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A program is

a text

in a programming language.
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A program is

a text

in a programming language.

We want to give a meaning to this language!
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The Curry-Howard correspondence

• Typing programs can avoid some errors

1 : int

• The Curry-Howard correspondence:

type of a program = formula
program = proof of its type

• Studying programs is the same as studying proofs.
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Denotational semantics

A model interprets

• a type A as a computation space JAK
• a program f : A⇒ B as a transformation Jf K : JAK→ JBK

A⇒ B : f ///o/o/o Jf K : JAK→ JBK

f ′ Jf ′K

denotational semantics = program invariants

6 / 64



Denotational semantics

A denotational model interprets

• a type A as a computation space JAK
• a program f : A⇒ B as a transformation Jf K : JAK→ JBK

A⇒ B : f

β

��

///o/o/o Jf K : JAK→ JBK

f ′ ///o/o/o Jf ′K

denotational semantics = program invariants

6 / 64



Here, a program will be modeled by its
interactive behavior

i.e. by the way it reacts to information provided by its
environment.

(fun x → not x)false  true
(fun x → not x)true  false

⇒ Game Semantics!
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Outline

Programs do actions in a particular order. . .

We study the causality induced by programs in two frameworks:

1 Asynchronous Games

2 2-Dimensional Rewriting
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Part I

Causality in Asynchronous Games
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Game semantics

• A type A is interpreted as a game.

• A program f : A is interpreted as a strategy playing on the
game associated to A.
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Event structures

Definition
An event structure (E ,≤,#) is

• a set E of events (or moves)

• equipped with a partial order ≤ of causal dependency

• and a binary relation # of incompatibility.

q

��~~~~~~~~

��????????

V # F

11 / 64



Games

Definition
A game is

• an event structure (M,≤,#)

• equipped with a polarisation function λ : M → {−1,+1}
which indicates if a move is Opponent or Player.

bool =

q

��~~~~~~~~

��????????

V # F
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The game

bool⇒

bool :

q

q

��~~~~~~~~

��????????

V # F

V # F
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The game bool⇒ bool :

q

��~~~~~~~~

��???????? q

��~~~~~~~~
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V # F V # F
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Strategies

Definition
A play is a sequence of moves which respects the partial order and
the incompatibility relation.

Definition
A strategy is a set of plays.
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The strategy not:

bool ⇒ bool

q

q

VF

FV
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The characterizations of definable strategies capture the
interactive behavior of programs.

Two series of works laid the foundations of game semantics:

• fully complete models of MLL [AJ,HO]

• fully abstract models of PCF [AJM,HON]

imposing conditions on strategies:

• innocence, bracketing, . . .

extended later on to model various programming features:

• references, control, non-determinism, . . .
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How can we extend these results to concurrent languages?
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Concurrent computations

Computations are more and more performed in parallel:

• networks,

• multi-core processors,

• etc.

which raises new problems:

• synchronization

• shared resources

which raises new questions:

• how can we describe these computations?
(π-calculus, bigraphs, interaction nets, . . . )

• how can we type them?

• how can we model them?
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We are going to define a game semantics which captures
concurrency in programs and proofs.
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Revisiting game semantics

Our games are

• asynchronous:

sequential plays are replaced by Mazurkiewicz traces

• non-alternating.
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Linear Logic

We consider here MALL formulas (without units):

` Γ,A,B

` Γ,A` B
(`)

` Γ1,A ` Γ2,B

` Γ1, Γ2,A⊗ B
(⊗)

` Γ,A ` Γ,B

` Γ,A & B
(&)

` Γ,A

` Γ,A⊕ B
(⊕)
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Mixing points of view

Asynchronous games provide a model in which we can recover

• trace semantics (games),

• causal semantics (event structures),

• relational semantics,

• concurrent semantics (closure operators),

in which we characterize

• a fully complete model of MLL (without units),

• HO innocent strategies in LL,

by using ideas coming from

• game semantics,

• concurrency theory,

• linear logic,

• category theory.
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The asynchronous graph of a game

bool

q

��~~~~~~~~

��????????

V # F

7→

∅
q

��
{q}

V

{{

F

##
{q,V } {q,F}

• Position: downward-closed set of compatible moves.

• Play: path from the initial position ∅.
• Strategy: prefix-closed set of plays.
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The asynchronous graph of a game

o

q 7→

∅
q

��
{q}

{q} {qL, qR} {q}
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The asynchronous graph of a game

o⊗ o

qL qR 7→

∅
qL

zz

qR

%%
{qL}

qR $$

∼

{qR}

qLzz
{qL, qR}

23 / 64
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Implementations of conjunction

Left implementation of conjunction:

bool ⊗ bool ( bool

q

qL

qR

VL

FR

qL

qR

VL

FR

F
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Strategies of conjunction
The game bool⊗ bool( bool contains eight subgraphs:
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Strategies of conjunction
Parallel implementation of conjunction:
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We want to understand the behavior of strategies
generated by proofs in linear logic.

We are going to enforce a series of diagrammatic axioms
on our strategies.
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An MLL proof

...

A∗,A

...

B∗,B

A∗ ⊗ B∗,A,B
(⊗)

A∗ ⊗ B∗,A` B
(`)

...

C ∗,C

A∗ ⊗ B∗,C ∗, (A` B)⊗ C
(⊗)

(A∗ ⊗ B∗)` C ∗, (A` B)⊗ C
(`)

((A∗ ⊗ B∗)` C ∗)` ((A` B)⊗ C )
(`)

• A formula induces a partial order on its connectives.

• A proof is a way to explore the formula
i.e. a partial order on the moves which refines the partial
order of the game.
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The Cube property

• Every partial order induces an asynchronous graph.

• Conversely, every asynchronous graph such that

x
m

~~||||||||

��

o //

∼

x2

n

��

x1

n

��

∼

x3

~~}}}}}}}}
//

∼

y1

m
��~~~~~~~~

y2 o
// y

⇐⇒

x
m

��~~~~~~~~
∼

o // x2

~~}}}}}}}}

n

��

x1

n

��

∼

// y3

∼

��

y1

m
~~}}}}}}}}

y2 o
// y

has its homotopy classes are characterized by a partial order
on the moves appearing in the paths.
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Asynchronous games

Definition
A game is a pointed asynchronous graph satisfying the Cube
property.
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We are going to consider strategies σ which

• are positional (or history-free):

σ 3

∗
s
�� ��
x

u

��
y

and

∗
s
�� ��
∼ t
����

x and

∗
t
����

x ∈ σ implies

∗
t
����

x

u

��
y

∈ σ

i.e. characterized by the subgraph of the game they explore.

• satisfy the Cube property.
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These properties are not preserved by composition of strategies!
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Ingenuous strategies

Definition
A strategy σ : A is deterministic when

x
σ3m

~~}}}}}}}
n∈σ

  AAAAAAA

y1 y2 implies

x
σ3m

~~||||||||
n∈σ

  BBBBBBBB

y1

σ3n   BBBBBBBB ∼ y2

m∈σ~~||||||||

z

where m is a Player move.

Definition
A strategy σ is ingenuous when

1 it satisfies the preceding conditions,

2 it is deterministic.
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Property

Ingenuous strategies compose and form a ∗-autonomous category
(which is compact closed).
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This category still has “too many” strategies!

A⊗ B = A` B
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Halting positions

In the spirit of the relational model, a strategy σ should be
characterized by its set σ◦ of halting positions.

Definition
A halting position of a strategy σ is a position x such that there
is no Player move m : x −→ y that σ can play.
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The game bool⊗ bool contains the subgraph:

∗ ⊗ ∗
qL

yy

qR

%%
q ⊗ ∗

VL

zz
qR

%%

∼ ∗ ⊗ q

qL

zz

FR

$$
V ⊗ ∗

qR $$

∼ q ⊗ q

VL

zz
FR

$$

∼ ∗ ⊗ F

qLzz
V ⊗ q

FR $$

∼ q ⊗ F

VLzz
V ⊗ F

36 / 64



The pair true⊗ false:

∗ ⊗ ∗
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The left biased pair true 4 false:
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Courteous strategies

Definition
An ingenuous strategy σ is courteous when it satisfies

x
σ3m

~~||||||||
n

  
y1

σ3n   BBBBBBBB ∼ y2

m
~~

z

implies

x
σ3m

~~||||||||
n∈σ

  BBBBBBBB

y1

σ3n   BBBBBBBB ∼ y2

m∈σ~~||||||||

z

where m is a Player move.

Theorem
A courteous ingenuous strategy σ is characterized by its set σ◦ of
halting positions.
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Concurrent strategies
The halting positions of such a strategy σ : A are precisely the
fixpoints of a closure operator on the positions of A.
• We thus recover the model of concurrent strategies.
• A semantical counterpart of the focalization property:

strategies can play all their Player moves in one “cluster” of
moves.

∗ ⊗ ∗
qL
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%%KKKKKK
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The operation (−)◦ from the category of games
to the category of relations is not functorial!

Games

��

Proofs

99rrrrrrrrrr

%%LLLLLLLLLL

Rel
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This mismatch is essentially due to deadlock situations
occurring during the interaction.
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Scheduled strategies: avoiding deadlocks
Composing the right implementation of the conjunction
with the left biased pair true 4 false leads to a deadlock.

• The culprit is the pair, since it induces dependencies between
components of the tensor product bool⊗ bool.

• This can be detected by a dynamic scheduling criterion,
which enforces an oriented version of the correctness criterion.

A⊗ B = (A 4 B ∪ A 5 B)⊥
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Outcome

• We reconstruct the concurrent game model
(closure operators).

• We thus obtain a model of MALL, fully complete for MLL
(without units).

• Two diagrammatic axioms enable us to characterize
HO innocent strategies in this model.

Asynchronous games constitute a rich and unifying framework in
which we can study concurrent situations and compare various
models.
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Part II

Causality in String Diagrams
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The structure of causality

• We have studied the structure of interactive traces generated
by proofs, but what is the structure of causality between
moves?

• We have given an external characterization of strategies
generated by proofs (by restricting the space of strategies),
can we give an internal characterization by generating those
strategies?

We are going to give a presentation of a category of games and
strategies in a simple case.
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First-order propositional logic

• Formulas:

A ::= ∀x .A | ∃x .A | P(x) | . . .

• Rules:

Γ ` P,∆

Γ ` ∀x .P,∆(∀)
Γ ` P[t/x ],∆

Γ ` ∃x .P,∆ (∃)

(with x 6∈ FV(Γ,∆))
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Causality in proofs

π

Γ ` A,B,∆

Γ ` A, ∀y .B,∆(∀)

Γ ` ∀x .A, ∀y .B,∆ (∀)

 

π

Γ ` A,B,∆

Γ ` ∀x .A,B,∆(∀)

Γ ` ∀x .A,∀y .B,∆ (∀)

O

���������
O

��

O ��??????? ∼

O��

implies

O

���������
O

��???????

O ��??????? ∼

O���������

Only when x 6∈ FV(t)!
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Causality in proofs

Essential causal dependencies induced by proofs are

∀x // ∃y

where the witness t given for y admits x as free variable.
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Games

A formula
∀x .∀y .∃z .∀t.P

will be interpreted by the game (= polarized poset)

m1

��
m2

��
m3

��
m4
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Games

A sequent
∃x .P(x) ` ∃y .∃z .P(y) ∧ P(z)

will be interpreted by the game (= polarized poset)

m n1

��
n2
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A proof
...

P(x) ` P(x) ∧ P(x)

P(x) ` ∃z .P(x) ∧ P(z)
(∃)

P(x) ` ∃y .∃z .P(y) ∧ P(z)
(∃)

∃x .P(x) ` ∃y .∃z .P(y) ∧ P(z)
(∃)

will be interpreted by the strategy

m //

  BBBBBBBB n1

��
n2
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Causal strategies

game A = partial order on the moves
strategy σ = relation on moves

A strategy σ : A is causal when

1 if m
σ−→ n then m Opponent and n Player

2 the relation ≤A ∪ σ is acyclic
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Causal strategies

game A = partial order on the moves
strategy σ = relation on moves

A strategy σ : A is causal when

1 if m
σ−→ n then m Opponent and n Player

2 the relation ≤A ∪ σ is acyclic

Forbids: Admits:
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Presentations of monoids

Definition
A presentation of a monoid M is given by

• a set G of generators,

• a set R ⊆ G ∗ × G ∗ of relations,

such that
M ∼= 〈 G | R 〉 ∼= G ∗/ ≈

Example

• N ∼= 〈 a | 〉
• N/2N ∼= 〈 a | aa = 1 〉
• N× N ∼= 〈 a, b | ab = ba 〉
• etc.
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Presentations of categories

More generally, a polygraph presents an n-category by giving

• typed generators of dimension i (for 0 ≤ i ≤ n),

• typed relations of dimension n + 1.
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Illustration: the simplicial category

The simplicial category ∆ has

• as objects: sets [n] = {0, 1, . . . , n − 1} where n ∈ N,

• as morphisms: weakly increasing functions.

It is a category: horizontal composition (◦)
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Illustration: the simplicial category

The simplicial category ∆ has

• as objects: sets [n] = {0, 1, . . . , n − 1} where n ∈ N,

• as morphisms: weakly increasing functions.

This category is monoidal: vertical composition (⊗)

0 0

1 1 : [4]→ [2]

2

nnnnnnn

3

{{{{{{{{

⊗
0

1

53 / 64



Illustration: the simplicial category

The simplicial category ∆ has

• as objects: sets [n] = {0, 1, . . . , n − 1} where n ∈ N,

• as morphisms: weakly increasing functions.

This category is monoidal: vertical composition (⊗)

0 0

1 1 : [4]→ [2]

2

nnnnnn

3

{{{{{{{{

⊗ ⊗
0

PPPPPP 0 : [1]→ [2]

1

53 / 64



Illustration: the simplicial category

The simplicial category ∆ has

• as objects: sets [n] = {0, 1, . . . , n − 1} where n ∈ N,

• as morphisms: weakly increasing functions.

This category is monoidal: vertical composition (⊗)

0 0

1 1

2

oooooo
2 : [5]→ [4]

3

�������
3

4

mmmmmm

1

1

53 / 64



A theory of monoids
The category ∆ contains two morphisms:

µ : [2]→ [1] and η : [0]→ [1]

0
0

1
0

which satisfy

=

and

= =
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A theory of monoids

Property

The morphisms µ and η generate ∆.
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A presentation of the category ∆
The category ∆ is isomorphic to the free monoidal category on the
two generators

µ : [2]→ [1] and η : [0]→ [1]

0
0

1
0

quotiented by the relations

=

and

= =
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A theory of monoids

strict monoidal functor ∆→ C
=

monoid in C

Mon(C) ∼= StrMonCat(∆, C)
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A theory of games

strict monoidal functor Games→ C
=

????? in C

The corresponding theory is a polarized variant of relations.
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The category Games

The category Games is the category whose

• objects are integers

[n] = {0, 1, 2, . . . , n − 1}
equipped with a polarization function

λ : [n]→ {∀,∃}

• morphisms are causal strategies.
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The structure of strings
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The structure of strings
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Presentation of the category Games

The category Games is presented by the polygraph with

• one 0-cell,

• two 1-cells ∀ and ∃,

• six 2-cells

∀
∀

∀
∀

∀
∀

∀
∀

∀

∃

∃

∀

• 3-cells (relations) ensuring that
• ∀ is a bicommutative bialgebra,
• ∃ is left dual to ∀.
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Technical byproducts

From this presentation we can deduce that

• causal strategies compose,

• causal strategies are definable:
we only have to show that generators are.
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2-dimensional rewriting

• The proof is done by showing that every diagram is in relation
with a diagram in canonical form and that these canonical
forms are in bijection with the morphisms of this category.

• This proof is very repetitive and requires to handle numerous
cases: it should be automated.

• We have oriented the presentation of Mat(N) into a
confluent rewriting system (§5.5)

=⇒

• We have introduced an unification algorithm in order to
compute critical pairs of such rewriting systems (§5.4).
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Contributions

We defined an asynchronous non-alternating game semantics

• which takes the concurrency of proofs in account,

• which unifies preexisting semantics of linear logic (§2.3),

• in which we extend the notion of HO innocence (§2.4),

• in which we give an interactive reformulation of the
correctness criterion (§2.5).

We gave a presentation of a category of games and strategies

• which reveals the algebraic structure of first-order causal
dependencies (§4.2),

• which lays the foundations for a 2-dimensional extension of
rewriting theory (§5).
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Thanks!
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