
HAL Id: tel-00342652
https://theses.hal.science/tel-00342652

Submitted on 27 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reliability of answers in semantic peer-to-peer networks
Gia Hien Nguyen

To cite this version:
Gia Hien Nguyen. Reliability of answers in semantic peer-to-peer networks. Computer Science [cs].
Université Joseph-Fourier - Grenoble I, 2008. English. �NNT : �. �tel-00342652�

https://theses.hal.science/tel-00342652
https://hal.archives-ouvertes.fr

N d’ordre :

Universite Joseph Fourier

Dissertation

soumise pour le grade de

Docteur de l’universite Joseph Fourier

Spécialité : Informatique

par

Gia Hien NGUYEN

Fiabilité des réponses

fournies par un réseau logique pair-à-pair

Présentée et défendue publiquement le 24 Novembre 2008 devant un jury
composé de:

Serge ABITEBOUL, Directeur de recherche, INRIA Président
Philippe CHATALIC, Mâıtre de conférence, Université Paris-Sud Co-directeur de thèse
Christine COLLET, Professeur, Institut national polytechnique de Grenoble Examinateur
Anne DOUCET, Professeur, Université Paris 6 Rapporteur
Jérome EUZENAT, Directeur de recherche, INRIA Examinateur
Jérome LANG, Directeur de recherche, CNRS Rapporteur
Marie-Christine ROUSSET, Professeur, Université de Grenoble Directeur de thèse

Laboratoire d’Informatique de Grenoble, U.M.R. CNRS 5217,
Universite Joseph Fourier, 38402, Grenoble, France

Remerciements

Je tiens tout d’abord à remercier les directeurs de cette thèse, Marie-
Christine Rousset et Philippe Chatalic, pour m’avoir fait confiance,
m’avoir guidé, encouragé et conseillé au cours de ces trois années
de thèse. La thèse n’aurait pas pu être menée à son terme sans la
patience, la disponibilité et l’exigence de leur part.

Je suis très sensible à l’honneur que m’ont fait Serge Abiteboul, Chris-
tine Collet, Anne Doucet, Jérôme Euzenat et Jérôme Lang, en accep-
tant de participer à mon jury lors de la soutenance de cette thèse. Je
tiens à leur exprimer toute ma reconnaissance pour l’intérêt porté à
ce travail.

J’adresse également ma profonde gratitude à toute l’équipe Hadas,
en particulier Cyril Labbé et Alexandre Termier, ainsi qu’à toute
l’équipe Iasi-Gémo, en particulier François Goasdoué, Nathalie Per-
nelle et Hélène Gagliardi, pour leur aide tant sur le plan scientifique
qu’humain et pour l’amitié qu’ils m’ont témoigné tout au long de ce
travail.

Je tiens également à exprimer ma reconnaissance envers toutes les per-
sonnes au Laboratoire de Recherche Informatique d’Orsay, à l’Inria
Saclay, et au Laboratoire d’Informatique de Grenoble, qui m’ont ap-
porté leur soutien en vue des procédures administratives ainsi que
pour leur encouragement.

Enfin, j’adresse un grand merci à toute ma famille au Vietnam ainsi
qu’à mon amie Thu Hà, qui m’ont toujours soutenu et aidé depuis le
début de mon séjour en France jusqu’à la fin de ce long travail.

Abstract

Semantic peer-to-peer systems are fully decentralized overlay networks
of people or machines (peers) sharing and searching varied resources
(documents, videos, photos) based on their semantic annotations us-
ing ontologies. In such systems, no user imposes to others his ontology
but logical mappings between ontologies make possible the creation
of a network of people in which personalized semantic marking up of
data cohabits nicely with a collaborative exchange of data. The map-
pings are exploited during information retrieval or query answering
for query reformulation between peers. No central or external author-
ity can neither know the global network (the union of peer ontologies
and mappings), nor control the reliability of the peers. This may
cause some of the results provided by some peers to be unreliable.
This thesis improves the reliability of answers in such networks in dif-
ferent ways. The first part of the thesis focuses on the problem of
returning only well-founded answers of a query when the global net-
work is inconsistent. Two algorithms have been proposed. The first
one detects causes of inconsistencies. It terminates, is decentralized,
complete and correct. The second algorithm uses the results of the
first one in order to make only well-founded reasoning. It terminates,
is decentralized and correct. Promising results have been obtained
from experimentations. The second part of the thesis considers the
problem of modeling and handling peers’ trust into returned answers.
Based on a probabilistic setting, the proposed model of trust has a
clear semantics and trust towards answers can be estimated by peers
with a good precision using few observations.

Keywords : peer-to-peer, semantic peer-to-peer systems, peer-to-
peer inference systems, inconsistencies, distributed reasoning, model
of trust, Bayesian approach to statistics

Résumé

Les systèmes pair-à-pair sémantiques sont des systèmes décentralisés
de personnes ou de machines (pairs) pour le partage et la recherche
de diverses ressources (documents, vidéos, photos), basés sur leurs
annotations sémantiques utilisant des ontologies. Dans ces systèmes,
aucun utilisateur n’impose aux autres sa propre ontologie. Les map-
pings sémantiques entre les ontologies créent un réseau où un échange
de données est rendu possible. Les mappings sont exploités lors
des traitements des requêtes. Aucune autorité centrale ne peut ni
connâıtre le réseau global (l’union des ontologies et des mappings), ni
contrôler la fiabilité des pairs. Les réponses fournies dans ces réseaux
peuvent être donc peu fiables. Cette thèse contribue à l’amélioration
de la fiabilité de ces réponses de plusieurs façons. La première partie
de la thèse a pour but de garantir de ne produire que des réponses
bien-fondées quand le réseau global est inconsistant. Deux algo-
rithmes ont été proposés. Le premier a pour but de détecter des
causes d’inconsistances. Il termine, est décentralisé, complet et cor-
rect. Le deuxième algorithme profite des résultats du premier pour
garantir de ne raisonner que de manière bien-fondée. Il termine, est
décentralisé et correct. Des résultats prometteurs ont été obtenus à
partir des expérimentations. La seconde partie de la thèse considère
le problème de modéliser la confiance des pairs envers des réponses
obtenues. Basé sur un modèle probabiliste, le modèle de confiance
proposé a une sémantique claire. Un des avantages de ce modèle est
que la confiance en des réponses obtenues peut être estimée par des
pairs avec une bonne précision même avec peu observations.

Mot-clés : pair-à-pair, systèmes pair-à-pair sémantiques, systèmes
d’inférence pair-à-pair, inconsistances, raisonnement distribué, modèle
de confiance, approach statistiques Bayésienne

Résumé des chapitres

Chapitre 1. Introduction générale

Les architectures pair-à-pair sont des infrastructures supportant des
réseaux dynamiques d’utilisateurs (appelés pairs), i.e. dans lesquels
un pair peut arriver ou partir à n’importe quel moment. Les pairs
d’un tel système collaborent librement pour partager leurs ressources.
Il existe un large éventail des systèmes pair-à-pair : des réseaux de
partage de fichiers, qui permettent des recherches avec des mot-clés;
des réseaux de gestion de données, qui transposent l’approche base de
données dans un mode pair-à-pair pour des requêtes structurées basées
sur un modèle de données et son schéma; des systèmes pair-à-pair
sémantiques dans lesquels les ressources sont annotées sémantiquement
utilisant des ontologies et dont les requêtes sont basées sur le langage
des ontologies; finalement, des systèmes d’inférence pair-à-pair qui
sont des systèmes de raisonnement décentralisé. Le premier problème
considéré dans cette thèse est celui de gestion d’inconsistances dans les
systèmes d’inférence pair-à-pair. Le second se situe dans le contexte
des systèmes pair-à-pair sémantiques et concerne la modélisation ainsi
que la gestion de la confiance des pairs en des réponses fournies par
ces systèmes.

Chapitre 2. Préliminaires

Ce chapitre rappelle des caractéristiques importantes du système
d’inférence pair-à-pair SomeWhere, dans lequel le problème de ges-
tion d’inconsistances a été étudié, et du système pair-à-pair sémantique
SomeOWL, auquel l’application du modèle de confiance proposé a
été considérée. Dans SomeWhere, chaque pair possède une théorie
clausale dont une partie du vocabulaire peut être partagée avec d’autres
pairs via des mappings. La recherche des conséquents d’une clause,
considérée comme une requête, se fait tout d’abord par un raison-
nement local dans le pair où la requête a été interrogée, et puis
éventuellement par des propagations des variables partagées dans d’autres
pairs via des mappings, qui initialisent des raisonnements décentralisés
dans le réseau. Les conséquents trouvés par ces raisonnements, qui

sont à distant, sont renvoyés au pair initiale pour former des conséquents
finaux de la requête. Dans SomeOWL, les pairs organisent leurs
ressources en utilisant une ontologie de classes. Un mapping reliant
deux pairs exprime une correspondance sémantique entre des classes
de ces pairs. Un utilisateur pose une requête à un pair donné en
utilisant le langage de l’ontologie du pair. SomeOWL est déployé
au-dessus de SomeWhere: grâce à un encodage propositionnel des
ontologies des pairs en des théories clausales et de la requête en une
clause, la reformulation de la requête dans SomeOWL est réduite à
la recherche des conséquents d’une clause dans SomeWhere.

Chapitre 3. Etat de l’art sur la gestion d’inconsistances

La gestion d’inconsistances est un problème qui a été beaucoup étudié.
Des travaux ont été réalisés dans le cadre des bases de données pour
garantir la correction dans les réponses des requêtes, et dans des
bases de connaissances pour en tirer correctement de nouvelles con-
naissances. Ces travaux s’appuient sur deux approches principales.
La première est de chercher à modifier ces bases pour restaurer leur
consistance. La deuxième est d’accepter l’existence d’inconsistances
mais d’adapter le mécanisme de raisonnement comme dans les logiques
paraconsistantes. Une autre possibilité pour gérer des inconsistances
est d’utiliser des approches numériques, pour préférer une source
d’informations à une autre, ou un conséquent à un autre. Dans un
système pair-à-pair, vu la nature décentralisée des pairs et l’accès
restreint dans leur contenu, il est difficile d’y appliquer la première
approche. Par conséquent, nous avons adopté la deuxième approche
pour gérer des inconsistances dans SomeWhere.

Chapitre 4. Gestion d’inconsistances dans SomeWhere

Sous l’hypothèse que les théories locales sont consistantes, les incon-
sistances dans le réseau global de SomeWhere sont donc dues aux
mappings. Deux algorithmes ont été proposés pour gérer ces inconsis-
tances. L’algorithme P2P-NG détecte des causes des inconsistances
créées par l’arrivée d’un nouveau mapping. Ces causes sont car-
actérisées par des nogoods, qui sont des ensembles de mappings possi-
blement distribués. Les nogoods détectés sont stockés dans le pair qui
ajoute le nouveau mapping. P2P-NG termine, est correct et complet.
L’algorithme WF-DeCA ne cherche que des conséquents bien-fondés
des requêtes, en s’appuyant sur les résultats de P2P-NG. Il termine et
est correct. Ces deux algorithmes ont été implémentés dans la plate-
forme SomeWhere. Un troisième algorithme a été conçu, de sorte

que les résultats de ses expérimentations puissent être transposés dans
P2P-NG et WF-DeCA. Ces résultats sont prometteurs.

Chapitre 5. Etat de l’art sur les modèles de confiance et de
réputation pour les réseaux sociaux et pair-à-pair

Ce chapitre commence par distinguer la confiance de la réputation.
Il est pertinent de considérer la réputation d’une personne dans les
contextes où il y a un consensus des gens sur ce qui caractérise son
honnêteté. Par exemple, les gens ont le même point de vue de ce qui
fait un bon vendeur dans le contexte du commerce électronique : celui
qui fourni correctement l’article acheté à l’acheteur. Par contre, dans
certains autres contextes où il n’y a pas de tel consensus, il est perti-
nent de parler de confiance. Par exemple, un novice fera confiance aux
conseils d’une grande enseigne sur les problèmes techniques des porta-
bles, mais un expert n’y fera pas confiance. De nombreux modèles, de
confiance ainsi que de réputation, ont été proposés pour les réseaux
sociaux et pair-à-pair. Ils sont aussi distingués les uns des autres par
leur modèle de calcul, qui soit basé sur un modèle mathématique, soit
ad-hoc.

Chapitre 6. Un modèle probabiliste de confiance pour des
systèmes pair-à-pair sémantiques

Dans ce chapitre, un modèle probabiliste a été proposé pour modéliser
et calculer la confiance d’un pair dans les réponses obtenues avec des
systèmes pair-à-pair sémantiques. La confiance a été définie, non au
niveau des pairs, mais au niveau des annotations sémantiques des
réponses renvoyées. En supposant qu’un utilisateur évalue aléatoirement
des ressources qu’il obtient comme satisfaisantes ou non-satisfaisantes,
il est facile de construire pour chaque pair une base d’observations
directes sur l’annotation sémantique de ces ressources. Un pair peut
donc estimer la probabilité qu’une ressource soit satisfaisante, compte
tenu de son annotation sémantique et des observations déjà réalisées.
Ce modèle de calcul est basé sur la méthode des statistiques Bayésienne.
Même avec peu d’observations, la précision de l’estimation de la con-
fiance est bonne. Dans le cas où les observations directes sont man-
quantes, il est possible pour un pair de collecter des observations
d’autres pairs et s’en servir pour estimer sa confiance dans les ressources
renvoyées. Quand ce modèle est appliqué au système pair-à-pair
sémantique SomeOWL, une stratégie de collection d’observations,
qui est pratique, a été construite. Alors que ce modèle reste à être

implémenté, son passage à l’échelle semble être garanti par la sim-
plicité de son modèle de calcul.

Chapitre 7. Conclusion et perspectives

Après avoir rappelé les principales contributions de cette thèse, ce
chapitre esquisse quelques directions pour sa poursuite. Premièrement,
il est possible de permettre l’utilisation d’un mapping même si la
détection des éventuelles inconsistances causées par celui-ci n’a pas
encore fini. Deuxièmement, les informations collectées lors des traite-
ments des requêtes pourront être exploitées davantage pour ordonner
les réponses. Troisièmement, les valeurs de confiance pourront être
utilisées pour découvrir de nouveaux mappings, pour l’acheminement
des requêtes ainsi que des réponses. Finalement, il est aussi possible
de considérer la gestion de temps dans le modèle de confiance proposé.

Résumé substantiel de la thèse

Les architectures pair-à-pair sont des infrastructures supportant des
réseaux dynamiques d’utilisateurs (appelés pairs), i.e. dans lesquels
un pair peut arriver ou partir à n’importe quel moment. Les pairs
d’un tel système collaborent librement pour partager leurs ressources.
Il existe un large éventail des systèmes pair-à-pair : des réseaux de
partage de fichiers, qui permettent des recherches avec des mot-clés;
des réseaux de gestion de données, qui transposent l’approche base de
données dans un mode pair-à-pair pour des requêtes structurées basées
sur un modèle de données et son schéma; des systèmes pair-à-pair
sémantiques dans lesquels les ressources sont annotées sémantiquement
utilisant des ontologies et dont les requêtes sont basées sur le lan-
gage des ontologies; finalement, des systèmes d’inférence pair-à-pair
(P2PIS) qui sont des systèmes de raisonnement décentralisé. Le pre-
mier problème considéré dans cette thèse est celui de gestion
d’inconsistances dans les systèmes d’inférence pair-à-pair. Le second
se situe dans le contexte des systèmes pair-à-pair sémantiques et con-
cerne la modélisation ainsi que la gestion de la confiance des pairs en
des réponses fournies par ces systèmes.

I. Gestion des inconsistances dans les P2PIS

Notre étude se situe principalement dans le contexte du système d’inférence
pair-à-pair SomeWhere.

1. Introduction de SomeWhere

Dans SomeWhere, chaque pair contient une théorie clausale. Les
pairs se connectent par des mappings : un mapping entre deux pairs
est une clause concernant des variables de ces deux pairs. Les variables
apparaissant dans un mapping sont appelées des variables partagées.
L’architecture de SomeWhere est totalement décentralisée. Chaque
pair ne connâıt que sa théorie locale et les mappings qu’il a avec ses
voisins. Quand un nouveau pair arrive, il déclare des mappings avec
certains pairs qu’il connâıt. La théorie globale d’un réseau Some-
Where est l’union de toutes les théories locales et les mappings.
Aucun pair ne connâıt cette théorie globale.

Figure 1: Exemple d’un réseau SomeWhere

Prenons un exemple d’un réseau SomeWhere, correspondant à Fig-
ure 1. Dans cet exemple :

• P1 peut être interrogé par des chercheurs pour savoir où l’on peut
soumettre ses travaux. Les connaissances de P1 sont: PODS06
est ouvert ; soumettre à PODS06 implique soumettre à PODS;
seuls les résultats théoriques sont acceptés pour PODS ; une
démonstration ne peut pas être soumise à JAIR.

• P2 distingue des proceedings des journaux. Les connaissances
de P2 sont : soumettre à PODS implique soumettre à une
conférence avec proceedings ; soumettre à JAIR implique soumet-
tre à un journal ; un même résultat ne peut pas être soumis à
une conférence et un journal ; les résultats en attente ne peuvent
pas être soumis à un journal.

• P3 a des connaissances sur la politique de valorisation des recherches:
des logiciels devraient être en attente ou soumis comme des
démonstrations ; des résultats théoriques ne peuvent être soumis
à des journaux;

• les connaissances locales à ces trois pairs P1, P2, P3 sont représentées
respectivement par les ensembles O1, O2, O3.

• l’ensembleM2 des mappings stockés dans P2 exprime l’équivalence

entre PODS1 et PODS2 (respectivement JAIR1 et JAIR2) via
des mappings identifiés par P2.1, P2.2, P2.3, P2.4. L’ensemble
M3 des mappings stockés dans P3 établissent l’équivalence entre
des variables de P3 avec celles de deux autres pairs.

Le système SomeWhere s’appuie sur l’algorithme DeCA dont l’objectif
est de chercher des conséquents premiers propres d’une clause par
rapport à la théorie globale. La correction de cet algorithme s’appuie
cependant sur l’hypothèse que la théorie globale de SomeWhere est
consistante. Pourtant, cette hypothèse n’est pas réaliste, vu la nature
décentralisée et multi-auteurs des théories locales.

Dans la Figure 1, l’ensemble suivant des clauses est inconsistant :
{¬Journal3∨Journal2, ¬Theory3∨Journal3 , ¬Theory1∨Theory3 ,
¬PODS1∨Theory1 , ¬PODS061∨PODS1 , PODS061 , ¬Journal2∨
¬Proc2 , ¬PODS2∨Proc2 , ¬PODS1∨PODS2}. Parmi ces clauses,
il y a des mappings : ¬Journal3 ∨ Journal2 (P3.5) , ¬Theory1 ∨
Theory3 (P3.2) et ¬PODS1 ∨ PODS2 (P2.1).

Dans ce travail, nous supposons que les théories locales sont consis-
tantes. Les inconsistances dans la théorie globale sont donc créées
par des mappings. Nous caractérisons donc un nogood ng comme un
ensemble de mappings tel que O∪ng est inconsistant, où O est l’union
des théories locales (Définition 14).

2. Détection des nogoods

Nous proposons l’algorithme P2P-NG pour la détection des nogoods.
P2P-NG est une adaptation de DeCA dans le but de chercher toutes
les preuves de la clause vide conséquent d’une clause. Avant d’ajouter
un nouveau mapping dans le réseau, un pair utilise P2P-NG pour
vérifier si ce mapping peut être la cause d’une inconsistance, i.e. si
la clause vide est un conséquent de ce mapping. Dans ce cas, le
pair stocke localement l’ensemble formé par ce nouveau mapping et
les autres mappings utilisés dans la preuve de la clause vide (son
mapping support) comme un nogood.

Dans l’exemple de Figure 1, supposons que les pairs arrivent dans
l’ordre P1, puis P2, puis P3 et leurs mappings sont ajoutés dans
l’ordre de leur numéro. L’ajout des 4 mappings de P2 et de 4 pre-
miers mappings de P3 ne cause pas d’inconsistance. Quand le map-
ping P3.5 est ajouté, P2P-NG est appelé et il détecte que la clause
vide est un conséquent de P3.5. Le mapping support de cette preuve
est {P3.2, P2.1}. Le nogood ng = {P3.5, P3.2, P2.1} est donc stocké

dans P3. L’ajout des autres mappings de P3 ne crée pas de nouveaux
nogoods.

Nous avons montré que l’algorithme P2P-NG termine, est correct
et complet, dans le sens où tous les nogoods causés par l’ajout d’un
mapping sont détectés.

3. Raisonnement bien-fondé dans SomeWhere

A partir de la définition de nogoods, nous savons que tout sous-
ensemble du réseau global qui ne contient aucun nogood est forcément
consistant. Donc, nous devons garantir de ne renvoyer un conséquent
que s’il peut être déduit avec au moins une preuve qui ne contient
aucun nogood. Un tel conséquent est considéré bien-fondé car il
est déduit à partir d’un sous-ensemble consistant du réseau global
(Définition 16).

Pour ne chercher que des conséquents bien-fondés, lors des traitements
des requêtes, nous devons collecter tous les nogoods qui pourraient
invalider une preuve d’un conséquent. Comme un nogood est un en-
semble de mappings, nous allons faire des tests d’inclusion entre le
mapping support d’une preuve et les nogoods collectés. Si le map-
ping support contient un des nogoods collectés, la preuve n’est pas
bien-fondée et donc rejetée. Nous proposons l’algorithme WF-DeCA
qui assume toutes ces procédures. WF-DeCA est une adaptation de
DeCA, il est utilisé au moment de la recherche des conséquents d’une
clause, il termine et est correct. Sa correction dépend de la complétude
de P2P-NG, qui a été aussi démontrée.

Pour expérimenter les algorithmes P2P-NG et WF-DeCA, nous
avons tout d’abord conçu un troisième algorithme, appelé DeCAbL.
Cet algorithme est une adaptation de DeCA, ayant un paramètre
supplémentaire indiquant la taille maximale qu’un conséquent peut
avoir. Par exemple, si nous limitons ce paramètre à 0, nous ne cher-
chons que la clause vide. La correction et la complétude de De-
CAbL ont été démontrées. L’implémentation de l’algorithme P2P-
NG a été faite, en étendant DeCAbL pour la prise en compte des
mappings supports de la clause vide, en vue de la détection des no-
goods. L’implémentation de l’algorithme WF-DeCA a été faite aussi
en étendant DeCAbL pour la collection des nogoods et les tests
d’inclusion entre les mapping supports des conséquents et les nogoods
collectés. Les résultats des expérimentations sur DeCAbL peuvent
donc être transposés à P2P-NG et WF-DeCA. Différents tests ont
été réalisés et nous ont apporté des résultats prometteurs.

II. Un modèle probabiliste de confiance pour les systèmes
pair-à-pair sémantiques

Dans un système pair-à-pair sémantique, nous supposons qu’une ressource
est renvoyée comme une réponse à une requête accompagnée d’une
justification logique sous forme de label (annotation sémantique). Le
label L(r) de la ressource r est un ensemble de classes, de possible-
ment différents pairs. Nous supposons aussi qu’un utilisateur évalue,
de manière aléatoire, des ressources qu’il obtient, comme satisfaisantes
ou non-satisfaisantes. Chaque évaluation sur une ressource est une ob-
servation sur son label. Nous pouvons donc construire pour chaque
pair Pi une base d’observations directes sur les labels des ressources.
Chaque ligne d’une telle base a trois champs, correspondants au nom
d’un label (L), le nombre des observations satisfaisantes (#+

i (L)) et
le nombre des observations non-satisfaisantes (#−i (L)) sur celui-ci.
Table 1 est un exemple d’une base d’observations dans le pair P1.

Label (L) #+
1 (L) #−1 (L)

P2:MyActionF ilms 30 6
P2:MyCartoons 3 15
P4:Western 2 8
P5:Italian P4:Western 0 6
P6:AnimalsDocum 14 14
P7:JeanRenoir 22 11
P3:Bollywood 6 35

Table 1: La base d’observations dans le pair P1

Notons que, comme des labels sont des justifications logiques des
ressources, une observation sur un label L′, telle que L ⊆ L′, est
aussi une observation pertinente sur L. Un pair Pi peut donc cal-
culer le nombre total d’observations satisfaisantes (respectivement
non-satisfaisantes) relevantes à un label L, noté par O+

i (L) (respec-
tivement O−i (L)), en accumulant tous les nombres #+

i (L′) (respec-
tivement #−i (L′)) où L′ est un label relevant à L (Définition 17).

Nous définissons la confiance d’un pair Pi en un label L comme la
probabilité qu’une ressource annotée par L soit satisfaisante pour
Pi, étant données les observations relavantes à L (Définition 18).
Théorème 8 permet d’estimer cette confiance par la formule

1 +O+
i (L)

2 +O+
i (L) +O−i (L)

avec un écart type de√
(1 +O+

i (L))× (1 +O−i (L))

(2 +O+
i (L) +O−i (L))2 × (3 +O+

i (L) +O−i (L))

Le modèle de confiance que nous proposons est basé sur l’approche
des statistiques Bayésienne, il a une sémantique claire. La formule de
l’écart type permet aussi de calculer le nombre minimal d’observations
pour atteindre un niveau souhaité de précision de l’estimation. Dans
ce modèle, même avec peu d’observations, la précision de l’estimation
de la confiance est bonne. Dans le cas où les observations directes
sont manquantes, il est possible pour un pair de collecter des obser-
vations d’autres pairs et s’en servir pour estimer sa confiance dans
les ressources renvoyées, sous l’hypothèse que ces pairs ont un même
critère de satisfaction avec lui.

Le modèle de confiance que nous proposons est général et peut être
utilisé dans de différents systèmes pair-à-pair sémantiques. Nous
avons appliqué ce modèle au système SomeOWL, qui a été déployé
au-dessus de la plateforme SomeWhere. Un point important dans
SomeOWL est que la reformulation des requêtes peut être faite
par l’algorithme DeCA de SomeWhere. Nous en avons profité
pour concevoir spécialement pour SomeOWL une stratégie de collec-
tion des observations, qui étend les messages de réponse envoyés par
DeCA pour transmettre également des observations éventuellement
pertinentes pour estimer la confiance en des ressources renvoyées.
Avec cette stratégie, le gain en termes de temps peut être signifi-
catif, car des observations d’autres pairs sont disponibles dès que les
ressources sont trouvées.

III. Conclusion et perspectives

Nous avons étudié le problème de gestion d’inconsistances dans les
systèmes d’inférence pair-à-pair, comme SomeWhere, ainsi que le
problème de la modélisation et la gestion de la confiance des pairs
en des réponses fournies par des systèmes pair-à-pair sémantiques,
comme SomeOWL. Cette thèse ouvrirait quelques directions de recherche
ultérieure. Premièrement, il est possible de permettre l’utilisation
d’un mapping même si la détection des éventuelles inconsistances
causées par celui-ci n’a pas encore fini. Deuxièmement, les infor-
mations collectées lors des traitements des requêtes pourront être ex-
ploitées davantage pour ordonner les réponses. Troisièmement, les

valeurs de confiance pourront être utilisées pour découvrir de nou-
veaux mappings, pour l’acheminement des requêtes ainsi que des réponses.
Finalement, il est aussi possible de considérer la gestion de temps dans
le modèle de confiance proposé.

Contents

1 GENERAL INTRODUCTION 1

2 PRELIMINARIES 10

2.1 SomeWhere . 10

2.1.1 Syntax and semantics . 11

2.1.2 The consequence finding problem 12

2.1.3 Example . 13

2.2 DeCA : Decentralized Consequence Finding Algorithm 14

2.3 The SomeOWL semantic peer-to-peer system 24

2.3.1 Illustrative example . 27

2.3.2 Query answering in SomeOWL 29

I REASONING WITH INCONSISTENCIES IN PEER-
TO-PEER INFERENCE SYSTEMS 33

3 STATE OF THE ART ON DEALING WITH INCONSISTEN-

CIES 38

3.1 Consistency restoration . 41

3.1.1 Restoring consistency of databases 41

3.1.2 Restoring consistency of knowledge bases 43

3.2 Inconsistency tolerance . 46

3.2.1 Logical frameworks based on paraconsistent logics 47

3.2.1.1 Annotated Predicate Calculus 47

3.2.1.2 LFI1 . 49

i

CONTENTS

3.2.1.3 Distributed Description Logics with holes 50

3.2.2 Logical frameworks using other logics 52

3.2.2.1 Preservationist logic 52

3.2.2.2 Abstract logic . 54

3.2.2.3 The K45An epistemic logic 57

3.2.3 Other techniques for dealing with inconsistencies 58

3.2.3.1 Source reliability-based technique 59

3.2.3.2 Majority technique 60

3.2.3.3 Change detection for compiled knowledge technique 60

3.3 Summary . 61

4 DEALING WITH INCONSISTENCIES IN SomeWhere 64

4.1 Peer-to-peer detecting inconsistencies and nogoods 68

4.1.1 The P2P-NG algorithm 68

4.1.2 Termination, soundness and completeness of P2P-NG . . 72

4.2 Peer-to-peer well-founded reasoning 79

4.2.1 The WF-DeCA algorithm 79

4.2.2 Termination and Soundness of WF-DeCA 82

4.3 Implementation of P2P-NG and WF-DeCA and experimenta-

tions . 84

4.3.1 An overview of the SomeWhere architecture 85

4.3.2 DeCAbL : Decentralized bounded length consequence find-

ing algorithm . 87

4.3.3 Experimentations with DeCAbL 92

4.3.3.1 Data set 1: a consistent P2PIS 92

4.3.3.2 Data set 2: an inconsistent P2PIS 95

4.3.3.3 Data set 3: a random P2PIS 98

4.3.4 Implementation of P2P-NG and WF-DeCA 101

4.4 Conclusion and discussion . 103

ii

CONTENTS

II TRUST FOR SEMANTIC PEER-TO-PEER SYS-
TEMS 109

5 STATE OF THE ART ON TRUST AND REPUTATION COM-

PUTATION MODELS FOR PEER-TO-PEER AND SOCIAL

NETWORKS 114

5.1 Models of reputation . 116

5.1.1 Non probabilistic models of reputation 116

5.1.2 Probabilistic models of reputation 118

5.1.2.1 The PageRank algorithm 118

5.1.2.2 The EigenTrust Algorithm 120

5.1.2.3 Maximum likelihood estimation technique 124

5.2 Models of trust . 125

5.2.1 Non probabilistic models of trust 125

5.2.2 Probabilistic models of trust 129

5.2.2.1 Personalized EigenTrust algorithm for trust com-

putation . 129

5.2.2.2 Bayesian approach to statistics for trust estimation129

5.3 Summary . 131

6 A PROBABILISTIC TRUST MODEL FOR SEMANTIC PEER-

TO-PEER SYSTEMS 135

6.1 Preliminary : some useful notions of probability and statistics . . 136

6.2 Local observations for trust estimation 141

6.3 Bayesian model and estimation of trust 143

6.4 Application to SomeOWL . 146

6.5 Discussion and Conclusion . 150

7 Conclusion and perspectives 154

References 165

iii

Chapter 1

GENERAL INTRODUCTION

Nowadays, there are uncountable useful applications that are built on top of

the Internet. The architecture of these applications have been evolving. One

of the most used application running on the Internet is an Internet browser,

such as Mozilla Firefox or Netscape Navigator. The architecture of this type of

application is the so-called client-server. The browser on your computer is a client

that sends (and receives) data to (and from) a centralized server, which is the

source of information.

Although the application of Internet browser is still widespread, the client-server

architecture itself has several limitations, such as the problem of bandwidth bot-

tleneck or the computing power of a single server. The Encyclopedia of Life, at

the address http://www.eol.org, is an example of this kind of problem. Just 5

hours after its opening ceremony on the 26th February 2008, access to the page

was not possible due to the very great amount of visits : more than 11 millions

visits in just 5 hours. A single a server can not handle such a great amount of

users.

The so-called peer-to-peer infrastructure is an alternative to the client-server in-

frastructure and does not have those limitations.

Peer-to-peer architecture
Peer-to-peer architecture is an infrastructure supporting peer-to-peer systems

(applications) which are networks of users. A user, often called a peer, can join

1

or leave a peer-to-peer system at anytime. When participating to a peer-to-peer

system, a user can benefit the resources (data, information, computing capacity)

provided by the other users of the system. By participating to a system, a user

also accepts to share the resources it has so that the other peers in the system

can benefit. This makes each user of a peer-to-peer system a source and also a

consumer of resources.

There are a lot of services that can be provided in a peer-to-peer mode, for

example: file exchanging, processing power sharing, storage capacity sharing,...

In a peer-to-peer setting, the peers cooperate for providing these services without

any centralized control authority.

There is a broad spectrum of peer-to-peer systems : the peer-to-peer file sharing

systems allow a keyword-based search ; the peer-to-peer data management sys-

tems transpose in the peer-to-peer setting the database approach of a data model

and schema-based structured queries ; the semantic peer-to-peer systems provide

semantic annotations of resources using terms of ontologies and ontology-based

queries ; finally, the peer-to-peer inference systems are decentralized reasoning

systems.

Keyword-based peer-to-peer file sharing systems
In keyword-based peer-to-peer systems, queries are made of keywords and query

answering is the process of string matching, i.e. finding resources whose name

containing the keyword of the query. In these systems, peers store their files with

no special organization. Each file is associated with a few keywords. The peers

share their files by making them available to search of any peer in the network.

Gnutella (5), Chord (62) and P-Grid (9) are three most known keyword-based

peer-to-peer file sharing systems. They differ mainly in the routing of queries

during the query answering process.

In Gnutella, a peer searches for a file, stored in some other peers in the network,

by using keywords as the query. In a query answering process, a query is a

message asked to the neighbors of the querying peer. These are the peers to and

2

from which the querying peer can send and receive messages via the Internet

(TCP/IP). If a neighbor has the file satisfying the query, it sends the file back to

the querying peer; otherwise it asks its neighbors for this file, always using the

same keywords for the query. This simple routing strategy is called unstructured.

Like Gnutella, a query in Chord or P-Grid is also a keyword. However, the query

routing for searching is structured. Actually, searching in Chord or P-Grid is

supported by an overlay network. An overlay network is a logical network built

on top of the physical network (TCP/IP). Chord and P-Grid use Distributed Hash

Tables (DHTs) in their underlying network layer for ensuring messages exchange.

A DHT provides the information look up service for peer-to-peer applications

through the put(key, data) and get(key) primitives. This permits a more efficient

routing for queries than in Gnutella.

The keyword-based search works well for domains where there is a consensus of

peers on the names of the files. For example, music file names are normally the

same in different peers if they are about the same songs (or the same albums or

the same artists). The results of the searches in these domains are thus often

correct. However, there are domains where there is no such a consensus on the

keywords characterizing the files they store. A same picture in which there is a

rose may be named flower picture by a peer, but love picture by an other. The

query rose asked by a third peer in this case would not return the picture that the

peer is looking for, because of the difference naming between peers. Consequently,

when each peer develops its own naming standard, the result of a keyword-based

search may not be accurate.

Peer Data Management Systems (PDMSs)
The notion of Peer Data Management Systems (PDMSs) has been presented first

in (35; 36), through the Piazza system. In Piazza, each peer has its own data and

schema and can mediate with some other peers by declaring mappings between

its schema and the schemata of those peers. The underlying data model of the

first version of Piazza (35) is relational and the mappings between relational peer

3

schemata are inclusion or equivalence statements between conjunctive queries.

Such a mapping formalism encompasses the local-as-views and the global-as-

views (37) formalisms used in information integration systems based on single

mediators. This makes the query answering undecidable unless some restrictions

are imposed on the mappings or on the topology of the network (35). The cur-

rently implemented version of Piazza (36) relies on a tree-based data model : the

data is in XML and the mappings are equivalence and inclusion statements be-

tween XML queries. Query answering is implemented based on practical (but not

complete) algorithms for XML query containment and rewriting. The scalability

of Piazza so far does not go up to more than about 80 peers in the published

experiments and relies on a wide range of optimizations (mappings composition

(46), paths pruning (65)), made possible by the centralized storage of all the

schemata and mappings in a global server.

Peer-to-Peer Inference Systems (P2PISs)
P2PISs are systems in which each peer can reason from its local theory but

can also distribute reasoning among other peers with which it shares part of

its vocabulary. This framework encompasses several applications like peer-to-

peer information integration systems or intelligent agents, in which each peer

has its own knowledge (about its data or its expertise domain) and some partial

knowledge about some other peers. In this setting, when solicited to perform a

reasoning task, a peer, if it cannot solve completely that task locally, must be

able to distribute appropriate reasoning subtasks among its acquainted peers.

This leads to a step by step splitting of the initial task among the peers that are

relevant to solve parts of it. The outputs of the different split tasks must then be

recomposed to construct the outputs of the initial task.

SomeWhere (13) is an example of a P2PIS. In SomeWhere, the local theory

of each peer is composed of a set of propositional clauses defined upon a set of

propositional variables (called its local vocabulary). Each peer may share part of

its vocabulary with some other peers by establishing mappings with other peers’s

vocabularies. The global theory is considered as the union of all peer local theories

and mappings. The reasoning task in SomeWhere is to find consequences, with

4

respect to (w.r.t.) the global theory, for a given input formula expressed using the

local vocabulary of a peer. The challenge of this reasoning task is that no peer

knows the global theory : each peer only knows its local theory and has little bit

of knowledges with its acquainted peers through its mappings . To overcome this

challenge, SomeWhere implements DeCA : Decentralized Consequence finding

Algorithm (13) which performs this consequence finding task. DeCA is sound,

complete and terminates. Moreover, it has been shown in (12) that DeCA scales

up to 1000 peers.

Semantic Peer-to-Peer Systems
By ’semantic peer-to-peer systems’ we refer to fully decentralized overlay networks

of people or machines (called peers) sharing and searching varied resources (doc-

uments, videos, photos, data, services) based on their semantic annotations using

ontologies. Ontologies are a formalization of the semantics of application domains

(e.g., tourism, biology, medicine) through the definition of classes and relations

modeling the domain objects and properties that are considered as meaningful

for the application. In our view, the use of semantic annotations and ontologies

when describing and structuring data makes the difference between a semantic

peer-to-peer system with a PDMS (as the case of Piazza).

Different semantic peer-to-peer systems have been proposed. They differ mainly

on the expressive power of their underlying data model and the way the different

peers are semantically connected.

Edutella (50) is made of a network of super-peers, the topology of which is a

hypercube. Super-peers are mediators with the same schema : a reference ontol-

ogy (e.g., http://demoz.org). The data sources of a super-peer are its connected

peers. Therefore, data is distributed over the peers while the ontologies are dis-

tributed over the super-peers. A peer must annotate its data in terms of the

ontology of the super-peer to which it is connected. To answer queries, there is

no need of mappings between the super-peer ontologies since they are identical:

queries are efficiently routed in the network, using its topology of hypercube, in

order to find super-peers that can provide answers with their peers.

5

In GridVine (8), the peers are organized according to a distributed hash table

using Chord (62). As in Edutella, such a fixed structure allows efficient routing

of messages between peers. On each GridVine peer, data is annotated with an

RDFS (7) ontology and mappings with ontologies of other peers are stated by

equivalences between properties of peer ontologies.

SomeOWL (13) is a semantic peer-to-peer system in which peers are not orga-

nized according to a fixed topology (as in Edutella or GridVine) : the topology

is induced by the mappings between the peers ontologies. There is no super-

peers : all the peers in SomeOWL are equivalent in functionality. SomeOWL

is based on a simple data model : the ontologies and mappings are expressed in

a fragment of OWL-DL that corresponds to the CLU description logic (¬,u,t)

(19). Query answering in SomeOWL takes into account the ontologies and is

achieved using a rewrite and evaluate strategy. In fact, SomeOWL is built on

top of SomeWhere (13) : through some propositional encoding of the peer on-

tologies and mappings into propositional theories and clauses, the rewriting part

of a query answering process is reduced to a consequence finding problem in dis-

tributed propositional theories. As mentioned above, this task is performed by

the DeCA algorithm.

Like SomeOWL, SomeRDFS (14) is also a semantic peer-to-peer system that

is built on top of SomeWhere. In SomeRDFS, the ontologies of peers and

mappings between peers are expressed using the core fragment of RDFS allowing

to state (sub)classes, (sub)properties, and to type the domain and range of prop-

erties. A mapping is an inclusion statement between classes or properties of two

distinct peers, or a typing statement of a property of a given peer with a class of

another peer. Like in SomeOWL, there is no super-peers and the topology of

a SomeRDFS system is induced by the mappings between the peer ontologies.

Built on top of SomeWhere, query answering in SomeRDFS is achieved using

a rewrite and evaluate strategy, in which the corresponding rewriting problem

is also reduced to the consequence finding problem in distributed propositional

theories.

6

Problems studied in this thesis
The first problem studied in this thesis is handling inconsistencies in peer-to-peer

inference systems.

The second one is the problem of modeling and handling trust in semantic peer-

to-peer systems.

Our Contributions

1. Handling inconsistencies in SomeWhere

Dealing with inconsistencies has been intensively studied for centralized

clausal theories. In our context, the global theory is decentralized and no

peer has the complete knowledge of it. That raises new algorithmic issues.

Our first contribution is to propose an incremental and decentralized

approach to detect causes of inconsistencies at each arrival of a new peer.

We have designed and implemented the P2P-NG algorithm and we have

proved that it is sound, complete and terminates.

Our second contribution is a mechanism which relies on the detected

causes of inconsistencies for reasoning in a well-founded way despite the ex-

istence of inconsistencies. Well-founded answers are those that are inferred

from a consistent sub-theory. We have designed and implemented the WF-

DeCA algorithm and we have proven its termination and its soundness.

For experimenting P2P-NG and WF-DeCA, we have adapted the DeCA

algorithm to produce only consequences whose length is bound by an input

parameter. This new algorithm is called DeCAbL. We have run experi-

ments on DeCAbL and obtained promising results that can be transposed

to P2P-NG and WF-DeCA.

2. Modeling trust in semantic peer-to-peer systems

Our first contribution is a probabilistic model to compute the trust of a

peer towards the answers it receives based on their semantic annotation.

Our second contribution is the application of this model to SomeOWL,

resulting in adapting the DeCA algorithm to make possible the computa-

tion of trust during query processing.

7

Structure of this thesis
Firstly, Chapter 2 provides the preliminaries concerning SomeWhere and Some-

OWL that are required for a good understanding of our contributions. Then,

the contributions of this thesis are presented in two parts corresponding to the

two problems that we have studied.

1. PART 1 : Reasoning with inconsistencies in peer-to-peer
inference systems

(a) Chapter 3 is a survey of the main approaches in Artificial Intelligence

and Databases for dealing with inconsistencies.

(b) Chapter 4 describes our contributions to the problem of reasoning

with inconsistencies in a peer-to-peer inference system such as Some-

Where. We have designed and implemented two algorithms, P2P-

NG and WF-DeCA, and we have proved their soundness, termination

and completeness. An optimization of DeCA and results of experi-

mentations are also described.

2. PART 2 : A probabilistic model of trust for semantic
peer-to-peer systems

(a) Chapter 5 summarizes the main existing approaches for modeling trust

in peer-to-peer systems and related domains such as e-commerce.

(b) Chapter 6 describes the probabilistic model of trust that we propose

for semantic peer-to-peer systems and its application to SomeOWL.

Chapter 7 summarizes the contributions of this thesis and sketches some of its

perspectives.

8

9

Chapter 2

PRELIMINARIES

In this chapter we specify the framework of the thesis. We present SomeWhere

(13), a peer-to-peer inference system computing consequences of a given input

clause w.r.t. distributed propositional theories in a totally decentralized manner.

Then we present the SomeOWL (13) semantic peer-to-peer system. SomeOWL

is built on top of SomeWhere, taking advantage of the DeCA algorithm im-

plemented in SomeWhere for query answering.

2.1 SomeWhere

The SomeWhere (13) peer-to-peer inference system (P2PIS) is a network of

peer theories. Each peer P is a finite set of propositional formulas of a language

LP , which is the language of clauses without duplicated literals that can be built

from a finite set of propositional variables VP , called the vocabulary of P . In

SomeWhere, peers can be semantically related by sharing variables with others.

A shared variable between two peers is in the intersection of the vocabularies

of them. However it is not imposed that all the variables in common in the

vocabularies of two peers are shared by them: they may not be aware of all the

variables they have in common but only of some of them.

The architecture of SomeWhere is totally decentralized: there is no super-

peers, all the peers are equivalent in functionality and no peer has the knowledge

of the global P2PIS theory. Each peer only knows its own local theory and the

10

2.1 SomeWhere

variables that it shares with some other peers of the P2PIS (its acquaintances).

When a new peer joins a P2PIS, it simply declares its acquaintances in the P2PIS,

i.e., the peers it knows to be sharing variables with, and it declares the corre-

sponding shared variables.

2.1.1 Syntax and semantics

A SomeWhere P2PIS can be formalized using the notion of acquaintance graph.

Definition 1 Acquaintance graph

Let P = {Pi}i=1..n be a collection of clausal theories on their respective vocabular-

ies VPi
, let V = ∪i=1..nVPi

. An acquaintance graph over V is a graph Γ = (P,acq)

where P is the set of vertices and acq ⊆ V× P× P is a set of labeled edges such

that for every (v, Pi, Pj) ∈ acq, i 6= j and v ∈ VPi
∩ VPj

.

A labeled edge (v, Pi, Pj) expresses that peers Pi and Pj know each other to be

sharing the variable v. For a peer P and a literal l, acq(l, P) denotes the set of

peers sharing with P the variable of l.

A SomeWhere P2PIS is interpreted using the standard semantics of proposi-

tional logic.

Definition 2 Semantics of a SomeWhere P2PIS

Let Γ = (P,acq) be a P2PIS with P = {Pi}i=1..n,

• An interpretation I of P is an assignment of the variables in
⋃
i=1..n Pi to

true or false. In particular, a variable which is common to two theories

Pi and Pj of a given P2PIS is interpreted by the same value in the two

theories.

• I is a model of a clause c iff one of the literals of c is evaluated to true in

I.

• I is a model of a set of clauses (i.e., a local theory, a union of a local

theories, or a whole P2PIS) iff it is a model of all the clauses of the set.

• A P2PIS is satisfiable iff it has a model.

11

2.1 SomeWhere

• The consequence relation for a P2PIS is the standard consequence relation

|=: given a P2PIS P, and a clause c, P |= c iff every model of P is a model

of c.

2.1.2 The consequence finding problem

For each theory P , a subset of target variables TVP ⊆ VP is supposed to represent

the variables of interest for the application, (e.g. observable facts in a model-

based diagnosis application, or classes storing data in an information integration

application). The goal is, given a clause provided as an input to a given peer, to

find all the possible consequences belonging to some target language of the input

clause and the union of the peer theories.

The interesting point in the consequence finding process in SomeWhere is that

the input clause only uses the vocabulary of the queried peer, but that its expected

consequences may involve target variables of different peers. The target languages

handled by SomeWhere are defined in terms of target variables and require

that a shared variable has the same target status in all the peers sharing it.

This requirement is a local property : the peers sharing variables with a given

peer are its acquaintances and, by definition, they are its direct neighbors in the

acquaintance graph.

Definition 3 Target Language

Let Γ = (P,acq) be a P2PIS, and for every peer P , let TVP be the set of its

target variables such that if (v, Pi, Pj) ∈ acq then v ∈ TVPi
iff v ∈ TVPj

. For a

set SP of peers of P, we define its target language Target(SP) as the language

of clauses (including the empty clause) involving only variables of
⋃
P∈SP TVP .

The reasoning problem that is considered is to compute logical consequences

of an input clause given a P2PIS. It corresponds to the notion of proper prime

implicates of a clause w.r.t. a clausal distributed theory, which is formally defined

in Definition 4.

Definition 4 Proper prime implicate of a clause w.r.t. a clausal theory

Let P be a clausal theory and q be a clause. A clause m is said to be:

12

2.1 SomeWhere

• an implicate of q w.r.t. P iff P ∪ {q} |= m.

• a prime implicate of q w.r.t. P iff m is an implicate of q w.r.t. P , and for

any other clause m′ implicate of q w.r.t. P , if m′ |= m then m′ ≡ m.

• a proper prime implicate of q w.r.t. P iff it is a prime implicate of q w.r.t.

P but P 6|= m.

Definition 5 The consequence finding problem in a P2PIS

Let Γ = (P,acq) be a P2PIS, where P = {Pi}i=1..n is a collection of clausal

theories with respective target variables. The consequence finding problem in Γ

is, given a peer P , its acquaintances in Γ, and a clause q ∈ LP , to find the set of

proper prime implicates of q w.r.t.
⋃
i=1..n Pi which belong to Target(P).

2.1.3 Example

The following example illustrates a SomeWhere P2PIS consisting of 4 peers:

• P1 describes a tour operator. Its theory expresses that its current Far desti-

nations are either Chile or Kenya. These far destinations are international

destinations (Int) and expensive (Exp).

• The peer P2 is only concerned with police regulations and expresses that a

passport is required (Pass) for international destinations.

• P3 focuses on sanitary conditions for travelers. It expresses that, in Kenya,

yellow fever vaccination (Y ellowFev) is strongly recommended and that a

strong protection against paludism should be taken (Palu) when accommo-

dation occurs in Lodges.

• P4 describes travel accommodation conditions : Lodge for Kenya and Hotel

for Chile. It also expresses that when anti-paludism protection is required,

accommodations are equipped with appropriate anti-mosquito protections

(AntiM).

The respective theories of each peer are described on Figure 2.1 as the nodes of the

acquaintance graph. Shared variables are mentioned as edge labels. Target vari-

ables are defined by : TVP1 = {Exp}, TVP2 = {Pass}, TVP3 = {Lodge, Y ellowFev,
Palu} and TVP4 = {Lodge,Hotel, Palu, AntiM}.

13

2.2 DeCA : Decentralized Consequence Finding Algorithm

Figure 2.1: Acquaintance graph for the tour operator example

2.2 DeCA : Decentralized Consequence Finding

Algorithm

The DeCA algorithm is the first consequence finding algorithm for decentralized

propositional theories. It has been shown in (12) that DeCA scales up to at least

1000 peers.

There are two versions of DeCA : a recursive version and a message-passing ver-

sion. The message-passing version of DeCA is the implemented one in Some-

Where. It has been shown in (13) that the recursive version and the message-

passing version of DeCA are equivalent. The soundness and completeness of

DeCA have been proved on its recursive version. As our algorithms P2P-NG

and WF-DeCA for handling inconsistencies are based on DeCA, we recall the

two versions of DeCA.

We will use the following notations :

• for a literal q, Resolvent(q, P) denotes the set of clauses obtained by res-

olution from the set P ∪ {q} but not from P alone. We call such clauses

proper resolvents of q w.r.t. P ,

14

2.2 DeCA : Decentralized Consequence Finding Algorithm

• for a literal q, q̄ denotes its complementary literal,

• for a clause c of a peer P , S(c) (resp. L(c)) denotes the disjunction of

literals of c whose variables are shared (resp. not shared) with some ac-

quaintance of P . The condition S(c) = 2 thus expresses that c does not

contain any variable shared with an acquaintance of P ,

• a history hist is a sequence of triples (l, P, c) (where l is a literal, P a

peer, and c a clause). An history [(ln, Pn, cn), . . . , (l1, P1, c1), (l0, P0, c0)]

represents a branch of reasoning initiated by the propagation of the literal l0

within the peer P0, which either contains the clause ¬l0∨ c0 (in that case c0

may have been splitted into its different literals among which l1 is propagated

in P1), or not (in that case l0 = c0 and l0 is propagated into P1, and thus

l0 = l1): for every i ∈ [0..n − 1], ci is a consequence of li and Pi, and li+1

is a literal of ci, which is propagated in Pi+1,

• > is the distribution operator on sets of clauses: S1>· · ·>Sn = {c1∨· · ·∨cn
|c1 ∈ S1, . . . , cn ∈ Sn}. If L = {l1, . . . , lp}, we will use the notation >l∈LSl

to denote Sl1 > · · ·> Slp.

Recursive version of DeCA

Let Γ = (P,acq) be a P2PIS, P one of its peers, and q a literal whose variable

belongs to the vocabulary of P . The entry point of DeCA is a function called

RCF . RCF (q, P) computes implicates of the literal q w.r.t. P, starting with the

computation of local consequences of q, i.e., implicates of q w.r.t. P , and then re-

cursively following the acquaintances of the visited peers. To ensure termination,

it is necessary to keep track of the literals already processed by peers. This is

done by the recursive algorithm RCFH(q, SP, hist), where hist is the history of

the reasoning branch ending up to the propagation of the literal q in SP , which

is the set of acquaintances of the last peer added to the history.

It has been shown in (13) that DeCA terminates, is sound and complete.

15

2.2 DeCA : Decentralized Consequence Finding Algorithm

Algoritm 1: Recursive consequence finding algorithm
RCF (q, P)

(1) return RCFH(q, {P}, ∅)

RCFH(q, SP, hist)

(1) if there exists P ∈ SP s.t. q ∈ P or if for every P ∈ SP ,

(q, P,) ∈ hist return ∅
(2) else if (q̄, ,) ∈ hist return {2}
(3) else for every P ∈ SP local(P)← {q}∪Resolvent(q, P)

(4) if there exists P ∈ SP s.t. 2 ∈ local(P) return {2}
(5) else for every P ∈ SP local(P)← {c ∈ local(P)|L(c) ∈

Target(P)}
(6) if for every P ∈ SP and for every c ∈ local(P), S(c) = 2,

return
⋃
P∈SPlocal(P)

(7) else

(8) result←
⋃
P∈SP{c ∈ local(P)|S(c) ∈ Target(P)}

(9) foreach P ∈ SP and c ∈ local(P) s.t. S(c) 6= 2

(10) if ¬q ∨ c ∈ P , P ′ ← P\{¬q ∨ c}
(11) foreach literal l ∈ S(c)

(12) answer(l)← RCFH(l,acq(l, P), [(q, P, c)|hist])
(13) disjcomb← (>l∈S(c)answer(l)) > {L(c)}
(14) result← result ∪ disjcomb

(15) return result

Message-passing version of DeCA

The message-passing version of DeCA runs locally on each peer. It is composed

of three procedures, each one being triggered by the reception of a message.

• The procedure ReceiveForthMessage is triggered by the reception of a

forth message m(Sender,Receiver, forth, hist, l) sent by the peer Sender

to the peer Receiver which executes the procedure: on the demand of

Sender, with which it shares the variable of l, it processes the literal l.

• The procedure ReceiveBackMessage is triggered by the reception of a

back message m(Sender,Receiver, back, hist, r) sent by the peer Sender to

16

2.2 DeCA : Decentralized Consequence Finding Algorithm

the peer Receiver which executes the procedure: it processes the conse-

quence r (which is a clause the variables of which are target variables) sent

back by Sender for the literal l (last added in the history) ; it may have to

combine it with other consequences of literals being in the same clause as

l.

• The procedure ReceiveFinalMessage is triggered by the reception of

a final message m(Sender,Receiver, final, hist, true): the peer Sender

notifies the peer Receiver that computation of the consequences of the

literal l (last added in the history) is completed.

Those procedures handle two data structures stored at each peer: cons(l, hist)

caches the consequences of l computed by the reasoning branch corresponding to

hist ; final(q, hist) is set to true when the propagation of q within the reasoning

branch of the history hist is completed.

The reasoning is initiated by the user (denoted by a particular peer User) sending

to a given peer P a message m(User, P, forth, ∅, q). This triggers on the P the lo-

cal execution of the procedure ReceiveForthMessage(m(User, P, forth, ∅, q)).
In the description of the procedures, since they are locally executed by the peer

which receives the message, Self is used to denote this receiver peer.

DeCA is anytime : the consequences of a query are returned as a stream and

the order of their returning is unpredictable. The important point is that DeCA

notifies its termination.

17

2.2 DeCA : Decentralized Consequence Finding Algorithm

Algoritm 2: Message passing procedure for propagating literals forth
ReceiveForthMessage(m(Sender, Self, forth, hist, q))

(1) if (q̄, ,) ∈ hist
(2) send m(Self, Sender, back, [(q, Self,2)|hist],2)

(3) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(4) else if q ∈ Self or (q, Self,) ∈ hist
(5) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(6) else

(7) local(Self)← {q} ∪Resolvent(q, Self)

(8) if 2 ∈ local(Self)

(9) send m(Self, Sender, back, [(q, Self,2)|hist],2)

(10) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(11) else

(12) local(Self)← {c ∈ local(Self)| L(c) ∈ Target(Self)}
(13) if for every c ∈ local(Self), S(c) = 2

(14) foreach c ∈ local(Self)

(15) send m(Self, Sender, back, [(q, Self, c)|hist], c)
(16) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(17) else

(18) foreach c ∈ local(Self)

(19) if S(c) = 2

(20) send m(Self, Sender, back, [(q, Self, c)|hist], c)
(21) else

(22) foreach literal l ∈ S(c)

(23) if l ∈ Target(Self)

(24) cons(l, [(q, Self, c)|hist])← {l}
(25) else

(26) cons(l, [(q, Self, c)|hist])← ∅
(27) final(l, [(q, Self, c)|hist])← false

(28) foreach RP ∈ acq(l, Self)

(29) send m(Self, RP, forth, [(q, Self, c)|hist], l)

18

2.2 DeCA : Decentralized Consequence Finding Algorithm

Algoritm 3: Message passing procedure for processing the return of con-

sequences
ReceiveBackMessage(m(Sender, Self, back, hist, r))

(1) hist is of the form [(l′, Sender, c′), (q, Self, c)|hist′]
(2) cons(l′, hist)← cons (l′, hist) ∪ {r}
(3) result← >l∈S(c)\{l′}cons(l, hist) > {L(c) ∨ r}
(4) if hist′ = ∅, U ← User else U ← the first peer P ′ of hist′

(5) foreach cs ∈ result

(6) send m(Self, U, back, [(q, Self, c)|hist′], cs)

Algoritm 4: Message passing procedure for notifying termination
ReceiveFinalMessage(m(Sender, Self, final, hist, true))

(1) hist is of the form [(l′, Sender, true), (q, Self, c)|hist′]
(2) final(l′, hist)← true

(3) if for every l ∈ S(c), final(l, hist) = true

(4) if hist′ = ∅ U ← User else U ← the first peer P ′ of hist′

(5) send m(Self, U, final, [(q, Self, true)|hist′], true)
(6) foreach l ∈ S(c)

(7) cons(l, [(l, Sender,), (q, Self, c)|hist′])← ∅

Example

We now illustrate the behavior of the algorithm on the example of Figure 2.1,

when the input clause Far is provided to the peer P1 by the user. We present the

propagation of the reasoning as a tree structure, the nodes of which correspond to

peers and the branches of which materialize the different reasoning paths induced

by the initial input clause. Edges are labeled on the left side by literals which

are propagated along paths and/or on the right side by consequences that are

transmitted back. A downward arrow on an edge indicates the step during which

a literal is propagated from one peer to its neighbor. For instance, the initial step

can be represented here by the tree in Figure 2.2.

Local consequences of a literal propagated on a peer are then made explicit within

the peer node. Target literals are outlined using a grey background, as well as

transmitted back consequences. Vertical arrows preceding consequences distin-

guish the last returned consequences from earlier ones. Although the successive

19

2.2 DeCA : Decentralized Consequence Finding Algorithm

Figure 2.2: The input clause Far is provided to the peer P1

trees presented here have increasing depth, as if all reasoning paths were ex-

plored synchronously and in parallel, all messages are in fact exchanged in an

asynchronous way and that the order in which consequents are produced cannot

be predicted.

In this example, (see Figure 2.3) consequences of Far derived by local reason-

ing on P1 are Exp, Int and Chile ∨ Kenya. Since Exp is in Target(P1) it is a

local consequence of Far. Int is not a target literal but is shared with P2, it is

therefore transmitted to P2. The clause Chile∨Kenya is also made of shared vari-

ables. Such clauses are processed by the algorithm using a split/recombination

approach. Each shared literal is processed independently, and transmitted to its

appropriate neighbors. Each literal is associated with some queue data structure,

where transmitted back consequences are stored. As soon as at least one con-

sequent has been obtained for each literal, the respective queued consequents of

each literal are recombined, to produce consequences of the initial clause. This

recombination process continues, as new consequences for a literal are produced.

Note that since each literal is processed asynchronously, the order in which the

recombined consequences are produced is unpredictable. Here, the component

Chile is transmitted to P4 and Kenya is transmitted to P3 and P4. Let us note

that the peer P4 appears two times in the tree, because two different literals are

propagated on this peer, which induces two different reasoning paths.

While Exp is transmitted back to the user as a first (local) consequence of Far,

(see Figure 2.4)

20

2.2 DeCA : Decentralized Consequence Finding Algorithm

Figure 2.3: Finding consequences of Far using DeCA

• The propagation of Int on P2 produces the clause Pass, which is in Target(P2)

but is not shared and therefore, cannot be further propagated.

• The clause Chile, when transmitted to P4, produces Hotel which is in Target(P4)

but is not shared and cannot be further propagated.

• When transmitted to P3, the clause Kenya produces YellowFev as well as

the clause ¬Lodge∨Palu. The three variables are in Target(P3). Lodge and

Palu are also shared variables and therefore, after splitting of the second

clause, their corresponding literals are transmitted (independently) to P4.

• When transmitted to P4, Kenya produces Lodge, which is in Target(P4) and

is also shared and therefore further transmitted to P3.

• The clause Pass, produced on P2, is transmitted back to P1 as a consequence

of Int and then to the user as a remote consequence of Far.

• The clause Hotel, produced on P4, is transmitted back to P1 where it is

queued as a consequent of Chile, since it has to be combined with conse-

quences of Kenya.

21

2.2 DeCA : Decentralized Consequence Finding Algorithm

Figure 2.4: Finding consequences of Far using DeCA (cont)

• The two local consequences of Kenya obtained on P3 contain only target

variables. They are transmitted back to P1 and queued there. They may

now be combined with Hotel to produce two new combined consequences of

Far : Hotel ∨ YellowFev and Hotel ∨ ¬Lodge ∨ Palu, which are transmitted

back to the user.

• Similarly on P4, Lodge is a local target consequent of Kenya, that is trans-

mitted back to P1 as a consequent of Kenya, where it is combined with Hotel

to produce a new consequence of Far that, in turn, is transmitted back to

the user.

Simultaneously, (see Figure 2.5) the reasoning further propagates in the net-

work of peers. The propagation of ¬Lodge and Palu on P4 respectively produces

¬Kenya, which is not a target literal but is shared and thus further propagated on

P1, as well as AntiM, which is a target literal, but not shared. We do not detail

here the propagation of Lodge in the right most branch of the reasoning tree.

Note (see Figure 2.6) on the deepest node that P1 is here asked to produce the

implicates of ¬Kenya, while the complementary literal Kenya is still under process.

Such situations are handled in the algorithm by mean of histories keeping track

22

2.2 DeCA : Decentralized Consequence Finding Algorithm

Figure 2.5: Finding consequences of Far using DeCA (cont)

of the reasoning branches ending up to each transmitted literal. When a same

history contains two complementary literals, the corresponding reasoning branch

is closed and the empty clause 2 is returned as a consequence of the literals in

the history.

In this example, the consequence produced by P1 for ¬Kenya is thus 2, which

is sent back to P4 and then to P3. After combination on P3 with Palu we thus

obtain Palu as a new consequent of Kenya, which subsumes the previously obtained

¬Lodge∨Palu. When transmitted back to P1 and combined with Hotel we obtain

Hotel∨Palu which subsumes the previously obtained consequent Hotel∨¬Lodge∨
Palu. Since AntiM is not a shared variable it is the only consequent of Palu

on P4. When transmitted back to P3 for combination with 2, we thus obtain

AntiM which, in turn, is returned to P1 for combination with Hotel, thus giving

Hotel ∨ AntiM as a new consequent of Far.

We have not detailed the production of consequences of Lodge on P3 in the right

most branch, but it can be verified that it also produces AntiM (which has already

been produced through P3/P4 in the third branch). Eventually, the whole set of

consequences of Far is {Exp,Pass,Hotel∨Lodge,Hotel∨Palu,Hotel∨AntiM,Hotel∨
YellowFev}. Among those consequences, it is important to note that some of them

23

2.3 The SomeOWL semantic peer-to-peer system

Figure 2.6: Finding consequences of Far using DeCA (cont)

(e.g., Hotel∨YellowFev) involve target variables from different peers. This is made

possible thanks to the split/recombination strategy of the algorithm.

2.3 The SomeOWL semantic peer-to-peer sys-

tem

SomeOWL is a semantic peer-to-peer system that has been deployed on top

of the SomeWhere platform (11). In SomeOWL, data is a set of resources

identified by URIs. Each peer categorizes its local resources (documents, files,

web pages) by declaring the corresponding URIs as instances of some class(es) of

its own ontolgoy.

A new peer joins the network through some peers that it knows (its acquain-

tances) by declaring mappings between its own ontology and the ontologies of its

acquaintances. Queries are posed to a given peer using its local ontology. The

answers that are expected are not only instances of local classes but possibly

instances of classes of peers distant from the queried peer if it can be inferred,

24

2.3 The SomeOWL semantic peer-to-peer system

from the peer ontologies and the mappings that they satisfy the query.

Local ontologies, storage descriptions and mappings in SomeOWL are defined

using a fragment of OWL DL which is the description logic fragment of the

Ontology Web Language recommended by W3C.

Each peer ontology is made of a set of class definitions and possibly a set of

equivalence, inclusion or disjointness axioms between class descriptions. A class

description is either the universal class (>), the empty class (⊥), an atomic class

or the union (t), intersection (u) or complement (¬) of class descriptions. The

name of atomic classes is unique to each peer: the notation P :A is used for

identifying an atomic class A of the ontology of a peer P . The vocabulary of a

peer P is the set of names of its atomic classes. The following table summarizes

the class descriptions and the axioms that are allowed for defining ontologies in

SomeOWL.

Class descriptions
Logical notation OWL notation

universal class > Thing

empty class ⊥ Nothing

atomic class P :A classID

conjunction D1 uD2 intersectionOf(D1 D2)
disjunction D1 tD2 unionOf(D1 D2)
negation ¬D complementOf(D)

Axioms on class descriptions
Logical notation OWL notation

equivalence D1 ≡ D2 EquivalentClasses(D1 D2)
inclusion D1 v D2 SubClassOf(D1 D2)
disjointness D1 uD2 ≡ ⊥ DisjointClasses(D1 D2)

The following table summarizes the storage descriptions allowed in SomeOWL.

The axioms defining the extensional classes are restricted to be inclusion state-

ments between an atomic extensional class and a description combining atomic

classes of the ontology. The notation P :V iewA is used to denote an extensional

class V iewA of the peer P .

25

2.3 The SomeOWL semantic peer-to-peer system

Storage description
declaration of extensional classes:
Logical notation OWL notation

P :V iewA v C SubClassOf(P :V iewA C)
assertional statements:
Logical notation OWL notation

P :V iewA(a) individual(a type(P :V iewA))

Mappings are disjointness, equivalence or inclusion statements involving atomic

classes of different peers. They express the semantic correspondence that may

exist between the ontologies of different peers.

Let P be a SomeOWL peer-to-peer network made of a collection of peers {Pi}i=1..n.

For each peer Pi, let Oi, Vi and Mi be the sets of axioms defining respectively

the local ontology of Pi, the declaration of its extensional classes and the set of

mappings stated at Pi between classes of Oi and classes of the ontologies of the ac-

quaintances of Pi. The schema of P, denoted S(P), is the union
⋃
i=1..nOi∪Vi∪Mi

of the ontologies, the declaration of extensional classes and of the sets of mappings

of all the peers.

The semantics of the data model used in SomeOWL is the standard first-order

logic semantics defined in terms of interpretations. An interpretation I is a pair

(∆I , .I) where ∆ is a non-empty set, called the domain of interpretation, and .I

is an interpretation function which assigns a subset of ∆I to every class identifier

and an element of ∆I to every data identifier.

An interpretation I is a model of the distributed schema of a SomeOWL peer-

to-peer network P = {Pi}i=1..n iff each axiom in
⋃
i=1..nOi ∪ Vi ∪Mi is satisfied

by I. Interpretations of axioms rely on interpretations of class descriptions which

are inductively defined as follows:

• >I = ∆I , ⊥I = ∅
• (C1 t C2)I = CI

1 ∪ CI
2

• (C1 u C2)I = CI
1 ∩ CI

2

• (¬C)I = ∆I\CI

Axioms are satisfied if the following holds:

26

2.3 The SomeOWL semantic peer-to-peer system

• C v D is satisfied in I iff CI ⊆ DI

• C ≡ D is satisfied in I iff CI = DI

• C uD ≡ ⊥ is satisfied in I iff CI ∩DI = ∅

A SomeOWL peer-to-peer network is satisfiable iff its (distributed) schema has

a model. Given a SomeOWL peer-to-peer network P = {Pi}i=1..n, a class de-

scription C subsumes a class description D iff for any model I of S(P) DI ⊆ CI .

2.3.1 Illustrative example

We illustrate the SomeOWL data model on a small example of four peers mod-

eling four persons Ann, Bob, Chris and Dora, each of them bookmarking URLs

about restaurants they know or like, according to their own taxonomy for cate-

gorizing restaurants.

Ann, who is working as a restaurant critic, organizes its restaurant URLs ac-

cording to the following classes:

• the class Ann:G of restaurants considered as offering a ”good” cooking,

among which she distinguishes the subclass Ann:R of those which are rated:

Ann:R v Ann:G

• the class Ann:R is the union of three disjoint classes Ann:S1, Ann:S2,

Ann:S3 corresponding respectively to the restaurants rated with 1, 2 or 3 stars:

Ann:R ≡ Ann:S1 t Ann:S2 t Ann:S3

Ann:S1 u Ann:S2 ≡ ⊥ Ann:S1 u Ann:S3 ≡ ⊥
Ann:S2 u Ann:S3 ≡ ⊥
• the classes Ann:I and Ann:O, respectively corresponding to Indian and

Oriental restaurants

• the classes Ann:C, Ann:T and Ann:V which are subclasses of Ann:O de-

noting Chinese, Täı and Vietnamese restaurants respectively: Ann:C v Ann:O,

Ann:T v Ann:O, Ann:V v Ann:O

Suppose that the data stored by Ann that she accepts to make available deals

with restaurants of various specialties, and only with those rated with 2 stars

among the rated restaurants. The extensional classes declared by Ann are then:

27

2.3 The SomeOWL semantic peer-to-peer system

Ann:V iewS2 v Ann:S2, Ann:V iewC v Ann:C, Ann:V iewV v Ann:V ,

Ann:V iewT v Ann:T , Ann:V iewI v Ann:I

Bob, who is fond of Asian cooking and likes high quality, organizes his restaurant

URLs according to the following classes:

• the class Bob:A of Asian restaurants

• the class Bob:Q of high quality restaurants that he knows

Suppose that he wants to make available every data that he has stored. The

extensional classes that he declares areBob:V iewA andBob:V iewQ (as subclasses

of Bob:A and Bob:Q): Bob:V iewA v Bob:A, Bob:V iewQ v Bob:Q

Chris is more fond of fish restaurants but recently discovered some places serving

a very nice cantonese cuisine. He organizes its data with respect to the following

classes:

• the class Chris:F of fish restaurants,

• the class Chris:CA of Cantonese restaurants

Suppose that he declares the extensional classes Chris:V iewF and Chris:V iewCA

as subclasses of Chris:F and Chris:CA respectively:

Chris:V iewF v Chris:F , Chris:V iewCA v Chris:CA

Dora organizes her restaurants URLs around the class Dora:DP of her preferred

restaurants, among which she distinguishes the subclass Dora:P of pizzerias and

the subclass Dora:SF of seafood restaurants.

Suppose that the only URLs that she stores concerns pizzerias: the only exten-

sional class that she has to declare is Dora:V iewP as a subclass of Dora:P :

Dora:V iewPvDora:P

Ann, Bob, Chris and Dora express what they know about each other using

mappings stating properties of class inclusion or equivalence.

Ann is very confident in Bob’s taste and agrees to include Bob’ selection as good

restaurants by stating Bob:Q v Ann:G. Finally, she thinks that Bob’s Asian

restaurants encompass her Oriental restaurant concept: Ann:O v Bob:A

Bob knows that what he calls Asian cooking corresponds exactly to what Ann

classifies as Oriental cooking. This may be expressed using the equivalence state-

28

2.3 The SomeOWL semantic peer-to-peer system

Figure 2.7: A SomeOWL network with peer ontologies and mappings

ment : Bob:A ≡ Ann:O (note the difference of perception of Bob and Ann re-

garding the mappings between Bob:A and Ann:O)

Chris considers that what he calls fish specialties is a particular case of Dora

seafood specialties: Chris:F v Dora:SF

Dora counts on both Ann and Bob to obtain good Asian restaurants : Bob:A u
Ann:G v Dora:DP

Figure 2.7 describes the resulting overlay network. In order to alleviate the no-

tations, we omit the local peer name prefix except for the mappings. Edges are

labeled with the class identifiers that are shared through the mappings between

peers.

2.3.2 Query answering in SomeOWL

Query answering in SomeOWL is done by rewriting the query into a union of

conjunctions of extensional classes, which are then evaluated.

Definition 6 Rewritings

Given a SomeOWL peer-to-peer network P = {Pi}i=1..n, a conjunction Qe of

extensional classes is a rewriting of a query Q iff Q subsumes Qe w.r.t. P.

29

2.3 The SomeOWL semantic peer-to-peer system

Qe is a proper rewriting if there exists some model of I of S(P) such that QI
e 6= ∅.

Qe is a maximal (conjunctive) rewriting if there does not exist another (conjunc-

tive) rewriting Q′e of Q (strictly) subsuming Qe w.r.t. P.

A rewriting of a query is thus an intensional answer expressed in terms of ex-

tensional classes. Queries are conjunctions of classes of a given peer ontology.

An answer is a resource for which it can be logically inferred from the axioms

defining the ontologies, the mappings and the storages descriptions that the URI

is an instance of the classes in the query.

From the query answering point of view, it is the notion of proper rewriting which

is relevant because it guarantees a non empty set of answers. If a query has no

proper rewriting, it won’t get any answer.

In the SomeOWL setting, query rewriting can be equivalently reduced to dis-

tributed reasoning over logical propositional theories by a straightforward propo-

sitional encoding of the query and of the distributed schema of a SomeOWL

network. It consists in transforming each query and schema statement into a

propositional formula using class identifiers as propositional variables.

The propositional encoding of a class description D, and thus of a query, is the

propositional formula Prop(D) obtained inductively as follows:

• Prop(>) = true, Prop(⊥) = false

• Prop(A) = A, if A is an atomic class

• Prop(D1 uD2) = Prop(D1) ∧ Prop(D2)

• Prop(D1 tD2) = Prop(D1) ∨ Prop(D2)

• Prop(¬D) = ¬(Prop(D))

The propositional encoding of the schema S of a SomeOWL network P is the dis-

tributed propositional theory Prop(S) made of the formulas obtained inductively

from the axioms in S as follows:

• Prop(C v D) = Prop(C)⇒ Prop(D)

• Prop(C ≡ D) = Prop(C)⇔ Prop(D)

• Prop(C uD ≡ ⊥) = ¬Prop(C) ∨ ¬Prop(D)

30

2.3 The SomeOWL semantic peer-to-peer system

Figure 2.8: Propositional encoding of the SomeOWL network of the figure 2.7

Figure 2.8 shows the propositional encoding (in clausal form) of the SomeOWL

network of Figure 2.7

It has been shown in (13) that query rewriting in SomeOWL can be reduced to

consequence finding in SomeWhere: Proposition 1 states that the propositional

encoding transfers satisfiability and establishes the connection between proper

(maximal) conjunctive rewritings and proper (prime) implicates.

Proposition 1 (13)

Let P be a SomeOWL peer-to-peer network and let Prop(S(P)) be the propo-

sitional encoding of its schema. Let Ve be the set of all the extensional classes.

• S(P) is satisfiable iff Prop(S(P)) is satisfiable.

• qe is a proper maximal conjunctive rewriting of a query q iff ¬Prop(qe) is a

proper prime implicate of ¬Prop(q) w.r.t. Prop(S(P)) such that all its variables

are extensional classes.

31

2.3 The SomeOWL semantic peer-to-peer system

32

Part I

REASONING WITH

INCONSISTENCIES IN

PEER-TO-PEER INFERENCE

SYSTEMS

33

34

INTRODUCTION

In SomeWhere, a peer local theory is a set of clauses defined upon a set of

propositional variables. These variables are the local vocabulary of the peer. It

is supposed that each local peer theory is consistent.

When a new peer joins the network, it establishes mappings with other peers,

called its acquaintances. Mappings are clauses involving variables of distinct

peers that state semantic correspondences between different peer vocabularies. It

is supposed that every peer can declare mappings to express its own viewpoint

about the relation between its own theory and others, without the control of a

central server, but with the agreement of the peer with which it declares the

mapping.

In this context, the mappings, while relating peer theories, may create inconsis-

tencies in the global theory of SomeWhere, which is unknown to any peer and

is the union of all peer local theories and all the mappings between peer theories.

When the global theory is inconsistent, query answering in SomeWhere may

be meaningless.

In this part, we focus on the problem of handling in a decentralized way inconsis-

tencies caused by mappings in SomeWhere. We divide this problem into two

sub-problems : to detect causes of inconsistencies in the global theory, and to

reason in SomeWhere in presence of inconsistencies but produce only meaning-

ful answers of queries.

The structure of this part is as follows :

• in Chapter 3, we present a state of the art on the approaches for dealing

with inconsistencies,

35

• in Chapter 4, we formally define the problem of handling inconsistencies

that we consider in SomeWhere and we present our contributions for

dealing with this problem.

We propose two algorithms: the decentralized P2P-NG algorithm which

is complete for detecting causes of inconsistencies; the decentralized WF-

DeCA algorithm for computing only well-founded answers of queries, based

on the results of P2P-NG.

We propose an other algorithm, DeCAbL, which is an optimization of

DeCA, computing only consequences the maximum length of which is pre-

defined as an input parameter. We report the results of the experimenta-

tions that we have made on DeCAbL and we explain how these results can

be transposed to both P2P-NG and WF-DeCA.

36

37

Chapter 3

STATE OF THE ART ON

DEALING WITH

INCONSISTENCIES

One of the most used definitions of the word ’inconsistency’ in dictionaries such

as Longman or Oxford is : a situation in which two statements are different and

cannot both be true. Here, ’statements’ can not only be understood as its first

meaning, but also as ’actions’, ’reactions’, ’behaviors’, ’thoughts’, or ’expressions’,

’point of views’,...

Actually, inconsistency may happen everywhere and in every domain. For exam-

ple, an individual may have an inconsistent behavior so that people get confused

about his personality. In a family, the wife and the husband may have inconsis-

tent opinions about how to raise their children. In a country, different parties

have inconsistent points of view of how to develop the country, etc...

Inconsistency is often understood as incompatibility or contradiction, which

are synonyms in fact: two contradictory (incompatible) statements cannot both

be true. Drawing right conclusions by reasoning from inconsistent facts is prob-

lematic as illustrated by the following example (64).

Suppose a university payroll system says that Johns salary is 50K, while the uni-

versity personnel database says it is 60K. In addition, there may be an axiom that

38

says that everyone has exactly one salary. One simple way to model this is via

the theory, denoted as salbase, below.

1. John’s salary is 50K

2. John’s salary is 60K

3. Everyone has exactly one salary

This salbase is obviously inconsistent. Suppose (3) is definitely known to be

true. Then a bank manager considering John for a loan may choose the 50K

number to determine a maximal loan amount that John qualifies for. But a na-

tional tax agency may use the 60K figure to send John a letter asking him why

he underpaid his taxes.

Neither the bank manager nor the tax officer is making any attempt to find

out the truth (thus far) - however, both of them are making different decisions

based on the same facts.

Handling inconsistencies has been extensively studied in databases as well as in

information integration systems. In a database, inconsistency corresponds to the

violation of local integrity constraints. In an information integration system, in-

consistencies can occur even if each local database is consistent. Given different

independent data sources, each with its schema, data integration is the problem

of combining these sources and providing a unified view on these data sources.

This unified view is called the global (or mediated) schema (on which queries are

asked). A database resulting from such an integration may be inconsistent. It

is because different databases that are consistent by themselves can contain con-

flicting tuples that, when integrated, would not satisfy the integrity constraints

on the global schema.

Knowledge bases are machine-readable repository of information from which auto-

mated reasoning programs can deduce new knowledge. An ontology-based struc-

ture is often used for modeling a knowledge base. The problem of inconsistency

may arise during the reasoning process if the ontology-based structure is not well

organized.

39

For the Semantic Web, several typical scenarios which may cause inconsistencies

are described in (40). They identified four possible causes of inconsistency.

1. Inconsistency by mis-presentation of defaults. A notorious example is the

bird ontology in which penguins are specified as the birds which cannot

fly, however, it contradicts the default statement birds are flying animals.

Another typical example is the Mad-Cows ontology in which MadCow is

specified as a cow which eats brains of sheep, whereas a cow is considered

as a vegetarian by default.

2. Inconsistency caused by polysemy. Polysemy refers to the concept of words

with multiple meanings. An example of an inconsistent ontology which is

caused by polysemy is the MarriedWoman concept. This concept is used

to refer both to a woman who has a husband and to a woman who had a

husband but may no longer have one.

3. Inconsistency resulting from migration from another formalism. When an

ontology specification is migrated from other data sources, inconsistencies

may occur. As has been found in (60), the DICE terminology (a DL ter-

minology in the Intensive Care domain) suffered from a high number of

unsatisfiable concepts due to its migration from a frame-based system. In

order to make the semantics as explicit as possible, a very restrictive trans-

lation has been chosen to highlight as many ambiguities as possible. (60)

shows the inconsistent ontology specification in the Brain example, in which

a brain is considered to be both a body part and a central nervous system,

whereas body parts and nervous systems are considered to be disjoint.

4. Inconsistency generated by multiple sources. When a large ontology speci-

fication is generated from multiple sources, in particular when these sources

are created by several authors, inconsistencies easily occur.

Reasoning when there is inconsistency is thus an important issue. Two main

kinds of approaches have been proposed for dealing with inconsistency.

• The first kind of approach is to revise the inconsistent data source in order

to restore its consistency.

40

3.1 Consistency restoration

• The second kind of approach is to accept inconsistencies and cope with them

by using non classical reasoning mechanism to produce plausible conclu-

sions.

In the following, we review some representative works of the different ways for

handling inconsistencies. It is to note that a majority of these works is in central-

ized context. They have considered the problem of computing consistent answers

of a query in an inconsistent single database or knowledge base. More recently,

the advent of applications accessing to distributed information sources has raised

the problem of consistent integration of data from distributed multiple sources.

We consider that the works having treated this problem are also in a centralized

context, because they only consider the problem of reasoning in the integrated

database, viewed as a single and centralized database.

While considering these works, we use the term data source when talking about

either a database or a knowledge base in general. When it is necessary to distin-

guish the kind of data source, we use the corresponding term. We present the

two main approaches one after the other.

3.1 Consistency restoration

The main idea of this approach is to change the data source by giving up or

modifying the piece of data responsible for the inconsistency. By this, we obtain

one or several repairs of the inconsistent data source.

3.1.1 Restoring consistency of databases

Restoring the consistency for a data source has been studied for a long time. (17;

45) have considered the problem of finding repairs for an inconsistent database.

Given a fixed database schema and a fixed set of integrity constraints IC, the

notion of consistency is defined as follows:

Definition 7 Consistency in a database

A database instance r is consistent if r satisfies IC in the standard model-theoretic

sense, that is, r |= IC; r is inconsistent otherwise.

41

3.1 Consistency restoration

Given a database instance r which is inconsistent with the set IC, an answer a

of a query asked to the database is considered consistent if it can be obtained

from every repair of r. A repair of an instance r is an instance r′ obtained from

a modification on r in such a way that r′ |= IC and that the cardinality of

symmetric difference between r and r′ is as little as possible. A modification on

r may be an addition of some new formulas, or a suppression of some formulas.

The following example shows this idea.

Example 1 Finding repairs for an inconsistent instance

Given two unary relations P and Q and domain D = { a,b,c }. Assume that for

an instance r the set of formulas that r satisfies is Σ(r) = { P(a),P(b),Q(a),Q(c)

}. Assume that IC = { ∀x(P (x) ⊃ Q(x)) }. Clearly, r does not satisfy IC because

r |= P (b) ∧ ¬Q(b).

In this case, there are two possible repairs for r. First, by falsifying P(b) we

obtain an instance r′ with Σ(r) = { P(a),Q(a),Q(c) }. As a second alternative,

we can make Q(b) true, obtaining an instance r′′ with Σ(r) = { P(a), P(b), Q(a),

Q(b), Q(c) }.

We consider now the problem of integrating data from different sources and the

integration must preserve the coherence of the integrated database. In fact, as

discussed in (29) , the information stored in the different databases may be contra-

dictory, especially in the presence of integrity constraints (key constraints, foreign

key constraints etc). The point is to provide consistent answers to queries.

A simple example of this problem is the following. Consider three databases

which store information about students and the departments in which they are

registered. Furthermore, each database is associated with the key constraint

expressing that a student is registered in only one department. The first database

stores the facts: Student(John,maths), Student(Sandra,maths), the second

one stores Student(John, physics), Student(Paul,maths) and the last one stores

Student(John,maths), Student(Sandra, physics). What is the answer to the

query : where is John registered ?

We can determine the data that violates integrity constraints and then delete it.

Alternatively, by adding new data to the integrated database, it is also possible to

42

3.1 Consistency restoration

restore its coherence. (18) demonstrates this idea. Given n consistent databases

DBi = (Di, ICi), i = 1, ...n where Di is the instance of DBi and ICi is its set of

integrity constraints, the goal is to do in such a way that the combined data will

contain everything that can be deduced from one source, without violating any

integrity constraint of another source.

Let DB = (D, IC) be the integrated database, where D = ∪ni=1Di and IC =

∪ni=1ICi. In the case where the integrated database is inconsistent, the goal is

to modify it to restore its consistency. By a model-theoretic analysis, the repairs

are characterized in terms of a certain set of models of the inconsistent database

(intuitively, those that minimize the amount of inconsistent information).

Definition 8 Repair

A repair of DB = (D, IC) is a pair (Insert, Retract) such that Insert ∩D = ∅,
Retract ⊆ D and (D ∪ Insert\Retract, IC) is a consistent database.

Insert is a set of elements that should be inserted into D and Retract is a set of

elements that should be removed from D. As there are several possible repairs for

the integrated database, the preferred repairs are defined following set inclusion

or cardinality criteria. Intuitively, these are those that minimize the difference

with the original database.

In order to compute these repairs, a characterization of them based on a three-

valued logic, called THREE, is proposed. In the semantics of THREE, a formula

is interpreted as t (true), or f (false), or > (incoherent). The repairs are then

computed as follows: let N a model of D∪ IC, Insert is computed to be N>\D,

and Retract is computed to be to N> ∩ D where N> is the set of formulas the

interpretation of which in the model N is >. This characterization of Insert

and Retract satisfies the definition 8, that makes (Insert, Retract) a repair of

the integrated database. The coherence of this database is preserved, but its

structure is not.

3.1.2 Restoring consistency of knowledge bases

Similarly, several works have dealt with restoring consistency for a single incon-

sistent knowledge base. We focus on knowledge bases described in a Description

43

3.1 Consistency restoration

Logic language (38). Such a knowledge base consists of a TBox T and an ABox

A. T contains intensional knowledge such as concept definitions in a terminolog-

ical axiom form C v D, where C and D are concepts. Hence, T is also called a

terminology. The ABox A contains extensional knowledge and is used to describe

individuals.

The definition of inconsistency in a knowledge base is different from the one

in a database and is often referred to as incoherency. A Tbox which is logically

consistent (i.e. satisfiable) may be considered as incoherent if it contains a concept

the definition of which is such that it is interpreted as an empty set in every

model of the Tbox. The relation between incoherence and inconsistency is that

the incoherence of a Tbox causes the inconsistency of any Abox defined as an

instance of that Tbox : if a Tbox T is incoherent, it contains a concept C such

that the knowledge base T ∪ C(a) is inconsistent for any instance a.

The semantics of DL knowledge bases is the standard first-order logic semantics,

defined in terms of interpretations. An interpretation I is a pair (∆I , .I) where ∆I

is a non-empty set, called the domain of interpretation, and .I is an interpretation

function which assigns a subset of ∆I to every class name in the Tbox and an

element of ∆I to every instance identifier of the Abox. An interpretation I is a

model of a Tbox if and only if every inclusion axiom of the Tbox are satisfied in

I. A concept name C in a terminology T is unsatisfiable if and only if for each

model I of T , CI = ∅. A TBox T is incoherent if and only if there exists an

unsatisfiable concept name in T . Repairing an inconsistent DL knowledge base

consisting thus in repairing the TBox T as in (55; 59) or to also consider the

ABox as in (56; 57).

For example, in (59), the approach used to repair the TBox T consists in two

steps, trying to locate the cause of the incoherence.

• The first step is called axiom pinpointing. It is to identify the axioms which

are relevant for the debugging of the incoherent Tbox in question. An axiom

is relevant if the Tbox becomes coherent once the axiom is removed, or if, at

least, a particular, previously unsatisfiable concept turns satisfiable. These

axioms can be localized by doing the following:

44

3.1 Consistency restoration

Firstly, given the incoherent Tbox T , for every unsatisfiable concept A in

T , we find minimal unsatisfiability-preserving sub-TBoxes of T and A, in

short: MUPS(T,A). MUPS(T,A) are subsets of T in which A is un-

satisfiable. In general there are several of these sub-TBoxes and we select

the minimal ones, i.e., those containing only axioms that are necessary to

preserve unsatisfiability.

Secondly, from all the MUPS(T,Ai), i = 1..n (each Ai is an unsatisfiable

concept in the Tbox), we calculate minimal incoherence-preserving sub-

TBoxes of T , in short: MIPS. Intuitively, MIPS are the smallest subsets

of an original TBox preserving unsatisfiability of at least one atomic con-

cept.

For example, consider the Tbox T that contains the following axioms:

1. ax1: A1 v ¬A u A2 u A3

2. ax2: A2 v A u A4

3. ax3: A3 v A4 u A5

4. ax4: A4 v ∀s.B u C

5. ax5: A4 v ∃s.¬B

In this TBox, A, B and C are primitive concepts, whereas A1, A2, A3 and

A4 are defined concepts. Moreover, A1 and A3 are unsatisfiable. The set

MUPS(T,A1) is {{ax1, ax2}, {ax1, ax3, ax4, ax5}} and the setMUPS(T,A3)

is {ax3, ax4, ax5}}.

From MUPS(T,A1) and MUPS(T,A3), MIPS(T) is calculated. It is

equal to {{ax1, ax2}, {ax3, ax4, ax5}}. We can verify that each sub-Tbox

in MIPS(T) is the smallest one incoherence-preserving: it contains only

faulty axioms.

• The second step is called concept pinpointing. It is to point out the error

in the definition of a concept in the faulty axioms. Given a faulty axiom

A v B, the idea is to generalize B using the definition of B in an other

faulty axioms.

45

3.2 Inconsistency tolerance

For example, for the axiom ax1 = A1 v ¬A u A2 u A3, by generalizing A2

using its definition in the axiom ax2, we obtain that A1 v ¬A u A u A3.

This new axiom shows the precise error for the unsatisfiability of A1: it is

in the intersection of A and ¬A.

Similarly, by generalizing A4 and A5 using their definition in ax4 and ax5,

we obtain that A3 v ∀s.B u ∃s.¬B. This shows why A3 is unsatisfiable.

After finding the precise errors concerning the definition of unsatisfiable

concepts, the reparation task is thus done by re-defining these concepts with

new axioms. The structure of the original knowledge base is not preserved.

3.2 Inconsistency tolerance

In this section, we consider a set of representative works adopting the second

kind of approach when treating inconsistencies. This approach is to accept in-

consistencies and cope with them. The point distinguishing this approach from

the previous one is that one does not change the structure of the data source.

The inconsistent information still exists in the source but wrong conclusions are

avoided.

Two main categories of logical frameworks have been designed for reasoning in

presence of inconsistencies.

1. The first one is the category of paraconsistent logics. These logics, that we

present in the subsection 3.2.1, are those that do not verify the principle of

explosion of classical logics.

2. The second one is the category of preservationist logics or abstract logics

that we will present in the subsection 3.2.2.

It is also to notice that these logical frameworks can be applied to different context

(centralized or decentralized databases, knowledge bases). Some other methods

for coping with inconsistencies, based on techniques using majority in point of

views, or the reliability of data sources, will also be presented briefly.

46

3.2 Inconsistency tolerance

3.2.1 Logical frameworks based on paraconsistent logics

In classical logic, contradictions entail everything. This curious feature, known

as the principle of explosion or ex contradictione sequitur quodlibet (from a con-

tradiction, anything follows), can be expressed formally as

A,¬A |= B

where |= represents logical consequence. Thus if a theory contains a single incon-

sistency, it is trivial that it has every sentence as a theorem. The characteristic

of a paraconsistent logic (24) is that it rejects the principle of explosion. As a

result, paraconsistent logics, unlike classical logics, can be used to formalize in-

consistent but non-trivial theories. It should be emphasized that paraconsistent

logics are in general weaker than classical logic: it does not validate everything

that classical logic does. In that sense, paraconsistent logic is more ”conservative”

or ”cautious” than classical logic.

3.2.1.1 Annotated Predicate Calculus

Annotated Predicate Calculus (APC) (43) is a paraconsistent logic for treating

any set of clauses, either consistent or not, in a uniform way. In this logic, con-

sequences of a contradiction are not as damaging as in the standard predicate

calculus (PC), and meaningful information can still be extracted from an incon-

sistent set of formulas while wrong conclusions are not deduced. We will only

present the main difference between APC and PC to show the mechanism of APC

that avoids to draw wrong conclusions when there is an inconsistent relation in

the set of formulas.

• At the syntactic level, the language of APC is similar to that of PC. The only

syntactic difference is that atomic formulas in APC are constructed from

those of predicate calculus (e.g. l) by appending to them annotations (e.g.

l : r), where r is an annotation drawn from a so-called upper semi-lattice of

degrees of belief, in short: BSL. Intuitively, r represents the reasoner’s belief

in the truth of the statement l. It can take one of the following four values:

t (true), f (false), > (contradiction) and ⊥ (unknown), with the following

47

3.2 Inconsistency tolerance

order: ∀s ∈ BSL, ⊥≤ s ≤ >. Some examples of literals of APC are q : >,

or p(X) : s where > and s ∈ BSL. Some examples of formulas of APC are

(∀Y)r(Y) : t, (∃X)¬q(X,Z) :⊥ where t and ⊥ ∈ BSL.

• At the semantic level, the notion of interpretation in APC differs from the

one of PC. In APC, an interpretation I is a tuple < D, IF , IP >. As in

PC, D is the domain of I, IF associates to each k-ary function symbol

f a mapping IF (f):Dk → D. The difference between APC and PC is

that in APC, IP associates to each m-ary predicate symbol p a function

IP (p):Dm → BSL, instead of Dk → {true, false} as in PC.

A valuation ν is a function that assigns values from D to variables. For an

atomic formula p(t1, ..., tk) : s, we write I |=ν p(t1, ..., tk) : s if and only if

IP (p)(ν(t1), ..., ν(tk)) = r ∈ BSL and s ≤ r.

Complex formulas are interpreted as usual:

– I |=ν φ ∨ ψ if and only if I |=ν φ or I |=ν ψ

– I |=ν φ ∧ ψ if and only if I |=ν φ and I |=ν ψ

– I |=ν ¬φ if and only if not I |=ν φ

– I |=ν (∀X)φ if and only if I |=u φ for every u that may differ from ν

only in its X-value

– I |=ν (∃X)φ if and only if I |=u φ for some u that may differ from ν

only in its X-value

A formula φ is satisfied by an interpretation I if for every valuation ν,

I |=ν φ. In this case, we write I |= φ. An interpretation I is a model of a

set S of formulas if and only if every formula φ in S is satisfied by I. A set

of formulas S logically entails a formula φ if and only if every model of S is

also a model of φ.

In APC, a set of formulas is always satisfiable because the inconsistent

relations are characterized by >. The interpretation in which all atomic

formulas of a set S are interpreted to > will satisfy all these formulas,

because > is the highest element (in terms of order) in a BSL.

48

3.2 Inconsistency tolerance

A main difference between APC and PC is that APC presents a new notion

of implication that avoid drawing anything from an inconsistent relation .

– In PC, the set of formulas {¬q, q, q → p} is inconsistent. It has every

formula as a consequence, such as p, even if q is an inconsistent relation.

– In APC, consider the set {q : f, q : t, q : t ; p : t} where q : t ; p : t

is equivalent to q : f ∨ p : t. This set is also inconsistent because of

the relation q. However, we will show that p : t is not deduced from

this set.

Consider the interpretation I in which I |= q : > and I |= p :⊥.

Because f < > and t < > in terms of order of BSL, by definition we

have I |= q : f and I |= q : t. In addition, as we have I |= q : f , we

also have I |= q : f ∨ p : t by definition. Therefore I is a model of the

considered set. However, this is not a model of p : t, because in I, p is

interpreted to ⊥ and ⊥< t. Thus, p : t is not deduced from the above

inconsistent set of formulas.

3.2.1.2 LFI1

LFI1 (31) is a logic in the family of Logics of Formal Inconsistency (LFIs).

It uses a new symbol • which stands for partially true, assimilated to the case

of inconsistency. A PC’s well-formed formula F is also a LFI1’s well-formed

formula, as well as •F .

At the semantic level, LFI1 is a three-valued logic. An interpretation assigns to

a formula a truth value drawn from {0, 1
2
, 1}, where 0 stands for false, 1 stands

for true and 1
2

stands for inconsistent. As well as the APC paraconsistent logic

just presented above, LFI1 also redefines the notion of implication. In LFI1, it

is defined as A → B ≡ B ∨ ¬A ∨ •A. The notion of models and logical conse-

quences are as usual as in PC but extended to accept the value 1
2
. It means, an

interpretation I satisfies a formula F , denoted as I |= F , if I(F) = 1 or 1
2
.

Because of the addition of the new symbol • and a new definition of implication,

new connective matrices are defined. Figure 3.1 below shows the connective

matrices for the primitive logical symbols ∨, ¬, •.

49

3.2 Inconsistency tolerance

Figure 3.1: Connective matrices used for LFI1

The following example shows that LFI1 does not verify the principle of explosion,

i.e., A,¬A 6|= B for all B. Let R be a binary predicate symbol, Let I be the

interpretation such that I(R(a, b)) = 1, I(R(c, b)) = 1
2

and I(R(p, q)) = 0 for all

(p, q) such that p 6= c and p 6= a, or q 6= b. As I(R(c, b)) = 1
2
, using the connective

matrices, we also have I(¬R(c, b)) = 1
2
. It means, I |= R(c, b) and I |= ¬R(c, b).

However, I 6|= R(b, a) as I(R(b, a)) = 0.

3.2.1.3 Distributed Description Logics with holes

(61) is one of the work aiming at proposing a logical framework for reasoning

with distributed ontologies. This work extends the Distributed Description Logic

(DDL) presented in (20) by introducing the notion of distributed interpretation

with holes.

The DDL in (20) can be briefly described as follows.

• At the syntactic level, consider a set of local ontologies, each with a TBox

Ti, where i ∈ I, a set of integers. A local concept C in Ti is denoted

as i : C. Semantic mappings between different ontologies are expressed

via bridge rules. A bridge rule from an ontology i to an ontology j is an

expression restricted to being one of the following two forms:

1. i : x −→v j : y - an into-bridge rule

2. i : x −→w j : y - an onto-bridge rule

where x and y are any concepts of Ti and Tj. Intuitively, a bridge rule from

an ontology i to an ontology j expresses the relation between concepts of Ti

50

3.2 Inconsistency tolerance

and Tj, viewed from the subjective point of view of the j-th ontology. For

example, the mapping i : C −→v j : D says that in the viewpoint of j, the

individuals in the concept C of Ti correspond to a subset of the individuals

in its local concept D.

A distributed TBox < is defined as < =< {Ti},B >: it consists of a collec-

tion of local TBoxes and all the semantic mappings B between them.

• At the semantic level, each local ontology is interpreted locally by a local

interpretation Ii = {∆Ii ,.I }. A domain relation rij from ∆Ii to ∆Ij is a

subset of ∆Ii x ∆Ij . A distributed interpretation = of a distributed TBox

< is defined as = = < {Ii}, {rij} >. = is said to satisfy (written = |=d) the

elements of < if:

1. Ii |=d A v B for all A v B in Ti

2. = |=d i : x v→ j : y, if rij(x
Ii) ⊆ yIj

3. = |=d i : x w→ j : y, if rij(x
Ii) ⊇ yIj

4. = |=d <, if for every i,j, = |=d Ti and = |=d Bij where Bij is the set

of semantic mappings from the ontology i to the ontology j.

A distributed TBox < is satisfiable if there exists an distributed interpre-

tation = such that = |=d <. A concept i : C is satisfiable with respect to <
if there is a distributed interpretation = such that = |=d < and CIi 6= ∅

The DDL in (20) have some problems when there are some local inconsistent

TBoxes in the distributed TBox: they make the whole distributed TBox to not

have a model. As a consequence, every statement is true even in the other

consistent TBoxes. In this case, we say that the local inconsistency spreads

and contaminates the other local ontologies. In order to fix this problem, (61)

introduced the notion of distributed interpretation with holes. The definition of a

hole is as follows:

Definition 9 A hole for a TBox T is an interpretation Iε= < ∅,.ε>, where the

domain is empty.

51

3.2 Inconsistency tolerance

Let us extending the d-entailment |=d, obtaining |=ε by also allowing holes as

interpretations for local TBoxes. |=ε has two important properties.

The first property of |=ε is that Iε |= C v D for every C and D because both are

interpreted as the empty set. Therefore, even if some local TBox Ti is inconsistent,

we still have a distributed interpretation for the whole distributed TBox, the one

that uses Iε to satisfy Ti.

For the second property of |=ε, let us consider a distributed TBox < in which

n local TBoxes Ti1, ..., Tin are inconsistent. For any local inconsistent TBox Ti,

let <(εi) denote the distributed TBox obtained by removing Ti, Bij, Bji from <
and by extending each Tj with the set of axioms {G v ⊥} whenever there is a

bridge rule i : A −→w j : G ∈ Bij. Let J be the set {i1, ..., in} and let <(εJ) be

<(εi1)...(εin). The second property of |=ε is that it permits to avoid the problem of

spreading and contamination of local inconsistencies into other local ontologies,

due to the following theorem (theorem 1).

Theorem 1 < |=ε i : X v Y if and only if for every J not containing i, <(εJ) |=d

i : X v Y

3.2.2 Logical frameworks using other logics

In this subsection, we present some other logical frameworks for dealing with

inconsistent knowledge bases. These framework use logics that are not paracon-

sistent: they verify the principle of explosion. However, by redefining the notion

of entailment (the case of Abstract Logic) or the property to be preserved (the

case of preservationist logics), wrong conclusions can also be avoided.

3.2.2.1 Preservationist logic

In (15) , the characteristics of preservationist logics are presented. The way to

use these logics is simple: we identify the property of the data source (satisfia-

bility for example) that we want to preserve, then we adapt the notion of logical

consequence in such a way that the chosen property is always preserved. Conse-

quently, given a property to be preserved, if the data source permits to imply a

new formula while preserving the chosen property then the formula is a plausible

logical consequence of the data source.

52

3.2 Inconsistency tolerance

A special point of preservationist logics is that one can choose not only the sat-

isfiability as the property to be preserved, but also any other properties. An

example of work using preservationist logics is (16). (16) chose two properties to

be preserved: the level of coherence and the dilution of level. In order to define the

level of coherence of a data source, one consider the different coherent partitions

of this source (the partitions such that each of them is classically consistent). A

partition of a data source Σ is defined as a set of subsets of Σ such that these

subsets do not intersect and that together they cover Σ. The size of a partition

is the number of subsets of Σ that it contains. It is also said that a partition

is a n-partition if it contains exactly n subsets of Σ. A partition is considered

coherent if all of its elements (subsets of Σ) are classically coherent. The level of

coherence of the initial data source Σ is defined as the size of its smallest coherent

partition.

The companion notion dilution of level is defined based on the notion of level

of coherence. Given a data source Σ with the coherence level n, the dilution of

level-n of Σ is the size of the smallest subset Σ′ of Σ (in terms of number of

formulas) such that the level of coherence of Σ′ is also equal to n. Intuitively, the

dilution measures the size of the subset of Σ that participate into the incoherence

in Σ. The more the dilution is small, the more the incoherence is concentrated

on a small number of formulas of Σ. By preserving in the same time the level

of coherence and the dilution relative to this level during a reasoning, one can

warrant that the inferred formulas will not create new incoherences in the data

source, neither to increase the concentration of the incoherence in the source.

Preserving the level of coherence can be done using the following result. Given a

source Σ and suppose that the level of coherence of Σ is n, it can be shown that

a new formula α added to Σ will preserve its level of coherence if α follows from

every coherent n-partition of Σ. It means, for each coherent n-partition, there

exists a subset of Σ that implies classically α.

For preserving the dilution of level, the point is to keep the dilution from decreas-

ing. It is done using the following result. Given a source Σ and suppose that

the level of coherence of Σ is n and the dilution at level n is equal to m, it can

53

3.2 Inconsistency tolerance

be shown that m is preserved when adding a new formula α to the source if for

every subset Σ′ of Σ such that the size of Σ′ is m− 1 then the addition of α into

Σ′ preserves the level of coherence n− 1 for Σ′.

The preservationist logics are flexible because we are free to choose the properties

to be preserved. However, it is not easy to preserve a property. In the example

above, we have to check for all the n-partitions of Σ in order to preserve its level

of coherence. This task could be expensive.

3.2.2.2 Abstract logic

In 1982, Dana Scott (33) defined an abstract logic which consists of a set L (whose

members are called well-formed formulas) and a consequence operator CN . CN

is any function from 2L (the powerset of L) to 2L. Formally, CN(X) is the set

of formulas that are logical consequences of X according to the logic in question,

that satisfies the following axioms:

• Expansion X ⊆ CN(X)

• Idempotence CN(CN(X)) = CN(X)

• Monotonicity X ⊆ Y ⇒ CN(X) ⊆ CN(Y)

• Coherence CN(∅) 6= L

Very recently, (64) has extended the Abstract Logic presented in (33) in order to

be able to deal with inconsistencies. Its approach is simple and mainly consists in

redefining the notion of entailment. In (64) , the notion of Consistency is defined

as follows:

Definition 10 Consistency

Let X ⊂ L. X is consistent in logic (L,CN) if and only if CN(X) 6= L.

This definition of consistency says that X is consistent if and only if its set of

consequences is not the set of all well formed formulas.

A second notion that is presented is the notion of Options. An option O is any

set of elements of L that is consistent and closed, i.e. O = CN(O). The general

54

3.2 Inconsistency tolerance

framework for reasoning about inconsistency is defined as a triple < Opt(L),�
,;> where Opt(L) is the set of all options that can be built from (L,CN), � is

a partial or total preorder between options and ; is an entailment mechanism.

Let O� be the set of all preferred options of L, based on any order that a user

can define for �, such as set inclusion. The entailment mechanism can be defined

as one of the two following criteria:

• Universal criterion L ; ψ iff ψ ∈ Oi, ∀Oi ∈ O�. ψ is called a universal

consequence of L

• Argumentative criterion L ; ψ iff ∃Oi ∈ O� such that ψ ∈ Oi, and

6 ∃Oi ∈ O� such that ¬ψ ∈ Oi. ψ is called an argumentative consequence

of L

It can be shown that the set of formula, which are universal or argumentative

consequence of L, is an option of L, and thus is consistent.

It is to notice that this logical framework verifies the principle of explosion, thus

it is not classified as a paraconsistent logic. However, the newly defined notion of

entailment warrants to produce only consistent consequences from set of options

that are by definition consistent.

Such a general framework can be applied to handle inconsistencies in an incon-

sistent knowledge base. Given K an inconsistent knowledge base, an option O

can handle K if there is a subset K ′ of K such that O = CN(K ′). Consequently,

K ′ is consistent as well as the set CN(K ′) of its consequences. Moreover , an

optimal option for K can be chosen from the set O�, taking into account the

order of options defined by user, to choose the most preferred K ′ from K.

It is worth noticing that (40) proposed a very similar approach to the one of

(64). (40) considers OWL and its underlying description logics. Similarly to

(64) , it also redefines the notion of entailment for an inconsistency reasoner.

An inconsistency reasoner is denoted by the symbol |≈, instead of the classical

symbol |=. In this work, given an inconsistent set of formulas Σ, soundness and

meaningfulness of an inconsistency reasoner are defined as follows :

55

3.2 Inconsistency tolerance

Definition 11 Soundness

An inconsistency reasoner |≈ is sound if the formulas that follow from an incon-

sistent theory Σ follow from a consistent sub-theory of Σ using classical reasoning,

namely, the following condition holds:

Σ |≈ φ =⇒ (∃Σ′ ⊆ Σ)(Σ′ 6|=⊥ and Σ′ |= φ)

Definition 12 Meaningfulness

An answer given by an inconsistency reasoner is meaningful iff it is consistent

and sound. Namely, it requires not only the soundness condition, but also the

following condition:

Σ |≈ φ =⇒ Σ |6≈ ¬φ
An inconsistency reasoner is said to be meaningful iff all of the answers are

meaningful.

It is to note that the soundness and meaningfulness properties of an inconsistency

reasoner in (40) make it equivalent to the notion of argumentative criterion of

entailment in (64) .

One of the important problems that these two works have to solve is to find the

optimal options for (64) , or to find the subset Σ′ that is consistent for (40) . Given

Σ the inconsistent set of formulas, both works propose a method that starts from

a subset of Σ and incrementally adds new formulas to this subset, preserving

its consistency. There is a difference between the two works, concerning this

procedure. In (64) , the subset is extended with the consequences of the formulas

belonging to it, and by adding new formulas from Σ. In (40) , the subset is

extended in each step by adding new formulas from Σ then by checking if this

subset can answer if a formula φ can be consistently entailed from it.

We illustrate the Linear Extension Strategy in (40) in the figure 3.2. The scenario

is carried out as follows. Given a query Σ |≈ φ, the initial consistent subset Σ′

is set. Then the selection function is called to return a consistent subset Σ′′

, which extends Σ′, i.e., Σ′ ⊆ Σ′′ ⊆ Σ for the linear extension strategy. If

the selection function cannot find a consistent superset of Σ′, the inconsistency

reasoner returns the answer undetermined (i.e., unknown) to the query. If the

set Σ′′ exists, a classical reasoner is used to check if Σ′′ |= φ holds. If the answer

56

3.2 Inconsistency tolerance

is yes then Σ |≈ φ holds. If the answer is no then the inconsistency reasoner

further checks the negation of the query Σ′′ |= ¬φ. If the answer is yes then Σ

|≈ ¬φ holds, otherwise the current result is undetermined and the whole process

is repeated by calling the selection function for the next consistent subset of Σ

which extends Σ′′.

Figure 3.2: Linear Extension Strategy used in (40)

3.2.2.3 The K45An epistemic logic

In (25; 26), Calvanese and al. have considered the problem of inconsistency in

peer-to-peer data integration systems. In such systems, each peer models an

autonomous system that exports data in terms of its own schema, and data

inter-operation is achieved by means of mappings among the peer schemas.

Two types of inconsistency are distinguished in such systems: local inconsistency

and peer-to-peer inconsistency. Local inconsistency of a peer means that the data

stored at the peer contradicts the peer schema. On the other hand, peer-to-peer

inconsistency raises inside a peer Pi when the data coming from another peer

Pj (through a mapping) contradicts the local data of Pi (or contradicts the data

coming to Pi from another peer Pk).

57

3.2 Inconsistency tolerance

Such a peer-to-peer data integration system can be formalized by means of the

language of K45An . This logic is extended from the logic K45n that is itself

extended from K45 (44). Like K45, K45n is based on first-order logic, but has

modal operators expressing the knowledge of a peer about a formula.

While K45n is not able to deal with inconsistency, its extension K45An is. K45An

is a non-monotonic multi-modal epistemic logic. In comparison to K45n, K45An

has modal operators representing so-called assumptions of a peer about the truth

of formulas. It is only when the assumption that a peer data does not contradict

the schema of this peer is justified (no local inconsistency) that the data of this

peer can be sent to the other peers as answers for their queries.

For peer-to-peer inconsistency inside a peer, under the semantics of K45An , two

contradictory data (among which at least one coming from an other peer) can only

co-exist if the contradictory fragment of information between them is not taken

into account. For example, consider a peer schema with the axiom ”at a given

moment, a person lives in only one place and holds only one citizenship.” Suppose

that this peer receives from two other peers two contradictory data : ”John is

Canadian and lives in Roma” and ”John is Italian and lives in Roma”. The

contradictory fragment of data is on the citizenship of John. Under the semantics

of K45An , this fragment is discarded so that a query about the citizenship of John

will return the empty set. In an other hand, the place where John lives is the

same in these two data: Roma will be returned for a query about the place where

John lives.

As we have seen, many logical frameworks have been proposed to deal with in-

consistencies. They differ mainly on the kind of logics on which they are based.

We summarize and compare the logical frameworks presented above in the table

3.1.

3.2.3 Other techniques for dealing with inconsistencies

We present in this sub-section some other techniques for drawing plausible con-

clusions in presence of inconsistencies. These techniques are based more or less

on a logical framework (as it is always the case when it comes to reasoning), but

58

3.2 Inconsistency tolerance

Approach has been applied in has important properties

APC paraconsistent logic Single DB PC-based

Interpretation redefinition

Implication redefinition

Four-valued

LFI1 paraconsistent logic Single DB PC-based

Implication redefinition

Entailment redefinition

Three-valued

Preservationist logic Single KB PC-based

Coherence level preserving

Dilution preserving

Abstract logic Single KB Entailment redefinition

DDL with holes Distributed ontologies Description Logic extension

Distributed interpretation with holes

Distributed entailment

K45An logic P2P data integration systems Epistemic Logic

Table 3.1: Summary on the logical frameworks presented in the sections 3.2.1

and 3.2.2

the influence of the logical base is not as clear and important as in the works that

we have just presented above.

3.2.3.1 Source reliability-based technique

In (28), the problem of inconsistency in an integrated data source is considered.

The integrated data source is formed by integrating different local sources. These

sources are ordered. The order depends on the application: the order can rep-

resent the relative reliability of agents, in the case of agents who observe the

real world and send their beliefs; it can represent the ”age” of the agent in the

sense that the more recent an agent is, the more important it is assumed to be;

finally, the order can represent any arbitrary choice of the person who collects

the information.

59

3.2 Inconsistency tolerance

A very simple idea is that the more important (according to the order) an agent is,

the more we want to keep the information it provides. For example, consider two

agents ai and aj, and assume that ai is more reliable than aj. When integrating

ai and aj, an information A that can be deduced from ai will be kept as a new

axiom for the integrated source, while ¬A that can be deduced from aj is not

accepted.

3.2.3.2 Majority technique

The problem of inconsistency in an integrated data source is also considered in

(29). The technique that is used to handle inconsistency is very simple, it counts

the number of times that a formula and its negation appear in the sources. For

example, we want to know if the axiom q is true in an integrated database. If q

appears in some sources and its negation does not appear in any source then the

answer is yes. An other possibility to have a positive answer is yes by majority,

expressing that the number of times that q appears in the sources is greater than

that of its negation, which itself is superior to 0. If q and ¬q appear the same

number of times, superior to 0, the answer is Balanced Inconsistency. Finally, the

answer Undetermined is returned when neither q nor ¬q appear in any source.

3.2.3.3 Change detection for compiled knowledge technique

(63) considers the problem of inconsistency in modular ontologies. Modular on-

tologies are distributed ontologies, each ontology is considered as a module. While

it is classical that a module consists of its intensional knowledge (its concept def-

initions and relations), it is to note that a module in (63) consists also of an

extensional part. An extensional part of a module contains external concept def-

inition. An external concept definition of a module M is an axiom of the form

C ≡M ′ : Q, where M ′ is an other module and Q is a query over the vocabulary

of M ′.

With this structure, while reasoning inside a module in order to imply new axioms,

it is not only necessary to reason in the internal part of this module, but also

in the external part which requires a reasoning in the corresponding external

module. The idea is to do this external reasoning only once, then to import all

60

3.3 Summary

the deduced knowledge in the external module into the local one. The imported

knowledge is also called compiled knowledge. These knowledge can be used in

further reasoning inside the local module.

However, if there is a change (addition or suppression or modification) in the

corresponding external source, the compiled knowledge may become inconsistent

or out of date. Therefore, the definition of ”consistency” in this case is not the

same as we have seen in the works presented above. An algorithm has been

proposed for each module to detect changes in external modules from which it

has compiled knowledge. The changes are classified as ”harmful” or ”harmless”.

This algorithms is based on the Distributed Description Logic (without holes)

that we have presented above.

3.3 Summary

There are two main approaches for dealing with inconsistencies in the literature.

1. The first approach consists in repairing the data source. This approach

does not preserve the structure of the data source. It is thus suitable to

be used only in a centralized context, such as a single database or a single

knowledge base. Actually, in a typical Semantic Web setting, one would

be importing ontologies from other sources, making it impossible to repair

them, and the scale of the combined ontologies may be too large to make

repair effective. Moreover, when there are multiple data sources, if there is

no explicit order between the sources then they should be treated equally.

2. The second approach is suitable for both centralized or decentralized con-

text, because it preserves the structure of the data source. This approach

is mostly based on redefining some notions in logics, such as implication or

entailment in order to avoid wrong conclusions.

In the next chapter, we will present in detail the inconsistency problem that we

have considered in SomeWhere and our solution for it. As we are interested in

dealing with inconsistency in a totally decentralized network, the first approach

61

3.3 Summary

consisting of restoring the consistency for a single data source can not be applied,

as discussed above.

We will therefore adopt the second approach for dealing with inconsistencies. We

accept the presence of inconsistencies in the SomeWhere network and propose

a way to draw only well-founded conclusions. Given an inconsistent set Σ of

formulas and a query q, our approach is in somehow similar to the one of (64)

and (40). We define well-founded logical consequences of a set of formulas Σ as

those which can be classically deduced from a consistent subset Σ′ of Σ. Our

approach can be distinguished from those of (64) and (40) on the following two

points:

• Firstly, given an inconsistent set Σ of formulas, we accept both A and its

negation ¬A as well-founded consequences of Σ, as long as each of them

can be classically deduced from a consistent subset Σ′ of Σ.

• Secondly, the inconsistent set Σ is not known in our framework. Σ is the

union of all the peer theories which are distributed over a SomeWhere

network. There is no centralized control so that one can know the whole

theory. Therefore, our algorithm to compute well-founded consequences of

a query w.r.t to Σ must run in a fully decentralized manner.

62

3.3 Summary

63

Chapter 4

DEALING WITH

INCONSISTENCIES IN

SomeWhere

In the SomeWhere peer-to-peer inference system, one of the assumptions that

have been made is that the global SomeWhere theory is consistent so that

query answering in SomeWhere produces meaningful answers. However, this

assumption may not be relevant considering the decentralized and multi-authored

nature of the peer theories. In this case, query answering in SomeWhere may

produce answers that are meaningless.

Our choice is to compute only well-founded consequences of a formula, i.e., those

that are consequences of the formula w.r.t. to a consistent subset of the global

theory. For this, the problem is first to detect inconsistencies, second to reason

in spite of them in a satisfactory way. In addition, these two tasks have to be

done in a decentralized manner, because the peer theories are distributed and the

global theory of SomeWhere is not known to any peer. We have developed the

two corresponding decentralized algorithms P2P-NG and WF-DeCA for these

tasks.

Let us consider a SomeWhere P2PIS P = {Pi}i=1..n, where each Pi is a peer

64

with its own theory, also denoted by Pi. In each peer theory Pi, we distinguish

the set Mi of mappings that the peer Pi has with other peers from the set Oi

containing clauses involving only its local variables. In addition, we assume that

each mapping of Pi has a unique identifier prefixed by Pi. The global theory

T(P) of P is:
⋃
i=1..n Pi, which is also equal to M ∪ O where M =

⋃
i=1..nMi and

O =
⋃
i=1..nOi.

We recall the semantics of such a P2PIS, using the notations we have just pre-

sented above and we make explicit the notion of consistency of it.

Definition 13 Semantics and consistency of a P2PIS

Let P = {Pi}i=1..n be a P2PIS, an interpretation I of P is an assignment of the

variables of T(P) to true or false. I is a model of a clause c if and only if one

of the literals of c is evaluated to true in I. I is a model of a set of clauses iff it

is a model of all the clauses of the set. P is consistent if and only if T(P) has a

model.

Considering the decentralized and multi-authored nature of the peer theories,

even if each local theory is consistent, the global theory may be inconsistent. We

present an example of an inconsistent P2PIS in Figure 4.1.

• P1 can be asked by researchers for choosing where to submit their results

(demos or papers). For instance, part of its knowledge can model that:

PODS06 is open for submission; submitting to PODS06 entails submitting

to PODS; only theoretical results are submitted to PODS; a demo cannot

be submitted to JAIR.

• P2 distinguishes proceedings from journals and knows that: submitting to

PODS entails submitting to a conference with proceedings; submitting to

JAIR entails submitting to a journal; a same result cannot be submitted

in a conference and in a journal; patented results cannot be submitted to a

journal.

• P3 has some knowledge about research valorization policy: software should

be patented or presented as demos; theoretical results should be submitted

to journals.

65

Peer P1

O1

PODS061

¬PODS061 ∨ PODS1

¬PODS1 ∨ Theory1

¬Demo1 ∨ ¬JAIR1.

Peer P2 :

O2 :

¬PODS2 ∨ Proc2

¬JAIR2 ∨ Journal2
¬Journal2 ∨ ¬Proc2

¬Patent2 ∨ ¬Journal2
M2 :

P2.1 : ¬PODS1 ∨ PODS2

P2.2 : ¬PODS2 ∨ PODS1

P2.3 : ¬JAIR1 ∨ JAIR2

P2.4 : ¬JAIR2 ∨ JAIR1

Peer P3 :

O3 :

¬Soft3 ∨ Patent3 ∨Demo3

¬Theory3 ∨ Journal3
M3 :

P3.1 : ¬Theory3 ∨ Theory1

P3.2 : ¬Theory1 ∨ Theory3

P3.3 : ¬Demo3 ∨Demo1

P3.4 : ¬Demo1 ∨Demo3

P3.5 : ¬Journal3 ∨ Journal2
P3.6 : ¬Journal2 ∨ Journal3
P3.7 : ¬Patent3 ∨ Patent2
P3.8 : ¬Patent2 ∨ Patent3

J
A
I
R

1
,P
O
D
S

1

Journal2, Patent2

Theory1, Demo1

Figure 4.1: Exemple d’un rseau SomeWhere

• The knowledge expressed separately by P1, P2 and P3 using their respective

vocabularies can be respectively modeled by the set of clauses O1, O2 and

O3.

• The set M2 of mappings stored at P2 states the equivalence between PODS1

and PODS2 (reps. JAIR1 and JAIR2) through the mappings identified

by P2.1, P2.2, P2.3 and P2.4. The set M3 of mappings stored at P3 also

establishes equivalences between variables of P3 and variables of the two

other peers. Note however that mappings clauses do not necessarily result

from equivalences.

In this example, the set of the clauses {¬Journal3 ∨ Journal2 , ¬Theory3 ∨
Journal3 , ¬Theory1∨Theory3 , ¬PODS1∨Theory1 , ¬PODS061∨PODS1 ,

PODS061 , ¬Journal2 ∨ ¬Proc2 , ¬PODS2 ∨ Proc2 , ¬PODS1 ∨ PODS2} is

66

inconsistent. Among these clauses, there are 3 mappings : ¬Journal3∨Journal2
(P3.5) , ¬Theory1 ∨ Theory3 (P3.2) and ¬PODS1 ∨ PODS2 (P2.1).

Intuitively, the inconsistencies are due to the different viewpoints of different

peers. However, given the lack of a centralized control, all peers should be treated

equally. It would be unfair to exclude any peer out of the network, hoping of

restoring the consistency for the P2PIS, or to refuse the join of a new peer just

because the resulting P2PIS becomes inconsistent.

Our choice is to accept the presence of inconsistency. The problem is first to

detect inconsistencies, second to reason in spite of them in a satisfactory way.

Our approach is to compute only well-founded consequences of a formula, i.e.,

those that are consequences of the formula w.r.t. to a consistent subset of the

global theory.

Such an approach is not novel in the centralized case, such as (59) that tried to

point out the faulty axioms in a TBox, or (64) and (40) that defined a new notion

of entailment based on the classical one w.r.t. a consistent subset of the whole

inconsistent theory. However, in our decentralized case, such an approach raises

new algorithmic issues because both the computation and the storage of nogoods

(accounting for inconsistencies) are distributed. As the reasoning is distributed,

the set of the formulas involved in a proof is also distributed. Thus, one has to

be able to check the consistency of distributed sets of formulas, w.r.t. distributed

sets of nogoods.

We assume each local theory to be consistent. Therefore, the possible incon-

sistencies result from the interaction between local theories, and are caused by

mappings. Before adding a mapping, a peer checks whether this mapping (pos-

sibly with other mappings) can be the cause of some inconsistency, i.e., if the

empty clause can be produced as one of its consequences. In that case, the peer

stores locally as a nogood the set of mapping identifiers involved in the corre-

sponding proof. At reasoning time, the concerned distributed nogoods must be

collected to check whether the proof under construction is well-founded. This

requires collecting for each result the mapping support of its derivations together

67

4.1 Peer-to-peer detecting inconsistencies and nogoods

with the nogoods stored at each peer visited by the reasoning. The only results

that are returned are those with a mapping support not including a nogood.

4.1 Peer-to-peer detecting inconsistencies and

nogoods

As outlined in the introduction, even if each Pi is locally consistent, this is not

necessarily the case for T(P). We assume that the causes of inconsistencies are

only due to mappings and we define a nogood as follows:

Definition 14 nogood

A nogood ng is a set of mappings such that O ∪ ng is inconsistent.

Note that in a nogood ng there necessarily exists some mapping m from which

one can derive the empty clause (i.e., with a proof rooted in m). We exploit this

property in the decentralized algorithm P2P-NG to detect nogoods accounting

for inconsistencies.

4.1.1 The P2P-NG algorithm

P2P-NG runs at each peer and is used before adding a new mapping m to a peer

P to check if the join of this mapping cause inconsistency, i.e. to check whether

the propagation of m into the existing P2PIS produces the empty clause. If that

is the case, P stores locally as new nogoods the mappings (including m) involved

in the corresponding derivations.

A derivation of a clause c (possibly 2) is a proof of c using a complete strategy

of resolution, i.e. a sequence of applications of the resolution rule which given

two clauses e ∨ c1 and ¬e ∨ c2 produces the resolvent clause c1 ∨ c2 (in which

redundant literals are removed). A derivation rooted in m is a derivation the first

application of resolution rule applies to m. In our setting, the input set of clauses

are either reduced to a local theory of a given peer, or a union of local theories

and mappings.

68

4.1 Peer-to-peer detecting inconsistencies and nogoods

We call the set of mappings used in a derivation its mapping support. The

P2P-NG algorithm computes the (possibly empty) set of mapping support of

the derivations of the empty clause rooted in m, starting at the peer P . Since

mappings have a unique identifier, mapping support can efficiently be encoded

as sets of mapping identifiers (and similarly for nogoods computed from mapping

support).

As the DeCA algorithm is used in SomeWhere for consequence finding, P2P-

NG is an adaptation of DeCA to find all the mapping support of the empty

clause. It follows the same split-recombine strategy as DeCA but it has the

following significant differences:

• The stopping conditions must be changed. The ones in the original DeCA

algorithm were designed for the computation of proper prime implicates

only. Here we need to find all the possible ways of deriving the empty

clause, we cannot stop the reasoning as soon as we produce the empty

clause, or as soon as we find a unit clause in a local peer which is the same

as the literal under processing.

• Because we are only looking for 2 as a consequence, locally produced con-

sequences c such that L(c) 6= 2 can be filtered out.

• While DeCA would return {2} as its result if there exists a derivation of

the empty clause, P2P-NG returns as many mapping support as different

ways of deriving 2.

We use the following notations:

• For a clause c, Resolvent+SMS(c, P) computes the set of pairs (r SMS(r, P))

such that r is a local consequence of c w.r.t. P and SMS(r, P) is its corre-

sponding set of local mapping support.

• For any clause r that is a local consequence of a clause c w.r.t. a peer P ,

L(r) denotes the disjunction of literals of r the variables of which are not

shared in P , and S(r) denotes the disjunction of literals of r the variables

of which are shared in P , i.e. r = L(r) ∨ S(r).

69

4.1 Peer-to-peer detecting inconsistencies and nogoods

• For a literal q, q̄ denotes its complementary literal, ACQ(q, P) denotes the

set of peers that share the variable q with P .

• A history hist is a sequence of tuples (l, P, c) where l is a literal, P a

peer, and c a clause which is a consequence of l on the peer P . A history

[(ln, Pn, cn), . . . , (l1, P1, c1), (l0, P0, c0)] represents a branch of reasoning ini-

tiated by the propagation of the literal l0 within the peer P0, which either

has produced locally the clause c0 in P0 (in that case, c0 may have been

splitted into its different literals among which l1 is propagated in P1), or

not (in that case l0 is simply propagated from P0 to P1 and l0 = c0 = l1).

For every i ∈ [0..n− 1], ci is a consequence of li and Pi, and li+1 is a literal

of ci, which is propagated in Pi+1.

• ⊗ is the distribution union operator on sets of sets:

SS1⊗· · ·⊗SSn = {S1∪· · ·∪Sn |S1 ∈ SS1, . . . , Sn ∈ SSn}. If L = {l1, . . . , lp},
⊗l∈LSSl denotes SSl1 ⊗ · · · ⊗ SSlp .

Each literal resulting from the splitting of a clause (Line 11) of the P2P-NGl algo-

rithm) is processed independently by the P2P-NGl algorithm. P2P-NGl(q, SP, hist)

checks whether there exists a derivation of 2 rooted in the literal q, starting with

the computation of local consequences of q, and then recursively following the

acquaintances of the visited peers. To ensure termination, it is necessary to keep

track of the literals already processed by peers. This is done thanks to hist, where

hist is the history of the reasoning branch ending up to the propagation of the

literal q in SP , which is the set of acquaintances of the last peer added to the

history.

Before adding a new mapping m to its local theory, each peer P first computes

P2P-NG(m,P) and stores locally all the nogoods {m} ∪ ms (see theorem 3),

such that ms ∈P2P-NG(m,P) is minimal (for set inclusion).

Illustrative example (continued)

In the example of Figure 4.1, let us suppose that the different peers join in the

following order: P1, then P2, then P3 and that their respective mappings are added

according to their numbering. At the join of P2, the successive adding of the 4

70

4.1 Peer-to-peer detecting inconsistencies and nogoods

Algoritm 5: Detection of the nogoods caused by adding a mapping
P2P-NG(m,P)

(1) local(P)← Resolvent+SMS(m,P)

(2) result← ∅
(3) foreach (c sms) ∈ local(P) s.t. S(c) 6= 2 and L(c) = 2

(4) foreach literal q ∈ S(c)

(5) nogoods(q)← P2P-NGl(q,acq(q, P), ∅)
(6) if for every q ∈ S(c) nogoods(q) 6= ∅
(7) unioncomb← sms⊗ (⊗q∈S(c)nogoods(q))

(8) result← result ∪ unioncomb

(9) return result

P2P-NGl(q, SP, hist)

(1) if for every P ∈ SP , (q, P,) ∈ hist
(2) return ∅
(3) else

(4) result← ∅
(5) if (q̄, ,) ∈ hist
(6) result← result ∪ {∅}
(7) foreach P ∈ SP
(8) local(P)← {(q {∅})} ∪Resolvent+SMS(q, P)

(9) result← result ∪
⋃
P∈SP SMS(2, P)

(10) foreach P ∈ SP and (c sms) ∈ local(P) s.t. S(c) 6= 2 and

L(c) = 2

(11) foreach literal l ∈ S(c)

(12) sms(l)← P2P-NGl(l,acq(l, P), [(q, P, c)|hist])
(13) if for every l ∈ S(c), sms(l) 6= ∅
(14) unioncomb← sms⊗ (⊗l∈S(c)sms(l))

(15) result← result ∪ unioncomb

(16) return result

mappings causes no inconsistency. When P3 joins, the 4 first mappings cause no

inconsistency. Let us focus on the 5th one. P2P-NG(¬Journal3 ∨ Journal2, P3)

is triggered where P3 is the theory containing the clauses of P3 that are not

mappings, and the 4 first mappings (which have been added since they have

71

4.1 Peer-to-peer detecting inconsistencies and nogoods

been checked as not deriving inconsistencies). ¬Theory1 ∨ Journal2 is produced

locally at P3 as a local consequence of ¬Journal3 ∨ Journal2, with a set of local

mapping support equal to {{P3.2}}. Then, ¬Theory1 ∨ Journal2 is split (Line

11 of P2P-NGl): ¬Theory1 is processed by P1, while Journal2 is processed

by P2. The propagation of ¬Theory1 produces 2 as a local consequence in P1

with a local set of mapping support equal to {∅}. Thus {∅} is returned to

P3 as the set of mapping support of the derivation of 2 from Theory1. The

propagation of Journal2 produces ¬PODS1 as a local consequence in P2, with

a local set of mapping support equal to {{P2.1}}, as well as ¬Patent2 with a

local set of mapping support equal to {∅}. ¬PODS1 is in turn propagated in P1,

where it produces 2 as a local consequence with a local set of mapping support

equal to {∅}. It is transmitted back to P2 which, after combination of {∅} and

{{P2.1}} (Line 14) of P2P-NGl(Journal2, {P2}, ∅)), transmits back to P3 the set

of mapping support {{P2.1}} for the derivation 2 from Journal2. By combination

(Line 7) P2P-NG(¬Journal3∨Journal2, P3) returns {{P3.2, P2.1}}. The nogood

{P3.5, P3.2, P2.1} is thus obtained and stored at P3. No other nogood is obtained

from the last mappings of P3.

4.1.2 Termination, soundness and completeness of P2P-

NG

Theorem 2 Termination

P2P-NG terminates.

Proof: At each recursive call, a new triple (q, P , c) is added to the history.

If the algorithm did not terminate, the history would be infinite, which is not

possible since the number of peers, literals and clauses within a P2PIS is finite.

�.

Theorem 3 states that the result of P2P-NG(m,P) can be used to characterize

the nogoods involving the mapping m (by assimilating mappings to their corre-

sponding index). The proof of Theorem 3 relies on Lemma 1.

72

4.1 Peer-to-peer detecting inconsistencies and nogoods

Theorem 3 Soundness

Let m be a mapping and P be a peer such that P2P-NG(m,P) 6= ∅. ∀ms ∈P2P-

NG(m,P), ms ∪ {m} is a nogood.

Proof:

Suppose that P2P-NG(m,P) 6= ∅, let us denote the set of results of P2P-

NG(m,P) by A. For every ms ∈ A, we will prove that ms is the mapping

support of a derivation of 2 rooted in m.

Because P2P-NG(m,P) 6= ∅, the conditions at lines (3) and (6) are satisfied and

each ms of A is found at line (7):

• (3) is satisfied means that there is some clause c that is in local(P) such

that S(c) 6= 2 and L(c) = 2,

• for every such a clause c, sms denotes the set of mapping support of the

derivation of c rooted in m,

• for every such clause c, (6) is satisfied means that in line (5), the result

of P2P-NGl(q,acq(q, P), ∅) (which is nogoods(q)), is 6= ∅, for each q ∈
S(c). Because of Lemma 1, for every q ∈ S(c), every msq ∈ nogoods(q)

is the mapping support of a derivation of 2 rooted in q. Therefore, in line

(7), ⊗q∈S(c)nogoods(q) consists of sets of mappings, each of them is the

mapping support of a derivation of 2 rooted in S(c).

Each set ms of mappings of A (that is added into unioncomb at line

(7)) consists of the mapping support of a derivation of 2 rooted in S(c)

(corresponding to one of the sets of ⊗q∈S(c)nogoods(q)) and the mapping

support of a derivation of c rooted in m (corresponding to one of the set of

the mappings in sms). Therefore, ms is the mapping support of a derivation

of 2, rooted in m.

As every ms ∈ A is the mapping support of a derivation of 2 rooted in m,

ms ∪ {m} ∪ O is inconsistent and ms ∪ {m} is a nogood, by definition. �.

Lemma 1 If P2P-NGl(q, SP, hist) 6= ∅ then ∀ms ∈ P2P-NGl(q, SP, hist), ms

is the mapping support of a derivation of 2 rooted in q.

73

4.1 Peer-to-peer detecting inconsistencies and nogoods

Proof: We prove by induction on number rc of recursive calls required by P2P-

NGl(q, SP, hist) to terminate.

Let us denote the set of results of P2P-NGl(q, SP, hist) by A. For every ms ∈ A,

we will prove that ms is the mapping support of a derivation of 2 rooted in q.

• rc = 0 : Every ms of A is found at Line (6) or Line (9) . Eachms correspond

to the mapping support of a derivation of 2 rooted in q, because it uses

either q̄ in the history, or clauses that are local to a peer P of SP , for

deleting q and deduce 2.

• Suppose the induction hypothesis true for rc ≤ p, and let SP be a set of

peers of a P2PIS such that P2P-NGl(q, SP, hist) requires p + 1 recursive

calls to terminate. Because there is at least one recursive call, the conditions

in the line (10) and (13) are satisfied.

The result A of P2P-NGl(q, SP, hist) contains:

– the sets of mappings found at Line (6)and Line (9) , which, by the

same argument as in the base case, are sets of mapping support of

derivations of 2 rooted in q.

– and the sets of mappings found at line (15).

• (10) is satisfied means that there is some P ∈ SP such that (c sms) ∈
local(P), S(c) 6= 2, L(c) = 2,

• for every such a peer P and a clause c, sms denotes the set of mapping

support of c rooted in q,

• for every such a peer P and clause c, (13) is satisfied means that the result

of P2P-NGl (l,cq(l, P), [(q, P, c)|hist]) which is SMS(l), is 6= ∅, for each

l ∈ S(c). According to the induction hypothesis (the number of recursive

calls for P2P-NGl to terminate is less than or equal to p), every msl ∈
SMS(l) is the mapping support of a derivation of 2 rooted in l. Therefore,

in line (14), ⊗l∈S(c)SMS(l) consists of sets of mappings, each of them is the

mapping support of a derivation of 2 rooted in S(c),

74

4.1 Peer-to-peer detecting inconsistencies and nogoods

Each set ms of mappings of A (that is added into unioncomb at line (15))

consists of the mapping support of a derivation of 2 rooted in S(c) (corre-

sponding to one of the sets of ⊗l∈S(c)SMS(l)) and the mapping support of

a derivation of c rooted in q (corresponding to one of the set of mappings

in sms). Therefore, ms is the mapping support of a derivation of 2, rooted

in q.

�.

Theorem 4 states that the P2P-NG algorithm is complete, i.e., it enables to find

the mapping support of all the irredundant derivations of the empty clause from

a given mapping added to a P2PIS. The proof of Theorem 4 relies on Lemma 2.

Definition 15 Irredundant derivation

A derivation is irredundant if it does not involve two identical applications of the

resolution rule.

Theorem 4 Completeness Let P be a P2PIS and m a mapping of a given peer

P of P. Let ms be a mapping support of an irredundant derivation of 2 rooted

in m. It will be returned by P2P-NG(m,P).

Proof: Since we suppose that each local theory is consistent, the mapping

support ms is not empty. Suppose that each local consequence c of m obtained

by a derivation within P includes a literal the variable of which is not shared.

This literal has not been deleted by a resolution within P and it cannot be

deleted by a resolution with clauses outside P since its variable is not shared.

This contradicts the existence of a derivation of 2 rooted in m with a non empty

mapping support. Therefore, the derivation of 2 rooted in m having ms as its

mapping support involves at least one local consequence c of m in local(P)

such that S(c) 6= 2 and L(c) = 2. From Lemma 2, we can infer that ms is the

union of the local mapping support of c and of mapping support of irredundant

derivations of 2 rooted in q for every literal q in c.

To finish the proof, we have to prove that P2P-NGl(q,acq(q, P), ∅) returns

all the mapping support of irredundant derivations of 2 rooted in q. For doing

75

4.1 Peer-to-peer detecting inconsistencies and nogoods

so, we prove by induction on number rc of recursive calls required by P2P-

NGl(q, SP, hist) to terminate that P2P-NGl(q, SP, hist) returns the set of map-

ping support of all the irredundant derivations of 2 rooted in q and using clauses

of P(hist) where P(hist) = P ∪ {li|(li, ,) ∈ hist}.

• rc = 0: If the condition of Line (1) is satisfied, it does not exist irredundant

derivations of 2 rooted in q using clauses of P(hist): all the derivations of

2 that can be produced from the last occurrence of q and starting from

clauses of SP contain applications of the resolution rule that are identical

to the ones that were produced from the occurrence of q in the history.

Let suppose that there exists irredundant derivations of 2 rooted in q using

clauses of P(hist). Since in this case the condition of Line (1) is not satisfied,

we are in the case where for each P ∈ SP and for each c ∈ local(P)

the condition S(c) 6= 2 and L(c) = 2 is not satisfied, i.e., S(c) = 2

or L(c) 6= 2. Therefore, all the irredundant derivations of 2 rooted in

q, and using clauses of P(hist), either involve q̄ which is in the history,

or are derivations involving only local clauses of a peer P of SP . If q̄ is

in the history, then the corresponding irredundant derivation of 2 has a

mapping support which is empty, which will be returned in Line (6) of

the algorithm. All the other irredundant local derivations will be found

by Resolvent+SMS(q,P) and the algorithm will return the set of their

mapping support in Line (9) of P2P-NGl.

• Suppose the induction hypothesis true for rc ≤ p, and let SP be a set of

peers of a P2PIS such that P2P-NGl(q, SP, hist) requires p + 1 recursive

calls to terminate. Since there is at least one recursive call, the condition

of Line (1)is not satisfied.

The results returned by the algorithm at Line (6) and Line (9) correspond

to the mapping support of the irredundant derivation of 2 rooted in q and

using either q̄ in the history or clauses that are local to a peer P of SP .

Consider now an irredundant derivation d of 2 rooted in q and using a

mapping outside SP . Such a derivation necessarily requires (i) either that

the variable of q is shared (ii)or involves a local consequence c obtained by

76

4.1 Peer-to-peer detecting inconsistencies and nogoods

a derivation rooted in q and using clauses of a given P of SP such that

S(c) 6= 2 and L(c) = 2. S(c) 6= 2 is required in order to have external

clauses from SP in the derivation. L(c) = 2 is required for getting the

empty clause as result of the derivation.

(i) In the first case, q is involved in an iteration of the loop of Line (11).

According to the induction hypothesis (the number of recursive calls to

obtain sms(q) in Line (12) is less than or equal to p) sms(q) includes all

the mapping support of irredundant derivations of 2 rooted in q and using

clauses of P(hist) ∪ {q}. Therefore, sms(q) includes the mapping support

of the derivation d.

(ii) In the second case, the mapping support of the irredundant derivation

d is the union of the mapping support of the local derivation of c and of

the mapping support of the (irredundant) derivation d′ of 2 corresponding

to the part of the derivation d rooted in c. c is involved in an iteration of

the loop of Line (11). According to the induction hypothesis (the number

of recursive calls to obtain sms(l) in Line (12)is less than or equal to p),

for every l ∈ S(c), sms(l) includes all the mapping support of irredundant

derivations of 2 rooted in l and using clauses of P(hist) ∪ {q}. According

to Lemma 2, the mapping support of d′ is the union of mapping support of

irredundant derivations of 2 rooted in l and using clauses of P(hist)∪ {q}.
It will belong to (⊗l∈S(c)sms(l)) and therefore, the mapping support of the

derivation d will be returned by Line (15).

�.

Lemma 2 Let ms be the mapping support of an irredundant derivation of 2

rooted in a clause c: c1 ∨ . . . ∨ cn where every ci is a clause (which can be a

unit clause or not) such that there is no literal common to ci and cj for i 6= j.

There exists ms1, . . . ,msn where, for every i, msi is a mapping support of an

irredundant derivation of 2 rooted in ci, such that: ms = ms1 ∪ . . . ∪msn.

Proof:

We prove the lemma by induction on the length of the (irredundant) derivation

of 2.

77

4.1 Peer-to-peer detecting inconsistencies and nogoods

-If the length of the derivation is 2: c = l1 ∨ l2, and the first step of the

derivation uses l̄1 (or l̄2) and the second step uses l̄2 (or l̄1). The mapping support

ms of the derivation of 2 is the set of mappings contained in {l̄1, l̄2}. Suppose that

both l̄1 and l̄2 are mappings (the other cases are similar). There is a derivation

of 2 rooted in l1 using l̄1 (i.e., with a mapping support ms1: {l̄1}) and there is a

derivation of 2 rooted in l2 using l̄2 (i.e., with a mapping support ms2:{l̄2}). We

have: ms = ms1 ∪ms2.

- Suppose the property true for irredundant derivations of 2 of length less than

p and consider a derivation d of 2 of length p and rooted in c = c1 ∨ c2 . . . ∨ cn.

Let ms be its mapping support. Without loss of generality, let c1 = l1 ∨ rc1

and let c′ = l̄1 ∨ rc′ be the clause involved in the first step of the derivation.

Let MSS be the mapping support of the derivation of 2 rooted in the resolvent

rc1 ∨ c2 ∨ . . . ∨ cn ∨ rc′, which has a length of p− 1.

• If c′ is a mapping identified by P.i, we have: MS = MSS∪{P.i}, otherwise

MS = MSS.

• By induction hypothesis, there exists MSrc1 ,MS2, . . . ,MSn and MS ′ such

that MSrc1 is a mapping support of an irredundant derivation of 2 rooted

in rc1, for every i ∈ [2..n] MSi is a mapping support of a irredundant deriva-

tion of 2 rooted in ci, and MS ′ is a mapping support of an irredundant

derivation of 2 rooted in rc′, and MSS = MSrc1 ∪MS2∪ . . .∪MSn∪MS ′.

• Let us consider the (irredundant) derivation of 2 rooted in l1 the first step

of which involves the clause c′, and the others steps involve the clauses in

d which are used to eliminate the literals of c′. Let msl1 be its mapping

support. We have: msl1= ms′ if c′ is not a mapping, msl1= ms′ ∪ {P.i} if

c′ is a mapping identified by P.i.

• If there exists an irredundant derivation of 2 rooted in rc1 and an irredun-

dant derivation of 2 rooted in l1, there exists an irredundant derivation

of 2 rooted in rc1 ∨ l1 using the union of the clauses involved in the two

derivations.

78

4.2 Peer-to-peer well-founded reasoning

• Let ms1 = msl1 ∪ msrc1 . Since msl1 is a mapping support of an irredun-

dant derivation of 2 rooted in l1 and msrc1 is a mapping support of an

irredundant derivation of 2 rooted in rc1, ms1 is a mapping support of an

irredundant derivation of 2 rooted in c1.

• Therefore, we have: ms = ms1 ∪ms2 ∪ . . . ∪msn where for every i, msi is

a mapping support of an irredundant derivation of 2 rooted in ci.

�.

Corollary 1 results directly from Theorem 4. It guarantees that all the minimal

nogoods are computed and stored in the P2PIS. It is the key for proving that the

reasoning algorithm presented in the next section is well-founded.

Corollary 1 Let ng a nogood; let m a mapping of ng such that, among the

mappings of ng, m is the last mapping added into the P2PIS; let P the peer

stores this mapping m: ng is stored at P

4.2 Peer-to-peer well-founded reasoning

In this section, we present our algorithm WF-DeCA that exploits the results of

P2P-NG to compute well-founded consequences of a query w.r.t. an inconsistent

P2PIS. First, we have to define the notion of well-founded consequences.

Definition 16 P2P well-founded implicate

Let P be an inconsistent P2PIS: r is a well-founded implicate of c w.r.t. P if

r is an implicate of c w.r.t. a consistent subset of T(P).

4.2.1 The WF-DeCA algorithm

The WF-DeCA(q, P) algorithm computes well-founded consequences of the (unit)

clause q, starting at the peer P . This algorithm extends the original DeCA conse-

quence finding algorithm by computing the set of mapping support of the deriva-

tions for each consequence, and by collecting the nogoods encountered during the

reasoning. Because of the split/recombination technique used by the algorithm,

79

4.2 Peer-to-peer well-founded reasoning

mapping support of derivations are only known after the recombination step, and

the set of possibly relevant nogoods must be available at this step: if some map-

ping support includes a nogood, it is discarded; consequences that get an empty

set of mapping support after nogoods filtering are discarded as well.

We use the following notations :

• LocalConsSSNG(q, P) is a local procedure that computes the set of triples

(c sms sng) such that c is a local consequence of q w.r.t. P , sms is its

corresponding set of local mapping support, and sng is the set of nogoods

stored at the peer P that contain a mapping m of some local mapping

support ms of c.

•] denotes the merged union of sets of consequences, i.e. the union of sets of

triples of the form (c sms sng), where triples corresponding to a same con-

sequence c are merged together, by computing the union of their respective

sms and sng.

• > is the distribution union operator on sets of triples of the form (c sms sng):

S1>· · ·>Sn = {(c1∨· · ·∨cn sms1⊗· · ·⊗smsn sng1∪· · ·∪sngn)/(c1 sms1 sng1) ∈
S1, . . . , (cn smsn sngn) ∈ Sn}.

Illustrative example (continued)

Let us illustrate the behavior of WF-DeCA(Soft3, P3), assuming that the only

target variables are PODS1 and JAIR1. Patent2∨Demo1 is the only clause pro-

duced locally on P3 with a local part of which (i.e. 2) in Target(P3). Its local sms

is {{P3.7, P3.3}}. The only nogood stored at P3 contains neither P3.7 nor P3.3.

The corresponding sng returned by LocalConsSSNG(Soft, P3) is thus empty.

Patent2 ∨Demo1 is then split. When Patent2 is transmitted to P2, ¬JAIR1 is

the only clause produced locally with a local part (i.e. 2) in Target(P2). Its

local sms is {{P2.3}} and its sng is empty. The further propagation of ¬JAIR1

returns an empty result. So the triple (¬JAIR1 {{P2.3}} ∅) is sent back to P3

as a consequence of Patent2. When Demo1 is transmitted to P1 the only clause

produced locally is ¬JAIR1, which is in Target(P1). Its local sms is empty, as

80

4.2 Peer-to-peer well-founded reasoning

Algoritm 6: Well Founded Distributed Consequence Finding Algorithm
WF-DeCA(q, P)

(1) WF-DeCAH(q, {P}, ∅)

WF-DeCAH(q, SP, hist)

(1) if for every P ∈ SP , (q, P,) ∈ hist
(2) return ∅
(3) else if (q̄, ,) ∈ hist
(4) return {(2 {∅} ∅)}
(5) else

(6) result← ∅
(7) foreach P ∈ SP
(8) local(P)← {(q {∅} ∅)}] LocalConsSSNG(q, P)

(9) foreach P ∈ SP and (c sms sng) ∈ local(P) such that L(c) ∈
Target(P))

(10) if S(c) ∈ Target(P)

(11) result← result] {(c sms sng)}
(12) if S(c) 6= 2

(13) foreach literal l ∈ S(c)

(14) Answer(l)←
(15) WF-DeCAH(l,acq(l, P), [(q, P, c)|hist])
(16) if for every l ∈ S(c) Answer(l) 6= ∅
(17) unionComb←
(18) {(L(c) sms sng)}> (>l∈S(c)Answer(l))

(19) foreach (c sms sng) ∈ unionComb

(20) nsms← {ms ∈ sms/∀ng ∈ sng, ng 6⊆ ms}
(21) if nsms 6= ∅
(22) result← result] {(c nsms sng)}
(23) return result

well as its sng. So the triple (¬JAIR1 {∅} ∅) is sent back to P3 as a consequence

of Demo1. P3 then combines these two triples obtained from P2 and P1 giving

(¬JAIR1 {{P2.3}} ∅), which is the only final consequence of Soft3 being in

the target language. Since the corresponding sng is empty, ¬JAIR1 is trivially

a well-founded consequence.

81

4.2 Peer-to-peer well-founded reasoning

4.2.2 Termination and Soundness of WF-DeCA

Theorem 5 states that the WF-DeCA(q, P) algorithm terminates and returns

only well-founded consequences. Its proof relies on showing that each triple

(r smsr sngr) returned by WF-DeCA(q, SP, hist) is such that either r is a

local consequence of q w.r.t. some peer P ∈ SP , or for every msr ∈ smsr,

O∪msr is consistent (using Corollary 1) and r is the result of a derivation rooted

in q that only uses clauses that do not containt any nogood stored in the P2PIS.

Theorem 5 Let P be a peer of a P2PIS P and q a literal belonging to the vo-

cabulary of P . WF-DeCA(q, P) terminates and for all triples (r smsr sngr)

returned by WF-DeCA(q, P), r is a well-founded consequence of q w.r.t. P.

Proof:

Termination At each recursive call, a new triple (sl, P, c) is added to the history.

If the algorithm did not terminate, the history would be infinite, which is not

possible since the number of peers, literals and clauses within a P2PIS is finite.

Soundness By definition, r is a well-founded consequence of q w.r.t. P if it is

a consequence of q w.r.t. a consistent subset of P. Let (r smsr sngr) a triple

returned by WF-DeCA(q, P).

• If (r smsr sngr) is found without any recursive call of WF-DeCAH then

r is a local consequence of q and P . r is by definition a well-founded

consequence.

• If (r smsr sngr) is returned after at least one recursive call of WF-DeCAH

then it is found at line (17) in the form (r bsmsr sngr) such that smsr

contains the mapping support that are not filtered out from bsmsr by the

filter from the line (19) to (22). By applying Lemma 3, we know that for

each bmsr ∈ bsmsr, all the nogoods that are contained in bmsr are collected

in sngr. Therefore, after the filter from the line (19) to (22), each msr in

smsr is a mapping support such that there is no nogood stored in the P2PIS

that is contained in it. Consequently, we are sure that r is deduced from q

w.r.t. a consistent subset of P. r is thus well-founded.

82

4.2 Peer-to-peer well-founded reasoning

�.

Lemma 3 Let P be a peer of a P2PIS P and q a literal belonging to the vocabulary

of P . Let (r smsr sngr) be a triple found at line (8) (in local(P)) or at line

(17) (in unionComb) by WF-DeCAH(q, P, ∅). For each msr ∈ smsr, all the

nogoods stored in the P2PIS that are contained in msr are collected in sngr.

Proof:

• If the triple (r smsr sngr) is found at line (8) (in local(P)), all the

mappings support msr ∈ smsr contain local mappings to P .

For each msr ∈ smsr, suppose that there exists a nogood ng contained

in msr. Since msr is local to P , all the mappings in ng are local to P

too. Therefore, ng is necessarily stored at P . Consequently, ng has been

collected by the procedure LocalConsSSNG(q, P), and is then in sngr.

• If the triple (r smsr sngr) is found at line (17) (in unionComb) then r is

found by at least one recursive call of WF-DeCAH . r is thus of the form

L(c) ∨ A1 ∨ ... ∨ Ak where:

– L(c) is the local part of a clause c found in the form (c smsc sngc) by

LocalConsSSNG(q, P) when WF-DeCAH is called the first time, i.e.

WF-DeCAH(q, SP, ∅). We also have that each msc ∈ smsc contains

only local mappings to P .

– for each i=[1..k], Ai is returned by WF-DeCAH(li, ACQ(li, P), [(q, P, c))

in the form (Ai smsAi
sngAi

) as a consequence of li, where li is a shared

literal of the clause c.

By definition of the operator >, each msr in smsr is of the form msc ∪
msA1 ... ∪ msAk

where msc is a mapping support in smsc and for each

i=[1..k], msAi
is a mapping support in smsAi

.

Suppose that there exists a nogood ng contained in msr. Let m a mapping

of ng such that, among the mappings of ng, m is the last mapping added

into the P2PIS. Either m is in msc, or m is in one of the msAi
s.

83

4.3 Implementation of P2P-NG and WF-DeCA and experimentations

– If m is in msc, it is thus stored at the peer P . By Corollary 1, ng

is also stored at P and has been collected by LocalConsSSNG(q, P)

and is then in sngc. By definition of the operator >, sngr = sngc ∪
sngA1 ... ∪ sngAk

, therefore ng is in sngr

– If m is in one of the msAi
s then let P ′ the peer that stores m. By

Corollary 1, ng is also stored at P ′. Because m is used, the reasoning

must have passed by P ′, therefore ng has also been collected by the

procedure LocalConsSSNG running at P ′. ng is thus in sngAi
. By

definition of the operator >, sngr = sngc ∪ sngA1 ... ∪ sngAk
, therefore

ng is in sngr

�.

4.3 Implementation of P2P-NG and WF-DeCA

and experimentations

In the following, we describe the adaptations/modifications that have been per-

formed on SomeWhere in order to implement the P2P-NG and WF-DeCA

algorithms. For a better understanding, we first present a brief overview of some

particularities of the SomeWhere architecture. Then we present DeCAbL,

(DeCA bounded length) an adaptation of the original DeCA algorithm.

DeCAbL is a specialized version of DeCA that computes only the proper im-

plicates (of a given formula) the length of which is bounded by some value, given

as a parameter. This procedure has its own value since most of the time, the

user is not necessarily interested in the set of all consequents, because this set

can really be huge, but only in a limited number of those (e.g. the shortest ones).

Knowing in advance the maximal size of the consequents to be produced, makes it

possible to optimize DeCA and, as experimental results will show it, to improve

considerably its performance. But the DeCAbL algorithm is also closely related

to our concern, since it can easily be adapted in order to implement P2P-NG.

It thus can be considered as a fruitful side effect of our work. The last subsec-

tion is then devoted to the presentation of the technical adaptations that have

84

4.3 Implementation of P2P-NG and WF-DeCA and experimentations

been performed to achieve the implementation of both P2P-NG and WF-DeCA

algorithms in SomeWhere.

4.3.1 An overview of the SomeWhere architecture

Setting up a SomeWhere network requires launching a software component

called a SomeWhere platform. By the term SomeWhere platform, we refer

to:

• a pair (host, port), representing respectively the IP address and the port of

the computer on which the platform runs

• and all the functionalities that a peer should be able to do, i.e. to launch,

host its own theory, accept queries, run the DeCA algorithm and interact

with other peers,...

The DeCA algorithm that has been implemented is the message-passing version

presented in Section 2.2.

SomeWhere supports the classical paradigm of peer-to-peer architectures. In

this case, each peer is managed by one instance of the SomeWhere platform on

one computer. The resulting architecture is described in Figure 4.2, where a peer

is represented by one smiley and a SomeWhere platform is figured by a black

rectangle.

Figure 4.2: Architecture N peers - N SomeWhere platforms

85

4.3 Implementation of P2P-NG and WF-DeCA and experimentations

Figure 4.3: Architecture N peers - 1 SomeWhere platform

The SomeWhere platform can also be run in a mode where it can ”hosts” several

peers. In such a configuration, the platform acts as a virtual layer that manages

internally the communications between the peers hosted by the platform. This

mode is represented in Figure 4.3.

Because one platform has a single network address (i.e. one pair (host, port),

the peers inside a SomeWhere platform are referenced by their name. Note

that even if several peers are hosted on the same SomeWhere platform, no

centralization is made in any way: each clausal theory of each peer remains

completely independent and the behavior of DeCA through the virtual network

of peers is rigorously the same, as in the previous configuration.

The main advantage of this mode is that a single computer can be used. It can also

saves a significant amount of time devoted to network communications between

the peers. Moreover, it makes things more convenient, when data has to be col-

lected from the different peers, to generate reports during experimentations. The

main drawback is a single machine has to share its computing power, to support

simultaneously the reasoning tasks of all the peers, as well as the communica-

tions between them. Depending on the number of peers and the complexity of

the reasoning tasks, this can lead to a heavy load for a single machine.

Eventually, for large scale experimentations with a limited number of computers,

The SomeWhere platforms is implemented in such a way that a same computer

can run simultaneously several SomeWhere platforms, each of them hosting

several peers and being associated with a different port number. The difference

with the previous case is that communications between peers hosted by different

platforms are routed through the network layer, exactly in the same way, as

when the different platforms are running on different machines. This mode is

86

4.3 Implementation of P2P-NG and WF-DeCA and experimentations

Figure 4.4: Architecture N peers - M SomeWhere platforms (M < N)

represented in Figure 4.4. Of course it is also possible to run different platforms

on different machines, each of them hosting different peers. The different usages of

the SomeWhere platform give a lot of flexibility when conducting experiments.

Depending of what is expected to be measured.

4.3.2 DeCAbL : Decentralized bounded length consequence

finding algorithm

As a preliminary step towards the implementation of P2P-NG and WF-DeCA,

we first have designed and implemented an optimization of DeCA called De-

CAbL. In comparison to DeCA, DeCAbL has a supplementary parameter,

called lb, and only computes proper consequences of a query, whose length is at

most lb.

Bounding the size of produced consequents is an interesting feature because in

many cases, the number of these is so great, that it is difficult for the user to

grasp all the information that is obtained. But most of the time, the user is only

interested by the most informative consequents, i.e. those that correspond to the

shortest clauses. Bounding the maximal size of the consequents to be produced,

allows for an optimization of DeCA that basically amounts to cut all reasoning

branches, as soon as we know that they can only contribute to produce conse-

quents, the length of which would exceed the fixed bound. Experimental results

87

4.3 Implementation of P2P-NG and WF-DeCA and experimentations

with this procedure, presented in the following, clearly show this can consider-

ably improve the performance of the consequence finding task. The DeCAbL

algorithm thus clearly has its own interest but, as we will see in the next section,

it also has strong connections with P2P-NG.

The content of DeCAbL algorithm is described in Algorithm 7. It is very close

to that of DeCA presented in Section 2.2 and we keep the same notation con-

ventions. In addition, when hist represent a history list and m a clause, we use

newLits(m,hist) to denote the number of literals of m that do not appear in

any clause c such that (, , c) is an element of hist. The main difference with

DeCA is that before returning a consequence m, DeCAbL checks the condition

newLits(m,hist) ≤ lb. The consequence in question is returned only if this

condition is satisfied. A final filter on the length of the consequences found at

line (16) of DeCAbL makes sure of its correctness.

Because DeCAbL is close to DeCA, the implementation of DeCAbL does not

require to modify or extend the architecture of the SomeWhere platform itself,

we still can benefit from the flexibility of the N peers - M SomeWhere plat-

forms (M < N). We only have to enrich the SomeWhere platform with the

functionalities of DeCAbL .

Completeness of DeCAbL

Theorem 6 states that DeCAbL(q, SP, hist, lb) is complete, in the sense that

every proper consequence m such that newLits(m,hist) ≤ lb is returned. The

proof of this theorem is based on the completeness of DeCA . As we know that

DeCA is complete, we prove that all consequences of DeCA(q, SP, hist) that sat-

isfy the condition newLits(m,hist)≤ lb are returned by DeCAbL(q, SP, hist, lb).

Note that when the parameter hist is ∅, the condition newLits(m,hist) ≤ lb is

equal to | m | ≤ lb, where | m | represents the length of m. In practice, when we

ask a query to a P2PIS, the initial value of the hist parameter is ∅.

Theorem 6 If m ∈ DeCA(q, SP, hist0) and newLits(m,hist0) ≤ lb0 then m ∈
DeCAbL(q, SP, hist0, lb0)

88

4.3 Implementation of P2P-NG and WF-DeCA and experimentations

Algoritm 7: Decentralized bounded length consequence finding algo-

rithm
DeCAbL(q, SP, hist, lb)

(1) if there exists P ∈ SP s.t q ∈ P or if for every P ∈ SP, (q, P,) ∈
hist return ∅

(2) else if (q, ,) ∈ hist return{2}
(3) else for every P ∈ SP , local(P) ← {q} ∪ (∪P∈SPResolvent(q, P))

(4) if there exists P ∈ SP s.t. 2 ∈ local(P) return {2}
(5) else for every P ∈ SP , local(P)← { c ∈ local(P) | L(c) ∈ Target(SP)

and newLits(L(c), hist) ≤ lb }
(6) if for every P ∈ SP and c ∈ local(P), S(c) = 2, return⋃

P∈SPlocal(P)

(7) else

(8) local ←
⋃
P∈SPlocal(P)

(9) result← local

(10) foreach P ∈ SP and c ∈ local(P) s.t S(c) 6= 2

(11) if ¬q ∨ c ∈ P then P ← P \ {¬q ∨ c}
(12) nlb = lb - newLits(L(c), hist)

(13) foreach literal l ∈ S(c)

(14) ANSWER(l) ← DeCAbL(l,acq(l, P), [(q, P, c)|hist], nlb)
(15) disjcomb ← (>l∈S(c) ANSWER(l)) >{L(c)}
(16) disjcomb ← {t ∈ disjcomb s.t newLits(t, hist) ≤ lb }
(17) result ← result ∪ disjcomb

(18) return result

Proof: The proof proceeds by induction on the maximum number rc of recursive

calls of DeCA(q, SP, hist0) to obtain m. If m is returned by DeCA(q, SP, hist0)

after rc recursive calls, and if newLits(m,hist0) ≤ lb0, then m is returned by

DeCAbL(q, SP, hist0, lb0) after rc recursive calls.

• rc = 0: either one of the conditions of Line (1) Line (2), Line (4) or Line

(6) is satisfied in the DeCA algorithm.

If m is obtained from line (1) or (2) or (4) of DeCA then m is obtained

by the same line of DeCAbL because they are the same code from line (1)

to line (4) in the two algorithms.

89

4.3 Implementation of P2P-NG and WF-DeCA and experimentations

If m is obtained from line (6) of DeCA , it means in line (3) of DeCA

there is a peer P ∈ SP such that m ∈ Resolvent(q, P). Because the

code from line (1) to (4) are the same in the two algorithms, in line (3) of

DeCAbL we also have m ∈ Resolvent(q, P).

m is returned from line (6) of DeCA means that it is not filtered out in

line (5), so m satisfies the condition of this line. As we have the same code

in both algorithms from line (1) to (4), in line (5) of DeCAbL , m satisfies

the same condition as in DeCA . Moreover, as we have newLits(m,hist0)

≤ lb0 and because the length of m is at least equal to the length of L(m), we

have newLits(L(m), hist0) ≤ lb0. Therefore, m satisfies both conditions

in line (5) of DeCAbL , it is not filtered out in line (5) of DeCAbL.

In line (5) of DeCAbL , for each P ∈ SP , the consequences in local(P)

are filtered out using 2 conditions, one of them corresponds to the unique

condition in line (5) of DeCA . Therefore, each reduced local(P) in

line (5) of DeCAbL has no more clauses than the corresponding reduced

local(P) in line (5) of DeCA . So, the condition in line (6) of DeCAbL

must be satisfied. Therefore, m is returned by DeCAbL .

• Suppose the induction hypothesis true for rc ≤ p, and let SP be a set of

peers such that DeCA(q, SP, hist0) requires at most p + 1 recursive calls

to find m. Since there is at least one recursive call, none of the conditions

of Line (1), Line (2), Line(4) of DeCA is satisfied. By the same argument

as in the base case, none of the conditions of Line (1), Line (2), Line(4) of

DeCAbL is satisfied.

Moreover, because m is obtained after p + 1 recursive calls, it can not be

obtained at line (6) of DeCA(q, SP, hist0). It means m is obtained in line

(14), after being formed in line (13). So, the form of m is L(c) ∨A1... ∨Ak
where L(c) is the local part of a clause c in Resolvent(q, P), P is a peer

in SP when DeCA is called the first time, i.e. DeCA(q, SP, hist0) , and

for each i=[1..k], Ai is returned by DeCA (li, ACQ(li, P), [(q, P, c)|hist0])

after at most p recursive calls, where li is a shared literal of the clause c.

90

4.3 Implementation of P2P-NG and WF-DeCA and experimentations

In DeCAbL , by using the same argument as in the base case, such a clause

c is also obtained in line (3), is not filtered out in line (5), and because its

shared part S(c) is not equal to 2, DeCAbL(q, SP, hist0, lb0) does not

terminate at line (6). This clause c will be split, into the L(c) part and li,

i=[1..k]. Each li is propagated by a recursive call. We will prove that for

each i=[1..k], we have Ai as a consequence of li by applying the induction

hypothesis. Then by the recombination of L(c) and the Ais, we form m.

In order to apply the induction hypothesis for inferring that Ai is also ob-

tained after p recursive calls of DeCAbL , as one of the results of

DeCAbL(li, ACQ(li, P), [(q, P, c)|hist0], lb1), where lb1 = lb0 - newLits(L(c), hist0),

we need to prove that newLits(Ai, [(q, P, c)|hist0]) <= lb1.

Let C be the set of clauses of hist0, i.e. for every clause cc, cc ∈ C if and

only if [, , cc] ∈ hist0.

Let LmC be the set of literals of m which do not appear in any clause of

C. Let | LmC | denotes the cardinality of LmC . By definition, | LmC | =

newLits(m,hist0) ≤ lb0.

Let L
L(c)
C be the set of literals of L(c) which do not appear in any clause of

C. Let | LL(c)
C | denote the cardinality of L

L(c)
C . By definition, | LL(c)

C | =

newLits(L(c), hist0).

In each Ai, let LAi

C∪L(c) be the set of literals of Ai which do not appear in

any clause of C ∪ L(c). Let | LAi

C∪L(c) | denotes the cardinality of LAi

C∪L(c).

Because m = L(c)∨A1...∨Ak, so for each Ai, i = [1..k], | LmC | ≥ | L
Ai

C∪L(c) |
+ | LL(c)

C |.

Therefore, for each Ai, | LAi

C∪L(c) | ≤ | LmC | - | LL(c)
C |.

In other terms, we have | LAi

C∪L(c) | ≤ newLits(m,hist0) - newLits(L(c), hist0)

≤ lb0 - newLits(L(c), hist0) = lb1 (*).

91

4.3 Implementation of P2P-NG and WF-DeCA and experimentations

For each Ai, newLits(Ai, [(q, P, c)|hist0]) is the set of literals that are in

Ai but not in C and not in L(c) and not in S(c). This set is not bigger than

the set LAi

C∪L(c). We have newLits(Ai, [(q, P, c)|hist0]) ≤ | LAi

C∪L(c) | (**).

From (*) and (**), we have newLits(Ai, [(q, P, c)|hist0]) ≤ lb1.

Therefore, the induction hypothesis applies and we can infer that Ai is

obtained after p recursive calls of DeCAbL, as result of

DeCAbL(li, ACQ(li, P), [(q, P, c)|hist0], lb1).

Then, m is obtained in Line (15) of DeCAbL and returned in Line (16)

since it satisfies the condition newLits(m,hist0) ≤ lb0.

�.

4.3.3 Experimentations with DeCAbL

In this section, we report the results of the experimentations of DeCAbL that

we have performed. In those experiments, we have used all the flexibility of the

SomeWhere platform to consider networks of peer theories hosted by different

SomeWhere platforms, running on different computers. Our main goal is to

compare the performance of DeCAbL with that of DeCA. We have designed

three data sets, corresponding to three different P2PIS, in which each theory is

made of synthetic data.

4.3.3.1 Data set 1: a consistent P2PIS

The P2PIS corresponding to the first data set consists of a chain of 150 peers Pi,

i = [0..149] such that every peer has exactly one mapping with its predecessor

and with its successor in the chain (if it exists).

All peer theories have the same structure, with one local clause and two mappings,

except P0 who has only one mapping connecting it to P1, and P149 who has only

one mapping connecting it to P148. Each peer has 3 local variables, Ai, Bi and

Cj, all of which are declared to be in the in the so-called Target language of Pi

(see Definition 3, section 2.1.2).

92

4.3 Implementation of P2P-NG and WF-DeCA and experimentations

For every j = [1..148], the theory Pj is the following :

PeerPj
Local clauses
Aj ∨ Cj
Mapping clauses
Aj ∨Bj ∨ ¬Aj+1

Aj−1 ∨Bj−1 ∨ ¬Aj

.

The theory P0 has only one mapping:

PeerP0

Local clauses
A0 ∨ C0

Mapping clauses
A0 ∨B0 ∨ ¬A1

.

The theory P149 has only one mapping:

PeerP0

Local clauses
A149 ∨ C149

Mapping clauses
A148 ∨B148 ∨ ¬A149

.

We have created this kind of P2PIS because we want to have the following char-

acteristics in our P2PIS:

• Firstly, we know that in this P2PIS, there is no inconsistency.

• Secondly, if we ask the query ¬A0 to the peer P0, the reasoning will be

linear. In this case, we will have locally in P0 two consequences : C0 and

B0 ∨ ¬A1. While the clause C0 does not contain any shared variable, the

other clause has ¬A1 as a shared variable. Therefore, we propagate ¬A1

to P1 as a sub-query. In P1, the same results will be produced, and a sub-

query ¬A2 will be propagated to P2, etc. We can assure and verify that the

reasoning will finish at the peer P149.

• Thirdly, we recall that in practice, the parameter hist is always set to ∅
for the first query. Then, if we ask the query ¬A0 to the peer P0 with the

parameter lb set to a value l, the reasoning just needs to go from P0 up to

93

4.3 Implementation of P2P-NG and WF-DeCA and experimentations

Pl−1. It is due to the fact that, in each peer Pi, we can decrease by one the

new bound for the sub-query being propagated to the next peer, because

for the clause c = Bi ∨ ¬Ai+1, L(c) = Bi always contain a new literal that

has not appeared in hist.

With this characteristic, we can easily compare how the processing time

evolves according to the value of the parameter lb, and compare it with the

case where no bound is set at all, when the query ¬A0 is asked to the peer

P0,

In these experiment, the 150 peers are hosted by 5 SomeWhere platforms, each

of them thus hosting 30 theories and running on a different machine. The figure

4.5 shows the result of this experimentation.

Figure 4.5: Query time comparison between DeCA and DeCAbL with varied

parameter lb

The first remark from these results is that if we disable the parameter lb of

DeCAbL by setting for it a very great value (1000 in the figure above), then

DeCAbL is much slower than DeCA . This is actually understandable, because

DeCAbL must do more things than DeCA , such as the computation of the

new value of lb for each sub-query, the computation of newLits(L(c), hist) and

94

4.3 Implementation of P2P-NG and WF-DeCA and experimentations

newLits(m,hist) that consists of a set inclusion test of each literal of L(c) or of

m with respect to hist.

The second point observed from the figure 4.5 is that we gain very much in term

of time when we set lb to a value which is smaller than the maximum possible

length of the consequences. In this P2PIS, the maximum possible length of a

consequence is 150, corresponding to the reasoning branch going from P0 to P149.

We can see that even if when the bound is between 70 and 80, which is not very

small w.r.t. 150, the query finishes in 25 seconds, more than five time faster than

DeCA . Especially, if we only want to verify if the P2PIS is consistent, by setting

lb to 0, then we obtain the result after just 0.7 second. Using DeCA the same

query would take 130 seconds.

It is worth noticing that when extending such a P2PIS to 200 peers (i.e. 50 more

peers in the chain), DeCA takes much longer : 310 seconds to complete (i.e. 180

more seconds). This point confirms that the further the reasoning goes, the longer

the query time. The explication is : not only due to the fact that the reasoning

propagates farther in the network, but also to the fact that more recombinations

occur, when a consequence is sent back to the previous peer in the same branch

of reasoning. Fixing a bound for the size of returned of consequents thus not

only prevent the propagation of the reasoning in the network but also saves all

recombinations that would occur otherwise.

4.3.3.2 Data set 2: an inconsistent P2PIS

The P2PIS generated in this section consist of 100 peers, {Pi}, i = [0..99] . Each

peer has 4 local variables Ai, Bi, Ci and Di, all of them are in the Target language

of P1.

95

4.3 Implementation of P2P-NG and WF-DeCA and experimentations

The theory P0 :

PeerP0

Local clauses
¬A0 ∨D0

¬D0 ∨ C0

¬D0 ∨B0

Mapping clauses
¬A0 ∨ A1

¬A0 ∨ ¬A99

.

For every j = [1..9], the theory Pj is the following :

PeerPj
Local clauses
¬Aj ∨Dj

¬Dj ∨ Cj
¬Dj ∨Bj

Mapping clauses
¬Aj ∨ Aj+1

¬Aj−1 ∨ Aj

.

The theory P10 :

PeerP10

Local clauses
¬A10 ∨D10

¬D10 ∨ C10

Mapping clauses
¬D10 ∨B10 ∨D11

¬A10 ∨ A11

¬A9 ∨ A10

.

For every j = [11..98], the theory Pj is the following :

PeerP10

Local clauses
¬Dj ∨ Cj
Mapping clauses
¬Dj ∨Bj ∨Dj+1

¬Aj ∨ Aj+1

¬Dj−1 ∨Bj−1 ∨Dj

¬Aj−1 ∨ Aj

.

96

4.3 Implementation of P2P-NG and WF-DeCA and experimentations

The theory P99 :

PeerP99

Local clauses
¬D99 ∨ C99

Mapping clauses
¬D98 ∨B98 ∨D99

¬A98 ∨ A99

¬A0 ∨ ¬A99

.

This P2PIS has the following characteristics:

• It is inconsistent if we add the new clause A0 to P0. The inconsistency is

caused by the set of mappings of length 2. The idea is that if we ask the

query A0 to P0, then one of the consequence inside P0 is A1. A1 is shared

with P1 and thus is asked to P1. In P1, the same result is obtained and the

reasoning forwards to P2 and so on, up to P99 with the sub-query A98. In

the peer P99, we find A99 as a consequence of A98. Then, from A99, using

the mapping ¬A0 ∨ ¬A99, we find ¬A0. Because the initial query was A0,

the P2PIS is inconsistent.

• If we ask the query A0 to the peer P0, there is only one branch of reasoning

that goes from P0 to P10, with a sub-query A10. Then, from P10, we have

two branches of reasoning.

The first one goes to P11 with the sub-query D11, and so on, up to P99.

This branch of reasoning uses mappings of length 3 at each peer it passes.

Note that this set of mappings has the same characteristics as those of the

P2PIS in the previous experimentation, i.e. it is consistent and linear.

The second branch of reasoning goes from P10 to P11 with the sub-query

A11. This branch corresponds to the one that we have just discussed above,

i.e. it uses the set of mappings of length 2 and it is inconsistent.

As in the previous experimentation, the 100 theories are handled by 5 Some-

Where platforms, each SomeWhere hosts 20 theories. The 5 SomeWhere

platforms run on 5 different machines.

97

4.3 Implementation of P2P-NG and WF-DeCA and experimentations

Figure 4.6: Query time comparison between DeCA and DeCAbL with param-

eter lb = 0 for a test of inconsistency

Again our goal is to compare the processing time of DeCA and DeCAbL. But

since we know here that adding A0 is inconsistent with the global theory, the only

interesting consequent is in fact the empty clause. Therefore we only compare

DeCA to DeCAbL with lb = 0.

The result presented on figure 4.6 consolidates the observations made in the

previous experimentation. With DeCA, it takes 32 seconds to complete the

query processing while with DeCAbL the query processing terminates after just

4 seconds. This gain can also be explained by the fact that when we only look

for 2, the linear reasoning starting from P10 but not leading to 2 is not initiated

by DeCAbL. It is because at P10, when the local reasoner produces B10 ∨ D11

as a consequence of A10, the condition of newLits({B10}, hist10) ≤ lb = 0 is

not satisfied, therefore the sub-query D11 is not propagated to P11, avoiding this

branch of reasoning. In contrast, this has to be executed with DeCA, accounting

for the long reasoning time of the inconsistency test.

4.3.3.3 Data set 3: a random P2PIS

For the third data set, we have generated a P2PIS with the following character-

istics (corresponding to the class hard in (13)) :

98

4.3 Implementation of P2P-NG and WF-DeCA and experimentations

• the network is made of 1000 randomly generated peers, that are randomly

linked each other, but in such a way that the graph of connected peers has

the ”small world” topotogy characterizing many social networks.

• The theory of peer is randomly generated on a vocabulary of 70 local vari-

ables, among which 40 are declared in its Target language. Each peer has

40 local clauses of length 2, concerning only its local variables.

• Each peer is connected to 10 different neighbors, and shares 3 of its local

variables with each of its neighbor. All the mappings between the peers are

of length 3.

• Because the P2PIS is generated in a random manner, we can not know in

advance if it is consistent or not.

We have deployed this P2PIS on a cluster of 22 machines, each machine running

one SomeWhere platform hosting about 48 peers. Our goal with this experi-

ment is to compare the performance of DeCAbL and DeCA with respect to an

inconsistency test. For this, we have generated 1000 different unit clause queries.

For each query, we have compared DeCA, and DeCAbL with the parameter lb

set to 0. Since on such networks, some queries may take a long time to terminate,

we also have set up a time-out value of 45 seconds for every query: a query that

takes more than 45 seconds to finish is called a time-out query. The figure 4.7

shows the result of this experimentation.

As we can see in Figure 4.7, when using DeCA, about 34% of the 1000 queries

terminate before the time-out. This number augments to 40% when using De-

CAbL . This shows that even in a randomly generated P2PIS, we gain in term of

query time with DeCAbL . However, the gain in this case is less important than

in the two previous experimentations. The explication is that we can not assure a

query with DeCAbL to have less reasoning branches, and each reasoning branch

to stop sooner than with DeCA .

Let us consider a peer Pi with two mappings of length 3. The first mapping

concerns two local variables and one shared variable, m1 = Ai ∨ Bi ∨ Cj. The

second mapping concerns one local variable and two shared variable, m2 = Ai ∨

99

4.3 Implementation of P2P-NG and WF-DeCA and experimentations

Figure 4.7: Comparison between DeCA and DeCAbL with parameter lb = 0

on the percentage of queries that finish before time out in a random P2PIS

Bj ∨Cj. Suppose that the query ¬Ai is asked to Pi. Two local consequences are

produced : c1 = Bi ∨ Cj and c2 = Bj ∨ Cj. If newLits(L(c1), hist) > lb = 0,

the shared variable Cj is not asked to Pj. In contrast, newLits(L(c2), hist) = 0,

therefore both Bj and Cj are asked to Pj, initializing two branches of reasoning.

In a similar way, each of them may also initialize two sub-branches in Pj, and

so on. A sub-branch of reasoning can (possibly) stop only if it is solved with a

mapping of the form of m1, i.e. two local variables and one shared variable. We

generated and carried on the two previous experimentations in such a way that

this condition was guaranteed. However, in this experimentation, because we do

not control the generation of the P2PIS, this point is not ensured.

An other observation from this experimentation is that in both the set of non

time-out queries, a majority of them finishes very quickly, less then 2 seconds.

A small part of them, corresponding to a portion of non time-out queries when

using DeCAbL , finishes after 12 seconds. This point shows that the non time-

out queries stop quickly because either they do not produce shared variables

that need to reason further in other peers, or they are solved fairly quickly with

mappings of the form of m1, as discussed above.

100

4.3 Implementation of P2P-NG and WF-DeCA and experimentations

The experimentations that we have presented in this section show that DeCAbL

is a good optimization of DeCA in term of query time.

4.3.4 Implementation of P2P-NG and WF-DeCA

We now focus on the adaptations that have been performed on the SomeWhere

platform in order to implement P2P-NG and WF-DeCA.

As mentioned earlier, DeCAbL can be closely related to P2P-NG since in the

particular case where the bound lb is fixed to 0, both algorithms only focus

on possible derivations of the empty clause. The main difference between the

two algorithms is that while DeCAbL will output either an empty set or a set

containing only the empty clause, P2P-NG ouputs either an empty set or a set

containing the mapping supports of all possible derivations of the empty clause.

This is essentially the point where the two algorithm differ. While DeCAbL uses

Resolvent to perform its local reasoning, P2P-NG uses Resolvent+SMS. The

latter computes local non only local consequents but also their minimal sets of

support. Also, when recombining the results obtained from recursive calls, sets

of mapping support obtained so far and coming from the different recursive calls

have to be distributed over each other, as well as over the mapping support of

the local part of the consequent.

Note that in practice, despite the fact that the management of mapping supports

necessarily induces a little overhead (with respect to DeCAbL), because similar

pruning can be achieved as for the case of DeCAbL when lb = 0, the observed

performances of P2P-NG remain very close to those of DeCAbL.

In order to use the P2P-NG algorithm in an appropriate way, the SomeWhere

platform has been enriched with additional functionality. Particularly, any peer

hosted by a platform has been given the possibility to add new mappings with

existing peers of a P2PIS. This was not possible in the original version of Some-

Where, where each peer could only be launched with a static theory and set

of mappings. This has required to reconsider a number of implementation de-

tails. For instance, adding a new mapping may cause a variable of distant peer

to change its status from non-shared to shared variable. The communication

101

4.3 Implementation of P2P-NG and WF-DeCA and experimentations

protocol between peers has thus been enriched with new messages, in order to be

able to warn distant peers involved in a mapping so that they can register such

changes of status.

Peers have been enriched as well with a local nogood database. When adding

a new mapping m to the peer P and when the result of P2P-NG(m,P) is not

empty, a new nogood ms∪{m} is inserted in the database of P , for each mapping

support ms that is returned by P2P-NG. The global launch process of a P2PIS

has also been revised in such a way that each peer, when launched, successively

adds its mapping using the previously described insertion procedure.

The implementation of WF-DeCA can be seen as a variation on the implemen-

tation of both DeCAbL and P2P-NG. From the former, we have kept the idea

of bounding the size of produced implicates, since it still has its own interest to

focus on the production of such consequents. From a theoretical point of view,

since the number of literals of the global theory of the P2PIS is finite, setting a

very large bound still allows for the production of all implicates of a query. Of

course, we have learned that controlling the size of the produced implicate has

also some overhead and, if we really want to produce all implicates, it could be

significant. But from a practical point of view it is much more convenient to have

this possibility. Anyway, it would be very easy to adapt the current version of

WF-DeCA to get rid of this control on the size of produced implicates.

From P2P-NG, WF-DeCA keeps the fact that when deriving a consequent all

mapping supports have to be produced as well. But in addition, it also has to

retrieve, from the local nogood databases, the nogood that possibly overlap with

existing mapping support. From a technical point of view, content of answer

messages has been extended in order to incorporate sets of mapping supports as

well as sets of nogoods. Then the recombination operator has been adapted in

order to work on triples of the form (c sms sng).

102

4.4 Conclusion and discussion

4.4 Conclusion and discussion

In this chapter, we have considered the problem of dealing with inconsisten-

cies in SomeWhere . We have proposed two algorithms: P2P-NG to detect

and store causes of inconsistencies, WF-DeCA to reason and return only well-

founded answers to queries. We have proved the soundness and termination of

both algorithms, as well as the completeness of P2P-NG, which is key for the

soundness of WF-DeCA.

We have also described how we have implemented P2P-NG and WF-DeCA in

the SomeWhere platform. Finally, we have described an adaptation of DeCA

(DeCAbL) that produces only consequences whose length is bound by an input

parameter. We have explained how the promising results on the performance

gain of DeCAbL can be transposed to P2P-NG and WF-DeCA.

As stated earlier, our approach is in somehow similar to (64) and (40). Briefly, we

also use a new notion of logical consequences that is based on the classical one,

i.e. a consequence of q and Σ is well-founded if it can be classically deduced

from q and a consistent subset Σ′ of Σ. We detail here differences between our

approaches.

In (64) and (40), the inconsistent set Σ is known, it is a centralized knowledge

base. Therefore, it is not difficult to compute consistent subsets Σ′ of Σ as

detailed in Section 3.2.2.2. In contrast, the inconsistent set Σ is not known in our

framework. Σ is the union of all the peer theories which are decentralized over

a SomeWhere network. There is no centralized control and no knowledge of

the whole theory. Therefore, we can not use the same procedures as in (64) and

(40) to find Σ′. To solve the problem, our approach is based on the decentralized

computation of the nogoods, which are exploited to check whether subset of Σ

supporting the derivation of a consequence are consistent.

It is also important to notice that the storage of nogoods is completely distributed.

We cannot know all the nogoods stored in our network. However, while processing

a query, we must be sure of collecting all the nogoods that would invalidate the

production of a consequence. Theorem 5 makes sure of this for WF-DeCA.

103

4.4 Conclusion and discussion

In our approach, for every query, each consequence is well-founded w.r.t. a possi-

bly different consistent subset Σ′. In (64) and (40), once found, Σ′ is fixed and all

the consequences are well-founded w.r.t. this Σ′. With respect to a modification

on the whole theory Σ (a new mapping is added between two peers in Some-

Where, or a new axiom is added to the centralized knowledge base in (64) and

(40)), this point has some impacts. In our context, we must detect if the new

mapping creates new nogoods and store them while in (64) and (40), we must

re-verify the consistency of the union of the found and fixed Σ′ with the new

axiom.

An other difference between our approach and that of (64) and (40) is that given

a query q, we accept to obtain both A and its negation ¬A as long as each of

them can be deduced from a consistent subset Σ′ of Σ and q. This is due to the

fact that the definition of our notion of logical consequences corresponds only to

the soundness property, but not to the meaningfulness property as defined in

(64) and (40)

Compared to DeCA, the main property of WF-DeCA is produce well-founded

answers only. Figure 4.8 shows a case where DeCA produces an answer de-

rived from an inconsistent P2PIS. That answer, which is not well-founded, is not

produced by WF-DeCA when applied to the same P2PIS.

Peer P1 :

O1 :

¬a1 ∨ ¬b1

Peer P2 :

O2 :

a2

M2 :

P2.1 : ¬a2 ∨ a1

Peer P3 :

O3 :

b3

M3 :

P3.1 : ¬b3 ∨ b1

Peer P4

M4

P4.1 : ¬q4 ∨ a4 ∨ a1 ∨ b1

a1 , b1

a1 b1

Figure 4.8: Example of an inconsistent P2PIS (edges labeled by shared variables)

104

4.4 Conclusion and discussion

The simple P2PIS illustrated in the figure 4.8 is inconsistent due to the set of

clauses {¬a1 ∨ ¬b1,¬a2 ∨ a1, a2,¬b3 ∨ b1, b3}. Among these clauses, there are the

mappings P2.1 and P3.1. Suppose that mappings are added by the peers with the

order : P2.1, P3.1, P4.1. It can be verified that the addition of P2.1 does not cause

any inconsistency. When P3.1 is added into P3, a nogood ng = {P2.1, P3.1} is

detected and stored at P3. The addition of P4.1 does not cause any new nogood.

Illustration of WF-DeCA on a query

Let us consider the query q4 that is provided to P4. A local consequence of the

query is a4∨a1∨b1 with the mapping support P4.1. Because a1 and b1 are shared

with P1, each of them is sent to P1, initializing two reasoning branches which are

processed in parallel.

• When a1 is propagated to P1, by resolution with ¬a1 ∨ ¬b1, a local con-

sequence is ¬b1, which is shared with P3 and therefore propagated to P3.

Inside P3, the empty clause 2 is deduced with the mapping support P3.1

after resolution with b3. The nogood ng stored at P3 is also collected be-

cause P3.1 is included in ng. (2 {{P3.1}} {ng}) is thus sent back to P1 as

a consequence of ¬b1, then to P4 as a consequence of a1 to be recombined

with a4 and each of the consequences of b1.

• When b1 is propagated to P1, by resolution with ¬a1 ∨ ¬b1, a local con-

sequence is ¬a1, which is shared with P2 and therefore propagated to P2.

Inside P2, the empty clause 2 is deduced with the mapping support P2.1,

after resolution with a2. (2 {{P2.1}} ∅) is thus sent back to P1 as a con-

sequence of ¬a1, then to P4 as a consequence of b1 to be recombined with

a4 and each of the consequences of a1.

By recombining (a4 {{P4.1}} ∅) with (2 {{P3.1}} {ng}) and (2 {{P2.1}}
∅), we obtain (a4 {{P4.1, P3.1, P2.1}} {ng}). The only mapping support of

the consequence a4 contains the nogood ng (which is {P2.1, P3.1}). Therefore,

(a4 {{P4.1, P3.1, P2.1}} {ng}) is discarded by WF-DeCA. Actually, a4 has

been deduced using all the clauses identified above that are responsible for the

inconsistency, and thus is not well-founded. Note that the DeCA algorithm,

105

4.4 Conclusion and discussion

since it does not manage mapping supports as well as nogoods, is not able to

detect that this consequent is not well-founded.

As stated by Theorem 5 and illustrated in the previous example, WF-DeCA

guarantees to produce well-founded answers only. It is not however guaranteed

to be complete. The following example shows a case in which WF-DeCA does

not produce an answer which is yet well-founded.

Let us consider the P2PIS illustrated in the figure 4.9. It is inconsistent due to

the set of clauses {¬a1∨¬b1,¬a2∨a1, a2,¬b3∨b1, b3}. Among these clauses, there

are the mappings P1.1 and P3.1. Suppose that mappings are added by the peers

with the order : P2.1, P1.1, P1.2, P3.1, P4.1. It can be verified that the additions

of P2.1, P1.1, P1.2 do not cause any inconsistency. When P3.1 is added into P3,

a nogood ng = {P1.1, P3.1} is detected and stored at P3. The addition of P4.1

does not cause any new nogood.

Peer P1 :

O1 :

¬a1 ∨ ¬b1

M1 :

P1.1 : ¬a2 ∨ a1

P1.2 : a2 ∨ c1

Peer P2 :

O2 :

a2

M2 :

P2.1 : ¬c1 ∨ b2

Peer P3 :

O3 :

b3

M3 :

P3.1 : ¬b3 ∨ b1

Peer P4

M4

P4.1 : ¬q4 ∨ a4 ∨ a1 ∨ b1

a1 , b1

c1 , a2 b1

Figure 4.9: Example of an inconsistent P2PIS (edges labeled by shared variables)

For the non-completeness of WF-DeCA, let us consider the query q4 that is

provided to P4. A local consequence of the query is a4∨a1∨ b1 with the mapping

support P4.1. Because a1 and b1 are shared with P1, each of them is sent to P1,

initializing two reasoning branches which are processed in parallel.

106

4.4 Conclusion and discussion

• When a1 is propagated to P1, by resolution with ¬a1 ∨ ¬b1, a local con-

sequence is ¬b1, which is shared with P3 and therefore propagated to P3.

Inside P3, the empty clause 2 is deduced with the mapping support P3.1

after resolution with b3. The nogood ng stored at P3 is also collected be-

cause P3.1 is included in ng. (2 {{P3.1}} {ng}) is thus sent back to P1 as

a consequence of ¬b1, then to P4 as a consequence of a1 to be recombined

with a4 and each of the consequences of b1.

• When b1 is propagated to P1, by resolution with ¬a1 ∨ ¬b1, a local conse-

quence is ¬a1. By resolution ¬a1 with the mapping P1.1 we produce ¬a2,

which produces c1 by resolution with the mapping P1.2. c1 is shared with P2

and therefore propagated to P2 and produces b2 using the mapping P2.1. (b2

{{P2.1}} ∅) is thus returned to P1 as a consequence of c1. Because c1 is a

consequence of ¬a2 which is itself a consequence of ¬a1, b2 is a consequence

of ¬a1 with a mapping support equal to {{P2.1, P1.1, P1.2}}. Finally, be-

cause ¬a1 is produced from b1 coming from P4, (b2 {{P2.1, P1.1, P1.2}} ∅)
is thus sent back to P1 as a consequence of b1 to be recombined with a4 and

each of the consequences of a1.

By recombining (a4 {{P4.1}} ∅) with (2 {{P3.1}} {ng}) and (b2 {{P2.1, P1.1, P1.2}}
∅), we obtain (a4 ∨ b2 {{P4.1, P3.1, P2.1, P1.1, P1.2}} {ng}). The only mapping

support of the consequence a4∨b2 contains the nogood ng (which is {P1.1, P3.1}).
Therefore, (a4 ∨ b2 {{P4.1, P3.1, P2.1, P1.1, P1.2}} {ng}) is discarded by WF-

DeCA. However, for the production of this clause, we has not used the clause a2,

which is one of the clauses identified above as accounting for the inconsistency.

Therefore, a4 ∨ b2 can be derived from a consistent set of clauses and thus is

well-founded according to Definition 16.

107

4.4 Conclusion and discussion

108

Part II

TRUST FOR SEMANTIC

PEER-TO-PEER SYSTEMS

109

110

INTRODUCTION

Trust is an important issue in peer-to-peer and social networks, in which some

(possibly malicious) peers can provide wrong, virus-contaminated or unsatisfying

data as answers to a query.

In this second part of our thesis, we explain the model of trust that we propose

for semantic peer-to-peer systems. This model is based on the Bayesian approach

to statistics and relied on a strong mathematical setting with a clear semantic.

Our approach provides a useful framework for ranking answers of a query accord-

ing to their trust level. The benefit may be high when the number of answers is

important. Our approach distinguishes from the existing works by the fact that

the trust is context-dependent since, for a given peer, it may vary depending on

that peer’s classes.

This part is structured as follows :

• In Chapter 5, we present a state of the art on the approaches for trust and

reputation computation for peer-to-peer and social networks,

• In Chapter 6, we present our probabilistic trust model for semantic peer-

to-peer systems.

We formally define trust, provide a simple theorem to estimate trust and a

Bayesian statistics-based proof of this theorem. Our model considers direct

experiences of the peer estimating trust towards the classes involved in

the semantic annotations of the resources returned as answers to previous

queries. In case it does not have direct experiences relevant to the classes

for which trust is estimated, we present a simple strategy for it to collect

experiences of other peers that are relevant to compute the trust in question.

We also present how this model of trust can be applied into the SomeOWL

semantic peer-to-peer system (presented in Section 2.3). We design a greedy

111

strategy for SomeOWL that can collect experiences of other peers into the

trust computing peer as soon as these information are needed.

Finally, we conclude this part by discussing about our model. Although our

model has not been designed to cope with the problem concerning malicious

peers, we also discuss how it can deal with this problem.

112

113

Chapter 5

STATE OF THE ART ON

TRUST AND REPUTATION

COMPUTATION MODELS

FOR PEER-TO-PEER AND

SOCIAL NETWORKS

Online marketplaces like Ebay and Amazon, peer-to-peer file sharing systems such

as KaZaa or BitTorrent, or social network services such as Facebook or MySpace

have been changing radically the way people interact and exchange information.

Actually, e-commerce applications have made buying and selling easier : more

potential buyers for selling ; more choices and more competitive prices for buying.

Distributed file sharing systems have made information searching and retrieving

simple than ever: just say what you are looking for and click the ’submit’ button

to receive answers. They are very nice and useful applications. However, the

question of their trustworthiness is a major issue.

In this chapter we will present representative works that have proposed trust and

reputation computation models for online social networks, peer-to-peer networks

and information searching and retrieving technique such as Google. We divide

the works into four categories. For a better understanding of our classification,

114

we first distinguish trust from reputation.

In the Longman dictionary, trust is defined as a strong belief in the honesty,

goodness of someone or something, while reputation is defined as the opinion

that people have about someone or something because of what has happened in

the past. In our point of view, the two definitions have a strict relation. Actually,

the ’strong belief’ in the above definition of trust may be a belief of an individual

A in the target person or object. In this case we say that the target person or

object is trustworthy for A. This ’strong belief’ may also be the belief of a set of

individuals A, in this case we say that the target person or object is trustworthy

for the whole community A, or that he has a good reputation in A, because the

individuals in A have a good opinion about him.

It makes sense to talk about reputation in contexts where people have the same

interest, when there is a consensus about the honesty, goodness of a person. For

example, in an online marketplace, buying and selling safely is one of the same

interests of the majority of participants. People have thus a consensus of what

is a honest user : one that pays correctly when buying, and provides correctly

goods when selling. There is also a consensus of what is a cheater : one that does

not pay correctly when buying, or that does not provide correctly goods when

selling.

It makes sense to talk about trust in contexts where people may not have the

same interest, when there may not be a consensus about the honesty, goodness

of a person, but where the point of view of each individual about the honesty or

goodness of that person counts. For example, there is not an absolute consensus

about the quality of laptops of different marks. Peter trust the Asus brand be-

cause Asus laptops have a good autonomy although their design is not beautiful.

In contrast, his sister has a different point of view, she likes beautiful laptops, so

she trusts the Apple brand.

Now that the possible ambiguity in the sense of the terms trust and reputation

has been explicated, we present our classification for the works that are being

presented. All these works use (satisfaction or complaint) feedbacks on past

interactions between agents, users or sources, to compute trust and reputation.

Firstly, we distinguish works that proposed a computation model for reputation

115

5.1 Models of reputation

from those that proposed a computation model for trust. After that, in each

category, we classify a work as ’probabilistic’ or ’non-probabilistic’ based on the

manner that it uses to aggregate feedbacks.

5.1 Models of reputation

In this section, we will present some representative computation models of rep-

utation. In these models, the points of view of individuals knowing the target

individual (whose reputation is to be computed) are aggregated. The final out-

puts express the viewpoint of the whole community towards the target individual.

5.1.1 Non probabilistic models of reputation

In online marketplaces

Reputation systems have been used intensively in online marketplaces such as

Ebay (3), the largest online auctioning system, or Amazon (2), the largest online

market. In these systems, one can buy and sell many things. In general, a buyer

and a seller do not know each other, it is thus questionable for each of them to

decide to interact with the other. In order to promote good behaviors of partici-

pants, these systems provide very simple methods to compute the reputation of

sellers, in Amazon, and of both sellers and bidders, in Ebay. After each trans-

action, in Amazon, the seller files a feedback about the buyer. In Ebay, both

the seller and the bidder make a feedback about each other. A feedback may be

positive, negative or neutral. Feedbacks concerning a same user are centralized

into a server.

In Amazon, the reputation system computes the reputation of a seller and shows

this score, which is the percentage of positive, neutral and negative feedbacks.

In Ebay, the reputation system computes 2 notes for both sellers and bidders.

For every user, the first note is the difference between the number of his total

positive feedbacks and the number of his total negative feedbacks. The second

note is the percentage of his total positive feedbacks w.r.t. his total feedbacks.

116

5.1 Models of reputation

In both systems, the reputation of a user may be based on the whole life-time

feedbacks concerning this user, or only based on those gathered during the last 3

or 6 months. This is an important point because we can see if there is a change

in the behavior of a user. The reason is that a user can build his reputations in a

long time by behaving correctly in all transactions concerning small value articles.

Then, when having a good reputation, he may begin cheating in transactions

concerning valuable articles. With these characteristics, the reputation systems

of both Ebay and Amazon are very successful. These online marketplaces have a

very big community of participants.

In peer-to-peer setting

While the methods used in Ebay and Amazon rely on a central server, (10) is

one of the first approaches for computing reputation of peers in a peer-to-peer

setting, such as the P-Grid peer-to-peer network (9) (presented in Chapter 1). In

this setting, when two peers P and Q interact to exchange information, each of

them may file a feedback about the other. The only type of feedback is complaint

(a negative feedback). Each feedback is duplicated. All the feedbacks and their

replicas are stored in a distributed manner, using a distributed hash table in the

overlay network of P-Grid.

One possible situation in this setting is that, after a transaction, not only the

honest peer P can make a complaint about the cheating peer Q, but Q can also

make a complaint about P in order to hide his bad behavior. So, a third person

R cannot know which one between these two peers is the cheater. However, when

Q continues his misbehavior with other peers, the situation becomes easier for R

to understand. It will see that Q complains about many peers and all of them

complain about Q. It is thus very probable that Q is the cheater. This idea is

expressed by the following formula:

rep(P) = | c(P,Q) | x | c(Q,P) |

where | c(P,Q) | is the total number of complaints made by P about all the other

peers Q ; | c(Q,P) | is the total number of complaints made by all the other peers

Q towards P . High values of rep(P) mean that P is not trustworthy.

117

5.1 Models of reputation

When a peer R assesses the reputation of a peer P , using the above formula, it

collects all the complaints concerning P by searching the distributed hash table

in the overlay network of P-Grid. No central server is thus necessary for this task.

In this setting, an other possible problem is that complaints used for computing

the reputation of a peer may be misreported by peers that store them. This

problem is dealt with using the replicas that have been stored for each original

complaint. Complaints and replicas that are retrieved from a peer, and that differ

much from those retrieved from the other peers, will be ignored.

In our viewpoint, the formula used to compute reputation of peers in this model

has some flaws. Firstly, the threshold defining that rep(P) is high must be set in

an ad-hoc way. We do not know the value at which rep(P) should be considered

as ’high’ in order to avoid to interact with P . Secondly, the interpretation of

rep(P) when it is equal to 0 is not clear. In this case, we do not know if it means

that P has never interacted with other peers , or that it has interacted with other

peers, but no complaint has been made against it so far.

5.1.2 Probabilistic models of reputation

We present in this section some models of reputation based on probabilistic ap-

proaches. We are aware of three main kinds of techniques: those that use the

PageRank algorithm, those that use EigenTrust-based algorithms and those that

are based on maximum likelihood estimation technique.

5.1.2.1 The PageRank algorithm

The PageRank algorithm has been presented first by (21; 54). It is a probabilistic

algorithm used to compute the global reputation of web pages on the Internet.

It is also applied to rank the results of document search in Google (6).

In this approach, the reputation of a web page is considered as its rank. It is

supposed that a page has a high rank if it is referred by other pages that them-

selves are highly ranked. The idea is that the more a page is referred, the better

its reputation. However, a page that is referred by many pages whose ranks are

118

5.1 Models of reputation

not high may not be a good page. On the other hand, a page that has few ref-

erences to it may still be a very good page, if the pages referring to it are highly

ranked. For example, a page that has only one reference to it, the one from a

very important page such as www.yahoo.com is still considered more important

than an other page which has many references to it but all from unknown pages.

In other terms, the rank of a page is divided evenly among its forward links to

contribute to the ranks of the pages it points to. Figure 5.1 illustrates this idea.

Figure 5.1: How PageRank works

The rank rank(p) of a page p is defined by the following formula, expressing the

idea presented above:

rank(p) = d. 1
T

+ (1− d)
∑k

i=1
rank(pi)
C(pi)

where d ∈ [0,1], T is the total number of pages, p1, ...pk are the pages referring

to p, each has rank rank(pi) and C(pi) is the number of links out of pi.

This equation is recursive but it may be computed by starting with any set of

ranks and iterating the computation until it converges. In order to know which

119

5.1 Models of reputation

page points to which pages, Google has developed a Web page crawler. The pages

that are crawled by the web crawler are stored in a single database inside a server.

This database is very big, containing more than 24 million pages by the time of

1998. Then, the pages in this database are indexed using an efficient indexing

method. When the page indexing step finishes, the computation of PageRank is

executed inside the server, using all the informations about pages that have been

collected. This computation is thus done in a non-distributed manner.

Given a page p, the probabilistic interpretation of rank(p) is the following. Let

us consider a Web surfer who wandering the Web. Suppose that he is on the

page p′. At each step, the surfer may jump to one of the page referred by p′ with

probability (1 − d) or may either jump to any random page on the Web with

probability d. The probability that the random surfer visits a page p from p′ is

thus equal to its rank rank(p).

The algorithm of PageRank has also been used in (53) to compute reputation

of users in the Semantic Web, such as the Advogato Web community (1). In

(53), more than 3 millions profiles of users of this community and the local trust

assertions towards their neighbors have been centralized. From this huge data,

subsets of about 572 users, each with in average 5 neighbors, have been used to

test the convergence rate of the algorithm. It has been shown that the algorithm

converges fairly fast, after about 40 iterations.

In the next sub-section we will present the EigenTrust algorithm that is used to

compute reputation of peers in a peer-to-peer network. The principal formula of

the EigenTrust algorithm is similar to the formula used for computing the rank

of a web page in PageRank. The difference with the EigenTrust algorithm is

that it does not rely on a central server and uses trust propagation between peers

instead of collecting web pages links using a web crawler.

5.1.2.2 The EigenTrust Algorithm

In (42), Hector Garcia-Molina et al. have presented the EigenTrust algorithm that

permits a peer to use trust propagation in order to compute the global reputation

of peers in a peer-to-peer system. In EigenTrust, a peer stores locally its trust

values towards its acquaintances (peers that it has interacted with). Each local

120

5.1 Models of reputation

trust value cij, computed by Pi for an other peer Pj, is the difference between the

number of direct positive feedbacks and the number of direct negative feedbacks

that Pi has about Pj.

In (42), three versions of the EigenTrust algorithm have been presented :

• The basic version of the EigenTrust algorithm is called BasicEigenTrust. It

is basic because it ignores the distributed nature of peer-to-peer networks :

it is supposed that some central server knows all the cij values and performs

the peers’s reputation computation.

In this version of the EigenTrust algorithm, the global reputation of a peer

Pj is obtained by iterating the process of weighting the local trust values

cij assigned to Pj by other peers Pi, by using the global reputations of the

Pis. The final result of the peers’s reputation computation is a vector t

that contains the global reputation values of all the peers in the network.

In other terms, t[k] represents the global reputation of the peer Pk. We

describe how the vector t is computed in the following.

The BasicEigenTrust algorithm

Given e the m-vector representing a uniform probability distribution over

all m peers in the network; CT the transposed matrix of the matrix C of

values cij :

1. t0 is initialized to be equal to e

2. repeat tk+1 = CT tk until t converges

It has been proven that if C is irreducible and aperiodic, then the Basi-

cEigenTrust algorithm converges.

• An other version of the EigenTrust algorithm is called DistributedEigen-

Trust. In this version of EigenTrust, the distributed nature of peer-to-peer

networks is taken into account : no central server is used to collect all the

cij values, i.e. they are stored locally in each peer Pi assigning cij to a peer

Pj. In addition, all the peers in the network cooperate to compute and

121

5.1 Models of reputation

store the global trust vector. This version of EigenTrust can also handle

the problem of malicious peers : it prevents those peers from cooperating to

get high global reputation by exaggerating their local trust values towards

their accomplices, and giving low local trust values to all other peers.

In order to neutralize malicious peers, it is supposed that there are some

peers in the network that are pre-trusted: they are trusted by all peers. Let

P be the set of these pre-trusted peers, a distribution vector p is defined

over P, such that pi = 1
|P| if the peer Pi ∈ P ; pi = 0 otherwise.

– This vector p is used in place of the start vector e in the BasicEigen-

Trust algorithm. In the presence of malicious peers, it has been proven,

by using the start vector p, the algorithm converges faster.

– In addition, the main formula in the BasicEigenTrust algorithm is also

modified into tk+1 = (1 − a)CT tk + ap , where 0 < a < 1. This new

formula means that a peer has a probability a to interact with one

of the pre-trusted peers, avoiding the effect of collaborative malicious

peers.

The above formula is similar to the formula of the PageRank algorithm.

However, the DistributedEigenTrust algorithm does not rely on any central

server to compute the vector t. Every peer Pi will compute locally its

own global reputation value, using the formula: tk+1
i = (1− a)(c1it

k
1 + ...+

cmit
k
m) + api . The peers communicate with each other to compute its

global reputation value simultaneously.

Given a peer Pi, let Ai be the set of peers which have downloaded files

from Pi, let Bi be the set of peers from which Pi has downloaded files.

The DistributedEigenTrust algorithm that is executed in every peer Pi is

as follows :

The DistributedEigenTrust algorithm

1. query all peers Pj ∈ Ai for t0j = pj

122

5.1 Models of reputation

2. repeat

compute tk+1
i = (1− a)(c1it

k
1 + ...+ cmit

k
m) + api

send cijt
k+1
i to all peers Pj ∈ Bi

compute the difference between tk+1
i and tki

wait for all peers Pj ∈ Ai to return cjit
k+1
j

until ti converges

• The last version of the EigenTrust algorithm is called SecureEigenTrust.

This version solves a possible problem in the DistributedEigenTrust version,

where a peer computes and stores its own global reputation value. With

this setting, a malicious peer can easily manipulate its reputation value,

report false trust values and thus subvert the system.

The SecureEigenTrust version proposes a solution to this problem. In this

version, the global reputation value of a peer will not be computed by itself,

but by its score managers. A score manager of a peer Pi is another peer

that computes and stores the global reputation value of Pi. To assign score

managers to a peer Pi, a distributed hash table (DHT) such as Chord (62)

is used. The unique identifier of Pi, such as its IP and TCP port is hashed

into a point in the DHT hash space. The DHT hash space is a logical

coordination space that is partitioned dynamically among the peers in the

system such that every peer covers a region. Once the unique identifier of

Pi is hashed, the peers that cover the corresponding region in the DHT hash

space will become Pi’s score managers.

With this new setting, when a peer needs to know the reputation value of

an other peer, it will compute the location of that peer’s score managers

and query all of them for the value it is searching. A majority vote will be

used in case of significant differences in the reported values from the score

managers. This vote helps to avoid using a faulty reputation value reported

by a malicious peers.

The EigentTrust algorithm differentiates from the PageRank algorithm only by

taking into account the distributed nature of peer-to-peer networks. The prob-

abilistic interpretation of the EigentTrust algorithm’s outputs is also similar to

123

5.1 Models of reputation

that of the PageRank algorithm. For completeness, Richardson et al (48) use

the DistributedEigenTrust algorithm to compute the reputation of statements

(logical assertions) on the semantic web. Nedjl et al (51) have proposed to per-

sonalize the DistributedEigenTrust version in order to compute trust value of

peers instead of their reputations. This method will be presented in the section

5.2.2.1.

5.1.2.3 Maximum likelihood estimation technique

In (32), a different probabilistic way to compute the reputation of peers has been

proposed. It is based on the technique of maximum likelihood estimation. In

this work, the reputation of a peer Pj is considered as its innate probability µj

of performing honestly in its interactions with other peers.

Assume that peer Pj has interacted with peers P1, P2, ... Pn. Let x1, x2, ...,

xn be the feedbacks about Pj that the peers P1, P2, ... Pn have made in the

corresponding transactions. The value of each feedback is either 1 denoting a

positive feedback, or 0 denoting a negative feedback. These feedbacks are stored

using the P-Grid structure (9).

Now suppose that a peer Pi wants to know the reputation of the peer Pj. It will

search the P-Grid structure for the feedbacks about Pj. It is interesting to notice

that when a peer Pk among P1, P2, ... Pn makes a feedback about the behavior

of Pj, it may lie with a probability lk. When retrieving a feedback Yk made by

Pk about Pj, the probability that Pi observes the value yk is computed using:

Pr[Yk = yk] =

{
lk(1− µj) + (1− lk)µj if yk = 1
lkµj + (1− lk)(1− µj) if yk = 0

Given a random sample of independent reports y1, y2, ..., yn, the likelihood func-

tion of this sample is: L(µj) = P [Y1 = y1]P [Y2 = y2]...P [Yn = yn]

The maximum likelihood estimation procedure amounts to find a value of µj

that maximizes the likelihood function. This number is the maximum likelihood

estimate of the unknown probability, that is considered as the global reputation

value of the peer Pj.

124

5.2 Models of trust

Although the value µj is estimated by a peer Pi, its value has a global meaning,

not depending on the peer Pi. It is because every peer Pi computing µj is supposed

to trust its own feedback (i.e. to put 1 as the value of P [Yi = yi]). Therefore, µj

is depended on the feedbacks that have been made about Pj by all the peers.

5.2 Models of trust

In this section, we present some representative computation models of trust. In

these models, the output does not express the aggregated viewpoint of a com-

munity towards a target individual B, but expresses the point of view of a given

individual A computing these outputs. However, to the best of our knowledge,

there is no approach that uses only the direct experiences of A about B to com-

pute the trust of A for B. Actually, they also use witnesses’s experiences about

B but the set of witnesses is dependent on A.

5.2.1 Non probabilistic models of trust

In online societies

One of the first works that treated the problem of trust in online societies is (58).

This work has proposed a trust model for gregarious societies, i.e. where people

tend to gather into groups. The trust for an individual b belonging to a group

B, when computed by an individual a belonging to a group A, is the result of

an intuitive aggregation of all the knowledge of A about B. This aggregation

combines (1) the local trust of a for b, R(a, b), (2) the trust of a for the group B,

R(a,B), (3) the trust of the group A for b, R(A, b) and (4) the trust of the group

A for the group B, R(A,B). These values are defined as follows:

1. R(a, b) is the sum of each a’s feedback about b weighted by a time-dependent

function that gives higher values for more recent feedbacks. A feedback

can take a value among {-1,0,+1}, corresponding respectively to negative,

neutral and positive feedbacks.

2. R(a,B) is the sum of local trust of a towards each agent bi of B.

125

5.2 Models of trust

3. R(A, b) is the sum of local trust of each ai of A for b, weighted by the

importance of each ai in A.

4. R(A,B) is the sum of local trust of each ai of A for each bi of B, weighted

by the importance of each ai in A.

The aggregation of these four values to compute the trust of a for b is made in

an ad-hoc way:

trust(a, b) =R(a, b) ξ(a, b) +R(a,B) ξ(a,B) +R(A, b) ξ(A, b) +R(A,B) ξ(A,B)

where the ξ(., .) are weights reflecting the importance of each source of opinion

and are chosen such that ξ(a, b) + ξ(a,B) + ξ(A, b) + ξ(A,B) = 1.

Although an individual a in A, when computing its trust for an individual b in B,

has to take into account the feedbacks of the other individuals in A, the output

trust value is still relative to a and different from the trust value of b computed

by another individual in A. The factor (1) warrants this property. Moreover, due

to the factors (2) and (3), it is easy to see that if an individual a′ belongs to a

different group A′, the trust of b computed by a is different to the one computed

by a′.

Massa et al (47) also proposed an ad-hoc way for an individual to compute the

trust towards others in an online social network. It is supposed that each in-

dividual u has a local trust value for each of the people he knows, for example

localTrust(u, v). Such a local trust has a value between 0 and 1. Now, let a

peer P be the individual that computes its trust towards others, the following

notations are used:

• users[0] = P

• users[1] = the set of users that P knows

• for i = 2, ...k; users[i] = the set of users known by users[i − 1] and have

not yet been in any users[j], j = 0, .., i− 1

By using the following algorithm, P can compute its trust value for the users

that are in users[i], i = 1, ..., k. The trust value for a user in users[i] depends

126

5.2 Models of trust

only on the local trust of users[i− 1] for him, weighted by the trust of P for the

users[i− 1].

Algorithm used in (47)

i = 0

trust(P) = 1

while (i ≤ k)

i ++

for each individual u in users[i]

trust(u) =
Σv=pred(u)(trust(v)∗localTrust(v,u))

Σv=pred(u)(trust(v))

In the above algorithm, pred(u) denotes the set of predecessors of u, for each user

v among them trust(v) ≥ 0.6. It means that when computing its trust value for

a user u in users[i], P uses the local trust value of a user v in pred(u) towards

u only if P ’s trust value for v is greater than 0.6. This choice is intuitive and

ad-hoc. Moreover, the meaning of the trust values computed by P for other peers

is not clear.

In the Semantic Web

A simple formula to compute trust of users in the FOAF (4) network has been

proposed in (34). In the FOAF network, each user is identified by his email

address. Users store in their profile a list of users that they know, called their

acquaintances. (34) extends the profile of each user, permitting for a user to

state its trust towards each of its acquaintances. This local trust takes a value

from 1 to 9, represents different level of trust, from ’Distrust absolutely’ to ’Trust

absolutely’.

In (34), the formula that is used by a user i to compute its trust towards a user

s that it does not know directly makes use of the local trust value of the users

along the paths from i to s. Suppose that i has n neighbors with paths to s, this

formula is as follows:

tis =

Σn
j=0

{
(tjs ∗ tij) if tij >= tjs
(t2ij) if tij < tjs

Σn
j=0tij

127

5.2 Models of trust

The above formula is hard to interpret. One of its properties is that for all the

users j in the path from i to s, tis will be less than tij.

In peer-to-peer setting

The work in (30) has proposed an approach based on votes for choosing resources

to download in Gnutella-like P2P networks. Recall that in Gnutella-like systems,

when a peer P searches for a resource, it broadcasts a Query message containing

the search keywords. to all its neighbors. Neighbors of P forward this Query

message to theirs neighbors that have not yet been asked. By this way, the

Query message is broadcasted in the network, creating searching branches rooted

in the peer P . When a peer receives a Query message for which it has a ’match’

(it has the requested resource), it responds with a QueryHit message that will be

transmitted back to P along the corresponding searching branch.

It is supposed in this approach that every peer, as well as every resource, has a

unique identifier (ID). Each peer keeps a binary feedback database towards re-

sources that it has downloaded, and a binary feedback database towards the peers

having provided with resources to it. When a peer P receives a list of resources

for its search, it chooses one resource among them that it thinks most satisfying

its request. When choosing a resource, P also knows the other peers that offer

the same resource. Before downloading, P would like to know which one is the

best and if the resource is of good quality. For this, it asks other peers to vote

on the resource and the providers in question, by broadcasting a Poll message

on the Gnutella network. When receiving the Poll message, a peer checks its

feedback databases to answer the vote request of P . After reception of the votes,

P observes the results and freely decide whether to trust the resource in question

and chooses the best provider in his point of view.

It is easy to see that the approach used in this work is very intuitive and ad-hoc.

Moreover, even if P asks all the other peers in the network to vote, the final

judgment to trust a resource and a provider or not is only up to P .

128

5.2 Models of trust

5.2.2 Probabilistic models of trust

We present in this section the most representative models of trust whose outputs

have a probabilistic meaning. We will discuss briefly a work that adapts the

EigenTrust algorithm (presented in details in section 5.1.2.2) then we compare

those that have adopted the Bayesian approach to statistics to build their trust

model.

5.2.2.1 Personalized EigenTrust algorithm for trust computation

Nedjl et al (51) have proposed a slight modification for the DistributedEigenTrust

version of the EigenTrust algorithm. In the DistributedEigenTrust algorithm,

it is supposed that there is a set of pre-trusted peers that have globally good

reputation. The computation of reputation of peers in a peer-to-peer network

makes use of this set of pre-trusted peers. In (51), a peer can choose among the

set of pre-trusted peers a subset that it trusts the most. The computation of

trust values that takes place at each peer will make use of this peer’s choice of

pre-trusted peers.

With this modification, when the DistributedEigenTrust algorithm converges, we

obtain personalized global reputation values of peers. The personalized global

reputation of a peer A, that is computed by a peer B, expresses the trust that B

has for A, given B’s own point of view when choosing the peers to be pre-trusted.

If B had chosen an other subset of pre-trusted peers then the personalized global

reputation value of A would have been different.

5.2.2.2 Bayesian approach to statistics for trust estimation

In a peer-to-peer (or multi agents) network, one of the roles of every peer is

to provide services to others. A service may be a resource (movies, documents,

...) for other peers to download, or simply a recommendation to peers that will

provide the service in question. In this context, it is often supposed that for

each transaction, a peer either behaves correctly by providing a service of good

quality, or misbehaves if its service is bad.

129

5.2 Models of trust

It is interesting to define the quality criteria of a service. In fact, the criteria to

determine the quality of a service should only be decided by every peer receiving

this service, because every peer is not necessarily as indulgent as another. Con-

sequently, for a given peer Pk, each other peer Pi thinks differently about Pk’s

willingness of behaving correctly. Let us denote this willingness expressed in Pi’s

point of view by θik, 0 ≤ θik ≤ 1.

In reality, such a parameter θik is unknown to Pi. The Bayesian approach to

statistics can be used in order for Pi to estimate this parameter. This approach

consists mainly in two steps :

1. Pi assigns to θik a supposed initial value. This value is often 0.5, expressing

the fact that when Pi has no interaction with Pk yet, it thinks that there is

50% chance that Pk will behave correctly.

2. After observing the performances of Pk in some transactions, Pi recomputes

this parameter, using the Bayes formula (39). The performance of Pk in

each of these transactions is recorded by Pi in the form of positive and

negative feedbacks, corresponding respectively to good and bad services

made by Pk.

We deliberately do not detail this approach right now, but we will do it later

in the next chapter. In the following, we present some works that have adopted

the Bayesian approach to statistics to build models of trust in peer-to-peer and

mobile ad-hoc networks.

The works in (22; 23) are situated in the context of mobile ad-hoc networks. The

goal of the trust model in (22; 23) is to permit every peer to choose the most

trustworthy peers, according to its viewpoint, in order to determine a routing

path for packets of information. A special point in the model of (22; 23) is that

when used to compute trust, less recent feedbacks have less weight than recent

ones so that they have less impact in the estimated trust.

Some other works that have used the Bayesian approach to statistics are (49; 66).

In all these works, apart from its direct feedbacks, an agent may also use feedbacks

of third party about the agent for which trust is being computed. Using third

130

5.3 Summary

party’s feedbacks may be appropriate when the agent estimating its trust towards

another agent has no, or enough, direct experiences with the latter.

Aggregation the feedbacks from different sources is a difficult problem and leads

easily to an ah-hoc formulation. In our point of view, (66) proposed the most

sophisticated method in order to combine these feedbacks. First, the trust com-

puting agent Pi calculates the probability that a feedback provider Pj will provide

an accurate feedback. This is done based on the trust in the recommendation

service of Pi towards Pj. Second, based on this probability, Pi reduces the dis-

tance between Pj’s opinion (expressed via its feedbacks) on the target agent Pk

and the prior belief that Pi has on Pk. Once all the opinions collected have been

adjusted in this way, Pi has a collection of positive and negative feedbacks about

Pk. The feedbacks are aggregated using the same method as for estimating trust,

i.e. Bayesian approach to statistics to estimate θik.

Another problem, in case Pi misses direct experiences about Pk, is to choose a

set of agents S to which Pi asks for their feedbacks about Pk. In (49), S is the

set of agents on the path from Pi to Pk. In (22), S is the set of neighbors of

Pi. In most cases, the set S is determined by Pi, making the estimated value θik

relative on Pi. However, if S is the set of all agents, such as the case of (41) then

this value θik is the same for all peers Pi. (41) assumes the existence of a central

server to collect the feedbacks about all peers. However, such an assumption is

not appropriate considering the distributed nature of peer-to-peer or multi agents

systems.

5.3 Summary

Trust and reputation modeling is an intensively studied subject for online social

networks, peer-to-peer and multi agents systems. Although trust and reputation

are closely related, in some context it is appropriate to distinguish them.

Several trust and reputation models have been designed. They differ on the

interpretation of their outputs : a clear mathematical semantics for probabilistic

approaches, as opposed to ad-hoc models. Some algorithms may be used to

compute either trust or reputation, depending on the way feedbacks are used,

131

5.3 Summary

Comparing factors Approaches

Reputation models Ebay(3); Amazon(2); (10);

EigenTrust (42); Maximum likelihood technique (32);

PageRank (21; 54); Bayesian approach (work (41))

Trust models personalized EigenTrust (51); (58); (30);

Bayesian approach (works (22; 23; 49; 66)); (47)

Probabilistic models PageRank (21; 54), EigenTrust (42),

Maximum likelihood technique (32), Bayesian approach

Non-probabilistic models Ebay(3), Amazon(2), (10)

Table 5.1: Classification of the works presented in this chapter

such as the EigenTrust algorithm or the Bayesian approach to statistics technique.

Table 5.1 summarizes and compares the models that we have presented.

In the models that we have presented, feedbacks are collected in two ways. The

first one is to use a central server to store all feedbacks. The second one is

to permit agents to request other agents for their feedbacks, and receive these

feedbacks either by using a DHT-based or by using a Gnutella-based routing of

messages communication. In both ways, an agent has first to determine the target

agent for which feedbacks are needed, then to ask for the feedbacks concerning

the target agent. We summarize the possible ways for feedbacks collection in

Table 5.2.

Comparing factors Approaches

Use of central server Ebay(3); Amazon(2); PageRank (21; 54);

personalized EigenTrust (51); Bayesian approach (work (41))

Gnutella-based routing (58) ; (30) ; (47); Bayesian approach (works (22; 23; 49; 66))

DHT-based routing (10) ; EigenTrust (42) ; Maximum likelihood technique (32)

Table 5.2: Summary on the possible ways for collection of feedbacks

132

5.3 Summary

Outline of our approach

In the next chapter, we will present our probabilistic model of trust for semantic

peer-to-peer systems. We have adopted the Bayesian approach to statistics in

order to build a trust model whose outputs are mathematically founded.

Our model has two important points with respect to the models presented in

the section 5.2.2.2. Firstly, our model takes into account the notion of context

for trust. In fact, a peer may be trustworthy in some contexts, but untrustwor-

thy in others. This applies for every peer evaluating the trustworthiness of that

peer. In our model, a context is a set of concept names, used by one (or some)

peer(s), justifying a resource when it is returned as an answer of a search query.

Secondly, when applying the model of trust into the SomeOWL semantic peer-

to-peer system (presented in Section 2.3), we propose a new strategy to propagate

feedbacks. This strategy is called greedy, permitting to collect feedbacks con-

cerning answers of a search during the search process. Relevant feedbacks for

each answer of a search are available at the querying peer as soon as the answer

is returned. This permits the peer to use these feedbacks immediately, saving

time for it by avoiding to wait for answers first then to ask for feedbacks after.

133

5.3 Summary

134

Chapter 6

A PROBABILISTIC TRUST

MODEL FOR SEMANTIC

PEER-TO-PEER SYSTEMS

In a semantic peer-to-peer system, each peer is free to use its own ontology to

annotate the resources that it stores locally and that it agrees to share with others.

In such a context, no user imposes to others his own ontology but logical mappings

between ontologies make possible the creation of a network of people in which

personalized semantic marking up of data cohabits nicely with a collaborative

exchange of data. The mappings are exploited during information retrieval or

query answering for query reformulation between peers.

Semantic peer-to-peer systems provide a support for the emergence of open and

decentralized electronic social networks, in which no central or external authority

can control the reliability of the participating peers. Some of the peers may have

(accidentally or deliberately) annotated some (or all) of the resources they have

in an inappropriate way or resource content may evolve over time in such a way

that prior annotations are not suitable anymore. As a consequence, a user of such

semantic peer-to-peer systems is not always satisfied with the answers returned

to his queries. The proposal of an adequate model to assess the level of confidence

that a peer may have in a given answer is thus an important issue.

We have studied and designed a model that can respond to that need. Our model

135

6.1 Preliminary : some useful notions of probability and statistics

is based on the Bayesian approach to statistics and focuses on trust (as opposed

to reputation), because in a decentralized context different peers may correspond

to different points of view. Our model differs from other works that have adopted

the same Bayesian approach by the following points.

Firstly, we argue for a finer grained context sensitive approach to trust. Actually,

in semantic peer-to-peer systems, the result of a query is a set of resources (e.g.,

documents) that have been semantically annotated by one or several peers. We

consider that such semantic annotations constitute some form of logical justifi-

cations for the returned resources. Therefore, instead of defining trust at the

level of peers, we handle trust at the level of semantic annotations of resources.

The trust in resources justified by some annotation L, from the viewpoint of a

peer P , is defined as the probability that a resource annotated by L satisfies P .

This trust can be estimated using the Bayesian approach to statistics from the

evolving number of resources annotated by L and observed by P , that satisfy or

do not satisfy it.

Secondly, our model computes trust by using direct experiences between peers.

When this information is not available or not sufficient, we propose two simple

mechanisms of trust propagation in order for a peer to take advantage of the

experiences of others. One of these mechanism is designed especially for the

SomeOWL semantic peer-to-peer system.

6.1 Preliminary : some useful notions of prob-

ability and statistics

Because our model trust is based on the Bayesian approach to statistics we first

briefly recall in this section some basic notions of probability and statistics that

will be used in the following.

Random Variables

Consider an experiment for which the set of all possible outcomes is denoted by S.

A random variable X is a real-valued function that is defined on S, assigning a real

136

6.1 Preliminary : some useful notions of probability and statistics

number X(s) to each possible outcome s ∈ S. For example, in the experiment of

tossing a pair coin, all the possible outcomes are ’head’, ’tail’. It can be modeled

by the random variable defined by X(head) = 1 and X(tail) = 0. A random

variable is said to be a discrete random variable if its set of possible values is

countable. Otherwise it is said to be a continuous random variable.

Discrete random variables and probability distribution

A discrete random variable X has an associated probability distribution, defined

as a function f : R 7→ [0, 1] which specifies the probability of X taking each of

its different possible values: f(x) = Pr(X = x). If x is not a possible value for

X, then f(x) = 0. If Σ = {x1, x2, ...} denotes the set of all possible values for the

variable X, the probability distribution f verifies the property :∑
x∈Σ

f(x) = 1

Example : A random variable X that can take only possible values either

0 or 1 is called a Bernoulli random variable. If p denotes the probabil-

ity Pr(X = 1) (and thus Pr(X = 0) = 1 − p), the associated probability

distribution of X is a Bernoulli distribution with parameter p defined as :

fp(x) =

{
px(1− p)1−x for x = 0, 1,
0 otherwise.

Continuous random variables and probability density func-

tion

In contrast with the discrete case, a continuous random variable X can take any

value in an interval, a semi-interval, or in the whole set R. The continuous dis-

tribution of X can be characterized by its associated probability density function

f : R 7→ [0, 1]. This function can be used to model the probability of X being in

some interval [a, b] :

Pr(a ≤ X ≤ b) =

∫ b

a

f(x).dx

The probability density function f must satisfy two the properties :
∫ +∞
−∞ f(x).dx =

1 and f(x) ≥ 0, for all x.

137

6.1 Preliminary : some useful notions of probability and statistics

Example : The beta distribution is a continuous probability distribution for

random variables defined on the interval [0, 1]. It has two positive parameters α

and β. The probability density function fα,β of the beta distribution is defined

by :

fα,β(x) =

{
Γ(α+β)

Γ(α)Γ(β)
xα−1(1− x)β−1 for 0 < x < 1

0 otherwise.

where Γ(x) =
∫ x
−∞ t

x−1e−tdt. The Γ function may be viewed as a generalization

of the factorial function, since for positive integers we have Γ(n) = (n− 1)!.

It may be noticed that in the particular case where both α and β are equal to 1,

the beta distribution corresponds to the uniform distribution.

Independent random variables

It is said that n random variables X1, ..., Xn are independent if, for every n sets

A1, ..., An of real numbers, Pr(X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An) = Pr(X1 ∈
A1).P r(X2 ∈ A2).P r(Xn ∈ An).

Expectation of a random variable

Given a random variable X, the expected value (or mean value) of X, denoted

by E(X) characterizes, if it exists, the average value that may be expected from

repeated random trials for X. In the case where X is a discrete random variable

with possible values in Σ and f is its probability distribution, it is defined as :

E(X) =
∑

x xf(x) if
∑

x |x|f(x) < ∞ If X is a continuous random variable, the

probability density function of which is f , it is defined by : E(X) =

∫ ∞
−∞

xf(x)dx

if

∫ ∞
−∞
|x|f(x)dx <∞.

Example : the expected value of a random variable X that follows the beta

distribution with parameters α and β is E(X) = α
α+β

Variance and standard derivation of a random variable

Suppose that X is a random variable with mean µ = E(X). The variance of X,

V ar(X) is defined as : V ar(X) = E[(X − µ)2]. The variance of a distribution

138

6.1 Preliminary : some useful notions of probability and statistics

provides a measure of dispersion of the distribution around its mean µ. If the

variance is small, the probability distribution is tightly concentrated around µ. If

the variance is large, the probability distribution spreads widely around µ. The

standard derivation is the root of the variance.

Example : the variance of a random variable X that follows the beta distribution

with parameters α and β is V ar(X) = αβ
(α+β)2(α+β+1)

Conditional probability

Given two jointly distributed random variables X and Y , the conditional proba-

bility distribution of Y given X , written Pr(Y |X), is the probability distribution

of Y when X is known to be a particular value. For discrete random variables,

the conditional probability function is defined by :

fY |X(y|x) = Pr(Y = y|X = x) = Pr(X=x∧Y=y)
Pr(X=x)

ifPr(X = x) 6= 0

For continuous random variables, a similar definition may be proposed at the

level of probability density functions.

Principle of the Bayesian approach

Conditional probabilities are extensively used in the context of the Bayesian ap-

proaches, to revise probability values as new evidence concerning the variables

under consideration is obtained. If the variable of interest is Y and if the new

obtained information can be modeled with what is known on some variable X,

it is possible to update the information on Y , i.e. its so called prior probabil-

ity Pr(Y = y). The new information is taken into account by considering the

posterior probability of Y , defined as Pr(Y = y|X = x).

Bayesian inference principle consists in deriving the posterior probability of a

random variable Y from its prior and its likelihood Pr(X = x|Y = y), using the

Bayes theorem:

Pr(Y = y|X = x) =
Pr(X = x|Y = y).P r(Y = y)

Pr(X = x)

139

6.1 Preliminary : some useful notions of probability and statistics

A particular case where the principle of Bayesian inference can be used is the

estimation of the value of the parameters of some probability distributions. In

such a case, we are concerned by some random variable, known to follow some

given probability distribution, but the parameters of which are unknown. In the

Bayesian approach, such parameters are modeled as random variables. Possible

initial knowledge on these parameters is then expressed by means of prior prob-

ability distributions. In the absence of any particular knowledge, uniform distri-

bution can be used as prior distributions. From the data that may be observed

and collected, one can then extract a random sample of values corresponding

to similar random variables as the one under consideration (i.e. which have the

same distribution). This information may then be used for computing a posterior

distribution of the parameters being estimated.

Illustration : Let us consider a Bernoulli random variable X known to have

a Bernoulli distribution with unknown parameter p. This parameter is modeled

as a continuous random variable on 0 ≤ p ≤ 1. In such a case, it is convenient

to use a beta distribution to model the distribution of this random variable. As

a matter of fact, the following theorem states that if the prior distribution of

p is a beta distribution of parameter α and β, its posterior distribution after n

independent observations, is itself a beta distribution whose parameters can be

computed from α and β. Another convenient property of the beta distribution is

that when α = β = 1, it corresponds to a uniform distribution. It thus can be

used with such values to model the absence of information in the prior.

Theorem 7 Suppose that X1, ..., Xn form a random sample from a Bernoulli

distribution, the parameter θ of which is unknown (0 ≤ θ ≤ 1). If the prior

distribution of θ is a beta distribution with given parameters α and β (α > 0 and

β > 0) the posterior distribution of θ given the Xi = xi(i = 1, . . . , n) is a beta

distribution with parameters α +
∑n

i=1 xi and β +
∑n

i=1(1− xi).

140

6.2 Local observations for trust estimation

6.2 Local observations for trust estimation

In a semantic peer-to-peer systems each peer interacts with other peers of the

network. The level of trust of a peer into the information provided by other peers

may clearly be influenced by the quality of previous good or bad interactions with

those peers. Memorizing the quality of such past interactions is thus essential in

order to account for the evolution of trust over time. In this section we present

the assumptions that we have made when designing our trust model and illustrate

these assumptions by an example.

We assume that each resource r returned as an answer to some query is associated

with a label L(r) = C1 . . . Cn corresponding to its logical justification (semantic

annotation). L(r) is a set of classes of the vocabularies of (possibly different)

peers known to annotate the resource r and supposed to characterize a sufficient

condition for r to be an answer. Any other resource annotated in the same way is

thus equally supposed to be an alternative answer to the query. We also assume

that the classes used in labels are independent in the sense that for any two classes

of a justification, none of them is a subclass of the other. This assumption means

that for a returned answer, the only classes that appear in its justifications are

those corresponding to most specific classes of the network.

Finally we assume that the user, when querying a peer Pi , is randomly asked

to evaluate some of the returned resources as satisfying or not satisfying. Each

evaluation on a returned resource is an observation on its label. All the labels that

have been observed so far by the user are stored in a local observation database

Oi at Pi . An observation database is a (relational) table, every row of which has

3 fields, that correspond respectively to the name of a label (L), the number of

satisfying observations on this label (#+
i (L)) and the number of non-satisfying

observations on this label (#−i (L)).

Note that, because labels correspond to sufficient conditions for resources being

returned, any observation on a label L′ such that L ⊆ L′ is also an observation

that satisfies the condition L and therefore may be considered as relevant for L.

Definition 17 Number of satisfying/non-satisfying observations

141

6.2 Local observations for trust estimation

Label (L) #+
1 (L) #−1 (L)

P2:MyActionF ilms 30 6

P2:MyCartoons 3 15

P4:Western 2 8

P5:Italian P4:Western 0 6

P6:AnimalsDocum 14 14

P7:JeanRenoir 22 11

P3:Bollywood 6 35

Table 6.1: Summary of Peter’s observations at P1

Let Oi be the observation database of a peer Pi , L be a label in Oi and Rel(L)

denote the set of label L′ in Oi such that L ⊆ L′ . The numbers of satisfying

and non-satisfying observations made by Pi that are relevant to L are respectively

denoted by:

O+
i (L) =

∑
L′∈Rel(L) #+

i (L′)

O−i (L) =
∑

L′∈Rel(L) #−i (L′)

These two numbers summarize the past experience of the peer Pi relevant to the

label L, i.e. the evaluated resources justified by at least the classes of L.

For instance, suppose that Peter is the user querying the peer P1 of a semantic

peer-to-peer system. After a number of resources have been evaluated, Peters

past experience may be summarized as in Table 6.1.

Among all the resources evaluated by Peter and semantically annotated with the

class MyActionF ilms of the peer P2 , 30 have been considered as satisfactory

and 6 as not satisfactory. For the same peer P2 , only 3 out of 18 evaluated

resources tagged by MyCartoons were positive. Similarly, all evaluated resources

annotated with Italian by P5 and Western by P4 obtained negative feedbacks.

Especially, the numbers of satisfying and non-satisfying observations relevant to

P4 : Western are respectively 2 and 14, computed from those of P5 : Italian

P4 : Western and P4 : Western itself.

142

6.3 Bayesian model and estimation of trust

From this observation database, one can clearly understand that for the next

queries, given this past experience, Peter would intuitively prefer (or more trust)

answers classified as P2 : MyActionF ilms to those annotated by P2 : MyCartoons

or by P3 : Bollywood. This is because the proportion of positive observations ob-

tained so far is higher for P2 : MyActionF ilms than for the others.

Each peer Pi can progressively update its observation database Oi , as new re-

sources are evaluated, and refine the trust it has towards resources justified by

the different observed labels. The level of trust on a label can vary according to

the observations made on it so far.

6.3 Bayesian model and estimation of trust

In this section, we present a model of trust which takes into account the obser-

vations on the labels in the observation database of a peer to estimate the trust

of that peer towards these labels.

Given a label L, let XiL be the binary random variable defined on the set of

resources annotated by L as follows:

XiL(r) =
{ 1 if the resource r is satisfying for Pi

0 otherwise

We define the trust of a peer Pi towards a label L as the probability that the

random variable XiL is equal to 1, given the observations resulting from the past

experience of the peer Pi .

Definition 18 Trust of a peer towards a label

Let Oi be the observation database of a peer Pi and L be a label, the trust T (Pi, L)

of Pi towards L is defined as follows:

T (Pi, L) = Pr(XiL = 1|Oi)

The following theorem provides a way to estimate the trust T (Pi, L) and the

associated error of estimation.

143

6.3 Bayesian model and estimation of trust

Theorem 8 Let Oi be the observation database of a peer Pi and L be a label.

When O+
i (L) satisfying and O−i (L) non-satisfying observations relevant to L have

been performed, T (Pi, L) can be estimated to

1 +O+
i (L)

2 +O+
i (L) +O−i (L)

with a standard deviation of√
(1 +O+

i (L))× (1 +O−i (L))

(2 +O+
i (L) +O−i (L))2 × (3 +O+

i (L) +O−i (L))

Proof:

In our setting, the random variable XiL has been defined in such a way that it

follows a Bernoulli distribution the parameter of which is precisely the probability

of satisfaction of Pi by resources annotated with L, i.e. T (Pi, L) which is to be

estimated.

In the Bayesian approach to statistics, such unknown parameter is modeled as a

random variable. In our context, it is understandable to take a neutral viewpoint

on T (Pi, L) when Pi does not have any experience on L. We thus set the prior

distribution of T (Pi, L) to be the uniform distribution, which corresponds to the

beta distribution of parameters 1 and 1. Now, given o1, ..., on the n observations

in Oi relevant to L, we can compute the posterior distribution of T (Pi, L).

Because, peers are randomly asked to evaluate some of the resources they have

obtained, the n observation o1, ..., on may be considered as independent (the

results of each observation does not influence the result of any other observation).

and constitute a random sample from a Bernoulli distribution.

Therefore, Theorem 7 can be applied in our setting. We thus deduce that the

posterior distribution of T (Pi, L) given the observations o1, ..., on is also a beta

distribution with parameters 1 +
∑n

i=1 oi = 1 + O+
i (L) and 1 + (n −

∑n
i=1 oi) =

1 +O−i (L).

Therefore, T (Pi, L) can be estimated as the mean of that beta distribution which

is
1+O+

i (L)

2+O+
i (L)+O−i (L)

.

144

6.3 Bayesian model and estimation of trust

Label (L) T (P1, L) Standard deviation

P2:MyActionF ilms 0.815 0.062

P2:MyCartoons 0.2 0.087

P4:Western 0.166 0.085

P5:Italian P4:Western 0.125 0.11

P6:AnimalsDocum 0.5 0.089

P7:JeanRenoir 0.657 0.079

P3:Bollywood 0.162 0.055

Table 6.2: Estimated trust of P1 towards the labels of Table 6.1

The precision of the estimate is the standard deviation around this value, which

is

√
(1+O+

i (L))×(1+O−i (L))

(2+O+
i (L)+O−i (L))2×(3+O+

i (L)+O−i (L))

�.

By applying Theorem 8 to the observation database summarized in Table 6.1, we

can characterize the estimations for the trust of the peer P1 towards the labels

observed so far by P1. Table 6.2 describes the corresponding estimations with

their associated standard deviation.

The model presented so far relies on direct interactions between peers. Trust to-

wards a label is estimated based on the numbers of satisfying and non-satisfying

observations relevant to that label. The standard deviation expresses the preci-

sion of the estimation. Note that the number of observation required to reach a

given level of precision may easily be deduced from the formula characterizing the

standard deviation. For instance, it can be shown that the standard deviation is

less than 0.1 with as few as 22 direct observations between peers.

However, when very few or no observations relevant to the label under consid-

eration have been performed, the estimated trust may be imprecise. In such a

case, several choices are possible. One may either keep a strict point of view,

and trust only labels on the basis of the direct experiences. Note that in the

case where there is strictly no relevant observation, the estimate is 1/2, which

reflects a neutral point of view. One may also, as often in real life, take some

145

6.4 Application to SomeOWL

advice from more experienced peers. In that case, solicited peers’ observations

may prove useful to compensate for the lack of local observations, provided that

they use similar evaluation criteria.

Instead of propagating trust between peers, our approach consists in propagat-

ing the pairs of numbers used for computing trust. Propagating two numbers

instead of one does not represent a significant overhead. Yet, it has the signif-

icant advantage of providing a well-founded way to compute a joint trust using

the same Bayesian model. Instead of using an ad-hoc aggregation function for

combining local coefficients of trust, the numbers O+
i1(L) . . . O+

il (L) (respectively

O−i1(L) . . . O−il (L)) coming from solicited peers Pi1 . . . Pil are cumulated to com-

pute the joint trust towards L of the peers Pi1 . . . Pil by applying the formula of

Theorem 8.

A simple strategy to propagate the observations to compute trust from the so-

licited peers consists in waiting for getting some answer justified by a label L,

then check if the local observation database contains enough observations rele-

vant to L and if this is not the case, ask one or several trusted neighbors for

their numbers O+(L) and O−(L). Since it applies after obtaining the answers,

such a strategy can be used as a post-precessing and does not require to change

the query evaluation mechanism. As a consequence, it can be applied to differ-

ent kinds of semantic peer-to-peer systems, provided they are able to associate

answers to semantic annotations (e.g. labels). Furthermore, if enough local ob-

servations have been performed, it does not cost anything. For this reason, we

call this approach the lazy strategy

6.4 Application to SomeOWL

In this section, we apply this model in SomeOWL (presented in Section 2.3). In

particular, we present an alternative to the lazy strategy for observation propa-

gation, called the greedy strategy. This strategy has been specifically designed

for SomeOWL and can be implemented with a slight adaptation of SomeOWL.

146

6.4 Application to SomeOWL

SomeOWL has been deployed over the SomeWhere platform. The data stored

at each peer are documents which are identified by Uniform Resource Identifiers

(URIs). Each peer categorizes its documents by declaring the corresponding URIs

as instances of one or several classes of its own taxonomy of classes, which also

serves as a query interface (for other peers or users). Queries specify the classes

of interest for another peer or a user. The answers are the documents whose URI

is declared or inferred as an instance of those classes. The point is that some

answers are stored in distant peers that must be retrieved and queried in their

own vocabulary. Mappings between taxonomies using different names for their

classes may require the initial query to be split and reformulated.

Query answering in SomeOWL is a two step process. The first step is the rewrit-

ing of the query, which returns a set of conjunctions of extensional classes (possi-

bly from different peers) that logically entail the query. The second step consists

then in fetching from the relevant peers the documents labeled by those classes.

Therefore, the answers returned by SomeOWL are associated by construction

to the rewriting whose evaluation has produced them, which corresponds exactly

to the label required in our model of trust.

In order to deploy our trust model in SomeOWL , we have to equip each peer

with a local database, for the accounting of evaluated answers, according to their

label (i.e. the rewriting that produced them). From that local database, it is

straightforward to plug the local computation of trust.

We also have to implement a strategy for getting additional observations from

other peers when needed. Implementing the lazy strategy can easily be achieved

by adding two new messages for asking and sending the required numbers O+(L)

and O−(L) from trusted peers, after getting an answer labeled by L. The draw-

backs of that strategy are that (1) each peer has to manage a list of trusted peers,

(2) it requires peers to exchange additional messages after obtaining the answer

and its label. It is however possible to avoid these points, using an alternative

strategy.

The main idea of the greedy strategy is to encapsulate the information needed for

trust computation into the messages that are exchanged during query processing.

147

6.4 Application to SomeOWL

With this approach, peers involved in the processing of a query, send back not

only their respective answers, but also all the number of observations that they

have performed on labels participating to the computation of the trust on the

final label.

SomeOWL query rewriting is performed by the DeCA algorithm, through a

propositional encoding of peer ontologies (presented in Section 2.3.2). With this

encoding, a rewriting of a query in SomeOWL is found by DeCA in the form

of a clause, the literals of which correspond to the classes of the rewriting. Each

label thus corresponds to a clause and we assume that this is taken into account

in the local observation database.

Because of the split/recombine strategy used by DeCA , during query rewriting,

a clause that is sent back from one peer to an other may be later recombined with

other consequents and eventually, constitute only sub-clause of a final consequent,

returned as an answer to the query. The problem is that the final consequent

clause is only known at the very end, after the last recombination. From the

point of view of observations propagation , valuable observations are only those

relevant to the final consequent. But since this consequent is not known at this

stage the only thing that can be done is to propagate observations relevant to

clauses that could correspond to such a final consequent. Therefore, when sending

back a clause c from a peer, we propagate as well all the observations available

at that peer that are relevant to clauses c′ that are subsumed by c.

We have modified the message passing version of DeCA (presented in Section

2.2) in order, during query processing, to collect the appropriate observations on

the peers involved in the reasoning. Intuitively, answers are returned as pairs

of the form (c data(c)) where data(c) is a small database containing only the

observations relevant to clauses subsumed by c that have been collected so far on

the peers that have contributed to the production of the clause c.

• In the ReceiveForthMessage procedure, when a peer Pi receives a

query, it processes the query locally by the Resolvent procedure. We adapt

this procedure so that each time a back message is returned, it contains

148

6.4 Application to SomeOWL

not only consequent clauses c but the pair (c data(c)) where data(c) = Se-

lect(c,Oi), defined as the set of rows in the local database Oi correspond-

ing to clauses that are subsumed by c. Moreover, during the initialization

of cache structures CONS(l, hist) for every shared literel l of c, the pair

(l Select(l, {Oi})) is added to the cache instead of just l.

• In the ReceiveBackMessage procedure, a peer Pi handles an answer

message from a distant peer Pj containing a consequent clause rk, of a

literal lk that has been asked to Pk. The consequent is returned as a pair

(rk data(rk)) where data(rk) is the set of observations relevant to rk, and

collected during the production of rk.

This pair is first added to the cache CONS(lk, hist) where hist is the history

context of the query lk. The literal lk comes from a clause c of the form

L(c) ∨ l1 ∨ . . . ∨ lp where L(c) and S(c) = l1 ∨ . . . ∨ lp corresponds to the

subparts of c containing respectively the non-shared and shared literals of

c, lk being one of the shared literals of S(c). The new obtained answer

rk has then to be recombined with those corresponding to the respective

consequents of the lj, for (j 6= k). This can be performed by extending

the disjunction operator ∨ so that it can operate on couples of the form (r

data(r)), to produce a new couple of the same form, in the following way :

(r1 data1) ∨ (r2 data2) . . . (rn datan)

= (r1∨ r2∨ . . .∨ rn Select((r1∨ r2∨ . . .∨ rn, data1∪data2∪ . . .∪datan))).

This amounts to saying that when combining observations coming from

different sources, we keep among observations from all the different sources,

only those that are relevant to the recombined clause.

In practice, we here have to recombine the local part of L(c) with the

respective consequents rj of the literals lj, for j 6= k. We thus retain the

local observations Select(L(c),Oi) with those coming from the data(rj)

associated respectively to each rj.

Eventually, the whole set of consequents obtained by recombination and

their respective sets of relevant observations may be characterized by:

>l∈S(c)\{lk}cons(l, hist) > ((L(c) Select(L(c),Oi)) > (rk data(rk))).

149

6.5 Discussion and Conclusion

This adaptation of DeCA permits a peer to collect the number of satisfying and

the number of non-satisfying observations on the labels that are relevant to the

label L of an answer. This happens during the query processing process. These

information is used to compute the numbers O+(L) and O−(L) that are used

in the formula as presented in Theorem 8. The set of peers that provide these

numbers are those that have contributed to obtain a rewriting. Those peers may

thus be considered as naturally relevant for obtaining appropriate observations.

This set of peers are determined at query time and may vary according to the

query and the returned rewritings for the query.

The main advantage of this procedure is that no extra-processing is needed as

results are obtained. This can be particularly interesting for a new peer that

has recently joined the semantic peer-to-peer network but still has few direct

experience with other peers. On the other hand, the overhead due to the extra

information that is encapsulated in the messages, may greatly vary in size, ac-

cording to the size of the clause returned, as well as the size of the observation

databases of the other peers.

6.5 Discussion and Conclusion

We have presented an approach for modeling trust in the context of semantic peer-

to-peer systems. It allows each peer to evaluate the trust it has towards resources

depending on their semantic annotations. Because it relies on few assumptions,

it is applicable to a wide range of semantic peer-to-peer systems. The granularity

of the trust considered here is at the level of semantic annotations of resources.

Defining a more abstract peer-based notion of trust is however straightforward

since it would just amount to aggregate the available information concerning all

the classes of a same other peer.

The model that we have presented leads to a simple formula making easy and

fast for a peer to compute trust. The output of the model has a mathematical

meaning. In addition to the simplicity of the formula of Theorem 8 for computing

trust, the advantage of the model is that it provides also a simple way to compute

the minimum number of experiences that are required for guaranteeing a good

150

6.5 Discussion and Conclusion

precision of the estimation of trust. Using our model, by defining a threshold for

the precision of the estimation of trust, a peer can judge if an estimated trust

is precise enough. If it is not the case, the peer has to collect observations from

other peers to have a better trust estimation towards the label in question. We

have presented a simple strategy for propagating observations between peers that

can be applied to any kind of semantic peer-to-peer systems. For SomeOWL

particularly, the peer may use the greedy strategy to collect faster observations

possibly relevant for computing trust.

An other advantage of our model is that trust evolves depending on the knowledge

of a peer on a given label. When the observation database in a peer is updated,

the new information is taken into account in this way: the observations that were

in the database are used to determine the parameters of the prior distribution of

trust, and the new observations are used to compute the posterior distribution of

trust.

One of the assumptions that we have made for the aggregation using the formula

in Theorem 8 is that the peers use similar criteria while evaluating resources. Al-

though that assumption is not realistic, it is important to note that third party’s

observations are only used for a peer to form his initial belief about a label. After

having enough direct experiences, the peer uses only its experiences to estimate

trust.

Finally, even if our model does not take explicitly into account malicious peers,

we discuss how it copes with them. A peer can be malicious by providing to other

peers virus-affected resources, or by simply lying when reporting its observations

about others. It is usually assumed that malicious peers are a minority in a se-

mantic peer-to-peer network. Then, when a peer downloads a virus-contaminated

resource, based on the semantic annotation of the resource, it can know the peers

that have provided it with this resource and identify them as malicious peers. A

more difficult problem is dealing with liar peers that transmit wrong observations

on other peers. By construction, our model favors direct observations, therefore

avoiding liar peers when having enough direct feedbacks. When it is not the case,

151

6.5 Discussion and Conclusion

a way to limit the influence of liar peers is to use a majority vote and to discard

the peers the observations of which differ much from the majority.

152

6.5 Discussion and Conclusion

153

Chapter 7

Conclusion and perspectives

In this thesis, we have contributed to improve the reliability of answers in semantic

peer-to-peer networks in different ways.

We have first considered the problem of returning only well-founded answers

of a query when the global network is inconsistent. Our approach consists in

detecting, in a fully decentralized setting, all the causes of inconsistencies at each

addition of a new mapping. These causes are characterized as nogoods (sets of

mappings) and are stored in a distributed manner. At query time, soundness of

query answering is guaranteed by avoiding these causes. Our algorithms have

been implemented in the SomeWhere platform, where the problem of handling

of inconsistency had not been considered before. We have adapted this platform

for experimenting our algorithms, and we have obtained promising results. The

contributions of this part have been published in (27).

We have also considered the problem of modeling and handling peers’ trust into

returned answers. In our model, trust has been defined at the level of semantic

annotations of answers, which are combinations of peer classes justifying them.

Based on a mathematical setting, this model has a clear semantics and trust

towards answers can be estimated by peers with a good precision using few ob-

servations. When applying the model in the SomeOWL semantic peer-to-peer

network, we have designed a strategy for observation propagation, that is more

practical than the strategy usually used in the literature. While this model re-

mains to be implemented, its scalability seems guaranteed by the simplicity of its

154

computational model. The contributions of this part has been published in (52).

Some of the perspectives of this thesis are the followings.

Firstly, in our approach, the soundness of query answering relies on the com-

pleteness of the inconsistency detection. Currently, for guaranteeing the answers’

soundness, we separate query answering from the detection of inconsistencies : a

mapping can only be used in a reasoning after the completion of the detection

of inconsistencies that it may create. A possible improvement is to allow sound

usage of this mapping in a reasoning before the completion of this detection.

A possible way to do this is to adapt the inconsistency detection algorithm, so

that, the completion of this process, for successive reasoning depths, is notified.

The soundness of an answer obtained with a mapping support of size k is then

guaranteed if such a notification has been obtained for the depth k.

Secondly, in its current state, our system only guarantee to return well-founded

answers. In particular, we can obtain both A and ¬A as consequences, as long as

each of them can be deduced from a (different) consistent subset of the inconsis-

tent global theory. In such a case, a natural question for a user is to know if there

are good reasons to prefer one consequence over the other. It would be useful to

make explicit logical arguments in favor of one of them. A possible solution is to

exploit further the information gathered during the consequence finding process,

i.e. the set of mapping supports and the set of associated nogoods. By this, we

can build an argumentative approach for setting preferences on all well-founded

consequences that are produced. For example, we can consider the length of

proofs (mapping supports) and prefer the consequences supported by small ones.

We can also consider the diversity of mapping supports, or the way they overlap

with the corresponding sets of nogoods. A numerical approach for determining

the preferred consequences can also be considered. One possibility could be to

investigate an extension of our trust model to other observation criteria. For

instance, it could be based on sets of mapping support.

A third perspective would be to exploit the values of trust that are computed for

different purposes.

155

• For discovering new mappings in a semantic peer-to-peer network: if the

combination of classes of different peers turns out to get high values of

trust, it suggests that these classes could be close semantically. Potential

mappings between these classes can thus be established.

• For the routing of answers. We can imagine that a peer would like to provide

fast and more answers to peers that it trusts, and to limit its interaction with

those it does not trust. This routing strategy can be easily implemented

since our model of trust can be applied at the level of peers: a given peer

can thus distinguish among the other peers those that it trusts the most.

Then, it can set priorities in query answering threads to favor them. It can

also make a list of peers to whom it avoids sending answers, and from whom

it avoids receiving answers.

• For the routing of queries. This perspective is dual to the previous one. We

can imagine that peers would like to query directly peers that trust them,

in order for their queries to be treated fast, and to receive more answers.

For this, the current model can be slightly adapted, so that a peer can know

those that trust it. Then, it establishes direct mappings with them and can

thus query them directly.

Finally, our model of trust could be extended in order to integrate time manage-

ment. As a matter of fact, old observations may not still be relevant for trust

estimation, neither for discovering new mappings, as discussed above. We can

define a time-based function for the model, that gives less weight to old observa-

tions, and more weight to recent ones. The simplest way is to forget observations

older than a predefined date, and to consider only more recent ones.

156

References

[1] Advogato. http://www.advogato.org/person. Cited in page(s) 120

[2] Amazon. http://www.amazon.com. Cited in page(s) 116, 132

[3] Ebay. http://www.ebay.com. Cited in page(s) 116, 132

[4] FOAF. http://www.foaf-project.org. Cited in page(s) 127

[5] Gnutella. http://www.gnutella.com. Cited in page(s) 2

[6] Google. http://www.google.com. Cited in page(s) 118

[7] RDFS. http://www.w3.org/TR/rdf-schema. Cited in page(s) 6

[8] K. Aberer, P. Cudré-Mauroux, M. Hauswirth, and T. Van Pelt.

GridVine: Building internet-scale semantic overlay networks. In Interna-

tional Semantic Web Conference (ISWC), 2004. Cited in page(s) 6

[9] Karl Aberer. P-Grid: A self-organizing access structure for P2P informa-

tion systems. International Conference on Cooperative Information Systems

(CoopIS), Lecture Notes in Computer Science, 2172 : pages 179–194, 2001.

Cited in page(s) 2, 117, 124

[10] Karl Aberer and Zoran Despotovic. Managing trust in a peer-2-

peer information system. In Henrique Paques, Ling Liu, and David

Grossman, editors, Proceedings of the Tenth International Conference on

Information and Knowledge Management (CIKM01), pages 310–317. ACM

Press, 2001. Cited in page(s) 117, 132

157

REFERENCES

[11] P. Adjiman. Peer-to-peer reasoning in propositional logic: algortihms, scal-

ability study and applications. PhD Thesis, University Paris Sud 11, 2006.

Cited in page(s) 24

[12] P. Adjiman, P. Chatalic, F. Goasdoué, M.-C. Rousset, and L. Si-

mon. Scalability study of peer-to-peer consequence finding. In International

Joint Conferences on Artificial Intelligence (IJCAI). 2005. Cited in page(s)

5, 14

[13] P. Adjiman, P. Chatalic, F. Goasdoué, M.-C. Rousset, and L. Si-

mon. Distributed reasoning in a P2P setting: Application to the seman-

tic web. Journal of Artificial Intelligence Research (JAIR), 2006. Cited in

page(s) 4, 5, 6, 10, 14, 15, 31, 98

[14] P. Adjiman, François Goasdoué, and Marie-Christine Rousset.

Somerdfs in the semantic web. Journal on Data Semantics VIII, Volume

4380/2007, Lecture Notes in Computer Science, pages 158-181, 2007. Cited

in page(s) 6

[15] Martin Allen. Preservationist logics and nonmonotonic logic. In Proceed-

ings of the Student Session, First North American Summer School in Logic,

Language, and Information (NASSLLI), Stanford University, 2002. Cited in

page(s) 52

[16] Martin Allen and R.E.Jennings. Resource-bounded reasoning and

paraconsistency. In Logical Consequence: Rival Approaches, Proceedings

of Conference of the Society for Exact Philosophy (SEP), September 1999.

Cited in page(s) 53

[17] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. Consis-

tent query answers in inconsistent databases. In Symposium on Principles

of Databse Systems. ACM Press, pages 68–79, 1999. Cited in page(s) 41

[18] Ofer Arieli, Marc Denecker, Bert Van Nuffelen, and Maurice

Bruynooghe. Repairing inconsistent databases: A model-theoretic ap-

proach and abductive reasoning. In Hendrik Decker, Jrgen Villadsen,

158

REFERENCES

and Toshiharu Waragai, editors, Paraconsistent Computational Logic,

95 of Datalogiske Skrifter, pages 51–65. Roskilde University, Roskilde, Den-

mark, 2002. Cited in page(s) 43

[19] Franz Baader, Diego Calvanese, Deborah L. McGuinness,

Daniele Nardi, and Peter F. Patel-Schneider, editors. The Descrip-

tion Logic Handbook: Theory, Implementation, and Applications. Cambridge

University Press, 2003. Cited in page(s) 6

[20] Alex Borgida and Luciano Serafini. Distributed description logics:

Assimilating information from peer sources. Journal of Data Semantics,

1:2003, 2003. Cited in page(s) 50, 51

[21] Sergey Brin and Lawrence Page. The anatomy of a large-scale hyper-

textual Web search engine. Computer Networks and ISDN Systems, 30(1–7):

pages 107–117, 1998. Cited in page(s) 118, 132

[22] S. Buchegger and J. Le Boudec. The effect of rumor spreading in rep-

utation systems for mobile ad-hoc networks, 2003. In Proceedings, Modeling

and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), 2003.

Cited in page(s) 130, 131, 132

[23] Sonja Buchegger. A robust reputation system for p2p and mobile ad-

hoc networks. Second Workshop on the Economics of Peer-to-Peer Systems

(P2PEcon), Harvard University, 2004. Cited in page(s) 130, 132

[24] Bziau. What is paraconsistent logic? Frontiers of Paraconsistent logic.

Baldock Research Studies Press, 2000. Cited in page(s) 47

[25] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Mau-

rizio Lenzerini, and Riccardo Rosati. Inconsistency tolerance in p2p

data integration: an epistemic logic approach. In Proceedings of the 10th In-

ternational Workshop on Database Programming Languages (DBPL 2005),

pages 90–105, 2005. Cited in page(s) 57

159

REFERENCES

[26] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Mau-

rizio Lenzerini, and Riccardo Rosati. Inconsistency tolerance in p2p

data integration: An epistemic logic approach. Information Systems, Vol-

ume 33, Issues 4-5, June-July 2008, Pages 360-384 , 2008. Cited in page(s)

57

[27] Philippe Chatalic, Gia Hien Nguyen, and Marie-Christine Rous-

set. Reasoning with inconsistencies in propositional peer-to-peer inference

systems. In Proceedings of The 17th European Conference on Artificial In-

telligence, (ECAI06), pages 352–356, 2006. Cited in page(s) 154

[28] Laurence Cholvy. A general framework for reasoning about contradictory

information and some of its applications. In Handbook of Defeasible Reason-

ing and Uncertainty Management Systems, pages 233–263, 1998. Cited in

page(s) 59

[29] Laurence Cholvy and Christophe Garion. Querying several conflict-

ing databases. In Journal of Applied Non-Classical Logics, Herms Lavoisier,

vol 14(3), 2004. Cited in page(s) 42, 60

[30] E. Damiani, S. di Vimercati, S. Paraboschi, P. Samarati, and

F. Violante. A reputation–based approach for choosing reliable resources

in peer–to–peer networks, 2002. In 9th ACM Conference on Computer and

Communications Security. Cited in page(s) 128, 132

[31] Sandra de Amo, Walter A.Carnielli, and Joao Marcos. A logical

framework for integrating inconsistent information in multiple databases.

In International Symposium on Foundations of Information and Knowledge

Systems (FoIKS), Lecture Notes in Computer Science 2284, pages 67-84,

2002. Cited in page(s) 49

[32] Zoran Despotovic and Karl Aberer. Maximum likelihood estimation

of peers’ performance in p2p networks. In The Second Workshop on the

Economics of Peer-to-Peer Systems, 2004. Cited in page(s) 124, 132

160

REFERENCES

[33] D.S.Scott. Lectures on a mathematical theory of computation. Theoretical

foundations of Programming Methodology. Reidel Publication, pages 145-292,

1982. Cited in page(s) 54

[34] Jennifer Golbeck, Bijan Parsia, and James Hendler. Trust net-

works on the semantic web. In Proceedings of Cooperative Information Agents

2003, Helsinki, Finland, August 27–29, 2003. Cited in page(s) 127

[35] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema mediation

in peer data management systems. In International Conference on Data

Engineering (ICDE), 2003. Cited in page(s) 3, 4

[36] A. Halevy, Z. Ives, I. Tatarinov, and Peter Mork. Piazza: data

management infrastructure for semantic web applications. In World Wide

Web Conference (WWW), 2003. Cited in page(s) 3, 4

[37] Alon Y. Halevy. Logic-based artificial intelligence, chapter Logic-based

techniques in data integration, pages 575–595. Kluwer Academic Publishers,

2000. Cited in page(s) 4

[38] P. Hasse and G. Qi. An analysis of approaches to resolving inconsistencies

in dl-based ontologies. In Proceedings of International Workshop on Ontology

Dynamics (IWOD), 2007. Cited in page(s) 44

[39] Morris H.DeGroot and Mark J.Schervish. Probability and Statistics.

Addison Wesley, 2002. Cited in page(s) 130

[40] Zhisheng Huang, Frank van Harmelen, and Annette ten Teije.

Reasoning with inconsistent ontologies. In Proceedings of the Nineteenth

International Joint Conference on Artificial Intelligence (IJCAI’05), 2005.

Cited in page(s) 40, 55, 56, 57, 62, 67, 103, 104

[41] Audun Josang and Roslan Ismail. The beta reputation system. In

Proceedings of the 15th Bled Electronic Commerce Conference, 2002. Cited

in page(s) 131, 132

161

REFERENCES

[42] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-

Molina. The eigentrust algorithm for reputation management in p2p net-

works, 2003. In Proceedings of the Twelfth International World Wide Web

Conference. Cited in page(s) 120, 121, 132

[43] Micheal Kifer and Eliezer L.Lozinskii. A logic for reasoning with

inconsistency. Journal of Automated Reasoning 9(2), 1992. Cited in page(s)

47

[44] Hector J. Levesque and Gerhard Lakemeyer. The logic of knowl-

edge bases. MIT Press, Cambridge, MA, USA, 2000. Cited in page(s) 58

[45] Andrei Lopatenko and Leopoldo Bertossi. Consistent query answer-

ing by minimal-size repairs. In DEXA ’06: Proceedings of the 17th Inter-

national Conference on Database and Expert Systems Applications, pages

558–562, Washington, DC, USA, 2006. IEEE Computer Society. Cited in

page(s) 41

[46] J. Madhavan and A. Halevy. Composing mappings among data sources.

In International Conference on Very Large Data Bases (VLDB), 2003. Cited

in page(s) 4

[47] Paolo Massa and Paolo Avesani. Controversial users demand local

trust metrics: An experimental study on epinions.com community. In Pro-

ceedings of the National Conference on Artificial Intelligence of the USA,

(AAAI), pages 121–126, 2005. Cited in page(s) 126, 127, 132

[48] R. Matthew, R. Agrawal, and P. Domingos. Trust management for

the semantic web, 2003. Proceedings of the Second International Semantic

Web Conference, Sanibel Island, Florida. Cited in page(s) 124

[49] L. Mui, M. Mohtashemi, and A. Halberstadt. A computational

model of trust and reputation. 35th Hawaii International Conference on

System Science (HICSS), 2002. Cited in page(s) 130, 131, 132

162

REFERENCES

[50] W. Nedjl, B. Wolf, C. Qu, S. Decker, M. Sintek, and al. Edutella:

a p2p networking infrastructure based on rdf. In World Wide Web Confer-

ence (WWW), 2002. Cited in page(s) 5

[51] Wolfgang Nejdl, Paul Alex, Ru Chirita, Mario Schlosser, and

Oana Scurtu. Personalized reputation management in p2p networks. In

Workshop on Trust, Security, and Reputation on the Semantic Web (ISWC),

2004. Cited in page(s) 124, 129, 132

[52] G. H. Nguyen, P. Chatalic, and M. C. Rousset. A probabilistic trust

model for semantic peer to peer systems. In DaMaP ’08: Proceedings of the

2008 international workshop on Data management in peer-to-peer systems,

pages 59–65, New York, NY, USA, 2008. ACM. Cited in page(s) 155

[53] Cai nicolas Ziegler and Georg Lausen. Spreading activation models

for trust propagation. In Proceedings of the IEEE International Conference

on e-Technology, e-Commerce, and e-Service. IEEE Computer Society Press,

2004. Cited in page(s) 120

[54] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry

Winograd. The pagerank citation ranking: Bringing order to the web.

Technical report, Stanford Digital Library Technologies Project, 1998. Cited

in page(s) 118, 132

[55] Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging owl

ontologies. In Proceedings of the 14th international conference on World

Wide Web, pages 633–640, New York, NY, USA, 2005. ACM. Cited in

page(s) 44

[56] Guilin Qi, Weiru Liu, and David Bell. A revision-based approach to

handling inconsistency in description logics. Artificial Intelligence Review,

26(1-2):115–128, 2006. Cited in page(s) 44

[57] W. Qi, G.; Liu and D.A Bell. Knowledge base revision in description

logics. In Proceedings of 10th European Conference on Logics in Artificial

Intelligence (JELIA’06). Springer Verlag, 2006. Cited in page(s) 44

163

REFERENCES

[58] J. Sabater and C. Sierra. Regret: A reputation model for gregarious

societies, 2000. In Research Report. Institut d’Investigacio i Intelligencia

Artificial. Cited in page(s) 125, 132

[59] S. Schlobach and R. Cornet. Non-standard reasoning services for the

debugging of description logic terminologies. In Proceedings of International

Joint Conferences on Artificial Intelligence (IJCAI), 2003. Cited in page(s)

44, 67

[60] Stefan Schlobach and Ronald Cornet. Non-standard reasoning ser-

vices for the debugging of description logic terminologies. In International

Joint Conferences on Artificial Intelligence (IJCAI), 2003. Cited in page(s)

40

[61] Luciano Serafini, Alex Borgida, and Andrei Tamilin. Aspects of

distributed and modular ontology reasoning. In International Joint Confer-

ences on Artificial Intelligence (IJCAI), 2003. Cited in page(s) 50, 51

[62] I. Stoica, R. Morris, D. Karger, M.F. Kaasshoek, and H. Bal-

akrishnan. Chord: a scalable peer-to-peer lookup service for internet ap-

plications. In Conference on applications, technologies, archtecture and pro-

tocols for computer communications, 2001. Cited in page(s) 2, 6, 123

[63] H. Stuckenschmidt and M. Klein. Integrity and change in modular

ontologies. In Proceedings of the International Joint Conference on Artifi-

cial Intelligence (IJCAI), pages 900–905, Acapulco, Mexico, 2003. Morgan

Kaufmann., 2003. Cited in page(s) 60

[64] V.S. Subrahmanian and Lela Amgoud. A general framework for rea-

soning about inconsistency. In International Joint Conferences on Artificial

Intelligence (IJCAI), 2007. Cited in page(s) 38, 54, 55, 56, 62, 67, 103, 104

[65] Igor Tatarinov and Alon Halevy. Efficient query reformulation in

peer data management systems. In Proceedings of the 2004 ACM SIGMOD

international conference on Management of data (SIGMOD), pages 539 -

550, 2004. Cited in page(s) 4

164

REFERENCES

[66] W. T. Teacy, Jigar Patel, Nicholas R. Jennings, and Michael

Luck. Travos: Trust and reputation in the context of inaccurate information

sources. Autonomous Agents and Multi-Agent Systems, 12(2):183–198, 2006.

Cited in page(s) 130, 131, 132

165

REFERENCES

166

	1 GENERAL INTRODUCTION
	2 PRELIMINARIES
	2.1 SomeWhere
	2.1.1 Syntax and semantics
	2.1.2 The consequence finding problem
	2.1.3 Example

	2.2 DeCA : Decentralized Consequence Finding Algorithm
	2.3 The SomeOWL semantic peer-to-peer system
	2.3.1 Illustrative example
	2.3.2 Query answering in SomeOWL

	I REASONING WITH INCONSISTENCIES IN PEER-TO-PEER INFERENCE SYSTEMS
	3 STATE OF THE ART ON DEALING WITH INCONSISTENCIES
	3.1 Consistency restoration
	3.1.1 Restoring consistency of databases
	3.1.2 Restoring consistency of knowledge bases

	3.2 Inconsistency tolerance
	3.2.1 Logical frameworks based on paraconsistent logics
	3.2.1.1 Annotated Predicate Calculus
	3.2.1.2 LFI1
	3.2.1.3 Distributed Description Logics with holes

	3.2.2 Logical frameworks using other logics
	3.2.2.1 Preservationist logic
	3.2.2.2 Abstract logic
	3.2.2.3 The K45nA epistemic logic

	3.2.3 Other techniques for dealing with inconsistencies
	3.2.3.1 Source reliability-based technique
	3.2.3.2 Majority technique
	3.2.3.3 Change detection for compiled knowledge technique

	3.3 Summary

	4 DEALING WITH INCONSISTENCIES IN SomeWhere
	4.1 Peer-to-peer detecting inconsistencies and nogoods
	4.1.1 The P2P-NG algorithm
	4.1.2 Termination, soundness and completeness of P2P-NG

	4.2 Peer-to-peer well-founded reasoning
	4.2.1 The WF-DeCA algorithm
	4.2.2 Termination and Soundness of WF-DeCA

	4.3 Implementation of P2P-NG and WF-DeCA and experimentations
	4.3.1 An overview of the SomeWhere architecture
	4.3.2 DeCAbL : Decentralized bounded length consequence finding algorithm
	4.3.3 Experimentations with DeCAbL
	4.3.3.1 Data set 1: a consistent P2PIS
	4.3.3.2 Data set 2: an inconsistent P2PIS
	4.3.3.3 Data set 3: a random P2PIS

	4.3.4 Implementation of P2P-NG and WF-DeCA

	4.4 Conclusion and discussion

	II TRUST FOR SEMANTIC PEER-TO-PEER SYSTEMS
	5 STATE OF THE ART ON TRUST AND REPUTATION COMPUTATION MODELS FOR PEER-TO-PEER AND SOCIAL NETWORKS
	5.1 Models of reputation
	5.1.1 Non probabilistic models of reputation
	5.1.2 Probabilistic models of reputation
	5.1.2.1 The PageRank algorithm
	5.1.2.2 The EigenTrust Algorithm
	5.1.2.3 Maximum likelihood estimation technique

	5.2 Models of trust
	5.2.1 Non probabilistic models of trust
	5.2.2 Probabilistic models of trust
	5.2.2.1 Personalized EigenTrust algorithm for trust computation
	5.2.2.2 Bayesian approach to statistics for trust estimation

	5.3 Summary

	6 A PROBABILISTIC TRUST MODEL FOR SEMANTIC PEER-TO-PEER SYSTEMS
	6.1 Preliminary : some useful notions of probability and statistics
	6.2 Local observations for trust estimation
	6.3 Bayesian model and estimation of trust
	6.4 Application to SomeOWL
	6.5 Discussion and Conclusion

	7 Conclusion and perspectives
	References

