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o Introduction : S. Fomin et A. Zelevinsky (Cluster Algebras | :
Foundations, J. Amer. Math. Soc. 2001)
@ Motivation : Framework for a combinatorial study of
e total positivity in algebraic groups,
e canonical bases in quantum groups.
@ Connections :
Combinatorics,
Lie Theory,

Poisson Geometry,

o
[}
o
o Representation theory...
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Problematics

Problem : Find and compute bases in cluster algebras.
Canonical Bases:

o Sherman-Zelevinsky (Ay, Alyl),

o Cerulli Irelli (A2 ).
o Bases :

o Caldero-Keller (finite type),
o Geiss-Leclerc-Schroer (general, abstract).

Strategy: Give an unified and explicit method to compute bases in
cluster algebras using representation theory.
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Seeds and clusters

A seed is a pair (Q,x) such that:
e Q= (Qo, Q1) is a quiver without loops and 2-cycles;

o x=(x; : i€ Q) isa Qo-tuple of indeterminates over Z, called
cluster of the seed (Q, x).
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Mutation of seeds

For every k € Qo, uk(Q,x) = (Q',x’) is the new seed given by:

Q Q'
. r . . r+st .
| —> ] | —>J
N AN A
k k
r . . r—st
| —> | —>]
N A | oA
k k
and
X' =x\ {3} U {x}
where

/
Xk X = H Xj + H X;.

i— keQ k—ie@q

We denote by (Q,x) ~mut (R,y) the generated equivalence relation.
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Acyclic cluster algebras

Let (Q, u) be a seed with Q ayclic.

Definition
The cluster algebra A(Q) with initial seed (Q,u) is

A(Q) =Z[x|x € c s.t. (R,€) ~mut (Q,u)] C Q(u)

The c occuring are called the clusters of A(Q),
The x € c are called the cluster variables of A(Q).

Cl(Q) = {cluster variables} .
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The Laurent phenomenon

Theorem, Fomin-Zelevinsky, 2001
A(Q) C Z[uﬂ].

If x € Z[u*!], the denominator vector den(x) € Z of x is given by

P(u)

X = uden(x)

in its irreducible form.
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r monomials

Definition
A cluster monomial is a monomial in cluster variables belonging to a same

cluster.

We set
M(Q) = {cluster monomials in A(Q)}.
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Cluster algebras of finite type

Definition
A cluster algebra A(Q) is said to be of finite type if |Cl(Q)| < oo.
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Simply-laced Dynkin diagrams
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Finite type classification

Theorem, F.Z., 2002

A(Q) is of finite type if and only if Q is a Dynkin quiver.
In this case, den induces a 1-1 correspondence

den : CI(Q)— ®-0(Q) U (—N(Q)).
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A Z-basis in finite type

Theorem, Caldero-Keller, 2005

If A(Q) is of finite type, then M(Q) is a Z-basis in A(Q).

Fact, Sherman-Zelevinsky
In general, M(Q) does not span A(Q).

Conjecture, Zelevinsky

In general, M(Q) is linearly independent over Z.
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The cluster category

Let k = C, Q be an acyclic quiver

kQ@-mod =~ rep(Q).

Definition, BMRRT, 2004

The cluster category of Q is the orbit category of the auto-functor
F = 771[1] in the bounded derived category D?(kQ®) of kQ-mod.

Co = DP(kQ)/F.

| N\

Theorem, K, BMRRT, 2004
@ Cq is a triangulated category;
o Extg, (X, Y) =~ DExtg, (Y, X) (2-Calabi-Yau);
e ind(Cq) = ind(kQ-mod) U {P;[1] : i€ Qo}.

A\
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The quiver grassmannian

@ Let M be a kQ-module and e € Z%. We write
Gre(M)={NC M : dimN =e}

the quiver grassmannian.

@ We denote by x the Euler-Poincaré characteristic.
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The Caldero-Chapoton map

Definition, Caldero-Chapoton

The Caldero-Chapoton map is the map X; : Ob(Cg)— Z[u™!]:
o If M, N are in Ob(CQ), then XMGBN = XuXn;
o If M ~ Pi[1], then Xp,y) = uj;

o If M is an indecomposable module, then

Xy = ZX(Gre(M)) H uf—(e,dimS,-)—(dimS,-,dim M—e)' (1)

i€Qo

Equality (1) holds for any kQ-module M.
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From cluster categories to cluster algebras

Theorem, Caldero-Keller
X7 induces a 1-1 correspondence

{indecomposable rigid objects in Cq} — CI(Q).

Moreover, the map

{ {maximal rigid objects in Co} — {clusters in A(Q)}
T=@jcq, i = {X1:i€Q}

is a 1-1 correspondence.

G. Dupont (University of Lyon) Affine cluster algebras

november 6th, 2008 17 / 52



Cluster monomials and rigid objects

Corollary

X7 induces a 1-1 correspondence

{ rigid objects in Cq} — M(Q).

Corollary

| A

den induces a 1-1 correspondence

CI(Q) = ¢™*(Q) U (-N(Q))

N,
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The one-dimensional multiplication formula

Theorem, CK

Let M, N be indecomposable objects in Cq such that
dim Extg, (M, N) = 1. Then

XuXn = Xg + Xpr

where B and B’ are the unique objects such that there exists non-split

triangles
M— B— N— M[1],

N— B'— M— N[1]

in Cq.
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Motivation

o Finite-tame-wild classification theorem
o Affine quivers are minimal among representation-infinite quivers

@ Representation theory of affine quivers is well-known
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Simply laced affine diagrams
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Affine cluster algebras

Definition
A quiver Q is called affine if it is acyclic and if its underlying diagram is an
affine diagram.

Definition
A cluster algebra A(Q) is called affine if Q is an affine quiver.
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Affine root systems

$>0(Q) = P5(Q)UNS
®%(Q) = 0(Q) U {4}

Let d € N®. Then
e IM indecomposable in rep(Q,d) iff d € ®-o(Q);
o JIM indecomposable in rep(Q, d) iffd € ®L5(Q);

@ There exists a 1-parameter family of pairwise non-isomorphic
indecomposable representations in rep(Q, nd) for every n > 1.
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The Auslander-Reiten quiver of kQ-mod

real Schur real Schur
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Tubes in T(kQ)
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Tubes in T(kQ)
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o Problem: Understand X; on regular components.

o Strategy: Use the combinatorial description of regular components
in order to have a combinatorial description of the behaviour of X5.
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Generalized Chebyshev polynomials

Let x;,/ > 1 be indeterminates over Z.

Definition
The n-th generalized Chebyshev polynomial Py, is given by
X, 1 (0)
Po(x1,...,xn) = det 1 € Z[x1, ..., Xn]
© 1.
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Example in type Ag;’l

Let Q be an affine quiver of type A371.

Q: 1 4

[(kQ) contains an unique exceptional tube 7 and rg(7p) = 3.
We denote by Eg, E1, E> the quasi-simple modules in 7.
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Example: Quasi-simples in the exceptional tube of A3’1
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The exceptional tube of Ag,‘l
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Variables in the exceptional tube of A:},Hl

Uy + ug up + u3
XOZXE0:77 X1:XE1 :7’
us uz
14 viuz + uoug

Uujug

xo = Xg, =
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Variables in the exceptional tube of A:},Hl

Uy + ug up + u3
XOZXE0:77 X1:XE1 :7’
us uz
14 viuz + uoug

Uujug

xo = Xg, =

Uylp + Uius + uzug

X_ 2 =
£ Us U3
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Variables in the exceptional tube of

Xm,

Up + Ug up + us
XOZXE0:77 X].:XE].:*’
us uz
14 viuz + uoug
xo = Xg, = .
Uujug
Uylp + Uius + uzug
Xeo) =
0 U us

. U%U3U4 + Ufuzus + U1U§U4 + urug + Urup + UzUy + Uzusuf

b =

ujuouzla
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@ Generic variables
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Motivations

o "Generalizing” cluster monomials,

@ Analogue of the dual semicanonical basis.
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Existence of generic variables

Lemma, D. 2008

Let Q be an acyclic quiver and d € N®_ Then, there exists an open dense
subset Uy C rep(Q,d) such that X; is constant over Uy.

We denote by Xy the value of X3 on this open subset.
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Definition of generic variables

Definition
Let d € Z%. We set

Xd = X[d]+ H Ui_di
d;i<0

the generic variable of dimension d.
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Generic variables and cluster monomials

Proposition, D. 2008
Let @ be an acyclic quiver. Then

M(Q) c B(Q).

Moreover, if @ is Dynkin, then

M(Q) = B'(Q).
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Canonical decomposition and generic variables

Proposition, D. 2008

Let Q be an acyclic quiver, d € N® andd =d; @ - -- @ d,, its canonical
decomposition. Then,
n
Xq = de,..
i=1

It thus suffices to compute Xy for d € ®5¢.
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Explicitness of generic variables

Proposition, D. 2008

Let @ be an affine quiver and d € 5¢(Q).
o If d € ®51¢(Q), then X4 € M(Q);
o Otherwise, d = § and X5 = Xy, for any ) € IP{.

Corollary, D. 2008

Let Q be an affine quiver. Then,

B(Q)=M(Q)U{X{Xe : n>1E € &g}
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The difference property

Definition

Let Q be an affine quiver. We say that Q satisfies the difference property
if for every indecomposable kQ-modules M, M) in rep(Q,d) belonging
respectively to an exceptional and an homogeneous tube, we have:

XM)\ =Xm — Xq‘radM/q.socM'
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The difference property

q.soc(M) M,
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The difference property for type A

Theorem, D. 2008

Let Q be an affine quiver of type A. Then Q satisfies the difference
property.

Every affine quiver satisfies the difference property. l
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Generic variables and cluster algebras

Lemma, D. 2008

Let Q be an affine quiver satisfying the difference property. Then,

Z[Xu : M € Ob(Co)] = A(Q).

| A\

Corollary, D. 2008
Let Q be an affine quiver satisfying the difference property. Then,

B'(Q) c A(Q).
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The semicanonical basis

Theorem, D. 2008

Let Q be an affine quiver such that every quiver reflection-equivalent to Q@
satisfies the difference property. Then, B'(Q) is a Z-basis in A(Q).

Corollary, D. 2008
Let Q be an affine quiver of type A. Then, B/(Q) is a Z-basis in A(Q).

Let Q be an affine quiver. Then, B'(Q) is a Z-basis in A(Q).
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Representations in rep(Q, d) for A3,1

M)\Z k k

If A= 0, M) is a quasi-simple in an homogeneous tube.
My is in 7y and
q.socMy ~ Ey, q.radMp ~ Eéz).
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The exceptional tube of Ag,‘l
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Example of difference property for type Ag,ﬂl

e 0 [0001] [0010] [0110] [0011]  [0111] [1111]
Gre(My) 0 Si  E E?P EReS EPeS M
X(Cre(Mp)) 1 1 1 1 1 1 1
Gre(l\/b\) 0 Sy 0 U] P3 P> M,
X(Cre(My)) 1 1 0 0 1 1 1
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Example of difference property for type Ag,ﬂl

e 0 [0001] [0010] [0110] [0011]  [0111] [1111]
Gre(Mo) 0 Si E EP EaS EPaS M
X(Gre(Mo)) 1 1 1 1 1 1 1
Gre(My) 0 S ] ] Ps P, M,
(Gre(My)) 1 1 0 0 1 1 1
UfU3U4 + U%Uzus + U1U§U4 + urus + urup + Uzl + U2U3Uz%
XM, =
ujuouszla
Xy, — Vupuz + s + tyug + uzug + Upuzul
A Uy Uo U3 U
Uy + Uy
Xmo = Xm, + s = Xu, + Xg,
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The semicanonical basis of A(Ag_‘l)

xo = Xgy» x1 = Xgy5 %2 = Xg,,
Yo=Xea, =X, y2=Xeo),
z = Xum,
Alors,

B(Q)=M(Q)uU{z"xy? : n>0,r,s>0,i=0,1,2}

est une Z-base de A(Q).
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Further directions

Canonical bases for affine quivers,
Cluster algebras with coefficients,

Semicanonical bases for wild quivers,

Connections with the dual semicanonical basis.
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