

Doctorat de l'Université Louis Pasteur

Imagerie chimique pour l'analyse des formes pharmaceutiques solides

Christelle Gendrin, 13 novembre 2008

F. Hoffmann-La Roche, PTGF-Q PRS, Bâle, Suisse

Laboratoire des Sciences de l'Image de l'Informatique et de la Télédétection LSIIT UMR-CNRS 7005, Université de Strasbourg

Pourquoi cette thèse?

- Laboratoire de spectroscopie PIR : 2002
- Achat d'un système d'imagerie PIR : février 2005
- Thèse débutée en décembre 2005
- Développer et tester des méthodes de traitement des données d'imagerie pour les applications pharmaceutiques

Distribution des composés

Détermination de la teneur en principe actif

Conclusions

Introduction *L'initiative* PAT

PAT: Process Analytical Technology QbD: Quality by Design

Promouvoir la mise en place de systèmes permettant une analyse continuelle des paramètres critiques du procédé

- Compréhension du procédé
- Implémentation de nouvelles technologies
- A terme : contrôle qualité en ligne

La spectroscopie Proche Infrarouge

• Spectroscopie vibrationnelle

- Avantages :
 - Non-destructif
 - Rapide
 - Pas de préparation des échantillons
 - Les spectres incluent informations physique et chimique
 - Analyse à travers le verre est possible

La spectroscopie Proche Infrarouge

Introduction *Les applications de la PIR classique*

- Contrôle des procédés :
 - Teneur en eau
 - Teneur en Principe Actif (PA)
 - Identification des poudres avant la production
 - Fin du temps de réaction, homogénéité des mélanges
- Au laboratoire :
 - Identification des contrefaçons

L'imagerie Proche Infrarouge

Spectral control by CRi

UNIVERSITE LOUIS PASTEUR STRASBOURG Cube de données : ~100 longueurs d'onde

Instrumentation

Objectifs de la thèse

Extraire les cartes de distribution des composés et estimer la teneur en PA par imagerie chimique Proche Infrarouge

Distribution des composés

Détermination de la teneur en principe actif

Conclusions

Analyse univariée : analyse à une longueur d'onde

1680 nm : principe actif 2260 nm : povidone 2100 nm : amidon

Image RVB

- Avantage : simple
- Inconvénient : superposition des bandes d'absorbances

Analyse multivariée : traitement des données

Analyse multivariée avec spectres de référence : PLS-DA

- PLS-DA : Partial Least Squares Discriminant Analysis •
- Une librairie spectrale est utilisée pour faire un modèle mathématique •

k longueurs d'onde

Analyse multivariée avec spectres de référence : PLS-DA

• PLS-DA

Sans a priori : résolution de courbes multivariées

- Solutions multiples
- Des contraintes sont imposées : ici contraintes de positivité

Distribution des composés *Sans a priori : algorithmes*

• MCR-ALS : *Multivariate Curve Resolution – Alternating Least Squares*

$$\left\| \mathbf{D} - \mathbf{C} \mathbf{S}^{\mathsf{T}} \right\|^{2}$$
Sous les contraintes : C>0 and S^T>0

Estimation initiale de S_0 ou C_0 *Itération:*

(1) Avec **D** et \mathbf{S}_{i}^{c} calcul de \mathbf{C}_{i+1} (moindres carrés) Contraindre $\mathbf{C}_{i+1} \rightarrow \mathbf{C}_{i+1}^{c}$

(2) Avec **D** et \mathbf{C}_{i+1}^c calcul de \mathbf{S}_{i+1} (moindres carrés) Contraindre $\mathbf{S}_{i+1} \rightarrow \mathbf{S}_{i+1}^c$

Distribution des composés *Sans a priori : algorithmes*

- PMF : Positive Matrix Factorization
- Le critère suivant est minimisé

$$F(\mathbf{E}) = \sum_{i,j} \frac{\left(\mathbf{D} - \mathbf{CS}^{\mathsf{T}}\right)_{i,j}^{2}}{\sigma_{i,j}^{2}}$$

Sous les contraintes : C>0 and S^T>0

ou $\sigma_{{\scriptscriptstyle i},{\scriptscriptstyle j}}$ désigne l'incertitude sur la donnée (i,j),

- · La mesure est effectuée cinq fois afin d'estimer les incertitudes
- Multilinear Engine (ME) est utilisé pour l'optimisation

Paatero et al, Chemometrics and intelligent Laboratory Systems, Vol 37, p 23-35, 1997

Distribution des composés *Sans a priori : données*

• Lot : actif (5%), cellulose (50%), lactose (45%)

Distribution des composés *Sans a priori : évaluation de l'estimation*

Corrélation

$$\operatorname{Corr}_{k} = \frac{\sum_{j} (s_{kj} - \overline{s}_{k})(\operatorname{ref}_{kj} - \overline{\operatorname{ref}}_{k})}{\sqrt{\sum_{j} (s_{kj} - \overline{s}_{k})^{2}} \sqrt{\sum_{j} (\operatorname{ref}_{kj} - \overline{\operatorname{ref}}_{k})^{2}}}$$

• RSD: Rapport Signal à Distorsion

Saïd Moussaoui et al, IEEE transactions on signal processsing, Vol 54, 797-807,1998

$$RSD_{k} = 10\log_{10}\left(\frac{\sum_{j} ref_{kj}^{2}}{\sum_{j} \left(ref_{kj} - s_{kj}\right)^{2}}\right)$$

• Concentration extraite

Sans a priori : résultats

MCR-ALS •

LINIVERS

Sans a priori : résultats

• PMF

Sans a priori : résultats

		Corrélation	RSD	Concentration (%)	
MCR-ALS	PA	0.954	15.5	12.2	
	Cellulose	0.993	21.3	30.7	
	Lactose	0.996	26.2	57.03	
PMF	PA	0.968	16.8	14.2	
	Cellulose	0.996	22.04	37.6	
	Lactose	0.995	25.41	48.16	

concentration du lot : actif (5%), cellulose (50%), lactose (45%)

- Problèmes d'ambigüités rotationnelles
- Paatero et al. Chemom. Intell. Lab. Syst., 60, 2002, 253-264.
- Paatero and Hopke, J. of Chemometrics, 2008, DOI: 10.1002/cem.1197
- Améliorer l'extraction par :
 - Matrices de rotation

	C1′	C2′	C3′
C1	1	r	r
C2	— r	1	0
C3	– r	0	1

 Connaissances a priori : valeurs de concentration en un pixel, ou concentration moyennes

0.995

25.41

• Matrice de rotation

Lactose

LINIVERS

OUIS PASTEUR

48.16

0.995

25.3

48.43

Concentrations moyennes

	Avant introduction des concentrations			Après introduction des concentrations		
	Corrélation RSD C		Conc. (%)	Corrélation	RSD	Conc. (%)
PA	0.968	16.8	14.2	0.933	11.1	4.62
Cellulose	0.996	22.04	37.6	0.993	21.6	49.99
Lactose	0.995	25.41	48.16	0.995	25.1	44.88

Concentrations moyennes

	Avant introduction des concentrations			Après introduction des concentrations		
	Corrélation RSD Conc.		Conc. (%)	Corrélation	RSD	Conc. (%)
PA	0.968	16.8	14.2	0.933	11.1	4.62
Cellulose	0.996	22.04	37.6	0.993	21.6	49.99
Lactose	0.995	25.41	48.16	0.995	25.1	44.88

Concentrations moyennes

	Avant introduction des concentrations			Après introduction des concentrations		
	Corrélation	orrélation RSD Conc. (%		Corrélation	RSD	Conc. (%)
PA	0.968	16.8	14.2	0.987	21.3	7.98
Cellulose	0.996	22.04	37.6	0.994	21.82	47
Lactose	0.995	25.41	48.16	0.994	24.98	45.17

27

- L'imagerie proche infrarouge permet la détermination de la distribution des composés chimiques
- Si les spectres de références sont connus l'algorithme PLS-DA donne une bonne estimation des cartes de distributions
- Sans les spectres de références, les algorithmes MCR-ALS et PMF peuvent être utilisés
- Les matrices de rotation et l'utilisation de la concentration moyenne des composés améliorent l'extraction

Distribution des composés

Détermination de la teneur en principe actif

Conclusions

Principe de l'analyse quantitative

Première étape : étalonnage

Principe de l'analyse quantitative

Seconde étape : validation

Evaluation du modèle.

n = nombre d'échantillons

Linéarité de la droite d'étalonnage:

-R²

-Pente

-Ordonnée à l'origine

Roche

Etude préliminaire : lots binaires *Sans a priori : algorithmes et échantillons*

• Echantillons

- Cellulose Principe Actif : particules micronisées
- Les comprimés sont produits dans le laboratoire
- 0 à 100 % d'actif par pas de 10%
- 44 comprimés sont analysés (4 gammes différentes)
- Référence : pourcentage massique des mélanges
- Algorithmes
 - Algorithmes de résolution de courbes multivariées (MCR-ALS / PMF)
 - Segmentation : K-moyennes avec deux classes

Etude préliminaire : lots binaires

Etude préliminaire : lots binaires *Sans a priori : résultats*

Résolution spatiale effective n'est pas suffisamment fine pour une segmentation correcte des particules micronisées

- La quantification sans a priori est difficile pour des particules micronisées
- Pour quantifier l'actif présent à faible dosage et micronisé : introduction des informations supplémentaires.
- Formulation pharmaceutique :
 - Principe actif, cellulose, lactose, magnésium stéarate, talc et deux colorants
 - Concentration en principe actif varie de 0% à 10% par pas de 1%
 - Les comprimés sont produits dans le laboratoire
 - 44 comprimés sont analysés (4 gammes différentes)

Formulation réelle *Avec a priori : gamme de concentration*

- Algorithme des moindres carrés partiels (PLS)
- Valeurs de référence : pourcentage massique des échantillons
- Le modèle est construit avec les spectres moyens de chaque comprimé
- La teneur en actif de chaque pixel est ensuite prédite pour former les cartes de distributions

Avec a priori : gamme de concentration

SECV : 0.34%

Avec a priori : gamme de concentration

Avec a priori : spectres de références

- PLS-DA, moindres carrés
- MCR-ALS augmenté

Formulation réelle *Avec a priori : spectres de références*

Prétraitements : normalisation SNV et dérivée seconde

	PLS-DA		CLS	MCR-ALS (1)	MCR-ALS (2)
Pente	0.926		1.009	0.920	0.899
Ordonnée à l'origine	0.11		-1.128	0.698	0.768
R ²	0.971		0.967	0.959	0.939
SEP (%)	0.62		1.235	0.719	0.835

La meilleure méthode est la PLS-DA

Formulation réelle *Avec a priori : spectres de références*

PLS-DA, dérivée seconde, 5 variables latentes, 3 références

Roche

Formulation réelle *Bilan*

- La quantification d'un Principe Actif sans aucun a priori est difficile
- La quantification précise avec une gamme de concentration est possible.
- Avec les spectres de références : algorithme PLS-DA
- L'imagerie permet l'extraction simultanée de la concentration et des cartes de distributions

Distribution des composés

Détermination de la teneur en principe actif

Conclusions

Conclusions

- Extraction de la distribution des composés :
 - Avec références connues : analyse à une longueur d'onde, PLS-DA
 - Sans a priori : MCR-ALS et PMF avec les outils d'exploration des solutions (matrices de rotations, concentrations moyennes)
- Quantification :
 - Avec gamme de concentration : PLS
 - Avec spectres de références : PLS-DA

• L'imagerie proche infrarouge est un outil innovant ¹:

- Distribution des composés²
- Compréhension du procédé ³
- Quantification de l'actif⁴
- C'est un outil *Process Analytical Technology*
 - 1 C. Gendrin, Y. Roggo, C. Collet, Vibrational chemical imaging and chemometrics for pharmaceutical applications: A review, Journal of Pharmaceutical and Biomedical Analysis, Vol 48 (2008), p. 533-553
 - 2 C. Gendrin, Y. Roggo, C. Collet, Self modelling curve resolution of Near Infrared Imaging Data, Proceedings of the ICNIRS 2007, Umea, Sweden, Journal of Near Infrared Spectroscopy, Vol 16 (2008), Issue 3, p. 151-157
 - 3 C. Gendrin, Y. Roggo, C. Spiegel, C. Collet, Monitoring Galenical Process Development by NIR Chemical Imaging: one case study, European Journal of Pharmaceutics and Biopharmaceutics, Vol 68 (2008), Issue 3, p. 376-385

4 C. Gendrin, Y. Roggo, C. Collet, Content uniformity of pharmaceutical solid dosage forms by near $_{
m 45}$ infrared hyperspectral imaging: A feasibility study, Talanta, Vol 73 (2007), p. 733-741

Perspectives Applications en ligne : taille de particules

0.28 mm²

Lot 2

Perspectives

Applications en ligne : uniformité des mélanges

Perspectives

Applications en ligne : détection de capsules vides par imagerie

Merci de votre attention!!

Nous innovons la santé

