
HAL Id: tel-00338362
https://theses.hal.science/tel-00338362

Submitted on 12 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sécurité des protocoles cryptographiques : décidabilité
et résultats de transfert

Eugen Zalinescu

To cite this version:
Eugen Zalinescu. Sécurité des protocoles cryptographiques : décidabilité et résultats de transfert.
Génie logiciel [cs.SE]. Université Henri Poincaré - Nancy I, 2007. Français. �NNT : �. �tel-00338362�

https://theses.hal.science/tel-00338362
https://hal.archives-ouvertes.fr

Département de formation doctorale en informatique École doctorale IAEM Lorraine

UFR STMIA

Sécurité des protocoles

cryptographiques: décidabilité et

résultats de transfert

THÈSE

présentée et soutenue publiquement le 17 décembre 2007

pour l’obtention du

Doctorat de l’université Henri Poincaré – Nancy 1

(spécialité informatique)

par

Eugen Zălinescu

Composition du jury

Président : Yassine Lakhnech Université Joseph Fourier, Grenoble

Rapporteurs : Jean Goubault-Larrecq École Normale Supérieure de Cachan
Thomas Wilke Université Christian-Albrechts, Kiel

Directeurs : Véronique Cortier CNRS, Nancy
Michaël Rusinowitch INRIA, Nancy

Examinateurs : Philippe Even Université Henri Poincaré, Nancy
Cédric Fournet Microsoft Research, Cambridge

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Mis en page avec la classe thloria.

AbstractThis thesis is developed in the framework of the symbolic analysis of security protocols. Thecontributions are represented by decidability and transfer results in the following directions whichare major topics in protocol veri�cation:
• treatment of the cryptographic primitives: CBC encryption, blind signatures;
• security properties: strong secrecy, existence of key cycles;
• approaches for protocol security: construction of the secure protocols.Thus, we showed the decidability (on the one hand) of the existence of key cycles for abounded number of sessions using a generalised constraint system approach, and (on the otherhand) of secrecy for protocols using the CBC encryption or blind signatures for an unboundednumber of sessions by using a re�ned resolution strategy on a new fragment of Horn clauses.We also transferred protocol security from a weak framework towards a stronger frame-work in the following directions. On the one hand, we showed that a weak property of secrecy(i.e. reachability-based secrecy) implies under certain well-motivated assumptions a stronger se-crecy property (i.e. equivalence-based secrecy). On the other hand, we built protocols secureagainst active adversaries considering an unbounded number of sessions, by transforming proto-cols which are secure in a non-adversarial setting.Keywords: security protocols, decision procedures, CBC encryption, blind signatures, key cy-cles, strong secrecy, constraint systems, Horn clauses, applied pi calculus.RésuméCette thèse se situe dans le cadre de l'analyse symbolique des protocoles Les contributions sontreprésentées par l'obtention de résultats de décidabilité et de transfert dans les directions suiv-antes qui sont des thèmes majeurs en véri�cation des protocoles :
• traitement des primitives cryptographiques : chi�rement CBC, signatures en aveugle;
• propriétés de sécurité : secret fort, existence de cycles de clefs;
• approches pour la sécurité : construction de protocoles sûrs.Ainsi, nous avons montré la décidabilité (d'une part) de l'existence de cycles de clefs et(d'autre part) du secret pour des protocoles utilisant le mode de chi�rement CBC ou des signa-tures en aveugle.Nous avons aussi transféré la sécurité des protocoles d'un cadre faible vers un cadre plusfort dans les sens suivants. D'une part, nous avons montré qu'une propriété de secret faibleimplique sous certaines hypothèses une propriété de secret plus forte. D'une autre part, nousavons construit des protocoles sûrs à partir de protocoles ayant des propriétés plus faibles.Mots-clés: protocoles de sécurité, procédures de décision, chi�rement CBC, signatures en aveu-gles, cycles de clefs, secret fort, systèmes de contraintes, clauses de Horn, pi-calcul appliqué.iii

iv

AcknowledgmentsFirst of all, a big and warm thank-you to Véronique Cortier. I am grateful for the con�dence shehas shown to me, for her great and constant availability, for her clear and precise answers to myquestions. I cordially thank Michael Rusinowitch for his encouragements, especially during thebeginning of writing, and in general, for his valuable advices, and for having o�ered an auspiciousatmosphere for the development of the thesis.I also strongly thank the members of my jury for having accepted to be part of it. I particu-larly thank the reviewers, Jean-Goubault Larrecq, for his very careful reading of the manuscriptand for his relevant remarks, and Thomas Wilke, for his observation that led to an alternativetreatment of complexity in Chapter 2 (see �2.2.6), and for having bravely endured a presentationin a language that was not his.A friendly thanks to Bogdan Warinschi for his support and optimism, and for the manydiscussions we had during his post-doc at Nancy. I also thank R. Ramanujam who warmlywelcomed me in his team at IMSC, Chennai.I thank Cornelius Croitoru and Dorel Lucanu, professors at the Faculty of Computer Scienceof Ia³i, for helping me to continue my studies in France, and Philippe Langevin, supervisor ofmy master's internship, who encouraged and helped me to pursue a PhD thesis.I thank Cédric Fournet for accepting me as a post-doc in his team at Microsoft Research-INRIA Joint Centre, and my new collaborators Ricardo Corin and Karthik Bhargavan for theirpatience and understanding during the �nal phase of the writing of this document.Finally, I thank my friends and my family for their precious support during these three years.

v

vi

Contents
Introduction1 Cryptographic protocols . 111.1 Communication protocols. Terminology 111.2 The intruder . 121.3 Security properties . 131.4 Cryptographic primitives . 131.5 Attacks . 152 Analysis of cryptographic protocols . 162.1 Symbolic veri�cation of security protocols 182.2 Linking the symbolic and cryptographic approaches 212.3 Decidability and transfer results . 223 Contributions and plan of the thesis . 223.1 Part I. Decidability results . 233.2 Part II. Transfer results . 24Chapter 1Models for cryptographic protocols1.1 Preliminaries . 281.1.1 Terms over order-sorted signatures . 281.1.2 Positions and subterms . 291.1.3 Substitutions . 311.1.4 Equational theories and rewriting systems 331.1.5 Term deduction systems . 341.2 Cryptographic primitives and messages . 341.2.1 A sort system for cryptographic protocols 361.2.2 A signature for cryptographic protocols 371.2.3 Two deduction systems for cryptographic protocols 381.2.4 On the use of a third deduction system 42vii

Contents 1.2.5 The deduction problem . 431.3 Roles . 441.3.1 Speci�cation of roles . 441.3.2 Execution of roles . 441.3.3 Executable roles . 461.3.4 Roles with matching and roles with equality tests 471.4 Protocols . 481.4.1 Speci�cation of protocols . 481.4.2 Execution of protocols . 481.4.3 Executable protocols . 50Part I Decidability results 53Chapter 2Decidability results using constraint systems2.1 The model . 562.1.1 Constraint systems . 562.1.2 From protocols to constraint systems 572.1.3 Security properties . 582.2 Simplifying constraint systems . 602.2.1 Simpli�cation rules . 602.2.2 Decision procedure in NP-time . 612.2.3 Correctness . 632.2.4 Completeness . 652.2.5 Termination in polynomial time . 682.2.6 An alternative approach to polynomial-time termination 712.3 Decidability of some specialised security properties 732.3.1 Detection of key cycles . 732.3.2 Secrecy for protocols with timestamps 822.4 Conclusions . 84Chapter 3Decidability results for Horn clauses3.1 The model . 853.1.1 Horn clauses . 863.1.2 From protocols to Horn clauses . 87viii

3.2 A fragment of Horn clauses . 903.2.1 Intruder clauses . 903.2.2 Protocol clauses . 913.2.3 Extending the intruder power . 913.3 A decidability result . 933.3.1 Ordered resolution . 933.3.2 Our resolution method . 943.3.3 A decidable class . 953.3.4 Examples . 973.3.5 Proofs of intermediate results . 983.4 Application to the Needham-Schroeder symmetric key protocol 1023.4.1 Presentation of the protocol . 1023.4.2 Correcting the protocol . 1033.4.3 A transformation preserving secrecy 1043.4.4 Secrecy of the corrected protocol . 1063.5 Conclusions . 107Part II Transfer results 109Chapter 4From simple secrecy to strong secrecy4.1 The model . 1134.1.1 The applied pi calculus . 1134.1.2 Modeling protocols within the applied pi calculus 1154.1.3 Secrecy properties . 1184.2 Passive case . 1204.2.1 Simple secrecy implies strong secrecy 1204.2.2 Generalisation of well-formed frames 1224.3 Active case . 1264.3.1 Our hypotheses . 1264.3.2 Main result . 1304.3.3 Proofs of intermediate results . 1324.4 Application to some cryptographic protocols 1354.4.1 Yahalom . 1354.4.2 Needham-Schroeder symmetric key protocol 1354.4.3 Wide Mouthed Frog Protocol (modi�ed) 136ix

Contents4.5 Conclusions . 137Chapter 5A transformation for obtaining secure protocols5.1 Comparison with Katz and Yung's compiler 1415.2 The model . 1425.3 Security properties . 1445.3.1 A logic for security properties . 1445.3.2 Examples of security properties . 1465.4 Transformation of protocols . 1475.5 Transfer result . 1485.5.1 Honest, single session traces . 1485.5.2 Transferable security properties . 1495.5.3 Transference theorem . 1495.5.4 Honest executions . 1505.5.5 Proof sketch of the transference theorem 1515.5.6 Detailed proofs . 1525.6 Conclusions . 157Conclusions and perspectivesBibliography 163

x

IntroductionCommunication protocols are ubiquitous nowadays, being essential for the correct functioning ofa wide range of applications involving electronic communicating devices. They are thus present inour now common activities, like talking on the mobile phone, chatting and emailing, watching ca-ble TV, or shopping on the internet. In many such applications security is of primary concern.Wewant our communications to be private, our data to be unmodi�ed during its transmission, tobe sure of the identity of our communication partner.Security protocols are then designed to ensure such goals, and they use cryptography toobtain the basic building bricks. However, even if these bricks are perfectly secure, the way theyare combined in order to obtain a protocol is very important. Indeed, many protocols which werebelieved to be correct were later found to have �aws (not at all related to cryptanalysis). These�aws can thus be used by malicious entities, and can lead to major negative consequences oncethe protocol is already deployed, as the same �aw can be used over and over again until a patchis released. It is hence particularly important to perform careful analyses of security protocolsin order to be sure that they do achieve the goals they are designed for.1 Cryptographic protocols1.1 Communication protocols. TerminologyA simple communication protocol is the one used when two people are meeting for the �rst time,and may be described as follows:
A ⇒ B : �Hello, I am A.�
B ⇒ A : �I am B. Nice to meet you.�We see that a protocol is a sequence of rules, each one specifying the sender (A in the �rstrule), the receiver (B in the �rst rule), and the message sent by the sender. In a protocol eachparticipant plays a certain role. Here there are two: the initiator A and the responder B. Thesymbols A and B (abbreviations for Alice and Bob) in the right hand side of rules are genericnames which denote the identities of the initiator and the responder respectively. In speci�csituations we need to instantiate this description (that is, the generic parts) to obtain the actualsequence of exchanged messages, thus talking about a session of the protocol. We may alsoinstantiate only some role thus obtaining a role session. Participants, either generic or concrete,are also called agents, principals, or parties.For example the role of Bob may be played by b, where b is some agent identity. Nothingprevents b from playing, in another session, the role of A. Moreover these sessions could be runconcurrently, in other words their rules may be interleaved. For example, the following execution11

Introductionis possible:
(1).1 a(A) ⇒ b(B) : �Hello, I am a.�
(2).1 b(A) ⇒ c(B) : �Hello, I am b.�
(2).2 c(B) ⇒ b(A) : �I am c. Nice to meet you.�
(1).2 b(B) ⇒ a(A) : �I am b. Nice to meet you.�Here the numbers in parenthesis denote the session, and the numbers that follow denote theindex of the rule within a session. Also, b(A) denotes that the participant b is playing the roleof Alice. A run of the protocol is the execution of a single session.Each protocol is designed to achieve a certain goal. In the example above the goal is thatthe participants introduce themselves. The goal can be expressed by one or more properties theexecutions of the protocol should satisfy. Properties are generally dependent on the environmentin which the protocol is deployed. Suppose, using the same example, that the participants wantto have a con�dential conversation. If their conversation takes place in a public place or overthe telephone, the communication is clearly unsafe, since a malicious entity can listen to theconversations (without the participants even noticing it).The situation is much the same when protocols are deployed over computer networks, wherethe endpoints are programs (or computers). Consider for example the Simple Mail TransferProtocol, which can be schematically1 described by:

A ⇒ S : �mail from:�, A, �rcpt to:�, B, �data�, msg, �.�
S ⇒ B : msgHere `,' denotes the concatenation of messages and S denotes the role of the mail server. Auser A simply speci�es the sender (himself), the intended recipient B, and the content msgof the email. The main goal of this protocol is to send mail over the Internet, its correctnessbeing formulated with respect to this requirement. However we see that the content of a mailis not protected from disclosure or tampering, and the participants need not be the ones theypretend to be (e.g. a can send a message starting with �mail from: c� instead of �mail from: a�).Indeed, malicious actions, like eavesdropping, tampering with, or forging messages, can be easilyperformed by a corrupted server, a malicious agent, or a packet sni�er. Hence it is desirable toensure properties that show the impossibility of such actions. Such properties which rely on theexistence of a malicious environment are called security properties and protocols which aim atguaranteeing them are security protocols.1.2 The intruderSecurity properties are particularly important mainly when the environment is unsafe. Hencewhen talking about security protocols we always assume a malicious environment. Concretelythis environment takes the form of an agent with special capabilities, called the intruder anddenoted I, also known as adversary, attacker, or penetrator. It is assumed that he can listento the communication and hence knows all the messages that were sent on the network. If hiscapabilities are restricted to this one, we talk about a passive intruder. An active intruder cando much more. R. Needham and M. Schroeder [NS78] �rst described the capabilities of an activeintruder:We assume that an intruder can interpose a computer in all communication paths,and thus can alter or copy parts of messages, replay messages, or emit false material.1This description is approximate since each of the three parts of the �rst message are in fact sent sequentiallyand are followed by acknowledgements of the server; also, the second rule is not part of the protocol itself.12

1. Cryptographic protocolsAn intruder (being an agent) can play a role in the protocol, but he need not follow the rules ofthe protocol, as honest agents do. Moreover, he knows all the private data of corrupted agents,thus being able to play their roles without the others agent's notice. Also it is assumed thatdishonest agents (i.e. that do not follow the protocol) are part of the malicious environment andare hence represented by the intruder. In other words, dishonest agent and corrupted agents arethe same concept.1.3 Security propertiesSecrecy and authentication are basic properties that are required in many generic applications.Some speci�c applications however need properties tailored to their needs. For example, incontract-signing protocols we may ask for properties like fairness and non-repudiation, while invoting protocols anonymity (of the voters) and coercion-resistance are needed. Specifying andanalysing these properties may also require dedicated techniques (for example from game theory).Secrecy This property usually speci�es that some messages should be known only by someagents, in particular they should not be known by the intruder. However we sometimes alsorequire that the intruder is not able to infer anything about the secret messages. This is equivalentto saying that the intruder is not able to distinguish between executions of the protocol in whichthe secrets were replaced by arbitrary messages. To di�erentiate between the two versions ofsecrecy we call the former one simple secrecy and the latter one strong secrecy. Still anothervariant is when some values are to remain secret after revealing some other secret values, aproperty known as forward secrecy.Authentication This property holds if the agents have proven their identity (to some otheragents) in some way. Depending on the mechanism used to achieve it and/or on how muchassurance is needed there can be many variants of this property. For example, it could be statedin an absolute way: the agents are right about the identities of their communication partners;or, depending on the mechanism that is used for authentication: the agents agree on some values(what was sent is what was received).We have mentioned that the intruder has control over the communication, in particular heknows and is able to modify the messages which are sent over the network. Hence security prop-erties could not be satis�ed if we didn't have tools for ensuring the con�dentiality and integrity ofmessages. Fortunately such tools exist, being provided and guaranteed by cryptography. Securityprotocols are thus also called cryptographic protocols.1.4 Cryptographic primitivesCryptographic tools have existed from ancient times, serving mostly military purposes, but itis only with the advent of electronic devices that cryptography has become an established andgeneral purpose �eld (see, e.g., [MVO96, Sch93] for introductory texts).Cryptographic primitives are the basic operations from which security is built. They operateon bitstrings. The most used operations are encryption, which provides message con�dentiality,hashing, which assures message integrity, and digital signing, which provides message originauthentication.Encryption hides information, while decryption reveals it. These operations are parame-terised by keys which allow the same schema to be used by di�erent parties. The information in13

Introductionclear used as input to the encryption algorithm is called plaintext, while the encrypted informa-tion (i.e. the output) is called ciphertext.Symmetric encryption In such encryption schemes the same key is used to encrypt and todecrypt a message. Hence two parties share a key in order to be able to communicate securely,thus the alternative name shared-key encryption. The symmetric encryption of the plaintext Mwith the key K is denoted {{M}}K .Encryption of a message is usually done by cutting the message into several blocks of �xed-length and then using a block cipher (like DES or the more recent AES). The encryption modespeci�es the way the block cipher is used to obtain the ciphertext. The simplest mode, calledECB (electronic codebook), operates by encrypting each block independently, the ciphertextbeing the concatenation of the results, that is the encryption of the message block sequence
P1P2 · · ·Pn (where some bits may be added to Pn such that every block has the same length)with the key K is {{P1}}K{{P2}}K · · · {{Pn}}K .In other modes, like the CBC (cipher-block chaining) mode, the encryption of a block dependson the encryption of the previous block. In the CBC mode (illustrated in Figure 1), the encryptionof P1P2 · · ·Pn with K is C1C2 · · ·Cn where C0 = IV (initialisation vector) and Ci = {{Ci−1 ⊕
Pi}}K for i ≥ 1, with ⊕ being the exclusive or (XOR) operation on bits.

EK EK

1P 2P P3

0
C

2C C31C

EK

...

...Figure 1: CBC encryption mode.Encryption in the CBC mode has the following pre�x property: if C1C2 · · ·CiCi+1 · · ·Cn =
{{P1P2 · · ·PiPi+1 · · ·Pn}}K then C1C2 · · ·Ci = {{P1P2 · · ·Pi}}K . That is to say that one (e.g. anintruder) can get {{P}}K from {{P,P ′}}K if the length of P is a multiple of the block length usedby the cryptographic algorithm. Note that encryption in the ECB mode also has the pre�xproperty.Asymmetric encryption In such encryption schemes, a.k.a. public-key encryption schemes,each user a has a pair of keys, the public key ek(a), used for encryption, and the private key dk(a),used for decryption. Public keys are made available to anyone, while private keys are known onlyby the owner. The encryption of a message M is this time denoted {[M]}ek(a). The security ofpublic-key encryption relies on the di�culty to solve problems like integer factoring (as for theRSA system [RSA78]) or the discrete logarithm problem (as for the ElGamal system [Gam85]).Symmetric encryption algorithms are several orders of magnitude faster than asymmetricones. However, they are impractical in large networks due to the large number of keys neededto be exchanged a priori. Hence, the two systems are complementary and are frequently usedtogether: public-key encryption is �rst used for establishing a session key, which is used insubsequent symmetric encryptions.14

1. Cryptographic protocolsDigital signatures Digital signature schemes are used to bind a message with an entity: theycompute a digital signature from the message and a private key of the entity (signing key).Given a signature and a veri�cation key, which is public, one can check the authenticity of thesignature. In other words, anyone can verify a signature but only the possessor of the signingkey can sign.In certain situations, for example in voting protocols, it is useful that a party signs messageswithout knowing them. This can be done using blind signatures schemes. For instance, such ascheme allows an agent (e.g. a voter) to have a message (e.g. a vote) signed blindly by an anotherentity (e.g. an administrator). In a typical implementation, the message is �rst blinded and thensigned, to obtain a blind signature. Later on, the inverse operation of blinding, unblinding, canbe applied on the blinded signature to obtain a valid signature on the initial message. Theseoperations are illustrated in the Figure 2 (where m is the message, r is the �blinding key�, and
k is the signing key).

mm m mr k rFigure 2: Blind signatures.Hashing A hash function associates a (short) �xed length bitstring to an arbitrary lengthmessage. In cryptographic applications hash functions are one-way operations. Using hashfunctions, data integrity of a message can be veri�ed easily, provided a hash of that message wassecurely stored. Indeed, it su�ces to compute again the hash of the message and compare itwith the stored one.Cryptographic primitives may be probabilistic (or deterministic) depending whether somerandomness is used (or not) when applying the primitive. Thus, when applied twice to the sameinputs a probabilistic primitive gives two di�erent outputs (except with negligible probability).Besides cryptographic primitives, other basic elements present in security protocols are noncesand timestamps. Nonces are random numbers used no more than once for the same purpose, upto some negligible probability. Nonces and timestamps are intended to provide uniqueness ortimelineness guarantees.1.5 AttacksA famous cryptographic protocol is the Needham-Schroeder public key protocol2 [NS78]:
A⇒ B : {[Na, A]}ek(B)

B ⇒ A : {[Na, Nb]}ek(A)

A⇒ B : {[Nb]}ek(B)The goal of the protocol is the mutual authentication between A and B, meaning that if Bob has�nished its run then he indeed played his role with Alice (as he believes he did), and symmetricallyfor Alice. She initiates a session by creating a fresh nonce Na, concatenating it with her identity,encrypting the result with the public key of Bob and sending the encrypted message to him.Bob answers by copying the received nonce (the �rst component obtained after decrypting the2Though over-cited, we believe that it still serves best as a pedagogical example. 15

Introductionreceived message with his private key), appending his own freshly generated nonce, encryptingthe message with the public. Finally, Alice sends back to Bob his nonces encrypted with hispublic key. The role of nonces is to ensure authentication: only Bob can read the �rst messageand �nd out the value of Na, hence only he could have sent the second message. Similar reasoningapplies for Nb.Consider however the following execution:
(1).1 A ⇒ I : {[Na, A]}ek(I)

(2).1 I(A) ⇒ B : {[Na, A]}ek(B)

(2).2 B ⇒ I(A) : {[Na, Nb]}ek(A)

(1).2 I ⇒ A : {[Na, Nb]}ek(A)

(1).3 A ⇒ I : {[Nb]}ek(I)

(2).3 I(A) ⇒ B : {[Nb]}ek(B)Alice is starting a communication with a corrupted agent I (she is probably unaware of the agentbeing corrupted). The agent I is able to build the second message and to impersonate Alice toBob. Thus Bob answers and his message is forwarded to Alice as coming from I (steps 3 and 4).Alice continues as expected (step 5), and again I impersonates Alice to Bob (step 6). Hence atthe end of his run, Bob believes that he is talking with Alice while in fact he is talking with I.So the authentication of Alice to Bob doesn't hold.The above description corresponds to an attack, that is a sequence of actions that the intruderperforms in order to falsify a certain security property, that is to break it. Remark that the attackdoesn't rely on the weakness of any of the cryptographic primitives, which are supposed to besecure, but on the logical �aws of the protocol (there is no information in the second message todeduce where the message comes from).The above attack is an example of a man-in-the-middle attack. There are also other typesof attacks, like:
• replay attacks, when the �aw is obtained by replaying some old messages (i.e. that havebeen sent previously, in the same or in other protocol runs);
• type-�aw attacks relying on a message of a certain type (e.g. an identity) being misinter-preted as a message of another type (e.g. a nonce);
• guessing attacks in which some secret message (e.g. a password) can be relatively easyguessed (because its set of possible values is small) and the guess can be checked forvalidity.Coming back to the above protocol, the creators of the protocol were aware that it may be�prone to extremely subtle errors� and acknowledged that techniques to verify the correctnessof security protocols are strongly needed. Indeed even though man-in-the-middle attacks wereknown before, it took 17 years to �nd such errors, the mentioned attack being discovered byG. Lowe [Low96].2 Analysis of cryptographic protocolsDevelopment of protocols. Mainly two steps are performed before the deployment of acryptographic protocol: the �rst one is the design of the protocol and the second one is thevalidation of the protocol. There is an implicit loop here, the design being re�ned until theprotocol is �nally considered secure. There is thus a tight dependency between these two steps.16

2. Analysis of cryptographic protocolsThe design is guided by the security goals the protocol should verify and by the context inwhich it is deployed. The context, which can be given by the network structure (e.g. privatevs. public channels, cable vs. wireless networks), the number of participants, their architecture(e.g. servers vs. clients, programs vs. hardware devices) and so on, imposes a number of con-straints, like e�ciency or limited resources. Hence the constraints can vary greatly, and this is areason why there are plenty of protocols for achieving the same security goals.As we have seen in the above example, informal arguments are not enough to validate secureprotocols. And it is not a singular example. Indeed many of the released security protocols have�aws whether it is about �toy� protocols (used for study in the academic community) e.g. [Low96,CJ97, Spo], or about �real� protocols (used by the industry) as in [CJT+06]. It is hence clearthat rigorous analysis methods are mandatory to validate security protocols. Moreover, due tothe large number of protocols and variants of them, and also due to the complexity of theiranalysis, (full or at least partial) automation is also a strong desiderata, both during the designprocess and after their release.Two �worlds� for veri�cation. For about 20 years (from late 70's to late 90's) two distinctand seemingly unrelated approaches have been used for rigorous validation of protocols. Themodels that these approaches use are called on the one hand symbolic models (a.k.a. Dolev-Yao, formal or abstract models), and the other hand cryptographic models (a.k.a. probabilistic,computational or concrete models). In the symbolic models, messages are modeled by elements(or equivalence classes) in a term algebra that the adversary can manipulate using a �xed set ofsymbolic operations. Thus these models introduce abstractions, which allow simpler reasoningabout security of protocols, but are subject to questions about their faithfulness with respect toreality. In the cryptographic models, messages are bit strings and the adversary is an arbitraryprobabilistic polynomial-time Turing machine. Being close to reality, results in these modelsyield strong security guarantees, but the validation proofs are often quite involved and onlyrarely suitable for automation (see e.g. [GM84, BR93]). It is only recently that automatic toolshave appeared [BL06, Bla07] for cryptographic models.The symbolic approach From now on we focus on the symbolic �world� (although referencesto the other world may occur).Following previous work of R. Needham andM. Schroeder [NS78], D. Dolev and A. Yao [DY83]performed the �rst analysis in a symbolic model, hence the alternative name of this approach.A very important implicit abstraction introduced by their work is that encryption is perfectin the sense that no (not even partial) information about the plaintext can be obtained froma ciphertext without knowing the decryption key. When generalising this hypothesis to arbi-trary cryptographic primitives we talk about the perfect cryptography hypothesis. Subsequently,S. Even and O. Goldreich [EG83] showed that secrecy is undecidable (even for protocols withoutnonces). This showed that the analysis is indeed a di�cult problem, and that further abstractionsor restrictions need to be formulated to tackle the problem.Starting from these seminal works a new topic has emerged: the symbolic veri�cation ofsecurity protocols, with the objectives: rigorous, automatic and faithful analysis of protocols.The results can be classi�ed in number of ways: chronologically, by the class of protocols, by theset of primitives, by the type of attack or by the security property under study, by the aim ofthe analysis, by the model or by the method used in analysis, by the level of automation, etc.We will try in the following to sketch some of these criteria, focusing only on some of them. 17

Introduction2.1 Symbolic veri�cation of security protocolsSymbolic approaches mainly focused, as we do, on key exchange and authentication protocols.However, as the applications of protocols have diversi�ed and the veri�cation methods havebecome more mature, voting protocols [DKR06], contract-signing protocols [KKW05], recur-sive protocols [KKW07], web-services protocols [BFG04, CLR07] etc. are being analysed usingsymbolic methods.2.1.1 Security propertiesA �rst di�culty of symbolic veri�cation is to formally express the security properties thatare expected. As we have seen, even a basic property such as secrecy admits two di�er-ent acceptable de�nitions, namely reachability-based (simple) secrecy and equivalence-based(strong) secrecy, and these notions seemed unrelated [Aba00]. However, a quite surprising re-sult (see [CW05]) states that the cryptographic counterparts of the two notions (simple secrecycan be translated into a similar reachability-based secrecy notion, and strong secrecy is close toindistinguishability�a standard security de�nition in cryptography) are related: cryptographicsimple secrecy actually implies indistinguishability in the cryptographic setting.Authentication has even more variants. They are often formulated by means of correspondingassertions [WL94]. G. Lowe has given a hierarchy of formulations [Low97], going from aliveness(which only requires that, when the authenticating agent �nishes a run, the authenticated agenthas at least participated in some run) to injective agreement which requires that to each run ofthe authenticating agent there is a unique corresponding run of the authenticated agent suchthat the two agents agree on some values.Simple secrecy and authentication properties are usually expressed by predicates on traces(sequences of states and/or actions describing the execution of the system composed by a protocoland its environment), which have been intensively studied in the context of concurrent systems(but without considering security). Nevertheless, many other properties, like strong secrecy,anonymity, fairness, non-repudiation are not trace properties. The techniques used to treatthese properties are usually di�erent, and more subtle and involved. Some of these propertieshave only recently received proper formal de�nitions (see [CDE05] for guessing attacks, [KKT07]for properties of contract-signing protocols, or [DKR06] for properties of voting protocols). Wemainly focus in this thesis on trace properties and in the rest of this section on simple secrecy.2.1.2 Primitives and their propertiesWhile the set of studied primitives is rather standard (symmetric and/or asymmetric encryption,digital signatures), it is the amount of faithfulness in capturing their properties that varies.Many cryptographic functions admit simple algebraic properties. For example, concatenationis associative, encryption is homomorphic in ECB mode, has the pre�x property in CBC modeetc. In standard Dolev-Yao models, which assume the perfect cryptography assumption, theseproperties are ignored. For example, concatenation is modeled by pairing (denoted 〈m,m′〉)which is non-associative, that is 〈m1, 〈m2,m3〉〉 6= 〈〈m1,m2〉,m3〉. These algebraic properties canbe exploited by intruders, and thus attacks may be missed if they are not taken into account.Moreover, such properties may be crucial too for a proper working of the protocol, as it isthe case for some voting protocols which explicitly rely on the properties of blind signatures.Therefore, a lot of recent work has focused on weakening the perfect cryptography assumption,e.g. [AF01, CLS03, CD05, CR06].18

2. Analysis of cryptographic protocols2.1.3 ApproachesSecurity protocols are di�cult to verify due to their in�nite nature, given by several elements:the exchanged messages can have any size, they can use any number of new keys and nonces,the number of participants and sessions are not bounded. Indeed, focusing on reachability-basedsecrecy, several undecidability results show that these elements contribute to the di�culty of theproblem. Thus, the problem remains undecidable even if one bounds the size of messages (seee.g. [DLMS99, AC02]), or the number of nonces generated during the execution of the protocol(see e.g. [CC05]). One then needs to �nd alternative approaches to the generic veri�cationproblem.Search for attacks Since most attacks involve only a few messages and sessions, an approachis to �rst search for attacks, by considering only a subset of all the possible executions.Indeed, most of the �rst automatic tools for protocol analysis were model-checkers (likeFDR [DNL99], Murφ [MMS97], or Brutus [CJM00]) which did discover many interesting attacks(see e.g. [Low96]). Such tools represent protocols as �nite-state machines (and security prop-erties by temporal logic formulas), usually by considering only messages of bounded size and a�nite number of sessions. Another possibility for bounding the search space is to consider, asin [DLM04], messages of bounded size and a �nite number of nonces, which leads to searchingfor the secret in a �nite intruder knowledge.Assuming a �nite number of sessions, but no bound on the message size, the search spacebecomes again in�nite. The standard way to approach this setting is to use �symbolic� tech-niques (which, intuitively, use symbolic states to represent sets of concrete states), as �rstsuggested by the work of A. Huima in [Hui99]. The secrecy problem was then proved to beNP-complete in this setting by M. Rusinowitch and M. Turuani [RT01]. The same setting wasformalised by J. Millen and V. Shmatikov in [MS01] as a constraint system problem (an attackis expressed as a sequence of constraints that the intruder should solve). To solve constraintsystems, these are �rst transformed to simpler constraints, usually called solved forms, by usinga small set of simpli�cation rules (testing the satis�ability of these constraints is much moreeasy). Compared to [RT01], presenting the decision procedure using a small set of simpli�-cation rules makes it more easily amenable to further extensions and modi�cations. Indeed,constraint systems have become the standard model when considering a bounded number ofsessions (see e.g. [CLS03, BCD07, DLLT07, CDL06] for results concerning algebraic propertiesdeveloped within this framework.) The same approach is used to handle arbitrary trace proper-ties in [CSE05, Cor06], and equivalence-based properties like strong secrecy and guessing attacksin [Bau05, Bau07]. Also, several tools [CE02, Tur06] have been developed for verifying protocolsfor a bounded number of sessions.Proof of correctness Searching for attacks is an e�ective method, but it does not guaranteethe correctness of a protocol. And, as we saw, the automatic veri�cation of arbitrary protocolsis not possible. Then, one can either renounce full automation, or use semi-decision procedures,or restrict the considered class of protocols, or still, perform some approximations (or considercombination of these possibilities).Indeed, one of the �rst tools which does not restrict in any way the model is the NRL protocolanalyser [Mea96] of C. Meadows. However, the user needs to interact with and �help� the tool inorder to obtain an answer. In the same vein are the approaches which use theorem provers, likethe inductive approach of L. Paulson [Pau98] which uses Isabelle to prove security properties.19

IntroductionIf one does want full automation and no loss of generality then one needs to cope withsemi-decision procedures which �nish if there is an attack (and say so), but need not �nish if theprotocol is correct (and thus may fail to say so). In this category we �nd tools like Casrul [JRV00]or Athena [SBP01].However, it is often the case that semi-decision procedures take too long before giving ananswer (if they ever would). Then another way to proceed is to introduce approximations or ab-stractions in the model. These approximations need to be correct: if the protocol is proved secureusing them then it is indeed secure (i.e. without them). The drawback is that approximationsmay introduce false attacks. An example of such analysis is the use of tree automata to recognisean over-approximation of the intruder knowledge, as it has been done in [Mon99, GK00, Gou00]or in the tool TA4SP [ABB+05]. Vice-versa, one can under-approximate the in�nite set of �safe�messages as it has done in the Hermes tool [BLP03] by using a symbolic representation based onpatterns. Still another example is the use of Horn clauses to represent (rules of) protocols. Hornclauses usually abstract away sessions and order of execution of rules, since they can be used anynumber of times. However, the advantage of this modeling is that one can then use e�cient res-olution strategies to search for proofs. This approach was pioneered by Ch. Weidenbach [Wei99],and it gave rise to an e�cient tool, ProVerif [Bla01]. Moreover, reference implementations ofprotocols written in C or ML can be veri�ed, by extracting a set of Horn clauses which is thenpassed on to tools like SPASS, h1, or ProVerif (see respectively [GP05] and [BFGT06]).Even if the problem is undecidable in general one can still hope that it is decidable for arestricted (but still large) class of protocols. And indeed several such classes have been exhibited.A �rst decidability result was obtained in [DEK82] for the class of ping-pong protocols, protocolsin which participants have no memory and can thus only apply some sequences of unary operatorson the last received message and send the result back. This is however not a realist setting. Next,in the context of model-checking �nite representations of protocols, G. Lowe showed in [Low99]that under strong restrictions on protocols this method is complete. Such restrictions imposedfor example the absence of �blind copies�; a blind copy is the transfer by a participant of anunknown data from the received message to the sent message. In [CLC03a], this restrictionwas relaxed by allowing one blind copying, but the analysis only considered a �nite numberof nonces. Ramanujam and Suresh [RS03], considering again no blind copies, showed that fortagged protocols (protocols for which all encryptions in the speci�cation contain a di�erenttag, and which are thus distinguishable also in the execution) secrecy is decidable, even forprotocols with nonces. A similar result [BP03b] is obtained for a simpler tagging scheme, but inthe context of Horn clauses (which, as we mentioned, introduce approximations), showing thatProVerif always terminates for tagged protocols. All these decidability results show that a classof more �realistic� protocols for which the secrecy problem to be decidable could still be found.Correctness by design A completely di�erent approach is to avoid the veri�cation prob-lem, simply by designing from the start provably correct protocols. To our knowledge, in thecryptographic world this was not explored mainly because of the di�culty to produce proofsof correctness. Indeed, only a few protocols are having such proofs in a cryptographic set-ting [War05, BP03a, BCJ+06] (the situation is likely to change due to the development of auto-matic tools in this setting). However, a similar but slightly di�erent approach is rather pervasivein cryptographic design: one starts with the design of a simple version of a system intended towork in restricted environments (i.e. with restricted adversaries) and then obtain, via a generictransformation, a more robust system intended to work in arbitrary environments. For example,Goldreich, Micali, and Wigderson show how to compile arbitrary protocols secure in the presence20

2. Analysis of cryptographic protocolsof participants that honestly follow the protocol (but may try to learn information they are notentitled to) into protocols secure in the presence of participants that may arbitrarily deviatefrom the protocol [GMW87]. Bellare, Canetti, and Krawczyk have shown how to transform aprotocol that is secure when the communication between parties is authenticated into one thatremains secure when this assumption is not met [BCK98].In the symbolic world, few tools have been developed having as goal the automatic synthesisof secure protocols. For example, Perrig and Song [PS00] describe a tool which mainly worksby exhaustively searching the protocol space and invoking Athena to test for the correctness ofeach generated protocol. However, due to the huge search space, the tool is limited to generateonly three party protocols.Symbolic approaches that focus on modular protocol design include the following ones. Datta,Derek, Mitchell, and Pavlovic [DDMP05] propose a framework for deriving security protocolsfrom simple components such as nonces, certi�cates, encrypted or signed messages. Securityproperties are thus added to a protocol through generic transformations. M. Abadi, G. Gonthier,and C. Fournet [AFG02] give a compiler for programs written in a language with abstractionsfor secure channels into an implementation that uses cryptography with the aim to eliminatecryptographic security analysis in involved settings.Finally, let us recall also that an often used technique is to patch �awed protocols and then toargue that the patched protocol is this time correct. Recently, this method has been automatedin [LMH07].2.2 Linking the symbolic and cryptographic approachesAs we have mentioned, two independent approaches have been developed for the analysis ofsecurity protocols. Nevertheless, in the late 90's these approaches have started to be related(see [PSW00, LMMS98, AR00] for some seminal works in this direction). For example, oneparticularly interesting path, opened by M. Abadi and P. Rogaway [AR00, AR02], consists inproving that the abstraction of cryptographic primitives made in the Dolev-Yao model is correctas soon as strong enough primitives are used in the implementation. The goal is to obtain thebest of both worlds: relatively simple, automated security proofs that entail strong securityguarantees. For example, in the case of asymmetric encryption, it has been shown [MW04a] thatthe perfect encryption assumption is a sound abstraction for encryption schemes satisfying theIND-CCA2 property, which corresponds to a very high and well-established security level.However, it is not always su�cient to �nd the right cryptographic hypotheses. Symbolicmodels may need to be amended in order to be correct abstractions of the cryptographic models.This is in particular the case for symmetric encryption. For example, in [BP04], M. Backes andB. P�tzmann consider extra-rules for the formal intruder in order to re�ect the ability of a realintruder to choose its own keys in a particular manner. A more widely used requirement is tocontrol how keys can encrypt other keys. In a passive setting, soundness results [AR02, MW04b]require that no key cycles can be generated during the execution of a protocol. Key cyclesare messages like {{k}}k or {{k1}}k2 , {{k2}}k1 where a key encrypts itself or more generally whenthe encryption relation between keys contains a cycle. Such key cycles have to be disallowedsimply because usual security de�nitions for encryption schemes do not provide any guaranteeswhen such key cycles occur. In the active setting, the typical hypotheses are even stronger. Forinstance, in [BP04, JLM05] the authors require that a key k never encrypts a key generatedbefore k, or, more generally, that it is known in advance which key encrypts which other key.More precisely, the encryption relation has to be compatible with the order in which keys aregenerated, or more generally, it has to be compatible with an a priori given order on keys. We21

Introductionnote that the absence of key cycles and related properties are not only trace properties butalso message structure properties, and thus cannot be treated by standard techniques for traceproperties.2.3 Decidability and transfer resultsWe have already seen that one can attack the veri�cation problem from di�erent angles: eitherdirectly by searching for decidability results, or indirectly by transferring a problem from onesetting to another setting in which the problem is solved or simpler. This was the case fortransformations of protocols which are (in)secure in one setting to protocols which are securein a stronger setting; or for soundness results of symbolic models with respect to cryptographicmodels. Let us mention one more such example.There are many di�erent models in which one reasons about security protocols, like processalgebras (spi calculus, applied pi calculus, and variants), strand spaces, multiset rewriting, �rst-order logics etc. It is generally accepted that a characterisation of security protocols obtainedin one model also holds in di�erent models. For example, we say that the secrecy problem isNP-complete for a bounded number of sessions but we do not specify the model in which this wasproved. However, only a few rigorous comparisons between models exist [CDL+00, AB02, Bla05].We can also see them as transfer results.3 Contributions and plan of the thesisIn a phrase, the contributions of this thesis consist in improving the state of the art in thesymbolic veri�cation of cryptographic protocols while studying less explored features of in thefollowing directions:
• cryptographic primitives: CBC encryption, digital blind signatures;
• security properties: strong secrecy, existence of key cycles;
• approaches to security: transferring security from weaker to stronger settings, transformingprotocols.These features have been studied before, but (at least at the beginning of this thesis) theyrepresent(ed) a relative small fraction of the vast body of literature on cryptographic protocolswhich mainly focused on:
• cryptographic primitives: Dolev-Yao primitives (i.e. mainly pairing and perfect encryption);
• security properties: simple secrecy, authentication;
• approaches to security: direct veri�cation of existing protocols.We have thus also tackled (though not directly) two important related topics: weakeningthe perfect cryptography hypothesis (by considering the pre�x property of encryption in CBCmode), and linking the symbolic and cryptographic approaches (by considering the existence ofkey cycles). Others, for example G. Bana [Ban05], S. Delaune [Del06], P. Lafourcade [Laf06],P. Adão [Adã06], R. Janvier [Jan06], L. Mazaré [Maz06], M.Baudet [Bau07], have recently focuseddirectly on these topics in their theses.22

3. Contributions and plan of the thesisPlan of the thesis After giving the necessary preliminary de�nitions, we present in Chapter 1how security protocols are modeled. The particular model we choose is inspired from the symbolicmodel of D. Micciancio and B. Warinschi [MW04a] and is rather standard for modeling anunbounded number of sessions. It has the advantage of being intuitive and explicit (w.r.t. to theactions of the intruder and of other agents). Whenever we work in a di�erent model we describebrie�y its relationship with this reference model.According to the classi�cation given in the previous section we separate our contributionsby the approach: a direct one (obtaining decidability results) and an indirect one (obtainingtransfer results). Each main contribution is then presented in di�erent chapters, as shown next.3.1 Part I. Decidability results3.1.1 Chapter 2. Deciding the existence of key cyclesA �rst contribution is an NP-complete decision procedure for detecting the generation of keycycles during the execution of a protocol, in the presence of an active intruder, for a boundednumber of sessions. This procedure deals with several versions of the de�nition of key cycles(for example, key cycles à la Abadi-Rogaway, or key orders à la Backes). We therefore providea necessary component for the approach which consists in proving security properties in thecryptographic world by starting from security proofs of these properties in the symbolic world(and using soundness results like the ones presented in Section 0.2.2 in order to achieve this).We have obtained the decidability of key cycles by generalising the constraint system ap-proach. Indeed, we use the same simpli�cation rules as in [CLS03], but in addition we show thatthis method is applicable to any security property that can be expressed as a predicate on theprotocol trace and the agent memories. Compared to [CLS03], the framework is also extendedto more general primitives, since we consider sorted terms, symmetric and asymmetric encryp-tion, pairing and signatures (but we do not consider algebraic properties). Moreover, we provetermination in polynomial time of the (non-deterministic) decision procedure. This establishesthe complexity of the constraint system approach, and also of the problem under study (moduloits complexity on solved forms).We further illustrate the applicability of our generic approach, by giving an alternative andsimple proof of the co-NP-completeness of secrecy for protocols with timestamps. We actuallyretrieve a signi�cant fragment of the decidable class identi�ed by L. Bozga et al [BEL04].3.1.2 Chapter 3. Deciding a fragment of Horn clauses for protocols with CBCencryption and blind signaturesWe propose a resolution strategy for deciding a fragment of �rst-order logic that allows one toincorporate the pre�x property of CBC encryption in our protocol modeling and to prove theabsence of attacks exploiting this property. The same fragment applies to abstract properties ofblind signature schemes. The approach follows the line of [CLC03a] but requires a re�ned strategyin order to eliminate the additional clauses generated by resolution due to the new properties. Asa consequence, we obtain that secrecy of cryptographic protocols can be proven for an unboundednumber of sessions, in the case for example of CBC encryption and blind signatures, when noncesare abstracted by constant terms and at most one blind copy is performed at each transition.We apply the veri�cation algorithm to Needham-Schroeder symmetric key protocol, which issubject to an attack when the CBC encryption mode is used [PQ00]. We show how to �x theprotocol and we prove the correction of the resulting protocol. The latter is done automatically,as we have extended a prototype implementation of the procedure in [CLC03a]. 23

Introduction3.2 Part II. Transfer results3.2.1 Chapter 4. From simple to strong secrecyMotivated by the result of [CW05] and the large number of available systems for simple secrecyveri�cation, we initiate a systematic investigation of situations where simple secrecy entails strongsecrecy. This happens in many interesting cases.We o�er results in both passive and active cases in the setting of the applied pi calcu-lus [AF01]. We �rst treat the case of passive adversaries. We prove that simple secrecy impliesstrong secrecy, as long as probabilistic primitives are used, and if the secret is not used to en-crypt messages. The former condition is not a restriction since probabilistic encryption is defacto the standard in almost all cryptographic applications. The latter hypothesis is sustainedby counter-examples. Next, we consider the more challenging case of active adversaries. We givesu�cient syntactic conditions on the protocols for simple secrecy to imply strong secrecy. Intu-itively, we require in addition that the conditional tests are not performed directly on the secretsince such tests may provide information on the value of this secret. We again exhibit severalcounter-examples to motivate the introduction of our conditions. An important aspect of ourresult is that we do not make any assumption on the number of sessions: we put no restrictionon the use of replication. In particular, our result holds for an unbounded number of sessions.The interest of this contribution is twofold. First, conceptually, it helps to understand whenthe two de�nitions of secrecy are actually equivalent. Second, we can transfer many existingresults (and the armada of automatic tools) developed for simple secrecy. For instance, sincethe simple secrecy problem is decidable for tagged protocols for an unbounded number of ses-sions [RS03], by translating the tagging assumption to the applied-pi calculus, we can derive a�rst decidability result for strong secrecy for an unbounded number of sessions for the class ofprotocols satisfying our conditions. Other decidable fragments might be derived from [DLMS99]for bounded messages (and nonces) and [AL00] for a bounded number of sessions. We exemplifyour approach by showing strong secrecy of three protocols from the literature (starting from theknown fact that these protocols satisfy simple secrecy).3.2.2 Chapter 5. A transformation for obtaining secure protocolsFinally, we present a transformation that maps a protocol secure in an extremely weak sense(essentially in a model where no adversary is present) into a protocol that is secure againsta fully active adversary which interacts with an unbounded number of protocol sessions. Thetransformation works for arbitrary protocols with any number of participants, written withusual cryptographic primitives. It provably preserves a large class of trace security propertiesthat contains secrecy and authentication. Conceptually, the transformation is very simple, andhas a clean, well motivated design. Each message is tied to the session for which it is intendedvia digital signatures and on-the-�y generated session identi�ers, and prevents replay attacks byencrypting the messages under the recipient's public key.The table on the next page shows a summary of properties, primitives, approaches, andmodels used in this thesis.The contributions presented in Chapters 2, 3, 4, and 5 have been published in the Proceedingsof LPAR'06 [CZ06], PPDP'05 [CRZ05], CSL'06 [CRZ06], and ESORICS'07 [CWZ07] conferencesrespectively. These contributions represent joint work with Véronique Cortier (in all papers),Michaël Rusinowitch (in the second and the third papers), and Bogdan Warinschi (in the fourthpaper).24

3.Contributionsandplanofthethesis

Ch. Sec. Properties Primitives Approach Model2 2.1, 2.2 trace properties Dolev-Yao search for attacks constraint systems2.3.1 key cycles2.3.2 secrecy (with timestamps)3 secrecy CBC encryption proof of correctness Horn clausesblind signatures4 (simple and strong) secrecy Dolev-Yao transfer applied pi calculus5 trace properties Dolev-Yao transfer trace model [MW04a]Table 1: Summary of properties, primitives, approaches, and models used in this thesis.

25

Chapter 1Models for cryptographic protocols
Contents 1.1 Preliminaries . 281.1.1 Terms over order-sorted signatures 281.1.2 Positions and subterms . 291.1.3 Substitutions . 311.1.4 Equational theories and rewriting systems 331.1.5 Term deduction systems . 341.2 Cryptographic primitives and messages 341.2.1 A sort system for cryptographic protocols 361.2.2 A signature for cryptographic protocols 371.2.3 Two deduction systems for cryptographic protocols 381.2.4 On the use of a third deduction system 421.2.5 The deduction problem . 431.3 Roles . 441.3.1 Speci�cation of roles . 441.3.2 Execution of roles . 441.3.3 Executable roles . 461.3.4 Roles with matching and roles with equality tests 471.4 Protocols . 481.4.1 Speci�cation of protocols . 481.4.2 Execution of protocols . 481.4.3 Executable protocols . 50As mentioned in the introduction we work in so called symbolic (or abstract, Dolev-Yao)models that represent messages by elements (or equivalence classes) in some term algebra. Inthis chapter we mainly present how protocols are modeled within this setting. We start by giving,in Section 1.1, the basic technical de�nitions and notions used throughout this document. Wethen present, in Section 1.2, how messages and the operations on them are represented. Next,in Sections 1.3 and 1.4, we show how we model protocols.27

Chapter 1. Models for cryptographic protocols1.1 PreliminariesThis section mainly introduces the term algebra setting used in this thesis.For a set S we denote by S∗ the free monoid of words over S, by · the concatenation operatorover S and ε the empty word. We may omit the symbol · when writing a word over S. Thecardinality of a set S is denoted by]S. Also we write 2S for the power set of S. By in�nite setwe mean a countably in�nite set (i.e. with the same cardinality as N), and we say that a set isat most countable if it is �nite or countably in�nite. For a natural number n we write [n] for theset {1, 2, . . . , n}, with the convention that [0] = ∅. For a binary relation ρ we denote by ρ+ itstransitive closure and by ρ∗ its re�exive and transitive closure.1.1.1 Terms over order-sorted signaturesLet (Sorts,≤) be a �nite partially ordered set, its elements being called basic sorts. A sort is apair (w, s) ∈ (Sorts∗ × Sorts), denoted s1 × · · · × sn → s if n ≥ 1 and simply s if n = 0, where
w = s1 . . . sn. By language abuse, we often call basic sorts just sorts. Furthermore, we assumethat (Sorts,≤) is a tree, where a tree is a partially ordered set such that for each s ∈ Sorts, theset {s′ ∈ Sorts | s ≤ s′} is well-ordered by the relation ≥ (with s ≥ s′ i� s′ ≤ s).We consider an in�nite set of variables X , and an in�nite set of names N . Each variableand name has associated a unique basic sort, and for each sort there is an in�nite number ofvariables and names of that sort. For a sort s, we denote by Xs (and Ns) the set of variables(and respectively, names) of sort s.Let F be an at most countable non-empty set of function symbols. For each function symbol
f there is a unique associated sort s1 × · · · × sn → s. This association is usually denoted by
f : s1 × · · · × sn → s, and n is called the arity of f . Function symbols of arity 0 are calledconstants. The set of function symbols of sort (w, s) is denoted by Fw,s.The set F is also called a signature. An order-sorted signature3 is a tuple Σ = (Sorts,F ,≤),with (Sorts,≤) and F as above.A term over the signature F is de�ned inductively by:

• elements of X ∪N are terms, and
• if f ∈ F has arity n and t1, . . . , tn are terms then f(t1, . . . , tn) is a term.We denote by T (F ,X ,N) the set of terms over the signature F . We say that a term has sort s,and we denote it t : s, if
• t ∈ Xs ∪ Ns, or
• t = f(t1, . . . , tn), f ∈ Fs1×···×sn→s and t1, . . . tn are terms of sorts s′1, . . . , s

′
n respectivelywith s′i ≤ si for all 1 ≤ i ≤ n.Note that a term has at most one (basic) sort. Terms that do not have a sort are called ill-sorted. In contrast, terms that have a sort are called well-sorted. Remark also that when Sortsis a singleton every term is well-sorted. We denote by Ts(Σ,X ,N) the set of terms of sort s, andlet T (Σ,X ,N)

def
=

⋃
s∈Sorts Ts(Σ,X ,N) be the set of well-sorted terms.3This notion of order-sorted signature is a simpli�ed version of what one usually �nds in the literature (see,e.g. [GM92]), since here function symbols are not overloaded (i.e. they have a unique sort).28

1.1. PreliminariesExemple 1.1 Consider Sorts = {A,B} with A < B, F = {f : A → A, g : A → B}, and x, yvariables of sort A and B respectively. Then f(x) has sort A, g(x) has sort B and f(y), g(y) areill-sorted terms.Unless explicitly mentioned, we consider only well-sorted terms. Thus, and by abuse ofnotation, we usually denote an order-sorted signature Σ by its signature F , especially when theset of sorts is clear from the context.For a set of function symbols F ⊆ F , a set of variables X ⊆ X , and a set of names N ⊆ Nwe denote by T (F,X,N) the set of terms with function symbols in F , variables in X, and namesin N . The sets T (F,X, ∅), T (F, ∅, N) and T (F, ∅, ∅) are abbreviated by T (F,X), T (F,N), and
T (F) respectively. Moreover, we may use simply T instead of T (F,X,N) if the sets F,X,N areclear from the context. We denote the set of variables (names) occurring in a term t by var(t)(respectively names(t)). A term without variables is called ground or closed. If T, T ′ are sets ofterms and t, t′ are terms we abbreviate T ∪ T ′ by T, T ′, T ∪ {t} by T, t, and {t, t′} by t, t′.1.1.2 Positions and subtermsWe denote by N+ the set of positive integers. Then N∗

+ is the set of sequences of positive integers.We call positions the elements of N∗
+. We say that a position p is smaller than a position q, andwe write p ≤ q, if p is a pre�x of q.Given a term t, the set of positions of t, denoted by pos(t), is de�ned inductively as follows:

• if t is a variable or a name then pos(t) = {ε};
• if t = f(t1, . . . , tn) then pos(t) = {ε} ∪

⋃
1≤i≤n{i · p | p ∈ pos(ti)}.Given a term t and a position p ∈ pos(t), the subterm of t at position p, denoted by t|p, isde�ned inductively by:

• if p = ε then t|p def
= t,

• if p = i · p′ then t|p
def
= ti|p′ , where t = f(t1, . . . , tn) for some f ∈ F and some terms

t1, . . . , tn.A term u is a (proper) subterm of a term v i� there is a position p ∈ pos(v) such that u = v|p(and u 6= v). We extend the notion of subterm to sets of terms and say that a term u is asubterm of a set of terms T if u is a subterm of t for some t ∈ T . We write st(t) and st(T) forthe set of subterms of a term t, and of a set of terms T , respectively. We denote by ≤st (<st)the subterm (strict) ordering, with u ≤st v (u <st v) i� u is a (proper) subterm of v.The head symbol of a term t, denoted by head(t), is de�ned by head : T (F ,X ,N) → F ∪
X ∪N , with

• head(t) = t if t is a name or a variable,
• head(t) = f if t = f(t1, . . . , tn).An occurrence of a subterm t′ in a term t is a position p ∈ pos(t) such that t|p = t′. An occurrenceof a function symbol f in a term t is a position p ∈ pos(t) such that the head symbol of t|p is f .Also we write posv(t) for the set of variable positions of t (i.e. occurrences of variables in t), and

posnv(t) for the set of non-variable positions of t (i.e. occurrences of names and function symbolsin t). 29

Chapter 1. Models for cryptographic protocols
h

g

a b

g

a b

b

h

g

a b(a)
f

f1 f2 . . . fk

a1 a2 . . . ak(b)Figure 1.1: (a) The tree and the DAG representations of t = h(g(a, b), g(a, b), b); (b) the DAGrepresentation of f(f1(a1, . . . , ak), . . . , fk(a1, . . . , ak)).For two terms u, v and a position p ∈ pos(t) such that u|p and v have the same sort, u[v]pdenotes the term obtained by replacing in u the subterm at position p by v. Formally we havethe following inductive de�nition:
• if p = ε then u[v]p def

= v,
• if p = i · p′ then u = f(u1, . . . , un) with 1 ≤ i ≤ n, and

u[v]p
def
= f(u1, . . . , ui−1, ui[v]p′ , ui+1, . . . , un).Representations of terms The tree-representation of a term t is the ordered directed tree

G = (V,E) with V = pos(t) and E = {(p, i, q) | p · i = q}, where a triple (n, i, n′) denotes the
i-th outgoing arc from the parent node n (to the child node n′). Remark that the size of thisrepresentation is linear in the number of nodes of the tree.The size of a term t is

|t|
def
=]pos(t)and the size of a set of terms T is |T | def

=
∑

t∈T |t|.In a tree-representation of t, nodes p are in a many-to-one correspondence to subterms of t(i.e. t|p). A more compact representation is obtained by considering a one-to-one correspondencebetween nodes and subterms (see Figure 1.1a).The DAG-representation of a term t is the ordered DAG (directed acyclic graph) G = (V,E)with V = st(t) and E = {(u, i, v) | u = f(u1, . . . , un), v = ui, 1 ≤ i ≤ n}. We observe that]E =∑
u∈st(t) ku, where ku is the arity of the head function symbol of u. Thus]E ≤ k×](st(t)), where

k is the maximal arity of function symbols in the signature (see Figure 1.1b). Supposing thatthe signature is �xed, and that DAGs are implemented with lists, the size of this representationis linear in the number of subterms. Given a set of terms T , a single DAG can represent allterms in T (consider this time V = st(T)) provided that for each term there is pointer to thecorresponding node in the graph. Observe that the number of terms in T , thus of pointers, issmaller than the number of subterms of T , thus the size of the representation of T is still linearin the number of subterms of T .The dag-size of a term t is
|t|dag

def
=]st(t)and the dag-size of a set of terms T is |T |dag

def
=]st(T).30

1.1. Preliminaries1.1.3 SubstitutionsA substitution is a function σ : X → T (F ,X ,N) from variables to terms. We say that asubstitution σ preserves sorts if for any variable x, σ(x) is well-sorted and if x has sort s and
σ(x) has sort s′ then s′ ≤ s. Note that if u is well-sorted and σ is sort-preserving then σ(u) iswell-sorted. Moreover, if u is not a variable then u and σ(u) have the same sort. Unless explicitlymentioned, we consider only sort-preserving substitutions.Exemple 1.2 Consider the sorts Nonce < Msg, x, y variables of sort Nonce and Msg respec-tively, n a name of sort Nonce and t a term of sort Msg. Then σ1 and σ2 given by σ1(x) = n,
σ1(y) = t, and σ2(y) = n, are sort-preserving substitutions, while σ3 given by σ3(x) = t does notpreserve sorts.For a substitution σ we de�ne the domain of σ: dom(σ)

def
= {x ∈ X | σ(x) 6= x} and therange of σ: ran(σ)

def
= {σ(x) | x ∈ dom(σ)}. The substitution σ with dom(σ) = ∅ is called theempty substitution or the identity substitution. A substitution σ uniquely extends to a function

σ : T (F ,X ,N) → T (F ,X ,N) from terms to terms, de�ned inductively in the following way:
• if t = x is a variable and x ∈ dom(σ) then σ(x) = σ(x),
• if t = x is a variable and x /∈ dom(σ) then σ(x) = x,
• if t = n is a name then σ(n) = n,
• if t = f(t1, . . . , tn) then σ(t) = f(σ(t1), . . . , σ(tn)).We overload the notation and denote this extension in the same way, i.e. σ instead of σ, withoutloss of precision.The application of a substitution σ to a term t is also written tσ. Similarly, for a set ofterms T , Tσ denotes σ(T), that is {tσ | t ∈ T}. A substitution is ground or closed if var(σ) is aset of ground terms. We denote var(σ)

def
= var(ran(σ)).When the domain of a substitution σ is �nite then we may denote it as σ = { t1/x1 , . . . ,

tn/xn},where dom(σ) = {x1, . . . , xn} and σ(xi) = ti for all 1 ≤ i ≤ n. If u and v are two terms then theterm u[v/x] is the term u where each occurrence of x has been replaced by v, that is u[v/x]
def
= uσwhere σ = { v/x}.A renaming ρ is a substitution with ran(ρ) ⊆ X such that its restriction on dom(ρ) is aone-to-one function. If θ and σ are two substitutions then σθ denotes their composition, thatis x(σθ) def

= (xσ)θ = θ(σ(x)). It follows that t(σθ) = (tσ)θ. A substitution θ is an extensionof a substitution σ if dom(σ) ⊆ dom(θ) and xθ = xσ, for all x ∈ dom(σ). A substitution σis a restriction of a substitution σ if θ is an extension of σ. Given two substitutions σ and σ′with disjoint domains, the union of σ and σ′, denoted σ] σ′, is de�ned by (σ] σ′)(x) = σ(x) if
x ∈ dom(σ), and (σ] σ′)(x) = σ′(x) if x ∈ dom(σ′).A substitution σ is cyclic if there exist x1, . . . , xn ∈ dom(σ) with n ≥ 1 such that xi+1 ∈
var(xiσ) for all 1 ≤ i ≤ n, with xn+1 = x1. A substitution σ is idempotent if σ = σσ, or,equivalently, if var(ran(σ)) ∩ dom(σ) = ∅. Note that idempotent substitutions are acyclic. Weonly consider acyclic substitutions.If u and v are terms then a uni�er of u and v is a substitution σ such that uσ = vσ. We saythat u and v unify if they have a uni�er.For unsorted signatures, it is well-known (see, e.g. [FB01]) that if such a uni�er exists thenthere exists a most general uni�er θ, denoted by mgu(u, v), such that for all uni�er σ there31

Chapter 1. Models for cryptographic protocolsexists a substitution σ′ such that σ = θσ′. The following proposition shows that this is also thecase for the order-sorted signatures we consider here, where we say that θ is a most general sort-preserving uni�er if for all sort-preserving uni�er σ there exists a sort-preserving substitution σ′such that σ = θσ′.Proposition 1.3 If u and v are well-sorted terms that have a sort-preserving uni�er then thereexists a most general sort-preserving uni�er of u and v.Proof Let θ be a (possibly not well-sorted) most general uni�er of u and v.For each y ∈ var(θ), we de�ne the set Sy = {si | x ∈ dom(θ), p ∈ pos(xθ), xθ|p = y, p =
q · i,head(xθ|q) = f, f : s1 × . . . sn → s} ∪ {s | x ∈ dom(θ), xθ = y, x of sort s}.Let σ be an arbitrary sort-preserving uni�er of u and v. Thus σ = θσ′ for some substitution σ′with dom(σ′) ⊆ var(θ). Consider an arbitrary variable y′ ∈ var(θ) and let s′ be the sort of y′σ′.We prove next that s′ ≤ s, for any s ∈ Sy′ .We distinguish two cases depending on how s was obtained. If s is the sort of some x ∈ dom(θ)with xθ = y′, then xσ = y′σ′ and hence s′ ≤ s, using the fact that σ is sort-preserving. If s isgiven by the sort of the function symbol f above y′ in xθ for some x ∈ dom(θ), then again s′ ≤ s,as y′σ′ is a subterm right below f in the well-sorted term xσ. Hence, in both cases, s′ ≤ s.We de�ne now ρ as the renaming which substitutes each variable y in var(θ) with a newvariable z of sort sy, where sy is least sort in Sy. Note that sy is well de�ned. Indeed, supposethat s1 and s2 are two distinct minimums of the above set. Thus s1 and s2 are not comparable.Let s′ be the sort of yσ′. We have shown that s′ ≤ s1 and s′ ≤ s2. This is in contradiction withthe tree structure of Sorts.Let θ0 = θρ. For any x ∈ dom(θ0), xθ0 is well-sorted (this is given by the construction of
ρ). And since the sort of xθ0 equals the sort of xσ, it follows that θ0 is sort-preserving. Finally,
σ = θ0(ρ

−1σ′) and ρ−1σ′ is sort-preserving. Indeed, for any z ∈ dom(ρ−1σ′), zρ−1σ′ is well-sorted, being a subterm of ran(σ). And, as zρ−1σ′ = yσ′ where y = ρ−1(z), the sort of zρ−1σ′is smaller or equal than the sort of z (which is sy).As σ was arbitrarily chosen, it follows that θ0 is a most general sort-preserving uni�er of uand v.Exemple 1.4 Note that if the basic sorts only form a lattice, the above proposition does not hold.Indeed, let us consider the 6 di�erent sorts s0, s1, s
′
1, s2, s

′
2, s3 with s0 ≥ s1, s1 ≥ s′1, s2 ≥ s′2, s1 ≥ s′2,

s2 ≥ s′1, s′1 ≥ s3, and s′2 ≥ s3. Taking x : s1 and y : s2, σ1 and σ2 given by xσ1 = yσ = z1 : s′1 and
xσ2 = yσ2 = z2 : s′2 are sort-preserving un�ers of x and y. However, there is no most-generalsort-preserving uni�er of x and y: suppose that there is such a uni�er θ with xθ having somesort s. Then s ≤ s1, s ≤ s2 (as θ is sort-preserving). Also, as z1 : s1 = xσ1 = (xθ : s)σ′ forsome sort-preserving σ′, it follows that s1 ≤ s. Hence s = s1, and analogously s = s2, whichconstradicts the fact that the sorts s1 and s2 are di�erent.A context with n holes is a function λx1, . . . , xn.t, where t is a term. The application ofthe context C = λx1, . . . , xn.t to the terms t1, . . . , tn is C[t1, . . . , tn]

def
= t[t1/x1] . . . [

tn/xn] (wherebounded variables x1, . . . , xn are �rst renamed if they also occur in ti). When the variables xioccur exactly once in t, they may be replaced by holes, denoted []. In this case, we suppose thatthe variables are renamed such that the occurrence of xi corresponds to the i-th hole (the order isgiven by a traversal of the tree-representation of t which respects the order of children). In otherwords, C[t1, . . . , tn] is obtained by replacing the i-th hole with ti. The empty context is λx.xand is denoted by []. We extend all de�nitions regarding terms to contexts C = λx1, . . . , xn.t by32

1.1. Preliminariesapplying them to t, while considering var(C) = var(t) \ {x1, . . . , xn}. For example, C is groundif var(t) = {x1, . . . , xn}.1.1.4 Equational theories and rewriting systemsAn equation over the signature F is a unordered pair of terms {u, v}, denoted u .
= v (or v .

= u),with u, v ∈ T (F ,X ,N) having the same sort. An equational presentation E over the signature
F is a set of equations over F , such that for any (u

.
= v) ∈ E , names(u, v) = ∅. The equationaltheory induced by E on T (F ,X ,N), denoted =E , is the smallest congruence such that uσ =E vσfor all equations (u

.
= v) ∈ E and all substitutions σ. We often don't distinguish between anequational theory and its equational presentation.A rewrite rule over the signature F is a pair of terms (u, v), denoted u → v, with u, v ∈

T (F ,X) having the same sort. A rewriting system R over the signature F is a set of rewriterules over F .A term t rewrites to or reduces to a term t′, denoted by t → t′, if there exists a position
p ∈ pos(t), a rewrite rule (u → v) ∈ R and a substitution σ such that t|p = uσ and t′ = t[vσ]p.We may write t p

→R t′ to specify the position p at which the reduction takes place. We mayalso drop the subscript and simply write t → t′ if R is clear from the context. The inducedrelation on terms →R is called the reduction relation, t →R t′ is also called a reduction step, anda sequence of reduction steps is called a reduction sequence. The relation ↔R is the symmetricclosure of →R.The equational theory associated to a rewriting system R is E(R)
def
= {u

.
= v | (u→ v) ∈ R}.By Birkho�'s theorem (1935), we have u ∗

↔R v if and only if u =E(R) v. The other way around,the rewriting system associated with an equational theory E is
R(E)

def
= {u→ v | (u

.
= v) ∈ E ∨ (v

.
= u) ∈ E}.That is, R(E) is obtained by orienting in both directions the equations of E . We then have

u =E v if and only if u ∗
↔R(E) v.A term t is a or in normal form i� there is no term t′ such that t →R t′. We say that aterm t has a normal form i� there is a normal form t′ such that t →∗

R t′. A normal form of t isdenoted t↓.A rewriting system is terminating i� any reduction sequence is �nite. A rewriting system iscon�uent if for any terms t, u, v such that t →∗
R u and t →∗

R v there exists a term w such that
u→∗

R w and v →∗
R w. In a con�uent rewriting system, if a term has a normal form then this isunique. A rewriting system is convergent i� it is con�uent and terminating.Remark We will sometimes need (e.g. in Chapter 4) to extend the notion of substitution ofvariables to substitution of names. We do it in the expected way. However, without explicitmention �substitution� will only refer to variable substitutions and substitutions of names willonly be explicit (as in [t/n]).Nevertheless, we need to make sure that equational theories remain stable by substitution.Formally, an equational theory E is stable by substitution of names if for any terms u, v, t andname n, u =E v implies u[t/n] =E v[

t/n].Proposition 1.5 Any equational theory is stable by substitution of names.Proof Consider an arbitrary equational theory and its equational presentation E . Let u, v,and t be arbitrary terms such that u =E v, and n be a name. Since we have that u ∗
↔R(E) v, it33

Chapter 1. Models for cryptographic protocolsis su�cient to prove that u →R(E) v implies u[t/n] →R(E) v[
t/n]. Indeed, a simple induction onthe length of the reduction sequence would then �nish the proof.Hence, suppose that u→R(E) v. There is then a rule (l → r) ∈ R(E) such that u|p = lσ and

v = u[rσ]p for some position p in u, and some substitution σ. We have u[t/n]|p = (u|p)[
t/n] =

(lσ)[t/n] = l(σ[t/n]). The non-trivial equality here is the last one, which holds since names(l) = ∅(by the de�nition of equational presentations). Similarly, we obtain that v[t/n] = u[r(σ[t/n])]p.Thus, u[t/n] →R(E) v[
t/n].1.1.5 Term deduction systemsA deduction expression over the signature F is a pair (S, u) denoted S ` u, where S is a specialvariable (not in X) and u ∈ T (F ,X) is a term. A deduction rule over the signature F is a triple

(w, e,C), denoted
e1 . . . ek

e Cwhere w = e1 . . . ek, with k ≥ 0, is a word over deduction expressions over F , e is a deductionexpression over F , and C is a predicate. The expressions ei, with 1 ≤ i ≤ k, are called premisses,
e is called conclusion, and C is called condition of a deduction rule. A rule with no premissesis called an axiom. We omit the condition C when C is the true predicate (that always holds),and we say in this case that the rule is without condition. A deduction system over the signature
F is a set of deduction rules over F . A deduction system is without conditions if each of its rulesis without condition or is the axiom

S ` x
x ∈ S .For a set of terms T and a term u, a proof of T ` u in a deduction system I is a tree havingnodes labeled by expressions T ` v, where v are terms, such that the root is labeled by T ` uand if the node T ` v has k ≥ 0 children T ` v1, . . . , T ` vk then there is a deduction rule

S ` t1 . . . S ` tk
S ` t

Cin I and a substitution σ such that tσ = v, t1σ = v1, . . . , tkσ = vk and C[T/S]σ holds. Thesize of a proof is given by the number of its nodes. A minimal proof of T ` u is a proof with aminimal number of nodes (among all the proofs of T ` u).We sometimes think of a proof as the line graph4 of the tree de�ned above. In this case themeaning of nodes and edges would be reversed (that is, nodes would be instances of rules, andedges would be deduction expressions). It will be clear from the context which de�nition is used.We say that u is deducible from T in I, and write T `I u, if there is a proof of T ` u in I.We may omit mentioning the deduction system I if it is clear from the context.1.2 Cryptographic primitives and messagesWe start this section by presenting some intuitions behind the use of two related but slightlydi�erent representations of some cryptographic primitives. We then present a sort system anda signature that are very common in cryptographic protocols and which are largely used in thisthesis. Finally, we de�ne two related deduction systems (both used) and a redundant one (notused), and we conclude by discussing the corresponding deduction problem.4If G = (V, E) is a graph then the line graph of G is L(G)
def
= (E, {{e, f} | e and f are adjacent in G}).34

1.2. Cryptographic primitives and messagesSome intuitions Cryptographic primitives can be seen as functions from messages to mes-sages5 and messages themselves are obtained by applying operations to other messages. It ishence natural to abstract cryptographic primitives by function symbols and messages by terms.There is also the need to specify the process of applying these operations. This is done abstractlyby deduction rules which de�ne how terms can be obtained from other terms. As an example,consider the encryption of a message (named) m by a key (named) k. The encryption primitive isrepresented by the function symbol enc and the encrypted message by the term enc(m,k) where
m and k are here terms. The process of obtaining this term is described by (an instance of) therule6

x y

enc(x, y)Some primitives build �new� messages, in the sense that the obtained message cannot beexpressed by a term without using a dedicated function symbol (like enc for the encryption).These function symbols are hence called constructors. For the other primitives, thus calleddestructors, on the contrary, one need not necessarily use a dedicated symbol (at least in somesituations, as we explain below). These primitives are typically �inverse� operations, for whichby applying in sequence the operation and its inverse on some message m one obtains (undersome conditions) m, or some parts of it.For example, by decrypting an encrypted message with the right key one obtains the plainmessage. If these conditions are not satis�ed (for example, when one tries to decrypt using thewrong key), or if the inverse operation is applied on a arbitrary message, the results are unex-pected. More exactly, they are implementation dependent. There are mainly two possibilities.One is to consider that these inverse operations cannot be applied at all, or that they leadto �junk� that is immediately recognisable. In this case, only the correct use of the inverseoperation is modeled. Thus, it is not necessarily to represent these inverse operations by newfunction symbols, since their application always leads to existing messages. For example, theapplication of decryption is represented implicitly by
enc(x, y) y

xThe other possibility is to consider that the application of inverse operations is always feasibleand it leads to �valid� messages, even if they are not �intelligible� (for example, dec(a, k) thedecryption of some identity a with the key k is to everybody just an (almost) random sequenceof bits). In this case, the inverse operations are modeled by function symbols and their applicationis explicitly modeled by deduction rules. For example, applying decryption with the right key toan encrypted message leads to the following derivation:
enc(x, y) y

dec(enc(x, y), y)But, when the conditions are satis�ed, the message represented by the new term (obtained as theresult of the application of the deduction rule) is some existing message. Indeed, in our example,the message m is now represented by the two terms dec(enc(m,k), k) and m. We need henceto equate the new term with the term already representing the initial message. This is done by5Seen at low level, cryptographic primitives are algorithms having bitstrings as inputs and outputs.6For the sake of the presentation the �deduction rules� on this page are deliberately simpli�ed (see the de�nitionin Section 1.1.5). 35

Chapter 1. Models for cryptographic protocolsthe means of rewrite rules. For example the rewrite rule dec(enc(x, y), y) → x says that afterencrypting and then decrypting a message with the same key the same message is obtained.Recapitulating, the explicit presence of destructors in the model depends on whether weconsider that the corresponding operations may clearly fail (or produce detectable �junk�), orthat they do not fail and produce �valid� messages (or non-detectable �junk�).Besides the properties representing their basic functionality, cryptographic primitives mayexhibit other properties. Among them, algebraic properties, like associativity, commutativity,nilpotence, etc., are always expressed by equations. They induce equivalence classes on the setof terms, and indeed, due to these properties the same message is represented by syntacticallydi�erent terms. For example, the terms 〈a, 〈b, c〉〉 and 〈〈a, b〉, c〉 model the same message, theconcatenation of a, b, and c. Another example we have already seen in the Introduction isencryption in ECB mode, which is homomorphic (w.r.t. the concatenation). This is expressedby the equation {{〈x, y〉}}z
.
= 〈{{x}}z , {{y}}z〉.A summary of the above discussion is given by the Table 1.1.real world symbolic worldmessages termscryptographic primitives function symbolsoperations that never fail constructors, explicit destructorsoperations that may fail implicit destructorsbasic functionalities of crypto. prim. rewrite rulesalgebraic properties of crypto. prim. equationsapplying cryptographic primitives deduction rulesTable 1.1: Analogy between the real world and the symbolic world.1.2.1 A sort system for cryptographic protocolsIn some models, it may be the case that there are terms that do not represent �valid� messages(e.g. dec(a, k)). Also, it is usually supposed that an identity cannot be confused with other data,like nonces or ciphertexts. A simple way to eliminate such undesired situations, is to �x a sortsystem and associate a sort to each variable, name and function symbol.We consider signatures with the following sorts: a sort Id for agent identities, and sorts

Int, Nonce, Rand and Time for integers, nonces, randomness used in probabilistic encryption,and timestamps respectively. These four sorts could be in fact represented by a single sort,for example Int, the values that terms of these sorts represent are in fact all integers. Butfor the sake of clarity and �exibility we use this presentation. For keys we consider the sorts
SigKey,VerKey,EncKey,DecKey,SymKey representing keys used in signing, signature veri�cation,public-key encryption, public-key decryption, and symmetric encryption algorithms respectively.We also use sorts Ciphertext, Signature, and Pair for ciphertexts, signatures, and pairs, respec-tively. The sort Msg is a supersort containing all other sorts enumerated above.In summary, throughout this thesis we consider the following basic sorts

Sorts0 = {Id, Int,Nonce,Rand,Time, SymKey,EncKey,DecKey,SigKey,VerKey,

PubKey,PrivKey, Ciphertext,Signature,Pair,Msg},36

1.2. Cryptographic primitives and messageswith s ≤ Msg for all s ∈ Sorts, and EncKey,VerKey ≤ PubKey, DecKey,SigKey ≤ PrivKey.However, we do not require that sorts are di�erent. Indeed, in some situations we consider onlyone sort (e.g. in Chapters 3 and 4), that is s = Msg for all s ∈ Sorts, while in others sorts aredi�erent.1.2.2 A signature for cryptographic protocolsTable 1.2 lists most of the function symbols used in this thesis.function symbol sort description
k Id × Id → SymKey symmetric key
ek Id → EncKey asym. encryption key
dk Id → DecKey asym. decryption key
sk Id → SigKey signing key
vk Id → VerKey veri�cation key
pub Id → PubKey public key
priv Id → PrivKey private key
encd (or {{_}}_) Msg × SymKey → Ciphertext det. sym. encryption
enc Msg × SymKey × Rand → Ciphertext prob. sym. encryption
dec Ciphertext × SymKey → Msg sym. decryption
encad (or {[_]}_) Msg × EncKey → Ciphertext det. asym. encryption
enca Msg × EncKey × Rand → Ciphertext prob. asym. encryption
deca Ciphertext × DecKey → Msg asym. decryption
sign (or [[_]]_) Msg × SigKey → Signature signature
check Msg × Signature × VerKey → Msg check signature
retrieve Signature → Msg retrieve signed message
h Msg → Msg hash
pair (or 〈_,_〉) Msg × Msg → Pair pair
fst (or π1) Pair → Msg 1st projection
snd (or π2) Pair → Msg 2nd projection
ok, init, stop, fake Msg special constantsTable 1.2: The set F0 of function symbols with their aritiesThe four operations ek, dk, sk, vk are de�ned on the sort Id and return the asymmetric encryp-tion key, asymmetric decryption key, signing key, and veri�cation key associated to the inputidentity. The two function symbols pub and priv represent public and respectively private keysfor both encryption and digital signatures. They are safe abstractions of ek and vk on the oneside and of dk and sk on the other side.We then have function symbols for symmetric and asymmetric encryption and decryption.We model both deterministic and probabilistic encryption. The latter one has a third parameter(besides the message to be encrypted and the encryption key) which represents the randomnessused to obtain the nondeterminism: two encryptions of the same messages under the same keysare di�erent (if they use di�erent randomness).Next, sign represents the operation of digital signing of a message, check that of verifying asignature and retrieve that of obtaining the signed message from the signature. 37

Chapter 1. Models for cryptographic protocolsFor deterministic encryption and digital signatures we usually use the classical notation withbrackets (for example {{m}}k instead of encd(m,k)). The convention is that the exterior bracketssay whether the function symbol represents an encryption (and we use {}) or a digital signature(and we use []), while the interior brackets say whether it is symmetric (use of {}) or asymmetric(use of []) operation.The function symbol h models the operations of hashing of a message.The symbol pair represents the pairing function, while fst and snd are the associated projectionfunctions. We abbreviate pair(x, y) by 〈x, y〉, fst(x) and snd(x) by π1(x) and π2(x) respectively.We also suppose that pairing is left-associative and hence write 〈x, y, z〉 for 〈〈x, y〉, z〉. Moreover,we may even entirely omit the angle brackets when the pairing function symbol is not in headposition. For example, we may write {{a, b}}k instead of {{〈a, b〉}}k .Finally, the signature contains a few special constants which usually do not represent realmessages but are useful for specifying protocols. For example, the constant ok represents aspecial message issued as a result of some successful testing operation.Operations on messages can fall into two classes: public and private operations, dependingon whether they can be performed by any party, or only by some parties. We obtain accordinglya partition of function symbols into public and private function symbols, denoted by
F = Fpub] Fpriv.We assume that any signature is partitioned in this way. We suppose that for each sort there isan in�nite number of public constants and an in�nite number of private constants of that sort.A term t is public if t ∈ T (Fpub,X ,N).In our context, the only private operations are those of obtaining the private keys associatedto identities. Indeed, we have {k, dk, sk, priv} ⊆ Fpriv and all other function symbols in F0 arepublic symbols (that is, they are in Fpub). To model asymmetric keys, we could have eliminatedprivate symbols by using names like ska instead of priv(a) (and pub(ska) instead of pub(a)).However, we prefer to use names only for fresh data.Throughout this thesis we deal with four (one for each of the following chapters) slightlydi�erent order-sorted signatures. These will be obtained by �xing a sort system (basically byequating some sorts in Sorts0) and a set of function symbols (mainly by considering a subset of

F0 together with a set of constants for agent identities and nonces).1.2.3 Two deduction systems for cryptographic protocolsAs we have already mentioned, the application of operations on messages and hence the construc-tion of new messages are modeled by deduction rules. And, depending on whether operationswhich are supposed to work only in certain conditions (e.g. when using the right key) can onlybe applied when �successful�, or can always be applied, we have two types of deduction systems.However the functionality of operations is the same in the two cases, and we model it by a simplerewriting system.De�nition 1.6 (Constructors, destructors, simple rewriting systems)Let F = Fpub]Fpriv be a signature and let R be a rewriting system over T (F ,X) with var(r) ⊆
var(l) and l 6∈ X for all (l → r) ∈ R.The head symbols of left hand sides of rewrite rules in R are called destructors. All otherfunction symbols in Fpub are called constructors. This partition is denoted Fpub = Fcstr] Fdstr.We say that R is simple if every rule is of the form g(l1, . . . , ln) → r with g ∈ Fpub, n ≥ 0,
{r, l1, . . . , ln} ⊆ T (F \ Fdstr,X), and g does not occur in the other rules of R.38

1.2. Cryptographic primitives and messagesThe rewriting system with regard to which constructors and destructors are de�ned will oftenbe implicit.Proposition 1.7 A simple rewriting system is convergent.Proof Termination follows from the fact that at each reduction step a destructor is eliminatedand terms without destructors are in normal form. Con�uence follows immediately because thehead function symbol of a rule does not occur elsewhere in the rewriting system, and thus thereare no critical pairs (see [BN98] for a de�nition of critical pairs and their use for testing (local)con�uence).Intuitively, T ` u means that an agent is able to compute the message u from the set ofmessages T . Any deduction system allows one to use known messages and to compose knownmessages.Let F ⊆ F be a set of function symbols. A minimal deduction system w.r.t. F , denoted IFis given by the following rules:
(∈) x ∈ S

S ` x
S ` x1 . . . S ` xn(Compf) f ∈ F

S ` f(x1, . . . , xn)The labels given between parentheses in the left hand side of rules are just names used for referingto that rule. The above rules are also called membership and composition rules, respectively.Remark that the latter is in fact a rule schema, i.e. there is a corresponding composition rule(without condition) for each f ∈ F .Usually, F is either Fcstr or Fpub. We may omit F in IF when it is clear from the context. Alsonote that from the point of view of building terms all function symbols in F are �constructors�.However, for F = Fcstr, only constructors (in the sense of De�nition 1.6) are used for buildingterms.Given a simple rewriting system R, we associate to each rewrite rule (l → r) ∈ R with
l = g(l1, . . . , ln) the following deduction rule:

S ` l1 . . . S ` ln(rwl→r) S ` rDe�nition 1.8 (I(R)) Let R be a simple rewriting system over the signature F . We de�ne by
I(R)

def
= IFcstr ∪ {(rwl→r) | (l → r) ∈ R}the deduction system associated with R.To an equational theory E we associate the following deduction rule:

S ` x(EqE) x =E y
S ` yWe may drop the subscript when E is clear, and write (Eq) instead.De�nition 1.9 (I(E)) Let E be an equational theory over the signature F . We de�ne by

I(E)
def
= IFpub

∪ {(EqE)}the deduction system associated with E. 39

Chapter 1. Models for cryptographic protocolsThe following known lemma (see e.g. [AC04]) characterises I(E) in terms of public contexts.Lemma 1.10 Consider an equational theory E. Let T = {t1, . . . , tn} be �nite set of termsand u, v be terms. Then T `I(E) u if and only if there exists a public context C such that
C[t1, . . . , tn] =E u.The deduction systems I(R) and I(E) represent two ways of reasoning about the applicationsof cryptographic primitives to messages. In the former, deduction system destructors operationsare implicit and are matched against the right patterns, while in the latter, destructor operationsare explicit and terms are equated when possible. We sometimes call them deduction system �withmatching�, and respectively deduction system �with equalities� or with �explicit destructors�.Note that I(R) is a deduction system over F \Fdstr. We show next that considering deductionsonly over T (F \ Fdstr,X ,N) the two deductions systems are �equivalent�.Let T be a set of terms. We say that two deduction systems I and I ′ are equivalent over Tif for all sets of terms T and terms t, with T ∪ {t} ⊆ T , we have T `I t if and only if T `I′ t.Proposition 1.11 Let F be a signature and R a simple rewriting system. The deduction systems
I(R) and I(E(R)) are equivalent over T (F \ Fdstr,X ,N).Proposition 1.11 assumes a simple rewriting system R and shows that the two deductionsystems derived from R are equivalent. S. Delaune [Del06] proved a similar statement, butstarting from an arbitrary deduction system I without conditions and building an equivalentdeduction system I(E(RI)) where RI is a simple rewriting system. Indeed for each deductionrule S ` l1 . . . S ` ln

S ` r in I one can add the rewrite rule g(l1, . . . , ln)
.
= r in RI , where g is anew function symbol. However, the proofs are the same, since S. Delaune's transformation (from

I to RI) and this transformation (from R to I(R)) are inverse to one another. Rephrasing thementioned result in our formalism, we obtain the following proposition.Proposition 1.12 ([Del06]) Let F be a signature. For every deduction system I over F with-out conditions, there exist a set of public function symbols G with G ∩ F = ∅, and a simplerewriting system R over F ∪ G such that I and I(E(R)) are equivalent over T (F ,X ,N).Algebraic properties of primitives are not considered in this thesis. We just mention thatthey are usually represented by a set of equations Ealg. In the same spirit, one considers one ofthe following two deduction systems: I(R) ∪ {(EqEalg
)} or I(E(R) ∪ Ealg).Note that when working on T (F \ Fdstr,X ,N) we may simply consider that the signatureis Fcstr ∪ Fpriv, and work directly with I(R) (without mentioning the rewriting system R and(explicit) destructors). We will do this in Chapters 2, 3 and 5.1.2.3.1 Example. The Dolev-Yao rulesThe rewrite rules in Figure 1.2 constitute an example of simple rewriting system, denoted R0.By Proposition 1.7, R0 is convergent and so is any of its subsets.The deduction rules of Figure 1.3, together with the membership and composition rulesrepresent the deduction system with matching associated with R0, denoted I0

def
= I(R0).The �rst two deduction rules (together with the corresponding composition rules) are knownas the standard Dolev-Yao rules. By extension, the rules of a deduction system with matchingare also known as Dolev-Yao rules. The rules in Figure 1.3 are also known as decomposition40

1.2. Cryptographic primitives and messages
fst(pair(x, y)) → x 1st projection
snd(pair(x, y)) → y 2nd projection
dec(encd(x, y), y) → x sym. decryption
deca(encad(x, ek(y)), dk(y)) → x asym. decryption
retrieve(sign(x, y)) → x retrieving the signed messageFigure 1.2: The rewriting system R0

S ` pair(x1, x2)
(Proji) i ∈ {1, 2}

S ` xi

1st and 2nd projections
S ` encd(x, y) S ` y

(Dec)
S ` x

sym. decryption
S ` encad(x, ek(y)) S ` dk(y)

(Deca)
S ` x

asym. decryption
S ` sign(x, sk(y))

(Retr)
S ` x

retrieving the signed messageFigure 1.3: The deduction system Idrules. Intuitively, these rules say that an agent can decompose messages by projecting, or bydecrypting provided it has the decryption keys.Concerning digital signatures, an agent is also able to verify whether a signature sign(m,k)and a message m match (provided he has the veri�cation key). This operation is represented bya rewrite rule of the form
check(x, sign(x, sk(y)), vk(y)) → okNote that checking a signature does not lead to the generation of new message (ok is a publicconstant). This is why the corresponding deduction rule
S ` x S ` sign(x, sk(y)) S ` vk(y)

(Chk)
S ` okis usually not present in deduction systems which model the intruder's capabilities, and we willalso omit it (i.e. the rule (Chk)).The rule (Retr) expresses that an agent can retrieve the whole message from its signature.This property may or may not hold depending on the signature scheme, and hence this ruleis usually optional. Note that this rule is necessary for obtaining soundness properties w.r.t.cryptographic digital signatures [CW05].Exemple 1.13 The term 〈k1, k2〉 is deducible from the set T = {{{k1}}k2 , k2} in I0. A proof of

T `I0 〈k1, k2〉 is:
T ` {{k1}}k2 T1 ` k2

T ` k1 T ` k2

T ` 〈k1, k2〉 41

Chapter 1. Models for cryptographic protocolsWhile the �rst formal models of security protocols in the symbolic world used equations(and hence explicit destructors) [DY83, EG83]7, most of the later literature on protocol veri�-cation did not use them. Instead, a deduction system with matching (or an equivalent model)was directly the starting point. Destructors have reappeared with the treatment of algebraicproperties. Indeed, having a single set of equations modeling all properties (algebraic or not) ofcryptographic primitives o�ers a more uniform approach (see for example the applied-pi calculusand its motivations [AF01]).In each of the following chapters we will implicitly �x a certain rewriting system8 R′ andwork explicitly with I(R′), or I(E(R′)), or still another equivalent representation of deduction.More precisely, we use the deduction system with matching I0 in Chapters 2 and 5, a deductionsystem with equalities in Chapter 4, and Horn clauses in Chapter 3.1.2.4 On the use of a third deduction systemIn this section, we introduce still another deduction system, but show that it is redundant andhence we do not use it in the rest of the thesis.For a rewriting system R we consider the following deduction rule:
S ` x(RwR) x→∗

R y
S ` yWe de�ne Id(R)

def
= IFpub

∪ {(RwR)}.The following lemma characterises Id(R) in terms of public contexts, in the same manner asLemma 1.10 does for I(E).Lemma 1.14 Let R be a rewriting system. Let T = {t1, . . . , tn} be �nite set of terms and u, v beterms. Then T `Id(R) u if and only if there exists a public context C such that C[t1, . . . , tn] →∗
R u.Proof Suppose that T `Id(R) u. We reason by induction on the depth of a proof. Considerthe rule applied in the root of the proof:

• If it is an axiom then take C = xi if the rule is (∈) and u = ti, and take C = u if the ruleis (Compf) with f of arity 0 (in this case u is a public constant).
• If it is the rule (Compf) with f ∈ Fpub having arity r ≥ 1 and the instances of the premissesbeing T `Id(R) u1, . . . , T `Id(R) ur then by induction hypothesis there exist public contexts
C1, . . . , Cr such that Ci[t1, . . . , tn] →∗

R ui, for all 1 ≤ i ≤ r. We take C = f(C1, . . . , Cr)and then C[t1, . . . , tn] →∗
R f(u1, . . . , ur) = u.

• If it is the rule (RwR) with the instance of the premise being T `Id(R) u
′ then by inductionhypothesis there exists a public context C ′ such that C ′[t1, . . . , tn] →∗

R u′. Since u′ →∗
R uwe take C = C ′.For the converse direction, consider a public context C such that C[t1, . . . , tn] →∗

R u. Since
C is public and ti ∈ T , there is a proof with the root labeled by T ` C[t1, . . . , tn] in I. Addingthe corresponding instance of the rule (RwR) to this tree we obtain a proof of T ` u in Id(R).The following easy lemma will be used in the next proposition.7They used strings instead of terms to model messages, thus the decryption property was written as deca·enca ≡
ε, where ≡ is an equivalence relation on words, deca, enca are letters, and a is just an index.8except for Chapter 3 in which we use an implicit arbitrary rewriting system.42

1.2. Cryptographic primitives and messagesLemma 1.15 Let R be a con�uent rewriting system. Then for all terms u, v such that v is innormal form, u→∗
R v if and only if u =E(R) v.Proposition 1.16 Let R be a simple rewriting system. Let T be a set of terms, and t be aterm, with T, t ⊆ T (Fcstr,X ,N), such that t is in normal form. Then T `Id(R) t if and only if

T `I(E(R)) t.Proof If T `Id(R) t then clearly T `I(E(R)) t, since every instance of a rule (RwR) is also aninstance of the rule (EqE(R)) (indeed, from u→∗
R v it follows that u =E(R) v).Suppose now that T `I(E(R)) t. From Lemma 1.10 we have that there exists a public context

C such that C[t1, . . . , tn] =E(R) t for some ti ∈ T (0 ≤ i ≤ n). Then, since t is in normal form,from Lemma 1.15 it follows that C[t1, . . . , tn] →∗
R t. Hence, using Lemma 1.14, we have that

T `Id(R) t.This proposition shows that it is su�cient to use one of the deduction systems I(R) and
I(E(R)) as along as we are only interested in terms in normal form. And indeed we are, sincewe can safely suppose that all sent and received messages are only modeled by normalised terms.However, we do not make this assumption, and hence when working over the entire F (i.e. withexplicit destructors) we use the deduction system I(E(R)). Moreover, to our knowledge thededuction system I(E(R)) is absent from the literature on protocol analysis.1.2.5 The deduction problemGiven a deduction system I, a �nite set of terms T and a term u the problem of deciding whether
u is deducible from T in I is classically known as the intruder deduction problem, since usuallythe set T of terms represents the intruders' knowledge�the set of messages that have been sentso far over the network, and u represents a secret message, or simply a message that the intruderis trying to produce. We call it simply the deduction problem, since not only the intruder butall the agents need to produce new messages from their current knowledge.The deduction problem is polynomial in the size of T and u for I(R0) (see Section 1.2.3.1),and the procedure is based on the observation that a minimal proof of T ` u in I(R0) uses onlysubterms of T and u. Indeed, at each step of the algorithm, the current set of terms is updatedwith the subterms that are reachable using only one deduction rule. Using the above observationit is then su�cient to check at each such step whether u belongs to the current set of terms. Thealgorithm saturates and stops in a number of steps proportional with the number of subterms of
T and u, which is linear in the size of the problem given that a DAG-representation of terms isused.The mentioned observation is formalised by the following lemma.Lemma 1.17 (Locality lemma) Let R′ ⊆ R0. Let T be a set of terms, u a term and π aminimal proof of T `I(R′) u. Then all terms occurring in the nodes of π are in st(T, u). If thelast rule of π is a decomposition (i.e. in Id) then these terms are in st(T).This property of (some) deduction systems, known as locality, is an instance of a more generalproperty stated by D. McAllester [McA93] in the context of generic inference systems. The sameproperty holds and is used for more complex deduction systems, while employing a di�erentnotion of subterm, suited for the speci�c deduction system under analysis. We do not givemore details here about the deduction problem, since it has received an intensive treatment inmore general contexts: see [CKRT03, CLS03, LLT05] for speci�c theories (XOR, homomorphicencryption, etc), [AC04, AC05, DLLT07] for generic theories, [CR06, ACD07] for combinationsof theories, and [CDL06] for a survey. 43

Chapter 1. Models for cryptographic protocols1.3 RolesSince protocols are sets of roles, we start by showing how roles are speci�ed and executed. Wethen comment on the actual ability of an agent to execute a role. Finally we describe twostandard types of roles.1.3.1 Speci�cation of rolesIn the following, we �x an arbitrary signature F and an arbitrary equational theory E .De�nition 1.18 (Role) A role R is a tuple consisting of
• a �nite set of variables z1, . . . , zk of sort Id, called parameters, with k ≥ 0,
• a �nite set x̃ of variables, called fresh items9,
• a �nite non-empty sequence of tuples (

(ui, Ei, vi)
)
1≤i≤p

called sequence of instructions;
Ei are �nite sets of equations, ui, vi are terms such that var(vi) ⊆

⋃
j≤i

(
var(uj)∪var(Ej)

)
\

x̃ and names(ui, Ei, vi) = ∅.The role R is denoted R(z1, . . . , zk) = νx̃. recv(u1), E1, send(v1); . . . ; recv(up), Ep, send(vp).In the above de�nition p is called the length of role R, the i-th element of the sequence iscalled the i-th step or control-point of role R, and ui, vi, and the equations in Ei, are calledrespectively the �receive� and �send� terms, and the (equality) tests of role R at step i. Whenthe set of equations is empty we simply omit it, that is, we write (recv(u), send(v)) instead of
(recv(u), ∅, send(v)). We denote var(R)

def
=

⋃
1≤i≤p var(ui, Ei, vi) \ ({z1, . . . , zk} ∪ x̃).Here, parameters stand for the agents that are participating in a role session, from the pointof view of the agent playing the role. Note, however, that it is not speci�ed which concreteagent plays the role (this will be done at the protocol level). We could have considered that theparameters also represent other data, like the symmetric long-term shared keys between agents.We have preferred to model them as k(zi, zj).We observe that a �send� is always grouped with a �receive�. This is because we supposethat if a received message is as expected then the agent playing the role instantaneously sendsits response. While this behaviour is not transparent at this stage, it will become clear in thefollowing sections.Even if in this setting each �receive� is followed by a �send� and conversely (except for thelast one), we can model protocols in which an agent waits for two messages and then performs asend, or in which an agent broadcasts a message. Indeed, we can code this ability by insertingfake �receive� and �send� messages which are known by everybody (using e.g. the public constant

fake). This is done, for example, in Chapter 5.1.3.2 Execution of rolesWhen a role is to be executed, it is �rst initialised, that is, its parameters are instantiated byconcrete agents and its fresh items by new nonces or keys. This is formalised in the followingde�nition.9Fresh items are modeled by variables for technical reasons. We will usually instantiate them by new privatedata, hence the notation νx̃ below.44

1.3. RolesDe�nition 1.19 (Role initialising substitution, initialised role)Let R be a role with parameters Z, fresh items x̃ and the sequence of instructions S. A roleinitialising substitution for R is a ground substitution with dom(σ) = Z ∪ x̃ and such that foreach z ∈ Z, zσ is a public constant (of sort Id), and for each x ∈ x̃, xσ is a new private constant.Given a role R as above, an initialised role is the sequence of instructions Sσ, where σ is arole initialising substitution for R.Since fresh items are instantiated by new constants, any initialised role uses di�erent constantsas fresh items. Also, we can suppose without loss of generality that in initialised roles long-termsymmetric keys are represented by constants, that is, each ground term k(a, b) can be replacedby the constant kab.We de�ne formally the execution of a role by giving its operational semantics in terms oftransition systems. The state of the execution of a role is given by the current instantiation of itsvariables and by its current control point. The only action that changes the instantiation is thatof receiving a message. At this stage we are not interested from whom and to whom an agentreceives and respectively sends a message, and hence we suppose that it is the �environment�who sends and respectively receives it.De�nition 1.20 (Execution of a role) Let R be a role. An execution of R is a sequence
(σ1, i1)

m1−−−→ . . .
mp

−−−→ (σp+1, ip+1)with
• σ1 is a role initialising substitution of R, σj are ground substitutions for all 1 ≤ j ≤ p,
• 1 = i1 ≤ i2 ≤ · · · ≤ ip+1 ≤ l + 1, where l is the length of R,
• mj ∈ T (F) for all 1 ≤ j ≤ p,and (σ, i)

m
−−→ (σ′, i′) if :

• either there exists θ such that θ extends σ, dom(θ) ⊆ dom(σ) ∪ var(u,E), m =E uθ,
tθ =E t

′θ for all (t
.
= t′) ∈ E, σ′ = θ and i′ = i+ 1, where u, v, and E are respectively the�receive� and �send� terms, and the tests of the role R at step i; in this case, we say that

m is accepted (by role R at step i), and we call vσ′ the sent message,
• or the previous condition does not hold, σ′ = σ, and i′ = i (the state remains unchanged).The pairs (σ, i) are states of R, (σ, i)

m
−−→ (σ′, i′) are transitions between role states, and if m isaccepted then (σ′, i′) is the successor state of (σ, i). An execution is partial if ip+1 < l + 1, andfull if ip+1 = l + 1.Remark that in fact the substitution σ in a role state (σ, p) determines all the execution ofthe role until the step p (except the messages that were not accepted). 45

Chapter 1. Models for cryptographic protocols1.3.3 Executable rolesNot all roles de�ned as above are �realistic�. Indeed, to be able to implement a role in anexecutable program, the agent playing that role should be able to deterministically build each�send� message from the previously received messages and its initial knowledge. Hence a �rstnotion to be formalised is that of deterministic roles.De�nition 1.21 (Deterministic role)A role R is deterministic if for all states of R, for each accepted message there is at most onesuccessor state, that is, if (σ, i)
m

−−→ (σ′, i + 1) and (σ, i)
m

−−→ (σ′′, i + 1), then σ′ =E σ
′′ (where

σ′ =E σ
′′ i� dom(σ′) = dom(σ′′) and xσ =E xσ

′ for all x ∈ dom(σ)).The above de�nition says that, at each step, an agent has at most one choice when sendinga message. The following example shows that there exist roles for which several choices arepossible.Exemple 1.22 Let (recv(〈x, y〉), send(x)) be a role and E = {〈x, 〈y, z〉〉
.
= 〈〈x, y〉, z〉} be the equa-tional theory representing associativity. Then for m = 〈a, 〈b, c〉〉 there could be two sent messages:

a or 〈a, b〉. That is, this role is not deterministic.Note that, by de�nition, once a message m is accepted, an agent has at least one choice whensending a message. And, while there is always a message m that matches a �receive� term u, itis not guaranteed neither that the �environment� is able to build such a m, nor that m passesthe equality tests. We will deal with these problems at the level of protocols, since we are notinterested yet what the �environment� can do. However, we can ask ourselves whether, once amessage is accepted, the corresponding sent message is constructible by (the agent playing) therole using its current knowledge.De�nition 1.23 (Initial knowledge, constructible role)Let R(z1, . . . , zk) = νx̃. recv(u1), E1, send(v1); . . . ; recv(up), Ep, send(vp) be a role, and kn be aset of terms with var(kn) ⊆ x̃ ∪ {z1, . . . , zk}, called the initial knowledge of R. The role R isconstructible w.r.t. kn if for any state (σ, i+1) of R, with i ≥ 1, we have knσ, u1σ, . . . , uiσ `I(E)

viσ.Usually, the initial knowledge of (an agent playing) a role consists of the identities and thepublic keys of its communication partners, its own private keys, and its long-term shared keys.Of course, an agent also knows the fresh items he creates. For example, in an asymmetric setting,the initial knowledge could be kn = x̃∪{dk(zj), sk(zj)}∪
⋃

i{zi} where j is the index of the agentplaying the role. Note that the terms in ⋃
i{ek(zi), vk(zi)} are deducible from kn.For simplicity, we asked that only sent messages are constructible, while we could have alsoasked that �receive� terms and tests are constructible.The two notions, deterministic and constructible roles are independent, as shown by the nextexample and Example 1.22.Exemple 1.24 Consider the role (recv({{x}}k), send(x)). This role is deterministic, but depend-ing on whether k ∈ kn, it is constructible or not. Also, the role (recv(h(x)), send(x)) is determin-istic, but not constructible. (Here we have considered F = F0 and E = E0.)46

1.3. RolesA simple criterium for a role to be constructible is to have this property even at the speci-�cation level, that is, (using the notations of De�nition 1.23) to have kn, u1, . . . , ui `I(E) vi, forall i. Testing whether a role satis�es this criterium reduces to solving the deduction problem.As we have seen (see Section 1.2.5) this is solvable in polynomial time in most of the cases ofinterest.De�nition 1.25 (Executable role) We say that a role is executable w.r.t. kn if it is deter-ministic and constructible w.r.t. kn.1.3.4 Roles with matching and roles with equality testsRecall that a role is, in fact, a program. One could write its code using either a high-level ora low-level language. While here we abstract the actual programs that are executed, one canstill think of a higher level speci�cation in which some operations are hidden, and a lower levelspeci�cation in which all the (symbolic) operations are explicit. And indeed, there are mainlytwo kinds of models, depending on how received messages are handled. On the one hand, receivedmessages are matched with a pattern and messages to be sent are directly obtained. On the otherhand, testing for the required format of the received message and building the sent messages aredone explicitly.We consider in the following a simple rewriting system R over a signature F .De�nition 1.26 (Role with matching, role with equality tests)Let R(z1, . . . , zk) = νñ. recv(u1), E1, send(v1); . . . ; recv(up), Ep, send(vp) be a role. The role R iswith matching if Ei = ∅ and ui, vi ∈ T (F \ Fdstr,X ,N) for all 1 ≤ i ≤ p. The role R is withequality tests if ui is xi and var(Ei) ⊆ {x1, . . . , xi}, for all 1 ≤ i ≤ p.Note that for roles with equality tests, there are no new variables in the tests. An instructionwith new variables in tests would actually perform some kind of pattern matching. For example,
(recv(x), [x

.
= pair(x1, x2)], send(v)) is �equivalent� with (recv(pair(x1, x2)), send(v)).Remark For roles with matching we assume that the signature on which we work is F \Fdstr.This supposes that, in the De�nition 1.20, this is the signature over which the messages m(received from the environment) are built. Also, since the deduction systems I(E(R)) and I(R)are equivalent over F \ Fdstr (see Proposition 1.11), we work in fact with the deduction system

I(R). These assumptions correspond to the idea that for roles with matching the destructorsoperations are implicit. This remark is schematised by the following table:type of roles signature deduction systemroles with matching F \ Fdstr I(R)roles with equality tests F I(E(R))For us, in the following chapters, all roles will be either with matching or with equalitytests. However, �hybrid� models, with both pattern-matching and equality tests, do exist (seee.g. [CLR07]). They are useful, for example, to specify tests that cannot be performed implicitlyby the pattern-matching.In the model we have presented, both the speci�cation of roles (the �receive�, �send� terms,the tests) and the execution of roles (received messages m) use the same signature (either with,or without destructors). However, this is not the case for all symbolic models. An exampleis the process calculus [AB02] used as input to the veri�cation tool ProVerif [Bla01]. There,operations on messages are explicit (thus the roles are speci�ed using explicit destructors), butsent messages do not contain destructors since it is supposed that such terms do not representvalid messages (the normal execution is stopped if the application of a destructor �fails�). 47

Chapter 1. Models for cryptographic protocols1.4 Protocols1.4.1 Speci�cation of protocolsA k-party protocol consists of k roles glued together with an association that maps each step of arole that expects some message m to the step of the role where the message m is produced. Thisassociation essentially de�nes how the execution of a protocol should proceed in the absence ofthe intruder.De�nition 1.27 (Protocol) A k-party protocol is a pair Π = (R,S) where R is a sequence of
k roles with k parameters, and S : [k] × Z ↪→ [k] × Z is a partial mapping.The i-th role in R is denoted Ri and we may simply refer to a role by its index. The function
S returns for each role/control-point pair (r, p), the role/control-point pair (r′, p′) = S(r, p) whichemits the message to be processed by role r at step p.Exemple 1.28 The Needham-Schroeder protocol [NS78] (presented in the Introduction, page 15)

A⇒ B : {[Na, A]}ek(B)

B ⇒ A : {[Na, Nb]}ek(A)

A⇒ B : {[Nb]}ek(B)is speci�ed as follows: there are two roles R1 and R2 corresponding to the sender's role and thereceiver's role. For each relevant �receive�, the corresponding value of S is given on the sameline.
R1(za, zb) = νna. recv(init), send({[na, za]}ek(zb));

recv({[na, xnb
]}ek(za)), send({[xnb

]}ek(zb)). S(1, 2) = (2, 1)

R2(za, zb) = νnb. recv({[yna , za]}ek(zb)), send({[yna , nb]}ek(za)); S(2, 1) = (1, 1)

recv({[nb]}ek(zb)), send(stop). S(2, 2) = (1, 2)The variables na, nb are of sort Nonce, and the variable xnb
and yna are of sort Msg. The sub-scripts are there for readability and have no formal meaning. Moreover, one should rather thinkof them as written with uppercase letters to suggest roles (or variables) and not concrete agents(or constants).1.4.2 Execution of protocolsThe intruder As mentioned in the Introduction, the malicious environment in which a protocolis executed is represented by a special agent, the intruder. We suppose that the communicationis under his complete control, and he can intercept, drop, or modify the messages on the network.This allows us to assume that all communications pass through the intruder: it is always himwho sends the messages to agents playing a protocol, and him who receives the messages sentby the agents. Moreover, we assume that it is the intruder who decides when an agent starts anew (role) session, and which are the agent's communication partners in this session.This corresponds to the intuition that transitions between two global states are caused byactions of the adversary who can initiate new sessions of the protocol between users that hechooses, and send messages to existing sessionsThe intruder is also able to corrupt parties. This happens only at the beginning of anexecution of a protocol (that is, we are only concerned with the case of static corruption). By48

1.4. Protocolscorrupting an agent, the intruder obtains the agent's private information, like its secret decryptionand signing key. All the data obtained by corrupting parties, and also some other data (like hisown nonces, and keys, the identities of all agents, their public keys, etc.), forms the intruder'sinitial knowledge, which is represented by a set of closed terms.Finally, we suppose that his capabilities of obtaining messages from his current knowledgeare as any other's agent capabilities. This translates in using the same deduction system asagents do for executing their roles. Also, we do not restrict neither the computing power, northe memory size of the intruder, and hence we simply ignore these aspects.As for roles, the execution of a protocol is given in terms of transition systems. A state of aprotocol execution is given by a triple (SId, f,H). Here, SId is the set of role session ids currentlyexecuted by protocol participants, f is a global assignment function that keeps track of the localstate of each existing session and H is mainly the set of messages that have been sent on thenetwork so far.More precisely, each role session id is a tuple of the form (s, r, (a1, a2, . . . , ak)), where s ∈ Nis a unique identi�er for the role session, r is the index of the role that is executed in the sessionand a1, a2, . . . , ak ∈ TId(Fpub) are the identities of the parties that are involved in the session.
SID denotes the set (N × [k] × (TId(Fpub))

k) of all session ids.A global assignment f is a function de�ned on a set SId ⊆ SID which represents the sessionids initialised in the execution. For each such session id sid ∈ SId, f(sid) = (σ, p) returns the localstate of the agent playing the session.Finally, the messages that may be sent on the network can be essentially any element of T (F).An execution trace is a sequence of global states with transition between them being causedby one of the actions new, and send with appropriate parameters that we clarify below. Thiscorresponds to the intuition that transitions between two global states are caused by actionsof the adversary who can initiate new sessions of the protocol, and send messages to existingsessions. The formal de�nition follows.De�nition 1.29 (Execution trace) For a k-party protocol Π, an execution trace is a sequence
(SId0, f0,H0)

α1−→ (SId1, f1,H1)
α2−→ . . .

αn−−→ (SIdn, fn,Hn)such that for each 0 ≤ i ≤ n, SIdi ⊆ SID, Hi ⊆ T (F ,X), fi : SIdi → Subst × N, where Subst isthe set of all substitutions, and the transitions αi are as follows:
• The adversary can initiate new sessions:

(SId, f,H)
new(r,a1,...,ak)
−−−−−−−−−−→ (SId′, f ′,H)where 1 ≤ r ≤ k, a1, . . . , ak ∈ TId(Fpub), SId′ = SId ∪ {sid′}, with sid′ = (]SId + 1,

r, (a1, . . . , ak)), and the function f ′ is de�ned by:� f ′(sid) = f(sid) for every sid ∈ SId,� f ′(sid′) = (σ0, 1) where σ0 is a role initialising substitution for role r, such that ziσ0 =
ai where z1, . . . , zk are the parameters of role r.

• The adversary can send messages to existing sessions:
(SId, f,H)

send(sid,m)
−−−−−−−→ (SId, f ′,H′)where sid ∈ SId, m ∈ T (F) such that H ` m, f ′ is de�ned by 49

Chapter 1. Models for cryptographic protocols� f ′(sid′) = f(sid′) for every sid′ ∈ SId \ {sid},� f ′(sid) = (σ′, p′) where f(sid) = (σ, p) and (σ, p)
m

−−→ (σ′, p′) is a transition betweenstates of role r,and H′ is de�ned by:� if m is accepted then H′ = H ∪ {m′} where m′ is the corresponding sent message,� otherwise, H′ = H (the state is not changed).Exemple 1.30 Playing with the Needham-Schroeder protocol described in Example 1.28, an ad-versary can start a new session for the second role with players a, b, and send the message
{[nc, a]}ek(b) to the player of the second role, where c is a corrupted agent. The correspondingexecution trace is:

(∅, f1, kn)
new(2,a,b)
−−−−−−−→ ({sid1}, f2, kn)

send(sid1,{[nc,a]}ek(b))
−−−−−−−−−−−−−→

(
{sid1}, f3, kn ∪ {[nc, nb]}ek(a)

)
,where kn = {dk(c)}, sid1 = (1, 2, (a, b)), and f2, f3 are de�ned as follows: f2(sid1) = (σ1, 1),

f3(sid1) = (σ2, 2) where σ1(za) = a, σ1(zb) = b, σ1(nb) = nb, and σ2 extends σ1 by σ2(yna) = nc,with a, b, c public constants of sort Id, and nb, nc private constants of sort Nonce.1.4.3 Executable protocolsClearly, not all protocols written using the above syntax are meaningful. Indeed, not only rolesneed to be executable, but also the interleaving of �send�-s and �receive�-s (given by the function
S) should be realisable. This requires in particular that S is consistent with the speci�cationof roles, and that there exists a normal execution, that is, an execution in the absence of theintruder. In our formalism this translates to an execution in which the intruder only forwardsthe received messages according to the function S.De�nition 1.31 (Executable protocols)A k-party protocol Π = (R,S) is executable w.r.t. kn1, . . . , knk if:

• the function S is injective;
• for each role r, S(r, i) is de�ned if 1 ≤ i ≤ pr and the �receive� term ui 6∈ {init, fake}, andit is unde�ned otherwise, where pr is the length of role r;
• each role r is executable w.r.t. knr;
• there exist ground substitutions σ1, . . . , σr such that for all roles r� σr extends a role initialising substitution and zr

i σr = ai, for all 1 ≤ i ≤ pr,� tσr =E t
′σr, for all [t

.
= t′] ∈ Er

i ,� ur
iσ =E v

r′

i′ σ for all i such that S(r, i) = (r′, i′) is de�ned,where zr
i are the parameters of role r, ai are pairwise di�erent constants of sort Id, ur

i , vr′

i′ ,and Er
i are respectively the i-th �receive� term of role r, the i′-th �send� of role r′, and the

i-th set of equality tests of role r.50

1.4. ProtocolsThe substitution σ is obvious for all �realistic� protocols in the literature, and thus checkingwhether a protocol is executable should be very easy. In view of an automatic veri�cation ofspeci�cations of protocols, one can either require that σ is given, or apply the obvious algorithmfor obtaining σ (i.e. simulate a normal execution).Remark that with this de�nition an agent may send terms which are not received by otheragents (we have imposed that for each �receive� there is a (unique) associated �send�, but notvice-versa, that for each �send� there is a corresponding �receive�). This de�nition is enoughhowever to show that most of protocols that code an undecidable problem [DLMS99, AC02] arenot executable. Moreover, it is undecidable to check whether those protocols have a normalexecution (one without intruder). Let us mention that there are conjectures (see e.g. [Frö07])stating that the secrecy problem is decidable for executable protocols using bounded-messagesize. On the other hand, the restrictions imposed by the de�nition of executability do not seemso strong in order to a�ect (un)decidability (considering here perfect cryptography).In the following we will not suppose that protocols are executable, meaning that the resultswe present do not depend on this assumption.

51

Chapter 1. Models for cryptographic protocols

52

Part IDecidability results

53

Chapter 2Decidability results using constraintsystems. Application to key cycles
Contents 2.1 The model . 562.1.1 Constraint systems . 562.1.2 From protocols to constraint systems 572.1.3 Security properties . 582.2 Simplifying constraint systems . 602.2.1 Simpli�cation rules . 602.2.2 Decision procedure in NP-time . 612.2.3 Correctness . 632.2.4 Completeness . 652.2.5 Termination in polynomial time . 682.2.6 An alternative approach to polynomial-time termination 712.3 Decidability of some specialised security properties 732.3.1 Detection of key cycles . 732.3.2 Secrecy for protocols with timestamps 822.4 Conclusions . 84In this chapter we re-investigate and extend the constraint system approach for a boundednumber of sessions [MS01, CLS03]. We provide a generic procedure to decide general securityproperties by showing that any constraint system can be transformed in (possibly several) muchsimpler constraint systems. As a consequence, we prove that deciding the existence of key-cyclesis NP-complete for a bounded number of sessions. As an other application, we give an alternativedecision procedure to a signi�cant fragment of protocols with timestamps.Outline of the chapter The model is presented in Section 2.1, where we de�ne constraintsystems (�2.1.1) and show how they can be used to express protocol executions (�2.1.2). Wealso de�ne here security properties and the notion of satis�ability of constraint systems (�2.1.3).In Section 2.2, we explain how the satis�ability problem of any security property can be non-deterministically, polynomially reduced to the satis�ability of the same problem but on simplerconstraint systems. The simpli�cation rules derived from [CLS03] (which are provided in �2.2.1)55

Chapter 2. Decidability results using constraint systemsare actually not su�cient to ensure termination in polynomial time. Thus we introduce in Sec-tion 2.2.2 a re�ned decision procedure, which is correct, complete, and terminating in polynomialtime (proofs can be found in �2.2.3, �2.2.4, and �2.2.5 respectively). An alternative approachto polynomial time termination is sketched in �2.2.6. We next show how the constraint systemsapproach can be used to obtain our main result of NP-completeness of the detection of keycycles (�2.3.1). We also show how it can be used to derive NP-completeness for protocols withtimestamps (�2.3.2). Some concluding remarks can be found in Section 2.4.2.1 The modelConstraint systems are quite common in modeling security protocols for a bounded number ofsessions. We recall here their formalism, and show how they can be used to specify generalsecurity properties.We �x from the start a concrete signature and deduction system used throughout this chapter,although the de�nitions given in this section work as well in a general setting. The sort systemis arbitrary such that it contains the supersort Msg. The function symbols are those occurringin the deduction system I0 presented in Section 1.2.3.1 (page 40), which is also the deductionsystem we consider in this chapter. In fact, the rule (Retr) is optional. That is, our results holdin both cases (when the deduction relation ` is de�ned with or without this rule).We consider in this chapter only roles with matching and we will just call them roles. Con-straint systems have also been used for roles with equality tests in [DJ04, Bau07].2.1.1 Constraint systemsDe�nition 2.1 A constraint system C is a �nite set of expressions T u, called constraints,where T is a non empty set of terms, called the left-hand side of the constraint and u is a term,called the right-hand side of the constraint, such that:- the left-hand sides of all constraints are totally ordered by inclusion;- if x ∈ var(T) for some (T u) ∈ C then
Tx

def
= min{T ′ | (T ′

 u′) ∈ C, x ∈ var(u′)}exists and Tx (T .A solution of C is a closed substitution θ such that for all (T u) ∈ C, Tθ ` uθ.The left-hand side of a constraint system C, denoted by lhs(C), is the maximal left-hand sideof the constraints of C. The right-hand side of a constraint system C, denoted by rhs(C), is the setof right-hand sides of its constraints. var(C) denotes the set of variables occurring in C. ⊥ denotesthe unsatis�able system. The size of a constraint system is de�ned as |C|
def
= |lhs(C) ∪ rhs(C)|.A constraint system C is usually denoted as a conjunction of constraints

C =
∧

1≤i≤n

(Ti ui)with Ti ⊆ Ti+1, for all 1 ≤ i ≤ n− 1. The second condition in De�nition 2.1 then implies that if
x ∈ var(Ti) then ∃j < i such that Tj = Tx and Tj (Ti.56

2.1. The model2.1.2 From protocols to constraint systemsWe present now how to build constraint systems starting from an execution scenario (e.g. agent
a plays two role sessions with b, and b one role session with A). The solutions of these constraintsystems represent all possible executions of the given scenario.Similar presentations can be found in [Cor06, Del06].De�nition 2.2 (Scenario) A scenario is a �nite set of initialised protocol roles.Exemple 2.3 Consider again the Needham-Schroeder protocol [NS78] formalised in Example 1.28(page 48). The following two instantiated roles represent a scenario where A starts a session witha corrupted agent I (whose private key is known to the intruder) and B is willing to answer to A:

R1 =
(
recv(init), send({[na, a]}ek(i)); recv({[na, ynb

]}ek(a)), send({[ynb
]}ek(i))

)

R2 =
(
recv({[yna , a]}ek(b)), send({[yna , nb]}ek(a)); recv({[nb]}ek(b)), send(stop)

)That is, the two initialising substitutions are σ1 = { a/za ,
i/zb
, na/xna

} and σ2 = { a/za ,
b/zb

, nb/xnb
}.Given a scenario, there are many ways in which the instructions of the participating rolescan be interleaved in order to obtain a sequence of instructions (i.e. a possible execution).De�nition 2.4 (Interleaving) Let Sc = {R1, . . . , Rn} be a scenario. An interleaving of S oflength l is a function ι : [l] → S such that for all R ∈ S,]{j | ι(j) = R} ≤ kR, where kR is thelength of the role R. We de�ne κ : [l] → N by κ(j) =]{j′ | ι(j′) = ι(j), j′ ≤ j}.The function ι tells which is the role currently (i.e. at index j) playing, while the function κ tellswhich is current control-point in the role. Note that in an interleaving not all roles need to berepresented and roles need not reach their �nal control-point.From interleavings to constraint systems Let Sc be a scenario and ι be an interleaving oflength l of Sc. We suppose that roles in Sc use di�erent variables, that is var(r) ∩ var(r′) = ∅,for all r, r′ ∈ Sc (this can be achieved by renaming the concerned variables). We denote by rcv
p
rand snt

p
r the p-th (initialised) �receive� and respectively �send� message of role r ∈ Sc. Then theconstraint system associated with the interleaving ι, and with the initial intruder knowledge T0is

C =
∧

1≤i<l

(Ti ti)where for all i ≥ 1,
Ti = Ti−1 ∪ {snt

p
r}

ti = rcv
p′

r′with r = ι(i), p = κ(i), r′ = ι(i + 1), and p′ = κ(i + 1).The sets of constraints C built above is a constraint system. Indeed, the left-hand sides ofconstraints in C are ordered by inclusion. And, if x ∈ var(Ti) then there is a v ∈ Ti such that
x ∈ var(v). Let j be the index such that v ∈ Tj ⊆ Tj−1 (such a i ≥ j ≥ 1 exists by constructionof C, and since T0 is a set of ground terms). Then v = snt

p
r where r = ι(j) and p = κ(j). By thede�nition of roles, there is p′ ≤ p such that x ∈ var(rcvp′

r). But, by construction of C, rcv
p′

r = tj′with j′ < j. Hence Tx exists and Tx ⊆ Tj′ (Tj ⊆ Ti.Note that we can safely (i.e. without changing the solution set) eliminate the constraints
Ti ti with ti ∈ {init, stop}, since these are public constants (hence always deducible). Also, in57

Chapter 2. Decidability results using constraint systemsorder to remember the last message sent on the network (i.e. snt
p
r with ι(l) = r and κ(l) = p),which does not appear in lhs(C), we add to C the constraint Tl−1 ∪ {snt

p
r} c, where c is somepublic constant. We call this new constraint system the extended constraint system associatedwith ι.Exemple 2.5 Consider the scenario presented in Example 2.3 and the interleaving ι of length 4given by ι(1) = R1, ι(2) = R2, ι(3) = R1, and ι(4) = R2. The constraint system C1 associatedwith the interleaving ι and the initial intruder knowledge T0 = {a, b, i, ek(a), ek(b), ek(i), dk(i)} is:

T1
def
= T0, {[na, a]}ek(i) {[yna, a]}ek(b) (2.1)

T2
def
= T1, {[yna , nb]}ek(a) {[na, ynb

]}ek(a) (2.2)
T3

def
= T2, {[ynb

]}ek(i) {[nb]}ek(b) (2.3)The set T1 represents the messages known to the intruder once A has contacted the corruptedagent I. Then the equations 2.1 and 2.2 can be read as follows: if a message of the form
{[yna , a]}ek(b) can be obtained by the intruder, then this message would be send to B, and B wouldanswer to this message by {[yna , nb]}ek(a), which is added to T1. Subsequently, if a message of theform {[na, ynb

]}ek(a) can be obtained by the intruder, then this message would be send to A, and Awould answer with {[ynb
]}ek(i) since A believes she is talking to I. The run is successful if B can�nish his session by receiving the message {[nb]}ek(b). Then B believes he has talked to A while Aactually talked to I. The variables represent those parts of messages that are a priori unknownto the agents.2.1.3 Security propertiesWe are concerned here with trace properties, that is with properties that can be expressedas predicates on traces. A protocol satis�es such a property if and only if the correspondingpredicate holds for each execution trace of the protocol. To verify whether a property is satis�edfor a �bounded number of sessions� (i.e. a scenario), it is then su�cient to check whether theinterleavings of the scenario represent indeed execution traces satisfying the property. Not allinterleavings need to be enumerated (see [MS01, Cor06]). But anyhow, here we are only interestedwhether an arbitrary interleaving represents a trace satisfying a certain property. Then, inthis context, we consider that a security property is just a predicate on lists of messages, sincechecking whether this list represents a trace is done by deciding the satis�ability of the associated(extended) constraint system.De�nition 2.6 Let C be a constraint system, L a list of terms such that var(Ls) ⊆ var(C) and

P a predicate on lists of terms. A solution of C for P w.r.t. L is a closed substitution θ suchthat ∀(T u) ∈ C, Tθ ` uθ and P (Lθ) holds.Remark that a substitution is a solution of C for the true predicate (that holds for any listof terms) w.r.t. an arbitrary list if and only if it is a solution of C (in the sense of De�nition 2.1).To avoid confusion, in such cases we call a solution of C a partial solution of C, or we explicitlymention the predicate true.For a list L we denote by Ls the set of terms of the list L. For a predicate P we denote by
P the negation of P .The approach presented above doesn't allow to prove the correctness of a protocol w.r.t. aproperty (i.e. a predicate) P (one cannot check in this way all scenarios), and represents in fact a58

2.1. The modelsearch for attacks w.r.t. a property P . That is, we are interested in the existence of attacks�inthe predicate P , the correctness property being thus expressed as the predicate P .We show next how secrecy and authentication are modeled in this setting.Secrecy This property can be easily expressed by requiring that the secret data s is notdeducible from the messages sent on the network. We de�ne the predicate Ps to hold on a listof messages if and only if s is deducible from it. That is, Ps(L) holds if and only if Ls ` s. Thesecrecy property is then represented by the predicate P s. The list L on which this predicate isusually evaluated is a list of the terms in lhs(C), where C is the (extended) constraint system
C associated with the interleaving under study. Hence, such a deduction-based property can bedirectly encoded by adding the constraint lhs(C) s to C, and asking for the partial satis�abilityof the new constraint system. Considering that the only sort is Msg, we retrieve the usualconstraint system deduction problem, which is known to be NP-complete [RT03].Exemple 2.7 We consider again the constraint system C1 de�ned in Example 2.5. Let L1 be alist of the messages in lhs(C1). Then the substitution σ1 = { na/yna

, nb/ynb
} is a solution of C1 forthe property Pnb

w.r.t. L1 and corresponds to the attack found by G. Lowe [Low96].Authentication This property can also be de�ned using a predicate Pauth on lists of messages.For this purpose we use correspondence assertions and we introduce, following the syntax ofAvispa [ABB+05], two new private function symbols witness and request of arity 4 with thefollowing intuition: request(a, b, id,m) says that the agent a now believes that it is really agent
b who sent the message m (that is, a authenticates b on m), and witness(b, a, id,m) says that bhas just sent the message m to a. The symbol id is simply a constant identifying the requestsince there might be several authentication goals for one protocol (e.g. the Needham-Schroederprotocol is a mutual authentication protocol, hence it has 2 authentication goals). The predicate
P auth holds on a list L of messages if whenever request(a, b, id,m) appears in the list there isa corresponding occurrence witness(b, a, id,m) (de�ning an injection) appearing before it in thelist (that is, at a smaller position), for any agents a and b. These �status events� (i.e. terms ofthe form f(z, z′, id, t) with f ∈ {witness, request}, z, z′ parameters, id a constant, and t a term)are in fact part of the speci�cation of a protocol (that is, each step of a role has an associated setof such events), and a list of events is generated in the same manner as constraints systems are10.Then the predicate P auth applied on a list L built in this way represents Lowe's de�nition ofinjective agreement [Low97]. Thus, an interleaving has an attack on the authentication propertyif and only if the associated constraint system C has a solution for Pauth w.r.t. L.Exemple 2.8 We consider again the constraint system C1 de�ned in Example 2.5. We considerhere only the authentication of A by B on Nb. The corresponding list is L2 =

(
witness(a, i, 2, ynb

),
request(b, a, 2, nb)

), that is, agent a acknowledges that he sent ynb
to agent i, and agent b, at theend of its role execution (thus, after receiving his nonce nb), believes he talked with agent a. Thesubstitution σ1 de�ned in Example 2.7 is a solution of C1 for the property Pauth w.r.t. L2, sincethere is no corresponding witness assertion for request(b, a, 2, nb) in L2.In Section 2.3, we provide other examples of predicates which encode time constraints, orexpress that no key cycles are allowed.10In fact we also assume that requests are not emitted by or for corrupted agents. 59

Chapter 2. Decidability results using constraint systems
R1 C ∧ T u C if T ∪ {x | (T ′

 x) ∈ C, T ′ (T} ` u

R2 C ∧ T u σ Cσ ∧ Tσ uσ if σ = mgu(t, u), t ∈ st(T),
t 6= u, t, u not variables

R3 C ∧ T u σ Cσ ∧ Tσ uσ if σ = mgu(t1, t2), t1, t2 ∈ st(T),
t1 6= t2, t1, t2 not variables

R4 C ∧ T u ⊥ if var(T, u) = ∅ and T 6` u

Rf C ∧ T f(u, v) C ∧ T u ∧ T v for f ∈ Fpub, f not a constantFigure 2.1: Simpli�cation rules.2.2 Simplifying constraint systemsUsing some simpli�cation rules, solving general constraint systems can be reduced to solvingsimpler constraint systems that we called solved. One nice property of the transformation is thatit works for any security property.We say that a constraint system is solved if it is di�erent from ⊥ and each of its constraintsare of the form T x, where x is a variable. Note that the empty constraint system is solved.This corresponds to the notion of solved form in [CLS03].Solved constraint systems with the single sort Msg are particularly simple in the case of the
true predicate since they always have a solution, as noticed in [MS01]. Indeed, let T1 be thesmallest (w.r.t. inclusion) left-hand side of a constraint. From the de�nition of a constraintsystem we have that T1 is non empty and has no variables. Let t ∈ T1. Then the substitution θde�ned by xθ = t for every variable x is a solution, since T ` t for any constraint T x of thesolved system.2.2.1 Simpli�cation rulesThe simpli�cation rules we consider are de�ned in Figure 2.1. All the rules are in fact indexedby a substitution: when there is no index then the identity substitution is implicitly considered.We write C n

σ C
′ if there are C1, . . . , Cn with n ≥ 1, C ′ = Cn, C σ1 C1 σ2 · · · σn Cn and

σ = σ1σ2 . . . σn. We write C ∗
σ C

′ if C n
σ C

′ for some n ≥ 1, or if C ′ = C and σ is the emptysubstitution.Exemple 2.9 Let us consider the following constraint system C:
{
T1 〈 {[x]}ek(a), {[y]}ek(a) 〉
T2 k1where T1 = { a, ek(a), 〈 {[k1]}ek(a), {[k2]}ek(a) 〉 } and T2 = T1 ∪ {{{y}}x}. The constraint system

C can be simpli�ed into a solved constraint system using (for example) the following sequence ofsimpli�cation rules.
C

R〈〉

T1 {[x]}ek(a)

T1 {[y]}ek(a)

T2 k1

Rencad

T1 x
T1 ek(a)
T1 {[y]}ek(a)

T2 k1

R1

T1 x
T1 {[y]}ek(a)

T2 k160

2.2. Simplifying constraint systemssince T1 ` ek(a). Let σ = mgu
(
{[k1]}ek(a), {[y]}ek(a)

)
= { k1/y}. We have

T1 x
T1 {[y]}ek(a)

T2 k1

R2
 σ

T1 x
T1 {[k1]}ek(a)

T2σ k1

R1

{
T1 x
T2σ k1

R1
 T1 xsince T1 ` {[k1]}ek(a) and T2σ ∪ {x} ` k1. Intuitively, it means that any substitution of the form

{m/x,
k1/y} such that m is deducible from T1 is solution of C (for the true property).We are intersted in simpli�cation rules that are correct and complete, meaning that a con-straint system C has a solution for a security property P if and only if there exists a constraintsystem C ′ in solved form such that C ∗

σ C ′ and C ′ has a solution for P . Note that severalsimpli�cation rules can possibly be applied to a given constraint system.In order to obtain completeness for the above set of simpli�cation rules we need to impose asyntactic restriction on the form of constraint systems. Indeed, as observed by H. Comon-Lundh,the following constraint system C = (T x) ∧ (T ∪ {[u]}x u), where T = {ek(a), dk(a)}represents a counter-example for completeness: the substitution { ek(a)/x} is a partial solution of
C, but C has no solved form.We say that a constraint system C is well-formed if, for any subterms {[u]}v and dk(w) of C,we have that v and w are ground terms.Note that this is not a restriction in our setting (where constraint systems are obtained fromprotocols as in Section 2.1.2), since scenarios only consist of initialised roles, and since in anyprotocol in which a variable x is used to represent a public or a private key can be rewritten�equivalently� by replacing x with ek(y) or dk(y) respectively. Also, the above simpli�cationrules preserve well-formedness: indeed, it is easily seen that, if C is well-formed and C σ C

′,then C ′ is well-formed.In what follows we will only consider well-formed constraint systems.Theorem 2.10 Let C be a constraint system, θ a substitution, P a security property and L alist of messages such that var(Ls) ⊆ var(C).1. (Correctness) If C ∗
σ C

′ for some constraint system C ′ and some substitution σ and if θis a solution of C ′ for the property P w.r.t. Lσ then σθ is a solution of C for the property
P w.r.t. L.2. (Completeness) If θ is a solution of C for the property P w.r.t. L, then there exist aconstraint system C ′ in solved form and substitutions σ, θ′ such that θ = σθ′, C ∗

σ C
′ and

θ′ is a solution of C ′ for the property P w.r.t. Lσ.As we will see in the next section we need a slight extension of the simpli�cation rules inorder to obtain their termination in polynomial time. Theorem 2.10 is proved in Sections 2.2.3and 2.2.4. The proof is a simple extension of the proof provided in [CL04] to sorted messagesand general security properties.2.2.2 Decision procedure in NP-timeTheorem 2.10 does not su�ce to ensure that deciding security properties is in NP (provided thatwe can decide them easily, i.e. in polynomial time, on solved constraint systems). In fact, applyingthe simpli�cation rules may lead to branches of exponential length (in the size of the constraintsystem). Indeed when applying a simpli�cation rule to a constraint, the initial constraint is61

Chapter 2. Decidability results using constraint systemssuppressed from the constraint system and replaced by new constraint(s). But this constraintmay appear again later on, due to other simpli�cation rules. It is the case for example whenconsidering the following constraint system.
T0

def
= {{{a}}k0} {{x0}}k0

T1
def
= T0, {{〈x0, 〈x0, a〉〉}}k1 {{x1}}k1...

Tn
def
= Tn−1, {{〈xn−1, 〈xn−1, a〉〉}}kn

 {{xn}}kn

Tn+1
def
= Tn, a xnThe constraint system C is clearly satis�able and its size is linear in n. We have that

C 2n
σ

{
T0 {{x0}}k0

Tn+1σ xnσwith σ(xi+1) = 〈xi, 〈xi, a〉〉 for 0 ≤ i ≤ n− 1. This derivation was obtained by applying rule R2and then R1 for each constraint Ti {{xi}}ki
with 1 ≤ i ≤ n. The rule R1 cannot be applied to

Tn+1σ xnσ since x0 and the keys ki are not present in or derivable from Tn+1σ. Note that
σ′ = σ ∪ { a/x0} is a solution of C and can be easily obtained by rule R2 on the �rst constraintand then rule R1 on both constraints.However, there is a branch of length 3(2n − 1) from T xnσ leading to T x0 (in solvedform), where T denotes Tn+1σ. This is easy to see by induction on n. It is true for n = 0. Thenusing only the rules Rpair and R1, we have
T xnσ

R〈〉

{
T xn−1σ
T 〈xn−1σ, a〉

m

{
T x0

T 〈xn−1σ, a〉

R〈〉

T x0

T xn−1σ
T a

R1

R1

{
T x0

T xn−1σ

m T x0with m = 3(2n−1 −1) by induction hypothesis. The length of the branch is 2×3(2n−1 −1)+3 =
3(2n−1). This shows that there exist branches of exponential length in the size of the constraint.We can prove (see Section 2.2.5) that it is actually not useful to consider constraints thathave already been seen before (like the constraint T xn−1σ in our example). Thus we store theconstraints that have already been visited. Starting from the initial set of simpli�cation rules R,we construct a new set of simpli�cation rules R′. For each simpli�cation rule C σ C

′ in R weintroduce in R′ the rule
C;D σ C ′ \D; (C \ C ′) ∪DThe constraints in D are those which were already analysed, they are stored in D. The initialconstraint system has the form C; ∅.Theorem 2.11 Let C be a constraint system, θ a substitution, P a security property and L alist of messages such that var(Ls) ⊆ var(C).1. (Correctness) If C; ∅ n

σ C
′;D′ for some constraint system C ′ and some substitution σ, if

θ is a solution of C ′ for the property P w.r.t. Lσ then σθ is a solution of C for the property
P w.r.t. L.62

2.2. Simplifying constraint systems2. (Completeness) If θ is a solution of C for the property P w.r.t. L, then there exist aconstraint system C ′ in solved form, a set of constraints D′ and substitutions σ, θ′ suchthat θ = σθ′, C; ∅ ∗
σ C

′;D′ and θ′ is a solution of C ′ for the property P w.r.t. Lσ.3. (Termination) If C; ∅ n
σ C ′;D′ for some constraint system C ′ and some substitution σthen n is polynomially bounded in the size of C.The following corollary is easily obtained from the previous theorem by observing that wecan guess the simpli�cation rules which lead to a solved form.Corollary 2.12 Any property P that can be decided in polynomial time on solved constraintsystems can be decided in non-deterministic polynomial time on arbitrary constraint systems.The rest of Section 2.2 is devoted to the proof of the two theorems. We �rst show correct-ness (in Section 2.2.3) and completeness (in Section 2.2.4) of Theorem 2.10. Then we proveTheorem 2.11 in Section 2.2.5.2.2.3 CorrectnessWe �rst give two simple lemmas.Lemma 2.13 If T ` u then var(u) ⊆ var(T).Proof The a�rmation follows easily by induction on the depth of a proof of T ` u, observingthat no deduction rule in I0 introduces new variables; that is, var(t) ⊆

⋃
i var(ti) for deductionrules

S ` t1 . . . S ` tk
S ` t(without conditions), and var(t) ⊆ var(T) if t ∈ T (that is, for the membership rule).The next lemma shows the �cut elimination� property for the deduction system `.Lemma 2.14 If T ` u and T, u ` v then T ` v.Proof Consider a proof π of T ` u and a proof π′ of T, u ` v. The tree obtained from π′ by

• replacing the labels of nodes T, u ` t in π′ with T ` t,
• replacing each new leaf T ` u (the old T, u ` u) with the tree π,is a proof of T ` v.As a consequence, we have that if T ⊆ T ′, T ′ ` v and T ` u, for all u ∈ T ′ \ T , then T ` v.We show now that the simpli�cation rules preserve constraint systems.Lemma 2.15 The simpli�cation rules transform a constraint system into a constraint system.Proof Suppose that C is a constraint system, C =

∧
i(Ti ui) and C σ C

′. Since Ti ⊆ Ti+1implies Tiσ ⊆ Ti+1σ we have that C ′ meets point 1 of the de�nition of constraint systems.We show that C ′ also meets point 2 of the de�nition of constraint systems. Let (T ′
 u′) ∈ C ′and x ∈ var(T ′). We have to prove that T ′

x exists and T ′
x (T ′. We consider which simpli�cationrule was applied. 63

Chapter 2. Decidability results using constraint systems
• If rule R1 was applied, eliminating the constraint T u, then u is ground, (T ′

 u′) ∈ Cand
T ′

x = min{T ′′ | (T ′′
 u′′) ∈ C ′, x ∈ var(u′′)}

= min{T ′′ | (T ′′
 u′′) ∈ C \ {T u}, x ∈ var(u′′)}.(The �rst equality is the de�nition of T ′

x, and the second one holds since u is ground.) If
min{T ′′ | (T ′′

 u′′) ∈ C\{T u}, x ∈ var(u′′)} = min{T ′′ | (T ′′
 u′′) ∈ C, x ∈ var(u′′)}then the property is clearly satis�ed (as it is satis�ed by T ′

 u′ in C). Otherwise, we havethat x ∈ var(u) and T = min{T ′′ | (T ′′
 u′′) ∈ C, x ∈ var(u′′)}. By minimality of T itfollows that x /∈ var(T) and x /∈ {y | (T ′′
 y) ∈ C, T ′′ (T}. Since x ∈ var(u), we havethat T ∪ {y | (T ′′

 y) ∈ C, T ′′ (T} 6` u which contradicts the applicability of rule R1 (byLemma 2.13).
• If rules R2 or R3 were applied then for each constraint (T ′′

 u′′) ∈ C ′ there is a constraint
(T u) ∈ C such that Tσ = T ′′ and uσ = u′′. Consider (T u) ∈ C such that Tσ = T ′and uσ = u′.If x is not introduced by σ then x ∈ var(T). Then Tx exists and Tx (T . Thus Txσ ⊆ Tσ.If Txσ = Tσ then x ∈ var(Tx) which contradicts the minimality of Tx. Thus Txσ (Tσ.We also have that {T ′′σ | (T ′′

 u′′) ∈ C, x ∈ var(u′′)} ⊆ {T ′′σ | (T ′′σ u′′σ) ∈ C ′, x ∈
var(u′′σ)}, since for any term u′′, if x ∈ var(u′′) then x ∈ var(u′′σ). It follows that T ′

xexists and T ′
x ⊆ Txσ. Hence T ′

x (T ′.Otherwise, suppose x is introduced by σ, that is ∃y ∈ var(T) such that x ∈ var(yσ). Then
Ty exists and Ty (T . We choose y such that Ty is minimal with respect to the inclusionrelation. We have that T ′

x ⊆ min{T ′′σ | (T ′′
 u′′) ∈ C, z ∈ var(u′′), x ∈ var(zσ)} ⊆ Tyσ.Again from Ty (T we obtain that Tyσ (Tσ, since if Tyσ = Tσ there exists z ∈ var(Ty)such that x ∈ var(zσ). We have z 6= y by minimality of Ty. Thus there exists Tz (Ty,which contradicts the minimality of y. Hence T ′

x exists and T ′
x (T ′.

• If rule R4 was applied then the obtained result is a constraint system by de�nition.
• If rule Rf was applied, then the property is preserved, since, if x ∈ var(u′′), for some term
u′′ such that (T ′′

 u′′) ∈ C ′, then there is a term v with x ∈ var(v) such that (T ′′
 v) ∈ C.Lemma 2.16 (correctness) If C σ C ′ then for every solution τ of C ′ for the property Pw.r.t Lσ, στ is a solution of C for the property P w.r.t. L.Proof If the applied rule was R1 then we have to prove that Tτ ` uτ , where T u isthe eliminated constraint. We know that T ∪ {x | T ′

 x ∈ C, T ′ (T} ` u. It follows that
Tτ ∪{xτ | T ′

 x ∈ C, T ′ (T} ` uτ . For any (T ′
 x) ∈ C, T ′ (T , we have that T ′τ ` xτ , andhence Tτ ` xτ . Then from Lemma 2.14 we obtain that Tτ ` uτ .Suppose that the rule applied in order to obtain C ′ was R2 or R3. Then we have for eachconstraint T u of C that (Tσ)τ ` (uσ)τ , that is, T (στ) ` u(στ). If the rule was Rf then weobtain that Tτ ` f(u, v)τ from Tτ ` uτ and Tτ ` vτ by applying the corresponding rule (e.g.encryption if f = encd). Finally, rule R4 couldn't have been applied.We deduce that στ satis�es C. Moreover, since τ is solution of C ′ for the property P w.r.t

Lσ, it means that P ((Lσ)τ) holds, that is P (L(στ)) holds. Thus στ is solution of C for theproperty P w.r.t L.64

2.2. Simplifying constraint systems2.2.4 CompletenessLet T1 ⊆ T2 ⊆ · · · ⊆ Tn. We say that a proof π of Ti ` u is left minimal if for any j < i suchthat Tj ` u, π′ is a proof of Tj ` u where π′ is obtained from π by replacing Ti with Tj in theleft-hand side of each node of π. We say that a proof is simple if any subproof is left minimaland on any branch there are no two equal nodes. Remark that a subproof of a simple proof issimple.Lemma 2.17 If Ti ` u then there is a simple proof of it.Proof We prove the property by induction on the pair (i,m) (considering the lexicographicalorder), where m is the size of a proof of Ti ` u.If i = 1 then any (subproof of any) proof of T1 ` u is left minimal and there exists a proofwithout repeating nodes on branches.If i > 1 and there is j < i such that Tj ` u then apply the recursion hypothesis to obtainthe existence of a simple proof of Tj ` u. This proof is also a simple proof of Ti ` u (by usingweakening; i.e. if T ` u and T ⊆ T ′ then T ′ ` u).If i > 1 and there is no j < i such that Tj ` u, then apply the recursion hypothesis on theimmediate subproofs of the proof of Ti ` u. If the node Ti ` u appears in one of the obtainedsubproofs π′ then consider a proof of Ti ` u (subproof of π′) not having Ti ` u as an internalnode. Otherwise apply the same last rule to obtain the root node Ti ` u. Anyhow, the obtainedproof and all of its subproofs are left minimal by construction, and hence the obtained proof issimple.For a constraint system C, we call a left-hand side Ti of some constraint in C minimal unsolvedif for all (T u) ∈ C such that T (Ti, u is a variable, and there is a constraint Ti ui with uinot a variable. Note that if T is minimal unsolved then nothing is implied for right hand sidesof constraints T u (that is, u may be a variable or not). Also, if T is minimal unsolved thenall left hand sides T ′ with T ′ ⊆ T are also minimal unsolved.Lemma 2.18 Let C be an unsolved constraint system, θ a partial solution of C, Ti a minimalunsolved left-hand side of C and u a term. If there is a simple proof of Tiθ ` u having the lastrule an axiom or a decomposition then there is t ∈ st(Ti), t not a variable, such that tθ = u.Proof Consider a simple proof π of Tiθ ` u. We can suppose without loss of generality that
i is minimal since if Tjθ ` u with j < i then π′ (obtained as in the de�nition of a simple proof)is a simple proof having as the last rule an axiom or a decomposition. We reason by inductionon the depth of the proof. We can have that:

• The last rule is an axiom. Then u ∈ Tiθ and hence there is t ∈ Ti (thus t ∈ st(Ti)) suchthat tθ = u. If t is a variable then Tt t is a constraint in C with Tt (Ti (see thede�nition of a constraint system). Hence Ttθ ` tθ, that is Ttθ ` u, which contradicts theminimality of i. Thus, as required, t is not a variable.
• The last rule is a decomposition.Suppose that it is a symmetric decryption. That is, there is w such that Tiθ ` {{u}}w,
Tiθ ` w. By simplicity of the proof, the last rule applied when obtaining {{u}}w was anaxiom or a decomposition, otherwise the same node would appear twice. Then applying theinduction hypothesis we have that there is t ∈ st(Ti), t not a variable, such that tθ = {{u}}w.65

Chapter 2. Decidability results using constraint systemsIt follows that t = {{t′}}t′′ with t′θ = u. If t′ is a variable then Tt′θ ` t′θ. That is Tt′θ ` u,which again contradicts the minimality of i. Hence t′ is not variable, as required.

For the other decomposition rules the same reasoning holds.

66

2.2. Simplifying constraint systemsLemma 2.19 Let C be an unsolved constraint system, θ a partial solution and Ti a minimalunsolved left hand side of C, such that Ti does not contain two distinct non-variable subterms
t1, t2 with t1θ = t2θ. If u ∈ st(Ti), u non-variable, and Tiθ ` uθ then we have that T ′

i ` u, where
T ′

i = Ti ∪ {x | T x ∈ C, T (Ti}.Proof Let j be minimal such that Tjθ ` uθ. Thus j ≤ i and Tj ⊆ Ti. Consider a simpleproof of Tjθ ` uθ. We reason by induction on the depth of the proof. We can have that:
• The last rule is an axiom. Then uθ ∈ Tjθ. If u ∈ Tj then Tj ` u and hence T ′

i ` u.Otherwise, there is t ∈ Tj such that tθ = uθ. We have t 6= u, and hence t is a variable,since otherwise there is a contradiction with the hypothesis (there are two distinct non-variable terms t and u in st(Ti) such that tθ = uθ). We then have Ttθ ` tθ. Thus Ttθ ` uθ,which contradicts the minimality of j, since Tt (Tj. Hence u ∈ Tj and then T ′
i ` u, asrequired.

• The last rule is a decomposition.Suppose that it is the symmetric decryption rule. That is, there is w such that Tjθ `
{{uθ}}w, Tjθ ` w. The last rule applied to obtain Tjθ ` {{uθ}}w was not a composition sincethere are no duplicated nodes in simple proofs. We can hence apply Lemma 2.18 and obtainthat there is t ∈ st(Tj), t not a variable, such that tθ = {{uθ}}w. Since t is not a variablewe have that t = {{t′}}t′′ with t′θ = uθ and t′′θ = w. If t′ is a variable then Tt′θ ` t′θ.Thus Tt′θ ` uθ, which contradicts the minimality of j, since Tt′ (Tj by the de�nition ofconstraint systems. It follows that t′ is not a variable. Then we have that t′ = u (otherwisewe would have two distinct non-variable terms t′ and u in st(Ti) with t′θ = uθ). We applythe induction hypothesis on Tjθ ` {{t′}}t′′θ and we obtain that T ′

i ` {{t′}}t′′ . Now, if t′′ isa variable then t′′ ∈ T ′
i , thus T ′

i ` t′′. Otherwise, if t′′ is not a variable then, by inductionhypothesis on Tjθ ` t′′θ, we obtain T ′
i ` t′′. Hence, in both cases, we obtain that T ′

i ` t′′.Then, together with T ′
i ` {{t′}}t′′ and t′ = u, it follows that T ′

i ` u.Suppose now that the last rule is the asymmetric decryption rule. That is, there is w suchthat Tjθ ` {[uθ]}ek(w), Tjθ ` dk(w). The last rule applied to obtain Tjθ ` {[uθ]}ek(w) wasnot a composition. We can hence apply Lemma 2.18 and obtain that there is t ∈ st(Tj),
t not a variable, such that tθ = {[uθ]}ek(w). Since t is not a variable, and from the well-formedness of C, we have that t = {[t′]}ek(w) with t′θ = uθ and w is a ground term. If t′is a variable then Tt′θ ` t′θ. Thus Tt′θ ` uθ, which contradicts the minimality of j, since
Tt′ (Tj by the de�nition of constraint systems. It follows that t′ is not a variable. Thenwe have that t′ = u (otherwise we would have two distinct non-variable terms t′ and uin st(Ti) with t′θ = uθ). We apply the induction hypothesis on Tjθ ` {[t′]}ek(w)θ and weobtain that T ′

i ` {[t′]}ek(w). Applying Lemma 2.18 for Tjθ ` dk(w), we obtain that there is
t′′ ∈ st(Tj), t′′ not a variable such that t′′θ = dk(w). Using the well-formedness of C weobtain that t′′ = dk(w). Applying now the induction hypothesis on Tjθ ` dk(w), we getthat T ′

i ` dk(w). Then, together with T ′
i ` {[t′]}ek(w) and t′ = u, it follows that T ′

i ` u.For the other decomposition rules the same reasoning as for the symmetric decryption caseis applied.
• The last rule is a composition. Suppose for example that it is the symmetric encryptionrule. Then uθ = {{w1}}w2 and Tjθ ` w1 and Tjθ ` w2. Since u is not a variable we havethat u = {{u1}}u2 , u1θ = w1 and u2θ = w2. If u1 (resp. u2) is a variable then u1 (resp. u2)is in T ′

i . Indeed, as u1 ∈ var(Ti) (because u ∈ st(Ti)), we can apply point 2 of De�nition 2.167

Chapter 2. Decidability results using constraint systemsand the minimal solvability of Ti. Otherwise (that is, if u1 and u2 are not variables) weapply the recursion hypothesis. Hence in both cases we have T ′
i ` u1 and T ′

i ` u2. Thus
T ′

i ` u.For the other composition rules the same reasoning holds.Lemma 2.20 (completeness) If C is an unsolved constraint system and θ is a solution of Cfor the property P w.r.t. L then there is a constraint system C ′, a substitution σ, and solution τof C ′ for the property P w.r.t. Lσ such that C σ C
′ and θ = στ .Proof Consider a constraint Ti ui such that Ti is minimal unsolved and ui is not a variable.We have Tiθ ` uiθ. Consider a simple proof of Tiθ ` uiθ. According to the last applied rulein this proof, we can have:1. The last rule is a composition.Suppose that it is the pairing rule. That is, there are w1, w2 such that Tiθ ` w1, Tiθ ` w2and 〈w1, w2〉 = uiθ. Since ui is not a variable there exists u′, u′′ such that ui = 〈u′, u′′〉.Hence we apply the simpli�cation rule Rpair in order to obtain C ′. Since u′θ = w1 and

u′′θ = w2, the substitution θ is also a solution to C ′ for P w.r.t L.For the other composition rules the same reasoning holds, applying this time the corre-sponding Rf rule.2. The last rule is an axiom or a decomposition. Applying Lemma 2.18 we obtain that thereis t ∈ st(Ti), t not a variable, such that tθ = uiθ. We have the following two possibilities:(a) If t 6= ui then we apply the simpli�cation rule R2.(b) Otherwise, if t = ui, then ui ∈ st(Ti). We consider the cases:i. There are two distinct non-variable terms t1, t2 ∈ st(Ti) such that t1θ = t2θ.Then we apply the simpli�cation rule R3.ii. Otherwise, the rule R1 is applied. This follows from Lemma 2.19.2.2.5 Termination in polynomial timeIn what follows, we �rst show that the new simpli�cation rules are terminating in polynomialtime. Then we show that removing already analysed constraints is a correct and completeprocedure.It is easy to show by induction on j that the following properties are satis�ed.Lemma 2.21 Let C = C0 be a constraint system, let D0 = ∅ and Ci−1;Di−1 σi
Ci;Di for all

0 < i ≤ n for some n > 0. Then Cj ∩Dj = ∅ for all 0 ≤ j ≤ n.Lemma 2.22 Let C = C0 be a constraint system, let D0 = ∅ and Ci−1;Di−1 σi
Ci;Di forall 0 < i ≤ n for some n > 0. If (T u) ∈ Dn then there is an unique j < n such that

(T u) ∈ Cj \ Cj+1 or, equivalently (T u) ∈ Dj+1 \Dj.68

2.2. Simplifying constraint systems2.2.5.1 TerminationWe show that each branch is of polynomial length.Lemma 2.23 (termination) If C; ∅ n
σ C

′;D′ for some constraint system C ′ and some sub-stitution σ then n is polynomially bounded in the size of C.Proof We �rst notice that the rule R4 can be applied only once. The rule Rf increases thetotal number of constraints by one and the rules R2 and R3 do not increase the total numberof constraints. Thus the number of applications of rule R1 is at most the number of constraintsin C plus the number of applications of Rf . In addition, each application of R2 or R3 strictlydecreases the number of variables. Since no rule increases the number of variables, the numberof applications of the rules R2 and R3 is bounded by the number of variables in C. So what weneed to bound is the maximum number of applications of rule Rf .For a constraint system C ′′, we denote by Lhs(C ′′) = {T | (T u) ∈ C ′′} the set of left handsides of constraints of C ′′. We denote (Ci;Di)i≥0 the sequence of constraint systems obtainedby applying successively the simpli�cation rules, where C0 = C and D0 = ∅. By Lemma 2.21,
Ck ∩Dk = ∅ for all k ≥ 0. Let j be an arbitrary index such that (Cj−1;Dj−1) (Cj ;Dj) usingthe rule Rf . Let j0 be the index of the last application of one of the rules R2 or R3, that is j0 < jand j0 = max{k < j0|αk ∈ {R2, R3}} (by convention j0 = 0 if there is no application of one ofthe rules R2 or R3). Suppose that, at step j, we have applied rule Rf on T f(u, v). Then
(T f(u, v)) ∈ Dj . Hence we cannot apply later (at some step k > j) a rule (and in particular
Rf) on T f(u, v). Also note that f(u, v) ∈ st(Cj0). Hence until the next application of one ofthe rules R2 or R3 we can apply rule Rf at most]Lhs(Cj0)×]st(rhs(Cj0)) times, since R2 and R3are the only rules that change the left-hand side of a constraint system. But]Lhs(Ck) ≤]lhs(Ck)for all k (since a di�erent left hand side T of a constraint means at least a di�erent term).Observe now that]lhs(Ci) (and in particular]lhs(Cj0)) can only decrease with regard to]lhs(C0)because each rule either preserves the set of terms in the left-hand side of a constraint system,or it replaces it with a new set of usually equal cardinality (but maybe smaller if some termsget uni�ed by the application of rule R2 or R3). Also,]st(rhs(Ci)) ≤]st(Ci) ≤]st(C0). Indeed,the �rst inclusion is trivial and the second holds because the number of subterms of Ci (w.r.t.
Ci−1) may only decrease: this is trivial for rules R1 and Rf , and true for R2 and R3 since
]st(uθ) ≤](st(u) ∪ st(v)) when θ = mgu(u, v). Hence the maximum number of applications ofrule Rf is]var(C0) ×]lhs(C0) ×]st(C0).So n is bounded by]C0 + nf (for rule R1) plus]var(C0) (for rules R2 and R3) plus 1 (forrule R4) plus]var(C0)×]lhs(C0)×]st(C0) (for rule Rf), where nf is the number of applicationsof rule Rf . That is, n ≤ 1 +]C +]var(C) + 2 ×]var(C) ×]lhs(C) ×]st(C).Note that we also need to make sure that C ′ and D′ are also of polynomially bounded size.This is ensured using a DAG-representation of the terms for example.2.2.5.2 CorrectnessWe �rst prove a useful lemma which states some properties of a sequence of simpli�cation ruleswhen rule R1 has not been applied.Lemma 2.24 Let C; ∅ ∗ Ci;Di

∗ Cn;Dn for some n > i ≥ 0 be a simpli�cation sequencesuch that the rule R1 was not applied. Also let Ci C ′
i+1 using the same simpli�cation ruleas in Ci;Di Ci+1;Di+1. If (T u) ∈ Di+1 and var(T u) ⊆ var(C ′

i+1) then for all j with
i < j ≤ n such that var(T u) ⊆ var(C ′

j) there are constraints T u1, T u2, . . . , T uk69

Chapter 2. Decidability results using constraint systemsin Cj and a context U that does not contain constant symbols such that U [u1, . . . , uk] = u and
|ul| < |u| for all 1 ≤ l ≤ k.Proof We do the proof by induction on |u|. But �rst we derive a useful observation.From Lemma 2.22 we know that there is j0 ≤ i such that (T u) ∈ (Cj0 \Cj0+1). We provethat the rule applied at step j0 + 1 cannot be R2 or R3. Suppose by contradiction that it is.Then, since at this step T u is removed from Cj0 , there is at least one variable, say x, of T uin the domain of σj0+1. This variable does not appear in any C ′

j with j > j0, hence in particularit does not appear in C ′
i+1. We obtain a contradiction. Hence at step j0 + 1 the rule Rf wasapplied. Then u = f(u′, u′′) and T u′, T u′′ are in C ′

j0+1.Since, as we will see later, the a�rmation for j > i + 1 is implied by that for j = i + 1 we�rst prove this last one (i.e. for j = i+ 1).If |u| = 1 then the rule Rf couldn't have been applied (at step j0 + 1) since u is atomic.Hence due to the above discussion this case is not possible.If |u| = 2 then for all j with j0 < j ≤ i + 1, T u′ and T u′′ cannot be in Dj. Indeedotherwise (using the same argument as above for T u) the rule Rf must have been applied onthese constraints which would contradict that u′ and u′′ are atomic. Hence T u′ and T u′′are in Cj for all j with j0 < j ≤ i + 1, hence in particular in Ci+1. Then the context is simply
U = f [·, ·], u1 = u′ and u2 = u′′.Consider that |u| > 2. If T u′ is in Di+1 then T u′ is in Ci0 \ Ci0+1 for some i0 ≤ i(by Lemma 2.21). Since |u′| < |u| and var(T u′) ⊆ var(T u) ⊆ var(Ci+1) we can apply theinduction hypothesis to obtain that there are constraints T u′l′ for 1 ≤ l′ ≤ k′ in Ci+1 and acontext U ′ such that U ′[u′1, . . . , u

′
k′] = u′ and |u′l′ | < |u| for all l′. Otherwise (if T u′ is in Ci+1)consider U ′ as the empty context and the set of constraints being formed by the singleton T u′.The same reasoning applies for T u′′ obtaining the set of constraints T u′′l′′ for 1 ≤ l′′ ≤ k′′in Ci+1 and a context U ′′ such that U ′′[u′′1 , . . . , u

′′
k′′] = u′′ and |u′′l′′ | < |u| for all l′′. Then takethe union of these two sets of constraints and the context f(U ′, U ′′) to obtain the claim.We have found T ul in Ci+1 for 1 ≤ l ≤ k and U such that U [u1, . . . , uk] = u and |ul| < |u|for all l. Consider an arbitrary j > i + 1 such that var(T u) ⊆ var(C ′

j). We build a newcontext from U by replacing the l'th hole and the corresponding constraint T ul with newones if (T ul) /∈ Cj and by keeping the old ones otherwise. If (T ul) /∈ Cj the new contextand the corresponding constraints from Cj are obtained by applying the induction hypothesis on
T ul. We can apply indeed the hypothesis since we have by Lemma 2.21 that (T ul) ∈ Dj ,and by construction of ul that var(T ul) ⊆ var(C ′

j) and |ul| < |u| (ul is a proper subterm of
u, for all l).Lemma 2.25 If C; ∅ n

σ C
′;D′ for some constraint system C ′ and some substitution σ, if θ isa solution of C ′ then σθ is a solution of C.Proof Assume C; ∅ n
σ C ′;D′. Since applying the rule R1 does not produce any newconstraint, we can assume that the simpli�cation rule R1 is applied only at the end of the sequenceof simpli�cation (possibly several times). Thus C; ∅ m

σ1
C ′′;D′′

p
σ2 C

′;D′ such that the rule
R1 is not applied in C; ∅ m

σ1
C ′′;D′′ and only the rule R1 is applied in C ′′;D′′

p
σ2 C

′;D′.Using exactly the same argument as in the proof of Lemma 2.16 (for the case when rule R1 wasapplied), we obtain that θ solution of C ′ implies θ solution of C ′′.Thus we are reduced to proving Lemma 2.25 when the rule R1 is not applied. Correctnessnow follows easily. Indeed, let τ be a solution for Ci+1. Using Lemma 2.24 we obtain that τ isa solution for all (T u) ∈ (C ′
i+1 \ Ci+1) and hence τ is a solution for C ′

i+1. Then applyingLemma 2.16 we obtained the desired result.70

2.2. Simplifying constraint systems2.2.5.3 CompletenessFrom Lemma 2.20, we know that if C is an unsolved constraint system and θ is a solution of
C for the property P w.r.t. L then there is a constraint system C ′ and solution τ of C ′ for theproperty P w.r.t. Lσ such that C σ C

′ and θ = στ . Thus it is su�cient for us to show thatremoving already visited constraints preserves the fact that C is a constraint system.Lemma 2.26 If C is a constraint system and C; ∅ ∗
σ C

′;D′ then C ′ is a constraint system.Proof Let (Ci;Di) σi+1 (Ci+1;Di+1), with 0 ≤ i < n be the sequence of constraint systemsobtained by applying successively the simpli�cation rules, where C0 = C, D0 = ∅ and Cn = C ′.Again we can assume that we apply the rule R1 last. Indeed, if there is a sequence ofsimpli�cation rules leading to C ′;D′ then there is sequence C; ∅ C ′′;D′′ where the rule R1 hasnot been applied and a sequence C ′′;D′′
 C ′;D′ where only rule R1 has been applied. If C ′′is a constraint system then it is easy to see (using exactly the same proof as in Lemma 2.16 forthe case when rule R1 was applied) that C ′ is a constraint system.Thus we are reduced to proving the Lemma when the rule R1 is not applied. We prove byinduction on i that Ci is a constraint system. This is true for i = 0.For each i we denote by C ′

i+1 the constraint system such that Ci σi+1 C
′
i+1 using the samerule as in (Ci;Di) σi+1 (Ci+1;Di+1).Since the simpli�cation rules preserve constraint systems (Lemma 2.15), we have that C ′

i+1is a constraint system. Hence the �rst condition of the de�nition of constraint systems is clearlysatis�ed by Ci+1, since it is satis�ed for C ′
i+1. We show that Ci+1 also meets the second conditionof the de�nition of constraint systems.Let (T u) ∈ Ci+1 and x ∈ var(T). We have (T u) ∈ C ′

i+1. Hence (again by Lemma 2.15)there exists (Tx ux) ∈ C ′
i+1 such that Tx (T , x /∈ var(Tx) and x ∈ var(ux). If (Tx ux) ∈

Ci+1, we conclude that the second condition is satis�ed. Otherwise, (Tx ux) ∈ Di+1. Thenby Lemma 2.24 we have that there are constraints Tx uj in Ci+1 with 1 ≤ j ≤ k for some
k > 0 and a context U such that U [u1, . . . , uk] = ux. Since x ∈ var(ux) then there is a j with
1 ≤ j ≤ k such that x ∈ var(uj). Hence the constraint Tx uj satis�es the conditions.2.2.6 An alternative approach to polynomial-time terminationIn the previous section, we showed that the constraint-solving procedure �nishes in polynomial-time by using a memorization technique to eliminate exponential runs. In this section we givean alternative technique using strategies.We show next that by imposing a particular strategy on the application of simpli�cation ruleswe can bound the length of every branch of the computation tree of the simpli�cation procedureby a polynomial in the size of the initial constraint system. The strategy consists in

• �rst applying rules R2 and R3;
• next applying rules Rf respecting the descending order of the sizes of the right hand sidesof constraints;
• �nally apply rule R1;
• (rule R4, if applied, is applied last anyhow). 71

Chapter 2. Decidability results using constraint systemsWe �rst sketch the proof of completeness (corectness is independent of the order of applicationof rules) and next the proof of polynomial time termination.To preserve completeness of the procedure under this strategy, we slightly relax the conditionof the application of the rule R2 on a constraint T u: we require unifying a subterm t ∈ st(T)and a subterm t′ ∈ st(u) (instead of unifying t with u) with t 6= t′, t, t′ non-variables. Remarkthat this change preserves correctness and completeness of the initial procedure.We have already remarked that we can �safely� apply rule R1 last. Hence we suppose nextthat rules R1 and R4 are not applied. This leaves us with a sequence of application of rules R2,
R3 and Rf .Now we observe also that the application of rule Rf is �independent� of the application ofrules R2 and R3. More precisely, we can delay arbitrarily the applications of rules Rf (withregard to the application of rules R2 and R3), to obtain the same result, that is the same �nalconstraint system and the same resulting substitution (i.e. the last subscript σ). We show thatwe can �safely� change the application of the rule Rf followed by R2 (each applied once) intoapplying �rst the rule R2 and next Rf . Indeed, suppose that Rf applies �rst on the constraint
T f(u1, u2) and R2 applies next on the constraint T ′

 u′, unifying terms t and t′ with
t ∈ st(T ′), t′ ∈ st(u′), and σ = mgu(t, t′). The resulting constraints are Tσ u1σ, Tσ u2σand T ′σ u′σ, possibly equal. We now (try to) apply �rst R2 and next Rf . The rule R2 isapplied on T ′

 u′ if this constraint already existed in the constraint system, and on T f(u1, u2)otherwise, i.e. if the constraint T ′
 u′ is one of the two generated by the application of therule Rf above. The interesting case is the latter, when T = T ′, u′ = u1 (the case u′ = u2 issymmetric). The rule R2 can be applied as t′ ∈ st(f(u1, u2)) (since t′ ∈ st(u′)), and Rf can beapplied on Tσ f(u1σ, u2σ). We observe that the resulting substitution and set of constraintsare the same in the two cases (not depending on the order of application of the two rules). Welift the above remark to arbitrary constraint systems (not only with one or two constraints). Wecan thus move the applications of the rule Rf in a sequence of simpli�cation steps at the end,just as bubble-sort does. That is, we apply the above interchange �rst for the last application ofrule Rf , making it the last step, next the last but one application of rule Rf , making it the lastbut one step, and so on.The strategy requires applying rule Rf (among all the applications of rule Rf) �rst on theconstraints with the biggest (w.r.t. the size) right hand side. In this way we are sure of notrevisiting an eliminated constraint. Indeed, if a constraint T u is eliminated, at some step i,then it means the rule Rf has bean applied on it, thus |u| = maxt∈rhs(Ci) |t|. If the constraint

T u is generated in Cj+1 from Cj, for some j, then maxt∈rhs(Cj) |t| > |u|. Thus �rst eliminatingit and then generating it (i.e. j > i) is not possible : since by applying rules Rf the maximumof the sizes of the right hand sides terms decreases, we have maxt∈rhs(Ci) |t| ≥ maxt∈rhs(Cj) |t|,it follows that |u| > |u|. Moreover, if a constraint is eliminated during the �rst phase (i.e.application of rules R2 and R3) at step say i, then this constraint contains at least a variablewhich gets instantiated and hence which will not appear in the constraint systems at steps jwith j > i.Hence we are assured that the same constraint is never eliminated and next regenerated.Since this is the fundamental property of the approach presented in the previous section, weobtain that using this strategy the numbers of simpli�cation steps is polynomially bounded bythe size of the initial constraint systems. The proof is the same as that of Lemma 2.23 (thoughnow we use the above argument instead of Lemmas 2.21 and 2.22 to show that visited constraintsare not regenerated).72

2.3. Decidability of some specialised security properties2.3 Decidability of some specialised security propertiesUsing the general approach presented in the previous section, verifying particular properties likethe existence of key cycles or the conformation to an a priori given order relation on keys can bereduced to deciding these properties on solved constraint systems. We deduce a new decidabilityresult, useful in models designed for proving cryptographic properties.This approach also allows us to retrieve a signi�cant fragment of [BEL04] for protocols withtimestamps (in Section 2.3.2).2.3.1 Detection of key cyclesTo show that formal models (like the one presented in Chapter 1) are sound with respect tocryptographic ones, one usually assumes that no key cycle can be produced during the executionof a protocol or, even stronger, assumes that the �encrypts� relation on keys follows an a priorigiven order.Some authors circumvent the problem of key cycles by providing new security de�nitions forencryption that allow key cycles [ABHS05, BPS07]. However, the standard security notions donot imply these new de�nitions and ad-hoc encryption schemes have to be constructed in order tosatisfy the de�nitions. These constructions use the random oracle model which is provably nonimplementable. As a consequence, it is not known how to implement encryption schemes thatsatisfy the new de�nitions. In particular, none of the usual, implemented encryption schemeshave been proved to satisfy the requirements.In a passive setting, Laud [Lau02] proposed a modi�cation of the Dolev-Yao model suchthat the new model is a sound abstraction even in the presence of key cycles. In his modelthe intruder's powers are strengthened by using a new deduction system. With the new rules,from a message containing a key cycle the intruder can infer all the involved keys. Subsequently,Janvier [Jan06] proved that the intruder deduction problem remains polynomial for the mod-i�ed deduction system. It seems that this approach can be extended to active intruders andincorporated in existing tools, though to our knowledge this has not been done yet. Note thatthe de�nition of key cycles used in [Jan06] is more permissive than that of [AR02] (which isunnecessarily restrictive) and it corresponds to the approach of Laud [Lau02].For simplicity, and since there are very few papers constraining the key relations in an asym-metric setting, in this section we restrict our attention to key cycles and key orders on symmetrickeys. Moreover, we consider atomic keys for symmetric encryption since there exists no generalde�nition (with a cryptographic interpretation) of key cycles in the case of arbitrary composedkeys and soundness results are usually obtained for atomic keys. More precisely, we assumethat SymKey < Msg. All function symbols of non-zero arity are of sort s1 × · · · × sn → s with
s 6= SymKey. Hence only constants and variables can be of sort SymKey. In this section we callkey a variable or a constant of sort SymKey.2.3.1.1 Key cyclesMany de�nitions of key cycles are available in the literature. They are stated in terms of an�encryption� relation between keys or occurrences of keys. For example, the early de�nitionproposed by Abadi and Rogaway [AR02], identi�es a key cycle with a cycle in the encryptionrelation, with no conditions on the occurrences of the keys. However, the de�nition induced byLaud's approach [Lau02] corresponds to searching for such cycles only in the �visible� parts ofa message. For example the message {{{{k}}k}}k′ contains a key cycle using the former de�nition73

Chapter 2. Decidability results using constraint systemsbut does not when using the latter one and assuming that k′ is secret. It is generally admittedthat the Abadi-Rogaway de�nition is unnecessarily restrictive and hence we will say that thecorresponding key cycles are strict. However, for completeness reasons, we treat both cases.There can still be other variants of the de�nition, depending whether the relation �k en-crypts k′� is restricted or not to keys k′ that occur in plaintext. For example, {{{{a}}k}}k may ormay not contain a key cycle. As above, even if occurrences of keys used for encrypting (as k in
{{m}}k) need not be considered as encrypted keys, and hence can safely be ignored when de�ningkey cycles, we consider both cases. Note that the initial Abadi-Rogaway setting consider that
{{{{a}}k}}k has a key cycle.We write s <st t if and only if s is a subterm of t. We de�ne recursively the least re�exiveand transitive relation v satisfying: s1 v (s1, s2), s2 v (s1, s2), and if s v t then s v {{t}}t′ .Intuitively, s v t if s is a subterm of t that either occurs (at least once) in clear (i.e. not encrypted)or occurs (at least once) in a plaintext position. A position p is a plaintext position in a term uif there exists an occurrence q of an encryption in u such that q · 1 ≤ p.De�nition 2.27 Let ρ1 be a relation chosen in {<st,v}. Let S be a set of terms and k, k′ betwo keys. We say that k encrypts k′ in S (denoted k ρS

e k
′) if there exist m ∈ S and a term m′such that

k′ ρ1m
′ and {{m′}}k v m.For simplicity, we may write ρe instead of ρS

e if S is clear from the context. Also, if m is amessage we denote by ρm
e the relation ρ{m}

e .Let S be a set of terms. We de�ne hidden(S)
def
= {k ∈ st(S) | k of sort SymKey, S 6` k}.De�nition 2.28 (Strict key cycle) Let K be a set of keys. We say that a set of terms Scontains a strict key cycle on K if there is a cycle in the restriction of the relation ρS

e on K.Otherwise we say that S is strictly acyclic on K.We de�ne the predicate Pskc as follows: Pskc holds on a list of terms L if and only if the set
{m | Ls ` m} contains a strict key cycle on hidden(Ls).We give now the de�nition induced by Laud's approach [Lau02]. He has showed in a passivesetting that if a protocol is secure when the intruder's power is given by a modi�ed Dolev-Yaodeduction system `∅, then the protocol is secure in the computational model, without requiringa �no key cycle� condition. Rephrasing Laud's result in terms of the standard deduction system
` gives rise to the below de�nition of key cycles, as it has been proved in [Jan06].To state the following de�nition we need a more precise notion than the encrypts relation.We say that an occurrence q of a key k is protected by a key k′ in a term m if m|q′′ = {{m′}}k′ forsome term m′ and some position q′′, and the occurrence of k at q in m is a plaintext occurrenceof k in m′, that is q′′ · 1 ≤ q. We extend this de�nition in the intuitive way to sets of terms. Thiscan be done for example by indexing the terms in the set and adding this index as a pre�x tothe position in the term to obtain the position in the set.De�nition 2.29 (Key cycle [Jan06]) Let K be a set of keys. We say that a set of terms Sis acyclic on K if there exists a strict partial order ≺ on K such that for all k ∈ K, for alloccurrences q of k in plaintext position in S there is k′ ∈ K such that k′ ≺ k and q is protectedby k′ in S. Otherwise we say that S contains a key cycle on K.We de�ne the predicate Pkc as follows: Pkc holds on a list of terms L if and only if the set
{m | Ls ` m} contains a key cycle on hidden(Ls).74

2.3. Decidability of some specialised security propertiesWe say that a term m contains a (strict) key cycle if the set {m} contains one.Exemple 2.30 The messages m = {{{{k}}k}}k′ and m′ = 〈{{k1}}k2 , {{{{k2}}k3}}k1〉 are acyclic,while the message m′′ = 〈〈{{k1}}k2 , {{{{k2}}k1}}k3〉, k3〉 has a key cycle. The orders k′ ≺ k and
k3 ≺ k2 ≺ k1 prove it for m and m′ while for m′′ such an order cannot be found since k3 isdeducible. However, all three messages have strict key cycles.2.3.1.2 Key ordersIn order to establish soundness of formal models in a symmetric encryption setting, the re-quirements on the encrypts relation can be even stronger, in particular in the case of an activeintruder. In [BP04] and [JLM05] the authors require that a key never encrypts a younger key.More precisely, the encrypts relation has to be compatible with the order in which the keys aregenerated. Hence we also want to check whether there exist executions of the protocol for whichthe encrypts relation is incompatible with an a priori given order on keys.De�nition 2.31 (Key order) Let ≺ be a strict partial order on a set of keys K. We say thata set of terms S is compatible with ≺ on K if

k ρS
e k

′ ⇒ k′ 6� k, for all k, k′ ∈ K.Given a strict partial order ≺ on a set of keys, we de�ne the predicate P≺ as follows: P≺holds on a list of terms L if and only if the set {m | Ls ` m} is compatible with ≺ on hidden(Ls).For example, in [BP04, JLM05] the authors choose ≺ to be the order in which the keys aregenerated: k ≺ k′ if k has been generated before k′. We denote by P≺ the negation of P≺.Indeed, an attack in this context is an execution such that the encrypts relation is incompatiblewith ≺, that is the predicate P≺ holds.The following proposition states that in the passive case a key cycle can be deduced from aset S only if it already appears in S.Proposition 2.32 Let L be a list of terms, and ≺ a strict partial order on a set of keys. Thepredicate Pkc (respectively, Pskc or P≺) holds on L if and only if Ls contains a key cycle (respec-tively, Ls contains a strict key cycle, or the encrypts relation on Ls is not compatible with ≺).Proof The statement follows directly from the following property: if S ` m, S 6` k′ and k′protects an occurrence q of k in m then there is an occurrence q0 of k in S such that k′ protects
q0. This property can be proved easily by induction on the depth of the proof of S ` m. Thedetailed proof can be found in Section 2.3.1.5.2.3.1.3 DecidabilityWe show how to decide the existence of key cycles or the conformation to an ordering in polyno-mial time for solved constraint systems. Note that the set of messages on which our predicates areapplied usually contains all messages sent on the network and possibly some additional intruderknowledge.Proposition 2.33 Let C be a solved constraint system, L be a list of messages such that var(Ls) ⊆
var(C) and lhs(C) ⊆ Ls, and ≺ a strict partial order on a set of keys. Deciding whether C hasa solution for Pkc, Pskc or P≺ w.r.t. L can be done in O(|L|4). 75

Chapter 2. Decidability results using constraint systemsWe devote the remaining of this section to the proof of the above proposition.We know by Proposition 2.32 that it is su�cient to analyse the encrypts (or protects) relationonly on Lsθ (and not on every deducible term), where θ is an arbitrary partial solution.We can safely suppose that there is exactly one constraint for each variable. Indeed, elim-inating from C all constraints T ′
 x for which there is a constraint T x in C with T (T ′we obtain an �equivalent� constraint system C ′ (that is, σ is a solution of C ′ i� it is a solutionof C). Let tx be the term obtained by pairing all terms of Tx (in some arbitrary order). Wewrite C as ∧

i(Ti xi), with 1 ≤ i ≤ n and Ti ⊆ Ti+1. We construct the following substitution
τ = τ1 . . . τn, and τj is de�ned inductively as follows:- dom(τ1) = {x1} and x1τ1 = tx1 , i.e. τ1 = { tx1/x1},- τi+1 = τi ∪ { txi+1τi/xi+1}.The construction is correct by the de�nition of constraint systems. It is clear that τ is a partialsolution of C. We show next that it is su�cient to analyse this particular partial solution.Key cycles. We focus �rst on the property Pkc.Lemma 2.34 Let C be a solved constraint system, L a list of terms such that var(Ls) ⊆ var(C),
lhs(C) ⊆ Ls, and C has a solution for Pkc w.r.t L. Then τ is a solution of C for Pkc w.r.t L.We postpone its proof to Section 2.3.1.5.Hence we just need to verify whether τ is a solution of C for Pkc w.r.t. L. Let K =
hidden(Lsτ). We build inductively the sets K0 = ∅ and for all i ≥ 1,

Ki = {k ∈ K | ∀q ∈ posp(k, Lsτ)∃k
′ s.t. k′ protects q and k′ ∈ Ki−1}where posp(m,T) denotes the plaintext positions of a term m in a set T . Observe that for all

i ≥ 0, Ki ⊆ Ki+1. This can be proved easily by induction on i. Moreover, since K is �nite and
Ki ⊆ K for all i ≥ 0, then there is l ≥ 0 such that Ki = Kl for all i > l.Lemma 2.35 There exists i ≥ 0 such that Ki = K if and only if τ is a solution of C for Pkcw.r.t. L.Proof Consider �rst that there exists i ≥ 0 such that Ki = K. Then take the following strictpartial order on K: k′ ≺ k if and only if there is j ≥ 0 such that k′ ∈ Kj and k /∈ Kj. Consider akey k ∈ K and a plaintext occurrence q of k in Lsτ . Then take l ≥ 1 minimal such that k ∈ Kl.By the de�nition of Kl there is k′ ∈ K such that k′ protects q and k′ ∈ Kl−1. Since l is minimal
k /∈ Kl−1. Hence k′ ≺ k. Thus τ is a solution for Pkc w.r.t. L.Consider now that τ is a solution. Suppose that Ki+1 = Ki (K. Let k ∈ K \Ki+1. Since
k 6∈ Ki+1 there is a plaintext occurrence q of k such that for all k′ ∈ K either k′ does not protect
q, or k′ /∈ Ki. But since τ is a solution, there is k′′ ∈ K such that k′′ protects q and k′′ ≺ k. Itfollows that k′′ /∈ Ki, and thus k′′ /∈ Ki+1. Hence for an arbitrary k ∈ K \Ki+1 we have found
k′′ ∈ K \Ki+1 such that k′′ ≺ k. That is, we can build an in�nite sequence . . . ≺ k′′ ≺ k withdistinct elements from a �nite set � contradiction. So there exists i ≥ 0 such that Ki = K.Hence to verify whether τ is a solution for Pkc we just need to construct the sets Ki until
Ki+1 = Ki and then to test whether Ki = K. This algorithm is analogue to a classical methodfor �nding a topological sorting of vertexes (and for �nding cycles) of directed graphs. It is76

2.3. Decidability of some specialised security propertiesalso similar to that given by Janvier [Jan06] for the intruder deduction problem considering thededuction system of Laud [Lau02].Regarding the complexity, there are at most]K sets to be build and each set Ki can beconstructed in O(|Lsτ |). If a DAG-representation of the terms is used then |Lsτ | ∈ O(|Ls|).This gives a complexity of O(]K × |Ls|) for the above algorithm.Strict key cycles and key orders. For the other two properties Pskc and P≺ we proceed ina similar manner. The following lemma show that it is su�cient to analyse τ when verifying theproperties Pskc and P≺.Lemma 2.36 Let C be a solved constraint system, L a list of terms such that var(Ls) ⊆ var(C)and lhs(C) ⊆ Ls, and θ a partial solution of C. For any k, k′ ∈ hidden(Lsθ), if k encrypts k′ in
Lsθ then k encrypts k′ in Lsτ .We give the proof of this lemma in Section 2.3.1.5 also.We deduce that deciding whether C has a solution for Pskc w.r.t. L can be done simply bydeciding whether the restriction of the relation ρLsτ

e to K ×K is cyclic.Deciding whether C has a solution for P≺ w.r.t. L can be done by deciding whether therestriction to K ×K of the relation ρLsτ
e has the following property P : there are k, k′ ∈ K suchthat kρLsτ

e k′ and k � k′.Testing whether the relation ρLsτ
e is cyclic can be done by testing for cycles in the corre-sponding directed graph using a classic algorithm in O(|K|2). And verifying the property P canbe done by analysing all pairs (k, k′) ∈ K ×K hence also in O(|K|2).Verifying any of the three properties requires a preliminary step of computingK = hidden(Lsτ).Since the intruder deduction problem can be solved in O(|Lsτ |

3), this gives a complexity of
O(|Ls|

4) for computing K. |Lsτ | = O(|Ls| × |τ |) = O(|Ls| × |C|) = O(|Ls|
2) (the last equalityholds since C is in solved form). And since]K ∈ O(|Ls|) we obtain that the overall complexityof deciding whether a solved constrained system has a solution for any of the properties Pkc,

Pskc, and P≺ w.r.t. to a list L with lhs(C) ⊆ Ls is given by the intruder deduction problem, andhence it is O(|Ls|
4) (more exactly O(|L| + |Ls|

4) if we consider transforming the list L into theset of terms Ls).2.3.1.4 NP-completenessLet C be a constraint system and L a list of terms such that var(Ls) ⊆ var(C) and lhs(C) ⊆ LsThe NP membership of deciding whether C has a solution for Pkc, Pskc or P≺ w.r.t. L followsimmediately from Corollary 2.12 and Proposition 2.33.NP-hardness is obtained by adapting the construction for NP-hardness provided in [RT03].More precisely, we consider the reduction of the 3SAT problem to our problem. For any 3SATboolean formula we construct a protocol such that the intruder can deduce a message containinga key cycle if and only if the formula is satis�able. The construction is the same as in [RT03](pages 15 and 16) except that, in the last rule, the participant responds with the term {{k}}k, forsome fresh key k (initially secret), instead of Secret. Then it is easy to see that the only way toproduce a key cycle on a secret key is to play this last rule which is equivalent, using [RT03], tothe satis�ability of the corresponding 3SAT formula. 77

Chapter 2. Decidability results using constraint systems2.3.1.5 Proofs of lemmasLemma 2.37 Let S be a set of terms, m a term and k a key such that S ` m and S 6` k. Thenfor any plaintext occurrence q of k in m there is a plaintext occurrence q0 in S such that if thereis key k′ with S 6` k′ and which protects q0 in S then k′ protects q in m.
Proof We reason by induction on the depth of the proof of S ` m. We can have that

• the last rule is an axiom. Hence m ∈ S. Then just take q0 = q.
• the last rule is a decryption. Then S ` {{m}}k′′ and S ` k′′ for some k′′ 6= k. Take theposition q1 = 1 · q in {{m}}k′′ . It is an occurrence of k. Applying the induction hypothesiswe obtain an occurrence q0 of k in S such that if there is key k′ with S 6` k′ and whichprotects q0 in S then k′ protects q1 in {{m}}k′′ . Since S 6` k′ it follows that k′′ 6= k′ andhence k′ protects q in m.
• the last rule is a another rule. In all these cases a similar analysis as in the previous casecan be done.

78

2.3. Decidability of some specialised security propertiesAs a corollary we obtain:Proposition 2.38 Let L be a list of terms, and ≺ a strict partial order on a set of keys. Thepredicate Pkc (respectively, Pskc or P≺) holds on L if and only if Ls contains a key cycle (respec-tively, Ls contains a strict key cycle, or the encrypts relation on Ls is not compatible with ≺).Proof The right to left direction is trivial since Ls ⊆ {m | Ls ` m}.We will prove the left to right direction only for the key cycle property, the other two prop-erties having a similar treatment. Suppose that there is no strict partial order satisfying theconditions in De�nition 2.29 for {m | Ls ` m}. In other words, for any strict partial order ≺on hidden(Ls) there is a key k and an occurrence q of k in {m | Ls ` m} such that for any key
k′, k′ protects q in {m | Ls ` m} implies k′ 6≺ k. Using the previous lemma we can replace
{m | Ls ` m} by Ls in the previous phrase, thus obtaining that there is a key cycle in Ls.The next lemma will be used to show that hidden(Lsθ) = hidden(Lsτ) for any partial solu-tion θ.Lemma 2.39 Let T x be a constraint of a solved constraint system C, θ a partial solution of Cand m a non-variable term. If Tθ ` m then there is a non-variable term u with var(u) ⊆ var(T)such that T ∪ var(T) ` u and m = uθ.Proof We write C as ∧

i(Ti xi), with 1 ≤ i ≤ n and Ti ⊆ Ti+1. Consider the index i ofthe constraint T x, that is such that (Ti ui) ∈ C, Ti = T and ui = x. The lemma is provedby induction on (i, l) (considering the lexicographical order) where l is the length of the proof of
Tiθ ` m. Consider the last rule of the proof:

• (axiom rule) m ∈ Tiθ or m is a public constant. If the latter holds then take u = m.Otherwise, there is u ∈ Ti such that m = uθ. If u is a variable then there is j < i suchthat Tj u is a constraint of C. We have Tjθ ` uθ. Then by induction hypothesis thereis a non-variable term u′ with var(u′) ⊆ var(Tj) such that Tj ∪ var(Tj) ` u
′ and uθ = u′θ.Hence u′ satis�es the conditions.

• (decomposition rule) Suppose the rule is the decryption rule. Then the premises of therule are Tiθ ` {{m}}k and Tiθ ` k for some term k. By induction hypothesis there arenon-variable terms u1 and u2 with var(u1), var(u2) ⊆ var(Ti) such that Ti ∪ var(Ti) ` u1,
Ti ∪ var(Ti) ` u2, u1θ = {{m}}k and u2θ = k. Then u1 = {{u}}u′

2
with uθ = m and u′2θ = k.If u is a variable then, as in the previous case, we �nd an u′ satisfying the conditions.Suppose u is not a variable. We still need to show that Ti ∪ var(Ti) ` u. If u′2 is a variablethen Ti∪var(Ti) ` u

′
2 since u′2 ∈ var(Ti). If u′2 is not a variable then u′2θ = u′2 (since, as keysare atomic, u′2 is a constant), hence u′2 = u2. In both cases it follows that Ti ∪ var(Ti) ` u.The projection rule case is simpler and is treated similarly.

• (composition rule) This case follows easily from the induction hypothesis applied on thepremises.The following corollary says that any two executions allow the same set of keys to be deduced.Corollary 2.40 Let T x be a constraint of a solved constraint system C, and θ, θ′ be twopartial solutions of C. Then for any key k, Tθ ` k if and only if Tθ′ ` k. 79

Chapter 2. Decidability results using constraint systemsProof Suppose that Tθ ` k. From the previous lemma we obtain that there is a non-variable
u with var(u) ⊆ var(T) such that T ∪ var(T) ` u and k = uθ. Since keys are atomic and θ is aground substitution it follows that u = k. Hence Tθ′ ∪ {xθ′ | x ∈ var(T)} ` k. So Tθ′ ` k, since
θ′ is a partial solution (and thus Tθ′ ` xθ′ for all x ∈ var(T)) and by using the cut eliminationlemma (i.e. Lemma 2.14).We are now ready to prove Lemma 2.34.Lemma 2.34 Let C be a solved constraint system, L a list of terms such that var(Ls) ⊆ var(C),
lhs(C) ⊆ Ls, and C has a solution for Pkc w.r.t L. Then τ is a solution of C for Pkc w.r.t L.Proof We have to prove that if there is no partial order satisfying the conditions in De�ni-tion 2.29 for the set Lsθ (according to Proposition 2.32) then there is no partial order satisfyingthe same conditions for Lsτ . Suppose that there is a strict partial order ≺ which satis�es theconditions for Lsτ . We prove that the same partial order does the job for Lsθ.Let C ′ = C ∧ (Ls z) where z is a new variable. C ′ is a constraint system since lhs(C) ⊆ Ls.We write C ′ as ∧

i(Ti xi), with 1 ≤ i ≤ n and Ti ⊆ Ti+1. We prove by induction on i thatfor all k ∈ hidden(Lsθ), for all plaintext occurrences q of k in Tiθ there is a key k′ ∈ hidden(Lsθ)such that k′ ≺ k and k′ protects q in Tiθ. It is su�cient to prove this since for i = n we have
Ti = Ls. Remark also that from Corollary 2.40 applied to Ls z we obtain that hidden(Lsθ) =
hidden(Lsτ).For i = 1 we have T1 = T1θ = T1τ hence the property is clearly satis�ed for θ since it issatis�ed for τ .Let i > 1. Consider an occurrence q of a key k ∈ hidden(Lsθ) in a plaintext position of w forsome w ∈ Tiθ. Let t ∈ Ti such that w = tθ.If q is a non-variable position in t then it is a position in tτ . And since τ is a solution wehave that there is a key k′ ∈ hidden(Lsτ) (hence k′ ∈ hidden(Lsθ)) such that k′ ≺ k and q isprotected by k′ in tτ . The key k′ cannot occur in some xτ , with x ∈ var(t) since otherwise k′ isdeducible (indeed xτ = k′ since the keys are atomic and Txτ ` xτ). Hence k′ occurs in t. Then
k′ protects q in t, and thus in w also.If q is not a non-variable position in t then there is a variable xj ∈ var(t) with j < i such thatthe occurrence q in tθ is an occurrence of k in xjθ (formally q = p · q′ where p is some positionof xj in t and q′ is some occurrence of k in xjθ). Applying Lemma 2.37 we obtain that there isan occurrence q0 of k in Tjθ such that if there is a key k′ with Tjθ 6` k

′ and which protects q0 in
Tjθ then k′ protects q′ in xjθ. The existence of the key k′ is assured by the induction hypothesison Tjθ. Hence k′ protects q′ in xjθ and thus q in w.Lemma 2.41 Let T x be a constraint of a solved constraint system C and θ be a partialsolution. Let m,u, k be terms such that

Tθ ` m and {{u}}k v m and Tθ 6` k.Then there exists a non-variable term v such that v v w for some w ∈ T and vθ = {{u}}k.Proof We write C as ∧
i(Ti xi), with 1 ≤ i ≤ n and Ti ⊆ Ti+1. Consider the index i of theconstraint T x, that is such that (Ti xi) ∈ C, Ti = T and xi = x. The lemma is proved byinduction on (i, l) (lexicographical order) where l is the length of the proof of Tiθ ` m. Considerthe last rule of the proof:80

2.3. Decidability of some specialised security properties
• (axiom rule) m = tθ for some t ∈ Ti. We can have that either there is t′ v t such that
t′θ = {{u}}k, or {{u}}k v yθ for some y ∈ var(t). In the �rst case take v = t′, w = t. Inthe second case, by the de�nition of constraint systems, there exists (Tj y) ∈ C with
j < i. Since Tjθ ` yθ and Tjθ 6` k (since Tj ⊆ Ti), we deduce by induction hypothesis thatthere exists a non-variable term v such that v v w for some w ∈ Tj, hence w ∈ Ti and
vθ = {{u}}k.

• (decomposition rule) Let m′ be the premise of the rule. We have that Tiθ ` m′ (with aproof of a strictly smaller length) and m v m′ thus {{u}}k v m′. By induction hypothesis,we deduce that there exists a non-variable term v such that v v w for some w ∈ Ti, and
vθ = {{u}}k.

• (composition rule) All cases are similar to the previous one except if m = {{u}}k and therule is S ` x S ` y

S ` {{x}}y

. But this case contradicts Tiθ 6` k.The following simple lemma is also needed for the proof of Lemma 2.36.Lemma 2.42 Let T x be a constraint of a solved constraint system C, θ be a partial solution,
k ∈ hidden(Tθ), and m a term such that Tθ ` m. If k ρ1m then there is t ∈ T such that k ρ1 t.Proof We write C as ∧

i(Ti xi), with 1 ≤ i ≤ n and Ti ⊆ Ti+1. Consider the index i ofthe constraint T x, that is such that (Ti ui) ∈ C, Ti = T and ui = x. The lemma is provedby induction on (i, l) (considering the lexicographical order) where l is the length of the proof of
Tiθ ` m. Consider the last rule of the proof:

• (axiom rule) m ∈ Tiθ or m a public constant. If m is a public constant then k 6= m since
k ∈ hidden(Tθ). Thus there is t ∈ Ti such that m = tθ. If k ρ1 t then we're done. Otherwisethere is a variable y ∈ var(t) such that k ρ1 yθ. Also, there is j < i such that Tj y isa constraint of C. Then, by induction hypothesis, there is t′ ∈ Tj , hence in Ti, such that
k ρ1 t

′.
• (composition or decomposition rule) By inspection of all the composition and decomposi-tion rules we observe that there is always a premise Tiθ ` m′ with k ρ1m

′ for some term
m′. The conclusion follows then directly from the induction hypothesis.We can prove now Lemma 2.36.Lemma 2.36 Let C be a solved constraint system, L a list of terms such that var(Ls) ⊆ var(C)and lhs(C) ⊆ Ls, and θ a partial solution of C. For any k, k′ ∈ hidden(Lsθ), if k encrypts k′ in

Lsθ then k encrypts k′ in Lsτ .Proof Remember that hidden(Lsθ) = hidden(Lsτ) (from Corollary 2.40, as shown in theproof of Lemma 2.34).Consider two keys k, k′ ∈ hidden(Lsθ) such that k encrypts k′ in Lsθ. Then there are terms
u, u′ such that u′ ∈ Lsθ, {{u}}k v u′ and k′ ρ1 u. We can have that either (�rst case) there are
v,w such that v v w ∈ Ls, v non-variable and {{u}}k = vθ, or (second case) {{u}}k v xθ with
x ∈ var(Ls). In the second case, consider the constraint (Tx x) ∈ C. We have Txθ ` xθ. Hencewe can apply Lemma 2.41 for xθ, u and k to obtain that there exists a non-variable term v such81

Chapter 2. Decidability results using constraint systemsthat v v w for some w ∈ Tx and vθ = {{u}}k. Hence, in both cases, we obtained that there is anon-variable term v ∈ st(Ls) (since Tx ⊆ Ls) such that vθ = {{u}}k. Thus there is v0 such that
v = {{v0}}k. Indeed, otherwise v = {{v0}}y for some y ∈ var(Ls), hence y ∈ var(C). Since C issolved we have Tyσ ` yσ. But yσ = k, contradicting k ∈ hidden(Lsθ).We have v0θ = u. Since k′ ρ1 u and k′ is a constant or a variable, we can have that k′ ρ1 v0,or k′ ρ1 yθ for some y ∈ var(v0). If k′ ρ1 v0 then k encrypts k′ in Ls, hence in Lsτ also. If k′ ρ1 yθthen from the previous lemma k′ ρ1 t for some t ∈ Ty, and hence k′ ρ1 yτ . Therefore in both caseswe have that k encrypts k′ in Lsτ .2.3.2 Secrecy for protocols with timestampsFor modeling timestamps, we introduce a new sort Time < Msg for time and we assume anin�nite number of constants of sort Time, represented by rational numbers or integers11. Weassume that the only two sorts are Time and Msg. Any value of time should be known to anintruder, that is why we add to the deduction system the rule

S ` x
where x is a variable of sort

Time. All the previous results can be easily extended to such a deduction system since grounddeducibility remains decidable in polynomial time.To express relations between timestamps, we use timed constraints. An integer timed con-straint or a rational timed constraint T is a conjunction of formulas of the form
Σk

i=1αixi n β,where the αi and β are rational numbers, n ∈ {<,≤}, and the xi are variables of sort Time. A so-lution of a rational (resp. integer) timed constraint T is a closed substitution σ = { c1/x1 , . . . ,
ck/xk

},where the ci are rationals (resp. integers), that satis�es the constraint.Timed constraints between the variables of sort Time are expressed through satis�ability ofsecurity properties.De�nition 2.43 A predicate P is a timed property if P is generated by some (rational orinteger) timed constraint T , that is if T has variables x1, . . . , xk then for any list L of messages
P (L) holds if and only if

• L contains exactly k messages t1, . . . , tk of sort Time that appear in this order in the list,and
• T (t1, . . . , tk) is true.Such timed properties can be used for example to say that a timestamp x1 must be fresherthan a timestamp x2 (x1 ≥ x2) or that x1 must be at least 30 seconds fresher than x2 (x1 ≥

x2 + 30).Exemple 2.44 We consider the Wide Mouthed Frog Protocol [CJ97].
A→ S : A, {{Ta, B,Kab}}Kas

S → B : {{Ts, A,Kab}}Kbs

A sends to a server S a fresh key Kab intended for B. If the timestamp Ta is fresh enough, theserver answers by forwarding the key to B, adding its own timestamps. B simply checks whether11This can be achieved formally by considering only one constant 0 of sort Time, and a function symbol succ ofsort Time → Time. For simplicity, we omit these technicalities.82

2.3. Decidability of some specialised security propertiesthis timestamp is older than any other message he has received from S. As explained in [CJ97],this protocol is �awed because an attacker can use the server to keep a session alive as long ashe wants by replaying the answers of the server.This protocol can be modeled by the following constraint system:
S1

def
= {a, b, s, 〈a, {{0, b, kab}}kas

〉} 〈a, {{xt1 , b, y1}}kas
〉, xt2 (2.4)

S2
def
= S1, {{xt2 , a, y1}}kbs

 〈b, {{xt3 , a, y2}}kbs
〉, xt4 (2.5)

S3
def
= S2, {{xt4 , b, y2}}kas

 〈a, {{xt5 , b, y3}}kas
〉, xt6 (2.6)

S4
def
= S3, {{xt6 , a, y3}}kbs

 {{xt7 , a, kab}}kbs
(2.7)where y1, y2, y3 are variables of sort Msg and xt1 , . . . , xt7 are variables of sort Time. We addexplicitly the timestamps emitted by the agents on the right hand side of the constraints (thatis in the messages expected by the participants) since the intruder can schedule the messagetransmission whenever he wants.Initially, the intruder simply knows the identities of the agents and A's message at time 0.Then S answers alternatively to requests from A and B. Since the intruder controls the network,the messages can be scheduled as slow (or fast) as the intruder needs it. The server S should notanswer if A's timestamp is too old (let's say older than 30 seconds) thus S's timestamp cannotbe too much delayed (no more than 30 seconds). This means that we should have xt2 ≤ xt1 + 30.Similarly, we should have xt4 ≤ xt3 + 30 and xt6 ≤ xt5 + 30. The last rule corresponds to B'sreception. In this scenario, B does not perform any check on the timestamp since it is the �rstmessage he receives.We say that there is an attack if there is a solution to the constraint system that satis�es thepreviously mentioned time constraints and such that the timestamp received by B is too fresh tocome from A: xt7 ≥ 30. Formally, we consider the timed property generated by the followingtimed constraint:

xt2 ≤ xt1 + 30 ∧ xt4 ≤ xt3 + 30 ∧ xt6 ≤ xt5 + 30 ∧ xt7 ≥ 30.Then the substitution corresponding to the attack is
σ = { kab/y1 ,

kab/y2 ,
kab/y3 ,

kab/y4 ,
0/xt1

, 30/xt2
, 30/xt3

, 60/xt4
, 60/xt5

, 90/xt6
, 90/xt7

}.Proposition 2.45 Any timed property can be decided in non-deterministic polynomial time onsolved constraint systems.Proof Let C be a solved constraint system, P a timed property and T a timed constraintgenerating P . Let y1, . . . , yn be the variables of sort Msg in C and x1, . . . , xk the variables of sort
Time in C. Clearly, any substitution σ of the form yiσ = ui where ui ∈ Si for some (Si yi) ∈ Cand xiσ = ti for ti any constant of sort Time is a solution of C for the true property. Let σ′ bethe restriction of σ to the timed variables x1, . . . , xk.Clearly, σ is a solution of C for P if and only if σ′ is a solution to T . Thus there existsa solution of C for P if and only if T is satis�able. The satis�ability of T is solved by usuallinear programming [Sch98]. It is polynomial in the case of rational timed constraints and it isNP-complete in the case of integer timed constraints, thus the result. 83

Chapter 2. Decidability results using constraint systems2.3.2.1 NP-completenessWe deduce by combining Theorem 2.10 and Proposition 2.45 that the problem of deciding timedproperties on arbitrary constraint systems is in NP.NP-hardness directly follows from the NP-hardness of constraint system solving by consider-ing a predicate corresponding to an empty timed constraint.2.4 ConclusionsWe have shown how the generic approach we have derived from [CLS03, RT03] can be used toretrieve two NP-completeness results. The �rst one allows us to detect key cycles, and the secondone to solve constraint systems with timed constraints. In the two cases, we had to provide adecision procedure only for a simple class of constraint systems. Since the constraint-basedapproach [CLS03, RT03] has already been implemented in Avispa [ABB+05], we plan, using ourresults, to adapt this implementation to the case of key cycles and timestamps.Regarding key cycles, our approach is valid for a bounded number of sessions only. Secrecyis undecidable in general [DLM04] for an unbounded number of sessions. Such an undecidabilityresult could be easily adapted to the problem of detecting key cycles. Several decidable fragmentshave been designed [RS03, CLC03a, BP03b, VSS05] for secrecy and an unbounded number ofsessions. We plan to investigate how such fragments could be used to decide key cycles.

84

Chapter 3Decidability results for Horn clauses.Application to protocols using CBCencryption and blind signaturesRecently, several procedures for deciding secrecy have been proposed for operators with al-gebraic properties for a bounded [CKRT03, DLLT06, BC06, DLL07] or unbounded [CLC03a,VSS05] number of sessions. The properties of blind signatures were considered in [BC06], andin [CKRT03] the pre�x property (which is very similar to homomorphism) is also handled alongwith the properties of XOR. Homomorphism theory with associative-commutative operators isconsidered in [LLT05] for the case of a passive intruder, and homomorphism with XOR or abeliangroups is considered for an active intruder in [DLLT06, Del06]. An electronic voting protocol hasbeen analysed in [KR05]. The protocol relies on a blind signature scheme whose properties havebeen modeled by equations; secrecy of votes have been proved automatically using the ProVeriftool by B. Blanchet [Bla01]. This tool can handle an unbounded number of sessions and arbi-trary equational theories [BAF05] but it does not guarantee termination (even in the absence ofequations).The above mentioned works do not address the decidability of secrecy with CBC encryptionor blind signatures in the case of an unbounded number of sessions. In this chapter, we considerexactly this setting. Following the line of [CLC03a], we tackle the problem by introducing anew fragment of Horn clauses. We show the decidability of this fragment using a combination ofseveral resolution strategies. We apply this result to �x the Needham-Schroeder symmetric keyauthentication protocol, which is known to be �awed when CBC mode is used.Outline of the chapter In Section 3.1, we introduce Horn clauses and explain how protocolscan be modeled using them. We then introduce the new fragment of �rst order clauses inSection 3.2. In Section 3.3, we present our resolution strategy and apply it to this fragment,proving that this strategy is both complete and terminating for this class. The application tothe Needham-Schroeder symmetric key protocol is shown in Section 3.4.3.1 The modelThe aim of this section is to introduce Horn clauses and show how we use them to modelcryptographic protocols. 85

Chapter 3. Decidability results for Horn clauses3.1.1 Horn clausesTo our purposes a single unary predicate su�ces. Let I be this predicate. Atoms A are of theform I(u) where u is a term. Literals L are either positive literals +A (or simply A) or negativeliterals −A where A is an atom. A clause is a �nite set of literals. If C1 and C2 are clauses,
C1∨C2 denotes C1∪C2. A Horn clause is a clause that contains at most one positive literal. ForHorn clauses we may use the alternative notation A1, A2, . . . , An−1 → An to denote the clause
−A1 ∨−A2 ∨ . . . ∨ −An−1 ∨An. We distinguish from the context the atom I(u) and the clause
I(u) consisting of the positive literal +I(u).If M is an atom, a literal, a clause, or a set of such objects, and σ is a substitution, then
Mσ obtained by applying σ to M is de�ned as usual. For example, for an atom A = I(u) anda substitution σ, Aσ denotes the atom I(uσ). We also extend as usual the notation of uni�erfrom terms to literals.A (Herbrand) interpretation is a set of ground atoms. An ground atom I(u) is true in theinterpretation I if u ∈ I, and it is false otherwise. A ground clause C is satis�ed by I if andonly if there is a positive literal +I(u) ∈ C such that I(u) is true in I or there is a negativeliteral −I(u) ∈ C such that I(u) is false in I. A clause C is satis�ed by I if for all groundsubstitutions σ, Cσ is satis�ed by I. If C is satis�ed by I then we say that I is a model of C;we say that I is a model of a set of clauses C if it is a model of all clauses in C. A clause (or aset of clauses) is satis�able if it has a model, and unsatis�able otherwise.Given two sets of clauses C and C′, we say that C′ is a logical consequence of C if every modelof C is also a model of C′. When C′ is a singleton consisting of C ′ then we simply write C |= C ′instead of C |= {C ′}. It is easy to see that, for a ground term m, C ∪ {−I(m)} is unsatis�able ifand only if C |= I(m).If u is a term, ‖u‖ is the depth of u, that is 1 plus the maximal length of the positions of u.For a variable x, ‖u‖x is the maximal depth of x in u, that is 1 plus the maximal length of theoccurrences of x in u. By convention, if x is a variable and x /∈ var(u) then ‖u‖x = 0. Thede�nitions of ‖ · ‖ and ‖ · ‖x are extended to literals by ‖ ± I(u)‖ = ‖u‖ and ‖ ± I(u)‖x = ‖u‖x.3.1.1.1 An ordering on termsWe consider a strict and total ordering <F on the function symbols. We de�ne next a partialordering on terms. The ordering is chosen in order to ensure the termination of our resolutionprocedure.De�nition 3.1 (ordering <) Let u and v be two terms. We say that u < v if one of followingtwo conditions holds:1. ‖u‖ < ‖v‖, and ‖u‖x < ‖v‖x for every x ∈ var(u) ∪ var(v);2. ‖u‖ ≤ ‖v‖, ‖u‖x ≤ ‖v‖x for every x ∈ var(u)∪var(v), u and v are not variables or names,and one of the following two conditions holds:(a) head(u) <F head(v),(b) head(u) = head(v), ∀i, ui ≤ vi, and ∃i such that ui < vi, where u = f(u1, . . . , un) and

v = f(v1, . . . , vn), for some f ∈ F of arity n ≥ 0.For example, if u is a strict subterm of v then u < v. Variables (and names) are incomparable.We have 〈a, x〉 < h(h(x)) but 〈h(h(a)), x〉 6< h(h(x)). We also have that {{x}}z < {{〈x, y〉}}z .An ordering is said liftable if for any two terms u, v and for any substitution θ, u < v implies
uθ < vθ. This is a crucial property for the completeness of ordered resolution.86

3.1. The modelProposition 3.2 The relation < is a strict liftable ordering.Proof Transitivity and irre�exivity of < are obvious. We have
‖wσ‖ = max(‖w‖, max

y∈var(w)
(‖w‖y + ‖yσ‖ − 1)) (3.1)and

‖wσ‖x =

{
0 if x /∈ var(wσ),
maxy∈var(w)(‖w‖y + ‖yσ‖x − 1) otherwise.Also, head(wσ) = head(w) if w is not a variable. Moreover, if u < v then var(u) ⊆ var(v), sinceotherwise there exists x ∈ var(u) \ var(v) with ‖u‖x > ‖v‖x = 0 (contradiction). Remark that

var(wσ) = ∪x∈var(w) var(xσ). Thus, if x ∈ var(uσ) and var(u) ⊆ var(v) then x ∈ var(vσ).Let u and v be terms such that u < v. We prove by induction on the depth of u that uσ < vσ.For the base case, ‖u‖ = 1 and then u is either a variable, a name or a constant. If ‖v‖ = 1then u and v are constants, and thus so are uσ and vσ. Suppose ‖v‖ > 1. If u is a name ora constant then uσ < vσ by using the �rst point of De�nition 3.1. If u is a variable x then
x ∈ var(v) and thus uσ = xσ < vσ (since xσ is a subterm of vσ).We consider now the inductive case (‖u‖ > 1).Suppose ‖u‖ < ‖v‖, and ‖u‖x < ‖v‖x for every x ∈ var(u) ∪ var(v). Then for all x ∈
var(uσ) ∪ var(vσ), ‖uσ‖x = maxy∈var(u)(‖u‖y + ‖yσ‖x − 1) < maxy∈var(u)(‖v‖y + ‖yσ‖x − 1) ≤
maxy∈var(v)(‖v‖y + ‖yσ‖x − 1) = ‖vσ‖x. Next, using the just obtained strict inequality, equa-tion 3.1, and that var(u) ⊆ var(v) we obtain that ‖uσ‖ < ‖vσ‖. Thus, by the �rst point ofDe�nition 3.1, uσ < vσ.Suppose now that ‖u‖ ≤ ‖v‖, and ‖u‖x ≤ ‖v‖x for every x ∈ var(u) ∪ var(v). Then usinga similar analysis as in the previous case we obtain that ‖uσ‖ ≤ ‖vσ‖, and ‖uσ‖x ≤ ‖vσ‖xfor every x ∈ var(uσ) ∪ var(vσ). If head(u) <F head(v) then head(uσ) <F head(vσ), thus
uσ < vσ. Otherwise (i.e. head(u) = head(v)), we have and ∀i, ui ≤ vi, and ∃i such that ui < viwhere u = f(u1, . . . , un) and v = f(v1, . . . , vn) for some f ∈ F , n > 0. Applying the inductionhypothesis we obtain that ∀i, uiσ ≤ viσ, and ∃i such that uiσ < viσ. Then clearly uσ < vσ (bypoint 2b of De�nition 3.1).A term v is said maximal in a set S if there is no term u ∈ S such that v < u.The ordering is extended to literals by ±I(u) < ±′I(v) if and only if u < v.3.1.2 From protocols to Horn clausesThe predicate I represents the knowledge of the intruder: I(m) means that the intruder knowsthe term (or message) m. Thus a clause I(u1), . . . , I(un) → I(v) should be read as �if theintruder knows some messages of the form u1, . . . , un respectively, then he knows v�. Thereis thus a natural correspondence between deductions and Horn clauses, as we will see in whatfollows.3.1.2.1 Intruder clausesLet I be a deduction system without conditions. The set of clauses associated with I is

CI
def
= {I(u1), . . . , I(un) → I(v) |

S ` u1 . . . S ` un

S ` v
∈ I}. 87

Chapter 3. Decidability results for Horn clausesExemple 3.3 The Dolev-Yao rules presented in Section 1.2.3.1 (page 41), more exactly the rulesof Id from Figure 1.3 and the composition rules (for the function symbols occurring in Figure 1.3),are represented by the following set of Horn clauses:
I(x), I(y) → I(〈x, y〉) pairing of messages
I(x), I(y) → I({{x}}y) symmetric encryption
I(x), I(y) → I({[x]}y) asymmetric encryption
I(x), I(y) → I([[x]]y) digital signing
I(x) → I(ek(x)) obtaining the encryption key
I(〈x, y〉) → I(x) �rst projection
I(〈x, y〉) → I(y) second projection
I({{x}}y), I(y) → I(x) symmetric decryption
I({[x]}ek(y)), I(dk(y)) → I(x) asymmetric decryptionObserve that the deduction system I(R0) (see De�nition 1.8 and Figure 1.2) contains also themembership rule and an in�nite number of composition rules for public constants (hence the set

CI(R0) is also in�nite). The membership rule is a conditional rule and is hence not representedby an associated clause. As it we will see next, we represent explicitly the initial knowledge ofsome set of terms (i.e. the left hand side S of a deduction rule S ` u).Given a set of terms T , we de�ne the associated set of clauses CT
def
= {I(u) | u ∈ T}.Lemma 3.4 Let I be a deduction system without conditions, T a set of ground terms and m aground term. If T `I m then CI ∪ CT |= I(m).Proof Consider a proof of T ` m. We reason by induction on the depth of the proof. Then,by considering the last rule of the proof we can have the following possibilities.

• The last rule is an axiom and m ∈ T . Then I(m) ∈ CT and hence CT |= I(m).
• The last rule is

S ` u1 . . . S ` un

S ` vand vσ = m for some substitution σ. Then (I(u1), . . . , I(un) → I(v)) ∈ CR, and,by induction hypothesis, CR ∪ CT |= I(uiσ) for all i. Consider an arbitrary model Iof CR ∪ CT . Then I is also a model for all I(uiσ). If I(vσ) is false in I then theclause I(u1σ), . . . , I(unσ) → I(vσ) is not satis�ed by I. Hence neither is the clause
I(u1), . . . , I(un) → I(v). But this contradicts I being a model of CR ∪ CT . Thus I(vσ) istrue in I. That is, I is also a model of I(m).3.1.2.2 Protocol clausesWe now show how the rules of a protocol can also be modeled using Horn clauses. With everyrule we associate a clause. We perform �rst some abstraction by letting the nonces only dependon the agent that has created it and the agent that should receive it; and similarly, a fresh sessionkey will be parameterised by the agents who share the key. This is formalised next.We consider again only roles with matching and simply call them roles. Let Π = (R,S) bea k-party protocol. We consider the partial function D given by D(r, p) = (r′, p′) if and only if88

3.1. The model
S(r′, p′) = (r, p). That is, D returns for each role/control-point pair (r, p), the role/control-pointpair (r′, p′) of the expected destination of the message sent by role r at step p. The function Dis used to obtain, for a fresh nonce or key, which is the agent that should receive it.Let Rr(z1, . . . , zk) = νx̃r. recv(u

1
r), send(v1

r); . . . ; recv(upr
r), send(vpr

r) with 1 ≤ r ≤ k be theroles of Π. We assume that no di�erent roles have common variables (hence no common freshitems neither), and we let ∪1≤r≤kx̃r = {x1, . . . , xn}. We also suppose that the signature Fcontains n private function symbols ff1, . . . ,ffn of arity 2.Consider the following substitution σ0 with dom(σ0) = ∪1≤r≤kx̃r and xiσ0 = ffi(zr, zd) where
r is such that xi ∈ x̃r and d is given (d, ·) = D(r, p) with p being the control-point at which xi�rst occurs in the instructions of r.The set of clauses associated with the protocol Π is then

CΠ
def
=

⋃

1≤r≤k

{I(ui
rσ0) → I(vi

rσ0) | 1 ≤ i ≤ pr}.The initial knowledge of the intruder IK is given by a set of ground terms, and thus modeledby the set of clauses CIK . The secrecy of a message s is thus represented by the unsatis�abilityof the set of clauses CI ∪ CIK ∪ CΠ ∪ {¬I(s)}.Next, for each i, we rename the function symbol ffi by ni or ki depending on the role it playsin modeling: abstracting a nonce or respectively a key.Exemple 3.5 The following set of clauses CNSpk model the Needham-Schroeder protocol (seeExample 1.28, page 48):
→ I({[n1(za, zb), za]}ek(zb))

I({[n1(za, zb), xnb
]}ek(za)) → I({[xnb

]}ek(zb))

I({[yna , za]}ek(zb)) → I({[yna , n2(zb, za))]}ek(a))The �rst two clauses corresponding to A's role, while the third to B's role. For simplicity, wehave omitted the literal −I(init) from the �rst clauses, and the clause
I({[n2(zb, za)]}ek(zb)) → I(stop)(corresponding to the second rule of B's role). This is without loss of generality (w.r.t. to thesatis�ability problem) since init and stop are public constants and hence the corresponding clauses(i.e. I(init) and I(stop)) would be in CIK .Since the clauses can be applied in any order, any number of times, we also abstract awaythe order of the rules of the protocol. The order could be enforced by associating the clause

I(u1), . . . , I(ui) → I(vi) (instead of I(ui) → I(vi)) to each step i of a role. However, thisenhancement does not assure that a rule is not played several times.Note that all these abstractions are correct w.r.t. the secrecy property, i.e. if a protocol isdeemed secure using these abstractions then it is secure without abstractions. The converse doesnot hold, i.e. these abstractions are not complete, as the following example shows.Exemple 3.6 Consider the following protocol
A ⇒ B : {{Na,K1}}Kab

, {{Na,K2}}Kab

B ⇒ A : {{Na,K1}}Kab

A ⇒ B : K1, {{s}}〈K1,K2〉 89

Chapter 3. Decidability results for Horn clausesin which Na is a fresh nonce, and K1, K2 are two fresh keys and Kab is a long-term shared keybetween A and B. The agent B just sends back to A the �rst ciphertext. Next, A just veri�esthat the �rst component is the right one (i.e. the nonce Na that she sent in the �rst step), butshe does not verify the second component (the key K1). That is, using the model of Chapter 1,the second rule of A's role is recv({{na, y}}k(za ,zb)), send(〈y, {{s}}〈k1 ,k2〉〉), where na, k1, k2 are thefresh items of A's role. The intruder can obtain, in each sessions, either K1 or K2 but not both.And since the secret s is encrypted in each session with a new pair of keys the intruder is notable to obtain the secret. However, in our Horn clause model, the secret can be obtained by theintruder.The set of clauses modeling the above protocol is
→ I(〈{{n(za, zb), k1(za, zb)}}k(za ,zb), {{n(za, zb), k2(za, zb)}}k(za ,zb)〉)

I(〈y1, y2〉) → I(y1)
I({{n(za, zb), x}}k(za,zb)) → I(〈x, {{s}}〈k1(za,zb),k2(za,zb)〉〉)Here the intruder obtains both keys by using twice the third rule (with the pair of ciphertexts ofthe �rst rule as it is, and with the ciphertexts interchanged). This is only possible due to ourmodeling of fresh items by the same term (in all sessions between the same agents); A wouldn'tnormally accept a ciphertext from an old session since she veri�es the freshness of her nonce.Other security properties can also be encoded as Horn clauses. B. Blanchet has encodedauthentication [Bla02], strong secrecy [Bla04], and some other equivalence properties [BAF05]by expressing them in a pi-like process calculus and translating processes to Horn clauses [AB02].3.2 A fragment of Horn clausesWe have seen that for some protocol, some intruder capabilities, and some secret message, if thecorresponding set of clauses is satis�able then the secrecy of the message is preserved. However,deciding the satis�ability of a set of clauses is in general undecidable. Several decidable classes doexist [FLHT01]. One of such fragments, which is quite well-suited for modeling security protocols,was identi�ed by V. Cortier and H. Comon in [CLC03a]. Other such fragment(s) tailored forsecurity protocols can by found in [SV05, SV06]. We extend the fragment of [CLC03a] in order tocapture some special primitives not considered before in this context. In Sections 3.2.1 and 3.2.2we present existing fragments, while in Section 3.2.3 we introduce the extension.A class of clauses is a set of sets of clauses. We denote classes of clauses using the symbol C.By language abuse we say that a clause C is the class C, if {C} is in the class C. Also, for a set Cof clauses and a class of clauses C, we denote C ∪ C

def
= {C ∪ C′ | C′ ∈ C}. When we say that a setof clauses C0 belongs to the class of clauses in C or C
′, we mean that C0 ∈ {C∪C′ | C ∈ C, C′ ∈ C

′}.3.2.1 Intruder clausesNote that each of the clauses in Example 3.3, except the one for asymmetric decryption, containsat most one function symbol. That is why we consider the following class of clauses.De�nition 3.7 (class CI) The class CI is the class of Horn clauses of the form:
±I(f(x1, . . . , xn)) ∨

m∨

j=1

±I(xij).90

3.2. A fragment of Horn clauses3.2.2 Protocol clausesFor simplicity we consider next only two-party protocols.H. Comon and V. Cortier [CLC03b] have shown (using a di�erent Horn clause encoding)that, for secrecy properties, it is su�cient to verify the correctness of a protocol for only threeparties: two honest and one dishonest participants. Hence we consider three agents having theiridentities represented by the constants a, b and i, where a and b stand for the honest participants,while i stands for the dishonest participant. The initial knowledge of the intruder thus containsthe (�nite) private data of i, but not that of a and b.We suppose that all roles have the following two parameters za, zb, and we de�ne the set ofsubstitutions {σi | 1 ≤ i ≤ 6} with dom(σi) = {za, zb} and ran(σi) ⊆ {a, b, i} such that σ(za) 6=
σ(zb). Then the set of clauses modeling a protocol is

C′
Π

def
=

⋃

1≤i≤6

CΠσiNote that the variables of C′
Π are exactly those of the protocol (thus excluding parametersand fresh items).We observe that each of the clauses in the set C′

NSpk (see Example 3.5) has at most onevariable. As noticed in [CLC03a], this is the case of protocols with single blind copying, i.e.protocols for which, at each step of the protocol, at most one part of the received message isblindly �copied� to the sent message. For example, in the �rst rule of B's role of the Needham-Schroeder protocol (see page 15), the only blindly copied part is Na since the other part (i.e. A)is an identity known by the B. Therefore, the second class of clauses we consider is the class ofHorn clauses that contain at most one variable.De�nition 3.8 (class CP) The class CP is the class of Horn clauses that contain at most onevariable.Note that by considering a �nite number of agents we can also consider public encryptionby adding for each identity the clauses for encryption and decryption. More exactly we canreplace the clause I({[x]}ek(y)), I(dk(y)) → I(x) (which is not in CI) with the three clauses
I({[x]}ekα

), I(dkα) → I(x) where α ∈ {a, b, i} and ekα, dkα are constants. These three clauses arein CP .Note also that all ground clauses are in CP . Hence clauses modeling the initial intruderknowledge and the secrecy property (i.e. −I(s)) fall in the class. Thus, for standard Dolev-Yaorules and for protocols with single blind copying, the secrecy problem can be modeled (as wehave seen in the previous section) by a set of clauses in the class CI ∪ CP . The satis�ability ofthis set of clauses will prove the secrecy property.H. Comon and V. Cortier [CLC03a] have shown that satis�ability of a set of clauses of CI∪CPis decidable in 3-EXPTIME, and H. Seidl and K. Verma [SV05] have shown that satis�ability isin fact DEXPTIME-complete.3.2.3 Extending the intruder powerThe aim of the chapter is to extend the decidability result of [CLC03a] to a larger class ofclauses, in order to model an extended power of the intruder. Indeed, the set of clauses, describedin Example 3.3, represents the capabilities of an intruder, assuming perfect cryptography. Inparticular, the intruder cannot learn anything from an encrypted message {{m}}k, except if he91

Chapter 3. Decidability results for Horn clauseshas the inverse key. However, depending on the implementation of the cryptographic primitives,the intruder may be able to deduce more messages. We consider here CBC encryption and blindsignatures.3.2.3.1 Pre�x propertyDepending on the encryption scheme, an intruder may be able to get from an encrypted messagethe encryption of any of its pre�xes: from a message {{x, y}}z , he can deduce the message {{x}}z .This is encoded by the clause:
Cpre

def
= −I({{〈x, y〉}}z) ∨ I({{x}}z)This is for example the case for Cipher Block Chaining (CBC) encryption. We recall that insuch a system, the encryption of the message block sequence P1P2 · · ·Pn (where some bits maybe added to Pn such that every block has the same length) with the key K is C1C2 · · ·Cn where

C0 = IV (initialisation vector) and Ci = {{Ci−1 ⊕ Pi}}K . The CBC encryption system has thefollowing property:if C1C2 · · ·CiCi+1 · · ·Cn = {{P1P2 · · ·PiPi+1 · · ·Pn}}K then C1C2 · · ·Ci = {{P1P2 · · ·Pi}}KThat is to say an intruder can get {{x}}z from {{x, y}}z if the length of x is a multiple of the blocklength used by the cryptographic algorithm. This property can be used to mount attacks onseveral well-known protocols. For example, we explain in Section 3.4.1 the attack discovered byO. Pereira and J.-J. Quisquater [PQ00] on the Needham-Schroeder symmetric key authenticationprotocol [NS78].The pre�x property also holds for homomorphic encryption, i.e. encryption schemes thatverify that {{〈x, y〉}}k = 〈{{x}}k, {{y}}k〉. This is the case of the ECB (Electronic Code Book)encryption scheme for example, where the encryption of message block sequence P1P2 · · ·Pnwith the key K is simply the sequence {{P1}}K{{P2}}K · · · {{Pn}}K . For such encryption schemes,the clause Cpre models only partially the intruder power. Indeed, the intruder is able to recombinemessages, an action which is not modeled by the clause.A drawback of our modeling is that we cannot obtain {{〈x1, x2〉}}y from {{〈x1, 〈x2, x3〉〉}}yusing only the clause Cpre . This is mainly due to the use of pairing instead of concatenation.On the other hand, note that considering concatenation leads to a non-deterministic model (seeExample 1.22, page 46).3.2.3.2 Blind signaturesBlind signatures are used in voting protocols like the FOO 92 voting protocol [FOO92, KR05].The idea of the protocol is that the voter �rst commits its vote v using a blinding function blindand a random blinding factor r: he sends the message blind(v, r) together with a signature ofthe message. The administrator A veri�es that the voter has the right to vote and has not votedyet. If it is the case, he signs the message, i.e. sends the message [[blind(v, r)]]ska
. Note that theadministrator does not have access to the vote since it is blinded. Now, the voter can unblindthe message, getting [[v]]ska

, using that unblind([[blind(v, r)]]ska
, r) = [[v]]ska

. Then the voter cansend its vote to the collector.The �standard� composition and decomposition properties of blinding are modeled by thefollowing clauses:
I(x), I(y) → I(blind(x, y))
I(blind(x, y)), I(y) → I(x)92

3.3. A decidability resultNote that these clauses fall into the class CI .The �commutativity� property between blinding and signing can be modeled by the clause:
Csig

def
= −I([[blind(x, y)]]z) ∨ −I(y) ∨ I([[x]]z).3.2.3.3 De�nition of the class CSFirst let us note that the clauses Cpre and Csig are neither in the class CI nor in the class CP .Therefore they cannot be treated by the techniques of [CLC03a, SV05].In order to extend the intruder power to clauses such as Cpre or Csig , we consider the classof special clauses, denoted by CS .We assume that the set of function symbols F contains a special symbol f0 and that thissymbol is the smallest symbol of F for the ordering <F . This special symbol stands for encryptionin the case of the pre�x property, and stands for signing in the case of blind signatures.De�nition 3.9 (class CS) The class CS is the class of Horn clauses of the form:

−I(f0(u[g(y1, . . . , yk)], v)) ∨

p∨

i=1

−I(wi[g(y1, . . . , yk)]) ∨

q∨

l=1

−I(yil) ∨ I(f0(yj, z)), (3.2)where k > 0, {j, i1, . . . , iq} ⊆ {1, . . . , k}, p, q ≥ 0, u,wi are ground contexts, v is a term with
var(v) = {z}, g 6= f0, and I(f0(u[g(y1, . . . , yk)], v)) is greater (w.r.t. <) than any other literal ofthe clause.For example, the clause Cpre is obtained when u = v = z, j = 1, p = q = 0, f0 = {{_}}_ and,
g = 〈_ ,_ 〉. The clause Csig is obtained when u = v = z, j = 1, p = 0, q = 1, f0 = [[_]]_ and,
g = blind. We could also consider for example the clause −I({{〈x, y〉}}z) ∨ I({{y}}z).This class could also be used to express more complex protocol clauses.3.3 A decidability resultWe show that satis�ability of clauses of CIPS

def
= {C1 ∪ C2 ∪ C3 | C1 ∈ CI , C2 ∈ CP , C3 ∈ CS} isstill decidable, under a slight semantical assumption. To get this result we consider a variantof ordered resolution where resolution between clauses of a saturated set are forbidden. InSection 3.3.1, we recall the de�nition of ordered resolution. In Section 3.3.2, we introduceour variant of ordered resolution. We prove our decidability result in Section 3.3.3 and showin Section 3.3.4 that both CBC encryption and blind signatures satisfy the hypotheses of ourtheorem.3.3.1 Ordered resolutionWe consider a liftable partial ordering ≺, total on closed atoms.Let A and B be two uni�able atoms, σ = mgu(A,B), and C1 and C2 be two clauses suchthat C1 = C ′

1 ∨A and C2 = C ′
2 ∨−B for some clauses C ′

1 and C ′
2. The binary resolution rule isde�ned by:

C ′
1 ∨A −B ∨C ′

2

C ′
1σ ∨ C ′

2σThe clause C ′
1σ ∨ C ′

2σ is called resolvent of the clauses C1 and C2. The atom Aσ is calledthe resolved atom. We have implicitly supposed here that the clauses C1 and C2 do not share93

Chapter 3. Decidability results for Horn clausesvariables, which can be obtained by renaming the variables of one of the clauses. Note that, bythe de�nition of clauses, the same literal cannot appear twice in a clause. Indeed, we supposethat the resolution rule contains an implicit factorisation which immediately replaces L ∨L∨Cby L ∨ C.The ordered resolution (w.r.t. ≺) requires that there is no atom in the resolvent greater thanthe resolved atom. Note that in this case, since ≺ is liftable, A and B in the above resolutionrule are maximal in C1 ∨ C2.If C1, C2, . . . , Cn are clauses such that their sets of variables are pairwise disjoint then wenote the clause C1 ∨ C2 ∨ · · · ∨ Cn by C1 t C2 t · · · t Cn, in order to emphasise this property.Considering a set C whose elements are sets of clauses, the splitting rule is de�ned as follows:
C →spl

(
C\{C}

)
∪

{
(C\{C1 t C2}) ∪ {C1}

}
∪

{
(C\{C1 t C2}) ∪ {C2}

}
,where C ∈ C and C1 t C2 ∈ C and C1, C2 not empty. We write C ⇒spl C

′ to say that C →∗
spl C

′and no application of the splitting rule on C
′ is possible anymore.It is well known that ordered resolution with splitting is complete for Horn clauses [BG01].However, while ordered resolution was su�cient to prove decidability of satis�ability for clauses ofthe classes CI ∪CP , this is not the case anymore. Consider for example the ordering < de�ned inSection 3.1.1.1 (which extends the ordering considered in [CLC03a]). Ordered resolution betweenthe clause Cpre and the clause I(x), I(y) → I({{x}}y) yields I(〈x, y〉), I(z) → I({{x}}z). Resolvingagain this clause with Cpre yields I(〈〈x, x′〉, y〉), I(z) → I({{x}}z) and so on. Thus orderedresolution does not terminate. However, we note that deriving the clause I(〈x, y〉), I(z) →

I({{x}}z) is useless (w.r.t. the completeness of the resolution) thanks to the clause I(〈x, y〉) →
I(x). This will be formally proved in Section 3.3.4. In terms of resolution theory [BG01], the set
I ∪ {Cpre}, where I12 is the set of clauses described in Example 3.3, is already saturated. Weformalise this notion in the next section.3.3.2 Our resolution methodA partial ordered interpretation I is a set of ground literals such that if A ∈ I then −A /∈ I andconversely, and if ±A ∈ I and B ≺ A then ±′B ∈ I for some sign ±′. A ground clause C is falsein I if, for every literal ±A in C, the opposite literal ∓A belongs to I. A clause C is unsatis�ablein the partial interpretation I if there exists a ground substitution θ such that all atoms of Cθare among those of I and Cθ is false in the interpretation. A set of clauses is unsatis�able in thepartial interpretation I if there is a clause in the set that is unsatis�able in I.De�nition 3.10 (saturated set of clauses) A set S of clauses is saturated w.r.t. the or-dering ≺ if for every resolvent C obtained by ordered resolution from S and for every partialinterpretation I, if C is unsatis�able in I then S is unsatis�able in I.Let S be a saturated set of clauses. For a set of clauses T we denote by Res≺,S(T) the set ofclauses derived by ordered resolution method with the restriction that we do not apply resolutionif the two premises are clauses of S. We may drop the subscripts when they are clear from thecontext.We de�ne Res∗≺,S(T)

def
= T ∪ Res≺,S(T). For a class C of sets of clauses we denote by

Res∗≺,S(C)
def
= {Res∗≺,S(T) | T ∈ C}. Also we write C ⇒≺,S,spl C

′ to say that Res∗≺,S(C) ⇒spl C
′.Remark that C

′ is unique.12We have overloaded the symbol I (previously it was used to denote deduction systems). For the rest of thischapter we use I only to denote some set of clauses.94

3.3. A decidability resultFor a liftable ordering ≺, and a set of clauses S, we denote by R≺,S the ordered resolutionmethod with splitting together with the mentioned restriction. The following result states therefutational completeness of this method:Proposition 3.11 For any liftable ordering ≺, for any sets S and T of clauses, such that S issaturated w.r.t. ≺ and S ⊆ T , T is unsatis�able if and only if {T } ⇒∗
≺,S,spl C, for some C suchthat every set of clauses in C contains the empty clause.The proof is a direct consequence of the refutational completeness of the standard strategysince, from the hypothesis that S is saturated, all inferences performed between clauses from Sare useless.We extend the presented resolution method with a tautology elimination rule and a subsump-tion rule. These rules do not compromise the completeness result of the method.3.3.3 A decidable classWe consider the ordering < de�ned in Section 3.1.1.1. By Proposition 3.2, < is a liftable ordering.We apply the resolution method R<,I∪S (de�ned in Section 3.3.2) to sets of clauses I ∪ S ∪ P,with I ∈ CI , S ∈ CS , P ∈ CP . Thanks to Proposition 3.11 this method is refutationally complete.Hence to get decidability we only need to show its termination.However, our resolution method is still not su�cient to ensure termination for clauses of

CIPS.Exemple 3.12 Let C = −I(u[x]) ∨ I({{x}}v[x]) such that {{x}}v[x] 6< u[x]. Resolving C with Cpregives C ′ = −I(u[〈x′, y′〉]) ∨ I({{x}}v[〈x′ ,y′〉]) which can be again resolved with Cpre , and so on.Thus, we consider an additional slight syntactic restriction. From a protocol point of view,this restriction does not reduce the expressivity of the fragment of clauses under consideration.De�nition 3.13 (well-behaved term, well-behaved clause)We say that a term is well-behaved if for any of its subterms of the form f0(u, v) the followingtwo implications hold:
• if var(u) 6= ∅ then v is a constant;
• if var(v) 6= ∅ then u is a ground term.We say that a clause of CS is well-behaved if the terms v, u[g(y1, . . . , yk)] and wi[g(y1, . . . , yk)],for all i, (see De�nition 3.9) are well-behaved.We say that a clause C not in CS is well-behaved if for every literal ±I(w) of C, w iswell-behaved.Usually, the terms used in modeling cryptographic protocols are well-behaved. For example,if S = {Cpre} (or S = {Csig}) (see previous section) then S ∪ C′

NSpk is well-behaved.We are now ready to state our main result.Theorem 3.14 Let I,P,S be �nite sets of clauses included respectively in the classes CI, CPand CS. If I ∪ S is saturated and P ∪ S is well-behaved then the satis�ability of I ∪ P ∪ S isdecidable. 95

Chapter 3. Decidability results for Horn clausesThe rest of the subsection is devoted to the outline of the proof of the theorem. For the sakeof clarity, some proofs of intermediate results are postponed to Section 3.3.5.Our resolution method applied to clauses of the class CIPS may create clauses outside theclass CIPS. To obtain an invariant, we introduce the following auxiliary class of clauses. Wede�ne CJ to be the class of clauses of the form:
r∨

i=1

−I(wi[g(y1, . . . , yk)]) ∨
s∨

l=1

−I(yil) ∨ I(f0(yj, a)),where k > 0, r ≥ 1, s ≥ 0, {j, i1, . . . , is} ⊆ {1, . . . , k}, g 6= f0, wi is a ground context for any i,and a is a constant.We have that the resolution method R<,I∪S applied to any set of clauses of I ∪ S ∪ CP or
CJ yields a clause in CP or CJ .Lemma 3.15 Let I, P ′, S and J be sets of unspittable clauses of respectively CI , CP , CS and,
CJ , such that I ∪ S is saturated and P ′, S, and J are well-behaved. The application of R<,I∪Sresolution on I ∪ S ∪ P ′ ∪ J produces clauses in CP or CJ . Moreover, the set of resolvents iswell-behaved.The proof is done in Section 3.3.5.1.We de�ne the depth of a non-empty clause C to be ‖C‖

def
= maxL∈C ‖L‖.We prove in Section 3.3.5.2 that the depth of clauses obtained applying the R<,I∪S resolutiondoes not increase except if they are ground, in which case the depth may double.Lemma 3.16 Let C1 and C2 be respectively two unsplittable clauses in CI , CS, CP , or CJ , suchthat for i ∈ {1, 2}, if Ci is in CP , CS or CJ then Ci is well-behaved. The resolvent C derived by

R<,I∪S resolution satis�es: ‖C‖ ≤ max(‖C1‖, ‖C2‖) if C is not ground or if C1 or C2 is ground,and ‖C‖ ≤ 2max(‖C1‖, ‖C2‖) otherwise (that is, if C is ground, and C1 and C2 are not ground).These two lemmas allow us to conclude. We denote by C0 the set of clauses I ∪ S ∪ P andby C0 the class {C0}. For every i ≥ 0 we de�ne recursively Ci+1 to be the class de�ned by
Ci ⇒<,I∪S,spl Ci+1. Due to the application of the splitting rule, for any i, the elements of theclass Ci+1 are sets of clauses such that each of the clauses in these sets is either a ground literal,or does not contain any ground literal.Using Lemma 3.15, we obtain by induction that for every i, for every C ∈ Ci, we can write
C = I ∪ S ∪ P ′ ∪ J , where P ′ and J are well-behaved sets of clauses of the classes CP and CJrespectively.Let N def

= maxC∈C0 ‖C‖. Applying now Lemma 3.16 and induction, we deduce that for every i,for every C ∈ Ci, for every C ∈ C, we have that ‖C‖ ≤ N if C is not ground and ‖C‖ ≤ 2N if Cis ground.From the de�nition of classes CI , CS , CP and CJ we observe that clauses in sets C ∈ Ci, forevery i, have at most k + 1 variables, where k is the maximal arity of function symbols in F(indeed, clauses in CS may have k + 1 variables: y1, . . . , yk and z).Since there is a �nite number of sets of clauses of bounded depth (up to variable renaming),we deduce that the R<,I∪S resolution terminates.With regard to the complexity of this decision procedure we obtain, using a similar argumentas in [Cor03], that the satis�ability of the set I ∪ P ∪ S is decidable in 3-EXPTIME.96

3.3. A decidability result3.3.4 ExamplesIn this section we show that the intruder clauses corresponding to our two examples (CBCencryption and blind signatures) are saturated. This means that we can analyse any protocolencoded in CP in the presence of an extended intruder that has access either to CBC encryptionor blind signatures.We assume a �xed basic set of capabilities for the intruder, modeled by the set I0 consistingof the clauses in Example 3.3 (except the three clauses concerning asymmetric encryption, whichare neither in CI , nor in CP), and of the two clauses modeling composition and decompositionof blind messages (see page 93).We �rst consider the case of the CBC encryption.Proposition 3.17 The set I0 ∪ {Cpre} is saturated.Proof Given a partial interpretation I and an atom A belonging to I, we say that A is true(resp. false) in I if A appears with sign + (resp. with sign −).We consider an ordered resolution between clauses of I0 ∪ {Cpre}. If both premises areclauses of I0 then all the resolvents are tautologies. Therefore they are satis�able for any partialinterpretation. The only interesting cases are when one of the premise is Cpre .Consider �rst that the other premise is −I(x)∨−I(y)∨+I({{x}}y). The resolvent of these twoclauses is C1
def
= −I(〈x, y〉) ∨−I(z) ∨ +I({{x}}z). We consider an arbitrary partial interpretation

I such that C1 is unsatis�able in I. By de�nition, there exists a ground substitution θ such that
C1θ is false in I. The clause C1θ has the form −I(〈u, v〉) ∨−I(w) ∨ +I({{u}}w), where u, v and
w are ground terms. Thus the literals +I(〈u, v〉), +I(w) and −I({{u}}w) are in I. Also, since
u < {{u}}w, one of the literals +I(u) or −I(u) must appear in I. We consider the two cases.

• Either the atom I(u) is true in I then the clause −I(u) ∨−I(w) ∨ +I({{u}}w) is false in Iand it follows that the clause −I(x) ∨ −I(y) ∨ +I({{x}}y) is unsatis�able in I;
• Or the atom I(u) is false in I then the clause −I(〈u, v〉)∨+I(u) is false in I, therefore theclause −I(〈x, y〉) ∨ +I(x) is unsatis�able in I.In both cases a clause of I0 ∪ {Cpre} is unsatis�able in I.In the other cases the ordering does not allow the resolution step. Indeed, if both premises are

Cpre then the resolvent is −I({{〈〈x, y〉, y′〉}}z)∨+I({{x}}z) and the resolved atom is {{〈x, y〉}}z . But
{{〈x, y〉}}z < {{〈〈x, y〉, y′〉}}z . If the premises are Cpre and the decryption clause then the resolventis −I({{x, y}}z) ∨ −I(z) ∨ +I(x) and the resolved atom is I({{x}}z). But {{x}}z < {{x, y}}z .We conclude that the set I0 ∪ {Cpre} is saturated.The same property is true in the blind signature case.Proposition 3.18 The set I0 ∪ {Csig} is saturated.Proof The proof is similar to the previous one. The only interesting case is when one ofthe premises is Csig . It must be the case that the second premise is −I(x) ∨ −I(y) ∨ +I([[x]]y).The resolvent of these two clauses is −I(blind(x, y)) ∨ −I(y) ∨ −I(z) ∨ +I([[x]]z). An analogousreasoning as in the previous lemma shows that if the resolvent is unsatis�able in some partialinterpretation I then I0 ∪ {Csig} is unsatis�able in I. The intuition is that the resolvent couldalready be obtained from the clauses−I(x)∨−I(z)∨+I([[x]]z) and−I(blind(x, y))∨−I(y)∨+I(x).97

Chapter 3. Decidability results for Horn clausesAs a consequence of these two propositions and applying Theorem 3.14, we get that forany well-behaved set P (encoding both a protocol and a security property), the satis�ability of
I0 ∪{Cpre}∪P (resp. of I0∪{Csig}∪P) is decidable. Since for example secrecy can be modeledusing a ground clause (for example −I(n(a, b)) to express that the intruder should not learnthe nonce between a and b), we obtained a (correct but incomplete) procedure for verifying thesecrecy of protocols that use the described pre�x property or blind signatures.In addition, in the case of other extensions of the intruder power leading to other sets S ofclauses in CS , the saturation of the set I∪S can be easily veri�ed by hand (like in our examples).3.3.5 Proofs of intermediate results3.3.5.1 Invariance under resolutionWe show in this subsection that our resolution method on a set of clauses in CI , CS, CP , or CJproduces a set of resolvents that belongs to the class of clauses in CP or CJ . We �rst prove ahelpful lemma.Lemma 3.19 Let w1 and w2 be two well-behaved uni�able terms, and let σ = mgu(w1, w2).Then wσ is well-behaved for any well-behaved term w.Proof Suppose that there is a subterm f0(u, v) of wσ such that f0(u, v) is not well-behaved.We have the following possibilities for f0(u, v): either it is a subterm of w, or f0(u, v) = f0(u

′, v′)σwhere f0(u
′, v′) is a subterm of w, or it is a subterm of xσ, where x ∈ var(w). In the �rsttwo cases we obtain immediately that w is not well-behaved, since f0(u, v) and respectively

f0(u
′, v′) are not well-behaved. In the third case there is a subterm f0(u

′′, v′′) of w1 or w2 suchthat f0(u
′′, v′′)σ = f0(u, v). Therefore w1 or w2 is not well-behaved. Hence we obtained acontradiction, and so the supposition is false.Lemma 3.15 Let I, P ′, S and J be sets of unspittable clauses of respectively CI , CP , CS and,

CJ , such that I ∪ S is saturated and P ′, S, and J are well-behaved. The application of R<,I∪Sresolution on I ∪ S ∪ P ′ ∪ J produces clauses in CP or CJ . Moreover, the set of resolvents iswell-behaved.Proof Let C1 and C2 be clauses in I ∪ S ∪ P ′ ∪ J . Let C be a resolvent of C1 and C2 with
C = C ′

1σ ∨ C ′
2σ, where C1 = C ′

1 ∨ L1, C2 = C ′
2 ∨ L2, and σ = mgu(L1, L2). We have to provethat the clause C is in the class CP or CJ . In order to obtain this, we examine all possible casesaccording to the membership of C1 and C2 to the sets I, S, P ′, and J .For l ∈ {0, 1}, if Cl belongs to I, S or J then Cl is written as in the de�nition of classes CI , CS ,and CJ , respectively. If Cl ∈ P ′ and Cl is ground then the resolvent is also ground and hence in

CP (indeed, since Cl is unsplittable, it is either a ground literal or it does not contain any groundliteral). Therefore, in what follows, we suppose that for Cl ∈ P ′, Cl is not ground. Also, in whatfollows, we may denote a term u having only one variable, say x, by u(x) in order to emphasisethis property. Hence for Cl ∈ P ′, we write Cl = ±I(s(x)) ∨
∨m

i=1 ±I(ti(x)), where m ≥ 0, andwe assume that the resolution inference is performed on the literal ±I(s(x)). If Cl ∈ J then weassume that the literal of Cl upon which resolution is performed is ±I(w1[g(y1, . . . , yk)]) (indeedit cannot be I(f0(yj , a)) since f0(yj , a) < w1[g(y1, . . . , yk)]; even if the context w1 is empty wehave f0 <F g).The case study follows:98

3.3. A decidability result1. C1, C2 ∈ P ′. The resolvent C has at most one variable, hence C is a clause of CP .2. C1 ∈ P ′ and C2 ∈ S. Then L2 = −I(f0(u[g(y1, . . . , yk)], v(z))) since L2 is maximal in C2.The literal L1 is +I(s(x)). The following two cases are possible:
• s(x) = x. Then, by maximality of s(x) in C1, we have C1 = +I(x). Hence theresolvent is an instance of C1. Since subsumed clauses are eliminated, this case doesnot produce a new clause.
• s(x) = f0(s1, s2). By hypothesis, s(x) is well-behaved.Suppose that var(s1) 6= ∅. Then s2 = a, for some constant a. We deduce that v = zand zσ = a. The following three cases are possible: (1) yiσ = s′i, where each s′i is asubterm of s1 and by consequence the resolvent is in CP ; (2) xσ = u′[g(y1, . . . , yk)],where u′ is a subcontext of u, and, in this case, the resolvent is in CJ ; (3) xσ = u′where u′ is a ground subterm of u, and in this case σ is ground, thus C is in CP .Suppose now that var(s2) 6= ∅. Then s1 is a ground term. Thus yiσ is ground for any
i. It follows that the resolvent is a clause of CP .Observe that, in all the cases, f0(yj , z)σ is well-behaved. Since u, v, and wi arewell-behaved we obtain, following the same line of proof as in Lemma 3.19, that theresolvent is also well-behaved.3. C1 ∈ P ′ and C2 ∈ I: We have L1 = ±I(s(x)) and L2 = ∓I(f(x1, . . . , xn)). The followingtwo cases are possible:

• s(x) = x. Then, by maximality of s(x) we have C1 = ±I(x). Therefore C is subsumedby C1.
• s(x) = f(s1, . . . , sn), where, for all i, si is a subterm of s(x). Hence, for all i, xiσ = si.So the resolvent is in CP .4. C1 ∈ P ′ and C2 ∈ J : We have L1 = ±I(s(x)) and L2 = ∓I(w1[g(y1, . . . , yk)]). Again, thefollowing two cases are possible:
• for all i, yiσ = si, where si is a subterm of s(x). In this case C is in CP .
• xσ = w′[g(y1, . . . , yk)], where w′ is a subcontext of w1. If r > 1 then C is in CJ . If
r = 1 then C is of the form I(f0(yj, a))∨

∨
l I(yjl

) which splits into clauses of CP andeither I(f0(yj, a)) ∨ I(yjl
) (if there is l with jl = k) or I(f0(yj , a)) (otherwise), whichare both again in CP .5. C1, C2 ∈ I ∪ S: the strategy forbids any resolution in this case.6. C1 ∈ I and C2 ∈ J : We have L1 = ±I(f(x1, . . . , xn)) and L2 = ∓I(w1[g(y1, . . . , yk)]). Asbefore, two cases are possible:

• w1 is the empty context and g = f . The clauses derived by resolution (and possiblysplitting) belong to CP if r = 1 and to CJ if r > 1.
• for all i, xiσ = w′

i[g(y1, . . . , yk)], where w′
i is a subcontext of w1. Hence in this case

C is in CJ .7. C1, C2 ∈ S ∪ J : Since none of the positive literals in C1, C2 is maximal in its clause, theresolution inferences are blocked. 99

Chapter 3. Decidability results for Horn clausesTo �nish the proof of the lemma we have to show that the resolvent C is well-behaved. This isa consequence of the invariance of the well-behaviour property under application of substitutions,which was proved in the Lemma 3.19.3.3.5.2 Termination of the resolution methodWe �rst give some lemmas which will be used in the proof of termination. The two followinglemmas are similar to Proposition 8.5 in �8.2.1.3 of [Cor03].Lemma 3.20 Let u and v be two uni�able terms having at most one variable, and let σ =
mgu(u, v). Then ‖uσ‖ ≤ max(‖u‖, ‖v‖) if σ is not ground or if u1 or u2 is ground, and ‖uσ‖ ≤
2max(‖u‖, ‖v‖) otherwise.Proof If one of the terms, say u, is ground then uσ = u and the inequality follows directly.We suppose that each term has exactly one variable. We denote by x the variable of u andby y the variable of v.Remark that ‖uσ‖ = max(‖u‖, ‖u‖x + ‖xσ‖ − 1) ≤ ‖u‖ + ‖xσ‖ − 1 (as ‖u‖x ≤ ‖u‖), andsimilarly for v. Thus if xσ = x or yσ = y then we're done.Suppose that xσ 6= x and yσ 6= y. In this case σ is ground. Consider an arbitrary occurrence
qx of x in u. Then qx is a also position in v (otherwise xσ = x).

• If v|qx is ground then xσ = v|qx , and thus ‖uσ‖ ≤ ‖u‖ + ‖v‖ − 1 ≤ 2max(‖u‖, ‖v‖).
• Otherwise, y ∈ var(v|qx). Let qy be a position y in v. Then qy is also a position in u(otherwise yσ = y). We have x 6∈ var(u|qy) (otherwise u and v would not be uni�able).Then yσ = u|qy and u|qy is ground. Hence ‖vσ‖ ≤ ‖v‖ + ‖u‖ − 1 ≤ 2max(‖u‖, ‖v‖).Using exactly the same proof technique as in the previous lemma, we can show the followingsimilar result.Lemma 3.21 Let u and v be two uni�able terms such that u = u′[g(y1, . . . , yk)] where u′ isa ground context, k > 0, and v has at most one variable. Let σ = mgu(u, v). Then ‖uσ‖ ≤

max(‖u‖, ‖v‖) if σ is not ground or if u or v is ground, and ‖uσ‖ ≤ 2max(‖u‖, ‖v‖) otherwise.The next lemma bounds the depth of the resolvant of two clauses from the class we areintersted in.Lemma 3.22 Let C1 = I(u1) ∨ C ′
1, C2 = −I(u2) ∨ C ′

2, be two unsplittable clauses of CP ∪
CI ∪ CS ∪ CJ , such that for i ∈ {1, 2}, if Ci is in CP , CS, or CJ then Ci is well-behaved. Let
C = C ′

1σ∨C
′
2σ be the resolvent of C1 and C2 with σ = mgu(u1, u2). Let α ∈ {1, 2}, with α = 1 if

σ is not ground or if C1 or C2 is ground, and α = 2 otherwise. Then ‖u1σ‖ ≤ αmax(‖u1‖, ‖u2‖).Proof We prove this lemma by performing a similar case study as in the proof of Lemma 3.15.But �rst observe that, since Ci is unsplittable, Ci is ground if and only if ui is ground (for
i ∈ {1, 2}). We suppose that u1 and u2 are not ground, since otherwise we trivially have that
‖u1σ‖ ≤ max(‖u1‖, ‖u2‖).1. C1, C2 ∈ CP . We can apply Lemma 3.20 directly to obtain that ‖u1σ‖ ≤ αmax(‖u1‖, ‖u2‖).100

3.3. A decidability result2. C1 ∈ CP and C2 ∈ CS . Then u2 = f0(u[g(y1, . . . , yk)], v), where u and v are as in De�ni-tion 3.9.We denote by x the variable of C1. If u1 = x then u2σ = u2 and hence the property isclearly satis�ed. Suppose u1 = f0(s1, s2). By hypothesis, u1 is well-behaved.
• If var(s1) 6= ∅ then s2 = a, for some constant a. In this case we have v = z and
zσ = a. We have that σ and mgu(u1, u2[

a/z]) are equal on {x, y1, . . . , yk}. Thus, byLemma 3.21 applied on u1 and u2[
a/z], we have ‖u1σ‖ ≤ αmax(‖u1σ‖, ‖(u2[

a/z])σ‖) =
αmax(‖u1σ‖, ‖u2σ‖).

• If var(s2) 6= ∅ then s1 is ground.Let σ0 be the restriction of σ on {y1, . . . , yk}. We have that u[g(y1, . . . , yk)]σ0 = s1and σ0 is ground. Also mgu(u1, u2σ0) is the restriction of σ on {x, z}. Then, applyingLemma 3.20 on u1 and u2σ0 we obtain that ‖u1σ‖ ≤ αmax(‖u1σ‖, ‖(u2σ0)σ‖) =
αmax(‖u1σ‖, ‖u2σ‖).3. C1 ∈ CP and C2 ∈ CI . Then u2 = f(x1, . . . , xn) and var(u1) ⊆ {x} for some variable x. Wehave either u1 = x and xσ = u2, or u1 6= x and u1, u2σ are equal up to variable renaming.In both cases ‖u1σ‖ = max(‖u1‖, ‖u2‖).4. C1 ∈ CP and C2 ∈ CJ . Then var(u1) ⊆ {x} for some variable x, and u2 = w1[g(y1, . . . , yk)].We can apply Lemma 3.21 directly to obtain that ‖u1σ‖ ≤ αmax(‖u1‖, ‖u2‖).5. C1, C2 ∈ I ∪ S. The strategy forbids any resolution in this case.6. C1 ∈ I and C2 ∈ J . We have u1 = f(x1, . . . , xn) and u2 = w1[g(y1, . . . , yk)]. We thenhave u1σ, u2 are equal up to variable renaming, and thus ‖u1σ‖ = max(‖u1‖, ‖u2‖).7. C1, C2 ∈ S ∪ J . Since none of the positive literals in C1, C2 is maximal in its clause, theresolution inferences are blocked.We now show that that every clause derived by our resolution strategy has its size boundedby (twice) the maximum of the sizes of its premises.Lemma 3.16 Let C1 and C2 be respectively two unsplittable clauses in CI , CS, CP , or CJ , suchthat for i ∈ {1, 2}, if Ci is in CP , CS or CJ then Ci is well-behaved. The resolvent C derived by

R<,I∪S resolution satis�es: ‖C‖ ≤ max(‖C1‖, ‖C2‖) if C is not ground or if C1 or C2 is ground,and ‖C‖ ≤ 2max(‖C1‖, ‖C2‖) otherwise (that is, if C is ground, and C1 and C2 are not ground).Proof Let C1 = I(u1) ∨ C
′
1, C2 = −I(u2) ∨ C

′
2, and C = C ′

1σ ∨ C ′
2σ be the resolvent of C1and C2 with σ = mgu(u1, u2). Again, Ci is ground if and only if ui is ground, for i ∈ {1, 2}.It su�ces to show that for every term w such that ±I(w) ∈ C1 ∨ C2 we have ‖wσ‖ ≤

max(‖w‖, ‖u1‖, ‖u2‖) if σ is not ground or if u1 or u2 is ground, and ‖wσ‖ ≤ 2max(‖w‖, ‖u1‖, ‖u2‖)otherwise. We suppose next that w is not ground, since for w ground the two inequalities aretrivial. In this case, both u1 and u2 are not ground (by the unsplittability of clauses C1 and C2).Lemma 3.22 ensures that ‖u1σ‖ ≤ max(‖u1‖, ‖u2‖) if σ is not ground or if u1 or u2 is ground,and ‖u1σ‖ ≤ 2max(‖u1‖,
‖u2‖) otherwise. Recall that u1σ is maximal in C, and thus u1 is maximal in C1. 101

Chapter 3. Decidability results for Horn clausesIf σ is ground then ‖wσ‖ ≤ ‖u1σ‖, since otherwise it follows that wσ > u1σ (which contradictsthe maximality of u1σ in C). Thus ‖wσ‖ ≤ ‖u1σ‖ ≤ 2max(‖u1‖, ‖u2‖), and we're done.We consider now that σ is not ground. We assume without loss of generality that ±I(w) isa literal of C1. We can have one of the following cases:1. C1 ∈ CP . Let x be the variable of C1. We compare the depth of w with that of u1.
• Case ‖w‖ > ‖u1‖. By maximality of u1 in C1, ‖w‖x ≤ ‖u1‖x. We have that

‖wσ‖ = max(‖w‖, ‖w‖x+‖xσ‖−1) ≤ max(‖w‖, ‖u1‖x+‖xσ‖−1) ≤ max(‖w‖, ‖u1σ‖).

• Case ‖w‖ ≤ ‖u1‖. If ‖w‖x ≤ ‖u1‖x then ‖wσ‖ ≤ ‖u1σ‖. If ‖w‖x > ‖u1‖x thenfor all y ∈ var(xσ), ‖wσ‖y > ‖u1σ‖y . Therefore ‖wσ‖ ≤ ‖u1σ‖ because otherwise
wσ > u1σ.In both cases ‖wσ‖ ≤ max(‖w‖, ‖u1σ‖). Thus, ‖wσ‖ ≤ max(‖w‖, ‖u1‖, ‖u2‖).2. C1 ∈ CI . Then w < u1 since u1 = f(x1, . . . , xn) and w = xi for some 1 ≤ i ≤ n.3. C1 ∈ CS . Then w < u1 by the de�nition of the class CS (see De�nition 3.9).4. C1 ∈ CJ . Then u1 = w′[g(y1, . . . , yk)] for some closed context w′. If w = f0(yj, a) or

w = yil then w < u1. Suppose that w = w′′[g(y1, . . . , yk)]. Observe that for v ∈ {w, u1},the quantity ‖v‖yj
is the same for all j. Also note that var(wσ) = var(u1σ) = ∪j var(yjσ).Then by performing the same analysis as in the case C1 ∈ CP (by replacing x with yj forsome j), we obtain that ‖wσ‖ ≤ max(‖w‖, ‖u1‖, ‖u2‖).

3.4 Application to the Needham-Schroeder symmetric key pro-tocol3.4.1 Presentation of the protocolWe consider the Needham-Schroeder symmetric key authentication protocol [NS78] as an exampleof application of our result. The goal of the protocol is the key exchange between two parties,which we call Alice and Bob, and the mutual conviction of the possession of the key by eachother. The key is created by a trusted server which shares the secret keys Kas and Kbs withAlice and Bob respectively. The description of the protocol is as follows:
PNS :

A⇒ S : A,B,Na

S ⇒ A : {{Na, B,Kab, {{Kab, A}}Kbs
}}Kas

A⇒ B : {{Kab, A}}Kbs

B ⇒ A : {{Nb}}Kab

A⇒ B : {{Nb − 1}}KabHere we concentrate on the key exchange goal, rather than on the authentication of the twoparties. The key exchange goal can be expressed as the secrecy of the nonce Nb. Intuitively, if
Nb remains secret, it means that the key Kab used by B has also been kept secret.If the encryption scheme used to implement this protocol is used in the CBC mode then thefollowing attack [PQ00] is possible. In a �rst session (1), an intruder can listen to the message102

3.4. Application to the Needham-Schroeder symmetric key protocol
{{Na, B,Kab, {{Kab, A}}Kbs

}}Kas and then, using the pre�x property, he can compute {{Na, B}}Kas .In another session of the protocol, he can send it to Alice in the third round. Alice thinks thatBob has started a session (2) with her: Bob plays the role of the initiator and Alice the roleof the second participant. And so Alice would use Na as the shared key, while it is a publiclyknown message. This attack is summarised in Figure 3.1.
(1).1 A⇒ S : A,B,Na

(1).2 S ⇒ A : {{Na, B,Kab, {{Kab, A}}Kbs
}}Kas

(2).3 I(B) ⇒ A : {{Na, B}}Kas

(2).4 A⇒ I(B) : {{N ′
a}}NaFigure 3.1: Attack on the Needham-Schroeder protocol, using the pre�x propertyThe clauses that model the protocol rules are the following ones:

→ I(〈za, zb, n1(za, zb)〉)
I(〈za, zb, x〉) → I({{x, zb, k(za, zb), {{k(za, zb), za}}k(zb,zs)}}k(za,zs))

I({{n1(za, zb), zb, y, z}}k(za ,zs)) → I(z)

I({{y, za}}k(zb,zs)) → I({{n2(zb, za)}}y)

I({{x}}y) → I({{pred(x)}}y)where pred is public function symbol of sort Nonce → Nonce. Then the protocol is modeled asin Section 3.2.2 by the set of clause C′
NS obtained from the above clause by instantiating theparameters za and zb by the constants a, b, and i, and zs by s.The intruder has also some initial knowledge. He knows the identities of the participatingparties, he can create nonces and, he knows the secret key of the compromised agent. This initialknowledge is modeled by the following clauses:

→ I(a)
→ I(b)
→ I(i)

→ I(k(i, s))
→ I(n1(i, x))
→ I(n2(i, x))We denote this set of clauses, corresponding to the initial knowledge of the intruder, by P0. Weremark that these clauses are either ground or with a single variable, and thus belong to CP .In addition, we enrich the set I (i.e. the clauses of Example 3.3) with the clause I(x) →

I(pred(x)) that models the ability of the intruder to compute the predecessor of a message (seenas a number). We denote by I ′ this enriched set.3.4.2 Correcting the protocolWe remark that the attack comes from the fact that the intruder, using the second rule of theprotocol together with the CBC property, can get the encryption of any message by the key Kas:replacing the nonce Na by any plaintext m of its choice in the �rst message, he obtains a messageof the form {{m, . . .}}Kas from the server and using the CBC property he gets {{m}}Kas .To avoid this, we interchange the place of Na and B in the message sent in the second round.But a similar attack is still possible since the intruder can modify the �rst message of Alice andsend 〈A,B,B〉 to the server. Then the shared key would be the identity B. Such an attack ispossible only if identities can be confused with keys.To avoid such a type �aw attack, we add a hash of the shared key as the �rst component ofthe message sent by the server to Alice and then to Bob. Note that this second transformation103

Chapter 3. Decidability results for Horn clausesis not su�cient by itself (i.e. without interchanging Na and B) since the intruder has also theability to produce hashes. The obtained protocol is described below. We refer to this version asthe corrected protocol.
PNSc :

A⇒ S : A,B,Na

S ⇒ A : {{B,Na,Kab, {{h(Kab),Kab, A}}Kbs
}}Kas

A⇒ B : {{h(Kab),Kab, A}}Kbs

B ⇒ A : {{Nb}}Kab

A⇒ B : {{Nb − 1}}KabThe clauses that model the rules of this protocol are the following ones:
→ I(〈za, zb, n1(za, zb)〉)

I(〈za, zb, x〉) → I({{zb, x, k(za, zb), {{h(k(za, zb)), k(za, zb), za}}k(zb,s)}}k(za,s))

I({{zb, n1(za, zb), y, z}}k(za ,s)) → I(z)

I({{h(y), y, za}}k(zb,s)) → I({{n2(zb, za)}}y)

I({{x}}y) → I({{pred(x)}}y)As for the protocol PNS, we denote by CNSc the set of clauses modeling the protocol NSc as inSection 3.2.2.The aim of the rest of the section is to prove that the corrected protocol preserves the secrecyof Nb.3.4.3 A transformation preserving secrecyWe observe that the clauses corresponding to the third round and �fth round of the protocol
PNSc are not in CP since they have two variables. Therefore we cannot apply directly our resultand we are led to an additional modi�cation of the protocol.We remark that the server sends to Alice in the second round an encrypted message thatAlice cannot decrypt. This message could be directly sent to Bob by the server. In addition,the last rule of the protocol does not seem to be able to compromise the secrecy of Nb, thus weremove it. These modi�cations yield the following protocol:

PNSv :

A⇒ S : A,B,Na

S ⇒ A : {{B,Na,Kab}}Kas

S ⇒ B : {{h(Kab),Kab, A}}Kbs

B ⇒ A : {{Nb}}KabThe set of clauses that model the protocol are listed below:
→ I(〈za, zb, n1(za, zb)〉)

I(〈za, zb, x〉) → I({{zb, x, k(za, zb)}}k(za,s))

I(〈za, zb, x〉) → I({{h(k(za, zb)), k(za, zb), za}}k(zb,s))

I({{h(y), y, za}}k(zb,s)) → I({{n2(zb, za)}}y)As before, we denote by CNSv the set of clauses modeling the protocol NSv as in Section 3.2.2.Our approach is as follows: we prove that this version is a weaker version than the correctedprotocol, i.e. that its correctness implies the correctness of the corrected version. Then, sincethis version �ts our class, we apply our resolution method to prove that this version preserves thesecrecy of Nb, which allow us to conclude that the corrected version also preserves the secrecyof Nb.104

3.4. Application to the Needham-Schroeder symmetric key protocolFor each protocol Pl, where l is NS, NSc or NSv, we note by Tl
def
= I ′ ∪ P0 ∪ C′

l ∪ {Cpre} theentire set of clauses that model the protocol (Cl is the set of clauses representing only the roundsof the protocol). The secrecy property of the protocol Pl can be formulated as the satis�abilityof the set of clauses Tl ∪ {−I(n2(b, a))}.We have already seen that TNS ∪ {−I(n2(b, a))} is not satis�able. We prove that the satis�-ability of TNSc ∪ {−I(n2(b, a))} can be reduced to the satis�ability of TNSv ∪ {−I(n2(b, a))}.Proposition 3.23 If the set of clauses TNSv∪{−I(n2(b, a))} is satis�able then the set of clauses
TNSc ∪ {−I(n2(b, a))} is also satis�able.To prove this proposition, we use another variant of the resolution method, the positiveresolution [BG01], which requires that one of the premise is a positive clause (i.e. a clausehaving only positive literals). The method is also refutationally complete. Since we considerHorn clauses, the set Tl ∪ {−I(n2(b, a))} is unsatis�able if and only if there is a deduction of theclause +I(n2(b, a)) by positive resolution on Tl. We denote by Pl I(m) the fact that the clause
+I(m) can be obtained by positive resolution on Tl.The following property ensures that the transformation of protocol PNSc in PNSv preservesthe secrecy. In other words, if there is an attack in PNSc then there is a corresponding attackin PNSv.Proposition 3.24 If PNSc I(n2(b, a)) then PNSv I(n2(b, a)).Proof To prove the proposition, it is su�cient to �nd an application t 7→ t on the set of groundterms such that n2(b, a) = n2(b, a) and, for all message m, if PNSc I(m) then PNSv I(m).We show that the following application satis�es the required properties.

a = a, for all constant a
x = x, for all variable x

{{u}}v =

〈{{a, t, t′}}k(a′,s), t′′〉 if {{u}}v = {{a, t, t′, t′′}}k(a′,s),

n1(i, i) if u = pred(r),
{{u}}v otherwise.

pred(u) = n1(i, i)

f(u1, . . . , un) = f(u1, . . . , un),∀f ∈ F , f 6= {{_}}_, f 6= predIn what follows, a, b are arbitrary constants, r, t are arbitrary terms, while i and s are �xedconstants, standing for the intruder and server identities respectively.We only need to consider deductions of the form:
C

def
=

∨n
i=1 −I(ui) ∨ +I(u) + I(u1) · · · + I(un)

+ I(u)where C is an instance of a clause of TNSc. Thus we are reduced to show that, for each groundinstance ∨n
i=1 −I(mi) ∨ +I(m) of a clause C of TNSc, if PNSv I(mi), for every i, then PNSv

I(m). We only present here the more interesting cases.
• C = −I(x) ∨ −I(y) ∨ +I({{x}}y). We have to verify that if PNSv I(u) and PNSv I(v),where u and v are two ground terms, then PNSv I({{u}}v).Suppose that {{u}}v is of the form {{a, t, t′, t′′}}k(a′,s). Then we have that PNSv I(〈a, t, t′, t′′〉)and PNSv I(k(a

′, s)). The projection clauses are in TNSv. Using them with the �rst re-lation we obtain PNSv I(〈a, t, t′〉) and PNSv I(t′′). Now using the encryption clause105

Chapter 3. Decidability results for Horn clausesand then the pairing clause we obtain that PNSv I(〈{{a, t, t′}}k(a′,s), t′′〉), which is whatwe needed.Suppose now that u = pred(r). Then we have {{u}}v = n1(i, i). But PNSv n1(i, i), as
+I(n1(i, i)) is a clause from P0.If we are in none of these two special cases then it is su�cient to use the encryption clausein order to obtain that PNSv I({{u}}v).

• C = −I({{x}}y)∨−I(y)∨+I(x). We have to show that if PNSv I({{u}}v) and PNSv I(v),where u and v are two ground terms, then PNSv I(u).If {{u}}v = {{a, t, t′, t′′}}k(a′ ,s) then we have PNSv I(〈{{a, t, t′}}k(a′ ,s), t′′〉)). Therefore weobtain PNSv I({{a, t, t′}}k(a′ ,s)) and PNSv I(t′′). But we also have PNSv I(k(a′, s)).And, as the decryption clause is in the model of PNSv, we obtain PNSv I(〈a, t, t′〉). Fromwhich we arrive at the desired relation PNSv I(〈a, t, t′, t′′〉).If u = pred(r) then there is nothing to prove because pred(u) = n1(i, i) and PNSv

I(n1(i, i)). Otherwise, the proof is direct.
• C = −I(〈a, b, x〉)∨+I({{b, x, k(a, b), {{h(k(a, b)), k(a, b), a}}k(b,s)}}k(a,s)). Knowing that PNSv

I(〈a, b, u〉), where u is a ground term, we must obtain that the transformed positive literalof C is deductible from TNSv.The second clause of CNSv assures that we have PNSv I({{b, u, k(a, b)}}k(a,s)). Applyingthe pairing clause and the third clause of CNSv, we obtain what we needed, i.e. PNSv

I(〈{{b, u, k(a, b)}}k(a,s), {{h(k(a, b)), k(a, b), a}}k(b,s)〉).
• C = −I({{b, n1(a, b), y, z}}k(a,s))∨+I(z). For any two ground terms u and v, we must provethat if PNSv I({{b, n1(a, b), u, v}}k(a,s)) then PNSv I(v). But this is immediate, from thede�nition of the application and by using the projection on the second component.
• C = −I({{x}}y)∨+I({{pred(x)}}y). As we have PNSv I(n1(i, i)) and, for all ground terms
u and v, {{pred(u)}}v = n1(i, i), this case is trivial.The conclusion in the remaining cases follows directly from the de�nition of the application t 7→ t.3.4.4 Secrecy of the corrected protocolSince the clauses of TNSv satisfy the hypotheses of our main result, we have veri�ed using ourresolution method that the transformed protocol PNSv has no attack. The veri�cation was doneautomatically using a prototype implementation of the procedure in [CLC03a] that we haveextended for our resolution method.Proposition 3.25 The set of clauses TNSv ∪ {−I(n2(b, a))} is satis�able.We can state now the correctness of the protocol PNSc.Corollary 3.26 The set of clauses TNSc ∪ {−I(n2(b, a))} is satis�able.Proof Immediate, by Propositions 3.23 and 3.25.106

3.5. Conclusions3.5 ConclusionsWe have obtained new decidability results for the secrecy of cryptographic protocols that employencryption primitives satisfying properties that could not be treated by previous decision proce-dures (modulo the approximations introduced by Horn clauses). The results followed from thetermination of a resolution strategy on a class of Horn clauses. This resolution strategy might beuseful for larger classes of protocols and more encryption properties. Indeed, while terminationis no more ensured for larger classes, completeness is still guaranteed.We have applied our technique to the debugging of a protocol under a more realistic threatmodel than the one usually considered. We have transformed this protocol so that it falls into thescope of our Horn class. This transformation preserves the attacks and therefore the correctnessof the target protocol ensures the correctness of the initial one. The transformation is interestingin itself. We would like to further investigate this type of transformations and to characterisethe protocols to which they can be safely applied.We have used a prototype implementation to automatically test the correctness of protocolspresented in this chapter. We would like to further develop it, optimise it, and test it against alibrary of protocols like [CJ97].

107

Chapter 3. Decidability results for Horn clauses

108

Part IITransfer results

109

Chapter 4From simple secrecy to strong secrecy
Contents 4.1 The model . 1134.1.1 The applied pi calculus . 1134.1.2 Modeling protocols within the applied pi calculus 1154.1.3 Secrecy properties . 1184.2 Passive case . 1204.2.1 Simple secrecy implies strong secrecy 1204.2.2 Generalisation of well-formed frames 1224.3 Active case . 1264.3.1 Our hypotheses . 1264.3.2 Main result . 1304.3.3 Proofs of intermediate results . 1324.4 Application to some cryptographic protocols 1354.4.1 Yahalom . 1354.4.2 Needham-Schroeder symmetric key protocol 1354.4.3 Wide Mouthed Frog Protocol (modi�ed) 1364.5 Conclusions . 137As we have seen in the Introduction, two styles of de�nitions are usually considered to expressthat a security protocol preserves the con�dentiality of a data s. Simple secrecy says that thesecret is never accessible to the adversary. For example, consider the following protocol wherethe agent A simply sends a secret s to an agent B, encrypted with B's public key.

A→ B : {s}pub(B)An intruder cannot deduce s, thus s is a simple13 secret. Although this notion of secrecy may besu�cient in many scenarios, in others, stronger security requirements are desirable. For instanceconsider a setting where s is a vote and B behaves di�erently depending on its value. If theactions of B are observable, s remains a simple secret but an attacker can learn the values ofthe vote by watching B's actions. The design of equivalence-based secrecy is targeted at suchscenarios and intuitively says that an adversary cannot observe the di�erence when the value of13By language abuse, we overload here the meaning of �simply� which here refers to the fact that s is a simplesecret. 111

Chapter 4. From simple secrecy to strong secrecythe secret changes. This de�nition is essential to express properties like con�dentiality of a vote,of a password, or the anonymity of participants to a protocol.Although the second formulation ensures a higher level of security and is closer to crypto-graphic notions of secrecy, so far decidability results and automatic tools have mainly focusedon the �rst de�nition.Related work on strong secrecy Many works have been dedicated to proving correctnessproperties of protocols such as strong secrecy using contextual equivalences on process calculi,like the spi calculus [AG97]. In particular framed bisimilarity has been introduced by M. Abadiand A. Gordon [AG98] for this purpose. However it was not well suited for automation, as thede�nition of framed bisimilarity uses several levels of quanti�cation over in�nite domains (e.g. setof contexts). In [EHHN99] the authors introduce fenced bisimilarity as an attempt to eliminateone of the quanti�ers. Another approach to circumvent the context quanti�cation problems ispresented in [BNP99] where labeled transition systems are constrained by the knowledge theenvironment has of nonces and keys. This approach allows for more direct proofs of equivalence.Similarly, in [BBN04], J. Borgström et al propose a sound but incomplete decision procedurebased on a symbolic bisimulation. In [DSV00] model-checking techniques for the veri�cation ofspi calculus testing equivalence are explored. The technique is limited to �nite processes butseems to perform well on some examples. The concept of logical relations for the polymorphiclambda calculus has also been employed to prove behavioural equivalences between programsthat rely on encryption in a compositional manner [SP03].We should mention here some related works based on the concept of non-interference [GM82].This notion formalises the absence of unauthorised information �ow in multilevel computer sys-tems. Non-interference has been widely investigated in the context of language-based security(e.g. [VIS96, ZM01]). It can be expressed with process equivalence techniques and has beenapplied also to security protocols in [FGM00, BCR03]. An advantage of this approach is thatvarious security properties, including secrecy, can be modeled by selecting proper equivalencerelations. However, as far as we know, decidability results for non-interference properties ofsecurity protocols have not been reported.Despite the e�orts towards automatically checking of equivalence-based properties for securityprotocols, the only tool capable of proving strong secrecy for un unbounded number of sessionsis the resolution-based algorithm of ProVerif [Bla04] that has been extended for this purpose.ProVerif has also been enhanced [BAF05] for handling equivalences of processes that di�er onlyin the choice of some terms in the context of the applied pi calculus [AF01]. However, in ProVeriftermination is not ensured in general.Finally, very few decidability results are available for strong secrecy. In [Hüt02], H. Hüttelproves decidability for a �nite spi calculus (i.e. no replication, thus a bounded number of sessions)for framed bisimilarity. Considering �nite processes too, this time in an extension of the applied picalculus, M. Baudet gives a procedure [Bau05, Bau07] for deciding equivalence-based properties(mainly strong secrecy and resistance to guessing attacks).Outline of the chapter In this chapter we investigate the situations where simple secrecyentails strong secrecy. We �rst show that in the passive case (�4.2), reachability-based secrecyactually implies equivalence-based secrecy provided that encryption is probabilistic and that thesecret is not used to encrypt messages. We next handle the case of active adversaries (�4.3),for which we provide su�cient (and rather tight) conditions on protocols for this implicationto hold. We establish our transfer result in the applied pi calculus framework (�4.1). Since we112

4.1. The modeldo not make any restriction on the use of the replication symbol, protocols with an unboundednumber of sessions (as well as bounded number of sessions) can be considered.4.1 The modelThe aim of this section is to brie�y introduce the applied pi calculus, and to show how protocolsand their secrecy properties can be express within it.4.1.1 The applied pi calculusThe applied pi calculus [AF01] is a process algebra introduced by M. Abadi and C. Fournet, well-suited for modeling cryptographic protocols, generalising the spi calculus [AG97]. We shortlydescribe its syntax and semantics. This part is mostly borrowed from [AF01].We suppose for the moment an arbitrary signature Σ and an arbitrary equational theory Eover Σ. In contrast with the other chapters, we denote here terms by capital letters.4.1.1.1 SyntaxProcesses, also called plain processes, are de�ned by the grammar:
P,Q := processes

0 null process
P | Q parallel composition
!P replication
νn.P name restriction
if T = T ′ then P else Q conditional
u(z).P message input
u〈M〉.P message outputwhere n is a name, M , T , T ′ are terms, and u is a name or a variable. The null process 0 doesnothing. Parallel composition executes the two processes concurrently. Replication !P createsunboundedly many instances of P . Name restriction νn.P builds a new, private name n, bindsit in P and then executes P . The conditional if T = T ′ then P else Q behaves like P or Qdepending on the result of the test T = T ′. If Q is the null process then we use the notation

[T = T ′].P instead. Finally, the process u(z).P inputs a message on channel u and executes Pbinding the variable z to the received message, while the process u〈M〉.P outputs the message
M on channel u and then behaves like P . We may omit P if it is 0.Extended processes are de�ned by the grammar:

A,B := extended processes
P plain process
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitutionActive substitutions generalise the let binding, in the sense that νx.({M/x}|P) corresponds to the

let x = M in P standard construction. However, when unrestricted, {M/x} behaves like a perma-nent knowledge, permitting to refer globally toM by means of x. Substitutions {M1/x1 , . . . ,
Ml/xl

}113

Chapter 4. From simple secrecy to strong secrecywith l ≥ 0 are identi�ed with extended processes {M1/x1}| . . . |{
Ml/xl

}. In particular, the emptysubstitution is identi�ed with the null process.We denote by fv(A), bv(A), fn(A), and bn(A) the sets of free and bound variables and freeand bound names of A respectively. They are de�ned inductively as usual with fv({M/x}) =
fv(M)∪ {x} and fn({M/x}) = names(M) for active substitutions. An extended process is closedif it each free variable is de�ned by an active substitution. For example, { a/x} is ground, while
{ y/x} is not.Extended processes built up from the null process and active substitutions (using the givenconstructions, that is, parallel composition, restriction and active substitutions) are called frames.To every extended process A we associate the frame ϕ(A) obtained by replacing all embed-ded plain processes with 0. For example, if A = νy, k, r.{ enc(m,k,r)/x,

a/y} | c〈y〉 then ϕ(A) =
νy, k, r.{ enc(m,k,r)/x,

a/y}|0.4.1.1.2 Operational semanticsAn evaluation context is an extended process with a hole not under a replication, a conditional,an input or an output.Structural equivalence (≡) is the smallest equivalence relation on extended processes that isclosed by α-conversion of names and variables, by application of evaluation contexts and suchthat the standard structural rules for the null process, parallel composition and restriction (suchas associativity and commutativity of |, commutativity and binding behaviour of ν), togetherwith the following three rules hold.
νx.{M/x} ≡ 0 ALIAS
{M/x} |A ≡ {M/x} |A{

M/x} SUBST
{M/x} ≡ {N/x} if M =E N REWRITEIf ñ represents the (possibly empty) set {n1, . . . , nk}, we abbreviate by νñ the sequence

νn1.νn2 . . . νnk. Every closed extended process A can be brought to the form
νñ.{M1/x1}| . . . |{

Ml/xl
}|Pby using structural equivalence, where P is a plain closed process, l ≥ 0 and ñ ⊆ ∪i names(Mi).As a consequence, if A ≡ B then ϕ(A) ≡ ϕ(B). Observe also that modulo structural equivalence,frames always take the form νñ.σ where ñ is a �nite set of names and σ is an (active) substitution.Two operational semantics can be considered for this calculus, given by internal reductionand by labeled reduction respectively. These semantics lead to two equivalence relations betweenprocesses: observational equivalence (which is standard and not recalled here) and labeled bisim-ilarity. These two bisimilarity relations are in fact equal [AF01], assuming a type system whichin particular forbids sending encrypted channel names. We use here the latter since it allows aneater and incremental treatment of the problem we focus on.Internal reduction is the smallest relation on extended processes which is closed by structuralequivalence and application of evaluation contexts, and such that:

c〈x〉.P | c(x).Q → P | Q COMM
if T = T ′ then P else Q → P THENfor any ground terms T and T ′ such that T =E T

′

if T = T ′ then P else Q → Q ELSEfor any ground terms T and T ′ such that T 6=E T
′114

4.1. The modelOn the other hand, labeled reduction is de�ned by the following rules:
c(x).P

c(M)
−−−→ P{M/x} (‡) IN c〈u〉.P

c〈u〉
−→ P OUT-ATOM

A
c〈u〉
−−→ A′

νu.A
νu.c〈u〉
−−−−→ A′

u 6= c OPEN-ATOM A
α

−→ A′

νu.A
α

−→ νu.A′

u does notoccur in α
SCOPE

A
α

−→ A′

A|B
α

−→ A′|B
(†) PAR A ≡ B B

α
−→ B′ B′ ≡ A′

A
α

−→ A′
STRUCTwhere c is a name and u is a metavariable that ranges over names and variables, and the condition(†) of the rule PAR is bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅, and the condition (‡) of the rule IN isthat M is public w.r.t. ∅. A term M is said public w.r.t. a set of names ñ if names(M) ∩ ñ = ∅and private function symbols do not occur in M (that is, M ∈ T (Fpub,X ,N \ ñ)).To de�ne labeled bisimilarity we also need an equivalence relation between frames. For aframe ϕ = νñ.σ, we denote dom(ϕ) = dom(σ) and ran(ϕ) = ran(σ).De�nition 4.1 We say that a frame ϕ passes the test (U, V) where U, V are two terms, denotedby (U = V)ϕ, if ϕ = νñ.σ, Uσ =E V σ, and (names(U) ∪ names(V)) ∩ ñ = ∅ for some set ofnames ñ and substitution σ.Two frames ϕ = νñ.σ and ϕ′ = νm̃.σ′ are statically equivalent, written ϕ ≈s ϕ
′, if they passthe same public tests, that is dom(ϕ) = dom(ϕ′) and for all terms U, V public w.r.t. ñ ∪ m̃ suchthat (var(U) ∪ var(V)) ⊆ dom(ϕ), we have (U = V)ϕ if and only if (U = V)ϕ′.De�nition 4.2 Labeled bisimilarity (≈l) is the largest symmetric relation R on closed extendedprocesses such that ARB implies:1. ϕ(A) ≈s ϕ(B);2. if A→ A′ then B →∗ B′ and A′ RB′, for some B′;3. if A α

→ A′ and fv(α) ⊆ dom(ϕ(A)) and bn(α)∩ fn(B) = ∅ then B →∗ α
→→∗ B′ and A′ RB′,for some B′.4.1.2 Modeling protocols within the applied pi calculusWe work in this chapter with a particular equational theory E, its equations being listed in Fig-ure 4.1. The only functions symbols are those appearing in these equations and k(·, ·). However,the de�nitions of this section (e.g. those of security properties) are independent of the equationaltheory in use.

π1(〈z1, z2〉)
.
= z1

π2(〈z1, z2〉)
.
= z2

dec(enc(z1, z2, z3), z2)
.
= z1

deca(enca(z1, pub(z2), z3), priv(z2))
.
= z1

check(z1, sign(z1, priv(z2)), pub(z2))
.
= ok

retrieve(sign(z1, z2))
.
= z1Figure 4.1: The equational theory E. 115

Chapter 4. From simple secrecy to strong secrecySince protocols are in fact collections of programs executed concurrently, process calculi aregood models for protocols as long as they can also handle the cryptographic aspect. The appliedpi calculus does this by representing the properties of cryptographic primitives by equations, likethe ones in Figure 4.1. Remark that the model of Chapter 1 can also be viewed as a processcalculus. However, the applied pi calculus is more expressive since for instance it allows forbranching inside a process.For completeness, we brie�y describe next how a process modeling a protocol can be obtainedfrom the model of Chapter 1. Thus, we consider in this chapter roles with equality. Each roleis modeled by a process in which the sequence of instructions is represented by a sequence ofinputs and outputs, and fresh items are represented by new names under restriction. Theseprocesses are �rst replicated (in order to represent an unbounded number of sessions) and thenput in parallel. Since we consider that it is the intruder who starts any role session, we assumethat each role process �rst receives the identities with which it is supposed to communicate, theparameters of roles being thus instantiated. Agent corruption is implicit, in the sense that it isimplemented by sending to the environment the private data of corrupted agents.We exemplify the above discussion by providing a process modeling the Yahalom protocol,which will constitute our running example. We �rst describe the protocol:
A⇒ B : A,Na

B ⇒ S : B, {{A,Na, Nb}}Kbs

S ⇒ A : {{B,Kab, Na, Nb}}Kas , {{A,Kab}}Kbs

A⇒ B : {{A,Kab}}KbsIn this protocol, two participants A and B wish to establish a shared key Kab. The key is createdby a trusted server S which shares the secret keys Kas and Kbs with A and B respectively. Theprotocol is modeled by the following process:
PY = c〈k(i, s)〉 | (!PA) | (!PB) | (!νk.PS(k)) | νkab.PS(kab)with

PA = c(za).c(zb).νna.c〈za, na〉.c(ya).[zb = Ub].[na = Una].c〈π2(ya)〉
PB = c(za).c(zb).c(yb).νnb, rb.c〈zb, enc(〈π1(yb), 〈π2(yb), nb〉〉, k(zb, s), rb)〉.

c(y′b).[za = π1(dec(y′b, k(zb, s)))]
PS(x) = c(za).c(zb).c(ys).[za = Va].[zb = π1(ys)].νrs, r

′
s.

c〈〈enc(〈π1(ys), 〈x, Vn〉〉, k(za, s), rs), enc(〈Va, x〉, k(zb, s), r
′
s)〉〉where Ub = π1(dec(π1(ya), k(za, s))) Una = π1(π2(π2(dec(π1(ya), k(za, s)))))

Va = π1(dec(π2(ys), k(zb, s))) Vn = π2(dec(π2(ys), k(zb, s))).In order to be able to model the secrecy properties we describe next, we have emphasised aparticular key kab which we will require to remain secret. We have also supposed the existenceof a corrupted agent i.A sample execution of the role of A is given next, where the intruder chooses the concreteagent a and b as participants, obtains the �rst message sent by A and then sends back a newmessages formed by concatenating the identity b with the recently obtained message, and theexecution stops since the test does not pass.
PA

c(a)
−−→

c(b)
−−→ νna.

(
νz.{ 〈a,na〉/z} | c〈z〉.c(ya).[b = Ub].[na = Una].c〈π2(ya)〉

)
νz.c〈z〉
−−−−→ νna.

(
{ 〈za,na〉/z} | c(ya).[b = Ub].[na = Una].c〈π2(ya)〉

)
c(〈b,z〉)
−−−−→ νna.

(
{ 〈za,na〉/z} | [b = π1(dec(b, k(za, s)))].[na = U ′

na
].c〈za, na〉

)
→ 0116

4.1. The modelIn what follows, for simplicity and concision, we only consider two honest agents. However, wecould extend the processes to the case where the roles of A and B are played by arbitrary agentswho may also interact with corrupted identities, and establish a similar result. For example, theprocess modeling the Yahalom protocol is now:
P ′

Y = νkas, kbs. (!P
′
A) | (!P ′

B) | (!νk.P ′
S(k)) | νkab.P

′
S(kab)with

P ′
A = νna.c〈a, na〉.c(ya).[b = U ′

b].[na = U ′
na

].c〈π2(ya)〉and similarly for for the other roles (we have mainly eliminated the input of arbitrary parametersand we have replaced za, zb by a, b, and the private terms k(za, s) and k(zb, s) by fresh names kasand kbs respectively).Remark The applied pi calculus relies on a sort system for terms (which is compatible withour sort system of Chapter 1). This sort system is extended to processes and it requires inparticular that in input and output constructions u(x) and u〈N〉, u has sort Channel(τ) while
x and N have sort τ . Thus, names and variables used for specifying the protocol (having basicsorts) cannot be used as channels.We give next some notations and lemmas useful in the sequel.Let Mo(P) be the set of outputs of P , that is the set of terms m such that c〈m〉 is a messageoutput construct for some channel name c in P , and let Mt(P) be the set of operands of tests of
P , where a test is a pair T = T ′ occurring in a conditional and its operands are T and T ′. Let
M(P) = Mo(P) ∪Mt(P) be the set of messages of P .For the Yahalom protocol the set of outputs and operands of tests are respectively:

Mo(P
′
Y) = {〈a, na〉, π2(ya), 〈b, enc(〈π1(yb), 〈π2(yb), nb〉〉, kbs, rb)〉,

〈enc(〈π1(ys), 〈x, V
′
n〉〉, kas, rs), enc(〈V ′

a, x〉, kbs, r
′
s)〉} and

Mt(P
′
Y) = {b, U ′

b, na, U
′
na
, a, π1(dec(y′b, kbs)), V

′
a, π1(ys)}.where U ′

b = π1(dec(π1(ya), kas)) U ′
na

= π1(π2(π2(dec(π1(ya), kas))))
V ′

a = π1(dec(π2(ys), kbs)) V ′
n = π2(dec(π2(ys), kbs)).We write A⇒ B if A→ B or A α

→ B for some α.De�nition 4.3 (Valid frame) A frame ϕ is valid w.r.t. a process P if there is A such that
P ⇒∗ A and ϕ ≡ ϕ(A).The following lemma intuitively states that any message contained in a valid frame is anoutput instantiated by messages deduced from previous sent messages.Lemma 4.4 Let P be a closed plain process, and A be a closed extended process such that
P ⇒∗ A. There are l ≥ 0, ñ ⊆ bn(P), and

• ground substitutions σ1, . . . , σl with σi = σi−1] {Miθiσi−1/yi
}, where σ0 is the empty sub-stitution, and for all 1 ≤ i ≤ l, Mi is an output in P , and θi is a substitution publicw.r.t. ñ,

• an extended process B = νñ.σl|PB, such that A ≡ B, where PB is some plain process,
• a substitution θ public w.r.t. ñ, 117

Chapter 4. From simple secrecy to strong secrecysuch that for every operand of a test or an output M of PB there is a message M0 in P (anoperand of a test or an output respectively), with M = M0θσl.Proof We provide an inductive and constructive proof. We reason by induction on thenumber of reductions in P ⇒∗ A. Intuitively, B is obtained by applying the SUBST rule (fromleft to right) as much as possible until there are no variables left in the plain process.The base case is evident.Assume that P ⇒l Ak and that there are l, Bl and θ as in the statement of the lemma.Suppose that Al ⇒ Al+1 and consider the reduction rule that was used:
• If it is an internal reduction then, since static equivalence is closed by structural equivalenceand by internal reduction (see Lemma 1 in [AF01]), it is su�cient to consider as searchedvalues the same as for Al.
• If it is a labeled reduction then we prove the following property: α 6= c〈x〉 (for any a and
x) and there is an extended process Bl+1 = ϕ(Bl+1)|Pl+1 such that Bl+1 ≡ Al+1 and� if α = νx.c〈x〉 then Pl+1 = Pl and ϕ(Bl+1) = νñ.σk+1, where σk+1 = σk]{Ml/x} and

Ml is an output in Pl.� if α = c(M) then ϕ(Bl+1) = ϕ(Bl) and for every message (an operand of a testor an output) Ml+1 in Pl+1 there is a message (an operand of a test or an output,respectively) Ml in Pl, such that Ml+1 = Mlθ
′σk, for some substitution θ′ publicw.r.t. νñ.� if α = c〈n〉 or α = νn.c〈n〉 then Pl+1 = Pl, and ϕ(Bl+1) = ϕ(Bl) or ϕ(Bl+1) =

ν{ñ}\{n}.σk , respectively.It is easy to see that this property is su�cient to prove the inductive step.The property can be veri�ed, by showing, using induction on the shape of the derivationtree, that for any extended processes A′, A′′, B′ such that A′ α
→ A′′, A′ ≡ B′, B′ = νñ.σ|Qthere is B′′ such that A′′ ≡ B′′ and B′ = νñ′.σ′|Q′ where� if α = c(M) then ñ′ = ñ, σ′ = σ and N ′′ = N ′{M/x} for each term N ′′ of B′′ where

N ′ is the corresponding term in B′ and c(x) is an input in B′;� if α = νx.c〈x〉 then Q′ = Q, ñ′ = ñ, and σ′ = σ] {M/x} where c〈M〉 is an inputin B′;� if α = c〈x〉, α = c〈n〉 or α = νn.c〈n〉 then ñ′ = ñ for the �rst two cases, and
{ñ′} = {ñ}\{n} for the third one, σ′ = σ and Q′ = Q.Note that B is unique up to the structural rules di�erent from ALIAS, SUBST and REWRITE.We say that ϕ(B) is the standard frame w.r.t. A.We say that a frame ϕ = νñ.σ is ground is σ is ground. Remark that if a frame ϕ is validw.r.t. some closed process P then there is a ground frame ϕ′ ≡ ϕ.4.1.3 Secrecy properties4.1.3.1 Passive caseA passive adversary only eavesdrops the communication, and thus he knows the messages senton the network and also in which order they were sent. As we have already seen, this information118

4.1. The modelis represented in the applied pi calculus by frames. Lemma 4.4 assures that these frames canalways be written as νñ.σ with σ a ground substitution. Thus, in the passive case, we alwayssuppose that frames are ground.The names in ñ are said to be restricted in ϕ. Intuitively, these names are a priori unknownto the intruder. The names outside ñ are said to be free in ϕ. The set of free names occurringin ϕ is denoted fn(ϕ). A term M is said public w.r.t. a frame νñ.σ (or w.r.t. a set of names ñ) if
names(M)∩ ñ = ∅ and private function symbols do not occur inM (that is,M ∈ T (Fpub,X ,N \
ñ)). The frame or the set of names might be omitted when it is clear from the context, andsimply say that a term is public.In the sequel, we assume that the secret is a term (usually a name denoted by s) of somebasic sort, thus not a channel name.Simple secrecy As we have seen, the intruder knowledge is represented by ground frames.Also, in this chapter, we suppose that all names which are not explicitly restricted (with regardto some process or frame) are available to the intruder. Thus, we de�ne the deducibility relationbetween ground frames and terms as follows:

ϕ `E M
def
⇐⇒ ran(σ) ∪ (N \ ñ) `I(E) Mwith `I (E) given by De�nition 1.9 (page 39). We drop the subscript E when it is clear from thecontext.A message is usually said secret if it is not in the intruder's knowledge, that is if it notdeducible from the messages sent on the network.De�nition 4.5 (Simple secrecy) We say that a term M is a simple secret in ϕ if ϕ 6`M .We will often use another characterisation of deducible terms.Proposition 4.6 Let ϕ = νñ.σ be a frame and M be a term. ϕ ` M if and only if there existsa public term T w.r.t. ϕ such that Tσ =E M .This is easily proved by induction on the length of the deducibility proof. It is in fact equivalentwith Lemma 1.10.Exemple 4.7 The terms k and 〈k, k′〉 are deducible from the frame νk, k′, r.{ enc(k,k′,r)/x,

k′
/y}.The �recipes� guaranteed by the previous proposition are dec(x, y) and 〈dec(x, y), y〉 respectively.Strong secrecy Deducibility does not always su�ce to express all the abilities of an intruder.Some abilities are better captured by static equivalence.Exemple 4.8 Let σ1 = { enc(n1,k,r1)/x}, σ2 = { enc(n2,k,r2)/x}, σ′ = { 〈n1,n2〉/y}, σ′′ = { k/z}, and

ñ = {k, n1, n2, r1}. Then the frames νñ. (σ1] σ
′) and νñ. (σ2] σ

′) are statically equivalent, andso are the frames νñ. (σ1] σ
′′) and νñ. (σ2] σ

′′). However, the frames ϕ1 = νñ. (σ1] σ
′] σ′′)and ϕ2 = νñ. (σ2] σ

′] σ′′) are not, since (dec(x, z) = π1(y))ϕ1 but (dec(x, z) 6= π1(y))ϕ2.Note that the set of deducible messages is the same for all pairs of frames. However, anattacker is able to detect that in the frames ϕ1 and ϕ2 the �rst message (i.e. xσ1 and xσ2respectively) corresponds to distinct nonces. In particular, the attacker is able to distinguish thetwo �worlds� represented by ϕ1 and ϕ2. 119

Chapter 4. From simple secrecy to strong secrecyLet ϕ = νñ.σ be a frame and s ∈ ñ a restricted name in ϕ. Let M be a term such that
names(M) ∩ ñ = ∅. We denote by ϕ[M/s] the frame νñ.σ[M/s] obtained by instantiating s with
M in each term of the substitution σ. For simplicity we may omit s and write ϕ[M] instead of
ϕ[M/s].De�nition 4.9 (Strong secrecy) We say that s is a strong secret in ϕ if for any closed terms
M,M ′ public w.r.t. ϕ, we have ϕ[M/s] ≈s ϕ[M ′

/s].In other words, s is a strong secret if the intruder cannot distinguish the frames obtained byinstantiating the secret s by two terms of its choice.4.1.3.2 Active caseGiven an extended process A we denote by A[M/s] the extended process obtained from A byreplacing each occurrence of the name s (except the name restrictions νs) with M .De�nition 4.10 (Simple and strong secrecy) Let P be a closed plain process and s a boundname of P .We say that s is a simple secret in P if for every ground valid frame ϕ w.r.t. P , ϕ 6` s.We say that s is a strong secret if for any closed terms M,M ′ public w.r.t. bn(P), P [M/s] ≈l

P [M ′
/s].Examples will be provided in Section 4.3.4.2 Passive case4.2.1 Simple secrecy implies strong secrecySimple secrecy is usually weaker than strong secrecy! We �rst exhibit some examples of framesthat preserves simple secrecy but not strong secrecy. They all rely on di�erent properties.Probabilistic encryption. The frame ψ1 = νs, k, r.{ enc(s,k,r)/x,

enc(n,k,r)/y} does not pre-serve the strong secrecy of s. Indeed, ψ1[n] 6≈s ψ1[n
′] since (x = y)ψ1[n] but (x 6= y)ψ1[n

′]. Thiswould not happen if each encryption used a distinct randomness, that is if the encryption wasprobabilistic.Key position. The frame ψ2 = νs,n.{ enc(〈n,n′〉,s,r)/x} does not preserve the strong secrecyof s. Indeed, ψ2[k] 6≈s ψ2[k
′] since (π2(dec(x, k)) = n′)ψ2[k] but (π2(dec(x, k)) 6= n′)ψ2[k

′]. If soccurs in key position in some ciphertext, the intruder may try to decrypt the ciphertext since
s is replaced by public terms and check for some redundancy. It may occur that the encryptedmessage does not contain any veri�able part. In that case, the frame may preserve strong secrecy.It is for example the case for the frame νn.{ enc(n,s,r)/x}. Such cases are however quite rare inpractice.No destructors. The frame ψ3 = νs.{ π1(s)/x} does not preserve the strong secrecy of ssimply because [x = k] is true for ψ3[〈k, k

′〉] while not for ψ3[k].Retrieve rule. The retrieve(sign(z1, z2)) = z1 equation may seem arbitrary since not allsignature schemes enable to get the signed message out of a signature. It is actually crucial forour result. For example, the frame ψ4 = νs.{ sign(s,priv(a))/x,
pub(a)/y} does not preserve the strongsecrecy of s because [check(n, x, y) = ok] passes for ψ4[n] but not for ψ4[n

′]. However, becauseof the retrieve equation, the frame neither preserves the simple secrecy of s.120

4.2. Passive caseIn the �rst three cases, the frames preserve the simple secrecy of s, that is ψi 6` s, for
1 ≤ i ≤ 3. In the fourth case, we would also have ψ4 6` s without the retrieve equation.We de�ne agent encryptions as encryptions which use �true� randomness, that is fresh names.Note that in the passive case all encryptions are produced by agents and not by the intruder.Encryption (as a primitive) is probabilistic if each (application of) encryption uses a distinctrandomness. Next, we de�ne these notions formally.We say that an occurrence qenc of an encryption in a term U is an agent encryption w.r.t. aset of names ñ if U |qenc·3 ∈ ñ. We say that an occurrence qenc of an encryption in a term U is aprobabilistic encryption w.r.t. a set of terms S if no distinct term shares the same randomness,that is, for any term V ∈ S and position p such that V |p = U |qenc·3 we have that p = q · 3 forsome q and V |q = U |qenc.The previous examples lead us to the following de�nition.De�nition 4.11 (Well-formed frame) A frame ϕ = νñ.σ is well-formed w.r.t. some name sif 1. any encryption in σ is an agent encryption w.r.t. ñ\{s} and a probabilistic encryptionw.r.t. the set of terms of σ;2. s is not part of a key or a randomness, i.e. for all enc(M,K,R), enca(M ′,K ′, R′), sign(U, V),

pub(W), priv(W ′) subterms of ϕ, s /∈ names(K,K ′, V,W,W ′, R,R′);3. ϕ does not contain destructor symbols.For well-formed frames, simple secrecy is actually equivalent to strong secrecy.Theorem 4.12 Let ϕ be a well-formed frame w.r.t. s, where s is a restricted name in ϕ.
ϕ 0 s if and only if ϕ[M/s] ≈s ϕ[M ′

/s]for all M,M ′ closed public terms w.r.t. ϕ.Proof Let ϕ = νñ.σ be a well-formed frame w.r.t. s. If ϕ ` s, this trivially implies that
s is not a strong secret. Indeed, there exists a public term T w.r.t. ϕ such that Tσ =E s,by Proposition 4.6. Let n1, n2 be fresh names such that n1, n2 /∈ ñ and n1, n2 /∈ fn(ϕ). Since
Tσ[n1/s] =E n1 the frames ϕ[n1/s] and ϕ[n2/s] are distinguishable by the test [T = n1].We assume now that ϕ 0 s. We �rst show that any syntactic equality satis�ed by the frame
ϕ[M/s] is already satis�ed by ϕ.Lemma 4.13 Let ϕ = νñ.σ be a well-formed frame w.r.t. s ∈ ñ such that ϕ 0 s. Let U , V andMbe public terms w.r.t. ϕ, with var(U), var(V) ⊆ dom(σ) andM ground. Then Uσ[M/s] = V σ[M/s]implies Uσ = V σ.This lemma is proved in Section 4.2.2.The key lemma is that any reduction that applies to a deducible term U where s is replacedby some M , directly applies to U .Lemma 4.14 Let ϕ = νñ.σ be a well-formed frame w.r.t. s ∈ ñ such that ϕ 0 s. Let U be a termwith var(U) ⊆ dom(ϕ) and M be a closed term in normal form such that U and M are publicw.r.t. ϕ. If Uσ[M/s] → V , for some term V , then there exists a frame ϕ′ = νñ.σ′ well-formedw.r.t. s 121

Chapter 4. From simple secrecy to strong secrecy
• extending ϕ, that is xσ′ = xσ for all x ∈ dom(σ),
• preserving deducible terms: ϕ `W if and only if ϕ′ `W ,
• and such that V = V ′σ′[M/s] and Uσ → V ′σ′ for some V ′ public w.r.t. ϕ′.This lemma (proved in Section 4.2.2) allows us to conclude the proof of Theorem 4.12. Fix arbi-trarily two public closed termsM,M ′. We can assume w.l.o.g. thatM andM ′ are in normal form.Let U 6= V be two public terms such that var(U), var(V) ⊆ dom(ϕ) and Uσ[M/s] =E V σ[M/s].Then there are U1, . . . , Uk and V1, . . . , Vl such that Uσ[M/s]→U1 → . . .→Uk, V σ[M/s]→V1 →

. . .→Vl, Uk = Uσ[M/s]↓, Vl = V σ[M/s]↓ and Uk = Vl.Applying repeatedly Lemma 4.14 we obtain that there exist public terms U ′
1, . . . , U

′
k and

V ′
1 , . . . , V

′
l and well-formed frames ϕi = νñ.σi, for i ∈ {1, . . . , k} and ψj = νñ.θj, for j ∈ {1, . . . , l}(as in the lemma) such that Ui = U ′

iσi[
M/s], Uσ → U ′

1σ1, U ′
iσi → U ′

i+1σi+1, Vj = V ′
j θj[

M/s],
V σ → V ′

1θ1 and V ′
j θj → V ′

j+1θj+1.The substitution σk extends σ, which means that σk = σ] σ′k with dom(σ) ∩ dom(σ′k) = ∅.Similarly, θl = σ] θ′l with dom(σ) ∩ dom(θ′l) = ∅. By possibly renaming the variables of θ′land of the V ′
j , we can assume that dom(σ′k) ∩ dom(θ′l) = ∅. We consider ϕ′ = νñ.σ′ where

σ′ = σ] σ′k] θ′l. Since only subterms of ϕ have been added to ϕ′, it is easy to verify that ϕ′ isstill a well-formed frame and for every term W we have that ϕ ` W if and only if ϕ′ ` W . Inparticular ϕ′ 0 s.By construction we have that U ′
kσk[

M/s] = V ′
l θl[

M/s]. Then, by Lemma 4.13, we deduce that
U ′

kσk = V ′
l θl that is Uσ =E V σ. By stability of substitution of names, we have Uσ[M ′

/s] =E

V σ[M ′
/s]. We deduce that ϕ[M/s] ≈s ϕ[M ′

/s].4.2.2 Generalisation of well-formed framesIn the active case, we need a more general de�nition for well-formed frames and for the cor-responding lemmas. In particular, we need to consider frames with destructor symbols. Thuswe provide here the de�nition of extended well-formed frames, show that well-formed frames arespecial cases of extended well-formed (when the frames preserve simple secrecy), and then proveanalogous lemmas for extended well-formed frames.In the sequel, especially in the proofs, we often assume a tree visualisation of terms withthe root (i.e. the head symbol) at the top, and we thus use notions as �above�, �below�, �low-est�, etc. when talking about occurrences in terms. For example, an occurrence p is above anoccurrence q if p ≤ q. Moreover, we may say that a term V is �in� a term U if V is a subtermof U .We say that there is an encryption plaintext-above a subterm T of a term U at position qTif there is a position q < qT such that U |q is a ciphertext (that is, head(U |q) ∈ {enc, enca}), and
T occurs in the plaintext subterm of the encrypted term (that is, q · 1 ≤ qT).De�nition 4.15 (Extended well-formed frame) We say that a frame ϕ = νñ.σ is an ex-tended well-formed w.r.t. s if1. all the terms of σ are in normal form,2. any agent encryption w.r.t. ñ in σ is a probabilistic encryption w.r.t. ran(σ),3. for every occurrence qs of s in yσ with y ∈ dom(σ), there exists an agent encryption (say

qenc) w.r.t. ñ\{s} plaintext-above s,122

4.2. Passive case4. the lowest agent encryption q0 plaintext-above s satis�es head(yσ|q) ∈ {〈〉, sign}, for allpositions q with q0 < q < qs.This de�nition ensures in particular that there is no destructor directly above s.Exemple 4.16 The frame ϕ = νs, k, n.{ π1(enc(a,enc(〈b,s〉,k,n)),n′′)/x,
enc(a,k′,n′)/y,

enc(b,k′,n′)/z} is ex-tended well-formed, while the frames ϕ2 = νn.{ enc(a,k,n)/y,
enc(b,k,n)/z}, ϕ3 = νn.{ enc(a,s,n)/x},and ϕ4 = νs, k, n.{ enc(π1(s),k,n)/x} are not, each frame ϕi contradicting condition i. of the De�-nition 4.15 (i.e. ϕ1 contradicts condition 1. and so on).We �rst start by a preliminary lemma which states that in a well-formed frame w.r.t. s, eitherevery occurrence of s is under some encryption or s is deducible.Lemma 4.17 Let ϕ = νñ.σ be a well-formed frame w.r.t. s ∈ ñ such that ϕ 0 s. For any

y ∈ dom(σ) and for any occurrence qs of s in yσ there is an encryption plaintext-above qs in yσ.Proof Assume by contradiction that there is an occurrence qs of s in yσ such that there isno encryption plaintext-above s. Then, from conditions 2 and 3 of the de�nition of well-formedframes, we have that there are only pairs and signatures as function symbols above s. It followsthat s is deducible (by applying the projections and the retrieve equations), which contradictsthe hypothesis.Thus, there exists a position q < qs such that yσ|q is an encryption. By condition 2 of thede�nition of well-formed frames, s must occur in the plaintext part of the encryption, that is
q · 1 ≤ qs.Lemma 4.18 Let ϕ = νñ.σ be a frame and s a restricted name in ϕ such that ϕ 0 s. If ϕ is awell-formed frame w.r.t. s then it is an extended well-formed frame w.r.t. s.Proof Since there are no destructor symbols in ϕ all terms are in normal form. Since anyencryption in σ is probabilistic it will be a fortiori the case for agent encryptions.Consider an occurrence qs of s in yσ with y ∈ dom(σ). From Lemma 4.17 we have that thereis at least an encryption plaintext-above s in yσ. Consider the lowest one. Then condition 1 ofthe de�nition of well-formed frames says that this encryption is an agent encryption. Conditions 2and 3 impose that the only function symbols in between may be 〈〉 and sign.The following lemma states that if in two distinct terms the secret is protected by agentprobabilistic encryptions then by replacing the secret with any term we cannot obtain two syn-tactically equal terms.Lemma 4.19 Let ñ be a set of names and s be a name, s ∈ ñ. Let M be a ground public termw.r.t. ñ and U, V be two terms such that for any occurrence qs of s (in U or V) there is anencryption qenc (in U or V respectively) with qenc · 1 ≤ qs such that qenc is an agent encryptionw.r.t. ñ\{s} and qenc is a probabilistic encryption w.r.t. {U, V }. Then U [M/s] = V [M/s] implies
U = V .Proof Suppose that U [M/s] = V [M/s] and U 6= V . Then there is an occurrence qs of s,say in U , such that V |qs 6= s. Consider an agent probabilistic encryption qenc with qenc · 1 ≤ qsas in the lemma. We have U |qenc·3 ∈ ñ\{s}. It follows that V [M/s]|qenc·3 ∈ ñ\{s}. Since M ispublic this implies that qenc · 3 is a position in V . And since qenc is a probabilistic encryptionand U |qenc·3 = V |qenc·3 it follows that U |qenc = V |qenc. Hence U |qs = V |qs which represents acontradiction with V |qs 6= s. 123

Chapter 4. From simple secrecy to strong secrecyCorollary 4.20 Let ϕ = νñ.σ be an extended well-formed frame w.r.t. s ∈ ñ such that ϕ 0 s.Let U , V and M be public terms w.r.t. ϕ, with var(U), var(V) ⊆ dom(σ) and M ground. Let
W,W ′ be subterms of terms in ran(σ) such that for every occurrence qs of s in W (or W ′) thereis an occurrence of an encryption qenc in W (or W ′ respectively) with qenc < qs. Then1. Uσ[M/s] = V σ[M/s] implies Uσ = V σ;2. Uσ[M/s] = W [M/s] implies Uσ = W ;3. W [M/s] = W ′[M/s] implies W = W ′.Proof We prove below that in Uσ and inW for each occurrence qs of s there is an encryption
q′enc (in yσ for some y ∈ var(U), and in W respectively) with q′enc · 1 ≤ qs such that q′enc is anagent encryption w.r.t. ñ\{s}. Then, by analogy, the same thing holds for V σ and W ′. Sinceby condition (2) of extended well-formed frames an agent encryption w.r.t. ñ is a probabilisticencryption, it follows that each pair (Uσ, V σ), (Uσ,W) and (W,W ′) satis�es the conditions ofLemma 4.19. Then the result follows directly.Consider an occurrence qs of s in Uσ. Since U is public, there is a variable y ∈ var(U) ⊆
dom(σ) and an occurrence py of it in U such that py ≤ qs. From the de�nition of extendedwell-formed frames we know that there is an encryption q′enc in yσ with q′enc · 1 ≤ qs which is anagent encryption w.r.t. ñ\{s}. Hence q′enc satis�es the conditions of Lemma 4.19.In W for each occurrence qs of s there is an occurrence qenc of an encryption above qs. Thenwe can consider the lowest occurrence q′enc of an encryption above qs in W . By the de�nitionof extended well-formed frames, the lowest encryption above qs is an agent encryption and isplain-text above qs. Hence q′enc satis�es the conditions of Lemma 4.19.Lemma 4.13 can now be easily deduced since it is the analogous statement of Point 1 ofCorollary 4.20 for well-formed frames (which are extended well-formed frames as we have seenin Lemma 4.18).The following lemma is the generalisation of Lemma 4.14 for extended well-formed frames.Lemma 4.21 Let ϕ = νñ.σ be an extended well-formed frame w.r.t. s ∈ ñ such that ϕ 0 s. Let
U be a term with var(U) ⊆ dom(ϕ) and M be a closed term in normal form such that U and Mare public w.r.t. ϕ. If Uσ[M/s] → V , for some term V , then there exists an extended well-formedframe ϕ′ = νñ.σ′ w.r.t. s

• extending ϕ, that is xσ′ = xσ for all x ∈ dom(σ),
• preserving deducible terms: ϕ `W if and only if ϕ′ `W ,
• and such that V = V ′σ′[M/s] and Uσ → V ′σ′ for some V ′ public w.r.t. ϕ′.Proof Let U, V,M be terms with U and M public w.r.t. ϕ, M being closed and in normalform such that Uσ[M/s] → V , as in the statement of the lemma. Let (L → R) ∈ R(E) be therule that was applied in the above reduction and let p be the position at which it was applied,i.e. Uσ[M/s]|p = Lθ. Since M is in normal form, p ∈ pos(Uσ).Assume that there is a substitution θ0 such that Uσ|p = Lθ0. This will be proved in the Factbelow. It follows that Uσ is reducible. If p 6∈ posnv(U) then there is a term of ran(σ) which isreducible. This contradicts the fact that ϕ is an extended-well formed frame (since all terms insuch a frame should be in normal form). Hence we have that p ∈ posnv(U). Let T = U |p. Wehave Tσ[M/s] = Lθ and Tσ = Lθ0.124

4.2. Passive caseFor our equational theory E, R is either a constant (i.e. ok) or a variable. If R is a constantthen we take V ′ = U [R]p and σ′ = σ. It is easy to verify that the conditions of the lemma aresatis�ed in this case.Suppose now that R is a variable z0. Consider the14 position q of z0 in L. This position q isalso in Lθ0, that is in Tσ. Hence one of the two following possibilities may occur:1. If q ∈ posnv(T), that is there is no y ∈ dom(σ) above z0, then we consider V ′ = U [T |q]pand σ′ = σ. In this case also, it is easy to verify that the conditions of the lemma aresatis�ed.2. If q /∈ posnv(T), that is there is some y ∈ dom(σ) above z0, then we consider V ′ = U [y′]pand σ′ = σ]{Rθ0/y
′}, where y′ is a new variable (i.e. y′ /∈ dom(σ)). The term V ′ is clearlypublic w.r.t. ϕ′. Since Tσ =E Rθ0, ϕ ` Rθ0. This shows that ϕ `W if and only if ϕ′ `Wfor any term W by using the cut-elimination lemma (see Lemma 2.14 at page 63)We have V ′σ′ = (U [y′]p)σ

′ = Uσ′[y′σ′]p = Uσ[Rθ0]p. Hence Uσ → V ′σ′.From Tσ = Lθ0 and Tσ[M/s] = Lθ we deduce that zθ0[M/s] = zθ for all z ∈ var(L), hence
Rθ0[

M/s] = Rθ. Thus V ′σ′[M/s] = (Uσ[M/s])[Rθ]p = V .Since there is some y ∈ dom(ϕ) above z0, Rθ0 = z0θ is a subterm of a term of σ. Then
Rθ0 is in normal form since all the terms in ran(σ) are in normal form. Also all agentencryptions in ϕ′ are probabilistic. Suppose that there is an occurrence of s in Rθ0 suchthat there is no encryption plaintext-above it (in Rθ0). In this case we have that all thefunction symbols above this occurrence in Rθ0 are 〈〉 or sign. Thus s is deducible from ϕ′and hence from ϕ, which represents a contradiction with the hypothesis. Hence there is anencryption plaintext-above any occurrence of s in Rθ0. All this proves that ϕ′ is also anextended well-formed frame.Fact: Let us now prove that there exists θ0 such that Uσ|p = Lθ0. Assume by contradictionthat it is not the case. Then at least one of the following cases occurs:1. there is a position in L which is not a position in Uσ|p;2. there is a variable z in L having at least two occurrences, say at positions p1, p2, for which
(Uσ|p)|p1 6= (Uσ|p)|p2 .Let us examine in detail the two cases:1. Consider a minimal position q′ (w.r.t. the pre�x ordering) in L which is not a position in
Uσ|p. Then q′ = q · i for some positive integer i, with q a position of Uσ|p and there is an
s at position q in Uσ|p (since such minimal positions in L must be positions in Uσ[M/s]|p,but not in Uσ|p). Also q 6= ε (i.e. it does not correspond to the head of L) since otherwise
M would not be in normal form (because Uσ|p = s and Uσ[M/s]|p = M = Lθ).By examining all rules in R(E), we observe that at least one of the conditions in thede�nition of extended well-formed frames is not satis�ed. For example, if L → R is therule π1(〈z1, z2〉) → z1 then q = 1. Then either π1(y) is the subterm at position p in
U and yσ = s (impossible case since s would be deducible), or π1(s) is the subterm atposition p in Uσ and this subterm is also a subterm of a term of σ (again an impossiblecase because there are no destructors right above s in term of an extended well-formed14For our equational theory there is exactly one occurrence of z0 in L. 125

Chapter 4. From simple secrecy to strong secrecyframe). If L→ R is the rule deca(enca(z1, pub(z2), z3), priv(z2)) → z1 then q might be 1 or
1 · 2. The case q = 1 is similar with the previous one. If q = 1 · 2 then we have a term in
σ having enca(W, s) as subterm for some W (otherwise s would be deducible). But thisagain contradicts the de�nition of extended well-formed frames. The analysis for the otherrules is similar.2. Let T1 = (Uσ|p)|p1 and T2 = (Uσ|p)|p2 . We have T1 6= T2, but T1[

M/s] = T2[
M/s]. Consideran arbitrary position qs of s in T1. Since U is public, there is a variable y ∈ var(U) atposition say py such that py ≤ p·p1 ·qs. Consider the lowest agent encryption qenc plaintext-above qs in Uσ. It occurs in yσ according to the de�nition of extended well-formed frames.Suppose that p · p1 > qenc. The function symbols between qenc and p · p1 must be 〈〉 or

sign. But this doesn't hold for none of rules in R(E). Hence there is an agent encryptionplaintext-above qs in T1. The same argument applies to T2. We can thus use Point 3 ofCorollary 4.20 to T1 and T2 and obtain a contradiction, that is T1 = T2.We have seen that the two cases lead to contradictions. So there is θ0 such that Uσ|p = Lθ0.4.3 Active case4.3.1 Our hypothesesIn what follows, we assume s to be the desired secret. As in the passive case, destructors abovethe secret must be forbidden. We also restrict ourself to processes with ground terms in keyposition. Indeed, consider the process
P1 = νs, k, r, r′.

(
c〈enc(s, k, r)〉 | c(z).c〈enc(a, dec(z, k), r′)〉

)
.The name s in P1 is a simple secret but not a strong secret. Indeed,

P1 ≡ νs, k, r, r′.
(
νx.

(
{ enc(s,k,r)/x} | c〈x〉 | c(z).c〈enc(a, dec(z, k), r′)〉

))

→ νs, k, r, r′.
(
{ enc(s,k,r)/x} | z〈enc(a, s, r′)〉

) (COMM rule)
≡ νs, k, r, r′.

(
νy.

(
{ enc(s,k,r)/x,

enc(a,s,r′)/y} | c〈y〉
))

νy.c〈y〉
−−−−→ P ′

1 = νs, k, r, r′.{ enc(s,k,r)/x,
enc(a,s,r′)/y}and P ′

1 does not preserve the strong secrecy of s, since the frame ϕ(P ′
1) does not preserve it.Indeed, using the same idea as for the frame ψ2 of Section 4.2.1, one distinguishing test wouldbe [dec(y, k′) = a] for some public name k′. This test would succeed when s is instantiated by

k′ but not if s is instantiated by some other value, say k′′.We denote by encg (respectively decg) a generic encryption (decryption), that is when usingit we refer to both symmetric and asymmetric encryption (decryption)15.Without loss of generality with respect to cryptographic protocols, we assume that termsoccurring in processes are in normal form and that no destructor appears above constructors.Indeed, terms like π1(encg(M,K,R)) are usually not used to specify protocols. We also assumethat tests do not contain constructors. Indeed a test [〈T1, T2〉 = T ′] can be rewritten as [T1 =
T ′

1].[T2 = T ′
2] if T ′ = 〈T ′

1, T
′
2〉, and [T1 = π1(T

′)].[T2 = π2(T
′)] if T ′ does not contain constructors,and will never hold otherwise. Similar rewriting applies for encryption, except for the test15For example, when encg is under universal quanti�cation one would read enc and encd, while under existentialquanti�cation one would read enc or encd for encg.126

4.3. Active case
[encg(T1, T2, T3) = T ′] if T ′ does not contain constructors. It can be rewritten in [decg(T

′, T2) =
T1] but this is not equivalent. However since the randomness of encryption is not known to theagents, explicit tests on the randomness should not occur in general.This leads us to consider the following class of processes.De�nition 4.22 (Well-formed process) A process P is well-formed w.r.t. a name s if it isclosed, and:1. the symbol retrieve does not occur in M(P), the symbol check does not occur in M(P)except in head of a test, that is, the check symbol can only appear in tests of the form

[check(M,N,K) = ok] where check does not appear in M,N,K;2. any encryption in some term of M(P) is a probabilistic agent encryption w.r.t. M(P) and
bn(P)\{s} respectively;3. for any term encg(M,K,R), decg(M,K) or sign(M,K) occurring in M(P), K is a closedterm and s 6∈ names(K);4. in M(P) there are no destructors, nor pub or priv function symbols above constructors,nor above s;5. for any test,

• either each operand of a test T ∈ Mt is a name, a constant or has the form
π1(dec1(. . . π

l(decl(π
l+1(z),Kl)) . . . ,K1))with l ≥ 0, where deci ∈ {dec, deca}, πi are words on {π1, π2} and z is a variable,

• or the test is [check(M,N,K) = ok] with K being a closed term, and M and N beingof the previously described form.Conditionals should not test on s. For example, consider the following process:
P2 = νs, k, r.

(
c〈enc(s, k, r)〉 | c(z).[dec(z, k) = a].c〈ok〉

)where a is a non restricted name. The name s in P2 is a simple secret but not a strong secret.Indeed, P2 → νs, k, r.({ enc(s,k,r)/z} | [s = a].c〈ok〉) and the process P2[
a/s] reduces further, while

P2[
b/s] does not.That is why we have to prevent hidden tests on s. Such tests may occur nested in equalitytests. For example, let
P3 = νs, k, r, r1, r2.

(
c〈enc(s, k, r)〉 | c〈enc(enc(a, k′, r2), k, r1)〉

| c(z).[dec(dec(z, k), k′) = a].c〈ok〉
)

→

P ′
3 = νs, k, r, r1, r2.

(
{ enc(s,k,r)/z} | c〈enc(enc(a, k′, r2), k, r1)〉 | [dec(s, k′) = a].c〈ok〉

)Then P3[
enc(a,k′,r′)/s] is not equivalent to P3[

n/s], since the process P ′
3[

enc(a,k′,r′)/s] emits themessage ok while P ′
3[

n/s] does not. This relies on the fact that the decryption dec(z, k) allowsaccess to s in the test.For the remaining of the section we assume that x and z0 are new �xed variables. To preventhidden tests on the secret, we compute an over-approximation of the ciphertexts that may containthe secret, by marking with x all positions under which the secret may appear in clear. 127

Chapter 4. From simple secrecy to strong secrecyWe �rst introduce a function fep that extracts the lowest encryption over s and �cleans up�the pairing and signing functions above s. Formally, we de�ne the partial function
fep : T × N∗

+ ↪→ T × N∗
+

fep(U, p) = (V, q) where V and q are de�ned as follows: q ≤ p is the position (if it exists) of thelowest encryption on the path p in U . If q does not exist or if p is not a maximal position in U orif q · 1 6≤ p, then fep(U, p) =⊥. Otherwise, V is obtained from U |q by replacing all arguments ofpairs and signatures that are not on the path p with new variables. More precisely, let V ′ = U |q.If the subterm V ′ is not of the form encg(M1,M2,M3) or if p 6= q · 1 · q′ for some position q′ then
fep(U, p) =⊥. Otherwise, V is de�ned by V = encg(M

′
1,M2,M3) with M ′

1 = prune(M1, q
′) where

prune is recursively de�ned by:
prune(N, ε) = N
prune(〈N1, N2〉, 1 · r) = 〈prune(N1, r), x2·r〉
prune(〈N1, N2〉, 2 · r) =〈x1·r, prune(N2, r)〉
prune(sign(M,K), 1 · r) = sign(prune(M), x2·r)
prune(f(N1, . . . , Nk), r) = f(N1, . . . , Nk) if f is a destructorand is unde�ned in all other cases. For example,

fep(enc

enc

〈, 〉

〈, 〉

a b

c

k2 r2

k1 r1

, 1 · 1 · 2) = (enc

〈, 〉

z1·2 c

k2 r2

, 1)

The function fe is the composition of the �rst projection with fep. With the function fe, wecan extract from the outputs of a protocol P the set of ciphertexts where s appears explicitlybelow the encryption.
E0(P) = {fe(M [x]p, p) |M ∈ Mo(P) ∧ M |p = s}.For example, E0(P

′
Y) = {enc(〈z1·1, 〈x, z2〉〉, kas, rs), enc(〈z1, x〉, kbs, r

′
s)}, where P ′

Y is the processcorresponding to the Yahalom protocol de�ned in previous section and s denotes kab.However s may appear in other ciphertexts sent later on during the execution of the protocolafter decryptions and encryptions. Thus we also extract from outputs the destructor parts (whichmay open encryptions). Namely, we de�ne the partial function
fdp : T × N∗

+ ↪→ T × N∗
+

fdp(U, p) = (V, q) where V and q are de�ned as follows: q ≤ p is the occurrence of the highestdestructor di�erent from check above p (if it exists). Let r ≤ p be the occurrence of the lowestdecryption above p (if it exists). We have U |r = decg(U1, U2). Then U1 is replaced by thevariable z0 that is V = (U [decg(z0, U2)]r)|q . If q or r do not exist then fdp(U, p) =⊥.For example, fdp(enc(π1(dec(π2(y), k1)), k2, r2), 1 · 1 · 1 · 1) = (π1(dec(z0, k1)), 1).The function fd is the composition of the �rst projection with fdp. By applying the function
fd to messages of a well-formed process P we always obtain either terms D of the form16 D =16in this context we simply write D(T) instead of D[T/z0]128

4.3. Active case
D1(. . . Dn) where Di(z0) = πi(decg(z0,Ki)) with 1 ≤ i ≤ n, Ki are ground terms and πi is a(possibly empty) sequence of projections πj1(πj2(. . . (πjl

) . . .)), or terms check(M,D,K) where
D is of the previously de�ned form.With the function fd, we can extract from the outputs of a protocol P the meaningfuldestructor part.

Do(P) = {fd(M,p) |M ∈ Mo(P) ∧ p ∈ posv(M)}.Remember that posv(M) is the set of variable positions.For example, Do(P
′
Y) = {π2(dec(z0, kbs)), π1(dec(z0, kbs))}.We are now ready to mark (with x) all the positions where the secret might be transmitted(thus tested). We de�ne inductively the sets Ei(P) as follows. For each element E of Ei we canshow that there is an unique term in normal form denoted by E such that var(E) = {z0} and

E(E)↓=x. That is, intuitively, E opens E until x. For example, let E1 =enc(〈z1, 〈x, z2〉〉, kas, rs),then E1 = π1(π2(dec(z0, kas))). We de�ne
Ei(P) = {U | ∃E ∈ Ei(P), U ≤st E and ∃q ∈ pos(U),head(U |q) = decg},

Ei+1(P) = {M ′[x]q | ∃M ∈ Mo(P), p ∈ posv(M) s.t. fep(M,p) = (M ′, p′),

fdp(M
′, p′′) = (D, q), p = p′ · p′′,D = D1(. . . Dn), and D1 ∈ E i(P)}.For example,

E0(P
′
Y) = {π1(π2(dec(z0, kas))), π2(dec(z0, kas)), dec(z0, kas), π2(dec(z0, kbs)), dec(z0, kbs)}

E1(P
′
Y) = {enc(〈z1·2, 〈z1, x〉〉, kas, rs)}

E1(P
′
Y) = {π2(π2(dec(z0, kas))), π2(dec(z0, kas)), dec(z0, kas)}and Ei(P

′
Y) = ∅ for i ≥ 2.Note that E(P) = ∪i≥0Ei(P) is �nite up-to renaming of the variables since for every i ≥ 1,every term M ∈ Ei(P), pos(M) is included in the (�nite) set of positions occurring in termsof M0.We can now de�ne an over-approximation of the set of tests that may be applied over thesecret.

Ms

t (P) =
{
T ∈ Mt(P) | T = s or ∃p ∈ posv(T) s.t. D1(. . . Dn)=fd(T, p) 6=⊥,

∃E ∈ E(P),∃i s.t. Di = πi(decg(z0,K)), E = encg(U,K,R) and x ∈ Di(E)↓
}For example, Ms

t (P
′
Y) = {π1(π2(π2(dec(π1(ya), kas))))}.De�nition 4.23 (�no test on the secret� process) A well-formed process P w.r.t. s doesnot test over s if the following conditions are satis�ed:1. for all E ∈ E(P), for all D = D1(. . . Dn) ∈ Do(P), if Di = πi(decg(z0),K) and E =

encg(U,K,R) and x ∈ var(Di(E)↓) then i = 1 and E 6<st D1,2. if [T = T ′], [T ′ = T], [check(T, T ′,K) = ok] or [check(T ′, T,K) = ok] is a test of P and
T ∈ Ms

t (P) then T ′ is a restricted name di�erent from s.For example, P ′
Y does not test over s. Note that E(P) can be computed in polynomial time from

P and that whether P does not test over s is decidable. We show in the next section that the�rst condition is su�cient to ensure that frames obtained from P are extended well-formed. Itensures in particular that there are no destructors right above s. Indeed, informally, if some Dicancels some encryption in some E and x ∈ var(Di(E)↓) then all its destructors should reduce inthe normal form computation (otherwise some destructors (namely projections from Di) remain129

Chapter 4. From simple secrecy to strong secrecyabove x). Also we have i = 1 since otherwise a Di may have consumed the lowest encryptionabove x, thus the other decryption may block, and again there would be destructors left above x.The second condition requires that whenever an operand of a test [T = T ′] is potentiallydangerous (that is T or T ′ is in Ms

t (P)) then the other operand should be a restricted name.Exemple 4.24 A simple class of protocols that do not test on the secret is the one where in allmessages sent by the protocol, the secret occurs only in the second component of pairs, and thetests apply only on the �rst component of pairs. For example, if for a protocol P4 we have
Mo(P4) = {enc(〈na, s〉, k, r), enc(〈na, π2(dec(z, k)), k′, r′)〉}and the test is [π1(dec(z′, k′)) = π1(dec(z′′, k))] then there will be no test on s. Moreover, thisprotocol also satis�es the �rst condition and hence we obtain that s is a strong secret using themain result of this section.We also give examples of protocols not satisfying the two conditions of De�nition 4.23. Con-sider �rst a protocol P5 for which

Mo(P5) = {enc(π1(dec(z, k)), k, r′), enc(s, k, r)}.

P5 does not satisfy the �rst condition of the previous de�nition because the term enc(π1(s), k, r)(with a destructor right above s) could be obtained by sending the �rst message to the agent whichconstructs the second message.A second example of protocol not satisfying the conditions (this time the second one) is inspiredfrom the Otway-Rees protocol. Consider a protocol P6 where the server waits for A, {{Na, A}}Kas,performs a test on A and then sends {{Na,Kab}}Kas. Using a second session, the intruder is ableto transform the test that the server does on A into a test on the secret. Formally, the outputsare
Mo(P6) = {〈a, enc(〈na, a〉, kas, r)〉, enc(〈π1(dec(π2(z), kas)), s〉), kas, r

′}and the process modeling the �rst actions of the server is c(z).[π1(z) = π2(dec(π2(z), kas))]. Then
π2(dec(π2(z), kas)) ∈ Ms

t (P6), but π1(z) is not a restricted name.4.3.2 Main resultWe are now ready to prove that simple secrecy is actually equivalent to strong secrecy forprotocols that are well-formed and do not test over the secret.Theorem 4.25 Let P be well-formed process w.r.t. a bound name s such that P does not testover s. We have ϕ 0 s for any valid frame ϕ w.r.t. P if and only if P [M/s] ≈l P [M ′
/s], for allground terms M,M ′ public w.r.t. bn(P).The remaining of the section is devoted to the proof of the theorem.Consider �rst the simpler implication, that is strong secrecy implies simple secrecy. Supposethat there is a valid frame ϕ w.r.t. P such that ϕ ` s. Then, as for the passive case, there are

M and M ′ public ground terms such that ϕ[M/s] 6≈s ϕ[M ′
/s]. Since ϕ is a valid frame thereis an extended process A such that P ⇒∗ A and ϕ = ϕ(A). Then clearly P [M/s] ⇒

∗ A[M/s]and P [M ′
/s] ⇒∗ A[M ′

/s]. Thus if P [M/s] ≈l P [M ′
/s] then A[M/s] ≈l A[M ′

/s] and moreover
ϕ(A[M/s]) ≈s ϕ(A[M ′

/s]). Since ϕ(A[T/x]) = ϕ(A)[T/x] for any term T , we get ϕ[M/s] ≈s ϕ[M ′
/s],contradiction. We deduce P [M/s] 6≈l P [M ′

/s] and thus s is not a strong secret in P .130

4.3. Active caseConsider now the converse implication. Let P be well-formed process w.r.t. a bound name
s with no test over s and assume that s is a simple secret in P . Let M,M ′ be two publicterms w.r.t. bn(P). To prove that P [M/s] and P [M ′

/s] are labeled bisimilar, we need to showthat each move of P [M/s] can be matched by a move in P [M ′
/s] such that the correspondingframes are bisimilar (and conversely). By hypothesis, s is a simple secret in P thus for any validframe ϕ w.r.t. P , we have ϕ 0 s. In order to apply our previous result in the passive setting(Theorem 4.12), we need to show that all the valid frames are well-formed. However, frames maynow contain destructors in particular if the adversary sends messages that contain destructors.That is why we consider extended well-formed frames, de�ned in Section 4.2.2.Theorem 4.12 can easily be generalised to extended well-formed frames.Proposition 4.26 Let ϕ be an extended well-formed frame w.r.t. s, where s is a restricted namein ϕ. Then ϕ 0 s if and only if ϕ[M/s] ≈s ϕ[M ′

/s] for all M,M ′ closed public terms w.r.t. ϕ.The proof of Proposition 4.26 is exactly the same as the proof of Theorem 4.12 except that ituses Corollary 4.20 and Lemma 4.21 instead of Lemmas 4.13 and 4.14 respectively.The �rst step of the proof of Theorem 4.25 is to show that any frame produced by the protocolis an extended well-formed frame. We actually prove directly a stronger result, crucial in theproof: the secret s always occurs under an agent encryption and this encryption is an instanceof a term in E(P). This shows that E(P) is indeed an approximation of the ciphertexts that maycontain the secret.Lemma 4.27 Let P be a well-formed process with no test over s and ϕ = νñ.σ be a valid framew.r.t. P such that ϕ 0 s. Consider the corresponding standard frame νñ.σ = νñ.{ Ui/yi
| 1 ≤ i ≤ l}.For every i and every occurrence qs of s in Ui↓, we have fe(Ui↓, qs) = E[W/x] for some E ∈ E(P)and some term W . In addition νñ.σi↓ is an extended well-formed frame w.r.t. s.The lemma is proved in Section 4.3.3. The proof uses an induction on i and relies deeply onthe construction of E(P).The second step of the proof consists in showing that any successful test in the process P [M/s]is also successful in P and thus in P [M ′

/s].Lemma 4.28 Let P be a well-formed process with no test over s, ϕ = νñ.σ a valid frame for Psuch that ϕ 0 s, θ a public substitution and M a public ground term. If T1 = T2 is a test in P ,then T1θσ[M/s] =E T2θσ[M/s] implies T1θσ =E T2θσ.This lemma is proved in Section 4.3.3 by case analysis, depending on whether T1, T2 ∈ Ms

t (P)and whether s occurs or not in names(T1θσ) and names(T2θσ).Using Lemmas 4.27 and 4.28, we are ready to complete the proof of Theorem 4.25, showingthat P [M/s] and P [M ′
/s] are labeled bisimilar.We consider the relation R between closed extended processes de�ned as follows: ARB ifthere is an extended process A0 and ground termsM,M ′ public w.r.t. bn(P) such that P ⇒∗ A0,

A = A0[
M/s] and B = A0[

M ′
/s].We show that R satis�es the three points of the de�nition of labeled bisimilarity. Suppose

ARB, that is A0[
M/s]RA0[

M ′
/s] for some A0,M,M ′ as above.1. Let us show that ϕ(A0[

M/s]) ≈s ϕ(A0[
M ′
/s]). We know that ϕ(A0) is a valid frame w.r.t. P(from the de�nition of R), hence ϕ(A0) 0 s (from the hypothesis). Let ϕ′ ≡ ϕ(A0)having only ground and normalised terms (take for example ϕ′ = ϕ(A)↓, where ϕ(A) is thestandard frame w.r.t. A). Then, by Lemma 4.27, we have that ϕ′ is an extended well-formedframe. We can then use Proposition 4.26 to obtain that ϕ(A0[

M/s]) ≈s ϕ(A0[
M ′
/s]). 131

Chapter 4. From simple secrecy to strong secrecy2. Let us show that if A0[
M/s] → A′ then A′ ≡ A′

0[
M/s], A0[

M ′
/s] → A′

0[
M ′
/s], and A′

0[
M/s]R

A′
0[

M ′
/s], for some A′

0. We distinguish two cases, according to whether the transition rulewas the COMM rule or one of the THEN and ELSE rules:
• if the COMM rule was used then A0[

M/s] ≡ C[M/s]
[
c〈z〉.Q[M/s]|c(z).R[M/s]

], where Cis an evaluation context and A′ = C[M/s]
[
Q[M/s]|R[M/s]

]. Then A0≡C[c〈z〉.Q|c(z).R].Take A′
0 = C[Q|R]. We have that P ⇒∗ A′

0 and thus, by de�nition of R, we havethat A′
0[

M/s]RA′
0[

M ′
/s].

• otherwise, A0[
M/s] ≡ C[M/s]

[if T ′[M/s] = T ′′[M/s] then Q[M/s] else R[M/s]
]. Then

A0 ≡ C[if T ′ = T ′′ thenQ else R]. From Lemma 4.4 we know that T ′ = T ′
0θσ and T ′′ =

T ′′
0 θσ, where T ′

0 = T ′′
0 is a test in P and νñ.σ ≡ ϕ(A0) is the standard frame w.r.t. A0.Take A′

0 = C[Q] if T ′
0θσ =E T ′′

0 θσ and A′
0 = C[R] otherwise. From Lemma 4.28 wehave that T ′

0θσ =E T ′′
0 θσ if and only if T ′

0θσ[M/s] =E T ′′
0 θσ[M/s]. Hence A0[

M/s] →
A′

0[
M/s], A0[

M ′
/s] → A′

0[
M ′
/s] and A0 → A′

0. We conclude A′
0[

M/s]RA′
0[

M ′
/s] fromthe de�nition of R.3. Let us show that if A0[

M/s]
α
→ A′ and fv(α) ⊆ dom(ϕ(A0[

M/s])) and bn(α)∩fn(A0[
M ′
/s]) =

∅ then A′ ≡ A′
0[

M/s], A0[
M ′
/s]

α
→ A′

0[
M ′
/s] and A′

0[
M/s]RA′

0[
M ′
/s], for some A′

0. Depend-ing on the form of α, we consider the following cases:
• α = c(T). Suppose A0[

M/s] ≡ C[M/s]
[
c(z).Q[M/s]

]. Then take A′
0 = C[Q{ T/z}].

• α = c〈u〉. Suppose A0[
M/s] ≡ C[M/s]

[
c〈u〉.Q[M/s]

]. Then take A′
0 = C[Q].

• α = νu.c〈u〉. Suppose A0[
M/s] ≡ C[M/s]

[
νu.A1[

M/s]
], where A1[

M/s]
c〈u〉
−→ A′

1[
M/s].Then take A′

0 = C[A1].The above discussion proves that R ⊆ ≈l. Since we have P [M/s]RP [M ′
/s] it follows that

P [M/s] ≈l P [M ′
/s].4.3.3 Proofs of intermediate resultsIn what follows we usually simply write M, Mt, Mo, Do, E instead of respectively M(P),

Mt(P), Mo(P), Do(P), E(P), etc.We also de�ne the partial subtraction function − : N∗
+ × N∗

+ → N∗
+ as follows: p − q = r if

p = q · r and p− q =⊥ otherwise.Let U and V be two terms. We de�ne pos(U, V) = {p ∈ pos(U) | U |p = V }.Observe that for the rewriting system corresponding to equational theory E, there is at mostone rule that can be applied and for each rule L→ R, there is exactly one occurrence of R in L.We denote by U →q V the reduction U → V such that U |q = Lθ and V = U [Rθ]q, where
q is a position in U , L → R is a rule in R(E), and θ is a substitution. Let p be a position in
U . We de�ne a partial function par1(U, p, q) that computes, when U →q V , the position afterone rewriting of a function symbol at position p in U . In particular, if par1(U, p, q) 6=⊥ then
U |p = V |par1(U,p,q). Formally, we de�ne the function par1 : T × N∗

+ × N∗
+ → N∗

+ as follows:
par1(U, p, q) =

{
p′, if U →q V
⊥, otherwise,where

p′ =

p, if p 6≥ q,
⊥, if p ≥ q ∧ p 6≥ q · qr,
q · (p− q · qr), if p ≥ q · qr,132

4.3. Active caseand L→ R is the rule that was applied and qr is the position of R in L.Similarly, the function par(U, p) computes the position after rewriting in U↓. The function
par: T × N∗

+ ↪→ N∗
+ is formally de�ned by par(U, p) = pk where U →q1 · · · →qk Uk, Uk = U↓,

pi = par1(U, pi−1, qi), for 1 ≤ i ≤ k and p0 = p. Due to the particular form of our equationaltheory, the choice of the rewriting steps does not change the �nal value of pk thus the de�nitionis correct.The function par−1(U, p) is the inverse function: to a position p in U↓ it associates thecorresponding position in U , that is, par−1 : T × N∗
+ ↪→ N∗

+, par−1(U, p) = p′ if and only if
par(U, p′) = p.We say that a function symbol at position p is consumed in V w.r.t. the reduction U →q Vif par1(U, p, q) is unde�ned. Similarly, we say that a function symbol at position p is consumedin U↓ w.r.t. the normal form U↓ if par(U, p) is unde�ned. We say simply that an occurrence isconsumed in some term when it is clear from the context which de�nition is used.Lemma 4.27 Let P be a well-formed process with no test over s and ϕ = νñ.σ be a valid framew.r.t. P such that ϕ 0 s. Consider the corresponding standard frame νñ.σ = νñ.{ Ui/yi

| 1 ≤ i ≤ l}.For every i and every occurrence qs of s in Ui↓, we have fe(Ui↓, qs) = E[W/x] for some E ∈ E(P)and some term W . In addition νñ.σi↓ is an extended well-formed frame w.r.t. s.Proof We write the standard frame σ as in the statement of Lemma 4.4, that is Ui = Miθiσi−1for all 1 ≤ i ≤ l with Mi an output in P , θi a public substitution w.r.t s and σi = σi−1]{ Ui/yi
},

σ0 being the empty substitution. We reason by induction on i.Base case: i = 1. We have that U1 = M1θ1. Then U1↓ = M1(θ1↓) since there are nodestructors in the output M1. Hence any position qs of s is in fact a position in M1 since scannot appear in θ1 because s is restricted and θ is a public substitution. There must anencryption above qs in M1 (that is a position qenc · 1 ≤ qs), since otherwise s would be deducible(the same argument as in Lemma 4.17 applies). Then the result follows immediately from thede�nition of E0 (take W = s) and the properties of well-formed processes.Inductive step. Let ps = par−1(Ui, qs).If ps ∈ pos(Mi) then, as in the previous paragraph, fe(Ui↓, qs)[
x/s] ∈ E0.Otherwise, since θi is public, ps /∈ pos(Miθ). It follows that there are z ∈ var(Mi) and

yi1 ∈ var(Miθi) at positions pz and py1 respectively, such that pz ≤ py1 ≤ ps and 1 ≤ i1 ≤ i− 1.Let p1
s

= ps − py1 and q1
s

= par(Ui1 , p
1
s
). By induction hypothesis, σi−1 is an extended well-formed frame and fe(Ui1↓, q

1
s
) = E[W/x] with E ∈ El, for some term W and some l ≥ 0. Itfollows from the de�nition of extended well-formed frames that in y1σi1 there is an encryptionabove q1

s
, that is q1enc = max{ q ∈ pos(Ui1↓) | q < q1

s
∧ head((Ui1 ↓)|q)= encg } exists. Let p1

enc =
par−1(Ui1 , q

1
enc).If py1 ·p

1
enc is not consumed in Ui↓ then par(Ui, py1 ·p

1
enc) is the lowest encryption in Ui↓ above

q1
s
(since it corresponds to q1enc). It follows that fe(Ui↓, qs) = fe(Ui1↓, q

1
s
).Otherwise, that is if py1 · p

1
enc is consumed in Ui↓, consider the occurrence of decg in Ui, say

pdec, that consumes it. Since p1
enc is not consumed w.r.t. Ui1↓ it follows that pdec ∈ pos(Miθi), andall encryptions above p1

enc in Ui1 are consumed in Ui↓. If pdec is in zθi (that is, pdec /∈ posnv(Mi))then all encryptions above p1
enc in Ui1 are consumed by decryptions that are in zθi. This meansthat in (zθiσi−1)↓ there is no encryption above s and thus ϕ ` s. Hence pdec is in Mi (that is,

pdec ∈ posnv(Mi)).Let U, V,K,K ′ andR be terms such that decg(U,K) = Ui|pdec
and encg(V,K

′, R) = Ui|py1 ·p
1
enc

=

Ui1 |p1
enc
. We have that K =E K ′ since pdec consumes py1 · p1

enc. We then have decg(U,K) →∗

decg(encg(V,K,R),K) →∗ V ↓. 133

Chapter 4. From simple secrecy to strong secrecyLet (D, p) = fdp(Mi, pz) and write it as D = D1(. . . Dn) where Dj = πj(decg(z0,Kj)) with
1 ≤ j ≤ n and consider Dk such that the decryption pdec is that of Dk. Clearly x ∈ var(Dj(E)↓).From the �rst condition of processes that do not test over s we have that j = 1 and E 6<st D1.Since pdec consumes py1 · p

1
enc, above pdec in D1 there are only projections, below encg in E thereare only pairs and E 6<st D1 it follows that D1 ≤st E. Hence D1 ∈ E l.Suppose that there is no encryption above pdec in Mi. Then since D1 is consumed and above

D1 in Mi there are only pairs or signatures, it follows that s is deducible from σi (more exactlyfrom Ui↓). Thus there is at least one encryption above pdec in Mi. Let (M ′, penc) = fep(Mi, pz).Then M ′[x]p ∈ El+1.Since penc is not consumed in Ui↓, and inM ′ all function symbols above p are not destructorswe have that fe(Ui, ps) →
∗ (M ′[x]p)[

W ′
/x] with p′s=p1

s
−p1

enc andW ′ = D1(fe(encg(V,K
′, R), p′

s
))↓.Hence fe(Ui↓, qs) = (M ′[x]p)[

W ′
/x]. That is we have the �rst part of the lemma.In order to prove that σ↓ is an extended well-formed frame we just need to show that M ′[x]pand W ′ contain only pairs and signatures (except for the head ofM ′[x]p which is an encryption);obviously all agent encryptions are probabilistic encryption, either by the de�nition of well-formedprocess or by induction hypothesis. From the de�nition of M ′ all function symbols (except forthe head) in M ′[x]p are pairs and signatures. And since σi1 is an extended well-formed frameand the term W ′ is a subterm of fe(encg(V ↓,K

′, R), q′
s
) which (except for the head) containsonly pairs as function symbols and signatures by de�nition of fe.Lemma 4.29 Let P be a well-formed process with no test over s, ϕ = νñ.σ be a valid framew.r.t. P such that ϕ 0 s, T ∈ Mt(P) be an operand of a test and θ be a public substitution. If

T /∈ Ms

t then for any occurrence qs of s in (Tθσ)↓ there is an encryption qenc plaintext-aboveit such that this encryption is an agent encryption w.r.t. ñ\{s}, is a probabilistic encryptionw.r.t. ran(σ) and head((Tθσ) ↓ |q) ∈ {〈〉, sign}, for all positions q with qenc < q < qs.Proof Suppose that T /∈ Ms

t and consider an occurrence qs of s in (Tθσ)↓. Hence T is notground and denote by z the variable of T and by pz its position. Let Tz = (zθσ)↓.Let σ = { U1/y1 , . . . ,
Ul/yl

} be the standard frame w.r.t. A (where ϕ = ϕ(A) for some extendedprocess A). Let ps = par−1(Tθσ, qs). Let yi be the variable of zθ on the path to ps at positionsay py, with 1 ≤ i ≤ l. Applying Lemma 4.27 to Ui we obtain that fe(Ui↓, qs) = E[W/x] with
E ∈ E(P), for some term W . Consider the lowest encryption qenc in Ui↓ above q′

s
, where q′

s
isthe position in Ui↓ of qs.Suppose that this encryption is consumed. Then it must be consumed by a decg from T sinceotherwise s would be deducible. It follows that there is 1 ≤ j ≤ l such that Dj = πj(dec(z0,K)),where fd(T, pz) = D1(. . . Dn), E = enc(U,K,R) and x ∈ Di(E)↓ for some terms U , K and

R. Thus T ∈ Ms

t , but this contradicts the hypothesis. Hence qenc is not consumed in (Tθσ)↓.Since νñ.σ↓ is an extended well-formed frame (again from Lemma 4.27) then the encryption qencclearly satis�es the hypothesis.Lemma 4.28 Let P be a well-formed process with no test over s, ϕ = νñ.σ a valid frame for Psuch that ϕ 0 s, θ a public substitution and M a public ground term. If T1 = T2 is a test in P ,then T1θσ[M/s] =E T2θσ[M/s] implies T1θσ =E T2θσ.Proof T1θσ[M/s] =E T2θσ[M/s] rewrites in (T1θσ[M/s])↓ = (T2θσ[M/s])↓. Since the rewritesystem R(E) is convergent, it follows that ((T1θσ)↓ [M/s])↓ = ((T2θσ)↓ [M/s])↓.134

4.4. Application to some cryptographic protocolsSuppose �rst that T1, T2 6∈ Ms

t . Then from Lemma 4.29 right above any occurrence of s in
(T1θσ)↓ there are no destructors, hence (T1θσ)↓[M/s] is already in normal form. The same thingholds for T2. Thus (T1θσ)↓[M/s] = (T2θσ)↓[M/s]. Lemma 4.29 also ensures that in (T1θσ)↓ and
(T2θσ)↓ there is an agent probabilistic encryption above each occurrence of s. Hence we canapply Lemma 4.19 and obtain that (T1θσ)↓ = (T2θσ)↓, that is T1θσ =E T2θσ.Suppose now that T1 ∈ Ms

t . Then T2 = n where n is a restricted name. The name n is asubterm of (T1θσ[M/s])↓ appearing at a position p in T1θσ[M/s]. Since M is public, while T2 isrestricted it follows n is not a subterm of M , that is there is no occurrence qs of s in T1θσ suchthat qs ≤ p. Then ((T1θσ)↓[M/s])↓ = (T1θσ)↓[M/s]. Hence (T1θσ)↓ = n.If the test is check(T, T ′,K) = ok then Tθσ[M/s] =E retrieve(T ′)θσ[M/s]. Applying thelemma for the test T =E retrieve(T ′) we obtain that Tθσ =E retrieve(T ′)θσ. Since the keys areground then it follows that check(T, T ′,K)θσ =E ok.4.4 Application to some cryptographic protocolsWe apply our result to three protocols (Yahalom, Needham-Schroeder with symmetric keysand Wide-Mouthed-Frog), known to preserve the usual simple secrecy property. Since all thesethree protocols satisfy our hypotheses, we directly deduce that they preserve the strong secrecyproperty.4.4.1 YahalomWe have seen in Section 4.3.1 that PY is a well-formed process w.r.t. kab and does not test over
kab. Applying Theorem 4.25, if P ′

Y preserves the simple secrecy of kab, we can deduce that theYahalom protocol preserves the strong secrecy of kab that is
P ′

Y [M/kab
] ≈l P

′
Y [M ′

/kab
]for any public terms M,M ′ w.r.t. bn(P ′

Y). We did not formally prove that the Yahalom protocolpreserves the simple secrecy of kab but this was done with several tools in slightly di�erentsettings (e.g. [BLP03, Pau01]).4.4.2 Needham-Schroeder symmetric key protocolA simpli�ed version of the Needham-Schroeder symmetric key protocol [NS78] is described below:
A⇒ S : A,B,Na

S ⇒ A : {{Na, B,Kab, {{Kab, A}}Kbs
}}Kas

A⇒ B : {{Kab, A}}KbsThe target secret is Kab. The protocol is modeled by the following process:
PNS = νkas.νkbs. (!A) | (!c(yb)) | (!νk.S(k)) | νkab .S(kab)where

A = νna.c〈a, b, na〉.c(ya).[π1(dec(ya, kas)) = na].
[π1(π2(dec(ya, kas))) = b].c〈π2(π2(π2(dec(ya, kas))))〉

S(x) = c(ys).νr, r
′.c〈enc(〈π2(π2(ys)), π1(π2(ys)), x,

enc(〈x, π1(ys)〉, kbs, r
′)〉, kas, r)〉 135

Chapter 4. From simple secrecy to strong secrecyNote that other processes should be added to considered corrupted agents or roles A,B and Stalking to other agents but this would not really change the following sets of messages.The output messages are:
Mo =

a, b, na

π2(π2(π2(dec(ya, kas))))
enc(〈π2(π2(ys)), π1(π2(ys)),
kab, enc(〈kab, π1(ys)〉, kbs, r

′)〉, kas, r)

The tests are: {

π1(dec(ya, kas)) = na

π1(π2(dec(ya, kas))) = b

}We de�ne max Ei = {e | e ∈ Ei} in order to increase readability, and since it is easy to deduce
Ei from max Ei.

Do = {π2(π2(π2(dec(z, kas))))}

E0 = {enc(〈z1, 〈z2, 〈x, z3〉〉〉, kas, r), enc(〈x, z4〉, kbs, r
′)}

max E0 = {π1(π2(π2(dec(z, kas)))), π1(dec(z, kbs))}

Do ∩ E0 = ∅

Mkab
t = ∅We deduce that PNS is a well-formed process w.r.t. kab, that does not test over kab. ApplyingTheorem 4.25 and since the Needham-Schroeder symmetric key protocol is known to preservesimple secrecy of kab, we deduce that the protocol preserves strong secrecy of kab that is

PNS[
M/kab

] ≈l PNS[
M ′
/kab

]for any public terms M,M ′ w.r.t. bn(PNS).4.4.3 Wide Mouthed Frog Protocol (modi�ed)We consider a modi�ed version of the Wide Mouthed Frog Protocol [BAN90], where timestampsare replaced by nonces.
A⇒ B : Na

B ⇒ S : {{Na, A,Kab}}Kbs

S ⇒ A : {{Na, B,Kab}}KasThe target secret is Kab. The protocol is modeled by the following process:
PWMF = νkas.νkbs. (!A) | (!S) | (!νk.B(k)) | νkab .B(kab)where

A = νna.c〈na〉.c(ya).[π1(dec(ya, kas)) = na]
B(x) = c(yb).νr.c〈enc(〈yb, a, x〉, kbs, r)〉

S = c(ys).[π1(π2(dec(ys, kbs))) = a].
νr′.c〈enc(〈π1(dec(ys, kbs)), b, π2(π2(dec(ys, kbs)))〉, kas, r

′)〉Note that other processes should be added to considered corrupted agents or roles A,B and Stalking to other agents but again, this would not really change the following sets of messages.136

4.5. ConclusionsThe output messages are:
Mo =

na

enc(〈yb, a, kab〉, kbs, r)
enc(〈π1(dec(ys, kbs)), b,
π2(π2(dec(ys, kbs)))〉, kas, r

′)

The tests are: {

π1(dec(ya, kas)) = na

π1(π2(dec(ys, kbs))) = a

}

Do = {π1(dec(z, kbs)), π2(π2(dec(z, kbs)))}

E0 = {enc(〈z1, 〈z2, x〉, kbs, r)〉}

max E0 = {π2(π2(dec(z, kbs)))}

E1 = {enc(〈z1, 〈z2, x〉, kas, r)〉}

max E1 = {π2(π2(dec(z, kas)))}

Do ∩ E1 = ∅

Mkab
t = ∅We obtain similarly that PWMF is a well-formed process w.r.t. kab, that does not test over kab.Applying Theorem 4.25 and since the Wide Mouthed Frog protocol is known to preserve simplesecrecy of kab, we deduce that the protocol preserves strong secrecy of kab that is

PWMF[M/kab
] ≈l PWMF[M ′

/kab
]for any public terms M,M ′ w.r.t. bn(PWMF).4.5 ConclusionsIn recent years many automatic tools have been developed for verifying security protocols. Theoverwhelming majority of them address reachability-based properties such as simple secrecy.On the other hand some important security notions such as strong secrecy rely on provableequivalences between systems. Typically the impossibility of guessing a vote or a password iscommonly expressed that way. Hence in order to widen the scope of the current protocol analysistools, in the present chapter we have shown how simple secrecy actually implies strong secrecyin both passive and active setting under some conditions, motivated by counterexamples. Inparticular such a result cannot hold for deterministic encryption and we had to assume that itis probabilistic.As future work, we would like to relax our syntactic conditions. One such condition requiresin the passive case that the secret does not appear in keys, and in the active case that keys areground. This deters us from analysing for example protocols against guessing attacks. We planto investigate whether such conditions can be replaced by more semantics ones, like asking, inthe passive case, that the plaintexts encrypted by the secret are simple secrets.We also plan to investigate whether the procedure [Bau05] for deciding static equivalence ofM. Baudet can be combined with our condition on the tests in order to obtain a (non-complete)procedure allowing us to verify strong secrecy for a wider class of protocols. We would have thusto answer the challenging question of whether the exists a �nite number of frames characterising(in some way) all executions of a protocol. 137

Chapter 5A transformation for obtaining secureprotocols
Contents 5.1 Comparison with Katz and Yung's compiler 1415.2 The model . 1425.3 Security properties . 1445.3.1 A logic for security properties . 1445.3.2 Examples of security properties . 1465.4 Transformation of protocols . 1475.5 Transfer result . 1485.5.1 Honest, single session traces . 1485.5.2 Transferable security properties . 1495.5.3 Transference theorem . 1495.5.4 Honest executions . 1505.5.5 Proof sketch of the transference theorem 1515.5.6 Detailed proofs . 1525.6 Conclusions . 157In this chapter we introduce a transformation that takes as input a protocol that is secure (ina sense that we discuss below) in a single execution of the protocol, with no adversary present (noteven a passive eavesdropper). The output of the transformation is a protocol that withstands arealistic adversary with absolute control of the communication between an unbounded numberof protocol sessions.At a high level, the transformation works by binding messages to sessions using digital signa-tures on the concatenation of these messages with dynamically generated session identi�ers, andhiding messages from the adversary using public key encryption. More speci�cally, the trans-formation is as follows. Consider a protocol with k participants A1, . . . , Ak and n exchanges ofmessages.

Ai1 → Aj1 : m1...
Ain → Ajn : mn139

Chapter 5. A transformation for obtaining secure protocolsThe transformed protocol starts with a preliminary phase, where each participant Ai broadcastsa fresh nonce Ni to all other participants. The concatenation of the nonces with the identitiesof the participants forms a session identi�er sessionID = 〈A1, A2, . . . , Ak, N1, N2, . . . , Nk〉. Notethat the adversary may of course interact in this preliminary phase and may send faked noncesfor example. Such a behaviour would however be detected in the next phase. The remainder ofthe protocol works roughly as the original one except that each message is sent together witha signature on the message concatenated with the session identi�er, and the whole construct isencrypted under the recipient's public key:
Ai1 → Aj1 : {[m1, [[m1, p1, sessionID]]sk(Ai1

)]}ek(Aj1
)...

Ain → Ajn : {[mn, [[mn, pn, sessionID]]sk(Ain)]}ek(Ajn)where the pi's are the current control points in the participant's programs.Intuitively, our transformation ensures that the messages of the protocol sent between honestparties in any given session of the original protocol, cannot be learned and/or blindly replayedby the adversary to unsuspecting users in other protocol sessions. Indeed, the adversary cannotimpersonate users in honest sessions (since in this case it would need to produce digital signatureson their behalf), and cannot learn secrets by replaying messages from one session to another (sincemessages are encrypted, and any blindly replayed message would be rejected due to un-matchingsession identi�ers).Although the transformation does not preserve all imaginable security properties (for exam-ple, any anonymity that the original protocol might enjoy is lost due to the use of public keyencryption) it does preserve several interesting properties. In particular, we exhibit a class oflogic formulas which, if satis�ed in single executions of the original protocol are also satis�ed bythe transformed protocol in the presence of active adversaries. The class that we consider includesstandard formulations for secrecy and authentication (for example injective agreement [Low97]and several other variants).Our transformation enables more modular and manageable protocol development. One canstart by building a protocol with the desirable properties built-in, and bearing in mind thatno adversary is actually present. Then, the �nal protocol is obtained using the transformationthat we propose. We remark that designers can easily deal with the case of single session and itis usually the more involved setting (multi-party, many-session) that causes the real problems.Indeed, for the class of properties that we consider security veri�cation is trivial for single, honestexecutions. As an example, we show how to derive a simple protocol for authentication later inthe chapter.Related work Our work is inspired by a recent compiler introduced by Katz and Yung [KY03]which transforms any group key exchange protocol secure against a passive adversary into onesecure against an active adversary. Their transformation is, in some sense, simpler since theydo not require that the messages in the transformed protocol are encrypted. However, theirtransformation is also weaker since although it requires that the protocol be secure against passiveadversaries, these adversaries still can corrupt parties adaptively (even after the execution has�nished). Furthermore, while their transformation is su�cient for the case of group key exchange,it fails to guarantee the transfer of more general security properties. The reason for the failureis that an adversary can obtain a message (e.g. a ciphertext) from a session with only honestparticipants, and get information about the message (e.g. the underlying plaintext) by replaying140

5.1. Comparison with Katz and Yung's compilerit in some other sessions for which he can produce the necessary digital signatures. We furtherdiscuss and compare the two transformations via an illustrative example in Section 5.1.Our transformation might be viewed as a way of transforming protocols into fail-stop proto-cols, introduced by Gong and Syverson [GS95], where any interference of an attacker is immedi-ately observed and causes the execution to stop. But for fail-stop protocols, it is still necessaryto consider the security issues related to the presence of passive adversaries. Here we achievemore since we obtain directly secure protocols. Moreover, a major di�erence is that we provideformal proof of the security of the resulting protocols while the approach of [GS95] is rathera methodology for prudent engineering. In particular, there are no proved guarantees on thesecurity of the resulting protocols.Corin et al [CDF+07] present a compiler for sessions (seen as patterns of communication)given as type declarations in an extended ML language to security protocols implementing thesessions. They prove that the resulting protocol implementation guarantees session integrity(which can be expressed as a set of correspodance properties). Their work can be seen ascomplementary with ours, since, while sesions are more general than the protocols that weconsider (sessions can include loops), their compiler does not consider con�dentiality properties.Outline of the chapter Section 5.1 contains an example which illustrates the di�erencesbetween the compiler of Katz and Yung and our compiler. In Section 5.2 we present the modelin which we reason about security protocols. Section 5.3 introduces a simple logic and de�nessecurity properties within this logic. The protocol transformation is presented in Section 5.4. InSection 5.5 we present our main transfer result and sketch its proof, while in Section 5.5.6 wegive detailed proofs.5.1 Comparison with Katz and Yung's compilerConsider the following simple protocol where an agent A sends a session key Kab to B using hispublic key. Then B acknowledges A's message by forwarding the session key, encrypted under
A's public key. We say that this protocol is secure if it preserves the secrecy of Kab.

A→ B : {[Kab]}ek(B)

B → A : {[Kab]}ek(A)Note that this protocol is secure when there is no adversary and is also secure even in the presenceof an eavesdropper that may read any message sent over the network but cannot interfere in theprotocol.The resulting protocol obtained after applying Katz and Yung's compiler is the following one.
A→ B : A,Na

B → A : B,Nb

A→ B : [[{[Kab]}ek(B), A,B,Na, Nb]]sk(A)

B → A : [[{[Kab]}ek(A), A,B,Na, Nb]]sk(B)However, the compiled protocol is not secure against an adversary that may use corruptedidentities. Note that the message [[{[Kab]}ek(B)]]sk(A) entirely reveals the message {[Kab]}ek(B). We141

Chapter 5. A transformation for obtaining secure protocolsassume that the adversary owns a corrupted identity I. The attack works as follows.
(1).1 A → B : A,Na

(1).2 B → A : B,Nb

(1).3 A → B : [[{[Kab]}ek(B), A,B,Na, Nb]]sk(A)

(2).1 I → B : I,Ni

(2).2 B → I : B,N ′
b

(2).3 I → B : [[{[Kab]}ek(B), I, B,Ni, N
′
b]]sk(I)

(2).4 B → I : [[{[Kab]}ek(I), I, B,Ni, N
′
b]]sk(B)This allows the intruder to learn any session key used between two honest agents.In contrast, after applying our own transformation, the resulting protocol would be securefor an unbounded number of sessions, against a fully active attacker.5.2 The modelIn this chapter we basically use the model presented in Chapter 1. We consider again only roleswith matching and we will just call them roles. In this section we introduce some useful notationsand we detail further the model presented in Section 1.4.2.The concrete setting (that is, the signature, deduction system) are almost as in Chapter 2.That is, the sort system is Sorts0 (with all sorts being di�erent). The function symbols used hereare those occurring in the deduction system I0 presented in Section 1.2.3.1 (page 40), and I0 isalso the deduction system we consider in this chapter. Again the presence (or absence) of therule (Retr) is not relevant here.We denote by X .a,X .n,X .k be sets of variables of sort agent, nonce, symmetric key. Variablesare represented by capital letters X,A,N,K.Throughout the chapter we �x a constant k ∈ N that represents the number of protocolparticipants. Furthermore, without loss of generality, we only use the set of agent variables

{A1, A2, . . . , Ak} ⊆ X .a, and we partition the set of nonce (and key) variables, according to theparty that generates them. Formally:
X .n = ∪A∈X .aXn(A) where Xn(A) = {N j

A | j ∈ N}

X .k = ∪A∈X .aXk(A) where Xk(A) = {Kj
A | j ∈ N}This partition avoids to have to specify later which of the nonces (symmetric keys) are generatedby the party executing the protocol, or are expected to be received from other parties.In the same spirit, we de�ne the following private constants of sort SymKey and Noncerespectively:

TSymKey = {ka,j,s | a ∈ TId(Fpub), j ∈ N, s ∈ N}
TNonce = {na,j,s | a ∈ TId(Fpub), j ∈ N, s ∈ N}Let Π = (R,S) be a protocol with k participants. For each role r of Π, we suppose that itsparameters are A1, . . . , Ak and its fresh items are among N j

Ar
and Kj

Ar
with j ∈ N. We recallthat the principal that executes role R(r) is represented by the parameter Ar, thus, in that role,every variable of the form Xj

Ar
represents a nonce or a symmetric key generated by Ar. In thisway, it is not necessary anymore to specify the parameters and fresh items of a role. Hence, wedenote the r-th role of Π by R(r) = ((rcv1

r , snt1r), (rcv
2
r, snt2r), . . .), where rcv

p
r and snt

p
r are the�receive� and respectively the �send� terms of role r at step p.142

5.2. The modelExemple 5.1 Using the above conventions, the Needham-Schroeder protocol (presented in Sec-tion 0.1.2, page 12) is now speci�ed by
R(1) :

(
init, {[N1

A1
, A1]}ek(A2)

)
S(1, 1) = (0, 0)(

{[N1
A1
, N1

A2
]}ek(A1), {[N

1
A2

]}ek(A2)

)
S(1, 2) = (2, 1)

R(2) :
(
{[N1

A1
, A1]}ek(A2), {[N

1
A1
, N1

A2
]}ek(A1)

)
S(2, 1) = (1, 1)(

{[N1
A2

]}ek(A2), stop
)

S(2, 2) = (1, 2)Here the notations are overloaded: for example, N1
A1

denotes a fresh item of sort Nonce in role
R(1), while it is just an arbitrary variable of sort Msg in role R(2).In this chapter we are also more explicit about corrupted agents and the initial knowledgeof the intruder. In Chapter 1 (see Section 1.4.2, page 48) we have supposed that the corruptionof agents is implicit, assuming that the data he obtained in this way is present in his initialknowledge (which was considered arbitrary). Here we assume that corrupting an agent is anexplicit action of the intruder and that the initial knowledge H0 is such that it does not containany agent private data. This is only because we need later to di�erentiate between honest andcorrupted agents. These extensions of the model (which are formalised next) only detail it,but do not restrict, nor generalise the class of protocols that we treat, and do not change theirsemantics.A trace tr = (SId0, f0,H0)

α1−→ (SId1, f1,H1)
α2−→ . . .

αn−−→ (SIdn, fn,Hn) is de�ned by thestatement of De�nition 1.29 and by:
• H0 is such that H0 6` k(a, b), dk(a), sk(a), for all a, b ∈ TId(F),
• α1 can also be the corrupt action: (SId0, f0,H0)

corrupt(a1,...,al)
−−−−−−−−−−−→ (SId1, f1,H1) where

a1, . . . , al ∈ TId(Fpub) and H1 = H0 ∪
⋃

1≤j≤l

(
{dk(aj), sk(aj)} ∪ SK(aj)

). Here, SK(a)denotes a �nite set of symmetric keys shared by the agent a with other agents, that is
SK(a) ⊆ {k(a, b), k(b, a) | b ∈ TId(Fpub)}.

• if αi = new(r, a1, . . . , ak) and sid = (s, r, (a1, . . . , ak)) is the new session id then fi(sid) =
(σ, p0) where p0 is the initial control point of role17 r, and

σ(Aj) = aj 1 ≤ j ≤ k

σ(N j
Ar

) = nar ,j,s N j
Ar

fresh item of role R(r)

σ(Kj
Ar

) = kar ,j,s Kj
Ar

fresh item of role R(r)Given a protocol Π, we write Exec(Π) for the set of execution traces of Π. When specifyinga trace, we sometimes omit the transitions and write it just as a sequence of states.Exemple 5.2 Reexamining Example 1.30 (page 50), we obtained the following execution trace:
(∅, f1, ∅)

corrupt(a3)
−−−−−−−−→ (∅, f1, kn)

new(2,a1,a2)
−−−−−−−−→ ({sid1}, f2, kn)

send(sid1,{[n3,a1]}ek(a2))
−−−−−−−−−−−−−−−→

(
{sid1}, f3, kn ∪ {[n3, n

a2,1,1]}ek(a1)

)
,where kn = {dk(a3), sk(a3)}, sid1 = (1, 2, (a1, a2)), and f2, f3 are de�ned as follows: f2(sid1) =

(σ1, 2, 1), f3(sid1) = (σ2, 2, 2) where σ1(A1) = a1, σ1(A2) = a2, σ1(N
1
A2

) = na2,1,1, and σ2extends σ1 by σ2(N
1
A1

) = n3, with a1, a2, a3 public constants of sort Id, and na2,1,1, n3 (private,respectively public) constants of sort Nonce.17The initial control point p0 is usually 1, but for technical reasons here it may also be some other integer.143

Chapter 5. A transformation for obtaining secure protocolsIn this chapter we consider a relaxed version of the de�nition of executable protocols. In-deed, for technical reasons we work only with protocols satisfying the �rst two points of theDe�nition 1.31 (on page 50) and we call such protocols executable. In particular, we supposethat the function S is injective. Moreover, since we sometimes use negative control points (withnegatively indexed role rules), we consider that for executable protocols the function S(r, ·) isde�ned on exactly]R(r) consecutive integers.Given an arbitrary trace tr = (SId0, f0,H0)
α1−→ . . .

αn−−→ (SIdn, fn,Hn) with n ∈ N, we de�nethe set of corrupted agents of a trace tr by CA(tr) = {a1, . . . , al} if α1 = corrupt(a1, . . . , al) and
CA(tr) = ∅ otherwise. The set SIdh(tr) of honest session identi�ers is the set of session identi�ersthat correspond to sessions between non-corrupt agents:

SIdh(tr) = {sid ∈ SIdn | sid = (·, ·, (a1, . . . , ak)),CA(tr) ∩ {a1, . . . , ak} = ∅}.For a trace tr we denote by I(tr) the set of indexes i of the transitions and global statesof tr. For example, the above trace has I(tr) = {0, 1, . . . , n}. If sid is a session id then wedenote by Ag(sid) the set of agents involved in this session, that is Ag(sid) = {a1, . . . , ak} when
sid = (·, ·, (a1, . . . , ak)).5.3 Security propertiesWe use a simple logic (similar with the one in [CHW06]) to express security properties ontraces. We de�ne the syntax and semantics of this logic and provide several examples of securityproperties that can be expressed within it.5.3.1 A logic for security properties5.3.1.1 SyntaxWe assume an in�nite set XSub of variables for substitutions, called substitution variables. Let
TSub be the following set inductively de�ned by:

TSub ::= ς(X) | c | g(TSub) | h(TSub ,TSub)where ς ∈ XSub, X ∈ X , and c, g, h are function symbols of arity 0, 1 and 2 respectively thatrange over Sigma. We call s-terms the elements of TSub . Note that terms without names ares-terms, and s-terms without substitution variables are terms. We extend the notions of positionand occurrence to s-terms in the expected way (with ς regarded as a function symbol of arity 1).If u is an s-term and σ is a substitution then we denote by u[σ/ς] the s-term obtained by replacingeach occurrence of ς(X) by the term σ(X), for any variable X. As for normal substitutions, wemay abbreviate ς(X) by Xς.Exemple 5.3 Let u = 〈ς(X), ς ′(Y)〉 and σ, σ′ be two substitutions such that Xσ = a and Y σ′ =
b. Let u′ = u[σ/ς] = 〈σ(X), ς ′(Y)〉 = 〈a, ς ′(Y)〉. Then u′[σ′

/ς′] = 〈a, b〉 is a both a s-term and aterm, while u′ is a s-term but not a term.Besides standard propositional connectors, the logic has equality tests between s-terms, apredicate to specify honest agents, and existential and universal quanti�ers over the local statesof agents.144

5.3. Security properties
[[NC(a), tr]] =

{
1 if a 6∈ CA(tr)
0 otherwise

[[∀ς ∈ LSr,p φ, tr]] =

{
1 if ∀σ ∈ LSr,p(tr), we have [[φ[σ/ς], tr]] = 1,

0 otherwise.
[[∃ς ∈ LSr,p φ, tr]] =

{
1 if ∃σ ∈ LSr,p(tr), s.t. [[φ[σ/ς], tr]] = 1,

0 otherwise.
[[∃!ς ∈ LSr,p φ, tr]] =

1 if ∃! sid ∈ SId(tr),∃i ∈ I(tr) s.t.
fi(sid) = (σ, p) and [[φ[σ/ς], tr]] = 1,

0 otherwise.Figure 5.1: Interpretation of formulas in L.De�nition 5.4 The formulas of the logic L are inductively de�ned by:
φ ::= ¬φ | φ ∧ φ | [u = v] | NC(ς(A)) | ∀ς ∈ LSr,p φ | ∃ς ∈ LSr,p φ | ∃!ς ∈ LSr,p φwhere A ∈ X .a, ς ∈ XSub, u, v ∈ TSub and r, p ∈ N.Here the predicate NC(ς(A)) of arity 1 is used to specify non corrupted agents. The quan-ti�cations ∀ς ∈ LSr,p, ∃ς ∈ LSr,p, and ∃!ς ∈ LSr,p are over local states of agent r at step p, asde�ned below. All these quanti�ers bound the substitution variable ς. Hence, a formula φ of Lis closed if all substitution variables in φ are bound. For a formula φ and a substitution σ, theformula φ[σ/ς] is de�ned as expected, by replacing each s-term u in φ by u[σ/ς].As usual, we assume that unary predicates bind tighter than binary predicates and theprecedence for the latter predicates is ⇒,∨,∧ (in ascending order).5.3.1.2 SemanticsThe semantics of our logic is de�ned for closed formula by interpreting them on the executiontraces of a protocol. We �rst de�ne formally the range of the quanti�cations. The set of localstates of role r at step p in a trace tr = (SIdi, fi,Hi)1≤i≤n is de�ned by

LSr,p(tr) = {σ | ∃i ∈ [n],∃sid ∈ SIdi s.t. fi(sid) = (σ, p)}.Standard propositional connectors and negation are interpreted as usual. Equality is syntacticequality between terms, that is, [[[u = v], tr]] = 1 if and only if u = v (the interpretation is thustrace-independent). Indeed, when [u = v] is a closed formula, the s-terms u and v are terms.Note that the terms u, v need not be ground. The interpretation of quanti�ers and the predicate
NC is shown in Figure 5.1.As usual, we use [u 6= v], φ1 ∨ φ2 and φ1 ⇒ φ2 as shortcuts for ¬[u = v], ¬(¬φ1 ∧ ¬φ2), and
¬φ1 ∨ φ2 respectively.A security property is represented by a closed formula in the logic L. Informally, a protocol
Π satis�es φ if φ is true on all traces of Π. Formally:De�nition 5.5 (Satis�ability) Let Π be a protocol and φ ∈ L be a closed formula. We saythat Π satis�es φ, and write Π |= φ if for any trace tr ∈ Exec(Π), [[φ, tr]] = 1. 145

Chapter 5. A transformation for obtaining secure protocols5.3.2 Examples of security propertiesIn this section we show how to specify secrecy and several variants of authentication, includingthose from Lowe's hierarchy [Low97], in the given security logic.5.3.2.1 SecrecyLet Π be a k-party executable protocol. To specify our secrecy property we use a standardencoding. Namely, we add a role to the protocol, R(k+1) = (Y, stop), where Y is a new variableof sort Msg. It can be seen as some sort of witness as it does nothing but waits for receiving apublic data. Then a data s is secret if and only if for any role session of role k + 1, the value of
s is di�erent from the value of Y .ConsiderX a fresh item of a role r. Informally, the de�nition of the secrecy property expressedby the formulas φs below states that, for any local state of an agent playing role r in an honestsession, a witness (i.e. an agent playing role k + 1) cannot gain any knowledge on X. Formally,the property is speci�ed by the following formula:

φs
def
= ∀ς ∈ LSr,1

(∧

l∈[k]

NC(ς(Al)) ⇒ ∀ς ′ ∈ LSk+1,2

[
ς(X) 6= ς ′(Y)

])Note that, due to the assumption that X is a fresh item and the role k + 1 is at its �nalcontrol point, the interpreted s-terms ς(X) and ς ′(Y) are ground terms. We can also model thesecrecy of a data X that is received in an honest session: we simply specify the control point p(instead of 1) at which the data is received by the role r.5.3.2.2 Authentication propertiesWe �rst show how to use the logic de�ned above to specify the injective agreement [Low97] be-tween two parties A and B. Informally, this property states that whenever an agent A completesa run of the protocol, apparently with B, then there is unique run of B apparently with A suchthat two agents agree on the values of some �xed data items18 {X1, . . . ,Xn}, provided that Aand B are honest. As usual, nothing is guaranteed in role sessions involving corrupted agents.Let p1 be the length of A's role, p2 be the control point at which B should have received alldata items from A, and assume the indexes of A's and B's roles are 1 and 2 respectively. Then,the above intuition is captured by the following formula:
φa

def
= ∀ς ∈ LS1,p1

(
NC(Aς) ∧ NC(Bς) ⇒

∃!ς ′ ∈ LS2,p2

(
[Aς = Aς ′] ∧ [Bς = Bς ′] ∧

∧

1≤i≤n

[Xiς = Xiς
′]
))We show next how other several authentication de�nitions proposed by Lowe [Low97] can bemodelled within the logic L. The following formulas represent aliveness, weak agreement, andnon-injective agreement properties, respectively, where A, B, p1, p2 and {X1, . . . ,Xn} have thesame meaning as above.18We assume that these data items are represented by variables with the same name respectively in the tworoles; the formula can be easily changed when the data items are represented by arbitrary terms.146

5.4. Transformation of protocols
φ1

def
= ∀ς ∈ LS1,p1+1

(
NC(Aς) ∧ NC(Bς) ⇒ ∃ς ′ ∈ LS2,1 [Bς = Bς ′]

)

φ2
def
= ∀ς ∈ LS1,p1+1

(
NC(Aς) ∧ NC(Bς) ⇒ ∃ς ′ ∈ LS2,1

(
[Bς = Bς ′] ∧ [Aς = Aς ′]

))

φ3
def
= ∀ς ∈ LS1,p1+1

(
NC(Aς) ∧ NC(Bς) ⇒

∃ς ′ ∈ LS2,p2

(
[Bς = Bς ′] ∧ [Aς = Aς ′] ∧

∧

1≤i≤n

[Xiς = Xiς
′]
))We also model a simple security property for the multi-party case by requiring that eachparty authenticates any other party in the sense that each agent is convinced that the otheragents were alive in the session. In our logic, this translates to the formula: φma

def
=

∧
r∈[k] φma(r)with

φma(r)
def
= ∀ς ∈ LSr,pr+1

(∧

l∈[k]

NC(Alς) ⇒
∧

i∈[k],i6=r

(
∃ςi ∈ LSi,1

∧

j∈[k]

[Ajς = Ajςi]
))where pr is the �nal control point of the role r. We could enforce the property as for the two-partycase by enlarging the set of equalities that should hold.5.4 Transformation of protocolsThe core idea of the transformation is to have parties agree on some common, dynamicallygenerated, session identi�er s, and then transmit the encryption of a message m of the originalprotocol accompanied by a signature on m concatenated with s.The modi�cation of the source protocol is performed in two steps. We �rst introduce aninitialisation phase, where each agent generates a fresh nonce which is distributed to all otherparticipants. The idea is that the concatenation of all these nonces and all the identities involvedin the session plays the role of a unique session identi�er. To avoid underspeci�cation of theresulting protocol we �x a particular way in which the nonces are distributed. First, each agentgenerates a fresh nonce and then sends the nonces he received so far together with his nonce tothe next agent. That is, in Alice-Bob notation,

Ai → Ai+1 : NA1 , ... , NAifor all i in the sequence 1, . . . , k − 1. Then, once the last agent received all nonces, each agentforwards the concatenation of all nonces to its predecesor. That is,
Ai → Ai−1 : NA1 , . . . , NAkfor all i in the sequence k, . . . , 2. In this way, at the end of this �rst phase all agents know eachother's nonces.We remark that the precise order in which participants send these nonces does not reallymatter, and we do not require that these nonces be authenticated in some way. In principle anactive adversary is allowed to forward, block or modify the messages sent during the initialisationphase, but behaviours that deviate from the intended execution of the protocol are detected inthe next phase.In the second phase of the transformed protocol, the execution proceeds as prescribed by Πwith the di�erence that to each messagem that needs to be sent, the sending parties also attaches147

Chapter 5. A transformation for obtaining secure protocolsa signature [[m, p, nonces]]sk′(a) and encrypts the whole construct with the intended receiver publickey. p is the current control point and nonces is the concatenation of the nonces received duringthe �rst phase with the identities of the participants involved in the protocol. To avoid confusionand unintended interactions between the signatures and the encryptions produced by the compilerand those used in the normal execution of the protocol, the former use fresh signatures and publickeys. Formally, we extend the signature Σ with four new function symbols sk′, vk′, ek′ and dk′which have exactly the same functionality (that is the same sort and similar deduction rules)with sk, vk, ek and dk respectively. This formalises the assumption that in the transformedversion of Π each agent a has associated two pairs of veri�cation/signing keys ((vk(a), sk(a)) and
(vk′(a), sk′(a))) and two pairs of encryption/decryption keys ((ek(a), dk(a)) and (ek′(a), dk′(a)))and that these new pairs of keys were correctly distributed previously to any execution of theprotocol. We assume that source protocols are constructed over Σ only.De�nition 5.6 (Transformed protocol) Let Π = (R,S) be a k-party executable protocol suchthat the nonce variables N0

Ai
do not appear in R (which can be ensured by renaming the noncevariables of Π) and all the initial control points are set to 1 (which can be ensured by rewritingthe function S).The transformed protocol Π̃ = (R̃, S̃) is de�ned as follows: R̃(r) = Rinit(r) · R′(r) and

S̃ = S init ∪ S where · denotes the concatenation of sequences and Rinit, R′ and S init are de�nedas follows:
Rinit(r) =

(
(noncesr−1, noncesr), (noncesk, noncesk)

)
, ∀1 ≤ r < k,

S init(r,−1) = (r − 1,−1), S init(r, 0) = (r + 1, 0), ∀1 ≤ r < k,

Rinit(k) =
(
(noncesk−1, noncesk)

)
S init(k, 0) = (k − 1,−1)with nonces0 = init and noncesj = 〈N0

A1
, N0

A2
, . . . , N0

Aj
〉 for 1 ≤ j ≤ k.Let R(r) =

(
(rcvp

r , snt
p
r)

)
p∈[kr]

. Then R′(r) =
(
(r̃cvp

r, s̃nt
p

r)
)
p∈[kr]

such thatif rcv
p
r = init then r̃cv

p
r = fake, if snt

p
r = stop then s̃nt

p

r = stop and otherwise
r̃cv

p
r = {[rcvp

r , [[rcv
p
r , p′, nonces]]sk′(Ar′)

]}ek′(Ar),

s̃nt
p

r = {[snt
p
r , [[snt

p
r , p, nonces]]sk′(Ar)]}ek′(Ar′′)where (r′, p′) = S(r, p), (r, p) = S(r′′, p′′) and nonces = 〈A1, . . . , Ak, noncesk〉.The initial control point is now set to −1 (or 0 for Ak) since actions have been added for theinitialisation stage. The special message fake is used to model for example the situation wherean agent waits for more than one message in order to reply or when an agent sends more thenone reply.5.5 Transfer result5.5.1 Honest, single session tracesWe identify a class of executions, which we call honest, single session executions which, intuitively,correspond to traces where just one session is executed, session in which all parties are honestand there is no adversary. Our only hypothesis will be that the initial protocol has to be securein this very weak setting.148

5.5. Transfer resultDe�nition 5.7 (Honest, single session trace) Let Π = (R,S) be a k-party protocol and tr =

(SId0, f0,H0)
α1−→ . . .

αn−−→(SIdn, fn,Hn) be an execution trace of Π. The trace tr is an honest, singlesession trace if there are k agent identities a1, . . . , ak such that
• for 1 ≤ i ≤ k, αi = new(i, a1, . . . , ak),
• for k + 1 ≤ i ≤ n, αi = send(sid,m), m = rcv

p
rσ where fi(sid) = (σ, p + 1), sid = (·, r, ·),and there exists j < i such that fj(sid

′) = (σ′, p′), S(r, p) = (r′, p′), sid′ = (·, r′, ·), and
m = snt

p′

r′σ
′ for some sid′.We denote by Execp,1(Π) the set of honest, single session traces of Π.De�nition 5.8 (Passive, single session satis�ability) Let Π be a protocol and φ ∈ L be aclosed formula. We say that Π satis�es the closed formula φ for passive adversaries and a singlesession, and write Π |=p,1 φ if for any trace tr ∈ Execp,1(Π), [[φ, tr]] = 1.5.5.2 Transferable security propertiesWe identify a fragment L′ of the logic L de�ned in Section 5.3 whose formulas specify theproperties that can be transferred from the honest, single session case to the full active adversarycase.De�nition 5.9 The set L′ consists of those formulas φ with

φ = ∀ς ∈ LSr,p

(∧

l∈[k]

NC(Alς) ⇒
∧

i∈I

(
Qi ςi ∈ LSri,pi

∧

j∈Ji

τ i
j(u

i
j , v

i
j)

))where Qi ∈ {∀,∃,∃!}, and for all i ∈ I, for all j ∈ Ji, if Qi = ∀ then τ i
j ∈ {6=} and if Qi ∈ {∃,∃!}then τ i

j ∈ {=, 6=}; moreover, for each i ∈ I, if Qi = ∀ (respectively Qi = ∃!) then for all (thereis) j ∈ Ji we have that (such that τ i
j ∈ {=} and) there exists at least a subterm ς(X) in ui

j or vi
jwith X a nonce or key variable.As usual, we require security properties to hold in sessions between honest agents. This meansthat no guarantee is provided in a session where a corrupted agent is involved. But this does notprevent honest agents from contacting corrupted agents in parallel sessions. Properties that canbe expressed in our fragment L′ are correspondence relations between (data in) particular localstates of agents in di�erent sessions. It is a non-trivial class since e.g. the logical formulas givenin Section 5.3 for expressing secrecy and authentication are captured by the above de�nition.5.5.3 Transference theoremThe main result of this chapter is the following transference theorem. It informally states thatthe formulas of L′ that are satis�ed in single, honest executions of a protocol are also satis�edby executions of the transformed protocol in the presence of a fully active adversary.Theorem 5.10 Let Π be a protocol and Π̃ the corresponding transformed protocol. Let φ ∈ L′be a closed formula. Then Π |=p,1 φ ⇒ Π̃ |= φ. 149

Chapter 5. A transformation for obtaining secure protocolsRemark The transfer result holds in fact for any conjunction or disjunction of formulas in L′.Indeed, if φ1 ∧ φ2 is satis�ed by a protocol Π then both φ1 and φ2 are satis�ed by Π. Thenapplying twice the transfer result, once for each formula, we obtain that φ1 ∧ φ2 is also satis�edby the transformed protocol. For example, the formula φma does not belong do the class L′ (itis not of the right form). It is however a conjunction of formulas of L′. We can thus also transferthis property.The main intuition behind the proof is that any execution in the presence of an activeadversary is closely mirrored by some honest execution (i.e. an execution with no adversarialinterference plus some additional useless sessions). We de�ne honest executions next.5.5.4 Honest executionsRecall that we demand that protocols come with an intended execution order, in which thedesigner speci�es the source of each message in an execution. Roughly, in an honest executiontrace one can partition the set of session ids in sets of at most k role sessions (each correspondingto a di�erent role of the protocol) such that messages are exchanged only within partitions, andthe message transmission within each partition follows the intended execution speci�cation. Sincewe cannot prevent an intruder to create new messages and sign them with corrupted signing keys,clearly the property can hold only for session identi�ers corresponding to honest participants.The above ideas are captured by the following de�nition.De�nition 5.11 (Honest execution traces) Let Π be an executable protocol. An executiontrace tr = (SId0, f0,H0)
α1−→ . . .

αn−−→ (SIdn, fn,Hn) is honest if there is a partition PrtSId of thehonest role session identi�ers SIdh(tr) such that:1. for all S ∈ PrtSId, for all sid, sid′ ∈ S with sid 6= sid′ and sid = (s, r, (a1, . . . ak)) and
sid′ = (s′, r′, (a′1, . . . a

′
k)), we have r 6= r′, and aj = a′j for all 1 ≤ j ≤ k; that is, in anyprotocol session each of the participants execute di�erent roles19 and the agents agree ontheir communication partners;2. whenever (SIdi−1, fi−1,Hi−1)

send(sid,m)
−−−−−−−→ (SIdi, fi,Hi) with sid ∈ SIdh(tr), m accepted, m 6=

fake and m = rcv
p
rσ, p≥1, we have that there are sid′ ∈ [sid] and i′ < i such that m = snt

p′

r′σ
′and S(r, p) = (r′, p′) where fi(sid) = (σ, p+ 1), fi′(sid

′) = (σ′, p′), sid′ = (·, r′.·) and [sid] isthe partition to which sid belongs to.Notice that the above de�nition considers partial executions in which not all roles �nish theirexecution, and where not all roles in a protocol session need to be initialised. The followinglemma states that for any transformed protocol, an active intruder cannot interfere with theexecution of honest sessions.Lemma 5.12 Let Π be a protocol and Π̃ the corresponding transformed protocol. In Π̃, anyexecution trace is an honest execution trace.Then it remains to show that any property expressed in L′ that holds for one honest, singlesession trace also holds for any honest execution trace of the transformed protocol. It reliesin particular on the fact that due to encryption, fresh values of honest sessions cannot occurunprotected in dishonest sessions. Moreover, honest execution traces actually correspond to thehonest, single session trace of the initial protocol. This intuition is further detailed in the nextsection.19Consequently, each partition consists of at most k role sessions.150

5.5. Transfer result5.5.5 Proof sketch of the transference theoremIn this section we �rst present some useful lemmas and the ideas behind their proofs, and thenwe sketch the proof of the main result. Detailed proofs are found in Section 5.5.6.Lemma 5.12 Let Π be a protocol and Π̃ the corresponding transformed protocol. In Π̃, anyexecution trace is an honest execution trace.Proof sketch Let tr be an execution trace of Π̃. We construct the partition of session ids bysimply grouping session ids that have the same value of nonces; we write PrtSId(tr) for the result-ing partition. It is easy to check that PrtSId(tr) satis�es the �rst condition of the de�nition of anhonest execution trace. We prove that the second condition also holds by induction on the lengthof the trace. Assume that (SIdi−1, fi−1,Hi−1)
send(sid,m)
−−−−−−−→ (SIdi, fi,Hi) with sid ∈ SIdh(tr), m ac-cepted, m 6= init and m = r̃cv

p
rσ, p ≥ 1. Then, m must be of the form {[m′, [[m′, p,m0]]sk′(a)]}ek′(b)with a, b honest agents and the agents occurring in m0 being honest too. Since the adversarycannot forge [[m′, p,m0]]sk′(a), a message of the form {[m′, [[m′, p,m0]]sk′(a)]}ek′(b′) must have beensent by the honest agent a in a session sid′ ∈ [sid] since the two agents agree on m0. Thanks tothe control point that is also signed, we can show that a must have sent his message exactly tothe agent that is expected, and then deduce that b = b′ and a's action also satis�es the conditionon function S.Any nonce or key generated in an honest session is always protected by at least one encryptionwith a public key of a non-corrupted agent.Lemma 5.13 Let Π be a k-party protocol and Π̃ be the corresponding transformed protocol. Let

X be a key or a nonce variable of Π, tr be an execution trace of Π̃, (SId, f,H) be a global stateof tr and t be a message deducible from H, i.e. H ` t.For any honest session id sid ∈ SIdh(tr) with f(sid) = (σ, ·, ·), for any occurrence of Xσin t (i.e. for any path q such that t|q = Xσ), Xσ occurs within t in messages of the form
{[m′, [[m′, p, σ(nonces)]]sk(a)]}ek′(b), where b is an honest agent, i.e. b /∈ CA(tr).Proof sketch Using Lemma 5.12, we can show that the only possible values for Xσ arenonces generated in honest sessions. Thus Xσ is initially protected with an honest public keyencryption. Then the only way for an adversary to remove that encryption is to send the messageto an honest agent, which in turn will send it to one of the agents occurring in σ(nonces) thusto another honest agent; still, Xσ will be protected by an honest public key encryption.5.5.5.1 Sketch of proof of the main resultFirstly, Lemma 5.12 says that it is su�cient to look at honest execution traces in the transformedprotocol. So we �x an arbitrary honest trace tr. Every (possibly partial) honest protocol sessionin tr can be projected to a (partial) honest, single session trace tr0 in the initial protocol. Observethat we are only interested in honest sessions of tr, since that is what the left hand side of theimplication in φ means (i.e. ∧

l∈[k] NC(Alς)). But then the hypothesis of the implication in
φ is trivially satis�ed for passive, single sessions in Π. Hence also the right hand side of theimplication in φ is satis�ed for passive, single sessions in Π.Next we have to consider three cases according to what the quanti�er Qi is.If it is ∃ then the there is a local state satisfying the (in)equalities simply because there isone in the honest, single session trace tr0. 151

Chapter 5. A transformation for obtaining secure protocolsIf Qi = ∃! we also need to prove uniqueness. From the form of φ we know that there is j ∈ Jisuch that in (say) ui
j there is an occurrence of Xς with X a nonce or a key variable. And from theexistence of required local states we have (ui

j = vi
j)[

σ/ς][
σ′
/ςi] for some �valid� σ and σ′. Supposethat also (ui

j = vi
j)[

σ/ς][
σ′′
/ςi] for some �valid� σ′′. But then Xσ occurs both in Y σ′ and Y σ′′,where Y is a variable of vi

j such that Xς occurs in vi
j under Y ςi. Since Y σ′ and Y σ′′ are parts ofsent or received messages, it follows that they are parts of messages by the intruder and henceso is Xσ. Thus we can apply Lemma 5.13 and obtain that Y σ′ and Y σ′′ were sent or receivedin the same honest protocol session as Xσ. And since σ′ and σ′′ are substitutions obtained atthe same control point pi of the same role ri it follows that σ′ = σ′′ hence uniqueness.Finally, if Qi = ∀. This case proceeds similarly. If, by absurd, there are local states such thatthe terms in some test become equal for some σ′ then it must be the case that the correspondingsession id is honest (this is again obtained using the uniqueness of nonces created in honestsessions, that is Lemma 5.13). We can then project this equality in the honest, single sessiontrace tr0 to obtain a contradiction.5.5.6 Detailed proofs5.5.6.1 Proof of Lemma 5.12Let Π = (R,S) be an executable protocol such that there are no variable nonces N0

A in R andthe initial control points are set to 1. Let R(r) = ((rcvp
r , snt

p
r))1≤p≤kr

. Consider an arbitraryexecution trace tr of the protocol Π̃. Suppose tr = (SId0, f0,H0)
α1−→ . . .

αn−−→ (SIdn, fn,Hn). Weneed to show that tr is an honest execution trace.We �rst give a few useful de�nitions and properties.For a message m we de�ne m = m0 if m = {[m′, [[m′, p,m0]]sk′(a)]}ek′(b) for some identities a, b,some messages m′,m0 and some p ∈ Z and m = ⊥ otherwise20. We call m0 the nonces �eld21 of
m. For any transition αi = send(sid,m) such that m is accepted we have that m = r̃cv

p
rσ where

fi(sid) = (σ, r, p + 1). Suppose that p ≥ 1 and rcv
p
r 6= init. Then, since r̃cv

p
r = nonces, we havethat m = σ(nonces). The converse also holds, that is if m is de�ned then p ≥ 1 and rcv

p
r 6= init.The following property says that in the same role session accepted and sent messages havethe same nonces �eld: If sid ∈ SIdn and αi = send(sid,m) and αi′ = send(sid,m′) are twotransitions in tr such that m and m′ are accepted then m and m′ have the same nonces �eld,provided it is de�ned for both messages. Indeed the nonces �eld is given by the substitutionin fi(sid) and fi′(sid) respectively (as we have seen in the previous paragraph). And thesesubstitution are equal on A1, . . . , Ak, N

0
A1
, . . . , N0

Ak
since they extend the substitution in fi0(sid)with i0 < min(i, i′) where i0 is such that SIdi0 \SIdi0−1 = {sid} (that is, αi0 is the new transitionproduced when the session sid was initiated).Next, we de�ne the relation ∼ between role sessions. Intuitively this relation should capturethe notion of protocol session. That is, two role sessions (·, r, ·) and (·, r′, ·) should be in relation

∼ if and only if the two agents playing roles r and r′ are communicating in the same protocolsession.We say that two sessions ids sid, sid′ ∈ SIdn are in relation ∼ if there are two (not necessarilydi�erent) transitions in tr labelled by α = send(sid,m) and α′ = send(sid′,m′) such that m and20Hence · is a partial function from terms to terms and ⊥ means unde�ned.21The de�nition of r̃cv
p
r for p ≥ 1 and the following paragraph provide an explanation for choosing this name.Recall that nonces = 〈A1, . . . , Ak, N0

A1
, N0

A2
, . . . , N0

Ak
〉 and r̃cv

p
r = {[rcvp

r , [[rcvp
r , p′, nonces]]sk′(A

r′
)]}ek′(Ar).152

5.5. Transfer result
m′ are accepted, m = m′ and m 6= ⊥, that is nonces is instantiated by the same term in the twomessages m and m′.This relation says in fact more about two role sessions: If sid ∼ sid′ then for any twotransitions in tr labelled by α = send(sid,m) and α′ = send(sid′,m′) such that m and m′are accepted and ⊥ /∈ {m,m′}, we have that m = m′. This is easy to verify using the abovestated property (that is, messages which are sent and accepted in the same role session have thesame nonces �eld). Another direct consequence is that if in a session sid the agent executingthis session started the second phase (that is he received a valid message m with m 6= ⊥) then
sid ∼ sid.But there may be sessions in which agents are still in the initialisation phase. In these sessionsthe messages m sent so far have no nonces �eld and thus the relation ∼ doesn't capture them(it is not �de�ned� on these sessions). However we are not interested in these role sessions andso we do not group them into protocol sessions. But technically we need a partition of all rolesessions, hence we simply consider the re�exive closure of ∼, denoted ∼′. This means that those
sid ∈ SIdn for which there is no transition labelled by send(sid,m), with m accepted and m 6= ⊥,are only in relation with themselves. The relation ∼′ is clearly an equivalence relation. Weconsider PrtSId to by the quotient set of SIdh(tr) by ∼′.We prove next that the partition PrtSId satis�es the conditions in the de�nition of honestexecutions.Let us look at the �rst point of De�nition 5.11. Consider two arbitrary session ids sid, sid′ ∈
SIdh(tr) such that sid∼′ sid′ and sid′ 6=sid. Let sid=(s, r, (a1, . . . , ak)) and sid=(s′, r′, (a′1, . . . , a

′
k)).By the de�nition of ∼ we have that there are two transitions αi = send(sid,m) and αi′ =

send(sid′,m′) such that m and m′ have the same nonces �eld (besides other things). Let
fi(sid) = (σ, p + 1) and fi′(sid

′) = (σ′, p′ + 1). We have that σ(nonces) = σ′(nonces). It fol-lows that Ajσ = Ajσ
′, that is aj = a′j for all 1 ≤ j ≤ k. We know that N0

Ar
σ = nar ,0,s and

N0
Ar′
σ′ = nar′ ,0,s′ . If r = r′ then we have in addition that nar ,0,s′ = nar′ ,0,s′, thus s = s′ which isin contradiction with sid 6= sid′. Hence r 6= r′.Finally, we prove the second point of De�nition 5.11. Let i be the index of the analysedtransition αi = send(sid,m) with sid ∈ SIdh(tr), m accepted, m 6= fake and m = r̃cv

p
rσ, where

sid = (·, r, ·) and fi(sid) = (σ, p + 1).Since tr is an execution trace, Hi−1 ` r̃cv
p
rσ holds. Consider a minimal proof associated withthis deduction. We have r̃cv

p
r = {[rcvp

r, [[rcv
p
r , p′′, nonces]]sk′(Ar′′)

]}ek′(Ar) where (r′′, p′′) = S(r, p).Since sid ∈ SIdh(tr) it follows that Ar′′σ is a non-corrupted agent. Hence Hi−1 0 σ(sk′(Ar′′)).Thus the messagem1 =σ([[rcvp
r , p′′, nonces]]sk′(Ar′′)

) was not obtained by a composition rule. Thus,in both cases: m obtained by a composition rule or by a decomposition rule, it follows that m1is a subterm of a term t′ in Hi−1. The term t′ was sent at some previous step. Thus there is
i′ ≤ i and sid′ ∈ SIdn such that αi′ = send(sid′,m′) for some m′ = r̃cv

p′

r′σ
′ and t′ = s̃nt

p′

r′σ
′ where

fi′(sid
′) = (σ′, r′, p′ + 1). Suppose i′ is the smallest such index, that is m1 is not a subterm of aterm of Hi′−1. We can then have two possibilities.In the �rst one, m1 is a subterm of snt

p′

r′σ
′. Since snt

p′

r′ cannot contain the signature sk′(·)(the source protocol is constructed over Σ), m1 is a subterm of Xσ′ where X is a variable of
snt

p′

r′ . Hence m1 is also a subterm of rcv
p′

r′σ
′ and moreover a subterm of m′ = r̃cv

p′

r′σ
′. But wehave that Hi′−1 ` m′. Consider m′

1 be the signed component of m′. Again m′
1 can be obtainedonly by a decomposition rule. Hence again by the locality lemma, m′

1 is a subterm of a term of
Hi′−1. But m1 is a subterm of m′

1. We have thus obtained a contradiction (i is not the smallestindex such that m1 is a subterm of a term of H) which means this case doesn't occur. 153

Chapter 5. A transformation for obtaining secure protocolsIn the second possibility, m1 = [[snt
p′

r′ , p
′, nonces]]sk′(Ar′)

σ′. It follows that σ(nonces) =

σ′(nonces) which implies that sid ∼ sid′. We also have p′ = p′′. From Ar′′σ = Ar′σ
′ we ob-tain that r′ = r′′. Let r′d, p′d be such that S(r′d, p

′
d) = (r′, p′). They exists and are unique by thede�nition of executable protocols. But since S(r, p) = (r′′, p′′) and (r′′, p′′) = (r′, p′) it followsthat r′d = r and p′d = p. Finally, since also snt

p′

r′σ
′ = rcv

p
rσ, we obtain that m = s̃nt

p′

r′ .5.5.6.2 Proof of Lemma 5.13First, note that all terms t ∈ H are equal to s̃nt
p

rσ
′ for some f ′, sid′, r and p with sid′ =

(·, r, ·), f ′(sid′) = (σ′, p + 1) and if p ≥ 1 and rcv
p
r 6= init then these terms are of the form

{[m′, [[m′, p, σ′(nonces)]]sk′(a)]}ek′(b). Second, remark that it is su�cient to prove the desired prop-erty for all t ∈ H. The generalisation to deducible messages follows easily. Hence it is su�cientto prove that whenever Xσ occurs in some s̃nt
p

rσ
′ then rcv

p
r 6= init, p ≥ 1 and sid′ is an honestsession id.Let tr = (SId0, f0,H0)

α1−→ . . .
αn−−→ (SIdn, fn,Hn) be a trace of Π̃ and X be a variable of Π.We suppose without loss of generality that X = N j

Ar
for some r ∈ [k] and j > 0. Take (SId, f,H)an arbitrary global state of tr and let i be the index of this global state in tr. Consider an honestsession id sid ∈ SIdh(tr) and let sid = (s0, r0, ·) and f(sid) = (σ, ·).We prove �rst that N j

Ar
σ is a nonce created in an honest session.If r = r0 then we have that N j

Ar
σ = nar ,j,s. Suppose r 6= r0. This means that N j

Ar
wasnot initialised in sid by a new transition but by a αi0 = send(sid,m) transition with i0 < i,

m accepted, m 6= init and p0 ≥ 1, where fi0(sid) = (σ0, p0 + 1). We have N j
Ar
σ = N j

Ar
σ0. Let

(r1, p1) = S(r0, p0). Since tr is an honest trace (by Lemma 5.12), there are sid1 ∈ [sid] and
i1 < i0 such that sid1 = (s1, r1, ·) and fi1(sid1) = (σ1, p1 + 1) for some uid s1 and substitution
σ1. We have N j

Ar
σ0 = N j

Ar
σ1. If r = r1 then N j

Ar
σ1 = nar ,j,s1 where sid1 = (s1, r1, ·). Otherwise,continuing in the same way for at most i steps we will certainly �nd some index l, 0 ≤ l < ksuch that r = rl (this is because there are k di�erent roles). Hence anyhow N j

Ar
σ = nar ,j,sl. Toease the notation we denote it by n.If Hi = Hi−1 then it is su�cient to prove the property for i−1. Hence consider that i is suchthat Hi \Hi−1 6= ∅. It follows that αi = send(sid′,m) for some sid′ ∈ SIdi (clearly αi 6= corruptsince H1 0 n). Also m = r̃cv

p
rσ

′ where fi(sid
′) = (σ′, p+ 1).We reason by induction on i.Suppose that i is the smallest index such that n occurs in a term of Hi. It follows that

n ∈ st(s̃nt
p

rσ
′). Then n ∈ st(Y σ′) where Y is a variable of s̃nt

p

r .If Y is not a variable of r̃cv
p
r then from the de�nition of executable protocols we know that

Y σ′ is a new nonce or key, or an agent identity. Hence Y = N j′

Ar
or Kj′

Ar
or A′ for some j′ and A′.That is, Y σ′ is a constant just like n; thus Y σ′ = n. Since n = nar ,j,sl it follows that Arσ

′ = ar,
j = j′ and sid′ = (sl, r, ·). Hence sid′ = sidl. This means that sid′ is an honest session id. Suppose
p < 1. Then Y = N0

Ar
and thus j = 0 which is a contradiction. Hence p ≥ 1 and thus in thiscase the property is true.Otherwise, if Y is a variable of r̃cv

p
r then n ∈ st(r̃cvp

rσ
′), that is n ∈ st(m). Since Hi−1 ` m,it follows that n ∈ st(Hi−1), which is in contradiction with i being the smallest index such that

n ∈ st(Hi).Suppose now that i is arbitrary. We have n ∈ st(Hi ∪ {s̃nt
p

rσ
′}). For the occurrence of nin Hi−1 then the conclusion follows by induction hypothesis. Consider an occurrence of n in

s̃nt
p

rσ
′. If n occurs in Y σ′ where Y is not a variable of r̃cv

p
r then, as in the previous paragraph,154

5.5. Transfer resultthe conclusion simply follows. Suppose that n occurs in Y σ where Y is a variable of r̃cv
p
r .Then n occurs in m. Since m is deducible from Hi−1 and in Hi−1 all occurrences of n are asrequired by the induction hypothesis, it follows that the same thing happens in m. That is,

m = m′′[s̃nt
p′

r′σ
′′] and n occurs in s̃nt

p′

r′σ
′′ where fi(sid

′′) = (σ′′, p′ + 1) for some p′ ≥ 1 and honestsession sid′′ ∈ SIdi with sid′′ = (·, r′, ·). If the occurrence of s̃nt
p′

r′σ
′′ in m = r̃cv

p
rσ

′ is in Y σ′ thenthe conclusion follows, as this means that s̃nt
p′

r′σ
′′ occurs in s̃nt

p

rσ
′. Otherwise it must be the casethat m = s̃nt

p′

r′σ
′′. Then σ′(nonces) = σ′′(nonces). And since sid′′ is an honest session id and

p′ ≥ 1 we obtain that also sid′ is also an honest session id and p ≥ 1.5.5.6.3 Proof of Theorem 5.10To formally prove the transfer theorem, we need one more lemma, which says that every honestprotocol session in the transformed protocol executes exactly like an honest protocol session inthe initial protocol without intruder interference. To state this formally we need some auxiliaryde�nitions �rst.Since for a session in the transformed protocol there are more actions (corresponding to theinitial phase), we de�ne the actions we are interested in.Let Π be an executable protocol. For an honest trace tr = (SId0, f0,H0)
α0−→ . . .

αn−−→
(SIdn, fn,Hn) and a partition [sid] where sid ∈ SIdh(tr) we de�ne Ix(tr, [sid]) to be the set ofindexes i such that:

• αi = new(r, a1, . . . , ak), where sid = (·, ·, (a1, . . . , ak)), or
• αi = send(sid′,m) and sid′ ∈ [sid], m accepted, and m = rcv

p
rσ, p ≥ 1, where sid′ = (·, r, ·)and fi(sid

′) = (σ, p + 1).Note that the de�nition of Ix(tr, [sid]) does not depend on the representative sid.Also, we write Exech(Π) for the set of honest execution traces of Π.Lemma 5.14 Let Π be a protocol and Π̃ the corresponding transformed protocol. Then ∀tr ∈
Exech(Π̃),∀sid ∈ SIdh(tr), there are tr0 ∈ Execp,1(Π), sid0 ∈ SId(tr0) and bijections I : Ix(tr, [sid]) →
Ix(tr0, [sid0]), g : Ag(sid) → Ag(sid0) and ϕ : [sid] → [sid0] such that ∀sid′ ∈ [sid], the samerole plays in sid′ and ϕ(sid′), and ∀i ∈ Ix(tr), f0

I(i)(ϕ(sid′)) = (σ0, p) with σ = σ0 ◦ g where
fi(sid

′) = (σ, p), tr = (fi, ·, ·)i and tr0 = (f0
j , ·, ·)j . Moreover, for these tr0, sid0 and bijectionsthe converse also holds, that is, ∀sid′0 ∈ SId(tr0),∀i0 ∈ Ix(tr0), fI−1(i0)(ϕ

−1(sid′0)) = (σ, p) with
σ = σ0 ◦ g where f0

i0
(sid′0) = (σ0, p).The proof of this lemma consists of a simple rewriting of the de�nition of honest traces intothe de�nition of honest, single session traces.We now proceed with the proof of the theorem. Consider an arbitrary closed formula φ ∈ L′such that Π |=p,1 φ.Let tr ∈ Exec(Π̃) = (SIdι, fι,Hι)1≤ι≤n. From Lemma 5.12 we know that tr ∈ Exech(Π̃). Alsolet σ ∈ LSr,p(tr) such that NC(σ(Al)) holds for all 1 ≤ l ≤ k. Hence there are an index ι with

1 ≤ ι ≤ n and a session id sid ∈ SId(tr) such that sid = (·, r, ·) and fι(sid) = (σ, p). Moreover,
sid ∈ SIdh(tr). We can suppose that ι ∈ Ix(tr, sid) because otherwise it would be easy to �ndanother index which has this property.Applying Lemma 5.14 we obtain that there are tr0 ∈ Execp,1(Π), sid0 ∈ SId(tr) and bijections
I : Ix(tr, [sid]) → Ix(tr0, [sid0]), g : Ag(sid) → Ag(sid0) and ϕ : [sid] → [sid0] satisfying certain155

Chapter 5. A transformation for obtaining secure protocolsproperties. In particular, if we let sid1 = ϕ(sid) and ι0 = I(ι) then we have f0
ι0

(sid1) = (σ0, p)with σ = σ0 ◦ g.Also, since tr0 is an honest, single session trace by its de�nition, we have that sid1 is an honestsession id. Then NC(σ0(Al)) is true in tr0 for all 1 ≤ l ≤ k. From the hypothesis we know that
[[φ, tr0]] = 1. Hence, since the left hand side of the implication holds for tr0, it follows that alsothe right hand side holds for tr0 and σ0 ∈ LSr,p(tr0), that is for ι0 and sid1.Fix an arbitrary i. What we have to prove depends on the form of the subformula in theright hand side of the implication.Consider �rst that Qi = ∃. Since [[φ, tr0]] = 1, there exist ι′0 in Ix(tr0, [sid1]) and sid′0 ∈
SId(tr0) such that the formulas τ i

j(u
i
j , v

i
j)[

σ0/ς][
σ′
0/ς′] hold for all j ∈ Ji, where sid′0 = (·, ri, ·) and

f0
ι′0

(sid′0) = (σ′0, pi). Let ι′ = I−1(ι′0) and sid′ = ϕ−1(sid′0). Again by Lemma 5.14 we have that
fι′(sid

′) = (σ′, pi) with σ′ = σ′0 ◦ g. Since σ, σ′ are equal with σ0, σ′0 respectively, modulo thesame bijective renaming g of agent identities, then it follows easily that τ i
j(u

i
j , v

i
j)[

σ/ς][
σ′
/ςi] aretrue for all j ∈ Ji. Hence the formula ∃ςi ∈ LSri,pi

∧
j∈Ji

τ i
j(u

i
j , v

i
j) is true.Consider now that Qi = ∃!. The existence of ι′ and sid′ is assured as in the previousparagraph. Let ς(X) with X a nonce (or key) variable be a subterm in ui

j or vi
j for some j ∈ Jiwith τ i

j ∈ {=}.Concerning uniqueness, assume there exist sid′′ ∈ SId(tr) and ι′′ ∈ Ix(tr) such that, in particu-lar (ui
j = vi

j)[
σ/ς][

σ′′
/ςi], where sid′′ = (·, ri, ·) and fι′′(sid

′′) = (σ′′, pi). Consider an occurrence of
ς(X) say in ui

j , at position q. There is an occurrence q′ in vi
j with q′ ≤ q such that (vi

j)|q′ = ς(Y)or (vi
j)|q′ = ςi(Y) where Y is a variable. Since we have uniqueness in the passive, single sessioncase then (vi

j)|q′ = ςi(Y). Hence Xσ occurs in both Y σ′ and Y σ′′.If Y was received in session sid′′ then there is an action αι′′1
= send(sid′′,m) such that

m = r̃cv
p′

ri
θ′, fι′′1

(sid′′) = (θ′, p′ + 1), fι′′1−1(sid
′′) = (θ, p′) and θ was not de�ned on Y . We alsohave σ′′ extends θ hence in particular Y σ′′ = Y θ. If Y was created (i.e. was initialised by a newaction) in sid′′ then it was also sent within some message m = s̃nt

p′

ri
θ, again with σ′′ extending θ.In both cases, since m is deducible from the intruder's knowledge and Xσ occurs in m we canapply now Lemma 5.13 to obtain that sid′′ is an honest session id and σ′′(nonces) = σ(nonces).If Y was also received in session sid′ then we can prove similarly that σ′(nonces) = σ(nonces).Intuitively, di�erent role sessions can't be played by the same role (i.e. ri) in the same protocolsession hence sid′ = sid′′. Formally, this is obtained from the equality N0

Ari
σ′ = N0

Ari
σ′′ takinginto account that N0

Ari
was initialised in both sessions.Finally consider that Qi = ∀.Suppose that there are ι′ and sid′ such that τ i

j(u
i
j , v

i
j)[

σ/ς][
σ′
/ςi] does not hold for some j ∈ Jiwhere sid′ = (·, ri, ·) and fι′(sid

′) = (σ′, pi). That is (ui
j = vi

j)[
σ/ς][

σ′
/ςi]. Let ς(X) with X anonce (or key) variable be a subterm in ui

j (the case vi
j is symmetric). Then, as before Xσoccurs in Y σ′′ where σ′′ = σ or σ′′ = σ′. If σ′′ = σ′ then again using Lemma 5.13 it followsthat sid′ is an honest session and σ′(nonces) = σ(nonces). Hence sid′ ∈ [sid]. Let ι′0 = I(ι′) and

sid′0 = ϕ(sid′0). We have (from Lemma 5.14 again) that σ′ = σ′0 ◦ g. Hence (ui
j = vi

j)[
σ0/ς][

σ′
0/ςi]which is a contradiction with the hypothesis for tr0, ι0 and σ0. Hence the supposition we madeis false.156

5.6. Conclusions5.6 ConclusionsWe have presented a general transformation for security protocols that essentially prevents anactive adversary to interfere with the executions of the protocol that involves only honest parties.An important consequence of our transformation is that it enables a transference theorem of anon-trivial class of security properties from a setting where no adversary is present to a settingwhere a fully active adversary may tamper with the protocol execution. The security propertiesthat are transferred include secrecy and various formulations of authentication.Finally, our transformation makes quite heavy use of expensive cryptographic primitives. Itis thus important to look for simpler transformations, and several possibilities can be explored.We could exchange and authenticate encryption keys in the preliminary phase by using theexisting public key infrastructure, instead of using a new such infrastructure. We could alsouse other primitives like signcryption (a public key cryptosystem for both signing and encrypt-ing), symmetric encryptions and macs, or use hybrid encryption (combine public and symmetricencryption).

157

Conclusions and perspectivesIn this thesis we have contributed to the analysis of security protocols in symbolic models byinvestigating less explored cryptographic primitives, security properties, and approaches to pro-tocol analysis.Concretely, the work done in this thesis is summarised below:
• We have formulated the constraint system approach [MS01] for arbitrary trace securityproperties and we have proved that its complexity is NP-time, as long as the securityproperty can be decided in polynomial time on simpler constraint systems (i.e. on solvedforms). As a consequence, we obtain an alternative proof of the complexity (i.e. NP-completeness) result [RT01] for secrecy for a bounded number of sessions, in the contextof constraint systems.
• We have applied the mentioned generic approach to the problem of detecting key cyclesand proved that this problem is NP-complete for a bounded number of sessions. As anotherapplication of this approach, we have also showed that secrecy remains NP-complete forprotocols which use timestamps.
• We have provided a resolution strategy for deciding a new class of Horn clauses modelingprotocols which use CBC encryption or blind signatures. We have applied this strategy tothe Needham-Schroeder symmetric key protocol which has a �aw when implemented withCBC encryption. We have �xed the protocol and automatically proved the correctness ofthe �xed version of the protocol.
• We have related the two standard secrecy notions, �simple� (reachability-based) secrecyand �strong� (equivalence-based) secrecy, by giving su�cient syntactic conditions on theprotocols for simple secrecy to imply strong secrecy. In this way, for (the class of) pro-tocols satisfying these conditions, we are able to transfer the existing results obtained forsimple secrecy to strong secrecy. As examples, we proved that the Yahalom, Otway-Rees,and Wide-Mouthed-Frog protocols preserve the strong secrecy of exchanged keys for anunbounded number of sessions.
• We have presented a transformation that maps a protocol secure in an extremely weaksense (essentially in a model where no adversary is present) into a protocol that is secureagainst a fully active adversary which interacts with an unbounded number of protocolsessions. The transformation preserves a large class of trace security properties containingsecrecy and authentication. 159

Conclusions and perspectivesPerspectivesModels for security protocols We have basically used two kinds of models for specifyingsecurity protocols in this thesis: one using pattern-matching and one using explicit destructors.It would be interesting to know precisely the di�erences between them, both at the modelinglevel and at the level of security guarantees. That is, is one of them able to express moreprotocols, or more faithfully some protocols? And are there attacks that can be captured withinone model and cannot be captured within the other? J. Millen [Mil03], and Ch. Lynch andC. Meadows [LM05] have performed such a comparison, but only in concrete settings (i.e. forsymmetric and asymmetric encryption respectively), while we would like to work in a generalsetting (e.g. with arbitrary primitives exhibiting algebraic properties). We believe that we havealready set up in Chapter 1 a part of the formalism necessary to perform such a comparison.Constraint systems and key cycles For a bounded number of sessions, we have treatedarbitrary trace properties by expressing them as predicates on lists of messages. It would benicer to express properties by formulas in some logic, as was done for example by R. Corinet al [CSE05] using a variant of LTL. However, to decide such security properties, they usedthe Millen-Shmatikov procedure as a black box, while we could also obtain the complexity ofchecking them.We have handled several notions of key cycles. However, still other variants of key cycles (orsimilar conditions) may already exist or appear in the future. It would then be nice to have aformalism which would allow to verify such properties in a modular manner.Also, our approach is valid for a bounded number of sessions only. Secrecy is undecidablein general [DLM04] for an unbounded number of sessions. Such an undecidability result couldbe easily adapted to the problem of detecting key cycles. Several decidable fragments have beendesigned [RS03, CLC03a, BP03b, VSS05] for secrecy and an unbounded number of sessions. Weplan to investigate how such fragments could be used to decide key cycles. An approach couldbe to encode Laud's deduction system [Lau02] (for detecting key cycles in the passive case) intoHorn clauses, and then to reuse or extend an existing fragment of Horn clauses to decide thesatis�ability of the resulting set of clauses.From a practical point of view, as the CL-AtSe back-end [Tur06] of the Avispa tool [ABB+05]basically shares the same underlying ideas as the constraint system approach, we hope that CL-AtSe can be relatively easily extended in order to handle key cycles and timestamps.Transformation from insecure to secure protocols In Chapter 3, we have applied ourresolution strategy for debugging of a protocol under a more realistic threat model than theone usually considered. We have transformed this protocol so that it falls into the scope of ourHorn class. This transformation preserves the attacks and therefore the correctness of the targetprotocol ensures the correctness of the initial one. The transformation is interesting in itself. Wewould like to further investigate this type of transformations and to characterise the protocolsto which they can be safely applied.From simple secrecy to strong secrecy We plan to further investigate the active case of ourtransfer result by trying to relax our conditions. There are several possible directions. Firstly,we may consider speci�c classes of protocols by restricting the syntax (for instance consideringping-pong protocols such as in [AC02, HS05]) to see whether it is possible to re�ne our results inthis setting. Secondly, we may relax the requirement that processes cannot test over the secret160

by requiring instead that the two branches of the test are indistinguishable. This is the casefor example when a test is followed in each branch by other tests that will never succeed whenthe �rst one is really applied to a secret data. This would require to consider more complexover-approximations of the set of sent messages. In particular, in the de�nition of the set E(P),we would have to consider trees instead of just paths potentially leading to the secret.Transformation to obtain secure protocols Our transfer result was established for proto-cols using standard Dolev-Yao primitives. We believe that we could relatively easily extend theresult such that to allow arbitrary primitives (with their properties) in the initial protocol. Wealso plan to investigate compositionality issues related to the transformation. For example, is thetransformed protocol still secure when used in parallel with other (non-)transformed protocols?One interesting avenue for future research it to obtain more general transference theoremsbetween the properties of the original protocol and those of the transformed protocol. It wouldbe also interesting to investigate the modular development approach implied by our results. Inparticular, it would be interesting to design a language for building �naive� speci�cation whichcan then be compiled into secure protocols using our transformation.Finally, from an e�ciency perspective, it is important to look for simpler transformationsthat make lighter use of cryptographic primitives, perhaps at the expense of ensuring weakersecurity guarantees for the resulting protocol. We note that the Katz and Yung compiler [KY03]is one example of such a transformation which deserves further investigation.

161

Conclusions and perspectives

162

Bibliography[AB02] Martín Abadi and Bruno Blanchet. Analyzing Security Protocols with Secrecy Typesand Logic Programs. In 29th Annual ACM SIGPLAN - SIGACT Symposium onPrinciples of Programming Languages (POPL 2002), pages 33�44, Portland, Oregon,January 2002. ACM Press.[Aba00] M. Abadi. Security protocols and their properties. In 20th Int. Summer School,Marktoberdorf, Germany, pages 39�60. IOS Press, 2000.[ABB+05] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Han-kes Drielsma, P.C. Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. vonOheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. TheAvispa tool for the automated validation of internet security protocols and appli-cations. In Proc. of Computer Aided Veri�cation (CAV'05), volume 3576 of LNCS,2005.[ABHS05] P. Adão, G. Bana, J. Herzog, and A. Scedrov. Soundness of formal encryption in thepresence of key-cycles. In Proc. 10th European Symposium on Research in ComputerSecurity (ESORICS'05), volume 3679 of LNCS, pages 374�396, 2005.[AC02] R. Amadio and W. Charatonik. On name generation and set-based analysis in thedolev-yao model. In Proc. CONCUR 02. Springer-Verlag, 2002., 2002.[AC04] Martín Abadi and Véronique Cortier. Deciding knowledge in security protocols underequational theories. In Josep Díaz, Juhani Karhumäki, Arto Lepistö, and DonaldSannella, editors, ICALP, volume 3142 of Lecture Notes in Computer Science, pages46�58. Springer, 2004.[AC05] Martín Abadi and Véronique Cortier. Deciding knowledge in security protocols under(many more) equational theories. In 18th IEEE Computer Security FoundationsWorkshop, (CSFW-18 2005), pages 62�76. IEEE Computer Society, 2005.[ACD07] Mathilde Arnaud, Véronique Cortier, and Stéphanie Delaune. Combining algorithmsfor deciding knowledge in security protocols. In Franck Wolter, editor, Proceedings ofthe 6th International Symposium on Frontiers of Combining Systems (FroCoS'07),volume 4720 of Lecture Notes in Arti�cial Intelligence, pages 103�117, Liverpool,UK, September 2007. Springer.[Adã06] P. Adão. Formal Methods for the Analysis of Security Protocols. PhD thesis, IST,Universidade Técnica de Lisboa, June 2006.163

Bibliography[AF01] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In28th ACM Symposium on Principles of Programming Languages (POPL'01), pages104�115. ACM Press, January 2001.[AFG02] Martìn Abadi, Cédric Fournet, and Georges Gonthier. Secure implementation ofchannel abstractions. Inf. Comput., 174(1):37�83, 2002.[AG97] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.In 4th ACM Conference on Computer and Communications Security (CCS'97), pages36�47. ACM Press, 1997.[AG98] Martín Abadi and Andrew D. Gordon. A bisimulation method for cryptographicprotocols. Nordic Journal of Computing, 5(4):267�303, 1998.[AL00] R. Amadio and D. Lugiez. On the reachability problem in cryptographic protocols.In 12th International Conference on Concurrency Theory (CONCUR'00), volume1877 of LNCS, pages 380�394, 2000.[AR00] M. Abadi and P. Rogaway. Reconciling two views of cryptography. In Proc. of theInternational Conference on Theoretical Computer Science (IFIP TCS'00), volume1872 of LNCS, pages 3�22, August 2000.[AR02] M. Abadi and Ph. Rogaway. Reconciling two views of cryptography (the computa-tional soundness of formal encryption). Journal of Cryptology, 2:103�127, 2002.[BAF05] B. Blanchet, M. Abadi, and C. Fournet. Automated Veri�cation of Selected Equiva-lences for Security Protocols. In 20th IEEE Symposium on Logic in Computer Science(LICS'05), pages 331�340. IEEE Computer Society Press, 2005.[BAN90] Michael Burrows, Martín Abadi, and Roger M. Needham. A logic of authentication.ACM Trans. Comput. Syst., 8(1):18�36, 1990.[Ban05] Gergei Bana. Soundness and completeness of formal logics of symmetric encryption.Cryptology ePrint Archive, Report 2005/101, 2005. http://eprint.iacr.org/.[Bau05] Mathieu Baudet. Deciding security of protocols against o�-line guessing attacks. InProceedings of the 12th ACM Conference on Computer and Communications Security(CCS'05), pages 16�25. ACM, November 2005.[Bau07] Mathieu Baudet. Sécurité des protocoles cryptographiques : aspects logiques et calcu-latoires. Thèse de doctorat, Laboratoire Spéci�cation et Véri�cation, ENS Cachan,France, January 2007.[BBN04] J. Borgström, S. Briais, and U. Nestmann. Symbolic bisimulations in the spi calculus.In 15th Conf on Concurrency Theory (CONCUR'04), volume 3170 of LNCS, pages161�176. Springer, 2004.[BC06] Vincent Bernat and Hubert Comon-Lundh. Normal proofs in intruder theories. InMitsu Okada and Ichiro Satoh, editors, Proceedings of the 11th Asian ComputingScience Conference (ASIAN'06), Lecture Notes in Computer Science, Tokyo, Japan,December 2006. Springer. To appear.164

[BCD07] Sergiu Bursuc, Hubert Comon-Lundh, and Stéphanie Delaune. Associative-commutative deducibility constraints. In Wolfgang Thomas and Pascal Weil, editors,Proceedings of the 24th Annual Symposium on Theoretical Aspects of Computer Sci-ence (STACS'07), volume 4393 of Lecture Notes in Computer Science, pages 634�645,Aachen, Germany, February 2007. Springer.[BCJ+06] Michael Backes, Iliano Cervesato, Aaron D. Jaggard, Andre Scedrov, and Joe-KaiTsay. Cryptographically sound security proofs for basic and public-key kerberos.In Proceedings of the 11th European Symposium on Research in Computer Security(ESORICS'06), volume 4189 of Lecture Notes in Computer Science, pages 362�383.Springer, 2006.[BCK98] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach to the de-sign and analysis of authentication and key exchange protocols (extended abstract).In STOC '98: Proceedings of the thirtieth annual ACM symposium on Theory ofcomputing, pages 419�428, New York, NY, USA, 1998. ACM Press.[BCR03] M. Bugliesi, A. Ceccato, and S. Rossi. Context-sensitive equivalences for non-interference based protocol analysis. In Fundamentals of Computation Theory, 14thInternational Symposium, volume 2751 of Lecture Notes in Computer Science, pages364�375. Springer, 2003.[BEL04] L. Bozga, C. Ene, and Y. Lakhnech. A symbolic decision procedure for cryptographicprotocols with time stamps. In Proc. 15th International Conference on ConcurrencyTheory (CONCUR'04), LNCS, pages 177�192, London, England, 2004. Springer-Verlag.[BFG04] K. Bhargavan, C. Fournet, and A. D. Gordon. A semantics for web services au-thentication. In 31st ACM Symposium on Principles of Programming Languages(POPL'04), pages 198�209. ACM, January 2004.[BFGT06] Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Stephen Tse. Ver-i�ed interoperable implementations of security protocols. In 19th IEEE ComputerSecurity Foundations Workshop, (CSFW-19 2006), pages 139�152. IEEE ComputerSociety, 2006.[BG01] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In John AlanRobinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, pages19�99. Elsevier and MIT Press, 2001.[BL06] Michael Backes and Peeter Laud. Computationally sound secrecy proofs by mech-anized �ow analysis. In Proceedings of 13th ACM Conference on Computer andCommunications Security (CCS), pages 370�379, November 2006.[Bla01] B. Blanchet. An e�cient cryptographic protocol veri�er based on prolog rules. InComputer Security Foundations Workshop (CSFW'01), pages 82�96. IEEE Comp.Soc. Press, 2001.[Bla02] Bruno Blanchet. From Secrecy to Authenticity in Security Protocols. In ManuelHermenegildo and Germán Puebla, editors, 9th International Static Analysis Sym-posium (SAS'02), volume 2477 of Lecture Notes on Computer Science, pages 342�359,Madrid, Spain, September 2002. Springer Verlag. 165

Bibliography[Bla04] B. Blanchet. Automatic Proof of Strong Secrecy for Security Protocols. In IEEESymposium on Security and Privacy (SP'04), pages 86�100, Oakland, California,May 2004.[Bla05] Bruno Blanchet. Security Protocols: From Linear to Classical Logic by AbstractInterpretation. Information Processing Letters, 95(5):473�479, September 2005.[Bla07] Bruno Blanchet. Computationally sound mechanized proofs of correspondence as-sertions. In 20th IEEE Computer Security Foundations Symposium (CSF'07), pages97�111, Venice, Italy, July 2007. IEEE.[BLP03] L. Bozga, Y. Lakhnech, and M. Périn. HERMES: An automatic tool for veri�cation ofsecrecy in security protocols. In 15th Int. Conference on Computer Aided Veri�cation(CAV'03), volume 2725 of LNCS, pages 219�222. Springer, 2003.[BN98] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge UniversityPress, New York, NY, USA, 1998.[BNP99] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Proof techniques for cryp-tographic processes. In Logic in Computer Science, pages 157�166, 1999.[BP03a] Michael Backes and Birgit P�tzmann. A cryptographically sound security proof of theNeedham-Schroeder-Lowe public-key protocol. In Proceedings of the 23rd Conferenceon the Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2003), volume 2914 of Lecture Notes in Computer Science, pages 1�12. Springer,2003.[BP03b] B. Blanchet and A. Podelski. Veri�cation of cryptographic protocols: Tagging en-forces termination. In Andrew Gordon, editor, Foundations of Software Scienceand Computation Structures (FoSSaCS'03), volume 2620 of LNCS, Warsaw, Poland,April 2003. Springer Verlag.[BP04] M. Backes and B. P�tzmann. Symmetric encryption in a simulatable Dolev-Yao stylecryptographic library. In Proc. 17th IEEE Computer Science Foundations Workshop(CSFW'04), pages 204�218, 2004.[BPS07] M. Backes, B. P�tzmann, and A. Scedrov. Key-dependent message security underactive attacks � BRSIM/UC-soundness of symbolic encryption with key cycles. InProc. of 20th IEEE Computer Security Foundation Symposium (CSF), June 2007.Preprint on IACR ePrint 2005/421.[BR93] M. Bellare and P. Rogaway. Entity authentication and key distribution. In Advancesin Cryptology � Crypto '93, 13th Annual International Cryptology Conference, vol-ume 773 of LNCS, pages 232�249, 1993.[CC05] Hubert Comon and Véronique Cortier. Tree automata with one memory set con-straints and cryptographic protocols. Theor. Comput. Sci., 331(1):143�214, 2005.[CD05] Hubert Comon-Lundh and Stéphanie Delaune. The �nite variant property: Howto get rid of some algebraic properties. In Jürgen Giesl, editor, Proceedings of the16th International Conference on Rewriting Techniques and Applications (RTA'05),volume 3467 of Lecture Notes in Computer Science, pages 294�307, Nara, Japan,April 2005. Springer.166

[CDE05] Ricardo Corin, Jeroen Doumen, and Sandro Etalle. Analysing password protocol se-curity against o�-line dictionary attacks. Electr. Notes Theor. Comput. Sci., 121:47�63, 2005.[CDF+07] Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet, Karthikeyan Bhargavan, andJames J. Leifer. Secure implementations for typed session abstractions. In Proceed-ings of the 20th IEEE Computer Security Foundations Symposium (CSF'07), pages170�186, Venice, Italy, July 2007. IEEE Computer Society.[CDL+00] Iliano Cervesato, Nancy Durgin, Patrick D. Lincoln, John C. Mitchell, and AndreScedrov. Relating Strands and Multiset Rewriting for Security Protocol Analysis.In 13th Computer Security Foundations Workshop � CSFW-13, pages 35�51, Cam-bridge, UK, 3�5 July 2000. IEEE Computer Society Press.[CDL06] Véronique Cortier, Stéphanie Delaune, and Pascal Lafourcade. A survey of algebraicproperties used in cryptographic protocols. Journal of Computer Security, 14(1):1�43, 2006.[CE02] Ricardo Corin and Sandro Etalle. An improved constraint-based system for the veri�-cation of security protocols. In M. Hermenegildo and G. Puebla, editors, Proceedingsof the 9th International Symposium on Static Analysis (SAS'02), volume 2477 ofLecture Notes in Computer Science, pages 326�341. Springer, September 2002.[CHW06] Véronique Cortier, Heinrich Hördegen, and Bogdan Warinschi. Explicit Randomnessis not Necessary when Modeling Probabilistic Encryption. In Workshop on Informa-tion and Computer Security (ICS 2006), Timisoara, Romania, September 2006.[CJ97] J. Clark and J. Jacob. A survey of authentication protocol literature. Available athttp://www.cs.york.ac.uk/~jac/papers/drareviewps.ps, 1997.[CJM00] E. M. Clarke, S. Jha, and W. Marrero. Verifying security protocols with Brutus.ACM Trans. Softw. Eng. Methodol., 9(4):443�487, 2000.[CJT+06] Iliano Cervesato, Aaron D. Jaggard, Joe-Kai Tsay, Andre Scedrov, and ChristopherWalstad. Breaking and Fixing Public-Key Kerberos. In Mitsu Okada and IchiroSatoh, editors, Eleventh Annual Asian Computing Science Conference � ASIAN'06,pages 164�178, Tokyo, Japan, 6�8 December 2006.[CKRT03] Y. Chevalier, R. Kuesters, M. Rusinowitch, and M. Turuani. An NP Decision Pro-cedure for Protocol Insecurity with XOR. In Proc. of the Logic In Computer ScienceConference LICS'03, June 2003.[CL04] H. Comon-Lundh. Résolution de contraintes et recherche d'attaques pour un nombreborné de sessions. Available at http://www.lsv.ens-cachan.fr/~comon/CRYPTO/bounded.ps, 2004.[CLC03a] H. Comon-Lundh and V. Cortier. New decidability results for fragments of �rst-orderlogic and application to cryptographic protocols. In Proc. of the 14th Int. Conf. onRewriting Techniques and Applications (RTA'2003), volume 2706 of Lecture Notesin Computer Science, pages 148�164, Valencia (Spain), June 2003. Springer-Verlag.167

Bibliography[CLC03b] H. Comon-Lundh and V. Cortier. Security properties: two agents are su�cient. InProc. of the 12th European Symposium On Programming (ESOP'03), volume 2618of Lecture Notes in Computer Science, pages 99�113, Warsaw (Poland), April 2003.Springer-Verlag.[CLR07] Yannick Chevalier, Denis Lugiez, and Michaël Rusinowitch. Towards an automaticanalysis of web service security. In 6th International Symposium on Frontiers of Com-bining Systems, FroCoS 2007, volume 4720 of Lecture Notes in Computer Science,pages 133�147. Springer, 2007.[CLS03] H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving andinsecurity decision in presence of exclusive or. In Proc. of 18th Annual IEEE Sym-posium on Logic in Computer Science (LICS '03), pages 271�280, 2003.[Cor03] Véronique Cortier. Véri�cation automatique des protocoles cryptographiques. PhDthesis, École Normale Supérieure de Cachan, Cachan (France), March 2003.[Cor06] R. Corin. Analysis Models for Security Protocols. PhD thesis, University of Twente,The Netherlands, Twente (Netherlands), 2006.[CR06] Yannick Chevalier and Michaël Rusinowitch. Hierarchical combination of intrudertheories. In 17th International Conference on Term Rewriting and Applications, RTA2006, volume 4098 of Lecture Notes in Computer Science, pages 108�122. Springer,2006.[CRZ05] Véronique Cortier, Michaël Rusinowitch, and Eugen Z linescu. A Resolution Strat-egy for Verifying Cryptographic Protocols with CBC Encryption and Blind Signa-tures. In Pedro Barahona and Amy P. Felty, editors, Proceedings of the 7th ACM-SIGPLAN International Conference on Principles and Practice of Declarative Pro-gramming (PPDP'05), pages 12�22, Lisboa, Portugal, July 2005. ACM Press.[CRZ06] Véronique Cortier, Michaël Rusinowitch, and Eugen Z linescu. Relating two stan-dard notions of secrecy. In Zoltan Esik, editor, Proceedings of the 20th InternationalConference on Computer Science Logic (CSL'06), volume 4207 of Lecture Notes inComputer Science, pages 303�318, Szeged, Hungary, September 2006. Springer.[CSE05] R. J. Corin, A. Saptawijaya, and S. Etalle. Ps-ltl for constraint-based security pro-tocol analysis. In M. Gabbrielli and G. Gupta, editors, Logic Programming, 21stInternational Conference, ICLP 2005, Sitges, Spain, volume 3668 of Electronic Notesin Theoretical Computer Science, pages 439�440. Springer Verlag, October 2005.[CW05] V. Cortier and B. Warinschi. Computationally Sound, Automated Proofs for SecurityProtocols. In European Symposium on Programming (ESOP'05), volume 3444 ofLNCS, pages 157�171. Springer, April 2005.[CWZ07] Véronique Cortier, Bogdan Warinschi, and Eugen Z linescu. Synthesizing secureprotocols. In Joachim Biskup and Javier Lopez, editors, Proceedings of the 12th Eu-ropean Symposium On Research In Computer Security (ESORICS'07), volume 4734of Lecture Notes in Computer Science, pages 406�421, Dresden, Germany, September2007. Springer.168

[CZ06] Véronique Cortier and Eugen Z linescu. Deciding key cycles for security protocols.In Miki Hermann and Andrei Voronkov, editors, Proceedings of the 13th Interna-tional Conference on Logic for Programming, Arti�cial Intelligence, and Reasoning(LPAR'06), volume 4246 of Lecture Notes in Arti�cial Intelligence, pages 317 � 331,Phnom Penh, Cambodia, November 2006. Springer.[DDMP05] Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic. A derivationsystem and compositional logic for security protocols. J. Comput. Secur., 13(3):423�482, 2005.[DEK82] Danny Dolev, Shimon Even, and Richard M. Karp. On the security of ping-pongprotocols. Information and Control, 55(1-3):57�68, 1982.[Del06] Stéphanie Delaune. Véri�cation des protocoles cryptographiques et propriétés al-gébriques. PhD thesis, École Normale Supérieure de Cachan, Cachan (France), June2006.[DJ04] Stéphanie Delaune and Florent Jacquemard. A decision procedure for the veri�ca-tion of security protocols with explicit destructors. In Vijayalakshmi Atluri, BirgitP�tzmann, and Patrick McDaniel, editors, Proceedings of the 11th ACM Conferenceon Computer and Communications Security (CCS'04), pages 278�287, Washington,D.C., USA, October 2004. ACM Press.[DKR06] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Coercion-resistance andreceipt-freeness in electronic voting. In Proceedings of the 19th IEEE ComputerSecurity Foundations Workshop (CSFW'06), pages 28�39, Venice, Italy, July 2006.IEEE Computer Society Press.[DLL07] Stéphanie Delaune, Hai Lin, and Christopher Lynch. Protocol veri�cation via rigid/�exible resolution. In Nachum Dershowitz and Andrei Voronkov, editors, Proceed-ings of the 14th International Conference on Logic for Programming, Arti�cial In-telligence, and Reasoning (LPAR'07), volume 4790 of Lecture Notes in Arti�cialIntelligence, pages 242�256, Yerevan, Armenia, October 2007. Springer.[DLLT06] Stéphanie Delaune, Pascal Lafourcade, Denis Lugiez, and Ralf Treinen. Symbolic pro-tocol analysis in presence of a homomorphism operator and exclusive or . In MicheleBuglesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Proceedingsof the 33rd International Colloquium on Automata, Languages and Programming(ICALP'06) � Part II, volume 4052 of Lecture Notes in Computer Science, pages132�143, Venice, Italy, July 2006. Springer.[DLLT07] Stéphanie Delaune, Pascal Lafourcade, Denis Lugiez, and Ralf Treinen. Symbolicprotocol analysis for monoidal equational theories. Information and Computation,2007. To appear.[DLM04] N. Durgin, P. Lincoln, and J. Mitchell. Multiset rewriting and the complexity ofbounded security protocols. Journal of Computer Security, 12(2):247�311, 2004.[DLMS99] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of boundedsecurity protocols. In Workshop on Formal Methods and Security Protocols, Trento,Italia, 1999. 169

Bibliography[DNL99] B. Donovan, P. Norris, and G. Lowe. Analyzing a library of security protocols usingCasper and FDR, July 1999.[DSV00] L. Durante, R. Sisto, and A. Valenzano. A state-exploration technique for spi-calculustesting equivalence veri�cation. In Formal Techniques for Distributed System Devel-opment (FORTE/PSTV 2000), volume 183 of IFIP Conference Proceedings, pages155�170. Kluwer, 2000.[DY83] Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEETransactions on Information Theory, 29(12):198�208, 1983.[EG83] Shimon Even and Oded Goldreich. On the security of multi-party ping-pong proto-cols. In IEEE Symposium on Foundations of Computer Science, pages 34�39, 1983.[EHHN99] A. Elkjær, M. Höhle, H. Hüttel, and K. Nielsen. Towards automatic bisimilaritychecking in the spi calculus. Combinatorics, Computation, and Logic: Proceedings ofDMTCS'99 and CATS'99, 21(3):175�189, 1999.[FB01] Wayne Snyder Franz Baader. Uni�cation theory. In John Alan Robinson and AndreiVoronkov, editors, Handbook of Automated Reasoning, pages 445�532. Elsevier andMIT Press, 2001.[FGM00] R. Focardi, R. Gorrieri, and F. Martinelli. Non interference for the analysis ofcryptographic protocols. In Automata, Languages and Programming, pages 354�372,2000.[FLHT01] Christian Fermüller, Alexander Leitsch, Ullrich Hustadt, and Tanel Tammet. Res-olution decision procedures. In John Alan Robinson and Andrei Voronkov, editors,Handbook of Automated Reasoning, pages 1791�1849. Elsevier and MIT Press, 2001.[FOO92] A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for largescale elections. In Advances in Cryptology - AUSACRYPT'92, volume 718 of LectureNotes in Computer Science, pages 244�251. Springer-Verlag, 1992.[Frö07] Sibylle Fröschle. The insecurity problem: tackling unbounded data. In IEEE Com-puter Security Foundations Symposium 2007. IEEE Computer Society, 2007.[Gam85] Taher El Gamal. A public key cryptosystem and a signature scheme based on discretelogarithms. In Proceedings of CRYPTO 84 on Advances in cryptology, pages 10�18.Springer-Verlag, 1985.[GK00] Thomas Genet and Francis Klay. Rewriting for cryptographic protocol veri�cation.In Conference on Automated Deduction, pages 271�290, 2000.[GM82] Joseph A. Goguen and José Meseguer. Security policies and security models. InIEEE Symposium on Security and Privacy, pages 11�20, 1982.[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer andSystem Sciences, 28:270�299, 1984.[GM92] Joseph A. Goguen and José Meseguer. Order-sorted algebra i: Equational deduc-tion for multiple inheritance, overloading, exceptions and partial operations. Theor.Comput. Sci., 105(2):217�273, 1992.170

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC'87: Proceedings of the nineteenth annual ACM conference on Theory of computing,pages 218�229, New York, NY, USA, 1987. ACM Press.[Gou00] Jean Goubault-Larrecq. A method for automatic cryptographic protocol veri�cation(extended abstract). In José D. P. Rolim, editor, Proceedings of the Workshops ofthe 15th International Parallel and Distributed Processing Symposium, volume 1800of Lecture Notes in Computer Science, pages 977�984, Cancun, Mexico, May 2000.Springer.[GP05] Jean Goubault-Larrecq and Fabrice Parrennes. Cryptographic protocol analysis onreal C code. In Radhia Cousot, editor, Proceedings of the 6th International Con-ference on Veri�cation, Model Checking and Abstract Interpretation (VMCAI'05),volume 3385 of Lecture Notes in Computer Science, pages 363�379, Paris, France,January 2005. Springer.[GS95] Li Gong and Paul Syverson. Fail-stop protocols: An approach to designing secureprotocols. In Proceedings of the 5th International Working Conference on DependableComputing for Critical Applications (DCCA-5), pages 44�55, 1995.[HS05] H. Hüttel and J. Srba. Recursion versus replication in simple cryptographic protocols.In 31st Conference on Current Trends in Theory and Practice of Computer Science(SOFSEM'05), volume 3381 of LNCS, pages 178�187, 2005.[Hui99] A. Huima. E�cient in�nite-state analysis of security protocols, 1999.[Hüt02] H. Hüttel. Deciding framed bisimilarity. In INFINITY'02, August 2002.[Jan06] Romain Janvier. Lien entre modèles symboliques et computationnels pour le proto-coles cryptographiques utilisant des hachage. PhD thesis, Université Joseph Fourier,Grenoble (France), September 2006.[JLM05] R. Janvier, Y. Lakhnech, and L. Mazare. (De)Compositions of CryptographicSchemes and their Applications to Protocols. Cryptology ePrint Archive, Report2005/020, 2005.[JRV00] Florent Jacquemard, Michaël Rusinowitch, and Laurent Vigneron. Compiling andverifying security protocols. In Logic Programming and Automated Reasoning, pages131�160, 2000.[KKT07] D. Kähler, R. Küsters, and T. Truderung. In�nite State AMC-Model Checking forCryptographic Protocols. In Proceedings of the Twenty-Second Annual IEEE Sym-posium on Logic in Computer Science (LICS 2007), pages 181�190. IEEE, ComputerSociety Press, 2007.[KKW05] D. Kähler, R. Küsters, and Th. Wilke. Deciding Properties of Contract-SigningProtocols. In V. Diekert and B. Durand, editors, Proceedings of the 22nd Symposiumon Theoretical Aspects of Computer Science (STACS 2005), number 3404 in LectureNotes in Computer Science, pages 158�169. Springer-Verlag, 2005.[KKW07] K.O. Kürtz, R. Küsters, and Th. Wilke. Selecting theories and nonce generation forrecursive protocols. In FMSE, 2007. To appear. 171

Bibliography[KR05] S. Kremer and M. Ryan. Analysis of an Electronic Voting Protocol in the AppliedPi-Calculus. In Mooly Sagiv, editor, Proceedings of the 14th European Symposium onProgramming (ESOP'05), volume 3444 of Lecture Notes in Computer Science, pages186�200, Edinburgh, U.K., April 2005. Springer-Verlag.[KY03] J. Katz and M. Yung. Scalable protocols for authenticated group key exchange. InProceedings of Crypto'03, pages 110�125. Springer-Verlag, 2003.[Laf06] Pascal Lafourcade. Véri�cation des protocoles cryptographiques en présence dethéories équationnelles. Thèse de doctorat, Laboratoire Spéci�cation et Véri�cation,ENS Cachan, France, September 2006. 209 pages.[Lau02] P. Laud. Encryption cycles and two views of cryptography. In Nordic Workshop onSecure IT Systems (NORDSEC'02), 2002.[LLT05] P. Lafourcade, D. Lugiez, and R. Treinen. Intruder deduction for AC-like equationaltheories with homomorphisms. In Proceedings of the 16th International Conferenceon Rewriting Techniques and Applications (RTA'05), volume 3467 of Lecture Notesin Computer Science, pages 308�322, Nara (Japan), April 2005. Springer-Verlag.[LM05] Christopher Lynch and Catherine Meadows. On the relative soundness of the free al-gebra model for public key encryption. Electr. Notes Theor. Comput. Sci., 125(1):43�54, 2005.[LMH07] Juan C. López, Raúl Monroy, and Dieter Hutter. On the automated correction ofsecurity protocols susceptible to a replay attack. In Proceedings of the 11th Euro-pean Symposium on Research in Computer Security (ESORICS'07), volume 4734 ofLecture Notes in Computer Science, pages 594�609. Springer, 2007.[LMMS98] Patrick Lincoln, John C. Mitchell, Mark Mitchell, and Andre Scedrov. A probabilisticpoly-time framework for protocol analysis. In ACM Conference on Computer andCommunications Security, pages 112�121, 1998.[Low96] G. Lowe. Breaking and �xing the Needham-Schroeder public-key protocol usingFDR. In Margaria and Ste�en, editors, Tools and Algorithms for the Constructionand Analysis of Systems (TACAS'96), volume 1055 of Lecture Notes on ComputerScience, pages 147�166. Springer-Verlag, 1996.[Low97] G. Lowe. A hierarchy of authentication speci�cations. In Proc. of the 10th ComputerSecurity Foundations Workshop (CSFW'97), pages 31�44. IEEE Computer SocietyPress, 1997.[Low99] Gavin Lowe. Towards a completeness result for model checking of security protocols.Journal of Computer Security, 7(1), 1999.[Maz06] Laurent Mazaré. Computational Soundness of Symbolic Models for CryptographicProtocols. Thèse de doctorat, Institut National Polytechnique de Grenoble, France,October 2006.[McA93] David A. McAllester. Automatic recognition of tractability in inference relations.Journal of the ACM, 40(2):284�303, 1993.172

[Mea96] Catherine Meadows. The NRL protocol analyzer: An overview. Journal of LogicProgramming, 26(2):113�131, 1996.[Mil03] Jonathan K. Millen. On the freedom of decryption. Inf. Process. Lett., 86(6):329�333,2003.[MMS97] John C. Mitchell, Mark Mitchell, and Ulrich Stern. Automated analysis of cryp-tographic protocols using Mur-phi. In IEEE Symposium on Security and Privacy,pages 141�151, 1997.[Mon99] David Monniaux. Abstracting cryptographic protocols with tree automata. In SixthInternational Static Analysis Symposium (SAS'99), number 1694 in Lecture Notesin Computer Science, pages 149�163. Springer Verlag, 1999.[MS01] J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographicprotocol analysis. In 8th ACM Conference on Computer and Communication Secu-rity, pages 166�175. ACM SIGSAC, November 2001.[MVO96] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook ofApplied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1996.[MW04a] D. Micciancio and B. Warinschi. Soundness of formal encryption in the presenceof active adversaries. In Proc. Theory of Cryptography Conference (TCC'04), pages133�151, 2004.[MW04b] Daniele Micciancio and Bogdan Warinschi. Completeness theorems for the Abadi-Rogaway logic of encrypted expressions. Journal of Computer Security, 12(1):99�129,2004. Preliminary version in WITS 2002.[NS78] R. M. Needham and M. D. Schroeder. Using encryption for authentication in largenetworks of computers. Commun. ACM, 21(12):993�999, 1978.[Pau98] Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols.Journal of Computer Security, 6(1-2):85�128, 1998.[Pau01] L. C. Paulson. Relations between secrets: Two formal analyses of the Yahalomprotocol. Journal of Computer Security, 9(3):197�216, 2001.[PQ00] O. Pereira and J.-J. Quisquater. On the perfect encryption assumption. In Proc.of the 1st Workshop on Issues in the Theory of Security (WITS'00), pages 42�45,Geneva (Switzerland), 2000.[PS00] Adrian Perrig and Dawn Song. Looking for diamonds in the desert � extendingautomatic protocol generation to three-party authentication and key agreement pro-tocols. In Computer Security Foundations Workshop (CSFW '00), 2000.[PSW00] Birgit P�tzmann, Matthias Schunter, and Michael Waidner. Cryptographic securityof reactive systems. Electr. Notes Theor. Comput. Sci., 32, 2000.[RS03] R. Ramanujam and S.P.Suresh. Tagging makes secrecy decidable for unboundednonces as well. In 23rd Conference on Foundations of Software Technology andTheoretical Computer Science (FSTTCS'03), Mumbai, 2003. 173

Bibliography[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signaturesand public-key cryptosystems. Commun. ACM, 21(2):120�126, 1978.[RT01] M. Rusinowitch and M. Turuani. Protocol insecurity with �nite number of sessionsis NP-complete. In Proc. of the 14th Computer Security Foundations Workshop(CSFW'01), pages 174�190. IEEE Computer Society Press, 2001.[RT03] M. Rusinowitch and M. Turuani. Protocol insecurity with �nite number of sessionsand composed keys is NP-complete. Theoretical Computer Science, 299:451�475,April 2003.[SBP01] Dawn Xiaodong Song, Sergey Berezin, and Adrian Perrig. Athena: A novel ap-proach to e�cient automatic security protocol analysis. Journal of Computer Secu-rity, 9(1/2):47�74, 2001.[Sch93] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code inC. John Wiley & Sons, Inc., New York, NY, USA, 1993.[Sch98] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1998.[SP03] E. Sumii and B. Pierce. Logical relations for encryption. Journal of ComputerSecurity, 11(4):521�554, 2003.[Spo] Security protocols open repository. http://www.lsv.ens-cachan.fr/spore.[SV05] H. Seidl and K. N. Verma. Flat and one-variable clauses: Complexity of verifyingcryptographic protocols with single blind copying. In Proc. of 11th InternationalConference on Logic for Programming and Automated Reasoning (LPAR'04), volume3452 of Lecture Notes in Computer Science, pages 79�94, Montevideo (Uruguay),2005. Springer-Verlag.[SV06] Helmut Seidl and Kumar Neeraj Verma. Cryptographic protocol veri�cation usingtractable classes of Horn clauses. In Program Analysis and Compilation, Theoryand Practice, Essays Dedicated to Reinhard Wilhelm on the Occasion of His 60thBirthday, volume 4444 of Lecture Notes in Computer Science, pages 97�119. Springer,2006.[Tur06] Mathieu Turuani. The CL-Atse Protocol Analyser. In Term Rewriting and Appli-cations - Proc. of RTA, volume 4098 of Lecture Notes in Computer Science, pages277�286, Seattle, WA, USA, 2006.[VIS96] D. Volpano, C. Irvine, and G. Smith. A sound type system for secure �ow analysis.J. Comput. Secur., 4(2-3):167�187, 1996.[VSS05] K. N. Verma, H. Seidl, and Th. Schwentick. On the complexity of equational Hornclauses. In 22th International Conference on Automated Deduction (CADE 2005),volume 3632 of LNCS, pages 337�352. Springer-Verlag, 2005.[War05] Bogdan Warinschi. A computational analysis of the Needham-Schroeder-(Lowe) pro-tocol. J. Comput. Secur., 13(3):565�591, 2005.[Wei99] Christoph Weidenbach. Towards an automatic analysis of security protocols in �rst-order logic. In 16th International Conference on Automated Deduction (CADE-16),volume 1632 of Lecture Notes in Computer Science, pages 314�328. Springer, 1999.174

[WL94] Thomas Y. C. Woo and Simon S. Lam. A lesson on authentication protocol design.Operating Systems Review, 28(3):24�37, 1994.[ZM01] S. Zdancewic and A. Myers. Robust declassi�cation. In Proceedings of the 14th IEEEComputer Security Foundations Workshop, pages 15�23, 2001.

175

