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Functional Fault model Glossary 
 
 
Address Decoder Open Fault (ADOF): A decoder is said to have an ADOF when changing 
only one bit on its address results in selecting this new address but also the previous one. 
Consequently, two core-cells are selected at the same time for a read or a write operation. 

dynamic Read Destructive Fault (dRDF): A core-cell is said to have a dRDF if a write 
operation immediately followed by a read operation performed on the core-cell changes the 
logic state of this core-cell and returns and incorrect value on the output. 

dynamic two-cells Incorrect Read Fault type 1 (d2cIRF1): A sense amplifier is said to have a 
d2cIRF1 if it is unable to read any value. So, the read data value at the output is the one 
previously stored in the data output circuitry. This is a two-cell fault model as it requires two 
read operations on two distinct core-cells. 

dynamic two-cells Incorrect Read Fault type 2 (d2cIRF2): A sense amplifier is said to have a 
d2cIRF2 if it is only able to perform a 푟0 or 푟1 operation As for d2cIRF1, this is a two-cell 
fault model as it requires two read operations on two distinct core-cells. 

Incorrect Read Fault (IRF): A core-cell is said to have an IRF if a read operation performed 
on the cell returns an incorrect logic value, while keeping the correct stored value in the cell. 

Read Destructive Fault (RDF): A core-cell is said to have a RDF if a read operation 
performed on the cell changes the data in the cell and returns an incorrect value on the 
output. 

Slow Write Driver Fault (SWDF): A write driver is said to have a SWDF if it cannot act a w0 
(w1) when this operation is preceded by a w1 (w0). That results on the core-cell that does not 
change its data content. 

Stuck-At Fault (SAF): A core-cell is said to have a SAF if its content is always at a given 
value and cannot be changed to the opposite state  

Transition Fault (TF): A core-cell is said to have a TF if it fails to undergo a transition  
(0  1 or 1  0) when it is written. 

Un-Restored Write Fault (URWF): The pull up of one of the two bit lines is not completely 
achieved after the state reached with a write operation. Consequently the following read 
operation of an opposite data in a cell belonging to the same I/O circuitry is not correctly 
acted. 

Un-Restored Destructive Write Fault (URDWF): The same definition as URWF but in 
addition to the faulty read operation, the core-cell flips. 
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Short Acronym Dictionary 
 
ADOF: Address Decoder Open Fault 

BL: Bit Line 

CF: Coupling Fault 

d2cIRF: dynamic two-cell Incorrect Read Fault 

Df: Defect 

DFD: Design For Diagnosis 

DOF: Degree Of Freedom 

DR: Diagnosability Ratio 

dRDF: dynamic Read Destructive Fault 

FFM: Functional Fault Model 

FP: Fault Primitive 

MT: March Test 

RDF: Read Destructive Fault 

SAF: Stuck-At Fault 

SoC: System on Chip 

SOS: Sensitizing Operation Sequence 

SRAM: Static Random Access Memory 

SWDF: Slow Write Driver Fault 

TF: Transition Fault 

URDWF: Un-Restored Destructive Write Fault 

URWF: Un-Restored Write Fault 

VDSM: Very Deep Sub-Micron 

WL: Word Line 
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In the actual landscape of System-on-Chips (SoC), there is a wide panel of available 

memories due to the high demand of storage in different kind of applications and systems. 

These semiconductor memories are classified in two families: the volatile memories and the 

non-volatile ones as shown in Figure 1. 

 Memories 

Volatile Non Volatile 

ROM RAM RAM 

FeRAM MRAM PCRAM PROM EPROM EEPROM FLASH Mask ROM SRAM DRAM 

Non-rewritable ROM Rewritable ROM  

Figure 1 – Memory classification 

Volatile memories have the particularity to lose their content when the power supply is 

turned off. Those are based on Random Access Memories (RAM) concept meaning an 

arbitrary access. There are two kinds of volatile RAMs, the Static RAMs (SRAMs) and the 

Dynamic RAMs (DRAMs). SRAMs keep automatically their contents while power is turned 

on and present a very short access time compare to DRAMs. Consequently, they are used for 

fast applications such as cache memories for processor. On the other hand, DRAM contents 

need to be refreshed periodically. Nevertheless, their high integration density compare to 

SRAMs makes DRAMs more useful for mass data storage. 

By opposition to volatile memories, non-volatile ones keep their data indefinitely 

(theoretically), even if the power is turned off. These kinds of memories are divided in two 

sub-families, the one based on the ROM (Read Only Memories) concept, the second based on 

the RAM concept (previously presented). Originally, ROMs were the only non-volatile 

memories and their contents were not rewritable. However, researchers have found new 

mechanisms and materials allowing these memories to be rewritable (PROM, EPROM…). 

Recently, non-volatile memories based on the RAM principle have been developed. They 

present the same organization as volatile RAMs, except that they use materials allowing to 

keep data even if the power is turned off. For example, in MRAM, magnetic materials are 

used to store data as magnetic field. The polarity of this magnetic field determines the stored 

logic data (‘0’ or ‘1’). 
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Among existing memory types, this thesis is dedicated to SRAMs testing as they are 

widely used in embedded and high speed applications. In SoCs, both the number of embedded 

memory cores and area occupied are rapidly increasing. According to the SIA roadmap 

[SIA05], memories should occupy 94% of SoC silicon area in the next ten years (see Figure 

2) making them the main detractor of SoC yield. In addition, SRAM core-cells are often 

designed by violating some layout rules to save area. They are also considered as a vehicle for 

CMOS process technology development. Advances in their fabrication, through the scaling 

for higher densities and faster speeds, is helpful for the performance establishment of other 

digital circuits. Considering this context, faults are more likely to happen in memories than in 

any other SoC part. Hence, efficient test and diagnosis methods for embedded SRAMs are 

therefore needed to reach a satisfactory SoC yield. 

 

Figure 2 – ITRS roadmap: International Technology Roadmap for Semiconductors 

The first part of this thesis is dedicated to SRAM testing solutions. Current test 

methods used for SRAMs are generally based on static fault detection such as stuck-at faults 

(SAF), transition faults (TF) and coupling faults (CF) [VDG98]. Static faults require at most 

one read/write operation to be sensitized. Specific tests, called March tests, are constructed to 

detect such fault types [VDG98]. However, in Very Deep SubMicron (VDSM) technologies, 

a new type of faulty behavior, called dynamic faults [VDG00, ARS01], are more likely to 

occur. These faults require more than one read/write operations in sequence to be sensitized 

and are most of the time undetectable with existing March tests. It has been shown that 

resistive-open defects (due to bad vias or contacts) are the main root cause of such faults. 

Resistive-open defect occurrences in the address decoder [DIL04a], core-cell [DIL04b, 

DIL05a] and pre-charge circuit [DIL05b, DIL06a] have already been analyzed. 
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A first objective of this thesis is to complete the previous studies by developing new 

and efficient solutions for dynamic fault induced by resistive-open defects in the write 

driver and in the sense amplifier of SRAMs. 

The second part of this manuscript is oriented toward SRAM diagnosis solutions. In 

fact, as soon as the test phase has revealed logic errors in a given memory, diagnosis can be 

performed in order to precisely localize faulty sites. This may be helpful to improve memory 

yield by using redundancies [KIM98, HAR01, ZOR02] added to the SRAM structure. The 

repair phase consists in replacing defective blocks with spare ones. Some of the different 

types of redundancies include word redundancy, word line redundancy, bit line redundancy 

and I/O redundancy [RON02]. 

The diagnostic may also be used to improve yield ramp up for new technologies and 

new designs. This time, the crucial information is not only the fault localization but also fault 

type and its physical origin. With such information available, engineers can adjust the 

manufacturing process and/or enhance the memory design. 

Existing diagnosis solutions are most of the time not able to precisely localize faulty 

sites, and to deal with dynamic faults. 

The second objective of this thesis deals with new and efficient solutions for SRAMs 

diagnostic. 

Works realized during the three years of this thesis have been carried out in 

collaboration with Infineon Technologies (Sophia Antipolis), under the framework of the 

NANOTEST – 2A702 European Project. With this partnership, we have been able to act a 

complete characterization of behaviors occurring in SRAMs. On the basis of this analysis and 

characterization work, we have determined various faults models and developed some 

efficient test solutions. Moreover, the industrial collaboration has also allowed the validation 

of all results. This work has been the object of several publications in international 

conferences and journals. 

This manuscript is divided in two parts: 

The first part is dedicated to dynamic faults testing in an SRAM, especially dynamic 

faults due to resistive-open defects in SRAM write drivers and sense amplifiers. Thereafter, 

we also show that process variations (called mismatches in case of local variations) on the 

transistor threshold voltage 푉  may impact the core-cell behavior. 
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The second part provides a presentation of new diagnosis techniques. In a first time, two 

Design For Diagnosis (DFD) methods able to deal with weak write drivers are presented. 

Next, a global memory diagnosis method, based on the use of algorithms, is proposed. 

  



 

 

 
  



 

 

21 
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Introduction 

Existing test solutions, based on March type algorithms, target functional fault models 

such as SAF, TF and CF faults models. Those are known as static fault models as they require 

at most one read/write operation to be sensitized. However, in VDSM technologies, dynamic 

faults [VDG00, ARS01] are more likely to occur. These faults require a specific read/write 

sequence to be sensitized and are mainly due to bad vias or contacts inducing resistive-open 

defects. Unfortunately, the existing March test solutions are most of the time unable to test 

these new kinds of faults [HAM03].  

Some papers dealing with dynamic faults due to resistive-open defects in various blocks 

of the memory, such as address decoder [SAC97, DIL04a, DIL06b], core-cell [BOR03b, 

DIL04b, DIL05c, BOR05] and pre-charge circuit [ADA02, DIL05b, DIL07] have been 

proposed so far. However, there is a lack of studies on dynamic faults due to SRAM write 

driver and sense amplifier. We propose here to overcome that by proposing two studies on 

dynamic faults induced by resistive-open defects in the write driver and in the sense amplifier. 

This part is organized as follows: a first chapter is dedicated to an overview of memory 

test. In the second chapter, the SRAM functioning is studied when write drivers are affected 

by resistive-open defects. The third chapter deals with memory functioning in presence of 

such defects in the sense amplifiers. Then, we will see in the fourth chapter that dynamic 

faults in SRAMs can also be due to local process variations also called mismatches. Finally, 

concluding remarks are provided in the last section. 
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Chapter 1. Background and state-of-the-art 

This chapter gives the SRAM background useful for a complete understanding of the 

remaining of this part. Especially, a global view of a SRAM as well as the core-cell view are 

briefly depicted. Next, the techniques commonly used to test SRAMs are presented. Finally, a 

state-of-the-art on dynamic faults testing is provided in order to justify our study. 

The organization of this chapter is as follows: in the first Section, a background on 

memory testing is provided. The second Section concerns the dynamic fault testing. Finally, 

Section 3 gives some conclusions. 

I.1.1. Background on memory testing 

I.1.1.1. SRAM structure 

In any kind of memory, bits are either individually addressable (bit-oriented memories), 

or addressable by groups of 4, 8, 16 or more (word-oriented memories). For simplicity, we 

assume in our discussion that all the memory bits are individually addressable. The bulk of 

the memory consists of the cells in which the bits are stored. Each memory cell is an 

electronic circuit capable to store (at least) one bit.  

The physical organization of the storage cells is commonly done in a square or nearly 

square matrix. In Figure I.1, we illustrate such organization. The cell matrix has 2M rows and 

2N columns, for a total storage capacity of 2M+N bits. For example, one Mega bits square 

matrix would have 1024 rows and 1024 columns (M = N = 10). Each core-cell in the array is 

connected to one of the 2M row lines, universally called word lines (WL), and one of the 2N 

column line, commonly called bit lines (BL). A particular core-cell can be accessed for a read 

or write operation by selecting its word line and its bit line. 

The activation of one of the 2M word lines is performed by the row decoder, which is a 

combinational logic circuit that selects the word line, corresponding to the address (in M bits) 

applied to its input. When the kth word line is activated, whatever the operation, all the 2N 

core-cells in the kth row are connected to their respective bit lines. The connections of the 

couple of selected bit lines to the I/O circuitry is done by the column address decoder. 
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Figure I.1 – Scheme of the memory structure 

The I/O circuitry is composed by a write driver and a sense amplifier. The former allows 

writing data into core-cells whereas the second is used to read their contents. These two 

blocks are presented in detail in Chapter II and Chapter III of this part  

The core-cell (see Figure I.2) stores memory data. It is based on the latch principle, i.e. 

it is composed by two cross-coupled inverters resulting in a latch structure, and two access 

transistors (Mtn3 and Mtn4). Data is stored as voltage levels at the two sides of the latch. A 

logic ‘1’ is stored into the core-cell if node S is high and node SB is low; the opposite states 

on both nodes are required for storing a logic ‘0’. For read or write operations, the access 

transistors Mtn3 and Mtn4 are turned on when the word line is selected (its voltage goes 

high); thus connecting the latch to the bit lines BL and BLB.  

Note that both BL and BLB lines are useful for read/write operations. The access 

transistors behave as transmission gates allowing bi-directional current flow between the latch 

and the BL and BLB lines. 
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S SB

WL 

Mtp1 

Mtn1 

Mtp2

Mtn2

Mtn3 Mtn4 

CSB CS

BL BLB 

 

Figure I.2 – Core-cell scheme 

I.1.1.2. Fault modeling  

I.1.1.2.a. Fault classification [VDG00] 

In this sub-section we define some terms that will be regularly used in the following.  

Functional faults can be defined as the deviation of the observed memory behavior from the 

functionally specified one under a set of performed operations. Therefore, two basic 

ingredients can be identified to any functional fault model (FFM): 

 a list of performed memory operations. 

 a list of corresponding deviations in the observed behavior from the expected 

one.  

Any list of performed operations on the memory is called an operation sequence. An 

operation sequence that results in a difference between the observed and the expected memory 

behavior is called a sensitizing operation sequence (SOS). The observed memory behavior 

that deviates from the expected one is called a faulty behavior. A general notation to represent 

operation sequences is given first, followed by a notation of the faulty behavior. 

Throughout the 1980s and during the first half of the 1990s, the only functional 

parameter considered relevant to the faulty behavior was the stored logic state in the memory 

cell [VDG98]. Recently, another functional parameter, the output value of a read operation, 

has also been considered to be relevant [VDG99]. Therefore, any difference between the 

observed and expected memory behavior can be denoted by the following notation  

< 푆/퐹/푅 >. 푺 describes the sensitizing operation sequence that sensitizes the fault. 푭 

describes the value or the behavior of the faulty core-cell; 푭  {0, 1, ↑, ↓,−}. 푹 describes the 

logic output level of a read operation in case S contains read operations. The difference 

between the observed and expected memory behavior denoted by < 푆/퐹/푅 > is referred to as 
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a fault primitive (FP). The notion of FPs makes it possible to give a precise definition of an 

FFM as understood for memory devices. This definition is presented next. A functional fault 

model is a non-empty set of fault primitives. 

FPs can be classified according to #C, the number of different cells accessed during an 

SOS, and according to #O, the number of different operations performed in an SOS (see 

Figure I.3).  

Depending on #C, FPs can be divided into the following classes: 

 If #C = 1 then the FP sensitized by the corresponding SOS is called a single-

cell FP.  

 If #C > 1 then the FP sensitized by the corresponding SOS is called a 

coupling FP. If #C = 2 then it is described as 2-coupling FP or 2-cell FP. If  

#C = 3 then it is described as 3-coupling FP, etc.  

Depending on #O, FPs can be divided into the following classes:  

 If #O = 1 then the FP sensitized by the corresponding SOS is called a static 

FP 

 If #O > 1 then the FP sensitized by the corresponding SOS is called a 

dynamic FP. If #O = 2 then it is described as 2-operation dynamic FP. If  

#O = 3 then it is described as 3-operation dynamic FP, etc. 

Figure I.3 shows a taxonomy of the space of FPs. It is important to note that the two 

ways to classify FPs are independent, since their definition is based on independent factors of 

the SOS. As a result, a single-cell FP can be static, or dynamic with any number of operations. 

The same applies to coupling FPs. 

Since an FFM is defined as a set of FPs, it is expected that FFMs will inherit the 

properties of FPs:  

 if an FFM is defined as a collection of single-cell static FPs, then the FFM is a 

single-cell fault model. SAF or TF are such FFM. 

 If an FFM is composed by a set of two-operation FPs, then the FFM may be 

either a single-cell dynamic FFM or a coupling dynamic FFM. For example 

dynamic Read Destructive Fault (dRDF) is a single-cell dynamic FFM and 

Un-Restored Destructive Write Fault (URDWF) is a 2-coupling dynamic 

FFM. 
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 If an FFM consists of FPs classified into inconsistent classes, single-cell and 

two-cell FPs for example, it is described as a single-cell and a two-cell fault 

model.  

The taxonomy above can be extended to include linked faults [VDG98] and data 

retention faults [DEK90]. 

In the remaining of the thesis, we will focus on the dynamic FFM space (see right hand 

of Figure I.3), i.e. faults requiring more than one operation in the SOS. 
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Static 
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Dynamic  
Fault Primitives 

#O=2 #O=3 
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Fault Primitives 

3-operation 
Fault Primitives  

Figure I.3 – Taxonomy of fault primitives 

I.1.1.2.b. Test patterns and algorithms 

Remember that a memory is a particular circuit having a large quantity of internal states 

related to its size, i.e. 2n with n the number of bits in the memory. Because of time constraints, 

the test of all possible internal states of memory is not possible. Currently, memories achieve 

more than 1Gbits of storage capacity. For instance, with a O(2n) test procedure, a 4Mbits 

SRAM would be tested in 500 hours. Thus, based on their regular structure and on their 

FFMs, researchers have developed new test methods and algorithms with a linear complexity 

(O(n)). Traditional memory tests include many well-known tests such as GALPAT, 

checkerboard, sliding diagonal, etc… [VDG98]. These test solutions are not based on fault 

models, such as SAF and CF, thus their quality in terms of fault coverage is difficult to be 

proved [VDG98]. Although simple to implement and test time advantageous, these patterns 

present a low fault coverage and only the SAF detection is guaranteed. 

Consequently, new test methods, called March tests, have been developed. Such tests 

achieve a high coverage for SAF, TF or CF. March algorithms have a linear complexity 
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(O(n)) and more flexibility thanks to their Degree of Freedom (DOF) [NIG98], defined below. 

We assume the definition of a March test described by [SUK81]: 

A March test consists of a finite sequence of March elements. A March element is a 

finite sequence of operations applied to every core-cell of memory before proceeding to the 

next cell. The latter can be done in either one of two address orders: an increasing (↑) 

address order (e.g. from address 0 to address n - 1), or a decreasing (↓) address order which 

is the opposite of the ↑ address order. When the address order is irrelevant the symbol ↕ is 

used. An operation can consist of: writing a logic ‘0’ into a cell (푤0), writing a logic ‘1’ into 

a cell (푤1), reading a cell with expected value ‘0’ (푟0), and reading a cell with expected 

value ‘1’ (푟1). Note that all operations of a March element are performed at a certain 

address, before proceeding to the next address. 

Degrees of freedom 

DOF I. The address sequences can be freely chosen as long as all addresses occur 

exactly once and the sequence is reversible 

DOF II. The address sequence for initialization can be freely chosen as long as all 

addresses occur at least once. 

DOF III. If the March test is built symmetrically (detects for example both SA0 and 

SA1 faults), the data written to the cells can be exchanged completely 

DOF IV. The data within a read/write operation does not necessarily has to be 

equivalent for all memory addresses as long as the detection probabilities for basic 

faults are not affected  

DOF V. The input data is not defined during read operations 

DOF VI. The output data is not defined during write operations 

I.1.2. Dynamic faults testing 

As mentioned above, memory testing is based on the use of algorithms, especially 

March test algorithms. In general, the static faults are covered by a certain number of common 

March test algorithms. On the other hand, these algorithms are not effective for the test of the 

dynamic faults, which require the use of specific test sequences. Previous works done in the 

field of memory test algorithms targeting dynamic faults are very limited. 
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In [VDG02], an exhaustive set of single-cell 2-operation FPs is generated. It results in a 

first set of possible read/write combinations and induced faulty behavior. From this starting 

point, instead of taking into account all possible FPs (which may represent a too high set of 

possibilities), authors extracted a sub-set of 12 single-cell 2-operation dynamic FPs 

considering that those are the most realistic ones based on ad-hoc assumptions. In the same 

way, an exhaustive set of 2-cell 2-operation FPs is generated. It results in a second set of 

possible read/write combinations. Once again, a sub-set of 24 2-cell 2-operation dynamic FPs 

is considered as being the more realistic ones still based on ad-hoc assumptions. 

Many studies are based on the detection of the complete set of FPs exhaustively 

generated like in [VDG02]. In [HAM02], two March test algorithms, March RAW1 of length 

13N and March RAW of length 26N, for classes of realistic single-cell and 2-cell 2-operation 

dynamic faults respectively, were proposed. In [BEN05a], two March test algorithms, March 

AB1 of length 11N and March AB of length 22N, for the same classes as RAW1 and RAW 

respectively (i.e. realistic single-cell and 2-cell two-operation dynamic faults respectively) 

were proposed, thus improving the length of those proposed in [HAM02]. In [BEN05b], a 

March test algorithm of length 100N was proposed for detection of 2-cell dynamic faults with 

two operations both applied on the victim or aggressor cells. Compare to [HAM02] and 

[BEN05a], the sub-set of 2-cell 2-operation is enlarged. In [HAR06], authors proposed a 

March test algorithm of length 70N, targeting the same faults as in [BEN05b], thus improving 

the length by 30N of that proposed in [BEN05b]. They proposed also a March test algorithm 

able to deal with the overall single-cell 2-operation dynamic faults described in [VDG02].  

We can thus imagine to create algorithms able to deal with x-cell y-operation dynamic 

faults, where x → n (n is the number of core-cells) and y → ∞. Consequently, the dynamic 

fault class is infinite as the number of operations required for their sensitization is not limited. 

Based on the methodology presented above, the resulting March tests complexity becomes too 

high for industrial application due to huge required test time (algorithm complexity more than 

100N). So, it is not possible to deal with all dynamic faults without increasing considerably 

the characterization time. In addition, such method is not based on a complete understanding 

of real defects that must appear in memory. Therefore, considering an exhaustive set of FPs 

bring to the consideration of improbable faulty behaviors.  

Instead of considering all possible dynamic faults, a new approach consisting in first 

injecting actual defects and then studying the memory behavior in presence of such defects is 

developed. This new approach is more realistic as no assumptions on FPs are done without 
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understanding and verify the validity of the faulty behavior. In this approach, the memory 

layout is first considered and potential defective sites as well as the physical origins inducing 

a faulty behavior are highlighted. It has been shown in [JAM01, AZI05] that the two major 

types of defects that occur during the manufacturing ICs are opens and bridges defects. 

The resistive-bridge defects may be due to salicide break occurring inside the core-cell. 

In [AZI05], authors show that such defects in the core-cell array may be the cause of dynamic 

faults. As results, a March test called DITEC+ has been proposed. 

The significance of resistive-open defects has considerably increased in recent 

technologies, due to the presence of many interconnection layers and an ever-growing number 

of connections between each layer. In particular, in [JAM01] Intel reports that resistive-open 

vias are the most common root cause of test escapes in deep-submicron technologies. Hence, 

resistive-open defects and the faulty behavior that they involve have already been considered 

in the memory testing literature. With respect to the layout, these defects have been placed in 

correspondence of the interconnections. Based on this approach, some memory blocks have 

been studied, the core-cell [BOR03b, DIL04b, DIL05c, BOR05], the address decoder 

[SAC97, DIL04a, DIL06b] and the pre-charge circuit [DIL05b, DIL07]. As results, March 

algorithms dealing with dynamic faults in such blocks have been developed. Especially, 

authors have proposed modifications (thanks to DOFs describe above) on a well known 

March algorithms, the March C- (see Figure I.4). This approach seems more interesting, 

especially for industrial applications, as the test phase target only realistic faults. March 

algorithms complexity is thus reduced.  

↕ (푤0) ↑ (푟0,푤1) ↑ (푟1,푤0) ↓ (푟0,푤1) ↓ (푟1,푤0) ↕ (푟0) 

Figure I.4 – March C- algorithm 

However, few works have been done on resistive-open defects in the write driver and in 

the sense amplifier [ADA02]. This thesis overcomes this missing and proposes a study of 

these two blocks in presence of resistive-open defects. 

I.1.3. Conclusion 

In this chapter, we have defined the background on memory testing as well as a brief 

state-of-the-art on dynamic fault testing. We show that memory testing is most of time based 

on March test algorithms as they present a low complexity (O(n)) and are flexible thanks to 
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their DOFs. Based on the use of such algorithms, some studies dealing with dynamic fault 

testing have been done. Two main approaches are distinguishable: the first one consists in 

using an exhaustive set of FPs and generate specific test algorithms able to detect it. This 

solution induces a test time increase which may be inadequate for industrial applications as 

the set of FPs defining dynamic faults is infinite. The second approach consists in first 

injecting actual defects from layout extraction, studying the induced SRAM faulty behaviors 

and then generating an adapted March test algorithms. Based on this second approach, studies 

on core-cell, pre-charge circuit and address decoder have been published so far. In the 

remaining of this part, we propose to complete these works with a study of the write driver 

and the sense amplifier. 
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Chapter 2. Dynamic Faults in SRAM write drivers 

In this chapter, we propose an analysis of dynamic faults induced by the presence of 

resistive-open defects in the write driver of SRAMs. We have inserted actual resistive-open 

defects in some locations of a write driver and we have performed electrical simulations in 

order to evaluate their effects. We have analyzed the influence of each single defect on the 

functional memory operations. We show that, some resistive-open defects may lead to 

dynamic behaviors, that can be modeled as Slow Write Driver Fault (SWDF) [VDG04], Un-

Restored Write Fault (URWF) [ADA97] and Un-Restored Destructive Write Fault (URDWF). 

The latter has never been experienced in the past. These fault models are studied and possible 

March test solutions to detect them are provided. All simulations are performed on an SRAM 

designed with an Infineon 65nm technology. 

This chapter is organized as follows: Section 1 presents the write driver fault-free 

functioning. Section 2 lists all possible locations of resistive-open defects in the write driver 

and gives the corresponding faulty behaviors. Section 3 presents a complete analysis of 

SWDF as well as a March test algorithm to detect such a type of fault. In the same way, 

Section 4 proposes an URDWF and URWF analysis. Finally, concluding remarks are given in 

Section 5. 

I.2.1. Write driver fault-free functioning 

By groups of columns in an SRAM, a write driver is used to control the true bit line 

(BL) and the complement bit line (BLB) during a write operation. As the two bit lines are pre-

charged to 푉푑푑 before every operation, the write driver has just to act the pull down of one of 

the two bit lines during a write operation: 

 BL for a write '0' (푤0) operation 

 BLB for a write '1' (푤1) operation 

The considered write driver structure is depicted in Figure I.5. It is composed by a write 

control part and a driver part. The first part receives the data that has to be written (DataIn) 

and the Write Enable signal (active at low level) which controls the write operation with its 

two outputs, named AW0 and AW1. If DataIn = 0 and the write enable signal is active, then 

AW0 = 1 and AW1 = 0. In that case, transistor Mtn1 acts the pull down of BL which 
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corresponds to a 푤0 operation. In the same way, if DataIn = 1, AW0 = 0 and AW1 = 1, so 

that transistor Mtn2 acts the pull down of BLB. It is a 푤1 operation. 
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Figure I.5 – Write driver structure 

Remark: At this point, it is important to notice that, for a fault-free write driver, signals AW0 

and AW1 can never be set to logic ‘1’ at the same time.  

Waveforms presented in Figure I.6 show the correct action of the write driver during 

two consecutive write operations. Especially, a 푤1 operation is performed followed by a 푤0 

operation on a core-cell that initially contains a logic '0'. S and SB are the state values of the 

selected core-cell. These waveforms were obtained for typical operating conditions, i.e. 

process: typical, voltage: 1.2V, temperature: 27°C.  
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Figure I.6 – Fault-free write driver waveforms (퐰ퟏ, 퐰ퟎ) 
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I.2.2. Resistive-open defects in the write driver 

In this section, the effects induced by resistive-open defects on the normal function of 

the write driver circuit are analyzed. We assume the presence of only one defect for each 

analysis because the occurrence of multiple defects is unlikely. 

As shown in Figure I.7, nine resistive-open defects (Df1 to Df9) have been placed in 

different locations of the analyzed write driver. We do not consider all possible locations 

because of the symmetry of the write driver structure. In particular, we have chosen the left 

part of the driver for defects Df1 to Df4. Finally, two defects (Df5 and Df6) have been 

considered in the inverter and three defects (Df7 to Df9) in one of the NOR gates of the write 

control part. Symmetric defects can be placed on the other NOR gate of the write control part 

and in the right part of the driver. 
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Figure I.7 – Defect injection in the write driver 

I.2.2.2. Defect incidence analysis 

The faulty behaviors produced by each defect in the write driver are described below. 

Defect Df1: This defect produces a delay in the discharging phase of BL during the 

writing phases. The faulty behavior related to Df1 can be modeled by a TF. This fault is a 
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static fault and many classical March tests are able to detect it. The definition of such fault is 

provided below: 

Transition Fault (TF): A cell is said to have a TF if it fails to undergo a transition  

(0  1 or 1  0) when it is written. 

Defect Df2: This defect induces a delay in the charging operation of BL during the 

writing phases. In presence of such defect, the pull up of node BL cannot be performed but, as 

the write driver has also a pre-charge circuit, the pull up is acted any how. Consequently, no 

faulty behavior occurs. 

Defect Df3: This defect prevents to turn off of transistor Mtp1. Consequently, Mtp1 is 

still turned on. The worst case should be if transistor Mtn1 has to fight against transistor Mtp2 

during a 푤0 operation. However, a specific sizing is done to have the N plan (Mtn1 and Mtn2) 

at least 5× stronger than the P plan (Mtp1 and Mtp2) and hence insure the pull down of the bit 

line (BL for a 푤0 and BLB for a 푤1) in the time allowed for the write operation. Thus, even if 

Mtn1 has to fight against Mtp2, the resulting level on BL is ‘0’. Df3 has hence no impact on 

the write driver functioning. 

Defect Df4: This defect produces effects similar to Df2. 

Defects Df5 and Df6: During a write operation, one of the two bit lines is driven to ‘0’ 

and the other one remains at 푉푑푑. However, in presence of Df5 or Df6, this operation cannot 

be performed, especially when there are two successive write operations with an opposite 

value. This faulty behavior can be modeled as Slow Write Driver Fault (SWDF): 

Slow Write Driver Fault (SWDF) [VDG04]: A write driver is said to have a SWDF if it 

cannot act a w0 (w1) when this operation is preceded by a w1 (w0). That results on the core-

cell that does not change its data content. 

Defect Df7: This defect produces effects similar to Df1. 

Defect Df8: This defect prevents the pull down of node AW0 but this action is still acted 

by the parallel NMOS transistor controlled by the write enable signal. Consequently, no faulty 

behavior is generated by such defect. 

Defect Df9: A 푤0 operation can be performed by the write driver, i.e. AW0 node (see 

Figure I.7) can be set to a logic ‘1’. Normally, at the end of the operation, the Write Enable 

signal performs the pull down of node AW0. But Df9 prevents this pull down and thus node 

AW0 remains at logic ‘1’ a certain time depending on the defect size. Hence, the write driver 

continues to perform a 푤0 even if a read operation has to be done. This faulty behavior is 
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modeled as an Un-Restored Destructive Write Fault (URDWF) or an Un-Restored Write Fault 

(URWF) (depending on the defect size): 

Un-Restored Write Fault (URWF) [ADA97]: The pull up of one of the two bit lines is 

not completely achieved after the state reached with a write operation. Consequently the 

following read operation of an opposite data in a cell belonging to the same I/O circuitry is 

not correctly acted. 

Un-Restored Destructive Write Fault (URDWF): The same definition as URWF but in 

addition to the faulty read operation, the core-cell flips. 

I.2.2.3. Simulation set-up and results 

Now we show the simulation results concerning the nine resistive-open defects analyzed 

in the previous sub-section. All electrical simulations of these defects have been performed 

with the Infineon internal SPICE-like simulator, considering at first a reference 8Kx32 

Infineon 65 nm memory block, organized as an array of 512 word lines x 512 bit lines.  

The whole operating environment range has been examined with the aim of determining 

the minimum defect size implying a faulty behavior. Hence simulations have been performed 

by applying a number of different test patterns and by varying the following parameters: 

 Process corner: slow, typical, fast, fast n / slow p, slow n / fast p 

 Supply voltage:  1.08V, 1.2V, 1.32V 

 Temperature:  -30°C, 27°C, 110°C 

 Defect size has been swept from a few Ωs up to several MΩs. 

Table I.1 presents a summary of the fault models identified for each injected resistive 

defect, along with the conditions for maximum fault detection, i.e. the minimum detected 

resistance value. 

The first column (Dfi) indicates the defect location in the write driver with respect to 

Figure I.7. The second column gives the corresponding fault models. The last four columns 

correspond to the electrical parameters which maximize the fault detection. 
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Defect Fault Model Min Res (k) Process corner Voltage (V) Temp (°C) 

Df1 TF 0.4 Fast 1.08 -30 

Df2 - - - - - 

Df3 - - - - - 

Df4 - - - - - 

Df5 SWDF 128 Fast 1.08 -30 

Df6 SWDF 170 SF 1.32 110 

Df7 TF 9.5 Fast 1.32 -30 

Df8 - - - - - 

Df9 URWF / URDWF 72 / 110 Slow 1.08 -30 

Table I.1 – Summary of worst-case PVT corners for the defects of Figure I.7 and 
corresponding minimum detected resistance and fault models  

As a concluding remark, we can notice that resistive-open defects in the write driver of 

an SRAM may be the consequence of a static fault (TF) as well as dynamic ones (SWDF, 

URWF / URDWF). The static fault is well known and it is detected by classical March tests. 

Therefore, in the next Section, we analyze the dynamic behaviors, represented by Slow Write 

Driver Faults and Un-Restored Destructive Write Faults. 

I.2.3. Slow Write Driver Faults testing 

As shown in the previous Section, SWDF can be produced by defaults Df5 and Df6. 

Here, we propose a complete understanding of the SRAM functioning in presence of such 

defects. 

I.2.3.1. Detailed analysis of Df5 and Df6 

During a write operation, one of the two bit lines is driven to ‘0’ and the other one 

remains at 푉푑푑. However, in presence of Df5 or Df6, this operation cannot be performed, 

especially when there are two successive write operations with an opposite value. 

On this basis, SWDFs can be defined with four FPs, which are divided in two groups.  
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The first group corresponds to defect Df5: 

FP1: < 1풘ퟎ풘ퟏ/ퟎ/−> A logic '1' is initially stored in the core-cell. Then, a 

푤0 is acted immediately followed by a 푤1. The core-cell remains at a logic ‘0’. 

FP2: < 0풘ퟎ풘ퟏ/ퟎ/−> A logic '0' is initially stored on the core-cell. Then, a 

푤0 is acted immediately followed by a 푤1. The core-cell remains at a logic ‘0’. 

The second group of FPs corresponds to defect Df6: 

FP3: < 0풘ퟏ풘ퟎ/ퟏ/−> A logic '0' is initially stored on the core-cell. Then, a 

푤1 is acted immediately followed by a 푤0. The core-cell remains at a logic ‘1’. 

FP4: < 1풘ퟏ풘ퟎ/ퟏ/−> A logic '1' is initially stored on the core-cell. Then, a 

푤1 is acted immediately followed by a 푤0. The core-cell remains at a logic ‘1’. 

As the data initially stored in the core-cell does not influence the behavior of the write 

driver, the following equivalences between FPs can be done: 

FP1 ≡ FP2 and FP3 ≡ FP4 

Consequently, we focus only on FP1 and FP3. Note that SWDF is a dynamic fault as it 

requires two consecutive operations (two write operations) to be sensitized. 

I.2.3.1.a. Df5 analysis 

Waveforms in Figure I.8 present the faulty behavior of the memory in presence of Df5 

with typical PVT conditions (Process Typ, Voltage 1.2V and Temperature 27 °C) and a defect 

size of about 900 k. 
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Figure I.8 – Waveforms of < 1푤0푤1/1/0 > simulation (Df5) 
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The simulation starts on a core-cell that initially contains a logic '1'. We first apply a 푤0 

operation. Node DataIn is set to logic '0' and node DataB is set to logic '1' before the write 

operation. This first write operation is correctly acted on the core-cell which switches from 

logic '1' to logic '0'. Then a 푤1 operation is performed. Just before this operation, DataIn is set 

to logic '1' but node DataB remains to logic '1'. In that case, the pull down of node DataB 

cannot be performed due to the presence of Df5. The two nodes AW0 and AW1 are set to 

logic '0'. Any write operation cannot be performed as the four transistors of the driver (Mtp1, 

Mtn1, Mtp2 and Mtn2) are turned off. The two bit lines are floating at 푉푑푑 level. This 

scenario is represented in Figure I.9.  
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Figure I.9 – Configuration of the write driver in presence of Df5 

I.2.3.1.b. Df6 analysis 

Waveforms in Figure I.10 present the faulty behavior of the memory in presence of Df6 

with the same operating conditions as the ones used for Df5. 

The simulation starts on a core-cell that initially contains a logic '0'. We first apply a 푤1 

operation. Node DataIn is set to logic '1' and node DataB is set to logic '0' before the write 

operation. This first write operation is correctly acted and the core-cell switches from logic '0' 

to logic '1'. Then, we act a 푤0 operation. Just before this operation, DataIn is set to a logic '0' 

but node DataB remains to a logic '0'. In that case, the pull up of node DataB cannot be 

performed due to the presence of defect Df6. The two nodes AW0 and AW1 are set to logic 

'1'. This configuration is problematic as it means that the driver has to act simultaneously a 

푤0 (AW0 = 1) and 푤1 (AW1 = 1) operations. From an electrical level point of view, the four 

transistors of the driver are turned on. Thus, there is a resistive short between 푉푑푑 and the 

퐺푛푑 nodes. 
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Figure I.10 – Waveforms of < 0푤1푤0/0/1 > simulation (Df6) 

In order to define the level of BL and BLB nodes, we must analyze the size but also the 

purpose of each transistors of the driver. For the same size, it is well known that NMOS 

transistors are stronger than PMOS transistors. For primitive gates (INV, NAND, NOR  

etc …), the sizing of N and P plans is done so as to balance their current driving capabilities. 

P plans are therefore larger than the N plans. In our case, the problem is different. The driver 

must act the pull down of one of the two bit lines which are equivalent to non negligible 

capacitances due to their length. The pull up of the two bit lines is done by the PMOS (Mtp1 

and Mtp2) of the driver which is helped by the pre-charge circuit. However, as previously 

mentioned, the N plan (Mtn1 and Mtn2) is designed stronger than the P plan (Mtp1 and Mtp2) 

insuring the pull down of the bit line (BL for a 푤0 and BLB for a 푤1) in the time allowed for 

the write operation. With this specific sizing, the resulting voltages on BL and BLB are then 

close to '0' during the 푤0 operation as seen in Figure I.10. This level on the two bit lines 

disturbs the core-cell content (nodes S and SB) but after the 푤0 operation, the core-cell 

returns to logic '1'. This scenario is represented in Figure I.11. 

The two defects have the same consequences on the memory behavior although the 

electrical phenomena are a little bit different. The faulty behavior results in a bad write 

operation if it is performed after another write with an opposite data. 
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Figure I.11 – Faulty behavior of the write driver in presence of Df6 

I.2.3.2. March test solution to detect SWDF 

As seen in the previous sub-section, Df5 and Df6 involve a SWDF which is a dynamic 

fault as it requires two successive write operations to be sensitized. From the FPs presented in 

the previous Section, the required successive operations to detect (sensitize and observe) 

SWDFs is: 

푤푥 푤푥̅ 푟푥̅ 

where the two write operations are for sensitization of the fault and the read operation is for 

observation. 푥 = 0 (resp. 푥 = 1) corresponds to the detection of Df5 (resp. Df6). Let us first 

assume that these three operations must be applied on the same core-cell. From that statement, 

it is easy to create a specific March test to detect essentially SWDFs as presented in 

[VDG04]; March WDm (4N complexity) and March WDw (8N complexity). However, from 

a test point of view, it is more interesting to obtain a March test that covers not only SWDFs 

but rather a larger set of fault models. So, we have focused our study on finding possibilities 

to embed (with additional March elements) or find (with modifications based on the DOFs of 

March tests) the required succession of operations for SWDFs detection in existing March 

algorithms. 

To do that, we have first to consider again the requirements presented above. Let us 

assume the basic view of an SRAM array as shown in Figure I.12 in which the write driver is 

shared by four columns. As the goal is to detect possible malfunction of the driver, it is not 

necessary to act the three operations on the same core-cell. In fact, the first write operation 

can be applied on one core-cell among the core-cells of the four columns. Then, it is not 



Test of dynamic faults in SRAMs 

42 

necessary to act the second write on the same core-cell but, at least, act this write on a core-

cell of the four columns that initially contains an opposite data to the data used for the first 

write operation. Of course, the read operation has to be performed on the last selected core-

cell to control if the second write operation has been correctly performed. This statement 

makes the requirements less stringent. For example, let us assume that the first write is acted 

on CC30. If the next write is acted on CC11, then the fault is sensitized as both core-cells share 

the same write driver. The observation will be done when the core-cell CC11 will be read.  

 WL0

WL1

WL2

WL3

BL0
BL1

DataIn 

WD 

CC00 

CC10 

CC20 

CC30 

CC01 

CC11 

Data
Write Latch 

 

Figure I.12 – Basic view of a part of an SRAM array 

In addition, we can further reduce the stringency of the required conditions to detect 

SWDFs. This time, we have to look deeper in the write driver structure, especially in the 

driver control part. It is controlled by a Write Enable signal to perform the write operation 

with a certain data applied on the DataIn input (see Figure I.5). This data is latched, that 

means, a logic '0' (logic '1') is captured in the latch for a 푤0 (푤1) operation. An important 

property is that when a 푤0 (푤1) is acted by the driver, this data (DataIn) remains stable in the 

latch as long as another write is not performed with the same driver. Consequently, the latch 

of the driver captures the first data that has to be written. Thus, it is not necessary to act 

immediately the second write to sensitize the write driver. Any other operation can be 

performed between the two write operations as long as it does not use the considered write 

driver. In the same way, the read operation can be preceded by read or write operations which 

do not change the content of the faulty core-cell. The resulting successions of operations to 

detect SWDFs are presented in Figure I.13. 
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푤푥  (푟 푎푛푑/표푟 푤) 푤푥̅ (푟 푎푛푑/표푟 푤) 푟푥̅ 

        

      Any write operations except a write in the  

      faulty core-cell and/or any read operation 

  Write operations performed by another 

  write driver and/or any read operation 

Figure I.13 – Required conditions to detect SWDFs 

From these new and less stringent test conditions, we can try to find them in an existing 

March test. The March algorithm must have the following requirements: 

 The elements of the March test have to include a 푤0 operation followed by a 푤1 

operation to sensitize SWDFs induced by Df5 and a 푤1 operation followed by a 

푤0 operation for those induced by Df6. 

 The presence of a 푟1 operation is necessary for observation of SWDFs due to 

Df5 and a 푟0 operation for those induced by Df6. 

These two requirements can easily be found in many March algorithms. As example, 

what is proposed here is to analyze if a well know March algorithm is able to detect SWDFs. 

In our study, we consider the March C- algorithm previously mentioned. To be perfectly, the 

first four elements of March C- useful for explanations are depicted in Figure I.14.  

↕ (푤0) ↑ (푟0,푤1) ↑ (푟1,푤0) ↓ (푟0,푤1) … 

            푀0          푀1               푀2             푀3 

Figure I.14 – March C- algorithm 

We first consider the succession of M0, M1 and M2 March elements. M0 performs an 

initialization of the array at logic '0'. During this operation, the DataIn node of each write 

driver of the memory is latched at a logic '0'. Then, we act element M1 that starts by a 푟0 

operation. This operation does not influence the write driver. The first time we act the 푤1 

operation, the DataIn of the selected write driver is changed from logic '0' to logic '1'. This 

sensitizes the write drivers one after the other in SRAM. Finally, the 푟1 operation in element 

M2 performs the observation of possible fault effects. The succession of the three first 

elements (M0 to M2) allows the detection of SWDFs induced by Df5 (detected by 푤0푤1푟1). 

Table I.2 summarizes the actions of elements M0 to M2 on a simple 8 core-cell memory, 
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composed by two word lines, four bit lines and two write drivers as presented in Figure I.15. 

In order to perform the March elements, we have randomly selected the  addressing order as 

follow: 

퐶푒푙푙 0, 6, 1, 2, 5, 3, 7, 4 

The  addressing order is of course the reverse one. 

 WL0

WL1

DataIn_1

WDR1 

0 

4 

1 

5 

DataIn_2

3 

6 7 

2 

WDR2 

 

Figure I.15 – A simple 8 core-cell SRAM 

Table I.2.a summarizes the action of element M0 on the SRAM depicted in Figure I.15. 

This element acts the initialization of the array at a logic '0'. Then, we perform element M1 

(see Table I.2.b). First, cell n°0 is read and written to logic '1'. This 푤1 sensitizes the first 

write driver WDR1. The same occurs when the 푤1 operation is performed on cell n°6 which 

is the first one selected in the second group of columns. SWDFs related to Df5 are thus 

sensitized. Element M2 (see Table I.2.c) performs the observation by acting 푟1 operations on 

cell n°0 first (for WDR1), and cell n°6 next (for WDR2). 

In the same way, elements M1, M2 and M3 allow the detection of SWDFs induced by 

Df6 (detected by 푤1푤0푟0). March C- is thus an efficient test algorithm to detect SWDFs in 

addition to faults (stuck-at, transition, coupling, etc …) initially targeted by this algorithm. 
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Cell n° Element M0 
0 w0        
1   w0      
4        w0 
5     w0    

DataIn_1 0 0 0 0 0 0 0 0 
Cell n°2         

2    w0     
3      w0   
6  w0       
7       w0  

DataIn_2 x 0 0 0 0 0 0 0 a) 
 

Cell n° Element M1 
0 r0 w1       
1     r0 w1   
4         
5         

DataIn_1 0 1 1 1 1 1 1 1 

Cell n°2         
2       r0 w1 
3         
6   r0 w1     
7         

DataIn_2 0 0 0 1 1 1 1 1 b) 
 

Cell n° Element M2 
0 r1 w0       
1     r1 w0   
4         
5         

DataIn_1 1 0 0 0 0 0 0 0 
Cell n°2         

2       r1 w0 
3         
6   r1 w0     
7         

DataIn_2 1 1 1 0 0 0 0 0 c) 

Table I.2 – Application of elements M0, M1 and M2 for SWDFs detection 

 

Sensitization of WDR1 

Sensitization of WDR2 

Observation of WDR1 

Observation of WDR2 
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I.2.4. Test solution for Un-Restored Destructive Write Faults  

In this section, we show that in some cases, the resistive-open defect Df9 presented in 

Figure I.7 may lead to a new type of dynamic behavior which has never been experienced in 

the past. This faulty behavior can be modeled as an Un-Restored Destructive Write Fault 

(URDWF). It is related to the organization of the memory and, in particular, it is the 

consequence of the structural dependencies that exist between the write driver and the sense 

amplifier. As explained previously, this faulty behavior may appear when a specific read 

operation is performed immediately after a specific write operation. In this section, we 

propose a possible March test solution to detect such type of dynamic behavior. Before-hand, 

we provide additional explanations on the SRAM functioning, and especially on the structural 

dependencies between the write driver and the sense amplifier that compose the I/O circuitry. 

I.2.4.1. I/O circuitry: structural dependencies between write driver and sense 

amplifier 

By groups of columns in an SRAM, an I/O circuitry is used to control and observe the 

bit line (BL) and the complement bit line (BLB) during the write and read operations. The 

connections of the I/O circuitry are organized as depicted in Figure I.16. An I/O circuitry is 

shared by some BL couples which are selected by the sub-Muxes whose activation is done by 

SELi signal. The functioning of the sub_Muxes is as follows: 

 If SEL0 = 1 (SEL1 = … = SELm = 0) then 

 BL0 = WD = SA 

 BLB0 = WDB = SAB 

 If SELm = 1 (SEL0 = … = SEL(m-1) = 0) then 

 BLm = WD = SA 

 BLBm = WDB = SAB 

The selected bit lines are therefore connected to both the write driver and the sense 

amplifier whatever the operation (read or write). Hence, these two blocks are structurally 

dependent as they are always connected and disconnected to the bit lines at the same time. 

Before every read or write operation, BL and BLB are pre-charged to 푉푑푑. Write driver 

nodes (WD and WDB) and sense amplifier nodes (SA and SAB) are also pre-charged at 푉푑푑 

by their own pre-charge circuits.  
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During a read operation, the sense amplifier translates the weak differential voltage 

between BL and BLB (BL) in a full swing differential signal which is then interpreted as a 

digital signal to provide the logic output. The sense amplifier functioning will be detailed in 

the remaining of this manuscript.  

 BL0 BLB0 

SA 

SEL0 Sub-Mux0

Write 
driver 

I/O circuitry 

PRE 

CC00 

CCn0 

WD WDB SAB 

BLm BLBm 
PRE 

CC0m 

CCnm 

PRE PRE 

SELmSub-Muxm

Sense 
amplifier 

Data In Data Out 

Write Enable SAON 

P0 N0 NB0 PB0 Pm Nm NBm PBm 

 

Figure I.16 – Detailed structure of the I/O circuitry 

For example, let us explain what happen when there is a 푤0 operation followed by a 푟1 

operation. These two operations are performed on two different core-cells (CCA for the 푤0 

and CCB for the 푟1) belonging to the same group of column controlled by the same I/O 

circuitry. Figure I.17 gives the waveforms of these two operations with typical PVT 

conditions (typical process, 1.2V supply voltage, 27°C). Note that S (CCA) and S (CCB) give 

the electrical levels of core-cell internal nodes. 

During the 푤0 operation (푤0 on CCA), the I/O circuitry is connected to the bit lines and 

the low voltage level is propagated from WD (respectively WDB) toward BL (respectively 

BLB), but also toward SA (respectively SAB). Note that there is a degradation of the resulting 

level on SA (respectively SAB) as the connection is done by a PMOS transistor which is not 

able to properly transfer a low voltage level (SA = 푉 ). 
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w0 
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r1 
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SELx 
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BLB 

SA 
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S (CCB ) 

Pre-charge 
 

Figure I.17 – Waveforms of 풘ퟎ and 풓ퟏ operations 

For the read operation (푟1 on CCB), the data is propagated from BL (respectively BLB) 

toward SA (respectively SAB). Note that there is no transfer from BL to WD as  

 WD is at a 푉푑푑 floating level and  

 the discharge of node BL is not important enough to provoke the conduction 

of the NMOS transistor (N0 to Nm NMOS transistors in Figure I.16) and 

hence insure the connection between BL and WD.  

Explanation can be provided by notice that NMOS transistors are in a sub threshold 

functioning mode, as mentioned by Eq. I.1. 

푉 = 푉푑푑 − (푉푑푑 −  ∆퐵퐿) =  ∆퐵퐿 < 푉  (Eq. I.1) 

At the end of the read operation, the sense amplifier is activated to provide the logic data 

output; a logic '1' in our example. 

I.2.4.2. URDWF analysis 

In this sub-section, we detail the behavior of the write driver in presence of defect Df9. 

We first provide a FFM of the faulty behavior by using FPs previously defined. Next, we use 

electrical measurements to analyze the impact of Df9 on the behavior of the memory. As 

shown in Table I.1, Df9 may induce two different dynamic behaviors, either a standard 

URWF or a URDWF. From this statement, we provide comparisons of both URDWF and 

URWF. Finally, we propose a possible March test solution to detect URDWF and URWF. 
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I.2.4.2.a. Functional fault modeling 

In presence of Df9, an Un-Restored Destructive Write Fault may occur. A 푤0 operation 

can be performed by the write driver, i.e. AW0 node (see Figure I.5) can be set to a logic '1'. 

Normally, at the end of the write operation, the Write Enable signal performs the pull down of 

node AW0. But Df9 prevents this pull down and thus node AW0 remains at logic '1' a certain 

time depending on the defect size. Hence, the write driver continues to perform a 푤0 even if a 

read operation has to be done. 

Based on this description, an URDWF can be defined with four FPs, which are divided 

in two groups. The first group corresponds to defect Df9: 

FP1: < 1풘ퟎ,ퟏ풓ퟏ/ퟎ/ퟎ > A 푤0 is performed on a core-cell containing a 

logic '1'. Then, a 푟1 is performed in another core-cell belonging to the same group 

of column. This read operation makes the core-cell flipping from a logic '1' to a 

logic '0'. 

FP2: < 0풘ퟎ,ퟏ풓ퟏ/ퟎ/ퟎ > same as FP1, but this time, the 푤0 is performed on 

a core-cell containing a logic '0'. 

The second group of FPs corresponds to the opposite defect placed in the pull down of 

the other NOR gate of the control part of the write driver. 

FP3: < 1풘ퟏ,ퟎ풓ퟎ/ퟏ/ퟏ > A logic '1' is initially stored in a core-cell. Then a 

푤1 is acted; a logic ‘0’ is stored in another core-cell belonging to the same group 

of column; then a 푟0 is acted in this cell. This one flips to a logic ‘1’. 

FP4: < 0풘ퟏ,ퟎ풓ퟎ/ퟏ/ퟏ > A logic '0' is initially stored in a core-cell. Then a 

푤1 is acted; a logic ‘0’ is stored in another core-cell belonging to the same group 

of column; then a 푟0 is acted in this core-cell. This one flips to a logic ‘1’. 

As the data initially stored in the cell does not influence the behavior of the write driver, 

the following equivalences between FPs can be done: 

FP1 ≡ FP2 and FP3 ≡ FP4 

Furthermore, as the electrical faulty behaviors observed by applying the SOS of FP1 (in 

presence of Df9) and the SOS of FP4 (in presence of the opposite defect placed in the pull 

down of the other NOR gate) are equivalent, with opposite data to be written and read, the 

analysis of one of those is sufficient for a complete study of URDWFs. 
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I.2.4.2.b. Electrical simulations with Df9 

Waveforms in Figure I.18 present the resulting faulty behavior of the memory in 

presence of Df9 with typical PVT conditions (typical process, 1.2V supply voltage, 27°C) and 

a defect size of about 500 k. 

The simulation starts on two different core-cells (CCA and CCB) belonging to the same 

group of columns controlled by the same I/O circuitry, both initially containing a logic '1'. We 

first apply a 푤0 operation on CCA. The pre-charge circuits are switched off. Node WD drives 

the '0' through BL to fight against the core-cell that contains a logic '1'. This means that the 

NMOS transistor (Mtn1 in Figure I.5) has to be strong enough to impose the '0' on BL. The 

푤0 operation is correctly performed on CCA that flips from a logic '1' to a logic '0'. Then, the 

pre-charge circuits are switched on. PMOS transistors composing the pre-charge circuits are 

normally strong enough to drive lines BL, BLB, WD, etc. which are equivalent to 

capacitances. However, these PMOS transistors are much less stronger than the NMOS 

transistors (Mtn1 and Mtn2 in Figure I.5) of the write driver. These different strengths 

between transistors composing the write driver and the pre-charge circuits make that node 

WD still remains at '0' during the pre-charge operation in presence of defect Df9. In this case, 

we can say that the 푤0 operation still remains active (see Figure I.18). 

Afterward, the second core-cell CCB is selected for a 푟1 operation. In order to explain 

the faulty behavior observed, it is important to analyze the functioning of the sense amplifier. 

It allows to take a decision depending on the core-cell content (logic '0' or '1'). If there is an 

erroneous differential voltage between BL and BLB during the read operation, the sense 

amplifier badly translates this differential voltage. In presence of Df9, the fact that node WD 

remains at '0' makes that the differential voltage is incorrect and the 푟1 operation is erroneous. 

As seen in Figure I.18, node SA is at 푉푑푑 and node SAB reaches '0', thus meaning that CCB is 

read as containing a logic '0' and not a logic '1'. It is also important to notice that, as node WD 

remains at '0' during the read operation, this level performs a 푤0 on CCB thus inducing a 

flipping of the core-cell from a logic '1' to a logic '0'. 
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Figure I.18 – Waveforms of < 1푤0, 1푟1/0/0 > simulation (Df9) 

To summarize the effect of Df9, we can say that the 푟1 operation on CCB has two 

effects related to the fact that the write driver continues to perform a 푤0 during this read 

operation. First, the sense amplifier provides the data given by the write driver - a logic '0' in 

our case. Secondly, CCB is written to a logic '0'. So, the 푟1 operation is seen as a 푤0 

operation. 

I.2.4.2.c. URDWF vs. URWF 

As shown previously, an URDWF may occur in presence of defect Df9. Such a faulty 

behavior is observed for specific write/read operations but also for a certain range of defect 

size (see Column 5 in Table I.1) denoted as border 2 in Figure I.19. If Df9 has a size lower 

than border 2 but higher than border 1, an URWF occurs. This time, there is no destruction of 

the data initially stored in the core-cell to be read. 
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Figure I.19 – Fault type vs. defect size 
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Once again, let us consider two core-cells (CCA and CCB) to the same group of columns 

controlled by the same I/O circuitry. Both cells initially contain a logic '1'. Waveforms in 

Figure I.20 present the faulty behavior of the memory in presence of Df9 with typical PVT 

conditions (typical process, 1.2V supply voltage, 27°C) and a defect size of about 100 k. 

The 푤0 operation performed on CCA is correctly acted as the core-cell flips from a logic 

'1' to a logic '0'. Then, the pre-charge circuits of the core-cells are switched on. Compared to  

Figure I.18, this time node WD is not at '0' but rather is increasing. This is due to the fact that 

the NMOS transistor (Mtn1 in Figure I.5) is not fully saturated due to a lower defect size. 

Thus, it fights against the PMOS transistors of the pre-charge circuit. Then, at the beginning 

of the 푟1 operation performed on CCB, the remaining voltage level on node WD is not low 

enough to induce the faulty swap of the core-cell. On the other hand, node WD remains at a 

voltage level which is low enough hence inducing that the sense amplifier badly translates the 

faulty differential voltage. This is shown in Figure I.20 where we can see that cell CCB does 

not flip (node S of CCB still remains at a logic '1') but the logic data output given by the sense 

amplifier is a logic '0' (node SA remains close to 푉푑푑 and node SAB is at '0'). 
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Figure I.20 – Waveforms of < ퟏ풘ퟎ,ퟏ풓ퟏ/ퟏ/ퟎ > simulation (Df9) 

This electrical study shows that depending on the size of Df9, the faulty behavior can be 

modeled as an URWF or an URDWF. The next section provides a test solution for both fault 

models. 



Dynamic Faults in SRAM write drivers 

53 

I.2.4.2.d. March test solution 

As seen previously, Df9 may involve an URDWF or an URWF depending on its size. 

Both fault models require the same sequence of operations to be detected (sensitized and 

observed). This sequence is defined as follows: 

푤푥 푟푥̅ 

where both operations have to be performed on two distinct core-cells controlled by the same 

I/O circuitry. 

A study of URWF detection has already been done in [DIL05b]. This study shows that 

the March C- algorithm (see Figure I.14) with a column after column addressing order is able 

to detect URWFs. This particular addressing order is allowed once again by the DOFs of 

March tests. As the detection conditions of URWFs and URDWFs are the same, the March C- 

algorithm is also able to detect URDWFs. 

I.2.5. Conclusion 

In this chapter, we have analyzed and characterized the effects of resistive-open defects 

that may occur in the write driver of SRAMs. We have found that some defects do not disturb 

the memory behavior, some others involve a TF, and two defects in the write control part 

induce a Slow Write Driver Fault (SWDF). This fault prevents the write control part to 

correctly decide between 푤0 and 푤1 operations. By performing electrical simulations with 

the 65nm Infineon technology, we have evaluated the influence of these defects and show that 

SWDFs can easily be detected by a standard March algorithm namely the March C-. 

Moreover, we have shown that a resistive-open defect may lead to a new type of 

dynamic behavior which has never been experienced in the past. This faulty behavior has 

been modeled as an Un-Restored Destructive Write Fault (URDWF). Such fault is a 

consequence of the structural dependencies that exist between the write driver and the sense 

amplifier, and appears when a specific read operation is performed immediately after a 

specific write operation. We have performed electrical simulations to give a complete 

understanding of such a faulty behavior and to highlight differences with the standard Un-

Restored Write Fault (URWF) model. 
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Chapter 3. Dynamic faults in SRAM sense amplifiers 

In this chapter, we present an analysis of dynamic faults induced by the presence of 

resistive-open defects in the sense amplifier of SRAMs. The validation of this work is done 

with a SRAM designed in 65nm technology. We have inserted resistive-open defects in some 

locations of a sense amplifier and we have performed electrical simulations in order to 

evaluate their effects. We have analyzed the influence of each single defect on the functional 

memory operations. We show that some resistive-open defects may lead to a new type of 

dynamic behavior which has never been experienced in the past. This faulty behavior can be 

modeled by dynamic two-cell Incorrect Read Faults of two different types (d2cIRF1 and 

d2cIRF2). Such fault models represent failures in the sense amplifier which prevent it to do its 

function, i.e. a read operation. The main difference between them is that d2cIRF1 prevents all 

read operations whereas d2cIRF2 prevents only a single type of read operation (either 푟0 or 

푟1). As explained in this chapter, these faulty behaviors may appear when a specific sequence 

of read operations is performed. To complete our study, we propose a possible March test 

solution to detect such fault models. 

This chapter is organized as follows. Section 1 presents the sense amplifier fault-free 

functioning. Section 2 lists all possible locations of resistive-open defects in the sense 

amplifier and gives the corresponding faulty behaviors. Section 3 presents a complete 

analysis of d2cIRF1 as well as a March test algorithm to detect such a type of fault. In the 

same way, Section 4 deals with the d2cIRF2 fault model. Finally, conclusions are given in 

Section 5. 

I.3.1. Sense amplifier description 

In this section, we describe the structure of each sense amplifier in the I/O circuitry. We 

first provide a global view of the memory including the I/O circuitries and then we detail the 

sense amplifier fault-free operation. 

I.3.1.1. Sense amplifier within the I/O circuitry 

As previously mentioned, an I/O circuitry, composed by write drivers and sense 

amplifiers, is used to control or observe the bit line (BL) and the complement bit line (BLB) 

during the write and read operations of a given core-cell. A global view of the memory 
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structure is presented in Figure I.21 in which we have only represented sense amplifiers (write 

drivers are not represented for the sake of clarity). From Figure I.21, it is important to notice 

that each sense amplifier has its own pre-charge circuit which is activated at the same time as 

the bit line pre-charge circuits. 

As shown in Figure I.21, a sense amplifier is shared by several BL couples. A BL couple 

is selected by the signal SELBLx. During a read operation, the bit line voltage levels of selected 

columns are propagated towards each SAi and SABi nodes (0 ≤ i ≤ k). Then, the sense 

amplifier corresponding to the targeted core-cell is activated by its signal SAONi (all the 

others remaining off). The outputs zi and zbi of this sense amplifier control the data output 

circuitry. This block generates the logic output data (Data_out). At this point, it is important to 

notice that the data output circuitry is shared by one or more sense amplifiers. In some SRAM 

configurations, two sense amplifiers can share the same data output circuitry. In some others, 

four sense amplifiers can share the same data output circuitry. These different possible 

memory configurations will be used later on in the Section to explain the d2cIRF fault model 

and to provide the March algorithm that can be used to detect this fault model. Note also that 

several data output circuitries are normally embedded in an SRAM depending on its size and 

structure. 
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Figure I.21 – Memory structure scheme 
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I.3.1.2. Sense amplifier fault-free operation 

The transistor view of the considered sense amplifier is presented in Figure I.22. As 

previously mentioned, before every read operation, BL and BLB as well as SA and SAB are 

pre-charged at 푉푑푑. A read operation begins with the selection of the targeted core-cell. This 

access time allows one of the two bit lines (BL for a 푟0, BLB for a 푟1) to be discharged of 

about 100mV. 

 

SA Mtp1 

Mtn1 

Vdd 

SAB Mtp2 

Mtn2 

SAON

Vdd 

zb z 
Mtnen 

COM Inter 

 
 

Figure I.22 – Sense amplifier scheme 

The second step consists in activating the sense amplifier in order to translate this weak 

differential voltage between BL and BLB (BL = BL - BLB = SA - SAB) in a full swing 

differential signal which is then interpreted as a digital signal by the data output circuitry: 

 BL ~ + 100mV (푟1)  SA = 1, SAB = 0 

 BL ~ -  100mV (푟0)  SA = 0, SAB = 1 

At the beginning of a read operation, the two nodes SA and SAB can be interpreted as a 

logic ‘1’ level signal that turns on the two NMOS transistors (Mtn1 and Mtn2 in Figure I.22), 

thus helping the discharge of the two nodes. However, the node with a lower voltage value 

(SA for a 푟0, SAB for a 푟1) discharges faster than the other one, thus turning on the 

corresponding PMOS transistor (Mtp2 for a 푟0, Mtp1 for a 푟1).  

In summary, for a read performed on a core-cell belonging to the group i (0 ≤ i ≤ k) of 

core-cells controlled by the same sense amplifier, we finally have: 

 for a 푟0: SAi = 0 and SABi = 1 and: zi = 0 and zbi = 0 

 for a 푟1: SAi = 1 and SABi = 0 and: zi = 1 and zbi = 1 

Note that all the others SAj and SABj (j ≠ i) nodes remain at 푉푑푑 as their sense 

amplifiers are disabled. Consequently, all the other zj remain at a logic ‘0’ and the zbj remain 

at logic ‘1’. Then, the data output circuitry interprets the z and zb signals to provide the logic 
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output data (see Figure I.21). The structure of the data output circuitry is generally a latch. In 

our memory structure, it is not only a latch but it also used a specific and confidential control 

logic. Nevertheless, we report in Table I.3 the truth table representing the logic behavior of 

this data output circuitry. 

z zb Data_out 

0 0 0 

1 0 Memory state 

0 1 Memory state 

1 1 1 

Table I.3 – Truth table of the data output circuitry 

For a 푟0 operation on a core-cell belonging to the group i, zi and zbi are at the logic ‘0’ 

value, thus implying Data_out to be pulled down. For a 푟1 operation, both zi and zbi are at the 

logic ‘1’ value, implying Data_out to be pulled up. Note that when no read operation is 

performed or during the pre-charge operation, SA and SAB remains at 푉푑푑, thus implying  

z = 1 and zb = 0. With such a configuration, the Data_out signal remains stable at the logic 

data stored previously (“Memory state” in Table I.3). 

Waveforms presented in Figure I.23 show the correct operation of a sense amplifier 

during two consecutive read operations. Especially, we perform a 푟0 followed by a 푟1 on two 

different core-cells (CCA and CCB) sharing the same sense amplifier. S(CCA) and S(CCB) are 

the state values of each core-cell. These waveforms were obtained from typical operating 

conditions, i.e. process: typical, voltage: 1.2V, temperature: 27°C. 

The simulation starts with a 푟0 operation performed on CCA. BL node is discharged and 

BLB node remains at 푉푑푑. The same behavior appears on nodes SA and SAB. Then, the 

signal SAON is activated and the sense amplifier detects this weak differential voltage 

between SA and SAB. SA is fully discharged and SAB remains at 푉푑푑, so that nodes z and 

zb are set to logic ‘0’. With such logic values, node Data_out is pulled down (c.f. Table I.3). 

Then, pre-charge circuits are switched on. All the lines (BL, BLB, SA and SAB) are 

therefore forced to 푉푑푑. We can also note that Data_out remains stable at logic ‘0’, which 

corresponds to the last stored data (c.f. Table I.3). 

The next operation is a 푟1 performed on CCB. This time, BL node remains at 푉푑푑 while 

BLB is discharged. When the SAON signal is activated, the sense amplifier detects this weak 
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differential voltage that makes SA remaining at 푉푑푑 and SAB fully discharged at ‘0’. Then, 

nodes z and zb are set to 푉푑푑, thus implying the pull up of node Data_out. 

 

S(CCB) 

SAON 

S(CCA) 

SA 
SAB 

z 
zb 

SELBL 

Dout 
Doutb 

BL 
BLB 

r0 on CCA Pre-charge r1 on CCB  

Figure I.23 – Fault-free data output circuitry waveforms (풓ퟎ, 풓ퟏ) 

Note that if the two read operations are performed on core-cells connected to two 

distinct sense amplifiers sharing the same data output circuitry, two distinct SAON signals 

and two different couples (z, zb) will be involved in the definition of the Data_out signal. 

I.3.2. Resistive-open defects in the sense amplifier 

In this section, we summarize the effects induced by resistive-open defects on the 

normal functioning of the sense amplifier. 

As shown in Figure I.24, nine resistive-open defects (Df1 to Df9) have been placed in 

different locations of the sense amplifier. We do not consider all possible locations because of 

the symmetry of the structure. 
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Figure I.24 – Defect injection in the sense amplifier 

I.3.2.2. Defect incidence analysis 

Now we detail the faulty behavior as well as the attached fault models that the defects 

may induce in the memory sense amplifier. 

Defect Df1: In presence of Df1, the pull up of node SA cannot be performed but, as the 

sense amplifier has also a pre-charge circuit, the pull up is acted anyhow thus masking the 

effect of Df1. 

Defect Df2: In presence of Df2, a read operation provides the opposite data than that 

stored in the targeted core-cell. In our case, a logic ‘1’ is observed when we perform a 푟0 

operation as the pull down of node SA cannot be done. This faulty behavior can be modeled 

as Incorrect Read Fault (IRF), which definition is: 

Incorrect Read Fault (IRF): A core-cell is said to have an IRF if a read operation 

performed on the cell returns an incorrect logic value, while keeping the correct stored value 

in the cell. 

Defect Df3: During a read operation, SA (for a 푟0) or SAB (for a 푟1) node is normally 

driven to ‘0’ when the sense amplifier is activated by its SAON signal. However, in presence 

of Df3, this operation cannot be performed as the sense amplifier remains disabled. Then, the 

data output circuitry does not change its value and gives the logic data previously stored. Such 

faulty behavior is modeled as dynamic 2-cell Incorrect Read Fault type 1 (d2cIRF1), and the 

definition is as follows: 
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dynamic two-cells Incorrect Read Fault type 1 (d2cIRF1): A sense amplifier is said to 

have a d2cIRF1 if it is unable to read any value. So, the read data value at the output is the 

one previously stored in the data output circuitry. This is a two-cell fault model as it requires 

two read operations on two distinct core-cells. 

Defect Df4 to Df9: These defects prevent the pull up or the pull down of nodes z and 

zb. Two successive specific read operations are therefore not possible. This faulty behavior is 

modeled as dynamic 2-cell Incorrect Read Fault type 2 (d2cIRF1), and the definition is as 

follows: 

dynamic two-cells Incorrect Read Fault type 2 (d2cIRF2): A sense amplifier is said to 

have a d2cIRF2 if it is only able to perform a 푟0 or 푟1 operation As for d2cIRF1, this is a 

two-cell fault model as it requires two read operations on two distinct core-cells. 

I.3.2.3. Simulation set-up and results 

In this sub-section, we show the simulation results concerning the nine resistive-open 

defects analyzed in the previous sub-section. Once again, the simulations have been 

performed with a Spice-like simulator provided by Infineon, with a 65nm technology. 

The whole operating environment range has been examined with the aim of determining 

the test conditions which maximize the fault detection probability. Hence simulations have 

been performed by applying a number of different test patterns and by varying the following 

parameters: 

 Process corner: slow, typical, fast, fast n / slow p, slow n / fast p 

 Supply voltage:  1.08V, 1.2V, 1.32V 

 Temperature:  -30°C, 27°C, 110°C 

 Defect size has been swept from a few Ωs up to several MΩs. 

Table I.4 presents a summary of the fault models identified for each injected resistive 

defect, along with the conditions for maximum fault detection, i.e. the minimum detected 

resistance value. The first column (Dfi) indicates the defect location in the sense amplifier 

with respect to Figure I.24. The attached fault models are given in the second column. Finally, 

the last four columns correspond to the electrical parameters which maximize the fault 

detection. 
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Defect Fault Model Min Res (k) Process corner Voltage (V) Temp (°C) 

Df1 - - - - - 

Df2 IRF 0.35 Fast 1.32 -30 

Df3 d2cIRF1 1.8 Fast 1.32 -30 

Df4 d2cIRF2 140 Slow 1.08 -30 

Df5 d2cIRF2 20 Fast 1.32 -30 

Df6 d2cIRF2 15 Fast 1.32 -30 

Df7 d2cIRF2 150 Fast 1.32 110 

Df8 d2cIRF2 140 Slow 1.08 -30 

Df9 d2cIRF2 20 Fast 1.32 -30 

Table I.4 – Summary of worst-case PVT corners for the defects of Figure I.24 and 
corresponding minimum detected resistance and fault models  

As a concluding remark, we can notice that resistive-open defects in the sense amplifier 

of an SRAM can be modeled by a static fault (IRF) as well as dynamic ones (d2cIRF type 1 

and type 2). The next Sections are dedicated to the study of these dynamic faults.  

I.3.3. d2cIRF1 analysis 

In this section, we detail the behavior of the sense amplifier affected by a d2cIRF1. We 

first provide a FFM of the faulty behavior by using FPs. Next, we present electrical 

measurements to analyze the impact of a d2cIRF1 on the SRAM. Finally, we propose a 

possible March test solution to detect this FFM. 

I.3.3.1. Functional fault modeling 

As mentioned in sub-section I.3.1.1, there exist several memory configurations that 

differ by the number of sense amplifiers sharing the same data output circuitry. However, we 

have to provide a generic FFM independently of the memory configuration. 

In presence of Df3, a d2cIRF1 may occur depending on the defect size. During a read 

operation, SA (for a 푟0) or SAB (for a 푟1) (see Figure I.22) node is normally driven to ‘0’ 

when the sense amplifier is activated by its SAON signal. However, in presence of Df3, this 

operation cannot be performed as the sense amplifier remains disabled. Then, the data output 
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circuitry does not change its value and gives the logic data previously stored. At this point the 

question is: how to highlight this faulty behavior? 

A straightforward solution consists in initializing the data output circuitry by performing 

a read operation with a given sense amplifier (Sense_1). We denote this operation as 푟푥 with 

푥  {0, 1}. The data output circuitry is therefore initialized at the 푥 logic value. Then, we 

select another sense amplifier (Sense_2) sharing the same data output circuitry and we 

perform a read operation with an opposite data, i.e. this operation is denoted as 푟푥̅. If Sense_2 

is affected by a d2cIRF1, it cannot perform any read operation, thus meaning that the data 

output circuitry will remain stable at 푥 instead of providing a 푥̅ logic value. The fault is 

therefore sensitized and observed. 

Such a test solution is only valid when there are two or more sense amplifiers sharing 

the same data output circuitry. However, it does not work if there is only one sense amplifier 

per data output circuitry. So, a solution to be independent of the memory configuration 

consists in performing the two read operations, 푟푥 and 푟푥̅, on the same sense amplifier. This 

time, the Data_out node is not initialized but remains stable at a constant logic value if the 

targeted sense amplifier is affected by a d2cIRF1. 

Based on these descriptions, a d2cIRF1 can be defined with a single FP. As previously 

explained, a FP is denoted as < 푺/푭/푹 >. 푹 takes generally {0, 1,−}, where ‘-’ is used when 

no read operation is required for the sensitized operation sequence 푆. An important point is 

that in our case, we need another symbol to represent the fact that the data output value does 

not change during every operation of 푆. This symbol is denoted as ‘c’ (‘c’ stands for 

constant). From this notation, we finally obtain a single FP for d2cIRF1: 

FP: < 푥푟푥,풙풓풙 / 풙 / 풄 > A 푟푥 is performed on a first core-cell. Then, a 푟푥̅ 

operation is performed with the same sense amplifier in another core-cell. The 

node Data_out still remains at a constant logic value ‘c’ during both read 

operations. 

I.3.3.2. Electrical simulations with Df3 

Waveforms in Figure I.25 present the faulty behavior of the memory in presence of Df3. 

They were obtained with typical PVT conditions (typical process, 1.2V supply voltage, 27°C) 

and a defect size of about 10 k. 
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Figure I.25 – Waveforms of < 0푟0, 1푟1/1/푐 > simulation (Df3) 

This simulation starts on two different core-cells (CCA and CCB) belonging to the same 

group of columns (i.e. sharing the same sense amplifier) with CCA containing a logic ‘0’, CCB 

a logic ‘1’ and Data_out initialized at a logic ‘0’. 

A 푟0 operation is first applied on CCA. BL node is discharged and BLB node remains at 

푉푑푑. Then, the SAON signal is activated to enable the sense amplifier. However, due to the 

presence of the defect, it remains disabled, i.e. zb remains at logic ‘1’ and z at logic ‘0’ 

instead of z = zb = 0 (see Table I.3 for a 푟0 operation). The data output circuitry is in a 

memory state and thus does not change. It remains at logic ‘0’. The fault is not observed as 

the read data (a logic ‘0’ in our case) is the same than that initially stored in the data output 

circuitry (a logic ‘0’). 

Then, a second read operation is performed with a 푟1 on CCB. BL node remains at 푉푑푑 

and BLB node is discharged. Once again, both nodes SA and SAB remain at logic ‘1’ due to 

the defect, thus implying z = 0 and zb = 1 instead of z = zb = 1. The data output circuitry is in 

a memory state, implying that it still provides a logic ‘0’ instead of a logic ‘1’. The fault is 

therefore sensitized and observed during the second read operation. 

Note that if node Data_out is known to be initially at a logic ‘1’, only one read operation 

is necessary to observe the fault in this case. However, in order to cover all possible cases, we 

must apply two read operations with opposite data on the same sense amplifier to be sure to 

detect a d2cIRF1 as the initial Data_out value is unknown. 
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I.3.3.3. March test solution 

As shown previously, a d2cIRF1 may occur in presence of defect Df3. Such a faulty 

behavior is sensitized and observed with a specific sequence of read operations. This 

sequence is defined as follows: 

푟푥 푟푥̅ 

where both read operations have to be obviously performed on two distinct core-cells sharing 

the same sense amplifier. 

We formulate below some remarks about the possible modifications allowed on this 

sensitized operation sequence: 

Remark 1: An important property is that when a 푟푥 operation is performed by a sense 

amplifier, the Data_out node of the corresponding data output circuitry remains stable as 

long as a 푟푥̅ operation is not performed by a sense amplifier that shares the same data output 

circuitry. Consequently, any type of write operation in the memory may be allowed between 

these two read operations. 

Remark 2: Obviously, several 푟푥 operations through all sense amplifiers sharing or not the 

same data output circuitry do not change the Data_out node value. Consequently, it may be 

allowed to perform any number of 푟푥 operations between the 푟푥 푟푥̅ operations all over the 

memory. 

Remark 3: If a 푟푥̅ operation is performed with another sense amplifier that does not share 

the same data output circuitry than the targeted one, then the Data_out node driven by the 

targeted sense amplifier is not disturbed. Consequently, any 푟푥̅ operation may be performed 

with all other sense amplifiers that do not share the targeted data output circuitry. 

These different remarks allow a less stringent sequence of sensitization for the d2cIRF1 

detection as presented in Figure I.26. 

From this statement, it is easy to create a specific March test to detect d2cIRF1s. 

However, as previously seen for SWDF testing, it is more interesting to obtain a March test 

that covers a larger set of fault models rather than only d2cIRF1s. We have thus to look for 

possibilities to embed or find the required successive operations for d2cIRF1 detection in 

existing March algorithms. We propose here to analyze if the March C- algorithm is able to 

detect d2cIRF1. For more simplicity, let us just redefine this algorithm in Figure I.27 
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푟푥 (푤 푎푛푑/표푟 푟푥/푟푥̅) 푟푥̅ 

 

  Any write operation  

       Any 푟푥̅ operation on core-cells belonging 

       to another data output circuitry 

   Any 푟푥 operation 

Figure I.26 – Relaxed constraints to detect d2cIRF1 

In the March C-, the successive March elements M1/M2, M2/M3, M3/M4 and also 

M4/M5 feature the required sensitization sequence (푟0푟1 or 푟1푟0) but they do not allow the 

detection of d2cIRF1 in all sense amplifiers. Let us consider a memory structure in which four 

sense amplifiers share the same data output circuitry. Whatever the addressing order, March 

element M1 performs a 푟0 operation on all the core-cells of the memory, meaning that all data 

output circuitries are set to a logic ‘0’. During this element, 푤1 operations are also performed 

but have no influence on data output circuitries (c.f. Remark 1).  

↕ (푤0) ↑ (푟0,푤1) ↑ (푟1,푤0) ↓ (푟0,푤1) ↓ (푟1,푤0) ↕ (푟0) 

 푀0          푀1               푀2              푀3              푀4          푀5 

Figure I.27 – March C- algorithm 

Then, March element M2 is applied using the same addressing order as M1. The first 

targeted core-cell is selected for a 푟1 operation. If the sense amplifier corresponding to this 

core-cell is affected by Df3, a logic ‘0’ is read (this is the logic data previously stored in the 

corresponding data output circuitry) instead of a logic ‘1’. The fault is therefore sensitized and 

observed. Otherwise, if this first sense amplifier works correctly, the read data is a logic ‘1’ 

and then the corresponding data output circuitry stores a logic ‘1’. According to Remark 3, it 

is then impossible to detect the fault in the three other sense amplifiers sharing this data 

output circuitry. With the application of March elements M1/M2 we can only detect a 

d2cIRF1 affecting the first selected sense amplifier among a group of four sense amplifiers 

sharing the same data output circuitry (using the  addressing order). In the same way, the 

application of March elements M3/M4 allows the detection of d2cIRF1s affecting the first 

sense amplifier among a group of four sense amplifiers sharing the same data output circuitry 

(using the  addressing order). 
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At this point, a straightforward solution should consist in applying the two read 

operations (푟푥 푟푥̅) in a March element. The proposed solution consists in using the 

modifications of the March C- presented in [DIL04a]. In this paper, the authors have proposed 

a new March test called March iC- (Figure I.28) for ADOFs (Address Decoder Open Faults) 

detection. The particularity of this new March is that it performs each read/write operation 

with an alternated data value 퐴푣 where 푣 is the initial value. In addition, it uses a specific 

addressing order (with an hamming distance of one between two consecutive addresses). It is 

also important to notice that these modifications (data and addressing order) are allowed by 

DOFs of March test and hence do not change the fault coverage of the former targeted faults. 

It means that the March iC- still detects the fault models formally detected by the March C-. 

↕ (푤퐴푣) ↑ (푟퐴푣,푤퐴푣̅) ↑ (푟퐴푣̅,푤퐴푣) ↓ (푟퐴푣̅,푤퐴푣) ↓ (푟퐴푣,푤퐴푣̅) ↕ (푟퐴푣̅) 

Figure I.28 – March iC- algorithm 

Using the concept of alternated data of the March iC-, we have now to find the good 

addressing order to guarantee the detection of all d2cIRF1s. Let us consider element M1 and 

푣 = 0. The successive operations applied at different addresses are: 

 (푟0,푤1), (푟1,푤0), (푟0,푤1), (푟1,푤0) … 

 퐴푑푑1        퐴푑푑2       퐴푑푑3       퐴푑푑4    … 

At this point, there are many possibilities to obtain the sequence of sensitization. But the 

simplest solution is to address with Add1 a core-cell that uses a sense amplifier and with 

Add2 another core-cell that uses the same sense amplifier. Consequently, we perform 푟0, 푟1 

operations with a 푤1 between them that does not disturb the detection (c.f. Remark 1). 

Among the possible addressing orders, the simplest ones are the column after column or the 

line after line addressing orders. Let us first consider the column after column addressing 

order and the memory structure presented in Figure I.21. CC00 is selected for a 푟0 and a 푤1 

operations. Then CC01 (the core-cell on the next line) is selected for the 푟1 and 푤0 operations. 

The fault is therefore sensitized and observed by the couple (푟0, 푟1). In the same way, with 

the line after line addressing order, the first targeted core-cell is CC00 and the second is CC10 

(the core-cell on the next column) in which we perform 푟0 and 푟1 operations respectively. 
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I.3.4. d2cIRF2 analysis 

In this section, we detail the behavior of the sense amplifier affected by a d2cIRF2. As 

previously done, we first provide a FFM of the faulty behavior by using FPs. Next, we present 

electrical measurements to analyze the impact of a d2cIRF2 on the SRAM behavior. Finally, 

we propose a possible March test solution to detect d2cIRF2s. 

I.3.4.1. Functional fault modeling 

In presence of defects Df4 to Df9 a d2cIRF2 may occur. From these defects two groups 

can be constructed: 

 Group 1: Df4, Df7 and Df9 are defects impacting the pull up of z and zb 

outputs. 

 Group 2: Df5, Df6 and Df8 are defects impacting the pull down of z and zb 

outputs. 

Let us first analyze defects of group 1. As these defects prevent the pull up of z and zb, 

they impact the 푟1 operation (see Table I.3). To sensitize defects of group 1 we must first set 

nodes z and zb to a logic ‘0’. This configuration corresponds to a 푟0 operation (see Table I.3). 

Consequently, detection of defects belonging to group 1 requires a 푟0 operation to initialize z 

and zb nodes at logic ‘0’, followed by a 푟1 operation for the sensitization. 

In the same way, as defects belonging to group 2 prevent the pull down of z and zb, they 

impact the 푟0 operation. Consequently, detecting these defects requires a 푟1 operation to 

initialize z and zb nodes at logic ‘1’, followed by a 푟0 operation for the sensitization. 

Based on these descriptions, a d2cIRF2 can be defined with two FPs as follow: 

FP1: < 0풓ퟎ,ퟏ풓ퟏ/ퟏ/ퟎ > A 푟0 is performed on a first core-cell. Then, a 푟1 is 

performed in another core-cell sharing the same sense amplifier. A logic ‘0’ is 

read on node Data_out instead of a logic ‘1’. This FP is related to defects of group 

1. 

FP2: < 1풓ퟏ,ퟎ풓ퟎ/ퟎ/ퟏ > A 푟1 is performed on a first core-cell. Then, a 푟0 is 

performed in another core-cell sharing the same sense amplifier. A logic ‘1’ is 

read on node Data_out instead of a logic ‘0’. This FP is related to defects of group 

2. 



Test of dynamic faults in SRAMs 

68 

Note that we do not provide electrical simulations for each defect implying a d2cIRF2 as 

Df4, Df7 and Df9 induce the same faulty behavior, and faulty behavior in presence of Df5, 

Df6 and Df8 can be obtain by duality. Consequently, the next section is only dedicated to an 

electrical study in presence of Df4. 

I.3.4.2. Electrical simulations with Df4 

Waveforms in Figure I.29 present the faulty behavior of the memory in presence of Df4. 

They were obtained with typical PVT conditions (typical process, 1.2V supply voltage, 27°C) 

and a defect size of about 500 k. This simulation involves two different core-cells (CCA and 

CCB) belonging to the same group of columns (i.e. sharing the same sense amplifier) with 

CCA containing a logic ‘0’, CCB a logic ‘1’ and Data_out initialized at logic ‘1’. 
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Figure I.29 – Waveforms of < 0푟0, 1푟1/1/0 > simulation (Df4) 

A 푟0 operation is first applied on CCA. BL node is slightly discharged (about 100mV) 

and BLB node remains at 푉푑푑. Then, the SAON signal is activated to enable the sense 

amplifier. This first operation is correctly acted as zb is correctly pulled down. At the end of 

this 푟0 operation, node Data_out presents a logic ‘0’. 

Then, pre-charge circuits are switched on. All the lines (BL, BLB, SA and SAB) are 

therefore forced to 푉푑푑, normally implying node z to be set at logic ‘0’ and node zb to be set 

at logic ‘1’. However, due to the presence of Df4, zb remains at logic ‘0’.  
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A second read operation is then performed with a 푟1 on CCB. BL node remains at 푉푑푑 

and BLB node is discharged. Then, the sense amplifier is enabled by its SAON signal. SA 

remains at 푉푑푑 whereas SAB is fully discharged. Thus, node z flips to a logic ‘1’. However, 

due to Df4, node zb still remains at logic ‘0’. The data output circuitry is then in a memory 

state (c.f. Table I.3). Data_out still provides a logic ‘0’ instead of a logic ‘1’. 

I.3.4.3. March test solution 

As previously shown, a d2cIRF2 may occur in presence of defects Df4 to Df9. Such a 

faulty behavior are sensitized and observed with specific sequences of read operations. These 

sequences are defined as follows: 

 푟0 푟1 for defects belonging to group 1 

 푟1 푟0 for defects belonging to group 2 

where both operations have to be performed on two distinct core-cells sharing the same sense 

amplifier. 

As previously done for d2cIRF1 we can try to find less stringent detection sequences, 

i.e. allow additional read or write operations between the two read operations require for 

d2cIFR2 detection. Nevertheless, as defects impact pull up or pull down of z and zb nodes, 

any read or write operations may mask the fault effect. 

For a complete understanding, we have simulated the memory functioning in presence 

of Df4. Waveforms in Figure I.30 were obtained for worst case conditions (process: slow, 

voltage: 1.08V, temperature: -30°) with Df4 = 140kΩ. As shown in Table I.4, with these 

conditions the memory is affected by a d2cIRF2 when we perform a 푟0 immediately followed 

by a 푟1 operation. To confirm the fact two read operations must be applied sequentially, we 

have simulated the memory functioning by applying the following sequence of operations: 

푟0 on CCA, 푤1 on CCB and 푟1 on CCB 

where CCA and CCB are two core-cells sharing the same sense amplifier and containing a 

logic ‘0’. 

Let us now detail the simulations presented in Figure I.30. First a 푟0 operation is applied 

on CCA. BL node is discharged and BLB node remains at 푉푑푑. Then, the SAON signal is 

activated to enable the sense amplifier. This first operation is correctly acted as zb is correctly 

pulled down. Node Dout provides a logic ‘0’. 
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Then, pre-charge circuits are switched on. All the lines (BL, BLB, SA and SAB) are 

therefore forced to 푉푑푑, implying z to be set at logic ‘0’ and zb to be set at logic ‘1’. 

However, due to the presence of the defect the inter node (see Figure I.22) is not correctly pull 

down. Consequently, zb remains at logic ‘0’.  

Then, a write operation is performed on the second core-cell CCB. This operation is 

correctly acted. However, during this time, node inter is enough discharged and reaches the 

threshold voltage of 푉푑푑/2 implying that zb flips to logic ‘1’. Consequently, the fault effect 

is masked. 

Finally, a second read operation is applied on CCB which contains a logic ‘1’. The faulty 

behavior of the sense amplifier is masked as node zb has reaches 푉푑푑 before the read 

operation begins. 
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Figure I.30 – Waveforms of < 0푟0, 0푤1푟1 > simulation (Df4) 

Consequently, we have to find a March algorithm which contains two successive read 

operation with opposite data value. The March iC- algorithm described in sub-section I.3.3.3 

is able to detect such faulty behavior.  
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In fact, if we consider element M5 (see Figure I.28), the succession of operation applied 

at different addresses is: 

(푟0)      (푟1)      (푟0)     (푟1)    … 

퐴푑푑1    퐴푑푑2     퐴푑푑3   퐴푑푑4  … 

Two successive read operations have to be applied on the same sense amplifier. The 

simplest way to do that is also the line after line or the column after column addressing order. 

Let us first consider the column after column addressing order and the memory structure 

presented in Figure I.21. CC00 is selected for a 푟0 operation. Then CC01 (the core-cell on the 

next line) is selected for the 푟1 operation. The fault is therefore sensitized and observed by the 

couple (푟0, 푟1). In the same way, with the line after line addressing order, the first targeted 

core-cell is CC00 and the second is CC10 (the core-cell on the next column) in which we 

perform 푟0 and 푟1 operations respectively. 

Based on these statements, we can say that the March C- algorithm with a specific data 

(alternated data value) and a specific addressing order (line after line or column after column) 

is a suitable solution to detect all d2cIRF2 that may affect sense amplifiers of an SRAM. 

Others solutions can also be found, especially for the addressing order, but are less 

conventional compare to the line after line or column after column addressing orders. 

I.3.5. Conclusions 

In this chapter, we have analyzed and characterized the effects of resistive-open defects 

that may occur in the sense amplifiers of SRAMs. We have shown that several resistive-open 

defects may lead to new types of dynamic behaviors which have never been experienced in 

the past. These faulty behaviors have been modeled as a d2cIRF1 and d2cIRF2. There are two 

distinct ways to qualify this behavior: 

 d2cIRF1: all read operations cannot be acted. 

 d2cIRF2: only 푟0 or 푟1 operation cannot be acted depending on the defect 

location. 

Such fault models are a consequence of failures in the sense amplifier which prevent it 

to perform any read operations (in case of type 1) or only a single type of read operation 

(either 푟0 or 푟1 in case of type 2). We have performed electrical simulations to give a 

complete understanding of such faulty behaviors.  
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The conclusion of this study is that the March iC- algorithm with a particular addressing 

order (line after line or column after column) is able to detect all types of d2cIRFs.Table I.5 

summarizes the ability of March iC- elements to detect d2cIRF1 and d2cIRF2, assuming that 

the core-cell contents are initialized by a previous write. It is also important to notice that 

these modifications do not change the ability of March iC- to detect the former targeted faults 

(stuck-at, transition, coupling etc …). 

 d2cIRF1 d2cIRF2 

March iC-

element 
M1 to M5 M5 

Table I.5 – March iC- ability 
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Chapter 4. Influence of threshold voltage deviations in SRAM core-

cells 

Until recently, failure mechanisms were fairly simple. One gate was subject to a "hard 

fault". For example, a speck of dust felt on a track causing a resistive-open or a short.  

Nowadays, as the silicon industry moves towards the end of the technology roadmap, 

controlling the manufacturing of scaled devices is becoming a great challenge. In VDSM 

technology, global (inter-die) and local (intra-die) device parameter variations are expected 

to be more and more significant [BOR03a]. These fluctuations are more pronounced in 

minimum geometry transistors commonly used in area-constrained circuits such as memories, 

especially core-cells which break layout rules. 

A wafer may be subject to global variations; a gradient of dopant concentration may be 

observed. In this case, all transistors are subject to the same kind of parametric deviation. On 

the other hand, local variations, resulting from mismatches in parameters of similar 

transistors (threshold voltage – 푉 , geometry – L/W, mobility, etc), are as large as 

transistors use minimum geometry. These mismatches modify the strength of individual 

transistors and thus may lead to new types of failure in memories. 

Among the possible sources of deviation, also called mismatch, the intrinsic fluctuation 

of 푉 , which is the main source of deviation due to random dopant effect [BHA01], has been 

studied in [BOR03a]. In this study, the authors present a qualitative analysis of 푉  mismatch 

impacts. They show that 푉  mismatches in an SRAM core-cell may induce a read or write 

failure. This study does not provide manufacturing data on possible location of 푉  mismatch 

in the core-cell. Moreover, there is no simulation result with different values of 푉  

mismatches, and no analysis on PVT (Process, Voltage, Temperature) conditions. 

Nevertheless, this study is of importance as it pinpoints new problems and opens new ways for 

nanoscaled SRAM testing. 

In this chapter, we consider threshold voltage (푉 ) variations in SRAM core-cells. For 

internal reasons, these studies are done on a memory designed with Infineon 90nm 

technology. We first provide an analysis of read and write operations to determine which 

transistor of the core-cell will have an impact on the memory function if it is mismatched. 

Then, a mismatch injection is performed and results show that the behavior of the core-cell is 

impacted with more or less complex failure mechanisms. Identified fault models related to the 

considered 푉  mismatches are Transition Faults (TF), Read Destructive Faults (RDF) 
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[VDG00] and dynamic Read Destructive Faults (dRDF) [ADA96, HAM02]. We show that the 

process (P) and temperature (T) have a large impact on the resulting faulty behaviors due to 

the 푉  mismatch injection. 

The rest of the chapter is organized as follows. Section 1 presents the simulation flow 

used for mismatch injection. Section 2 provides an analysis of read and write operations to 

determine which transistors of the core-cell are candidates for 푉  mismatch injection. 

Section 3 presents the simulation results obtained and gives the test requirements for an 

effective mismatch detection. Finally, Section 4 concludes the chapter. 

I.4.1. Simulation flow 

In presence of parametric deviations, the characteristics of two neighbor transistors may 

significantly change, following statistical distribution laws. Such deviations are called local 

variations or transistor mismatches. Transistor currents are impacted by those fluctuations. 

The following equation gives the classical simplified MOS current:  

퐼 = × 푘 × × (푉 − 푉 )  (Eq. I.2) 

where: 

푉 = 푉 + 퐾 × ( |푉 | +  2Φ  −  2Φ  ) 

푘 =  휇 × 퐶  

The transistor drain-source current (퐼 ) is proportional to the mobility (푘) and also 

depends on the threshold voltage (푉 ). Mobility mismatches affect 퐼  slope whereas 

threshold voltage mismatches change the curve threshold, i.e. the higher the threshold voltage, 

the lower the current. 

In this study we consider only threshold voltage mismatches as they are the main 

sources of deviation due to random dopant effect [BHA01]. This parameter follows a 

Gaussian distribution and a maximum of 6 deviation (six times the standard deviation) is 

generally considered in VDSM technologies. 
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The impact of 푉  mismatches has been simulated with the following varying 

parameters: 

 Process corner: slow, typical, fast, fast n / slow p, slow n / fast p 

 Supply voltage:  0.9V, 1.2V, 1.5V 

 Temperature:  -40°C, 27°C, 125°C 

푉  mismatch varies from 0 up to |6|. The same variations were added either to one 

single transistor or to a combination of transistors enabling a comparison between these 

situations. 

No Monte-Carlo simulations were run. The method applied in this study consists in 

injecting mismatches to most sensitive transistors of the core-cell. Candidate transistors for 

mismatch injection on the core-cell are extracted from the analysis of read and write 

operations presented in the next Section. 

I.4.2. Mismatch sensitivity during read/write operations 

V  mismatches may affect all transistors of a core-cell but, according to the performed 

operation (read or write), only some of them are important. In order to determine which 

transistor is candidate for 푉  mismatch injection, we present in this Section a complete 

analysis of write and read operations. 

For write operations, only 푉  mismatches that reduce the core-cell transistor 

conductivity are considered. Let us consider the core-cell presented in Figure I.31 in which 

the cell originally stores a logic '1'. Node S is at 푉푑푑 and node SB at 퐺푛푑. Remember that to 

write a logic '0' (푤0) into this core-cell, BLB line remains at 푉푑푑, BL line is lowered to 퐺푛푑 

and the cell is selected by applying 푉푑푑 on WL. Operating devices and current flows during 

this 푤0 operation are illustrated in Figure I.31. A current flows from S to BL through Mtn3, 

discharging Cs. As the voltage at node S decreases, Mtp1 starts to conduct. In the same way, 

CSB is charged by the current flowing through Mtn4. The voltage at node SB increases, 

involving the conduction of Mtn2. This write analysis shows that four transistors (Mtn3, 

Mtn4, Mtp1 and Mtn2) are involved during the 푤0 operation. We can easily verify that Mtp2 

and Mtn1 in addition to pass transistors are used for a 푤1 operation. 
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Figure I.31 – Core-cell currents whose weakness is critical 

for a 풘ퟎ operation 

Waveforms of the different currents and voltage levels induced by the 푤0 operation are 

reported in Figure I.32. These curves show that the voltage at node S reaches 푉푑푑/2 before 

node SB. Thus, node S is controlling the 푤0 operation. Conversely, node SB will control the 

푤1 operation. From this, we can say that 푉  mismatches will have an impact during a 푤0 

operation if they affect Mtn3 and/or Mtp1 transistors (respectively Mtn4 and/or Mtp2 

transistors for a 푤1). 

0 

VDD/2 

WL 

IPGB
 

IPGBL
 IPDBL 

IPUBL
 

BL 

BLB SB 

S 

 

Figure I.32 – Currents and voltages during a 풘ퟎ operation 

In the same way, we analyze which transistors of the core-cell are involved during a 

read operation. In this case, only transistors that influence the total current discharging the bit 

line, but also the core-cell stability (ability to keep the stored data) are considered. 
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Let us assume that the cell has stored a logic '0'. Operating devices and current flows 

during this read operation are illustrated in Figure I.33. In this case, node S is at 퐺푛푑 and 

node SB is at 푉푑푑. Before the read operation, BL and BLB lines are pre-charged at 푉푑푑. 

When the word line is selected (WL signal being high), the two pass transistors Mtn3 and 

Mtn4 are turned on and the pre-charge circuit is turned off, implying a 푉푑푑 floating level on 

BL and BLB. As the potential of node SB and BLB are the same, no current flows and 

transistors Mtp1 and Mtn4 will maintain the 푉푑푑 level at node SB. On the other side of the 

core-cell, a current flows from BL through transistors Mtn3 and Mtn2, thus discharging the 

equivalent capacitance CBL of the bit line initially charged at 푉푑푑. 
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Figure I.33 – Core-cell currents whose weakness is critical 

for a 풓ퟎ operation 

Waveforms of currents and voltages involved during a 푟0 operation are presented in 

Figure I.34. At the end of the 푟0 operation, node BL is discharged. The differential voltage 

between BL and BLB nodes (BL), is measured by the sense amplifier to provide a logic data 

output. In this case, BL is negative and thus the sense amplifier will provide a logic '0'. 
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Figure I.34 – Currents and voltages during a 풓ퟎ operation 

This analysis demonstrates that 푉  mismatches on Mtn3 and/or Mtn2 transistors will 

have an impact on the 푟0 operation (Mtn4 and/or Mtn1 transistors for a 푟1). In the next 

Section, we show experimental data demonstrating the impact of 푉  mismatches on the 

transistors. 

I.4.3. Mismatch related fault models 

The previous section has described write and read operation mechanisms. They are quite 

complex, involving transistors of the core-cell which differ depending on the operation and 

the data stored in the core-cell. From these analyses, we have performed a mismatch injection 

in different locations of the core-cell as presented in Figure I.35. The goal here is to provide a 

functional fault modeling of each mismatch configuration. 
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Figure I.35 – Considered 푽푻푯 mismatch locations for 풘ퟎ and 풓ퟎ operations 

I.4.3.2. Result overview 

Simulations were performed considering single or double mismatch locations with 

identical 푉  deviations (up to 6). Moreover, these simulations were done under the most 

constraining PVT conditions to extract the one that maximize the fault detection (i.e. the 

minimum detected 푉  mismatch). Results are reported in Table I.6.  

Mismatch 
location 

Fault 
Model 

Mismatch 
size PVT 

Mtn3 TF ~ 4 sf, 0.9V, -40°C 

Mtn3 & Mtp1 TF ~ 4 sf, 0.9V, -40°C 

Mtn3 RDF ~ 6 fs, 0.9V, 125°C 

Mtn3 & Mtn2 RDF ~  3 fs, 0.9V, 125°C 

Mtn3 dRDF ~ 3.8 sf, 0.9V, -40°C 

Table I.6 – Results summary 

The first column gives the location of the 푉  mismatch (see Figure I.35) and the second 

one indicates the type of fault model observed. The third column gives the minimum 

mismatch value that sensitizes the fault and the last column gives the PVT conditions that 

maximize the mismatch detection (i.e. worst case conditions). 
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The first result of these simulations is that PVT conditions that maximize the mismatch 

detection are always at low voltage (0.9V). In fact, a 푉  variation of 100mV is 

proportionally higher for a supply voltage of 0.9V than for a supply voltage of 1.5V (see  

Eq. I.2). This first result shows that 푉  deviations have their main impact at low voltage 

while hard defects, such as resistive-open defects in the core-cell, better manifest themselves 

at high voltage [BOR03b]. 

As a second result on PVT conditions, it is important to notice that temperature corners 

are the extreme ones (-40°C and +125°C). This phenomenon is explain by the fact that 푉  

varies in a monotonously way with the temperature (linear relationship), it means 푉  is 

strictly decreasing when the temperature increasing (see Eq. I.3). Thus, the extreme corners 

maximize the detection of mismatches.  

푉 (푇) = 푉 + 퐶푇퐸 × ( 푇 −  푇 ) (Eq. I.3) 

⟹  
푑푉 (푇)
푑푇 = − 퐶푇퐸 ≤ 0 

For a test applied at room temperature (+27°C for example) the same faulty behaviors 

can be obtained but associated with higher mismatch values. 

Faults observed are TF (already defined), Read Destructive Faults - RDF (the cell loses 

its content during a read operation) and dynamic Read Destructive Faults - dRDF (the cell is 

not correctly written and loses its contents after one or several at-speed read operations). Each 

fault is induced by a different combination of mismatches, sensitizing sequences and PVT 

conditions. 

As shown in Figure I.36 and Figure I.37, TFs occur when applying either a single or a 

combination of mismatches. 
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Figure I.36 – Transition Fault (sf, 0.9V, -40°C – Mtn3) 

For these simulations, a 푤0 is applied on a core-cell that initially contains a logic '1'. For 

a 푉  mismatch higher than 4, a TF is observed in both cases, i.e. the write operation fails. 

Worst case conditions are, slow n / fast p, low voltage and low temperature. 
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Figure I.37 – Transition Fault 
(sf, 0.9V, -40°C – Mtn3 & Mtp1) 

RDFs are also observed for different combinations of 푉  mismatch. This time, a cell 

that initially contains a logic '1' is written to logic '0'. Then a read operation is performed. As 

can be seen in Figure I.38 and Figure I.39, the data is lost during the read operation when 푉  

mismatch is higher than 6. 
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Figure I.38 – Read Destructive Fault 
(fs, 0.9V, 125°C – Mtn3) 

When a mismatch affects Mtn3, a RDF occurs only for a 6 deviation. When two 

mismatches are considered on Mtn2 and Mtn3, a RDF is clearly observed for a 3 deviation. 

Worst case conditions are: fast n / slow p, low voltage and high temperature. 
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Figure I.39 – Read Destructive Fault 
(fs, 0.9V, 125°C – Mtn3 & Mtn2) 

The last part of simulations performed shows that dynamic faults can also be observed, 

especially dRDF. To highlight such a behavior, we have first to discuss about the sensitizing 

sequence needed. A dRDF occurs when one or several read operations are performed at-speed 

on a core-cell just after a write operation on the same core-cell. Then, if the core-cell is 

defective, one of the read operations may induce a bit flipping in the core-cell. This faulty 
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behavior is due to a non complete write, i.e. the write operation does not allow nodes S and 

SB to stabilize at 퐺푛푑 and 푉푑푑 respectively in case of a 푤0 operation. A read operation 

performed just after a non complete write makes the core-cell to possibly loose its content. So, 

both write and read operations are involved in the occurrence of a dRDF. The common 

transistor involved during these operations (푤0 and 푟0 in our case) is Mtn3. In our study, this 

transistor is selected for a 푉  mismatch injection. 

Figure I.40 shows a dRDF in which core-cell internal nodes (S and SB) are at an 

intermediate value at the end of the 푤0 operation. This defective core-cell looses its content 

during the second at-speed 푟0 operation for a 3.8 deviation of 푉 . The worst case 

sensitization is the same as that found when TF occurs, i.e. slow n / fast p, 0.9V, low 

temperature. 
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Figure I.40 – dynamic Read Destructive Fault 

(sf, 0.9V, -40°C – Mtn3) 

Further simulations have been performed with lower  deviations of 푉 . However, in 

those cases, the flipping of the defective core-cell occurs after a higher number of successive 

read operations. This phenomenon is illustrated in Figure I.41. It shows that for a  deviation 

higher than Border 2, a static fault is observed (a TF in our case). For lower  deviation, 

dynamic faults occur (between Border 1 and Border 2). Positions of Border 1 and Border 2 

depend on PVT conditions. In addition, position of Border 1 also depends on the number of 

read operations after the initial write operation. Finally, for  deviations lower than Border 1, 

the core-cell operates properly. 
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Figure I.41 – Fault type v.s. mismatch value 

I.4.3.3. Test requirements 

We have shown in the previous sub-section that a 푉  mismatch induces different faulty 

behaviors which can be modeled by TF RDF and dRDF. Now, we have to analyze the test 

requirements (algorithms and PVT conditions) needed to detect these fault models. 

The selected test algorithm has to detect TF, RDF and dRDF. On one hand, the detection 

of TF is simple as most of the March algorithms have the ability to detect them. On the other 

hand, the detection of RDF and dRDF is more difficult as it requires a read (or multiple read) 

after a write operation. This succession of operations does not occur in classical March tests. 

Specific March, such as March RAW [ARS01] or March C- with specific addressing order 

[DIL04b], can be used. These two algorithms have also the ability to detect TF. 

The problem is much more severe with respect to PVT conditions. First, 푉  

mismatches have their main impact at low voltage while hard defects, such as resistive-open 

defects in the core-cell involving the same faulty behaviors, better manifest themselves at 

high voltage [BOR03b]. In addition, we have shown in the previous Section that, depending 

on the considered mismatch location, temperature and process have a large impact on the 

resulting fault model; process slow n fast p and low temperature for TF and dRDF, process 

fast n slow p and high temperature for RDF. These different PVT conditions make the test of 

SRAM core-cells more difficult. In fact, it is not possible to ensure the fault-free behavior of 

SRAM core-cells by applying a March algorithm in a unique PVT corner. This statement 

opens an additional problematic for the test of nanoscaled SRAMs. 

I.4.4. Conclusion 

In this chapter, we have analyzed and characterized the effects of 푉  mismatches that 

may occur in SRAM core-cells. We have first provided an analysis to determine which 
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transistors of the core-cell may have an impact during read and write operations of the 

memory if they are mismatched. Simulations performed with Infineon 90nm technology have 

shown that static (TF and RDF) and dynamic (dRDF) faults are obtained as resulting faulty 

behaviors of the 푉  mismatch injection. An important contribution of this study is also the 

analysis of PVT conditions for an effective test. 



Test of dynamic faults in SRAMs 

86 

Conclusion 

This part has been dedicated to an exhaustive study on resistive-open defects affecting 

SRAM write drivers and sense amplifiers as well as a study on local variations affecting the 

core-cell functioning.  

Previous studies shown that resistive-open defects in core-cells, pre-charge circuits and 

address decoders lead to dynamic faults. In order to complete these studies, we have 

demonstrated that such defects in the write driver can also be the cause of dynamic behavior. 

Especially, some defects can cause a dynamic fault modeled as SWDF, some others lead to 

another dynamic faults modeled named URWF or URDWF (depending on the defect size). 

We also demonstrated that this kind of defect in the sense amplifier can also induce a faulty 

behavior called dynamic 2-cell Incorrect Read Fault (type 1 and type 2). Finally, March test 

targeting these dynamic faults have been developed. All these studies have been validated by 

electrical simulations performed with a 65nm CMOS Infineon technology.  

Afterwards, we have analyzed and characterized the effects of 푉  mismatches 

impacting modules designed with minimum geometry transistors such as SRAM core-cells. 

We have first provided an analysis to determine which transistors of the core-cell may have an 

impact during read and write operations of the memory if they are mismatched. Simulations 

have shown that static (TF and RDF) and dynamic (dRDF) faults are obtained as resulting 

faulty behaviors of the 푉  mismatch injection. An important contribution of this study is also 

the analysis of PVT conditions for an effective test. Actually, the PVT conditions that 

maximize the mismatches detection are different from those that maximize the resistive-open 

defects detection. Consequently, the test of memory cannot be acted in a unique PVT corner. 

This study, realized in 90nm CMOS Infineon Technology (for internal reasons), opens the 

problem of mismatch influences in nanoscaled SRAMs. Further investigations have to be 

done in deeper technologies such as 65nm, 45nm, 32nm and 22nm for which the influence of 

parameter deviation should be much more severe. 
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Introduction 

Nowadays, the latest technologies present very high degree of integration allowing a 

number of circuits per die much higher than in the past. These new technologies are also more 

prone to defects, parasitic phenomena and manufacturing derives, which drastically reduce the 

yield. For this reason, fault detection, diagnosis and defect localization are used in order to 

repair defective memories thus improving SoC reliability and yield. In this part, we focus on 

diagnosis techniques dedicated to SRAMs. 

Usually, techniques allowing memory repair identify the type of malfunction and try to 

find out its location as two separate phases [VDG98]. In order to reach good results in terms 

of repair, the information on the fault location is more important than the information on the 

nature of the fault itself. During memory diagnostics, a map of core-cells is made, with faulty 

and fault-free cells. On this base, particular algorithms optimize the use of spare columns and 

rows for the substitution of those containing the faulty cells. Conversely, when yield ramp up 

is targeted, the diagnosis approaches mainly focus on the identification of the cause of the 

failure as well as its location. In this way, layout and process optimizations are possible. 

In this part, we consider two diagnosis methodologies. The first one is known as Design 

For Diagnosis (DFD) and targets only specific memory blocks (core-cell, pre-charge circuitry, 

write driver…). It consists in implementing extra hardware modules in the memory allowing 

to check given nodes or functionalities, e.g. bit lines voltage levels, core-cell strength... Such a 

technique suffers from an increase of the chip area. However, it provides essential and 

accurate information about faulty sites of the memory and is useful to enhance manufacturing 

process and/or design in the ramp up phase. In the literature, DFD modules are widely been 

developed to monitor core-cell functionalities. However, peripheral circuits have never been 

considered until now. 

The second diagnosis approach does not target a specific block but instead takes a global 

approach to the problem and targets the detection of FFM. Existing diagnostic methods, based 

on a signature analysis [ABR90], generally resort to a fault dictionary and try to achieve the 

highest Diagnosability Ratio (DR) for a given test algorithm [CHA89, YAR96, NIG00, LI01]. 

DR is defined as the ratio of the number of distinguishable fault types among the number of 

total detectable fault types. However, signature-based diagnosis methods present two main 

drawbacks. First, as they use a fault dictionary, the possible fault models affecting the 

memory must be known before running the diagnosis procedure. Consequently, if a memory 
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is affected by a fault not considered in the fault dictionary, the diagnosis phase fails to provide 

any result or may provide a wrong response. Secondly, most of the existing signature-based 

solutions target only the diagnosis of static faults. Unfortunately, as seen in the first part of 

this thesis, dynamic faults become a major concern in recent SRAMs technologies. 

This part is organized as follow. A first chapter presents two DFD modules able to deal 

with weak write drivers. The second chapter presents a new diagnosis approach that provides 

an alternative to signature-based approaches. 
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Chapter 1. Design For Diagnosis Solutions 

This chapter presents two low cost DFD solutions for identifying weak or faulty write 

drivers. They consist in verifying logic and analog conditions that guarantee the fault-free 

behavior of the write driver. Both solutions allow a fast diagnosis (only three consecutive 

write operations are needed to fully diagnose the write driver) and induce low area overhead 

(about 0.5% for a 512x512 SRAM). Beside diagnosis, an additional interest of such solutions 

is their usefulness during a post-silicon characterization process, where they can be used to 

extract the main features of write drivers (logic and analog levels on bit lines).  

This chapter is organized as follows: In the first Section, we expose a brief state-of-the-

art before explaining a current-based DFD solution in Section 2. Section 3 is dedicated to a 

complete study on a voltage-based DFD solution. Finally, concluding remarks are provided 

in the fourth Section. 

II.1.1. State-of-the-art 

A DFD solution consists in implementing an additional hardware module able to point 

out specific memory functionalities. For example, cell stability is a major concern to evaluate 

the SRAM design reliability. It determines the sensitivity of the memory to process variations 

and operating conditions. So, monitoring such parameter presents a real relevance. Core-cells 

with lower cell stability than typical case are known as weak cells. Many works have been 

proposed in that way. These techniques are based on the fact that the state-restoring feedback 

(i.e. the inverter loop) of a weak cell is weaker or absent and thus they are more susceptible to 

write or read disturbs. All these techniques are divided in two categories, the single and 

programmable detection threshold techniques. The most known single threshold technique is 

called Weak Write Test Mode (WWTM) [MEI97]. Many implementation of such technique 

have been proposed [WEI01, SCH04]. In addition of a non regulate ability of threshold 

detection of such techniques, they present a non negligible extra area and some of them add 

extra design in the core-cell array. The programmable detections are described in [PAV04, 

PAV05, PAV06]. These techniques are based on the use of core-cells belonging to the same 

core-cell under test in order to act the stress. 
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Another DFD technique is provided in [PIL01] where the authors target the detection of 

strong resistive path through the path gates of core-cells. A targeted algorithm and a hardware 

module are designed to detect such faulty core-cells. 

Many efforts have been done on DFD solution targeting core-cells functionalities. On 

the other hand, no works have been published on DFD solution for peripheral circuitry. 

Nevertheless, even if around 80% of the silicon area of a memory is taken by the core-cell 

array, which is hence more prone to defects than any other block, providing information on 

peripheral circuitry can save considerable amount of time during the ramp up phase in case of 

a malfunction coming from outside the core-cell array. 

In the next section of this part, we propose two solutions providing information about 

write driver strength. 

II.1.2. Requirements for fault-free operation of a write driver 

The fault-free operation of the SRAM write driver has already been described in the first 

part of this thesis. Based on this description, we can enumerate the two important conditions 

that are needed to guarantee the fault-free behavior of the write driver – a logic and an analog 

conditions. 

II.1.2.1. Logic condition 

As shown previously, the write driver must act the pull down of one of the two bit lines. 

The other bit line is maintained at 푉푑푑 during the write operation. From this statement, we 

can extract a first condition for a fault-free operation of the write driver: 

퐵퐿 ⊕퐵퐿퐵 = 1 (Eq. II.1) 

If this equation is not satisfied during a write operation, then it means that both bit lines 

present the same voltage level. In case of 푉푑푑, no write operation is performed. Conversely, 

the two bit lines at 퐺푛푑 indicate that both 푤0 and 푤1 operations are performed 

simultaneously. 

This first condition allows performing a logical diagnosis of the write driver. 

Nevertheless, it does not allow verifying the exact voltage level driven on the bit lines during 

the write operation. Thus, an additional analog condition is needed to diagnose weak write 

drivers. 
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II.1.2.2. Analog condition 

Voltage levels on bit lines during write operations are a major concern when embedded 

memories are used for high safety applications (automotive, medical…). In fact, over the 

lifetime of a product, memories are exposed to many phenomena (DC noise, coupling 

effects…) which degrade their performances. For this reason, it is important to verify the 

good voltage level of bit lines after manufacturing. A wrong level at this early stage of the 

lifetime of the memory indicates a weakness of the write driver, which can be degraded over 

the time and lead to erroneous write operations. So, in addition to the logic condition, an 

analog condition has to be satisfied to guarantee the good voltage levels on the bit lines. 

The write driver can be seen as a current source that has to discharge one bit line and to 

maintain the other at 푉푑푑. During a fault-free operation (푤0) let us consider that it delivers a 

current 퐼  for the discharge of bit line BL and 퐼  for bit line BLB. Thus, a weak write 

driver delivers less current than 퐼  (resp. 퐼 ). Consequently, at the end of the write 

operation, the level of the bit line that has to be discharged is higher than 퐺푛푑 (resp. the level 

of the bit line that has to be maintained at 푉푑푑 is less than 푉푑푑). This can be view on 

waveforms in Figure I.1 where a 푤0 operation is performed by a fault-free write driver (top of 

Figure I.1) and a weak write driver (bottom of Figure I.1). 
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Figure II.1 – Fault-free and weak write driver operations 
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From this statement, we can extract two analog conditions for a fault-free operation in 

case of a 푤0 operation. Note that the analog conditions for a 푤1 operation can be derived in 

the same way. 

퐼  ≥  훼  ∙  퐼  with 0 ≤  훼  ≤ 1 (Eq. II.2.a) 

⇒  푉  ≤  훽  ∙ 푉푑푑 with 0 ≤  훽  ≤ 1 (Eq. II.2.a bis) 

and 

퐼  ≥  훼  ∙  퐼  with 0 ≤  훼  ≤ 1 (Eq. II.2.b) 

⇒  푉  ≥  훽  ∙ 푉푑푑 with 0 ≤  훽  ≤ 1 (Eq. II.2.b bis) 

where 훼  and 훼  represent the strength of the write driver. Parameters 훽  and 훽  are derived 

from the 훼  parameters and represent the level of charge and discharge of the bit lines. An 

ideal write driver will be defined by Eq. II.2.a and Eq. II.2.b with 훼  = 1 and 훼  = 1 implying 

훽 = 0 (푉  = 0V) and 훽 = 1  (푉  = 푉푑푑). 

Parameters  have to be selected depending on the memory technology and desired 

reliability level. In our case, we have considered a 65nm SRAM technology and we have 

chosen parameters as follows: 

 훼  insuring 푉  ≤  0.1 ∙  푉푑푑 

 2 insuring 푉  ≥  0.7 ∙  푉푑푑  

Consequently, the write driver will be considered as faulty if it cannot discharged BL at 

a voltage lower than 10% of 푉푑푑 and maintain BLB at a voltage level higher than 70% of 

푉푑푑. 

II.1.3. Description of the current-based DFD solution 

The proposed DFD solution consists in adding a hardware module to verify both logic 

and analog conditions presented in the previous section. Note that we only present how to 

diagnose a weak or wrong 푤0 operation. The study of the 푤1 operation can be derived in a 

similar way. 

II.1.3.1. Hardware diagnosis solution for the analog condition 

The analog condition consists in verifying if the write driver delivers enough current in 

the bit lines. For a 푤0 operation, the bit line (BL) must be discharged at more than 훽  ∙ 푉푑푑 

by the current passing through transistor Mtn1. Respectively, BLB must be maintained at 



Diagnostic of SRAMs  

94 

훽  ∙ 푉푑푑 by the current passing through transistor Mtp2. A straightforward solution consists 

in sensing the resulting voltage levels on bit lines by using logic gates designed to have the 

required threshold voltage. However, such a solution is unpractical for two raisons: 

  the difficulty to design gates with very low (0.1V) or very high threshold 

voltages 

  the fact that we must sense two different voltages (훽  ∙ 푉푑푑 and 훽  ∙ 푉푑푑) 

on each bit line to diagnose weak or wrong 푤0 and 푤1 operations. 

Consequently, in order to use simple CMOS gates to sense bit line voltage levels, we 

propose to normalize the pass/fail diagnosis threshold voltage on bit lines at 푉푑푑/2 (instead 

of 10% and 70% of 푉푑푑). This is done by adding two transistors (Mtptest and Mtntest) 

producing a resistive divider bridge and hence modulating the bit line voltage levels. This 

principle is presented in Figure II.1. 
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Mtptest 

Mtn1 RMtn1 
VBL

VBLB

Vdd 

RMtp2 

Vdd 

Mtp2 

Mtntest RMtntest 
VBLB

a) 

b)  

Figure II.1 – Principle of the DFD solution 
a) for the low level and b) for the high level 

In a stable state, transistors Mtptest and Mtn1 (resp. Mtntest and Mtp2) can be seen as 

their equivalent resistances inducing the resistive divider bridge. The strength of Mtptest 

(resp. Mtntest) is chosen in order to have the following diagnosis conditions: 

 if 푉  <  ⇒ the write driver satisfies the analog condition. 

 if 푉  >  ⇒ the write driver does not satisfy the analog condition. 

To be more precise on the sizing of transistors Mtptest and Mtntest, let us consider 

Figure II.2. It represents 퐼  as a function of 푉  voltage levels of Mtptest and Mtn1 

transistors.  
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Figure II.2 – Principle of the diagnosis solution 

The hardware implementation of such a principle is presented in Figure II.3. It is 

composed of two parts; the analog structure and the data processing providing the diagnosis 

result. 

The analog structure embeds the two transistors Mtptest and Mtntest plus four 

transmission gates (MtnpgBL, MtnpgBLB, MtppgBL and MtppgBLB) and two inverters used 

to isolate and configure the diagnosis module. Two signals (W0D and W1D active at low 

level) control the configuration of the analog structure that depends on the write operation 

type (푤0 or 푤1). 

At the end of the write operation, the bit line level reflects the strength of the write 

driver. The analog structure is designed in order to obtain less than 푉푑푑/2 on BL and more 

than 푉푑푑/2 on BLB for a fault-free 푤0 operation. The data processing part allows translating 

these analog levels into a digital signal. Two inverters are used to amplify the signals and a 

XOR gate is used to provide the diagnosis results. Node S must be at logic ‘1’ during the 

write operation in case of a write driver satisfying the analog conditions. 
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Figure II.3 – Hardware implementation of the diagnosis module 

Waveforms in Figure II.4 illustrate the functioning of the proposed structure. Two 

simulations are superposed; a fault-free write driver simulation (continuous lines) and a weak 

write driver simulation (dotted lines). 

At the beginning of the simulation, BL and BLB are pre-charged at 푉푑푑. Then a 푤0 

operation is performed, leading to AW0 = 1 and AW1 = 0. The diagnosis module is activated 

with W0D = 0 and W1D = 1. Then, BL node is discharged and reaches a level lower than 

푉푑푑/2 in case of a fault-free write driver. In case of a weak write driver, as transistor Mtn1 

has not enough strength to discharge the bit line, 푉  remains higher than 푉푑푑/2. As 

diagnosis result, node S provides a logic ‘1’ in case of a fault-free write driver and a logic ‘0’ 

for a weak write driver. 
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Figure II.4 – Diagnosis module functioning 

Although efficient, such a structure is only able to verify if one bit line has a level lower 

than 푉푑푑/2 and the other has a level higher than 푉푑푑/2, irrespective of the type of write 

operations. Additional logic must therefore be added to distinguish between 푤1 and 푤0 

operations as presented in the next sub-section. 

II.1.3.2. Hardware diagnosis solution for the logic condition 

Based on the previous comment, we must adapt the logic condition (see Eq. II.1) so that 

it can distinguish between 푤0 and 푤1 logic levels on bit lines. The solution we propose 

consists in comparing the bit line logic levels with the data to be written (node DataIn). The 

new logic condition becomes:  

( 퐵퐿  ⊕퐷푎푡푎퐼푛 ) ∙ ( 퐵퐿퐵  ⊕퐷푎푡푎퐼푛 ) =  1 (Eq. II.3) 

It results on some modifications in the initial hardware implementation presented in 

Figure II.4, especially on the data processing part as shown in Figure II.5. 
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Figure II.5 – Data processing part of the diagnosis module 
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Waveforms in Figure II.6 show the simulation results of a faulty write driver which is 

not detectable with the initial data processing module. This faulty write driver always 

performs 푤0 operations even if it is configured to perform a 푤1 operation. 
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Figure II.6 – Simulation results of a faulty write driver 

In Figure II.6, a 푤0 operation is first performed. BL becomes lower than 푉푑푑/2 while 

BLB remains higher than 푉푑푑/2. Node S is at logic ‘1’ indicating that the write driver is 

fault-free. Then, the write driver is configured to perform a 푤1 operation, i.e. node DataIn is 

set to a logic ‘1’. As the driver can always perform 푤0 operations, node AW1 remains at 

logic ‘0’ while AW0 = 1. As can be seen in Figure II.6, BL is lower than 푉푑푑/2 and BLB 

remains higher than 푉푑푑/2. In such case, the initial data processing part (see Figure II.3) 

would provide a logic ‘1’ on node S indicating a fault-free write driver. With modifications 

presented in Figure II.5, node S provides a logic ‘0’ that corresponds to a faulty write driver. 

The DFD solution is effective and represents less than 0.5% of area overhead for a 

512x512 SRAM. 

II.1.3.3. Diagnosis sequence 

The proposed diagnosis module is able to verify the logic (Eq. II.3) and analog  

(Eq. II.2a and Eq. II.2b) conditions. Obviously, a 푤0 and 푤1 operations are needed to 
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diagnose the write driver. In this case, only defects involving a static behavior will be 

diagnosed. 

As mentioned in many published studies, defects in VDSM technology may also induce 

dynamic behaviors. Resulting fault models are dynamic faults [VDG00, ARS01, HAM03] as 

those that may affect the write driver (see previous part on test of dynamic faults in write 

drivers). In this study it is shown that two successive opposite write operations must be 

performed to detect dynamic fault that may affect the write driver. Consequently, the 

diagnosis sequence able to deal with static and dynamic faulty behaviors as well is the 

following: 

푤푥 푤푥̅ 푤푥 

So, only three operations are needed to fully identify a faulty or weak write driver. 

Reading the data on node S provides the required information on the correctness of the write 

drivers. 

II.1.4. Description of the voltage-based DFD solution 

In the previous section, we have defined equations Eq. II.2.a and Eq II.2.b and translate 

them into a design for diagnosis solution. Now, we consider Eq. II.2.a bis and Eq. II.2.b bis. 

Parameters  make the proposed solution tunable as the user can adapt them depending on the 

memory technology and the desired reliability level. As done for the previous DFD solution, 

we consider a 65nm SRAM technology and we have chosen parameters as follows: 

   =  0.1 

   =  0.7 

Consequently, the write driver will be considered as faulty (“too much” weak) if it 

cannot discharged BL at a voltage lower than 10% of 푉푑푑 and maintain BLB at a voltage 

level higher than 70% of 푉푑푑. 

These logic and analog conditions can be translated into a DFD solution for SRAM 

write drivers as shown in the following section. 

The proposed DFD solution accurately determines the analog levels on both bit lines 

during write operations. In the following sub-sections we first briefly describe the principle of 

the proposed solution and then, we provide the complete DFD structure and the corresponding 

diagnosis sequence. 
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II.1.4.1. DFD principle 

As shown in Section II.1.2, the analog condition consists in verifying the final voltage 

level on both bit lines. A straightforward solution should consist in implementing a 

differential amplifier with a reference voltage connected to an input as presented in  

Figure II.7. 

 Vin
S 

Vref  

Figure II.7 – DFD principle 

In the literature, different architectures are proposed to implement a differential 

amplifier and a voltage source. Each of them has its own specificities (area, accuracy, 

robustness, response time...). The selection depends on the application requirements. 

The next sub-sections are dedicated to the description and implementation of the 

differential amplifier and the voltage source. 

II.1.4.2. Implementation of the differential amplifier 

The differential amplifier has to translate a weak differential voltage into a full swing 

differential voltage as soon as a diagnosis launch signal is activated. The resulting voltage 

level signal has to be saved until the end of the diagnosis phase. The amplification must 

therefore be instantaneous and not linear as performed with operational amplifiers for 

example. Consequently, such a requirement allows orienting our choice toward the sense 

amplifier already presented in the first part of the thesis (see Figure I.22 on part I).  

As previously explain, such a sense amplifier is already used in SRAM to perform read 

operations. It has to translate a weak differential voltage between both bit lines into a full 

swing differential signal transmitted as a logic output data. So, a first question should be: in 

order to save area, why not reusing the existing sense amplifier for the diagnosis purpose? 

Reusing this part of the memory requires many modifications on the I/O structure as the 

sense amplifier and the write driver are strongly correlated in a SRAM as can be seen in 

Figure II.8. In order to make the existing sense amplifier able to perform the diagnosis task, 

i.e. to sense the voltage levels on bit lines, we must add circuitry as shown in gray in  

Figure II.8. First, two voltage sources (푉  and 푉 ) are added on one input of the sense 

amplifier. Note that these voltage sources must be isolated from the sense amplifier during the 
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normal functioning mode by using pass gates. Selection of one of them depends on which 

level (high or low) we have to diagnose. In addition, each output of the write driver (WD and 

WDB) must be compared to the selected reference voltage source. Direct paths must be 

implemented depending on which write operation (푤0 or 푤1) has to be diagnosed. 

Consequently, with such a principle, we can only diagnose one level at a time as there is only 

one sense amplifier able to compare one reference voltage source with one write driver 

output. Beside this additional circuitry, memory control signals must be modified in order to 

allow disabling the multiplexer controlled by the SEL signal and then isolate the sense 

amplifier from the memory. 

All these modifications are difficult to implement as: 

  they impact memory control signals,  

 they impact write paths and  

 they do not allow to diagnose low and high levels at the same time as only one 

sense amplifier is used. 
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Figure II.8 – SRAM I/O circuitry 

Consequently, a better solution consists in designing a DFD module that does not 

modify any control signal or write path and enable the diagnosis of both low and high levels 

at the same time. It can easily be realized with two additional sense amplifiers dedicated to a 

diagnosis purpose and connected to each write driver outputs (WD and WDB). Figure II.9 

shows the resulting implementation. The connections between the write driver outputs and the 

sense amplifiers (SAL and SAH) are performed by N-type transmission gates (MtnpgWD and 
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MtnpgWDB) for diagnosing low level weak signals and by P-type transmission gates 

(MtppgWD and MtppgWDB) for diagnosing high level weak signals. These path gates are 

controlled by W0S and W1S signals which allow determining if we have to diagnose a 푤0 or 

a 푤1 operation. 
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Figure II.9 – Hardware implementation of the DFD solution 

Each sense amplifier receives the voltage level of the write driver (WD or WDB) on one 

input and a reference voltage (푉  = 10% 푉푑푑 and 푉  = 70% 푉푑푑) on the other. The 

DIAG signal allows activating the sense amplifiers during the diagnosis phase. Levels 푉  

and 푉  are the resulting amplification provided by each sense amplifier. These signals 

verify the analog condition. 

The final diagnosis result (S) is a function (NOR gates) of both outputs 푉  and 푉  

levels in order to verify the logic condition. Table II.1 provides the truth table of the structure. 

A fault-free behavior is observed (S = 1) if WD is below 10% of 푉푑푑, i.e. final 푉  level is 

low, and WDB is above 70% of 푉푑푑, i.e. final 푉  level is high (gray line on Table II.1) in 

case of a 푤0 operation. Consequently, such a DFD solution allows the diagnosis of low and 

high levels at the same time as two sense amplifiers and two reference voltage levels are 

embedded in the structure. 

VLOW VHIGH S 

0 0 0 

1 0 0 

0 1 1 

1 1 0 

Table II.1 – Truth table of the DFD module 



Design For Diagnosis Solutions 

103 

Remark: For the sake of clarity, we have considered that only one bit line is connected to 

one I/O circuitry (and hence only one write driver). Actually, more than one bit line (at least 

four) is connected to the same I/O circuitry. This means that each DFD module will be shared 

by several bit lines, thus decreasing the final area overhead (about 0.5% of area overhead for 

a 512x512 SRAM). 

Waveforms in Figure II.10.a and Figure II.10.b show the simulation results of the 

proposed DFD module for a fault-free and a weak write driver respectively. On both 

simulations, a 푤0 operation is performed. WD node is pulling down correctly in case of a 

fault-free write driver (Figure II.10.a). In Figure II.10.b, node WD does not reach 퐺푛푑 as the 

write driver is weak. Consequently, when the DFD module is activated (DIAG = 1) two 

scenarios are observed: 

In case of a fault-free write driver (Figure II.10.a), 푉  < 푉  and 푉  > 푉  

thus implying 푉  = 0 and 푉  = 1. Output S of the DFD module provides a logic ‘1’ 

meaning that the write driver is fault-free. 

In case of a weak write driver (Figure II.10.b), 푉  > 푉  and 푉  > 푉  thus 

implying 푉  = 1 and 푉  = 1. Output S of the DFD module provides a logic ‘0’ meaning 

that the write driver is faulty. 
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Figure II.10 – DFD module functioning for 
a) a fault-free and b) a weak write driver 

II.1.4.3. Diagnosis sequence 

The proposed diagnosis module is able to verify the logic (Eq. II.3) and analog  

(Eq. II.2.a bis and Eq. II.2.b bis) conditions. Obviously, a 푤0 and a 푤1 operations are needed 

to diagnose the write driver. In this case, only defects involving a static behavior will be 

diagnosed. 



Design For Diagnosis Solutions 

105 

As shown for the current-based solution, the diagnosis sequence able to deal with static 

and dynamic faulty behaviors as well is the following: 

푤푥 푤푥̅ 푤푥 

So, only three operations are needed to fully diagnose a wrong or weak write driver. 

II.1.5. Conclusions 

In this chapter we have proposed two low cost DFD solutions for SRAM write drivers. 

They allow to identify wrong or weak write drivers by verifying logic and analog conditions 

that guarantee the write driver fault-free behavior. Moreover, they allow a fast diagnosis (only 

three write operations are needed) and induce a low area overhead (about 0.5% for a 512x512 

SRAM).  

The first solution, based on a current compensation, is simply dedicated to diagnosis as 

it allows to track weak write drivers in a pass/fail way according to a single threshold. In other 

words, it is not possible to perform any characterization purpose with such solution as the 

threshold detection is fixed by the design of the DFD module. In addition to diagnosis 

abilities, the second solution, using voltage sources and sense amplifiers, can be useful for 

write drivers characterization. Actually, voltage sources can be externally controlled by an 

Automatic Test Equipment (ATE) allowing the ability to monitor the voltage source and 

apply many different threshold voltages. Consequently, according to the targeted application, 

the user has to choose the most appropriate diagnosis solution. 
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Chapter 2. Software-based diagnosis solution 

The usual software-based techniques for memory diagnosis are mainly based on 

signature analysis. They consist in creating a fault dictionary that is used to determine the 

correspondence between the signature and the fault models affecting the memory. The 

effectiveness of such diagnosis methods is therefore strictly related to the fault dictionary 

accuracy. To our knowledge, most of existing signature-based diagnosis approaches targets 

static faults only. In this chapter, we present a new diagnosis approach that represents an 

alternative to signature-based approaches. This new diagnosis technique, named history-

based diagnosis, makes use of the effect-cause paradigm already developed for logic design 

diagnosis. It consists in creating a database containing the history of operations (read and 

write) performed on a faulty memory core-cell. This information is crucial to track the root 

cause of the observed faulty behavior and it can be used to generate the set of possible FPs 

representing the set of suspected faults. This new diagnosis method is able to identify static as 

well as dynamic faults. Although applied to SRAMs, it can be effective also for other memory 

types such as DRAMs.  

This chapter is organized as follows: A state-of-the-art is first provided where we 

present basic signature-based diagnosis solutions, their functioning and drawbacks. The 

second Section presents an extension of these techniques able to consider not only static 

faults, but dynamic faults as well. In the third Section, our new history-based diagnosis is 

described. Principle, examples and results are provided. Finally, perspectives and conclusion 

are given in the last section. 

II.2.1. State-of-the-art: signature-based diagnosis 

Existing diagnostic methods are generally based on the cause-effect principle. In this 

section we propose to explain that, and then show its main drawbacks. A typical cause-effect 

diagnosis method is depicted in Figure II.11. 
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Figure II.11 – A cause-effect diagnosis method 

Classical diagnostic techniques for memories are based on signatures analysis. The 

signature, also called syndrome, is composed of a set of read operations included in the 

considered March test. Each signature, representing a set of possible fault models affecting 

the memory, is collected in a dictionary. 

As mentioned above, the quality of a diagnosis is given by the Diagnosability Ratio 

(DR), defined as the ratio between the number of distinguishable fault types and the number 

of total detectable fault types. Since the fault dictionary is based on a given March test, the 

DR is strictly related to: 

 The set of fault models covered by the implemented March test. 

 The number of read operations operated by the implemented March test. 

To illustrate the signature-based diagnosis principle, let us consider the well-known 

March C-, whose structure is shown again in Figure II.12. 

↕ (푤0) ↑ (푟0,푤1) ↑ (푟1,푤0) ↓ (푟0,푤1) ↓ (푟1,푤0) ↕ (푟0) 

Figure II.12 – March C- algorithm 

For a given test algorithm, the fault dictionary can be generated by listing the fault 

models and their corresponding syndromes. For example, the fault dictionary, limited to 

stuck-at (SAF) and transition (TF) faults, for March C-, is given in Table II.2 [LI01]. 
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Fault model R0 R1 R2 R3 R4 

SAF0 0 1 0 1 0 

SAF1 1 0 1 0 1 

TF1 0 1 0 1 0 

TF0 0 0 1 0 1 

Table II.2 – Partial fault dictionary related to March C- 

In Table II.2, Ri = 0 (1) means that the ith read operation of the test algorithm has 

returned a correct (faulty) value for a specific memory core-cell. For example, a SAF0 

corresponds to the failure of all 푟1 operations. Consequently, the March syndrome for SAF0 

is (01010), as presented in Table II.2. It is important to mention that the signature does not 

depend on the faulty memory core-cell (i.e., each faulty cell affected by a SAF0 has the same 

signature). Note that this fault dictionary can be extended to the whole set of fault models 

detected by March C-. Consequently, faulty test responses collected during March test 

application are used as pointer in the fault dictionary to provide the list of suspected faults. 

Based on this principle, most of existing studies on memory fault diagnosis target static 

faults such as SAF, TF and CF [APP06, VAR06, HAR07]. These studies propose the 

extension of the considered March test by the addition of extra read operations, in order to 

increase the signature fields and therefore improve the DR. The first drawback of such 

techniques is that the increased complexity of March tests, e.g. the March DSS depicted in 

Figure II.13 of a 46N complexity in [HAR07], can be excessive to be used for industrial 

purpose. In addition, these solutions are most of the time unable to distinguish between all 

faults (or all fault models) and hence do not allow to determine which memory component is 

defective. 

On the other hand, dynamic faults have been considered for diagnosis purpose in the 

literature only in [THA6], where the authors focus on dynamic CFs and extend the syndrome 

using the written data as field. Consequently, there is a clear need of new diagnosis solutions 

that consider both static and dynamic faults. 
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{↑ (푤0) ↑ (푟0, 푟0,푤0, 푟0,푤1) ↑ (푟1,푤1, 푟1,푤0) 

     ↓ (푟0,푤0, 푟0,푤1) ↓ (푟1,푤1, 푟1,푤0,푤0, 푟0) 

     ↓ (푟0,푤0, 푟0) ↓ (푟0,푤1, 푟1) ↓ (푟1,푤1) 

     ↑ (푟1,푤0, 푟0) ↑ (푟0,푤1, 푟1) ↑ (푟1,푤0) 

     ↓ (푟0,푤0) ↑ (푟0,푤1) ↓ (푟1,푤1, 푟1) 

     ↓ (푟1,푤0) ↑ (푟0) } 

Figure II.13 – March DSS 

II.2.2. Signature extension for dynamic fault diagnosis 

In this Section, we introduce an extension of the signature technique, by adding new 

fields in the syndrome, to make it able to deal with dynamic faults as well. This extension is 

made possible by using information on the addressing sequence during the March test 

execution. The addressing order information has been demonstrated to be important in the 

detection of dynamic faults in SRAMs as well as the data background [DIL04a] that we 

intend to consider here. The proposed approach allows to diagnose dynamic faults, to 

distinguish between static and dynamic faults, and to localize the related failure in the 

memory. The additional information introduced in the signature is taken from the algorithm 

itself, thus it does not increase its complexity. Here, we illustrate the proposed signature-

based diagnosis approach by considering as case study the dynamic fault Un-Restored Write 

fault (URWF), affecting write driver and pre-charge circuit of SRAMs. 

II.2.2.1. Signature-based dynamic fault diagnosis 

The proposed approach is still based on the classic signature methodology, but it reaches 

a high DR without raising the March test (MT) complexity, i.e. without adding additional read 

operations in the MT. For this purpose, we expand the number of the signature fields by 

adding information related to the address sequence used during the algorithm execution.  
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Considering all the fields in the signature, the information required for the diagnosis is 

the following: 

 The tester report: faulty cell addresses. 

 The executed MT. 

 The list of fault models covered by the executed MT. 

 The addressing sequence adopted during the MT execution. 

 The SRAM architecture providing information about the core-cell array 

structure from the logic point of view. 

In order to achieve a more efficient diagnosis, we now improve the signature-based 

diagnosis by introducing information extracted from the addressing order adopted during the 

MT execution and the SRAM architecture. For an easy understanding of our proposition, we 

consider the dynamic fault called Un-Restored Write Fault (URWF) as case study. The 

URWF can be due to different electric causes such as resistive-open defects in the write driver 

(see Part I) or in the pre-charge circuit [DIL05b] of SRAMs. The common effect in both cases 

is that the final voltage level of bit lines is erroneous at the end of the pre-charge phase, and 

the following read operation fails.  

Figure II.14 depicts a simplified scheme of an SRAM composed by two 4x4 blocks. 

Each block presents its own I/O circuitry that is shared by four columns. As presented in  

Part I, the URWF resulting from a resistive-open defect in the write driver requires the 

following sequence of operations to be detected: 

푤푥  푟푥̅  

Both operations have to be performed on two distinct core-cells that belong to the same 

I/O circuitry (see Figure II.14). 

When an URWF is due to a resistive-open defect in the pre-charge circuit, the 

sensitization sequence is the same than that described above, but in this case, both operations 

have to be performed on two distinct core-cells belonging to the same column. 



Software-based diagnosis solution 

111 

 

I/O 1 I/O 2 

Data In/Out 

PRE 

CC20 

CC30 

PRE 

CC21 

CC31 

PRE 

CC22 

CC32 

PRE 

CC23 

CC33 

PRE 

CC24 

CC34 

PRE 

CC25 

CC35 

PRE 

CC26 

CC36 

PRE 

CC27 

CC37 

CC00 

CC10 

CC01 

CC11 

CC02 

CC12 

CC03 

CC13 

CC04 

CC14 

CC05 

CC15 

CC06 

CC16 

CC07 

CC17 

 

Figure II.14 – A two blocks SRAM architecture  

Among March test algorithms, we have seen that March C- is able to detect both types 

of URWF if it is executed with the specific addressing order ‘column after column’. 

Considering the memory architecture shown in Figure II.14, we can determine the whole 

set of possible addressing situations: 

 Adi is the address of the currently accessed cell and during a read at this 

address, a fault is detected. 

 Adi-1 is the address of the cell previously accessed with respect to Adi  

 Adi+1 is the address of the next cell to be accessed with respect to Adi . 

Considering three consecutive address locations (Adi-1, Adi and Adi+1) during test 

execution, the possible combinations are the following ones: 

 Adi-1 belongs (or not) to the same I/O circuitry with respect to Adi. 

 Adi-1 belongs (or not) to the same column with respect to Adi. 

 Adi+1 belongs (or not) to the same I/O circuitry with respect to Adi. 

 Adi+1 belongs (or not) to the same column with respect to Adi. 

Combinations described above are summarized in Figure II.15. On the left side, the list 

of the different addressing configurations concerning the previous accessed cell Adi-1 is 

presented. The next accessed core-cell Adi+1 is considered on the right part of the scheme. 
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Figure II.15 – Possible address sequence during test execution for URWF detection, 

considering the memory architecture 

For URWF detection, the sensitization sequence has to be applied at least on two 

distinct core-cells belonging to the same I/O circuitry (in case of write driver failure) or to the 

same column (in case of a faulty pre-charge circuit). Moreover, we consider not only the 

previous accessed core-cell but also the next accessed core-cell because most of March 

algorithms have up (↑) and down (↓) addressing order. Consequently, the next accessed core-

cell in the up (↑) addressing order is the previous accessed core-cell during the down (↓) 

addressing order, and vice versa. 

An URWF can be sensitized when two core-cells are accessed with any addressing order 

described in Figure II.15. The knowledge of the addressing sequence allows to deduce the 

following important information: 

1. It allows to determine the faulty memory element, i.e. pre-charge circuit or 

write driver. 

2. It allows to determine the nature of the observed fault, i.e. static or dynamic. 

Let us consider the first point ‘1.’. In accordance with the possible addressing 

configurations presented in Figure II.15, four cases are possible: 

 The configuration allows detecting URWFs caused by malfunction in a write 

driver. 

 The configuration allows detecting URWFs caused by malfunction in a pre-

charge circuit. 

 The configuration allows detecting URWFs caused by malfunction of both 

pre-charge circuit and write driver but it cannot provide the failure 

localization. 
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 The configuration allows detecting URWFs caused by malfunction in both 

pre-charge circuit and write driver but also provides the failure localization. 

In Table II.3, we list all possible extended signatures obtained with the application of 

the March C- algorithm (c.f. in Figure II.14) and leading to URWFs detection. 

Fault 
model 

Faulty 
element 

CONF R0 R1 R2 R3 R4 Ad i-1 Ad i+1 

U
R

W
F 

WD 1 1 0 1 0 0 10 10 

WD 2a 1 0 1 0 0 10 11 

Pre 2b 0 0 1 0 0 10 11 

WD 3 1 0 0 0 0 10 00 

WD 4a 1 0 1 0 0 11 10 

Pre 4b 1 0 0 0 0 11 10 

WD, Pre 5 1 0 1 0 0 11 11 

WD, Pre 6 1 0 0 0 0 11 00 

WD 7 0 0 1 0 0 00 10 

WD, Pre 8 0 0 1 0 0 00 11 

Table II.3 – List of extended signatures for URWF detection during March C- execution 

The two first columns provide the fault model (URWF) and the memory element(s) 

whose failure involves the URWF: WD for write driver and Pre for pre-charge circuit. The 

third column gives the configuration, with respect to the scheme in Figure II.15 (labels on 

arrows). Columns from four to eight provide the classical March C- signatures for URWF 

detection. Finally, the two last columns of Table II.3 are fields we have added to represent the 

addressing order, Adi-1 for the previous accessed core-cell and Adi+1 for the next one. These 

additional fields require two bits to represent all address configurations presented in  

Figure II.15: 

 The first bit indicates if address Adi-1 (or Adi+1) shares the same I/O element 

than the current accessed memory core-cell (‘1’ if yes, ‘0’ if no, x if don’t 

care). 

 The second bit indicates if address Adi-1 (or Adi+1) shares the same column 

than the current accessed memory core-cell (‘1’ if yes, ‘0’ if no, x if don’t 

care). 
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For example, Adi-1 = 10 means that the previous accessed core-cell shares only the same 

I/O circuitry with the current accessed core-cell. For the diagnosis of other dynamic fault 

models, it is necessary to use additional bits to describe other specific addressing sequence. 

For example, Adi-1 and Adi belonging to the same word line is the addressing sequence useful 

to detect dRDF, unitary hamming distance addresses are necessary to detect Address Decoder 

Open Faults (ADOF) [DIL04a]. 

For a better understanding of Table II.3, we propose the reading of the first line. The last 

two columns indicate that Adi-1 and Adi+1 belong to the same I/O of the current accessed core-

cell i, but not to the same column (Adi-1 = Adi+1 = 10). With such addressing sequence, the 

only detectable failing element is the write driver (WD), as previously explained; this 

information is shown in column two. Finally, the March C- application with this addressing 

configuration between Adi-1, Adi and Adi+1 provide the basic signature based on read 

operations (10100), exposed in columns three to eight. Thus, the extended signature is 

‘101001010’. 

The list of extended signatures presented in Table II.3 shows that: 

 The addressing configurations 1, 3 and 7 allow the detection and the 

localization of URWF in the write driver. 

 The addressing configurations 5, 6 and 8 allow the detection of URWF but do 

not provide any information on the failure localization. That means the URWF 

can be due to a failure in the pre-charge circuit or in the write driver as well. 

 The addressing configurations 2 and 4 allow the detection of URWF but also 

are able to exactly determine the failure localization. In fact, with the same 

addressing sequence, different syndromes are generated according to the 

faulty elements. The ‘a’ suffix is attached to faulty write drivers, whereas the 

‘b’ suffix is attached to faulty pre-charge circuits.  

In the signature, the additional fields concerning the addressing sequence have been 

helpful to determine the occurrence of an URWF as well as the failure localization. 

Now, we analyze the second point mentioned above ‘2.’, i.e. how to determine the static 

or dynamic nature of the fault. In Table II.4, we give the set of signatures related to URWF 

and CFst (taken from [LI01]), considering March C-execution. 
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Fault model R0 R1 R2 R3 R4 Ad i-1 Ad i+1 

URWF 

1 0 0 0 0 10 00 

1 0 0 0 0 11 10 

1 0 0 0 0 11 00 

CFst(L,1,1) 1 0 0 0 0 xx xx 

Table II.4 –Signatures -URWF vs. CFst - 

In this table, the fields marked with ‘x’ associated to the addressing configuration CFst 

signature, mean that the addressing order has no impact on the fault detection. Table II.4 

shows that URWF and CFst are not distinguishable as they have the same syndrome. 

However, it also shows that depending on the sequence of accessed core-cells during test 

application, we can state if there is no URWF occurrence. In other words, with a single test 

sequence application, it is possible to determine if the memory is affected by static faults only. 

However, further test applications with different addressing sequences should be useful to 

completely differentiate static and dynamic faults.  

II.2.2.2. Discussions 

In this Section, we have proposed an approach for dynamic fault diagnosis in SRAMs. 

This approach is based on the extension of existing signature-based diagnosis methods. We 

show that tacking in account information concerning the addressing configuration of the 

executed March test can be crucial for the diagnosis of dynamic faults. We have demonstrated 

the effectiveness of the proposed solution in identifying the failure location in the memory on 

a case study, the URWF.  

However, such technique presents many drawbacks. First, these solutions based on the 

extension of the signature suffer from limitations due to the use of an established fault 

dictionary. Secondly, as all possible memory configurations have to be take into account for 

the complete description of a fault model, the store information in the dictionary may become 

too high when considering the whole set of static and dynamic faults. 
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Consequently, there is a clear need of new diagnosis solutions that: 

 consider the whole set of static and dynamic faults 

 are able to provide accurate location of the faulty component (in the core-cell 

array, write drivers, sense amplifiers, address decoders, pre-charge circuits, 

etc.) 

 are not limited to the a priori knowledge of the targeted faults, but that 

generate dynamically the diagnosis response. 

II.2.3. History-based diagnosis 

In this section, we present a new diagnosis approach that represents an alternative to 

signature-based approaches. This new diagnosis technique is based on the effect-cause 

paradigm already developed for logic design diagnosis [ABR84]. It consists in creating a 

database containing the history of operations (read and write) performed on those core-cells, 

where read operations have returned faulty logic values, during the test phase. This 

information is crucial to track the root cause of the observed faulty behavior and is used to 

generate the set of possible FPs [VDG00] representing the suspected fault models.  

Such history-based diagnosis approach offers many advantages. It does not require the a 

priori knowledge of the set of fault models targeted by the test algorithm because it does not 

rely on an established fault dictionary. It does not suffer from an additional limitation of 

signature-based approaches with respect to the treatment and storage of large data volume. 

Moreover, this method is able to perform the diagnostic of both static and dynamic faults and 

provides a better DR compared to signature-based diagnosis approaches. Another feature of 

the proposed history-based approach is its capability to provide accurate and reliable 

information on the fault location. This is imposed by the fact that some fault models can be 

related to multiple possible electric causes, leading to a difficult location of the faulty memory 

component (address decoders, core-cells, sense amplifiers, write drivers…). For example, it 

has been previously shown that an URWF can be due to defects locating in a pre-charge 

circuit or in a write driver of SRAMs. A signature-based diagnosis approach would indicate 

that the memory is affected by an URWF, without any information on the faulty component 

of the memory where the malfunction is actually caused. Conversely, with our history-based 

diagnosis approach, the diagnosis report will indicate that the memory is possibly affected by 

an URWF also specifying the suspected memory component (pre-charge circuit or write 
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driver). Such information is very helpful for the yield ramp up as well as to guide the repair 

schemes. 

In order to perform a relevant number of experiments, we have created a dedicated 

software diagnosis tool. The achieved experimental results are analyzed and compared to 

results obtained with a classical signature-based approach. The efficiency of the history-based 

diagnosis in producing a list of suspected faults as well as the indication of the fault location 

is proven. 

II.2.3.1. Principle 

The principle of the history-based diagnosis is based on the collection of two types of 

relevant information:  

 the faulty responses provided by the tester. 

 the record of the sequence of preceding operations performed on the core-cells 

where read operations have returned faulty logic values during the test. With 

this information, a set of FPs is generated.  

As can be seen in Figure II.16, the proposed diagnosis solution requires three inputs: 

Memory Architecture: this input provides information related to the tested 

memory in terms of dimension (number of row and columns), I/O organization 

and other information about the structure. 

March Test Specifications: this input provides information on the applied test 

algorithm in terms of sequence of operations performed on the memory and 

addressing order (row after row, named ‘fast R’, column after column, named ‘fast 

C’,…). 

Tester Report: this input provides information about the results of the test. For 

each observed error, this report indicates which is (are) the read operation(s) that 

reveal the fault and the corresponding core-cell address. 
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Figure II.16 – History-based diagnosis principle 

As indicated in previous sections, our diagnosis solution does not require any list of 

fault models in input as in standard signature-based diagnosis solutions. 

Let us now introduce the four steps of the history-based diagnosis procedure: 

Step 1: History of faulty reads 

Step 2: History of fault-free reads 

Step 3: FP compilation 

Step 4: Fault model allocation 

These steps are explained in detail in the following sub-sections.  

II.2.3.2. Step 1: History of faulty read operations 

This first step of the proposed diagnosis process consists in recording the history of 

operations performed on the faulty core-cell. The history concerns only the back operations 

that lead to faulty read operations. Starting from a faulty read operation, we record all the 

operations previously performed on the affected core-cell until the last read operation.  

Let us illustrate these principles with a hypothetical 4x4 SRAM, whose scheme is 

presented in Figure II.17. 
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Figure II.17 – A 4x4 memory core-cell array 

Let us assume that this memory is affected by a TF0 (Transition Fault 1 to 0) in core-

cell CC22. Consider that the applied March algorithm is the March C- with a fast C addressing 

order. The test application provides the following syndrome (available from the tester report): 

0 0 1 0 1 (퐴푑푑푟푒푠푠 퐶퐶 ) 

meaning that the 푟0 operations of March elements M3 and M5 performed on CC22 have 

returned a faulty value. 

With available information (SRAM structure, MT and syndrome) we can start to 

generate the history record for each faulty read operation. The first faulty read operation is the 

푟0 of the March element M3. The previous operations performed on CC22 were a correct 푟1 

and a 푤0 of M2. The history record generation stops at the fist previous read operation. The 

resulting history record of the first faulty read is denoted as H0 and is composed as follows: 

퐻  =  1 푤0  푟0 

where the logic ‘1’ indicates the last value returned by the read in the core-cell (by the March 

element M2), followed by the 푤0 of M2 and the faulty 푟0 of March element M3. From H0 we 

compute all possible FPs that can explain the faulty behavior on CC22. We include these FPs 

in a set denoted as eFP0 and composed as follows: 

푒퐹푃  =  {(1 푤0), (0 푟0)} 

Note that in the previous expression, and in all the following ones of the same type, the 

notation of FP is simplified to the sensitization sequence (‘S’ in the formal notation 

[VDG00]). The FP ‘1 푤0’ can be interpreted as a failing 푤0 on CC22. The second FP, ‘0 푟0’, 

contains the actual faulty 푟0. 
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In the same way, H1, related to the second faulty read on CC22, is computed and results 

in a new history record: 

퐻  =  1 푤0  푟0 

From H1 we obtain eFP1: 

푒퐹푃  =  {(1 푤0), (0 푟0)} 

Assuming that a memory component (core-cell, write driver, pre-charge circuit,…) may be 

affected by a single fault, the root cause of the observed error has to be present in all sets of 

FPs. Consequently, the resulting eFPfaulty related to CC22 is simply obtained by intersecting 

eFP0 and eFP1: 

푒퐹푃  =  {(1 푤0), (0 푟0)} 

II.2.3.3. Step 2: History of correct read operations 

In order to reduce the set of FPs in eFPfaulty, we have to exclude those FPs that certainly 

do not lead to a fault. For this purpose, we consider the FPs that are generated by non-faulty 

read operations. Considering again the example developed in Section II.2.3.2 (TF0 on core-

cell CC22)  

According to the obtained signature (00101), one 푟0 operation among three is correct. 

Consequently, we build the history of this 푟0 as follows (in case of more than one correct 푟0, 

a history record should have been generated for each correct 푟0): 

퐻 ′ =  푋  푤0  푟0 

with ‘X’ meaning that the contents of the core-cell is unknown before starting the March 

element M0.  

From H0’ we generate eFPfault-free as follow: 

푒퐹푃 =  {(푋 푤0), (0 푟0)} 

The FPs in eFPfault-free are those for which no faulty behaviors has been observed.  

Note that the history of the two correct 푟1 is not considered because it could not reduce 

the number of FPs. 
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II.2.3.4. Step 3: FP Compilation 

After Step 1 and Step 2, we have two sets of FPs: eFPfaulty and eFPfault-free. Now, we have 

to remove from eFPfaulty the FPs composing eFPfault-free. This is reported in the following 

equation: 

푒퐹푃  =  푒퐹푃  – ( 푒퐹푃   푒퐹푃  ) (Eq. II.4) 

For the considered example with the occurrence of a Transition Fault TF0 on CC22, we obtain:  

푒퐹푃  =  {(1 푤0)} 

This sets of FPs (in this case with only one element) represent the possible causes of the 

observed error.  

II.2.3.5. Step 4: Fault Model Allocation 

At this stage of the diagnosis process, we have the final report of FPs. From eFPreport, we 

associate the corresponding fault models to each FP as described in [VDG00]. Let us consider 

again the above examples, for which the reduced set of FPs is: 

푒퐹푃  =  {(1 푤0)} 

In this case, there is only one FP in the list and the corresponding fault model is a TF0 

(Transition Fault 1 to 0), which corresponds to the actual fault affecting the memory. 

II.2.4. Diagnosis of dynamic faults 

The history-based diagnosis approach, as presented in the previous section, is able to 

diagnose static faults. Hereafter, we extend this new diagnosis approach to make it able to 

diagnosis dynamic faults. In sub-section II.2.4.1 we present a set of dynamic faults that we 

want to diagnose. For each of them we provide their definition and we highlight important 

conditions that will be helpful to apply our diagnosis technique. In sub-section II.2.4.2, we 

present how we improve our diagnosis approach in order to cover dynamic faults. 

II.2.4.1. Dynamic fault models 

At this stage of our study, we consider three two-cell dynamic faults and one single-cell 

dynamic fault. Additional dynamic fault models will be implemented in future developments. 
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Slow Write Driver Fault (SWDF): A write driver is said to have a SWDF if it cannot act 

a 푤0 (푤1) when this operation is preceded by a 푤1 (푤0). This results in a core-cell that does 

not change its data content. 

This dynamic fault model is the consequence of resistive-open defects in the control part 

of the write driver. It involves an erroneous write operation when the write driver performs 

two successive write operations with opposite data values. A SWDF requires the following 

test sequence to be detected: 

푤푥 푤푥̅ 푟푥̅  (1) 

where the two write operations are for sensitization and the read operation for observation. 

Moreover, the two write operations have to be performed by the same write driver. 

Considering that our diagnosis method consists in taking into account the operations 

performed on the faulty core-cell we must store additional information concerning the 

previous data written by the write driver. Consequently, we formulate the first requirement 

that will be exploited by our diagnosis method as follows: 

Requirement 1: During the diagnosis process we must take a record of the data 

previously written by the write driver. 

Un-Restored Write Fault (URWF): The pull up of one of the two bit lines is not 

completely achieved after the state reached with a write operation. Consequently the 

following read operation of an opposite data in a cell belongs the same I/O circuitry is not 

correctly acted [ADA97]. 

Un-Restored Destructive Write Fault (URDWF): The same definition as URWF but in 

addition to the faulty read operation, the cell flips. 

These two fault models are the consequence of resistive-open defects in the pre-charge 

circuit and/or the write driver. Both affect the read operation when it is preceded by a write 

operation. As presented in the first Part of the thesis, the URWF and URDWF resulting from 

a resistive-open defect in the write driver requires the following sequence of operations to be 

detected: 

푤푥  푟푥̅   (2) 

where 푤푥  means write the value x in cell CCA and 푟푥̅  means read the opposite value in 

cell CCB. Both operations have to be performed on two distinct core-cells that belong to the 

same I/O circuitry. 
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As mentioned in [DIL05b], when an URWF is due to a resistive-open defect in the pre-

charge circuit, the sensitization sequence is the same than (2), but in this case, both operations 

have to be performed on two distinct core-cells belonging to the same column, i.e. sharing the 

same pre-charge circuit. 

As for SWDF, we formulate the second requirement that will be exploited by our 

diagnosis method as follow: 

Requirement 2: During the diagnosis process we must take a record of where (same 

column, same I/O) the last write operation has been performed. 

dynamic Read Destructive Fault (dRDF): A cell is said to have a dRDF if a write 

operation immediately followed by a read operation performed on the core-cell changes the 

logic state of this core-cell and returns and incorrect value on the output [VDG00, HAM02]. 

This dynamic fault model is related to resistive-open defects affecting the core-cell and 

it has been improved in [BOR03b] where the authors have shown that multiple read after the 

write operation may also induce the faulty swap of the targeted core-cell. Consequently, a 

dRDF requires the following sensitizations sequence: 

푤푥 푟푥 푟푥 푟푥 푟푥… 푟푥  (3) 

In [DIL04b] it has been shown that operations performed on a core-cell involve a stress 

on the other core-cells belonging to the same word line. This stress, called Read Equivalent 

Stress (RES), is equivalent to a read operation.  

For our diagnosis tool, we must therefore consider the record of such stresses in order to 

be able to deal with dRDF diagnosis. As for the others dynamic fault models exposed above, 

we formulate the third requirement that will be exploited by our diagnosis method as follows: 

Requirement 3: During the diagnosis process we must take a record of the sequence of 

consecutive read operations or RESs (Read Equivalent Stresses) undergone by the core-cell 

presenting a faulty read. 

II.2.4.2. Application 

Based on requirements exposed above, we have to consider the record of additional 

information during the diagnosis process in order to cover dynamic faults. For this purpose, in 

the history record, we include an Additional Information Vector (AIV), which stores 

information about the previously accessed core-cell in address Adi-1 (see Requirements 1 and 

2), information about the next accessed core-cell in address Adi+1 (see Requirements 1 and 2) 
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and all the RES that the faulty core-cell has undergone (see Requirement 3). This vector 

contains the following information: 

 One bit to report if Adi-1 and Adi belongs to the same I/O (0: false, 1: true)  

 useful for URWF (1). 

 One bit to report if Adi-1 and Adi belongs to the same column (0: false, 1: true) 

 useful for URWF detection (2). 

 The last operation (푟0, 푟1, 푤0 or 푤1) performed on Adi-1 just before the faulty 

read  useful for URWF (3). 

 The number of break(s) between the faulty read operation on Adi-1 and the last 

operation done on Adi-1  useful for URWF (4). 

 A record of the previously data written by the write driver (0: fall transition, 1: 

up transition, -1: no transition)  useful for SWDF detection (5). 

Table II.5 groups all these requirements and affects a number for each of them. The four 

first bits are related to the previous accessed core-cell, the next third concern the next 

accessed core-cell, and the last bit is associated with the write driver input. 

Adi-1 WD 

1 2 3 4 5 

I/O column operation break Transition  

Table II.5 – Additional Information Vector legend 

Let us now illustrate the use of this AIV on three examples. 

Example 1: dRDF 

Let us assume that the core-cell CC22 (see Figure II.17) is affected by a dRDF, i.e. one 

푟1 just after a 푤1 causing the faulty swap of CC22. In this case, March C- is applied with fast 

R addressing order as proposed in [DIL04b]. The tester report presents the following 

syndrome: 

0 1 0 1 0 (퐴푑푑푟푒푠푠 퐶퐶 ) 

H0 is the history of the first faulty read: 

퐻  =  0  푤1  푅퐸푆   퐵   푅퐸푆   푟1 

The last read operation is a fault-free 푟0, so that the first term in H0 is ‘0’. The next 

operation after this correct 푟0 is a 푤1 operation performed on CC22, followed by a 푟1. All the 
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others terms in between represent what the core-cell electrically undergoes: B means a Break 

and RES means Read Equivalent Stress. 

Let us first explain how we have obtained the first term (RES2). During the application 

of March element M1, a 푤1 operation is performed on CC22. Subsequently, the operations 

(푟0,푤1) are acted on core-cell CC23. As CC23 belongs to the same word line than CC22, the 

latter undergoes two stresses denoted as RES2. 

Then, the (푟0,푤1) operations are performed on the four core-cells of the last row of the 

core-cell array. Consequently, CC22 is not electrically stimulated during 8 clock cycles. Then, 

March element M2 is run. The (푟1, 푤0) operations are acted on all core-cells of the two first 

rows. Core-cell CC22 does not undergoes any electrical stimulation during 16 clock cycles. At 

the end, CC22 is not accessed, even indirectly (RES), during 24 clock cycles, thus we report 

B24. 

The (푟1, 푤0) operations are now performed on CC20 and CC21. As these two core-cells 

belong to the same word line than CC22, CC22 undergoes four stresses, reported with RES4. At 

the same time, we compute AIV0 as follows: 

Adi-1 WD 

I/O column operation break Transition 

0 0 w0 0 -1 

 

From H0 and AIV0 we obtain eFP0: 

푒퐹푃  =  {(0 푤1), (1 푟1), (0 푤1 푟1), (0 푤1 푟1 푟1), (0 푤1, 1 푟1)} 

The two first FPs of eFP0 consider respectively the first and last operations of H0 with ‘0 푤1’ 

meaning that the 푤1 operation may have failed and ‘1 푟1’ containing the actual faulty 푟1 

operation. 

Then FP0 is completed with FPs related to the action of the RESs recorded in H0. As the 

푤1 operation on CC22 is immediately followed by two RES (RES2), we obtain the ‘0 푤1 푟1’ 

and ‘0 푤1 푟1 푟1’ FPs (considering RES ≈ read operation). Finally, the last FP of eFP0 is 

obtained with the help of the AIV0. The ‘0 푤1 , 1 푟1’ FP means that 푤1 is acted on a core-cell 

corresponding to Adi-1 and 푟1 is performed on the core-cell corresponding to Adi. 

In the same way, we compute H1 that concerns the second faulty read: 

퐻  =  0  푤1  푅퐸푆   퐵   푅퐸푆   푟1 
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and AIV1 related to H1 is the following: 

Adi-1 WD 

I/O column operation break Transition 

1 0 w0 0 -1 

 

From H1 and AIV1 we obtain eFP1: 

푒퐹푃  = {(0 푤1), (1 푟1), (0 푤1 푟1), (0 푤1 푟1 푟1), 

        (0 푤1 푟1 푟1 푟1), (0 푤1 푟1 푟1 푟1 푟1), (0 푤1퐼/푂 , 1 푟1)} 

Note that the index ‘I/O’ in the last FP means that the 푤1 is performed on a core-cell 

belonging to the same I/O circuitry used by core cell that has recorded a faulty read. 

eFPfaulty is obtained by intersecting eFP0 and eFP1: 

푒퐹푃  =  {(0 푤1), (1 푟1), (0 푤1 푟1), (0 푤1 푟1 푟1)} 

This time, all 푟1 operations have returned an incorrect data value, implying that  

eFPreport = eFPfaulty: 

푒퐹푃  =  {(0 푤1), (1 푟1), (0 푤1 푟1), (0 푤1 푟1 푟1)} 

The last step of the method assigns the fault models to the FPs found. From eFPreport we 

obtain as fault candidates: 

 TF1: this fault model is related to the FP ‘0 푤1’. 

 SAF0, RDF, IRF: these fault models are related to FP ‘1 푟1’. 

 dRDF (1 푟1, 2 푟1): This fault model is related to FPs ‘0 푤1 푟1’ and 

‘0 푤1 푟1 푟1’. 

The dRDF (1 푟1, 2 푟1) means that the core-cell has swapped after one or two 

consecutive 푟1 operations just after the 푤1. This last fault model proposed in the diagnosis 

report corresponds to the one we have injected. 

Example 2: URWF 

As second example, we consider the Un-Restored Write Fault (URWF). Such a fault 

model is caused by defects in the pre-charge circuit or in the write driver. In this example, we 

inject a defect in the pre-charge circuit of the last column of the memory presented in Figure 

II.17. 
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After applying the March C- with a fast C addressing order, the test report presents the 

following syndromes: 

0 0 0 1 0 (퐴푑푑푟푒푠푠 퐶퐶 ) 

0 1 0 1 0 (퐴푑푑푟푒푠푠 퐶퐶 ) 

0 1 0 1 0 (퐴푑푑푟푒푠푠 퐶퐶 ) 

0 1 0 0 0 (퐴푑푑푟푒푠푠 퐶퐶 ) 

It is important to notice that all the four core-cells belonging to the faulty pre-charge 

circuit provide faulty responses. Consequently, the diagnosis procedure has to be applied four 

times. Let us first detail the case of the faulty reads in core-cell CC03. H0 is the history of the 

faulty read: 

퐻  =  0  푤1  퐵   푅퐸푆   퐵   푅퐸푆    퐵   푅퐸푆   퐵   푟1 

and AIV0 related to H0 is the following: 

Adi-1 WD 

I/O column Operation break Transition 

1 1 w0 0 -1 

 

From H0 and AIV0 we obtain eFP0: 

푒퐹푃  =  {(0 푤1), (1 푟1), (1 푤0퐼/푂, 푐 , 1 푟1)} 

As there is only one faulty read, eFPfaulty = eFP0. 

Now, we build the history of the remaining correct read as follow: 

퐻 ′ =  0  푤1  퐵   푅퐸푆   퐵   푅퐸푆    퐵   푅퐸푆   퐵   푟1 

and AIV0
’ related to H0’ is the following: 

Adi-1 WD 

I/O Column Operation break Transition 

1 0 w0 0 -1 

 

From H0’ and AIV0’ we obtain eFP0’: 

푒퐹푃 ′ =  {(0 푤1), (1 푟1), (1 푤0 /  , 1 푟1)} 

As there is only one correct read: 

푒퐹푃  =  푒퐹푃 ′ 
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From the intersection of eFPfaulty and eFPfault-free, we obtain eFPreport as follow: 

푒퐹푃  =  {(1 푤0  , 1 푟1)} 

The fault model related to eFPreport is an URWF. In addition, as the previous 푤0 

operation has been performed on the same column, we can state that the URWF is due to a 

defect in the pre-charge circuit (incorrect bit line pull up during the restoring phase between 

two operations). 

The same procedure is followed for the remaining syndromes. We obtain for CC13 and 

CC23: 

푒퐹푃  =  {(0 푤1), (1 푟1), (1 푤0 / ,  , 1 푟1)} 

meaning that both core-cells may be affected by a TF1, SAF0, IRF or RDF. From the last FP 

of eFPreport we also conclude that an URWF may be the root cause of the observed errors. But 

this time we cannot provide any information on the defect location (I/O or pre-charge 

circuitry). 

For the last syndrome related to CC33 we obtain: 

푒퐹푃  =  {(1 푤0 / ,  , 1 푟1)} 

meaning that an URWF is the root cause of the observed error. Like the previous case, we 

cannot state on the defect location. Otherwise, an important result is that we have found out a 

unique fault model for all the four syndromes. The URWF related to a defect in the pre-charge 

circuit is present in all fault lists. Of course, this fault model has a much higher probability to 

be the actual and singular root cause of the malfunctions respect to TF1, SAF0, RDF, IRF and 

URWF (due to a defective write driver). 

Example 3: SWDF 

A third example concerns Slow Write Driver Fault (SWDF). Such a fault model is 

caused by defects in the write driver. In this example, we inject a defect in the write driver 

belonging to I/O1 (c.f. Figure II.17). After applying the March C- with a fast C addressing 

order, the test report presents the following syndromes: 

0 1 0 0 0 (퐴푑푑푟푒푠푠 퐶퐶 ) 

0 0 0 1 0 (퐴푑푑푟푒푠푠 퐶퐶 ) 

As previously seen for URWF, the diagnosis procedure has to be applied twice (for each 

faulty core-cell). Let us first detail the case of the faulty reads in core-cell CC00. 
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H0 is the history of the faulty read: 

퐻  =  0  푤1  퐵   푅퐸푆   퐵   푅퐸푆    퐵   푅퐸푆   퐵   푟1 

and AIV0 related to H0 is the following: 

Adi-1 WD 

I/O column operation break Transition 

0 0 w1 0 1 

 

From AIV0, we highlight the fact that the write driver has undergone an up transition 

(see last column of AIV0). It means that the previous write operation done by the write driver 

before the 푤1 operation (see H0) performed on CC00 was a 푤0.  

Consequently, from H0 and AIV0 we obtain eFP0: 

푒퐹푃  =  {(0 푤1), (1 푟1), (1 푤0 , 0 푤1)} 

Note that the index ‘WD’ in the FP means that the 푤0 is performed by the same write driver 

as that used by the core cell that has recorded a faulty read. 

As there is only one faulty read: 

푒퐹푃  =  푒퐹푃  

Now, we build the history of the remaining correct read as follow: 

퐻 ′ =  0  푤1  퐵   푅퐸푆   퐵   푅퐸푆    퐵   푅퐸푆   퐵   푟1 

and AIV0
’ related to H0’ is the following: 

Adi-1 WD 

I/O column operation break Transition 

1 1 w0 0 -1 

 

From H0’ and AIV0’ we obtain eFP0’: 

푒퐹푃 ′ =  {(0 푤1), (1 푟1), (1 푤0 / ,  , 1 푟1)} 

As there is only one correct read, once again: 

푒퐹푃  =  푒퐹푃 ′ 

From Eq. II.4, we obtain eFPreport as follow: 

푒퐹푃  =  {(1 푤0 , 0 푤1)} 
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The fault model related to eFPreport is a SWDF.  

The same procedure is followed for the remaining syndrome. We obtain for CC31: 

푒퐹푃  =  {(1 푤0 , 0 푤1)} 

meaning that both results lead to the same conclusion: write driver of I/O1 is affected by a 

SWDF.  

II.2.5. Experimental results 

The proposed history-based diagnosis approach has been implemented in a tool of about 

7000 C++ code lines. This tool allows performing a relevant number of experiments (2000 

reported in the Section). As shown in Figure II.16, the three main input data of the diagnosis 

tool are the net list (memory architecture), the stimulus (March Test) and the signatures (tester 

report). For the generation of the tester report, we have used a memory simulator in which we 

have injected a fault model for each experiment so as to mimic the behavior of an ATE. This 

memory simulator is an extended version of the one presented in [BEN06] that we have 

configured as a 512x512 SRAM with 128 I/O (write driver and sense amplifier) blocks, i.e. 

one I/O for group of four columns. 

In the following sub-sections, we first compare the efficiency of a basic signature-based 

diagnosis approach [LI01] with the proposed history-based solution. Then, we provide 

additional extensive results to prove the effectiveness of the proposed diagnosis solution. 

II.2.5.1. Signature vs. history-based diagnosis 

In our experiments, we have considered several fault models for which we have applied 

the signature-based and history based diagnoses. Table II.6 presents the results given by both 

solutions. The first and second columns give the fault model injected (FMod) and its location 

(Location) in the memory. Column 3 specifies the applied test algorithm and the addressing 

order used during the test application (Test). The last two columns give the diagnosis report 

with the two approaches. For the four simulated fault injection scenarios, the developed 

SRAM fault simulator generates the syndromes that are used as inputs for the signature-based 

(SB) and history-based (HB) diagnosis. 
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FMod Location Test SB HB 

SAF1 CC99,3 March C-, fast C 

SAF1 

IRF 

RDF 

SAF1, IRF 

RDF 

TF0 CC123,12 March C-, fast C TF0 TF0 

dRDF 

(3 r1) 
CC99,3 March C-, fast R 

SAF0 

TF1 

RDF 

IRF 

SAF0, TF1 

RDF, IRF 

dRDF(1 r1, 6 r1) 

URWF 

(w1, r0) 

WD 

C0 to 3 
March C-, fast C 

SAF1 

IRF 

RDF 

SAF1, IRF, RDF  

URWF (WD: w1, r0) 

Table II.6 – Signature vs. history-based diagnosis 

Let us first discuss the first two scenarios. A SAF1 has been injected in CC99,3 (core-cell 

placed on line 99 and column 3) and a TF0 on CC123,12. For the first scenario, the two 

diagnosis solutions return the same list of fault candidates that contains the injected fault 

model (SAF1). For the second scenario, a unique fault candidate is returned (TF0). Such 

results were rather predictable because these fault models are static. 

The following two scenarios deal with dynamic fault models. In the case of dRDF in 

CC99,3, the term (3 푟1) indicates that CC99,3 flips after three consecutive 푟1s following a 푤1 

(see Section II.2.4.1). The employed test algorithm is again the March C-, with fast R (row 

after row) addressing order. As reported on the two last columns, the SB diagnosis reports 

four fault candidates (SAF0, TF1, RDF and IRF), all static, and does not include the actually 

injected fault model. As suspects, our solution returns not only static faults but also the 

dynamic fault dRDF with the reference (1 푟1, 6 푟1). The latter suggests that the core-cell 

CC99,3 displays a faulty swap due to a dRDF, after being accessed for one to six consecutive 

푟1 operations. The second injected dynamic fault model is an URWF, which requires the 

couple of operations (푤1, 푟0) in order to be detected (see Section II.2.4.1). This fault is due to 

a resistive defect in the write driver (WD) used by the first four columns of the simulated 

SRAM (C0 to 3). The applied algorithm is again March C- with fast C addressing order. 

Compared to the other scenarios, we obtain a syndrome for each core-cell connected to the 

defective write driver. The SB diagnosis approach reports that each core-cell connected to the 

faulty write driver can be affected by SAF1, IRF or RDF. In this diagnosis response, a unique 
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fault model that explains the actual root cause of all syndromes is not present. The HB 

approach confirms the possible occurrence of SAF1, IRF and RDF, suggested by the SB 

approach, but it also presents the URWF as fault candidate. The URWF is the actual cause of 

all syndromes and it is due to a defect in the write driver sensitized by the test pattern 

(푤1, 푟0). 

The analysis of the results in Table II.6 shows that both SB and HB methodologies are 

effective for the diagnosis of static faults. However, in the case of dynamic fault injection, the 

analysis reveals that only the HB method is able to return the correct solution, by taking in 

account the set of all syndromes, the memory architecture and other parameters specific of 

this kind of fault models. This comparative study demonstrates the interest of the proposed 

history-based diagnosis approach that not only extends the diagnosis to fault model difficult to 

track (dynamic), but which is also able to determine the faulty memory component. 

II.2.5.2. Additional results 

In this sub-section, we provide a larger quantity of experimental results that demonstrate 

the efficiency of our diagnosis approach. These results are the outcome of 1000 fault injection 

experiments. The faults are introduced in randomly chosen memory locations. For the case of 

write driver and pre-charge circuitries we performed an exhaustive set of injections. 

The results of the first set of experiments are summarized in Table II.7. The first and 

second columns give the detail of the injected fault: fault model (Scenario) and its location 

(Location). The faults have been injected in the core-cells (memory array), write driver (WD) 

and pre-charge circuit (PRE). Column 3 specifies the applied test algorithm and the 

addressing order used during the test implementation (Test). The fourth column shows the 

average diagnosis resolution (R), which indicates the number of suspected fault primitives 

provided by the diagnosis tool. It also indicates if the actual injected fault is present in this set 

of suspects (Y: yes, N: no). For each suspected FP, the faulty memory component is 

associated. The last column (L) gives the percentage of correct location of the faulty memory 

component (the same faulty model can be related to different defective components). 
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Scenario Location Test R L 

dRDF (1 r1) Memory Array March C-, fast R 5.8 (Y) 89% 

dRDF (1 r0) Memory Array March C-, fast R 3.2 (Y) 75% 

SWDF (w1, w0) WD March C-, fast R 2.25 (Y) 95% 

SWDF (w0, w1) WD March C-, fast R 1.5 (Y) 95% 

URWF (w1, r0) WD March C-, fast C 2, (Y) 97% 

URWF (w0, r1) WD March C-, fast C 4.6 (Y) 30% 

URWF (w1, r0) PRE March C-, fast C 2, (Y) 98% 

URWF (w0, r1) PRE March C-, fast C 4.2 (Y) 58% 

URDWF (w1, r0) WD March C-, fast C 2 (Y) 97% 

URDWF (w0, r1) WD March C-, fast C 4.6 (Y) 30% 

Table II.7 – Experimental results March C- 

From the analysis of Table II.7, we can observe that  

 The diagnosis tool always determines the root cause of the observed error (i.e. 

the injected fault) and correctly locates it (Memory Array, write driver or pre-

charge circuitry). 

 The achieved resolution (R) is defined as the absolute number of FPs provided 

by our tool. This value returns the DR if referred to the whole number of 

realistic FPs (about 50 for single cell FP [VDG00]). The tool always provides 

the correct FP, among those suspected. 

 The tool always associates the correct FP with the correct defective memory 

component. The success of fault location is also good for the case of the 

remaining suspected FPs, reaching in some case a success close to 100%. 

A second set of experiments have been performed using a different March Test. In this 

case, the test algorithm is March AB-, shown in Figure II.18 that is a modified version of the 

March AB [BEN05], able to cover the URDWF and URWF. 

{ ↕ (푤0) ↑ (푟0,푤1, 푟1,푤1) ↑ (푟1,푤0, 푟0,푤0) 

      ↓ (푟0,푤1, 푟1,푤1) ↓ (푟1,푤0, 푟0,푤0) ↕ (푟0) } 

Figure II.18 – March AB- 

Table II.8 gives the results of these experiments exposed like in Table II.7.  
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Scenario Location Test R L 

dRDF (1 r1) Memory Array March AB-, fast R 4.2 (Y) 92% 

dRDF(1 r0) Memory Array March AB-, fast R 2.2 (Y) 77% 

SWDF (w1, w0) WD March AB-, fast R 1 (Y) 100% 

SWDF (w0, w1) WD March AB-, fast R 1 (Y) 100% 

URWF (w1, r0) WD March AB-, fast C 2 (Y) 99.2% 

URWF (w0, r1) WD March AB-, fast C 2.8 (Y) 69.5% 

URWF (w1, r0) PRE March AB-, fast C 2.8 (Y) 99.2% 

URWF (w0, r1) PRE March AB-, fast C 2.75 (Y) 72% 

URDWF (w1, r0) WD March AB-, fast C 2 (Y) 99.2% 

URDWF (w0, r1) WD March AB-, fast C 2.8 (Y) 69.5% 

Table II.8 – Experimental Results March AB- 

Both the parameters R and L reveal an improvement with respect to the result coming 

from the used of the March C-. This can be explained with the fact that March AB- returns a 

signature presenting more elements (read operations) than March C- (8 vs. 5), resulting in a 

larger information exploited during the diagnosis. This experimentation demonstrates that our 

diagnosis approach and the proposed tool are very efficient and provide reliable information, 

usable during the following phases of the failure analysis process. Moreover, the results are 

obtained with low hardware and time requirements. 

II.2.6. Further improvements  

In the previous sections, we have proven the efficiency of the proposed history-based 

diagnosis approach in providing accurate diagnosis reports in presence of both static and 

dynamic faults. This solution is also able to provide information on defect location, i.e. 

identification of the faulty memory component. However, at this stage of development, this 

diagnosis solution is able to deal only with single cell static faults such as SAF and TF. The 

first improvement that we intend to introduce will be the capability to deal with two-cell static 

faults such as coupling faults (CFst, CFid, CFinv) [VDG98]. This improvement will be 

achieved by taking in account additional information in the AIV vectors, concerning 

operations performed on potential aggressor core-cells. 
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Dynamic faults diagnosis is one of the major features of the proposed diagnosis solution. 

For the moment, we are able to diagnose single cell dynamic faults such as dRDF and some 

two-cell dynamic fault such as URWF and SWDF. As mentioned above, further dynamic fault 

models have to be implemented in the simulator, such as: 

 ADOF (Address Decoder Open Fault) 

 d2cIRF (dynamic 2-cell Incorrect Read Fault) 

Among these, we consider for example the ADOF, which is a dynamic fault caused by 

resistive-open defects in the address decoder, having the following definition: 

Address Decoder Open Fault (ADOF): A decoder is said to have an ADOF when 

changing only one bit on its address results in selecting this new address but also the previous 

one. Consequently, two core-cells are selected at the same time for a read or a write 

operation. 

The ADOF requires the following test pattern to be detected: 

푤푥  푤푥̅  푟푥  

where CCA and CCB are two core-cells, whose addresses present an Hamming distance of 

one. In order to make our diagnosis tool able to deal with this dynamic fault, we must take in 

account the parameter the Hamming distance of the addresses of the selected cell as well as 

the data background, (logic values stored and read during the test). 

II.2.7. Conclusion 

In this chapter, we have proposed a new diagnosis approach that represents a valid 

alternative to the signature-based approaches. This new diagnosis technique, based on the 

effect-cause paradigm, consists in creating a database containing the history record of the 

operations (read and write) performed on the core-cells that return incorrect logic values 

during the read action. In order to achieve a relevant number of experiments, we have created 

a dedicated software tool. Experimental results demonstrate the effectiveness of the proposed 

approach in returning an exhaustive set of fault candidates (static and dynamic) and providing 

information on the fault location.  
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As the demand of storage capacities are constantly growing, memories are becoming 

SoC area dominant. Moreover, with the scaling down of such components, memories are 

much more sensitive to technological deviations than the standard logic. Thus, a high level of 

reliability for memories has to be achieved by creating and applying aggressive test 

procedures and then generating efficient diagnosis solutions helpful to track faulty behaviors.  

Solutions currently used for SRAM testing mainly focus on the detection of static 

faults, but they are not able to deal with new faults called dynamic faults. These faults are 

mainly due to resistive-open defects and require a sequence of at least two operations 

(read/write) to be sensitized. The first objective of this thesis has been to study the SRAM 

behavior in presence of resistive-open defects involving dynamic faults and then propose 

effective test algorithms. Especially, this work has been focused on SRAM write drivers and 

sense amplifiers. Concerning the write drivers, we have shown that dynamic faults, modeled 

as Slow Write Driver Fault (SWDF) and Un-Restored Destructive Write Faults (URDWF) are 

related to some resistive-open defects in the control part of the write driver structure. We have 

established the conditions useful for the sensitization and the observation of these faults and 

we have demonstrated that a well known March algorithm called March C- is able to detect 

them. The second memory block we have studied is the sense amplifier. A new dynamic fault 

model has been proposed. It is defined as dynamic two-cell Incorrect Read Faults of two 

different types (d2cIRF1 and d2cIRF2). Such fault models represent failures in the sense 

amplifier which prevent it to do its function, i.e. a read operation. We have shown that the 

March C- with a specific addressing order and data background is able to deal with such fault 

model. Finally, we have highlighted that local variations of the threshold voltages (푉 ) 

impacting the core-cell functioning may be the cause of dynamic behavior, especially 

dynamic Read Destructive Fault (dRDF). This kind of faulty behavior is also detected by the 

March C- algorithm with a line after line addressing order. 

The second objective of this thesis has been dedicated to memory diagnosis where two 

different approaches have been considered. The first one, known as Design For Diagnosis 

(DFD), is based on the use of extra hardware modules allowing the verification of specific 

SRAM blocks requirements (voltage and current levels). In this context, we have provided 

two solutions allowing to track weak write drivers. They are industrially viable as they require 

a low extra area (about 0.5% for a 512x512 SRAM). The second diagnosis approach is more 

general and is based on software developments useful to determine FFM and their precise 

localizations (core-cell, pre-charge circuit…). Classical software-based diagnosis solutions 
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are based on signature analysis and most of time, do not consider dynamic faults. So, a first 

step of this work has been to take into account these dynamic faults. As first result, a solution 

consisting in adding extra information (addressing order, data background) on the signature 

has been proposed. However, such technique, based on the cause-effect paradigm is limited 

by the a priori knowledge of the considered FFM. Consequently, we have proposed a new 

software-based diagnosis solution, called history-based diagnosis. Besides the ability of 

considering dynamic faults, such technique presents the major advantage to be based on the 

effect-cause paradigm, i.e. the a priori knowledge of considered FFM is not required. In order 

to validate this technique, a diagnosis tool has been developed and results have been provided. 

Works done on this manuscript propose some memory reliability (test and diagnosis) 

trends. Memory test and diagnostic are really hard topics and many works are still open. As 

we move toward the end of the silicon roadmap, it becomes difficult to track all subtle 

defects. Consequently, aggressive test phases must be first developed and testing memories in 

different PVT corners becomes necessary. Actually, as seen in the thesis, some defects better 

manifest themselves at high voltage (resistive-open defects) whereas some others are more 

easily detected at low voltage (푉  mismatches). It may be interesting to focus on other 

possible causes of faulty behaviors in SRAMs, such as short circuits (resistive or not), gate 

oxide shorts (GOS) and determine their worst case PVT corners. This study would be helpful 

to enlarge defect detection capabilities, and then ensuring a better memory diagnosis. 

On the other hand, high memory diagnostic resolution is also required for yield  

ramp up. Of course, diagnosis solutions are useful to precisely point out faulty memory blocks 

and/or functionalities. Based on DFD modules or on software-based techniques, the aim is 

still the same, i.e. help designers and process engineers to understand memory faulty 

behaviors and their physical origins in order to improve memory design and/or manufacturing 

process. Nevertheless, these improvements present some limitations as it is not possible to 

manufacture a memory without any defects. So, diagnosis solutions are also helpful during the 

production phase when designers need to localize faulty sites in order to repair them. 

Consequently, it would mandatory to develop efficient diagnosis procedures able to deal with 

static as well as dynamic faults and also able to precisely localize faulty sites. In that context, 

we have already worked on a new software-based diagnosis solution. However, it should be 

interesting to complete it in order to take into account all new dynamic faults. 

This ‘race’ to track all defects and repair faulty memories will become limited by 

technological advances. In fact, as said above, detecting all defects may be achieved by 
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multiply tests and develop efficient diagnosis procedures. However, it may be too long for 

industrial purposes and sometimes, certain defect will still escape test procedures. 

Consequently, considering all defects in a memory seems to be very complicated. We can 

thus imagine to classify memories according to the application requirements. Then, we can 

assume to embed memories with faulty behaviors that do not disturb the application. 

 

  



 

141 

Scientific Contributions 

 

 

Publication in Journal 
 
 [TVLSI08] A. Ney, P. Girard, C. Landrault, S. Pravossoudovitch, A. Virazel, M. Bastian, 

“Analysis of Resistive-Open Defects in SRAM Sense Amplifiers” 

IEEE Transactions on Very Large Scale Integration Systems. 

Publications in International Conferences Proceedings 
 
[DATE07] A. Ney, P. Girard, C. Landrault, S. Pravossoudovitch, A. Virazel, M. Bastian, 

“Slow Write Driver Faults in 65nm SRAM Technology: Analysis and March Test 

Solution” 

10th IEEE Design Automation and Test in Europe, Nice, France, April 2007,  

pp 528-533. 

[VTS07] A. Ney, P. Girard, C. Landrault, S. Pravossoudovitch, A. Virazel, M. Bastian, 

“Un-Restored Destructive Write Faults due to Resistive-Open Defects in the 

Write Driver of SRAMs” 

25th IEEE VLSI Test Symposium, Berkeley, USA, May 2007, pp 361-366. 

[ETS07] A. Ney, P. Girard, C. Landrault, S. Pravossoudovitch, A. Virazel, M. Bastian, 

“Dynamic Two-Cell Incorrect Read Fault due to Resistive-Open Defects in the 

Sense Amplifiers of SRAMs” 

12th IEEE European Test Symposium, Freiburg, Germany, May 2007,  

pp 97-102. 

[ATS07] M. Bastian, V. Gouin, P. Girard, C. Landrault, A. Ney, S. Pravossoudovitch, A. 

Virazel,  

“Influence of Threshold Voltage Deviation on 90nm SRAM Core-Cell Behavior” 

16th IEEE Asian Test Symposium, Beijing, China, October 2007, pp 501-504. 

[DATE08] A. Ney, P. Girard, C. Landrault, S. Pravossoudovitch, A. Virazel, M. Bastian, V. 

Gouin, 

“A Design-for-Diagnosis Technique for SRAM Write Drivers” 



 

142 

11th IEEE Design Automation and Test in Europe, Munich, Germany, March 

2008, pp 1480-1485. 

[DTIS08] A. Ney, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel,  

“A Signature-based Approach for Diagnosis of Dynamic Faults in SRAMs” 

3rd IEEE International Conference on Design & Test of Integrated Systems in 

Nanoscale Technology, Tozeur, Tunisia, March 2008, pp xxx-xxx. 

[VTS08] A. Ney, P. Girard, C. Landrault, S. Pravossoudovitch, A. Virazel, M. Bastian, V. 

Gouin, 

“An SRAM Design-for-Diagnosis Solution based on Write Driver Voltage 

Sensing” 

26th IEEE VLSI Test Symposium, San Diego, USA, May 2008, pp 89-94. 

[ITC08] A. Ney, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, 

“A History-based Diagnosis Technique for Static and Dynamic Faults in 

SRAMs” 

To appear in Proc. of IEEE International Test Conference, Santa Clara, USA, 

October 2008. 

Publications in national Conferences Proceedings 
 (France) 
 
[GDR07] A. Ney, P. Girard, C. Landrault, S. Pravossoudovitch, A. Virazel, M. Bastian,  

“Resistive-Open Defect Influences in SRAM I/O Circuitry” 

Proc. Groupement De Recherche SOC-SIP, Paris, France, June 2007. 

[GDR08] A. Ney, A. Bosio, L. Dilillo, P. Girard, C. Landrault, S. Pravossoudovitch, A. 

Virazel,  

“A History-Based Technique for Faults Diagnosis in SRAMs” 

Proc. GDR SOC-SIP : Groupement De Recherche SOC-SIP, Paris, France, June 

2008. 



 

143 

International Seminars 
 
[SETS06] A. Ney, P. Girard, S. Pravossoudovitch, A. Virazel,  

“Test of Dynamic Faults in SRAM Memories” 

South European Test Symposium (SETS), Tyrol, Austria, March 2006. 

[SETS07] A. Ney, P. Girard, C. Landrault, S. Pravossoudovitch, A. Virazel,  

“Impact of threshold voltage deviation in SRAM Core-Cells” 

South European Test Symposium (SETS), Sestrière, Italy, March 2007. 

Submitted Article 
 
[DATE09] A. Ney, P. Girard, C. Landrault, S. Pravossoudovitch, A. Virazel, M. Bastian, V. 

Gouin, 

“Word Line Enabling Technique: a New DFT Technique for Stability Fault 

Testing” 

Submitted in IEEE Design Automation and Test in Europe. 

  



 

 

 
  



 

145 

References 

 

 

[ABR84] M. Abramovici, P.R. Menon and D.T. Miller, “Critical Path Tracing – An 

Alternative to Fault Simulation”, IEEE Design & Test of Computers, Vol. 1, N°1, 

February 1984, pp 83-92. 

[ABR90] M. Abramovici, M.A. Breuer and A.D. Friedman, “Digital System Testing and 

Testable Design”, IEEE Press, 1990. 

[ADA96] R.D. Adams and E.S. Cooley, "Analysis of a Deceptive Destructive Read 

Memory Fault Model and Recommended Testing", IEEE North Atlantic Test 

Workshop, May 1996. 

[ADA97] R.D. Adams and E. S. Cooley, "False Write Through and Un-Restored Write 

Electrical Level Fault Models for SRAMs", Records of IEEE Int. Workshop on 

Memory Technology, Design and Testing, 1997, pp. 27-32. 

[ADA02] R.D. Adams, “High Performance Memory Testing”, Kluwer Academic 

Publishers, Sept. 2002. 

[APP06] D. Appello, V. Tancorre, P. Bernardi, M. Grosso, M. Rebaudengo and M. Sonza 

Reorda, “Embedded Memory Diagnosis: An Industrial Workflow”, Proc. of 

International Test Conference, 2006, pp.1-9. 

[ARS01] Z. Al-Ars and A.J. van de Goor, "Static and Dynamic Behavior of Memory Cell 

Array Opens and Shorts in Embedded DRAMs", Proc. of Design Automation 

and Test in Europe, 2001, pp. 496-503. 

[AZI05] M. Azimane, A. Majhi, G. Gronthoud, M. Lousberg, S. Eichenberger, and A. 

Ruiz, “A New Algorithm for Dynamic Faults Detection in RAMs”, Proc. IEEE 

VLSI Test Symposium, 2005, pp. 177-182. 

[BAK99] K Baker, G Gronthoud, M Lousberg, I Schanstra and C Hawkins, “Defect-Based 

Delay Testing of Resistive Vias-Contacts. A Critical Evaluation”, Proc. of 

International Test Conference, 1999, pp. 467-476. 



 

146 

[BEN05a] A. Benso, A. Bosio, S. Di Carlo, G. Di Natale and P. Prinetto, “March AB, March 

AB1: new March tests for unlinked dynamic memory faults”, Proc. of 

International Test Conference, 2005. 

[BEN05b] A. Benso, A. Bosio, S. Di Carlo, G. Di Natale and P. Prinetto, “Automatic March 

tests generation for static and dynamic faults in SRAMs”, Proc. of European 

Test Symposium, 2005. 

[BEN06] A. Benso, A. Bosio, S. Di Carlo, G. Di Natale and P. Prinetto, “Memory Fault 

Simulator for Static-Linked Faults”, Proc. of Asian Test Symposium, 2006, pp. 

31-36. 

[BHA01] A.J. Bhavnagarwala, X. Tang and J.D. Meindl, "The Impact of Intrinsic Device 

Fluctuations on CMOS SRAM Cell Stability", JSSC, April 2001. 

[BOR03a] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, V. De, "Parameter 

Variations and Impact on Circuits and Microarchitecture", Proc. of Design 

Automation Conference, 2003, pp.338-342. 

[BOR03b] S. Borri, M. Hage-Hassan, P. Girard, S. Pravossoudovitch, A. Virazel,, "Defect-

Oriented Dynamic Fault Models for Embedded SRAMs”, Proc. of European 

Test Workshop, 2003, pp. 23-27. 

[BOR05] S. Borri, M. Hage-Hassan, L. Dilillo, P. Girard, S. Pravossoudovitch and A. 

Virazel, “Analysis of Dynamic Faults in Embedded-SRAMs: Implications for 

Memory Test”, Journal of Electronic Testing Theory and Applications, Vol. 21, 

No 2, April 2005, pp 169-179. 

[CHA89] M.F. Chang, W.K. Fuchs and J.H. Patel, “Diagnosis and Repair of Memory with 

Coupling Faults”, IEEE Transactions on Computers, vol. 38, no. 4, April 1989, 

pp. 493-500. 

[CHE05] Q. Chen, H. Mahmoodi, S. Bhunia and K. Roy, "Modeling and Testing of SRAM 

for New Failure Mechanisms due to Process Variations in Nanoscale CMOS", 

Proc. of IEEE VLSI Test Symposium, 2005, pp. 292-297. 

[DEK90] R. Dekker, F. Beenker and L. Thijssen, “A Realistic Fault Model and Test 

Algorithms for Static Random Access Memories", IEEE Trans. on Computers, 

1990, pp. 567-572. 



 

147 

[DIL04a] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel and S. Borri, "March iC-: An 

Improved Version of March C- for ADOFs Detection", Proc. of IEEE VLSI Test 

Symposium, 2004, pp. 129-134. 

[DIL04b] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, S. Borri and M. Hage-

Hassan, "Dynamic Read Destructive Faults in Embedded SRAMs: Analysis and 

March Test Solution", Proc. of IEEE European Test Symposium, 2004, pp 140-

145. 

[DIL05a] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel and M. Hage-Hassan, "Data 

Retention Fault in SRAMs: Analysis and Detection Procedures", Proc. of IEEE 

VLSI Test Symposium, 2005, pp. 183-188. 

[DIL05b] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, "Resisitive open defect 

influence in SRAM pre-charge circuit: Analysis and characterization", Proc. of 

IEEE European Test Symposium, 2005, pp 116-121. 

[DIL05c] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, S. Borri and M. Hage-

Hassan, “Efficient March Test Procedure for Dynamic Read Destructive Fault 

Detection in SRAMs”, Journal of Electronic Testing Theory and Applications, 

Vol. 21, No 5, October 2005, pp 551-561. 

[DIL06a] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, M. Bastian, "March Pre: an 

Efficient Test for Resistive-Open Defects in the SRAM Pre-charge Circuit", 

Proc. of IEEE Design and Diagnostics of Electronic Circuits and systems, 2006, 

pp 254-259. 

[DIL06b] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, S. Borri and M. Hage-

Hassan, “ADOFs and Resistive-ADOFs in SRAM Address Decoders: Test 

Conditions and March Solutions”, Journal of Electronic Testing Theory and 

Applications, Vol. 22, No 3, June 2006, pp 287-296. 

[DIL07] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel and M. Bastian, “Analysis 

and Test of Resistive-Open Defects in SRAM Pre-Charge Circuits”, Journal of 

Electronic Testing Theory and Applications, Vol. 23, No 5 October 2007, pp 

435-444. 



 

148 

[DIN00] D.M. Kwai, H.W. Chang, H.J. Liao, C.H. Chiao and Y.F. Chou, “Detection of 

SRAM Cell Stability by Lowering Array Supply Voltage”, Proc. of IEEE Asian 

Test Symposium, 2000, pp 268-273. 

[HAM02] S. Hamdioui, Z Al-Ars and A.J. van de Goor, "Testing Static and Dynamic Faults 

in Random Access Memories", Proc. IEEE VLSI Test Symposium, 2002, pp. 395-

400. 

[HAM03] S. Hamdioui, R. Wadsworth, J.D. Reyes and A.J. van de Goor, "Importance of 

Dynamic Faults for New SRAM Technologies", Proc. of IEEE European Test 

Workshop, 2003, pp. 29-34. 

[HAR01] T.P. Haraszti, “CMOS Memory Circuits”, Kluwer Academics Publishers (second 

edition), 2001, pp 402. 

[HAR07] S.M. Al-Harbi, F. Noor, F.M. Al-Turjman, “March DSS: A New Diagnostic March 

Test for All Memory Simple Static Faults”, IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, Vol. 26, N° 9, September 

2007, pp. 1713-1720. 

[JAM01] C.M. James, C.W. Tseng and E.J. McCluskey, “Testing for Resistive Opens and 

Stuck Opens”, Proc. of International Test Conference, 2001, pp. 1049-1058. 

[KES01] A. Keshavarzi, S. Ma, S. Narendra, B. Bloechel, K. Mistry, T. Ghani, S. Borkar, V. 

De, “Effectiveness of Reverse Body Bias for Leakage Control in Scaled dual Vt 

CMOS ICs”, IEEE Proc. International Symposium on Low Power Electronics and 

Design, Aug. 2001, pp. 207-212. 

[KIM98] I. Kim, Y. Zorian, G. Komoriya, H. Pham, F.P. Higgins and J.L. Lewandowski, 

“Built in Self Repair for Embedded high Density SRAM”, Proc. of International 

Test Conference, pp 1112-1119, 1998. 

[LI01] J.-F. Li, K.-L. Cheng, C.-T. Huang and C.-W. Wu, “March-Based RAM Diagnosis 

Algorithms for Stuck-At and Coupling Faults”, Proc. of International Test 

Conference, 2001, pp. 758-767. 

[MAL96] W. Maly, H. Heineken, J. Khare and P.K. Nag, “Design for Manufacturability in 

submicron domain”, Proc. of ICCAD 96, Nov. 96, pp 690-697. 



 

149 

[MEI97] A. Meixner and Jash Banik, “Weak Write Test Mode: An SRAM Cell Stability 

Design For Test Technique”, Proc. of IEEE International Test Conference, 2001, 

pp. 1043-1052. 

[NICO96] M. Nicolaidis, “Theory of Transparent BIST for RAMs”, IEEE Transaction On 

Computers, vol. 45, N° 10, October 1996, pp. 1141-1155. 

[NIG98] D. Niggemeyer, M. Redeker and J. Otterstedt, “Integration of Non-classical 

Faults in Standard March Tests”, Records of the International Workshop on 

Memory Technology, Design and Testing, 1998. 

[NIG00] D. Niggemeyer, M. Redeker and E.M. Rudnick, “Diagnostic testing of 

embedded memories based on output tracing”, Proc. of Memory Technology, 

Design and Testing, 2000, pp. 113-118. 

[PAV04] A. Pavlov, M. Sachdev and J. Pineda de Gyvez, “An SRAM Weak Cell Fault 

Model and a DFT Technique With a Programmable Detection Threshold”, 

Proc. of IEEE International Test Conference, 2004, pp. 1006-1015. 

[PAV05] A. Pavlov, M. Azimane, J. Pineda de Gyvez and M. Sachdev, “Word Line 

Pulsing Technique for Stability Fault Detection in SRAM Cells”, Proc. of IEEE 

International Test Conference, 2005, paper 33.1. 

[PAV06] A. Pavlov, M. Sachdev and J. Pineda de Gyvez, “Weak Cell Detection in Deep-

Submicron SRAMs: A Programmable Detection Technique”, IEEE Journal of 

Solid-State Circuits, Vol. 41, Issue 10, Oct. 2006, pp. 2334-2343. 

[PIL01] H. Pilo, R. Dean Adams, R.E. Busch, E.A. Nelson and G.E. Rudgers, “Bitline 

Contacts in High Density SRAMs: Design for Testability and Stressability”, 

Proc. of International Test Conference, 2001, pp 776-782. 

[RON02] E. Rondey, Y. Tellier, S. Borri, “A Silicon-Based Yield Gain Evaluation 

Methodology for Embedded SRAMs with Different Redundancy Scenarios”, 

Proc. of Memory Technology, Design and Testing, 2002, pp. 57-61. 

[SAC97] M. Sachdev, “Open Defects in CMOS RAM Address Decoders”, IEEE Design & 

Test of Computers, Vol.14, N°2, April-June 1997, pp. 26-33. 

[SUK81] D.S. Suk. and S.M. Reddy, “A March Test for Functional Faults in 

Semiconductor Random Access Memories”, IEEE Transaction on Computers, 

1981, pp 982-985. 



 

150 

[THA06]  S.K. Thakur, R. Parekhji and A.N. Chandorkar, “On-chip Test and Repair of 

Memories for static and Dynamic faults”, Proc. of International Test 

Conference, 2006. 

[TER98] C. Terwiesch and R.E. Bohn, “Learning and process improvement during 

Production Ramp up”, IEEE Int. Journal of Production Economics, Vol. 70, n° 1, 

1998, pp 1-19. 

[VDG98] A.J. van de Goor, “Testing Semiconductor Memories, Theory and Practice”, 

COMTEX Publishing, Gouda, The Netherlands, 1998. 

[VDG99]  A.J. van de Goor and J.E. Simonse, “Defining SRAM Resistive Defects and Their 

Simulation Stimuli," Proc. of Asian Test Symposium, 1999, pp. 33-40. 

[VDG00] A.J. van de Goor and Z. Al-Ars, "Functional Memory Faults: A Formal Notation 

and a Taxonomy", Proc. of IEEE VLSI Test Symposium, 2000, pp. 281-289. 

[VDG04] A.J. van de Goor, S. Hamdioui and R. Wadsworth, "Detecting Faults in the 

Peripheral Circuits and an Evaluation of SRAM Tests", Proc. of IEEE 

International Test Conference, 2004, pp. 114-123. 

[VAR06] V.A. Vardanian, G. Harutunyan, Y. Zorian, “Minimal March-Based Fault 

Location Algorithm with Partial Diagnosis for All Static Faults in Random 

Access Memories”, Proc. of Design and Diagnostics of Electronic Circuits and 

systems, 2006, pp. 260-265. 

[YAR96] V.N. Yarmolik, Y.V. Klimets, A.J. van de Goor and S.N. Demidenko, “RAM 

diagnostic tests”, Proc. of Memory Technology, Design and Testing, 1996, pp. 

100-102. 

[ZAR00] K. Zarrineh, R. Dean Adams and A.P Deo, “Defect Analysis and Realistic Fault 

Model Extensions for Static Random Access Memories”, Records IEEE Int. 

Workshop on Memory, Technology, Design and Testing, 2000, pp. 119-124. 

[ZOR02] Y. Zorian and S. Shoukourian, “Embedded Memory Test & Repair: 

Infrastructure IP for SoC Yield”, Proc. of International Test Conference, 2002, 

pp 340-349. 

  



 

151 

List of Figures 

 

 

Figure 1 – Memory classification_______________________________________________ 12 

Figure 2 – ITRS roadmap: International Technology Roadmap for Semiconductors _______ 13 

Figure I.1 – Scheme of the memory structure _____________________________________ 24 

Figure I.2 – Core-cell scheme __________________________________________________ 25 

Figure I.3 – Taxonomy of fault primitives ________________________________________ 27 

Figure I.4 – March C- algorithm _______________________________________________ 30 

Figure I.5 – Write driver structure ______________________________________________ 33 

Figure I.6 – Fault-free write driver waveforms (풘ퟏ, 풘ퟎ) ____________________________ 33 

Figure I.7 – Defect injection in the write driver ____________________________________ 34 

Figure I.8 – Waveforms of < 1푤0푤1/1/0 > simulation (Df5) _______________________ 38 

Figure I.9 – Configuration of the write driver in presence of Df5 ______________________ 39 

Figure I.10 – Waveforms of < 0푤1푤0/0/1 > simulation (Df6) ______________________ 40 

Figure I.11 – Faulty behavior of the write driver in presence of Df6 ____________________ 41 

Figure I.12 – Basic view of a part of an SRAM array ________________________________ 42 

Figure I.13 – Required conditions to detect SWDFs ________________________________ 43 

Figure I.14 – March C- algorithm ______________________________________________ 43 

Figure I.15 – A simple 8 core-cell SRAM _________________________________________ 44 

Figure I.16 – Detailed structure of the I/O circuitry ________________________________ 47 

Figure I.17 – Waveforms of 풘ퟎ and 풓ퟏ operations ________________________________ 48 

Figure I.18 – Waveforms of < 1푤0, 1푟1/0/0 > simulation (Df9) _____________________ 51 

Figure I.19 – Fault type vs. defect size ___________________________________________ 51 

Figure I.20 – Waveforms of < 1푤ퟎ,ퟏ풓ퟏ/ퟏ/ퟎ > simulation (Df9) ____________________ 52 



 

152 

Figure I.21 – Memory structure scheme _________________________________________ 55 

Figure I.22 – Sense amplifier scheme ___________________________________________ 56 

Figure I.23 – Fault-free data output circuitry waveforms (풓ퟎ, 풓ퟏ) _____________________ 58 

Figure I.24 – Defect injection in the sense amplifier ________________________________ 59 

Figure I.25 – Waveforms of < 0푟0, 1푟1/1/푐 > simulation (Df3) ______________________ 63 

Figure I.26 – Relaxed constraints to detect d2cIRF1 ________________________________ 65 

Figure I.27 – March C- algorithm ______________________________________________ 65 

Figure I.28 – March iC- algorithm ______________________________________________ 66 

Figure I.29 – Waveforms of < 0푟0, 1푟1/1/0 > simulation (Df4)______________________ 68 

Figure I.30 – Waveforms of < 0푟0, 0푤1푟1 > simulation (Df4) _______________________ 70 

Figure I.31 – Core-cell currents whose weakness is critical for a 풘ퟎ operation ___________ 76 

Figure I.32 – Currents and voltages during a 풘ퟎ operation __________________________ 76 

Figure I.33 – Core-cell currents whose weakness is critical for a 풓ퟎ operation ___________ 77 

Figure I.34 – Currents and voltages during a 풓ퟎ operation __________________________ 78 

Figure I.35 – Considered 푽푻푯 mismatch locations for 풘ퟎ and 풓ퟎ operations ___________ 79 

Figure I.36 – Transition Fault (sf, 0.9V, -40°C – Mtn3) ______________________________ 81 

Figure I.37 – Transition Fault (sf, 0.9V, -40°C – Mtn3 & Mtp1) ________________________ 81 

Figure I.38 – Read Destructive Fault (fs, 0.9V, 125°C – Mtn3) ________________________ 82 

Figure I.39 – Read Destructive Fault (fs, 0.9V, 125°C – Mtn3 & Mtn2) __________________ 82 

Figure I.40 – dynamic Read Destructive Fault (sf, 0.9V, -40°C – Mtn3) _________________ 83 

Figure I.41 – Fault type v.s. mismatch value ______________________________________ 84 

Figure I.1 – Fault-free and weak write driver operations ____________________________ 92 

Figure II.1 – Principle of the DFD solution a) for the low level and b) for the high level _____ 94 

Figure II.2 – Principle of the diagnosis solution ____________________________________ 95 

Figure II.3 – Hardware implementation of the diagnosis module______________________ 96 



 

153 

Figure II.4 – Diagnosis module functioning _______________________________________ 97 

Figure II.5 – Data processing part of the diagnosis module __________________________ 97 

Figure II.6 – Simulation results of a faulty write driver ______________________________ 98 

Figure II.7 – DFD principle ___________________________________________________ 100 

Figure II.8 – SRAM I/O circuitry _______________________________________________ 101 

Figure II.9 – Hardware implementation of the DFD solution ________________________ 102 

Figure II.10 – DFD module functioning for a) a fault-free and b) a weak write driver _____ 104 

Figure II.11 – A cause-effect diagnosis method __________________________________ 107 

Figure II.12 – March C- algorithm _____________________________________________ 107 

Figure II.13 – March DSS ____________________________________________________ 109 

Figure II.14 – A two blocks SRAM architecture ___________________________________ 111 

Figure II.15 – Possible address sequence during test execution for URWF detection, 

considering the memory architecture __________________________________________ 112 

Figure II.16 – History-based diagnosis principle __________________________________ 118 

Figure II.17 – A 4x4 memory core-cell array _____________________________________ 119 

Figure II.18 – March AB- ____________________________________________________ 133 

 
  



 

 

  



 

155 

 

List of Tables 

 

 

Table I.1 – Summary of worst-case PVT corners for the defects of Figure I.7 and 

corresponding minimum detected resistance and fault models _______________________ 37 

Table I.2 – Application of elements M0, M1 and M2 for SWDFs detection ______________ 45 

Table I.3 – Truth table of the data output circuitry _________________________________ 57 

Table I.4 – Summary of worst-case PVT corners for the defects of Figure I.24 and 

corresponding minimum detected resistance and fault models _______________________ 61 

Table I.5 – March iC- ability ___________________________________________________ 72 

Table I.6 – Results summary __________________________________________________ 79 

Table II.1 – Truth table of the DFD module ______________________________________ 102 

Table II.2 – Partial fault dictionary related to March C- ____________________________ 108 

Table II.3 – List of extended signatures for URWF detection during March C- execution ___ 113 

Table II.4 –Signatures -URWF vs. CFst - _________________________________________ 115 

Table II.5 – Additional Information Vector legend ________________________________ 124 

Table II.6 – Signature vs. history-based diagnosis ________________________________ 131 

Table II.7 – Experimental results March C- ______________________________________ 133 

Table II.8 – Experimental Results March AB- ____________________________________ 134 

 

  



 

 

 



 

 

Test et Diagnostic de Fautes Dynamiques dans les Mémoires SRAM 
RESUME : De nos jours, les mémoires sont présentes dans de nombreux circuits intégrés 
conçus pour des applications électroniques embarquées et occupent une majeure partie de la 
surface des systèmes sur puce (SoC). Ces mémoires deviennent donc les acteurs principaux 
du rendement de production. Or, une forte densité d’intégration associée à une complexité 
élevée des procédés de fabrications rendent ces mémoires toujours plus sensibles aux défauts 
de fabrications. Afin de mettre en évidence les défaillances survenant dans les mémoires, 
plusieurs méthodes de test existent. Ces solutions de test couramment utilisées pour les 
mémoires SRAM sont basées sur la détection de fautes statiques telles que les fautes de 
collage ou de couplage. Des algorithmes spécifiques, appelés algorithmes March, sont utilisés 
afin de mettre en évidence ce type de fautes. Cependant, ces solutions de test ne sont pas 
adaptées à la détection d’un nouveau type de faute apparaissant dans les technologies 
submicroniques. Ces fautes, appelées fautes dynamiques, sont principalement dues à des 
défauts de type « ouverts-résistif » et ne se manifestent que dans des configurations très 
spécifiques.  En effet, une séquence d’opérations est nécessaire à la mise en évidence de ces 
fautes. Le premier objectif de cette thèse a été de proposer des solutions de test permettant la 
détection de fautes dynamiques dues à des défauts « ouverts-résistifs » dans le driver 
d’écriture et l’amplificateur de lecture. Une extension sur l’étude des comportements 
dynamiques face à des variations de procédés de fabrication dans le point mémoire a été 
proposée. Enfin, la seconde partie de cette thèse fournit de nouvelles solutions de diagnostic, 
capables de prendre en compte les fautes dynamiques d’une part, et proposant une détection 
précise des sites fautifs. Ces travaux ont été réalisés en collaboration avec la société Infineon 
basée à Sophia Antipolis spécialisée dans la conception de mémoires SRAM. 
 
 

Test and Diagnostic of Dynamic Faults in SRAM memories 
ABSTRACT: Nowadays, embedded memories occupy a large part of the System-on-Chip 
(SoC) silicon area. Consequently, memories are the main responsible for the overall System-
on-Chip yield. However, a high integration density and the complexity of the fabrication 
process make memories more and more prone to manufacturing defects. Therefore, efficient 
test and diagnostic solutions for memories are required. Current test solutions used for SRAM 
memories are oriented to static fault detection. Recent researches show that VDSM (Very 
Deep SubMicron) technologies more frequently involve dynamic faults. These faults, mainly 
due to bad vias or contacts involving a resistive-path, need a specific pattern to be sensitized. 
However, classical test solutions are not able to deal with such behaviors. Consequently, the 
first part of this thesis is dedicated to new test solutions allowing to detect dynamic faults due 
to resistive-open defects in the memory. Especially, we focus our study on the write driver 
and the sense amplifier. New fault models and March test solutions are proposed. Then, an 
extension on dynamic faults is provided: a brief study on the impact of the threshold voltage 
variation is given. Finally, the next part of this thesis is oriented toward memory diagnostic. 
New efficient algorithmic diagnosis solutions are proposed. They allow dealing with dynamic 
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framework of the Associate MEDEA project  in cooperation with Infineon Technologies. 
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