N

N

Gestion et découverte de compétences dans des
environnements hétérogenes
Dong Cheng

» To cite this version:

Dong Cheng. Gestion et découverte de compétences dans des environnements hétérogenes. Interface
homme-machine [cs.HC]. Université Henri Poincaré - Nancy I, 2008. Francais. NNT: . tel-00338226

HAL Id: tel-00338226
https://theses.hal.science/tel-00338226
Submitted on 12 Nov 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00338226
https://hal.archives-ouvertes.fr

Nancy-Université

Sumversrté

Henri Poincaré

Département de formation doctorale en informatique Ecole doctorale IAEM Lorraine

UFR STMIA

Gestion et découverte de compétences
dans des environnements hétérogenes

THESE

présentée et soutenue publiquement le 9 octobre 2008

pour 'obtention du

Doctorat de 1'université Henri Poincaré — Nancy 1

(spécialité informatique)

par
CHENG Dong
Composition du jury
Président : Michaél Petit, Professeur, Université de Namur (B)
Rapporteurs : Giuseppe Berio, Chercheur, Universita degli Studi di Torino (I)

Flavio Oquendo, Professeur, Université de Bretagne-Sud (F)

Ezaminateurs : Nacer Boudjlida, Professeur, Nancy Université, UHP Nancy 1, LORIA (F)
Michaél Petit, Professeur, Université de Namur (B)
Michaél Rusinowitch, Directeur de Recherche, INRIA Lorraine (F)
Francois Charoy, Maitre de conférences, HDR, Nancy Université, ESIAL, LORIA (F)

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Remerciements

Je tiens a remercier en tout premier lieu Monsieur Nacer Boudjlida, professeur a 'uni-
versité Henri Poincaré Nancy 1, qui a dirigé cette thése depuis mon stage de D.E.A. Tout
au long de ces cinq années, il a toujours été disponible pour d’intenses et rationnelles
discussions. Pour tout cela, sa confiance et son soutien financier, je le remercie vivement.

Je remercie les rapporteurs de cette thése, Monsieur Giuseppe Berio, " chercheur
confirmé " a l'université de Turin, et Monsieur Flavio Oquendo, profeseur a 'université
de Bretagne Sud, pour la rapidité avec laquelle ils ont lu mon manuscrit et 'intérét qu’ils
ont porté a mon travail.

Je remercie Michagl Petit, professeur a 'université de Namur, pour avoir accepté d’étre
président du jury et s’étre intéressée a ma thése. Merci également aux autres membres
du jury qui ont accepté de juger ce travail : Monsieur Michaél Rusinowitch, Directeur de
recherche a 'INRIA Grand Est, et Monsieur Francgois Charoy, HDR, maitre de conférences
a 'ESIAL, Université Henri Poincaré Nancy 1.

Je remercie tous les membres de ’équipe ECOO du LORIA pour ’amitié, leur bonne
humeur et le soutien qu’ils m’ont témoignés. Je pense particuliérement a Claude Godart,
Pascal Molli, Khalid Benali, Hala Skaf, Fran¢ois Charoy, Olivier Perrin, Pascal Urso.

Je remercie tous mes amis, je pense surtout a Adnene, Calvin, Rick, WeiMing, Joseph,
JingSan, Bing, Jian, Ustun et toute la troupe du trés convivial Laboratoire LORIA.

Finalement jadresse un grand merci a toute ma famille qui a toujours été présente
lorsque j’en ai eu besoin.

Table des matiéres

Résumé vi
Abstract vii
Résumé de la thése en francais 1

1 Chapitre 1 : Exposé du probléme : Capacités, Compétences et Connais-

SATICES . v v v e e e e e e e e e e e e e e e e 2
2 Survol de la thése et de ses contributions 4
2.1 Gestion de capacités L)
2.2 Découverte de Capacités (Capability Discovery) 6
2.3 Architecture de Médiation 7
3 Structure et Contenu de la Thése 8
3.1 Chapitre 2 : Gestion des connaissances et architectures hétéro-
genes distribuéeso Lo 8
3.2 Chapter 3 : Survol de la gestion de capacités dans un environ-
nement hétérogéneo 8

3.3 Chapitre 4 : ALN,, le langage de représentation de capacités 14

3.4 Chapitre 5 : Gestion et découverte de capacités dans une base
ACN o 15
3.5 Chapitre 6 : Fédération de médiateurs 23

3.6 Chapitre 7 : Conclusions, bilan et perspectives 23

i

3.7 Annexe : Application a la gestion de cartographie de connais-

SANCES .« & v v v e e e e e e e e e e e e e e e e e e e 26
Thése (en anglais) 27
Chapitre 1

Introduction

1.1 Problem Statement : Capability, Competence and Knowledge 28

1.2 Thesis Overview and Thesis Contributions 31

1.2.1 Capability Management 32

1.2.2 Capability Discovery 32

1.2.3 Mediation Architecture. 34

1.3 Thesisoutline e 35

Chapitre 2

Knowledge Management and Distributed Heterogeneous Architectures

2.1

2.2

2.3

24

Knowledge representationo L. 39
2.1.1 Description Logics L. 40
2.1.2 Frame Logics 45
2.1.3 Conceptual Graphs oL 47
2.1.4 Concluding Remarks 47
Capability discovery oo 48
2.2.1 Lexical integration L oL 49
2.2.2 Schema Matchingo 0oL 50
2.2.3 Semantic Web Lo o 52
Heterogeneous Architecture 53
2.3.1 Web Service and Service-Oriented Architecture 04
2.3.2 P2P and Distributed Knowledge Management 25
2.3.3 Mediation architecture L. o7
Conclusion o8

1l

Chapitre 3

Overview of Capability Application in Heterogeneous Environment

3.1 Conceptual Mediation Architecture 60
3.1.1 Exporter. 61
3.1.2 Importer. 61
3.1.3 Mediator 63
3.1.4 Conceptual Mediation Architecture : Concluding remarks 64
3.2 A Model for Composite Answer 65
3.2.1 Query Satisfaction 0L oL 65
3.2.2 Composite Answer 66
3.2.3 Strategies Constraining Composite Answers 67
3.3 Conclusion 69
Chapitre 4
Increased Capability Representation Language ALN |
4.1 Syntax and Semantics of ACN L. 70
4.1.1 Concept Description in ACN 70
4.1.2 Semantic of ACN L 73
4.1.3 Role Description in ACN, 73
4.1.4 Concluding Remarks 7
4.2 KR system based on ALN, 7
4.2.1 Terminologies and the TBox 79
4.2.2 Terminologies of Capability and the T, Box 79
4.2.3 World Description and the ABox 81
4.3 Inference services ALN ., systems 82
4.3.1 Subsumption of concepts 83
4.3.2 Subsumption ofroles 84
4.4 Conclusion 86
Chapitre 5
Capability Management and Discovery in ALN, -KB
5.1 Capability Management for Capability Applications 88
5.1.1 Classification 89
5.1.2 Subsumption Testing L L. 95
5.1.3 Capability Management : Concluding Remarks 100

iv

5.2

2.3

5.4

Capability Discovery 100

5.2.1 Composite Answer in ACN, oL 101
5.2.2 Query Complement Determination 102
5.2.3 Capability Discovery in Multiple Mediators 109
5.2.4 Conceptualization and Individualization 114
The Individualization Process and its Implementation 124
5.3.1 Primitive concept individualization 125
5.3.2 Capability description Individualization 126
5.3.3 Transitive role discovery process 127
Conclusion e 129

Chapitre 6

Mediation Federation

6.1

6.2

6.3

The Mediator Server 131
6.1.1 The Local Repository 132
6.1.2 The Reasoning Processor 136
Mediator Federation L. 138
6.2.1 Federation Management and Communication 140
6.2.2 Tell and Ask as SOAP Messages 142
6.2.3 OWL-S for Mediator Federation 146
Conclusion e 147

Chapitre 7

Conclusions

Annexe A
Example from the INTEROP Knowledge Map

Bibliographie 158

Résumé

Dans le cadre de cette thése, nous nous intéressons au probléme général de la gestion
et de la découverte de compétences dans des environnements hétérogénes. Nous avons
étendu un langage de Logique de Description pour permettre la description et la gestion
de compétences. Nos principaux apports sont :

1. définition d’un langage de la description de compétences ALN ., fondé sur les logiques
de description, pour supporter de la gestion de compétence et les services d’inférence as-
sociés ;

2. définition d’un algorithme de recherche de compétences dont la caractéristique est, en
cas d’échec dans la recherche d’une réponse " exacte ", d’essayer de déterminer des ré-
ponses composées, i.e. de trouver des individus dont la complémentarité des compétences
satisfait la recherche;

3. conception d’un systéme de médiation fédéré pour la validation expérimentale de nos
propositions. Ce systéme a la particularité de prendre en compte les situations ou les
représentations des compétences sont distribuées et homogeénes (i.e. les descriptions des
capacités sont exprimés dans un langage de description unique) aussi bien qu’hétérogénes
(i.e. les descriptions des capacités sont exprimés dans des langages de description diffé-
rents).

Mots-clés : Médiation, Hétérogénéité, Réponse composite, Description Logiques, Dé-
couverte de compétences

vi

Abstract

This thesis addresses the general problem of capability management and capability
discovery in heterogeneous environments. We increased a Description Logics language to
support capability description, management and discovery. Our main contributions are :
1. the definition of a capability description language ALN, based on Description Logic,
to support capability management and the associated inference services;

2. The definition of a capability discovery algorithm whose characteristics is, in case of
failure when seeking for an "exact" answer, to try to find a composite answer, i.e. to
find several individuals whose capabilities complementarily satisfy the capability which is
looked for;

3. The design and the partial implementation of a federated mediation system that serves
as a platform for the experimental validation of our proposals. A distinguishing feature
of this system is that it deals with the situations where capabilities descriptions are dis-
tributed among the federated mediators and where they are homogeneous (i.e. they are
expressed in the same capability description language) as well as heterogeneous (i.e. they
are expressed in different capability description languages).

Keywords : Mediation, Heterogeneous, Composite Answer, Description Logics, Ca-
pability Discovery

vii

Résumé de la thése en francais

1. Chapitre 1 : Ezposé du probleme : Capacités, Compétences et Connaissances

La motivation essentielle de ce travail est d’apporter une contribution a la satisfaction
de besoins en recherche d’individus (que nous appellerons aussi entités) qui peuvent réa-
liser des actions, ainsi que la recherche d’individus qui peuvent, de fagon complémentaire,
réaliser des actions.

Dans la section 1, nous introduisons une définition du terme “capability” (traduit en
francais par capacité) et nous le relions aux notions de compétence et de connaissance.
Nous introduisons également, de facon intuitive, la notion de complémentarité de compé-
tences avant de mettre en évidence les concepts et les mécanismes requis pour atteindre
nos objectifs. Le paragraphe 2 résume nos objectifs ainsi que les contributions attendues
alors que le paragraphe 3 détaille la structure et le contenu de ce document.

1 Chapitre 1 : Exposé du probléme : Capacités, Com-
pétences et Connaissances

Dans ce qui suit, nous appellerons capacité la possibilité de réaliser des actions. Cette
définition est clairement trés proche de celle de compétence et elle n’est pas indépendante
de celle de connaissance. En effet, dans ces définitions informelles, il y a une légére dis-
tinction entre ce qu’est une capacité et ce qu’est une compétence telle que définie dans
le domaine des ressources humaines : “état ou qualité d’étre bien qualifié pour réaliser
un role spécifique” (“the state or quality of being adequately or well qualified, having the
ability to perform a specific role”) |86]). De ce fait, dans ce document, nous utiliserons
le terme capacité (capability) dans le sens defini ci-avant et nous éviterons d’utliser le
terme compétence vu que ce dernier est trés souvent associé au domaine de la gestion
des ressources humaines. Cette utilisation du terme capacité est justifiée par le fait que
nous estimons que nos propositions peuvent trouver leur application dans de multiples
domaines comme la gestion de compétences, la composition de services Web, la gestion
de connaissances d’entreprises, les affaires électroniques (e-business), etc.

Des concepts relatifs a la gestion des compétences sont définis et comparés dans la
hiérarchie de la figure 1 [103]. Dans cette hiérachie, capacité et compétence sont trés liés :
“Capabilities are repeatable patterns of action in the use of assets to create, produce and/or
offer products to a market. Because capabilities are intangible assets that determine the
uses of tangible assets and other kinds of intangible assets, capabilities are considered to be
an important special category of assets. Capabilities arise from the coordinated activities of
groups of people who pool their individual skills in using assets to generate organizational
action.”

Dans [46], la gestion de compétences consiste en la définition, 'utilisation optimale et
le développement de compétences d’enterprises, de groupes et d’individus et un systéme
de gestion de compétences doit supporter quatre fonctions : (i) I'identification des com-
pétences, (ii) leur évaluation, (7i) leur acquisition et (iv) leur utilisation. L’identification
consiste a mettre les compétences sous une représentation formelle qui puisse étre exploi-
tée dans I’évaluation et 'utilisation des compétences. En outre, ’évaluation consiste a
établir une relation entre des individus et des compétences.

De facon similaire, dans le cadre des systémes de gestion de connaissances d’entreprise,

1. Chapitre 1 : Ezposé du probleme : Capacités, Compétences et Connaissances

Core competences

Competences

Capabilities

Skills

Assets

Resources

F1G. 1 - Hiérarchie des valeurs (Assets) [103]

|75] identifie différentes facettes de la connaissance d’entreprises, tel que schématisé sur
la figure 2.

La connaissance d’entreprises (ezplicit knowledge) comme son savoir-faire (tacit know-
ledge) sont essentiels pour les processus de décision ainsi que pour ’exécution des processus
constituant ’activité de 'entreprise. De ce fait, elle nécessite d’étre identifiée, localisée,
caractérisée, “cartographiée”, évaluée et hiérarchisées pour servir les objectifs de I'entre-
prise.

En informatique, le terme capacité a été introduit, entre autres, par Dennis and Van
Horn en 1966 dans le papier “Programming Semantics for Multiprogrammed Computa-
tions” [30]. L'idée de base y est la suivante : supposons qu’on congoive un systéme pour
accéder a un objet; un programme doit alors avoir un jeton spécial. Ce jeton désigne
un objet et donne au programme le droit de réaliser un ensemble d’actions (comme lire,
écrire) sur I'objet. Un tel jeton est dénommé capacité.

Enfin, en intelligence artificielle, des capacités sont offertes par des agents intelligents
et elles définissent les actions qu’un agent peut réaliser de fagon isolée ou coopérative [107].

Toutes ces considérations révelent le besoin, au minimum, d’explicitation des capa-
cités, de leur découverte et de leur composistion. En outre, comme déja mentionné, la
découverte (dynamique) de compétences (ou services) qu'une “entité” offre a différents
domaines d’application. La programmation par composants, les affaires électroniques et
méme la gestion des connaissances d’entreprises font partie de ces domaine d’application.
De ce fait, la seule description syntaxique des services d’une entité (comme la signa-
ture d’'un composant logiciel) n’est pas suffisante pour satisfaire une demande de service.
Un description sémantique est requise. De méme, ’explicitation des relations éventuelles
entre services peut contribuer a la découverte du “meilleur” service ou des “meilleurs

2. Survol de la these et de ses contributions

----- - - B -- 1

I
1 Bl 1 1 Tdentify, 1
y Ewasion, Infom, | Sitat, 1
y Educate, Crganise, | Charactense :
i 1 1 - ’
: Cooperate, Ilotivate : ,.I--'ﬁg““h”hl..
L | T e
I -------- ~ : - L L R)
I Acquire, Mode] Cyadal *Evaluate, |
- “rucia Wpdate,
Preserve 1 Bomahze’-meep Knowled Sim?;dm, I Actualize
. MOWied ge F Ennich N
S by l'.— - Pyl I—..' -------- |
"o.‘ 1 Lecss, JI-".'..
obes Dissquivates =
1 Share, 1
1 Explnit, !
: Combine 1
1 1
N

F1G. 2 — Les facettes de la gestion des connaissances d’entreprises

services complémentaires” satisfaisant une demande. Par exemple, dans le domaine du
e-business, cette notion complémentarité (similaire a la notion de pooling of individual
skills dans [103]) peut étre appliquée lors de la tentative de constitution d’alliances ou
lors de la recherche de partenaires. La découverte de la compémentarité pourra alors étre
réalisée si des relations entre capacités sont connues et explicitées.

De fait il y a une dépendances entre des capacités, i.e. posséder une capacité ou une
combinaison de capacités a pour conséquence la possession d’autres capacités. Brian R.
Gaines[39] a étendu la classification des capacités has extended the classification of capa-
bilities as follows : “It is tempting to extend this classification to the knowledge underlying
the capabilities but this would be misleading since there is not a one-to-one relationship
between knowledge and capabilities—usually, many different sets of knowledge can lead to
the same capability”.

Le travail rapporté dans cette thése tente d’apporter un cadre formel et une solution
pragmatique pour 'implémentation d’un systéme de gestion de compétences qui permette
la description, l'organisation et la découverte de compétences dans des environnements
hétérogenes.

Le but et un survol de la thése sont décrits dans la section qui suit.

2 Survol de la thése et de ses contributions

La figure 3 donne une vision synthétique de nos travaux, montrant un volet gestion
(management) de capacités, un volet découverte (Discovery) ainsi qu’un volet architecture
de médiation.

En faisant référence aux actions induites par les diverses facettes de la gestion des
connaissances d’entreprises (figure 1.2), notre travail porte plus précisément sur :

1. l'identification et 'organisation en hiérarchies de capacités possédées par une “enti-

2. Survol de la these et de ses contributions

——» Subfield
——= System/approach

—— Related work Capability application
i Y _—
Managemen!. —————————— Discovery Mediation architecture
.'.1".' 4 iy s
Representation Organization Reasoning —————- Composite

F1G. 3 — Vision synthétique d’une application de gestion de capacités

t¢”, une entité pouvant étre un individu physique ou pas,
2. la modélisation et la formalisation des capacités,

3. 'accés et la combinaison de capacités pour satisfaire un but donné, exprimé comme
une requéte.

Identification, organisation, modélisation and formalisation sont relatifs au volet capa-
bility management de notre travail et ils sont introduits dans le paragraphe 77, alors que
l'accés et la combinaison sont relatifs a la découverte de capacités (section 2.2). Finale-
ment, la section 2.3 introduit les architectures de médiation pour supporter la recherche
de capacités complémentaires entre individus.

2.1 Gestion de capacités

Nous abordons la gestion de capacités selon deux angles : la représentation de capacités
et le raisonnement sur les capacités.

Dans ’angle représentation, nous nous inspirons, évidemment, de la représentation
des connaissances en Intelligence Artificielle. Néanmoins, les langages de représentation
des connaissances (Knowledge Representation (ou KR) Languages) ne permettent pas de
représenter de facon adéquate la notion de capacités. Par exemple, le fait que la capa-
cité “étre frére de” soit transitive ou que la paire “étre pére de” et “étre enfant de” soit
symétrique n’est pas facilement exprimable dans les langages de représentation de connais-
sances usuels. De ce fait, nous étendons un de ces langages pour pouvoir représenter des
capacités et leurs caractéristiques. Le but de la représentation est évidemment a des fins
de raisonnement.

En outre, d'un point de vue purement représentation des connaissances et indépen-
damment de tout langage de repésentation, les verbes, plutot que les noms permettent de
discriminer des documents par types et par des propriétés sémantiques [55|. Les mémes
types d’arguments sont tenus dans le domaine de la représentation des connaissances,
comme en témoigne les deux types de langages de logique de description (basés concepts
et basés relations) qui sont utilisés dans le traitement de la langue naturelle [38], une
logique de description basée relations pouvant étre immergée a une logique de description
basée concepts.

Le langage logique de description ALN ., que nous proposons, est un exemple de ce
type d’immersion. Nous nous fonderons sur lui pour la formalisation des compétences
ainsi que pour certaines de leurs propriétés sémantiques.

2. Survol de la these et de ses contributions

2.2 Deécouverte de Capacités (Capability Discovery)

La découverte de capacités est entendue ici dans un scenario question-réponse. Dit de
facon intuitive, une action de découverte de capacités essaie de trouer des capacités qui
satisfont une requéte. Cette découverte de capacités est fondée sur un modéle de requéte
sémantique comme dans le modéle général de découverte dans les “affaisres” (business) de
la figure 4.

Business Need in
semantic quer}rh Business Solution Business Solution

Assembly
Business Service
Requirements Component
Harvesting
Reuse Need Business Service Service Components
- Component .
Provisioning

FI1G. 4 — Modéle de découverte d’affaires

Un “Business need” est décrit dans langage de reqétes sémantiques. On obtient un
résultat & deux niveaux : solution (business solution) et services (service components). Le
résultat “business solution” n’indique pas une ou des compagnies offrant des solutions a
la requéte mais il décrit le type de compagnies qui satisfairaient la requéte. Le résultat
“service components”, quant a lui, indique quelles compagnies satisfont le “Business need”.

De ce fait, la découverte de capacités que nous proposons s’apparente a ce modéle de
requéte sémantique : elle tente de trouver quels types d’entités possédent une capacité
puis quelles sont ces entités. Par ailleurs, ce processus agit sur une ou plusieurs bases de
connaissances décrites dans un langage de représentation de connaissances et, souvent, les
bases de connaissances peuvent étre distribuées et hétérogeénes.

Dans ce travail, nous considérons trois situations de découverte de capacités :

1. Satisfaction homogéne locale : la requéte et la base de connaissances sont exprimées
dans le méme langage et la base est localisée sur un seul serveur. Dans ce contexte, on
considérera les algorithmes de base pour la satisfaction de requéte et I'identification
de capacités compémentaires.

2. Satisfaction homogéne distribuée : la requéte et la base de connaissances sont expri-
mées dans le méme langage mais la base de connaissances est constituée de plusieurs
bases localisées sur différents serveurs. Dans ce cas, nous considérons la solution du
probléme dans un cadre distribué.

3. Satisfaction hétérogéne : les bases de connaissances sont exprimées dans des lan-
gages de représentation différents et elles peuvenet également étre distribuées. Ctte

2. Survol de la these et de ses contributions

situation nous ameénera a considérer le probléme de 'inter-opération de bases hété-
rogénes de connaissances.

Plus précisément, parmi les objectifs centraux et les contributions originales de notre
travail, nous voulons proposer :

1. un cadre formel pour décrire et organiser des capacités : nous avons opté pour un
langage de la famille des langages de logique de description.

2. un concept unique et des mécanismes associés qui satisfont les trois niveaux qui
viennent d’étre évoqués :

(a) comparer des entités définies de facon intentionnelle (i.e. des entités définies
par un ensemble de capacités),

(b) identifier des manques en termes de capacités entre entités définies de fagon
intentionnelle,

(c) identifier des entités susceptibles de combler les manques,
(d) contraindre I’ensemble des candidats qui contribue a la satisfaction des manques.

Le concept fondamental sous-jacent a notre travail est celui de complement, i.e. I'iden-
tification de “ce qui manque a une entité pour qu’elle soit considérée comme une entité
satisfaisant un ensemble donné de capacités”. Ce concept, trés central dans ce travail,
apporte les bases appropriées pour, a la fois, (a) comparer entités définies de fagon inten-
tionnelle, (b) identifier les manques éventuels et (b) combler ces manques. L’algorithme
que nous avons proposé et qui est détaillé dans le chapitre 5 couvre tous ces cas.

Nos contributions sont validées de facon expérimentale par le biais d’une architecture
de médiation que nous avons congue et (partiellement) implémentée.

2.3 Architecture de Médiation

Les médiateurs sont définis comme des modules qui occupent une couche explicite et
active entre les applications et leurs ressources [45]. Une fédération de médiateurs peut
étre requise lorsque une application complexe veut accéder a des données par la biais de
divers meédiateurs. La fédération fera coopérer les serveurs de médiation indépendants,
traduire les lanagges de représentation des médiateurs et intégrer les résultats en une
réponse unique homogeéne.

Dans notre travail, nous explorons les architectures a base de médiateurs pour sa-
tisfaire les exigences de la satisfaction distribuée homogéne aussi bien que la satisfaction
hétérogene de la découverte de capacités. En effet, dans le premier cas, seule une communi-
cation est requise entre médiateurs sitot que le service qui leur est demandé est identifié :
ce service consiste en lidentification d’entités complémentaires. Dans le second cas (sa-
tisfaction hétérogéne), une autre fonctionalité est requise : il s’agit de celle qui permet a
deux systémes hétérogénes de se comprendre de facon non ambigue. A cet effet, il est clair
que le choix d’un vocabulaire commun et la disponibilité de mécanismes de traduction
sont d'une grande aide dans la communications entre différents systémes de gestion de
capacités. Nous abordons cet aspect de facon trés pragmatique grace a l'incorporation de
traducteurs de termes dans ’architecture de médiation.

3. Structure et Contenu de la Thése

3 Structure et Contenu de la Thése

La thése est organisée en sept chapitres et une annexe. Ce qui a précédé constituant
I’essentiel du premier chapitre, les six chapitres suivants sont briévement passés en revue
ici.

3.1 Chapitre 2 : Gestion des connaissances et architectures hé-
térogénes distribuées

Le chapitre 2, en guise de chapitre d’état de I’art, introduit les domaines de recherche
auxquels touche cette thése : la représentation des connaissances, la découverte de capaci-
tés et les architecture de médiation. Nous considérons les caractéristiques et les aptitudes
de langages de représentaion dans la description de capacités. Nous évoquons également
les probléme de ré-écriture de représentations de capacités en différents langages.

Le découverte de capacité étant considérée comme une approche de mise en correspon-
dance sémantique (semantic matching), nous présentons différents domaines connexes :
Intégration sémantique, Mise en correspondance de schémas de données, Web semantic,
etc.

Enfin, 'architecture de médiation étant une architecture systéme hybride, hétérogéne
et distribuée, elle fait référence a des architectures pair-a-pair, les services Web, etc. Ces
références sont également introduites dans le chapitre 2.

La figure 5 schématise les points abordés dans le chapitre 2.

3.2 Chapter 3 : Survol de la gestion de capacités dans un envi-
ronnement hétérogéne

Ce chapitre donne une vision conceptuelle de la fédération de médiateurs, de la notion
de réponse composée et de la gestion de base de connaissances.

Architecture conceptuelle de médiation et découverte de capacités

D’un point de vue architecture systéme, nous avons opté pour une architecture a base
de négociateurs (ou trader, appelé aussi médiateur) [76]| trés ressemblante a la notion
d’agence de découverte (discovery agency) dans les architectures pour les services Web.
Dans cette architecture, une “entité”, appelée exportateur (ezporter) publie ses capacités
auprés d’un ou de plusieurs médiateurs (voir la figure 6). Des entités appelées importateurs
(importers) envoient des requétes a un médiateur pour rechercher des exportateurs dotés
d’un ensemble donné de capacités.

Les descriptions des capacités sont organisées et rangées chez les médiateurs dans des
bases. Ces bases comportent également la descriptions de concepts qui caractérisent les
capacités ainsi que les individus qui sont dotés de certaines capacités.

Pour représenter de fagon plus formelle les opérations sur les capacités, nous utiliserons
des opérations usuelles dans la gestion de bases de donnaissances : Tell et Ask.

Dans la figure 6 et dans ce qui suit, £ dénote un langage de représentation de connais-
sances. Lpey(E) dénote le fait que la description d’une entité E est exprimée dans un

3. Structure et Contenu de la Thése

FiG. 5 — "Cartographie” des points abordés dans le chapitre état de I'art

AL-
L,
g = II|
/ m—— | \
! T — A
T 'r.I — \\.
/ ki I'u I I".
P \ f - ‘\ - ‘ L \ Y
[- o N 7 \\ T g \
] ." 4 ", - — X
I |' ' 2.1.2 Frame logics 213 Ccnoéptual Graphs
| TR i i e =
- e < I
.'.l "\.‘ --"_TI_-_-__ -~
! H J = .l'.
T K e \ =]
 Safisfaction -.———— Reasoning 2 / >
i & L "\ Fise i
II | ‘Classifcation 2.1 Knowledge Representation
B e 2k
| / P - |
i | P | = Subfield
i p
ki Knowladge Integration 5] b
I3 v leg‘H # ~ System/approach
1 e 8 < f This Y = ————— Related wark
| 2.2.1 Lexical Integration E ; e
| -— b o s impartant
\ Cntologies el
! 2 Z Capability Discovery ™
| - .Iu -._I
' | - :
b | 222 Semantic Matching | %, Y
: | I & I A 2.3 Distributed heterogeneous architecture
| | I' ;'f |II "\ f) II = S
! : » { b / | e
1 ™ — . schema matching % / \ E
| LY s 1 7 i i
: L z 22 5 Wb Samantic ¥ \ 231 Ser\rlce-Orle_lnte-d Architecture
LN _ » _ Vd \ b * '\ \ﬁ
R L L b b 2.3.2 Peer lo Peer Architeciure il OMG
I al e Y S/ I P
: ‘ XML | T ! A
: g W S i e
[A ol [y i - —n ~3 1
“ OWL and OWL-S j b e et a— — |
| Web services
L =
S = e = s

Exporter
System 1 Lconplement1 System 2 Lconplement2
—— — —
Repository 1 Repository 2
lﬁAnswerl Lanswer2
Importer

F1G. 6 — Une architecture a base de médiateurs

3. Structure et Contenu de la Thése

langage Tell donné, Lyp.,. De facon similaire, L¢yery(Q) dénote que la description d’une
requéte () est écrite dans un langage de requétes Lgyery €t les résultats d’une requéte,
exprimés dans un langage de réponse L nsper, Sont dénotés par L a,swer (). Ainsi, Tell et
une requéte (Query) peuvent se définir comme suit.

Definition 0.3.1. Tell est utilisé pour construire ou pour modifier une base de connais-
sances KB :

TELL : Lyay(E) x KB — KB’

Definition 0.3.2. Ask permet de retrouver des informations, étant donnée une requéte
Q -
ASK : »CQuery(Q) x KB — »CAnswer(Q)

Dans cette vision conceptuelle, un exportateur utilisera 'opération 7Tell et un impor-
tateur utilisera 'action Ask avec les deux langages associés : Lguery €t Lanswer-

Dans cette thése, nous considérons trois cas de figures pour Loyery(Q) €t Lanswer(Q)
(voir la figure 7) :

1. la découverte d’individus ressemble & une recherche dans une base de données re-
lationnelle. Lgyery(Q) ressemble a une formule SQL et le médiateur rend en résultat
un ensemble d’objets, cet ensemble étant la description des individus en £ spsyer(Q)-

2. la découverte de modéles “navigue” dans des structures de concepts, ot un
concept est la modélisation d'un objet. Dans ce travail, les concepts sont struc-
turés en une hiérarchie de subsumption en logique de description. Lgyery(Q) est vue
comme la description d’un concept et le résultat inclura 1’ensemble des concepts
qui “correspondent” & la description exprimée par Lguery(@Q). En outre, on pourra
retrouver des individus représentés par ces concepts : c’est ce que nous appelons
'individualisation de la découverte de concepts. Ainsi, £ answer(G)) pourra contenir
un ensemble de concepts et plusieurs ensembles d’individus.

3. la découvertes de capacités, quant a elle, “navigue” dans la structure des capa-
cités, une capacité étant décrite par des relations (appelées rdles) entre concepts.
Louery(Q) est alors constituée par la description de caractéristiques de capacités
et son résultat inclura I’ensemble des capacités qui possédent ces caractéristiques :
c’est ce qui est appelé la conceptualisation de la découverte de capacités. Toujours
selon ce modeéle, on peut également “individualiser” les résultats et ainsi obtenir
dans L nswer(Q) un ensemble de capacités, plusieurs ensembles de concepts liés a
ces capacités et plusieurs ensembles d’individus liés & ces concepts.

Les propositions pour prendre en compte ces trois situations sont décrites plus en détail
dans le chapitre 5 de la thése et dans ce qui suit, nous proposons une caractérisation de
la fédération de médiateurs.

10

3. Structure et Contenu de la Thése

Maodel
Descriptions

Capability
Descriptions

individualization

Individual
Descriptions

Fi1G. 7 — Découverte de capacités dans un systéme ALN, |

Médiateur et fédération Comme déja dit, un médiateur explore sa base de capacités
pour tenter de satisfaire une requéte d’un importateur. Outre ce role, un médiateur peut
avoir d’autres prérogatves comme (i) créer ou s’affilier a une fédération, (ii) gérer des
contextes et (iii) propager des requétes ou des sous-requétes.

(i) La fédération de médiateurs : elle désigne un groupe de médiateurs qui “accep-
tent” d’étre considérés comme une entité unique par d’autres médiateurs quand ceux-ci
demandent un service a la fédération. En d’autres termes, un importateur peut envoyer
une demande a un meédiateur de la fédération et celle-ci peut étre transmise a n’importe
quel ou a chaque médiateur de la fédération.

Un médiateur implémente les protocoles Louery €t Lanswer- Dans le cadre de la fé-
dération il doit aussi implémenter un protocole nécessaire au support de la notion de
complément. Un complément (de réponse a une requéte) décrit la partie non satisfaite
d’une requéte et il est exprimé dans un langage Lcompiement; Pour une paire Loyery €t
L pnswer- Comme schématisé sur la figure 6, le complément joue le role d'une description
de requétes entre deux médiateurs.

(ii) La gestion de contextes dans une fédération :

Les contextes apportent une classification sémantique des connaissances et des don-
nées. Au niveau systéme, chaque médiateur gére et maintient de fagon autonome ses
propres informations (par opposition & une structure centralisée ot un médiateur aurait
la connaissance des contenus de tous les médiateurs de la fédération).

(iii) La propagation de requétes dans une fédération :

Une fédération est vue comme un systéme distribué dynamique dans lequel un mé-

diateur peut coopérer avec des médiateurs différents pour des requétes différentes. Les

11

3. Structure et Contenu de la Thése

relations entre médiateurs sont alors basées sur la confiance et la crédibilité (trust and
confidence).

Ainsi, un médiateur peut propager une requéte (ou une sous-requéte) a un autre meé-
diateur en se fondant sur le “sens” de la requéte et l'identification du ou des médiateurs
vers lesquels se fait la propagation, peut étre opérée :

1. Selon un critére sémantique : en “confrontant” la reqéte au contexte qu’il gere, le
meédiateur identifie les médiateurs les plus appropriés pour satisfaire la requéte.

2. Selon un critére de “proximité” : la requéte est propageés vers des médiateurs déja
identifiés.
Un algorithme de propagation peut évidemment combiner les deux types de critéres.
Dans notre expérimentation, nous avons choisi une propagation selon le critére de proxi-
mité, cet aspect de la fédération n’étant pas central dans nos travaux.

Un modéle pour la compostion de réponses

Notre approche pour la notion de réponses composites est basée sur la notion de sa-
tisfaction d’une requéte et sur celle de réponse composée.

1. Notion de satisfaction de requéte et de réponse composite

La satisfaction d’une requéte de recherche de capacités peut s’apparenter aux cas
suivants et illustrés sur la figure 8 |20].

— Cas 1 : Satisfaction exacte est le cas ou il existe des exportateurs qui satisfont
exactement la requéte, i.e. ils sont dotés des seules capacités requises par la requéte.

— Cas 2 : Satisfaction plus large est la situation dans laquelle des exportateurs sont
dotés de capacités plus grandes que celles recherhées.

— Cas 3 : Satisfaction par complément(s) est le cas ot aucun exportateur ne répond
aux exigences requises mais en “combinant” les capacités de plusieurs exportateurs,
on peut satisfaire ces exigences.

— Cas 4 : Satisfaction partielle signifie qu’aucun exportateur ni aucune combinaison
d’exportateurs ne satisfont la requéte.

— Cas 5 : Echec est le cas ou la requéte ne peut pas étre satisfaite ni totalement ni
partiellement.

Il est important de noter que les cas 4 et 5 (Satisfaction partielle et Echec, respecti-
vement) conduisent généralement a un échec lors de I’évaluation d’une requéte) quand
un seul médiateur est impliqué. Mais dans le cas d’'une fédération, ces cas sont des cas
typiques de coopération entre médiateurs. Dans le cas 5, toute la requéte est transmise a
un médiateur de la fédération alors que dans le cas 4, il faudra identifier ce qui “manque”
pour la satisfaction de (), ce “manque” devant ensuite étre envoyé comme une sous-requéte

12

3. Structure et Contenu de la Thése

I I Requéte Q
Satisfaction
e | Lsatistaction (@) | cas 1 poere
5 Satisfaction
I Different I Lsatisfaction (Q) I Cas 2 plus Large
Yes
.......... -
Lsatisfaction (Q) I : s :
' Cas 3 Satisfaction par
] Complément
: Lsatisfaction (Q)
............. :
o Lsatisfaction (Q) I . Gas 4 Satisfaction
H jmeeeecccccnce <4 as Partielle
:. . Lcomplement (Q) 3
Unknown o | A 7o) S :
Different Lcomplenent (Q) ! Cas 5 Echec

F1G. 8 — Satisfaction de requétes : les différents cas

a un autre médiateur. Conceptuellement, on peut voir la requéte comme étant adressée
a “I'union” des bases de capacités gérées par les mediateurs fédérés, cette “union” étant
explorée de proche en proche, c’est-a-dire un médiateur aprés ’autre selon un ordre défini
(cas de la propagation par proximité) ou un ordre calculé (cas de la propagation selon un
critére sémantique).

De ce fait, une réponse a une recherche de capacités peut étre composée de plusieurs
“fragments” de réponses. Par ailleurs, il peut exister plusieurs réponses candidates. Aussi
une stratégie de choix de ces réponses candidates peut parfois étre imposée dans le proce-
sus d’évaluation de la requéte ou des contraintes sur le nombre de “fragments” de réponses
peuvent étre exprimées par 'importateur.

2. Notion de contrainte sur les réponses composites

En fait, la figure 8 montre une stratégie “premier venu”, qui est celle que nous avons
appliqué dans notre prototype. Cette stratégie essaie toujours de trouver une satisfaction
totale (exacte, plus large ou par complément). Mais on peut parfois vouloir contraindre
le type de réponse souhaité. Par exemple, on peut vouloir imposer que la réponse ne doit
pas étre composée de plus de deux “fragments” et en cas de satisfaction plus large, les
capacités supplémentaires non requises doivent étre les plus petites possibles!.

La facon dont cette notion de stratégie est prise en compte dans notre proposition
est détaillée dans le chapitre 5 (section 5.2, page 100) ol nous présentons 'algorithme de
calcul effectif du complément.

Chapitre 3 : conclusion

Ce chapitre résume la vision conceptuelle de notre problématique et de sa solution.
Les chapitres suivants détaillent successivement nos propositions,

!'D’un point de vue application, ce type de contraintes permet d’exprimer des requétes du type, par
exemple, recherche d’au plus x partenaires.

13

3. Structure et Contenu de la Thése

-Il:{}l,m}'
Case 1 Lgaticfction
Case 2 Lsaniafaetion Liiference
Lgutistaction 1 f('lrnplun'iml 1 L afference 1
Case3 ~—7 —7T7 —— 1 ——""-—-—
I{h\mplununl 2 L5 atstnctian 2 L erence 2
Lntistnction 1 'r-.{'rrnplcn'm'd 1 L yfference 1
Caged r—77202B25252¥-0m " ——"3-——"""—"——-—
'r-»('lrnpl.'tmcm 2 'r-rSnI:kEadinn 2 -'raDciﬂi.'rencc 2
L atmfsction 1 -'[.('w.up-k'u'n."ul 1 Lnitenenee 1
Case3 ——————— @P>—====
L('lxuph‘utnl s Laimtsion 2 Lpifterence 2
Latntsction 1 I.1L'm|||.'lk"||'»."r|l 1 Lnfference 1
Caseh —/—/7/7/—m—m——m————
-Ir-.»('rrnplcn'-:rd 2 Er.‘:‘.nlkl:'b.ﬂmn g -l':n'il'l'erem:r X
Case 7 L,'C'-.'frrq:!In.'r.\rmnl L Difference

FiG. 9 — Cas d’une réponse composée limitée a deux fragments de réponse

— en termes de langage formelle de représentation de capacités (chapitre 4),

— en termes de processus et d’algorithmes de découverte de capacités tant dans des
bases homogénes (i.e. toutes exprimées dans le langage de représentation de capaci-
tés proposé) qu’hétérogénes, i.e. en présence de bases exprimées dans des langages
de représentation de capacités différents (chapitre 5),

— en termes de choix faits lors de I'implémentation d’un prototype de médiateurs
fedérés (chapitre 6).

3.3 Chapitre 4 : ALN, ., le langage de représentation de capacités

Dans ce chapitre nous appliquons une partie de la théorie de la représentation des
connaissances a la gestion de capacités. Nous proposons un langage de description ALN
qui étend le langage logique de description (DL) ALN . Le modéle de gestion de capacités
en ALN,, dérive des systémes clasiques de DL qui distinguent une base terminologique
(TBox) et une base d’assertions (ABox). Pour notre part, nous ajoutons une base T,Box
distincte de la TBox pour y ranger les connaissances relatives aux capacités, connaissances
exprimées a 1’aide du concept de role en DL.

Dans la description de la syntaxe de ALN,, de la figure 10, les conventions usuelles
de notation sont utilisées :

— les lettres A, B sont utilisées pour des concepts primitifs et C, D pour les concepts

définis (a ’aide de concepts primitifs et /ou de concepts définis)

— de facon similaire, r, s sont utilisés pour dénoter des roles primitifs et R, S pour des

14

3. Structure et Contenu de la Thése

roles définis,
— f, g désignenent des restictions fonctionnelles sur les roles,
— a,b,c,d dénotent des individus.
Dans cette figure, la partie haute concerne la description de concepts et la partie basse
celle des roles.

Nom Syntaxe abstraite Syntaxe Concréte
primitive concept C,D— A A
universal concept T TOP
bottom concept 1| BOTTOM
primitive negation —A | (not A)
at-least restriction (> nr)| (atleast n r)
at-most restriction (< nr)| (atmost n r)
concept conjunction Cnb | (and C D)
value restriction on roles VR.C (all R ©)
role name R,S— r| r
universal role T rotel TOProle
bottom role Lrorel BOTTOMrole
role disjunction RUS | (or R S)
symmetric closure R~ | (R
transitive closure R* | (R™)
reflexive-transitive closure R* | (R%)
role functional restriction RfS (RfS)

F1G. 10 — Syntaxe de ALN,

Outre cette définition syntaxique du langage ALN ., ce chapitre comprend la dé-
finition de sa sémantique ainsi que les définitions de concepts importants pour la suite
des travaux et leurs fondements, & savoir, les notions de composition, d’équivalence, de
subsumption et de restriction fonctionnelle de roles.

3.4 Chapitre 5 : Gestion et découverte de capacités dans une

base ALN .

Dans ce chapitre, nous présentons la théorie et les algorithmes de raisonnement dans
un systéme de représentation de connaissances en ALN . Ces algorithmes sont fondés
sur l'identification des relations de subsumption entre deux structures de description de
capacités. En suivant une démarche par normalisation-comparaison, les deux stuctures
sont d’abord mises sous forme normale avant de pouvoir étre comparées.

Ce chapitre détaille également notre approche pour la découverte de capacités. Comme
déja exposé, celle-ci se base sur le modéle de réponses composites qui comprennent une
partie satisfaite et une partie a satisfaire appelée complément. La partie satisfaite est

15

3. Structure et Contenu de la Thése

déterminée grace a la relation de subsumption et la partie complément l'est grace a une
implémentation procédurale du concept de complément [91].

Dans le chapitre introductif a ce travail, nous avons distingué la gestion de capacités
et la découverte de capacités : 'approche et les algorithmes pour ces deux aspects sont
détaillés dans ce chapitre..

La gestion de capacités (développée dans le paragraphe 5.1) se base sur deux hiérar-
chies : une hiérarchie de concepts et une hérarchie de roles, ces hiérarchies étant baties
grace a la relation de subsumption entre concepts et entre roles, respectivement, et elles
sont construites et maintenues grace a un mécanisme de classification. Ce mécanisme
étant lui-méme fondé sur la relation de subsumption, nous montrons comment celle-ci est
calculée selon le processus normalisation-comparaison (section 5.1.2).

En ce qui concerne la découverte de capacités, elle utilise les hiérarchies de la gestion
de capacités pour évaluer les requétes qui sont adressées a la base ALN, .. Dans notre
proposition, une requéte est vue comme un concept a “situer” (classifier) dans les hiérar-
chies disponibles.

A Taide des concepts et des mécanismes définis, nous montrons comment nous appor-
tons une solution uniforme aux cas évoqués dans la figure 8. Cette solution est résumée
ci-dessous.

Réponse Composite dansALN |

D’un point de vue logique, une requéte est un calcul de satisfiabilité (cf. définition 3.2.2,
page 67). Un concept subsumé satisfait toujours le concept subsumant dans ALN ., — T,
c’est-a-dire que le concept subsumant représente la requéte, ses subsumés constituent une
réponse qui satisfait totalement la requéte. Néanmoins, avant de procéder au calcul de
réponses composites, on se doit de déterminer ses deux composants de base : la partie
satisfaite et la partie a satisfaire (que nous appelons complément).

Nous utilisons une description C' de concept pour exprimer une requéte : alors, si on
peut trouver une description D de concept qui vérifie D C C, on pourra en conclure que D
satisfait totalement la requéte. Pour ce faire, les descriptions de concepts sont mises sous
forme normale conjonctive avant d’étre comparées. Ainsi, une description C' de concept
resprésentant une requéte () sera exprimée sous la forme C M1---MC, et une description
D de concept candidate a une réponse a () sera exprimée sous la forme D,M1---MD,,. Dans

I'exemple de la figure 11, C4,...,Cy et Dy, ..., Dy sont supposés satisfaire la relation de
subsumption. Donc, selon notre notation, Lsatisfaction(Q) = D1 M-+ -1 D
Les structures atomiques Cyq,...,C, n’étant pas satisfaites, elles constitueront la

description du complément qu'’il faudra déterminer : Leoomprement(Q) = Cry1 M-+ M1 C,,.
A titre d’exemple, considérons le concept CITY-AIRPORT qui caractérise des villes do-
tées de capacités de transport aérien, et le concept PORT-AIR qui caractérise les villes
dotées de capacités de transport maritime et aérien. Les formes normales de ces deux
concepts sont données ci-dessous. Supposons que PORT-AIR soit la requéte (dénotée C
ci-dessous) et CITY-AIRPORT, dénoté D, soit un concept de la bas de connaissances.

16

3. Structure et Contenu de la Thése

Cy Ck [Cht| Co| Laueny(Q@) :C

D1 Dy Lanswer(Q) : D

LSatisfactinn(Q) JCC-:nn1||:nllewrueurll(Q)

Fi1G. 11 — Détermination de réponse composite

C': PORT-AIR— (M CITY (Cy)
((> oo 1 has-flight).CITY) (Cy)

((> oo 1 has-ferry).CITY)) (Cs)

D : CITY-AIRPORT= (M CITY (Dy)

((> oo 1 has-flight™).CITY)) (D)

Dans ces descriptions, Dy I Dy constitue la partie satisfaction partielle de C' et C'3 consti-
tue la partie complément & satisfaire.

Détermination d’un complément pour une requéte

La détermination du complément de réponse pour une requéte s’effectue en deux
étapes :

1. Identifier le concept complément , i.e. la partie de la requéte qui n’est pas satisfaite ;
2. Trouver effectivement le complément, s’il existe, dans la base de connaissances.

Ces deux étapes sont successivement décrites ci-apres.

A. Identification du complément : Pour identifier la partie satisfaite et celle non
satisfaite en réponse a une requéte, nous introduisons une table de booléens que nous ap-
pellons table de satisfaction (abrégé en ST, ci-aprés). ST contiendra les résultats de 1'éva-
luation de la relation de subsumption. Ainsi, dans la figure 12, C', Cy, ..., C,, dénotent la
requéte sous forme normale et D, Do, ..., D,, dénotent des concepts sour leur forme nor-
male également ol chaque D; doit étre vue comme une conjonction (andDj, D3, ..., D;Lj)
de concepts atomiques. Ainsi,

ST[Dj, Cz] = true <> D; C Cz
A des fins d’implémentation, une fonction Subsume(Subsumant, Subsumé) permet de tes-

ter si la relation de subsumption est vraie entre ses arguments (Subsumant et Subsumé).
Quand la valeur rendue par Subsume(C, D,) est “False” (c’est-a-dire que le concept D;

17

3. Structure et Contenu de la Thése

ne satisfait pas le concept C'), il faudra alors déterminer un complément éventuel de D;
relativement a C. Cette détermination est fondée sur la table de satisfaction ST.
Dans 'exemple précédent concernant PORT-AIR et CITY-AIRPORT,

Subsumes(PORT-AIR, CITY-AIRPORT) — false,

i.e. CITY-AIRPORT = C PORT-AIR, et CITY-AIRPORT ne staisafit pas totalement PORT-AIR,
“(> o0 1 has-ferry).CITY” étant la partie Comp non satisfaite :

C'omp(PORT-AIR,CITY-AIRPORT) — (> oo 1 has-ferry).CITY.

De fagon plus générale, le complément dénoté Comp(Requete, Satis faction) est défini
par :

Definition 0.3.3. Comp(C, D) = M;_,C}, for every k, k € [l..n] such that ST[k] =
false.

En d’autre termes, le complément est donné par la conjonction des concepts atomiques
pour lesquels la valeur correspondante dnas la table de satisfaction ST est égale a “False”.

4 Cy | ... C,
D, False | False | ... | True
D, False | True | ... | True
D,, | False | False | ... | False || ORoS | ANDoS

‘ ORoD ‘ False ‘ True ‘ ‘ True ‘ True False

F1G. 12 — Les trois paramétres de décision de la table de satisfaction : ORoD, ORoS and
ANDoS

B. Calcul du complément : Montrons d’abord le principe du calcul effectif du
complément avant de généraliser le discours en termes d’algorithme.

B.1. Calcul du complément, principe et exemples : Pour essayer de calculer ef-
fectivement le complément identifié, nous introduisons trois variables booléennes comime
paramétres de décision : ORoD, ORoS et ANDoS (figure 12). Ces paraméres servent a dé-
terminer les conditions de satisfaction des cas introduits dans le paragraphe 3.2 (page 12)
et rappelés ci-dessous :

1. ORoDI1..n] est défini par ORoD[i] = \/}_ ST[D:,Cy],Yi € [1..n], i.e. ORoDli] est
la disjonction des valeurs de vérité de la colonne 7 de la table ST et s’interpréte de

la facon suivante : ORoD[i] = true signifie que le concept C; de la requéte C est
satisfait par au moins un des concepts Di k € [1..m].

18

3. Structure et Contenu de la

These

Yes

No

Unknown

I Requéte Q

Satisfaction
I LSatisfaction (Q) I Cas 1 Exacte
5 Satisfaction
I Different I Lsatisfaction (Q) I Cas 2 plus Large
.......... :
Lsatisfaction (Q) I] . .
' Cas 3 Satisfaction par
] Complément
: Lsatisfaction (Q)
............. :
Lsatisfaction (Q) I . Gas 4 Satisfaction
v | eeeeccccecccas <4 as Partielle
'
)

.............................. i
I Different ! t Cas 5 Echec

F1G. 13 — Satisfaction de requétes : les différents cas

2. De facon similaire, si la conjonction des valeurs de ORoD, dénotée par ANDoS
et définie par ANDoS = A, ORoD]i], s’évalue a vrai, ceal signifie que tous les
concepts C;s de la requéte C sont satisfaist et, par conséquent, C' est satisfaite.

3. Finalement, quand AN DoS est évaluée a faux, la disjonction logique des valeurs de
ORoD, dénotée ORoS et définie par ORoS = \/;_; ORoD|i], permet de déterminer
les cas de satisfaction partielle et celui d’échec.
— Si ANDoS est faux et que ORoS = T'rue est vrai, cela signifie qu’il existe un Cj

de la requéte C qui n’est pas satisfait ;
— Si ANDoS et ORoS = True sont tous deux évalués a faux alors aucun concept
atomique Df parmi les concepts D; (j € 1..m) ne satisfait un des concepts C; de

C.

Ainsi, a I'aide des résultats de la classification, qui identifie le plus petit commun sub-
sumant (Least Common Subsumer (LCS)) et le concept le plus spécifique (Most Specific
Concept (MSC)), et de ceux de l'algorithme de Normalisation-Comparaison, qui rend les
valeurs des parameétres de décision ORoS et ANDoS, les différents cas de satisfaction
peuvent étre couverts : la table 1 synthétise cette discussion. Dans cette table, X et Y
sont des descriptions de concepts, T est le concept le plus général et L le concept le plus

spécifique.

[T.CS(Q) [MSC(Q) [ORoS | ANDoS | CA

H o

True
True
True
True
False

e e

True
True
True
False
False

Tt = W N

1:
: Satisfaction plus large
. Satisfaction par complément

. Satisfaction partielle
: Echec

Satisfaction exacte

TAB. 1 — Analyse des cas et des conditions de satisfaction

19

3. Structure et Contenu de la Thése

Les conditions de satisfaction sont exprimées formellement comme suit :

1. Satisfaction exacte : Y C Q C X iff (LCS(Q) = X)AN(MSC(Q) =Y) A (ORoS =
True) A (ANDoS = True) ;

2. Satisfaction plus large : Q T X iff (LCS(Q) = X) A (MSC(Q) = L) A (ORoS =
True) A (ANDoS = True) ;

3. Satisfaction par complément : 3Xy,...,3X,,Q C UL, X; iff (LCS(Q) = T) A
(MSC(Q) = L) AN(ORoS = True) N (ANDoS = True);

4. Satisfaction partielle : 3X,...,3X,, U, Xi C QA =(IY,..., 3V, Q EUSL, Y))
iff (LCS(Q) =T)AN(MSC(Q)=1L)A(ORoS =True) N (ANDoS = False) ;

5. Echee : VX € T, XNQ = 0 iff (LCS(Q) = T) A (MSC(Q) = L) A (ORoS =
False) N (ANDoS = False).

B.2. Algorithme de calcul du complément de requéte : D’un point de vue
implémentation, une description de concept sous forme normale est représentée dans la
table de satisfaction comme un tableau T'[1..n| de variables booléennes ou :

1. la taille n du tableau est le nombre de descriptions de concepts atomiques dans la
description de la requéte en tant que concept,

2. les valeurs des entrées de ce tableau indiquent quels concepts atomiques sont sa-
tisfaits ou pas, selon le résultat rendu par ’algorithme de test de la relation de
subsumption.

Dans la cas ou plusieurs descriptions de concepts sont candidates a la satisfaction de la
description de la requéte, elles peuvent étre ordonnées selon un critére donné (appelé aussi
priorité) pour choisir celles & considérer en premier pour valuer la table de satisfaction.
Ce critére peut étre simple (comme considérer en premier les descriptions de concepts
qui satisfont le plus grand nombre de concepts de la requéte) ou plus complexe, comme
(1) “les concepts homogénes d’abord puis le plus grand nombre de concepts satisfaits” ou
encore (4) “les concepts C; and C; doivent étre satisfaits par une entité unique”, etc.

L’algorithme peut ainsi donner lieu a diverses implémentations. Celui schématisé sur la
figure 14 utilise le critére de priorité qui consiste a ordonner les concepts candidats seleon
le nombre (décroissant) de concepts satisfaits par chacun d’eux. Dans cet algorithme,

— Entities[1..n] est la représentation sous forme de table de booléens d’'une des-

cription de concept candidate,

— ST est la table de satisfaction sur laquelle sont définies des méthodes dont :

— ST.clear qui crée et initialise la table de satisfation ;
— ST.add () qui ajoute une ligne a cette table ;
— ST.DeletelLastLine qui supprime une ligne de la table.

Les valeurs des paramétres de décision ORoD, ORoS et ANDoS sont modifiées par I'in-
vocation de chacune de ces opérations et si la valeur de ORoD venait a étre modifiée, la
variable indicateur ORoD_change l'indiquera (mise a vrai). La figure 14 montre aussi le
point ou une stratégie différente peut étre intégrée : par exemple, le fait d’ajouter une
limitation du nombre de lignes de la table de satisfaction (en ajoutant (and ST.index <
2) dans le test de la variation de la valeur de ORoD_change), permettra de limiter & 2 le
nombre de fragments composant une réponse.

20

3. Structure et Contenu de la Thése

Entities]1..n] sort

by priority
Entities[1..n] is the object /
array of the candidate |

entities description,

=1, 1 ST is the object Satisfaction
| Takble.

ST.add(Entitiesi])

Any decision-making
strategy can be implemented
in this decision box,

T.ORoD _change==Tmue

5T.DeletelastLine o

=+

yas i=n

yEs
1

Fir1, =

yES

F1G. 14 — Organigramme de ’algorithme de gestion de la Table de Satisfaction

21

3. Structure et Contenu de la Thése

B.3. Conclusion : Le discours qui précéde s’applique au cas ot une requéte est évaluée
par un seul médiateur. Comme déja évoqué, les cas de satisfaction partielle et d’échec
peuvent amener a faire appel a d’autres médiateurs pour tenter de pallier I'insatisfaction
totale ou I’échec. C’est ce que nous présentons dans le paragraphe qui suit.

Découverte de capacités par de multiples médiateurs

Dans notre introduction a ce travail, nous avions distingué trois situations :
1. Satisfaction homogene locale ou un seul médiateur peut satisfaire une requéte,

2. Satisfaction homogeéne distribuée ou plusieurs médiateurs utilisant le méme langage
de représentation de connaissances se “complémentent” pour apporter une solution,

3. Satisfaction hétérogene ou plusieurs médiateurs utilisant des langages de représen-
tation différents coopérent pour essayer de satisfaire une requéte.

Le premier cas vien d’étre traité. Ce qui distingue les deux derniers cas est le fait qu'un
mécanisme de traduction est requis quand (cas 3) les langages de description de capacités
sont différents. Néanmoins, un mécanisme additionnel est requis dans les deux cas lorsque
les médiateurs n’utilisent pas un vocabulaire commun : dans cette situation, il est néces-
saire d’opérer une traduction de descriptions des concepts ainsi qu’'une correspondance
(matching) entre les termes des vocabulaires utilisés.

La traduction des descriptions est opérée sur des descriptions atomiques de concepts.
Pour notre expérimentation, nous avons étudié les correspondances entre des description
de concepts exprimées en logique de description, en logique de frames |44] et en graphes
conceptuels [64]. Quant & la correspondance entre termes du vocabulaire, nous opérons
une traduction lexicale fondée sur une évaluation de la similitude entre les termes.

Dans le chapitre 5 de la thése, ces considérations sont détaillées de la fagon suivante
(paragraphe 5.2.3, page 109) :

1. Nous expliquons la notion de description de concept atomique et nous présentons
les diverses formes de description que nous supportons (page 109),

2. nous introduisons la traduction lexicale de termes que nous avons adoptée (page 110),
3. nous présentons le notion de réponse composite dans un cadre hétérogéne (page 111),

4. et nous montrons le processus de calcul du complément dans ce type de cadre
(page 113).

Conclusions du chapitre 5

Ce chapitre détaille le coeur de notre travail ot une base de connaisances en ALN
est constituée de trois parties : TBox, T,Box et ABox.

Nous avons opté pour une approche par classification pour la maintenance les hié-
rarchies de concepts et de roles. Cette approche utilise un algorithme de normalisation-
comparaison pour le test de la relation de subsumption. Le résultat de cet algorithme
étant ensuite utilisé dans le calcul de réponses composites. Cet algorithme est correct et
complet dans ALN, ., mais il ne s’applique pas a tous les langages de description logique.
D’autres algorithmes, comme celui des tableaux [6], pourraient aussi étre utilisés pour ces
calculs.

22

3. Structure et Contenu de la Thése

D’un point de vue implémentation, les résultats de la comparaison sont mis dans une
table de satisfaction dont 'analyse permet de déterminer une réponse composite.

Nous avons étendu notre proposition au cas hétérogéne dans lequel la traduction de
formules entre langages hétérogénes est, pour I’heure, opérée manuellement. Par ailleurs,
nous avons étayé nos propos en nous fondant sur un exemple de “capacités a transporter”
des individus. Mais il est clair que notre approche peut s’appliquer aisément a d’autres
domaines et, a titre d’illustration, nous annexons a ce document un exemple basé sur les
connaissances dans le domaine de 'interopérabilité des sytemes et des logiciels.

Enfin, nous avons développé un prototype pour vailder nos propositions : le chapitre
6 détaille 'architecture, les fonctionalités et les choix d’implémentation de ce prototype.

3.5 Chapitre 6 : Fédération de médiateurs

Le prototype développé consiste en deux parties (i) 'application de la gestion et de
la découverte de capacités dans une base ALN . et (i) la composition de serveurs de
meédiation dans un environnement hétérogeéne.

Dans la premiére partie de ce prototype, toutes les fonctionalités requises par ce qui a
été exposé dans le chapitre précédent, et celles requises par la gestion et la découverte de
capacités, ont été développées (en Java). Ces fonctionalités incluent :

— un service pour le test de la relation de subsumption,

— un service pour la détermination du complément et la satisfaction de concepts,

— et un service pour le calcul de réponses composites.

Dans la seconde partie du prototype, nous avons expérimenté les services de médiation
composites dans un environnement hétérogéne, comme montré sur la figure 15 ou :

— Mediator 1 “comprend” le langage ALN .,

— Mediator 2 “comprend” la langage logique de frames (F-Logic) [44] : son langage de

communication est KIF [41];
— Mediator 3 “comprend” les graphes conceptuels (CGs) : son langage de communica-
tion est CGIF |64].
Cette architecture fédérée a été développée en conformité avec les architectures orientées
services (Service Oriented Architecture ou SOA) [5].
Par ailleurs, chaque serveur de médiation comporte quatre composants (figure 15) :

1. une base locale,
2. un raisonneur,
3. un traducteur syntaxique,

4. et un dictionnaire ontologique lexical.

3.6 Chapitre 7 : Conclusions, bilan et perspectives

Dans ce travail, nous considérons avoir atteint deux résultats essentiels :

1. la définition d’un langage de description de capacités, ALN ., pour supporter la
gestion de capacités et les services d’inférence inhérents.

23

3. Structure et Contenu de la

Mediator 3
Exporter -

Local Reasoning
Repository Processor

- Syntax
o -
ontological == Translator

Importer dictionary

Mediator 1

DAML+OIL

Reasoning
Processor

N\

Syntax Translator

Local
Repository

Web Server Mediator 2

Local Reasoning
Repository Processor

Syntax
Translator

lexical
ontological
dictionary

exical
o

dictionary

F1G. 15 — Architecture de Médiation

2. la conception (et l'implantation partielle) d’'un systéme de médiation fédéré qui

permet la composition de réponses lors de la recherche de capacités dans des
ronnments hétérogénes de représentation de connaissance.

envi-

A propos du premier résultat et considérant les objectifs de cette thése tels qu’ils sont

exposés dans le paragraphe 2.2

1. Du point de vue description et organisation des capacités : ALN ., le langage pro-
posé, s’appuie sur la notion de réle (i.e. relations entre concepts) pour la description
formelle de capacités possédées par des “entités”. ALN ., hérite et étend la théorie
et la technologie des langages logiques de description [6]. Nous avons implémenté des

services d’inférence basés sur ce langage qui servent tant pour la gestion de cap

acités

que pour leur découverte. Nous avons aussi introduit un modéle ouvert de restric-
tion fonctionnelle f entre roles (i.e. de relations entre des relations de concepts) pour
décrire les relations entre des roles et nous avons introduit un modéle trés simple

de description de relations entre roles dans le langage de description de cap
ALN ;. En outre, dans ce travail, nous avons considéré plusieurs relations
capacités, dont la subsumption, la composition et I’equivalence de roles.

acités
entre

2. Du point de vue découverte de capacités : nous nous somimes appuyés sur un seul

concept (le concept de complément) et sur sa détermination procédurale pour

satis-

faire des facilités requises par la gestion de capacités, de compétences mais aussi de

connaissances. Ces facilités permettent plus précisément

(a) de comparer des entités définies de fagon intentionnelles, i.e. deux ensembles
d’individus caractérisés par leur formule en ALN,, peuvent étre comparés a

I’aide des mécanismes proposés

24

3. Structure et Contenu de la Thése

— Les deux ensembles sont considérés comme “égaux”, en termes de capacités,
quand la formule qui décrit un ensemble satisfait de facon exacte la formule
qui décrit le second ensemble.

— Un ensemble est “plus grand” qu’un autre, toujours en termes de capaci-
tés, quand une formule subsume l'autre (voir la notion de satisfaction plus
grande)

(b) d’identifier des capacités manquantes grace a I'identification du complément,
(c) de combler le manque en capacités en calculant le complément

(d) de contraindre les ensembles de candidats pour combler les manques, par le
biais de stratégies qui peuvent contraindre le processus de calcul du complé-
ment.

Concernant le second résultat, nous avons concu et implémenté un prototype de sys-
téme de médiation fédéré. Le prototype est totalement écrit en Java (Sun Microsystem’s
JDK1.2 et Java Web Services Developer Pack 1.6) et il a été testé sous divers systémes
d’exploitation : Miscrosoft Windows (95, 98, Me, XP, 2000, 2003) and Linux (Red Hat
7.X and Mandrake 8.x). En outre, le prototype a une architecture basée sur les standards
pour les services Web et il a une architecture hybride. Un importateur, un exportateur et
un serveur de médiation composent un systéme typique orienté services (Service Orented
Architecture). Notre prototype se positionne comme suit par rapport aux caractéristiques
d’un systéme pair-a-pair (introduites dans le chapitre 2, section 2.3.2, page 55) :

1. Du point de vue autonomie : I’autonomie est atteinte du fait que chaque serveur de
médiation offre les services (Ask and Tell) a ses clients (importateur et exportateur,
respectivement) ;

2. Du point de vue dynamicité : le prototype dépend d’un document OWL-S pour la
gestion de toute la fédération de médiateurs. Cette solution n’est clairement pas
adaptée pour des applications “réelles”. UDDI [100]| définit comment des entités pu-
blient leurs services et se découvrent les unes les autres. UDDI permet également de
définir comment des services ou des applications logicielles inte-agissent sur internet.
Ce principe peut étre appliqué dans ’architecture de fédération pour implémenter la
gestion et la découverte dynamique de médiateurs et de leurs services. Cependant,
cette propriéte de la fédération requiert d’autre mécanismes pour la gestion concréte
de la fédération, i.e. des mécanismes permettant & un médiateur de rejoindre ou de
quitter (temporairement ou définitivement) une fédération. Cet aspect n’a pas été
considéré dans ce travail car il n’était pas central dans nos travaux.

3. Concernant la décentralisation : L’architecture que nous proposons est par essence
décentralisée, vu qu'un importateur peut adresser sa requéte a n’importe quel mé-
diateur de la fédération.

4. Concernant la coopération : C’est également une caractéristique de notre architec-
ture vu que, quand un serveur local ne peut pas satisfaire une requéte, il peut coopé-
rer avec des partenaires, éventuellement hétérogénes, pour le calcul d’une réponse
composée.

25

3. Structure et Contenu de la Thése

Sur un autre plan, considérant les caractéristiques des médiateurs (gestion du contexte,
propagation de requétes) introduites dans le chapitre 3 (section 3.1.3, page 63) :

1. Notre prototype n’offre pas de mécanismes sophistiqués de gestion du contexte. 11
implémente des stratégies simples de détermination de réponses composées, comme
le premier qui satisfait une requéte, au plus r composants de la réponse, etc. Ac-
tuellement, pour supporter ces stratégies, un effort de programmation est requis :
disposer d’un moteur générique pour supporter ces stratégies requiert des investiga-
tions supplémentaires.

2. En se basant sur cette gestion simplifiée du contexte, la propagation de requétes
est faite selon un critére de proximité (par opposition a un critére sémantqiue) : les
requétes sont toujours transmises au médiateur le plus proche comme une description
de document en OWL-S.

De ce fait, la gestion d’une fédération dynamique, la gestion du contexte et la propagation
de requéte selon un critére sémantique reste encore a investiguer et a développer.

Néanmoins, ce prototype a le mérite de nous permettre de valider les théories et les
propositions faites dans cette thése méme si d’autres extensions sont possibles, comme
I’enrichissemnt du traducteur syntaxique entre langages de représentation, afin d’auge-
menter la diversité de ces langages.

Toujours en termes de poursuites possibles de ce travail, nous pouvons envisager deux
directions de recherche et d’applications : (i) extension de la théorie et de 'implémentation
de la représentation de capacités et (i) mise en ceuvre dans le cadre d’applications réelles.

Tout d’abord, ALN,; n’est pas suffisamment riche pour exprimer, par exemple, la né-
gation etla disjonction (ce qui conduirait & quelques problémes de NP-Complétude). Aussi,
nous pensons explorer des langages de description qui supporteraient des descriptions plus
complexes de concepts et de roles ainsi que des algorithmes d’inférence sémantique com-
plet. Un chemin possible vers ces objectifs, est de considérer les langages de représentation
de connaissances fondés sur des graphes.

Sur un second plan, ’architecture de la médaiation fédérée se trouve confrontée a
des problémes de communication similaires a ceux rencontrés dans d’autres architectures
hétérogénes distribuées comme celle des services Web du W3C, de CORBA de 'OMG
ou de RM-ODP (Reference Model for Open Distributed Processing) de I'ISO. Dans cette
thése, nous avons défini n concept de description de capacités pour la communication
de requétes entre médiateurs. Pour des applications plus générales, il y a besoin d’une
sorte de “langage de requéte standard” (ou commun) qui permette de décrire de fagon
abstraite les requétes de découvertes de capacités. Ce “standard” serait alors implémenté
ou supporté par un ensemble de systémes de représentation de connaissances.

3.7 Annexe : Application i la gestion de cartographie de connais-
sarnces

Alors que des “exemples jouets” sont utilisés dans les parties centrales de ce document,

I’annexe contient un exemple partiel concret inspiré d’'une expérience a laquelle nous

avons participé pour la construction d’un systéme de gestion d’une carte de connaissances
(knowledge map) |102].

26

Thése (en anglais)

27

Chapitre 1

Introduction

The main motivation of this work is to provide a contribution to the satisfaction of
the need for retrieving individuals (we will also call entities) who may carry out actions
together with the retrieval of individuals who complementarily may carry out actions.
In section 1.1, we introduce a definition for the term capability and we relate it to the
concepts of competence and knowledge. We also intuitively define the notion of comple-
mentarity between capabilities and we will point out the needed concepts and mechanisms
which contribute to the achievement of our goals. Section 1.2 summarizes our goals and
our intended contributions, while section 1.3 outlines the structure and the content of this
document.

1.1 Problem Statement : Capability, Competence and
Knowledge

In the following, we call capability the ability to carry out actions. This definition
is clearly very close to the definition of a competence and it is not independent from
the notion of knowledge. Indeed, in these informal definitions, there is a very subtle and
a very light distinction of the definition of what a capability is and the definition of a
competence, in human resources, as being “the state or quality of being adequately or well
qualified, having the ability to perform a specific role” [86]. However, all along the work
which is reported here, we use the term capability in the above-mentioned meaning and
we avoid, as long as possible, to use the term competence since this term is very often
(implicitly) associated with the domain of human resource management. This avoidance is
justified by the fact that we believe that our proposals can find their application in many
domains, like competence management, Web services composition, enterprise knowledge
management, e-business, etc.

Competence-based management originates from the theory of competence-based stra-
tegic management which is established as a theory in the early 1990’s [103|. Some concepts
on competence management are defined and compared in a certain hierarchy of assets in
figure 1.1. The hierarchy of assets grants value to the separate assets in respect to each
other. The higher it is in the hierarchy, the more complex the nature of the asset is. The
capability and competence are two so related assets in the hierarchy. “Capabilities are

28

1.1. Problem Statement : Capability, Competence and Knowledge

repeatable patterns of action in the use of assets to create, produce and/or offer products
to a market. Because capabilities are intangible assets that determine the uses of tangible
assets and other kinds of intangible assets, capabilities are considered to be an important
special category of assets. Capabilities arise from the coordinated activities of groups of
people who pool their individual skills in using assets to generate organizational action.”

Core competences

Competences

Capabilities

Skills

Assets

Resources

F1G. 1.1 — Hierarchy of Assets [103|

In [46], competence management means the definition, optimal use and development
of competencies of the enterprises, the groups, and the individuals. A competence mana-
gement system consists of four heavy processes : competence identification, competence
assessment, competence acquisition, competence usage. The process of competence identi-
fication represents the competencies in a formal format which can be read in the processes
of competence assessment and competence usage. The process of competence assessment
fixes the relationship between individuals and required competencies, while the compe-
tencies of the individual satisfy the requirement.

A similar way, in the frame of enterprise knowledge management systems, [75] identifies
various facets of enterprise knowledge, as summarized in figure 1.2. Enterprise knowledge
(explicit knowledge) as well as enterprise Know-How (tacit knowledge) are essential for
the decision processes and for the execution of the main processes which constitute the
activity of an enterprise. Therefore, they need to be identified, located, characterized,
organized into maps, evaluated and organized into hierarchies in order to serve for the
enterprise purposes.

In computer science, the term capability was introduced by Dennis and Van Horn in
1966 in a paper entitled Programming Semantics for Multiprogrammed Computations |30].
The basic idea is the following : suppose we design a computer system in order to access
an object, a program must have a special token. The token designates an object and gives

29

1.1. Problem Statement : Capability, Competence and Knowledge

----- - - B -- 1

i - 1 1
y Ewasion, Infom, | Sitat, 1
y Educate, Crganise, | Charactense :
i 1 1 - ’
: Cooperate, Ilotivate : ,.I--'ﬁg““h”hl..
L | oot | Omganize e,
I -------- ~ : - -— -------
I Acquire, Mode] Cyadal *Evaluate, |
- “rucia Wpdate,
Preserve 1 Bomahze’-meep Knowled Sim?;dm, I Actualize
. MOWied ge 2 Fnrich N
S by l'.— - Pyl I—..' -------- |
"o.‘ 1 Lecss, JI-".'..
obes Dissquivates =
1 Share, 1
1 Explnit, !
: Combine 1
1 1
N

F1G. 1.2 — The Facets of Enterprise Knowledge Management

the program the authority to perform a specific set of actions (such as reading or writing)
on that object. Such a token is known as a capability. We see that capability is provided
by some intelligent agents in the domain of Artificial Intelligence (AI). These capabilities
are essentially the actions an agent can perform solely or cooperatively [107].

All these above-mentioned considerations reveal the need, at least, for capability expli-
citation, capability discovery and capability composition.

Further, as said before, the (dynamic) discovery of the capabilities (or services) an “en-
tity” offers has different application domains. Component-based programming, electronic
business (e-business) and even enterprise knowledge management [75] are among the ap-
plication domains in which there is a need for the discovery of services or capabilities an
“entity” offers. For these purposes, the only syntactic description of an entity’s capability
(like the signature of a software component’s service) is not satisfactory when using that
description for answering a request : an additional semantic description is required. Mo-
reover, the elicitation of possible relationships among the services may contribute to find
out “the best” service or the “the best complementary” services that satisfy a search query.
In e-business, considered as a possible application domain of this work, this notion of com-
plementarity (similar to the notion of pooling of individual skills in [103]) can be applied
when attempting to constitute business alliances or when looking for business partners.
For example, when trying to constitute a business alliance, the notion of complementarity
may help in retrieving the most appropriate candidates for partnership. The discovery of
the complementarity can be performed when some explicitly-defined relationships among
capabilities are known.

Indeed, there is a natural dependency structure among capabilities, that is, possessing
a capability or a combination of capabilities normally entails possessing another. Brian
R. Gaines[39] has extended the classification of capabilities as follows : “It is tempting
to extend this classification to the knowledge underlying the capabilities but this would be
misleading since there is not a one-to-one relationship between knowledge and capabilities—

30

1.2. Thesis Ouverview and Thesis Contributions

usually, many different sets of knowledge can lead to the same capability”.

This thesis work provides a formal background and a pragmatic solution to implement
a competence management system which can describe, organize and discover competencies
in heterogeneous environments. We use capability description to identify competencies,
and the competence assessment can then be supported in a capability knowledge base. Ca-
pability discovery and matching are also valuable contributions to competence acquisition
and usage, as defined in [46].

The goal and the overview of the thesis work is given in the coming section.

1.2 Thesis Overview and Thesis Contributions

——» Subfield
= System/approach

— Related work Capability application
e Y S
Managemen!. —————————— Discovery Mediation architecture
g ~ Sy <y
Representation Organization Reasoning —————- Composite

FiG. 1.3 — Top overview of capability application

A top overview of this work which provides two conceptualizations of the sub-fields
capability management and capability discovery, and an implementation of the mediation
architecture, is given in figure 1.3.

The capability management and the capability discovery are more like a pair of sym-
bioses on capability application than two subfields of a capability application. It is a
conceptual system model. This model is system-independent and it can be implemented
on multiple system architectures. In our work, we have implemented this model on a
mediated architecture which supports distributed heterogeneous federated mediators. We
will identify these conceptual models and architectures in the next paragraphs.

Referring to the actions that are induced by the various facets of enterprise knowledge
management (figure 1.2) the work that is reported in this document actually deals with :

1. the identification and the organization into hierarchies of capabilities owned by
“entities”, an entity being a physical or a non-physical individual,

2. the modeling and the formalization of these capabilities,

3. the access and the combination of the capabilities to satisfy a given goal expressed
as a query.

Identification, organization, modeling and formalization are termed capability manage-
ment and they are introduced in section 1.2.1, while capability access and combination
are called capability discovery in section 1.2.2. Finally, section 1.2.3 introduces mediated
architectures to support the search for complementarity between individuals.

31

1.2. Thesis Ouverview and Thesis Contributions

1.2.1 Capability Management

There are two symbionts, capability management and capability discovery, in any ca-
pability application. We approach the capability management by two aspects, capability
representation and capability reasoning such as showed in figure 1.3.

Knowledge Representation (KR) formalisms lend themselves to capability represen-
tation. The field of knowledge representation has, of course, long been a focal point of
research in the Al community |90]. These current KR languages are not totally competent
for capability representation. Capability is just an attribute of an entity in many KR lan-
guages, where we can not describe the characteristic of the capability itself. For example,
we can see that the capability description of “be brother of” is transitive, and the pair of
capability “be father of” and “be son of” is symmetric. These characteristics of capability
and relationships between capabilities are hard to describe in current KR languages. Thus,
we need extended current KR language to be competent for capability representation.

For capability management, of course, the aim of representing capabilities is that we
want to reason on them. Hence we do not only need this formula knowledge representation
language for capability description. This capability representation language must own
strong capability description features, and it must support some basic logical reasoning
rules. The capability matching is one of the most interesting feature in the reasoning tasks
in our work ; it will be the basis of the capability discovery.

In addition, from a knowledge representation perspective and regardless of any actual
knowledge description language, the role of verbs [55| helps to accurately discriminate
documents by types and semantic properties, rather than nouns. Parallel problems are
also argued in knowledge representation field, such as the two kinds of description logic
language, relation-based and concept-based, that are used in natural language proces-
sing [38], and relation-based description logic can be embedded in concept-based descrip-
tion logic. The ALN, . description logics language is a kind of this embedded language,
but it develops the relationship description. We will rely on it for formalizing capabilities
and some of their semantic relationships. The formal approaches based on description
logics formalization and reasoning, are applied, among others, in semantic matching [28|
and Semantic Web composition [79]. The capability discovery approach of our prototype
implements semantic matching and service composition in a heterogeneous environment.
Therefore, this thesis works is also a valuable contribution to semantic technical applica-
tions, like semantic-based discovery of Web services [106] and it is in line with current
activities on semantic and ontology for the Web [99, 36, 105, 104, 1].

1.2.2 Capability Discovery

Here capability discovery is defined in a query-answer context. Intuitively saying, a
capability discovery action tries to find some capabilities to satisty a given query. Capabi-
lity discovery is based on a semantic query model such as the general business discovery
model in figure 1.4.

“Business need” is described in a semantic query language. It gets two results in two
different levels, “business solution” and “service components”. Where “business solution”
is a conceptual description, it does not point one/multiple companies or business entities,

32

1.2. Thesis Ouverview and Thesis Contributions

Business Need in
semantic queryh Business Solution Business Solution

Assembly
Business Service
Reguirements Component
Harvesting
Reuse Need Business Service Service Components
- Component -
Provisioning

F1G. 1.4 — Business Discovery Model

and it describes which kind of companies or business entities can be in the “business
solution”. And then we also can get a list of individuals, “service components”. It directly
points out which company or business entity can satisfy the “business need”. “Reuse need”
is just a normal entity-relation search here.

Therefore, capability discovery also works like this semantic query model. It tries to
find which kind of entities owns a capability, and who they are. This query action is
working on a knowledge base that is written in a KR language. In many situations, the
knowledge bases are possibly distributed or heterogeneous, as in an internet environment.

In this work, we approach the capability discovery at three levels :

1. Firstly, the query and the knowledge base are in the same KR language, and then
the knowledge base is located in one server. This level focuses on the matching
calculation and composite answer calculation. These are the most basic algorithms
and approaches. We call this level the homogeneous local satisfaction.

2. Secondly, the query and the knowledge base are in the same KR language and
the knowledge base is distributed in several independent servers. To support, these
calculus and approaches of homogeneous local satisfaction work in distributed en-
vironment. This second situation focuses on the solution of distributed calculation
problem. We call this level the homogeneous distributed satisfaction.

3. Finally, the third level is called heterogeneous satisfaction. The query and the know-
ledge base are in different KR languages, and the knowledge base may be distributed.
This situation focuses on the problem of communication and interoperation between
different KR languages.

The three satisfaction levels mutually benefit one from the other, and they also focus
on different dedicated fields. The homogeneous distributed satisfaction and heterogeneous
satisfaction can together be applied to many current applications. That means that ca-
pability discovery can work in distributed heterogeneous environments.

More precisely, among central objectives and original contributions of our work, we
intend to propose :

33

1.2. Thesis Ouverview and Thesis Contributions

1. a formal framework for describing and organizing capabilities : we emphasize the
need for an appropriate formal and sound basis for the representation and the or-
ganization of the capabilities we intend to describe and manage. From our concern,
we opted for the description logic family of languages.

2. a single concept and some associated mechanisms that fit the three previous levels
and that enable :

(a) comparing intentionally defined entities (i.e. entities described by a set of ca-
pabilities),

(b) identifying capability gaps between given intentionally defined entities,
(c) identifying entities that are candidates for filling-up identified gaps,

(d) constraining the set of candidates that contribute to the fulfillment of identified
gaps.

The fundamental concept which underlies this work is the complement concept, i.e.
the identification of “what is missing to an entity to be considered as an entity that
meets a given set of capabilities”. This concept is very central in this work since it
provides the accurate basis, at the same time, for (a¢) comparing intentionally defined
entities, (b) identifying the possible gaps (¢) full filling these gaps. The algorithm
we developed and that is detailed in the chapter 5 covers all these situations.

These contributions are validated thanks to a mediation architecture we have designed
and (partly) implemented as a proof of concept for capability management applications.

1.2.3 Mediation Architecture

Mediation architecture is an active research field in network program design. A cen-
tral role is assigned to modules that mediate between the users’ workstation and data
resources. Mediators are defined as modules occupying an explicit, active layer between
the users’ application and the data resources |45]. Thousands of different kinds of media-
tion services are working in different specific fields right now. These mediators serve in
different specific fields in different physical networks, and also use different KR languages
and different communication interfaces. We need a federation of mediators when a com-
plex application wants to access data on multiple mediators on different specific fields.
The federation can make cooperate multiple independent mediator servers, translate KR
languages between these mediators, and integrate the results into a unique homogeneous
answer.

In this work, mediator-based architectures are explored to meet the facilities that are
needed by homogeneous distributed satisfaction as well as by heterogeneous satisfaction of
capability discovery. In the first situation, only communication is needed between some
mediators, as long as the service that is needed from them is identified : the needed service
is the identification of the complementary entities. In the second situation (heterogeneous
satisfaction), an additional functionality is needed, in addition to the communication one :
it is the functionality that helps two heterogeneous systems to unambiguously understand
each other. For this purpose, clearly the choice of a common vocabulary and the availa-
bility of translation mechanisms will greatly help in the communication between different

34

1.83. Thesis outline

capability management systems. We pragmatically approached this problem thanks the
inclusion in the mediation architecture of term translators.

1.3 Thesis outline

The thesis is organized as follows :

Chapter 2 provides an introduction on the state of art for the related research areas
involved in the thesis work. There are three main related research areas : Knowledge Re-
presentation, Capability Discovery, and Mediation Architecture. We observe the different
characteristics on Capability Representation between some knowledge representation lan-
guages, and then we mention the rewriting problems on the Capability Representations in
different knowledge representation languages. The Capability Discovery is the approach
of Semantic Matching which is related with multiple research fields : Lexical Integra-
tion, Schema Matching, Web semantic, etc... The Mediation Architecture is a hybrid,
Distributed, Heterogeneous, and Dynamic system architecture. It is related with multiple
Distributed System Architectures : Peer to Peer, Web services, and so on.

Basically, by introducing findings from literature and from empirical studies in research
projects, chapter 2 describes capability representation theories and capability discovery
approaches and mediation architectures.

Chapter 3 presents the overview of the approach and the system architecture. We go
through a conceptual model of federated mediators, composite answers and knowledge
base management. That accords to three main research lines :
1) the study of knowledge representation languages devoted to capability and concept
description ;
2) the description of our approaches (e.g. composite answer, complement calculation,
classification) ;
3) the study and the design of an heterogeneous and distributed federation of media-
tors.
This chapter sketches the overview of our proposals and the three next chapters detail
the three considered research lines.

Chapter 4 focuses on the application of the knowledge representation theories to capa-
bility representation. It proposes a capability description language ALN ., which extends
the Description Logic’s language ALN. We introduce some new syntax restrictions in
ALN,, for capability description. And then we introduce ALN,, into a Description
Logics knowledge management system. The capability management model in ALN ., de-
velops from the classical DLs-system model which can further be divided into the TBox
(conceptual knowledge) and the ABox (assertion knowledge). ALN ., allows an extended
syntax for capability description, and then ALN, -system further divides T,Box from
TBox. A T,Box specifically stores the capability knowledge (the role vocabulary) in the
TBox of an application domain.

35

1.83. Thesis outline

In short, we introduce some new capability description syntaxes and a capability des-
cription space into classical knowledge representation systems.

Chapter 5 describes theories and algorithms for logical reasoning on ALN,, know-
ledge representation systems. The satisfiable and subsume are the most important in-
ferences and where we will introduce our approach and algorithms. The inferences are
implemented using a Normalization-Comparison algorithm for testing the existence of
the subsumption relationships between two description structures which could be some
entity description (i.e. considering the ABox and reasoning using its content of) or some
capability description (i.e. considering the T,Box and reasoning using its content). The
Normalization-Comparison algorithm proceeds in two phases : first, the description struc-
tures are normalized into a normal description formula, and then the normal description
structures are compared to implement the inference services.

In addition, chapter 5 introduces the approach and the strategy for capability disco-
very. The approach for capability discovery is based on a model of composite answers. A
composite answer is not a “Yes/No” response to a query, but it may contain two compo-
nents : a satisfaction part and a complement part. The satisfaction component is the part
of the query that is satisfied by the mediator to which the initial query is addressed, i.e.
it designates the individuals whose capabilities cover part of those required in the query.
The complement component is the part that is missing in the satisfaction part to cover the
whole query. The satisfaction part is determined thanks to the subsumption relationship,
while the complementary part is determined thanks to a procedural implementation of
the complement concept [91].

Chapter 6 reports on the capability application’s approaches implementation in a fede-
rated mediators prototype. We show some details of the implementation of the prototype
system on the two parts. Firstly, we will introduce the implementation of the mediator
server in ALN ., which has been implemented in Java. Secondly, we focus on the imple-
mentation of the federation of mediator servers, which is the heterogeneous environment.
The Web services technologies serve the composition between the heterogeneous mediator
serves.

Chapter 7 summarizes the results of this thesis and concludes with an outlook on fur-
ther work.

Appendix : While “toy ezamples” are used in the core of this document, the appendix
contains a partial concrete example inspired from an experiment we had in building a
knowledge map management system [102].

36

Chapitre 2

Knowledge Management and
Distributed Heterogeneous
Architectures

This chapter provides an introduction on related works for the main research areas in-
volved in the thesis work. An overview of this chapter, which provides a conceptualization
of the relationships between the different sub-fields and approaches/systems described in
this thesis is given in figure 2.1.

In section 2.1 we introduce the basics of knowledge representation theories and lan-
guages. Both concepts are fundamental for capability representation. These approaches of
capability management and discovery are independent of knowledge representation. There
are two meanings of “independence” : (i) the approaches can be implemented on any plat-
form and use any knowledge representation technology and (ii) the approaches allow
heterogeneous interoperable systems to use different knowledge representation technolo-
gies. Concretely, we will illustrate our work using three common knowledge representation
technologies : Description Logics, Frame Logics and Conceptual Graphs. We will define
some basic terms which are accepted by these knowledge representation technologies. We
will use Description Logics to represent our approach in this thesis work, so we will move
the focus on Description Logics in section 2.1.1. We will compare several language families
of DLs in section 2.1.1. We will provide extensive examples to ease the understanding of
knowledge representation in DLs. In section 2.1.2 we introduce theories and languages
on Frame Logics, and related projects. In section 2.1.3 we will introduce theories and
languages on Conceptual Graph, and related projects.

In section 2.2 we introduce theories and approaches that are related to capability
discovery. Knowledge integration and semantic matching are two core problems when we
are in an heterogeneous software environment. We will focus on mapping on lexical level in
section 2.2.1, where there are some ontological theories and related projection. Semantic
matching focuses on some few concepts and calculations of matching on the syntax level
in section 2.2.2.

In section 2.3 we introduce distributed heterogeneous architectures. As mentioned in
section 1.2.3, we will like to call Mediation architecture, which is a heterogeneous and
distributed federated mediators in this thesis work. Therefore, we introduce some basic

37

)iL— ‘ﬂ."— KIF

............ k ‘ﬁb CGIF
o T TS ALREN
{,” I'l \«:'::*-—1 ~E \/ \ \\
j o \

Languages

Ve me TS // \\

| / ek [| Dasmphm logics - 2.1.2 Frame logics 2 13 Gnncaptual Graphs

+ Safisfacton -=——— Reasoning
' rF 4"'//
1] Classrﬁcahun 5 21 Knmﬂedge Represenlahon
il o '
i! ! / |

| [——— = Subfield
Knowledge Integration Systermvappoach
! 221 Lexm:ﬁllntegratlon IR Related wark
-— E e important

22 Capﬂbllrty Discovery

| ¥,
| b
\ 222 Semantlc Matchl Y
\ 2.3 Disiributed heterogenecus architeciure
| |
™ . schema matching / \ -\\\))
/ 22 3 Web — / L 231 Senvice-Oriented Architecture

I
| Ontologies

1
E ¥ ! \\
| kAl / \ /" 232 Peer toPeer Architecire | | OMG
r
A | ’
: ,r/ -"f:'(| 4
Il 4 __/ e g ""/
1 1 I s, [<, Fa e
/ I Py r i . T il e
 OWL and OWLS ; 2:3.3 Mediation Architecture
| Web services
5 /
.
1-______--_ A/ /
e e — A ;
T e e e e e S e WsDL LoD SOAP

FiG. 2.1 — The Knowledge Map of the thesis work outlines this chapter.

38

2.1. Knowledge representation

concepts on mediation architecture in section 2.3. Heterogeneous and distributed systems
are a long-term research focus. Thus, there exist numerous heterogeneous and distributed
systems architectures. We devise these architectures into three types, Service-Oriented
Architecture, Peer to Peer, and Mediation. We introduce Service-Oriented architecture
where we focus on the most popular SOA architecture, Web service architecture in section
2.3.1. And then we will mention the other common OMG architecture which is based
on CORBA. We argue the three distributed architectures by knowledge management
application on Peer to Peer in section 2.3.2. In our view, mediation architecture is a
hybrid distributed software architecture. We introduce their basic concepts in section
2.3.3.

2.1 Knowledge representation

In this section we look at how some logics have been or could be used in capability
representation. The linguistic representation plays a special role for the usefulness of
heterogeneous reasoning systems [9]. Firstly, in linguistic representation, it is very useful
to have names for things that have different representations in different systems. These
names are frequently letters or words. Secondly, reasoning problems often come to us
posed wholly or partly in a language, and the results of our reasoning typically need to
be expressed in a language. Thus, some linguistic problems on capability representation,
which are argued in knowledge representation domain, firstly move in our view in this
thesis work.

Capability representation is one of the sub-fields of knowledge representation which
extends current knowledge representation languages to be more competent for capability
description. Some basic theories and concepts of knowledge representation, that we will
introduce in the following paragraph, are primarily for well talking in this thesis.

Knowledge Representation (KR) has been one of the focal research fields and has
a long history in Artificial Intelligence (AI) domain. What is KR? That is the most
fundamental question, which has rarely been answered directly. Randall Davis (1993) [89]
uses distinctly five different roles to describe what is KR.

— “A KR 1s a Surrogate.”

— “A KR s a Set of Ontological Commitments.”

— “A KR s a Fragmentary Theory of Intelligent Reasoning.”

— “A KR 1s a Medium for Efficient Computation.”

— “A KR is a Medium of Human Ezpression.”

In one word, a KR is an intelligent medium which is working among Al systems and
humans. Almost every KR theory is based on mathematical set theory where elements,
sets and relationships are the three most basic concepts |97].

In many applications, the elements are never defined, but are left as abstraction that
could be represented in many different ways in the human brain, on a piece of paper or in
computer storage. In this thesis, the elements are descriptions of capability provider which
include all location, binding and ports information in service description languages. But
they only exist as identifies which we usually name term in KR languages.

A set is an arbitrary collection of elements, which may be real or imaginary, physical

39

2.1. Knowledge representation

or abstract. In mathematics, sets are usually composed of abstract things like numbers
and points, but one can also talk about sets of acts, roles, peoples, or a service whose
elements have a kind of capability or characteristic.

A relation is a function of one or more arguments whose range is the set of truth values
true, false. Some KR systems deem that relations must have two or more arguments and
call a relation with one argument a property. For example, “roles are imaginary” that is a
unitary relation, where “are imaginary” is a property of “roles”. And then “acts play roles”
is a binary relation, where “play” is a relation between “acts” and “roles”.

Generic knowledge representation formalisms such as first-order predicate logic (FOPL)
might have turned out to be sufficient for KR. FOPL provides very powerful and gene-
ral machinery; logic-based approaches were more general-purpose from the very start.
Advantages of FOPL include its well-defined semantics and the fact that it is probably
the best-researched knowledge representation formalism in Al In a FOPL approach, the
representation language is usually a variant of the first-order predicate calculus, and rea-
soning amounts to verifying logical consequences. Thus, many current KR systems agree
on the FOPL, such as Description Logics, Frame-Logics and controlled natural languages.
We will successively introduce these KR theories and systems in the following sections.

2.1.1 Description Logics

Description Logics (DLs) [32, 71, 6] owns several families of knowledge representation
languages. The earliest Description Logic (DL) pre-system derived directly from KIL-
ONE |24], while this system is a direct result of a formal analysis of the shortcomings of
semantic networks. KL-ONE is mainly about the implementation of a viable classification
algorithm and the data structures to adequately represent concepts.

The current DL knowledge representation system has complete algorithms for DL
languages. The expressiveness of the DL language required for reasoning on data models
and semi-structured data has contributed to the identification of the most important
extensions for practical application. A KR system based on DLs provides facilities to set
up knowledge bases, to reason about their content and to manipulate them. Figure 2.2
sketches the architecture of such a system.

In this Knowledge Base (KB) architecture, there are two components : the Terminology
Box (TBoz) and the Assertions Box (ABoz). The TBoz introduces the terminologies
of the modeled world and it includes the names of the concepts and the names of the
roles, while the ABox contains assertions about individuals in terms of the vocabulary.
Therefore, a DL knowledge base not only stores terminologies and assertions, but it also
offers some services for reasoning about them. So we introduce hereafter some typical KR
languages and reasonings starting from preliminary definitions.

Preliminary Definitions and Example

In DLs knowledge representation languages, a description of a world is built using
concepts, roles and individuals. The concepts model classes (sets of concepts, TBox) of
individuals (sets of individuals, ABox) and they correspond to generic entities in an appli-
cation domain. An individual is an instance of a concept. Roles model binary relationships

40

2.1. Knowledge representation

TBox

Description
Language

Reasoning

ABox

F1G. 2.2 — Architecture of knowledge representation system based on DLs

among the individual classes. A concept is specified thanks to a structured description
that is built giving constructors. It introduces the roles associated with the concept and
possible restrictions associated with some roles. Usually, the restrictions constrain the
range of a binary relationship that is itself defined by a role and related cardinalities.

Concepts are of two types : primitive and defined concepts. Primitive concepts may be
considered as atoms that may serve to build new concepts (the defined concepts). Similarly,
roles may be primitive roles as well as defined roles. In the figure 2.3, PERSON and SET
are primitive concepts : they are introduced using the symbol T and they are linked to a
“TOP” concept (T)?; TEAM SMALL-TEAM and MODERN-TEAM are defined concepts
(they are introduced using the symbol =). The and constructor enables defining concepts
as a conjunction of concepts : these concepts are the immediate ascendants of the defined
one. The all constructor constrains a role’s range and the at-least and at-most constructors
enable to specify the role’s cardinals. Finally, the not constructor only applies to primitive
concept.

Let us now turn our attention toward two significant languages, F £ and AL languages
successively.

F L Languages

F L™ language is probably the first DL language. In the paper “The tractability of
subsumption in frame-base description languages”, Brachman and Levesque [23] argued
that there is a tradeoff between the expressiveness of a representation language and the
difficulty of reasoning over the representation built using that language. They provided
the first example of this tradeoff by analyzing the language FL~ (Frame Language),
which included intersection of concepts, value restrictions and a simple form of existential
quantification. This paper introduced two new ideas :

2Intuitively the TOP concept is the “most general one” and it contains all the individuals while the
BOTTOM concept (L) is the most specific one and it is empty.

41

2.1. Knowledge representation

PERSON C TOP
SET C TOP
MAN C PERSON
WOMAN C (and PERSON
(not MAN))
member T toprole
head C member
TEAM = (and SET
(all member PERSON)
(atleast 2 member))
SMALL-TEAM = (and TEAM
(atmost 5 member))
MODERN-TEAM = (and TEAM
(atmost 4 member)
(atleast 1 head)
(all head WOMAN))

F1G. 2.3 — A collection of primitive concepts, primitive roles, and defined concepts in 73]

1. “efficiency of reasoning” over knowledge structures can be studied using the tools of
computational complexity theory;

2. and different combinations of constructs can give rise to languages with different
computational properties.

FL is a significant extension of FL . In the following, we use the letters A and B
for primitive concepts®, the letter p for primitive roles, the letter r for roles, and the
letters C' and D for concept descriptions. Description languages are distinguished by the
constructors they provide.

n FL, concept and restrictions description are formed according to the following syn-
tax rules :

C,D — Al (and C D) | (allr,C) | (some r)
r — p| (restrict r C)

TAB. 2.1 — The syntax of FL

This syntax is inherited by subsequent description languages, like AL which is in-
troduced below. Exceptionality, the restrict structure, reaches the roles description of
FL. It introduces a restriction to the co-domain of a role. The following example (in |71])

3Note that some use the notion “atomic concept” to the primitive concept, where “atomic concept”
specially names the minimal concept after the Normalization algorithm in this thesis work.

42

2.1. Knowledge representation

shows part of what can be expressed in FL : the concept D represents “One person has
children and all poor children are musicians while all rich children are doctors” :

D = (and PERSON
(some child)
(all (restrict child POOR) MUSICIAN)
all (restrict child RICH) DOCTOR))

The FL— language is a simplification of FL£ without the role restrict structure.

AL Languages

The AL language (Attributive Language) has been introduced by Schmidt Schauf
and Smolka in 1991 [92] as a minimal language that is of practical interest. The other
languages of this family are extensions of AL. Concept and restrictions description in AL
are formed according to the following syntax rule :

C,D— A (primitive concept)

T (universal concept)

1 (bottom concept)

CnD| (intersection)

—A | (primitive negation)

Vr.C| (value restriction)

37T (limited existential quantification)

TAB. 2.2 — The syntax of AL

In AL, negation can only be applied to primitive concepts, and only the universal
concept is allowed in the scope of an existential quantification over a role. As mentioned
in the previous section, the FL~ can be seen as the sub-language of AL, that disallows
primitive negation. Contrarily, adding a new constructors to AL results into a new lan-
guage. For example, ALC is obtained by the addition of the negation constructor to the
defined concept in AL : ALC = AL U {—C}, where The negation of primitive or defined
concepts is written =C. This extension of AL is indicated by ALC where the letter C
stands for “complement”.

The new language ALC supports all description constructors in AL, and it allows
the negation operation over any concept descriptions which include the primitive concept
and defined concept. Knowing that C'U D = —(=C M —D), then the ALC language can
describe the union of concepts. Therefore, ALC is more expressive language than AL. We
may add further constructors to AL to obtain a family of AL-languages.

43

2.1. Knowledge representation

- ALU = ALU{CUDY} : The union of concepts is written CLID. Note that equivalences
are L =CU~C and CUD =—~(-CnN-D) |92].

- ALE = AL U {Fr.C} : Full existential quantification is written 3r.C'. Note that
dr.C differs from dr. L in that arbitrary concepts are allowed to occur in the scope
of the existential quantifier, and then that equivalences are dr = dr. 1L and dr.C' =

~(Vr.=C) [35].

- ALN = ALU{< n r,> n r} : Number restrictions are written < n r (at-most
restriction) and > n r (at-least restriction), where n ranges over the nonnegative
integers.

— ALR = ALU{r; Mry} : The intersection of roles is written {r; Mry}, where r; and
r9 are primitive roles. If r = r{Mry, then 7 is a sub role from r; and r,. It is possible
to construct a hierarchy of roles.

With the additional constructors, we can, for example, describe those persons that
have not more than three children, one of whom is rich.

D = (and PERSON
(< 3 child)
some (restrict child RICH)))

Extending AL by any subset of the above constructors yields a particular AL-language.
We can name each AL-language by a string of the form

ALICIUIENNIR]

where a letter in the name stands for the presence of the corresponding constructor.

Following the equivalences mentioned above is not all these languages are distinct from
the semantic point of view. The semantics enforces the equivalences C LD = —~(=~C M —-D
and 3R.C = -VR.—~C. Hence, all AL-languages can be written using the letters C, N, R
only, that is the rich semantic language ALCNR.

Subsumption Relationship

The subsumption, denoted as C' C D, is the most basic inference on concept expressions
in DL. The subsumed concept C', always denotes a subset of the subsumer concept D, as
for instance MAN C PERSON. The subsumption relation is reflexive (one concept is subsumed
by itself), transitive (if E is subsumed by D and D is subsumed by C, E is subsumed by
C), and antisymmetric (if D is subsumed by C' and C' is subsumed by D, C' = D). DLs
has been influenced for a longtime by the tradition of semantic networks in their history,
where the concepts were viewed as nodes and roles as links in a network. Subsumption
relation reorganizes the concepts and roles in hierarchy. This hierarchy owns one maximal

44

2.1. Knowledge representation

element, TOP, which subsumes all other elements, and one minimal element, BOTTOM, which
is subsumed by all other elements.

Traditionally, the basic reasoning mechanism provided by DL systems checked the
subsumption of concepts. In fact, subsumption can draw other important inferences, as
shown by the following reduction. For two concepts C, D we have :

Satisfiability C' is not satisfiable < (' is subsumed by L ;

Equivalence C' and D are equivalent < C'is subsumed by D and D is subsumed by
C;

Disjointness C' and D are disjoint < C' 11 D is subsumed by L ;

Thus, checking subsumption is a key inference in Description Logic systems. The ear-
liest subsumption algorithms was to transform two input concepts into labeled graphs and
test whether one could be embedded into the other; the embedded graph world corres-
pond to the more general concept (the subsumer) [59]. Until now, there are two principal
subsumption checking algorithms : the algorithms of normalization-comparison types (or
call NC algorithms) and tableau-based algorithms [47]. The description languages of all
the early and also of some of the present day DL systems do not allow negation. For such
Description Logics, subsumption of concepts can usually be computed by NC' algorithms.
In particular, Description Logics with negation and disjunction can not be handled by
NC' algorithms. For such language, tableau-based algorithms have turned out to be very
useful. The first tableau-based algorithms was introduced by [92].

Since 1975, Brachman started to develop KL-ONE [21] [22], a lot of DL systems have
been implemented. The first systems include KL-ONE, KRYPTON [24]. Then, successor
systems are described by classifying them along the characteristics discussed in the pre-
vious sections, addressing the following systems : CLASSIC [16] [58]|, BACK [87] [83] [50],
LOOM [60] |61]. Finally, a new optimized generation of very expressive but sound and
complete DL systems, such as FACT [52], and RACER [69].

In addition to Description Logics, we considered Frame Logics and Conceptual Graphs
to study and experiment cooperation among heterogeneous systems. These are briefly
introduced in the two next sections (sections 2.1.2 and 2.1.3, respectively) and they are
compared in section 2.1.4.

2.1.2 Frame Logics

Michael Kifer, Georg Lausen and James Wu introduce Frame Logic (F-logic) |54], that
accounts in a clean and declarative fashion for most structural aspects of object-oriented
and frame-based languages. It borrows and turns ideas from O-logic [53]|. F-logic is a
full-fledged logic ; it has a model-theoretic semantics, a sound and complete proof theory.

F-logic organizes the classes and individual objects in an IS-A hierarchy. Figure 2.4
shows part of a hierarchy of classes and individual objects which is introduced in [54],
where solid arcs represent the subclass relationship and dotted arcs represent class mem-
berships. This hierarchy asserts that faculty and manager are subclasses of empl; “Bob”
and “Mary” are members of the class string; and mary is a faculty. This endows F-logic

45

2.1. Knowledge representation

A A
datatype
person A o+ YE\
AN .
e \ M
B string integer
d empl A S 3
child(person) ¥ o
M
| .
student | " i . > :
\ : Mary Bob
\ manager
|
faculty
E A
d
4
rd
it 1
4 o
mary bob

F1G. 2.4 — Part of an IS-A hierarchy in [54|

with a great deal of uniformity, making it possible to manipulate classes and objects in
the same language.

In the actual syntax of F-logic, “ :” is used to represent class membership and “ : :”
to denote the subclass-relationship. Thus, for instance, the expression in the hierarchy of
figure 2.4 can be recorded as empl : : person, bob : manager, and so on. F-logic allows more
symbols for objects, classes and deductive rules description. In short, — and = signify
scalar attributes, —— and == are used with set-valued attributes. Also, double-shafted

specify types, while arrows describe values of attributes. For example,
Database facts :

bob | name — “Bob”; %Defining a scalar property name of bob
age — 40; %Defining a scalar property age of bob
friends —— {mary, sally}|

General class information :

person | name = String; %Attribute name returns object string
age = midaged; %Attribute age returning object from class midaged
friends == person| %Returns sets of objects from class person

Deductive rules :
Elboss — M] < E:empl A D : dept
AE[af filiation — D[mngr — M : emp;]]
Queries :
?— X :person A X[name — Y;
age — Z : midaged;
friends —— D[name — “Mary"|]|
A whole database consists of four parts : database facts, general class information,

deductive rules and quertes. database facts defines the scalar properties of objects, that
are descriptions of individuals. It can correspond to the ABoz in Description Logics.

46

2.1. Knowledge representation

general class information describes the information of classes, which is like the definition
of concepts in a TBoz. Finally, deductive rules are descriptions on the relations between
classes, which correspond to description of roles in a Description Logics’ T'Box.

2.1.3 Conceptual Graphs

Conceptual graphs (CGs) are a system of logic based on the existential graphs of
Charles Sanders Peirce and the semantic networks of artificial intelligence. They express
meaning in a form that is logically precise, humanly readable and computationally trac-
table. With their direct mapping to a language, conceptual graphs serve as an intermediate
language for translating computer-oriented formalisms to and from natural languages.
With their graphic representation, they serve as a readable, but formal design and spe-
cification language. CGs have been implemented in a variety of projects for information
retrieval, database design, expert systems, and natural language processing.

The default quantifier in a concept is the existential 4, which is normally represented
by a blank. For example, in figure 2.5, the concept [Cat| without anything in the referent
field is logically equivalent to the concept [Cat : 3|, which asserts the proposition according
to which there exists a cat. Other quantifiers, such as the universal V, are called defined
quantifiers because they can be defined in terms of conceptual graphs containing only the
default existential. In figure 2.5, the concept |Cat : V| represents the phrase “every cat”,
and the complete CG represents the sentence “Every cat is on a mat”.

Cat: ¥ -- Mat

F1G. 2.5 — An example “Fvery cat s on a mat.” on Conceptual Graph

There are multiple candidate representations for CGs [64]. In the CG linear form
(CGLF), the universal quantifier may be represented by the symbol @every [95] [96]. CG
Interchange Format (CGIF) is intended to be one of the standard notations for exchanging
knowledge, and it is the official textual notation for CGs. Knowledge Interchange Format
(KIF) is a language designed to be used in the interchange of knowledge among disparate
computer systems [42] [44]. As an example, the following CGs descriptions are semantically
identical :

CGLF : [Cat : @Qevery|—(On)—|Mat].
CGIF : [Cat : @every*x| [Mat : *y| (On?x 7y)
KIF : (forall ((7x Cat)) (exists ((7y Mat)) (On?x?y)))

2.1.4 Concluding Remarks

We already mentioned some advantages of capability discovery approach in hetero-
geneous environments. We introduced three common types of knowledge representation

47

2.2. Capability discovery

technology in section 2.1 and their concepts are compared in the table 2.3.

‘ ‘ DLs ‘ F-logics ‘ CGs
Concept Concept Class Concept,
Description
Capability Role Class : :Method Relation
Description
Individual assertion object individual
Description
Knowledge subsumption hierarchy IS-A hierarchy directed graph
Organization
Reasoning structural comparison, sorted F-logic, inverting resolution,
method tableau method multiset-valued method

TAB. 2.3 — Knowledge Representation Technologies comparison

From the table 2.3, it comes that the studied Knowledge Representation formalisms
allow concept level and individual level descriptions. Sorted F-logic and multiset-valued
method were introduced in [54| and they are common methods of F-logics extensions. Me-
thods for performing inductive inference is an important and useful part of Al. It has been
applied to CGs reasoning [77|. In this thesis work, we mainly focus on the capability des-
cription in DL, together with the capability description in multiple knowledge description
languages to illustrate the capability discovery in heterogeneous context. Heterogeneity
usually introduces additional problems like knowledge translation from a representation
to an other one or knowledge integration. In the coming section, we briefly present some
notions about integration which we used when studying capability discovery in a hetero-
geneous environment.

2.2 Capability discovery

This capability discovery approach is mainly related to three current research fields :
Knowledge Integration, Semantic Matching, and Semantic Web.

Knowledge Integration looks so much like the ontology work, which recently became a
very popular research domain in Al. An ontology is an explicit specification of a conceptua-
lization. The term is borrowed from philosophy, where an Ontology is a systematic account
of Ezistence. This definition is given in [48]. An informal ontology may be specified by
a catalog of types that are either undefined or defined only by statements in a natural
language. A formal ontology is specified by a collection of names for concept and relation
types organized in a partial ordering by the type-subtype relationship (Definitions and
concepts relative to the ontology that are presented in this thesis are based on the book
Knowledge Representation by John F. Sowa [97]). The basic categories and distinctions
have been derived from a variety of sources in logic, linguistics, philosophy, and artificial
intelligence. However, in this thesis work, the ontology domain is not a main concern. So,
we will only consider some lexical applications of ontologies, that support terms mapping
and matching at the lexical level.

48

2.2. Capability discovery

2.2.1 Lexical integration

Lexical mapping is an activity that attempts to relate the vocabulary of, at least,
two models or two ontologies or. ..that share the same domain of discourse. Considering
ontologies, (Kalfoglou and Schorlemmer 2003) adopt an algebraic approach where an
ontology is a pair O = (S, A) where S denotes the ontological signature (it describes the
vocabulary) and A denotes a set of ontological axioms (roughly speaking, A expresses the
intended interpretation of S). The mapping is then defined as a function that preserves
the mathematical structure of ontological signatures and their intended interpretations, as
specified by the ontological axioms, i.e. mappings are considered as ontology morphisms
(like for instance, a morphism of posets, i.e. a function f that preserves a partial order :
a < b implies f(a) < f(b)). Ontology mappings are then characterized as morphisms of
ontological signatures and the mapping may be total or partial where a total ontology
mapping from O; = (51, A1) to Oy = (Ss, A) is a morphism f : S; — Sy of ontological
signatures. In such a way that, A; = Ay, i.e. all interpretations that satisfy Os’s axioms
also satisty O;’s translated axioms.

Moreover, in this domain, there is lot of work from different communities that are
relevant to this notion of mapping. Terms and work encountered in the literature in-
clude alignment, merging, articulating, fusion, integration, morphism and so on. These
words may be classified in three situations, integration, merge and use [85] (Figure 2.6
summarizes these situations) :

(Integration) (Merge) (Use)

0,8

F1G. 2.6 — Three integration models : integration, merge and use

— Integration is when we build a new ontology reusing other available ontologies. In
integration we have one (or more) ontologies that have to be integrated (Oy, O, ..., O,
in figure 2.6 : Integration), and on the other hand, the ontology (O) resulting from
the integration process. Each ontology, integrated in the resulting ontology, usually
is about a different domain other than that of the resulting ontology (D) or the
various ontologies integrated Dy, Do, ..., Dy).

— Merge is when we build an ontology by merging several ontologies into a single one
that unifies all of them. In the merge process we have a set of ontologies (at least

49

2.2. Capability discovery

two) O1,0,,...,0,, that are going to be merged, and the resulting ontology (O)
(figure 2.6 : Merge). The goal is to make a more general ontology about a subject
by gathering into a coherent bulk, knowledge from several other ontologies in that
same domain. The domain of both the merged and the resulting ontologies are the
same (D) although some ontologies are more general than others.

— Use is when we build an application using one or more ontologies. In use there are
one or more ontologies involved (O1, O,,...,0,) and there is no resulting ontology.
One cannot draw any conclusions as to the architecture of the resulting application
because it depends on the application itself.

Another theory of integration has been the focus of study on lexical and figurative
meaning [4, 3]. Some online electronic dictionaries have been developed to assist the au-
tomatic processing of the natural language ; they support some relationships between the
terms (name of concept), as name equality, synonyms, homonyms, hyponyms, abbrevia-
tions, etc. SUMO (Suggested Upper Merged Ontology) falls into this category : it was
promoted by the IEEE Standard Upper Ontology effort [98]. The SUMO was created by
merging publicly available ontological content into a single, comprehensive, and cohesive
structure. In February 2003, the ontology contains 1000 terms and 4000 assertions. It is
implemented in DAML+OIL.

WordNet is the most popular lexical tool to day. It is an extremely large and free online
English lexical database [65]. The database is divided in parts of speech into nouns, verbs,
adjectives, and adverbs. The nouns are organized as a hierarchy of nodes. In version
2.0 of WordNet, there are 141690 noun synsets, 24632 verb synsets, 31015 adjectives
and 5808 adverbs. WordNet is continually updated, and several versions of the database
currently used in Information Retrieval and Natural Language Processing applications.
EuroWordNet is a multilingual database with WordNets for several European languages
(Dutch, Italian, Spanish, German, French, Czech and stonian) [84]. The wordnets are
structured in the same way as the WordNet in terms of synsets (sets of synonymous
words) with basic semantic relations between them. Each wordnet represents a unique
language-internal system of lexicalizations.

2.2.2 Schema Matching

Semantic matching which plays a central role in knowledge integration is mentioned
in section 2.2.1. It also has numerous applications, such as Web-oriented data integra-
tion, electronic commerce, schema evolution and migration, application evolution, and
component-based development. Schema matching is typically performed on semantic mat-
ching, which takes two schemas as input and produces a mapping between elements of
the two schemas that correspond semantically to each other where schema can be simply
defined as a set of elements connected by some structure|LC94, MIR94, MZ98, PSU98,
MWJ99, DDLO00] .

Schema matching is a basic problem in many database application domains, such as
heterogeneous database integration, E-commerce, data warehousing, and semantic query
processing. Most works on schema matching has been motivated by schema integration.

20

2.2. Capability discovery

The problem, given a set of independently developed schemas construct a global view, has
been investigated |81]. In an artificial intelligence setting, this is the problem of integrating
independently developed ontologies into a single ontology. An analysis on seven published
prototype implementations is presented in [88], they class the schema matching approaches
into three levels.

Schema-level matchers only consider schema information, not instance data. The
available information includes the usual properties of schema elements, such as
name, description, data type, different kinds of relationships (part-of, is-a, etc.),
constraints, and schema structure.

Instance-level data can give important insight into the contents and meaning of
schema elements. This is especially true when useful schema information is limited,
as it is often the case for semi-structured data.

Combining matchers can be done in two ways, hybrid matchers and the combina-
tion of independently executed matchers.

Currently, we can find numerous matching approaches implemented by different me-
thods, and applied in different domains. The SemlInt [27] match prototype creates a map-
ping between individual attributes of two schemas. SemlInt uses neural networks to deter-
mine match candidates. The LSD (Learning Source Descriptions) system uses machine-
learning techniques to match a new data source against a previously determined global
schema |33|. It represents a composite match scheme with an automatic combination of
match results. It can take self-description input, such as XML, and make its matching deci-
sions by focusing on the schema tags while ignoring the data instance values. The SKART
(Semantic Knowledge Articulation Tool) prototype follows a rule-base approach to semi-
automatically determine matches between two ontologies [67]. Rules are formulated in
first-order logic to express match and mismatch relationships and methods are defined
to derive new matches. SKAT is used within the NION [68] architecture for ontology
integration. The TransScm prototype [66] uses schema matching to derive an automatic
data translation between schema instances. In |78, 29|, Palopoli et al. propose algorithms
to automatically determine synonym and inclusion (is-a, hypernym) relationships bet-
ween objects of different entity-relationship schemas. The algorithms are based on a set
of user-specified synonym, homonym, and inclusion properties. ARTEMIS is a schema
integration tool [93]. It then completes the schema integration by clustering attributes
based on those affinities and then construction views based on the clusters. ARTEMIS
is used as component of a heterogeneous database mediator. Cupid is a hybrid matcher
based on both element and structure level matching [62]. It is intended to be generic
across data models and has been applied to XML and relational examples. It uses auxi-
liary information sources for synonyms, abbreviations, and acronyms. However, the most
interesting results were in the value of particular features of each algorithm on particular
aspects of the examples, which are too detailed to summarize here.

o1

2.2. Capability discovery

2.2.3 Semantic Web

The Semantic Web is a web of data, in some ways like a global database. The Semantic
Web is about two things. First of all, it is about common formats for data interchange,
where on the original Web we only had interchange of HTML (Hypertext Markup Lan-
guage) documents. Secondly about language to record how the data relates to real world
objects. That allows a person, or a machine, to start off in one database, and then move
through an unending set of databases which are connected not by wires but by being
about the same thing. In Feb 2004, The World Wide Web Consortium released the Re-
source Description Framework (RDF) and the OWL Web Ontology Language (OWL) as
W3C Recommendations.

RDF is used to represent information and to exchange knowledge in the Web. When
looking at a possible formulation of an universal Web of semantic assertions, the principle
of minimalist design requires that it is based on a common model of great generality. Any
prospective application can be mapped onto the model, only when the common model is
general.

OWL is used to publish and share sets of terms which must be annotated in some
lexical ontologies, supporting advanced Web search, software agents and knowledge ma-
nagement. Instead of continuing with separate ontology languages for the Semantic Web,
a group of researchers, including many of the main participants in both the OIL and
DAML efforts, got together in the Joint US/EU ad hoc Agent Markup Language Com-
mittee to create a new Web ontology language. This language DAML~+OIL built on both
OIL and DAML, was submitted to the W3C as a proposed basis for OWL, and was sub-
sequently selected as the starting point for OWL. Current, the OWL language provides
three increasingly expressive sub-languages designed for use by specific communities of
implementers and users. OWL Lite supports those users primarily needing a classification
hierarchy and simple constraint features. OWL DL supports those users who want the
maximum expressiveness without losing computational completeness and decidability of
reasoning systems. OWL DL includes all OWL language constructs with restrictions such
as type separation (a class can’t also be an individual or a property, a property can’t also
be an individual or a class). OWL DL is so named due to its correspondence with Des-
cription Logics. OWL DL was designed to support the existing Description Logic business
segment and has desirable computational properties for reasoning systems. OWL Full is
meant for users who want maximum expressiveness and syntactic freedom of RDF with
no computational guarantees.

Semantic Web languages and standards are used in Web services, which is another
important work of W3C. That brings some new sublanguages, as OWL-S. It is a OWL-
based Web service ontology, which supplies Web service providers with a core set of
markup language constructs for describing the properties and capabilities of their Web
services in unambiguous, computer-intepretable form.

So, the lexical integration theories, the semantic matching approaches , and the stan-
dards as semantic web sketch a frame of capability discovery. The theories, approaches,
and standards should be implemented on some actual system architectures. These system
architectures will be distributed and heterogeneous. Thus, we will introduce the actual
system architectures in the next section.

52

2.3. Heterogeneous Architecture

2.3 Heterogeneous Architecture

In system architecture research field, heterogeneity often appears with distributed
ones. Distribution arises from business and human imperatives and has been facilitated
by the rise of reliable, high-speed networks, and by standards-based middle ware such as
CORBA. Modern systems are also heterogeneous : they comprise sub-systems built on
different platforms. Heterogeneity arises for a variety of reasons : physical constraints,
application conditions, available technical skills, and history [31]. We defined this work
focus on the heterogeneous logical representation environment where we usually have three
action situations, as sketches in figure 2.7.

(a) service publishing

Exporter —Publish({Services)—m Mediator

(b) brokering service

—Request{Service)—m Medialor ——Request{Senvice —m

; Expaorter
lt—FRoply{Result)—— (brokerng) le—ReaplyiResult)—

Importer

(c) matchmaking service

Mediator
Heqgu e'stlfSer'.;i_:f)‘,_',, {matchmaking)
— Reply{Location)

Importer Exportar

Request{Service j—————#
———————Reply{Result)

F1G. 2.7 — Three action situations : Service publishing, broking service, and matchmaking
service

There are also many mediation roles as presented in figure 2.7. In the three actions, a
mediator plays a central role. Gio Wiederhold has given a general definition of mediator in
1991 [108]. A mediator is a software module that exploits encoded knowledge about certain
sets or subsets of data to create information for a higher layer of applications. Exporter
publishes (tells) its capabilities in one or more mediators sites (see figure 2.7(a)).

Importer is the knowledge seeker, which sends requests to the mediator asking for
exporters fitted with a given set of capabilities. In the brokering action (see figure 2.7(b)),
importer directly accesses to a mediator, where the mediator translates the results in the
local language between the importer and the exporter.

In the matchmaking action, the importer accesses the mediator to get the information
of the exporter that contains the semantic representations in local language of the user’s
knowledge in the form of taxonomies, category structures or ontologies. These conceptual
actions are independent and they can be implemented in multiple system architectures.

23

2.3. Heterogeneous Architecture

2.3.1 Web Service and Service-Oriented Architecture

Recently, Web services appear to be the most active research in system architecture
domain. In February 2002, the W3C Web Services Architecture Working Group exchanged
nearly 400 emails over two weeks trying to define the term. The last definition that the
team produced was, “A Web service is a software application or component identified by a
URI, whose interfaces and binding are capable of being described by standard formats and
supports direct interactions with other software applications or components via Internet-
based protocols”.

Web services are designed to support application-to-application communication wi-
thout human assistance or intervention. Even though Web services are new, from an
architectural perspective they are new implementations of service-oriented architecture
(SOA). Figure 2.8 sketches the three conceptual roles and operations of a SOA. The three
basic roles are the service provider, the service broker, and the service consumer. A service
provider makes the service available and publishes the contract that describes its inter-
face. It then registers the service with a service broker. A service consumer queries the
service broker and finds a compatible service. The service broker gives the service consu-
mer directions on where to find the service and its service contract. The service consumer
uses the contract to bind the client to the service.

Service Broker

e

Find Register

Service
Contract

Service . :
Service Provider
Consumer

FiG. 2.8 — The conceptual roles and operations of a SOA

Bind——

Web service application is founded on a group of standard internet protocols, that
is different from the middle ware of previous SOA system, such as DCOM, RMI and
CORBA. Web services can be developed using any programming language and work on
any platform because they all speak the same language, Extensible Markup Language
(XML), which is used as the message data format, and is also used as a foundation for
all other Web services protocols. Hence three XML-based technologies have emerged as
de facto standards for Web services :

o4

2.3. Heterogeneous Architecture

— Simple Object Access Protocol (SOAP) defines a standard communications protocol
for Web service [94].

— Web Services Description Language (WSDL) defines a standard mechanism to des-
cribe a Web Service [56].

— Universal Description, Discovery and Integration (UDDI) provides a standard me-
chanism to register and discover Web services [100)].

Before Web service introduced the group of standard Internet protocols, we have had
some standards of distribute and heterogeneous architectures, as OMG.

OMG has standardized this process at two key levels : First of all, the client knows the
type of the object it’s invoking, and the client stub and object skeleton are generated from
the same IDL. This means that the client knows exactly which operations it may invoke,
what the input parameters are, and where they have to go in the invocation; when the
invocation reaches the target, everything is there and in the right place. We have already
seen how OMG IDL accomplishes this. Secondly, the client’s ORB and object’s ORB
must agree on a common protocol - that is, a representation to specify the target object,
operation, all parameters (input and output) of every type that they may use, and how all
of this is represented over the wire. OMG has defined this also - it’s the standard protocol
I[TOP.

OMG is open, vendor-independent architecture and infrastructure that computer ap-
plications use to work together over networks. Using the standard protocol IIOP, a
CORBA-based program from any vendor, on almost any computer, operating system,
programming language, and network, can interoperate with a CORBA-based program
from the same or another vendor, on almost any other computer, operating system, pro-
gramming language, and network.

CORBA is the acronym for Common Object Request Broker Architecture. CORBA
defines a service contract in OMG IDL, which is some description on the interface is the
syntax part of the contract that the server object offers to the clients that invoke it. Any
client who wants to invoke an operation on the object must use this IDL interface to specify
the operation it wants to perform, and to marshal the arguments that it sends. The IDL
interface definition is independent from programming languages, but maps to all of the
popular programming languages via OMG standards : OMG has standardized mappings
from IDL to C, C++, Java, COBOL, Smalltalk, Ada, Lisp, Python, and IDLscript.

The other development technologies can be used in SOA architecture implementation,
such as microsoft COM, .NET, and JXTA. And all these technologies can be used in other
distributed heterogeneous architectures implement as Mediation and Peer to Peer.

2.3.2 P2P and Distributed Knowledge Management

There are several definitions of Peer to Peer (P2P) architecture [12] |70] : popularly,
P2P supports mechanisms that allow end users to participate in distributed informa-
tion networks without much technical support and heavy-handed computing platforms.
Comparing with Client-Server architecture, P2P architectures enables efficient service ex-
changes by bringing services closer to the point where they are actually consumed, thereby
acting as a service caching mechanism.

95

2.3. Heterogeneous Architecture

In the distributed knowledge management approach, a great emphasis is put on auto-
nomy and coordination aspects, so that every knowledge network can manage it’s know-
ledge, exchange knowledge through meaning negotiation, and cooperate with other know-
ledge networks in order to achieve it’s goals. Compared to these aspects a peer to peer
system is particularly suitable since depicted with the following capabilities :

— supports autonomy : every member of the system is seen as a peer that manages
and has control over a set of local technologies, applications and services;

— is dynamic : peers and resources can be added or removed at any time;

— is decentralized : the community of peers is able to achieve its goal independently
from any specific member or component ;

— is cooperative : in order to join and use the system, every member must provide
resources or services to the others.

All peer-to-peer architectures have one thing in common : the actual data transfer is
always peer-to-peer : a direct data connection is made between the peer offering the file
and the requestor. The control plan however is implemented in various ways. Figure 2.9
gives an overview of the three types we identified and a typical search-download sequence
in which the leftmost peer searches for a file and downloads it from the rightmost peer.
Every individual peer-to-peer application uses one of these architectures, with its own
specific quirks.

Pure Peer-to-Peer Hybrid

FiG. 2.9 — Three peer-to-peer architectures : SOA, Peer2Peer and Mediation

As we mentioned in the previous section, SOA architecture uses a client-server setup
for its control operations. All peers log on to a central server that manages user databases.
Searches for a file are sent to the server and, if found, the file can be downloaded directly
from a peer. In most cases the server will have a database of files shared by peers. However
with the number of court cases against server-based peer-to-peer applications developers
are hesitant to use this architecture.

Pure peer-to-peer applications will not use a central server at all (except possibly for
logging onto the network). Queries for files can be flooded through the network or more
intelligent mechanisms can be used [2|. Pure peer-to-peer networks have become quite

26

2.3. Heterogeneous Architecture

unpopular because they generate a lot of overhead traffic to keep the network up and
running.

Mediation architectures is a hybrid architecture. Through the introduction of the so-
called mediators, mediation architectures have properties of both the mediated and the
pure architectures. The mediator will perform the task of a server in the mediated ar-
chitecture, but for only a subset of the peers. The mediator themselves are connected
through a peer-to-peer network. Mediation architecture was already argued in knowledge
management domain, we will move to mediation architecture in the next section.

2.3.3 Mediation architecture

In the last decade, mediation systems have become the reference architecture to inte-
grate both structured and semi-structured data [80, 108, 109]. Such systems are charac-
terized by the presence of mediators that are responsible for a service provider discovery
in the entire mediator federation and for the translation, between mediators and service
providers, from local languages to a common language (see figure2.10).

Query ———_.
F . H
“————-» Mediator, |= » Mediator;
'.‘ "__." A
—— s Commen language _-" '
— ———» Local language)
¥ P ¥
Service Service
Provider, Provider,

F1Gc. 2.10 — Mediation Architecture

Mediation architectures are designed to solve two types of problems. The first one is,
for single data resources ,a primary hindrance for that the end-user needs to understand
the representation of data. The second one is for multiple data resources. The major
concern is the mismatch encountered in information representation and structure when
combining information from multiple data sources. Mediators have an active role in in-
tegrated systems, containing knowledge structures, to drive transformations and to store
intermediate results.

In particular, the Intelligent Information Integration approach [40, 108] focuses on sol-
ving both the heterogeneity and dynastic of distributed information systems. It creates a
central layer by distinguishing the function of mediation from the user-oriented processing
and from data resources access. Most user tasks will need multiple, distinct mediators for
their subtasks. A mediator uses one or several data resources (see figure2.10). The ori-
ginal query is reformulated in several sub-queries, but this set of sub-queries is hard to
be equivalent to the original query [101]. Obviously, the best solution of rewriting query,

o7

2.4. Conclusion

which is closest to the original query, is the notion of problems maximally contained in
the rewritten query |10, 101]. Indeed, a mediator must have appropriate mechanisms to
rewrite queries, which can accurately represent the requirements of an original query, on
the other hand, which can accord with the selected service provider.

2.4 Conclusion

Our study is founded on the knowledge representation and management theories, al-
lowing capability descriptions in multiple knowledge representation languages to be inter-
changed between heterogeneous systems. This chapter presented and compared several
typical knowledge representation languages, including the DL languages family. DL will
be the main knowledge representation in the following chapters, due to its foundations
and to the availability of the notion of complement concept that we feel well suited for
the identification of gaps between given capabilities and requested ones. This notion of
complement is the foundation of our proposal for the computation of composite answers.
In addition, conceptual graphs and frame logics will be used to illustrate our proposal
within a heterogeneous environment, i.e. in the situation we have to cope with capabi-
lity descriptions expressed in different formalisms either locally or remotely. This facility
require techniques to transform a capability description from a formalism into an other
one, together with communication between the systems that manage the various capabi-
lity descriptions. In this framework, this chapter presented and compared popular system
architectures and technologies that are candidates for the implementation of capability
discovery in a heterogeneous environment. We opted for a federation of mediators we im-
plemented using Web services and Service-Oriented technologies, as detailed in chapter 6.

The coming chapter gives an overview of our solution, which includes a conceptual
system architecture and the approach for cooperative capability discovery. Therefore the
coming chapter can lighten all the corpora studied in the chapters 5 and 6.

28

Chapitre 3

Overview of Capability Application in
Heterogeneous Environment

Our main goal is to study and to implement an interoperable query service between
heterogeneous knowledge systems. Semantic communication in heterogeneous knowledge
environment was proved by a lot of research working on ontology. The ideal of this thesis
work is to use “capability requirements” as queries in heterogeneous knowledge environ-
ments. “Capability” is compared with data that describes specific instances and events,
and knowledge that describes abstract classes. To clarify the distinction between data,
knowledge and capability in this thesis we give a definition of capability.

Capability describes abstract relations between classes. Each relation typically relates
to multiple classes. Fxperts are needed to gather and formalize capability. Data can be used
to disprove capability.

Capability representation usually uses less terms and syntaxes than data representa-
tion and knowledge representation. That avoids the need for creating huge syntactical
indexes and to transform knowledge and information into an homogeneous format. The
“capability” query is easier to accept by more query services which use heterogeneous
knowledge representation languages. The purpose of this work requires formalizing and
structuring the “capability” that concerns the attributes of “entities” and relationships
between “entities” in a given application domain. Thus, we design a capability description
language which benefits from the expressiveness of highly powerful logics and well-defined
formal semantics that come with them. We opted for Description Logics (DL) [32, 51]
as a base of knowledge representation formalism : it has the notable merit that a single
mechanism (the classification mechanism) serves at the same time to build and to query
extendible domain descriptions.

As a matter of comparison, in [49], “entities” are designed fragments that are descri-
bed thanks to keywords, the relationships between the fragments are constituted by me-
trics that measure the similarity between fragments. In [15], “entities” are object-oriented
software components and description logics is used, notably, to describe their intended
semantics together with possible constraints involving objects methods.

In [18], “entities” are software objects and the capabilities of a software object are
specified giving a syntactic part (signatures of the methods or operations the object offers)
and a semantic part expressed as logical expressions (a pre-condition and a post-condition

29

3.1. Conceptual Mediation Architecture

are associated with every object’s method). The syntactic conformance of a method to a
query is trivial and the semantic conformance uses theorem proving techniques.

One should notice that description logics has been used in many domains, like the
database domain [14, 19]*, not only for querying but also for database schema design and
integration [25], for reasoning about queries (query containment, query refinement, query
optimization and so on) [10]. From our concern, description logics is used mainly for query
purposes with the special objective to produce more than “Yes or No” results, based on
the complement concept.

3.1 Conceptual Mediation Architecture

From a system architecture point of view, we choose a trader (also called mediator)
based architecture [76]| very similar to the notion of discovery agency in the Web services
architecture. In this architecture, an “entity”, called exporter, publishes its capabilities at
one or more mediators sites (see figure 3.1). Entities, called importers, send requests to
the mediator asking for exporters fitted with a given set of capabilities.

Exporter
Lren System 1 LComplementl Sys‘tem 2 LComplement2
—— — —
Repository 1 Repository 2
lﬁAnswerl I LAnswﬁ .
Importer

F1G. 3.1 — The Mediator-based Architecture

These capabilities (or services) descriptions are noted in the repositories of the me-
diators, where are also kept descriptions of concepts and individuals. To represent the
management and the operations on the capabilities and the concepts in the repository,
we introduce a more formal way of representation, that is used in knowledge base mana-
gement system (KBMS). Two types of operation of KBMS are Tell and Ask.

In figure 3.1 and in the following, let £ denote a knowledge representation language.
Lre(E) denotes that an entity description is written in a given Tell language Lrey. Simi-
larly, Lguery (@) denotes that a query description is written in a Query languageLgyery (@),
and the query results, expressed in an answer language £ 4, swer, are denoted as £ apsyer(Q)-
So, the Tell action and the Query action are defined as follows.

Definition 3.1.1. Tell action is used to build or to modify the knowledge base (KB) :
TELL : Lyey(E) X KB — KB’

*See also [32] for the proceedings of the various “Knowledge Representation meets DataBase” (KRDB)
Workshops.

60

3.1. Conceptual Mediation Architecture

Definition 3.1.2. Ask action allows finding the information
ASK : £Query(cg) x KB — £Answer(Q)

We will detail these operations in the following paragraphs, where we will define the
roles in the conceptual mediation model.

3.1.1 Exporter

The exporter is the first role in the conceptual mediation architecture. In this part,
we will give a general definition of an exporter in that conceptual model.

Definition 3.1.3. Ezporter is the provider of a capability. It publishes its capability by
Tell action at one or several mediator sites.

This Tell action is described in a language Ly (see figure 3.1), which can be any
description language common between the exporter and the mediator, like the UDDI
Registry in Web services.

Lre(E) has to contain two types of information. Firstly, it defines an abstract ca-
pability description. Multiple exporters can offer the same type of capabilities, and one
exporter can offer multiple types of capability. Secondly, it defines the “entity” of the pro-
vider, including its name and some basic contact information. We will not talk a lot of
“entity” information in this conceptual model. A real application, contains a lot of service
interface information, such as service binding template, task management, protocols, etc.
These contents will be mentioned in chapter 6.

3.1.2 Importer

The exporter is the second role in the conceptual mediation architecture.

Definition 3.1.4. Importer is a seeker role for capability, knowledge and data. Importer
1s a normal software agent role with two description technologies in the conceptual model.
It accepts a pair of languages related to an “ask action” : Louery and Lanswer-

It sends requests, using the Query operation, to the mediator asking for exporters
fitted with a given set of capabilities, and then waits for the result by the Answer from
the mediator. The language Lgyery and the language £ apsyer are local languages common
between the importer and the mediator.

Lguery allows representing kinds of relational queries in object-oriented terms using
objects and properties of objects ; it also allows representing object-oriented queries using
classes and hierarchy of classes [13]. Instead of returning plain data, Lgyery(Q)) queries re-
turn the query result(s) in the language £ Apsyer, which is a hybrid result set in accordance
with Louery(Q) situations. In this thesis work, we defined three situations for Lgyer, (@)

and ﬁAnswer (Q) :

1. Individual discovery which is exactly like searching into a relational database.
Louery(Q) describes a SQL-Like formula, and the mediator returns a result set of
object which is some individual descriptions in £ 4,swer (@), where we name the ob-
ject individual in the logical theory.

61

3.1. Conceptual Mediation Architecture

2. Model discovery which navigates through the concepts structures, in which the

concept is a modeled object. In this work we organize these concepts into a sub-
sumption hierarchy in DLs. Lgyery (@) contains a concept character description ; the
result will include the set of concepts in accordance with this character description.
We can find some sets of individuals under these concepts, that we name individua-
lization of concept discovery. Thus, L£answer(Q)) Will contain a set of concepts and
several sets of related individuals.

. Capability discovery which is the top level discovery operation in this work, where
a capability is described by modeled relationships between objects (called roles, fur-
ther). It navigates through the capability structures as we did for the concepts in the
model discovery. Lquery(Q) contains a capability characteristic description and the
result will include the set of capabilities in accordance with the described characte-
ristic. We can find some sets of concepts which satisfy the capability characteristic
description, that we name conceptualization of capability discovery. Following the
model discovery, we can also individualize the results of concepts, to be able to get
some sets of individuals. Thus, £, swer(@Q) may contain a set of capabilities, several
sets of related concepts and several sets of related individuals.

Our proposals for dealing with this variety of situations are developed in chapter 5.

Descriptions

Capability
Descriptions

individualization

Individual
Descriptions

Fic. 3.2 — Capability discovery approach in ALN, -system

In this conceptual model, it is not necessary that all the importers support all the levels
of discovery, but they must describe the requirements in a given capability description

language. We will detail the discovery approach in section 5.2.3.

62

3.1. Conceptual Mediation Architecture

3.1.3 Mediator

Mediator is the core of the conceptual model, as introduced in section 2.3.

Definition 3.1.5. A mediator is [108] a software module that exploits encoded knowledge
about some sets or subsets of data to create information for a higher layer of application.

The mediator explores knowledge in its repository to try to satisfy a query issued by
an importer. Besides playing the above roles, a mediator has some capabilities such as
creating or joining a mediator federation, managing contexts and propagating queries and
sub-queries. These capabilities are explained in the following paragraphs.

Mediation Federation

A mediation federation is a group of mediators, which agree to be considered as a
sole entity by other mediators when these are requesting services to the former. In other
words, an importer can send a query to a mediator in a federation, and the query may
be forwarded to each mediator in that federation. As a consequence, the response of the
mediator federation is the same as if the query was sent directly to all the members of
the mediator federation. The mediator federation can be thought as a “social” aggregation
of mediators that display some synergy in terms of content, quality or access strategy.
To become a member of a mediation federation, a mediator must provide a mediation
federation service, i.e. a capability discovery service.

The mediator implements the capability discovery protocol in Lgyery and Lapswers
where we will introduce a complement concept. The complement is a description of unsa-
tisfaction, in a language Lcompiement; t0 a pair of Lguery and Lagswer- As we sketched in
figure 3.1, the complement works as a query description between two mediators. So, we
get a satisfaction description Lanswer(@) and a complement description Leompiement (@)
when we send a query) to a mediator. We see the Lcomprement(Q) as part of the answer.
We introduce a formula model for this answer in section 3.2, and we will consider the
mediation federation’s membership strategy in section 6.

Context Management

Context management allows mediator to manage contexts in order to search or to
provide information. Contexts provide a semantic classification of the knowledge and
data. At the system level, a mediator avoids the need to create huge syntactical indexes
and to transform knowledge and information into an homogeneous format ; it gives to each
mediator the autonomy to store and maintain its own information in the way it prefers,
providing a tool to enable autonomous semantic classification of content.

We opted for capability discovery as a query action in the context management between
federated mediators. We know that capability is presented by verbs or verb structures in
natural languages, and the number of verbs is much smaller than the number of nouns
that are usually used to present the concept. Thus, capability discovery supports an easier
way of context management. A context manager always trusts more federated mediators
which use an homogeneous knowledge representation than those who use heterogeneous
knowledge representations.

63

3.1. Conceptual Mediation Architecture

Query Propagation

The mediation federation is looked at as a dynamic distributed system. A media-
tor can collaborate with different cooperative mediators for every different query. This
functionality allows the mediator system to “use” trust and social relations as a mean to
find information in a highly dynamic, heterogeneous and complex environment. In fact
a mediator can trust not just the knowledge “content” of another member, but also its
“relational” knowledge in terms of the capability, to redirect a request to other trusted
mediators.

Therefore, when a mediator receives a query, it might propagate that query to another
mediator it considers as an “expert”, based on what it believes is the meaning of the
request. In order to decide where to propagate a query, a mediator has two possibilities :

1. a semantic criteria : if the mediator computes some matching between a query and
some concepts in its own context, the query resolution mechanism might look for
addresses of other mediators that have been associated to the matching concept.
Here propagation is done on the base of an explicit trust since the provider defines
other peers as experts in the query topic;

2. a “prozimity” criteria : the query will be sent to known mediators and selection will
be done according to some quantitative criteria (number of mediators, number of
possible reroutings, hops, etc.); this way mediators that are non directly reachable
by the importer or that have just joined the system, can advertise their presence
and contribute to the satisfaction of the query.

A propagation algorithm may combine the two possibilities and it may be based on a
cost function that has the goal to ensure quality and to reduce overflow. This goal is achie-
ved privileging semantic re-routing, and restricting the possibility to perform proximity
based hops the more semantic based hops are done. Other parameters and mechanisms
controlling the scope of the search and preventing from the message “flooding” are provi-
ded : the seeker can set a time to live (TTL), manually limit the number of hops, store
in the query the name of mediators that have already received the query, and so on.

3.1.4 Conceptual Mediation Architecture : Concluding remarks

In this conceptual model of mediation architecture, there are three roles : importer,
exporter, and mediator. We also introduced the capability discovery problem, where the
results of a capability discovery are described by a composite description : £ gpswer(Q)
and Lcomprement(Q). The next chapters will often refer to this conceptual framework and
the chapter 6 contains the description of the choices we made during the development of
a system prototype that is intended to validate our proposals. Let us move know to the
conceptual model of the query /answer concepts and process which are the foundations of
this work .

64

3.2. A Model for Composite Answer

3.2 A Model for Composite Answer

We intend to design a mediation system to provide a semantic query service in hete-
rogeneous distributed environments. Query/answer process is the core of this work. We
propose a composite answer model and we introduce its underlying concept and theory
hereafter :

— Section 3.2.1 presents and discusses the notion of query satisfaction,

— Section 3.2.2 formally defines the notion of query complementation,

— and section 3.2.3 shows how given constraints may impact the query evaluation

process.

3.2.1 Query Satisfaction

The capability search process is founded on exported capabilities and on relationships
between them, these relationships being transparently established by a mediator. When
some exporters, known from the mediator, satisfy a query, the references of these exporters
are sent back to the importer in L g,0e-- Nevertheless, query satisfaction may fall into
different cases |20] (see figure 3.3) :

— Casel : There exists exporters where each exporter can exactly satisfy the query;

— Case2 : There exists exporters where each exporter can fully satisfy the query, and
their capabilities are wider than those requested ;

— Case3 : No single exporter that fully satisfy the query exists, but when “combining”
or composing capabilities from different exporters, one can fully satisfy the query;

— Cased : Neither a single exporter nor multiple exporters satisfy the query, but there
exists some exporters that partly satisfy the query ;

— Case) : No single exporter nor several exporters fully or partly satisfy the query.

One should notice that cases 4 (Partial Satisfaction) and 5 (Failure) would conduct to
a failure of a query () when only one mediator is implied. But, if we assume a grouping of
mediators (into a federation of mediators), these cases are typical cases where cooperation
among the mediators is required. In the case 5 (Failure), the whole query is transmitted
for evaluation to other mediators whereas in the case 4 (Partial Satisfaction), we need
to determine “what is missing” to satisfy (), that means to determine what part of the
query is not satisfied by the already found individuals. This “missing part” as well as the
original query are transmitted then to a mediator in the federation. Conceptually, we can
see the query as being addressed to “the union” of the federated mediators’ repositories.
Concretely, this union is explored from “near to near” within the mediation federation,
that means from a mediator to an other one.

Let us now elaborate more on the conceptual framework and the underlying formal
foundations. Given a query @ expressed as a sentence of a query language Louery, a
simple result (noted £ answer(@Q)) is generally returned in most of the systems and usually
L answer(Q) ={Yes, No, Unknown}, the meaning of “Yes” is that one or several entities

65

3.2. A Model for Composite Answer

I I Query Q
Exact
- I Lgatisfaction (Q) I Case 1 Satisfaction
| Different I Lryiistantion Q) I Gase:d Do
atisfaction Satisfaction
Yes
LSiJl,isi'autlnn(Q) I :
. C 3 Complementary
: ase Satisfaction
' I LSatisfaction (Q)
............. "
LSELLEHFML ion (Q) I : Partial
No 4 Case 4 _ .
. R e 2 Satisfaction
H 5 ﬁ;omplemant (Q) '
Unknown v A N (- -) ---------- . ;
ifferent -E(A:mphemen[Q M Case 5 Failure

F1G. 3.3 — The five situations of satisfaction

satisfy the Lgyery and “No” is the opposite. In this work, we try to offer a Lanswer(Q)
that may not be a single entity satisfying Lgyery, but that may possibly be a collection
of entities where “the union” of the members of the collection of entities satisfies the
search criteria of Lgyery. This collection can be found in a repository or in a federation of
repositories (that means a set of repositories).

3.2.2 Composite Answer

In this work, we adopted a Description Logic language (DL) [32], that is intensively
developed and studied in the field of Knowledge Representation. So it is not surprising
that they are particularly adapted for representing the semantics of real world situations
including data semantics |25, 14]. The query language is defined by Lgyery, = {DLs for-
mulas}, and L apsyer is defined by two components : Lgaisfaction ad Loompiement Where
Lsatisfaction ad Lcompiement are two sublanguages of L 4psyer. Before defining the notion
of composite answer, we clarify two definitions : satisfaction and complement.

Definition 3.2.1. Lgusfaction(Q) describes a satisfaction, that is a single entity or a
set of entities satisfying a query Q. If Q is completely satisfied, its complement (noted
Lcompement(Q)) is empty. In the contrary, the system will try to determine a complement
for this answer.

For this purpose, we define a function Comp(—, —) to calculate the complement of
an answer to a query : Lcompiement(Q) = Comp(Lsatis faction (@), Q). Intuitively this com-

plement designates “the missing part” to an entity in order for that entity to satisfy the
query.

Now that we have mentioned some basic concepts on composite answer, and we sket-
ched the conceptual model of composite answer in figure 3.4, we give the general definition
of a composite answer.

66

3.2. A Model for Composite Answer

Query Q

)

Different Ls;lﬁsn“;tiun(Q.} i fCumplement(Q)

e L |

Answer

F1G. 3.4 — A model of composite answer

Definition 3.2.2. When a query is satisfied by a composite answer, the composite answer
contains two components : satisfaction and complement, and it allows the satisfaction to
contain multiple entity descriptions.

We can state this definition in a more formal way :

LQuery(Q) g LAnswer(Q))
LAnswer(Q) = (LSatisfaction(Q)la e LSatisfaction(Q)n; LComplement(Q)) .

In definition 3.2.2, we said that “satisfied” only means the composite answer logically
cover the query. The entities which are described by Lgatisfaction(Q) really satisfy the
requirement of the query @, and the Lcoomprement(Q)) describes the mismatch between
Lsatisfaction(Q) and Q. The Lcompiement(Q) is difficult to accord with one concept, which
is a set of attribute/capability of an entity. Lcompiement Should be a capability represen-
tation language.

A composite answer consists of several different answers which hold a part/full sa-
tisfaction of the given query. The answers are selected from multiple candidates. The
selection makes that the composite answer supports a flexible answer for a given query.
There are possibly multiple different composite answers based on one set of candidates
for the given query. So, a strategy for the selection of candidate answers may be necessary
or imposed by an importer.

3.2.3 Strategies Constraining Composite Answers

In fact, figure 3.3 shows a “satisfaction first” selection strategy (which we have applied
in our prototype). This strategy always tries to find a full satisfying single/composite
answer for a given query. If it cannot find a full satisfying answer, then it will give an
answer which holds the “widest” satisfaction for the query. We measure the “wideness”
of satisfaction by the capability description number ; we will mention this capability des-
cription concept in the chapter 5. In abstract, the required capabilities of the query are
satisfied in maximum based on the set of candidate answers.

Following the satisfaction first strategy, the situation cases are under the most basic
modes of the composite answer, which were sketched by the 5 basic situations : exact satis-
faction, wider satisfaction, composite satisfaction, partial satisfaction and no satisfaction
at all.

67

3.2. A Model for Composite Answer

-Il:{}l,m}'
Case 1 Lgaticfction
Case 2 Lsaniafaetion Liiference
Lgutistaction 1 f('lrnplun'iml 1 L afference 1
Case3 ~—7 —7T7 —— 1 ——""-—-—
I{h\mplununl 2 L5 atstnctian 2 L erence 2
Lntistnction 1 'r-.{'rrnplcn'm'd 1 L yfference 1
Caged r—77202B25252¥-0m " ——"3-——"""—"——-—
'r-»('lrnpl.'tmcm 2 'r-rSnI:kEadinn 2 -'raDciﬂi.'rencc 2
L atmfsction 1 -'[.('w.up-k'u'n."ul 1 Lnitenenee 1
Case3 ——————— @P>—====
L('lxuph‘utnl s Laimtsion 2 Lpifterence 2
Latntsction 1 I.1L'm|||.'lk"||'»."r|l 1 Lnfference 1
Caseh —/—/7/7/—m—m——m————
-Ir-.»('rrnplcn'-:rd 2 Er.‘:‘.nlkl:'b.ﬂmn g -l':n'il'l'erem:r X
Case 7 L,'C'-.'frrq:!In.'r.\rmnl L Difference

F1G. 3.5 — The nine cases of a composite answer limited to two answers

Additional features may constrain a query and therefore constrain the actual compo-
sition of a composite answer. These constraints induce a query evaluation strategy.

For example, one can assert that the answer to a query must not encompass more
than two partial and complementary answers, and that the difference between the query
and its satisfaction, in case of a wider satisfaction, must be as reduced as possible®. As an
illustration, figure 3.5 sketches a strategy which imposes that the composite answer must
only consist of 1 or 2 entities for a given query. There are 7 cases for a composite answer
when we use this strategy. Comparing the two strategies in figure 3.3 and figure 3.5, the
cases 1 (exact satisfaction) and 2 (wider satisfaction) are under the same situations, and
the case 5 (no satisfaction at all) in figure 3.3 is also the same as the case 7 (no satisfaction
at all) in figure 3.5. The cases 3 to 8 in figure 3.5 are different from the cases in figure
3.3. We limit the answers to “at most 2”7, and we also put the attention on the Difference
part.

Following the at most 2 answers strategy, there are 2 cases of composite satisfaction
(the case 3 and the case 4), and 2 cases of partial satisfaction (cases 5 and 6). In the
case 3, the composite answer consists of the two “entities”, which when grouped together
fully satisfy the query. There are some common parts in the Difference between the two
entities. From the point view of Knowledge Representation, that means that we use some
common vocabularies in the description of the two entities. The common characteristics
descriptions relate the two entities in a specific domain. From the point view of an actual

5From a concrete application point of view, these types of constraints will enable to express queries
like, for example, seeking for at most two partners.

68

3.83. Conclusion

application, the two entities own some common complementary characteristics in a specific
domain.

This example emphasizes the need for a strategy to select the answers from a set of
candidates. On the other side, the optional strategy makes the flexibility of composite
answer. Therefore, we can apply different strategies to satisfy different requirements of
the applications, and we can obtain multiple answers for a given query applying different
strategies. From a fundamental point of view, dealing with these considerations requires
the incorporation into a query language of facilities to express the wished constraints.

However, the situation cases in figure 3.3 will serve as a “standard model” when develo-
ping our proposals for the determination of a composite answer in the following chapters.
Nevertheless, we will come back to this notion of strategy when we will present the actual
algorithm we propose for the calculation of a composite answer (see section 5.2) in order
to show how the algorithm’s behavior can be influenced by any specified strategy.

3.3 Conclusion

In this chapter, we presented the conceptual mediation architecture, and we detailed
some roles and actions in a heterogeneous environment. We also proposed a capability
discovery approach in a federation of mediators. We used a notation £ to note the lan-
guages in the query/answer actions. There must be some capability description languages
in the capability discovery approaches. The ultimate goal of this work is the design and
the development of a set of services to export, import and mediate, as well as the study
and the development of alternative strategies and mechanisms for mediators cooperation.
The coming chapters detail the adopted approach and its foundations.

In the coming chapter, we introduce a capability description language, and the know-
ledge base in this capability description language, the capability description language
being increased from the DL language.

69

Chapitre 4

Increased Capability Representation
Language ALN

This chapter focuses on applied Description Logic’s language ALN in knowledge re-
presentation, and then it extends the language ALN,, for capability representation. An
initial version of this capability representation language has been proposed in 2006 [34].
We introduced the basic concepts of DLs in section 2.1.1, we will detail these concepts
and semantic of expressive languages before any mention on ALN .

4.1 Syntax and Semantics of ALN .

According to the general introduction to the concepts of DLs given in section 2.1.1,
DLs-system consist of two components (see figure 2.2) :

1. the knowledge base (KB), which can further be divided into the TBox and the ABox.
A TBox stores the conceptual knowledge (vocabulary) of an application domain,
while an ABox introduces the assertional knowledge (world description).

2. the reasoning engine, which implements various inference services.

A ALN ,,-system comes from a classical DLs-system model. ALN,, allows an ex-
tended syntax for capability description, and then ALN,-system further divides T,Box
from TBox. A T,Box specifically stores the capability knowledge (role vocabulary) in the
TBox of an application domain.

4.1.1 Concept Description in ALN,

Before starting with the definition of ALN, 1, let us introduce some notational conven-
tions. The letter A, B will often be used for primitive concepts, and C, D for concept
descriptions. Considering roles, the letters r, s will often be used for primitive roles, the
letters R, S for role descriptions, and the letters f, g for role functional restrictions. Non
negative integers (in number restrictions) are often denoted by n,m, and individuals are
denoted a, b, c, d.

With these notations, concept descriptions and capability descriptions are formed ac-
cording to the syntax rules depicted in figure 4.1. This figure contains a syntax list of

70

4.1. Syntazx and Semantics of ALN

ALN . -concept description, and the lower part is a syntax list of ALN . -role descrip-

tion.
Name Abstract syntax Concrete syntax
primitive concept C,D— A A
universal concept T TOP
bottom concept 1| BOTTOM
primitive negation —A | (not A)
at-least restriction (> nr)| (atleast n r)
at-most restriction (< nr)| (atmost n r)
concept conjunction Cnb | (and C D)
value restriction on roles VR.C (all R ©C)
role name R, S — 1| r
universal role T rotel TOProle
bottom role Lrorel BOTTOMrole
role disjunction RUS | (or R S)
symmetric closure R~ | (R
transitive closure R* | (R1)
reflexive-transitive closure R* | (R*)
role functional restriction RfS (RfS)

F1G. 4.1 — Syntax of ALN .,

As we already mentioned, the concepts are of two types, primitive and defined concepts.
Primitive concepts may be considered as atoms that may serve to build new concepts (the
defined concepts). Similarly, roles may be primitive roles as well as defined roles. In the
example of concept descriptions in figure 2.3 (on page 42),

PERSON CT or PERSON C TOP
SETCT or SET C TOP

PERSON and SET are primitive concepts : they are introduced using the symbol C and
they are linked to a “TOP” concept (T). Intuitively the TOP concept is the “most general
one” and it contains all the individuals while the BOTTOM concept (L) is the most specific
one and it is empty.

71

4.1. Syntazx and Semantics of ALN

| Concept constructors | FLy | FLN™ | ALN™ | ALN,, |
T X X X X
1 X X
-A X X X X
(> nr) X X X
(< nr) X X X
cnbD X X X X
VR.C X X X X

‘ Role constructors ‘ ‘
r X X X X
Trole X
J—role X
RUS X X X X
R- X
R* X
R X X X X
RfS X

F1G. 4.2 — The language ALN,; and relevant sublanguages

TEAM

TEAM

SMALL-TEAM

SMALL-TEAM

= SETM(V member.PERSON) 1 (> 2 member)
= (and SET

(all member PERSON)

(atleast 2 member))

= TEAMMN(< 2 member)

= (and TEAM
(atmost 5 member))

TEAM and SMALL-TEAM are defined concepts, which are introduced using the symbol =.

The and constructor enables defining concepts as a conjunction of concepts : these concepts
are the immediate ascendants of the defined one. The all constructor constrains a role’s
range and the at-least and at-most constructors enable specifying the role’s cardinality.
Finally, the not constructor only applies to primitive concept. As mentioned in section
2.1.1, this example is in ALN (the semantic of ALN is given in the next section).

Now, let us consider the extension ALN,, : the part of ALN , -concept description

(in figure 4.1) is exactly as the ALN-concept description syntax. Some extended ALN-
role descriptions are mentioned and proved in [6], like ALN™ which extends ALN by the
role constructors. Figure 4.2 contains a list of all constructors allowed in ALN ., -concept
descriptions and defines some relevant sub-languages of ALN).

72

4.1. Syntazx and Semantics of ALN

4.1.2 Semantic of ALN,,

In order to define a formal semantics of ALN-concepts, we consider interpretation.
An interpretation Z is a tuple (AZ,-Z), which consists of a non-empty domain AZ and an
interpretation function Z that assigns (i) to every concept name A, a set AZ C AL, (i) to
every attribute name a, a partial function from A% into A%, and (iii) to every role name,
r, a binary relation rf C AT x AL,

Definition 4.1.1. (Semantic of ALN,.) The interpretation function is extended to
concept descriptions in ALN ., by the following inductive definition :

TI = AI’
1 =0,
(~4) = AR\AT
(Snr)? = {aeA?[[{bl(a,b) € BT} <n},
((5 n Tgi = g;e Ail {l(a,b) € R*} > n},
NnD = N D~
(vr.C)t = {a € AT|Vb.(a,b) € R* — b€ C*},
TL,. = Al x AL
J-Erzo e = 0x0,
(RUS)ZI -~ RTUST,
(R = {(ba) € AT x AT|(a,b) € AT},
(R = UZ(R)
(BT = U (R
(RfS)* = RTfST

In this definition, R denotes the composition Ro ... oR of length ¢, and f is a limited
predicate logical description. It is under the model in figure 4.3, and we more precisely
define it in the coming section.

4.1.3 Role Description in ALN, .

To give examples of what can be expressed in ALN ., consider the atomic concepts
PERSON and FEMALE. Then PERSON M FEMALE and PERSON M—FEMALE are AﬁNT+—60ncept
descriptions, indicating those persons that are female, and those that are not female.
If, in addition, we suppose that the role has-child is an atomic role, we can form the
concept PERSON MVhas-child.FEMALE to denote those persons whose all of their children
are female. Using the bottom concept, we can also describe those persons without a child
by the concept PERSON NVhas-child. |.

Further, the added value of transitive closure in individual capability composition is
shown in [57]. For example, the ALN . -concept description

Flight = V has-flight*.AirPort

intuitively describes all air travels that include Non-stop flights and Transfers. In par-
ticular, has-flight* has to be interpreted as the reflexive-transitive closure of the role
has-flight, thus representing the role “transfers”.

In addition, since airline companies usually provide round-trip tickets, we can simply
describe this capability by has-flight~. Reflexive-transitive and transitive closures are

73

4.1. Syntazx and Semantics of ALN

kinds of role properties. They can be determined for any role.

The symmetric, transitive, and reflexive-transitive describe the character of one single
role, but they describe a relationship between multiple roles on the view of capability
description. For example, has-flight™ presents that the role has-flight is symmetric.
It means that there are two kinds of flight, while the one is a forward flight, and the second
is a back flight. We suppose that there are two roles : flight-forward and flight-back.

forward-flight C has-flight
back-flight L has-flight

The forward-flight and back-flight are a couple of symmetric roles. As another example,
when we introduce a new role has-train, we suppose that it exists a kind of composition
character between the role has-train and the role has-flight. Obviously, these des-
criptions of relationships between roles are very usable in the inference services. But this
symmetric character can not be presented in the current DL description languages. So,
we propose a new description restriction between the roles, we call functional restriction
of roles.

These restrictions enforce the interpretations of roles to satisfy certain properties,
such as functionality (role functional restriction) and transitivity (transitive closure). For
example, a composition relationship exists (denoted as o) between the roles, has-flight
and has-train. The role composition R* o ST (denoted as RN S in some language L), is
the most usual composition between binary relations. Its semantic can be defined as :

Definition 4.1.2. (composite role)

RoS :={(a,c) € AT x AT | 3b VR VS.(a,b) € RT A (b, ¢) € ST},

Hence, we can use role functional restriction f to present the role composition rela-
tionship.

Ro S & RfS, where f = {(a,c) € AT x AT | Ib VR VS.(a,b) € R A (b,c) € ST}.

Equivalence and subsumption are the fundamental relationships that may hold among
described L-concepts. We extend the subsumption relationship between roles in this thesis
work. We can express simple functional restriction definitions.

Definition 4.1.3. (Equivalence and subsumption of roles)

R=S := {a€A?|Vb.(a,b) € R* < (a,b) € S*}.
RCS := {a€A?|Vb(a,b) € RF — (a,b) € S*}.

The role functional restriction model can be used in many relationships between roles.
Hence, this formal f is an open model for the relation between descriptions of roles.
Many formal relationship descriptions could be accepted by this model, such as composite,
equivalence and subsumption. Note, however, that the composite role cannot be expressed
in first-order logic. Thus, in terms of expressive power, first-order formulae and some of the
second-order formulae in this thesis work are incomparable. We will particularly introduce
this f restriction model in the following.

74

4.1. Syntazx and Semantics of ALN

As previously introduced in section 2.1, capability description existed in almost all
knowledge representation systems, which supports the concept/class description. They
use some simple syntaxes and less term definitions. One of the points of this thesis work
is the introduction of a rich semantic capability description language ALN,,. We did
not extend the syntax to enrich the semantic of role description in ALN,,, hence we
propose an open capability relationship description model, f role functional restriction,
after observation on the description of relationships between roles.

We suppose that f is a limited predicate logical form in ALN ., (see definition 4.1.1),
which describes the relationship between two roles and four related concepts, as sketched
in figure 4.3. Indeed, the figure 4.3 draws a general model of the functional restriction of
roles. Here we use the letters C' and D, C" and D' for two couples of concepts. There is
a role R between the concepts C' and D, and a role S between the concepts C' and D'.
Therefore, there are six predicate variables (C,C’, D, D’ R, S) in this functional repre-
sentation model. f denotes a predicate function on the six predicated variables. In the
presentation of the function f, we can use all standard logical connectives that include —
(logical not), N (logical and), U (logical or), — (logical conditional), <> (logical bicondi-
tional).

The quantifiers V (universal quantification) and 3 (existential quantification) can also
be used before all the variables. There are 4 variable descriptions (C, C', D, and D’),
which present 4 concept descriptions. If the quantifiers (V and 3) only use in this 4 concept
descriptions as in Definition 4.1.3 :

R=S & RfS, where f = {a € AT | Vb.(a,b) € R* > (a,b) € S*},
RC S & RfS, where f = {a € AT | Vb.(a,b) € R* — (a,b) € S*}.

The functions f are first-order logical forms in the definitions of equivalence and sub-
sumption.

The R and S variables present 2 role descriptions, which describe the relationship
between concepts (rf C AZx AT). Therefore, when we use the quantifiers over the variables
R and S, the function f will be a second-order logical description form, like in the definition
of composite role (see Definition 4.1.2),

f={(a,c) € AT x AT | Ib VR VS.(a,b) € R* A (b,c) € S*}
where we used the quantifiers V over the variables R and S. In this limited model, these
second-order descriptions are accepted. We visually sketch this limited model in figure
4.3.
That functional relation is viewed as a partial function, as defined in the semantic of

Aﬁ./\/’r+ .
(RfS)* := RTfS*

To elaborate more on this limited role relationship description model we go back to
the travel example, where it exists two relationships : has-way and has-flight. If R
identifies the relationship has-way, then C and D identify the same concept CITY. S will
identify the relationship has-way, C' and D’ identify the concept CITY-AIRPORT. There

75

4.1. Syntazx and Semantics of ALN

F1G. 4.3 — a model of role functional restriction

is a subsumption in the relationship f between has-way and has-flight. Subsumption
relationship is the fundamental relationship that may hold among described L-concepts.
Intuitively, a concept C subsumes a concept D, if the set of individuals represented by C
contains the set of individuals represented by D. More formally, C' subsumes D and this
is denoted D C C (or D is subsumed by C') if and only if D for every possible inter-
pretation Z. C' is called the subsuming concept and D is the subsumed. We can express
simple functional restriction definitions (like equivalence and inclusion) by interpretation.

This formal f is an open model for the relation between descriptions of roles. Many
formal relationship descriptions could be accepted by this model, such as equalization,
subsumption. One could also construct role hierarchies as imposing such restrictions.

Here we will treat role hierarchies in the context of a knowledge base. As we sketch
in the figure 4.9 (b), the roles are organized into a role hierarchy by the subsumption
relationship in 7. Three relationships, has-way, has-flight and has-train, exist in this
7.-Box. The subsumption relationship of roles is a description of functional restrictions f,
while the definition of the role subsumption relationship is seen as in the definition 4.1.3.

Of course, using the subsumption hierarchy may also implement all the reasoning
services of capability as we did in concept hierarchy by the classification approaches,
as subsumption relationship satisfaction, complement concept determination, etc. As we
have said, these roles, or named capability terms, are represented by a verb in a kind
of verb or verb-structure in knowledge representation languages. The number of verbs is
much more less than the number of nouns in the natural language, while creating a verb
common term base is easier than creating a common noun base. On the other hand, the
characteristics of subsumption relationship may help the relationship f between roles. For
example, if R is composable with S and R’ subsumes R, then R’ is composable with S.
Obviously, it exists a subsumption hierarchy as shown in figure 4.4 (a), we can easily see
the role composition relationships in figure 4.4 (b).

So, the subsumption hierarchy can help to find the possible satisfactions for capability
discovery. As shown in the example of figure 4.4, the role description has-way has two
subsumed roles has-flight and has-train. We can see the lemma of role composition

76

4.2. KR system based on ALN .,

relationship as :

has-flightohas-train— has-flightohas-way
and
has-flightohas-train— has-wayohas-train.

{a) subsumption (b} composition

F1G. 4.4 — subsumption and composition

In figure 4.4, we see that it exists some hierarchies of roles, after we introduced the
limited role functional restriction f. We will implement the capability discovery approaches
on these hierarchies of roles. We know that the subsumed concept description is a full
satisfaction for a query in the classification approach, the capability discovery is in the
same situation. The subsumed role description will be the full satisfaction. As the example
in figure 4.4, from the lemma on subsumption relationship, the subsumer will be a possible
satisfaction, i.e., when we cannot find a full satisfaction, we can try to find the satisfaction
in the subsumer to compose a composite answer, as we mentioned in the section 3.2.2.

4.1.4 Concluding Remarks

We introduced the syntax and the semantic of ALN ., in this section. The ALN . is
an extension of DL languages, where we introduced 3 role closure restrictions : symmetric
closure, transitive closure, and reflexive-transitive closure ; and we proposed a limited role
functional restriction f. We explained this limited model on relationships between roles.
This limited role functional restriction introduces some hierarchies of roles. All these
hierarchy structures, and the discovery approaches which have been introduced in the
chapter 3 will be implemented in a knowledge representation system, of course which is
in language ALN .. We introduce the knowledge representation system’s architecture in
the next section.

4.2 KR system based on ALN .

This KR system is extended from the standard DL knowledge base system, which
has been introduced in section 2.1.1. It provides facilities to set up knowledge bases,
to reason about their content, and to manipulate them (see figure 2.2). The knowledge
base comprises three components, the TBox, T,Box, and ABox. The TBox and T,Box
introduce the terminology, i.e., the vocabulary of an application domain, while the ABox
contains assertions about named individuals in terms of this vocabulary.

7

4.2. KR system based on ALN .,

In our work, we distinguished the T,Box from the standard TBox, to specially in-
troduce the vocabulary of roles. These roles represent the capabilities of an application
domain, while the TBox only stores the vocabulary concepts in the application domain
(see figure 4.5). The vocabulary concepts denote sets of individuals; and the vocabulary
roles denote binary relationships between individuals.

T.Box
v ad
ALN; = TBox - Reasoning
e]
ABox
Application
Programs Rules

F1G. 4.5 — Architecture of Knowledge Base in ALN

This ALN, (-system not only stores terminologies and assertions, but also offers ser-
vices that reason about them. Typical reasoning tasks for a terminology are to determine
whether a description is satisfiable, or whether one description is more general than ano-
ther one, that is, whether the first subsumes the second. In addition, concept description
can also be conceived as a query, describing a set of objects one is interested in. The-
refore, coupling satisfiability and subsumption with instance tests, one can retrieve the
individuals that satisfy the query : this is our conceptual guiding framework (the related
algorithms and their implementation are detailed in chapter 5).

From a mediated architecture point of view, as introduced in section 2.3.3, the ALN . -
system is embedded into a large environment. Other federated mediators interact with
the KR component by querying the knowledge base and by modifying it, that it, by
adding and retracting concepts, roles and assertions. A restrict mechanism for adding
assertions uses rules. Rules are an extension of the logical core formalism, which can
still be interpreted logically. However, this system provides an application programming
interface that consists of functions with well-defined logical semantics, providing an escape
hatch by which federated mediators can operate on the KB in arbitrary ways.

This section introduces additional definitions with respect to the TBox (section 4.2.1),
the T,Box (section 4.2.2) and the ABox (section 4.2.3) in an ALN ., system.

78

4.2. KR system based on ALN .,

4.2.1 Terminologies and the TBox

The first component of ALN,, knowledge base are ALN,-TBox. Concept descrip-
tions are used in a TBox to define the concepts of the application domain. TBox allows
the introduction of names for concept description. We restate the definition of an ALN . -
TBox, borrowed from |6, 57].

Definition 4.2.1. ALN,,-TBox : An ALN, -concept is of the form A = C, where
A € N¢ (N¢ being the Concept Name Space) is a concept name and C is an ALN ., -
concept description. An ALN ., -TBoz, T, consists of a finite set of ALN . -concept
definitions. A concept name is called defined (in T) if it occurs on the left-hand side of
a concept definition, otherwise it is called primitive. We require defined names to occur
exactly once on the left-hand side of concept definitions in T . The concept description C
in the definition A = C' of A is called defining concept of A and is referred to by T(A).

We have seen how we can form complex description of concepts to describe classes of
objects in section 4.1.1, and we also provided terminological axioms in the example on
“team” in figure 2.3. In the most general case, terminological axioms have the form,

CCD or C = D,

where C, D are concepts. Axioms of the first kind are called inclusions, and they intuiti-
vely mean D is more general than C. Axioms of the second kind are called equalities. The
semantics of axioms is defined by interpretation as follows :

Definition 4.2.2. Azioms of T : An interpretation T satisfies an inclusion C T D if
C* C D*, and it satisfies an equality C = D if C* = DT,

If 7 is a set of axioms, then Z satisfies T if and only if Z satisfies each element of 7.
If 7 satisfies an axiom, then we can say that it is a model of this axiom. Some works use
the = to specifically denote equalities axioms, where we use this symbol to specifically
denote the equivalent relation between the concepts.

Two axioms or two sets of axioms are equivalent if they have the same models. Simi-
larly, we say that two concepts C, D are equivalent, and write C' = D, if CF = D? for all
interpretation Z.

The preceding definitions can be adapted to roles as introduced hereafter.

4.2.2 Terminologies of Capability and the T,Box

In this thesis work, we propose a new component, ALN,, T,Box, into ALN ., know-
ledge base. By this classical definition, the role description is part of £L-TBox. The role just
is an assisted part of concept description. In this work, we introduce role space (T,Box)
for capability description. Capability descriptions are implemented in a T.Box by the
definition of the roles of the application domain. A T, Box allows to introduce names for

79

4.2. KR system based on ALN .,

Cy CITY C T

Cy VEHICLE C T

Cs CITY-AIRPORT = (and CITY
(all has-flight* CITY)
(at-least 1 has-flight™))

Cy CITY-TRAIN = (and CITY
(all has-train CITY)
(at-least 1 has-train))

Cs AIRPLANE L VEHICLE

Cs TRAIN [VEHICLE

C7; CITY-AIR-TRAIN = (and CITY
(all has-flight* CITY)
(at-least 1 has-flight™)
(all has-train CITY)
(at-least 1 has-train))

F1G. 4.6 — An example of ALN,,-TBox

role description. Then, an ALN,-T,Box is defined as follows :

Definition 4.2.3. ALN ., -T,.Box : An ALN,-role is of the formr = R, wherer € N,
(N, being the Role Name Space) is a role concept name and R is an ALN . -role descrip-
tion. An ALN,,-T,Box, ALN .. — T,, consists of a finite set of ALN -role definitions.
A role name is called defined (in 7T,) if it occurs on the left-hand side of a role definition,
otherwise it is called primitive. Defined names are required to occur exactly once on the
left-hand side of role definitions in T,.. The role description R in the definition r = R of
r is called defining role of r and it is referred to by T,(A).

The terminological axiom of ALN,, — T, accords with ALN,, — T. Indeed, role
terminological axioms have a form similar to the one of the concepts terminology :

RCS or R = S,
where R, S are roles. Axioms of the first kind are called inclusions, while axioms of the

second kind are called equalities. The semantics of these axioms is defined by interpreta-
tion as follows :

Definition 4.2.4. Azioms of T, : An interpretation T satisfies a role inclusion RCS
if RT C ST, and it satisfies a role equality R = S if RT = ST.

7 satisfies a set of axioms 7, if and only if Z satisfies each element of 7,. And two
axioms or two sets of axioms are equivalent if they have the same models.

Let’s move to an simple example (see figure 4.7) of the ALN, . — 7, of application on
travel. We add a definition into the T,Box ALN,, — T, :

80

4.2. KR system based on ALN .,

R, has-way C T
Ry has-flight L[C has-way
C

Rs has-train has-way

FI1G. 4.7 — An example of ALN,,-T,Box

In figure 4.7, intuitively, the T, Box says that has-way role has two sub roles has-flight
and has-train and they are atomic roles.

4.2.3 World Description and the ABox

The third component of ALN,; knowledge bases is the ALN,,-ABox. Whereas
ALN, . — T restricts the set of possible worlds, an ALN,,-ABox allows the description
of a specific state of the world by introducing individuals together with their properties.

Definition 4.2.5. ALN,,-ABox : A concept assertion is of the form C(a) where C is
a concept description and a € Ny is an individual. A role assertion is of the form r(a,b)
where r € Ng is a role name and a,b € N; are individuals. An ABox A is a finite set
of assertions, i.e. concept and role assertions. If all concept descriptions occurring in A
are ALN . -concept descriptions, then A is called ALN ., -ABoz. In case A is defined
with respect to a TBox, then the concept and role descriptions in A may contain defined
names of the TBox and T, Boz.

The semantics of ALN,; — A is defined by interpretation as :

Definition 4.2.6. An interpretation I is a model of an ABox A, if all concept assertions
C(a) € A and role assertions r(a,b) € A in A are satisfied, i.e., a* € CT and (a*,b) € rZ.

Using concepts C' and roles R, one can make assertions of the two following kinds in
a ABox : C(a) and R(a,b). In the first type, called concept assertions, one states that a
belongs to (the interpretation of) C'. In the second type, called role assertions, one states
that b is a filler of the role R for a.

Considering the TBox depicted in figure 4.6, the ABox in figure 4.8 states that Paris
is a city with an Airport and that there is an air connection (has-flight) from Paris
to Beijing.

The description of individuals is not only discovered by model discovery or capability
discovery. They can calculate some capability composition of individuals in accordance
with the some capability descriptions. In the syntax definition of ALN,, we introduced
three closure symbols for role description. They are :

R~ (symmetric closure),
R (transitive closure),
R* (reflexive-transitive closure),

81

4.3. Inference services ALN ., systems

CITY-TRAIN(Beijing), CITY-TRAIN(Nancy),
CITY-AIR-TRAIN(Beijing), CITY-AIR-TRAIN(Paris),
has-train(Nancy, Paris), CITY-AIRPORT(Paris),
CITY-AIRPORT(Beijing), CITY-AIRPORT(Wuhan),
has-flight(Beijing, Wuhan), has-flight(Paris, Beijing)

FI1G. 4.8 — An example of ALN,,-ABox

which support the composite capability at the individual level.

For example there is a capability description has-flight* in an the ABox A in figure
4.8. Astates that there are has-flight (Paris,Beijing) and has-flight (Beijing,Wuhan),
i.e., there are two flight descriptions in this 4, one from Paris to Beijing, and the other
one from Beijing to Wuhan. According to the capability description has-flight* (i.e. the
reflexive-transitive closure of has-flight), we can obtain has-flight*(Paris, Wuhan) as
a new composite capability for an individual in A, with very simple reasoning by compo-
sing individuals’ capabilities.

But the composition of concepts’ capability will be of higher value in many applica-
tions. The symmetric closure is also an important extension of capability description. As
an example, we know that airline companies usually provide round-trip tickets. So we can
simply describe this capability by has-flight*.

Anyway, this composition of concepts’ capabilities can be implemented in A : we can
find a route from Paris to Wuhan, where no direct transportation exists.

These examples illustrate the fact that the relationship between roles is an important
information in some situations for capability discovery and composition. Further, all the
approaches for discovery and composition have to be supported by the some basic logical
inference services in a knowledge representation system : these inference services are the
topics of the next section.

4.3 Inference services ALN . systems

The main features of ALN, -based knowledge representation systems are inference
services which allow to implicit knowledge from the knowledge explicitly stored in the
knowledge base. We already mentioned some inference on classical DLs-system, typically,
these are satisfiable, subsumption, etc. And as said in previous sections, a concept des-
cription can also be conceived as a query, describing a set of objects one is interested in.
Therefore, checking the concept satisfiability in a ALN ., —1 is one of the most important
inference service in this thesis work since where we provide a query service.

On the other hand, as already mentioned in section 2.1.1, the basic inference on concept
expressions in Description Logic is subsumption, typically denoted as C' C D. Checking
subsumption relationship is also an inference service that serves as a basis in our work,
since all other inferences are based on the results of the subsumption relationship testing.

82

4.3. Inference services ALN ., systems

Moreover, we check the subsumption relationship not only between two concepts but
also between roles since we consider an ALN .. — 7. Both the definitions are given
hereafter

4.3.1 Subsumption of concepts

Let 7 be a ALN . —T?9, we define the subsumption relationship between two concepts
as :

Definition 4.3.1. A concept C is subsumed by a concept D with respect to T if C* C D*
for every model Z of T : this is denoted as C' Ty D.

Intuitively, a concept C' subsumes a concept D, if the set of individuals represented
by C contains the set of individuals represented by D. More formally, C' subsumes D and
it is denoted as D = C (or D is subsumed by C) if and only if D* for every possible
interpretation Z. C' is called the subsuming concept and D is the subsumed one. For
example, in figure 4.6, VEHICLE subsumes TRAIN, and CITY-TRAIN is subsumed by CITY.

As we will see [6], many important inferences can be reduced to subsumption. Tradi-
tionally, the basic reasoning mechanism provided by DL systems checked the subsumption
of concepts. This is sufficient to implement also the other inferences, as it can be seen by
the following :

For two concepts C, D we have :
1. C s unsatisfiable < C' is subsumed by L ;
2. C and D are equivalent < C is subsumed by D and D 1is subsumed by C';
3. C and D are disjoint < CT1D is subsumed by L.
Note : These statements also hold with respect to a T .

The reduction of subsumption can easily be understood if one recalls that, for two sets
M, N, we have M C N ifft M \ N = (). The reduction of equivalence is correct because
C and D are equivalent if, and only if, C' is subsumed by D and D is subsumed by C.
Finally, the reduction of disjointness is just a rephrasing of the definition.

ALN ., knowledge base organizes all terms into two hierarchies, concept hierarchy
and role hierarchy. The term hierarchies model the semantic subsumption relationship
among concepts and roles. For the concepts, it allows the definition of a concept, called
subsumed concept, as a specialization of another existing concept, called subsumer concept.
A subsumed concept inherits properties and capabilities from its subsumer concept, and
in addition it may have specific properties and capabilities. Under the same conditions,
we also have the notions of subsumed role and the subsumer role.

6For short, we use 7, 7, and A for ACN .y — T, ALN .y — Ty, and ALN . — A, respectively.

83

4.3. Inference services ALN ., systems

4.3.2 Subsumption of roles

For an ALN,, system, we extend the subsumption relationship to roles. A role R
is subsumed by a role S if in every model of 7, the set denoted by R is a subset of the
set denoted by S. The subsumption relationship between two roles is formally defined as
follows :

Definition 4.3.2. Let 7, be a T.Boz. A role R is subsumed by a role S with respect to
T, if RE C ST for every model I of T,. In this case we write R Ty S.

Intuitively, a role S subsumes a role R, if the set of individuals represented by S
contains the set of individuals represented by R. S is called the subsuming role and D is
the subsumed one. For example, in figure 4.7, has-way subsumes has-flight, has-train
is subsumed by has-way.

In addition, it is easy to see that some rules of subsumption relationship exists in
definition of ALN :

Definition 4.3.3. Subsumption rules between roles :

R C R rule 1
R C Rt rule 2
Rt C R* rule 3
R C RUS rule 4

where R T S denotes the subsumption relationship between roles, i.e., R T S = {a €
A%|3b.(a,b) € R — (a,b) € S*}.

We recall the semantic description of role symmetric in the definition 4.1.1, and we
apply the (R™)* := {(b,a) € AT x A%|(a,b) € R*} in the role subsumption definition, we
get the rule 1. The other rules can be proved in some similar ways too.

Applying these rules can be easy to checking the subsumption relationship between
the roles. For the example in figure 4.7,

has-train C has-train— by rule 1
has-train C has-train Ll has-flight by rule 4
has-traint C has-train* U has-flight by rule 3 and 4

To simulate the subsumption of concepts, the basic reasoning mechanism on roles is
provided by checking the subsumption of roles. This is sufficient to implement also the
other inferences (unsatisfiability, equivalence and disjointness), as defined by the following.

For two roles R, S we have :

1. R s unsatisfiable < R is subsumed by L, ;
2. R and S are equivalent < R is subsumed by S and S is subsumed by R ;
3. R and S are disjoint <& RS is subsumed by L,.

These statements also hold with respect to a 7,.

As an illustration, considering the example in section 4.2, figure 4.9 (a) is a concept
hierarchy, that is built in 7, and (b) is a role hierarchy, that is built in 7,, where the
two hierarchies are under a lattice structure, that is an acyclic directed graph. Each
node represents a concept or a role, the line represents the subsumption relationship. For
example, C represents the concept CITY, and C5 represents the concept CITY-AIRPORT;

84

4.3. Inference services ALN ., systems

ciTy . VEHICLE

."l. k r'.. LY

.h“‘. k)
CITY-AIRPO CYTY-TRAIN AIRFEANE has-way

has-flight » ‘s has-train
kY F
i} /
" !

(k) Role hierarchy

(a) Concepl hierarchy

F1G. 4.9 — Terminological Hierarchies

85

4.4. Conclusion

CITY-AIRPORTC CITY, i.e. the concept CITY is the subsumer concept of the concept
CITY-AIRPORT and CITY-AIRPORT is the subsumed concept.

4.4 Conclusion

In this chapter, we introduced a capability description language, which is an exten-
sion of a “standard” knowledge representation language. We introduced three role closure
restrictions (symmetric closure, transitive closure, and reflexive-transitive closure) and
we proposed a limited role functional restriction f in the section 4.1. Then we introdu-
ced a conceptual model of knowledge representation in ALN,, in the section 4.2. The
last section 4.3 introduced some basic inference services in this knowledge representation
system.

In addition, the subsumption relationship organizes the concepts and roles into a
hierarchy of concepts and a hierarchy of roles (see figure 4.9). An important process,
the classification process, aims at determining the position of a new concept in a given
hierarchy. In this framework, we consider a query as a concept () to be classified in a
given hierarchy and the result of the query is the set of instances of the concepts that are
subsumed by (). Concepts and roles classification constitutes the foundation for checking
whether a subsumption relationship holds or not and therefore it is also the basis for the
implementation of the inference services.

These inference services are implemented in this thesis work. So, we move the focus
on the algorithms and on the approach for the implementation of these inferences in the
coming chapter.

86

Chapitre 5

Capability Management and Discovery
il’l ALNT—|—'KB

In chapter 4, we proposed a new knowledge representation language, ALN ., for ca-
pability representation. The ALN,, increases the skills on role description from AL. We
also introduced the knowledge base conceptual model in ALN,; (section 4.2, chapter 4)
which includes three components : TBox, T,Box, and ABox. In chapter 3, we introdu-
ced a conceptual view of a capability application in heterogeneous environments, where
we defined two principal actions between heterogeneous knowledge bases, Tell and Ask
(see definition 3.1.1 and definition 3.1.2 in section 3.1, chapter 3). In the definition of
the Ask action, we introduced three Ask operations which are individual discovery, model
discovery and capability discovery. The implementation part of this thesis concerns the
implementation of these operations in heterogeneous knowledge bases.

In this chapter, we introduce the approach and the algorithms that deal with the two
steps of a capability application : the capability management and the capability discovery,
in an ALN ., knowledge base.

The capability management is developed in section 5.1 and it is based on two hierar-
chies : a hierarchy of concepts and a hierarchy of roles. We use the classification approach
(section 5.1.1) to create and to maintain the hierarchies. The classification process being
itself based on the subsumption relationship, we also describe the way we calculate that
relationship according to a normalize-and-compare process (section 5.1.2).

The capability discovery facilities uses the capability management hierarchies to eva-
luate queries that are addressed to the ALN,, knowledge base. A noticeable contribution
of this work is that we attempt to provide more than a “yes or no” answer to a query.
Indeed, when a query, viewed as an ALN,, concept, cannot be fully satisfied, we identify
which part of it is not satisfied and try to make it satisfied either locally or remotely. As
already stated, the partial satisfaction is based on the subsumption relationship and on
the complement concept. The query satisfaction process is illustrated in section 5.2 while
section 5.3 treats the indivudaization process together with its implementation.

87

5.1. Capability Management for Capability Applications

5.1 Capability Management for Capability Applications

As sketched in figure 1.3 (page 31), capability management includes there sub-fields :
capability representation, capability organization, and capability reasoning. We introduced
the capability representation language ALN ., in the previous chapter : it serves for the
capability representation in this work. We now move the focus on capability organization
and capability reasoning.

Capability reasoning includes some basic inferences, like satisfaction or subsumption.
The algorithms which implement the inference services work on a specific data structure.
As many popular knowledge representation systems, we organize the capability descrip-
tions in a terminological hierarchy. In our work, a knowledge base in ALN,, (figure
4.5, page 78) includes three terminological representation structures : TBox, T, Box, and
ABox.

As introduced in the previous chapter, all individual identifications are stored in A,
the ALN,-ABox. A is a set of individual descriptions, while all individuals are some
assertions of concepts or roles, and one individual identity is in one or several assertions
of concepts or roles. In the capability discovery action, we always find the individuals by
their modeling, which is possibly a concept description or a role description. Therefore,
in our work, capability management strongly relies on terminology management.

Further, we use a classification approach |26, 72|7 to organize and maintain termino-
logies into two hierarchies : a concept hierarchy and a role hierarchy. The classification
process aims at determining the position of a new concept in a given hierarchy. In this
framework, a query is represented as a concept () to be classified in a given hierarchy.
The result of the query (), when it exits, is the set of instances of the concepts that are
subsumed by). Therefore, classification is a process that enables discovering whether a
subsumption relationship holds between a concept X and those concepts that are present
in a hierarchy H.

In these hierarchies, three concepts play important roles : the least common subsumer
(LSC), the most specific concept (MSC) and the matching of concept descriptions (they are
introduced and implemented by some non-standard inferences in [57]). Similar concepts
are also defined in a hierarchy of roles.

Furthermore, in our work, we opted for a Normalization-Comparison algorithm to
implement the inferences. The benefit is that it is suited for the management of capability
descriptions and concept description in ALN,, — KB, as well as for the discovery of
capabilities in centralized as well as distributed heterogeneous environments.

This section details our proposals : section 5.1.1 successively elaborates on the classi-
fication process in ALN,-TBox (i.e. concept classification) and in ALN,-T,Box (i.e.
role classification), while section 5.1.2 defines the normalize-and-compare process to de-
termine whether a subsumption relationship holds or not. The material which is presented
in this section is used further in section 5.2 to show how we determine a composite answer
for a given query.

"Originally, the description logics’ system classification approaches have been introduced and imple-
mented at the AT&T Labs motivated by applications of the DL-system CLASSIC [7] [8].

88

5.1. Capability Management for Capability Applications

5.1.1 Classification

The DLs system classification consists of two important calculation steps : most spe-
cific concept (MSC) and least common subsumer (LCS) [7, 8]. The subsumption test
algorithm is the kernel when we calculate MSC and LCS. A. Borgida and P. F. Patel-
Schneider have analyzed the correctness of the subsumption algorithm used in description
logic-based knowledge representation systems [17|. It provides a variant semantics for
descriptions with respect to which the current implementation is complete. We can imple-
ment a complement classification approach in a ALN . -TBox, 7. In this section, we will
introduce our classification approach in 7", then we will expand the classification approach
to ALN,-T,Box, T,.

Classification in ALN,,-TBox

Before detailing the classification approach, we need to define the most specific concept
(MSC) and the least common subsumer (LCS) concepts.

(a) Least Common Subsumer : Intuitively, the LCS of a given sequence of concept
descriptions is a description that represents the properties that all the elements of the
sequence have in comimon.

Definition 5.1.1. Least Common Subsumer [6] : A concept description E in
ALN ., is the least common subsumer (LCS) of the concept descriptions Cy,...,Cy
in ACN 1 (LCS(Cy,...,Cy), for short) iff it satisfies :

(i) C;C E foralli, i€[l,---,n], and

(ii) E is the least ALN . -concept description satisfying C;, i.e., if E' is an L-concept
description satisfying C; T E' for all i, i € [1,...,n], then E C E'.

For example, in figure 2.3 (on page 42), the least common subsumer of the concepts MAN
and WOMAN is PERSON. In the previous definition, each C; can be seen as an atomic concept
description, when the classification approach is applied in the Ask action. LCS(C;, ..., C),,)
should be the possible satisfaction of the query @, which is described in C;,...,C,. In
the Tell action, the LCS(X) will be the direct superordinate of the new concept X in the
concept hierarchy of 7.

It is not necessary for the LCS to be a definition of a given concept. In ALN | — T,
we defined that the concept T subsumes all the concepts. Thus, for a given concept D,
D C T always holds, i.e., if we cannot find a LCS for a given concept D, the T will be
the LCS of D. We will be back later to the actual calculation of the LCS in ALN,,.

(b) Most Specific Concept : Originally, the most specific concept (MSC) of indi-
viduals described in an ABox is a concept description that represents all the properties
of the individuals including the concept assertions the individuals occur in, and their re-
lationships to other individuals. If we can find a concept description C' in ALN,, — T,
which exactly describes the most specific concept of individuals for a given concept D, we

89

5.1. Capability Management for Capability Applications

can say that the concepts C' and D are equivalent in this ALN .. — T under the closed
world assumption. On the other hand, in our approaches of capability management and
capability discovery, the concept descriptions will be normalized, where the normal form
of a concept description is a conjunction structure of atomic concept which is written
as (and Cy,...,Cy). An atomic concept, C; (for all i,i € [1,...,n]), may not be a de-
fined concept or a primitive concept : as an example, the atomic concept C; defined as
C; = = A, where the concept A is a primitive concept, while the atomic concept C; is not
a primitive concept or a defined concept. A primitive concept or a defined concept has a
corresponding set of individuals in the ABox by the definition of DL knowledge base, but
an atomic concept does not always find a corresponding set of individuals. So, we propose
a definition of Most Specific Concept at the terminological level.

Definition 5.1.2. Most Specific Concept : A concept description C in ALN ,, is a
most specific concept (MSC) of the concept description D in ALN .. (MSC(D) for short)
iff it satisfies

(i) CC+ D; and

(ii) C is the most specific ALN ., -concept description satisfying D, i.e., for all ACN -
concept descriptions C', if C' Ty D, then it exists C' T C.

Considering the example in figure 5.2, the TRAIN concept is one of MSC of the VEHICLE
concept.

Similarly to the LCS, it is not necessary for the MSC to be a definition of a given
concept. Indeed, since the concept L is subsumed by all the concepts in ALN,, — T,
then, for a given concept D, L. T D always holds, i.e., if we cannot find any MSC for a
given concept D, then L will be the MSC of the concept D.

Intuitively, in the mediator-based architecture, MSC(Q) is a full satisfaction of a query
() in the Ask action. In the Tell action, X being a new concept, the MSCs(X) will be the
direct subordinate of the new concept X in the concept hierarchy of 7.

(c) MCS, LCS and their use in the classification process The classification ap-
proach is also used for capability management in [20]. It possibly exists multiple MSC
concepts and multiple LCS concepts for a given concept in the classification approach.
In the example in figure 5.1 it exists five concept descriptions about programming skills,
from F1 to F5. The five concepts describe five kinds of programmer : F1 knows Java;
F2 knows Cobol; F3 knows Java and Cobol; Fj know Java, Cobol, and SQL; F5 knows
Java, Cobol, and Pascal. We introduces a role fillers syntax of concept constructor in DLs
for the concept description, which is not included in ALN .. The role fillers syntax is :

(fillers R I;...1,) JR.I,1---113dR.,
Applying the concept descriptions, F'1 to F5 can be described as :

90

5.1. Capability Management for Capability Applications

F1 = (and PERSON (fillers know Java))

F2 = (and PERSON (fillers know Cobol))

F3 = (and PERSON (fillers know Java Cobol))

F4 = (and PERSON (fillers know Java Cobol SQL))
F5 = (and PERSON (fillers know Java Cobol Pascal))

In the concept definitions, the PERSON is a primitive concept, know is a role, and the
Java, Cobol, SQL, Pascal are four individuals.

2 (Cobol) Fl (lava)

~.

F3 (Java, Cobol)

o

F4 (Java, Cobol, SQL) 5 (Java, Cobol, Pascal)

Fi1G. 5.1 — A (Partial) Example of Software Engineering Hierarchy in |20]

We observe the MSC relationship between two concept descriptions in the definition
5.1.2. We respectively observe the MSC relationships in two groups of concepts : (F3,
Fj) and (F3, F5). We see that the concepts F/ and F5 are both the most specific
concepts (MSCs) of the concept F3 (MSCs(F3) for short). The MSCs(X) are the all
direct subordinates for a given concept X in the concept hierarchy of 7.

The LCS calculates one concept description for several given concepts in the definition
5.1.1. We observe the LCS relationships for a given single concept in our classification
approach, while the relationships actually are the least subsumer Concepts (LSCs) for the
given concept.

It possibly exists multiple least subsumers concept descriptions for a given concept. As
in the example in figure 5.1, the concept descriptions F'I and F2 have the least subsumer
relationships with the concept description F8 (LSCs(F3)). Therefore, the LSCs(X) are
the all direct superordinates for the given concept X in the concept hierarchy of 7.

The calculation of LSCs and MSCs are the foundations of the classification process
which is decomposed into 3 steps :

1. Retrieve the most specific concepts of X (denoted MSCs(X));
2. Retrieve the least subsumers concepts of X (denoted LSC's(X));

3. (possibly) Remove the direct links between MSCs and LSCs of X, and then update
the links between X and its MSCs and LSCs.

Figure 5.2 illustrates this classification process. The classification example is based
on the concept hierarchy of the TBox 7 in figure 4.9 (a). In our mediator architecture,

91

5.1. Capability Management for Capability Applications

@

CITY 7 VEHICLE
> 4,

&w

QTY—THAIN AIRF}I'NE

e @ (c) @
@ PORT]

MSCe {‘iw' RTRAIN

FiG. 5.2 — Adding a concept X into the hierarchy of concept

the classification approach serves the Tell action (which we mentioned in section 3.1 on
page 60). In the ALN ., knowledge base system, the classification approach is as follows,
considering, as an example, the Tell action Lre;(X) where X is defined as

X = (and CITY(all has-ferry CITY)(at-least 1 has-ferry)).

1. Receive the Tell action Tell(Lrey(X),T);

2. The most specific concepts of X does not exist, according to the definition. There-
fore, MSCs(X)=_L_;

3. Find the least subsumer concepts of X : LSCs(X)=CITY;

4. The direct link between | and CITY does not exist. Then link the concept CITY to
X and link the concept description X to L ;

5. Get the new 7.

In the classification approach, the result of LSCs(X) includes multiple concept descrip-
tions found in the concept hierarchy of 7, when the concept description X is subsumed
by a conjunction of concepts, i.e., X T C; M --- 1 C,, where the Cy,...,C, are the
LCS concepts of the concept description X (In the example of figure 5.2, the concepts
CITY-AIRPORT and CITY-TRAIN are the LSCs of the concept CITY—AIR—TRAIN).

The result of this action 7' is showed in figure 5.2. We see that the classification
approach is an auto-learning mechanism of the ALN,, knowledge base. We formally
note the action as : Tell(Lren(X),T) = T.

92

5.1. Capability Management for Capability Applications

In a query/answer process, if the query is described as the concept description X, the
MSCs(X) will be the “best” satisfaction for the query.

However, if MSC(X) only include the L concept, the LSCs(X) will be the possible
satisfactions. Therefore, MSCs and LSCs are useful concepts for the coverage of the query
satisfaction cases we already mentioned (see figure 5.1).

We will elaborate more on the application of LSCs and MSCs in sections 5.2.2 (page
102). We expand the knowledge management methods to capability management, and we
focus on the classification approach for capability management in the coming section.

Classification in ALN, -T,Box

In a general view, we recur the classification approach on the hierarchy of roles in the
T,Box 7., as we did on the hierarchy of concepts.

The role descriptions are properties of concepts. The role descriptions are noted in the
TBox T, but the role descriptions are not independent nodes in the hierarchy of concepts
in the standard DLs system. We propose a hierarchy of roles in this work, which is a
subsumption relationship hierarchy, quite similar to the hierarchy of concepts. Therefore,
we can apply the classification approach on the hierarchy of roles. But before applying
classification on the hierarchy of roles, we also need to define two concepts : the Least
Subsumer Role (LSR) and the Most Specific Role (MSR).

(a) Least Subsumer Role : The Least Subsumer Role is defined as follows :

Definition 5.1.3. Least Subsumer Role : A role description R in ALN, is the
least subsumer role (LSR) of the role descriptions S in ALN . (LSR(S) for short) iff it
satisfies :

(i) SEr R, and

ii) R is the least subsumer ALN ., role description satisfying S, i.e., for all ALN,
+ +
role descriptions R', if S C1,. R', then it exists R T, R'.

Regarding the example in figure 5.3, the role description has-way is the LSR of the
role descriptions has-flight and the LSR of has-train is has-way.

The role description uses a simple syntax in ALN ., and we defined four rules for tes-
ting the subsumption relationship between roles (see definition 4.3.3, page 84). According
to the four rules, it is easy to check whether the role subsumption relationship holds or
not.

In addition, as mentioned in the previous section, it possibly exists multiple LSCs,
or the LSC does not exist for a given concept description. A similar way, multiple Least
Subsumer Role descriptions (LSRs(R)) possibly exist for a given role description R. All
LSRs(R) are the direct superordinate role descriptions of the role description R in the
role hierarchy of 7,.

When the LSR does not exist, we use a special role T,,, which subsumes all the role
descriptions. Thus, for any role description R, it R C T, always holds, i.e., if we can not
find a LSR description for a given role R, the T, will be the LSR of that role description
R.

93

5.1. Capability Management for Capability Applications

¥ has-way
has-flight 'y has-train
T

F1G. 5.3 — Example of a Role Hierarchy

As for concept classification, after finding all the superordinates for a given role des-
cription, we need to find the subordinates for the given role description. The subordinate
role descriptions are named the most specific roles for the given role description in the
T,Box 7,.

(b) Most Specific Role :

Definition 5.1.4. Most Specific Role : A role description R in ALN ., is the most
specific role (MSR) of the role description S in ACN .+ (LSR(S) for short) iff it satisfies :

(i) RCy, S;, and

(ii) R is the most specific subsumed ALN .. role description satisfying S, i.e., for all
ALN ., role descriptions R', if R' T, S, then it exists R' Ty, R.

Alike concepts, we define a special role 1,,, which is subsumed by all the roles in
ALN ., — T,. Thus, for a given role R, 1,4, C R always holds, i.e., if we cannot find
any MSR for a given concept R, the L,,. will be the MSR of the concept R. Moreover,
multiple most specific roles may exist for a given role description. For example, in figure
5.3, the roles has-train and has-flight are the most specific roles (MSRs) of the role
has-way.

Intuitively, the MSR(Q) is a full satisfaction of a query @ in the Ask action. In the
Tell action, X is a new role to be inserted in the role hierarchy of 7, and the MSRs(X)
are the direct subordinate roles of X in the hierarchy.

94

5.1. Capability Management for Capability Applications

(c) Role Classification : The classification of roles is alike the classification of
concepts. The calculations of MSRs and LSRs are the two important steps in the role
classification process which proceeds as follows :

1. Retrieve the most specific roles of X (denoted MSRs(X)) in the role hierarchy ;
2. Retrieve the least subsumers roles of X (denoted LSRs(X));

3. (possibly) Remove the links between MSRs and LSRs of X and update the links
between X and its MSRs and its LSRs.

Concepts and Roles Classification : Concluding Remarks

The classification approach on concepts serves the Tell action, i.e. it helps in the
introduction of new concepts in the concept hierarchy. The difference between the concept
classification and the role classification is that the classification on roles does not directly
serve the Tell action in this work, but it is useful for the Ask action, i.e. for capability
retrieval. Because one capability is unvalued in this work, when the capability is owned by
any entity or individual. The 7, is a terminological base when the capability application
on the heterogeneous environments, that we will mention in chapter 6.

We mentioned in this section the classification approaches on concepts and roles. These
approaches are based on two couples of concepts : MSCs and LSCs, MSRs and LSRs. We
saw that the subsumption relationship test is the basis for the calculation the two couples
of concepts. So, we move now to the actual concept subsumption testing.

5.1.2 Subsumption Testing

A subsumption testing algorithm checks, given two concept descriptions, whether one
can be embedded into the other [59]. We apply a Normalize-Compare algorithm (NC
algorithm) for testing the subsumption relationships, that is a structural subsumption
algorithm. Indeed, the algorithm compares the syntactic structures of the concept des-
criptions. We know that the structural subsumption algorithm cannot handle well the
negation and the disjunction syntactic structures, but it is convenient for the calculation
of the complement concept (see its definition in section 3.2.2) which is the formal basis
for the composite answers we aim at providing.

The NC algorithm proceeds in two phases : normalization and comparison. First, the
concept descriptions to be tested for subsumption are normalized, and then the syntactic
structures of the normal forms are compared. These phases are successively discussed
hereafter.

Normalization in ALN .,

Before going through the actual normalization process, we need an atomization pre-
process in ALN,, TBox. Indeed, as introduced in section 4.1, it exists two kinds of
concept descriptions in ALN ., : defined concept and primitive concept.

95

5.1. Capability Management for Capability Applications

A new primitive concept is introduced thanks to other primitive concepts or to the
TOP concept into a ALN .. TBox, and the new primitive concept is subsumed by the
introducer.

A new defined concept can be introduced by a description form in ALN ., : Concept
identifier = concept definition. The identifier of the new concept is equivalent to the des-
cription form of the definition in the ALN,, TBox. Therefore, the atomization process
“unfolds” the definition of the defined concept by recursively substituting concepts defini-
tions to concept identifiers which appear in the right part of the concept definition (i.e.
the right side of =).

For example, consider the defined concept CITY-AIR-TRAIN, defined as :

CITY-AIR-TRAIN = (and CITY-AIRPORT
CITY—TRAIN).

On the right side of the definition symbol (=), the concepts CITY-AIRPORT and
CITY-TRAIN are defined concepts in the TBox 7T (see figure 4.6 on page 80). The de-
finitions of the concepts CITY-AIRPORT and CITY-TRAIN in 7T are :

CITY-AIRPORT = (and CITY
(all has-flight* CITY)
(at-least 1 has-flight™)),

CITY-TRAIN = (and CITY
(all has-train CITY)
(at-least 1 has-train™)).

The atomization of CITY-AIR-TRAIN substitutes to CITY-AIRPORT and CITY-TRAIN
their respective definitions, in the right part of the definition of CITY-AIR-TRAIN, resulting
into :

CITY-AIR-TRAIN = (and CITY
(all has-flight* CITY)
(at-least 1 has-flight™)
CITY
(all has-train CITY)
(at-least 1 has-train)).

The concepts, CITY, AIRPLANE, and TRAIN, are primitive concepts, so the atomized
description form is written in primitive concepts. If it still exists a defined concept in the
resulting description forms, the atomization process iterates, until all the concepts are
primitive in the resulting description form. Normalization rules, N1 to N6 in figure 5.4,
are then applied on the atomized form. In fact, normalization is coupled with simplifica-
tion according to the normalization and the simplification functions for ALN ., in figure
5.4, where these functions are denoted as Norm() and Simp(), respectively.

One should notice that the negation operator is only accepted in primitive concepts
in ALN,; (see for example, the rule N2, that eliminates some problem by using DE
Morgan’s law). For example, we would like to discover a direct contradiction between
(CM D) and (=C U —D), but ALN,; does not support disjunction operation between
concepts.

96

5.1. Capability Management for Capability Applications

Further, the normalization rules N5 and N6 incorporate the at-least and at-most res-
trictions into a single number restriction structure.

In addition, the normalization process calls a range of simplifications so that syntac-
tically obvious contradictions and tautologies are eliminated. In the simplification rule
S3, the 1S and MNP note the conjunction sets of primitive concepts. Back to the example
of normalization on concept CITY-AIR-TRAIN in 7, the final result of the normalization
process is :

CITY-AIR-TRAIN = (and CITY
(all has-flight* CITY)
(0o 1 has-flight™)
(all has-train CITY)
(0o 1 has-train™)).

Al: Atom(C) — definition form of C for defined concept name C
N1 : Norm(A) = A for atomic concept name A
N2 : Norm(—|) = Simp(—Norm(A))
N3: Norm(Cinm---mcC,) = Simp(M{Norm(C})} U ---U{Norm(C,)})
N4 : Norm(‘v’R C) — Simp(VR.Norm(C))
N5 : Norm(>n R) — Simp(> oo n R)
N6 : Norm(<n R) — Simp(>n 0 R)
S1: Simp(A) = A for atomic concept name A
S2: Simp(—A) — L,ifA=T
T ifA=1
Simp(B), if A=-B
- A, otherwise
S3: Simp(MS) = L1,if L €S
1,if {A,-A} CS
T,if S=10
Simp(S\ {T}),if T €S
Simp(MP U S\ {T1{P}}), if I{P}inS
rS, otherwise
S4 : Simp(VR.A) = T,ifA=T
(> o0 0 R).A, otherwise
S5 : Simp(>m n R) — L,ifn>m

> m n R, otherwise

F1G. 5.4 — Atomization, Normalization, and Simplification on ALN,

Conceptually, a description in ALN ., can be abstracted into the class diagram shown

97

5.1. Capability Management for Capability Applications

in figure 5.5 and at the end of the normalization process, i.e. once the normal form of
the concept description, as abstracted in figure 5.6%, we enter the second step of the
Normalize-and-Compare algorithm.

All_restriction
-Role : Defined_Raole
-Concept | Defined_Concept

1 1 .

Defined_Concept o
1 Role

FMame @ string(idl} i 3] Bk s
FConjunction_slots_pc ; Primitive_Concept [-Name : string(idl) o
rConjunction_slots_dc : Defined_Concept 1 |pAtleast: Atleast_restriction
FConjunction_slots_ne : Megation FAIMest : AtMost_restriction
FCaonjunclion_slots_fa : All_restriction

| 1 1
1 1
4
1 ,17
I AtMost_restriction A"‘.“,*'—_T‘""_::m
Primitive_Concept [-restriction : long(idl) :I-Re;tlr.'tnmgﬂhgggl%olé
Hhame : stringlidl) Negation -Role : Defined_Role . —
[Negation : booleanid) [Name : Primitive_Concept

[—

1 1

F1G. 5.5 — Description Form in ALN .,

restriction
Normal_Form M I 5
[P —— M - longicl)
Nama smplioh i - long longfid)
-Conjunction_slots_pe © Primitive_Concept | Role * Rola
-Conjunclion_slots_restriction ; restriction -Cﬁncﬁt&' Primitive_Concept
1 t 7 ! i 1
1
& i | _]
l Role
Frimitive_Concept LMame @ string(idly
-Mame - string(idl) FAtLeast : Afleast restriction
-Negation : boolean(idl) FatMost - AtMost_restriction

F1G. 5.6 — Normal form in UML

Normal Forms Comparison

Once normalized, two descriptions are easily compared against the subsumption rela-

tionship as explained hereafter.
Indeed, an ALN,,-concept description is in normal form iff it is under the form

F=AN---NA,MN=A; 1 N---M=A, Nmyn, R,A, M. omyng,RyA,,

8From an implementation point of view, the normalization process reduces the class diagram in fi-
gure 5.5 into the one in figure 5.6

98

5.1. Capability Management for Capability Applications

where A, ..., A, are distinct concept names, R,,..., R, are distinct role names.

It exists two kinds of atomic structures in the ALN ., normal form concept description,
which are the primitive concept A (or a negated primitive concept —A) and the number
restriction > m n R A. According to the atomization, normalization and simplification
rules in figure 5.4, any ALN ., description can be transformed into a conjunction of atomic
concepts, which is associative and commutative. So, the comparison process compares two
normal forms according to the following rules.

Definition 5.1.5. Let
Foe=AMN---NAMN=A; M---M=A, Nmyn,R,A, N .. .myn R A,
be the normal form of an ALN ., -concept description C, and
Fp=BMN---MB, MN=B, 1 M---T=B, 1M ¢g,k,Sy,B, M ...GgukySwBye
the normal form of an ALN . -concept description D.
Then C' T D iff the following two conditions hold :
1. foralliin Fo, 1 <i<p—1, there exists j in Fp, 1 <j <v—1 such that A; = By ;

2. for all v Fo, p <@ < g, there exists j in Fp, v < j < w such that A; T Bj, and
R; T S;, and m; > g; > kj > nj;.

We will syntactically denote ALN,, normal forms as simplified conjunctive forms. For
example, A and B will be denoted as A = (and Ay,..., A,) and B = (and By, ..., By,).
Under these forms, two concepts can be easily compared to check whether the subsumption
relationship holds between them or not :

giving A = (and A;,...,A,) and B = (and By,..., B,,), the test “does the concept
A subsume the concept B?” returns “true”, if and only if VA; (i€ 1,...,n) 3 B; (j €
1,...,m) such that B; C A,.

For example, consider again the following concept descriptions of C' and D.

() CITY-AIRPORT = (and CITY
(all has-flight CITY)
(at-least 1 has-flight™))

(D) CITY-AIR-TRAIN = (and CITY
(all has-flight CITY)
(at-least 1 has-flight™)
(all has-train CITY)
(at-least 1 has-train™))

Their normal forms are the following :

99

5.2. Capability Discovery

C: (N CITY (
(> oo 1 has-flight™.CITY)) (Cb)

D:— (1 CITY (D
(> oo 1 has-flight™ .CITY) (Dy)
(> oo 1 has-train~.CITY)) (D

And the comparison of the two normal forms yields :
— () and D; describe the same primitive concepts (CITY); therefore D; C C) in
accordance with the rule (1) of definition 5.1.5 (page 99);
— (Cy and Dy are number restriction atomic structures, and then Dy C Cy according
to the rule (2) in the same definition.
Therefore, we can conclude that D is subsumed by C', i.e., CITY-AIR-TRAIN C CITY-AIRPORT.

5.1.3 Capability Management : Concluding Remarks

In this section, we presented the NC subsumption test algorithm in ALAN .. The four
steps : atomization, normalization, simplification, and comparison process, ensure that
this NC algorithm is sound and complete in ALN ., TBox. The subsumption test is the
foundation for concept and role classification and it is also the basis of all the kinds of
reasoning we propose in this thesis work. We will use these characterizations to imple-
ment the subsumption test, the complement concept calculation, and the determination
of composite answers in the coming section.

5.2 Capability Discovery

We introduced a conceptual model of capability discovery (section 2.3.3, page 57),
where we sketched capability discovery and the related concepts (figure 3.2, page 62).
We also introduced the notion of composite answer concept (section 3.2.2, page 66). The
determination of a composite answer needs a kind of “measurable” satisfaction test me-
thod, that is why we choose to use the NC algorithm for the subsumption test algorithm.
Indeed, the determination of a composite answer requires an algorithm which calculates
the part of a query which is satisfied (in Lsauisfaction, according to our conceptual model),
and the part which is missing (in Leompiement). The satisfaction and the complement are
not complete concept descriptions in many situations, so we call them as a capability
description in this thesis work.

Let us now introduce our proposals for the determination of a composite answer :

— Section 5.2.1 illustrate the way the normalize-and-compare algorithm is employed

for evaluating queries;

— Section 5.2.2 details how a composite answer can be built thanks to the complement

concept;

100

5.2. Capability Discovery

— Section 5.2.3 explains the principle of the query evaluation and the composite answer
calculation in presence of multiple knowledge bases;

— and finally, section 5.2.4 shows the individualization of the answer for a given query,
i.e. the identification of the individuals that satisfy the query.

5.2.1 Composite Answer in ALN

A query action is a satisfiable inference calculation from a logical view, as mentioned
in definition 3.2.2, page 67. A subsumed concept always satisfies the subsumer concept in
ALN,, — T, ie., if the subsumer concept represents a query, its subsumed concepts will
be a full satisfaction answer. Before determining a composite answer, we must calculate
two basic components of composite answers, satisfaction and complement (We gave the
definitions and a simple modeling descriptions of satisfaction and complement in section
3.2.2).

Basically, we use a concept description C' to represent the requirement of a given query.
If we can find a concept description D which satisfies D C ', we can say that D is a full
satisfaction for the query.

Let us come back to the subsumption test which was introduced in the previous section.
The NC algorithm rewrites the concept descriptions into conjunctive forms before the
comparison process. There are four kinds of atomic structures in the normal conjunctive
form and we provided the rules of subsumption relationship test for the four kinds of
atomic structures in definition 5.1.5. According to 2 rules of atomic structure subsumption
relationship, we can simply see the normal form is a simple conjunctive form, as we have
applied in the example of subsumption relationship test between CITY-AIR-TRAIN and
CITY-AIRPORT in the previous section.

A concept description C' can represent the requirement of a query @ as C;M---1C,
when we use a concept description C' to represent the requirement. And then the possible
answer will be the concept description D, which also is under a conjunctive form D; N
--- M D,. The conjunctive normal forms are then used to determine the satisfaction and
the complement.

Cy Ci |Ckui Ch Lquery(Q} :C
D1 | 00 : Lanswer(Q) : D
; LSatisfactinn(Q) i JCC-:nn1||:nllewrueurll(Q)

F1G. 5.7 — Determination of a Composite Answer

In the figure 5.7, C' represents a query, and D represents a possible satisfaction,
by the condition 1 < k < n. In the concept descriptions C' and D, the atomic struc-
tures C'y,...,Ck and Dy,..., D, meet the comparison conditions in the definition 5.1.5

101

5.2. Capability Discovery

(page 99). So the satisfaction description is : Lgais faction (@) = D1 M-+ -1 Dy,
The atomic structures Cg,q,...,C, are not satisfied, and they are in the complement
description : Loompiement(Q) = Crgr M-+ 11 C,,.

As an illustration, let us try to determine the composite answer, that uses satisfaction
from the concept description D = CITY-AIRPORT, for the query description C' = PORT-AIR.
The corresponding normal form descriptions are as follows :

C': PORT-AIR= (I CITY (Cy)
((> oo 1 has-flight™).CITY) (Cy)
((> oo 1 has-ferry).CITY)) (C3)

D: CITY-AIRPORT= (I CITY (Dy)
((> oo 1 has-flight™).CITY)) (D)

In the concept descriptions C' and D, the atomic structures C;,Cy and Dy, D, meet
the conditions in the definition 5.1.5, so we get the partial satisfaction description D;MDs.
However, the atomic structure Cj is not satisfied, so we get the complement description
Cj5. According to the Ask action (as defined in definition 3.1.2 on page 61), we have :

Ask: Louwry(Q) = PORT-AIR
X
KB — {T,L,CITY-AIRPORT}
N
£Answer(Q) - {ﬁSatisfaction(Q) = (Dl M DZ;
£Complement(Q) = (03)}

where C; or D; do not necessarily correspond to any ALN,, concept description in 7.
These two kinds of atomic description structures are the minimal unit in the determina-
tion of a composite answer and following the capability discovery approach. Of course,
the satisfaction and the complement, which are under the conjunctive form of atomic des-
cription structures, also do not necessarily correspond to any ALN . -concept description
in 7. We name this conjunction of atomic description a capability description.

5.2.2 Query Complement Determination

The determination of a query complement proceeds in two steps :
1. Identify the complement concept, i.e. the part of the query that is not satisfied ;
2. Actually find the complement, if it exists, in the knowledge base.

These steps are successively detailed hereafter.

102

5.2. Capability Discovery

Complement Identification

We mentioned that multiple satisfactions may exist and that they have to be composed
to satisfy the requirement of a query (section 3.2, page 65). In order to calculate the
satisfaction and the complement, we introduce an array of Boolean (called Satisfaction
Table further, ST for short). The Boolean array records the results of the evaluation of
the subsumption relationship (see table 5.1). In that figure, Cy, Cy, Cs, . .., C, denote the
query concept under its normal form and Dy, Ds, Ds, ..., D,, denotes concepts in T under
a normal form too, i.e. every D; has to be viewed as (andDj, D3, ..., D?j). Therefore,

ST[Dj, Cz] = true <> D; C Cz

For implementation purposes, a function Subsumes(Subsumer, Subsumed) checks whether
the subsumption relationship holds between Subsumer and Subsumed. When the value
returned by the function Subsumes(C, D;) is “false” (i.e. the concept D; does not fully
satisfy the concept C'), we need to determine a possible complement of D; relatively to
C, using the satisfaction table.

In the example about PORT-AIR and CITY-AIRPORT, in the previous section,

Subsumes(PORT-AIR, CITY-AIRPORT) = false,

i.e. CITY-AIRPORT— C PORT-AIR, while CITY-AIRPORT does not fully satisty the PORT-AIR.
“(> oo 1 has-ferry).CITY” is the unsatisfied part. Then the complement is

Comp(PORT-AIR,CITY-AIRPORT)=((> oo 1 has-ferry).CITY).

More generally, using the satisfaction table, the complement (that remains to be sa-
tisfied), denoted as Comp(Query, Satis faction) satisfies the following condition :

Definition 5.2.1. Comp(C, D) =11, _,Cy, | Yk ST[k] = false.

That means that the complement is given by the conjunction of all the atomic concepts
for which the corresponding values in the satisfaction table are “false”.

C Cy | ... Ch
D, False | False | ... | True
D, False | True | ... | True
D,, | False | False | ... | False || ORoS | ANDoS

‘ ORoD ‘ False ‘ True ‘ o ‘ True ‘ True False

TAB. 5.1 — Three parameters of the satisfaction table : ORoD, ORoS and ANDoS

Complement Calculation

Let us first explain the principles of the actual calculation of the complement, before
generalizing it into an algorithm.

103

5.2. Capability Discovery

a) Complement Calculation Principles and Examples : In order to attempt to
actually satisfy the identified complement, we introduce three boolean variables, as para-
meters of satisfaction table : ORoD, ORoS, and ANDoS (refer again to table 5.1). The
three parameters are used to determine the cases of satisfaction, that is the cases of sa-
tisfaction that have been introduced in section 3.2 (page 65) and that are re-called here :

I I Query @
Exact
_ I Lgatistaction (Q) I Case 1 Satisfaction
| Different I Lgaristaction @) I Case 2 foor
atisfaction Satisfaction
Yes
LS?JLisI'aL::Inn(Q) I :
1 Case 3 Complementary
! Satisfaction
. I LSatisfaction (Q)
............. i
LSelL[ﬁf'ar.L {an (Q) I E Partial
No Case 4 Satisfacti
H memssssssss== 4 atisfaction
H : LL'amplemant (Q) 1

.............................. '
Unknown Different J‘:(,nmp'll-.-marl[(Q) : Case 5 Failure

F1G. 5.8 — Query Satisfaction Situations
ORoD(1..n] is defined as ORoDli] = \/]", ST[D;}, Cj], Vi € [L..n].
ORoD|i] = true means that the concept C; is satisfied by at least one D k € [1..m].

A similar way, if the conjunction of the values of ORoD, denoted AN DoS and defined
as ANDoS = A\!_, ORoD]Ji], is true, then that means that all the C;s are satisfied, and
therefore the query is satisfied too.

Finally, when AN DoS is false, the logical disjunction of the values of ORoD, noted
ORoS and defined as ORoS = \/!_, ORoD]Ji], enables to determine a possible partial
satisfaction.

Indeed, if ORoS = True, that means that there exists some C} that are satisfied.
If both ORoS and AN DoS are false then no atomic concept description Df (j € 1.m)
satisfies any Cj.

Thanks to the analysis of the results of the classification (which identifies Least Com-
mon Subsumer (LCS) and Most Specific Concept (MSC)) and the results of the NC
algorithm, which delivers the ORoS and ANDoS values, the cases for a composite answer
are covered : Table 5.2 summarizes this discussion. In this table, X and Y are two concept
descriptions, T is the TOP concept and L is the BOTTOM concept.

104

5.2. Capability Discovery

[T.CS(Q) [MSC(Q) [ORoS | ANDoS [CASE |

X Y True True 1 : Exact Satisfaction

X L True True | 2 : Wider Satisfaction

T L True True | 3 : Complementary Satisfaction
T L True False | 4 : Partial Satisfaction

T 1 False False | 5 : Failure

TAB. 5.2 — Analysis of the Satisfaction Cases

Cy Cy Cy
D True | True | False || ORoS | ANDoS
‘ ORoD ‘ True ‘ True ‘ False ‘ True False

FiG. 5.9 — Satisfaction Table : First Example

The numbers in the CASE column refers to the satisfaction cases in figure 5.8. We can
express the five satisfaction cases decision rules as :

. Ezxact satisfaction : Y C Q C X iff (LCS(Q) = X)A (MSC(Q) =Y) A (ORoS =
True) A (ANDoS = True);

. Wider Satisfaction : Q C X iff (LCS(Q) = X) A (MSC(Q) = L) A (ORoS =
True) A (ANDoS = True) ;

. Complementary Satisfaction : 3X,,...,3X,,Q C U, X; iff (LCS(Q) = T) A
(MSC(Q) = L) AN(ORoS = True) N (ANDoS = True);

. Partial Satisfaction : 3Xy,...,3X,, U, Xi T Q A=(3Y1,...,3Y,,Q C UL, Y))
iff (LCS(Q)=T)AN(MSC(Q)=1L)A(ORoS =True) N (ANDoS = False) ;

. Failure : VX € T, XNQ =0 iff (LCS(Q) = T)A(MSC(Q) = L) A (ORoS =
False) N (ANDoS = False).

Back to the driving example, the values concerning Lgyer, (CITY-AIRPORT) and

L Satis faction(CITY-AIRPORT) = {PORT-AIR}, are as follows :

ORoS = True and ANDoS — False, accords with the fourth line of the table 5.2, so
the case of satisfaction is 4, i.e., CITY-AIRPORT partly satisfies PORT-AIR.

Now we suppose that a new concept description, 2 = PORT, is added to the knowledge

PORT= (N CITY E,
((> oo 1 has-ferry).CITY)) Es

105

5.2. Capability Discovery

4 C, Cs
D True | True | False
E True | False | True |[OR0oS [ANDoS

‘ ORoD ‘ True ‘ True ‘ True ‘ True True

F1G. 5.10 — Satisfaction Table : 2nd Example

PORT is inserted into the knowledge base KB by the Tell operation :

Tell : £Tell (E) = PORT
X
KB —={T,1,CITY-AIRPORT}
-
KB' —{T,L,CITY-AIRPORT, PORT}

We apply the concept description E as the satisfaction to the previous example
LQuery(CITY-AIRPORT) and Lsasis faction(CITY-AIRPORT) = {PORT-AIR,PORT}, and then
recalculate the consulting values as follows.

Now the result ORoS = True and ANDoS = True, accords with the third line of
the table 5.2, the situation of this answer is case 3 (Complementary Satisfaction), i.e.
CITY-AIRPORTMPORT, which is a composite answer that fully satisfies the query () = PORT-AIR.

b) Complement Calculation Algorithm : We review the previous example sho-
wing the important role played by the satisfaction table. In the first satisfaction table
(figure 5.9), only one entity description D is in the satisfaction table, and the entity D
does not fully satisfy the query description C. In the second example (figure 5.10), an
other entity description is added in the satisfaction table that renders ORoS = True and
ANDoS = True, i.e., the composition of (D and F) fully satisfy the query description C'.

From an implementation perspective, in a satisfaction table, a description under its
normal form is represented as an array of boolean variables where :

1. The size of the array is the number of atomic concept descriptions in the query
concept description. In the figure 5.10, the query C is defined thanks to three atomic
concept descriptions : therefore the size of the array is 3.

2. The values of the elements in the array reflect which atomic concepts (under the
same subscript as the respective elements) are satisfied or not, according to the result
provided by the subsumption testing algorithm. For example, the table entry of the
entity D is {True, True, False}. The values of the first and the second elements being
True, that means that the first and the second atomic concepts in C are satisfied
by the concept D, while the third atomic concept in C' is not satisfied.

106

5.2. Capability Discovery

In this example, there are only two entity descriptions (D and F), and the two enti-
ties “together luckily” fully satisfy the query. In fact, we may get lot of candidate entities
descriptions from one or several knowledge bases. The choice among the candidates is a
matter of search strategies that may change the algorithm behavior (as already discussed
in section 3.2.2 on page 66).

Indeed, all the candidate entity descriptions are sorted according to a given criteria
(also called priority hereafter) in order to help in deciding which entity description is to be
considered at first in the satisfaction table. The priority criteria may be a simple one, like
considering the concept with the larger number of satisfied atomic concepts satisfaction.
But it may be a complex rule like (i) “Firstly, homogeneous concepts first and secondly,
the largest satisfied concepts” or (i7) “The atomic concept C; and C5 must be satisfied by
a single entity”, etc.

The sort order is the first step to get a composite answer, then we apply the entities
candidates in the satisfaction table one by one. The ORoD and ANDoS will be recalcula-
ted, when a new entity candidate description is inserted in the satisfaction table.

— Firstly, if there are some variables in ORoD whose values is changed from False to

True, then this entity is valuable for satisfying the given query description.

— Secondly, if ANDoS is True, then we find a full satisfaction for the query. We try all

the possible combinations of entities, then we calculate the ORoD, ANDoS.

The abstract algorithm can be implemented in many different ways : one of its imple-
mentation is sketched in figure 5.11.

There are two objects, Entities[1..n] and ST, in the flowchart of the algorithm :

1. Entities[1..n] is a set objects of the candidate entities described in the array
of boolean variables. We do not detail the sort order process of Entities[1..n],
because, as said before, the entity selection strategy can be under many forms.
Actually, we implemented “the highest number of satisfied concepts” ordering.

2. The object ST holds a Satisfaction Table and several operations :
ST.clear creates and initializes the Satisfaction Table;
ST.add () adds a new line at the end of the Satisfaction Table;
ST.DeleteLastLine delete the last line of the Satisfaction Table.

All the three operations recalculate the ORoD, ORoS and ANDoS, and if any value in ORoD
is changed, then the variable ORoD_change will be set at True, otherwise it is set at False.

With “the highest number of satisfied concepts” ordering strategy, the algorithm in
figure 5.11 implements the satisfaction first strategy which was mentioned in section 3.2.2
(page 66). Changing the strategy requires changing the implementation of a decision box,
as annotated in figure 5.11. For example, simply adding a limit (and ST.index<2) into
the decision box will implement the at most 2 answers strategy, limiting the number of
lines in the Satisfaction Table to at most 2.

This algorithm is working on these simple strategies, and finally it finds the entities
which can satisfy the given query.

107

5.2. Capability Discovery

Any decision-making
strategy can be implemented
in this decision box,

Entities[1..n] is the object

array of the candidate
entities description,

Entities]1..n] sort

by priority

=1, j=1

5T is the object Satisfaction
Table.

ST.add(Entitiesi])

T.ORoD _change==Tmue

5T.DeletelastLine

=+

i=n

yEs
1

Fir1, =

yES

F1G. 5.11 — The Flowchart of the Algorithm on Satisfaction Table

108

5.2. Capability Discovery

Concluding Remarks

We introduced a complete method to determine the satisfaction cases that were listed
in section 3.2.2. As we said in section 3.2.2, if the composite answer is under the cases four
or five (“Partial satisfaction” or “Failure” within a single mediator), then we will send the
complement description to other knowledge bases in the mediator federation. This topic
is considered in the coming section.

5.2.3 Capability Discovery in Multiple Mediators

In the introductory chapter (section 1.2.2, page 32), we distinguished three types of
discovery :

1. Homogeneous local satisfaction, where a single mediator satisfies a request,

2. Homogeneous distributed satisfaction, where multiple mediators, having the same
Knowledge description language, complement each other to satisfy a request,

3. Heterogeneous distributed satisfaction, where multiple mediators having different
Knowledge description languages have to cooperate in order to satisfy a query.

The previous section dealt with the first type of discovery and this section covers the two
latter cases, a distinguishing feature among them being the fact that language translation
mechanisms are required when the Knowledge representation languages are heterogeneous.
Nevertheless, an additional mechanism may be needed in both the situations when the
multiple mediators do not use a common vocabulary in their respective knowledge bases :
in this situation, matching between terms and term translation are required. Indeed,
in this kind of heterogeneous context, mapping of terms and concepts is often required
between the cooperating mediators. The translation at the syntaz level is applied to
atomic capability descriptions which are accepted in different knowledge representation
languages (see figure 2.3 on page 48) and when the vocabularies which are used by the
mediators are different, a lexical translation is also performed.
These considerations are exposed in this section in the following way :

1. explain the notion and present the accepted forms of atomic capability descriptions ;
2. introduce the lexical translation of terms we have adopted ;
3. present the notion of composite answer in a heterogeneous environment ;

4. introduce the complement calculation process in this type of environment.

Atomic capability Description

As explained before, a query description is divided into a sequence of atomic concept
descriptions. There are two kinds of atomic concepts in the normal form, which are the
primitive concept A and the restricted concept (m n R).A. The primitive concepts usually
define the basic terms in the knowledge base, and are indescribable. i.e., it is an entity
which and only which own one characteristic/capability. So it exists one and only one
capability description for each primitive concept in the ALN ., T,Box (If A € T, then it
exists R4 € 7,.). The primitive concept can be written as the restricted structure,

109

5.2. Capability Discovery

Universalization rule 1 : A = VR 4. A.

For the second kind of atomic concept, the universal quantification structures are transla-
ted into a number-restricted structure thanks to the simplification rule S4 (see figure 5.4
on page 97). i.e., when m = co and n = 0, the number-restricted structure is equivalent
to the universal quantification structure,

Universalization rule 2 : (> oo 0 R).A =VR.A.

The infinity (0co) is the maximal value of m, and the zero (0) is the minimal value of
n, so the universal quantification structure subsumes the number restricted structure in
ALN,y : (> mn R).ACVR.A.

On the other hand, a composite answer accepts the partly satisfied answer as the
satisfaction of the case 4 (Partial satisfaction). The most specific concepts fully satisfy
the given query concept, and the least subsumer partly satisfies the query concept. The
least subsumer will be the candidate in the satisfaction table, when a most specific concept
does not exist. So, the universal quantification structure partly/fully satisfies the number-
restricted structure.

From an other side, number-restricted structures are not accepted in many knowledge
representation languages. We introduce a solution on capability discovery in the hete-
rogeneous environment, so the description model must be supported in all knowledge
representation language : we translate the normal form into a conjunction structure of
universally quantified concept, where only one atomic concept structure exists : VR.A.

The structure of atomic concepts are one by one satisfied in the satisfaction table in
the previous section. The unsatisfied structures in the complement may be satisfied by
other systems.

The atomic concept structure (VR.A) is written in three symbols : universal quan-
tification V, Role identity R, and Concept identity A, that means that all assertions of
an entity A own the capability R. If the atomic concept structure represents a query
Louery(Q) = VR.A, it says that we are looking for a entity A which owns the capability
R, where A is the identity of one entity and the capability R is the one which is looked
for.

Term translation and term matching

In a capability discovery query Loyery(Q) = VR.A, the concept description A repre-
sents any entity which holds the capability R. So the concept description is translated
into a universal concept, like the top concept T in DLs, and the “thing” concept in F-Logic
and CGs. The vocabulary of R must be translated between the heterogeneous systems.
The lexical translation is independent of the syntax translation. The terms of R are some
identifiers of the capability in the query for capability discovery.

In a distributed environments, term mapping may be facilitated by the use of a com-
mon ontology. Approaches like [4, 74| use a common ontology and evaluate the semantic
relations amount concepts. The most basic method simply computes the “distance” bet-
ween two concepts in the common ontology. In our work, we introduce the capability
description structure (VR.A) for the query between the heterogeneous systems. The vo-
cabularies in the capability description must be included in the common ontology, which

110

5.2. Capability Discovery

is the 7, in this work. As discussed in our motivation of this work, we consider the ca-
pability description vocabulary as being a set whicj is set than the concept description
vocabulary (see chapter 1.1. So it might be possible to manually build a common capa-
bility description ontology on a specific domain, as we did concerning the example about
travels.

The manual common ontology is basic and it supports an “auto-learning” approach
when an unknown term is introduced as a capability description. This auto-learning ap-
proach is implemented thanks to hierarchical dictionaries, like WordNet [65], and Euro-
WordNet [84]. However, classicaly, we need to tackle situations where exact mappings
between terms do not exist. We dealt with such situations thanks to similarity distance
measurement among terms.

There are multiple algorithms that measure the semantic similarity in a concept hie-
rarchy [110, 82]. In this work, we opted for an algorithm based on the Least Common
Subsumer (LCS) [110] to calculate the similarity between two terms. The similarity mea-
surement function we used is defined as :

Sim(X,Y) = % 0< Sim(X,Y) <1,

X and Y being two terms in the hierarchical dictionary, | X | is the shortest distance
from the root node to the node of the term X in the taxonomy where the term of X lies.
LCS(X,Y) denotes the least common subsumer of X and Y and the more the value of
Sim(X,Y) is high (i.e. close to 1), the more the two terms X and Y are similar.

Therefore, a capability discovery query may include a capability description X which is
not defined in the 7, box (which plays the role of the common ontology), but the term X
exists in the hierarchical dictionary. Of course, all the terms in 7, are assumed to already
exist in the hierarchical dictionary when we build it. We calculate the similarity value of
the term X with each term in 7, and we retain the term(s) in 7, which is/are the most
similar to X, i.e. the terms with the highest similarity degree.

Actually, this method of similarity measurement is achieved thanks to a hierarchi-
cal dictionary like WordNet|65] which provides the largest vocabulary, EuroWordNet|84]
which supports multiple European languages or SNOMED-CT [82] which provides a spe-
cific vocabulary on medical domain (we can also find many different hierarchical dictio-
naries on many different specific domains). Theretofore, we consider that this approach
is applicable to many domains thanks to the choice of the appropriate dictionary.

Capability Discovery and Heterogeneous Representations

In the capability discovery view, the approach for the determination of a compo-
site answer always tries to maximally satisfy the capability description Lgyery(Q) or
L compiement(®Q). We introduced two kinds of operations : conceptualization and individua-
lization, which translates the capability discovery into a concept discovery or an individual
discovery, respectively (see figure 3.2, on page 62).

We recall that an ABox A4 contains two kinds of assertions of the form C(a) and role
assertions of the form R(a,b), i.e. individualization exists in two conditions : concept-
individual and role-individual. In a simplified view, the individual discovery can be seen

111

5.2. Capability Discovery

alike searching for an instance in a relational database with only unary or binary relations
(We gave examples in section 4.2).

The conceptualization can transform the capability discovery into a concept discovery,
as admitted by almost all knowledge representation languages. For example, the concep-
tualization easily writes a query of role R in the three logic languages we considered :

Qpr = VRX;
QF—Logic = FORALL X <« R(X) ;
Qces = [Object :*X]| [Object :Y] (R 7X 7Y);

And then this query description is easily transformable into any knowledge description
(see the analysis table in figure 2.3, page 48). Therefore, we can process this query alike
the normal concept discovery.

This principle helps us to apply the composite answer approach in a heterogeneous
knowledge representation environment. As said before, in this work, we considered, for
illustration purposes, three kinds of knowledge representation technologies : Description
Logics, Frame Logics, and Conceptual Graph; And as analyzed in the table 2.3 (on
page 48), the capability description Liompiement(®?) can be accepted in the three kinds
of KR languages.

In this context, the satisfaction table for the given heterogeneous KR is illustrated by
the figure 5.12.

Description <y 5 .
Logics Iy True Falze False
0, False True Trae
Iy False False Falze
Iy False True Falze

Frame
Logics pi e True Falze False
De False False False
Conceptual s True False True
Graphs g False True False

FiG. 5.12 — Composite Answer in Heterogeneous KR

In that figure,

- (1,...,C, is the normal form of a query @),

— Dy, ..., Dg are the Lggisfaction(Q) coming from different knowledge representation

systems.

In addition, as an example, we assume that D, Dy, D3, D4 are in Description Logics, Ds
and Dg are in Frame Logics and, D; and Dg are in Conceptual Graphs.

The algorithms and the approach we applied in a homogeneous environment can be
easily applied in a heterogeneous one : a composite answer model was illustrated in the
example that used the concepts PORT-AIR and CITY-AIRPORT, in section 5.2.1, where, the

112

5.2. Capability Discovery

CITY-AIRPORT concept partly satisfies the PORT-AIR concept. And then we gave a homo-
geneous composite answer adding a new concept description PORT into the TBox 7. Then
the composite answer (PORTM CITY-AIRPORT) fully satisfied the concept PORT-AIR.
Let us elaborate more on the complement calculation when faced to heterogeneous repre-
sentations.

Complement Calculation within Heterogeneous Representations

As shown by the example, some queries may not be fully satisfied within a single
knowledge base. A current solution is to ceaselessly increase the knowledge base to increase
the quality of a query/answer service, as we did in the previous section. But the huge
knowledge base needs more and more memory space, CPU time, etc., that makes the
system spending more time and resource for processing one query/answer service task.
Finally, it is not reasonable nor feasible to build a universal knowledge base which “knows
everything”. In fact, the knowledge which is missing in a local knowledge base may exist
in an other one, and possibly in an other knowledge representation language.

The capability discovery approach we are proposing can use distributed and hete-
rogeneous knowledge (Considerations about distributed knowledge system research were
introduced in section 2.3). In our composite answer approach, we send the complement as
a query Qro, Q7o = Comp(Q,T1), to an other mediator server. The results returned by
the other mediator are put in the satisfaction table for possibly determining a composite
answer as in the previous section. We focus on the problem of heterogeneous knowledge
representations in this section.

In the continuation of the example on PORT-AIR and CITY-AIRPORT in section 5.2.1,
the concept CITY-AIRPORT partly satisfies the PORT-AIR concept, and the complement in
this DL knowledge base TBox is

Comp(PORT-AIR, Tpr)=((> oo 1 has-ferry).CITY).

We calculate the consulting values on L¢yery(CITY-AIRPORT) and we get :
Lsatisfaction(CITY-AIRPORT) = {PORT-AIR}. Therefore, the expresion of the results in the
satisfaction table is as follows.

4 Cy Cs
D True | True | False |[ORoS | ANDoS
‘ ORoD ‘ True ‘ True ‘ False ‘ True False

ORoS = True and ANDoS — False, accords with the fourth line of the table 5.2, so the
case of satisfaction is 4 (Partial satisfaction), i.e., CITY-AIRPORT partly satisfies PORT-AIR.

Now suppose that an other mediator server exists in Frame Logic. The F-Logic me-
diator only accepts query descriptions in F-Logic. Applying the universalization rule
2, we rewrite Q, Q = Vhas-ferry.X, in F-Logic as Ly_14ic(Q) = (FORALL X <
has-ferry(X))

Let the concept E7;_, .. identify the F-Logic mediator. If Ez;,_, .. returns a result
(other than a failure), then we insert True in the satisfaction table, resulting therefore
into the following table :

113

5.2. Capability Discovery

C, Cy Cs
Dy, True | True | False

ETi Lo | False | False | True |[ORoS | ANDoS

‘ ORoD ‘ True ‘ True ‘ True ‘ True True

Now, ORoS — True and ANDoS — True conforms to the third decision line of the table
5.2, the situation of this answer is case 3 (complementary satisfaction), i.e., the composite
answer Dy, M Eg._, . fully satisfies the requirement of the query Q=PORT-AIR. In this
example, the query @) is represented in DL, so DL language is the local knowledge repre-
sentation language. In the composite answer, the concept description Dy, is in ALN .,
which is the same language as the language of the initial query () ; the concept description
ETi Loy 18 In F-Logic which is a language different from the language of the query Q.
So the composite answer is composed in two heterogeneous knowledge representation lan-
guages. This approach can be extended to other environments, as shown for environments
including DLs and CGs, for example.

Conclusion

In this section, we introduced the composite answer approach in the heterogeneous
environments. All the approaches offer the composition of concepts for a given query. Fi-
nally, the result must be individualized in order to actually provide a service. We introduce
the individualization of the capability discovery in the next section.

5.2.4 Conceptualization and Individualization

From an application point view, capability management and discovery approaches
must serve some valuable tasks. Alike a Relational Data Base Management System (RDBMS),
where we create tables to save the data, and we create views to find data for a given condi-
tion, capability discovery must finally return one or several entities/individuals which sa-
tisfy the requirements of a given query. This section details the conceptualization approach
and the individualization approach in a capability discovery system.

A capability discovery is performed thanks to an atomic concept discovery. We sketched
the relationship between capability discovery and concept discovery in figure 3.2 (page 62),
where the concept discovery is called model discovery. The conceptual model of capability
discovery can be implemented in ALN,, based on the methods which were introduced
in section 5.1. We represent hereafter the implementation of the capability discovery
conceptual model in ALN, -system, as shown in figure 5.13.

The capability discovery approach includes two kinds of implementations : conceptua-
lization and individualization. The individualization process is similar to the SQL-select
query in a RDBMS : we know the name of the concept then we can find which individuals
are under the concept, quite alike knowing the name a relational table and finding all
data in that table.

A similar way, we can find which individuals hold a capability when we know the name
of a role in the ALN ,-system (This individualization process can also be implemented

114

5.2. Capability Discovery

Descriptions
(Thox)

Capability
Descriptions
(T:Box)

individualization

Individual
Descriptions
(Abox)

F1G. 5.13 — Capability discovery approach in ALN, -system

in any relational data system : we create data tables for each role and each concept, then
we save the individual’s information in the corresponding tables when an individual is
under a given concepts, or holds a given capability. Further, the individualization can
be implemented by the API of current application system, which support a process like
SQL-select statement. We give a term description, then the system can give all the in-
dividuals’ information under that term. Anyway, the individualization finally carries out
the capability discovery, which finds the individuals who hold a capability).

In fact, the individualization is only one step among others in the whole capability
discovery process and it may be combined with conceptualization the following way while
attempting to satisfy a query on capabailities :

1.

Try to satisfy the query Q thanks to its individualization in the assertion box (em-
phABox) ;

. When no assertion satisfies Q then consider in the Box (the terminology of roles)

the Most Specific and the Least Subsumer roles of Q (MSR(Q) and LSR(Q) respec-
tively) : these may potentially contribute to the satisfaction of Q;

Check again the assertion box looking for assertions which satisfy MSR(Q) and
LSR(Q);

. If Q is still not satisfied, then try to make it more general : go to the concept

descriptions in the TBoz (terminology of concepts) and consider the concepts in
the description of which Q, LSR(Q) and MSR(Q) appear : this is what we call the
conceptualization step;

Individualization is then applied to every role which appear in the concept definitions

115

5.2. Capability Discovery

that were identified in the preceding conceptualization step. Further, when these
roles are asserted as being transitive and/or symmetric, use these properties in the
individualization process, if needed.

Thanks to this process, we can provide exact answers to a query on capabilities together
with larger answers.

In this section, we will first illustrate unformally this process based on an example and
in section 5.3 we will provide a more formal presentation of the process as we implemented
it.

Therefore, in the following, based on the airline example, we successively examine :

1. the individualization within a single mediator, i.e. how to find out individuals who

meet requested capabilities expressed thanks to roles;

2. the individualization within multiple mediators,

3. and the capability discovery, i.e. how to combine the exploitation of the ABox, the
TrBox and the TBox in the process of query satisfaction.

Individualization within a Single Mediator

Let us recall the example on travel to detail the capability discovery process. An airline
company mediator builds its knowledge system following exactly the model in figure 5.13.
It owns the following ABox A,;, :

flight (Paris, Beijing), flight(Paris, NewYork),
flight (Nancy, Lyon), flight(Paris, Lyon),
ATRLINE(CompanyA), AIRLINE(CompanyB), AIRLINE(CompanyC) .

In addition, we introduce the capability description space 7 14, in the travel knowledge
base, i.e. all the role definitions and the role restriction definitions of Tr,;, (figure 5.14)
together with the subsumption relationship hierarchy of the roles (left part of that figure).

There are 5 primitive roles in the Tr.,.. They are introduced (E) by other primitive

roles. They fix the subsumption relationship by the definitions. The role definition Rg
railway-flight is a defined role under the model of a role functional restriction fs. fg
is actually a composite role restriction (see definition 4.1.2 on page 74).
Step 1. (Role Individualization) We suppose that a client plans a travel from Nancy to
Beijing. This travel requirement is described as the query : (); = flight (Nancy, Beijing)
in the mediator system, where flight is a capability description. So we are looking for
an assertion of role flight (Nancy, Beijing). We firstly check the assertion of the role
in the Aair-

116

5.2. Capability Discovery

abstraction

“ e = ~
¢ LSRiflight) %
/\’—

hwayign 2 ”. Ry abstraction L T,u
! AR R, way L abstraction
- R flight L way
"”9'“6 iy . . Ry railway C way
5 ferry C way
/ “ MSR(figh) @ ‘-\ Ry railway—flight = railwayfﬁflight

~

fo = {(a,c) € AT x AT |3b Vflight Vrailway.(a,b) € railway® A (b,c) € flight?}

F1G. 5.14 — The T ry;, and the role subsumption hierarchy

Ask-1: Louery1(@1) = flight(Nancy,Beijing)
X
Aair
%
ﬁAnswerl(Ql) - @

There are only 4 assertions of the role flight in the Ay, where none of them exactly
satisfies flight (Nancy, Beijing). (From a relational data base system point of view,
this would correspond to an empty answer to the query.) Instead of stoping the search
process and returning an empty answer, the capability discovery approach we propose
attempts to find a “non direct” result : the term flight is a capability description, so this
term is searched for in the 77,4, as a query for the capability discovery : ()2 = flight.
Step 2. (Capability Discovery) In the 77y, hierarchy, we can straightforward find
the Least Subsumer Roles (LSR is defined by Definition 5.1.3 on page 93) and the Most
Specific Role (cf. Definition 5.1.4 on page 94) of the role flight (capability discovery uses
the classification method to determine the LSR(f1light) and M SR(f1ight), as explained
in section 5.1.1).

Following the classification approach, the MSR of the role f1ight is the role L, ., i.e.
there is no More Specific Role description of the role flight in the 77r,;,. The LSRs of
the role f1ight are the role Ry way and the role g railway-flight and they constitute
some satisfactions for (), = flight.

117

5.2. Capability Discovery

Ask-2 1 Louery1(Q2) = flight
X
Trair
—
Lanswer1(Q2) = {flight,way,railway-flight}

So the capability descriptions way and railway-flight are the result of Q)2 in the Try;,.
Step 3. (Individualization of MSR and LSR) Let us move back the original query
(1 = flight (Nancy, Beijing) which is a individual discovery query. way and railway-flight,
which are two capability descriptions, must be individualized to satisfy the original query.
i.e., the capability descriptions must own some assertions in Ag;,., which may finally satisfy
the individual discovery (). For example, if there are the assertions, railway-flight (Nancy,
Beijing) or way(Nancy, Beijing), in the A,;., then the two assertions can be the satis-
faction for the original query (); = flight (Nancy, Beijing). Since these two assertions
do not appear in A,;,., we generate two individual dsicovery queries, oen per capability :
(Q2—1 = railway-flight (Nancy, Beijing) and (J;_, = way(Nancy, Beijing). These
queries are then addressed to Ay, (Ask-2-1 and Ask-2-2) :

Ask-2-1: Louery1(Q2-1) = way(Nancy, Beijing)
X
Aair
%
ﬁAnswerl(Q271) — @

Ask-2-2 1 Loyery1(Q2—2) = railway-flight(Nancy, Beijing)
X
Aair
N
EAnswerl(Q2—2) — {ESatisfactionflight (Paris s Beij ing) R
Lcompiementrailway (Nancy, Paris)}

The Ask-2-2 action returns a partial satisfaction flight (Paris, Beijing). The ans-
wer L answer1 (Q2—2) is under the role composition description railway-flight. The satis-
faction is flight (Paris, Beijing), and thanks to the functional restriction definition fg
in 7 rg, (figure 5.14), we can calculate the complement which is railway (Nancy, Paris).
Anyway, this again constitutes a negative answer to (); = flight (Nancy, Beijing).

Now, we know that flight can fully satisfy ()2, and that way and railway-flight can
partly satisfy (). However there is no assertion of the three roles in A,;- which satisfies
the requirement of ();. Nevertheless, we identified which kinds of capability can satisfy
the requirement of (); and, now, we have to look for entities in A,; which hold these
kinds of capability. We assume that the following concept descriptions are part of the 7T,

118

5.2. Capability Discovery

content :

C, ORGANIZATION L T
Cy VEHICLE L T
Cs CITY C T

@ Cy AIRLINE = (and CITY

: (all flight CITY)
/0 (at-least 1 flight™))
ORGANIZATICN | VRHICLE .

Cs AIRLINE-CO = (and ORGANIZATION
jeeszne_Sr? |\ N (at-least 1 AIRLINE)
:I. s RP‘\I‘#F{OM, E"W \'\ TRAIN (all fllght+ AIRLINE)
@ @ . (all flight~ AIRLINE))
i Cs TRAIN L[VEHICLE
| AIRLINE-CO 1
\ @] 7 C RAILROAD = (and CITY

(all railway™ CITY)

-

@ (at-least 1 railway))
F1G. 5.15 — The T,;,

Step 4. (Conceptualization of roles) : Since 7;, only accepts queries about concepts,
we must conceptualize first, thanks to the universalization rule 2 (section 5.2.3), the
capability descriptions which have been identified in the preceding step. For example,
the capability description flight is rewritten as : V flight A, where A is a universal
concept. The universal concept corresponds to T in 7T, so the concept discovery query
for the capability flight is written as : (Q3_; = all flight T. A similar way, the other
two capability descriptions, way and railway, are written as : (J3_; = all way T and
(31 = all railway-flight T.

Thanks to the classification mechanism, we can find all the concept descriptions in the
hierarchy of concepts (see the left part of figure 5.15) which hold the capabilities (They are
inside the dotted-line circle in figure 5.15). This gives rise to the following Ask actions :

119

5.2. Capability Discovery

Ask-3-1: Louery1(@3-1) = all flight T
X
7:n'1"
_>

L answer1 (Q3-1) {AIRLINE-CO}

Ask-3-2 1 Louery1(@3—2) = all way T
X
7:n'1"
_>

L answer1 (Qs—2) {AIRLINE-CO, RAILROAD}

Ask-3-3 1 Louery1(@3-3) = all railway T
X
7:n'1"
ﬁ

ﬁAnswerl(QZ’)fZ’)) {RAILROAD}

In the Ask actions, the AIRLINE-CO is the Most Specific Concept (MSC) of Qs 1,

and RAILROAD is the Least Subsumer Concept (LSC) of Q)3_3. There is no concept which
directly holds way and which subsumes the two roles f1ight and railway. The MSCs of
way are the concepts AIRLINE-CO and RAILROAD. Therefore, we find two satisfactions to
the original query (), at the level of concepts after the Ask actions.
Step 5. (Individualization of concepts) : A similar individualization step must then
be performed : the concept descriptions AIRLINE-CO and RAILROAD must be individualized
to satisfy the ();. Consider the two line descriptions (all flight™ AIRLINE) and (all
flight~ AIRLINE) in the definition of the concept AIRLINE-CO (figure 5.15) :

— The first line description uses a capability description £1ight™ which is a transitive
closure of the capability flight. By the description, the individualization process
can create some new assertion under the transitive rule. For example, if it exists
two assertions flight (Nancy, Lyon) and flight(Lyon, Paris) in the A, then
they are equal to an assertion flight (Nancy, Paris).

— The second line description uses a capability description flight™ which is a sym-
metric closure of the capability flight. By the description, the individualization
process can create some new assertions under the symmetric rule. For example, if it
exists an assertions flight(Paris, Lyon) in the A, then it exists an assertion
flight(Lyon, Paris) too.

The two concepts, AIRLINE-CO and RAILROAD, are individualized with the condition
flight (Nancy, Beijing) in the A,;, as follows :

120

5.2. Capability Discovery

Ask-3-4 ' Louery1(@Q3-4) = AIRLINE-CO and flight (Nancy, Beijing)
X
Aair
_>
Lanswer1(@s—4) = {flight(Paris, Beijing), flight(Nancy, Lyon),

flight (Paris, Lyon),
AIRLINE(CompanyA), AIRLINE(CompanyB),
ATRLINE(CompanyC) }

Ask-3-5: Louery1(@3-5) = RAILROAD and flight(Nancy, Beijing)
X
Aair
%
EAnswerl(Q?»—E)) — (Z)

Applying the transitive and symmetric rules, the three assertions of £1ight, which are
flight(Paris, Beijing), flight(Nancy, Lyon), and flight(Paris, Lyon), implies
flight (Nancy, Beijing). An individual of AIRLINE-CO may satisfy the requirement of
()1. Then the individuals £ 4pswer1(@s-4) who satisfy Q3 4 are :

Lanswer1(@3—4) = {and AIRLINE(CompanyA)
AIRLINE(CompanyB)
AIRLINE(CompanyC)
flight (Nancy, Lyon)
flight (Paris, Lyon)
flight (Paris, Beijing)}

L answer1(Qs—4) fully satisfies the requirement of the original query @;. The capability
requirement flight (Nancy, Beijing) issatisfied thanks to the transitive and symmetric
closure of the capability £1ight (figure 5.16 sketches all the steps which we have mentioned
for this travel example).

We believe that the £ nswer1(Qs-4) is the best answer for the original query in the
airline travel mediator system. However, in a “satisfaction first” strategy, this answer can
be acceptable since L answer1(@3—4) is a full satisfaction. But if the mediator system is
constrained by an other strategy, which for example limits the number of individuals
to “at most 27, then L answer1(Q3—4) is not retained as a full satisfaction by the system.
In a federation of mediators, the system will cooperate with other mediators to find a
satisfaction which is conform to any imposed strategy.

121

5.2. Capability Discovery

Airline Mediator 1

Ask-3-1, "ml\ 3-2 :
Ask-] “alr

Airline Company A
: (Exporter)

o

Ask-3-4, Ask-3-5

-
‘nL 2.1, Ask-2-2 Cramd flight(Nancy, Lyon))
L~
}@ / |
-
Lyenn{ flight{ Paris, Lyon)) Airline Company B
\ - {Exporter)

|

M Crend Might{ Paris, Beijing))
™

Ask-1: \ x‘x_,_x
Erperytl flight{ Nancy, Beijing)) ‘\ = Airline Company C
'.r % ’ (Exporter)
\ \
i Lanswen{Qaa)={AIRLINE{Company),
h\‘ AIRLINE{CompanyB),

B AIRLINE{Company('),
= I-Ii‘;_’,h‘.lNill'lL‘_\', Lyan),
|'|i~:=,|1‘.[|';1l is, Lyon),

Client flight{ Paris, Heijing)!
(Imparter)

F1G. 5.16 — The steps of capability discovery in the airline mediator

Individualization within Multiple Mediators

We have to send the missing complement to an other mediator. The Ask-2-2 action
has determined a complement railway(Nancy, Paris) and the corresponding answer is
expressed as :

cAnswerl(QQ—Q) - {£Satisfaction1 (fllght (Paris, Be ij 1ng)),
Lcompiement(railway (Nancy, Paris))}

The “airline mediator 1”7 (figure 5.16) uses a family of languages £;. This family of
languages consists of the query language Lgyery1, the reply language Lapswer1, and the
update language L. However, we limit ourselves to the three description languages
(Lsatis factions Lcompiement, Lpifference) Which are actually used in capability description.
The airline travel mediator owns a knowledge base in ALN,; which consists of the TBox
Tair, the TrBox T 7y, and the ABox Ag;,.

Now, suppose we have a railway travel mediator which uses a different set of languages
Lo to express queries and answers (For example, the railway travel mediator builds and
manages its knowledge base in F-logic). We call it “railway mediator 2” in figure 5.17.

122

5.2. Capability Discovery

Airline Mediator 1 Ay | Railway Mediator 2
_Eenmplemen ratlway({Nancy, Panis))
o
——(Orprositive—" Railway knowledge base
TR |- '
i i
! e f
Ask-1 "n,
nery1(Flighti Paris, Beijing)) ||
\ Lanswenl Q)= {railway{Nancy, Paris),

Client
(Importer)

flight{ Paris, Beijing)}

—

F1G. 5.17 — The steps of capability discovery in two mediators

The railway mediator 2 firstly checks the vocabularies in the capability discovery des-
cription Leompiement(railway (Nancy, Paris)). If the term which describes the capability
is not in the knowledge base of the mediator 2, or the capability is described in a foreign
language, then it has to be translated using the method which was introduced in the
previous section. For example, if we suppose that the railway mediator 2 is in French,

then the capability description will be translated into train(Nancy, Paris).

In addition, since the railway mediator 2 is in F-logic, the query of capability discovery

is rewritten in F-logic :

? — X :train A X[départ—— D[nom — “Nancy"]; arrivee—— Alnom — “Paris"|]

If the query is satisfied in the knowledge base, then the mediator 2 sends a positive
answer to mediator 1. Therefore, the mediator 1 can deliver a new full satisfaction to the

client. This answer is expressed in the original £ a,swer1(Q4) as :

£Answer1 (QLL)

={ railway fs flight
(railway (Nancy, Paris)
flight(Paris, Beijing))}

The steps of this heterogeneous capability discovery are shown in figure 5.17.

5.3. The Individualization Process and its Implementation

Individualization and Conceptualization : Concluding Remarks

This section shows the processes of individualization and conceptualization thanks to
a driving example. Thanks to these processes, we can find the satisfaction for a given
query at the three components of a knowledge base : the terminology of concepts (TBox),
the terminology of roles (TrBox) and the assertions (ABox). Further, it may find answers
which are described in heterogeneous knowledge bases, thanks to a simple structure of
capability description.

Intuitively, individualization may deliver a complete answer. Thanks to the previous
approaches, we locate some concept descriptions and roles role descriptions in the know-
ledge base, which possibly satisfy the query requirements. All the assertions of roles and
concepts are candidates for a composite answer. This process is more formally expressed
in the next section.

5.3 The Individualization Process and its Implementa-
tion

The satisfaction description consists of two kinds of atomic concept structures : primi-
tive concept and capability description structure. The UML interaction diagram in figure
5.18 sketches the individualization process thanks to two reference frames :
IndividualizePrimitiveConcept and IndividualizeCapabilityDescription.

TBox

=
o
=

TrBox

Individualize: (satisfaction)

I
® -
o

loop [each atomic_concept in satisfaction]

[

[this.atomic_concept is a primitive concept |

this.ﬂtqnm_cmFep1 e ol IndwidualizePrimitiveConcept
capability description (7R A).
-
"0 [alse] :
ref

IndividualizeCapabilityDescription

F1G. 5.18 — The interaction diagram of individualization

The individualization process always applies to the satisfaction description under its
normal form. It exists two kinds of atomic structures in the ALN ., normal form concept

124

5.3. The Individualization Process and its Implementation

description, which are the primitive concept A and the number restriction > m n R A. In
the heterogeneous discovery approach, the number restriction is translated into the capa-
bility description structure “VR.A”. In the following paragraphs, we successively detail :

1. the individualization process of primitive concept descriptions,
2. the individualization process of capability description structure,

3. the transitive role discovery process.

5.3.1 Primitive concept individualization

We sketch first the individualization process of primitive concept descriptions as shown
in figure 5.19.

sd IndividualizePrimitiveConcept)

TBox ABow

]
|
: IndividualizePrimitiveConcept Concept_ A, Individual X))
|
|

opt. [da not find the asserion Concept_Aflndividual _X} |

|
D Concept_A=MSC(Concept_A)

|
mff IndividualizePrimitiveConcapt

F1G. 5.19 — The sub-diagram of IndividualizePrimitiveConcept

1. The process IndividualizePrimitiveConcept(Concept_A, Individual_X) has
two input parameters : Concept_A and Individual_X. Concept_A is the identifi-
cation of the primitive concept which we are looking for. Individual_X identifies
an individual which we want it is under the Concept_A. Thanks to the two para-
meters, we can locate the assertion Concept_A(Individual_X) in A. For example,
if Concept_A is CITY-TRAIN and Individual_X is Nancy, then we search for the
assertion description CITY-TRAIN(Nancy).

2. If the assertion Concept_A(Individual_X) does not exist in the A, then we have
to find the Most Specific Concept (MSC) of the Concept_A, and recall the

125

5.3. The Individualization Process and its Implementation

IndividualizePrimitiveConcept process with MSC(Concept_A)
i.e. IndividualizePrimitiveConcept (MSC(Concept_A), Individual_X).

For example, the original process IndividualizePrimitiveConcept (CITY, Nancy)
does not exist in the A. The MSC(CITY) being CITY-TRAIN, the individualization
process will be IndividualizePrimitiveConcept (CITY-TRAIN, Nancy).

3. If MSC(Concept_A) is L, then we stop the individualization process.

sd IndividualizeCapabilityDescription)

B = =

ref J IndividualizePrimitiveConcapt

I

i

I

I

! 1
| i
I

o

>

opf J [Role_R is transitive |
I craal
[== Arrivaliotes

: AddMote(Individual _X)

— »
ref
|

|

|

1

? 1
TransitiveRolaDiscoveary

|

I

opt [do not find the assertion Role_R({Individual X, Individual ¥}]
| Role_R:=MSR{Role_R)

|
ref ; - o
IndividualizeCapabiliiyDescription

L
|
1
I
|

|
|
|
Jl
|
]
I
F1G. 5.20 — The sub-diagram of IndividualizeCapabilityDescription

5.3.2 Capability description Individualization

Secondly, we sketch the individualization process of capability description structure
(VR.A) as described in figure 5.20.

— The capability description relates two term descriptions : role description R and
concept description A. The concept description A is a primitive concept, so we
ahead recall the Individualize PrimitiveConcept process for A.

— The process IndividualizeCapabilityDescription() is like the primitive concept
individualization process, but it has three input parameters : Role_R, Individual_X,
and Individual_Y. Role_R is the identification of the primitive role. An assertion
of role relates two individuals (R(X,Y’)), so there are two individual parameters :
Individual_X and Individual_Y. So, ignoring the transitive role process frame in

126

5.3. The Individualization Process and its Implementation

the middle of figure 5.20,
IndividualizeCapabilityDescription()
is similar with
IndividualizePrimitiveConcept ().
— When the original role cannot be satisfied, we recall Indiwvidualize CapabilityDescrip-

tion() with the Most Specific Role (MSR).

5.3.3 Transitive role discovery process

Finally, we focus on the transitive role discovery process frame in figure 5.20. The
Role_R is transitive : that means that several assertions can be reorganized into a new as-
sertion. For example, if there are has-flight (Paris, Beijing) and has-flight(Beijing,
Wuhan), then it exists has-flight (Paris, Wuhan). Further, if a composition relationship
exists between two different roles (Ro S), then they are transitive at the individualization
level. For example, if there are has-flight(Paris, Beijing) and has-train(Nancy,
Paris), then it exists has-trainohas-flight (Nancy, Beijing).

Before starting the transitive role discovery process, an individual set of objects
ArrivalNotes is created, and the Individual_X is added into the ArrivalNotes. The
ArrivalNotes will hold all individuals which can be reached by the role Role_R “starting
from” from the individual Individual_X. The transitive role discovery process is sketched
in figure 5.21.

There are two loop frames in the process. (1) The first loop, with the guard
[i<ArrivalNotes[].sizel, looks for all individuals which can be attained for the current
set of individuals in ArrivalNotes[]. IndividualizeRole(Role_R, ArrivalNotes[i])
finds all the assertions which are under the Role_R and starts from individual ArrivalNotes [i]
(i.e. Role_R(ArrivalNotes[i], X), where X is any individuals). All the assertions
are returned in an output parameter Arrivall[].

(2) The second loop with the guard j<Arrival[].size, checks whether the individuals
in Arrival[] already exist in the ArrivalNotes[]. If they do not, the individuals are
added in the ArrivalNotes[].

After the two loop processes, we check whether Individual_Y exists in ArrivalNotes[].
If it is true then the transitive role Role_R has a “path” from Individual_X to Individual_Y
in the A, else if the ArrivalNotes[].size is not changed after one times of
TransitiveRoleDisocvery process, that mean no more individual can be arrival. In else
case, we will recall the TransitiveRoleDisocvery process.

For the example has-way(Nancy, Wuhan), by the definition, we know that the roles
has-flight and has-train are transitive in the concept definitions, and that the compo-
site role relationship holds between has-f1light and has-train (has-flightohas-train).
So by the previous UML inter-action diagram, we can find a transitive role discovery
which relates the three role assertions : has-train(Nancy, Paris), has-flight(Paris,
Beijing), and has-flight (Beijing, Wuhan). Finally, we find the assertions of concepts
which holds the role in the composite answer. This answer relates to four concepts :
CITY-TRAIN(Nancy), CITY-AIR-TRAIN(Paris), CITY-AIRPORT (Beijing),
and CITY-AIRPORT (Wuhan). A final answer is then :

127

5.3. The Individualization Process and its Implementation

sd TransitiveRoleDiscovery }
TrBox ArrivalMotes ABox

|

loop [i= .ﬂ-.rrn.'aINntssl] zize] |

|

| |I1dIVIduEI|IZERD|E[RD|E' R, ArrvalMotes(i]) |

L &l

I E Arrivall] |
K — A J

[Indmdual ¥ iz not in Amivall] |

__)
J [i= Alm-alﬂ size |
ﬁ_)

[Furn-'allil is nat in Arrivalblotes]] |
| AddMotelAmrivalljl)

) N) A

apt [Individual_‘f is not in ArrivalMotes[]
and ."'-rrivaNolte's.size is larger |

ref

TransitiveRoleDiscovery

F1G. 5.21 — The sub-diagram of role transitive

128

5.4. Conclusion

Lanswer(Q) = {and CITY-TRAIN(Nancy)
has-train(Nancy, Paris)
CITY-AIR-TRAIN(Paris)
has-flight (Paris, Beijing)
CITY-AIRPORT (Beijing)
has-flight (Beijing, Wuhan)
CITY-AIRPORT (Wuhan) }

This answer is a full satisfaction of the query ()=has-way(Nancy, Wuhan).

5.4 Conclusion

This chapter detailed the approach we propose for capability management and capa-
bility discovery. The ALN ,, knowledge base consists of three parts : TBox, T,Box, and
ABox.

We opted for the classification approach for the maintenance of the hierarchies (sec-
tion 5.1). The classification approach uses a normalization comparison algorithm (NC
algorithm) for testing the subsumption relationship. The result of the NC algorithm is
applied in the composite answer calculation. The NC algorithm is sound and complete
in ACN, ., but it is not in all DL languages. Other algorithms (like tableau-based algo-
rithms [6]) may be used for these calculations too, and it work in most DL languages.

The results of the comparison algorithm are put in a satisfaction table which is ana-
lyzed for determining a composite answer. We implemented some composite answer stra-
tegies in the satisfaction table, but it is not enough for some capability discovery without
composite answer (like the disjoint concept discovery). We need a more general capability
discovery strategy description method for them.

These approaches are expanded to deal with heterogeneous environments. We intro-
duced the capability composition of individuals in section 5.2.4. We mentioned three
knowledge representation languages in this experimental work. The capability description
structure (VR.A) is manually translated in the three knowledge representation languages.
It may need some automatic/semi-automatic approaches to implement the capability des-
cription structure translation.

We detail these approaches by some formula inferences and the travel example in
this chapter. However, the capability discovery approach can be easily applied in many
knowledge systems, especially in heterogeneous environments. As an illustration, in the
appendix (see section A), we provide an additional example of this approach based on the
interoperability domain knowledge.

We developed a prototype system to validate our proposals and the next chapter
details this prototype system implementation.

129

Chapitre 6

Mediation Federation

We implemented a mediator federation prototype system to illustrate our proposals.
The prototype consists of two parts : (i) the capability application approaches in ALN, |
Knowledge Base, and (ii) the mediator server composition in heterogeneous environment.

In the first part, all the facilities, which were mentioned in the previous chapter and
that are required by a capability management application, has been developed in Java.
These include :

— a service for testing the subsumption relationship,

— a service for the determination of the complement and the satisfaction concepts,

— and a service for the calculation of the composite answers, when required.

In the second part, we experimented composite heterogeneous mediation services in an
environment as drawn in figure 6.1. The three federated mediators show a heterogeneous
and distributed environment where :

~ Mediator 1 supports the increased DLs language ALN ., which loads all the pro-

grams of capability application in the first part;

— Mediator 2 supports F-Logic, and its communication language format is KIF [41];

— Mediator 3 supports Conceptual Graphs (CGs), and its communication language is

CGIF |[64].
The federated mediator architecture conforms to the Service Oriented Architecture (SOA) |5].

In this chapter, we partly detail the implementation of the two parts. In section 6.1,
we focus on the inside of the mediator server in ALN .. The mediator server consists of
four parts (see figure 6.1) :

1. a local repository,

2. a reasoning processor,

3. a syntax translator,

4. and a lexical ontological dictionary.

In section 6.2, we focus on the outside of the mediator servers, as an heterogeneous envi-
ronment, and we will detail the Web service technologies that served for the composition
between the heterogeneous mediator servers.

130

6.1. The Mediator Server

Mediator 3
S

Local Reasoning
Repository Processor

- Syntax
o -
ontological == Translator

dictionary

Importer

Mediator 1

Reasoning
Processor

N\

Syntax Translator

Local
Repository

Web Server Mediator 2

Local Reasoning
Repository Processor

Syntax
Translator

lexical
ontological
dictionary

exical
o

dictionary

F1G. 6.1 — The Sketching of Mediation Architecture

6.1 The Mediator Server

In the Mediator Architecture in figure 6.1, the Ezporter and Importer are the two
kinds of clients of the Mediator Federation. The Fzxporter binds with the Tell action,
which is the capability provider. The Importer binds with the Ask action, which is the
capability discoverer. In this work, exporter and importer are two abstract roles. They can
be any software or nature entity, which can send a capability description or a capability
requirement in ALN ., using the Tell and the Ask actions.

For experimenting mediator federation, we considered three mediators (figure 6.1)
which support three different Knowledge Representation Languages : DL, F-Logic, and
CGs which have been experimented in this work to illustrate heterogeneity. The mediator
services are described in WSDL [56], and the composition between the mediators are
defined in OWL-S [37].

We totally implemented the mediator server in ALN .., i.e. the mediator server owns a
repository in ALN ;. A reasoning processor, a syntax translator and a lexical ontological
dictionary are also available. The mediator server accepts the Description Logical language
ALN,, to reason and represent knowledge and this language is used to represent the
individuals, the entities, and the capability of entities, in the local repository. From an
implementation perspective, the Java objects (see figure 5.6) of ALN,, are used in all
the implemented algorithms.

Furthermore, the mediator services (7ell and Ask) are implemented as Java Servlet
CGI programs. These service interfaces are described in WSDL, that enables the other
mediators to access these services (see the next section for further details on the Web
Service technology we used). The approach for capability management and capability

131

6.1. The Mediator Server

discovery, we mentioned in the previous chapters, are mainly implemented in a module
of the local repository and the reasoning processor. The syntax translator simply works
for one sentence of capability description. It needs the lexical ontological dictionary to
support mapping of terms (we opted for WordNet [65] as a dictionary of terms). The
two following sections successively detail the local repository and the reasoning processor
implementation.

6.1.1 The Local Repository

The local repository implements the knowledge base, which we mentioned the concep-
tual model in section 4.2, on page 77. The knowledge base uses the knowledge represen-
tation language ALN ., which defines the syntax of concept and role descriptions.

We designed two service interfaces of this repository : the Tell and the Ask, which are
implemented by Repository.Tell() and Repository.Ask().

The Tell() operation is the only action which introduces new knowledge into the
repository. Before introducing any new concept description and any new role description
into the TBox and TrBox, the descriptions are normalized, according to the rules and the
normalization process we have introduced in section 5.1.2 (page 95). Therefore, all the
concept descriptions and the roles descriptions are stored in the repository under their
normal forms (see figure 5.6 on page 98).

On the other hand, the Ask() operation is the only way to access and query the
knowledge in the repository. The Ask() operation result is a composite answer, and gives
the case of composite answer of this answer. These results will be used by a reasoning
processor. The whole repository architecture is sketched in the UML class diagram in
figure 6.2 that is the basis for the implemented algorithms.

We introduce hereafter the main algorithms we have implemented. In section 5.1 (page
88), we introduced a normalization comparison algorithm, which is the kernel of the
subsumption test and the complement concept calculation. We also introduced the rules
of three normalization sub-processes : atomization, normalization, and simplification (see
figure 5.4 on page 97). These functions are implemented on the date structure in the
repository by the algorithm which is presented in figure 6.3.

As said earlier (page 98), the normalization process reduces the “before normalization”
class diagram in figure 5.5 into the “after normalization” class diagram in figure 6.5. The
obtained normal forms can further be used as inputs in the subsumption relationship test
algorithm which is exposed in figure 6.6.

One should notice that we did not implement the approach in other logic languages
since we consider that the approach may be implemented a similar way in the other lo-
gic languages. The subsumption relationship is the kernel inference, which is a common
concept in all knowledge representation systems : for example, it corresponds to the sub-
class concept in F-Logic, and to the sub-graph concept in CGs.

The results of the repository inferences are further used in the reasoning processor.

132

6.1. The Mediator Server

Repaository

-TBox Slot - TBox
=TrBox_Siot : TrBox
-ABox_Siot

HTell()
Aski)

TBox

-Concept_Herarchy_Top : Node

-Concept_Hierarchy_Bottom ; Mode

HClassification(}

+LCS()
1 [MMSC(

TrBox

-Riole_Hierarchy_Top : Node
-Riole_Hierarchy_Bottom - Node

Mode
FSubsumings @ object{idl)

-Subsumed | object(idi)
FContent | object(idl)

Assertion_Concept

+Classification()
HLCSRI)
+MSR()
1
]
ABox

Fassertion_Concepts : Node
FAssertion_Roles : Node

-Concept | object{idl)
-individual Mame @ stringfidl)

+Concepl_Search{)

+Role_Searchi)
|

Assertion_Role

-Role : object{idl)
Individeal_Name1 : string{idl}
-lndividual_Mame2 © string(idl)

FiG. 6.2 — The UML Class Diagram of the Local Repository

133

6.1. The Mediator Server

//Normalize process
//It includes 3 steps : atomization, normalization, and simplification

void Normalize (Concept Cp) {
//Cp is a pointer at the data structure of the concept hierarchy

//The first step is the concept hierarchy atomization
Cp=Atomize(Cp) ;

//The second step is the normalization of all the sub-objects
//Scan all the sub-objects of Cp by Normalize()
for (Every concept in Cp.Subsumings)

Normalize (Cp.Subsumings.next()) ;

//The third step is the concept hierarchy simplification
Cp=Simplify(Cp) ;
}

F1G. 6.3 — Atomization, Normalization and Simplification in the ALN,, Repository

All_restriction
-Role : Defined_Role
1 1 HConcept | Defined_Concept
i
Defined_Concept = i ol
1 FMame @ string(idl} 1 :] - .e
-Conjunction_slots_pc : Primitive_Concept [-Name : string(idl) -
+Conjunction_slots_do : Defined_Concept 1 pAtleast: AtLeast_rest_ngtlon
FConjunction_slots_ne - Negation FAtMost © AtMost_restiction
FConjunction_slots_fa : All_restriction
| 1 1
1 1
5
1 1
g AtLeast_restricti
[! AtMost_restriction - t,s -'T = l:’"
Primitive_Concept | T T [rrestriciion . ang|
_one -restriction : lang(idl) | Rale : Defined_Role
Fiarme @ strinaglidl) Negation -Role : Defined_Role —
[Negation : boolaan(idl) [Name : Primitive_Concapt

R

1 1

F1G. 6.4 — Description Form in ALN ., before Normalization

134

6.1. The Mediator Server

restriction
Normal_Form 7 !
s -Me - longlidl)
LMame * string{idl) in - long longyidl)

-Conjunction_slots_pe © Primitive_Concept | Rels * Rola

-Conjunclion_slots_restriction ; restriction | Concpte © Primitive. Concegt

1

& 1 _]
l — Role
Primitive_Concept LMame @ string(idly
-Mame - string(idl) FAtLeast : Afleast restriction
-Meqation : boolean{idl) FatMost - AtMost_restriction

FIG. 6.5 — Description Form in ALN ., after Normalization

//Test whether C subsumes D
//Cp is a pointer at data structure of satisfaction concept
//Dp is a pointer at data structure of query concept
//Detail will be used to determine the complement
boolean Subsume (Concept Cp, Concept Dp, boolean|| Detail){
boolean SbC = True; // SbCi note D C C
for (Every concept in Cp.Subsumings){
boolean SbCi — False; // SbCi note D C C;
for (Every concept in Dp.Subsumings){
switch (Cp.RulesID){
//here is pass over some tests by these rules,

//the result is the boolean value True
SbCi — (SbCi V True);// SbCi denotes D C C;
}

}

Detail|Cp.index| = SbCi;//contains every Ci subsumption case
SbC = SbC and SbCi;// when all SbCi are true, SbC is true

Cp.index = Cp.index + 1;//next atomic concept

}
return SbC;// return value de SbCi, it is case of D C C.

}

F1G. 6.6 — The comparison between the ALN,, normal form concepts

6.1. The Mediator Server

6.1.2 The Reasoning Processor

The reasoning processor is the task context manager and the interface of the service.
The mediator federation is a distributed query/answer system which needs that the rea-
soning processor manages the query/answer tasks which are distributed to other mediator
servers. The reasoning processor also includes some services (implemented as CGI pro-
grams in Java Servlets) which can be accessed by the importers, the ezporters and by
other mediator servers as well. According to the conceptual model of the mediator service
(see figure 3.1 on page 60), we implemented the two main operations in the reasoning
processor : export() and import(). We successively introduce the details of these two
operations hereafter.

Regarding the export operation :

The UML sequence in figure 6.7 sketches the following process :

1. The exporter sends its capability description encoded in ALN,, to the Reasoning
Processor : The exporter accesses the Mediator server (thanks to a Web Server CGI
program, that conforms to the standard of the Web client /server architecture). The
mediator server accepts the ALN ., concepts written in DAML-+OIL, an ontology
language standard in XML [52].

The ALN, . concept descriptions, under their DAML-+OIL encoding, are transmit-
ted to the mediator server’s task manager (a CGI program) as a parameter.

2. The CGI program is in charge of all the export/import tasks. It uses the Syntaz
Translator to translate the DAML -+ OIL text to ALN,, concept objects, as figured
by the dami2alnr™ () (DAML+OIL to ALN) method on figure 6.7.

3. Then the Reasoning Processor creates a Tell task with the parameter of the concept
objects. The Reasoning Processor calls the Classification inference mehod, which is
provided by the local repository, to add the new concept into the local knowledge
base.

Regarding the import operation :

In the mediator federation environment, the Import process is the most important and
the most complex one. The query may require accessing multiple mediator servers which
themselves may support different knowledge representation languages. The mediator ser-
vers results are finally reorganized into a composite answer which is the final answer for
the query in the mediator federation. From the mediator perspective, the query task may
receive requests from two different roles : (i) the importers and (i) the other mediator
servers which are in the federation. The two kinds of requests are processed the same way
by the mediator :

1. The reasoning processor creates a satisfaction table for each Ask tasks, i.e. for each
query arriving at a mediator server. The satisfaction table will hold the information
about the satisfaction of the query, as explained in chapter 5.

136

6.1. The Mediator Server

Mediator

Exporter Reasoning Processar Syntax Translator

|
[—l axport(entity)

T

|

|

|

|

|

|

|

|

|

|

[

Local Repository

I
|
I
|
damiZalnr+{antity) :

]

|

|

|

|

|

|
I U :
| |
Tauceﬂﬁm |

- F

Fi1G. 6.7 — The UML Sequence of the Export Process

2. At the same time, while creating the satisfaction table, the concept descriptions in
the query are normalized in the local repository. In this step, the mediator server can
accept heterogeneous query concept descriptions thanks to the Syntazr Translator.

The translator is working at the syntax level of the capability description. Naturally, the
translator also includes a lexical translator (as mentioned in section 5.2 on page 100). In
fact, syntax translation as well as lexical translation are taken in charge by the Syntax
Translator in the prototype system.

Syntax Translator and Lexical Translator

The syntax translator rewrites query descriptions in different query language formats.
VR.T, a simple capability discovery model for the communication, is defined between
the mediators, R being a requested capability and T meaning “any entity which satis-
fies R” (see section 5.2.3, on page 109, for further details). The translation rules of this
simple sentence between multiple query languages can be manually defined (as shown
in section 5.2.3, on page 5.2.3) : actually, we considered three knowledge representation
languages : DLs, F-Logic, and CGs. We also accept multiple interchange standard formats
like XML, KIF, etc., for the knowledge representation languages.

The process of term translation need to be supported by a lexical dictionary. When
an unknown term, which is defined in the lexical dictionary, is in the query concept des-
cription, we try to find a similar term in the local repository. In the prototype system,
we opted for WordNet, which is a hierarchical lexical data base in English. The syntax
translator of a mediator calculates the similarity of the unknown term with all the capa-
bility description terms in the local repository and it retains the term with the highest
similarity measure.

Let us move back to the sequence of the import process which is sketched in figure 6.8.
The Reasoning Processor and the Syntax Translator makes sure that the query concept
can be accepted by the Local Repository. We can put the query concept description into

137

6.2. Mediator Federation

the Local Repository to start the discovery approaches which are detailed in the chapter
5.

The prototype follows the satisfaction first strategy which we mentioned in the chapter
3.2.2. When the Composite Answer Situation Case is under the 4 (Partial Satisfaction)
and 5 (Failure) the (see section 3.2.2), the Reasoning Processor will send the comple-
ment concept as a query to the other mediation service partners. The prototype system
includes an abstract object Mediator Federation which takes charge all the mediator ser-
ver discovery and management jobs. The service discovery and management is real huge
related works in the network management domain. In the prototype, we implement the
Mediator Federation in Web Services technic, that will be introduce in the next section.
The Mediator Federation will send the complement concept to all the mediator servers in
the federation. The Import Process will replay in all the mediator server partners in the
federation, which get the queries.

At the end of the Import Process, all the results which are rendered by the other me-
diator servers in the federation, are put in the satisfaction table. The Reasoning Processor
analyzes the satisfaction table to give the final answer for the query.

Reasoning Processor and Translator : Concluding Remarks

In this section, the two UML sequence graphs showed the detail of two processes : the
import and the export. The Syntax Translator translates the capability description which
is in the query, and the Reasoning Processor manages the import task. From an imple-
mentation point of view, thanks to an abstract object? Mediator Federation, the federation
management can be implemented in multiple techniques. This prototype system imple-
ments the Mediator Federation abstract object in Web Services techniques (which were
introduced in section 2.3.1) [5, 106]. Details about the implementation of the Mediator
Federation abstract object are given in the coming section.

6.2 Mediator Federation

The mediator federation is an abstract architecture, which can be implemented in
many different distributed technologies. In addition, some work results are represented in
Protégé |43, a popular visual ontology editor tools.

The ontologies in Protégé are frame-based. Protégé support a set of classes organized
in a subsumption hierarchy to represent a domain’s salient concepts, and a set of indivi-
duals those classes. The concept hierarchy is a tree structure, where one concept has only
one subsumer concept. That is different from the concept hierarchy in ALN,,, and the
capability description hierarchy, as a role hierarchy, does not exist. The concept hierarchy
and the individuals in ALN ., can be imported in Protégé (see figure 6.9 as an example
of the City concept description).

This section elaborate more on some particular aspects of the implementation techno-

logy :

9 Abstract object is to be understood here in its meaning in Object-Oriented Programming.

138

6.2. Mediator Federation

Mediator 1 Mediator 2 Mediator 3

import(guery)

damiZalnr+{gquery)

i
g
g

|
i S — [T

|
|
|
|
5T=4 5: importicomplement))
1
|
|

s e e -

|
al2daml(zatisfaction) |

Composite Answer & Situation Case

F1G. 6.8 — The UML Sequence of Import Process

139

6.2. Mediator Federation

mediator Protégé 3.3 (file:\D:\Local'ycr',mediator.pprj, OWL / RDF Files)

Edit Project ©WWL Code Tools Window Help

ODEEH LEBE mabd % REH 9

(@ Metadsta (unnamed owl) r@ OWLClasses r- Properties r‘ Individusls r = Forms r'—> SWRL Rules

For Project: @ medistor

Aszserted Hierarchy

¥ 1§ @

time-entry: DurationDe scription

time-entry: Calendar ClockDescription e

-

For Class: @ |city

B aE [E

(instance of owl:Class) [Inferred Yiew

-

Froperty |

Walle

20 rdfs:comment

time-entry:Instart ThingPair

| S time-entry: Temporal Thing

time-entry: Temporalnit
tzont: TimeZone
profile: ServiceCategory iﬁ ﬁ @ %
profile ServiceParamster

0 ity ol Thing

I @ Citv_air &) Name exacthy 1

@ City-air-Train || ||© Stote man1
& ZipCode max 1 |

@ City-Port
@ City-Train

@ CreditCard

O tineraries

@ tinerary

-

@ Theaddress il = I I ’|_

4

F1G. 6.9 — The Concepts definitions in Protege

— section 6.2.1 describes the federation architecture and the communication between
the federated mediators,

— section 6.2.2 discusses the way the Tell and the Ask actions has been implemented,

— and section 6.2.3 concerns the OWL-S description of the federation.

6.2.1 Federation Management and Communication

In our mediator federation prototype system (see figure 6.1), heterogeneity is expe-
rimented thanks to three different knowledge representation languages (see figure 6.10)
and knowledge interchange languages. We actually considered (i) KIF, which is designed
for F-logic [44], (i) DAML+OIL, which is designed for the DLs [52], and CGIF, defined
for the CGs [64]. We also defined an exchange format for the ALN ., which is founded
on the extension of DAML+OIL. The mediators federation defines the common syntax
formats as Resource Description Framework (RDF) description documents |56|, the RDF
description documents being referenced by the syntax translators.

From the point of view of federation management, mediators federation is a decentrali-
zed service federation. There are not one manager role in the federation, which is a hybrid
architecture (see figure 2.9). At a knowledge representation level, we opt the organization
strategy. The complement of query will be firstly send to homogeneous KR mediators,
when this mediator can’t find a local full satisfaction for this query. The capability disco-
very action explores the federated mediators in a way of “near by near”. If one mediator

140

6.2. Mediator Federation

mediator Protégé 3.3 (file:\D:\Local'.cr',mediator.pprj, OWL / RDF Files) =] 5]
File Edit Project OWL Code Tools ‘Window Help
NeE +BE ma ¢ BEE 9> <€protégé

(@ Metadsta (unnamed o) I/ | OWLClasses r B Froperties r & Individualz r = Forms r—> SARL Rules |
b —

R : S\ INSTAHCE BROWSER IHDIVIDUAL EDITOR +-F T

For Project: @ medistor For Class: expr:LogicLanguage For Individual: .mance of expr:LogicLanguage)
Clase Hierarchy A Asserted | Inferred Ij Iﬂﬁ Q: 2 g
P AR AT T
OIOCET T PIOCE S OO 21| pecerted h ‘k » x & Property |
process Result @ cxprALNE rofs:comment
2 process Unordered @ cxprCGIF
process YalueOf (10) @ =xpriDRS
Swerl:Wariakle ’ exprkIF
fe expr:Exprezzion L | @ cxpriSvRL
exprLogicLanguage (5]
:;:;:n expr:refURl 2 'ﬁ‘}' &
- Walle | Type
e hittpc faesaene mediator Ic . anyURI
Pl ariable
> Sl Atom
swrkBuitin (75) || |v| B8
swrlImp =
time-enitry: Calendar ClockDescription Asserted Types i &
time-entry: DurationDescrigtion || expr:Logiclangusge
time-gatry Instact ThinaPair = q] = | v
= o & B u €

F1G. 6.10 — The Knowledge Representation Languages

understands two or more knowledge representations, then it will naturally provide a gate-
way service between the heterogeneous knowledge representations. The query will be sent
to a known mediator and a selection will be done according to some quantitative criteria
(number of peers, number of possible hops, etc.).

The mediator server is a kind of Web Service, i.e., that the mediators support the
interoperable Machine to Machine interaction. The common terminologies are the as-
sumption that there is also a machine readable description of the operations supported
by the server, a description in the Web Services Description Language (WSDL). So we
write a WSDL description for the mediator servers (see figure 6.11).

The WSDL of mediator service describes how to communicate using the mediator
services. The WSDL description can be understood by the other mediator server, which
describe the service ports of mediator. The WSDL is imported in Protégé in figure 6.12.
We see that it define two service ports : Tell and Ask. The ports is defined by associating
the mediator server address with a reusable service binding. In the description, the col-
lection of ports define the mediator service. In the prototype system, it opts the Simple
Object Access Protocol (SOAP) [94] for the communication between the mediator servers.
The SOAP messages in this WSDL of mediator server, TellSoapln, TellSoapOut, AskSoa-
pln, and AskSoapOut, describe the data being exchanged, and port types are abstract
collections of supported operations.

The two principal actions, Tell and Ask, are defined as operations on the mediator
service (see figure 6.12).

141

6.2. Mediator Federation

[EIMediator.wsdl - XML Marker version 1.1 o [=[3]
File Edit View Options MNavigate Help

[DSE YBR[ol s

=] smins:http = "hitp:fischemas xmisoap.orgh « | =<%xml version="1.0" encading="ut-"?>» 7
= wnins soap = "hitp:is chemas armlsoap.org =wsdl:definitions xmins hitp="http.Ischamas xmlzoap.orghvs dithttp’ xmins:soap="http.fzchemas xmlzoa
= wnins:s = "http: a3, oroi2001 XML wsHltypes: I .
= wmins:soapenc = "hitpfschemas xmisoap =s:schema elementF ormDefault="gualified" targethlarmespace="httpermpuri orgiHashSericefHash Cl:
= ¥mins:tng = "http:ftempuri.argiHashService <s:t?lement narme="Tell's
= wmins:tm = "hitp:imicrosoft.camiws difrirm =sicomplexType
=l yminsimime = "hitp:lischemas xmlsoap.on 1 Bl : '
= targetiamespace = "hitp:ternpuri.argiHas =g:element minCeccurs="0" maxOceurs="1" name="SttConceptDescription” type="s:string" 1=|
=l ¥minswsdl = "hitpeiischemas xmlsoap.org, =s:element minCeccurs="0" maxOccurs="1" hame="5ttAsserdions" type="s:string" 1=
e wadltypes minQccurs="0" maxOcours="1" name="KRLanguageType" type="s:string" /=
E|<<>>m =fs:sequence>|
= elementFormDefault="gualified" =ik R Ivies
= targetMamespace = "hitp:itempuri ot <Is.ellemerll= E 3
He3 selement = name="TellResponse’=
«» s:element <s=c0mnlexTw’ej
4 sielement | e i _lLI
¥ gelement <| | v

& wsdlimessage s
. Tree Selection Browser

«» s:schema
@3 wadlportType 2 Attributes:

Name Value
= elementFormDefault qualified
= targetMamespace |httpdftempuri.org/HashSericeMHashClass

@ wadlserice

at

4

‘Bt Tree View | Z 0 warningis), 0 erroris)

4 Subt
Tahle Selection Brawser E|
JE Tag name(Text| =/ name <3 sicomplexType
This Table Selection Browser is empty
<& selement |Tell w2 scomplexType
<« selement |TellResponse|¢s sicomplexType
<« selement |Ask ¢z scomplexType
<% selement |AskResponse|ss sicomplexType
Ready S

F1G. 6.11 — The WSDL Description of Mediator

6.2.2 Tell and Ask as SOAP Messages

The Tell operation has a simple result which is a boolean value. The Tell operations
succeeds, when the result is true, and it has three input parameters : StrConceptDescrip-
tion, StrAssertions, and KRLanguageType, which are defined as :

<s :element name—""Tell" >
<s :complexType>
<s :sequence>
<s :element minOccurs—"0" maxOccurs—"1"
name—"StrConceptDescription" type="s :string" />
<s :element minOccurs—"0" maxOccurs—"1"
name="StrAssertions" type="s :string" />
<s :element minOccurs="0" maxOccurs="1"
name="KRLanguageType" type="s :string" />
</s sequence>
< /s :complexType>
</s :element>

142

6.2. Mediator Federation

File Edit Project Ol

DeH $BE

Code Tools

B i

Window Help

- s

=13

%protégé

service:Service

0 Bravodir_ReservationAge

profile:Profile
@ Bravoair_Profile

[
prnl:ess:Prnl:ess

@ BravoairFlightReservatiol
9 MakeReservation @

49 SearchFiight @

@ SelectFlight @
[
grounding:WsdiGrounding
@ Bravoair_Grounding

| @ Metaclata (unnemed.owl) | CWLClasses | W Froperties | 4 Inclvicuals |

Forms | = SARL Rules | OWL-S Edtor |

port a WSDL File

= T

Enter LIRL: ‘Hrtp:#remox laria.fr: B0B0Mmedistar wedl

|'|| Browse Local...

Operations Service information D Annotati
T ons
sk Service Mame |Ask | | o |
Tel
Auto generated from Hitp: Srecio: loria. fr S080Amedistor wed| (=])
Text descrigtion L)
Logical URI |Mtp Ty example. orogiowdsia sk owl
-Inputs
WIDL Paramater{ WSDL Type CWWL-5 Mame WAL Type HELT ot
StraphiltyDes... xsd string StraphiityDes... xsd string
KRLanguageT ... xsdstring KRLanguageT... xsdstring
Qutputs
WEDL Parame WEDL Type CWAL-S Mame WAL Type XSLT
StrSatisfactio... =sdstring Streatisfactio... xsd string i
StrCamplemen. . xsckstring StrCotmplemen... xsd string -
Mamespaces
Abbr URI
wad hitt: A w3 0P 2001 HMLSchemsed -
rdf hitp: favnene e 3 0rgd 99902/22-rof-syrtax-ns¥ e

(instance of service:Service)

& | & 8 &

l:‘iH*-ItS| = Mediator.... I @ YirusScan, .. | <€, Protege.... ” < BATUtoria,

&

oMUzi\IaF\rml w *ﬁl-‘g----l

=B

F1G. 6.12 — The imported WSDL Descrip

tion

96% @ [« @, 5) 2000

143

6.2. Mediator Federation

The Ask operation has two parameters : StrCapbilityDescription and KRLanguage-
Type, which are defined as :

<s :element name="Ask">
<s :complexType>
<s :sequence>
<s :element minOccurs="0" maxOccurs="1"
name="StrCapbilityDescription" type="s :string" />
<s :element minOccurs="0" maxOccurs="1"
name="KRLanguageType" type="s :string" />
< /s :sequence>
< /s :complexType>
</s :element>

The result of an Ask operation is a composite answer which is described as a complex
type having the following structure :

<s :element name—"AskResponse'">
<s :complexType>
<s :sequence>
<s :element minOccurs="0" maxOccurs="1"
name="StrSatisfactionDescription" type="s :string" />
<s :element minOccurs—"0" maxOccurs—"1"
name—"StrComplementDescription" type="s :string" />
<s :element minOccurs="0" maxOccurs="1"
name="KRLanguageType" type="s :string" />
< /s :sequence>
</s :complexType>
</s :element>

Some parameters, like StrSatisfactionDescription in AskResponse and StrCapability-
Description in Ask, are capability /concept descriptions in one kind of knowledge repre-
sentation language. These types of parameters, viewed as SOAP messages, serves for
transforming a capability description from one mediator language (KIF, for example)
into an other mediator language (CGIF, for example).

The prototype implements a complete mediator server in Description Logic, where
the StrSatisfactionDescription and StrCapabilityDescription are in ALN ., and they are
noted in standard OWL. The SOAP messages carry the descriptions to other mediator
servers. The SOAP messages of the Ask action example of AIR-PORT are :

144

6.2. Mediator Federation

SOAP Ask :
<SOAP-ENV :Envelop
R
<SOAP-ENV :Body>
<s :Ask xmls :m="http ://mediator/namespaces" >
<StrCapabilityDescription>
<owls :IntersectionOf>
<owls :Class owls :name—"http ://mediator/mediation.daml#CITY" />
<owls :IntersectionOf>
<owls :ObjectRestriction
owls :property="http ://mediator/mediation.daml#has-ferry" >
<owls :someValuesFrom>
<owls :Class owls :name—"http ://mediator/mediation.daml#CITY" />
< /owls :someValuesFrom>
</owls :ObjectRestriction>
<owls :ObjectRestriction
owls :property="http ://mediator/mediation.daml#has-flight-">
<owls :someValuesFrom>
<owls :Class owls :name—"http ://mediator/mediation.daml#CITY" />
< /owls :someValuesFrom>
< /owls :ObjectRestriction>
< /owls :IntersectionOf>
< /owls :IntersectionOf>
< /StrCapabilityDescription>
<KRLanguageTypes>ALNr< /KRLanguageTypes>
</s :Ask>
</SOAP-ENV :Body>
</SOAP-ENV :Envelop>

The Ask SOAP message includes the two elements, StrCapabilityDescription and KR-
LanguageType. The value of KRLanguageType is OWL that means the StrCapabilityDes-
cription is in OWL language. The StrCapabilityDescription is a OWL class objet corres-
ponding to the description (and CITY (V has-flight CITY) (V has-ferry CITY)).

As we showed in the chapter 5, the description (and CITY (V has-flight CITY)) is
satisfied, and the (V has-ferry CITY) is the complement. The response to the Ask looks
like :

145

6.2. Mediator Federation

SOAP AskResponse :
<SOAP-ENV :Envelop
S
<SOAP-ENV :Body>
<s :AskResponse xmls :m="http ://mediator/namespaces" >
<StrSatisfactionDescription>
<owls :Class owls :name="http ://mediator/mediation.daml#CITY" />
<owls :IntersectionOf>
<owls :ObjectRestriction
owls :property="http ://mediator/mediation.daml#has-flight-">
<owls :someValuesFrom>
<owls :Class owls :name="http ://mediator /mediation.daml#CITY" />
< /owls :someValuesFrom>
< /owls :ObjectRestriction>
< /owls :IntersectionOf>
< /owls :IntersectionOf>
< /StrSatisfactionDescription>
<StrComplementDescription>
<owls :Class owls :name—"http ://mediator/mediation.daml#CITY" />
<owls :IntersectionOf>
<owls :ObjectRestriction
owls :property="http ://mediator/mediation.daml#has-ferry" >
<owls :someValuesFrom>
<owls :Class owls :name—"http ://mediator/mediation.daml#CITY" />
< /owls :someValuesFrom>
< /owls :ObjectRestriction>
< /owls :IntersectionOf>
< /owls :IntersectionOf>
< /StrComplementDescription>
<KRLanguageTypes>ALNr< /KRLanguageTypes>
< /s :AskResponse>
</SOAP-ENV :Body>
</SOAP-ENV :Envelop>

In the two SOAP messages, we note ALN,, in the OWL language, the standard
ontology description language for Web Services. An other extend OWL, OWL-S [63], is
used for the service descriptions.

6.2.3 OWL-S for Mediator Federation

Indeed, the composition of mediators is described in OWL-S [63]. The OWL-S media-
tors federation describes the properties and the capabilities of each mediator services in
an unambiguous, computer-intepretable form. OWL-S markup of mediator services faci-
litates the automation of mediator service tasks, including automated mediator service

146

6.3. Conclusion

discovery, execution, composition and interoperation. In the prototype system, the media-
tors federation is described as an OWL-S document. Indeed, figure 6.13 shows the OWL-S
description of the mediators federation prototype system in an OWL-S editor, a plug-in
ware in Protégé [43] :

1. The left part of the window shows some services, operations, profiles and bindings.

2. The middle part of the window shows the sequence of operations (actally, the Ask
operation sequence in this figure), built from items appearing in the left part of the
window.

3. The right part of the window shows the diagram of the Ask operation sequence, a
clearer version of the sequence diagram of the Ask operation being in figure 6.14.
These types of diagrams are automatically generated by the OWL-S editor we plug-
ged in Protégé starting from what is indicated in the middle part of the window.

compositeT Protége 3.3 (file:\Ds\Local\cr\compositeT.pprj, OWL / RDF Files [3
&gé file:\D:\Localycr / i] [a]

File Edit Proect OML Code Tnoks Wndow Hel

DEH 4853 ma 4 HEE <> <¢|protége
Metacsta (Ontology1 185436953.0wl) | OWClasses | I Properties Indiviuals | = Forms | CVL-S Edtor

5

B

coriesonce O @ 53 1| veolcato [[Frpaties |

@ Wedistor!_DLs B & 8 8 & © b Ry &y £ K Process graph | Properties

[Meclistor2 FLs V-1 Sequence C&e a &

@ Medistor3_CGs (] Perform Ask_w1_DL @ .

[Perform CreatingSatisfactionTable @ Ty =
V- (& If-Then-Else
~| 8 [Pertorm Composteanswer @
¥ [Sequence
profile:Profile ¥ 2 L] Pertorm Ask_M2_FLs @
[Pertorm SstistactionTablesnalyse @
V- (f-Then-Else
[Perform Compositesnswer @
V[Sequence
[Perform Ask_M3_Cos @
-] Perform SatisfactionTableAnalyse @

~ 8 [Perform Compositesnswver @

process:Process & @2

'@ CreatingSatistactionTable @ =

[HeterageneousCompostehts © _

'® HeterogeneousMediatorsComp-—

. |=
< B >

'@ CompositeMedistors

groundingWsdiroundin % ® 38
'@ AskGrounding
& TeiGrounding

FiG. 6.13 — The Mediators Composition

6.3 Conclusion

This chapter presented and detailed the implementation of the mediator federation
prototype system. This prototype consists of a complete mediator server supporting DLs,
and two incomplete mediator servers in two different knowledge representations : F-Logic
and CGs. The two incomplete mediator servers supports the capability discovery query
action, and that is sufficient to implement a heterogeneous mediator federation environ-
ment.

147

6.3. Conclusion

From

To

CapabilityDescripti

lStrCompl Descripti

From

To

IStrComplementDescription|

StrCapabilityDescription

Ask_M2_FLs

Part}

From

To

atisfaction

(StrSati ionDescription

CompositeAnswer

From

To

eterogeneousCapabilitySatisfaction

StrQueryDescription

SatisfactionTableAnalyse

Ask_M3_CGs

From

To

eterogeneousCapabilitySatisfactior

StrQueryDescription

FiG. 6.14 — The Mediators Composition Detail

SatisfactionTableAnalyse|

CompositeAnswer,

148

6.3. Conclusion

We have implemented the complete DL mediator server prototype in Java. We designed
the mediator server prototype thanks to four program modules : (i) the local repository,
(11) the reasoning processor, (iii) the syntax translator, and (iv) the lexical ontological
dictionary.

The local repository module is an implementation of a knowledge base in ALN,,, and
it implements some main inference services, that includes the subsumption test, the satis-
faction calculation, and the complement calculation. These inference services are sufficient
to support capability management and discovery, even though some inferences (like sa-
tisfiability testing, and disjointness testing |6, 57]) are not implemented. These inferences
can help the repository to provide a higher quality of service.

The reasoning processor works at the query context management and mediation fede-
ration management. This prototype depends on a manual OWL-S document to the query
context management and the mediation federation management. UDDI|100| standard sup-
ports the any entities publish their service listings and discover each other and define how
the services or software applications interact over the Internet. UDDI can apply in the
mediation federation architecture to implement dynamic mediator service discovery.

The syntax translator supports the translation capability description structure VR.A
in three knowledge representation languages. We wrote the programs to implement the
translation rules, so the programs must be rewritten whenever a new language is used in
the mediation federation. We may develop a tool to automatically or semi-automatically
describe the syntax translation rules.

The lexical ontological dictionary is an application programming interface for lexical
mapping, using WordNet. There are many specific ontology dictionaries are developed
for different domains as chemistry, medicine, and biology [82], etc.. The mediator server
must manage and use multiple ontological dictionaries, that also must be studied in the
ontology domain now.

The complete DLs mediator server can process the Ask and the Tell actions. In an
Ask action, it can access the two heterogeneous mediator servers which are in F-Logic and
CGs. The prototype implemented our design of capability management and discovery. On
the other hand, this prototype also raise some new points on architecture, ontology, and
etc., that is the frame of part of our future work, as more deeply treated in the final
chapter of this thesis.

149

Chapitre 7

Conclusions

In this thesis work, we consider that two main results have been achieved :

1. defining a capability description language ALN, ;. to support capability management
and inference services ;

2. designing a mediation federation system in order to implement the composite ans-
wer approach for capability discovery in heterogeneous knowledge representation
environments.

Considering the first result and regarding the objectives of this thesis, as outlined in
chapter 1 (section 1.2.2, page 32) :

1. From the capability description and organization perspective : ALN . relies on the
characteristics of roles (i.e. relationships between concepts) for entity’s capability
description. ALN . inherits and extends the knowledge representation theory and
technology of Description Logic. We implemented some inference services which
may be used for capability management and capability discovery. We also introdu-
ced an open model of restriction f to describe the relationship between roles (i.e.
the relationship between relationships of concepts). We introduced a very simple
relationship description model f in the capability description language ALN .. In
this thesis work, we detailed several relationships between capabilities by the des-
cription model f, which includes subsumption, composition, and equivalence. And
then we analyzed the relationships between the relationships of capabilities, that is
not a complete analysis result. The model f is an open description model, which
can describe other relationships between capabilities. Nevertheless, more complex
relationships between the relationships of capabilities may exist, and modal logic
and/or second-order logic theories may be used in the description and the inference
on the relationships between the relationships among capabilities.

2. From the capability discovery perspective : we rely on a single concept (the comple-
ment concept) and on its procedural determination to satisfy some functionalities
that are useful for capability, competence as well as knowledge management. Na-
mely, these facilities concern :

(a) the comparison of intentionally defined individuals, i.e. two sets of individuals
characterized by their ALN,, formula, can be compared thanks to the provi-
ded mechanisms : they are considered as “equal”; in terms of capabilities, when

150

one formula exactly satisfies the second one; one is considered as “greater than
the other”, always in terms of capabilities, when one formula subsumes the
other one (cf. the notion of wider satisfaction) and so on.

(b) the identification of capability gaps : this is clearly achieved thanks to the
identification of the complement,

(¢) filling up capability gaps : this is attained thanks to the complement calculation,

(d) constraining the set of candidates that may contribute to an identified gap
filling-up : this is the role of the strategy that may be imposed on the comple-
ment calculation process.

Considering the second result, we have designed and implemented a mediation fede-
ration system prototype. The prototype is fully written in Java programming language
(Sun Microsystem’s JDK1.2 and Java Web Services Developer Pack 1.6), and it has been
successfully verified on the following operating systems : Miscrosoft Windows (95, 98, Me,
XP, 2000, 2003) and Linux (Red Hat 7.X and Mandrake 8.x). The proposed prototype
has a mediation architecture based on standard Web Services.

However, the whole mediator federation prototype is under a hybrid system architec-
ture. An importer, an exporter and a mediator server compose a typical SOA system, but
the mediator federation is a pure P2P architecture. As compared to the P2P system’s ca-
pabilities that were introduced in the chapter 2 (section 2.3.2 on page 55), our prototype
has the following characteristics :

1. Regarding autonomy : this is clearly achieved thanks to the fact that every mediator
server can solely provide the services (Ask and Tell) to its client (importer and
exporter) ;

2. Regarding dynamicity : This prototype depends on a manual OWL-S document
to manage the whole mediator federation : that cannot work in an application
system. UDDI [100] standard supports how entities publish their list of services
and discover each other, and it defines how the services or software applications
interact over the Internet. UDDI principle can be applied in the mediator federation
architecture to implement dynamic mediator service management and discovery.
However, this property of the federation requires additional mechanisms for the
actual management of the federation i.e. mechanisms for dynamically enabling a
mediator to enter or to leave (temporarily or permanently) an existing federation.
This aspect was not addressed in this work since it was not considered as central
for our needs.

3. Regarding decentralization : The architecture we propose is clearly decentralized
since an importer can address its query to any mediator in the federation.

4. Regarding cooperation : This is also a characteristics of our architecture since, when a
local repository cannot satisfy a query requirement, the local mediator can cooperate
with heterogeneous partners for the calculation of a composite answer.

From an other standpoint, considering the characteristics of mediators, as introduced
in chapter 3 (section 3.1.3, page 63) :

1. The prototype does not provide sophisticated context management facilities. It im-
plements some simple composite answer strategies, like satisfaction first, at most

151

z, and so on. Currently, dealing with these types of strategies requires additional
programming efforts : the provision of a generic strategy engine requires further
investigations.

2. Based on the simple context management, the query propagation is based on a
“proximity” criteria (as opposed to a semantic criteria). The queries are always sent
to the closest mediator as an OWL-S document description.

Therefore, dynamic federation management, context management and semantic criteria
for query propagation and how they interact need an across-the-board design of mediators
federation in the future.

In addition, based on the conceptual models and architectures we proposed, we have a
prototype system of mediation federation. It completes a lot of the validity checking work
on the theories and approaches in this thesis. However, we obviously need to enrich the
syntax translator to support more knowledge representation systems. On the other hand,
the capability discovery service can be applied in many domains, like the implementation
of UDDI or dynamic ERPs.

In an other way forward, we think also about the capability application at two ad-
ditional research directions and applications : (i) capability representation theory and
implementation and (%) applying the prototype system in some actual application do-
mains.

Firstly, ALN, is not a sufficiently rich syntax concept description language. For
example, it does not support the full negation and concept disjunction, which will bring
on some NP complete problems. Therefore, we intend to explore description languages
which supports more complex concept and role descriptions, and then to provide complete
semantic inference algorithms. As a path toward this aim, the expressive power of descrip-
tion Logics as a representation language of capabilities and entities is more limited than
graph-based languages. And we intend to examine the capability application based on the
graph-based knowledge representation technology. It is well-known that the approaches
and algorithms of graph-based knowledge representation always face the NP problem,
but we think that the description of the relationships between capabilities should help in
creating more powerful algorithms and approaches for graph-based knowledge represen-
tations.

Secondly, the mediator federation architecture faces some communication problems
that are similar to those encountered in other heterogeneous distributed architectures,
like Web Services in W3C, CORBA in OMG, and RM-ODP in ISO. In this thesis, we
defined a capability description concept for query communication between mediators :
for more general applications, we need a kind of “standard query language” which abs-
tractly describes the syntax of capability discovery queries. This standard must then be
implemented and/or supported by almost all knowledge representation systems.

152

Annexe A

Example from the INTEROP
Knowledge Map

During this doctoral study I participated into the INTEROP Network of Excellence
(IST-508 011, http ://www.interop-noe.org). I contributed to the conceptual design of the
repository, called Knowledge Map, that will serve for building and maintaining Knowledge
about a given domain, namely the enterprise software and applications interoperability
domain. I give a capability discovery example on the INTEROP Knowledge Map in this
section, starting from its conceptual design.

The whole INTEROP Knowledge Map is sketched in the UML class diagram in fi-
gure A.1 which references to the INTEROP Knowledge Map Requirements report [11].

Participation
start : Date [0.1]
end: Date [0.*) Activity Context
| il e AR is @ contextfor
| s
Organisational Entity | Activity .
url: Url [0.1] involves | ! paricipates [0 - Memo o inthe corftext of
fax: PhoneNumber [0.1] 1 i o url- Ul [0.4] o
phone : PhoneNumber [0.1] i start : Date [0.1] is aresut of
mail : EmailAddress [0.1] 0.t ! is tackled by | end: Date [0.1]
address : Address [0.1] s inthe scope of s 4 4 0.1
s = hasknowlegdein= ~ ~~ ~ ~ ~ ~ ~ iginTield of ~ ~Activity Chaw ferization Project Meeting
0.4 0.* | acronym : String

Group hierarchy

I i il
Domain 08 | e g

name : String

/N A

i
1

Person the field of | ‘Works| Visit
title : Tie [0.1] i
belongs to contai... | first name : String [1] 1
T 1
3 |

heads

0.+ | tast name - String [1) Ll v i &5
————————————————————— i - - 1 3 1 ’
[Membership | | i ac/vevad by | Relation Resuk Chixacterfzation Resull Production
1
start : Date [0.1] L g ! :
end : Date [0.1] T
role : RoleinGroup [0..4) 0. |
L CLbiil) Domain Relationship Type related resutts i
semantics : Memo o.r }
name : String |
Result Contribution Result }
contribudes to | short description: Memo [0.1) | PT=%1
+ url : Url [D..1] .
Lty RS [?X ____________ ol _,
Publication Product
date : Date [0.1] version : int [0..1]
language : String [1] = english name : String [1]
title : String [1] release : Date [0..1]
i type : P ionType ...

FiGg. A.1 — The UML class diagram of The INTEROP Knowledge Map

153

The UML classes and associations we will mention in the example, are inside the
dotted-line circle in figure A.1. These classes and associations are described in the ALN .,
knowledge base.

1. The UML classes correspond to the concept descriptions in ALN ., that are repre-
sented in figure A.2.

2. The UML generalization corresponds to the subsumption relationship, and the UML
associations correspond the role descriptions. The role descriptions are called capa-
bility descriptions in this work and they are presented in figure A.3.

3. We show some individual data of the knowledge map in figure A.4, these individual
data will be used further.

These three parts are representatives of the INTEROP Knowledge Map, when viewed
as a knowledge base in ALN ;. The knowledge base can support the capability discovery
query.

Looking for some persons or some organizations have the skill in a domain, that is very
frequent query to the INTEROP knowledge map. The query can be written in capability
discovery structure as Vskill.T.

The skill does not exist in the T7/pterqp, S0 the skill is a foreign term to the
knowledge base of INTEROP Knowledge Map. Ahead, we calculate the similar term of
skill in 7 7rpterop, the algorithm has been mentioned in the previous sections. The results
are shown on the figure A.5.

In the similarity calculation results, the similarity value of skill with knowledge is
the largest (0.83), that mean the knowledge is the most similar semantic with skill
in the similarity calculation algorithm. So the knowledge is a similar term for skill in
Trlnterop-

On the other hand, the role has-knowledge-in is subsumed by knowledge in 77 rpterop;
so has-knowledge-in possibly satisfies the skill too by the definition 5.1.4 (page 94).
There are two possible satisfactions (has-knowledge-in and knowledge) to the skill in
TTInterop-

Further, a query always need to find some entity objects to practically satisfy a require-
ment. For example, an INTEROP research task need to build an enterprise ontology, that
require some entities which has skill in enterprise modeling and ontology. The capa-
bility discovery describes the query as : Vskill.T (enterprise modeling ; ontology).

By the previous mentions, the role has-knowledge-in possibly satisfy the skill.
There are some assertions of has-knowledge-in in A, erop. It does not exist an individual
has both two skills in Ajpterep, SO a composite answer is calculated.

Ask: Louery(Q)) = Vskill.T (enterprise modeling;ontology)

KBInterop — {ﬂnterop; Trlnterop; Alnterop}

L snswer(Q)) = {has-knowledge-in(UHP/LORIA, ontology),
has-knowledge-in(David.Chen, enterprise modeling)}

154

Cs
Cs

Cy

Cy

Entity
Abstract
Domain

Organisational-Entity

Organisational-Group
Organisation
Interop-Partner

Result

Person

IRNINRINE

- 17

T
T
(and Abstract

(all name Abstract))
(and Entity

(some url Entity)

(some fax Entity)

(some phone Entity)

(some mail Entity)

(some address Entity)

(some has-knowledge-in Domain))
(and Organisational-Entity

(all name Organisational-Entity)

(some contain Person))
Organisational-Group
(and Organisation

(all number Organisation))
(and Entity

(some url Entity)

(some short-description Entity)

(some in-the-field-of Domain))
(and Organisational-Entity
some title Organisational-Entity)
all first-name Organisational-Entity)
all last-name Organisational-Entity)
some contributes-to Result))

(
(
(
(

F1G. A.2 - An ALN,,-TBox from INTEROP Knowledge Map (Trnterop)

R; knowledge C Troe

Ry contributes LT T,

R3 is E Trole

R, has-knowledge-in L knowledge
R contributes-to [contributes
R in-the-field-of [is

F1G. A.3 - An ALN,;-T,Box from INTEROP Knowledge Map (77 1nterop)

155

Interop-Partner (UHP/LORIA), Person(David.Chen),
Interop-Partner(University of Bordeaux 1),
Organisation(University of Edinburgh),
has-knowledge-in (UHP/LORIA, ontology),
has-knowledge-in(University of Edinburgh, ontology),
has-knowledge-in(David.Chen, enterprise modeling),

F1G. A4 — An ALN,-ABox from INTEROP Knowledge Map (Ajpierop)

IR

Relatedness.cs | Classl.cs 4'DemoTest.cs | WordSimilarity.cs |

i WordsMatching DemoTest

] [¥Test_10

1

e public DemoTest (O //NUnit missing!
{
| —
Y The similarity of 'skill® with
The similar term of ‘skill’ is

string sinilar = ©°

seore = semsin GetSeove (“skill®, “Imowledge");

Systen. Console. ¥riteLine ('The sinilarity of *

ma_score = score;
similar = “lmowledge”;

score = semsin GetSeove(“skill®, “contribute’
Systen. Console. ¥riteLine ('The sinilarity of *

iF (scere > max_score)

similar = “contribute”;

score = semsin. GetSeore (“skill®, "is");

Systen.Conzole. ¥riteLine ('The sinilarity of *

iF (score > max_score)

similar = "is":

skill’ with ’lmowledge’ is © + score);

i

skill’ with * contribute’ is * + seore);

skill’ with *is' is “ + secore);

System Console WriteLine ("The similar term of “skill’ is ‘" + similart” "

The similarity of *skill® with
The similarity of ‘skill® with

(3 Matcher
41 [TextHelper
o] Assemblylnfo.cs
i @) DemoTest.cs
] 1Similarity.cs
- o] Relatedness.cs
o o8] SentenceSimilariy o5
1 & similarGenerator.cs
A titaedSen

cuments and Sektin les documents/My Worl

‘knowledge® is 0,83
‘contribute’ is 0,1
‘is' is @
‘knowledge’ .

d;DémarrEr‘ E BT HEE - Wi | |@] Micrasoft PowerPoint - [.. |] RappurtDeGiuseppErRap‘.‘|) thesis

| 4 wordsMatching (Debuggi... | @8 flez///C:/Documents ...

F1G. A.5 — The calculation of similar term

156

The composite answer L g suer (@) is calculated in similar approaches which have been
detailed in the previous sections. By the INTEROP Knowledge Map example, we can
see the capability discovery approaches can be applied in many knowledge discovery sys-
tems. These approaches can well work in the heterogeneous knowledge representation
environment only supported by some current lexical dictionaries.

157

Bibliographie

[1] N. Boudjlida A. Benna and H. Talantikite.
Sawsdl, mediation and xquery for web services.
In D. Benslimane and A. Ouksel, editors, Proceedings of the 8th international confe-
rence on New Technologies in Distributed Systems : Notere 2008, volume 1, pages
23-27, Lyon France, June 2008. ACM edition.
[2] Karl Aberer, Magdalena Punceva, Manfred Hauswirth, and Roman Schmidt.
Improving data access in p2p systems.
IEEE Internet Computing, 6(1) :58-67, 2002.
[3] Kathleen Ahrens.

When love is not digested : Underlying reasons for source to target domain pairings
in the contemporary theory of metaphor.
In Yuchau E.Hsiao, editor, Proceedings of the Congnitive Linguistics Conference,
pages 273-302, 2002.
[4] Kathleen Ahrens, Siaw Fong Chung, and Chu-Ren Huang.
Conceptual metaphors : Ontology-based representation and corpora driven mapping
principles.
In Mark Lee John Barnden, Sheila Glasbey and Alan Wallington, editors, Procee-
dings of the ACL 2003 Workshop on the Lexicon and Figurative Language, pages
35-41, 2003.
[5] Gustavo Alonso and Fabio Casati.
Web services and service-oriented architectures.
In ICDE, page 1147. IEEE Computer Society, 2005.
[6] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, editors.
The Description Logic Handbook : Theory, Implementation, and Applications. Cam-
bridge University Press, 2003.
|7] Franz Baader, Ralf Kiisters, and Ralf Molitor.
Structural subsumption considered from an automata-theoretic point of view.

In Enrico Franconi, Giuseppe De Giacomo, Robert M. MacGregor, Werner Nutt, and
Christopher A. Welty, editors, Description Logics : Proceedings of the 1998 Inter-
national Workshop on Description Logics (DL°98), IRST, Povo - Trento, Italy,
June 6-8, 1998, volume 11 of CEUR Workshop Proceedings. CEUR-WS.org,
1998.

158

|8] Franz Baader, Ralf Kiisters, and Ralf Molitor.

Computing least common subsumers in description logics with existential restric-
tions.

In Thomas Dean, editor, IJCAI : Proceedings of the Sizteenth International Joint
Conference on Artificial Intelligence, IJCAI 99, Stockholm, Sweden, July 31 -
August 6, 1999. 2 Volumes, 1450 pages, pages 96-103. Morgan Kaufmann, 1999.

[9] Jon Barwise.
Heterogeneous reasoning.
Lecture Notes in Computer Science, 699 :64-74, 1993.

|10] C. Beeri, A. Levy, and M-C. Rousset.
Rewriting Queries Using Views in Description Logics.
In ACM Symposium on Principles Of Database Systems, pages 99-108, Tucson,
Arizona, 1997.
[11] Khalid Benali and all.
Interop work package 1 : Knowledge map requirements.
Technical report, UHP/LORIA, March 2004.
|12| Philip A. Bernstein, Fausto Giunchiglia, Anastasios Kementsietsidis, John Mylo-
poulos, Luciano Serafini, and Ilya Zaihrayeu.
Data management for peer-to-peer computing : A vision.
In WebDB, pages 89-94, 2002.
|13| Elisa Bertino, Mauro Negri, Giuseppe Pelagatti, and Licia Sbattella.
Object-oriented query languages : The notion and the issues.
IEEE Transactions on Knowledge and Data Engineering, 4(3) :223-237, June 1992.
[14] A. Borgida.
Description Logics in Data Management.
IEEE Transactions on Knowledge and Data Engineering, 7(5) :671-682, 1995.
|15] A. Borgida and P. Devanhu.
Adding more "DL" to IDL : Towards more Knowledgeable Component Interopera-
bility.
In 21rst International Conference on Software Engineering, ICSE’99, pages 378—
387, Los Angeles, CA, May 1999. ACM Press.
|16] A. Borgida and D. Etherington.
Hierarchical Knowledge Bases and Efficient Disjunctive Reasoning.
In Proc. First International Conference on Principles of Knowledge Representation
and Reasoning, pages 33-43, Toronto, May 1989.
[17] Alexander Borgida and Peter F. Patel-Schneider.
A semantics and complete algorithm for subsumption in the classic description logic.
J. Artif. Intell. Res. (JAIR), 1 :277-308, 1994.

159

18]

[19]

20]

[21]

22]

23]

[24]

[25]

26]

[27]

M. Bouchikhi and N. Boudjlida.
Using Larch to Specify the Behavior of Objects in Open Distributed Environments.

In Proceedings of the 1998 Maghrebian Conference on Software Engineering and
Artificial Intelligence, pages 275-287, Tunis, Tunisia, December 1998.

98-R-300.
N. Boudjlida.

Knowledge in Interoperable and Evolutionary Systems.

In L. Dreschler-Fischer and S. Pribbenow, editors, KRDB’95, Workshop on “Rea-
soning about Structured Objets : Knowledge Representation Meets Databases”,
pages 25—26, Bielefeld, Germany, September 1995.

(Position Paper).

N. Boudjlida.

A Mediator-Based Architecture for Capability Management.

In M.H. Hamza, editor, Proceedings of the 6th International Conference on Software
Engineering and Applications, SEA 2002, pages 45-50, MIT, Cambridge, MA,
November 2002.

R. J. Brachman.

A Structural Paradigm for Representing Knowledge.

PhD thesis, Harvard University, 1977.

Ronald J. Brachman.

Taxonomy, descriptions, and individuals in natural language understanding.

In ACL, 1979.

Ronald J. Brachman and Hector J. Levesque.

The tractability of subsumption in frame-based description languages.

In AAAI pages 34-37, 1984.

Ronald J. Brachman and James G. Schmolze.

An overview of the KL-ONE knowledge representation system.

Cognitive Science, 9(2) :171-216, 1985.

D. Calvanese, D. de Giacomo, M. Lenzerini, D. Nardi, and R. Rosati.

Information Integration : Coceptual Modeling and Reasoning Support.

In 6th International Conference on Cooperative Information Systems, CooplS’98,
pages 280-291, 1998.

Dong Cheng and Boudjlida Nacer.

Federated mediators for query composite answers.

In 6th International Conference on Enterprise Information Systems - ICEIS’2004,
Porto, Portugal, volume 4, pages 170-175, Apr 2004.

Christopher W. Clifton and Wen-Syan Li.

Semint : A tool for identifying attribute correspondences in heterogeneous databases
using neural networks.

Data and Knowledge Engineering, 33(1), April 2000.

160

|28] Simona Colucci, Stefano Coppi, Tommaso Di Noia, Eugenio Di Sciascio, Fran-
cesco M. Donini, Agnese Pinto, and Azzurra Ragone.

Semantic-based resource retrieval using non-standard inference services in descrip-
tion logics.

In Andrea Cali, Diego Calvanese, Enrico Franconi, Maurizio Lenzerini, and Leti-
zia Tanca, editors, SEBD : Proceedings of the Thirteenth Italian Symposium
on Advanced Database Systems, SEBD 2005, Brizen-Bressanone (near Bozen-
Bolzano), Italy, June 19-22, 2005, pages 232-239, 2005.

[29] L. Palopol D. Sacc and D. Ursino.
Semi-automatic, semantic discovery of properties from database schemes.

In Proceedings of the 1998 International Symposium on Database Engineering €
Applications, page 244. IEEE Computer Society, 1998.

[30] J. Dennis and E. Van Horn.
Programming semantics for multiprogrammed computations.
Communications of the Association of Computing Machinery, pages 143-155, March
1966.
|31] Premkumar Devanbu and Eric Wohlstadter.
Evolution in distributed heterogeneous systems, November 27 2001.
|32] DL-org.
Description logics, 2007.
http//dlLkr.org/.
[33] AnHai Doan, Pedro Domingos, and Alon Y. Levy.
Learning source description for data integration.
In WebDB (Informal Proceedings), pages 81-86, 2000.
|34] C. Dong.
Capability representation on increased ALN..

In Doctoral symposium of Interoperability for Enterprise Software and Applications
Conference, Bordeaux, France, March 2006.

|35] F. M. Donini, M. Lenzerini, and D. Nardi.
The complexity of existential quantification in concept languages.
Artificial Intelligence, 53(2-3) :309-327, February 1992.
[36] T. Dyck.
Uddi 2.0 provides ties that bind, April 2002.
(http ://www.eweek.com/).
|37 Daniel Elenius, Grit Denker, David Martin, Fred Gilham, John Khouri, Shahin
Sadaati, and Rukman Senanayake.
The OWL-S editor - A development tool for semantic web services.

In Asuncion Gomez-Pérez and Jérome Euzenat, editors, ESWC : The Semantic
Web : Research and Applications, Second FEuropean Semantic Web Conference,
ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1, 2005, Proceedings,
volume 3532 of Lecture Notes in Computer Science, pages 78-92. Springer, 2005.

161

|38] Enrico Franconi.

Natural language processing.

In Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors, The Description Logic Handbook : Theory,
Implementation, and Applications, pages 450-461. Cambridge University Press,
2003.

|39] Brian Gaines.

Organizational Knowledge Acquisition, volume Handbook on Knowledge Manage-
ment 1 of International Handbooks on Information Systems, chapter 16.

Springer, Knowledge Science Institute, University of Calgary, Calgary, AB, Canada
T2N 1N4, 2003.

ISBN :978-3-540-43527-3.
[40] Hector Garcia-Molina et al.

The TSIMMIS approach to mediation : Data models and languages.
Journal of Intelligent Information Systems, 8(2) :117-132, 1997.

|41] Michael R. Genesereth.
Knowledge Interchange Format, 1998.

[42] M. Geneserith.
Knowledge interchange format.

In J. Allen, editor, Proceedings of the 2nd International Conference on the Principles
of Knowledge Representation and Reasoning (KR-91), pages 238-249. Morgan
Kaufman, 1991.

[43] Gennari, John H., Musen, Mark A., Fergerson, Ray W., Grosso, William E., Monica
Crubezy, Henrik Eriksson, Noy, Natalya F., Tu, and Samson W.

The evolution of protege : an environment for knowledge-based systems develop-
ment.

International Journal of Human-Computer Studies, 58(1) :89-123, 2003.
|44] Matt Ginsberg.

Knolwedge interchange format : The KIF of death.

Technical report, Matt Ginsford, 1991.

(AI Magazine).
[45] Wiederhold Gio.

Mediators in the architecture of future information systems.

Computer, 25(3) :38-49, March 1992.
|46] Mounira Harzallah Giuseppe Berio.

Knowledge management for competence management.

Journal of Universal Knowledge Management, 0(1) :21-28, June 2005.
[47] P. Gochet and P. Gribomont.

Logique, volume 1.

Hermes, Paris, 1991.

162

48]

[49]

[50]

[51]

[52]

53]

[54]

[55]

[56]

[57]

[58]

T. R. Gruber.

Toward principles for the design of ontologies used for knowledge sharing.
International Journal of Human-Computer Studies, 43 :907-928, November 1995.
T-D. Han, S. Purao, and V. Storey.

A Methodology for Building a Repository of Object-Oriented Design Fragments.

In 18th International Conference on Conceptual Modelling, ER’99, pages 203-217,
Paris, November 1999. Spriger Verlag.

LNCS 1728.

T. Hoppe, C. Kindermann, J. J. Quantz, A. Schmiedel, and M. Fischer.

Back V5—Tutorial & manual.

KIT-Report 100, Technische Universitit, Berlin, 1993.

[. Horrocks.

Description Logic : Axioms and Rules.

Talk given at Dagstuhl "Rule Markup Technique" Workshop, February 2002.

http ://www.cs.man.ac.uk/ horrocks/Slides/.

lan Horrocks.

DAML-+OIL : a description logic for the semantic web.

IEEE Data Engineering Bulletin, 25(1) :4-9, 2002.

M. Kifer and J. Wu.

A logic for object-oriented logic programming (maier’s O-logic : Revisited).

In ACM SIGACT-SIGMOD Symp. on Principles of Database Systems, Philadelphia,
March 1989.

Michael Kifer, Georg Lausen, and James Wu.

Logical foundations of object-oriented and frame-based languages.

Journal of the Association for Computing Machinery, 42 :741-843, July 1995.

Judith Klavans and Min-Yen Kan.

Role of verbs in document analysis.

In COLING-ACL, pages 680-686, 1998.

Jacek Kopecky and Bijan Parsia.

Web services description language (WSDL) version 2.0 : RDF mapping.

World Wide Web Consortium, Working Draft WD-wsdl20-rdf-20070326, March
2007.

Ralf Kiisters.

Non-Standard Inferences in Description Logics, volume 2100 of Lecture Notes in
Computer Science.

Springer, 2001.
Maurizio Lenzerini and Andrea Schaerf.

Concept languages as query languages.
In AAAI pages 471-476, 1991.

163

[59]

[60]

[61]

62]

|63]

[64]

|65]

|66]

167]

168]

T. Lipkis.

A KL-ONE classifier.

In J. G. Schmolze and R. J. Brachman, editors, Proceedings of the KL-ONE Work-
shop, Jackson (NH), USA, BBN Report 4842 /Fairchild Technical Report 618,
pages 126-143, 1982.

R. MacGregor and R. Bates.

The LOOM knowledge representation language.

Technical Report ISI/RS-87-188, Information Science Institute, University of Sou-
thern California, Marina del Rey (CA), USA, 1987.

Robert MacGregor and Mark H. Burstein.

Using a description classifier to enhance knowledge representation.

IEEE Ezpert, 6(3) :41-46, June 1991.

Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm.

Generic schema matching with cupid.

In The VLDB Journal, pages 49-58, 2001.

David Martin and all.

Owl-s : Semantic markup for web services.

W3C Recommendation, November 2004.

http ://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/.

Philippe Martin.

Knowledge representation in CGLF, CGIF, KIF, frame-CG and formalized-english.

In Uta Priss, Dan Corbett, and Galia Angelova, editors, ICCS, Conceptual Struc-
tures : Integration and Interfaces, 10th International Conference on Conceptual
Structures, ICCS 2002, Borovets, Bulgaria, July 15-19, 2002, Proceedings, vo-
lume 2393 of Lecture Notes in Computer Science, pages 77-91. Springer, 2002.

George A. Miller and al.

Wordnet 2.0, 2003.

http ://www.cogsci.princeton.edu/ wn/.

Tova Milo and Sagit Zohar.

Using schema matching to simplify heterogeneous data translation.

In Proceedings of the 24rd International Conference on Very Large Data Bases,
pages 122-133. Morgan Kaufmann Publishers Inc., 1998.

P. Mitra, G. Wiederhold, and J. Jannink.
Semi-automatic integration of knowledge sources.
In Proc. of the 2nd Int. Conf. On Information FUSION’99, 1999.

Prasenjit Mitra, Gio Wiederhold, and Martin Kersten.
A graph-oriented model for articulation of ontology interdependencies.
Lecture Notes in Computer Science, 1777 :86-+, 2000.

164

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

7]

78]

Ralf Moller and Volker Haarslev.

Description logics for the semantic web : Racer as a basis for building agent systems.
KI, 17(3) :10, 2003.

Michael Moore and Tatsuya Suda.

Adaptable peer-to-peer discovery of objects that match multiple keywords.
In SAINT Workshops, pages 402-407. IEEE Computer Society, 2004.

A. Napoli.
Une introduction aux logiques de description.
Technical Report RR No 3314, INRIA-LORIA, Nancy, 1997.

N.Boudjlida and C. Dong.

Enterprise Informations Systems, volume VI, chapter Federated Mediators for
Query Composite-Answers, pages 31-38.

Kluwer Academics Publishers, ISBN10 1-4020-3674-4, 2006.

Bernhard Nebel.

Teminological reasoning is inherently intractable (research note).

Artificial Intelligence, 43(2) :235-249, May 1990.

Ian Niles and Adam Pease.

Linking lexicons and ontologies : Mapping wordnet to the suggested upper merged
ontology.

In Proceedings of the IEEE International Conference on Information and Knowledge
Engineering, pages 412-416, 2003.
Ikujiro Nonaka and Hirotaka Takeuchi.

The Knowledge - Creating Company : How Japanese Companies Create the Dyna-
mics of Innovation.

Oxford University Press, Oxford, 1995.

OMG.

The Object Model Architecture Guide.

Technical Report 91.11.1, Revision 2.0, Object Management Group, September
1992.

Maurice Pagnucco and Norman Y. Foo.

Inverting resolution with conceptual graphs.

In Guy W. Mineau, Bernard Moulin, and John F. Sowa, editors, ICCS, Conceptual
Graphs for Knowledge Representation, ICCS ’93, Quebec City, Canada, August
4-7, 1993, Proceedings, volume 699 of Lecture Notes in Computer Science, pages
238-253. Springer, 1993.

Luigi Palopoli and al.

A unified graph-based framework for deriving nominal interscheme properties type
conflicts and object cluster similarities.

Fourth IECIS International Conference on Cooperative Information Systems, pages
34-45, September 02 - 04 1999.

165

79]

[30]

[81]

82

33

[84]

[85]

[36]

187]

38

139]

Massimo Paolucci and Katia P. Sycara.
Autonomous semantic web services.
IEEE Internet Computing, 7(5) :34-41, 2003.

Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman.

Medmaker : A mediation system based on declarative specifications.

In Proceedings of the 12th International Conference on Data Engineering (ICDE
'96), pages 132-141, Washington - Brussels - Tokyo, February 1996. IEEE Com-
puter Society.

Christine Parent and Stefano Spaccapietra.

Issues and approaches of database integration.

Communications of the ACM, 41(5es) :166-178, May 1998.

Ted Pedersen, Serguei V. S. Pakhomov, Siddharth Patwardhan, and Christopher G.
Chute.

Measures of semantic similarity and relatedness in the biomedical domain.

Journal of Biomedical Informatics, 40(3) :288-299, 2007.

Christof Peltason.

The BACK system - an overview.

SIGART Bulletin, 2(3) :114-119, 1991.

Vossen Piek.

Eurowordnet : A multilingual database with lexical semantic networks.

EuroWordNet General Document, 3, July 19 1999.

H. Pinto, A. Prez, and J. Martins.

Some issues on ontology integration.

In Proceedings of the 1JCAI-99 workshop on Ontologies and Problem-Solving Me-
thods(KRR5), pages In 18], 7-1 — 7-12, 1999.

WIKIMEDIA project.

Wikipedia, 2008.

http//www.wikipedia.org/.

Joachim Quantz and Carsten Kindermann.

Implementation of the BACK-system version 4.

Technical Report TUB-FB13-KIT-78, KIT Project Group Publications, September
1 1990.

Tue, 07 Nov 1995 19 :43 :08 GMT.

Erhard Rahm and Philip A. Bernstein.
A survey of approaches to automatic schema matching.
VLDB Journal : Very Large Data Bases, 10(4) :334-350, September 2001.

Howard Shrobe Randall Davis and Peter Szolovits.
What is a knowledge representation ?
Al Magazine, 14(1) :1993, 1993.

166

[90] G. A. Ringland and D. A. Duce.

Approaches to knowledge representation : an introduction (ed.).

Letchworth, Hertfordshire, England : Research Studies Press New York : Wiley,
c1988, 260 p. (Knowledge-based and expert systems series) CALL NUMBER :
QAT6.76.E95 A669 1988, 1988.

[91] M. Schmidt-Schauss and G. Smolka.
Attribute Concepts Description with Complements.
Artificial Intelligence Journal, 48(1) :1-26, 1991.
[92] Manfred Schmidt-Schaufs; and Gert Smolka.
Attributive concept descriptions with complements.
Artificial Intelligence, 48(1) :1-26, 1991.
|93| Valeria De Antonellis Silvana Castano.
Global viewing of heterogeneous data sources.
IEEE Transcation on Knowledge and Data Engineering, 13(2) :277-297, April 2001.
|94] Simple object access protocol (SOAP) 1.1.
W3C Note, May 2000.
[95] J. F. Sowa.
Conceptual graphs for a database interface.
IBM Journal of Research and Development, 20, July 1976.
[96] John F. Sowa.
Syntax, Semantics, and Pragmatics of Contexts.

In Gerard Ellis, Robert Levinson, William Rich, and John Sowa, editors, LNAI 95,
Conceptual Structures : Applications, Implementation and Theory, pages 1-15.
Springer-Verlag, Berlin, 14-18 August 1995.

Proceedings of the 3rd Int. Conf. on Conceptual Structures, (ICCS’95), Santa Cruz,
CA, USA.

|97|] John F. Sowa.
Knowledge Representation : logical, philosophical, and compuational foundations.
Brooks/Cole, Pacific Grove, CA, 2000.

|98] SUO.
The ieee standard upper ontology web site, 2003.
http ://suo.ieee.org.

[99] UDDI Consortium.
UDDI Technical White Paper, September 2000.
http ://www.uddi.org/pubs/Iru_ UDDI Technical White Paper.PDF.

[100] UDDI.org.

Uddi : Universal description, discovery and integration.
Technical White Paper, September 2003.
(http ://uddi.org).

167

|101]

[102]

[103]

[104]

[105]

[106]

107]

108

109

|110]

Jeffrey D. Ullman.

Information integration using logical views.

In Proceedings of the 6th International Conference on Database Theory, Delphi,
Greece, January 1997. Springer, Berlin.

P. Velardi, A. Cucchiarelli, and M. Petit.

Supporting scientific collaboration in a network of excellence through a semantically
indexed knowledge map.

In G. Morel G. Doumeingts, J. Muller and B. Vallespir, editors, Proceedings of
the 2nd International Conference On Interoperability for Entreprise Software
and Applications, pages 231-241, Bordeaux, France, March 2006. I-ESA’2006,
Springer Verlag.

Arjan Vernhout.

Management challenges in the competence-based organization.

Competence-based Management Website, 2007.

W3C.

Semantic Web, 2003.

http ://www.w3.org/2001 /sw.

W3C.

Web Ontology, 2003.

http ://www.w3.0org/2001/sw/WebOnt.

W3C.

Web Services, 2003.

http ://www.w3.org/2002/ws.

Gerhard Jurgen Wickler.

Using Expressive and Flexible Action Representation to Reason about Capabilities
for Intelligent Agent Cooperation.

PhD thesis, University of Edinburgh, 1999.

Gio Wiederhold.

Mediators in the architecture of future information systems.
IEEE Computer, 25(3) :38-49, March 1992.

Gio Wiederhold.

Mediators in the architecture of future information systems.

In Michael N. Huhns and Munindar P. Singh, editors, Readings in Agents, pages
185-196. Morgan Kaufmann, San Francisco, CA, USA, 1997.

Zhibiao Wu and Martha Stone Palmer.
Verb semantics and lexical selection.
In ACL, pages 133-138, 1994.

168

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

