Affine cluster algebras

G. Dupont

University of Lyon

november 6th, 2008

Context

- Introduction: S. Fomin et A. Zelevinsky (Cluster Algebras I: Foundations, J. Amer. Math. Soc. 2001)
- Motivation : Framework for a combinatorial study of
 - total positivity in algebraic groups,
 - canonical bases in quantum groups.
- Connections :
 - Combinatorics,
 - Lie Theory,
 - Poisson Geometry,
 - Representation theory...

Problematics

- Problem: Find and compute bases in cluster algebras.
- Canonical Bases:
 - Sherman-Zelevinsky (\mathbb{A}_2 , $\tilde{\mathbb{A}}_{1,1}$),
 - Cerulli Irelli ($\tilde{\mathbb{A}}_{2,1}$).
- Bases :
 - Caldero-Keller (finite type),
 - Geiss-Leclerc-Schröer (general, abstract).
- **Strategy:** Give an unified and explicit method to compute bases in cluster algebras using representation theory.

Contents

- Cluster algebras and cluster categories
- 2 Affine cluster algebras
- Generalized Chebyshev polynomials
- 4 Generic variables
- 5 Further directions

Seeds and clusters

A seed is a pair (Q, \mathbf{x}) such that:

- $Q = (Q_0, Q_1)$ is a quiver without loops and 2-cycles;
- $\mathbf{x} = (x_i : i \in Q_0)$ is a Q_0 -tuple of indeterminates over \mathbb{Z} , called cluster of the seed (Q, \mathbf{x}) .

Mutation of seeds

For every $k \in Q_0$, $\mu_k(Q, \mathbf{x}) = (Q', \mathbf{x}')$ is the new seed given by:

Q	Q'
$i \xrightarrow{r} j$ k	$i \xrightarrow{r+st} j$ k
$i \xrightarrow{r} j$ k	$i \xrightarrow{r-st} j$ k

and

$$\mathbf{x}' = \mathbf{x} \setminus \{x_k\} \sqcup \{x_k'\}$$

where

$$x_k x_k' = \prod_{i \longrightarrow k \in Q_1} x_i + \prod_{k \longrightarrow i \in Q_1} x_i$$

We denote by $(Q, \mathbf{x}) \sim_{\mathrm{mut}} (R, \mathbf{y})$ the generated equivalence relation.

Acyclic cluster algebras

Let (Q, \mathbf{u}) be a seed with Q ayclic.

Definition

The cluster algebra $\mathcal{A}(Q)$ with initial seed (Q,\mathbf{u}) is

$$\mathcal{A}(Q) = \mathbb{Z}[x|x \in \mathbf{c} \text{ s.t. } (R,\mathbf{c}) \sim_{\text{mut}} (Q,\mathbf{u})] \subset \mathbb{Q}(\mathbf{u})$$

The **c** occurring are called *the clusters of* $\mathcal{A}(Q)$,

The $x \in \mathbf{c}$ are called *the cluster variables of* $\mathcal{A}(Q)$.

$$Cl(Q) = \{cluster \ variables\}.$$

The Laurent phenomenon

Theorem, Fomin-Zelevinsky, 2001

$$\mathcal{A}(Q)\subset \mathbb{Z}[\mathbf{u}^{\pm 1}].$$

If $x \in \mathbb{Z}[\mathbf{u}^{\pm 1}]$, the denominator vector $\operatorname{den}(x) \in \mathbb{Z}^{Q_0}$ of x is given by

$$x = \frac{P(\mathbf{u})}{\mathbf{u}^{\mathrm{den}(x)}}$$

in its irreducible form.

Cluster monomials

Definition

A *cluster monomial* is a monomial in cluster variables belonging to a same cluster.

We set

$$\mathcal{M}(Q) = \{\text{cluster monomials in } \mathcal{A}(Q)\}.$$

Cluster algebras of finite type

Definition

A cluster algebra $\mathcal{A}(Q)$ is said to be of *finite type* if $|\mathrm{Cl}(Q)| < \infty$.

Simply-laced Dynkin diagrams

Finite type classification

Theorem, F.Z., 2002

 $\mathcal{A}(Q)$ is of finite type if and only if Q is a Dynkin quiver. In this case, den induces a 1-1 correspondence

$$\mathrm{den}: \mathrm{Cl}(Q) {\longrightarrow} \, \Phi_{>0}(Q) \sqcup (-\Pi(Q)).$$

A \mathbb{Z} -basis in finite type

Theorem, Caldero-Keller, 2005

If $\mathcal{A}(Q)$ is of finite type, then $\mathcal{M}(Q)$ is a \mathbb{Z} -basis in $\mathcal{A}(Q)$.

Fact, Sherman-Zelevinsky

In general, $\mathcal{M}(Q)$ does not span $\mathcal{A}(Q)$.

Conjecture, Zelevinsky

In general, $\mathcal{M}(Q)$ is linearly independent over \mathbb{Z} .

The cluster category

Let $k = \mathbb{C}$, Q be an acyclic quiver

$$kQ$$
-mod $\simeq \operatorname{rep}(Q)$.

Definition, BMRRT, 2004

The cluster category of Q is the orbit category of the auto-functor $F = \tau^{-1}[1]$ in the bounded derived category $D^b(kQ)$ of kQ-mod.

$$C_Q = D^b(kQ)/F$$
.

Theorem, K, BMRRT, 2004

- ullet \mathcal{C}_Q is a triangulated category;
- $\operatorname{Ext}^1_{\mathcal{C}_{\mathcal{O}}}(X,Y) \simeq D\operatorname{Ext}^1_{\mathcal{C}_{\mathcal{O}}}(Y,X)$ (2-Calabi-Yau);
- $\bullet \operatorname{ind}(\mathcal{C}_Q) = \operatorname{ind}(kQ\operatorname{-mod}) \sqcup \{P_i[1] : i \in Q_0\}.$

The quiver grassmannian

• Let M be a kQ-module and $\mathbf{e} \in \mathbb{Z}^{Q_0}$. We write

$$\operatorname{Gr}_{\mathbf{e}}(M) = \{ N \subset M : \operatorname{dim} N = \mathbf{e} \}$$

the quiver grassmannian.

ullet We denote by χ the Euler-Poincaré characteristic.

The Caldero-Chapoton map

Definition, Caldero-Chapoton

The Caldero-Chapoton map is the map $X_? : \mathrm{Ob}(\mathcal{C}_Q) \longrightarrow \mathbb{Z}[\mathbf{u}^{\pm 1}]$:

- If M, N are in $Ob(\mathcal{C}_Q)$, then $X_{M \oplus N} = X_M X_N$;
- If $M \simeq P_i[1]$, then $X_{P_i[1]} = u_i$;
- If M is an indecomposable module, then

$$X_{M} = \sum_{\mathbf{e}} \chi(\operatorname{Gr}_{\mathbf{e}}(M)) \prod_{i \in Q_{0}} u_{i}^{-\langle \mathbf{e}, \dim S_{i} \rangle - \langle \dim S_{i}, \dim M - \mathbf{e} \rangle}.$$
 (1)

Equality (1) holds for any kQ-module M.

From cluster categories to cluster algebras

Theorem, Caldero-Keller

 $X_?$ induces a 1-1 correspondence

{indecomposable rigid objects in \mathcal{C}_Q } $\xrightarrow{\sim}$ Cl(Q).

Moreover, the map

$$\left\{ \begin{array}{ll} \{ \text{maximal rigid objects in } \mathcal{C}_Q \} & \stackrel{\sim}{\longrightarrow} & \{ \text{clusters in } \mathcal{A}(Q) \} \\ & \mathcal{T} = \bigoplus_{i \in Q_0} \mathcal{T}_i & \mapsto & \{ \mathcal{X}_{\mathcal{T}_i} \ : \ i \in Q_0 \} \end{array} \right.$$

is a 1-1 correspondence.

Cluster monomials and rigid objects

Corollary

 $X_{?}$ induces a 1-1 correspondence

$$\{ \text{ rigid objects in } \mathcal{C}_Q \} \xrightarrow{\sim} \mathcal{M}(Q).$$

Corollary

den induces a 1-1 correspondence

$$\mathrm{Cl}(Q) \xrightarrow{\sim} \Phi^{\mathrm{re,Sc}}(Q) \sqcup (-\Pi(Q))$$

The one-dimensional multiplication formula

Theorem, CK

Let M, N be indecomposable objects in \mathcal{C}_Q such that $\dim \operatorname{Ext}^1_{\mathcal{C}_Q}(M, N) = 1$. Then

$$X_M X_N = X_B + X_{B'}$$

where B and B' are the unique objects such that there exists non-split triangles

$$M \longrightarrow B \longrightarrow N \longrightarrow M[1],$$

$$N{\longrightarrow} B'{\longrightarrow} M{\longrightarrow} N[1]$$

in \mathcal{C}_Q .

Contents

- Cluster algebras and cluster categories
- 2 Affine cluster algebras
- Generalized Chebyshev polynomials
- Generic variables
- 5 Further directions

Motivation

- Finite-tame-wild classification theorem
- Affine quivers are minimal among representation-infinite quivers
- Representation theory of affine quivers is well-known

Simply laced affine diagrams

Affine cluster algebras

Definition

A quiver Q is called *affine* if it is acyclic and if its underlying diagram is an affine diagram.

Definition

A cluster algebra A(Q) is called *affine* if Q is an affine quiver.

Affine root systems

$$egin{aligned} \Phi_{>0}(Q) &= \Phi^{ ext{re}}_{>0}(Q) \sqcup \mathbb{N}^*\delta \ \\ \Phi^{ ext{Sc}}(Q) &= \Phi^{ ext{re,Sc}}(Q) \sqcup \{\delta\} \end{aligned}$$

Kac's theorem

Let $\mathbf{d} \in \mathbb{N}^{Q_0}$. Then

- $\exists M$ indecomposable in $\operatorname{rep}(Q, \mathbf{d})$ iff $\mathbf{d} \in \Phi_{>0}(Q)$;
- $\exists ! M$ indecomposable in $\operatorname{rep}(Q,\operatorname{\mathbf{d}})$ iff $\operatorname{\mathbf{d}} \in \Phi^{\operatorname{re}}_{>0}(Q)$;
- There exists a 1-parameter family of pairwise non-isomorphic indecomposable representations in $\operatorname{rep}(Q, n\delta)$ for every $n \geq 1$.

The Auslander-Reiten quiver of kQ-mod

Tubes in $\Gamma(kQ)$

Tubes in $\Gamma(kQ)$

Tubes in $\Gamma(kQ)$

Contents

- Cluster algebras and cluster categories
- Affine cluster algebras
- 3 Generalized Chebyshev polynomials
- Generic variables
- 5 Further directions

Motivation

- **Problem:** Understand $X_?$ on regular components.
- **Strategy:** Use the combinatorial description of regular components in order to have a *combinatorial* description of the behaviour of X_7 .

Generalized Chebyshev polynomials

Let x_i , $i \ge 1$ be indeterminates over \mathbb{Z} .

Definition

The *n-th generalized Chebyshev polynomial* P_n is given by

$$P_n(x_1,\ldots,x_n)=\det \left[egin{array}{cccc} x_n & 1 & & (0) \ 1 & \ddots & \ddots & \ & \ddots & \ddots & 1 \ (0) & & 1 & x_1 \end{array}
ight] \in \mathbb{Z}[x_1,\ldots,x_n]$$

A tube

A tube

A tube

Example in type $\tilde{\mathbb{A}}_{3,1}$

Let Q be an affine quiver of type $\tilde{\mathbb{A}}_{3,1}$.

 $\Gamma(kQ)$ contains an unique exceptional tube \mathcal{T}_0 and $\operatorname{rg}(\mathcal{T}_0)=3$. We denote by E_0, E_1, E_2 the quasi-simple modules in \mathcal{T}_0 .

Example: Quasi-simples in the exceptional tube of $\mathbb{A}_{3,1}$

The exceptional tube of $\tilde{\mathbb{A}}_{3,1}$

Variables in the exceptional tube of $\mathbb{A}_{3,1}$

$$x_0 = X_{E_0} = \frac{u_2 + u_4}{u_3}, \quad x_1 = X_{E_1} = \frac{u_1 + u_3}{u_2},$$

$$x_2 = X_{E_2} = \frac{1 + u_1 u_3 + u_2 u_4}{u_1 u_4}.$$

Variables in the exceptional tube of $\mathbb{A}_{3,1}$

$$x_0 = X_{E_0} = \frac{u_2 + u_4}{u_3}, \quad x_1 = X_{E_1} = \frac{u_1 + u_3}{u_2},$$
 $x_2 = X_{E_2} = \frac{1 + u_1 u_3 + u_2 u_4}{u_1 u_4}.$
 $X_{E_0^{(2)}} = \frac{u_1 u_2 + u_1 u_4 + u_3 u_4}{u_2 u_3}$

Variables in the exceptional tube of $\mathbb{A}_{3,1}$

$$x_0 = X_{E_0} = \frac{u_2 + u_4}{u_3}, \quad x_1 = X_{E_1} = \frac{u_1 + u_3}{u_2},$$

$$x_2 = X_{E_2} = \frac{1 + u_1 u_3 + u_2 u_4}{u_1 u_4}.$$

$$X_{E_0^{(2)}} = \frac{u_1 u_2 + u_1 u_4 + u_3 u_4}{u_2 u_3}$$

$$X_{M_0} = \frac{u_1^2 u_3 u_4 + u_1^2 u_2 u_3 + u_1 u_3^2 u_4 + u_1 u_4 + u_1 u_2 + u_3 u_4 + u_2 u_3 u_4^2}{u_1 u_2 u_3 u_4}$$

Contents

- Cluster algebras and cluster categories
- 2 Affine cluster algebras
- Generalized Chebyshev polynomials
- 4 Generic variables
- Further directions

Motivations

- "Generalizing" cluster monomials,
- Analogue of the dual semicanonical basis.

Existence of generic variables

Lemma, D. 2008

Let Q be an acyclic quiver and $\mathbf{d} \in \mathbb{N}^{Q_0}$. Then, there exists an open dense subset $U_{\mathbf{d}} \subset \operatorname{rep}(Q, \mathbf{d})$ such that $X_{?}$ is constant over $U_{\mathbf{d}}$. We denote by $X_{\mathbf{d}}$ the value of $X_{?}$ on this open subset.

Definition of generic variables

Definition

Let $\mathbf{d} \in \mathbb{Z}^{Q_0}$. We set

$$X_{\mathbf{d}} = X_{[\mathbf{d}]_+} \prod_{d_i < 0} u_i^{-d_i}$$

the generic variable of dimension d.

$$\mathcal{B}'(Q) = \left\{ X_{\mathbf{d}} : \mathbf{d} \in \mathbb{Z}^{Q_0} \right\}$$

Generic variables and cluster monomials

Proposition, D. 2008

Let Q be an acyclic quiver. Then

$$\mathcal{M}(Q)\subset \mathcal{B}'(Q).$$

Moreover, if Q is Dynkin, then

$$\mathcal{M}(Q) = \mathcal{B}'(Q).$$

Canonical decomposition and generic variables

Proposition, D. 2008

Let Q be an acyclic quiver, $\mathbf{d} \in \mathbb{N}^{Q_0}$ and $\mathbf{d} = \mathbf{d}_1 \oplus \cdots \oplus \mathbf{d}_n$ its canonical decomposition. Then,

$$X_{\mathbf{d}} = \prod_{i=1}^{n} X_{\mathbf{d}_{i}}.$$

It thus suffices to compute $X_{\mathbf{d}}$ for $\mathbf{d} \in \Phi^{\operatorname{Sc}}$.

Explicitness of generic variables

Proposition, D. 2008

Let Q be an affine quiver and $\mathbf{d} \in \Phi^{Sc}(Q)$.

- If $\mathbf{d} \in \Phi^{\mathrm{Sc,re}}(Q)$, then $X_{\mathbf{d}} \in \mathcal{M}(Q)$;
- Otherwise, $\mathbf{d} = \delta$ and $X_{\delta} = X_{M_{\lambda}}$ for any $\lambda \in \mathbb{P}^1_0$.

Corollary, D. 2008

Let Q be an affine quiver. Then,

$$\mathcal{B}'(Q) = \mathcal{M}(Q) \sqcup \{X_{\delta}^n X_E : n \geq 1, E \in \mathcal{E}_R\}$$

The difference property

Definition

Let Q be an affine quiver. We say that Q satisfies the difference property if for every indecomposable kQ-modules M, M_{λ} in $\operatorname{rep}(Q, \delta)$ belonging respectively to an exceptional and an homogeneous tube, we have:

$$X_{M_{\lambda}} = X_M - X_{\text{q.rad}M/\text{q.soc}M}.$$

The difference property

The difference property for type $\tilde{\mathbb{A}}$

Theorem, D. 2008

Let Q be an affine quiver of type $\tilde{\mathbb{A}}$. Then Q satisfies the difference property.

Conjecture

Every affine quiver satisfies the difference property.

Generic variables and cluster algebras

Lemma, D. 2008

Let Q be an affine quiver satisfying the difference property. Then,

$$\mathbb{Z}[X_M : M \in \mathrm{Ob}(\mathcal{C}_Q)] = \mathcal{A}(Q).$$

Corollary, D. 2008

Let Q be an affine quiver satisfying the difference property. Then,

$$\mathcal{B}'(Q) \subset \mathcal{A}(Q)$$
.

The semicanonical basis

Theorem, D. 2008

Let Q be an affine quiver such that every quiver reflection-equivalent to Q satisfies the difference property. Then, $\mathcal{B}'(Q)$ is a \mathbb{Z} -basis in $\mathcal{A}(Q)$.

Corollary, D. 2008

Let Q be an affine quiver of type $\tilde{\mathbb{A}}$. Then, $\mathcal{B}'(Q)$ is a \mathbb{Z} -basis in $\mathcal{A}(Q)$.

Conjecture

Let Q be an affine quiver. Then, $\mathcal{B}'(Q)$ is a \mathbb{Z} -basis in $\mathcal{A}(Q)$.

Representations in $\operatorname{rep}(Q, \delta)$ for $\tilde{\mathbb{A}}_{3,1}$

If $\lambda \neq 0$, M_{λ} is a quasi-simple in an homogeneous tube. M_0 is in \mathcal{T}_0 and

 $q.soc M_0 \simeq E_0$, $q.rad M_0 \simeq E_0^{(2)}$.

The exceptional tube of $\tilde{\mathbb{A}}_{3,1}$

Example of difference property for type $\tilde{\mathbb{A}}_{3,1}$

е	0	[0001]	[0010]	[0110]	[0011]	[0111]	[1111]
$\mathrm{Gr}_{\mathbf{e}}(M_0)$	0	<i>S</i> ₄	E_0	$E_0^{(2)}$	$E_0 \oplus S_4$	$E_0^{(2)} \oplus S_4$	M_0
$\chi(\operatorname{Gr}_{\mathbf{e}}(M_0))$	1	1	1	1	1	1	1
$\operatorname{Gr}_{\mathbf{e}}(M_{\lambda})$	0	S_4	Ø	Ø	P_3	P_2	M_{λ}
$\chi(\operatorname{Gr}_{\mathbf{e}}(M_{\lambda}))$	1	1	0	0	1	1	1

Example of difference property for type $\tilde{\mathbb{A}}_{3,1}$

е	0	[0001]	[0010]	[0110]	[0011]	[0111]	[1111]
$\mathrm{Gr}_{\mathbf{e}}(M_0)$	0	<i>S</i> ₄	E_0	$E_0^{(2)}$	$E_0 \oplus S_4$	$E_0^{(2)} \oplus S_4$	M_0
$\chi(\operatorname{Gr}_{\mathbf{e}}(M_0))$	1	1	1	1	1	1	1
$\operatorname{Gr}_{\mathbf{e}}(M_{\lambda})$	0	S_4	Ø	Ø	P_3	P_2	M_{λ}
$\chi(\operatorname{Gr}_{\mathbf{e}}(M_{\lambda}))$	1	1	0	0	1	1	1

$$X_{M_0} = \frac{u_1^2 u_3 u_4 + u_1^2 u_2 u_3 + u_1 u_3^2 u_4 + u_1 u_4 + u_1 u_2 + u_3 u_4 + u_2 u_3 u_4^2}{u_1 u_2 u_3 u_4}$$

$$X_{M_\lambda} = \frac{u_1^2 u_2 u_3 + u_1 u_2 + u_1 u_4 + u_3 u_4 + u_2 u_3 u_4^2}{u_1 u_2 u_3 u_4}$$

$$X_{M_0} = X_{M_\lambda} + \frac{u_2 + u_4}{u_3} = X_{M_\lambda} + X_{E_0}$$

The semicanonical basis of $\mathcal{A}(\tilde{\mathbb{A}}_{3,1})$

$$x_0 = X_{E_0}, x_1 = X_{E_1}, x_2 = X_{E_2},$$

 $y_0 = X_{E_0^{(2)}}, \quad y_1 = X_{E_1^{(2)}}, \quad y_2 = X_{E_2^{(2)}},$
 $z = X_{M_{\lambda}}$

Alors,

$$\mathcal{B}'(Q) = \mathcal{M}(Q) \sqcup \{z^n x_i^r y_i^s : n > 0, r, s \ge 0, i = 0, 1, 2\}$$

est une \mathbb{Z} -base de $\mathcal{A}(Q)$.

Contents

- Cluster algebras and cluster categories
- 2 Affine cluster algebras
- Generalized Chebyshev polynomials
- 4 Generic variables
- 5 Further directions

Further directions

- Canonical bases for affine quivers,
- Cluster algebras with coefficients,
- Semicanonical bases for wild quivers,
- Connections with the dual semicanonical basis.