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Abstract

This thesis is developed in the framework of the symbolic analysis of security protocols. The
contributions are represented by decidability and transfer results in the following directions which
are major topics in protocol verification:

e treatment of the cryptographic primitives: CBC encryption, blind signatures;
e security properties: strong secrecy, existence of key cycles;

e approaches for protocol security: construction of the secure protocols.

Thus, we showed the decidability (on the one hand) of the existence of key cycles for a
bounded number of sessions using a generalised constraint system approach, and (on the other
hand) of secrecy for protocols using the CBC encryption or blind signatures for an unbounded
number of sessions by using a refined resolution strategy on a new fragment of Horn clauses.

We also transferred protocol security from a weak framework towards a stronger frame-
work in the following directions. On the one hand, we showed that a weak property of secrecy
(i.e. reachability-based secrecy) implies under certain well-motivated assumptions a stronger se-
crecy property (i.e. equivalence-based secrecy). On the other hand, we built protocols secure
against active adversaries considering an unbounded number of sessions, by transforming proto-
cols which are secure in a non-adversarial setting.

Keywords: security protocols, decision procedures, CBC encryption, blind signatures, key cy-
cles, strong secrecy, constraint systems, Horn clauses, applied pi calculus.

Résumé

Cette these se situe dans le cadre de I'analyse symbolique des protocoles Les contributions sont
représentées par 'obtention de résultats de décidabilité et de transfert dans les directions suiv-
antes qui sont des thémes majeurs en vérification des protocoles :

e traitement des primitives cryptographiques : chiffrement CBC, signatures en aveugle;
e propriétés de sécurité : secret fort, existence de cycles de clefs;

e approches pour la sécurité : construction de protocoles strs.

Ainsi, nous avons montré la décidabilité (d’une part) de l'existence de cycles de clefs et
(d’autre part) du secret pour des protocoles utilisant le mode de chiffrement CBC ou des signa-
tures en aveugle.

Nous avons aussi transféré la sécurité des protocoles d’un cadre faible vers un cadre plus
fort dans les sens suivants. D’une part, nous avons montré qu’une propriété de secret faible
implique sous certaines hypothéses une propriété de secret plus forte. D’une autre part, nous
avons construit des protocoles siirs & partir de protocoles ayant des propriétés plus faibles.

Mots-clés: protocoles de sécurité, procédures de décision, chiffrement CBC, signatures en aveu-
gles, cycles de clefs, secret fort, systémes de contraintes, clauses de Horn, pi-calcul appliqué.
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Introduction

Communication protocols are ubiquitous nowadays, being essential for the correct functioning of
a wide range of applications involving electronic communicating devices. They are thus present in
our now common activities, like talking on the mobile phone, chatting and emailing, watching ca-
ble TV, or shopping on the internet. In many such applications security is of primary concern.We
want our communications to be private, our data to be unmodified during its transmission, to
be sure of the identity of our communication partner.

Security protocols are then designed to ensure such goals, and they use cryptography to
obtain the basic building bricks. However, even if these bricks are perfectly secure, the way they
are combined in order to obtain a protocol is very important. Indeed, many protocols which were
believed to be correct were later found to have flaws (not at all related to cryptanalysis). These
flaws can thus be used by malicious entities, and can lead to major negative consequences once
the protocol is already deployed, as the same flaw can be used over and over again until a patch
is released. It is hence particularly important to perform careful analyses of security protocols
in order to be sure that they do achieve the goals they are designed for.

1 Cryptographic protocols

1.1 Communication protocols. Terminology

A simple communication protocol is the one used when two people are meeting for the first time,
and may be described as follows:

A= B: “Hello,I am A.
B = A: “l am B. Nice to meet you.”

We see that a protocol is a sequence of rules, each one specifying the sender (A in the first
rule), the receiver (B in the first rule), and the message sent by the sender. In a protocol each
participant plays a certain role. Here there are two: the initiator A and the responder B. The
symbols A and B (abbreviations for Alice and Bob) in the right hand side of rules are generic
names which denote the identities of the initiator and the responder respectively. In specific
situations we need to instantiate this description (that is, the generic parts) to obtain the actual
sequence of exchanged messages, thus talking about a session of the protocol. We may also
instantiate only some role thus obtaining a role session. Participants, either generic or concrete,
are also called agents, principals, or parties.

For example the role of Bob may be played by b, where b is some agent identity. Nothing
prevents b from playing, in another session, the role of A. Moreover these sessions could be run
concurrently, in other words their rules may be interleaved. For example, the following ezecution

11



Introduction

is possible:

(1).1 a(A) = b(B) : “Hello, I am a.”
(2).1 b(A) = ¢(B) : “Hello, I am b.”
(2).2 ¢(B) = b(A) : “I am c. Nice to meet you.”
(1).2 b(B) = a(A) : “I am b. Nice to meet you.”

Here the numbers in parenthesis denote the session, and the numbers that follow denote the
index of the rule within a session. Also, b(A) denotes that the participant b is playing the role
of Alice. A run of the protocol is the execution of a single session.

Each protocol is designed to achieve a certain goal. In the example above the goal is that
the participants introduce themselves. The goal can be expressed by one or more properties the
executions of the protocol should satisfy. Properties are generally dependent on the environment
in which the protocol is deployed. Suppose, using the same example, that the participants want
to have a confidential conversation. If their conversation takes place in a public place or over
the telephone, the communication is clearly unsafe, since a malicious entity can listen to the
conversations (without the participants even noticing it).

The situation is much the same when protocols are deployed over computer networks, where
the endpoints are programs (or computers). Consider for example the Simple Mail Transfer
Protocol, which can be schematically! described by:

A= S : “mail from:”, A, “rcpt to:”, B, “data”, msg, “.”
S= B: msg

4

Here ‘) denotes the concatenation of messages and S denotes the role of the mail server. A
user A simply specifies the sender (himself), the intended recipient B, and the content msg
of the email. The main goal of this protocol is to send mail over the Internet, its correctness
being formulated with respect to this requirement. However we see that the content of a mail
is not protected from disclosure or tampering, and the participants need not be the ones they
pretend to be (e.g. a can send a message starting with “mail from: ¢” instead of “mail from: a”).
Indeed, malicious actions, like eavesdropping, tampering with, or forging messages, can be easily
performed by a corrupted server, a malicious agent, or a packet sniffer. Hence it is desirable to
ensure properties that show the impossibility of such actions. Such properties which rely on the
existence of a malicious environment are called security properties and protocols which aim at
guaranteeing them are security protocols.

1.2 The intruder

Security properties are particularly important mainly when the environment is unsafe. Hence
when talking about security protocols we always assume a malicious environment. Concretely
this environment takes the form of an agent with special capabilities, called the intruder and
denoted I, also known as adversary, attacker, or penetrator. It is assumed that he can listen
to the communication and hence knows all the messages that were sent on the network. If his
capabilities are restricted to this one, we talk about a passive intruder. An active intruder can
do much more. R. Needham and M. Schroeder [NS78| first described the capabilities of an active
intruder:

We assume that an intruder can interpose a computer in all communication paths,
and thus can alter or copy parts of messages, replay messages, or emit false material.

!This description is approximate since each of the three parts of the first message are in fact sent sequentially
and are followed by acknowledgements of the server; also, the second rule is not part of the protocol itself.

12



1. Cryptographic protocols

An intruder (being an agent) can play a role in the protocol, but he need not follow the rules of
the protocol, as honest agents do. Moreover, he knows all the private data of corrupted agents,
thus being able to play their roles without the others agent’s notice. Also it is assumed that
dishonest agents (i.e. that do not follow the protocol) are part of the malicious environment and
are hence represented by the intruder. In other words, dishonest agent and corrupted agents are
the same concept.

1.3 Security properties

Secrecy and authentication are basic properties that are required in many generic applications.
Some specific applications however need properties tailored to their needs. For example, in
contract-signing protocols we may ask for properties like fairness and non-repudiation, while in
voting protocols anonymity (of the voters) and coercion-resistance are needed. Specifying and
analysing these properties may also require dedicated techniques (for example from game theory).

Secrecy This property usually specifies that some messages should be known only by some
agents, in particular they should not be known by the intruder. However we sometimes also
require that the intruder is not able to infer anything about the secret messages. This is equivalent
to saying that the intruder is not able to distinguish between executions of the protocol in which
the secrets were replaced by arbitrary messages. To differentiate between the two versions of
secrecy we call the former one simple secrecy and the latter one strong secrecy. Still another
variant is when some values are to remain secret after revealing some other secret values, a
property known as forward secrecy.

Authentication This property holds if the agents have proven their identity (to some other
agents) in some way. Depending on the mechanism used to achieve it and/or on how much
assurance is needed there can be many variants of this property. For example, it could be stated
in an absolute way: the agents are right about the identities of their communication partners;
or, depending on the mechanism that is used for authentication: the agents agree on some values
(what was sent is what was received).

We have mentioned that the intruder has control over the communication, in particular he
knows and is able to modify the messages which are sent over the network. Hence security prop-
erties could not be satisfied if we didn’t have tools for ensuring the confidentiality and integrity of
messages. Fortunately such tools exist, being provided and guaranteed by cryptography. Security
protocols are thus also called cryptographic protocols.

1.4 Cryptographic primitives

Cryptographic tools have existed from ancient times, serving mostly military purposes, but it
is only with the advent of electronic devices that cryptography has become an established and
general purpose field (see, e.g., [MV096, Sch93] for introductory texts).

Cryptographic primitives are the basic operations from which security is built. They operate
on bitstrings. The most used operations are encryption, which provides message confidentiality,
hashing, which assures message integrity, and digital signing, which provides message origin
authentication.

Encryption hides information, while decryption reveals it. These operations are parame-
terised by keys which allow the same schema to be used by different parties. The information in
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Introduction

clear used as input to the encryption algorithm is called plaintext, while the encrypted informa-
tion (i.e. the output) is called ciphertext.

Symmetric encryption In such encryption schemes the same key is used to encrypt and to
decrypt a message. Hence two parties share a key in order to be able to communicate securely,
thus the alternative name shared-key encryption. The symmetric encryption of the plaintext M
with the key K is denoted {M } k.

Encryption of a message is usually done by cutting the message into several blocks of fixed-
length and then using a block cipher (like DES or the more recent AES). The encryption mode
specifies the way the block cipher is used to obtain the ciphertext. The simplest mode, called
ECB (electronic codebook), operates by encrypting each block independently, the ciphertext
being the concatenation of the results, that is the encryption of the message block sequence
PP, --- P, (where some bits may be added to P, such that every block has the same length)
with the key K is {{Pl}K{PQ}K s {Pn}K

In other modes, like the CBC (cipher-block chaining) mode, the encryption of a block depends
on the encryption of the previous block. In the CBC mode (illustrated in Figure 1), the encryption
of PPy --- P, with K is C1Cy---C,, where Cy = IV (initialisation vector) and C; = {C;—_; @
P}k for i > 1, with @ being the exclusive or (XOR) operation on bits.

]

C1 C,

Figure 1: CBC encryption mode.

Encryption in the CBC mode has the following prefiz property: if C1Cs---CiCiyq---Cp =
{PPy-- PPty P}k then C1Cy---C; = {PiPy--- P} . That is to say that one (e.g. an
intruder) can get { P} from { P, P’} if the length of P is a multiple of the block length used
by the cryptographic algorithm. Note that encryption in the ECB mode also has the prefix

property.

Asymmetric encryption In such encryption schemes, a.k.a. public-key encryption schemes,
each user a has a pair of keys, the public key ek(a), used for encryption, and the private key dk(a),
used for decryption. Public keys are made available to anyone, while private keys are known only
by the owner. The encryption of a message M is this time denoted {{M[}ex(). The security of
public-key encryption relies on the difficulty to solve problems like integer factoring (as for the
RSA system [RSAT78|) or the discrete logarithm problem (as for the ElGamal system [Gam85]).

Symmetric encryption algorithms are several orders of magnitude faster than asymmetric
ones. However, they are impractical in large networks due to the large number of keys needed
to be exchanged a priori. Hence, the two systems are complementary and are frequently used
together: public-key encryption is first used for establishing a session key, which is used in
subsequent symmetric encryptions.

14



1. Cryptographic protocols

Digital signatures Digital signature schemes are used to bind a message with an entity: they
compute a digital signature from the message and a private key of the entity (signing key).
Given a signature and a verification key, which is public, one can check the authenticity of the
signature. In other words, anyone can verify a signature but only the possessor of the signing
key can sign.

In certain situations, for example in voting protocols, it is useful that a party signs messages
without knowing them. This can be done using blind signatures schemes. For instance, such a
scheme allows an agent (e.g. a voter) to have a message (e.g. a vote) signed blindly by an another
entity (e.g. an administrator). In a typical implementation, the message is first blinded and then
signed, to obtain a blind signature. Later on, the inverse operation of blinding, unblinding, can
be applied on the blinded signature to obtain a valid signature on the initial message. These
operations are illustrated in the Figure 2 (where m is the message, r is the “blinding key”, and

k is the signing key).

Figure 2: Blind signatures.

Hashing A hash function associates a (short) fixed length bitstring to an arbitrary length
message. In cryptographic applications hash functions are one-way operations. Using hash
functions, data integrity of a message can be verified easily, provided a hash of that message was
securely stored. Indeed, it suffices to compute again the hash of the message and compare it
with the stored one.

Cryptographic primitives may be probabilistic (or deterministic) depending whether some
randomness is used (or not) when applying the primitive. Thus, when applied twice to the same
inputs a probabilistic primitive gives two different outputs (except with negligible probability).

Besides cryptographic primitives, other basic elements present in security protocols are nonces
and timestamps. Nonces are random numbers used no more than once for the same purpose, up
to some negligible probability. Nonces and timestamps are intended to provide uniqueness or
timelineness guarantees.

1.5 Attacks
A famous cryptographic protocol is the Needham-Schroeder public key protocol? [NS78|:

A= B: {N Altex(p)
B=A: {No NyJtex(a)
A= B: {[Ny}ex(n)

The goal of the protocol is the mutual authentication between A and B, meaning that if Bob has
finished its run then he indeed played his role with Alice (as he believes he did), and symmetrically
for Alice. She initiates a session by creating a fresh nonce N,, concatenating it with her identity,
encrypting the result with the public key of Bob and sending the encrypted message to him.
Bob answers by copying the received nonce (the first component obtained after decrypting the

2Though over-cited, we believe that it still serves best as a pedagogical example.
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Introduction

received message with his private key), appending his own freshly generated nonce, encrypting
the message with the public. Finally, Alice sends back to Bob his nonces encrypted with his
public key. The role of nonces is to ensure authentication: only Bob can read the first message
and find out the value of N,, hence only he could have sent the second message. Similar reasoning
applies for Np.

Consider however the following execution:

(1)'1 A=1 {[NavA]}ek(I)
(2)'1 I(A) = B : {[Nav A]}ek(B)
(2).2 B = I(A) : {[Na, Nolteka)
(1)-2 I'=A : {NaNplera)
(1).3 A=1T {INoJ}ek(r)
(2).3 I(A)=B : {NJlek(B)

Alice is starting a communication with a corrupted agent I (she is probably unaware of the agent
being corrupted). The agent I is able to build the second message and to impersonate Alice to
Bob. Thus Bob answers and his message is forwarded to Alice as coming from I (steps 3 and 4).
Alice continues as expected (step 5), and again I impersonates Alice to Bob (step 6). Hence at
the end of his run, Bob believes that he is talking with Alice while in fact he is talking with I.
So the authentication of Alice to Bob doesn’t hold.

The above description corresponds to an attack, that is a sequence of actions that the intruder
performs in order to falsify a certain security property, that is to break it. Remark that the attack
doesn’t rely on the weakness of any of the cryptographic primitives, which are supposed to be
secure, but on the logical flaws of the protocol (there is no information in the second message to
deduce where the message comes from).

The above attack is an example of a man-in-the-middle attack. There are also other types
of attacks, like:

e replay attacks, when the flaw is obtained by replaying some old messages (i.e. that have
been sent previously, in the same or in other protocol runs);

o type-flaw attacks relying on a message of a certain type (e.g. an identity) being misinter-
preted as a message of another type (e.g. a nonce);

e guessing attacks in which some secret message (e.g. a password) can be relatively easy
guessed (because its set of possible values is small) and the guess can be checked for
validity.

Coming back to the above protocol, the creators of the protocol were aware that it may be
“prone to extremely subtle errors” and acknowledged that techniques to verify the correctness
of security protocols are strongly needed. Indeed even though man-in-the-middle attacks were
known before, it took 17 years to find such errors, the mentioned attack being discovered by
G. Lowe [Low96].

2 Analysis of cryptographic protocols

Development of protocols. Mainly two steps are performed before the deployment of a
cryptographic protocol: the first one is the design of the protocol and the second one is the
validation of the protocol. There is an implicit loop here, the design being refined until the
protocol is finally considered secure. There is thus a tight dependency between these two steps.
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The design is guided by the security goals the protocol should verify and by the context in
which it is deployed. The context, which can be given by the network structure (e.g. private
vs. public channels, cable vs. wireless networks), the number of participants, their architecture
(e.g. servers vs. clients, programs vs. hardware devices) and so on, imposes a number of con-
straints, like efficiency or limited resources. Hence the constraints can vary greatly, and this is a
reason why there are plenty of protocols for achieving the same security goals.

As we have seen in the above example, informal arguments are not enough to validate secure
protocols. And it is not a singular example. Indeed many of the released security protocols have
flaws whether it is about “toy” protocols (used for study in the academic community) e.g. [Low96,
CJ97, Spol, or about “real” protocols (used by the industry) as in [CJT106]. It is hence clear
that rigorous analysis methods are mandatory to validate security protocols. Moreover, due to
the large number of protocols and variants of them, and also due to the complexity of their
analysis, (full or at least partial) automation is also a strong desiderata, both during the design
process and after their release.

Two “worlds” for verification. For about 20 years (from late 70’s to late 90’s) two distinct
and seemingly unrelated approaches have been used for rigorous validation of protocols. The
models that these approaches use are called on the one hand symbolic models (a.k.a. Dolev-
Yao, formal or abstract models), and the other hand cryptographic models (a.k.a. probabilistic,
computational or concrete models). In the symbolic models, messages are modeled by elements
(or equivalence classes) in a term algebra that the adversary can manipulate using a fixed set of
symbolic operations. Thus these models introduce abstractions, which allow simpler reasoning
about security of protocols, but are subject to questions about their faithfulness with respect to
reality. In the cryptographic models, messages are bit strings and the adversary is an arbitrary
probabilistic polynomial-time Turing machine. Being close to reality, results in these models
yield strong security guarantees, but the validation proofs are often quite involved and only
rarely suitable for automation (see e.g. |[GM84, BR93|). It is only recently that automatic tools
have appeared [BL06, Bla07] for cryptographic models.

The symbolic approach From now on we focus on the symbolic “world” (although references
to the other world may occur).

Following previous work of R. Needham and M. Schroeder [NS78], D. Dolev and A. Yao [DY83]
performed the first analysis in a symbolic model, hence the alternative name of this approach.
A very important implicit abstraction introduced by their work is that encryption is perfect
in the sense that no (not even partial) information about the plaintext can be obtained from
a ciphertext without knowing the decryption key. When generalising this hypothesis to arbi-
trary cryptographic primitives we talk about the perfect cryptography hypothesis. Subsequently,
S. Even and O. Goldreich [EG83| showed that secrecy is undecidable (even for protocols without
nonces). This showed that the analysis is indeed a difficult problem, and that further abstractions
or restrictions need to be formulated to tackle the problem.

Starting from these seminal works a new topic has emerged: the symbolic verification of
security protocols, with the objectives: rigorous, automatic and faithful analysis of protocols.
The results can be classified in number of ways: chronologically, by the class of protocols, by the
set of primitives, by the type of attack or by the security property under study, by the aim of
the analysis, by the model or by the method used in analysis, by the level of automation, etc.
We will try in the following to sketch some of these criteria, focusing only on some of them.

17



Introduction

2.1 Symbolic verification of security protocols

Symbolic approaches mainly focused, as we do, on key exchange and authentication protocols.
However, as the applications of protocols have diversified and the verification methods have
become more mature, voting protocols [DKRO06|, contract-signing protocols [KKWO05]|, recur-
sive protocols [KKWO07|, web-services protocols [BFG04, CLRO7] etc. are being analysed using
symbolic methods.

2.1.1 Security properties

A first difficulty of symbolic verification is to formally express the security properties that
are expected. As we have seen, even a basic property such as secrecy admits two differ-
ent acceptable definitions, namely reachability-based (simple) secrecy and equivalence-based
(strong) secrecy, and these notions seemed unrelated [Aba00]. However, a quite surprising re-
sult (see [CWO05]) states that the cryptographic counterparts of the two notions (simple secrecy
can be translated into a similar reachability-based secrecy notion, and strong secrecy is close to
indistinguishability—a standard security definition in cryptography) are related: cryptographic
simple secrecy actually implies indistinguishability in the cryptographic setting.

Authentication has even more variants. They are often formulated by means of corresponding
assertions [WL94|. G. Lowe has given a hierarchy of formulations [Low97]|, going from aliveness
(which only requires that, when the authenticating agent finishes a run, the authenticated agent
has at least participated in some run) to injective agreement which requires that to each run of
the authenticating agent there is a unique corresponding run of the authenticated agent such
that the two agents agree on some values.

Simple secrecy and authentication properties are usually expressed by predicates on traces
(sequences of states and/or actions describing the execution of the system composed by a protocol
and its environment), which have been intensively studied in the context of concurrent systems
(but without considering security). Nevertheless, many other properties, like strong secrecy,
anonymity, fairness, non-repudiation are not trace properties. The techniques used to treat
these properties are usually different, and more subtle and involved. Some of these properties
have only recently received proper formal definitions (see [CDE05] for guessing attacks, [KKT07]
for properties of contract-signing protocols, or [DKR06| for properties of voting protocols). We
mainly focus in this thesis on trace properties and in the rest of this section on simple secrecy.

2.1.2 Primitives and their properties

While the set of studied primitives is rather standard (symmetric and/or asymmetric encryption,
digital signatures), it is the amount of faithfulness in capturing their properties that varies.
Many cryptographic functions admit simple algebraic properties. For example, concatenation
is associative, encryption is homomorphic in ECB mode, has the prefix property in CBC mode
etc. In standard Dolev-Yao models, which assume the perfect cryptography assumption, these
properties are ignored. For example, concatenation is modeled by pairing (denoted (m,m’))
which is non-associative, that is (mq, (me, ms)) # ((m1, ma), ms). These algebraic properties can
be exploited by intruders, and thus attacks may be missed if they are not taken into account.
Moreover, such properties may be crucial too for a proper working of the protocol, as it is
the case for some voting protocols which explicitly rely on the properties of blind signatures.
Therefore, a lot of recent work has focused on weakening the perfect cryptography assumption,
e.g. [AF01, CLS03, CD05, CRO6].
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2.1.3 Approaches

Security protocols are difficult to verify due to their infinite nature, given by several elements:
the exchanged messages can have any size, they can use any number of new keys and nonces,
the number of participants and sessions are not bounded. Indeed, focusing on reachability-based
secrecy, several undecidability results show that these elements contribute to the difficulty of the
problem. Thus, the problem remains undecidable even if one bounds the size of messages (see
e.g. [DLMS99, AC02]), or the number of nonces generated during the execution of the protocol
(see e.g. [CCO5]). One then needs to find alternative approaches to the generic verification
problem.

Search for attacks Since most attacks involve only a few messages and sessions, an approach
is to first search for attacks, by considering only a subset of all the possible executions.

Indeed, most of the first automatic tools for protocol analysis were model-checkers (like
FDR [DNL99|, Mur¢ [MMS97], or Brutus [CJMO00]) which did discover many interesting attacks
(see e.g. [Low96]). Such tools represent protocols as finite-state machines (and security prop-
erties by temporal logic formulas), usually by considering only messages of bounded size and a
finite number of sessions. Another possibility for bounding the search space is to consider, as
in [DLMO04|, messages of bounded size and a finite number of nonces, which leads to searching
for the secret in a finite intruder knowledge.

Assuming a finite number of sessions, but no bound on the message size, the search space
becomes again infinite. The standard way to approach this setting is to use “symbolic” tech-
niques (which, intuitively, use symbolic states to represent sets of concrete states), as first
suggested by the work of A. Huima in [Hui99]. The secrecy problem was then proved to be
NP-complete in this setting by M. Rusinowitch and M. Turuani [RT01]. The same setting was
formalised by J. Millen and V. Shmatikov in [MS01] as a constraint system problem (an attack
is expressed as a sequence of constraints that the intruder should solve). To solve constraint
systems, these are first transformed to simpler constraints, usually called solved forms, by using
a small set of simplification rules (testing the satisfiability of these constraints is much more
easy). Compared to [RTO01], presenting the decision procedure using a small set of simplifi-
cation rules makes it more easily amenable to further extensions and modifications. Indeed,
constraint systems have become the standard model when considering a bounded number of
sessions (see e.g. [CLS03, BCDO07, DLLT07, CDLO06| for results concerning algebraic properties
developed within this framework.) The same approach is used to handle arbitrary trace proper-
ties in [CSE05, Cor06], and equivalence-based properties like strong secrecy and guessing attacks
in [Bau05, Bau07]. Also, several tools [CE02, Tur06] have been developed for verifying protocols
for a bounded number of sessions.

Proof of correctness Searching for attacks is an effective method, but it does not guarantee
the correctness of a protocol. And, as we saw, the automatic verification of arbitrary protocols
is not possible. Then, one can either renounce full automation, or use semi-decision procedures,
or restrict the considered class of protocols, or still, perform some approximations (or consider
combination of these possibilities).

Indeed, one of the first tools which does not restrict in any way the model is the NRL protocol
analyser [Mea96]| of C. Meadows. However, the user needs to interact with and “help” the tool in
order to obtain an answer. In the same vein are the approaches which use theorem provers, like
the inductive approach of L. Paulson [Pau98| which uses Isabelle to prove security properties.
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If one does want full automation and no loss of generality then one needs to cope with
semi-decision procedures which finish if there is an attack (and say so), but need not finish if the
protocol is correct (and thus may fail to say so). In this category we find tools like Casrul [JRV00]
or Athena [SBPO01].

However, it is often the case that semi-decision procedures take too long before giving an
answer (if they ever would). Then another way to proceed is to introduce approximations or ab-
stractions in the model. These approximations need to be correct: if the protocol is proved secure
using them then it is indeed secure (i.e. without them). The drawback is that approximations
may introduce false attacks. An example of such analysis is the use of tree automata to recognise
an over-approximation of the intruder knowledge, as it has been done in [Mon99, GK00, Gou00|
or in the tool TA4SP [ABB'05]. Vice-versa, one can under-approximate the infinite set of “safe”
messages as it has done in the Hermes tool [BLP03| by using a symbolic representation based on
patterns. Still another example is the use of Horn clauses to represent (rules of) protocols. Horn
clauses usually abstract away sessions and order of execution of rules, since they can be used any
number of times. However, the advantage of this modeling is that one can then use efficient res-
olution strategies to search for proofs. This approach was pioneered by Ch. Weidenbach [Wei99],
and it gave rise to an efficient tool, ProVerif [Bla01]. Moreover, reference implementations of
protocols written in C or ML can be verified, by extracting a set of Horn clauses which is then
passed on to tools like SPASS, h1, or ProVerif (see respectively [GP05]| and [BFGT06]).

Even if the problem is undecidable in general one can still hope that it is decidable for a
restricted (but still large) class of protocols. And indeed several such classes have been exhibited.
A first decidability result was obtained in [DEK82] for the class of ping-pong protocols, protocols
in which participants have no memory and can thus only apply some sequences of unary operators
on the last received message and send the result back. This is however not a realist setting. Next,
in the context of model-checking finite representations of protocols, G. Lowe showed in [Low99|
that under strong restrictions on protocols this method is complete. Such restrictions imposed
for example the absence of “blind copies”; a blind copy is the transfer by a participant of an
unknown data from the received message to the sent message. In [CLCO03a], this restriction
was relaxed by allowing one blind copying, but the analysis only considered a finite number
of nonces. Ramanujam and Suresh [RS03], considering again no blind copies, showed that for
tagged protocols (protocols for which all encryptions in the specification contain a different
tag, and which are thus distinguishable also in the execution) secrecy is decidable, even for
protocols with nonces. A similar result [BP03b] is obtained for a simpler tagging scheme, but in
the context of Horn clauses (which, as we mentioned, introduce approximations), showing that
ProVerif always terminates for tagged protocols. All these decidability results show that a class
of more “realistic” protocols for which the secrecy problem to be decidable could still be found.

Correctness by design A completely different approach is to avoid the verification prob-
lem, simply by designing from the start provably correct protocols. To our knowledge, in the
cryptographic world this was not explored mainly because of the difficulty to produce proofs
of correctness. Indeed, only a few protocols are having such proofs in a cryptographic set-
ting [War05, BP03a, BCJT06] (the situation is likely to change due to the development of auto-
matic tools in this setting). However, a similar but slightly different approach is rather pervasive
in cryptographic design: one starts with the design of a simple version of a system intended to
work in restricted environments (i.e. with restricted adversaries) and then obtain, via a generic
transformation, a more robust system intended to work in arbitrary environments. For example,
Goldreich, Micali, and Wigderson show how to compile arbitrary protocols secure in the presence
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of participants that honestly follow the protocol (but may try to learn information they are not
entitled to) into protocols secure in the presence of participants that may arbitrarily deviate
from the protocol [GMWS87|. Bellare, Canetti, and Krawczyk have shown how to transform a
protocol that is secure when the communication between parties is authenticated into one that
remains secure when this assumption is not met [BCK9S|.

In the symbolic world, few tools have been developed having as goal the automatic synthesis
of secure protocols. For example, Perrig and Song [PS00] describe a tool which mainly works
by exhaustively searching the protocol space and invoking Athena to test for the correctness of
each generated protocol. However, due to the huge search space, the tool is limited to generate
only three party protocols.

Symbolic approaches that focus on modular protocol design include the following ones. Datta,
Derek, Mitchell, and Pavlovic [DDMPO05] propose a framework for deriving security protocols
from simple components such as nonces, certificates, encrypted or signed messages. Security
properties are thus added to a protocol through generic transformations. M. Abadi, G. Gonthier,
and C. Fournet [AFG02| give a compiler for programs written in a language with abstractions
for secure channels into an implementation that uses cryptography with the aim to eliminate
cryptographic security analysis in involved settings.

Finally, let us recall also that an often used technique is to patch flawed protocols and then to
argue that the patched protocol is this time correct. Recently, this method has been automated
in [LMHO07].

2.2 Linking the symbolic and cryptographic approaches

As we have mentioned, two independent approaches have been developed for the analysis of
security protocols. Nevertheless, in the late 90’s these approaches have started to be related
(see [PSWO00, LMMS98, AR00| for some seminal works in this direction). For example, one
particularly interesting path, opened by M. Abadi and P. Rogaway [AR00, AR02], consists in
proving that the abstraction of cryptographic primitives made in the Dolev-Yao model is correct
as soon as strong enough primitives are used in the implementation. The goal is to obtain the
best of both worlds: relatively simple, automated security proofs that entail strong security
guarantees. For example, in the case of asymmetric encryption, it has been shown [MWO04a] that
the perfect encryption assumption is a sound abstraction for encryption schemes satisfying the
IND-CCA2 property, which corresponds to a very high and well-established security level.
However, it is not always sufficient to find the right cryptographic hypotheses. Symbolic
models may need to be amended in order to be correct abstractions of the cryptographic models.
This is in particular the case for symmetric encryption. For example, in [BP04], M. Backes and
B. Pfitzmann consider extra-rules for the formal intruder in order to reflect the ability of a real
intruder to choose its own keys in a particular manner. A more widely used requirement is to
control how keys can encrypt other keys. In a passive setting, soundness results [AR02, MWO04b]
require that no key cycles can be generated during the execution of a protocol. Key cycles
are messages like {k}r or {k1 }ry, {k2 )i, where a key encrypts itself or more generally when
the encryption relation between keys contains a cycle. Such key cycles have to be disallowed
simply because usual security definitions for encryption schemes do not provide any guarantees
when such key cycles occur. In the active setting, the typical hypotheses are even stronger. For
instance, in [BP04, JLMO05] the authors require that a key k never encrypts a key generated
before k, or, more generally, that it is known in advance which key encrypts which other key.
More precisely, the encryption relation has to be compatible with the order in which keys are
generated, or more generally, it has to be compatible with an a priori given order on keys. We
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note that the absence of key cycles and related properties are not only trace properties but
also message structure properties, and thus cannot be treated by standard techniques for trace
properties.

2.3 Decidability and transfer results

We have already seen that one can attack the verification problem from different angles: either
directly by searching for decidability results, or indirectly by transferring a problem from one
setting to another setting in which the problem is solved or simpler. This was the case for
transformations of protocols which are (in)secure in one setting to protocols which are secure
in a stronger setting; or for soundness results of symbolic models with respect to cryptographic
models. Let us mention one more such example.

There are many different models in which one reasons about security protocols, like process
algebras (spi calculus, applied pi calculus, and variants), strand spaces, multiset rewriting, first-
order logics etc. It is generally accepted that a characterisation of security protocols obtained
in one model also holds in different models. For example, we say that the secrecy problem is
NP-complete for a bounded number of sessions but we do not specify the model in which this was
proved. However, only a few rigorous comparisons between models exist [CDLT00, AB02, Bla05|.
We can also see them as transfer results.

3 Contributions and plan of the thesis

In a phrase, the contributions of this thesis consist in improving the state of the art in the
symbolic verification of cryptographic protocols while studying less explored features of in the
following directions:

e cryptographic primitives: CBC encryption, digital blind signatures;
e security properties: strong secrecy, existence of key cycles;

e approaches to security: transferring security from weaker to stronger settings, transforming
protocols.

These features have been studied before, but (at least at the beginning of this thesis) they
represent(ed) a relative small fraction of the vast body of literature on cryptographic protocols
which mainly focused on:

e cryptographic primitives: Dolev-Yao primitives (i.e. mainly pairing and perfect encryption);
e security properties: simple secrecy, authentication;
e approaches to security: direct verification of existing protocols.

We have thus also tackled (though not directly) two important related topics: weakening
the perfect cryptography hypothesis (by considering the prefix property of encryption in CBC
mode), and linking the symbolic and cryptographic approaches (by considering the existence of
key cycles). Others, for example G. Bana |Ban05|, S. Delaune [Del06|, P. Lafourcade |Laf06|,
P. Adao [Ada06], R. Janvier [Jan06], L. Mazaré [Maz06], M.Baudet [Bau07|, have recently focused
directly on these topics in their theses.
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Plan of the thesis After giving the necessary preliminary definitions, we present in Chapter 1
how security protocols are modeled. The particular model we choose is inspired from the symbolic
model of D. Micciancio and B. Warinschi [MW04a| and is rather standard for modeling an
unbounded number of sessions. It has the advantage of being intuitive and explicit (w.r.t. to the
actions of the intruder and of other agents). Whenever we work in a different model we describe
briefly its relationship with this reference model.

According to the classification given in the previous section we separate our contributions
by the approach: a direct one (obtaining decidability results) and an indirect one (obtaining
transfer results). Each main contribution is then presented in different chapters, as shown next.

3.1 Part I. Decidability results
3.1.1 Chapter 2. Deciding the existence of key cycles

A first contribution is an NP-complete decision procedure for detecting the generation of key
cycles during the execution of a protocol, in the presence of an active intruder, for a bounded
number of sessions. This procedure deals with several versions of the definition of key cycles
(for example, key cycles a la Abadi-Rogaway, or key orders a la Backes). We therefore provide
a necessary component for the approach which consists in proving security properties in the
cryptographic world by starting from security proofs of these properties in the symbolic world
(and using soundness results like the ones presented in Section 0.2.2 in order to achieve this).

We have obtained the decidability of key cycles by generalising the constraint system ap-
proach. Indeed, we use the same simplification rules as in [CLS03], but in addition we show that
this method is applicable to any security property that can be expressed as a predicate on the
protocol trace and the agent memories. Compared to [CLS03], the framework is also extended
to more general primitives, since we consider sorted terms, symmetric and asymmetric encryp-
tion, pairing and signatures (but we do not consider algebraic properties). Moreover, we prove
termination in polynomial time of the (non-deterministic) decision procedure. This establishes
the complexity of the constraint system approach, and also of the problem under study (modulo
its complexity on solved forms).

We further illustrate the applicability of our generic approach, by giving an alternative and
simple proof of the co-NP-completeness of secrecy for protocols with timestamps. We actually
retrieve a significant fragment of the decidable class identified by L. Bozga et al [BELO04|.

3.1.2 Chapter 3. Deciding a fragment of Horn clauses for protocols with CBC
encryption and blind signatures

We propose a resolution strategy for deciding a fragment of first-order logic that allows one to
incorporate the prefix property of CBC encryption in our protocol modeling and to prove the
absence of attacks exploiting this property. The same fragment applies to abstract properties of
blind signature schemes. The approach follows the line of [CLCO03a] but requires a refined strategy
in order to eliminate the additional clauses generated by resolution due to the new properties. As
a consequence, we obtain that secrecy of cryptographic protocols can be proven for an unbounded
number of sessions, in the case for example of CBC encryption and blind signatures, when nonces
are abstracted by constant terms and at most one blind copy is performed at each transition.

We apply the verification algorithm to Needham-Schroeder symmetric key protocol, which is
subject to an attack when the CBC encryption mode is used [PQ00]. We show how to fix the
protocol and we prove the correction of the resulting protocol. The latter is done automatically,
as we have extended a prototype implementation of the procedure in [CLC03al.
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3.2 Part II. Transfer results
3.2.1 Chapter 4. From simple to strong secrecy

Motivated by the result of [CW05] and the large number of available systems for simple secrecy
verification, we initiate a systematic investigation of situations where simple secrecy entails strong
secrecy. This happens in many interesting cases.

We offer results in both passive and active cases in the setting of the applied pi calcu-
lus [AF01]. We first treat the case of passive adversaries. We prove that simple secrecy implies
strong secrecy, as long as probabilistic primitives are used, and if the secret is not used to en-
crypt messages. The former condition is not a restriction since probabilistic encryption is de
facto the standard in almost all cryptographic applications. The latter hypothesis is sustained
by counter-examples. Next, we consider the more challenging case of active adversaries. We give
sufficient syntactic conditions on the protocols for simple secrecy to imply strong secrecy. Intu-
itively, we require in addition that the conditional tests are not performed directly on the secret
since such tests may provide information on the value of this secret. We again exhibit several
counter-examples to motivate the introduction of our conditions. An important aspect of our
result is that we do not make any assumption on the number of sessions: we put no restriction
on the use of replication. In particular, our result holds for an unbounded number of sessions.

The interest of this contribution is twofold. First, conceptually, it helps to understand when
the two definitions of secrecy are actually equivalent. Second, we can transfer many existing
results (and the armada of automatic tools) developed for simple secrecy. For instance, since
the simple secrecy problem is decidable for tagged protocols for an unbounded number of ses-
sions [RS03], by translating the tagging assumption to the applied-pi calculus, we can derive a
first decidability result for strong secrecy for an unbounded number of sessions for the class of
protocols satisfying our conditions. Other decidable fragments might be derived from [DLMS99]
for bounded messages (and nonces) and [AL00] for a bounded number of sessions. We exemplify
our approach by showing strong secrecy of three protocols from the literature (starting from the
known fact that these protocols satisfy simple secrecy).

3.2.2 Chapter 5. A transformation for obtaining secure protocols

Finally, we present a transformation that maps a protocol secure in an extremely weak sense
(essentially in a model where no adversary is present) into a protocol that is secure against
a fully active adversary which interacts with an unbounded number of protocol sessions. The
transformation works for arbitrary protocols with any number of participants, written with
usual cryptographic primitives. It provably preserves a large class of trace security properties
that contains secrecy and authentication. Conceptually, the transformation is very simple, and
has a clean, well motivated design. Each message is tied to the session for which it is intended
via digital signatures and on-the-fly generated session identifiers, and prevents replay attacks by
encrypting the messages under the recipient’s public key.

The table on the next page shows a summary of properties, primitives, approaches, and
models used in this thesis.

The contributions presented in Chapters 2, 3, 4, and 5 have been published in the Proceedings
of LPAR’06 [CZ06], PPDP’05 [CRZ05|, CSL’06 [CRZ06], and ESORICS’07 [CWZ07] conferences
respectively. These contributions represent joint work with Véronique Cortier (in all papers),
Michagl Rusinowitch (in the second and the third papers), and Bogdan Warinschi (in the fourth
paper).
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Ch. ‘ Sec. ‘ Properties ‘ Primitives ‘ Approach ‘ Model
2.1, 2.2 | trace properties
2 231 key cycles Dolev-Yao search for attacks constraint systems
2.3.2 secrecy (with timestamps)
CBC encryption
3 secrecy . . proof of correctness | Horn clauses
blind signatures
4 (simple and strong) secrecy | Dolev-Yao transfer applied pi calculus
5 trace properties Dolev-Yao transfer trace model [MW04a]

Table 1: Summary of properties, primitives, approaches, and models used in this thesis.
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Models for cryptographic protocols
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As mentioned in the introduction we work in so called symbolic (or abstract, Dolev-Yao)
models that represent messages by elements (or equivalence classes) in some term algebra. In
this chapter we mainly present how protocols are modeled within this setting. We start by giving,
in Section 1.1, the basic technical definitions and notions used throughout this document. We
then present, in Section 1.2, how messages and the operations on them are represented. Next,

in Sections 1.3 and 1.4, we show how we model protocols.
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Chapter 1. Models for cryptographic protocols

1.1 Preliminaries

This section mainly introduces the term algebra setting used in this thesis.

For a set S we denote by S* the free monoid of words over S, by - the concatenation operator
over S and e the empty word. We may omit the symbol - when writing a word over S. The
cardinality of a set S is denoted by #5. Also we write 2° for the power set of S. By infinite set
we mean a countably infinite set (i.e. with the same cardinality as N), and we say that a set is
at most countable if it is finite or countably infinite. For a natural number n we write [n] for the
set {1,2,...,n}, with the convention that [0] = 0. For a binary relation p we denote by p* its
transitive closure and by p* its reflexive and transitive closure.

1.1.1 Terms over order-sorted signatures

Let (Sorts, <) be a finite partially ordered set, its elements being called basic sorts. A sort is a
pair (w,s) € (Sorts™ x Sorts), denoted sy X --- X's,, — s if n > 1 and simply s if n = 0, where
w = s1...S,. By language abuse, we often call basic sorts just sorts. Furthermore, we assume
that (Sorts, <) is a tree, where a tree is a partially ordered set such that for each s € Sorts, the
set {s’ € Sorts | s < s’} is well-ordered by the relation > (with s > " iff s’ <s).

We consider an infinite set of wariables X, and an infinite set of names N. Each variable
and name has associated a unique basic sort, and for each sort there is an infinite number of
variables and names of that sort. For a sort s, we denote by Xs (and N) the set of variables
(and respectively, names) of sort s.

Let F be an at most countable non-empty set of function symbols. For each function symbol
f there is a unique associated sort s; x --- x's,, — s. This association is usually denoted by
f sy x---XxXs, —s, and n is called the arity of f. Function symbols of arity 0 are called
constants. The set of function symbols of sort (w,s) is denoted by Fs.

The set F is also called a signature. An order-sorted signature? is a tuple ¥ = (Sorts, F, <),
with (Sorts, <) and F as above.

A term over the signature F is defined inductively by:
e clements of X UN are terms, and
e if f € F has arity n and t1,...,t, are terms then f(¢1,...,t,) is a term.

We denote by 7 (F, X, N) the set of terms over the signature F. We say that a term has sort s,
and we denote it ¢ : s, if

o t € A, UN;, or

ot = f(tr,....,tn), f € Fsyx-xsn—s and ti,...1t, are terms of sorts s},...,s, respectively
with s} <s; for all 1 <i <n.

Note that a term has at most one (basic) sort. Terms that do not have a sort are called ill-
sorted. In contrast, terms that have a sort are called well-sorted. Remark also that when Sorts
is a singleton every term is well-sorted. We denote by 75(3, X', V) the set of terms of sort s, and

let 7(2, X, N) = Uscsore Zo(2, X, N) be the set of well-sorted terms.

3This notion of order-sorted signature is a simplified version of what one usually finds in the literature (see,
e.g. [GM92]), since here function symbols are not overloaded (i.e. they have a unique sort).
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Exemple 1.1 Consider Sorts = {A,B} with A < B, F = {f:A—A/g:A— B}, and z,y
variables of sort A and B respectively. Then f(z) has sort A, g(x) has sort B and f(y), g(y) are
ll-sorted terms.

Unless explicitly mentioned, we consider only well-sorted terms. Thus, and by abuse of
notation, we usually denote an order-sorted signature X by its signature F, especially when the
set of sorts is clear from the context.

For a set of function symbols F' C F, a set of variables X C X, and a set of names N C N
we denote by 7 (F, X, N) the set of terms with function symbols in F', variables in X, and names
in N. The sets 7(F, X,0), T(F,0,N) and 7 (F,,() are abbreviated by 7 (F, X), 7(F,N), and
7 (F) respectively. Moreover, we may use simply 7 instead of 7 (F, X, N) if the sets F, X, N are
clear from the context. We denote the set of variables (names) occurring in a term ¢ by var(t)
(respectively names(t)). A term without variables is called ground or closed. If T, T’ are sets of
terms and ¢,t" are terms we abbreviate T UT" by T,T', T U {t} by T,t, and {¢,t'} by ¢,¢.

1.1.2 Positions and subterms

We denote by N the set of positive integers. Then N is the set of sequences of positive integers.
We call positions the elements of N . We say that a position p is smaller than a position ¢, and
we write p < g, if p is a prefix of ¢.

Given a term ¢, the set of positions of ¢, denoted by pos(t), is defined inductively as follows:

e if ¢ is a variable or a name then pos(t) = {e};

o if t = f(t1,...,tn) then pos(t) = {e} UU;<;<,,{¢ - | p € pos(t;)}.

Given a term ¢ and a position p € pos(t), the subterm of ¢t at position p, denoted by t|,, is
defined inductively by:

o if p=ethent|, &y,
o if p = i-p then t|, o tilyy, where t = f(t1,...,t,) for some f € F and some terms
oo tn.

A term w is a (proper) subterm of a term v iff there is a position p € pos(v) such that u = v|,
(and uw # v). We extend the notion of subterm to sets of terms and say that a term u is a
subterm of a set of terms T if u is a subterm of ¢ for some ¢ € T. We write st(¢) and st(7") for
the set of subterms of a term ¢, and of a set of terms 7', respectively. We denote by <g (<gt)
the subterm (strict) ordering, with u <y v (u <& v) iff v is a (proper) subterm of v.

The head symbol of a term ¢, denoted by head(t), is defined by head : T (F,X,N) — F U
X UN, with

e head(t) =t if ¢ is a name or a variable,
e head(t) = fift = f(t1,...,tn).

An occurrence of a subterm ¢’ in a term ¢ is a position p € pos(t) such that ¢|, = ¢’. An occurrence
of a function symbol f in a term ¢ is a position p € pos(t) such that the head symbol of ¢|, is f.
Also we write pos, (t) for the set of variable positions of ¢ (i.e. occurrences of variables in t), and
pos,, (t) for the set of non-variable positions of ¢ (i.e. occurrences of names and function symbols
in t).
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Figure 1.1: (a) The tree and the DAG representations of ¢ = h(g(a,b), g(a,b),b); (b) the DAG
representation of f(fi(ay,...,ax),..., fx(ay,...,ax)).

For two terms u, v and a position p € pos(t) such that u|, and v have the same sort, u[v],
denotes the term obtained by replacing in u the subterm at position p by v. Formally we have
the following inductive definition:

e if p = e then ufv], Ly,

e if p=1i-p then u= f(uy,...,u,) with 1 <i <mn, and

ulvlp = flur, o uim1, U [Vl Wig, - Up)-

Representations of terms The tree-representation of a term ¢ is the ordered directed tree
G = (V,E) with V = pos(t) and E = {(p,i,q) | p-i = q}, where a triple (n,i,n’) denotes the
i-th outgoing arc from the parent node n (to the child node n'). Remark that the size of this
representation is linear in the number of nodes of the tree.

The size of a term ¢ is

[t = tpos(t)

and the size of a set of terms T is |T| & > ier |t

In a tree-representation of ¢, nodes p are in a many-to-one correspondence to subterms of ¢
(i.e. t|p). A more compact representation is obtained by considering a one-to-one correspondence
between nodes and subterms (see Figure 1.1a).

The DAG-representation of a term t is the ordered DAG (directed acyclic graph) G = (V, E)
with V = st(t) and F = {(u,4,v) | u = f(u1,...,up),v =u;,1 <i<n}. We observe that §£ =
Zuest(t) k., where k,, is the arity of the head function symbol of u. Thus {F < kx f(st(t)), where
k is the maximal arity of function symbols in the signature (see Figure 1.1b). Supposing that
the signature is fixed, and that DAGs are implemented with lists, the size of this representation
is linear in the number of subterms. Given a set of terms T, a single DAG can represent all
terms in 7" (consider this time V = st(7")) provided that for each term there is pointer to the
corresponding node in the graph. Observe that the number of terms in 7', thus of pointers, is
smaller than the number of subterms of T', thus the size of the representation of T is still linear
in the number of subterms of T'.

The dag-size of a term t is

|t|dag = ﬁSt(t)

def

and the dag-size of a set of terms 7" is |T'|gqq = #st(T).
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1.1.3 Substitutions

A substitution is a function ¢ : X — T(F,X,N) from variables to terms. We say that a
substitution o preserves sorts if for any variable z, o(z) is well-sorted and if = has sort s and
o(x) has sort s’ then s’ <'s. Note that if u is well-sorted and o is sort-preserving then o(u) is
well-sorted. Moreover, if u is not a variable then u and o(u) have the same sort. Unless explicitly
mentioned, we consider only sort-preserving substitutions.

Exemple 1.2 Consider the sorts Nonce < Msg, x,y wariables of sort Nonce and Msg respec-
tively, n a name of sort Nonce and t a term of sort Msg. Then o1 and oy given by o1(x) = n,
o1(y) =t, and o2(y) = n, are sort-preserving substitutions, while o3 given by o3(x) =t does not
preserve sorts.

For a substitution ¢ we define the domain of o: dom(c) £ {z € X | o(x) # 2} and the
range of o: ran(o) & {o(z) | z € dom(o)}. The substitution o with dom(c) = () is called the

empty substitution or the identity substitution. A substitution o uniquely extends to a function
o:T(F,X,N)— T(F,X,N) from terms to terms, defined inductively in the following way:

e if t = x is a variable and x € dom(c) then 7(z) = o(z),
e if t = x is a variable and z ¢ dom(o) then &(z) = =z,

e if t = n is a name then a(n) = n,

o if t = f(ty,...,t,) then 5(t) = f(T(t1),...,0(tn)).

We overload the notation and denote this extension in the same way, i.e. o instead of &, without
loss of precision.

The application of a substitution o to a term ¢ is also written fo. Similarly, for a set of
terms 7', T'o denotes o(T), that is {to | t € T'}. A substitution is ground or closed if var(o) is a

set of ground terms. We denote var(o) & var(ran(o)).

When the domain of a substitution o is finite then we may denote it as o = { %/, ..., ™"/, },
where dom(o) = {z1,...,2,} and o(x;) = t; for all 1 < i < n. If uw and v are two terms then the
term u[¥/,] is the term u where each occurrence of & has been replaced by v, that is u[?/,] & uo
where o = {"/,}.

A renaming p is a substitution with ran(p) € X such that its restriction on dom(p) is a
one-to-one function. If # and o are two substitutions then ¢ denotes their composition, that
is #(00) & (20)0 = O(o(z)). It follows that t(c0) = (to)d. A substitution 0 is an eztension
of a substitution o if dom(o) C dom(f) and xf = zo, for all z € dom(c). A substitution o
is a restriction of a substitution o if § is an extension of o. Given two substitutions o and o’
with disjoint domains, the union of o and ¢, denoted o W ¢, is defined by (o Wo')(z) = o(z) if
z € dom(o), and (o Wo')(z) = o'(z) if © € dom(o”).

A substitution o is cyclic if there exist z1,...,z, € dom(c) with n > 1 such that z;11 €
var(z;o) for all 1 < i < n, with z,4; = 1. A substitution o is idempotent if ¢ = oo, or,
equivalently, if var(ran(c)) N dom(o) = (. Note that idempotent substitutions are acyclic. We
only consider acyclic substitutions.

If u and v are terms then a unifier of u and v is a substitution ¢ such that uo = vo. We say
that v and v unify if they have a unifier.

For unsorted signatures, it is well-known (see, e.g. [FB01]) that if such a unifier exists then
there exists a most general unifier 6, denoted by mgu(u,v), such that for all unifier o there
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exists a substitution ¢’ such that ¢ = o’. The following proposition shows that this is also the
case for the order-sorted signatures we consider here, where we say that 6 is a most general sort-
preserving unifier if for all sort-preserving unifier o there exists a sort-preserving substitution o’
such that o = 0o’.

Proposition 1.3 Ifu and v are well-sorted terms that have a sort-preserving unifier then there
exists a most general sort-preserving unifier of u and v.

Proof  Let 6 be a (possibly not well-sorted) most general unifier of u and v.

For each y € var(f), we define the set S, = {s; | « € dom(f),p € pos(z0),z0|, = y,p =
q-i,head(xfly) = f, f:s1x...sp, = s} U{s |z € dom(f),zf =y, of sort s}.

Let o be an arbitrary sort-preserving unifier of v and v. Thus o = 6¢’ for some substitution ¢’
with dom(¢’) C var(f). Consider an arbitrary variable y’ € var(f) and let s’ be the sort of 3/o”.
We prove next that s' <s, for any s € S,,.

We distinguish two cases depending on how s was obtained. If sis the sort of some x € dom(0)
with 20 = ¢/, then 2o = y'0’ and hence s’ < s, using the fact that o is sort-preserving. If s is
given by the sort of the function symbol f above 3/ in 26 for some x € dom(#), then again s’ <s,
as 3y'o’ is a subterm right below f in the well-sorted term zo. Hence, in both cases, s’ <'s.

We define now p as the renaming which substitutes each variable y in var(f) with a new
variable z of sort s,, where s, is least sort in S,. Note that s, is well defined. Indeed, suppose
that s; and s are two distinct minimums of the above set. Thus s; and sg are not comparable.
Let s’ be the sort of yo’. We have shown that s’ < 's; and s’ < s5. This is in contradiction with
the tree structure of Sorts.

Let 6y = 0p. For any x € dom(fy), 260y is well-sorted (this is given by the construction of
p). And since the sort of 26y equals the sort of zo, it follows that 6y is sort-preserving. Finally,
o = 0y(p~to’) and p~lo’ is sort-preserving. Indeed, for any z € dom(p~to’), zp~!
sorted, being a subterm of ran(c). And, as zp~ !0’ = yo’ where y = p~!(z), the sort of zp~lo’
is smaller or equal than the sort of z (which is s,).

As o was arbitrarily chosen, it follows that 6y is a most general sort-preserving unifier of «
and v. [

o' is well-

Exemple 1.4 Note that if the basic sorts only form a lattice, the above proposition does not hold.
Indeed, let us consider the 6 different sorts so,s1,S),52,5h,s3 withsy > s1,s1 > s}, s2 > sh, 51 > sb,
So > sy, S| >s3, and s, > s3. Taking x :s1 and y : s2, o1 and oy given by xoy = yo = z1 : s} and
xo9 = Yoy = z3 : Sy are sort-preserving unfiers of x and y. However, there is no most-general
sort-preserving unifier of x and y: suppose that there is such a unifier 0 with 6 having some
sort's. Then's < s1, s < sy (as 0 is sort-preserving). Also, as z1 : s1 = xoy = (z6 : s)o’ for
some sort-preserving o', it follows that sy < s. Hence s = s1, and analogously s = sy, which
constradicts the fact that the sorts s and so are different.

A context with n holes is a function Axq,...,x,.t, where ¢t is a term. The application of
the context C' = Ay, ..., 2.t to the terms ty,... ¢, is Clt1, ..., tn] & t["/e,]...["/s,] (where
bounded variables x1,...,x, are first renamed if they also occur in t;). When the variables x;

occur exactly once in ¢, they may be replaced by holes, denoted []. In this case, we suppose that
the variables are renamed such that the occurrence of z; corresponds to the i-th hole (the order is
given by a traversal of the tree-representation of ¢ which respects the order of children). In other
words, Clt1,...,t,] is obtained by replacing the i-th hole with ¢;. The empty context is Az.x
and is denoted by []. We extend all definitions regarding terms to contexts C' = Axy,...,zp.t by
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applying them to ¢, while considering var(C) = var(t) \ {z1,...,z,}. For example, C' is ground
if var(t) = {x1,...,xn}.

1.1.4 Equational theories and rewriting systems

An equation over the signature F is a unordered pair of terms {u,v}, denoted v = v (or v = u),
with u,v € T(F,X,N) having the same sort. An equational presentation £ over the signature
F is a set of equations over F, such that for any (u = v) € £, names(u,v) = (. The equational
theory induced by € on T (F, X, N), denoted =g, is the smallest congruence such that uec =¢ vo
for all equations (u = v) € & and all substitutions 0. We often don’t distinguish between an
equational theory and its equational presentation.

A rewrite rule over the signature F is a pair of terms (u,v), denoted u — v, with u,v €
7 (F,X) having the same sort. A rewriting system R over the signature F is a set of rewrite
rules over F.

A term t rewrites to or reduces to a term t’, denoted by t — t/, if there exists a position
p € pos(t), a rewrite rule (v — v) € R and a substitution o such that t|, = uo and t’ = t[vo],.
We may write ¢ Lir t' to specify the position p at which the reduction takes place. We may
also drop the subscript and simply write ¢ — ¢’ if R is clear from the context. The induced
relation on terms —p is called the reduction relation, ¢ —x ' is also called a reduction step, and
a sequence of reduction steps is called a reduction sequence. The relation <5 is the symmetric
closure of —5.

The equational theory associated to a rewriting system R is £(R) = {u = v | (u — v) € R}.
By Birkhoff’s theorem (1935), we have u <>% v if and only if u =g(R) v- The other way around,
the rewriting system associated with an equational theory & is

RE) E{u—v|(u=0v)c&V(@=u)e&}

That is, R(E) is obtained by orienting in both directions the equations of £. We then have
u =¢ v if and only if u <1>R(g) .

A term ¢ is a or in normal form iff there is no term ¢’ such that t —x t'. We say that a
term ¢ has a normal form iff there is a normal form ¢’ such that ¢t —% ¢. A normal form of ¢ is
denoted t].

A rewriting system is terminating iff any reduction sequence is finite. A rewriting system is
confluent if for any terms ¢, u,v such that ¢ —% u and ¢ —7, v there exists a term w such that
u —5 w and v —% w. In a confluent rewriting system, if a term has a normal form then this is
unique. A rewriting system is convergent iff it is confluent and terminating.

Remark We will sometimes need (e.g. in Chapter 4) to extend the notion of substitution of
variables to substitution of names. We do it in the expected way. However, without explicit
mention “substitution” will only refer to variable substitutions and substitutions of names will
only be explicit (as in [¥/,]).

Nevertheless, we need to make sure that equational theories remain stable by substitution.
Formally, an equational theory & is stable by substitution of names if for any terms wu,v,¢ and
name n, u =¢ v implies u['/,] =¢ v[Yx].

Proposition 1.5 Any equational theory is stable by substitution of names.

Proof Consider an arbitrary equational theory and its equational presentation £. Let u, v,
and ¢ be arbitrary terms such that u =¢ v, and n be a name. Since we have that u QR(S) v, it
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is sufficient to prove that u —g(s) v implies u["/n] —r(g) v["/n]. Indeed, a simple induction on
the length of the reduction sequence would then finish the proof.

Hence, suppose that u —gg) v. There is then a rule (I — r) € R(£) such that u|, = lo and
v = u[ro], for some position p in u, and some substitution o. We have u['/,]], = (ulp)[Yn] =
(10)[Yn] = l(a][%n])- The non-trivial equality here is the last one, which holds since names(l) = 0
(by the definition of equational presentations). Similarly, we obtain that v[%/,] = u[r(a[¥/n])],-
Thus, u["n] —r(e) v["/n]. =

1.1.5 Term deduction systems

A deduction expression over the signature F is a pair (S,u) denoted S F u, where S is a special
variable (not in X') and u € 7 (F, X) is a term. A deduction rule over the signature F is a triple

(w,e,C), denoted
er ... €L

e

C

where w = ey ...ex, with &k > 0, is a word over deduction expressions over F, e is a deduction
expression over F, and C'is a predicate. The expressions e;, with 1 < i < k, are called premisses,
e is called conclusion, and C' is called condition of a deduction rule. A rule with no premisses
is called an aziom. We omit the condition C' when C is the true predicate (that always holds),
and we say in this case that the rule is without condition. A deduction system over the signature
F is a set of deduction rules over F. A deduction system is without conditions if each of its rules
is without condition or is the axiom S, TES.

For a set of terms 7" and a term w, a proof of T'+ w in a deduction system 7 is a tree having
nodes labeled by expressions T F v, where v are terms, such that the root is labeled by T'F u
and if the node T+ v has k > 0 children T'+ vq,...,T F v then there is a deduction rule

Skt ... Skt
Skt ¢

in 7 and a substitution o such that to = v, t;j0 = vy,...,t,0 = vg and C[?/s]o holds. The
size of a proof is given by the number of its nodes. A minimal proof of T F u is a proof with a
minimal number of nodes (among all the proofs of 7' u).

We sometimes think of a proof as the line graph? of the tree defined above. In this case the
meaning of nodes and edges would be reversed (that is, nodes would be instances of rules, and
edges would be deduction expressions). It will be clear from the context which definition is used.

We say that u is deducible from T in 7, and write T 7 u, if there is a proof of T w in 7.
We may omit mentioning the deduction system Z if it is clear from the context.

1.2 Cryptographic primitives and messages

We start this section by presenting some intuitions behind the use of two related but slightly
different representations of some cryptographic primitives. We then present a sort system and
a signature that are very common in cryptographic protocols and which are largely used in this
thesis. Finally, we define two related deduction systems (both used) and a redundant one (not
used), and we conclude by discussing the corresponding deduction problem.

‘If G = (V, E) is a graph then the line graph of G is L(G) ef (E,{{e, f} | e and f are adjacent in G}).
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Some intuitions Cryptographic primitives can be seen as functions from messages to mes-
sages® and messages themselves are obtained by applying operations to other messages. It is
hence natural to abstract cryptographic primitives by function symbols and messages by terms.
There is also the need to specify the process of applying these operations. This is done abstractly
by deduction rules which define how terms can be obtained from other terms. As an example,
consider the encryption of a message (named) m by a key (named) k. The encryption primitive is
represented by the function symbol enc and the encrypted message by the term enc(m, k) where
m and k are here terms. The process of obtaining this term is described by (an instance of) the
rule®

r Y
enc(z, y)

Some primitives build “new” messages, in the sense that the obtained message cannot be
expressed by a term without using a dedicated function symbol (like enc for the encryption).
These function symbols are hence called constructors. For the other primitives, thus called
destructors, on the contrary, one need not necessarily use a dedicated symbol (at least in some
situations, as we explain below). These primitives are typically “inverse” operations, for which
by applying in sequence the operation and its inverse on some message m one obtains (under
some conditions) m, or some parts of it.

For example, by decrypting an encrypted message with the right key one obtains the plain
message. If these conditions are not satisfied (for example, when one tries to decrypt using the
wrong key), or if the inverse operation is applied on a arbitrary message, the results are unex-
pected. More exactly, they are implementation dependent. There are mainly two possibilities.

One is to consider that these inverse operations cannot be applied at all, or that they lead
to “‘junk” that is immediately recognisable. In this case, only the correct use of the inverse
operation is modeled. Thus, it is not necessarily to represent these inverse operations by new
function symbols, since their application always leads to existing messages. For example, the
application of decryption is represented implicitly by

enc(z,y) ¥
X

The other possibility is to consider that the application of inverse operations is always feasible
and it leads to “valid” messages, even if they are not “intelligible” (for example, dec(a, k) the
decryption of some identity a with the key k£ is to everybody just an (almost) random sequence
of bits). In this case, the inverse operations are modeled by function symbols and their application
is explicitly modeled by deduction rules. For example, applying decryption with the right key to
an encrypted message leads to the following derivation:

enc(z,y) ¥
dec(enc(z,y),y)

But, when the conditions are satisfied, the message represented by the new term (obtained as the
result of the application of the deduction rule) is some existing message. Indeed, in our example,
the message m is now represented by the two terms dec(enc(m, k), k) and m. We need hence
to equate the new term with the term already representing the initial message. This is done by

5Seen at low level, cryptographic primitives are algorithms having bitstrings as inputs and outputs.
For the sake of the presentation the “deduction rules” on this page are deliberately simplified (see the definition
in Section 1.1.5).
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the means of rewrite rules. For example the rewrite rule dec(enc(x,y),y) — x says that after
encrypting and then decrypting a message with the same key the same message is obtained.

Recapitulating, the explicit presence of destructors in the model depends on whether we
consider that the corresponding operations may clearly fail (or produce detectable “junk”), or
that they do not fail and produce “valid” messages (or non-detectable “junk”).

Besides the properties representing their basic functionality, cryptographic primitives may
exhibit other properties. Among them, algebraic properties, like associativity, commutativity,
nilpotence, etc., are always expressed by equations. They induce equivalence classes on the set
of terms, and indeed, due to these properties the same message is represented by syntactically
different terms. For example, the terms (a, (b,c)) and ({(a,b),c) model the same message, the
concatenation of a, b, and c¢. Another example we have already seen in the Introduction is
encryption in ECB mode, which is homomorphic (w.r.t. the concatenation). This is expressed
by the equation { (z, 1)} = ({o}, {y}-).

A summary of the above discussion is given by the Table 1.1.

real world symbolic world

messages terms

cryptographic primitives function symbols

operations that never fail constructors, explicit destructors
operations that may fail implicit destructors

basic functionalities of crypto. prim. | rewrite rules
algebraic properties of crypto. prim. | equations

applying cryptographic primitives deduction rules

Table 1.1: Analogy between the real world and the symbolic world.

1.2.1 A sort system for cryptographic protocols

In some models, it may be the case that there are terms that do not represent “valid” messages
(e.g. dec(a,k)). Also, it is usually supposed that an identity cannot be confused with other data,
like nonces or ciphertexts. A simple way to eliminate such undesired situations, is to fix a sort
system and associate a sort to each variable, name and function symbol.

We consider signatures with the following sorts: a sort Id for agent identities, and sorts
Int, Nonce, Rand and Time for integers, nonces, randomness used in probabilistic encryption,
and timestamps respectively. These four sorts could be in fact represented by a single sort,
for example Int, the values that terms of these sorts represent are in fact all integers. But
for the sake of clarity and flexibility we use this presentation. For keys we consider the sorts
SigKey, VerKey, EncKey, DecKey, SymKey representing keys used in signing, signature verification,
public-key encryption, public-key decryption, and symmetric encryption algorithms respectively.
We also use sorts Ciphertext, Signature, and Pair for ciphertexts, signatures, and pairs, respec-
tively. The sort Msg is a supersort containing all other sorts enumerated above.

In summary, throughout this thesis we consider the following basic sorts

Sortsy = {Id, Int,Nonce, Rand, Time, SymKey, EncKey, DecKey, SigKey, VerKey,
PubKey, PrivKey, Ciphertext, Signature, Pair, Msg},
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1.2.  Cryptographic primitives and messages

with s < Msg for all s € Sorts, and EncKey, VerKey < PubKey, DecKey, SigKey < PrivKey.
However, we do not require that sorts are different. Indeed, in some situations we consider only
one sort (e.g. in Chapters 3 and 4), that is s = Msg for all s € Sorts, while in others sorts are

different.

1.2.2 A signature for cryptographic protocols

Table 1.2 lists most of the function symbols used in this thesis.

‘ function symbol ‘ sort ‘ description
k Id x Id — SymKey symmetric key
ek Id — EncKey asym. encryption key
dk Id — DecKey asym. decryption key
sk Id — SigKey signing key
vk Id — VerKey verification key
pub Id — PubKey public key
priv Id — PrivKey private key
encd (or { _} ) Msg x SymKey — Ciphertext det. sym. encryption
enc - Msg x SymKey x Rand — Ciphertext | prob. sym. encryption
dec Ciphertext x SymKey — Msg sym. decryption
encad (or {{ ]} ) | Msg x EncKey — Ciphertext det. asym. encryption
enca - Msg x EncKey x Rand — Ciphertext | prob. asym. encryption
deca Ciphertext x DecKey — Msg asym. decryption
sign (or [ ] ) Msg x SigKey — Signature signature
check - Msg x Signature x VerKey — Msg check signature
retrieve Signature — Msg retrieve signed message
h Msg — Msg hash
pair (or {_, )) Msg x Msg — Pair pair
fst (or my) Pair — Msg 15 projection
snd (or ) Pair — Msg 204 projection
ok, init, stop, fake | Msg special constants

Table 1.2: The set Fy of function symbols with their arities

The four operations ek, dk, sk, vk are defined on the sort Id and return the asymmetric encryp-
tion key, asymmetric decryption key, signing key, and verification key associated to the input
identity. The two function symbols pub and priv represent public and respectively private keys
for both encryption and digital signatures. They are safe abstractions of ek and vk on the one
side and of dk and sk on the other side.

We then have function symbols for symmetric and asymmetric encryption and decryption.
We model both deterministic and probabilistic encryption. The latter one has a third parameter
(besides the message to be encrypted and the encryption key) which represents the randomness
used to obtain the nondeterminism: two encryptions of the same messages under the same keys
are different (if they use different randomness).

Next, sign represents the operation of digital signing of a message, check that of verifying a
signature and retrieve that of obtaining the signed message from the signature.
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For deterministic encryption and digital signatures we usually use the classical notation with
brackets (for example {m } instead of encd(m, k)). The convention is that the exterior brackets
say whether the function symbol represents an encryption (and we use {}) or a digital signature
(and we use []), while the interior brackets say whether it is symmetric (use of {}) or asymmetric
(use of []) operation.

The function symbol h models the operations of hashing of a message.

The symbol pair represents the pairing function, while fst and snd are the associated projection
functions. We abbreviate pair(z,y) by (x,y), fst(x) and snd(x) by 71 (x) and ma(z) respectively.
We also suppose that pairing is left-associative and hence write (z,y, z) for ((x,y), z). Moreover,
we may even entirely omit the angle brackets when the pairing function symbol is not in head
position. For example, we may write {a, b} instead of {{(a,b) }.

Finally, the signature contains a few special constants which usually do not represent real
messages but are useful for specifying protocols. For example, the constant ok represents a
special message issued as a result of some successful testing operation.

Operations on messages can fall into two classes: public and private operations, depending
on whether they can be performed by any party, or only by some parties. We obtain accordingly
a partition of function symbols into public and private function symbols, denoted by

F = Fpub ¥ Fpriv-

We assume that any signature is partitioned in this way. We suppose that for each sort there is
an infinite number of public constants and an infinite number of private constants of that sort.
A term ¢ is public if t € T(Fpup, X, N).

In our context, the only private operations are those of obtaining the private keys associated
to identities. Indeed, we have {k,dk,sk, priv} C Fpi, and all other function symbols in Fy are
public symbols (that is, they are in Fpup). To model asymmetric keys, we could have eliminated
private symbols by using names like sk, instead of priv(a) (and pub(sk,) instead of pub(a)).
However, we prefer to use names only for fresh data.

Throughout this thesis we deal with four (one for each of the following chapters) slightly
different order-sorted signatures. These will be obtained by fizing a sort system (basically by
equating some sorts in Sortsg) and a set of function symbols (mainly by considering a subset of
Fo together with a set of constants for agent identities and nonces).

1.2.3 Two deduction systems for cryptographic protocols

As we have already mentioned, the application of operations on messages and hence the construc-
tion of new messages are modeled by deduction rules. And, depending on whether operations
which are supposed to work only in certain conditions (e.g. when using the right key) can only
be applied when “successful”, or can always be applied, we have two types of deduction systems.
However the functionality of operations is the same in the two cases, and we model it by a simple
rewriting system.

Definition 1.6 (Constructors, destructors, simple rewriting systems)
Let F = Fpup W Fpriv be a signature and let R be a rewriting system over T (F,X) with var(r) C
var(l) and l ¢ X for all (I — 1) € R.
The head symbols of left hand sides of rewrite rules in R are called destructors. All other
function symbols in Fyyp are called constructors. This partition is denoted Foup = Festr W Fystr-
We say that R is simple if every rule is of the form g(li,...,l,) — r with g € Fpup, n > 0,
{r,li,...,ln} CT(F\ Fastr, X), and g does not occur in the other rules of R.
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1.2.  Cryptographic primitives and messages

The rewriting system with regard to which constructors and destructors are defined will often
be implicit.

Proposition 1.7 A simple rewriting system is convergent.

Proof  Termination follows from the fact that at each reduction step a destructor is eliminated
and terms without destructors are in normal form. Confluence follows immediately because the
head function symbol of a rule does not occur elsewhere in the rewriting system, and thus there
are no critical pairs (see [BN98| for a definition of critical pairs and their use for testing (local)
confluence). ]

Intuitively, T = v means that an agent is able to compute the message w from the set of
messages 1. Any deduction system allows one to use known messages and to compose known
messages.

Let FF C F be a set of function symbols. A minimal deduction system w.r.t. F', denoted Zp
is given by the following rules:

SFax Sk,
St flxy,...,xp)

The labels given between parentheses in the left hand side of rules are just names used for refering
to that rule. The above rules are also called membership and composition rules, respectively.
Remark that the latter is in fact a rule schema, i.e. there is a corresponding composition rule
(without condition) for each f € F.

Usually, F'is either Feser or Fpup. We may omit F'in Zp when it is clear from the context. Also
note that from the point of view of building terms all function symbols in F' are “constructors”.
However, for F' = Fcer, only constructors (in the sense of Definition 1.6) are used for building
terms.

rzesS (Compf) ferF

©)FFz

Given a simple rewriting system R, we associate to each rewrite rule (I — r) € R with
l=g(ly,...,1,) the following deduction rule:

SE§ SH1,
Skr

(rwi—y)

Definition 1.8 (Z(R)) Let R be a simple rewriting system over the signature F. We define by

def

I(R) = Tr U{(rwir) [ (I = 1) € R}

the deduction system associated with R.

To an equational theory £ we associate the following deduction rule:

Stz .. _

We may drop the subscript when & is clear, and write (Eq) instead.

Definition 1.9 (Z(£)) Let £ be an equational theory over the signature F. We define by

def

(&) = Zrou Y {(Eag)}

the deduction system associated with &.
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The following known lemma (see e.g. [AC04]) characterises Z(€) in terms of public contexts.

Lemma 1.10 Consider an equational theory £. Let T = {ti,...,t,} be finite set of terms
and u,v be terms. Then T bz w if and only if there exists a public context C such that
C[tl,...,tn] £ Uu.

The deduction systems Z(R) and Z (&) represent two ways of reasoning about the applications
of cryptographic primitives to messages. In the former, deduction system destructors operations
are implicit and are matched against the right patterns, while in the latter, destructor operations
are explicit and terms are equated when possible. We sometimes call them deduction system “with
matching”, and respectively deduction system “with equalities” or with “explicit destructors”.
Note that Z(R) is a deduction system over F \ Fystr. We show next that considering deductions
only over T (F \ Fystr, X, N) the two deductions systems are “equivalent”.

Let 7 be a set of terms. We say that two deduction systems Z and Z’ are equivalent over T
if for all sets of terms 7" and terms ¢, with T'U {t} C 7, we have T 7 ¢ if and only if T" 7/ ¢.

Proposition 1.11 Let F be a signature and R a simple rewriting system. The deduction systems
I(R) and Z(E(R)) are equivalent over T (F \ Fystr, X, N).

Proposition 1.11 assumes a simple rewriting system R and shows that the two deduction
systems derived from R are equivalent. S. Delaune |Del06] proved a similar statement, but
starting from an arbitrary deduction system Z without conditions and building an equivalent

deduction system Z(£(Rz)) where Rz is a simple rewriting system. Indeed for each deduction

SFEL ... SKI, . . . . .
rule - e in Z one can add the rewrite rule g(ly,...,l,) = r in Rz, where g is a

new function symbol. However, the proofs are the same, since S. Delaune’s transformation (from
7 to Rz) and this transformation (from R to Z(R)) are inverse to one another. Rephrasing the
mentioned result in our formalism, we obtain the following proposition.

Proposition 1.12 ([Del06]) Let F be a signature. For every deduction system I over F with-
out conditions, there exist a set of public function symbols G with G N F = 0, and a simple
rewriting system R over F UG such that T and Z(E(R)) are equivalent over T (F,X,N).

Algebraic properties of primitives are not considered in this thesis. We just mention that
they are usually represented by a set of equations &yy. In the same spirit, one considers one of
the following two deduction systems: Z(R) U {(Eqg,, )} or Z(£(R) U Eayg).

Note that when working on 7 (F \ Fystr, X, N') we may simply consider that the signature
is Festr U Fpriv, and work directly with Z(R) (without mentioning the rewriting system R and
(explicit) destructors). We will do this in Chapters 2, 3 and 5.

1.2.3.1 Example. The Dolev-Yao rules

The rewrite rules in Figure 1.2 constitute an example of simple rewriting system, denoted Ry.
By Proposition 1.7, Rg is convergent and so is any of its subsets.

The deduction rules of Figure 1.3, together with the membership and composition rules
represent the deduction system with matching associated with R, denoted Z &7 (Ro).

The first two deduction rules (together with the corresponding composition rules) are known
as the standard Dolev-Yao rules. By extension, the rules of a deduction system with matching
are also known as Dolev-Yao rules. The rules in Figure 1.3 are also known as decomposition
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fst(pair(z,y)) — 1% projection

snd(pair(z,y)) — vy 214 projection
dec(encd(z,y),y) — x sym. decryption
deca(encad(x, ek(y)),dk(y)) — x asym. decryption
retrieve(sign(z,y)) — x retrieving the signed message

Figure 1.2: The rewriting system Rg

S pair(xy, x2)

(Proj;) ie{1,2} 15% and 2™ projections

S encd(z,y) Sty
Skx

(Dec) sym. decryption

S+ encad(z, ek(y)) S dk(y)
Sk

(Deca) asym. decryption

S+ sign(z,sk(y))
Stz

(Retr) retrieving the signed message

Figure 1.3: The deduction system Z,

rules. Intuitively, these rules say that an agent can decompose messages by projecting, or by
decrypting provided it has the decryption keys.

Concerning digital signatures, an agent is also able to verify whether a signature sign(m, k)
and a message m match (provided he has the verification key). This operation is represented by
a rewrite rule of the form

check(x, sign(z, sk(y)), vk(y)) — ok

Note that checking a signature does not lead to the generation of new message (ok is a public
constant). This is why the corresponding deduction rule

Stk S+ sign(z,sk(y)) S+ vk(y)

(Chk) S F ok

is usually not present in deduction systems which model the intruder’s capabilities, and we will
also omit it (i.e. the rule (Chk)).

The rule (Retr) expresses that an agent can retrieve the whole message from its signature.
This property may or may not hold depending on the signature scheme, and hence this rule
is usually optional. Note that this rule is necessary for obtaining soundness properties w.r.t.
cryptographic digital signatures [CW05].

Exemple 1.13 The term (ki, ko) is deducible from the set T = {{ki }x,, k2} in Zo. A proof of
T '_Io <]€1, k2> 18
TH{ki}r, TiF ke

THEk TF ks
T+ (k1,ka)
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While the first formal models of security protocols in the symbolic world used equations
(and hence explicit destructors) [DY83, EG83]", most of the later literature on protocol verifi-
cation did not use them. Instead, a deduction system with matching (or an equivalent model)
was directly the starting point. Destructors have reappeared with the treatment of algebraic
properties. Indeed, having a single set of equations modeling all properties (algebraic or not) of
cryptographic primitives offers a more uniform approach (see for example the applied-pi calculus
and its motivations |[AF01]).

In each of the following chapters we will implicitly fix a certain rewriting system® R’ and
work explicitly with Z(R’), or Z(E£(R’)), or still another equivalent representation of deduction.
More precisely, we use the deduction system with matching Zy in Chapters 2 and 5, a deduction
system with equalities in Chapter 4, and Horn clauses in Chapter 3.

1.2.4 On the use of a third deduction system

In this section, we introduce still another deduction system, but show that it is redundant and
hence we do not use it in the rest of the thesis.
For a rewriting system R we consider the following deduction rule:

S X
(Rwg) 57}_2$ —RY

def

We define Z4R) = Iz, U {(Rwr)}.
The following lemma characterises Z¢(R) in terms of public contexts, in the same manner as
Lemma 1.10 does for Z(E).

Lemma 1.14 Let R be a rewriting system. Let T = {t1,...,t,} be finite set of terms and u,v be
terms. Then T bragy w if and only if there exists a public context C such that Clty, ... tn] =% u.

Proof Suppose that T' Fza(g) u. We reason by induction on the depth of a proof. Consider
the rule applied in the root of the proof:

e If it is an axiom then take C' = x; if the rule is (€) and u = t;, and take C' = w if the rule
is (Comp;) with f of arity O (in this case u is a public constant).

e Ifit is the rule (Comp) with f € F,up having arity r > 1 and the instances of the premisses
being T' Fza(gy u1, ..., T Frag) ur then by induction hypothesis there exist public contexts
C1,...,Cy such that City,...,t,] =% w;, for all 1 <i <r. We take C = f(C4,...,C;)
and then Clty,...,t,] =% f(ui,...,u;) = u.

e Ifit is the rule (Rwg) with the instance of the premise being 7" -74() v’ then by induction

hypothesis there exists a public context C” such that C'[t1,...,t,] =% «'. Since v/ =% u
we take C' = C'.
For the converse direction, consider a public context C' such that C[ty,...,t,] =% u. Since

C' is public and t; € T, there is a proof with the root labeled by 7'+ C[t1,...,t,] in Z. Adding
the corresponding instance of the rule (Rwg) to this tree we obtain a proof of T F u in Z4(R). m

The following easy lemma will be used in the next proposition.

"They used strings instead of terms to model messages, thus the decryption property was written as dec,-enc, =
€, where = is an equivalence relation on words, dec,, enc, are letters, and a is just an index.
8except for Chapter 3 in which we use an implicit arbitrary rewriting system.
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Lemma 1.15 Let R be a confluent rewriting system. Then for all terms u,v such that v is in
normal form, uw —5 v if and only if u =¢(g) v.

Proposition 1.16 Let R be a simple rewriting system. Let T be a set of terms, and t be a
term, with Tt C T (Fesr, X, N), such that t is in normal form. Then T Frary t if and only if
Proof  If T'Frag) ¢ then clearly T'Fz(g(r)) ¢, since every instance of a rule (Rwg) is also an

instance of the rule (Eqg(g)) (indeed, from u —% v it follows that u =¢x) v).
Suppose now that T F7(g(r)) t. From Lemma 1.10 we have that there exists a public context

C such that Clty,...,t,] =¢r) t for some ¢; € T (0 < i < n). Then, since ¢ is in normal form,
from Lemma 1.15 it follows that C[t1,...,t,] —% t. Hence, using Lemma 1.14, we have that
T '_Id(R) t. |

This proposition shows that it is sufficient to use one of the deduction systems Z(R) and
Z(E(R)) as along as we are only interested in terms in normal form. And indeed we are, since
we can safely suppose that all sent and received messages are only modeled by normalised terms.
However, we do not make this assumption, and hence when working over the entire F (i.e. with
explicit destructors) we use the deduction system Z(E(R)). Moreover, to our knowledge the
deduction system Z(E(R)) is absent from the literature on protocol analysis.

1.2.5 The deduction problem

Given a deduction system Z, a finite set of terms 7" and a term u the problem of deciding whether
u is deducible from T in 7 is classically known as the intruder deduction problem, since usually
the set T' of terms represents the intruders’ knowledge—the set of messages that have been sent
so far over the network, and u represents a secret message, or simply a message that the intruder
is trying to produce. We call it simply the deduction problem, since not only the intruder but
all the agents need to produce new messages from their current knowledge.

The deduction problem is polynomial in the size of T" and u for Z(Ry) (see Section 1.2.3.1),
and the procedure is based on the observation that a minimal proof of 7'+ u in Z(Rg) uses only
subterms of 7" and u. Indeed, at each step of the algorithm, the current set of terms is updated
with the subterms that are reachable using only one deduction rule. Using the above observation
it is then sufficient to check at each such step whether u belongs to the current set of terms. The
algorithm saturates and stops in a number of steps proportional with the number of subterms of
T and w, which is linear in the size of the problem given that a DAG-representation of terms is
used.

The mentioned observation is formalised by the following lemma.

Lemma 1.17 (Locality lemma) Let R' C Rg. Let T be a set of terms, u a term and 7 a
minimal proof of T bz w. Then all terms occurring in the nodes of m are in st(T,u). If the
last rule of m is a decomposition (i.e. in Zy) then these terms are in st(T).

This property of (some) deduction systems, known as locality, is an instance of a more general
property stated by D. McAllester [McA93] in the context of generic inference systems. The same
property holds and is used for more complex deduction systems, while employing a different
notion of subterm, suited for the specific deduction system under analysis. We do not give
more details here about the deduction problem, since it has received an intensive treatment in
more general contexts: see [CKRT03, CLS03, LLT05]| for specific theories (XOR, homomorphic
encryption, etc), [AC04, AC05, DLLT07] for generic theories, [CR06, ACDO07| for combinations
of theories, and [CDLO06]| for a survey.
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1.3 Roles

Since protocols are sets of roles, we start by showing how roles are specified and executed. We
then comment on the actual ability of an agent to execute a role. Finally we describe two
standard types of roles.

1.3.1 Specification of roles

In the following, we fix an arbitrary signature F and an arbitrary equational theory &£.

Definition 1.18 (Role) A role R is a tuple consisting of
e o finite set of variables z1, ...,z of sort |Id, called parameters, with k > 0,
e a finite set T of variables, called fresh items®,

e a finite non-empty sequence of tuples ((UhEz’an))KKp called sequence of instructions;
E; are finite sets of equations, u;, v; are terms such that var(v;) C ;< (var(uj)Uvar(E;))\

T and names(u;, E;,v;) = (.
The role R is denoted R(z1,...,2,) = vx.recv(uy), E1,send(v1); ... ; recv(up), Ep, send(vp).

In the above definition p is called the length of role R, the i-th element of the sequence is
called the i-th step or control-point of role R, and w;, v;, and the equations in F;, are called
respectively the “receive” and “send” terms, and the (equality) tests of role R at step i. When
the set of equations is empty we simply omit it, that is, we write (recv(u),send(v)) instead of

(recv(u), 0, send(v)). We denote var(R) = U, ;, var(ui, Bi, v;) \ ({z1,. .., 2} UE).

Here, parameters stand for the agents that are participating in a role session, from the point
of view of the agent playing the role. Note, however, that it is not specified which concrete
agent plays the role (this will be done at the protocol level). We could have considered that the
parameters also represent other data, like the symmetric long-term shared keys between agents.
We have preferred to model them as k(z;, z;).

We observe that a “send” is always grouped with a “receive”. This is because we suppose
that if a received message is as expected then the agent playing the role instantaneously sends
its response. While this behaviour is not transparent at this stage, it will become clear in the
following sections.

Even if in this setting each “receive” is followed by a “send” and conversely (except for the
last one), we can model protocols in which an agent waits for two messages and then performs a
send, or in which an agent broadcasts a message. Indeed, we can code this ability by inserting
fake “receive’ and “send” messages which are known by everybody (using e.g. the public constant
fake). This is done, for example, in Chapter 5.

1.3.2 Execution of roles

When a role is to be executed, it is first initialised, that is, its parameters are instantiated by
concrete agents and its fresh items by new nonces or keys. This is formalised in the following
definition.

Fresh items are modeled by variables for technical reasons. We will usually instantiate them by new private
data, hence the notation vz below.
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Definition 1.19 (Role initialising substitution, initialised role)

Let R be a role with parameters Z, fresh items T and the sequence of instructions S. A role

initialising substitution for R is a ground substitution with dom(c) = Z U X and such that for

each z € Z, zo is a public constant (of sort1d), and for each x € T, xo is a new private constant.
Given a role R as above, an initialised role s the sequence of instructions So, where o is a

role initialising substitution for R.

Since fresh items are instantiated by new constants, any initialised role uses different constants
as fresh items. Also, we can suppose without loss of generality that in initialised roles long-term
symmetric keys are represented by constants, that is, each ground term k(a,b) can be replaced
by the constant kg.

We define formally the execution of a role by giving its operational semantics in terms of
transition systems. The state of the execution of a role is given by the current instantiation of its
variables and by its current control point. The only action that changes the instantiation is that
of receiving a message. At this stage we are not interested from whom and to whom an agent
receives and respectively sends a message, and hence we suppose that it is the “environment”
who sends and respectively receives it.

Definition 1.20 (Execution of a role) Let R be a role. An execution of R is a sequence

. mi mp .
(01,i1) —— ... —— (Opt1,0pt1)

with
e 01 15 a role initialising substitution of R, o; are ground substitutions for all 1 < j < p,

o 1 =iy <ip<---<iipy1 <1+ 1, wherel is the length of R,

mj € T(F) forall1 < j <p,
and (0,1) = (o', 1) if :

o cither there exists 6 such that 0 exstends o, dom(f) C dom(c) U var(u, E), m =g ub,
t0 =¢ t'0 for all (t =) € E, 0’ =0 and i’ =i+ 1, where u, v, and E are respectively the

“recerve” and “send” terms, and the tests of the role R at step i; in this case, we say that
m is accepted (by role R at step i), and we call vo’ the sent message,

e or the previous condition does not hold, o' = o, and i’ =i (the state remains unchanged).
The pairs (0,i) are states of R, (0,1) —— (o’,i') are transitions between role states, and if m is

accepted then (o’,i') is the successor state of (0,1). An execution is partial if ip,11 <1+ 1, and
fall if ipyy =1+ 1.

Remark that in fact the substitution o in a role state (o,p) determines all the execution of
the role until the step p (except the messages that were not accepted).
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1.3.3 Executable roles

Not all roles defined as above are “realistic”. Indeed, to be able to implement a role in an
executable program, the agent playing that role should be able to deterministically build each
“send” message from the previously received messages and its initial knowledge. Hence a first
notion to be formalised is that of deterministic roles.

Definition 1.21 (Deterministic role)

A role R is deterministic if for all states of R, for each accepted message there is at most one
successor state, that is, if (0,1) —— (0’,i 4+ 1) and (0,i) —= (0”,i + 1), then o’ =¢ 0" (where
o' =¢ o” iff dom(o’) = dom(o”) and xo =¢ xo’ for all x € dom(o)).

The above definition says that, at each step, an agent has at most one choice when sending
a message. The following example shows that there exist roles for which several choices are
possible.

Exemple 1.22 Let (recv((x,y)),send(x)) be a role and € = {(z, (y, z)) = ((x,y),2)} be the equa-
tional theory representing associativity. Then for m = (a, (b, c)) there could be two sent messages:
a or (a,b). That is, this role is not deterministic.

Note that, by definition, once a message m is accepted, an agent has at least one choice when
sending a message. And, while there is always a message m that matches a “receive” term wu, it
is not guaranteed neither that the “environment” is able to build such a m, nor that m passes
the equality tests. We will deal with these problems at the level of protocols, since we are not
interested yet what the “environment” can do. However, we can ask ourselves whether, once a
message is accepted, the corresponding sent message is constructible by (the agent playing) the
role using its current knowledge.

Definition 1.23 (Initial knowledge, constructible role)

Let R(z1,...,2;) = vi.recv(uy), E1,send(vy);. .. recv(uy), Ep,send(vy) be a role, and kn be a
set of terms with var(kn) C Z U {z1,..., 21}, called the initial knowledge of R. The role R is
constructible w.r.t. kn if for any state (0,i+1) of R, with i > 1, we have kno,uy0,...,u;o bz
V;0.

Usually, the initial knowledge of (an agent playing) a role consists of the identities and the
public keys of its communication partners, its own private keys, and its long-term shared keys.
Of course, an agent also knows the fresh items he creates. For example, in an asymmetric setting,
the initial knowledge could be kn = zU {dk(2;),sk(z;)} UlJ;{zi} where j is the index of the agent
playing the role. Note that the terms in | J,{ek(z;),vk(z;)} are deducible from kn.

For simplicity, we asked that only sent messages are constructible, while we could have also
asked that “receive” terms and tests are constructible.

The two notions, deterministic and constructible roles are independent, as shown by the next
example and Example 1.22.

Exemple 1.24 Consider the role (recv({x}),send(z)). This role is deterministic, but depend-
ing on whether k € kn, it is constructible or not. Also, the role (recv(h(z)),send(x)) is determin-
istic, but not constructible. (Here we have considered F = Fy and € = &.)
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A simple criterium for a role to be constructible is to have this property even at the speci-
fication level, that is, (using the notations of Definition 1.23) to have kn,us, ..., u; Fz(g) v;, for
all 7. Testing whether a role satisfies this criterium reduces to solving the deduction problem.
As we have seen (see Section 1.2.5) this is solvable in polynomial time in most of the cases of
interest.

Definition 1.25 (Executable role) We say that a role is executable w.r.t. kn if it is deter-
manistic and constructible w.r.t. kn.

1.3.4 Roles with matching and roles with equality tests

Recall that a role is, in fact, a program. One could write its code using either a high-level or
a low-level language. While here we abstract the actual programs that are executed, one can
still think of a higher level specification in which some operations are hidden, and a lower level
specification in which all the (symbolic) operations are explicit. And indeed, there are mainly
two kinds of models, depending on how received messages are handled. On the one hand, received
messages are matched with a pattern and messages to be sent are directly obtained. On the other
hand, testing for the required format of the received message and building the sent messages are
done explicitly.
We consider in the following a simple rewriting system R over a signature F.

Definition 1.26 (Role with matching, role with equality tests)

Let R(z1,...,2,) = vn.recv(uy), Eq,send(v1); ... ; recv(uy), Ep, send(vy) be a role. The role R is
with matching if E; = 0 and u;,v; € T(F \ Fstr, X, N) for all 1 < i < p. The role R is with
equality tests if u; is x; and var(E;) C {x1,...,2;}, for all 1 <i <p.

Note that for roles with equality tests, there are no new variables in the tests. An instruction

with new variables in tests would actually perform some kind of pattern matching. For example,
(recv(x), [x = pair(z1,x2)],send(v)) is “equivalent” with (recv(pair(xy,z2)),send(v)).
Remark For roles with matching we assume that the signature on which we work is F \ Fyst,-
This supposes that, in the Definition 1.20, this is the signature over which the messages m
(received from the environment) are built. Also, since the deduction systems Z(E(R)) and Z(R)
are equivalent over F \ Fys, (see Proposition 1.11), we work in fact with the deduction system
Z(R). These assumptions correspond to the idea that for roles with matching the destructors
operations are implicit. This remark is schematised by the following table:

type of roles ‘ signature ‘ deduction system
roles with matching F\ Fastr Z(R)
roles with equality tests F Z(E(R))

For us, in the following chapters, all roles will be either with matching or with equality
tests. However, “hybrid” models, with both pattern-matching and equality tests, do exist (see
e.g. [CLRO7]). They are useful, for example, to specify tests that cannot be performed implicitly
by the pattern-matching.

In the model we have presented, both the specification of roles (the “receive”, “send” terms,
the tests) and the execution of roles (received messages m) use the same signature (either with,
or without destructors). However, this is not the case for all symbolic models. An example
is the process calculus [AB02]| used as input to the verification tool ProVerif [Bla01]. There,
operations on messages are explicit (thus the roles are specified using explicit destructors), but
sent messages do not contain destructors since it is supposed that such terms do not represent
valid messages (the normal execution is stopped if the application of a destructor “fails”).
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1.4 Protocols

1.4.1 Specification of protocols

A k-party protocol consists of k roles glued together with an association that maps each step of a
role that expects some message m to the step of the role where the message m is produced. This
association essentially defines how the execution of a protocol should proceed in the absence of
the intruder.

Definition 1.27 (Protocol) A k-party protocol is a pair Il = (R,S) where R is a sequence of
k roles with k parameters, and S : [k| X Z — [k] X Z is a partial mapping.

The i-th role in R is denoted R; and we may simply refer to a role by its index. The function
S returns for each role/control-point pair (7, p), the role/control-point pair (1, p’) = S(r, p) which
emits the message to be processed by role r at step p.

Exemple 1.28 The Needham-Schroeder protocol [NS78] (presented in the Introduction, page 15)

A=B: {Ni Alen)
B=A:  {Na NoJe(a)
A= B: {Nles

15 specified as follows: there are two roles R1 and Ra corresponding to the sender’s role and the

receiver’s role. For each relevant “receive”, the corresponding value of S is given on the same

line.
R1(2a;2p) = vng. recv(init),send({{na;, Zaltek(z,));
recv({[na, x’nb]}ek(za))v Send({[xnb]}ek(zb))' S(lv 2) = (2? 1)
Ra(2a; 20) = vny. recv({[ynaaZa]}ek(zb))vsend({[ynaanb]}ek(za))? S§(2,1)=(1,1)
recy ({11 ety senl(stop). 5(2,2) = (1.2)

The variables n,, ny, are of sort Nonce, and the variable x,, and y,, are of sort Msg. The sub-
scripts are there for readability and have no formal meaning. Moreover, one should rather think
of them as written with uppercase letters to suggest roles (or variables) and not concrete agents
(or constants).

1.4.2 Execution of protocols

The intruder As mentioned in the Introduction, the malicious environment in which a protocol
is executed is represented by a special agent, the intruder. We suppose that the communication
is under his complete control, and he can intercept, drop, or modify the messages on the network.
This allows us to assume that all communications pass through the intruder: it is always him
who sends the messages to agents playing a protocol, and him who receives the messages sent
by the agents. Moreover, we assume that it is the intruder who decides when an agent starts a
new (role) session, and which are the agent’s communication partners in this session.

This corresponds to the intuition that transitions between two global states are caused by
actions of the adversary who can initiate new sessions of the protocol between users that he
chooses, and send messages to existing sessions

The intruder is also able to corrupt parties. This happens only at the beginning of an
execution of a protocol (that is, we are only concerned with the case of static corruption). By
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corrupting an agent, the intruder obtains the agent’s private information, like its secret decryption
and signing key. All the data obtained by corrupting parties, and also some other data (like his
own nonces, and keys, the identities of all agents, their public keys, etc.), forms the intruder’s
wmitial knowledge, which is represented by a set of closed terms.

Finally, we suppose that his capabilities of obtaining messages from his current knowledge
are as any other’s agent capabilities. This translates in using the same deduction system as
agents do for executing their roles. Also, we do not restrict neither the computing power, nor
the memory size of the intruder, and hence we simply ignore these aspects.

As for roles, the execution of a protocol is given in terms of transition systems. A state of a
protocol execution is given by a triple (SId,f,H). Here, Sld is the set of role session ids currently
executed by protocol participants, f is a global assignment function that keeps track of the local
state of each existing session and H is mainly the set of messages that have been sent on the
network so far.

More precisely, each role session id is a tuple of the form (s, (a1, as2,...,ax)), where s € N
is a unique identifier for the role session, r is the index of the role that is executed in the session
and a1, a2, ...,a; € Tig(Fpup) are the identities of the parties that are involved in the session.
SID denotes the set (N x [k] x (ﬁd(}_pub))k) of all session ids.

A global assignment f is a function defined on a set Sld C SID which represents the session
ids initialised in the execution. For each such session id sid € Sld, f(sid) = (o, p) returns the local
state of the agent playing the session.

Finally, the messages that may be sent on the network can be essentially any element of 7 (F).

An execution trace is a sequence of global states with transition between them being caused
by one of the actions new, and send with appropriate parameters that we clarify below. This
corresponds to the intuition that transitions between two global states are caused by actions
of the adversary who can initiate new sessions of the protocol, and send messages to existing
sessions. The formal definition follows.

Definition 1.29 (Execution trace) For a k-party protocol I, an execution trace is a sequence
(SIdO’ va HO) O‘_l) (Sldl’ fla Hl) a—2> R a_n> (Sld’ru f'ru H'n)

such that for each 0 < i <mn, Sld; C SID, H; C T(F,X), f; : Sld; — Subst x N, where Subst is
the set of all substitutions, and the transitions «; are as follows:

o The adversary can initiate new sessions:

new(r,ai,...,ak)
—_—

(Sld,f,H) (Sid’, f', H)

where 1 < r < k, a1,...,a; € Tig(Fpup), Sld" = Sld U {sid’}, with sid’" = (4Sld +1,
r,(a1,...,ax)), and the function ' is defined by:

— f'(sid) = f(sid) for every sid € Sld,

— f'(sid’) = (09, 1) where oq is a role initialising substitution for role r, such that z;o00 =
a; where z1,...,z, are the parameters of role 7.

o The adversary can send messages to exristing sessions:

send (sid,m)
_—

(Sld,f,H) (Sld, ', H")

where sid € Sld, m € T(F) such that HE m, ' is defined by
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— f'(sid") = f(sid") for every sid’ € SId \ {sid},
— f/(sid) = (o/,p) where f(sid) = (o,p) and (o,p) —= (o’,p') is a transition between
states of role r,

and H' is defined by:

— if m is accepted then H = HU {m'} where m’ is the corresponding sent message,

— otherwise, H = H (the state is not changed).

Exemple 1.30 Playing with the Needham-Schroeder protocol described in Example 1.28, an ad-
versary can start a new session for the second role with players a,b, and send the message
{Inc; altek(y to the player of the second role, where c is a corrupted agent. The corresponding
execution trace 1s:

new (2,a,b) send(sid1,{[nc,altex(s))

(@, fl, kn) E— ({Sidl}, fg, kn)

({Sidl}v f3,kn U {[nc, nb]}ek(a)) )

where kn = {dk(c)}, sidy = (1,2,(a,b)), and fa, f3 are defined as follows: fa(sidy) = (o1,1),
fa(sidy) = (02,2) where 01(z4) = a, o1(2p) = b, o1(ny) = ny, and oo extends o1 by o2(yn,) = N,
with a,b, c public constants of sort Id, and ny, n. private constants of sort Nonce.

1.4.3 Executable protocols

Clearly, not all protocols written using the above syntax are meaningful. Indeed, not only roles
need to be executable, but also the interleaving of “send”-s and “receive’s (given by the function
S) should be realisable. This requires in particular that S is consistent with the specification
of roles, and that there exists a mormal execution, that is, an execution in the absence of the
intruder. In our formalism this translates to an execution in which the intruder only forwards
the received messages according to the function S.

Definition 1.31 (Executable protocols)
A k-party protocol 11 = (R, S) is executable w.r.t. kny,... kng if:

e the function S is injective;

e for each role r, S(r,1) is defined if 1 <i < p, and the “receive” term w; ¢ {init, fake}, and
it 1s undefined otherwise, where p, is the length of role r;

e cach role r is executable w.r.t. kn,;
o there exist ground substitutions oi,...,0. such that for all roles r

— o, extends a role initialising substitution and 2] o, = a;, for all 1 < i < p,,
— to, =¢ t'oy, for all t =t'] € EI,
— ufo =g v} o for all i such that S(r,i) = (1',4') is defined,
where z] are the parameters of role v, a; are pairwise different constants of sort Id, uj, vf,,,

and E! are respectively the i-th “receive” term of role r, the i'-th “send” of role ', and the
i-th set of equality tests of role r.
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The substitution ¢ is obvious for all “realistic” protocols in the literature, and thus checking
whether a protocol is executable should be very easy. In view of an automatic verification of
specifications of protocols, one can either require that o is given, or apply the obvious algorithm
for obtaining o (i.e. simulate a normal execution).

Remark that with this definition an agent may send terms which are not received by other
agents (we have imposed that for each “receive” there is a (unique) associated “send”, but not
vice-versa, that for each “send” there is a corresponding “receive”). This definition is enough
however to show that most of protocols that code an undecidable problem [DLMS99, AC02] are
not executable. Moreover, it is undecidable to check whether those protocols have a normal
execution (one without intruder). Let us mention that there are conjectures (see e.g. [Fro07])
stating that the secrecy problem is decidable for executable protocols using bounded-message
size. On the other hand, the restrictions imposed by the definition of executability do not seem
so strong in order to affect (un)decidability (considering here perfect cryptography).

In the following we will not suppose that protocols are executable, meaning that the results
we present do not depend on this assumption.
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In this chapter we re-investigate and extend the constraint system approach for a bounded
number of sessions [MS01, CLS03]. We provide a generic procedure to decide general security
properties by showing that any constraint system can be transformed in (possibly several) much
simpler constraint systems. As a consequence, we prove that deciding the existence of key-cycles
is NP-complete for a bounded number of sessions. As an other application, we give an alternative
decision procedure to a significant fragment of protocols with timestamps.

Outline of the chapter The model is presented in Section 2.1, where we define constraint
systems (§2.1.1) and show how they can be used to express protocol executions (§2.1.2). We
also define here security properties and the notion of satisfiability of constraint systems (§2.1.3).
In Section 2.2, we explain how the satisfiability problem of any security property can be non-
deterministically, polynomially reduced to the satisfiability of the same problem but on simpler
constraint systems. The simplification rules derived from |[CLS03| (which are provided in §2.2.1)
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are actually not sufficient to ensure termination in polynomial time. Thus we introduce in Sec-
tion 2.2.2 a refined decision procedure, which is correct, complete, and terminating in polynomial
time (proofs can be found in §2.2.3, §2.2.4, and §2.2.5 respectively). An alternative approach
to polynomial time termination is sketched in §2.2.6. We next show how the constraint systems
approach can be used to obtain our main result of NP-completeness of the detection of key
cycles (§2.3.1). We also show how it can be used to derive NP-completeness for protocols with
timestamps (§2.3.2). Some concluding remarks can be found in Section 2.4.

2.1 The model

Constraint systems are quite common in modeling security protocols for a bounded number of
sessions. We recall here their formalism, and show how they can be used to specify general
security properties.

We fix from the start a concrete signature and deduction system used throughout this chapter,
although the definitions given in this section work as well in a general setting. The sort system
is arbitrary such that it contains the supersort Msg. The function symbols are those occurring
in the deduction system Z; presented in Section 1.2.3.1 (page 40), which is also the deduction
system we consider in this chapter. In fact, the rule (Retr) is optional. That is, our results hold
in both cases (when the deduction relation - is defined with or without this rule).

We consider in this chapter only roles with matching and we will just call them roles. Con-
straint systems have also been used for roles with equality tests in [DJ04, Bau07].

2.1.1 Constraint systems

Definition 2.1 A constraint system C is a finite set of expressions T | u, called constraints,
where T is a non empty set of terms, called the left-hand side of the constraint and w is a term,
called the right-hand side of the constraint, such that:

- the left-hand sides of all constraints are totally ordered by inclusion;

- if x € var(T) for some (T I-u) € C then
T, & min{T" | (T" I+ «) € C,z € var(u)}
exists and T, C T.

A solution of C' is a closed substitution 0 such that for all (T'IFu) € C, TO F ub.

The left-hand side of a constraint system C', denoted by Ihs(C'), is the maximal left-hand side
of the constraints of C'. The right-hand side of a constraint system C, denoted by rhs(C'), is the set
of right-hand sides of its constraints. var(C') denotes the set of variables occurring in C'. L denotes

def

the unsatisfiable system. The size of a constraint system is defined as |C| = |lhs(C) U rhs(C)|.
A constraint system C' is usually denoted as a conjunction of constraints

C= N (Tl w)

1<i<n

with T; C Tj4q, for all 1 < ¢ <n —1. The second condition in Definition 2.1 then implies that if
x € var(T;) then 35 < i such that T; = T, and T; C T;.
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2.1.2 From protocols to constraint systems

We present now how to build constraint systems starting from an execution scenario (e.g. agent
a plays two role sessions with b, and b one role session with A). The solutions of these constraint
systems represent all possible executions of the given scenario.

Similar presentations can be found in [Cor06, Del06].

Definition 2.2 (Scenario) A scenario is a finite set of initialised protocol roles.

Exemple 2.3 Consider again the Needham-Schroeder protocol [NS78] formalised in Example 1.28
(page 48). The following two instantiated roles represent a scenario where A starts a session with
a corrupted agent I (whose private key is known to the intruder) and B is willing to answer to A:

Ry = (recv(init), send({[na, alexs)); recv({Ina, yn, Jrek(a) ), send ({{ym, eki) )
Ry = (recv({[ynav a]}ek(b))a Send({[yna7 nb]}ek(a)); recv({[nb]}ek(b))7 send(stop))

That is, the two initialising substitutions are o1 = { .., Yy, "/un, } and o3 = { Y., Yz, "/, }-

Given a scenario, there are many ways in which the instructions of the participating roles
can be interleaved in order to obtain a sequence of instructions (i.e. a possible execution).

Definition 2.4 (Interleaving) Let Sc = {Ry,..., Ry} be a scenario. An interleaving of S of
length 1 is a function ¢ : [l] — S such that for all R € S, 8{j | 1(j) = R} < kgr, where kp is the
length of the role R. We define r : [I] — N by x(j) = {5’ | 1(3') = ¢(4), 5" < j}.

The function ¢ tells which is the role currently (i.e. at index j) playing, while the function  tells
which is current control-point in the role. Note that in an interleaving not all roles need to be
represented and roles need not reach their final control-point.

From interleavings to constraint systems Let Sc be a scenario and ¢ be an interleaving of
length [ of Sc. We suppose that roles in Sc use different variables, that is var(r) N var(r’) = 0,
for all r,7" € Sc (this can be achieved by renaming the concerned variables). We denote by rcvh
and snt? the p-th (initialised) “receive” and respectively “send” message of role 7 € Sc. Then the
constraint system associated with the interleaving ¢, and with the initial intruder knowledge Tj
is

C= N\ (Tit)

1<i<i

where for all ¢ > 1,

T, = T;—1 U {sntl}

t; = rev?,

with 7 =1(i), p=k(i), ¥ = (i + 1), and p' = k(i + 1).

The sets of constraints C built above is a constraint system. Indeed, the left-hand sides of
constraints in C' are ordered by inclusion. And, if x € var(7;) then there is a v € T; such that
x € var(v). Let j be the index such that v € T; C Tj_; (such a ¢ > j > 1 exists by construction
of C, and since T is a set of ground terms). Then v = snt? where r = +(j) and p = k(j). By the
definition of roles, there is p’ < p such that z € Var(rcvgfl l
with j' < j. Hence T} exists and T, C Ty C T; C T;.

Note that we can safely (i.e. without changing the solution set) eliminate the constraints
T; IF t; with t; € {init,stop}, since these are public constants (hence always deducible). Also, in

). But, by construction of C, revl =t
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order to remember the last message sent on the network (i.e. snt! with ¢(I) = r and x(l) = p),
which does not appear in lhs(C), we add to C' the constraint T;_; U {snt}'} I ¢, where c is some
public constant. We call this new constraint system the eztended constraint system associated
with ¢.

Exemple 2.5 Consider the scenario presented in Example 2.3 and the interleaving ¢ of length 4
given by (1) = Ry, 1(2) = Ro, 1(3) = Ry, and 1(4) = Ry. The constraint system C1 associated
with the interleaving v and the initial intruder knowledge Ty = {a, b,i,ek(a),ek(b), ek (i), dk(i)} us:

T = 1o, {{na; a]}ek(z’) = {[Yna; a]}ek(b) (2.1)
13 = 1, {[y'l'la7 nb]}ek(a) I {[nav y'ﬂb]}ek(a) (2.2)
T3 = Do, {yn,Jekiy = Aneltexs) (2.3)

The set Ty represents the messages known to the intruder once A has contacted the corrupted
agent I. Then the equations 2.1 and 2.2 can be read as follows: if a message of the form
{na> a]}ek(b) can be obtained by the intruder, then this message would be send to B, and B would
answer to this message by {{Yn,, Nbltek(a), which is added to Ty. Subsequently, if a message of the
form {[na, yn, Jtek(a) can be obtained by the intruder, then this message would be send to A, and A
would answer with {{yn,[}eki) since A believes she is talking to I. The run is successful if B can
finish his session by receiving the message {{npl}exv). Then B believes he has talked to A while A
actually talked to I. The variables represent those parts of messages that are a priori unknown
to the agents.

2.1.3 Security properties

We are concerned here with trace properties, that is with properties that can be expressed
as predicates on traces. A protocol satisfies such a property if and only if the corresponding
predicate holds for each execution trace of the protocol. To verify whether a property is satisfied
for a “bounded number of sessions” (i.e. a scenario), it is then sufficient to check whether the
interleavings of the scenario represent indeed execution traces satisfying the property. Not all
interleavings need to be enumerated (see [MS01, Cor06|). But anyhow, here we are only interested
whether an arbitrary interleaving represents a trace satisfying a certain property. Then, in
this context, we consider that a security property is just a predicate on lists of messages, since
checking whether this list represents a trace is done by deciding the satisfiability of the associated
(extended) constraint system.

Definition 2.6 Let C be a constraint system, L a list of terms such that var(Ls) C var(C) and
P a predicate on lists of terms. A solution of C' for P w.r.t. L is a closed substitution 6 such
that V(T |- u) € C, TO - uh and P(LO) holds.

Remark that a substitution is a solution of C' for the true predicate (that holds for any list
of terms) w.r.t. an arbitrary list if and only if it is a solution of C' (in the sense of Definition 2.1).
To avoid confusion, in such cases we call a solution of C' a partial solution of C', or we explicitly
mention the predicate true.

For a list L we denote by L, the set of terms of the list L. For a predicate P we denote by
P the negation of P.

The approach presented above doesn’t allow to prove the correctness of a protocol w.r.t. a
property (i.e. a predicate) P (one cannot check in this way all scenarios), and represents in fact a
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search for attacks w.r.t. a property P. That is, we are interested in the existence of attacks—in
the predicate P, the correctness property being thus expressed as the predicate P.
We show next how secrecy and authentication are modeled in this setting.

Secrecy This property can be easily expressed by requiring that the secret data s is not
deducible from the messages sent on the network. We define the predicate Ps to hold on a list
of messages if and only if s is deducible from it. That is, Ps(L) holds if and only if L - s. The
secrecy property is then represented by the predicate Ps. The list L on which this predicate is
usually evaluated is a list of the terms in lhs(C'), where C' is the (extended) constraint system
C associated with the interleaving under study. Hence, such a deduction-based property can be
directly encoded by adding the constraint lhs(C) IF s to C, and asking for the partial satisfiability
of the new constraint system. Considering that the only sort is Msg, we retrieve the usual
constraint system deduction problem, which is known to be NP-complete [RT03].

Exemple 2.7 We consider again the constraint system C defined in Example 2.5. Let Ly be a
list of the messages in lhs(C1). Then the substitution o1 = {"/y, ., "/y,, } is a solution of Cy for
the property P,, w.r.t. L1 and corresponds to the attack found by G. Lowe [Low96].

Authentication This property can also be defined using a predicate P, on lists of messages.
For this purpose we use correspondence assertions and we introduce, following the syntax of
Avispa [ABBT05], two new private function symbols witness and request of arity 4 with the
following intuition: request(a, b, id, m) says that the agent a now believes that it is really agent
b who sent the message m (that is, a authenticates b on m), and witness(b, a,id, m) says that b
has just sent the message m to a. The symbol id is simply a constant identifying the request
since there might be several authentication goals for one protocol (e.g. the Needham-Schroeder
protocol is a mutual authentication protocol, hence it has 2 authentication goals). The predicate
Pauin holds on a list L of messages if whenever request(a, b, id, m) appears in the list there is
a corresponding occurrence witness(b, a,id, m) (defining an injection) appearing before it in the
list (that is, at a smaller position), for any agents a and b. These “status events” (i.e. terms of
the form f(z,2/,id,t) with f € {witness,request}, z, 2z’ parameters, id a constant, and ¢ a term)
are in fact part of the specification of a protocol (that is, each step of a role has an associated set
of such events), and a list of events is generated in the same manner as constraints systems are!°.
Then the predicate Py applied on a list L built in this way represents Lowe’s definition of
injective agreement [Low97]. Thus, an interleaving has an attack on the authentication property
if and only if the associated constraint system C has a solution for P, w.r.t. L.

Exemple 2.8 We consider again the constraint system Cy defined in Example 2.5. We consider
here only the authentication of A by B on Ny. The corresponding list is Lo = (Witness(a, ,2,Yn, ),
request(b, a, 2, nb)), that is, agent a acknowledges that he sent y,, to agent i, and agent b, at the
end of its role execution (thus, after receiving his nonce ny), believes he talked with agent a. The
substitution o1 defined in Example 2.7 is a solution of Cy for the property Py w.r.t. Lo, since
there is no corresponding witness assertion for request(b,a,2,ny) in Lo.

In Section 2.3, we provide other examples of predicates which encode time constraints, or
express that no key cycles are allowed.

1011 fact we also assume that requests are not emitted by or for corrupted agents.
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Ry CANTIFu~ C fTU{z|(T'F2)eC,T"CT}Hu
Ry CANTIFu~yCo A TolFuo if 0 = mgu(t,u), t € st(7),

t # u, t,u not variables
Rj3 CANTIFu~y,Co N Toluo if o = mgu(ty,ta), t1,te € st(T),

t1 # to, t1,12 not variables
Ry CANTIFu~ L if var(T,u) =0 and Tt/ u

Ry CANTIFf(u,v) ~ CANTIFuANTIFv for f € Foup, f not a constant
Figure 2.1: Simplification rules.

2.2 Simplifying constraint systems

Using some simplification rules, solving general constraint systems can be reduced to solving
simpler constraint systems that we called solved. One nice property of the transformation is that
it works for any security property.

We say that a constraint system is solved if it is different from 1 and each of its constraints
are of the form T' I x, where x is a variable. Note that the empty constraint system is solved.
This corresponds to the notion of solved form in [CLS03].

Solved constraint systems with the single sort Msg are particularly simple in the case of the
true predicate since they always have a solution, as noticed in [MS01]. Indeed, let 77 be the
smallest (w.r.t. inclusion) left-hand side of a constraint. From the definition of a constraint
system we have that 77 is non empty and has no variables. Let ¢ € T;. Then the substitution 6
defined by a6 = t for every variable x is a solution, since T F ¢ for any constraint 7' IF x of the
solved system.

2.2.1 Simplification rules

The simplification rules we consider are defined in Figure 2.1. All the rules are in fact indexed
by a substitution: when there is no index then the identity substitution is implicitly considered.
We write C' ~7 C" if there are C1,...,C, withn > 1, C"' = Cy, C ~5, C1 ~g, -+ ~4, Cp and
o =0109...0,. We write C ~* C"if C ~7 C’ for some n > 1, or if C' = C and o is the empty
substitution.

Exemple 2.9 Let us consider the following constraint system C':

{T1 I ({laltex(a)> {wlek(a))
T I+ Kk

where T1 = { a, ek(a), ({{k1ltek(a)> {F2ltek()) } and To = T1 U{{y}s}. The constraint system
C' can be simplified into a solved constraint system using (for example) the following sequence of
simplification rules.

T I
T I {zlexa) T, oek(a) m J 2T F

R<> Rencad
C ~ T - {[y]}ek(a) ~ T I {[y]}ek(a) ~ Ty IF {[y]}ek(a)
T I+ k T - ki T IF Ky
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since Ty - ek(a). Let o = mgu ({[k1ltek(a)> {Wlek(a)) = {*'/y}- We have

Ty Ik ow R I ko= R T v = R
Ty b Ayle@ ~o T = {k1ek(a) ~3{ Too - ~ Ty Ik oz
Ty b K Too I+ ki 2 !

since Ty = {[k1]}ek(q) and Too U {x} & k. Intuitively, it means that any substitution of the form
{7 s kl/y} such that m is deducible from Ty is solution of C' (for the true property).

We are intersted in simplification rules that are correct and complete, meaning that a con-
straint system C has a solution for a security property P if and only if there exists a constraint
system C’ in solved form such that C' ~} C’ and C’ has a solution for P. Note that several
simplification rules can possibly be applied to a given constraint system.

In order to obtain completeness for the above set of simplification rules we need to impose a
syntactic restriction on the form of constraint systems. Indeed, as observed by H. Comon-Lundh,
the following constraint system C' = (T' I+ ) A (T U {ul}z IF u), where T' = {ek(a),dk(a)}
represents a counter-example for completeness: the substitution { ¢k(®)/,} is a partial solution of
C, but C has no solved form.

We say that a constraint system C' is well-formed if, for any subterms {[ul}, and dk(w) of C,
we have that v and w are ground terms.

Note that this is not a restriction in our setting (where constraint systems are obtained from
protocols as in Section 2.1.2), since scenarios only consist of initialised roles, and since in any
protocol in which a variable x is used to represent a public or a private key can be rewritten
“equivalently” by replacing x with ek(y) or dk(y) respectively. Also, the above simplification
rules preserve well-formedness: indeed, it is easily seen that, if C' is well-formed and C ~», C’,
then C’ is well-formed.

In what follows we will only consider well-formed constraint systems.

Theorem 2.10 Let C' be a constraint system, 0 a substitution, P a security property and L a
list of messages such that var(Lg) C var(C).

1. (Correctness) If C' ~% C" for some constraint system C' and some substitution o and if 6
is a solution of C' for the property P w.r.t. Lo then o is a solution of C' for the property
P wrt L.

2. (Completeness) If 6 is a solution of C for the property P w.r.t. L, then there exist a
constraint system C' in solved form and substitutions 0,0 such that 0 = o6’, C ~% C" and
0’ is a solution of C' for the property P w.r.t. Lo.

As we will see in the next section we need a slight extension of the simplification rules in
order to obtain their termination in polynomial time. Theorem 2.10 is proved in Sections 2.2.3
and 2.2.4. The proof is a simple extension of the proof provided in [CL04]| to sorted messages
and general security properties.

2.2.2 Decision procedure in NP-time

Theorem 2.10 does not suffice to ensure that deciding security properties is in NP (provided that
we can decide them easily, i.e. in polynomial time, on solved constraint systems). In fact, applying
the simplification rules may lead to branches of exponential length (in the size of the constraint
system). Indeed when applying a simplification rule to a constraint, the initial constraint is
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suppressed from the constraint system and replaced by new constraint(s). But this constraint
may appear again later on, due to other simplification rules. It is the case for example when
considering the following constraint system.

Ty = {{aki} '+ f£xoke
Ty = T, {{zo, (wo. a)) ey = o1 he

TTL d:ef n—1, {<xn—17 <x?’l—17 a>>}kn “_ {{xn}k”

def
Thi1 & Tha I

The constraint system C'is clearly satisfiable and its size is linear in n. We have that

To = {xzo}
2n 0 0 ko
¢ { Thi10 IF zho

with o(xiy1) = (x4, (zi,a)) for 0 <i <n — 1. This derivation was obtained by applying rule Ry
and then R for each constraint T; I {z; }5, with 1 <4 <n. The rule R; cannot be applied to
Ty410 IF xp0 since xg and the keys k; are not present in or derivable from 7T,,110. Note that
o' =0 U{%,} is a solution of C' and can be easily obtained by rule Ry on the first constraint
and then rule R; on both constraints.

However, there is a branch of length 3(2" — 1) from T IF 2,0 leading to T' IF xo (in solved
form), where T" denotes T,,110. This is easy to see by induction on n. It is true for n = 0. Then
using only the rules Rp,ir and Ry, we have

Ry (T I+ ap10 m [ T I z ry | T 7 a0 .
TIF z,0 ~ T I > ~ T I > ~ T I+ zp_10 ~5
Tp—10,a Tn—-10,0 T I a
R [T IF x m
W{ T I+ zp_10 =" Tk o

with m = 3(2"~! — 1) by induction hypothesis. The length of the branch is 2 x 3(2"~! —1) +3 =
3(2"—1). This shows that there exist branches of exponential length in the size of the constraint.

We can prove (see Section 2.2.5) that it is actually not useful to consider constraints that
have already been seen before (like the constraint 7' I- x,,_10 in our example). Thus we store the
constraints that have already been visited. Starting from the initial set of simplification rules R,
we construct a new set of simplification rules R’. For each simplification rule C' ~, C’ in R we
introduce in R’ the rule

C;D ~, C'\D;(C\C")UD

The constraints in D are those which were already analysed, they are stored in D. The initial
constraint system has the form C;0.

Theorem 2.11 Let C be a constraint system, 0 a substitution, P a security property and L a
list of messages such that var(Ls) C var(C).

1. (Correctness) If C; (0~ C'; D' for some constraint system C' and some substitution o, if
0 is a solution of C' for the property P w.r.t. Lo then o0 is a solution of C for the property
P wrt L.
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2. (Completeness) If 6 is a solution of C for the property P w.r.t. L, then there exist a
constraint system C' in solved form, a set of constraints D' and substitutions o,0" such
that 6 = o6, C; () ~% C'; D’ and 0’ is a solution of C' for the property P w.r.t. Lo.

3. (Termination) If C;0 ~" C'; D" for some constraint system C' and some substitution o
then n is polynomially bounded in the size of C.

The following corollary is easily obtained from the previous theorem by observing that we
can guess the simplification rules which lead to a solved form.

Corollary 2.12 Any property P that can be decided in polynomial time on solved constraint
systems can be decided in non-deterministic polynomaial time on arbitrary constraint systems.

The rest of Section 2.2 is devoted to the proof of the two theorems. We first show correct-
ness (in Section 2.2.3) and completeness (in Section 2.2.4) of Theorem 2.10. Then we prove
Theorem 2.11 in Section 2.2.5.

2.2.3 Correctness

We first give two simple lemmas.
Lemma 2.13 If T+ u then var(u) C var(T).

Proof  The affirmation follows easily by induction on the depth of a proof of T - u, observing
that no deduction rule in Zj introduces new variables; that is, var(t) C (J,; var(t;) for deduction

rules
Skt ... Skt

Skt

(without conditions), and var(t) C var(T") if ¢t € T' (that is, for the membership rule). ]
The next lemma shows the “cut elimination” property for the deduction system .

Lemma 2.14 If T Fwu and T,ut v then T - v.

Proof  Consider a proof m of T+ w and a proof ©’ of T, u I~ v. The tree obtained from 7’ by
e replacing the labels of nodes T,u F ¢ in 7’ with T F ¢,
e replacing each new leaf 7' u (the old T, u F u) with the tree T,

is a proof of T F v. [

As a consequence, we have that if T C 7', T'F v and T+ u, for all w € 7'\ T, then T+ v.
We show now that the simplification rules preserve constraint systems.

Lemma 2.15 The simplification rules transform a constraint system into a constraint system.

Proof  Suppose that C is a constraint system, C' = A;(7; IF u;) and C' ~, C’. Since T; C T; 11
implies T;o C T; 10 we have that C’ meets point 1 of the definition of constraint systems.

We show that C” also meets point 2 of the definition of constraint systems. Let (T” - u') € C’
and z € var(T”). We have to prove that T}, exists and 7, C T". We consider which simplification
rule was applied.
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e If rule Ry was applied, eliminating the constraint 7" I+ u, then w is ground, (7" IF u') € C
and
T/

x

=min{7T" | (T" Fu") € C',x € var(u”)}
=min{T" | (T" IFu") € C\ {T IF u},x € var(u")}.

(The first equality is the definition of 7., and the second one holds since w is ground.) If
min{7” | (T" Ik v") € C\{T IF u},z € var(v”)} = min{T” | (T" I+ v") € C,z € var(u”)}
then the property is clearly satisfied (as it is satisfied by 7" IF «’ in C). Otherwise, we have
that = € var(u) and T = min{7” | (T” I+ v") € C,x € var(v”)}. By minimality of T it
follows that « ¢ var(T) and = ¢ {y | (T" Fy) € C,T" C T}. Since z € var(u), we have
that TU{y | (T" I+ y) € C,T" C T} I/ u which contradicts the applicability of rule Ry (by
Lemma 2.13).

e If rules Ry or R3 were applied then for each constraint (7" I+ u”) € C’ there is a constraint
(T I u) € C such that To = T” and uo = u”. Consider (T IF u) € C such that To =T’
and uo = u'.

If x is not introduced by o then x € var(T). Then T, exists and T, C T. Thus T,0 C To.
If Too = T'o then = € var(T,) which contradicts the minimality of 7},. Thus T,o C To.
We also have that {T"c | (T" IFu") € C,x € var(u")} C {T"o | (T"c I+ u"0) € C',x €
var(u”o)}, since for any term u”, if z € var(u”) then z € var(u”o). It follows that T,
exists and 7, C T,o. Hence T, C T".

Otherwise, suppose x is introduced by o, that is Jy € var(T') such that x € var(yo). Then
T, exists and T, C T'. We choose y such that 7}, is minimal with respect to the inclusion
relation. We have that T, C min{7"¢ | (T” IF ") € C,z € var(u”),z € var(zo)} C Tyo.
Again from T, C T' we obtain that 7,0 C T, since if Tyoc = T'o there exists z € var(T})
such that z € var(zo). We have z # y by minimality of 7,,. Thus there exists T, C T,

which contradicts the minimality of y. Hence T, exists and T, C T".
e If rule R4 was applied then the obtained result is a constraint system by definition.

e If rule Ry was applied, then the property is preserved, since, if « € var(u”), for some term
u” such that (T” I «”) € C’, then there is a term v with x € var(v) such that (T” I v) € C.

Lemma 2.16 (correctness) If C ~», C’ then for every solution T of C' for the property P
w.r.t Lo, o1 is a solution of C for the property P w.r.t. L.

Proof If the applied rule was Ry then we have to prove that 7't + ur, where T I+ u is
the eliminated constraint. We know that T U {x | T'IFz € C,T" C T} F w. It follows that
TrU{zr |T'F 2 € C, 7" C T}t ur. For any (T" I+ z) € C,T" C T, we have that T'7 b 27, and
hence Tt = 27. Then from Lemma 2.14 we obtain that T'7 F ur.

Suppose that the rule applied in order to obtain C’ was Ry or R3. Then we have for each
constraint 7" |- w of C' that (T'o)7 t (uo)7, that is, T(o7) F u(o7). If the rule was Ry then we
obtain that T'7 F f(u,v)7r from T'7 F ur and T'r - vt by applying the corresponding rule (e.g.
encryption if f = encd). Finally, rule R4 couldn’t have been applied.

We deduce that o7 satisfies C. Moreover, since 7 is solution of C’ for the property P w.r.t
Lo, it means that P((Lo)7) holds, that is P(L(o7)) holds. Thus o7 is solution of C for the
property P w.r.t L. [
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2.2.4 Completeness

Let Ty C Ty, C --- CT,. We say that a proof w of T; F u is left minimal if for any j < ¢ such
that T; - u, ©’ is a proof of T; - u where 7’ is obtained from 7 by replacing 7; with 7} in the
left-hand side of each node of w. We say that a proof is simple if any subproof is left minimal
and on any branch there are no two equal nodes. Remark that a subproof of a simple proof is
simple.

Lemma 2.17 IfT; - u then there is a simple proof of it.

Proof  We prove the property by induction on the pair (i,m) (considering the lexicographical
order), where m is the size of a proof of T; I u.

If ¢ = 1 then any (subproof of any) proof of T} F w is left minimal and there exists a proof
without repeating nodes on branches.

If > 1 and there is j < 4 such that T; - « then apply the recursion hypothesis to obtain
the existence of a simple proof of T; - u. This proof is also a simple proof of T; F u (by using
weakening; i.e. if THw and T C T’ then T' - u).

If 7 > 1 and there is no j < ¢ such that 7 F u, then apply the recursion hypothesis on the
immediate subproofs of the proof of T; F u. If the node T; F u appears in one of the obtained
subproofs 7/ then consider a proof of T; F u (subproof of 7’) not having T; - u as an internal
node. Otherwise apply the same last rule to obtain the root node T; - u. Anyhow, the obtained
proof and all of its subproofs are left minimal by construction, and hence the obtained proof is
simple. [

For a constraint system C', we call a left-hand side 7; of some constraint in C' minimal unsolved
if for all (T IF u) € C such that 7' C T;, u is a variable, and there is a constraint 7; IF u; with w;
not a variable. Note that if 7" is minimal unsolved then nothing is implied for right hand sides
of constraints 7' IF u (that is, u may be a variable or not). Also, if 7' is minimal unsolved then
all left hand sides 7”7 with 77 C T are also minimal unsolved.

Lemma 2.18 Let C be an unsolved constraint system, 6 a partial solution of C, T; a minimal
unsolved left-hand side of C' and u a term. If there is a simple proof of T;0 = u having the last
rule an aziom or a decomposition then there is t € st(T;), t not a variable, such that t0 = u.

Proof  Consider a simple proof 7 of 7;0 - u. We can suppose without loss of generality that
i is minimal since if 756 - « with j < i then 7’ (obtained as in the definition of a simple proof)
is a simple proof having as the last rule an axiom or a decomposition. We reason by induction
on the depth of the proof. We can have that:

e The last rule is an axiom. Then u € T;6 and hence there is ¢t € T; (thus t € st(7};)) such
that t0 = u. If t is a variable then T} IF ¢ is a constraint in C' with T3 C T; (see the
definition of a constraint system). Hence T30  t6, that is T30 F u, which contradicts the
minimality of ¢. Thus, as required, ¢ is not a variable.

e The last rule is a decomposition.

Suppose that it is a symmetric decryption. That is, there is w such that T;0 = {u}.,
T;0 + w. By simplicity of the proof, the last rule applied when obtaining {u},, was an
axiom or a decomposition, otherwise the same node would appear twice. Then applying the
induction hypothesis we have that there is ¢ € st(7}), ¢t not a variable, such that t0 = {u},,.
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It follows that ¢t = {#'}4» with ¢'0 = w. If ¢ is a variable then T6 - ¢'0. That is 70 - u,
which again contradicts the minimality of 7. Hence ¢’ is not variable, as required.

For the other decomposition rules the same reasoning holds.
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Lemma 2.19 Let C be an unsolved constraint system, 6 o partial solution and T; a minimal
unsolved left hand side of C, such that T; does not contain two distinct non-variable subterms
t1,to with t160 = to6. If u € st(T;), u non-variable, and T;0 & ub then we have that T! - u, where
T/=T;U{z |TIkzeCTCT}.

Proof Let j be minimal such that 7560 - uf. Thus j < i and T; C T;. Consider a simple
proof of T;60 - uf. We reason by induction on the depth of the proof. We can have that:

e The last rule is an axiom. Then uf € T;60. If uw € T; then T; F u and hence T} F w.
Otherwise, there is t € T such that t0 = uf. We have ¢ # u, and hence ¢ is a variable,
since otherwise there is a contradiction with the hypothesis (there are two distinct non-
variable terms ¢ and w in st(7;) such that t0 = uf). We then have T30 - t6. Thus T30 - uf,
which contradicts the minimality of j, since T} C 7. Hence u € Tj and then T - u, as
required.

e The last rule is a decomposition.

Suppose that it is the symmetric decryption rule. That is, there is w such that 7,0
{ub}, T;0 F w. The last rule applied to obtain T30 - {uf},, was not a composition since
there are no duplicated nodes in simple proofs. We can hence apply Lemma 2.18 and obtain
that there is t € st(7}), ¢ not a variable, such that t0 = {uf},,. Since t is not a variable
we have that ¢ = {¢'};» with 0 = uf and t"0 = w. If t' is a variable then Ty 6 + ¢'6.
Thus Ty60 = uf, which contradicts the minimality of j, since Ty C T} by the definition of
constraint systems. It follows that ¢’ is not a variable. Then we have that ¢ = u (otherwise
we would have two distinct non-variable terms ¢ and w in st(7;) with ¢ = uf). We apply
the induction hypothesis on T;60 F {t'};70 and we obtain that 7] - {t'},». Now, if ¢ is
a variable then t” € T, thus T} - ¢”. Otherwise, if ¢ is not a variable then, by induction
hypothesis on T;60 - t"6, we obtain T} i~ t”. Hence, in both cases, we obtain that T - ¢".
Then, together with T/ - {#'};» and ¢’ = w, it follows that T} F u.

Suppose now that the last rule is the asymmetric decryption rule. That is, there is w such
that T30 = {[ub]}ek(w), Tj0 I dk(w). The last rule applied to obtain 756 = {[ufl}ex(w) Was
not a composition. We can hence apply Lemma 2.18 and obtain that there is t € st(7}),
t not a variable, such that t0 = {[uf}ex(w). Since t is not a variable, and from the well-
formedness of C, we have that t = {[t'[}ex() With 0 = uf and w is a ground term. If #/
is a variable then Ty 6 = t'6. Thus Ty 0  uf, which contradicts the minimality of j, since
Ty C Tj by the definition of constraint systems. It follows that ¢’ is not a variable. Then
we have that ¢ = u (otherwise we would have two distinct non-variable terms ¢’ and
in st(7;) with ¢'0 = uf). We apply the induction hypothesis on 7;6 = {[t'[}ex()f and we
obtain that T; F {[t'[ek(w)- Applying Lemma 2.18 for T;6 I~ dk(w), we obtain that there is
t" € st(Tj), t” not a variable such that t”6 = dk(w). Using the well-formedness of C' we
obtain that ¢” = dk(w). Applying now the induction hypothesis on T;60 - dk(w), we get
that T} = dk(w). Then, together with T} = {[t'}ex () and ' = w, it follows that T} F u.

For the other decomposition rules the same reasoning as for the symmetric decryption case
is applied.

e The last rule is a composition. Suppose for example that it is the symmetric encryption
rule. Then uf = {w; }, and T30 F wy and 756 = wo. Since u is not a variable we have
that v = {u1 Ju,, u160 = w1 and usf = wsy. If uy (resp. ug) is a variable then uy (resp. ug)
isin T}. Indeed, as u; € var(T;) (because u € st(7})), we can apply point 2 of Definition 2.1
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and the minimal solvability of T;. Otherwise (that is, if u; and ug are not variables) we
apply the recursion hypothesis. Hence in both cases we have T/ - u; and 7] F up. Thus
T! F .

For the other composition rules the same reasoning holds.

Lemma 2.20 (completeness) If C' is an unsolved constraint system and 0 is a solution of C
for the property P w.r.t. L then there is a constraint system C', a substitution o, and solution T
of C" for the property P w.r.t. Lo such that C ~, C' and 0 = oT.

Proof  Consider a constraint T; IF u; such that T; is minimal unsolved and wu; is not a variable.
We have T;0 - u;0. Consider a simple proof of T;0 - u;0. According to the last applied rule
in this proof, we can have:

1. The last rule is a composition.

Suppose that it is the pairing rule. That is, there are wy,wo such that T;0 - wq, T;0 - wo
and (w1, wy) = w;f. Since wu; is not a variable there exists u/,u” such that u; = (u/,u").
Hence we apply the simplification rule Rpair in order to obtain C’. Since v’ = w; and
u”6 = wy, the substitution # is also a solution to C’ for P w.r.t L.

For the other composition rules the same reasoning holds, applying this time the corre-

sponding R; rule.

2. The last rule is an axiom or a decomposition. Applying Lemma 2.18 we obtain that there
is t € st(7;), t not a variable, such that t0 = u;0. We have the following two possibilities:

(a) If t # u; then we apply the simplification rule Rs.
(b) Otherwise, if t = u;, then u; € st(T;). We consider the cases:
i. There are two distinct non-variable terms t1,te € st(7;) such that 10 = t90.
Then we apply the simplification rule Rs.
ii. Otherwise, the rule R; is applied. This follows from Lemma 2.19.

2.2.5 Termination in polynomial time

In what follows, we first show that the new simplification rules are terminating in polynomial
time. Then we show that removing already analysed constraints is a correct and complete
procedure.

It is easy to show by induction on j that the following properties are satisfied.

Lemma 2.21 Let C = Cy be a constraint system, let Dy = 0 and C;_1; D;—1 ~,, Ci; D; for all
0 <i<n for somen>0. Then C;ND; =0 for all 0 < j <n.

Lemma 2.22 Let C = Cy be a constraint system, let Dy = O and C;—1;D;—1 ~~,, Ci; D; for

all 0 < i < n for somen > 0. If (T IF u) € D, then there is an unique j < n such that
(T'IFu) € C; \ Cjq1 or, equivalently (T'IF u) € Djyq \ Dj.
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2.2.5.1 Termination

We show that each branch is of polynomial length.

Lemma 2.23 (termination) If C;0 ~2 C'; D’ for some constraint system C' and some sub-
stitution o then n is polynomially bounded in the size of C.

Proof  We first notice that the rule R4 can be applied only once. The rule R; increases the
total number of constraints by one and the rules Ry and R3 do not increase the total number
of constraints. Thus the number of applications of rule R; is at most the number of constraints
in C plus the number of applications of Ry. In addition, each application of Ry or Rj3 strictly
decreases the number of variables. Since no rule increases the number of variables, the number
of applications of the rules Ry and Rj3 is bounded by the number of variables in C. So what we
need to bound is the maximum number of applications of rule Ry.

For a constraint system C”, we denote by Lhs(C”) = {T | (T IF u) € C"} the set of left hand
sides of constraints of C”. We denote (Cj; D;)i>o the sequence of constraint systems obtained
by applying successively the simplification rules, where Cy = C and Dy = (). By Lemma 2.21,
Cr N Dy, =0 for all k> 0. Let j be an arbitrary index such that (Cj_1;D;_1) ~» (Cj; D;) using
the rule R¢. Let jo be the index of the last application of one of the rules Ry or R3, that is jo < j
and jo = max{k < jolar € {R2, R3}} (by convention jy = 0 if there is no application of one of
the rules Ry or R3). Suppose that, at step j, we have applied rule Ry on T'IF f(u,v). Then
(T'IF f(u,v)) € D;. Hence we cannot apply later (at some step k > j) a rule (and in particular
Ry¢) on T'IF f(u,v). Also note that f(u,v) € st(C},). Hence until the next application of one of
the rules Ry or Rz we can apply rule Ry at most fLhs(C},) x #st(rhs(C},)) times, since Ry and R
are the only rules that change the left-hand side of a constraint system. But §Lhs(C}) < tlhs(C)
for all k£ (since a different left hand side 7" of a constraint means at least a different term).
Observe now that #lhs(C;) (and in particular flhs(C},)) can only decrease with regard to flhs(Cp)
because each rule either preserves the set of terms in the left-hand side of a constraint system,
or it replaces it with a new set of usually equal cardinality (but maybe smaller if some terms
get unified by the application of rule Ry or R3). Also, fist(rhs(C;)) < tst(C;) < #st(Cp). Indeed,
the first inclusion is trivial and the second holds because the number of subterms of C; (w.r.t.
Ci—1) may only decrease: this is trivial for rules R; and Ry, and true for Ry and Rj3 since
fst(uf) < f(st(u) Ust(v)) when § = mgu(u,v). Hence the maximum number of applications of
rule Ry is gvar(Cop) x flhs(Cp) x #st(Cp).

So n is bounded by §Cy + ny (for rule Ry) plus fvar(Co) (for rules Ry and R3) plus 1 (for
rule Ry) plus §var(Cop) x flhs(Cp) x #st(Cp) (for rule Ry), where ny is the number of applications
of rule Ry. That is, n <1+ 4C + fivar(C) + 2 x fvar(C) x flhs(C) x fst(C).

Note that we also need to make sure that C' and D’ are also of polynomially bounded size.
This is ensured using a DAG-representation of the terms for example. [

2.2.5.2 Correctness

We first prove a useful lemma which states some properties of a sequence of simplification rules
when rule R; has not been applied.

Lemma 2.24 Let C;() ~* C;; D; ~* Cp; D, for some n > i > 0 be a simplification sequence
such that the rule Ry was not applied. Also let C; ~ Cj | using the same simplification rule
as in Cy; Dy ~ Ciy1; Digr. If (T w) € Digy and var(T I w) C var(Cj ) then for all j with
i < j < n such that var(T IF u) C var(Cy) there are constraints T |- uy, T IF ug, ..., T I uy
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in Cj and a context U that does not contain constant symbols such that Uluy,...,u;] = u and
lug| < |ul for all1 <1 <k.

Proof = We do the proof by induction on |u|. But first we derive a useful observation.

From Lemma 2.22 we know that there is jo < i such that (7" IF u) € (Cj, \ Cjo+1). We prove
that the rule applied at step jo + 1 cannot be Ry or R3. Suppose by contradiction that it is.
Then, since at this step 7' I u is removed from Cj,, there is at least one variable, say x, of T'IF u
in the domain of ¢ ;. This variable does not appear in any C’J’- with j > jo, hence in particular
it does not appear in C; ;. We obtain a contradiction. Hence at step jo + 1 the rule Ry was
applied. Then u = f(u',u") and T'IF o/, T'I- v" are in C] ;.

Since, as we will see later, the affirmation for j > ¢ + 1 is implied by that for j =7+ 1 we
first prove this last one (i.e. for j =i+ 1).

If |[u| = 1 then the rule Ry couldn’t have been applied (at step jo + 1) since u is atomic.
Hence due to the above discussion this case is not possible.

If |u| = 2 then for all j with jo < j <i+1, T IF «' and T IF «” cannot be in D;. Indeed
otherwise (using the same argument as above for 7' IF u) the rule R; must have been applied on
these constraints which would contradict that «’ and «” are atomic. Hence T I+ ' and T I+ u”
are in C; for all j with jo < j < i+ 1, hence in particular in Cj;q1. Then the context is simply
U= f[,], u1 =u and ug = u”.

Consider that |u| > 2. If T I+ ' is in D;yq then T IF o is in Cj, \ Cjy41 for some ig < i
(by Lemma 2.21). Since |[v/| < |u| and var(T IF «’) C var(T |- u) C var(Cj+1) we can apply the
induction hypothesis to obtain that there are constraints 7" I~ u;, for 1 < 1" < k" in Cj41 and a
context U’ such that U'[u}, ..., u},] = v and |uj,| < |u| for all I'. Otherwise (if T IF v’ is in Cj;q)
consider U’ as the empty context and the set of constraints being formed by the singleton T I+ u/.
The same reasoning applies for T' IF u” obtaining the set of constraints 7' I ), for 1 < 1" < k"
in Cj11 and a context U” such that U"[uf,... ,u},] = v and |u},| < |u| for all {”. Then take
the union of these two sets of constraints and the context f(U’,U”) to obtain the claim.

We have found 7' IF w; in Cjy; for 1 <1 < k and U such that Uluy,...,ux] = v and || < |u]
for all /. Consider an arbitrary j > i + 1 such that var(7T I u) C var(C?). We build a new
context from U by replacing the [’th hole and the corresponding constraint 7" I+ w; with new
ones if (T"IF u;) ¢ C; and by keeping the old ones otherwise. If (7' I- u;) ¢ C; the new context
and the corresponding constraints from C} are obtained by applying the induction hypothesis on
T IF ;. We can apply indeed the hypothesis since we have by Lemma 2.21 that (7' I+ w;) € Dy,
and by construction of w; that var(T' IF ;) C var(C7) and |u| < |u| (u is a proper subterm of
u, for all [). ]

Lemma 2.25 If C;( ~7 C"; D' for some constraint system C" and some substitution o, if 6 is
a solution of C' then o is a solution of C.

Proof Assume C;0 ~7 C’; D', Since applying the rule R; does not produce any new
constraint, we can assume that the simplification rule R; is applied only at the end of the sequence
of simplification (possibly several times). Thus C;0 ~7 C”; D" ~»§5, C'; D’ such that the rule
Ry is not applied in C;0 ~7" C”; D" and only the rule Ry is applied in C”; D" ~§, C'; D’
Using exactly the same argument as in the proof of Lemma 2.16 (for the case when rule R; was
applied), we obtain that € solution of C” implies 6 solution of C”.

Thus we are reduced to proving Lemma 2.25 when the rule Ry is not applied. Correctness
now follows easily. Indeed, let 7 be a solution for C;;. Using Lemma 2.24 we obtain that 7 is
a solution for all (T I+ u) € (Cj,; \ Cit1) and hence 7 is a solution for Cj ;. Then applying
Lemma 2.16 we obtained the desired result. [
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2.2.5.3 Completeness

From Lemma 2.20, we know that if C' is an unsolved constraint system and 6 is a solution of
C for the property P w.r.t. L then there is a constraint system C’ and solution 7 of C’ for the
property P w.r.t. Lo such that C' ~», C" and 6 = o7. Thus it is sufficient for us to show that
removing already visited constraints preserves the fact that C is a constraint system.

Lemma 2.26 If C is a constraint system and C; 0 ~% C'; D' then C' is a constraint system.

Proof  Let (Cy; D;) ~5,., (Ciy1;Dig1), with 0 <4 < n be the sequence of constraint systems
obtained by applying successively the simplification rules, where Cy = C', Dy = () and C,, = C".

Again we can assume that we apply the rule R; last. Indeed, if there is a sequence of
simplification rules leading to C’; D’ then there is sequence C; ) ~ C”; D" where the rule R; has
not been applied and a sequence C”; D" ~» C’; D’ where only rule R; has been applied. If C”
is a constraint system then it is easy to see (using exactly the same proof as in Lemma 2.16 for
the case when rule R; was applied) that C’ is a constraint system.

Thus we are reduced to proving the Lemma when the rule R; is not applied. We prove by
induction on ¢ that Cj is a constraint system. This is true for ¢ = 0.

For each i we denote by C},; the constraint system such that C; ~,,, Cj, | using the same
rule as in (CZ, Dz) Mot (CiJrl; Di+1).

Since the simplification rules preserve constraint systems (Lemma 2.15), we have that C! 11
is a constraint system. Hence the first condition of the definition of constraint systems is clearly
satisfied by Cj41, since it is satisfied for C}, ;. We show that C; 1 also meets the second condition
of the definition of constraint systems.

Let (T IFu) € Ciyq and 2 € var(T). We have (T I u) € C}_ ;. Hence (again by Lemma 2.15)
there exists (T, IF u,) € Cj,, such that T, C T, x ¢ var(T}) and z € var(ug). If (T IF u;) €
Ci11, we conclude that the second condition is satisfied. Otherwise, (T} I+ u;) € D;y1. Then
by Lemma 2.24 we have that there are constraints 7}, IF u; in C;41 with 1 < j < £ for some
k > 0 and a context U such that Uluy,...,u;] = uy. Since x € var(uy) then there is a j with
1 < j < k such that = € var(u;). Hence the constraint T, I u; satisfies the conditions. ]

2.2.6 An alternative approach to polynomial-time termination

In the previous section, we showed that the constraint-solving procedure finishes in polynomial-
time by using a memorization technique to eliminate exponential runs. In this section we give
an alternative technique using strategies.

We show next that by imposing a particular strategy on the application of simplification rules
we can bound the length of every branch of the computation tree of the simplification procedure
by a polynomial in the size of the initial constraint system. The strategy consists in

e first applying rules Ry and Rs;

e next applying rules 2y respecting the descending order of the sizes of the right hand sides
of constraints;

e finally apply rule Ry;
e (rule Ry, if applied, is applied last anyhow).
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We first sketch the proof of completeness (corectness is independent of the order of application
of rules) and next the proof of polynomial time termination.

To preserve completeness of the procedure under this strategy, we slightly relax the condition
of the application of the rule Ry on a constraint 7" IF u: we require unifying a subterm t € st(7')
and a subterm ¢’ € st(u) (instead of unifying ¢ with u) with ¢ # ¢/, ¢, ¢ non-variables. Remark
that this change preserves correctness and completeness of the initial procedure.

We have already remarked that we can “safely” apply rule Ry last. Hence we suppose next
that rules Ry and R4 are not applied. This leaves us with a sequence of application of rules Ro,
Rg and Rf.

Now we observe also that the application of rule Ry is “independent” of the application of
rules Ry and R3. More precisely, we can delay arbitrarily the applications of rules Ry (with
regard to the application of rules Ry and Rj3), to obtain the same result, that is the same final
constraint system and the same resulting substitution (i.e. the last subscript ). We show that
we can “safely” change the application of the rule Ry followed by Ry (each applied once) into
applying first the rule Ry and next R;. Indeed, suppose that R; applies first on the constraint
T I+ f(u1,uz) and Rs applies next on the constraint 7”7 Ik «/, unifying terms ¢ and ¢’ with
t € st(T"), t' € st(u'), and 0 = mgu(t,t’). The resulting constraints are To I+ uyo, To I+ uso
and T'o Ik v/, possibly equal. We now (try to) apply first Ry and next R;. The rule Ry is
applied on T” |- o/ if this constraint already existed in the constraint system, and on T IF f(uq, us)
otherwise, i.e. if the constraint 7" IF u' is one of the two generated by the application of the
rule Ry above. The interesting case is the latter, when 7' = T", ' = w; (the case v’ = uy is
symmetric). The rule Ry can be applied as t' € st(f(u1,uz)) (since ¢’ € st(u')), and Ry can be
applied on T'o IF f(ujo,uz0). We observe that the resulting substitution and set of constraints
are the same in the two cases (not depending on the order of application of the two rules). We
lift the above remark to arbitrary constraint systems (not only with one or two constraints). We
can thus move the applications of the rule R; in a sequence of simplification steps at the end,
just as bubble-sort does. That is, we apply the above interchange first for the last application of
rule Ry, making it the last step, next the last but one application of rule Ry, making it the last
but one step, and so on.

The strategy requires applying rule Ry (among all the applications of rule Ry) first on the
constraints with the biggest (w.r.t. the size) right hand side. In this way we are sure of not
revisiting an eliminated constraint. Indeed, if a constraint 7' IF u is eliminated, at some step ¢,
then it means the rule Ry has bean applied on it, thus |u| = maxycepg(c,) [t]- If the constraint
T' I u is generated in Cj4q from Cj, for some j, then maxyeihs(c;) [t| > |ul. Thus first eliminating
it and then generating it (i.e. j > 4) is not possible : since by applying rules R the maximum
of the sizes of the right hand sides terms decreases, we have max;ems(c;) [t] > maxiems(c;) ¢,
it follows that |u| > |u|. Moreover, if a constraint is eliminated during the first phase (i.e.
application of rules Ro and R3) at step say ¢, then this constraint contains at least a variable
which gets instantiated and hence which will not appear in the constraint systems at steps j
with j > i.

Hence we are assured that the same constraint is never eliminated and next regenerated.
Since this is the fundamental property of the approach presented in the previous section, we
obtain that using this strategy the numbers of simplification steps is polynomially bounded by
the size of the initial constraint systems. The proof is the same as that of Lemma 2.23 (though
now we use the above argument instead of Lemmas 2.21 and 2.22 to show that visited constraints
are not regenerated).

72



2.3. Decidability of some specialised security properties

2.3 Decidability of some specialised security properties

Using the general approach presented in the previous section, verifying particular properties like
the existence of key cycles or the conformation to an a priori given order relation on keys can be
reduced to deciding these properties on solved constraint systems. We deduce a new decidability
result, useful in models designed for proving cryptographic properties.

This approach also allows us to retrieve a significant fragment of [BEL04] for protocols with
timestamps (in Section 2.3.2).

2.3.1 Detection of key cycles

To show that formal models (like the one presented in Chapter 1) are sound with respect to
cryptographic ones, one usually assumes that no key cycle can be produced during the execution
of a protocol or, even stronger, assumes that the “encrypts” relation on keys follows an a priori
given order.

Some authors circumvent the problem of key cycles by providing new security definitions for
encryption that allow key cycles [ABHS05, BPS07|. However, the standard security notions do
not imply these new definitions and ad-hoc encryption schemes have to be constructed in order to
satisfy the definitions. These constructions use the random oracle model which is provably non
implementable. As a consequence, it is not known how to implement encryption schemes that
satisfy the new definitions. In particular, none of the usual, implemented encryption schemes
have been proved to satisfy the requirements.

In a passive setting, Laud [Lau02] proposed a modification of the Dolev-Yao model such
that the new model is a sound abstraction even in the presence of key cycles. In his model
the intruder’s powers are strengthened by using a new deduction system. With the new rules,
from a message containing a key cycle the intruder can infer all the involved keys. Subsequently,
Janvier [Jan06] proved that the intruder deduction problem remains polynomial for the mod-
ified deduction system. It seems that this approach can be extended to active intruders and
incorporated in existing tools, though to our knowledge this has not been done yet. Note that
the definition of key cycles used in |[Jan06| is more permissive than that of [AR02| (which is
unnecessarily restrictive) and it corresponds to the approach of Laud [Lau02].

For simplicity, and since there are very few papers constraining the key relations in an asym-
metric setting, in this section we restrict our attention to key cycles and key orders on symmetric
keys. Moreover, we consider atomic keys for symmetric encryption since there exists no general
definition (with a cryptographic interpretation) of key cycles in the case of arbitrary composed
keys and soundness results are usually obtained for atomic keys. More precisely, we assume
that SymKey < Msg. All function symbols of non-zero arity are of sort s; X --- X s, — s with
s # SymKey. Hence only constants and variables can be of sort SymKey. In this section we call
key a variable or a constant of sort SymKey.

2.3.1.1 Key cycles

Many definitions of key cycles are available in the literature. They are stated in terms of an
“encryption” relation between keys or occurrences of keys. For example, the early definition
proposed by Abadi and Rogaway [AR02], identifies a key cycle with a cycle in the encryption
relation, with no conditions on the occurrences of the keys. However, the definition induced by
Laud’s approach [Lau02] corresponds to searching for such cycles only in the “visible” parts of
a message. For example the message {{k}x }x contains a key cycle using the former definition
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but does not when using the latter one and assuming that k' is secret. It is generally admitted
that the Abadi-Rogaway definition is unnecessarily restrictive and hence we will say that the
corresponding key cycles are strict. However, for completeness reasons, we treat both cases.

There can still be other variants of the definition, depending whether the relation “k en-
crypts k' is restricted or not to keys &k’ that occur in plaintext. For example, {{a}s }x may or
may not contain a key cycle. As above, even if occurrences of keys used for encrypting (as k in
{m}) need not be considered as encrypted keys, and hence can safely be ignored when defining
key cycles, we consider both cases. Note that the initial Abadi-Rogaway setting consider that
{{a}r}r has a key cycle.

We write s <g t if and only if s is a subterm of ¢. We define recursively the least reflexive
and transitive relation C satisfying: s C (s1,52), s2 C (s1,s2), and if s C ¢ then s C {t}y.
Intuitively, s C t if s is a subterm of ¢ that either occurs (at least once) in clear (i.e. not encrypted)
or occurs (at least once) in a plaintext position. A position p is a plaintext position in a term u
if there exists an occurrence ¢ of an encryption in u such that ¢-1 < p.

Definition 2.27 Let p; be a relation chosen in {<s,C}. Let S be a set of terms and k, k' be
two keys. We say that k encrypts k' in S (denoted k pS k') if there exist m € S and a term m’
such that

K p1m' and {m'}r T m.

For simplicity, we may write p, instead of pJ if S is clear from the context. Also, if m is a
message we denote by p* the relation pim}.
Let S be a set of terms. We define hidden(S)% {k € st(S) | k of sort SymKey, S I/ k}.

Definition 2.28 (Strict key cycle) Let K be a set of keys. We say that a set of terms S
contains a strict key cycle on K if there is a cycle in the restriction of the relation pS on K.
Otherwise we say that S s strictly acyclic on K.

We define the predicate Psp. as follows: Psp. holds on a list of terms L if and only if the set
{m | Ls = m} contains a strict key cycle on hidden(Ly).

We give now the definition induced by Laud’s approach [Lau02]. He has showed in a passive
setting that if a protocol is secure when the intruder’s power is given by a modified Dolev-Yao
deduction system k4, then the protocol is secure in the computational model, without requiring
a “no key cycle” condition. Rephrasing Laud’s result in terms of the standard deduction system
F gives rise to the below definition of key cycles, as it has been proved in [Jan06].

To state the following definition we need a more precise notion than the encrypts relation.
We say that an occurrence g of a key k is protected by a key k" in a term m if m|y = {m'} for
some term m’ and some position ¢”, and the occurrence of k at ¢ in m is a plaintext occurrence
of k in m/, that is ¢ -1 < q. We extend this definition in the intuitive way to sets of terms. This
can be done for example by indexing the terms in the set and adding this index as a prefix to
the position in the term to obtain the position in the set.

Definition 2.29 (Key cycle [Jan06]) Let K be a set of keys. We say that a set of terms S
s acyclic on K if there exists a strict partial order < on K such that for all k € K, for all
occurrences q of k in plaintext position in S there is k' € K such that k' < k and q is protected
by k' in S. Otherwise we say that S contains a key cycle on K.

We define the predicate Py. as follows: Py. holds on a list of terms L if and only if the set
{m | Ls = m} contains a key cycle on hidden(Ly).
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We say that a term m contains a (strict) key cycle if the set {m} contains one.

Exemple 2.30 The messages m = {{k}r B and m' = ({k1}r,, {{F2}rsFry) are acyclic,
while the message m"” = (({k1 }ry, {{k2Fry Brs), k3) has a key cycle. The orders k' < k and
ks < ko < ki prove it for m and m' while for m" such an order cannot be found since ks is
deducible. However, all three messages have strict key cycles.

2.3.1.2 Key orders

In order to establish soundness of formal models in a symmetric encryption setting, the re-
quirements on the encrypts relation can be even stronger, in particular in the case of an active
intruder. In |[BP04| and [JLMO5| the authors require that a key never encrypts a younger key.
More precisely, the encrypts relation has to be compatible with the order in which the keys are
generated. Hence we also want to check whether there exist executions of the protocol for which
the encrypts relation is incompatible with an a prior: given order on keys.

Definition 2.31 (Key order) Let < be a strict partial order on a set of keys K. We say that
a set of terms S is compatible with < on K if

kpPk' = K £k, foral kK € K.

Given a strict partial order < on a set of keys, we define the predicate P~ as follows: P«
holds on a list of terms L if and only if the set {m | Ls = m} is compatible with < on hidden(Ls).

For example, in [BP04, JLMO05| the authors choose < to be the order in which the keys are
generated: k < k' if k has been generated before k. We denote by P~ the negation of P..
Indeed, an attack in this context is an execution such that the encrypts relation is incompatible
with <, that is the predicate P holds.

The following proposition states that in the passive case a key cycle can be deduced from a
set S only if it already appears in S.

Proposition 2.32 Let L be a list of terms, and < a strict partial order on o set of keys. The
predicate Py (respectively, Psy. or P<) holds on L if and only if Ls contains a key cycle (respec-
tiely, Ls contains a strict key cycle, or the encrypts relation on Lg is not compatible with <).

Proof  The statement follows directly from the following property: if S+ m, St/ k' and K
protects an occurrence g of k in m then there is an occurrence qq of k in S such that &’ protects
qo. This property can be proved easily by induction on the depth of the proof of S = m. The
detailed proof can be found in Section 2.3.1.5. m

2.3.1.3 Decidability

We show how to decide the existence of key cycles or the conformation to an ordering in polyno-
mial time for solved constraint systems. Note that the set of messages on which our predicates are
applied usually contains all messages sent on the network and possibly some additional intruder
knowledge.

Proposition 2.33 Let C be a solved constraint system, L be a list of messages such that var(Ls) C
var(C) and Ihs(C) C Ly, and < a strict partial order on a set of keys. Deciding whether C has
a solution for P, P or P< w.r.t. L can be done in O(|L|*).
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We devote the remaining of this section to the proof of the above proposition.

We know by Proposition 2.32 that it is sufficient to analyse the encrypts (or protects) relation
only on Lsf (and not on every deducible term), where 6 is an arbitrary partial solution.

We can safely suppose that there is exactly one constraint for each variable. Indeed, elim-
inating from C' all constraints 7" IF x for which there is a constraint T IF z in C with T C T’
we obtain an “equivalent” constraint system C’ (that is, o is a solution of C” iff it is a solution
of C). Let t, be the term obtained by pairing all terms of T, (in some arbitrary order). We
write C as \;(T; IF x;), with 1 <4 < n and T; C T;41. We construct the following substitution
T =T1...Tp, and 7; is defined inductively as follows:

_ dOHl(Tl) — {xl} and z17 = tey, le.m = {tzl/xl},
- Tit1 =T U {tzi“n/mu}-

The construction is correct by the definition of constraint systems. It is clear that 7 is a partial
solution of C'. We show next that it is sufficient to analyse this particular partial solution.

Key cycles. We focus first on the property Pg..

Lemma 2.34 Let C be a solved constraint system, L a list of terms such that var(Ls) C var(C'),
lhs(C) C Lg, and C has a solution for Py. w.r.t L. Then T is a solution of C' for Py, w.r.t L.

We postpone its proof to Section 2.3.1.5.
Hence we just need to verify whether 7 is a solution of C for Py, w.rt. L. Let K =
hidden(Ls7). We build inductively the sets Ko = ) and for all i > 1,

K; ={k € K |VYq € pos,(k, Ly7) 3k" s.t. k' protects ¢ and k' € K; 1}

where pos,(m,T’) denotes the plaintext positions of a term m in a set 7. Observe that for all
1 >0, K; C K;y1. This can be proved easily by induction on i. Moreover, since K is finite and
K; C K for all ¢ > 0, then there is [ > 0 such that K; = K for all i > .

Lemma 2.35 There exists i > 0 such that K; = K if and only if 7 is a solution of C' for Py
w.r.t. L.

Proof Consider first that there exists ¢ > 0 such that K; = K. Then take the following strict
partial order on K: k' < k if and only if there is j > 0 such that ¥’ € K; and k ¢ K;. Consider a
key k € K and a plaintext occurrence q of k in Lg7. Then take [ > 1 minimal such that k € Kj.
By the definition of K there is k¥’ € K such that &’ protects ¢ and k' € K;_1. Since [ is minimal
k ¢ K;_1. Hence k' < k. Thus 7 is a solution for Py, w.r.t. L.

Consider now that 7 is a solution. Suppose that K;y; = K; C K. Let k € K \ K; ;. Since
k ¢ K;11 there is a plaintext occurrence g of k such that for all ¥ € K either k¥’ does not protect
q, or k' ¢ K;. But since 7 is a solution, there is ¥ € K such that k" protects ¢ and k" < k. It
follows that k" ¢ K;, and thus k” ¢ K,1;. Hence for an arbitrary k € K \ K;;1 we have found
k" € K\ K41 such that k” < k. That is, we can build an infinite sequence ... < k" < k with
distinct elements from a finite set — contradiction. So there exists i > 0 such that K; = K. =

Hence to verify whether 7 is a solution for Pi. we just need to construct the sets K; until
K;+1 = K; and then to test whether K; = K. This algorithm is analogue to a classical method
for finding a topological sorting of vertexes (and for finding cycles) of directed graphs. It is
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also similar to that given by Janvier [Jan06] for the intruder deduction problem considering the
deduction system of Laud [Lau02].

Regarding the complexity, there are at most K sets to be build and each set K; can be
constructed in O(|Ls7|). If a DAG-representation of the terms is used then |Lgs7| € O(|Ls|).
This gives a complexity of O(#K x |Ls|) for the above algorithm.

Strict key cycles and key orders. For the other two properties Py and P~ we proceed in
a similar manner. The following lemma show that it is sufficient to analyse 7 when verifying the
properties P, and P_.

Lemma 2.36 Let C be a solved constraint system, L a list of terms such that var(Ls) C var(C)
and Ihs(C') C Lg, and 0 a partial solution of C. For any k,k’ € hidden(Ls0), if k encrypts k' in
L0 then k encrypts k' in LsT.

We give the proof of this lemma in Section 2.3.1.5 also.

We deduce that deciding whether C' has a solution for Ps. w.r.t. L can be done simply by
deciding whether the restriction of the relation pZ™ to K x K is cyclic.

Deciding whether C has a solution for Po w.r.t. L can be done by deciding whether the
restriction to K x K of the relation pﬁ” has the following property P: there are k, k' € K such
that kpLsTk' and k < k'.

Testing whether the relation pZs7™ is cyclic can be done by testing for cycles in the corre-
sponding directed graph using a classic algorithm in O(|K|?). And verifying the property P can
be done by analysing all pairs (k, k') € K x K hence also in O(|K|?).

Verifying any of the three properties requires a preliminary step of computing K = hidden(L,T).
Since the intruder deduction problem can be solved in O(|Ls7|3), this gives a complexity of
O(|Ls[*) for computing K. |Lst| = O(|Ls| x |7]) = O(|Ls| x |C]) = O(|Ls|?) (the last equality
holds since C'is in solved form). And since K € O(|Lg|) we obtain that the overall complexity
of deciding whether a solved constrained system has a solution for any of the properties P,
P, and P w.r.t. to alist L with Ihs(C') C Ly is given by the intruder deduction problem, and
hence it is O(|Ls|*) (more exactly O(|L| + |Lg|*) if we consider transforming the list L into the
set of terms Ly).

2.3.1.4 NP-completeness

Let C be a constraint system and L a list of terms such that var(L,) C var(C) and lhs(C) C Ly
The NP membership of deciding whether C' has a solution for Py., Ps. or P w.r.t. L follows
immediately from Corollary 2.12 and Proposition 2.33.

NP-hardness is obtained by adapting the construction for NP-hardness provided in [RT03].
More precisely, we consider the reduction of the 3SAT problem to our problem. For any 3SAT
boolean formula we construct a protocol such that the intruder can deduce a message containing
a key cycle if and only if the formula is satisfiable. The construction is the same as in [RT03]
(pages 15 and 16) except that, in the last rule, the participant responds with the term {k}, for
some fresh key k (initially secret), instead of Secret. Then it is easy to see that the only way to
produce a key cycle on a secret key is to play this last rule which is equivalent, using [RT03], to
the satisfiability of the corresponding 3SAT formula.
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2.3.1.5 Proofs of lemmas

Lemma 2.37 Let S be a set of terms, m a term and k a key such that S+ m and St/ k. Then
for any plaintext occurrence q of k in m there is a plaintext occurrence qo in S such that if there
is key k' with St/ k' and which protects qo in S then k' protects q in m.

Proof @ We reason by induction on the depth of the proof of S Fm. We can have that

e the last rule is an axiom. Hence m € S. Then just take ¢y = g.

e the last rule is a decryption. Then S + {m}x» and S + k" for some k” # k. Take the
position ¢ = 1-¢ in {m}}xr. It is an occurrence of k. Applying the induction hypothesis
we obtain an occurrence qo of k in S such that if there is key &’ with S t/ ¥’ and which
protects go in S then k' protects ¢1 in {m}yr. Since S I/ k' it follows that k¥ # k' and
hence k' protects ¢ in m.

e the last rule is a another rule. In all these cases a similar analysis as in the previous case
can be done.
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As a corollary we obtain:

Proposition 2.38 Let L be a list of terms, and < a strict partial order on o set of keys. The
predicate Py (respectively, Psk. or P<) holds on L if and only if Ls contains a key cycle (respec-
tiely, Ls contains a strict key cycle, or the encrypts relation on Lg is not compatible with <).

Proof  The right to left direction is trivial since Ly C {m | Ls - m}.

We will prove the left to right direction only for the key cycle property, the other two prop-
erties having a similar treatment. Suppose that there is no strict partial order satisfying the
conditions in Definition 2.29 for {m | Ly F m}. In other words, for any strict partial order <
on hidden(L;) there is a key k and an occurrence ¢ of k in {m | Ls - m} such that for any key
K, k' protects ¢ in {m | Ls b m} implies k¥’ £ k. Using the previous lemma we can replace
{m | Ls = m} by L in the previous phrase, thus obtaining that there is a key cycle in L. [

The next lemma will be used to show that hidden(L6) = hidden(L47) for any partial solu-
tion 6.

Lemma 2.39 Let T I x be a constraint of a solved constraint system C', 8 a partial solution of C
and m a non-variable term. If TO = m then there is a non-variable term u with var(u) C var(T)
such that T Uvar(T) Fu and m = uf.

Proof We write C' as A\,(T; IF «;), with 1 < i <n and T; C T;41. Consider the index i of
the constraint 7' IF z, that is such that (7; IF ;) € C, T; = T and u; = x. The lemma is proved
by induction on (i,1) (considering the lexicographical order) where [ is the length of the proof of
T;0 = m. Consider the last rule of the proof:

e (axiom rule) m € T;0 or m is a public constant. If the latter holds then take u = m.
Otherwise, there is u € T; such that m = uf. If u is a variable then there is j < ¢ such
that T IF u is a constraint of C. We have T;0 - uf. Then by induction hypothesis there
is a non-variable term v’ with var(u’) C var(7}) such that T; U var(Tj) F v/ and uf = u'6.
Hence v satisfies the conditions.

e (decomposition rule) Suppose the rule is the decryption rule. Then the premises of the
rule are T;0 - {m}; and T;0 F k for some term k. By induction hypothesis there are
non-variable terms uy and ug with var(uq), var(us) C var(T;) such that T; U var(T;) F uq,
T; Uvar(T;) - ug, u10 = {m}y, and uzf = k. Then uy = {u},, with uf =m and u50 = k.
If u is a variable then, as in the previous case, we find an u satisfying the conditions.
Suppose u is not a variable. We still need to show that T; Uvar(T;) F w. If uf is a variable
then T;Uvar(T;) F u), since uf, € var(T;). If u), is not a variable then ub0 = uf, (since, as keys
are atomic, ub is a constant), hence u5 = ug. In both cases it follows that T; U var(T;) - u.
The projection rule case is simpler and is treated similarly.

e (composition rule) This case follows easily from the induction hypothesis applied on the
premises.

The following corollary says that any two executions allow the same set of keys to be deduced.

Corollary 2.40 Let T | x be a constraint of a solved constraint system C, and 6, 6’ be two
partial solutions of C. Then for any key k, TO =k if and only if TO' + k.
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Proof  Suppose that 70 - k. From the previous lemma we obtain that there is a non-variable
u with var(u) C var(7T') such that 7"Uvar(7T') F v and k = uf. Since keys are atomic and 6 is a
ground substitution it follows that u = k. Hence T0" U {26’ | x € var(T)} b k. So T+ k, since
' is a partial solution (and thus 70" - x6’ for all z € var(T)) and by using the cut elimination
lemma (i.e. Lemma 2.14). ]

We are now ready to prove Lemma 2.34.

Lemma 2.34 Let C be a solved constraint system, L a list of terms such that var(Ls) C var(C),
lhs(C) C Lg, and C has a solution for Py, w.r.t L. Then T is a solution of C' for Py. w.r.t L.

Proof  We have to prove that if there is no partial order satisfying the conditions in Defini-
tion 2.29 for the set L0 (according to Proposition 2.32) then there is no partial order satisfying
the same conditions for Ls7. Suppose that there is a strict partial order < which satisfies the
conditions for Ls7. We prove that the same partial order does the job for L6.

Let C' = CA(Ls IF z) where z is a new variable. C’ is a constraint system since lhs(C') C L.
We write C" as A\;(T; IF z;), with 1 <4 < n and T; C T;1. We prove by induction on ¢ that
for all k& € hidden(Ls6), for all plaintext occurrences ¢ of k in T;6 there is a key k' € hidden(L0)
such that &' < k and k' protects ¢ in T;0. It is sufficient to prove this since for i = n we have
T; = Ls. Remark also that from Corollary 2.40 applied to L I z we obtain that hidden(Ls6) =
hidden(Ls7).

For i« = 1 we have Ty = T160 = 117 hence the property is clearly satisfied for 8 since it is
satisfied for 7.

Let ¢ > 1. Consider an occurrence g of a key k € hidden(Lsf) in a plaintext position of w for
some w € T;0. Let t € T; such that w = t6.

If ¢ is a non-variable position in ¢ then it is a position in ¢t7. And since 7 is a solution we
have that there is a key k' € hidden(Ls7) (hence k' € hidden(Ls0)) such that &' < k and ¢ is
protected by k' in t7. The key k' cannot occur in some z7, with = € var(t) since otherwise £’ is
deducible (indeed z7 = k' since the keys are atomic and T, 7 F 7). Hence k' occurs in ¢. Then
k' protects ¢ in ¢, and thus in w also.

If ¢ is not a non-variable position in ¢ then there is a variable z; € var(t) with j < i such that
the occurrence ¢ in t6 is an occurrence of k in z;0 (formally ¢ = p - ¢’ where p is some position
of zj in ¢t and ¢’ is some occurrence of k in x;6). Applying Lemma 2.37 we obtain that there is
an occurrence ¢o of k in 76 such that if there is a key k" with T;j6 t/ k¥’ and which protects g in
T;0 then k' protects ¢ in x;0. The existence of the key k' is assured by the induction hypothesis
on T;6. Hence k/ protects ¢’ in ;6 and thus ¢ in w. n

Lemma 2.41 Let T Ik x be a constraint of a solved constraint system C and 0 be a partial
solution. Let m,u,k be terms such that

T0+ m and {ul}y T m and TO I/ k.

Then there exists a non-variable term v such that v C w for some w € T and v0 = {u}y.

Proof  We write C as \;(T; I x;), with 1 <i <n and T; C T;4;. Consider the index i of the
constraint 7" |- x, that is such that (7; IF z;) € C, T; = T and x; = x. The lemma is proved by
induction on (i,1) (lexicographical order) where [ is the length of the proof of T;6 i m. Consider
the last rule of the proof:
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e (axiom rule) m = tf for some ¢t € T;. We can have that either there is ¢ C ¢ such that
t'0 = {u}i, or {ul}r C yb for some y € var(t). In the first case take v =/, w = ¢. In
the second case, by the definition of constraint systems, there exists (7} IF y) € C' with
J <. Since T;0 - y# and T;6 t/ k (since T; C T;), we deduce by induction hypothesis that
there exists a non-variable term v such that v & w for some w € T}, hence w € T; and

v0 = {ul}y.

e (decomposition rule) Let m’ be the premise of the rule. We have that T7;0 - m/ (with a
proof of a strictly smaller length) and m C m/ thus {u}; C m/. By induction hypothesis,
we deduce that there exists a non-variable term v such that v C w for some w € T;, and

vl = {uly.
e (composition rule) All cases are similar to the previous one except if m = {u}; and the

. SFz Sty . .
rule is ————~. But this case contradicts T;0 t/ k.
St {a}y '

The following simple lemma is also needed for the proof of Lemma 2.36.

Lemma 2.42 Let T IF x be a constraint of a solved constraint system C', 0 be a partial solution,
k € hidden(T'0), and m a term such that TO &= m. If k py m then there ist € T such that k p; t.

Proof We write C' as \,(T; IF x;), with 1 < i < n and T; C T;4;. Consider the index i of
the constraint 7' IF z, that is such that (7} IF u;) € C, T; = T and u; = x. The lemma is proved
by induction on (i,[) (considering the lexicographical order) where [ is the length of the proof of
T;0 = m. Consider the last rule of the proof:

e (axiom rule) m € T;6 or m a public constant. If m is a public constant then k # m since
k € hidden(7T'¢). Thus there is ¢ € T; such that m = t6. If k p; ¢t then we’re done. Otherwise
there is a variable y € var(t) such that kp; yf. Also, there is j < i such that Tj IF y is
a constraint of C'. Then, by induction hypothesis, there is ¢’ € T}, hence in Tj;, such that
k P1 t.

e (composition or decomposition rule) By inspection of all the composition and decomposi-
tion rules we observe that there is always a premise T;60 = m/ with k p; m’ for some term
m’. The conclusion follows then directly from the induction hypothesis.

We can prove now Lemma, 2.36.

Lemma 2.36 Let C' be a solved constraint system, L a list of terms such that var(Ls) C var(C)
and Ihs(C') C Lg, and 0 a partial solution of C. For any k,k’ € hidden(Ls0), if k encrypts k" in
L0 then k encrypts k' in LgT.

Proof  Remember that hidden(Lsf) = hidden(Ls7) (from Corollary 2.40, as shown in the
proof of Lemma 2.34).

Consider two keys k, k' € hidden(Ls6) such that k encrypts k' in Ls6. Then there are terms
u,u’ such that v’ € Ls0, {u}r C u' and k' p; u. We can have that either (first case) there are
v, w such that v T w € L, v non-variable and {u} = v, or (second case) {u}r T x6 with
x € var(Ls). In the second case, consider the constraint (7, I+ z) € C. We have T,,6 - 2. Hence
we can apply Lemma 2.41 for 6, u and k to obtain that there exists a non-variable term v such
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that v C w for some w € T, and v8 = {u};. Hence, in both cases, we obtained that there is a
non-variable term v € st(Ls) (since T, C Lg) such that v8 = {u}s. Thus there is vg such that
v = {wo}r. Indeed, otherwise v = {vo}, for some y € var(Ly), hence y € var(C). Since C' is
solved we have Tyo - yo. But yo = k, contradicting k£ € hidden(L6).

We have vpf = u. Since k' p1u and £’ is a constant or a variable, we can have that k' p; vo,
or k" p1 yf for some y € var(vg). If ¥’ p1 vg then k encrypts k' in L, hence in Lg7 also. If k' py y6
then from the previous lemma k' p; t for some ¢ € T, and hence &k’ p; y7. Therefore in both cases
we have that k encrypts k' in Lg7. n

2.3.2 Secrecy for protocols with timestamps

For modeling timestamps, we introduce a new sort Time < Msg for time and we assume an
infinite number of constants of sort Time, represented by rational numbers or integers''. We
assume that the only two sorts are Time and Msg. Any value of time should be known to an
intruder, that is why we add to the deduction system the rule where z is a variable of sort

Time. All the previous results can be easily extended to such a dgduction system since ground
deducibility remains decidable in polynomial time.

To express relations between timestamps, we use timed constraints. An integer timed con-
straint or a rational timed constraint T is a conjunction of formulas of the form

k
Y1075 X 3,

where the o; and [ are rational numbers, X € {<, <}, and the z; are variables of sort Time. A so-
lution of a rational (resp. integer) timed constraint 7' is a closed substitution o = {1/, ..., “*/z, },
where the ¢; are rationals (resp. integers), that satisfies the constraint.

Timed constraints between the variables of sort Time are expressed through satisfiability of
security properties.

Definition 2.43 A predicate P is a timed property if P is generated by some (rational or
integer) timed constraint T', that is if T' has variables x1,...,xy then for any list L of messages

P(L) holds if and only if

o L contains exactly k messages t1,...,tr of sort Time that appear in this order in the list,
and

o T(t1,...,tx) is true.

Such timed properties can be used for example to say that a timestamp x; must be fresher
than a timestamp xo (1 > x2) or that x1 must be at least 30 seconds fresher than z (z1 >
x2 + 30).

Exemple 2.44 We consider the Wide Mouthed Frog Protocol [CJ97].

A — S : A7 {Taa B7 Kab}Kas
S — B : {{Ts;Au Kab}Kbs

A sends to a server S a fresh key K, intended for B. If the timestamp T, is fresh enough, the
server answers by forwarding the key to B, adding its own timestamps. B simply checks whether

"'This can be achieved formally by considering only one constant 0 of sort Time, and a function symbol succ of
sort Time — Time. For simplicity, we omit these technicalities.
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this timestamp is older than any other message he has received from S. As explained in [CJ97],
this protocol is flawed because an attacker can use the server to keep a session alive as long as
he wants by replaying the answers of the server.

This protocol can be modeled by the following constraint system:

def

S1={a,b,s,(a, §0,0, kap Bro)t I (a, {@e, b,y Bras) 2
S2 = St {@ty as i by, (b, f@tys 0y y2 by ), 7
S5 & Sy, Lxe,, 0,92 k.. b (o, {zeg, b, ys Y, ), Teg
S1 = S5, {wtg a3t I {2, askap Y,

where y1,vy2,ys are variables of sort Msg and x¢,, ...,z are variables of sort Time. We add
explicitly the timestamps emitted by the agents on the right hand side of the constraints (that
is in the messages expected by the participants) since the intruder can schedule the message
transmission whenever he wants.

Initially, the intruder simply knows the identities of the agents and A’s message at time 0.
Then S answers alternatively to requests from A and B. Since the intruder controls the network,
the messages can be scheduled as slow (or fast) as the intruder needs it. The server S should not
answer if A’s timestamp is too old (let’s say older than 30 seconds) thus S’s timestamp cannot
be too much delayed (no more than 30 seconds). This means that we should have xy, < x4, + 30.
Similarly, we should have x, < z, + 30 and x; < x4, + 30. The last rule corresponds to B’s
reception. In this scenario, B does not perform any check on the timestamp since it is the first
message he receives.

We say that there is an attack if there is a solution to the constraint system that satisfies the
previously mentioned time constraints and such that the timestamp received by B is too fresh to
come from A: xy. > 30. Formally, we consider the timed property generated by the following
timed constraint:

Tro <, +30 A gy <y +30 Az < + 30N 34, > 30.
Then the substitution corresponding to the attack is

o= {kab/yl’ kab/y2’ kab/y?” kab/y4’ 0/“1’ 30/“2’ 30/:“3’ 60/%4’ 60/:“5’ 90/%6’ 90/“7}'

Proposition 2.45 Any timed property can be decided in non-deterministic polynomial time on
solved constraint systems.

Proof Let C be a solved constraint system, P a timed property and 7" a timed constraint
generating P. Let y1,...,y, be the variables of sort Msg in C and z1, ..., 2 the variables of sort
Time in C. Clearly, any substitution o of the form y;oc = u; where u; € S; for some (S; I+ y;) € C
and x;0 = t; for t; any constant of sort Time is a solution of C for the true property. Let ¢’ be
the restriction of o to the timed variables x1, ..., k.

Clearly, o is a solution of C for P if and only if ¢’ is a solution to 7. Thus there exists
a solution of C for P if and only if T is satisfiable. The satisfiability of T is solved by usual
linear programming [Sch98|. It is polynomial in the case of rational timed constraints and it is
NP-complete in the case of integer timed constraints, thus the result. [
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2.3.2.1 NP-completeness

We deduce by combining Theorem 2.10 and Proposition 2.45 that the problem of deciding timed
properties on arbitrary constraint systems is in NP.

NP-hardness directly follows from the NP-hardness of constraint system solving by consider-
ing a predicate corresponding to an empty timed constraint.

2.4 Conclusions

We have shown how the generic approach we have derived from [CLS03, RT03| can be used to
retrieve two NP-completeness results. The first one allows us to detect key cycles, and the second
one to solve constraint systems with timed constraints. In the two cases, we had to provide a
decision procedure only for a simple class of constraint systems. Since the constraint-based
approach [CLS03, RT03] has already been implemented in Avispa [ABBT05|, we plan, using our
results, to adapt this implementation to the case of key cycles and timestamps.

Regarding key cycles, our approach is valid for a bounded number of sessions only. Secrecy
is undecidable in general [DLMO04] for an unbounded number of sessions. Such an undecidability
result could be easily adapted to the problem of detecting key cycles. Several decidable fragments
have been designed [RS03, CLCO03a, BP03b, VSS05] for secrecy and an unbounded number of
sessions. We plan to investigate how such fragments could be used to decide key cycles.
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Chapter 3

Decidability results for Horn clauses.
Application to protocols using CBC
encryption and blind signatures

Recently, several procedures for deciding secrecy have been proposed for operators with al-
gebraic properties for a bounded |CKRT03, DLLT06, BC06, DLL07| or unbounded [CLCO03a,
VSS05] number of sessions. The properties of blind signatures were considered in [BC06], and
in [CKRT03| the prefix property (which is very similar to homomorphism) is also handled along
with the properties of XOR. Homomorphism theory with associative-commutative operators is
considered in [LLT05] for the case of a passive intruder, and homomorphism with XOR or abelian
groups is considered for an active intruder in [DLLT06, Del06]. An electronic voting protocol has
been analysed in [KR05]. The protocol relies on a blind signature scheme whose properties have
been modeled by equations; secrecy of votes have been proved automatically using the ProVerif
tool by B. Blanchet [Bla01]. This tool can handle an unbounded number of sessions and arbi-
trary equational theories |[BAF05] but it does not guarantee termination (even in the absence of
equations).

The above mentioned works do not address the decidability of secrecy with CBC encryption
or blind signatures in the case of an unbounded number of sessions. In this chapter, we consider
exactly this setting. Following the line of [CLCO03a|, we tackle the problem by introducing a
new fragment of Horn clauses. We show the decidability of this fragment using a combination of
several resolution strategies. We apply this result to fix the Needham-Schroeder symmetric key
authentication protocol, which is known to be flawed when CBC mode is used.

Outline of the chapter In Section 3.1, we introduce Horn clauses and explain how protocols
can be modeled using them. We then introduce the new fragment of first order clauses in
Section 3.2. In Section 3.3, we present our resolution strategy and apply it to this fragment,
proving that this strategy is both complete and terminating for this class. The application to
the Needham-Schroeder symmetric key protocol is shown in Section 3.4.

3.1 The model

The aim of this section is to introduce Horn clauses and show how we use them to model
cryptographic protocols.
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3.1.1 Horn clauses

To our purposes a single unary predicate suffices. Let I be this predicate. Atoms A are of the
form I(u) where u is a term. Literals L are either positive literals +A (or simply A) or negative
literals —A where A is an atom. A clause is a finite set of literals. If C; and Cs are clauses,
C1 VvV Cy denotes C1UCy. A Horn clause is a clause that contains at most one positive literal. For
Horn clauses we may use the alternative notation Ai, As,...,A,_1 — A, to denote the clause
—A1V—As V...V —A,_1V A, We distinguish from the context the atom I(u) and the clause
I(u) consisting of the positive literal +1(u).

If M is an atom, a literal, a clause, or a set of such objects, and o is a substitution, then
Mo obtained by applying o to M is defined as usual. For example, for an atom A = [(u) and
a substitution o, Ao denotes the atom I(uc). We also extend as usual the notation of unifier
from terms to literals.

A (Herbrand) interpretation is a set of ground atoms. An ground atom I(u) is true in the
interpretation J if w € J, and it is false otherwise. A ground clause C is satisfied by J if and
only if there is a positive literal +7(u) € C such that I(u) is true in J or there is a negative
literal —I(u) € C such that I(u) is false in J. A clause C is satisfied by J if for all ground
substitutions o, Co is satisfied by J. If C is satisfied by J then we say that J is a model of C,
we say that J is a model of a set of clauses C if it is a model of all clauses in C. A clause (or a
set of clauses) is satisfiable if it has a model, and unsatisfiable otherwise.

Given two sets of clauses C and C’, we say that C’ is a logical consequence of C if every model
of C is also a model of C’. When C’ is a singleton consisting of C’ then we simply write C = C’
instead of C = {C'}. Tt is easy to see that, for a ground term m, C U{—1I(m)} is unsatisfiable if
and only if C = I(m).

If w is a term, ||u|| is the depth of u, that is 1 plus the maximal length of the positions of w.
For a variable z, ||u||, is the maximal depth of = in u, that is 1 plus the maximal length of the
occurrences of x in u. By convention, if = is a variable and = ¢ var(u) then |ul; = 0. The
definitions of || - || and || - || are extended to literals by || + I(u)|| = |Ju|| and || + I(u)]; = ||ul..

3.1.1.1 An ordering on terms

We consider a strict and total ordering <z on the function symbols. We define next a partial
ordering on terms. The ordering is chosen in order to ensure the termination of our resolution
procedure.

Definition 3.1 (ordering <) Let u and v be two terms. We say that u < v if one of following
two conditions holds:

1. Jul] < ||vll, and ||u|lz < [|v]z for every x € var(u) U var(v);

2. ull < lvll, lullz < ||v|lz for every x € var(u) Uvar(v), u and v are not variables or names,

and one of the following two conditions holds:

(a) head(u) <z head(v),
(b) head(u) = head(v), Vi,u; < v;, and 3i such that u; < v;, where u = f(u1,...,u,) and

v= f(v1,...,v), for some f € F of arity n > 0.

For example, if u is a strict subterm of v then v < v. Variables (and names) are incomparable.
We have (a,x) < h(h(z)) but (h(h(a)),z) £ h(h(z)). We also have that {z}}. < {(z,9)}..

An ordering is said [liftable if for any two terms u, v and for any substitution 0, u < v implies
uf < vf. This is a crucial property for the completeness of ordered resolution.
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Proposition 3.2 The relation < is a strict liftable ordering.

Proof  Transitivity and irreflexivity of < are obvious. We have

lwoll = max([w]], max ([wly +[lyoll = 1)) (3.1)
yEvar(w)
and
0 if ¢ var(wo),
[woll. = :
maxyevar(w) (|wlly + [[yoll. — 1) otherwise.

Also, head(wo) = head(w) if w is not a variable. Moreover, if u < v then var(u) C var(v), since
otherwise there exists z € var(u) \ var(v) with [Jul|; > ||v|lz = 0 (contradiction). Remark that
var(wo) = Uyeyar(w) Var(zo). Thus, if 2 € var(uo) and var(u) C var(v) then x € var(vo).

Let u and v be terms such that u < v. We prove by induction on the depth of u that uoc < vo.

For the base case, ||u|| = 1 and then u is either a variable, a name or a constant. If ||v]| =1
then uw and v are constants, and thus so are uo and vo. Suppose ||v|| > 1. If u is a name or
a constant then uo < wvo by using the first point of Definition 3.1. If w is a variable z then
x € var(v) and thus uo = ro < vo (since zo is a subterm of vo).

We consider now the inductive case (||ul| > 1).

Suppose ||ul| < [Jv||, and ||ull. < |[v|| for every x € var(u) U var(v). Then for all z €
var(uer) Uvar(v0), [[uo s = maxyevaso (1l + 5] — 1) < maxyeq (ol + lyol — 1) <
maxXycvar(v) ([[V]ly + |yollz —1) = |lvo|ls. Next, using the just obtained strict inequality, equa-
tion 3.1, and that var(u) C var(v) we obtain that ||uc| < |lve||. Thus, by the first point of
Definition 3.1, uo < vo.

Suppose now that ||u|| < [|v||, and |Jul|; < ||v||z for every x € var(u) U var(v). Then using
a similar analysis as in the previous case we obtain that |uc| < |vo||, and [|uclly < [Jvo]s
for every = € var(uo) U var(vo). If head(u) <z head(v) then head(uoc) <z head(vo), thus
uo < vo. Otherwise (i.e. head(u) = head(v)), we have and Vi, u; < v;, and 3i such that u; < v;
where v = f(uy,...,uy) and v = f(v1,...,v,) for some f € F, n > 0. Applying the induction
hypothesis we obtain that Vi, u;o0 < v;0, and 3i such that u;o0 < v;o. Then clearly uo < vo (by
point 2b of Definition 3.1). ]

A term v is said mazimal in a set S if there is no term v € S such that v < w.
The ordering is extended to literals by £I(u) < +'I(v) if and only if u < v.

3.1.2 From protocols to Horn clauses

The predicate I represents the knowledge of the intruder: I(m) means that the intruder knows
the term (or message) m. Thus a clause I(uq),...,I(u,) — I(v) should be read as “if the
intruder knows some messages of the form wq,...,u, respectively, then he knows v”. There
is thus a natural correspondence between deductions and Horn clauses, as we will see in what
follows.

3.1.2.1 Intruder clauses

Let Z be a deduction system without conditions. The set of clauses associated with 7 is

. S+ oo Stu,
Cr & {I(wn), .. I(un) — I(0) | Ze Bt e 7y
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Exemple 3.3 The Dolev-Yao rules presented in Section 1.2.3.1 (page 41), more exactly the rules
of Zyq from Figure 1.3 and the composition rules (for the function symbols occurring in Figure 1.3),
are represented by the following set of Horn clauses:

I(x),I(y) — I({z,y)) pairing of messages

I(z), I(y) = I({z}y) symmetric encryption
I(z),I(y) — I({[z]}y) asymmetric encryption
I(z),I(y) — I([z]y) digital signing

I(x) — I(ek(x)) obtaining the encryption key
I({x,y)) — I(x) first projection

I({x,y)) — 1(y) second projection

I({z}y), I(y) — I(x) symmetric decryption

I({zltex

Observe that the deduction system I(Ro) (see Definition 1.8 and Figure 1.2) contains also the
membership rule and an infinite number of composition rules for public constants (hence the set
Cr(ry) 8 also infinite). The membership rule is a conditional rule and is hence not represented
by an associated clause. As it we will see next, we represent explicitly the initial knowledge of
some set of terms (i.e. the left hand side S of a deduction rule S+ u).

) 1(dk(y)) — I(z) asymmetric decryption

—~

Given a set of terms 7', we define the associated set of clauses Cr = {I(u) | u € T}.

Lemma 3.4 Let T be a deduction system without conditions, T a set of ground terms and m a
ground term. If T 1z m then Cz UCr = I(m).

Proof  Consider a proof of T+ m. We reason by induction on the depth of the proof. Then,
by considering the last rule of the proof we can have the following possibilities.

e The last rule is an axiom and m € T'. Then I(m) € Cr and hence Cr = I(m).

e The last rule is
Stu ... Sktun

Skw
and vo = m for some substitution o. Then (I(u1),...,I(u,) — I(v)) € Cgr, and,
by induction hypothesis, Cr U Cr = I(u;o) for all i. Consider an arbitrary model J
of Cr UCr. Then J is also a model for all I(u;o). If I(vo) is false in J then the
clause I(uj0),...,I(u,0) — I(vo) is not satisfied by J. Hence neither is the clause
I(uy),...,I(un) — I(v). But this contradicts J being a model of Cg UCr. Thus I(vo) is
true in J. That is, J is also a model of I(m).

3.1.2.2 Protocol clauses

We now show how the rules of a protocol can also be modeled using Horn clauses. With every
rule we associate a clause. We perform first some abstraction by letting the nonces only depend
on the agent that has created it and the agent that should receive it; and similarly, a fresh session
key will be parameterised by the agents who share the key. This is formalised next.

We consider again only roles with matching and simply call them roles. Let IT = (R,S) be
a k-party protocol. We consider the partial function D given by D(r,p) = (v/,p') if and only if
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S(r',p') = (r,p). That is, D returns for each role/control-point pair (r,p), the role/control-point
pair (r/,p’) of the expected destination of the message sent by role r at step p. The function D
is used to obtain, for a fresh nonce or key, which is the agent that should receive it.

Let R.(z1,...,2r) = vI,. recv(ul),send(v}l); ... ; recv(ub”),send(vf™) with 1 < r < k be the
roles of II. We assume that no different roles have common variables (hence no common fresh
items neither), and we let Uj<,<xZ, = {z1,...,2,}. We also suppose that the signature F
contains n private function symbols ffq,...,ff, of arity 2.

Consider the following substitution og with dom(og) = U1<,<xZ, and ;00 = ff;(2,, 24) where
r is such that z; € 7, and d is given (d,-) = D(r,p) with p being the control-point at which z;
first occurs in the instructions of r.

The set of clauses associated with the protocol II is then

cn = |J {I(ujoo) — I(viog) | 1 <i < p}
1<r<k

The initial knowledge of the intruder IK is given by a set of ground terms, and thus modeled
by the set of clauses Crx. The secrecy of a message s is thus represented by the unsatisfiability
of the set of clauses Cz UCrx UCrp U {—1(s)}.

Next, for each 4, we rename the function symbol ff; by n; or k; depending on the role it plays
in modeling: abstracting a nonce or respectively a key.

Exemple 3.5 The following set of clauses Cnspk model the Needham-Schroeder protocol (see
Ezample 1.28, page 48):

— I({In1(za; 26), Za]}ek(zb))
I({[nl(zm Zb)? xnb]}ek(za)) - I({[$nb]}ek(zb))
— 1

I({Ynas zaltek(z)) = L({Yna> n2(26; 2a))tek(a))

The first two clauses corresponding to A’s role, while the third to B’s role. For simplicity, we
have omitted the literal —I(init) from the first clauses, and the clause

I({In2(26, za)tek(z)) — 1(stop)

(corresponding to the second rule of B’s role). This is without loss of generality (w.r.t. to the
satisfiability problem) since init and stop are public constants and hence the corresponding clauses
(i.e. I(init) and I(stop)) would be in Cjx .

Since the clauses can be applied in any order, any number of times, we also abstract away
the order of the rules of the protocol. The order could be enforced by associating the clause
I(uy),...,I(u;) — I(v;) (instead of I(u;) — I(v;)) to each step i of a role. However, this
enhancement does not assure that a rule is not played several times.

Note that all these abstractions are correct w.r.t. the secrecy property, 7.e. if a protocol is
deemed secure using these abstractions then it is secure without abstractions. The converse does
not hold, i.e. these abstractions are not complete, as the following example shows.

Exemple 3.6 Consider the following protocol

A= B: {NagKlﬁKabu{{NaﬂKQ}Kab
B = A: {{NaaKIB'Kab
A= B: Ki,{s}hx i
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in which Ny is a fresh nonce, and Ky, Ko are two fresh keys and Ky, is a long-term shared key
between A and B. The agent B just sends back to A the first ciphertext. Next, A just verifies
that the first component is the right one (i.e. the nonce N, that she sent in the first step), but
she does not verify the second component (the key Ki). That is, using the model of Chapter 1,
the second rule of A’s role is recv({na, Y B(za,2,) ) 5eNd (Y, £5% (ke ko)), where ng, k1, ko are the
fresh items of A’s role. The intruder can obtain, in each sessions, either Ky or Ko but not both.
And since the secret s is encrypted in each session with a new pair of keys the intruder is not
able to obtain the secret. However, in our Horn clause model, the secret can be obtained by the
intruder.
The set of clauses modeling the above protocol is

- I((ﬁn(zm Zb)? ki (Zm Zb)}k(za,zb)a {{n(zav Zb)v k2(za7 Zb)}k(za,zb)»
I((y1,92)) — 1(y1)
I(fn(zas 26); T Hu(za,2)) = LT LK ki (zarz) o (2a,20))))

Here the intruder obtains both keys by using twice the third rule (with the pair of ciphertexts of
the first rule as it is, and with the ciphertexts interchanged). This is only possible due to our
modeling of fresh items by the same term (in all sessions between the same agents); A wouldn’t
normally accept a ciphertext from an old session since she verifies the freshness of her nonce.

Other security properties can also be encoded as Horn clauses. B. Blanchet has encoded
authentication [Bla02], strong secrecy [Bla04], and some other equivalence properties [BAF05]
by expressing them in a pi-like process calculus and translating processes to Horn clauses [AB02].

3.2 A fragment of Horn clauses

We have seen that for some protocol, some intruder capabilities, and some secret message, if the
corresponding set of clauses is satisfiable then the secrecy of the message is preserved. However,
deciding the satisfiability of a set of clauses is in general undecidable. Several decidable classes do
exist [FLHTO01]|. One of such fragments, which is quite well-suited for modeling security protocols,
was identified by V. Cortier and H. Comon in [CLCO03a]. Other such fragment(s) tailored for
security protocols can by found in [SV05, SV06]. We extend the fragment of [CLC03a] in order to
capture some special primitives not considered before in this context. In Sections 3.2.1 and 3.2.2
we present existing fragments, while in Section 3.2.3 we introduce the extension.

A class of clauses is a set of sets of clauses. We denote classes of clauses using the symbol €.
By language abuse we say that a clause C is the class €, if {C'} is in the class €. Also, for a set C

of clauses and a class of clauses €, we denote CU € < {CUC' | €’ € €}. When we say that a set

of clauses Cp belongs to the class of clauses in € or €', we mean that Cy € {CUC' | C € €,C" € ¢'}.

3.2.1 Intruder clauses

Note that each of the clauses in Example 3.3, except the one for asymmetric decryption, contains
at most one function symbol. That is why we consider the following class of clauses.

Definition 3.7 (class €;) The class €1 is the class of Horn clauses of the form:

HI(f (1, an)) V) £(2i).
j=1
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3.2.2 Protocol clauses

For simplicity we consider next only two-party protocols.

H. Comon and V. Cortier |[CLCO03b| have shown (using a different Horn clause encoding)
that, for secrecy properties, it is sufficient to verify the correctness of a protocol for only three
parties: two honest and one dishonest participants. Hence we consider three agents having their
identities represented by the constants a, b and ¢, where a and b stand for the honest participants,
while ¢ stands for the dishonest participant. The initial knowledge of the intruder thus contains
the (finite) private data of i, but not that of a and b.

We suppose that all roles have the following two parameters z,, 2, and we define the set of
substitutions {o; | 1 <14 < 6} with dom(o;) = {z4, 25} and ran(o;) C {a,b,i} such that o(z,) #
o(zp). Then the set of clauses modeling a protocol is

i< | cno

1<i<6

Note that the variables of Cf; are exactly those of the protocol (thus excluding parameters
and fresh items).

We observe that each of the clauses in the set C,’\,Spk (see Example 3.5) has at most one
variable. As noticed in [CLCO03a|, this is the case of protocols with single blind copying, i.e.
protocols for which, at each step of the protocol, at most one part of the received message is
blindly “copied” to the sent message. For example, in the first rule of B’s role of the Needham-
Schroeder protocol (see page 15), the only blindly copied part is N, since the other part (i.e. A)
is an identity known by the B. Therefore, the second class of clauses we consider is the class of
Horn clauses that contain at most one variable.

Definition 3.8 (class €p) The class €p is the class of Horn clauses that contain at most one
variable.

Note that by considering a finite number of agents we can also consider public encryption
by adding for each identity the clauses for encryption and decryption. More exactly we can
replace the clause I({{z]}ek(y)), [(dk(y)) — I(z) (which is not in &) with the three clauses
I({{x]}ek, ), I(dky) — I(z) where o € {a,b,i} and ek,, dk, are constants. These three clauses are
in €p.

Note also that all ground clauses are in €p. Hence clauses modeling the initial intruder
knowledge and the secrecy property (i.e. —I(s)) fall in the class. Thus, for standard Dolev-Yao
rules and for protocols with single blind copying, the secrecy problem can be modeled (as we
have seen in the previous section) by a set of clauses in the class €; U €p. The satisfiability of
this set of clauses will prove the secrecy property.

H. Comon and V. Cortier [CLC03a| have shown that satisfiability of a set of clauses of €;UCp
is decidable in 3-EXPTIME, and H. Seidl and K. Verma [SV05] have shown that satisfiability is
in fact DEXPTIME-complete.

3.2.3 Extending the intruder power

The aim of the chapter is to extend the decidability result of [CLCO03a] to a larger class of
clauses, in order to model an extended power of the intruder. Indeed, the set of clauses, described
in Example 3.3, represents the capabilities of an intruder, assuming perfect cryptography. In
particular, the intruder cannot learn anything from an encrypted message {m}x, except if he

91



Chapter 3. Decidability results for Horn clauses

has the inverse key. However, depending on the implementation of the cryptographic primitives,
the intruder may be able to deduce more messages. We consider here CBC encryption and blind
signatures.

3.2.3.1 Prefix property

Depending on the encryption scheme, an intruder may be able to get from an encrypted message
the encryption of any of its prefixes: from a message {z,y}., he can deduce the message {z} ..
This is encoded by the clause:

Core = —I({(,9)}) v I(f2}>)

This is for example the case for Cipher Block Chaining (CBC) encryption. We recall that in
such a system, the encryption of the message block sequence P Ps - -+ P, (where some bits may
be added to P, such that every block has the same length) with the key K is C1Cy - -- C), where
Co = IV (initialisation vector) and C; = {C;—1 ® P;} k. The CBC encryption system has the
following property:

if C1Cy---CiCip1 - Cpp ={P1Py--- PiPiy1--- Py then C1Co---Cy = {P1P--- P}k

That is to say an intruder can get {z}, from {x,y}, if the length of x is a multiple of the block
length used by the cryptographic algorithm. This property can be used to mount attacks on
several well-known protocols. For example, we explain in Section 3.4.1 the attack discovered by
O. Pereira and J.-J. Quisquater [PQO00] on the Needham-Schroeder symmetric key authentication
protocol [NST8].

The prefix property also holds for homomorphic encryption, i.e. encryption schemes that
verify that {(z,v)}r = ({z}x, {v}x). This is the case of the ECB (Electronic Code Book)
encryption scheme for example, where the encryption of message block sequence PP --- P,
with the key K is simply the sequence { P, }x{ P2}k - - - { P. } k- For such encryption schemes,
the clause C). models only partially the intruder power. Indeed, the intruder is able to recombine
messages, an action which is not modeled by the clause.

A drawback of our modeling is that we cannot obtain {{(z1,z2)}, from {(x1, (z2,23))},
using only the clause Cpp.. This is mainly due to the use of pairing instead of concatenation.
On the other hand, note that considering concatenation leads to a non-deterministic model (see
Example 1.22, page 46).

3.2.3.2 Blind signatures

Blind signatures are used in voting protocols like the FOO 92 voting protocol [FO092, KR05].
The idea of the protocol is that the voter first commits its vote v using a blinding function blind
and a random blinding factor r: he sends the message blind(v,r) together with a signature of
the message. The administrator A verifies that the voter has the right to vote and has not voted
yet. If it is the case, he signs the message, i.e. sends the message [blind(v,r)]sk,. Note that the
administrator does not have access to the vote since it is blinded. Now, the voter can unblind
the message, getting [v]sk,, using that unblind([blind(v, r)]s,,7) = [v]sk,- Then the voter can
send its vote to the collector.

The “standard” composition and decomposition properties of blinding are modeled by the
following clauses:

I(x),I(y) — I(blind(z,y))
I(blind(x,y)), I(y) — I(x)
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Note that these clauses fall into the class €;.
The “commutativity” property between blinding and signing can be modeled by the clause:

—I([blind(z,y)]-) v =1(y) vV I([z]-).

def

Csig =

3.2.3.3 Definition of the class ¢g

First let us note that the clauses C,. and Cj;, are neither in the class €; nor in the class €p.
Therefore they cannot be treated by the techniques of [CLC03a, SV05].

In order to extend the intruder power to clauses such as Cp. or Cyy, we consider the class
of special clauses, denoted by Cg.

We assume that the set of function symbols F contains a special symbol fy and that this
symbol is the smallest symbol of F for the ordering <. This special symbol stands for encryption
in the case of the prefix property, and stands for signing in the case of blind signatures.

Definition 3.9 (class €g) The class €g is the class of Horn clauses of the form:

p

—I(folulg(yr, -yl v) v\ =Iwilg(yr, o)) v\ =1(i) v I(foly;,2),  (3:2)
=1

=1

where k > 0, {j,i1,...,4g} € {1,...,k}, p,q > 0, u,w; are ground contezts, v is a term with
var(v) = {z}, g # fo, and I(fo(ulg(y1,...,yx)],v)) is greater (w.r.t. <) than any other literal of
the clause.

For example, the clause C),. is obtained whenu=v==z,j=1,p=¢=0, fo={_} and,
g ={_,_). The clause Cy, is obtained when u =v =2, j=1,p=0,¢=1, fo = [[_]]_ and,
g = blind. We could also consider for example the clause —I({(z,y)}.) V I({y}.). -

This class could also be used to express more complex protocol clauses.

3.3 A decidability result

We show that satisfiability of clauses of €;pg def {C1UCUCs | CLe€,Cy e Cp,C3 € g} is
still decidable, under a slight semantical assumption. To get this result we consider a variant
of ordered resolution where resolution between clauses of a saturated set are forbidden. In
Section 3.3.1, we recall the definition of ordered resolution. In Section 3.3.2, we introduce
our variant of ordered resolution. We prove our decidability result in Section 3.3.3 and show
in Section 3.3.4 that both CBC encryption and blind signatures satisfy the hypotheses of our
theorem.

3.3.1 Ordered resolution

We consider a liftable partial ordering <, total on closed atoms.

Let A and B be two unifiable atoms, o = mgu(A4, B), and C7 and Cy be two clauses such
that C1, = C7 vV A and Cy = C) V —B for some clauses C] and C). The binary resolution rule is
defined by:

CivA —-BvVC(C
CioV Cho

The clause Cjo V C)o is called resolvent of the clauses Cy and Co. The atom Ao is called
the resolved atom. We have implicitly supposed here that the clauses C'y and Cs do not share
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variables, which can be obtained by renaming the variables of one of the clauses. Note that, by
the definition of clauses, the same literal cannot appear twice in a clause. Indeed, we suppose
that the resolution rule contains an implicit factorisation which immediately replaces LV LV C
by LV C.

The ordered resolution (w.r.t. <) requires that there is no atom in the resolvent greater than
the resolved atom. Note that in this case, since < is liftable, A and B in the above resolution
rule are maximal in C7 V Cs.

If C1,Cs,...,C, are clauses such that their sets of variables are pairwise disjoint then we
note the clause C1 VCo VvV ---V Oy by Cr UCo U --- U, in order to emphasise this property.
Considering a set € whose elements are sets of clauses, the splitting rule is defined as follows:

¢ =g (Q{CH) U {(C\{C1uChu{Cit} U {(C\{CLUCa}) U{Ca},

where C € € and C U Cy € C and C, Cy not empty. We write € =4, ¢ to say that € — 5l ¢’
and no application of the splitting rule on €’ is possible anymore.

It is well known that ordered resolution with splitting is complete for Horn clauses [BGO1].
However, while ordered resolution was sufficient to prove decidability of satisfiability for clauses of
the classes €7 UCp, this is not the case anymore. Consider for example the ordering < defined in
Section 3.1.1.1 (which extends the ordering considered in [CLC03a]). Ordered resolution between
the clause C),. and the clause I(x), I(y) — I({z},) yields I((z,y)),1(2) — I({x}.). Resolving
again this clause with Cpy. yields I(((z,2'),y)),I(z) — I({z}.) and so on. Thus ordered
resolution does not terminate. However, we note that deriving the clause I({x,y)),I(z) —
I({z}.) is useless (w.r.t. the completeness of the resolution) thanks to the clause I((z,y)) —
I(x). This will be formally proved in Section 3.3.4. In terms of resolution theory [BGO01], the set
Z U{Cprc}, where T'? is the set of clauses described in Example 3.3, is already saturated. We
formalise this notion in the next section.

3.3.2 Our resolution method

A partial ordered interpretation J is a set of ground literals such that if A € J then —A ¢ J and
conversely, and if +A4 € J and B < A then +'B € J for some sign +’. A ground clause C'is false
in 7 if, for every literal £A in C, the opposite literal FA belongs to J. A clause C' is unsatisfiable
in the partial interpretation J if there exists a ground substitution 6 such that all atoms of C¢
are among those of J and C#6 is false in the interpretation. A set of clauses is unsatisfiable in the
partial interpretation J if there is a clause in the set that is unsatisfiable in 7.

Definition 3.10 (saturated set of clauses) A set S of clauses is saturated w.r.t. the or-
dering < if for every resolvent C' obtained by ordered resolution from S and for every partial
interpretation J, if C is unsatisfiable in J then S is unsatisfiable in J.

Let S be a saturated set of clauses. For a set of clauses 7 we denote by Res< s(7) the set of
clauses derived by ordered resolution method with the restriction that we do not apply resolution
if the two premises are clauses of S. We may drop the subscripts when they are clear from the
context.

We define Res”, 5(7) & TU Res< s(7). For a class € of sets of clauses we denote by

Res”, 5(€) o {Res®, 5(7) | T € €}. Also we write € = s 4 € to say that Res”, s(€) =g €'
Remark that €’ is unique.

12\We have overloaded the symbol Z (previously it was used to denote deduction systems). For the rest of this
chapter we use Z only to denote some set of clauses.
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For a liftable ordering <, and a set of clauses S, we denote by R s the ordered resolution
method with splitting together with the mentioned restriction. The following result states the
refutational completeness of this method:

Proposition 3.11 For any liftable ordering <, for any sets S and T of clauses, such that S is
saturated w.r.t. < and S C T, T is unsatisfiable if and only if {T} =7 4 spt & Jor some € such
that every set of clauses in € contains the empty clause.

The proof is a direct consequence of the refutational completeness of the standard strategy
since, from the hypothesis that S is saturated, all inferences performed between clauses from S
are useless.

We extend the presented resolution method with a tautology elimination rule and a subsump-
tion rule. These rules do not compromise the completeness result of the method.

3.3.3 A decidable class

We consider the ordering < defined in Section 3.1.1.1. By Proposition 3.2, < is a liftable ordering.
We apply the resolution method R« 7us (defined in Section 3.3.2) to sets of clauses ZUS U P,
withZ € €, § € €5, P € €p. Thanks to Proposition 3.11 this method is refutationally complete.
Hence to get decidability we only need to show its termination.

However, our resolution method is still not sufficient to ensure termination for clauses of
<rps.

Exemple 3.12 Let C' = —I(u[z]) V I({x},y)) such that {x ) £ ulr]. Resolving C with Cpye
gives C" = —I(u[(z',y")]) V I({x}o[(ar y)) which can be again resolved with Cpre, and so on.

Thus, we consider an additional slight syntactic restriction. From a protocol point of view,
this restriction does not reduce the expressivity of the fragment of clauses under consideration.

Definition 3.13 (well-behaved term, well-behaved clause)
We say that a term is well-behaved if for any of its subterms of the form fo(u,v) the following
two tmplications hold:

o if var(u) # 0 then v is a constant;
o if var(v) # () then u is a ground term.

We say that a clause of €g is well-behaved if the terms v, u[g(y1, ..., yx)] and wi[g(y1, ..., yx)],
for all i, (see Definition 3.9) are well-behaved.

We say that a clause C' not in €g is well-behaved if for every literal £1(w) of C, w 1is
well-behaved.

Usually, the terms used in modeling cryptographic protocols are well-behaved. For example,
if S ={Cpre} (or S ={Csig}) (see previous section) then U Cygy, is well-behaved.
We are now ready to state our main result.

Theorem 3.14 Let Z,P,S be finite sets of clauses included respectively in the classes €r, €p
and Cg. If ZTUS is saturated and P U S is well-behaved then the satisfiability of ZUP US s
decidable.
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The rest of the subsection is devoted to the outline of the proof of the theorem. For the sake
of clarity, some proofs of intermediate results are postponed to Section 3.3.5.

Our resolution method applied to clauses of the class €;pg may create clauses outside the
class €rpg. To obtain an invariant, we introduce the following auxiliary class of clauses. We
define €; to be the class of clauses of the form:

T S
\ —I(wilg(yr, - u))) v \/ =Iwi) Vv 1(foly;,a)),
i=1

=1

where k >0, r > 1,5 >0, {j,41,...,is} C{1,...,k}, g # fo, w; is a ground context for any 1,
and a is a constant.

We have that the resolution method R 7us applied to any set of clauses of ZU S U €p or
¢ yields a clause in €p or €.

Lemma 3.15 Let Z, P', S and J be sets of unspittable clauses of respectively €, €p, €5 and,
€y, such that TUS is saturated and P', S, and J are well-behaved. The application of R< 1us
resolution on T US UP' U J produces clauses in €p or €;. Moreover, the set of resolvents is

well-behaved.

The proof is done in Section 3.3.5.1.
We define the depth of a non-empty clause C' to be [|C| & maxzec || L.
We prove in Section 3.3.5.2 that the depth of clauses obtained applying the R« 7us resolution

does not increase except if they are ground, in which case the depth may double.

Lemma 3.16 Let Cy and Co be respectively two unsplittable clauses in €;, €g, €p, or €z, such
that for i € {1,2}, if C; is in €p, Cg or €5 then C; is well-behaved. The resolvent C' derived by
R« 1us resolution satisfies: ||C|| < max(||C1][,||C2||) if C is not ground or if Cy or Cy is ground,
and ||C|| < 2max(||C1]|, ||C2||) otherwise (that is, if C is ground, and Cy and Ca are not ground).

These two lemmas allow us to conclude. We denote by Cy the set of clauses Z U S U P and
by € the class {Co}. For every i > 0 we define recursively €;;1 to be the class defined by
¢; =< 71us,spl Cir1. Due to the application of the splitting rule, for any ¢, the elements of the
class €;41 are sets of clauses such that each of the clauses in these sets is either a ground literal,
or does not contain any ground literal.

Using Lemma 3.15, we obtain by induction that for every ¢, for every C € &;, we can write
C=ZUSUP UJ, where P’ and J are well-behaved sets of clauses of the classes €p and €
respectively.

Let N & maxcec, |C||. Applying now Lemma 3.16 and induction, we deduce that for every i,
for every C € &, for every C € C, we have that ||C|| < N if C is not ground and ||C|| < 2N if C
is ground.

From the definition of classes €;, €g, €p and €; we observe that clauses in sets C € &;, for
every 4, have at most k + 1 variables, where k is the maximal arity of function symbols in F
(indeed, clauses in €g may have k + 1 variables: yi,...,y; and 2).

Since there is a finite number of sets of clauses of bounded depth (up to variable renaming),
we deduce that the R« 7us resolution terminates.

With regard to the complexity of this decision procedure we obtain, using a similar argument
as in |Cor03], that the satisfiability of the set ZU P U S is decidable in 3-EXPTIME.
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3.3.4 Examples

In this section we show that the intruder clauses corresponding to our two examples (CBC
encryption and blind signatures) are saturated. This means that we can analyse any protocol
encoded in €p in the presence of an extended intruder that has access either to CBC encryption
or blind signatures.

We assume a fixed basic set of capabilities for the intruder, modeled by the set Zy consisting
of the clauses in Example 3.3 (except the three clauses concerning asymmetric encryption, which
are neither in €7, nor in €p), and of the two clauses modeling composition and decomposition
of blind messages (see page 93).

We first consider the case of the CBC encryption.

Proposition 3.17 The set Zop U {Cpre} is saturated.

Proof  Given a partial interpretation J and an atom A belonging to J, we say that A is true
(resp. false) in J if A appears with sign + (resp. with sign —).

We consider an ordered resolution between clauses of Zg U {Cp}. If both premises are
clauses of 7y then all the resolvents are tautologies. Therefore they are satisfiable for any partial
interpretation. The only interesting cases are when one of the premise is Cle.

Consider first that the other premise is —I(x)V —I(y)V+I({z},). The resolvent of these two

def

clauses is C; = —I((z,y)) V —I(z) V +1({x}.). We consider an arbitrary partial interpretation
J such that C7 is unsatisfiable in J. By definition, there exists a ground substitution 6 such that
(40 is false in 3. The clause C16 has the form —1I({u,v))V —I(w) V +I({u}w), where u, v and
w are ground terms. Thus the literals +1((u,v)), +1(w) and —I({u},) are in J. Also, since
u < {u}y, one of the literals +1(u) or —I(u) must appear in J. We consider the two cases.

e Either the atom I(u) is true in J then the clause —1I(u) V —I(w) V +I({u}y) is false in J
and it follows that the clause —I(z) vV —I(y) vV +I({x},) is unsatisfiable in J;

o Or the atom I(u) is false in J then the clause —I((u,v))V +I(u) is false in J, therefore the
clause —I({z,y)) V +I(x) is unsatisfiable in J.

In both cases a clause of Zop U {C),.} is unsatisfiable in J.

In the other cases the ordering does not allow the resolution step. Indeed, if both premises are
Chre then the resolvent is —I({((z,y), ) }.)V+I({z}.) and the resolved atom is {(x,y)}.. But
{lz, )} < {{z,y),y)}-. If the premises are Cpy. and the decryption clause then the resolvent
is —I({z,y}.)V —I(2) V+I(x) and the resolved atom is I({z}.). But {z}. < {=z,y}..

We conclude that the set Zo U {Cpye } is saturated. n

The same property is true in the blind signature case.
Proposition 3.18 The set Top U {Cyq} is saturated.

Proof The proof is similar to the previous one. The only interesting case is when one of
the premises is Cyjy. It must be the case that the second premise is —I(z) vV —I(y) V +I([z]y).
The resolvent of these two clauses is —I(blind(z,y)) V —I(y) V —I(2) V +I([x].). An analogous
reasoning as in the previous lemma shows that if the resolvent is unsatisfiable in some partial
interpretation J then Ty U {Cj;,} is unsatisfiable in J. The intuition is that the resolvent could
already be obtained from the clauses —I(z)V—1I(z)V+I([x],) and —I(blind(z,y))V—I(y)V+I(x).

]
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As a consequence of these two propositions and applying Theorem 3.14, we get that for
any well-behaved set P (encoding both a protocol and a security property), the satisfiability of
ToU{Cpre }UP (resp. of ZoU{Cy4} UP) is decidable. Since for example secrecy can be modeled
using a ground clause (for example —I(n(a,b)) to express that the intruder should not learn
the nonce between a and b), we obtained a (correct but incomplete) procedure for verifying the
secrecy of protocols that use the described prefix property or blind signatures.

In addition, in the case of other extensions of the intruder power leading to other sets S of
clauses in €g, the saturation of the set ZUS can be easily verified by hand (like in our examples).

3.3.5 Proofs of intermediate results
3.3.5.1 Invariance under resolution

We show in this subsection that our resolution method on a set of clauses in €7, €g, €p, or €;
produces a set of resolvents that belongs to the class of clauses in €p or €;. We first prove a
helpful lemma.

Lemma 3.19 Let wy and wy be two well-behaved unifiable terms, and let o = mgu(wy, ws).
Then wo s well-behaved for any well-behaved term w.

Proof  Suppose that there is a subterm fy(u,v) of wo such that fo(u,v) is not well-behaved.
We have the following possibilities for fo(u,v): either it is a subterm of w, or fo(u,v) = fo(u',v")o
where fo(u/,v") is a subterm of w, or it is a subterm of zo, where x € var(w). In the first
two cases we obtain immediately that w is not well-behaved, since fo(u,v) and respectively
fo(u',v") are not well-behaved. In the third case there is a subterm fo(u”,v") of wy or we such
that fo(u”,v")o = fo(u,v). Therefore wy or we is not well-behaved. Hence we obtained a
contradiction, and so the supposition is false. [

Lemma 3.15 Let Z, P', S and J be sets of unspittable clauses of respectively €;, €p, €5 and,
€y, such that TUS is saturated and P', S, and J are well-behaved. The application of R< 1us
resolution on T US U P’ U J produces clauses in €p or €;. Moreover, the set of resolvents is
well-behaved.

Proof Let C; and C5 be clauses in ZUS U P’ U J. Let C be a resolvent of C; and Cs with
C = Cjo V Cho, where C; = C{V Ly, Co = C4V Lo, and 0 = mgu(L1, Ly). We have to prove
that the clause C'is in the class €p or €;. In order to obtain this, we examine all possible cases
according to the membership of C7 and Cs to the sets Z, S, P/, and J.

For [ € {0, 1}, if C; belongs to Z, S or J then Cj is written as in the definition of classes €1, €g,
and €, respectively. If C; € P’ and C} is ground then the resolvent is also ground and hence in
Cp (indeed, since C is unsplittable, it is either a ground literal or it does not contain any ground
literal). Therefore, in what follows, we suppose that for C; € P’ C} is not ground. Also, in what
follows, we may denote a term u having only one variable, say x, by u(z) in order to emphasise
this property. Hence for C; € P’, we write C; = £I(s(x)) V /%, £I(ti(x)), where m > 0, and
we assume that the resolution inference is performed on the literal £1(s(z)). If C; € J then we
assume that the literal of C; upon which resolution is performed is £1(w1[g(y1,- .., yx)]) (indeed
it cannot be I(fo(y;,a)) since fo(y;,a) < wi[g(yi, ..., yx)]; even if the context wy is empty we
have fy <r g).

The case study follows:
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1. C1,Cy € P'. The resolvent C has at most one variable, hence C' is a clause of €p.

2. C1 € PP and Cy € S. Then Lo = —I(fo(ulg(y1,--.,yk)],v(z))) since Ly is maximal in Cy.
The literal Ly is +1(s(z)). The following two cases are possible:

e s(x) = z. Then, by maximality of s(z) in Cy, we have C; = +I(x). Hence the
resolvent is an instance of C7. Since subsumed clauses are eliminated, this case does
not produce a new clause.

e s(x) = fo(s1,s2). By hypothesis, s(z) is well-behaved.

Suppose that var(sy) # (). Then s = a, for some constant a. We deduce that v = z
and zo = a. The following three cases are possible: (1) y;o = s, where each s is a
subterm of s; and by consequence the resolvent is in €p; (2) xo = u/[g(y1, ..., yk)],
where v is a subcontext of u, and, in this case, the resolvent is in €; (3) xo = o/
where v is a ground subterm of u, and in this case o is ground, thus C is in €p.

Suppose now that var(ss) # (). Then s; is a ground term. Thus y;o is ground for any
i. It follows that the resolvent is a clause of €p.

Observe that, in all the cases, fo(y;,z)o is well-behaved. Since u, v, and w; are
well-behaved we obtain, following the same line of proof as in Lemma 3.19, that the
resolvent is also well-behaved.

3. C1 € P and Cy € T: We have Ly = £1(s(x)) and Ly = FI(f(z1,...,2,)). The following
two cases are possible:

o s(z) = x. Then, by maximality of s(z) we have Cy = £I(x). Therefore C'is subsumed
by Cl.
e s(x) = f(s1,...,5n), where, for all i, s; is a subterm of s(x). Hence, for all i, z;0 = s;.

So the resolvent is in €p.

4. C; € P and Cy € J: We have L1 = £1(s(x)) and Ly = FI(w1[g(y1,--.,yr)])- Again, the
following two cases are possible:
e for all i, y;0 = s;, where s; is a subterm of s(z). In this case C is in €p.

o zo = w'[g(y1,-..,yx)], where w' is a subcontext of wy. If r > 1 then C is in €;. If
r =1 then C' is of the form I(fy(y;,a)) VvV \/,;I(y;,) which splits into clauses of €p and
either I(fo(yj,a)) V I(y;,) (if there is [ with j; = k) or I(fo(y;,a)) (otherwise), which
are both again in €p.

5. C1,Cy € TUS: the strategy forbids any resolution in this case.

6. C1 €Z and Cy € J: We have Ly = £I(f(x1,...,2,)) and Lo = FI(w1[g(y1,-..,yx)]). As
before, two cases are possible:

e wy is the empty context and g = f. The clauses derived by resolution (and possibly
splitting) belong to €p if r =1 and to €y if r > 1.

o for all 4, zjo0 = wi[g(y1,...,yx)], where w] is a subcontext of w;. Hence in this case
Cisin €.

7. C1,Cy € SU J: Since none of the positive literals in C7, C9 is maximal in its clause, the
resolution inferences are blocked.

99



Chapter 3. Decidability results for Horn clauses

To finish the proof of the lemma we have to show that the resolvent C is well-behaved. This is
a consequence of the invariance of the well-behaviour property under application of substitutions,
which was proved in the Lemma 3.19. [

3.3.5.2 Termination of the resolution method

We first give some lemmas which will be used in the proof of termination. The two following
lemmas are similar to Proposition 8.5 in §8.2.1.3 of [Cor03].

Lemma 3.20 Let v and v be two unifiable terms having at most one variable, and let o =
mgu(u,v). Then ||uc|| < max(||ul],||v||) if o is not ground or if uy or us is ground, and |juc|| <
2max(||u||, [|[v||) otherwise.

Proof  If one of the terms, say u, is ground then uo = u and the inequality follows directly.

We suppose that each term has exactly one variable. We denote by x the variable of u and
by y the variable of v.

Remark that [luo|| = max(Jull lull, + |20l — 1) < Jull + 20| = 1 (as ull, < |[ul}), and
similarly for v. Thus if xoc = z or yo = y then we’re done.

Suppose that xo # = and yo # y. In this case o is ground. Consider an arbitrary occurrence
gz of z in u. Then ¢, is a also position in v (otherwise zo = x).

e If v|y, is ground then zo = v|y,, and thus |Juo|| < |lul| + [jv|| — 1 < 2max(]|ul], ||v]])-

e Otherwise, y € var(v|,,). Let g, be a position y in v. Then g, is also a position in u
(otherwise yo = y). We have x ¢ var(uly,) (otherwise u and v would not be unifiable).
Then yo = ulq, and ulg, is ground. Hence |[vo|| < [|v]| + [Jul| — 1 < 2max(|ul], [Jv]).

Using exactly the same proof technique as in the previous lemma, we can show the following
similar result.

Lemma 3.21 Let u and v be two unifiable terms such that u = u'[g(y1,...,yr)] where u' is
a ground context, k > 0, and v has at most one variable. Let 0 = mgu(u,v). Then |uc| <
max (||ul|, [|v]]) if o is not ground or if u or v is ground, and |juc|| < 2max(||ull,||v]) otherwise.

The next lemma bounds the depth of the resolvant of two clauses from the class we are
intersted in.

Lemma 3.22 Let Cy = I(u1) V Cy, Co = —I(uz) V C), be two unsplittable clauses of €p U
CrUCsUCy, such that for i € {1,2}, if C; is in €p, €g, or €; then C; is well-behaved. Let
C = CloV Cho be the resolvent of Cy and Coy with o = mgu(uy, uz). Let o € {1,2}, with a =1 if
o is not ground or if Cy or Cy is ground, and a = 2 otherwise. Then ||uio|| < amax(||uy|], [|uz]]).

Proof  We prove this lemma by performing a similar case study as in the proof of Lemma 3.15.
But first observe that, since C; is unsplittable, C; is ground if and only if u; is ground (for
i € {1,2}). We suppose that u; and ug are not ground, since otherwise we trivially have that
Juro|| < max({[usl], [|uzl])-

1. C1,Cs € €p. We can apply Lemma 3.20 directly to obtain that ||uio| < amax(||ui]], ||uz]]).
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2. C; € €p and Oy € €g. Then us = fo(ulg(y1,...,yx)],v), where u and v are as in Defini-
tion 3.9.

We denote by x the variable of Cy. If uy = x then uso = wo and hence the property is
clearly satisfied. Suppose u; = fy(s1, s2). By hypothesis, u; is well-behaved.

o If var(sy) # () then sy = a, for some constant a. In this case we have v = z and
zo = a. We have that o and mgu(uy,uz[?.]) are equal on {z,y1,...,yx}. Thus, by
Lemma 3.21 applied on u; and us| %], we have ||ujo| < amax(||luio]], ||(u2]%:])o]]) =
amax([|luiol], [luzel]).

e If var(se) # ) then s; is ground.

Let g be the restriction of o on {y1,...,yx}. We have that u[g(yi,...,yx)]o0 = s1
and og is ground. Also mgu(uj,ug0p) is the restriction of o on {z, z}. Then, applying
Lemma 3.20 on u; and ugog we obtain that |uio| < amax(||uio],||(u2o0)o]]) =
amax([luiol], luzol]).

3. C1 € €pand Cy € €. Then ug = f(z1,...,x,) and var(u;) C {x} for some variable z. We
have either u; = x and xo = ug, or w1 # x and u1, uso are equal up to variable renaming.
In both cases ||ujo|| = max(||luy|], ||uz||)-

4. Cy € €pand Cy € €. Then var(u;) C {z} for some variable z, and us = w1[g(y1, - -, yx)]-
We can apply Lemma 3.21 directly to obtain that ||ujo|| < amax(|luyl],||uz]]).

5. C1,Cy € TUS. The strategy forbids any resolution in this case.

6. C;1 € Z and Cy € J. We have uy = f(x1,...,zy,) and ue = wilg(y1,...,yx)]. We then
have w0, uy are equal up to variable renaming, and thus ||ujo| = max(||uy|], ||uz]|)-

7. C1,Cy € SU J. Since none of the positive literals in C7, C9 is maximal in its clause, the
resolution inferences are blocked.

We now show that that every clause derived by our resolution strategy has its size bounded
by (twice) the maximum of the sizes of its premises.

Lemma 3.16 Let Cy and Cy be respectively two unsplittable clauses in €, €g, €p, or €, such
that for i € {1,2}, if C; is in €p, €g or € then C; is well-behaved. The resolvent C' derived by
R« 1us resolution satisfies: |C|| < max(||Cy]],||Cz||) if C is not ground or if Cy or Cy is ground,
and ||C|| < 2max(||C1], ||C2||) otherwise (that is, if C is ground, and Cy and Co are not ground).

Proof Let C; = I(uy) VvV Cy, Cy = —1I(u2) vV C4, and C = Cjo V Cho be the resolvent of Cy
and Cy with o = mgu(uy,ug). Again, C; is ground if and only if w; is ground, for i € {1,2}.

It suffices to show that for every term w such that £I(w) € C; vV Cy we have |jwo| <
max(||wll, [|u1 ||, [Juz]) if o is not ground or if uy or ug is ground, and ||wo || < 2 max(||w||, ||u ], ||uel|)
otherwise. We suppose next that w is not ground, since for w ground the two inequalities are
trivial. In this case, both u; and us are not ground (by the unsplittability of clauses Cy and C5).

Lemma 3.22 ensures that ||u1o| < max(||uy]],||uz|]) if o is not ground or if u; or ug is ground,
and [uro| < 2max([juf,
|luz||) otherwise. Recall that ujo is maximal in C, and thus u; is maximal in Cf.
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If o is ground then ||wo|| < ||uio||, since otherwise it follows that wo > w0 (which contradicts
the maximality of ujo in C'). Thus [Jwo|| < ||luio|| < 2max(||luy]],||uz||), and we’re done.

We consider now that o is not ground. We assume without loss of generality that +1(w) is
a literal of C;. We can have one of the following cases:

1. Ci € €p. Let x be the variable of C7. We compare the depth of w with that of u.

o Case ||w|| > |lu1||. By maximality of u; in Ci, [|w||z < ||ui|/z. We have that

lwoll = max([lwl, [[w[la+[zol|-1) < max({lwl], [[u1|l.+]zol|-1) < max(([w]], [uio])-

o Case |lw|| < [lul. If lw]ls < [lusllz then flwol| < flusoll. If [jw[le > fusllz then

for all y € var(zo), ||lwo|l, > |[uiolly. Therefore ||wo| < ||uyo|| because otherwise
wo > Uu10o.

In both cases [[wo| < max(|w], [uro]). Thus, wo| < max(fw], Ju |, o).
2. C1 € €;. Then w < uy since uy = f(x1,...,2,) and w = x; for some 1 < i < n.
3. C1 € €g. Then w < wuy by the definition of the class €g (see Definition 3.9).

4. Cy € €;. Then u; = w'[g(y1,...,yx)] for some closed context w'. If w = fy(y;,a) or
w = y;, then w < uy. Suppose that w = w”[g(y1,...,yx)]. Observe that for v € {w,u;},
the quantity ||v||,, is the same for all j. Also note that var(wo) = var(uio) = U; var(y;o).
Then by performing the same analysis as in the case C1 € €p (by replacing = with y; for
some j), we obtain that [|wo| < max(||w]|, ||ui]|, ||uz]])-

3.4 Application to the Needham-Schroeder symmetric key pro-
tocol

3.4.1 Presentation of the protocol

We consider the Needham-Schroeder symmetric key authentication protocol [NS78] as an example
of application of our result. The goal of the protocol is the key exchange between two parties,
which we call Alice and Bob, and the mutual conviction of the possession of the key by each
other. The key is created by a trusted server which shares the secret keys K,s and K, with
Alice and Bob respectively. The description of the protocol is as follows:

A=S: A B,N,

S=A: {Na, B, Kaba {{Kaba A}Kbs}Kas
PNS : A= B: {{Kab’A}Kbs

B=A: {Nb}Kab

A= B: {{Nb_lg'Kab

Here we concentrate on the key exchange goal, rather than on the authentication of the two
parties. The key exchange goal can be expressed as the secrecy of the nonce N. Intuitively, if
Np remains secret, it means that the key K,; used by B has also been kept secret.

If the encryption scheme used to implement this protocol is used in the CBC mode then the
following attack [PQOO0| is possible. In a first session (1), an intruder can listen to the message
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{Neo, B, Ko, { Kap, A} K, } i, and then, using the prefix property, he can compute { N,, B} k.-
In another session of the protocol, he can send it to Alice in the third round. Alice thinks that
Bob has started a session (2) with her: Bob plays the role of the initiator and Alice the role
of the second participant. And so Alice would use N, as the shared key, while it is a publicly
known message. This attack is summarised in Figure 3.1.

(1)1 A= S: A, B, N,

(1)2 S :> A : {{Na7 B7 Kab7 {Kab7A}Kb5}Ka5
(2).3 I(B)=A: {N,,B}x,.

(2)4 A=1(B): {N.}n,

Figure 3.1: Attack on the Needham-Schroeder protocol, using the prefix property

The clauses that model the protocol rules are the following ones:

- I(<Za7 Zb, nl(Za, Zb)>)
{.1‘ 2b) (Zaa Zb)v {k(za’ Zb)’ Za}k(zb,zs)}}k(za,zs))
)

((zavzb? >) (
({nl(zaazb) zbayvz}}k(za,zs ) (
({yv za}k (2p,2s) ) ({n2('zb? Za)}}y)
I(fz}y) — I({pred(z)}y)

where pred is public function symbol of sort Nonce — Nonce. Then the protocol is modeled as
in Section 3.2.2 by the set of clause Cyg obtained from the above clause by instantiating the
parameters z, and z, by the constants a, b, and 7, and zz by s.

The intruder has also some initial knowledge. He knows the identities of the participating
parties, he can create nonces and, he knows the secret key of the compromised agent. This initial
knowledge is modeled by the following clauses:

— I
— I
— I
— I

— I(a) — I(k(i, s))
— 1(b) — I(n1(i, x))
— 1(9) — I(n2(i, ))

We denote this set of clauses, corresponding to the initial knowledge of the intruder, by Py. We
remark that these clauses are either ground or with a single variable, and thus belong to €p.

In addition, we enrich the set Z (i.e. the clauses of Example 3.3) with the clause I(x) —
I(pred(z)) that models the ability of the intruder to compute the predecessor of a message (seen
as a number). We denote by Z’ this enriched set.

3.4.2 Correcting the protocol

We remark that the attack comes from the fact that the intruder, using the second rule of the
protocol together with the CBC property, can get the encryption of any message by the key Kgs:
replacing the nonce N, by any plaintext m of its choice in the first message, he obtains a message
of the form {m, ...} k,, from the server and using the CBC property he gets {m} k...

To avoid this, we interchange the place of N, and B in the message sent in the second round.
But a similar attack is still possible since the intruder can modify the first message of Alice and
send (A, B, B) to the server. Then the shared key would be the identity B. Such an attack is
possible only if identities can be confused with keys.

To avoid such a type flaw attack, we add a hash of the shared key as the first component of
the message sent by the server to Alice and then to Bob. Note that this second transformation
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is not sufficient by itself (i.e. without interchanging N, and B) since the intruder has also the
ability to produce hashes. The obtained protocol is described below. We refer to this version as
the corrected protocol.

A=S: A B,N,

S=A: {B,Na,Kalh{{h(Kab)7Kab7A}}Kbs}Kas
Puse : A= B: {MKw), K, A}k,

B=A: {Nb}}}(ab

A= B: {Nb - 1}}Kab

The clauses that model the rules of this protocol are the following ones:

((Za, 2by nl(zm Zb)>)
I((2a, 2y, ) ({26, 7, k(2a, 26), {h(k(2a, 26)), k(2as 2b); 2a Fr(zp,8) Fk(za,5))
({26, n1(2a; 20), ¥, Z}k(za,s) (
I(h (W), ¥ 2a Bi(z,0) ({n2(2p, 20) By)

I({ahy (fpred(z)}y)

As for the protocol Pys, we denote by Cnsc the set of clauses modeling the protocol NSc as in
Section 3.2.2.

The aim of the rest of the section is to prove that the corrected protocol preserves the secrecy
of N, b

— I
) =1
) =1
) =1
) =1

3.4.3 A transformation preserving secrecy

We observe that the clauses corresponding to the third round and fifth round of the protocol
Pysc are not in €p since they have two variables. Therefore we cannot apply directly our result
and we are led to an additional modification of the protocol.

We remark that the server sends to Alice in the second round an encrypted message that
Alice cannot decrypt. This message could be directly sent to Bob by the server. In addition,
the last rule of the protocol does not seem to be able to compromise the secrecy of Ny, thus we
remove it. These modifications yield the following protocol:

A=S5: A B,N,

S=A: {B,N,, K}k,
S=B: {h(Kab),Kab,A}Kbs
B=A: {{Nb}Kab

Pysy -

The set of clauses that model the protocol are listed below:

(2as 26, M (2a; Zb)>)

{{Zb7 €, k(zaa Zb)}k(za,s))
I(<Za7 Zb) $>) {{h(k(zm Zb))v k(zav Zb)7 Za}k(zb,s))
I(Eh(®), ¥: 2a Fu(z,.)) in2(z0, 2a) }y)

As before, we denote by Cnsy the set of clauses modeling the protocol NSv as in Section 3.2.2.

Our approach is as follows: we prove that this version is a weaker version than the corrected
protocol, 4.e. that its correctness implies the correctness of the corrected version. Then, since
this version fits our class, we apply our resolution method to prove that this version preserves the
secrecy of Ny, which allow us to conclude that the corrected version also preserves the secrecy
of N, b

—>I(
I((zq,2p,z)) — I(
—>I(
—>I(
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For each protocol P, where [ is NS, NSc or NSv, we note by 7; LT UPyU C; U{Chpre} the
entire set of clauses that model the protocol (C; is the set of clauses representing only the rounds
of the protocol). The secrecy property of the protocol P, can be formulated as the satisfiability
of the set of clauses 7; U {—1I(na(b,a))}.

We have already seen that 7ys U {—1(n2(b,a))} is not satisfiable. We prove that the satisfi-
ability of Tysc U {—1I(na(b,a))} can be reduced to the satisfiability of Zys, U {—1I(n2(b,a))}.

Proposition 3.23 If the set of clauses Tysy U{—1(n2(b,a))} is satisfiable then the set of clauses
Insc U{—1I(n2(b,a))} is also satisfiable.

To prove this proposition, we use another variant of the resolution method, the positive
resolution |[BGO1], which requires that one of the premise is a positive clause (i.e. a clause
having only positive literals). The method is also refutationally complete. Since we consider
Horn clauses, the set 7; U{—1I(n2(b,a))} is unsatisfiable if and only if there is a deduction of the
clause +1(na(b,a)) by positive resolution on 7;. We denote by P, IF I(m) the fact that the clause
+1I1(m) can be obtained by positive resolution on 7;.

The following property ensures that the transformation of protocol Pysc in Pysy preserves
the secrecy. In other words, if there is an attack in Pysc then there is a corresponding attack
in Pysy.

Proposition 3.24 If Pysc IF I(n2(b,a)) then Pysy IF I(n2(b,a)).

Proof To prove the proposition, it is sufficient to find an application ¢ — ¢ on the set of ground
terms such that na(b,a) = n2(b,a) and, for all message m, if Pysc IF I(m) then Pys, IF I(Th).
We show that the following application satisfies the required properties.

for all constant a
for all variable =

a,

Z,

{ {a, T, w5 17 if fuYo = fa, .8 8" Y s)
1

8 gl

{ubs =

ni(i,1) if u = pred(r),
{u}}v otherwise.

pred(u) =
f(u1,...,un): (ulu" un),VfE}",f;é{_}}_,f#pred

In what follows, a, b are arbitrary constants, r, t are arbitrary terms, while ¢ and s are fixed
constants, standing for the intruder and server identities respectively.
We only need to consider deductions of the form:

CEVL —I(u)V+HI(u) +1I(u) -+ +I(up)
+ I(u)

where C' is an instance of a clause of 7nsc. Thus we are reduced to show that, for each ground
instance \/}_; —I(m;) V +I(m) of a clause C of Tysc, if Pnsy IF I(7;), for every i, then Pys, IF
I(m). We only present here the more interesting cases.

o C=—I(x)V—I(y)V+I({x},). We have to verify that if Pys, IF I(7) and Pys, IF 1(7),
where v and v are two ground terms, then Pys, IF I({u}).
Suppose that {u}, is of the form {a, t,¢,#"}y(w ). Then we have that Pys, IF I((a,t,#,1"))
and Pysy IF I(k(a’,s)). The projection clauses are in Tjsy. Using them with the first re-
lation we obtain Pys, IF I({(a,t,t')) and Pysy IF I(¢”). Now using the encryption clause
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and then the pairing clause we obtain that Pys, IF I(({{a,f,?}k(a@s),ﬁﬁ, which is what
we needed.

Suppose now that u = pred(r). Then we have {u}, = ni(i,7). But Pysy IF ni(4,7), as
+1(n1(i,1)) is a clause from Py.

If we are in none of these two special cases then it is sufficient to use the encryption clause
in order to obtain that Pysy IF I({u}s)-

o C=—I({z},)V—I(y)V+I(zx). We have to show that if Pys, IF I({u},) and Pys, I I(7),
where u and v are two ground terms, then Pys, IF I(%).
If {uly, = {a,t,t',t"}u s) then we have Pysy = I(({a, T, ¥}y ), t"))). Therefore we
obtain Pys, IF I({{a,f,t’}}k(a/,s)) and Pysy IF I(t”). But we also have Pysy IF I(k(d',s)).
And, as the decryption clause is in the model of Pys,, we obtain Pys, I I({a,t,')). From
which we arrive at the desired relation Pys, IF I({a,t,t',t")).

If w = pred(r) then there is nothing to prove because pred(u) = ny(i,7) and Pysy IF
I(ny(4,7)). Otherwise, the proof is direct.

o U= _I(<a’7 b, I‘>)\/+I({b, x, k((l, b)7 {h(k((h b))7 k(aa b)7 a}k(b,s) }k(a,s))‘ KHOWing that Pysy -
I({a,b,u)), where u is a ground term, we must obtain that the transformed positive literal
of C'is deductible from 7ys,.

The second clause of Cys, assures that we have Pysy I- I({b,%, k(a,b) }r,s)). Applying
the pairing clause and the third clause of Cysy, we obtain what we needed, i.e. Pysy IF

I(<{{bv u, k(a> b)}k(a,s)v {{h(k(a> b))v k(a> b)’ a}}k(b,s) >)

o C=—I({b,n1(a,b),y,2}(as))V+I(z). For any two ground terms u and v, we must prove
that if Pnsy IF 1({b,n1(a,b),u, v}(a,s)) then Pysy IF I(). But this is immediate, from the
definition of the application and by using the projection on the second component.

o C=—I({z}y)vV+I({pred(x)},). As we have Pysy IF I(ni(4,7)) and, for all ground terms
u and v, {pred(u)}, = ni(7,1), this case is trivial.

The conclusion in the remaining cases follows directly from the definition of the application ¢ ~— t.
[

3.4.4 Secrecy of the corrected protocol

Since the clauses of 7ys, satisfy the hypotheses of our main result, we have verified using our
resolution method that the transformed protocol Pysy has no attack. The verification was done
automatically using a prototype implementation of the procedure in [CLC03a] that we have
extended for our resolution method.

Proposition 3.25 The set of clauses Tnsy U{—1(n2(b,a))} is satisfiable.

We can state now the correctness of the protocol Pysc.
Corollary 3.26 The set of clauses Tysc U {—1(na(b,a))} is satisfiable.

Proof  Immediate, by Propositions 3.23 and 3.25. ]
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3.5 Conclusions

We have obtained new decidability results for the secrecy of cryptographic protocols that employ
encryption primitives satisfying properties that could not be treated by previous decision proce-
dures (modulo the approximations introduced by Horn clauses). The results followed from the
termination of a resolution strategy on a class of Horn clauses. This resolution strategy might be
useful for larger classes of protocols and more encryption properties. Indeed, while termination
is no more ensured for larger classes, completeness is still guaranteed.

We have applied our technique to the debugging of a protocol under a more realistic threat
model than the one usually considered. We have transformed this protocol so that it falls into the
scope of our Horn class. This transformation preserves the attacks and therefore the correctness
of the target protocol ensures the correctness of the initial one. The transformation is interesting
in itself. We would like to further investigate this type of transformations and to characterise
the protocols to which they can be safely applied.

We have used a prototype implementation to automatically test the correctness of protocols
presented in this chapter. We would like to further develop it, optimise it, and test it against a
library of protocols like [CJ97].
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From simple secrecy to strong secrecy
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As we have seen in the Introduction, two styles of definitions are usually considered to express
that a security protocol preserves the confidentiality of a data s. Simple secrecy says that the
secret is never accessible to the adversary. For example, consider the following protocol where
the agent A simply sends a secret s to an agent B, encrypted with B’s public key.

A — B {S}pub(B)

An intruder cannot deduce s, thus s is a simple!® secret. Although this notion of secrecy may be
sufficient in many scenarios, in others, stronger security requirements are desirable. For instance
consider a setting where s is a vote and B behaves differently depending on its value. If the
actions of B are observable, s remains a simple secret but an attacker can learn the values of
the vote by watching B’s actions. The design of equivalence-based secrecy is targeted at such
scenarios and intuitively says that an adversary cannot observe the difference when the value of

13By language abuse, we overload here the meaning of “simply” which here refers to the fact that s is a simple
secret.
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the secret changes. This definition is essential to express properties like confidentiality of a vote,
of a password, or the anonymity of participants to a protocol.

Although the second formulation ensures a higher level of security and is closer to crypto-
graphic notions of secrecy, so far decidability results and automatic tools have mainly focused
on the first definition.

Related work on strong secrecy Many works have been dedicated to proving correctness
properties of protocols such as strong secrecy using contextual equivalences on process calculi,
like the spi calculus [AG97|. In particular framed bisimilarity has been introduced by M. Abadi
and A. Gordon [AG98| for this purpose. However it was not well suited for automation, as the
definition of framed bisimilarity uses several levels of quantification over infinite domains (e.g. set
of contexts). In [EHHN99| the authors introduce fenced bisimilarity as an attempt to eliminate
one of the quantifiers. Another approach to circumvent the context quantification problems is
presented in [BNP99| where labeled transition systems are constrained by the knowledge the
environment has of nonces and keys. This approach allows for more direct proofs of equivalence.
Similarly, in [BBN04], J. Borgstrom et al propose a sound but incomplete decision procedure
based on a symbolic bisimulation. In [DSV00| model-checking techniques for the verification of
spi calculus testing equivalence are explored. The technique is limited to finite processes but
seems to perform well on some examples. The concept of logical relations for the polymorphic
lambda calculus has also been employed to prove behavioural equivalences between programs
that rely on encryption in a compositional manner [SP03|.

We should mention here some related works based on the concept of non-interference [GM82|.
This notion formalises the absence of unauthorised information flow in multilevel computer sys-
tems. Non-interference has been widely investigated in the context of language-based security
(e.g. [VIS96, ZMO1]). It can be expressed with process equivalence techniques and has been
applied also to security protocols in [FGMO00, BCR03]. An advantage of this approach is that
various security properties, including secrecy, can be modeled by selecting proper equivalence
relations. However, as far as we know, decidability results for non-interference properties of
security protocols have not been reported.

Despite the efforts towards automatically checking of equivalence-based properties for security
protocols, the only tool capable of proving strong secrecy for un unbounded number of sessions
is the resolution-based algorithm of ProVerif [Bla04] that has been extended for this purpose.
ProVerif has also been enhanced [BAF05]| for handling equivalences of processes that differ only
in the choice of some terms in the context of the applied pi calculus [AF01]. However, in ProVerif
termination is not ensured in general.

Finally, very few decidability results are available for strong secrecy. In [Hiit02], H. Hiittel
proves decidability for a finite spi calculus (i.e. no replication, thus a bounded number of sessions)
for framed bisimilarity. Considering finite processes too, this time in an extension of the applied pi
calculus, M. Baudet gives a procedure [Bau05, Bau07| for deciding equivalence-based properties
(mainly strong secrecy and resistance to guessing attacks).

Outline of the chapter In this chapter we investigate the situations where simple secrecy
entails strong secrecy. We first show that in the passive case (§4.2), reachability-based secrecy
actually implies equivalence-based secrecy provided that encryption is probabilistic and that the
secret is not used to encrypt messages. We next handle the case of active adversaries (§4.3),
for which we provide sufficient (and rather tight) conditions on protocols for this implication
to hold. We establish our transfer result in the applied pi calculus framework (§4.1). Since we
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do not make any restriction on the use of the replication symbol, protocols with an unbounded
number of sessions (as well as bounded number of sessions) can be considered.

4.1 The model

The aim of this section is to briefly introduce the applied pi calculus, and to show how protocols
and their secrecy properties can be express within it.

4.1.1 The applied pi calculus

The applied pi calculus [AF01] is a process algebra introduced by M. Abadi and C. Fournet, well-
suited for modeling cryptographic protocols, generalising the spi calculus [AG97|. We shortly
describe its syntax and semantics. This part is mostly borrowed from [AF01].

We suppose for the moment an arbitrary signature 3 and an arbitrary equational theory &
over Y. In contrast with the other chapters, we denote here terms by capital letters.

4.1.1.1 Syntax

Processes, also called plain processes, are defined by the grammar:

P,(Q) := processes
0 null process

PlQ parallel composition
P replication

vn.P name restriction

if T =T’ then P else (). conditional

u(z).P message input
u(M).P message output

where n is a name, M, T, T’ are terms, and u is a name or a variable. The null process 0 does
nothing. Parallel composition executes the two processes concurrently. Replication !P creates
unboundedly many instances of P. Name restriction vn.P builds a new, private name n, binds
it in P and then executes P. The conditional if T = T then P else @Q behaves like P or Q
depending on the result of the test T = T’. If @ is the null process then we use the notation
[T = T'].P instead. Finally, the process u(z).P inputs a message on channel u and executes P
binding the variable z to the received message, while the process w(M).P outputs the message
M on channel u and then behaves like P. We may omit P if it is O.

Extended processes are defined by the grammar:

A, B := extended processes
P plain process
A| B parallel composition
vn.A  name restriction
vx.A  variable restriction
{M/} active substitution

Active substitutions generalise the let binding, in the sense that va.({ */,}|P) corresponds to the
let x = M in P standard construction. However, when unrestricted, { M /= } behaves like a perma-
nent knowledge, permitting to refer globally to M by means of . Substitutions { M1/, ,..., M/, }
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with [ > 0 are identified with extended processes { M1/, }|...[{/;,}. In particular, the empty
substitution is identified with the null process.

We denote by fv(A), bv(A), fn(A4), and bn(A) the sets of free and bound variables and free
and bound names of A respectively. They are defined inductively as usual with fv({¥/,}) =
fv(M)U{z} and fn({*/,}) = names(M) for active substitutions. An extended process is closed
if it each free variable is defined by an active substitution. For example, {%/,} is ground, while
{Y/;} is not.

Extended processes built up from the null process and active substitutions (using the given
constructions, that is, parallel composition, restriction and active substitutions) are called frames.
To every extended process A we associate the frame ¢(A) obtained by replacing all embed-
ded plain processes with 0. For example, if A = vy, k,r.{e"(™kr)/ @/ V| E(y) then p(A) =
vy, k, 74‘{ enc(m,k,r)/b a/y}|0'

4.1.1.2 Operational semantics

An evaluation context is an extended process with a hole not under a replication, a conditional,
an input or an output.

Structural equivalence (=) is the smallest equivalence relation on extended processes that is
closed by a-conversion of names and variables, by application of evaluation contexts and such
that the standard structural rules for the null process, parallel composition and restriction (such
as associativity and commutativity of |, commutativity and binding behaviour of v), together
with the following three rules hold.

ve{ M} =0 ALIAS
{ML3 A= {ML}A{ M.} SUBST
(M} ={NL) ifM=¢N REWRITE
If n represents the (possibly empty) set {ni,...,n;}, we abbreviate by vn the sequence

vni.vng...vng. Every closed extended process A can be brought to the form

v M o} Y P

by using structural equivalence, where P is a plain closed process, [ > 0 and n C U; names(M;).
As a consequence, if A = B then ¢(A) = ¢(B). Observe also that modulo structural equivalence,
frames always take the form vn.0 where n is a finite set of names and o is an (active) substitution.

Two operational semantics can be considered for this calculus, given by internal reduction
and by labeled reduction respectively. These semantics lead to two equivalence relations between
processes: observational equivalence (which is standard and not recalled here) and labeled bisim-
ilarity. These two bisimilarity relations are in fact equal [AF01], assuming a type system which
in particular forbids sending encrypted channel names. We use here the latter since it allows a
neater and incremental treatment of the problem we focus on.

Internal reduction is the smallest relation on extended processes which is closed by structural
equivalence and application of evaluation contexts, and such that:

¢(x).P|c(z).QQ — P|Q COMM

if T =T then P else Q — P THEN
for any ground terms 7' and 7’ such that T =¢ T’

if T =T then P else Q — Q ELSE

for any ground terms 7' and T” such that T #¢ T’
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On the other hand, labeled reduction is defined by the following rules:

c(M) c(u)

c(z).P —> P{M/} 1 1IN ¢(u).P — P OUT-ATOM
AZ o,y
Tt u#c OPEN-ATOM A— A u does not SCOPE
vu. A 25 A vu.A =5 pu. A! oceur in a
A% A A=B B-% B B =A4A
Eenae— () PAR o STRUCT
AlB— A'|B A— A

where cis a name and u is a metavariable that ranges over names and variables, and the condition
(1) of the rule PAR is bv(a) N fv(B) = bn(a) N fn(B) = @, and the condition (f) of the rule N is
that M is public w.r.t. (. A term M is said public w.r.t. a set of names 7 if names(M) Nn = ()
and private function symbols do not occur in M (that is, M € T (Fpup, X, N \ 12)).

To define labeled bisimilarity we also need an equivalence relation between frames. For a
frame ¢ = vn.o, we denote dom(y) = dom(o) and ran(yp) = ran(o).

Definition 4.1 We say that a frame @ passes the test (U, V') where U,V are two terms, denoted
by (U = V), if ¢ =vn.o, Uoc =g Vo, and (names(U) Unames(V)) Nn = 0 for some set of
names n and substitution o.

Two frames ¢ = vn.o and ¢’ = vm.o’ are statically equivalent, written p ~¢ ¢, if they pass
the same public tests, that is dom(p) = dom(y¢') and for all terms U,V public w.r.t. nUm such
that (var(U) U var(V)) C dom(y), we have (U = V) if and only if (U =V)¢'.

Definition 4.2 Labeled bisimilarity (=) is the largest symmetric relation R on closed extended
processes such that AR B implies:

1. (A) =5 ¢(B);
2. if A— A" then B —* B and A’ R B’, for some B’;

3. if A% A and fv(a) C dom(p(A)) and bn(a)Nfn(B) = 0 then B —*%—* B' and A R B/,
for some B’'.

4.1.2 Modeling protocols within the applied pi calculus

We work in this chapter with a particular equational theory F, its equations being listed in Fig-
ure 4.1. The only functions symbols are those appearing in these equations and k(-, -). However,
the definitions of this section (e.g. those of security properties) are independent of the equational
theory in use.

m1({21,22)) = 21

ma((21, 22)) = 22

dec(enc(zl, Z9, 23), 2’2) = Z1

deca(enca(z1, pub(z2), 23), priv(z2)) = 21
check(z1,sign(z1, priv(z2)), pub(22)) = ok
retrieve(sign(z1, 22)) = 21

Figure 4.1: The equational theory E.
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Since protocols are in fact collections of programs executed concurrently, process calculi are
good models for protocols as long as they can also handle the cryptographic aspect. The applied
pi calculus does this by representing the properties of cryptographic primitives by equations, like
the ones in Figure 4.1. Remark that the model of Chapter 1 can also be viewed as a process
calculus. However, the applied pi calculus is more expressive since for instance it allows for
branching inside a process.

For completeness, we briefly describe next how a process modeling a protocol can be obtained
from the model of Chapter 1. Thus, we consider in this chapter roles with equality. Each role
is modeled by a process in which the sequence of instructions is represented by a sequence of
inputs and outputs, and fresh items are represented by new names under restriction. These
processes are first replicated (in order to represent an unbounded number of sessions) and then
put in parallel. Since we consider that it is the intruder who starts any role session, we assume
that each role process first receives the identities with which it is supposed to communicate, the
parameters of roles being thus instantiated. Agent corruption is implicit, in the sense that it is
implemented by sending to the environment the private data of corrupted agents.

We exemplify the above discussion by providing a process modeling the Yahalom protocol,
which will constitute our running example. We first describe the protocol:

A= B: A N,

B=5: B,{A Ny, Ny},

S=A: {{BaKabaNa7Nb}Kas’ {{A’ Kab}KbS
A= B: {A, Kab}}Kbs

In this protocol, two participants A and B wish to establish a shared key K,;. The key is created
by a trusted server S which shares the secret keys K s and Kjps with A and B respectively. The
protocol is modeled by the following process:

Py =¢(k(i,s)) | (\P4) | (!PB) | ('wk.Ps(k)) | vkap-Ps(kap)
with

Pa = c(zq).c(2p) . vna.€(za, na).c(Ya)-[26 = Up).Ina = Un,]-¢(m2(ya))
Pp = c(2a)-c(2p)-c(yp)-vp, Tp-C(2p, enc((m1(yp), (m2(ys), 7)), k(26, 5), 73))-
c(yp)-[2a = m1(dec(yy, k(zs, 5)))]
Pg(x) = c(zq).c(2)-c(ys)-[za = Va].[2p = m1(ys)]-v7s, 75
e((enc((m1(ys), (z, Vi), k(za, 8),75), enc((Va, ), k(zp, 5),75)))

where U, = 71 (dec(m1(ya), k(2q, 5))) U, = m1(ma(ma(dec(m1(Ya), k(2a, 5)))))
Va = mi(dec(ma(ys), k(zs, 5))) Vi = ma(dec(ma(ys), k(zp, 5)))-

In order to be able to model the secrecy properties we describe next, we have emphasised a
particular key k,, which we will require to remain secret. We have also supposed the existence
of a corrupted agent .

A sample execution of the role of A is given next, where the intruder chooses the concrete
agent a and b as participants, obtains the first message sent by A and then sends back a new
messages formed by concatenating the identity b with the recently obtained message, and the
execution stops since the test does not pass.

c(a) c(b)
—_—

P, ‘ I/na.(l/2~{ (a,na>/z} | E<Z>.C(ya)-[b = Ub] [na = Un ] <7T2(ya)>)
vz.¢(z) I/’rla-({ (Zg,,?’la)/z} ‘ C(ya)'[b = Ub] [na = Uy, ] < >)
M Vna-({ <za,na>/z} | [b = m1(dec(b, k(zq, 9)))].[na ] E(Za,na>) -0
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4.1. The model

In what follows, for simplicity and concision, we only consider two honest agents. However, we
could extend the processes to the case where the roles of A and B are played by arbitrary agents
who may also interact with corrupted identities, and establish a similar result. For example, the
process modeling the Yahalom protocol is now:

Pl = vkas, kps. (\PY) | (\Ph) | (k. PL(k)) | vhap. Ph(kay)

with
Pl = vnge(a,ng).c(ya).[b = Uj).[na = U, ].¢(m2(ya))

and similarly for for the other roles (we have mainly eliminated the input of arbitrary parameters
and we have replaced zg, 2z, by a, b, and the private terms k(z,, s) and k(zp, s) by fresh names ks
and kps respectively).

Remark The applied pi calculus relies on a sort system for terms (which is compatible with
our sort system of Chapter 1). This sort system is extended to processes and it requires in
particular that in input and output constructions u(z) and w(N), u has sort Channel(7) while
x and N have sort 7. Thus, names and variables used for specifying the protocol (having basic
sorts) cannot be used as channels.

We give next some notations and lemmas useful in the sequel.

Let M, (P) be the set of outputs of P, that is the set of terms m such that ¢(m) is a message
output construct for some channel name ¢ in P, and let M, (P) be the set of operands of tests of
P, where a test is a pair T = T occurring in a conditional and its operands are T and T’. Let
M(P) = My(P) U M;(P) be the set of messages of P.

For the Yahalom protocol the set of outputs and operands of tests are respectively:

Mo(Py) = {{a,na),72(Ya), (b,enc((m1(yn), (T2(Yb), 16)) ;s kbss 7)),
(enc((m1(ys), (, V1)), kas, s ), enc((Vy, @), kps, 7)) } and
My(Pyy) = {b,U;,nq,U,_,a,m (dec(yy, kb)), V,, m1(ys)}-

where U} = 1 (dec(m1(ya), kas)) Uy, = mi(ma(mo(dec(m1(Ya), kas))))
Vo = mi(dec(ma(ys), kbs)) V,, = ma(dec(ma2(ys), kbs))-

We write A = Bif A— Bor A% B for some a.

Definition 4.3 (Valid frame) A frame ¢ is valid w.r.t. a process P if there is A such that
P=*Aand ¢ = p(A).

The following lemma intuitively states that any message contained in a valid frame is an
output instantiated by messages deduced from previous sent messages.

Lemma 4.4 Let P be a closed plain process, and A be a closed extended process such that
P =*A. There are | >0, n C bn(P), and

o ground substitutions o1, ...,0, with o; = o,y W {Mi%oi-1) Y where oy is the empty sub-
stitution, and for all 1 < i < I, M; is an output in P, and 0; is a substitution public
w.r.t. n,

e an extended process B = vn.oy|Pg, such that A = B, where Pp is some plain process,

e q substitution 0 public w.r.t. n,
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such that for every operand of a test or an output M of Pp there is a message My in P (an
operand of a test or an output respectively), with M = Myfo;.

Proof We provide an inductive and constructive proof. We reason by induction on the
number of reductions in P =* A. Intuitively, B is obtained by applying the SUBST rule (from
left to right) as much as possible until there are no variables left in the plain process.

The base case is evident.

Assume that P =! A, and that there are [, B; and 6 as in the statement of the lemma.
Suppose that A; = A;1; and consider the reduction rule that was used:

e Ifit is an internal reduction then, since static equivalence is closed by structural equivalence
and by internal reduction (see Lemma 1 in [AF01]), it is sufficient to consider as searched
values the same as for A;.

e If it is a labeled reduction then we prove the following property: « # ¢(x) (for any a and
x) and there is an extended process Bjy1 = ¢(Bjy1)| P41 such that Bjyq = A;y1 and

— if a = va.e(x) then Py = P, and ¢(Bj;1) = vn.opy1, where opy = op 0 { M/} and
M; is an output in Fj.

—if @ = ¢(M) then ¢(Bjy1) = ¢(B;) and for every message (an operand of a test
or an output) M,y in Py there is a message (an operand of a test or an output,
respectively) M; in Fj, such that M;y; = M;0'oy, for some substitution & public
w.r.t. vn.

— if @ = ¢(n) or « = vn.é(n) then P 1 = P, and ¢(Bj41) = ¢(B;) or ¢(Bj41) =
v{n}\{n}.ox, respectively.

It is easy to see that this property is sufficient to prove the inductive step.

The property can be verified, by showing, using induction on the shape of the derivation
tree, that for any extended processes A’, A”, B’ such that A’ % A” A’ = B', B' = vn.o|Q
there is B” such that A” = B” and B’ = vn'.0’|Q’ where

— if @ = ¢(M) then 7’ =7, 0/ = 0 and N” = N’{M/,} for each term N” of B” where
N' is the corresponding term in B’ and c¢(z) is an input in B,
—if @ = vo.e(z) then Q' = Q, 7' = 70, and o/ = o W {M/,} where (M) is an input
in B’;
—if @ = ¢x), a = &n) or « = vn.é(n) then n’ = n for the first two cases, and
{n'} = {n}\{n} for the third one, 0/ = o and Q' = Q.
]
Note that B is unique up to the structural rules different from ALIAS, SUBST and REWRITE.
We say that ¢(B) is the standard frame w.r.t. A.
We say that a frame ¢ = vn.o is ground is o is ground. Remark that if a frame ¢ is valid
w.r.t. some closed process P then there is a ground frame ¢’ = ¢.
4.1.3 Secrecy properties

4.1.3.1 Passive case

A passive adversary only eavesdrops the communication, and thus he knows the messages sent
on the network and also in which order they were sent. As we have already seen, this information
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is represented in the applied pi calculus by frames. Lemma 4.4 assures that these frames can
always be written as vn.c with ¢ a ground substitution. Thus, in the passive case, we always
suppose that frames are ground.

The names in n are said to be restricted in . Intuitively, these names are a priori unknown
to the intruder. The names outside n are said to be free in ¢. The set of free names occurring
in ¢ is denoted fn(p). A term M is said public w.r.t. a frame vn.o (or w.r.t. a set of names n) if
names(M)Nn = () and private function symbols do not occur in M (that is, M € T (Fpyp, X, N\
n)). The frame or the set of names might be omitted when it is clear from the context, and
simply say that a term is public.

In the sequel, we assume that the secret is a term (usually a name denoted by s) of some
basic sort, thus not a channel name.

Simple secrecy As we have seen, the intruder knowledge is represented by ground frames.
Also, in this chapter, we suppose that all names which are not explicitly restricted (with regard
to some process or frame) are available to the intruder. Thus, we define the deducibility relation
between ground frames and terms as follows:

ohe M <% ran(o) U (N \ 7) ey M

with 7 (£) given by Definition 1.9 (page 39). We drop the subscript £ when it is clear from the
context.

A message is usually said secret if it is not in the intruder’s knowledge, that is if it not
deducible from the messages sent on the network.

Definition 4.5 (Simple secrecy) We say that a term M is a simple secret in ¢ if p I/ M.
We will often use another characterisation of deducible terms.

Proposition 4.6 Let ¢ = vn.o be a frame and M be a term. @ = M if and only if there exists
a public term T w.r.t. ¢ such that To =g M.

This is easily proved by induction on the length of the deducibility proof. It is in fact equivalent
with Lemma 1.10.

Exemple 4.7 The terms k and (k, k') are deducible from the frame vk, k' r.{enc(rr), K/
The “recipes” guaranteed by the previous proposition are dec(x,y) and (dec(x,y),y) respectively.

Strong secrecy Deducibility does not always suffice to express all the abilities of an intruder.
Some abilities are better captured by static equivalence.

Exemple 4.8 Let oy = {0k} gy = {enclnzhrz)/ 46! = f{nn2)) 306 = (k)1 and
n = {k,ni,n2,r1}. Then the frames vn. (o1 Wo') and vn. (o2 Wo') are statically equivalent, and
so are the frames vn. (o1 W o) and vn. (oo W o”). However, the frames o1 = vn. (o1 Wo' Wo”)
and @9 = vn. (o9 Wo' Wa”) are not, since (dec(x,z) = m1(y))p1 but (dec(z, z) # m1(y))p2.

Note that the set of deducible messages is the same for all pairs of frames. However, an
attacker is able to detect that in the frames ¢1 and o the first message (i.e. woy and xo9
respectively) corresponds to distinct nonces. In particular, the attacker is able to distinguish the
two “worlds” represented by o1 and po.
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Let ¢ = vn.o be a frame and s € n a restricted name in ¢. Let M be a term such that
names(M) N7 = (). We denote by ¢[M/s] the frame vn.oc[M/] obtained by instantiating s with
M in each term of the substitution o. For simplicity we may omit s and write ¢[M] instead of

o[ M/l

Definition 4.9 (Strong secrecy) We say that s is a strong secret in ¢ if for any closed terms
M, M’ public w.r.t. p, we have o[ M/;] ~5 o[ M'/s].

In other words, s is a strong secret if the intruder cannot distinguish the frames obtained by
instantiating the secret s by two terms of its choice.

4.1.3.2 Active case

Given an extended process A we denote by A[Y/,] the extended process obtained from A by
replacing each occurrence of the name s (except the name restrictions vs) with M.

Definition 4.10 (Simple and strong secrecy) Let P be a closed plain process and s a bound
name of P.

We say that s is a simple secret in P if for every ground valid frame ¢ w.r.t. P, ot/ s.

We say that s is a strong secret if for any closed terms M, M' public w.r.t. bn(P), P[M/s] ~
P,

Examples will be provided in Section 4.3.

4.2 Passive case

4.2.1 Simple secrecy implies strong secrecy

Simple secrecy is usually weaker than strong secrecy! We first exhibit some examples of frames
that preserves simple secrecy but not strong secrecy. They all rely on different properties.

Probabilistic encryption. The frame 11 = vs, k,r.{ (k) encmkr)) v does not pre-

serve the strong secrecy of s. Indeed, ¢ [n] %5 11[n'] since (z = y) ¢1[n] but (z # y) ¢1[n’]. This
would not happen if each encryption used a distinct randomness, that is if the encryption was
probabilistic.

Key position. The frame ¢y = vs,n.{ "((7'):57)/ 1 does not preserve the strong secrecy
of s. Indeed, ¥o[k] %5 1o[k'] since (mo(dec(x, k)) = n') o[k] but (wa(dec(z, k)) # n')o[k]. If s
occurs in key position in some ciphertext, the intruder may try to decrypt the ciphertext since
s is replaced by public terms and check for some redundancy. It may occur that the encrypted
message does not contain any verifiable part. In that case, the frame may preserve strong secrecy.
It is for example the case for the frame vn.{"<(™»s7)/ 1. Such cases are however quite rare in
practice.

No destructors. The frame ¢35 = vs.{™®)/.} does not preserve the strong secrecy of s
simply because [x = k] is true for ¥3[(k, k)] while not for ¢3[k].

Retrieve rule. The retrieve(sign(z1, 22)) = 21 equation may seem arbitrary since not all
signature schemes enable to get the signed message out of a signature. It is actually crucial for
our result. For example, the frame 1y = vs.{s&"(s:Piv(a))/ publa); 1 does not preserve the strong
secrecy of s because [check(n,x,y) = ok| passes for ¥4[n] but not for ¢4[n’]. However, because
of the retrieve equation, the frame neither preserves the simple secrecy of s.
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In the first three cases, the frames preserve the simple secrecy of s, that is ¢; t/ s, for
1 <4 < 3. In the fourth case, we would also have 14 I/ s without the retrieve equation.

We define agent encryptions as encryptions which use “true” randomness, that is fresh names.
Note that in the passive case all encryptions are produced by agents and not by the intruder.
Encryption (as a primitive) is probabilistic if each (application of) encryption uses a distinct
randomness. Next, we define these notions formally.

We say that an occurrence genc of an encryption in a term U is an agent encryption w.r.t. a
set of names n if Ulg,,..3 € n. We say that an occurrence genc of an encryption in a term U is a
probabilistic encryption w.r.t. a set of terms S if no distinct term shares the same randomness,
that is, for any term V' € S and position p such that V|, = Ulg,.,..3 we have that p = ¢ - 3 for
some ¢ and V|, = Ulg,.-

The previous examples lead us to the following definition.

Definition 4.11 (Well-formed frame) A frame ¢ = vn.o is well-formed w.r.t. some name s
if
1. any encryption in o is an agent encryption w.r.t. n\{s} and a probabilistic encryption
w.r.t. the set of terms of o;

2. s is not part of a key or a randomness, i.e. for allenc(M, K, R), enca(M', K', R), sign(U, V),
pub(W), priv(W’) subterms of ¢, s ¢ names(K, K', V., W, W', R, R');

3. @ does not contain destructor symbols.
For well-formed frames, simple secrecy is actually equivalent to strong secrecy.

Theorem 4.12 Let ¢ be a well-formed frame w.r.t. s, where s is a restricted name in .

p¥s if and only if o[ ™/s] =y o[M'fe]
for all M, M’ closed public terms w.r.t. .

Proof Let ¢ = vn.o be a well-formed frame w.r.t. s. If ¢ F s, this trivially implies that
s is not a strong secret. Indeed, there exists a public term T w.r.t. ¢ such that To =g s,
by Proposition 4.6. Let nj,ng be fresh names such that ny,ny ¢ 17 and ny,ns ¢ f(p). Since
To[™/s] =g n1 the frames [ "/s] and ["™%/s] are distinguishable by the test [T' = ny].

We assume now that ¢ ¥ s. We first show that any syntactic equality satisfied by the frame
@[ M/s] is already satisfied by ¢.

Lemma 4.13 Let ¢ = vn.o be a well-formed frame w.r.t. s € n such that p ¥ s. LetU, V and M
be public terms w.r.t. o, with var(U),var(V) C dom(c) and M ground. Then Uo[M/s] = Va[M/q]
implies Uoc = Vo.

This lemma is proved in Section 4.2.2.
The key lemma is that any reduction that applies to a deducible term U where s is replaced
by some M, directly applies to U.

Lemma 4.14 Let ¢ = vn.o be a well-formed frame w.r.t. s € n such that ¢ ¥ s. Let U be a term
with var(U) C dom(y) and M be a closed term in normal form such that U and M are public
w.r.t. . If Us[M/] — V, for some term V, then there exists a frame ¢ = vn.o’ well-formed
w.r.t. s
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e catending @, that is xo' = xo for all x € dom(o),
e preserving deducible terms: o = W if and only if o' W,
e and such that V =V'o'[M/] and Uc — V'o’ for some V' public w.r.t. ¢'.

This lemma (proved in Section 4.2.2) allows us to conclude the proof of Theorem 4.12. Fix arbi-
trarily two public closed terms M, M’. We can assume w.l.o.g. that M and M’ are in normal form.
Let U # V be two public terms such that var(U),var(V) C dom(p) and Uo[M/;] =g Vo[ M/s].
Then there are Uy,...,Uy and Vi,...,V; such that Uo[M/] = Uy —... = Uy, Vo[M/] — V1 —
=V, U = Ua[ ML, Vi = Vo[ M/]] and Uy, = V.

Applying repeatedly Lemma 4.14 we obtain that there exist public terms U7, ...,U; and
VY, ..., V/ and well-formed frames ¢; = vn.o;, fori € {1,...,k} and ¢; = vn.0;,for j € {1,...,1}
(as in the lemma) such that U; = Ujos[Mf], Uo — Uljo1, Ujo; — Ul j0i1, V; = Vi0;[Me],
Vo— ‘/1/(91 and ‘/jltgj — Vj,+19j+1'

The substitution o), extends o, which means that o}, = o W o) with dom(c) N dom(oy,) = 0.
Similarly, 6, = ¢ @ 6] with dom(c) N dom(#;) = (. By possibly renaming the variables of 6,
and of the V/, we can assume that dom(o}) N dom(#;) = 0. We consider ¢’ = vn.o’ where
o' = 0 Wo, W, Since only subterms of ¢ have been added to ', it is easy to verify that ¢’ is
still a well-formed frame and for every term W we have that ¢ = W if and only if ¢’ = W. In
particular ¢’ ¥ s.

By construction we have that Ujo[*/s] = V/0;[*/s]. Then, by Lemma 4.13, we deduce that
Uior = V/0; that is Uoc =g Vo. By stability of substitution of names, we have UO'[MI/S] =5
Vo[ M /,]. We deduce that o[ M/] ~s o[ M'/]. ]

4.2.2 Generalisation of well-formed frames

In the active case, we need a more general definition for well-formed frames and for the cor-
responding lemmas. In particular, we need to consider frames with destructor symbols. Thus
we provide here the definition of extended well-formed frames, show that well-formed frames are
special cases of extended well-formed (when the frames preserve simple secrecy), and then prove
analogous lemmas for extended well-formed frames.

In the sequel, especially in the proofs, we often assume a tree visualisation of terms with
the root (i.e. the head symbol) at the top, and we thus use notions as “above”, “below”, “low-
est”, etc. when talking about occurrences in terms. For example, an occurrence p is above an
occurrence ¢ if p < g. Moreover, we may say that a term V is “in” a term U if V is a subterm
of U.

We say that there is an encryption plaintext-above a subterm T' of a term U at position ¢r
if there is a position ¢ < gr such that U], is a ciphertext (that is, head(U|,) € {enc,enca}), and
T occurs in the plaintext subterm of the encrypted term (that is, ¢ -1 < gp).

Definition 4.15 (Extended well-formed frame) We say that a frame ¢ = vn.o is an ex-
tended well-formed w.r.t. s if

1. all the terms of o are in normal form,
2. any agent encryption w.r.t. n in o is a probabilistic encryption w.r.t. ran(o),

3. for every occurrence qs of s in yo with y € dom(o), there exists an agent encryption (say
Genc) w.r.t. n\{s} plaintext-above s,
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4. the lowest agent encryption qo plaintext-above s satisfies head(yoly) € {(),sign}, for all
positions q with qo < q < gs.

This definition ensures in particular that there is no destructor directly above s.

Exemple 4.16 The frame ¢ = vs, k,n.{“1(enc(a’e“°(<b’s>’k’”))’””)/gg, enc(“’k/’”,)/y, enc(b’k,’”/)/z} is ex-
tended well-formed, while the frames g = vn.{encl@kn)) cencbkn)/ 1= oo — yp {enclasn)) 1
and @4 = vs, k,n.{emEEN Y are not, each frame @; contradicting condition i. of the Defi-
nition 4.15 (i.e. o1 contradicts condition 1. and so on).

We first start by a preliminary lemma which states that in a well-formed frame w.r.t. s, either
every occurrence of s is under some encryption or s is deducible.

Lemma 4.17 Let ¢ = vn.o be a well-formed frame w.r.t. s € n such that ¢ ¥ s. For any
y € dom(o) and for any occurrence gs of s in yo there is an encryption plaintext-above qs in yo.

Proof  Assume by contradiction that there is an occurrence g5 of s in yo such that there is
no encryption plaintext-above s. Then, from conditions 2 and 3 of the definition of well-formed
frames, we have that there are only pairs and signatures as function symbols above s. It follows
that s is deducible (by applying the projections and the retrieve equations), which contradicts
the hypothesis.

Thus, there exists a position ¢ < gs such that yo|, is an encryption. By condition 2 of the
definition of well-formed frames, s must occur in the plaintext part of the encryption, that is
q-1<gs. u

Lemma 4.18 Let ¢ = vn.o be a frame and s a restricted name in ¢ such that ¢ ¥ s. If ¢ is a
well-formed frame w.r.t. s then it is an extended well-formed frame w.r.t. s.

Proof Since there are no destructor symbols in ¢ all terms are in normal form. Since any
encryption in o is probabilistic it will be a fortiori the case for agent encryptions.

Consider an occurrence gs of s in yo with y € dom(c). From Lemma 4.17 we have that there
is at least an encryption plaintext-above s in yo. Consider the lowest one. Then condition 1 of
the definition of well-formed frames says that this encryption is an agent encryption. Conditions 2
and 3 impose that the only function symbols in between may be () and sign. ]

The following lemma states that if in two distinct terms the secret is protected by agent
probabilistic encryptions then by replacing the secret with any term we cannot obtain two syn-
tactically equal terms.

Lemma 4.19 Let n be a set of names and s be a name, s € n. Let M be a ground public term
w.r.t. n and U,V be two terms such that for any occurrence qs of s (in U or V') there is an
encryption genc (in U or V respectively) with genc - 1 < qs such that genc s an agent encryption
w.r.t. n\{s} and genc is a probabilistic encryption w.r.t. {U,V'}. Then U[M/] = V[M/,] implies
U=V.

Proof  Suppose that U[M/;] = V[M/;] and U # V. Then there is an occurrence gs of s,
say in U, such that V|, # s. Consider an agent probabilistic encryption genc With genc - 1 < gs
as in the lemma. We have Ul,,.3 € n\{s}. It follows that V["/]|....s € 7\{s}. Since M is
public this implies that genc - 3 is a position in V. And since genc is a probabilistic encryption
and Ulgee3 = Vg3 it follows that Ulg,.. = Vlg... Hence U|,, = V|, which represents a
contradiction with V|, # s. L]
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Corollary 4.20 Let ¢ = vn.o be an extended well-formed frame w.r.t. s € n such that ¢ ¥ s.
Let U, V and M be public terms w.r.t. v, with var(U),var(V) C dom(o) and M ground. Let
W, W' be subterms of terms in ran(o) such that for every occurrence qs of s in W (or W') there
is an occurrence of an encryption genc in W (or W' respectively) with genc < qs. Then

1. Uo[M/)] = Vo[M/] implies Us = Vo;
2. Uo[M/] = W[M/;] implies Usc = W ;

3. W[M/S] = W,[M/s] ZmplZCS W = W/,

Proof  We prove below that in Uo and in W for each occurrence gs of s there is an encryption
Qne (in yo for some y € var(U), and in W respectively) with ¢/, - 1 < gs such that ¢/, is an
agent encryption w.r.t. n\{s}. Then, by analogy, the same thing holds for Vo and W’. Since
by condition (2) of extended well-formed frames an agent encryption w.r.t. n is a probabilistic
encryption, it follows that each pair (Uo, Vo), (U, W) and (W, W') satisfies the conditions of
Lemma 4.19. Then the result follows directly.

Consider an occurrence gs of s in Uo. Since U is public, there is a variable y € var(U) C
dom(c) and an occurrence p, of it in U such that p, < gs. From the definition of extended
well-formed frames we know that there is an encryption ¢.,. in yo with ¢, - 1 < ¢s which is an
agent encryption w.r.t. n\{s}. Hence ¢, satisfies the conditions of Lemma 4.19.

In W for each occurrence gg of s there is an occurrence genc of an encryption above gs. Then
we can consider the lowest occurrence ¢L,. of an encryption above ¢s in W. By the definition
of extended well-formed frames, the lowest encryption above gs is an agent encryption and is
plain-text above gs. Hence ¢, satisfies the conditions of Lemma 4.19. [

Lemma 4.13 can now be easily deduced since it is the analogous statement of Point 1 of
Corollary 4.20 for well-formed frames (which are extended well-formed frames as we have seen
in Lemma 4.18).

The following lemma is the generalisation of Lemma 4.14 for extended well-formed frames.

Lemma 4.21 Let ¢ = vn.o be an extended well-formed frame w.r.t. s € n such that p ¥ s. Let
U be a term with var(U) C dom(p) and M be a closed term in normal form such that U and M
are public w.r.t. . If Uo[M/;] — V', for some term V, then there exists an extended well-formed
frame ¢’ = vn.oc’ w.r.t. s

e catending @, that is xo' = xo for all x € dom(o),
e preserving deducible terms: o =W if and only if o' =W,
e and such that V. =V'c'[M/] and Uc — V'a’ for some V' public w.r.t. ¢'.

Proof Let U,V, M be terms with U and M public w.r.t. ¢, M being closed and in normal
form such that Uo[M/s] — V, as in the statement of the lemma. Let (L — R) € R(E) be the
rule that was applied in the above reduction and let p be the position at which it was applied,
i.e. Uo[M/s]|, = LO. Since M is in normal form, p € pos(Uo).

Assume that there is a substitution 6y such that Uc|, = L. This will be proved in the Fact
below. It follows that Uo is reducible. If p & pos,,(U) then there is a term of ran(o) which is
reducible. This contradicts the fact that ¢ is an extended-well formed frame (since all terms in
such a frame should be in normal form). Hence we have that p € pos,,(U). Let T = U|,. We
have To[M/s] = LO and To = Lb.
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For our equational theory E, R is either a constant (i.e. ok) or a variable. If R is a constant
then we take V' = U[R], and ¢’ = 0. It is easy to verify that the conditions of the lemma are
satisfied in this case.

Suppose now that R is a variable zy. Consider the'? position ¢ of zo in L. This position ¢ is
also in L6y, that is in T'o. Hence one of the two following possibilities may occur:

1. If ¢ € pos,,(T), that is there is no y € dom(c) above zp, then we consider V' = U[T|,],
and ¢/ = 0. In this case also, it is easy to verify that the conditions of the lemma are
satisfied.

2. If g ¢ pos,,(T), that is there is some y € dom(o) above zp, then we consider V' = U[y/],
and o’ = cW{Rby/y'}, where ¢/ is a new variable (i.e. ¥’ ¢ dom(c)). The term V” is clearly
public w.r.t. ¢'. Since To =g Rby, ¢ b Rfy. This shows that ¢ - W if and only if ¢' F W
for any term W by using the cut-elimination lemma (see Lemma 2.14 at page 63)

We have Vo' = (U[y']p)o’ = Ud’'[y0'], = Uo[Rbp],. Hence Uoc — V'o’.

From T'o = Ly and To[M/;] = LO we deduce that 20,[ /5] = 20 for all z € var(L), hence
ROo[M/s] = RO. Thus V'o'[M)s] = (Ua[M/s])[RO], = V.

Since there is some y € dom(yp) above zg, Ry = zpf is a subterm of a term of o. Then
Rfj is in normal form since all the terms in ran(o) are in normal form. Also all agent
encryptions in ¢’ are probabilistic. Suppose that there is an occurrence of s in Ry such
that there is no encryption plaintext-above it (in Rfp). In this case we have that all the
function symbols above this occurrence in Ry are () or sign. Thus s is deducible from ¢’
and hence from ¢, which represents a contradiction with the hypothesis. Hence there is an
encryption plaintext-above any occurrence of s in Rfy. All this proves that ¢’ is also an
extended well-formed frame.

Fact: Let us now prove that there exists 6 such that Uo|, = Lf. Assume by contradiction
that it is not the case. Then at least one of the following cases occurs:

1. there is a position in L which is not a position in Uc/|,;

2. there is a variable z in L having at least two occurrences, say at positions pq, pa, for which
(Ualp)lp, # (Ualp)lp,-

Let us examine in detail the two cases:

1. Consider a minimal position ¢’ (w.r.t. the prefix ordering) in L which is not a position in
Uc|,. Then ¢’ = ¢ - i for some positive integer 4, with ¢ a position of Uc|, and there is an
s at position ¢ in Uo|, (since such minimal positions in L must be positions in Uo[*/s]|,,
but not in Uc|,). Also ¢ # € (i.e. it does not correspond to the head of L) since otherwise
M would not be in normal form (because Uc|, = s and Uo[M/s]|, = M = L9).

By examining all rules in R(E), we observe that at least one of the conditions in the
definition of extended well-formed frames is not satisfied. For example, if L — R is the
rule m((z1,22)) — 21 then ¢ = 1. Then either m;(y) is the subterm at position p in
U and yo = s (impossible case since s would be deducible), or m(s) is the subterm at
position p in Uco and this subterm is also a subterm of a term of o (again an impossible
case because there are no destructors right above s in term of an extended well-formed

MPor our equational theory there is exactly one occurrence of zo in L.
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frame). If L — R is the rule deca(enca(z1, pub(z2), 23), priv(z2)) — 21 then ¢ might be 1 or
1-2. The case ¢ = 1 is similar with the previous one. If ¢ = 1 -2 then we have a term in
o having enca(W, s) as subterm for some W (otherwise s would be deducible). But this
again contradicts the definition of extended well-formed frames. The analysis for the other
rules is similar.

2. Let Ty = (Uo|p)|p, and Ty = (Uc|p)|p,- We have Ty # Ty, but T1[M/s] = To[M/s]. Consider
an arbitrary position gs of s in 7. Since U is public, there is a variable y € var(U) at
position say p, such that p, < p-p1-gs. Consider the lowest agent encryption genc plaintext-
above ¢s in Uo. It occurs in yo according to the definition of extended well-formed frames.
Suppose that p-p; > genc. The function symbols between gene and p - p; must be () or
sign. But this doesn’t hold for none of rules in R(F). Hence there is an agent encryption
plaintext-above ¢s in 77. The same argument applies to 75. We can thus use Point 3 of
Corollary 4.20 to T} and T5 and obtain a contradiction, that is T} = T5.

We have seen that the two cases lead to contradictions. So there is 6y such that Uc|, = L. =

4.3 Active case

4.3.1 Our hypotheses

In what follows, we assume s to be the desired secret. As in the passive case, destructors above
the secret must be forbidden. We also restrict ourself to processes with ground terms in key
position. Indeed, consider the process

Py =vs,k,r,r".(clenc(s, k,7)) | c(2).c{enc(a, dec(z, k),"))).
The name s in P; is a simple secret but not a strong secret. Indeed,

P = vs ko (va.({ enc(s.kr)/ V| &(x) | e(2).E(enc(a, dec(z, k),r"))))
— vs, k,r, . ({ enc(s.kr)/ 1 | Z(enc(a, s, 7)) (comm rule)
= vs, kv’ (vy.({ enc(s.kr)y,., enclasr) | &(y)))
vy.c(y) P1/ = s, k7, ’I”/.{ enc(s,k,r)/m enc(a,s,r’)/y}

and P does not preserve the strong secrecy of s, since the frame ¢(P]) does not preserve it.
Indeed, using the same idea as for the frame 1y of Section 4.2.1, one distinguishing test would
be [dec(y, k") = a] for some public name k’. This test would succeed when s is instantiated by
k' but not if s is instantiated by some other value, say k”.

We denote by enc, (respectively decg) a generic encryption (decryption), that is when using
it we refer to both symmetric and asymmetric encryption (decryption)!®.

Without loss of generality with respect to cryptographic protocols, we assume that terms
occurring in processes are in normal form and that no destructor appears above constructors.
Indeed, terms like 7 (encg(M, K, R)) are usually not used to specify protocols. We also assume
that tests do not contain constructors. Indeed a test [(T1,T2) = T'] can be rewritten as [T} =
T[Ty = Ty) it T' = (T{,T3), and [Ty = m1(T")].[To = mo(T")] it T’ does not contain constructors,
and will never hold otherwise. Similar rewriting applies for encryption, except for the test

15For example, when encg is under universal quantification one would read enc and encd, while under existential
quantification one would read enc or encd for encg.
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lencg(T1, T, T3) = T'] if T' does not contain constructors. It can be rewritten in [decg (1", T3) =
T1] but this is not equivalent. However since the randomness of encryption is not known to the
agents, explicit tests on the randomness should not occur in general.

This leads us to consider the following class of processes.

Definition 4.22 (Well-formed process) A process P is well-formed w.r.t. a name s if it is
closed, and:

1. the symbol retrieve does not occur in M(P), the symbol check does not occur in M(P)
except in head of a test, that is, the check symbol can only appear in tests of the form
[check(M, N, K') = ok] where check does not appear in M, N, K ;

2. any encryption in some term of M(P) is a probabilistic agent encryption w.r.t. M(P) and
bn(P)\{s} respectively;

3. for any term encg(M, K, R), decg(M, K) or sign(M, K) occurring in M(P), K is a closed
term and s ¢ names(K);

4. in M(P) there are no destructors, nor pub or priv function symbols above constructors,
nor above s;

5. for any test,

e cither each operand of o test T € M, is a name, a constant or has the form
m(deci (... wl(deq(n!(2), K})) ..., K1)

with | > 0, where dec; € {dec,deca}, 7 are words on {m, 72} and z is a variable,

e or the test is [check(M, N, K) = ok] with K being a closed term, and M and N being
of the previously described form.

Conditionals should not test on s. For example, consider the following process:
Py = vs, k,r.(¢lenc(s, k, 7)) | c(2).[dec(z, k) = a].¢(ok))

where a is a non restricted name. The name s in P is a simple secret but not a strong secret.
Indeed, Py — vs,k,r.({ "5/} | [s = a].¢(ok)) and the process Po[ %] reduces further, while
P»[%/;] does not.

That is why we have to prevent hidden tests on s. Such tests may occur nested in equality
tests. For example, let

Py =vs, k,r,r1,70.(clenc(s, k, 7)) | ¢lenc(enc(a, k', 72), k,71))
| ¢(2).[dec(dec(z, k), k') = a].c(ok)) —
Py = vs, k,r,r1,r2. ({ k1)) | Elenc(enc(a, k', 72), k,m1)) | [dec(s, k') = a].E(ok))

Then Ps[e"<(@* ™)/ ] is not equivalent to P3["/s], since the process P4[e"(“*7)/] emits the
message ok while P4["/s] does not. This relies on the fact that the decryption dec(z, k) allows
access to s in the test.

For the remaining of the section we assume that x and zy are new fixed variables. To prevent
hidden tests on the secret, we compute an over-approximation of the ciphertexts that may contain
the secret, by marking with x all positions under which the secret may appear in clear.
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We first introduce a function fe, that extracts the lowest encryption over s and “cleans up”
the pairing and signing functions above s. Formally, we define the partial function

Jep: T XN — T x N}

fep(U,p) = (V,q) where V and ¢ are defined as follows: ¢ < p is the position (if it exists) of the
lowest encryption on the path p in U. If ¢ does not exist or if p is not a maximal position in U or
if g-1 £ p, then f,(U,p) =L. Otherwise, V is obtained from U|, by replacing all arguments of
pairs and signatures that are not on the path p with new variables. More precisely, let V' = U]j.
If the subterm V” is not of the form encg (M7, M2, M3) or if p # q-1- ¢’ for some position ¢’ then
fep(U,p) =L. Otherwise, V is defined by V' = encg(M], M2, M3) with M{ = prune(My, ¢') where
prune is recursively defined by:

prune(N,e) =

prune((Nl,N2> -1) = (prune(Ny,r), 2.
prune((N1, No),2 - 1) = (1.7, prune(Na, 7))
pruneES|gn(M ,K),1-1)=sign(prune(M), z2.,)

prune(f(Ni,...,Ng),r) = f(N1,...,Ng) if f is a destructor

and is undefined in all other cases. For example,

fep( enc ,1'1'2)2( /TC ,1)
end ky 1 (,) k‘2\7“2
() ko o 21{ \C
s
<7>\ c
a/ b

The function f, is the composition of the first projection with f.,. With the function f., we
can extract from the outputs of a protocol P the set of ciphertexts where s appears explicitly
below the encryption.

Eo(P) = {fe(M[x]p,p) | M € Mo(P) A M|, = s}.

For example, & (Py,) = {enc((z1.1, (x, 22)), kas, 7s),enc((z1, %), kps, 1) }, where P is the process
corresponding to the Yahalom protocol defined in previous section and s denotes kgp.

However s may appear in other ciphertexts sent later on during the execution of the protocol
after decryptions and encryptions. Thus we also extract from outputs the destructor parts (which
may open encryptions). Namely, we define the partial function

fap: T x N} — T x N

fap(U,p) = (V,q) where V and ¢ are defined as follows: ¢ < p is the occurrence of the highest
destructor different from check above p (if it exists). Let » < p be the occurrence of the lowest
decryption above p (if it exists). We have U|, = decg(Ui,Uz). Then U is replaced by the
variable zy that is V' = (U[decg (2o, U2)]r)|q- If ¢ or r do not exist then fg,(U,p) =L

For example, fdp(enc(m (dec(m(y), k‘l)), k‘Q,’I”Q), 1-1-1- 1) = (7T1 (deC(Zo, k‘l)), 1).

The function f; is the composition of the first projection with fg,. By applying the function
fa to messages of a well-formed process P we always obtain either terms D of the form'® D =

18in this context we simply write D(T') instead of D[7/,,]
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D1(...Dy,) where D;(z) = m'(decg(z0, K;)) with 1 < i < n, K; are ground terms and 7° is a
(possibly empty) sequence of projections 7, (7j,(...(7j;,)...)), or terms check(M, D, K') where
D is of the previously defined form.

With the function f;, we can extract from the outputs of a protocol P the meaningful
destructor part.

Do(P) = {fa(M,p) | M € Mo(P) A p € pos,(M)}.

Remember that pos,(M) is the set of variable positions.

For example, D,(Py,) = {ma(dec(zo, kis)), m1 (dec(zo, kps)) }-

We are now ready to mark (with x) all the positions where the secret might be transmitted
(thus tested). We define inductively the sets & (P) as follows. For each element E of & we can
show that there is an unique term in normal form denoted by E such that var(E) = {zo} and
E(E)| =x. That is, intuitively, ' opens E until x. For example, let F; =enc({z1, (x, 22)), kas,7s),
then By = 71 (ma(dec(zg, kas))). We define

E(P) = {U|3E€&(P),U <4 E and 3q € pos(U),head(U|,) = decg},
gi-i—l(P) = {M/[X]q ‘ M e MO(P)?p S pOSv(M) s.t. fep(M’p) = (M/’p/)’ .
fdp(M/vp//) = (D>Q)7p :p/ 'p//’D = Dl( . Dn)7 and Dl S SZ(P)}

For example,

50(P{/) = {7T1 (Wg(deC(Z(), kas))), ﬂQ(deC(Zo, kas))a deC(Zo, k’as)’ ﬂQ(deC(Zo, k‘bs)), deC(Zo, kbs)}
é(P}/’) = {enc((zl.g, (Zlv X>>7 Kas, TS)}
El(P{/) = {7T2(7T2(d€C(Z0, kas)))y 7T2(dec(Z0, kas))a deC(Zo, kas)}

and & (Py,) = 0 for i > 2.

Note that £(P) = U;>0&;(P) is finite up-to renaming of the variables since for every ¢ > 1,
every term M € &;(P), pos(M) is included in the (finite) set of positions occurring in terms
of Mo.

We can now define an over-approximation of the set of tests that may be applied over the
secret.

ME(P)= {T € My(P)|T =sor 3p € pos,(T) s.t. Di(...Dyp)= fo(T,p) #L,
3E € £(P),3i s.t. D; = n'(decg(z0, K)), E = encg (U, K, R) and x € D;(E)| }

For example, M?(Py,) = {m(m2(m2(dec(m1(ya); kas)))) }-

Definition 4.23 (“no test on the secret” process) A well-formed process P w.r.t. s does
not test over s if the following conditions are satisfied:

1. for all E € E(P), for all D = Di(...D,) € Do(P), if D; = m'(decg(z0), K) and E =
encg(U, K, R) and x € var(D;(E)|) theni=1 and E £ D1,

2.4f [T =T, [T' = T, [check(T, T, K) = ok] or [check(T",T, K) = ok| is a test of P and
T € M3(P) then T' is a restricted name different from s.

For example, PJ- does not test over s. Note that £(P) can be computed in polynomial time from
P and that whether P does not test over s is decidable. We show in the next section that the
first condition is sufficient to ensure that frames obtained from P are extended well-formed. It
ensures in particular that there are no destructors right above s. Indeed, informally, if some D;
cancels some encryption in some F and x € var(D;(F)]) then all its destructors should reduce in
the normal form computation (otherwise some destructors (namely projections from D;) remain
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above x). Also we have i = 1 since otherwise a D; may have consumed the lowest encryption

above x, thus the other decryption may block, and again there would be destructors left above x.
The second condition requires that whenever an operand of a test [T" = T”] is potentially

dangerous (that is 7" or 7" is in M$(P)) then the other operand should be a restricted name.

Exemple 4.24 A simple class of protocols that do not test on the secret is the one where in all
messages sent by the protocol, the secret occurs only in the second component of pairs, and the
tests apply only on the first component of pairs. For example, if for a protocol Py we have

M,y (Py) = {enc((ng, s), k,r),enc({ng, ma(dec(z, k)), k', 7")) }

and the test is [m(dec(2’, k")) = m(dec(2”,k))| then there will be no test on s. Moreover, this
protocol also satisfies the first condition and hence we obtain that s is a strong secret using the
main result of this section.

We also give examples of protocols not satisfying the two conditions of Definition 4.23. Con-
sider first a protocol Ps for which

M, (Ps) = {enc(my(dec(z, k)), k,7"),enc(s, k,7)}.

P5 does not satisfy the first condition of the previous definition because the term enc(wi(s), k,r)
(with a destructor right above s) could be obtained by sending the first message to the agent which
constructs the second message.

A second example of protocol not satisfying the conditions (this time the second one) is inspired
from the Otway-Rees protocol. Consider a protocol P where the server waits for A, {N,, A} k..,
performs a test on A and then sends { Ny, Kop } k.- Using a second session, the intruder is able
to transform the test that the server does on A into a test on the secret. Formally, the outputs
are

M, (Ps) = {{a,enc({ng,a), kas, 7)), enc((mi (dec(ma(2), kas)), 8)), kas, '}

and the process modeling the first actions of the server is c(z).[m1(z) = ma(dec(m2(2), kqs))]. Then
mo(dec(ma(z2), kas)) € ME(Ps), but m1(z) is not a restricted name.

4.3.2 Main result

We are now ready to prove that simple secrecy is actually equivalent to strong secrecy for
protocols that are well-formed and do not test over the secret.

Theorem 4.25 Let P be well-formed process w.r.t. a bound name s such that P does not test
over s. We have ¢ ¥ s for any valid frame ¢ w.r.t. P if and only if P[M/;] =~ P[M//S], for all
ground terms M, M’ public w.r.t. bn(P).

The remaining of the section is devoted to the proof of the theorem.

Consider first the simpler implication, that is strong secrecy implies simple secrecy. Suppose
that there is a valid frame ¢ w.r.t. P such that ¢ F s. Then, as for the passive case, there are
M and M’ public ground terms such that o[M/s] %, ¢[™'/s]. Since ¢ is a valid frame there
is an extended process A such that P =* A and ¢ = ¢(A). Then clearly P[M/] =* A[M/]
and P[M'/] =* A[M'/,]. Thus if P[M/] ~ P[M'/;] then A[M/] ~; A[M'/] and moreover
(ATM]) ~ (APTL]). Since (A[T/,]) = @(A)[ ] for any term T, we get o[ /4] & o[ ],
contradiction. We deduce P[M/;] %; P[M’/;] and thus s is not a strong secret in P.
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Consider now the converse implication. Let P be well-formed process w.r.t. a bound name
s with no test over s and assume that s is a simple secret in P. Let M, M’ be two public
terms w.r.t. bn(P). To prove that P[M/;] and P[M/;] are labeled bisimilar, we need to show
that each move of P[M/;] can be matched by a move in P[™'/;] such that the corresponding
frames are bisimilar (and conversely). By hypothesis, s is a simple secret in P thus for any valid
frame ¢ w.r.t. P, we have ¢ ¥ s. In order to apply our previous result in the passive setting
(Theorem 4.12), we need to show that all the valid frames are well-formed. However, frames may
now contain destructors in particular if the adversary sends messages that contain destructors.
That is why we consider extended well-formed frames, defined in Section 4.2.2.

Theorem 4.12 can easily be generalised to extended well-formed frames.

Proposition 4.26 Let ¢ be an extended well-formed frame w.r.t. s, where s is a restricted name
in . Then o ¥ s if and only if o[ M/s] =5 @[ M /5] for all M, M’ closed public terms w.r.t. ©.

The proof of Proposition 4.26 is exactly the same as the proof of Theorem 4.12 except that it
uses Corollary 4.20 and Lemma 4.21 instead of Lemmas 4.13 and 4.14 respectively.

The first step of the proof of Theorem 4.25 is to show that any frame produced by the protocol
is an extended well-formed frame. We actually prove directly a stronger result, crucial in the
proof: the secret s always occurs under an agent encryption and this encryption is an instance
of a term in £(P). This shows that £(P) is indeed an approximation of the ciphertexts that may
contain the secret.

Lemma 4.27 Let P be o well-formed process with no test over s and ¢ = vn.o be a valid frame
w.r.t. P such that p ¥ s. Consider the corresponding standard frame vn.a = vn.{ i/, | 1 <i <}.
For every i and every occurrence qs of s in U;|, we have f.(Usl,qs) = E[W /] for some E € E(P)
and some term W . In addition vn.o;| is an extended well-formed frame w.r.t. s.

The lemma is proved in Section 4.3.3. The proof uses an induction on ¢ and relies deeply on
the construction of £(P).

The second step of the proof consists in showing that any successful test in the process P[M/g]
is also successful in P and thus in P[™'/].

Lemma 4.28 Let P be a well-formed process with no test over s, ¢ = vn.o a valid frame for P
such that ¢ ¥ s, 0 a public substitution and M a public ground term. If Th = T5 is a test in P,
then T100[M/s] =g To0o[M/;] implies T\00 =g Tho.

This lemma is proved in Section 4.3.3 by case analysis, depending on whether 77,7y € M?(P)
and whether s occurs or not in names(7160c0) and names(7560).

Using Lemmas 4.27 and 4.28, we are ready to complete the proof of Theorem 4.25, showing
that P[M/s] and P[M/;] are labeled bisimilar.

We consider the relation R between closed extended processes defined as follows: AR B if
there is an extended process Ay and ground terms M, M’ public w.r.t. bn(P) such that P =* Ay,
A= Ag[M/s]) and B = Ao[M'/;].

We show that R satisfies the three points of the definition of labeled bisimilarity. Suppose
AR B, that is Ag[M/s] R Ag[M'/s] for some Ag, M, M’ as above.

1. Let us show that ¢(Ao[M/s]) ~s ©(Ao[M'/s]). We know that ¢(Ap) is a valid frame w.r.t. P
(from the definition of R), hence ¢(Ap) ¥ s (from the hypothesis). Let ¢’ = ¢(Ap)
having only ground and normalised terms (take for example ¢’ = ¢@(A)|, where p(A) is the
standard frame w.r.t. A). Then, by Lemma 4.27, we have that ¢’ is an extended well-formed
frame. We can then use Proposition 4.26 to obtain that o(Ag[™/s]) ~s ©(Ao[™'/s]).
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2. Let us show that if Ag[M/s] — A’ then A’ = AL[M/.], Ao[M Ja] — Ap[M'/s], and AY[M/] R
AL[M'/], for some Al). We distinguish two cases, according to whether the transition rule
was the comMm rule or one of the THEN and ELSE rules:

e if the comM rule was used then Ag[M/s] = C[ M) [2(2).Q[M/s]|c(2).R[M/s]], where C
is an evaluation context and A’ = C[M/][Q[Y/s]|R[M/s]]. Then Ag=Ce(2).Q|c(2).R).
Take Ay = C[Q|R]. We have that P =* A{, and thus, by definition of R, we have
that Ay M/s] R Ap[M'/;].

o otherwise, Ag[M/s] = C[M/][if T'[Mfs] = T"[M/q] then Q[/s] else R[M/s]]. Then
Ag = C[if T’ = T" then Q else R]. From Lemma 4.4 we know that 77 = T{fc and T" =
Ty'0o, where T = T| is a test in P and vn.c = ¢(Ap) is the standard frame w.r.t. Ay.
Take A = C[Q] if T)fo =g T}/0c and A, = C[R] otherwise. From Lemma 4.28 we
have that T)fo =g Ty0c if and only if T)0c[M/s] =g TY'0a[M/s]. Hence Ao[M/s] —
ALMU], Aol M )s] — AQ[M'/s] and Ag — Aj). We conclude Aj[M/s] R AL[M'/] from
the definition of R.

3. Let us show that if Ag[/s] = A’ and fv(a) C dom(p(Ag[M/s])) and bn(a)Nfn(Ag[M'/s]) =
0 then A’ = AL[M/], Ao[M'/s] = Ap[M'/s] and AY[M/;] R AL[M'/q], for some Al). Depend-
ing on the form of «, we consider the following cases:

c(T). Suppose Ag[M/s] = C[M/s][c(2).Q[M/s]]. Then take A) = C[Q{T/.}].

¢(u). Suppose Ao[M/s] = C[M/s][e(u).Q[M/s]]. Then take Aj = C[Q).

o a = vu.c(u). Suppose Ag[M/] = C[M/] [I/U.Al[M/s]], where A;[M/] el AL M.
Then take A = C[A4].

o=
o (¥ =

The above discussion proves that R C ~;. Since we have P[M/]R P[M'/q] it follows that
s| =i s
P[Mfs] ~y P[Me]

4.3.3 Proofs of intermediate results

In what follows we usually simply write M, M;, M,, D,, £ instead of respectively M(P),
M (P), My(P), D,(P), E(P), etc.

We also define the partial subtraction function — : N} x Ni — N% as follows: p —q = r if
p=gq-rand p— q =1 otherwise.

Let U and V be two terms. We define pos(U, V) = {p € pos(U) | U|, = V'}.

Observe that for the rewriting system corresponding to equational theory E, there is at most
one rule that can be applied and for each rule L — R, there is exactly one occurrence of R in L.

We denote by U —¢ V' the reduction U — V such that U|, = L8 and V' = U[R#)],, where
q is a position in U, L — R is a rule in R(E), and 0 is a substitution. Let p be a position in
U. We define a partial function par;(U,p,q) that computes, when U —% V| the position after
one rewriting of a function symbol at position p in U. In particular, if par,(U,p,q) #L then
Ulp = Vlpar, (Up,q)- Formally, we define the function par;: 7 x N3 x NI — N7 as follows:

;.
B D, ifU -1V
pary (U, p,q) = { 1, otherwise,
where ;
P, itp 2,
p=< 1, itp>q N pZq-a,

q¢-p—q-q), fp>q-q,
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and L — R is the rule that was applied and ¢, is the position of R in L.

Similarly, the function par(U,p) computes the position after rewriting in U]. The function
par: T x N} — N is formally defined by par(U,p) = py where U =4 ... =% Uy, U, = U],
p; = pary(U,pi—1,¢), for 1 < i < k and pg = p. Due to the particular form of our equational
theory, the choice of the rewriting steps does not change the final value of p; thus the definition
is correct.

The function par~!(U,p) is the inverse function: to a position p in U] it associates the
corresponding position in U, that is, par—!: 7 x Nt — N&, par—}(U,p) = p’ if and only if
par(U,p') = p.

We say that a function symbol at position p is consumed in V w.r.t. the reduction U —1V
if par (U, p,q) is undefined. Similarly, we say that a function symbol at position p is consumed
in U]l w.r.t. the normal form U] if par(U,p) is undefined. We say simply that an occurrence is
consumed in some term when it is clear from the context which definition is used.

Lemma 4.27 Let P be o well-formed process with no test over s and ¢ = vn.o be a valid frame

w.r.t. P such that p ¥ s. Consider the corresponding standard frame vn.c = vn.{ i/, | 1 <i <1}.
For every i and every occurrence qs of s in U;|, we have fo(Usl,qs) = E[W /] for some E € £(P)

and some term W. In addition vn.o;] is an extended well-formed frame w.r.t. s.

Proof  We write the standard frame @ as in the statement of Lemma 4.4, that is U; = M;0;0,_1
for all 1 <4 <[ with M; an output in P, §; a public substitution w.r.t s and o; = o;_1 W {Yi/,.},
oo being the empty substitution. We reason by induction on .

Base case: i = 1. We have that Uy = M;j6;. Then Uy = M;(01]) since there are no
destructors in the output M;. Hence any position gs of s is in fact a position in M; since s
cannot appear in #; because s is restricted and 6 is a public substitution. There must an
encryption above ¢s in Mj (that is a position genc - 1 < gs), since otherwise s would be deducible
(the same argument as in Lemma 4.17 applies). Then the result follows immediately from the
definition of & (take W = s) and the properties of well-formed processes.

Inductive step. Let ps = par— (U;, gs).

If ps € pos(M;) then, as in the previous paragraph, f.(U;l,qs)[*/s] € &o.

Otherwise, since 6; is public, ps ¢ pos(M;0). It follows that there are z € var(M;) and
yi, € var(M;0;) at positions p, and p,, respectively, such that p, <p,, <psand 1< <i—1.
Let pl = ps — Py, and ql = par(U;,,pl). By induction hypothesis, o;_ 1 is an extended well-
formed frame and f.(U;,|,q}) = E[V/] with E € &, for some term W and some [ > 0. It
follows from the definition of extended well-formed frames that in y;0;, there is an encryption
above ¢}, that is ¢}, = max{q € pos(U;,1) | ¢ < ¢2 A head((U;, |)|4)= encg } exists. Let pl,. =
pari1 (Ui1 > qgnc)'

If py, - Piac is not consumed in U;| then par(U;, py, - pinc) is the lowest encryption in U;| above
ql (since it corresponds to gl,). It follows that f.(Usl,qs) = fe(Us |, ql).

Otherwise, that is if p,, - Pine is consumed in U;], consider the occurrence of decg in Uj;, say
Pdec, that consumes it. Since pl,. is not consumed w.r.t. Uy, | it follows that pgec € pos(M;6;), and
all encryptions above pl,. in U;, are consumed in U;]. If pyec is in 26; (that is, pgec & pos,, (M;))
then all encryptions above pl,. in U;, are consumed by decryptions that are in z6;. This means
that in (26;0;—1)] there is no encryption above s and thus ¢ - s. Hence pgec is in M; (that is,
Pdec € pOSnV(MZ‘)).

Let U, V, K, K" and R be terms such that decg (U, K) = Ui|p,, and encg(V, K', R) = Ui, 1 =
Ui lpr . We have that K =g K’ since pgec consumes py, - penc. We then have decg (U, K) —*
decg(encg(V, K, R),K) —* V].
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Let (D,p) = fap(M;,p.) and write it as D = Dy(... D,) where D; = 7/(decg(z0, K;)) with
1 < j < n and consider Dy, such that the decryption pgec is that of Dy. Clearly x € var(D;(E)|).
From the first condition of processes that do not test over s we have that j = 1 and E £ D;.
Since pgec consumes S Dy, - penc, above pgec in D7 there are only projections, below encg in E there
are only pairs and E £ D, it follows that Dy <, E. Hence D; € &;.

Suppose that there is no encryption above pgec in M;. Then since D; is consumed and above
Dy in M; there are only pairs or signatures, it follows that s is deducible from o; (more exactly
from U;|). Thus there is at least one encryption above pyec in M;. Let (M’ penc) = fep(Mi, p).
Then M'[x], € &41.

Since Penc is not consumed in U;|, and in M’ all function symbols above p are not destructors
we have that f, (Ui, ps) —* (M'[x],)["V'/x] with p}=pl-pg,c and W' = Dy (fe(encg(V, K, R), p}))!.
Hence f.(Uil,qs) = (M'[x],)["'/]. That is we have the first part of the lemma.

In order to prove that o] is an extended well-formed frame we just need to show that M’[x],,
and W’ contain only pairs and signatures (except for the head of M’[x], which is an encryption);
obviously all agent encryptions are probabilistic encryption, either by the definition of well-formed
process or by induction hypothesis. From the definition of M’ all function symbols (except for
the head) in M'[x], are pairs and signatures. And since oy, is an extended well-formed frame
and the term W' is a subterm of fe(encg(V], K, R),¢q.) which (except for the head) contains
only pairs as function symbols and signatures by definition of f.. [

Lemma 4.29 Let P be o well-formed process with no test over s, ¢ = vn.o be a valid frame
w.r.t. P such that o ¥ s, T € M(P) be an operand of a test and 0 be a public substitution. If
T ¢ M§ then for any occurrence qs of s in (T'0c)| there is an encryption Genc plaintext-above
it such that this encryption is an agent encryption w.r.t. n\{s}, is a probabilistic encryption
w.r.t. ran(o) and head((T00) | |4) € {(),sign}, for all positions ¢ with genc < ¢ < gs-

Proof  Suppose that 7' ¢ M and consider an occurrence gs of s in (T'00)|. Hence T is not
ground and denote by z the variable of T" and by p, its position. Let T, = (2600)].

Let 7 = {Y1,,,..., Y, } be the standard frame w.r.t. A (where ¢ = ¢(A) for some extended
process A). Let ps = par—!(T07,qs). Let 3; be the variable of 26 on the path to pg at position
say py, with 1 < i < [. Applying Lemma 4.27 to U; we obtain that f.(U;|,qs) = E["/x] with
E € &(P), for some term W. Consider the lowest encryption genc in U;| above gL, where ¢ is
the position in U;] of ¢s.

Suppose that this encryption is consumed. Then it must be consumed by a decg from 7" since
otherwise s would be deducible. It follows that there is 1 < j < [ such that D; = 77 (dec(zg, K)),
where fy(T,p.) = Di(...D,), E = enc(U,K,R) and x € D;(E)| for some terms U, K and
R. Thus T € M3, but this contradicts the hypothesis. Hence genc is not consumed in (700)].
Since vn.o| is an extended well-formed frame (again from Lemma 4.27) then the encryption genc
clearly satisfies the hypothesis. [

Lemma 4.28 Let P be a well-formed process with no test over s, ¢ = vn.o a valid frame for P
such that ¢ ¥ s, 0 a public substitution and M a public ground term. If Ty = Ts s a test in P,
then Tlé?a[M/S] =F TQ@U[M/S] implz'es T190 =F TQ@U.

Proof  Ti00[M/] =g Tolo[M/;] rewrites in (T100[M/])| = (To00[M/s])|. Since the rewrite
system R(FE) is convergent, it follows that ((T100)| [M/s])] = (Ta0a)] [M/])].
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Suppose first that 71,75 ¢ M?. Then from Lemma 4.29 right above any occurrence of s in
(T100)] there are no destructors, hence (T1600)|[*/;] is already in normal form. The same thing
holds for Ty. Thus (T100)|[M/s] = (T200)|[M/s]. Lemma 4.29 also ensures that in (7}6c)] and
(T200)| there is an agent probabilistic encryption above each occurrence of s. Hence we can
apply Lemma 4.19 and obtain that (T100)| = (T260)], that is Th0c =g Tr00.

Suppose now that 77 € M§. Then T, = n where n is a restricted name. The name n is a
subterm of (T10c[M/])| appearing at a position p in T10a[M/,]. Since M is public, while T} is
restricted it follows n is not a subterm of M, that is there is no occurrence ¢ of s in 1100 such
that ¢s < p. Then ((T160)[*/])| = (T165)1[*/.]. Hence (T160)| = n.

If the test is check(T,T’, K) = ok then TOc[M/;] =g retrieve(T")0c[*/;]. Applying the
lemma for the test T =g retrieve(T”) we obtain that T0o =g retrieve(T")fo. Since the keys are
ground then it follows that check(T,T", K)fc =g ok.

4.4 Application to some cryptographic protocols

We apply our result to three protocols (Yahalom, Needham-Schroeder with symmetric keys
and Wide-Mouthed-Frog), known to preserve the usual simple secrecy property. Since all these
three protocols satisfy our hypotheses, we directly deduce that they preserve the strong secrecy

property.

4.4.1 Yahalom

We have seen in Section 4.3.1 that Py is a well-formed process w.r.t. k,, and does not test over
kqp. Applying Theorem 4.25, if Pj, preserves the simple secrecy of kg, we can deduce that the
Yahalom protocol preserves the strong secrecy of kg, that is

PY[ M) = P M )

for any public terms M, M’ w.r.t. bn(Fy,). We did not formally prove that the Yahalom protocol
preserves the simple secrecy of k., but this was done with several tools in slightly different
settings (e.g. [BLP03, Pau01]).

4.4.2 Needham-Schroeder symmetric key protocol
A simplified version of the Needham-Schroeder symmetric key protocol [NS78]| is described below:

A= S5: A B,N,
S=A: {NoB, Ky, {Kauw, A} r,, } Koo
A= B: {{KabaA}Kbs

The target secret is K ;. The protocol is modeled by the following process:
Pns = vkas-vkps. (1A) | (Ye(yp)) ‘ (Wwk.S(k)) | vkap-S(kap)

where

A = vngcla,b,ng).c(yy).[m(d
[7r1 (772 (dec(yaa kas)))

S(x) = c(ys).vr,r .c(enc((ma(ma(ys
enc(<$77rl(ys)>)kb8)7ﬂ/)

ec(yaakas)): Ng
= b.e(mo(mo (7 (d <(Yas kas)))))
)); mi(ma(ys)),

), Kas, 7))
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Note that other processes should be added to considered corrupted agents or roles A, B and S
talking to other agents but this would not really change the following sets of messages.
The output messages are:

a,b,ng

Ta(ma(m2(dec(ya, kas))))
enc((m2(m2(ys)), m1(m2(ys)),

Eab, enc(<kab’ 1 (ys)>? Eps T/)>a kas, T)

MO:

The tests are:

{ 71 (dec(Ya, kas)) = Na }
71 (m2(dec(yq, kas))) = b

We define max & = {€ | e € &} in order to increase readability, and since it is easy to deduce
&; from max &;.

D, = {ma(ma(ma(dec(z, kas)))) }

Eo = {enc((z1, (22, (x, 23))), kas, 7), enc({x, 24), kps, ') }
max €y = {m (ma(ma(dec(, kas)))), m1 (dec(, kns))}
D,NEy =1
MEab — )

We deduce that Pygs is a well-formed process w.r.t. kqp, that does not test over k. Applying
Theorem 4.25 and since the Needham-Schroeder symmetric key protocol is known to preserve
simple secrecy of kup, we deduce that the protocol preserves strong secrecy of k,p that is

Pus[ M) =1 Pus[™ fi)

for any public terms M, M’ w.r.t. bn(Pys).

4.4.3 Wide Mouthed Frog Protocol (modified)

We consider a modified version of the Wide Mouthed Frog Protocol [BAN90], where timestamps
are replaced by nonces.

A= B: N,

B=S: {{Na,A, Kab}Kbs

S=A: {N.B, K}k,

The target secret is K,p. The protocol is modeled by the following process:
Poie = Vkas-vhis. (1A) | (1) | (k. B(R)) | vy B (kap)
where

= Vna'6<na>'c(ya)'[ﬂ-1 (dec(ym kas)) = na]
B(x) c(yp)-vr.c{enc({yp, a, ), kys, 7))
S = c(ys).[m1(ma(dec(ys, kps))) = al.
VT/'E<enC(<7T1 (dec(ys? ka))v b, o (7r2(dec(957 kbs))»? Kas, T/)>

Note that other processes should be added to considered corrupted agents or roles A, B and S
talking to other agents but again, this would not really change the following sets of messages.
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The output messages are:

Nq

M, = e @ Kap), Ky, 1)
enc(<7r1 (dec(ys’ kbs))v b,
mo(ma(dec(ys, Kus)))), kas, T,)

The tests are:
w1 (m2(dec(ys, kvs))) = a

D, = {m(dec(z, kps)), m2(m2(dec(z, kys))) }
Eo = {enc((z1, (22,%), kps, 7)) }
max &g = {mo(ma(dec(z, kis)))}

&1 = {enc({21, (22, %), kas, 7)) }
max&; = {ma(ma(dec(z, kus))) }
DoNEL =1
Mab =)

We obtain similarly that Pymr is a well-formed process w.r.t. kqp, that does not test over k.
Applying Theorem 4.25 and since the Wide Mouthed Frog protocol is known to preserve simple
secrecy of kqp, we deduce that the protocol preserves strong secrecy of kyp that is

{ m1(dec(Ya, kas)) = na }

PWMF[M/kab] R PWMF[M//kab]

for any public terms M, M’ w.r.t. bn(PymE).

4.5 Conclusions

In recent years many automatic tools have been developed for verifying security protocols. The
overwhelming majority of them address reachability-based properties such as simple secrecy.
On the other hand some important security notions such as strong secrecy rely on provable
equivalences between systems. Typically the impossibility of guessing a vote or a password is
commonly expressed that way. Hence in order to widen the scope of the current protocol analysis
tools, in the present chapter we have shown how simple secrecy actually implies strong secrecy
in both passive and active setting under some conditions, motivated by counterexamples. In
particular such a result cannot hold for deterministic encryption and we had to assume that it
is probabilistic.

As future work, we would like to relax our syntactic conditions. One such condition requires
in the passive case that the secret does not appear in keys, and in the active case that keys are
ground. This deters us from analysing for example protocols against guessing attacks. We plan
to investigate whether such conditions can be replaced by more semantics ones, like asking, in
the passive case, that the plaintexts encrypted by the secret are simple secrets.

We also plan to investigate whether the procedure [Bau05] for deciding static equivalence of
M. Baudet can be combined with our condition on the tests in order to obtain a (non-complete)
procedure allowing us to verify strong secrecy for a wider class of protocols. We would have thus
to answer the challenging question of whether the exists a finite number of frames characterising
(in some way) all executions of a protocol.
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A transformation for obtaining secure
protocols
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In this chapter we introduce a transformation that takes as input a protocol that is secure (in
a sense that we discuss below) in a single execution of the protocol, with no adversary present (not
even a passive eavesdropper). The output of the transformation is a protocol that withstands a
realistic adversary with absolute control of the communication between an unbounded number
of protocol sessions.

At a high level, the transformation works by binding messages to sessions using digital signa-
tures on the concatenation of these messages with dynamically generated session identifiers, and
hiding messages from the adversary using public key encryption. More specifically, the trans-

formation is as follows. Consider a protocol with k participants Aj, ..., Ax and n exchanges of
messages.

Ail — Ajl . mq

Ain — Ajn . mp
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The transformed protocol starts with a preliminary phase, where each participant A; broadcasts
a fresh nonce N; to all other participants. The concatenation of the nonces with the identities
of the participants forms a session identifier sessionlD = (A1, A, ..., Ag, N1, Na, ..., Ng). Note
that the adversary may of course interact in this preliminary phase and may send faked nonces
for example. Such a behaviour would however be detected in the next phase. The remainder of
the protocol works roughly as the original one except that each message is sent together with
a signature on the message concatenated with the session identifier, and the whole construct is
encrypted under the recipient’s public key:

Ay — Ay {{ma, [[ml,pl,sessionID]]sk(Ail)]}ek(Ajl)

A, = Aj, + Almn, [ma, pr, sessionID] g, ) ek(a;,)
where the p;’s are the current control points in the participant’s programs.

Intuitively, our transformation ensures that the messages of the protocol sent between honest
parties in any given session of the original protocol, cannot be learned and/or blindly replayed
by the adversary to unsuspecting users in other protocol sessions. Indeed, the adversary cannot
impersonate users in honest sessions (since in this case it would need to produce digital signatures
on their behalf), and cannot learn secrets by replaying messages from one session to another (since
messages are encrypted, and any blindly replayed message would be rejected due to un-matching
session identifiers).

Although the transformation does not preserve all imaginable security properties (for exam-
ple, any anonymity that the original protocol might enjoy is lost due to the use of public key
encryption) it does preserve several interesting properties. In particular, we exhibit a class of
logic formulas which, if satisfied in single executions of the original protocol are also satisfied by
the transformed protocol in the presence of active adversaries. The class that we consider includes
standard formulations for secrecy and authentication (for example injective agreement [Low97]
and several other variants).

Our transformation enables more modular and manageable protocol development. One can
start by building a protocol with the desirable properties built-in, and bearing in mind that
no adversary is actually present. Then, the final protocol is obtained using the transformation
that we propose. We remark that designers can easily deal with the case of single session and it
is usually the more involved setting (multi-party, many-session) that causes the real problems.
Indeed, for the class of properties that we consider security verification is trivial for single, honest
executions. As an example, we show how to derive a simple protocol for authentication later in
the chapter.

Related work Our work is inspired by a recent compiler introduced by Katz and Yung [KY03]
which transforms any group key exchange protocol secure against a passive adversary into one
secure against an active adversary. Their transformation is, in some sense, simpler since they
do not require that the messages in the transformed protocol are encrypted. However, their
transformation is also weaker since although it requires that the protocol be secure against passive
adversaries, these adversaries still can corrupt parties adaptively (even after the execution has
finished). Furthermore, while their transformation is sufficient for the case of group key exchange,
it fails to guarantee the transfer of more general security properties. The reason for the failure
is that an adversary can obtain a message (e.g. a ciphertext) from a session with only honest
participants, and get information about the message (e.g. the underlying plaintext) by replaying
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it in some other sessions for which he can produce the necessary digital signatures. We further
discuss and compare the two transformations via an illustrative example in Section 5.1.

Our transformation might be viewed as a way of transforming protocols into fail-stop proto-
cols, introduced by Gong and Syverson [GS95|, where any interference of an attacker is immedi-
ately observed and causes the execution to stop. But for fail-stop protocols, it is still necessary
to consider the security issues related to the presence of passive adversaries. Here we achieve
more since we obtain directly secure protocols. Moreover, a major difference is that we provide
formal proof of the security of the resulting protocols while the approach of [GS95] is rather
a methodology for prudent engineering. In particular, there are no proved guarantees on the
security of the resulting protocols.

Corin et al [CDF107] present a compiler for sessions (seen as patterns of communication)
given as type declarations in an extended ML language to security protocols implementing the
sessions. They prove that the resulting protocol implementation guarantees session integrity
(which can be expressed as a set of correspodance properties). Their work can be seen as
complementary with ours, since, while sesions are more general than the protocols that we
consider (sessions can include loops), their compiler does not consider confidentiality properties.

Outline of the chapter Section 5.1 contains an example which illustrates the differences
between the compiler of Katz and Yung and our compiler. In Section 5.2 we present the model
in which we reason about security protocols. Section 5.3 introduces a simple logic and defines
security properties within this logic. The protocol transformation is presented in Section 5.4. In
Section 5.5 we present our main transfer result and sketch its proof, while in Section 5.5.6 we
give detailed proofs.

5.1 Comparison with Katz and Yung’s compiler

Consider the following simple protocol where an agent A sends a session key K, to B using his
public key. Then B acknowledges A’s message by forwarding the session key, encrypted under
A’s public key. We say that this protocol is secure if it preserves the secrecy of K.

A— B: {Kulte«s)
B— A: {Kaulteka)

Note that this protocol is secure when there is no adversary and is also secure even in the presence
of an eavesdropper that may read any message sent over the network but cannot interfere in the
protocol.

The resulting protocol obtained after applying Katz and Yung’s compiler is the following one.

A—B: AN,
B—A: B,N,
A— B: [{{Kalteks), A: B; Na; NoJsk(a)
B — At [{{Kabltek(a): A, B, Na, No|sk(p)

However, the compiled protocol is not secure against an adversary that may use corrupted
identities. Note that the message [{{Kap[}ex(B)lsk(4) entirely reveals the message {{Kap[fex(p). We
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assume that the adversary owns a corrupted identity I. The attack works as follows.

(1)1 A — B: AN,

()2 B — A: B,N,

(1)3 A — B: [{{Kales), A B, Na, NoJsk(a)
(2.1 I — B: I,N

(2).2 B — 1I: B,Né

(2)3 I — B: [{Kawlews) I, B, Ni, Nylskr)
(2)4 B — I: [{Kawler) I, B, Ni, Nylsk(m)

This allows the intruder to learn any session key used between two honest agents.
In contrast, after applying our own transformation, the resulting protocol would be secure
for an unbounded number of sessions, against a fully active attacker.

5.2 The model

In this chapter we basically use the model presented in Chapter 1. We consider again only roles
with matching and we will just call them roles. In this section we introduce some useful notations
and we detail further the model presented in Section 1.4.2.

The concrete setting (that is, the signature, deduction system) are almost as in Chapter 2.
That is, the sort system is Sortsg (with all sorts being different). The function symbols used here
are those occurring in the deduction system Zy presented in Section 1.2.3.1 (page 40), and Z is
also the deduction system we consider in this chapter. Again the presence (or absence) of the
rule (Retr) is not relevant here.

We denote by X.a, X.n, X.k be sets of variables of sort agent, nonce, symmetric key. Variables
are represented by capital letters X, A, N, K.

Throughout the chapter we fix a constant & € N that represents the number of protocol
participants. Furthermore, without loss of generality, we only use the set of agent variables
{41, Ag,..., Ax} C X.a, and we partition the set of nonce (and key) variables, according to the
party that generates them. Formally:

X.n = Uacx.aXa(A) where X,(4) = {N} | j € N}
X.k= UAGX.an(A) where Xk(A) = {Ki ‘ JjE N}

This partition avoids to have to specify later which of the nonces (symmetric keys) are generated
by the party executing the protocol, or are expected to be received from other parties.
In the same spirit, we define the following private constants of sort SymKey and Nonce
respectively: '
TSymKey = {ka,]',s | ac ,Ed(fpub)’j € st € N}
TNonce = {n*?* | a € Tig(Fpub),j € N,s € N}

Let II = (R, S) be a protocol with k participants. For each role r of II, we suppose that its
parameters are Aj,..., A; and its fresh items are among Nﬁ‘r and Kir with j € N. We recall
that the principal that executes role R(r) is represented by the parameter A, thus, in that role,
every variable of the form Xf‘lr represents a nonce or a symmetric key generated by A,. In this
way, it is not necessary anymore to specify the parameters and fresh items of a role. Hence, we
denote the r-th role of II by R(r) = ((rcv},sntl), (revZ snt?),...), where rcv? and snt? are the
“receive” and respectively the “send” terms of role r at step p.
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Exemple 5.1 Using the above conventions, the Needham-Schroeder protocol (presented in Sec-
tion 0.1.2, page 12) is now specified by

R(1) = (init, {N},, A1lfex(az))
(N4, N ekar)s {4, Tek(4as))

R(2): (N4, Ailtek(as)s N4> N, lek(ar) ) S
({IN 4, lek(z), Stop) S

Here the notations are overloaded: for example, N}h denotes a fresh item of sort Nonce in role
R(1), while it is just an arbitrary variable of sort Msg in role R(2).

In this chapter we are also more explicit about corrupted agents and the initial knowledge
of the intruder. In Chapter 1 (see Section 1.4.2, page 48) we have supposed that the corruption
of agents is implicit, assuming that the data he obtained in this way is present in his initial
knowledge (which was considered arbitrary). Here we assume that corrupting an agent is an
explicit action of the intruder and that the initial knowledge Hj is such that it does not contain
any agent private data. This is only because we need later to differentiate between honest and
corrupted agents. These extensions of the model (which are formalised next) only detail it,
but do not restrict, nor generalise the class of protocols that we treat, and do not change their
semantics.

A trace tr = (Sldo,fo,Ho) =5 (Sldy,fi,Hy) =2 ... 2% (SId,, fn, Hy,) is defined by the
statement of Definition 1.29 and by:

e Hy is such that Hg t/ k(a,b),dk(a),sk(a), for all a,b € T4(F),

corrupt(ay,...,a;)
tutnlale stk et LA AL TAN

e o7 can also be the corrupt action: (Sldg,fo, Ho) (Sldy,f1,H1) where
a1, ... ar € Tida(Fpub) and Hy = Ho U U4 ({dk(a;),sk(a;)} U SK(a;)). Here, SK(a)
denotes a finite set of symmetric keys shared by the agent a with other agents, that is
SK(a) € {k(a,b),k(b,a) | b € Tig(Fpub)}-

o if ; = new(r,ay,...,a;) and sid = (s, (a1,...,ax)) is the new session id then f;(sid) =
(0, po) where pg is the initial control point of role!” 7, and

o(4;) =aj 1< <k
a(N% ) = narsJss N, fresh item of role R(r)
U(KIJA,«) = KarsJs Kf‘lr fresh item of role R(r)

Given a protocol II, we write Exec(II) for the set of execution traces of II. When specifying
a trace, we sometimes omit the transitions and write it just as a sequence of states.

Exemple 5.2 Reezamining Example 1.30 (page 50), we obtained the following execution trace:

corrupt(as) new(2,a1,a2)
_ _—

((bvfl?@) (®7f17kn) ({Sid1}7f27kn)

send (sid1,{[n3,a1 }ek(aq)) (

{sid1}, f3,kn U {In3,n>" Peiar)) -

where kn = {dk(as),sk(as)}, sidy = (1,2, (a1,a2)), and fa, f3 are defined as follows: fa(sidy) =
(01,2,1), fs(sidy) = (02,2,2) where 01(A1) = a1, 01(A2) = ag, 0'1(N}12) = n2bl and oy
extends oy by UQ(N}h) = n3, with ay,as, a3 public constants of sort Id, and n® ! n3 (private,
respectively public) constants of sort Nonce.

17"The initial control point po is usually 1, but for technical reasons here it may also be some other integer.
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Chapter 5. A transformation for obtaining secure protocols

In this chapter we consider a relaxed version of the definition of executable protocols. In-
deed, for technical reasons we work only with protocols satisfying the first two points of the
Definition 1.31 (on page 50) and we call such protocols executable. In particular, we suppose
that the function S is injective. Moreover, since we sometimes use negative control points (with
negatively indexed role rules), we consider that for executable protocols the function S(r,-) is
defined on exactly $R(r) consecutive integers.

Given an arbitrary trace tr = (Sldg, fo, Ho) — ... =% (Sld,, fn, H,) with n € N, we define
the set of corrupted agents of a trace tr by CA(tr) = {ay,...,q;} if @y = corrupt(ay,...,q;) and
CA(tr) = 0 otherwise. The set Sld"(tr) of honest session identifiers is the set of session identifiers
that correspond to sessions between non-corrupt agents:

SId"(tr) = {sid € SId,, | sid = (-, -, (a1, ..., ax)), CA(tr) N {a1,...,ar} = 0}.

For a trace tr we denote by I(tr) the set of indexes i of the transitions and global states
of tr. For example, the above trace has I(tr) = {0,1,...,n}. If sid is a session id then we
denote by Ag(sid) the set of agents involved in this session, that is Ag(sid) = {a1,...,ar} when

sid = (',', (al,. .. ,ak)).

5.3 Security properties

We use a simple logic (similar with the one in [CHWO06|) to express security properties on
traces. We define the syntax and semantics of this logic and provide several examples of security
properties that can be expressed within it.

5.3.1 A logic for security properties
5.3.1.1 Syntax

We assume an infinite set X, of variables for substitutions, called substitution variables. Let
Tsup be the following set inductively defined by:

Touw = §(X) | c ‘ g(TSub) ‘ h(TSubaTSub)

where ¢ € Xgu, X € X, and ¢, g, h are function symbols of arity 0, 1 and 2 respectively that
range over Sigma. We call s-terms the elements of Tg,,. Note that terms without names are
s-terms, and s-terms without substitution variables are terms. We extend the notions of position
and occurrence to s-terms in the expected way (with ¢ regarded as a function symbol of arity 1).
If w is an s-term and o is a substitution then we denote by u[ /] the s-term obtained by replacing
each occurrence of ¢(X) by the term o(X), for any variable X. As for normal substitutions, we
may abbreviate ¢(X) by Xg.

Exemple 5.3 Let u = (¢(X),s'(Y)) and 0,0’ be two substitutions such that Xo = a and Yo' =
b. Let v/ = u[%] = (¢(X),d'(Y)) = (a,¢'(Y)). Then u/'[?/s] = (a,b) is a both a s-term and a
term, while v’ is a s-term but not a term.

Besides standard propositional connectors, the logic has equality tests between s-terms, a
predicate to specify honest agents, and existential and universal quantifiers over the local states
of agents.
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5.8. Security properties

if a & CA(tr)

otherwise

INC(a),tr] =

S =

if Yo € LS, p(tr), we have [¢[ /], tr] = 1,

otherwise.

Vs € LS, ¢, tr] =

O =

1 if 30 € LS, p(tr), s.t. [o[%], tr] =1,
0 otherwise.
1 if 3'sid € Sld(tr),3i € I(tr) s.t.
Bs € £S,, ¢, tr] = fi(sid) = (o,p) and [¢[7/c],tr] = 1,
0 otherwise.

[Fs € LS, o,tr] = {

Figure 5.1: Interpretation of formulas in L.

Definition 5.4 The formulas of the logic L are inductively defined by:
¢ = | dNG|[u=0]|NC((A)) |Vs € LS, pd|Ise€ LS, ]|Nse LS},
where A € X.a, ¢ € Xgup, u,v € Ty and r,p € N,

Here the predicate NC(¢(A)) of arity 1 is used to specify non corrupted agents. The quan-
tifications Vs € LS, ,, 3¢ € LS, p, and g € LS, ), are over local states of agent r at step p, as
defined below. All these quantifiers bound the substitution variable ¢. Hence, a formula ¢ of £
is closed if all substitution variables in ¢ are bound. For a formula ¢ and a substitution o, the
formula ¢[ /] is defined as expected, by replacing each s-term u in ¢ by u[?/].

As usual, we assume that unary predicates bind tighter than binary predicates and the
precedence for the latter predicates is =, V, A (in ascending order).

5.3.1.2 Semantics

The semantics of our logic is defined for closed formula by interpreting them on the execution
traces of a protocol. We first define formally the range of the quantifications. The set of local
states of role r at step p in a trace tr = (Sld;, fi, H;)1<i<n is defined by

LS, ,(tr) = {o | Fi € [n], 3sid € Sld; s.t. fi(sid) = (o,p)}.

Standard propositional connectors and negation are interpreted as usual. Equality is syntactic
equality between terms, that is, [[u = v],tr] = 1 if and only if v = v (the interpretation is thus
trace-independent). Indeed, when [u = v] is a closed formula, the s-terms v and v are terms.
Note that the terms u, v need not be ground. The interpretation of quantifiers and the predicate
NC is shown in Figure 5.1.

As usual, we use [u # v], ¢1 V ¢2 and ¢1 = ¢2 as shortcuts for =[u = v], =(=¢1 A —¢2), and
-1 V ¢ respectively.

A security property is represented by a closed formula in the logic £. Informally, a protocol
IT satisfies ¢ if ¢ is true on all traces of II. Formally:

Definition 5.5 (Satisfiability) Let IT be a protocol and ¢ € L be a closed formula. We say
that 11 satisfies ¢, and write II |= ¢ if for any trace tr € Exec(I), [¢,tr] = 1.
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Chapter 5. A transformation for obtaining secure protocols

5.3.2 Examples of security properties

In this section we show how to specify secrecy and several variants of authentication, including
those from Lowe’s hierarchy [Low97], in the given security logic.

5.3.2.1 Secrecy

Let II be a k-party executable protocol. To specify our secrecy property we use a standard
encoding. Namely, we add a role to the protocol, R(k+1) = (Y, stop), where Y is a new variable
of sort Msg. It can be seen as some sort of witness as it does nothing but waits for receiving a
public data. Then a data s is secret if and only if for any role session of role k£ + 1, the value of
s is different from the value of Y.

Consider X a fresh item of a role r. Informally, the definition of the secrecy property expressed
by the formulas ¢5 below states that, for any local state of an agent playing role r in an honest
session, a witness (i.e. an agent playing role k + 1) cannot gain any knowledge on X. Formally,
the property is specified by the following formula:

¢s E Vs € ESM( N\ NC(s(A) = V¢’ € LSpi12 [¢(X) # <'(Y)]>
le[k]

Note that, due to the assumption that X is a fresh item and the role k 4+ 1 is at its final
control point, the interpreted s-terms ¢(X) and ¢’(Y) are ground terms. We can also model the
secrecy of a data X that is received in an honest session: we simply specify the control point p
(instead of 1) at which the data is received by the role 7.

5.3.2.2 Authentication properties

We first show how to use the logic defined above to specify the injective agreement [Low97]| be-
tween two parties A and B. Informally, this property states that whenever an agent A completes
a run of the protocol, apparently with B, then there is unique run of B apparently with A such
that two agents agree on the values of some fixed data items'® {X7,..., X}, provided that A
and B are honest. As usual, nothing is guaranteed in role sessions involving corrupted agents.

Let p1 be the length of A’s role, ps be the control point at which B should have received all
data items from A, and assume the indexes of A’s and B’s roles are 1 and 2 respectively. Then,
the above intuition is captured by the following formula:

ba EV6 € LS, (NC(Ag) ANC(Bs) =

Al € LSs,, ([As = Ad] A [Bs = BS'| A /\ [Xis = Xigl]))

1<i<n

We show next how other several authentication definitions proposed by Lowe [Low97| can be
modelled within the logic £. The following formulas represent aliveness, weak agreement, and
non-injective agreement properties, respectively, where A, B, p1, p2 and {X,..., X, } have the
same meaning as above.

!8We assume that these data items are represented by variables with the same name respectively in the two
roles; the formula can be easily changed when the data items are represented by arbitrary terms.
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def

o1 = Vs € £517p1+1 (NC(AC) A NC(B§) = 3 e ESQJ [BC = B§/])

$o Z Vs € LS1p, 11 (NC(Ag) ANC(Bs) = 3¢’ € LSz ([Bs = BS) A [As = Ag’]))

63 Ve € L8141 (NC(Ag) ANC(BS) =

' € LSsp, ([Bs = Bd'] A [As = Ad] A /\ [(Xis = Xz‘Cl]))

1<i<n

We also model a simple security property for the multi-party case by requiring that each
party authenticates any other party in the sense that each agent is convinced that the other
agents were alive in the session. In our logic, this translates to the formula: ¢, = /\re[k] Dma(T)
with

bma(r) Vs € LSy, 11 ( ANCA.) = A\ (Gaelsin N4 = Aa’%]))
le[k] i€[k]i#r JjE[k]

where p, is the final control point of the role r. We could enforce the property as for the two-party
case by enlarging the set of equalities that should hold.

5.4 Transformation of protocols

The core idea of the transformation is to have parties agree on some common, dynamically
generated, session identifier s, and then transmit the encryption of a message m of the original
protocol accompanied by a signature on m concatenated with s.

The modification of the source protocol is performed in two steps. We first introduce an
initialisation phase, where each agent generates a fresh nonce which is distributed to all other
participants. The idea is that the concatenation of all these nonces and all the identities involved
in the session plays the role of a unique session identifier. To avoid underspecification of the
resulting protocol we fix a particular way in which the nonces are distributed. First, each agent
generates a fresh nonce and then sends the nonces he received so far together with his nonce to
the next agent. That is, in Alice-Bob notation,

Ai — Az‘+1 : NAla---,NA-

03

for all 4 in the sequence 1,...,k — 1. Then, once the last agent received all nonces, each agent
forwards the concatenation of all nonces to its predecesor. That is,

Ai—>AZ',12 NAl,...,NA

k

for all ¢ in the sequence k,...,2. In this way, at the end of this first phase all agents know each
other’s nonces.

We remark that the precise order in which participants send these nonces does not really
matter, and we do not require that these nonces be authenticated in some way. In principle an
active adversary is allowed to forward, block or modify the messages sent during the initialisation
phase, but behaviours that deviate from the intended execution of the protocol are detected in
the next phase.

In the second phase of the transformed protocol, the execution proceeds as prescribed by II
with the difference that to each message m that needs to be sent, the sending parties also attaches
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a signature [m, p, nonces]g(,) and encrypts the whole construct with the intended receiver public
key. p is the current control point and nonces is the concatenation of the nonces received during
the first phase with the identities of the participants involved in the protocol. To avoid confusion
and unintended interactions between the signatures and the encryptions produced by the compiler
and those used in the normal execution of the protocol, the former use fresh signatures and public
keys. Formally, we extend the signature ¥ with four new function symbols sk’, vk’, ek’ and dk’
which have exactly the same functionality (that is the same sort and similar deduction rules)
with sk, vk, ek and dk respectively. This formalises the assumption that in the transformed
version of I each agent a has associated two pairs of verification /signing keys ((vk(a),sk(a)) and
(vk'(a),sk’(a))) and two pairs of encryption/decryption keys ((ek(a),dk(a)) and (ek’(a),dk’(a)))
and that these new pairs of keys were correctly distributed previously to any execution of the
protocol. We assume that source protocols are constructed over X only.

Definition 5.6 (Transformed protocol) Let Il = (R,S) be a k-party executable protocol such
that the nonce variables Ngi do not appear in R (which can be ensured by renaming the nonce
variables of 11) and all the initial control points are set to 1 (which can be ensured by rewriting
the function S).

The transformed protocol II = (R, S) is defined as follows: R(r) = RM(r) - R/(r) and
S = 8Nt U S where - denotes the concatenation of sequences and R™, R’ and S™* are defined
as follows:

RNt (r) = ((noncesr,l, nonces, ), (noncesy, noncesk)), Vi<r<k,
SMt(r,—1) = (r—1,-1), S"(r,0) = (r+1,0), Vi<r<k,

Rinit(k,) — ((nonceskq, noncesk)) Si”it(kﬁ) =(k—-1,-1)

with noncesy = init and nonces; = <N21,N22, .. ,Ngj} for1<j<k.
Let R(r) = ((rcvg,sntzﬂ))pe[kr}. Then R'(r) = ((ﬁf,ﬁf))pdkr] such that

if revl = init then rov? = fake, if snt? = stop then snt. = stop and otherwise

f = {[I’CV%, [rcvf,p’, nonces]]sk’(AT/)]}ek’(Ar)7
snth = {snt?, [snt?, p, nonces[g () lFek'(4 )

rcv

where (r',p") = S(r,p), (r,p) = S(",p") and nonces = (Ay,..., Ai,noncesy).

The initial control point is now set to —1 (or 0 for Aj) since actions have been added for the
initialisation stage. The special message fake is used to model for example the situation where
an agent waits for more than one message in order to reply or when an agent sends more then
one reply.

5.5 Transfer result

5.5.1 Honest, single session traces

We identify a class of executions, which we call honest, single session executions which, intuitively,
correspond to traces where just one session is executed, session in which all parties are honest
and there is no adversary. Our only hypothesis will be that the initial protocol has to be secure
in this very weak setting.

148



5.5. Transfer result

Definition 5.7 (Honest, single session trace) LetIl = (R,S) be a k-party protocol and tr =
(Sldo, fo, Ho) s N (Sldy, fn, Hy) be an execution trace of 1. The trace tr is an honest, single
session trace if there are k agent identities ay,...,a such that

o for1 <i<k, aj =new(i,ay,...,ax),

o fork+1<i<n,a =send(sid,m), m = rcvho where f;(sid) = (o,p + 1), sid = (-,r,+),
and there exists j < i such that f;(sid') = (o/,p'), S(r,p) = (+,p), sid = (-,7,), and
m = sntf:a/ for some sid’.

We denote by Exec”!(TI) the set of honest, single session traces of II.

Definition 5.8 (Passive, single session satisfiability) Let II be a protocol and ¢ € L be a
closed formula. We say that 11 satisfies the closed formula ¢ for passive adversaries and a single
session, and write II =P ¢ if for any trace tr € Exec®!(IT), [é,tr] = 1.

5.5.2 Transferable security properties

We identify a fragment £’ of the logic £ defined in Section 5.3 whose formulas specify the
properties that can be transferred from the honest, single session case to the full active adversary
case.

Definition 5.9 The set L' consists of those formulas ¢ with

o =Vs € LSy, ( N\ NC(As) = A (Qisi € L8y N Tiluh o))

le[k] iel Jje€J;

where Q; € {V, 3,3}, and for alli € I, for all j € J;, if Q; =V then TJ’»' € {#} and if Q; € {3,3!}
then 7; € {=,#}; moreover, for each i € I, if Q; =V (respectively Q; = 3!) then for all (there
is) j € Ji we have that (such that 7; € {=} and) there exists at least a subterm ¢(X) in uj or vj
with X a nonce or key variable.

As usual, we require security properties to hold in sessions between honest agents. This means
that no guarantee is provided in a session where a corrupted agent is involved. But this does not
prevent honest agents from contacting corrupted agents in parallel sessions. Properties that can
be expressed in our fragment £’ are correspondence relations between (data in) particular local
states of agents in different sessions. It is a non-trivial class since e.g. the logical formulas given
in Section 5.3 for expressing secrecy and authentication are captured by the above definition.

5.5.3 Transference theorem

The main result of this chapter is the following transference theorem. It informally states that
the formulas of £’ that are satisfied in single, honest executions of a protocol are also satisfied
by executions of the transformed protocol in the presence of a fully active adversary.

Theorem 5.10 Let II be a protocol andfl the corresponding transformed protocol. Let ¢ € L'
be a closed formula. Then I1 =P ¢ = 11 = 6.
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Remark The transfer result holds in fact for any conjunction or disjunction of formulas in £'.
Indeed, if ¢1 A ¢ is satisfied by a protocol II then both ¢; and ¢o are satisfied by II. Then
applying twice the transfer result, once for each formula, we obtain that ¢; A ¢9 is also satisfied
by the transformed protocol. For example, the formula ¢,,, does not belong do the class £’ (it
is not of the right form). It is however a conjunction of formulas of £’. We can thus also transfer
this property.

The main intuition behind the proof is that any execution in the presence of an active
adversary is closely mirrored by some honest execution (i.e. an execution with no adversarial
interference plus some additional useless sessions). We define honest executions next.

5.5.4 Honest executions

Recall that we demand that protocols come with an intended execution order, in which the
designer specifies the source of each message in an execution. Roughly, in an honest execution
trace one can partition the set of session ids in sets of at most k role sessions (each corresponding
to a different role of the protocol) such that messages are exchanged only within partitions, and
the message transmission within each partition follows the intended execution specification. Since
we cannot prevent an intruder to create new messages and sign them with corrupted signing keys,
clearly the property can hold only for session identifiers corresponding to honest participants.
The above ideas are captured by the following definition.

Definition 5.11 (Honest execution traces) Let II be an executable protocol. An execution
trace tr = (Sldo, fo, Ho) R N (Sldy,, fn, Hy) is honest if there is a partition PrtSld of the
honest role session identifiers SId"(tr) such that:

1. for all S € PrtSld, for all sid,sid’ € S with sid # sid’ and sid = (s,r,(ay,...a;)) and
sid = (5,1, (a},...a})), we have r # 1, and aj = aj for all 1 < j < k; that is, in any
protocol session each of the participants execute different roles'® and the agents agree on
their communication partners;

send (sid,m)
_—

2. whenever (SId;—1, fi—1,H;i—1) (Sld;, fi, H;) with sid € Sldh(tr), m accepted, m #
fake and m = revlo, p>1, we have that there are sid’ € [sid] and i’ < i such that m = sntf:o’
and S(r,p) = (r',p') where f;(sid) = (o,p+1), fu(sid') = (¢',p'), sid = (-,7.-) and [sid] is
the partition to which sid belongs to.

Notice that the above definition considers partial executions in which not all roles finish their
execution, and where not all roles in a protocol session need to be initialised. The following
lemma states that for any transformed protocol, an active intruder cannot interfere with the
execution of honest sessions.

Lemma 5.12 Let I be a protocol and I the corresponding transformed protocol. In ﬁ, any
erecution trace is an honest execution trace.

Then it remains to show that any property expressed in £’ that holds for one honest, single
session trace also holds for any honest execution trace of the transformed protocol. It relies
in particular on the fact that due to encryption, fresh values of honest sessions cannot occur
unprotected in dishonest sessions. Moreover, honest execution traces actually correspond to the
honest, single session trace of the initial protocol. This intuition is further detailed in the next
section.

19Consequently, each partition consists of at most k role sessions.
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5.5.5 Proof sketch of the transference theorem

In this section we first present some useful lemmas and the ideas behind their proofs, and then
we sketch the proof of the main result. Detailed proofs are found in Section 5.5.6.

Lemma 5.12 Let II be a protocol and I the corresponding transformed protocol. In ﬁ, any
execution trace is an honest execution trace.

Proof sketch  Let tr be an execution trace of II. We construct the partition of session ids by
simply grouping session ids that have the same value of nonces; we write PrtSld(tr) for the result-
ing partition. It is easy to check that PrtSld(tr) satisfies the first condition of the definition of an
honest execution trace. We prove that the second condition also holds by induction on the length

of the trace. Assume that (Sld;_1, fi—1, Hi—1) send(sidm) (Sld;, fi, H;) with sid € Sldh(tr), m ac-
cepted, m # init and m = rcvjo, p > 1. Then, m must be of the form {[m/, [m/, p,mo]ls (o) ek’ (1)
with a,b honest agents and the agents occurring in mg being honest too. Since the adversary
cannot forge [m', p, Mol (4), @ message of the form {m’, [m’, p, mo]s ()lter’ vy must have been
sent by the honest agent a in a session sid’ € [sid] since the two agents agree on mg. Thanks to
the control point that is also signed, we can show that ¢ must have sent his message exactly to
the agent that is expected, and then deduce that b = b’ and a’s action also satisfies the condition
on function S. ]

Any nonce or key generated in an honest session is always protected by at least one encryption
with a public key of a non-corrupted agent.

Lemma 5.13 Let II be a k-party protocol and II be the corresponding transformed protocol. Let
X be a key or a nonce variable of 11, tr be an execution trace of I, (SId, f, H) be a global state
of tr and t be a message deducible from H, i.e. H - t.

For any honest session id sid € Sld"(tr) with f(sid) = (o,-,-), for any occurrence of Xo
in t (i.e. for any path q such that t|; = Xo), Xo occurs within t in messages of the form
{Im/, [m’, p, o(nonces) sk (a)lt ek (v), where b is an honest agent, i.e. b ¢ C A(tr).

Proof sketch  Using Lemma 5.12, we can show that the only possible values for Xo are
nonces generated in honest sessions. Thus Xo is initially protected with an honest public key
encryption. Then the only way for an adversary to remove that encryption is to send the message
to an honest agent, which in turn will send it to one of the agents occurring in o(nonces) thus
to another honest agent; still, Xo will be protected by an honest public key encryption. ]

5.5.5.1 Sketch of proof of the main result

Firstly, Lemma 5.12 says that it is sufficient to look at honest execution traces in the transformed
protocol. So we fix an arbitrary honest trace tr. Every (possibly partial) honest protocol session
in tr can be projected to a (partial) honest, single session trace trg in the initial protocol. Observe
that we are only interested in honest sessions of tr, since that is what the left hand side of the
implication in ¢ means (i.e. A;cp NC(Aic)). But then the hypothesis of the implication in
¢ is trivially satisfied for passive, single sessions in II. Hence also the right hand side of the
implication in ¢ is satisfied for passive, single sessions in II.

Next we have to consider three cases according to what the quantifier Q; is.

If it is 3 then the there is a local state satisfying the (in)equalities simply because there is
one in the honest, single session trace trg.
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If ©; = 3! we also need to prove uniqueness. From the form of ¢ we know that there is j € J;
such that in (say) ui there is an occurrence of X< with X a nonce or a key variable. And from the
existence of requlred local states we have (u =’ )[" /1 /..] for some “valid” o and o’. Suppose
that also (u} = v})[7/][7 "/..] for some “valid” ”. But then Xo occurs both in Yo' and Yo,
where Y is a varlable of v§ such that X¢ occurs in v§ under Y¢;. Since Yo' and Yo are parts of
sent or received messages, it follows that they are parts of messages by the intruder and hence
so is Xo. Thus we can apply Lemma 5.13 and obtain that Yo’ and Yo" were sent or received
in the same honest protocol session as Xo. And since o’ and ¢” are substitutions obtained at
the same control point p; of the same role r; it follows that ¢’ = ¢” hence uniqueness.

Finally, if @; = V. This case proceeds similarly. If, by absurd, there are local states such that
the terms in some test become equal for some ¢’ then it must be the case that the corresponding
session id is honest (this is again obtained using the uniqueness of nonces created in honest
sessions, that is Lemma 5.13). We can then project this equality in the honest, single session
trace trg to obtain a contradiction.

5.5.6 Detailed proofs
5.5.6.1 Proof of Lemma 5.12

Let IT = (R, S) be an executable protocol such that there are no variable nonces N§ in R and
the initial control points are set to 1. Let R(r) = ((rev?,snt))i1<p<k,. Consider an arbitrary
execution trace tr of the protocol 1. Suppose tr = (Sldo, fo, Ho) a8 (Sldy, fn, Hy). We
need to show that tr is an honest execution trace.

We first give a few useful definitions and properties.

For a message m we define m = mq if m = {{m’, [m/, p, molq ()} e () for some identities a, b,
some messages m’, mg and some p € Z and m = L otherwise?’. We call mg the nonces field?' of
m.

For any transition a; = send(sid, m) such that m is accepted we have that m = rcvlo where
fi(sid) = (o,7,p +1). Suppose that p > 1 and rcv? # init. Then, since rcvp = nonces, we have
that ™ = o(nonces). The converse also holds, that is if 7 is defined then p > 1 and rcv) # init.

The following property says that in the same role session accepted and sent messages have
the same nonces field: If sid € Sld,, and «; = send(sid,m) and ay = send(sid,m’) are two
transitions in tr such that m and m’/ are accepted then m and m’ have the same nonces field,
provided it is defined for both messages. Indeed the nonces field is given by the substitution
in f;(sid) and f;(sid) respectively (as we have seen in the previous paragraph). And these
substitution are equal on Aq,..., A, N Al’ . ,Ngk since they extend the substitution in f;,(sid)
with ig < min(i,i") where ig is such that Sld;, \ Sld;,—1 = {sid} (that is, a;, is the new transition
produced when the session sid was initiated).

Next, we define the relation ~ between role sessions. Intuitively this relation should capture
the notion of protocol session. That is, two role sessions (-, r,-) and (-,7’,-) should be in relation
~ if and only if the two agents playing roles r and 7’ are communicating in the same protocol
session.

We say that two sessions ids sid, sid’ € Sld,, are in relation ~ if there are two (not necessarily
different) transitions in tr labelled by o = send(sid, m) and o’ = send(sid’,m’) such that m and

20Hence - is a partial function from terms to terms and L means undefined.
21The definition of r&v? for p > 1 and the following paragraph provide an explanation for choosing this name.
Recall that nonces = (Ai,..., Ay, Na,, N3,,..., N3, ) and rev) = {rev?, [rev?, p/, nonces]a(a,,) ek’ (4, )-
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m/ are accepted, @ = m/ and ™ # L, that is nonces is instantiated by the same term in the two
messages m and m/.

This relation says in fact more about two role sessions: If sid ~ sid’ then for any two
transitions in tr labelled by o = send(sid,m) and o/ = send(sid’,m’) such that m and m’
are accepted and | ¢ {m,m'}, we have that @ = m’/. This is easy to verify using the above
stated property (that is, messages which are sent and accepted in the same role session have the
same nonces field). Another direct consequence is that if in a session sid the agent executing
this session started the second phase (that is he received a valid message m with m # 1) then
sid ~ sid.

But there may be sessions in which agents are still in the initialisation phase. In these sessions
the messages m sent so far have no nonces field and thus the relation ~ doesn’t capture them
(it is not “defined” on these sessions). However we are not interested in these role sessions and
so we do not group them into protocol sessions. But technically we need a partition of all role
sessions, hence we simply consider the reflexive closure of ~, denoted ~’. This means that those
sid € Sld,, for which there is no transition labelled by send(sid, m), with m accepted and m # L,
are only in relation with themselves. The relation ~ is clearly an equivalence relation. We
consider PrtSld to by the quotient set of Sld"(tr) by ~'.

We prove next that the partition PrtSld satisfies the conditions in the definition of honest
executions.

Let us look at the first point of Definition 5.11. Consider two arbitrary session ids sid, sid’ €
SId"(tr) such that sid~'sid" and sid’ #sid. Let sid=(s,r, (a1,...,a;)) and sid= (s, 7/, (a},...,a})).
By the definition of ~ we have that there are two transitions «; = send(sid,m) and oy =
send(sid’,m’) such that m and m’ have the same nonces field (besides other things). Let
fi(sid) = (o,p+ 1) and fi(sid’) = (¢/,p' +1). We have that o(nonces) = o’(nonces). It fol-
lows that Ajo = Ajo’, that is a; = a;- for all 1 < 57 < k. We know that Ngra = n%0s and
N§ o' = n:05" If » =/ then we have in addition that n05" = n@:05" thus s = ¢’ which is
in contradiction with sid £ sid’. Hence r # 7.

Finally, we prove the second point of Definition 5.11. Let ¢ be the index of the analysed
transition o; = send(sid, m) with sid € Sld"(tr), m accepted, m # fake and m = rcvPo, where
sid = (-,r,-) and f;(sid) = (o,p+ 1).

Since tr is an execution trace, H;_1 b rcvho holds. Consider a minimal proof associated with
this deduction. We have rcv) = {[rev?, [revi, p”, nonces]g(a ) ltek/(a,) Where (7, p") = S(r,p).

Since sid € SId"(tr) it follows that A,~o is a non-corrupted agent. Hence H; | ¥ o(sk/(A)).
Thus the message my = o ([rcvy, p”, nonces] g A,,,)) was not obtained by a composition rule. Thus,
in both cases: m obtained by a composition rule or by a decomposition rule, it follows that m;y
is a subterm of a term ¢ in H;_ ;. The term t' was sent at some previous step. Thus there is
i’ < and sid’ € Sld,, such that o; = send(sid’, m’) for some m’ = r’éf/f;a’ and t' = sfﬁ/tf:a’ where
fir(sid") = (o/,7",p" +1). Suppose i is the smallest such index, that is m1 is not a subterm of a
term of Hy_1. We can then have two possibilities.

In the first one, m; is a subterm of sntf:a/. Since sntf: cannot contain the signature sk’(-)
(the source protocol is constructed over X), m; is a subterm of Xo’ where X is a variable of
b "o, But we
have that Hy_1 Fm/. Consider m} be the signed component of m’. Again m/ can be obtained
only by a decomposition rule. Hence again by the locality lemma, m/ is a subterm of a term of
H;_1. But my is a subterm of m/. We have thus obtained a contradiction (i is not the smallest

index such that m; is a subterm of a term of H) which means this case doesn’t occur.

’ ’ __
sntf,. Hence mq is also a subterm of rcvf,a’ and moreover a subterm of m’' = rcv
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In the second possibility, m; = [[sntf:,p’,nonces]]sk/(Ar,)o’. It follows that o(nonces) =
o' (nonces) which implies that sid ~ sid’. We also have p’ = p”. From A,nc = A.0’ we ob-
tain that " = r". Let 7/, p/, be such that S(r), p;) = (+’',p’). They exists and are unique by the
definition of executable protocols. But since S(r,p) = (r”,p”) and (", p") = (',p') it follows

! —_—~
that r; = r and p/; = p. Finally, since also snt?,0’ = rcvi’o, we obtain that m = snt’.

5.5.6.2 Proof of Lemma 5.13

First, note that all terms ¢ € H are equal to sAchfa/ for some f’, sid’, r and p with sid =
(,7,-), f'(sid) = (¢/,p+ 1) and if p > 1 and rcv! # init then these terms are of the form
{Im’, [m’, p, o’ (nonces) g (a) ek (5)- Second, remark that it is sufficient to prove the desired prop-
erty for all t € H. The generalisation to deducible messages follows easily. Hence it is sufficient
to prove that whenever Xo occurs in some sfr\ftfa’ then rcvl # init, p > 1 and sid’ is an honest
session id.

Let tr = (Sldo, fo, Ho) e (Sldy,, fn, Hy) be a trace of I and X be a variable of II.
We suppose without loss of generality that X = Nf% for some 7 € [k] and j > 0. Take (Sld, f, H)
an arbitrary global state of tr and let ¢ be the index of this global state in tr. Consider an honest
session id sid € SId"(tr) and let sid = (sg, 7o, ) and f(sid) = (o, ).

We prove first that N i?a is a nonce created in an honest session.

If 7 = ry then we have that NZFJ = n%J_ Suppose T # ro. This means that NZP was
not initialised in sid by a new transition but by a «;, = send(sid, m) transition with ior < 1,
m accepted, m # init and pp > 1, where f;,(sid) = (c0,po + 1). We have NZFO' = Nifao. Let
(r1,p1) = S(ro,po)- Since tr is an honest trace (by Lemma 5.12), there are sid; € fsid] and
i1 < ip such that sid; = (s1,71,-) and f; (sid;) = (o1,p1 + 1) for some uid s; and substitution
1. We have Nj g = Ni‘Fol. If 7 = ry then N)) o1 = n%J:51 where sid; = (s1,71,-). Otherwise,
continuing in the same way for at most ¢ steps we will certainly find some index [, 0 <1 < k
such that 7 = r; (this is because there are k different roles). Hence anyhow NV 134?0 = n%Jist, To
ease the notation we denote it by n.

If H; = H;_; then it is sufficient to prove the property for i — 1. Hence consider that ¢ is such
that H;\ H;_1 # 0. It follows that o; = send(sid’, m) for some sid’ € Sld; (clearly a; # corrupt
since Hy ¥ n). Also m = revlo’ where f;(sid’) = (o/,p + 1).

We reason by induction on 3.

Suppose that ¢ is the smallest index such that n occurs in a term of H;. It follows that
n € st(sntto’). Then n € st(Yo’) where Y is a variable of snt’.

If Y is not a variable of rcv? then from the definition of executable protocols we know that
Yo' is a new nonce or key, or an agent identity. Hence Y = N Z{T or K i{r or A’ for some j’ and A’.
That is, Yo' is a constant just like n; thus Yo/ = n. Since n = n®J it follows that A,0’ = a7,
j = 7" and sid’ = (s;,7,-). Hence sid’ = sid;. This means that sid’ is an honest session id. Suppose
p < 1. Then Y = NQT and thus 57 = 0 which is a contradiction. Hence p > 1 and thus in this
case the property is true.

Otherwise, if Y is a variable of rcv then n € st(rcvlo’), that is n € st(m). Since H;—1 - m,
it follows that n € st(H;_1), which is in contradiction with ¢ being the smallest index such that
n € st(H;).

Suppose now that i is arbitrary. We have n € st(H; U {snt.o’}). For the occurrence of n
in H; 1 then the conclusion follows by induction hypothesis. Consider an occurrence of n in
snt’o’. If n occurs in Yo' where Y is not a variable of rcv? then, as in the previous paragraph,
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the conclusion simply follows. Suppose that n occurs in Yo where Y is a variable of rcvk.
Then n occurs in m. Since m is deducible from H; 1 and in H;_; all occurrences of n are as
required by the induction hypothesis, it follows that the same thing happens in m. That is,
m = m”[gr?cf:a”] and n occurs in sfﬁ/tf:a” where f;(sid”) = (¢”,p’ + 1) for some p’ > 1 and honest
session sid” € Sld; with sid” = (-,7’,). If the occurrence of sArftf:a” in m = rcvlo’ is in Yo' then
the conclusion follows, as this means that sfr\ftga” occurs in sntho’. Otherwise it must be the case

that m = snto”. Then o'(nonces) = ¢”(nonces). And since sid” is an honest session id and
p’ > 1 we obtain that also sid’ is also an honest session id and p > 1.

5.5.6.3 Proof of Theorem 5.10

To formally prove the transfer theorem, we need one more lemma, which says that every honest
protocol session in the transformed protocol executes exactly like an honest protocol session in
the initial protocol without intruder interference. To state this formally we need some auxiliary
definitions first.

Since for a session in the transformed protocol there are more actions (corresponding to the
initial phase), we define the actions we are interested in.

Let IT be an executable protocol. For an honest trace tr = (Sldo, fo, Ho) 20, 2
(S, fn, Hy,) and a partition [sid] where sid € SId"(tr) we define Ix(tr,[sid]) to be the set of
indexes ¢ such that:

e o; =new(r,aq,...,ax), where sid = (-, -, (a1,...,ax)), or

e a; = send(sid’,m) and sid’ € [sid], m accepted, and m = revEo, p > 1, where sid’ = (-,r,-)
and f;(sid’) = (o,p + 1).

Note that the definition of Ix(tr, [sid]) does not depend on the representative sid.
Also, we write Exec™(II) for the set of honest execution traces of II.

Lemma 5.14 Let I be a protocol and II the corresponding transformed protocol. Then Vtr €
Exec™(IT), Vsid € SId"(tr), there are try € Exec? (1), sidg € Sld(trg) and bijections T : Ix(tr, [sid]) —
Ix(tro, [sido]), g : Ag(sid) — Ag(sidg) and ¢ : [sid] — [sidg] such that Vsid' € [sid], the same
role plays in sid’ and ¢(sid"), and Vi € Ix(tr), fg(i)(go(sid’)) = (00,p) with 0 = og o g where
fi(sid) = (o,p), tr = (fi,+,"); and trg = (fJO,',-)j. Moreover, for these trg, sidg and bijections
the converse also holds, that is, Vsidy € Sld(trg), Vig € Ix(tro), fz-1(0)(¢ " (sidp)) = (o,p) with
o = oy og where fl% (sidy) = (00, p).

The proof of this lemma consists of a simple rewriting of the definition of honest traces into
the definition of honest, single session traces.

We now proceed with the proof of the theorem. Consider an arbitrary closed formula ¢ € £’
such that IT =Pt ¢.

Let tr € Exec(Il) = (Sld,, f,, H,)1<,<n. From Lemma 5.12 we know that tr € Exec(II). Also
let 0 € LS, p(tr) such that NC(o(4;)) holds for all 1 <1 < k. Hence there are an index ¢ with
1 < < n and a session id sid € Sld(tr) such that sid = (-,r,-) and f,(sid) = (o,p). Moreover,
sid € Sld"(tr). We can suppose that ¢ € Ix(tr,sid) because otherwise it would be easy to find
another index which has this property.

Applying Lemma 5.14 we obtain that there are try € Exec!(II), sidy € Sld(tr) and bijections
T : Ix(tr, [sid]) — Ix(tro, [sido]), g : Ag(sid) — Ag(sidg) and ¢ : [sid] — [sidp] satisfying certain
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properties. In particular, if we let sid; = ¢(sid) and o = Z(¢) then we have f(sidy) = (00,p)
with 0 =0 o0g.

Also, since trg is an honest, single session trace by its definition, we have that sid; is an honest
session id. Then NC(op(A4;)) is true in trg for all 1 <[ < k. From the hypothesis we know that
[¢,tro] = 1. Hence, since the left hand side of the implication holds for trg, it follows that also
the right hand side holds for trg and g € LS, p(tro), that is for (o and sid;.

Fix an arbitrary ¢. What we have to prove depends on the form of the subformula in the
right hand side of the implication.

Consider first that Q; = 3. Since [¢,tro] = 1, there exist ¢y in Ix(tro, [sid;]) and sid; €
Sld(trg) such that the formulas 7! ( us, ;)[UO/C]["O/g] hold for all j € J;, where sidj, = (-, 7;,) and
ff; (sidy) = (0§, pi). Let / =7~ 1(L0) and sid’ = ¢~!(sid). Again by Lemma 5.14 we have that
fu(sid") = (o/,p;) with ¢/ = o} 0 g. Since o, ¢’ are equal with oy, o, respectively, modulo the
same bijective renaming g of agent identities, then it follows easﬂy that ¢ us, ;)["/g]["//gi] are
true for all j € J;. Hence the formula 3¢; € LSy, p, e, ]( i ;) is true.

Consider now that Q; = 3!. The existence of ¢/ and sid’ is assured as in the previous
paragraph. Let ¢(X) with X a nonce (or key) variable be a subterm in u; or vj- for some j € J;
with 77 € {=}.

Concerning uniqueness, assume there exist sid” € Sld(tr) and " € Ix(tr) such that, in particu-
lar (uf} = v} Al "/ ], where sid” = (-,7;,-) and fur(sid”) = (o ”,pz) Consider an occurrence of
¢(X) say in uf, at position ¢. There is an occurrence q in v with ¢ < ¢ such that (v )|qr =q(Y)
or (vi)ly = gZ(Y) where Y is a variable. Since we have uniqueness in the passive, smgle session
case then (U;-)|q/ = ;(Y). Hence Xo occurs in both Yo’ and Yo”.

If Y was received in session sid” then there is an action o,y = send(sid”,m) such that

m = rAcT/fzé?’, fur(sid”) = (0',p" + 1), fur_1(sid") = (6,p') and 0 was not defined on Y. We also
have ¢” extends 6 hence in particular Yo” = Y6. If Y was created (i.e. was initialised by a new
action) in sid” then it was also sent within some message m = sfn/tflﬂ, again with ¢” extending 6.
In both cases, since m is deducible from the intruder’s knowledge and Xo occurs in m we can
apply now Lemma 5.13 to obtain that sid” is an honest session id and o”(nonces) = o(nonces).
If Y was also received in session sid’ then we can prove similarly that ¢’(nonces) = o(nonces).
Intuitively, different role sessions can’t be played by the same role (i.e. r;) in the same protocol
session hence sid’ = sid”. Formally, this is obtained from the equality Ngri o = Ngri o taking

into account that NgT_ was initialised in both sessions.

Finally consider that Q; = V.

Suppose that there are ' and sid’ such that 77 (u, UJ)["/g]["//g | does not hold for some j € J;
where sid’ = (-,7;,-) and f,(sid") = (o ’,pz) That is (u} = v} )["/g]["//gi]. Let ¢(X) with X a
nonce (or key) variable be a subterrn in uj (the case UJ is syrnrnetric). Then, as before Xo
occurs in Yo" where ¢” = o or ¢ = o', If o” = o' then again using Lemma 5.13 it follows
that sid’ is an honest session and o’(nonces) = (nonces) Hence sid’ € [sid]. Let ¢, = Z(//) and
sidy = @(sidj). We have (from Lemma 5.14 again) that o/ = o, 0 g. Hence (u =} )[”O/C]["O/gz]
which is a contradiction with the hypothesis for trg, tg and oy. Hence the supp051t10n we made
is false.
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5.6 Conclusions

We have presented a general transformation for security protocols that essentially prevents an
active adversary to interfere with the executions of the protocol that involves only honest parties.
An important consequence of our transformation is that it enables a transference theorem of a
non-trivial class of security properties from a setting where no adversary is present to a setting
where a fully active adversary may tamper with the protocol execution. The security properties
that are transferred include secrecy and various formulations of authentication.

Finally, our transformation makes quite heavy use of expensive cryptographic primitives. It
is thus important to look for simpler transformations, and several possibilities can be explored.
We could exchange and authenticate encryption keys in the preliminary phase by using the
existing public key infrastructure, instead of using a new such infrastructure. We could also
use other primitives like signcryption (a public key cryptosystem for both signing and encrypt-
ing), symmetric encryptions and macs, or use hybrid encryption (combine public and symmetric
encryption).
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Conclusions and perspectives

In this thesis we have contributed to the analysis of security protocols in symbolic models by
investigating less explored cryptographic primitives, security properties, and approaches to pro-
tocol analysis.

Concretely, the work done in this thesis is summarised below:

e We have formulated the constraint system approach [MS01| for arbitrary trace security
properties and we have proved that its complexity is NP-time, as long as the security
property can be decided in polynomial time on simpler constraint systems (i.e. on solved
forms). As a consequence, we obtain an alternative proof of the complexity (i.e. NP-
completeness) result [RT01] for secrecy for a bounded number of sessions, in the context
of constraint systems.

e We have applied the mentioned generic approach to the problem of detecting key cycles
and proved that this problem is NP-complete for a bounded number of sessions. As another
application of this approach, we have also showed that secrecy remains NP-complete for
protocols which use timestamps.

e We have provided a resolution strategy for deciding a new class of Horn clauses modeling
protocols which use CBC encryption or blind signatures. We have applied this strategy to
the Needham-Schroeder symmetric key protocol which has a flaw when implemented with
CBC encryption. We have fixed the protocol and automatically proved the correctness of
the fixed version of the protocol.

e We have related the two standard secrecy notions, “simple” (reachability-based) secrecy
and “strong” (equivalence-based) secrecy, by giving sufficient syntactic conditions on the
protocols for simple secrecy to imply strong secrecy. In this way, for (the class of) pro-
tocols satisfying these conditions, we are able to transfer the existing results obtained for
simple secrecy to strong secrecy. As examples, we proved that the Yahalom, Otway-Rees,
and Wide-Mouthed-Frog protocols preserve the strong secrecy of exchanged keys for an
unbounded number of sessions.

e We have presented a transformation that maps a protocol secure in an extremely weak
sense (essentially in a model where no adversary is present) into a protocol that is secure
against a fully active adversary which interacts with an unbounded number of protocol
sessions. The transformation preserves a large class of trace security properties containing
secrecy and authentication.
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Perspectives

Models for security protocols We have basically used two kinds of models for specifying
security protocols in this thesis: one using pattern-matching and one using explicit destructors.
It would be interesting to know precisely the differences between them, both at the modeling
level and at the level of security guarantees. That is, is one of them able to express more
protocols, or more faithfully some protocols? And are there attacks that can be captured within
one model and cannot be captured within the other? J. Millen [Mil03|, and Ch. Lynch and
C. Meadows [LMO05]| have performed such a comparison, but only in concrete settings (i.e. for
symmetric and asymmetric encryption respectively), while we would like to work in a general
setting (e.g. with arbitrary primitives exhibiting algebraic properties). We believe that we have
already set up in Chapter 1 a part of the formalism necessary to perform such a comparison.

Constraint systems and key cycles For a bounded number of sessions, we have treated
arbitrary trace properties by expressing them as predicates on lists of messages. It would be
nicer to express properties by formulas in some logic, as was done for example by R. Corin
et al [CSE05] using a variant of LTL. However, to decide such security properties, they used
the Millen-Shmatikov procedure as a black box, while we could also obtain the complexity of
checking them.

We have handled several notions of key cycles. However, still other variants of key cycles (or
similar conditions) may already exist or appear in the future. It would then be nice to have a
formalism which would allow to verify such properties in a modular manner.

Also, our approach is valid for a bounded number of sessions only. Secrecy is undecidable
in general [DLM04| for an unbounded number of sessions. Such an undecidability result could
be easily adapted to the problem of detecting key cycles. Several decidable fragments have been
designed [RS03, CLC03a, BP03b, VSS05| for secrecy and an unbounded number of sessions. We
plan to investigate how such fragments could be used to decide key cycles. An approach could
be to encode Laud’s deduction system [Lau02| (for detecting key cycles in the passive case) into
Horn clauses, and then to reuse or extend an existing fragment of Horn clauses to decide the
satisfiability of the resulting set of clauses.

From a practical point of view, as the CL-AtSe back-end |Tur(06] of the Avispa tool [ABBT05]
basically shares the same underlying ideas as the constraint system approach, we hope that CL-
AtSe can be relatively easily extended in order to handle key cycles and timestamps.

Transformation from insecure to secure protocols In Chapter 3, we have applied our
resolution strategy for debugging of a protocol under a more realistic threat model than the
one usually considered. We have transformed this protocol so that it falls into the scope of our
Horn class. This transformation preserves the attacks and therefore the correctness of the target
protocol ensures the correctness of the initial one. The transformation is interesting in itself. We
would like to further investigate this type of transformations and to characterise the protocols
to which they can be safely applied.

From simple secrecy to strong secrecy We plan to further investigate the active case of our
transfer result by trying to relax our conditions. There are several possible directions. Firstly,
we may consider specific classes of protocols by restricting the syntax (for instance considering
ping-pong protocols such as in [AC02, HS05]) to see whether it is possible to refine our results in
this setting. Secondly, we may relax the requirement that processes cannot test over the secret
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by requiring instead that the two branches of the test are indistinguishable. This is the case
for example when a test is followed in each branch by other tests that will never succeed when
the first one is really applied to a secret data. This would require to consider more complex
over-approximations of the set of sent messages. In particular, in the definition of the set £(P),
we would have to consider trees instead of just paths potentially leading to the secret.

Transformation to obtain secure protocols Our transfer result was established for proto-
cols using standard Dolev-Yao primitives. We believe that we could relatively easily extend the
result such that to allow arbitrary primitives (with their properties) in the initial protocol. We
also plan to investigate compositionality issues related to the transformation. For example, is the
transformed protocol still secure when used in parallel with other (non-)transformed protocols?

One interesting avenue for future research it to obtain more general transference theorems
between the properties of the original protocol and those of the transformed protocol. It would
be also interesting to investigate the modular development approach implied by our results. In
particular, it would be interesting to design a language for building “naive” specification which
can then be compiled into secure protocols using our transformation.

Finally, from an efficiency perspective, it is important to look for simpler transformations
that make lighter use of cryptographic primitives, perhaps at the expense of ensuring weaker
security guarantees for the resulting protocol. We note that the Katz and Yung compiler [KY03]
is one example of such a transformation which deserves further investigation.
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