
HAL Id: tel-00341677
https://theses.hal.science/tel-00341677

Submitted on 25 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Test et Diagnostic de Fautes Dynamiques dans les
Mémoires SRAM

Alexandre Ney

To cite this version:
Alexandre Ney. Test et Diagnostic de Fautes Dynamiques dans les Mémoires SRAM. Sciences de
l’ingénieur [physics]. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. Français.
�NNT : �. �tel-00341677�

https://theses.hal.science/tel-00341677
https://hal.archives-ouvertes.fr

UNIVERSITE MONTPELLIER II
SCIENCES ET TECHNIQUES DU LANGUEDOC

T H E S E

pour obtenir le grade de

DOCTEUR DE L'UNIVERSITE MONTPELLIER II

Discipline : Microélectronique

Ecole Doctorale : Information, Structure, Systèmes

présentée et soutenue publiquement

par

Alexandre NEY

Le 29 Septembre 2008

Titre :

Test et Diagnostic
de Fautes Dynamiques dans les Mémoires SRAM

JURY

Serge Pravossoudovitch Président
Patrick Girard Directeur de Thèse
Dominique Dallet Rapporteur
Christophe Muller Rapporteur
Jean-Christophe Vial Examinateur
Arnaud Virazel Examinateur

3

À mes parents et mon amie dont le soutien et la présence m’ont permis de mener à bien cette

thèse

5

Remerciements

Cette thèse a été effectuée au laboratoire d’Informatique de Robotique et de

Microélectronique de Montpellier (LIRMM), dirigée par Monsieur Michel Robert, Professeur à

l’Université de Montpellier II, dans le département de Microélectronique dont le responsable

est Monsieur Lionel Torres, Professeur à l’Université de Montpellier II. Je les remercie de

m’avoir accueilli.

Je souhaite exprimer ma sympathie à l’égard de Patrick Girard, Directeur de Recherche au

CNRS, mon directeur de thèse, dont l’encadrement et les encouragements m’ont permis de

mener à bien ce projet de recherche. Un grand merci à Serge Pravossoudovitch, Professeur à

l’Université de Montpellier II, mon co-directeur de thèse

Je remercie également Arnaud Virazel et Alberto Bosio pour leur soutien aussi bien technique

qu’humain.

Je tenais aussi à remercier Jean-Christophe Vial, directeur de l’équipe mémoire embarquée de

la société Infineon, de m’avoir accueilli au sein de son équipe tout au long de ma thèse. Je

n’oublie pas d’exprimer ma gratitude à Magali Bastian, Vincent Gouin et Christophe

Chanussot, ingénieurs à Infineon.

Merci également à Dominique Dallet, Professeur à l’ENSEIRB de Bordeaux, et Christophe

Muller, Professeur au L2MP de Marseille, de s’être intéressés à ce travail et d’avoir accepté

d’en être les rapporteurs.

Enfin, je terminerais en remerciant Julien Vial (dit le King ou p’tit bidou n°2), Boris Alandry

(dit Didier), Nico Saint-Jean (dit p’tit bidou n°1), Lionel Gouyet (dit Shadow), Mehdi (doigts),

Nico Houarche (dit Bernardo), Eric Ze Qin, Victor Lomne, Yohan Guillemenet, Amine

Debhaoui, Monsieur Ginez, Alexandre Rousset, Marion Doulcier, Olivier Leman, Youssef

Benabboud (dit Zizou), Jean-Etienne Lorival, Nico Bruchon, Nico Pous, Alin Razafindraeibé,

Jean-Baptiste Lerat, …

7

Index

Index ___ 7

Functional Fault Model Glossary __ 9

Short Acronym Dictionary __ 11

General Introduction __ 15

Part I: Test of dynamic faults in SRAMs__ 21

Chapter 1. Background and state-of-the-art ____________________________________ 23

I.1.1. Background on memory testing __ 23

I.1.1.1. SRAM structure ___ 23

I.1.1.2. Fault modeling __ 25

I.1.1.2.a. Fault classification [VDG00] __ 25

I.1.1.2.b. Test patterns and algorithms ___ 27

I.1.2. Dynamic faults testing __ 28

I.1.3. Conclusion ___ 30

Chapter 2. Dynamic Faults in SRAM write drivers ________________________________ 32

I.2.1. Write driver fault-free functioning __ 32

I.2.2. Resistive-open defects in the write driver _______________________________________ 34

I.2.2.2. Defect incidence analysis __ 34

I.2.2.3. Simulation set-up and results __ 36

I.2.3. Slow Write Driver Faults testing __ 37

I.2.3.1. Detailed analysis of Df5 and Df6 __ 37

I.2.3.1.a. Df5 analysis ___ 38

I.2.3.1.b. Df6 analysis___ 39

I.2.3.2. March test solution to detect SWDF _______________________________________ 41

I.2.4. Test solution for Un-Restored Destructive Write Faults ____________________________ 46

I.2.4.1. I/O circuitry: structural dependencies between write driver and sense amplifier ____ 46

I.2.4.2. URDWF analysis ___ 48

I.2.4.2.a. Functional fault modeling __ 49

I.2.4.2.b. Electrical simulations with Df9 __ 50

I.2.4.2.c. URDWF vs. URWF __ 51

I.2.4.2.d. March test solution __ 53

I.2.5. Conclusion ___ 53

8

Chapter 3. Dynamic faults in SRAM sense amplifiers _____________________________ 54

I.3.1. Sense amplifier description __ 54

I.3.1.1. Sense amplifier within the I/O circuitry _____________________________________ 54

I.3.1.2. Sense amplifier fault-free operation _______________________________________ 56

I.3.2. Resistive-open defects in the sense amplifier ____________________________________ 58

I.3.2.2. Defect incidence analysis __ 59

I.3.2.3. Simulation set-up and results __ 60

I.3.3. d2cIRF1 analysis ___ 61

I.3.3.1. Functional fault modeling ___ 61

I.3.3.2. Electrical simulations with Df3 __ 62

I.3.3.3. March test solution __ 64

I.3.4. d2cIRF2 analysis ___ 67

I.3.4.1. Functional fault modeling ___ 67

I.3.4.2. Electrical simulations with Df4 __ 68

I.3.4.3. March test solution __ 69

I.3.5. Conclusions __ 71

Chapter 4. Influence of threshold voltage deviations in SRAM core-cells _____________ 73

I.4.1. Simulation flow ___ 74

I.4.2. Mismatch sensitivity during read/write operations _______________________________ 75

I.4.3. Mismatch related fault models ___ 78

I.4.3.2. Result overview ___ 79

I.4.3.3. Test requirements ___ 84

I.4.4. Conclusion ___ 84

Part II: Diagnostic of SRAMs __ 87

Chapter 1. Design For Diagnosis Solutions _____________________________________ 90

II.1.1. State-of-the-art __ 90

II.1.2. Requirements for fault-free operation of a write driver ___________________________ 91

II.1.2.1. Logic condition ___ 91

II.1.2.2. Analog condition __ 92

II.1.3. Description of the current-based DFD solution __________________________________ 93

II.1.3.1. Hardware diagnosis solution for the analog condition _________________________ 93

II.1.3.2. Hardware diagnosis solution for the logic condition __________________________ 97

II.1.3.3. Diagnosis sequence ___ 98

II.1.4. Description of the voltage-based DFD solution __________________________________ 99

II.1.4.1. DFD principle ___ 100

II.1.4.2. Implementation of the differential amplifier _______________________________ 100

II.1.4.3. Diagnosis sequence __ 104

9

II.1.5. Conclusions ___ 105

Chapter 2. Software-based diagnosis solution _________________________________ 106

II.2.1. State-of-the-art: signature-based diagnosis ____________________________________ 106

II.2.2. Signature extension for dynamic fault diagnosis ________________________________ 109

II.2.2.1. Signature-based dynamic fault diagnosis __________________________________ 109

II.2.2.2. Discussions ___ 115

II.2.3. History-based diagnosis ___ 116

II.2.3.1. Principle ___ 117

II.2.3.2. Step 1: History of faulty read operations __________________________________ 118

II.2.3.3. Step 2: History of correct read operations _________________________________ 120

II.2.3.4. Step 3: FP Compilation __ 121

II.2.3.5. Step 4: Fault Model Allocation __ 121

II.2.4. Diagnosis of dynamic faults __ 121

II.2.4.1. Dynamic fault models ___ 121

II.2.4.2. Application ___ 123

II.2.5. Experimental results __ 130

II.2.5.1. Signature vs. history-based diagnosis _____________________________________ 130

II.2.5.2. Additional results __ 132

II.2.6. Further improvements __ 134

II.2.7. Conclusion ___ 135

General Conclusion __ 137

Scientific Contributions 141

References 145

List of Figures 151

List of Tables 155

11

Functional Fault model Glossary

Address Decoder Open Fault (ADOF): A decoder is said to have an ADOF when changing
only one bit on its address results in selecting this new address but also the previous one.
Consequently, two core-cells are selected at the same time for a read or a write operation.

dynamic Read Destructive Fault (dRDF): A core-cell is said to have a dRDF if a write
operation immediately followed by a read operation performed on the core-cell changes the
logic state of this core-cell and returns and incorrect value on the output.

dynamic two-cells Incorrect Read Fault type 1 (d2cIRF1): A sense amplifier is said to have a
d2cIRF1 if it is unable to read any value. So, the read data value at the output is the one
previously stored in the data output circuitry. This is a two-cell fault model as it requires two
read operations on two distinct core-cells.

dynamic two-cells Incorrect Read Fault type 2 (d2cIRF2): A sense amplifier is said to have a
d2cIRF2 if it is only able to perform a 푟0 or 푟1 operation As for d2cIRF1, this is a two-cell
fault model as it requires two read operations on two distinct core-cells.

Incorrect Read Fault (IRF): A core-cell is said to have an IRF if a read operation performed
on the cell returns an incorrect logic value, while keeping the correct stored value in the cell.

Read Destructive Fault (RDF): A core-cell is said to have a RDF if a read operation
performed on the cell changes the data in the cell and returns an incorrect value on the
output.

Slow Write Driver Fault (SWDF): A write driver is said to have a SWDF if it cannot act a w0
(w1) when this operation is preceded by a w1 (w0). That results on the core-cell that does not
change its data content.

Stuck-At Fault (SAF): A core-cell is said to have a SAF if its content is always at a given
value and cannot be changed to the opposite state

Transition Fault (TF): A core-cell is said to have a TF if it fails to undergo a transition
(0 1 or 1 0) when it is written.

Un-Restored Write Fault (URWF): The pull up of one of the two bit lines is not completely
achieved after the state reached with a write operation. Consequently the following read
operation of an opposite data in a cell belonging to the same I/O circuitry is not correctly
acted.

Un-Restored Destructive Write Fault (URDWF): The same definition as URWF but in
addition to the faulty read operation, the core-cell flips.

13

Short Acronym Dictionary

ADOF: Address Decoder Open Fault

BL: Bit Line

CF: Coupling Fault

d2cIRF: dynamic two-cell Incorrect Read Fault

Df: Defect

DFD: Design For Diagnosis

DOF: Degree Of Freedom

DR: Diagnosability Ratio

dRDF: dynamic Read Destructive Fault

FFM: Functional Fault Model

FP: Fault Primitive

MT: March Test

RDF: Read Destructive Fault

SAF: Stuck-At Fault

SoC: System on Chip

SOS: Sensitizing Operation Sequence

SRAM: Static Random Access Memory

SWDF: Slow Write Driver Fault

TF: Transition Fault

URDWF: Un-Restored Destructive Write Fault

URWF: Un-Restored Write Fault

VDSM: Very Deep Sub-Micron

WL: Word Line

15

General Introduction

General Introduction

16

In the actual landscape of System-on-Chips (SoC), there is a wide panel of available

memories due to the high demand of storage in different kind of applications and systems.

These semiconductor memories are classified in two families: the volatile memories and the

non-volatile ones as shown in Figure 1.

 Memories

Volatile Non Volatile

ROM RAM RAM

FeRAM MRAM PCRAM PROM EPROM EEPROM FLASH Mask ROM SRAM DRAM

Non-rewritable ROM Rewritable ROM

Figure 1 – Memory classification

Volatile memories have the particularity to lose their content when the power supply is

turned off. Those are based on Random Access Memories (RAM) concept meaning an

arbitrary access. There are two kinds of volatile RAMs, the Static RAMs (SRAMs) and the

Dynamic RAMs (DRAMs). SRAMs keep automatically their contents while power is turned

on and present a very short access time compare to DRAMs. Consequently, they are used for

fast applications such as cache memories for processor. On the other hand, DRAM contents

need to be refreshed periodically. Nevertheless, their high integration density compare to

SRAMs makes DRAMs more useful for mass data storage.

By opposition to volatile memories, non-volatile ones keep their data indefinitely

(theoretically), even if the power is turned off. These kinds of memories are divided in two

sub-families, the one based on the ROM (Read Only Memories) concept, the second based on

the RAM concept (previously presented). Originally, ROMs were the only non-volatile

memories and their contents were not rewritable. However, researchers have found new

mechanisms and materials allowing these memories to be rewritable (PROM, EPROM…).

Recently, non-volatile memories based on the RAM principle have been developed. They

present the same organization as volatile RAMs, except that they use materials allowing to

keep data even if the power is turned off. For example, in MRAM, magnetic materials are

used to store data as magnetic field. The polarity of this magnetic field determines the stored

logic data (‘0’ or ‘1’).

17

Among existing memory types, this thesis is dedicated to SRAMs testing as they are

widely used in embedded and high speed applications. In SoCs, both the number of embedded

memory cores and area occupied are rapidly increasing. According to the SIA roadmap

[SIA05], memories should occupy 94% of SoC silicon area in the next ten years (see Figure

2) making them the main detractor of SoC yield. In addition, SRAM core-cells are often

designed by violating some layout rules to save area. They are also considered as a vehicle for

CMOS process technology development. Advances in their fabrication, through the scaling

for higher densities and faster speeds, is helpful for the performance establishment of other

digital circuits. Considering this context, faults are more likely to happen in memories than in

any other SoC part. Hence, efficient test and diagnosis methods for embedded SRAMs are

therefore needed to reach a satisfactory SoC yield.

Figure 2 – ITRS roadmap: International Technology Roadmap for Semiconductors

The first part of this thesis is dedicated to SRAM testing solutions. Current test

methods used for SRAMs are generally based on static fault detection such as stuck-at faults

(SAF), transition faults (TF) and coupling faults (CF) [VDG98]. Static faults require at most

one read/write operation to be sensitized. Specific tests, called March tests, are constructed to

detect such fault types [VDG98]. However, in Very Deep SubMicron (VDSM) technologies,

a new type of faulty behavior, called dynamic faults [VDG00, ARS01], are more likely to

occur. These faults require more than one read/write operations in sequence to be sensitized

and are most of the time undetectable with existing March tests. It has been shown that

resistive-open defects (due to bad vias or contacts) are the main root cause of such faults.

Resistive-open defect occurrences in the address decoder [DIL04a], core-cell [DIL04b,

DIL05a] and pre-charge circuit [DIL05b, DIL06a] have already been analyzed.

20112011 2014201420052005 2008200819991999 20022002

New logicNew logic

Reused logicReused logic

MemoryMemory

20112011 2014201420052005 2008200819991999 20022002 20112011 2014201420052005 2008200819991999 20022002 20112011 2014201420052005 2008200819991999 20022002

New logicNew logic

Reused logicReused logic

MemoryMemory

General Introduction

18

A first objective of this thesis is to complete the previous studies by developing new

and efficient solutions for dynamic fault induced by resistive-open defects in the write

driver and in the sense amplifier of SRAMs.

The second part of this manuscript is oriented toward SRAM diagnosis solutions. In

fact, as soon as the test phase has revealed logic errors in a given memory, diagnosis can be

performed in order to precisely localize faulty sites. This may be helpful to improve memory

yield by using redundancies [KIM98, HAR01, ZOR02] added to the SRAM structure. The

repair phase consists in replacing defective blocks with spare ones. Some of the different

types of redundancies include word redundancy, word line redundancy, bit line redundancy

and I/O redundancy [RON02].

The diagnostic may also be used to improve yield ramp up for new technologies and

new designs. This time, the crucial information is not only the fault localization but also fault

type and its physical origin. With such information available, engineers can adjust the

manufacturing process and/or enhance the memory design.

Existing diagnosis solutions are most of the time not able to precisely localize faulty

sites, and to deal with dynamic faults.

The second objective of this thesis deals with new and efficient solutions for SRAMs

diagnostic.

Works realized during the three years of this thesis have been carried out in

collaboration with Infineon Technologies (Sophia Antipolis), under the framework of the

NANOTEST – 2A702 European Project. With this partnership, we have been able to act a

complete characterization of behaviors occurring in SRAMs. On the basis of this analysis and

characterization work, we have determined various faults models and developed some

efficient test solutions. Moreover, the industrial collaboration has also allowed the validation

of all results. This work has been the object of several publications in international

conferences and journals.

This manuscript is divided in two parts:

The first part is dedicated to dynamic faults testing in an SRAM, especially dynamic

faults due to resistive-open defects in SRAM write drivers and sense amplifiers. Thereafter,

we also show that process variations (called mismatches in case of local variations) on the

transistor threshold voltage 푉 may impact the core-cell behavior.

19

The second part provides a presentation of new diagnosis techniques. In a first time, two

Design For Diagnosis (DFD) methods able to deal with weak write drivers are presented.

Next, a global memory diagnosis method, based on the use of algorithms, is proposed.

21

Part I: Test of dynamic faults in SRAMs

Test of dynamic faults in SRAMs

22

Introduction

Existing test solutions, based on March type algorithms, target functional fault models

such as SAF, TF and CF faults models. Those are known as static fault models as they require

at most one read/write operation to be sensitized. However, in VDSM technologies, dynamic

faults [VDG00, ARS01] are more likely to occur. These faults require a specific read/write

sequence to be sensitized and are mainly due to bad vias or contacts inducing resistive-open

defects. Unfortunately, the existing March test solutions are most of the time unable to test

these new kinds of faults [HAM03].

Some papers dealing with dynamic faults due to resistive-open defects in various blocks

of the memory, such as address decoder [SAC97, DIL04a, DIL06b], core-cell [BOR03b,

DIL04b, DIL05c, BOR05] and pre-charge circuit [ADA02, DIL05b, DIL07] have been

proposed so far. However, there is a lack of studies on dynamic faults due to SRAM write

driver and sense amplifier. We propose here to overcome that by proposing two studies on

dynamic faults induced by resistive-open defects in the write driver and in the sense amplifier.

This part is organized as follows: a first chapter is dedicated to an overview of memory

test. In the second chapter, the SRAM functioning is studied when write drivers are affected

by resistive-open defects. The third chapter deals with memory functioning in presence of

such defects in the sense amplifiers. Then, we will see in the fourth chapter that dynamic

faults in SRAMs can also be due to local process variations also called mismatches. Finally,

concluding remarks are provided in the last section.

Background and state-of-the-art

23

Chapter 1. Background and state-of-the-art

This chapter gives the SRAM background useful for a complete understanding of the

remaining of this part. Especially, a global view of a SRAM as well as the core-cell view are

briefly depicted. Next, the techniques commonly used to test SRAMs are presented. Finally, a

state-of-the-art on dynamic faults testing is provided in order to justify our study.

The organization of this chapter is as follows: in the first Section, a background on

memory testing is provided. The second Section concerns the dynamic fault testing. Finally,

Section 3 gives some conclusions.

I.1.1. Background on memory testing

I.1.1.1. SRAM structure

In any kind of memory, bits are either individually addressable (bit-oriented memories),

or addressable by groups of 4, 8, 16 or more (word-oriented memories). For simplicity, we

assume in our discussion that all the memory bits are individually addressable. The bulk of

the memory consists of the cells in which the bits are stored. Each memory cell is an

electronic circuit capable to store (at least) one bit.

The physical organization of the storage cells is commonly done in a square or nearly

square matrix. In Figure I.1, we illustrate such organization. The cell matrix has 2M rows and

2N columns, for a total storage capacity of 2M+N bits. For example, one Mega bits square

matrix would have 1024 rows and 1024 columns (M = N = 10). Each core-cell in the array is

connected to one of the 2M row lines, universally called word lines (WL), and one of the 2N

column line, commonly called bit lines (BL). A particular core-cell can be accessed for a read

or write operation by selecting its word line and its bit line.

The activation of one of the 2M word lines is performed by the row decoder, which is a

combinational logic circuit that selects the word line, corresponding to the address (in M bits)

applied to its input. When the kth word line is activated, whatever the operation, all the 2N

core-cells in the kth row are connected to their respective bit lines. The connections of the

couple of selected bit lines to the I/O circuitry is done by the column address decoder.

Test of dynamic faults in SRAMs

24

Figure I.1 – Scheme of the memory structure

The I/O circuitry is composed by a write driver and a sense amplifier. The former allows

writing data into core-cells whereas the second is used to read their contents. These two

blocks are presented in detail in Chapter II and Chapter III of this part

The core-cell (see Figure I.2) stores memory data. It is based on the latch principle, i.e.

it is composed by two cross-coupled inverters resulting in a latch structure, and two access

transistors (Mtn3 and Mtn4). Data is stored as voltage levels at the two sides of the latch. A

logic ‘1’ is stored into the core-cell if node S is high and node SB is low; the opposite states

on both nodes are required for storing a logic ‘0’. For read or write operations, the access

transistors Mtn3 and Mtn4 are turned on when the word line is selected (its voltage goes

high); thus connecting the latch to the bit lines BL and BLB.

Note that both BL and BLB lines are useful for read/write operations. The access

transistors behave as transmission gates allowing bi-directional current flow between the latch

and the BL and BLB lines.

Background and state-of-the-art

25

S SB

WL

Mtp1

Mtn1

Mtp2

Mtn2

Mtn3 Mtn4

CSB CS

BL BLB

Figure I.2 – Core-cell scheme

I.1.1.2. Fault modeling

I.1.1.2.a. Fault classification [VDG00]

In this sub-section we define some terms that will be regularly used in the following.

Functional faults can be defined as the deviation of the observed memory behavior from the

functionally specified one under a set of performed operations. Therefore, two basic

ingredients can be identified to any functional fault model (FFM):

 a list of performed memory operations.

 a list of corresponding deviations in the observed behavior from the expected

one.

Any list of performed operations on the memory is called an operation sequence. An

operation sequence that results in a difference between the observed and the expected memory

behavior is called a sensitizing operation sequence (SOS). The observed memory behavior

that deviates from the expected one is called a faulty behavior. A general notation to represent

operation sequences is given first, followed by a notation of the faulty behavior.

Throughout the 1980s and during the first half of the 1990s, the only functional

parameter considered relevant to the faulty behavior was the stored logic state in the memory

cell [VDG98]. Recently, another functional parameter, the output value of a read operation,

has also been considered to be relevant [VDG99]. Therefore, any difference between the

observed and expected memory behavior can be denoted by the following notation

< 푆/퐹/푅 >. 푺 describes the sensitizing operation sequence that sensitizes the fault. 푭

describes the value or the behavior of the faulty core-cell; 푭 {0, 1, ↑, ↓,−}. 푹 describes the

logic output level of a read operation in case S contains read operations. The difference

between the observed and expected memory behavior denoted by < 푆/퐹/푅 > is referred to as

Test of dynamic faults in SRAMs

26

a fault primitive (FP). The notion of FPs makes it possible to give a precise definition of an

FFM as understood for memory devices. This definition is presented next. A functional fault

model is a non-empty set of fault primitives.

FPs can be classified according to #C, the number of different cells accessed during an

SOS, and according to #O, the number of different operations performed in an SOS (see

Figure I.3).

Depending on #C, FPs can be divided into the following classes:

 If #C = 1 then the FP sensitized by the corresponding SOS is called a single-

cell FP.

 If #C > 1 then the FP sensitized by the corresponding SOS is called a

coupling FP. If #C = 2 then it is described as 2-coupling FP or 2-cell FP. If

#C = 3 then it is described as 3-coupling FP, etc.

Depending on #O, FPs can be divided into the following classes:

 If #O = 1 then the FP sensitized by the corresponding SOS is called a static

FP

 If #O > 1 then the FP sensitized by the corresponding SOS is called a

dynamic FP. If #O = 2 then it is described as 2-operation dynamic FP. If

#O = 3 then it is described as 3-operation dynamic FP, etc.

Figure I.3 shows a taxonomy of the space of FPs. It is important to note that the two

ways to classify FPs are independent, since their definition is based on independent factors of

the SOS. As a result, a single-cell FP can be static, or dynamic with any number of operations.

The same applies to coupling FPs.

Since an FFM is defined as a set of FPs, it is expected that FFMs will inherit the

properties of FPs:

 if an FFM is defined as a collection of single-cell static FPs, then the FFM is a

single-cell fault model. SAF or TF are such FFM.

 If an FFM is composed by a set of two-operation FPs, then the FFM may be

either a single-cell dynamic FFM or a coupling dynamic FFM. For example

dynamic Read Destructive Fault (dRDF) is a single-cell dynamic FFM and

Un-Restored Destructive Write Fault (URDWF) is a 2-coupling dynamic

FFM.

Background and state-of-the-art

27

 If an FFM consists of FPs classified into inconsistent classes, single-cell and

two-cell FPs for example, it is described as a single-cell and a two-cell fault

model.

The taxonomy above can be extended to include linked faults [VDG98] and data

retention faults [DEK90].

In the remaining of the thesis, we will focus on the dynamic FFM space (see right hand

of Figure I.3), i.e. faults requiring more than one operation in the SOS.

 Fault Primitives

#C

#C=1 #C>1

Single -cell
Fault Primitives

Coupling
Fault Primitives

#C=2 #C=3

2-Coupling
Fault Primitives

3-Coupling
Fault Primitives

#O

#O=1 #O>1

Static
Fault Primitives

Dynamic
Fault Primitives

#O=2 #O=3

2-operation
Fault Primitives

3-operation
Fault Primitives

Figure I.3 – Taxonomy of fault primitives

I.1.1.2.b. Test patterns and algorithms

Remember that a memory is a particular circuit having a large quantity of internal states

related to its size, i.e. 2n with n the number of bits in the memory. Because of time constraints,

the test of all possible internal states of memory is not possible. Currently, memories achieve

more than 1Gbits of storage capacity. For instance, with a O(2n) test procedure, a 4Mbits

SRAM would be tested in 500 hours. Thus, based on their regular structure and on their

FFMs, researchers have developed new test methods and algorithms with a linear complexity

(O(n)). Traditional memory tests include many well-known tests such as GALPAT,

checkerboard, sliding diagonal, etc… [VDG98]. These test solutions are not based on fault

models, such as SAF and CF, thus their quality in terms of fault coverage is difficult to be

proved [VDG98]. Although simple to implement and test time advantageous, these patterns

present a low fault coverage and only the SAF detection is guaranteed.

Consequently, new test methods, called March tests, have been developed. Such tests

achieve a high coverage for SAF, TF or CF. March algorithms have a linear complexity

Test of dynamic faults in SRAMs

28

(O(n)) and more flexibility thanks to their Degree of Freedom (DOF) [NIG98], defined below.

We assume the definition of a March test described by [SUK81]:

A March test consists of a finite sequence of March elements. A March element is a

finite sequence of operations applied to every core-cell of memory before proceeding to the

next cell. The latter can be done in either one of two address orders: an increasing (↑)

address order (e.g. from address 0 to address n - 1), or a decreasing (↓) address order which

is the opposite of the ↑ address order. When the address order is irrelevant the symbol ↕ is

used. An operation can consist of: writing a logic ‘0’ into a cell (푤0), writing a logic ‘1’ into

a cell (푤1), reading a cell with expected value ‘0’ (푟0), and reading a cell with expected

value ‘1’ (푟1). Note that all operations of a March element are performed at a certain

address, before proceeding to the next address.

Degrees of freedom

DOF I. The address sequences can be freely chosen as long as all addresses occur

exactly once and the sequence is reversible

DOF II. The address sequence for initialization can be freely chosen as long as all

addresses occur at least once.

DOF III. If the March test is built symmetrically (detects for example both SA0 and

SA1 faults), the data written to the cells can be exchanged completely

DOF IV. The data within a read/write operation does not necessarily has to be

equivalent for all memory addresses as long as the detection probabilities for basic

faults are not affected

DOF V. The input data is not defined during read operations

DOF VI. The output data is not defined during write operations

I.1.2. Dynamic faults testing

As mentioned above, memory testing is based on the use of algorithms, especially

March test algorithms. In general, the static faults are covered by a certain number of common

March test algorithms. On the other hand, these algorithms are not effective for the test of the

dynamic faults, which require the use of specific test sequences. Previous works done in the

field of memory test algorithms targeting dynamic faults are very limited.

Background and state-of-the-art

29

In [VDG02], an exhaustive set of single-cell 2-operation FPs is generated. It results in a

first set of possible read/write combinations and induced faulty behavior. From this starting

point, instead of taking into account all possible FPs (which may represent a too high set of

possibilities), authors extracted a sub-set of 12 single-cell 2-operation dynamic FPs

considering that those are the most realistic ones based on ad-hoc assumptions. In the same

way, an exhaustive set of 2-cell 2-operation FPs is generated. It results in a second set of

possible read/write combinations. Once again, a sub-set of 24 2-cell 2-operation dynamic FPs

is considered as being the more realistic ones still based on ad-hoc assumptions.

Many studies are based on the detection of the complete set of FPs exhaustively

generated like in [VDG02]. In [HAM02], two March test algorithms, March RAW1 of length

13N and March RAW of length 26N, for classes of realistic single-cell and 2-cell 2-operation

dynamic faults respectively, were proposed. In [BEN05a], two March test algorithms, March

AB1 of length 11N and March AB of length 22N, for the same classes as RAW1 and RAW

respectively (i.e. realistic single-cell and 2-cell two-operation dynamic faults respectively)

were proposed, thus improving the length of those proposed in [HAM02]. In [BEN05b], a

March test algorithm of length 100N was proposed for detection of 2-cell dynamic faults with

two operations both applied on the victim or aggressor cells. Compare to [HAM02] and

[BEN05a], the sub-set of 2-cell 2-operation is enlarged. In [HAR06], authors proposed a

March test algorithm of length 70N, targeting the same faults as in [BEN05b], thus improving

the length by 30N of that proposed in [BEN05b]. They proposed also a March test algorithm

able to deal with the overall single-cell 2-operation dynamic faults described in [VDG02].

We can thus imagine to create algorithms able to deal with x-cell y-operation dynamic

faults, where x → n (n is the number of core-cells) and y → ∞. Consequently, the dynamic

fault class is infinite as the number of operations required for their sensitization is not limited.

Based on the methodology presented above, the resulting March tests complexity becomes too

high for industrial application due to huge required test time (algorithm complexity more than

100N). So, it is not possible to deal with all dynamic faults without increasing considerably

the characterization time. In addition, such method is not based on a complete understanding

of real defects that must appear in memory. Therefore, considering an exhaustive set of FPs

bring to the consideration of improbable faulty behaviors.

Instead of considering all possible dynamic faults, a new approach consisting in first

injecting actual defects and then studying the memory behavior in presence of such defects is

developed. This new approach is more realistic as no assumptions on FPs are done without

Test of dynamic faults in SRAMs

30

understanding and verify the validity of the faulty behavior. In this approach, the memory

layout is first considered and potential defective sites as well as the physical origins inducing

a faulty behavior are highlighted. It has been shown in [JAM01, AZI05] that the two major

types of defects that occur during the manufacturing ICs are opens and bridges defects.

The resistive-bridge defects may be due to salicide break occurring inside the core-cell.

In [AZI05], authors show that such defects in the core-cell array may be the cause of dynamic

faults. As results, a March test called DITEC+ has been proposed.

The significance of resistive-open defects has considerably increased in recent

technologies, due to the presence of many interconnection layers and an ever-growing number

of connections between each layer. In particular, in [JAM01] Intel reports that resistive-open

vias are the most common root cause of test escapes in deep-submicron technologies. Hence,

resistive-open defects and the faulty behavior that they involve have already been considered

in the memory testing literature. With respect to the layout, these defects have been placed in

correspondence of the interconnections. Based on this approach, some memory blocks have

been studied, the core-cell [BOR03b, DIL04b, DIL05c, BOR05], the address decoder

[SAC97, DIL04a, DIL06b] and the pre-charge circuit [DIL05b, DIL07]. As results, March

algorithms dealing with dynamic faults in such blocks have been developed. Especially,

authors have proposed modifications (thanks to DOFs describe above) on a well known

March algorithms, the March C- (see Figure I.4). This approach seems more interesting,

especially for industrial applications, as the test phase target only realistic faults. March

algorithms complexity is thus reduced.

↕ (푤0) ↑ (푟0,푤1) ↑ (푟1,푤0) ↓ (푟0,푤1) ↓ (푟1,푤0) ↕ (푟0)

Figure I.4 – March C- algorithm

However, few works have been done on resistive-open defects in the write driver and in

the sense amplifier [ADA02]. This thesis overcomes this missing and proposes a study of

these two blocks in presence of resistive-open defects.

I.1.3. Conclusion

In this chapter, we have defined the background on memory testing as well as a brief

state-of-the-art on dynamic fault testing. We show that memory testing is most of time based

on March test algorithms as they present a low complexity (O(n)) and are flexible thanks to

Background and state-of-the-art

31

their DOFs. Based on the use of such algorithms, some studies dealing with dynamic fault

testing have been done. Two main approaches are distinguishable: the first one consists in

using an exhaustive set of FPs and generate specific test algorithms able to detect it. This

solution induces a test time increase which may be inadequate for industrial applications as

the set of FPs defining dynamic faults is infinite. The second approach consists in first

injecting actual defects from layout extraction, studying the induced SRAM faulty behaviors

and then generating an adapted March test algorithms. Based on this second approach, studies

on core-cell, pre-charge circuit and address decoder have been published so far. In the

remaining of this part, we propose to complete these works with a study of the write driver

and the sense amplifier.

Test of dynamic faults in SRAMs

32

Chapter 2. Dynamic Faults in SRAM write drivers

In this chapter, we propose an analysis of dynamic faults induced by the presence of

resistive-open defects in the write driver of SRAMs. We have inserted actual resistive-open

defects in some locations of a write driver and we have performed electrical simulations in

order to evaluate their effects. We have analyzed the influence of each single defect on the

functional memory operations. We show that, some resistive-open defects may lead to

dynamic behaviors, that can be modeled as Slow Write Driver Fault (SWDF) [VDG04], Un-

Restored Write Fault (URWF) [ADA97] and Un-Restored Destructive Write Fault (URDWF).

The latter has never been experienced in the past. These fault models are studied and possible

March test solutions to detect them are provided. All simulations are performed on an SRAM

designed with an Infineon 65nm technology.

This chapter is organized as follows: Section 1 presents the write driver fault-free

functioning. Section 2 lists all possible locations of resistive-open defects in the write driver

and gives the corresponding faulty behaviors. Section 3 presents a complete analysis of

SWDF as well as a March test algorithm to detect such a type of fault. In the same way,

Section 4 proposes an URDWF and URWF analysis. Finally, concluding remarks are given in

Section 5.

I.2.1. Write driver fault-free functioning

By groups of columns in an SRAM, a write driver is used to control the true bit line

(BL) and the complement bit line (BLB) during a write operation. As the two bit lines are pre-

charged to 푉푑푑 before every operation, the write driver has just to act the pull down of one of

the two bit lines during a write operation:

 BL for a write '0' (푤0) operation

 BLB for a write '1' (푤1) operation

The considered write driver structure is depicted in Figure I.5. It is composed by a write

control part and a driver part. The first part receives the data that has to be written (DataIn)

and the Write Enable signal (active at low level) which controls the write operation with its

two outputs, named AW0 and AW1. If DataIn = 0 and the write enable signal is active, then

AW0 = 1 and AW1 = 0. In that case, transistor Mtn1 acts the pull down of BL which

Dynamic Faults in SRAM write drivers

33

corresponds to a 푤0 operation. In the same way, if DataIn = 1, AW0 = 0 and AW1 = 1, so

that transistor Mtn2 acts the pull down of BLB. It is a 푤1 operation.

Vdd

BL Mtp1

Mtn1

Vdd

BLB Mtp2

Mtn2

Write Enable

DataIn

Write
Control

Driver

AW0

AW1DataB

Figure I.5 – Write driver structure

Remark: At this point, it is important to notice that, for a fault-free write driver, signals AW0

and AW1 can never be set to logic ‘1’ at the same time.

Waveforms presented in Figure I.6 show the correct action of the write driver during

two consecutive write operations. Especially, a 푤1 operation is performed followed by a 푤0

operation on a core-cell that initially contains a logic '0'. S and SB are the state values of the

selected core-cell. These waveforms were obtained for typical operating conditions, i.e.

process: typical, voltage: 1.2V, temperature: 27°C.

²

w1

S

DataB

SB

AW1
AW0

BL
BLB

WE

Pre-charge w0

DataIn

Figure I.6 – Fault-free write driver waveforms (퐰ퟏ, 퐰ퟎ)

Test of dynamic faults in SRAMs

34

I.2.2. Resistive-open defects in the write driver

In this section, the effects induced by resistive-open defects on the normal function of

the write driver circuit are analyzed. We assume the presence of only one defect for each

analysis because the occurrence of multiple defects is unlikely.

As shown in Figure I.7, nine resistive-open defects (Df1 to Df9) have been placed in

different locations of the analyzed write driver. We do not consider all possible locations

because of the symmetry of the write driver structure. In particular, we have chosen the left

part of the driver for defects Df1 to Df4. Finally, two defects (Df5 and Df6) have been

considered in the inverter and three defects (Df7 to Df9) in one of the NOR gates of the write

control part. Symmetric defects can be placed on the other NOR gate of the write control part

and in the right part of the driver.

Vdd

BL Mtp1

Mtn1

Vdd

BLB Mtp2

Mtn2

Write Enable

DataIn

AW0

AW1

Df2

Df1

Vdd

Df6

Df5

Vdd

Df7

Df8 Df9

Vdd

Df3

Df4

DataB

Figure I.7 – Defect injection in the write driver

I.2.2.2. Defect incidence analysis

The faulty behaviors produced by each defect in the write driver are described below.

Defect Df1: This defect produces a delay in the discharging phase of BL during the

writing phases. The faulty behavior related to Df1 can be modeled by a TF. This fault is a

Dynamic Faults in SRAM write drivers

35

static fault and many classical March tests are able to detect it. The definition of such fault is

provided below:

Transition Fault (TF): A cell is said to have a TF if it fails to undergo a transition

(0 1 or 1 0) when it is written.

Defect Df2: This defect induces a delay in the charging operation of BL during the

writing phases. In presence of such defect, the pull up of node BL cannot be performed but, as

the write driver has also a pre-charge circuit, the pull up is acted any how. Consequently, no

faulty behavior occurs.

Defect Df3: This defect prevents to turn off of transistor Mtp1. Consequently, Mtp1 is

still turned on. The worst case should be if transistor Mtn1 has to fight against transistor Mtp2

during a 푤0 operation. However, a specific sizing is done to have the N plan (Mtn1 and Mtn2)

at least 5× stronger than the P plan (Mtp1 and Mtp2) and hence insure the pull down of the bit

line (BL for a 푤0 and BLB for a 푤1) in the time allowed for the write operation. Thus, even if

Mtn1 has to fight against Mtp2, the resulting level on BL is ‘0’. Df3 has hence no impact on

the write driver functioning.

Defect Df4: This defect produces effects similar to Df2.

Defects Df5 and Df6: During a write operation, one of the two bit lines is driven to ‘0’

and the other one remains at 푉푑푑. However, in presence of Df5 or Df6, this operation cannot

be performed, especially when there are two successive write operations with an opposite

value. This faulty behavior can be modeled as Slow Write Driver Fault (SWDF):

Slow Write Driver Fault (SWDF) [VDG04]: A write driver is said to have a SWDF if it

cannot act a w0 (w1) when this operation is preceded by a w1 (w0). That results on the core-

cell that does not change its data content.

Defect Df7: This defect produces effects similar to Df1.

Defect Df8: This defect prevents the pull down of node AW0 but this action is still acted

by the parallel NMOS transistor controlled by the write enable signal. Consequently, no faulty

behavior is generated by such defect.

Defect Df9: A 푤0 operation can be performed by the write driver, i.e. AW0 node (see

Figure I.7) can be set to a logic ‘1’. Normally, at the end of the operation, the Write Enable

signal performs the pull down of node AW0. But Df9 prevents this pull down and thus node

AW0 remains at logic ‘1’ a certain time depending on the defect size. Hence, the write driver

continues to perform a 푤0 even if a read operation has to be done. This faulty behavior is

Test of dynamic faults in SRAMs

36

modeled as an Un-Restored Destructive Write Fault (URDWF) or an Un-Restored Write Fault

(URWF) (depending on the defect size):

Un-Restored Write Fault (URWF) [ADA97]: The pull up of one of the two bit lines is

not completely achieved after the state reached with a write operation. Consequently the

following read operation of an opposite data in a cell belonging to the same I/O circuitry is

not correctly acted.

Un-Restored Destructive Write Fault (URDWF): The same definition as URWF but in

addition to the faulty read operation, the core-cell flips.

I.2.2.3. Simulation set-up and results

Now we show the simulation results concerning the nine resistive-open defects analyzed

in the previous sub-section. All electrical simulations of these defects have been performed

with the Infineon internal SPICE-like simulator, considering at first a reference 8Kx32

Infineon 65 nm memory block, organized as an array of 512 word lines x 512 bit lines.

The whole operating environment range has been examined with the aim of determining

the minimum defect size implying a faulty behavior. Hence simulations have been performed

by applying a number of different test patterns and by varying the following parameters:

 Process corner: slow, typical, fast, fast n / slow p, slow n / fast p

 Supply voltage: 1.08V, 1.2V, 1.32V

 Temperature: -30°C, 27°C, 110°C

 Defect size has been swept from a few Ωs up to several MΩs.

Table I.1 presents a summary of the fault models identified for each injected resistive

defect, along with the conditions for maximum fault detection, i.e. the minimum detected

resistance value.

The first column (Dfi) indicates the defect location in the write driver with respect to

Figure I.7. The second column gives the corresponding fault models. The last four columns

correspond to the electrical parameters which maximize the fault detection.

Dynamic Faults in SRAM write drivers

37

Defect Fault Model Min Res (k) Process corner Voltage (V) Temp (°C)

Df1 TF 0.4 Fast 1.08 -30

Df2 - - - - -

Df3 - - - - -

Df4 - - - - -

Df5 SWDF 128 Fast 1.08 -30

Df6 SWDF 170 SF 1.32 110

Df7 TF 9.5 Fast 1.32 -30

Df8 - - - - -

Df9 URWF / URDWF 72 / 110 Slow 1.08 -30

Table I.1 – Summary of worst-case PVT corners for the defects of Figure I.7 and
corresponding minimum detected resistance and fault models

As a concluding remark, we can notice that resistive-open defects in the write driver of

an SRAM may be the consequence of a static fault (TF) as well as dynamic ones (SWDF,

URWF / URDWF). The static fault is well known and it is detected by classical March tests.

Therefore, in the next Section, we analyze the dynamic behaviors, represented by Slow Write

Driver Faults and Un-Restored Destructive Write Faults.

I.2.3. Slow Write Driver Faults testing

As shown in the previous Section, SWDF can be produced by defaults Df5 and Df6.

Here, we propose a complete understanding of the SRAM functioning in presence of such

defects.

I.2.3.1. Detailed analysis of Df5 and Df6

During a write operation, one of the two bit lines is driven to ‘0’ and the other one

remains at 푉푑푑. However, in presence of Df5 or Df6, this operation cannot be performed,

especially when there are two successive write operations with an opposite value.

On this basis, SWDFs can be defined with four FPs, which are divided in two groups.

Test of dynamic faults in SRAMs

38

The first group corresponds to defect Df5:

FP1: < 1풘ퟎ풘ퟏ/ퟎ/−> A logic '1' is initially stored in the core-cell. Then, a

푤0 is acted immediately followed by a 푤1. The core-cell remains at a logic ‘0’.

FP2: < 0풘ퟎ풘ퟏ/ퟎ/−> A logic '0' is initially stored on the core-cell. Then, a

푤0 is acted immediately followed by a 푤1. The core-cell remains at a logic ‘0’.

The second group of FPs corresponds to defect Df6:

FP3: < 0풘ퟏ풘ퟎ/ퟏ/−> A logic '0' is initially stored on the core-cell. Then, a

푤1 is acted immediately followed by a 푤0. The core-cell remains at a logic ‘1’.

FP4: < 1풘ퟏ풘ퟎ/ퟏ/−> A logic '1' is initially stored on the core-cell. Then, a

푤1 is acted immediately followed by a 푤0. The core-cell remains at a logic ‘1’.

As the data initially stored in the core-cell does not influence the behavior of the write

driver, the following equivalences between FPs can be done:

FP1 ≡ FP2 and FP3 ≡ FP4

Consequently, we focus only on FP1 and FP3. Note that SWDF is a dynamic fault as it

requires two consecutive operations (two write operations) to be sensitized.

I.2.3.1.a. Df5 analysis

Waveforms in Figure I.8 present the faulty behavior of the memory in presence of Df5

with typical PVT conditions (Process Typ, Voltage 1.2V and Temperature 27 °C) and a defect

size of about 900 k.

0 1n 2n 3n Time (s)

w0 w1 Pre-charge

Data B remains at
logic '1' due to Df5

BL BLB

SB S

1

0

Vo
lta

ge
 (V

)

Write enable

Data In
1

0

1

0

1

0

Data B BL is floating at Vdd but
discharged by node S of
the core-cell which is at
logic '0'

S remains at logic '0'
even if a w1 has been
applied

Figure I.8 – Waveforms of < 1푤0푤1/1/0 > simulation (Df5)

Dynamic Faults in SRAM write drivers

39

The simulation starts on a core-cell that initially contains a logic '1'. We first apply a 푤0

operation. Node DataIn is set to logic '0' and node DataB is set to logic '1' before the write

operation. This first write operation is correctly acted on the core-cell which switches from

logic '1' to logic '0'. Then a 푤1 operation is performed. Just before this operation, DataIn is set

to logic '1' but node DataB remains to logic '1'. In that case, the pull down of node DataB

cannot be performed due to the presence of Df5. The two nodes AW0 and AW1 are set to

logic '0'. Any write operation cannot be performed as the four transistors of the driver (Mtp1,

Mtn1, Mtp2 and Mtn2) are turned off. The two bit lines are floating at 푉푑푑 level. This

scenario is represented in Figure I.9.

 Vdd

BL Mtp1

Mtn1

Vdd

BLB Mtp2

Mtn2

Write Enable

DataIn
AW0 = 1 / 0

AW1 = 0 / 0
Df5

w0 / w1

1 / 1

1 / 1

1 / 0

0 / 1

0 / 0

0 / floating Vdd 1 / floating Vdd

0 / 1

fault-free / faulty value

Figure I.9 – Configuration of the write driver in presence of Df5

I.2.3.1.b. Df6 analysis

Waveforms in Figure I.10 present the faulty behavior of the memory in presence of Df6

with the same operating conditions as the ones used for Df5.

The simulation starts on a core-cell that initially contains a logic '0'. We first apply a 푤1

operation. Node DataIn is set to logic '1' and node DataB is set to logic '0' before the write

operation. This first write operation is correctly acted and the core-cell switches from logic '0'

to logic '1'. Then, we act a 푤0 operation. Just before this operation, DataIn is set to a logic '0'

but node DataB remains to a logic '0'. In that case, the pull up of node DataB cannot be

performed due to the presence of defect Df6. The two nodes AW0 and AW1 are set to logic

'1'. This configuration is problematic as it means that the driver has to act simultaneously a

푤0 (AW0 = 1) and 푤1 (AW1 = 1) operations. From an electrical level point of view, the four

transistors of the driver are turned on. Thus, there is a resistive short between 푉푑푑 and the

퐺푛푑 nodes.

Test of dynamic faults in SRAMs

40

0 1n 2n 3n Time (s)

w1 w0 Pre-charge

Data B remains at
logic '0' due to Df6

BL BLB

SB S

1

0

Vo
lta

ge
 (V

)
Write enable

Data In
1

0

1

0

1

0

Data B Both BL and BLB nodes
are close to logic '0'

Both S and SB nodes reach
the logic '0' but S > SB

After the w0 operation, the
core-cell returns to the logic '1'

Figure I.10 – Waveforms of < 0푤1푤0/0/1 > simulation (Df6)

In order to define the level of BL and BLB nodes, we must analyze the size but also the

purpose of each transistors of the driver. For the same size, it is well known that NMOS

transistors are stronger than PMOS transistors. For primitive gates (INV, NAND, NOR

etc …), the sizing of N and P plans is done so as to balance their current driving capabilities.

P plans are therefore larger than the N plans. In our case, the problem is different. The driver

must act the pull down of one of the two bit lines which are equivalent to non negligible

capacitances due to their length. The pull up of the two bit lines is done by the PMOS (Mtp1

and Mtp2) of the driver which is helped by the pre-charge circuit. However, as previously

mentioned, the N plan (Mtn1 and Mtn2) is designed stronger than the P plan (Mtp1 and Mtp2)

insuring the pull down of the bit line (BL for a 푤0 and BLB for a 푤1) in the time allowed for

the write operation. With this specific sizing, the resulting voltages on BL and BLB are then

close to '0' during the 푤0 operation as seen in Figure I.10. This level on the two bit lines

disturbs the core-cell content (nodes S and SB) but after the 푤0 operation, the core-cell

returns to logic '1'. This scenario is represented in Figure I.11.

The two defects have the same consequences on the memory behavior although the

electrical phenomena are a little bit different. The faulty behavior results in a bad write

operation if it is performed after another write with an opposite data.

Dynamic Faults in SRAM write drivers

41

 Vdd

BL Mtp1

Mtn1

Vdd

BLB Mtp2

Mtn2

Write Enable

DataIn
AW0 = 0 / 1

AW1 = 1 / 1
Df6

w1 / w0

0 / 0

0 / 0

0 / 1

1 / 0

1 / 1

1 / ~ 0 0 / ~ 0

1 / 0
Vdd

Fault-free / faulty value

Figure I.11 – Faulty behavior of the write driver in presence of Df6

I.2.3.2. March test solution to detect SWDF

As seen in the previous sub-section, Df5 and Df6 involve a SWDF which is a dynamic

fault as it requires two successive write operations to be sensitized. From the FPs presented in

the previous Section, the required successive operations to detect (sensitize and observe)

SWDFs is:

푤푥 푤푥̅ 푟푥̅

where the two write operations are for sensitization of the fault and the read operation is for

observation. 푥 = 0 (resp. 푥 = 1) corresponds to the detection of Df5 (resp. Df6). Let us first

assume that these three operations must be applied on the same core-cell. From that statement,

it is easy to create a specific March test to detect essentially SWDFs as presented in

[VDG04]; March WDm (4N complexity) and March WDw (8N complexity). However, from

a test point of view, it is more interesting to obtain a March test that covers not only SWDFs

but rather a larger set of fault models. So, we have focused our study on finding possibilities

to embed (with additional March elements) or find (with modifications based on the DOFs of

March tests) the required succession of operations for SWDFs detection in existing March

algorithms.

To do that, we have first to consider again the requirements presented above. Let us

assume the basic view of an SRAM array as shown in Figure I.12 in which the write driver is

shared by four columns. As the goal is to detect possible malfunction of the driver, it is not

necessary to act the three operations on the same core-cell. In fact, the first write operation

can be applied on one core-cell among the core-cells of the four columns. Then, it is not

Test of dynamic faults in SRAMs

42

necessary to act the second write on the same core-cell but, at least, act this write on a core-

cell of the four columns that initially contains an opposite data to the data used for the first

write operation. Of course, the read operation has to be performed on the last selected core-

cell to control if the second write operation has been correctly performed. This statement

makes the requirements less stringent. For example, let us assume that the first write is acted

on CC30. If the next write is acted on CC11, then the fault is sensitized as both core-cells share

the same write driver. The observation will be done when the core-cell CC11 will be read.

 WL0

WL1

WL2

WL3

BL0
BL1

DataIn

WD

CC00

CC10

CC20

CC30

CC01

CC11

Data
Write Latch

Figure I.12 – Basic view of a part of an SRAM array

In addition, we can further reduce the stringency of the required conditions to detect

SWDFs. This time, we have to look deeper in the write driver structure, especially in the

driver control part. It is controlled by a Write Enable signal to perform the write operation

with a certain data applied on the DataIn input (see Figure I.5). This data is latched, that

means, a logic '0' (logic '1') is captured in the latch for a 푤0 (푤1) operation. An important

property is that when a 푤0 (푤1) is acted by the driver, this data (DataIn) remains stable in the

latch as long as another write is not performed with the same driver. Consequently, the latch

of the driver captures the first data that has to be written. Thus, it is not necessary to act

immediately the second write to sensitize the write driver. Any other operation can be

performed between the two write operations as long as it does not use the considered write

driver. In the same way, the read operation can be preceded by read or write operations which

do not change the content of the faulty core-cell. The resulting successions of operations to

detect SWDFs are presented in Figure I.13.

Dynamic Faults in SRAM write drivers

43

푤푥 (푟 푎푛푑/표푟 푤) 푤푥̅ (푟 푎푛푑/표푟 푤) 푟푥̅

 Any write operations except a write in the

 faulty core-cell and/or any read operation

 Write operations performed by another

 write driver and/or any read operation

Figure I.13 – Required conditions to detect SWDFs

From these new and less stringent test conditions, we can try to find them in an existing

March test. The March algorithm must have the following requirements:

 The elements of the March test have to include a 푤0 operation followed by a 푤1

operation to sensitize SWDFs induced by Df5 and a 푤1 operation followed by a

푤0 operation for those induced by Df6.

 The presence of a 푟1 operation is necessary for observation of SWDFs due to

Df5 and a 푟0 operation for those induced by Df6.

These two requirements can easily be found in many March algorithms. As example,

what is proposed here is to analyze if a well know March algorithm is able to detect SWDFs.

In our study, we consider the March C- algorithm previously mentioned. To be perfectly, the

first four elements of March C- useful for explanations are depicted in Figure I.14.

↕ (푤0) ↑ (푟0,푤1) ↑ (푟1,푤0) ↓ (푟0,푤1) …

 푀0 푀1 푀2 푀3

Figure I.14 – March C- algorithm

We first consider the succession of M0, M1 and M2 March elements. M0 performs an

initialization of the array at logic '0'. During this operation, the DataIn node of each write

driver of the memory is latched at a logic '0'. Then, we act element M1 that starts by a 푟0

operation. This operation does not influence the write driver. The first time we act the 푤1

operation, the DataIn of the selected write driver is changed from logic '0' to logic '1'. This

sensitizes the write drivers one after the other in SRAM. Finally, the 푟1 operation in element

M2 performs the observation of possible fault effects. The succession of the three first

elements (M0 to M2) allows the detection of SWDFs induced by Df5 (detected by 푤0푤1푟1).

Table I.2 summarizes the actions of elements M0 to M2 on a simple 8 core-cell memory,

Test of dynamic faults in SRAMs

44

composed by two word lines, four bit lines and two write drivers as presented in Figure I.15.

In order to perform the March elements, we have randomly selected the addressing order as

follow:

퐶푒푙푙 0, 6, 1, 2, 5, 3, 7, 4

The addressing order is of course the reverse one.

 WL0

WL1

DataIn_1

WDR1

0

4

1

5

DataIn_2

3

6 7

2

WDR2

Figure I.15 – A simple 8 core-cell SRAM

Table I.2.a summarizes the action of element M0 on the SRAM depicted in Figure I.15.

This element acts the initialization of the array at a logic '0'. Then, we perform element M1

(see Table I.2.b). First, cell n°0 is read and written to logic '1'. This 푤1 sensitizes the first

write driver WDR1. The same occurs when the 푤1 operation is performed on cell n°6 which

is the first one selected in the second group of columns. SWDFs related to Df5 are thus

sensitized. Element M2 (see Table I.2.c) performs the observation by acting 푟1 operations on

cell n°0 first (for WDR1), and cell n°6 next (for WDR2).

In the same way, elements M1, M2 and M3 allow the detection of SWDFs induced by

Df6 (detected by 푤1푤0푟0). March C- is thus an efficient test algorithm to detect SWDFs in

addition to faults (stuck-at, transition, coupling, etc …) initially targeted by this algorithm.

Dynamic Faults in SRAM write drivers

45

Cell n° Element M0
0 w0
1 w0
4 w0
5 w0

DataIn_1 0 0 0 0 0 0 0 0
Cell n°2

2 w0
3 w0
6 w0
7 w0

DataIn_2 x 0 0 0 0 0 0 0 a)

Cell n° Element M1
0 r0 w1
1 r0 w1
4
5

DataIn_1 0 1 1 1 1 1 1 1

Cell n°2
2 r0 w1
3
6 r0 w1
7

DataIn_2 0 0 0 1 1 1 1 1 b)

Cell n° Element M2
0 r1 w0
1 r1 w0
4
5

DataIn_1 1 0 0 0 0 0 0 0
Cell n°2

2 r1 w0
3
6 r1 w0
7

DataIn_2 1 1 1 0 0 0 0 0 c)

Table I.2 – Application of elements M0, M1 and M2 for SWDFs detection

Sensitization of WDR1

Sensitization of WDR2

Observation of WDR1

Observation of WDR2

Test of dynamic faults in SRAMs

46

I.2.4. Test solution for Un-Restored Destructive Write Faults

In this section, we show that in some cases, the resistive-open defect Df9 presented in

Figure I.7 may lead to a new type of dynamic behavior which has never been experienced in

the past. This faulty behavior can be modeled as an Un-Restored Destructive Write Fault

(URDWF). It is related to the organization of the memory and, in particular, it is the

consequence of the structural dependencies that exist between the write driver and the sense

amplifier. As explained previously, this faulty behavior may appear when a specific read

operation is performed immediately after a specific write operation. In this section, we

propose a possible March test solution to detect such type of dynamic behavior. Before-hand,

we provide additional explanations on the SRAM functioning, and especially on the structural

dependencies between the write driver and the sense amplifier that compose the I/O circuitry.

I.2.4.1. I/O circuitry: structural dependencies between write driver and sense

amplifier

By groups of columns in an SRAM, an I/O circuitry is used to control and observe the

bit line (BL) and the complement bit line (BLB) during the write and read operations. The

connections of the I/O circuitry are organized as depicted in Figure I.16. An I/O circuitry is

shared by some BL couples which are selected by the sub-Muxes whose activation is done by

SELi signal. The functioning of the sub_Muxes is as follows:

 If SEL0 = 1 (SEL1 = … = SELm = 0) then

 BL0 = WD = SA

 BLB0 = WDB = SAB

 If SELm = 1 (SEL0 = … = SEL(m-1) = 0) then

 BLm = WD = SA

 BLBm = WDB = SAB

The selected bit lines are therefore connected to both the write driver and the sense

amplifier whatever the operation (read or write). Hence, these two blocks are structurally

dependent as they are always connected and disconnected to the bit lines at the same time.

Before every read or write operation, BL and BLB are pre-charged to 푉푑푑. Write driver

nodes (WD and WDB) and sense amplifier nodes (SA and SAB) are also pre-charged at 푉푑푑

by their own pre-charge circuits.

Dynamic Faults in SRAM write drivers

47

During a read operation, the sense amplifier translates the weak differential voltage

between BL and BLB (BL) in a full swing differential signal which is then interpreted as a

digital signal to provide the logic output. The sense amplifier functioning will be detailed in

the remaining of this manuscript.

 BL0 BLB0

SA

SEL0 Sub-Mux0

Write
driver

I/O circuitry

PRE

CC00

CCn0

WD WDB SAB

BLm BLBm
PRE

CC0m

CCnm

PRE PRE

SELmSub-Muxm

Sense
amplifier

Data In Data Out

Write Enable SAON

P0 N0 NB0 PB0 Pm Nm NBm PBm

Figure I.16 – Detailed structure of the I/O circuitry

For example, let us explain what happen when there is a 푤0 operation followed by a 푟1

operation. These two operations are performed on two different core-cells (CCA for the 푤0

and CCB for the 푟1) belonging to the same group of column controlled by the same I/O

circuitry. Figure I.17 gives the waveforms of these two operations with typical PVT

conditions (typical process, 1.2V supply voltage, 27°C). Note that S (CCA) and S (CCB) give

the electrical levels of core-cell internal nodes.

During the 푤0 operation (푤0 on CCA), the I/O circuitry is connected to the bit lines and

the low voltage level is propagated from WD (respectively WDB) toward BL (respectively

BLB), but also toward SA (respectively SAB). Note that there is a degradation of the resulting

level on SA (respectively SAB) as the connection is done by a PMOS transistor which is not

able to properly transfer a low voltage level (SA = 푉).

Test of dynamic faults in SRAMs

48

w0
on CCA

r1
on CCB

SELx

BL
BLB

SA
SAB

WD
WDB

S (CCA)
S (CCB)

Pre-charge

Figure I.17 – Waveforms of 풘ퟎ and 풓ퟏ operations

For the read operation (푟1 on CCB), the data is propagated from BL (respectively BLB)

toward SA (respectively SAB). Note that there is no transfer from BL to WD as

 WD is at a 푉푑푑 floating level and

 the discharge of node BL is not important enough to provoke the conduction

of the NMOS transistor (N0 to Nm NMOS transistors in Figure I.16) and

hence insure the connection between BL and WD.

Explanation can be provided by notice that NMOS transistors are in a sub threshold

functioning mode, as mentioned by Eq. I.1.

푉 = 푉푑푑 − (푉푑푑 − ∆퐵퐿) = ∆퐵퐿 < 푉 (Eq. I.1)

At the end of the read operation, the sense amplifier is activated to provide the logic data

output; a logic '1' in our example.

I.2.4.2. URDWF analysis

In this sub-section, we detail the behavior of the write driver in presence of defect Df9.

We first provide a FFM of the faulty behavior by using FPs previously defined. Next, we use

electrical measurements to analyze the impact of Df9 on the behavior of the memory. As

shown in Table I.1, Df9 may induce two different dynamic behaviors, either a standard

URWF or a URDWF. From this statement, we provide comparisons of both URDWF and

URWF. Finally, we propose a possible March test solution to detect URDWF and URWF.

Dynamic Faults in SRAM write drivers

49

I.2.4.2.a. Functional fault modeling

In presence of Df9, an Un-Restored Destructive Write Fault may occur. A 푤0 operation

can be performed by the write driver, i.e. AW0 node (see Figure I.5) can be set to a logic '1'.

Normally, at the end of the write operation, the Write Enable signal performs the pull down of

node AW0. But Df9 prevents this pull down and thus node AW0 remains at logic '1' a certain

time depending on the defect size. Hence, the write driver continues to perform a 푤0 even if a

read operation has to be done.

Based on this description, an URDWF can be defined with four FPs, which are divided

in two groups. The first group corresponds to defect Df9:

FP1: < 1풘ퟎ,ퟏ풓ퟏ/ퟎ/ퟎ > A 푤0 is performed on a core-cell containing a

logic '1'. Then, a 푟1 is performed in another core-cell belonging to the same group

of column. This read operation makes the core-cell flipping from a logic '1' to a

logic '0'.

FP2: < 0풘ퟎ,ퟏ풓ퟏ/ퟎ/ퟎ > same as FP1, but this time, the 푤0 is performed on

a core-cell containing a logic '0'.

The second group of FPs corresponds to the opposite defect placed in the pull down of

the other NOR gate of the control part of the write driver.

FP3: < 1풘ퟏ,ퟎ풓ퟎ/ퟏ/ퟏ > A logic '1' is initially stored in a core-cell. Then a

푤1 is acted; a logic ‘0’ is stored in another core-cell belonging to the same group

of column; then a 푟0 is acted in this cell. This one flips to a logic ‘1’.

FP4: < 0풘ퟏ,ퟎ풓ퟎ/ퟏ/ퟏ > A logic '0' is initially stored in a core-cell. Then a

푤1 is acted; a logic ‘0’ is stored in another core-cell belonging to the same group

of column; then a 푟0 is acted in this core-cell. This one flips to a logic ‘1’.

As the data initially stored in the cell does not influence the behavior of the write driver,

the following equivalences between FPs can be done:

FP1 ≡ FP2 and FP3 ≡ FP4

Furthermore, as the electrical faulty behaviors observed by applying the SOS of FP1 (in

presence of Df9) and the SOS of FP4 (in presence of the opposite defect placed in the pull

down of the other NOR gate) are equivalent, with opposite data to be written and read, the

analysis of one of those is sufficient for a complete study of URDWFs.

Test of dynamic faults in SRAMs

50

I.2.4.2.b. Electrical simulations with Df9

Waveforms in Figure I.18 present the resulting faulty behavior of the memory in

presence of Df9 with typical PVT conditions (typical process, 1.2V supply voltage, 27°C) and

a defect size of about 500 k.

The simulation starts on two different core-cells (CCA and CCB) belonging to the same

group of columns controlled by the same I/O circuitry, both initially containing a logic '1'. We

first apply a 푤0 operation on CCA. The pre-charge circuits are switched off. Node WD drives

the '0' through BL to fight against the core-cell that contains a logic '1'. This means that the

NMOS transistor (Mtn1 in Figure I.5) has to be strong enough to impose the '0' on BL. The

푤0 operation is correctly performed on CCA that flips from a logic '1' to a logic '0'. Then, the

pre-charge circuits are switched on. PMOS transistors composing the pre-charge circuits are

normally strong enough to drive lines BL, BLB, WD, etc. which are equivalent to

capacitances. However, these PMOS transistors are much less stronger than the NMOS

transistors (Mtn1 and Mtn2 in Figure I.5) of the write driver. These different strengths

between transistors composing the write driver and the pre-charge circuits make that node

WD still remains at '0' during the pre-charge operation in presence of defect Df9. In this case,

we can say that the 푤0 operation still remains active (see Figure I.18).

Afterward, the second core-cell CCB is selected for a 푟1 operation. In order to explain

the faulty behavior observed, it is important to analyze the functioning of the sense amplifier.

It allows to take a decision depending on the core-cell content (logic '0' or '1'). If there is an

erroneous differential voltage between BL and BLB during the read operation, the sense

amplifier badly translates this differential voltage. In presence of Df9, the fact that node WD

remains at '0' makes that the differential voltage is incorrect and the 푟1 operation is erroneous.

As seen in Figure I.18, node SA is at 푉푑푑 and node SAB reaches '0', thus meaning that CCB is

read as containing a logic '0' and not a logic '1'. It is also important to notice that, as node WD

remains at '0' during the read operation, this level performs a 푤0 on CCB thus inducing a

flipping of the core-cell from a logic '1' to a logic '0'.

Dynamic Faults in SRAM write drivers

51

w0
on CCA

r1
on CCB

SELx

BL
BLB

SA
SAB

WD
WDB

S (CCA)
S (CCB)

Pre-charge

The w0 on CCA is
correctly performed

CCB changes from '1' to '0'
during the r1 operation

WD node still remains at
'0' due to the defect

Figure I.18 – Waveforms of < 1푤0, 1푟1/0/0 > simulation (Df9)

To summarize the effect of Df9, we can say that the 푟1 operation on CCB has two

effects related to the fact that the write driver continues to perform a 푤0 during this read

operation. First, the sense amplifier provides the data given by the write driver - a logic '0' in

our case. Secondly, CCB is written to a logic '0'. So, the 푟1 operation is seen as a 푤0

operation.

I.2.4.2.c. URDWF vs. URWF

As shown previously, an URDWF may occur in presence of defect Df9. Such a faulty

behavior is observed for specific write/read operations but also for a certain range of defect

size (see Column 5 in Table I.1) denoted as border 2 in Figure I.19. If Df9 has a size lower

than border 2 but higher than border 1, an URWF occurs. This time, there is no destruction of

the data initially stored in the core-cell to be read.

URWF
domain

Fault free
domain

URDWF
domain

Df9 size

Border 1 Border 2

Figure I.19 – Fault type vs. defect size

Test of dynamic faults in SRAMs

52

Once again, let us consider two core-cells (CCA and CCB) to the same group of columns

controlled by the same I/O circuitry. Both cells initially contain a logic '1'. Waveforms in

Figure I.20 present the faulty behavior of the memory in presence of Df9 with typical PVT

conditions (typical process, 1.2V supply voltage, 27°C) and a defect size of about 100 k.

The 푤0 operation performed on CCA is correctly acted as the core-cell flips from a logic

'1' to a logic '0'. Then, the pre-charge circuits of the core-cells are switched on. Compared to

Figure I.18, this time node WD is not at '0' but rather is increasing. This is due to the fact that

the NMOS transistor (Mtn1 in Figure I.5) is not fully saturated due to a lower defect size.

Thus, it fights against the PMOS transistors of the pre-charge circuit. Then, at the beginning

of the 푟1 operation performed on CCB, the remaining voltage level on node WD is not low

enough to induce the faulty swap of the core-cell. On the other hand, node WD remains at a

voltage level which is low enough hence inducing that the sense amplifier badly translates the

faulty differential voltage. This is shown in Figure I.20 where we can see that cell CCB does

not flip (node S of CCB still remains at a logic '1') but the logic data output given by the sense

amplifier is a logic '0' (node SA remains close to 푉푑푑 and node SAB is at '0').

w0
on CCA

r1
on CCB

SELx

BL
BLB

SA
SAB

WD
WDB

S (CCA)
S (CCB)

Pre-charge

The w0 on CCA is
performed correctly

CCB is read as containing
a logic '0' instead of a '1'

WD node is not
completely pull-up at Vdd

Figure I.20 – Waveforms of < ퟏ풘ퟎ,ퟏ풓ퟏ/ퟏ/ퟎ > simulation (Df9)

This electrical study shows that depending on the size of Df9, the faulty behavior can be

modeled as an URWF or an URDWF. The next section provides a test solution for both fault

models.

Dynamic Faults in SRAM write drivers

53

I.2.4.2.d. March test solution

As seen previously, Df9 may involve an URDWF or an URWF depending on its size.

Both fault models require the same sequence of operations to be detected (sensitized and

observed). This sequence is defined as follows:

푤푥 푟푥̅

where both operations have to be performed on two distinct core-cells controlled by the same

I/O circuitry.

A study of URWF detection has already been done in [DIL05b]. This study shows that

the March C- algorithm (see Figure I.14) with a column after column addressing order is able

to detect URWFs. This particular addressing order is allowed once again by the DOFs of

March tests. As the detection conditions of URWFs and URDWFs are the same, the March C-

algorithm is also able to detect URDWFs.

I.2.5. Conclusion

In this chapter, we have analyzed and characterized the effects of resistive-open defects

that may occur in the write driver of SRAMs. We have found that some defects do not disturb

the memory behavior, some others involve a TF, and two defects in the write control part

induce a Slow Write Driver Fault (SWDF). This fault prevents the write control part to

correctly decide between 푤0 and 푤1 operations. By performing electrical simulations with

the 65nm Infineon technology, we have evaluated the influence of these defects and show that

SWDFs can easily be detected by a standard March algorithm namely the March C-.

Moreover, we have shown that a resistive-open defect may lead to a new type of

dynamic behavior which has never been experienced in the past. This faulty behavior has

been modeled as an Un-Restored Destructive Write Fault (URDWF). Such fault is a

consequence of the structural dependencies that exist between the write driver and the sense

amplifier, and appears when a specific read operation is performed immediately after a

specific write operation. We have performed electrical simulations to give a complete

understanding of such a faulty behavior and to highlight differences with the standard Un-

Restored Write Fault (URWF) model.

Test of dynamic faults in SRAMs

54

Chapter 3. Dynamic faults in SRAM sense amplifiers

In this chapter, we present an analysis of dynamic faults induced by the presence of

resistive-open defects in the sense amplifier of SRAMs. The validation of this work is done

with a SRAM designed in 65nm technology. We have inserted resistive-open defects in some

locations of a sense amplifier and we have performed electrical simulations in order to

evaluate their effects. We have analyzed the influence of each single defect on the functional

memory operations. We show that some resistive-open defects may lead to a new type of

dynamic behavior which has never been experienced in the past. This faulty behavior can be

modeled by dynamic two-cell Incorrect Read Faults of two different types (d2cIRF1 and

d2cIRF2). Such fault models represent failures in the sense amplifier which prevent it to do its

function, i.e. a read operation. The main difference between them is that d2cIRF1 prevents all

read operations whereas d2cIRF2 prevents only a single type of read operation (either 푟0 or

푟1). As explained in this chapter, these faulty behaviors may appear when a specific sequence

of read operations is performed. To complete our study, we propose a possible March test

solution to detect such fault models.

This chapter is organized as follows. Section 1 presents the sense amplifier fault-free

functioning. Section 2 lists all possible locations of resistive-open defects in the sense

amplifier and gives the corresponding faulty behaviors. Section 3 presents a complete

analysis of d2cIRF1 as well as a March test algorithm to detect such a type of fault. In the

same way, Section 4 deals with the d2cIRF2 fault model. Finally, conclusions are given in

Section 5.

I.3.1. Sense amplifier description

In this section, we describe the structure of each sense amplifier in the I/O circuitry. We

first provide a global view of the memory including the I/O circuitries and then we detail the

sense amplifier fault-free operation.

I.3.1.1. Sense amplifier within the I/O circuitry

As previously mentioned, an I/O circuitry, composed by write drivers and sense

amplifiers, is used to control or observe the bit line (BL) and the complement bit line (BLB)

during the write and read operations of a given core-cell. A global view of the memory

Dynamic faults in SRAM sense amplifiers

55

structure is presented in Figure I.21 in which we have only represented sense amplifiers (write

drivers are not represented for the sake of clarity). From Figure I.21, it is important to notice

that each sense amplifier has its own pre-charge circuit which is activated at the same time as

the bit line pre-charge circuits.

As shown in Figure I.21, a sense amplifier is shared by several BL couples. A BL couple

is selected by the signal SELBLx. During a read operation, the bit line voltage levels of selected

columns are propagated towards each SAi and SABi nodes (0 ≤ i ≤ k). Then, the sense

amplifier corresponding to the targeted core-cell is activated by its signal SAONi (all the

others remaining off). The outputs zi and zbi of this sense amplifier control the data output

circuitry. This block generates the logic output data (Data_out). At this point, it is important to

notice that the data output circuitry is shared by one or more sense amplifiers. In some SRAM

configurations, two sense amplifiers can share the same data output circuitry. In some others,

four sense amplifiers can share the same data output circuitry. These different possible

memory configurations will be used later on in the Section to explain the d2cIRF fault model

and to provide the March algorithm that can be used to detect this fault model. Note also that

several data output circuitries are normally embedded in an SRAM depending on its size and

structure.

BL0 BLB0
PRE

CC00

CCn0

BLm BLBm
PRE

CC0m

CCnm

Sense
amplifier SAON0

MUX0_BL

Sense
amplifier SAONk

BLs BLBs
PRE

CC0s

CCns

BLv BLBv
PRE

CC0v

CCnv

MUXk_BL

Data output circuitry

Data_out

SA0 SAB0 SAk SABk

zb0
z0 zbk

zk

SELBLx

PRE PRE

WL0

WLn

Figure I.21 – Memory structure scheme

Test of dynamic faults in SRAMs

56

I.3.1.2. Sense amplifier fault-free operation

The transistor view of the considered sense amplifier is presented in Figure I.22. As

previously mentioned, before every read operation, BL and BLB as well as SA and SAB are

pre-charged at 푉푑푑. A read operation begins with the selection of the targeted core-cell. This

access time allows one of the two bit lines (BL for a 푟0, BLB for a 푟1) to be discharged of

about 100mV.

SA Mtp1

Mtn1

Vdd

SAB Mtp2

Mtn2

SAON

Vdd

zb z
Mtnen

COM Inter

Figure I.22 – Sense amplifier scheme

The second step consists in activating the sense amplifier in order to translate this weak

differential voltage between BL and BLB (BL = BL - BLB = SA - SAB) in a full swing

differential signal which is then interpreted as a digital signal by the data output circuitry:

 BL ~ + 100mV (푟1) SA = 1, SAB = 0

 BL ~ - 100mV (푟0) SA = 0, SAB = 1

At the beginning of a read operation, the two nodes SA and SAB can be interpreted as a

logic ‘1’ level signal that turns on the two NMOS transistors (Mtn1 and Mtn2 in Figure I.22),

thus helping the discharge of the two nodes. However, the node with a lower voltage value

(SA for a 푟0, SAB for a 푟1) discharges faster than the other one, thus turning on the

corresponding PMOS transistor (Mtp2 for a 푟0, Mtp1 for a 푟1).

In summary, for a read performed on a core-cell belonging to the group i (0 ≤ i ≤ k) of

core-cells controlled by the same sense amplifier, we finally have:

 for a 푟0: SAi = 0 and SABi = 1 and: zi = 0 and zbi = 0

 for a 푟1: SAi = 1 and SABi = 0 and: zi = 1 and zbi = 1

Note that all the others SAj and SABj (j ≠ i) nodes remain at 푉푑푑 as their sense

amplifiers are disabled. Consequently, all the other zj remain at a logic ‘0’ and the zbj remain

at logic ‘1’. Then, the data output circuitry interprets the z and zb signals to provide the logic

Dynamic faults in SRAM sense amplifiers

57

output data (see Figure I.21). The structure of the data output circuitry is generally a latch. In

our memory structure, it is not only a latch but it also used a specific and confidential control

logic. Nevertheless, we report in Table I.3 the truth table representing the logic behavior of

this data output circuitry.

z zb Data_out

0 0 0

1 0 Memory state

0 1 Memory state

1 1 1

Table I.3 – Truth table of the data output circuitry

For a 푟0 operation on a core-cell belonging to the group i, zi and zbi are at the logic ‘0’

value, thus implying Data_out to be pulled down. For a 푟1 operation, both zi and zbi are at the

logic ‘1’ value, implying Data_out to be pulled up. Note that when no read operation is

performed or during the pre-charge operation, SA and SAB remains at 푉푑푑, thus implying

z = 1 and zb = 0. With such a configuration, the Data_out signal remains stable at the logic

data stored previously (“Memory state” in Table I.3).

Waveforms presented in Figure I.23 show the correct operation of a sense amplifier

during two consecutive read operations. Especially, we perform a 푟0 followed by a 푟1 on two

different core-cells (CCA and CCB) sharing the same sense amplifier. S(CCA) and S(CCB) are

the state values of each core-cell. These waveforms were obtained from typical operating

conditions, i.e. process: typical, voltage: 1.2V, temperature: 27°C.

The simulation starts with a 푟0 operation performed on CCA. BL node is discharged and

BLB node remains at 푉푑푑. The same behavior appears on nodes SA and SAB. Then, the

signal SAON is activated and the sense amplifier detects this weak differential voltage

between SA and SAB. SA is fully discharged and SAB remains at 푉푑푑, so that nodes z and

zb are set to logic ‘0’. With such logic values, node Data_out is pulled down (c.f. Table I.3).

Then, pre-charge circuits are switched on. All the lines (BL, BLB, SA and SAB) are

therefore forced to 푉푑푑. We can also note that Data_out remains stable at logic ‘0’, which

corresponds to the last stored data (c.f. Table I.3).

The next operation is a 푟1 performed on CCB. This time, BL node remains at 푉푑푑 while

BLB is discharged. When the SAON signal is activated, the sense amplifier detects this weak

Test of dynamic faults in SRAMs

58

differential voltage that makes SA remaining at 푉푑푑 and SAB fully discharged at ‘0’. Then,

nodes z and zb are set to 푉푑푑, thus implying the pull up of node Data_out.

S(CCB)

SAON

S(CCA)

SA
SAB

z
zb

SELBL

Dout
Doutb

BL
BLB

r0 on CCA Pre-charge r1 on CCB

Figure I.23 – Fault-free data output circuitry waveforms (풓ퟎ, 풓ퟏ)

Note that if the two read operations are performed on core-cells connected to two

distinct sense amplifiers sharing the same data output circuitry, two distinct SAON signals

and two different couples (z, zb) will be involved in the definition of the Data_out signal.

I.3.2. Resistive-open defects in the sense amplifier

In this section, we summarize the effects induced by resistive-open defects on the

normal functioning of the sense amplifier.

As shown in Figure I.24, nine resistive-open defects (Df1 to Df9) have been placed in

different locations of the sense amplifier. We do not consider all possible locations because of

the symmetry of the structure.

Dynamic faults in SRAM sense amplifiers

59

SA Mtp1

Mtn1

Vdd

SAB Mtp2

Mtn2

SAON

Vdd

zb z

Mtnen

Df1

Df2

Df3

Df4 Df5

Df6 Df7

Mtn3 Mtp3

Mtn4 Mtp4

Inte

Vdd
Vdd

Df8 Df9

Mtn5 Mtp5

V
dd

Figure I.24 – Defect injection in the sense amplifier

I.3.2.2. Defect incidence analysis

Now we detail the faulty behavior as well as the attached fault models that the defects

may induce in the memory sense amplifier.

Defect Df1: In presence of Df1, the pull up of node SA cannot be performed but, as the

sense amplifier has also a pre-charge circuit, the pull up is acted anyhow thus masking the

effect of Df1.

Defect Df2: In presence of Df2, a read operation provides the opposite data than that

stored in the targeted core-cell. In our case, a logic ‘1’ is observed when we perform a 푟0

operation as the pull down of node SA cannot be done. This faulty behavior can be modeled

as Incorrect Read Fault (IRF), which definition is:

Incorrect Read Fault (IRF): A core-cell is said to have an IRF if a read operation

performed on the cell returns an incorrect logic value, while keeping the correct stored value

in the cell.

Defect Df3: During a read operation, SA (for a 푟0) or SAB (for a 푟1) node is normally

driven to ‘0’ when the sense amplifier is activated by its SAON signal. However, in presence

of Df3, this operation cannot be performed as the sense amplifier remains disabled. Then, the

data output circuitry does not change its value and gives the logic data previously stored. Such

faulty behavior is modeled as dynamic 2-cell Incorrect Read Fault type 1 (d2cIRF1), and the

definition is as follows:

Test of dynamic faults in SRAMs

60

dynamic two-cells Incorrect Read Fault type 1 (d2cIRF1): A sense amplifier is said to

have a d2cIRF1 if it is unable to read any value. So, the read data value at the output is the

one previously stored in the data output circuitry. This is a two-cell fault model as it requires

two read operations on two distinct core-cells.

Defect Df4 to Df9: These defects prevent the pull up or the pull down of nodes z and

zb. Two successive specific read operations are therefore not possible. This faulty behavior is

modeled as dynamic 2-cell Incorrect Read Fault type 2 (d2cIRF1), and the definition is as

follows:

dynamic two-cells Incorrect Read Fault type 2 (d2cIRF2): A sense amplifier is said to

have a d2cIRF2 if it is only able to perform a 푟0 or 푟1 operation As for d2cIRF1, this is a

two-cell fault model as it requires two read operations on two distinct core-cells.

I.3.2.3. Simulation set-up and results

In this sub-section, we show the simulation results concerning the nine resistive-open

defects analyzed in the previous sub-section. Once again, the simulations have been

performed with a Spice-like simulator provided by Infineon, with a 65nm technology.

The whole operating environment range has been examined with the aim of determining

the test conditions which maximize the fault detection probability. Hence simulations have

been performed by applying a number of different test patterns and by varying the following

parameters:

 Process corner: slow, typical, fast, fast n / slow p, slow n / fast p

 Supply voltage: 1.08V, 1.2V, 1.32V

 Temperature: -30°C, 27°C, 110°C

 Defect size has been swept from a few Ωs up to several MΩs.

Table I.4 presents a summary of the fault models identified for each injected resistive

defect, along with the conditions for maximum fault detection, i.e. the minimum detected

resistance value. The first column (Dfi) indicates the defect location in the sense amplifier

with respect to Figure I.24. The attached fault models are given in the second column. Finally,

the last four columns correspond to the electrical parameters which maximize the fault

detection.

Dynamic faults in SRAM sense amplifiers

61

Defect Fault Model Min Res (k) Process corner Voltage (V) Temp (°C)

Df1 - - - - -

Df2 IRF 0.35 Fast 1.32 -30

Df3 d2cIRF1 1.8 Fast 1.32 -30

Df4 d2cIRF2 140 Slow 1.08 -30

Df5 d2cIRF2 20 Fast 1.32 -30

Df6 d2cIRF2 15 Fast 1.32 -30

Df7 d2cIRF2 150 Fast 1.32 110

Df8 d2cIRF2 140 Slow 1.08 -30

Df9 d2cIRF2 20 Fast 1.32 -30

Table I.4 – Summary of worst-case PVT corners for the defects of Figure I.24 and
corresponding minimum detected resistance and fault models

As a concluding remark, we can notice that resistive-open defects in the sense amplifier

of an SRAM can be modeled by a static fault (IRF) as well as dynamic ones (d2cIRF type 1

and type 2). The next Sections are dedicated to the study of these dynamic faults.

I.3.3. d2cIRF1 analysis

In this section, we detail the behavior of the sense amplifier affected by a d2cIRF1. We

first provide a FFM of the faulty behavior by using FPs. Next, we present electrical

measurements to analyze the impact of a d2cIRF1 on the SRAM. Finally, we propose a

possible March test solution to detect this FFM.

I.3.3.1. Functional fault modeling

As mentioned in sub-section I.3.1.1, there exist several memory configurations that

differ by the number of sense amplifiers sharing the same data output circuitry. However, we

have to provide a generic FFM independently of the memory configuration.

In presence of Df3, a d2cIRF1 may occur depending on the defect size. During a read

operation, SA (for a 푟0) or SAB (for a 푟1) (see Figure I.22) node is normally driven to ‘0’

when the sense amplifier is activated by its SAON signal. However, in presence of Df3, this

operation cannot be performed as the sense amplifier remains disabled. Then, the data output

Test of dynamic faults in SRAMs

62

circuitry does not change its value and gives the logic data previously stored. At this point the

question is: how to highlight this faulty behavior?

A straightforward solution consists in initializing the data output circuitry by performing

a read operation with a given sense amplifier (Sense_1). We denote this operation as 푟푥 with

푥 {0, 1}. The data output circuitry is therefore initialized at the 푥 logic value. Then, we

select another sense amplifier (Sense_2) sharing the same data output circuitry and we

perform a read operation with an opposite data, i.e. this operation is denoted as 푟푥̅. If Sense_2

is affected by a d2cIRF1, it cannot perform any read operation, thus meaning that the data

output circuitry will remain stable at 푥 instead of providing a 푥̅ logic value. The fault is

therefore sensitized and observed.

Such a test solution is only valid when there are two or more sense amplifiers sharing

the same data output circuitry. However, it does not work if there is only one sense amplifier

per data output circuitry. So, a solution to be independent of the memory configuration

consists in performing the two read operations, 푟푥 and 푟푥̅, on the same sense amplifier. This

time, the Data_out node is not initialized but remains stable at a constant logic value if the

targeted sense amplifier is affected by a d2cIRF1.

Based on these descriptions, a d2cIRF1 can be defined with a single FP. As previously

explained, a FP is denoted as < 푺/푭/푹 >. 푹 takes generally {0, 1,−}, where ‘-’ is used when

no read operation is required for the sensitized operation sequence 푆. An important point is

that in our case, we need another symbol to represent the fact that the data output value does

not change during every operation of 푆. This symbol is denoted as ‘c’ (‘c’ stands for

constant). From this notation, we finally obtain a single FP for d2cIRF1:

FP: < 푥푟푥,풙풓풙 / 풙 / 풄 > A 푟푥 is performed on a first core-cell. Then, a 푟푥̅

operation is performed with the same sense amplifier in another core-cell. The

node Data_out still remains at a constant logic value ‘c’ during both read

operations.

I.3.3.2. Electrical simulations with Df3

Waveforms in Figure I.25 present the faulty behavior of the memory in presence of Df3.

They were obtained with typical PVT conditions (typical process, 1.2V supply voltage, 27°C)

and a defect size of about 10 k.

Dynamic faults in SRAM sense amplifiers

63

SAON

SA
SAB
zb
z
Dout
Doutb

SELBL

SCCB
SCCA
 BL
BLB

r0 on
CCA Pre-charge

SAB still remains at ‘1’
due to the defect

r1 on
CCB

SA still remains at ‘1’
due to the defect

z still remains
at ‘0’

zb still
remains at ‘1’

Dout remains
stable at ‘0’

Dout remains
stable at ‘0’

Figure I.25 – Waveforms of < 0푟0, 1푟1/1/푐 > simulation (Df3)

This simulation starts on two different core-cells (CCA and CCB) belonging to the same

group of columns (i.e. sharing the same sense amplifier) with CCA containing a logic ‘0’, CCB

a logic ‘1’ and Data_out initialized at a logic ‘0’.

A 푟0 operation is first applied on CCA. BL node is discharged and BLB node remains at

푉푑푑. Then, the SAON signal is activated to enable the sense amplifier. However, due to the

presence of the defect, it remains disabled, i.e. zb remains at logic ‘1’ and z at logic ‘0’

instead of z = zb = 0 (see Table I.3 for a 푟0 operation). The data output circuitry is in a

memory state and thus does not change. It remains at logic ‘0’. The fault is not observed as

the read data (a logic ‘0’ in our case) is the same than that initially stored in the data output

circuitry (a logic ‘0’).

Then, a second read operation is performed with a 푟1 on CCB. BL node remains at 푉푑푑

and BLB node is discharged. Once again, both nodes SA and SAB remain at logic ‘1’ due to

the defect, thus implying z = 0 and zb = 1 instead of z = zb = 1. The data output circuitry is in

a memory state, implying that it still provides a logic ‘0’ instead of a logic ‘1’. The fault is

therefore sensitized and observed during the second read operation.

Note that if node Data_out is known to be initially at a logic ‘1’, only one read operation

is necessary to observe the fault in this case. However, in order to cover all possible cases, we

must apply two read operations with opposite data on the same sense amplifier to be sure to

detect a d2cIRF1 as the initial Data_out value is unknown.

Test of dynamic faults in SRAMs

64

I.3.3.3. March test solution

As shown previously, a d2cIRF1 may occur in presence of defect Df3. Such a faulty

behavior is sensitized and observed with a specific sequence of read operations. This

sequence is defined as follows:

푟푥 푟푥̅

where both read operations have to be obviously performed on two distinct core-cells sharing

the same sense amplifier.

We formulate below some remarks about the possible modifications allowed on this

sensitized operation sequence:

Remark 1: An important property is that when a 푟푥 operation is performed by a sense

amplifier, the Data_out node of the corresponding data output circuitry remains stable as

long as a 푟푥̅ operation is not performed by a sense amplifier that shares the same data output

circuitry. Consequently, any type of write operation in the memory may be allowed between

these two read operations.

Remark 2: Obviously, several 푟푥 operations through all sense amplifiers sharing or not the

same data output circuitry do not change the Data_out node value. Consequently, it may be

allowed to perform any number of 푟푥 operations between the 푟푥 푟푥̅ operations all over the

memory.

Remark 3: If a 푟푥̅ operation is performed with another sense amplifier that does not share

the same data output circuitry than the targeted one, then the Data_out node driven by the

targeted sense amplifier is not disturbed. Consequently, any 푟푥̅ operation may be performed

with all other sense amplifiers that do not share the targeted data output circuitry.

These different remarks allow a less stringent sequence of sensitization for the d2cIRF1

detection as presented in Figure I.26.

From this statement, it is easy to create a specific March test to detect d2cIRF1s.

However, as previously seen for SWDF testing, it is more interesting to obtain a March test

that covers a larger set of fault models rather than only d2cIRF1s. We have thus to look for

possibilities to embed or find the required successive operations for d2cIRF1 detection in

existing March algorithms. We propose here to analyze if the March C- algorithm is able to

detect d2cIRF1. For more simplicity, let us just redefine this algorithm in Figure I.27

Dynamic faults in SRAM sense amplifiers

65

푟푥 (푤 푎푛푑/표푟 푟푥/푟푥̅) 푟푥̅

 Any write operation

 Any 푟푥̅ operation on core-cells belonging

 to another data output circuitry

 Any 푟푥 operation

Figure I.26 – Relaxed constraints to detect d2cIRF1

In the March C-, the successive March elements M1/M2, M2/M3, M3/M4 and also

M4/M5 feature the required sensitization sequence (푟0푟1 or 푟1푟0) but they do not allow the

detection of d2cIRF1 in all sense amplifiers. Let us consider a memory structure in which four

sense amplifiers share the same data output circuitry. Whatever the addressing order, March

element M1 performs a 푟0 operation on all the core-cells of the memory, meaning that all data

output circuitries are set to a logic ‘0’. During this element, 푤1 operations are also performed

but have no influence on data output circuitries (c.f. Remark 1).

↕ (푤0) ↑ (푟0,푤1) ↑ (푟1,푤0) ↓ (푟0,푤1) ↓ (푟1,푤0) ↕ (푟0)

 푀0 푀1 푀2 푀3 푀4 푀5

Figure I.27 – March C- algorithm

Then, March element M2 is applied using the same addressing order as M1. The first

targeted core-cell is selected for a 푟1 operation. If the sense amplifier corresponding to this

core-cell is affected by Df3, a logic ‘0’ is read (this is the logic data previously stored in the

corresponding data output circuitry) instead of a logic ‘1’. The fault is therefore sensitized and

observed. Otherwise, if this first sense amplifier works correctly, the read data is a logic ‘1’

and then the corresponding data output circuitry stores a logic ‘1’. According to Remark 3, it

is then impossible to detect the fault in the three other sense amplifiers sharing this data

output circuitry. With the application of March elements M1/M2 we can only detect a

d2cIRF1 affecting the first selected sense amplifier among a group of four sense amplifiers

sharing the same data output circuitry (using the addressing order). In the same way, the

application of March elements M3/M4 allows the detection of d2cIRF1s affecting the first

sense amplifier among a group of four sense amplifiers sharing the same data output circuitry

(using the addressing order).

Test of dynamic faults in SRAMs

66

At this point, a straightforward solution should consist in applying the two read

operations (푟푥 푟푥̅) in a March element. The proposed solution consists in using the

modifications of the March C- presented in [DIL04a]. In this paper, the authors have proposed

a new March test called March iC- (Figure I.28) for ADOFs (Address Decoder Open Faults)

detection. The particularity of this new March is that it performs each read/write operation

with an alternated data value 퐴푣 where 푣 is the initial value. In addition, it uses a specific

addressing order (with an hamming distance of one between two consecutive addresses). It is

also important to notice that these modifications (data and addressing order) are allowed by

DOFs of March test and hence do not change the fault coverage of the former targeted faults.

It means that the March iC- still detects the fault models formally detected by the March C-.

↕ (푤퐴푣) ↑ (푟퐴푣,푤퐴푣̅) ↑ (푟퐴푣̅,푤퐴푣) ↓ (푟퐴푣̅,푤퐴푣) ↓ (푟퐴푣,푤퐴푣̅) ↕ (푟퐴푣̅)

Figure I.28 – March iC- algorithm

Using the concept of alternated data of the March iC-, we have now to find the good

addressing order to guarantee the detection of all d2cIRF1s. Let us consider element M1 and

푣 = 0. The successive operations applied at different addresses are:

 (푟0,푤1), (푟1,푤0), (푟0,푤1), (푟1,푤0) …

 퐴푑푑1 퐴푑푑2 퐴푑푑3 퐴푑푑4 …

At this point, there are many possibilities to obtain the sequence of sensitization. But the

simplest solution is to address with Add1 a core-cell that uses a sense amplifier and with

Add2 another core-cell that uses the same sense amplifier. Consequently, we perform 푟0, 푟1

operations with a 푤1 between them that does not disturb the detection (c.f. Remark 1).

Among the possible addressing orders, the simplest ones are the column after column or the

line after line addressing orders. Let us first consider the column after column addressing

order and the memory structure presented in Figure I.21. CC00 is selected for a 푟0 and a 푤1

operations. Then CC01 (the core-cell on the next line) is selected for the 푟1 and 푤0 operations.

The fault is therefore sensitized and observed by the couple (푟0, 푟1). In the same way, with

the line after line addressing order, the first targeted core-cell is CC00 and the second is CC10

(the core-cell on the next column) in which we perform 푟0 and 푟1 operations respectively.

Dynamic faults in SRAM sense amplifiers

67

I.3.4. d2cIRF2 analysis

In this section, we detail the behavior of the sense amplifier affected by a d2cIRF2. As

previously done, we first provide a FFM of the faulty behavior by using FPs. Next, we present

electrical measurements to analyze the impact of a d2cIRF2 on the SRAM behavior. Finally,

we propose a possible March test solution to detect d2cIRF2s.

I.3.4.1. Functional fault modeling

In presence of defects Df4 to Df9 a d2cIRF2 may occur. From these defects two groups

can be constructed:

 Group 1: Df4, Df7 and Df9 are defects impacting the pull up of z and zb

outputs.

 Group 2: Df5, Df6 and Df8 are defects impacting the pull down of z and zb

outputs.

Let us first analyze defects of group 1. As these defects prevent the pull up of z and zb,

they impact the 푟1 operation (see Table I.3). To sensitize defects of group 1 we must first set

nodes z and zb to a logic ‘0’. This configuration corresponds to a 푟0 operation (see Table I.3).

Consequently, detection of defects belonging to group 1 requires a 푟0 operation to initialize z

and zb nodes at logic ‘0’, followed by a 푟1 operation for the sensitization.

In the same way, as defects belonging to group 2 prevent the pull down of z and zb, they

impact the 푟0 operation. Consequently, detecting these defects requires a 푟1 operation to

initialize z and zb nodes at logic ‘1’, followed by a 푟0 operation for the sensitization.

Based on these descriptions, a d2cIRF2 can be defined with two FPs as follow:

FP1: < 0풓ퟎ,ퟏ풓ퟏ/ퟏ/ퟎ > A 푟0 is performed on a first core-cell. Then, a 푟1 is

performed in another core-cell sharing the same sense amplifier. A logic ‘0’ is

read on node Data_out instead of a logic ‘1’. This FP is related to defects of group

1.

FP2: < 1풓ퟏ,ퟎ풓ퟎ/ퟎ/ퟏ > A 푟1 is performed on a first core-cell. Then, a 푟0 is

performed in another core-cell sharing the same sense amplifier. A logic ‘1’ is

read on node Data_out instead of a logic ‘0’. This FP is related to defects of group

2.

Test of dynamic faults in SRAMs

68

Note that we do not provide electrical simulations for each defect implying a d2cIRF2 as

Df4, Df7 and Df9 induce the same faulty behavior, and faulty behavior in presence of Df5,

Df6 and Df8 can be obtain by duality. Consequently, the next section is only dedicated to an

electrical study in presence of Df4.

I.3.4.2. Electrical simulations with Df4

Waveforms in Figure I.29 present the faulty behavior of the memory in presence of Df4.

They were obtained with typical PVT conditions (typical process, 1.2V supply voltage, 27°C)

and a defect size of about 500 k. This simulation involves two different core-cells (CCA and

CCB) belonging to the same group of columns (i.e. sharing the same sense amplifier) with

CCA containing a logic ‘0’, CCB a logic ‘1’ and Data_out initialized at logic ‘1’.

SAON

SA
SAB
z
zb

Dout
Dout
b

SELBL

SCCB
SCCA
 BL
BLB

zb still
remains at ‘0’

r0 on
CCA

Pre-charge r1 on
CCB

Dout remains
stable at ‘0’

Figure I.29 – Waveforms of < 0푟0, 1푟1/1/0 > simulation (Df4)

A 푟0 operation is first applied on CCA. BL node is slightly discharged (about 100mV)

and BLB node remains at 푉푑푑. Then, the SAON signal is activated to enable the sense

amplifier. This first operation is correctly acted as zb is correctly pulled down. At the end of

this 푟0 operation, node Data_out presents a logic ‘0’.

Then, pre-charge circuits are switched on. All the lines (BL, BLB, SA and SAB) are

therefore forced to 푉푑푑, normally implying node z to be set at logic ‘0’ and node zb to be set

at logic ‘1’. However, due to the presence of Df4, zb remains at logic ‘0’.

Dynamic faults in SRAM sense amplifiers

69

A second read operation is then performed with a 푟1 on CCB. BL node remains at 푉푑푑

and BLB node is discharged. Then, the sense amplifier is enabled by its SAON signal. SA

remains at 푉푑푑 whereas SAB is fully discharged. Thus, node z flips to a logic ‘1’. However,

due to Df4, node zb still remains at logic ‘0’. The data output circuitry is then in a memory

state (c.f. Table I.3). Data_out still provides a logic ‘0’ instead of a logic ‘1’.

I.3.4.3. March test solution

As previously shown, a d2cIRF2 may occur in presence of defects Df4 to Df9. Such a

faulty behavior are sensitized and observed with specific sequences of read operations. These

sequences are defined as follows:

 푟0 푟1 for defects belonging to group 1

 푟1 푟0 for defects belonging to group 2

where both operations have to be performed on two distinct core-cells sharing the same sense

amplifier.

As previously done for d2cIRF1 we can try to find less stringent detection sequences,

i.e. allow additional read or write operations between the two read operations require for

d2cIFR2 detection. Nevertheless, as defects impact pull up or pull down of z and zb nodes,

any read or write operations may mask the fault effect.

For a complete understanding, we have simulated the memory functioning in presence

of Df4. Waveforms in Figure I.30 were obtained for worst case conditions (process: slow,

voltage: 1.08V, temperature: -30°) with Df4 = 140kΩ. As shown in Table I.4, with these

conditions the memory is affected by a d2cIRF2 when we perform a 푟0 immediately followed

by a 푟1 operation. To confirm the fact two read operations must be applied sequentially, we

have simulated the memory functioning by applying the following sequence of operations:

푟0 on CCA, 푤1 on CCB and 푟1 on CCB

where CCA and CCB are two core-cells sharing the same sense amplifier and containing a

logic ‘0’.

Let us now detail the simulations presented in Figure I.30. First a 푟0 operation is applied

on CCA. BL node is discharged and BLB node remains at 푉푑푑. Then, the SAON signal is

activated to enable the sense amplifier. This first operation is correctly acted as zb is correctly

pulled down. Node Dout provides a logic ‘0’.

Test of dynamic faults in SRAMs

70

Then, pre-charge circuits are switched on. All the lines (BL, BLB, SA and SAB) are

therefore forced to 푉푑푑, implying z to be set at logic ‘0’ and zb to be set at logic ‘1’.

However, due to the presence of the defect the inter node (see Figure I.22) is not correctly pull

down. Consequently, zb remains at logic ‘0’.

Then, a write operation is performed on the second core-cell CCB. This operation is

correctly acted. However, during this time, node inter is enough discharged and reaches the

threshold voltage of 푉푑푑/2 implying that zb flips to logic ‘1’. Consequently, the fault effect

is masked.

Finally, a second read operation is applied on CCB which contains a logic ‘1’. The faulty

behavior of the sense amplifier is masked as node zb has reaches 푉푑푑 before the read

operation begins.

SAON

SA
SAB

z
zb

Dout
Doutb

SELBL

SCCB
SCCA

BL
BLB

zb is pulled up

r1
on CCB

Pre
Faulty behavior

masked

w1
on CCB

r0
on CCA

Pre

inter

Slow discharge of
node inter

Figure I.30 – Waveforms of < 0푟0, 0푤1푟1 > simulation (Df4)

Consequently, we have to find a March algorithm which contains two successive read

operation with opposite data value. The March iC- algorithm described in sub-section I.3.3.3

is able to detect such faulty behavior.

Dynamic faults in SRAM sense amplifiers

71

In fact, if we consider element M5 (see Figure I.28), the succession of operation applied

at different addresses is:

(푟0) (푟1) (푟0) (푟1) …

퐴푑푑1 퐴푑푑2 퐴푑푑3 퐴푑푑4 …

Two successive read operations have to be applied on the same sense amplifier. The

simplest way to do that is also the line after line or the column after column addressing order.

Let us first consider the column after column addressing order and the memory structure

presented in Figure I.21. CC00 is selected for a 푟0 operation. Then CC01 (the core-cell on the

next line) is selected for the 푟1 operation. The fault is therefore sensitized and observed by the

couple (푟0, 푟1). In the same way, with the line after line addressing order, the first targeted

core-cell is CC00 and the second is CC10 (the core-cell on the next column) in which we

perform 푟0 and 푟1 operations respectively.

Based on these statements, we can say that the March C- algorithm with a specific data

(alternated data value) and a specific addressing order (line after line or column after column)

is a suitable solution to detect all d2cIRF2 that may affect sense amplifiers of an SRAM.

Others solutions can also be found, especially for the addressing order, but are less

conventional compare to the line after line or column after column addressing orders.

I.3.5. Conclusions

In this chapter, we have analyzed and characterized the effects of resistive-open defects

that may occur in the sense amplifiers of SRAMs. We have shown that several resistive-open

defects may lead to new types of dynamic behaviors which have never been experienced in

the past. These faulty behaviors have been modeled as a d2cIRF1 and d2cIRF2. There are two

distinct ways to qualify this behavior:

 d2cIRF1: all read operations cannot be acted.

 d2cIRF2: only 푟0 or 푟1 operation cannot be acted depending on the defect

location.

Such fault models are a consequence of failures in the sense amplifier which prevent it

to perform any read operations (in case of type 1) or only a single type of read operation

(either 푟0 or 푟1 in case of type 2). We have performed electrical simulations to give a

complete understanding of such faulty behaviors.

Test of dynamic faults in SRAMs

72

The conclusion of this study is that the March iC- algorithm with a particular addressing

order (line after line or column after column) is able to detect all types of d2cIRFs.Table I.5

summarizes the ability of March iC- elements to detect d2cIRF1 and d2cIRF2, assuming that

the core-cell contents are initialized by a previous write. It is also important to notice that

these modifications do not change the ability of March iC- to detect the former targeted faults

(stuck-at, transition, coupling etc …).

 d2cIRF1 d2cIRF2

March iC-

element
M1 to M5 M5

Table I.5 – March iC- ability

Influence of threshold voltage deviations in SRAM core-cells

73

Chapter 4. Influence of threshold voltage deviations in SRAM core-

cells

Until recently, failure mechanisms were fairly simple. One gate was subject to a "hard

fault". For example, a speck of dust felt on a track causing a resistive-open or a short.

Nowadays, as the silicon industry moves towards the end of the technology roadmap,

controlling the manufacturing of scaled devices is becoming a great challenge. In VDSM

technology, global (inter-die) and local (intra-die) device parameter variations are expected

to be more and more significant [BOR03a]. These fluctuations are more pronounced in

minimum geometry transistors commonly used in area-constrained circuits such as memories,

especially core-cells which break layout rules.

A wafer may be subject to global variations; a gradient of dopant concentration may be

observed. In this case, all transistors are subject to the same kind of parametric deviation. On

the other hand, local variations, resulting from mismatches in parameters of similar

transistors (threshold voltage – 푉 , geometry – L/W, mobility, etc), are as large as

transistors use minimum geometry. These mismatches modify the strength of individual

transistors and thus may lead to new types of failure in memories.

Among the possible sources of deviation, also called mismatch, the intrinsic fluctuation

of 푉 , which is the main source of deviation due to random dopant effect [BHA01], has been

studied in [BOR03a]. In this study, the authors present a qualitative analysis of 푉 mismatch

impacts. They show that 푉 mismatches in an SRAM core-cell may induce a read or write

failure. This study does not provide manufacturing data on possible location of 푉 mismatch

in the core-cell. Moreover, there is no simulation result with different values of 푉

mismatches, and no analysis on PVT (Process, Voltage, Temperature) conditions.

Nevertheless, this study is of importance as it pinpoints new problems and opens new ways for

nanoscaled SRAM testing.

In this chapter, we consider threshold voltage (푉) variations in SRAM core-cells. For

internal reasons, these studies are done on a memory designed with Infineon 90nm

technology. We first provide an analysis of read and write operations to determine which

transistor of the core-cell will have an impact on the memory function if it is mismatched.

Then, a mismatch injection is performed and results show that the behavior of the core-cell is

impacted with more or less complex failure mechanisms. Identified fault models related to the

considered 푉 mismatches are Transition Faults (TF), Read Destructive Faults (RDF)

Test of dynamic faults in SRAMs

74

[VDG00] and dynamic Read Destructive Faults (dRDF) [ADA96, HAM02]. We show that the

process (P) and temperature (T) have a large impact on the resulting faulty behaviors due to

the 푉 mismatch injection.

The rest of the chapter is organized as follows. Section 1 presents the simulation flow

used for mismatch injection. Section 2 provides an analysis of read and write operations to

determine which transistors of the core-cell are candidates for 푉 mismatch injection.

Section 3 presents the simulation results obtained and gives the test requirements for an

effective mismatch detection. Finally, Section 4 concludes the chapter.

I.4.1. Simulation flow

In presence of parametric deviations, the characteristics of two neighbor transistors may

significantly change, following statistical distribution laws. Such deviations are called local

variations or transistor mismatches. Transistor currents are impacted by those fluctuations.

The following equation gives the classical simplified MOS current:

퐼 = × 푘 × × (푉 − 푉) (Eq. I.2)

where:

푉 = 푉 + 퐾 × (|푉 | + 2Φ − 2Φ)

푘 = 휇 × 퐶

The transistor drain-source current (퐼) is proportional to the mobility (푘) and also

depends on the threshold voltage (푉). Mobility mismatches affect 퐼 slope whereas

threshold voltage mismatches change the curve threshold, i.e. the higher the threshold voltage,

the lower the current.

In this study we consider only threshold voltage mismatches as they are the main

sources of deviation due to random dopant effect [BHA01]. This parameter follows a

Gaussian distribution and a maximum of 6 deviation (six times the standard deviation) is

generally considered in VDSM technologies.

Influence of threshold voltage deviations in SRAM core-cells

75

The impact of 푉 mismatches has been simulated with the following varying

parameters:

 Process corner: slow, typical, fast, fast n / slow p, slow n / fast p

 Supply voltage: 0.9V, 1.2V, 1.5V

 Temperature: -40°C, 27°C, 125°C

푉 mismatch varies from 0 up to |6|. The same variations were added either to one

single transistor or to a combination of transistors enabling a comparison between these

situations.

No Monte-Carlo simulations were run. The method applied in this study consists in

injecting mismatches to most sensitive transistors of the core-cell. Candidate transistors for

mismatch injection on the core-cell are extracted from the analysis of read and write

operations presented in the next Section.

I.4.2. Mismatch sensitivity during read/write operations

V mismatches may affect all transistors of a core-cell but, according to the performed

operation (read or write), only some of them are important. In order to determine which

transistor is candidate for 푉 mismatch injection, we present in this Section a complete

analysis of write and read operations.

For write operations, only 푉 mismatches that reduce the core-cell transistor

conductivity are considered. Let us consider the core-cell presented in Figure I.31 in which

the cell originally stores a logic '1'. Node S is at 푉푑푑 and node SB at 퐺푛푑. Remember that to

write a logic '0' (푤0) into this core-cell, BLB line remains at 푉푑푑, BL line is lowered to 퐺푛푑

and the cell is selected by applying 푉푑푑 on WL. Operating devices and current flows during

this 푤0 operation are illustrated in Figure I.31. A current flows from S to BL through Mtn3,

discharging Cs. As the voltage at node S decreases, Mtp1 starts to conduct. In the same way,

CSB is charged by the current flowing through Mtn4. The voltage at node SB increases,

involving the conduction of Mtn2. This write analysis shows that four transistors (Mtn3,

Mtn4, Mtp1 and Mtn2) are involved during the 푤0 operation. We can easily verify that Mtp2

and Mtn1 in addition to pass transistors are used for a 푤1 operation.

Test of dynamic faults in SRAMs

76

S SB

WL

Mtp1

Mtn1

Mtp2

Mtn2

Mtn3 Mtn4

CSB CS

BL BLB

VDD

0V
0V

VDD

Figure I.31 – Core-cell currents whose weakness is critical

for a 풘ퟎ operation

Waveforms of the different currents and voltage levels induced by the 푤0 operation are

reported in Figure I.32. These curves show that the voltage at node S reaches 푉푑푑/2 before

node SB. Thus, node S is controlling the 푤0 operation. Conversely, node SB will control the

푤1 operation. From this, we can say that 푉 mismatches will have an impact during a 푤0

operation if they affect Mtn3 and/or Mtp1 transistors (respectively Mtn4 and/or Mtp2

transistors for a 푤1).

0

VDD/2

WL

IPGB

IPGBL
 IPDBL

IPUBL

BL

BLB SB

S

Figure I.32 – Currents and voltages during a 풘ퟎ operation

In the same way, we analyze which transistors of the core-cell are involved during a

read operation. In this case, only transistors that influence the total current discharging the bit

line, but also the core-cell stability (ability to keep the stored data) are considered.

Influence of threshold voltage deviations in SRAM core-cells

77

Let us assume that the cell has stored a logic '0'. Operating devices and current flows

during this read operation are illustrated in Figure I.33. In this case, node S is at 퐺푛푑 and

node SB is at 푉푑푑. Before the read operation, BL and BLB lines are pre-charged at 푉푑푑.

When the word line is selected (WL signal being high), the two pass transistors Mtn3 and

Mtn4 are turned on and the pre-charge circuit is turned off, implying a 푉푑푑 floating level on

BL and BLB. As the potential of node SB and BLB are the same, no current flows and

transistors Mtp1 and Mtn4 will maintain the 푉푑푑 level at node SB. On the other side of the

core-cell, a current flows from BL through transistors Mtn3 and Mtn2, thus discharging the

equivalent capacitance CBL of the bit line initially charged at 푉푑푑.

S SB

WL

Mtp1

Mtn1

Mtp2

Mtn2

Mtn3 Mtn4

CSB CS

BL BLB

0V

VDD
VDD

VDD

Figure I.33 – Core-cell currents whose weakness is critical

for a 풓ퟎ operation

Waveforms of currents and voltages involved during a 푟0 operation are presented in

Figure I.34. At the end of the 푟0 operation, node BL is discharged. The differential voltage

between BL and BLB nodes (BL), is measured by the sense amplifier to provide a logic data

output. In this case, BL is negative and thus the sense amplifier will provide a logic '0'.

Test of dynamic faults in SRAMs

78

BL

IPGBL IPDBL

WL

S

SB

BL

BLB

Figure I.34 – Currents and voltages during a 풓ퟎ operation

This analysis demonstrates that 푉 mismatches on Mtn3 and/or Mtn2 transistors will

have an impact on the 푟0 operation (Mtn4 and/or Mtn1 transistors for a 푟1). In the next

Section, we show experimental data demonstrating the impact of 푉 mismatches on the

transistors.

I.4.3. Mismatch related fault models

The previous section has described write and read operation mechanisms. They are quite

complex, involving transistors of the core-cell which differ depending on the operation and

the data stored in the core-cell. From these analyses, we have performed a mismatch injection

in different locations of the core-cell as presented in Figure I.35. The goal here is to provide a

functional fault modeling of each mismatch configuration.

Influence of threshold voltage deviations in SRAM core-cells

79

S SB

WL

Mtp1

Mtn1

Mtp2

Mtn2

Mtn3 Mtn4

CSB CS

BL BLB

Vt mismatches
for a w0

operation

Vt mismatches
for a r0 operation

Figure I.35 – Considered 푽푻푯 mismatch locations for 풘ퟎ and 풓ퟎ operations

I.4.3.2. Result overview

Simulations were performed considering single or double mismatch locations with

identical 푉 deviations (up to 6). Moreover, these simulations were done under the most

constraining PVT conditions to extract the one that maximize the fault detection (i.e. the

minimum detected 푉 mismatch). Results are reported in Table I.6.

Mismatch
location

Fault
Model

Mismatch
size PVT

Mtn3 TF ~ 4 sf, 0.9V, -40°C

Mtn3 & Mtp1 TF ~ 4 sf, 0.9V, -40°C

Mtn3 RDF ~ 6 fs, 0.9V, 125°C

Mtn3 & Mtn2 RDF ~ 3 fs, 0.9V, 125°C

Mtn3 dRDF ~ 3.8 sf, 0.9V, -40°C

Table I.6 – Results summary

The first column gives the location of the 푉 mismatch (see Figure I.35) and the second

one indicates the type of fault model observed. The third column gives the minimum

mismatch value that sensitizes the fault and the last column gives the PVT conditions that

maximize the mismatch detection (i.e. worst case conditions).

Test of dynamic faults in SRAMs

80

The first result of these simulations is that PVT conditions that maximize the mismatch

detection are always at low voltage (0.9V). In fact, a 푉 variation of 100mV is

proportionally higher for a supply voltage of 0.9V than for a supply voltage of 1.5V (see

Eq. I.2). This first result shows that 푉 deviations have their main impact at low voltage

while hard defects, such as resistive-open defects in the core-cell, better manifest themselves

at high voltage [BOR03b].

As a second result on PVT conditions, it is important to notice that temperature corners

are the extreme ones (-40°C and +125°C). This phenomenon is explain by the fact that 푉

varies in a monotonously way with the temperature (linear relationship), it means 푉 is

strictly decreasing when the temperature increasing (see Eq. I.3). Thus, the extreme corners

maximize the detection of mismatches.

푉 (푇) = 푉 + 퐶푇퐸 × (푇 − 푇) (Eq. I.3)

⟹
푑푉 (푇)
푑푇 = − 퐶푇퐸 ≤ 0

For a test applied at room temperature (+27°C for example) the same faulty behaviors

can be obtained but associated with higher mismatch values.

Faults observed are TF (already defined), Read Destructive Faults - RDF (the cell loses

its content during a read operation) and dynamic Read Destructive Faults - dRDF (the cell is

not correctly written and loses its contents after one or several at-speed read operations). Each

fault is induced by a different combination of mismatches, sensitizing sequences and PVT

conditions.

As shown in Figure I.36 and Figure I.37, TFs occur when applying either a single or a

combination of mismatches.

Influence of threshold voltage deviations in SRAM core-cells

81

w0

S

SB

WL

Figure I.36 – Transition Fault (sf, 0.9V, -40°C – Mtn3)

For these simulations, a 푤0 is applied on a core-cell that initially contains a logic '1'. For

a 푉 mismatch higher than 4, a TF is observed in both cases, i.e. the write operation fails.

Worst case conditions are, slow n / fast p, low voltage and low temperature.

w0

S
SB

WL

Figure I.37 – Transition Fault
(sf, 0.9V, -40°C – Mtn3 & Mtp1)

RDFs are also observed for different combinations of 푉 mismatch. This time, a cell

that initially contains a logic '1' is written to logic '0'. Then a read operation is performed. As

can be seen in Figure I.38 and Figure I.39, the data is lost during the read operation when 푉

mismatch is higher than 6.

Test of dynamic faults in SRAMs

82

w0 r0

S

SB

WL

Figure I.38 – Read Destructive Fault
(fs, 0.9V, 125°C – Mtn3)

When a mismatch affects Mtn3, a RDF occurs only for a 6 deviation. When two

mismatches are considered on Mtn2 and Mtn3, a RDF is clearly observed for a 3 deviation.

Worst case conditions are: fast n / slow p, low voltage and high temperature.

w0 r0

S

SB

WL

Figure I.39 – Read Destructive Fault
(fs, 0.9V, 125°C – Mtn3 & Mtn2)

The last part of simulations performed shows that dynamic faults can also be observed,

especially dRDF. To highlight such a behavior, we have first to discuss about the sensitizing

sequence needed. A dRDF occurs when one or several read operations are performed at-speed

on a core-cell just after a write operation on the same core-cell. Then, if the core-cell is

defective, one of the read operations may induce a bit flipping in the core-cell. This faulty

Influence of threshold voltage deviations in SRAM core-cells

83

behavior is due to a non complete write, i.e. the write operation does not allow nodes S and

SB to stabilize at 퐺푛푑 and 푉푑푑 respectively in case of a 푤0 operation. A read operation

performed just after a non complete write makes the core-cell to possibly loose its content. So,

both write and read operations are involved in the occurrence of a dRDF. The common

transistor involved during these operations (푤0 and 푟0 in our case) is Mtn3. In our study, this

transistor is selected for a 푉 mismatch injection.

Figure I.40 shows a dRDF in which core-cell internal nodes (S and SB) are at an

intermediate value at the end of the 푤0 operation. This defective core-cell looses its content

during the second at-speed 푟0 operation for a 3.8 deviation of 푉 . The worst case

sensitization is the same as that found when TF occurs, i.e. slow n / fast p, 0.9V, low

temperature.

w0 r0 r0

S

SB

W L

Figure I.40 – dynamic Read Destructive Fault

(sf, 0.9V, -40°C – Mtn3)

Further simulations have been performed with lower deviations of 푉 . However, in

those cases, the flipping of the defective core-cell occurs after a higher number of successive

read operations. This phenomenon is illustrated in Figure I.41. It shows that for a deviation

higher than Border 2, a static fault is observed (a TF in our case). For lower deviation,

dynamic faults occur (between Border 1 and Border 2). Positions of Border 1 and Border 2

depend on PVT conditions. In addition, position of Border 1 also depends on the number of

read operations after the initial write operation. Finally, for deviations lower than Border 1,

the core-cell operates properly.

Test of dynamic faults in SRAMs

84

Dynamic
fault

domain

Fault
free

domain

Static
fault

domain

Border 1 Border 2

Figure I.41 – Fault type v.s. mismatch value

I.4.3.3. Test requirements

We have shown in the previous sub-section that a 푉 mismatch induces different faulty

behaviors which can be modeled by TF RDF and dRDF. Now, we have to analyze the test

requirements (algorithms and PVT conditions) needed to detect these fault models.

The selected test algorithm has to detect TF, RDF and dRDF. On one hand, the detection

of TF is simple as most of the March algorithms have the ability to detect them. On the other

hand, the detection of RDF and dRDF is more difficult as it requires a read (or multiple read)

after a write operation. This succession of operations does not occur in classical March tests.

Specific March, such as March RAW [ARS01] or March C- with specific addressing order

[DIL04b], can be used. These two algorithms have also the ability to detect TF.

The problem is much more severe with respect to PVT conditions. First, 푉

mismatches have their main impact at low voltage while hard defects, such as resistive-open

defects in the core-cell involving the same faulty behaviors, better manifest themselves at

high voltage [BOR03b]. In addition, we have shown in the previous Section that, depending

on the considered mismatch location, temperature and process have a large impact on the

resulting fault model; process slow n fast p and low temperature for TF and dRDF, process

fast n slow p and high temperature for RDF. These different PVT conditions make the test of

SRAM core-cells more difficult. In fact, it is not possible to ensure the fault-free behavior of

SRAM core-cells by applying a March algorithm in a unique PVT corner. This statement

opens an additional problematic for the test of nanoscaled SRAMs.

I.4.4. Conclusion

In this chapter, we have analyzed and characterized the effects of 푉 mismatches that

may occur in SRAM core-cells. We have first provided an analysis to determine which

Influence of threshold voltage deviations in SRAM core-cells

85

transistors of the core-cell may have an impact during read and write operations of the

memory if they are mismatched. Simulations performed with Infineon 90nm technology have

shown that static (TF and RDF) and dynamic (dRDF) faults are obtained as resulting faulty

behaviors of the 푉 mismatch injection. An important contribution of this study is also the

analysis of PVT conditions for an effective test.

Test of dynamic faults in SRAMs

86

Conclusion

This part has been dedicated to an exhaustive study on resistive-open defects affecting

SRAM write drivers and sense amplifiers as well as a study on local variations affecting the

core-cell functioning.

Previous studies shown that resistive-open defects in core-cells, pre-charge circuits and

address decoders lead to dynamic faults. In order to complete these studies, we have

demonstrated that such defects in the write driver can also be the cause of dynamic behavior.

Especially, some defects can cause a dynamic fault modeled as SWDF, some others lead to

another dynamic faults modeled named URWF or URDWF (depending on the defect size).

We also demonstrated that this kind of defect in the sense amplifier can also induce a faulty

behavior called dynamic 2-cell Incorrect Read Fault (type 1 and type 2). Finally, March test

targeting these dynamic faults have been developed. All these studies have been validated by

electrical simulations performed with a 65nm CMOS Infineon technology.

Afterwards, we have analyzed and characterized the effects of 푉 mismatches

impacting modules designed with minimum geometry transistors such as SRAM core-cells.

We have first provided an analysis to determine which transistors of the core-cell may have an

impact during read and write operations of the memory if they are mismatched. Simulations

have shown that static (TF and RDF) and dynamic (dRDF) faults are obtained as resulting

faulty behaviors of the 푉 mismatch injection. An important contribution of this study is also

the analysis of PVT conditions for an effective test. Actually, the PVT conditions that

maximize the mismatches detection are different from those that maximize the resistive-open

defects detection. Consequently, the test of memory cannot be acted in a unique PVT corner.

This study, realized in 90nm CMOS Infineon Technology (for internal reasons), opens the

problem of mismatch influences in nanoscaled SRAMs. Further investigations have to be

done in deeper technologies such as 65nm, 45nm, 32nm and 22nm for which the influence of

parameter deviation should be much more severe.

87

Part II: Diagnostic of SRAMs

Diagnostic of SRAMs

88

Introduction

Nowadays, the latest technologies present very high degree of integration allowing a

number of circuits per die much higher than in the past. These new technologies are also more

prone to defects, parasitic phenomena and manufacturing derives, which drastically reduce the

yield. For this reason, fault detection, diagnosis and defect localization are used in order to

repair defective memories thus improving SoC reliability and yield. In this part, we focus on

diagnosis techniques dedicated to SRAMs.

Usually, techniques allowing memory repair identify the type of malfunction and try to

find out its location as two separate phases [VDG98]. In order to reach good results in terms

of repair, the information on the fault location is more important than the information on the

nature of the fault itself. During memory diagnostics, a map of core-cells is made, with faulty

and fault-free cells. On this base, particular algorithms optimize the use of spare columns and

rows for the substitution of those containing the faulty cells. Conversely, when yield ramp up

is targeted, the diagnosis approaches mainly focus on the identification of the cause of the

failure as well as its location. In this way, layout and process optimizations are possible.

In this part, we consider two diagnosis methodologies. The first one is known as Design

For Diagnosis (DFD) and targets only specific memory blocks (core-cell, pre-charge circuitry,

write driver…). It consists in implementing extra hardware modules in the memory allowing

to check given nodes or functionalities, e.g. bit lines voltage levels, core-cell strength... Such a

technique suffers from an increase of the chip area. However, it provides essential and

accurate information about faulty sites of the memory and is useful to enhance manufacturing

process and/or design in the ramp up phase. In the literature, DFD modules are widely been

developed to monitor core-cell functionalities. However, peripheral circuits have never been

considered until now.

The second diagnosis approach does not target a specific block but instead takes a global

approach to the problem and targets the detection of FFM. Existing diagnostic methods, based

on a signature analysis [ABR90], generally resort to a fault dictionary and try to achieve the

highest Diagnosability Ratio (DR) for a given test algorithm [CHA89, YAR96, NIG00, LI01].

DR is defined as the ratio of the number of distinguishable fault types among the number of

total detectable fault types. However, signature-based diagnosis methods present two main

drawbacks. First, as they use a fault dictionary, the possible fault models affecting the

memory must be known before running the diagnosis procedure. Consequently, if a memory

89

is affected by a fault not considered in the fault dictionary, the diagnosis phase fails to provide

any result or may provide a wrong response. Secondly, most of the existing signature-based

solutions target only the diagnosis of static faults. Unfortunately, as seen in the first part of

this thesis, dynamic faults become a major concern in recent SRAMs technologies.

This part is organized as follow. A first chapter presents two DFD modules able to deal

with weak write drivers. The second chapter presents a new diagnosis approach that provides

an alternative to signature-based approaches.

Diagnostic of SRAMs

90

Chapter 1. Design For Diagnosis Solutions

This chapter presents two low cost DFD solutions for identifying weak or faulty write

drivers. They consist in verifying logic and analog conditions that guarantee the fault-free

behavior of the write driver. Both solutions allow a fast diagnosis (only three consecutive

write operations are needed to fully diagnose the write driver) and induce low area overhead

(about 0.5% for a 512x512 SRAM). Beside diagnosis, an additional interest of such solutions

is their usefulness during a post-silicon characterization process, where they can be used to

extract the main features of write drivers (logic and analog levels on bit lines).

This chapter is organized as follows: In the first Section, we expose a brief state-of-the-

art before explaining a current-based DFD solution in Section 2. Section 3 is dedicated to a

complete study on a voltage-based DFD solution. Finally, concluding remarks are provided

in the fourth Section.

II.1.1. State-of-the-art

A DFD solution consists in implementing an additional hardware module able to point

out specific memory functionalities. For example, cell stability is a major concern to evaluate

the SRAM design reliability. It determines the sensitivity of the memory to process variations

and operating conditions. So, monitoring such parameter presents a real relevance. Core-cells

with lower cell stability than typical case are known as weak cells. Many works have been

proposed in that way. These techniques are based on the fact that the state-restoring feedback

(i.e. the inverter loop) of a weak cell is weaker or absent and thus they are more susceptible to

write or read disturbs. All these techniques are divided in two categories, the single and

programmable detection threshold techniques. The most known single threshold technique is

called Weak Write Test Mode (WWTM) [MEI97]. Many implementation of such technique

have been proposed [WEI01, SCH04]. In addition of a non regulate ability of threshold

detection of such techniques, they present a non negligible extra area and some of them add

extra design in the core-cell array. The programmable detections are described in [PAV04,

PAV05, PAV06]. These techniques are based on the use of core-cells belonging to the same

core-cell under test in order to act the stress.

Design For Diagnosis Solutions

91

Another DFD technique is provided in [PIL01] where the authors target the detection of

strong resistive path through the path gates of core-cells. A targeted algorithm and a hardware

module are designed to detect such faulty core-cells.

Many efforts have been done on DFD solution targeting core-cells functionalities. On

the other hand, no works have been published on DFD solution for peripheral circuitry.

Nevertheless, even if around 80% of the silicon area of a memory is taken by the core-cell

array, which is hence more prone to defects than any other block, providing information on

peripheral circuitry can save considerable amount of time during the ramp up phase in case of

a malfunction coming from outside the core-cell array.

In the next section of this part, we propose two solutions providing information about

write driver strength.

II.1.2. Requirements for fault-free operation of a write driver

The fault-free operation of the SRAM write driver has already been described in the first

part of this thesis. Based on this description, we can enumerate the two important conditions

that are needed to guarantee the fault-free behavior of the write driver – a logic and an analog

conditions.

II.1.2.1. Logic condition

As shown previously, the write driver must act the pull down of one of the two bit lines.

The other bit line is maintained at 푉푑푑 during the write operation. From this statement, we

can extract a first condition for a fault-free operation of the write driver:

퐵퐿 ⊕퐵퐿퐵 = 1 (Eq. II.1)

If this equation is not satisfied during a write operation, then it means that both bit lines

present the same voltage level. In case of 푉푑푑, no write operation is performed. Conversely,

the two bit lines at 퐺푛푑 indicate that both 푤0 and 푤1 operations are performed

simultaneously.

This first condition allows performing a logical diagnosis of the write driver.

Nevertheless, it does not allow verifying the exact voltage level driven on the bit lines during

the write operation. Thus, an additional analog condition is needed to diagnose weak write

drivers.

Diagnostic of SRAMs

92

II.1.2.2. Analog condition

Voltage levels on bit lines during write operations are a major concern when embedded

memories are used for high safety applications (automotive, medical…). In fact, over the

lifetime of a product, memories are exposed to many phenomena (DC noise, coupling

effects…) which degrade their performances. For this reason, it is important to verify the

good voltage level of bit lines after manufacturing. A wrong level at this early stage of the

lifetime of the memory indicates a weakness of the write driver, which can be degraded over

the time and lead to erroneous write operations. So, in addition to the logic condition, an

analog condition has to be satisfied to guarantee the good voltage levels on the bit lines.

The write driver can be seen as a current source that has to discharge one bit line and to

maintain the other at 푉푑푑. During a fault-free operation (푤0) let us consider that it delivers a

current 퐼 for the discharge of bit line BL and 퐼 for bit line BLB. Thus, a weak write

driver delivers less current than 퐼 (resp. 퐼). Consequently, at the end of the write

operation, the level of the bit line that has to be discharged is higher than 퐺푛푑 (resp. the level

of the bit line that has to be maintained at 푉푑푑 is less than 푉푑푑). This can be view on

waveforms in Figure I.1 where a 푤0 operation is performed by a fault-free write driver (top of

Figure I.1) and a weak write driver (bottom of Figure I.1).

S

BLB

SB

S
SB

BL
BLB

WE

w0

BL

Fault-free w
rite driver W

eak w
rite driver

VBLB = Vdd = 1.2V
VBL = 0V

The w0 operation is
correctly performed

VBLB = Vdd = 1.2V
VBL = 0.12V (10% of Vdd)

The w0 operation
remains correct

Figure II.1 – Fault-free and weak write driver operations

Design For Diagnosis Solutions

93

From this statement, we can extract two analog conditions for a fault-free operation in

case of a 푤0 operation. Note that the analog conditions for a 푤1 operation can be derived in

the same way.

퐼 ≥ 훼 ∙ 퐼 with 0 ≤ 훼 ≤ 1 (Eq. II.2.a)

⇒ 푉 ≤ 훽 ∙ 푉푑푑 with 0 ≤ 훽 ≤ 1 (Eq. II.2.a bis)

and

퐼 ≥ 훼 ∙ 퐼 with 0 ≤ 훼 ≤ 1 (Eq. II.2.b)

⇒ 푉 ≥ 훽 ∙ 푉푑푑 with 0 ≤ 훽 ≤ 1 (Eq. II.2.b bis)

where 훼 and 훼 represent the strength of the write driver. Parameters 훽 and 훽 are derived

from the 훼 parameters and represent the level of charge and discharge of the bit lines. An

ideal write driver will be defined by Eq. II.2.a and Eq. II.2.b with 훼 = 1 and 훼 = 1 implying

훽 = 0 (푉 = 0V) and 훽 = 1 (푉 = 푉푑푑).

Parameters have to be selected depending on the memory technology and desired

reliability level. In our case, we have considered a 65nm SRAM technology and we have

chosen parameters as follows:

 훼 insuring 푉 ≤ 0.1 ∙ 푉푑푑

 2 insuring 푉 ≥ 0.7 ∙ 푉푑푑

Consequently, the write driver will be considered as faulty if it cannot discharged BL at

a voltage lower than 10% of 푉푑푑 and maintain BLB at a voltage level higher than 70% of

푉푑푑.

II.1.3. Description of the current-based DFD solution

The proposed DFD solution consists in adding a hardware module to verify both logic

and analog conditions presented in the previous section. Note that we only present how to

diagnose a weak or wrong 푤0 operation. The study of the 푤1 operation can be derived in a

similar way.

II.1.3.1. Hardware diagnosis solution for the analog condition

The analog condition consists in verifying if the write driver delivers enough current in

the bit lines. For a 푤0 operation, the bit line (BL) must be discharged at more than 훽 ∙ 푉푑푑

by the current passing through transistor Mtn1. Respectively, BLB must be maintained at

Diagnostic of SRAMs

94

훽 ∙ 푉푑푑 by the current passing through transistor Mtp2. A straightforward solution consists

in sensing the resulting voltage levels on bit lines by using logic gates designed to have the

required threshold voltage. However, such a solution is unpractical for two raisons:

 the difficulty to design gates with very low (0.1V) or very high threshold

voltages

 the fact that we must sense two different voltages (훽 ∙ 푉푑푑 and 훽 ∙ 푉푑푑)

on each bit line to diagnose weak or wrong 푤0 and 푤1 operations.

Consequently, in order to use simple CMOS gates to sense bit line voltage levels, we

propose to normalize the pass/fail diagnosis threshold voltage on bit lines at 푉푑푑/2 (instead

of 10% and 70% of 푉푑푑). This is done by adding two transistors (Mtptest and Mtntest)

producing a resistive divider bridge and hence modulating the bit line voltage levels. This

principle is presented in Figure II.1.

VBL

Vdd

RMtptest

Vdd

Mtptest

Mtn1 RMtn1
VBL

VBLB

Vdd

RMtp2

Vdd

Mtp2

Mtntest RMtntest
VBLB

a)

b)

Figure II.1 – Principle of the DFD solution
a) for the low level and b) for the high level

In a stable state, transistors Mtptest and Mtn1 (resp. Mtntest and Mtp2) can be seen as

their equivalent resistances inducing the resistive divider bridge. The strength of Mtptest

(resp. Mtntest) is chosen in order to have the following diagnosis conditions:

 if 푉 < ⇒ the write driver satisfies the analog condition.

 if 푉 > ⇒ the write driver does not satisfy the analog condition.

To be more precise on the sizing of transistors Mtptest and Mtntest, let us consider

Figure II.2. It represents 퐼 as a function of 푉 voltage levels of Mtptest and Mtn1

transistors.

Design For Diagnosis Solutions

95

Mtptest

Vdd Vdd
2

Mtn1

VDS

IDS
Stable functioning point

of a fault-free write

Weak or faulty
write driver

Fault-free area
VBL < 1 Vdd

Faulty area
VBL > 1 Vdd

Figure II.2 – Principle of the diagnosis solution

The hardware implementation of such a principle is presented in Figure II.3. It is

composed of two parts; the analog structure and the data processing providing the diagnosis

result.

The analog structure embeds the two transistors Mtptest and Mtntest plus four

transmission gates (MtnpgBL, MtnpgBLB, MtppgBL and MtppgBLB) and two inverters used

to isolate and configure the diagnosis module. Two signals (W0D and W1D active at low

level) control the configuration of the analog structure that depends on the write operation

type (푤0 or 푤1).

At the end of the write operation, the bit line level reflects the strength of the write

driver. The analog structure is designed in order to obtain less than 푉푑푑/2 on BL and more

than 푉푑푑/2 on BLB for a fault-free 푤0 operation. The data processing part allows translating

these analog levels into a digital signal. Two inverters are used to amplify the signals and a

XOR gate is used to provide the diagnosis results. Node S must be at logic ‘1’ during the

write operation in case of a write driver satisfying the analog conditions.

Diagnostic of SRAMs

96

Vdd

BL Mtp1

Mtn1

Vdd

BLB Mtp2

Mtn2

Driver

AW0 AW1

Vdd

W0 W1

S

MtppgBL MtppgBLB

MtnpgBL MtnpgBLB

Mtptest

Mtntest

Inv1 Inv2

Analog structure

Data processing

OUT_ OUT_B

CBL CBLB

Figure II.3 – Hardware implementation of the diagnosis module

Waveforms in Figure II.4 illustrate the functioning of the proposed structure. Two

simulations are superposed; a fault-free write driver simulation (continuous lines) and a weak

write driver simulation (dotted lines).

At the beginning of the simulation, BL and BLB are pre-charged at 푉푑푑. Then a 푤0

operation is performed, leading to AW0 = 1 and AW1 = 0. The diagnosis module is activated

with W0D = 0 and W1D = 1. Then, BL node is discharged and reaches a level lower than

푉푑푑/2 in case of a fault-free write driver. In case of a weak write driver, as transistor Mtn1

has not enough strength to discharge the bit line, 푉 remains higher than 푉푑푑/2. As

diagnosis result, node S provides a logic ‘1’ in case of a fault-free write driver and a logic ‘0’

for a weak write driver.

Design For Diagnosis Solutions

97

AW0 W0
D

BL

OUT_BL

S

Vdd/2

OUT_BLB

Vdd/2 BLB

W1
D

AW1

Weak write driver

Fault-free write driver
w0

Figure II.4 – Diagnosis module functioning

Although efficient, such a structure is only able to verify if one bit line has a level lower

than 푉푑푑/2 and the other has a level higher than 푉푑푑/2, irrespective of the type of write

operations. Additional logic must therefore be added to distinguish between 푤1 and 푤0

operations as presented in the next sub-section.

II.1.3.2. Hardware diagnosis solution for the logic condition

Based on the previous comment, we must adapt the logic condition (see Eq. II.1) so that

it can distinguish between 푤0 and 푤1 logic levels on bit lines. The solution we propose

consists in comparing the bit line logic levels with the data to be written (node DataIn). The

new logic condition becomes:

(퐵퐿 ⊕퐷푎푡푎퐼푛) ∙ (퐵퐿퐵 ⊕퐷푎푡푎퐼푛) = 1 (Eq. II.3)

It results on some modifications in the initial hardware implementation presented in

Figure II.4, especially on the data processing part as shown in Figure II.5.

 S

Inv1 Inv2

DataIn

BL BLB

OUT_BL OUT_BLB

Figure II.5 – Data processing part of the diagnosis module

Diagnostic of SRAMs

98

Waveforms in Figure II.6 show the simulation results of a faulty write driver which is

not detectable with the initial data processing module. This faulty write driver always

performs 푤0 operations even if it is configured to perform a 푤1 operation.

AW0 W0D

w0

AW1 W1D

Vdd/

OUT_BL
OUT_BLB

BL
BLB

w1
S = 0
The write driver is faulty

DataIn

S

Figure II.6 – Simulation results of a faulty write driver

In Figure II.6, a 푤0 operation is first performed. BL becomes lower than 푉푑푑/2 while

BLB remains higher than 푉푑푑/2. Node S is at logic ‘1’ indicating that the write driver is

fault-free. Then, the write driver is configured to perform a 푤1 operation, i.e. node DataIn is

set to a logic ‘1’. As the driver can always perform 푤0 operations, node AW1 remains at

logic ‘0’ while AW0 = 1. As can be seen in Figure II.6, BL is lower than 푉푑푑/2 and BLB

remains higher than 푉푑푑/2. In such case, the initial data processing part (see Figure II.3)

would provide a logic ‘1’ on node S indicating a fault-free write driver. With modifications

presented in Figure II.5, node S provides a logic ‘0’ that corresponds to a faulty write driver.

The DFD solution is effective and represents less than 0.5% of area overhead for a

512x512 SRAM.

II.1.3.3. Diagnosis sequence

The proposed diagnosis module is able to verify the logic (Eq. II.3) and analog

(Eq. II.2a and Eq. II.2b) conditions. Obviously, a 푤0 and 푤1 operations are needed to

Design For Diagnosis Solutions

99

diagnose the write driver. In this case, only defects involving a static behavior will be

diagnosed.

As mentioned in many published studies, defects in VDSM technology may also induce

dynamic behaviors. Resulting fault models are dynamic faults [VDG00, ARS01, HAM03] as

those that may affect the write driver (see previous part on test of dynamic faults in write

drivers). In this study it is shown that two successive opposite write operations must be

performed to detect dynamic fault that may affect the write driver. Consequently, the

diagnosis sequence able to deal with static and dynamic faulty behaviors as well is the

following:

푤푥 푤푥̅ 푤푥

So, only three operations are needed to fully identify a faulty or weak write driver.

Reading the data on node S provides the required information on the correctness of the write

drivers.

II.1.4. Description of the voltage-based DFD solution

In the previous section, we have defined equations Eq. II.2.a and Eq II.2.b and translate

them into a design for diagnosis solution. Now, we consider Eq. II.2.a bis and Eq. II.2.b bis.

Parameters make the proposed solution tunable as the user can adapt them depending on the

memory technology and the desired reliability level. As done for the previous DFD solution,

we consider a 65nm SRAM technology and we have chosen parameters as follows:

 = 0.1

 = 0.7

Consequently, the write driver will be considered as faulty (“too much” weak) if it

cannot discharged BL at a voltage lower than 10% of 푉푑푑 and maintain BLB at a voltage

level higher than 70% of 푉푑푑.

These logic and analog conditions can be translated into a DFD solution for SRAM

write drivers as shown in the following section.

The proposed DFD solution accurately determines the analog levels on both bit lines

during write operations. In the following sub-sections we first briefly describe the principle of

the proposed solution and then, we provide the complete DFD structure and the corresponding

diagnosis sequence.

Diagnostic of SRAMs

100

II.1.4.1. DFD principle

As shown in Section II.1.2, the analog condition consists in verifying the final voltage

level on both bit lines. A straightforward solution should consist in implementing a

differential amplifier with a reference voltage connected to an input as presented in

Figure II.7.

 Vin
S

Vref

Figure II.7 – DFD principle

In the literature, different architectures are proposed to implement a differential

amplifier and a voltage source. Each of them has its own specificities (area, accuracy,

robustness, response time...). The selection depends on the application requirements.

The next sub-sections are dedicated to the description and implementation of the

differential amplifier and the voltage source.

II.1.4.2. Implementation of the differential amplifier

The differential amplifier has to translate a weak differential voltage into a full swing

differential voltage as soon as a diagnosis launch signal is activated. The resulting voltage

level signal has to be saved until the end of the diagnosis phase. The amplification must

therefore be instantaneous and not linear as performed with operational amplifiers for

example. Consequently, such a requirement allows orienting our choice toward the sense

amplifier already presented in the first part of the thesis (see Figure I.22 on part I).

As previously explain, such a sense amplifier is already used in SRAM to perform read

operations. It has to translate a weak differential voltage between both bit lines into a full

swing differential signal transmitted as a logic output data. So, a first question should be: in

order to save area, why not reusing the existing sense amplifier for the diagnosis purpose?

Reusing this part of the memory requires many modifications on the I/O structure as the

sense amplifier and the write driver are strongly correlated in a SRAM as can be seen in

Figure II.8. In order to make the existing sense amplifier able to perform the diagnosis task,

i.e. to sense the voltage levels on bit lines, we must add circuitry as shown in gray in

Figure II.8. First, two voltage sources (푉 and 푉) are added on one input of the sense

amplifier. Note that these voltage sources must be isolated from the sense amplifier during the

Design For Diagnosis Solutions

101

normal functioning mode by using pass gates. Selection of one of them depends on which

level (high or low) we have to diagnose. In addition, each output of the write driver (WD and

WDB) must be compared to the selected reference voltage source. Direct paths must be

implemented depending on which write operation (푤0 or 푤1) has to be diagnosed.

Consequently, with such a principle, we can only diagnose one level at a time as there is only

one sense amplifier able to compare one reference voltage source with one write driver

output. Beside this additional circuitry, memory control signals must be modified in order to

allow disabling the multiplexer controlled by the SEL signal and then isolate the sense

amplifier from the memory.

All these modifications are difficult to implement as:

 they impact memory control signals,

 they impact write paths and

 they do not allow to diagnose low and high levels at the same time as only one

sense amplifier is used.

Driver

DataIn

Pre charge
Pre_WD

CC

WL

SEL

Pre charge
Pre_SA

Sense

VREFL

BLB BL

DataOut

WDB WD SAB SA

VREFH

Figure II.8 – SRAM I/O circuitry

Consequently, a better solution consists in designing a DFD module that does not

modify any control signal or write path and enable the diagnosis of both low and high levels

at the same time. It can easily be realized with two additional sense amplifiers dedicated to a

diagnosis purpose and connected to each write driver outputs (WD and WDB). Figure II.9

shows the resulting implementation. The connections between the write driver outputs and the

sense amplifiers (SAL and SAH) are performed by N-type transmission gates (MtnpgWD and

Diagnostic of SRAMs

102

MtnpgWDB) for diagnosing low level weak signals and by P-type transmission gates

(MtppgWD and MtppgWDB) for diagnosing high level weak signals. These path gates are

controlled by W0S and W1S signals which allow determining if we have to diagnose a 푤0 or

a 푤1 operation.

VREFL VREFH

WDB WD

W1S W0S

W1S W0S

SAL SAH

VLOW
VHIGH

MtnpgWDB
MtnpgWD

MtppgWDB
MtppgWD

S

DIAG DIAG

Figure II.9 – Hardware implementation of the DFD solution

Each sense amplifier receives the voltage level of the write driver (WD or WDB) on one

input and a reference voltage (푉 = 10% 푉푑푑 and 푉 = 70% 푉푑푑) on the other. The

DIAG signal allows activating the sense amplifiers during the diagnosis phase. Levels 푉

and 푉 are the resulting amplification provided by each sense amplifier. These signals

verify the analog condition.

The final diagnosis result (S) is a function (NOR gates) of both outputs 푉 and 푉

levels in order to verify the logic condition. Table II.1 provides the truth table of the structure.

A fault-free behavior is observed (S = 1) if WD is below 10% of 푉푑푑, i.e. final 푉 level is

low, and WDB is above 70% of 푉푑푑, i.e. final 푉 level is high (gray line on Table II.1) in

case of a 푤0 operation. Consequently, such a DFD solution allows the diagnosis of low and

high levels at the same time as two sense amplifiers and two reference voltage levels are

embedded in the structure.

VLOW VHIGH S

0 0 0

1 0 0

0 1 1

1 1 0

Table II.1 – Truth table of the DFD module

Design For Diagnosis Solutions

103

Remark: For the sake of clarity, we have considered that only one bit line is connected to

one I/O circuitry (and hence only one write driver). Actually, more than one bit line (at least

four) is connected to the same I/O circuitry. This means that each DFD module will be shared

by several bit lines, thus decreasing the final area overhead (about 0.5% of area overhead for

a 512x512 SRAM).

Waveforms in Figure II.10.a and Figure II.10.b show the simulation results of the

proposed DFD module for a fault-free and a weak write driver respectively. On both

simulations, a 푤0 operation is performed. WD node is pulling down correctly in case of a

fault-free write driver (Figure II.10.a). In Figure II.10.b, node WD does not reach 퐺푛푑 as the

write driver is weak. Consequently, when the DFD module is activated (DIAG = 1) two

scenarios are observed:

In case of a fault-free write driver (Figure II.10.a), 푉 < 푉 and 푉 > 푉

thus implying 푉 = 0 and 푉 = 1. Output S of the DFD module provides a logic ‘1’

meaning that the write driver is fault-free.

In case of a weak write driver (Figure II.10.b), 푉 > 푉 and 푉 > 푉 thus

implying 푉 = 1 and 푉 = 1. Output S of the DFD module provides a logic ‘0’ meaning

that the write driver is faulty.

Diagnostic of SRAMs

104

AW0
AW1

WE
DIAG

VLOW
VREF

WD
WDB

VHIG

VREF

S

AW0
AW1

WE
DIAG

VLOW
VREF

WD
WDB

VHIGH
VREF

S

w0

S = 1
The write driver
is fault free

DFD module
activation

VLOW = 0
VHIGH = 1

w0

S = 0
The write driver
is faulty

DFD module
activation

VLOW = 1
VHIGH = 1

The driver is weak as
WD does not reach 0V

a)

b)

Figure II.10 – DFD module functioning for
a) a fault-free and b) a weak write driver

II.1.4.3. Diagnosis sequence

The proposed diagnosis module is able to verify the logic (Eq. II.3) and analog

(Eq. II.2.a bis and Eq. II.2.b bis) conditions. Obviously, a 푤0 and a 푤1 operations are needed

to diagnose the write driver. In this case, only defects involving a static behavior will be

diagnosed.

Design For Diagnosis Solutions

105

As shown for the current-based solution, the diagnosis sequence able to deal with static

and dynamic faulty behaviors as well is the following:

푤푥 푤푥̅ 푤푥

So, only three operations are needed to fully diagnose a wrong or weak write driver.

II.1.5. Conclusions

In this chapter we have proposed two low cost DFD solutions for SRAM write drivers.

They allow to identify wrong or weak write drivers by verifying logic and analog conditions

that guarantee the write driver fault-free behavior. Moreover, they allow a fast diagnosis (only

three write operations are needed) and induce a low area overhead (about 0.5% for a 512x512

SRAM).

The first solution, based on a current compensation, is simply dedicated to diagnosis as

it allows to track weak write drivers in a pass/fail way according to a single threshold. In other

words, it is not possible to perform any characterization purpose with such solution as the

threshold detection is fixed by the design of the DFD module. In addition to diagnosis

abilities, the second solution, using voltage sources and sense amplifiers, can be useful for

write drivers characterization. Actually, voltage sources can be externally controlled by an

Automatic Test Equipment (ATE) allowing the ability to monitor the voltage source and

apply many different threshold voltages. Consequently, according to the targeted application,

the user has to choose the most appropriate diagnosis solution.

Diagnostic of SRAMs

106

Chapter 2. Software-based diagnosis solution

The usual software-based techniques for memory diagnosis are mainly based on

signature analysis. They consist in creating a fault dictionary that is used to determine the

correspondence between the signature and the fault models affecting the memory. The

effectiveness of such diagnosis methods is therefore strictly related to the fault dictionary

accuracy. To our knowledge, most of existing signature-based diagnosis approaches targets

static faults only. In this chapter, we present a new diagnosis approach that represents an

alternative to signature-based approaches. This new diagnosis technique, named history-

based diagnosis, makes use of the effect-cause paradigm already developed for logic design

diagnosis. It consists in creating a database containing the history of operations (read and

write) performed on a faulty memory core-cell. This information is crucial to track the root

cause of the observed faulty behavior and it can be used to generate the set of possible FPs

representing the set of suspected faults. This new diagnosis method is able to identify static as

well as dynamic faults. Although applied to SRAMs, it can be effective also for other memory

types such as DRAMs.

This chapter is organized as follows: A state-of-the-art is first provided where we

present basic signature-based diagnosis solutions, their functioning and drawbacks. The

second Section presents an extension of these techniques able to consider not only static

faults, but dynamic faults as well. In the third Section, our new history-based diagnosis is

described. Principle, examples and results are provided. Finally, perspectives and conclusion

are given in the last section.

II.2.1. State-of-the-art: signature-based diagnosis

Existing diagnostic methods are generally based on the cause-effect principle. In this

section we propose to explain that, and then show its main drawbacks. A typical cause-effect

diagnosis method is depicted in Figure II.11.

Software-based diagnosis solution

107

[

Test
Algorithm

Syndromes

Set of
Fault Models

Fault
Dictionary

Diagnosis
Response

Choice of
the algorithm

Test
Implementation

Figure II.11 – A cause-effect diagnosis method

Classical diagnostic techniques for memories are based on signatures analysis. The

signature, also called syndrome, is composed of a set of read operations included in the

considered March test. Each signature, representing a set of possible fault models affecting

the memory, is collected in a dictionary.

As mentioned above, the quality of a diagnosis is given by the Diagnosability Ratio

(DR), defined as the ratio between the number of distinguishable fault types and the number

of total detectable fault types. Since the fault dictionary is based on a given March test, the

DR is strictly related to:

 The set of fault models covered by the implemented March test.

 The number of read operations operated by the implemented March test.

To illustrate the signature-based diagnosis principle, let us consider the well-known

March C-, whose structure is shown again in Figure II.12.

↕ (푤0) ↑ (푟0,푤1) ↑ (푟1,푤0) ↓ (푟0,푤1) ↓ (푟1,푤0) ↕ (푟0)

Figure II.12 – March C- algorithm

For a given test algorithm, the fault dictionary can be generated by listing the fault

models and their corresponding syndromes. For example, the fault dictionary, limited to

stuck-at (SAF) and transition (TF) faults, for March C-, is given in Table II.2 [LI01].

Diagnostic of SRAMs

108

Fault model R0 R1 R2 R3 R4

SAF0 0 1 0 1 0

SAF1 1 0 1 0 1

TF1 0 1 0 1 0

TF0 0 0 1 0 1

Table II.2 – Partial fault dictionary related to March C-

In Table II.2, Ri = 0 (1) means that the ith read operation of the test algorithm has

returned a correct (faulty) value for a specific memory core-cell. For example, a SAF0

corresponds to the failure of all 푟1 operations. Consequently, the March syndrome for SAF0

is (01010), as presented in Table II.2. It is important to mention that the signature does not

depend on the faulty memory core-cell (i.e., each faulty cell affected by a SAF0 has the same

signature). Note that this fault dictionary can be extended to the whole set of fault models

detected by March C-. Consequently, faulty test responses collected during March test

application are used as pointer in the fault dictionary to provide the list of suspected faults.

Based on this principle, most of existing studies on memory fault diagnosis target static

faults such as SAF, TF and CF [APP06, VAR06, HAR07]. These studies propose the

extension of the considered March test by the addition of extra read operations, in order to

increase the signature fields and therefore improve the DR. The first drawback of such

techniques is that the increased complexity of March tests, e.g. the March DSS depicted in

Figure II.13 of a 46N complexity in [HAR07], can be excessive to be used for industrial

purpose. In addition, these solutions are most of the time unable to distinguish between all

faults (or all fault models) and hence do not allow to determine which memory component is

defective.

On the other hand, dynamic faults have been considered for diagnosis purpose in the

literature only in [THA6], where the authors focus on dynamic CFs and extend the syndrome

using the written data as field. Consequently, there is a clear need of new diagnosis solutions

that consider both static and dynamic faults.

Software-based diagnosis solution

109

{↑ (푤0) ↑ (푟0, 푟0,푤0, 푟0,푤1) ↑ (푟1,푤1, 푟1,푤0)

 ↓ (푟0,푤0, 푟0,푤1) ↓ (푟1,푤1, 푟1,푤0,푤0, 푟0)

 ↓ (푟0,푤0, 푟0) ↓ (푟0,푤1, 푟1) ↓ (푟1,푤1)

 ↑ (푟1,푤0, 푟0) ↑ (푟0,푤1, 푟1) ↑ (푟1,푤0)

 ↓ (푟0,푤0) ↑ (푟0,푤1) ↓ (푟1,푤1, 푟1)

 ↓ (푟1,푤0) ↑ (푟0) }

Figure II.13 – March DSS

II.2.2. Signature extension for dynamic fault diagnosis

In this Section, we introduce an extension of the signature technique, by adding new

fields in the syndrome, to make it able to deal with dynamic faults as well. This extension is

made possible by using information on the addressing sequence during the March test

execution. The addressing order information has been demonstrated to be important in the

detection of dynamic faults in SRAMs as well as the data background [DIL04a] that we

intend to consider here. The proposed approach allows to diagnose dynamic faults, to

distinguish between static and dynamic faults, and to localize the related failure in the

memory. The additional information introduced in the signature is taken from the algorithm

itself, thus it does not increase its complexity. Here, we illustrate the proposed signature-

based diagnosis approach by considering as case study the dynamic fault Un-Restored Write

fault (URWF), affecting write driver and pre-charge circuit of SRAMs.

II.2.2.1. Signature-based dynamic fault diagnosis

The proposed approach is still based on the classic signature methodology, but it reaches

a high DR without raising the March test (MT) complexity, i.e. without adding additional read

operations in the MT. For this purpose, we expand the number of the signature fields by

adding information related to the address sequence used during the algorithm execution.

Diagnostic of SRAMs

110

Considering all the fields in the signature, the information required for the diagnosis is

the following:

 The tester report: faulty cell addresses.

 The executed MT.

 The list of fault models covered by the executed MT.

 The addressing sequence adopted during the MT execution.

 The SRAM architecture providing information about the core-cell array

structure from the logic point of view.

In order to achieve a more efficient diagnosis, we now improve the signature-based

diagnosis by introducing information extracted from the addressing order adopted during the

MT execution and the SRAM architecture. For an easy understanding of our proposition, we

consider the dynamic fault called Un-Restored Write Fault (URWF) as case study. The

URWF can be due to different electric causes such as resistive-open defects in the write driver

(see Part I) or in the pre-charge circuit [DIL05b] of SRAMs. The common effect in both cases

is that the final voltage level of bit lines is erroneous at the end of the pre-charge phase, and

the following read operation fails.

Figure II.14 depicts a simplified scheme of an SRAM composed by two 4x4 blocks.

Each block presents its own I/O circuitry that is shared by four columns. As presented in

Part I, the URWF resulting from a resistive-open defect in the write driver requires the

following sequence of operations to be detected:

푤푥 푟푥̅

Both operations have to be performed on two distinct core-cells that belong to the same

I/O circuitry (see Figure II.14).

When an URWF is due to a resistive-open defect in the pre-charge circuit, the

sensitization sequence is the same than that described above, but in this case, both operations

have to be performed on two distinct core-cells belonging to the same column.

Software-based diagnosis solution

111

I/O 1 I/O 2

Data In/Out

PRE

CC20

CC30

PRE

CC21

CC31

PRE

CC22

CC32

PRE

CC23

CC33

PRE

CC24

CC34

PRE

CC25

CC35

PRE

CC26

CC36

PRE

CC27

CC37

CC00

CC10

CC01

CC11

CC02

CC12

CC03

CC13

CC04

CC14

CC05

CC15

CC06

CC16

CC07

CC17

Figure II.14 – A two blocks SRAM architecture

Among March test algorithms, we have seen that March C- is able to detect both types

of URWF if it is executed with the specific addressing order ‘column after column’.

Considering the memory architecture shown in Figure II.14, we can determine the whole

set of possible addressing situations:

 Adi is the address of the currently accessed cell and during a read at this

address, a fault is detected.

 Adi-1 is the address of the cell previously accessed with respect to Adi

 Adi+1 is the address of the next cell to be accessed with respect to Adi .

Considering three consecutive address locations (Adi-1, Adi and Adi+1) during test

execution, the possible combinations are the following ones:

 Adi-1 belongs (or not) to the same I/O circuitry with respect to Adi.

 Adi-1 belongs (or not) to the same column with respect to Adi.

 Adi+1 belongs (or not) to the same I/O circuitry with respect to Adi.

 Adi+1 belongs (or not) to the same column with respect to Adi.

Combinations described above are summarized in Figure II.15. On the left side, the list

of the different addressing configurations concerning the previous accessed cell Adi-1 is

presented. The next accessed core-cell Adi+1 is considered on the right part of the scheme.

Diagnostic of SRAMs

112

 1
Ad i-1I/Oi
Ad i-1Ci

Ad i-1I/Oi
Ad i-1Ci

Ad i-1I/Oi
Ad i-1Ci

Ad i+1I/Oi
Ad i+1Ci

Ad i+1 I/Oi
Ad i+1Ci

Ad i+1I/Oi
Ad i+1Ci

2
3
4

5

6
7

8

Figure II.15 – Possible address sequence during test execution for URWF detection,

considering the memory architecture

For URWF detection, the sensitization sequence has to be applied at least on two

distinct core-cells belonging to the same I/O circuitry (in case of write driver failure) or to the

same column (in case of a faulty pre-charge circuit). Moreover, we consider not only the

previous accessed core-cell but also the next accessed core-cell because most of March

algorithms have up (↑) and down (↓) addressing order. Consequently, the next accessed core-

cell in the up (↑) addressing order is the previous accessed core-cell during the down (↓)

addressing order, and vice versa.

An URWF can be sensitized when two core-cells are accessed with any addressing order

described in Figure II.15. The knowledge of the addressing sequence allows to deduce the

following important information:

1. It allows to determine the faulty memory element, i.e. pre-charge circuit or

write driver.

2. It allows to determine the nature of the observed fault, i.e. static or dynamic.

Let us consider the first point ‘1.’. In accordance with the possible addressing

configurations presented in Figure II.15, four cases are possible:

 The configuration allows detecting URWFs caused by malfunction in a write

driver.

 The configuration allows detecting URWFs caused by malfunction in a pre-

charge circuit.

 The configuration allows detecting URWFs caused by malfunction of both

pre-charge circuit and write driver but it cannot provide the failure

localization.

Software-based diagnosis solution

113

 The configuration allows detecting URWFs caused by malfunction in both

pre-charge circuit and write driver but also provides the failure localization.

In Table II.3, we list all possible extended signatures obtained with the application of

the March C- algorithm (c.f. in Figure II.14) and leading to URWFs detection.

Fault
model

Faulty
element

CONF R0 R1 R2 R3 R4 Ad i-1 Ad i+1

U
R

W
F

WD 1 1 0 1 0 0 10 10

WD 2a 1 0 1 0 0 10 11

Pre 2b 0 0 1 0 0 10 11

WD 3 1 0 0 0 0 10 00

WD 4a 1 0 1 0 0 11 10

Pre 4b 1 0 0 0 0 11 10

WD, Pre 5 1 0 1 0 0 11 11

WD, Pre 6 1 0 0 0 0 11 00

WD 7 0 0 1 0 0 00 10

WD, Pre 8 0 0 1 0 0 00 11

Table II.3 – List of extended signatures for URWF detection during March C- execution

The two first columns provide the fault model (URWF) and the memory element(s)

whose failure involves the URWF: WD for write driver and Pre for pre-charge circuit. The

third column gives the configuration, with respect to the scheme in Figure II.15 (labels on

arrows). Columns from four to eight provide the classical March C- signatures for URWF

detection. Finally, the two last columns of Table II.3 are fields we have added to represent the

addressing order, Adi-1 for the previous accessed core-cell and Adi+1 for the next one. These

additional fields require two bits to represent all address configurations presented in

Figure II.15:

 The first bit indicates if address Adi-1 (or Adi+1) shares the same I/O element

than the current accessed memory core-cell (‘1’ if yes, ‘0’ if no, x if don’t

care).

 The second bit indicates if address Adi-1 (or Adi+1) shares the same column

than the current accessed memory core-cell (‘1’ if yes, ‘0’ if no, x if don’t

care).

Diagnostic of SRAMs

114

For example, Adi-1 = 10 means that the previous accessed core-cell shares only the same

I/O circuitry with the current accessed core-cell. For the diagnosis of other dynamic fault

models, it is necessary to use additional bits to describe other specific addressing sequence.

For example, Adi-1 and Adi belonging to the same word line is the addressing sequence useful

to detect dRDF, unitary hamming distance addresses are necessary to detect Address Decoder

Open Faults (ADOF) [DIL04a].

For a better understanding of Table II.3, we propose the reading of the first line. The last

two columns indicate that Adi-1 and Adi+1 belong to the same I/O of the current accessed core-

cell i, but not to the same column (Adi-1 = Adi+1 = 10). With such addressing sequence, the

only detectable failing element is the write driver (WD), as previously explained; this

information is shown in column two. Finally, the March C- application with this addressing

configuration between Adi-1, Adi and Adi+1 provide the basic signature based on read

operations (10100), exposed in columns three to eight. Thus, the extended signature is

‘101001010’.

The list of extended signatures presented in Table II.3 shows that:

 The addressing configurations 1, 3 and 7 allow the detection and the

localization of URWF in the write driver.

 The addressing configurations 5, 6 and 8 allow the detection of URWF but do

not provide any information on the failure localization. That means the URWF

can be due to a failure in the pre-charge circuit or in the write driver as well.

 The addressing configurations 2 and 4 allow the detection of URWF but also

are able to exactly determine the failure localization. In fact, with the same

addressing sequence, different syndromes are generated according to the

faulty elements. The ‘a’ suffix is attached to faulty write drivers, whereas the

‘b’ suffix is attached to faulty pre-charge circuits.

In the signature, the additional fields concerning the addressing sequence have been

helpful to determine the occurrence of an URWF as well as the failure localization.

Now, we analyze the second point mentioned above ‘2.’, i.e. how to determine the static

or dynamic nature of the fault. In Table II.4, we give the set of signatures related to URWF

and CFst (taken from [LI01]), considering March C-execution.

Software-based diagnosis solution

115

Fault model R0 R1 R2 R3 R4 Ad i-1 Ad i+1

URWF

1 0 0 0 0 10 00

1 0 0 0 0 11 10

1 0 0 0 0 11 00

CFst(L,1,1) 1 0 0 0 0 xx xx

Table II.4 –Signatures -URWF vs. CFst -

In this table, the fields marked with ‘x’ associated to the addressing configuration CFst

signature, mean that the addressing order has no impact on the fault detection. Table II.4

shows that URWF and CFst are not distinguishable as they have the same syndrome.

However, it also shows that depending on the sequence of accessed core-cells during test

application, we can state if there is no URWF occurrence. In other words, with a single test

sequence application, it is possible to determine if the memory is affected by static faults only.

However, further test applications with different addressing sequences should be useful to

completely differentiate static and dynamic faults.

II.2.2.2. Discussions

In this Section, we have proposed an approach for dynamic fault diagnosis in SRAMs.

This approach is based on the extension of existing signature-based diagnosis methods. We

show that tacking in account information concerning the addressing configuration of the

executed March test can be crucial for the diagnosis of dynamic faults. We have demonstrated

the effectiveness of the proposed solution in identifying the failure location in the memory on

a case study, the URWF.

However, such technique presents many drawbacks. First, these solutions based on the

extension of the signature suffer from limitations due to the use of an established fault

dictionary. Secondly, as all possible memory configurations have to be take into account for

the complete description of a fault model, the store information in the dictionary may become

too high when considering the whole set of static and dynamic faults.

Diagnostic of SRAMs

116

Consequently, there is a clear need of new diagnosis solutions that:

 consider the whole set of static and dynamic faults

 are able to provide accurate location of the faulty component (in the core-cell

array, write drivers, sense amplifiers, address decoders, pre-charge circuits,

etc.)

 are not limited to the a priori knowledge of the targeted faults, but that

generate dynamically the diagnosis response.

II.2.3. History-based diagnosis

In this section, we present a new diagnosis approach that represents an alternative to

signature-based approaches. This new diagnosis technique is based on the effect-cause

paradigm already developed for logic design diagnosis [ABR84]. It consists in creating a

database containing the history of operations (read and write) performed on those core-cells,

where read operations have returned faulty logic values, during the test phase. This

information is crucial to track the root cause of the observed faulty behavior and is used to

generate the set of possible FPs [VDG00] representing the suspected fault models.

Such history-based diagnosis approach offers many advantages. It does not require the a

priori knowledge of the set of fault models targeted by the test algorithm because it does not

rely on an established fault dictionary. It does not suffer from an additional limitation of

signature-based approaches with respect to the treatment and storage of large data volume.

Moreover, this method is able to perform the diagnostic of both static and dynamic faults and

provides a better DR compared to signature-based diagnosis approaches. Another feature of

the proposed history-based approach is its capability to provide accurate and reliable

information on the fault location. This is imposed by the fact that some fault models can be

related to multiple possible electric causes, leading to a difficult location of the faulty memory

component (address decoders, core-cells, sense amplifiers, write drivers…). For example, it

has been previously shown that an URWF can be due to defects locating in a pre-charge

circuit or in a write driver of SRAMs. A signature-based diagnosis approach would indicate

that the memory is affected by an URWF, without any information on the faulty component

of the memory where the malfunction is actually caused. Conversely, with our history-based

diagnosis approach, the diagnosis report will indicate that the memory is possibly affected by

an URWF also specifying the suspected memory component (pre-charge circuit or write

Software-based diagnosis solution

117

driver). Such information is very helpful for the yield ramp up as well as to guide the repair

schemes.

In order to perform a relevant number of experiments, we have created a dedicated

software diagnosis tool. The achieved experimental results are analyzed and compared to

results obtained with a classical signature-based approach. The efficiency of the history-based

diagnosis in producing a list of suspected faults as well as the indication of the fault location

is proven.

II.2.3.1. Principle

The principle of the history-based diagnosis is based on the collection of two types of

relevant information:

 the faulty responses provided by the tester.

 the record of the sequence of preceding operations performed on the core-cells

where read operations have returned faulty logic values during the test. With

this information, a set of FPs is generated.

As can be seen in Figure II.16, the proposed diagnosis solution requires three inputs:

Memory Architecture: this input provides information related to the tested

memory in terms of dimension (number of row and columns), I/O organization

and other information about the structure.

March Test Specifications: this input provides information on the applied test

algorithm in terms of sequence of operations performed on the memory and

addressing order (row after row, named ‘fast R’, column after column, named ‘fast

C’,…).

Tester Report: this input provides information about the results of the test. For

each observed error, this report indicates which is (are) the read operation(s) that

reveal the fault and the corresponding core-cell address.

Diagnostic of SRAMs

118

Memory
Architecture

March Test
Specification

s

Tester
Report

History-Based

Diagnosis

Diagnosis
Report

Figure II.16 – History-based diagnosis principle

As indicated in previous sections, our diagnosis solution does not require any list of

fault models in input as in standard signature-based diagnosis solutions.

Let us now introduce the four steps of the history-based diagnosis procedure:

Step 1: History of faulty reads

Step 2: History of fault-free reads

Step 3: FP compilation

Step 4: Fault model allocation

These steps are explained in detail in the following sub-sections.

II.2.3.2. Step 1: History of faulty read operations

This first step of the proposed diagnosis process consists in recording the history of

operations performed on the faulty core-cell. The history concerns only the back operations

that lead to faulty read operations. Starting from a faulty read operation, we record all the

operations previously performed on the affected core-cell until the last read operation.

Let us illustrate these principles with a hypothetical 4x4 SRAM, whose scheme is

presented in Figure II.17.

Software-based diagnosis solution

119

 CC00

Pre

CC10

CC20

CC30

CC01

Pre

CC11

CC21

CC31

CC02

Pre

CC12

CC22

CC32

CC03

Pre

CC13

CC23

CC33

I/O 1 I/O 2

Figure II.17 – A 4x4 memory core-cell array

Let us assume that this memory is affected by a TF0 (Transition Fault 1 to 0) in core-

cell CC22. Consider that the applied March algorithm is the March C- with a fast C addressing

order. The test application provides the following syndrome (available from the tester report):

0 0 1 0 1 (퐴푑푑푟푒푠푠 퐶퐶)

meaning that the 푟0 operations of March elements M3 and M5 performed on CC22 have

returned a faulty value.

With available information (SRAM structure, MT and syndrome) we can start to

generate the history record for each faulty read operation. The first faulty read operation is the

푟0 of the March element M3. The previous operations performed on CC22 were a correct 푟1

and a 푤0 of M2. The history record generation stops at the fist previous read operation. The

resulting history record of the first faulty read is denoted as H0 and is composed as follows:

퐻 = 1 푤0 푟0

where the logic ‘1’ indicates the last value returned by the read in the core-cell (by the March

element M2), followed by the 푤0 of M2 and the faulty 푟0 of March element M3. From H0 we

compute all possible FPs that can explain the faulty behavior on CC22. We include these FPs

in a set denoted as eFP0 and composed as follows:

푒퐹푃 = {(1 푤0), (0 푟0)}

Note that in the previous expression, and in all the following ones of the same type, the

notation of FP is simplified to the sensitization sequence (‘S’ in the formal notation

[VDG00]). The FP ‘1 푤0’ can be interpreted as a failing 푤0 on CC22. The second FP, ‘0 푟0’,

contains the actual faulty 푟0.

Diagnostic of SRAMs

120

In the same way, H1, related to the second faulty read on CC22, is computed and results

in a new history record:

퐻 = 1 푤0 푟0

From H1 we obtain eFP1:

푒퐹푃 = {(1 푤0), (0 푟0)}

Assuming that a memory component (core-cell, write driver, pre-charge circuit,…) may be

affected by a single fault, the root cause of the observed error has to be present in all sets of

FPs. Consequently, the resulting eFPfaulty related to CC22 is simply obtained by intersecting

eFP0 and eFP1:

푒퐹푃 = {(1 푤0), (0 푟0)}

II.2.3.3. Step 2: History of correct read operations

In order to reduce the set of FPs in eFPfaulty, we have to exclude those FPs that certainly

do not lead to a fault. For this purpose, we consider the FPs that are generated by non-faulty

read operations. Considering again the example developed in Section II.2.3.2 (TF0 on core-

cell CC22)

According to the obtained signature (00101), one 푟0 operation among three is correct.

Consequently, we build the history of this 푟0 as follows (in case of more than one correct 푟0,

a history record should have been generated for each correct 푟0):

퐻 ′ = 푋 푤0 푟0

with ‘X’ meaning that the contents of the core-cell is unknown before starting the March

element M0.

From H0’ we generate eFPfault-free as follow:

푒퐹푃 = {(푋 푤0), (0 푟0)}

The FPs in eFPfault-free are those for which no faulty behaviors has been observed.

Note that the history of the two correct 푟1 is not considered because it could not reduce

the number of FPs.

Software-based diagnosis solution

121

II.2.3.4. Step 3: FP Compilation

After Step 1 and Step 2, we have two sets of FPs: eFPfaulty and eFPfault-free. Now, we have

to remove from eFPfaulty the FPs composing eFPfault-free. This is reported in the following

equation:

푒퐹푃 = 푒퐹푃 – (푒퐹푃 푒퐹푃) (Eq. II.4)

For the considered example with the occurrence of a Transition Fault TF0 on CC22, we obtain:

푒퐹푃 = {(1 푤0)}

This sets of FPs (in this case with only one element) represent the possible causes of the

observed error.

II.2.3.5. Step 4: Fault Model Allocation

At this stage of the diagnosis process, we have the final report of FPs. From eFPreport, we

associate the corresponding fault models to each FP as described in [VDG00]. Let us consider

again the above examples, for which the reduced set of FPs is:

푒퐹푃 = {(1 푤0)}

In this case, there is only one FP in the list and the corresponding fault model is a TF0

(Transition Fault 1 to 0), which corresponds to the actual fault affecting the memory.

II.2.4. Diagnosis of dynamic faults

The history-based diagnosis approach, as presented in the previous section, is able to

diagnose static faults. Hereafter, we extend this new diagnosis approach to make it able to

diagnosis dynamic faults. In sub-section II.2.4.1 we present a set of dynamic faults that we

want to diagnose. For each of them we provide their definition and we highlight important

conditions that will be helpful to apply our diagnosis technique. In sub-section II.2.4.2, we

present how we improve our diagnosis approach in order to cover dynamic faults.

II.2.4.1. Dynamic fault models

At this stage of our study, we consider three two-cell dynamic faults and one single-cell

dynamic fault. Additional dynamic fault models will be implemented in future developments.

Diagnostic of SRAMs

122

Slow Write Driver Fault (SWDF): A write driver is said to have a SWDF if it cannot act

a 푤0 (푤1) when this operation is preceded by a 푤1 (푤0). This results in a core-cell that does

not change its data content.

This dynamic fault model is the consequence of resistive-open defects in the control part

of the write driver. It involves an erroneous write operation when the write driver performs

two successive write operations with opposite data values. A SWDF requires the following

test sequence to be detected:

푤푥 푤푥̅ 푟푥̅ (1)

where the two write operations are for sensitization and the read operation for observation.

Moreover, the two write operations have to be performed by the same write driver.

Considering that our diagnosis method consists in taking into account the operations

performed on the faulty core-cell we must store additional information concerning the

previous data written by the write driver. Consequently, we formulate the first requirement

that will be exploited by our diagnosis method as follows:

Requirement 1: During the diagnosis process we must take a record of the data

previously written by the write driver.

Un-Restored Write Fault (URWF): The pull up of one of the two bit lines is not

completely achieved after the state reached with a write operation. Consequently the

following read operation of an opposite data in a cell belongs the same I/O circuitry is not

correctly acted [ADA97].

Un-Restored Destructive Write Fault (URDWF): The same definition as URWF but in

addition to the faulty read operation, the cell flips.

These two fault models are the consequence of resistive-open defects in the pre-charge

circuit and/or the write driver. Both affect the read operation when it is preceded by a write

operation. As presented in the first Part of the thesis, the URWF and URDWF resulting from

a resistive-open defect in the write driver requires the following sequence of operations to be

detected:

푤푥 푟푥̅ (2)

where 푤푥 means write the value x in cell CCA and 푟푥̅ means read the opposite value in

cell CCB. Both operations have to be performed on two distinct core-cells that belong to the

same I/O circuitry.

Software-based diagnosis solution

123

As mentioned in [DIL05b], when an URWF is due to a resistive-open defect in the pre-

charge circuit, the sensitization sequence is the same than (2), but in this case, both operations

have to be performed on two distinct core-cells belonging to the same column, i.e. sharing the

same pre-charge circuit.

As for SWDF, we formulate the second requirement that will be exploited by our

diagnosis method as follow:

Requirement 2: During the diagnosis process we must take a record of where (same

column, same I/O) the last write operation has been performed.

dynamic Read Destructive Fault (dRDF): A cell is said to have a dRDF if a write

operation immediately followed by a read operation performed on the core-cell changes the

logic state of this core-cell and returns and incorrect value on the output [VDG00, HAM02].

This dynamic fault model is related to resistive-open defects affecting the core-cell and

it has been improved in [BOR03b] where the authors have shown that multiple read after the

write operation may also induce the faulty swap of the targeted core-cell. Consequently, a

dRDF requires the following sensitizations sequence:

푤푥 푟푥 푟푥 푟푥 푟푥… 푟푥 (3)

In [DIL04b] it has been shown that operations performed on a core-cell involve a stress

on the other core-cells belonging to the same word line. This stress, called Read Equivalent

Stress (RES), is equivalent to a read operation.

For our diagnosis tool, we must therefore consider the record of such stresses in order to

be able to deal with dRDF diagnosis. As for the others dynamic fault models exposed above,

we formulate the third requirement that will be exploited by our diagnosis method as follows:

Requirement 3: During the diagnosis process we must take a record of the sequence of

consecutive read operations or RESs (Read Equivalent Stresses) undergone by the core-cell

presenting a faulty read.

II.2.4.2. Application

Based on requirements exposed above, we have to consider the record of additional

information during the diagnosis process in order to cover dynamic faults. For this purpose, in

the history record, we include an Additional Information Vector (AIV), which stores

information about the previously accessed core-cell in address Adi-1 (see Requirements 1 and

2), information about the next accessed core-cell in address Adi+1 (see Requirements 1 and 2)

Diagnostic of SRAMs

124

and all the RES that the faulty core-cell has undergone (see Requirement 3). This vector

contains the following information:

 One bit to report if Adi-1 and Adi belongs to the same I/O (0: false, 1: true)

 useful for URWF (1).

 One bit to report if Adi-1 and Adi belongs to the same column (0: false, 1: true)

 useful for URWF detection (2).

 The last operation (푟0, 푟1, 푤0 or 푤1) performed on Adi-1 just before the faulty

read useful for URWF (3).

 The number of break(s) between the faulty read operation on Adi-1 and the last

operation done on Adi-1 useful for URWF (4).

 A record of the previously data written by the write driver (0: fall transition, 1:

up transition, -1: no transition) useful for SWDF detection (5).

Table II.5 groups all these requirements and affects a number for each of them. The four

first bits are related to the previous accessed core-cell, the next third concern the next

accessed core-cell, and the last bit is associated with the write driver input.

Adi-1 WD

1 2 3 4 5

I/O column operation break Transition

Table II.5 – Additional Information Vector legend

Let us now illustrate the use of this AIV on three examples.

Example 1: dRDF

Let us assume that the core-cell CC22 (see Figure II.17) is affected by a dRDF, i.e. one

푟1 just after a 푤1 causing the faulty swap of CC22. In this case, March C- is applied with fast

R addressing order as proposed in [DIL04b]. The tester report presents the following

syndrome:

0 1 0 1 0 (퐴푑푑푟푒푠푠 퐶퐶)

H0 is the history of the first faulty read:

퐻 = 0 푤1 푅퐸푆 퐵 푅퐸푆 푟1

The last read operation is a fault-free 푟0, so that the first term in H0 is ‘0’. The next

operation after this correct 푟0 is a 푤1 operation performed on CC22, followed by a 푟1. All the

Software-based diagnosis solution

125

others terms in between represent what the core-cell electrically undergoes: B means a Break

and RES means Read Equivalent Stress.

Let us first explain how we have obtained the first term (RES2). During the application

of March element M1, a 푤1 operation is performed on CC22. Subsequently, the operations

(푟0,푤1) are acted on core-cell CC23. As CC23 belongs to the same word line than CC22, the

latter undergoes two stresses denoted as RES2.

Then, the (푟0,푤1) operations are performed on the four core-cells of the last row of the

core-cell array. Consequently, CC22 is not electrically stimulated during 8 clock cycles. Then,

March element M2 is run. The (푟1, 푤0) operations are acted on all core-cells of the two first

rows. Core-cell CC22 does not undergoes any electrical stimulation during 16 clock cycles. At

the end, CC22 is not accessed, even indirectly (RES), during 24 clock cycles, thus we report

B24.

The (푟1, 푤0) operations are now performed on CC20 and CC21. As these two core-cells

belong to the same word line than CC22, CC22 undergoes four stresses, reported with RES4. At

the same time, we compute AIV0 as follows:

Adi-1 WD

I/O column operation break Transition

0 0 w0 0 -1

From H0 and AIV0 we obtain eFP0:

푒퐹푃 = {(0 푤1), (1 푟1), (0 푤1 푟1), (0 푤1 푟1 푟1), (0 푤1, 1 푟1)}

The two first FPs of eFP0 consider respectively the first and last operations of H0 with ‘0 푤1’

meaning that the 푤1 operation may have failed and ‘1 푟1’ containing the actual faulty 푟1

operation.

Then FP0 is completed with FPs related to the action of the RESs recorded in H0. As the

푤1 operation on CC22 is immediately followed by two RES (RES2), we obtain the ‘0 푤1 푟1’

and ‘0 푤1 푟1 푟1’ FPs (considering RES ≈ read operation). Finally, the last FP of eFP0 is

obtained with the help of the AIV0. The ‘0 푤1 , 1 푟1’ FP means that 푤1 is acted on a core-cell

corresponding to Adi-1 and 푟1 is performed on the core-cell corresponding to Adi.

In the same way, we compute H1 that concerns the second faulty read:

퐻 = 0 푤1 푅퐸푆 퐵 푅퐸푆 푟1

Diagnostic of SRAMs

126

and AIV1 related to H1 is the following:

Adi-1 WD

I/O column operation break Transition

1 0 w0 0 -1

From H1 and AIV1 we obtain eFP1:

푒퐹푃 = {(0 푤1), (1 푟1), (0 푤1 푟1), (0 푤1 푟1 푟1),

 (0 푤1 푟1 푟1 푟1), (0 푤1 푟1 푟1 푟1 푟1), (0 푤1퐼/푂 , 1 푟1)}

Note that the index ‘I/O’ in the last FP means that the 푤1 is performed on a core-cell

belonging to the same I/O circuitry used by core cell that has recorded a faulty read.

eFPfaulty is obtained by intersecting eFP0 and eFP1:

푒퐹푃 = {(0 푤1), (1 푟1), (0 푤1 푟1), (0 푤1 푟1 푟1)}

This time, all 푟1 operations have returned an incorrect data value, implying that

eFPreport = eFPfaulty:

푒퐹푃 = {(0 푤1), (1 푟1), (0 푤1 푟1), (0 푤1 푟1 푟1)}

The last step of the method assigns the fault models to the FPs found. From eFPreport we

obtain as fault candidates:

 TF1: this fault model is related to the FP ‘0 푤1’.

 SAF0, RDF, IRF: these fault models are related to FP ‘1 푟1’.

 dRDF (1 푟1, 2 푟1): This fault model is related to FPs ‘0 푤1 푟1’ and

‘0 푤1 푟1 푟1’.

The dRDF (1 푟1, 2 푟1) means that the core-cell has swapped after one or two

consecutive 푟1 operations just after the 푤1. This last fault model proposed in the diagnosis

report corresponds to the one we have injected.

Example 2: URWF

As second example, we consider the Un-Restored Write Fault (URWF). Such a fault

model is caused by defects in the pre-charge circuit or in the write driver. In this example, we

inject a defect in the pre-charge circuit of the last column of the memory presented in Figure

II.17.

Software-based diagnosis solution

127

After applying the March C- with a fast C addressing order, the test report presents the

following syndromes:

0 0 0 1 0 (퐴푑푑푟푒푠푠 퐶퐶)

0 1 0 1 0 (퐴푑푑푟푒푠푠 퐶퐶)

0 1 0 1 0 (퐴푑푑푟푒푠푠 퐶퐶)

0 1 0 0 0 (퐴푑푑푟푒푠푠 퐶퐶)

It is important to notice that all the four core-cells belonging to the faulty pre-charge

circuit provide faulty responses. Consequently, the diagnosis procedure has to be applied four

times. Let us first detail the case of the faulty reads in core-cell CC03. H0 is the history of the

faulty read:

퐻 = 0 푤1 퐵 푅퐸푆 퐵 푅퐸푆 퐵 푅퐸푆 퐵 푟1

and AIV0 related to H0 is the following:

Adi-1 WD

I/O column Operation break Transition

1 1 w0 0 -1

From H0 and AIV0 we obtain eFP0:

푒퐹푃 = {(0 푤1), (1 푟1), (1 푤0퐼/푂, 푐 , 1 푟1)}

As there is only one faulty read, eFPfaulty = eFP0.

Now, we build the history of the remaining correct read as follow:

퐻 ′ = 0 푤1 퐵 푅퐸푆 퐵 푅퐸푆 퐵 푅퐸푆 퐵 푟1

and AIV0
’ related to H0’ is the following:

Adi-1 WD

I/O Column Operation break Transition

1 0 w0 0 -1

From H0’ and AIV0’ we obtain eFP0’:

푒퐹푃 ′ = {(0 푤1), (1 푟1), (1 푤0 / , 1 푟1)}

As there is only one correct read:

푒퐹푃 = 푒퐹푃 ′

Diagnostic of SRAMs

128

From the intersection of eFPfaulty and eFPfault-free, we obtain eFPreport as follow:

푒퐹푃 = {(1 푤0 , 1 푟1)}

The fault model related to eFPreport is an URWF. In addition, as the previous 푤0

operation has been performed on the same column, we can state that the URWF is due to a

defect in the pre-charge circuit (incorrect bit line pull up during the restoring phase between

two operations).

The same procedure is followed for the remaining syndromes. We obtain for CC13 and

CC23:

푒퐹푃 = {(0 푤1), (1 푟1), (1 푤0 / , , 1 푟1)}

meaning that both core-cells may be affected by a TF1, SAF0, IRF or RDF. From the last FP

of eFPreport we also conclude that an URWF may be the root cause of the observed errors. But

this time we cannot provide any information on the defect location (I/O or pre-charge

circuitry).

For the last syndrome related to CC33 we obtain:

푒퐹푃 = {(1 푤0 / , , 1 푟1)}

meaning that an URWF is the root cause of the observed error. Like the previous case, we

cannot state on the defect location. Otherwise, an important result is that we have found out a

unique fault model for all the four syndromes. The URWF related to a defect in the pre-charge

circuit is present in all fault lists. Of course, this fault model has a much higher probability to

be the actual and singular root cause of the malfunctions respect to TF1, SAF0, RDF, IRF and

URWF (due to a defective write driver).

Example 3: SWDF

A third example concerns Slow Write Driver Fault (SWDF). Such a fault model is

caused by defects in the write driver. In this example, we inject a defect in the write driver

belonging to I/O1 (c.f. Figure II.17). After applying the March C- with a fast C addressing

order, the test report presents the following syndromes:

0 1 0 0 0 (퐴푑푑푟푒푠푠 퐶퐶)

0 0 0 1 0 (퐴푑푑푟푒푠푠 퐶퐶)

As previously seen for URWF, the diagnosis procedure has to be applied twice (for each

faulty core-cell). Let us first detail the case of the faulty reads in core-cell CC00.

Software-based diagnosis solution

129

H0 is the history of the faulty read:

퐻 = 0 푤1 퐵 푅퐸푆 퐵 푅퐸푆 퐵 푅퐸푆 퐵 푟1

and AIV0 related to H0 is the following:

Adi-1 WD

I/O column operation break Transition

0 0 w1 0 1

From AIV0, we highlight the fact that the write driver has undergone an up transition

(see last column of AIV0). It means that the previous write operation done by the write driver

before the 푤1 operation (see H0) performed on CC00 was a 푤0.

Consequently, from H0 and AIV0 we obtain eFP0:

푒퐹푃 = {(0 푤1), (1 푟1), (1 푤0 , 0 푤1)}

Note that the index ‘WD’ in the FP means that the 푤0 is performed by the same write driver

as that used by the core cell that has recorded a faulty read.

As there is only one faulty read:

푒퐹푃 = 푒퐹푃

Now, we build the history of the remaining correct read as follow:

퐻 ′ = 0 푤1 퐵 푅퐸푆 퐵 푅퐸푆 퐵 푅퐸푆 퐵 푟1

and AIV0
’ related to H0’ is the following:

Adi-1 WD

I/O column operation break Transition

1 1 w0 0 -1

From H0’ and AIV0’ we obtain eFP0’:

푒퐹푃 ′ = {(0 푤1), (1 푟1), (1 푤0 / , , 1 푟1)}

As there is only one correct read, once again:

푒퐹푃 = 푒퐹푃 ′

From Eq. II.4, we obtain eFPreport as follow:

푒퐹푃 = {(1 푤0 , 0 푤1)}

Diagnostic of SRAMs

130

The fault model related to eFPreport is a SWDF.

The same procedure is followed for the remaining syndrome. We obtain for CC31:

푒퐹푃 = {(1 푤0 , 0 푤1)}

meaning that both results lead to the same conclusion: write driver of I/O1 is affected by a

SWDF.

II.2.5. Experimental results

The proposed history-based diagnosis approach has been implemented in a tool of about

7000 C++ code lines. This tool allows performing a relevant number of experiments (2000

reported in the Section). As shown in Figure II.16, the three main input data of the diagnosis

tool are the net list (memory architecture), the stimulus (March Test) and the signatures (tester

report). For the generation of the tester report, we have used a memory simulator in which we

have injected a fault model for each experiment so as to mimic the behavior of an ATE. This

memory simulator is an extended version of the one presented in [BEN06] that we have

configured as a 512x512 SRAM with 128 I/O (write driver and sense amplifier) blocks, i.e.

one I/O for group of four columns.

In the following sub-sections, we first compare the efficiency of a basic signature-based

diagnosis approach [LI01] with the proposed history-based solution. Then, we provide

additional extensive results to prove the effectiveness of the proposed diagnosis solution.

II.2.5.1. Signature vs. history-based diagnosis

In our experiments, we have considered several fault models for which we have applied

the signature-based and history based diagnoses. Table II.6 presents the results given by both

solutions. The first and second columns give the fault model injected (FMod) and its location

(Location) in the memory. Column 3 specifies the applied test algorithm and the addressing

order used during the test application (Test). The last two columns give the diagnosis report

with the two approaches. For the four simulated fault injection scenarios, the developed

SRAM fault simulator generates the syndromes that are used as inputs for the signature-based

(SB) and history-based (HB) diagnosis.

Software-based diagnosis solution

131

FMod Location Test SB HB

SAF1 CC99,3 March C-, fast C

SAF1

IRF

RDF

SAF1, IRF

RDF

TF0 CC123,12 March C-, fast C TF0 TF0

dRDF

(3 r1)
CC99,3 March C-, fast R

SAF0

TF1

RDF

IRF

SAF0, TF1

RDF, IRF

dRDF(1 r1, 6 r1)

URWF

(w1, r0)

WD

C0 to 3
March C-, fast C

SAF1

IRF

RDF

SAF1, IRF, RDF

URWF (WD: w1, r0)

Table II.6 – Signature vs. history-based diagnosis

Let us first discuss the first two scenarios. A SAF1 has been injected in CC99,3 (core-cell

placed on line 99 and column 3) and a TF0 on CC123,12. For the first scenario, the two

diagnosis solutions return the same list of fault candidates that contains the injected fault

model (SAF1). For the second scenario, a unique fault candidate is returned (TF0). Such

results were rather predictable because these fault models are static.

The following two scenarios deal with dynamic fault models. In the case of dRDF in

CC99,3, the term (3 푟1) indicates that CC99,3 flips after three consecutive 푟1s following a 푤1

(see Section II.2.4.1). The employed test algorithm is again the March C-, with fast R (row

after row) addressing order. As reported on the two last columns, the SB diagnosis reports

four fault candidates (SAF0, TF1, RDF and IRF), all static, and does not include the actually

injected fault model. As suspects, our solution returns not only static faults but also the

dynamic fault dRDF with the reference (1 푟1, 6 푟1). The latter suggests that the core-cell

CC99,3 displays a faulty swap due to a dRDF, after being accessed for one to six consecutive

푟1 operations. The second injected dynamic fault model is an URWF, which requires the

couple of operations (푤1, 푟0) in order to be detected (see Section II.2.4.1). This fault is due to

a resistive defect in the write driver (WD) used by the first four columns of the simulated

SRAM (C0 to 3). The applied algorithm is again March C- with fast C addressing order.

Compared to the other scenarios, we obtain a syndrome for each core-cell connected to the

defective write driver. The SB diagnosis approach reports that each core-cell connected to the

faulty write driver can be affected by SAF1, IRF or RDF. In this diagnosis response, a unique

Diagnostic of SRAMs

132

fault model that explains the actual root cause of all syndromes is not present. The HB

approach confirms the possible occurrence of SAF1, IRF and RDF, suggested by the SB

approach, but it also presents the URWF as fault candidate. The URWF is the actual cause of

all syndromes and it is due to a defect in the write driver sensitized by the test pattern

(푤1, 푟0).

The analysis of the results in Table II.6 shows that both SB and HB methodologies are

effective for the diagnosis of static faults. However, in the case of dynamic fault injection, the

analysis reveals that only the HB method is able to return the correct solution, by taking in

account the set of all syndromes, the memory architecture and other parameters specific of

this kind of fault models. This comparative study demonstrates the interest of the proposed

history-based diagnosis approach that not only extends the diagnosis to fault model difficult to

track (dynamic), but which is also able to determine the faulty memory component.

II.2.5.2. Additional results

In this sub-section, we provide a larger quantity of experimental results that demonstrate

the efficiency of our diagnosis approach. These results are the outcome of 1000 fault injection

experiments. The faults are introduced in randomly chosen memory locations. For the case of

write driver and pre-charge circuitries we performed an exhaustive set of injections.

The results of the first set of experiments are summarized in Table II.7. The first and

second columns give the detail of the injected fault: fault model (Scenario) and its location

(Location). The faults have been injected in the core-cells (memory array), write driver (WD)

and pre-charge circuit (PRE). Column 3 specifies the applied test algorithm and the

addressing order used during the test implementation (Test). The fourth column shows the

average diagnosis resolution (R), which indicates the number of suspected fault primitives

provided by the diagnosis tool. It also indicates if the actual injected fault is present in this set

of suspects (Y: yes, N: no). For each suspected FP, the faulty memory component is

associated. The last column (L) gives the percentage of correct location of the faulty memory

component (the same faulty model can be related to different defective components).

Software-based diagnosis solution

133

Scenario Location Test R L

dRDF (1 r1) Memory Array March C-, fast R 5.8 (Y) 89%

dRDF (1 r0) Memory Array March C-, fast R 3.2 (Y) 75%

SWDF (w1, w0) WD March C-, fast R 2.25 (Y) 95%

SWDF (w0, w1) WD March C-, fast R 1.5 (Y) 95%

URWF (w1, r0) WD March C-, fast C 2, (Y) 97%

URWF (w0, r1) WD March C-, fast C 4.6 (Y) 30%

URWF (w1, r0) PRE March C-, fast C 2, (Y) 98%

URWF (w0, r1) PRE March C-, fast C 4.2 (Y) 58%

URDWF (w1, r0) WD March C-, fast C 2 (Y) 97%

URDWF (w0, r1) WD March C-, fast C 4.6 (Y) 30%

Table II.7 – Experimental results March C-

From the analysis of Table II.7, we can observe that

 The diagnosis tool always determines the root cause of the observed error (i.e.

the injected fault) and correctly locates it (Memory Array, write driver or pre-

charge circuitry).

 The achieved resolution (R) is defined as the absolute number of FPs provided

by our tool. This value returns the DR if referred to the whole number of

realistic FPs (about 50 for single cell FP [VDG00]). The tool always provides

the correct FP, among those suspected.

 The tool always associates the correct FP with the correct defective memory

component. The success of fault location is also good for the case of the

remaining suspected FPs, reaching in some case a success close to 100%.

A second set of experiments have been performed using a different March Test. In this

case, the test algorithm is March AB-, shown in Figure II.18 that is a modified version of the

March AB [BEN05], able to cover the URDWF and URWF.

{ ↕ (푤0) ↑ (푟0,푤1, 푟1,푤1) ↑ (푟1,푤0, 푟0,푤0)

 ↓ (푟0,푤1, 푟1,푤1) ↓ (푟1,푤0, 푟0,푤0) ↕ (푟0) }

Figure II.18 – March AB-

Table II.8 gives the results of these experiments exposed like in Table II.7.

Diagnostic of SRAMs

134

Scenario Location Test R L

dRDF (1 r1) Memory Array March AB-, fast R 4.2 (Y) 92%

dRDF(1 r0) Memory Array March AB-, fast R 2.2 (Y) 77%

SWDF (w1, w0) WD March AB-, fast R 1 (Y) 100%

SWDF (w0, w1) WD March AB-, fast R 1 (Y) 100%

URWF (w1, r0) WD March AB-, fast C 2 (Y) 99.2%

URWF (w0, r1) WD March AB-, fast C 2.8 (Y) 69.5%

URWF (w1, r0) PRE March AB-, fast C 2.8 (Y) 99.2%

URWF (w0, r1) PRE March AB-, fast C 2.75 (Y) 72%

URDWF (w1, r0) WD March AB-, fast C 2 (Y) 99.2%

URDWF (w0, r1) WD March AB-, fast C 2.8 (Y) 69.5%

Table II.8 – Experimental Results March AB-

Both the parameters R and L reveal an improvement with respect to the result coming

from the used of the March C-. This can be explained with the fact that March AB- returns a

signature presenting more elements (read operations) than March C- (8 vs. 5), resulting in a

larger information exploited during the diagnosis. This experimentation demonstrates that our

diagnosis approach and the proposed tool are very efficient and provide reliable information,

usable during the following phases of the failure analysis process. Moreover, the results are

obtained with low hardware and time requirements.

II.2.6. Further improvements

In the previous sections, we have proven the efficiency of the proposed history-based

diagnosis approach in providing accurate diagnosis reports in presence of both static and

dynamic faults. This solution is also able to provide information on defect location, i.e.

identification of the faulty memory component. However, at this stage of development, this

diagnosis solution is able to deal only with single cell static faults such as SAF and TF. The

first improvement that we intend to introduce will be the capability to deal with two-cell static

faults such as coupling faults (CFst, CFid, CFinv) [VDG98]. This improvement will be

achieved by taking in account additional information in the AIV vectors, concerning

operations performed on potential aggressor core-cells.

Software-based diagnosis solution

135

Dynamic faults diagnosis is one of the major features of the proposed diagnosis solution.

For the moment, we are able to diagnose single cell dynamic faults such as dRDF and some

two-cell dynamic fault such as URWF and SWDF. As mentioned above, further dynamic fault

models have to be implemented in the simulator, such as:

 ADOF (Address Decoder Open Fault)

 d2cIRF (dynamic 2-cell Incorrect Read Fault)

Among these, we consider for example the ADOF, which is a dynamic fault caused by

resistive-open defects in the address decoder, having the following definition:

Address Decoder Open Fault (ADOF): A decoder is said to have an ADOF when

changing only one bit on its address results in selecting this new address but also the previous

one. Consequently, two core-cells are selected at the same time for a read or a write

operation.

The ADOF requires the following test pattern to be detected:

푤푥 푤푥̅ 푟푥

where CCA and CCB are two core-cells, whose addresses present an Hamming distance of

one. In order to make our diagnosis tool able to deal with this dynamic fault, we must take in

account the parameter the Hamming distance of the addresses of the selected cell as well as

the data background, (logic values stored and read during the test).

II.2.7. Conclusion

In this chapter, we have proposed a new diagnosis approach that represents a valid

alternative to the signature-based approaches. This new diagnosis technique, based on the

effect-cause paradigm, consists in creating a database containing the history record of the

operations (read and write) performed on the core-cells that return incorrect logic values

during the read action. In order to achieve a relevant number of experiments, we have created

a dedicated software tool. Experimental results demonstrate the effectiveness of the proposed

approach in returning an exhaustive set of fault candidates (static and dynamic) and providing

information on the fault location.

137

General Conclusion

General Conclusion

138

As the demand of storage capacities are constantly growing, memories are becoming

SoC area dominant. Moreover, with the scaling down of such components, memories are

much more sensitive to technological deviations than the standard logic. Thus, a high level of

reliability for memories has to be achieved by creating and applying aggressive test

procedures and then generating efficient diagnosis solutions helpful to track faulty behaviors.

Solutions currently used for SRAM testing mainly focus on the detection of static

faults, but they are not able to deal with new faults called dynamic faults. These faults are

mainly due to resistive-open defects and require a sequence of at least two operations

(read/write) to be sensitized. The first objective of this thesis has been to study the SRAM

behavior in presence of resistive-open defects involving dynamic faults and then propose

effective test algorithms. Especially, this work has been focused on SRAM write drivers and

sense amplifiers. Concerning the write drivers, we have shown that dynamic faults, modeled

as Slow Write Driver Fault (SWDF) and Un-Restored Destructive Write Faults (URDWF) are

related to some resistive-open defects in the control part of the write driver structure. We have

established the conditions useful for the sensitization and the observation of these faults and

we have demonstrated that a well known March algorithm called March C- is able to detect

them. The second memory block we have studied is the sense amplifier. A new dynamic fault

model has been proposed. It is defined as dynamic two-cell Incorrect Read Faults of two

different types (d2cIRF1 and d2cIRF2). Such fault models represent failures in the sense

amplifier which prevent it to do its function, i.e. a read operation. We have shown that the

March C- with a specific addressing order and data background is able to deal with such fault

model. Finally, we have highlighted that local variations of the threshold voltages (푉)

impacting the core-cell functioning may be the cause of dynamic behavior, especially

dynamic Read Destructive Fault (dRDF). This kind of faulty behavior is also detected by the

March C- algorithm with a line after line addressing order.

The second objective of this thesis has been dedicated to memory diagnosis where two

different approaches have been considered. The first one, known as Design For Diagnosis

(DFD), is based on the use of extra hardware modules allowing the verification of specific

SRAM blocks requirements (voltage and current levels). In this context, we have provided

two solutions allowing to track weak write drivers. They are industrially viable as they require

a low extra area (about 0.5% for a 512x512 SRAM). The second diagnosis approach is more

general and is based on software developments useful to determine FFM and their precise

localizations (core-cell, pre-charge circuit…). Classical software-based diagnosis solutions

139

are based on signature analysis and most of time, do not consider dynamic faults. So, a first

step of this work has been to take into account these dynamic faults. As first result, a solution

consisting in adding extra information (addressing order, data background) on the signature

has been proposed. However, such technique, based on the cause-effect paradigm is limited

by the a priori knowledge of the considered FFM. Consequently, we have proposed a new

software-based diagnosis solution, called history-based diagnosis. Besides the ability of

considering dynamic faults, such technique presents the major advantage to be based on the

effect-cause paradigm, i.e. the a priori knowledge of considered FFM is not required. In order

to validate this technique, a diagnosis tool has been developed and results have been provided.

Works done on this manuscript propose some memory reliability (test and diagnosis)

trends. Memory test and diagnostic are really hard topics and many works are still open. As

we move toward the end of the silicon roadmap, it becomes difficult to track all subtle

defects. Consequently, aggressive test phases must be first developed and testing memories in

different PVT corners becomes necessary. Actually, as seen in the thesis, some defects better

manifest themselves at high voltage (resistive-open defects) whereas some others are more

easily detected at low voltage (푉 mismatches). It may be interesting to focus on other

possible causes of faulty behaviors in SRAMs, such as short circuits (resistive or not), gate

oxide shorts (GOS) and determine their worst case PVT corners. This study would be helpful

to enlarge defect detection capabilities, and then ensuring a better memory diagnosis.

On the other hand, high memory diagnostic resolution is also required for yield

ramp up. Of course, diagnosis solutions are useful to precisely point out faulty memory blocks

and/or functionalities. Based on DFD modules or on software-based techniques, the aim is

still the same, i.e. help designers and process engineers to understand memory faulty

behaviors and their physical origins in order to improve memory design and/or manufacturing

process. Nevertheless, these improvements present some limitations as it is not possible to

manufacture a memory without any defects. So, diagnosis solutions are also helpful during the

production phase when designers need to localize faulty sites in order to repair them.

Consequently, it would mandatory to develop efficient diagnosis procedures able to deal with

static as well as dynamic faults and also able to precisely localize faulty sites. In that context,

we have already worked on a new software-based diagnosis solution. However, it should be

interesting to complete it in order to take into account all new dynamic faults.

This ‘race’ to track all defects and repair faulty memories will become limited by

technological advances. In fact, as said above, detecting all defects may be achieved by

General Conclusion

140

multiply tests and develop efficient diagnosis procedures. However, it may be too long for

industrial purposes and sometimes, certain defect will still escape test procedures.

Consequently, considering all defects in a memory seems to be very complicated. We can

thus imagine to classify memories according to the application requirements. Then, we can

assume to embed memories with faulty behaviors that do not disturb the application.

141

Scientific Contributions

Publication in Journal

 [TVLSI08] A. Ney, P. Girard, C. Landrault, S. Pravossoudovitch, A. Virazel, M. Bastian,

“Analysis of Resistive-Open Defects in SRAM Sense Amplifiers”

IEEE Transactions on Very Large Scale Integration Systems.

Publications in International Conferences Proceedings

[DATE07] A. Ney, P. Girard, C. Landrault, S. Pravossoudovitch, A. Virazel, M. Bastian,

“Slow Write Driver Faults in 65nm SRAM Technology: Analysis and March Test

Solution”

10th IEEE Design Automation and Test in Europe, Nice, France, April 2007,

pp 528-533.

[VTS07] A. Ney, P. Girard, C. Landrault, S. Pravossoudovitch, A. Virazel, M. Bastian,

“Un-Restored Destructive Write Faults due to Resistive-Open Defects in the

Write Driver of SRAMs”

25th IEEE VLSI Test Symposium, Berkeley, USA, May 2007, pp 361-366.

[ETS07] A. Ney, P. Girard, C. Landrault, S. Pravossoudovitch, A. Virazel, M. Bastian,

“Dynamic Two-Cell Incorrect Read Fault due to Resistive-Open Defects in the

Sense Amplifiers of SRAMs”

12th IEEE European Test Symposium, Freiburg, Germany, May 2007,

pp 97-102.

[ATS07] M. Bastian, V. Gouin, P. Girard, C. Landrault, A. Ney, S. Pravossoudovitch, A.

Virazel,

“Influence of Threshold Voltage Deviation on 90nm SRAM Core-Cell Behavior”

16th IEEE Asian Test Symposium, Beijing, China, October 2007, pp 501-504.

[DATE08] A. Ney, P. Girard, C. Landrault, S. Pravossoudovitch, A. Virazel, M. Bastian, V.

Gouin,

“A Design-for-Diagnosis Technique for SRAM Write Drivers”

142

11th IEEE Design Automation and Test in Europe, Munich, Germany, March

2008, pp 1480-1485.

[DTIS08] A. Ney, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel,

“A Signature-based Approach for Diagnosis of Dynamic Faults in SRAMs”

3rd IEEE International Conference on Design & Test of Integrated Systems in

Nanoscale Technology, Tozeur, Tunisia, March 2008, pp xxx-xxx.

[VTS08] A. Ney, P. Girard, C. Landrault, S. Pravossoudovitch, A. Virazel, M. Bastian, V.

Gouin,

“An SRAM Design-for-Diagnosis Solution based on Write Driver Voltage

Sensing”

26th IEEE VLSI Test Symposium, San Diego, USA, May 2008, pp 89-94.

[ITC08] A. Ney, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel,

“A History-based Diagnosis Technique for Static and Dynamic Faults in

SRAMs”

To appear in Proc. of IEEE International Test Conference, Santa Clara, USA,

October 2008.

Publications in national Conferences Proceedings
 (France)

[GDR07] A. Ney, P. Girard, C. Landrault, S. Pravossoudovitch, A. Virazel, M. Bastian,

“Resistive-Open Defect Influences in SRAM I/O Circuitry”

Proc. Groupement De Recherche SOC-SIP, Paris, France, June 2007.

[GDR08] A. Ney, A. Bosio, L. Dilillo, P. Girard, C. Landrault, S. Pravossoudovitch, A.

Virazel,

“A History-Based Technique for Faults Diagnosis in SRAMs”

Proc. GDR SOC-SIP : Groupement De Recherche SOC-SIP, Paris, France, June

2008.

143

International Seminars

[SETS06] A. Ney, P. Girard, S. Pravossoudovitch, A. Virazel,

“Test of Dynamic Faults in SRAM Memories”

South European Test Symposium (SETS), Tyrol, Austria, March 2006.

[SETS07] A. Ney, P. Girard, C. Landrault, S. Pravossoudovitch, A. Virazel,

“Impact of threshold voltage deviation in SRAM Core-Cells”

South European Test Symposium (SETS), Sestrière, Italy, March 2007.

Submitted Article

[DATE09] A. Ney, P. Girard, C. Landrault, S. Pravossoudovitch, A. Virazel, M. Bastian, V.

Gouin,

“Word Line Enabling Technique: a New DFT Technique for Stability Fault

Testing”

Submitted in IEEE Design Automation and Test in Europe.

145

References

[ABR84] M. Abramovici, P.R. Menon and D.T. Miller, “Critical Path Tracing – An

Alternative to Fault Simulation”, IEEE Design & Test of Computers, Vol. 1, N°1,

February 1984, pp 83-92.

[ABR90] M. Abramovici, M.A. Breuer and A.D. Friedman, “Digital System Testing and

Testable Design”, IEEE Press, 1990.

[ADA96] R.D. Adams and E.S. Cooley, "Analysis of a Deceptive Destructive Read

Memory Fault Model and Recommended Testing", IEEE North Atlantic Test

Workshop, May 1996.

[ADA97] R.D. Adams and E. S. Cooley, "False Write Through and Un-Restored Write

Electrical Level Fault Models for SRAMs", Records of IEEE Int. Workshop on

Memory Technology, Design and Testing, 1997, pp. 27-32.

[ADA02] R.D. Adams, “High Performance Memory Testing”, Kluwer Academic

Publishers, Sept. 2002.

[APP06] D. Appello, V. Tancorre, P. Bernardi, M. Grosso, M. Rebaudengo and M. Sonza

Reorda, “Embedded Memory Diagnosis: An Industrial Workflow”, Proc. of

International Test Conference, 2006, pp.1-9.

[ARS01] Z. Al-Ars and A.J. van de Goor, "Static and Dynamic Behavior of Memory Cell

Array Opens and Shorts in Embedded DRAMs", Proc. of Design Automation

and Test in Europe, 2001, pp. 496-503.

[AZI05] M. Azimane, A. Majhi, G. Gronthoud, M. Lousberg, S. Eichenberger, and A.

Ruiz, “A New Algorithm for Dynamic Faults Detection in RAMs”, Proc. IEEE

VLSI Test Symposium, 2005, pp. 177-182.

[BAK99] K Baker, G Gronthoud, M Lousberg, I Schanstra and C Hawkins, “Defect-Based

Delay Testing of Resistive Vias-Contacts. A Critical Evaluation”, Proc. of

International Test Conference, 1999, pp. 467-476.

146

[BEN05a] A. Benso, A. Bosio, S. Di Carlo, G. Di Natale and P. Prinetto, “March AB, March

AB1: new March tests for unlinked dynamic memory faults”, Proc. of

International Test Conference, 2005.

[BEN05b] A. Benso, A. Bosio, S. Di Carlo, G. Di Natale and P. Prinetto, “Automatic March

tests generation for static and dynamic faults in SRAMs”, Proc. of European

Test Symposium, 2005.

[BEN06] A. Benso, A. Bosio, S. Di Carlo, G. Di Natale and P. Prinetto, “Memory Fault

Simulator for Static-Linked Faults”, Proc. of Asian Test Symposium, 2006, pp.

31-36.

[BHA01] A.J. Bhavnagarwala, X. Tang and J.D. Meindl, "The Impact of Intrinsic Device

Fluctuations on CMOS SRAM Cell Stability", JSSC, April 2001.

[BOR03a] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, V. De, "Parameter

Variations and Impact on Circuits and Microarchitecture", Proc. of Design

Automation Conference, 2003, pp.338-342.

[BOR03b] S. Borri, M. Hage-Hassan, P. Girard, S. Pravossoudovitch, A. Virazel,, "Defect-

Oriented Dynamic Fault Models for Embedded SRAMs”, Proc. of European

Test Workshop, 2003, pp. 23-27.

[BOR05] S. Borri, M. Hage-Hassan, L. Dilillo, P. Girard, S. Pravossoudovitch and A.

Virazel, “Analysis of Dynamic Faults in Embedded-SRAMs: Implications for

Memory Test”, Journal of Electronic Testing Theory and Applications, Vol. 21,

No 2, April 2005, pp 169-179.

[CHA89] M.F. Chang, W.K. Fuchs and J.H. Patel, “Diagnosis and Repair of Memory with

Coupling Faults”, IEEE Transactions on Computers, vol. 38, no. 4, April 1989,

pp. 493-500.

[CHE05] Q. Chen, H. Mahmoodi, S. Bhunia and K. Roy, "Modeling and Testing of SRAM

for New Failure Mechanisms due to Process Variations in Nanoscale CMOS",

Proc. of IEEE VLSI Test Symposium, 2005, pp. 292-297.

[DEK90] R. Dekker, F. Beenker and L. Thijssen, “A Realistic Fault Model and Test

Algorithms for Static Random Access Memories", IEEE Trans. on Computers,

1990, pp. 567-572.

147

[DIL04a] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel and S. Borri, "March iC-: An

Improved Version of March C- for ADOFs Detection", Proc. of IEEE VLSI Test

Symposium, 2004, pp. 129-134.

[DIL04b] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, S. Borri and M. Hage-

Hassan, "Dynamic Read Destructive Faults in Embedded SRAMs: Analysis and

March Test Solution", Proc. of IEEE European Test Symposium, 2004, pp 140-

145.

[DIL05a] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel and M. Hage-Hassan, "Data

Retention Fault in SRAMs: Analysis and Detection Procedures", Proc. of IEEE

VLSI Test Symposium, 2005, pp. 183-188.

[DIL05b] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, "Resisitive open defect

influence in SRAM pre-charge circuit: Analysis and characterization", Proc. of

IEEE European Test Symposium, 2005, pp 116-121.

[DIL05c] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, S. Borri and M. Hage-

Hassan, “Efficient March Test Procedure for Dynamic Read Destructive Fault

Detection in SRAMs”, Journal of Electronic Testing Theory and Applications,

Vol. 21, No 5, October 2005, pp 551-561.

[DIL06a] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, M. Bastian, "March Pre: an

Efficient Test for Resistive-Open Defects in the SRAM Pre-charge Circuit",

Proc. of IEEE Design and Diagnostics of Electronic Circuits and systems, 2006,

pp 254-259.

[DIL06b] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, S. Borri and M. Hage-

Hassan, “ADOFs and Resistive-ADOFs in SRAM Address Decoders: Test

Conditions and March Solutions”, Journal of Electronic Testing Theory and

Applications, Vol. 22, No 3, June 2006, pp 287-296.

[DIL07] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel and M. Bastian, “Analysis

and Test of Resistive-Open Defects in SRAM Pre-Charge Circuits”, Journal of

Electronic Testing Theory and Applications, Vol. 23, No 5 October 2007, pp

435-444.

148

[DIN00] D.M. Kwai, H.W. Chang, H.J. Liao, C.H. Chiao and Y.F. Chou, “Detection of

SRAM Cell Stability by Lowering Array Supply Voltage”, Proc. of IEEE Asian

Test Symposium, 2000, pp 268-273.

[HAM02] S. Hamdioui, Z Al-Ars and A.J. van de Goor, "Testing Static and Dynamic Faults

in Random Access Memories", Proc. IEEE VLSI Test Symposium, 2002, pp. 395-

400.

[HAM03] S. Hamdioui, R. Wadsworth, J.D. Reyes and A.J. van de Goor, "Importance of

Dynamic Faults for New SRAM Technologies", Proc. of IEEE European Test

Workshop, 2003, pp. 29-34.

[HAR01] T.P. Haraszti, “CMOS Memory Circuits”, Kluwer Academics Publishers (second

edition), 2001, pp 402.

[HAR07] S.M. Al-Harbi, F. Noor, F.M. Al-Turjman, “March DSS: A New Diagnostic March

Test for All Memory Simple Static Faults”, IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, Vol. 26, N° 9, September

2007, pp. 1713-1720.

[JAM01] C.M. James, C.W. Tseng and E.J. McCluskey, “Testing for Resistive Opens and

Stuck Opens”, Proc. of International Test Conference, 2001, pp. 1049-1058.

[KES01] A. Keshavarzi, S. Ma, S. Narendra, B. Bloechel, K. Mistry, T. Ghani, S. Borkar, V.

De, “Effectiveness of Reverse Body Bias for Leakage Control in Scaled dual Vt

CMOS ICs”, IEEE Proc. International Symposium on Low Power Electronics and

Design, Aug. 2001, pp. 207-212.

[KIM98] I. Kim, Y. Zorian, G. Komoriya, H. Pham, F.P. Higgins and J.L. Lewandowski,

“Built in Self Repair for Embedded high Density SRAM”, Proc. of International

Test Conference, pp 1112-1119, 1998.

[LI01] J.-F. Li, K.-L. Cheng, C.-T. Huang and C.-W. Wu, “March-Based RAM Diagnosis

Algorithms for Stuck-At and Coupling Faults”, Proc. of International Test

Conference, 2001, pp. 758-767.

[MAL96] W. Maly, H. Heineken, J. Khare and P.K. Nag, “Design for Manufacturability in

submicron domain”, Proc. of ICCAD 96, Nov. 96, pp 690-697.

149

[MEI97] A. Meixner and Jash Banik, “Weak Write Test Mode: An SRAM Cell Stability

Design For Test Technique”, Proc. of IEEE International Test Conference, 2001,

pp. 1043-1052.

[NICO96] M. Nicolaidis, “Theory of Transparent BIST for RAMs”, IEEE Transaction On

Computers, vol. 45, N° 10, October 1996, pp. 1141-1155.

[NIG98] D. Niggemeyer, M. Redeker and J. Otterstedt, “Integration of Non-classical

Faults in Standard March Tests”, Records of the International Workshop on

Memory Technology, Design and Testing, 1998.

[NIG00] D. Niggemeyer, M. Redeker and E.M. Rudnick, “Diagnostic testing of

embedded memories based on output tracing”, Proc. of Memory Technology,

Design and Testing, 2000, pp. 113-118.

[PAV04] A. Pavlov, M. Sachdev and J. Pineda de Gyvez, “An SRAM Weak Cell Fault

Model and a DFT Technique With a Programmable Detection Threshold”,

Proc. of IEEE International Test Conference, 2004, pp. 1006-1015.

[PAV05] A. Pavlov, M. Azimane, J. Pineda de Gyvez and M. Sachdev, “Word Line

Pulsing Technique for Stability Fault Detection in SRAM Cells”, Proc. of IEEE

International Test Conference, 2005, paper 33.1.

[PAV06] A. Pavlov, M. Sachdev and J. Pineda de Gyvez, “Weak Cell Detection in Deep-

Submicron SRAMs: A Programmable Detection Technique”, IEEE Journal of

Solid-State Circuits, Vol. 41, Issue 10, Oct. 2006, pp. 2334-2343.

[PIL01] H. Pilo, R. Dean Adams, R.E. Busch, E.A. Nelson and G.E. Rudgers, “Bitline

Contacts in High Density SRAMs: Design for Testability and Stressability”,

Proc. of International Test Conference, 2001, pp 776-782.

[RON02] E. Rondey, Y. Tellier, S. Borri, “A Silicon-Based Yield Gain Evaluation

Methodology for Embedded SRAMs with Different Redundancy Scenarios”,

Proc. of Memory Technology, Design and Testing, 2002, pp. 57-61.

[SAC97] M. Sachdev, “Open Defects in CMOS RAM Address Decoders”, IEEE Design &

Test of Computers, Vol.14, N°2, April-June 1997, pp. 26-33.

[SUK81] D.S. Suk. and S.M. Reddy, “A March Test for Functional Faults in

Semiconductor Random Access Memories”, IEEE Transaction on Computers,

1981, pp 982-985.

150

[THA06] S.K. Thakur, R. Parekhji and A.N. Chandorkar, “On-chip Test and Repair of

Memories for static and Dynamic faults”, Proc. of International Test

Conference, 2006.

[TER98] C. Terwiesch and R.E. Bohn, “Learning and process improvement during

Production Ramp up”, IEEE Int. Journal of Production Economics, Vol. 70, n° 1,

1998, pp 1-19.

[VDG98] A.J. van de Goor, “Testing Semiconductor Memories, Theory and Practice”,

COMTEX Publishing, Gouda, The Netherlands, 1998.

[VDG99] A.J. van de Goor and J.E. Simonse, “Defining SRAM Resistive Defects and Their

Simulation Stimuli," Proc. of Asian Test Symposium, 1999, pp. 33-40.

[VDG00] A.J. van de Goor and Z. Al-Ars, "Functional Memory Faults: A Formal Notation

and a Taxonomy", Proc. of IEEE VLSI Test Symposium, 2000, pp. 281-289.

[VDG04] A.J. van de Goor, S. Hamdioui and R. Wadsworth, "Detecting Faults in the

Peripheral Circuits and an Evaluation of SRAM Tests", Proc. of IEEE

International Test Conference, 2004, pp. 114-123.

[VAR06] V.A. Vardanian, G. Harutunyan, Y. Zorian, “Minimal March-Based Fault

Location Algorithm with Partial Diagnosis for All Static Faults in Random

Access Memories”, Proc. of Design and Diagnostics of Electronic Circuits and

systems, 2006, pp. 260-265.

[YAR96] V.N. Yarmolik, Y.V. Klimets, A.J. van de Goor and S.N. Demidenko, “RAM

diagnostic tests”, Proc. of Memory Technology, Design and Testing, 1996, pp.

100-102.

[ZAR00] K. Zarrineh, R. Dean Adams and A.P Deo, “Defect Analysis and Realistic Fault

Model Extensions for Static Random Access Memories”, Records IEEE Int.

Workshop on Memory, Technology, Design and Testing, 2000, pp. 119-124.

[ZOR02] Y. Zorian and S. Shoukourian, “Embedded Memory Test & Repair:

Infrastructure IP for SoC Yield”, Proc. of International Test Conference, 2002,

pp 340-349.

151

List of Figures

Figure 1 – Memory classification___ 12

Figure 2 – ITRS roadmap: International Technology Roadmap for Semiconductors _______ 13

Figure I.1 – Scheme of the memory structure _____________________________________ 24

Figure I.2 – Core-cell scheme __ 25

Figure I.3 – Taxonomy of fault primitives __ 27

Figure I.4 – March C- algorithm ___ 30

Figure I.5 – Write driver structure __ 33

Figure I.6 – Fault-free write driver waveforms (풘ퟏ, 풘ퟎ) ____________________________ 33

Figure I.7 – Defect injection in the write driver ____________________________________ 34

Figure I.8 – Waveforms of < 1푤0푤1/1/0 > simulation (Df5) _______________________ 38

Figure I.9 – Configuration of the write driver in presence of Df5 ______________________ 39

Figure I.10 – Waveforms of < 0푤1푤0/0/1 > simulation (Df6) ______________________ 40

Figure I.11 – Faulty behavior of the write driver in presence of Df6 ____________________ 41

Figure I.12 – Basic view of a part of an SRAM array ________________________________ 42

Figure I.13 – Required conditions to detect SWDFs ________________________________ 43

Figure I.14 – March C- algorithm __ 43

Figure I.15 – A simple 8 core-cell SRAM ___ 44

Figure I.16 – Detailed structure of the I/O circuitry ________________________________ 47

Figure I.17 – Waveforms of 풘ퟎ and 풓ퟏ operations ________________________________ 48

Figure I.18 – Waveforms of < 1푤0, 1푟1/0/0 > simulation (Df9) _____________________ 51

Figure I.19 – Fault type vs. defect size ___ 51

Figure I.20 – Waveforms of < 1푤ퟎ,ퟏ풓ퟏ/ퟏ/ퟎ > simulation (Df9) ____________________ 52

152

Figure I.21 – Memory structure scheme ___ 55

Figure I.22 – Sense amplifier scheme ___ 56

Figure I.23 – Fault-free data output circuitry waveforms (풓ퟎ, 풓ퟏ) _____________________ 58

Figure I.24 – Defect injection in the sense amplifier ________________________________ 59

Figure I.25 – Waveforms of < 0푟0, 1푟1/1/푐 > simulation (Df3) ______________________ 63

Figure I.26 – Relaxed constraints to detect d2cIRF1 ________________________________ 65

Figure I.27 – March C- algorithm __ 65

Figure I.28 – March iC- algorithm __ 66

Figure I.29 – Waveforms of < 0푟0, 1푟1/1/0 > simulation (Df4)______________________ 68

Figure I.30 – Waveforms of < 0푟0, 0푤1푟1 > simulation (Df4) _______________________ 70

Figure I.31 – Core-cell currents whose weakness is critical for a 풘ퟎ operation ___________ 76

Figure I.32 – Currents and voltages during a 풘ퟎ operation __________________________ 76

Figure I.33 – Core-cell currents whose weakness is critical for a 풓ퟎ operation ___________ 77

Figure I.34 – Currents and voltages during a 풓ퟎ operation __________________________ 78

Figure I.35 – Considered 푽푻푯 mismatch locations for 풘ퟎ and 풓ퟎ operations ___________ 79

Figure I.36 – Transition Fault (sf, 0.9V, -40°C – Mtn3) ______________________________ 81

Figure I.37 – Transition Fault (sf, 0.9V, -40°C – Mtn3 & Mtp1) ________________________ 81

Figure I.38 – Read Destructive Fault (fs, 0.9V, 125°C – Mtn3) ________________________ 82

Figure I.39 – Read Destructive Fault (fs, 0.9V, 125°C – Mtn3 & Mtn2) __________________ 82

Figure I.40 – dynamic Read Destructive Fault (sf, 0.9V, -40°C – Mtn3) _________________ 83

Figure I.41 – Fault type v.s. mismatch value ______________________________________ 84

Figure I.1 – Fault-free and weak write driver operations ____________________________ 92

Figure II.1 – Principle of the DFD solution a) for the low level and b) for the high level _____ 94

Figure II.2 – Principle of the diagnosis solution ____________________________________ 95

Figure II.3 – Hardware implementation of the diagnosis module______________________ 96

153

Figure II.4 – Diagnosis module functioning _______________________________________ 97

Figure II.5 – Data processing part of the diagnosis module __________________________ 97

Figure II.6 – Simulation results of a faulty write driver ______________________________ 98

Figure II.7 – DFD principle ___ 100

Figure II.8 – SRAM I/O circuitry ___ 101

Figure II.9 – Hardware implementation of the DFD solution ________________________ 102

Figure II.10 – DFD module functioning for a) a fault-free and b) a weak write driver _____ 104

Figure II.11 – A cause-effect diagnosis method __________________________________ 107

Figure II.12 – March C- algorithm ___ 107

Figure II.13 – March DSS __ 109

Figure II.14 – A two blocks SRAM architecture ___________________________________ 111

Figure II.15 – Possible address sequence during test execution for URWF detection,

considering the memory architecture __ 112

Figure II.16 – History-based diagnosis principle __________________________________ 118

Figure II.17 – A 4x4 memory core-cell array _____________________________________ 119

Figure II.18 – March AB- __ 133

155

List of Tables

Table I.1 – Summary of worst-case PVT corners for the defects of Figure I.7 and

corresponding minimum detected resistance and fault models _______________________ 37

Table I.2 – Application of elements M0, M1 and M2 for SWDFs detection ______________ 45

Table I.3 – Truth table of the data output circuitry _________________________________ 57

Table I.4 – Summary of worst-case PVT corners for the defects of Figure I.24 and

corresponding minimum detected resistance and fault models _______________________ 61

Table I.5 – March iC- ability ___ 72

Table I.6 – Results summary __ 79

Table II.1 – Truth table of the DFD module ______________________________________ 102

Table II.2 – Partial fault dictionary related to March C- ____________________________ 108

Table II.3 – List of extended signatures for URWF detection during March C- execution ___ 113

Table II.4 –Signatures -URWF vs. CFst - ___ 115

Table II.5 – Additional Information Vector legend ________________________________ 124

Table II.6 – Signature vs. history-based diagnosis ________________________________ 131

Table II.7 – Experimental results March C- ______________________________________ 133

Table II.8 – Experimental Results March AB- ____________________________________ 134

Test et Diagnostic de Fautes Dynamiques dans les Mémoires SRAM
RESUME : De nos jours, les mémoires sont présentes dans de nombreux circuits intégrés
conçus pour des applications électroniques embarquées et occupent une majeure partie de la
surface des systèmes sur puce (SoC). Ces mémoires deviennent donc les acteurs principaux
du rendement de production. Or, une forte densité d’intégration associée à une complexité
élevée des procédés de fabrications rendent ces mémoires toujours plus sensibles aux défauts
de fabrications. Afin de mettre en évidence les défaillances survenant dans les mémoires,
plusieurs méthodes de test existent. Ces solutions de test couramment utilisées pour les
mémoires SRAM sont basées sur la détection de fautes statiques telles que les fautes de
collage ou de couplage. Des algorithmes spécifiques, appelés algorithmes March, sont utilisés
afin de mettre en évidence ce type de fautes. Cependant, ces solutions de test ne sont pas
adaptées à la détection d’un nouveau type de faute apparaissant dans les technologies
submicroniques. Ces fautes, appelées fautes dynamiques, sont principalement dues à des
défauts de type « ouverts-résistif » et ne se manifestent que dans des configurations très
spécifiques. En effet, une séquence d’opérations est nécessaire à la mise en évidence de ces
fautes. Le premier objectif de cette thèse a été de proposer des solutions de test permettant la
détection de fautes dynamiques dues à des défauts « ouverts-résistifs » dans le driver
d’écriture et l’amplificateur de lecture. Une extension sur l’étude des comportements
dynamiques face à des variations de procédés de fabrication dans le point mémoire a été
proposée. Enfin, la seconde partie de cette thèse fournit de nouvelles solutions de diagnostic,
capables de prendre en compte les fautes dynamiques d’une part, et proposant une détection
précise des sites fautifs. Ces travaux ont été réalisés en collaboration avec la société Infineon
basée à Sophia Antipolis spécialisée dans la conception de mémoires SRAM.

Test and Diagnostic of Dynamic Faults in SRAM memories
ABSTRACT: Nowadays, embedded memories occupy a large part of the System-on-Chip
(SoC) silicon area. Consequently, memories are the main responsible for the overall System-
on-Chip yield. However, a high integration density and the complexity of the fabrication
process make memories more and more prone to manufacturing defects. Therefore, efficient
test and diagnostic solutions for memories are required. Current test solutions used for SRAM
memories are oriented to static fault detection. Recent researches show that VDSM (Very
Deep SubMicron) technologies more frequently involve dynamic faults. These faults, mainly
due to bad vias or contacts involving a resistive-path, need a specific pattern to be sensitized.
However, classical test solutions are not able to deal with such behaviors. Consequently, the
first part of this thesis is dedicated to new test solutions allowing to detect dynamic faults due
to resistive-open defects in the memory. Especially, we focus our study on the write driver
and the sense amplifier. New fault models and March test solutions are proposed. Then, an
extension on dynamic faults is provided: a brief study on the impact of the threshold voltage
variation is given. Finally, the next part of this thesis is oriented toward memory diagnostic.
New efficient algorithmic diagnosis solutions are proposed. They allow dealing with dynamic
faults and providing information on the faulty bloc location. This thesis has been done in the
framework of the Associate MEDEA project in cooperation with Infineon Technologies.

MOTS-CLES : Mémoires SRAM, Test, Diagnostic, Conception en vue du diagnostic, Fautes
Dynamiques

Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier,

LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5, France.

