equation, as
in the works by Berndtsson-Ortega-Cerdà [9] and Hartmann-Massaneda [21] to find a geometric
answer to Question 1.

In Chapter 3, we apply this method to give geometric characterizations ofAp-interpolating
varieties for different classes of radial weights. In particular, we give a new proof in the case
where the weight is radial an doubling and we solve the problem forp(z) = e|z| and more
generally whenln p(er) is convex andln p(r) is concave.

In Chapter 4, we obtain a geometric description of interpolating varieties for the weight
p(z) = | Im z|+ ln(1 + |z|2) and for more general Beurling weights.
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Chapter 5 is dedicated to Question 2 in the case wherep is radial and doubling. We use
Hörmander’s theorem withL2-estimates to give an explicit description ofRV (Ap(C)). Given a
multiplicity varietyV (which is not a uniqueness set forAp(C)) and a doubly indexed sequence
W ∈ Ap(V ), the necessary and sufficient condition thatW ∈ RV (Ap(C)) is obtained in terms
of the growth of the divided differences with respect toV and toW .

As we said before, these interpolation problems are generally studied because of their appli-
cation to harmonic analysis. We explore this aspect in Chapter 6 : Letθ be a Young function (for
exampleθ(x) = xµ, µ > 1) and consider the spaceFθ(C) of all entire functions onC with infra-
θ-exponential growth. We are interested in the solutionsf ∈ Fθ(C) of the convolution equation
T ? f = 0, calledT -mean-periodic functions, whereT is in the topological dual ofFθ(C). We
use the explicit description of the restriction map found in Chapter 5 to get an explicit represen-
tation formula forT -mean-periodic functions as a convergent series of exponential-polynomials
solutions of the formzleαjz, 0 ≤ l < mj where theαj are the zeros of the Fourier-Borel tran-
form of T andmj are their order of multiplicity. These series converge after an Abel-summation
process. WhenV = {(αj,mj)}j is an interpolating variety, the convergence no longer requires
an Abel-summation.

Finally, in Chapter 7, we give some results about Question 1 in the multivariate case, when
V is a discrete sequence ofCn. Berenstein and Li described the interpolating discrete sequences
for Ap(Cn) as zeros of an entire mapF = (f1, · · · , fn), fj ∈ Ap(Cn), where the jacobian
determinant ofF verifies a certain lower bound. Therefore, when looking for a control on the
density of a discrete interpolating variety, we are led to the transcendental Bézout problem, that
is, the problem of the existence of an upper bound on the zero set of an entire map fromCn to
Cn. This problem was studied by B.Q. Li and B.A.Taylor (see [31]). We give a new look on
the proof of the existence of such an upper bound when we count the zeros where the jacobian
determinant ofF is bounded below and of its corollary : a necessary condition on interpolating
discrete varieties. On the other hand, we give a sufficient geometric condition whenp is a radial
and doubling weight growing more rapidly than|z|2. In the case wherep(z) = |z|2, this condition
is that the sequence is uniformly separated.

We conclude this introduction by pointing out that Chapters from 2 to 7 may be read indepen-
dently while all preliminary definitions and useful known results about interpolation problems in
Ap(C) are collected in Chapter 1.



CHAPTER 1

Preliminaries

1.1. Definitions and notations

DEFINITION 1.1.1. A subharmonic functionp : C −→ R+, is called a weight if it satisfies
the two following conditions.

(w1) ln(1 + |z|2) = O(p(z)).
(w2) There exist constantsC1, C2 > 0 such that|z − w| ≤ 1 impliesp(w) ≤ C1p(z) + C2.

Note that condition (w2) implies thatp(z) = O(eA|z|) for someA > 0.

DEFINITION 1.1.2. We say that the weightp is radial ifp(z) = p(|z|) and that is doubling if
there existsC > 0 such thatp(2z) ≤ Cp(z) for all z ∈ C.

REMARK 1.1.3. It is easy to see that property (w2) is satisfied wheneverp is radial and
doubling.

LetA(C) be the space of all entire functions, we consider the space

Ap(C) =
{
f ∈ A(C) : ∀z ∈ C, |f(z)| ≤ AeBp(z) for someA > 0, B > 0

}
.

Note thatAp(C) can be seen as the union of the Banach spaces

Ap,B(C) = {f ∈ A(C), ‖f‖B := sup
z∈C

|f(z)|e−Bp(z) <∞}

and has a structure of an (LF)-space when endowed with the the inductive limit topology. Let
Wp(C) be the space of measurable functionsg such that for someC > 0,∫

C
|g(z)|2e−Cp(z)dλ(z) <∞,

wheredλ denotes the Lebesgue measure. The usefulness of conditions (w1) and (w2) lie in the
following properties.

LEMMA 1.1.4.
(i) Ap(C) contains all polynomials.
(ii) For anyf ∈ Ap(C), there are constantsA > 0 andB > 0, such that

∞∑
l=0

∣∣∣∣f (l)(z)

l!

∣∣∣∣ ≤ AeBp(z) for all z ∈ C..

In particular,Ap(C) is stable under differentiation.
(iii) Wp(C) ∩ A(C) = Ap(C).

9



10 1. PRELIMINARIES

PROOF.
(i) This is an obvious consequence of condition (w1).
(ii) By the Cauchy inequality we have, for allz ∈ C and alll ∈ N,∣∣∣∣f (l)(z)

l!

∣∣∣∣ ≤ 1

2l
max
|ζ−z|≤2

|f(ζ)|.

Condition (w2) implies the existence of constantsA > 0 andB > 0 such that

max
|ζ−z|≤2

|f(ζ)| ≤ AeBp(z).

Property (ii) follows then immediately.
(iii) Let f ∈ Ap(C). Thanks to condition (w1) there exist constantsA > 0 andC > 0 such

that for allz ∈ C,

|f(z)|2e−Cp(z) ≤ A

(1 + |z|2)2
.

We readily deduce thatf ∈ Wp(C). Conversely, letf ∈ Wp(C) ∩ A(C) and letC > 0 be such
that ∫

D(z,1)

|f(ζ)|2e−Cp(ζ)dλ(ζ) <∞.

Using the mean-value inequality, then Cauchy-Schwarz inequality and finally condition (w2), we
have

|f(z)| ≤ 1

π

∫
D(z,1)

|f(ζ)|dλ(ζ)

≤ 1

π

(∫
D(z,1)

|f(ζ)|2e−Cp(ζ)dλ(ζ)

)1/2(∫
D(z,1)

eCp(ζ)dλ(ζ)

)1/2

≤ AeBp(z),

whereA andB are positive constants. �

Here are some examples of weights.

EXAMPLES 1.1.5.

• p(z) = ln(1 + |z|2) + | Im z|. ThenAp(C) is the space of Fourier transforms of distri-
butions with compact support on the real line.

• p(z) = ln(1 + |z|2). ThenAp(C) is the space of all the polynomials.
• p(z) = |z|. ThenAp(C) is the space of entire functions of exponential type.
• p(z) = |z|α, α > 0. ThenAp(C) is the space of all entire functions of order≤ α and

finite type.
• p(z) = e|z|

α
, 0 < α ≤ 1.

DEFINITION 1.1.6. We call a multiplicity varietyV a collection of pairs(αj,mj), where
αj are distinct points ofC andmj ∈ N∗ are the multiplicities at the pointsαj and either the
collection is finite or|αj| → ∞. We say thatζ ∈ V to indicate thatζ is one of the pointsαj.
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For a non-zero functionf , we denote byZ(f) the collection of zeros off with their respective
multiplicities.

Let V1 = {(αj,mj)}j≥0 andV2 = {(βk, nk)}k≥0 be two multiplicity varieties. We say that
V1 ⊂ V2 if {αj}j≥0 is a subsequence of{βk}k≥0 and, for the corresponding indices, we have
mj ≤ nk.

From now on,V = {(αj,mj)}j∈N will denote a multiplicity variety such that|αj| → ∞. We
consider the spaces

A(V ) = {W = {wj,l}j∈N,0≤l<mj
⊂ C},

Ap(V ) =
{
W ∈ A(V ), ∀j ∈ N,

mj−1∑
l=0

|wj,l| ≤ AeBp(αj) for someA > 0, B > 0
}
.

Note thatAp(V ) can also be seen as the union of the Banach spaces

Ap,B(V ) = {W ∈ A(V ), ‖W‖B := sup
j≥0

mj−1∑
l=0

|wj,l|e−Bp(z) <∞}

and has a structure of an (LF)-space with the the inductive limit topology. Define the restriction
mapRV by

RV : A(C) −→ A(V )

f 7→
{
f (l)(αj)

l!

}
j∈N,0≤l≤mj−1

.

In view of Lemma 1.1.4 (ii), it is clear thatRV (Ap(C)) ⊂ Ap(V ).
We now define the counting function and the integrated counting function that will be used

to describe the geometric conditions.

DEFINITION 1.1.7. Let V = {(αj,mj)}j∈N be a multiplicity variety. Forz ∈ C andr > 0
we set

nV (z, r) =
∑

|z−αj |≤r

mj

and

NV (z, r) =

∫ r

0

n(z, t)− n(z, 0)

t
dt+ n(z, 0) ln r

=
∑

0<|z−αj |≤r

mj ln
r

|z − αj|
+ n(z, 0) ln r.

When there is no ambiguity, we will simply writen(z, r) = nV (z, r) andN(z, r) = NV (z, r).
Throughout the manuscript,A,B andC will denote positive constants and their actual value may
change from one occurrence to the next.F (t) . G(t) means that there exist constantsA,B > 0,
not depending ont such thatF (t) ≤ AG(t) + B while F ' G means thatF . G . F . The
notationD(z, r) will be used for the Euclidean disk of centerz and radiusr. We will write

∂f =
∂f

∂z
, ∂̄f =

∂f

∂z̄
. Then∆f = 4∂∂̄f denotes the laplacian off .
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1.2. Interpolating varieties

DEFINITION 1.2.1. We say thatV is an interpolating variety forAp(C) (or that it isAp-
interpolating) if for every doubly indexed sequence{wj,l}j∈N,0≤l<mj

of complex numbers such
that, for some positive constantsA andB and for allj ∈ N,

mj−1∑
l=0

|wj,l| ≤ AeBp(αj),

we can find an entire functionf ∈ Ap(C), with

f (l)(αj)

l!
= wj,l

for all j ∈ N and0 ≤ l < mj.

We may equivalently define theAp-interpolating varieties by the property thatRV maps
Ap(C) ontoAp(V ).

We are collecting next several known properties about interpolating varieties, most of them
are necessary conditions. We refer the reader to [2, 3, 7, 44, 45] for further details.

LEMMA 1.2.2. Let f be a non zero function inAp(C) and setV = Z(f). Then for certain
constantsA,B > 0 we have

NV (0, R) ≤ A+B max
|z|=R

p(z) for all R > 0.

PROOF. We setm = nV (0, 0) and we apply Jensen’s formula to the function
f(z)

zm
in the

diskD(0, R).

NV (0, R) =

∫ 2π

0

ln |f(Reiθ)|dθ − ln |f
(m)(0)

m!
|.

As for all θ ∈ [0, 2π], we have|f(Reiθ)| ≤ AeBp(Re
iθ), we readily deduce the desired estimate,

NV (0, R) ≤ A+B max
|z|=R

p(z).

�

LEMMA 1.2.3. LetV = {(αj,mj)}j∈N be an interpolating variety. Then there exists a non
zero functionf ∈ Ap(C) such thatV ⊂ Z(f).

PROOF. As V is an interpolating variety, there existsg ∈ Ap(C) such that

• g(l)(α0) = 0 for 0 ≤ l < m0, exceptg(m0−1)(α0) = 1,
• g(l)(αj) = 0 for all j 6= 0 and all0 ≤ l < mj.

Setf(z) = (z − α0)g(z). ThenV ⊂ Z(f) and by property (w1) of the weight, it is clear that
f ∈ Ap(C). �

From Lemmas 1.2.2 and 1.2.3, we immediately deduce the following corollary.
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COROLLARY 1.2.4. Assume thatV is an interpolating variety forAp(C). Then there exist
constantsA,B > 0 such that

NV (0, R) ≤ A+B max
|z|=R

p(z), for all R > 0.

REMARK 1.2.5. Whenever the weightp is radial, the latter necessary condition may be re-
written as follows. For some constantsA,B > 0,

(1) NV (0, R) ≤ A+B p(R), for all R > 0.

A standard feature of the spacesAp(C) is that the interpolation can be performed in a stable
way. It is stated precisely in the following lemma.

LEMMA 1.2.6.V is an interpolating variety forAp(C) if and only if, for allB > 0, there exist
A > 0 andB′ > 0 such that for allW ∈ Ap,B(V ), there existf ∈ Ap,B′(C) withRV (f) = W
and‖f‖B′ ≤ A‖W‖B.

See for example [2, Lemma 2.2.6.] for a proof based on the Baire Category Theorem.

THEOREM 1.2.7. Assume thatV = {(αj,mj)}j is an interpolating variety forAp(C). Let
Rj be positive numbers satisfying

(2) |z − αj| ≤ Rj =⇒ p(z) ≤ C1 + C2 p(αj),

whereC1 andC2 are positive constants not depending onj. Then the following condition holds.
For some constantsA,B > 0,

(3) NV (αj, Rj) ≤ A+B p(αj), for all j.

REMARK 1.2.8. In view of property (w2) of the weightp, we can always assumeRj ≥ e
for all j. Thus, wheneverV is an interpolating variety forAp(C), the following condition is
necessary. For some constantsA,B > 0,

(4) NV (αj, e) ≤ A+B p(αj), for all j.

In particular, the multiplicities necessarily verify

(5) mj ≤ A+Bp(αj), for all j.

In the case wherep is doubling and radial, we are allowed the larger numbersRj = |αj|. In that
case, the following condition is necessary : for some constantsA,B > 0,

(6) N(αj, |αj|) ≤ A+B p(αj), for all j ∈ N.

PROOF. Proof of Theorem 1.2.7
Lemma 1.2.6 gives a sequence{fj}j such that

(i) f (l)
j (αk) = 0, for all k and for all0 ≤ l < mk, except

f
(mj−1)
j (αj)

(mj − 1)!
= 1.

(ii) for certain constantsA,B > 0 not depending onj, |fj(z)| ≤ AeBp(z).



14 1. PRELIMINARIES

Set gj(z) = (z − αj)fj(z). In view of property (w2) there exist constantsA,B > 0 (not
depending onj) such that for allz ∈ C, we have

|gj(z)| ≤ AeB[p(z)+p(αj)].

Besides,g(l)
j (αk) = 0 for all k and for all0 ≤ l < mk and

g
(mj)
j (αj)

mj!
= 1. Applying Jensen’s

formula to the function
gj(z)

(z − αj)mj
in the diskD(αj, Rj) we obtain

NV (αj, Rj) =

∫ 2π

0

ln |gj(αj +Rje
iθ)|dθ.

By definition ofRj, for all θ ∈ [0, 2π], |gj(αj +Rje
iθ)| ≤ AeBp(αj) for certain constantsA,B >

0. We readily deduce the estimate (3). �

DEFINITION 1.2.9. We say thatV is weakly separated if there exist constantsA > 0 and
B > 0 such that

(7) δ
−mj

j ≤ AeBp(αj)

for all j, where

δj := inf

{
1, inf

k 6=j
|αj − αk|

)}
is called the separation radius.

REMARK 1.2.10.The disksD(αj, δj/2) are pairwise disjoint and becauseδj ≤ 1, there exist
constantsA,B > 0 such that for allj ≥ 0 and for allz, ζ in D(αj, δj), we haveep(z) ≤ AeBp(ζ).

LEMMA 1.2.11. If V is an interpolating variety then it is weakly separated.

PROOF. Lemma 1.2.6 gives a sequence of functions{fj}j such that

• fj(αk) = 1 for all k 6= j andf (l)
j (αj) = 0 for all 0 ≤ l < mj.

• For all z ∈ C, |fj(z)| ≤ AeBp(z), whereA,B > 0 don’t depend onj.

Setgj(z) =
fj(z)

(z − αj)mj
. If |z − αj| ≤ 1, then by the maximum principle

|gj(z)| ≤ sup
|ζ−αj |=1

|fj(ζ)| ≤ AeBp(αj),

using property (w2) of the weight. For allk 6= j such that|αk − αj| ≤ 1, we have

|αk − αj|−mj = |gj(αk)| ≤ AeBp(αj).

This conludes the proof of the lemma. �

LEMMA 1.2.12. If, for certain constantsA,B > 0 we haveδ−1
j ≤ AeBp(αj) for all j, then

there exists a constantC > 0 such that∑
j

e−Cp(αj) <∞.
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In particular, this holds whenV is weakly separated.

PROOF. Thanks to property (w1) of the weight there exists a constantD > 0 such that∫
C
e−Dp(z)dλ(z) <∞. In view of Remark 1.2.10, we have,∫

C
e−Dp(z)dλ(z) ≥

∑
j

∫
D(αj ,δj/2)

e−Dp(z)dλ(z)

≥
∑
j

Ae−DBp(αj)δ2
j ≥

∑
j≥0

Ae−Cp(αj)

whereC > 0 is a certain constant. �

LEMMA 1.2.13. If (3) holds with someRj ≥ 1, thenV is weakly separated.

PROOF. Fix j and letαl 6= αj be such that|αj − αl| = infk 6=j |αj − αk|. If |αj − αl| ≥ 1,
thenδj = 1. Otherwise,δj = |αj − αl| and the following inequalities hold

N(αl, Rl) ≥
∑

0<|αk−αl|≤Rl

mk ln
Rl

|αk − αl|
≥ mj ln

Rl

|αj − αl|
= mj ln

Rl

δj
≥ ln

1

δ
mj

j

.

Since by condition (3) and property (w2) of the weight,

N(αl, Rl) ≤ A+Bp(αl) ≤ A+Bp(αj),

we readily deduce the desired estimate. �

Note that Lemma 1.2.11 may be obtained as a corollary of Theorem 1.2.7 and Lemma 1.2.13.
Let us now state an important theorem given by Berenstein and Li, which will be very useful

throughout our work. It provides an analytic characterization ofAp-interpolating varieties for
general weightsp.

THEOREM 1.2.14. (see[3, Corollary 3.5]) A multiplicity varietyV = {(αj,mj)}j is Ap-
interpolating if and only if there existsf ∈ Ap(C) such thatV ⊂ Z(f) and for some constants
ε, C > 0 ∣∣∣f (mj)(αj)

mj!

∣∣∣ ≥ εe−Cp(αj) for all j.

This leads us to the following observations.

REMARK 1.2.15. (i) Letp andq be two weights such thatp . q. If V isAp-interpolating
then it isAq-interpolating (replace the defining functionf in Theorem 1.2.14 byfN ).

(ii) If {(αj,mj)}j≥0 isAp-interpolating then for anyN ∈ N∗, {(αj, Nmj)}j≥0 is alsoAp-
interpolating.

When constructing interpolating entire functions inAp(C) in Chapters 3, 4, 5 and 7, Hörmander’s
theorem giving the existence of a solution to the Cauchy-Riemann equation withL2-estimates
will be a very strong tool. Let us conclude this chapter by stating this result.
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THEOREM 1.2.16. (see[22]) Let Ω be an open subset ofC, φ be a subharmonic function in
Ω andv a measurable function inΩ such that∫

Ω

|v(z)|2e−φ(z)dλ(z) <∞.

Then, there is functionu ∈ L1
loc(Ω) such that∂̄u = v, in the sense of distributions, and∫

Ω

|u(z)|2

(1 + |z|2)2
e−φ(z)dλ(z) ≤

∫
Ω

|v(z)|2e−φ(z)dλ(z).



CHAPTER 2

Finite union of interpolating varieties

Introduction

Recall that the weak separation is a necessary condition for a multiplicity variety to be in-
terpolating (see Lemma 1.2.11). The union of two interpolating varieties is clearly not weakly
separated in general thus it is not necessarily an interpolating variety. Nevertheless, if we assume
that the union is weakly separated then it is interpolating. That is what we are going to prove in
Section 2.1.

If V is an interpolating variety, then by definition, the trace ofAp(C) on V is the space
Ap(V ). How can we describe the trace ofAp(C) on a finite union of interpolating varieties ?
That is the problem we are concerned with in Section 2.2. We will show that a discrete sequence
V of the complex plane is the union ofn interpolating sequences for the Hörmander algebras
Ap(C) if and only if the trace ofAp(C) on V coincides with the space of functions onV for
which the divided differences of ordern− 1 are uniformly bounded. The analogous result holds
in the unit disk for Korenblum-type algebras.

2.1. When a finite union of interpolating varieties is an interpolating variety

This result appear in [39] in the multivariate case with simple multiplicities.

THEOREM 2.1.1. Assume thatV1, · · · , Vn are interpolating varieties forAp(C). ThenV =
V1 ∪ · · ·Vn is an interpolating variety if and only if it is weakly separated.

PROOF. We may assume without loss of generality thatn = 2. We will denote byΛ andΓ
two discrete sequences ofC. We will denote bymλ andmγ the respective multiplicities affected
to eachλ ∈ Λ andγ ∈ Γ. We will denote byV1 = {(λ,mλ)}λ∈Λ andV2 = {(γ,mγ)}γ∈Γ

the corresponding multiplicity varieties. We assume thatV1 ∪ V2 is weakly separated. We may
assume without loss of generality that the intersection ofΛ andΓ is empty.

LetW = {wλ,l}λ∈Λ,0≤l<mλ
∈ Ap(V1) andZ = {zγ,l}γ∈Γ,0≤l<mγ ∈ Ap(V2) be the values to

interpolate. We want to constructf1 ∈ Ap(C) andf2 ∈ Ap(C) such that

f
(l)
1

l!
(λ) = wλ,l, λ ∈ Λ, 0 ≤ l < mλ,

f
(l)
1

l!
(γ) = 0, γ ∈ Γ, 0 ≤ l < mγ,

f
(l)
2

l!
(γ) = zγ,l, γ ∈ Γ, 0 ≤ l < mγ,

f
(l)
2

l!
(λ) = 0, λ ∈ Λ, 0 ≤ l < mλ.

Then settingf = f1 + f2, it is clear that

f (l)

l!
(λ) = wλ,l, λ ∈ Λ, 0 ≤ l < mλ and

f (l)

l!
(λ) = zγ,l, γ ∈ Γ, 0 ≤ l < mγ,

17
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in other words,RV1∪V2(f) = W ∪ Z.
Let us show how to constructf1 (the construction off2 will be of course similar reversing

the roles ofV1 andV2).
By Lemma 1.2.6, we can find a sequence{Gλ}λ∈Λ such that

(i)
G

(l)
λ

l!
(γ) = (−1)l(γ − λ)−mλ−l (mλ + l − 1)!

(mλ − 1)!l!
, for all γ ∈ Γ and0 ≤ l < mγ.

(ii) |Gλ(z)| ≤ AeB[p(λ)+p(z)].

whereA,B > 0 don’t depend onλ.
The existence of the sequence of interpolating functions{Gλ}λ∈Λ needs a justification : ac-

cording to condition (5), we have

(mλ + l − 1)!

(mλ − 1)!l!
≤ 2mλ+l ≤ 2mλ+mγ ≤ AeB[p(λ)+p(γ)].

Besides, the weak separation ofV1 ∪ V2 means that for allλ ∈ Λ and allγ ∈ Γ,

|γ − λ|−mλ−l ≤ AeB[p(λ)+p(γ)].

We have then verified that the coefficients interpolated by the functionsGλ has the correct growth
and this completes the proof of the existence of the sequence{Gλ}λ∈Λ.

Now, setFλ(z) = 1− (z − λ)mλGλ for all λ ∈ Λ. We clearly have

Fλ(λ) = 1, (Fλ)
(l)(λ) = 0, 1 ≤ l < mλ.

Besides, notice thatGλ has the same derivatives as the function(z − λ)−mλ in the pointsγ up to
ordermγ − 1. Thus,Fλ verifies

F
(l)
λ (γ) = 0, ∀γ ∈ Γ, ∀0 ≤ l < mγ.

According to Remark 1.2.15(ii), we know that{(λ, 2mλ)} is an interpolating variety. Thus there
exists a functionH ∈ Ap(C) such that

H(l)(λ) = 0, 0 ≤ l < 2mλ, except H(mλ)(λ) = 1.

Then the functionHλ(z) =
H(z)

(z − λ)mλ
satisfies the following conditions :

(i) Hλ(λ) = 1, H
(l)
λ (λ) = 0, 1 ≤ l < mλ,

(ii) |Hλ(z)| ≤ AeBp(z) for some constantsA,B > 0 not depending onλ.

Property (ii) comes from the fact that for|z − λ| ≥ 1, it is clear that|Hλ(z)| ≤ |H(z)| and
for |z−λ| ≤ 1, by the maximum principle, we have|Hλ(z)| ≤ sup|ζ−λ|=1Ae

Bp(ζ) ≤ AeBp(z) by
property (w2) of the weight.

We deduce that

(i) |(FλHλ)(z) ≤ AeB[p(λ)+p(z)], for all z ∈ C whereA,B > 0 don’t depend onλ,
(ii) (FλHλ)(λ) = 1 and (FλHλ)

(l)(λ) = 0, for all 1 ≤ l < mλ.

Applying once again Lemma 1.2.6, for allM > 0, there exists a sequence of functions
{hλ}λ∈Λ such that
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(i)
h

(l)
λ (λ)

l!
= wλ,le

Mp(λ), 0 ≤ l < mλ

(ii) h(l)
λ (λ′) = 0, λ′ ∈ Λ \ {λ}, 0 ≤ l < mλ′,

(iii) |hλ(z)| ≤ AeBp(z). whereA andB don’t depend onλ.

Finally, we set

f1 =
∑
j≥0

FλHλhλe
−Mp(λ)

whereM is chosen large enough so that the sum converges, according to Lemma 1.2.12.�

2.2. The trace ofAp(C) on a finite union of interpolating varieties

This is a joint work with X. Massaneda and J. Ortega-Cerdà. It will appear in the proceedings
of the international conference ’New Trends in Harmonic and Complex Analysis’ held May 7-12,
2007 in Voss, Norway (see [35]).

We will restrict ourselves to the case of simple multiplicities though with similar techiques
it should be possible to extend this result to an Hermite-type interpolation problem with multi-
plicites, along the lines of [41].

2.2.1. Divided differences.

DEFINITION 2.2.1. Let Λ be a discrete sequence inC andω a function given onΛ. The
divided differences ofω are defined by induction as follows

∆0ω(λ1) = ω(λ1) ,

∆jω(λ1, . . . , λj+1) =
∆j−1ω(λ2, . . . , λj+1)−∆j−1ω(λ1, . . . , λj)

λj+1 − λ1

j ≥ 1.

For anyn ∈ N, denote

Λn = {(λ1, . . . , λn) ∈ Λ×
n
^· · · ×Λ : λj 6= λk if j 6= k},

and consider the setXn−1
p (Λ) consisting of the functions inω(Λ) with divided differences of

ordern uniformly bounded with respect to the weightp, i.e., such that for someB > 0

sup
(λ1,...,λn)∈Λn

|∆n−1ω(λ1, . . . , λn)|e−B[p(λ1)+···+p(λn)] < +∞ .

REMARK 2.2.2. We have the inclusionsXn
p (Λ) ⊂ Xn−1

p (Λ) ⊂ · · · ⊂ X0
p (Λ) = Ap(Λ).

To see this assume thatω(Λ) ∈ Xn
p (Λ), i.e., there existsB > 0 such that

C := sup
(λ1,...,λn+1)∈Λn+1

∣∣∣∣∆n−1ω(λ2, . . . , λn+1)−∆n−1ω(λ1, . . . , λn)

λn+1 − λ1

∣∣∣∣×
× e−B[p(λ1)+···+p(λn+1)] <∞ .
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Then, given(λ1, . . . , λn) ∈ Λn and takingλ0
1, . . . , λ

0
n from a finite set (for instance then first

λ0
j ∈ Λ different of allλj) we have

∆n−1ω(λ1, . . . , λn) =
∆n−1ω(λ1, . . . , λn)−∆n−1ω(λ0

1, λ1, . . . , λn−1)

λn − λ0
1

(λn − λ1
0)+

+
∆n−1ω(λ0

1, λ1, . . . , λn−1)−∆n−1ω(λ0
2, λ

0
1, . . . , λn−2)

λn−1 − λ0
2

(λn−1 − λ0
2) + · · ·+

∆n−1ω(λ0
n−1, . . . , λ

0
1, λ1)−∆n−1ω(λ0

n, . . . , λ
0
1)

λ1 − λ0
n

(λ1 − λ0
n) + ∆n−1ω(λ0

n, . . . , λ
0
1)

Then a direct estimate and (w1) show that for someB > 0 there is a constantK(λ0
1, . . . , λ

0
n)

such that ∣∣∆n−1ω(λ1, . . . , λn)
∣∣ ≤ C

(
eB[p(λ0

1)+···+p(λn)] + · · ·+ eB[p(λ0
n−1)+···+p(λ1)]

)
≤ K(λ0

1, . . . , λ
0
n)e

B[p(λ1)+···+p(λn)],

and the statement follows.

The main result of this note is modelled after Vasyunin’s description of the sequencesΛ in the
unit disk such that the trace of the algebra of bounded holomorphic functionsH∞ on Λ equals
the space of (hyperbolic) divided differences of ordern (see [46], [47]). The analogue in our
context is the following.

THEOREM 2.2.3 (Main Theorem).The identityRΛ(Ap(C)) = Xn−1
p (Λ) holds if and only if

Λ is the union ofn Apinterpolating sequences.

Note that the statement of the theorem whenn = 1 is just the definition of an interpolating
sequence.

2.2.2. General properties.We begin by showing that one of the inclusions of Theorem 2.2.3
is inmediate.

PROPOSITION2.2.4. For all n ∈ N, the inclusionRΛ(Ap(C)) ⊂ Xn−1
p (Λ) holds.

PROOF. Let f ∈ Ap. Let us show by induction onj ≥ 1 that, for certain constantsA,B > 0

|∆j−1f(z1, . . . , zj)| ≤ AeB[p(z1)+···+p(zj)] for all (z1, . . . , zj) ∈ Cj.

As f ∈ Ap, we have|∆0f(z1)| = |f(z1)| ≤ AeBp(z1).
Assume that the property is true forj and let(z1, . . . , zj+1) ∈ Cj+1. Fix z1, . . . , zj and

considerzj+1 as the variable in the function

∆jf(z1, . . . , zj+1) =
∆j−1f(z2, . . . , zj+1)−∆j−1f(z1, . . . , zj)

zj+1 − z1

.

By the induction hypothesis,

|∆j−1f(z2, . . . , zj+1)−∆j−1f(z1, . . . , zj)| ≤
≤ A

(
eB[p(z2)+···+p(zj+1)] + eB[p(z1)+···+p(zj)]

)
≤ 2AeB[p(z1)+···+p(zj+1)].
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Thus, if |zj+1 − z1| ≥ 1, we easily deduce the desired estimate. For|zj+1 − z1| ≤ 1, by the
maximum principle and (w2):

|∆jf(z1, . . . , zj+1)| ≤ 2A sup
|ξ−z1|=1

eB[p(z1)+···+p(zj)+p(ξ)]

≤ Ae(B+D0)[p(z1)+···+p(zj)+p(zj+1)].

�

DEFINITION 2.2.5. A sequenceΛ is weakly separatedif there exist constantsε > 0 and
C > 0 such that the disksD(λ, εe−Cp(λ)), λ ∈ Λ, are pairwise disjoint.

REMARK 2.2.6. If Λ is weakly separated thenX0
p (V ) = Xn

p (V ), for all n ∈ N.
To see this it is enough to prove (by induction) thatX0

p (Λ) ⊂ Xn
p (Λ) for all n ∈ N. For

n = 0 this is trivial. Assume now thatX0
p (Λ) ⊂ Xn−1

p (Λ). Givenω(Λ) ∈ X0
p (Λ) we have

|∆nω(λ1, . . . , λn+1)| =
∣∣∣∣∆n−1(λ2, . . . , λn+1)−∆n−1(λ1, . . . , λn)

λn+1 − λ1

∣∣∣∣
≤ 2A

ε
e(B+C)[p(λ1)+···+p(λn+1)] .

LEMMA 2.2.7. Letn ≥ 1. The following assertions are equivalent:

(a) Λ is the union ofn weakly separated sequences,
(b) There exist constantsε > 0 andC > 0 such that

sup
λ∈Λ

#[Λ ∩D(λ, εe−Cp(λ))] ≤ n .

(c) Xn−1
p (Λ) = Xn

p (Λ).

PROOF. (a)⇒(b). This is clear, by the weak separation.
(b) ⇒(a). We proceed by induction onj = 1, . . . , n. For j = 1, it is again clear by the

definition of weak separation. Assume the property true forj − 1. Let 1 ≥ ε > 0 andC > 0
be such thatsupλ∈Λ #[Λ ∩D(λ, εe−Cp(λ))] ≤ j. Putε′ = e−E0Cε/2 andC ′ = D0C. By Zorn’s
Lemma, there is a maximal subsequenceΛ1 ⊂ Λ such that the disksD(λ, ε′e−C

′p(λ)), λ ∈ Λ1,
are pairwise disjoint. In particularΛ1 is weakly separated. For anyα ∈ Λ \ Λ1, there exists
λ ∈ Λ1 such that

D(λ, ε′e−C
′p(λ)) ∩D(α, ε′e−C

′p(α)) 6= ∅,
otherwiseΛ1 would not be maximal. Thenλ ∈ D(α, εe−Cp(α)), since

|λ− α| < ε′e−C
′p(λ) + ε′e−C

′p(α) < εe−Cp(α),

by (w2). ThusD(α, εe−Cp(α)) contains at mostj − 1 points ofΛ \ Λ1. We use the induction
hypothesis to conclude thatΛ \ Λ1 is the union ofj − 1 weakly separated sequences and, by
consequence,Λ is the union ofj weakly separated sequences.

(b)⇒(c). It remains to see thatXn−1
p (Λ) ⊂ Xn

p (Λ). Givenω(Λ) ∈ Xn−1
p (Λ) and points

(λ1, . . . , λn+1) ∈ Λn+1, we have to estimate∆nω(λ1, . . . , λn+1). Under the assumption (b), at
least one of thesen + 1 points is not in the diskD(λ1, εe

−Cp(λ1)). Note thatΛn is invariant by
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permutation of then + 1 points, thus we may assume that|λ1 − λn+1| ≥ εe−Cp(λ1). Using the
fact thatω(Λ) ∈ Xn−1

p (Λ), there are constantsA,B > 0 such that

|∆nω(λ1, . . . , λn+1)| ≤
|∆n−1ω(λ2, . . . , λn+1)|+ |∆n−1ω(λ1, . . . , λn)|

|λ1 − λn+1|
≤ AeB[p(λ1)+···+p(λn+1)].

(c)⇒(b). We prove this by contraposition. Assume that for allC, ε > 0, there existsλ ∈ Λ
such that#[Λ ∩D(λ, εe−Cp(λ))] > n. SinceΛ has no accumulation points, for any fixedC > 0,
we can extract fromΛ a weakly separated subsequenceL = {αl}l∈N such that#[(Λ \ L) ∩
D(αl, 1/l e−Cp(α

l))] ≥ n for all l. Let us callλl1, . . . , λ
l
n the points ofΛ \ L closest toαl,

arranged by increasing distance. In order to construct a sequenceω(Λ) ∈ Xn−1
p (Λ) \Xn

p (Λ), put

ω(αl) =
n−1∏
j=1

(αl − λlj), for all αl ∈ L

ω(λ) = 0 if λ ∈ Λ \ L.

To see thatω(Λ) ∈ Xn−1(Λ) let us estimate∆n−1ω(λ1, . . . , λn) for any given vector(λ1, . . . , λn) ∈
Λn. We don’t need to consider the case where the points are distant, thus, asL is weakly sepa-
rated, we may assume that at most one of the points is inL. On the other hand, it is clear that
∆n−1ω(λ1, . . . , λn) = 0 if all the points are inΛ \ L. Then, taking into account that∆n−1 is in-
variant by permutation, we will only consider the case whereλn is someαl ∈ L andλ1, . . . , λn−1

are inΛ \ L. In that case,

|∆n−1ω(λ1, . . . , λn−1, α
l)| = |ω(αl)|

n−1∏
k=1

|αl − λlk|−1

≤ 1,

as desired.
On the other hand, a similar reasoning yields

|∆nω(λl1, . . . , λ
l
n, α

l)| = |ω(αl)|
n∏
k=1

|αl − λlk|−1 = |αl − λln|−1 ≥ leCp(α
l).

Using (w2), for any constantB > 0, and choosingC = B(nD0 + 1), we have

|∆nω(λl1, . . . , λ
l
n, α

l)|e−B(p(λl
1)+···+p(λl

n)+p(αl)) ≥ le−BnE0 → +∞.

We finally conclude thatω(Λ) /∈ Xn
p (Λ). �

As a corollary we obtain again another proof of Lemma 1.2.11 stated in Chapter 1 :

COROLLARY 2.2.8. If Λ is an interpolating sequence, then it is weakly separated.

PROOF. If Λ is an interpolating sequence, thenRΛ(Ap(C)) = X0
p (Λ). On the other hand, by

Proposition 2.2.4,RΛ(Ap(C)) ⊂ X1
p (Λ). ThusX0

p (Λ) = X1
p (Λ). We conclude by the preceding

lemma applied to the particular casen = 1. �
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LEMMA 2.2.9. LetΛ1, . . . ,Λn be weakly separated sequences. There exist positive constants
a, b,B1, B2 andε > 0, a subsequenceL ⊂ Λ1 ∪ · · · ∪Λn and disksDλ = D(λ, rλ), λ ∈ L, such
that

(i) Λ1 ∪ · · · ∪ Λn ⊂ ∪λ∈LDλ

(ii) aεe−B1p(λ) ≤ rλ ≤ bεe−B2p(λ) for all λ ∈ L
(iii) dist(Dλ, Dλ′) ≥ aεe−B1p(λ) for all λ, λ′ ∈ L, λ 6= λ′.
(iv) #(Λj ∩Dλ) ≤ 1 for all j = 1, . . . , n andλ ∈ L.

PROOF. Let 0 < ε < 1 andC > 0 be constants such that

(8) |λ− λ′| ≥ εe−C/D0(p(λ)−E0), ∀λ, λ′ ∈ Λj, λ 6= λ′, ∀j = 1, . . . , n ,

whereD0 ≥ 1 andE0 ≥ 0 are given by (w2).
We will proceed by induction onk = 1, . . . , n to show the existence of a subsequenceLk ⊂

Λ1 ∪ · · · ∪ Λk and constantsCk ≥ C,Bk ≥ 0 such that:

(i)k Λ1 ∪ · · · ∪ Λk ⊂ ∪λ∈Lk
D(λ,Rk

λ),

(ii)k 2−3ke−Ckp(λ)−Bkε ≤ Rk
λ ≤ εe−Cp(λ)

k−1∑
j=0

2−(3j+2) ≤ 2/7e−Cp(λ)ε,

(iii)k dist(D(λ,Rk
λ), D(λ′, Rk

λ′)) ≥ 2−3kεe−Ckp(λ)−Bk for anyλ, λ′ ∈ Lk, λ 6= λ′.

The constantsCk andBk are chosen, in view of (w2), so thatCkp(λ) + Bk ≤ Ck+1p(λ
′) +

Bk+1 whenever|λ− λ′| ≤ 1.
Then it suffices to choseL = Ln, rλ = Rn

λ, a = e−Bn2−3n, b = 2/7, B1 = Cn andB2 = C.
As rλ < e−Cp(λ)ε, it is clear thatD(λ, rλ) contains at most one point of eachΛj, hence the lemma
follows.

Fork = 1, the property is clearly verified withL1 = Λ1 andR1
λ = e−Cp(λ)ε/4.

Assume the property true fork and splitLk = M1 ∪M2 andΛk+1 = N1 ∪N2, where

M1 = {λ ∈ Lk : D(λ,Rk
λ + 2−3k−2εe−Ckp(λ)−Bk) ∩ Λk+1 6= ∅},

N1 = Λk+1 ∩
⋃
λ∈Lk

D(λ,Rk
λ + 2−3k−2εe−Ckp(λ)−Bk),

M2 = Lk \M1,

N2 = Λk+1 \ N1.

Now, we putLk+1 = Lk ∪N2 and define the radiiRk+1
λ as follows:

Rk+1
λ =


Rk
λ + 2−3k−2εe−Ckp(λ)−Bk if λ ∈M1,

Rk
λ if λ ∈M2,

2−3k−3εe−Ck+1p(λ)−Bk+1 if λ ∈ N2.

It is clear that
Λ1 ∪ · · · ∪ Λk+1 ⊂

⋃
λ∈Lk+1

D(λ,Rk+1
λ )
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and, by the induction hypothesis,

2−3k−3εe−Ck+1p(λ)+Bk+1) ≤ Rk+1
λ ≤ εe−Cp(λ)

k∑
j=0

2−3j−2 ≤ 2/7εe−Cp(λ).

In order to prove(iii)k take nowλ, λ′ ∈ Lk+1, λ 6= λ′. We will verify that

dist(D(λ,Rk+1
λ ), D(λ′, Rk+1

λ′ )) = |λ− λ′| −Rk+1
λ −Rk+1

λ′ ≥ 2−3k−3εe−Ck+1p(λ)−Bk+1

by considering different cases.
If λ, λ′ ∈ Lk andp(λ) ≤ p(λ′), then

dist(D(λ,Rk+1
λ ), D(λ′, Rk+1

λ′ )) ≥ |λ− λ′| −Rk
λ −Rk

λ′ − 2−3k−1εe−Ckp(λ)−Bk

≥ 2−3k−1εe−Ckp(λ)−Bk .

Assume nowλ, λ′ ∈ N2 andp(λ) ≤ p(λ′). Condition (1.2.10) implies|λ − λ′| ≥ εe−Cp(λ),
hence

dist(D(λ,Rk+1
λ ), D(λ′, Rk+1

λ′ )) ≥ (1− 2−3k−2)εe−Cp(λ).

If λ ∈M1 andλ′ ∈ N2 there existsβ ∈ N1 such that|λ−β| ≤ Rk+1
λ . There is no restriction

in assuming that|λ− λ′| ≤ 1. Then, using (1.2.10) onβ, λ′ ∈ Λk+1, we have

|λ− λ′| ≥ |β − λ′| − |λ− β| ≥ εe−C/D0(p(β)−E0) −Rk+1
λ ≥ εe−Cp(λ) −Rk+1

λ .

The definition ofRk+1
λ′ together with the estimateRk+1

λ ≤ 2/7εe−Cp(λ) yield

dist(D(λ,Rk+1
λ ), D(λ′, Rk+1

λ′ )) ≥ εe−Cp(λ) − 2Rk+1
λ −Rk+1

λ′

≥ εe−Cp(λ) − 2Rk
λ − 2−3k−1εe−Ckp(λ)−Bk − 2−3k−3εe−Ck+1p(λ

′)−Bk+1

≥ εe−Cp(λ) − 4

7
εe−Cp(λ) − 2−3kεe−Ckp(λ)−Bk ≥ εe−Cp(λ)(3/4− 2−3k),

as required.
Finally, if λ ∈M2 andλ′ ∈ N2, again, assuming that|λ− λ′| ≤ 1, we have

dist(D(λ,Rk+1
λ ), D(λ′, Rk+1

λ′ )) = |λ− λ′| −Rk
λ − 2−3k−3εe−Ck+1p(λ

′)−Bk+1

≥ 2−3k−2εe−Ckp(λ)−Bk − 2−3k−3εe−Ckp(λ)−Bk

≥ 2−3k−3εe−Cp(λ).

�

2.2.3. Proof of Theorem 2.2.3. Necessity.AssumeRΛ(Ap(C)) = Xn−1
p (Λ), n ≥ 2. Using

Proposition 2.2.4, we haveXn−1
p (V ) = Xn

p (V ), and by Lemma 2.2.7 we deduce thatΛ =
Λ1 ∪ · · · ∪Λn, whereΛ1, . . . ,Λn are weakly separated sequences. We want to show that eachΛj

is an interpolating sequence.
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Let ω(Λj) ∈ Ap(Λj) = X0
p (Λj). Let ∪λ∈LDλ be the covering ofΛ given by Lemma 2.2.9.

We extendω(Λj) to a sequenceω(Λ) which is constant on eachDλ ∩ Λj in the following way:

ω|Dλ∩Λ =

{
0 if Dλ ∩ Λj = ∅
ω(α) if Dλ ∩ Λj = {α} .

We verify by induction that the extended sequence is inXk−1
p (Λ) for all k. It is clear that it

belongs toX0
p (Λ). Assume thatω ∈ Xk−2

p (Λ) and consider(α1, . . . , αk) ∈ Λk. If all the points
are in the sameDλ then∆k−1ω(α1, . . . , αk) = 0, so we may assume thatα1 ∈ Dλ andαk ∈ Dλ′

with λ 6= λ′. Then we have

|α1 − αk| ≥ aεe−B1p(λ),

by Lemma 2.2.9 (iii). With this and the induction hypothesis it is clear that for certain constants
A,B > 0

|∆k−1ω(α1, . . . , αk)| =
∣∣∣∣∆k−2ω(α2, . . . , αk)−∆k−2ω(α1, . . . , αk)

α1 − αk

∣∣∣∣
≤ AeB[p(α1)+···+p(αk)].

In particularω(Λ) ∈ Xn−1
p (Λ), and by assumption, there existf ∈ Ap(C) interpolating the

valuesω(Λ). In particularf interpolatesω(Λj).

2.2.4. Proof of Theorem 2.2.3. Sufficiency.According to Proposition 2.2.4 we only need
to see thatXn−1

p (Λ) ⊂ RΛ(Ap(C)).
Assume thatΛ = Λ1 ∪ · · · ∪ Λn whereΛ1, . . . ,Λn are interpolating sequences. Recall that

eachΛj is weakly separated (see Corollary 2.2.8 or Lemma 1.2.11). Consider also the covering
of Λ given by Lemma 2.2.9.

LEMMA 2.2.10.There exist constantsA,B > 0 and a sequence{Fλ}λ∈L ⊂ Ap(C) such that

Fλ(α) =

{
1 if α ∈ Λ ∩Dλ

0 if α ∈ Λ ∩Dλ′ , λ
′ 6= λ

|Fλ(z)| ≤ AeB(p(λ)+p(z)) for all z ∈ C.

PROOF. Fix λ ∈ L and defineω(Λ) by

ω(α) =


∏

β∈Λ∩Dλ

(α− β)−1 if α /∈ Λ ∩Dλ

0 if α ∈ Λ ∩Dλ.

By Lemma 2.2.9 (iii), we have|α − β| ≥ cεe−Cp(α) wheneverα /∈ Λ ∩Dλ, β ∈ Λ ∩Dλ. Since
#(Λ ∩Dλ) ≤ n we deduce that

|ω(α)| ≤ (cε)−nenCp(α)
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Recall thatΛj is an interpolating sequence for allj = 1, . . . , n, thus, using Lemma 1.2.6, there
exist an-indexed sequence{fλ,j}λ∈L,j∈[[1,n]] ⊂ Ap(C) such that for allz ∈ C,

|fλ,j(z)| ≤ AeBp(z)

fλ,j(α) =
∏

β∈Λ∩Dλ

(α− β)−1 if α /∈ Λj ∩Dλ,

with the constantsA andB independent ofλ.
The sequence of functions{Fλ}λ∈L defined by

Fλ(z) =
n∏
j=1

[
1−

∏
β∈Λ∩Dλ

(z − β)fλ,j(z)

]
has the desired properties. �

LEMMA 2.2.11. For all D > 0, there existD′ > 0 and a sequence{Gλ}λ∈L ⊂ Ap(C) such
that

Gλ(α) = eDp(λ) if α ∈ Λ ∩Dλ.

|Gλ(z)| ≤ AeBp(λ)eD
′p(z) for all z ∈ C,

whereA,B > 0 do not depend onD.

PROOF. In this proofD′ denotes a constant depending onD but not onλ, and its actual value
may change from one occurrence to the other.

Let λ ∈ L. Assume, without loss of generality, thatDλ ∩ Λj = {αλ,j} for all j. As Λ1

is an interpolating sequence andeDp(λ) ≤ AeD
′p(αλ,1), by Lemma 1.2.6 there exists a sequence

{hλ,1}λ ⊂ Ap(C) such that

hλ,1(αλ,1) = eDp(λ)

|hλ,1(z)| ≤ AeD
′p(z) for all z ∈ C.

SettingHλ,1(z) = hλ,1(z), we haveHλ,1(αλ,1) = eDp(λ). Now, asΛ2 isAp-interpolating and

|eDp(λ) −Hλ,1(αλ,2)|
|αλ,2 − αλ,1|

=
|Hλ,1(αλ,1)−Hλ,1(αλ,2)|

|αλ,2 − αλ,1|
≤ AeD

′p(αλ,2),

there exists a sequence{hλ,2}λ ⊂ Ap(C) such that

hλ,2(αλ,2) =
eDp(λ) −Hλ,1(αλ,2)

αλ,2 − αλ,1

|hλ,2(z)| ≤ AeD
′p(z) for all z ∈ C.
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SettingHλ,2(z) = hλ,1(z) + hλ,2(z)(z − αλ,1). We have

Hλ,2(αλ,1) = Hλ,2(αλ,2) = eDp(λ).

We proceed by induction to construct a sequence of functions{hλ,k}λ ⊂ Ap(C) such that

hλ,k(αλ,k) =
eDp(λ) −Hλ,k−1(αλ,k)

(αλ,k − αλ,1) · · · (αλ,k − αλ,k−1)

|hλ,k(z)| ≤ AeD
′p(z) for all z ∈ C.

Then the function defined byHλ,k(z) = Hλ,k−1(z)+hλ,k(z)(z−αλ,1) · · · (z−αλ,k−1) verifies

Hλ,k(αλ,1) = · · · = Hλ,k(αλ,k) = eDp(λ).

Finally, we setGλ = Hλ,n. �

To proceed with the proof of the inclusionXn−1
p (Λ) ⊂ RΛ(Ap(C)), letω(Λ) ∈ Xn−1

p (Λ).
Fix λ ∈ L and letΛ∩Dλ = {α1, . . . , αk}, k ≤ n. We first consider a polynomial interpolat-

ing the valuesω(α1), . . . , ω(αk):

Pλ(z) = ∆0ω(α1) + ∆1ω(α1, α2)(z − α1) + · · ·+ ∆k−1ω(α1, . . . , αk)
k−1∏
j=1

(z − λ).

Notice thatPλ ∈ Ap, sinceω(Λ) ∈ Xn−1
p (Λ) and by properties (w1) and (w2) we have

|Pλ(z)| ≤ A|z|keB[p(α1)+···+p(αk)] ≤ AeB
′[p(z)+p(λ)] .

Now, define

f =
∑
λ∈L

FλGλPλe
−Dp(λ),

whereD is a large constant to be chosen later on.
By the preceding estimates onGλ andPλ, there exist constantsA,B > 0 not depending on

D and a constantD′′ > 0 such that, for allz ∈ C, we have

|f(z)| ≤ AeD
′′p(z)

∑
λ∈L

e(B−D)p(λ).

In view of Lemma 1.2.12, chosingD large enough, the latter sum converges andf ∈ Ap(C).
To verify thatf interpolatesω(Λ), let α ∈ Λ and letλ be the (unique) point ofL such that

α ∈ Dλ. Then,f(α) = Gλ(α)Pλ(α)e−Dp(α) = Pλ(α) = ω(α), as desired.

2.2.5. Similar results in the disk. The previous definitions and proofs can be adapted to
produce analogous results in the disk. To do so one just needs to replace the Euclidean distance
used inC by the pseudo-hyperbolic distance

ρ(z, ζ) =

∣∣∣∣ z − ζ

1− ζ̄z

∣∣∣∣ z, ζ ∈ D,
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and the Euclidean divided differences by their hyperbolic version

δ0ω(λ1) = ω(λ1) ,

δjω(λ1, . . . , λj+1) =
∆j−1ω(λ2, . . . , λj+1)−∆j−1ω(λ1, . . . , λj)

λj+1−λ1

1−λ̄1λj+1

j ≥ 1.

In this context a functionφ : D −→ R+ is aweightif
(wd1) There is a constantK > 0 such thatφ(z) ≥ K ln

(
1

1−|z|

)
.

(wd2) There are constantsD0 > 0 andE0 > 0 such that wheneverρ(z, ζ) ≤ 1 then

φ(z) ≤ D0φ(ζ) + E0.

The model for the associated spaces

Aφ = {f ∈ H(D) : sup
z∈D

|f(z)|e−Bφ(z) <∞ for someB > 0},

is the Korenblum algebraA−∞, which corresponds to the choicee−φ(z) = 1 − |z|. The interpo-
lating sequences for this and similar algebras have been characterised in [13] and [32].

With these elements, and replacing the factorsz − α by z−α
1−ᾱz when necessary, we can follow

the proofs above and, mutatis mutandis, show that Theorem 2.2.3 also holds in this situation.
The only point that requires further justification is the validity of Lemmas 1.2.6 and 1.2.12

for the weightsφ. Lemma 1.2.6 is a standard consequence of the open mapping theorem for
(LF)-spaces applied to the restriction mapRΛ, and the same proof as in [2, Lemma 2.2.6] holds.
Applying this Lemma to the sequencesωλ(Λ) defined by

ωλ(λ
′) =

{
1 if λ′ = λ

0 if λ′ 6= λ

we have functionsfλ ∈ Aφ interpolating these values and with growth control independent ofλ.
Since1 = |fλ(λ) − fλ(λ

′)|, an estimate on the derivative offλ shows that for someC > 0 and
ε > 0 the pseudohyperbolic disksDH(λ, εe−Cφ(λ)) = {z ∈ D : ρ(z, λ) < e−Cφ(λ)} are pairwise
disjoint. In particular the sum of their areas is finite, hence∑

λ∈Λ

(1− |λ|)2e−2Cφ(λ) < +∞ .

From this and condition (wd1) we finally obtain Lemma 1.2.6.



CHAPTER 3

Geometric conditions on interpolating varieties for radial weights

The results of this chapter are published in Journal of Geometric Analysis (See [40]).

Introduction

We are interested in finding a geometric description on an interpolating variety, depend-
ing only on the distribution of its points, which would enable us to decide whether it isAp-
interpolating by a direct calculation.

The geometric conditions will be given in terms ofNV (z, r), the integrated counting function
of the points ofV (see Definition 1.1.7).

Whenp is radial and doubling (see Definition 1.1.2), C.A. Berenstein and B.Q. Li [3] gave a
geometric characterization ofAp-interpolating varieties, namely,

(i) N(αj, |αj|) = O(p(αj)) whenj →∞;
(ii) N(0, r) = O(p(r)) whenr →∞.

A. Hartmann and X. Massaneda (see [21]) gave a proof of this theorem based on theL2-
estimates for the solution to thē∂-equation, provided that

(9) p(z) = O(|z|2∆p(z)).
Note that we can always regularizep into a smooth function (see Remark 3.0.12 below).

We will use theL2-techniques to give a proof of the same result without the assumption (9)
(see Theorem 3.1.3). When the condition (9) is satisfied, we will prove that (ii) is no longer
needed and that (i) is necessary and sufficient (see Theorem 3.1.4).

In [3], Berenstein and Li also studied rapidly growing radial weights, allowing infinite order
functions inAp(C), asp(z) = e|z|, and more generally weights such thatln p(er) is convex. They
gave sufficient conditions as well as necessary ones.

We will give a characterization of interpolating varieties for the weightp(z) = e|z| and more
generally for weightsp such thatp(z) = O(∆p(z)) (see Theorem 3.1.6) and also for radialp
whenln p(er) is convex andln p(r) is concave for larger (see Theorem 3.1.7).

In particular, we will show thatV isAe|z|-interpolating if and only if

N(αj, e) = O(e|αj |), when j →∞.

The difficult part in each case is the sufficiency. As in [9, 21], we will follow a Bombieri-
Hörmander approach based onL2-estimates on the solution to thē∂-equation. The scheme will
be the following: the condition on the density gives a smooth interpolating functionF with a
good growth such that the support of∂̄F is far from the points{αj} (see Lemma 3.2.1). Then
we are led to solve thē∂-equation:∂̄u = −∂̄F with L2-estimates. To do so, we need to construct

29
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a subharmonic functionU with a convenient growth and with prescribed singularities on the
pointsαj. Following Bombieri [11], the fact thate−U is not summable near the points{αj}
forcesu to vanish on the pointsαj and we are done by defining the interpolating entire function
by u+ F .

The delicate point of the proof is the construction of the functionU . It is done in two steps:
first we construct a functionU0 behaving likeln |z−αj|2 nearαj with a good growth and with a
control on∆U0 (the laplacian ofU0), thanks to the conditions on the density and the hypothesis
on the weight itself. Then we add a functionW such that∆W is large enough so thatU = U0+W
is subharmonic.

Throughout this chapter, we will assume that the weightp is radial.

REMARK 3.0.12.The weightp may be regularized as in [21, Remark 2.3] by replacingp by
its average over the discD(z, 1). Thus we may supposep to be of classC2 when needed.

We have collected the statements of the main results in Section 3.1. In Section 3.2, we
show how to construct the smooth interpolating functionF and how the problem reduces in
constructing the subharmonic functionU . Finally, in Section 3.3, we give the proofs of the main
results and we show how to actually construct the functionU .

3.1. Main results

We begin by giving a sufficient condition for a multiplicity varietyV to be interpolating.

THEOREM 3.1.1. If condition(4) holds and for some constantsA,B > 0,

(10) ,

∫ R

0

n(0, t)dt ≤ A p(R) +B, for all R > 0,

thenV is interpolating forAp(C).

REMARK 3.1.2. In fact, we have∫ R

0

n(0, t)dt =
∑
|αj |≤R

mj(R− |αj|) ≤ RN(0, R).

Consequently, the necessary condition (1) implies that for some constantsA,B > 0,

(11)
∫ R

0

n(0, t)dt ≤ ARp(R) +B, for all R > 0.

Note that the necessary condition ((11) and (4)) differ from the sufficient condition ((10) and (4))
by a factorR in (11).

Adapting our method to the doubling case we find the characterization given by Berenstein
and Li [3, Corollary 4.8]:

THEOREM 3.1.3. Assumep to be radial and doubling.

V is interpolating forAp(C) if and only if conditions(1) and (6) hold.
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The theorem holds if we replaceN(αj, |αj|) byN(αj, C|αj|) for any constantC > 0. Note
that radial and doubling weights satisfyp(r) = O(rα) for someα > 0. In other words, they have
at most a polynomial growth. Examples of radial and doubling weights arep(z) = |z|α(ln(1 +
|z|2))β, α > 0, β ≥ 0, but forp(z) = |z|α, we may give a better result:

THEOREM 3.1.4. Assume thatp(z) = O(|z|2∆p(z)) and
(w3) there exists constantsC1, C2 > 0, such that|z−w| ≤ |z| impliesp(w) ≤ C1p(z) +C2.
ThenV is interpolating forAp(C) if and only if condition(6) holds.

REMARK 3.1.5. (i) We don’t need to assume thatp is radial in this theorem.
(ii) It is easy to see that radial and doubling weights satisfy condition (w3).

(iii) Theorem 3.1.4 applies top(z) = |z|α, α > 0. For this weight and with the extra
assumption that there is a functionf ∈ Ap(C) such thatV ⊂ Z(f), it was shown in
([44, Theorem 3]) that condition (6) is sufficient and necessary.

Next we are interested in the case wherep grows rapidly, allowing infinite order functions in
Ap(C). A fundamental example isp(z) = e|z|.

In [3], Berenstein and Li studied this weight and more generally those for whichln p(er) is
convex. They gave sufficient conditions (Corollaries 5.6 and Corollary 5.7) as well as necessary
ones (Theorem 5.14, Corollary 5.15).

The following result gives a characterization in particular for the weightp(z) = e|z|.

THEOREM 3.1.6. Assume thatp(z) = O(∆p(z)).
ThenV is interpolating forAp(C) if and only if condition(4) holds.

The next theorem will give a characterization whenp is radial,q(r) = ln p(er) is convex and
r

q′(ln r)
= p(r)

p′(r)
is increasing (for larger). If we setu(r) = ln p(r), we havep(r)

p′(r)
= 1

u′(r)
. Thus, the

last condition means thatu(r) is concave for larger. We recall that the convexity ofq implies
thatp(r) ≥ Ar +B, for someA,B > 0 (see [3, Lemma 5.8]).

The weightsp(z) = |z|α, α > 0 andp(z) = e|z| satisfy these conditions. Examples of
weights for which Theorem 3.1.7 applies but not any of Theorems 3.1.3, 3.1.4 or 3.1.6 arep(z) =

e|z|
α
, 0 < α < 1 andp(z) = e[log(1+|z|2)]β , β > 1.

THEOREM 3.1.7. Assume thatp is a radial weight and that for a certainr0 > 0 it satisfies
the following properties

• q(r) := ln p(er) is convex on[ln r0,∞[;
• q′(ln r0) > 0 and r

q′(ln r)
is increasing on[r0,∞[.

ThenV is interpolating forAp(C) if and only if the following condition holds:

(12) ∃A > 0,∃B > 0, ∀|αj| ≥ r0, N(αj,max(
|αj|

q′(ln |αj|)
, e)) ≤ Ap(αj) +B.

The theorem holds if we replace
|αj|

q′(ln |αj|)
by

C|αj|
q′(ln |αj|)

for any constantC > 0.

Whenp(z) = |z|α, conditions (12) and (6) are the same and whenp(z) = e|z|, conditions
(12) and (4) are the same.
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Specializing Theorem 3.1.7, we get the following corollaries.

COROLLARY 3.1.8. Letp(z) = e|z|
α
, 0 < α < 1. V is interpolating forAp(C) if and only if

the following condition holds:

(13) ∃A > 0,∃B > 0, ∀j, N(αj, |αj|1−α) ≤ Ap(αj) +B.

COROLLARY 3.1.9. Letp(z) = e[ln(1+|z|2)]β , β ≥ 1. V is interpolating forAp(C) if and only
if the following condition holds:

(14) ∃A > 0,∃B > 0, ∀j, N(αj, |αj|[ln(1 + |αj|2)]1−β) ≤ Ap(αj) +B.

3.2. Preliminary results

We first construct a smooth interpolating function with the right growth.

LEMMA 3.2.1.SupposeV = {(αj,mj)}j is weakly separated. GivenW = {wj,l}j∈N,0≤l≤mj−1 ∈
Ap(V ), there exists a smooth functionF such that

(i) for some constantsA > 0 andB > 0, |F (z)| ≤ AeBp(z), |∂̄F (z)| ≤ AeBp(z) for all
z ∈ C;

(ii) The support of̄∂F is contained in the union of the annuli

Aj = {z ∈ C :
δj
2
≤ |z − αj| ≤ δj};

(iii)
F (l)(αj)

l!
= wj,l for all j ∈ N, 0 ≤ l ≤ mj − 1.

A suitable functionF is of the form

F (z) =
∑
j

X
( |z − αj|2

δ2
j

)mj−1∑
l=0

wj,l(z − αj)
l,

whereX is a smooth cut-off function withX (x) = 1 if |x| ≤ 1/4 andX (x) = 0 if |x| ≥ 1. See
[21] for details of the proof.

Now, when looking for a holomorphic interpolating function of the formf = F + u, we are
led to the∂̄-problem

∂̄u = −∂̄F.
The interpolation problem is then reduced to the following:

LEMMA 3.2.2. If V = {(αj,mj)}j is weakly separated and if there exists a subharmonic
functionU satisfying for certain constantsA,B > 0,

(i) U(z) ≤ Ap(z) +B for all z ∈ C;
(ii) −U(z) ≤ Ap(z) +B for z in the support of̄∂F ;

(iii) U(z) ' mj ln |z − αj|2 nearαj,

thenV isAp-interpolating.
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PROOF. LetW = {wj,l}j∈N,0≤l≤mj−1 be inAp(V ). As V is weakly separated, there exists a
smooth interpolating functionF satisfying the properties in Lemma 3.2.1. Using properties (ii)
in Lemma 3.2.2, (ii) in Lemma 3.2.1 and (w1), we see that there exists a constantE > 0 such
that ∫

C
|∂̄F |2e−U(z)−Ep(z) dλ(z) <∞.

Hörmander’s theorem 1.2.16 gives aC∞ functionu such that̄∂u = −∂̄F and

(15)
∫

C

|u(z)|2e−U(z)−Ep(z)

(1 + |z|2)2
dλ(z) ≤ 1

2

∫
C
|∂̄F |2e−U(z)−Ep(z) dλ(z).

Settingf = u+ F , it is clear thatf ∈ A(C). Moreover, by condition (iii) in Lemma 3.2.2, near
αj, e−U(z)(z−αj)l is not summable for0 ≤ l ≤ mj − 1, so we have necessarilyu(l)(αj) = 0 for

all j and0 ≤ l ≤ mj − 1 and consequentlyf := u+ F is
f (l)(αj)

l!
= wj,l.

In view of property (iii) in Lemma 1.1.4, it only remains to show thatf ∈ Wp(C). It suffices
to show thatF ∈ Wp(C) andu ∈ Wp(C).

Condition (ii) in Lemma 3.2.1 gives constantsA,B > 0 such that, for allz ∈ C, |F (z)| ≤
AeBp(z). By condition (w1), chosing a constantC > 0 large enough, we obtain∫

C
|F (z)|2e−Cp(z)dλ(z) <∞,

in other words,F ∈ Wp(C).
By properties (i) in Lemma 3.2.2 and (w1), there exist a constantD > 0 such that, for all

z ∈ C,

e−Dp(z) .
e−U(z)

(1 + |z|2)2
.

Therefore, ∫
C
|u(z)|2e−(D+E)p(z)dλ(z) .

∫
C

|u(z)|2e−U(z)−Ep(z)

(1 + |z|2)2
dλ(z) <∞.

This shows thatu ∈∈ Wp(C) and concludes the proof. �

3.3. Proofs of the main theorems

We will use a smooth cut-off functionX with X (x) = 1 if |x| ≤ 1/4 andX (x) = 0 if
|x| ≥ 1.

REMARK 3.3.1. In the proofs of the sufficiency part, we may need to assume that for allj,
we have|αj| ≥ a for a suitablea > 0. This will be done without loss of generality up to a linear
transform and in view of property (b) of the weight.

PROOF OFTHEOREM 3.1.1.
By Lemma 1.2.13, condition (4) implies the weak separation. So we are done if we construct

a functionU satisfying the conditions of Lemma 3.2.2.
SetXj(z) = X (|z − αj|2).
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In order to construct the desired function we begin by defining

U0(z) =
∑
j

mjXj(z) ln |z − αj|2.

Note that there is locally a finite number of non vanishing terms in the sum and that each term
(and consequentlyU0) is nonpositive. It is also clear thatU0(z) −mj ln |z − αj|2 is continuous
nearαj.

We want to estimate−U0 on the support of̄∂F , and the “lack of subharmonicity” ofU0, then
we will add a correcting term to obtain the functionU of the lemma.

Supposez is in the support of̄∂F . We want to show that−U0(z) . p(z). Letk be the unique
integer such thatδk

2
≤ |z − αk| ≤ δk. Then

−U0(z) ≤ 2
∑

|z−αj |≤1

mj ln
1

|z − αj|
= 2mk ln

1

|z − αk|
+ 2

∑
j 6=k,|z−αj |≤1

mj ln
1

|z − αj|
.

Using that|z − αk| ≥ δk
2

and that forj 6= k we have

|αk − αj| ≤ |z − αj|+ |z − αk| ≤ 2|z − αj|,
we obtain that

(16) −U0(z) ≤ 2 ln
1

δmk
k

+ 2N(αk, 2) . p(αk) . p(z).

The last inequalities follows from condition (4), the weak separation (7) and property (b) of the
weightp.

Now we want to get a lower bound on∆U0(z). We have

∆U0(z) =
∑
j

mjXj(z)∆ ln |z − αj|2

+ 8 Re

(∑
j

mj ∂̄Xj(z)∂ ln |z − αj|2
)

+ 4
∑
j

mj∂∂̄Xj(z) ln |z − αj|2.

The first sum is a positive measure and on the supports of∂̄Xj and∂∂̄Xj, we see that1/2 ≤
|z − αj| ≤ 1. Consequently, for a certain constantγ > 0 we have

∆U0(z) ≥ −γ(n(z, 1)− n(z, 1/2)) ≥ −γn(z, 1) ≥ −γ(n(0, |z|+ 1)− n(0, |z| − 1)).

We setn(0, t) = 0 if t < 0,

f(t) =

∫ t+1

t−1

n(0, s)ds, g(t) =

∫ t

0

f(s)ds and W (z) = g(|z|).

Let us compute the Laplacian ofW , taking the derivatives in the sense of distributions

∆W (z) =
1

|z|
g′(|z|) + g′′(|z|) ≥ g′′(|z|) = f ′(|z|) = n(0, |z|+ 1)− n(0, |z| − 1).
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The functionU defined by

U(z) = U0(z) + γW (z)

is then clearly subharmonic. On the other hand, using condition (10) and (b) we have the follow-
ing inequalities:

f(s) ≤ 2n(0, s+ 1), W (z) = g(|z|) ≤ 2

∫ |z|+1

1

n(0, s)ds . p(z).

SinceU0 ≤ 0 it is clear thatU satisfies condition (i) of Lemma 3.2.2. Using the estimate (16)
and the fact thatW is nonnegative we see thatU satisfies condition (ii). Finally as condition (iii)
is also already fulfilled byU0 andW is continous, it is also fulfilled byU . �

PROOF OFTHEOREM 3.1.3.
Necessity.In view of Remark 3.1.5 and Remark 1.2.8, we apply Theorem 1.2.7 withRj =

|αj| and we readily obtain the necessity of (6). Condition (1) is necessary by Corollary 1.2.4.
Sufficiency.By Lemma 1.2.13, condition (6) implies the weak separation. We will proceed

as in Theorem 3.1.1, constructing a functionU satisfying (i), (ii) and (iii) from Lemma 3.2.2.
Thanks to the doubling condition, we can control the weightp in discsD(αj, |αj|) instead of just
D(αj, e) in the general case. We will constructU0 as in the previous theorem, except that we
now takeXj ’s with supports of radius' |αj|:

Set

Xj(z) = X
(

16|z − αj|2

|αj|2

)
,

and introduce the negative function

U0(z) =
∑
j

mjXj(z) ln
16|z − αj|2

|αj|2
.

Whenz is in the support of̄∂F , let k be the unique integer such thatδk
2
≤ |z − αk| ≤ δk.

Repeating the estimate on−U0(z), we have

−U0(z) ≤ 2
∑

|z−αj |≤
|αj |
4

mj ln
|αj|

4|z − αj|
≤ 2mk ln

|αk|
δk

+ 2
∑

0<|αk−αj |≤
|αj |
2

mj ln
|αj|

2|αk − αj|
.

We have
|αj|
2

≤ |αk| whenever|αk − αj| ≤
|αj|
2

. We deduce the inequalities

(17) −U0(z) ≤ 2 ln
1

δmk
k

+ 2N(αk, |αk|) . p(αk) . p(z).

Again, the last inequalities follow from condition (4), the weak separation (7) and property (b)
of the weightp.
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We estimate∆U0(z) as before except that now|∂̄Xj(z)| . 1
|αj | and|∂∂̄Xj(z)| . 1

|αj |2 . On

the support of these derivatives,
|αj|
8

≤ |z − αj| ≤
|αj|
4

and
|z|
2
≤ |αj| ≤ 2|z|. We deduce that

∆U0(z) & −
n(0, 2|z|)− n(0, |z|

2
)

|z|2
.

To construct the correcting termW set

f(t) =

∫ t

0

n(0, s)ds, g(t) =

∫ t

0

f(s)

s2
ds and W (z) = g(2|z|).

Finally, to estimate the Laplacian ofW , we writet = 2|z|. We have

∆W (z) = 4

(
1

t
g′(t) + g′′(t)

)
=

4

t2

(
f ′(t)− f(t)

t

)
and

f(t) =

∫ t

0

n(0, s)ds =

∫ t
4

0

n(0, s)ds+

∫ t

t
4

n(0, s)ds ≤ t

4
n

(
0,
t

4

)
+ t

(
1− 1

4

)
n(0, t).

Thus,

f ′(t)− f(t)

t
= n(0, t)− f(t)

t
≥ 1

4

(
n(0, t)− n

(
0,
t

4

))
and

∆W (z) &
n(0, 2|z|)− n(0, |z|

2
)

|z|2
.

Now, the desired function will be of the form

U(z) = U0(z) + γW (z),

whereγ is a positive constant sufficiently large. The following inequalities are easy to see:

f(t) ≤ tn(0, t), g(t) ≤
∫ t

0

n(0, s)

s
ds = N(0, s).

Thus, by condition (1) and the doubling condition,

0 ≤ W (z) ≤ N(0, 2|z|) . p(2z) . p(z).

We conclude thatU satisfies all the desired conditions. �

PROOF OFTHEOREM 3.1.4.
Necessity.Recalling Remark 1.2.8, we apply once again Theorem 1.2.7 to deduce the neces-

sity of condition (6).
Sufficiency.The proof is the same as for Theorem 3.1.3, we only change the estimate on∆U0

and the correcting termW . Let us have a new look at∆U0(z).

(18) ∆U0(z) & −
∑

|z−αj |≤
|αj |
4

mj

|z|2
.
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If the sum is not empty, letαk be the point appearing in the sum with the largest modulus. For
all αj such that|z − αj| ≤ |αj |

4
, we have

|αj − αk| ≤ |z − αk|+ |z − αj| ≤
|αk|
4

+
|αj|
4

≤ |αk|
2
.

We deduce that

∆U0(z) & −
n(αk,

|αk|
2

)

|z|2
.

Besides,

n(αk,
|αk|
2

) ≤ mk +
1

ln 2

∑
0<|αj−αk|≤

|αk|
2

mj ln
|αk|

|αj − αk|
. N(αk, |αk|) . p(αk).

Note that|z − αk| ≤ |αk|
4

implies that|z − αk| ≤ |z|. Thus by condition (w3) we havep(αk) .
p(z). Finally we get

∆U0(z) & −p(z)
|z|2

& −∆p(z).

Then we take
U(z) = U0(z) + γp(z)

whereγ is a positive constant chosen large enough. �

PROOF OFTHEOREM 3.1.6. We already know by Theorem 1.2.7 that condition (4) is nec-
essary.

Let us consider the functionU0 that we constructed in the proof of Theorem 3.1.1. Again, we
only change the estimate on∆U0 and the correcting termW . We find

(19) ∆U0(z) & −n(z, 1).

If n(z, 1) 6= 0, letαk be inD(αk, 1). Then

n(z, 1) ≤ n(αk, 2) ≤ mk +
1

1− ln 2

∑
0<|αk−αj |<2

mj ln
e

|αk − αj|
. N(αk, e) . p(αk) . p(z).

The function
U(z) = U0(z) + γp(z),

with γ > 0 large enough has the desired properties. �

PROOF OFTHEOREM 3.1.7.
We setc := inf(q′(ln r0), 1) andψ(r) =

r

q′(ln r)
.

CLAIM 3.3.2.

(i) Let r ≥ 2r0. Thencψ(r) ≤ r and

|x| ≤ c
ψ(r)

2
implies that

ψ(r)

2
≤ ψ(r + x) ≤ 2ψ(r);
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(ii) For all r ≥ r0,
p(r + ψ(r)) ≤ ep(r).

Assuming this claim true for the moment, let us proceed with the proof of Theorem 3.1.7.
Necessity.In view of Theorem 1.2.7, it suffices to show thatRj = ψ(|αj|) satisfy condition (2).
Let |αj| ≥ r0 andw be such that|w−αj| ≤ Rj. Thus|w| ≤ |αj|+ψ(|αj|) and as a consequence
of (ii) of the claim, we obtain

p(w) ≤ p(|αj|+ ψ(|αj|) ≤ ep(|αj|).

Sufficiency.We may assume that|αj| ≥ r0 for all j (see Remark 3.3.1). We apply Lemma
1.2.13 to deduce thatV is weakly separated. We repeat the proof of Theorems 3.1.4 and 3.1.3,
replacing|αj| by cψ(|αj|). More precisely, we set

Xj(z) = X
(

16|z − αj|2

c2ψ(|αj|)2

)
and we define the negative function

U0(z) =
∑
j

mjXj(z) ln
16|z − αj|2

c2ψ(|αj|)2
.

We use (i) of Claim 3.3.2 to obtain that whenever|z − αj| ≤ cψ(|αj |)
2

, we have

ψ(|z|) ≤ ψ(|αj|+ |z − αj|) ≤ 2ψ(|αj|);
ψ(|αj|)

2
≤ ψ(|αj| − |z − αj|) ≤ ψ(|z|).

Adapting the inequality (17) whenδk
2
≤ |z − αk| ≤ δk and applying condition (12) we find

−U0(z) ≤ 2 ln
1

δmk
k

+ 2N(αk, cψ(|αk|) . p(αk) . p(z).

Let us now find a lower bound for∆U0 on C. By analogy to (18) and the inequalities following
we obtain

∆U0(z) & −
∑

|z−αj |≤ψ(|αj |)c/4

1

ψ(|αj|)2
& −N(αl, cψ(|αl|))

(ψ(|z|))2

whereαl is one of the points appearing in the sum with the largest modulus. Recall that

|z − αl| ≤ ψ(|αl|)c/4 ≤ ψ(|z|)c/2 ≤ ψ(|z|)

and consequently from (ii) of Claim 3.3.2 we deduce that

p(αl) ≤ p(|z|+ |z − αl|) ≤ p(|z|+ ψ(|z|)) ≤ ep(z).

Finally, we apply condition (12)

∆U0(z) & − p(z)

ψ(|z|)2
.
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Let us compute the Laplacian ofp(z) = eq(ln |z|) in terms of the convex functionq. Setting
r = |z|,

∆p(z) =
p′(r)

r
+ p′′(r) =

[q′(ln r)]2

r2
p(r) +

q′′(ln r)

r2
p(r) ≥ [q′(ln r)]2

r2
p(r) =

p(r)

[ψ(r)]2
.

We readily deduce that
∆U0(z) ≥ −γ∆p(z)

for someγ > 0. As in the preceding proofs, the functionU(z) = U0(z) + γp(z) satisfies the
properties stated in Lemma 3.2.2. �

PROOF OFCLAIM 3.3.2. Let r > r0. A computation gives

ψ′(r) =
q′(ln(r))− q′′(ln r)

[q′(ln r)]2
.

Recall thatq′′ is nonnegative. Besides asq′ is increasing we haveq′(ln r) ≥ q′(ln r0) ≥ c. We
deduce that0 ≤ ψ′(r) ≤ 1

c
. Note that we also have the inequalitycψ(r) ≤ r.

Assume nowr ≥ 2r0 and let|x| ≤ cψ(r)
2

. Then

|r + x| ≥ r − cψ(r)

2
≥ r

2
≥ r0.

We can now use the mean value theorem and the preceding estimates to write

|ψ(r + x)− ψ(r)| ≤ |x|
c
≤ ψ(r)

2
.

We easily deduce (i).
To prove (ii), putu(t) = q(ln t) = ln p(t). We haveu′(t) = 1

ψ(t)
≤ 1

ψ(r)
for all t ≥

r ≥ r0 becauseψ is increasing on[r0,∞[. Applying the mean value theorem again, we obtain
u(r + ψ(r))− u(r) ≤ 1. We deduce that

p(r + ψ(r)) = eu(r+ψ(r))−u(r)p(r) ≤ e p(r). �





CHAPTER 4

A geometric characterisation of interpolating varieties for Beurling weights

The results of this chapter are joint work with X. Massaneda and J. Ortega-Cerdà. They were
published in Transactions of the American Mathematical Society ([34]).

Introduction

Let E(R) be the space of smooth functions inR and letE ′(R) be its dual, the space of distri-
butions with compact support onR. It is well known that the spacêE ′(R) of Fourier transforms
of distributions inE ′(R) coincides with the algebra of entire functionsf such that

|f(z)| ≤ C(1 + |z|)AeB| Im z|,

whereA,B,C > 0 may depend onf (see [2, Theorem 1.4.15]).
The origin of the interest in̂E ′(R)-interpolation lies in its relationship with convolution equa-

tions and, in particular, with the density of exponential families{eiλx}λ∈Λ in the space of solu-
tionsg ∈ E(R) of equations of typeµ ? g = 0, µ ∈ E ′(R). Any solutiong to the convolution
equation is the limit of linear combinations of{eiλx}λ∈Λ whereΛ is the zero set of̂µ. If moreover
the sequenceΛ is Ê ′(R)-interpolating then the series that representsg enjoys better convergence
properties. For more on this relationship see [18] or [2, Chapter 6] (in particular Theorem 6.1.11).

For the weightp(z) = | Im z| + ln(1 + |z|2), Ehrenpreis and Malliavin gave a necessary
geometric condition which turns out to be sufficient provided thatΛ is a zero sequence of a slowly
decreasing function (see [18, Theorem 4]). Later Squires, probably unaware of Ehrenpreis and
Malliavin’s result (which was stated in terms of solutions to convolution equations), proved the
same result [45, Theorem 2].

In this chapter, we are giving a geometric characterization forÊ ′(R)-interpolating sequences
(Theorem 4.1.2). The characterization shows in particular that the geometric condition given by
Ehrenpreis & Malliavin and Squires is also sufficient whenever the sequence is contained in the
region

| Im z| ≤ C log(1 + |z|2).
In general, however, their condition alone is not sufficient.

A similar characterization is obtained for the more general Beurling weights. These weights
appear naturally in the context of convolution equations when one replaces distributions with
compact support with Beurling-Björck ultradistributions of compact support (see [10]). They are
not necessarily subharmonic, but we will prove that they are equivalent to a subharmonic weight
(see Lemma 4.3.2).

This chapter is organised as follows. In Section 4.1 we give the definition and some properties
of Beurling weights then we state our main result. In Section 4.2 we prove that the geometric

41
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conditions of Theorem 4.1.2 are necessary, while in Section 4.3 we show that they are also
sufficient.

4.1. Main result

DEFINITION 4.1.1. A Beurling weight is a function

p(z) = | Im z|+ ω(|z|),
whereω(t) is a subadditive increasing continuous function, normalized withω(0) = 0 and such
that:

(c) log(1 + t) . ω(t) for t > 1.

(d)
∫ ∞

0

ω(t)

1 + t2
dt <∞.

Canonical examples of such weights are given byω(t) = log(1 + t2) andω(t) = tγ, γ ∈
(0, 1).

Beurling weights satisfy the following additional properties:
(e) For everyc > 0 there existsC > 0 such thatp(ζ) ≤ Cp(z) if ζ ∈ D(z, cp(z)).
(f) For ε > 0 small enough, there existsC(ε) > 0 such that ifz ∈ D(ζ, εp(ζ)) then

p(ζ) ≤ C(ε)p(z). Also,C(ε) tends to 1 asε goes to 0.
(g) Forx ∈ R+ big enough, the functionω(x) does not oscillate too much. More precisely,

for fixedC > 0, if y ∈ (x− Cω(x), x + Cω(x)) then1/2 ≤ ω(y)/ω(x) ≤ 2 for x big
enough.

Properties (e) and (f) follow easily from the subadditivity ofω. Property (g) follows from the
subadditivity and the fact thatω(x) = o(|x|/ log |x|) (see [10, Lemma 1.2.8]): for anyy ∈
(x− Cω(x), x+ Cω(x))

ω(x− Cω(x)) ≤ ω(y) ≤ ω(x+ Cω(x)) ≤ ω(x− Cω(x)) + ω(2Cω(x)) ≤
≤ ω(x− Cω(x)) + ω(2Cx/ log x) ≤ 2ω(x− Cω(x)).

We are ready to state our main result. For convenience, a multiplicity variety will be denoted
by V = {(λ,mλ)}λ∈Λ whereΛ is a discrete sequence of complex numbers.

THEOREM4.1.2. A multiplicity varietyV = {(λ,mλ)}λ∈Λ isAp-interpolating if and only if:

(i) There isC > 0 such that

(20) NV (λ, p(λ)) ≤ Cp(λ) ∀λ ∈ Λ.

(ii) The following Carleson-type condition holds

(21) sup
x∈R

∑
λ∈Λ,| Im λ|>ω(|λ|)

mλ
| Im λ|
|x− λ|2

<∞.

Since the Poisson kernel atλ in the corresponding half-plane (upper half-plane ifIm λ > 0

and lower half-plane whenIm λ < 0) is P (λ, x) = | Im λ|
|x−λ|2 , a restatement of condition (ii) is that

the measure
∑

λ:| Im λ|>ω(|λ|)
mλδλ has bounded Poisson balayage.
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REMARK 4.1.3. Notice that for sequencesΛ within the region| Im z| ≤ ω(|z|) , condi-
tion (20) (shown to be necessary by Ehrenpreis & Malliavin and Squires) provides a complete
characterization. However, this is not the case in general, i.e. condition (21) does not follow
from (20), as it is shown in the following example. Take the sequenceΛ contained in the sector
A = {z ∈ C; |Re z| < Im z} and having in each segment{Im z = 2n} ∩ A exactly2n equis-
paced points. ThenΛ satisfies condition (20) (basicallyn(λ, t) ≤ t for t ≤ p(λ)) for all λ ∈ Λ,
but it does not satisfy (21) (it is not even a Blaschke sequence).

4.2. Necessary conditions

Let V = {(λ,mλ)}λ∈Λ be a multiplicity variety.

PROPOSITION4.2.1. If V isAp-interpolating, then condition(20)holds.

PROOF. Property (e) of the weight shows that we may considerRj = p(αj) in Theorem
1.2.7. Thus this is a rephrasing of condition (3) in Theorem 1.2.7. �

The necessity of condition (21) is an immediate consequence of the following proposition.
Assume thatΛ ∩ R = ∅; otherwise move the horizontal line so that it does not touch any of the
points inΛ. Let H denote the upper half-plane.

PROPOSITION4.2.2. If V isAp-interpolating, then there existsC > 0 such that∑
λ′∈Λ∩H
λ′ 6=λ

mλ′ log
∣∣∣λ− λ′

λ− λ̄′

∣∣∣−1

≤ Cp(λ) for all λ ∈ Λ ∩H.

Of course an analogous result could be given for any upper ({z : Im z > a}) or lower
({z : Im z < a}) half plane.

PROOF. Let z = x+ iy and consider the Poisson transform ofω(|t|):

u(z) := P [ω](z) =

∫
R

y ω(|t|)
(x− t)2 + y2

dt,

which converges by (d). DefineH = exp(u+ iũ), whereũ is a harmonic conjugate ofu.
By Lemma 1.2.6, there exist a sequence of functions{fλ}λ∈Λ such that

(i) f (l)
λ (λ′) = 0 for all λ′ ∈ Λ \ {λ} and all0 ≤ l < m′

λ, exceptfλ(λ) = 1.
(ii) For all z ∈ C, |fλ(z)| ≤ AeBp(z) whereA,B > 0 don’t depend onλ.

Givenλ ∈ Λ ∩H, define

hλ(z) =
fλ(z)e

iM1z

(H(z))M2
,

with M1,M2 to be chosen. It is clear thathλ is holomorphic inH. On the other hand, for allz in
the upper half plane| log |H(z)|−ω(|Re z|)| ≤ A+B| Im z|, see [10, Lemma 1.3.11]. Moreover
|ω(|Re z|) − ω(|z|)| ≤ ω(| Im z|) ≤ A + B| Im z|, thus| log |H(z)| − ω(|z|)| ≤ A + B| Im z|.
Therefore, ifM1 andM2 are big enough,hλ is bounded inH by a constant which does not depend
onλ:

|hλ(z)| ≤ CeMp(z)−M1 Im z−M2 log |H(z)| . 1.
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Also,
|hλ(λ)| = e−M1 Im λ−M2 log |H(λ)| ≥ e−Cp(λ).

Now apply Jensen’s Formula in the half-plane to the functionhλ:

log |hλ(λ)| =
∫

R
P (λ, x) log |hλ(x)| dx−

∫
H
G(λ, ζ)∆ log |hλ(ζ)|,

whereP (λ, x) denotes the Poisson kernel andG(λ, ζ) = log
∣∣∣λ− ζ

λ− ζ̄

∣∣∣−1

is the Green function in

H with pole inλ.
Sincehλ vanishes onΛ \ {λ}, Jensen’s Formula and the estimates above yield∑

λ′∈Λ∩H
λ′ 6=λ

mλ′ log
∣∣∣λ− λ′

λ− λ̄′

∣∣∣−1

≤ sup
R

log |hλ| − log |hλ(λ)| . p(λ).

� �

REMARK 4.2.3. The necessary condition of Proposition 4.2.2 can be seen as a Carleson type
condition; it can be rewritten as

|Bλ(λ)| ≥ δe−Cp(λ) λ ∈ Λ ∩H,

whereB denotes the Blaschke product inH of {(λ,mλ)}λ∈Λ∩H, and

Bλ(z) = B(z)
(z − λ̄

z − λ

)mλ

.

It can also be seen as density conditions for the counting function associated to the hyperbolic
metric in the half-plane. Lettingν =

∑
λ∈Λ∩Hmλδλ and using the distribution function we have∑

λ∈Λ∩H

mλ log
∣∣∣z − λ

z − λ̄

∣∣∣−1

=

∫
H

log
∣∣∣z − ζ

z − ζ̄

∣∣∣−1

dν(ζ) =

∫ 1

0

nH(z, t)

t
dt,

where

DH(z, t) = {ζ :
∣∣∣z − ζ

z − ζ̄

∣∣∣ < t}, and nH(z, t) := ν(DH(z, t))

is the number of points ofΛ in the pseudohyperbolic disk of “center”z and “radius”t (actually
the true disk of centerRe z + i1+t2

1−t2 Im z and radius 2t
1−t2 Im z).

PROPOSITION4.2.4. If V isAp-interpolating, then condition(21)holds.

PROOF. DefineΛ+ = Λ ∩ {Im z > ω(|z|)}. Givenx ∈ R considerλ ∈ Λ+ such that
|x− λ| = infΛ+ |x− λ|. Then

|λ− λ̄′| ≤ |λ− x|+ |x− λ̄′| = |λ− x|+ |x− λ′| ≤ 2|x− λ′|,
and therefore ∑

λ′∈Λ+

mλ′
| Im λ′|
|x− λ̄′|2

≤ 2
∑
λ′∈Λ+

mλ′
| Im λ′|
|λ− λ̄′|2

.
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The estimatelog t−1 ≥ 1− t for t ∈ (0, 1) shows that∑
λ′∈Λ+

λ′ 6=λ

mλ′
| Im λ|| Im λ′|
|λ− λ̄′|2

≤
∑
λ′∈Λ+

λ′ 6=λ

mλ′ log
∣∣∣λ− λ′

λ− λ̄′

∣∣∣−1

.

Sincep(λ) ' | Im λ| for λ ∈ Λ+, it is clear, using Proposition 4.2.2, that this implies
condition (20). �

4.3. Sufficient conditions

We split the sequence into three pieces, according to the non-isotropy of the weightp. Con-
sider the regions

Ω0 = {z ∈ C : | Im z| ≤ ω(|z|)}
Ω+ = {z ∈ C : Im z > ω(|z|)}
Ω− = {z ∈ C : Im z < −ω(|z|)},

and defineΛ0 = Λ ∩ Ω0, Λ+ = Λ ∩ Ω+ andΛ− = Λ ∩ Ω−. Let alsoV0 = {(λ,mλ)}λ∈Λ0,
V+ = {(λ,mλ)}λ∈Λ+ andV− = {(λ,mλ)}λ∈Λ−.

Recall that condition (20) implies thatV is weakly separated (see Lemma 1.2.13). Thus, it is
enough to prove that each pieceV+, V−, V0 of the varietyV isAp-interpolating. This is because a
weakly separated union of a finite number ofAp-interpolating varieties is alsoAp-interpolating
(see Theorem 2.1.1 in Chapter 2). It is also clear that the varietiesV + andV − can be dealt with
similarly.

We start with another easy consequence of condition (20).

LEMMA 4.3.1. If condition(20)holds, then there existsε, C > 0 such that

nV (z, εp(z)) ≤ Cp(z),∀z ∈ C.

PROOF. Whenz = λ ∈ Λ, this is immediate from the estimate∫ p(λ)

1/2p(λ)

nV (λ, 1/2p(λ))− 1

t
dt ≤ NV (λ, p(λ)).

Whenz /∈ Λ, then letε > 0 be such thatζ ∈ D(z, εp(z)) implies

D(z, εp(z)) ⊂ D(ζ, 1/2p(ζ)),

which exists by property (f) of the weight. Takeλ ∈ D(z, εp(z)) (if there is no suchλ the
estimate is obviously true). Then, by the previous case and property (e) of the weight

nV (z, εp(z)) ≤ nV (λ, 1/2p(λ)) . p(λ) . p(z).

�
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4.3.1. Case ofΛ0. We would like to prove thatV0 = {(λ,mλ)}λ∈Λ0 is Ap-interpolating
using a∂̄-scheme as in Chapter 3 and 4. This is easier if we can regularize the weight in the
following way.

LEMMA 4.3.2. There exists̃p subharmonic inC such thatp(z) ' p̃(z) and

(22) 1/p̃(z) . ∆p̃(z) if | Im z| ≤ 2ω(|z|).

The fact thatp ' p̃ clearly implies thatAp(C) = Ap̃(C) and the interpolating varieties for
Ap(C) andAp̃(C) are the same.

PROOF. We will constructp̃(z) = | Im z|+ r(z), wherer satisfies the following properties:

(i) r ≥ 0 andp̃ is subharmonic inC,
(ii) r(z) = 0 if | Im z| ≥ 10ω(|z|).

(iii) 1/p(z) . ∆p̃(z) andr(z) ' ω(|z|) if | Im z| ≤ 2ω(|z|).
In order to constructr, we partition the real line into intervalsIn defined in the following

way.
Let x1 > 1, xn+1 = xn + ω(xn) for n ≥ 1 andxn = −x−n for n ≤ −1. SetI0 = [x−1, x1],

In = [xn, xn+1] for n ≥ 1 andIn = [xn−1, xn] for n ≤ −1. Denote byωn the length ofIn.
We consider two measures inC. The first one is the usual length measuredν in R, which we

split dν =
∑

n dνn, with dνn = dx|In. The second one is defined as a sum of convolutions of the
dνn’s: let

dµn(z) =
( 1

100πω2
n

∫
In

χDn(z − x)dx
)
dm(z),

whereDn = D(0, 10ωn), and definedµ =
∑

n dµn.
Notice that whenz is at a distance ofIn smaller than2ωn, we can use property (g) of the

Beurling weights to deduce thatdµ(z) ' 1/ω(|z|) ' 1/p(z). Hencedµ(z) ' dm(z)/p(z).
Define

r(z) =

∫
C

log |z − w|(dµ(w)− dν(w)).

Since∆| Im z| = dν we have∆p̃ = dµ ≥ 0.
Let Sn denote the support ofµn. Let

rn(z) :=

∫
C

log |z − w|(dµn(w)− dνn(w)) =

∫
Sn

log |z − w|dµn(w)−
∫
In

log |z − x|dx

Using the definition ofµn and reversing the order of integration we get

rn(z) =

∫
In

M(x)dx,

where

M(x) =
1

100πω2
n

∫
D(x,10ωn)

log |z − w|dm(w)− log |z − x| ≥ 0.

In particular,r in non-negative inC.
If z /∈ Sn andx ∈ In, log |z − w| is harmonic inD(x, 10ωn), hencern(z) = 0
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Suppose nowz ∈ D(xn, 3ωn). Then, for eachx ∈ In, |z − x| ≤ 4ωn and

M(x) ≥ 1

100πω2
n

∫
9ωn≤|w−x|≤10ωn

log
|z − w|
|z − x|

dm(w) & 1.

Thus,rn(z) & ωn & ω(|z|).
If z ∈ Sn, using thatµn andνn have the same massω(xn), we obtain∫

C
log |z − w|(dµn(w)− dνn(w)) ≤

∫
C

∣∣∣log
|z − w|
ω(xn)

∣∣∣(dµn(w) + dνn(w)) .∫
C

∣∣∣log
|xn − w|
ω(xn)

∣∣∣(dµn(w) + dνn(w)) . ω(|z|).

Since | Im z| ≤ 2ω(|z|), z belongs at most to a finite number ofSn’s and at least to one
D(xn, 10ωn), by property (g) of the Beurling weights, we are done. �

Let us prove now thatV0 isAp̃-interpolating. In view of Lemma 4.3.2, we assume that there
existC > 0 such that, for allz with | Im z| ≤ 2ω(|z|),

1

p(z)
≤ C∆p(z).

Consider the separation radiiδλ given by Remark 1.2.10.
Given a sequence of valuesW = {wλ,l}λ∈Λ,0≤l<mλ

∈ Ap(V ), define the smooth interpolating
function

F (z) =
∑
λ∈Λ0

pλ(z)X
( |z − λ|2

δ2
λ

)
,

wherepλ(z) =
mλ−1∑
l=0

wλ,l(z − λ)l andX is a smooth cut-off function with|X ′| . 1, X (x) = 1 if

|x| ≤ 1 andX (x) = 0 if |x| ≥ 2.
It is clear thatF (l)(λ)/l! = wλ,l, and thatF has the characteristic growth ofAp(C) functions:

the support ofF is contained in∪λDλ and forz ∈ Dλ

|F (z)| ≤
mλ−1∑
l=0

|wλ,l| ≤ Ceαp(λ) . eKp(z).

There is also a good estimate on∂̄F . Its support is the union of the annuli

Cλ = {z ∈ C : δλ ≤ |z − λ| ≤ 2δλ},
and forz ∈ Cλ, ∣∣∣∂F

∂z̄
(z)
∣∣∣ . mλ−1∑

l=0

|wλ,l||X ′| 1

δλ
. eCp(λ) . eKp(z),

for K big enough.
Altogether, there existsγ > 0 such that

(23)
∫

C
|F (z)|2e−γp(z) <∞ ,

∫
C
|∂̄F (z)|2e−γp(z) <∞ .



48 4. BEURLING WEIGHTS

Now, when looking for a holomorphic interpolating function of the formf = F − u, we are led
to the∂̄-problem

∂̄u = ∂̄F ,

which we solve using Ḧormander’s theorem 1.2.16. We apply Hörmander’s theorem with

ψβ(z) = βp(z) + v(z) ,

whereβ > 0 will be chosen later on and

v(z) =
∑
λ∈Λ0

mλ

[
log |z − λ|2 − 1

πε2p2(λ)

∫
D(λ,εp(λ))

log |z − ζ|2dm(ζ)
]
.

Hereε is a fixed small constant to be determined later on.
Integrating by parts the equality∫ 2π

0

log |a− reiθ|2 dθ
2π

=

{
log |a|2 if |a| > r

log r2 if |a| ≤ r

one sees that fora ∈ C andr > 0:

log |a|2 − 1

πr2

∫
D(a,r)

log |ζ|2dm(ζ) =

{
log |a

r
|2 + 1− |a

r
|2 if |a| ≤ r

0 if |a| > r .

Thus

v(z) =
∑

λ:|λ−z|≤εp(λ)

mλ

[
log

|z − λ|2

ε2p2(λ)
+ 1− |z − λ|2

ε2p2(λ)

]
.

In particularv ≤ 0 and∆v(z) = 0 if z /∈ ∪λD(λ, εp(λ)). For z ∈ ∪λD(λ, εp(λ)) we have
| Im z| ≤ 2ω(|z|) and

∆v(z) ≥
∑

λ:|λ−z|≤εp(λ)

−mλ

ε2p2(λ)
&

∑
λ:|λ−z|≤C(ε)p(z)

−mλ

p2(z)
= − n(z, C(ε)p(z))

p2(z)
.

As observed in Lemma 4.3.1, withε small enoughn(z, C(ε)p(z)) . p(z), thus ∆v(z) &
−1/p(z). This and (22) show thatψβ is subharmonic ifβ is chosen big enough.

Also, we deduce from (c) that for anyβ′ > β:∫
C
|u|2e−β′pdm .

∫
C
|u|2 e−ψβ

(1 + |z|2)2
dm .

∫
C
|∂̄F |2e−ψβdm .
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We need to controlψβ on the support of̄∂F . Forz ∈ Cλ,

|ψβ(z)− βp(z)| ≤
∑

λ:|λ−z|≤εp(λ)

mλ log
ε2p2(λ)

|z − λ|2

' mλ log
ε2p2(λ)

|z − λ|2
+

∑
λ′:|z−λ′|≤εp(λ′)

λ′ 6=λ

mλ′ log
ε2p2(λ′)

|z − λ′|2

. p(λ) +
∑

λ′:|λ′−z|≤C(ε)p(z)
λ′ 6=λ

mλ′ log
C(ε)2p2(z)

|z − λ′|2
. p(z) +N(z, C(ε)p(z))

CLAIM 4.3.3. For ε small enoughN(z, C(ε)p(z)) . p(z) for all z ∈ supp(∂̄F ).

Assuming the claim we have|ψβ(z)− βp(z)| ≤ Kp(z) onsupp(∂̄F ). Therefore, forβ large
enough ∫

C
|u|2e−β′pdm .

∫
C
|∂̄F |2e−ψβdm ≤

∫
C
|∂̄F |2e−γpdm <∞ .

This shows thatu ∈ Wp(C) and we already know thatF ∈ Wp(C). Therefore,f := F − u ∈
Wp(C) ∩ Ap(C) = Ap(C) (see Lemma 1.1.4).

Sincee−ψβ ' |z − λ|−2mλ around eachλ, alsou(l)(λ) = 0 for all λ ∈ Λ, l = 0, . . . ,mλ − 1,
and thereforef (l)(λ)/l! = F (l)(λ)/l! = wλ,l, as required.

Proof of the claim: Assumez ∈ Cλ and observe thatn(z, t) = 0 for t < δλ and that
n(z, t) ≤ mλ for δλ ≤ t < 2δλ. SinceD(z, t) ⊂ D(λ, t + 2δλ) and|z| < |λ| + 2δλ, we have
(changing intos = t+ 2δλ)

N(z, C(ε)p(z)) ≤
∫ 2δλ

δλ

mλ

t
dt+

∫ C(ε)p(z)

2δλ

n(z, t)−mλ

t
dt ≤

≤ p(λ) +

∫ C(ε)p(z)+2δλ

4δλ

n(λ, s)−mλ

s− 2δλ
ds .

. p(λ) +

∫ C(ε)p(z)+2δλ

4δλ

n(λ, s)−mλ

s/2
ds . p(λ) +N(λ,C ′(ε)p(λ)) .

From the properties of the weight and the hypothesis we have finally that forε small
N(z, C(ε)p(z)) . p(λ) . p(z).

4.3.2. Case ofΛ+. According to Theorem 1.2.14, it is enough to construct a functionG ∈
Ap(C) such thatV+ ⊂ Z(G) and

|G(mλ)(λ)|
mλ!

≥ εe−Kp(λ) λ ∈ Λ+

for some constantsε, k > 0. In fact, the hypotheses of Theorem 1.2.14 require the weightp to be
subharmonic, and our weights are not necessarily so. Nevertheless, by Lemma 4.3.2, there exists
a subharmonic weight̃p equivalent top, and we may apply Theorem A tõp.
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Take any entire functionF such thatZ(F ) = V+. Since the necessary conditions imply that
V+ satisfies the Blaschke condition inH, we can consider also the Blaschke product

B(z) =
∏
λ∈Λ+

(z − λ

z − λ̄

)mλ

, z ∈ H.

Define

φ(z) =

log
∣∣∣F (z)

B(z)

∣∣∣ Im z > 0

log |F (z)| Im z ≤ 0.

LEMMA 4.3.4. φ is harmonic outside the real axis, subharmonic onC and its Laplacian is
uniformly bounded.

PROOF. It is clear, by definition, thatφ is harmonic onC \ R. In order to prove thatφ is
subharmonic onC, it is enough to check the mean inequality forx ∈ R. We have

φ(x) = log |F (x)| ≤ 1

2π

∫ 2π

0

log |F (x+ reiθ)|dθ ≤ 1

2π

∫ 2π

0

φ(x+ reiθ)dθ.

Since∆ log |F | ≡ 0 aroundR, it is enough to compute the Laplacian of

ψ(z) =

log
1

|B(z)|
Im z > 0

0 Im z ≤ 0.

Being

log
1

|B(z)|
=

1

2

∑
λ∈Λ+

mλ log
∣∣∣z − λ̄

z − λ

∣∣∣2,
it will be enough to compute the Laplacian of each term

ψλ(z) =

log
∣∣∣z − λ̄

z − λ

∣∣∣2 Im z > 0

0 Im z ≤ 0.

It is clear that∂ψλ/∂x = 0 onR, hence∆ψλ = ∂2ψλ/∂y
2. Sinceψλ is continuous aroundR,

this Laplacian has a magnitude equivalent to the jump of the first derivative ofψλ. The derivative
of the Green function on the half-plane with respect to the normal directiony is the Poisson
kernel:

∂

∂y
log
∣∣∣z − λ̄

z − λ

∣∣∣2
|y=0

=
4 Im λ

|x− λ|2
.

Therefore

∆φ(x) = 4
∑
λ∈Λ+

mλ
Im λ

|x− λ|2
dx,

which is bounded by hypothesis. �
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Define
Ψ(z) = N | Im z| − φ(z).

Observe that∆Ψ(z) = N dx−∆φ(x) dx, thus according to the previous Lemma∆Ψ ' dx
whenN ∈ N is big enough. In this situation, according to [42, Lemma 3], there exists a multiplier
associated toΨ, i.e., an entire functionh such that:

(a) Z(h) is a separated sequence contained inR
(b) Given anyε > 0, |h(z)| ' exp(Ψ(z)) for all pointsz such thatd(z, Z(h)) > ε.

Define nowG = hF . It is clear thatG ∈ Ap(C):

|G(z)| . eΨ(z)+log |F (z)| ≤ eΨ(z)+φ(z) ≤ eNp(z) z ∈ C.
It is also clear thatV+ ⊂ Z(G), sinceV+ ⊂ Z(F ).

In order to prove that there existε, C > 0 such that

(24)
∣∣∣G(mλ)(λ)

mλ!

∣∣∣ ≥ εe−Cp(λ)

consider then the disjoint disksDλ = D(λ, δλ), δλ = δe
−C p(λ)

mλ given by Lemma 4.3.1(i). Since
Λ+ is far fromZ(h), the estimate

|G(z)| = |h(z)|eφ(z)|B(z)| ' eN | Im z||B(z)| z ∈ ∂Dλ

holds.

CLAIM 4.3.5. There existsC > 0 such that|B(z)| ≥ εe−Cp(z), z ∈ ∂Dλ.

Assuming this we have|G(z)| & e−Cp(z) for all z ∈ ∂Dλ. Define theng(z) = G(z)/(z −
λ)mλ . It is clear thatg is holomorphic, non-vanishing inDλ, and|g(z)| & e−cp(λ) for z ∈ ∂Dλ.
By the minimum principle ∣∣∣G(mλ)(λ)

mλ!

∣∣∣ = |g(0)| & e−cp(λ),

as desired.
Proof of the claim: As observed in Remark 4.2.3(b), the estimate we want to prove is equiv-

alent to ∫ 1

0

nH(z, t)

t
dt . p(z) z ∈ ∂Dλ.

This is proved like Claim 4.3.3, except replacing the Euclidean disks by the hyperbolic ones. We
have ∫ 1

0

nH(z, t)

t
dt .

∫ 2δλ

δλ

mλ

t
dt+

∫ 1

2δλ

nH(z, t)−mλ

t
dt.

The first term is controlled byp(λ). In order to control the second term observe thatDH(z, t) ⊂
DH(λ, t+δλ

1+tδλ
); hence changing the variable intos = t+δλ

1+tδλ
we get∫ 1

2δλ

nH(z, t)−mλ

t
dt ≤

∫ 1

3δλ
1+2δ2

λ

nH(λ, s)−mλ

s− δλ

1− δ2
λ

(1− δλ)2
ds.
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There is no restriction in assuming thatδλ < 1/2. Then 3δλ
1+2δ2λ

> 2δλ and therefores− δλ > s/2.
With this and condition (ii) in Theorem 4.1.2 we obtain∫ 1

0

nH(z, t)

t
dt . p(λ) +

∫ 1

0

nH(λ, s)−mλ

s
ds .

Sincep(λ) . p(z), we will be done as soon as we prove that∫ 1

0

nH(λ, s)−mλ

s
ds . p(λ).

There existsδ > 0 (independent ofλ) such thatDH(λ, δ) ⊂ D(λ, p(λ)). Then∫ δ

0

nH(λ, s)−mλ

s
ds =

∑
0<|λ−λ′

λ−λ̄′ |<δ

mλ′ log
δ

|λ−λ′
λ−λ̄′ |

≤
∑

0<|λ−λ′
λ−λ̄′ |<δ

mλ′ log
p(λ)

|λ− λ′|

.
∑

0<|λ−λ′|<p(λ)

mλ′ log
p(λ)

|λ− λ′|
≤ N(λ, p(λ)) . p(λ).

For the remaining part we use condition (ii) in Theorem 4.1.2 and the estimatelog t−1 ' 1−t
for δ < t < 1. Takingx = Re λ we have∫ 1

δ

nH(λ, s)−mλ

s
ds .

∑
λ6=λ′

mλ′
| Im λ|| Im λ′|
|λ− λ̄′|2

.

.
∑
λ6=λ′

mλ′
| Im λ|| Im λ′|
|x− λ′|2

. | Im λ| ' p(λ).



CHAPTER 5

The trace ofAp(C) on a multiplicity variety when p is radial and doubling

The results of this section are to appear in Michigan Mathematical Journal.

Introduction

Let V = {(λj,mj)}j be a multiplicity variety and letW = {wj,l}j,0≤l<mj
be a doubly

indexed sequence of complex values. We assume that the weightp is radial and doubling. In this
chapter, we are concerned with the following question : Under what conditions onW does there
exist an entire functionf ∈ Ap(C) such that

f (l)(αj)

l!
= wj,l, ∀j, ∀0 ≤ l < mj?

In other words, what is the image ofAp(C) by the restriction mapRV ?
In [7], Berenstein and Taylor described the spaceRV (Ap(C)) in the case where there exists

a functiong ∈ Ap(C) such thatV = Z(g). They used groupings of the points ofV with respect
to the connected components of the set{|g(z)| ≤ ε exp(−Bp(z))}, for someε, B > 0 and the
divided differences with respect to this grouping.

The main aim of this chapter is to determine more explicitely the spaceRV (Ap(C)) in the
more general case where condition (1) is satisfied. We know that (1) is verified wheneverV is
not a uniqueness set forAp(C), that is, whenV ⊂ Z(f) for a non-zero functionf in Ap(C) (see
Lemma 1.2.2). We refer to [12] and [28] for similar results in the case wherep(z) = |z|α.

As in [7] and [12], the divided differences will be important tools. Our condition will involve
the divided differences with respect to the intersections ofV with discs centered at the origin.
To be more precise, the main theorem, stated in the case of simple multiplicities, for the sake of
simplicity, is the following :

THEOREM 5.0.6. Assume thatV verifies condition(1). ThenW = {wj}j ∈ RV (Ap(C)) if
and only if for allR > 0,

|
∑
|αk|<R

wk
∏

|αn|<R,n6=k

R/(αk − αn)| ≤ AeBp(R),

whereA,B > 0 are positive constants only depending onV andW .
We will denote byÃp(V ) the space of sequencesW = {wj}j satisfying the above condi-

tion. We will show that in generalRV (Ap(C)) ⊂ Ãp(V ), thus, we may consider the restriction
mapRV : Ap(C) → Ãp(V ). In this context, the theorem states that condition (1) implies the
surjectivity ofRV .
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On the other hand, we will prove that condition (1) is actually equivalent to saying thatV is
not a uniqueness set or, in other words, it is equivalent to the non-injectivity ofRV .

As a corollary of the main theorem, we will find the sufficency in the geometric characteri-
zation of interpolating varieties given in Theorem 3.1.3.

As in Chapter 3, the difficult part of the proof of the main theorem is the sufficiency and we
will again follow a Bombieri-Ḧormander approach based onL2-estimates on the solution to the
∂̄-equation. The condition onW gives a smooth interpolating functionF with a good growth,
using a partition unity and Newton polynomials (see Lemma 5.3.5). Then we are led to solve
the ∂̄ equation : ∂̄u = −∂̄F with L2-estimates, using Ḧormander theorem 1.2.16. To do so,
we need to construct a subharmonic functionU with a convenient growth and with prescribed
singularities on the pointsαj (see Lemma 5.3.6). Following Bombieri [11], the fact thate−U

is not summable near the points{αj} forcesu to vanish on the pointsαj and we are done by
defining the interpolating entire function byu+ F .

This chapter is organised as follows ; In Section 5.1, we give some preliminary definitions
about divided differences and Newton polynomials, then we define the various spaces that we
will need to describe the trace ofAp(C) onV . We state our main results in Section 5.2 and we
prove them in Section 5.3.

5.1. Preliminaries and definitions

We will throughout this chapter assume thatp is radial and doubling (see Definition 1.1.2).
Let V = {(αj,mj)}j∈N∗ be a multiplicity variety. We will say thatV is a uniqueness set for

Ap(C) if there is no functionf ∈ Ap(C), except the zero function, such thatV ⊂ Z(f).
It is clear by Lemma 1.2.2 that wheneverV is not a uniqueness set forAp(C), condition (1)

holds. We will lately show that the converse property holds.
It is also clear that the restriction map

RV : Ap(C) −→ Ap(V )

f 7→ {f
l(αj)

l!
}j,0≤l<mj

is injective if and only ifV is a uniqueness set forAp(C).
Our aim is to describe the trace ofAp(C) on V or, in other words, the spaceRV (Ap(C)),

provided that condition (1) is verified.

5.1.1. Divided differences and Newton polynomials.To anyW = {wj,l}j∈N∗,0≤l<mj
∈

A(V ), we associate the sequence of divided differencesΦ(W ) = {φj,l}j,0≤l<mj
defined by in-

duction as follows :
We will denote by

Πq(z) =

q∏
k=1

(z − αk)
mk , for all q ≥ 1.

φ1,l = w1,l, for all 0 ≤ l ≤ m1 − 1,

φq,0 =
wq,0 − Pq−1(zq)

Πq−1(zq)
,
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φq,l =
wq,l −

P
(l)
q−1(zq)

l!
−
∑l−1

j=0
1

(l−j)!Π
(l−j)
q−1 (zq)φq,j

Πq−1(zq)
for 1 ≤ l ≤ mq − 1

where

Pq−1(z) =

q−1∑
j=1

(
mj−1∑
l=0

φj,l(z − αj)
l

j−1∏
t=1

(z − zt)
mt

)
.

REMARK 5.1.1. Actually, Pq is the polynomial interpolating the valueswj,l at the pointsαj
with multiplicity mj, for 1 ≤ j ≤ q. It is the unique polynomial of degreem1 + · · · + mq − 1
such that

P
(l)
q (αj)

l!
= wj,l

for all 1 ≤ j ≤ q and0 ≤ l ≤ mj − 1.

EXAMPLES 5.1.2. • LetW0 = {δ1,jδl,m1−1}j,0≤l<mj
.

Using the fact thatPj(z) must coincide with(z − α1)
m1−1

j−1∏
k=2

(z − αj)
mj and iden-

tifying the coefficient in front ofzm1+···+mj−1+l−1, we find :

φ1,1 = φ1,2 = · · · = φ1,m1−2 = 0, φ1,m1−1 = 1,

and, forj ≥ 2, 0 ≤ l ≤ mj − 1,

φl,j = (α1 − αj)
−(l+1)

j−1∏
k=2

(α1 − αk)
−mk .

• In the special case wheremj = 1 for all j andW = {wj}j, we have for allj ≥ 1,

φj =

j∑
k=1

wk
∏

1≤l≤j,l 6=k

(αk − αl)
−1.

To compute the coefficients, we may use the fact thatPj(z) must coincide with the

Lagrange polynomial
j∑

n=1

wn
∏

1≤k≤j,k 6=n

(z − αk)

(αn − αk)
and identify the coefficient in front

of zj−1.

5.1.2. The spaces̃Ap(V ) and ˜̃Ap(V ). Let us denote byÃp(V ) the subspace ofA(V ) con-
sisting of the elementsW ∈ A(V ) verifying : for all n ∈ N, for all αj such that|αj| ≤ 2n,

(25) ∀0 ≤ l ≤ mj − 1, |φj,l|2n(l+m1+...+mj−1) ≤ A exp(Bp(2n)),

whereA andB are positive constants only depending onV andW .

LEMMA 5.1.3. Assumeα1 = 0. Then, condition (1) holds if and only if

W0 = {δ1,jδl,m1−1}j,0≤l<mj
∈ Ãp(V ).
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PROOF. Suppose that (1) is verified. Letn ∈ N, 0 < |αj| ≤ 2n and0 ≤ l ≤ mj − 1. We
have by definition,

N(0, 2n) =
∑

0<|αk|≤2n

mk ln
2n

|αk|
+m1 ln(2n) ≥ ln

(
2n(m1+···+mj)

j∏
k=2

|αk|−mk

)
,

|φj,l| = |αj|mj−l−1

j∏
k=2

|αk|−mk ≤ 2n(mj−l−1)

j∏
k=2

|αk|−mk ≤ exp(N(0, 2n))2−n(m1+···+mj−1+l+1).

We readily obtain the estimate (25), using thatN(0, 2n) ≤ A+B p(2n).
Conversely, letn be an integer. Using the estimate (25) whenj ≥ 2 is the number of distinct

points{αk} in D(0, 2n) andl = mj − 1, we have

N(0, 2n) = ln

(
2n(m1+···+mj)

j∏
k=2

|αk|−mk

)
= ln(2n(m1+···+mj)|φj,mj−1|) ≤ A+B p(2n).

Then, we deduce the estimate forN(0, R) using the above one with2n−1 ≤ R < 2n and the
doubling property ofp. �

Now, let us denote bỹ̃Ap(V ) the subspace ofA(V ) consisting of the elementsW ∈ A(V )
verifying

(26) ∀j, ∀0 ≤ l ≤ mj − 1, |φj,l||αj|(l+m1+...+mj−1) ≤ A exp(Bp(αj)),

whereA andB are positive constants only depending onV andW .
If we define the norm

‖W‖B = sup
j

sup
0≤l≤mj−1

|φj,l||αj|(l+m1+...+mj−1) exp (−Bp(αj)).

Then the spacẽ̃Ap(V ) can also be seen as an (LF)-space that is an inductive limit of the
Banach spaces

˜̃Ap,B(V ) = {W ∈ A(V ), ‖W‖B <∞}.

LEMMA 5.1.4. We have the following inclusion

Ãp(V ) ⊂ ˜̃Ap(V ).

If condition(1) is satisfied then

Ãp(V ) = ˜̃Ap(V ).

PROOF. Let W ∈ Ãp(V ) and letn ∈ N be such that2n−1 ≤ |αj| ≤ 2n. Then for all
0 ≤ l < mj, we have

|φj,l||αj|(l+m1+...+mj−1) ≤ |φj,l|2n(l+m1+...+mj−1)

≤ A exp(Bp(2n)) ≤ A exp(Bp(αj)).
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This proves the first inclusion. To prove the second part of the lemma, observe that for alln ∈ N,
for all |αj| ≤ 2n and for all0 ≤ l < mj, we have

(27) N(0, 2n) =
∑

|αk|≤2n

mk log
2n

|αk|
≥

∑
|αk|≤|αj |

mk log
2n

|αk|
≥ log

(
2n

|αj|

)l+m1+···+mj−1

.

Assume now that condition (1) is fulfilled and thatW ∈ ˜̃Ap(V ), then

|φj,l|2n(l+m1+...+mj−1) ≤ |φj,l||αj|l+m1+...+mj−1 exp(N(0, 2n))

≤ A exp(Bp(αj)) exp(Bp(2n)) ≤ A exp(Bp(2n)).

We have proved thatW ∈ Ãp(V ) �

We are now ready to state the main results.

5.2. Main results

Let V = {(αj,mj)}j∈N∗ be a multiplicity variety.

PROPOSITION5.2.1. The restriction operatorRV mapsAp(C) continously intoÃp(V ).

PROPOSITION5.2.2. Under the assumption of condition (1),̃Ap(V ) is a subspace ofAp(V ).

PROPOSITION5.2.3. If conditions(1) and (6) are verified, then˜̃Ap(V ) = Ãp(V ) = Ap(V ).

THEOREM 5.2.4. If condition(1) holds, then

˜̃Ap(V ) = Ãp(V ) = RV (Ap(C)).

The combination of Proposition 5.2.3 and Theorem 5.2.4 shows easily the sufficiency in
Theorem 3.1.3.

Using the results given so far, we may already deduce next theorem :

THEOREM 5.2.5. The following assertions are equivalent :

(i) V is not a uniqueness set forAp(C).
(ii) The mapRV is not injective.
(iii) V verifies condition (1).
(iv) The sequenceW0 = {δ1,jδl,m1−1}j,0≤l<mj

belongs toRV (Ap(C)).

In particular, it shows that condition (1) is equivalent to the existence of a functionf ∈ Ap(C)
such thatV ⊂ Z(f). Combined with Theorem 5.2.4, it shows that, ifRV is not injective, then it
is surjective and that, if the image containsW0, then it contains the wholẽAp(V ).

PROOF OFTHEOREM 5.2.5. As we mentioned before, it is clear that (i) is equivalent to (ii)
and that (i) implies (iii).

(iv) implies (i) : We have a functionf ∈ Ap(C) not identically equal to0 such thatf (l)(αj) =
0 for all j 6= 1 and for all0 ≤ l < mj. The functiong defined byg(z) = (z − α1)f(z) belongs
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toAp(C), thanks to property (w1) of the weightp, and vanishes on everyαj with multiplicity at
leastmj.

(iii) implies (iv) :
Up to a translation, we may suppose thatα1 = 0. By Lemma 5.1.3, we know thatW0 ∈

Ãp(C). By Theorem 5.2.4,W0 ∈ RV (Ap(C)).
�

5.3. Proof of the main results

PROOF OFPROPOSITION5.2.1. We will first recall some definitions about the divided dif-
ferences and about Newton polynomials. We refer the reader to [2, Chapter 6.2] or [23, Chapter
6] for more details.

Let f ∈ A(C) andx1, . . . , xq be distinct points ofC. The qth divided difference of the
functionf with respect to the pointsx1, . . . , xq is defined by

∆q−1f(x1, . . . , xq) =

q∑
j=1

f(αj)
∏

1≤k≤q,k 6=j

(xj − xk)
−1

and the Newton polynomial off of degreeq − 1 is

P (z) =

q∑
j=1

∆j−1f(x1, . . . , xj)

j−1∏
k=0

(z − xk).

It is the unique polynomial of degreeq − 1 such thatPq(z) = f(xj) for all 1 ≤ j ≤ q.
Whenxj, 1 ≤ j ≤ q are each one repeatedlj times, the divided differences are defined by

∆l1+···+lq−1f(x1, ..., x1︸ ︷︷ ︸
l1

, . . . , xq−1, ..., xq−1︸ ︷︷ ︸
lq−1

, xq, ..., xq︸ ︷︷ ︸
lq

)

=
1

l1! · · · lq!
∂l1+···+lj

∂xl11 · · · ∂x
lq
q

∆q−1f(x1, · · · , xq).

The corresponding Newton polynomial is the unique polynomial of degreel1+ · · · lq−1 such
that, for all0 ≤ j ≤ q and0 ≤ l ≤ lj − 1,

P (l)(xj) = f (l)(xj).

We have the following estimate

LEMMA 5.3.1. [2, Lemma 6.2.9.]
Let f ∈ A(C), Ω an open set ofC, δ > 0 andx1, · · · , xk in Ω0 = {z ∈ Ω : d(z,Ωc) > δ}.

Then

|∆k−1f(x1, . . . , xk)| ≤
2k−1

δk−1
sup
z∈Ω

|f(z)|.

LetB > 0 be fixed andf ∈ Ap,B(C).
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Let n be a fixed integer. Let|αj| ≤ 2n and0 ≤ l ≤ mj − 1. We consider the divided
differences off with respect to the pointsα1, · · · , αj, eachαk, 1 ≤ k ≤ j−1 repeatedmk times
andαj repeatedl times.. Denote byMj,l = m1 + · · ·+mj−1 + l, the divided differences are

φj,l = ∆Mj,lf(α1, ..., α1︸ ︷︷ ︸
m1 times

, . . . , zj−1, ..., zj−1︸ ︷︷ ︸
mj−1 times

, αj, ..., αj︸ ︷︷ ︸
l+1 times

).

Using Lemma 5.3.1 withΩ = D(0, 2n+2), δ = 2n+1, k = Mj,l + 1, we have

|φj,l| ≤ 2−nMj,l‖f‖B exp(Bp(2n+2)) ≤ 2−nMj,l‖f‖B exp(B′p(2n)).

Thus,

‖RV (f)‖B′ ≤ ‖f‖B
and this concludes the proof of Proposition 5.2.1.

�

Before proceeding with the proofs of the main results, we need the following lemmas :

LEMMA 5.3.2. Condition (1) implies that there exist constantsA,B > 0 such that, for all
R > 0,

n(0, R) ≤ A+B p(R).

PROOF. Using the fact that the weightp is doubling, we have

n(0, R) ≤ 2

∫ 2R

R

n(0, t)

t
dt ≤ 2N(0, 2R) ≤ A+B p(2R) ≤ A+B p(R).

�

LEMMA 5.3.3. Let W be an element ofA(V ) and q be in N∗. We suppose that for all
1 ≤ j ≤ q, for all n ∈ N such that|zq| ≤ 2n and for all0 ≤ l ≤ mj − 1, we have

|φj,l|2n(l+m1+...+mj−1) ≤ A exp(Bp(2n)),

whereA andB are positive constants only depending onV andW .
Then, there exist constantsA,B > 0 only depending onV andW , such that, for alln ∈ N

and|z| ≤ 2n,

+∞∑
l=0

|P (l)
q (z)|
l!

≤ A exp(Bp(2n))

q∑
j=1

22(m1+···+mj),

+∞∑
l=0

|Π(l)
q (z)|
l!

≤ 2(n+2)(m1+···+mq).
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PROOF. If |z| ≤ 2n+1, then forj = 1, · · · , q, |z − αj| ≤ 2n+2,

|Pq(z)| ≤
q∑
j=1

2(n+2)(m1+···mj−1)

mj−1∑
l=0

|φj,l|2(n+2)l

≤ A exp(Bp(2n))

q∑
j=1

22(m1+···+mj)

and

|Πq(z)| =
q∏
j=1

|z − αj|mj ≤ 2(n+2)(m1+···+mq).

Now for |z| ≤ 2n, if |z−w| ≤ 2, then|w| ≤ 2n+1. By the preceding inequalities and Cauchy
inequalities, for alll ≥ 0,

|P (l)
q (z)|
l!

≤ 1

2l
max

|z−w|≤2
|Pq(w)| ≤ 1

2l
A exp(Bp(2n))

q∑
j=1

22(m1+···+mj).

We readily obtain the desired estimate forPq. Using Cauchy estimates once again for the function
Πq we obtain the second inequality. �

PROOF OFPROPOSITION5.2.2. We assume that condition (1) holds. LetW = {wj,l}j,0≤l≤mj−1 ∈

Ãp(V ). Letq ≥ 1 andn be the integer such that2n−1 ≤ |zq| < 2n. We know that
P

(l)
q (zq)

l!
= wq,l

for every0 ≤ l ≤ mq−1. By the preceding lemma,
mq−1∑
l=0

|wq,l| ≤
+∞∑
l=0

|P (l)
q (zq)|
l!

≤ A exp(Bp(2n))

q∑
j=1

22(m1+···+mj).

By Lemma 5.3.2,m1 + · · ·mj ≤ n(0, |αj|) ≤ Ap(αj) + B. Using thatq ≤ n(0, |zq|) ≤
Ap(zq) +B, we obtain

mq−1∑
l=0

|wq,l| ≤ A exp(Bp(2n)) ≤ A exp(Bp(zq)),

that isW ∈ Ap(V ). �

PROOF OFTHEOREM 5.2.3. We assume that conditions (1) and (6) are fulfilled. We already
haveÃp(V ) ⊂ Ap(V ) by Proposition 5.2.2.

Before proving the reverse inclusion, we need some useful consequences of (1) and (6) :

LEMMA 5.3.4. There exist constantsA,B > 0 such that, for allj ∈ N∗ and for all n ∈ N
such that|αj| ≤ 2n, we have

(i) 2nmj ≤ A |αj|mj exp(Bp(2n)), 2n(m1+···+mj) ≤ A|αj|m1+···+mj exp(Bp(2n)).
(ii) |αj|mj ≤ A exp(Bp(αj)),

(iii)
∏j−1

k=1 |αj − αk|−mk ≤ A exp(Bp(2n))2−n(m1+···+mj−1).



5.3. PROOF OF THE MAIN RESULTS 61

PROOF. (i) It’s a direct consequence of condition (1) and inequality (27).
(ii) It is a simple consequence of condition (6) :

mj ln |αj| ≤ N(αj, |αj|) ≤ Ap(αj) +B.

(iii) Using condition (6), we have

j−1∑
k=1

mk ln
|αj|

|αj − αk|
≤

∑
0<|αk−αj |≤|αj |

mk ln
|αj|

|αj − αk|
= N(αj, |αj|) ≤ Ap(αj) +B.

We deduce that

j−1∏
k=1

|αj − αk|−mk ≤ A exp(Bp(αj))|αj|−(m1+···+mj−1)

≤ A 2−n(m1+···mj−1) exp(Bp(2n))

using (i). �

LetW = {wj,l}j,0≤l≤mj−1 be inAp(V ). In order to show thatW verifies (25), we are going
to use Lemma 5.3.3 and show by induction onq ≥ 1 the following property :

For alln ∈ N such that|zq| ≤ 2n and for all0 ≤ l ≤ mq − 1,

|φq,l|2n(l+m1+...+mq−1) ≤ A exp(Bp(2n)),

whereA andB are positive constants only depending onV andW .
q = 1 : for |α1| ≤ 2n and0 ≤ l ≤ m1 − 1, we have

|φ1,l| = |w1,l| ≤ A exp(Bp(α1)) ≤ A exp(Bp(α1))2
−nl2nm1 ≤ A exp(Bp(2n))2−nl

using Lemma 5.3.4, (i) and (ii).
Suppose the property true for1 ≤ j ≤ q − 1. Letn ∈ N be such that|zq| ≤ 2n.
Again, we proceed by induction onl, 0 ≤ l ≤ mq − 1.
l = 0 : by Lemmas 5.3.3 and 5.3.2, we have

|Pq−1(zq)| ≤ A exp(Bp(2n))

q−1∑
j=1

22(m1+···+mj) ≤ (q − 1)22(m1+···+mq−1) ≤ A exp(Bp(2n)).

By Lemma 5.3.4 (iii),

|Πq−1(zq)|−1 =

q−1∏
k=1

|zq − αk|−mk ≤ A exp(Bp(2n))2−n(m1+···+mq−1)

We deduce that

|φq,0| ≤ A exp(Bp(2n))2−n(m1+···+mq−1).
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Suppose the estimate true for0 ≤ j ≤ l − 1, using both inequalities of Lemma 5.3.3 and
Lemma 5.3.2, we have

l−1∑
j=0

|
Π

(l−j)
q−1 (zq)

(l − j)!
φq,j| ≤ A exp(Bp(2n))

and

|
P

(l)
q−1(zq)

l!
| ≤ A exp(Bp(2n)).

As for l = 0, we use Lemma 5.3.4 (iii) to complete the proof. �

PROOF OFTHEOREM 5.2.4. We already showed the necessity in Proposition 5.2.1. Let us
prove the sufficiency.

We assume condition (1). LetW = {wj,l}j,0≤l≤mj−1 be an element of̃Ap(V ).
LetX be a smooth cut-off function such thatX (x) = 1 if |x| ≤ 1 andX (x) = 0 if |x| ≥ 4.
SetXn(z) = X ( |z|

2

22n ), for n ∈ N, ρ0 = X0 andρn+1 = Xn+1 − Xn. It is clear that the family
{ρn}n form a partition of unity, that the support ofXn is contained in the disk|z| ≤ 2n+1 and
that the support ofρn is contained in the annulus{2n−1 ≤ |z| ≤ 2n+1} for n ≥ 1.

We will denote byqn the number of distinct pointsαj in D(0, 2n), that is :qn =
∑

|αj |≤2n 1.

LEMMA 5.3.5. There exists aC∞ functionF onC such that, for certain constantsA,B > 0,

(i)
F (l)(αj)

l!
= wj,l for all j ∈ N, 0 ≤ l ≤ mj − 1.

(ii) for all z ∈ C, |F (z)| ≤ AeBp(z),
(iii) ∂̄F = 0 onD(0, 1) and for anyn ≥ 2 and2n−2 ≤ |z| < 2n−1,

|∂̄F (z)| ≤ A 2−n(m1+···+mqn )

qn∏
k=1

|z − αk|mkeBp(2
n).

PROOF. We set
F (z) =

∑
n≥2

ρn−2(z)Pqn(z).

where

Pq(z) =

q∑
j=1

(
mj−1∑
l=0

φj,l(z − αj)
l

)
j−1∏
k=1

(z − αk)
mk .

It is the Newton polynomial we mentioned in Remark 5.1.1.
(i) : For all j ≥ 1 and0 ≤ l ≤ mj − 1, if αj is in the support ofρn−2, thenP (l)

qn (αj) = l!wj,l.
Thus

F (l)(αj) =
∑
n≥2

(
l∑

k=0

Ck
l ρ

(l−k)
n−2 (αj)k!wj,k

)

=
l∑

k=0

Ck
l k!wj,k(

∑
n

ρn)
(l−k)(αk) = l!wj,l.
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(ii) : For z ≥ 1, letn ≥ 2 be the integer such that2n−2 ≤ |z| < 2n−1. Then, we have :

F (z) = ρn−2(z)Pqn(z) + ρn−1(z)Pqn+1(z).

For all 0 ≤ j ≤ qn, we have|αj| ≤ 2n and |z − αj| ≤ 2n+1. Using Lemmas 5.3.3 and
condition (1), we have

|Pqn(z)| . exp(Bp(2n)) ≤ A exp(Bp(2n)) ≤ A exp(Bp(z)).

The same estimation holds forPqn+1 thus,

|F (z)| . exp(Bp(z)).

(iii) Now, we want to estimatē∂F .
It is clear thatF (z) = Pq2(z) onD(0, 1).
Let |z| ≥ 1 andn the integer such that2n−2 ≤ |z| < 2n−1. We have

∂̄F (z) = ∂̄ρn−2(z)Pqn(z) + ∂̄ρn−1(z)Pqn+1(z).

Sincez is outside the supports of̄∂Xn−3 and of∂̄Xn−1, we have

∂̄F (z) = −∂̄Xn−2(z)(Pqn+1(z)− Pqn(z)) =

qn∏
k=1

(z − αk)
mkGn(z)

where

Gn(z) = −∂̄Xn−2(z)

qn+1∑
j=qn+1

j−1∏
k=qn+1

(z − αk)
mk

(
mj−1∑
l=0

φj,l(z − αj)
l

)
.

For k ≤ qn+1, |z − αk| ≤ 2n+2, thus, using the estimate given by (25) then Lemma 5.3.2, we
show that

|Gn(z)|A exp(Bp(2n))2−n(m1+···+qn)

qn+1∑
j=qn+1

2mqn+1+...+mj

. exp(Bp(2n))2−n(m1+···+mqn ).

We readily obtain the desired estimate. �

Now, when looking for a holomorphic interpolating function of the formf = F + u, we are
led to the∂̄-problem

∂̄u = −∂̄F.
The interpolation problem is then reduced to the following lemma.

LEMMA 5.3.6. Let F be the function given by Lemma 5.3.5. There exists a subharmonic
functionU such that, for certain constantsA,B > 0,

(i) U(z) ' mj log |z − αj|2 nearαj,
(ii) U(z) ≤ Ap(z) +B for all z ∈ C.

(iii) |∂̄F (z)|2e−U(z) ≤ AeB(p(z) for all z ∈ C.
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Admitting this lemma for a moment, we proceed with the proof of Theorem 5.2.4.
Using properties (iii) in Lemma 5.3.6 and (w1), we see that there exists a constantE > 0

such that ∫
C
|∂̄F |2e−U(z)−Ep(z) dλ(z) <∞.

Hörmander’s theorem 1.2.16 gives aC∞ functionu such that̄∂u = −∂̄F and

(28)
∫

C

|u(z)|2e−U(z)−Ep(z)

(1 + |z|2)2
dλ(z) ≤ 1

2

∫
C
|∂̄F |2e−U(z)−Ep(z) dλ(z).

Settingf = u + F , it is clear thatf ∈ A(C). Moreover, by condition (i) in Lemma 5.3.6, near
αj, e−U(z)(z−αj)l is not summable for0 ≤ l ≤ mj − 1, so we have necessarilyu(l)(αj) = 0 for

all j and0 ≤ l ≤ mj − 1 and consequentlyf := u+ F is
f (l)(αj)

l!
= wj,l.

In view of property (iii) in Lemma 1.1.4, it only remains to show thatf ∈ Wp(C). It suffices
to show thatF ∈ Wp(C) andu ∈ Wp(C).

Condition (ii) in Lemma 5.3.5 gives constantsA,B > 0 such that, for allz ∈ C, |F (z)| ≤
AeBp(z). By condition (w1), chosing a constantC > 0 large enough, we obtain∫

C
|F (z)|2e−Cp(z)dλ(z) <∞,

in other words,F ∈ Wp(C).
By properties (ii) in Lemma 5.3.6 and (w1), there exist a constantD > 0 such that, for all

z ∈ C,

e−Dp(z) .
e−U(z)

(1 + |z|2)2
.

Therefore, ∫
C
|u(z)|2e−(D+E)p(z)dλ(z) .

∫
C

|u(z)|2e−U(z)−Ep(z)

(1 + |z|2)2
dλ(z) <∞.

This shows thatu ∈∈ Wp(C) and concludes the proof of Theorem 5.2.4. �

PROOF OFLEMMA 5.3.6. For the sake of simplicity and up to a homotethy, we may assume
that |αk| > 2 for all αk 6= 0. Besides, in the definition of the following functionsVn, we will
assumeα1 6= 0, otherwise, we may add the termm1 ln |z| to eachVn. We set

Vn(z) =
∑

0<|αj |≤2n

mj log
|z − αj|2

|αj|2
,

then
V (z) =

∑
n≥2

ρn−2(z)Vn(z).

First, we will show thatV verifies (i), (ii) and (iii). Then, we will estimate∆V from below
and add a correcting termW . The subharmonic functionU will be of the formV +W .
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(i) Let |αk| be such that2m−1 < |αk| < 2m+1. For2m−1 < |z| < 2m+1,

V (z) = ρm−1(z)Vm+1(z) + ρm(z)Vm+2(z) + ρm+1(z)Vm+3(z).

As theρn’s form a partition of unity, it is clear thatV (z) − mk ln |z − αk|2 is continuous in a
neighborhood ofαk.

Note thatV is smooth on{|z| ≤ 2} since we have assumed that all|αj| > 2.
(ii) Let n ≥ 2 and2n−2 ≤ |z| < 2n−1. then

V (z) = ρn−2(z)Vn(z) + ρn−1(z)Vn+1(z).

For all |αj| < 2n, we have|z − αj| < 2n+1. Thus,

Vn(z) ≤
∑

|αj |≤2n

mj log
2n+1

|αj|
≤ N(0, 2n+1).

Finally, we obtain that

V (z) ≤ N(0, 2n+1) +N(0, 2n+2) . p(2n) . p(z)

by condition (1) and the doubling property of the weightp.
(iii) We have

−V (z)/2 =
∑

|αj |≤2n

mj ln
|αj|

|z − αj|
+ ρn+1(z)

∑
2n<|αj |≤2n+1

mj ln
|αj|

|z − αj|
.

Note that for all2n < |αj| ≤ 2n+1, we have|z − αj| > 2n − 2n−1 = 2n−1. We obtain

−V (z)/2 ≤
∑

|αj |≤2n

mj ln
2n

|z − αj|
+ ln 4

∑
2n<|αj |≤2n+1

mj

≤ ln

(
2n(m1+···mqn )

qn∏
j=1

|z − αj|−mj

)
+ ln(A exp(Bp(2n))

(29)

for certain constantsA,B > 0 using Lemma 5.3.2. Finally, combining this inequality with (iii)
of Lemma 5.3.5, we obtain

|∂̄F (z)| exp(−V (z)/2) . exp(Bp(2n)) . exp(Bp(z)).

Now, in order to get a lower bound of the laplacian, we compute∆V (z) :

∆V =
∑
n≥2

ρn−2∆Vn + 2 Re

(∑
n

∂̄ρn−2∂Vn

)
+
∑
n≥2

∂∂̄ρn−2Vn.

The first sum is positive since everyVk is subharmonic.
Let us estimate the second and the third sums, that we will denote respectively byB(z) and

C(z). Forn ≥ 2 and2n−2 ≤ |z| < 2n−1, sincez is outside the supports of̄∂Xn−3 and of∂̄Xn−1,
we have



66 5. THE TRACE OFAp(C)

B(z) =2 Re
[
∂̄Xn−2(z)∂ (Vn(z)− Vn+1(z))

]
,

C(z) =∂∂̄Xn−2(z) (Vn(z)− Vn+1(z)) .

Vn(z)− Vn+1(z) =
∑

2n<|αj |≤2n+1

mj log
|z − αj|2

|αj|2
,

∂ (Vn(z)− Vn+1(z)) =
∑

2n<|αj |≤2n+1

mj
1

z − αj
,

and

|∂̄Xn−2(z)| .
1

2n
, |∂∂̄Xn−2(z)| .

1

22n
.

Forz in the support of̄∂Xn−2, we have|z| ≤ 2n−1, and for2n ≤ |αj| < 2n+1, 2n−1 ≤ |z−αj| ≤
2n+2. Thus, we obtain that

|∂∂̄Xn−2(z) (Vn+1(z)− Vn(z)) | .
n(0, 2n+1)− n(0, 2n)

22n
,

and

|∂̄Xn−2(z)∂ (Vn+1(z)− Vn(z)) | .
n(0, 2n+1)− n(0, 2n)

22n
.

Finally,

∆V (z) & −n(0, 2n+1)− n(0, 2n)

22n
& −n(0, 23|z|)− n(0, 2|z|)

|z|2
.

To construct the correcting term,W , we begin by putting

f(t) =

∫ t

0

n(0, s)ds, g(t) =

∫ t

0

f(s)

s2
ds and W (z) = g(23|z|).

The following inequalities are easy to see :

f(t) ≤ tn(0, t), g(t) ≤
∫ t

0

n(0, s)

s
ds = N(0, s).

Thus, by condition (1),
W (z) ≤ N(0, 23|z|) . p(23z) . p(z)

Finally, to estimate the laplacian ofW , we will denotet = 23|z|.

∆W (z) =
1

t
g′(t) + g′′(t) =

1

t2
(f ′(t)− f(t)

t
).

f(t) =

∫ t

0

n(0, s)ds =

∫ t
4

0

n(0, s)ds+

∫ t

t
4

n(0, s)ds ≤ t

4
n(0,

t

4
) + t(1− 1

4
)n(0, t).

Thus,

f ′(t)− f(t)

t
= n(0, t)− f(t)

t
≥ 1

4
(n(0, t)− n(0,

t

4
))
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and

∆W (z) &
n(0, 23|z|)− n(0, 2|z|)

|z|2
.

Now, the desired function will be of the form

U(z) = V (z) + αW (z),

whereα is a positive constants chosen big enough. �





CHAPTER 6

Expansion in series of exponential polynomials of mean-periodic functions

This chapter is a joint work with H. Ouerdiane. The main results are anounced in C.R. Acad.
Sci. Śer. I Math. (see [36]).

Introduction

A periodic functionf with period t may be defined in terms of convolution equation as a
function satisfying the convolution equation

(δt − δ0) ? f = 0,

while a function with zero average over an interval of lengtht > 0 satisfies the convolution
equation

µ ? f = 0,

whereµ is defined by< µ, f >=
1

t

∫ t/2

−t/2
f(x)dx. From the observation that the second notion is

more natural from the point of view of experimental physics, Delsartes generalized the concept of
periodic functions by introducing in [15] the notion of ”mean-periodic” functions as the solutions
of homogeneous convolution equations.

In this paper, we are dealing with the fundamental principle, that is, with the expression
of mean-periodic function through series of exponentials polynomials. We refer the interested
reader to [5, 6, 8, 18, 43] for more about this subject.

Let θ be a Young function andθ∗ its Legendre transform (see Definitions 6.1.1 and 6.1.2
below). A canonical example of a Young function isθ(x) = xµ, µ > 1, thenθ∗(x) = xν where
1
µ

+ 1
ν

= 1.
The mean-periodic functions will lie in the spaceFθ(C) of all functionsf ∈ A(C) such that

(30) sup
z∈C

|f(z)|e−θ∗(m|z|) <∞,

for all constantsm > 0.
We will also consider the limit case whereθ(x) = x. In this case, the associated conjugate

functionθ∗ is formally infinite. Therefore, no growth condition of the type (30) is involved and
we putFθ(C) = A(C).

We will say thatf ∈ Fθ(C) is a mean-periodic function if, for a certain non zero analytic
functionalT ∈ F ′

θ(C), f verifies the convolution equation

(31) T ? f = 0.

In this case, we say thatf is T -mean-periodic.

69
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For example, if we denote by{αk}k the zeros of the Fourier-Borel transform ofT andmk

their order of multiplicity, then all exponential monomialszjeαkz, with j < mk areT -mean-
periodic functions (see Lemma 6.2.4). Then, every convergent series whose general term is a
linear combination of such exponential monomials is also aT -mean-periodic function.

Our main result (see Theorem 6.2.5) states roughly that the converse holds, provided that we
apply an Abel-summation procedure in order to make the sum convergent. In fact, we prove that
anyT -mean-periodic functionf ∈ Fθ(C) admits the following expansion as a convergent series
in Fθ(C)

(32) f(z) =
∑
k

mk−1∑
l=0

ck,l

[
k∑
j=1

ezαjPk,j,l(z)

]
,

wherePk,j,l are polynomials of degree< mj, explicitely given by (46) and (47) in terms of
V = {(αk,mk)}k. Moreover, the coefficientsck,l verify the growth condition (37) and can be
explicitly computed in terms off andT . As we will see, the key result used here is the explicit
description of the image of the restriction operator onV obtained in Chapter 5.

WhenV = {(αk,mk)}k is an interpolating variety, the convergence of the series doesn’t
require any Abel-summation procedure, we simply obtain that anyT -mean-periodic function
f ∈ Fθ(C) admits the following expansion as a convergent series inFθ(C)

(33) f(z) =
∑
k

ezαk

mk−1∑
l=0

dk,l
zj

j!
,

where the coefficientsdk,l verify the growth estimate (49) (see Theorem 6.4.2).
These results generalize those obtained in [7], where the authors considered the caseFθ(C) =

A(C). In fact, they showed that, givenT ∈ H′(C)), there exists a sequence of indicesk1 =
1 < k2 < · · · such that anyT -mean periodic functionf ∈ A(C) admits a unique expansion,
convergent inA(C), of the form

(34) f(z) =
∑
n≥1

∑
kn≤k<kn+1

eαkz

mk−1∑
j=0

dk,j
zj

j!
.

In (34), the sum converges by grouping the terms rather than by an Abel-summation process.
But in general, the sequence{kn}n is not explicit, except in the case whenV is an interpolating
variety, where the sequencekn = n works, thus formula (34) leads to (33).

This chapter is organized as follows : Section 6.1 is devoted to preliminary definitions and
useful results from functional analysis. The main results are stated in section 6.2 and the proof
of the main theorem is given in section 6.3. Finally, in section 6.4, we study the particular case
whenV is an interpolating variety.

6.1. Preliminaries and definitions

DEFINITION 6.1.1. A function θ : [0,+∞[→ [0,+∞[ is called a Young function if it is
convex, continuous, increasing and verifiesθ(0) = 0 andr = o(θ(r)) whenr → +∞.
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DEFINITION 6.1.2.Let θ be a Young function. The Legendre transformθ∗ of θ is the function
defined by

θ∗(x) = sup
t≥0

(tx− θ(t)).

Note that the Legendre transform of a Young function is a Young function andθ∗∗ = θ. We
refer the reader to [26] for further details.

Throughout the paper,θ will denote either the functionθ(x) = x or a Young function.
For anym > 0, considerEθ,m(C), the Banach space of all functionsf ∈ A(C) such that

‖f‖θ,m := sup
z∈C

|f(z)|e−θ(m|z|) < +∞

and define
Gθ(C) = ∪p∈N∗Eθ,p(C)

endowed with the inductive limit topology. It is clear thatGθ(C) is an algebra under the ordinary
multiplication of functions.

REMARK 6.1.3. Whenθ(x) = xµ, µ ≥ 1, the spaceGθ(C) coincides withAp(C) where
p(z) = |z|µ. It is the space of all entire functions of order≤ µ and of finite type. In particular,
whenµ = 1, Gθ(C) is the space of all entire functions of exponential type, usually denoted by
Exp(C). Note that whenθ(x) = xµ, µ > 1, thenθ∗(x) = xν where1

µ
+ 1

ν
= 1.

We define the spaceFθ(C) as follows :
(i) In the case whereθ(x) = x, we putFθ(C) = A(C), the space of all entire functions

endowed with the topology of uniform convergence on every compact ofC. It is a Fŕechet-
Schwartz space (see [2]).

(ii) In the case whereθ is a Young function, we denote

Fθ(C) = ∩p∈N∗Eθ∗,1/p(C)

endowed with the projective limit topology. The spaceFθ(C) is a nuclear Fŕechet space (see
[19]), hence it is a Fŕechet-Schwartz space.

For any fixedξ ∈ C, andl ∈ N, we will denote byMl,ξ the exponential monomialz → zleξz.
It is easy to see thatMl,ξ ∈ Fθ(C). In the next we denote byF ′

θ(C) the strong topological dual
of Fθ(C).

Let us recall some definitions and properties from functional analysis. We refer to [2] for
further details in the case (i) and to [19] for the case (ii).

To any fixedu ∈ C, define the translation operatorτu onFθ(C) by

(τuf)(z) = f(z + u), for all f ∈ Fθ(C) andz ∈ C.
It’s easy to see thatFθ(C) is invariant under these translation operators.

For allS ∈ F ′
θ(C) andf ∈ Fθ(C), the functionz →< S, τzf >, where< , > denotes the

duality bracket, is an element ofFθ(C). Therefore, for anyS ∈ F ′
θ(C), the mapS? : Fθ(C) →

Fθ(C) defined by
S ? f(z) =< S, τzf >

is a convolution operator, i.e., it is linear, continuous and commute with any translation operator.
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For anyS ∈ F ′
θ(C), the Fourier-Borel transform ofS, denoted byL(S) is defined by

L(S)(ξ) =< S, eξ· >,

whereeξ· = M0,ξ is the functionz ∈ C → eξz.
For any two elementsS andU of F ′

θ(C), the convolution productS ? U ∈ F ′
θ(C) is defined

by
∀f ∈ Fθ(C), < S ? U, f >=< S,U ? f > .

Moreover for anyS, U ∈ F ′
θ(C)

L(S ? U) = L(S)L(U)

Under this convolution,F ′
θ(C) is a commutative algebra admittingδ0, the Dirac measure at

the origin, as unit.

PROPOSITION6.1.4. The Fourier-Borel transformL is a topological isomorphism between
the algebrasF ′

θ(C) andGθ(C).

6.2. Main results

Throughout the rest of the chapter, letT be a fixed non-zero element ofF ′
θ(C). Our main

goal in this section is to show that any functionf ∈ Fθ(C) satisfying the equation

(35) T ? f = 0

can be represented as convergent series of exponential-polynomials which are them-selves solu-
tion of (35).

DEFINITION 6.2.1. We say that a functionf ∈ Fθ(C) is T -mean-periodic if it satisfies the
equation (35).

Denote byΦ the entire function inGθ(C) defined byΦ = L(T ). Before going further, let us
show the following division property :

LEMMA 6.2.2. Let h ∈ A(C) andg ∈ Gθ(C). If g is not identically zero and iff = gh ∈
Gθ(C), thenh ∈ Gθ(C).

PROOF. Up to a translation, we may assume thatg(0) 6= 0. Let us apply the minimum
modulus theorem and it’s corollary given in [2, Lemma 2.2.11] to the functiong in the disc of
center0 and radius2n+1e, wheren is any positive integer.

As g ∈ Gθ(C), there existsp ∈ N∗ andCp > 0 (not depending onn) such that

max
|ξ|≤2n+3e

|g(ξ)| ≤ Cpe
θ(p2n).

Thus, there existsεp > 0 (not depending onn) andRn, 2n ≤ Rn ≤ 2n+1 such that

min
|ξ|=Rn

|g(ξ)| ≥ εpe
−θ(p2n).

Let n ∈ N and|ξ| = Rn. As f ∈ Gθ(C), there existsq > 0 andCq > 0 (not depending onn),
such that

|f(ξ)| ≤ Cqe
θ(q2n).
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Using the convexity ofθ and the fact thatθ(0) = 0, we have

θ(p2n) = θ(
1

2
p2n+1) ≤ 1

2
θ(p2n+1) +

1

2
θ(0) =

1

2
θ(p2n+1).

If we assume, for example, thatp ≥ q, we deduce that

|h(ξ)| = |f(ξ)| 1

|g(ξ)|
≤ Cq
εp
eθ(q2

n)+θ(p2n) ≤ Bpe
θ(p2n+1).

Now let z ∈ C, be such that2n−1 ≤ |z| ≤ 2n < Rn. By the maximum modulus theorem,

|h(z)| ≤ Bpe
θ(p2n+1) ≤ Bpe

θ(4p|z|).

This proves thath ∈ Gθ(C). �

COROLLARY 6.2.3. In the case whereΦ has no zeros, the only mean-periodic functionf ∈
Fθ(C) is the zero function.

PROOF. Assume thatΦ has no zeros. Then1
Φ
∈ A(C) and, by Lemma 6.2.2,1

Φ
∈ Gθ(C). By

Proposition 6.1.4,S = (L)−1( 1
Φ
) ∈ F ′

θ(C). Then, we haveS ? T = T ? S = δ0. If we assume
T ? f = 0, thenδ0 ? f = f = 0. �

We will throughout the rest of the paper assume thatΦ has zeros, and denote them by|α0| ≤
|α1| ≤ · · · ≤ |αk| ≤ · · · , αk 6= αk′ if k 6= k′.

We will denote bymk be the order of multiplicity ofΦ atαk and we will consider the multi-
plicity varietyV = Z(Ψ) = {(αk,mk)}k∈N.

LEMMA 6.2.4. (i) For all ξ ∈ C andl ∈ N, we have< T,Ml,ξ >= Φ(l)(ξ).
(ii) Each exponential monomialMl,αk

, for 0 ≤ l < mk is T -mean-periodic.

PROOF. To prove (i), we proceed by induction onl ≥ 0. The property is true forl = 0 by
definition of the Fourier-Borel transform ofT .

Suppose the property true forl. Let ξ ∈ C be fixed. Let us verify that the function
Ml,ξ+u −Ml,ξ

u
converges inFθ(C) to Ml+1,ξ whenu tends to0. For all z ∈ C andu ≤ 1,

we have ∣∣∣∣euz − 1

u
− z

∣∣∣∣ =

∣∣∣∣∣uz2
∑
n≥2

(uz)n−2

n!

∣∣∣∣∣ ≤ |u||z|2e|z|.

This implies that∣∣∣∣Ml,ξ+u(z)−Ml,ξ(z)

u
−Ml+1,ξ(z)

∣∣∣∣ = |zleξz|
∣∣∣∣euz − 1

u
− z

∣∣∣∣ ≤ |u||z|l+2e(1+|ξ|)|z|.

Therefore,Ml,ξ+u−Ml,ξ

u
converges toMl+1,ξ for the topology ofFθ(C) whenu tends to0.

From this, we obtain

Φ(l+1)(ξ) = lim
u→0

Φ(l)(ξ + u)− Φ(l)(ξ)

u
= lim

u→0

< T,Ml,ξ+u > − < T,Ml,ξ >

u

= lim
u→0

< T,
Ml,ξ+u −Ml,ξ

u
>=< T,Ml+1,ξ >,
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by continuity ofT . This completes the proof of (i).
In order to prove (ii), it is sufficient to see that

T ? Ml,αk
(z) =< T, τzMl,αk

>= eαkz

l∑
n=0

Cn
l z

l−n < T,Mn,αk
>= eαkz

l∑
n=0

Cn
l z

l−nΦ(n)(αk).

�

Our main theorem states roughly thatT -mean-periodic functions are series of linear combi-
nations of the exponential monomialsMl,αk

:

THEOREM 6.2.5. (i) AnyT -mean-periodic functionf ∈ Fθ(C) admits the following expan-
sion as a convergent series inFθ(C)

(36) f(z) =
∑
k≥0

mk−1∑
l=0

ck,l

[
k∑
j=1

ezαjPk,j,l(z)

]
,

wherePk,j,l are the polynomials of degree< mj given by (46) and (47). The coefficientsck,l
verify the following estimate

(37) ∀m > 0,
∑
k≥0

eθ(m|αk|)

(
mk−1∑
l=0

|ck,l|(|αk|+ 1)−(m1+···+mk−1+l)

)
< +∞

and are given by
ck,l =< Sk,l, f >

whereSk,l ∈ F ′
θ(C) is defined by

L(Sk,l)(ξ) = (ξ − αk)
l

k−1∏
n=1

(ξ − αn)
mn .

(ii) Conversely, any such serie whose coefficientscn,l satisfy the estimate(37)converges inFθ(C)
to a functionf solving the equation(35).

COROLLARY 6.2.6. Assume that all the multiplicitiesmk are equal to1. Then
(i) any T -mean-periodic functionf ∈ Fθ(C) admits the following expansion as a convergent
series inFθ(C)

(38) f(z) =
∑
k≥0

ck

[
k∑
j=0

ezαj

∏
0≤n≤k,n6=j

(αj − αn)
−1

]
,

where the coefficientsck satisfy the following estimate

(39) ∀m > 0,
∑
k≥0

eθ(m|αk|)|ck|(|αk|+ 1)−(k−1) < +∞

and are given by
ck =< Sk, f >
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whereSk ∈ F ′
θ(C) is defined by

L(Sk)(ξ) =
k−1∏
n=0

(ξ − αn)
mn .

(ii) Conversely, any such series whose coefficientsck satisfy the estimate(39)converges inFθ(C)
to a functionf solving the equation(35).

6.3. Proof of the main theorem

It will be a crucial point in the proof of the main theorem, to determine the image of the
restriction operatorρ defined onGθ(C) by

ρ(g) = {g
l(αk)

l!
}k≥0,0≤l<mk

, g ∈ Gθ(C).

We choose to denote this operator in this chapter byρ rather thanRV to simplify the notations.
As an immediate consequence of Lemma 6.2.2, we have the following lemma.

LEMMA 6.3.1. The kernel of the restriction operatorρ is the ideal generated byΦ in Gθ(C)},
i.e.,

Ker ρ = {Φg, g ∈ Gθ(C)}.

We are going to use a characterization, obtained in [37], of the elementsa = {ak,l}k∈N,0≤l<mk−1

belonging toρ(Gθ(C)). This characterization is given in terms of growth conditions involving
the divided differences (see [23] for further details about divided differences).

To any discrete doubly indexed sequencea = {ak,l}k∈N,0≤l<mk
of complex numbers, we

associate the sequence of divided differencesΨ(a) = {bk,l}k∈N,0≤l<mk
. We recall that they are

the coefficients of the Newton polynomials,

(40) Qq(ξ) =

q∑
k=0

k−1∏
n=0

(ξ − αn)
mn

(
mk−1∑
l=0

bk,l(ξ − αk)
l

)
,

defined, for anyq ≥ 1, as the unique polynomial of degreem0 + · · ·+mq − 1 such that

Q
(l)
q (αk)

l!
= ak,l, for 0 ≤ k ≤ q and 0 ≤ l ≤ mk − 1.

When all the multiplicitiesmk = 1, we may give a simple formula for the coefficientsbk :

bk =
k∑
j=0

aj
∏

0≤n≤k,n6=j

(αj − αn)
−1.

In the general case, see [37] we define them by induction :

b1,l = a1,l, for all 0 ≤ l ≤ m1 − 1,

bk,0 =
ak,0 −Qk=1(αk)

Πk−1(αk)
,
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bk,l =
ak,l −

Q
(l)
k−1(αk)

l!
−
∑l−1

n=0
1

(l−n)!
Π

(l−k)
k−1 (αj)bk,n

Πk−1(αk)
for 1 ≤ l ≤ mk − 1

where we have denoted by

Πk(ξ) =
k∏

n=0

(ξ − αn)
mn , for all k ≥ 0.

In [37], we showed that the elementsa = {ak,l}k∈N,0≤l<mk
belonging toρ(Gθ(C)) are precisely

those verifying the growth condition

sup
k≥0

sup
0≤l<mk

|bk,l|(|αk|+ 1)m1+···+mk−1+le−θ(m|αk|) < +∞,

for a certainm > 0, whereb = {bk,l}k,0≤l<mk
= Ψ−1(a).

In order to give a topological structure to this space, let us denote byBθ,m(V ) the Banach
space of all doubly indexed sequences of complex numbersb = {bk,l}k∈N,0≤l<mk

such that

‖b‖θ,m = sup
k∈N

sup
0≤l<mk

|bk,l|(|αk|+ 1)m1+···+mk−1+le−θ(m|αk|) < +∞.

Let us consider the spaceAθ,m(V ) = Ψ−1(Bθ,m(V )), that is, the space of all doubly indexed
sequences of complex numbersa = {ak,l}k∈N∗,0≤l<mk

such that

‖Ψ(a)‖θ,m < +∞.

It is easy to see thatAθ,m(V ) endowed with the norm‖a‖θ,m = ‖Ψ(a)‖θ,m is a Banach space
and thatΨ is an isometry fromAθ,m(V ) intoBθ,m(V ).

Now, we define the spaces

Aθ(V ) = ∪p∈N∗Aθ,p(V ) andBθ(V ) = ∪p∈N∗Bθ,p(V )

endowed with the topology of inductive limit of Banach spaces.
We define the linear map

α = Ψ ◦ ρ ◦ L : F ′
θ(C) → Bθ(V ).

PROPOSITION6.3.2. The mapα is continuous and surjective.

PROOF. By Proposition 6.1.4, we know thatL : F ′
θ(C) → Gθ(C) is a topological isomor-

phism.
The fact that the operator

ρ : Gθ(C) → Aθ(V )

is continuous and surjective are easy consequences of Proposition 5.2.1 and Theorem 5.2.4.
Finally, by construction, it is clear that

Ψ : Aθ(V ) → Bθ(V )

is a topological isomorphism.
�
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Recall thatFθ(C) is a Fŕechet-Schwartz space, therefore it is reflexive. Then, the transpose
αt of α is defined from the strong dual ofBθ(V ), denoted byB′θ(V ), intoFθ(C).

In the next lemma, we will characterize the dual spaceB′θ(V ).

LEMMA 6.3.3. The spaceB′θ(V ) is topologically isomorphic through the canonical bilinear
form

< c, b >=
+∞∑
k=0

mk−1∑
l=0

ck,lbk,l

to the spaceCθ(V ) = ∩p∈N∗Cθ,p(V ) endowed with the projective limit topology, where, for allp,
Cθ,p(V ) is the Banach space of the sequencesc = {ck,l}k≥0,0≤l<mk

such that

(41) ‖c‖′θ,p :=
∑
k≥0

eθ(p|αk|)

(
mk−1∑
l=0

|ck,l|(|αk|+ 1)−(m1+···+mk−1+l)

)
< +∞.

Moreover,Cθ(V ) is a Fréchet-Schwartz space.

PROOF. Let us show thatβ : Cθ(V ) → B′θ(V ) defined by

β(c)(b) =< c, b >=
+∞∑
k=0

mk−1∑
l=0

ck,lbk,l

is a topological isomorphism.
Let c = {ck,l}k,0≤l<mk

be an element ofCθ(V ) and b = {bk,l}k,0≤l<mk
∈ Bθ,p(V ), for a

certainp. For anyk ≥ 0, we have, by definition of‖b‖θ,p,
mk−1∑
l=0

|bk,lck,l| ≤ eθ(p|αk|)‖b‖θ,m
mk−1∑
l=0

|ck,l|(|αk|+ 1)−(m1+···+mk−1+l).

Using the estimate (41), we see that the sum converges (absolutely) and that

| < c, b > | ≤ ‖c‖′θ,p‖b‖θ,p.

This shows the continuity ofβ. LetBk,l be the doubly indexed sequence ofC defined by (using
the Kronecker symbols) :

(42) Bk,l = {δkjδln}j,0≤n<mj
.

We easily see thatBk,l ∈ Bθ,p(V ). For allk and0 ≤ l < mk, we haveck,l =< β(c), Bk,l >. It is
then clear thatβ is injective. Conversely, to an elementν ∈ B′θ(V ), consider the doubly indexed
sequencec = {ck,l}k,0≤l<mk

defined by

ck,l =< ν,Bk,l >

We verify thatc ∈ Cθ(V ). let p ∈ N∗ be fixed and definẽb = {b̃k,l}k,0≤l<mk
by

b̃k,l = eθ(p|αk|) c̄k,l
|ck,l|

(|αk|+ 1)−(m1+···+mk−1+l) if ck,l 6= 0, b̃k,l = 0 otherwise.

It is clear that̃b ∈ Bθ,p(V ) and that‖b̃‖θ,p ≤ 1.
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Therefore, all the finite sequencesb̃K =
∑K

k=0

∑mk−1
l=0 b̃k,lB

k,l satisfy

‖b̃K‖θ,p ≤ 1.

Denoting by‖ν‖p the operator norm, we have, for allK,

| < ν, b̃K > | ≤ ‖ν‖p‖b̃K‖θ,p ≤ ‖ν‖.

On the other hand,

< ν, b̃K >=
K∑
k=0

mk−1∑
l=0

b̃k,l < ν,Bk,l >=
K∑
k=0

eθ(p|αk|)
mk−1∑
l=0

|ck,l|(|αk|+ 1)−(m1+···+mk−1+l),

by definition ofb̃k,l. LettingK tend to infinity, we obtain thatc ∈ Cθ,p(V ) and that

(43) ‖c‖θ,p ≤ ‖ν‖p.

Consider now an elementb = {bk,l}k,0≤l<mk
of Bθ,p(V ) and putbK =

∑K
k=0

∑mk−1
l=0 bk,lB

k,l.
Let q be an integer strictly larger thanp. Note that by convexity ofθ, for all k the following
inequality holds

(44) −θ(q|αk|) + θ(p|αk|) ≤ −(1− p/q)θ(q|αk|).

Using this inequality, we find

‖b− bK‖θ,q ≤ ‖b‖θ,p sup
k>K

e−θ(q|αk|)+θ(p|αk|) ≤ ‖b‖θ,pe−(1−p/q)θ(q|αK |).

We readily deduce thatbK converges tob whenK tends towards infinity and thatβ(c) = ν.
The continuity ofβ−1 is a direct consequence of the inequality (43). We have proved thatβ

is a topological isomorphism.
In order to prove thatCθ(V ) is a Fŕechet-Schwartz space, in view of [2, Proposition 1.4.8.],

it is sufficient to see that, for anyp ∈ N∗, the canonical injection

ip : Cθ,p+1(V ) → Cθ,p(V )

is compact. Let{cn}n be a sequence of elements inCθ,p+1(V ) such that, for alln, ‖cn‖θ,p+1 ≤ 1.
It suffices to show that one can extract a subsequence of{cn}n converging inCθ,p(V ).

It is easy to see that, for allk ∈ N and0 ≤ l < mk the sequence{cnk,l}n is bounded. Thus,
up to taking a subsequence, we may assume without loss of generality thatcnk,l converges to a
certainck,l ∈ C. Puttingc = {ck,l}k,0≤l<mk

, we readily see thatc ∈ Cθ,p+1(V ) and‖c‖θ,p+1 ≤ 1.
Let us verify that‖cn − c‖θ,p tends to0 whenn tends to infinity. We assume that|αk| → ∞,

otherwise, the result is trivial. Then, again using inequality (44) we find thateθ(p|αk|)−θ((p+1)|αk|)

tends to0 whenk tends towards infinity. Letε > 0. For a certainK ∈ N and for allk ≥ K,
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eθ(p|αk|)−θ((p+1)|αk|) < ε
4
. Thus, for alln ∈ N,

∑
k≥K

eθ(p|αk|)

(
mk−1∑
l=0

|cnk,l − ck,l|(|αk|+ 1)−(m1+···+mk−1+l)

)

≤ε
4

∑
k≥K

eθ((p+1)|αk|)

(
mk−1∑
l=0

|cnk,l − ck,l|(|αk|+ 1)−(m1+···+mk−1+l)

)
≤ε

4
‖cn − c‖θ,p+1 ≤

ε

4
(‖cn‖θ,p+1 + ‖c‖θ,p+1) ≤

ε

2
.

Moreover, for a certainN ∈ N and for alln ≥ N , we have
K−1∑
k=0

eθ(p|αk|)

(
mk−1∑
l=0

|cnk,l − ck,l|(|αk|+ 1)−(m1+···+mk−1+l)

)
≤ ε

2
.

Finally, forn ≥ N , ‖cn − c‖θ,p < ε.
�

From now on, we will identifyB′θ(V ) with the spaceCθ(V ). The duality is given by, for all
c = {ck,l}k,0≤l<mk

∈ Cθ(V )and for allb = {bk,l}k,0≤l<mk
∈ Bθ(V ),

(45) < c, b >=
+∞∑
k=0

mk−1∑
l=0

ck,lbk,l.

The next step is to prove the following lemma :

LEMMA 6.3.4. (i) αt is a topological isomorphim onto its image andImαt = (Ker α)◦, the
orthogonal space of Kerα .
(ii) Ker α = {T ? U, U ∈ F ′

θ(C)}.
(iii) (Ker α)◦=Ker T? = {f ∈ Fθ(C) | T ? f = 0}.

PROOF. (i) From Proposition 6.3.2,α is a surjective continuous linear map. Therefore,αt is a
topological isomorphism onto its image andImαt = (Ker α)◦ (see [2, Proposition 1.4.12]).
(ii) Recalling Remark 6.3.1, we have

Ker α = Ker (ρ ◦ L) = L−1(Kerρ) = {T ? L−1(g), g ∈ Gθ(C)}) = {T ? U, U ∈ F ′
θ(C)}.

(iii) Let f be an element of (Kerα)◦. For allz ∈ C,

(T ? f)(z) =< T, τzf >=< T, δz ? f >=< T ? δz, f >= 0,

using the fact thatT ? δz ∈ Ker α.
Conversely, letf ∈ Fθ(C) be such thatT ? f = 0 and letU ∈ F ′

θ(C). We have

< T ? U, f >=< U, T ? f >= 0.

This shows thatf ∈(Ker α)◦ and concludes the proof of the lemma.
�
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Let us proceed with the proof of Theorem 6.2.5.
(i) Let f ∈ Fθ(C) be aT -mean-periodic function, that is,f ∈ Ker T?. From Lemmas 6.3.4

and 6.3.3, there is a unique sequencec ∈ Cθ(V ) such thatf = αt(c).
For z ∈ C, denoting byδz the Dirac measure atz, we have

f(z) =< δz, f >=< δz, α
t(c) >=< c, α(δz) >=< c,Ψ(ρ(gz)) >

where we have denoted bygz = L(δz), that is, the function inGθ(C) defined bygz(ξ) = ezξ.
Let us computeΨ(ρ(gz)) = b(z) = {bk,l(z)}k,0≤l<mk

, which is an element ofBθ(V ). By well
know formulas about Newton polynomials (See, for example [2, Definition 6.2.8]), we have, for
k ∈ N, and denoting by

∂mj =
1

m!

∂m

∂αmj
,

for 0 ≤ l < mk,

bk,l(z) = ∂m1−1
1 · · · ∂mk−1−1

k−1 ∂lk

(
k∑
j=0

ezαj

∏
0≤n≤k,n6=j

(αj − αn)
−1

)
=

k∑
j=0

ezαjPk,j,l(z),

where we have denoted by

(46) Pk,j,l(z) =

mk−1∑
i=0

zi

i!
∂
mj−1−i
i

( ∏
0≤n≤k−1,n6=j

(αj − αn)
−mn(αj − αk)

−(l+1)

)
and, for0 ≤ l < mk,

(47) Pk,k,l(z) =
l∑

i=0

zi

i!
∂l−ik

( ∏
0≤n≤k−1

(αk − αn)
−mn

)
.

Thus,

f(z) =
∑
k≥0

(
mk−1∑
l=0

ck,lbk,l(z)

)
=
∑
k≥0

(
mk−1∑
l=0

ck,l

k∑
j=0

ezαjPk,j,l(z)

)
.

So, the equality (38) is established.
Let us verify the convergence inFθ(C) of the series.
Case whereθ(x) = x. Here,Fθ(C) = A(C). We have to verify that the serie converges

uniformly on every compact ofC. Let p ∈ N∗ andz ∈ C, |z| ≤ p.
We have, for allξ ∈ C, |gz(ξ)| = |ezξ| ≤ ep|ξ|, that is,

‖gz‖θ,p ≤ 1.

Thus, by continuity ofΨ ◦ ρ, there existsp′ ∈ N∗ andCp > 0 such that

‖b(z)‖θ,p′ ≤ Cp‖gz‖θ,p ≤ Cp.

For allk ≥ 0, we have∣∣∣∣∣
mk−1∑
l=0

ck,lbk,l(z)

∣∣∣∣∣ ≤ ‖b(z)‖θ,p′
mk−1∑
l=0

|ck,l|(|αk|+ 1)−(m1+···+mk−1+l)eθ(p
′|αn|)
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We obtain

sup
|z|≤p

∣∣∣∣∣
mk−1∑
l=0

ck,lbk,l(z)

∣∣∣∣∣ ≤ Cp

mk−1∑
l=0

|ck,l|(|αk|+ 1)−(m1+···+mk−1+l)eθ(p
′|αk|)

Recalling thatc ∈ C ′θ(V ), the right term is the general term of a convergent serie, thus, the
right-hand side of (38) is convergent inFθ(C). Moreover,

sup
|z|≤p

∑
k≥0

∣∣∣∣∣
mk−1∑
l=0

ck,lbk,l(z)

∣∣∣∣∣ ≤ Cp‖c‖′θ,p′ .

Case whereθ is a Young function.
For anyp ∈ N∗, observe that

‖gz‖θ,p ≤ eθ
∗( 1

p
|z|).

Thus, by continuity ofΨ ◦ ρ, there existsp′ ∈ N∗ andCp > 0 such that

‖b(z)‖θ,p′ ≤ Cp‖gz‖p ≤ Cpe
θ∗( 1

p
|z|).

For allk ≥ 0 andz ∈ C, we have∣∣∣∣∣
mk−1∑
l=0

ck,lbk,l(z)

∣∣∣∣∣ ≤ ‖b(z)‖θ,p′
mk−1∑
l=0

|ck,l|(|αk|+ 1)m1+···+mk−1+le−θ(p
′|αk|)

We obtain

sup
z∈C

∣∣∣∣∣
mk−1∑
l=0

ck,lbk,l(z)

∣∣∣∣∣ e−θ∗( 1
p
|z|) ≤ Cp

mk−1∑
l=0

|ck,l|(|αk|+ 1)m1+···+mk−1+le−θ(p
′|αk|).

As in the previous case, we deduce that the right-hand side of (38) is absolutely convergent in
Fθ(C). Moreover,

sup
z∈C

∑
k≥0

∣∣∣∣∣
mk−1∑
l=0

ck,lbk,l(z)

∣∣∣∣∣ ≤ Cp‖c‖′θ,p′ .

In order to find an explicit formula for the coefficientscn,l, consider the elementsBk,l of Bθ(C)
defined by (42) and observe that, by the definition of the Newton polynomials (see (40)) with
respect to the coefficients ofBk,l, for all q ≥ k, we have

Qq(ξ) = (ξ − αk)
l

k−1∏
l=0

(ξ − αl)
ml

and forq < k,Qq = 0. We readily deduce thatα(Sk,l) = Ψ ◦ ρ ◦ L(Sk,l) = Bk,l.
Now, for all k ∈ N and0 ≤ l < mk,

< Sk,l, f >=< Sk,l, α
t(c) >=< α(Sk,l), c >=< Bk,l, c >= ck,l.

(ii) The converse part is easily deduced from the proof of (i) and Lemma 6.2.4.
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6.4. Case of an interpolating variety

DEFINITION 6.4.1. We say thatV is an interpolating variety forGθ(C) if, for any doubly
indexed sequencea = {ak,l}k∈N∗,0≤l<mk

such that, for a certainm > 0,

sup
k∈N

mk−1∑
l=0

|ak,l|e−θ(m|k|) < +∞,

there exists a functiong ∈ Gθ(C) such that, for allk and all0 ≤ l < mk − 1,

gl(αk)

l!
= ak,l.

We assume from now on thatV = Z(Φ) is an interpolating variety forGθ(C). Then we have
the following result :

THEOREM 6.4.2. (i) AnyT -mean-periodic functionf ∈ Fθ(C) admits the following expan-
sion as a convergent series inFθ(C)

(48) f(z) =
∑
k≥0

ezαk

mk−1∑
l=0

dk,l
zl

l!
,

where the coefficientsak,l verify the following estimate :

(49)
∑
k≥0

eθ(m|αk|)

(
mk−1∑
l=0

|dk,l|

)
< +∞

for everym > 0. Moreover, for allk ∈ N and0 ≤ l < mk, we have the equality

dk,l =< Tk,l, f >

whereTk,l ∈ F ′
θ(C) is defined by

L(Tk,l)(ξ) = Φ(ξ)(ξ − αk)
l−mk(mk!/Φ

(mk)(αk)),

(ii) Conversely, any such series whose coefficientsdk,l satisfy these estimate(49) converges in
Fθ(C) to a functionf solving the equation(31).

Note thatL(Tk,l) ∈ Gθ(C) by Proposition 6.2.2.

REMARK 6.4.3. In the case whereθ(x) = x, this is also a consequence of [2, Theorem
6.2.6.].

We will denote byAθ,m(V ) the space of all doubly indexed sequences of complex numbers
a = {ak,l}k∈N,0≤l<mk

such that

‖a‖θ,m := sup
k∈N

mk−1∑
l=0

|ak,l|e−θ(m|αk|) < +∞

and
Aθ(V ) = ∪p∈N∗Aθ,p(V )
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endowed with the strict inductive limit of Banach spaces.
We define the linear map

α = ρ ◦ L : F ′
θ(C) → Aθ(V ).

PROPOSITION6.4.4. The mapα is continuous and surjective.

PROOF. It is sufficient to show that the mapρ : Gθ(C) → Aθ(V ) is surjective and continuous.
The surjectivity follows from the fact thatV is an interpolating variety.

In order to show the continuity, letg ∈ Gθ,p(C) and letz ∈ C. By the Cauchy estimates
applied to the disc of centerz and radius2, for all l ∈ N,∣∣∣∣gl(z)l!

∣∣∣∣ ≤ 1

2l
sup

|ξ−z|≤2

|g(ξ)|.

For |ξ − z| ≤ 2, we have

|g(ξ)| ≤ ‖g‖θ,peθ(p|ξ|) ≤ ‖g‖θ,peθ(2p+p|z|) ≤ ‖g‖θ,pe1/2θ(4p)e1/2θ(2p|z|)

by convexity ofθ. Thus,
∞∑
l=0

∣∣∣∣gl(z)l!

∣∣∣∣ ≤ 2‖g‖θ,pe1/2θ(2p)eθ(2p|z|).

In particular, we deduce thatρ(g) ∈ Aθ,2p(V ) and that

‖ρ(g)‖θ,2p ≤ 2‖g‖θ,pe1/2θ(2p).
The continuity ofρ follows from the last inequality and the surjectivity from the definition 6.4.1.

�

We need to characterizeA′
θ(V ), the strong dual ofAθ(V ).

LEMMA 6.4.5.The spaceA′
θ(V ) is topologically isomorphic to the spaceDθ(V ) = ∩p∈N∗Cθ,p(V )

endowed with the projective limit topology, where, for allp, Dθ,p(V ) is the Banach space of the
sequencesd = {dk,l}k,0≤l<mk

such that

(50) ‖d‖′θ,p :=
∑
k≥0

eθ(p|αk|)

(
mk−1∑
l=0

|dk,l|(|αk|+ 1)−(m1+···+mk−1+l)

)
< +∞.

Moreover,Dθ(V ) is a Fréchet-Schwartz space.

The proof is similar to the one of Lemma 6.3.3. Lemma 6.3.1 still holds with the new defini-
tion of α.

We are now ready to prove Theorem 6.4.2.
By Lemma 6.3.1, anyT -mean-periodic functionf is the image byαt of a uniqued ∈ A′

θ(V ).
We have, for allz ∈ C,

f(z) =< δz, f >=< δz, α
t(d) >=< d, α(δz) >=< d, ρ(gz) >=

∑
k≥0

ezαk

mk−1∑
l=0

zl

l!
dk,l.
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To compute the coefficientsdk,l :

< Tk,l, f >=< Tk,l, α
t(d) >=< d, α(Tk,l) >= dk,l.

The last equality follows from the observation that

α(Tk,l) = Bk,l.

The rest of the proof is similar to the one of Theorem 6.2.5.
Let us recall some results about interpolating varieties that enables one to determine whether

V is interpolating or not. The following is a rephrasing of the analytic characterization given in
1.2.14. The spaces of entire functions considered are slightly different, but is clear how to adapt
these results to our spaces.

THEOREM 6.4.6. Let V = Z(Φ) = {(αk,mk)}k. ThenV is an interpolating variety for
Gθ(C) if and only if, there are constantsε > 0 andm > 0 such that, for allk,∣∣∣∣Φ(mk)(αk)

mk!

∣∣∣∣ ≥ εe−θ(m|αk|).

We also have a geometric characterization of interpolating varieties, in terms of the distribu-
tion of the points{(αk,mk)}k.

Adapting [3, Corollary 4.8] or Theorem 3.1.3 to our spaces :

THEOREM 6.4.7. V is an interpolating variety forGθ(C) if and only if conditions

(51) ∃A > 0, ∃m > 0 ∀R > 0, N(0, R) ≤ A+ θ(mR)

and

(52) ∃A > 0, ∃m > 0 ∀k ∈ N, N(αk, |αk|) ≤ A+ θ(m|αk|)
hold.

Actually, since in our caseV = Z(Φ) andΦ ∈ Gθ(C), condition (51) is necessarily verified
(see Lemma 1.2.2). Thus,V is an interpolating variety if and only if condition (52) holds.

REMARK 6.4.8. We can obtain Theorem 6.4.2 as a corollary of Theorem 6.2.5, using the
density condition (52). This second proof is rather technical, we will skip it here. Let us just give
the correspondence between the coefficientsck,l anddk,l :

dk,l =

mk−1∑
i=l

ck,i ∂
i−l
k

( ∏
0≤n≤k−1

(αk − αn)
−mn

)

+
∞∑

j=k+1

mj−1∑
i=0

cj,i ∂
mk−1−l
k

( ∏
0≤n≤j−1,n6=k

(αk − αn)
−mn(αk − αj)

−(i+1)

)
,

(53)

the convergence of the second sum being a consequence of conditions (52) and (51).
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In the case where allmk = 1, we have

dk =
∞∑
j=k

cj
∏

0≤n≤j,n 6=k

(αk − αn)
−1.





CHAPTER 7

The multivariate case

Introduction

The results of this chapter are published in [38] and [39].
Here, we are concerned with the interpolation problem in several variables. C.A. Berenstein

and B.Q. Li described the interpolating discrete sequences forAp(Cn) as zeros of an entire map
F = (f1, · · · , fn), fj ∈ Ap(Cn), where the jacobian determinant ofF verifies a certain lower
bound (see Theorem 7.2.1).

B.Q. Li and B.A. Taylor, in [31], proved that anyAp-interpolating discrete sequenceV =
{αj}j verifiesn(r, V ) = O((sup|z|=r p(z))

n) wheren(r, V ) denotes the number of points ofV
within the ball of center0 and radiusr. This makes the link between the interpolation problem
and the transcendental Bézout problem, that is, the problem of the existence of an upper bound
for the zero set of an entire map.

The classical B́ezout theorem states that ifA1, . . . , An are algebraic varieties then the degree
of the intersectionA1 ∩ · · ·An is smaller than the product of the degrees.

Whenf is an entire function of one variable, an application of Jensen’s formula shows that
for anyα > 1, there exists a constantC > 0 such that

n(r, Z(f)) ≤ C log sup
|z|=αr

|F (z)|.

By analogy with the number of zeros of a polynomial, this suggests thatlog sup|z|=αr |F (z)|
plays the role of the degree. The transcendental Bézout problem is the natural question, in the
case whereF = (f1, · · · , fn) is an entire map fromCn dansCn, wether

n(r, F−1(0)) ≤ C

(
log sup

|z|=αr
|F (z)|

)n

.

A counter-example by Cornalba and Shiffman (see [14]) shows that this is not the case in general.
They proved that for any positive functionS(r) wuch thatS(r) ↑ +∞, there exists a map
F : C2 −→ C2 of order zero, with

n(r, F−1(0))

S(r)
→ +∞.

However, if we only count the non-degenerate zeros, that is, those where the jacobian determinant
is not too small, then it is possible to find an upper bound in terms of the growth of the function.
This was proved in [31]. We are going to give a new look on the proof using the techniques
developed in [37]. Combining this result with the analytic characterisation ofAp-interpolating
discrete sequences given by Berenstein and Li, this will enable us to give a new look on the

87
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proof of the necessary condition on anAp-interpolating sequence given by Li and Taylor (see
Corollary 7.4.3). This is the object of Section 7.4.

But before getting to that, we give some definitions in Section 7.1 and we state some general
properties about interpolating sequences in Section 7.2. They are often an extension of the one
variable case. In Section 7.3, we give a sufficient geometric condition for a discrete sequence
in Cn to be interpolating forAp(Cn) when p is a radial and doubling weight growing more
rapidly than|z|2. In the case wherep(z) = |z|2, this condition is that the sequence is uniformly
separated. To our knowledge, there is no geometric sufficient and necessary condition known yet
in several variables, even in th case where the weightp is radial and doubling.

7.1. Definitions and notations

We will use the following standard notations. Forz = (z1, . . . , zn) ∈ Cn, let |z| =

(
∑n

i=1 |zi|2)1/2. We denote the standard Kähler form byβ = i
2
∂∂̄|z|2 andβk =

1

k!
βk. We

denote byB(a, r) the euclidian ball{z ∈ Cn / ‖z − a‖ < r}.
A plurisubharmonic functionp : Cn → [0,∞) is called a weight if it satisfies the following

conditions :

(W1) log(1 + |z|2) = O(p(z)).
(W2) There exist constantsC1 andC2 such thatp(z) ≤ C1p(ω) + C2 whenever|z − ω| ≤ 1.

LetA(Cn) be the space of all of entire functions onCn and

Ap(Cn) = {f ∈ A(Cn) : ∃A,B > 0 / |F (z)| ≤ A exp (Bp(z)) , ∀z ∈ Cn}.

Let V = {αj}j∈N be a discrete variety inCn i.e., a sequence ofCn such that|αj| → ∞ when
j →∞. Let us define

Ap(V ) = {W = {wj}j∈N ⊂ C : ∃A,B > 0 / |wj| ≤ A exp (B p(αj)) , ∀j ∈ N}.

DEFINITION 7.1.1. We will say thatV isAp-interpolating if for everyW ∈ Ap(V ), there is
a functionf ∈ Ap(Cn) such thatf(αj) = wj for all j ∈ N.

We denote byRV the restriction map :

RV : Ap(Cn) → Ap(V )

f → {f(αj)}

In other terms,V isAp-interpolating if and only ifRV mapsAp(Cn) ontoAp(V ).

DEFINITION 7.1.2. Let V = {αj}j∈N be a discrete variety ofCn.
We will say that{αj} is weakly separated if there existε, C > 0 such that for allk 6= j,

|αj − αk| ≥ ε exp (−B p(αj)) .

and we will say thatV is uniformly separated if there existsε > 0 such that for allk 6= j,

|αj − αk| ≥ ε.
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ForB > 0, we set

Ap,B(Cn) = {f ∈ A(Cn) / ‖F‖B < +∞}
where

‖F‖B = sup
z∈Cn

|F (z)| exp (−B p(z)) .

ThenAp,B(Cn) with this norm is a Banach space and we have

Ap(Cn) =
⋃
j∈N

Ap,B(Cn).

The spaceAp(Cn), endowed with the topology of inductive limit, has a structure of an (LF)-space
(see [25] or [27]).

Now, letV = {αj} be a discrete variety ofCn and set

Ap,B(V ) = {W = {wj}j ⊂ C : ‖W‖B < +∞}
where

‖W‖B = sup
j∈N

|wj| exp (−B p(αj)) .

In the same way,Ap,B(V ) with this norm is a Banach space and

Ap(V ) =
⋃
j∈N

Ap,B(V ).

Ap(V ) endowed with the topology of inductive limit is another (LF)-space.
For a holomorphic mapF = (f1, . . . , fn) : Cn → Cn, we denote byJF (z) the determinant

of the jacobian matrix ofF in the pointz, Z(F ) the pre-image of0 by F and

MF (r) = sup
z∈B(0,r)

|F (z)|.

If V is a discrete subsetCn, we denote byn(r, V ) the number of points of the setV ∩B(0, r).
Cn will denote a constant only depending onn. Its actual value may vary from one occurrence

to another.

7.2. General properties of interpolating discrete varieties

Berenstein and Li gave an analytic characterization of interpolating discrete varieties gener-
alising Theorem 1.2.14 :

THEOREM 7.2.1. ([4, Corollary 2.7]) LetV = {αj}j∈N be a discrete variety ofCn. ThenV
is an interpolating variety forAp(Cn) if and only if there existn functionsf1, . . . , fn in Ap(Cn)
such that, denoting byF = (f1, · · · , fn),

V ⊂ Z(F )

and for someε, B > 0,

|JF (αj)| ≥ ε exp (−B p(αj)) , for all j ∈ N.



90 7. THE MULTIVARIATE CASE

REMARK 7.2.2.Theorem 7.2.1 implies that wheneverV is an interpolating variety forAp(Cn),
it is also an interpolating variety forAq(Cn) if p(z) = O(q(z)).

LEMMA 7.2.3. V is an interpolating variety forAp(Cn) if and only if, for allB > 0, there
existA > 0 andB′ > 0 such that for allW ∈ Ap,B(V ), there existf ∈ Ap,B′(Cn) with
RV (f) = W and‖F‖B′ ≤ A‖W‖B.

See [13], page 456, for a proof based on the open mapping theorem for (LF)-spaces or [4],
page 169, for a proof based on the Baire-category theorem.

Thanks to property (W2),Ap(Cn) is closed under differentiation and more precisely :

LEMMA 7.2.4. If f ∈ Ap,B(Cn), then fork = 1, . . . , n,
∂f

∂zk
∈ Ap,BC1 and∥∥∥∥ ∂f∂zk

∥∥∥∥
BC1

≤ exp(B C2) ‖F‖B.

PROOF. Let z ∈ Cn. Using Cauchy formula,∣∣∣∣ ∂f∂zk (z)

∣∣∣∣ =

∣∣∣∣ 1

2iπ

∫
|u|=1

f(z1, . . . , zk−1, zk + u, zk+1, . . . , zn)

u2
du

∣∣∣∣
≤ max

|z−ξ|≤1
|f(ξ)| ≤ ‖F‖B exp (B C1p(z) +B C2) .

�

LEMMA 7.2.5. If V is a discrete interpolating variety forAp(Cn), thenV is weakly sepa-
rated.

PROOF. Using Lemma 7.2.3, we can find a sequence{fj}j≥0 such thatfj(αj) = 1, fj(αk) =
0 for all k 6= j and

|fj(z)| ≤ AeBp(z), z ∈ Cn,

with A,B > 0 not depending onj.
For j 6= k, suppose|aj − αj| < 1, then

1 = |fj(αj)− fj(αk)| ≤ |αj − αk| sup
z∈B(αj ,1)

max
l=1,...,n

∣∣∣∣ ∂f∂zl (z)
∣∣∣∣ .

For eachl = 1, . . . , n, ∣∣∣∣ ∂f∂zl (z)
∣∣∣∣ ≤ AeBp(z) ≤ AeBp(αj)

by property (W2). �

LEMMA 7.2.6. If V = {αj} is weakly separated, then there existsC > 0 such that∑
j≥0

e−C p(αj) <∞.

The proof is the same as in one variable (See Lemma 1.2.12).
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THEOREM 7.2.7. ([39])
LetV1, · · · , Vn be discrete interpolating varieties forAp(Cn). ThenV = V1 ∪ · · · ∪ Vn is an

interpolating variety forAp(Cn) if and only ifV is weakly separated.

PROOF. We may assume without loss of generality thatn = 2. and that the intersection of
V1 andV2 is empty. LetW = {wλ}λ∈V1 ∈ Ap(V1) andZ = {zγ}γ∈V2 ∈ Ap(V2) be the values to
interpolate. We want to constructf1 ∈ Ap(Cn) andf2 ∈ Ap(Cn) such that

f1(λ) = wλ, λ ∈ V1, and f1(γ) = 0, γ ∈ V2,

f2(γ) = zγ, γ ∈ V2, andf2(λ) = 0, λ ∈ V1.

Then settingf = f1 + f2, it is clear that

f(λ) = wλ, λ ∈ V1 andf(γ) = zγ, γ ∈ V2,

in other words,ρV1∪V2(f) = W ∪ Z.
Let us show how to constructf1 (the construction off2 will be of course similar reversing

the roles ofV1 andV2).
Recall that by the weak separation, there exist constantsε, C > 0 such that for allλ ∈ V1 anf

γ ∈ V2, we have
|λ− γ| ≥ εe−Cp(γ).

Using Lemma 1.2.6, we can find a sequence of functions{Gλ,l}λ∈Λ,0≤l≤n such that

(i) Gλ,l(γ) =
1

(γ − λ)l
if |(γ − λ)l| ≥ ε/

√
ne−C p(γ).

(ii) |Gλ,l(z) ≤ AeBp(z) whereA,B > 0 don’t depend onλ (or l).

We have denoted by(γ − λ)l thel-th coordinate ofγ − λ. Now Set

Fλ(z) =
n∏
l=1

(1− (z − λ)lGλ,l) .

For all γ ∈ Γ, there existsl ∈ {1, · · · , n} such that(γ − λ)Gλ,l(γ) = 1. Thus,Fλ(γ) = 0.
Besides, it is clear thatFλ(λ) = 1 and that, for certain constantsA,B > 0, we have

|Gλ,l(z) ≤ AeB[p(z)+p(λ)]

using property (W1) of the weight.
Applying again Lemma 1.2.6, for allM > 0, there exists a sequence of functions{hλ} such

that

(i) hλ(λ) = wλe
Mp(λ),

(ii) hλ(λ′) = 0, for all λ′ ∈ V1, λ
′ 6= λ,

(iii) |hλ(z)| ≤ AeBp(z), for all z ∈ Cn, whereA andB don’t depend onλ.

Finally, we set

f1 =
∑
j≥0

Fλhλe
−Mp(λ)

whereM is chosen large enough so that the sum converges according to Lemma 7.2.6.�
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7.3. A sufficient condition

Let V = {αj} be a discrete variety onCn. We consider the separation radius

δk = inf(inf
j 6=k

|αk − αj| , 1).

THEOREM 7.3.1. Let ρ ≥ 2, p a weight such that|z|ρ = O(p(z)) andV = {αj} a discrete
variety onCn.

If V satisfies the following condition : there exist two constantsD0 > 0 andD1 > 0 such
that

1

δk
2 log

4

δk
≤ D0 +D1|αj|ρ−2 for all k ∈ N,

thenV is an interpolating variety forAp(Cn).

REMARK 7.3.2. It’s obvious that this condition implies the weak separation. Actually, it
means that the pointsαj have to be ”separated enough”.

Of course, by the previous result, the theorem is still true ifV is weakly separated and is a
finite reunion of varieties satisfying this condition.

An immediate corollary of this theorem is

COROLLARY 7.3.3. Letp be a weight such that|z|2 = O(p(z)).
Any uniformly separated discrete variety onCn is an interpolating variety forAp(Cn).
In particular, Nn is interpolating forA|z|2(Cn).

REMARK 7.3.4. This corollary is also a consequence of a result due to P. Thomas and X.
Massaneda : [33, Corollary 5.2].

They showed the following result which is more precise in the case wherep(z) = |z|2 :
if V = {αj} is uniformly separated, then there existsB0 > 0 such that forB ≥ B0, the

restriction map

ρB : A|z|2,B(Cn) → A|z|2,B(V )

f → {f(αj)}
is onto.

In particular, that implies thatV is an interpolating variety forA|z|2(Cn) and therefore, for
Ap(Cn) if |z|2 = O(p(z)).

On the other hand, as a consequence of [1, Theorem 3.1.1], we can see thatNn is a uniqueness
set for the space, that we will denote byAτ

|z|, of holomorphic functions onCn such that for some
A > 0,

|f(z)| ≤ A exp(τ |z|)
whereτ < π is a fixed real number. Wheneverp(z) = o(|z|), Ap(Cn) ⊂ Aτ

|z|. ThenNn is a
uniqueness set forAp(Cn) and therefore cannot beAp-interpolating.

Let us mention another sufficient condition given by A. Hartmann and X. Massaneda.

THEOREM 7.3.5. [21, Corollary 6.3.] Let p be a doubling and radial weight such that
p(z)β ≤ c|z|2(i∂∂̄p(z)) for somec > 0. Let V = {αj}j a discrete variety inC. If there
exist a constantC > 0 such that
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(i) N(0, R) ≤ Cp(R).
(ii) N(αj, |αj|) ≤ Cp(αj) for all j ∈ N. ThenV isAp-interpolating.

This sufficient condition and ours are different. For example, for the weightp(z) = |z|2, a
unformly separated sequence verifies the hypothesis of Theorem 7.3 but not those of Theorem
7.3.5. On the other hand, it is possible to find a non-uniformly separated sequence verifying
the hypothesis of Theorem 7.3.5 but not those of Theorem 7.3 (see [21, Remarks 1 and 2]. In
particular, neither of these two sufficient conditions are necessary.

PROOF OFTHEOREM 7.3.1. Let η be aC∞ function satisfying

(i) 0 ≤ η(z) ≤ 1 ∀z ∈ Cn,
(ii) η(z) = 0 if |z| ≥ 1

2
,

(iii) η(z) = 1 if |z| ≤ 1
4
.

For a(p, q)-form γ(z) =
∑

|I|=p,|J |=q

γI,J(z)dzI ∧ dzJ , |γ| will denotemax
I,J

|γI,J(z)|.

If g is aC∞ function onCn, we set

∂g(z) =
∑

i=1,...,n

∂g

∂zi
(z)dzi,

∂̄g(z) =
∑

j=1,...,n

∂g

∂z̄j
(z)dz̄j,

∂∂̄g(z) =
∑

i,j=1,...,n

∂2g

∂zi∂z̄j
(z)dzi ∧ dz̄j.

LetM > 0 such that

sup
z∈Cn

|∂η(z)| ≤M, sup
z∈Cn

|∂̄η(z)| ≤M and sup
z∈Cn

|∂∂̄η(z)| ≤M.

The functionηj(z) = η(
z − αj
δj

) for j ∈ N will satisfy :

(i) ηj(αj) = 1, ηj(αj) = 0 ∀k 6= j,
(ii) ηj(z) = 1 if |z − αj| ≤ δj

4
,

(iii) ηj(z) = 0 if |z − αj| ≥ δj
2

.

LEMMA 7.3.6. LetV = {αj} be ap-weakly separated discrete variety onCn

and{wk} ∈ Ap(V ).
Then, we can find a positiveC∞ functionF onCn satisfying

(i) F (αj) = wj ∀j ∈ N,
(ii) ∃A, B > 0 /|F (z)| ≤ AeBp(z), |∂̄F (z)| ≤ AeBp(z)for z ∈ Cn,
• for z ∈ Cn \

⋃
j∈NB(αj,

δj
2
), ∂̄F (z) = 0,

• for z ∈
⋃
k∈NB(αj,

δj
4
), ∂̄F (z) = 0.
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PROOF. There exist constantsε1 > 0 andB1 > 0 such that, for allj ∈ N,

1 ≥ δj ≥ ε1 e
−B1p(αj),

and constantsA2 > 0 andB2 > 0 such that, for allj ∈ Cn,

|wj| ≤ A2e
B2p(αj).

PutF (z) =
∑

j∈N αj(z)wj. Then obviously,F (αj) = wj for all j ∈ N.

Note that the ballsB(αj,
δj
2

) are disjoint.

If z ∈ Cn \
⋃
j∈N

B(αj,
δj
2

), thenα(z) = 0 and∂̄α(z) = 0.

If ∃j ∈ N such thatz ∈ B(αj,
δj
2

) (j is then unique), we have

|α(z)| = αj(z)|wj| ≤ |wj| ≤ A2 e
B2 p(αj)

with property (W2),≤ A2e
B2C2eB2C1p(z).

We also have

|∂̄α(z)| = |∂̄αj(z)wj| ≤M
|wj|
δj

≤ M A2

ε1
exp ((B1 +B2) p(αj))

≤ M A2

ε1
exp((B1 +B2)C2)e

(B1+B2)C1 p(z).

Besides, if|z − αj| ≤
δj
4
, ∂̄α(z) = 0. �

Let us proceed with the proof of the theorem.

Let W = {wj} ∈ Ap(V ). The preceding lemma gives an interpolatingC∞ function F
satisfying the desired growth condition. The next step will be to solve the∂̄ equation∂̄u = −∂̄F
with β satisfying the same growth condition and vanishing onV . Then it suffices to takef =
F + u to have the desired interpolating function.

To solve the∂̄ equation, we use Ḧormander’s theorem :

THEOREM 7.3.7. (see[22]) Letψ be a plurisubharmonic function inCn. For every(0, 1)-
form γ with C∞ coefficients onCn and such that̄∂γ = 0, there is aC∞ functionβ such that
∂̄β = γ and ∫

Cn

|β(z)|2e−ψ(z)
(
1 + |z|2

)−2
dλ(z) ≤

∫
Cn

|γ(z)|2e−ψ(z)dλ(z).

We will apply this theorem withγ = −∂̄α. The essential point is to find a plurisubharmonic
functionψ not summable on the pointsαj of V and such that the right integral is finite. This will
force the solutionβ to vanish onV .

To begin, put

φ̃(z) =
∑
j

αj(z) log |z − αj|2n.
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This function has almost the desired properties except that it is not plurisubharmonic. We will
estimate its ”lack of plurisubharmonicity” by estimating its Levi-form:

〈
L(φ̃)λ, λ

〉
=
∑
k,l

∂2φ̃(z)

∂zk∂z̄l
λαjλ̄l, λ = (λ1, . . . , λn) ∈ Cn.

We want a lower bound of this term.

〈
L(φ̃)λ, λ

〉
= n

∑
j

αj(z)
〈
L(log |z − αj|2)λ, λ

〉
+ 2nRe

[∑
j

∑
k,l

∂αj(z)

∂zk

∂ log |z − αj|2

∂z̄l
λjλ̄l

]

+ n
∑
j

log |z − αj|2
∑
k,l

∂2αj(z)

∂zk∂z̄l
λjλ̄l.

For everyj, log |z − αj| is plurisubharmonic so the first term is positive.
Let us denote byA(z) the second term and byB(z) the third term.

If z ∈ Cn \
⋃
j

B(αj,
δj
2

) or if z ∈
⋃
j

B(αj,
δj
4

), thenA(z) = B(z) = 0.

If z ∈ B(αj,
δj
2
) \B(αj,

δj
4
), that is

δj
4
≤ |z − αj| ≤

δj
2

, then∣∣∣∣∂αj(z)∂zk

∣∣∣∣ ≤ M

δj
for k = 1, . . . , n,∣∣∣∣∂ log |z − αj|2

∂z̄l

∣∣∣∣ =
|(z − αj)l|
|z − αj|2

≤ 1

|z − αj|
≤ 4

δj
for l = 1, . . . , n.

Thus, we obtain

|A(z)| ≤ 8nM

δ2
j

|λ|2 ≤ 8nM(D0 +D1|αj|ρ−2)|λ|2

≤ 8nM(D0 + 2ρ−2D1)(1 + |zk|ρ−2)|λ|2.

Let us estimateB(z). ∣∣∣∣∂2αj(z)

∂zk∂z̄l

∣∣∣∣ ≤ M

δ2
j

, for k, l = 1, . . . , n,

| log |z − αj|2| = 2 log
1

|z − αj|
≤ 2 log

4

δj
.
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We deduce that

|B(z)| ≤ 2nM
1

δ2
j

log
4

δj
|λ|2 ≤ 2nM (D0 +D1|αj|ρ−2) |λ|2

≤ 2nM (D0 + 2ρ−2D1)(1 + |αj|ρ−2)|λ|2.
Finally, we obtain that〈

L(φ̃)λ, λ
〉
≥ −K

(
|z|ρ−2 + 1

)
|λ|2 whereK = 8nM(D0 + 2ρ−2D1).

Now, we add a function with a Levi-form ”positive enough” to make the sum positive. Set

φ = φ̃+K
(
|z|ρ + |z|2

)
.

A simple calculation shows that

〈L(|z|ρ)λ, λ〉 ≥ |z|ρ−2|λ|2 and
〈
L(|z|2)λ, λ

〉
= |λ|2 for λ ∈ Cn.

Therefore, from [24, Theorem 2.9.11],φ is almost everywhere equal to a plurisubharmonic func-
tion. We can assume thatφ is plurisubharmonic.
φ satisfies the following conditions :

φ(z) ≤ K
(
|z|ρ + |z|2

)
≤ K̃p(z),

exp(−φ(z)) ∼ 1

|z − αj|2n
in a neighborhood ofαj.

Let us take the functionF given by Lemma 7.3.6 and consider|∂̄α(z)|2 exp(−φ(z)). If z belongs
to the support of̄∂F , there is a (unique)j such that

δj
4
≤ |z − αj| ≤

δj
2

then,

−φ̃(z) = αj(z) log
1

|z − αj|2n
≤ 2n log

4

δj
≤ K1p(αj) ≤ K1C1p(z) +K1C2

soexp(−φ(z)) ≤ exp(−φ̃(z)) ≤ K2 exp(K3p(z)) and finally,

|∂̄F (z)|2 exp(−φ(z)) ≤ A2K2 exp ((2B +K3)p(z)) for all z ∈ Cn.

By property (0.1),log(1 + |z|2) = O(p(z)) thus, if we chooseB1 large enough,∫
Cn

|∂̄F (z)|2 exp(−φ(z)) exp(−B1p(z)) dλ(z) < +∞.

From Hörmander theorem, we can find aC∞ functionβ such that̄∂β = −∂̄F and∫
Cn

|β|2e−φ(z)e−B1p(z)

(1 + |z|2)2
dλ(z) < +∞,

i.e: takingB2 large enough,

I =

∫
Cn

|β|2e−φ(z)e−B2p(z) dλ(z) < +∞.
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Recall that locally near everyαj, e
−φ(z) ∼ 1

|z − αj|2n
. So we have necessarilyβ(αj) = 0 for all

j.

Setf = F + β. f is then holomorphic onCn, andf(αj) = F (αj) = Cj for all j.

The last step is to verify thatf has the desired growth condition.
By the mean value inequality,

|F (z)| ≤ 1

vn

∫
B(z,1)

|f(w)| dλ(w) ≤ 1

vn

∫
B(z,1)

|F (w)| dλ(w)

+
1

vn

∫
B(z,1)

|β(w)| dλ(w).

Let us estimate the two integrals that we denoteI1 andI2. Forw ∈ B(z, 1),

|F (w)| ≤ AeB p(w) ≤ AeBC2 eBC1p(z).

Then,

I1 ≤ AeBC2eBC1p(z).

To estimateI2, we use Cauchy-Schwarz inequality,

I2 ≤ J1 J2

where

J1 =

[∫
B(z,1)

|β(w)|2e−φ(w)−B2p(w) dλ(w)

] 1
2

J2 =
1

vn

[∫
B(z,1)

eφ(w)+B2p(w) dλ(w)

] 1
2

.

J1 ≤
[∫

Cn

|β(w)|2e−φ(w)−B2p(w) dλ(w)

] 1
2

< +∞.

Forw ∈ B(z, 1), using property (W2),

eφ(w)+B2p(w) ≤ e(
eK+B2)p(w) ≤ e(

eK+B2)C2e(
eK+B2)C1 p(z).

then there are two positive constantsA1 andB3 such thatJ2 ≤ A1e
B3p(z).

Finally, takingA2 = max(AeBC2 , I1/2A1) andB4 = max(B C1, B3), we have

|F (z)| ≤ A2e
B4p(z).

Thenf is inAp(Cn). �
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7.4. On the transcendental B́ezout problem

THEOREM 7.4.1. LetF be an entire map fromCn to Cn. Letφ be a positive function onCn.
Settingφ̃(r) = sup

|z|≤r
φ(z), we assume that̃φ is increasing and

MF (r) ≤ A
(
φ̃(r)

)B
, whereA andB are positive constants.

LetZφ(F ) = {aj}j≥0 be the zeros ofF verifying

|JF (aj)| ≥
1

φ(aj)
.

Then, ifr is large enough so thatlog φ̃(r) ≥ 1 et r′ > r, we have

n(r, Zφ(F )) ≤ Cn
r′2n

(r′ − r)2n
(r′ − r)

−n

log φ̃(r′) (log φ̃(r′))n.

An immediate application of Theorem 7.4.1, we find the following results that were proved
previously by Li and Taylor (see [31]).

COROLLARY 7.4.2. Let Z̃(F ) = {aj}j≥0 be the zeros ofF verifying

|JF (aj)| ≥ εMF (|aj|)−B.

Then for allα > 1, there exists a constantCα > 0 such that

n(r, V ) ≤ Cα log(MF (αr))n.

We are also led to the following necessary condition for interpolating discrete varieties.

COROLLARY 7.4.3. LetV = {aj}j≥0 be an interpolating discrete variety forAp(Cn). Then,
for all α > 1, there existsCα > 0 such that

n(r, V ) ≤ Cα(p(αr))
n.

Proof of Theorem 7.4.1.
Let F : Cn → Cn be an entire map non identiqually equal to zero. Letr′ > r > 0 (r will be

chosen large enough when needed).

LEMMA 7.4.4. There exists a constantCn > 0 such that, for allγ > 0 (γ may depend onr),∫
B(0,r)

i∂∂̄ log |F |2 ∧ (i∂∂̄|F |2γ)n−1 ≤ Cn
r′2n

(r′ − r)2n
MF (r′)2γ(n−1) logMF (r′).

PROOF. We setrk = r′ − k r
′−r
n

for k ∈ 1, 2, . . . , n and

Ik =

∫
B(0,rk)

i∂∂̄ log |F |2 ∧ (i∂∂̄|F |2γ)k−1 ∧ βn−k.
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Using Lemma I.2.2,[37], we obtain the estimates

Ik ≤
1

(r2
k−1 − r2

k)
2

∫
B(0,rk−1)

(r2
k−1 − |z|2)2i∂∂̄ log |F |2 ∧ (i∂∂̄|F |2γ)k−1βn−k

=
1

(r2
k−1 − r2

k)
2

∫
B(0,rk−1)

|F |2γi∂∂̄ log |F |2∧i∂∂̄(r2
k−1−|z|2)2∧(i∂∂̄|F |2γ)k−2∧βn−k

≤
8r2

k−1(n− k + 1)

(r2
k−1 − r2

k)
2

∫
B(0,rk−1)

|F |2γi∂∂̄ log |F |2 ∧ (i∂∂̄|F |2γ)k−2 ∧ βn−k+1

≤ 8n3MF (r′)2γ

(r′ − r)2
Ik−1.

After iteration, we get

In ≤ (8n3)n−1MF (r′)2γ(n−1)

(r′ − r)2(n−1)
I1.

We still have to estimateI1. Repeating the above argument we have

I1 ≤ 8n3 1

(r′2 − r2)

∫
B(0,r′)

∣∣log |F |2
∣∣ βn.

Thus ∣∣log |F |2
∣∣ = log+ |F |2 + log− |F |2

and log |F |2 = log+ |F |2 − log− |F |2

with log+ |F |2 = sup(log |F |2, 0)

and log− |F |2 = − inf(log |F |2, 0).

We may assume up to a translation thatF (0) 6= 0. Then

log |F (0)|2 ≤ n!

πnr′2n

∫
B(0,r′)

log |F (z)|2dλ(z).

We deduce that∫
B(0,r′)

log− |F (z)|2dλ(z) ≤
∫
B(0,r′)

log+ |F (z)|2dλ(z)− r′2nπn

n!
log |F (0)|

and consequently,∫
B(0,r′)

∣∣log |F (z)|2
∣∣ dλ(z) ≤ 2

∫
B(0,r′)

log+ |F (z)|2dλ(z)− r′2nπn

n!
log |F (0)|

≤ Cn logMF (r′)r′
2n
.

Finally,

In ≤ Cn
r′2n

(r′ − r)2n
MF (r′)2γ(n−1) logMF (r′).

�
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REMARK 7.4.5. We may also find this kind of estimates in [16].

Let us recall the following theorem which gives a quantitative inverse function theorem.

THEOREM 7.4.6. [37] LetF : Cn → Cn be an entire map and letr′ > r > 0.
Let z0 ∈ B(0, r) with JF (z0) 6= 0. ThenF in injective onB(z0, S) where

S = Cn(r
′ − r)n+1MF (r′)−n|JF (z0)|

andF ((B(z0,
S
2
)) contains a ballB(F (z0), S

′) where

S ′ = C ′
n(r

′ − r)2nMF (r′)−2n+1|JF (z0)|2.

PROPOSITION7.4.7. For γ > 0, we have

∑
a∈F−1(0)∩B(0,r)

|JF (a)|4(n−1)γ ≤

Cnγ
n−1MF (r′)4n(n−1)γ logMF (r′)(r′ − r)−4n(n−1)γ r′2n

(r′ − r)2n
.

PROOF. Let r1 = r′−r
2

. A computation shows that the measures

i∂∂̄ log |z|2 ∧ (i∂∂̄|z|2γ)n−1

and
γn|z|−2n+2(n−1)γdλ(z)

are the same up to a constant. Using Lemma 7.4.4, we deduce that∫
B(0,r1)

|F |−2n+2(n−1)γ|JF (z)|2dλ(z) ≤

Cnγ
−n r′2n

(r′ − r)2n
MF (r′)2γ(n−1) logMF (r′).

(54)

For alla ∈ F−1(0) ∩B(0, r), by Theorem 7.4.6,F is injective onB(a, S). In particular, the
ballsB(a, S

2
) are pairwise disjoint. Moreover,F (B(a, S

2
)) containsB(0, S ′). Thus∫

B(0,r1)

|F |−2n+2(n−1)γ|JF (z)|2dλ(z) ≥
∑

a∈F−1(0)∩B(0,r)

∫
B(a,S

2
)

|F |−2n+2(n−1)γ|JF |2dλ(z)

≥
∑

a∈F−1(0)∩B(0,r)

∫
B(0,S′)

|z|−2n+2(n−1)γdλ(z)

≥ Cnγ
−1

∑
a∈F−1(0)∩B(0,r)

S ′
2(n−1)γ

.

The desired results follows by replacingS ′ by its value given in Theorem 7.4.6 and using the
inequality (54). �
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To complete the proof of Theorem 7.4.1, we only need to apply Proposition 7.4.7 with

γ =
1

4(n− 1) log φ̃(r′)
.

We obtain

n(r, Zφ(f)) ≤ e−1
∑

a∈V ∩B(0,r)

|JF (a)|
1

log f̃(r′) ≤ Cn(log f̃(r′))n(r′ − r)
− n

log f̃(r′)
r′2n

(r′ − r)2n
.





Further questions

On the spaceÊ ′(R)

The trace of Ê ′(R) on a variety V
Let us putp(z) = | Im z|+ ln(1 + |z|2). We know thatAp(C) = Ê ′(R), the space of Fourier

transforms of distributions with compact support on the real line.
In Chapter 4, we gave a complete geometric description ofAp-interpolating varieties. We

now want to know more about Question 2, that is, to describe the image ofAp(C) by the restric-
tion mapRV .

In [7], Berenstein and Taylor considered the case whereV = Z(f) with f ∈ Ap(C) andf is
slowly decreasing, i.e. there is a constantA > 0 such that for allx ∈ R,

max{|f(x+ t)| : t ∈ R, |t| ≤ A ln(1 + |x|)} ≤ (A+ |x|)−A.

They described the traceRV (Ap(C)) in terms of divided differences after grouping the points
of V = Z(f) in connected components{Vα}α of the set{|g(z)| ≤ ε exp(−Bp(z))}, for some
ε, B > 0.

We would like to find an explicit description, like we did for radial and doubling weights in
Chapter 3. To apply a similar method, we need to impose some natural geometric conditions on
V .

One of these conditions would be thatV lies in the logarithmic strip about the real axis, i.e.,
there is a constantA > 0 such that

| Imαj| ≤ A ln(1 + |αj) ∀j ∈ N

(such a variety is called hyperbolic). This includes the case where all the points lie on the real
axis. Note that whenV is hyperbolic,p(αj) ' ln(1 + |αj) and Theorem 4.1.2 may be re-written
in simpler terms :V isAp-interpolating if and only if There isC > 0 such that

N(αj, ln(1 + |αj|)) ≤ C ln(1 + |αj) ∀j ∈ N.

The other condition would be a control on the number of points lying inV ∩D(x, ln(1 + |x|)),
x ∈ R by ln(1 + |x|). This property holds for zeros of slowly decreasing functions inAp(C). In
the case of radial and doubling weights (Chapter 5), we covered the complex plane by increasing
disks centered at the origin. If we want to apply the same techniques in the present case, we shall
need an adapted covering of the part of the complex plane lying near the real axis.

Application to mean-periodic functions

103
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By Paley-Wiener’ theorem, the Fourier transform, that we will denote byF , is an isomor-
phism betweenE ′(R) andAp(C).

Let µ ∈ E ′(R). We say thatf ∈ E(R) is µ-mean -periodic if it verifies the convolution
equation

µ ? f = 0.

Denote byV = {(αj,mj)} = Z(F(µ)). As in [7], knowing the trace of̂E ′(R) give a rep-
resentation ofµ-mean-periodic functions in series of exponential monomial that converges after
grouping with respect to the components{Vα}α. A geometric description ofRV (C) would give a
more explicit series, on the model of the ones given in Chapter 6. Let us mention that by the gen-
eral theory of convolution operators,F(µ) being slowly decreasing (or invertible) is equivalent
to the surjectivity ofT?. Also, V being hyperbolic is equivalent to the existence of a continous
right inverse forT?.

Non-homogeneous convolution equations
In Chapter 6, we studied homogeneous convolution equations

T ? f = 0, T ∈ F ′
θ(C), T 6= 0, f ∈ Fθ(C).

In our situation, the Fourier-Borel transformΦ of T is invertible (see Lemma 6.2.2). Therefore,
it is known from the general theory that the operatorT? mapsF ′

θ(C) onto itself. In other words,
for anyg ∈ Fθ(C), the equation

T ? f = g

has at least one solutionf ∈ Fθ(C). As we described the kernel ofT? in Theorem 6.2.5, we
would completely solve the non-homogenous equation if we found a way to construct a particular
solution. In a joint work project with H. Ouerdiane, we use a series representation ofT ? f(z) to
try to construct an explicit solution. We already have some partial results in the particular cases
whereg is the monomialzk, k ∈ N. The idea is then to deduce a solution in the general case
g(z) =

∑
k∈N gkz

k by linearity and convergence.

The multivariate case
Let us consider the case of radial and doubling weights. In Chapter 7, we discussed discrete

varieties inCn and we gave sufficient geometric conditions as well as necessary ones in terms of
the counting functions.

These counting functions still have a sense in several variables. According to the work by
A. Hartmann and X. Massaneda, the conditionsN(0, R) = 0(p(R)) andN(αj, |αj|) = 0(p(αj))
that are necessary and sufficient in one variable turn out to be still sufficient but not necessary in
several variables (see [21], Chapters 3 and 7). Can we find similar conditions in several variables
that would be necessary and sufficient ? What would play the role of the counting functions ? The
analytic characterization given by Berenstein and Li (see Theorem 7.2.1) shows that whenever
V = {αj} is Ap-interpolating, then for allu ∈ Cn, |u| = 1 and for all j, Nu(αj, |αj|) ≤
A+Bp(αj), whereA,B > 0 are independent ofj and ofu and where we have denoted by

Nu(αj, |αj|) =
∑

αk=αj+uζj,k

ln
|αj|
|ζj,k|

.
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This condition is not sufficent since it clearly doesn’t imply the necessary conditionn(0, R) =
O(p(R)n) but how far is it from being sufficient ?

A simpler problem is to consider the particular case where the points ofV are regularly
distributed (in a sense that remains to be explicited). The fact that a uniformly separated discrete
variety isAp-interpolating whenp(z) = |z|2 suggests that a condition in the more general case
p(z) = |z|ρ, ρ ≥ 2 would be a separation of order|αj|1−ρ/2.
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