
HAL Id: tel-00340585
https://theses.hal.science/tel-00340585

Submitted on 21 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Gabriel Theorem for Coherent Twisted Sheaves and
Picard Group and 2-factoriality of O’Grady’s Examples

of Irreducible Symplectic Varieties
Arvid Perego

To cite this version:
Arvid Perego. A Gabriel Theorem for Coherent Twisted Sheaves and Picard Group and 2-factoriality
of O’Grady’s Examples of Irreducible Symplectic Varieties. Mathematics [math]. Université de Nantes,
2008. English. �NNT : �. �tel-00340585�

https://theses.hal.science/tel-00340585
https://hal.archives-ouvertes.fr


UNIVERSITÉ DE NANTES
FACULTÉ DES SCIENCES ET TECHNIQUES

ÉCOLE DOCTORALE SCIENCES ET TECHNOLOGIES
DE L’INFORMATION ET DES MATHÉMATIQUES

Année : 2008 N° B.U. :

UN THÉORÉME DE GABRIEL
POUR LES FAISCEAUX COHÉRENTS TORDUS

et
GROUPE DE PICARD ET 2−FACTORIALITÉ
DES EXEMPLES DE O’GRADY DE VARIÉTÉS

IRRÉDUCTIBLES SYMPLECTIQUES

Thèse de Doctorat de l’Université de Nantes

Spécialité : Mathématiques et Applications

Présentée et soutenue publiquement par

Arvid PEREGO

le 27 octobre 2008 à l’Université de Nantes.

Président du jury : Manfred LEHN Professeur (Universität Mainz)

Rapporteurs : Eyal MARKMAN Professeur (University of Massachussets)
Dimitri MARKUSHEVICH Professeur (Université de Lille)

Examinateurs : Laurent EVAIN Maître de Conférence (Université d’Angers)
Vincent FRANJOU Professeur (Université de Nantes)
Manfred LEHN Professeur (Universität Mainz)
Dimitri MARKUSHEVICH Professeur (Université de Lille)
Christoph SORGER Professeur (Université de Nantes)

Directeur de thèse : Christoph SORGER
Laboratoire : Laboratoire Jean Leray (UMR 6629 UN-CNRS-ECN)

N° E.D. : 0366-368





Remerciements
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1
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la fourmi, le XVIIIème, Bonn et la coupe du monde, les brunches à la bobo...
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conoscenze matematiche è sempre fonte d’ispirazione.

Un ringraziamento particolare va a due persone il cui contribuito allo svi-
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Introduction

Ce travail de thèse se compose de deux parties différentes, intitulées respec-
tivement Un théorème de Gabriel pour les faisceaux cohérents tordus et Groupe
de Picard et factorialité locale des examples de O’Grady de variétés irréductibles
symplectiques.

Un théorème de Gabriel pour les faisceaux cohérents tordus

Le théorème de Gabriel est un des résultats les plus importants et, peut-être,
éclatants de la géométrie algébrique des années ’60. Il s’inscrit parfaitement
dans l’esprit de la géométrie algébrique : à un objet géométrique X (un espace
topologique, une variété, un schéma...) on associe un objet algébrique A (par
example le groupe fondamental π1, les groupes d’homologieHi et de cohomologie
Hi, une catégorie...), et on étudie les propriétés géométriques de X que l’objet
A enregistre.

Le problème étudié dans le théorème de Gabriel est le suivant : à un schéma
noethérien X on associe la catégorie abélienne Coh(X) des faisceaux cohérents
sur X. Donc, la question est de comprendre les propriétés de X qu’on peut
recouvrir à partir de Coh(X). Le résultat est le suivant :

Théorème 1. (Gabriel, ’62). Soit X un schéma noethérien. Alors :

1. le schéma X peut être reconstruit à partir de la catégorie Coh(X) ;

2. si Y est un schéma noethérien et F est une équivalence entre les deux
catégories Coh(X) et Coh(Y ), alors F induit un isomorphisme de schémas
entre X et Y .

Le théorème de Gabriel a plusieurs conséquences. La première, et principale,
est que connâıtre le schéma X est équivalent à connâıtre sa catégorie des fais-
ceaux cohérents, donc Coh(X) est un invariant géométrique très fort. Ceci a
amené à l’étude de la catégorie dérivée (bornée) Db(X) de la catégorie Coh(X),
qui est un invariant géométrique moins fort que Coh(X) : il existe des variétés
projective lisses X et X ′ qui ne sont pas isomorphes, mais dont les catégories
dérivées Db(X) et Db(X ′) sont équivalentes.

Naturellement, il faut expliquer ce que signifie de reconstruire un schéma
à partir de sa catégorie des faisceaux cohérents. L’idée de Gabriel est la sui-
vante : d’abord, il définit une classe particulière de sous-catégories de Coh(X),
ce qu’on appelle les sous-catégories de Serre de type fini. Ce qu’il démontre est
qu’il existe une correspondence bijective entre l’ensemble des sous-catégories de
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Serre de type fini de Coh(X) et celui des sous-ensembles fermés de X. En uti-
lisant ce résultat, il définit une topologie sur l’ensemble E des sous-catégories
de Serre irréductibles de type fini, et il démontre que cet espace topologique
est homeomorphe à X. Le dernier passage est de définir sur E une structure
d’espace annelé, et de démontrer que celui-ci est un schéma isomorphe à X :
ceci est accompli en utilisant la notion de centre d’une catégorie.

Il est alors naturel de se demander si l’on peut démontrer un analogue du
théorème de Gabriel pour des catégories abéliennes plus générales de la catégorie
des faisceaux cohérents. La généralisation qu’on propose dans ce travail est
celle des catégories des faisceaux cohérents tordus par un élément du groupe de
Brauer cohomologique Br′(X) = H2

ét(X,O
∗
X)tors d’un schéma X. Si on choisit

α ∈ Br′(X), un faisceau F tordu par α est défini comme il suit : une fois choisi
un recouvrement ouvert de X donné par des ouverts Ui, on fixe un faisceau Fi

sur Ui, pour tout i, et on définit une donnée de recollement des Fi à l’aide de
α. Ce qu’on obtient est donc localement (sur chaque Ui) un faisceau, mais en
général F n’est pas globalement un faisceau.

Le résultat qu’on démontre est le suivant :

Théorème 2. Soit X un schéma noethérien, et soit α ∈ Br ′(X) un élément
du groupe de Brauer cohomologique de X. Alors

1. le schéma X peut être reconstruit à partir de la catégorie Coh(X,α) ;

2. si Y est un schéma noethérien et β ∈ Br ′(Y ), et si F est une équivalence
de catégories entre Coh(X,α) et Coh(Y, β), alors F induit un isomor-
phisme de schémas entre X et Y .

La preuve adapte celle du théorème de Gabriel aux faisceaux tordus, et il
faut donc résoudre plusieurs problèmes liés aux différences entre faisceaux et
faisceaux tordus : d’abord, la correspondence bijective entre les sous-ensembles
fermés de X et les sous-catégories de Serre de type fini de Coh(X,α). Dans
le cas classique, cette correspondence est montrée grâce à deux propriétés des
faisceaux cohérents qui ne sont pas si évidentes pour les faisceaux tordus : la
première, est que tout faisceau cohérent défini sur un ouvert U du schéma X
s’étend à un faisceau cohérent sur X ; la deuxième est qu’il existe un faisceau
cohérent sur X dont le support est X.

Dans le cas des faisceaux tordus, la première propriété peut être facilement
montrée à l’aide de la théorie des O∗X−gerbes. Ce résultat nous permet aussi
de définir sans problèmes une structure d’espace annelé sur l’ensemble des sous-
catégorie de Serre irréductibles de type fini de Coh(X,α), de la même façon
que dans la preuve du théorème de Gabriel. La deuxième propriété est plus
compliquée : premièrement, il est possible de montrer l’existence d’un faisceau
coherent tordu dont le support est X dans le cas où X est un schéma noetherian
réduit. Cette hypothèse ne serait pas nécessaire si l’on supposait α ∈ Br(X),
car dans ce cas il existe un faisceau tordu localement libre. Après il faut montrer
que pour avoir le Théorème 2 il suffit de se reconduire au cas où X est réduit.

Il y a plusieurs remarques qu’on peut ajouter au sujet du Théorème 2.
La première est que si l’on choisit α ∈ Br(X), alors la catégorie Coh(X,α)
est équivalente à la catégorie ModCoh(A ) dont les objets sont les faisceaux
cohérents qui ont une structure de A−module (et les morphismes sont mor-
phismes de A−modules), où A denote l’algèbre d’Azumaya dont la classe
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d’équivalence en Br(X) est α. En particulier,ModCoh(A ) est une sous-catégorie
de Coh(X), donc on s’attend bien que le théorème soit vrai dans ce cas. En fait,
on peut montrer que le théorème de Gabriel est vrai même pour la catégorie
ModCoh(A ), pour n’importe quel faisceau cohérent A d’OX−algèbres dont le
centre soit OX .

Ce qui est moins attendu est que dans l’énoncé du Théorème 2 on ne suppose
que α ∈ Br′(X). En général, si le schéma X n’est pas quasi-projectif il peut y
avoir des éléments α ∈ Br′(X) qui ne sont pas dans Br(X) : pour ces α, il n’y
a pas de modèle cohérent pour la catégorie Coh(X,α). Ceci n’est vrai que si on
considère n’importe quel sous-schéma affine de X : c’est bien cette propriété qui
nous permet de montrer le Théorème 2.

Groupe de Picard et 2−factorialité des examples de O’Grady de
variétés irréductibles symplectiques

Un des objectifs de la géométrie algébrique complexe est la classification
des variétés projectives lisses définies sur C. Le premier invariant par rapport
auquel on classifie ces variétés est la dimension. En dimension 1, les courbes
algébriques ont été classifiées depuis longtemps à l’aide du diviseur canonique :
si X est une courbe projective lisse définie sur C, alors X est rationnelle si le
diviseur canonique KX a degré négatif (ce qui implique −KX ample) ; elle est
elliptique si deg(KX) = 0 et elle est de type général si deg(KX) > 0, ce qui
implique KX ample.

Le diviseur canonique est un des moyens principaux pour classifier les variétés
de dimension plus élevée. En particulier, l’invariant qu’on produit grâce au di-
viseur canonique est la dimension de Kodaira κ. Si X est une variété projective
lisse définie sur C, on a trois cas possibles. Le premier est κ(X) = −∞, et dans
ce cas la variété est dite de Fano ; le deuxième est κ(X) = 0, qui comprend le
cas où KX = 0 ; le dernier est κ(X) > 0, qui comprend le cas des variétés de
type général. Dans ce travail, on ne considère que des variétés de dimension de
Kodaira 0.

Dans la classe des variétés projective lisses de dimension de Kodaira 0, il
y a une classe très importante, formée par les variétés dont la première classe
de Chern est nulle. Elles ont été étudiées depuis longtemps, et classifiées à
revêtement étale près à l’aide des groupes d’holonomie. En particulier, si X est
une variété kählerienne dont la première classe de Chern est nulle, alors il existe
un revêtement étale X ′ −→ X tel que

X ′ = T ×
n∏

i=1

Xi ×
m∏

j=1

Yj ,

où

1. T est un tore complexe ;

2. Xi est une variété à holonomie spéciale ;

3. Yj est une variété dont le groupe d’holonomie est Sp(r).

Les tores complexes sont tous de la forme

T = Cn/Γ,
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pour un entier n ∈ N et un réseau Γ de rang maximal en Cn. Les variétés à ho-
lonomie spéciale, appelées aussi variétés da Calabi-Yau, sont très nombreuses,
est sont intéressantes en particulier en physique. Les variétés de la dernière
classe sont appelées hyperkähleriennes irréductibles en géométrie différentielle,
et irréductibles symplectiques en géométrie algébrique. En particulier, les variétés
irréductibles symplectiques sont simplement connexes et admettent une unique
(à multiplication par un élément de C∗ près) forme symplectique.

Contrairement à ce qui arrive dans le cas des variétés à holonomie spéciale,
il n’y a que cinq familles d’exemples connus, à deformation près, de variétés
irréductibles symplectiques :

1. les surfaces K3 ;

2. les schémas de Hilbert Hilbn(X), où X est une surface K3 et n ∈ N ;

3. les variétés de Kummer généralisées Kn(T ), où T est un tore complexe et
n ∈ N ;

4. l’exemple de O’Grady M̃10 en dimension 10 ;

5. l’exemple de O’Grady M̃6 en dimension 6.

Le problème de produire exemples de variétés irréductibles symplectiques est for-
tement lié au problème de construire variétés projectives de dimension élevée.
Un des moyen les plus efficaces connus est celui des espaces des modules des
faisceaux semistables sur une surface lisse S. Pour les définir, il faut fixer un
diviseur ample H sur S et un vecteur de Mukai v ∈ H̃(S,Z) := H2∗(S,Z). Ce
dernier, appelé réseau de Mukai, est un Z−module qui est réseau par rapport à
une forme d’intersection (., .), appelée forme de Mukai. L’espace des modules des
faisceaux H−semistables dont le vecteur de Mukai est v est noté Mv (on rappelle
que le vecteur de Mukai d’un faisceau F sur S est défini comme ch(F )

√
td(S)).

Si la surface S est projective, l’espace Mv est une variété projective qui peut
être singulière. Un sous-ensemble ouvert très important dans Mv est Ms

v , qui
paramètre les faisceaux H−stables. Dans le cas où S est une surface K3 projec-
tive ou une surface abélienne, Ms

v a les propriétés suivantes, due principalement
à Mukai :

1. Ms
v est lisse ;

2. Ms
v admet une forme symplectique ;

3. la dimension de Ms
v est 2 + (v, v) ;

4. si le vecteur de Mukai v est primitif, i. e. v n’est pas divisible en H̃(S,Z),
et le diviseur H est suffisamment générique, alors Mv = Ms

v .

Étant donnée une forme symplectique ω sur Ms
v , la question naturelle est donc

s’il existe une résolution symplectique de Mv, c’est à dire une résolution des
singularités

πv : M̃v −→Mv,

telle qu’il existe une forme symplectique ω̃ sur M̃v dont la restriction à Ms
v

est ω. De plus, s’il existe une telle résolution symplectique, il est naturel de se
demander si M̃v est une variété irréductible symplectique.

Si v est primitif et H est suffisamment générique, alors la question est tri-
viale, car Ms

v = Mv. Le problème est donc si Mv est une variété irréductible
symplectique. Un cas particulier est celui de v = (1, 0,−n) ∈ H̃(S,Z), si S est
abélienne, où v = (1, 0, 1 − n) si S est K3 : dans ce cas, on a Mv ' Hilbn(S),
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le schéma de Hilbert qui paramètre les sous-schémas de S de dimension 0 et
longueur n. Le résultat principal, due à Fujiki pour n = 2 et à Beauville en
général, est le suivant :

Théorème 3. Soit n un entier positif.

1. Si S = X est une surface K3 projective, alors Hilbn(X) est une variété
irréductible symplectique de dimension 2n dont le deuxième nombre de
Betti est 23.

2. Si S = J est une surface abélienne, alors il existe un morphisme

Hilbn+1(J) −→ J,

dont la fibre sur 0 ∈ J est notée Kn(J) et appelée variété de Kummer
généralisée. Alors Kn(J) est une variété irréductible symplectique de di-
mension 2n dont le deuxième nombre de Betti est 8.

Ce résultat a été généralisé par plusieurs personnes (entre autres, Huybrechts-
Göttsche, Mukai, Yoshioka, O’Grady), qui ont montré le résultat suivant :

Théorème 4. Soit v un vecteur de Mukai primitif, et soit H une polarisation
générique.

1. Si S = X est une surface K3 projective et (v, v) ≥ 0, alors Mv est une
variété irréductible symplectique, qui est déformation d’un schéma de Hil-
bert Hilbn(X ′), pour une surface K3 X ′ et n = 1 + (v,v)

2 .

2. Si S = J est une surface abélienne et (v, v) > 4, alors il existe un mor-
phisme Mv −→ J × Ĵ dont la fibre sur (0,OJ) est notée Kv. Alors Kv est
une variété irréductible symplectique qui est déformation de Kn(J ′), pour
une surface abélienne J ′ et n = (v,v)

2 − 1.

Il ne reste donc qu’à étudier le cas où v n’est pas primitif. Dans ce cas, il
existe un entier m ∈ Z et un vecteur de Mukai primitif w ∈ H2(S,Z) tels que
v = mw. Le résultat principal sur l’existence de résolutions sympléctiques pour
Mv a été montré par Kaledin, Lehn et Sorger, et est le suivant :

Théorème 5. Soit v = mw un vecteur de Mukai non-primitif tel que (v, v) > 0,
et soit H une polarisation générique.

1. Si m = 2 et (w,w) = 2, alors il existe une résolution symplectique

πv : M̃v −→Mv,

obtenue comme éclatement le long de la partie réduite du lieu singulier de
Mv.

2. Si m > 2 ou (w,w) > 2, alors il n’existe pas de résolution symplectique de
Mv. En plus, les espaces de modules Mv sont localement factoriels.
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Grâce à ce théorème on peut construire les deux nouveaux exemples de
O’Grady M̃10 et M̃6. En fait, O’Grady a démontré l’existence des deux nouveaux
exemples avant que le Théorème 5 n’ait été montré.

Théorème 6. (O’Grady). Soit v = (2, 0,−2) ∈ H̃(S,Z).

1. Si S = X est une surface K3 projective telle que Pic(X) = Z ·H pour un
diviseur ample H tel que H2 = 2, alors la résolution symplectique M̃10 de
l’espace de module M10 := Mv du Théorème 5 est une variété irréductible
symplectique de dimension 10 dont le deuxième nombre de Betti est 24.

2. Si S = J est une surface abélienne telle que NS(J) = Z · c1(H) pour un
diviseur ample H tel que c21(H) = 2, alors l’espace de module Mv admet
un morphisme Mv −→ J × Ĵ dont la fibre sur (0,OJ) est notée M6. Alors
la variété M̃6 := π−1

v (M6) est une variété irréductible symplectique de
dimension 6 dont le deuxième nombre de Betti est 8.

La question qu’on se pose dans ce travail est la suivante : si v est primitif ou
comme dans le point 2 du Théorème 5, l’espace des modules Mv est localement
factoriel. Le seul cas restant est donc celui de v comme dans le point 1 du
Théorème 5 : est-ce que Mv est localement factoriel ? Le résultat qu’on démontre
est le suivant :

Théorème 7. Les deux espaces de modules M10 et M6 décrits dans l’énoncé
du Théorème 6 sont 2−factoriels.

La preuve du Théorème 7 est basée sur l’analyse du groupe de Picard de
M̃10 et M̃6, qui nous permet de calculer le groupe de Picard et le groupe des
diviseurs de Weil (modulo équivalence linéaire) de M10 et de M6. Dans le cas
de M10, ce dernier est isomorphe à Pic(X)⊕Z[B], où B est le diviseur de Weil
qui paramètre les faisceux semistables qui ne sont pas localement libres. Grâce à
un théorème du a Rapagnetta, on démontre que B ne peut pas être de Cartier,
et grâce à une construction due à Le Potier, on démontre d’abord que M10

est Q−factoriel, et après que 2B est un diviseur de Cartier, ce qui implique la
2−factorialité de M10.

Le cas de M6 est plus compliqué. Le groupe des diviseurs de Weil (modulo
équivalence linéaire) de M6 est isomorphe à NS(J) ⊕ Z[B] ⊕ Z/2Z[D], où B
est le diviseur de Weil qui paramètre les faisceaux semistables qui ne sont pas
localement libres, et D est un diviseur de Weil dont le carré est nul. Comme
dans le cas de M10, un théorème de Rapagnetta nous permet de montrer que
D n’est pas un diviseur de Cartier, mais on a toujours la 2−factorialité de M6

grâce à la construction de Le Potier.
Un autre point important dans la théorie des variétés irréductibles sym-

plectiques est l’étude de la forme de Beauville-Bogomolov : si X est une variété
irréductible symplectique, alors H2(X,Z) est un réseau par rapport à une forme
d’intersection q, appelée forme de Beauville-Bogomolov. Cette forme est l’ana-
logue pour les variétés irréductibles symplectiques de la forme d’intersection
des surfaces K3. La forme de Beauville-Bogomolov a été déterminée pour les
examples connus par Beauville et Rapagnetta. En particulier, si v est un vec-
teur de Mukai primitif et H est une polarisation générique, alors la forme de
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Beauville-Bogomolov est déterminée par la forme de Mukai sur H̃(S,Z). Si
v⊥ ⊆ H̃(S,Z) est l’orthogonal à v par rapport à la forme de Mukai, on a les
résultats suivants :

1. Si X est une surface K3 projective et (v, v) = 0, alors il existe une isométrie
de structures de Hodge v⊥/v −→ H2(Mv,Z).

2. Si X est une surface K3 projective et (v, v) > 0, alors il existe une isométrie
de structures de Hodge v⊥ −→ H2(Mv,Z).

3. Si J est une surface abélienne et (v, v) > 4, alors il existe une isométrie
de structures de Hodge v⊥ −→ H2(Kv,Z).

La question naturelle est si le même résultat est vrai pour M̃10 et M̃6. Le
résultat qu’on démontre, en collaboration avec A. Rapagnetta, est le suivant :

Théorème 8. Soit v = (2, 0,−2).

1. Soit X une surface K3 projective comme dans le point 1 du Théorème 6.
Alors il existe un morphisme injectif de structures de Hodge

v⊥ −→ H2(M̃10,Z),

qui est une isométrie sur son image.

2. Soit J une surface abélienne comme dans le point 2 du Théorème 6. Alors
il existe un morphisme injectif de structures de Hodge

v⊥ −→ H2(M̃6,Z),

qui est une isométrie sur son image.
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Introduction

Gabriel’s Theorem is one of the main and, maybe, surprising results of the
algebraic geometry of the ’60s. It perfectly adheres to the spirit of algebraic
geometry: to any geometrical object X (as a topological space, a manifold, a
scheme...) we associate an algebraic object A (as the fundamental group π1, the
homology groups Hi, the cohomology groups Hi, a category...), and we study
which geometrical properties of X are encoded by A.

Gabriel’s Theorem deals with the following situation: to any Notherian
scheme X we associate the abelian category Coh(X) of coherent sheaves on
X. The problem is to understand which properties of X can be recovered from
Coh(X). The result is the following:

Theorem 0.1. (Gabriel, ’62). Let X be any Noetherian scheme. Then:

1. the scheme structure of X can be recovered from Coh(X);

2. if Y is a Noetherian scheme and F is an equivalence between Coh(X) and
Coh(Y ), then F induces an isomorphism of schemes between X and Y .

Gabriel’s Theorem has several consequences. The main one is that to know
the scheme X is equivalent to know its category of coherent sheaves, meaning
that Coh(X) is a strong geometric invariant. This leaded to the study of the
(bounded) derived category Db(X) of Coh(X), a geometric invariant that is
weaker than Coh(X): indeed, there are smooth projective varieties X and X ′

which are not isomorphic, but which have equivalent derived categories Db(X)
and Db(X ′).

Naturally, we need to explain what it means to recover the scheme structure
of X from Coh(X). Gabriel’s idea is the following: first, he defines a particular
class of subcategories of Coh(X), called Serre’s subcategories of finite type.
He shows that there is a bijective correspondence between the set of Serre’s
subcategories of finite type of Coh(X) and the set of closed subsets of X. Using
this, he defines a topology on the set E of irreducible Serre’s subcategories of
finite type, and he shows that this topological space is homeomorphic to X.
The last step is to define a ringed space structure on E, and to show that we
obtain a scheme isomorphic to X: this is done using the notion of center of a
category.

It is then natural to ask if one can show a similar theorem even for other
abelian categories we can associate to a Noetherian scheme, but more gen-
eral than the category of coherent sheaves. The generalization we present in
this work is obtained for the abelian category of coherent sheaves twisted by
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6 Introduction

an element of the cohomological Brauer group Br′(X) = H2
ét(X,O

∗
X)tors of a

Noetherian scheme X. Our result is the following:

Theorem 0.2. Let X be a Noetherian scheme, and let α ∈ Br ′(X) be an
element of the cohomological Brauer group of X. Then:

1. the schematic structure of X can be recovered from Coh(X,α);

2. if Y is a Noetherian scheme and β ∈ Br ′(Y ), and if F is an equiva-
lence between Coh(X,α) and Coh(Y, β), then F induces an isomorphism
of schemes between X and Y .

The proof is modelled on the one of Gabriel’s Theorem, but clearly adapted
to twisted sheaves, so that there are some problems one needs to fix, which
are based on the differences between twisted and classical sheaves: first of all,
one needs to show the existence of a bijective correspondence between the set
of closed subsets of X and the set of Serre’s subcategories of finite type of
Coh(X,α). In the classical case, this was done using properties of coherent
sheaves which are not so evident in the twisted case: the first one is the fact
that any coherent sheaf on an open subset U of X extends to a coherent sheaf
on X; the second one is the existence of coherent sheaf on X whose support if
the whole X.

For twisted sheaves, the first property is shown using the theory of O∗X−gerbes.
This result is even the main point to define a ringed space structure on the set
of irreducible Serre’s subcategories of finite type of Coh(X,α), exactly as in the
proof of Gabriel’s Theorem. The second property is more delicate: first of all,
it is possible to show the existence of a twisted coherent sheaf whose support is
the whole X if we suppose X to be reduced. This hypothesis is not necessary if
one chooses α ∈ Br(X), since in this case there is a locally free twisted sheaf.
Then, one needs to show that in order to get Theorem 2.1 it is sufficient to
consider the reduced case.

There are more remarks one can add to Theorem 2.1. The first one is
that if we choose α ∈ Br(X), then Coh(X,α) is equivalent to the category
ModCoh(A ) of coherent sheaves admitting a structure of A−module, where A
is the Azumaya algebra whose equivalence class in Br(X) is α. In particular,
ModCoh(A ) is a full subcategory of Coh(X), and one can expect the Theorem
to be true. What is less expected is that in the statement of Theorem 2.1
we suppose α ∈ Br′(X). In general, if X is not quasi-projective, there is
α ∈ Br′(X) which is not in Br(X): for such an α, there is no coherent model
for Coh(X,α). Anyway, this is true for any affine subscheme of X: this is the
main argument to show Theorem 2.1.



Chapter 1

Generalities on Brauer

groups and twisted sheaves

This first chapter is devoted to the introduction of basic facts on Brauer groups
and twisted sheaves, in order to define the main tools of this work. The Brauer
group of a scheme X can be defined in several ways. A first approach is to con-
sider the group H2

ét(X,O
∗
X), which is sometimes called the Brauer-Grothendieck

group of X, and which can be interpreted as a higher analogue of the Picard
group of a scheme. In general, the Brauer-Grothendieck group is rather com-
plicated, and we consider only its torsion part, denoted Br′(X) and called the
cohomological Brauer group of X. If X is a regular scheme, then the cohomo-
logical Brauer group of X equals the Brauer-Grothendieck group, but in general
this is not true.

The classical definition of the Brauer group is not cohomological: the Brauer
group Br(X) of X is the group of equivalence classes of Azumaya algebras on
X, where the multiplication is given by the tensor product. However, it is a
classical result that there is an injection of Br(X) into Br′(X). It is a rather
complicated problem to understand when these two groups are equal, and the
best results in this domain are due to de Jong and Gabber, who show that this
is indeed the case for any quasi-projective scheme. Finally, there is another
interpretation of the elements of the Brauer group of X, namely by means of
O∗X−gerbes. This approach will be briefly resumed at the end of the first section.

The second topic is the introduction of the notion of sheaf twisted by an
element of the Brauer-Grothendieck group, and of the definition of the abelian
categories these objects form. In particular, for our purposes the most important
among these is Coh(X,α), the category of coherent α−twisted sheaves, for
which we resume the most important and basic properties. In particular, we
will present two definitions of twisted sheaf, the first one in stack-theoretic terms
(which can be found, as instance, in Lieblich [Lie1], [Lie2], [Lie3], and in Donagi-
Pantev [DP]), the second one in cohomological terms, (which can be found as
instance in Căldăraru [Cal]).

7



8 Chapter 1. Generalities on Brauer groups and twisted sheaves

1.1 Definitions of the Brauer group

In this first section, we recall the different notions of Brauer groups of a scheme.
In the first part, we present three classical notions: the Brauer group, the coho-
mological Brauer group and the Brauer-Grothendieck group. In the second part,
we briefly present the definition of gerbe and the relation between O∗X−gerbes
and the elements in the Brauer group.

1.1.1 Brauer groups

In this section, let X be a scheme.

Definition 1.1. The cohomological Brauer group Br′(X) of X is

Br′(X) := H2
ét(X,O

∗
X)tors = H2(X,Gm)tors.

Definition 1.2. The Brauer group Br(X) of X is the group of equivalence
classes of Azumaya algebras over X (see Section 5 of [Gro] or Chapter IV of
[Mil] for the definition of Azumaya algebra).

Definition 1.3. The Brauer-Grothendieck group of X is

H2
ét(X,O

∗
X) = H2(X,Gm).

The main relation between these three groups is the following:

Proposition 1.1. Let X be a scheme. We have the following chain of inclusions

Br(X) ⊆ Br′(X) ⊆ H2(X,Gm).

Proof. The second inclusion is clear by definition. The first inclusion is Propo-
sition 1.4 in [Gro].

The question of when these two groups are isomorphic is rather complicated,
and we have the following results:

Proposition 1.2. Let X be a scheme. The two groups Br(X) and Br ′(X) are
equal in one of the following cases:

1. the scheme X is noetherian of dimension 1;

2. the scheme X is regular of dimension 2;

3. the scheme X is quasi-compact, quasi-separated ad admits an ample line
bundle.

Proof. The first two points were shown by Grothendieck in [Gro2], Corollaire
2.2. The third one was first shown for the separated union of two affine schemes
by Gabber in [Gabb]. Recently de Jong vastly generalized this result, obtaining
point 3, in [deJ].
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There are more results in this direction (see, for example, [HS]), but we
won’t need them. Another important result is the following:

Proposition 1.3. Let X be a regular scheme. Then

Br ′(X) = H2(X,Gm).

Proof. See Example III.2.22 in [Mil], using the fact that the Brauer group of a
field is torsion, as shown in [Se], Chapter 4, §4-§5.

1.1.2 Gerbes

By definition, we have a sheaf-theoretic interpretation of the elements in the
Brauer group of X: they are equivalence classes of Azumaya algebras over X.
It is possible to give a similar interpretation for the elements in the Brauer-
Grothendieck group: they are isomorphism classes of O∗X−gerbes, whose defini-
tion we are now going to recall briefly. Since this section is not supposed to be
an introduction on this vast subject, we suggest to the reader a more detailed
exposition on gerbes and twisted sheaves, as in [Lie1] or [Lie2]. In the following,
we consider stacks for the étale topology.

Definition 1.4. A gerbe over X is a stack X over X such that the following
conditions hold:

1. for any open U of X there is a covering V of U such that the fiber category
XV 6= ∅;

2. for any open U of X and any s, t ∈ obj(X (U)), there is a covering V of
U and an isomorphism between sV and tV in the fiber category XV .

An O∗X−gerbe is a gerbe X over X along with an isomorphism between O∗X
and the inertia stack I (X ) := X ×X×X X (i. e. for any open U ⊆ X and for
any s ∈X (U) we have fixed an isomorphism between O∗X(U) and AutX (U)(s)
compatible with pull-backs).

We have a more explicit description of O∗X−gerbes. Let Pic(X) denote
the sheaf of Picard categories, i. e. the sheaf which assigns to any open
subset U of X the category Pic(U), whose objects are line bundles on U ,
and HomPic(U)(L,M) = IsomU (L,M) for any L,M ∈ Pic(U). Then, an
O∗X−gerbe X assigns to any open subset U of X a Pic(U)-torsor with com-
patibility of the assignments to different open subsets (see [DP], section 2.1.1).
The relation between O∗X−gerbes and the Brauer-Grothendieck group of X is
the following:

Proposition 1.4. There is a natural bijection between the set of isomorphism
classes of O∗X−gerbes and H2

ét(X,O
∗
X). In particular, the O∗X−gerbe associated

to α ∈ H2
ét(X,O

∗
X) will be denoted Xα.
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Proof. See [Mil], Proposition IV.2.

Proposition 1.5. Let α ∈ H2
ét(X,O

∗
X) and let Xα be an O∗X−gerbe representing

α. Then Xα is an algebraic stack locally of finite presentation. If X is quasi-
separated, Xα is finitely presented. Moreover, X is (locally) noetherian if and
only if Xα is.

Proof. See Lemma 2.2.1.1 in [Lie1].

1.2 Twisted sheaves

In this section we introduce the notion of sheaf twisted by an element of the
Brauer-Grothendieck group. We can define it in two equivalent ways. The first
one is stack-theoretic, and uses the interpretation of the Brauer-Grothendieck
group as the classification group of O∗X−gerbes. The second one is sheaf-
theoretic, and is based on the notion of hypercoverings, which gives a way
to describe the elements of the Brauer-Grothendieck group in cocycles terms.
These two ways of understanding twisted sheaves present advantages and prob-
lems. For example, the stack-theoretic point of view is useful to study moduli
problems, while the sheaf-theoretic is more friendly, and useful in particular in
the quasi-projective case. Again, for the definitions in the stack-theoretic point
of view, the main reference are [Lie1] and [Lie2].

Let α ∈ H2
ét(X,O

∗
X), corresponding to an O∗X−gerbe Xα. Let

I (Xα) := Xα ×Xα×Xα Xα

be the inertia stack of Xα representing the functors of isomorphisms of objects.
Given a sheaf F on Xα, there is a natural action F ×I (Xα) −→ F : for any
U open subset of X, and for any (f, s) ∈ F ×I (Xα)(U), we get s∗ : F (U) −→
F (U) which is an isomorphism. We define the action as the one sending (f, s)
to s∗(f), and we call it inertia action.

Definition 1.5. An α−twisted sheaf (or sheaf twisted by α) is a sheaf of (left)
OXα−modules such that the inertia action equals the natural action associated
with the left OXα−module.

We denote Sh(X,α) the category of α−twisted sheaves, QCoh(X,α) and
Coh(X,α) the subcategories of (quasi-)coherent α−twisted sheaves.

Since α is an element of H2
ét(X,O

∗
X), there is an hypercovering U• of X and

a cocycle α ∈ Γ(U2,O∗X) representing α in cohomology (see [Ver], Exposé V.7).

Definition 1.6. A Căldăraru − α−twisted sheaf (or sheaf twisted by α fol-
lowing Căldăraru) is a couple (F , g) where F is a sheaf of OU0−modules
and g : (prU1

1 )∗F −→ (prU1
0 )∗F is a gluing datum on U1 such that δ(g) ∈
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Aut((prU2
0 )∗F ) equals the cocycle α. The couple (F , g) will be called (quasi-)

coherent if F is. If (F , g), (F ′, g ′) are two Căldăraru− α−twisted sheaves, a
morphism f : (F , g) −→ (F ′, g ′) is a morphism of OU0−modules between F

and F ′ such that (prU1
0 )∗f ◦ g = g ′ ◦ (prU1

1 )∗f .

Remark 1.1. If X is a complex analytic space or a quasi-projective complex
scheme, then we can take the hypercovering to be an open covering {Ui} of X.
Denoting Uij = Ui∩Uj and Uijk = Ui∩Uj ∩Uk for any i, j, k, then a Căldăraru
α−twisted sheaf is given by a family of OUi−modules {Fi} and by a family
of isomorphisms gij : Fj|Uij −→ Fi|Uij such that gii = idFi

, gij = g−1
ji and

gij ◦ gjk ◦ gki = αijk for any i, j, k, where α = {αijk}. This is the definition
of twisted sheaf we can find in [Cal], where the two others are used in [Lie1],
[Lie2], [Lie3], [deJ], and [DP].

We denote ShC(X,U•, α) the category of Căldăraru α−twisted sheaves.
Note that while Sh(X,α) depends only on X and on α, the cohomology class
of α, ShC(X,U•, α) depends on X, on the chosen hypercovering U• and on the
cocycle α representing α. It can be checked (see [Cal], Lemma 1.2.3, Corol-
lary 1.2.6 and Lemma 1.2.8) that if one changes hypercovering and cocycle,
the category changes only by equivalence (which, in general, is non-canonical).
This allows us to write it as ShC(X,α). In a similar way we define its full
subcategories QCohC(X,α) and CohC(X,α).

Proposition 1.6. There is a natural equivalence between the two categories
Sh(X,α) and ShC(X,α). Moreover, this equivalence sends (quasi-)coherent
α−twisted sheaves to (quasi-)coherent Căldăraru twisted sheaves.

Proof. See section 2.1.3 in [Lie3].

In the following, we will use notation Sh(X,α), QCoh(X,α), Coh(X,α) even
to denote the categories of objects in Căldăraru’s definitions. We will refer to
the objects of these categories as (quasi-coherent, coherent) α−twisted sheaves.

We are now interested in some useful properties of twisted sheaves. The
first one corresponds to a similar one on classical sheaves: if X is a noetherian
scheme, any quasi-coherent sheaf on X is the colimit of its coherent subsheaves.
This implies that if U is an open subset of X, then any coherent sheaf on U

extends to a coherent sheaf on X. The same property is true even for twisted
sheaves:

Proposition 1.7. Let X be a noetherian scheme, and let α ∈ H2
ét(X,O

∗
X). Any

quasi-coherent α−twisted sheaf is colimit of its coherent α−twisted subsheaves.
In particular, if U is any open subset of X, any coherent α−twisted sheaf on U

extends to a coherent α−twisted sheaf on X.
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Proof. See Proposition 2.2.1.5 in [Lie1], for the first part. The second works
as in the classical case: if F is a coherent α|U−twisted sheaf on U , and if jU
is the inclusion of U in X, then jU∗F is a quasi-coherent α−twisted sheaf on
X. By the first part of the proposition, it is colimit of its coherent α−twisted
subsheaves. Since the restriction to U is coherent, this implies that there must
be a coherent α−twisted sheaf on X whose restriction to U is F .

Another important result is about the existence of a locally free α−twisted
sheaf of positive rank. The main point here is that in order to guarantee the
existence of such a sheaf we must consider α to be an element of Br(X).

Proposition 1.8. Let X be a noetherian scheme, α ∈ H2
ét(X,O

∗
X). There is a

locally free α−twisted sheaf E whose rank is constant and non-zero if and only
if α ∈ Br(X).

Proof. See Theorem 1.3.5 in [Cal].

This result can be used as a different definition of the Brauer group. Here
is a result that links the two descriptions:

Proposition 1.9. Let X be a noetherian scheme, α ∈ Br(X), E be a locally
free α−twisted sheaf. Then A := E ndSh(X,α)(E ) is an Azumaya algebra repre-
senting α. Moreover, if Mod(A ) is the category of A−modules on X, then the
functor sending any α−twisted sheaf F to F ⊗ E ∨ is an equivalence between
Sh(X,α) and Mod(A ), which sends (quasi-)coherent objects to (quasi-)coherent
objects.

Proof. See Proposition 1.3.6 and Theorem 1.3.7 in [Cal].

Finally, we present an important notion similar to the one we have on clas-
sical sheaves.

Definition 1.7. Let α ∈ H2
ét(X,O

∗
X) and let F be an α−twisted sheaf. We

call support of F the closed substack of Xα defined by the kernel of the map
OXα −→ E ndXα(F ). The schematic support of F is the scheme-theoretic
image in X of the support of F , and will be denote Supp(F ).

Remark 1.2. The schematic support of any coherent α−twisted sheaf on a
noetherian scheme is closed.

We conclude this section with a brief remark about functors and properties of
the categories of twisted sheaves. It is easy to show that Sh(X,α), QCoh(X,α)
and Coh(X,α) are abelian categories. Moreover, Sh(X,α) and QCoh(X,α)
have enough injective objects (see [Cal], Lemma 2.1.1).
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Proposition 1.10. Let X,Y be two noetherian schemes, α, α′ ∈ H2
ét(X,O

∗
X),

β ∈ H2
ét(Y,O

∗
Y ) and let f : X −→ Y be a morphism. Then we have the following

functors:

H om(., .) : Sh(X,α)× Sh(X,α′) −→ Sh(X,α′α−1)

⊗ : Sh(X,α)× Sh(X,α′) −→ Sh(X,αα′)

f∗ : Sh(Y, β) −→ Sh(X, f∗β)

f∗ : Sh(X, f∗β) −→ Sh(Y, β).

Moreover f∗ is left adjoint to f∗. All the statement remain true even if we pass
to the categories of quasi-coherent twisted sheaves.

Proof. See [Cal], Propositions 1.2.10 and 1.2.13.
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Chapter 2

Reconstruction of a scheme

In this chapter we show that any noetherian scheme X can be recovered from
the category Coh(X,α) of α−twisted sheaves, for any α ∈ Br ′(X). The idea is
to give a ringed space structure to the set EX,α of irreducible Serre subcategories
of finite type of Coh(X,α), and then show that this is a scheme isomorphic to
X.

In order to do so, we introduce the notion of Serre subcategory of an abelian
category, and show that Serre subcategories of finite type of Coh(X,α) are in
bijective correspondence with closed subsets of X. This allows us to put a
topology on EX,α, which recovers the topology of X. The main result we show
is the following

Theorem 2.1. Let X be a noetherian scheme, and let α ∈ Br ′(X). Then

1. the abelian category Coh(X,α) determines X;

2. if Y is a noetherian scheme and β ∈ Br ′(Y ), then any equivalence between
Coh(X,α) and Coh(Y, β) induces an isomorphism between X and Y .

The problem will be to give a good definition of a structure sheaf on EX,α,
such that we can get an isomorphism between EX,α andX. If in the statement of
Theorem 2.1 one considers α = β = 1, then Coh(X,α) is equivalent to Coh(X)
and Coh(Y, β) is equivalent to Coh(Y ). Then Theorem 2.1 is a generalization
of Gabriel’s Theorem. Anyway, we remark that in the statement of Gabriel’s
Theorem one can drop the hypothesis of X being reduced.

Another important remark is the following: Theorem 2.1 states then any
equivalence F between Coh(X,α) and Coh(Y, β) induces an isomorphism f

between X and Y . It seems natural to conjecture that f∗(β) = α, but we are
not able to show it. Anyway, this is true if we suppose X and Y to be smooth
and projective, as shown in [CS].

15
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2.1 Serre subcategories of an abelian category

For a reference on Serre subcategories and quotient categories see [Ga]. Let A

be an abelian category.

Definition 2.1. A full subcategory I of A is called Serre subcategory if for every
short exact sequence in A

0 −→ A −→ B −→ C −→ 0

we have B ∈ I if and only if A,C ∈ I.
We say that I is a Serre subcategory of finite type if it is a Serre subcategory of
A generated by an element A ∈ I, i. e. I is the smallest Serre subcategory of A

containing A. Such an A will be called a generator for I.
We say that I is an irreducible Serre subcategory if it is not generated (as Serre
subcategory) by two proper Serre subcategories.

Example 2.1. Let CohZ(X,α) be the full subcategory of Coh(X,α) whose ob-
jects have support contained in the closed subset Z of X. It is easy to verify
that this is a Serre subcategory of Coh(X,α).

Definition 2.2. If I is a subcategory of A, the quotient category A/I is the
category having the same objects as A and whose morphisms are defined in the
following way: if A,B ∈ A, let

HomA/I(A,B) := lim
−→

HomA(A′, B′)

where i : A′ ↪→ A is a sub-object of A such that coker(i) ∈ I and p : B � B′ is
a quotient of B such that ker(p) ∈ I.

If I is a Serre subcategory of A, then A/I is an abelian category. We have
the two following lemmas:

Lemma 2.2. Let A,B be abelian categories and F : A −→ B be an exact functor
that admits a fully faithful right adjoint. Then ker(F ) is a Serre subcategory of
A and the induced functor F : A/ ker(F ) −→ B is an equivalence.

Proof. It is easy to see that ker(F ) is a Serre subcategory of A: since F is exact,
it takes a short exact sequence

0 −→ A −→ B −→ C −→ 0

to a short exact sequence

0 −→ F (A) −→ F (B) −→ F (C) −→ 0.

Then F (A) = F (C) = 0 if and only if F (B) = 0.



2.1. Serre’s subcategories of an abelian category 17

The induced functor is then an equivalence: let G be the fully faithful right
adjoint of F . Let A ∈ A/ ker(F ). From general properties of fully-faithful
adjoint functors (see, for example, Proposition 1.5.6 in [KS]) there is a canonical
isomorphism F (G(A)) ' A, so that F is essentially surjective. Let A,B be two
objects in A/ ker(F ). Since G is fully faithful, we have

HomB(F (A), F (B)) = HomA(G(F (A)), G(F (B))).

The canonical morphism f : G(F (A)) −→ A has kernel and cokernel lying in
ker(F ), since F is exact and F (f) is an isomorphism between F (G(F (A))) and
F (A). This means that G(F (A)) is isomorphic to A in A/ ker(F ). Doing the
same for B we get

HomA(G(F (A)), G(F (B))) = HomA/ kerF (A,B),

showing that F is fully faithful, and we are done.

Lemma 2.3. Let A be an abelian category, A′ a full abelian subcategory of A

and I a Serre subcategory of A. Suppose that for every M ∈ A′, N ∈ I, if N is
a sub-object or a quotient of M , then N ∈ I ∩A′. Then the induced functor

i : A′/I ∩A′ −→ A/I

is fully faithful.

Proof. Let A,B ∈ A′/I ∩A′. By definition, a morphism f between A and B in
A/I is given by a limit of morphisms between A′ and B′, where j : A′ ↪→ A is
such that coker(j) ∈ I and p : B � B′ is such that ker(p) ∈ I. Since A,B ∈ A′,
by hypothesis ker(p) and coker(j) are in A′ ∩ I, so that any element of the
limit to define f appears in the definition of a morphism f ′ between A and B in
A′/I ∩ A′. The converse is clear, so that to define a morphism between A and
B in A′/A′ ∩ I is the same as to define it in A/I.

The following is the main result we will use about Serre subcategories and
quotient categories:

Proposition 2.4. Let X be a noetherian scheme, and let α ∈ H2
ét(X,O

∗
X).

Moreover, let Z be a closed subset of X, whose complementary open subset is
U := X \ Z, and let jU be the inclusion of U in X. Then the functor

j∗U : Coh(X,α)/CohZ(X,α) −→ Coh(U,α|U )

is an equivalence of abelian categories.

Proof. The pull-back functor

j∗U : QCoh(X,α) −→ QCoh(U,α|U )
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is an exact functor with a fully faithful right adjoint jU∗. Since ker j∗U =
QCohZ(X,α), by Lemma 2.2 the functor

j∗U : QCoh(X,α)/QCohZ(X,α) −→ QCoh(U,α|U )

is an equivalence, and by Lemma 2.3 the induced functor

j∗U : Coh(X,α)/CohZ(X,α) −→ Coh(U,α|U )

is fully faithful. Since X is noetherian, by Proposition 1.7 we know that any
coherent α|U−twisted sheaf on U extends to a coherent α−twisted sheaf on
X, so that j∗U is essentially surjective, giving an equivalence between the two
abelian categories Coh(X,α)/CohZ(X,α) and Coh(U,α|U ).

2.2 Closed subsets and Serre subcategories

In this section we show that Serre’s subcategories of finite type of Coh(X,α)
(for any noetherian scheme X and any α ∈ H2(X,Gm)) are in bijective corre-
spondence with closed subsets of X. The first result we need is the following:

Lemma 2.5. Let X be a noetherian reduced scheme, and let α ∈ H2
ét(X,O

∗
X).

Then there is a coherent α−twisted sheaf whose support is X.

Proof. Since X is noetherian, by Proposition 1.7 there is a coherent α−twisted
sheaf F whose support is the whole X if and only if there is a coherent
α|Xη−twisted sheaf on Xη, where Xη is the generic scheme of X. This means we
can supposeX to be affine, so that by Proposition 1.2 we haveBr(X) = Br ′(X).
Now, since X is reduced the generic scheme of X is the spectrum of a finite prod-
uct of fields. If we are able to produce such a sheaf on the spectrum of a field, we
are done. Now, if K is a field, H2

ét(Spec(K),O∗Spec(K)) = Br(K) is torsion, so
that the cohomological Brauer group and the Brauer-Grothendieck group are
the same. Since Br(X) = Br ′(X), by Proposition 1.8 there is a locally free
α−twisted sheaf on X, and we are done. See Lemma 3.1.3.2 in [Lie2] for more
details.

Lemma 2.6. Let X be a noetherian scheme, Z a closed subscheme and Zred

the reduced scheme associated to Z. Moreover, let ι be the closed immersion of
Zred into X. If there is F ∈ CohZ(X,α) such that 〈ι∗F 〉 = Coh(Zred, ι∗α),
then 〈F 〉 = CohZ(X,α).

Proof. First, let us prove the Lemma for Z = X. Let G ∈ Coh(X,α), and let
F ∈ Coh(X,α) be a generator for Coh(Xred, α). We need to show that G is in
〈F 〉. Now, the α−twisted sheaf G admits a finite filtration

0 = G0 ⊆ G1 ⊆ ... ⊆ Gn = G
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such that for any i = 1, ..., n the subquotient Gi/Gi−1 is reduced (see Chapitre
15 in [LMB]), so that it is an element of 〈F 〉. Using the filtration and the fact
that 〈F 〉 is a Serre subcategory of Coh(X,α), this implies G ∈ 〈F 〉, and we
are done.

Now, let Z be a closed subscheme of X, and let ι be the closed immer-
sion of Z in X. Let F ∈ CohZ(X,α) be such that 〈ι∗F 〉 = Coh(Zred, ι∗α).
Then, by the first part of the lemma we have 〈ι∗F 〉 = Coh(Z, ι∗α). Now, no-
tice that ι∗(Coh(Z, ι∗α)) = CohZ(X,α), and that ι∗ι∗F ∈ 〈F 〉. This implies
CohZ(X,α) ⊆ 〈F 〉, and we are done since F ∈ CohZ(X,α).

Using these two basic Lemmas, we are able to show the main point of the
whole picture, which is the following proposition:

Proposition 2.7. Let X be a noetherian scheme, α ∈ H2
ét(X,O

∗
X), and let Z

be any closed subset of X. Then CohZ(X,α) is a Serre subcategory of finite
type of Coh(X,α), generated by any F ∈ Coh(X,α) such that Supp(F ) = Z.

Proof. Notice that by Lemma 2.6 we just need to show that there is F ∈
CohZ(X,α) such that Supp(F ) = Z, and any F of this sort is such that
〈ι∗F 〉 = Coh(Zred, ι∗α), where ι is the closed immersion of Z in X.

Moreover, notice that we are considering Z as a closed subset (or as a sub-
scheme with the natural reduced structure) ofX, so that the equality Supp(F ) =
Z is at the level of subschemes with the reduced structure. By Lemma 2.5, the
existence of such a coherent twisted sheaf is granted.

In conclusion, we just need to show that for any noetherian reduced scheme
X and any F ∈ Coh(X,α) such that Supp(F ) = X we have Coh(X,α) = 〈F 〉.
By Lemma 2.6, we can even suppose X to be integral. We proceed by induction
on the dimension of X.

If dim(X) = 0, then X = Spec(K) for some field K, and the Brauer-
Grothendieck group of X is H2

ét(Spec(K),O∗Spec(K)) = Br(K) is torsion. By
Propositions 1.2 and 1.8 there is a locally free α−twisted sheaf E , and the
abelian category Coh(Spec(K), α) is equivalent to the category of coherent
sheaves which have the structure of E nd(E )−modules (see Proposition 1.9).
Since this last category is generated by E nd(E ), Coh(Spec(K), α) is generated
by E , and we are done.

Now suppose that dimX = n and that the proposition is true for all schemes
of dimension less then or equal to n − 1. Let Y be a proper closed subscheme
of X. By induction CohY (X,α) ⊆ 〈F 〉.

Let G ∈ Coh(X,α). We need to show that G is in 〈F 〉. First of all, it is
sufficient to find an open subset U of X on which some direct sums G s and F r

are isomorphic: indeed, if jU : U −→ X is the inclusion, Y = X \U and j∗UG s is
isomorphic to j∗UF r, then G s and F r are isomorphic in Coh(X,α)/CohY (X,α)
by Proposition 2.4. Let f be an isomorphism in this category: by definition,
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this means that ker(f) and coker(f) are in CohY (X,α) which is, by induction,
contained in 〈F 〉. Since this is a Serre subcategory of Coh(X,α), we get that
G is in 〈F 〉.

In conclusion, we just need to find an open subset U of X over which some
direct sums G s and F r are isomorphic. Using the same argument of Lemma
2.5, we can consider U to be the generic scheme of X, so that there is a locally
free α−twisted sheaf on U . Shrinking U , we can suppose j∗UG and j∗UF to be
locally free α−twisted sheaves of rank r and s respectively, so that j∗UG s and
j∗UF r are locally free α−twisted sheaves of the same rank. Now, if two locally
free α−twisted sheaves H , H ′ are of the same rank, there is an open covering
given by open subsets Vi such that H|Vi 'H ′

|Vi for every i. In conclusion, we
have found an open subset U of X over which j∗UF r and j∗UG s are isomorphic.
As we saw above, this implies G s to be in 〈F 〉, getting G ∈ 〈F 〉, and we are
done.

As a corollary we get the following:

Corollary 2.8. Let X be a noetherian scheme, and let α ∈ H2
ét(X,O

∗
X). There

is a bijective correspondence between the set CX of closed subsets of X and the
set SX,α of Serre subcategories of finite type of Coh(X,α). Moreover, this gives
a bijective correspondence between the points of X and the set EX,α ⊆ SX,α of
irreducible Serre subcategories of finite type of Coh(X,α).

Proof. Define

p : CX −→ SX,α, p(Z) := CohZ(X,α),

and

q : SX,α −→ CX , q(〈F 〉) := Supp(F ).

In view of Proposition 2.7, it is straightforward to show p and q are well defined
(i. e. that CohZ(X,α) is a Serre subcategory of finite type and that two
different generators of the same Serre subcategory have the same support) and
that p = q−1.

Moreover, Z is irreducible if and only if CohZ(X,α) is irreducible as Serre
subcategory of Coh(X,α): indeed if Z is reducible, then Z = Z1 ∪Z2, and it is
clear that CohZ(X,α) is generated as Serre subcategory by CohZ1(X,α) and
CohZ2(X,α). If CohZ(X,α) is reducible, then there are F1,F2 ∈ CohZ(X,α)
such that CohZ(X,α) is generated as Serre subcategory by 〈F1〉 and 〈F2〉.
Then it is clear that Z = SuppF1 ∪ SuppF2.

Since the points of X are the generic points of irreducible subsets of X, p
gives a bijective correspondence between X and EX,α.
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2.3 The reconstruction of X from Coh(X,α)

In the previous section we have seen that we can recover the set of points of X
from Coh(X,α). We can do the same for the topology of X. Indeed, on EX,α

we can define the following topology: let I be a Serre subcategory of finite type
of Coh(X,α), and write

D(I) := {J ∈ EX,α | J * I}.

This family of subsets forms a topology over EX,α and the morphism

f := fX,α : EX,α −→ X, f(Coh{x}(X,α)) := x

is a homeomorphism by Proposition 2.7 and Corollary 2.8. More precisely, if Z
is a closed subset of X, U = X \Z and I = CohZ(X,α), then f gives a bijective
correspondence between D(I) and U .

It remains to define a structure sheaf on EX,α, in order to make f an iso-
morphism of schemes. Let us recall the notion of center of a category.

Definition 2.3. Let A be a category. We call center of A the ring Z(A) of
endomorphisms of the identity functor of A

Z(A) := EndA(idA).

Using this notion and those used above, we define the following presheaf on
EX,α: for any Serre subcategory I of finite type of Coh(X,α), let

OEX,α(D(I)) := Z(Coh(U,α|U )).

Lemma 2.9. The presheaf OEX,α is a sheaf on EX,α.

Proof. Let U be an open subset of X, and let {Ui}i∈I be an open covering of
U . Let f ∈ Z(Coh(U,α|U )), i. e. f = {fF}F∈Coh(U,α|U ), where fF is an
endomorphism of F such that for any G ∈ Coh(U,α|U ) and any morphism
g : F −→ G we have fG ◦ g = g ◦ fF .

Let us suppose that for any i ∈ I we have f|Ui = 0. This means that for
any F ∈ Coh(U,α|U ) we have fF |Ui = 0 in the abelian category Coh(Ui, α|Ui)
for any i ∈ I. By Proposition 2.4 the category Coh(Ui, α|Ui) is equivalent to
Coh(U,α|U )/CohZi(U,α|U ), where Zi := U \ Ui.

Then, fF |Ui = 0 in the quotient category, so the image of fF |Ui is contained
in CohZi(U,α|U ) for any i ∈ I, i. e. Supp(im(fF |Ui)) ⊆ Zi for any i ∈ I. But
this clearly implies fF = 0 for any F ∈ Coh(U,α|U ), getting f = 0.

Now, for any i ∈ I consider an element fi ∈ Z(Coh(Ui, α|Ui)), such that
for any i, j ∈ I we have fi|Uij = fj|Uij , where Uij := Ui ∩ Uj . In particular,
for any F ∈ Coh(U,α|U ) we have a gluing datum {fi,F}i∈I , so that there
is a morphism fF ∈ End(F ) such that fF |Ui = fi,F and such that for any
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G ∈ Coh(U,α|U ) and any g : F −→ G we have fG ◦ g = g ◦ fF . In conclusion,
there is f ∈ Z(Coh(U,α|U )) such that f|Ui = fi for any i ∈ I, and we are
done.

Finally, we define a morphism of sheaves f \ : OX −→ f∗OEX,α , given over
every open subset U of X by

f \(U) : OX(U) −→ Z(Coh(U,α|U )), f \(U)(s) := ·s.

In this way we have given to EX,α the structure of ringed space, and we have
defined a morphism of ringed spaces (f, f \) : EX,α −→ X. We have now the
following theorem, which shows the first part of Theorem 2.1:

Theorem 2.10. Let X be a noetherian scheme over a field k, and let α ∈
Br ′(X). The morphism of ringed spaces (f, f \) : EX,α −→ X defined above is
an isomorphism. In particular, EX,α is a noetherian k−scheme which depends
only on Coh(X,α).

Proof. We only need to show that f \ is an isomorphism of rings. It suffices to
show that it is an isomorphism on open affine subschemes of X. So, let us take
U = SpecA an open affine subscheme of X.

We know that OX(U) ' A, and we study Z(Coh(U,α|U )). Since α|U ∈
Br ′(U), from Proposition 1.2 this is an element of Br(U), and by Proposi-
tion 1.8 there is a locally free α|U−twisted sheaf E of rank r. Moreover, by
Proposition 1.9 there is an equivalence of categories

Coh(U,α|U ) ∼−→Modcoh(A ), F 7→ F ⊗ E ∨,

where A := E ndCoh(U,α|U )(E ) is an Azumaya algebra on X, and Modcoh(A )
is the category of coherent sheaves on X which have the structure of module
over A . Since we are on an affine scheme, taking global sections we get an
equivalence between Modcoh(A ) and Modft(EndCoh(U,α|U )(E )). Finally we
get an isomorphism

Z(Coh(U,α|U )) ' Z(Modft(EndCoh(U,α|U )(E ))).

Now, we have the following lemma, which is classical.

Lemma 2.11. Let A be a ring with unity, Z(A) his center, and Modft(A) the
category of modules of finite type over A. The canonical morphism

Z(A) −→ Z(Modft(A)), a 7→ ·a

is an isomorphism of commutative rings.
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Proof. Injectivity is clear. If f := {fM} ∈ Z(Modft(A)), with fM ∈ EndA(M),
then there is a ∈ A such that fA = ·a or fA = a·. By definition of center of a
category, for any g ∈ EndA(A) we have g ◦ fA = fA ◦ g, so that a ∈ Z(A). Now,
since f − (·a) ∈ Z(Modft(A)) is trivial on A, and since, by noetherianity of A,
any A−module of finite type is quotient of some Ar, we get f − (·a) = 0, and
we are done.

By this Lemma, we finally get

Z(Coh(U,α|U )) ' Z(EndCoh(U,α|U )(E )).

Now, just use the following well-known result

Lemma 2.12. Let X be a noetherian scheme, A an Azumaya algebra on X.
The center of A is OX .

Proof. This follows from Theorem IV.1.1 in [Mil].

This implies that
Z(EndCoh(U,α|U )(E )) ' A,

and we are done.

Remark 2.1. In the proof of various statements we make use of the existence
of a locally free α−twisted sheaf. First of all, looking at the proof of this
fact in [Cal], Theorem 1.3.5, we see that to prove the existence of a locally free
α−twisted sheaf on X we use the cocycle α. Moreover, the choice of such a sheaf
determines an Azumaya algebra, so that we use explicitly α. In conclusion, the
isomorphism fX,α depends on the choice of a representative cocycle α for the
class α.

We are now ready to conclude the proof of Theorem 2.1:

Proof. of Theorem 2.1. The first part is the content of Theorem 2.10. For the
second part, let X, Y be two noetherian schemes, α ∈ Br ′(X), β ∈ Br ′(Y ).
Let

F : Coh(X,α) −→ Coh(Y, β)

be an equivalence. If I is a (irreducible) Serre subcategory of finite type of
Coh(X,α), then F (I) is a (irreducible) Serre subcategory of finite type of
Coh(Y, β). This gives a bijective correspondence

f̃F : EX,α −→ EY,β , f̃F (J) := F (J).

Moreover, f̃F is an homeomorphism and even an isomorphism of schemes: let
U := D(I) be an open subset of EX,α. Then f̃F induces a bijective correspon-
dence between D(I) and W := D(F (I)). Since F is an equivalence, the induced
functor

F : Coh(X,α)/CohX\U (X,α) −→ Coh(Y, β)/CohY \W (Y, β)



24 Chapter 2. Reconstruction of a scheme

is an equivalence (use Lemma 2.2). By Proposition 2.4, this gives an equivalence

j∗W ◦ F ◦ (j∗U )−1 : Coh(U,α|U ) −→ Coh(W,β|W ),

where jU (resp. jW ) is the inclusion of U in X (resp. of W in Y ). Thus we get
an isomorphism

j∗W ◦ F ◦ (j∗U )−1 : Z(Coh(U,α|U )) −→ Z(Coh(W,β|W )),

which defines an isomorphism of sheaves f̃ \F : OEY,β −→ f̃F∗OEX,α . From
Theorem 2.10, it follows that

fF := fY,β ◦ f̃F ◦ f−1
X,α : X −→ Y

is an isomorphism, and we are done.
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[HS] D. Huybrechts, S. Schröer, The Brauer Group of Analytic K3 Surfaces,
IMRN 50 (2003), 2687-2698.

[KS] M. Kashiwara, P. Schapira, Categories and Sheaves, Grundlehren der
mathematische Wissenschaft, vol. 332, Springer, 2006.

[LMB] G. Laumon, L. Moret-Bailly, Champs algébriques, A Series of Modern
Surveys on Mathematics, vol. 39, Springer-Verlag, Berlin, 1999.

[Lie1] M. Lieblich, Moduli of twisted sheaves, Duke Math. J. 138, vol. 1, (2007),
23-118.

[Lie2] M. Lieblich, Twisted sheaves and the period-index problem, Compos.
Math. 144, vol. 1, (2008) 1-31.

25



26 Bibliography

[Lie3] M. Lieblich, Moduli of twisted sheaves and generalized Azumaya algebras,
Oberwolfach Reports, vol. 1, Issue 3, (2004), 23-118.

[Mil] J. Milne, Étale Cohomology, Princeton Mathematical Series, vol. 33,
Princeton University Press, Princeton, N.J., 1980.

[Se] J. P. Serre, Local Fields, Graduate Texts in Mathematics, vol. 67, Springer-
Verlag, New York, 1979.

[Ver] M. Artin, A. Grothendieck, J. L. Verdier, Théorie des topos et coho-
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Introduction

The Kodaira dimension κ is one of the main geometric invariants one can as-
sociate to any smooth projective complex variety X. Roughly speaking, one
can distinguish three possible cases. The first one is κ(X) = −∞, incuding the
case where the inverse of the canonical divisor KX is ample, and the manifold
is called Fano. The second case is κ(X) = 0, which includes those manifolds
whose canonical divisor KX is trivial. The last case is κ(X) > 0, including
general type manifold.

The class of smooth projective varieties of Kodaira dimension 0 contains
a very important class of manifolds, namely those whose first Chern class is
trivial. These have been studied for a long time, and have been classified by
means of the holonomy groups. In particular, if X is a Kähler manifold with
trivial first Chern class, then there is an étale covering X ′ −→ X such that

X ′ = T ×
n∏

i=1

Xi ×
m∏

j=1

Yj ,

where T is a complex torus, Xi and Yj are simply-connected, Xi is a special
holonomy manifold for any i, and Yj is a manifold whose holonomy group is
Sp(rj), where 4rj is the real dimension of Yj .

Complex tori are all of the form T = Cn/Γ for some n ∈ N and for some
lattice Γ in Cn of maximal rank. Special holonomy manifolds, called Calabi-Yau
manifolds, form a rather wide (and wild) family, and play an important role
in physics. The manifolds in the last class are called irreducible hyperkähler
in differential geometry, and irreducible symplectic in algebraic geometry. In
particular, they admit a unique (up to multiplication by an element of C∗)
symplectic form.

Up to now, there are only five known deformation classes of irreducible
symplectic manifolds:

1. K3 surfaces;

2. Hilbert schemes of points Hilbn(X), where X is a K3 surface and n ∈ N;

3. generalized Kummer varieties Kn(T ), where T is a complex torus and
n ∈ N;

4. the 10−dimensional O’Grady’s example M̃10;

5. the 6−dimensional O’Grady’s example M̃6.
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6 Introduction

The problem of producing irreducible symplectic manifolds is strictly related to
the one of producing higher dimensional varieties. One of the most important
constructions for this purpose is that of moduli spaces of semistable sheaves
on a smooth projective surface S. In order to define them, we need to fix an
ample divisor H on S and a Mukai vector v ∈ H̃(S,Z) := H2∗(S,Z). This last
lattice, called Mukai lattice, is a Z−module whose lattice structure is given by an
intersection form (., .), called Mukai form. The moduli space of H−semistable
sheaves whose Mukai vector is v is denoted Mv. If S is projective, the moduli
space Mv is a projective variety, and it is a rather complicated geometrical
object. In general, it is not reduced nor irreducible and can have rather wild
singularities. Anyway, the main point in the study of moduli spaces of semistable
sheaves is that their geometry has, somehow, to reflect geometrical features of
the base surface.

A fundamental open subset of Mv is Ms
v , parameterizing H−stable sheaves.

If S is a projective K3 or an abelian surface, then Ms
v , if non-empty, is smooth,

carries a symplectic form and has dimension 2 + (v, v). Moreover, if the Mukai
vector v is primitive, i. e. it is not divisible in H̃(S,Z), and H is a sufficiently
generic polarisation, then Mv = Ms

v .
If one fixes a symplectic form ω on Ms

v , a natural question is if there is a
symplectic resolution of Mv, i. e. a resolution of the singularities

πv : M̃v −→Mv,

such that there is a symplectic form ω̃ on M̃v whose restriction to Ms
v is ω.

Moreover, if such a resolution exists, it seems natural to ask if M̃v is an irre-
ducible symplectic variety.

If v is primitive and H is sufficiently generic, then Ms
v = Mv. We then

need to know if Mv is irreducible symplectic. A particular case is when v =
(1, 0,−n) ∈ H̃(S,Z) if S is an abelian surface, and v = (1, 0, 1 − n) if S is a
K3: then Mv ' Hilbn(S), the Hilbert scheme parameterizing 0−dimensional
subschemes of S of length n. The main result, due to Fujiki for n = 2 and to
Beauville in general, is:

Theorem 0.0.1. Let n be a positive integer.

1. If S = X is a projective K3 surface, then Hilbn(X) is an irreducible
symplectic variety of dimension 2n whose second Betti number is 23.

2. If S = J is an abelian surface, then there is a morphism

Hilbn+1(J) −→ J,

whose fiber over 0 ∈ J is denoted Kn(J) and called generalized Kummer
variety. Then Kn(J) as an irreducible symplectic variety of dimension 2n
whose second Betti number is 8.

This result has been generalized in several steps by Huybrechts-Göttsche,
Mukai, Yoshioka, O’Grady and others, obtaining the following:

Theorem 0.0.2. Let v be a primitive Mukai vector, and let H be a v−generic
polarization.
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1. If S = X is a projective K3 surface and (v, v) ≥ 0, then Mv is an ir-
reducible symplectic variety, which is deformation of Hilbn(X ′) for some
K3 surface X ′ and n = 1 + (v,v)

2 .

2. If S = J is an abelian surface and (v, v) > 4, then there is a morphism

Mv −→ J × Ĵ ,

whose fiber over (0,OJ) is denoted Kv. Then Kv is an irreducible sym-
plectic variety which is deformation of Kn(J ′), for some abelian surface
J ′ and for n = (v,v)

2 − 1.

It then remains only to study the case of non-primitive v, so that there are
m ∈ Z and a primitive Mukai vector w ∈ H2(S,Z) such that v = mw. O’Grady
was the first one to exhibit two concrete examples of resolution of singularities
of moduli spaces of semistable sheaves with non-primitive Mukai vector. In his
works [OG2] and [OG3], he showed the following:

Theorem 0.0.3. (O’Grady). Let v = (2, 0,−2) ∈ H̃(S,Z).

1. Let S = X be a projective K3 surface such that Pic(X) = Z · H for an
ample divisor H such that H2 = 2, and let M10 := Mv. Then M10 admits
a symplectic resolution M̃10, which is an irreducible symplectic variety of
dimension 10 and whose second Betti number is 24.

2. If S = J is an abelian surface such that NS(J) = Z · c1(H) for an ample
divisor H such that c21(H) = 2, then there is a morphism

Mv −→ J × Ĵ

whose fiber over (0,OJ) is denoted M6. Then M6 admits a symplectic
resolution M̃6, which is irreducible symplectic variety of dimension 6 and
second Betti number 8.

The main result on the existence of symplectic resolutions for Mv was shown
by Kaledin, Lehn and Sorger, generalizing the previous result by O’Grady:

Theorem 0.0.4. Let v = mw be a non-primitive Mukai vector such that
(v, v) > 0, and let H be a v−generic polarisation.

1. If m = 2 et (w,w) = 2, then there exist a symplectic resolution

πv : M̃v −→Mv,

obtained as the blow-up of the reduced singular locus of Mv.

2. If m > 2 or (w,w) > 2, then there is no symplectic resolution of Mv.
Moreover, the moduli space Mv is locally factorial.
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From this Theorem, one can conclude the following: if v is primitive or as in
point 2 of Theorem 0.0.4, then Mv is locally factorial. It seems natural to ask
if the same property remains true even when the Mukai vector is chosen as in
point 1 of Theorem 0.0.4. This is the problem we study in this work, and our
main result is the following:

Theorem 0.0.5. The moduli spaces M10 and M6 described in Theorem 0.0.3
are 2−factorial.

The proof of Theorem 0.0.5 is based on the analysis of the Picard groups
of M̃10 and M̃6, that allows us to calculate the Picard groups and the groups
of Weil divisor (up to linear equivalence) of M10 and M6. For M10, this last
is isomorphic to Pic(X) ⊕ Z[B], where B is the Weil divisor parameterizing
semistable non-locally free sheaves. Using a theorem due to Rapagnetta, we
show that B is not a Cartier divisor. Then, using a construction due to Le
Potier, we show first that 2B is a Cartier divisor, and we deduce from this the
2−factoriality of M10.

For M6 the problem is more delicate. The group of Weil divisors (up to
linear equivalence) of M6 is isomorphic to NS(J)⊕Z[B]⊕Z/2Z[D], where B is
the Weil divisor parameterizing semistable non-locally free sheaves, and D is a
Weil divisor whose square is trivial. As for M10, a result of Rapagnetta allows
us to show that D is not a Cartier divisor. By the construction of Le Potier
already used for the 10−dimensional case, we finally show the 2−factoriality of
M6.

Another important point in the theory of irreducible symplectic manifolds is
the study of the Beauville-Bogomolov form: if X is irreducible symplectic, then
H2(X,Z) is a lattice with respect to an intersection form q, called Beauville-
Bogomolov form, which is the analogue of the intersection form on K3 surfaces.
For the known examples, the Beauville-Bogomolov form has been calculated by
Beauville and by Rapagnetta. In particular, if v is a primitive Mukai vector and
H is a v−generic polarisation, let v⊥ ⊆ H̃(S,Z) be the orthogonal to v with
respect to the Mukai form. Then

1. If X is a projective K3 surface and (v, v) = 0, then there is a Hodge
isometry v⊥/v −→ H2(Mv,Z).

2. If X is a projective K3 surface and (v, v) > 0, then there is a Hodge
isometry v⊥ −→ H2(Mv,Z).

3. If J is an abelian surface and (v, v) > 4, then there is a Hodge isometry
v⊥ −→ H2(Kv,Z).

In this work we show that a similar result holds even for M̃10 et M̃6:

Theorem 0.0.6. Let v = (2, 0,−2).

1. If X is a projective K3 surface as in point 1 of Theorem 0.0.3, then there
is an injective Hodge morphism v⊥ −→ H2(M̃10,Z), which is an isometry
on its image.

2. If J is an abelian surface as in point 2 of Theorem 0.0.3, then there is an
injective Hodge morphism v⊥ −→ H2(M̃6,Z), which is an isometry on its
image.



Chapter 1

Moduli spaces of sheaves

The theory of moduli spaces of semistable sheaves is one of the most pow-
erful methods to produce higher dimensional varieties. Probably, this theory
plays the most relevant role in the study of irreducible symplectic manifolds,
since examples of this kind of manifolds can be obtained using moduli spaces
of sheaves on surfaces. In [OG2] and [OG3], O’Grady introduced two moduli
spaces of semistable sheaves with non-primitive Mukai vector, denoted M10 and
M6, which are the starting point for the construction of two new examples of
irreducible symplectic manifolds. These two moduli spaces are the main object
of this work, and will be the most important ingredient in chapters 2 and 3.

In this chapter we recall the basic steps in the construction of moduli spaces
of semistable sheaves on projective varieties and the basic properties we will
need. In the first section we recall the definitions and the fundamental prop-
erties we need for the theory of semistable sheaves, as torsion freeness, dual
sheaves, Hilbert polynomials and slopes. In the third section we recall the ba-
sic properties of (µ−)semistable sheaves, in particular the Harder-Narasimhan
and the Jordan-Hölder filtrations, and the notions of polystability and of S-
equivalence.

We then define the two basic notions for the construction of moduli spaces:
the boundedness for families of sheaves, and the construction of the Grothendieck
Quot-scheme. The construction of the moduli space works as follows: by the
boundedness of the family of semistable sheaves with fixed Hilbert polynomial,
we can define an open subscheme R in an appropriate Quot-scheme which pa-
rameterizes only semistable quotients. On R there is an action of the reductive
group GL(N) for some integer N . The main point is to show that there is
a good quotient for this action: this will be the desired moduli space, which
parameterizes S-equivalence classes of semistable sheaves.

Finally, and most important for our purposes, we introduce the notion of the
Le Potier’s determinant: using the very construction of the moduli space as a
quotient of a Quot-scheme, Le Potier gives a method to associate a line bundle
on a moduli space to a class in the topological Grothendieck group of the base
surface.

There are many important topics in the theory of moduli spaces of semistable
sheaves on surfaces which are not treated in this chapter, but that are funda-
mental for a good comprehension of the next two chapters. The best reference

9



10 Chapter 1. Moduli spaces of sheaves

we suggest to the reader is the beautiful and complete introduction to moduli
spaces of sheaves given in [H-L]. For the convenience of the reader, we decided
to resume some of the basic topics in Appendix C.

1.1 Semistability for coherent sheaves

In this section we introduce the definition and the basic properties of semistable
sheaves on Noetherian schemes. All the considered schemes will be of finite type
over a field k.

1.1.1 Torsion-free sheaves

In the following, let X be a Noetherian scheme and let Coh(X) denote the
abelian category of coherent sheaves on X.

Definition 1.1.1. The support of E ∈ Coh(X) is defined as

Supp(E ) := {x ∈ X |Ex 6= 0},

which is a closed subset in X. The dimension of E is the dimension of Supp(E ).

Definition 1.1.2. Let d be an integer. A coherent sheaf E is called pure of
dimension d if dim(F ) = d for any non-trivial coherent subsheaf F ⊆ E .

Definition 1.1.3. A torsion filtration of a coherent sheaf E is a filtration

0 ⊆ T0(E ) ⊆ T1(E ) ⊆ ... ⊆ Td(E ) = E ,

where d = dim(E ) and Ti(E ) is the maximal subsheaf of E of dimension
dim(Ti(E )) ≤ i. The sheaf Td−1(E ) is called torsion of E . A coherent sheaf E

of dimension d is said to be torsion-free if Td−1(E ) = 0.

Proposition 1.1.1. Let E be a coherent sheaf. Then a torsion filtration exists
and is unique. Moreover, E is pure if and only if it is torsion-free.

Proof. See [H-L].

Let X be a Noetherian scheme of dimension n, and let E be a coherent sheaf
of dimension d ≤ n on X.

Definition 1.1.4. The dual sheaf of E is the coherent sheaf

E ∨ := E xtn−d(E , ωX),

where ωX is the dualizing sheaf of X.

Remark 1.1.1. If d = n, then E ∨ = E ∗ ⊗ ωX , where E ∗ := H om(E ,OX), and
E ∨∨ = E ∗∗. If X is a K3 or an abelian surface, then E ∨ = E ∗.
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Lemma 1.1.2. For any E ∈ Coh(X) there is a spectral sequence

Ep,q2 := E xtp(E xt−q(E , ωX), ωX)⇒ E .

In particular, there is a canonical morphism θE : E −→ En−d,d−n2 = E ∨∨.

Proof. See Lemma 1.1.8 in [H-L].

Definition 1.1.5. A coherent sheaf E is called reflexive if θE is an isomorphism.

Proposition 1.1.3. A coherent sheaf E is pure if and only if θE is injective.

Proof. This is the first part of Proposition 1.1.10 in [H-L].

Finally, we just want to recall the following proposition, whose proof relies
on the study of Serre’s conditions Sk,c on smooth projective varieties (for the
definition of these conditions, see [H-L]).

Proposition 1.1.4. If X is a smooth projective surface, any 2-dimensional
sheaf E is reflexive if and only if it is locally free. If it is pure, then the support
of E ∗∗/E has codimension at least 2.

Proof. See Proposition 1.1.6 and Example 1.1.16 in [H-L].

1.1.2 Reduced Hilbert polynomial

Let X be a projective scheme of dimension n over a field k, and let OX(1) be a
chosen ample line bundle on X. For any integer m ∈ Z let OX(m) := OX(1)⊗m.

Definition 1.1.6. The Hilbert polynomial of E ∈ Coh(X) is the function

P (E ) : Z −→ Z, P (E ,m) := χ(E ⊗ OX(m)),

where χ(G ) :=
∑n
i=0(−1)ihi(X,G ) for any G ∈ Coh(X).

Theorem 1.1.5. (Hirzebruch-Riemann-Roch). Let E ∈ Coh(X). Then

χ(E ) =
∫

X

ch(E )td(X).

Proof. For the proof when k = C, see [Hir].

The Hilbert polynomial of a coherent sheaf E depends, then, only on the
Chern character (and hence, on the Chern classes) of E , once a polarization has
been chosen. It can be uniquely written as

P (E ,m) =
αd(E )
d!

md +
αd−1(E )
(d− 1)!

md−1 + ...+ α1(E )m+ α0(E ),

where d is the dimension of E .
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Definition 1.1.7. The integer αd(E ) is called the multiplicity of E . If d = n,
then the rank of E is defined as

rk(E ) :=
αd(E )
αd(OX)

.

Since we are going to work only on projective surfaces, we write down ex-
plicitly the form of the Hilbert polynomial in this case. If X is a projective
surface, it can be easily shown, using the Hirzebruch-Riemann-Roch Theorem,
that for any coherent sheaf E the Hilbert polynomial is

P (E ,m) =
r

2
h2m2 +

(
h ·c1−

r

2
c1(KX) ·h

)
m+rχ(OX)− 1

2
c1 ·c1(KX)+

1
2
c21−c2,

where h = c1(OX(1)), KX is the canonical line bundle, r = rk(E ), c1 = c1(E ),
c2 = c2(E ). If X is a K3 surface, then c1(KX) = 0 and χ(OX) = 2, so that the
formula becomes

P (E ,m) =
r

2
h2m2 + (h · c1)m+ 2r +

c21
2
− c2. (1.1)

Definition 1.1.8. The reduced Hilbert polynomial of a coherent sheaf E is

p(E ,m) :=
P (E ,m)
αd(E )

.

Definition 1.1.9. The degree of a coherent sheaf E of dimension d = n is the
number deg(E ) := αd−1(E )− rk(E )αd−1(OX). The slope of E is

µ(E ) :=
deg(E )
rk(E )

.

1.1.3 Semistability and µ−semistability

Let X be a projective scheme of dimension n, and let OX(1) be a chosen ample
line bundle on X. For simplicity’s sake, let H := OX(1).

Definition 1.1.10. A coherent sheaf E is called H−semistable (or semistable
if the polarization is clear) if it is pure and p(F ) ≤ p(E ) for any F ⊆ E (where
p(F ) ≤ p(E ) means that p(F , n) ≤ p(E , n) for n� 0). It is called H−stable if
it is pure and p(F ) < p(E ) for any F  E .

Definition 1.1.11. A coherent sheaf E is called µ−semistable (with respect
to H) if Td−1(E ) = Td−2(E ) and if µ(F ) ≤ µ(E ) for any F ⊆ E such that
0 < rk(F ) < rk(E ). It is called µ−stable (with respect to H) if the same
property holds with µ(F ) < µ(E ).

Remark 1.1.2. The reason why stability and µ−stability are defined with respect
to the line bundle H, is that the two notions are given by means of Hilbert
polynomials, which depend on the ample line bundle fixed as polarization.
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Proposition 1.1.6. We have the following chain of implications for any pure
sheaf:

µ−stability ⇒ stability ⇒ semistability ⇒ µ−semistability.

Proof. By definition,

µ(E ) =
αd−1(E )
αd(E )

αd(OX)− αd−1(OX).

If µ(F ) < µ(E ), then αd−1(F)
αd(F) < αd−1(E )

αd(E ) . But these are the coefficients of the
degree d− 1 term in p(F ) and p(E ), so that p(F ) < p(E ). The remaining part
of the proposition is similar.

Remark 1.1.3. Any rank 1 torsion-free sheaf is µ−stable with respect to any
polarization.

In general, it is not trivial to show that a sheaf is semistable. Anyway, there
is an important criterion on smooth projective surfaces that shows that in order
to be semistable, a coherent sheaf must satisfy some numerical conditions.

Definition 1.1.12. Let E be a coherent sheaf of rank r, first Chern class c1
and second Chern class c2. The discriminant of E is ∆(E ) = 2rc2 − (r − 1)c21.

Theorem 1.1.7. (Bogomolov, ’78). Let X be a smooth projective surface,
and let E be a torsion-free sheaf. If E is µ−semistable with respect to some
polarization, then ∆(E ) ≥ 0.

Proof. For the original proof see [Bog2]. For different proofs see the one given
by Gieseker in [Gie], or see Theorem 3.4.1 in [H-L].

Remark 1.1.4. In general, there is no hope to have an equivalence between
semistability and stability, or between (semi)stability and µ−(semi)stability.
Anyway, this is possible in some cases: if E is µ−semistable and rk(E ) and
deg(E ) are coprime, then E is µ−stable. Indeed, if E was not µ−stable, then
there should be a subsheaf F with 0 < rk(F ) < rk(E ) such that the equal-
ity deg(E ) · rk(F ) = deg(F ) · rk(E ) holds. But this clearly contradicts the
hypothesis on rk(E ) and deg(E ) of being coprime.

We have this important result, that we will use later.

Proposition 1.1.8. Let E and F be two semistable sheaves on a projective
scheme. If p(E ) > p(F ), then Hom(E ,F ) = 0.

Proof. For an easy proof, see Proposition 1.2.7 in [H-L].

Definition 1.1.13. A coherent sheaf E is said to be simple if End(E ) is a
k−vector space of dimension 1.
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Corollary 1.1.9. If the scheme X is defined over an algebraically closed field
k, then any stable sheaf is simple.

Proof. See [H-L], Corollary 1.2.8.

An important tool in the study of semistable sheaves are the two filtrations
of Harder-Narasimhan and Jordan-Hölder. The aim is to define an equivalence
relation on semistable sheaves.

Definition 1.1.14. A Harder-Narasimhan filtration for a non-trivial sheaf E

of dimension d is a filtration

HN : 0 = HN0(E ) ⊆ HN1(E ) ⊆ ... ⊆ HNm(E ) = E ,

where grHNi (E ) := HN i(E )/HN i−1(E ) are semistable sheaves of dimension d

for every i, and p1 > ... > pm where pi = p(grHNi (E )).

Proposition 1.1.10. Any non-trivial pure sheaf of dimension d admits a unique
Harder-Narasimhan filtration.

Proof. See Theorem 1.3.4 in [H-L].

The Jordan-Hölder filtration is similar to that of Harder-Narasimhan, but is
more strictly related to semistable sheaves.

Definition 1.1.15. A Jordan-Hölder filtration for a non-trivial sheaf E with
reduced Hilbert polynomial p is a filtration

JH : 0 = JH0(E ) ⊆ JH1(E ) ⊆ ... ⊆ JH l(E ) = E ,

where grJHi (E ) = JHi(E )/JHi−1(E ) is stable with reduced Hilbert polynomial
p for every i.

In general, a Jordan-Hölder filtration is not unique. For example, consider
the sheaf E = E1 ⊕ E2, with E1 6= E2: in this case, E admits at least two
different Jordan-Hölder filtrations, one with JH1(E ) = E1, and the other with
JH1(E ) = E2. Anyway, let us define

grJH(E ) :=
l⊕

i=1

grJHi (E ),

in order to state the following proposition:

Proposition 1.1.11. Any semistable sheaf E admits a Jordan-Hölder filtra-
tion. If JH and JH ′ are two Jordan-Hölder filtrations for E , then grJH(E ) '
grJH

′
(E ).

Proof. See Proposition 1.5.2 in [H-L].
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We have then the following definition:

Definition 1.1.16. Two semistable sheaves F and G are said to be S-equivalent
if grJH(F ) = grJH(G ) for a Jordan-Hölder filtration JH.

Definition 1.1.17. A semistable sheaf is called polystable if it is direct sum of
stable sheaves.

By Proposition 1.1.11, any semistable sheaf E with reduced Hilbert polyno-
mial p is S-equivalent to a polystable sheaf whose direct summands have reduced
Hilbert polynomial p.

1.1.4 Boundedness for the family of semistable sheaves

with fixed Hilbert polynomial

In order to define the moduli space of semistable sheaves, we need to intro-
duce an important property of families, namely the boundedness. Let X be a
projective scheme, and let OX(1) be a chosen ample line bundle on X.

Definition 1.1.18. Let m be an integer. Then E ∈ Coh(X) is said to be
m−regular if Hi(X,E ⊗ OX(m− i)) = 0 for any i > 0.

The main result on m−regularity is the following:

Proposition 1.1.12. Let E ∈ Coh(X) be an m−regular sheaf. The following
are equivalent:

1. E is m′−regular for any m′ ≥ m;

2. E ⊗ OX(m) is globally generated;

3. for any integer n ≥ 0 the canonical map

H0(X,E ⊗ OX(m))⊗H0(X,OX(n)) −→ H0(X,E ⊗ OX(m+ n))

is surjective.

In particular, for any E ∈ Coh(X) of positive dimension there is m ∈ Z such
that E is m−regular.

Proof. See [Mum] or [Kle].

This Proposition allows us to give the following important definition.

Definition 1.1.19. The Mumford-Castelnuovo regularity of a coherent sheaf E

is reg(E ) := inf{m ∈ Z |E is m− regular}, with the convention reg(0) = −∞.

The Mumford-Castelnuovo regularity is one of the basic tools in the study
the boundedness of a family of sheaves, which is a natural property one needs
to define the moduli space of a family of sheaves.
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Definition 1.1.20. A family of isomorphism classes of coherent sheaves on a
projective scheme X is bounded if there is scheme S of finite type and a coherent
sheaf F on S ×X such that the given family is contained in the set

{F|Spec(k(s))×X | s ∈ S is closed}.

Proposition 1.1.13. Let {Ei}i∈I be a family of coherent sheaves on X. The
following are equivalent:

1. the family is bounded;

2. the set of Hilbert polynomials {P (Ei)}i∈I is finite and there is ρ ∈ N such
that reg(Ei) ≤ ρ for all i ∈ I;

3. the set of Hilbert polynomials {P (Ei)}i∈I is finite and there is a coherent
sheaf E on X such that for any i ∈ I there is a surjective morphism
E −→ Ei.

Proof. See [Kle].

The following result is one of the main properties we need for the construction
of the moduli space of semistable sheaves.

Theorem 1.1.14. The family of semistable sheaves with fixed Hilbert polyno-
mial P on a projective scheme X is bounded.

Proof. See Theorem 3.3.7 in [H-L].

Finally, we just want to recall some important properties of flat families of
sheaves. Let X and S be two Noetherian k−schemes, and let f : X −→ S be a
morphism of finite type. For any s ∈ S, write Xs := f−1(s) = Spec(k(s))×S X
for the fiber of f over s. Any F ∈ Coh(X) is considered as a family of coherent
sheaves parameterized by S. We write Fs := F|Xs , the restriction of F to the
fiber Xs.

Definition 1.1.21. An S−flat family of sheaves on X parameterized by S is
an S−flat coherent sheaf on X.

Assume, from now on, that f is a projective morphism and that O(1) is a
chosen f−ample line bundle on X, i.e. O(1)s is ample on Xs for every s ∈ S.

Proposition 1.1.15. Let F ∈ Coh(X). The following are equivalent:

1. F is an S−flat family;

2. f∗(F ⊗ O(m)) is locally free for m� 0.

If one of these is verified, then the function associating to any s ∈ S the Hilbert
polynomial P (Fs) is locally constant on S. If S is reduced, the converse is also
true.
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Proof. See Theorem III 9.9 in [Har].

We conclude this section with some properties of flat families.

Lemma 1.1.16. Let

0 −→ F ′ −→ F −→ F ′′ −→ 0

be a short exact sequence of coherent sheaves on X. If F is S−flat, then F ′′

is S−flat if and only if the canonical morphism F ′s −→ Fs is injective for any
s ∈ S. If F and F ′′ are S−flat, then F ′ is S−flat.

Proof. See for example Theorem 49 in [Mat].

Theorem 1.1.17. Let f : X −→ S be a proper morphism, between two Noethe-
rian schemes, and suppose S to be reduced. Let i ∈ N0, and let F be an S−flat
sheaf. The following are equivalent:

1. The map sending any s ∈ S to hi(Xs,Fs) is constant;

2. the sheaf Rif∗F is locally free and for any s ∈ S the canonical morphism

(Rif∗F )s −→ Hi(Xs,Fs)

is an isomorphism.

If one of the two previous conditions is satisfied, then for any s ∈ S the canonical
morphism

(Ri−1f∗F )s −→ Hi−1(Xs,Fs)

is an isomorphism.

Proof. See [Mum], Corollary 2 in Chapter II.5.

For a family of sheaves we have even the following definition:

Definition 1.1.22. Let f : X −→ S be a projective morphism between two
Noetherian schemes of finite type over k, and let O(1) be a chosen f−ample line
bundle. Let P ∈ Q[t]. We say that the Hilbert polynomial of an S−flat family
F is P if P (Fs) = P for any s ∈ S.

1.2 The construction of the moduli spaces

In this section we recall the construction of the moduli space of semistable
sheaves. In order to do that, we need to introduce the notion of Quot-scheme,
which is the starting point for various constructions on moduli spaces of sheaves:
first of all, the moduli space of semistable sheaves on a projective variety is the
quotient of an open subscheme of some Quot-scheme. This construction is the
base for that of Le Potier’s morphism we will present at the end of this chapter.
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1.2.1 Construction of the Quot-scheme

Here we present the construction and the basic properties of the Grothendieck
Quot-scheme. For the notion of universal family and representability of functors,
see Appendix C.

Definition 1.2.1. A quotient module of a coherent sheaf V is an equivalence
class [q : V −→ F ] of quotients, where two quotients q1 : V −→ F1 and
q2 : V −→ F2 are said to be equivalent if ker(q1) = ker(q2) (or, equivalently, if
there is an isomorphism φ : F1 −→ F2 such that q2 = φ ◦ q1).

Consider a projective morphism f : X −→ S, and let O(1) be an f−ample
line bundle on X. Let H ∈ Coh(X), and let P ∈ Q[t] be a polynomial. Define
the functor

Quot
X/S

(H , P ) : Sch(S)opp −→ Set

sending any S−scheme of finite type f : T −→ S to the set of quotient moduli
[f∗H −→ F ] such that F is T−flat and P (F ) = P . If g : T ′ −→ T is a
morphism of S−schemes of finite type, then Quot

X/S
(H , P )(g) sends a quotient

module to its pull-back by g.

Theorem 1.2.1. The functor Quot
X/S

(H , P ) is represented by a projective
S−scheme QuotX/S(H , P ), called Grothendieck Quot-scheme.

Proof. This is Theorem 2.2.4 in [H-L].

As a corollary, by Proposition C.1.1 there is a universal family

[ρ̃ : p∗XH −→ F̃ ],

which is a quotient module on QuotX/S(H , P )×X, where

pX : QuotX/S(H , P )×X −→ X

is the projection on X. In particular, this means that for any quotient module
[ρ : H −→ F ] on X there is an isomorphism F̃[ρ] ' F . One of the most
common ways to use the universal family F̃ is in the construction of line bundles
on QuotX/S(H , P ). In section 2.5 we will present a general construction, due
to Le Potier, but we introduce here a special case, which is important for the
construction of moduli spaces. Let r ∈ Z, and let pQ, pX be the projections
from QuotX/S(H , P )×X to the two factors. Let

Lr := det(pQ∗(p∗XOX(r)⊗ F̃ ) ∈ Pic(QuotX/S(H , P )).

Proposition 1.2.2. (Le Potier). For r � 0, the line bundle Lr is S−very
ample.

Proof. See Proposition 2.2.5 in [H-L].
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Particular cases of Quot-schemes are obtained for S = Spec(k) and H =
OX , where quotient modules correspond naturally to closed subschemes of X.

Definition 1.2.2. The Hilbert scheme of closed subschemes of X with fixed
Hilbert polynomial P is defined as HilbP (X) := QuotX/k(OX , P ).

In particular, the dimension of the closed subschemes parameterized by the
Hilbert scheme is fixed, and is equal to deg(P ). If deg(P ) = 0, then P = n ∈ Z:
Hilbn(X) parameterizes 0−dimensional closed subschemes of length n.

Proposition 1.2.3. Let X be a projective k−scheme, H ∈ Coh(X), P ∈ Q[t].
Let [q : H −→ F ] ∈ QuotX/k(H , P ), and let K = ker(q). Then

hom(K ,F )− ext1(K ,F ) ≤ dim[q]QuotX/k(H , P ) ≤ hom(K ,F ).

If equality holds in the first place, then QuotX/k(H , P ) is locally complete in-
tersection near [q]. Moreover, if ext1(K ,F ) = 0, then [q] is a smooth point of
QuotX/k(H , P ).

Proof. See Appendix 2.A in [H-L], in particular Proposition 2.A.11.

Finally, we just want to mention an important property, which is a conse-
quence of the existence of relative Quot-schemes.

Definition 1.2.3. Let P be a property of coherent sheaves on Noetherian
schemes. We say that P is an open property if for any two Noetherian schemes
X and S, for any projective morphism f : X −→ S, and for any S−flat family
F on X parameterized by S, the set of s ∈ S such that Fs verifies P is open
in S.

Proposition 1.2.4. The following properties of coherent sheaves are open: be-
ing locally free; (µ−)semistability; (µ−)stability.

Proof. See the proof of Proposition 2.3.1 in [H-L].

1.2.2 Moduli spaces of semistable sheaves

In this section we recall the construction of the moduli space of semistable
sheaves. For the notion of action of a group and of quotients, see Appendix C.

Let X be a projective k−scheme of finite type, and let OX(1) = H be an
ample line bundle on X. Moreover, let P ∈ Q[t]. Consider the functor

M ′
H(P ) : Sch(k)opp −→ Set

sending any k−scheme of finite type S to the set of isomorphism classes of
S−flat families F of coherent sheaves on S ×X such that Fs is H−semistable
with Hilbert polynomial P for any s ∈ S. If f : T −→ S is a morphism of
k−schemes of finite type, M ′

H(P )(f)(F ) = (f × idX)∗F for any F ∈M ′
H(S).
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Definition 1.2.4. Let F ,G ∈M ′
H(P )(S). We say that F is equivalent to G

(and we write F ∼ G ) if there is L ∈ Pic(S) such that F ' G ⊗ p∗SL, where
pS : S ×X −→ S is the projection.

We can now define the moduli functor :

MH(P ) : Sch(k)opp −→ Set, MH(P )(S) := M ′
H(P )(S)/ ∼ .

Theorem 1.2.5. The moduli functor is universally corepresented by a projective
k−scheme MH(P ), called moduli space of H−semistable sheaves with Hilbert
polynomial P .

Proof. The proof is contained, for instance, in Chapter 4 in [H-L].

We recall here the construction of MH(P ), since in the following we will
need some elements of it. Consider the family of semistable sheaves on X

(with respect to H) with Hilbert polynomial equal to P . By Theorem 1.1.14,
this family is bounded, so that by Propositions 1.1.12 and 1.1.13 there is an
integer m ∈ Z such that for any E in this family the sheaf E is m−regular, so
that E (m) := E ⊗ OX(m) is generated by its global sections, i. e. there is a
surjective morphism

H0(X,E (m))⊗ OX(−m) −→ E .

Notice that since E is m−regular, then Hi(X,E (m)) = 0 for any i > 0. In
particular, this implies P (m) = P (E ,m) = h0(X,E (m)), so that the dimension
of H0(X,E (m)) does not depend on E . Choosing a basis, we fix an isomorphism
between H0(X,E (m)) and V := CP (m). Let H := V ⊗ OX(−m), which is a
locally free sheaf on X of rank P (m). We have then produced a surjective
morphism

ρ : H −→ E

for any semistable sheaf E with Hilbert polynomial equal to P . Considering
only the isomorphism classes of semistable sheaves, we have then a quotient
module [ρ : H −→ E ], corresponding to a point of QuotX/k(H , P ).

Now, let N := P (m). The reductive group GL(N) acts on QuotX/k(H , P ).
Indeed, GL(N) ' Aut(H ) and the action is (on k−rational points)

σ : GL(N)×QuotX/k(H , P ) −→ QuotX/k(H , P ), σ(g, [ρ]) := [ρ ◦ g].

Now, let R ⊆ QuotX/k(H , P ) be the subset parameterizing semistable quo-
tients. By Proposition 1.2.4, R is an open subscheme of QuotX/k(H , P ), which
is clearly GL(N)−invariant. In a similar way, let Rs ⊆ R be the open subscheme
parameterizing stable sheaves.

Let [ρ̃ : p∗XH −→ F̃ ] be the universal quotient on QuotX/k(H , P ) × X.
By Proposition 1.2.2 the line bundle Lr on QuotX/k(H , P ) is very ample for
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r � 0. Moreover, it carries a natural GL(N)−linearization from the canonical
one on F̃ .

Theorem 1.2.6. Let m, r ∈ Z, and suppose them to be sufficiently big. Then
R = R

ss
(Lr) and Rs = R

s
(Lr). Moreover, the closures of the orbits of two

different points [ρi : H −→ Fi] in R intersect each other if and only if
grJH(F1) ' grJH(F2). The orbit of a point is closed in R if and only if it
represents a polystable sheaf.

Proof. See Theorem 4.3.3 in [H-L].

By Theorem C.2.1, there is a projective k−scheme MH(P ) which is a uni-
versal good quotient of R by the action of GL(N). Let p : R −→MH(P ) be the
quotient morphism. The open subset Ms

H(P ) := p(Rs) is a universal geometric
quotient of Rs called moduli space of H−stable sheaves with Hilbert polynomial
P . In view of Theorem 1.2.6, the moduli space MH(P ) parameterizes polystable
sheaves.

To conclude this section, we just want to resume the notations we will use in
the following for moduli spaces of sheaves. By the Hirzebruch-Riemann-Roch
Theorem, the Hilbert polynomial of a sheaf is determined by its Chern character,
hence by its rank and its Chern classes. In the following we will be concerned
only with moduli spaces of sheaves on a surface, and in order to fix the Hilbert
polynomial P we will fix the rank r and the two first Chern classes c1 ∈ H2(S,Z)
and c2 ∈ H4(S,Z). We will then denote the moduli space M(P ) (resp. Ms(P ))
as M(r, c1, c2) (resp. Ms(r, c1, c2)). Notice that instead of fixing c1 we can
restrict ourselves to the moduli space of semistable sheaves whose rank is r,
whose second Chern class is c2 and whose determinant is L ∈ Pic(S), where
c1(L ) = c1, i. e. to the fiber over L of the determinant morphism

det : M(r, c1, c2) −→ Pic(S)

(see Appendix C). Such a fiber will be denoted M(r,L , c2) (resp. Ms(r,L , c2)).

1.3 Line bundles on moduli spaces

In this section we recall a construction due to Joseph Le Potier, and we resume
some important properties that will be useful in the following, concerning in
particular the moduli space of µ−semistable sheaves.

Le Potier’s construction provides a way to produce line bundles on the mo-
duli space of (semi)stable sheaves on any smooth projective surface X. The
construction goes as follows: to any class in the topological Grothendieck group
of X, we associate a line bundle on the open subscheme of the Quot-scheme
whose quotient is the moduli space. Then we need to study conditions on the
starting class in order to guarantee the descent of the obtained line bundle.
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1.3.1 Le Potier’s determinant

Before defining the Le Potier’s morphism, it seems useful to recall construction
and properties of the determinant. Details can be found in [K-M].

Let Y be any smooth projective variety, and let E be a vector bundle on
Y of rank r. The determinant of E is defined as det(E) := ΛrE, which is a
line bundle on Y . In a more general way, if E• is a bounded complex of vector
bundles, then we can define

det(E•) :=
⊗

i

det(Ei)(−1)i .

If two bounded complexes E• and F • are quasi-isomorphic, then det(E•) '
det(F •). Since any E ∈ Coh(Y ) admits a finite resolution E• of locally free
sheaves, then one defines det(F ) := det(E•).

Lemma 1.3.1. Let

0 −→ F ′ −→ F −→ F ′′ −→ 0

be an exact sequence. Then det(F ) ' det(F ′)⊗ det(F ′′). If F and G are two
coherent sheaves on X, then det(F ⊗ G ) ' det(F )rk(G ) ⊗ det(G )rk(F).

Proof. See [K-M].

In particular, if Ktop(Y ) is the Grothendieck group of Y , we have the fol-
lowing morphism

det : Ktop(Y ) −→ Pic(Y )

sending any class α ∈ Ktop(Y ) to its determinant (the class α is represented
by a sheaf, and det(α) is simply the determinant of this sheaf, which is well
defined by Lemma 1.3.1). If Y is not smooth projective, but only a Noetherian
k−scheme of finite type, we can define

det : K0
top(Y ) −→ Pic(Y )

in the same manner, where K0
top(Y ) is the abelian group generated by locally

free sheaves with relations [E′]− [E] + [E′′] for any short exact sequence 0 −→
E′ −→ E −→ E′′ −→ 0.

Now, let X be any smooth projective surface, and let S be any k−scheme
of finite type. Moreover, let F be an S−flat family of sheaves on S ×X. We
can define the group morphism

λ̃ : Ktop(X) −→ Pic(S), λ̃(α) := det(pS!(p∗Xα · [F ])),

where pX and pS are the two projections from S × X. Indeed, p∗Xα and [F ]
are in K0

top(S ×X), so that p∗Xα · [F ] ∈ K0
top(S ×X). As the morphism pS is

smooth and projective, we have the morphism

pS! : K0
top(S ×X) −→ K0

top(S),
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(see Proposition 2.1.10 in [H-L]), so that pS!(p∗Xα · [F ]) ∈ K0
top(S). We can then

use the definition of the determinant to get the morphism λ̃.

Definition 1.3.1. The morphism λ̃ is called Le Potier’s determinant or Le
Potier’s morphism.

Let now H be an ample line bundle on X, and fix r ∈ Z, L ∈ Pic(X)
and c2 ∈ H4(X,Z). As seen in section 1.2.2, the moduli space M(r,L , c2) is
obtained as a quotient of a scheme R by the action of GL(N), for some N ∈
N, where R is the open subscheme of Quot(H , P ) parameterizing semistable
quotients. Let q : p∗XH −→ F be the universal family on Quot(H , P ) × X.
Using the Le Potier’s determinant, one associates to any class α ∈ Ktop(X)
a line bundle λ̃(α) ∈ Pic(R). The natural question is if it descends to a line
bundle on M(r,L , c2). Let us fix some notations: write e := [E ] ∈ Ktop(X) for
the class of a sheaf E parameterized by M(r,L , c2), and let h := [H]. Consider

ξ : Ktop(X)×Ktop(X) −→ Z, ξ(α, β) := χ(α · β),

and for any β ∈ Ktop(X) let β⊥ := ker(ξ(., β)).

Theorem 1.3.2. (Le Potier). Let α ∈ Ktop(X).

1. The line bundle λ̃(α)|Rs descends to λs(α) ∈ Pic(Ms(r,L , c2)) if α ∈ e⊥,
and we get a morphism λs : e⊥ −→ Pic(Ms(r,L , c2)).

2. The line bundle λ̃(α) descends to a line bundle λ(α) ∈ Pic(M(r,L , c2))
if α ∈ e⊥ ∩ {1, h, h2}⊥⊥, and we get a morphism

λ : e⊥ ∩ {1, h, h2}⊥⊥ −→ Pic(M(r,L , c2)).

3. For any α ∈ e⊥ ∩ {1, h, h2}⊥⊥, we have λ(α)|Ms(r,L ,c2) ' λs(α).

4. Let S be an S−flat family of semistable sheaves of rank r, determinant
L and second Chern class c2 on S×X, and let fS : S −→M(r,L , c2) be
the induced morphism. Let λS : Ktop(X) −→ Pic(S) be the Le Potier’s
determinant associated to S . Then f∗S ◦λ = λS . The same is true for an
S−flat family S of stable sheaves, and for the corresponding morphism
fS : S −→Ms(r,L , c2).

Proof. See [LP] or Theorem 8.1.5 in [H-L].

Remark 1.3.1. If on M(r,L , c2) × X there is a universal family F , then for
any α ∈ e⊥ we have λ(α) = det(pM !(p∗Xα · [F ])). The choice of α in e⊥ is not
necessary to get an element of Pic(M(r,L , c2)), but implies that the definition
of λ(α) does not depend on the choice of the universal family F . In general,
the two morphisms λs and λ do not depend on the universal family chosen to
define λ̃.
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1.3.2 Moduli space of µ−semistable sheaves

In this section we apply the construction of the Le Potier’s determinant to
describe the moduli space of µ−semistable sheaves. First, we briefly want to
sketch how to construct such a moduli space. Let X be a smooth projective
surface, H a fixed ample line bundle on X and let r ∈ Z, L ∈ Pic(X) and c2 ∈
H4(X,Z). Let Rµ−ss ⊆ Quot(H , P ) be the open subscheme parameterizing
quotients [q : H −→ E ], where E is µ−semistable. Using the notations of the
previous section, let u := −rh + χ(e · h)[Cp] ∈ Ktop(X) for some p ∈ X. By
Theorem 1.3.2, λ̃(u) descends to a line bundle λ(u) ∈ Pic(M(r,L , c2)).

Proposition 1.3.3. There is m ∈ Z such that λ̃(u)m is generated by global
sections invariant with respect to the action of SL(N).

Proof. See Proposition 8.2.3 in [H-L].

Remark 1.3.2. Proposition 1.3.3 implies that the line bundle λ(u)m is generated
by its global sections. The morphism

φ : M(r,L , c2) −→ P(H0(M(r,L , c2), λ(u)m)∗) (1.2)

associated to the complete linear system |λ(u)m| has no base points.

Proposition 1.3.4. There is an integer k ∈ Z such that the graded ring⊕
l≥0H

0(Rµ−ss, λ̃(u)lkm)SL(N) is finitely generated.

Proof. See the proof of Proposition 8.2.6 in [H-L].

Definition 1.3.2. Let k ∈ Z be as in Proposition 1.3.4. The moduli space of
µ−semistable sheaves with rank r, determinant L and second Chern class c2 is
defined as

Mµ−ss(r,L , c2) := Proj

(⊕

l≥0

H0(Rµ−ss, λ̃(u)lkm)SL(N)

)
.

By definition, then, the image of φ in (1.2) is exactly Mµ−ss(r,L , c2).

Proposition 1.3.5. The restriction of φ to the open subscheme Mµ,lf (r,L , c2)
of M(r,L , c2) parameterizing µ−stable locally free sheaves is an embedding.

Proof. See Corollary 8.2.16 in [H-L].

By this Proposition, the moduli space Mµ−ss naturally contains an open
subscheme parameterizing µ−stable locally free sheaves, so that it can be con-
sidered as a compactification of Mµ,lf , different from the one given by M .

Let Mµ−poly(r,L , c) be the moduli space of µ−polystable sheaves on X of
rank r, determinant L and second Chern class c.
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Proposition 1.3.6. The moduli space Mµ−ss(r,L , c2) admits (set-theoretically)
a stratification

Mµ−ss(r,L , c2) =
∐

l≥0

Mµ−poly(r,L , c2 − l)× Sl(X).

Proof. See [F-M] or [Li].

Example 1.3.1. Let n ∈ Z. By Example C.3.1, the moduli space M(1, 0, n) is
isomorphic to Hilbn(X). Moreover, Mµ−ss(1, 0, n) ' Sn(X) and the morphism
φ is simply the Hilbert-Chow morphism ρn (see Example 8.2.9 in [H-L]).

An important element we will use in the following is the Donaldson’s mor-
phism. Consider a smooth projective surface X, a scheme S and an S−flat
family F on S ×X.

Definition 1.3.3. The Donaldson’s morphism is defined as

µD : H2(X,Z) −→ H2(S,Z), µD(α) := c2(F )/α,

where c2(F )/α is the slant product.

Proposition 1.3.7. Let Σ = MΣ×Sl(X) be a stratum of Mµ−ss(r, L, c2). Let
α ∈ H2(X,Z). Then

µD(α)|Σ = µMΣ(α)⊗ 1 + 1⊗ α ∈ H2(Σ,Z),

for some µMΣ(α) ∈ H2(MΣ,Z).

Proof. See Proposition 6.5 in [F-M].

1.4 Moduli spaces on K3 or abelian surfaces

In this section we introduce the main notations and properties of moduli spaces
of semistable sheaves on K3 or abelian surfaces. In Appendix D we briefly
present the main results in this subject, but here we resume some important
properties and notations, in order to introduce the problems we will study in
the two next chapters. Let S be an abelian or a projective K3 surface, and let
E ∈ Coh(S). Let

H̃(S,Z) := H2∗(S,Z),

and define

(., .) : H̃(S,Z)× H̃(S,Z) −→ Z, (α, β) := −
∫

X

α∨ · β,

where if α = (α0, α2, α4), then α∨ := (α0,−α2, α4). The integral form (., .)
is non-degenerate, and H̃(S,Z) with this form is called Mukai lattice. On the
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Mukai lattice of any smooth projective surface one can define a weight 2 Hodge
structure in the following way:

H̃2,0(S) := H2,0(S), H̃1,1(S) := H0(S,C)⊕H1,1(S)⊕H4(S,C).

Definition 1.4.1. The Mukai vector of E is v(E ) := ch(E )·
√
td(S). An element

v ∈ H̃(S,Z) will be called Mukai vector. If v = (v0, v2, v4), for vi ∈ Hi(S,Z),
then v0 will be called the rank of v and v2 will be called the first Chern class
of v.

If S is a K3 surface, then td(S) = (1, 0, 2) and
√
td(S) = (1, 0, 1), so that

for any E ∈ Coh(S) we have

v(E ) =
(
rk(E ), c1(E ),

c21(E )
2
− c2(E ) + rk(E )

)
. (1.3)

If S is abelian, then td(S) = (1, 0, 0), and v(E ) = ch(E ). In conclusion, the
Mukai vector of E is determined by its rank and its Chern classes (and viceversa).
If v is the Mukai vector associated to r, c1 and c2, then the moduli space
M(r, c1, c2) will be denoted M(v) (the same for the moduli space of stable
sheaves Ms(v)). By Theorem C.3.1, Ms(v) is smooth and has dimension 2 +
(v, v). Moreover, by Theorem C.5.1 it carries a symplectic form coming from
the one on S.

In general, the moduli space Ms(v) can be empty. Indeed, as dim(Ms(v)) =
2 + (v, v), in order to have Ms(v) 6= ∅ we must have (v, v) ≥ −2. From now
on we suppose rk(v) ≥ 0, c1(v) ∈ NS(S) and (v, v) ≥ −2, or rk(v) = 0,
c1(v) ∈ NS(S) is the class of an ample line bundle and v4 6= 0. In general
we have Ms(v) 6= M(v), but we have some special cases where the equality is
satisfied, as shown in the following:

Proposition 1.4.1. Let X be an abelian or a projective K3 surface, H an ample
divisor and v ∈ H̃(X,Z). If there is a connected component Y of M(v) such
that Y ⊆Ms(v), then Y = M(v). In particular Ms(v) = M(v).

Proof. This proposition was first shown by Mukai for isotropic v, later general-
ized in [K-L-S], Theorem 4.1.

The two main definitions we need are the following:

Definition 1.4.2. Let S be a connected algebraic surface, and let v be a Mukai
vector of rank r. A numerical class ξ ∈ NS(S) is called of type v if

−r
4

∆(v) ≤ ξ2 ≤ 0

(see Definition 1.1.12 for the notion of ∆(v)). An ample line bundle H ∈ Pic(S)
is called v−generic if it satisfies the following condition: for any ξ ∈ NS(S) of
type v, if ξ · c1(H) = 0 then ξ = 0.
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Definition 1.4.3. A Mukai vector v ∈ H̃(X,Z) is called primitive if it is not
divisible in H̃(X,Z).

In particular, if v ∈ H̃(X,Z) is a Mukai vector, then there are a unique
m ∈ Z and a unique primitive Mukai vector w ∈ H̃(X,Z) such that v = mw.
Primitive Mukai vectors and v−generic polarizations play an important role in
the theory of moduli spaces. One of the main results is the following, due to
Mukai.

Proposition 1.4.2. If v is a primitive Mukai vector and H is a v−generic
polarization, then M(v) = Ms(v).

Proof. See for example Theorem 4.C.3 in [H-L] or [Muk2].

The existence of strictly semistable sheaves introduces a non-empty closed
locus M(v)\Ms(v) which may give rise to singularities. This implies that M(v)
is not a good candidate to be an irreducible symplectic manifold. However, by
Theorem C.5.1 on the open subscheme Ms(v) there is a symplectic structure.
It is then natural to ask if there is a resolution of the singularities of M(v) on
which one can find a symplectic structure extending the one on Ms(v). This is
the sense of the following definition:

Definition 1.4.4. Let Y be a normal scheme, let Y s be its regular part and let
ω be a symplectic structure on Y s. A symplectic resolution of the couple (Y, ω)
is a triple (Ỹ , π, ω̃) where π : Ỹ −→ Y is a resolution of singularities, and ω̃ is
a symplectic structure on Ỹ such that i∗ω̃ = π∗ω, where i : π−1(Y s) −→ Ỹ is
the natural inclusion.

The first example of moduli space admitting a symplectic resolution was
described by O’Grady in [OG2], where he considered the moduli space M10

of semistable sheaves with Mukai vector (2, 0,−2) on a generic projective K3
surface. He showed that M10 admits a symplectic resolution M̃10 which is a
10−dimensional irreducible symplectic manifold with b2(M̃10) ≥ 24: it was a
new example of irreducible symplectic manifold. This construction will be the
main object of the next chapter, where it will be more precisely described.
O’Grady even studied moduli spaces of semistable sheaves with Mukai vector
(2, 0,−2−2c) with c ∈ N, but he was not able to conclude as in the former case.

O’Grady’s examples motivated an extensive investigation on the subject,
which leaded to the following results.

Theorem 1.4.3. (Kaledin-Lehn-Sorger, ’06). Let v be a Mukai vector of
the form v = mw, and let H be a v−generic ample line bundle. If m > 2 or
(w,w) > 2, then the moduli space M(v) is locally factorial.

Proof. See Theorem 5.3 in [K-L-S].
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Remark 1.4.1. The same conclusion holds if m = 1, rk(v) > 0, c1(v) ∈ NS(X)
and (v, v) ≥ −2, since in this case M(v) is either a reduced point or a smooth
projective variety. Moreover, if m > 1 we have two possible cases where the same
property holds: if (w,w) = −2, then M(v) is reduced to a point; if (w,w) = 0
then M(v) ' SmM(w), where M(w) is a K3 surface. For the details, see
Appendix D.

Proposition 1.4.4. (Kaledin-Lehn-Sorger, ’06). Let v be a Mukai vector
of the form v = mw, and let H be a v−generic polarization. If m > 2 or
(w,w) > 2, then M(v) does not admit a symplectic resolution of singularities.

Proof. The proof of this theorem is the content of [K-L-S].

Remark 1.4.2. In the case of rank 2 sheaves, Y. Kiem and J. Choy give another
proof of Proposition 1.4.4 in [C-K], using a completely different approach. Any-
way, we have chosen to follow Kaledin-Lehn-Sorger approach, since they show
the local factoriality of M(v) for v = mw, with m > 2 or (w,w) > 2.

The only case it remains to study is the one of Mukai vectors v = 2w, for
(w,w) = 2. Here is the general result:

Theorem 1.4.5. (Lehn-Sorger). Let v = 2w, for (w,w) = 2. Then the
moduli space M(v) admits a symplectic resolution M̃(v), which is obtained by
blowing-up M(v) along the reduced part of its singular locus Σv. Moreover, the
codimension of Σv in M(v) is 2.

Proof. See Théorème 1.1 in [L-S].



Chapter 2

The 10−dimensional

O’Grady’s example M̃10

As seen in the previous chapter, if the Mukai vector v is not of the form 2w with
w primitive and (w,w) = 2, then every moduli space of semistable sheaves M(v)
on a K3 surface is not necessarily smooth, but is always locally factorial. One
might expect that the same holds even for the moduli spaces M(v) admitting a
symplectic resolution M̃(v). The first example we analyze is the moduli space
M10 of semistable sheaves with Mukai vector v := (2, 0,−2). It was introduced
by O’Grady in [OG2], where he was able to show that M10 admits a symplec-
tic resolution M̃10 (before [K-L-S] and [L-S]), and that M̃10 is an irreducible
symplectic manifold with b2 ≥ 24. Our main result is the following:

Theorem 2.0.6. The moduli space M10 is 2−factorial.

This chapter provides the proof of this theorem. First we recall the basic re-
sults on M10 and M̃10 we need, in particular those obtained by Rapagnetta, and
we show that M10 cannot be locally factorial. Once this done, we study further
characteristics of the sheaves parameterized by M10: in particular, we calculate
their cohomology and show that any sheaf parameterized by M10 is µ−stable
if and only if it is locally free. We then calculate the Picard group of M̃10

analyzing the relation between the Mukai’s and the Donaldson’s morphisms.

Finally, we conclude by showing that M10 is 2−factorial. This is done by
describing the Picard group ofM10, which is shown to be isomorphic to Pic(X)⊕
Z · β for some line bundle β. Then, we show that β has to be 2B, where B is
the Weil divisor of M10 parameterizing non-locally free sheaves. As a corollary
to our construction, we show that there is an isometry between v⊥ ⊆ H̃(X,Z)
and its image in H2(M̃10,Z). This is the generalization of Theorem D.3.9 for
moduli spaces M(v), with v primitive.

29



30 Chapter 2. The 10−dimensional O’Grady’s example M̃10

2.1 Generalities on M10

In this section we recall the basic facts about the construction of the moduli
space M10 described in [OG2]. Let X be a projective K3 surface such that
Pic(X) = Z ·H, where H is an ample line bundle such that H2 = 2. Consider
the Mukai vector v = (2, 0,−2), and let M10 := M(v) be the moduli space of
H−semistable sheaves of rank 2, trivial determinant and second Chern class
equal to 4. In particular, notice that v = 2w, with (w,w) = 2. The scheme M10

is a 10−dimensional projective variety containing the moduli space Ms
10, the

subset parameterizing only stable sheaves with Mukai vector v. In particular,
Ms

10 is open in M10 by Proposition 1.2.4.

Proposition 2.1.1. Let Σ be the singular locus of M10. Then Σ parameter-
izes sheaves of the form IZ ⊕ IW , for Z,W ∈ Hilb2(X). In particular, Σ is
isomorphic to S2(Hilb2(X)) and codimM10(Σ) = 2.

Proof. See Lemma 1.1.5. in [OG2].

Corollary 2.1.2. Let M lf
10 be the moduli space of locally free semistable sheaves

with Mukai vector v. Then M lf
10 ⊆Ms

10.

Another property, which will be important in the following, is:

Proposition 2.1.3. Let E be a stable sheaf defining a point in Ms
10. If it is not

locally free, then E ∗∗ = OX ⊕ OX .

Proof. See Claim 4.2 in [Lehn].

This proposition allows us to study in detail the moduli space Mµ−ss
10 of

µ−semistable sheaves with Mukai vector v. Following Section 1.3.2, there is a
surjective morphism

φ : M10 −→Mµ−ss
10 .

Moreover, as shown in [OG2] we have Mµ−ss
10 = M lf

10

∐
S4(X). By Proposition

2.1.3, we can describe the morphism φ: first of all, it is an isomorphism on M lf
10 ;

if E defines a point in Ms
10 \M lf

10 , then E ∗∗ = OX⊕OX and the singular locus of
E has length 4. Then let φ(E ) := Supp(Sing(E )). Finally, if E defines a point
in Σ, then E is S-equivalent to IZ ⊕ IW , and φ(E ) := Supp(Z) + Supp(W ).
The most important property of φ is the following:

Proposition 2.1.4. Let B be the closed subset of M10 parameterizing non-
locally free sheaves.

1. Let S4
s (X) be the smooth part of S4(X). Then the restriction of φ to

φ−1(S4
s (X)) is a P1−bundle whose generic fiber is denoted γ′.

2. B is an irreducible Weil divisor of M10.
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Proof. See Theorem 4.1 and Claim 4.3 in [Lehn].

In his paper, O’Grady shows the following:

Theorem 2.1.5. The moduli space M10 admits a symplectic resolution

π : M̃10 −→M10.

The smooth symplectic variety M̃10 is an irreducible symplectic manifold of di-
mension 10 and such that b2(M̃10) ≥ 24.

Proof. This is the content of [OG2].

Remark 2.1.1. The previous theorem shows that M̃10 is a new example of ir-
reducible symplectic manifold, since in dimension 10 there are only two other
known deformation classes of irreducible symplectic varieties: Hilb5(X) (where
X is a K3 surface) with b2 = 23, and K5(A) (where A is an abelian surface)
with b2 = 7. Since b2(M̃) ≥ 24, the projective variety M̃10 cannot be deformed
to any of the other examples.

Remark 2.1.2. The symplectic resolution M̃10 of M10 was also described by
Lehn and Sorger in [L-S]: it is the blow-up of Σ with reduced scheme structure.
This is an important point, since it simplifies the construction originally given
by O’Grady.

In the following, we will write Σ̃ for the exceptional divisor of π, and B̃ for
the proper transform of B under π.

Proposition 2.1.6. Let Σ0 be the smooth locus of Σ.

1. The restriction of π to π−1(Σ0) is a P1−bundle whose generic fiber is
denoted δ.

2. The restriction of π to π−1(φ−1(S4
s (X))) is a P1−bundle whose generic

fiber is denoted γ.

Proof. The first part is Proposition 2.3.1 in [OG2], and the second is just Propo-
sition 2.1.4 together with Corollary 2.1.2.

The basic result we recall in this section is the following:

Theorem 2.1.7. (Rapagnetta, ’07). The second Betti number of M̃10 is 24.
Let µD : H2(X,Z) −→ H2(Mµss

10 ,Z) be the Donaldson’s morphism.

1. The morphism µ̃ := π∗ ◦ φ∗ ◦ µD : H2(X,Z) −→ H2(M̃10,Z) is injective.

2. We have the following equalities:

c1(Σ̃) · δ = −2, c1(B̃) · δ = 1

c1(Σ̃) · γ = 3, c1(B̃) · γ = −2.
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3. The second integral cohomology of M̃10 is

H2(M̃10,Z) = µ̃(H2(X,Z))⊕ Z · c1(Σ̃)⊕ Z · c1(B̃).

4. Let q be the Beauville-Bogomolov form of M̃10. The lattice (H2(M̃10,Z), q)
is isomorphic to ΛK3 ⊕ T , where ΛK3 is the lattice of the K3 surface X
and T is the lattice Z · c1(Σ̃)⊕ Z · c1(B̃), where

q(c1(Σ̃), c1(Σ̃)) = −6, q(c1(Σ̃), c1(B̃)) = 3,

q(c1(B̃), c1(Σ̃)) = 3, q(c1(B̃), c1(B̃)) = −2.

Proof. The proof of this theorem is contained in [Rap]. The calculation of the
second Betti number of M̃10 is Theorem 1.1. Items 1, 2 and 3 are shown in
Theorem 3.1. The rest is contained in Theorem 4.3.

2.2 The local factoriality of M10

The aim of this section is to show that the moduli space M10 considered by
O’Grady cannot be locally factorial. In particular, using Theorem 2.1.7 one
shows that the Weil divisor B defined in Proposition 2.1.4 is not Cartier. At
the end of the section, we show that the divisor B can be interpreted as the
locus parameterizing sheaves with non-trivial cohomology.

2.2.1 The moduli space M10 is not locally factorial

A first application of Theorem 2.1.7 is the following (for a recall on local facto-
riality, see Appendix A):

Proposition 2.2.1. If there is n ∈ N such that nB is a Cartier divisor, then
n must be even. In particular, M10 is not locally factorial.

Proof. Let n ∈ N be such that nB is Cartier. Then, we can consider its pull-back
to M̃10, which will be

π∗(nB) = nB̃ +mΣ̃

for some m ∈ Z, since B̃ is the proper transform of B. Notice that by the
projection formula we have c1(π∗(nB)) · δ = 0, as δ is contracted by π. In
particular, by point 2 of Theorem 2.1.7 we get

0 = c1(π∗(nB)) · δ = nc1(B̃) · δ +mc1(Σ̃) · δ = n− 2m.

As m ∈ Z, this equation forces n to be even.
Finally, this implies that M10 cannot be locally factorial. We can suppose

M10 to be Q−factorial (otherwise there is nothing to prove), so that there must
be n ∈ Z such that nB is Cartier. But then n must be even by the first part of
the Proposition, so that M10 cannot be locally factorial.
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Remark 2.2.1. Notice that Theorem 2.1.7 implies even that Pic(M10) has no
torsion. Indeed, suppose there is L ∈ Pic(M10) which is torsion of period t ∈ N,
and let L̃ be its proper transform under π. Then π∗(L) = L̃ + mΣ̃ for some
m ∈ Z, so that

0 = π∗(qL) = q(L̃+mΣ̃). (2.1)

Now, M̃10 is an irreducible symplectic manifold, so that the first Chern class
morphism c1 : Pic(M̃10) −→ H2(M̃10,Z) is injective. By point 3 of Theorem
2.1.7, this implies that Pic(M̃10) has no torsion. Then, equation (2.1) implies
L̃ = −mΣ̃, so that L = 0.

The same proof shows that π∗ : Pic(M10) −→ Pic(M̃10) is injective. More-
over, this implies that c1 : Pic(M10) −→ H2(M10,Z) is injective. Indeed, let
L,L′ ∈ Pic(M10) be such that c1(L) = c1(L′), then

c1(π∗(L)) = π∗(c1(L)) = π∗(c1(L′)) = c1(π∗(L′)),

getting π∗(L) = π∗(L′) as c1 is injective at the level of M̃10. As π∗ is injective,
this implies L = L′, and we are done.

2.2.2 Properties of the Weil divisor B

In this section we show that the Weil divisor B is the locus parameterizing
sheaves with non-trivial cohomology.

Lemma 2.2.2. Let E be a locally free sheaf of rank 2 and trivial determinant.
Then E ' E∗.

Proof. Consider the canonical morphism E⊗E −→ E∧E sending a local section
α⊗β to α∧β. But E ∧E = det(E) ' OX by hypothesis, so that the morphism
above is

E ⊗ E −→ OX .

It is an easy calculation to show that this is a perfect pairing, so that E is
isomorphic to E∗.

Another important property is the following:

Lemma 2.2.3. Let E be a sheaf defining a point in M10. Then H0(X,E ) = 0
and h1(X,E ) = h2(X,E ).

Proof. The Chern character of E is ch(E ) = (2, 0,−4) since E ∈ M10. By the
Hirzebruch-Riemann-Roch Theorem, for any n ∈ Z we have

P (E , n) = χ(E ⊗ OX(n)) =
∫

X

ch(E )ch(OX(n))td(X) = 2n2,

since OX(1) = H and H2 = 2. In particular, χ(E ) = 0, so that

h1(X,E ) = h0(X,E ) + h2(X,E ),
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and we just need to show that h0(X,E ) = 0. By definition, the reduced Hilbert
polynomial of E is p(E , n) = n2, and it is easy to see that p(OX , n) = n2 + 2.
As OX and E are semistable and p(OX) > p(E ), by Proposition 1.1.8 we get
Hom(OX ,E ) = 0. As Hom(OX ,E ) = H0(X,E ), we are done.

Before going on with the cohomology of sheaves parameterized by B, we
show this proposition, that can be seen as a corollary of the two lemmas above.
This will not be used in the following, but we insert it here as an observation.

Proposition 2.2.4. Let Mµ
10 ⊆M10 be the open subset parameterizing µ−stable

sheaves. Then Mµ
10 = M lf

10.

Proof. We begin with the inclusion Mµ
10 ⊆M lf

10 : let E be a µ−stable sheaf which
is not locally free. Then [E ] ∈ B ∩Ms

10, so that E ∗∗ ' OX ⊕OX by Proposition
2.1.3. Since µ−stability is preserved by duality, E ∗∗ has to be µ−stable, then
simple by Corollary 1.1.9, and we get a contradiction.

Now we show the opposite inclusion, i. e. M lf
10 ⊆ Mµ

10. Let E be a vector
bundle defining a point in M lf

10 . We need to show that it is µ−stable, i. e. that
for any F ⊆ E of rank 1, we have µ(F ) < µ(E). Notice that µ(E) = 0 since
c1(E) = 0, and c1(F ) = fc1(H) for some f ∈ Z, since Pic(X) = Z · H. In
conclusion, µ(F ) = 2f , and we need to show that f < 0.

Let c2(F ) = d ∈ Z. As we have seen in the proof of Lemma 2.2.3, the
reduced Hilbert polynomial of E is p(E,n) = n2. It is an easy calculation to
show that

p(F , n) = n2 + 2fn+ f2 + 2− d.
As E locally free, then E is stable (see Corollary 2.1.2), so that p(F ) < p(E).
We have then two possible cases: the first one is f < 0, so that µ(F ) < µ(E)
and we are done. The second case is f = 0 and d > 2, getting µ(F ) = µ(E).
We need to show that this second possibility cannot be verified.

Now, suppose there is a subsheaf F of E of rank 1, trivial determinant and
c2 > 2. As E is locally free and X is a surface, F has to be torsion-free. It is
then of the form IZ for a 0−dimensional subscheme Z of length d > 2. Consider
the short exact sequence

0 −→ IZ −→ E −→ G −→ 0

and apply the functor H om(.,OX), getting the exact sequence

0 −→ G ∗ −→ E∗
f−→ OX

since I ∗Z is a line bundle with trivial first Chern class. As rk(F ) > rk(G ), the
morphism f cannot be trivial, so that Hom(E∗,OX) 6= 0. By Serre’s duality
and Lemma 2.2.2, this implies H0(X,E) 6= 0. But this is not possible, since by
Lemma 2.2.3 we have H0(X,E) = 0. In conclusion, for any rank 1 subsheaf F

of E, we have µ(F ) < µ(E), and we are done.
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We can finally present the results on the cohomology of the sheaves param-
eterized by M10.

Proposition 2.2.5. Let E be a sheaf defining a point in M lf
10. Then for any

i = 0, 1, 2 we have Hi(X,E) = 0.

Proof. By Lemma 2.2.3 we have H0(X,E) = 0 and h1(X,E) = h2(X,E). To
conclude, apply Serre’s duality to E, getting h2(X,E∗) = 0. By Lemma 2.2.2,
this implies h2(X,E) = 0, and we are done.

As a final calculation, we show the following:

Proposition 2.2.6. Let E be a non-locally free semistable sheaf defining a point
in M10. Then H0(X,E ) = 0 and h1(X,E ) = h2(X,E ) 6= 0.

Proof. By Lemma 2.2.3, any sheaf E has no global sections and h1(X,E ) =
h2(X,E ). We just then need to show that h2(X,E ) 6= 0. The proof is divided
in three cases.

Case 1 : E is stable, so that it defines a point in B ∩Ms
10. By Proposition

2.1.3, the bidual of E is OX ⊕ OX , and we have a short exact sequence

0 −→ E −→ OX ⊕ OX −→ G −→ 0, (2.2)

since E is torsion free, where G is a rank 0 sheaf supported on a finite number
of points. This and the exact sequence (2.2) give h2(X,E ) = h2(X,OX ⊕ OX).
As X is a K3 surface, by Serre’s duality we have h2(X,OX) = 1, so that
h2(X,E ) = 2.

Case 2 : E is strictly polystable. Then it is of the form IZ ⊕IW , for some
Z,W ∈ Hilb2(X) by Proposition 2.1.1. The short exact sequence

0 −→ IZ −→ OX −→ OZ −→ 0

gives h2(X,IZ) = 1, so that h2(X,E ) = 2.
Case 3 : E is strictly semistable but not polystable. By Proposition 2.1.1, E

fits into an exact sequence

0 −→ IZ −→ E −→ IW −→ 0

for some Z,W ∈ Hilb2(X), so that there is a surjective morphism

H2(X,E ) −→ H2(X,IW ).

As seen in the previous case, h2(X,IW ) = 1, so that h2(X,E ) 6= 0, and we are
done.
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2.3 The Picard group of M10

In this section we show that the Picard group of the irreducible symplectic va-
riety M̃10 is isomorphic to Pic(X) ⊕ Z[Σ̃] ⊕ Z[B̃]. This could be concluded
by point 2 of Theorem 2.1.7 and the fact that the Donaldson’s morphism pre-
serves the Hodge decomposition, but we present a different proof, based on the
analysis of the relation between Donaldson’s morphism and Le Potier’s mor-
phism. In particular, using Le Potier’s determinant we define a morphism λ

from Pic(X) to Pic(M̃10), and we show that for any line bundle L ∈ Pic(X) we
have c1(λ(L)) = µ̃(c1(L)). The main reason to use this approach is that it leads
to a natural and more explicit way of producing line bundles on M10, which is
our goal.

Finally, we show that the formula for the Picard group of M̃10 implies that
the moduli space M10 is either 2k−factorial for some integer k or it is not even
Q−factorial. This will be done by comparing the Picard group of M10 and the
group of Weil divisors (up to linear equivalence) on M10 (see Appendix A).

2.3.1 Construction of flat families

Before giving the proof of the formula for the Picard group of M̃10, we recall
some basic facts about flat families that we will apply in the next section and
later.

In the following, let S be an algebraic surface, and let T be a proper scheme.
Moreover, let pS : T × S −→ S be the projection on S and pT : T × S −→ T be
the projection on T . Let V and W be two T−flat coherent sheaves on T × S,
and suppose that the sheaf pT∗H om(V ,W ) is a vector bundle on T . Let

p : P(pT∗H om(V ,W )) := Y −→ T

be the associated projective bundle, and let T be the tautological line bundle
on Y . By [Har], Chapter II, Proposition 7.11, there is a canonical injective
morphism

f : T −→ p∗pT∗H om(V ,W ),

corresponding to a global section

σ ∈ H0(Y, p∗pT∗H om(V ,W )⊗T −1).

Now, let qY : Y × S −→ Y be the projection on Y and qS : Y × S −→ S be the
projection on S, so that we have the following commutative diagram:

Y
qY←−−−− Y × S qS−−−−→ S

p

y
yp×idS

∥∥∥

T ←−−−−
pT

T × S −−−−→
pS

S
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and the following relations hold:

p∗pT∗H om(V ,W ) = qY ∗(p× idS)∗H om(V ,W ) =

= qY ∗H om((p× idS)∗V , (p× idS)∗W ).

Then, σ defines a global section

σ′ ∈ H0(Y, qY ∗H om((p× idS)∗V , (p× idS)∗W )⊗T −1).

Using the projection formula, we get a global section

σ′′ ∈ H0(Y × S,H om((p× idS)∗V ⊗ q∗Y T , (p× idS)∗W )),

corresponding to a morphism

f̃ : (p× idS)∗V ⊗ q∗Y T −→ (p× idS)∗W .

We can apply this construction to the two following examples. The first one
will be used in the next section, the second will be one of the main technical
tools in the proof of the 2−factoriality of M10.

Example 2.3.1. Let X be a projective K3 surface with Pic(X) = Z ·H, where H
is an ample line bundle such that H2 = 2. Fix three different points x1, x2, x3 ∈
X. We can define the following morphism

i : X −→ S4(X), i(x) := x+ x1 + x2 + x3,

which is a closed immersion. Let T := i(X), which is a surface isomorphic to
X. Notice that T ⊆Mµ−ss

10 . Consider a surjective morphism

ϕ : O2
X −→

3⊕

i=1

Cxi

as in Proposition 3.0.5 in [OG2], and let K := ker(ϕ). This is a rank 2 sheaf
with trivial determinant and second Chern class equal to 3. Notice that any
sheaf defining a point in φ−1(T ) is the kernel of a surjective morphism from K

to Cx for a point x ∈ X (see Proposition 3.0.5 in [OG2]).
Let ∆ ⊆ T ×X be the diagonal (up to the natural isomorphism between T

and X). By Theorem 1.1.17 the sheaf pT∗H om(p∗XK ,O∆) is a rank 2 vector
bundle on T and for any x ∈ T the canonical morphism

pT∗H om(p∗XK ,O∆)x −→ Hom(K ,Cx)

is an isomorphism. Let Y := P(pT∗H om(p∗XK ,O∆)), and let

p : Y −→ T.
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Clearly, p is a P1−bundle. Using the construction described in the previous
section, we have a canonical morphism

f̃ : q∗XK ⊗ q∗Y T −→ (p× idX)∗O∆.

Let H := ker(f̃).

Lemma 2.3.1. Let E be a sheaf defining a point in B and whose singular locus
is given by x, x1, x2, x3. Then E defines a point [fE ] ∈ Y , and

H[fE ] ' E .

Moreover, the morphism f̃ is surjective and H is a Y−flat family.

Proof. The sheaf E is the kernel of a surjective (hence non-zero) morphism

fE : K −→ Cx,

defining a point [fE ] ∈ p−1(x) since p−1(x) ' P(Hom(K ,Cx)). By definition
of f̃ , we have f̃|q−1

Y ([fE ]) = fE .

Now, f̃ is surjective: indeed, coker(f̃) is trivial if and only if it is trivial on
the fibers of qY . Now, let t ∈ Y , which corresponds to a surjective morphism
fE . Then coker(f̃)|q−1

Y (t) = coker(fE ) = 0, and we are done.

Since f̃ is surjective, the family H is Y−flat. Now, since q∗XK ⊗ q∗Y T

and (p × idX)∗O∆ are Y−flat, by Lemma 1.1.16 for any t ∈ Y the canonical
morphism

Ht −→ (q∗XK ⊗ q∗Y T )t ' K

is injective. This implies that Ht is the kernel of the morphism f̃|q−1
Y (t). As seen

above, any t ∈ Y corresponds to a unique surjective morphism fE : K −→ Cx,
where x = p(t), whose kernel is E , and f̃|q−1

Y (t) = fE . Then H[fE ] ' E , and we
are done.

Example 2.3.2. We describe another example that will be used later. Let
x, x1, x2, x3 ∈ X be four different points in X. Consider the morphism

ϕ : O2
X −→

3⊕

i=1

Cxi

as in the previous example, and let again K := ker(ϕ).
In this example, let T = {x} and let the two sheaves be p∗XK and i∗Cx,

where i is the inclusion of x in X. In this situation we have Y ' P1, and the
tautological line bundle is T = O(−1). By the general construction, we find a
morphism

f̃ : (p× idX)∗p∗XK −→ (p× idX)∗i∗Cx ⊗ q∗Y O(1),
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where p : Y −→ {x} is simply the canonical morphism. In particular, notice
that (p× idX)∗p∗XK = q∗XK and

(p× idX)∗i∗Cx ⊗ q∗Y O(1) = j∗O(1),

where j : P1 × {x} −→ P1 ×X is the inclusion. In conclusion, we have

f̃ : q∗XK −→ j∗O(1).

Finally, let H := ker(f̃).

Lemma 2.3.2. Let E be a sheaf defining a point in B whose singular locus is
given by x, x1, x2, x3, and let [fE ] be the point of Y defined by E . Then

H[fE ] ' E ,

and f̃ is a surjective morphism. Moreover, the family H is Y−flat.

Proof. The proof works as the one of Lemma 2.3.1.

2.3.2 The Picard group of M̃10

Let R be the open subscheme of a Quot-scheme whose quotient is M10. In
section 1.3.1 we have defined the Le Potier’s determinant

λ̃ : Ktop(X) −→ Pic(R).

By Theorem 1.3.2, the line bundle λ̃(α) descends to a line bundle λ(α) ∈
Pic(M10) if α ∈ e⊥ ∩ {1, h, h2}⊥⊥. Here, e = [E ] is the class of a sheaf pa-
rameterized by M10, and h = [H]. First of all, we describe the elements in
e⊥ ∩ {1, h, h2}⊥⊥.

Lemma 2.3.3. Let α ∈ Ktop(X). Then α ∈ {1, h, h2}⊥⊥ if and only if c1(α)
is the first Chern class of a line bundle on X.

Proof. First of all, we describe the classes β ∈ {1, h, h2}⊥. By definition, β is
in {1, h, h2}⊥ if and only if χ(β) = χ(β · h) = χ(β · h2) = 0. By the Hirzebruch-
Riemann-Roch Theorem it is easy to see that this happens if and only if v(β) =
(0, b, 0), where b ∈ H2(X,Z) is such that b · c1(H) = 0. By Proposition B.2.5
this implies that β ∈ H2(X,Z) ∩ (H2,0(X)⊕H0,2(X)), since Pic(X) = Z ·H.

Now, let α ∈ Ktop(X). Then α ∈ {1, h, h2}⊥⊥ if and only if χ(α · β) = 0 for
any β ∈ {1, h, h2}⊥. By the first part of the lemma, the Mukai vector of these β
is of the form v(β) = (0, b, 0) for b ∈ H2(X,Z) ∩ (H2,0(X)⊕H0,2(X)), so that
χ(α ·β) = c1(α) · b. As this must be trivial, then c1(α) has to be the first Chern
class of a line bundle on X by Proposition B.2.5, and we are done.

Lemma 2.3.4. Let α ∈ Ktop(X). Then α ∈ e⊥ if and only if ch2(α) = 0.
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Proof. Recall that the Mukai vector of e is (2, 0,−2). By the Hirzebruch-
Riemann-Roch Theorem, the condition χ(α · v) = 0 is

0 = −
∫

X

v(α)∨v = −2ch2(α),

and we are done.

Now, let p ∈ X and define

u : Pic(X) −→ Ktop(X), u(L) := [OX − L] +
c21(L)

2
[Cp].

Proposition 2.3.5. There is a group morphism

λ ◦ u : Pic(X) −→ Pic(M10).

Proof. The only point we need to verify is that u(L) ∈ e⊥ ∩ {1, h, h2}⊥⊥. The
Mukai vector of u(L) is

v(u(L)) = (0,−c1(L), 0)

so that by Lemma 2.3.4 we have u(L) ∈ e⊥ ∩ {1, h, h2}⊥⊥. By Theorem 1.3.2,
the Le Potier’s determinant defines a line bundle λ(u(L)) ∈ Pic(M10).

It remains to show that λ◦u is a group morphism. Consider L1, L2 ∈ Pic(X).
Then we have

u(L1 ⊗ L2) = [OX − L1 ⊗ L2] +
c21(L1 ⊗ L2)

2
[Cp].

Notice that v(u(L1 ⊗ L2)) = v(u(L1) + u(L2)), so that

u(L1 ⊗ L2) = u(L1) + u(L2)

by Proposition C.4.3. In conclusion u, hence λ ◦ u, is a group morphism.

We start now to study the morphism λ ◦ u. First of all, we have this:

Proposition 2.3.6. Let L ∈ Pic(X). Then c1(λ(u(L))) · γ′ = 0.

Proof. As Pic(X) = Z · H, we need to verify the statement only for H. By
Proposition 8.2.3 in [H-L] there is a positive integer m such that λ(u(H))⊗m is
generated by its global sections, and by definition the canonical map

φ : M10 −→ P(H0(M10, λ(u(H))⊗m)∗)

has Mµ−ss
10 as image. In particular, φ∗O(1) = λ(u(H))⊗m, so that

mc1(λ(u(H))) · γ′ = c1(λ(u(H))⊗m) · γ′ = c1(φ∗O(1)) · γ′ = 0,

as γ′ is contracted by φ. Finally, this implies c1(λ(u(H))) · γ′ = 0, and we are
done.
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The main result we need to show is the following:

Proposition 2.3.7. The following diagram

Pic(X) λ◦u−−−−→ Pic(M10)

c1

y
yc1

H2(X,Z) −−−−→
φ∗◦µD

H2(M10,Z)

is commutative, i. e. c1(λ(u(L))) = φ∗(µD(c1(L))) for any L ∈ Pic(X).

Proof. The proof of this proposition is done in two steps: first we show that
these two classes are equal when restricted to a well-chosen subvariety; then we
show that the equality on this restriction implies the equality everywhere.

Step 1. In this step we use the same notations we introduced in Example
2.3.1. Let i : T −→ Mµ−ss

10 be the natural inclusion, and let j : Y −→ M10 be
the morphism induced by the family H . By Lemma 2.3.1, the morphism j is
injective and its image is φ−1(T ), so that the following diagram

Y
j−−−−→ M10

p

y
yφ

T −−−−→
i

Mµ−ss
10

is commutative. In particular, for any line bundle L ∈ Pic(X) we have

j∗φ∗(µD(c1(L))) = p∗i∗(µD(c1(L))).

By Proposition 1.3.7 we have, up to the natural isomorphism between X and
T , that

i∗(µD(c1(L))) = c1(L) ∈ Pic(T ).

We need to show that j∗c1(λ(u(L))) = p∗(c1(L)). Clearly

j∗c1(λ(u(L))) = c1(j∗λ(u(L))),

and by Theorem 1.3.2 and Lemma 2.3.1 we have

j∗λ(u(L)) = det(qY !(q∗Xu(L) · [H ])),

since j is the morphism induced by H . We have then to calculate the first Chern
class of qY !(q∗Xu(L) · [H ]). By the Grothendieck-Riemann-Roch Theorem, this
is

[ch(qY !(q∗Xu(L) · [H ]))]1 = [qY !(ch(q∗Xu(L) · [H ])q∗Xtd(X)−1)]1.

Since the fibers of qY are of dimension 2, the last term is

qY ∗[q∗X(ch(u(L))td(X)−1) · ch(H )]3.
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Notice that ch(u(L))td(X)−1 = (0,−c1(L), 0), so that

[q∗X(ch(u(L))td(X)−1) · ch(H )]3 = −q∗X(c1(L)) · ch2(H ).

We have then to calculate ch2(H ). First of all, by Lemma 2.3.1 we have

ch(H ) = q∗Xch(K ) · q∗Y ch(T )− (p× idX)∗ch(O∆),

where

ch(K ) = ch(O2
X)− ch

( 3⊕

i=1

Cxi
)

= (2, 0,−3).

In conclusion, we get
−q∗X(c1(L)) · ch2(H ) =

= 3q∗X(c1(L)) · q∗X [p]− q∗X(c1(L)) · q∗Y (c21(T )) + q∗X(c1(L)) · (p× idX)∗[∆].

Now, notice that

qY ∗(3q∗X(c1(L) · [p])) = qY ∗(q∗X(c1(L)) · q∗Y (c21(T ))) = 0,

so that
c1(j∗(λ(u(L)))) = qY ∗(q∗Xc1(L) · (p× idX)∗[∆]) =

= p∗(pT∗(p∗X(c1(L)) · [∆])) = p∗(c1(L)),

and we are done.
Step 2. Let L ∈ Pic(X), and consider

β := φ∗µD(c1(L))− c1(λ(u(L))) ∈ H2(M10,Z).

We need to show that β = 0. By Step 1, j∗β = 0. Moreover, β · γ′ = 0: indeed
φ∗µD(c1(L)) · γ′ = 0 since γ′ is contracted by φ, and c1(λ(u(L))) · γ′ = 0 by
Proposition 2.3.6.

Consider π∗β ∈ H2(M̃10,Z). By point 3 of Theorem 2.1.7, there are α ∈
H2(X,Z) and n,m ∈ Z such that

π∗β = π∗φ∗µD(α) + nc1(Σ̃) +mc1(B̃).

By point 2 of Theorem 2.1.7, we get

0 = π∗β · δ = µ̃(α) · δ + nc1(Σ̃) · δ +mc1(B̃) · δ = m− 2n

as δ is contracted by π, and

0 = π∗β · γ = µ̃(α) · δ + nc1(Σ̃) · δ +mc1(B̃) · δ = 3n− 2m

since π∗β ·γ = β ·γ′ = 0 by the projection formula. In conclusion, since m = 2n,
the integer n has to satisfy the equality 3n = 4n, so that n = 0, implying even
m = 0.
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Finally, we get β = φ∗µD(α): indeed, β ∈ c1(Pic(M10)), so that µ̃(α) =
π∗(β) ∈ c1(Pic(M̃10)). This implies φ∗µD(α) ∈ c1(Pic(M10)). By Remark
2.2.1, the equality π∗(β) = π∗(φ∗µD(α)) implies β = φ∗µD(α). If we restrict β
to Y we get

0 = j∗β = j∗φ∗µD(α) = p∗(α),

the last equality coming from Proposition 1.3.7. To conclude, simply notice
that p∗ : Pic(T ) −→ Pic(Y ) is injective, as Y is a P1−bundle on T , so that we
finally get α = 0. But this implies β = 0, and we are done.

We conclude this section with the following corollary of Proposition 2.3.7.

Corollary 2.3.8. The morphism λ ◦ u is injective. Moreover, we have

Pic(M̃10) ' π∗ ◦ λ ◦ u(Pic(X))⊕ Z[Σ̃]⊕ Z[B̃].

Proof. The injectivity of π∗ ◦ λ ◦ u follows from point 1 of Theorem 2.1.7 and
Proposition 2.3.7. Indeed, suppose π∗(λ(u(L))) = O

M̃10
for some L ∈ Pic(X).

This implies
0 = c1(π∗(λ(u(L)))) = µ̃(c1(L)))

by Proposition 2.3.7. By point 1 of Theorem 2.1.7, the morphism µ̃ is injective,
so that π∗(φ∗(µD(c1(L)))) = 0 implies c1(L) = 0. But this implies L = OX as
X is a K3 surface. The injectivity of λ ◦ u follows from that of π∗ ◦ λ ◦ u.

Now, let L ∈ Pic(M̃10), so that c1(L) ∈ H2(M̃10,Z). By point 3 of Theorem
2.1.7, there are α ∈ H2(X,Z), n,m ∈ Z such that

c1(L) = µ̃(α) + nc1(Σ̃) +mc1(B̃).

We just need to show that α ∈ Pic(X). Now, µ̃(α) is a line bundle, so that
φ∗µD(α) has to be a line bundle, and j∗φ∗µD(α) ∈ Pic(Y ). By Proposition
1.3.7 we have j∗φ∗µD(α) = p∗(α), so that α ∈ Pic(X), and we are done.

2.3.3 The Picard group of M10

As an application of the description of the Picard group of M̃10, we show that
the moduli space M10 is either 2k−factorial, for some integer k, or it is not
Q−factorial. First of all we show the following:

Lemma 2.3.9. If there is n ∈ Z such that nB is a Cartier divisor, then

c1(nB) · γ′ = −n
2
.

Proof. The rational curve γ′ intersects Σ in three different points: indeed, let
x := (x1, x2, x3, x4) ∈ S4

s (X) be given by four distinct points. Then φ−1(x)∩Σ
is given by three points, which are [Ix1,x2 ⊕ Ix3,x4 ], [Ix1,x3 ⊕ Ix2,x4 ] and
[Ix1,x4 ⊕Ix2,x3 ].
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This implies that π∗(γ ′) = γ + lδ for some rational number l, coming from
the three points of the intersection of γ ′ with Σ. Since these points are singular
for M10, l need not to be an integer. Indeed, by point 2 of Theorem 2.1.7 we
have

3 = c1(Σ̃) · γ = c1(Σ̃) · π∗(γ ′)− l(c1(Σ̃) · δ) = 2l,

since by the projection formula we have c1(Σ̃) · π∗(γ′) = 0. In conclusion

π∗(γ ′) = γ +
3
2
δ.

Now, suppose there is n ∈ Z such that nB is a Cartier divisor. By Proposition
2.2.1 such a n has to be even. As nB is a Cartier divisor, we have

c1(nB) · γ′ = nc1(B̃) · π∗(γ′)

by the projection formula. In conclusion we get

c1(nB) · γ′ = nc1(B̃) · γ +
3n
2
c1(B̃) · δ = −2n+

3n
2

= −n
2
,

by Theorem 2.1.7, and we are done.

Remark 2.3.1. We could conclude that B cannot be a Cartier divisor even from
Lemma 2.3.9: if B was Cartier, then B · γ′ ∈ Z, which is clearly not the case.
Moreover, by Lemma 2.3.9 it follows even that M is not locally factorial. Indeed,
suppose n ∈ Z be such that nB is Cartier. As in the proof of Proposition 2.2.1,
there is m ∈ Z such that

π∗(nB) = nB̃ +mΣ̃.

We can now intersect with γ, getting

c1(π∗(nB)) · γ = −2n+ 3m

by point 2 of Theorem 2.1.7, and we need to calculate c1(π∗(nB)) ·γ. Following
the proof of Lemma 2.3.9, we have γ = π∗(γ′)− 3

2δ, so that

c1(π∗(nB)) · γ = c1(π∗(nB)) · π∗(γ′)− 3
2
c1(π∗(nB)) · δ = −n

2
by projection formula and Lemma 2.3.9, since δ is contracted by π. We finally
get

−n
2

= −2n+ 3m,

implying n = 2m, so that n must be even. Finally, for the local factoriality we
can conclude just as in the proof of Proposition 2.2.1.

Proposition 2.3.10. Let A1(M10) be the group of Weil divisors of M10 modulo
linear equivalence. Then

A1(M10) = λ(u(Pic(X)))⊕ Z[B],

and Pic(M10) ( A1(M10).
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Proof. We have the following equalities:

A1(M10) = A1(Ms
10) = Pic(Ms

10) = Pic(π−1(Ms
10)).

Indeed, the first equality follows from Lemma A.0.6, as Σ has codimension 2 in
M10. The second equality follows from Proposition A.0.4 as Ms

10 is smooth by
Remark C.3.1. The last equality follows from the definition of π.

Now, let us consider the sequence

0 −→ Z · [Σ̃] −→ Pic(M̃10) −→ Pic(π−1(Ms
10)) −→ 0.

We claim that this sequence is exact: Z · [Σ̃] injects into Pic(M̃10) in the obvious
way, the restriction morphism is surjective (see Lemma A.0.6), and clearly the
restriction of Σ̃ to π−1(Ms

10) is trivial.
It remains to show that if a line bundle L ∈ Pic(M̃10) has trivial restriction

to π−1(Ms
10), then it is a multiple of Σ̃. As L ∈ Pic(M̃10), by Corollary 2.3.8

there are M ∈ Pic(X) and n,m ∈ Z such that

L = π∗(λ(u(L))) + nB̃ +mΣ̃.

As L|π−1(Ms
10) = 0, we get

0 = L|π−1(Ms
10) = λ(u(M)) + nB.

In conclusion, we have nB = −λ(u(M)), so that nB is a line bundle on M10.
By Lemma 2.3.9 and Proposition 2.3.6, we have

−n
2

= nB · γ′ = −λ(u(M)) · γ′ = 0,

so that n = 0 and M = OX (by Proposition 2.3.7).
In conclusion, we get

A1(M10) = Pic(π−1(Ms
10)) ' Pic(M̃10)/Z · [Σ̃],

so that
A1(M10) = λ ◦ u(Pic(X))⊕ Z · [B].

Finally, the Picard group of M10 is contained in A1(M10) since M10 is irreducible
(see Proposition A.0.7), and we are done.

Since, by Corollary 2.3.8, λ ◦ u(Pic(X)) is contained in Pic(M10), the only
Weil divisors that might not be Cartier are the multiples of B. We have indeed
the following:

Proposition 2.3.11. The moduli space M10 is either 2k−factorial for some
positive integer k, or it is not Q−factorial. In particular, the moduli space M10

is 2k−factorial if and only if there is an injection

Pic(X)⊕ Z −→ Pic(M10).
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Proof. By Corollary 2.3.8 and Proposition 2.3.10, there is the following chain of
inclusions:

λ ◦ u(Pic(X)) ⊆ Pic(M10) ⊆ λ ◦ u(Pic(X))⊕ Z · [B].

We have then only two possibilities: the first one is that Pic(M10) ' Pic(X),
which implies that neither B nor any of its multiples is in Pic(M10). In this
case, M10 is not Q−factorial.

The second possibility is that Pic(M10) = λ ◦ u(Pic(X)) ⊕ Z · β for some
line bundle β. In particular, such a β must be of the form OM10(nB) for some
n ∈ Z in view of Proposition 2.3.10. This implies that nB is Cartier, and by
Proposition 2.2.1 we have n = 2k for some integer k. In particular, this implies
that M10 is 2k−factorial, and we are done.

2.3.4 Q−factoriality of M10

In this section we prove that M10 is 2k−factorial for some positive integer k. In
section 2.3.2 we presented the construction of the morphism

λ ◦ u : Pic(X) −→ Pic(M10),

in order to produce line bundles on M10 starting from those on X. Anyway,
to produce line bundles on Pic(M10) we just need to start from a class α ∈
e⊥ ∩ {1, h, h2}⊥⊥. Here is the main choice for such a class.

Lemma 2.3.12. Let n ∈ Z. Then n[OX ] ∈ e⊥ ∩{1, h, h2}⊥⊥, so that λ(n[OX ])
is a line bundle on M10. Moreover, for any n ∈ Z \ {0}, we have v(n[OX ]) 6=
v(u(L)) for any L ∈ Pic(X).

Proof. It is a trivial fact that v(n[OX ]) = (n, 0, n). Then, it is sufficient to apply
Lemmas 2.3.3 and 2.3.4.

The natural question is on what kind of line bundle λ([OX ]) is. The main
ingredient is the following:

Theorem 2.3.13. Let γ′ be as in Proposition 2.1.4. Then

c1(λ([OX ])) · γ′ = −1.

Proof. Notice that c1(λ([OX ])) ·γ′ = c1(λ(OX)|γ′). Using the family H defined
in Example 2.3.2, we have

deg(λ([OX ])|γ′) = deg(qY !(q∗X [OX ] · [H ]))

(here we use the same notations as in Example 2.3.2). Using the Grothendieck-
Riemann-Roch Theorem, we finally get

c1(λ([OX ])) · γ′ = qY ∗[q∗X(ch(OX)td(X)−1) · ch(H )]3
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since the fibers of the morphism qY are of dimension 2. Moreover ch(OX)td(X)−1

is simply td(X)−1, so that

[q∗X(ch(OX)td(X)−1) · ch(H )]3 = −2q∗X [y] · ch1(H ) + ch3(H ),

where [y] is the class of a point in X. In conclusion we need to calculate chi(H )
for i = 1, 3. By Lemma 2.3.2 we have

chi(H ) = q∗Xchi(K )− chi(j∗O(1)),

where

chi(K ) = chi(O2
X)− chi

( 3⊕

i=1

Cxi
)

= (2, 0,−3).

These two equalities imply

ch1(H ) = −ch1(j∗O(1)), ch3(H ) = −ch3(j∗O(1)).

Now, by Grothendieck-Riemann-Roch Theorem, we have

ch(j∗O(1)) = j∗(ch(O(1))) · q∗Xtd(X)−1

so that ch1(j∗O(1)) = [j∗ch(O(1))]1 and

ch3(j∗O(1)) = [j∗ch(O(1))]3 − 2q∗X [y] · [j∗ch(O(1))]1.

Now, simply remark that [j∗ch(O(1))]i = q∗Y (chi−2(O(1))) since the codimen-
sion of P1 in P1 ×X is 2. In conclusion, we get

ch1(H ) = 0, ch3(H ) = −q∗Y [p],

where [p] is the class of a point in P1, since ch(O(1)) = (1, 1). Finally, this
implies that

c1(λ([OX ])) · γ′ = qY ∗(−q∗Y [p]) = −1,

and we are done.

Here is the main result of this section:

Proposition 2.3.14. The moduli space M10 is 2k−factorial for some k ∈ N,
and

Pic(M10) = λ(u(Pic(X)))⊕ Z · [2kB].

Proof. By Proposition 2.3.11, the moduli space is 2k−factorial for some k ∈ N
if there is an injection of Pic(X)⊕Z in Pic(M10). We claim that the morphism

Pic(X)⊕ Z −→ e⊥ ∩ {1, h, h2}⊥⊥, (L, n) 7→ u(L) + n[OX ]

is an isomorphism.
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For the injectivity, let (L, n), (M,m) ∈ Pic(X) ⊕ Z be such that u(L) +
n[OX ] = u(M) +m[OX ]. Then

(n,−c1(L), n) = v(u(L) + n[OX ]) = v(u(M) +m[OX ]) = (m,−c1(M),m).

This implies n = m and c1(L) = c1(M), so that L = M in Pic(X), and
injectivity is shown.

For the surjectivity, consider α ∈ e⊥ ∩ {1, h, h2}⊥⊥: by Lemmas 2.3.3 and
2.3.4, we have

v(α) = (r, c1(L), r)

for some r ∈ Z and L ∈ Pic(X). We have then v(α) = v(u(L−1) + r[OX ]), so
that by Proposition C.4.3 we have α = u(L−1)+r[OX ], and surjectivity is done.

In conclusion, we get a morphism

Pic(X)⊕ Z ' e⊥ ∩ {1, h, h2}⊥⊥ λ−→ Pic(M10).

This morphism is injective. Indeed, let L,M ∈ Pic(X) and n,m ∈ Z be such
that λ(u(L)+n[OX ]) = λ(u(M)+m[OX ]). By Theorem 2.3.13 and Proposition
2.3.6 we have

−n = c1(λ(u(L) + n[OX ])) · γ′ = c1(λ(u(M) +m[OX ])) · γ′ = −m,

so that m = n and λ(u(L)) = λ(u(M)). This last equality implies L = M in
Pic(X) by Proposition 2.3.7, and we are done.

2.4 The 2−factoriality of M10

This section is devoted to the proof of the 2−factoriality of M10, that will
be proven showing that the Weil divisor 2B is Cartier. As a final result, we
show that the Donaldson’s morphism defines an Hodge isometry between v⊥ ⊆
H̃(X,Z) and a sublattice of rank 23 in H2(M̃10,Z).

2.4.1 Line bundles on M10

The Weil divisor B cannot be obtained as λ(u(L)) for any L ∈ Pic(X), since it
is not a Cartier divisor by Proposition 2.2.1. But we have more: for any integer
n ∈ Z \ {0}, we have nB /∈ λ(u(Pic(X))). Indeed, if nB was in the image of
λ ◦ u, then there will be an L ∈ Pic(X) such that nB = λ(u(L)). By Lemma
2.3.9 and Proposition 2.3.6, intersecting with γ′ we get

−n
2

= c1(nB) · γ′ = c1(λ(u(L))) · γ′ = 0,

which is not possible since n 6= 0.
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Theorem 2.4.1. There exists a line bundle L ∈ Pic(X) such that

2B = λ([OX ] + u(L)).

In particular, the moduli space M10 is 2−factorial.

Proof. By Proposition 2.3.14, there are L ∈ Pic(X) and n ∈ Z such that

λ([OX ]) = λ(u(L)) + 2nkB.

Now, intersecting with γ′ we get

−1 = c1(λ([OX ])) · γ′ = c1(λ(u(L))) · γ′ + c1(2nkB) · γ′ = −nk

by Theorem 2.3.13, Proposition 2.3.6 and Lemma 2.3.9. But n, k ∈ Z and k > 0,
so that this implies n = k = 1, and we are done.

Up to now we don’t have any information on the line bundle L in the state-
ment of Theorem 2.4.1. We show that it is trivial, and in order to do this,
we study in deeper details the line bundle λ([OX ]). By definition of λ̃ we have
λ̃([OX ]) = det(RpR∗(F )), where F is a universal family on R×X. By Theorem
2.4.1 we have

det(RpR∗(F )) = p∗(2B)⊗ λ̃(u(L)),

where p : R −→M10 is the quotient morphism. Consider the universal quotient
module

0 −→ G −→ p∗XH
ρ−→ F −→ 0, (2.3)

where F is a universal family on QuotX(H , P ) ×X and pX is the projection
on X. Moreover, H := H0(X,E (NH)) ⊗ OX(−NH) for N ∈ Z sufficiently
big, where E is any sheaf parameterized by M10. In particular, H is locally
free and such that H0(X,H ) = H1(X,H ) = 0. In the following, we will write
G , p∗XH and F even for their restrictions to R × X. Notice that any s ∈ R
corresponds to an exact sequence

0 −→ K −→H
fE−→ E −→ 0. (2.4)

Since F and p∗XH are R−flat, then G is R−flat and for any s ∈ R we have

Gs ' ker((p∗XH )s −→ Fs) = ker(fE ) = K ,

where Gs (resp. (p∗XH )s, Fs) denotes the restriction of G (resp. p∗XH , F ) to
the fiber of the projection pR : R×X −→ R over the point s ∈ R.

Proposition 2.4.2. We have the following properties:

1. For any i ∈ Z the sheaves RipR∗G and RipR∗(p∗XH ) are locally free of
rank hi(X,H ).
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2. For any s ∈ R and for any i ∈ Z, the canonical morphism

(RipR∗F )s −→ Hi(p−1
R (s),Fs) ' Hi(X,E )

is an isomorphism, where E is a sheaf corresponding to the point s ∈ R.

Proof. As the fibers of pR are of dimension 2, we only need to show the propo-
sition for i = 0, 1, 2, since for other values of i we have RipR∗(.) = 0. We
begin with RipR∗(p∗XH ). For any s ∈ R we have (p∗XH )s ' H , so that
Hi(p−1

R (s), (p∗XH )s) ' Hi(X,H ). This implies that the function sending s ∈
R to hi(p−1

R (s), (p∗XH )s) is constant. By Theorem 1.1.17, the sheaf RipR∗(p∗XH )
is then locally free of rank hi(X,H ). In particular, as h0(X,H ) = h1(X,H ) =
0, the sheaves R0pR∗(p∗XH ) and R1pR∗(p∗XH ) are trivial.

The next step is to study RipR∗G . As h0(X,H ) = h1(X,H ) = 0, we just
need to show that R0pR∗G = R1pR∗G = 0 and that R2pR∗G is a vector bundle of
rank h2(X,H ). Applying the functor RpR∗ to the exact sequence (2.3), we get
R0pR∗G = 0 and R1pR∗G ' R0pR∗F , as R0pR∗(p∗XH ) = R1pR∗(p∗XH ) = 0.
We need to show that R0pR∗(F ) = 0. Consider any E parameterized by M10,
and consider a corresponding point s ∈ R. Then Fs ' E , and the map sending s
to H0(X,Fs) is constant and trivial by Lemma 2.2.3. The canonical morphism

(R0pR∗(F ))s −→ H0(X,Fs) = 0

is then an isomorphism by Theorem 1.1.17, so that R0pR∗(F ) = 0. It the
remains to show that R2pR∗G is a vector bundle of rank h2(X,H ). To do so,
consider a point s ∈ R and the associated exact sequence (2.4). The long exact
sequence induced by this and Lemma 2.2.3 imply that h2(X,Gs) = h2(X,H ).
Then the function sending s ∈ R to h2(X,Gs) is constant. By Theorem 1.1.17,
this implies that R2pR∗G is a vector bundle of rank h2(X,H ), and for any
s ∈ R the canonical morphism (R2pR∗G )s −→ H2(X,Gs) ' H2(X,K ) is an
isomorphism.

Finally, we need to study RipR∗F . We have already shown that for any
s ∈ R the canonical morphism

(R0pR∗F )s −→ H0(X,Fs)

is an isomorphism, and we need to show the same property for R1pR∗F and
R2pR∗F . As R3pR∗F = 0, by Theorem 1.1.17 the canonical morphism

(R2pR∗F )s −→ H2(X,E )

is an isomorphism. Moreover, let ξ : R1pR∗F −→ R2pR∗G be the morphism
induced by the exact sequence (2.3). Since R1pR∗(p∗XH ) = 0 by the first part
of the proof, ξ is injective. In particular, for any s ∈ R the morphism ξs is
injective, so that

(R1pR∗(F ))s ' ker((R2pR∗(G ))s
δ−→ (R2pR∗(p∗XH ))s).
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But (R2pR∗G )s ' H2(X,K ), (R2pR∗(p∗XH ))s ' H2(X,H ) and the morphism
δ is simply the morphism H2(X,K ) −→ H2(X,H ) induced by the exact se-
quence (2.4), by the previous part of the proof. Since H1(X,H ) = 0, we have
ker(δ) ' H1(X,E ), and we are done.

Corollary 2.4.3. We have the following exact sequence

0 −→ R1pR∗(F ) −→ R2pR∗(G )
β−→ R2pR∗(p∗XH ) −→ R2pR∗(F ) −→ 0.

In particular, det(RpR∗F ) ' det(R2pR∗(p∗XH ))⊗ det(R2pR∗G )−1.

Proof. Applying the functor RpR∗ to the exact sequence (2.3), by point 1 of
Proposition 2.4.2 we get the exact sequence in the statement. By this exact
sequence we get

det(R2pR∗(p∗XH ))⊗ det(R2pR∗G )−1 ' det(R2pR∗F )⊗ det(R1pR∗F )−1.

As R0pR∗F = 0 by point 2 of Proposition 2.4.2, this implies the statement.

We are finally able to show the following

Proposition 2.4.4. The line bundle λ([OX ]) is isomorphic to 2B.

Proof. Consider det(β) : det(R2pR∗G ) −→ det(R2pR∗(p∗XH )), that gives a sec-
tion s of det(RpR∗(F )) by Corollary 2.4.3, whose zero locus is given by the set
where det(β) is not an isomorphism. By Lemma 2.2.3, Proposition 2.2.6 and
point 2 of Proposition 2.4.2 this locus is exactly p−1(B), and we are done.

2.4.2 Description of H2(M̃10,Z)

As a consequence of the description we have given for the construction of line
bundles on M10, we have the following theorem, which is a generalization of
Theorem D.3.9, and that was pointed out to me by Rapagnetta.

Theorem 2.4.5. Let v = (2, 0,−2) ∈ H̃(X,Z). There is a morphism of Hodge
structures

f : v⊥ −→ H2(M̃10,Z),

which is an isometry between v⊥, viewed as a sublattice of the Mukai lat-
tice H̃(X,Z), and its image in H2(M̃10,Z), being a lattice with the Beauville-
Bogomolov form q.

Proof. It is an easy calculation to show that a Mukai vector w is orthogonal to
v if and only if it is of the form

w = (r, c, r) ∈ H̃(X,Z),
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for r ∈ Z and c ∈ H2(X,Z), so that there is an isomorphism

v⊥ −→ H2(X,Z)⊕ Z, w 7→ (c, r).

Let

f : v⊥ −→ H2(M̃10,Z), f((r, c, r)) := µ̃(c) + 2rc1(B̃) + rc1(Σ̃).

The morphism f is clearly an isomorphism of Hodge structures on its image,
since the Donaldson’s morphism is an injective morphism of Hodge structures.
Moreover, it is an isometry: indeed for any two classes c, d ∈ H2(X,Z) and for
any two r, s ∈ Z we have:

q(f(r, c, r), f(s, d, s)) = cd− 2rs

by point 4 of Theorem 2.1.7, and

((r, c, r), (s, d, s)) = cd− 2rs

by definition of the Mukai pairing.

Using Proposition 2.4.4 we can give a geometric interpretation of the defini-
tion of f . It is the Donaldson’s morphism on H2(X,Z), so that by Proposition
2.3.7 it is the Le Potier’s morphism on Pic(X). It seems then natural to define
f as the Le Potier’s morphism on the remaining part of v⊥. Indeed, by Lemma
2.3.12 we have (r, 0, r) = v(r[OX ]), and by Proposition 2.4.4 λ(r[OX ]) = 2rB.
As π∗(2rB) = 2rB̃+nΣ̃ for some integer n, by point 2 of Theorem 2.1.7 we get

0 = π∗(2rB) · δ = 2r − 2n,

since δ is contracted by π. In conclusion, we get n = r and

π∗λ(r[OX ]) = 2rB̃ + rΣ̃.

In particular, we see that

f(r, 0, r) = c1(π∗λ(r[OX ])).



Chapter 3

The 6−dimensional

O’Grady’s example M̃6

This last chapter is devoted to the study of the 6−dimensional O’Grady exam-
ple, which provides the last known example of irreducible symplectic manifold
which is not deformation of an Hilbert scheme of points (on a K3 surface) or of
a generalized Kummer variety (over an abelian surface).

The idea behind the construction of this 6−dimensional variety mixes those
of the constructions of M̃10 and of the generalized Kummer varieties. Namely,
as seen in Chapter 3, the moduli spaces of semistable sheaves over an abelian
surface whose Mukai vector is primitive give rise to deformations of generalized
Kummer varieties: it is sufficient to consider a fiber of the Albanese map. The
natural idea, already behind the construction of M̃10, is to consider the moduli
space of semistable sheaves with non-primitive Mukai vector, and to look at the
fibers of the Albanese map. Since the variety obtained in this way is expected to
be singular, we need to understand if it admits a symplectic resolution. As seen
in section 3.3.2, a symplectic resolution exists if and only if the Mukai vector is
of the form 2w, for w a primitive Mukai vector such that (w,w) = 2.

In [OG3], O’Grady chooses the Mukai vector as v = (2, 0,−2), as he does
in the 10−dimensional example, and considers the 6−dimensional fiber M6 of
the Albanese map. Then, he shows the existence of a symplectic resolution M̃6

of M6, which is shown to be an irreducible symplectic manifold whose second
Betti number is 8: since the other known irreducible symplectic manifolds in
dimension 6 have second Betti number 23 and 7, we get a new example.

The goal of this chapter is to show that M6 is a 2−factorial scheme: this
will be done using the same ideas as in the previous chapter to prove the
2−factoriality of M10, with some important differences. Namely, one shows
the existence of a Weil divisor D on M6 which is not Cartier, but such that
2D = 0. This does not exist on M10 as the exceptional divisor Σ̃ on M̃10 is not

53
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divisible by 2, as it is in the case of M̃6. Once this shown, one proceeds using Le
Potier’s morphism, as in the 10−dimensional case, to show the 2−factoriality.

3.1 Generalities on M6

In this section we recall the construction of M6 and of M̃6, and we resume the
basic properties we need for the proof of the 2−factoriality. In the following,
let C be a smooth projective complex curve of degree 2, and let J := Pic0(C)
be its jacobian variety. Since the degree of C is 2, the variety J is an abelian
surface. Moreover, we suppose that there is an ample line bundle H on J such
that NS(J) = Z ·c1(H) and c21(H) = 2. Finally, let Ĵ := Pic0(J) be the abelian
surface dual to J . Let p0 ∈ C, and let

i : C −→ J, i(p) := [p− p0]

be the Abel-Jacobi map, which is injective. Moreover, let Θ := i(C), which is
an irreducible divisor on J called the theta divisor. For any α ∈ J we can even
define Θα := Θ + α, the divisor obtained as translation of Θ by the point α.
The composition of i with the translation by α is denoted iα.

Let v ∈ H̃(J,Z) be the Mukai vector v := (2, 0,−2), and let Mv be the mod-
uli space of H−semistable sheaves on J whose Mukai vector is v. The moduli
space Mv parameterizes rank 2 sheaves with trivial first Chern class and second
Chern class equal to 2 (since J is an abelian surface, so that td(J) = 1). With
the usual notations, let Ms

v the the open subset of Mv parameterizing H−stable
sheaves, and M lf

v be the open subset of Mv parameterizing H−semistable lo-
cally free sheaves. By Theorem C.3.1 Ms

v is smooth, and by Theorem C.5.1 it
carries a symplectic structure coming from the one we have on J . Moreover,
Ms
v has dimension 10. The first result is the analogue of Proposition 2.1.1, on

the singularities of Mv:

Proposition 3.1.1. Let Σv be the singular locus of Mv. Then Σv parameterizes
sheaves of the form

(Ix1 ⊗ L1)⊕ (Ix2 ⊗ L2),

where x1, x2 ∈ J and L1, L2 ∈ Ĵ . In particular, we have Σv ' S2(J × Ĵ), and
codimMv

(Σv) = 2.

Proof. See Lemma 2.1.2 in [OG3].

Now, let Bv be the closed subset of Mv parameterizing non-locally free
sheaves. As a corollary of Proposition 3.1.1, we have Σv ⊆ Bv. Moreover, let

Ωv := {[(Ix1 ⊗ L1)⊕ (Ix2 ⊗ L2)] ∈ Σv |x1 = x2, L1 ' L2} ⊆ Σv.
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Consider the blow-up of Mv along Σv with reduced scheme structure, i. e.

πv : M̃v −→Mv,

which is a symplectic resolution of Mv. Let then Σ̃v be the exceptional divisor,
and let B̃v be the proper transform of Bv. Moreover, let Ω̃v := π−1

v (Ωv).
One of the main technical tools O’Grady uses in [OG3] is a moduli-theoretic
description of M̃v \ Ω̃v: this can be described as the set of equivalence classes of
simple semistable sheaves on J whose Mukai vector is v, where the equivalence
relation is described as follows. Let E be a simple semistable sheaf on J with
Mukai vector v. If E is strictly semistable, then there is a short exact sequence

0 −→ Ix1 ⊗ L1 −→ E −→ Ix2 ⊗ L2 −→ 0,

defining the extension class eE ∈ Ext1(Ix2 ⊗ L2,Ix1 ⊗ L1). Since E is simple,
this extension class is not trivial, and is well-defined up to C∗. Moreover, it is
an easy calculation to show that since E is simple we must have L1 6' L2 or
x1 6= x2 and that Ext1(I1 ⊗ L1,I2 ⊗ L2) has dimension 2. By Serre’s duality,
the Yoneda coupling

Ext1(Ix2 ⊗ L2,Ix1 ⊗ L1)× Ext1(Ix1 ⊗ L1,Ix2 ⊗ L2) −→ C

is a perfect pairing, so that one can define e⊥E , a generator for the one-dimensional
subspace of Ext1(Ix1 ⊗ L1,Ix2 ⊗ L2) annihilating eE .

Definition 3.1.1. Let E and F be two simple semistable sheaves on J with
Mukai vector v. Then E and F are called S̃−equivalent if and only if one of
the two following conditions is satisfied:

1. E and F are stable and S-equivalent;

2. E and F are strictly semistable and E is isomorphic either to F or to the
extension given by e⊥F .

The following result is Proposition 2.2.10 in [OG3]:

Proposition 3.1.2. Let Ev be the set of S̃−equivalence classes of torsion-free
simple H−semistable sheaves on J with Mukai vector v. Then there is a natural
bijection M̃v \ Ω̃v −→ Ev.

Another important tool is the following proposition:

Proposition 3.1.3. Let E be any simple semistable torsion-free sheaf on J

whose S̃−equivalence class defines a point in B̃v, and let E := E ∗∗. Then there
is a short exact sequence

0 −→ L1 −→ E −→ L2 −→ 0,

where L1, L2 ∈ Ĵ , and the sequence is split if and only if L1 6' L2. Moreover,
the length of Sing(E ) is 2.
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Proof. See Lemma 4.3.3 in [OG3].

We are finally able to define the main object of this chapter: let

av : Mv −→ J × Ĵ , av(E ) :=
(∑

c2(E ), det(E )
)
,

and let

M6 := a−1
v (0,OJ), M̃6 := π−1

v (M6).

Let π := π
v|M̃6

, and let Σ := Σv ∩M6. In particular, π is the blow up of M6

along Σ with reduced scheme structure. Finally, let B := Bv∩M6, Σ̃ := π−1(Σ)
(the exceptional divisor of π) and B̃ := B̃v ∩ M̃6 (the proper transform of B
under π). The main result is the following

Theorem 3.1.4. (O’Grady, ’01). The variety M̃6 is an irreducible symplectic
manifold of dimension 6 and second Betti number b2(M̃6) = 8.

Proof. The proof of this theorem is contained in [OG3].

In particular, M̃6 is a new example of irreducible symplectic manifold of
dimension 6, the others being deformations of Hilb3(X) for a K3 surface X

(whose second Betti number is 23) and K3(A) for an abelian surface A (whose
second Betti number is 7). As seen in the previous chapter, it is important to
determine the existence of P1−fibrations on M̃6. In order to state the main
result, we need the following definitions: let J0 := J \J [2], where J [2] is the set
of the 2−torsion points on J . For any α ∈ J we can define the following

Zα := {[E ] ∈M6 |E|Θα is not locally free semistable}.

Moreover, let Z̃α := π−1(Zα), Σα := Σ∩Zα, Σ̃α := π−1(Σα) and B̃α := B̃∩ Z̃α.
For any α ∈ J0, we can consider the following map

C −→ J × J, p 7→ (iα(p),−iα(p)),

whose image is denoted Cα. Finally, let M(2) be the moduli space of semistable
locally free sheaves on J with rank 2, trivial first and second Chern classes and
hom(E,E) = 2. It is an easy fact to see that there is a bijective correspondence
between M(2) and Hilb2(Ĵ) (see section 5.1 in [OG3]). Under this correspon-
dence, we can identify K2(Ĵ), the Kummer surface of Ĵ , with the fiber over OJ

of the morphism

det : M(2) −→ Ĵ

sending any E ∈M(2) to its determinant. Here is the main result:

Proposition 3.1.5. Let α ∈ J0.
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1. Let f := π|Σ̃α . Then

f : Σ̃α −→ Σα

is a P1−fibration whose generic fiber is denoted δ. In particular, Σ̃ is an
irreducible divisor on M̃6.

2. Let
g : B̃α −→ Cα ×K2(Ĵ), g([E ]) := ((x,−x), E),

where [E ] is the S̃−equivalence class of E , whose bidual is E and whose
singular locus is given by x and −x (see Proposition 3.1.3). Then g is
a P1−fibration whose generic fiber is denoted γ. In particular, B̃ is an
irreducible divisor on M̃6.

Proof. See section 4.1 in [OG3] for the first item. The second item is contained
in section 5.1 of [OG3].

Using this proposition, we can finally state the following:

Theorem 3.1.6. (Rapagnetta, ’06). Let µD be the Donaldson’s morphism,
and let φ : M6 −→Mµ−ss

6 .

1. The morphism µ̃ := π∗ ◦ φ∗ ◦ µD : H2(J,Z) −→ H2(M̃6,Z) is injective.

2. There is a line bundle A ∈ Pic(M̃6) such that c1(Σ̃) = 2c1(A).

3. We have the following equalities:

c1(A) · δ = −1, c1(B̃) · δ = 1,

c1(A) · γ = 1, c1(B̃) · γ = −2.

4. The second integral cohomology of M̃6 is

H2(M̃6,Z) = µ̃(H2(J,Z))⊕ Z · c1(A)⊕ Z · c1(B̃).

5. Let q be the Beauville-Bogomolov form of M̃6. Then, q equals the inter-
section form of J on H2(J,Z), and we have

q(c1(A), c1(A)) = −2, q(c1(A), c1(B̃)) = 2,

q(c1(B̃), c1(A)) = 2, q(c1(B̃), c1(B̃)) = −4.

Finally, we have q(µ̃(α), c1(B̃)) = q(µ̃(α), c1(A)) = 0.

Proof. Item 1 is proven by O’Grady in [OG3], Proposition 7.3.3. The proof of
the other points is contained in [Rap2]: more precisely, Item 2 is Theorem 3.3.1,
items 3 and 4 are contained in Theorem 3.4.1 and item 5 is Theorem 3.5.1.
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This theorem is the analogue of Theorem 2.1.7, and will be the starting point
of our investigation. Notice that in this case, as it happens for Hilbert schemes
and generalized Kummer varieties, the exceptional divisor is divisible by 2. This
is not the case for M̃10, and this is one of the main differences between these
two varieties.

3.2 The local factoriality of M6

As a consequence of Rapagnetta’s Theorem, we have the following property:

Lemma 3.2.1. There is a non-trivial irreducible Weil divisor D ∈ A1(M6) such
that 2D = 0. If D̃ is the proper transform of D under π, there is m ∈ Z such
that

A = D̃ +mΣ̃

in the group Div(M̃6) of Weil divisors of M̃6.

Proof. Since π is the blow-up of M6 along Σ, and since Σ has codimension 2 in
M6, we have A1(M6) ' Pic(π−1(Ms

6 )) (analogously to what has been proven in
Proposition 2.3.10). The restriction of A to π−1(Ms

6 ) defines then an irreducible
Weil divisor D ∈ A1(M6). In particular, by point 2 in Theorem 3.1.6 we have

2D = 2A|π−1(Ms
6 ) = Σ̃|π−1(Ms

6 ) = 0.

Now, the Weil divisor Σ̃ is a prime divisor, so it is a generator for the group
Div(M̃6). Since A is a line bundle on M̃6, it defines an element of Div(M̃6), so
that there are m,m1, ...,mn ∈ Z and prime divisors D1, ..., Dn such that

A = mΣ̃ +
n∑

i=1

miDi.

As A|π−1(Ms
6 ) =

∑n
i=1miDi|π−1(Ms

6 ), we have
∑n
i=1miDi = D̃, and we are

done. It remains to show that D is not trivial: if D = 0, then D̃ = 0, so that
A = mΣ̃ = 2mA (by point 2 of Theorem 3.1.6). This implies that A is torsion
in Pic(M̃6), so that c1(A) is torsion in H2(M̃6,Z). By point 4 of Theorem 3.1.6
this is not possible, and we are done.

Moreover, we have the following proposition:

Proposition 3.2.2. The Weil divisor D is not Cartier, and M6 is not locally
factorial.

Proof. If D was a Cartier divisor, then π∗(D) = D̃ + kA, for some k ∈ Z. By
Lemma 3.2.1 we have D̃ = A−mΣ̃ = (1− 2m)A, so that

π∗(D) = (1− 2m+ k)A.
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The integer 1 − 2m + k is odd: indeed, if there was n ∈ Z such that 2n =
1− 2m+ k, then π∗(D) = nΣ̃ and we would have

D = π∗(D)|π−1(Ms
6 ) = nΣ̃|π−1(Ms

6 ) = 0,

which is not possible since D is non-trivial.
In particular, 1−2m+k 6= 0. By point 3 of Theorem 3.1.6 and the fact that

δ is contracted by π, one gets

0 = c1(π∗(D)) · δ = (1− 2m+ k)c1(A) · δ = 2m− k − 1.

As 2m− k − 1 6= 0, we get a contradiction, and D cannot be a Cartier divisor.
Finally, this clearly implies that M6 cannot be locally factorial.

Remark 3.2.1. As a consequence of the previous proposition, we can show that
Pic(M6) has no torsion. Indeed, suppose there is L ∈ Pic(M6) which is torsion
of period t, and let L̃ be its proper transform under π. Then π∗(L) = L̃ + kA

for some k ∈ Z, and t(L̃ + kA) = 0. As Pic(M̃6) has no torsion by point 4 of
Theorem 3.1.6, we get L̃ = −kA, and

L = L̃|π−1(Ms
6 ) = −kA|π−1(Ms

6 ) = −kD.

As L ∈ Pic(M6), we get kD ∈ Pic(M6), so that k has to be even by Proposition
3.2.2 and Lemma 3.2.1. In conclusion L = 0, and we are done.

The same proof even shows that π∗ : Pic(M6) −→ Pic(M̃6) is injective. As
in Remark 2.2.1, from this one can deduce that c1 : Pic(M6) −→ H2(M6,Z) is
injective.

3.3 The Picard group of M6

In this section we calculate the Picard groups of M̃6 and of M6, using the same
arguments as in the calculation of the Picard groups of M̃10 and of M10. Notice
that it follows easily by Theorem 3.1.6 that

Pic(M̃6) = µ̃(NS(J))⊕ Z · [A]⊕ Z · [B̃].

Anyway, as we want to produce line bundles on M6 it seems useful to under-
stand the line bundles produced by the Le Potier’s morphism starting from the
topological Grothendieck group Ktop(J) of J .

As in section 2.3, we need some flat families describing subvarieties of M̃6:
constructions of such families are provided in the first subsection. Then we
proceed with the calculations of the two Picard groups and with the study of
the Le Potier’s morphism.
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3.3.1 Construction of flat families

In the following, we will use the next lemma:

Lemma 3.3.1. Let α, x ∈ J0 and let E ∈ M(2) define a point K2(Ĵ). The
fiber of g over ((x,−x), E) ∈ Cα×K2(Ĵ) is in bijective correspondence with the
set of S̃−equivalence classes of sheaves E fitting into an exact sequence of the
form

0 −→ E −→ E −→ Cx ⊕ C−x −→ 0.

Proof. See the proof of the Claim in section 5.1 of [OG3].

Using this, we are abe to describe two examples of flat families we will need
in what follows.

Example 3.3.1. Let E ∈M(2) be a rank 2 vector bundle on J with trivial first
and second Chern classes and such that hom(E,E) = 2. This vector bundle
defines a point in Hilb2(Ĵ), so that we can choose it to be in the smooth part
of S2(Ĵ): this means that E fits into an exact sequence of the form

0 −→ L1 −→ E −→ L2 −→ 0

with L1, L2 ∈ Ĵ such that L1 6' L2 (by Proposition 3.1.3). Moreover, let y ∈ J0

and fix a surjective morphism

ϕ : E −→ Cy.

Let K := ker(ϕ): by Proposition 3.1.3, any sheaf defining a point in B̃v is
the kernel of a surjective morphism from K to Cx for some point x ∈ J . Let
p1, p2 : J × J −→ J be the two projections. As in Example 2.3.1, by Theorem
1.1.17 the sheaf p1∗H om(p∗2K ,O∆) is a vector bundle of rank 2, and for any
x ∈ J the canonical morphism

(p1∗H om(p∗2K ,O∆))x −→ Hom(K ,Cx)

is an isomorphism. Let Y := P(p1∗H om(p∗2K ,O∆))
p−→ J. Using the same

construction and notations as in section 3.1, there is a tautological morphism

f̃ : q∗JK ⊗ q∗Y T −→ (p× idJ)∗O∆,

whose kernel is denoted H .

Lemma 3.3.2. Let E be a sheaf defining a point in B̃v whose bidual is E and
whose singular locus is given by x, y ∈ J . Let fE : K −→ Cx be the surjective
morphism whose kernel is E . Then fE defines a point [fE ] ∈ Y , and H[fE ] ' E .
Moreover, H is a Y−flat family and the morphism f̃ is surjective.

Proof. The proof is the same as the one of Lemma 2.3.1.



3.3. The Picard group of M6 61

Example 3.3.2. Let E be as in the previous example, with the further property
that det(E) ' OJ : this means that E defines a point in K2(Ĵ). Let

ϕ : E −→ C−x

be a surjective morphism, and let K be its kernel. In this example, let

Y := P(px∗H om(p∗JK ,Cx))
p−→ {x},

where pJ : {x} × J −→ J and px : {x} × J −→ {x} are the two projections.
Then, Y is a P1, and its points correspond to surjective morphisms from K to
Cx, i. e. points in g−1((x,−x), E) by Lemma 3.3.1. As in section 4.2.1, we get
a tautological morphism

f̃ : q∗JK −→ j∗OP1(1),

where j : P1 × {x} −→ P1 × J is the immersion. Let H := ker(f̃).

Lemma 3.3.3. Let E be a sheaf defining a point in B̃ whose bidual is E and
whose singular locus is given by x,−x ∈ J . Let fE : K −→ Cx be the surjective
morphism whose kernel is E . Then fE defines a point [fE ] ∈ Y , and H[fE ] ' E .
Moreover, H is a Y−flat family and the morphism f̃ is surjective.

Proof. Again, the proof is the same as that of Lemma 2.3.1.

3.3.2 The Picard group of M̃6

Using the flat families constructed in the previous section, we are able to cal-
culate the Picard group of M̃6. The key point is the study of the Le Potier’s
morphism, as we did in the 10−dimensional case. The first result we need is
the following:

Lemma 3.3.4. Let e := [E ] ∈ Ktop(J) be the class of a sheaf E parameterized by
M6, and let h := [H] ∈ Ktop(J). Let α ∈ Ktop(J). Then α ∈ e⊥ ∩ {1, h, h2}⊥⊥
if and only if c1(α) ∈ c1(H)⊥⊥ and ch2(α) = rk(α)ηJ ∈ H4(J,Z), where ηJ is
the fundamental class of J .

Proof. The proof works exactly as those of Lemmas 2.3.3 and 2.3.4.

This lemma allows us to show the following: let p ∈ J and let

u : Pic(J) −→ Ktop(J), u(L) := [OJ − L] +
c21(L)

2
[Cp].

Proposition 3.3.5. Let i : M6 −→ Mv be the immersion. There is a group
morphism

λ ◦ u : Pic(J) −→ Pic(Mv).

In particular, the morphism λ̃6 := i∗ ◦ λ ◦ u : Pic(J) −→ Pic(M6) is a group
morphism. Moreover, if L,L′ ∈ Pic(J) are such that c1(L) = c1(L′), then
λ̃6(L) ' λ̃6(L′).
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Proof. The existence of the maps λ ◦ u and λ̃6 is implied by Lemma 3.3.4 and
Theorem 1.3.2. The fact that λ ◦u, and hence λ̃6, is a group morphism is easily
done: for any two line bundles L1, L2 ∈ Pic(J) we have

v(u(L1 ⊗ L2)) = v(u(L1) + u(L2)),

so that u is a group morphism by Proposition C.4.3 (this proposition is stated
only for K3s, but the same statement is true even for abelian surfaces replacing
H∗(X,Z) with H2∗(J,Z)). The same proposition allows us to show that if
c1(L1) = c1(L2), then u(L1) = u(L2), and we are done.

Remark 3.3.1. As in the 10−dimensional example, one would like to argue that
λ̃6 is injective: by Proposition 3.3.5, this is surely not the case, since taken two
line bundles L,L′ ∈ Pic(J), the equality c1(L) = c1(L′) does not imply L ' L′,
as J is an abelian surface. In order to get injectivity, one has then toconsider
the Néron-Severi group NS(J) of J . In the following, we will then consider the
morphism

λ6 : NS(J) −→ Pic(M6)

induced by λ̃6.

First of all, we need to show the following:

Lemma 3.3.6. Let L ∈ Pic(J). Then

c1(π∗λ̃6(L)) · γ = c1(π∗λ̃6(L)) · δ = 0.

Proof. The equality c1(π∗λ̃6(L)) · δ = 0 is trivial, since δ is a curve contracted
by π. It then remains to show the other: since

c1(π∗λ̃6(L)) · γ = c1(π∗λ̃6(L)|γ),

by Theorem 1.3.2 and Lemma 3.3.3 we just need to show that

c1(λH (u(L))) = 0,

where λH is the Le Potier’s morphism defined using the flat family H of
Example 3.3.2. Using the Grothendieck-Riemann-Roch Theorem, we have

c1(λH (u(L))) = [qY !(q∗J(ch(u(L))td(J)) · ch(H ))]1 ∈ H2(P1,Z).

Now, ch(u(L)) = (0,−c1(L), 0) and td(J) = (1, 0, 0). Moreover, the fibers of
qY : P1 × J −→ P1 are of dimension 2, so that

c1(λH (u(L))) = −qY ∗(q∗J(c1(L)) · ch2(H )) = 0,

and we are done.
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This lemma is the analogue of Proposition 2.3.6. Using this, we are finally
able to show the following result:

Proposition 3.3.7. The following diagram

Pic(J) π∗◦λ̃6−−−−→ Pic(M̃6)

c1

y
yc1

H2(J,Z) −−−−→
µ̃

H2(M̃6,Z)

is commutative, i. e. c1(π∗λ̃6(L)) = µ̃(c1(L))) for any L ∈ Pic(J). In particu-
lar, the morphism λ6 is injective.

Proof. The proof of this proposition is almost the same as that of Proposition
2.3.7. Let L ∈ Pic(J) and let Y and H be as in Example 3.3.1. Then, H is a
Y−flat family of sheaves on Y × J inducing an injection of Y into M̃v. Using
the same argument as in Step 1 of the proof of Proposition 2.3.7, we have

c1(π∗(λ(u((L))))|Y = µ̃(c1(L))|Y . (3.1)

Now, let Y6 := Y ∩ M̃6, and let

β := c1(π∗λ̃6(L))− µ̃(c1(L)) ∈ H2(M̃6,Z).

By equation (3.1), we have β|Y6 = 0, and by Lemma 3.3.6 and definition of µ̃
we have β · γ = β · δ = 0. Following Step 2 of the proof of Proposition 2.3.7,
these two properties imply β = 0, and we are done.

It remains to prove that λ6 is injective: by the first part of the proposition,
the morphism c1 ◦ π∗ ◦ λ̃6 is injective. Now, c1 ◦ π∗ = π∗ ◦ c1, and by Remark
3.3.1 and Proposition 3.3.5 this implies that π∗ ◦ λ6 is injective, so that λ6 has
to be injective.

Corollary 3.3.8. We have the following equality:

Pic(M̃6) = π∗λ6(NS(J))⊕ Z · [A]⊕ Z · [B̃].

Proof. Using Proposition 3.3.7, we can apply the same method used to prove
Corollary 2.3.8.

3.3.3 The Picard group of M6

Using Corollary 3.3.8, we are able to calculate te Picard group of M6 and to
study its local factoriality. Before doing this, we need to add a remark. The
proper transform of B is an irreducible Weil divisor in M̃6, and this implies that
B has to be of the form

B = Σ ∪B
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for some irreducible Weil divisor B of M6, and the proper transform of B equals
the proper transform of B. In particular, B∩Σ 6= ∅, since B̃ ·δ 6= 0, but we don’t
know if Σ ⊆ B or not. Anyway, there is an irreducible Weil divisor B ∈ A1(M6)
whose proper transform is B̃.

Proposition 3.3.9. There is an inclusion

Pic(M6) ( A1(M6) = λ6(NS(J))⊕ Z · [B]⊕ Z/2Z · [D].

Proof. We only need to show the formula for A1(M6) ' Pic(π−1(Ms
6 )). We

have a short sequence

0 −→ Z · [Σ̃] −→ Pic(M̃6) −→ Pic(π−1(Ms
6 )) −→ 0,

where the first map sends the spanning class to the line bundle 2A. We claim
that this sequence is exact: the only thing to prove is that if L ∈ Pic(M̃s

6 ) has
trivial restriction to π−1(Ms

6 ), then it is a multiple of Σ̃. By Corollary 3.3.8,
there are M ∈ Pic(J) and n,m ∈ Z such that

L = π∗(λ6(c1(M))) + nB̃ +mA.

By Lemma 3.2.1, the restriction of L to π−1(Ms
6 ) is then of the form

L|π−1(Ms
6 ) = λ6(c1(M)) + nB +mD ∈ A1(M6).

As L|π−1(Ms
6 ) = 0, then 2L|π−1(Ms

6 ) = 0, so that 2nB = λ6(2c1(M)), since
2mD = 0 by Lemma 3.2.1. In particular, their proper transforms are equal,
getting 2nB̃ = π∗(λ6(2c1(M))), so that

−4n = 2nc1(B̃) · γ = µ̃(2c1(M)) · γ = 0,

by point 3 of Theorem 3.1.6, so that n = 0 and c1(M) = 0 (as π∗ ◦λ6 is injective
and NS(J) has no torsion). In conclusion L = mA for some m ∈ Z, so that

0 = L|π−1(Ms
6 ) = mA|π−1(Ms

6 ) = mD.

By Lemma 3.2.1, then, m is even and L is a multiple of Σ̃.

Corollary 3.3.10. One of the two following possibilities is verified:

1. Pic(M6) = λ6(NS(J)), so that M6 is not Q−factorial.

2. Pic(M6) = λ6(NS(J)) ⊕ Z, so that there is an even integer n ∈ N such
that M6 is n−factorial.

Proof. By Proposition 3.2.2, the Weil divisor D is not Cartier, so that by Propo-
sition 3.3.9 we have

Pic(M6) ⊆ λ6(NS(J))⊕ Z.
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This implies the two possible forms of Pic(M6) in the statement: by Proposi-
tion 3.3.7 we have λ6(NS(J)) ⊆ Pic(M6), so that Pic(M6) can only be either
λ6(NS(J)), or λ6(NS(J))⊕ Zβ, for some Cartier divisor β.

Now, if Pic(M6) = λ6(NS(J)) ⊕ Zβ, then there are m ∈ Z, m 6= 0 and
t ∈ Z/2Z such that

β = mB + tD.

If t = 0, then mB is a Cartier divisor, so that M6 is at least 2m−factorial (if m
is odd, mD = D, which is not Cartier, but 2mD = 0). If t = 1, then mB + D

is Cartier. Since D is not Cartier, this implies that mB is not Cartier. Anyway
2(mB + D) = 2mB is Cartier, so that M6 is 2m−factorial. Now set n = 2m,
and we are done.

3.4 The 2−factoriality of M6

This section is devoted to the proof of the 2−factoriality of M6. This will
be shown with the same techniques as those used in Chapter 2 to prove the
2−factoriality of M10, namely to show that 2B is a Cartier divisor.

3.4.1 Line bundles on M6

As the Weil divisor D is not Cartier, then D /∈ λ6(NS(J)). Moreover, for any
n ∈ Z \ {0} the Weil divisor nB is not in λ6(NS(J)). Indeed, if it was the case,
then there should be a line bundle L ∈ NS(J) such that nB = λ̃6(L). Their
proper transforms are then equal, so that by point 3 of Theorem 3.1.6 we get

n = nc1(B̃) · δ = c1(π∗λ̃6(L)) · δ = 0,

as δ is contracted by π. But this is clearly not possible, as n 6= 0, and we are
done. The key point is the following.

Proposition 3.4.1. Let α := [OJ ]+[Cp] ∈ Ktop(J) for some point p ∈ J . Then
α ∈ e⊥ ∩ {1, h, h2}⊥⊥, so that λ(α)|M6 ∈ Pic(M6) and

c1(π∗(λ(α)|M6)) · γ = −1.

Proof. The proof is the same as that of Theorem 2.3.13: let us consider γ as the
fiber of the morphism g defined in Proposition 3.1.5 over the point ((x,−x), E) ∈
Ca ×K2(Ĵ), for some a ∈ J0. Moreover, let Y and H be as in Example 3.3.2:
then, H is a Y−flat family of sheaves on Y × J giving an inclusion of Y ' P1

into M̃6, whose image is γ. By Theorem 1.3.2 we then have

c1(π∗(λ(α)|M6)) · γ = c1(π∗λ(α)|Y ) = c1(λH (α)) ∈ H2(P1,Z),
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where λH is the Le Potier’s morphism defined using the family H . We can then
apply the same method used in the proof of Theorem 2.3.13: the calculations
are the same, and we are done.

This proposition allows us to conclude:

Theorem 3.4.2. There is a line bundle L ∈ Pic(J) and t ∈ Z/2Z such that

B + tD = λ(α)|M6 + λ̃6(L),

where α ∈ Ktop(J) is as in Proposition 3.4.1. In particular, M6 is 2−factorial.

Proof. By Lemma 3.3.4 and Proposition 3.3.9 there are L ∈ Pic(J), n ∈ Z and
t ∈ Z/2Z such that

λ(α)|M6 = λ̃6(L−1) + nB + tD ∈ A1(M6).

In particular, then, we have nB + tD ∈ Pic(M6), and to get the statement we
just need to show that n = 1. Taking the pull-back of nB + tD to M̃6 there is
m ∈ Z such that

nB̃ +mA = π∗(nB + tD) = π∗(λ(α)|M6) + π∗λ̃6(L).

By point 3 of Theorem 3.1.6 we get

0 = π∗(nB + tD) · δ = nB̃ · δ +mA · δ = n−m,

as δ is contracted by π, and

−2n+m = nB̃ · γ +mA · γ = π∗(λ(α)|M6) · γ + π∗λ̃6(L) · γ = −1

by Proposition 3.4.1 and Lemma 3.3.6. In conclusion, n = 1 and we are done.
It remains to show that M6 is 2−factorial: since B+ tD is a Cartier divisor,

we have

λ6(NS(J))⊕ Z[B + tD] ⊆ Pic(M6).

By Corollary 3.3.10, this implies that M6 is n−factorial for some even integer
n. We have then two possibilities: the first one is if t = 0, so that B is Cartier.
In this case, the only Weil divisor which is not Cartier is D, but since 2D = 0,
we have that M6 is 2−factorial. The second case is if t = 1, so that B + D

is Cartier. Since D is not Cartier, this implies that neither B is Cartier. As
before, we have 2D = 0, so that

2B = 2B + 2D = 2(B +D) ∈ Pic(M6),

and M6 is 2−factorial.



3.4. The 2−factoriality of M6 67

Remark 3.4.1. As seen in the proof, one has

π∗(λ(α)|M6) = B̃ +A+ π∗λ6(L)

for some line bundle L ∈ Pic(J). As it was pointed out to me by Rapagnetta,
using our construction one can easily show that there is a line bundle A ∈
Pic(M̃6) such that 2A = Σ̃. Indeed, as shown in [OG2], we have

H2(M̃6,Q) = µ̃(H2(J,Q))⊕Q · c1(B̃)⊕Q · c1(Σ̃),

so that there are β ∈ H2(J,Q) and n,m ∈ Q such that

c1(π∗(λ(α)|M6)) = µ̃(β) + nB̃ +mΣ̃.

By equation 7.3.5 in [OG2] one gets

0 = c1(π∗(λ(α)|M6)) · δ = n− 2m

and
−1 = c1(π∗(λ(α)|M6)) · γ = −2n+ 2m.

In conclusion m = 1/2 and n = 1. Now, c1(π∗(λ(α)|M6)) ∈ H2(M̃6,Z), so that if
Σ̃ was a generator for H2(M̃6,Z), we would have m ∈ Z, which is clearly not the
case. Then, there must be a line bundle A ∈ Pic(M̃6) such that 2c1(A) = c1(Σ̃),
and we are done.

3.4.2 Description of H2(M̃6,Z)

In this last section, we prove an analogue of Theorem 2.4.5, about the Beauville-
Bogomolov form of M̃6. Here is the result:

Theorem 3.4.3. Let v = (2, 0,−2) ∈ H̃(J,Z). There is a morphism of Hodge
structures

f : v⊥ −→ H2(M̃6,Z),

which is an isometry between v⊥, viewed as a sublattice of the Mukai lat-
tice H̃(J,Z), and its image in H2(M̃6,Z), being a lattice with respect to the
Beauville-Bogomolov form q.

Proof. As in Theorem 2.4.5, a Mukai vector w is orthogonal to v if and only if
w = (r, c, r) for r ∈ Z and c ∈ H2(J,Z), so that v⊥ ' H2(J,Z)⊕ Z. Let

f : v⊥ −→ H2(M̃6,Z), f((r, c, r)) := µ̃(c) + rc1(B̃) + rc1(A).

The morphism f is an injective morphism of Hodge structures. Moreover, it is
an isometry: indeed for any two classes c, d ∈ H2(J,Z) and for any two r, s ∈ Z
we have:

q(f(r, c, r), f(s, d, s)) = cd− 2rs
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by point 5 of Theorem 2.1.7, and

((r, c, r), (s, d, s)) = cd− 2rs

by definition of the Mukai pairing.

As seen in Remark 3.4.1 we have

c1(π∗(λ(rα)|M6)) = rc1(B̃) + rc1(A) + µ̃(c1(L))

for some L ∈ Pic(J). Notice that f((r, 0, r)) = c1(π∗(λ(rα)|M6)) if and only if
c1(L) = 0. This is the case for M10, so that one would expect the same even
here, but up to now we have not been able to show it.



Appendix A

Local factoriality

In this appendix, we recall the two basic notions of Weil and Cartier divisor and
the relation between them and with line bundles. We will conclude with the
definitions of Q−factorial and n−factorial schemes, as generalizations of locally
factorial schemes. In the following, X will be a scheme defined over a field k.

Definition A.0.1. X is called locally factorial if for any x ∈ X the local ring
Ox is a unique factorization domain.

Proposition A.0.4. If the scheme X is regular, then it is locally factorial.

The notion of local factoriality has many relations with the one of divisor.
The first definition of divisor appearing in literature was given by Weil. Suppose
X to be regular in codimension one, i. e. for any point x ∈ X, if dim(Ox) = 1
then Ox is a regular ring.

Definition A.0.2. Any integral closed subscheme of codimension 1 in X is
called prime divisor. A Weil divisor on X is an element of the free abelian
group Div(X) generated by all prime divisors.

If Y is a prime divisor, and ηY is its generic point, then OηY is a discrete
valuation ring, whose valuation morphism is denoted vY .

Lemma A.0.5. Let f be a non-zero function on X. Then vY (f) = 0 for all
except finitely many prime divisors on X.

Proof. See Chapter II, Lemma 6.1 in [Har].

This lemma allows us to define an equivalence relation on the set of all Weil
divisors of X, in the following way.
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Definition A.0.3. Let f be a function on X. The principal Weil divisor asso-
ciated to f is the Weil divisor defined as

(f) =
∑

Y

vY (f)Y,

where Y runs over the set of all prime divisors. Two Weil divisorsD1, D2 are said
to be linearly equivalent if there is a function f on X such that D1 = D2 + (f).

We can finally define the group A1(X) of Weil divisors on X as the quotient
of Div(X) by linear equivalence.

Lemma A.0.6. Let Z be a proper closed subset of X, and let U be its comple-
mentary open subset.

1. There is a surjective morphism A1(X) −→ A1(U) sending any Weil divi-
sor D ∈ A1(X) to its restriction to U .

2. If Z has codimension at least 2 in X, then A1(X) = A1(U).

3. If Z is irreducible of codimension 1, we have an exact sequence

Z −→ A1(X) −→ A1(U) −→ 0

where the first map sends 1 to Z.

Proof. See Proposition 6.5 in [Har].

The second definition of divisor was given by Cartier.

Definition A.0.4. Let KX be the sheaf of total quotient rings of OX (that is,
the sheaf associated to the presheaf that to each open subset U of X associates
S(U)−1OX(U), where S(U) is the set of all non zero divisors of OX(U)), and let
K ∗
X be its subsheaf of invertible elements. A Cartier divisor is a global section

of K ∗
X/O

∗
X .

Having fixed an open cover {Ui}i∈I of X, a Cartier divisor is then defined
by an element fi ∈ K ∗

X(Ui) for any i ∈ I, such that fi/fj ∈ O∗X(Ui ∩ Uj) for
any i, j ∈ I. As for Weil divisors, on the set of all Cartier divisors we can define
an equivalence relation as follows.

Definition A.0.5. A principal Cartier divisor is a Cartier divisor in the image
of the natural morphismH0(X,K ∗

X) −→ H0(X,K ∗
X/O

∗
X). Two Cartier divisors

are called linearly equivalent if their difference is a principal Cartier divisor.

The quotient group of classes of Cartier divisors by linear equivalence is
denoted Car(X). We can now begin to study the relations among Weil divisors,
Cartier divisors and line bundles.
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Proposition A.0.7. Let X be a normal separated Noetherian scheme. There
is an injective map Car(X) −→ A1(X) which is an isomorphism if X is locally
factorial.

Proof. See Proposition 6.11 in [Har].

Proposition A.0.8. On any scheme X there is an injective morphism

Car(X) −→ Pic(X).

If X is integral, then it is an isomorphism.

Proof. See Corollary 6.14 and Proposition 6.15 in [Har].

In conclusion, if X is a normal integral variety we have an injective morphism

Pic(X) −→ A1(X)

which is an isomorphism if X is locally factorial. If X is singular, there may
be Weil divisors which are not Cartier. This is the reason for the following
definition:

Definition A.0.6. A normal separated Noetherian scheme is called locally
Q−factorial (or simply Q−factorial) if the usual injective morphism

Pic(X)⊗Z Q −→ A1(X)⊗Z Q

is an isomorphism, or, equivalently, if for any Weil divisor D on X there is n ∈ Z
(that might depend on D) such that nD ∈ Pic(X).

Definition A.0.7. Let n ∈ Z. A normal separated Noetherian scheme is called
locally n−factorial (or, equivalently, n−factorial) if nD ∈ Pic(X) for any D ∈
A1(X).
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Appendix B

Irreducible symplectic

manifolds

In this appendix we resume the basic facts in the theory of irreducible sym-
plectic manifolds, which arise as one of the three ingredients in the description
of compact Kähler manifolds with vanishing first Chern class (the others being
complex tori and special unitary manifolds). The structure of compact Kähler
manifolds with c1 = 0 follows from the theory of holonomy groups, that will
be the main object of the first section. The structure of the holonomy groups
encodes important geometrical properties of Riemannian manifolds, such as the
existence of a Kähler metric or of symplectic forms. Irreducible symplectic man-
ifolds are compact Kähler manifolds whose holonomy group is the symplectic
group.

In the second section we resume some important properties of K3 surfaces,
which give all the examples of 2−dimensional irreducible symplectic manifolds.
Moreover, K3 surfaces are the basic tool for the construction of higher dimen-
sional examples of irreducible symplectic manifolds, together with abelian sur-
faces. In the third section, we introduce one of the main invariants of irreducible
symplectic manifolds: the Beauville-Bogomolov form. This is a non-degenerate
bilinear form on the second integral cohomology of any irreducible symplectic
manifold, that generalizes the intersection form given by the cup product on the
second integral cohomology of any K3 surface.

B.1 Irreducible symplectic manifolds

Let (M, g) be a Riemannian manifold of dimension n. Let p, q ∈ M be two
points, and let γ be a path on M from p to q. By parallel transport, we
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associate to γ an isometry (with respect to the metric g)

ϕγ : Tp(M) −→ Tq(M)

between the two tangent spaces to M in p and in q. A particular case is when
p equals q: in this situation, to any loop based at p we associate an isometry of
Tp(M), getting a morphism

ϕ : Ω(p) −→ O(Tp(M)),

where Ω(p) is the set of loops based at p.

Definition B.1.1. The holonomy group of M at p is Holp(M) := ϕ(Ω(p)). If
Ω0(p) is the subset of Ω(p) of those loops based at p which are homotopically
equivalent to the trivial loop, then Hol0p(M) := ϕ(Ω0(p)) is called restricted
holonomy group of M at p.

Remark B.1.1. If M is connected, then Holp(M) ' Holq(M) for any p, q ∈M .
Then, it makes sense to consider Hol(M), the holonomy group of M .

Remark B.1.2. The restricted holonomy group Hol0p(M) is a compact Lie sub-
group of SO(Tp(M)), and we have a natural representation

ρ : Hol0p(M) −→ SO(n).

Definition B.1.2. Any Riemannian manifold (M, g) is said to be irreducible if
the representation of the holonomy group is irreducible.

For our purposes, the main result in the theory of holonomy groups is the
following theorem.

Theorem B.1.1. (Berger, ’55). Let (M, g) be any Riemannian manifold of
dimension n, and suppose it to be not locally symmetric. Then Hol0(M) is
isomorphic to one of the following subgroups of SO(n):

SO(n); U(m), for 2m = n; SU(m), for 2m = n;

Sp(r), for 4r = n; Sp(1) · Sp(r), for 4r = n; Spin(9), n = 16;

Spin(7), n = 8; G2, n = 7.

Proof. See [Ber].

The main cases we need to study are those whose holonomy group is isomor-
phic to U(m), SU(m) or Sp(r), corresponding to those manifolds admitting a
Kähler metric. We begin with the notion of symplectic manifold.

Definition B.1.3. Let X be a complex manifold. A symplectic structure on X
is a non-degenerate holomorphic closed 2−form on X. Any complex manifold
admitting a symplectic structure is called symplectic.
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Proposition B.1.2. Let (M, g) be a connected Riemannian manifold.

1. If Hol0(M) ⊆ U(m), then M admits a Kähler metric.

2. If Hol0(M) ⊆ SU(m), then (M, g) is Kähler and Ricci-flat.

3. If Hol0(M) ⊆ Sp(r), then (M, g) is Kähler and symplectic.

Proof. See Examples 1, 2 and 3 in [Beau].

As a consequence of this, any Riemannian manifold (M, g) with Hol0(M)
isomorphic to a subgroup of U(m) admits a complex structure for which g is
Hermitian. From now on, we fix such a complex structure, and we consider
(M, g) to be a complex manifold X.

Theorem B.1.3. Let X be a compact Ricci-flat Kähler manifold. Then there
is an étale covering X ′ of X isomorphic, as Kähler manifold, to a product
T ×∏i Vi×

∏
jWj, where T is a complex torus with the standard Kähler metric,

Vi is a compact simply connected Kähler manifold with Hol(Vi) = SU(mi), and
Wj is a compact simply connected Kähler manifold with Hol(Wj) = Sp(rj).

Proof. See the proof of Théorème 1 in [Beau].

Remark B.1.3. By Calabi-Yau’s theorem (see [Yau]), a compact Kähler manifold
is Ricci-flat if and only if its first Chern class is trivial.

Theorem B.1.3 implies that in order to study compact Kähler manifolds with
trivial first Chern class, we just need to study two classes of complex manifolds,
namely those whose holonomy group are SU(m) or Sp(r).

Definition B.1.4. Let X be a complex manifold. If Hol(X) = SU(m), then
X is called special unitary. If Hol(X) ⊆ Sp(r), then X is called hyperkähler,
and if Hol(X) = Sp(r), then X is called irreducible hyperkähler.

Remark B.1.4. The name hyperkähler is referred to the fact that these manifolds
admit three independent complex structures I, J,K for which g is Kähler (see
[H-L]).

The class of special unitary manifolds (sometimes called Calabi-Yau mani-
folds) contains several examples. A fundamental one is the following: if V is any
Fano variety, i.e. the line bundle −KV is ample, then any smooth hypersurface
X in the complete linear system | − KV | is special unitary. Another class of
examples is given by smooth complete intersection of r hypersurfaces of degree
d1, ..., dr in Pn, where d1 + ...+ dr = n+ 1.

Definition B.1.5. An irreducible symplectic manifold is a compact connected
complex manifold which is Kähler, simply connected and H0(X,Ω2

X) = C · ω
for a symplectic form ω.
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Proposition B.1.4. Let X be a compact Kähler manifold. Then X is hy-
perkähler if and only if it admits a symplectic structure. If one of these condi-
tions is verified, then the canonical line bundle KX is trivial. Moreover, X is
irreducible hyperkähler if and only if it is irreducible symplectic.

Proof. See Proposition 3 and 4 in [Beau].

While special unitary manifolds form a rather big and wild class, irreducible
symplectic manifolds are known in a very few number of cases. In particular,
any irreducible symplectic manifold has even complex dimension and trivial
canonical bundle.

B.2 K3 surfaces

In this section we recall some basic facts about K3 surfaces, which are the only
possible irreducible symplectic surfaces, and are one of the basic tools to produce
higher dimensional examples. For a more complete treatment of this interesting
subject, see [Geo].

Definition B.2.1. A K3 surface is a compact complex surface with b1 = 0 and
whose canonical line bundle is trivial.

Proposition B.2.1. Any K3 surface is simply connected.

Proof. See Exposé VI in [Geo].

Theorem B.2.2. (Siu, ’83). Any K3 surface is Kähler.

Proof. See [Siu] or Exposé XII in [Geo].

A consequence of this, we have the following:

Proposition B.2.3. A compact complex surface is irreducible symplectic if and
only if it is a K3 surface.

Proof. An irreducible symplectic surface has trivial canonical bundle. By the
birational classification of surfaces, then it can only an abelian or a K3 sur-
face. Since abelian surfaces are not simply connected, an irreducible symplectic
surface must be a K3.

For the converse, by Siu’s Theorem any K3 surface X is Kähler. Moreover, X
is simply connected by Proposition B.2.1 and h2(X,OX) = 1 by Serre’s duality
and the fact that KX is trivial.

In the remaining part of this section, we recall some basic properties of K3
surfaces that we will use in this work.
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Remark B.2.1. If X is a K3 surface, then h1,0(X) = h0,1(X) = 0 and h2,0(X) =
h0,2(X) = 1. Moreover, by the exponential sequence the canonical morphism

Pic(X) c1−→ H2(X,Z)

is an injection (this is true for any variety whose first Betti number is trivial,
since in this case H1(X,OX) = 0).

Proposition B.2.4. Let X be a K3 surface. Then H1(X,Z) = 0 and H2(X,Z)
is a rank 22 free Z−module.

Proof. See Exposé IV, Proposition 1.1 and Corollaire 1.2 in [Geo].

Proposition B.2.5. Let α ∈ H2(X,Z). The following are equivalent:

1. there is L ∈ Pic(X) such that α = c1(L);

2. the class α is in H2(X,Z) ∩H1,1(X);

3. if ω is a generator for H0(X,Ω2
X), then α · ω = 0.

Proof. See Exposé IV, Théorème 2.3 in [Geo].

The cup product on H2(X,Z) defines an even unimodular quadratic form
(see for example [Sha]), and the lattice H2(X,Z) with this intersection product
is isometric to the lattice ΛK3 := 3H ⊕ 2E8(−1), where H is the rank 2 lattice
with the hyperbolic intersection form and E8 is the lattice associated to the
corresponding Dynkin diagram. The signature of such a lattice is (3, 19) (see
Exposé IV, Corollaire 1.3.2 in [Geo]). Let ΛC = ΛK3 ⊗ C.

Definition B.2.2. A marked K3 surface is a couple (X,σ), where X is a K3
surface and σ : H2(X,Z) −→ ΛK3 is an isometry. The period of a marked K3
surface (X,σ) is the line σC(H2,0(X)) ⊆ ΛC.

The period of a marked K3 surface (X,σ) defines a point in Ω ⊆ P(ΛC),
where

Ω := {[ω] ∈ P(ΛC) |ω2 = 0, ω · ω > 0}

is the period domain. The main result in the theory of K3 surfaces is the
following, which is known as Torelli Theorem.

Theorem B.2.6. (Burns, Rapoport, ’75). Let X,X ′ be two K3 surfaces.
If u : X −→ X ′ is an isomorphism, then u∗ : H2(X ′,Z) −→ H2(X,Z) is an
effective Hodge isometry. Conversely, if ϕ : H2(X ′,Z) −→ H2(X,Z) is an
effective Hodge isometry, then there is a unique isomorphism u : X −→ X ′ such
that u∗ = ϕ.

Proof. See [B-R] or Exposés VIII and IX in [Geo].
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Corollary B.2.7. Let (X,σ), (X ′, σ′) be two marked K3 surfaces. Then X and
X ′ are isomorphic if and only if (X,σ) and (X ′, σ′) have the same period.

Let M be the set of isomorphism classes of marked K3 surfaces, and let

β : M −→ Ω, β(X,σ) := [σC(H2,0(X))]

be the period map. Then we have the following result:

Theorem B.2.8. Any element of Ω is the period of a marked K3 surface.

Proof. The surjectivity of the period map is shown in Exposé X in [Geo]. For
the rest of the statement, see Exposé VI, Théorème 1 in [Geo].

Corollary B.2.9. Any two K3 surfaces are diffeomorphic.

An important example of K3 surface consists of any smooth quartic X in P3.
These are all compact Kähler surfaces which have trivial canonical line bundle
by adjunction formula. They are all simply connected by Lefschetz’s Theorem in
homotopy (see Exposé VI, Proposition 1 in [Geo]). Another important example
is described in the following:

Theorem B.2.10. If S is any smooth sextic in P2, then the double cover of P2

branched over S is a K3 surface.
Conversely, if X is a K3 surface and there is an integral curve C on X such

that h1(C,OC) = 2, then the morphism

ϕC : X −→ P(H0(X,OX(C))∗)

associated to the line bundle OX(C) is a double cover of P2 branched over a (not
necessarily smooth) sextic.

Proof. See Exposé IV, Corollaire 3.6 in [Geo].

B.3 The Beauville-Bogomolov form

In this section we resume some basic facts concerning the Beauville-Bogomolov
form, which is the analogue of the cup product on K3 surfaces. The first result
we need is the following:

Proposition B.3.1. Let f : Y −→ B be a smooth proper morphism.

1. Let b0 ∈ B such that Y0 := f−1(b0) is a symplectic Kähler manifold. Then
there exists U ⊆ B an analytic neighborhood of b0 such that Yb := f−1(b)
is symplectic Kähler for any b ∈ U .

2. If Y0 is an irreducible symplectic manifold, then Yb is symplectic for any
b ∈ B.
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Proof. See §8, Proposition 1 and Remarque 1 in [Beau].

Consider an irreducible symplectic manifold X of complex dimension 2n,
and let f : X −→ M be the Kuranishi family of X. In particular, M is a
local universal deformation space for X: there is a point 0 ∈M such that X0

is isomorphic to X, and for any m ∈M , the fiber Xm is a deformation of X.

Theorem B.3.2. (Bogomolov, ’78). The point 0 ∈M is smooth in M .

Proof. See [Bog].

This theorem implies that there is no obstruction to the deformation of
X. Shrinking M , we can suppose it to be smooth and connected. Moreover,
by Proposition B.3.1 we can suppose that for any m ∈ M the fiber Xm is a
symplectic Kähler manifold with a unique (up to scalar) symplectic structure
ωm ∈ H0(Xm,Ω2

Xm
), and that there is a diffeomorphism d : X ×M −→ X

such that f ◦ d = p2. In particular, for any m ∈M we have a diffeomorphism
dm : X −→Xm.

Definition B.3.1. The period map for X is the morphism

p : M −→ P(H2(X,C)), p(m) := [d∗m(ωm)].

Let ω be the symplectic structure on X, so that ω = ω0. For any α ∈
H2(X,C) let

q′X(α) :=
n

2

∫

X

(ωω)n−1α2 + (1− n)
∫

X

ωn−1ωnα ·
∫

X

ωnωn−1α.

Theorem B.3.3. (Beauville, ’83). The quadratic form q′X is non-degenerate.
Moreover:

1. There is integral quadratic form qX : H2(X,Z) −→ Z whose signature is
(3, b2(X) − 3), and there is λ ∈ R≥0 such that qX(α) = λq′X(α) for any
α ∈ H2(X,Z).

2. Let Ω ⊆ Pb2(X)−1
C be the subset defined as

Ω := {α ∈ P(H2(X,C)) | qX(α) = 0, qX(α+ α) > 0}.

Then p(M ) ⊆ Ω and p : M −→ Ω is a local isomorphism.

Proof. See the proof of §8, Théorème 5 in [Beau].

Definition B.3.2. The integral quadratic form qX is called Beauville-Bogomolov
form of the irreducible symplectic manifold X.
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Remark B.3.1. If X is an irreducible symplectic surface, i. e. a K3 surface,
then for any α ∈ H2(X,Z) we have qX(α) = (α, α), since in this case n = 1.
Theorem B.3.3 can then be seen as a generalization of the Torelli Theorem for
K3 surfaces. However, the Torelli Theorem is stronger: the period map is an
actual isomorphism, whereas in the more general case of irreducible symplectic
manifolds of any dimension it is only a local isomorphism.

As in the case of K3 surfaces, the Beauville-Bogomolov form is related to
the cup product on H2(X,Z):

Theorem B.3.4. (Fujiki, ’87). There is a unique rational number cX ∈ Q
such that ∫

X

α2n = cXqX(α)n

for any α ∈ H2(X,Z).

Proof. See [Fuj].

Definition B.3.3. The rational number cX is called the Fujiki constant of X.

Remark B.3.2. By Remark B.3.1, the Fujiki constant of any K3 surface X is
cX = 1. The Beauville-Bogomolov form and the Fujiki constant have been
determined for every known example of irreducible symplectic manifold.
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Complements on moduli

spaces of semistable sheaves

In this appendix we resume some elements of the construction of moduli spaces
of sheaves we did not insert in Chapter 2. The main subjects will be the notion
of representability of functors and of group actions and quotients. Moreover, we
resume important properties as smoothness, dimension, existence of universal
families and of symplectic structures, following [H-L].

C.1 Representability of functors

In the following, let C be any category, and write Co for its opposite category,
i. e. obj(Co) := obj(C) and HomCo(A,B) := HomC(B,A) for any A,B ∈ C.
Moreover, let C ′ be the category of functors from Co to Set.

Definition C.1.1. A functor F : Co −→ Set is said to be represented by an
object X ∈ C if F is isomorphic to the functor HomC(., X). The functor F is
said to be representable if there is an object X ∈ C representing F .

Definition C.1.2. A functor F : Co −→ Set is said to be corepresented by an
object X ∈ C if HomC(X,Y ) = HomC ′(F,HomC(., Y )) for any Y ∈ C. The
functor F is said to be universally corepresented by X if for any morphism
HomC(., T ) −→ HomC(., X), the functor HomC(., T )×HomC(.,X) F is corepre-
sented by T .

It follows from the Yoneda’s Lemma that any functor represented by X is
universally corepresented by X.

Definition C.1.3. We say that there is a universal object for a functor F ∈ C ′

if there is an object X ∈ C and an element f ∈ F (X) such that for any Y ∈ C

and for any g ∈ F (Y ) there is a unique h ∈ HomC(Y,X) such that h∗(f) = g.

81
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Proposition C.1.1. A universal object for a functor F ∈ C ′ exists if and only
if F is representable.

Proof. Suppose F to represented by an object X. Then F (X) ' HomC(X,X),
and define the universal object to be the element of F (X) corresponding to
idX . Then for any Y ∈ C, any element g ∈ F (Y ) corresponds to a morphism
g : Y −→ X, and if h ∈ Hom(Y,X), then h∗(f) = f ◦ h for any f ∈ F (X).
Then simply choose h = g, so that g∗(idX) = g, and idX is a universal object.

If there is a universal object f ∈ F (X), then X represents F . Indeed,
consider the morphism of functors sending any g ∈ F (Y ) to the unique h ∈
HomC(Y,X) such that h∗(f) = g. Such a morphism is readily seen to be an
isomorphism of functors.

C.2 Group actions

In the following, let k be a field, X be a Noetherian scheme on k and G be an
algebraic group on k.

Definition C.2.1. A (left) action of G on X is a morphism σ : G×X −→ X

such that for any k−scheme T , the induced morphism

σ(T ) : Hom(T,G)×Hom(T,X) −→ Hom(T,X)

is an action of the group Hom(T,G) on the set Hom(T,X). If σ is the projec-
tion, then we say that it is the trivial action of G on X.

Definition C.2.2. If X,Y are two k−schemes on which G acts with actions σX
and σY , then a morphism f : X −→ Y is called G−equivariant if the following
diagram

X ×G f×1G−−−−→ Y ×G
σX

y
yσY

X −−−−→
f

Y

is commutative. If σY is the trivial action, then f is said to be G−invariant.

Definition C.2.3. Let σ be an action of G on X, and let x ∈ X be a closed
point. We call orbit of x the image of σx := σ|G×{x}. The stabilizer of x is

Gx := σ−1
x (x).

The orbit of a closed point is a locally closed subscheme, which in general is
not closed. The idea of the quotient space is that of a space which parameterizes
the orbits of the action. The closest notion to this one is the following:
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Definition C.2.4. A morphism f : X −→ Y is a good quotient for an action σ
of an algebraic group G on X if the following are satisfied:

1. f is a G−invariant surjective affine morphism;

2. a subset U ⊆ Y is open if and only if f−1(U) is open in X;

3. the natural morphism OY −→ (f∗OX)G is an isomorphism, where (f∗OX)G

is the G−invariant subsheaf of f∗OX ;

4. if W ⊆ X is a G−invariant closed subset of X, then f(W ) is closed in Y ;

5. if W1,W2 ⊆ X are two G−invariant closed subsets and W1∩W2 = ∅, then
f(W1) ∩ f(W2) = ∅.

The morphism f is a universal good quotient if for any morphism of k−schemes
Y ′ −→ Y , the morphism Y ′ ×Y X −→ Y ′ is a good quotient.

Definition C.2.5. A morphism f : X −→ Y is a geometric quotient for an
action σ of an algebraic group G on X if it is a good quotient and its geometric
fibers are the orbits of geometric points of X. The morphism f is a universal
geometric quotient if for any morphism of k−schemes Y ′ −→ Y , the induced
morphism Y ′ ×Y X −→ Y ′ is a geometric quotient.

Up to now, we have only considered actions of algebraic groups on schemes.
For the construction of moduli spaces we need to define the action of an algebraic
group on line bundles.

Definition C.2.6. Let X be a k−scheme of finite type, G an algebraic group
over k and σ an action of G on X. Let F be a coherent sheaf on X. A
G−linearization of F is an isomorphism ϕ : σ∗F −→ p∗2F of OG×X−modules,
where p2 : G×X −→ X is the projection, such that

(µ× idX)∗ϕ = p∗23ϕ ◦ (idG × σ),

where p23 : G×G×X −→ G×X is the projection and µ : G×G −→ G is the
multiplication morphism.

Definition C.2.7. Let X be a projective k−scheme of finite type, and let G be
an algebraic group acting on X. Let L ∈ Pic(X) be a G−linearized ample line
bundle. We say that x ∈ X is semistable with respect to L if there is n ∈ Z and
a G−invariant global section s ∈ H0(X,Ln)G such that s(x) 6= 0. The point x
is stable if it is semistable, the stabilizer Gx of x is finite and the G−orbit of x
is closed in the open set of all semistable points. The point x is called strictly
semistable if it is semistable but not stable.

Let Xss(L) be te set of L−semistable points in X, and Xs(L) be the set of
L−stable points. The main theorem of this section is the following:
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Theorem C.2.1. If G is reductive, then there is a projective scheme Y and a
morphism π : Xss(L) −→ Y which is a universal good quotient for the action of
G, and such that there is an open subset Y s ⊆ Y such that Xs(L) = π−1(Y s)
and Y s is a universal geometric quotient of Xs(L).

Proof. See Theorem 1.10 and Remark 1.11 in [M-F].

C.3 Smoothness and dimension of moduli spaces

In general, the moduli spaces of semistable sheaves are rather wild, and have
complicated singularities. Let X be a smooth projective scheme, and let E be
a locally free sheaf. Let trE : E nd(E) −→ OX be the trace map, inducing maps

trjE : Extj(E,E) −→ Hj(X,OX)

for any j. We can generalize this construction to the case where E• is a bounded
complex of locally free sheaves, so that for every coherent sheaf E on X and
for every j we have trace maps trjE : Extj(E ,E ) −→ Hj(X,OX) (since X

is projective and smooth, so that any E ∈ Coh(X) is quasi-isomorphic to a
bounded complex E• of locally free sheaves on X). Let Extj(E ,E )0 := ker(trjE ),
and let extj(E ,E )0 be its dimension.

Now, if S be a k−scheme of finite type and F is an S−flat family of coherent
sheaves on S ×X, then the family det(F ) is an S−flat family of line bundles
on S ×X. By the universal property of M(P ), we get a morphism

det : M(P ) −→ Pic(X)

sending any semistable sheaf to its determinant. If L ∈ Pic(X), we denote
M(P,L ) := det−1(L ), the moduli space of semistable sheaves on X with
Hilbert polynomial P and determinant L .

Theorem C.3.1. Let X be a smooth projective variety, and let E be a stable
sheaf defining a point [E ] ∈Ms(P,L ). The Zariski tangent space T[E ](M(P,L ))
is canonically isomorphic to Ext1(E ,E )0. If Ext2(E ,E )0 = 0, then [E ] is a
smooth point in M(P,L ). Moreover, we have

ext1(E ,E )0 − ext2(E ,E )0 ≤ dim[E ]M(P,L ) ≤ ext1(E ,E )0.

Proof. See Theorem 4.5.4 in [H-L].

If X is a smooth projective surface, we can be more explicit. In this case, the
Hilbert polynomial of a sheaf E is determined by r := rk(E ), c1 := c1(E ) and
c2 := c2(E ). The moduli space of semistable sheaves whose Hilbert polynomial
is determined by r, c1 and c2 is denoted M(r, c1, c2) (similarly, we use the
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notation Ms(r, c1, c2) for the open subset of M(r, c1, c2) parameterizing stable
sheaves). Using this and Hirzebruch-Riemann-Roch Theorem, we get

ext1(E ,E )0 − ext2(E ,E )0 = 2rc2 − (r − 1)c21 − (r2 − 1)χ(OX).

This number is the expected dimension of M(r, c1, c2). Let M(r,L , c2) :=
det−1(L ).

Remark C.3.1. If the canonical line bundle KX is trivial, then Ms(r,L , c2)
is smooth: by Serre duality Ext2(E ,E ) ' Hom(E ,E )∗ for any E ∈ Coh(X).
If E is stable, by Corollary 1.1.9 it is simple, so that hom(E ,E ) = 1. As
h2(X,OX) = 1 by Serre duality, we get Ext2(E ,E )0 = 0. By Theorem C.3.1,
Ms(r,L , c2) is smooth.

Remark C.3.2. Let X be a projective K3 surface, and L ∈ Pic(X). Since the
first Chern character is injective, for any E ∈ Coh(X) we have det(E ) = L if
and only if c1(E ) = c1(L ). This implies M(r,L , c2) = M(r, c1, c2).

Example C.3.1. Let X be a K3 surface, and let n ∈ N. Then there is a natural
isomorphism

f : Hilbn(X) −→M(1, 0,−n).

Indeed, Hilbn(X) parameterizes ideal sheaves IZ of 0−dimensional subschemes
Z of length n in X. As rk(IZ) = 1, it is stable by Remark 1.1.3. Moreover,
c1(IZ) = 0 and c2(IZ) = n. Then IZ defines a point in M(1, 0,−n). More-
over, if E is a sheaf parameterized by M(1, 0,−n), then E is torsion free, so that
E ⊆ E ∗∗. Since E ∗∗ is a line bundle and c1(E ∗∗) = c1(E ) = 0, then E ∗∗ ' OX .
Then E is a torsion free rank 1 subsheaf of OX with trivial first Chern class, so
that there is a subscheme Z ⊆ X of dimension 0 such that E ' IZ . Moreover,
since c2(E ) = n, Z has length n.

C.4 Universal and quasi-universal families

By Theorem 1.2.5, the moduli space M(P ) is a projective scheme universally
corepresenting the moduli functor. In general, M(P ) does not represent it:
as it parameterizes S-equivalence classes of semistable sheaves, two different
S-equivalent strictly semistable sheaves correspond to the same point in M(P )
(see Lemma 4.1.2 in [H-L]). Anyway, one might ask if there is a universal family
on Ms(P ). The main result is the following, at least on surfaces:

Proposition C.4.1. Let X be a smooth projective surface, and let r ∈ Z,
c1 ∈ H2(X,Z), c2 ∈ H4(X,Z). If

g.c.d.(r, c1 · c1(H),
c1
2
· (c1 − c1(KX))− c2) = 1,

then M(r, c1, c2) = Ms(r, c1, c2) and there is a universal family on the product
M(r, c1, c2)×X.
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Proof. See Corollary 4.6.7 in [H-L].

In general there is no way to find a universal family even on Ms(r, c1, c2),
but we can always find a more general object, whose definition is the following.

Definition C.4.1. A quasi-universal family on Ms(P ) × X is a Ms(P )−flat
family F of coherent sheaves on X such that for any scheme S and any S−flat
family F ′ of stable sheaves on X with Hilbert polynomial P , there is a vector
bundle W such that F ′⊗p∗SW ' f∗F , where f : S −→Ms(P ) is the morphism
induced by F ′.

In particular, for any stable sheaf E defining a point [E ] ∈ Ms(P ) there is
an integer r ∈ Z such that F[E ] ' E r. This integer r does not depend on E ,
and is called the similitude of the quasi-universal family F . A universal family
is then a quasi-universal family of similitude 1.

Proposition C.4.2. Let X be a smooth projective surface. For any r, c2 ∈ Z
and L ∈ Pic(X), there is a quasi-universal family on the product Ms(r,L , c2)×
X.

Proof. See Proposition 4.6.2 in [H-L].

As a final point in this section, we define the Mukai morphism, which is
one of the main tools in the study of the integral cohomology of irreducible
symplectic surfaces. First, we have the following:

Proposition C.4.3. Let X be an abelian or projective K3 surface. The group
morphism

Ktop(X) −→ H2∗(X,Z), α 7→ v(α)

is an isomorphism, where v(α) = ch(α) ·
√
td(X).

Proof. See [Kar] and [Mar].

Definition C.4.2. The Mukai morphism associated to the quasi-universal fa-
mily F is the morphism

µM : H̃(X,Z) −→ H2(Ms(P ),Z), µM (α) := [pM !(p∗Xα
∨ · [F ] · p∗Xtd(X)−1)]1.

Remark C.4.1. If there is no universal family, we can always use a quasi-universal
family F of similitude ρ, but the definition changes: for any α ∈ H̃(X,Z) let

µM (α) :=
1
ρ

[pM !(p∗Xα
∨ · [F ] · p∗Xtd(X)−1)]1.

See [Mar] for further details.
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C.5 Symplectic structures

Let X be a smooth projective surface, and let H be a fixed ample line bundle
on X. Fix r ∈ H0(X,Z), L ∈ Pic(X) and c2 ∈ H4(X,Z). Let us denote
M0(r,L , c2) the open subscheme of M(r,L , c2) parameterizing sheaves E such
that Ext2(E ,E )0 = 0. By Theorem C.3.1, M0(r,L , c2) is a smooth quasi-
projective variety. In this section we recall a method, originally due to Mukai,
used to produce 2−forms on M0(r,L , c2). Before doing this, we need some
definitions.

The first one is that of Yoneda coupling. Let E•, F • and G• be three
bounded complexes of locally free sheaves on X, and let i, j ∈ Z. It is a well
known fact that

Exti(E•, F •) ' HomDb(X)(E
•, F •[i]), (C.1)

where F •[i] is the complex defined by F j [i] := F [i + j], and Db(X) is the
bounded derived category of coherent sheaves on X. Notice that if we consider
two morphisms f : E• −→ F •[i] and g : F • −→ G•[j], then g[i] ◦ f is in
HomDb(X)(E•, G•[i + j]). Using this and the identification (C.1), we get a
morphism

Yi,j : Exti(E•, F •)× Extj(F •, G•) −→ Exti+j(E•, G•).

When E• = F • = G•, the morphism Yi,j is called Yoneda coupling. This con-
struction allows us to define the Yoneda coupling for any E ∈ Coh(X). Indeed,
since X is smooth and projective, there is a bounded complex E• of locally free
sheaves which is quasi-isomorphic to E , so that Exti(E ,E ) = Exti(E•, E•).
The Yoneda coupling for E• is then the Yoneda coupling E .

The second definition is the Atiyah class. First of all, let p1, p2 : X×X −→ X

be the projections on the two factors, and let ∆ ⊆ X × X be the diagonal.
Moreover, let I be the ideal sheaf of ∆, and let O2∆ := OX×X/I 2. Since O∆

is p2−flat, the exact sequence

0 −→ I /I 2 −→ O2∆ −→ O∆ −→ 0

remains exact when tensoring by p∗2F for any locally free sheaf F onX. Applying
the functor p1∗ we get the exact sequence

0 −→ F ⊗ ΩX −→ p1∗(p∗2F ⊗ O2∆) −→ F −→ 0.

The corresponding extension class A(F ) ∈ Ext1(F, F ⊗ΩX) is called the Atiyah
class of F . In a similar way, we can define the Atiyah class of any bounded
complex F • of locally free sheaves, which is A(F •) ∈ Ext1(F •, F • ⊗ ΩX). If
F • is quasi-isomorphic to E•, then the induced isomorphism between the two
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vector spaces Ext1(F •, F •⊗ΩX) and Ext1(E•, E•⊗ΩX) identifies A(F •) and
A(E•). This allows us to define the Atiyah class A(E ) for any E ∈ Coh(X).

Let now i ∈ N be a positive integer, and let E ∈ Coh(X). Moreover,
let A(E )⊗i ∈ Exti(E ,E ⊗ Ω⊗iX ) be the composition of i copies of A(E ). The
canonical morphism Ω⊗iX −→ ΩiX induces a morphism

Exti(E ,E ⊗ Ω⊗iX ) −→ Exti(E ,E ⊗ ΩiX).

The image of A(E )⊗i under this morphism is denoted Ai(E ).

Definition C.5.1. The i−th Newton class of E is

γi(E ) := tri(Ai(E )) ∈ Hi(X,ΩiX).

We are now able to define 2−forms on M0(r, L, c2). We do this in general,
supposing S smooth and that there is a universal family F on S ×X. Let

τF : H0(X,KX) ' H2(X,OX)∗ −→ H0(S,Ω2
S)

be the morphism corresponding to γ′(F ), the component of γ2(F ) lying in
H0(S,Ω2

S)⊗H2(X,OX). If there is no universal family on S, we can use quasi-
universal families. In particular, on Ms(r,L , c2) ×X there is always a quasi-
universal family F , and M0 := M0(r,L , c2) ∩Ms(r,L , c2) is smooth.

Definition C.5.2. Let ω ∈ H0(X,KX) be a 2−form on X, and let F be a
quasi-universal family on M0 ×X. The 2−form

τ(ω) :=
1

rk(F )
τF (ω) ∈ H0(M0,Ω2

M0)

is called the 2−form associated to ω.

Theorem C.5.1. (Mukai, ’84). For any ω ∈ H0(X,KX), the 2−form τ(ω)
on M0 does not depend on the quasi-universal family F used in the definition.
Moreover, τ(ω) is non-degenerate on M0 if and only if the morphism

ω∗ : Ext1(E ,E ) −→ Ext1(E ,E ⊗KX)

is an isomorphism for any E ∈M0.

Proof. The original proof is due to Mukai, and is contained in [Muk]. See also
Theorem 10.4.3 in [H-L].

Remark C.5.1. By Remark C.3.1, if X is an abelian or a projective K3 surface,
then M0 = Ms(r,L , c2). Moreover, H0(X,KX) ' C·ω for a symplectic 2−form
ω. The morphism ω∗ of Theorem C.5.1 is clearly an isomorphism, so that τ(ω)
is a symplectic 2−form on Ms(r,L , c2).



Appendix D

Moduli spaces of sheaves on

K3 and abelian surfaces

In this appendix we resume the basic results on the known examples of irre-
ducible symplectic manifolds. These are all contructed using the theory of mod-
uli spaces of sheaves on K3 or abelian surfaces. The first result in this subject is
due to Fujiki, who showed that the Hilbert scheme Hilb2(X) on a projective K3
surface X is an irreducible symplectic variety of dimension 4. This result was
vastly generalized by Beauville, who showed that for any integer n, the Hilbert
scheme Hilbn(X) over a K3 surface X is an irreducible symplectic manifold of
dimension 2n. In the same work, Beauville introduced the generalized Kummer
varieties, giving another family of examples of irreducible symplectic manifolds.

The next step was to to study moduli spaces of stable sheaves on K3 (and
abelian) surfaces. In the middles of the nineties it was shown that these are
deformation equivalent to Hilbert schemes or to generalized Kummer varieties.
In 1999 and 2003 O’Grady presented two new deformation classes of irreducible
symplectic manifolds, using singular moduli spaces of semistable sheaves: these
are the main object of study of this work, and were described in Chapters
2 and 3. The study of irreducible symplectic varieties coming from moduli
spaces of semistable sheaves was concluded by Kaledin, Lehn and Sorger, who
showed that the two examples provided by O’Grady are the only new examples
of irreducible symplectic variety we can produce using the theory of moduli
spaces of semistable sheaves on surfaces.

D.1 Hilbert schemes of points

Let X be a smooth projective surface, and let n ∈ N. In section 2.2 we defined
Hilbn(X) as the projective scheme parameterizing 0−dimensional subschemes

89
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of X of length n, and we have seen that there is a universal subscheme Ξn on
Hilbn(X)×X, i.e. such that for any [Z] ∈ Hilbn(X), we have Ξn|[Z]×X ' Z.

There is an alternative and more geometrical construction for Hilbn(X).
Let Xn be the product of n copies of X, and let Σn act on Xn by permutation
of factors. Let Xn

d := {(x1, ..., xn) ∈ Xn|xi 6= xj for i 6= j}, and let ∆n :=
Xn \Xn

d .

Definition D.1.1. The n−th symmetric product of X is the projective scheme
Sn(X) := Xn/Σn. The n−th isospectral Hilbert scheme is the blow-up Bn(X)
of Xn along ∆n.

We complete the definition with some notations: let πn : Xn −→ Sn(X)
be the quotient morphism, and let φn : Bn(X) −→ Xn be the blow-up. If
(x1, ..., xn) ∈ Xn, we let πn(x1, ..., xn) =:

∑n
i=1 xi. Notice that the action of

Σn on Xn is free on Xn
d , and it extends to an action of Σn on Bn(X). Let

Dn := πn(∆n).

Proposition D.1.1. The projective scheme Sn(X) is singular along Dn. More-
over, codimSn(X)(Dn) = 2.

Proof. The codimension of Dn in Sn(X) is easily seen to be 2. The rest is done
by a local calculation, as shown in Proposition 2.2 in [Fog].

Let bn : BlDn(Sn(X)) −→ Sn(X) be the blow-up of Sn(X) along Dn. By
definition, there is a morphism pn : Bn(X) −→ BlDn(Sn(X)), which is the
quotient of Bn(X) under the action of Σn.

Definition D.1.2. The Hilbert-Chow morphism is defined as

ρn : Hilbn(X) −→ Sn(X), ρn([Z]) :=
∑

x∈X
l(OZ,x)x,

where l(OZ,x) is the length of OZ at x.

Theorem D.1.2. (Fogarty, ’73). The Hilbert scheme Hilbn(X) is a smooth
irreducible projective variety of dimension 2n and the Hilbert-Chow morphism ρn

is a resolution of singularities of Sn(X). Moreover, Hilbn(X) ' BlDn(Sn(X))
and bn = ρn.

Proof. This is shown in Section 5 in [Fog].

The main result on the Hilbert schemes of points on a K3 surface is the
following:

Theorem D.1.3. (Beauville, ’83). Let X be a projective K3 surface, and let
n ∈ N be a natural number. Then Hilbn(X) is an irreducible symplectic variety
of dimension 2n and second Betti number b2(Hilbn(X)) = 23.
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This result was shown in [Beau] (with more general hypothesis: one can drop
the projectivity hypothesis, and just consider any K3 surface; in this case, one
has to use Douady spaces instead of Hilbert schemes, but all the argument goes
through).

D.2 Generalized Kummer varieties

Here we introduce the second example of irreducible symplectic manifold, con-
structed starting from the Hilbert scheme of points on an abelian surface.

Definition D.2.1. A 2−dimensional complex torus T is the quotient of C2 by
a maximal lattice Γ ⊆ C2. If T is projective, then it is called abelian surface.

Any 2−dimensional complex torus is equipped with a unique (up to mul-
tiplication by a complex number) symplectic structure, namely the standard
one on C2: if z1, z2 are linear coordinates on C2, then the symplectic structure
dz1∧dz2 is translation invariant, so that it descends to a symplectic structure on
C2/Γ = T . Anyway, a 2−dimensional complex torus cannot be an irreducible
symplectic surface since π1(T ) ' Γ ' Z4, so that T is not simply connected.

Theorem D.2.1. Let T = C2/Γ be a 2−dimensional complex torus. Then
Hi(T,Q) ' ΛiHom(Γ,Z) and H0(T,ΩiT ) = ΛiC〈dz1, dz2〉, where z1, z2 are
coordinates on C2.

Proof. See for example Corollary 1.3.2 and Theorem 1.4.1 in [B-L].

Even if abelian surfaces are not simply connected, they are an important
starting point for the construction of irreducible symplectic varieties. The basic
construction is that of the Kummer surface associated to any abelian surface.
From now on, we will write A for an abelian surface. Let

ι : A −→ A, x 7→ −x

be the natural involution on A, and consider the quotient A/ι. In particular,
any point x ∈ A is fixed by ι if and only if it is a 2−torsion point for A, and
any of these points gives a singular point for A/ι. It is well-known that on any
abelian surface A there are 16 different 2−torsion points (see [B-L]), so that A/ι
has 16 different singular points, each one of type A1.

Definition D.2.2. The Kummer surface associated to A is the blow-up

f : K(A) −→ A/ι

of A/ι along its 16 singular points.

Theorem D.2.2. The Kummer surface K(A) associated to any abelian surface
A is a K3 surface.
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There is an equivalent way to construct the Kummer surface associated to
an abelian surface A. Consider A×A, and let ∆ ⊆ A×A be the diagonal. On
A × A acts the group Σ2 simply interchanging the two factors. The quotient
S(A) := A×A/Σ2 is the symmetric product of A. If we write π : A×A −→ S(A)
for the quotient morphism, then S(A) is singular along D := π(∆). Notice that
codimS(A)(D) = 2. Consider

ρ : S̃(A) −→ S(A),

the blow-up of S(A) along its singular locus D. Moreover, consider

s : S(A) −→ A, s([a1, a2]) = a1 + a2,

where [a1, a2] := π(a1, a2) ∈ S(A).

Proposition D.2.3. For any abelian surface A, we have K(A) ' ρ−1(s−1(0)).

Proof. It is clear that s−1(0) = {[a,−a] ∈ S(A) | a ∈ A}, so that s−1(0) ' A/ι.
Moreover, D ∩ s−1(0) = {[a,−a] ∈ S(A) | 2a = 0}, and it corresponds to the
singular points of A/ι.

We generalize now this construction to the higher dimensional case. Let A
be an abelian surface, and let n ∈ N be a positive integer. Now, consider the
Hilbert-Chow morphism

ρn+1 : Hilbn+1(A) −→ Sn+1(A),

that we compose with the following sum morphism

sn+1 : Sn+1(A) −→ A, sn+1

( n+1∑

i=1

ai

)
:= a1 + ...+ an+1.

Definition D.2.3. The generalized Kummer variety Kn(A) associated to an
abelian surface A is

Kn(A) := ρ−1
n+1(s−1

n+1(0)).

Remark D.2.1. By Proposition D.2.3, we have K1(A) = K(A), the Kummer
surface associated to A. This is why these varieties are called generalized Kum-
mer.

Theorem D.2.4. For any abelian surface A and for any n ∈ N, the generalized
Kummer variety Kn(A) is an irreducible symplectic variety of dimension 2n,
whose second Betti number is b2(Kn(A)) = 7.

Proof. See §7, Théorème 4 in [Beau].

This theorem is the analogue of Theorem D.1.3. Since for any n > 1 we
have b2(Hilbn(X)) 6= b2(Kn(A), we get two different examples of irreducible
symplectic varieties on any possible dimension.
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D.3 Moduli spaces of stable sheaves on K3

The next step in the study of irreducible symplectic varieties is to look at moduli
spaces of sheaves on projective K3 surfaces. The main reason for this comes by
analogy with Hilbert schemes: for any projective K3 surface X, the Hilbert
scheme Hilbn(X) is isomorphic to the moduli space M(1, 0,−n) of rank 1
semistable sheaves on X with trivial determinant and second Chern class equal
to n, and provides an example of irreducible symplectic variety of dimension 2n.

D.3.1 0−dimensional moduli spaces

Definition D.3.1. Any Mukai vector v of rank r > 0 is called exceptional if
(v, v) = −2. A vector bundle E on X is called exceptional if it is simple and
Ext1(E,E) = 0.

Remark D.3.1. Notice that χ(E,E) = 2 for any exceptional vector bundle E.
Moreover, χ(E,E) = −(v(E), v(E)), so that the Mukai vector of an exceptional
bundle is exceptional.

Theorem D.3.1. (Kuleshov, ’89). Let v be an exceptional Mukai vector, and
H be any polarization.

1. There is a µ−semistable exceptional bundle E such that v(E) = v.

2. If H2 ≥ 4 and X is generic (in the moduli space of polarized K3 surfaces
(X,H ′) with (H ′)2 = H2), then there is a stable exceptional bundle E

such that v(E) = v.

Proof. See Theorem 2.1 in [Kul].

Remark D.3.2. Notice that if v is an exceptional vector bundle with rank 1,
then there is only one exceptional bundle whose Mukai vector is v: this is the
unique line bundle L such that c1(L) = c1(v). In particular, such an exceptional
bundle is stable. This is not true in general: it r(v) > 1 and ρ(X) > 1, then
there can be non-isomorphic exceptional bundles with Mukai vector v (see the
example after Corollary 1.11 in [Kul]). Theorem D.3.2 below will then imply
the existence of unstable exceptional bundles.

Theorem D.3.2. (Mukai). Let X be a projective K3 surface, and v be an
exceptional Mukai vector on X. If H is a v−generic polarisation and Ms(v) 6= ∅,
then M(v) = Ms(v) = {[E]}, where E is a stable exceptional bundle.

Proof. See [Muk2] or Theorem 6.1.6 in [H-L].
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D.3.2 2−dimensional moduli spaces

The next case to look at is that of moduli spaces of semistable sheaves M(v)
where v is an isotropic Mukai vector, i.e. (v, v) = 0. In this case, if Ms(v) 6= ∅
then it is a surface. Notice that in this case for any m ∈ Z the Mukai vector
mv is isotropic. Let then v be a primitive isotropic Mukai vector and choose a
v−generic polarization on X, so that Ms(v) = M(v) is a smooth surface. By
Theorem C.5.1 the moduli spaceM(v) is a symplectic surface and by Proposition
C.4.2 there is a quasi-universal family F on M(v)×X of similitude ρ. Let

fF : H∗(X,Q) −→ H∗(M(v),Q), gF : H∗(M(v),Q) −→ H∗(X,Q),

be the Mukai morphisms defined using the quasi-universal family F . In it is a
universal family, we have an important result:

Theorem D.3.3. (Mukai). Let v be a primitive isotropic Mukai vector and
let F be a universal family on M(v) × X. Then M(v) is a K3 surface and
the morphism fF defines an isometry of Hodge structures between H̃(X,Z) and
H̃(M(v),Z).

Proof. See [Muk2] or Theorem 6.1.13 in [H-L].

Now, let v⊥ ⊆ H̃(X,Z) be the orthogonal of the Mukai vector v under the
Mukai pairing. Since v is isotropic, then v ∈ v⊥. Moreover, if v is primitive,
the Z−module v⊥/Z · v is free of rank 22.

Theorem D.3.4. (Mukai). Let v a primitive isotropic Mukai vector, and let
F be a quasi-universal family on M(v)×X. The Mukai morphism fF gives an
isometry of Hodge structures

fF : v⊥/Z · v −→ H2(M(v),Z)

which is independent on the chosen quasi-universal family.

Proof. See [Muk2] or Theorem 6.1.14 in [H-L].

In order to conclude this section, we study the case v = mw where m ∈ Z
and w is primitive isotropic. As a corollary of Proposition ?? we have:

Corollary D.3.5. Let v = mw be a Mukai vector such that m ∈ N and w is
primitive, and let H be a v−generic polarization. Then M(v) ' SmM(w).

By Theorem D.3.3, M(w) is a K3 surface, so that M(v) = SmM(w) is the
symmetric product of m copies of a K3 surface. In conclusion, by Theorem
D.1.2 the moduli space M(v) admits a symplectic resolution of singularities

Hilbm(M(w)) −→M(v),

which is an irreducible symplectic manifold of dimension 2m.
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D.3.3 Higher dimensional moduli spaces

In this section, we study the case of primitive Mukai vector v such that (v, v) ≥ 2.
The first result we need is the following:

Theorem D.3.6. (Yoshioka, ’00). Let v be a primitive Mukai vector such
that rk(v) > 0, c1(v) ∈ NS(X) or rk(v) = 0, c1(v) ∈ NS(X) is the first
Chern class of an effective line bundle and v4 6= 0. Moreover, let H be a
v−generic polarization. Then, the moduli space M(v) is non-empty if and only
if (v, v) ≥ −2. Under this hypothesis, M(v) is an irreducible normal projective
variety.

Proof. This is contained in Theorem 0.1 and Theorem 8.1 in [Yo1].

Corollary D.3.7. Let v be an arbitrary Mukai vector such that rk(v) > 0 and
c1(v) ∈ NS(X), and let H be a v−generic polarization. The moduli space M(v)
is non-empty if and only if v = mw for m ∈ Z and for a primitive Mukai vector
w ∈ H̃(X,Z) such that (w,w) ≥ −2.

If v is primitive and (v, v) > 0, by Remark C.3.1 the moduli space M(v)
is a smooth projective variety of even complex dimension (v, v) + 2 ≥ 4, and
by Theorem C.5.1 it admits a symplectic structure. It is then natural to ask if
M(v) is an irreducible symplectic variety.

Theorem D.3.8. (Yoshioka, ’99). Let X be a projective K3 surface, v be a
primitive Mukai vector such that rk(v) > 0, c1(v) ∈ NS(X) and (v, v) ≥ 2, and
let H be a v−generic polarization. Then the moduli space M(v) is an irreducible
symplectic variety which is deformation equivalent to Hilb

(v,v)
2 +1(S) for some

projective K3 surface S.

Proof. This theorem has been shown in different steps: the first one is due
to Mukai, dealing only with rk(v) = 2 (see [Muk]). In [G-H], Göttsche and
Huybrechts show that the moduli spaces of stable sheaves on a K3 surface
have the same Hodge numbers of the Hilbert scheme. Another step is due to
O’Grady, in [OG1], dealing with primitive Mukai vectors v such that c1(v) is
not divisible in NS(X). Then Yoshioka proves it in [Yo3], when (v, v) > 2l2,
for l := g.c.d.(r, c1(v)), meaning r = lr′ for some r′ ∈ Z and c1 = lc for some
c ∈ NS(X). The final result is Theorem 0.1 in [Yo2].

This theorem concludes the investigation on moduli spaces of stable sheaves:
if v is a primitive Mukai vector and the polarization is v−generic, the moduli
space M(v) is reduced to a point if (v, v) = −2, it is a K3 surface if (v, v) = 0
and it is (up to deformation) the Hilbert scheme of points on some K3 surface
if (v, v) ≥ 2. Another important result is on the second integral cohomology of
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M(v). By Proposition C.4.2, over M(v) × X there is a quasi-universal family
F of similitude ρ. We can then define the Mukai’s morphism

µM : v⊥ −→ H2(M(v),Z),

which is independent on the choice of F since µM is defined over v⊥.

Theorem D.3.9. The Mukai’s morphism defines an isometry of Hodge struc-
tures between v⊥ and H2(M(v),Z), the first being the sublattice of the Mukai
lattice of X, the second being a lattice with the Beauville-Bogomolov form.

Proof. Again, this is Theorem 0.1 in [Yo2].

Remark D.3.3. In the statement of Theorem D.3.9, the Z−module H2(M(v),Z)
has a lattice structure given by the Beauville-Bogomolov form. In the case
treated in Theorem D.3.4, the lattice structure on H2(M(v),Z) is given by the
natural intersection product on M(v) which is a projective K3 surface. By
Remarks B.3.1 and B.3.2, this intersection form is the Beauville-Bogomolov
form, so that Theorem D.3.9 is a generalization of Theorem D.3.4.

D.4 Moduli spaces of sheaves on abelian sur-

faces

As in the case of K3 surfaces, one can study moduli spaces of semistable sheaves
on abelian surfaces in order to provide new examples of irreducible symplectic
manifolds. So, let A be an abelian surface, and let H be an ample line bundle
on A. In the following, we will write Â for the abelian surface dual to A, i. e.
Â ' Pic(A).

Fix a Mukai vector v ∈ H2∗(A,Z) =: H̃(A,Z), and let v = (v0, v2, v4),
where vi ∈ Hi(A,Z). We will consider only Mukai vectors v such that v0 > 0
and v2 ∈ NS(X) or v0 = 0, v2 ∈ NS(X) is the numerical class of an effective
divisor and v4 6= 0. Let M(v) be the moduli space of H−semistable sheaves
with Mukai vector v, and let Ms(v) be the open subset of M(v) parameterizing
stable sheaves. As td(A) = (1, 0, 0), the Mukai vector of any sheaf E on A

equals its Chern character, so that if E has rank r, first Chern class c1 and
second Chern class c2, then v(E ) = (r, c1,

c21
2 − c2) and

expdim(M(v)) = dim(Ms(v)) = 2 + (v, v).

Notice that since A is an abelian surface, then Theorem C.3.1 implies thatMs(v)
is smooth, and Theorem C.5.1 implies the existence of a symplectic structure
on Ms(v).
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An important tool in the study of moduli spaces of sheaves on abelian sur-
faces is the map

av : M(v) −→ A× Â

defined in the following way: fix a sheaf E0 defining a point in M(v), and let P

be the Poincaré line bundle on A× Â. Then

av(E ) := (det(pÂ!(p
∗
X [E − E0] · [P − OA×Â])), det(E )⊗ det(E0)−1).

Remark D.4.1. Using the Grothendieck-Riemann-Roch Theorem, it is easy to
show that det(pÂ!(p

∗
X [E − E0] · [P − OA×Â])) ∈ Pic0(A) ' A.

The main result on the map av is the following:

Theorem D.4.1. (Mukai, Yoshioka). Let A be an abelian surface, v a primi-
tive Mukai vector and let H be a v−generic ample line bundle.

1. If (v, v) = 0, then M(v) is an abelian surface, and the morphism av is an
immersion.

2. If (v, v) = 2, then av is an isomorphism.

3. If (v, v) ≥ 4, then av is the Albanese map of M(v), and the fiber

K(v) := a−1
v (0, 0)

is an irreducible symplectic manifold deformation equivalent to the gener-
alized Kummer variety K

(v,v)
2 −1(A). Moreover, the Mukai morphism

µM : v⊥ −→ H2(K(v),Z)

is an isometry of Hodge structures.

Proof. The proof of the first item is contained in [Muk4]. The second item is
shown by Mukai in [Muk3] and by Yoshioka in [Yo4], Proposition 4.2. Finally,
the last part of the statement is shown by Yoshioka in two different papers: the
final result is Theorem 0.2 in [Yo1].
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Résumé : Cette thèse se compose de deux parties : dans la première on
démontre une généralisation du théorème de Gabriel sur les faisceaux cohé-
rents au cas des faisceaux cohérents tordus. Plus précisément, on démontre
que tout schéma noethérien X peut être reconstruit à partir de sa catégo-
rie abélienne Coh(X,α) des faisceaux cohérents tordus par un élément α du
groupe de Brauer cohomologique de X. Dans la deuxième partie on étudie les
deux espaces des modules M10 et M6 introduits par O’Grady, qu’il utilise pour
obtenir ses deux nouveaux examples de variétés irréductibles symplectiques de
dimension 10 et 6 respectivement. On calcule les groupes de Picard de M10 et
M6, et on démontre que ces deux variétés ne sont pas localement factorielles,
mais 2−factorielles. Ceci est accompli en utilisant les résultats de Rapagnetta
sur la cohomologie et la forme de Beauville-Bogomolov de M10 et M6, et en
étudiant les propriétés du morphisme de Le Potier dans ces deux cas.

Mots clés : faisceaux cohérents tordus, catégories abéliennes, variétés irré-
ductibles symplectiques, espaces des modules de faisceaux sur des surfaces
algébriques.

Summary : This PhD thesis is divided in two parts : in the first one, we
present a generalization of Gabriel’s Theorem on coherent sheaves to twisted
coherent sheaves. More precisely, we show that any Noetherian scheme X can
be reconstructed from its abelian category Coh(X,α) of coherent sheaves twis-
ted by an element α of the cohomological Brauer group of X. In the second
part we study the two moduli spaces M10 and M6 introduced by O’Grady,
which he uses to obtain his two new examples of irreducible symplectic varie-
ties in dimension 10 and 6. We calculate the Picard group of M10 and M6, and
we show that these two varieties are not locally factorial, but 2−factorial. This
is done using the results obtained by Rapagnetta on the cohomology and the
Beauville-Bogomolov form of M10 and M6, and studying the properties of the
Le Potier’s morphism in these two cases.

Key words : Twisted coherent sheaves, Abelian categories, Irreducible sym-
plectic manifolds, Moduli spaces of sheaves on algebraic surfaces.


