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Avant-propos
Ce document est un recueil d’articles que j’ai écrits ou co-écrits sur la période 2004 – 2007. Il accompagne

un document de synthèse de mes travaux et activités scientifiques sur cette même période. Sa structure est
identique à celle des chapitres 6 à 9 de ce document de synthèse : il y a une correspondance stricte entre les
chapitres, sections et sous-sections des deux documents. J’indique au début de chaque section la liste des articles
inclus, et précise pour chacun la sous-section qui lui est consacrée.

Forewords
This document is a collection of the most significant articles I have authored or co-authored between the

years 2004 – 2007. It comes as a companion to my habilitation thesis, which summarises my scientific work
and activity over this period. Its structure is similar to that of chapters 6 to 9 in the thesis, where the chapters,
sections and sub-sections follow an identical format. The list of included articles is given at the beginning of
each section, with the sub-section corresponding to each article.
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6.1.1 Paper (LIMA3D’06) – Direct Image Registration With Gain and Bias

Direct Image Registration With Gain and Bias

Adrien Bartoli � Adrien.Bartoli@gmail.com
CNRS – LASMEA � Clermont-Ferrand, France

Abstract

Image registration consists in estimating geometric and
photometric transformations that align a template and an
image as best as possible. The direct approach consists in
minimizing the intensity discrepancy between the aligned
template and image. The inverse compositional algorithm
has been recently proposed for the direct estimation of
groupwise geometric transformations. It is efficient in that
it performs most computationally expensive calculations at
the pre-computation phase.

We propose the gain and bias inverse compositional al-
gorithm which estimates, along with the geometric trans-
formation, a photometric one modeling for example global
lighting change. Our algorithm preserves the efficient pre-
computation-based design of the original inverse composi-
tional one. Previous attempts at incorporating appearance
variations to the inverse compositional algorithm spoils this
property.

We report experimental results on simulated and real
data, showing the improvement in computational efficiency
of our algorithm compared to previous ones.

1. Introduction

Image registration is the task of applying some transfor-
mations to a template and / or an image so that they match
as best as possible. This can be seen as the computation of
some geometric transformation, for example an homogra-
phy, used to deform the image to model camera pose, and
some photometric transformation, applied to the pixel inten-
sities, for example gain and bias to model global lighting.

Image registration has been an important research topic
for the past decades. It is central to many tasks in computer
vision, medical imaging, augmented reality and robotics.

Broadly speaking, two approaches have been proposed:
the feature-based and the direct approaches. The feature-
based approach, see e.g. [8], relies on abstracting the input
images by the geometric location of a set of carefully cho-
sen, salient features. The direct approach, see e.g. [6], uses
the intensity of all pixels in the region of interest.

This paper focuses on the direct approach, and brings as
its main contribution a computationally efficient registration
algorithm dealing with gain and bias, based on the inverse
compositional principle of Baker et al. [2].

The geometric registration problem is the minimization
of a nonlinear least squares error function, given by the dis-
crepancy in pixel intensities, between the template T and
the image I, warped onto the template by the geometric
transformation to be estimated. The geometric transforma-
tion, denoted G, maps a pixel q in the region of interest R
defined in the template to the corresponding pixel G(q;g)
in the image. Vector g encapsulates its parameters. We ex-
pect that given an ‘appropriate’ parameter vector g, T [q]
is ‘close to’ I[G(q;g)], for all q ∈ R. The direct image
registration problem is thus formally posed as:

min
g

∑
q∈R

(T [q]− I[G(q;g)])2. (1)

Note that other error functions can be used, to deal for
example with outliers, see e.g. [4]. Most algorithms lin-
earize each term in the transformation parameters g, and
iteratively update an initial guess by solving linear least
squares problems. The popular Lucas-Kanade algorithm
[7] and work by Bergen et al. [3] fall into this category.
Baker et al. [2] have recently proposed an efficient algo-
rithm for solving problem (1), the inverse compositional al-
gorithm, using a Gauss-Newton, local approximation to the
error function. The efficiency stems from the fact that the
Hessian matrix1 involved in the normal equations is con-
stant. Its inverse can thus be pre-computed.

The above-derived formulation (1) suffers from the fact
that it does not take into account photometric changes, i.e.
changes in the intensity of the pixels. These changes occur
for example when the lighting changes between acquisition
of the template and the image. They are modeled by a trans-
formation P with parameter vector p, and give rise to the
following minimization problem:

min
g,p

∑
q∈R

(P(T [q];p)− I[G(q;g)])2. (2)

1We use the expression ‘Hessian matrix’ for the Gauss-Newton approx-
imation to the true Hessian matrix.
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The photometric transformation is typically chosen as an
affine transformation modeling gain and bias, and account-
ing for global intensity changes between the template and
the image:

P(v;p) = av + b with pT = (a b). (3)

The contribution of this paper is an efficient method for
solving problem (2), the registration problem with gain and
bias. The proposed method is dubbed the gain and bias in-
verse compositional algorithm. It is based on the inverse
compositional approach of Baker et al. [2] and is thus ap-
plicable to the registration of images related by groupwise
geometric transformations such as homographies.

Estimating gain and bias jointly with geometric regis-
tration parameters makes the Hessian matrix vary accross
the iterations. Previous work thus re-estimate and invert it
at each iteration: this is the simultaneous inverse composi-
tional algorithm of Baker et al. [1], which not only deals
with gain and bias but also with general linear appearance
variations.

We show that the Hessian matrix has a strong block
structure with blocks constant up to some scale factors, de-
pending on the gain. From this analysis, we derive an al-
gorithm allowing us to pre-compute a block-wise inverse of
the Hessian matrix. The normal equations are then solved
by simply multiplying the right hand side by some constant,
appropriately rescaled matrices, which is very efficient in
terms of computational cost. We underline that our algo-
rithm performs exactly the same calculations as the simul-
taneous inverse compositional algorithm does. Experimen-
tal results show that the computational cost is reduced by
factors of at least 2.

Paper organization. We introduce background material,
namely the inverse compositional and the simultaneous in-
verse compositional algorithms of Baker et al. in §2. We
present our gain and bias inverse compositional algorithm
in §3. We report experimental results on simulated and real
data in §4. A discussion is provided in §5. The parameteri-
zation of homographic warps is detailled in §A.

Notation. Vectors are denoted using bold fonts, e.g. q,
matrices using sans-serif fonts, e.g. E, and scalars in ital-
ics, e.g. a. We deal with grey-level images only: the tem-
plate and image, respectively denoted T and I, are seen as
functions from R2 to R. For instance, T [q] is the intensity
at location q ∈ R2. Bilinear interpolation is used for sub-
pixel coordinates. The geometric and photometric transfor-
mations are respectively denoted G and P , with respective
parameter vectors g and p. The geometric transformation
is also called the warp.

2. The Inverse Compositional Algorithm

Baker et al. have recently published a series of five
papers on direct image registration. In the first one [2],
they propose the efficient inverse compositional algorithm.
Baker et al. show in [1] that the efficiency is lost if appear-
ance variations, in particular gain and bias transformations,
are incorporated in the general algorithm, making it much
more computationally expensive. Below, we describe this
algorithm in details since it forms the basis for the one we
propose.

2.1. Principle

The inverse compositional algorithm is an iterative pro-
cedure with, as is often the case for registration algorithms,
three main steps in its inner loop:

1. Image warping. Warp the image on the template using
the current warp parameters g.

2. Local registration. Compute the local warp parame-
ters δg between the warped image and the template.

3. Warp updating. Update the current warp parameters
by composing the current warp with the inverse of the
local warp.

The main advantages of this method is that it converges
rapidly, and is computationally cheap since computation-
ally demanding calculations are pre-computed.

2.2. Geometric Registration

The algorithm is summarized in table 1. Let Ĩ be the
warped image, i.e. Ĩ[q] = I[G(q;g)]. The geometric reg-
istration problem (1) is rewritten as:

min
δg

∑
q∈R

(T [G(q; δg]− Ĩ[q])2. (4)

Vector δg represents the parameters of the local geomet-
ric transformation. The error function in problem (4) is
linearized by first order Taylor expansion in δg to form a
Gauss-Newton approximation, giving, using the chain rule:

min
δg

∑
q∈R

(T [q] +∇T [q]T
∂G
∂g

∣∣∣∣
q;g̃

δg − Ĩ[q])2,

where ∇T [q] is the (2 × 1) template gradient at q and
∂G
∂g

∣∣∣
q;g̃

is the Jacobian of the warp, evaluated at q and at

warp parameters g̃, representing the identity warp2. The
advantage of this formulation is that the partial derivatives

2The warp is generally parameterized such that g̃ = 0.
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of the error function are constant, and so are the gradient
vectors:

`T
q = ∇T [q]T

∂G
∂g

∣∣∣∣
q;g̃

. (5)

The normal equations induced by the linear least squares
minimization problem (4) are:∑

q∈R
`q`T

q


︸ ︷︷ ︸

Eg

δg =

∑
q∈R

`q(Ĩ[q]− T [q])


︸ ︷︷ ︸

bg

.

The solution δg = E−1
g bg for the local warp parameters can

thus be computed very efficiently since the inverse of the
constant Hessian matrix Eg can be pre-computed, as well as
the gradient vectors `q.

Once δg has been computed, the current warp parame-
ters g are updated by composing the current warp with the
inverse of the local warp. If one uses an homographic warp
for example, then the updated parameters are given by mul-
tiplying the current homography by the inverse of the local
one as detailled in §A. We write the warp update rule as:

g← Ug(g, δg).

The process is iterated until convergence, determined, in
our experiments, by thresholding the two-norm of δg by
ε = 10e − 8, or when the update increases the error. In
the latter case, the last update is cancelled before stopping
the iterations.

2.3. Incorporating Gain and Bias

We incorporate the global, affine illumination variation
model (3), referred to as gain and bias. The registration al-
gorithm is summarized in table 2. Applying the photometric
transformation to the template or to the image does not lead
to exactly the same error function. They are equivalent, up
to resampling issues, only when the geometric alignment is
the correct one. In both cases, the Hessian matrix is not
constant, thus spoiling the main advantage of the inverse
compositional approach. We apply the photometric trans-
formation to the template since it leads us to an efficient
minimization algorithm in §3.

We rewrite problem (2) as:

min
g,p

∑
q∈R

(aT [q] + b− I[G(q;g)])2. (6)

Using an additive update rule for the photometric parame-
ters, i.e. p ← p + δp, and the inverse compositional trick
for the geometric parameters g, we transform problem (6)
to:

min
δg,δp

∑
q∈R

((a + δa)T [G(q; δg)] + b + δb − I[G(q;g)])2.

OBJECTIVE

Register an image I to a template T by computing the parameters
g of a warp G(q;g) by minimizing the intensity error. Other in-
puts are the region of interestR in the template and an initial value
for g.

ALGORITHM

Pre-computations

1. Compute the gradient vectors `q from (5) for q ∈ R
2. Compute the Hessian Eg =

P
q∈R `q`T

q and its inverse

Iterations

1. Warp the image I to Ĩ using the warp parameters g

• Compute the right hand side of the normal equations
bg =

P
q∈R `q(Ĩ[q]− T [q])

• Solve for the update δg = E−1
g bg

2. Update the warp parameters: g← Ug(g, δg)

Table 1. The inverse compositional algorithm
of Baker et al. [2] for estimating a groupwise
geometric registration.

First order taylor expansion in δg yields:

min
δg,δp

∑
q∈R

((a + δa)(T [q] + `T
qδg) + b + δb − I[G(q;g)])2.

Expanding and neglecting second-order terms gives:

min
δg,δp

∑
q∈R

(a`T
qδg + δaT [q]+ δb +aT [q]+ b−Ĩ[q])2. (7)

Directly solving this linear least squares problem leads to
the simultaneous inverse compositional algorithm of Baker
et al. [1].

Defining the complete unknown parameter update vector
by δT

gp = (δT
g δT

p ), the normal equations are given by:∑
q∈R

 a`q
T [q]

1

 (
a`q T [q] 1

)
︸ ︷︷ ︸

Egp

δgp (8)

=

∑
q∈R

 a`q
T [q]

1

 (Ĩ[q]− aT [q]− b)


︸ ︷︷ ︸

dgp

. (9)

The Hessian matrix Egp is clearly not constant, thus spoiling
the main advantage of the inverse compositional approach.
Baker et al. [1] propose several approximations to reduce
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the computational cost: the ‘project out inverse composi-
tional algorithm’ and the ‘normalization inverse composi-
tional algorithm’. They show that these approximations do
not perform well for high gain values, see [1].

OBJECTIVE

Register an image I to a template T by computing the parameters
g of a warp G(q;g) and gain and bias parameters p by minimizing
the intensity error. Other inputs are the region of interestR in the
template and an initial value for g and p.

ALGORITHM

Pre-computations

1. Compute the gradient vectors `q from (5) for q ∈ R
Iterations

1. Warp the image I to Ĩ using the warp parameters g

• Compute and invert the Hessian matrix Egp from (8)

• Compute the right hand side dgp of the normal equa-
tions from (9)

• Solve for the update δgp = E−1
gp dgp

2. Update the warp parameters: g← Ug(g, δg) and the photo-
metric parameters: p← p + δp

Table 2. The simultaneous inverse composi-
tional algorithm of Baker et al. [1] for estimat-
ing a groupwise geometric registration and
gain and bias parameters. Note that the orig-
inal algorithm handles general linear appear-
ance variations.

3. The Gain and Bias Inverse Compositional
Algorithm

We propose an algorithm which performs exactly the
same calculations as the simultaneous inverse composi-
tional algorithm of Baker et al., but which do not require
one to re-compute the Hessian matrix at each iteration, thus
preserving the computational advantage of the original in-
verse compositional algorithm. The proposed algorithm is
summarized in table 3.

3.1. The Structure of the Hessian Matrix

We expand the Hessian matrix Egp from equation (8):

Egp =
(

a2Eg aEc

aET
c Ep

)
,

with Eg , Ec and Ep depending only on the template and thus
constant matrices, given by:

Eg =
∑
q∈R

`q`T
q Ec =

∑
q∈R

`q(T [q] 1),

and Ep =
∑
q∈R

(
T [q]2 T [q]
T [q] 1

)
.

We observe that the Hessian matrix has thus a strong block
structure. More precisly, all the blocks are constant up to
some scale factors, depending on the gain a.

Similarly, the right hand side of the normal equations,
defined in equation (9), is:

dgp =
(

adg

dp

)
,

with:

dg =
∑
q∈R

`q(Ĩ[q]− aT [q]− b)

dp =
∑
q∈R

(
T [q]

1

)
(Ĩ[q]− aT [q]− b).

3.2. Solving the Normal Equations

We propose a way to solve the normal equations allow-
ing us to pre-compute some of the expensive steps. The so-
lution is obtained by simple multiplication of the right hand
side by rescaled constant matrices. The normal equations
we want to solve are Egpδgp = dgp, or:(

a2Eg aEc

aET
c Ep

) (
δg

δp

)
=

(
adg

dp

)
.

Borrowing from the standard photogrammetric block bun-
dle adjustment technique, see e.g. [5], we multiply to the
left by a full-rank matrix, as follows:(

I 0

−aET
c (a2Eg)

−1 I

) (
a2Eg aEc

aET
c Ep

) (
δg

δp

)

=
(

I 0

−aET
c (a2Eg)

−1 I

) (
adg

dp

)
,

giving: (
a2Eg aEc

0 Ep − aET
c (a2Eg)

−1
aEc

) (
δg

δp

)

=
(

adg

dp − a2ET
c (a2Eg)

−1dg

)
.
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OBJECTIVE

Register an image I to a template T by computing the parameters g of a warp G(q;g) and gain and bias parameters p by
minimizing the intensity error. Other inputs are the region of interestR in the template and an initial value for g and p.

ALGORITHM

Pre-computations

1. Compute the gradient vectors `q = ∇T [q]T ∂G
∂g

∣∣∣
q;g̃

for q ∈ R

2. Compute the three blocks forming the Hessian matrix:

Eg =
∑
q∈R

`q`T
q Ec =

∑
q∈R

`q(T [q] 1) Ep =
∑
q∈R

(
T [q]2 T [q]
T [q] 1

)

3. Compute matrices E−1
p , Z and Y:

Z = (Ep − ET
c E−1

g Ec)
−1

Y = −ZET
c E−1

g

Iterations

1. Warp the image I to Ĩ using the warp parameters g

• Compute the right hand side of the normal equations:

dg =
∑
q∈R

a`q(Ĩ[q]− aT [q]− b) dp =
∑
q∈R

(
T [q]

1

)
(Ĩ[q]− aT [q]− b)

• Solve for the update:

δp = Zdp + Ydg δg =
1
a
E−1

p (dg − Ecδp)

2. Update the warp and photometric parameters:

g← Ug(g, δg) p← p + δp

Table 3. The proposed gain and bias inverse compositional algorithm for estimating a groupwise
geometric registration and gain and bias parameters.
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This equation simplifies to:(
a2Eg aEc

0 Ep − ET
c E−1

g Ec

) (
δg

δp

)
=

(
adg

dp − ET
c E−1

g dg

)
.

The solution for the photometric parameters δp is obtained
directly from the second set of equations as:

δp = Zdp + Ydg,

where Z and Y are constant matrices, given by:

Z = (Ep − ET
c E−1

g Ec)
−1

Y = −ZET
c E−1

g .

The solution for the geometric parameters δg is given, from
the first set of equations, by:

a2Egδg = adg − aEcδp

δg =
1
a
E−1

p (dg − Ecδp).

In this equation, matrix E−1
p is constant and can be pre-

computed.

4. Experimental Results

We compared the simultaneous inverse compositional al-
gorithm of Baker et al. and the gain and bias inverse com-
positional algorithm we propose, as described in tables 2
and 3 respectively, in the case of homographic warps, see
§A. Note that both algorithms produce exactly the same re-
sults but with different computation times. Our experiments
are designed to assess to which extent these differences are
significant. We refer the reader to [1, 2] for a thorough set
of experiments on the behaviour of a great variety of differ-
ent algorithms. The cost of an iteration is constant for each
algorithm. We used our own, fairly optimized implementa-
tion in MATLAB.

4.1. Simulated Data

Figure 1 shows the computational time of an iteration
when varying image side length. The ranges of image side
lengths are 10 to 100 and 100 to 1000 respectively for the
left and right hand side graphs. We observed that their is
a factor of at least 2 between the two algorithms, in favor
of the gain and bias inverse compositional algorithm, in all
cases.

4.2. Real Data

We compared the algorithms on several sets of images.
We one of them, we show results. The template and the
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Figure 2. Error in intensity through the itera-
tions for the images shown in figure 3.

image are both 600 × 800. They are shown on figure 3,
together with the region of interest. The region of interest
contains 255,210 pixels. Figure 2 shows the error in inten-
sity through the 28 iterations that were necessary to register
the images. Figure 4 shows the error image at different it-
erations. The photometric parameters that were computed
are a = 0.98 and b = 3.77, and the final RMS intensity
error is 4.13. The computational time needed by the si-
multaneous inverse compositional algorithm was 76.91 sec-
onds, while the gain and bias inverse compositional algo-
rithm took 38.40 seconds.

5. Discussion

The proposed algorithm efficiently extends the inverse
compositional algorithm of Baker et al. [2] to handle gain
and bias. The computational time is reduced by a factor of at
least 2 compared to the general linear appearance variations
algorithm of Baker et al. [1].

There are several important issues that need to be inves-
tigated. The first one is about numerical conditioning: the
elements of the Hessian matrices have different orders of
magnitude, from 1 to O(k2s), where k is the image side
length (in pixels) and s the maximum image intensity (in
practice we expect s to be close to 255). Similarly to the
normalization used to improve the conditioning in the eight
point algorithm [5], we naturally wonder if normalizing the
image coordinates and intensity can improve the numerical
stability and thus the convergence properties of the algo-
rithms.

The second issue is about using color images, i.e. deter-
mine if the proposed algorithm extends to deal with indi-
vidual gain and bias for each color channel, or even for full
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Figure 1. Computational time of an iteration versus image side length.

Template Image Region of interest

Figure 3. Real images used in the experiments.

Iteration 1 Iteration 10 Iteration 19 Iteration 28
RMS error: 55.41 RMS error: 34.56 RMS error: 28.22 RMS error: 4.13

Figure 4. The error image at different iterations and corresponding RMS error on the intensity.
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linear combinations of the color channels.
The MATLAB code used to produce the experimental re-

sults in this paper is available for download on the web
homepage of the author.
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A. Parameterizing Homographic Warps

The homographic warp, denotedH, has 9 parameters de-
fined up to scale. In homogenous coordinates, it is repre-
sented by a (3 × 3) homography matrix H. The represen-
tation of the warp by an homography matrix makes it easy
to invert a warp or compose two warps, as required by the
inverse compositional algorithm, respectively by inverting
the homography matrix and by multiplying the two homog-
raphy matrices.

Following [2], the local homography matrix is parame-
terized by an 8-vector δh as:

∆H ∼ I +

δh,1 δh,2 δh,3

δh,4 δh,5 δh,6

δh,7 δh,8 0

 . (10)

The corresponding warp is:

H(q; δh) =
1

δh,7q1 + δh,8q2

(
(1 + δh,1)q1 + δh,2q2 + δh,3

δh,4q1 + (1 + δh,5)q2 + δh,6

)
.

Note that δh = 0 corresponds to the identity warp since
H(q;0) = q.

In practice, we represent the warp by the (3×3) homog-
raphy matrix H, and implement the update rule as:

Ug(H, δh) = H ·∆H,

where ∆H is given by equation (10).
The Jacobian of the warp, evaluated around the identity

warp, is given by:

∂H
∂δh

∣∣∣∣
q;0

=
(

q1 q2 1 0 0 0 −q2
1 −q1q2

0 0 0 q1 q2 1 −q1q2 −q2
2

)
.
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Groupwise Geometric and Photometric
Direct Image Registration

Adrien Bartoli
LASMEA (CNRS / Université Blaise Pascal), Clermont-Ferrand, France
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Abstract— Image registration consists in estimating geometric
and photometric transformations that align two images as best
as possible. The direct approach consists in minimizing the
discrepancy in the intensity or color of the pixels. The inverse
compositional algorithm has been recently proposed by Baker et
al. for the direct estimation of groupwise geometric transforma-
tions. It is efficient in that it performs several computationally
expensive calculations at a pre-computation phase.

Photometric transformations act on the value of the pix-
els. They account for effects such as lighting change. Jointly
estimating geometric and photometric transformations is thus
important for many tasks such as image mosaicing. We pro-
pose an algorithm to jointly estimate groupwise geometric and
photometric transformations while preserving the efficient pre-
computation based design of the original inverse compositional
algorithm. It is called the dual inverse compositional algorithm.
It uses different approximations than the simultaneous inverse
compositional algorithm and handles groupwise geometric and
global photometric transformations. Its name stems from the
fact that it uses an inverse compositional update rule for both
the geometric and the photometric transformations.

We demonstrate the proposed algorithm and compare it to
previous ones on simulated and real data. This shows clear
improvements in computational efficiency and in terms of con-
vergence.

Index Terms— image registation, geometric warp, photometric
transformation, inverse composition.

I. INTRODUCTION

Image registration is the task of applying some transformations

to two images so that they match as best as possible. This can

be seen as the computation of some geometric transformation,

for example an homography, used to deform one of the images

to model camera pose, and some photometric transformation,

applied to the intensity or color of the pixels, to account e.g.
for lighting change.

Image registration has been an important research topic for

the past decades. It is central to many tasks in computer vision,

medical imaging, augmented reality and robotics. Applications

include image mosaicing [8], object and feature tracking [5], [7],

[9], [11], superresolution [6] and visual servoing.

Broadly speaking, two approaches have been proposed: The

feature-based and the direct approaches. The feature-based ap-

proach, see e.g. [12], relies on abstracting the input images

by the geometric location of a set of carefully chosen, salient

features. The direct approach, see e.g. [8], uses the value, i.e.
the intensity or color, of the pixels of interest. The inverse
compositional algorithm of Baker et al. [2] estimates groupwise

geometric transformations such as homographies1. It has been

shown to be one of the most reliable and computationally efficient

registration methods. The efficiency stems from the so-called

inverse compositional trick, making the Hessian matrix2 constant

(it is the design matrix involved in the linear least squares problem

to be solved at each iteration). This makes it possible to pre-

compute its inverse.

This paper is about the registration of two images related

by a geometric and a photometric transformation. An example

of photometric transformation is ‘gain and bias’ which rescales

and offsets the value of the pixels. The simultaneous inverse
compositional algorithm proposed in [1] by Baker et al. estimates

such transformations but at the expense of recomputing and

inverting the Hessian matrix at each iteration. An efficient variant

called the project out inverse compositional algorithm is proposed

in [1]. Due to an approximation of the photometric error function,

it performs worse than the simultaneous inverse compositional

algorithm, in terms of convergence frequency and number of

iterations.

We propose the dual inverse compositional algorithm, which

uses the inverse compositional trick for both the geometric and

photometric counterparts of the registration, thereby preserving

the possibility of pre-computing the inverse of the Hessian matrix.

We originally proposed this method in [3]. It deals with grey-level

and color images and groupwise photometric transformations.

The dual inverse compositional algorithm takes different steps

to converge compared to the simultaneous inverse compositional

algorithm of Baker et al. Thorough experiments show similar

convergence properties for these algorithms, with a significantly

lower computational cost in favor of the proposed algorithm, and

an improved stability compared to the project out inverse com-

positional algorithm. The dual inverse compositional algorithm

is based on the assumption that the geometric and photometric

transformations commute. This assumption prevents its use for

estimating non global photometric transformations such as Linear

Appearance Variations. It is thus useful mainly for global changes

such as lighting and camera settings changes which can mix the

different color channels.

a) Paper organization.: We formally state the problem and

review previous work in §II. We present as background material

the inverse compositional, the simultaneous inverse compositional

and the project out inverse compositional algorithms of Baker et
al. in §III. We propose the dual inverse compositional algorithm

in §IV. Some groupwise color photometric transformations are

1To be precise, transformations parameterized such that there is a group
structure on the parameter vector.

2We use the expression ‘Hessian matrix’ for the Gauss-Newton approxi-
mation to the ‘true Hessian matrix’.

Digital Object Indentifier 10.1109/TPAMI.2008.22 0162-8828/$25.00 ©  2008 IEEE
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2

presented in §V. We report experimental results on simulated data

in §VI. A conclusion is provided in §VII. The parameterization

of homographic warps is detailed in appendix A and a proof

showing that non global transformations can not be used with

the dual inverse compositional algorithm is reported in appendix

B. We report experimental results on real data in appendix C.

The proposed dual inverse compositional algorithm is finally

summarized.

b) Notation.: Vectors are denoted using bold fonts, e.g. q,

matrices using sans-serif fonts, e.g. E, and scalars in italics, e.g.
a. The entries of a vector or matrix are written as in xT =

(x1 · · · xn), where x is transposed in this equation. The two-

norm of a vector r is written ‖r‖. The gradient of a scalar-

valued function f , in other words, its partial derivative vector,

with respect to vector x, is denoted ∇xf . It is evaluated at 0, i.e.
the zero vector, unless specified as in (∇xf)(x0):

∇xf = (∇xf)(0) =

„„
∂f

∂x1

«
(0) · · ·

„
∂f

∂xn

«
(0)

«T

.

Note that for vector-valued functions, ∇ gives the Jacobian

matrix, i.e. the matrix containing all the partial derivatives of the

function. Columnwise matrix vectorization is written vect.

The source and target images to be registered are denoted S
and T respectively. They are seen as functions from R

2 to R
c

where c is the number of channels, i.e. c = 1 in the grey-

level case and c = 3 in the color case. For instance, T (q) is

the image value at pixel q ∈ R
2. Bilinear interpolation is used

for sub-pixel coordinates. The unit column vector is denoted 1

with length given by the context. The geometric and photometric

transformations are respectively denoted G and P , with respective

parameter vectors to be estimated denoted g and p. We make

the distinction between the target to source image photometric

parameters and the reverse one, respectively denoted p and p̃.

Note that G and P refer to global parameterizations, as opposed to

local, minimal parameterizations written Ḡ and P̄ with parameters

δg and δp or δp̃ respectively, defined such that the zero vector

induces the identity transformation. The geometric transformation

is also called the warp.

II. PROBLEM STATEMENT AND PREVIOUS WORK

The geometric registration problem is the minimization of a

nonlinear least squares error function, given by the discrepancy

in the value of the pixels, between the source image S and the

target image T warped onto the source one by the unknown warp.

The warp maps a pixel q in the region of interest R defined in

the source image to the corresponding pixel G(q;g) in the target

image. We expect that given an ‘appropriate’ parameter vector g,

S(q) is ‘close to’ T (G(q;g)), for all q ∈ R: This is the brightness

constancy assumption. The direct image registration problem is

thus formally posed as the minimization of the photometric error:

min
g

X
q∈R

‖S(q)− T (G(q;g))‖2 . (1)

Note that other error functions can be used, to deal for example

with occlusions. Most algorithms linearize each term in the

transformation parameters g, and iteratively update an initial

guess by solving linear least squares problems. Hardie et al. [6]

register several images at once while computing a superresolved

one. Baker et al. [2] propose the efficient inverse compositional
algorithm for solving problem (1). More details are given in the

next section. It uses a Gauss-Newton, local approximation to the

error function. The efficiency stems from the fact that the Hessian

matrix involved in the normal equations to be solved at each

iteration is constant. Its inverse is thus pre-computed.

Problem (1) does not take into account photometric changes,

i.e. changes in the pixel values. These changes occur for example

when lighting changes between the acquisition of the two images

or when two different cameras are used. They are modeled by a

transformation P with parameter vector p, and give rise to the

following minimization problem:

min
g,p

X
q∈R

‖S(q)− P(T (G(q;g));p)‖2. (2)

A commonly employed photometric model P is an affine trans-

formation modeling gain and bias (or contrast and brightness).

More complex transformations are reviewed in §V.

Jin et al. [9] use this model for feature tracking in grey-level

images, in contrast to [11] which normalizes the image patches by

using the mean and standard deviation of the pixel values. Heigl

et al. [7] track points in color images by summing the error over

the three channels. Lai and Fang [10] register images with low-

order polynomials for modeling spatially varying gain and bias.

Vemuri et al. [13] use a forward compositional framework for

estimating spline-based Free-Form Deformations. Their modified

Newton optimization scheme uses a constant approximation of

the Hessian matrix evaluated at the optimum.

Baker et al. extend the inverse compositional algorithm in [1]

to deal with linear appearance variations of the source image.

In their framework, the photometric transformation is applied

to the source image. As will be seen in §III-B, this makes the

Hessian matrix varies accross the iterations, thereby spoiling the

computational efficiency of the inverse compositional algorithm:

The simultaneous inverse compositional algorithm estimates and

inverts the Hessian matrix at each iteration. Baker et al. propose

several approximations to reduce the computational cost, namely

the ‘project out inverse compositional algorithm’ and the ‘normal-

ization inverse compositional algorithm’. They show that these

approximations do not behave well for high gain values.

One reason for Baker et al. to apply the photometric transfor-

mation to the source image is to handle general linear appearance

variations, i.e. based on linear combinations of ‘eigenimages’.

This is used in conjunction with 3D Morphable Models of e.g.
faces which do not form a group. In the case of e.g. homography

estimation, there is however no practical reason to handle such

transformations.

III. BACKGROUND

This section is devoted to the description of the inverse com-

positional and simultaneous inverse compositional algorithms of

Baker et al. proposed in [2] and [1] respectively.

A. The Inverse Compositional Algorithm

The inverse compositional algorithm, or IC for short, forms the

basis for our dual inverse compositional algorithm, presented in

the next section. Its advantages are two-fold. First, it converges

rapidly compared to other optimization schemes. Second, as

already mentioned, each iteration is performed efficiently.

The inverse compositional algorithm iteratively updates an

initial guess of the sought-after transformation. The key idea is

to express the updated transformation as the composition of the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



6.1. PHOTOMETRY IN DIRECT IMAGE REGISTRATION 15

3

current transformation G(·;g) and the inverse of an incremen-

tal transformation Ḡ−1(·; δg): This is the inverse compositional

update rule: G(·;g) ← G(Ḡ−1(·; δ);g). Notation Ḡ refers to a

local parameterization of the warp, as opposed to the global

parameterization denoted G. This update rule is written g ←
Ug(g, δg). Details on the global and local parameterizations and

the update rule are given in appendix A for homographic warps.

The optimization is performed over δg , the parameter vec-

tor of the incremental warp, instead of g. The geometric

registration problem (1) is rewritten minδg

P
q∈R ‖S(q) −

T (G(Ḡ−1(q; δg);g))‖2. Let W be the warped target image, i.e.
W(q) = T (G(q;g)). The incremental transformation is then

applied to the source image, instead of the target one, leading to

minδg

P
q∈R ‖S(Ḡ(q; δg))−W(q)‖2. This is the inverse compo-

sitional trick. Note that this only approximates the original prob-

lem (1) since the error function is expressed within the warped

and not within the source image. The error function is linearized

by first order Taylor expansion in δg , forming a Gauss-Newton

approximation: minδg

P
q∈R ‖S(q) + LT

g (q)δg −W(q)‖2. This

is a linear least squares problem, which is solved via its normal

equations. We define (∇S) (q) to be the (2×c) Jacobian matrix of

the source image at q and
`
∇gḠ

´
(q;0) the Jacobian matrix of the

local warp, evaluated at q and at warp parameters 0. It is assumed

for simplicity that 0 represents the identity warp, as discussed in

appendix A. The Jacobian matrices Lg(q) are thus obtained, using

the chain rule, as LT
g (q) = (∇S) (q)T

`
∇gḠ

´
(q;0). They only

depend on the source image at the pixels of interest, and are thus

constant over the iterations. Let D(q) = W(q)−S(q) be the error

image, the normal equations are Egδg = bg , where the Hessian

matrix Eg and the right hand side bg are Eg =
P

q∈R Lg(q)LT
g (q)

and bg =
P

q∈R Lg(q)D(q). The solution δg = E−1
g bg for the

local warp parameters is thus computed very efficiently since the

Jacobian matrices Lg(q) as well as the inverse E−1
g of the Hessian

matrix are pre-computed.

Once δg has been computed, parameters g are updated by

composing the current warp with the incremental warp with the

update rule g ← Ug(g, δg). If one uses an homographic warp for

example, then the updated parameters are given by multiplying the

current homography by the inverse of the local one. The process

is iterated until convergence, determined in our experiments, by

thresholding ‖δg‖ by ε = 10e− 8.

B. The Simultaneous Inverse Compositional Algorithm

The simultaneous inverse compositional algorithm, or SIC for

short, aims at registering two images by computing both a warp

and a parametric photometric transformation P acting on the pixel

values, i.e. their intensity of color.

Let p̃ denotes the parameter vector for the photometric trans-

formation from the source to the target image. Baker et al. [1]

pose the registration problem as:

min
g,p̃

X
q∈R

‖P(S(q); p̃)− T (G(q;g))‖2. (3)

We note that the minimization takes place in the geometric space

of the source image but in the photometric space of the target

image.

Baker et al. use an inverse compositional update rule for the

warp, and a forward additive update rule for the photometric

transformation. Applying the inverse compositional trick as in

the previous section, with W(q) = T (G(q;g)) the warped im-

age, yields minδg,δp̃

P
q∈R ‖P(S(Ḡ(q; δg)); p̃ + δp̃)−W(q)‖2,

where we switched the warp and the photometric transformation,

i.e. we used (P(S; p̃+ δp̃))(Ḡ(q; δg)) = P(S(Ḡ(q; δg)); p̃+ δp̃).

First order Taylor expansion in δg and in δp̃ gives:

min
δg,δp̃

X
q∈R

‚‚‚‚P(S(q) + LT
g (q)δg); p̃)

+(∇pP)T(S(q) + LT
g (q)δg; p̃)δp̃ −W(q)

‚‚‚‚
2

.

Further expansion is achieved using the assumption that P
is an affine transformation for its parameters p, which in-

cludes many different photometric transformations and linear

appearance variations. We define p̆ as the linear counterpart

of the parameters, i.e. where the intercept vanishes, in other

words, without its affine counterpart. For example, if P(v; p̃) =

p̃1v + p̃2, i.e. the gain and bias photometric transformation,

then p̆T = (p̃1 0). This allows us to simplify the first term

as P(S(q) + LT
g (q)δg; p̃) = P(S(q); p̃) + P(LT

g (q); p̆)δg .

Neglecting the second order terms, we approximate the sec-

ond term as (∇pP)T(S(q) + LT
g (q)δg; p̃)δp̃ ≈ LT

p (q)δp̃, with

Lp(q) = (∇pP) (S(q); p̃). Note that Lp(q) is independent of

p due to the affine nature of P . It is thus pre-computed.

Let the error image be D(q) = W(q) − P(S(q); p̃), we get

minδg,δp̃

P
q∈R

‚‚‚P(LT
g (q); p̆)δg + LT

p (q)δp̃ −D(q)
‚‚‚2. We see

in this linear least squares problem that the associated Jaco-

bian matrix has a constant part associated to the photometric

parameters δp̃, and a non-constant part associated to the warp

parameters δg . This makes non-constant the Hessian matrix of

the normal equations since the current photometric transformation

has to be applied to the Steepest Descent images (the columns

of the Jacobian matrix). The optimization problem is rewritten

minδgp̃

P
q∈R

‚‚‚KT
gp̃(q; p̃)δgp̃ −D(q)

‚‚‚2, with δT
gp̃ = (δT

g δT
p̃ )

the joint incremental parameter vector and Kgp̃ the joint Jacobian

matrices given by KT
gp̃(q; p̃) = (P(LT

g (q); p̆) LT
p (q)). The normal

equations are Egp̃δgp̃ = bgp̃, with the Hessian matrix Egp̃ and the

right hand side bgp̃ given by Egp̃ =
P

q∈R Kgp̃(q; p̃)KT
gp̃(q; p̃)

and bgp̃ =
P

q∈R Kgp̃(q; p̃)D(q).

C. The Project Out Inverse Compositional Algorithm
The project out inverse compositional algorithm, or PO for

short, proposed by Baker et al. in [1], aims at reducing the

computational cost required by each iteration of the simultaneous

inverse computational algorithm. We start its derivation from

equation (3) and rewrite the error function in matrix form using

the L2-norm:

min
g,p̃

‚‚‚‚‚‚‚‚‚

0
BBB@

...

P(S(q); p̃)− T (G(q;g))
...

1
CCCA
‚‚‚‚‚‚‚‚‚

2

.

The error vector is projected into a linear subspace B chosen as

a basis for the affine photometric models we use, see §V, and its

orthogonal complement B⊥, giving:

min
g,p̃

‚‚‚‚‚‚‚‚‚

0
BBB@

...

P(S(q); p̃)− T (G(q;g))
...

1
CCCA
‚‚‚‚‚‚‚‚‚

2

B

+

‚‚‚‚‚‚‚‚‚

0
BBB@

...

S(q)− T (G(q;g))
...

1
CCCA
‚‚‚‚‚‚‚‚‚

.

2

B⊥
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4

We observe that the second term is independent of the photometric

transformation. The project out inverse compositional algorithm

consists in minimizing the second term with respect to the

geometric parameters g. Minimizing the first term with respect

to p subsequently gives the photometric parameters through a

closed-form solution. Minimizing the second term is performed

by using a weighted L2-norm, see [1] for the details, and is

implemented with a weighted inverse compositional algorithm.

It is shown that this algorithm has problems with determining

the optimal magnitude of the update vector. This arises when a

gain is estimated in the photometric transformation, which is the

case for all the transformations we show in §V. In the absence

of noise, it is shown in [1] that the computed update vector δg is

a gain-weighted version of the ideal one. Two solutions are then

suggested. The first one is to use Levenberg-Marquardt instead of

Gauss-Newton as a local optimization engine, since it dynamically

adjusts the step size. The second solution is a step size correction

scheme based on dividing δg by the current estimate of the gain.

We implemented both solutions. Both work well but, as reported

in [1], they sometimes oscillates around the sought after solution

and may even diverge. Assessing convergence is thus difficult and

one has to define a fixed number of iterations, and select the best

estimate computed so far.

As reported in [1], the project out inverse compositional

algorithm has poorer performances than the simultaneous one.

The reason is that the algorithm is based on the fact that the error

projected in the B⊥ subspace does not depend on the photometric

transformation parameters. This is however true only when the

alignment is correct. Therefore in practice, parameter updates are

subject to unexpected perturbations which may prevent conver-

gence.

IV. THE DUAL INVERSE COMPOSITIONAL ALGORITHM

We extend the inverse compositional algorithm to estimate a

groupwise photometric transformation along with the warp, as

stated in problem (2). The algorithm is summarized in table I

and illustrated in figure 1. It is dubbed DIC for short.

The main difference compared to the simultaneous inverse

compositional algorithm resides in the problem formulation: One

of the images, namely the target one, is taken as a ‘generator’

for the other one, namely the source image. In other words,

while the minimization takes place in the geometric frame of the

source image and in the photometric frame of the target image

in the formulation of Baker et al., it takes place in the frame

of the source image for both photometry and geometry in our

formulation. The algorithms also differ in the update rule they

employ for the photometric parameters. Baker et al. use a forward

additive update rule, while we use an inverse compositional

update rule. This allows us to apply the inverse compositional

trick for both the geometric and photometric transformations,

under the assumption that these transformations commute.

Consider problem (2), and plug in an inverse compositional up-

date rule for both the geometric and photometric transformations,

i.e. G(·;g) ← G(Ḡ−1(·; δg);g) and P(·;p) ← P̄−1(P(·;p); δp).

Note that the incremental photometric transformation is composed

to the left and not to the right of the current transformation,

contrarily to the case of the warp. For more details, see §V. This

gives:

min
δg,δp

X
q∈R

‖S(q)− P̄−1(P(T (G(Ḡ−1(q; δg);g));p); δp)‖2. (4)

The optimization is now to be performed on the incremental

parameters δg and δp, the latter accounting for the incremental

photometric transformation. Using the inverse compositional trick

on the photometric transformation, i.e. applying the incremental

photometric transformation to the source image instead of the

target image gives:

min
δg,δp

X
q∈R

‖P̄(S(q); δp)− P(T (G(Ḡ−1(q; δg);g));p)‖2. (5)

We now use the assumption that the order used to apply the

warp and the photometric transformation to an image does not

matter, i.e. that P(T (G(·;g));p) = (P(T ;p))(G(·;g)). This

assumption allows us to switch the photometric transformation

and the warps in the second term of equation (5). Applying the

inverse compositional trick once again, on the incremental warp

gives minδg,δp

P
q∈R ‖P̄(S(Ḡ(q;g)); δp)−P(T ;p)(G(q;g))‖2.

Switching the warp and photometric transformation again, on the

second term, and letting W be the warped and photometrically

transformed image, i.e. W(q) = P(T (G(q;g));p), yields:

min
δg,δp

X
q∈R

‖P̄(S(Ḡ(q; δg)); δp)−W(q)‖2. (6)

We show below that the normal equations induced by the Gauss-

Newton approximation to problem (6) have a constant Hessian

matrix. Similarly to the simultaneous inverse compositional algo-

rithm, we use first order Taylor expansion in δg and δp, giving:

min
δg,δp

X
q∈R

‖S(q)+LT
g (q)δg+(∇pP̄)(S(q)+LT

g (q)δg;0)δp−W(q)‖2.

Using the assumption that P is an affine transformation and

neglecting the second order terms yield:

min
δg,δp

X
q∈R

‖(LT
g (q) LT

p (q))δgp −D(q)‖2,

where D is the error image, i.e. D(q) = W(q)−S(q). We denote

the joint incremental parameter vector δT
gp = (δT

g δT
p ) and define

the joint Jacobian matrices Lgp(q) by:

LT
gp(q) = (LT

g (q) LT
p (q)). (7)

The Jacobian matrices Lp(q) for the photometric parameters are

Lp(q) =
`
∇pP̄

´
(S(q);0). As in the original inverse composi-

tional algorithm, the Jacobian matrices only depend on the source

image at the pixels of interest. They are thus constant as well as

the Hessian matrix Egp of the normal equations Egpδgp = bgp

with:

Egp =
X
q∈R

Lgp(q)LT
gp(q) (8)

bgp =
X
q∈R

Lgp(q)D(q). (9)

The warp is updated as in the inverse compositional algorithm:

g ← Ug(g, δg), and the photometric transformation update rule is

written p ← Up(p, δp). The proposed dual inverse compositional

algorithm handles most groupwise photometric transformation

such as those given in the next section.

V. SOME GROUPWISE COLOR PHOTOMETRIC

TRANSFORMATIONS

We mention some photometric transformations that can be

employed within our framework. The dual inverse compositional
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Ḡ(·;
g )P̄(·;

p )

P̄(·;
p )
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Fig. 1. DIC. The proposed dual inverse compositional algorithm extends the inverse compositional algorithm to jointly compute a geometric and a photometric
registration, G(·;g) and P(·;p), by iterating the three main steps mentioned in the schema. One of the strengths of this approach is that, as in the inverse
compositional algorithm, the Hessian matrix involved in the normal equations in step 2 is constant.

algorithm is based on the assumption that the geometric and pho-

tometric transformation commute. We show in appendix B that

this prevents the use of non global photometric transformations.

Spatially varying transformations, such as the polynomial one in

[10], are usually non global. However, transformations such as the

one in [5] which approximates specular highlights to first order,

can be employed. It is spatially varying but has a constant weight

for each pixel, depending only on its distance with some point of

interest, making its parameters global.

The most common photometric transformation for grey-level

images is the aforementioned gain and bias. In the color image

case, we use affine transformations, i.e. transformations that can

be written as Av +b, where A is a (3× 3) matrix combining the

three color channels, and b is a 3-vector, modeling a per-channel

bias. Finlayson et al. [4] show that linear transformations are well

adapted for color constancy in practice. We have tried several

variants, summarized below. Note that similarly to the warp, we

use a global and a local parameterization for each transformation.

The local parameterizations all guarantee P̄(v;0) = v.

The update rules are obtained by writing the transformation in

matrix form, by reshaping vector δp to a matrix A and vector b.

Inversion and composition are then performed and the resulting

set of parameters is vectorized to get the updated vector p.

c) Single gain and bias.: This is the direct transposition of

the gain and bias transformation of grey-level images to color

images. It is due to account for global and uniform lighting

change. The global and local transformations are:

P(v;p) = p1v+p21 and P̄(v; δp) = P
„
v;

„
1

0

«
+ δp

«
.

The (3 × 2) Jacobian matrix is LT
p (q) = (S(q) 1),

and the inverse compositional update rule is Up(p, δp) =
1

1+δp,1

`
p1 p2 − δp,2

´T
.

d) Multiple gain and bias.: This is a generalization of the

gain and bias transformation to color images, with independent

gain and bias applied to each color channel. This models global

lighting change and the fact that each color channel may have

a different behavior when lighting changes. Finlayson et al. [4]

show that this model is effective for color constancy. The global

and local transformations are:

P(v;p) =

0
@p1

p2

p3

1
Av +

0
@p4

p5

p6

1
A

P̄(v; δp) = P
„
v;

„
1

0

«
+ δp

«
,

where 1 and 0 are (3 × 1) vectors. The (3 × 6)

Jacobian matrix is LT
p (q) = (diag(S(q)) I), and the

inverse compositional update rule is Up(p, δp) =“
p1

1+δp,1

p2
1+δp,2

p3
1+δp,3

p4−δp,4
1+δp,1

p5−δp,5
1+δp,2

p6−δp,6
1+δp,3

”T
.

e) Full affine channel mixing.: This generalizes the other

photometric transformations by mixing the different color chan-

nels and applying a per-channel bias. This is mainly useful for

images taken by different cameras or under different lighting

colors. The global and local transformations are:

P(v;p) =

0
@p1 p2 p3

p4 p5 p6

p7 p8 p9

1
Av +

0
@p10

p11

p12

1
A

P̄(v; δp) = P(v;u + δp),

with uT = vect(I(3×3)) = (1 0 0 0 1 0 0 0 1 0 0 0). The

(3× 12) Jacobian matrix is:

LT
p (q) =

“
diag

“
S(q)T,S(q)T,S(q)T

”
I
”

,

and the inverse compositional update rule is:

Up(p, δp) =

0
BBBBBBBB@

vect

0
B@

0
B@

1 + δp,1 δp,2 δp,3
δp,4 1 + δp,5 δp,6
δp,7 δp,8 1 + δp,9

1
CA
−1 0

@
p1 p2 p3
p4 p5 p6
p7 p8 p9

1
A
1
CA

0
B@

1 + δp,1 δp,2 δp,3
δp,4 1 + δp,5 δp,6
δp,7 δp,8 1 + δp,9

1
CA
−1 0

B@
p10 − δp,10
p11 − δp,11
p12 − δp,12

1
CA

1
CCCCCCCCA

.
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VI. EXPERIMENTAL RESULTS ON SIMULATED DATA

Our experiments are designed to compare the converge prop-

erties and the computational cost of the proposed dual inverse

compositional algorithm to other algorithms in various conditions,

as well as different photometric transformations as described in

§V. All comparisons are done by estimating homographies. Our

implementation uses MATLAB with a number of routines written

in C through Mex files (e.g. bilinear image warping and error

computation). Timing is measured on a PC equipped with a

Pentium M at 1.6 GHz. We report results for SIC (see §III-B),

PO (see §III-C) and the proposed DIC (see §IV).

f) Simulation setup.: Given a texture image, we simulate a

2D homography by displacing four points in random directions by

some magnitude γ with default value γ = 5 pixels. This is used to

generate the target image in conjunction with a gain α and a bias

β with default values α = 1.2 and β = 15. For the multiple gains

and biases and full affine channel mixing photometric models, we

use α with 10% Gaussian perturbation for the diagonal entries,

some random values for the off-diagonal entries and β with 10%

Gaussian perturbations for the biases. Finally, centred Gaussian

noise with variance σ is added to the pixel values in the source

and target images, with default value σ = 25.5, i.e. 10% of 255

(the maximum value of intensity and of each color channel).

Finally, the pixel values are clamped between 0 and 255 in order

to simulate sensor saturation. The source image is 600×800, and

25,392 pixels of interest are used.

We vary some parameters of this setup independently, namely

the noise variance σ from 0% to 20% (i.e. 0 to 51 pixel intensity

or color units), the geometric magnitude γ from 0 to 20 pixels

and the gain from 0.2 to 3. The results are average values over

100 trials.

The algorithms are run for 20 iterations. Results are shown for

the grey-level gain and bias model (2 parameters) and the full

affine channel mixing model (12 parameters).

g) Computational time.: We can see on figure 2 (a) that the

overall computational time needed by DIC and PO is much lower

than the one needed by SIC. This also holds against the geometric

transformation magnitude and the gain value. Figure 2 (b) shows

that DIC needs slightly more computational time than PO, at worse

1.69 times more. The next table shows detailed timing results in

seconds for the parameter update step for a single iteration:

G&B Single G&B Multiple G&B Full Affine

SIC 0.0887 0.2927 0.5070 0.8723

PO 0.0023 0.0065 0.0065 0.0065

DIC 0.0033 0.0098 0.0117 0.0146

The image warping step respectively takes 0.0270 seconds and

0.0312 seconds in the grey-level and color cases respectively. We

observe that DIC and PO have computational times of the same

order of magnitude, while SIC is two orders of magnitude more

expensive.

h) Geometric error.: This is measure by comparing the

estimated transformation at convergence to the true one and

reflects the accuracy of the algorithms. As can be seen on figure

2 (c), the geometric error is almost the same for all algorithms.

This is also the case for the other experiments we performed,

and means that all algorithms reach the same accuracy on the

estimated transformation when the converge to the sought after

solution.

i) Number of iterations.: Figure 3 (a) shows that the pro-

posed DIC needs about the same number of iterations as SIC,

while PO needs more iterations and usually reaches the maximum

20 iterations. Given that the computational cost of an iteration

is lower for PO and DIC than for SIC, this explains why the

computational time needed by SIC is much larger than the one

needed by DIC and PO.

j) Photometric error.: The photometric error (not shown

here) reached by all algorithms in all our experiments are identi-

cal, meaning that they all are able to minimize the error function

to the same extent, and thus that they all converge to the right

solution.

k) Convergence frequency.: We observe on figure 3 (b) that

beyond a noise variance of 50, the converge frequency drops

from 100%. Figure 3 (c) shows that the convergence frequency

also decreases when the geometric transformation magnitude γ

increases. The decrease starts at about 6 pixels for PO and 8 pixels

for SIC and DIC, and is slightly faster for PO than for the two other

methods. Overall, PO has a clearly lower convergence frequency

than SIC and DIC. Varying the gain do not affect convergence.

The convergence frequencies for DIC and SIC are equivalent.

l) Overall.: All three methods are equivalently accurate. PO

requires more iterations than SIC and DIC. SIC is much more

expensive than PO and DIC, and DIC is slightly more expensive

than PO. SIC and DIC have equivalent convergence frequencies,

significantly higher than the convergence frequency of PO. This

means that DIC combines both the stability of SIC with the

efficiency of PO and is thus the algorithm we recommend for

this kind of groupwise image registration problem.

VII. CONCLUSION

An algorithm is proposed for the direct registration of two

images: the dual inverse compositional algorithm. It is original

in that it considers one of the images to be registered as a

‘generator’ for the other one. Its main advantage compared to the

simultaneous inverse compositional algorithm is that the Hessian

matrix involved in each iteration is constant, making the algorithm

very efficient in terms of computational cost. This stems from

the fact that, as for the geometric transformation, the photometric

one is dealt with using the inverse compositional trick. It is more

stable than the project out inverse compositional algorithm. The

proposed dual inverse compositional algorithm handles any global

groupwise geometric and photometric transformation.
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APPENDIX

A. Parameterizing Homographies

Groupwise geometric transformations include translations, ro-

tations, affinities and homographies. We describe the case of

homographies. They have 8 degrees of freedom, and can be

represented by (3 × 3) homogeneous matrices (i.e. defined up

to scale). The representation of the warp by an homography

matrix makes it easy to invert a warp or compose two warps,

as required by the inverse composition trick, respectively by

inverting the homography matrix and by multiplying the two

homography matrices. We use an homography matrix H for the

parameterization of the global warp G:

G(q; H) =
1

H31q1 + H32q2 + H33

„
H11q1 + H12q2 + H13

H21q1 + H22q2 + H23

«
.

We constrain H to have unit two-norm. This is enforced each time

the update rule is applied by simply dividing H by its two-norm.

Following [2], the local warp Ḡ is parameterized by an 8-vector

δh as:

Ḡ(q; δh) = G

0
@q; I +

0
@δh,1 δh,2 δh,3

δh,4 δh,5 δh,6

δh,7 δh,8 0

1
A
1
A .

This parameterization is such that, as required for deriving the

registration algorithms, the identity local warp is obtained for

δh = 0:

Ḡ(q;0) = G(q; I) = q.

A short calculation shows that the Jacobian of the local warp is:

(∇δh
Ḡ)(q;0) =

„
q1 q2 1 0 0 0 −q2

1 −q1q2

0 0 0 q1 q2 1 −q1q2 −q2
2

«
.

Inverse composition is performed by multiplying the current

homography matrix to the right by the inverse of the incremental

one:

Ug(H, δh) = H

0
@I +

0
@δh,1 δh,2 δh,3

δh,4 δh,5 δh,6

δh,7 δh,8 0

1
A
1
A
−1

.
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OBJECTIVE

Register a target image T to a source image S by computing the
parameters g of a geometric registration G(·;g) and the parameters
p of a photometric registration P(·;p). Other inputs are the region
of interest R in the source image and an initial value for g
and p. Upon convergence, the photometric error

P
q∈R ‖S(q) −

P(T (G(q;g));p)‖2 is minimized.

ASSUMPTIONS

• Group structure on the warp parameters g
• Group structure on the global photometric parameters p
• Commutativity of the warp and the photometric transformation

ALGORITHM

Pre-computations
1) Compute the joint Jacobian matrices Lgp(q) for q ∈ R from

equation (7):

Lgp(q) =
`
(∇S) (q)T `∇gḠ

´
(q;0) (∇pP) (S(q);0)

´
2) Compute the Hessian matrix Egp and its inverse from equation

(8):

Egp =
X
q∈R

Lgp(q)LT
gp(q)

Iterations
1) Warp and photometrically transform the target image T to W

using the warp g and the photometric parameters p:

W(q) = P(T (G(q;g));p)

2) Compute the incremental warp and photometric parameters δg

and δp:

• Compute the error image D:

D(q) = W(q)− S(q)

• Compute the right hand side of the normal equations bgp

from equation (9):

bgp =
X
q∈R

Lgp(q)D(q)

• Solve for the joint incremental parameters δgp:

δgp = E−1
gp bgp

3) Update the warp g and photometric parameters p:

g ← Ug(g, δg) p ← Up(p, δp)

TABLE I

DIC. THE PROPOSED dual inverse compositional algorithm FOR GROUPWISE

GEOMETRIC AND PHOTOMETRIC REGISTRATION OF GREY-LEVEL OR

COLOR IMAGES. THE HESSIAN MATRIX IS CONSTANT THROUGHOUT THE

ITERATIONS.

B. The Dual Inverse Composition Algorithms and Non Global
Photometric Transformations

We show that the dual inverse compositional algorithm does not

handle non global varying photometric models such as the Linear

Appearance Variations used in Active Appearance Models. We

note that the photometric transformation P now depends on the

pixel location q:

P(v;p) ⇒ P(v;p;q).

We derive the proof for the Linear Appearance Variation

model, but the reasoning holds for general non-global photometric

models. The Linear Appearance Variation model combines basis

images Ak as:

P(v;p;q) = v +

lX
k=1

pkAk(q).

For the case where the basis images are aligned with the source

image, the following property holds:

P(S(q);p;q)) = (P(S;p)) (q). (10)

When they are aligned with the target image, this transforms as:

P(T (q);p;q)) = (P(T ;p)) (q). (11)

We examine the case where the basis images are aligned with

the source image and then when they are aligned with the target

image.

1) Basis Images Aligned With the Source Image:
a) The error function.: Each term of the nonlinear least

squares error in (4) is:

e(q) = S(q)− P̄−1(P(T (G(Ḡ−1(q; δg);g));p;q); δp;q).

We use the inverse compositional trick on the photometric trans-

formation, giving:

e(q) ≈ P̄(S(q); δp;q)− P(T (G(Ḡ−1(q; δg);g));p;q).

We then switch the incremental geometric transformation (δg)

and the current photometric transformation (p) and, to avoid

notational burden, we apply the inverse compositional trick on

the geometric transformation at the same time, giving:

e(q) ≈ P̄(S(Ḡ(q; δg)); δp; Ḡ(q; δg))−P(T (G(q;g));p; Ḡ(q; δg)).

b) First term.: By switching the order of the photometric

and geometric transformations, the leading term rewrites as:

e1(q) = P̄(S(Ḡ(q; δg)); δp; Ḡ(q; δg)) =
`
P̄(S; δp)

´
(Ḡ(q; δg)),

and thus has a constant Jacobian matrix since the photometric

transformation does not depend on the pixel location. We rewrite

it as:

e1(q) =
`
P̄(S; δp)

´
(Ḡ(q; δg)) =

 
S +

lX
k=1

δk
pAk

!
(Ḡ(q; δg)).

∂e1

∂δk
p

(q; δp = 0; δg = 0) = Ak(q)

∂e1

∂δg
(q; δp = 0; δg = 0) = (∇S)(q)T(∇gḠ)(q;0).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
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c) Second term.: The second term has a varying Jacobian

matrix. Define:

e2(q) = P(T (G(q;g));p; Ḡ(q; δg)).

We expand it as:

e2(q) = T (G(q;g)) +

lX
k=1

pkAk(Ḡ(q; δg)).

We get:

∂e2

∂δk
p

(q; δp = 0; δg = 0) = 0

∂e2

∂δg
(q; δp = 0; δg = 0) =

lX
k=1

pk(∇Ak)(q)T(∇gḠ)(q;0).

These partial derivatives are not constant since they depend on p

which is updated every iteration.

2) Basis Images Aligned With the Target Image:
a) The error function.: We replace the argument q of the

photometric transformation by its corresponding point in the

target image, that we dub γ = G(Ḡ−1(q; δg);g). Each term of

the error in (4) is thus:

f(q) = S(q)− P̄−1(P(T (γ);p; γ); δp; γ).

Using the inverse compositional trick on the photometric trans-

formation gives:

f(q) ≈ P̄(S(q); δp; γ)− P(T (γ);p; γ).

Switching the incremental photometric and geometric transforma-

tions and using the inverse compositional trick on the geometric

transformation gives:

f(q) ≈ P̄(S(Ḡ(q; δg)); δp;G(q;g))− P(T (G(q;g));p;G(q;g)).

b) Second term.: The second term f2 =

P(T (G(q;g));p;G(q;g)) rewrites as:

f2(q) = P(T (G(q;g));p;G(q;g)) = (P(T ;p))(G(q;g)).

This is the warped image W , which does not depend on the

unknown incremental parameters δg and δp.

c) First term.: The first term has a varying Jacobian matrix.

Define:

f1(q) = P̄(S(Ḡ(q; δg)); δp;G(q;g)).

We expand it as:

f1(q) = S(Ḡ(q; δg)) +

lX
k=1

δk
pAk(G(q;g)).

We get:

∂f1

∂δg
(q; δp = 0; δg = 0) = (∇S)(q)T(∇gḠ)(q;0)

∂f1

∂δk
p

(q; δp = 0; δg = 0) = Āk(Ḡ(q;g)).

So the partial derivatives with respect to δg are constant but those

with respect to the δk
p are varying – they are the warped basis

images, depending on the current geometric parameters which are

updated every iteration.

C. Experimental Results on Real Data

Our goal is to validate our algorithms and compare them to

different algorithms on real data sets, as well as to evaluate the

photometric transformations presented in §V, and to compare

the results obtained when using grey-level and color images.

We show results for the pair of images shown on figure 1.

They have been used in figures 1 and 1 to illustrate the inverse

compositional and the dual inverse compositional algorithms.

They were acquired by the same camera under different lighting

conditions, namely natural daylight and electric light. The image

resolution is 640×480. The initial warp was chosen as the identity

since the images are close enough to enable convergence to the

sought after solution for all methods. The number of pixels of

interest chosen near the image edges is 53,889.

We launched the simultaneous inverse compositional, the

project out and the dual inverse compositional algorithms with

the images converted to grey-level for estimating gain and bias

and with the color images and different photometric models

(single gain and bias, multiple gains and biases and full affine

channel mixing). We show the results in figure 4 for the grey-level

gain and bias (2 parameters) and the color full affine cases (12

parameters). Note that for PO, we compute the best photometric

transformation at each iteration to measure the photometric error,

but this is not counted into the measured computational time.

In the grey-level, gain and bias case, PO converges to the

solution in 53 iterations, while DIC and SIC both requires 79

iterations and behave very similarly. All three of them converge

to the same solution.

In the color, affine case, SIC converges first, in 69 iterations,

followed by DIC which requires 95 iterations. Finally, PO uses

204 iterations to converge. All three algorithms converge to the

same solution.

We observe that the first iteration increases the photometric

error for both SIC and DIC. The magnitude of error variation,

both at the increasing and decreasing phases, is strongly related

to the number of parameters in the photometric model. In other

words, the more flexible the photometric model, the steepest the

error variation. This behavior is discussed below.

All three algorithms diverge when no photometric model is

used. Figure 5 shows the error image at convergence for the

different photometric model.

Finally, we report the total computational time in seconds for

each algorithm and each photometric model:

G&B Single G&B Multiple G&B Full Affine

SIC 20.09 50.29 54.72 89.02

PO 3.88 8.57 12.81 15.24

DIC 5.95 7.03 7.45 7.81

It is clear that SIC is the most expensive algorithm in all cases,

being 4 to more than 10 times slower than DIC, while PO is faster

in the grey-level gain and bias case, but slower in all the three

color cases.

We observed in our experiments that the photometric error

measured throughout the iterations is often increased by the first

iteration and, very rarely, by the second iteration for SIC and DIC.

This phenomenon is thus not related to the form of the update

rule. We have the following hints to understand this behavior:

• The higher the number of parameters in the photometric

transformation, the steepest the photometric error curve, both

at the increasing and decreasing phases.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
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Fig. 4. Color photometric error through the iterations for the image pair shown in figure 1 for different photometric transformations and the dual inverse
compositional algorithm.
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Fig. 5. The error images for different color photometric transformations applied to the image pair in figure 1 with the dual inverse compositional algorithm.

• Using edge pixels only make stronger this behavior com-

pared to using the whole region of interest.

The geometric error reflects the closeness of the estimated warp to

the true one. Using simulated data, we assessed the change in the

geometric error caused by the first iteration. As already observed

by Baker et al. [1], it always decreases. This holds true even if

the photometric error increases. In other words, the first iteration

brings the warp closer to the sought after solution, while it takes

the photometric transformation away from it, since the value of

the error function, namely the photometric error, increases.

The reasons are as follows. The initial warp causes a geometric

misalignment of the images. The intensity or color correspon-

dences from which the photometric transformation is estimated

are thus erroneous. All tested algorithms are based on a Gauss-

Newton approximation of the error function, which is not fully

second-order, and thus do not fully preserve the tight coupling be-

tween the incremental warp and photometric transformation. The

badly estimated incremental photometric transformation, along

with the incremental warp, can thus make the photometric error

grow, as we observed. This phenomenon is amplified by the fact

that the error function is an affine function of the photometric

transformation parameters that thus exactly fits the intensity or

color correspondences conditioned on the current warp estimate.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



6.1. PHOTOMETRY IN DIRECT IMAGE REGISTRATION 23

6.1.3 Paper (SCIA’07) – Shadow Resistant Direct Image Registration

Shadow Resistant Direct Image Registration

Daniel Pizarro1 and Adrien Bartoli2

1 Department of Electronics, University of Alcala
Alcala de Henares, Spain
pizarro@depeca.uah.es

2 LASMEA – CNRS / Université Blaise Pascal
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Abstract. Direct image registration methods usually treat shadows as
outliers. We propose a method which registers images in a 1D shadow
invariant space. Shadow invariant image formation is possible by project-
ing color images, expressed in a log-chromaticity space, onto an ‘intrinsic
line’. The slope of the line is a camera dependent parameter, usually ob-
tained in a prior calibration step. In this paper, calibration is avoided
by jointly determining the ‘invariant slope’ with the registration param-
eters. The method deals with images taken by different cameras by using
a different slope for each image and compensating for photometric vari-
ations. Prior information about the camera is, thus, not required. The
method is assessed on synthetic and real data.

Key words: Direct Registration, Shadow Invariant, Photometric Cam-
era Calibration

1 Introduction

The registration of image pairs consists in finding the transformation that best
fits two images. That has been a key issue in computer vision, robotics, aug-
mented reality and medical imagery. Although it was thoroughly studied in the
past decades, there remain several open problems. Roughly speaking, there are
two kinds of approaches: direct and feature based methods. The formers rely
on fiducial points described by local properties, which allows matching despite
geometric and photometric transformations. The geometric registration is thus
formed by minimizing an error between the fiducials position expressed in pixels.
As opposed to the local approach, direct methods use pixel discrepancy as a reg-
istration error measure. The brightness constancy assumption states that pixel
values are equivalent under the sought after transformation. The warp relating
two images consists of some geometrical transformation (e.g. an homography or
an affine transformation) and some photometric model (e.g. channel intensity
bias and gain or full affine channel mixing).

One of the main problems that arises in direct methods is the existence of
partial illumination or shadow changes in the scene to register. In such cases,
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the brightness constancy assumption is violated. This paper addresses the prob-
lem of directly registering such kind of images. Our proposal is based on ex-
pressing the error in a transformed space different from the usual one based
on image intensities. In this space which is onedimensional the change of illu-
mination or shadows are removed. This invariant space is governed by a single
parameter which is camera-dependent and defines a transformation between the
log-chromaticity values of the original RGB image and the invariant image. We
propose a method for jointly computing the sought after geometric registration
and the parameters defining the shadow invariant space for each image.

Paper Organization

We review previous work and give some background in §2. In §3 we state our
error function and give an algorithm for effectively registering images in §4.
Results on synthetic and real images are presented in §5. Finally, conclusions
are presented in §6.

2 Previous Work

The content of this section is divided into two major parts. First, some previous
work about direct image registration is briefly described. The general approach
and the most common problems are described. Secondly, some background on
color image formation is presented, necessary for describing the process of shadow
invariant image formation, which is finally stated.

2.1 Direct Image Registration

The registration of two images is a function P , which models the transformation
between a source image, S and a target image T over a region of interest R.
Function P(T (q), q; φ) is parametrized by a vector φ composed of geometric and
photometric parameters in the general case.

The error function to be minimized make is the sum of square differences of
intensity values, over the parameter vector φ.

The problem is formally stated as:

min
φ

∑
q∈R

‖S(q) − P(T (q), q; φ)‖2. (1)

A linearization of each residual, which allows to solve it in an iterative Linear
Least Square fashion, was popularized by the Lucas-Kanade algorithm [1]. There
exist remarkably fast approaches for warps functions forming groups. It is known
as the Inverse Compositional algorithm [2] and it has been successfully applied
with geometric transformations and in [3] an affine photometric model is also
included.

The presence of shadows or illumination changes affect the applicability of
equation (1), producing registration errors or divergence in the algorithm. There
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exist plenty of proposals in the literature to extend the direct registration with
a certain grade of immunity against perturbations. The most common approach
is to mark shadow areas as outliers. The use of robust kernels inside the mini-
mization process [4] allows the algorithm to reach a solution. Other approaches
try to model the shadows and changes of illumination. In [5] a learning approach
is used to tackle illumination changes by using a linear appearance basis.

2.2 Background on Color Image Formation

We present the physical model used to describe the image formation process. The
theory of invariant images is described later in terms and under the assumptions
stated below.

We consider that all the surfaces are lambertian, that the lights follow a
planckian model and that the camera sensor is narrow-band. The RGB color
obtained at a pixel is modeled by the following physical model:

ρk = σS(λk)E(λk, T )Qkδ(λ− λk) k = 1, 2, 3, (2)

where σS(λk) represents the surface spectral reflectance functions times the
lambertian factor. The term Qkδ(λ−λk) represents the sensor spectral response
function for each color channel k centered at wavelength λk. E(λk, T ) is the
spectral power distribution of the light in the planckian model. This is modeled
by the following expression:

E(λ, T ) = Ic1λ
(−5)e

 −c2

Tλ

!

(3)

This model holds for a high rank of color temperatures T = [2500o, 10000o].
The term I is a global light intensity and the constants c1 and c2 are fixed.

According to this model, the value obtained by the camera at any pixel ρk

is directly obtained by:

ρk = σIc1(λk)−5e

 −c2

Tλk

!

S(λk)Qk. (4)

2.3 Shadow Invariant Image Theory

The transformation which allows invariant image formation is based on the orig-
inal work of [6] in which a method for obtaining an illumination invariant, in-
trinsic image from an input color image is developed . The method relies on the
above presented image formation model, based on the assumption of lambertian
surfaces, narrow-band sensors and planckian illuminants.

Given the three channel color components ρ = (ρ1, ρ2, ρ3) described in (4),
the logarithm of chromaticity ratios are formed.
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X1 = log
(

ρ1

ρ3

)
= log(s1/s3) + (e1 − e3)/T

X2 = log
(

ρ2

ρ3

)
= log(s2/s3) + (e2 − e3)/T,

(5)

where ek = −c2/λk only depends on camera spectral response and not on
the surface and sk = c1λ

(−5)
k S(λk)Qk does not depend on color temperature T .

The pair of values X1 and X2 lie on a line with direction vector ē = (e1 −
e3, e2 − e3). Across different illumination temperature T , vector X = (X1,X2)
moves along the line.

An illumination invariant quantity can be formed by projecting any vector X
onto the orthogonal line defined by ē⊥ = (cos(θ), sin(θ)). Therefore, two pixels
from the same surface viewed under different illuminations get projected at the
same place.

To reduce the arbitrary election of the chromaticity ratios, in [6], is proposed
a method to use the geometrical mean (ρ1ρ2ρ3)(1/3) of the three channel values
as denominator. A vector of three linearly dependent coordinates is obtained.
By choosing a proper decomposition, a twodimensional equivalent vector X is
obtained that preserve the essential properties of equation (5).

The transformation L is simply obtained by projecting vector X onto the
invariant line parametrized by its slope angle θ:

L(ρ, θ) = X1(ρ) cos(θ) + X2(ρ) sin(θ) (6)

This transformation, as it has been previously stated, represents the mapping
between a color image and its corresponding shadow invariant representation.
By explicitly describing the whole color image S as an input in (6), the result of
L(S, θ) is a 1D shadow invariant image. The transformation is therefore global
so it does not depend on pixel position q ∈ �2, but only on its color value.

The slope angle θ of the invariant line only depends on camera spectral
properties, so it varies across different cameras. In [6] it is presented a method
to obtain the slope by a calibration step using a color pattern or by a set of
preregistered images from the same camera under illumination changes. In [7] an
autocalibration approach is presented by finding the slope for which the entropy
of the invariant image is minimum. The later method is proved to be capable to
find the correct slope with only one image.

The entropy based method unless simple and powerful requires images in
which remarkable shadow areas are present. In the case of images in which the
change of illumination is global and no shadow is present, the method is not able
to produce the correct slope.
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3 Joint Image Registration and Photometric Camera
Calibration

Image registration is proposed under invariant transformationL(S(q), θ), applied
to both the target and the source image.

The new cost function, is expressed as follows:

min
φ,θ1,θ2

∑
q∈R

‖L(S(q), θ1)− L(P(T , q; φ), θ2)‖2 (7)

As previously stated, the slope parameter θ is, in general, different in both
images (θ1 and θ2). According to the camera model, any change of illumina-
tion intensity and temperature will be discarded in the invariant image once
parameter θ is obtained. Therefore, in theory, P can only be geometrical.

The validity of (7) is based on the assumption that in different cameras,
intrinsic images are comparable. However as is stated in this section, in general
such an hypothesis does not hold due to differences in camera response functions.
A photometric model is proposed for compensating such differences.

3.1 Camera Response Dependent Parameters

In this section it will be shown that besides the slope, between two cameras it is
of importance the inclusion of photometric parameters over RGB space so that
the invariant space of two images is directly comparable. Such parameters will
not try to compensate for global illumination as in previous attempts [3], but
instead they will represent a compensation between different camera responses.

Multiple Gain Compensation Assuming that each camera has similar spec-
tral response, so that the values of λk are similar, the slope and surface re-
flectance will produce similar values. However for different channel gains Qk the
log-chromaticity values are affected.

It is thus reasonable to include multiple gains compensation ak per channel
for the target image before computing its log-chromaticity values:

Xk = log
(

akρk

a3ρ3

)
= log(ak/a3) + log(ρk/ρ3) (8)

According to (6), the projection reduces the photometric compensation into
a one dimensional offset dL.

L(ρ, θ) = log
(

ρ1

ρ3

)
cos(θ) + log

(
ρ2

ρ3

)
sin(θ) + dL, (9)

where dL = log(a1/a3) cos(θ) + log(a2/a3) sin(θ).
In the case where both cameras where different by only constant gains, it

is still enough as a way to compensate camera responses, to compute a single
offset.
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Multiple gain and bias for each channel compensation As stated in [8],
the real response for most digital cameras is not linear. Under certain range of
values we can consider that the camera response can be approximated by a gain
and bias function. The presence of bias over RGB represents a problem since the
assumption of the invariant line is no longer valid.

Adding bias and gain over RGB results in the following invariant represen-
tation:

L(ρ, θ) = log
(

ρ1 + b1

ρ3 + b3

)
cos(θ) + log

(
ρ2 + b2

ρ3 + b3

)
sin(θ) + dL. (10)

Where dL is the same commented in the multiple gain model, and bk are
biases added to color values.

The total number of required photometric parameters is four under the as-
sumption that only one of the cameras suffer from the bias problem. In the case
that both images are suitable to be affected, an extra bias model is introduced
for the source image. For such critical case the number of parameters is increased
to seven.

The new cost function, which includes photometric parameters (φ1
p, φ

2
p) in

source and target images, is presented:

min
φ,θ1,θ2,φ1

p,φ2
p

∑
q∈R

‖L(S(q), θ1, φ
1
p)− L(P(T , q; φ), θ2, φ

2
p)‖2 (11)

Besides the commented models, specially amateur cameras suffer from many
artificial perturbations which includes saturation boosting, channel mixing and
digital filters applied to the raw image sensed.

4 Minimizing the Error Function

In this section, the optimization process involved in obtaining image registration
and invariant space parameters is presented in details.

Given the more general expression (11), which includes a photometric model,
a Gauss-Newton approach is derived as an optimization method.

A first order approximation of the warped image around current estimation of
parameters Φ = (φ, θ1, θ2, φS , φT ) is obtained. The residue in the error function
is also renamed by using two different functions W1 and W2 depending on vector
Φ.

The renamed cost function becomes:

min
Φ

∑
q∈R

‖W1(S(q), Φ) −W2(T (q), q, Φ)‖2. (12)

The Gauss-Newton approximation is:

ε2 ≈
∑
q∈R

‖W1(S(q), Φ) −W2(T (q), q, Φ) + (LW1(q) + LW2(q))ΔΦ‖2, (13)
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where LW1(q) and LW2(q) represents respectively the first derivatives of func-
tions W1 and W2. ε2 is the residual error from the cost function to minimize.

The parameter increment ΔΦ is given by solving the following linear system:

EΦΔΦ = bΦ, (14)

where EΦ represents the approximated Hessian of the error function:

EΦ =
∑
q∈R

(LW1(q) + LW2(q))(LW1(q) + LW2(q))
T . (15)

The right hand side of the linear system bΦ includes the error image:

bΦ =
∑
q∈R

(LW1(q) + LW2(q))(W1(S(q), Φ) −W2(T (q), q, Φ)). (16)

Once the increment ΔΦ is obtained Φ is updated accordingly with each model.

4.1 Using an Homography for the Geometric Model

The used geometric model consists of an homography transformation. Homo-
graphies are fully representative as global geometrical models. They are suitable
for registering planar scenes or under camera rotation. It is a groupwise homo-
geneous transformation represented by a full rank 3 × 3 matrix H with eight
degrees of freedom. The homography is applied to the homogeneous coordinates
q in the target image for composing the warp. It is assumed that the first eight
coordinates of vector Φ represent the values of ΔH at each iteration.

5 Experimental Results

In this section some of the results are presented in order to validate the proposal.
The experiments are designed to compare the convergence properties of our
algorithm and to test the photometric models we proposed.

5.1 Synthetic Image Registration

A set of synthetic images is generated according to the model presented in §2.
Each image consists of a set of quadrangular color patches under different il-
luminations, covering a range of color temperatures from 2500o to 10000o. By
modifying camera response parameters we are able to simulate images taken by
different cameras. Two models are considered for the experiment.

– Multiple gains: described by only one bias parameter dL in the invariant
space.

– Multiple gains and biases: Considering the complete case, the model has five
parameters for the target image φpT and three parameters φpS for the source
image.
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compared Algorithms In all the experiments the following algorithms are
compared:

– DRSI-NP: Direct Registration in Shadow Invariant space with No Photo-
metric model to compensate between cameras.

– DRSI-MG: Direct Registration in Shadow Invariant space with Multiple
Gains as a photometric model to compensate between cameras.

– DRSI-MGB: Direct Registration in Shadow Invariant with Multiple Gains
and Biases in target image and only bias in source image.

– DR: Direct Registration over greylevel values

Simulation Setup Given two differently illuminated sequences of patches, we sim-

ulate a 2D homography by displacing the corners in the target image in random direc-

tions by some value γ with default value of 5 pixels. The target image is contaminated

by gaussian noise with variance σ and a default value of 25.5. The value of photomet-

ric parameters for target and source image has been chosen fixed for the simulations:

φT = (b1 = 3.2, b2 = 2.1, b3 = 1) and φS = (b1 = 0.8, b2 = 4, b3 = 3.5) . Both tar-

get and source image has a slope parameter of θ1 = θ2 = 169.23o . Interest area R is

obtained by using strong edges in greylevel image and dilating them by a factor of 8..

Fig. 1. Pair of synthetic images

Results In Figure 2.a and 2.b the geometric error is presented against noise
variance σ and initial pixel displacement γ. In Figure 2.c and 2.d the slope angle
error is presented against noise variance σ and initial pixel displacement γ.

5.2 Real Image Registration

For testing the presented proposal with real images, the same planar surface is
acquired with two different low-cost commercial cameras. By manually clicking
in the four corners of the planar shape, an interest area R is obtained. If the
two regions are far from 10 pixels of displacement a pre-registration is used
using manual clicked points. The results presented show the error measured
between a pair of images transformed into its respective invariant spaces across
the iterations.
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6 Conclusions

A new method to achieve direct image registration in the presence of shadows
is proposed. The approach is based on minimizing the registration error directly
in a transformed space from RGB space. The new space is parametrized by a
single camera dependent parameter, the invariant line slope. Such parameter is
in general different from each camera, so it is included in the optimization stage.
Solving registration parameters in the invariant space from images taken by dif-
ferent cameras offers difficulties due to the response function of each camera. In
this paper, two models are proposed to compensate such differences: Multiple
Gain compensation and Multiple Gain and Bias. Results on synthetic data show
that the last one obtains better registration performance against pixel displace-
ment and noise. In real images, under some conditions the use of the multiple
gains and biases model is crucial to achieve registration. If both cameras are of
similar response, the simple algorithm which avoid photometric model calcula-
tions is the best choice. The use of invariant space in direct methods allows to
avoid shadows directly without the need of using complex methods which use
illumination modeling or robust kernel optimization.
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Abstract

Thin-Plate Spline warps have been shown to be very
effective as a parameterized model of the optic flow field
between images of various deforming surfaces. Examples
include a sheet of paper being manually handled. Recent
work has used such warps for images of smooth rigid sur-
faces. Standard Thin-Plate Spline warps are not rigid, in
the sense that they do not satisfy the epipolar geometry con-
straint, and are intrinsically affine, in the sense of the affine
camera model.

We propose three types of warps based on the Thin-Plate
Spline. The first one is a flexible rigid warp. It describes the
optic flow field induced by a smooth rigid surface, and sat-
isfies the affine epipolar geometry constraint. The second
and third ones extend the standard Thin-Plate Spline and
the proposed rigid flexible warp to the perspective camera
model. The properties of these warps are studied in details,
and a hierarchy is defined. Experimental results on simu-
lated and real data are reported, showing that the proposed
warps outperform the standard one in several cases of in-
terest.

1. Introduction
Given two images of some scene surface, there exists an

R
2 → R

2 function, called a warp, mapping a point from

the first image to the corresponding point in the second im-

age. For instance, two images of a rigid planar surface taken

by two perspective cameras are related by an homographic

warp. For a non-planar 3D scene, the warp is more complex

since it depends on the surface depth. When the observed

surface deforms, the warp is even more involved. Examples

of rigid scene models include piecewise or nearly planar

structures. Examples of deformable scene models include

the flexible low-rank shape and face models.

Representing the warp using a parametric function re-

quires prior assumptions about the observed scene structure.

One common, fairly generic assumption is that a smooth

surface is observed. This naturally leads to using the Thin-

Plate Spline (TPS) as a building block for the warps. TPS

are smooth, compact and convenient, R
2 → R functions.

Standard TPS warps, built by ‘stacking’ a pair of TPS, are

very flexible in that they are controlled by centres that may

be placed anywhere in the images. They are known to be ef-

fective approximations to many types of deformations, see

e.g. [1]. Standard TPS warps have recently been used as

simple parametric warps for images of rigid 3D surfaces by

Wills and Belongie [8] and Masson et al. [5], for respec-

tively wide-baseline matching and object tracking.

There are, however, two main issues with the use of stan-

dard TPS warps in this context, that have not been dealt with

in the literature. (i) Standard TPS warps overfit affine im-
ages of rigid surfaces. They do not in general satisfy the

rigidity constraint modeled by the affine epipolar geometry.

In that sense they are ‘too flexible’ in affine imaging condi-

tions. (ii) Standard TPS warps do not model perspective
projection. They are intrinsically affine, in the sense of the

affine camera model, since their formulation does not in-

clude a division. For instance, as mentioned in [8], they are

not able to ‘reproduce’ simple homographic warps with a

finite number of centres. Henceforth, we call DA-Warps the

standard TPS warps (for ‘Deformable Affine’).

This paper addresses the two above-mentioned issues.

First, the DA-Warps are specialized to rigid surfaces in §4.

These warps are called RA-Warps (for ‘Rigid Affine’) and

are very similar to DA-Warps with an epipolar constraint on

the warp coefficients. This solves the first issue. Second, the

RA-Warps are extended to the perspective camera model in

§5. These warps, dubbed RP-Warps (for ‘Rigid Perspec-

tive’), naturally include FP-Warps (‘Flat Perspective’) simi-

larly to the RA-Warps including FA-Warps1. This solves the

second issue for the case of rigid surfaces. Third, we intro-

duce the DP-Warps (for ‘Deformable Perspective’) which

are shown to be the perspective analogue of the DA-Warps.

This solves the second issue for the case of deformable sur-

faces. The derivation of these warps is made possible by

a feature-driven parameterization of the Thin-Plate Spline

1The FP-Warps are 2D homographic warps with 8 parameters. The

FA-Warps (for ‘Flat Affine’) are 2D affine warps with 6 parameters.
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we propose in §3. The hierarchy and dependencies between

the six types of warps mentioned so far is studied in details

in §6. In order to derive warps independent of the intrinsic

camera parameters, we consider uncalibrated cameras.

The second line of contributions in this paper, presented

in §7, is a set of algorithms for estimating the proposed

warps from image point correspondences. Experimental re-

sults are reported in §8 and our contributions discussed in

§9. Most proofs of our statement will appear in an extended

version of the paper.

2. Preliminaries
Previous work. DA-Warps, i.e. standard TPS warps, are

used in many different contexts. While there is a great body

of work on defining alternative warps, such as FFD (Free-

Form Deformations) [6] or more recently diffeomorphic

warps, DA-Warps are usually used in their original form.

Since the seminal paper by Bookstein [1], the literature is

mostly focused on estimation methods. Bookstein proposed

a method relying on point landmark correspondences, that

are chosen as centres for the DA-Warp. The DA-Warp and

point matching are simultaneously estimated using the sof-

tassign in [2]. Algorithms to make faster the computation

of DA-Warps from point correspondences are proposed in

[3]. Several papers use the integral bending energy for 3D

surface reconstruction, for instance, as one of the terms in

an energy functional, see e.g. [7]. In contrast, we build on

the existing DA-Warps to derive new warps by taking into

account the possible rigidity of the observed surface and the

perspective camera model.

Notation. Scalars are in italics, e.g. x, vectors in bold

right fonts, e.g. q, and matrices in sans-serif and calli-

graphic fonts, e.g. P and E . The elements of a vector are

written as in aT = (a1 a2 a3) where T is vector and matrix

transpose. We do not make a difference between coordinate

vectors and physical entities. The coordinates of a point in

the first image are written with a 2-vector qT = (x y). R
r

and P
r designate respectively the Euclidean and projective

spaces of dimension r. We write d2(q,q′) = ‖q − q′‖2

the Euclidean distance between two points q and q′ with

‖ · ‖2 the vector two-norm and matrix Frobenius norm. Ho-

mogeneous coordinates are written q̌T ∼ (qT 1), where

∼ means equality up to scale. Scaled homogeneous coor-

dinates are written q̃T = (qT 1). The homogeneous to

affine coordinate function ψ is defined by q = ψ(q̌). The

skew-symmetric (3 × 3) cross-product matrix [q̌]× is de-

fined such that [q̌]×q̌′ = q̌ × q̌′. Full column rank portrait

matrix pseudo-inverse is defined by X† =
(
XTX

)−1
XT.

We consider l centres with coordinates ck in the first im-

age, with k = 1, . . . , l. They are gathered in an (l × 2) ma-

trix P containing their x and y coordinates on its columns,

and an (l × 3) matrix P̃ with a third column of ones, i.e.
P̃ = (P 1). Matrix P̌ equals matrix P̃ with each row

rescaled by some scalar factor, i.e. P̌ = diag(d)P̃. The

centres in the second image are written c′k. Matrices P′, P̃′

and P̌′ are defined similarly as for the first image.

Warps in affine coordinates are written W , while W̃ and

W̌ are used for scaled homogeneous and homogeneous co-

ordinates respectively. The sets of flat affine warps and flat

perspective warps (i.e. homographic warps) are respectively

denoted SFA and SFP. For a (2 × 3) flat affine warp matrix

A and a (3 × 3) flat perspective warp matrix H, we have:

WFA(q; A) def= Aq̃ and W̌FP(q; H) def∼ Hq̃.

Thin-Plate Splines. The TPS is an R
2 → R function

driven by assigning target values αk to the l 2D centres ck

and enforcing several conditions: the TPS is the Radial Ba-

sis Function (RBF) that minimizes the integral bending en-

ergy. It is usually parameterized by an l +3 coefficient vec-

tor hT
α,λ = ( wT aT) computed from the target vector α

and a regularization parameter λ ∈ R
+. The coefficients in

w must satisfie P̃Tw = 0. These three ‘side-conditions’ en-

sure that the TPS has square integrable second derivatives.

The TPS is defined by:

ω(q,hα,λ) def= �T
qhα,λ, (1)

with �T
q

def= (ρ(d2(q, c1)) · · · ρ(d2(q, cl)) q̃T) and

ρ(d) def= d log(d) is the TPS kernel function for the squared

distance. Combining the equations obtained for all the l
centres cr with target values αr in a single matrix equation

gives:

Kλw + P̃a = α, Kr,k =


λ r = k
ρ(d2(cr, ck)) r �= k.

(2)

Adding λI acts as a regularizer. Solving for hα,λ using the

above equation and the side-conditions is the classical lin-

ear method for estimating the TPS coefficients due to Book-

stein [1]. The coefficient vector hα,λ is a nonlinear function

of the regularization parameter λ and a linear function of the

target vector α.

Rigid surfaces, fundamental and projection matrices.
The rigidity of the observed scene is modeled by the fun-

damental matrix that we write F or A for the perspective

and affine camera models respectively. In both cases, the

rigidity constraint is q̃′TF q̃ = 0. A warp W is rigid if and

only if:

W̌(q)
TF q̃ = 0 ∀q ∈ R

2. (3)

Parameterizing the affine fundamental matrix as:

A def∼

0 0

ı0 0
T


 with

{
T def= (c d e)
ıT def= (a b),

(4)
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we rewrite the definition (3) of a rigid affine warp as:

W(q)Tı + q̃T = 0 ∀q ∈ R
2. (5)

The (perspective) fundamental matrix has 7 degrees of free-

dom and lies on a nontrivial algebraic variety in R
9, written

F. The affine fundamental matrix has 4 degrees of freedom

and is a point in P
4, see e.g. [4, §9.2].

The fundamental matrix is an implicit reconstruction of

the two cameras. Canonical cameras are obtained by setting

the first (3 × 4) camera matrix to (I 0)M and the second

one to GF = ([ě′]×F ě′)M, where the second epipole e′

is defined by FTě′ = 0. Matrix M simply swaps the third

and fourth coordinates, making affine the first camera, even

in the perspective case. Note that MM ∼ I. In the affine

case, we write SA the first two rows of GF , the third row be-

ing (0 0 0 1). Within this canonical reconstruction basis,

a 3D point with depth δ can be written2 Q̃T ∼ (qT δ 1).
Reprojecting a 3D point in the second camera GF gives the

transfer equation q̃′ ∼ ḠF q̃ + gFδ with ḠF the first, sec-

ond and fourth columns of GF and gF the third one. In the

affine case, the second camera matrix SA is (2 × 4). We

Define S̄A and sA similarly to ḠF and gF .

3. Feature-Driven Parameterization of the TPS
We write hα,λ = Eλα, i.e. as a linear ‘back-projection’

of the target vector α. Matrix Eλ nonlinearly depends on λ.

It is given from equation (2) as a function of Kλ and P̃ by:

Eλ
def=


K−1

λ

(
I − P̃

(
P̃TK−1

λ P̃
)−1

P̃TK−1
λ

)
(
P̃TK−1

λ P̃
)−1

P̃TK−1
λ


 .

This parameterization has the advantages to separate λ and

α and introduces units3. The side-conditions are naturally

enforced by this parameterization.

Incorporating this parameterization into the TPS (1) we

obtain what we call the feature-driven parameterization

τ(q; α, λ) = ω(q;hα,λ) for the TPS:

τ(q; α, λ) def= �T
qEλα. (6)

This is a feature-driven parameterization since α contains

the coordinates of the target centres. In practice, these are

image points. The following important properties hold:

�T
qEλ1 = 1 and q̃Tθ = �T

qEλP̃θ ∀q ∈ R
2 ∀θ ∈ R

3. (7)

2δ is actually the inverse of the depth relative to the first camera. If the

camera is calibrated this is the ‘true’ inverse depth, otherwise this is the

inverse projective depth. The advantages of this 3D point parameterization

are that it is minimal (i.e. it has 3 effective parameters) and handles points

at infinity.
3While hα,λ has no obvious unit, α in general has (e.g. pixels, meters).

This stems from EλP̃ = (0 I)T. The asymptotic regulariza-

tion behaviour of the TPS is an affine transformation:

lim
λ→+∞

τ(q; α, λ) = ζTq̃, ζ
def= P̃†α.

4. Warps with the Affine Camera Model

4.1. DA-Warps – Standard TPS-Warps

Derivation and properties. Standard R
2 → R

2 TPS-

Warps are obtained by stacking two R
2 → R TPS sharing

their centres and regularization parameter. Using (6), this

gives (τ(q;x, λ) τ(q;y, λ)) = �T
qEλ

(
x y

)
. DA-Warps

are thus defined as:

WDA(q; P′, λ) def= MDA�q, MT
DA

def= EλP′. (8)

We call this a Deformable Affine Thin-Plate Spline Warp,

or ‘DA-Warp’ since it models images of deformable sur-

faces and corresponds to an affine camera model. Thanks

to property (7), we write homogeneous DA-Warps as

W̃DA(q; P′, λ) def= M̃DA�q with M̃T
DA

def= EλP̃′.

Figure 1. The DA-Warps are interpreted as relating the projection

of a deforming 3D surface by two affine cameras.

The set of DA-Warps is written SDA. They have 2l de-

grees of freedom through P′ ∈ R
2l. The asymptotic regu-

larization behaviour is as follows:

lim
λ→+∞

WDA(q; P′, λ) = LDAq̃′, LT
DA

def= P̃†P′.

In other words, a DA-Warp tends to a flat affine warp repre-

sented by the (2× 3) matrix LDA. It can be shown that LDA

minimizes the transfer error4.

4The transfer error is the discrepancy between the data points in the

second image and the points transferred by the warp from the first image,

see §7 for more details.
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A projected deformable surface interpretation. We

propose a geometrical interpretation of the DA-Warps as

the warps induced by the observation of a deforming sur-

face with two affine cameras, as illustrated in figure 1. In

order to model the surface depth, its motion and deforma-

tion, we introduce an R
2 → R

3 map, parameterizing the

surface in a concise manner by the 3D coordinates C′
k of the

l centres. This map is built by stacking three TPS sharing

their centres and regularization parameter. More formally,

gathering the ‘3D centres’ C′
k in a single (l × 3) matrix

ZT = (C′
1 · · · C′

l), the map is written:

R(q; Z, λ) def= M3D�q, MT
3D

def= EλZ. (9)

Reprojecting a 3D surface point gives q′ = S̄AZTET
λ �q +

sA. Using property (7), we get q′ = SAZ̃TET
λ �q, that we

identify with a DA-Warp (8), giving:

q′ = WDA(q; Z̃ST
A, λ).

This shows that the 3D centres C′
k can be replaced by the

2D centres c′k in the second image since P′ = Z̃ST
A.

This geometric interpretation does not only provide a

strong intuition on the fact that the DA-Warps are intrin-

sically affine, but also a setting for naturally deriving the

DP-Warps, their perspective projection extension, in §5.2.

4.2. RA-Warps – Rigid Affine Warps

Derivation and properties. Applying the rigid affine

warp definition (5) to a DA-Warp (8) gives:

�T
qEλP′ı + q̃T = 0 ∀q ∈ R

2.

Using property (7) gives �T
qEλ

(
P′ı + P̃

)
= 0, ∀q ∈ R

2.

This implies P′ı + P̃ = 0(l×1), which is the epipolar con-

straint for all pairs of centres. We call it the rigidity consis-

tency constraint for DA-Warps. This means that if the warp

satifies the epipolar geometry, then the centres also have to.

Each pair of centres ck ↔ c′k satisfies the epipolar

constraint and thus is the projection of a 3D point CT
k =

(cT
k δk) in the canonical basis. Reprojecting all centres in

the second image gives P′ = (P δ 1)ST
A. Substituting into

the DA-Warp formulation (8) gives:

WDA(q; P′, λ) = SA(P δ 1)TET
λ �q,

which can be seen as the projection of some 3D point by the

second camera, thereby satisfying the rigidity constraint,

completing the proof. We thus define:

WRA(q; δ,A, λ)
def
= MRA�q, MT

RA
def
= Eλ(P δ 1)ST

A. (10)

This definition of RA-Warps can be made homogeneous by

replacing the (2×4) camera SA by its (3×4) equivalent GA
in the above equations, giving W̃RA(q; δ,A, λ) def= M̃RA�q

with M̃T
RA

def= Eλ(P δ 1)GT
A.

Figure 2. The RA-Warps are inter-

preted as relating the projection of

a rigid smooth 3D surface by two

affine cameras.

From the above

derivation follows that

the set of RA-Warps,

denoted SRA, is a

subset of SDA. In can

be shown that the set

of flat affine warps

SFA is included into

SRA. The RA-Warps

have l + 4 degrees

of freedom through

(δ,A) ∈ R
l × P

4.

Parameters δ are the

depth of the centres

with respect to the

first camera.

The asymptotic

regularization behaviour of the RA-Warps is derived

directly from the one for the DA-Warps (8):

lim
λ→+∞

WRA(q; δ,A, λ) = LRAq̃, LT
RA

def
= P̃†(P δ 1)ST

A.

In other words, an RA-Warp tends to a flat affine warp rep-

resented by the (2 × 3) matrix LRA. It can be shown to be

rigid and can be written LRA = SA + sAδTP̃†, a plane-

induced affine warp minimizing the transfer error, under the

assumption that the point correspondences satisfy the rigid-

ity constraint.

A projected rigid surface interpretation. A geometric

interpretation of the RA-Warps, illustrated in figure 2, di-

rectly stems from their definition (10). The RA-Warps are

induced by a surface defined as a Monge patch parameter-

ized by a TPS mapping points from the first image to their

depths. This R
2 → R TPS is of the form (6) and has the

same centres as the RA-Warp. This is derived by expanding

the formulation (10) of the RA-Warps and property (7):

WRA(q; δ,A, λ) = S̄Aq̃ + sAτ(q; δ, λ). (11)

5. Warps with the Perspective Camera Model
5.1. RP-Warps – Rigid Perspective Warps

We derive the RP-Warps by introducing perspective pro-

jection in the RA-Warps. Following §4.2, we pick up a 3D

point Q on the scene surface, defined by an R
2 → R TPS

parameterized Monge patch, and reproject it in the second

image, giving from equation (11):

W̌RP(q; δ,F , λ) ∼ ḠF q̃ + gFτ(q; δ, λ).

Replacing τ by its expression (6), and applying property (7)

to each of the three rows of ḠF , we get W̌RP(q; δ,F , λ) ∼
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(ḠF P̃T + gFδT)ET
λ �q and thus:

W̌RP(q; δ,F , λ)
def∼ M̌RP�q, M̌T

RP
def∼ Eλ(P δ 1)GT

F . (12)

This is the homogeneous Rigid Perspective Thin-Plate

Spline Warp. The homogeneous coordinates of the trans-

ferred point are linear functions of �q. The affine coor-

dinates are obtained as ratios of linear functions through

WRP(q; δ,F , λ) def= ψ(W̌RP(q; δ,F , λ)).
The set of RP-Warps, denoted SRP is a superset of SRA.

This is shown easily by choosing for F an affine fundamen-

tal matrix. It can be shown that SRP is also a superset of

SFP. An RP-Warp is guaranteed to be rigid since it implic-

itly projects 3D points, giving image points satisfying the

epipolar geometry constraint. It has l + 7 degrees of free-

dom through (δ,F) ∈ R
l × F.

The asymptotic regularization behaviour is:

lim
λ→+∞

W̌RP(q; δ,F , λ) ∼ ĽRPq̃, ĽT
RP

def∼ P̃†(P δ 1)GT
F .

An RP-Warp thus tends to a flat perspective warp repre-

sented by the (3 × 3) homogeneous homography matrix

ĽRP. It can be shown to be the plane-induced rigid warp

ĽRP ∼ GF + gFδTP̃† minimizing an algebraic transfer

error, under the assumption that the point correspondences

satisfy the rigidity constraint.

5.2. DP-Warps – Deformable Perspective Warps

The DP-Warps form a superset of all other warps derived

so far in this paper, including the standard DA-Warps. The

RP-Warps are derived by introducing perspective projec-

tion in the RA-Warps. We derive the DP-Warps from the

DA-Warps in the same spirit. Consider the deformable sur-

face geometric interpretation shown in figure 1. The surface

seen by the second camera is defined by an R
2 → R

3 map

R(q; Z, λ). Projecting a point on this surface to the second

image gives q̌′ ∼ ḠFR(q; Z, λ)+gF . Substituting the map

(9) defining the 3D surface gives:

q̌′ ∼ ḠFZTET
λ �q + gF .

Using property (7), we get q̌′ ∼ ḠF Z̃TET
λ �q. The centres

in the second image are the reprojection of the ‘3D centres’

in matrix Z. The weights of the homogeneous coordinates

in P̌′ are important: they model the perspective part of the

DP-Warps. We thus define the DP-Warps as:

W̌DP(q; P̌′, λ) def∼ M̌DP�q, M̌T
DP

def∼ EλP̌′. (13)

The affine coordinates are obtained as ratios of linear func-

tions through WDP(q; P̌′, λ) def= ψ(W̌DP(q; P̌′, λ)).
The set of DP-Warps, denoted SDP, forms a superset of

SRP and a superset of SDA. The DP-Warps have parameters

P̌′ and thus 3l − 1 degrees of freedom. Consequently, they

can not be estimated by choosing as centres all data points:

each point correspondence giving two contraints, we end up

with 2l contraints, which is less than the 3l − 1 unknowns.

Methods for estimating DP-Warps are reported in §7.

The asymptotic regularization behaviour is formulated

below for all data points chosen as centres. A conse-

quence is that the limiting warp we get is undetermined, i.e.
has some free parameters. Unsurprisingly, it actually has

(3l − 1) − 2l = l − 1 free parameters, i.e. the difference

between the number of free parameters of the DP-Warps

and the number of constraints given by interpolating the l
centres:

lim
λ→+∞

W̌DP(q; P̌′, λ) ∼ ĽDPq̃, ĽT
DP

def∼ P̃†diag(d)P̃′.

The (l × 1) vector d, defined up to scale, represents the

l − 1 free parameters of the limiting flat perspective warp,

represented by matrix ĽDP, minimizing an algebraic trans-

fer error, different from the one we use in §7.

6. A Hierarchy of Warps
The aim of this section is to define a hierarchy between

the sets of standard DA-Warps SDA, of flat affine and per-

spective warps SFA and SFP, and of the three types of warps

we introduced, SRA, SRP and SDP. The whole hierarchy is il-

lustrated in figure 3. So far, we have established SRA ⊂ SDA

and SRA ⊂ SRP. Intuitively, the common warps to SDA and

SRP must be rigid and affine. More precisly, we have SRA =
SDA ∩ SRP. We also established that SDP is a superset of all

the other warps, i.e. SRP ⊂ SDP and SDA ⊂ SDP, and thus

SRA ⊂ SDP. The set of DA-Warps SDA does not contain any

flat perspective warp. More formally, (SFP−SFA)∩SDA = ∅,

implying (SFP − SFA) ∩ SRA = ∅.

SDA, 2lSDA, 2l SDP, 3l 1SDP, 3l 1

SFA, 6SFA, 6 SFP, 8SFP, 8

SRA, l + 4SRA, l + 4 SRP, l + 7SRP, l + 7

Figure 3. Hierarchical representation for the three proposed types

of warps – RA, RP and DP – along with the standard TPS warps,

dubbed DA-Warps, and the flat warps FA-Warps and FP-Warps. D

stands for Deformable, R for rigid, F for flat, A for Affine and P

for Perspective. The number of degrees of freedom for l centres is

indicated for each set of warps.

7. Estimation of the Warps
We propose warp estimation methods from m point cor-

respondences qj ↔ q′
j . We examine two cases for the cen-

tres in the first image. (i): ‘centre-on-data’ – the centres

in the first image coincide with the data points, i.e. m = l.
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(ii): ‘arbitrary-centres’ – the centres in the first image may

not coincide with the data points. They are typically chosen

on a regular grid or as interest points. We assume m ≥ l,
i.e. we have sufficiently many point correspondences to es-

timate the warp without having to regularize it.

All warps are estimated by minimizing the transfer er-

ror, i.e. the discrepancy, measured by the Euclidean dis-

tance, between the data points in the second image, and the

corresponding points transferred by the sought after warp

from the first image. Criteria based on a 3D depth error

for the rigid warps are avoided since they are not physically

meaningful for uncalibrated cameras. For most warps, the

transfer error is nonlinear. Two-step methods and algebraic

approximations are used to get an initial estimate through

Linear Least Squares minimization (LLS), solved using the

pseudo-inverse technique or Singular Value Decomposition

(SVD) of the design matrix, if the system is homogeneous,

enforcing unit two-norm on the unknown vector. The initial

estimate is refined by iteratively minimizing the transfer er-

ror through Nonlinear Least Squares minimization (NLS)

with the Levenberg-Marquardt algorithm, see e.g. [4, §A].

For a warp W with parameters U , the minimization problem

is generically written:

ϑ(W,U) def= min
U

n∑
j=1

‖W(qj ;U , λ) − q′
j‖2.

DA-Warps. The minimal number of point correspon-

dences is m ≥ 3. In the centre-on-data case, this is the clas-

sical problem solved by Bookstein [1]. With our feature-

driven parameterization (8), the transformation is readily

expressed in terms of the centre coordinates P′. Note that

the data points are interpolated, which nullifies the trans-

fer error. In the arbitrary-centre case, we solve ϑ(WDA,P′).
Writing �qj

as �j , and replacing WDA by its expression (8),

we get an LLS problem:

min
P′

m∑
j=1

∥∥∥�T
j EλP′ − q′

j
T
∥∥∥2

.

RA-Warps. A single algorithm solves both the centre-on-

data and arbitrary-centre cases for m ≥ 4 point correspon-

dences. RA-Warps depend on the affine fundamental matrix

A and a depth vector δ. Contrarily to the DA-Warp case,

ϑ(WRA, {δ,A}) is an NLS problem due to the coupling be-

tween δ and A in the expression (10) of the warp. In order

to find an initial estimate, we use a two-step procedure. We

compute A using e.g. the Gold Standard algorithm in [4,

§14.3]. Given A, finding δ by minimizing the transfer er-

ror, i.e. solving ϑ(WRA, δ) turns out to be an LLS problem:

min
δ

m∑
j=1

∥∥∥sA�T
j ET

λ δ + �T
j EλP̃ST

A − q′T
j

∥∥∥2

.

RP-Warps. For both the centre-on-data and the arbitrary-

centre cases, the minimal number of point correspondences

is m ≥ 7. RP-Warps depend on the fundamental matrix F
and a depth vector δ. ϑ(WRP, {δ,F}) is an NLS problem,

for several reasons: (i) δ and F are coupled in the homo-

geneous expression (12) of the warp, (ii) finding the affine

coordinates of the transferred point requires a division and

(iii) the fundamental matrix must fulfill a nonlinear rank-

deficiency constraint5. Similarly to the algorithm for the

RA-Warps, we use a two-step initialization procedure. We

compute F using e.g. the Gold Standard algorithm in [4,

§11.4]. Given F , we estimate δ by minimizing an algebraic

approximation to the transfer error:

min
δ

m∑
j=1

d2
a(W̌RP(qj ; δ,F , λ), q̃′

j),

with d2
a(q̌, q̌′) = ‖S[q̌]×q̌′‖2 an algebraic distance be-

tween points q and q′, and S = (I 0) simply selects the

first two rows of the cross-product. The algebraic approxi-

mation yields an LLS minimization problem since the al-

gebraic distance directly compares homogeneous coordi-

nate vectors, thereby avoiding the need for the perspec-

tive division. Normalizing the image coordinates is cru-

cial to make the algebraic distance ‘similar to’ the Eu-

clidean one [4]. Substituting da by its expression, and

the RP-Warp by its homogeneous formulation (12), we get

minδ

∑m
j=1 ‖S[q̃′

j ]×GF (P δ 1)TET
λ �j‖

2
and as sought,

after minor algebraic manipulations, an LLS problem:

min
δ

m∑
j=1

∥∥∥S[q̃′
j ]×gF�T

j Eλδ + S[q̃′
j ]×ḠF P̃TET

λ �j

∥∥∥2

.

DP-Warps. The minimum number of data points is

m ≥ 4. In the arbitrary-centre case, ϑ(WDP, P̌
′) is an

NLS problem, due to the division required for finding

the affine coordinates of the transferred point. An ini-

tial estimate is found, as for the RP-Warps, by minimiz-

ing an algebraic approximation to the transfer error, i.e.
minP̌′

∑m
j=1 d2

a(W̌DP(qj ; P̌′, λ), q̃′
j). The arbitrary scale of

P̌′ is fixed by enforcing its norm to unity, i.e. ‖P̌′‖ = 1. Re-

placing da by its expression, and W̌DP by its homogeneous

expression (13), we obtain, after some minor algebraic ma-

nipulations, an LLS problem:

min
P̌′,‖P̌′‖=1

m∑
j=1

∥∥∥S[q̃′
j ]×diag3(�

T
j Eλ)vect(P̌′)

∥∥∥2

,

with diagr(x) an r block diagonal matrix with x the re-

peated block, and with vect the row-wise matrix vectoriza-

tion.

5In practice, we directly optimize over the 12 entries of the second

projection matrix to avoid parameterizing the nontrivial variety of funda-

mental matrices.
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The simple centre-on-data setting in not possible for this

type of warps. Indeed, as already discussed, the 2l con-

straints provided in general by l centre correspondences are

not enough to constrain the 3l − 1 degrees of freedom of

the warp. In other words, there is no solution to estimate

the warp parameters by taking as centres the whole set of

point correspondences: l − 1 other point correspondences

are needed. We thus consider a weak centre-on-data case:

we pick a subset of l out of the m data points as centres,

with l ≤ � 2m+1
3 
. In case where 3l = 2m+1 holds, there is

a unique solution, which obviously depends on which data

points are chosen as centres. The general minimal case is

m = 3k + 1 and l = 2k + 1 with k ∈ R
+∗. Both the

minimal and redundent cases are solved by writing an alge-

braic approximation to the transfer error. Given the centre

coordinates P and P′ in both images, we are looking for

the parameters P̌′ of the DP-Warp. A simple way of pa-

rameterizing the problem is to use P̌′ = diag(d)P̃′, and

compute the ‘scale vector’ d only. This enforces interpola-

tion of the centres and leaves only the remaining l − 1 un-

knowns since d is an l-vector defined up to scale, leading

to mind

∑m
j=1 d2

a(W̌DP(qj ; diag(d)P̃′, λ), q̃′
j) such that

‖d‖ = 1. Substituting da by its expression, as well as the

DP-Warp from equation (13), gives an LLS problem:

min
d,‖d‖=1

m∑
j=1

∥∥∥S[q̃′
j ]×P̃′Tdiag(ET

λ �j)d
∥∥∥2

.

8. Experimental Evaluation
8.1. Simulated Data

We synthetically generated training and test data sets by

projecting 3D points into two cameras with focal length f .

The 3D points lie on paper-like 3D surfaces, i.e. with van-

ishing Gaussian curvature. We believe that it is represen-

tative of the kind of real images one may use the proposed

warps on. The 50, Gaussian noise corrupted training data

points are used as centres to estimate the warps. The er-

rors reported below are means over 500 trials of the transfer

error estimated over the 200 points of the test set, so as to

reflect the quality of the estimated warps.

Figure 4 (left) shows the results we obtained. We must

not compare the affine and perspective warps with these re-

sults, since in order to assess the influence of noise only,

we use affine cameras for the affine warps, and perspective

cameras with f = 300 pixels for the perspective warps. We

observe that the quality of the warps linearly degrades with

the noise level, and is actually around twice the noise stan-

dard deviation. This is a satisfying behaviour, holding true

for all warps.

We gradually increase the focal length of the cameras,

which has the effect of making the images more affine and

keep the scene rigid. In order to preserve the transfer er-

ror scale, we keep invariant the size of the imaged object

by translating each camera along its optical axis. Figure 4

(right) shows the result, with a 2 pixel noise level. As ex-
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Figure 4. Influence of the noise level (left) and the focal length

(right) onto the quality of the warps.

pected, the transfer error for the RP-Warps appears to be in-

variant to the focal length (the slight variations are due to the

image scale). We make the same observation for the DA-

Warps. This is due to the fact that the DA-Warps have extra

degree of freedom compared to the rigid warps approximat-

ing the perspective projection of the rigid surface. The RA-

Warps have the highest error for short focal lengths, which

dramatically decreases as the focal length increases. It even-

tually converges to the same error as for the RP-Warps when

the affine camera model becomes numerically equivalent to

the perspective one. We see that beyond fDA = 2000 pix-

els, the RA-Warps do better than the DA-Warps. This is the

breakdown focal length for the DA-Warps, above which the

lack of rigidity, and the fact that the affine approximation

is better fulfilled, makes the RA-Warps better capture the

underlying true warp. We note that 2000 pixels is the order

of magnitude one may have with real images. We experi-

mentally measured fDA ≈ {∞, 4000, 2000, 500, 300} pix-

els for {0, 1, 2, 5, 10} pixel noise levels. This shows that en-

forcing the rigidity constraint is very important to capture a

warp as close as possible to the true one from limited image

measurements. Another conclusion is due to the significant

difference between the RA-Warps and the RP-Warps. The

latter achieves consistently lower test transfer errors, much

lower for short to medium focal lengths. This shows that

much more accurate warps are captured by modeling per-

spective projection. Experimental results with a deforming

surface, not shown here, allow us to draw similar conclu-

sions for the DA-Warps and the DP-Warps. It also shows

that the DP-Warps overfit the data and usually have large

variance. Another experiment shows that gradually merg-

ing the test and the training sets decreases the error to zero

for the deformable warps and to the epipolar geometry fit-

ting error for the rigid warps, as expected.

8.2. Real Data

We took a set of images of a manually handled poster

with short and long focal lengths and various deformations.
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Data pointData point DP-WarpDP-WarpWW DA-WarpDA-WaWW rp

Figure 5. One of the perspective images (left) and closeup on trans-

ferred points in another image for the deformable warps (right).

Figure 6. Negative difference image for an RA-Warp (left) and

an RP-Warp (right). Bright colors indicate low discrepancy. The

RMS errors are respectively 33.66 and 19.01.

Figure 7. The cameras and 3D

surface reconstructed through

an RP-Warp.

We then manually clicked

206 point correspon-

dences into all the images

and estimated the warps.

One of the experiments

consisted in comparing

the RA-Warps and the

RP-Warps in the presence

of significant perspec-

tive projection effects,

see one of the images,

overlaid with the point

correspondences, on

figure 5 (left) but without
surface deformations. We

selected 52 points to serve

as centres (approximately

25% of the data points),

and minimized the transfer error over all data points to

fit the warps. The transfer error we obtained is 19.01

pixels and 12.53 pixels for the RA-Warp and the RP-Warp

respectively. We used the two computed warps to warp

the second image onto the first one, and computed their

difference, shown on figure 6. These ideally are black,

zero value images. Non-zero values are to be interpreted

as unmodeled physical phenomena, mainly the extent

to which the warp models the image deformation. The

difference image clearly reflects the quality of the warp. We

see that the RP-Warps do much better than the RA-Warps.

The mean color alignment error in pixel value units is 33.66

and 19.01 for the RA-Warp and the RP-Warp respectively.

We observed in particular that there is no data points in

the top-right hand corner of the poster. This is were the

difference is the highest for the RA-Warp, showing that

the deformation, and thus the surface, is not very well

captured by this model. The 3D surface reconstructed by

the RP-Warp is shown in figure 7.

Similar comparison results for the DA-Warps and the

DP-Warps were obtained by using two images of the poster

with different deformations, giving a transfer error of 6.66

and 5.83 pixels respectively. Figure 5 (right) shows a rep-

resentative closeup on transferred points. We observe that

the data points are better predicted by the DP-Warp, mean-

ing that it effectively models perspective projection but has

however a high variance, i.e. is very dependent on which

data points are used.

9. Discussion
Three types of R

2 → R
2 image warps are proposed, us-

ing the R
2 → R Thin-Plate Spline as a building block. They

are designed to overcome some limitations of the standard

Thin-Plate Spline warps, and derived based on a feature-

driven parameterization we introduce. These warps have

direct practical impacts since they better model image de-

formations than the standard DA-Warps in several cases,

e.g. for rigid smooth surfaces and images with perspec-

tive projection effects. The DP-Warps are unstable because

they overfit the data and tend to have high variance since

they actually depend on the depth of the centres. One rem-

edy may be to regularize their denominator. The warps es-

sentially use two view visual geometry and the Thin-Plate

Spline. Since they are given geometric interpretations, they

can probably be extended to multiple views.
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Abstract Estimating smooth image warps from landmarks
is an important problem in computer vision and medical im-
age analysis. The standard paradigm is to find the model pa-
rameters by minimizing a compound energy including a data
term and a smoother, balanced by a ‘smoothing parameter’
that is usually fixed by trial and error.

We point out that warp estimation is an instance of the
general supervised machine learning problem of fitting a
flexible model to data, and propose to learn the smoothing
parameter while estimating the warp. The leading idea is to
depart from the usual paradigm of minimizing the energy
to the one of maximizing the predictivity of the warp, i.e.
its ability to do well on the entire image, rather than only
on the given landmarks. We use cross-validation to measure
predictivity, and propose a complete framework to solve for
the desired warp. We point out that the well-known non-
iterative closed-form for the leave-one-out cross-validation
score is actually a good approximation to the true score and
show that it extends to the warp estimation problem by re-
placing the usual vector two-norm by the matrix Frobenius
norm. Experimental results on real data show that the pro-
cedure selects sensible smoothing parameters, very close to
user selected ones.
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1 Introduction

The image registration problem is important since it directly
relates to numerous applications, for instance deformable
surface augmentation in computer vision, see e.g. [21], or
multimodal image fusion in medical imaging, see e.g. [15].

The problem has been tackled in several different ways.
A commonly agreed paradigm is to minimize some com-
pound energy including a data term and a smoother [18].
The latter is weighted so that the estimated warp is smooth
but still close to interpolating the landmarks. Most of the
work uses trial and error to manually set an acceptable value
for this weight, called the smoothing parameter. The energy
can obviously not be minimized over the smoothing para-
meter since the result would always be zero.

The purpose of this paper is to bring a simple method
that jointly learns the warp and the smoothing parameter.
The key idea is to make the warp as general as possible in
the sense of making it able to explain the deformation of
the entire image, given a restricted set of landmarks. This
is different from the classical approach that makes the warp
interpolate the landmarks as best as possible, given some
smoothing parameter. This is strongly inspired by the ma-
chine learning paradigm of supervised learning from exam-
ples: the source image landmarks are the inputs and the tar-
get image landmarks are the corresponding outputs. In this
setting, the classical approach is an empirical risk minimiza-
tion algorithm. The smoothing parameter controls the model
complexity since increasing smoothness decreases the num-
ber of effective model parameters.

Determining smoothing weights and other parameters
such as kernel widths is a common machine learning prob-
lem. A successful approach is to consider the expected pre-
diction error, also termed test or generalization error, which,
as the smoothing weight varies, measures the bias-variance
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trade-off, see e.g. [22]. For the warp estimation problem, the
generalization error can not be computed exactly since the
number of landmarks is usually low and their distribution is
unknown. There are however several ways to approximate
the generalization error. The so-called model selection cri-
teria such as BIC, AIC and GRIC have been successfully ap-
plied to pick up the best model in a discrete set of possi-
ble models. For instance, given two images of a rigid scene,
one must choose between, say a homography and the fun-
damental matrix, see [14, 26]. Determining the smoothing
parameter is however not a model selection problem since it
does not change the actual warp model, but the estimation
method.1 A related approach is MDL, that has been used in
medical image registration to register sets of multiple im-
ages, see e.g. [16], and for the Structure-from-Motion prob-
lem in [17].

The approach we follow is to split the data points in a
training and a test set, and select the smoothing parameter
for which the trained model minimizes the test error. Since
the number of landmarks is usually small, we follow the ap-
proach of recycling the test set, in a leave-one-out cross-
validation (LOOCV) manner. This technique was introduced
in [1, 28]. It is related to the Jackknife and bootstrap tech-
niques of sampling the dataset so that statistics can be drawn
from it, and has been widely applied in machine learning,
see e.g. [2]. For linear least squares (LLS) problems, there
exists a non-iterative closed-form giving the LOOCV score.
It is very close to the prediction sum of squares (PRESS)
statistic and the studentized residuals.2 We show that, while
exact for the PRESS, this closed-form is actually an approx-
imation of the LOOCV score, which turns out to be a very
good approximation for typical parameter values. For the
warp estimation problem, each landmark brings two equa-
tions through its two-dimensional coordinates. These two
equations are said to be linked since they must be handled
jointly (it would be meaningless to select one coordinate of
a landmark for the training set and the other one for the test
set). We show that the existing LOOCV closed-form extends
to the linked measurement case by replacing the usual vector
two-norm by the matrix Frobenius norm, and that this holds
true for any dimension of the target space.

We point out that cross-validation is very different from
the Random Sample Consensus (RANSAC) paradigm [9].
The latter trains the model using randomly sampled sets
of minimal data, test on the rest of the data, and keeps the
model with the largest ‘consensus set’. It is meant to robustly

1Another reason is that most of the model selection criteria requires
that the distribution of the data point to model residuals has a known
parametric form, which is clearly not the case in general for empirical
smooth deformable warps.
2The PRESS statistic is similar to the LOOCV score but for a cost func-
tion with a data term only.

estimate the model parameters, while cross-validation aims
at quantifying the predictivity of the model. It is not obvious
how RANSAC could be used to estimate image warps since
there is not a clear definition of what a minimal data set is in
this case. The proposed method using cross-validation is not
robust, in the sense that it does not cope with mismatched
landmarks.

We implement the idea of using cross-validation to reg-
ister images through a parametric registration framework
based on landmarks. The warp is assumed to be linear
for some nonlinearly lifted source landmark coordinates.
This includes warps such as Free-Form Deformations (FFD)
based on tensor products [24, 25] and Radial Basis Func-
tions (RBF), see e.g. [3, 10]. Experimental results are re-
ported for Thin-Plate Spline (TPS) warps [3] which are the
bending energy minimizing RBF.

Paper Organization Section 2 reviews the standard LLS

estimation of warps from landmarks. Section 3 derives our
approximate non-iterative closed-form to the LOOCV score
and shows how it relates to the generalized cross-validation
(GCV) score. Section 4 reports experimental results and
Sect. 5 concludes. Finally, Appendix 1 reviews the TPS

and derives our feature-driven parameterization, Appendix 2
brings a proof of the LOOCV lemma, and Appendix 3 an ex-
perimental evaluation of the closed-form LOOCV formula.

Notation Vectors are in bold fonts, e.g. p, and matrices in
sans-serif, e.g. A. Matrix, vector transpose and matrix in-
verse are written as in pT, AT and A−1. Vector two-norm is
denoted as in ‖x‖2 = √

xTx and matrix Frobenius norm as in
‖A‖F = √

tr(ATA), where tr is the matrix trace operator. We
stress that ‖A‖2

F = ‖a1‖2
2 + ‖a2‖2

2 + · · · , where a1, a2, . . .

are the columns of matrix A. The real and projective spaces
of dimension n are respectively written R

n and P
n.

2 Landmark-Based Warp Estimation

Let p ∈ R
2 be a landmark coordinate vector in the source

image. The warp W : R
2 × R

l×2 �→ R
2 maps a point from

the source to the target image and depends on a set of pa-
rameters (often a set of l control points) in matrix L ∈ R

l×2

as:

W(p;L)
def= LTν(p), (1)

with ν : R
2 �→ R

l some nonlinear lifting function, which
outputs an l-vector representing the lifted coordinates of a
landmark. The lifted coordinates are linearly projected to R

2

to give the predicted point in the target image. This general
model encompasses FFDs and general RBFs. As an example,
the lifting function for TPS warps is derived in Appendix 1.
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Let pj ↔ qj , j = 1, . . . ,m be m landmark correspon-
dences between the two images. Let εj be some random
variable representing the noise and the deviation between
the physics and the warp model, i.e. qj =W(pj ;L) + εj ,
from which the mean sum of squared residuals (MSR) is:

E2
d (L)

def= 1

m

m∑

j=1

‖W(pj ;L) − qj‖2
2.

It plays the role of a data term as it measures the trans-
fer error, i.e. the discrepancy between the predicted and the
measured target landmarks. It is used in conjunction with a
smoother Es in a compound cost function:

E2(L;μ)
def= E2

d (L) + μ2E2
s (L),

with μ the smoothing parameter. The smoothing term is usu-
ally based on partial derivatives of the warp, such as the sec-
ond derivatives:

B2(L)
def=

∫

R2

∥∥∥∥
∂2W
∂p2

(p;L)

∥∥∥∥

2

F
dp. (2)

Other examples are elastic registration which uses spring
terms [6] and fluid registration which uses viscosity [4].
A different way of controlling the smoothness is to directly
change the number of warp parameters, such as the num-
ber of control points in FFD-based registration [24]. Brown-
ian warps are proposed in [20] along with a smoother con-
straining the estimated warp to be invertible [19]. Depending
on the warp being used, the integral in (2) needs to be dis-
cretized. Note that using TPS warps allows to solve the inte-
gral in closed-form, as is shown in Appendix 1. We assume
that it can anyway be fairly approximated by a discrete dif-
ferential operator or any other matrix operator, and define:

E2
s (L)

def= ‖ZL‖2
F ≈ B2(L). (3)

The compound cost function thus writes as:

E2(L;μ) = 1

m
‖NL − �‖2

F + μ2‖ZL‖2
F

with

NT def= (
ν(p1) · · · ν(pm)

)

and

�T def= (
q1 · · · qm

)
.

Using the matrix Frobenius norm is a natural choice since, as
the vector two-norm, it is based on summing squared matrix
or vector elements. Given the smoothing parameter μ, the
warp parameters L̂(μ) are solved for through:

L̂(μ) = arg min
L
E2(L;μ) (4)

= arg min
L

∥∥∥∥

(
N√
mμZ

)
L −

(
�

0

)∥∥∥∥

2

F
= (NTN + mμ2ZTZ)

−1
NT

︸ ︷︷ ︸
T(mμ2)

�. (5)

The influence matrix T maps the target landmark coordinates
in � to the warp coefficients L̂ and plays an important role in
the cross-validation technique given in the next section. We
note that the matrix Frobenius norm naturally allows han-
dling the linked equations induced by the two dimensions of
landmark coordinates.

3 Maximizing Predictivity by Cross-Validation

The idea of cross-validation is to approximate the general-
ization error by splitting the data in a training and a test
set, and average the test error over several such partition-
ings. There are different kinds of cross-validations, includ-
ing leave-one-out (LOOCV), v-fold and generalized cross-
validation (GCV). The two latter ones are usually preferred
for computation efficiency. We use LOOCV and show that
it can be very efficiently approximated in closed-form, for
models in the form (1). The formula for LOOCV is the same
as for the PRESS [1], except that the hat matrix is replaced
by the influence matrix, incorporating the smoother, and that
an approximation needs to be made in the derivation.

The LOOCV score is defined as a function of the smooth-
ing parameter μ:

E2
g (μ)

def= 1

m

m∑

j=1

‖W(pj , L̂(j)(μ)) − qj‖2
2, (6)

where L̂(j)(μ) are the model parameters estimated with all
but the j -th landmark:

L̂(j)(μ)
def= arg min

L
E2

(j)(L;μ). (7)

We therefore have to solve the following nested optimization
problem to get the most predictive solution L̂, obtained by
plugging the optimal μ̂ in (4), giving:

L̂
def= arg min

L
E2(L; arg min

μ
E2

g (μ)).

At first glance, the LOOCV score seems computationally ex-
pensive, making its minimization over μ extremely costly if
not infeasible in a reasonable amount of time on a standard
computer. It turns out that there actually is a non-iterative
closed-form for the LOOCV score which does not require
solving the system m times as a trivial, greedy application
of (6) requires.
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The closed-form is based on the so-called LOOCV lemma,
demonstrated in Appendix 2. Consider an LLS problem, and
a reduced problem with only a subset of the measurements.
The lemma says that replacing in the full dataset problem the
measurements by their prediction with the solution to the re-
duced problem makes the solution to this modified problem
the same as for the reduced one. In other words, define �̃j as
� except that the j -th row, corresponding to the j -th land-

mark, is replaced by the prediction W(pj ; L̂(j)(μ))
T
, i.e.:

�̃j def= � − ej (qj −W(pj ; L̂(j)(μ)))
T
, (8)

with ej a zero vector with one at the j -th entry and L̂(j)(μ)

the solution to the reduced problem. The lemma states:

L̂(j)(μ) = T
(
(m − 1)μ2)�̃j . (9)

In other words, the solution is a constant linear function of a
slightly modified right-hand side matrix. Although it could
seem weird that the unknown estimate L̂(j)(μ) is used to
make a prediction in order to artificially create a problem
to solve for this estimate, it actually is essential for deriving
the non-iterative closed-form we are aiming at, as is clearly
shown below.

Recall that matrix T maps the target landmarks to the
model parameters while matrix N maps the model parame-
ters to the predicted landmarks. We therefore construct the
influence matrix H which maps the target landmarks to the
predicted ones as:

H(γ )
def= NT(γ ) = N(NTN + γ ZTZ)

−1
NT.

Matrix H has size (m × m), i.e. it has as many rows and
columns as there are landmark correspondences, and is sym-
metric. We write hj (γ ), j = 1, . . . ,m the columns (or rows)
of H(γ ). This allows us to write:

W(pj ; L̂(μ)) = �Thj (mμ2)

W(pj ; L̂(j)(μ)) = (�̃j )
T
hj ((m − 1)μ2).

Taking the difference between the two equations and ap-

proximating hj
def= hj (mμ2) ≈ hj ((m − 1)μ2) gives:

W(pj ; L̂(μ)) −W(pj ; L̂(j)(μ)) ≈ (� − �̃j )
T
hj .

Substituting the definition (8) of �̃j gives:

W(pj ; L̂(μ)) −W(pj ; L̂(j)(μ))

≈ hT
j ej (qj −W(pj ; L̂(j)(μ))).

Writing hj,j
def= hT

j ej the diagonal elements of H(mμ2), we
get:

W(pj ; L̂(μ)) −W(pj ; L̂(j)(μ))

≈ hj,j (qj −W(pj ; L̂(j)(μ))),

that we rearrange to:

hj,j qj + (1 − hj,j )W(pj ; L̂(j)(μ)) ≈W(pj ; L̂(μ)).

Subtracting qj on each side gives:

hj,j qj + (1 − hj,j )W(pj ; L̂(j)(μ)) − qj

≈W(pj ; L̂(μ)) − qj ,

(1 − hj,j )(W(pj ; L̂(j)(μ)) − qj ) ≈W(pj ; L̂(μ)) − qj ,

W(pj ; L̂(j)(μ)) − qj ≈ 1

1 − hj,j

(W(pj ; L̂(μ)) − qj ).

We thus have obtained an analytical, non-iterative expres-
sion giving each term in the sum for the LOOCV score (6),
that we can rewrite as:

E2
g (μ) ≈ 1

m

∥∥∥∥diag

(
1

1 − diag(H(mμ2))

)
(NL̂(μ) − �)

∥∥∥∥

2

F
,

(10)

where diag(M) is a vector containing the diagonal entries of
matrix M and diag(v) is a diagonal matrix with as diagonal
entries the elements of vector v, and 1 is a vector of ones.

Minimizing the LOOCV score is done through the closed-
form (10). Most of the methods in the literature are spe-
cific to the GCV score, which uses the approximation
diag(H(mμ2)) ≈ tr(H(mμ2))I, with I the identity matrix,
which allows simplifying the closed-form Eg further, see
[27]. The minimization problem however remains nonlin-
ear, and most of the methods for the GCV score can be ap-
plied to the LOOCV score, eventhough it is often neglected
in the literature. Possible methods range from golden sec-
tion search [5] and sampling (with optional local polyno-
mial interpolation), e.g. [12, 13]. We tried several differ-
ent methods. Most of them find the correct minimum in all
cases. The fastest one is downhill simplex, which has typi-
cal computation times of less than half a second for m ≈ 50
landmarks and l ≈ 25 deformation centres on a standard PC

running our MATLAB implementation.3 This computation
time, although not prohibitive, is much higher than that of
a straightforward fitting of the warp, given the smoothing
parameter.

The approximation based on hj = hj (mμ2) in the above
derivation allows to derive the closed-form (10). We call it
the m-approximation. We compared its value against the
direct evaluation of (6), giving the ‘true’ LOOCV score,
on a bunch of typical values, and with another candi-
date approximation using hj = hj ((m − 1)μ2), called the

3The downhill simplex or Nelder-Mead algorithm is implemented
within the fminsearch MATLAB function.
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Fig. 1 (left, middle) The source and target images in the dishcloth dataset overlaid with the 130 manually clicked point correspondences. (right)
The ancillary image, showing the dishcloth flat, which is used to create a warp visualization grid, as shown on Fig. 2

Fig. 2 (left) The ancillary image showing the warp visualization grid over the region of interest. (middle) The warp visualization grid transferred
from the ancillary image to the source image. (right) The 10 × 10 deformation centre grid in the source image

(m − 1)-approximation. The results are reported in Ap-
pendix 3. Our conclusions are that there is no significant
difference between the two approximations, albeit that the
m-approximation has a better behavior than the (m − 1)-
approximation in the sense that its minimum is located
closer to the true one, and has the same value as the true min-
imum LOOCV score. We also tried approximations based on
hj = hj ((ηm + (1 − η)(m − 1))μ2) = hj ((m − 1 + η)μ2)

with η ∈ [0,1] – none of them did better than the m-
approximation.

4 Experimental Results

We evaluated our algorithm on several datasets. For three
of them we show results. Most of the other methods in the
literature assume that the smoothing parameter is given and
estimate the warp parameters, whereas the proposed algo-
rithm estimate both the warp and smoothing parameters.

4.1 The Dishcloth Dataset

This dataset has three images of a dishcloth for which 130
corresponding points were manually marked, see Fig. 1. The
two images that we use for testing our algorithm show the
dishcloth with the same deformation but from a different

viewpoint. The point correspondences cover the entire dish-
cloth, which remains entirely visible. This dataset is thus
easy in the sense that many point correspondences are avail-
able and that the two images are quite similar.

The third image in this dataset shows the dishcloth flatten
on a table, and is called the ancillary image. It is used to cre-
ate a warp visualization grid in the source image, as shown
on Fig. 2 and explained below. First, we mark the four cor-
ners of the region of interest in the ancillary image, and use
them to create a homography of P

2 mapping the canonical
unit square to these four corners. This is used to transfer a
regular grid from the canonical unit square to the ancillary
image. Second, we use the point correspondences to com-
pute a deformable warp from the ancillary to the source im-
age, and use it to transfer the visualization grid to the source
image. This visualization grid, although similar to the data
points, is very useful to visualize the behavior of the warp
independently of the actual data points.

We proceed to register the images and use a regular grid
of 10 × 10 deformation centres, as shown in Fig. 2. Fig-
ure 3 shows the LOOCV score and the RMSR as functions
of the smoothing parameter μ. We observe that they both
asymptotically tend to respectively the PRESS statistic and
RMSR of a two-dimensional affine image transformation,
which we measured to be respectively 3.14 pixels and 3.06
pixels. The minimization finds the LOOCV optimal smooth-
ing parameter μ̂ ≈ 0.55. Zooming onto the graph shows that
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Fig. 3 (left) The LOOCV score (thick, red curve) and RMSR (thin, black
curve) as functions of the smoothing parameter μ—the green hori-
zontal line is the PRESS for an affinity. (middle) Zoom onto the left

graph—the blue vertical line shows the selected optimal smoothing pa-
rameter μ̂. (right) The mean LOOCV score (thick, red curve) and RMSR

(thin, black curve) as functions of the number of deformation centres l

Fig. 4 The visualization grid predicted by the warp for (left) the LOOCV optimal solution parameter, (middle) an exaggerated smoothing parame-
ters and (right) an extreme smoothing parameter corresponding to the asymptotically affine behavior of the warp

it actually has a shallow minimum. This is explained by
the fact that this dataset is ‘simple’, in the sense that the
image deformation is limited. Once a sufficient amount of
smoothness is reached, it is not that critical to oversmooth.
As expected, the RMSR is a monotonic function of μ: the
smoother the warp, the lower the effective number of pa-
rameters and so the higher the training RMSR error. Figure
3 also shows the LOOCV score and the RMSR as functions
of the number of centres l. These curves were obtained by
randomly sampling centres in the convex hull of the source
landmarks, and for each set of centres, finding the smooth-
ing parameter minimizing the LOOCV score. It can be seen
that both the LOOCV score and the RMSR are decreasing
functions of m. This is explained by the fact that since an
adaptive smoothing parameter is used, adding more para-
meters can not degrade the quality of the warp, since the ex-
tra parameters just get smoothed out. This means that with-
out any prior information, the number of deformation cen-
tres should be chosen large. On this particular example, it is
clear that choosing more than 40 deformation centres, say,

does not bring a significant improvement to the quality of
the warp.

Finally, Fig. 4 shows the visualization grid transferred to
the target image, for different smoothing parameters. As was
expected from the shape of the LOOCV score in Fig. 3, over-
smoothing has a limited effect on the estimated warp. Note
however that the LOOCV score grows by more than a third,
from 1.40 pixels to 1.91 pixels, when 10 times the optimal
smoothing parameter is used.

4.2 The Paper Sheet Dataset

This dataset has two images of a paper sheet shown in Fig. 5.
One of the images shows the paper sheet flat, with sub-
stantial radial distortion. The other image shows the paper
smoothly bent in such a way that a self-occlusion shows up,
i.e. part of the surface is being occluded by itself. We man-
ually clicked 53 points on both images as shown in Fig. 5.
We clicked the four corners or the paper sheet in the flat pa-
per image, and, as for the dishcloth ancillary image, created
a regular visualization grid. It is used to visually assess the
quality of an estimated warp.
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Fig. 5 (left, middle) The source and target images of the self-occluding paper sheet dataset overlaid with the 53 manually clicked point correspon-
dences. (right) The warp visualization grid covering the region of interest

Fig. 6 (left) The 5 × 5 deformation centre grid. (middle) The LOOCV

score (thick, red curve) and RMSR (thin, black curve) as functions of
the smoothing parameter μ—the green horizontal line is the PRESS for

an affinity. (right) Zoom onto the middle graph—the blue vertical line
shows the selected optimal smoothing parameter μ̂

This dataset is much more difficult than the dishcloth
dataset, in the sense that due to surface self-occlusion in the
target image, a large part of the region of interest visible in
the source image disappears in the target image.

Figure 6 shows the 5 × 5 grid of deformation centres we
selected over the source image. This figure also shows the
LOOCV score as a function of the smoothing parameter μ.
We observe that it asymptotically converges to the PRESS

score for an affine image transformation, which is 31.24 pix-
els. The RMSR has the same behavior in that it converges to
the RMSR for the affine transformation (not shown on the
graph), which is 29.05 pixels. Zooming onto the beginning
of the LOOCV curve shows that it actually has a well defined
minimum, and that this is what our algorithm selects as op-
timal smoothing parameter μ̂.

The LOOCV optimal warp we obtain is shown on Fig. 7.
An under- and an over-smoothed solutions are also shown
for comparison. The selected μ̂ clearly corresponds to what
one would have chosen by tweaking, since it is visually very
satisfying.

We observed that the LOOCV score and the RMSR are,
as for the dishcloth example, monotonic decreasing func-
tions of the number of deformation centres l (this graph is

not shown). Choosing l = 25 for this particular example is a
sensible choice.

4.3 The Spine Dataset

This dataset is extracted from the one used in [7]. It consists
of lateral, lumbar spine X-ray images, similar to the pair of
example images shown in Fig. 8 for two different patients.
Each image has been annotated by experienced radiologists
who placed 6 points on the corners and in the middle of the
vertebra endplates. This provides a total of 36 landmarks
since L1 to L4, and the 2 neighboring vertebrae are used in
every image. They also manually marked the outlines of the
L1 to L4 vertebrae in each image. As can be seen from the
outlines, the vertebrae show different degrees of fracture at
follow up. On the source image, L3 and L4 show a moderate
biconcave deformity, while on the target image, L1 shows a
severe wedge deformity.

We estimated a warp with a grid of 3 × 3 deformation
centres, as show on Fig. 8. The LOOCV score we obtained
is 12.60 pixels and the RMSR is 9.71 pixels. This is quite
high, as the noticeable discrepancy between the target and
predicted landmarks shows.
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Fig. 7 The visualization grid predicted by the warp for (left) the LOOCV optimal smoothing parameter, (middle) no smoothing at all and (right)
an exaggerated smoothing parameter

Fig. 8 (from left to right) The source and target images overlaid with the 36 landmarks (circles) and the vertebrae boundaries (see main text for
details), the 3 × 3 grid of deformation centres we use in the source image, and the landmarks predicted by the LOOCV optimal warp (diamonds)

Figure 9 shows the visualization grid for different val-
ues of the smoothing parameter. We observe that the
LOOCV optimal solution has a nice visual behavior. The
under-smoothed one almost folds on itself, while the over-
smoothed one is very rigid.

Figure 10 shows the LOOCV score and RMSR as func-
tions of the smoothing parameter. The LOOCV has a well-
defined minimum μ̂ ≈ 2.17, and the curves have the same

shape as for the two previous datasets. These two graphs
however show a novel curve, representing the target to trans-
ferred boundary distance. This is computed as follow. Given
a warp estimate, we transfer each point on the source bound-
ary to the target image, and measure the distance to the
closed point onto the target boundary. Averaging over the
source boundary points gives the ‘boundary error’. What
we observe is that this boundary error has a minimum,
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Fig. 9 (from left to right) The source image with the visualization grid, the LOOCV optimal smoothing parameter, an under-smoothed and an
over-smoothed solutions

which is located at a slightly lower value than the LOOCV

optimal smoothing parameter. We tried different combina-
tions of images: the LOOCV score and the boundary er-
ror exhibited the same behavior in all cases, i.e. minimiz-
ing the LOOCV score slightly overestimates the location of
the minimum for the boundary error. Recall that the warp,
and thus the LOOCV score, are computed only from the 36
landmarks. This means that these landmarks and the ver-
tebra outlines are strongly correlated, which was expected
since those landmarks actually form the basis for classi-
cal semi-quantitative vertebra fracture grading strategies,
see [11].

Figure 11 shows the vertebra boundaries, and allows one
to visually compare the marked and the predicted boundaries
in the target image. It is seen that the LOOCV optimal and
the under-smoothed solutions are both visually satisfying.
They obviously fail to capture all the subtle shape changes,
but account for the main deformations. This was expected
since the LOOCV minimum over-estimates the boundary er-
ror minimum. The over-smoothed solution clearly misses
important shape changes.

5 Conclusion

We described a framework for estimating a deformable im-
age warp from landmarks based on a compound cost func-
tion including a data term and a smoother. The method,
based on leave-one-out cross-validation, automatically de-
termines the smoothing parameter balancing the data term
and the smoother. We showed that a simple closed-form
solution exists for computing the leave-one-out cross-
validation score given the smoothing parameter, and min-
imize it with a downhill simplex algorithm, yielding rea-
sonable computation time, typically much less than a sec-
ond. We report convincing experimental results on various
datasets.

Generally speaking, one possible issue with leave-one-
out cross-validation is the “testing-on-training data” prob-
lem. This does not occur with the kind of data we use in
this paper since the landmarks are usually sparse, but should
be considered if more data are available, e.g. a pixel-wise
displacement field, by using for instance an exclusion zone
around each training point. There also exist pathological
cases, for which the leave-one-out cross-validation score has
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Fig. 10 (left) The LOOCV score
(thick, red curve) and RMSR

(thin, black curve) as functions
of the smoothing parameter μ,
as well as the boundary transfer
error (thick dashed, purple
curve)—the green horizontal
line is the PRESS for an affinity.
(right) Zoom onto the left
graph—the blue vertical line
shows the selected optimal
smoothing parameter μ̂

Fig. 11 (from left to right) The
vertebra boundaries in the
source image, and in the target
image. The manually marked
boundary is shown (thick curve),
as well as the one transferred by
the warp from the source image
(thin curve) for different
smoothing parameters

several local minima. How to find the optimal minimum in
practice in a guaranteed manner is an open research topic.
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Appendix 1: The Thin-Plate Spline

The TPS is an R
2 → R function driven by assigning target

values αk to control centres ck with k = 1, . . . , l and enforc-
ing several conditions: the TPS is the Radial Basis Func-
tion that minimizes the integral bending energy. The idea
of using the thin-plate equation as an interpolation map is
due to Duchon [8]. Standard R

2 �→ R
2 TPS-Warps are ob-

tained by stacking two TPSs sharing their centres, as pro-
posed by Bookstein [3]. This is described below, along with
our feature-driven parameterization.

6.1 Standard Parameterization

The TPS is usually parameterized by an l + 3 coefficient
vector ηT = (wT aT) and an internal smoothing parameter
λ ∈ R

+. There are l coefficients in w and three coefficients
in a. These coefficients can be computed from the (l × 1)

target vector α. The TPS is given by:

ω(p,ηα,λ)
def=

(
l∑

k=1

wk ρ(d2(p, ck))

)

+ aTp̃, (11)

where ρ(d) = d log(d) is the TPS kernel function for the
squared distance and p̃T = (pT 1). The coefficients in w must
satisfy C̃Tw = 0, where the k-th row of C̃ is c̃k . These three
‘side-conditions’ ensure that the TPS has square integrable
second derivatives. It is convenient to define the (l + 3)-
vector �p as:

�T
p

def= (ρ(d2(p, c1)) · · · ρ(d2(p, cl)) p̃T), (12)

allowing the TPS (11) to be rewritten as a dot product:

ω(p,ηα,λ) = �T
pηα,λ. (13)

Equation (12) thus represents the first step in the nonlinear
lifting function making the TPS-warp fit in the general warp
definition (1) used in this paper.

6.2 Standard Estimation

Applying the TPS (11) to the centre cr with target value αr

gives:
(

l∑

k=1

wk ρ(d2(cr , ck))

)

+ aTc̃r = αr .
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Combining the equations obtained for all the l centres with
the side-conditions C̃Tw = 0 in a single matrix equation
gives:

⎛

⎜⎜
⎝

Kλ C̃

C̃T 0

⎞

⎟⎟
⎠

︸ ︷︷ ︸
D

⎛

⎜⎜
⎝

w

a

⎞

⎟⎟
⎠

︸ ︷︷ ︸
ηα,λ

=

⎛

⎜⎜
⎝

α

0

⎞

⎟⎟
⎠

with Kr,k
def=

{
λ r = k,

ρ(d2(cr , ck)) otherwise.

Adding λI to the leading block of the design matrix D to
give Kλ acts as an internal smoother. An ad hoc method for
finding λ is described in [23]. Solving for ηα,λ by inverting
D is the classical linear method for estimating the TPS co-
efficients [3]. The coefficient vector ηα,λ is thus a nonlinear
function of the internal smoothing parameter λ and a linear
function of the target vector α.

6.3 A Feature-Driven Parameterization

We express ηα,λ as a linear ‘back-projection’ of the target
value vector α. This is modeled by the matrix Eλ, nonlin-
early depending on λ, given by the l leading columns of
D−1:

ηα,λ = Eλα

with Eλ
def=

(
K−1

λ (I − C̃(C̃TK−1
λ C̃)

−1
C̃TK−1

λ )

(C̃TK−1
λ C̃)

−1
C̃TK−1

λ

)

. (14)

This parameterization has the advantages to separate λ and
α and to introduce units.4 The side-conditions are naturally
enforced by this parameterization.

Incorporating the parameterization (14) into the TPS (13)
we obtain what we call the feature-driven parameterization
τ(p;α, λ) = ω(p;ηα,λ) for the TPS:

τ(p;α, λ)
def= �T

pEλα. (15)

The square integral bending energy κ = ∫
R2 ‖ ∂2τ

∂p2 (p;α, λ)‖2
F

dp = 8πwTKλw is given by κ = 8παTĒλα, where Ēλ is the
(l × l) bending energy matrix given by amputating Eλ of its
last three rows:

Ēλ
def= K−1

λ (I − C̃(C̃TK−1
λ C̃)

−1
C̃TK−1

λ ). (16)

The bending energy matrix is symmetric and in the absence
of internal regularization, i.e. for λ = 0, has rank l − 3. The

4While ηα,λ has no obvious unit, α in general has (e.g. pixels, meters).

eigenvectors corresponding to the l − 3 nonzero eigenval-
ues are the principal warps, the corresponding eigenvalues
indicating their bending energy, as defined by Bookstein [3].

The TPS-warp is obtained by stacking two R
2 �→ R TPSs.

From (11), we get:

(
τ(p;αx, λ)

τ (p;αy, λ)

)
= (�T

pEλL)
T
,

where αx and αy are the first and second columns of L. The
TPS warp is thus expressed in the form (1), i.e. W(p;L) =
LTν(p), with the following nonlinear lifting function:

ν(p) = ET
λ �p.

The internal smoothing parameter λ is chosen small to en-
sure that matrix Eλ is well-conditioned.

Finally, the second derivative based smoother in (2) has
the form:

B2(L) = 8π‖
√
ĒL‖2

F ,

and we thus just choose Z such that ZTZ = 8π Ē in the matrix
form (3) to achieve the exact integral. Note that in practice,
one does not need to compute Z since only ZTZ is needed,
e.g. for building the influence matrix T in (5).

Appendix 2: The LOOCV Lemma

This lemma states that replacing a target value with its pre-
diction by the model estimated with this equation omitted
does not change the result. In other words, adding equations
to an LLS problem with as right-hand side the prediction by
the model solving the initial problem, does not change the
result.

Define Dj = I − diag(ej ). Our goal is to show that (9)
gives L̂(j)(μ) as from (7). Following (5) we rewrite (7) as:

L̂(j)(μ) = arg min
L

∥∥∥∥

(
Dj N√

m − 1μZ

)
L −

(
Dj�

0

)∥∥∥∥

2

F

= (NTDj N + (m − 1)μ2ZTZ)
−1

NTDj�, (17)

since DT
j = Dj and Dj Dj = Dj . We rewrite �̃j from (8) as

�̃j = Dj� + (I − Dj )NL̂(j). We expand equation (9) by re-
placing T from (5) and �̃j from just above, giving:

T((m − 1)μ2)�̃j

= (NTN + (m − 1)μ2ZTZ)
−1

NT

· (Dj� + NL̂(j) − Dj NL̂(j)). (18)

The second term rewrites to:
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Fig. 12 Zoom around the minimum onto the difference between the true LOOCV score from the greedy formula (6) and the m- and
(m − 1)-approximations. The vertical lines show the minima (the dashed red line is the true minima)

(NTN + (m − 1)μ2ZTZ)
−1

NTNL̂(j)

= L̂(j) − (m − 1)μ2(NTN + (m − 1)μ2ZTZ)
−1

ZTZL̂(j).

(19)

Substituting in (18) gives:

T((m − 1)μ2)�̃j

= L̂(j) + (NTN + (m − 1)μ2ZTZ)
−1

· (NTDj� − (m − 1)μ2ZTZL̂(j) − NTDj NL̂(j)). (20)

This concludes the proof since the right-most factor van-
ishes, as shown below. Substitute L̂(j) from (17), this gives:

NTDj� − (m − 1)μ2ZTZL̂(j) − NTDj NL̂(j)

= NTDj� − ((m − 1)μ2ZTZ + NTDj N)

· (NTDj N + (m − 1)μ2ZTZ)
−1

NTDj�

= NTDj� − NTDj�

= 0.

Appendix 3: The Non-Iterative Approximation to
LOOCV

In order to compare the m-approximation and the (m −
1)-approximation we plot the difference between the true
LOOCV score from (6) and each of the two approximations.
This is shown for the three datasets in Fig. 12. As can be
seen, both approximations are very close to the true LOOCV

score. The m-approximation is in general better than the
(m − 1)-approximation, except at some points for μ < μ̂.
The minimum value of the m-approximation coincides with
the true value at the true minimum, albeit that the location of
the approximated minimum is slightly shifted from the true

location. The (m − 1)-approximation has a larger shift. Us-
ing the m-approximation is thus the best option, although the
difference is very small. The order of magnitude on the loca-
tion of the minimum is between 10−2 and 10−4. The error on
the minimum LOOCV score for the (m − 1)-approximation
is at 10−1 pixels.
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Abstract

Registering images of a deforming surface is a well-studied problem. So-
lutions include computing optic flow or estimating a parameterized motion
model. In the case of optic flow it is necessary to include some regularization.

We propose an approach based on representing the induced transforma-
tion between images using Radial Basis Functions (RBF). The approach can
be viewed as a direct, i.e. intensity-based, method, or equivalently, as a way
of using RBFs as non-linear regularizers on the optic flow field.

The approach is demonstrated on several image sequences of deforming
surfaces. It is shown that the computed registrations are sufficiently accurate
to allow convincing augmentations of the images.

1 Introduction
The objective of this paper is registration of images of a non-rigidly deforming surface,
such as a flag being gently blown by the wind. Our goal is to compute dense image
transformations, mapping pixels from one image to corresponding pixels in the other
images. This task is important in domains such as augmented reality and medical imaging.
We are particularly interested in images of surfaces whose behaviour is difficult to explain
using specific physics-based or learnt models, such as the motion of cloth in a skirt as a
person walks.

One solution to this problem is to compute a regularized optic flow field, by min-
imizing an energy functional based on a data term, from e.g. the brightness constancy
assumption, and a regularizer, encouraging smoothness of the flow field. A survey can
be found in e.g. [12]. For example, Irani uses subspace constraints to regularize the optic
flow field [8].

Another solution is to compute a parameterized image transformation. Two main ap-
proaches are possible: feature-based and direct methods. Feature-based methods first
compute a set of matched features extracted from the images, such as corners or contours,
and then use them to estimate the image transformations [15]. On the other hand, direct
methods usually minimize an error function similar to the one used for computing the
optic flow field, based on the brightness constancy assumption [9]. Both feature-based
and direct methods have been shown to give good results when computing rigid transfor-
mations, such as affinities or homographies. However, feature-based methods may fail
to capture the non-rigidities in the image areas where few features are present. In other
words, in contrast to the rigid transformation case where e.g. an affinity is encapsulated in
any three point correspondences, an arbitrary unknown number of correspondences might
be needed to represent all the image deformations. For example, a low texture area might
be subject to deformations, while no corner points might be found in this area. This is
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one reason in favour of methods using the intensity information, i.e. optic flow and direct
methods, for computing non-rigid transformations.

The method in [6] draws on the strength of both optic flow and direct methods. The
idea is to learn linear motion models that are used as bases for the optic flow field.

Our objective is to avoid the need for learning the motion model. We propose to
represent it using Radial Basis Mappings (RBM). Such transformations have been shown
to be very effective in representing various image distortions induced by different kinds of
non-rigidities. Radial Basis Functions (RBF) are non-linear functions defined by centres
and coefficients, see e.g. [13]. An example of such a function is the Thin-Plate Spline [2,
4].

The traditional approach to estimating RBMs is feature-based, for the main reason
that when landmarks are used as centres, then the coefficients of the transformation can
be computed by a linear algorithm. In the Thin-Plate Spline case, the linear algorithm
minimizes the ‘bending energy’ [4]. Chui et al. [5] propose an integrated feature-based
approach to match points while computing a RBM.

On the other hand, very few attemps have been made towards computing RBMs by
directly considering the image intensity, i.e. using a direct method, or equivalently using
a RBM to regularize the optic flow field. Some progress has been made in this direction
in the medical imaging community, but mainly assuming that the centres of the transfor-
mation are given by user-defined landmarks, see e.g. [10].

We propose a scheme for intensity-based estimation of RBMs. The novelty of our
approach is that the number of centres is estimated on-the-fly, and directly depends on
the degree of non-rigidity between the images. Our algorithm is based on estimating
an affine transformation and adding centres until a registration criterion is met, while
minimizing the registration residual. At each iteration, both the position of centres and
the coefficients of the transformation are estimated. Our algorithm has therefore two main
characteristics: it minimizes an intensity-based registration error and fits a parameterized
non-rigid motion model, whose intrinsic complexity is tuned depending on the amount of
non-rigid deformations. Note that an alternative method of choosing centres is given in
[11].

We give some background in §2, and describe our method for the direct estimation of
RBMs in §3. We propose an extension of the method to deal with image sequences in §4
and report experimental results in §5. Finally, we give our conclusions and discuss further
work in §6.

Notation. Vectors and matrices are respectively typeset using bold and sans-serif fonts,
e.g. x and A. We do not use homogeneous coordinates, i.e. image point coordinates are
2-vectors: xT = (x y), where T is transposition. We denote as I the images, and I (x)
the colour or gray-level at pixel x. Index i is used for the frames (i = 1, . . . ,n), k for the
centres (k = 1, . . . , l) and j for point correspondences. The evaluation of an expression at
some value is denoted as in S|x. Matrix vectorization is written as in a = vect(A). The
identity matrix is denoted I and the zero matrix and vector as 0 and 0.

2 Background
In the following two sections, we describe direct methods and RBMs.
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2.1 Direct Methods
We describe the principle of the direct, i.e. intensity-based, alignment of two images I
and I ′, related by a point-to-point transformation. The main idea, common to most
algorithms, is to minimize the sum of squared intensity differences between the aligned
images, over the parameters of the transformation [9]. Let us consider the case of an
affine transformation, and derive one of the possible algorithms based on Gauss-Newton.
A more detailed formulation of the image alignment problem is described in [1]. In
particular, a robust, coarse-to-fine framework is used to speed up convergence and prevent
the algorithm getting trapped into local minima, see [3].

An affine transformation has 6 parameters and is modelled by a 2× 3 matrix A =
( Ā t), where Ā is the leading 2×2 submatrix and t the last column. A point x is mapped
from the first image to a point x′ in the second image by x′ = Āx+ t. The transformation
is parameterized by the 6-vector a = vect(A). The direct estimation of A consists in
solving mina E(a)2, where E is an error function defined by the mean intensity difference
induced by A between I and I ′ over a region of interest X with N pixels E(a)2 =
1
N ∑x∈X e(x,a)2. Each error term is given by e(x,a)2 =

(
I (x)−I ′(Āx+ t)

)2. We
employ the Gauss-Newton algorithm [14] to solve this minimization problem, using the
identity transformation as an initial solution.

2.2 Radial Basis Mappings
In their basic form, RBFs define a mapping from Rd to R, where d is the dimension. A
general description can be found in [13]. A 2D RBF f is defined by a R2 → R basis
function φ(η), coefficients represented by an l +3-vector hT = (w1 · · · wl λ µ ν) and a
set of l centres qk as:

f (x) = λx+ µy+ν +
l

∑
k=1

wkφ(‖x−qk‖). (1)

It consists of a linear part, with parameters (λ µ ν), and a non-linear part, a sum of l
weighted terms with coefficients wk of the basis function applied to the distance between
x and the centre qk. Amongst others, the basis function can be chosen as a Gaussian
φ(η) = exp(−η2/(2σ2))/(2πσ2) or as a Thin-Plate Spline φ(η) = η2 log(η).

Radial Basis Mappings as R2→ R2 Radial Basis Functions. The usual way to con-
struct a R2→R2 mapping m, i.e. a RBM, is to stack two R2→R RBFs f x and f y sharing
their centres [4]:

m(x) =
(

f x(x)
f y(x)

)
= Āx+ t+

l

∑
k=1

(
wx

k
wy

k

)
φ(‖x−qk‖), (2)

where Ā and t form an affine transformation given by:

A =
(

λ x µx νx

λ y µy νy

)
.

The coefficients are encapsulated in an (l + 3)× 2 matrix h = (hx hy), partitioned in a
non-rigid and a rigid part as hT = (WT A).
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Computation from point correspondences. RBMs are often used to create dense smooth
transformations interpolating point correspondences n j↔ n′j between two images. Points
n j are used as the centres of the transformation. By writing the interpolating conditions
n′j = m(n j) using equation (2), one obtains:

n′j = Ān j + t+
l

∑
k=1

(
wx

k
wy

k

)
φ(‖n j−nk‖),

which can be rewritten as a linear system Ch = D, see [2, 4].

The side conditions. The last three equations of the linear system Ch = D are the ‘side
conditions’. They ensure that the computed transformation has square integrable sec-
ond derivatives, i.e. that it smoothly behaves outside the region of interest X . The
side conditions are expressed between the coefficients wx and wy and the centres n j as
∑

l
k=1 wk = ∑

l
k=1 wknk,1 = ∑

l
k=1 wknk,2 = 0, or, defining the r-th row of matrix P as (nT

r 1),
in matrix form:

PTW = 0(3×1). (3)

3 Direct Estimation of Radial Basis Mappings
We describe our approach for estimating a RBM by using a direct method.

3.1 Outline of the Approach
Constructing a direct method for estimating a RBM raises specific concerns since the
number of centres l, as well as the centres qk themselves and the coefficients h of the
transformation have to be estimated. More formally, we formulate the problem as:

min
l,α

E(α)2 such that PTW = 0(3×1),

where α encapsulates the set of parameters of the transformation as:

α
T = (qx

1 qy
1 . . . qx

l qy
l wx

1 wy
1 . . . wx

l wy
l a1 . . . a6).

A possible approach is to use a pre-defined set of centres, e.g. on a regular grid or corner
points in the first image (as in a feature-based approach). This approach is not satisfactory.
If too few centres are used, the mapping may fail to capture all the deformations, and if
too many centres are used, then the computational cost might be extremely high.

Our approach is built on a dynamic centre insertion procedure. The idea is to iter-
atively insert new centres, i.e. add non-rigidity to the transformation, until it becomes
satisfactory. The centres are inserted based on examining the error image, to detect where
the mapping fails to provide a proper registration. At each iteration, a centre is inserted,
and the error is minimized. The number of centres grows until the algorithm converges.

The initial number of centres is set to 4, since if less than 4 centres are present, the
corresponding coefficients are constrained to be zero by the side-conditions (3). The
algorithm is summarized in table 1 and illustrated in figure 1.
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1. Initialization: use algorithm of §2.1 to obtain the parameters A of an initial affine
transformation. Insert 4 centres as indicated in §3.3, set l← 4 and setup α accord-
ingly.

2. Transformation refinement: (§3.2) compute the parameters α ′ which minimize the
error in intensity, starting from α .

3. Convergence test: (§3.4) if E(α)−E(α ′) < ε then remove the last inserted centre(s)
and stop.

4. Parameters updating: α ← α ′.

5. Centre insertion: (§3.3) l← l +1. The new centre is ql , with corresponding coeffi-
cients wx

l ← 0 and wy
l ← 0.

6. Main loop: return to step 2.

Table 1: Direct alignment of two images I and I ′ based on estimating a RBM α with
l centres qk and coefficients h, using the Gauss-Newton algorithm and dynamic centre
insertion. The iterations terminate when the decrease in the error becomes insignificant.

Figure 1: Registration of two images of a deforming Tshirt, shown top and bottom. (from
left to right) Original images, the centres of the transformation and a grid mesh illustrating
the mapping.
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3.2 Refining the Transformation
We describe the alignment algorithm given the number l of centres. The algorithm draws
on the previously described algorithm for the direct estimation of an affine transformation,
see §2.1. The problem is to solve:

min
α

E(α)2 such that PTW = 0(3×1).

We use the Gauss-Newton algorithm. The differences with the affine transformation re-
finement algorithm are two-fold: the Jacobian matrix of the mapping is more complicated,
and a special parameterization is used to enforce the side-conditions1.

3.3 Dynamic Centre Insertion
A centre accounts for non-rigidity in the transformation around its position. Our strategy
is to insert centres until the transformation gives a satisfactory registration of the two
images, by looking at the error image E , i.e. the difference between the first image, and
the warped second image.

We proceed as follows. First, we compute a blurred version Î of the first image I
using a Gaussian kernel. Second, using the current transformation, we warp the second
image I ′ as Î ′, and blur using the same Gaussian kernel. Blurring the images before
computing their difference is important to get rid of effects such as the partial pixel effect.
The error image E (the absolute difference between Î and Î ′) indicates the regions
where the registration is not satisfactory. One may simply insert the new centre where
E attains a maximum. We perform an integration step by convolving with a Gaussian
kernel, before looking for the maximum, to emphasize the regions where the registration
is not satisfactory.

3.4 A Stopping Criterion
Inserting a centre increases the number of degrees of freedom of the transformation and
reduce the registration error. One strategy to stop the iterations would be to penalize
the registration error by the number of degrees of freedom, and stop the algorithm when
the minimum of this function is reached, similar to a nested model selection algorithm,
e.g. [16]. Another strategy is based on the fact that when the ‘best’ number of centres
is reached, inserting a new centre will only produce a slight decrease in the error, pro-
portional to the noise level and quantization / warping error. Thresholding the difference
between two consecutive errors is consequently used as a stopping criterion.

4 Registering Multiple Images
The goal in this section is to exploit the two-image registration algorithm proposed above,
to register a sequence of images. More precisely, we aim at computing the transformation
between a reference image of the sequence and all other images. Without loss of gener-
ality, we choose the first image as the reference one. Denoting fi1i2 the transformation
between image i1 and image i2, our goal is to compute f1i, i = 2, . . . ,n.

We perform sequential processing: we first compute f12 starting from an identity
transformation. Then, we compute f13 starting from f12 and so on.

One problem with this approach is that throughout the sequence, shadows might ap-
pear or disappear, meaning that the appearance of the surface might change. To overcome

1We use a QR decomposition-based subspace projection, as described in e.g. [7, §12.1.4].
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this problem, we investigated two approaches. The first approach consists in updating the
appearance of the reference frame while registering the frames. After having computed
f12, we use it to align I2 with the reference frame. This aligned image is called I21, and
is used as an updated reference frame when computing f13 as the transformation between
I21 and I3. Of course, this approach gets rid of appearance variations, but might drift
since registration errors are accumulated through the process.

The second approach we propose is to apply a shadow mask. This mask is computed
as the residual error image between the reference image I1 and I21. It is then applied
to the reference image before registering it with I3. As in the previous approach, this
gets rid of appearance variations, but might drift through the sequence. We have found
however, that this approach is less likely to drift. This is due to the fact that only the
shadow mask is updated, and not the reference frame itself.

5 Experimental Results
This section reports experimental results on simulated and real data.

5.1 Simulated Data
The goal of these experiments is to validate the algorithm and determinate conditions
under which it converges. Starting from a first image, we generate a second image, that
will be used in the algorithm. The second image is generated as illustrated on figure
2. First, a rigid transformation is applied to the first image: three points are selected and

Figure 2: The simulation setup: the original Tshirt image, after affine transformation,
after full non-rigid transformation and after having applied a global illumination change
and added random noise.

randomly perturbed to define an affine transformation. The direction of the perturbation is
chosen at random, while its norm δR is user-defined. Second, a non-rigid transformation
is applied: points on a regular grid are offset by a random perturbation as above, with
norm δNR. Third, a global illumination change is applied, as well as a random Gaussian
noise with variance σ , on the intensity of all pixels. We perform the experiments using
the Tshirt image of figure 2 and an image from the Newspaper sequence, figure 5.

The default values of these three parameters are δR = 3 pixels, δNR = 2 pixels and
σ = 1 (over 256 gray levels). We vary independently these parameters while measuring
the residual error E at convergence. A residual error close to the noise level σ means that
the algorithm successfully converged. The results are averages over 50 trials.

Figure 3 shows the results we obtained. Based on these, we can say that the conver-
gence is independent of the rigid part δR, on the 0 to 10 pixels range. However, con-
vergence is strongly affected by the non-rigid part δNR. It gracefully degrades until a
break-point is reached, at roughly δNR = 6 pixels for the Tshirt image and δNR = 4 pixels
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Figure 3: (left) A grid mesh illustrating the kind of simulated deformations. (right) Sim-
ulation results.

for the Newspaper image. Beyond these break-points, the algorithm does not converge to
the right solution.

5.2 Real Data
Comparing grid-based and dynamic centre insertion approaches. We compare the
traditional approach based on placing the centres at the nodes of a fixed, regular grid, and
our dynamic centre insertion procedure. The results for the Tshirt images shown in figure
1 are displayed on figure 4. Our approach converged after 5 centres were introduced, with
an error of 13.80 over 256 gray-levels.
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Figure 4: Comparison of our dynamic centre insertion and a fixed grid approach.

We observe that the fixed grid approach needs many more centres than ours to min-
imize the error function to a similar order of magnitude. More precisely, 16 centres are
needed for the fixed grid approach to reach the same alignment.
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The Newspaper sequence. We apply our algorithm to the 225-frame Newspaper se-
quence, shown in figure 5. This sequence was acquired by waving the newspaper, which
non-rigidly deformed, in front of a hand-held digital camera. The movie shows that the
surface is undergoing highly non-rigid deformations. We select a reference frame, shown
on figure 5, to which all other frames are registered, using pair-wise non-rigid motion
estimation, as described in §4.

Visually it is evident that the registration is good. The average intensity registration
error over the sequence is 5.24 over 256 gray-levels, which is acceptable. The final col-
umn of figure 5 shows an augmented sequence: the original cartoon has been replaced by
a new one. The video presentation associated with this paper clearly shows that visual
deformations have been eliminated.

Figure 5: Registration results on the Newspaper sequence. (left) Original images. (mid-
dle) A mesh grid illustrating the computed mapping. (right) The cartoon on the reference
image (indicated by a black frame) is replaced and mapped onto the other frames.
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6 Conclusions and Further Work
We have proposed an intensity-based algorithm for the computation of Radial Basis Map-
pings, that can equivalently be viewed as a way to compute a regulatized optic flow field.
The basic algorithm is intended to register pairs of views, and an extension for the regis-
tration of multiple views is proposed. Amongst the possible avenues for future research,
experimenting with different, robust cost functions would be important, as well as com-
puting super-resolution.
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Abstract

The registration problem for images of a deforming surface has been well
studied. Parametric warps, for instance Free-Form Deformations and Radial
Basis Functions such as Thin-Plate Spline, are often estimated using additive
Gauss-Newton-like algorithms. The recently proposed compositional frame-
work has been shown to be more efficient, but can not be directly applied to
such non-groupwise warps.

We bring two contributions. First, we propose a Feature-Driven approach
making possible the use of compositional algorithms for most parametric
warps such as those mentioned above. This is demonstrated by an Inverse
Compositional algorithm for Thin-Plate Spline warps. Second, we propose a
piecewise linear learning approach to the local registration problem. Experi-
mental results show that the basin of convergence is enlarged, computational
cost reduced and alignment accuracy improved compared to previous meth-
ods.

1 Introduction
Registering images of a deforming surface is important for tasks such as video augmen-
tation by texture editing, non-rigid Structure-from-Motion and deformation capture. This
is a difficult problem since the appearance of imaged surfaces varies due to several phe-
nomena such as camera pose, surface deformation, lighting and motion blur. Recovering
a 3D surface, its deformations and the camera pose from a monocular video sequence is
intrinsically ill-posed. While prior information can be used to disambiguate the problem,
see e.g. [8, 13], it is common to avoid a full 3D model by using image-based deformation
models, e.g. [2, 4, 6, 10]. TPS (Thin-Plate Splines) warps are one possible deformation
model proposed in a landmark paper by Bookstein [4], that has been shown to effectively
model a wide variety of image deformations in different contexts, including medical im-
ages. Recent work shows that TPS warps can be estimated with direct methods, i.e.
by minimizing the intensity discrepancy between registered images [2, 10]. The Gauss-
Newton algorithm with additive update of the parameters is usually used for conducting
the minimization. Its main drawback is that the Hessian matrix must be recomputed and
inverted at each iteration. More efficient solutions have been proposed by Baker et al. [1]
based on a compositional update of the parameters, and lead to a constant Hessian matrix.
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Most non-rigid warps do not from groups, preventing the use of compositional algorithms
since they require to compose and possibly invert the warps. Despite several attempts to
relax the groupwise assumption by various approximations [8, 12, 14], there is no simple
solution in the literature.

This paper brings two main contributions. The first one is the Feature-Driven regis-
tration concept, allowing to devise compositional algorithms by relaxing the groupwise
requirement for most non-rigid warps such as Radial Basis Functions (with e.g. the Thin-
Plate Spline [4], a multiquadric [11] or the Wendland kernel function [7]). The main idea
is to control the warp by a set of driving features (e.g. for Radial Basis Function warps,
the target centers are used as driving features), and to act on these features directly for
operations such as warp reversion and threading, approximating inversion and composi-
tion which are not guaranteed to exist or can not be easily computed. For instance, we
extend the Inverse Compositional algorithm to TPS warps. The second contribution is
an improvement of Cootes’ linear learning approach [5] to local registration. Previous
work assumes a linear relationship between the intensity discrepancy and the local pa-
rameter update [5, 9]. This assumption induces several practical problems, such as low
alignment accuracy. We use a piecewise linear relationship for which a statistical map
selection criterion is proposed. We experimentally show that it performs much better than
most previous methods in terms of alignment accuracy, computational cost and enlarges
the convergence basin. The combination of the Feature-Driven framework with learning-
based local registration outperforms other algorithms for most experimental setups.
Notation. The images to be registered are written Ii with i = 1, . . . ,n. The template,
e.g. the region of interest in the first image, is denoted I0. The parameterized warp is
written W . It depends on a parameter vector ui for image Ii and maps a point q in the
template to the corresponding point qi in the i-th image: qi = W (q;ui). We write R the
set of pixels of interest and vectR(M ) the operator that vectorizes the elements of M
indicated in R.

2 Previous Work
The registration of images of deformable surfaces has received a growing attention over
the past decade. Direct registration consists in minimizing the pixel value discrepancy.
Registration of an image sequence is posed as a set of nonlinear optimization problems,
each of which estimating ui+1 using the registration ui of the previous frame as an ini-
tial solution. The discrepancy function C is usually chosen as the two-norm of the dif-
ference D between the template and the current one, warped towards the template, i.e.
D(q) = I0(q)−Ii+1(W (q;ui+1)), giving: C (ui+1) = ∑q∈R ‖D(q)‖2. Other choices
are possible, such as Mutual Information.

Using an additive update of the parameter vector, i.e. ui+1← ui+1 +δ , Gauss-Newton
can be used in a straightforward manner for minimizing C or in conjunction with com-
plexity tuning schemes as in [2, 10] for TPS warps. A second order approximation of C ,
theoretically better than the Gauss-Newton one, is proposed in [3]. The major drawback
of these methods is that the image gradient vector for each pixel in R must be recomputed
at each iteration. This is the most expensive step of the process.

A major improvement was proposed by Baker and Matthews [1] through the Inverse
Compositional algorithm. The key idea is to replace the additive update by the compo-
sition of the current warp Wi+1 with the inverse W̃ of the incremental warp: Wi+1 ←
Wi+1 ◦ W̃ . This leads to a constant Jacobian matrix and a constant Hessian matrix whose
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inverse is thus pre-computed. This requires that the warp forms a group. In order to
extend the approach to more involved models, several attempts have been made to relax
the groupwise requirement. They are reviewed in §3.3. Previous work on learning-based
registration are reviewed in §4.3.

3 Feature-Driven Registration

3.1 Feature-Driven Parametrization
The backbone of our approach is to represent the warp by a set of features in the current
image, that we call driving features. These features have a fixed position in the template,
depending on the type of warp that is being used. For RBF warps such as TPS warps, they
can be placed anywhere, while for Free-Form Deformations, they must lie on a grid.

Henceforth, we assume that ui contains the coordinates of the driving features in Ii.
In our implementation, we use TPS warps, whose Feature-Driven parameterization based
on points is described in §A. The target centers of the TPS are used as driving features.
The Feature-Driven concept and the registration algorithm we propose are generic in the
sense that they are independent of the type of warp that is being used.

In this context, the warp is essentially seen as an interpolant between the driving fea-
tures. There is obviously an infinite number of such warps. The best one depends on the
nature of the observed surface. Loosely speaking, matching the driving features between
two images is equivalent to defining a warp since the warp can be used to transfer the
driving features from one image to the other, while conversely, the warp can be computed
from the driving features.

The Feature-Driven framework has two main advantages. First, it often is better bal-
anced to tune feature positions, expressed in pixels, than coefficient vectors that may be
difficult to interpret, as for TPS warps. Second, it allows one to use the efficient compo-
sitional framework in a straightforward manner. Indeed, warp composition and inversion
can not be directly done for non-groupwise warps. Representing image deformations by
TPS warps or Free-Form Deformations is empirical. We propose empirical means for ab-
stracting warp composition and inversion through their driving features, called threading
and reversion respectively.

3.1.1 Threading Warps

Given two sets of driving features, v and v′, we are looking for a third set v′′ defined such
that threading the warps induced by v and v′ results in the warp induced by v′′, as shown
on figure 1(a). We propose a simple and computationally cheap way to do it, as opposed
to previous work. This is possible thanks to the Feature-Driven parametrization. The idea
is to apply the v′ induced warp to the features in v: the resulting set of features is v′′. This
is written: v′′ = W (v;v′), where W is meant to be applied to each feature in v. In the
case of TPS warps, for which we use points as driving features, threading two warps is
straightforward. It is also straightforward for all other kinds of RBF warps and for FFD
warps.

3.1.2 Reverting Warps

Given a set v of driving features, we are looking for a set v′, defined such that the warp
induced by v′ is the reversion of the one induced by v, as illustrated on figure 1(b). As for
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the threading, the Feature-Driven framework makes a very simple solution possible. The
idea is that applying the v′ induced warp to v gives u0, i.e. the fixed driving features in
the template. This is written: W (v;v′) = u0. This is straightforward for TPS warps. This
amounts to solving an exactly determined linear system, the size of which is the number
of driving features. For some classes of warps, W (v′;v) = u0 may be more practical to
solve for v′. Note that for all other kinds of RBF warps and FFD warps W (v;v′) = u0 is
to be preferred as well.
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Figure 1: (a) The Feature-Driven warp threading process: v′′ is defined by v′′ = W (v;v′).
(b) The Feature-Driven warp reversion process: v′ is defined such that W (v;v′) = u0.

3.2 Compositional Feature-Driven Alignment
Benefiting from the Feature-Driven parameterization properties, we extend the composi-
tional algorithms to non-groupwise warps. The following three steps, illustrated on figure
2 are repeated until convergence:
• Step 1: Warping. The driving features ui+1 are used to warp the input image Ii+1,

thereby globally aligning it to the template: IW (q) = Ii+1(W (q;ui+1)).
• Step 2: Local alignment. The driving features u are estimated in the warped

image. This is described in §4. Note that for the Inverse Compositional algorithm,
warp reversion is done at this step.
• Step 3: Updating. The current driving features ui+1 and those in the warped image

u are combined by threading the warps to update the driving features ui+1 in the
current image: ui+1←W (u;ui+1).

Note that previous work [8, 12, 14] requires a preliminary step before applying the update
rule, as reviewed in the next section. In comparison, the Feature-Driven framework makes
it naturally included into the third step.

Illumination changes are handled by normalizing the pixel value of the template and
those of the warped image at each iteration.

3.3 Relation to Previous Work
Alternative approaches for non-groupwise warp composition as proposed in [8, 12, 14]
consist in finding the best approximating warp for the pixels of interest in R: ui+1 =
argminui+1 ∑q∈R ‖Wi(W̃ (q))−Wi+1(q)‖2. In [8, 12, 14] the warp is induced by a tri-
angular mesh whose deformations are guided by a parameter vector. This minimization
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problem is usually solved in two steps. First the vertices in the current image are com-
puted using the assumption of local rigidity. They usually are not in accordance with a
model instance in e.g. the case of 3D Morphable Models [8, 14]. Second, the parameter
update is recovered by minimizing a prediction error, i.e. the distance between the updated
vertices and those induced by the parameters. This last step may be time consuming since
nonlinear optimization is required. Warp inversion is approximated with first order Tay-
lor expansion in [12], while [14] draws on triangular meshes to avoid linearization. By
comparison, our methods revert and thread warps in closed-form: they do not require
optimization.

4 Local Registration
The efficiency of compositional algorithms depends on the local alignment step. For in-
stance, the Inverse Compositional algorithm is efficient with the Gauss-Newton approxi-
mation for local alignment since this combination makes invariant the Hessian matrix. We
show that learning-based local alignment fits in the Forward Compositional framework in
a similar manner. Below, we propose an efficient learning-based alignment procedure.
This is inspired by previous work modeling the relationship between the local increment
δ and the intensity discrepancy D with an interaction matrix. Using a single interaction
matrix has several drawbacks, as reviewed in §4.3. We propose to learn a series F1 . . .Fκ

of interaction matrices, each of them covering a different range of displacement magni-
tudes. This forms a piecewise linear approximation to the true relationship. Each matrix
thus defines a map. A statistical map selection procedure is learned in order to select
the most appropriate matrix Fs given D. The update vector is then given by: δ = FsD.
Details are given below.

4.1 Learning an Interaction Matrix
An interaction matrix F is learned by generating artificially perturbed versions of the
template A j.
Generating training data. The driving features in the template are disturbed from their
rest position with randomly chosen direction and magnitude: u j← u0 +δu j. The latter is
clamped between a lower and an upper bound, determining the area of validity of the in-
teraction matrix. Our Feature-Driven warp reversion process is used to warp the template.

Learning. The residual vector is computed from the pixels of interest in R: D j =
vectR

(
I0−A j

)
. The training data are gathered in matrices U =

(
δu1|...|δum

)
and

L =
(
D1|...|Dm

)
. The interaction matrix F is computed by minimizing a Least Squares

error in the image space, expressed in pixel value unit: F =
(
L U T(U U T)−1

)†
. This

is one of the two possibilities for learning the interaction matrix. The other possibility is
dual. It minimizes an error in the parameter space, i.e. expressed in pixels. Experimental
results show that the former gives better results, being in particular much more robust to
noise.
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4.2 Statistical Map Selection
One issue with the piecewise linear model is to select the best interaction matrix at each
iteration. Each of those indeed has a specific domain of validity in the displacement mag-
nitude which unfortunately can not be determined prior to image alignment. We propose
to learn a relationship between the intensity error magnitude and the best matrix to use.
We express this relationship in terms of probabilities. The intensity error magnitude for
a residual error vector D is defined as its RMS (Root Mean of Squares) e(D). Note that
e2(D) ∝ C (ui+1). Figure 3 shows that P(Fk|e(D)) closely follows a Gaussian distribu-
tion. The mean and variance of the learned intensity error magnitude are computed for
each interaction matrix. Finding the most appropriate interaction matrix given the current
intensity error is simply achieved by solving: s = argmaxt P(Ft |e(D)).

4.3 Relation to Previous Work
Learning approaches in the literature often assume that the relationship between the error
image and the update parameters is linear [5, 9]. The drawback of those methods is that
if the interaction matrix covers a large domain of deformation magnitudes, alignment
accuracy is spoiled. On the other hand if the matrix is learned for small deformations
only, the converge basin is dramatically reduced. Our piecewise linear relationship solves
these issues.

Interaction matrices are valid only locally around the template parameters. Compo-
sitional algorithms are thus required, as in [9] for homographic warps. However in [5]
the assumption is made that the domain where the linear relationship is valid covers the
whole set of registrations. They thus apply the single interaction matrix around the current
parameters, avoiding the warping and the composition steps. This does not appear to be
a valid choice in practice. Our Feature-Driven framework naturally extends this approach
to non-groupwise warps.

5 Experimental Results
We compare four algorithms in terms of convergence frequency, accuracy and conver-
gence rate. Two classical algorithms:



6.2. ESTIMATION OF DEFORMABLE IMAGE WARPS 73

- FA-GN: the Forward Additive Gauss-Newton approach used by [2, 10].
- FA-ESM: the Efficient Second Order registration algorithm [3], adapted to TPS warps.
Two algorithms we propose:
- IC-GN: the Feature-Driven Inverse Compositional registration of §3 with Gauss-Newton
as local registration engine.
- FC-Le: the Feature-Driven Forward Compositional registration of §3, with local regis-
tration achieved through learning as we propose in §4.

5.1 Simulated Data
In order to assess the algorithms in different controlled conditions, we synthesize images
from a template. The driving features are placed on a 3× 3 grid, randomly perturbed
with magnitude r. We add Gaussian noise, with variance σ% of the maximum greylevel
value, to the warped image. We vary each of these parameters independently, using the
following default values: r = 2 pixels and σ = 1%. The noise variance upper bound is
10%, which corresponds to very noisy images. Estimated warps are scored by the mean
Euclidean distance between the driving features which generated the warped image, and
the estimated ones. Convergence to the right solution is declared if this score is lower
than one pixel. The results are means over 500 trials.
Convergence frequency. This is the percentage of convergence to the right solution.
Results are shown on figures 4(a) and 4(b). FC-Le has the largest convergence basin
closely followed by FA-ESM. On the other hand, FC-Le has the worst performance
against noise. However, it always converges for noise amplitude below 8% and converges
at 95% for 10% noise which is beyond typical practical values. IC-GN has the smallest
convergence basin.
Accuracy. This is measured as the mean residual error over the trials for which an
algorithm converged. Results are shown on figures 4(c) and 4(d). The four algorithms
are equivalent against displacement magnitude. Concerning noise amplitude, IC-GN and
FC-Le are equivalent while FA-ESM is slightly worse and FA-GN clearly worse. For
example, at 6% noise, the alignment errors of IC-GN and FC-Le are around 0.2 pixels,
FA-ESM at about 0.25 pixels and FA-GN alignment error at 0.35 pixels.
Convergence rate. This is defined by the number of iterations required to converge.
Results are shown on figures 4(e) and 4(f). The convergence rate of FC-LE and FA-ESM
are almost constant against both displacement and noise amplitudes. However FC-Le
does better, with a convergence rate kept below 10. FA-GN and IC-GN are efficient for
small displacements, i.e. below 5 pixels. The convergence rate increases dramatically
beyond this value for both of them. FA-GN is also inefficient for noise amplitude over
4%. This is explained by the fact that the FA-GN Jacobian matrix depends mainly on the
gradient of the current image, onto which the noise is added.

5.2 Real Data
The four above described algorithms have been compared on several videos. For two of
them (paper, tshirt), we show results on table 1 and registration visualization samples on
figure 5. We measure the average and maximum intensity RMS along the video, computed
on the pixels of interest and expressed in pixel value unit, the total number of iterations and
the computational time, expressed in seconds. All algorithms have been implemented in
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Figure 4: Comparison of the four algorithms in terms of convergence frequency (a)
against displacement magnitude and (b) noise magnitude. Comparison of the four algo-
rithms in terms of accuracy (c) against displacement magnitude and (d) noise magnitude.
Comparison of the four algorithms in terms of convergence rate (e) against displacement
magnitude and (f) noise magnitude.

Matlab. In practice, a great number of driving features with some amount of regularization
are used, making the TPS both flexible and well-constrained. In order to illustrate the
registration, we define a mesh on the template and transfer it to all other frames. Note that
these meshes are different from the estimated driving features. The alignment differences
between the four algorithms are visually undistinguishable, when they converge.

Summary. FA-GN is an accurate algorithm. It is however inefficient, especially for
important displacements. FA-ESM has almost similar performances compared to FA-GN
while being slightly more efficient. The Feature-Driven parametrization yields, via the
proposed IC-GN and FC-Le algorithms, fast non rigid registration with TPS warps. While
IC-GN looses effectiveness for high displacements, FC-Le has the best behavior. In fact, it
is similar to FA-GN for accuracy while being 5 times faster on average and is equivalent
or better than IC-GN and FA-ESM in terms of alignment accuracy, computational cost
and has a larger convergence basin.

Mean/max RMS Iteration # Total/mean time
tshirt paper tshirt paper tshirt paper

FA-GN 8.7/13.6 8.98/17.57 9057 2422 2083/5.2 702/2.0
FA-ESM 9.2/14.7 10.22/20.49 3658 2473 877/2.2 708/2.0
IC-GN 9.7/15.8 Diverges 6231 Diverges 436/1.1 Diverges
FC-Le 6.66/12.87 9.44/19.4 3309 1330 380/0.95 176/0.5

Table 1: Results for the tshirt and paper videos. Bold indicates best performances.
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Figure 5: Registration results for FC-Le algorithm. Top: the paper video. Bottom: the
tshirt video.

6 Conclusions
We addressed two important issues for the problem of non-rigid registration. First, we
proposed the Feature-Driven framework, relaxing the groupwise requirement for using
efficient compositional algorithms. Second, we proposed a statistically motivated piece-
wise linear local registration engine. Combining these two techniques results in an al-
gorithm outperforming the other ones in terms of alignment accuracy, computational cost
and having a larger convergence basin. Real-time surface registration is foreseen with this
algorithm. We intend to extend the Feature-Driven approach to more complicated models,
e.g. 3D Morphable Models [14]. This implies occlusion reasoning, that we intend to do
through multiple overlapping patch registration and combination.

References
[1] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying framework. IJCV, 2004.

[2] A. Bartoli and A. Zisserman. Direct estimation of non-rigid registrations. In BMVC, 2004.

[3] S. Benhimane and E. Malis. Real-time image-based tracking of planes using efficient second-
order minimization. In IROS, 2004.

[4] F. L. Bookstein. Principal warps: Thin-plate splines and the decomposition of deformations.
IEEE PAMI, 1989.

[5] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. In ECCV, 1998.

[6] T. F. Cootes, S. Marsland, C. J. Twining, K. Smith, and C. J. Taylor. Groupwise diffeomorphic
non-rigid registration for automatic model building. In ECCV, 2004.

[7] Mike Fornefett, Karl Rohr, and H. Siegfried Stiehl. Elastic registration of medical images
using radial basis functions with compact support. In CVPR, 1999.

[8] V. Gay-Bellile, M. Perriollat, A. Bartoli, and P. Sayd. Image registration by combining thin-
plate splines with a 3D morphable model. In ICIP, 2006.

[9] F. Jurie and M. Dhome. Hyperplane approximation for template matching. IEEE PAMI, 2002.



76 Chapter 6. IMAGE REGISTRATION

[10] J. Lim and M.-H. Yang. A direct method for non-rigid motion with thin-plate spline. In CVPR,
2005.

[11] J. A. Little, D. L. G. Hill, and D. J. Hawkes. Deformations incorporating rigid structures.
CVIU, 1997.

[12] I. Matthews and S. Baker. Active appearance models revisited. IJCV, 2004.

[13] J. Pilet, V. Lepetit, and P. Fua. Real-time non-rigid surface detection. In CVPR, 2005.

[14] S.Romdhani and T.Vetter. Efficient, robust and accurate fitting of a 3D morphable model. In
ICCV, 2003

A Feature-Driven Thin-Plate Spline Warps
This parameterization is convenient for centers that remain still in the template. The
TPS is an R2 → R function driven by assigning target values αk to l 2D centres ck and
enforcing several conditions: the TPS is the Radial Basis Function (RBF) that minimizes
the integral bending energy. It is usually parameterized by an l + 3 coefficient vector
hT

α,λ = ( wT aT) computed from the target vector α and a regularization parameter λ ∈
R+. The coefficients in w must satisfie PTw = 0, where the k-th row of P is

(
cT

k 1
)
. These

three ‘side-conditions’ ensure that the TPS has square integrable second derivatives. The
TPS is defined by:

ω(q,hα,λ ) = `T
q hα,λ , (1)

with `T
q = (ρ(d2(q,c1)) · · · ρ(d2(q,cl)) qT 1). Combining the equations obtained for

all the l centres cr with target values αr in a single matrix equation gives:

Kλ w+Pa = α, Kr,k =
{

λ r = k
ρ(d2(cr,ck)) r 6= k.

(2)

Adding λ I acts as a regularizer. Solving for hα,λ using the above equation and the side-
conditions is the classical linear method for estimating the TPS coefficients due to Book-
stein [4]. The coefficient vector hα,λ is a nonlinear function of the regularization param-
eter λ and a linear function of the target vector α .

We write hα,λ = Eλ α , i.e. as a linear ‘back-projection’ of the target vector α . Matrix
Eλ nonlinearly depends on λ . It is given from (2) as a function of Kλ and P by:

Eλ =

(
K−1

λ

(
I−P

(
PTK−1

λ
P
)−1

PTK−1
λ

)
(
PTK−1

λ
P
)−1

PTK−1
λ

)
.

This parameterization has the advantages to separate λ and α and introduces units1. The
side-conditions are naturally enforced by this parameterization.

Incorporating this parameterization into the TPS (1) we obtain what we call the feature-
driven parameterization for the TPS: τ(q;α,λ ) = `T

q Eλ α. Standard R2→R2 TPS-Warps
are obtained by stacking two R2→R TPS sharing their centres and regularization param-
eter:

W (q;u,λ ) = (τ(q;αx,λ ) τ(q;αy,λ ))T =
(
αx αy

)T
E T

λ
`q, (3)

with uT =
(
αT

x αT
y
)
. Notation W (q;u) is used for λ = 0.

1While hα,λ has no obvious unit, α in general has (e.g. pixels, meters).
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Abstract

The registration problem for images of a deforming sur-
face has been well studied. External occlusions are usu-
ally well-handled. In 2D image-based registration, self-
occlusions are more challenging. Consequently, the surface
is usually assumed to be only slightly self-occluding.

This paper is about image-based non-rigid registration
with self-occlusion reasoning. A specific framework explic-
itly modeling self-occlusions is proposed. It is combined
with an intensity-based, i.e. direct, data term for registra-
tion. Self-occlusions are detected as shrinking areas in the
2D warp.

Experimental results on several challenging datasets
show that our approach successfully registers images with
self-occlusions while effectively detecting the occluded re-
gions.

1. Introduction
Registering monocular images of a deforming surface is

important for tasks such as video augmentation by texture
editing, non-rigid Structure-from-Motion and deformation
capture. This is a difficult problem since the appearance
of imaged surfaces varies due to several phenomena such as
camera pose, surface deformation, lighting, motion blur and
occlusions. The latter causes difficult issues in 2D image
registration. They can be classified into external occlusions
and self-occlusions. External occlusions are caused by an
object entering the space between the camera and the sur-
face of interest. Self-occlusions are due to the surface being
bent in such a way that a part of it occludes another one.
Deformation estimation in the presence of self-occlusions
could be formulated in 3D, see e.g. [7]. However, recover-
ing a 3D surface, its deformations and the camera pose from
a monocular video sequence is intrinsically ill-posed. While
prior information can be used to disambiguate the problem,
see e.g. [3], it is common to avoid a full 3D model by using
image-based deformation models, e.g. [1, 5, 8].

Previous work on 2D image registration, e.g. [1, 8, 11, 9,
13], usually deals with external and self-occlusions within
an outlier rejection framework, e.g. the X84 rule, based on
the data term. These methods handle external occlusions
and very limited amounts of self-occlusion, as figure 1 il-
lustrates.

Figure 1. Classical methods fail on extreme self-occlusions. Ex-
ample of image registration using a classical outlier rejection algo-
rithm (see §5 for details). Left: success on an external occlusion.
Right: failure on an extreme self-occlusion.

Self-occlusions thus have to be dealt with in a different
manner. We propose a specific framework for non-rigid reg-
istration in spite of self-occlusions. The basic idea is to con-
sider self-occluded pixels not as outliers, but as points at
which the unknown warp is injective. This is implemented
with two components: The warp is constrained to shrink
rather than to ‘fold’ and self-occlusions are detected as the
warp shrinkage areas. This allows accurate deformation es-
timation in the presence of self-occlusions. Experimental
results demonstrating our framework are reported.

1
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Roadmap. Previous work is reviewed in §2. Self-
occlusion detection is explained in §3. Direct registration
with self-occlusion reasoning is proposed in §4. Experi-
mental results on real data are reported in §5. Finally, we
give our conclusions and discuss future work in §6.

Notation. The images to be registered are written Ii with
i = 1, . . . , n. The template, e.g. the occlusion-free region
of interest in the first image, is denoted I0. The warp is
written W . It depends on a parameter vector ui for image
Ii and maps a points q in the template to the corresponding
point qi in image i as: qi = W(q;ui).

We drop the image index i for clarity reasons in most of
the paper. We write R the set of pixels of interest. We re-
spectively denote Ec(d;q;u),El(d;q;u) and Er(d;q;u)
the central, left and right derivatives of the warp along direc-
tion d ∈ S1, e.g. Ec(d;q;u) = W(q+εd;u)−W(q−εd;u)

2ε (S1

is the unit circle). We denote vx and vy the x-component
and the y-component of a two-dimensional vector v.

2. Previous Work
Registering images of deformable surfaces has received

a growing attention over the past few years. However, the
self-occlusion issue is usually not explicitly tackled.

In [11], a feature-based non-rigid surface detection algo-
rithm is proposed. The robustness of this approach to self-
occlusions is not described clearly but experimental results
show that only small self-occlusions are handled. Deal-
ing with extreme self-occlusions such as those of figures
5 is very challenging. The number of features might not
be large enough, in particular in the neighborhood of the
self-occlusion boundary, to recover the correct warp. Direct
non-rigid image registration generally yields more accurate
deformation estimates. Classical methods, e.g. [1, 8] do not
take self-occlusions into account. Some works explored this
issue by using specific patterns. For example, Lin et al. [9]
proposed a very robust algorithm for tracking a Near Regu-
lar Texture (NRT). A visibility map is used for dealing with
external and self-occlusions. It is based on geometric and
appearance properties of NRTs.

A method for retexturing non-rigid objects from a single
viewpoint is proposed in [13]. This approach is based on
texture and shading information. Deformable surface track-
ing is required to obtain texture coordinate before retextur-
ing. The most impressive results are obtained with specific
patterns. They allow to obtain very accurate texture coordi-
nates even if some areas are slightly occluded.

A classical technique such as the z-buffer allows to pre-
dict the occluding contour when a 3D model is used. Ilic et
al. [7] uses an implicit representation of 3D shapes. Occlud-
ing contours are computed as the solution of an ordinary dif-
ferential equation. This allows one to recover the shape of a

deforming object in monocular videos. This method can be
applied to a restricted set of self-occlusions only: those for
which the boundaries can not be a priori segmented defeat
this method, see e.g. the one shown on figure 5.

To summarize, dealing with self-occlusions in purely 2D
image-based registration is a very challenging problem that
has not yet received a commonly agreed solution in the
community.

3. Self-occlusion Detection Framework
3.1. Overview

The basic idea is to consider self-occluded pixels as
points at which the unknown warp shrinks. Note that a nat-
ural warp behavior such as folding does not allow detection
in 2D. We thus use the following three basic components.
First, the warp is constrained not to fold onto itself but to
shrink along the self-occlusion boundaries. Second, bene-
fiting from this property, the warp is used to detect the self-
occluded pixels. Third, these pixels are ignored in the data
term in the error function. This is in contrast with classical
methods which use the image data, i.e. the pixel intensities,
for rejecting self-occluded parts as outliers.

In other words, the warp is constrained to be one-to-one
in visible and externally occluded parts and many-to-one in
self-occluded regions. The proposed approach, based on
the shrinking property to detect the self-occluded pixels,
outputs a binary self-occlusion map H(q;u) with q ∈ R
and H(q;u) = 0 if pixel q is occluded by the surface and
H(q;u) = 1, otherwise.

3.2. Preventing Foldings, Enforcing Shrinkage

A regularized warp naturally folds onto himself in case
of extreme self-occlusions. Warp shrinkage is enforced by
penalizing loops and folds, via the penalty term Esh. This
behavior is required by the self-occlusion detection mod-
ules described in §3.3. Folds make the warp many-to-many
in visible parts. These configurations are characterized by
a variation in the sign of the partial derivatives of the warp
along some direction. We note that diffeomorphic warps
are proposed in [5]. They enforce one-to-one correspon-
dences by preventing warp folds. Diffeomorphic warps are
unadapted in our context since we model self-occluded ar-
eas by a many-to-one warp.
Our penalty is built via the following function:

γ(r) =
{

0 if r ≥ 0
r2 otherwise.

It is applied to the element-wise product between the left
and the right derivatives of the warp evaluated at the points
in R and integrated along direction d ∈ S1. It allows to
penalize those points for which the right and left derivatives
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have opposite signs. It enforces the warp not to fold but
rather to shrink along the self-occluded area. The shrinking
constraint is given by:

Esh(u) =
∑
q∈R

∫
d∈S1

∑
c∈{x,y}

γ(Ec
l (d,q,u)Ec

r(d,q,u))dd.

In practice, the integral is discretized on a set of 8 directions.

3.3. Detecting Self-Occlusions

One consequence of the shrinking property is that for
any self-occluded pixel q, there exists at least one direction
d ∈ S1 such that the partial derivatives of the warp at q in
direction d vanish. We thus define the self-occlusion map
H(q;u) as:

H(q;u) =
{

0 ∃d ∈ S1 | ‖Ec(d;q;u)‖ < r
1 otherwise. (1)

‖Ec(d;q;u)‖ = 0 implies that points W(q + εd;u) and
W(q − εd;u) are identical. We fix r slightly over 0, e.g.
0.1, in order to tolerate noisy warps. In practice, the exhaus-
tive search of directions d is replaced by a minimization
problem:

σ0 = min
d∈S1

‖Ec(d;q;u)‖2 .

A pixel q is labeled as self-occluded by comparing σ0 with
the threshold r. This minimization problem has a closed-
form solution. Let J be the Jacobian matrix of W eval-

uated at (q;u), i.e. J =

(
∂Wx

∂x
∂Wx

∂y
∂Wy

∂x
∂Wy

∂y

)
. We have

Ec(d;q;u) = Jd, and thus:

σ0 = min
d∈S1

‖Ec(d;q;u)‖2 = min
d∈S1

dTJ TJd.

Spectral decomposition of the symmetric matrixO = J TJ
gives:

σ0 =
1
2

(
O1,1 +O2,2 −

√
(O1,1 −O2,2)2 + 4O2

1,2

)
.

4. Image Registration with Self-Occlusions

4.1. The Warp

A regular grid is defined on the template. The warp is de-
fined byW(q;u) =

∑4
i=1 Bi(q)(si + ui), where si are the

mesh vertices in the vicinity of q. Bi are interpolation coef-
ficients. We use a bilinear interpolation. Other choices are
possible, e.g. B-splines. The parameter vector u includes
the displacement of the vertices si: uT = (xT yT). This
type of parametric warps is known as Free-Form Deforma-
tions.

4.2. The Cost Function

Direct non-rigid registration algorithms usually use as
discrepancy function Edata the two-norm of the difference
D between the template and the current image, warped to-
ward the template, i.e. D(q) = I0(q) − I(W(q;u)), giv-
ing:

Edata(u) =
∑
q∈R

D2(q;u).

More sophisticated data terms [10, 12] robust to noise or
lighting variations can also be used.

For purely twodimensional registration, as is the case in
this paper, smoothness constraints are used. These soft con-
straints can be implicitly incorporated in a parameterized
warp as e.g. in Thin-Plate Spline warps. We use a simple
regularization term Ereg that is added to the error function:∑

q∈R
D2(q;u) + λregEreg(u). (2)

Denote U the displacement field reshaped on the mesh grid:
u = vect(U). The regularization penalty on the displace-
ment field U is a discrete approximation to the bending en-
ergy:

Ereg(u) =

Z
R

Z
R

„
∂U
∂2x

«2

+ 2

„
∂U

∂x∂y

«2

+

„
∂U
∂2y

«2

dxdy.

Other choices are possible. The bending energy empirically
appears to be well suited for the case of smooth surfaces.

Dealing with occlusions is usually done through a robust
estimator in the data term:∑

q∈R
ρ
(
D2(q)

)
+ λregEreg(u). (3)

As said above, it is not sufficient for self-occlusions. We
rather weight each term by the self-occlusion map H de-
scribed in §3. Simultaneously estimating the self-occlusion
map and the displacement field is complicated and subject
to many local minima. A two-step minimization scheme is
used. First, the parameter vector is updated by using the cur-
rent estimate of the self-occlusion map. Second, the latter
is updated with equation (1). The associated error function
is given by:∑

q∈R
H(q; ũ)D2(q;u) + λregEreg(u), (4)

where ũ is the current parameter estimate.
Finally, the shrinking penalty is added to the cost func-

tion. The global energy to be minimized is thus:
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E(u) =
∑
q∈R

H(q; ũ)D2(q;u) + λregEreg(u) + (5)

λsh
∑
q∈R

∑
d∈F

∑
c∈{x,y}

γ(Ec
l (d,q,u)Ec

r(d,q,u)).

The global error function (5) is minimized using the
Gauss-Newton algorithm. Note that the sparse structure of
the Jacobian matrix, see figure 2, is taken into account in
the minimization. A hierarchical approach [2] is used. It
is mainly required at the disocclusion stage. The coarse-to-
fine refinement step consists to propagate the displacement
field and the self-occlusion mapH using pyramid expansion
operations [4]. The latter has to be binarized. All the non
zero labels are fixed at one. This over-estimates the self-
occlusion map, preventing misalignment at the boundaries.

We note that warp shrinking is the natural behavior of
the warp when pixels vanish due to foreshortening under
perspective projection. In these cases, the detection module
is still valid. The shrinking constraint does not however ac-
tivates since the warp does not fold. The proposed method
naturally deals with these configurations.

Figure 2. The Jacobian and Hessian (Gauss-Newton approxima-
tion) matrices have a very sparse structure. These example from
the paper sequence of figure 4.

5. Experimental results
We tested our approach on several videos with different

kinds of surfaces (paper, fabric). A 2-level pyramid is used.
Various experiments show that the hierarchical framework
is necessary to recover the warp at disocclusion but that
additional levels do not significantly improve the registra-
tion. The image registration algorithm described in §4 takes
few seconds per frame with our unoptimized Matlab code.
A regular grid has been defined for visualization purposes.
The latter is less dense than the one used to guide the warp.

The one-to-one constraint requirement. As said above,
loops and folds are non-admissible warp configurations. In

Figure 3. Example of image registration with and without the
shrinking constraint. Self-occluded areas are shown in white.
Top: the input Ii and the reference I0 images. Middle: erro-
neous registration results and self-occlusion detection without the
shrinking constraint. Bottom: successful registration results and
self-occlusion detection with the shrinking constraint.

the absence of the shrinking penalty, they naturally appear
when the surface is extremely self-occluded, as shown on
figure 3. The self-occlusion detection is wrong since the
warp derivative is not null for the whole self-occluded area.
This defeats the registration process. Adding the shrinking
constraint to the error function forces the warp not to fold
but rather to shrink. Self-occlusion detection is then suc-
cessful.

The paper sequence. Figure 4 shows registration results
on the first paper sequence. Registration of visible parts is
accurate while the warp shrinks well in self-occluded re-
gions. Recovering the true warp at disocclusion is done
without misalignment.

Comparison with state-of-the-art. We compare our ap-
proach with a classical method for robust direct registra-
tion. It consists to minimize equation (3) with a hierarchi-
cal Gauss-Newton algorithm. Results are shown on figure
5. The Huber function [6] is employed as the robust kernel.
Results in figure 1 are obtained with this procedure. Our ap-
proach successfully deals with self-occlusions while robust
methods fail since they do not constrain the warp to shrink
in self-occluded regions and yield inaccurate registration of
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(#001) (#079) (#104) (#179) (#218)
Figure 4. Registration results on the first paper sequence. Top: the template I0 with detected self-occlusions shown in white. Bottom:
a grid illustrating the warp on the current frame.

visible parts when the surface is extremely self-occluded.
It is unlikely that they manage to keep track of the surface
at the disocclusion satge. We note that a re-initialization
procedure such as non-rigid surface detection [11] might be
used when the registration is lost. The proposed approach
allows to recover the warp at disocclusion without misalign-
ment. A re-initialization procedure is not required unless
the surface is totally occluded, contrarily to classical robust
approaches.

Self-occluded boundaries. Self-occluded surface bound-
aries are particular cases. Classical approaches and the
one we propose are both valid i.e. non-visible pixels are
correctly rejected and visible ones are correctly registered.
However, with our self-occlusion approach, the occlusion
boundary is tracked as shown on figure 6. Minimizing equa-
tion (4) enforces the warp to shrink along the self-occlusion
boundary. The self-occlusion boundary is lost with the clas-
sical approaches.

Other kinds of surfaces. Experiments on a fabric, figure
7, show that the specific framework we propose deal with
self-occlusions for many kinds of surfaces.

6. Conclusion

We addressed the important and seldom explored is-
sue of self-occlusions in non-rigid registration. A spe-
cific framework is proposed. The main idea is to constrain
the warp to shrink in self-occluded regions while detecting
them based on this property. Experimental results on real
videos show that our approach successfully deals with ex-
treme self-occlusions while classical robust methods fail.
Future work will concentrate on improving the accuracy
along the boundary of extreme self-occlusions.

Figure 6. Self-occlusion on the surface boundary. Top: input
images Ii. Middle: registration results with a classical outlier re-
jection approach. Bottom: registration results with the proposed
method.
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Abstract

Our goal is to augment images of non-rigid scenes com-
ing from single-camera footage. We do not assume any a
priori information about the scene being viewed, such as
for example a parameterized 3D model or the motion of the
camera. One possible solution is to use non-rigid factor-
ization of points, from which a dense interpolating function
modeled by a thin-plane spline can be computed. However,
in many cases, point correspondences fail to capture pre-
cisely all the deformations occurring in the scene. Exam-
ples include the eyebrows or the lips when augmenting se-
quences of a face. Such deformations can be captured by
tracking curves, but then point correspondences are not ob-
tained directly due to the aperture problem.

We propose an integrated method for non-rigid factoriza-
tion and thin-plate spline interpolant estimation using point
and curve correspondences over multiple views. The main
novelties lie in the introduction of curves into the non-rigid
factorization framework and in a direct global solution for
the registration map, obtained by minimizing the registra-
tion error over all points and curves while taking all the im-
ages into account. The parameters of the registration map
are set using cross-validation. The fidelity of the map is
demonstrated by augmenting video footage undergoing var-
ious types of deformation.

1. Introduction

Augmenting images coming from pre-shot monocular
footage is a major issue in the domain of special effects.
One approach is to compute a dense mapping function be-
tween a reference frame and all other frames of the se-
quence. The augmentation is then performed by the user
only on the reference image and is transferred automatically
to the rest of the sequence.

When the observed scene is rigid, the problem is equiv-
alent to computing a 3D surface. Techniques such as dense
matching [10] and multiple-view stereo [7], or interpolation

from a set of feature correspondences, can be employed to
estimate this surface.

However, the assumption of rigidity is violated in many
cases of interest, such as faces changing expression or cloth-
ing deforming. The problem is then particularly challenging
because a different shape is observed in each image. A ma-
jor step forwards for such cases was made by Torresani et
al. [13, 14] and Brand [3]. Building on the work of [1, 6],
they developed and demonstrated factorization of non-rigid
scenes, where the non-rigidity was represented as a linear
combination of basis shapes.

Figure 1. (left) Close-up of two frames of a 40 frame
sequence from the film ‘Run Lola Run’. (middle) the
frames overlaid with real point and curve correspon-
dences. (right) the frames augmented with a logo on
the forehead. The top row shows the reference frame.

Unfortunately, for real sequences of smooth surfaces
there is often insufficient texture to establish point corre-
spondences which capture accurately all the deformations.
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However, curves encapsulating such deformations are of-
ten available. In this paper we give a solution to this prob-
lem. We describe a method for computing a dense inter-
polating function between images of a non-rigid motion se-
quence. The mapping function is computed from both point
and curve correspondences, using the non-rigid factoriza-
tion framework. An example of using the computed map-
ping is shown in figure 1 (the sequence is shown in figure
5). In this case there are only a few areas where points can
be reliably tracked, e.g. the corner of the eyes, but there are
several curves (the hairline, the eyebrows) which may be
used to determine the mapping.

In outline our method proceeds by computing an initial
mapping based on point correspondences. From this map-
ping, we introduce virtual point correspondences, chosen
such that the registration error of curves is minimized. Fi-
nally, the mapping parameters and the virtual points posi-
tions are globally tuned by minimizing a non-linear error
function, and the process is iterated until the registration of
curves is satisfactory. Thin-plate spline image interpolants
are used for the mapping. The non-rigid factorization, based
on a low-rank shape assumption, mainly serves to enforce
global shape consistency by defining a low-rank subspace
for reconstructing the virtual points.

This paper is organized as follows. §2 gives preliminaries
and background. §3 describes our approach and §4 reports
experimental results. Finally, §5 gives conclusions and ex-
tensions.

2. Preliminaries and Background

2.1. Notation

Without loss of generality, we use the first image as the
reference image, i.e. the image that we will relate to all
other ones to perform augmentation. We do not use ho-
mogeneous coordinates, i.e. image point coordinates are 2-
vectors. Vectors and matrices are respectively typeset using
bold and sans-serif fonts, e.g. x and X. We denote real
points as xij , for the j-th (j = 1, . . . ,m) point in the i-th
view (i = 1, . . . , n). Index k = 1, . . . , l is used for curves,
i.e. Cik is the i-th image of the k-th curve. The virtual points
are denoted yikp where p = 1, . . . , dk. Points on a curve are
obtained by Cik(t), where t ∈ [0, 1] is a parameter.

2.2. Non-Rigid Factorization

We sketch the assumptions and ideas of non-rigid factor-
ization and the way we use it. We denote X the (2n ×m)
matrix defined as:

X =

⎛
⎜⎜⎜⎝

x11 x12 · · · x1m

x21 x22 · · · x2m

...
...

. . .
...

xn1 xn2 · · · xnm

⎞
⎟⎟⎟⎠ .

Non-rigid factorization assumes the affine camera model
and that centroids have been subtracted in each image. In
the rigid case, matrix X has rank r = 3 if the scene is 3D
[12], r = 2 if the scene is 2D. In the non-rigid case, it has
been shown that X can still be of low rank, e.g. [14]. This
result is obtained by assuming that the observed 3D shapes
are linear combinations of basis shapes. For example, if a
3D scene is observed, and is a linear combination over 2
basis shapes, then r = 6 since matrix X factorizes as:

X =

⎛
⎜⎜⎜⎝
λ11P1 λ12P1

λ21P2 λ22P2

...
...

λn1Pn λn2Pn

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
M

(
B11 B12 · · · B1m

B21 B22 · · · B2m

)
︸ ︷︷ ︸

S

,

where Pi are the leading (2 × 3) submatrices of affine pro-
jection matrices, the λiu are the weights of the linear com-
binations and Buj is the u-th 3D basis point for the j-th
point. We call M the motion matrix and S the shape ma-
trix. This factorization can be achieved by Singular Value
Decomposition X = UΣVT. The motion and shape ma-
trices are given by the r first columns of U

√
Σ and the r

first rows of
√

ΣVT respectively, which, in the presence of
noise, corresponds to nullifying all but the r first singular
values of X. Recomposing the motion and shape matrices
gives the reprojected points X̂ = MS. Each column s of
the shape matrix S corresponds to a physical point. More
precisely, it is a basis point in R

r: it encapsulates the low-
rank information which, coupled to the motion matrix M,
enables all images of the point to be predicted. While the
basis shapes are obtained in a straightforward manner from
the shape matrix, the weights and the projection matrices are
difficult to extract properly from the motion matrix. More-
over, it is sometimes difficult to choose between 2D and 3D
deforming scenes. Finally, the non-rigidity induces addi-
tional ambiguities in the reconstruction, see [9], and bundle
adjustment needs therefore strong regularization terms.

Our algorithm relies on non-rigid factorization. How-
ever, it does not need the motion matrix to be explicitly de-
composed into projection matrices and weight factors, nor
the shape matrix to be cast as sets of 2D or 3D points. This
avoids making an explicit choice between a 2D or 3D scene.

In practice, there is the issue of choosing the rank r. Pre-
vious solutions to this problem include [9] (using model se-
lection), and [6] (by examining the singular values). In the
experimental section §4, we use cross-validation measures
to choose r.
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2.3. Thin-Plate Spline Image Interpolants

A R
2 → R

2 radial basis function has the form f(x) =
(fx(x) fy(x))T, where, if we define ∗ ∈ {x, y}:

f∗(x) = α∗ + γ∗x+ δ∗y +
m∑

j=1

w∗
jE(‖xj − x‖). (1)

A 2D thin-plate spline is obtained by choosing the basis
functions as E(ρ) = ρ2 log ρ. This choice minimizes the
bending energy [2]:

Φ(f) =
∫∫ ((

∂2f

∂x2

)2

+ 2
(
∂2f

∂x∂y

)2

+
(
∂2f

∂y2

)2
)
dxdy.

Interpolating or approximating mappings can be con-
structed from m point correspondences xj ↔ x′j . The pa-
rameters of a mapping are encapsulated into a (m+ 3)× 2
matrix h = (hx hy) where the m + 3 vectors hx and hy

are defined by h∗T = (w∗
1 · · · w∗

m α∗ γ∗ δ∗).
In practice, parameters h are computed by minimizing

the following cost function [4]:

ψ(f,xj ,x′j , σ) = σΦ(f) +
m∑

j=1

d2(x′j , f(xj)).

The regularization parameter σ ∈ R
+ controls the trade-off

between the smoothness of the mapping and the interpola-
tion. In the limiting case σ = 0, f interpolates the point
correspondences. When σ > 0, they are approximated, and
when σ → +∞, the mapping tends to an affine transforma-
tion.

By taking the partial derivatives of ψ with respect to h,
one obtains the following linear system:

C(xj)h = D(x′j). (2)

where the (3+m)× (3+m) matrix C(xj) depends only on
the coordinates in the source image, while the (3 +m)× 2
matrix D(x′j) contains the coordinates of the points in the
target image:

C(xj) =
(

K + σI P
PT 0

)
, D(x′j)

T = (x′1 · · · x′m 0 0 0),

where the (r, c)-th entry of matrix K is E(‖xr − xc‖) and
the r-th row of matrix P is (1 xT

r ). The last three equations
are the ‘side conditions’, which ensure that the computed
mapping has square integrable second derivatives, i.e. that
it behaves smoothly outside the region of interest.

The outcome is a vector valued function f(x), which ex-
actly maps the corresponding points xj ↔ x′j onto each
other (for σ = 0) and is a smooth interpolant for other
points.

3. Computing the Mappings

We are given an image sequence of a deforming surface,
where there may be relative motion between the surface and
camera. Our goal is to recover a set of thin-plate spline
mappings between the reference frame and each of the other
frames of the sequence. We wish to exploit curve, as well
as point, correspondences in computing these maps. Whilst
mappings can be constructed from point correspondences as
reviewed in §2.3, the extension to curve correspondences is
not trivial.

1. Tracking. Compute point xij and curve Cik tracks.
Gather the points in matrix X.

2. Rank and regularization parameter selection, §3.1.
Compute the rank r to be used for non-rigid fac-
torization and the regularization parameter σ of the
thin-plate spline mappings by cross-validation.

3. Non-rigid factorization, §2.2. Factorize X into mo-
tion M and shape S. The reprojections are X̂ = MS.

4. Thin-plate spline mappings estimation, §2.3. Use
reprojected points in matrix X̂ to estimate the fi.

5. Curves registration assessment, §3.2. For each
curve k, if the registration errorD2

k > μ2, introduce
a virtual point on this curve, as described in §3.3. If
all curves are well-registered, converge.

6. Basis points reconstruction, §3.4. For all virtual
points, reconstruct a basis point by appending a col-
umn skp to the shape matrix S. Append the corre-
sponding column to matrix X.

7. Global refinement (optional), §3.5. Minimize the
global error function E , equation (6), over the map-
pings and all virtual basis points skp.

8. Iteration. Loop on 3.

Table 1. Point- and curve-based multiple-view dense
registration algorithm. The curve registration thresh-
old μ is typically chosen as 1/10 pixels.

The idea is to first use measured point correspondences
throughout the sequence to compute an initial estimate of
the cameras and basis points via non-rigid factorization. A
thin-plate spline mapping can then be built from the esti-
mated point correspondences between the reference image
and any other frame. Note that the rank r used in the non-
rigid factorization and the regularization parameter σ used
for the mappings are computed at this stage by minimizing
a cross-validation error, as described in §3.1. The computed
thin-plate spline provides an initial estimate of the desired
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map. However, this initial estimate will induce a registra-
tion error on the curves, and the map is then refined by min-
imizing this registration error. Our method differs from that
of [4] principally in this use of points to provide an initial
estimate that is consistent over multiple frames.

More precisely, the algorithm proceeds as follows. The
initial parameters hi of mappings fi are computed using the
real point correspondences xij , where fi is the mapping be-
tween the reference image and the i-th image. For each
curve correspondence Cik, i = 1, . . . , n, a multi-view regis-
tration error is computed, as the mean distance between the
reference curve C1k mapped with fi to images i = 2, . . . , n
and the corresponding curves C ik. The computation of the
curve registration error is described in §3.2. If the registra-
tion error of a curve is too high, say the distance is greater
than 1/10 pixels, this means that the image area surrounding
the curve is badly mapped, and that the curve may provide
useful constraints to improve the mapping. To incorporate
this information, we introduce a virtual point y ikq on the
curve, as described in §3.3. This process is iterated until
the registration of all curves becomes satisfactory. The role
of the virtual point correspondences, chosen on correspond-
ing curves, is to make the mappings computed throughout
the iterations register the curves better and better. In other
words, the virtual point correspondences are used to incor-
porate into the mapping the information provided by the
curve correspondences.

The iterative process is important since it ensures that all
curves are well-registered by the mapping, and that the set
of virtual points is minimal. The alternative solution of in-
troducing a fixed number of virtual points on each curve is
not satisfactory, since this set of points could be redundant
for some curves, while other curves could be badly regis-
tered by the mapping.

Introducing point correspondences on curves yields one
major problem: nothing guarantees that they are actually
consistent, in the sense of being the image of a unique 3D
point. We deal with this problem using the non-rigid fac-
torization reviewed in §2.2. A similar idea is followed in
[13] for the reconstruction of unreliable point correspon-
dences. Using non-rigid factorization, we factorize the real
point correspondences into a motion and a shape matrix.
Given the motion matrix, instead of computing directly the
positions of all virtual corresponding points y ikq along the
curves in all images, we instead compute the corresponding
3D basis points B, which makes the virtual points consis-
tent with the low-rank shape constraint. More details are
given in §3.4.

Our global refinement step turns into minimizing the dis-
tance between the virtual points predicted by the mappings
and those predicted by the reconstruction, and the global
registration error on curves. The cost function is described
in §3.5 and the optimization procedure in appendix A. The

algorithm is summarized in table 1.

3.1. Computing the Rank and Regularization

We propose to choose the rank r used in the non-rigid
factorization and the regularization parameter σ of the thin-
plate splines by minimizing a cross-validation error τ(r, σ).
Cross-validation reflects how well the model can interpolate
the data. It consists of applying the algorithm to the data
but leaving out one of the correspondences. The error in the
predicted positions of this correspondence is then measured
using the mappings computed from all the remaining cor-
respondences. We perform non-rigid factorization, and use
the reprojected points to compute thin-plate splines. The
point left out is then transferred from the first view to all
other views using the thin-plate splines, and the difference
between its actual and predicted positions is computed. The
cross-validation error τ(r, σ) is obtained by averaging these
differences over all views and all points. By varying the
rank r used in non-rigid factorization and the regulariza-
tion parameter σ of the thin-plate splines, different cross-
validation errors are obtained. We choose r and σ such that
τ(r, σ) is minimized.

3.2. Assessing Curve Registration

This section deals with computing the multi-view reg-
istration error Dk of a curve correspondence Cik, i =
1, . . . , n, given a multi-view mapping fi, i = 2, . . . , n. As
explained previously, we use a transfer error, given by the
mean of the distances between fi(C1k), the reference curve
C1k mapped to image i > 1, and the corresponding curve
Cik:

D2
k =

1
n− 1

n∑
i=2

ε2(fi(C1k), Cik), (3)

where ε is a distance measure between two curves. A nat-
ural distance measure is the average of the distances be-
tween e regularly sampled points on C with parameters tq ,
q = 1, . . . , e, and C ′:

ε2(C, C′) =
1
e

e∑
q=1

(
min

t′∈[0,1]
d2(C(tq), C′(t′))

)
. (4)

By substituting equation (4) into equation (3), we obtain:

D2
k = ν

n∑
i=2

e∑
q=1

(
min

t′∈[0,1]
d2(fi(C1k(tkq)), Cik(t′))

)
, (5)

where ν = 1
e(n−1) is a normalizing factor. This expres-

sion can be evaluated by computing e(n − 1) independent
one-dimensional minimisations over t ′. We use the Newton
algorithm with analytic differentiation. Reliable initial solu-
tions are provided by t′ = tkq , and the constraint t′ ∈ [0, 1]
is enforced by a simple clamping. Note that for certain
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curve parameterizations, direct specific solutions may exist
to compute Dk.

3.3. Choosing the Virtual Points
At each iteration of the algorithm, the current estimated

mapping is tested against each curve. Assume that the reg-
istration error Dk of the k-th curve is not satisfactory. We
drop the curve index k for clarity throughout this section.

A virtual point y1q = C1(s1q) is introduced on the curve
in the reference image (see below). The corresponding vir-
tual points in the other views are chosen on the correspond-
ing curves, such the mapping computed at the next iteration
will tend to better match the curves. A trivial solution to
chose the corresponding points yiq is to evaluate all images
of the curve with the same parameters, i.e. yiq = Ci(s1q).
However, this solution highly depends on the parameterisa-
tion of the curves. We prefer to choose for the y iq the closest
points to the points predicted by the current mapping:

yiq = C(siq) with siq = arg min
s
d2(fi(y1q), Ci(s)).

The virtual point introduced in the reference image is
chosen such that it has a high probability to reduce
the curve registration error, i.e. such the total error∑n

i=2 d
2(fi(y1q), Ci(siq)) induced by chosing the corre-

sponding points is maximized.

3.4. Reconstructing the Basis Points
We drop the curve index k for clarity throughout this

section. We tackle the problem of finding the virtual cor-
responding points of yip, and reconstructing the underly-
ing basis point sp. Point y1p lies on C1 in the reference
image and has been introduced to incorporate information
from this curve correspondence in the mapping. Comput-
ing the corresponding points y2p, . . . ,ynp is difficult due
to the aperture problem: they may be located anywhere
along the curves C2, . . . , Cn in frames 2, . . . , n respectively.
This problem is (n − 1)-dimensional, where n is the num-
ber of views. To reduce this high-dimensional problem,
we consider the previously computed non-rigid factoriza-
tion X̂ = MS. Each column s of the shape matrix S corre-
sponds to a particular point. For any virtual point y1p, we
append a column sp to matrix S. The corresponding image

points are given by
(
ŷT

1p · · · ŷT
np

)T = Msp. We have re-
duced our (n− 1)-dimensional problem to a r-dimensional
one, where r is the rank used for non-rigid factorization, e.g.
from 39 to 3 on the 40 frame Lola sequence. The accurate
estimation of sp is part of the global non-linear refinement
described in the next section. We compute sp such that the
distances between the predicted points ŷip and the points
yip is minimized for i = 2, . . . , n, and such that ŷ1p = y1p:

min
sp | ŷ1p=y1p

n∑
i=2

d2(ŷip,yip).

This is a linear least squares problem under linear con-
straints, that we solve using the framework described in e.g.
[5, A3.4.4].

3.5. Non-Linear Global Refinement

We deal with the last step of our iterative algorithm, the
global refinement of the mappings parameters and virtual
points positions. We minimize an error function consisting
of two terms:

min
hi,skp

E with E2 = E2
rec + ζ2E2

reg, (6)

where hi are the parameters of the i-th mapping f i and ζ2 is
a weight that we currently choose as 1. The reconstruction
term Erec and the registration term Ereg are described below.
The appendix shows how the optimization can be carried
out using sparse matrix inversion.

The reconstruction term concerns the reconstruction of
the basis points for the virtual points. It measures the
difference between the virtual image points predicted by
the reconstruction and those predicted by the mapping:
E2

rec =
∑l

k=1

∑n
i=2

∑dk

p=1 d
2(ŷikp, fi(y1kp)), where dk is

the number of virtual points on curve k.
The registration term accounts for the registration of the

curves across the images. It is based on the multi-view curve
registration errorDk of §3.2: E2

reg ∝
∑l

k=1D2
k.

4. Experimental Results
4.1. Implementation Details

We mark real points and curves in the first image, and
use the Shi-Tomasi point tracker [11] to get the real point
correspondences. Curves are modeled by natural splines.
We track each curve by computing a local non-rigid trans-
formation g by minimizing an intensity-based registration
error on the image patch X surrounding the curve:

min
gi

∑
x∈X

(I1(x)− Ii(gi(x)))2 ,

where Ii(x) is the intensity or colour of the pixel with co-
ordinates x in image Ii, and gi is a thin-plate spline with a
fixed number of centres, chosen as 4 in our implementation.
Transformations gi are used to transfer the control points of
the curve, which are finely tuned by maximizing the normal
image gradient along the curve.

More sophisticated curve trackers, see e.g. [8], based on
geodesic snakes, could be used as well.

4.2. Computing the Rank and Regularization

We use the procedure of §3.1 based on cross-validation
to determine the rank r to be used in non-rigid factorization
and the regularization parameter of the thin-plate splines.
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Figure 2. (top row) Sample frames (5 out of 105) of the Bears sequence. (second row) the point and curve correspon-
dences. (third row) the computed flow field. (last row) the augmented sequence.
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cross-validation for the curves clearly shows that they
improve the computed mappings.

Cross-validation also provides a quantitative analysis. We
use the 105 frames of the Bears sequence shown in fig-
ure 2. We chose this sequence since many stable point and
curve correspondences can be obtained. More precisely, we
tracked 94 points and 6 curves.
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Figure 4. Multi-view curve registration error through
the iterations of the Lola sequence, from top to bot-
tom: hairline, left and right eyebrows.
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Figure 3 shows the cross-validation plotted against dif-
ferent values of r. For each value of r, the σ minimizing the
cross-validation is employed.

The same experiment run on the Lola sequence, not
shown here, gave r = 3.

4.3. Augmenting Images

We give a qualitative evaluation of the registration algo-
rithm by augmenting sequences. We first consider the Lola
sequence, consisting of 40 frames, from which samples are
given in figure 5. The 33 real points and 3 curves used are
shown on figure 1. The algorithm requires a total of 7 it-
erations to converge, to a 0.052 pixels average registration
error on the curves, and 16 virtual points to be inserted – 7
on the hairline, 6 on the left eyebrow and 3 on the right eye-
brow. Figure 4 shows the evolution of the registration error
for each curve and the mean over all curves, as the itera-
tions proceed. Figure 6 shows the curves mapped from the
reference image to another image of the sequence through
the iterations. We observe that the quality of the mapping
in the vicinity of the curves clearly improves through the
iterations, until finally the mapped curve becomes indistin-
guishable from the tracked curve. Figure 7 shows images of
the Lola sequence augmented with a logo on the forehead.
There is a significant gain of quality between the result ob-
tained using only the real points and the result obtained by
applying our algorithm to real points and curves.

Figure 7. (left) The augmented reference image.
(middle) The augmentation transferred based on real
points. (right) Using real points and curves. In the
former case, the logo is deformed and shifted towards
the hairline, while in the latter case, it is centred on
the forehead, as in the reference image.

5. Conclusions and Extensions
One drawback of using the reference image registration

approach is that occlusions can not be handled easily. This
limits the number of sequences that can be dealt with. A
more explicit 3D surface representation would address this
problem.

We plan to introduce a final step designed to tune
the mapping’s parameters based on a direct method, i.e.
intensity-based, that should capture more completely all the
fine deformations of the surface.

A. Sparse Optimization Algorithm
We show how to carry out the optimization of criterion E ,

equation (6), using a sparse Levenberg-Marquart algorithm.
By merging the two sums over k and on i, and incorporat-
ing the inner minimization over t ′ in the main outer min-
imization by introducing the parameters t ′ikq , the problem
becomes:

min
hi,skp,t′ikq∈[0,1]

l∑
k=1

n∑
i=2

(
e∑

q=1

d2(fi(C1k(tkq)), Cik(t′))

)

+

(
dk∑

p=1

d2(ŷikp, fi(y1kp))

)
.

Let J denotes the Jacobian matrix of E . The Levenberg-
Marquardt algorithm consists in iteratively solving normal
equations (H + θI)δ = −g, where g = JTr is the gradi-
ent and H = JTJ the Gauss-Newton approximation of the
Hessian matrix. Parameter θ ∈ R is tuned heuristically. We

W

W V

virtual pointsmappings curve registration parameters

U

T

Figure 8. Shape of the Hessian matrix H (Gauss-
Newton approximation) for a toy example with n = 3
images, m = 3 real points, l = 2 curves, e = 5
sampled points for curve registration error estimation,
d1 = 2 virtual points on curve 1, d2 = 1 virtual point
on curve 2 and rank r = 3 for non-rigid factorization.

refer to e.g. [5, A4.2] for more details. In order to solve
the normal equations efficiently, we investigate the shape of
matrix H, shown in figure 8. As can be seen, this matrix has
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Figure 5. Sample frames (5 out of 40) from the film ‘Run Lola Run’.

Iteration 1 Iteration 2

Iteration 3 Iteration 4

Figure 6. Evolution of the mapping of the curves through the iterations. The grey curve is the tracked curve, while the
white curves are predicted by the mappings. (left) All curves. (right) close-up on the hairline shows that the mapping is
improved through the iterations in the vicinity of the curve. On each image, we show the virtual point correspondence
that is incorporated at the next iteration.

a strong sparse block structure that we exploit to solve the
normal equations using partitioning techniques from bun-
dle adjustment, as described in e.g. [5, A4.3], based on
the U, V and W blocks shown on figure 8. Assuming that
the initial solution is in the best region of convergence, we
enforce the constraints t′ikq ∈ [0, 1] using a simple clamp-
ing. The derivatives are computed in a very simple manner
since C(xj), equation (2) is a constant matrix and hence the
thin-plate spline mapping, equation (1), is linear in the un-
knowns.
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Abstract. The recovery of 3D shape and camera motion for non-rigid
scenes from single-camera video footage is a very important problem in
computer vision. The low-rank shape model consists in regarding the
deformations as linear combinations of basis shapes. Most algorithms
for reconstructing the parameters of this model along with camera mo-
tion are based on three main steps. Given point tracks and the rank, or
equivalently the number of basis shapes, they factorize a measurement
matrix containing all point tracks, from which the camera motion and
basis shapes are extracted and refined in a bundle adjustment manner.
There are several issues that have not been addressed yet, among which,
choosing the rank automatically and dealing with erroneous point tracks
and missing data.
We introduce theoretical and practical contributions that address these
issues. We propose an implicit imaging model for non-rigid scenes from
which we derive non-rigid matching tensors and closure constraints. We
give a non-rigid Structure-From-Motion algorithm based on computing
matching tensors over subsequences, from which the implicit cameras
are extrated. Each non-rigid matching tensor is computed, along with
the rank of the subsequence, using a robust estimator incorporating a
model selection criterion that detects erroneous image points.
Preliminary experimental results on real and simulated data show that
our algorithm deals with challenging video sequences.

1 Introduction

Structure-From-Motion – the recovery of 3D shape and camera motion from
images – is one of the most studied problems in computer vision. The decades
of work has led to significant successes, especially when the observed environ-
ment is static. However, the assumption of rigidity is violated in many cases of
interest, for example expressive faces, moving cars, etc. For that reason, deal-
ing with non-rigid scenes coming from single-camera footage has received an
increasing attention over the last few years. The problem is highly challenging
since both the camera motion and the non-rigid 3D shape have to be recovered.
A major step forwards for such cases was made by Bregler et al. [5, 8], Brand [4]
and Aanæs et al. [1]. Building on the work of [2, 6], they developed and demon-
strated factorization of images of non-rigid scenes, where the non-rigidity was
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represented as a linear combination of basis shapes. Xiao et al. [12] studied the
degenerate deformations that may defeat the reconstruction algorithms.

This paper tackles the two following open problems. (i) the factorization of
a measurement matrix containing all point tracks in the presence of missing and
erroneous image points. This must be done to recover the parameters of the
implicit imaging model. Most previous work do not deal with missing data [1,
4, 5, 8, 11]. (ii) the automatic choice of the rank r of the measurement matrix,
characterising the degree of non-rigidity in the sequence. Most previous work
rely on a user-defined rank [4, 5, 8, 11].

More precisly, we build on the low-rank shape model to derive an implicit
imaging model projecting points affinely from Rr – the implicit shape points –
onto the images using implicit camera matrices. The rank r reflects the degree of
non-rigidity of the model and is thus a very important parameter. This implicit
model is simpler than the explicit model used in e.g. [5, 8], in the sense that it
ignores the replicated block structure of the camera matrices. The implicit model
gives weaker constraints on point tracks than the explicit model. It is the model
used for non-rigid factorization in e.g. [5, 8, 11]. Based on this model, we derive
non-rigid matching tensors that constrain point tracks and encapsulate informa-
tion about the implicit camera matrices. We define non-rigid closure constraints
relating the matching tensors to the implicit camera matrices. These theoretical
concepts are based on the fact that implicit reconstruction is performed in Rr.
They lead to a batch algorithm for computing the motion and structure matrices
in the presence of erroneous and missing data. The idea is to robustly compute
a set of matching tensors over several subsequences using mapsac and the gric
criterion to choose the associated rank [7]. From these matching tensors, we
solve for the implicit camera matrices using the closure constraints. The next
step consists in computing the basis shapes by non-rigid triangulation. We refine
both the implicit cameras and implicit shape in a bundle adjustment manner.
Finally, each image point is classified as an inlier or an outlier. Almost all steps
in this algorithm are done robustly, meaning that blunders are detected and thus
do not corrupt the computation.

Roadmap. In §2, we derive the non-rigid shape and imaging models. We exam-
ine previous work in §3. We derive the non-rigid matching tensors and closure
constraints in §§4 and 5 respectively. Our Structure-From-Motion algorithm is
derived in §6 while the robust estimation of matching tensors and associated
ranks is given in §7. Experimental results are reported in §8 and our conclusions
in §9.

Notation. Vectors are denoted using bold fonts, e.g. x and matrices using sans-
serif or calligraphic characters, e.g. M or X . Index i = 1, . . . , n is used for the
images, j = 1, . . . ,m for the points and k = 1, . . . , l for the basis shapes, e.g. xij

is the position of the j-th point track in the i-th image and Bkj is the k-th basis
shape for the j-th point. Visibility indicators modeling occlusions are denoted
vij . The Hadamard (element-wise) product is written �. The zero and one vec-
tors are respectively 0 and 1, 0 is the zero matrix and T is vector and matrix
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transpose. Bars indicate centred data, as in e.g. X̄ . Notation [i, i′] refers to a
subsequence between image i and image i′, e.g. X[i,i′] is the measurement matrix
for this subsequence. {} is a set over some variable. We use the Singular Value
Decomposition, denoted svd, e.g. X = UΣVT where U and V are orthonormal
matrices, and Σ is diagonal, containing the singular values of X in decreasing
order.

2 Non-Rigid Imaging Model

2.1 Explicit Model

The low-rank shape assumption consists in writing the coordinates of a time-
varying set of points Qij as linear combinations over l basis shapes Bkj with the
configuration weights αik: Qij =

∑l
k=1 αikBkj . Points Qij are projected onto

the images by affine cameras: xij = PiQij + ti, from which the explicit imaging
model is obtained:

xij = Pi

(
l∑

k=1

αikBkj

)
+ ti. (1)

This trilinear equation is the most explicit form of the low-rank shape imaging
model. Only rank-3 basis shapes are considered for simplicity, but rank-2 and
rank-1 basis shapes can be modeled as well [12].

2.2 Implicit Model

Rewriting (1), one obtains:

xij =
(
αi1Pi · · · αilPi

) (
BT

1j · · · BT
lj

)T
+ ti

= MiSj + ti with Mi =
(
αi1Pi · · · αilPi

)
(2)

We call Mi a (2× 3l) explicit camera matrix and ST
j =

(
BT

1j · · · BT
lj

)
a (3l × 1)

shape vector. Introduce r = 3l, the rank of the model, a (r× r) full-rank matrix
A and relaxing the replicated structure yields the bilinear implicit model. From
(2), xij = MiSj + ti =

(
MiA−1

)
(ASj) + ti, giving:

xij = JiKj + ti. (3)

We call Ji = MiA−1 and Kj = ASj the implicit camera matrix and the implicit
shape matrix respectively. Matrix A represents a corrective transformation. As
shown in the next section, this is the model used for non-rigid factorization. The
model generalizes, in some sense, the Pk → P2 projection matrices introduced
by Wolf et al. [10].
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3 Previous Work

Most of the previous work [1, 4, 5, 8, 11] is based on factorizing a measurement
matrix using svd and hence do not cope with missing data. We note that Torre-
sani et al. [8] propose an approach where the likelihood of the explicit model is
maximized over the entire image sequence using a generalized EM (Expectation
Maximization) algorithm which finds the nearest local optimum. The impor-
tant rank selection problem is neglected in most papers, besides [1]. Below, we
describe the three main steps involved in most algorithms. The inputs are the
complete measurement matrix X and the rank r. The outputs are the camera
pose, the configuration weights and the basis shapes.

Step 1: Factorizing. A (2n × m) measurement matrix X is built by gathering
all point coordinates. The translation part of the imaging model, i.e. the ti, is
estimated as the mean of the point coordinates in each image. A (2n× 1) joint
translation vector tT = (tT

1 · · · tT
n) is built and used to centre the measurement

matrix: X̄ ← X − t · 1T, from which we get:x11 · · · x1m

...
. . .

...
xn1 · · · xnm


︸ ︷︷ ︸

X̄(2n×m)

=

J1

...
Jn


︸ ︷︷ ︸
J(2n×r)

(
K1 · · · Km

)︸ ︷︷ ︸
K(r×m)

,

where J and K are the joint implicit camera and shape matrices. The centred
measurement matrix is factorized using svd as X̄ = UΣVT. The joint implicit
camera and shape matrices J and K, are recovered as the r leading columns of
e.g. U and ΣVT respectively.

Step 2: Upgrading. The implicit model is upgraded to the explicit one by com-
puting a corrective transformation. Xiao et al. [11] show that constraints on
both the explicit camera and shape matrices must be considered to achieve a
unique solution, namely the ‘rotation’ and the ‘basis’ constraints. They give a
closed-form solution based on these constraints. Previous work [4, 5, 8] use only
the rotation constraints, leading to ambiguous solutions. For instance, Brand
[4] shows that a block-diagonal corrective transformation is a good practical
approximation. Once the replicated structure has been approximately enforced,
the rotation matrices are extracted using orthonormal decomposition. The con-
figuration weights are then recovered using the orthonormality of the rotation
matrices. Bregler et al. [5] assume that the information about each basis shape
is distributed in the appropriate column triple in the shape matrix by the ini-
tial svd, in other words that the entries off the block-diagonal of the corrective
transformation matrix are negligible. Experiments show that this assumption
restricts the cases that can be dealt with since only limited non-rigidity can be
handled. A second factorization round on the reordered weighted motion matrix
elements enforces the replicated block structure, yielding the weight factors and
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the Pi, which are upgraded to Euclidean by computing a linear transformation
as in the rigid factorization case. Aanæs et al. [1] assume that the structure
resulting from rigid factorization gives the mean non-rigid structure and camera
motion. Given the camera motion, recovering the structure is done by examining
the principal components of the estimated variance.

Step 3: Nonlinear refinement. The solution obtained so far is finely tuned in
a bundle adjustment manner by minimizing e.g. the reprojection error. The
algorithms proposed in [4, 8] differ by the prior they are using to regularize the
solution. These priors state that the reconstructed shapes should not vary too
much between consecutive images.

4 Non-Rigid Matching Tensors

Matching tensors are known for the rigid case. Examples are the fundamental
matrix and the trifocal tensor. They relate the image position of corresponding
points over multiple images. The implicit imaging model allows us to derive
matching tensors for non-rigid scenes.

A non-rigid matching tensor is a matrix N whose columns span the d dimen-
sional nullspace of the (2n×m) centred measurement matrix X̄ :

NTX̄ = 0. (4)

The size of matrix N is (2n×d) where the tensor dimension is d = 2n−r. Loosely
speaking,N constrain each point track x̄j – the j-th column of X̄ – byNTx̄j = 0.
These constraints easily extend to the non centred measurement matrix X by

substituting X̄ = X − t · 1T into equation (4):
(
NT −NTt

)(X
1T

)
= 0.

Minimal number of points and views. The three following parameters are char-
acteristic of an image sequence: the number of images n, the number of point
tracks m and the rank r. They can be related to each other, in particular for,
given r, deriving what the minimal number of point tracks and views are for
computing the matching tensor. The computation is possible if the (2n × m)
centred measurement matrix X̄ is at least of size (r × r). Counting the point
track needed to compute the translations for centring the measurement matrix,
we directly get the minimal number of point tracks as m ≥ r + 1. From 2n ≥ r,
we obtain the minimal number of views as n ≥ b r

2c+ 1. These numbers can also
be derived by counting the number of degrees of freedom in the tensor and the
number of independent constraints given by equation (4).

5 Non-Rigid Closure Constraints

The closure constraints introducted by Triggs in [9] relate matching tensors to
projection matrices. These constraints are used to derive a batch Structure-
From-Motion algorithm dealing with high amounts of missing data.
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In this section, we derive new types of closure constraints for the non-rigid
case, based on the above-derived matching tensors, namely the N -closure. Our
derivation is valid for any rank r.

Let K ∈ Rr be an implicit shape point. We project K in the images using
the joint implicit camera matrix J : x̄ = JK, ∀K ∈ Rr. From the definition (4)
of the matching tensors, NTx̄ = 0. Substituting the joint projection equation
yields NTJK = 0, ∀K ∈ Rr, which gives the N -closure constraint:

NTJ = 0. (5)

This constraint means that the joint implicit camera matrix lies in the right
nullspace of NT.

6 Non-Rigid Structure-From-Motion

Our batch algorithm for implicit non-rigid Structure-From-Motion is based on
the above-derived non-rigid matching tensors and closure constraints. It is sum-
marized in table 1. We consider only sets of consecutive images for simplicity. It

Objective

Given m point tracks over n images as a an incomplete (2n×m) measurement matrix
X and a (n × m) visibility matrix V, compute the implicit non-rigid cameras Ji, the
non-rigid shape points Kj and the rank r.

Algorithm

1. Partition the sequence, see §6.1 while robustly computing the matching tensors
{N[ib,i′

b
]} and associated ranks, see §7.2.

2. Solve for the implicit cameras (Ji, ti) using the closure constraints, see §6.2.
3. Triangulate the point tracks to get the implicit shape points Kj , see §6.3.
4. Nonlinearly refine the implicit cameras and shape points by minimizing the repro-

jection error, see §6.4.
5. Classify each image point track as an inlier or an outlier.

Table 1. Summary of our non-rigid implicit Structure-From-Motion algorithm.

begins by selecting a set of s subsequences {[ib, i′b]}b=s
b=1 and by computing a set

of matching tensors {N[ib,i′b]
}, one for each subsequence, and the associated rank

estimates {r[ib,i′b]
}. Our joint tensor and rank estimation algorithm is presented

in §7. The full sequence rank r is the maximum over all subsequence ranks:
r = maxb(r[ib,ib]).
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6.1 Partitioning the Sequence

The measurement matrix is partitioned into overlapping blocks with points visi-
ble in all of the selected images. Before going into further details, we must figure
out what the minimal tensor dimension is, and how many views each tensor
should operate on. Let [ib, i′b] and [ib+1, i

′
b+1] be two consecutive subsequences

and let δb,b+1 = ib+1 − ib be the offset between them. We need to determine
what the maximum value of δb,b+1 is. The b-th matching tensor, with dimension
db = 2nb− rb, gives db constraints. The number of unknowns constrained by the
first matching tensor only is δ1,2, from which we get δ1,2 ≤ n1−b r1+1

2 c. Making
the same reasoning for the b-th tensor, i.e. ignoring the constraints coming from
previous overlapping sets, gives a bound on δb,b+1:

δb,b+1 ≤ nb − b
rb + 1

2
c. (6)

Taking into account the other constraints lead to a tighter bound on δb,b+1,
but requires a cumbersome formalism to count the number of constraints and
unknowns. Requiring δb,b+1 > 0 gives the minimal size of each image set as:

nb ≥ b
rb + 1

2
c+ 1. (7)

For instance, for a 2D rigid scene, i.e. r = 2, the minimal nb is 2 from equation
(7) and the maximal δb,b+1 is 1 from equation (6), i.e. using the affine transfor-
mations over pairs of consecutive views is fine. For a 3D rigid scene, i.e. r = 3,
the minimal nb is 3 and the maximal δb,b+1 is 1, meaning that using trifocal
tensors over triplets of consecutive of views is fine3.

In practice, we do not know the ranks rb at this step. We tune an initial guess
while jointly partitioning the sequence and computing the matching tensors, as
described in §7.2.

6.2 Solving For the Implicit Cameras

The leading part. We solve for the non-rigid cameras using the closure con-
straints. Equation (5) gives the following constraints on the joint camera matrix
J :

(
0(db×2(ib−1)) NT

[ib,i′b]
0(db×2(n−i′b))

)
J = 0. Stacking the constraints for all

{[ib, i′b]}b=s
b=1 yields an homogeneous system AJ = 0. It must be solved, e.g. in

the least-squares sense, while ensuring that matrix J has full column rank:
minJ ‖AJ ‖2 s.t. det(J ) 6= 0. We replace the full column rank constraint by a
column orthonormality constraint, i.e. J TJ = I(r×r). Note that the latter im-
plies the former. This is done without loss of generality since for any full column
rank joint camera matrix J , there exist several coordinate transformations, say
G(r×r), such that JG is column orthonormal. One such a transformation is given

3 Triggs [9] states this result and shows the equivalence of using pairs of fundamental
matrices over triplets of consecutive views.
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by the qr decomposition of J = J ′G−1. The transformed problem is solved by
using the svd A = UΣVT. Matrix J is given by the r last columns of V. Note
that matrix A typically has a band-diagonal shape that one might exploit to
efficiently compute its singular vectors, see e.g. [3].

The translations. The implicit imaging model (3) is xij = JiKj + ti. By mini-
mizing a least-squares error over all image points, the translations ti in the joint
translation vector t, along with the basis shape vectors Kj can be reconstructed.
We prefer to postpone the basis shape vector reconstruction to the next step,
for robustness purposes. Instead, we consider the translation estimate y[i,i′] for
each subsequence [i, i′], giving the centroid with respect to the points visible in
the subsequence. We reconstruct these centroids along with vector t. Note that
in the absence of missing data, these centroids coincide. We minimize the repro-
jection error

∑s
b=1 ‖y[ib,i′b]

− J[ib,i′b]
Y[ib,i′b]

− t[ib,i′b]
‖2, where J[i,i′] and t[i,i′] are

respectively a partial joint projection matrix and a partial joint translation vec-
tor restricted to the subsequence [i, i′], and Y[i,i′] is the reconstructed centroid.
By expanding the cost function, the reprojection error is rewritten ‖Aw − b‖2,
where the unknown vector w contains the Y[ib,i′b]

and t. The solution is given
by using the pseudo-inverse of matrix A, as w = A†b. One must use a pseudo-
inverse, since there is a r-dimensional ambiguity, making A rank deficient with
a left nullspace of dimension r. This is a translational ambiguity between the
basis shapes and the joint translation t, that one can see by considering that
∀γ ∈ Rr, xj = JKj + t = J (Kj − γ) +J γ + t = JK′

j + t′, with K′
j = Kj − γ

and t′ = J γ + t.

6.3 Reconstructing the Implicit Shape Points

We compute the basis shape vectors by non-rigid triangulation. This is done
by minimizing the reprojection error. Assume that the j-th point is visible in
the subsequence [i, i′], then this is formulated by minKj

‖x̄[i,i′]−J[i,i′]Kj‖2 with
x̄[i,i′] = x[i,i′] − t[i,i′]. The solution is Kj = J †[i,i′]x̄[i,i′]. We perform the min-
imization in a robust manner to eliminate erroneous image points. We use a
ransac-like algorithm with adaptive number of trials. The number of image
points sampled in the inner loop is b r

2c+ 1.

6.4 Nonlinear Refinement

We complete the reconstruction algorithm by minimizing the reprojection error
in order to finely tune the estimate minJ ,t,K ‖V+ � (X − JK − t · 1T)‖2 where
V+ is obtained by duplicating4 each row of the (n×m) visibility matrix V. The
minimization is done in a bundle adjustment manner. More precisly, we use a
damped Gauss-Newton algorithm with a robust kernel. The damping is impor-
tant to avoid singularities in the Hessian matrix, due to the r(r+1) dimensional
coordinate frame ambiguity. Contrarily to the explicit case, see [1, 11], no extra
regularizing constraint is necessary.
4 This is simply to make it the same size as X .
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7 Estimating the Non-Rigid Matching Tensors and Ranks

Our method estimates a non-rigid matching tensor over a (sub)sequence, i.e. for
a complete measurement matrix, in a Maximum Likelihood framework. First,
we tackle the case where the data do not contain outliers, and when the rank
is given. Second, we examine the case where the data may contain outliers, and
when the rank have to be estimated.

7.1 Outlier-Free Data, Known Rank

We describe a Maximum Likelihood Estimator, that handles minimal and re-
dundent data. The translation t is obtained by averaging the point positions,
and the measurement matrix is then centred as X̄ = X − t · 1T. The problem
of finding the optimal N is formulated by minX̂ ‖X̄ − X̂ ‖2 s.t. NTX̂ = 0, where
X̂ contains predicted point positions. This is a matrix approximation problem
under rank deficiency constraint. It is solved by computing the svd X̄ = UΣVT,
from which X̂ is obtained by nullifying all but the r leading singular values in
Σ and recomposing the svd. Matrix N is given by the 2n− r last columns of U.

7.2 Contaminated Data, Unknown Rank

In most previous work, the rank of the sequence is assumed to be given. One
exception is Aanæs et al. [1] who use the bic model selection criterion to se-
lect the rank, but do not deal with blunders. When one uses subsequences, the
subsequence rank may be lower than the sequence rank, and must be estimated
along with the matching tensor. In addition, one has to deal with erroneous
image points. We propose to use the robust estimator mapsac in conjunction
with the gric model selection criterion proposed in [7]. gric is a modified bic
for robust least-squares problems. Our algorithm maximizes the gric score, as
follows. In the inner loop of the robust estimator, we sample point tracks and
not only compute a single matching tensor, but multiple ones by varying the
rank. Obviously, an upper bound rmax on the rank is necessary to fix the num-
ber of point tracks that one samples at each trial. One must take into account
that the computational cost rises with rmax. One possible solution is to divide
the sequence of trials into groups using gradually narrower intervals of possible

rank values. The gric score is given by gric =
∑m

j=1 ρ
(

e2
j

σ2

)
+ λd + rm log(m),

where ej is the prediction error for the j-th point track, λ = 4d log(z)−log(2πσ2)
and z is chosen as the image side length. Function ρ is ρ(x) = x for x < t and
ρ(x) = t otherwise, where the threshold t = 2 log(θ) + dλ/(2n) with θ the ratio
of the percentage of inliers to the percentage of outliers. The noise level is ro-
bustly estimated using the weakest model, i.e. for a tensor dimension d = 1, as
σ2 = med(e2

j )/0.67452. We refer the reader to [7] for more details.
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8 Experimental Results

Most other methods do not handle missing data, and hence can not be compared
to our. The method from Torresani et al. [8] handles missing data but uses the
explicit model.

3 6 9 12 15 18

0% 3.82 6.06 8.48 11.28 13.82 16.22
10% 3.86 6.02 8.60 11.02 13.66 16.24
20% 3.72 5.98 8.48 11.20 13.84 16.44
30% 3.64 5.94 8.52 11.00 13.52 16.58
40% 3.60 5.98 8.44 11.00 13.58 16.28
50% 3.40 5.88 8.30 10.86 13.68 16.16

3 6 9 12 15 18

0% 0.38 0.42 0.57 0.66 0.65 1.12
10% 0.35 0.37 0.49 0.65 0.55 1.14
20% 0.45 0.37 0.50 0.60 0.58 0.50
30% 0.48 0.37 0.57 0.53 0.61 0.67
40% 0.49 0.32 0.57 0.53 0.64 1.08
50% 0.49 0.62 0.70 0.63 0.71 1.17

Table 2. (left) Average estimated rank r and (right) its standard deviation σr versus
the true rank r and percentage of outliers.

8.1 Simulated Data

We simulated n = 180 cameras observing a set of m = 1000 points generated
from l = 5 basis shapes, hence with rank r = 3l = 15. The configuration weights
are chosen in order to give a decaying energy to successive deformation modes.
The simulation setup produces a complete measurement matrix X̃ , from which
we extract a sparse, band-diagonal measurement matrix X , similar to what a
real intensity-based point tracker would produce. A Gaussian centred noise with
variance σ2 = 1 is added to the image points.

In the experiments, we measured the reprojection error and the generaliza-
tion error, which are dubbed in a machine learning context training and test

error respectively. The reprojection error is E =
√

1
e‖V+ � (X − JK − t · 1T)‖2,

where e is the total number of visible image points. In other words, the reprojec-
tion error reflects the difference between the measures and the predictions. The
generalization error is given by Gγ =

√
1
eγ
‖Ṽ+

γ � (X̃ − JK − t · 1T)‖2, where γ

indicates the percentage of hidden image points in X̃ involved in the estima-
tion and eγ is the total number of image points used in the calculation. The
(n × m) matrix Ṽγ indicates which image points are used in the calculation:
it is constructed by including points further away from the visible points area
while γ grows, i.e. Ṽ0 = V and Ṽ100 = 1(n×m). For example, G0 = E and

G100 =
√

1
nm‖X̃ − JK − t · 1T‖2, i.e. all the visible and hidden image points

are used to compute the error. Obviously, we expect the generalization error to
be greater than the reprojection error, and to grow with γ.

The first experiment we performed consists in varying the level of added noise
σ for different percentages γ of hidden points to compute the generalization error.
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The results are shown on figure 1 (b). We observed that the reprojection error
is slightly higher than the level of noise. The ability to generalize is accurate for
a 1 pixel noise level, and smoothly degrades for larger noise levels, but is still
reasonable: in the tested rang σ = 0, . . . , 5 pixels, the γ = 100% generalization
error is slightly higher than twice the noise level.
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Fig. 1. Reprojection and generalization error versus (a) the variance of added noise σ
for different percentages γ of hidden points to compute the generalization error and (b)
the rank r for different percentages γ of hidden points to compute the generalization
error. The true rank r = 15 is indicated with a vertical bar..

The second experiment we performed consists in varying the rank used in
the computation, namely we tested r = 11, . . . , 27, for different percentages γ
of hidden points to compute the generalization error. The results are shown
on figure 1 (b). We observed that it is preferable to overestimate rather than
to underestimate the rank, up to some upper limit. A similar experiment with
roughly equal magnitude configuration weights to generate the data shows that
r can be slightly underestimated and largely overestimated. The conclusion is
that in practice, overestimating the rank is safe.

The third experiment is devised to assess the quality of the rank estimation
based on gric in the presence of outliers. We tested for true ranks in the range
r = 3, . . . , 18 which covers what one expects to meet in practice. The results
we obtained are shown in table 2, which shows averages over 50 trials. We ob-
served that these results are acceptable, even if the gric criterion we used is
slightly biased since low ranks, i.e. less than 6, are slightly overestimated, while
larger ranks, i.e. greater than 9 are slightly underestimated. It is however pos-
sible to correct for this bias in accordance with our conclusions on the previous
experiment.
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Fig. 2. (top) 5 out of the 154 frames and (bottom) the visibility matrix V for the
‘Groundhog Day’ sequence.

8.2 Real Data

We tested our algorithm on several image sequences. For one of them, extracted
from the movie ‘Groundhog Day’, we show results. The sequence shows a man
driving a car with a groundhog seated on his knees. The head of the man is
rotating and deforming since he is speaking, and the animal is looking around,
deforming its fur, opening and closing its mouth. Finally, the interior of the car
is almost static, while the exterior is rigid, but moving with respect to the car.

The sequence contains 154 images, see figure 2 (top). We ran a klt-like point
tracker. We obtained a total of 1502 point tracks after having removed the small
point tracks, namely which last less than 20 views. The visibility matrix, shown
on figure 2 (bottom) is filled to 29.58%.

Fig. 3. (left) One frame with points and motion vectors reprojected from the recon-
structed model and (right) Closeup on the actor, the groundhog and the background
overlaid with points and motion vectors reprojected from the reconstructed model
(white dots), original points (light grey squares) and outliers (dark grey diamonds).

For some parts of the sequence, where the motion of the different moving and
deforming parts in the images is slow, computing the matching tensors is quite
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easy. Indeed, blunders can clearly be detected and classified as outliers. However,
other parts in the sequence contain significant motion between single frames
and motion blur occurs, making the point tracks slightly diverging from their
‘true’ position, and making the detection of outliers difficult. Large illumination
changes sometimes make the tracker fails for entire areas of the image.

The reprojection errors we obtained at the non-rigid matching tensors es-
timation stage were distributed between 0.5 and 0.9 pixels, and 0.65 pixels on
average. We used a user-defined rank r = 15. The initialization step yielded
58021 inliers over 68413 image points, i.e. the inlier rate was 84.8%, with a
reprojection error of 1.19 pixels. The robust bundle adjustment yielded 61151
inliers, i.e. the inlier rate was 89.4%, with a reprojection error of 0.99 pixels. We
believe it is a successful result on this challenging image sequence.

9 Conclusions

We proposed an implicit imaging model for non-rigid scenes, from which we
derived non-rigid matching tensors and closure constraints. Based on these the-
oretical concepts, we proposed a robust batch implicit Structure-From-Motion
algorithm for monocular image sequences of non-rigid scenes, dealing with miss-
ing data and blunders. Future work will be devoted to comparing various model
selection criteria, and segmenting the scene based on the configuration weights,
to recover objects that move or deform independently.
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Abstract This paper describes an approach to implicit Non-
Rigid Structure-from-Motion based on the low-rank shape
model. The main contributions are the use of an implicit
model, of matching tensors, a rank estimation procedure,
and the theory and implementation of two smoothness pri-
ors. Contrarily to most previous methods, the proposed
method is fully automatic: it handles a substantial amount
of missing data as well as outlier contaminated data, and it
automatically estimates the degree of deformation. A ma-
jor problem in many previous methods is that they gen-
eralize badly. Although the estimated model fits the vis-
ible training data well, it often predicts the missing data
badly. To improve generalization a temporal smoothness
prior and a surface shape prior are developed. The tempo-
ral smoothness prior constrains the camera trajectory and
the configuration weights to behave smoothly. The surface
shape prior constrains consistently close image point tracks
to have similar implicit structure. We propose an algorithm
for achieving a Maximum A Posteriori (MAP) solution and
show experimentally that the MAP-solution generalizes far

This paper combines and extends two conference papers; the first one
appeared in the Workshop on Dynamical Vision held at ICCV’05 [2],
and the second one appeared at the 2007 British Machine Vision
Conference [11]. This paper integrates the two publications into a
comprehensive presentation of our approach to Non-Rigid
Structure-from-Motion.
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better than the prior-free Maximum Likelihood (ML) solu-
tion.

Keywords Computer vision · Structure-from-motion ·
Non-rigid · Low-rank shape

1 Introduction

Non-rigid Structure-from-Motion concerns the simultane-
ous recovery of the deforming world structure and cam-
era motion from image features. This extends the classi-
cal rigid Structure-from-Motion [13] to situations with de-
forming scenes such as expressive faces, deforming bodies
etc. A major step forward was made by Bregler et al. [5],
Brand [3] and Aanæs et al. [1]. They represent non-rigidity
as a linear combination of a small number of 3D basis
shapes. The low-rank shape model is generic: it does not
prescribe any particular type of 3D shape or deformation.
Using only limited assumptions it allows a simultaneous re-
covery of 3D deformable shape and camera motion from
monocular videos. Xiao et al. [23] studied the deforma-
tions that may defeat the reconstruction algorithms. Apart
from [1, 2], most methods assume that the amount of non-
rigidity—the number l of basis shapes—is known. If l is un-
derestimated the deformation cannot be well modeled, and
if overestimated the model will contain too many parame-
ters. In the latter case the model will fit the noise in the data,
and will not generalize well.

The data used in this and most previous methods con-
sist of point coordinates obtained by tracking image interest
points through a sequence. Because of occlusions and im-
perfect tracking the registered data often is partial: some or
all points are visible only in a subset of the frames. Many
early methods could not handle situations with missing data
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[1, 3, 5, 16, 21, 22]. Recently a number of methods [6, 10]
have been proposed to handle the missing data problem for
the rigid Structure-from-Motion problem.

Estimating a model from partial data allows one to pre-
dict the projection of all world points on all images. The
model generalizes well if the predicted points, on frames
where the point is not registered, are accurate. If the de-
gree of deformation is overestimated the model is unlikely
to generalize well. Priors have been shown to improve gen-
eralization. In [7] a prior for rigidity was presented. In [18] a
probabilistic PCA model using hierarchical priors is applied
to avoid overfitting.

The present paper draws on and extends our previous
work [2, 11]. It gives an in-depth description of the im-
plicit Maximum-Likelihood (ML) approach to non-rigid
Structure-from-Motion [2], and its extension with tempo-
ral and shape smoothness priors [11], by which a Maximum
A Posteriori (MAP) solution is formulated. The proposed
MAP-estimator is based on four main steps: an initial solu-
tion is computed by using an ML-estimator minimizing the
reprojection error. Second, the implicit coordinate frame is
changed to maximize a temporal smoothness prior. Third,
the implicit structure is re-estimated by minimizing a com-
bination of the reprojection error and a surface shape prior.
Finally, the motion and structure estimates are jointly re-
fined by nonlinear optimization. The paper reports results
on simulated and real data. It shows that the generaliza-
tion ability of the MAP solution is greatly improved com-
pared to the standard ML-estimation. Experiments show that
tracks split by imperfect tracking can be glued correctly to-
gether.

Contributions Among the various methods using the low-
rank shape model for non-rigid Structure-from-Motion, our
framework is the first one to bring all of the following fea-
tures:

• Missing image points. Most of the other methods are
based on SVD to factorize a measurement matrix, e.g. [1,
3–5, 7, 17], and thus do not deal with missing image
points. Our framework handles cases for which only a
few percents of the image points are observed (for in-
stance, we successfully handle a sequence with only about
13% of the image points being observed), meaning that
extreme occlusions and highly dynamical scenes can be
handled. This is achieved thanks to the low-rank match-
ing tensors and closure constraints we propose.

• Robustness. Most of the other methods assume that the
noise on the image point positions follows a centered
Gaussian i.i.d. distribution, e.g. [1, 4, 5, 7, 18]. While this
might be a sensible assumption if the points are manually
clicked or at least checked by the user, this certainly is not
true if the output of an automatic KLT-like point tracker is
directly used as input. The points may drift from the ideal

track, and may also be totally mismatched. Our algorithm
outputs, for each image point, a binary variable indicating
if it is an inlier or an outlier with respect to the low-rank
shape model.

• Rank selection. Most of the other methods assume that the
rank, i.e. the degree of deformation, is known, e.g. [4, 5, 7,
18]. This is definitely not a realistic assumption, since the
rank is highly dependent on the scene content. Inspired
by the GRIC model selection criterion, a robustified BIC,
our algorithm computes the rank from the available data
automatically.

• Generic prior knowledge. Most other methods assume the
low-rank shape model as the only generic prior, i.e. the
scene shape deforms according to a finite set of ‘few’ de-
formation modes, e.g. [1, 5, 7]. This clearly is not enough
to obtain a model that will generalize well to the entire
sequence when only a small fraction of the data is avail-
able. Natural generic priors such as smooth camera mo-
tion, shape deformation and continuous surface shapes,
are easily included in our framework. We show that the
high generalization ability of the recovered model allows
us to glue point tracks split during tracking, due to e.g. an
occlusion or a tracking failure.

Our framework is entirely automatic, as it takes as input the
point tracks produced by some point tracker, computes the
rank, classify each image point as valid or erroneous, and
outputs the sought after implicit reconstruction. A further
step is to upgrade the implicit reconstruction to an explicit,
i.e. metric one, which has been described in details in several
recent papers [4, 22].

Organization of the Paper Section 2 reviews the implicit
low-rank imaging model, its matching tensors and closure
constraints. In Sect. 3 we derive a method for estimating the
degree of deformation. In Sect. 4 model estimation on par-
tial data is described. Sections 5 and 6 describe the proposed
priors and their implementation. Section 7 reports the exper-
imental results. Finally, Sect. 8 concludes the paper.

Notation Vectors are denoted using bold fonts, e.g. x and
matrices using sans-serif or calligraphic characters, e.g. M or
A. Index i = 1, . . . ,N is used for the images, j = 1, . . . ,M

for the points. The Hadamard (element-wise) product is
written �. Bars indicate ‘centered’ data, as in X̄. We use
the Singular Value Decomposition, denoted SVD, e.g. X =
U�VT where U and V are orthonormal matrices, and � is
diagonal, containing the singular values of X in decreasing
order. Operator vect(X) performs column-wise matrix vec-
torization.
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2 The Implicit Low-Rank Non-Rigid Model

The standard rigid model describes the affine projection xij

of a set of M 3D world points Wj , represented by a 3 × M

shape matrix W onto N images represented by a 2N × 3
motion matrix P of stacked 2 × 3 affine camera projection
matrices Pi :

xij = PiWj + ti + ηij , (1)

where ti is the position of the i-th camera and ηij is a noise
term. The 2N × M matrix X of time varying coordinates xij

is called the measurement matrix and has rank r = 3 [13]. In
the non-rigid case, r > 3. The low-rank assumption is r �
min{2N,M}. In explicit non-rigid models it is assumed that
the shape points Wij can be written as linear combinations
over l basis shapes Bkj with the configuration weights αik :
Wij = ∑l

k=1 αikBkj . The explicit imaging model is:

xij = Pi

(
l∑

k=1

αikBkj

)

+ ti + ηij . (2)

Defining KT
j = (BT

1j · · · BT
lj ), and Mi = (αi1Pi · · · αilPi )

the model writes xij = MiKij + ti + ηij and thus X = MK +
t1T + η where M and K are 2N × 3l and 3l × M matrices
and 1 is a vector of ones.

Replacing the model rank assumption 3l with the more
general assumption r = 3l being a positive integer, introduc-
ing a (r × r) full-rank matrix A and relaxing the replicated
structure of the explicit motion matrix Mi gives the implicit
model:

xij = MiKj + ti + ηij

= (MiA) (A−1Kj ) + ti + ηij = JiSj + ti + ηij (3)

and thus:

X = JS + t1T + η,

where the 2N × r matrix J = MA is called the implicit mo-
tion matrix, and where the r ×M matrix S =A−1K is named
the implicit shape matrix. The matrixA in (3) often is called
the mixing matrix and represents a corrective transformation
by which an implicit model can be upgraded to an explicit
one. A defines the implicit coordinate frame in which the
motion and the shapes are represented.

The model (3) is called implicit because no assumption
is made on the replicated block structure of the motion ma-
trices that often is used in explicit approaches e.g. [4, 5, 17].
Thus the implicit model is simpler than the explicit one but
gives weaker constraints on point tracks. Note that the im-
plicit (basis) shape vectors Sj are more difficult to interpret
in terms of world coordinates. Similarly, the implicit mo-
tion matrices Ji (comprising camera pose and configuration

weights) do no longer directly relate to the camera orienta-
tion. Here we assume that r is known. In Sect. 3 we describe
how r is estimated.

Because the factorization of X is ambiguous, due to the
freedom of choosing A, an upgrading from implicit to ex-
plicit representation is important. Xiao et al. [22] show
that constraints on both the explicit motion and shape ma-
trices must be considered to achieve a unique solution,
namely the ‘rotation’ and the ‘basis’ constraints. They give
a closed-form solution based on these constraints. In [4]
Brand presents an alternative less noise sensitive method
without the ‘basis’ constraints. We consider the upgrading
as a postprocessing step that is not further dealt with in this
paper.

Our goal is thus, given X with missing and erroneous
elements, to recover J, S, and t while detecting the erro-
neous elements, and predicting the missing ones. If X is
complete (no missing data), one approximate factorization
can be found using SVD as X̄ = U�VT, where X̄ is the cen-
tered measurement matrix, i.e. with the translational part be-
ing canceled. The implicit motion and shape matrices J and
S, are recovered as the r leading columns of e.g. U and the
rows of �VT respectively. The assumption is that the infor-
mation in the d = 2N − r dimensional discarded subspace
corresponds to the noise η. This method however has lim-
ited interest in practice since real data almost always contain
errors and missing points. We propose a method that deals
with this kind of measurements. It is based on extending the
rigid matching tensors [20] to the low-rank shape model—
we call them low-rank matching tensors. Matching tensors
relate corresponding points over multiple images. Examples
are the fundamental matrix and the trifocal tensor. In the
non-rigid affine case the matching tensor is a 2N × d matrix
N whose columns span the d dimensional left nullspace of
the centered measurement matrix X̄:

N TX̄ = 0. (4)

As before N can be estimated using SVD. The closure con-
straints relate matching tensors to projection matrices. From
(1) and (4) and for all implicit shape points Sj ∈ R

r we have
N TJSj = 0, which gives our N -closure constraint:

N TJ = 0. (5)

The implicit motion matrix J consequently lies in the right
nullspace of N T and may be estimated using an SVD. From
J, Sj can be retrieved point-wise by triangulation. From
xj = JSj we get Sj = J†xj , where J† is the pseudoinverse
of J. In case of outlier contaminated data the computation of
N as well as the triangulation must be done robustly so that
blunders do not corrupt the computation. We use a RANSAC-
based approach called MSAC [15].
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3 Estimating the Rank

Estimating the rank r of the measurement matrix is of ut-
most importance. If r is chosen too small the model will not
be able to express the deformations; if chosen too large the
model will fit the noise. For many real sequences the tran-
sition between the singular value subspaces containing de-
formation information and those containing noise is blurred.
This makes a guessing of r difficult. For explicit models (us-
ing l = � r

3�) an upgrade to a metric model may be difficult if
l is selected too large [4]. In [18] it is argued that if appropri-
ate priors are used an overestimation of r is not severe. We
have made similar observations using the priors described in
Sect. 5. However still a good guess of r is needed.

Most previous work assumes that the rank of X is given.
A simple rank estimation by thresholding the singular value
spectrum is used in [24]. If outliers corrupt the data or if the
energy of the weakest non-rigid components is comparable
in magnitude to the noise then such methods are unlikely
to work. In [12] a deformation index is based on the cor-
relation matrix of the in-frame position information. In [1]
the Bayes Information Criteria (BIC) is used for rank selec-
tion. We propose to use the GRIC model selection criterion
proposed in [14]. GRIC is a robustified version of BIC. Let
k be the number of parameters of the model and L the log-
likelihood of the error distribution, both functions of r . Then
we aim at selecting the r minimizing −2L + k log(M). In
GRIC the error distribution is obtained from a mixture be-
tween a Gaussian inlier part and a uniform outlier part:

P = γ Pin + (1 − γ )Pout (6)

= γ

c

(
1√

2πσ 2

)2N−r

exp

(
− e2

2σ 2

)
+ 1 − γ

v
, (7)

where the error of the fit for the inliers can be modeled by
an isotropic zero mean Gaussian. Here e is the 2N − r di-
mensional error perpendicular to the fitting manifold and 1

c

is a prior of the point track, assuming a uniform distribution
on the volume (with size c) on which an observation may
occur. v similarly is the volume of space in which an outlier

can occur. When, for a point track, e2

σ 2 exceeds a value T ,
the track can be classified as being more probable to belong
to the outlier distribution than to the inlier distribution. It is
easy to show that:

T = 2 log

(
γ

1 − γ

)
+ (2N − r)λ, (8)

where

λ = 2 log(U) − log(2πσ 2), (9)

U =
(v

c

) 1
2N−r

. (10)

Replacing the mixture model with a maximization approach,
and using:

ρ

(
e2

σ 2

)
=

{
e2
σ 2 if e2

σ 2 ≤ T ,

T if e2
σ 2 > T

(11)

the log-likelihood term −2L= −2 log(P ) can be shown to
equate:

M∑

i

ρ

(
e2

σ 2

)
− 2M log

(γ

c

)
− M(2N − r)λ, (12)

where we have assumed independence of the M observa-
tions. Because the matching tensor has d = 2N − r equa-
tions in 2N coordinates, and because the equations are ho-
mogeneous and orthogonal we have:

k = 2Nd − d − d(d − 1)

2
= (2N2 − N) − 1

2
r(r − 1). (13)

Ignoring the constant terms 2M log(
γ
c
), (2N2 −N) log(M),

and 2MNλ the GRIC measure becomes:

GRIC =
M∑

j=1

ρ

(
e2
j

σ 2

)

+ Mrλ − 1

2
r(r − 1) log(M). (14)

It is clear that the r minimizing this equation depends on
the value of U defined in (10). To avoid estimating U we no-
tice that an often used alternative approach to the estimation
of T is by the value of the inverse cumulative χ2 distribution
with 2N − r degrees of freedom [8]. For relevant values of
2N − r this is approximately linear with a slope of λ. Thus
we estimate λ directly.

Because the data may contain outliers we use the robust
estimator MSAC [15] in conjunction with the GRIC. Thus to
find the rank value minimizing GRIC we must sample this
repeatedly for all relevant values of r . To limit the computa-
tional cost the sequence of trials is divided into groups using
gradually narrower intervals of possible rank values.

As described in the next section a limitation to partial
data forces the rank-value analysis to be made in (overlap-
ping) frame intervals. From such block-rank values a global
one may then be estimated, e.g. by the maximum. In general
the block-rank values will be smaller than the global rank
value, because no block may contain the complexity of de-
formation present in the full sequence. If the frame span for
each block is very small the underestimate may be severe.
In the next section a heuristic for selecting the block size
is discussed. Here the deformation within each block is as-
sumed sufficiently representative for the deformation within
the compound sequence. In this case the maximum may be
a good rank estimate, because it is the largest underestimate
that there is evidence for. One alternative would be to apply
a robust maximum operator.
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Fig. 1 1654 tracks in 250
frames. The degree of visibility
is 13.26%

4 Handling Partial Data

Because of occlusions and imperfect tracking the measure-
ment matrix X often will be defined only in a diagonal band.
Figure 1 shows an example of the visibility matrix V for a
sequence with 250 frames. V is a N × M binary matrix as-
sociated to X specifying if xij is defined or is missing. For
practical use, handling of partial data is of great importance.
A direct application of SVD, as described in the previous
sections and used in a large number of previous methods [1,
3, 5, 16, 22], is not possible. One method to proceed is to
extract blocks of complete data from the diagonal band of X
[9, 10]. A survey of this and other methods for partial data
handling can be found in [6]. As discussed in a following
section we need an initial factorization of X which we then
can improve by an iterative non-linear refinement step. For
this purpose an application of the matching tensor approach
on a block partitioning is ideal.

Given r , a d dimensional matching tensor Nb can be
computed robustly for each block b. For each matching ten-
sor, (5) gives a closure constraint on the joint motion ma-
trix J:
(

0(d×2(ib−1)) Nb
T 0(d×2(N−i′b))

)
J = 0, (15)

where ib and i′b are indexes of the first and last frame in
block b. Stacking the constraints for all blocks yields an
homogeneous linear least squares problem ‖AJ‖2 which
must be solved such that J has full column rank. With-
out loss of generality the full column rank constraint can
be replaced by constraining J to be column orthonormal.
A solution is given by the r last columns of V in the SVD

A = U�VT.
For each block the translation vector tb is computed prior

to Nb . The joint translation vector t can be found by mini-
mizing the reprojection error

∑
b ‖tb − JbTb − tb‖2, where

T is the reconstructed centroid, and where the subscript b

in Jb , Tb , and tb denotes the restriction of the joint matri-
ces and vectors to the frames within block b. The repro-
jection error is rewritten ‖Bw − b‖2, where the unknown
vector w contains T and t. The solution is given by using
the pseudo-inverse since there is an r dimensional ambigu-
ity, making B rank deficient with a left nullspace of dimen-
sion r . This correspond to the translational ambiguity be-
tween the basis shapes and the joint translation t: ∀γ ∈ R

r ,
xj = JSj + t = J(Sj − γ ) + Jγ + t = JS′

j + t′.
Given the estimates of J and t, the shape vectors Sj now

can be computed by a robust minimization of the reprojec-
tion error. An advantage is that this makes possible a detec-
tion of outliers. Alternatively, as described in Sect. 6.2, com-
putation of Sj may be postponed until the prior information
is included.

As discussed in the previous section it is an advantage
for the rank estimation if the data partitioning is made to
maximize the block frame span. However, increasing this
span will decrease the number of tracks visible in all of
the frames within the block. As a minimum Mb must be
larger than 2Nb , where Nb and Mb are the block frame
span and the number of tracks within the block. Because a
RANSAC- based estimation is used Mb � 2Nb is preferred.
One heuristic is to choose Nb by the maximal value such that
Mb > 4Nb . In practice this may not be possible if N � M , if
only very few data is visible, or if some tracks are very short.
Often is an advantage to eliminate tracks shorter than 10–20
frames. To guide the block partitioning one heuristic is to
start with the previously mentioned choice of Mb = 4Nb ,
and then decrease or increase Nb , still requiring Mb > 2Nb ,
towards a situation where the block shape becomes similar
to the shape of the measurement matrix itself.
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5 The Priors

Prior knowledge on both motion and shape can be very
useful in Non-Rigid Structure-from-Motion. In [7, 19] the
analysis is bootstrapped from an assumption of a rigid scene.
More basis shapes are incrementally added if necessary. In
[24] a prior matrix is built from observed trajectories. Us-
ing a spectral clustering method a RANSAC-based motion
segmentation is then derived. In [18] a probabilistic princi-
pal component analysis is used as an hierarchical Bayesian
prior. The method makes possible a simultaneous estimation
of 3D shape and motion, and of the deformation model. A
Gaussian prior is put on the configuration weights αik in (2).
Thus, the shapes are sought as similar as possible to each
other. To a large degree the purpose of this approach and our
surface shape prior (see below) are similar.

It is generally recognized [4, 23] that upgrading an initial
factorization to a metric one, i.e. estimating the mixing ma-
trix, is a hard problem. The methods in [4, 23] both rely on a
non-trivial optimization step. The global optimum is rarely
found unless the optimization is initialized at a point close
to it. Thus an initial choice of coordinate frame according to
a prior may show crucial for successful upgrading.

For nonlinear models with many parameters often many
completely different parameter settings may result in fits
which are approximately equally good when measured on
the training data. However, when measured on data held
back for test usage some solutions may predict these much
better that others. Such solutions are said to generalize bet-
ter. Often it is an advantage to select a solution that gener-
alizes well but have a slightly worse reprojection error than
the other way around. Below we motivate and formulate a
temporal smoothness prior and a surface shape prior, both
intended to improve generalization.

5.1 Temporal Smoothness Prior

For most image sequences, the camera motion is smooth.
For points on a smoothly deforming surface the configura-
tion weights smoothly vary as well which means that the
surface does not ‘jump’ between poses but rather smoothly
interpolates them. Since both the configuration weights and
the camera parameters are encapsulated in the Ji matrices,
these should vary smoothly from frame to frame giving the
smoothness measure:

EJ(J) =
N−1∑

i=1

‖Ji − Ji+1‖2 = ‖L‖2, (16)

where L is the 2(N − 1) × r matrix of stacked projection
difference matrices. The previously described factorization
is ambiguous up to an r × r full rank mixing matrixA. From
(16) we see that EJ(J) 
= EJ(JA). This suggests to select the

A minimizing (16). Note that since EJ(JR) is invariant to
any orthonormal matrixR we will not totally fix the mixing
matrix but leave freedom for any orthogonal transform.

5.2 Surface Shape Prior

Points which are close in space also project closely on the
images. In case of points on a deforming continuous sur-
face the opposite is true as well. Solutions obtained by the
previously described method does not encourage such be-
havior. As a consequence the projected trajectories for such
close tracks may deviate significantly outside the estimation
area. Often the ability to generalize acceptably disappears
just 2–5 frames away from the images in which the points
are visible. To improve generalization a surface shape prior
is imposed.

First notice that without fixing the coordinate frame in
which the shapes in S are represented the usual norm dis-
tance between two shapes is meaningless. However having
fixed the mixing matrix (up to an orthogonal matrix) it be-
comes meaningful.

The shape similarity α(j1, j2) of two point tracks j1 
= j2

is measured by a decreasing function of a distance measure
d(j1, j2) between the point tracks. The surface shape prior
then is:

ES(S) =
∑

(j1,j2)∈�

α(j1, j2) · ‖Sj1 − Sj2‖2, (17)

where � is the set of track tuples simultaneously visible for a
minimum number of, say 10, frames. As for the shape simi-

larity a Gaussian α(j1, j2) = exp(− d(j1,j2)
2

2σ 2 ) is appropriate.
In the experiments we computed σ as 0.03 times the im-
age width. One measure of track distance is the maximum:
d(j1, j2) = maxi{‖xij1 − xij2‖2}. Alternative measures in-
clude robust estimates of the average or maximum point
track distance. As for the temporal smoothness prior, ES is
invariant to any orthonormal matrix R.

6 Non-Rigid Structure-from-Motion with Priors

The model simultaneously minimizing the reprojection er-
ror, the smoothness prior and the surface shape prior, i.e. the
cost:

ERE(J,S) + γ EJ(J) + βES(S) (18)

must be minimized by nonlinear optimization. To ensure a
good starting point, and because the coordinate frame in
which the shapes are represented influences the solution
through the priors, we choose (initially) this frame by min-
imizing the temporal smoothness prior. This fixes the mix-
ing matrix up to an orthogonal matrix, to which the surface
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Table 1 Summary of our non-rigid low-rank implicit structure-from-motion algorithm

OBJECTIVE

Given M point tracks over N images as a possibly incomplete (2N × M) measurement matrix X, compute the implicit non-rigid motion Ji , the
implicit non-rigid shape points Sj , and an estimate of the rank r . Classify each image point as an inlier or an outlier.

ALGORITHM

1. Partition the sequence into overlapping blocks with complete data (Sect. 4). For each block, robustly estimate the block rank and the associated
matching tensor (Sects. 2 and 3).

2. Estimate the global rank r: apply the closure constraints to solve for the joint implicit motion matrix J and the joint translation vector t
(Sect. 4).

3. Detect the outliers by robustly fitting the model to each point track using RANSAC.
4. Use the temporal smoothness prior to select the coordinate transformation A and apply this to J (Sects. 5.1 and 6.1).
5. Estimate the shape vectors Sj minimizing a weighted sum of the reprojection error and the shape smoothness prior measure (Sects. 5.2

and 6.2).
6. Nonlinearly refine the implicit motion and shape points by minimizing a combination of the reprojection error, the temporal smoothness

measure and the shape smoothness measure.
7. Estimate the missing data and glue tracks if they comply with the estimation.

shape prior is invariant. Next, by using the surface shape
prior an initial guess for S is obtained. Finally J and S are
jointly refined by nonlinear least-squares optimization. The
constants γ and β in (18) are chosen ad hoc such that the
two priors initially contribute relative to the reprojection er-
ror with certain amounts, say 0.2 and 0.02. Below, the initial
application of the two priors is described. The algorithm is
summarized in Table 1.

6.1 The Coordinate Frame

The temporal smoothness prior measure (16) obviously de-
pends on the mixing matrix. Consequently we (partially)
determine this as the r × r full rank matrix A minimiz-
ing EJ(JA) = ‖LA‖2. The motivation is that determining the
mixing matrix ensures that the camera motion is ‘close’ to
the optimal one. To avoid the shrinking effect of reducing the
prior value by simply scaling down J we require det(A) = 1.
Let L = U�VT be an SVD of L. A closed-form solution for
A is provided in the Appendix.

A=
⎛

⎝ r

√√√√
r∏

k=1

σk

⎞

⎠V�−1. (19)

Given A we change the coordinate frame by J ← JA and
S ← A−1S without changing the reprojection error. How-
ever the value of the prior EJ(J) is significantly reduced.

6.2 Surface Shape Prior Implementation

Having fixed the non-rotational part of the mixing matrix
it becomes meaningful to compute an estimate of the struc-
ture S. Given the modified joint motion matrix J, S is sought
to minimize a weighted sum of the reprojection error and the
surface shape prior:

ERE(J,S) + βES(S)

= ‖V � (X − JS − t1T)‖2

+ β
∑

(j1,j2)∈�

α(j1, j2) · ‖Sj1 − Sj2‖2, (20)

where V is the combined inlier and visibility matrix and �

is the set of ‘close’ point tracks. The S minimizing this ex-
pression leads to a larger reprojection error compared to the
initial solution. The reprojection error increases with β . We
choose a value of β such that the reprojection error either re-
mains below say 2 pixels or is increased by a factor smaller
than say 0.5. Since the result is not sensitive to an accurate
value of β an approximate value is found using an itera-
tive approach with only few iterations. Equation (20) can be
rewritten:

ERE(J,S) + βES(S) = ‖v · (x̄ −Ms)‖2 + β‖Ls‖2, (21)

where x̄ = vect(X̄) and s = vect(S). M = diagM(J) is a
(2NM) × (rM) block diagonal matrix with M repetitions
of J. If p = |�| is the number of ‘close’ pairs of tracks then
L has p row blocks L(j1,j2) of the form:

L(j1,j2) = α(j1, j2) · (0 . . .0, I,0 . . .0,−I,0 . . .0), (22)

where I and 0 are the r × r identity and zero matrices, and
where the position of the two identity matrices correspond
to the indexes j1 and j2. Thus L has size (rp)× (rM). With
this rewriting we can directly see that the least squares solu-
tion is:

s = [M�M+ βL�L]−1M�x. (23)

Due to the sparseness of the matrices an implementation us-
ing a sparse matrix representation is advantageous.
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Fig. 2 Reprojection error and generalization error versus the variance
of added noise σ for different percentages of hidden points to compute
the generalization error

7 Experimental Results

In the experiments reported below we will first test the abil-
ity of the basic estimation method (without priors) to behave
well on “easy” synthetic sequences with partial, noisy, and
outlier corrupted data. Next we report experiments show-
ing the advantages of the temporal smoothness prior and the
shape smoothness prior on real images. Finally, an example
of track gluing is reported.

7.1 Experiments on Easy Synthetic Data

We simulated N = 180 cameras observing a set of M = 1000
points generated from l = 5 basis shapes, hence with rank
r = 3l = 15. The configuration weights were chosen in order
to give a decaying energy to successive deformation modes,
and such that the singular spectrum decayed smoothly to
zero at the true rank value. The simulation setup produces
a complete measurement matrix from which we extract a
sparse, band-diagonal measurement matrix X with about
50% of the data, similar to what a real intensity-based point
tracker produces. Gaussian distributed noise with zero mean
and a variance of σ 2 was added to the image points. In the
first experiment the true rank was assumed known. No prior
information was used. Figure 2 shows plots of the reprojec-
tion error and the generalization error as functions of σ . The
generalization measures are made in 5 bands including the
training data and 11%, 22%, 49%, 84%, and all of the data
held back for test. Figure 2 shows that the error is approxi-
mately proportional and slightly larger to the noise level. As
expected the generalization error increases with the gener-
alization distance. The reason that the generalization error

Table 2 Average and standard deviation of estimated rank estimate
as function of the true rank. In the test 300 “easy” sequences with a
varying amount of up to 50% outliers was used

True rank 3 6 9 12 15 18

Average 3.67 5.98 8.47 11.06 13.68 16.32

Std. 0.44 0.41 0.57 0.60 0.62 0.76

is only slightly larger compared to the reprojection error is
that the data was designed to be “easy”.

In the second experiment the rank value estimation was
tested using the same data. Table 2 show the average and
the standard deviation of the estimated rank value as func-
tion of the true rank value. In the test 50 sequences for each
of 6 different amounts of outlier contamination (0%, 10%,
20%, 30%, 40% and 50%) was used. No matter the degree
of outlier contamination the results were, as expected, very
similar. In Table 2 these numbers are averaged. As seen
GRIC slightly over/under-estimates the rank when this is
small/large.

The results show that the basic implicit non-rigid struc-
ture-from-motion modeling works well on “easy” synthetic
data. When the difficulty of the data increases, e.g. when the
singular value spectrum becomes flatter, the modeling error
increases, and the rank estimate gets more uncertain with a
tendency to be overestimated. In case of real data, overes-
timation is less meaningful because the model is empirical,
i.e. no real data are fully explained by the model. In any
case such “overestimation” does not seem serious if priors
are used.

7.2 Experiments with Priors Using Real Videos

In the following experiments we measure the improvement
in generalization by applying the two priors. The general-
ization is measured by the average point prediction accu-
racy as a function of the generalization distance, i.e. the
column-wise distance in frames to the closest data point
used for training. To make the experiment realistic only real
sequences are used. Figure 3 shows single frames from the
two sequences called Bears and Groundhog day. The se-
quence Bears shows a limited amount of deformation of a
continuous surface. In total 94 points were visible in 94 im-
ages. The Groundhog day sequence is more difficult show-
ing several independent deformations. Originally the mea-
surement matrix was partial, so a complete sub-matrix of
75 frames and 117 point tracks was extracted. From the two
complete matrices diagonal bands with 50% entries were se-
lected for training. A third sequence was constructed from
the (complete) sequence Bears by splitting each track in
three sub-tracks. To make the test more realistic the data
related to the last 1–7 frames of each track was randomly



7.1. A SINGLE CAMERA 117

J Math Imaging Vis

Fig. 3 Images from the Bears sequence (top) and the Groundhog day
sequence (bottom) with marked points

deleted. This resulted in a new measurement matrix with 282
tracks. The visibility matrix is shown to the left in Figure 6.

On the sequence Bears with partial data the rank was es-
timated to 5. After initial estimation ERE = 0.82 pixels. Ap-
plying the priors increased this to 1.20 pixels. The tempo-
ral smoothness measure was reduced by a factor of 108.7.
Fig. 4 shows on the top a plot of the average generaliza-
tion error as function of the generalization distance. With-
out prior use the generalization becomes bad even for short
generalization distances. With prior use the error is signif-
icantly reduced. For this, relatively easy, sequence the esti-
mated model seems reliable up to a distance of about 15–20
frames. To illustrate the effect of the prior usage Fig. 5 show
a close-up of 4 tracks from the Bears sequence. The posi-
tions computed by using the two priors (squares) are much
closer to the true positions (stars) than the ones obtained by
not using the priors (diamonds).

On the sequence constructed from Bears by track split-
ting the rank was, as before, estimated to 5. The reprojec-
tion error was increased from 0.53 pixel to 1.74 pixels by
application of the priors. The temporal smoothness measure
was reduced by a factor of 124.2. Figure 4 shows on the
bottom that the average generalization error with prior us-
age is almost constant about 2–3 pixels independently of the
generalization distance. This is much less than without prior

Fig. 4 Average generalization error as function of the generalization
distance for the sequence Bears (top) and Groundhog day (middle), and
the sequence obtained from Bears by track splitting (bottom)

usage. The reason the generalization errors here is 3–4 times
smaller compared to the one showed on the top of Figure 4
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Fig. 5 Close-up sequence of 4 point tracks which visible parts (use for training) all ending close to frame number 47. ‘True’ positions, given by
the tracker, are shown by stars. Predicted positions estimated without using the priors are shown by diamonds. Predicted positions estimated with
use of the priors are shown by squares

Fig. 6 Left: Visibility matrix for measurement matrix constructed by splitting the tracks of Bears in 3. Right: Glued tracks

is that here most data is maintained. The data is just split
into more tracks.

On the sequence Groundhog day the rank was estimated
to 14, indicating the difficulty of the sequence. The initial
reprojection error was increased from 0.96 pixel to 1.62 pix-
els by application of the priors. The temporal smoothness
measure was reduced by a factor of 5660.3. Figure 4 shows
in the middle that the improvement in generalization still is
significant, but less impressive compared to the other two
sequences. A main reason is that here the assumption on
scene smoothness made for the surface shape prior does not
exactly match the physical scene behavior.

7.3 Experiments with Track Gluing

Often tracks are split due to imperfect tracking and it would
be advantageous to glue together the parts. The experiments
reported above indicate that without the priors the general-
ization error would be too large to allow a detection of split
tracks. With use of the priors this however might be possible.
Below we report a simple experiment using the previously
described data obtained from Bears by splitting each track
in three. Figure 6 show to the left the visibility matrix of the
data.

After having estimated the model a gluing algorithm was
run. This worked by iteratively gluing a point track with the
best fitting track located up to 8 frames before or after the
point track. A threshold on the fit was used to stop the gluing
process. The resulting matrix of glued tracks showed to the
right in Fig. 6 was identical to the original unsplit measure-
ment matrix, i.e. the gluing was perfect. Probably this result

is due to the simplicity of the deformation. In cases where
tracks are split in more shorter sub-tracks a complete gluing
cannot be made in a single pass because the reliable general-
ization distance still is limited. In such cases the estimation
and gluing processes may be iterated.

8 Conclusions

We described an implicit non-rigid Structure-from-Motion
approach with priors for temporal smoothness and surface
shape coherency. We showed that the priors significantly im-
proves the prediction of points projections in frames where
data is missing, i.e. the generalization ability. Experiments
have shown the improvement of the priors sufficient for
gluing together point tracks split by imperfect tracking. To
our knowledge our approach to Non-rigid Structure-from-
Motion is the first that simultaneously can handle a substan-
tial amount of missing data and outliers, can estimate the
rank of the measurement matrix, and includes generic prior
knowledge on temporal and surface smoothness. We expect
the temporal smoothness prior to drive the estimated model
closer to an explicit configuration. Further work will show
how much this helps in upgrading to metric.

Appendix: Proof: Maximizing the Temporal
Smoothness Prior

Below we sketch a proof that by choosing A as in (19)
the temporal smoothness measure (16) is minimized. Thus
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we find the implicit coordinates maximizing the temporal
smoothness. Let L = U�VT be an SVD of L. Let A= QDW
be an SVD of A. We parameterize A as A = QD since
EJ(JA) = EJ(JQD). Let Y = VTQ ∈ O(r). We can rewrite
EJ(JA) as:

‖LA‖2 = ‖U�VTQD‖2

= ‖�YD‖2 = d2
1‖�y1‖2 + · · · + d2

r ‖�yr‖2, (24)

where dr ≥ dr−1 ≥ · · · ≥ d1 ≥ 0 and with yi the columns
of Y. We want to find the yi and the dk minimizing the ex-
pression under the constraints that

∏
dk = 1, and that Y is

orthonormal. Due to the ordering of the singular values we
can split the minimization problem into r subproblems cor-
responding to the terms in the sum. From this we get Y = I,
i.e. Q = V. The minimization problem then is reduced to:

min
{dk},∏dk=1,dr≥···≥d1≥0

r∑

k=1

(σkdk)
2. (25)

Introducing Lagrange multipliers λ and μj a compound ob-
jective function is formulated:

min{dk}

r∑

k=1

(σkdk)
2 + λ

⎛

⎝
r∏

z=1

dz − 1

⎞

⎠ +
r∑

j=1

μj (dj − dj−1).

(26)

It can easily be shown that this function has a minimum
given by:

2σ 2
k dk = λ

(
r∏

z=1,z 
=k

dz

)

= λ

dk

. (27)

Letting α = √
λ/2 and checking the unit determinant con-

straint it is seen that:

α = r

√√√√
r∏

k=1

σk. (28)

Putting things together we reach expression (19).
To show that the minimum is global the Karush-Kuhn-

Tucker conditions can be applied. A sufficient condition for
the minimum to be global is that the three terms in (26) are
twice differentiable and that the Hessian matrix evaluated in
R

r+ is positive semi-definite. The Hessian for the first term
is diagonal with elements 2σ 2

k . The last term is linear so the
Hessian is a positive semi-definite null matrix. The Hessian
for the second term

∏r
z=1 dz is given by:

H =

⎛

⎜⎜⎜
⎝

0
∏r

i 
=1,2 di . . .
∏r

i 
=1,r di∏r
i 
=1,2 di 0 . . .

∏r
i 
=2,r di

...
...

...
...∏r

i 
=1,r di

∏r
i 
=2,r di . . . 0

⎞

⎟⎟⎟
⎠

. (29)

For x ∈ R
r+ it is clear that x�Hx ≥ 0, so H is positive semi-

definite in R
r+.
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Abstract

We address the problem of deformable shape and motion
recovery from point correspondences in multiple perspec-
tive images. We use the low-rank shape model, i.e. the 3D
shape is represented as a linear combination of unknown
shape bases.

We propose a new way of looking at the low-rank shape
model. Instead of considering it as a whole, we assume
a coarse-to-fine ordering of the deformation modes, which
can be seen as a model prior. This has several advantages.
First, the high level of ambiguity of the original low-rank
shape model is drastically reduced since the shape bases
can not anymore be arbitrarily re-combined. Second, this
allows us to propose a coarse-to-fine reconstruction algo-
rithm which starts by computing the mean shape and itera-
tively adds deformation modes. It directly gives the sought
after metric model, thereby avoiding the difficult upgrad-
ing step required by most of the other methods. Third, this
makes it possible to automatically select the number of de-
formation modes as the reconstruction algorithm proceeds.
We propose to incorporate two other priors, accounting for
temporal and spatial smoothness, which are shown to im-
prove the quality of the recovered model parameters.

The proposed model and reconstruction algorithm are
successfully demonstrated on several videos and are shown
to outperform the previously proposed algorithms.

1. Introduction
Recovering 3D shape and camera parameters from im-

ages is a major research topic in computer vision. The clas-
sical Structure-from-Motion paradigm assumes that the ob-
served shape is rigid. It often uses image point tracks ob-
tained by some means. The rigid shape assumption means
that the viewing rays corresponding to the same physical
point seen in different cameras intersect in space.

For the case of a deforming 3D shape, the assump-
tion that the viewing rays intersect does not hold true.
Model-free non-rigid Structure-from-Motion is tackled in
e.g. [5, 4, 11, 13]. An approach that recently proved suc-
cessful is the one using the low-rank shape model, which

represents the 3D deforming shape by a linear combina-
tion of shape bases we call deformation modes or simply
modes. The modes are point-dependent while the linear
combination coefficients, called configuration weights, are
view-dependent. The representative power of this model
lies in its ability to capture, as Principal Component Analy-
sis does, the structure underlying the actual deformations of
the 3D shape. The main assumption on the 3D shape is that
it consists of a single moving and deforming object, so that
the deformation at each point has some sort of consistency
with the other points, as is formally defined in [15]. The
low-rank terminology stems from the fact that the number
of modes is assumed much lower than the number of images
and points.

The major difference of the proposed method with the
previous ones lies in the coarse-to-fine definition of the low-
rank shape model we use. Most of the previous methods
treat modes equally, resulting in ambiguities as any mode
can be replaced by a linear combination of the other ones.
In contrast, we use the rule that a deformation mode encap-
sulates as much of the data variance left unexplained by the
preceding modes as possible. This has important practical
impacts, as the level of ambiguity is drastically reduced and
makes a coarse-to-fine reconstruction algorithm possible.
The idea is that the modes capture decreasingly important
details in the deformation. Our model is based on compos-
ing this coarse-to-fine low-rank shape model with euclidean
transformations accounting for the global displacement of
the object of interest. The number of modes is automati-
cally chosen based on Cross-Validation.

To summarize, this paper brings a novel low-rank
Structure-from-Motion method which handles missing data,
automatically selects the number of deformation modes and
makes use of several different priors. We report experimen-
tal results on challenging datasets showing that the method
gives sensible 3D shapes, allowing us to convincingly aug-
ment the video by adding a virtual 3D object on a deforming
surface.

2. Previous Work and Contributions
Previous low-rank Structure-from-Motion methods dif-

fer by the optimization method and the priors they use,
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and if they order the modes or not. Early methods such
as [5] use no prior. They are based on computing an ‘im-
plicit model’ for which the configuration weights and cam-
era parameters are mixed up together through a mixing ma-
trix. The implicit model is upgraded to the ‘explicit model’
(the model described so far). An efficient implicit model
reconstruction method is described in [9]. Recent papers
focus on how to compute the implicit to explicit upgrade
[4, 13]. While most papers use an affine camera model,
some recent papers consider the case of a perspective cam-
era, e.g. [6, 12].

Aanaes and Kahl [1] take a different approach: they view
the low-rank shape model as a mean shape, that they com-
pute using rigid Structure-from-Motion, and modes that are
found through Principal Component Analysis of the direc-
tional variance. The overall model parameters are refined
together through bundle adjustment. In contrast, we com-
pute the mean shape and iteratively add modes by mini-
mizing the reprojection error. This has the advantage to re-
sult in a coarse-to-fine model, expressed in a metric frame-
work, thus avoiding the difficult implicit-to-explicit upgrad-
ing step. The coarse-to-fine scheme ensures that the leading
modes encapsulate coarsest deformations. We show that the
deformation mode estimation problem can be splitted into
several much smaller problems. The resulting algorithm is
efficient and copes with missing data resulting from occlu-
sions.

Finally, there are few papers on the crucial problem of
selecting the number of modes. Existing approaches are
based either on inspecting the eigenvalues of the data ma-
trix [14] or on model selection criteria such as BIC [1] or
GRIC [3]. We provide a solution based on Cross-Validation
which, contrarily to previous approaches, does not assume a
gaussian iid distribution with known variance on the residu-
als. We show that it gives very sensible results with respect
to ground truth.

3. Background

3.1. Notation and Camera Model

Everything is in homogeneous coordinates. A 3D point
Q projects to a 2D point q̂ def∼ PQ through camera P, where
P is a (3 × 4) perspective projection matrix. The repro-
jection error for this image point is the euclidean distance
d(q, q̂) between the model-predicted point q̂ and the cor-
responding data point q. The corresponding algebraic re-
projection error is given by using the following algebraic
distance:

µ2(q, q̂) def= ‖S(q× q̂)‖2 with S
def= ( 1 0 0

0 1 0 ) , (1)

where ‖ · ‖ is the two-norm for vectors and Frobenius norm
for matrices. The point-to-line orthogonal distance between

q and l is written d⊥(q, l). The following is an algebraic
approximation:

µ2
⊥(q, l) def=

(
qTl
)2

. (2)

We use ‘normalized’ image coordinates which are known to
improve the performance of algebraic approximations [7].
The data points lying on the deforming object in the image
are written qi,j where i = 1, . . . , n is the image index and
j = 1, . . . ,m the point index. The binary entries vi,j of the
(n×m) visibility matrix V indicate missing data.

We write SE(3) the group of euclidean transformations
in 3-space; E ∈ SE(3) is a (4 × 4) matrix. We define
R(E) def= R and T (E) def= t as the (3×3) rotation matrix and
(3× 1) translation vector in E respectively.

3.2. The Low-Rank Non-Rigid Shape Model

The deforming 3D points Si,j are modeled by combin-
ing l modes and a mean shape MT

j = (M̄T
j 1). Mode k

is defined point-wise by bk,jCk,j with ‖Ck,j‖ = 1 with
CT

k,j = (C̄T
k,j 0) a direction vector and bk,j a deformation

magnitude. Camera-wise configuration weights are written
ai,k. The l-mode shape is:

Sl
i,j

def∼ Di

(
Mj +

l∑
k=1

ai,kbk,jCk,j

)
, (3)

where the Di ∈ SE(3) are aligning transformations, so that
the mean shape and its deformations are expressed in an
object-centred coordinate frame. Each mode allows a 3D
point to move in some direction by a point-dependent and
a view-dependent magnitude. The aligning transformations
Di are important since we want the deformation modes to
express intrinsic object deformations as opposed to object
displacements. The prediction of an image point, i.e. the
reprojection of a 3D point under this model, writes:

sl
i,j

def∼ PiS
l
i,j ∼ PiDiMj + P̄iR(Di)

lX
k=1

ai,kbk,jC̄k,j , (4)

with Pi = Ki(I 0)Ei. We define the n-vector al
def=

(a1,l · · · an,l), the m-vector bl
def= (bl,1 · · · bl,m), the

3m-vector C̄T
l

def= (C̄T
l,1 · · · C̄T

l,m) and B̄l similarly.
This model has ambiguities caused by internal ‘gauge

freedoms’. There is obviously an undetermined euclidean
transformation between the mean shape and modes, and the
aligning transformations. For globally estimated modes, as
in standard approaches, there is an l2 representational am-
biguity since any mode can also be replaced by any linear
combination of all modes. In our method, each mode is
estimated conditioned on the coarser ones, yielding only a
single degree of ambiguity for each mode. Indeed, equa-
tion (4) shows that mode l contributes through the exterior
product albT

l which factors can be rescaled since ∀ν ∈ R?,
albT

l = (νal)
(

1
ν bT

l

)
.
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3.3. More Priors

The low-rank shape model is very sensitive to the num-
ber of modes. Since this is a empirical model, there might
not be an ideal such number. Bad results are reported in
[11] when the basic low-rank shape model is used to find
the 3D shape. Priors are needed in order to better constrain
the model. We review some generic priors, where generic
means not specific to some object or object-class.

A simple prior is the one of assuming a part of the scene
to be rigid [6]. [1] uses as prior the fact that the shape should
be close in neighbouring frames. [11] uses a gaussian dis-
tribution prior on the configuration weights. This allows to
marginalize the configuration weights out of the estimation,
which can then be performed very efficiently. They also
propose to model temporal camera smoothness through a
Linear Dynamics model. The transition matrix is estimated
along with the other unknown parameters.

[9] uses a temporal smoothness prior penalizing varia-
tions in the implicit camera matrices, embedding both the
camera parameters and configuration weights:

l∑
k=1

‖∆ak‖2 =
∥∥∆ (a1 · · · al

)∥∥2
(5)

where ∆ is some finite difference operator. They also pro-
pose a surface-shape prior. It is based on the fact that points
close in the images are close in space, provided they lie on
a continuous surface.

We use those two priors. We measure the closeness of
points on the mean shape: ϕj,g

def= ρ(d2(Mj ,Mg)), with
ρ some localized kernel (we use a truncated gaussian) and
write the surface-shape penalty as:

lX
k=1

mX
j=1

mX
g=1

ϕ2
j,g‖B̄k,j − B̄k,g‖2 =

lX
k=1

‚‚ΩB̄k

‚‚2
, (6)

where Ω is a highly sparse matrix depending on the ϕj,g

with three times as many rows as non-zero ϕj,g and 3m
columns.

We consider another class of priors that has not been
used so far in the literature, on the ordering of the deforma-
tion modes. We require mode l + 1 to express as much of
the variance remaining unexplained by the l-mode shape as
possible. This naturally leads early modes to explain coarse
deformations. This kind of priors is difficult to express in
the classical framework where all modes are estimated at
once. It however fits very well into the framework of itera-
tively adding modes of variations, as shown below.

4. Coarse-to-Fine Low-Rank Shape
4.1. Overview

The algorithm we propose is based on recovering the
mean shape points Mj , giving a coarse approximation to

the true shape, in accordance with the mean shape defini-
tion in [15]. Modes are added until some criterion is met.

Most of the other methods estimate all the modes and
configuration weights at once. In contrast, our solution tries
to embed as much of the variance of the data as possible
in the current mode to be estimated, which naturally com-
plies with the mode ordering prior described in the previous
section. More precisely, the l + 1 mode is selected so that
the shape minimizes the cost. We thus end up with a series
of nested minimization problems. This way of solving the
problem has several computational advantages, as is shown
later in the paper.

Our algorithm is based on the following relationships
steming from the shape model (3):

S0
i,j = DiMj (7)

Sl+1
i,j = Sl

i,j + ai,l+1bl+1,jDiCl+1,j . (8)

We proceed as follow. First, we compute the mean shape
points Mj and the aligning displacements Di through the
0-mode shape (7). Second, we iteratively triangulate the
modes1, i.e. the shapes bases bk,jCk,j and configuration
weights ai,k from (8). A cost function using the reprojec-
tion error as data term and the above-mentioned priors is
minimized at each step. We stop adding modes when some
model complexity selection criterion is met, see §4.4.

4.2. Mean Shape and Aligning Displacements

In order to find the displacements Di that globally align
the deforming object to the world coordinate frame and the
mean shape points Mj , we minimize the reprojection error2

for the 0-mode shape:

min
M1,...,Mm,D1,...,Dn

n∑
i=1

m∑
j=1

vi,j d2(qij ,PiDiMj),

which is a calibrated camera instance of the Structure-from-
Motion problem, that we solve using standard techniques
including bundle adjustment, see e.g. [7]. The cameras Pi

can either be estimated based on some rigid part in the scene
such as the background or be set to some canonical position.
We stress that it does not change the result of our algorithm,
i.e. the estimated deforming surface will be the same what-
ever the Pi thanks to the Di.

4.3. Mode Triangulation
The mode triangulation problem is stated as:

min
al+1,B̄l+1

X
i,j

vi,j d2(qi,j , s
l+1
i,j ) + λ‖∆al+1‖2 + κ‖ΩB̄l+1‖2.

(9)
1Since the global motion of the object is known at this step, we call

‘mode triangulation’ the estimation of a mode.
2Using a temporal or spatial prior at this stage is not very important

since rigid Structure-from-Motion is usually well-posed.
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This is a nonlinear least squares optimization problem since
(i) there is a product between the configuration weights and
(ii) the modes, and the euclidean distance is used to com-
pare the image points. As in the rigid triangulation case,
the euclidean distance can be dealt with an algebraic ap-
proximation. The problem however remains nonlinear and
difficult to handle in this form since the different views and
points are all linked.

First, we drop the priors and compute an initial solution.
Second, we refine the complete cost function (9) through
nonlinear minimization.

We show that the optimal, i.e. reprojection error min-
imizing, directions in C̄l+1 of the modes can be com-
puted independently from each other and from the other
unknowns. We thus split the computation into two main
steps. First, we compute the optimal directions in C̄l+1.
Second, we compute the optimal configuration weights in
al+1 and magnitudes of the modes in bl+1. Each step finds
a suboptimal initial solution using linear least squares ap-
proximations and refines it by minimizing the reprojection
error in a nonlinear manner.

4.3.1 Initializing the Mode Directions in C̄l+1

Splitting the problem. We show how problem (9) can be
reformulated on a point-wise basis by estimating indepen-
dently the direction Cl+1,j of each mode. This is based on
casting the reprojection error as a sum of squared point-to-
line distances. Substituting equation (3) into (4):

sl+1
i,j ∼ PiDiSl

i,j︸ ︷︷ ︸
∼sl

i,j

+ai,l+1bl+1,jP̄iR(Di)C̄l+1,j . (10)

This represents an image point parameterized by its posi-
tion ai,l+1bl+1,j on an image line parameterized by its base
point sl

i,j and direction P̄iR(Di)C̄l+1,j . By replacing the
reprojected points sl+1

i,j from (10) into each reprojection er-
ror term in (9), we get:

min
al+1,Bl+1

X
i,j

vi,j d2(qi,j , s
l
i,j + ai,l+1bl+1,jP̄iR(Di)C̄l+1,j).

Each term is the squared euclidean distance between an
image point qi,j and the above described point on line. In
order to get rid of the offset which depends on the unknown
configuration weight ai,l+1 and mode magnitude bl+1,j , we
replace the point-to-point distance d by the point-to-line dis-
tance d⊥. This is done by introducing the line coordinates
sl
i,j × (P̄iR(Di)C̄l+1,j), giving:

min
C̄l+1

n∑
i=1

m∑
j=1

vi,j d2
⊥(qi,j , sl

i,j × (P̄iR(Di)C̄l+1,j)).

In this reformulated minimization problem, each mode di-
rection C̄l+1,j in C̄l+1 is independent. It can thus be split

as m independent smaller problems:

min
C̄l+1,j

n∑
i=1

vi,j d2
⊥(qi,j , sl

i,j × (P̄iR(Di)C̄l+1,j)). (11)

Linear estimation. The first step to compute each mode
direction C̄l+1,j is to make a linear least squares approxi-
mation to the above stated optimization problem. We ap-
proximate the euclidean point-to-line distance by the alge-
braic one in (2):

d2
⊥(qi,j , s

l
i,j×(P̄iR(Di)C̄l+1,j)) ≈

“
qT

i,j [s
l
i,j ]×P̄iR(Di)C̄l+1,j

”2

.

The sum over i is minimized to get the initial estimate of
C̄l+1,j with ‖C̄l+1,j‖ = 1 as required, by the right singular
vector corresponding to the smallest singular value of:

A =

 v1,j qT
1,j [s

l
1,j ]×P̄1R(D1)

...
vn,j qT

n,j [s
l
n,j ]×P̄nR(Dn)

 ,

where the rows vanishing due to a missing image point (i.e.
for which vi,j = 0) are obviously dropped. The minimum
number of image points is n ≥ 2.

Nonlinear refinement. The second step is to nonlinearly
refine the initial estimate of each C̄l+1,j . We minimize
the reprojection error using Levenberg-Marquardt. This
is very computationally efficient since each of the direc-
tions has only 3 parameters and is processed independently.
Among the 3 parameters, only 2 are independent, which
makes rank-deficient the Jacobian matrix J in the normal
equations. This can be dealt with by adding a penalty
(‖C̄l+1,j‖2 − 1)2 to the error function.

4.3.2 Initializing the Configuration Weights in al+1

and the Mode Magnitudes in bl+1

Principle. The optimal estimate depends on all the un-
known parameters since the image points sl+1

i,j for all views
and points depend on al+1bT

l+1. We exploit the 1D model
ambiguity: we normalize by each of the unknown param-
eters in al+1 on turn, making linear the product with the
other factor. The results are then combined together.

The constraints. Assume aζ,l+1 6= 0 for some ζ ∈
1, . . . , n, and define aζ

l+1
def= al+1

aζ,l+1
and bζ

l+1
def= aζ,l+1bl+1.

Keeping only the terms related to view ζ in the cost function
(9) gives:

min
bζ

l+1

m∑
j=1

vζ,j d2(qζ,j , sl
ζ,j + bζ

l+1,jP̄ζR(Dζ)C̄l+1,j).
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This minimization problem can be split on a point-wise ba-
sis, and is equivalent to solving m 1D problems:

min
bζ

l+1,j

vζ,j d2(qζ,j , sl
ζ,j + bζ

l+1,jP̄ζR(Dζ)C̄l+1,j).

This is a single-view point-on-line triangulation problem,
solved by orthogonally projecting qζ,j onto the image line
ll+1
ζ,j ∼ sl

ζ,j × (P̄ζR(Dζ)C̄l+1,j) to give bζ
l+1,j . The prob-

lem can not be solved, however, if vζ,j = 0, i.e. if the
point j is not seen in view ζ, and also if the line ll+1

ζ,j is
not well-defined, i.e. if d(sl

ζ,j , P̄ζR(Dζ)C̄l+1,j) < ε, where
ε is some threshold that we typically choose as few pixels.
This problem happens if C̄l+1,j deforms the point along the
viewing ray with respect to camera i.

At this stage, we end up with several, scaled versions
bζ

l+1, ζ = 1, . . . , n of bl+1, with missing data, related by
bζ

l+1 = aζ,l+1bl+1.

Finding the factors. The bζ
l+1 vectors must be registered

together in order to get the overall sought-after vector bl+1

without holes. This is done by computing the other factor
al+1. The bζ

l+1 are defined in such a way that bζ
l+1aη,l+1−

bη
l+1aζ,l+1 = 0. We solve for al+1 through:

min
al+1

n∑
ζ=1

n∑
η=1

‖bζ
l+1aη,l+1 − bη

l+1aζ,l+1‖2,

which is a linear least squares problem, under the constraint
‖al+1‖ = 1. Thanks to al+1, the bζ

l+1 are rescaled and
averaged to get bl+1.

Another possible way to solve the problem is to consider
equation bζ

l+1 = aζ,l+1bl+1. This actually shows that we
can formulate the problem as rank-1 matrix factorization
with missing data,

(
b1

l+1 · · · bn
l+1

)
→ bl+1aT

l+1.

4.3.3 Nonlinear Refinement

We have to solve the minimization problem (9). Optimizing
over the B̄l+1,j = bl+1,jC̄l+1,j directly allows to get rid of
the constraints ‖C̄l+1,j‖ = 1. The issue is that 3m + n
unknowns must be tuned jointly. Carefully examining the
pattern of the Jacobian matrix is thus very important for ef-
ficient nonlinear least squares minimization. Indeed, it de-
fines the pattern of the Gauss-Newton approximation to the
Hessian matrix, the design matrix in the normal equations
to be solved at each iteration of the minimization. The Jaco-
bian has three parts, illustrated for a toy example on figure
1. The first part, related to the data term looks like the one
obtained in classical bundle adjustment with well-organized
blocks. The second part is related to the temporal prior.
Choosing for instance a first order derivative prior gives an
((n − 1) × n) Jacobian matrix ∆ with ones on the main

diagonal and minus ones on the first upper diagonal. The
third part depends on the amount of interaction between the
points, contained in the ϕj,g parameters. It typically is very
sparse since the localized kernel ρ allows a point to interact
with its nearest neightbours only.
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Figure 1. Structure of the Jacobian and Hessian matrices on a toy
example with n = 4 views and m = 5 points.

4.4. A Stopping Criterion

The algorithm we describe in the previous sections is
based on iteratively adding modes to the low-rank shape
model. A criterion for stopping adding new modes is thus
necessary. Each time a mode is added, the number of de-
grees of freedom of the model grows, making the cost de-
crease, as is shown in our experimental results. This makes
one naturally thinks of using a model selection approach as
a stopping criterion. However, the problem at hand does not
fulfill the usual model selection assumptions. The first rea-
son is that the number of modes is virtually unlimited: as
many modes as desired can be added to the shape model,
whereas classical model selection usually operates onto a
limited number of models. The second reason is that model
selection criteria such as AIC, BIC or GRIC are based on a
particular distribution of the residuals, namely a possibly ro-
bustified gaussian distribution, see [8, 10]. For the low-rank
shape model, the residuals should be interpreted differently.
Their dependency on the noise on image point position is
very weak. They are mostly due to the deviance of the em-
pirical low-rank shape model from the physics of the actual
images. It is difficult to assume any prior distribution for
this deviance.

We propose to use Cross-Validation as a criterion for se-
lecting the number of modes. The idea is to partition the



126 Chapter 7. STRUCTURE-FROM-MOTION FOR DEFORMABLE SCENES

data in a training and a test set, and average the test er-
ror over several such partitions. This approach, which has
rarely been used for geometric model selection in computer
vision, does not require a specific known distribution of the
residuals, and directly reflects the ability of the model to ex-
trapolate to new data. More precisely, we use u-fold Cross-
Validation, which splits the data into u subsets or ‘folds’.
Typical values for u range from 3 to 10. We use u = 4 in
our experiments, and split the data image-point-wise: each
fold is a subset of image points, and must allow the algo-
rithm to reconstruct all views and points (for instance, we
do not remove all image points in a single view). The test
error is obtained by comparing the test dataset with its pre-
diction.

The typical behaviour of the Cross-Validation score is to
decrease until the optimal number of modes is reached, and
then to increase. It first decreases since the model with not
enough modes is too restrictive to explain well the data and
thus can not make good predictions. It then increases since
with more modes than enough, the model fits unwanted ef-
fects in the data, i.e. it is too flexible to predict new data.
This typical behaviour is however not what we observe
when the priors are used. In this case, the Cross-Validation
score decreases rapidly until the optimal number of modes
is reached, and then remains steady. This is explained by
the fact that the priors inhibitate the degrees of freedom of
the extra modes, as also reported in [11]. Our stopping cri-
terion has two parts: we stop adding modes when either the
Cross-Validation score increases or when its decrease is be-
low some threshold, that we choose as ε = 10−4 in our
experiments.

Computing the Cross-Validation score requires to fit the
new mode to each of the u training sets. For that purpose,
and for computational efficiency, we keep u + 1 models:
the u models which use the folds as training set, and the
one which uses all the data.

5. Experimental Results
We provide experimental results on simulated and real

data. For each dataset, we compare our algorithm with the
one by Torresani et al. which is shown in [11] to give the
best results compared to other methods in the literature. We
name it TORRESANI. Our algorithm is summarized in table
1. We use two variants: C2F - NO PRIOR which does not
use the two smoothness priors, and C2F - PRIORS which
uses them.

We did not encounter any local minimum in the Cross-
Validation score in our experiments.

5.1. Simulated Data

We have two data generation models. The first one is
the Candide face model [2]. The second one is the shark

OBJECTIVE

Given a set of corresponding image points qi,j on a deforming
object and cameras Pi ∼ Ki(I 0)Ei obtained by some means,
compute globally aligning displacements Di ∈ SE(3) for each
frame i and a set of frame-varying, low-rank 3D shapes Sl

i,j in a
coarse-to-fine manner, i.e. the cost for Sl+1

i,j is lower than for Sl
i,j .

The number of modes l is estimated using Cross-Validation (CV):
each computation is carried out over u randomly selected folds to
compute the CV score Gl.

ALGORITHM

Mean Shape and Aligning Displacement Computation

1. (§4.2) Run calibrated camera Structure-from-Motion with
the image points qi,j as inputs and intrinsic parameters Ki

giving new cameras Ki(I 0)Ai and mean shape points Mj

2. Set the aligning displacements Di ← E−1
i Ai

3. (§4.4) Compute the CV score G0, and set l← 0

4. Initialize the shape estimate with the mean shape for every
frame: Si,j ←Mj

Iterative Mode Triangulation

1. (§4.3.1) Initialize the mode directions C̄l+1,j

2. (§4.3.2) Compute the configuration weights ai,l+1 and mode
magnitudes bi,l+1

3. (§4.3.3) Nonlinear refinement: minimize the reprojection er-
ror over the modes and configuration weights

4. (§4.4) Compute the CV score Gl+1

5. (§4.4) Stop if Gl+1 ≥ Gl or Gl − Gl+1 ≤ ε

6. Update the 3D shape: Sl+1
i,j ← Sl

i,j + ai,l+1bl+1,jCl+1,j

7. Set l← l + 1 and loop to step 1

Table 1. Overview of our coarse-to-fine (C2F) low-rank Structure-
from-Motion algorithm. The priors are taken into account at step
3 of mode triangulation.

sequence available from the authors of [11]. We found that
the CMU mocap datasets were either close to rigid or not
‘homogeneous’ enough for the low-rank shape model. For
each dataset, we measure the reprojection error, the Cross-
Validation score and the 3D error as functions of the number
of modes, the amount of missing data and the number of
images. The graphs we show are for the Candide face model
– similar results as obtained for the shark sequence. The
default setup is n = 10 images and m = 113 points.

The first set of experiments is illustrated on figure 2 (left
and middle). It is meant to assess if Cross-Validation ef-
fectively gives a sensible way of selecting the number of
modes. We observe that our C2F - NO PRIOR is very sensi-
tive to an overestimated number of modes: with more than
2 modes, the 3D error grows rapidly, while both C2F - PRI-
ORS and TORRESANI remains stable. The Cross-Validation
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Figure 2. (left) The 3D error as a function of the number of modes. (middle) The reprojection error (RE) and Cross-Validation score (CV)
as functions of the number of modes. (right) The 3D error as a function of the percentage of missing data. The vertical bars show minima
of the CV score and 3D error curves.

score behaves similarly to the 3D error. In particular, it
allows us selecting the optimal number of modes with re-
spect to the 3D error for our C2F - NO PRIOR while for our
C2F - PRIORS, the number of modes is slightly overesti-
mated, which does not degrade the quality of the 3D shape,
as already observed for TORRESANI in [11]. As expected,
the reprojection error decreases as the number of modes in-
creases.

The second set of experiments, shown on figure 2 (right)
shows how the algorithms behave against the amount of
missing data. Our C2F - PRIORS recovers the 3D shape
with up to more than 92% missing data. Thanks to the good
behavior of the Cross-Validation score, which allows our
C2F - NO PRIOR selecting a sensible number of modes,
even with no prior, it handles up to 90% missing data. As
for TORRESANI it diverges in most cases.

The third set of experiments computes the success rate
of the selected number of modes for C2F - NO PRIOR with
the Cross-Validation score. The success rate is 94%, 89%
and 88% for respectively no missing data, 25% and 50%
missing data. This is very satisfying since in most failures,
the number of modes is mis-estimated by only 1.

The fourth set of experiments compares the behaviour
of the algorithms with respect to the number of points and
views. The graphs are not shown here due to lack of space.
As expected, the smaller the number of points or views, the
smaller the reprojection error, and the larger the 3D error
and Cross-Validation score.

5.2. Real Data

The paper dataset. This video has 203 images of size
720×576. We used a direct, i.e. intensity based, approach to
recover the parameters of a Free-Form Deformation (FFD)
that provided us with 140 point correspondences. Figure 3
shows the results we obtained. Our C2F - NO PRIOR and
C2F - PRIORS selected 0 mode and 3 modes and reached
7.10 and 0.84 pixels of reprojection error respectively. C2F

Figure 3. The paper dataset. (first row) Some of the images with
the FFD mesh we track. (second row) New view synthesis with the
reconstructed surface. (third row) The augmented images.

- NO PRIOR thus performs very badly for this sequence, giv-
ing a very distorted 3D shape. This shows that using the pri-
ors can not be avoided, since C2F - PRIORS gives good re-
sults, with 1.18 pixels for the Cross-Validation score, show-
ing good predictivity.

We then simulated an occlusion by removing 24 points
on 120 images, i.e. slightly more than 10% of the data.
C2F - PRIORS selected 3 modes, and reached 1.44 pixels of
reprojection error and 1.82 pixels for the Cross-Validation
score, which, although slightly higher than in the full data
case, is reasonable.

The face dataset. We extracted a 100 image, 624 × 352,
video of Gabrielle Solis from the series “Desperate House-
wives”, and ran a 2D Active Appearance Model (AAM) to
track her face. We then reconstructed the camera and the 68
vertices of the AAM with our algorithm. Figure 4 shows the
result. Both C2F - PRIORS and C2F - NO PRIOR found that
4 modes are required. They respectively obtained 0.91 and
0.82 pixels for the reprojection error, and 1.15 and 1.22 pix-
els for the Cross-Validation score. These values show that
the reconstructed model has a good predictivity. We stress
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Figure 4. The face dataset. (top) Two out of the 100 images over-
laid with the face AAM used for tracking. (middle) The recon-
structed AAM vertices. (bottom) The augmented images.

that the a priori knowledge that a face is in the images is
used only at the tracking step: our method reconstructs the
deforming structure in a generic manner.

6. Conclusion

We proposed a method that allows reconstructing a new
coarse-to-fine low-rank shape model of a deforming object
from a single video. Our method handles missing data,
uses the full perspective camera model and automatically
selects the optimal number of deformation modes by Cross-
Validating the model. Experimental results on simulated
data show that the automatically selected number of modes
corresponds to the minimal 3D error. We use two smooth-
ness priors which are shown to improve the quality of the
reconstruction. Our method outperforms previous ones in
terms of accuracy. The main statement we make is that
Cross-Validation is a sensible way of assessing the num-
ber of modes in the model in that it looks similar to the 3D
error.

An open research topic is the one of automatically se-
lecting the weighting parameters for the priors. Most of the
authors reports heuristic means or uses trial and error, as we
did in our experiments. A possible solution is to minimize
the Cross-Validation score over the weighting parameters.
It is not clear if it can be done in a reasonable amount of

time, though.

Acknowledgments. We would like to thank Mathieu Per-
riollat for his help on new view synthesis.
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ABSTRACT

Registering images of a deforming surface is a well-studied
problem. It is common practice to describe the image defor-
mation fields with Thin-Plate Splines. This has the advantage
to involve small numbers of parameters, but has the draw-
back that the 3D surface is not explicitly reconstructed. We
propose an image deformation model combining Thin-Plate
Splines with 3D entities – a 3D control mesh and a camera –
overcoming the above mentioned drawback. An original so-
lution to the non-rigid image registration problem using this
model is proposed and demonstrated on simulated and real
data.

1. INTRODUCTION

Registering images of deformable surfaces is important for
tasks such as video augmentation, dense Stucture-From-
Motion, or deformation capture. This is a difficult problem
since the appearance of imaged surfaces varies due to several
phenomena such as camera pose, surface deformation, light-
ing and motion blur. Recovering a generic 3D surface, its de-
formations and the imaging sensor parameters from monocu-
lar video sequences is intrinsically ill-posed. For this reason,
most work avoid a full 3D model by directly using image-
based deformation models [1, 2, 3]. The obvious drawback
of these approaches is that they do not reconstruct the 3D sur-
face.

We propose a novel approach which jointly register the
images and computes the 3D surface. It has two main origi-
nalities. First, we propose a mixed 3D and image-based gen-
erative model combining Thin-Plate Splines (TPS) with a 3D
mesh and a camera. This model is dubbed 3D+TPS. It in-
duces a piecewise smooth image deformation field while al-
lowing one to reconstruct a 3D surface corresponding to each
image of the sequence. In order to deal with the ill-posedness
of the 3D surface and camera pose recovery, admissible sur-
face deformations are learnt as a 3D Morphable Model [2, 4].
Second, we extend a tracking method that was successfully
applied to twodimensional cases [1]. It consists in learning an
interaction matrix, modeling as a Jacobian matrix does, the

relationship between the image intensity variations and those
of the model parameters.

Our 3D+TPS model is described in §2 and image regis-
tration in §3. Experimental results are reported in §4 and our
conclusions are given in §5.

Notation. Vectors are typeset using bold fonts, e.g. q,
matrices using sans-serif fonts, e.g. E, and scalars in italics,
e.g. α. Matrix and vector transposition in denoted as in AT.

Previous Work. The registration of images of deformable
objects using a single camera has received a growing attention
over the past decade. Many approaches have been proposed,
based on features or direct image intensity comparison.

Feature-based approaches locate image features on the
model, then solve for the registration. For example, a highly
efficient surface detection approach is proposed in [5]. The
authors use a 2D regularized surface mesh in conjunction with
a highly robust estimator to match feature points.

Direct approaches minimize an error expressed on image
intensities. Active Appearance Models [1] are 2D learnt gen-
erative models that can be fitted to images to track deforming
objects. They have been recently extended to 3D [6]. In [3],
Radial Basis Mappings represent the transformation.

2. A GENERATIVE IMAGE MODEL

We present the image-based and 3D approaches to modeling
image deformations, and then show how to combine them in
a single model, drawing on the strengths of both approaches.

2.1. The Image-Based Part: Thin-Plate Splines

A TPS represents a smooth image deformation field. It maps
a point x from the reference image I0 to the corresponding
point x′ = τ(x;qt) = τt(x) in the target image It, see
e.g. [3] with:

τ(x;qt) = Ax + y +
m∑

j=1

wjφ(‖x− qtj‖),

where (A,y) represents a 2D affine transformation and the wj

and the qtj are respectively the coefficients and the centers of
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the transformation. The kernel function is φ(µ) = µ2 log(µ).
TPS are traditionally estimated from point correspondences,
see e.g. [7].

2.2. The 3D Part: Control Mesh and Camera

A piecewise planar 3D control mesh approximating the sur-
face is used along with a camera model to explain the defor-
mations in the images. So as to deal with the ill-posedness in-
herent to deforming surface recovery, a 3D Morphable Model
is used for the control mesh. The typical deformations are
learnt prior to image registration, using PCA (Principal Com-
ponent Analysis) on a collection of admissible meshes. More
details are given in §4.1. The 3D mesh Qt is thus expressed
in terms of a mean mesh Ē and l eigenmeshes Ek, and pa-
rameterized by view-dependent configuration weights αt, so
that a 3D vertex is given by:

Qtj = Ēj +
l∑

k=1

αtkEkj .

The 3D mesh can be rotated and translated to account for
camera pose: Q′

tj = R(at)Qtj + yt, where at is a 3-
vector containing the 3 rotation angles. A projective camera
with fixed intrinsic parameters is used. Defining the vector
of parameters ST

t = (aT
t ,yT

t ,αT
t ), the projection is written

qt = Π(St), where qt contains the vertices of the imaged
mesh.

2.3. The 3D+TPS Model

The main idea for building the 3D+TPS model is that a TPS τt

can be controlled by using as centers the projected vertices of
the 3D control mesh in the reference and target image t. The
registration error induced by the TPS will in turn constrain the
3D entities parameters. This tight coupling allows us to infer
3D information from images only.

The transfer function τt induced by the 3D+TPS model
is used in two ways. First, in the interaction matrices learn-
ing stage, for generating images from locally perturbed model
parameters. Second, in the registration stage, for warping the
target image It onto the reference image. In the first case,
τ−1
t is required for warping the reference image onto the per-

turbed image, while in the second case, τt is required. We
propose an efficient approximation of τ−1 for image warping
in §3.2.

To sum up, our 3D+TPS model has the advantage of ex-
plicitly involving a simple 3D surface mesh and camera pose
and produces a smooth deformation field.

3. REGISTERING IMAGES

3.1. The Error Function

A great variety of feature and intensity based error function
are proposed in the litterature. We adopt the direct approach

and minimize the sum of squares of intensity differences over
pixelsK which are Canny edge points in the reference image:

C(St) =
∑
x∈K

(I0[x]− It [τ(x; Π(St))])
2
. (1)

We work with edge points only because they carry the most
important texture information. Minimizing C is a nonlin-
ear least squares problem. One of the most convincing ap-
proaches in the litterature is [8]. The error criterion (1) is
linearized around S0 yielding:

δS0 = F · vect(δI), (2)

where vect is the matrix vectorization operator. A closed-
formed expression is derived for matrix F using the inverse
Jacobian image. Cootes et al. [1] propose to estimate F from
training images obtained by perturbing the generative model
parameters around S0. The learnt matrix F is called the in-
teraction matrix.

3.2. Learning the Interaction Matrix

Perturbations are drawn randomly and selected if the maxi-
mum displacement of image vertices is below some threshold
γ that we typically choose as a few pixels. For each selected
perturbation, a synthetic image is generated in order to com-
pute the change in appearance, see figure 1. Given the gener-
ative model parameters Si for the perturbed image, we form
the transfer function τ−1 and warp the texture image:

Ĩi[x] = I0[τ−1(x; Π(Si))].

This function is implemented using a TPS interpolating the
vertices. To compute the TPS coefficients, we generate a reg-
ular grid where vertices play the role of centers for the TPS.
Thanks to the vertex correspondences between the reference
and the perturbed images, we lineary compute the TPS param-
eters and so the transfer function τ−1.

Warping

δSi

∏
(S0 + δS

i)
∏
(S0)

I0

τ
−1(x;

∏
(S0 + δS

i))

Ĩi[x] = I0[τ
−1(x;

∏
(S0 + δS

i))]

Fig. 1. Training images, needed to learn the interaction ma-
trices, are generated by perturbing the model parameters.



7.1. A SINGLE CAMERA 131

3.3. Registration of an Image Sequence

We proceed as follows. We initialize St to any initial guess,
for example St ← St−1. We warp the current image It to
Ĩt using the mapping induced by St, and compute the dif-
ference image δIt = I0 − Ĩt. The local update δS0 is then
computed from (2) as δS0 = F · vect(δIt). It must be com-
posed with the current St in order to update it, as illustrated
on figure 2. This is a forward compositional strategy [9]. How
to compose the local mapping correction δS0 with St is not
straightforward. We solve this problem by mapping the con-
trol mesh vertices from the reference to the target view giv-
ing qt = τ(Π(S0 + δS0);St), and minimizing the discrep-
ancy between these vertices and the vertices predicted by the
model, i.e. the reprojection error, over St:

min
St

‖qt −Π(St)‖2. (3)

The minimization is solved using the nonlinear least squares
algorithm Levenberg-Marquardt.

As underlined above, the linear relationship (2) repre-
sents a local approximation of the cost function around S0.
Obviously, the validity of the approximation is conditioned
upon the magnitude γ (expressed in pixels), of the pertur-
bation used for generating the training images. In order to
increase the speed of convergence and widen the size of the
bassin of convergence, we learn not only one, but rather a se-
rie F1, . . . ,Fκ of interaction matrices, with a gradually lower
perturbation magnitude. This forms a coarse to fine set of
linear approximations to the error function, that we apply in
turn.

This approach is different from the one in [6], which pe-
nalizes a 2D Active Appearance Model, by jointly computing
a 3D Morphable Model. In the approach we propose, the 3D
model and the TPS are represented with the same set of pa-
rameters. One of the differences with [1] is that they assumed
that the domain where the linear relationship (2) is valid cov-
ers the whole set of registrations, thus avoiding the need of
the difficult composition step. This however not appears to be
a valid choice in practice.

4. EXPERIMENTAL RESULTS

4.1. The Control Mesh

Depending on the kind of surface that one may want to reg-
ister, different surface generation schemes are used. For in-
stance, the 3D Morphable Model proposed in [4] can be used
for faces. We are interested in registering images of surfaces
such as a rug or a sheet of paper, and follow [2] to generate
a set of training meshes by deforming a regular, flat mesh by
randomly changing the angles between the different facets.

Image t
Parameters St

Parameters S0
3 Composition

1 Warping

4 Update

2 Local alignementδS0 = FiδI

qt = τ(
∏
(S0 + δS0);

∏
(St))

min St‖qt −
∏
(St)‖

2

τ (x;
∏
(St))

Ĩ [x] = It[τ (x;
∏
(St))]

Fig. 2. Our image registration algorithm follows the forward
compositionnal strategy, see text for details.

4.2. Simulated Data

In order to assess the behaviour of our algorithm in differ-
ent conditions, we synthesized images under controlled con-
ditions. Given a reference image, we applied a random per-
turbation to our model such that the mean rigid displacement
of the pixels, caused by the relative displacement between the
camera and the control mesh, is δR, and the mean non-rigid
displacement of the pixels, caused by the deformation of the
control mesh, is δNR. We added gaussian noise, with variance
σ % of the maximum greylevel value, to the warped image.
We varied each of these parameters independently, using the
following default values: δR = 5 pixels, δNR = 3 pixels,
σ = 1% while measuring the residual error defined as the
mean of Euclidean distance between the vertices of the mesh
which generated the warped image, and those of the estimated
mesh. Figure 3 shows the results we obtained. We observed
on figure 3 (a) that when the magnitude of the perturbation
is greater than 20 pixels, the registration efficiency quickly
decreases. Those perturbation magnitudes have actually not
been learnt, causing the linear approximation being less accu-
rate. We expect the average displacement between consecu-
tive images to be far less than 20 pixels in real cases. Figure
3 (b) shows that the alignment error in pixels is approxima-
tively linear in the variance of the noise on image intensities.
In practice, one can expect the noise magnitude to be in the or-
der of 2% of the maximum grey value, making our algorithm
well-adapted to many real image sequences.

4.3. Real Data

We tested our algorithm on several image sequences. One of
them, consisting of 40 images see figure 5, is used to demon-
strate our approach. To initialize the tracker, we made the
assumption that the 3D mesh associated to the first image was
flat. Consequently, the initialisation problem is equivalent to
estimating the relative pose of a plane. Even if some images
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Fig. 3. Registration of simulated data. The results are median
over 100 trials. (a) shows the residual error when the magni-
tude of the perturbation δN or δNR is varied. (b) shows the
residual error for varying noise on the image intensities.

of the sequence are blurred, our algorithm achieved successful
alignment. In some cases, however, the model drifted away
from its ideal position due to lack of constraints in the texture,
making some contour points sliding along their edge. Figure
4 shows the composition error and the registration error for
each frame. We observed that the composition error, the one
minimized in equation (3), is kept around a pixel, meaning
that the composition step is successful. The registration error,
proportional to equation (1), and expressed in image intensity
unit, is kept around typical values, indicating that our model
reliably fits the images. The algorithm has been implemented
in Matlab, the registation is done at about 7s per image on a
pentium IV 3GHz.
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Fig. 4. The composition (a) and the registration (b) errors for
the sequence shown in figure (5)

5. CONCLUSIONS

We proposed a novel generic approach to image registration
based on a mixed 3D and image-based model. Combining
TPS with a 3D mesh and a camera yields smooth image de-
formation fields while allowing one to recover a 3D surface
for each image of a sequence. We plan to extend the method
to deal with occlusions, by exploiting the reconstructed 3D

Fig. 5. (Top left) the reference image and his associated mesh.
(Next) registration of an image sequence, the projected 3D
mesh is shown in white. (Bottom right) the recovered 3D
mesh for the last image.

surface to predict self-occlusions.
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Abstract

Smoothly bent paper-like surfaces are developable. They
are however difficult to minimally parameterize since the
number of meaningful parameters is intrinsically dependent
on the actual deformation. Previous generative models are
either incomplete, i.e. limited to subsets of developable sur-
faces, or depend on huge parameter sets.

We propose a generative model governed by a quasi-
minimal set of intuitive parameters, namely rules and an-
gles. More precisely, a flat mesh is bent along guiding rules,
while a number of extra rules controls the level of smooth-
ness. The generated surface is guaranteed to be devel-
opable. A fully automatic multi-camera threedimensional
reconstruction algorithm, including model-based bundle-
adjustment, demonstrates our model on real images.

1. Introduction

The behaviour of the real world depends on numerous
physical phenomena. This makes general-purpose com-
puter vision a tricky task and motivates the need for prior
models of the observed structures,e.g. [1, 4, 8, 10]. For
instance, a 3D morphable face model makes it possible to
recover camera pose from a single face image [1].

This paper focuses on paper-like surfaces. More pre-
cisely, we consider paper as an unstretchable surface with
everywhere vanishing Gaussian curvature. This holds if
smooth deformations only occur. This is mathematically
modeled by developable surfaces, a subset of ruled surfaces.
Broadly speaking, there are two modeling approaches. The
first one is to describe a continuous surface by partial dif-
ferential equations, parametric or implicit functions. The
second one describes a mesh representing the surface with
as few parameters as possible. The number of which must
thus adapt to the actual surface. We follow the second ap-
proach.

One of the properties of paper-like surfaces is inextensi-
bility. This is a nonlinear constraint which is not obvious to

apply to meshes, as figure1 illustrates. For instance, Salz-
mannet al. [10] use constant length edges to generate train-
ing meshes from which a generating basis is learnt using
Principal Component Analysis. The nonlinear constraints
are re-injected as a penalty in the eventual fitting cost func-
tion. The main drawback of this approach is that the model
does not guarantee that the generated surface is developable.

A A BB C

C

Figure 1. Inextensibility and approximation: a one dimensional
example. CurveC represents an inextensible object,A andB are
two points lying on it. The linear approximation of arc(AB) is
the straight segmentAB. WhenC bows, although the arc length
(AB) remains constant, the length of segmentABchanges. A con-
stant length edge model is thus not a valid parameterization for
inextensible surfaces.

We propose a model generating a 3D mesh satisfying
the above mentioned properties, namely inextensibility and
vanishing Gaussian curvature at any point on the mesh. The
model is based on bending a flat surface around rules to-
gether with an interpolation process leading to a smooth
surface mesh. The number of parameters lies very close
to the minimal one because only the global shape is param-
eterized. A continuous smooth surface is then interpolated.
This model is suitable for image fitting applications. We
describe an algorithm to recover the deformations and rigid
pose of a paper-like object from multiple views. It does not
guarantee to find this minimal set, but it estimates a set of
few physical parameters explaining the images.

Previous work. Developable surfaces are usually chosen
as a basic modeling tool. Most of the work uses a con-
tinuous representation of the surface [3, 4, 7, 9]. They are
thus not well adapted for fast image fitting, except [4] which
initializes the model parameters with a discrete system of
rules. [11] constructs developable surfaces by partitioning
a surface and curving each piece along a generalized cone
defined by its apex and a cross-section spline. This param-

1
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eterization is limited to piecewise generalized cones.
[6] simulates bending and creasing of virtual paper by

applying external forces on the surface. This model has a
lot of parameters since external forces are defined for each
vertex of the mesh. A method for undistorting paper is pro-
posed in [8]. The generated surface is not developable due
to a relaxation process that does not preserve inextensibility.

Roadmap. We present our model in §2 and its reconstruc-
tion from multiple images in §3. Experimental results on
image sequences are reported in §4. Finally, §5 gives our
conclusions and discusses future work.

2. A Quasi-Minimal Model

2.1. Principle

Developable surfaces. Since developable surfaces form a
subset of ruled surfaces, they can be defined as constrained
ruled surfaces. Their continuous mathematical formulation
is given ine.g. [11] by:

{
X(t,v) = α(t)+vβ(t) , t ∈ I v ∈ R β(t) 6= 0
det(α′(t),β(t),β′(t)) = 0.

(1)
The first equation defines a ruled surface using a differ-

entiable space curveα(t), namely the directrix and a vector
field β(t). The ruled surface is actually generated by the line
pencil(α(t),β(t)). The second equation enforces vanishing
Gaussian curvature, making the ruled surface a developable
one.

Most of the previous work on developable surfaces ex-
hibits functions that satisfy this system. For example [3]
uses a tensor product B-Spline representation, [7] uses
‘cone spline surfaces’ and [9] combines dual representation
with NURBS surfaces.

Rule-based generation. We propose an intuitive method
to build developable surfaces inspired by the observation of
real paper sheets. The main idea is to use a discrete set of
rules instead of a continuous formulation. This leads to a
piecewise planar surface. The constraint on curvature in (1)
turns into a formulation in terms of bending angles. The
rules are chosen such that they do not intersect each other,
which corresponds to the modeling of smooth deformations.

Generating a surface mesh using our model has three
main steps, provided the planar boundary shape. First we
extract from the parameter set the position of the guiding
rules on the flat shape and their bending angle. Second, we
add extra rules by interpolating the positions and the angles
of the guiding rules. The number of extra rules controls the
smoothness of the generated surface. Third, the flat mesh
is bent along the rules. Figure2 illustrates this generating
process. It is guaranteed to be admissible in the sense that

the surface underlying the generated mesh is developable.
Figure3 shows the generated surface when the number of
rules increases.

Flat mesh Bent mesh
Figure 2. Surface mesh generation. (left) Flat mesh with guiding
rules (thick and pink) and extra rules (thin and green). (right) Mesh
folded along the guiding and extra rules.

Balancing model complexity and surface smoothness.
It is obvious that the density of rules is related to the
smoothness of the surface: the higher the number of rules,
the smoother the surface. It is also linked to the model com-
plexity: the higher the number of rules, the more complex
the model. These two observations lead us to consider a
huge number of rules to generate a smooth and accurate
surface. To avoid an overly large number of parameters, we
propose to control a subset of the rules and to interpolate the
other ones. They are respectively called guiding and extra
rules. This has the advantage to generate a smooth surface
with a small set of parameters. The aspect of the final sur-
face depends on both the guiding rules and the interpolation
process. Figure3 illustrates the effect of the proportion be-
tween the guiding and extra rules. The surface generated
by 6 guiding rules and 12 extra rules is an interesting trade-
off: there are enough parameters to capture all deformations
since the smoothness given by the extra rules significantly
decreases the error, and adding guiding rules does not really
improve the accuracy.

Reference surface
9 guiding rules
No extra rule
Residual error = 4.38 %

6 guiding rules
12 extra rules
Residual error = 5.79 %

6 guiding rules
No extra rule
Residual error = 14.45 %

3 guiding rules
6 extra rules
Residual error = 11.84 %

3 guiding rules
No extra rule
Residual error = 18.15 %

Figure 3. Surface generation behaviour. The reference mesh is
estimated by our model with a varying number of parameters. The
residual error represents the mean distance to the reference mesh,
it is given as a percentage of the meshgrid step.
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Internal consistency constraints. A rule is valid if it
does not intersect other rules on the surface and, in the case
of a non convex boundary, if the segment joining the two
intersections is entirely on the mesh, see figure4 for an ex-
ample.

A

B
C

D

Figure 4. Rule validity examples. RuleA is valid. RuleB is not
valid since it gets outside the mesh. RulesC andD are not valid
because they intersect each other on the mesh.

2.2. Parameterization

Our model has a parameter set into which we distinguish
two parts. The first part describes the shape of the flat mesh.
The second part controls the deformations. The shape is
defined by a planar curve, often a planar polygon, and gives
the boundary of the object.

The deformations are parameterized by the guiding rules
and their bending angles. Since each rule intersects the
boundary curve at exactly two points, a minimal parame-
terization of the rules is the arc length of these two points
along the shape curve. To build a realistic surface, the rules
must not intersect each other on the surface. This is en-
forced by constraining the arc lengths of the rules. More
details are given in §2.3.

The deformations are eventually defined by coupling
each rule with a bending angle, choosing the number of ex-
tra rules and the interpolation functions.

Table1 summarizes the model parameters. The model
has 2+ S+ 3n parameters, withS the number of parame-
ters describing the mesh boundary (for instance, width and
height in the case of a rectangular shape) andn the number
of guiding rules.

Parameters Description Size

n number of guiding rules 1
ne number of extra rules 1

S mesh boundary parameters S
sA arc length of the guiding rules 2n
θ bending angles of the guiding rules n

Table 1. Summary of the model parameters. (top) Discrete param-
eters (kept fixed during nonlinear refinement). (bottom) Continu-
ous parameters.

2.3. Surface Generation

We bring together rules that belong to the same ‘bending
region’ on the paper. We define a region as a set of con-

secutive rules. Two rules are consecutive if both of their
endpoints are. Figure5 (top left) shows the labeled guiding
rules on the flat mesh.
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Figure 5. Interpolation process. (top left) Flat mesh with the la-
beled guiding rules. Three regions are defined. (bottom left) Rule
interpolation process. The black curve is an increasing interpo-
lation. (top right) Flat shape with rules. (bottom right) Bending
angles interpolation process. The black curve is an interpolation
function. The thick lines are the guiding rules. The thin lines are
the extra rules. The dashed red lines are the region limits. The red
dots are the region extremities.

We report the arc lengths of guiding rules onto a
graph, represented on figure5 (bottom left) and compute
an increasing interpolation function passing through these
points. The monotonicity constraint is important to guar-
antee that rules do not intersect. We use a piecewise cubic
Hermite interpolating polynomial as interpolation function.
This function is resampled to get extra rules, limits and ex-
tremities of each regions. Region limits are chosen in the
middle of two consecutive rules having different labels. The
result of resampling is visible on figure5 (top right).

The interpolation of bending angles is region-dependent.
For each region, we represent the bending angles of the
guiding rules on a graph, see figure5 (bottom right).
We compute an interpolation function (a spline) passing
through the bending angles with the following side con-
ditions to ensure continuity between regions: the bending
angles are null at the limit and the extremity of the region.
We get the bending angles of extra rules by resampling this
curve.

Since all rules have been computed, we split the shape
into cells, each cell being a region between two consecu-
tive rules. With this representation, folding the flat mesh is
done by rotating and translating each cell. The rigid trans-
formations are formed by composing those induced by each
rule starting from a reference cell. Figure6 shows the result
of this last step. Table2 gives an overview of the surface
generation process.
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Figure 6. Bent shape with rules. The thick lines are the guiding
rules. The thin lines are the extra rules. The dashed red lines are
the region limits. The red dots are the region extremities.

SURFACE GENERATION PROCESS

1. Define the shape boundary on the flat mesh

2. Gather the rules into regions

3. Interpolate the rule positions and their angles

4. Resample the interpolating functions to get the extra rules

5. Fold the flat mesh

Table 2. Overview of the surface generation process.

3. A Multiple View Fitting Algorithm

Our goal is to fit the model to multiple images. We as-
sume that a 3D point set and camera pose have been re-
constructed from image point features by some means. We
use the reprojection error as an optimization criterion. Asis
usual for dealing with such a nonlinear criterion, we com-
pute a suboptimal initialization that we iteratively refine.

3.1. Initialization

We begin by reconstructing a surface interpolating the
given 3D points. A rule detection process is then used to
infer our model parameters.

Step 1: Interpolating surface fitting. Details about how
the 3D points are reconstructed are given in §4. The inter-
polating surface is represented by a 2D to 1D Thin-Plate
Spline function [2], mapping some planar parameterization
of the surface to point height. We use the mean plane.
Defining a regular grid on this plane thus allows us to in-
fer a dense set of points on the 3D surface. Figure7 (top
right) and figure8 (top left) show an example.

Step 2: Model initialization by rule detection. The
model is initialized from the 3D surface. The side length
is chosen as the size of the 3D mesh.

Guiding rules must be defined on the surface. This set of
n rules must represent the surface as accurately as possible.
In [3] an algorithm is proposed to find a rule on a given
surface. It tries rules with varying direction and passing
through several points on the surface . We use it to detect
rules along the sites visible on figure7 (bottom left).
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Figure 7. Rules detection process. (top left) Feature points. (top
right) Reconstructed 3D points and the interpolating surface. (bot-
tom left) Points where rules are detected on the interpolated sur-
face. (bottom right) Initial detected rules (circles) and automati-
cally detected guiding rules (red squares).

The rules are described by the arc length of their inter-
section points with the mesh boundary. The two arc lengths
defining a rule can be interpreted as a point inR

2, as shown
in figure7 (bottom right). The groups of rules in this figure
represent the bending regions of the surface. The guiding
rules are chosen in the groups. We fix the number of guid-
ing rules by hand, but a model selection approach could be
used to determine it automatically from the set of detected
rules.

This gives then guiding rules. The bending angle vector
θ is obtained from the 3D surface by assuming planarity
between consecutive rules. The initial suboptimal model
we obtain is shown on figure8 (top right).

3.2. Refinement

The reprojection error describes how well the model fits
the actual data, namely the image feature points. We thus
introduce latent variables representing the position of each
point onto the modeled mesh with two parameters. LetL be
the number of images andNi the number of points in image
i, the reprojection error is:

e=
L

∑
i=1

Ni

∑
j=1

(mj,i −Π(Cj ,M(S,xi ,yi)))
2. (2)

In this equation,mi, j is the j-th feature point in image
i, Π(C,M) projects the 3D pointM in the cameraC and
M(S,xi ,yi) is a twodimensional parameterization of the
points lying on the surface, withS the surface parameters.
The points on the surface are initialized by computing each
(xi ,yi) such that their individual reprojection error is mini-
mized, using the initial surface model.
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To minimize the reprojection error, the following param-
eters are tuned: the surface parameters (the number of guid-
ing and extra rules is fixed), see table1, the pose of the
surface (rotation and translation) and the 3D point parame-
ters.

The Levenberg-Marquardt algorithm [5] is used to mini-
mize the reprojection error. Upon convergence, the solution
is the Maximum Likelihood Estimate under the assumption
of an additivei.i.d. Gaussian noise on the image feature
points.

Figure 8. Paper fitting with eight guiding rules. (top left) Inter-
polated surface. (top right) Initial model. (bottom left) Refined
model overlaid with the guiding rules. (bottom right) Estimated
model.

4. Experimental Results

We demonstrate the representational power of our fit-
ting algorithm on several sets of images. For five of them,
we show results. Some threedimensional representation of
the sequence are represented on figures9 and14. The 3D
point cloud is generated by triangulating point correspon-
dences between several views. These correspondences are
obtained while recovering camera calibration and pose us-
ing Structure-from-Motion [5]. Points off the object of in-
terest are removed by hand. Figure7 (top) shows an exam-
ple of such a reconstruction.

The paper dataset. The following results have been ob-
tained from five views. We used a model with eight guiding
rules and sixteen extra rules. Figures8 and10 show the re-
projection of the 3D surfaces into the first image of the se-
quence and the reprojection error distribution for the paper
sequence for the three main steps of our algorithm: recon-
struction with Structure-from-Motion, initialization and re-
finement. Although the former one has the lowest reprojec-
tion error, the associated surface is not satisfying, sinceit is

Figure 9. (left) Paper sequence. (right) Book sequence.

not regular enough and does not fit the actual boundary. The
initialization makes the model more regular, but is not accu-
rate enough to fit the boundary of the paper, so that impor-
tant reprojection errors are introduced. Eventually, the re-
fined model is visually acceptable and its reprojection error
is very close to the unconstrained set of points obtained by
Structure-from-Motion. It means that our model accurately
fits the image points, while being governed by a much lower
number of parameters than the initial set of independent 3D
points. The reprojection error significantly decreases thanks
to the refinement step, which validates its relevance. Com-
paring these errors in the object space leads to the same
conclusions: the average distance between the triangulated
points and the predicted points before (respectively after)
the refinement step is 0.16 cm (respectively 0.06 cm), the
paper size being estimated to 25 cm by 21 cm. To make the
model converge to the actual paper, we manually selected
the four corners in one of the five views.
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Figure 10. Reprojection errors distribution for the images shown
in figure 8. (left) 3D point cloud. (middle) Initial model. (right)
Refined model.

Since we have a 3D model of the paper sheet and its re-
projection into the images, it is possible to overlay some
pictures or to change the texture map. We use the augmen-
tation process described in table3 to change the whole tex-
ture map of the paper and to synthetically generate a view
of the paper with the new texture. The results are shown on
figure11.

The book dataset. The second dataset is an image pair
of a book. We estimate the page surface with two guiding
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AUGMENTING IMAGES

1. Run the proposed algorithm to fit the model to images

2. Choose illumination model and light sources

3. For each image, automatically do

(a) Transfer the new texture map

(b) Apply lighting changes

Table 3. Overview of the augmentation process.

Figure 11. (left) Changing the whole texture map of the paper.
(right) Synthetically generated view of the paper with new texture.

rules and eight extra rules. Figure12shows the reprojection
of the estimated surface and the 3D mesh. The reprojection
of the computed model is fine: the reprojection error of the
3D points is 0.26 pixels and the one for the refined model is
0.69 pixels, taking the triangulated points as groung truth,
the final error in object space is 0.06 cm for a page size of 18
cm by 13 cm. It means that we accurately recover the page
shape with a surface governed by only nine parameters.

Figure 12. Reconstruction of a book’s page. (left) Reprojection
onto the images. (right) Estimated model.

One application of the algorithm in the case of a written
page is shown on figure13: our surface estimate is used to
unwarp the page’s texture and to get a rectified image of the
text.

Figure 13. Unwarping. (left) The original page. (right) The recti-
fied page.

The map dataset. The third example is a sequence of a
wavely folded map shown on figure14. Although all parts
of the paper are seen in several images, the whole paper is
never entirely seen in a single image. The fitting algorithm
naturally deals with this kind of occlusion because the ini-
tialization is based on the reconstruction of 3D points, and
the 3D points cloud is dense enough since all parts of the pa-
per are visible in several views. The missing points do not
perturb convergence because the bundle adjustment mini-
mizes the distance between the actual image points and the
reprojection of the 3D points. Since for each images, the set
of visible feature points is known, only the corresponding
3D points are projected to compute the residual error. The
reprojection of the model onto one of the original images
is shown on figure15. Since the 3D model of the surface
and the position of the cameras are known it is possible to
compute an occlusion map for each images. This is useful
to unwarp the texture map from each image and to combine
them to get the whole texture map. Some partial texture
maps and the whole one are shown in figure15. The re-
projection error of the model is 0.45 pixels, very close to
the error of the initial triangulation (0.31 pixels), in object
space the refined model error is 0.07 cm for a sheet size of
28 cm by 19 cm.

Figure 14. Reconstructed paper and cameras for the map dataset.

The poster dataset. The former examples deal with small
paper sheets where the developable constraints are always
satisfied. A poster is a more challenging object because sin-
gularities may appear on the surface due to its larger size.
The input data are two images of the poster obtained from
a calibrated stereo system, see figure16. The surface of the
poster is smooth enough, enabling our model to capture the
deformations: the RMS error of the triangulated 3D points
is 0.35 pixels and the one for our model is 0.65 pixels.

The rug dataset. For this last example, the model is used
to estimate a surface whose physical behavior does not sat-
isfy the developable constraints except under special as-
sumption, for example a suspended piece of fabric or in this



7.2. MULTIPLE SYNCHRONIZED CAMERAS AND RANGE SENSORS 141

Figure 15. Results for the map dataset. (top left) Reprojection
onto one of the original images. (bottom left) Partial texture maps.
(right) Unwarped texture map.

Figure 16. Poster mesh reconstruction. (left) Estimated Model.
(right) Reprojection onto the first image.

case an hanged rug. Even though the results are slightly less
accurate, the global shape is well-fitted. The difference be-
tween the errors of the triangulated points and the model is
representative of the lack of accuracy : 0.34 pixels for the
original points against 1.36 pixels for the model. This is
mainly visible along the boundary of the rug on figure17.

Figure 17. Rug mesh reconstruction. (left) Reprojection onto the
first image. (right) Estimated Model.

5. Conclusion and Future Work

This paper describes a quasi-minimal model for paper-
like objects and its estimation from multiple images. Al-
though there are few parameters, the generated surface is
a good approximation to smoothly deformed paper-like ob-
jects. This is demonstrated on real image datasets thanks to
a fitting algorithm which initializes the model and refines
it in a bundle adjustment manner. Both a surface and its

boundary curve are inferred from images.
There are many possibilities for further research. The

proposed model could be embedded in a monocular track-
ing framework or used to generate sample meshes for a sur-
face learning model. The fitting algorithm should be com-
pared to other surface models and estimation methods, in
terms of computation and accuracy performances.
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Abstract— Estimating the pose of an imaging sensor is a central
research problem. Many solutions have been proposed for the
case of a rigid environment. In contrast, we tackle the case of
a non-rigid environment observed by a 3D sensor, which has
been neglected in the literature. We represent the environment
as sets of time-varying 3D points explained by a low-rank shape
model, that we derive in its implicit and explicit forms. The
parameters of this model are learnt from data gathered by the
3D sensor. We propose a learning algorithm based on minimal
3D non-rigid tensors that we introduce. This is followed by
a Maximum Likelihood nonlinear refinement performed in a
bundle adjustment manner. Given the learnt environment model,
we compute the pose of the 3D sensor, as well as the deformations
of the environment, that is, the non-rigid counterpart of pose,
from new sets of 3D points. We validate our environment learning
and pose estimation modules on simulated and real data.

I. INTRODUCTION

Aligning 3D views – sets of 3D points – gathered by a
3D sensor, such as a calibrated stereo rig, is important for
constructing comprehensive 3D models of the environment or
updating the position of a mobile imaging sensor. When the
environment is rigid, the 3D views are related by rigid Eu-
clidean transformations. Many approaches have been proposed
to compute these transformations, e.g. [1]. Aligning 3D views
is one of the building blocks of hierarchical approaches to
Structure-From-Motion. However, the assumption of rigidity
is violated in many cases of interest, for instance a garment
deforming as a person moves. The alignment problem is then
particularly challenging because a different shape is observed
in each 3D view.

A large body of work has been done in the medical imaging
community but with the aim of estimating dense deformation
fields from dense, often voxel-based, reconstructions. Dealing
with non-rigid scenes coming from single-camera footage has
received an increasing attention over the last few years. The
problem is highly challenging since both the cameras and the
non-rigid shape have to be recovered. A major step forwards
for such cases was made by Bregler et al. [2] and Brand [3].
Building on the work of [4], they developed and demonstrated
factorization of images of non-rigid scenes, where the non-
rigidity was represented as a linear combination of basis
shapes. It is shown in [5] how the constraints coming from
two synchronized cameras can be incorporated into non-rigid
factorization.

We tackle the problem of computing the pose of a 3D
sensor with respect to a non-rigid scene, that we represent

using the low-rank shape model used in non-rigid factorization
methods. Most previous work, e.g. [3], [2], [5], [6] use the
weak perspective camera model. In contrast, we do not specify
a camera model, since we directly consider 3D views. We
assume that spatial and temporal point correspondences are
established. Pose estimation in a non-rigid environment raises
two main problems. First, one has to define the meaning
of non-rigid pose. One benefit of using the low-rank shape
model is that the ‘true’ camera pose is recovered. Second,
contrarily to classical model-based pose estimation in a rigid
environment, a prior model of the non-rigid environment is
not available in many cases. We propose to learn this model
from a collection of unregistered 3D views gathered by the 3D
sensor. Once this learning stage has been passed, our non-rigid
pose estimator can be launched.

We bring the following contributions. First, §III, we state
the implicit and explicit low-rank shape models, and state
the notion of pose in this context. Second, §IV, we propose
algorithms to learn the non-rigid environment. The implicit
model parameters are learnt using a factorization technique,
while for the explicit model, we use what we call minimal 3D
non-rigid tensors. Third, §V, we show how the pose of the
3D sensor can be computed with respect to the learnt model
while the environment is moving and deforming. Experimental
results on simulated and real data are reported in §VI. We give
our conclusions in §VII.

II. NOTATION

Matrices are written in sans-serif fonts, e.g. R, and vectors
using bold fonts, e.g. x. The n 3D views are sets of m points
denoted Qtj , where t is the time index and j the point index.
We do not use homogeneous coordinates, e.g. Qtj is a 3-
vector. The identity matrix of size (s× s) is written I(s), the
zero matrix 0 and the zero vector 0. We use I for the (3× 3)
identity matrix. The Kronecker product is written ⊗, matrix
Frobenius norm as ‖·‖ and the Moore-Penrose pseudo-inverse
as †.

III. NON-RIGID SHAPE AND POSE

A. Non-Rigid Shape

We describe the low-rank non-rigid shape model. The pose
of the 3D sensor is modeled by 3D Euclidean transformations
{(Rt,yt)} with Rt an orthonormal matrix and yt ∈ R3 such
that Q̂tj = RtQ̃tj +yt. The {Q̃tj} form a motionless version
of the 3D views, i.e. that do not undergo any ‘global motion’,
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but are deforming through time. The low-rank shape model
represents the {Q̃tj} as linear combinations of l basis shapes
{Bkj}: Q̃tj =

∑l
k=1 ξtkBkj . The time-varying {ξtk} are the

configuration weights. Introducing the {(Rt,yt)}, we obtain
the explicit model:

Q̂tj = Rt

(
l∑

k=1

ξtkBkj

)
+ yt (1)

= MtBj + yt with (2)
Mt = Rt

(
ξt1I · · · ξtlI

)
. (3)

We call Mt a (3 × r) explicit non-rigid motion matrix and
Bj =

(
BT

1j · · · BT
lj

)
a (r × 1) non-rigid basis shape

vector. Parameter r = 3l is the rank of the model. For reasons
that are made clearer below, we derive a bilinear implicit
model. Let A be a (3l × 3l) rank-3l matrix. It is seen that
Q̂tj = MtBj + yt = (MtA−1)(ABj) + yt, yielding:

Q̂tj = NtSj + yt, (4)

with Nt = MtA−1 and Sj = ABj . We call Nt and Sj the
implicit non-rigid motion matrix and shape vector, and A a
corrective transformation matrix.

B. Non-Rigid Pose

Pose in a non-rigid environment has a rigid and a non-
rigid counterpart. The rigid part {(Rt,yt)} represents the
‘global’ motion of the environment relative to the sensor. It
gives the ‘true’ relative sensor displacement. In contrast, the
non-rigid part only concerns the environment, and not the
imaging sensor. In the above-described model, it is represented
by the configuration weights {ξtk}, giving the intrinsic, i.e.
motionless, deformations of the environment at each time
instant. The motionless and deformationless environment is
modeled by the basis shapes {Bkj}.

The implicit model is useless for pose estimation: it can be
seen as an ‘uncalibrated’ model of the environment. However,
its ML (Maximum Likelihood) Estimate can be computed very
reliably, as will be seen in the next section.

IV. LEARNING THE ENVIRONMENT

Given a collection of 3D views, we learn the environment
by estimating the parameters of the low-rank shape model.
Note that only the basis shapes {Bkj} are subsequently used
for pose estimation, see §V. However, to get an ML Estimate,
all parameters of the model must be computed.

We state the ML residual error and show how to compute
the translations. We first tackle the case of the implicit model
and then the explicit one. We assume all points to be visible
in all 3D views.

A. Maximum Likelihood residual error

Assuming that the error on the 3D points is Gaussian,
centred and i.i.d., the ML residual error is:

D2 =
1
nm

n∑
t=1

m∑
j=1

d2(Q̂tj ,Qtj), (5)

where d2(X,Y) = ‖X − Y‖2 is the Euclidean distance
measure and {Q̂tj} are corrected points, exactly explained
by the non-rigid shape model.

B. Computing the Translations

We show that the translations yt can be eliminated prior
to estimating the other parameters. By substituting equation
(1) or equation (4) in the residual error (5) and nullifying
its partial derivatives with respect to yt, we obtain yt =
1
m

(∑m
j=1 Qtj − Q̂tj

)
. The origin of the r-dimensional space

containing the non-rigid shape vectors is arbitrary and is
chosen such that

∑m
j=1 Sj = 0 in the implicit case and∑m

j=1 Bj = 0 in the explicit case, giving for the translation yt

the centroid yt = 1
m

∑m
j=1 Qtj = Q̄t of the t-th 3D view. This

means that one cancels the translations out by centring each
set of 3D points on its centroid: Qtj ← Qtj−Q̄t. Henceforth,
we assume that this has been done.

C. Shape Learning With the Implicit Model

We consider the implicit non-rigid shape model of equation
(4). We factorize the 3D views {Qtj} into implicit non-rigid
motion matrices {Nt} and shape vectors {Sj}. The problem
is to minimize the ML residual error (5) over the {Q̂tj} such
that Q̂tj = NtSj . Rewrite (5) as:

D2 ∝ ‖Q̂ − Q‖2,

where Q is the (3n×m) measurement matrix:

Q =

Q11 · · · Q1m

...
. . .

...
Qn1 · · · Qnm

 ,

and Q̂ is defined by the implicit (3n × 3l) ‘non-rigid joint
motion matrix’ N and the (3l×m) ‘non-rigid joint structure
matrix’ S as Q̂ = NS with NT =

(
NT

1 · · · NT
n

)
and

S =
(
S1 · · · Sm

)
. Since N has 3l columns and S has

3l rows, Q̂ has maximum rank 3l. The problem is to find
the closest rank-3l matrix Q̂ to Q. Let Q = UΣVT be a
Singular Value Decomposition (SVD) of matrix Q, see e.g. [7],
where U and V are orthonormal matrices and Σ is diagonal
and contains the singular values of Q. Let Σ = ΣuΣv be
any decomposition of Σ, e.g. Σu = Σv =

√
Σ. The non-

rigid joint motion and structure matrices are obtained by,
loosely speaking, ‘truncating’ the decomposition by nullifying
all but the 3l largest singular values, which leads, assuming the
singular values in decreasing order in Σ, to N = ψ3l(UΣu)
and S = ψT

3l(VΣT
v ), where ψc(W) is formed with the c leading

columns of matrix W.

D. Shape Learning With the Explicit Model

The aim is to compute the ML Estimate of the configuration
weights, rotation matrices and non-rigid structure in equation
(1) by minimizing the residual error (5). This is a nonlinear
problem for which two approaches have been followed in the
non-rigid factorization litterature. On the one hand Bregler et
al. [2], Brand [3], Aanaes et al. [8], Del Bue et al. [5] and
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Xiao et al. [6] compute a matrix A that upgrades the implicit
motion matrix N so that the metric constraints of the explicit
model are enforced. Xiao et al. show that in order to get the
correct solution, two types of metric constraints must be taken
into account: the rotation constraints and the basis constraints,
from which they derive a closed-form solution for matrix A.

On the other hand, Torresani et al. [9] directly learn the pa-
rameters of the explicit model. They propose a comprehensive
system based on a generalized EM (Expectation Maximiza-
tion) algorithm. An important, still unsolved problem is to find
a suitable initialization, since EM performs local optimization
only.

Our solution lies in the second category: a suboptimal
initialization is computed and subsequently refined in a bundle
adjustment manner. These two steps are presented below,
followed by an analysis of the ambiguities of the solution.

1) Initializing:
a) The rotations: Brand proposes a solution based on

upgrading the implicit motion matrices [3], which requires
at least n ≥ l(9l+3)

4 3D views to compute a corrective
transformation and is thus not feasible for many practical
cases. For example, at least 39 views giving independent
constraints are necessary to use this method with the sequence
presented in §VI-B. In [5], the authors compute a block-
diagonal corrective transformation matrix. Another solution
used in [8] is to assume that the environment has a sufficiently
strong rigid component, and to estimate the rotation using a
standard procedure such as [1]. This approach is not feasible
for highly deforming environments.

In contrast, we propose an approach taking the non-rigid
nature of the environment into account. Our algorithm is
presented below in the occlusion-free case for simplicity, but
can be easily extended to the missing data case. Consider the
explicit non-rigid joint motion equation Q =MB with:

M =

(
ξ11R1 ··· ξ1lR1

...
. . .

...
ξn1Rn ··· ξnlRn

)
and B =

(
B11 ··· B1m

...
. . .

...
Bl1 ··· Blm

)
.

Define two subsets A and B of na and nb 3D views respec-
tively, Qa =MaB and Qb =MbB. Our goal is to eliminate
the structure B from the equations. We assume without loss
of generality rank(Qb) ≥ 3l. This implies nb ≥ l. We express
B in terms of Qb and Mb using the equation subset B as
B = M†

bQb. Plugging this into the equation subset A yields
Qa =MaB =MaM†

bQb that we rewrite:(
I(3na) −(MaM†

b)
)︸ ︷︷ ︸

Z

Qab = 0(3na×m) (6)

where nab = na + nb and QT
ab = (QT

a QT
b ). We call matrix

Z(3na×3nab) a 3D non-rigid tensor. Let us examine more
closely the expression ofMaM†

b. The joint motion matrix can
be rewritten as M = R(Ξ⊗ I) where R = diag(R1, . . . ,Rn)
is an orthonormal matrix and Ξ is an (n× l) matrix containing
the {ξik}. Similarly,Ma = Ra(Ξa⊗I) andMb = Rb(Ξb⊗I),

yielding:

MaM†
b = Ra(Ξa ⊗ I)(Rb(Ξb ⊗ I))†

= Ra(Ξa ⊗ I)((Ξb ⊗ I))†RT
b ,

since Rb is an orthonormal matrix. We make use of the
following properties: (S⊗ I)† = S† ⊗ I and (S⊗ I)(S′ ⊗ I) =
(SS′)⊗ I to get:

MaM†
b = Ra

(
(ΞaΞ†

b)⊗ I
)
RT

b .

Substituting in equation (6) and multiplying on the left by the
orthonormal RT

a yields:(
RT

a −
(
(ΞaΞ†

b)⊗ I
)
RT

b

)
Qab = 0(3na×m). (7)

From this equation, knowing Ra and using the orthonormality
constraints on Rb to eliminate the weights ΞaΞ†

b should allow
to compute Rb. We use the fact that the coordinate frame can
be aligned on a reference view t, i.e. such that Rt = I and
choose one view in the initial set of 3D views A to be the
reference one.

The first idea that comes to mind to solve this problem is to
consider the left nullspace of Qab. Define a (3nab × (3nab −
3l)) matrix U whose columns span the left nullspace of Qab:
UTQab = 0. Using equation (7), we obtain:(

RT
a −

(
(ΞaΞ†

b)⊗ I
)
RT

b

)
= HUT,

where H accounts for the fact that any linear combination of
the columns of U are in the left nullspace of Qab. While this
approach works fine in the absence of noise contaminating the
data, it is however very unstable and useless when even very
slight noise is present in the data. Indeed, if one employs
e.g. SVD to compute matrix U, then the singular vectors
corresponding to the lowest singular values will be selected,
and will not in general allow to recover the sought-after
rotations, since the SVD mixes the singular vectors to obtain
the lowest residual error as possible.

The second idea that comes to mind is to estimate each
rotation in B and the corresponding weight at a time. Consider
a 3D view g ∈ A. Equation (7) induces the following residual
error:

m∑
j=1

‖RT
g Qgj −

∑
t∈B

ζtR
T
t Qtj‖2, (8)

where {ζt} are unknown weights. Initialize all rotations in
Rb to the identity: R0

t = I, t ∈ B. Let p← 0 be the iteration
counter. The idea is to iteratively compute the t-th rotation
for t ∈ B while holding the other nb − 1 rotations in B
until convergence, by minimizing the residual error (8) that
we rewrite:

m∑
j=1

‖Ep
j − ζ

p+1
t

(
Rp+1

t

)T

Qtj‖2 (9)

with:

Ep
j = RT

g Qgj −

(∑
t∈B

(Sp
t )

TQtj

)
, (10)
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where Sp
t is the latest estimate, i.e. :

Sp
t =

{
ζp+1
t Rp+1

t if it is computed
ζp
t Rp

t otherwise.

We use a standard procedure for computing the 3D rotation
and scale from 3D point correspondences – here {Ep

j ↔
Qij} – due to [1] to solve this problem. Our algorithm is
summarized in table I. Note that at most l rotations in Rb

can be computed at each iteration which implies that the
number of rotations in Rb must be l. This is why only the
smallest, i.e. minimal 3D non-rigid tensors can be used by
our algorithm. Also, the unknown Mb must be full-rank. We
use the corresponding implicit Nb to check that this is the
case, since there exists a full-rank corrective transformation
matrix A such that NaA =Ma. In the case of missing data,
the sum in equations (8) and (9) is simply replaced by a sum
over the points seen in subsets A and B.

OBJECTIVE

Given n 3D views {Qtj} of m corresponding points and the rank
3l of the non-rigid model, compute the relative pose {(Rt,yt)}
of the 3D sensor, the non-rigid pose of the environment, i.e. the
configuration weights {ξtk}, while learning the low-rank non-rigid
shape model {Bkj}.

ALGORITHM

1) Set initial equation sets. A is any 3D view t, B is any l
3D views at least one of them not in A and such that Nb is
full-rank, Rt ← I and Ra ← I.

2) Compute the rotations:
a) Set initial rotations R0

t ← I, t ∈ B and the iteration
counter p← 0.

b) For t ∈ B: form the {Ep
j}, equation (10). Compute Rp+1

t

by minimizing (9), see Horn et al. [1].
c) p← p + 1.
d) If the decrease in the residual error is smaller than ε, go

to step 3 else go to step b.
3) Test convergence. If all rotations are computed, stop.
4) Update equation sets. A← A ∪ B and B is any l 3D views,

at least one of them not in A and such that Nb is full-rank.
5) Iterate. go to step 2.

TABLE I
THE PROPOSED INITIALIZATION ALGORITHM FOR THE EXPLICIT MODEL

PARAMETERS.

b) The configuration weights and non-rigid structure:
Consider the ML residual error (5) that we rewrite below for
convenience:

D2 =
1
nm

n∑
t=1

m∑
j=1

‖Qtj − Rt

(
l∑

k=1

ξtkBkj

)
‖2.

Let Q̃tj = RT
t Qtj be a motionless version of the 3D points,

the residual error transforms in:

D2 =
1
nm

n∑
t=1

m∑
j=1

‖Q̃tj −

(
l∑

k=1

ξtkBkj

)
‖2.

Introduce matrices L(n×3m) and T(l×3m) which are obtained
by reorganizing Q̃ and B, respectively:

L̃ =

 Q̃T
11 ··· Q̃T

1m

...
. . .

...
Q̃T

n1 ··· Q̃T
nm

 and T =

BT
11 ··· BT

1m

...
. . .

...
BT

l1 ··· BT
lm

 .

The residual error is rewritten D2 = 1
nm‖L̃ − ΞT ‖2. This

means that matrix L̃ has rank l at most. Similarly to §IV-C,
let L̃ = UΣVT be an SVD of matrix L̃, we get Ξ = ψl(UΣu)
and T = ψT

l (VΣT
v ).

2) Bundle Adjustment: Starting from the above-derived
initial solution, we minimize the ML residual error (5) using
nonlinear least-squares in a bundle adjustment manner, see
e.g. [10]. We use the Levenberg-Marquardt algorithm, imple-
mented to exploit the sparse block structure of the Jacobian
and (Gauss-Newton approximation of) the Hessian matrices.
Bundle adjustment in the non-rigid case is developed in [8],
[5], where the authors show that compared to the rigid case,
additional ‘gauge freedoms’ in the recovered structure and
motion must be handled. However, the Levenberg-Marquardt
optimization engine deals with those by damping the approx-
imated Hessian matrix which makes it full rank. We found
that the regularization term employed in [5] does not have a
significant effect on the results we obtained. This is mainly
due to the fact that we directly use 3D data, while [5] use
image points.

3) Ambiguities of the Solution: The ambiguity of the
solution demonstrated by Xiao et al. [6] in the 2D case
when only the rotation constraints are used does not hold for
our algorithm. The reason is that it enforces the replicated
block structure of the joint motion matrix M, which provides
stronger constraints than the rotation constraints only. The am-
biguity matrix E on the learnt model is E = diagl(S)(Λ(l×l)⊗
I), where diagl(S) is a l block diagonal matrix for some
3D orthonormal matrix S, representing the indeterminateness
of the orientation for the global coordinate frame. Matrix
Λ(l×l) ⊗ I models linear combinations of the basis shapes.
This shows that it is not possible to recover the ‘true’ basis
shapes and configuration weights, but that ‘true’ camera pose
can still be computed.

V. COMPUTING POSE

Given the non-rigid model of the environment – the basis
shapes {Bkj} – and a 3D view {Qj}, we want to estimate the
pose of the 3D sensor, namely the Euclidean transformation
(R,y), jointly with the non-rigid counterpart of the pose, i.e.
the configuration weights {ξk}. Note that we drop index t
since only one 3D view is considered in this section. It is not
necessary to observe all points used in the learning phase to
compute pose. The ML residual error is:

C2 =
1
m

m∑
j=1

d2(MBj + y,Qj). (11)

It must be minimized over (R,y) and {ξk}. Matrix M is
defined by equation (3).
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We propose to nonlinearly minimize the ML residual error
(11) using the Levenberg-Marquardt algorithm. It is not pos-
sible to use a direct estimator as [1] due to the configuration
weights. Note that, as shown below, the translation y can
be eliminated from the equation. The minimization is thus
performed over R and {ξk}. Such an algorithm as Levenberg-
Marquardt requires one to provide an initial solution. Our
algorithm for finding it is described below.

a) Eliminating the translation: The derivatives of the ML
residual error (11) with respect to y must vanish: ∂C2

∂y = 0,
which leads to y = 1

m

∑m
j=1 (Qj −MBj). This result means

that y is given by the difference between the centroid of the
points {Qj} and the centroid predicted by the points from the
shape model {MBj}, which vanishes if the set of points used
for computing the pose is exactly the same as the one used in
the learning phase. In any case, by centring the points on their
centroid, the translation vanishes. Henceforth, we assume this
has been done and rewrite the ML residual error (11) as:

C2 =
1
m

m∑
j=1

d2(MBj ,Qj). (12)

b) Initializing the rotation and configuration weights:
We linearly compute a motion matrix M̃ without enforcing
the correct replicated structure by minM̃

∑m
j=1 d

2(M̃Bj ,Qj),
which yield:

M̃ =
(
Q1 · · · Qm

) (
B1 · · · Bm

)†
.

We extract the {ξk} and R from M̃ by solving
minR,{ξk}

∑l
k=1 ‖M̃k − ξkR‖2, where the M̃k are (3 × 3)

blocks from M̃. By vectorizing and reorganizing the residual
error, we obtain:

‖

vectT(M̃1)
...

vectT(M̃l)


︸ ︷︷ ︸

Λ

−

ξ1...
ξl


︸ ︷︷ ︸

ξ

vectT(R̃)︸ ︷︷ ︸
r̃

‖2,

which is a rank-1 approximation problem that we solve by
‘truncating’ the SVD Λ = UΣVT, as in §IV-C: ξ = ψ1(UΣ)
and r̃ = ψT

1 (V). Note that ‖r̃‖ = ‖R̃‖ = 1. Matrix R̃
must be subsequently corrected to give R by enforcing the
orthonormality constraints. This is done by finding the closest
orthonormal matrix to R̃ using SVD, see [1]: R̃ = UΣVT

gives R = 1
3 tr(Σ) det(U) det(V)UVT, while compensating the

possible sign change by ξ ← det(U) det(V)ξ.

VI. EXPERIMENTAL EVALUATION

A. Simulated Data

We report experimental results on simulated data. The
default simulation setup consists of n = 15 time-varying 3D
views, each containing m = 35 points. They are generated by
randomly drawn linear combinations of l = 3 basis shapes,
all of them lying in a sphere with unit radius. An additive,
zero-mean Gaussian noise with variance σ = 0.01 (i.e. 1% of
the scene scale) is added to the 3D points. We vary each of

these parameters in turn. We average the error measures over
100 trials. The true number of basis shapes is used by the
algorithms.
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Fig. 1. (a) ML residual error against the level of added noise and (b) pose
error against the number of basis shapes.

c) Environment learning: We observe on figure 1 (a) that
the ML residual error is very close to σ. The implicit learning
IMP consistently gives a significantly lower residual error than
the explicit learning algorithms EXP?. This means that, despite
the fact that the data were generated using the explicit low-
rank shape model, the extra degrees of freedom of the implicit
model represent quite well the added Gaussian noise.

We observe that the difference between the three explicit
learning methods is small compared to the difference with
IMP. EXPLM (from §IV-D.2, ‘LM’ stands for Levenberg-
Marquardt) always performs better than EXPINITITER (from
table I), which always performs better than EXPINITMEAN
(based on [1] to get the rotations). This means that the
residual error (8), which is minimized by EXPINITITER while
estimating the minimal 3D non-rigid tensors, is well-adapted
to our problem.

Figure 1 (b) compares the error raised by the rotation part
of the pose, in degrees, between our non-rigid algorithms
and rigid SFM and pose algorithms, respectively dubbed
RIGEXPLM and RIGPOSELM. We observe that the proposed
EXPLM gives errors independent of the number of basis
shapes, while, as could have been expected, RIGEXPLM
rapidly degrades as the number of basis shapes grows.

d) Pose computation: Figure 1 (a) shows that all pose
algorithms POSE? consistently give a higher residual error
than the explicit learning algorithms. This is explained by the
fact that pose estimation suffers from the errors in the learnt
model and in the 3D view. POSEINIT gives quite high errors,
roughly 5σ, while POSELM converges to roughly 1.5σ which
is reasonable. The same remarks as for the learning algorithms
can be made in the case of pose, for figure 1 (b).

Another experiment was intended to assess to which extent,
reliable pose estimate can be obtained when the environment
is deforming in a very different way compared to the learning
stage. Let ν be the mean value of the configuration weights.
We alter them by adding randomly drawn perturbations with
increasing magnitude µ, and generate a 3D view with these
parameters, from which pose is estimated. Obviously, the
results depend on the simulation setup, the number of points,
views, basis shapes and the level of noise. However, we
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observe that for µ ≤ 1.3ν, the residual error indicates that
the pose estimate is reasonable for most configurations. For
µ > 1.3ν, the pose estimate rapidly degrades.

B. Real Data

We tested our algorithms on sets of 3D points reconstructed
from a calibrated stereo rig. The sequence consists of n =
650 pairs of views. The m = 30 point tracks were obtained
semi-automatically and reconstruction was performed using
ML triangulation, i.e. by minimizing the reprojection error.
The reprojection error we obtained is 4.7276 pixels, which is
rather large and explained by the low quality of the manually
entered point tracks.

Fig. 2. One out of the 650 stereo pairs used in the experiments, overlaid
with the 30 point tracks.

We used a subset of the full sequence, made of 1 3D view
over 25 from 1 to 551, that is 23 3D views, for learning
the environment. The remaining 3D views are registered by
computing pose. For views 1 < i < 551, this can be viewed
as ‘interpolation’ since the surrounding 3D views are used for
learning the environment, while for views 551 < i < 650 this
can be viewed as an ‘extrapolation’ of the model since new
pose and deformations are seen in these views.

An important aspect is the choice of the number l of basis
shapes. If l is too low, the model is not able to represent all
the possible deformations, while if l is too high, the noise
is modeled, resulting in unreliable pose estimates in both
cases. We propose to manually choose l by examining the
graphs shown on figure 3. It shows the ML residual errors
and the reprojection errors, i.e. the Sum of Squared Differences
between measured and predicted image points, resulting of the
learning algorithms for different numbers of basis shapes. We
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Fig. 3. (a) ML residual error and (b) 2D reprojection error versus the number
of basis shapes.

observe that the 3D ML residual error and the 2D reprojection
error decrease while l increases, the former towards 0 and the

latter towards the reconstruction error, shown by an horizontal
line ‘SFM’ on the graph, which was expected. Based on this
graph, we choose l = 4, for which the EXPLM ML residual
error is 5.32 centimeters and the 2D reprojection error is
4.7922 pixels. For comparison, a rigid environment model
gives a 23.58 centimeters ML residual error and a 5.7605
pixels 2D reprojection error. It is important to note that for
l = 5 and l = 6 basis shapes, very similar pose estimates are
subsequently obtained.

The learnt path appears visually satisfying, However, the
mean difference in the rotations is 2.81 degrees, which is
significant, but difficult to illustrate visually. The mean ML
residual errors are 8.66 and 12.83 centimeters for the ’inter-
polated’ and the ‘extrapolated’ poses respectively.

The computation time for the learning phase is of the order
of a minute while pose estimation is roughly a tenth of a
second.

VII. CONCLUSIONS

One weakness of the approach is to rely on 3D point
correspondences. We are currently working on using more
robust types of inputs, such as contours or image patches,
that can be reliably tracked through sequences of stereo pairs
using e.g. particule filtering techniques. This is intended to be
part of an iterative deforming environment learning system.
Essential issues that will be dealt with are assessing what
kind of deformations can be represented by the low-rank shape
model and choosing the number of basis shapes, which will
be examined in the framework of model selection.
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1 Introduction

To unlock the huge potential in video-rate range image analysis,
arguably one the most significant hurdles to overcome is that of
accurately recovering motion over a given sequence. For a single
object, this largely amounts to uncovering the isomorphism under-
gone by the object’s surface from a set of point sample observations
in each frame. Unfortunately even with 3D data this is a highly
challenging task, since in the absence of salient 3D structure (e.g.
the region around a person’s cheek or a section of cloth), motion
cannot be resolved over the manifold (much like the aperture af-
fect in 2D.) To alleviate this, we must impose assumptions about
the object’s deformation and/or appearance sub-space a priori (a
concept well established in 2D image analysis). In 2D these pri-
ors must be extremely broad to account for the nonlinear, unknown
and largely irrecoverable interaction between the object’s deformed
state and it’s appearance in 2D. In general, the best we can do is to
use extremely broad assumptions about smooth 2D motion, which
has been demonstrated time again to be insufficient to adequately
constrain the registration/tracking tasks.

By contrast, in our work we have focused on investigating general
classes of deformation priors in 3D, where the story is very differ-
ent. In 3D we can directly reason in terms of true 3D dynamics,
and our assumptions on the underlying isomorphism can lead to
very well defined registration problems. So well defined in fact that
we show here how to go beyond mere registration (i.e. matching
each frame to a particular template) to the harder problem of au-
tomatically recovering a complete, registered 3D model given only
limited deformed observations. Solutions to this would find con-
siderable application in the computer vision and graphics commu-
nities, where it is desirable to obtain object models that undergo
non-rigid motion (e.g. a flying flag or a deforming body), under-
going occlusion (both self and external), never fully observable and
present in cluttered scenes.

In this work our attention is focused on one important class of de-
forming objects; those whose surfaces undergo isometric or near-
isometric deformations. These are a particular kind of isomorphism
which relates a surface’s embedding in 3D space (i.e. a Riemannian
manifold) by a transformation preserving distances on the manifold
(geodesics). Qausi-isometric transformations describe well the de-
formations undergone by a large range of real-world objects, such
as many fabrics, paper, plastics, articulated objects and, to an ex-
tent, facial expressions. Robust methods for detecting and regis-
tering objects of this class therefore have uses in several fields in-
cluding computer graphics, such as texture extraction, texture map-
ping, deformation transfer and video augmentation; computer vi-
sion, such as unsupervised deformable object learning, tracking,
and deformation analysis.

2 Method Overview and Contribution

From a sequence of range observations our overarching goal is to
automatically reconstruct the surfaces of deforming objects appear-
ing in the sequence. This task is nontrivial for a number of rea-
sons. Firstly, occlusion boundaries in range images, particularly
those generated by stereo, cannot be reliably used for segmenta-

tion. Occlusion cues rely on depth discontinuities, which are often
smoothed by the stereo algorithm, or not present if the occluding
object is in contact with the surface. Without reliable segmenta-
tion, any priors on the isomorphism (including isometry or smooth-
ness assumptions) are not valid (and thus detrimental) over regions
which contain occlusion zones. The second problem that of global
nonrigid alignment. Even if given a correct segmentation, matching
pairs of range segments involves locally solving the non-rigid reg-
istration task. Without correspondences known a priori, this gen-
erally results in motion models with dense Jacobian and Hessian
matrices. Scaling this up to a global alignment readily becomes
intractable using numerical optimisation, yet this is highly desir-
able since local methods tend to result in global misalignments (as
demonstrated in, for example 2D panorama stitching.)

However, we can obtain a foothold to the problem by consider-
ing certain deformation-invariant properties over the deforming sur-
face. Here we present a global method for nonrigidly aligning sur-
face segments located in range data that mutually agree with respect
to the assumed isomorphism model. For near-isometry, this is the
preservation of geodesic lengths on the manifold. We essentially
perform surface model completion by embedded mosaicing, where
a composite is formed in the surfaces intrinsic coordinate space.
This has the desirable property that deformed segments are now re-
latable by far simpler transformations. For quasi-developable sur-
faces (i.e. isometric surfaces with very low Gaussian curvature such
as cloth), isometry reduces to near-Euclidean transformations.

The key stages to our approach for automatic deformable surface
reconstruction are shown in figure 1, and a brief overview of each
stage is described in the following sections.

Figure 1: Deformable model recovery and registration framework

Since video rate range sequences contain a vast amount of redun-
dant surface information, we would prefer to sample those frames
which convey the most new surface information with which to build
the model. Initially this set is selected using simple strategies (e.g.
every nth frame or random selection) from the range sequence, with
further frame being added and included in the model based on (i)
agreeing with the current model and (ii) revealing unseen sections
of the surface.

2.1 Robust Feature Correspondence

Point correspondences are often key components in registration
tasks largely for guiding the registration towards global optima.
Typically, feature matchers in 2D (e.g. SIFT) and 3D (e.g. spin
images) will misalign, so some form of correspondence annealing
is often employed. We instead establish correspondence by appeal-
ing to the isometric assumption; that is mutual point distances on
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Figure 2: Deformable surface reconstruction from multiple range observations. TL: Regions matched and extracted from several range
images (some of which are shown in TR. BL the resulting reconstruction comparing (left) the true surface texture, (middle) rigidly aligned
patches and (right) the nonrigidly aligned and stitched model. BL: An example distortion map for a particular segment.

Figure 3: Robust point correspondence between range pairs using spectral clustering. From left to right: Correspondences matched by SIFT;
Robust correspondence and clustering using our method; Spectral embedding of matches (green indicates outliers); Another example.

the manifold (geodesics) should be preserved. We establish a mea-
sure of isometric conformity between all pairs of candidate corre-
spondences , and the optimal solution is the subset set of matches
with maximal mutual agreement. In our method we find an effi-
cient inexact solution to this using spectral methods to find strongly
connected clusters in a compatibility graph whose nodes represent
matches and edges weighted by their mutual match scores. Since
occlusion zones (undetected or otherwise) break geodesic agree-
ments, multiple clusters may exist in the graph which are each
bounded by an occlusion zone. Thus, we use k-way spectral cluster-
ing to jointly recover the correct matches and segmentation (Figure
3.) Currently, we extract features based only on intensity, since 3D
features on smooth developable surfaces are almost entirely am-
biguous.

2.2 Quasi-Developable Surface Segmentation

Given a set of segmented high-quality feature correspondences, we
proceed to extract the surrounding region agreeing with our as-
sumption of developabliy. Although zero Gaussian curvature char-
acterises perfectly developable surfaces, its computation is often
too unstable to derrive a segmentation. Furthermore, for real sur-
faces low Gaussian curvature is usually present. Instead, from
our matched features we grow a region over the range image such
that the distortion (angular and stretch) induced by flattening it is
bounded by some tolerance. Once grown, we further refine the
region using other segmentation cues (i.e. strong intensity/depth

gradients and colour histograms), combined proabablistically and
solved using graph cuts.

2.3 Global Nonrigid Segment Alignment

Given multiple surface segments, from multiple range images, we
bring them into nonrigid alignment by minimising two error cri-
teria related to (i) mutual feature distances between matched seg-
ments and (ii) mutual feature distances over each segment. The
first enforces the alignment of matched features whilst the second
preserves the system’s rigidity. Since (ii) is very nonlinear (quadric
in position), we settle for a slightly weaker interpretation which en-
forces conformality rather than rigidity over a segment (i.e. angle
preservation.) This is quadratic in position and results in a full-rank
least squares system that can be solved in closed form using sparse
linear least squares. The second stage propagates the transforma-
tions from the features through each segment. Since our underly-
ing assumption is of near-rigidity on the 2D plane, we use an as-
rigid-as-possible transformation similar to that proposed recently
by [Schaefer et al. 2006] used in interactive shape manipulation.

2.4 Low-Distortion Surface Texture Recovery

Our final stage of recovering the surface model is to generate a ren-
dering of the surface’s texture. Given the match correspondences,
shading artifacts can be removed using standard techniques. To
generate the render, blending techniques used in image mosaicing
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are not suitable, due to residual ghosting from small misalignments.
Instead we are driven by the goal of a low-distortion rendering. In
our method we greedily select and stitch those regions which were
were transformed onto the plane with the least distortion. Given an
initial patch (i.e. the one least distorted), we treat the addition of a
second patch as a binary labeling problem, combining a distortion
penalty with a seam cost, and solve this incrementally using graph
cuts.

2.5 Registration

In order to fit the model to the rest of the data, we adopt an en-
ergy minimisation process which penalises states that diagree in
data evidence (i.e. 3D distance to the point cloud and feature corre-
spondence), and a quadratic isometric within-plane bending model
[Bergou et al. 2006]. For all other frames, we perform the same
strategy but initialise the model to its deformed state in the pre-
vious frame. Global drift is avoided by using hard feature con-
straints between the model and scan as described in section 2.1. The
newly registered instances can then be further incorporated into our
model, along with new neighbouring regions agree with respect to
the model’s isomorphism prior.

3 Results

We have tested our approach on several sequences capturing de-
forming paper and fabrics. Figures 2 and 3 show examples of some
good results attained on a seqeunce of a deforming magazine cover.
In the near future we aim to further validate our methods for other
sequences. We also aim to extend our work by better modelling
the relationship between mesh distortion and nonrigid deformation
constraints on the 2D plane, and will be investigating our frame-
work for recovering other classes of deforming surfaces.
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Abstract

We address the problem of reconstruction and registra-
tion of a deforming 3D surface observed by some 3D sensor
giving a cloud of 3D points at each time instant. This prob-
lem is difficult since the basic data term does not provide
enough constraints.

We bring two main contributions. First, we examine a
set of data and penalty terms that make the problem well-
posed. The most important terms we introduce are the non-
extensibility penalty and the attraction to boundary shape.
Second, we show how the error function combining all
these terms can be efficiently minimized with the Levenberg-
Marquardt algorithm and sparse matrices.

We report convincing results for challenging datasets
coming from different kinds of 3D sensors. The algorithm is
robust to missing and erroneous data points, and to spuri-
ous boundary detection.

1 Introduction

Recent advances in real-time 3D scanners [12, 18] have
led to fast model acquisition and to 3D Human Computer
Interaction systems [5]. The basic task is the registration
of several 3D point clouds. Most of the work is devoted to
rigid scenes e.g., [19]. The case of deformable objects has
been addressed since about a decade [7, 2, 13, 23]. Research
on deformable models is active in fields such as computer
graphics for 3D morphing and animation [1], medical image
processing for data alignment and segmentation [9, 22], and
computer vision for e.g. contour detection [11], face synthe-
sis and expression recognition [3]. Commonly used tools
are the Thin-Plate Splines (TPS) [7] and Principal Compo-
nent Analysis [3].

In this paper, the aim is to capture the possibly complex
deformations of a smoothly deforming object with planar
topology (such as the page of a book being turned by some-

one). We target applications such as 3D data compression
and augmented reality, requiring an accurate registration of
the point clouds over time, as well as a reconstruction of
the underlying surface. For instance, videos can be synthe-
sized using the captured deformations. We assume as input
data point clouds and a coarse boundary of the surface of
interest.

We propose a novel approach. The whole process is
highly robust, filling in possible holes in the point clouds
and detecting erroneous points, while establishing reliable
point correspondences even for flat regions.

We use a generic and flexible deformable model repre-
sented by a grid mesh such as the ones in [14, 16] for 2D
image registration. The problem in 3D is more challenging
since it lacks reliable features for correspondence compu-
tation. No pre-established correspondences between grid
points and data points are given, and no texture information
is available. The problem is thus strongly ill-posed1. Nev-
ertheless, the 3D domain is more robust to some lighting
variations and the ambiguity due to projection needs not be
taken into account. In this sense our approach has similari-
ties with methods for non-rigid 3D point registration [7].

Our joint reconstruction and registration framework is
implemented through two main lines of contributions. First,
we show that the problem is well-modelled by using a mesh
that is deformed to fit each point cloud. This model allows
us to write an error function which global minimum is the
sought after solution. This error function has several data
and penalty terms. The data terms incorporate the boundary
information in a robust manner. It explicitly embeds a min
operator, thus avoiding the traditional two steps in ICP-like
algorithms through distance transform. The penalty terms
include spatial, i.e. surface-related, and temporal smooth-
ness as well as inextensibility of the surface, if applicable.
The data terms are robustified in order to deal with missing
and erroneous points.

1Note that in the 2D domain, a template image is available, allowing
reliable feature matching [14]. This is not the case for the 3D problem we
tackle.
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Second, following [8], we use the Levenberg-Marquardt
algorithm to minimize the error function. A careful analy-
sis reveals that the Jacobian matrix involved in the normal
equations to be solved at each iteration is highly sparse, for
all the data and penalty terms we use. This makes tractable
and fast the estimation of dense deformation fields.
Roadmap. Section 2 describes the state-of-the-art. The
problem modelling is given in Section 3, and the strategy
for finding the optimal solution is described in Section 4.
Exhaustive experimental results are reported in Section 5.
Finally, conclusions are drawn in Section 6.

2 Previous Work

The registration of 3D point clouds is a challenging topic
mainly tackled in the framework of ICP [8, 19] for rigid sce-
narios. However, research has recently addressed the case
of deformable objects, onto which we focus our state-of-
the-art. Roughly speaking the literature on non-rigid regis-
tration can be divided into two main categories. The first
one directly uses the point clouds. The second one abstracts
the point clouds with some probabilistic models.
Point-based approaches. In [7] the authors propose to
jointly compute the correspondences and the non-rigid
transformation parameters between two point clouds. The
algorithm is inspired by the Expectation-Maximization
(EM) paradigm. It combines the soft-assign and determin-
istic annealing within a robust framework. TPS are used
for representing the spatial mapping. Non-rigid alignment
is proposed in [4] to account for errors in the point clouds,
obtained by scanning a rigid object. The authors use TPS to
represent the non-rigid warp between a pair of views, that
they estimate through hierarchical ICP [19]. Medical appli-
cations are proposed in [9, 22]. In [22], MR brain scan reg-
istration is performed by a modified Newton method over a
hierarchical spline-based optical flow representation. In [9],
a localized Radial Basis Function (RBF) is proposed, mak-
ing a point to depend only on its neighboring centers. Other
approaches are introduced for cloth motion capture [17, 24]
by using both intensity and geometry information. In [17]
features points are matched by adopting a novel seed-and-
grow approach to adapt the feature extraction to deformable
geometry. In [24], a direct estimation of the deformable
motion parameters is proposed for range-image sequences.
The range flow is estimated by introducing depth constraint,
to motion.
Probabilistic approaches. Probabilistic approaches [2,
13, 23] are based on modelling each of the point sets by
a kernel density function [21]. The (dis)similarity among
such densities is computed by introducing appropriate dis-
tance functions. Registration is carried out without explic-
itly establishing correspondences. In [2], the authors pro-
pose a correlation-based approach [21] to point set regis-

tration by representing the point sets as Gaussian Mixture
Models (GMMs). A closed-form solution for the L2 norm
distance between two Gaussian mixtures makes fast com-
putation possible. In [23], registration is carried out si-
multaneously for several 3D range datasets. The method
proposes an information-theoretic approach based on the
Jensen-Shannon divergence measure. In [13], non-rigid
registration is treated as a Maximum Likelihood (ML) es-
timation problem by introducing the Coherent Point Drift
(CPD) paradigm. Smoothness constraints are introduced
based on the assumption that points close to one another
tend to move coherently over the velocity field. The pro-
posed energy function is minimized with the EM algorithm.

The proposed approach. In contrast to previous work,
we do not attempt to directly register pairs of point clouds.
We rather process each point cloud independently. For each,
we jointly reconstruct the surface and register it to some
generic deformable model. This naturally gives the regis-
tration of multiple point clouds.

3 Modelling the Problem

3.1 Surface Representation

A deformable surface with planar topology is observed.
The 3D sensor provides a sequence of 3D point clouds D i:

Di =

⎛
⎜⎝

dx
i,1 dy

i,1 dz
i,1

...
...

...
dx

i,li
dy

i,li
dz

i,li

⎞
⎟⎠ .

The reconstructed surface at time i is represented by ge-
ometry images. The model M is organized as three R × C
matrices, representing the deformation of a regular flat grid.
Each matrix is reshaped in a single vector of size μ = RC,
giving Mi as:

Mi =

⎛
⎜⎝

mx
i,1 my

i,1 mz
i,1

...
...

...
mx

i,μ my
i,μ mz

i,μ

⎞
⎟⎠ .

In practice, the number of data points is much larger than
the number of model points, i.e. l i � μ. Upon conver-
gence, our algorithm determines for each model point if
there is a corresponding point in the current point cloud.
Points may be missing because of occlusions or bad sensor
output. This approach has the advantage that it naturally
gives the reconstructed surface by interpolating the mesh
points. Point cloud registration is obtained by composing
the deformation fields.
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3.2 Error Function

Our error function combines two data and three penalty
terms:

e(M) = eg(M) + λbeb(M)
+λses(M) + λxex(M) + λtet(M), (1)

where λb, λs λx and λt are weighting parameters.
The data terms are used to attract the estimated surface

to the actual point cloud. The first term eg is for global
attraction, while the second one eb deals with the bound-
ary. These terms must account for possible erroneous points
through robust statistics. The penalty terms are a smooth-
ness constraint es, a non-extensibility constraint ex and a
temporal smoothness constraint et.

Data term: global attraction. This term globally attracts
the model to the data points in a closest point manner. In
order to avoid the traditional two steps arising in ICP-like
algorithms, we explicitly embed the min operator in this
data term, as suggested in [8]. Denoting EM and ED the
sets of boundary points in the model and in the data, we
get: ∑

m∈M\EM

min
d∈D\ED

‖ d−m ‖2, (2)

where d and m are 3−vectors representing a data and a
model point respectively. An outliers rejection strategy is
introduced by defining a robust function w(·). Following
the X84 rule [6], the function w(·) discards (i.e., it puts their
residual to zero) those correspondences which residual er-
ror differs by more than 5.2 MAD (Median Absolute Devi-
ation) from the median. The value 5.2 corresponds to about
3.5 standard deviations, which includes more than 99.9% of
a gaussian distribution. Therefore, (2) is modified as:

eg(M) =
∑

m∈M\EM

w

(
min

d∈D\ED

‖ d−m ‖2
)

. (3)

Data term: boundary attraction. This term attracts
boundary model points to boundary data points. It is de-
fined in a similar manner to the global attraction term (3):

eb(M) =
∑

m∈EM

w

(
min

d∈ED

‖ d−m ‖2
)

. (4)

Penalty term: spatial smoothness. This term discour-
ages surface discontinuities by penalizing the second
derivatives. According to the geometry image definition,
the model M is a displacement field parameterized2 by
(u, v) with u = 1 . . . R and v = 1 . . . C, i.e., M(u, v) =

2Remember that the model points lie on a grid.

[Mx(u, v), My(u, v), Mz(u, v)]. The spatial smoothness
term is the bending or TPS energy function:

es(M) =
∫
R

∫
R

(
∂M

∂2u

)2

+2
(

∂M

∂u∂v

)2

+
(

∂M

∂2v

)2

dudv.

Using a finite difference approximation for the first and sec-
ond derivatives [16], the bending energy can be expressed
in discrete form as a quadratic function of M :

es(M) = vect(M)�Kvect(M), (5)

whereK is a 3μ×3μ matrix, and vect(M) is the vectoriza-
tion operator which rearranges matrix M to a vector.

Penalty term: non-extensibility. This term discourages
surface stretching. It favors the mesh vertices to preserve
their distance with their local neighborhood [20]:

eX(M) =
∑

m∈M

∑
k∈N (m)

(
‖ m− k ‖2 −L2

m,k

)2
, (6)

where Lm,k are constants which are computed at the first
frame after robust initialization and N (m) is the neighbor-
hood of the mesh vertex m, with #N (m) = 8.

Penalty term: temporal smoothness. This defines a
dependency between the current and the previous point
clouds, M and M̃ :

et(M) =‖ M − M̃ ‖2 . (7)

This is intended to sequential processing and is thus not
used on the first frame of the sequence.

4 Estimating the Solution

In order to minimize the error function (1), we use a
nonlinear optimization algorithm, namely the Levenberg-
Marquardt (LM) algorithm, since the error function in (1)
is a sum of nonlinear squared terms. We extend the LM-
ICP approach proposed in [8] to deformable objects. LM
requires one to provide the partial derivatives of the error
terms through a Jacobian matrix.

Since the Hessian-matrix H = J�J must be inverted at
each LM iteration, the problem is not tractable if the number
of model points is too high (if the deformation field is too
dense). In more details, with our formulation, the Jacobian
matrix is:

J� =
(
J�d J�b J�s J�x J�t

)
.

where Jμ×3μ
d , JEB×3μ

b , J3μ×3μ
s , Jξ×3μ

x , Jμ×3μ
t , are related

to the global attraction, boundary attraction, spatial smooth-
ness, non-extensibility and temporal smoothness terms re-
spectively, and ξ = #N (M). For instance, a grid with
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Figure 1. Jacobian (top) and Hessian (bot-
tom) matrices: dark means non-zero.

15 × 20 points has a Jacobian matrix with 3760 · 900 ele-
ments (μ = 300, EB = 66, ξ = 2194). One advantage
of the proposed approach is that the Jacobian matrix J is
very sparse. We thus use the sparsity to solve the prob-
lem [15]. Figure 1 shows a plotting of the Jacobian matrix
J3760×900 (top), and the corresponding Hessian matrix H
(bottom). Dark points are associated to non zero entries.
The sparseness of the Jacobian and the Hessian matrices is
clearly evidenced.

5 Experiments

Two kinds of experiments have been set up. In the first
one, a structured-light 3D scanner3 is used for single image
acquisition. A sheet of paper is observed as the deformable
surface. In the second one, the sensor is a passive-stereo
system4 which allows us to acquire a sequence of 3D point
clouds in real-time. The deformation of a portion of a cover
is modelled.

Initial conditions determine an estimation for both the
model position, and the grid size. In practice, a correct start-
ing grid allows LM to converge, as well as to determine the
parameters Lm,k in (6). The boundary in the data points are
necessary for using the boundary constraint 5.

3Courtesy of Purdue University (http://web.ics.purdue.edu).
4Courtesy of eVS (http://www.evsys.net).
5We do not give details on boundary detection since usually those are

known in advance, or can be extracted from the input data, e.g. by detecting
depth discontinuities in the range image.

Experiment 1: paper sheet from a structured-light scan-
ner. Several acquisitions have been carried out while
bending the paper. The sensor provides accurate and high-
resolution 3D point clouds. The initial orientation of the
grid is estimated by fitting a plane to the data. By project-
ing the points to the plane, both the grid size and boundaries
are easily computed. There is not a temporal dependency
between the views. The temporal constraint is thus inhib-
ited.

Figure 2 shows three examples. Images on the top row
visualize the model and data before the fitting. Boundary
points are highlighted. In the first example (Figure 2.a), the
deformation is mainly on the horizontal boundary. In the
second one (Figure 2.b), the paper is bent from the top-right
to the bottom-left corners. In the third one (Figure 2.c),
the deformation is basically spread to the whole paper. Im-
ages on the central row show the result of our robust fitting.
Registration is accurate for both the interior points and the
boundary. Moreover, the grids are smooth as expected. Fi-
nally, three synthetic reconstructions are shown on the bot-
tom row. Any texture can be projected to the model, for
realistic simulation of paper deformation at arbitrary points
of view.

Experiment 2: cover from a stereo system. A long se-
quence of point clouds is acquired for the second experi-
ment. The sensor acquires the images at 25 fps, and pro-
vides both intensity (i.e., 2D) and 3D information. The
quality of the 2D images is low, and the 3D data is noisy.
Moreover, the sensor can operate only on a very limited
field of view (i.e., 30cm3). We use a cover as target object.
Figure 3.a shows a picture of the cover. We aim at observing
the cover deformation only on the portion delimited by the
dark square. Figure 3.b shows the 3D point cloud. There are
many spurious points especially on the boundaries, and the
scene is not easily recognizable. We use the intensity im-
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Figure 3. The cover sequence: intensity im-
age of the cover (a) and the 3D point cloud
(b).



7.2. MULTIPLE SYNCHRONIZED CAMERAS AND RANGE SENSORS 157

(a) (b) (c)

Figure 2. The paper sequence. Three examples of point clouds with the grid mesh superimposed
at the starting position (top) and after model fitting (center). Boundary points are evidenced. The
reconstructed model is shown with a new texture (bottom).

age6 for selecting automatically our region of interest (i.e.,
the dark square), from which we recovered both the 3D data
and the boundary. Figure 4.a shows the image-boundary ex-
tracted by standard image processing techniques, while Fig-
ure 4.b depicts the 3D data (i.e., the selected point cloud and
3D boundary). The sequence is made of 100 point clouds.

(a) (b)

Figure 4. Data extraction: 2D boundary (a)
and selected 3D data (b). 3D boundary are
highlighted with dark color.

Model initialization is carried out for the first cloud only.

6The intensity is the left image of the stereo-pair, which is associated
to the disparity map. Indeed, there is a mapping between the 2D and 3D
information. Note that we do not use intensity information for fitting.

Each iteration uses the output of the previous one as an
initial condition. Figure 5 shows a selection of the output
sequence. For each frame, is visualized: 1) the intensity
image, with the extracted 2D boundary and the 2D projec-
tion of the estimated model, and 2) the point cloud - after the
region of interest selection -, evidencing both the 3D bound-
ary and the grid. The cover is handled from the bottom-left
and upper-right corners, respectively. On the early frames,
the cover is gradually bent toward the square center, then it
is strongly taut, moving the corners far from each other. Fi-
nally, in the late frames, random deformations are generated
especially around the corners. Some frames are particularly
challenging. In frame (c) a strong shrinking is evidenced
on the top-right corner. In frame (f) a wide hole appears
on top-right side. In frames (h) and (i) data boundaries are
clearly wrong on the bottom-left side. Results are satisfying
since the fitting is correct for the whole sequence. The mesh
grids are well superimposed on data points maintaining the
shape smooth. Nevertheless, the projections of the grids to
the 2D images confirm the accuracy of the registration. Fi-
nally, after joint reconstruction and registration, a dense set
of accurate deformable models is available. We used them
to synthesize a video as if it was projected to a deforming
screen. We take a video and project every video-frame to a
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(a1) (a2) (b1) (b2)

(c1) (c2) (d1) (d2)

(e1) (e2) (f1) (f2)

(g1) (g2) (h1) (h2)

(i1) (i2) (j1) (j2)

Figure 5. Cover sequence: 10 selected frames. For each frame the 2D intensity (·,1) and the 3D data
(·,2) is visualized. The grid models are shown in the 3D space as well as their projection in the 2D
image.
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model of our sequence7. Some frames are shown in Figure
6.

For both experiments, a model of size 15 × 20 is used.
We have verified that a higher value of λb is necessary (i.e.,
λb = 1.5) for a correct convergence of the algorithm to the
optimal solution. The other terms are set almost equally
to 1. The distance transform parameters are important: the
size of the voxels trades off speed and result accuracy. The
method has been implemented in Matlab, and takes around
30 seconds per frame8. Note that the computational cost
of one LM iteration depends only on the chosen grid size,
being independent on the amount of input data.

6 Conclusions

We propose a new approach for capturing the deforma-
tion of 3D surfaces from 3D scans. Reconstruction and reg-
istration are jointly performed into a fitting-based frame-
work. We deform as model a generic geometric image,
which is aligned with the observed data. An error function
is designed to combine the influence of a priori informa-
tion, such as spatiotemporal smoothness, and observations.
Both the non-extensibility and boundary attraction terms are
crucial for disambiguating this intrinsically ill-posed prob-
lem. The optimization phase os solved with the Levenberg-
Marquardt algorithm, while taking advantage of the sparsity
of the Jacobian and Hessian matrices.

Results are promising since the performances are satisfy-
ing for the analyzed cases. The method has been tested onto
two kinds of datasets by evidencing the versatility in deal-
ing with different sensors. In the first experiment, the source
data was accurate and the estimated models was according
to what we expected. In the second experiment, a whole se-
quence of 3D point clouds has been processed. This has al-
lowed us to observe real-time deformations. Although data
was very noisy, especially around the boundary, the method
performed robustly. We have discussed also the behavior of
our algorithm in the presence of holes and broken boundary.
Finally, some graphical results have been shown for simu-
lated deformations of a paper-sheet by changing its original
appearance, as well as for synthesizing a video.

Acknowledgments
We would like to thank Johnny Park from Purdue Uni-

versity for providing us 3D scans of the paper sheet, and
eVS (http://www.evsys.net) for the cover sequence.

References

[1] M. Alexa. Recent advances in mesh morhping. Computer
Graphics Forum, 21(2):173–196, 2002.

7We loop over the extracted 100 models.
8Experiments are carried out on a Pentium M 1.86GHz.

[2] B.Jian and B. Vemuri. A robust algorithm for point set reg-
istration using mixture of gaussians. In CVPR, 2005.

[3] V. Blanz and T. Vetter. A morphable model for the synthesis
of 3d faces. In SIGGRAPH, 1999.

[4] B. Brown and S. Rusinkiewicz. Non-rigid range-scan align-
ment using thin-plate splines. In 3DPVT, Sept. 2004.

[5] A. Cassinelli, S. Perrin, and M. Ishikawa. Smart laser-
scanner for 3D human-machine interface. In Extended ab-
stracts on Human factors in computing systems, 2005.

[6] U. Castellani, A. Fusiello, and V. Murino. Registration
of multiple acoustic range views for underwater scene re-
construction. Computer Vision and Image Understanding,
87(3):78–89, July 2002.

[7] H. Chui and A. Rangarajan. A new point matching algo-
rithm for non-rigid registration. Computer Vision and Image
Understanding, 89(2-3):114–141, 2003.

[8] A. Fitzgibbon. Robust registration of 2D and 3D point sets.
Image Vision Computing, 21(13-14):1145–1153, 2003.

[9] M. Fornefett, K. Rohr, and H. Stiehl. Radial basis functions
with compact support for elastic registration of medical im-
ages. Image and Vision Computing, 19:87–96, 2001.

[10] X. Gu, S. Gortler, and H. Hoppe. Geometry images. In
SIGGRAPH, 2002.

[11] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
contour models. International Journal of Computer Vision,
1(4):321–331, 1987.

[12] T. Koninckx, A. Griesser, , and L. V. Gool. Real-time range
scanning of deformable surfaces by adaptively coded struc-
tured light. In 3DIM, 2003.

[13] A. Myronenko, X. Song, and M. Carreira-Perpinan. Non-
rigid point set registration: Coherent point drift. In
B. Schölkopf, J. Platt, and T. Hoffman, editors, NIPS. MIT
Press, Cambridge, MA, 2007.

[14] J. Pilet, V. Lepetit, and P. Fua. Real-time non-rigid surface
detection. In CVPR, San Diego, CA, June 2005.

[15] S. Pissanetzky. Sparse Matrix Technology. Academic Press,
1984.

[16] M. Prasad, A. Zisserman, and A. Fitzgibbon. Single view
reconstruction of curved surfaces. In CVPR, New York, 2006.

[17] D. Pritchard and W. Heidrich. Cloth motion capture. In Eu-
rographics, 2003.

[18] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy. Real-time 3D
model acquisition. In SIGGRAPH.

[19] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP
algorithm. In 3DIM, Quebec City (Canada), 2001.

[20] M. Salzmann, S. Ilic, and P. Fua. Physically valid shape pa-
rameterization for monocular 3–D deformable surface track-
ing. In BMVC, 2005.

[21] Y. Tsin and T. Kanade. A correlation-based approach to ro-
bust point set registration. In ECCV, 2004.

[22] B. Vemuri, S. Huang, S. Sahni, C. Leonard, C. Mohr,
R. Gilmore, and J. Fitzsimmons. An efficient motion estima-
tor with application to medical image registration. Medical
Image Analysis, 2(1):79–98, 1998.

[23] F. Wang, B. Vemuri, and A. Rangarajan. Groupwise
point pattern registration using a novel CDF-based Jensen-
Shannon Divergence. In CVPR, 2006.

[24] M. Yamamoto, P. Boulanger, J. Beraldin, M. Rioux, and
J. Domey. Direct estimation of deformable motion param-
eters from range image sequence. In CVPR, Osaka, Japan,
1990.



160 Chapter 7. STRUCTURE-FROM-MOTION FOR DEFORMABLE SCENES

Figure 6. Synthesized movie: some selected frames. Each frame of the movie is projected to the
reconstructed model by simulating a deforming video screen.



CHAPTER

88

STRUCTURE-FROM-MOTION FOR
RIGID SCENES

STRUCTURE-FROM-MOTION FOR
RIGID SCENES



162 Chapter 8. STRUCTURE-FROM-MOTION FOR RIGID SCENES



8.1. STRUCTURE-FROM-MOTION WITH POINTS 163

8.1 Structure-from-Motion with Points

I33 Algorithms for Batch Matrix Factorization with Application to Structure-from-Motion §8.1.1
J.-P. Tardif, A. Bartoli, M. Trudeau, N. Guilbert and S. Roy
CVPR’07 - IEEE Int’l Conf. on Computer Vision and Pattern Recognition, Minneapolis, USA, June 2007

I32 On Constant Focal Length Self-Calibration From Multiple Views §8.1.2
B. Bocquillon, A. Bartoli, P. Gurdjos and A. Crouzil
CVPR’07 - IEEE Int’l Conf. on Computer Vision and Pattern Recognition, Minneapolis, USA, June 2007
Version in French: [N10]

I23 Handling Missing Data in the Computation of 3D Affine Transformations §8.1.3
H. Martinsson, A. Bartoli, F. Gaspard and J.-M. Lavest
EMMCVPR’05 - IAPR Int’l Workshop on Energy Minimization Methods in Computer Vision and Pattern
Recognition, St. Augustine, Florida, USA, p. 90-106, November 2005
Version in French: [N06]
Previous version: [I20]



164 Chapter 8. STRUCTURE-FROM-MOTION FOR RIGID SCENES



8.1. STRUCTURE-FROM-MOTION WITH POINTS 165

8.1.1 Paper (CVPR’07) – Algorithms for Batch Matrix Factorization with Application to
Structure-from-Motion

Algorithms for Batch Matrix Factorization
with Application to Structure-from-Motion

Jean-Philippe Tardif∗ Adrien Bartoli† Martin Trudeau?

Nicolas Guilbert‡ Sébastien Roy?

Abstract

Matrix factorization is a key component for solving sev-
eral computer vision problems. It is particularly challeng-
ing in the presence of missing or erroneous data, which of-
ten arise in Structure-from-Motion. We propose batch algo-
rithms for matrix factorization. They are based on closure

and basis constraints, that are used either on the cameras or
the structure, leading to four possible algorithms. The con-
straints are robustly computed from complete measurement
sub-matrices with e.g. random data sampling. The cam-
eras and 3D structure are then recovered through Linear
Least Squares. Prior information about the scene such as
identical camera positions or orientations, smooth camera
trajectory, known 3D points and coplanarity of some 3D
points can be directly incorporated. We demonstrate our
algorithms on challenging image sequences with tracking
error and more than 95% missing data.

1. Introduction

Matrix factorization is an essential tool for solving sev-

eral computer vision problems including Structure-from-

Motion [20, 23], plane-based pose estimation [21], non

rigid 3D reconstruction [6] and motion segmentation [25].

When no data are missing or corrupted by outliers, an ef-

ficient algorithm based on Singular Value Decomposition

(SVD) can be used. However, missing and erroneous data

are certainly unavoidable in many real-life situations, and

they make factorization much more difficult. Furthermore,

the SVD-based algorithm makes it difficult to enforce con-

straints specific to the formulation or provided by prior in-

formation about the problem.

We propose algorithms for batch matrix factorization

with special attention given to the Structure-from-Motion

(SfM) problem. Closure or basis constraints on one of the

two factors are computed from complete measurement sub-

∗Université de Montréal, Canada {tardifj,trudeaum,roys}@iro.umontreal.ca
†CNRS - LASMEA, France, adrien.bartoli@univ-bpclermont.fr
‡Lund University, Sweden, nicolas@maths.lth.se

matrices. For example, Camera Closure Constraints (CCC)

can be computed from their left kernel [24]. We investigate

three variations: Camera Basis Constraints (CBC), Struc-
ture Closure Constraints (SCC) and Structure Basis Con-
straints (SBC), that are respectively left basis, right ker-

nel and right basis of the measurement matrix. Our ex-

periments and comparison with other state-of-the-art batch

factorization algorithms show that basis constraints usually

give better results than closures, for both affine and perspec-

tive camera models. We also show that structure constraints

can be used first to compute the 3D structure instead of the

cameras, which allows to enforce directly constraints such

as known 3D points or known planar surface. In the case

of affine SBC, an approximation to the reprojection error is

minimized.

Organization. The next section reviews previous work

on factorization and Structure-from-Motion and points out

the main differences with ours. In §3, we give our nota-

tion and formally introduce the factorization problem with

his specialization to the affine Structure-from-Motion prob-

lem. Camera Closure Constraints (CCC) are first reviewed

in §3.1, then follows our contribution in §4. The details

are provided for the affine camera model and we discuss

how the theory applies to the perspective model in §5. Ro-

bustness is discussed in §6, experiments are described and

analyzed in §7, followed by conclusion in §8.

2. Previous Work
Structure-from-Motion can be formulated most gener-

ally as a bilinear (modulo homogeneous scale) inverse prob-

lem. The seminal work on affine factorization [23] however

showed that it could be relaxed to a bilinear problem for the

affine camera model. For perspective cameras, it can be for-

mulated similarly when the homogeneous feature point co-

ordinates are rescaled by their projective depth, which must

be estimated a priori [14, 20].

The algorithms for matrix factorization despite missing

data can be divided into three main categories: iterative,

batch and hierarchical. In the first one, factorization is per-

formed by minimizing directly the factorization error either
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by non-linear methods [7] or alternation [5, 13, 17]. How-

ever, the convergence to the global minimum is not guaran-

teed because they can get stuck in a local minimum. Al-

though good performances have been reported when ini-

tializing the algorithms with a random solution [7, 12, 17],

an initialization as close as possible to the global minimum

is recommended. Hierarchical approaches proceed by fac-

torizing overlapping sub-blocks of the measurement ma-

trix [8, 16]. The solutions are then merged in a hierarchical

manner, and care must be taken in choosing the merging

scheme. This allows to deal with very large factorization

problems.

Batch algorithms provide a solution for initializing itera-

tive algorithms with a low computational cost. They usually

minimize an approximation to the reprojection error to sim-

plify the optimization and avoid local minima [9, 14, 24]. In

the absence of noise, they find the global minimum. The ap-

proximation is done by computing the two factors through

two linear steps. Constraints on one of the two factors

are computed to span the whole solution space. Once the

first factor is estimated, the second one can be easily com-

puted. Non-linear and batch algorithms are usually consid-

ered complementary solutions. In [19], essential matrices

are used between pairwise views to estimate the motion of

all the cameras without the structure. This is similar to our

solution in philosophy although a very different approach is

taken.

It has been shown that the reconstruction problem is con-

siderably simplified when observing a reference plane in all

the images of the sequence [11, 22]. The structure con-

straints we propose handle this situation naturally. The so-

lution must still proceed in two steps, but has the benefit

that the objects do not need to be visible in all of the im-

ages. Finally, robustness is enforced one constraint at a

time, rather than globally [1, 2, 12], thereby allowing the

use of RANSAC-type algorithms.

3. Notation and Preliminaries
Notation. Matrices are in sans-serif, e.g. M, and ’joint

matrices’ in calligraphic characters, e.g.M. Vectors are al-

ways in bold, e.g. v. The matrix operator� is the Hadamard

element-wise product. Finally, P is the projective space.

Problem statement. We are given a measurement matrix

M such that M = M∗ + N(0, σ2 The factorization of a

matrix M with missing data is formulated as the problem

of finding a weighted approximation of M with the closest

rank r matrix (AB) such that:

min
A,B
‖W(n×m) �

(
M(n×m) − A(n×r)B(r×m)

)
‖,

where M is called the measurement matrix composed of

points mj
p, and W is a weighting matrix with zeros for

missing elements in M. In some problems, constraints on

elements of A and B must be enforced, e.g. affine SfM. In

SfM, B is called the Joint Structure Matrix (JSM) and rep-

resents the 3D points qj ∈ P
3, A = (P t) is the Joint

Projection Matrix (JPM) and consists of the stacked camera

projection matrices.

Affine SfM can be formulated as a rank-3 or a rank-4

factorization of a measurement matrix M, depending on

whether the input matrix has missing data or not (with the

exception of [5], where predictions are made for the missing

data). In the rank-3 case, the projection can be expressed

with:

mj
p(2×1) = Pp(2×3)q

j
(3×1) + tp(2×1) (1)

where an optimal choice for the joint translation vector t
can be computed as the column means of M. It can be

eliminated from (1), giving the centered measurement ma-

trix (M− t1T). The factorization of this matrix computed

using SVD is an optimal solution in terms of the reprojec-

tion error [23]. We have rank-4 when data are missing, so

the joint translation vector cannot be computed a priori. Bi-

linear matrix factorization [17] provides a solution as long

as the last row of the JSM is constrained to unity:

M(2n×m) =
(
P(2n×3) t

)(Q(3×m)

1T

)
. (2)

3.1. Camera Closure Constraints (CCC)

We review the Closure Constraints [9, 10, 24] for affine

cameras and give a generic formulation for estimating

matching tensors between many views.

Deriving the constraints. Let M̂ be a sub-block ofM
without missing data. Selecting a subset of views is done

by multiplying to the left by some row-amputated block-

diagonal matrix Π with (2 × 2) identity blocks. Select-

ing a subset of features is done similarly by multiplying to

the right by Γ, an identity matrix amputated of some of its

columns, yielding:

M̂(2n̂×m̂)
def= ΠMΓ.

In this case, the measurements can be expressed as:

M̂ = ΠMΓ = ΠPQΓ + Πt1TΓ = P̂Q̂+ t̂1T. (3)

We define µm as:

µm
def=

1
m

1(m×1),

which computes the column means of an (n×m) matrix by

multiplying to the right. We define the centered measure-

ment matrix as:

M̄ def= M̂ − M̂µm̂1T
(1×m̂), (4)

2
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which does not equal (P̂Q̂) in general, as the row means

of the sub-blocks are not necessarily those of the complete

matrix. The SVD M̄ = UΣVT can be used to compute

optimal rank-3 factors given by the leading 3 columns of

U and 3 rows of ΣVT. The first factor gives the a solution

for the partial Joint Projection Matrix while the remaining

columns of U form a basis for the best approximation to the

left kernel of M̄, which we call centered matching tensor,

denoted N̄ . We have:

N̄TM̄ = 0,

and from (4):

N̄T
(
M̂ −M̂µm̂1T

)
= 0,

that rewrites as:

(
N̄T −N̄TM̂µm̂

)
︸ ︷︷ ︸

NT

(
M̂
1T

)
= 0, (5)

where appears the non-centered matching tensor N we

are seeking. Note that directly computing a tensor from

(M̂T 1)
T

would not be optimal in terms of reprojection er-

ror. Tensor N corresponds to the classical affine match-

ing tensor. The affine fundamental matrix has 4 degrees of

freedom, and the non-centered left kernel obtained from a

measurement matrix with four rows has 5 components up

to scale. A matching tensor computed from a matrix with

six rows is of size (3× 6) and has orthonormal rows, which

leaves 12 degrees of freedom like the affine trifocal tensor.

Estimating the Joint Projection Matrix. The unity con-

straint on the last row of the Joint Structure Matrix can be

expressed with extra rows inM and P:(
M
1T

)
=
(
P t

0(1×3) 1

)(
Q
1T

)
. (6)

Let:

D
def= ΠTN̄ ;

multiplying (6) by

(
Π 0
0 1

)
to the left and Γ to the right

and substituting in (5), we obtain:

(
DT −N̄TM̂µm̂

)(P t
0 1

)
= 0,

DT
(
P t

)
=
(
0(1×3) N̄TM̂µm̂

)
.

Stacking every such constraint computed from different

sub-blocks ofM in a single matrix equation, we get:




DT
1
...

DT
l


(P t

)
=




0 N̄T
1 M̂1µm̂

...
...

0 N̄T
l M̂lµm̂


 .

The design matrix, denoted D def= (D1, . . . ,Dl)
T

, is highly

sparse. This is exploited when computing the Linear Least

Square (LLS) solution. As explained in [9], choosing the

projection matrix of some of the cameras fixes the gauge of

the system and ensures a full-rank design matrix. The error

minimized by this method is difficult to interpret because it

is expressed in terms of matching tensors. Once the JPM is

estimated, the structure can be computed by affine triangu-

lation.

4. Batch Matrix Factorization for Affine SfM
and Generalization of CCC

4.1. Summary of the Algorithms

The algorithms we propose follow the typical steps of

batch algorithms: 1) Measurement sub-matrices without

missing data are found. 2) Each of these matrices is used to

compute a constraint, either on the partial Joint Projection

Matrix or partial Joint Structure Matrix. 3) The constraints

are combined to estimate one of the factors. 4) The second

factor is estimated by camera resectioning or triangulation.

5) Finally, non-linear or alternation methods refine the so-

lution.

4.2. Camera Basis Constraints (CBC)

We show how basis constraints can be used instead of

matching tensors. The partial JPM P can be computed

alone, i.e. without the joint translation vector. This is done

by aligning bases of the projection matrices of partial recon-

structions performed on measurement sub-matrices. Once

P is recovered, the joint translation vector and the struc-

ture can be computed together to minimize the reprojection

error.

Consider a centered sub-matrix M̄ of M and compute

its SVD M̄ = UΣVT. The 3 leading columns of U, denoted

Ū, form a basis of P̂ , that is, there is a 3×3 invertible matrix

Z (the aligning transformation) such that:

P̂ = ŪZ, (7)

leading to the Camera Basis Constraint:

ΠP = ŪZ. (8)

Because of the remark following (4), this is not trivial. To

demonstrate this, we note that multiplying an (n×m) ma-

trix by:

ϑm
def= I− 1

m
1(m×m) = I− µm1(1×m),

to the right subtracts the row mean from each of its entries.

Consequently:

M̄ = ΠMΓϑm̂ = ΠPQΓϑm̂ + Πt1TΓϑm̂ = ΠPQΓϑm̂,

3
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since Πt1TΓϑm̂ = 0. Hence, the columns of M̄ are linear

combinations of those of ΠP , and since M̄ has rank 3, the

same is true of Ū.

4.2.1 Solving for the Joint Projection Matrix

Computing many CBC’s for different sub-blocks of the

measurement matrix amounts to performing partial affine

reconstructions. Solving for the Joint Projection Matrix is

done by: 1) aligning basis constraints to recover the reduced

JPM and 2) recovering the joint translation vector and the

structure.

Let l be the number of CBC’s. Aligning bases together

involves minimizing:

l∑
k=1

‖ŪkZk − ΠkP‖2 =
l∑

k=1

∥∥∥∥(Πk −Ūk

)(P
Zk

)∥∥∥∥
2

,

which is a simple LLS system, that can be rewritten as:

∥∥∥∥∥∥∥∥∥




Π1 −Ū1 0
...

. . .

Πl 0 −Ūl




︸ ︷︷ ︸
D



P
Z1

...

Zl




︸ ︷︷ ︸
X

∥∥∥∥∥∥∥∥∥

2

. (9)

Although the size of the design matrix D is quadratic in

the number of bases, the equation system can be minimized

efficiently. Indeed it is extremely sparse, and we do not

need to compute the aligning matrices Zk. The minimized

error is the alignment of the optimal cameras of partial re-

constructions. Although this error is algebraic, as when ex-

pressing the error in terms of matching tensor constraints,

our experiments suggest it is more stable, c.f . §7.

Once the partial JPM P is estimated, we propose two

approaches for estimating the translations and the structure.

The best solution comes from doing both at the same time,

by using an LLS formulation. It minimizes the reprojec-

tion error. This is because the orientation and intrinsics of

the camera are already estimated up to a (3 × 3) invertible

transformation G, which has no effect on the minimized er-

ror:

‖M−PQ− 1Tt‖ = ‖M−PGG−1Q− 1Tt‖. (10)

However, for a long sequence, this equation system uses

a lot of memory and is rather long to minimize. In this

case, it is more efficient to estimate only the joint translation

vector and then perform individual triangulation for each

feature track. To this end, we combine the computed basis Ū
with the translation t̄ = M̂µm̂ of the cameras of the partial

reconstructions. Thus, the camera alignment can also be

performed with:

Π
(
P t

)
=
(
P̂ t̂

)
=
(
Ū t̄

)( Z v
0(1×3) 1

)
,

where matrices Û and Z are those from (8). The joint trans-

lation vector can be estimated by minimizing:

∥∥∥∥∥∥∥∥∥
D




t
v1

...

vl


−




t̄1

...

t̄l




∥∥∥∥∥∥∥∥∥

2

, (11)

where D is the design matrix of (9).

In [14], bases for cameras were computed from M̂, not

M̄ like we do. The partial reconstruction corresponding to

these cameras is not optimal. Furthermore, a method for

estimating t̂ from the bases independently of the structure

is not given. This is essential when dealing with very large

sequences or data corrupted by outliers (c.f . §6).

4.3. Structure Closure Constraints (SCC)

Structure Closure Constraint is the analogue of the CCC

applied to the Joint Structure Matrix. From (2), a match-

ing tensor is in the column space of Q and 1T. It can be

computed using SVD by minimizing:

‖M̂N‖2, subject to 1TN = 0.

Note that unlike the CCC, the SCC is not computed from a

centered input matrix. This is because the last row of the

JSM must be 1T. A more formal explanation is given in

§4.4. By accumulating many constraints, we can form a

design matrix D with:

Di
def= ΓNi.

By constructionD is rank deficient because each of its rows

vanishes on 1T. Hence, the right singular vector corre-

sponding to the smallest singular value, equal to zero, is

1/‖1‖. The estimate forQT is given by the next three right

singular vectors of D.

4.4. Structure Basis Constraints (SBC)

As with Camera Closures, using Structure Closures im-

plies minimizing a purely algebraic function difficult to in-

terpret. Structure Bases can be used to estimate partial re-

constructions which are then aligned together in a single

computation. From an SVD of M̄ = UΣVT, the three

leading columns of V estimate the structure, up to an affine

transformation, in the partial reconstruction corresponding

to M̂. However we prefer using V̄ as the three leading

columns of VΣT, as explained below. It can be aligned with

the structure through:

Q̂T = Z(3×4)

(
V̄ 1

)T
,

leading to the Structure Basis Constraint:

ΓTQT = ZV̄T.

4
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Note that unlike a CBC, an SBC cannot be aligned with a

(3 × 3) matrix. This is because the row space of V̄ is that

of:

ΠPQΓϑm̂ = ΠP




Q̂1ϑm̂

Q̂2ϑm̂

Q̂3ϑm̂

1Tϑm̂


= ΠP




Q̂1 − Q̂1µm̂1(1×m)

Q̂2 − Q̂2µm̂1(1×m)

Q̂3 − Q̂3µm̂1(1×m)

0T


,

where the Q̂i’s are the rows of Q̂, that is, the row space of

V̄ is the one generated by the Q̂i’s and 1T, but not necessar-

ily only by the Q̂i’s. Partial reconstructions can be aligned

together by solving an equation system similar to (9).

Choosing the bases. Consider two partial reconstruc-

tions V̄ and V̄′. Aligning them together amounts to finding:

arg min
Z
‖V̄′ − ZV̄‖2. (12)

We show that when V̄ is chosen so that the corresponding

projection matrix P̂ is orthonormal, the 3D error approx-

imates the reprojection error [3]. Projecting the residual

given by (12) into the images corresponding to the block,

we obtain:

‖P̂V̄′ + 1Tt̂− (P̂ZV̄ + 1Tt̂)‖2 = ‖P̂V̄′ − P̂ZV̄‖2

= ‖P̂(V̄′ − ZV̄)‖2.

Thanks to the orthonormal property P̂T = P̂†, our error

function simplifies to:

tr
(

(V̄′ − ZV̄)T P̂TP̂︸ ︷︷ ︸
I(3×3)

(V̄′ − ZV̄)
)

= ‖V̄′ − ZV̄‖2.

The minimization is only exact if both V̄ and V̄′ have been

estimated without error in their respective partial recon-

struction. Hence, under noise, it only approximates the re-

projection error.

4.5. Enforcing Constraints

In many situations, prior knowledge about the configu-

ration of the scene structure is available. Examples are two

cameras with identical position and/or orientation, smooth

camera path, known 3D points and planar structure. In our

algorithms, a certain number of constraints can be enforced.

This is done when estimating the first factor. As a conse-

quence, one can only force constraints on either cameras or

structure.

Most of our equation systems are homogeneous, like (9).

In order to simplify the constrained optimization, a well

known trick is to select a gauge, i.e. to give a value to some

rows of X, and solve the resulting regression problem. A

valid gauge fixes the degrees of freedom of the affine am-

biguity, which makes the original design matrices rank de-

ficient. Once this is done, each column Xi of the solution

matrix X can be individually estimated by regression under

linear constraints, which is an instance of convex quadratic

programming [4]. Aligning two cameras together can be

done by choosing:

(
Pa ta

)
=
(
Pb tb

)
=

(
1 0 0 0
0 1 0 0

)

(
Pc tc

)
=

(
0 1 1 0
∗ ∗ ∗ ∗

)

Others can also be aligned through equality constraints

Pe − Pf = 0, or variable elimination.

Enforcing known 3D points can be done similarly with

structure constraints. The gauge is fixed with at least four

non-coplanar points. Three planar surfaces can also be en-

forced by forcing groups of points to have their (X,Y, Z)
coordinates to either (0, ∗, ∗), (∗, 0, ∗) or (∗, ∗, 0), where

∗ means the coordinate is not fixed1. For more than three

planes, their absolute equation has to be known. Observe

that the gauge is at least partially fixed by the points located

on the planes. Consequently, caution must be taken to en-

sure that these planes are really orthogonal up to an affine

transformation. Prior information from points and planar

structures can also be incorporated as long as the constraints

are compatible, i.e. the affine ambiguity is fixed by the same

matrix.

5. The Perspective Camera Model
In projective SfM, the point coordinates are multiplied

by their projective depth λj
p and the projection is performed

by (3× 4) matrices defined up to scale:

λj
p

(
mj

p

1

)
=
(
Pp(3×3) tp(3×1)

)
qj

(4×1)

where mj
p ∈ R

2 is an interest point tracked throughout

the sequence and qj ∈ P
3. We assume that the projec-

tive depths are estimated a priori. In our experiments, we

used the algorithm presented in [14]. Rank-4 factorization

is then performed without any restriction on qj , unlike for

the affine case. Closures and rank-4 bases are purely alge-

braic and are computed from M̂(3n̂×m̂) = ΠMΓ instead of

M̄. This is akin to what was presented in [14]. The main

difference is the way system (9) is minimized. They used

Matlab’s EIGS method to estimate four orthonormal solu-

tion vectors. We used a solution based on fixing one of the

bases Ūi to identity and solve the resulting sparse regres-

sion problem. Finally, we performed a QR factorization on

the estimated JPM to orthonormalize its columns. It was

suggested in [14] that gluing via points cannot be used with

the perspective camera model. We did not encounter this

limitation.

1Details will be provided in a technical report.

5
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Figure 1. Comparison of the algorithms for the simulated se-

quence. M-P stands for Martinec-Pajdla [14], P.F. for Powerfac-

torization [17], D.N. for Damped Newton [7] and b. for the best

solution out of the 15 trials. Left) Affine model. Right) Perspec-

tive model (SCC not shown).

6. Robustness
To deal with outliers, we use random sampling to com-

pute each Closure/Basis Constraint. Once the camera path

or 3D points have been computed, we rely again on random

sampling to perform robust triangulation or resection. We

do not reject points directly from the computed matching

tensors, which can leave certain outliers behind. We avoid

performing the optimization using a robust (non-convex)

cost function, that would typically have a lot of local min-

ima, or using alternation with re-weighting.

For CBC, we rely on (11) to compute the position of

the cameras, because the estimation of the structure and the

translation vectors in a single step (i.e. using (10) ) would be

computationally expensive in a random sampling strategy.

7. Experiments and Analysis
We compared our three algorithms to Guilbert et al.

[9], Martinec-Pajdla [14], Hartley-Schaffalitzky [17] and

Buchanan-Fitzgibbon [7] methods on simulated and real

sequences. Powerfactorization and Damped Newton were

used respectively for the affine and perspective camera

model. They were limited to 1000 iterations, which was

sufficient to attain convergence from a random solution in

most cases. The tracks were sorted in order of appearance

in the sequence and we assumed that the resulting measure-

ment matrix was approximately band-diagonal as in fig-

ure 4. Heuristics were used to find complete sub-blocks,

making sure that constraints are approximately equally dis-

tributed among the cameras or the 3D points, depending on

the constraint type.

Simulation. The simulated sequence consisted of 50

cameras and around 900 3D points with a lot of occlusion,

resulting in around 96% missing data. In figure 1, the al-

gorithms are compared for both camera models at different

levels of Gaussian noise. Our results strongly suggest that

Camera Basis performs best, especially under affine projec-

tion. Under perspective projection, Closure and Structure

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50  100  150  200  250  300

R
e

p
ro

je
c
ti
o

n
 e

rr
o

r

Number of constraints

CBC
max CBC

CCC
max CCC

Figure 2. Comparison for the number of constraints between CCC

and CBC, for our simulated sequence.

Basis gave similar results with a slight advantage to SBC

in the presence of very high noise. The advantage van-

ished when projective depths were exact (not shown here).

Hence, SBC seems to be the most robust to erroneous pro-

jective depths. The CBC method performed slightly better

than Martinec-Padjla’s, a likely result of our balancing of

the constraints. Structure Closures performed rather poorly.

This is not surprising, at least for the affine case, since it

is the only one of our algorithms whose constraint is not

optimal. Powerfactorization and Damped Newton provided

good performance in the best case, but on average, they did

not converge to satisfying solutions.

Most of the computation time was spent finding com-

plete sub-blocks from the measurement matrix. The time

for solving the two factors was almost negligible. Hence,

a good algorithm performs well even with a small number

of constraints. We compared CCC and CBC on this criteria

with the simulated sequence as well as with the Teddy Bear
sequence (c.f . figure 2 and 3(a)). The number of closures

had to be nearly twice as large as that of bases to obtain a

comparable average reprojection error. The maximal repro-

jection error also suggests more stability for bases.

Real sequences. We compared batch algorithms and

Powerfactorization on five real sequences, four affine and

one perspective, (c.f . table 1). To take them out of the

comparison, we removed the outliers in each of the se-

quence using the robust CBC-based algorithm (see test be-

low). For the Dinosaur sequence, the algorithm of Guil-

bert et al. and Martinec-Pajdla obtained a better mean re-

projection error than what they reported in their paper, re-

spectively 5.4 and 2.57 pixels. This is probably because

we used more constraints (around 350). Computation time

on an AMD Athlon 64 3500+, in Matlab, for the cam-

era estimation (not including sub-block search) were 0.01

and 0.29 seconds for CCC and CBC (for which five dif-

ferent gauges were tested) and 0.34 seconds for Martinec-

Pajdla. On the larger Teddy bear sequence, computation

time were respectively 0.49, 0.73, 0.91 seconds (not includ-

ing the translations since it was much longer minimizing

(10) than (11) ). Structure Constraint based algorithms were

slower because their equation systems are larger. Iterative

6
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Mean (max) reprojection error in pixels

Sequence

(# Img., # 3D pts, # 2D pts, miss. data)
CCC [9] CBC SCC SBC [3] P.F. [17] M-P [14]

Dinosaur (36,2683,11832,96.9%) 0.56 (5.49) 0.49 (4.62) 0.65 (7.27) 0.66 (7.12) 1.75 (73.1) 0.56 (6.99)

Book (95, 254, 10253, 89%) 0.54 (6.86) 0.50 (5.59) 0.55 (5.25) 0.56 (5.66 ) 0.54 (5.96) 2.56 (41.1)

Building (194, 779, 17233, 97%) 0.86 (14.4) 0.95 (22.8) 1.24 (17.5) 1.21 (21.5) (3.45) 256.8 1.28 (39.2)

Teddy Bear (196, 2480, 93589, 95%) 0.65 (8.14) 0.65 (8.14) 4.67 (174.5) 1.13 (35.3) 1.91 (38.8) 4.453 (96.97)

Desk (66, 2483, 26771, 95.9%) 0.99 (43.36) 0.87 (19.5) 3.93 (132.66) 1.44 (45.18) —- 0.83 (24.4)

Table 1. Comparison between batch methods and Powerfactorization for four real sequences. All were reconstructed using the affine

camera model except for the Desk sequence. The best solutions are in bold.

algorithms achieved convergence after a few hundred iter-

ations, resulting in minutes, if not hours, of computation.

When initialized using a batch method, only a few iterations

were necessary.

The Desk sequence (c.f . figure 4, 5 and 6(c) ) was recon-

structed using the perspective algorithms and the one based

on affine CBC. In the former case, outliers were removed

before factorization using fundamental matrices. All batch

algorithms but the one based on SCC provided satisfying re-

sults. The reconstruction shown in figure 6(c) is the result of

refining the solution with Mahamud et al. method followed

by self-calibration. Projective and Euclidean bundle adjust-

ment improved the reconstruction only slightly. We also

achieved reconstruction by initializing a Euclidean bundle

adjustment with the robust algorithm based on affine CBC.

After convergence, the recovered focal length was similar

to the one recovered using projective reconstruction.

Outliers issue. The performance of CCC and CBC for

handling outliers was also tested similarly to [18]. Up to

7 % outliers where added to the Dinosaur sequence. This

gives up to 7n % unusable n-view constraints (we used up

to 4). The constraints were computed from robustly selected

sub-blocks. Thus, as the number of outliers increased, the

number of points used to compute the constraints decreased.

We tested: 1) the percentage of recovered valid outliers,

2) the percentage of removed points that were in fact in-

liers (false positive) and 3) the average reprojection error of

the reconstruction using the original data set. Our results

are shown in figure 3(b) and 3(c).

8. Conclusion

We presented algorithms for efficient batch matrix fac-

torization. Constraints on measurement sub-matrices are

combined to estimate one of the two factors. We extended

Trigg’s Camera Closure Constraints to Structure Closure

Constraints and proposed Camera and Structure Basis. Ex-

perimental results showed that Basis Constraints fared bet-

ter than state-of-the-art methods on most of our tests, with

simulated and real sequences and both for affine and per-

spective camera models. Future work will focus on the mea-
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Figure 3. Comparison between CCC and CBC with real data. a)
number of constraints for the Teddy Bear sequence. For added

outliers in the Dinosaur sequence: b) percentage of outliers re-

covered and percentage of false positive, c) average reprojection

error of the original data.
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Figure 4. Tracks (blue/dark) and detected outliers (green/light)

from the Desk sequence.

surement sub-matrix search and selection mechanism, and

on experiments for enforcing a priori on the structure.
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Abstract

We investigate the problem of finding the metric struc-

ture of a general 3D scene viewed by a moving camera with

square pixels and constant unknown focal length. While

the problem has a concise and well-understood formula-

tion in the stratified framework thanks to the absolute dual

quadric, two open issues remain.

The first issue concerns the generic Critical Motion Se-

quences, i.e. camera motions for which self-calibration is

ambiguous. Most of the previous work focuses on the vary-

ing focal length case. We provide a thorough study of the

constant focal length case.

The second issue is to solve the nonlinear set of equa-

tions in four unknowns arising from the dual quadric for-

mulation. Most of the previous work either does local non-

linear optimization, thereby requiring an initial solution, or

linearizes the problem, which introduces artificial degen-

eracies, most of which likely to arise in practice. We use

interval analysis to solve this problem. The resulting algo-

rithm is guaranteed to find the solution and is not subject

to artificial degeneracies. Directly using interval analysis

usually results in computationally expensive algorithms. We

propose a carefully chosen set of inclusion functions, mak-

ing it possible to find the solution within few seconds.

Comparisons of the proposed algorithm with existing

ones are reported for simulated and real data.

1. Introduction

Structure-from-Motion, the recovery of a metric recon-

struction, i.e. cameras and points, from images is a funda-

mental computer vision problem. Its extensive study over

the last few decades led to clear geometrical formulations

and numerous solution methods. One of the key results is

that a projective reconstruction can be computed from un-

calibrated images, providing that neither the cameras nor

the points lie on a critical surface. The projective recon-

struction is equivalent to the sought after metric one up to

an unknown upgrading homography of the projective space.

∗UPS - IRIT, France, {bocquillon,gurdjos,crouzil}@irit.fr
†CNRS - LASMEA, France, Adrien.Bartoli@gmail.com

Computing this homography from assumptions on the cam-

eras is a self-calibration problem, and is equivalent to re-

covering the unknown intrinsic parameters of the cameras.

Three main approaches can be distinguished from the lit-

erature. (i) The Kruppa equations [2, 10], requiring pairwise

epipolar geometry. (ii) The stratified approach, relying on

upgrading a projective reconstruction to affine, and linearly

solving for the affine-to-metric transformation. The former

is solved using the modulus constraint [12] or exhaustive

search [5]. (iii) Directly computing the projective-to-metric

upgrading homography [7]. Triggs [21] proposed a conve-

nient model with the so-called absolute dual quadric, en-

capsulating the plane at infinity and camera intrinsics in a

compact manner. [11] drew on this model for proposing a

linear algorithm dealing with the varying focal length case.

We tackle the self-calibration problem for a camera

with constant intrinsic parameters in Triggs’ absolute dual

quadric framework. More precisely, we assume that the

camera has square pixels and known principal point. Only

the constant focal length thus remains to be computed. Our

contributions deal with two important aspects of this prob-

lem.

First, section 3, we give a thorough study of the Critical

Motion Sequences (CMS) which are generic for this prob-

lem. These are camera motions for which self-calibration is

ambiguous, i.e. that defeat any self-calibration algorithm.

Sturm [15] gave a complete classification of the CMS for

constant, all unknown intrinsics. Note that CMS for which

the calibration can be partly performed only lead to spe-

cific methods, see [6, chap. 19]. An example is the purely

translational case for which the affine to metric upgrade is

not uniquely defined. The case of a varying focal length

with all other intrinsics known has been extensively stud-

ied [9, 13, 18], while, except for two cameras [19], the case

of a constant focal length remained open.

Second, section 4, we propose a deterministic method for

solving the nonlinear self-calibration problem which does

not introduce artificial CMS and does not require an initial

solution. Previous methods [11, 21] linearize the problem

to find an initial solution and refine it through iterative non-

linear optimization. The basic step towards linearization is

to neglect the rank deficiency of the dual absolute quadric.

Appart from being suboptimal, linearizing the problem in-

troduces artificial CMS, most of which likely to appear in
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practice. For instance, a fixating camera is not a generic

CMS but defeats linear algorithms. Iterative nonlinear opti-

mization is prone to falling in local minima, in particular if

the initial solution lies “too far” from the optima, sought af-

ter one. Our algorithm is based on Interval Analysis Global

Optimization. It finds the global minimum of the nonlin-

ear error function over the four unknown parameters – the

focal length and the plane at infinity. Computational time

is reasonable, the order of which ranges from few seconds

to a minute. Experimental results show that it scales lin-

early with the number of images while being almost unaf-

fected by the level of noise on the data. We note that self-

calibration based on Interval Analysis Global Optimization

and the Kruppa equations is proposed in [3]. This approach

is however different from ours, requiring hours to find the

solution, and subject to important singularities related to the

Kruppa equations.

Section 5 reports experimental evaluation and compar-

ison with other algorithms. Section 6 concludes and dis-

cusses the paper. Next section reviews some background.

2. Background

In some metric coordinate frame, the camera projec-

tion matrices are written as Pi
M = KiRi⊤ (

I| − ti
)

with

i = 1, ..., n, where Ki is the upper triangular calibration ma-

trix which encodes the intrinsic parameters, Ri represents

the orientation of the camera and ti the camera centre in

the world coordinate frame. The reconstruction problem is

equivalent to finding a 4×4 rectifying homography H to up-

grade the projective cameras Pi to Pi
M , such that Pi

M = PiH

for i = 1, ..., n. The absolute dual quadric Q∗∞ can be

represented by a 4 × 4, semi-definite, rank-3 matrix which

projects to the dual absolute conic ω∗ = KK⊤:

ω∗i = P
i
Q
∗
∞P

i⊤. (1)

This quadric encodes both the absolute conic Ω∞ and the

plane at infinity Π∞. In a metric coordinate frame, Q∗∞

has the form Î =
(

I 0
0⊤ 0

)
and in a projective frame

we have Q∗∞ = HÎH⊤. If intrinsic parameters are constant,

ω∗i ∼ ω∗j , where ∼ denotes equality up to a scale fac-

tor. For all known intrinsic parameters except the focal

length α and writing P1 as P1 = (I|0), we have ω∗1 =
diag(α2, α2, 1). Each image pair (1, j) gives us a set of

five equations:

ω∗j12 = 0 ω∗j13 = 0 ω∗j23 = 0
ω∗j11 = ω∗j22 α2ω∗j33 = ω∗j22 for j = 2, ..., n.

(2)

Solving for the 4 unknowns γ = α2 and Π∞ is possible for

n ≥ 2 images. There are mainly three approaches: (i) Lin-

ear method: It consists in keeping the first four equations

in (2), which are linear. (ii) Quasi-linear method: In [21],

Triggs linearizes the problem by introducing additional un-

knowns and by solving for the entries of Q∗∞ and ω∗j . (iii)

Nonlinear method: This is the direct approach. Local iter-

ative minimization methods are usually used. They require

a good initialization. The first two methods have two major

problems: First, the rank-3 constraint on Q∗∞ is not auto-

matically ensured (generally, this is imposed in a further

step). This means that the obtained plane at infinity cannot

be the supporting plane of the obtained absolute conic. Sec-

ond, they do not ensure either the positive semi-definiteness

condition on ω∗, preventing the Cholesky decomposition of

this latter. Notice that in the two view case, the problem is

equivalent to solve a quadratic equation.

In this work, we propose an algorithm based on the non-

linear formulation and on a global optimization method.

3. Generic Singularities

3.1. Previous Works

We distinguish the problems of recovering the intrinsics

from those of recovering the affine and Euclidean structures,

all three problems being usually packaged under the single

term self-calibration. These problems carry theoretical sin-

gularities i.e., degenerate configurations at which problems

have no solution or ambiguous solutions, which are gener-

ally due to (so-called critical) special camera motions. The-

oretical singularities are generic in the sense that they can-

not be overcome by any algorithm. In contrast, singularities

introduced by algorithms are called artificial.

As suggested in [17], self-calibration algorithms may be

classified into at least three groups, according to increasing

levels of singularities. The first includes algorithms which

only have the generic singularities. The second, which is

that of Pollefeys [11] and Triggs’ [21] linear algorithms,

add singularities by not enforcing the sought-after dual ab-

solute quadric to be rank-3. The last group – including algo-

rithms based on Kruppa equations – add more singularities

by not enforcing such quadrics to be the same for any pair of

views. Remind that our aim is to design a self-calibration

algorithm that falls into the first group i.e., whose imple-

mentation does not introduce additional/artificial singulari-

ties.

The first thorough study of critical motions for n ≥ 2
views is due to Sturm in [16], for constant intrinsics. A

generalisation progressively incorporating the assumptions

of known skew, aspect ratio and principal point has been

given by Kahl [8] even if the case of all known intrinsics

except a varying focal length has also been studied by Sturm

in [18]. Both authors have reported1 the following (generic)

critical motions for n > 2:

1. Optical axes are parallel i.e., cameras are translating.

1Even if the most complete analysis can be found in [18, §5].
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2. Camera centres are aligned. All camera optical axes

coincide except at, at most, two positions at which they

can be arbitrarily oriented.

3. Camera centres move on two conics, one ellipse E and

one hyperbola H, lying on orthogonal planes that meet

in the focal axis of E, such that E and H have, as princi-

pal vertices, the foci of H and E, respectively. Optical

axes lie on the supporting planes and are tangent to the

supported conic at each position.

Before going further, we set up some general back-

ground i.e., for any camera model.

In the sequel, the term virtual conic will refer to some

proper purely imaginary conic i.e., whose real order-3 ma-

trix is definite in its supporting plane. If Φ ∈ R
3×3 rep-

resents a conic, then Φ∗ ∈ R
3×3 represents its dual (en-

velope) and Q∗Φ ∈ R
4×4 represents the associated rank-3

(disk) quadric in 3-space [14].

D ⊂ K will denote some subset of the group K of upper

triangular order-3 matrices, determined by the constraints

on intrinsics at our disposal. In accordance with [8, 18], a

motion sequence M is critical for the Euclidean reconstruc-

tion (or simply critical) if there exists a virtual conic Φ on

some plane Π such that its dual image φ∗i ∼ PiQ∗ΦP
i⊤ sat-

isfies:

φ∗i = D
i
D

i⊤, D
i ∈ D (3)

and Q
∗
Φ ≁ Q

∗
∞. (4)

M is critical for the affine reconstruction if M is critical

and Π ≁ Π∞. M is critical for recovering the intrinsics

if M is critical and φ∗i ≁ ω∗i. Note that M is critical

for the Euclidean reconstruction if it is critical for the affine

reconstruction or for recovering the intrinsics.

3.2. Unknown Constant Focal Length

We now describe the generic singularities for n ≥ 2
views of a camera, with all known intrinsics except a con-

stant focal length α. We will refer to this case as the un-

known constant focal length case or simply “our case”.

For an unknown (possibly varying) focal length α, it has

been shown [8, 18] that projection matrices can be consid-

ered as “calibrated” i.e., Pi = Ri⊤ (
I | −ti

)
, requiring that,

in (3), D be the subgroup of diagonal matrices subject to

condition (H1) below. Now, in our case, as α is supposedly

constant, we will additionally require the relation (H2) to

be satisfied:

• (H1) D11 = D22, D ∈ D;

• (H2) φ∗i11/φ∗i33 = φ∗j22/φ∗j33, 1 ≤ i, j ≤ n.

Clearly, critical motions for an unknown constant focal

length belong to the set of critical motions for an unknown

varying focal length as (H2) is simply an equivalence rela-

tion on D.

Only virtual conics on finite planes have to be consid-

ered. For virtual conics on Π∞, criticality is independent

of camera positions and only depends on camera orienta-

tions [8, 18]. It has been shown that, under (H1), a motion

is critical for the intrinsics but not for the affine structure if

and only if all optical axes are parallel. Of course, it also

holds under (H2).

Proposition 1 (Critical Camera Positions) Let Φ be a

virtual conic on some finite plane Π. In the unknown con-

stant focal length case, a necessary condition for a motion

sequence to be critical w.r.t. Φ is that the camera centres

be:

• (P1) at two different positions;

• (P2) at three/four distinct positions corresponding to

the vertices of a right triangle/of a rectangle.

Proof. As in [8, §8.3], we choose a Euclidean frame in

which Φ has, as supporting plane, Π with equation z = 0
and associated quadric Q∗Φ = diag(d1, d2, 0, d3), assuming

d1 ≥ d2 and d1, d2, d3 > 0. Thus, Q∗Φ projects to:

φi∗ ∼ P
i
Q
∗
ΦP

i⊤ = R
i⊤Φ∗i∞R

i, (5)

where Φ∗i∞ = diag(d1, d2, 0) + d3titi⊤;

Φi
∞ is the conic generated by intersecting Π∞ with the ith

projection cone of Φ, whose vertex is the camera centre ti.

Assume the position ti to be critical w.r.t. Φ i.e., equa-

tion (5) holds with (H1) and (H2) being satisfied, cf. §3.2.

Hence, thanks to the spectral decomposition of Φ∗i∞, one

infer from (H1) that two of its eigenvalues λi
1, λ

i
2, λ

i
3 are

equal and, from (H2), the constraint λi
1λ

i
2/(λi

3)
2 = κ2 for

some fixed κ > 0. As said earlier, by (only) using the con-

straint resulting from (H1), the authors of [8, 18] obtain, as

locus L(H1) of critical positions, the union of two real cen-

tral conics, one ellipse in the yz-plane and one hyperbola in

the xz-plane. In the yz-plane, the obtained ellipse is rep-

resented by matrix L1, cf. (6); it is centered at the origin O
with Oy and Oz as symmetry axes.

Now, only assume that (H2) holds. Let us determine

what is the locus L(H2) in the yz-plane, induced by apply-

ing the constraint resulting from (H2). We easily establish2,

that L(H2) is a degenerate conic, with matrix L2, cf. (7),

consisting of two distinct real parallel lines, being symmet-

ric about the axis Oz.

L1 = diag (d1d3, (d1 − d2)d3, (d2 − d1)d1) , (6)

L2 = diag
(
0, d2d3,−d2

1κ
2
)
. (7)

Since two conics meet at four points, we infer that the com-

mon points of L1 and L2 are, in our case, the four vertices

of a rectangle, whose homogeneous yz-coordinates are:

[±
√

(d1 − d2)(d2 − d1κ2), ±d1κ,
√

d2d3]⊤. (8)

2Due to lack of space, the details are omitted.
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Critical motions in the unknown constant focal length case Self-calibration ambiguity

1 All cameras having parallel axes. (A)

2 Four cameras, with centres defining a rectangle ; optical axes lie in the supporting plane of

the rectangle and for each pair of cameras with adjacent centres, axes are symmetric about the

symmetry axis of the rectangle separating the two centres.

(P)

3 Three cameras, out of the four cameras of case 2 (so defining a right triangle). (P)

4 Two cameras, out of the four cameras of case 2, providing they have adjacent centres (optical

axes intersect in a real finite point, with the centres being equidistant from this point).

(P)

5 Two cameras having coinciding axes. (P)

Table 1. List of all critical motions for known skew, aspect ratio and principal point and unknown constant focal length α. Ambiguities are

classified as (A) if Π∞ can be recovered and (P) if neither α nor Π∞ can be recovered.

As d1 ≥ d2, all these are real providing d1 ≥ d2 ≥ d1κ
2.

Similar results are obtained in the xz-plane, except that

the four vertices must satisfy d1κ
2 ≥ d1 ≥ d2 to be real. As

the two above inequalities cannot simultaneously hold for

non-zero coordinates, there are at most four (real) positions

that can be critical.

A first special case (C1) must be considered if d1 = d2

i.e., if Φ is a circle. In this case, L1 “degenerates”to the

(repeated) Oz axis while L2 is unchanged: their intersec-

tion yields two distinct points, being symmetric about Oy.

A second case (C2) is when d2/d1 = κ2, for which (8)

also reduces to the same two points. Similar results can be

obtained in the xz-plane for exactly the same conditions.

3.2.1 Critical Camera Orientations

From each of the critical positions (P1) and (P2) listed in

proposition 1, we now determine the critical camera orienta-

tions i.e., sufficient conditions for the motions to be critical.

Proposition 2 In the case of all known intrinsics except a

focal length, the critical orientations are the same whether

the focal length be varying or constant.

Proof. Only the “unsigned” directions of optical axes have

to be considered. Indeed, if a camera orientation is critical,

then it is also critical for any rotation around the optical

axis or reversed direction. The study of critical motions

in [8, 18] gives rise to two cases, according to whether Φ
is a circle, corresponding to the previously mentioned case

(C1) in proof of proposition 1, or an ellipse. If Φ is a circle,

a direction is critical if and only if it is orthogonal to the

supporting plane of Φ for all n − m cameras, with m ∈
{0, 1, 2}, and arbitrary for the m others. The configuration

m > 0 happens when Φ∗i∞ ∼ I, from which we infer that

(H2) is also satisfied, cf. equation (5). If Φ is an ellipse,

the direction is critical if and only if it is parallel to tangents

of any conic of L(H1) lying on its supporting plane. Thus,

the fact that directions are uniquely determined or in some

configuration such that (H2) holds ends the proof.

By proposition 2, we inherit the results of [8, 18] and can

adjust them to the unknown constant focal length case.

• Given critical positions (P1), critical orientations are:

– either (O1a) arbitrary or

– (O1b) such that optical axes coincide.

• Given (P2), they are (O2) such that the optical axes of

any pair of adjacent cameras i.e., whose centres cor-

respond to adjacent vertices of the rectangle, are sym-

metric about the symmetry axis of the rectangle sep-

arating their two centres while not being parallel; all

four axes cannot intersect in a single real point.

Critical orientation (O1a) only applies to case (C2) given in

the proof of proposition 1, which entails criticality only for

affine structure.

3.2.2 Describing All Critical Camera Motions

All the critical motions in the unknown constant focal

length case are listed in Table 1. Except for pure transla-

tions, the only motions that are likely to occur in practice

are when centres correspond to only p = 2 different po-

sitions. At 2 < p ≤ 4 critical positions (coinciding with

vertices of some right triangle or rectangle), some ambigui-

ties can be removed by using cheirality invariants [6, chap.

21]. This is reassuring regarding our motivation to design a

self-calibration algorithm with the fewest singularities.

4. A Guaranteed Solution Method

We describe how Interval Analysis (IA) and particularly

IA-based Global Optimization finds the global optimum

of nonlinear objective functions arising in computer vision

problems. We do not give an extensive review of the back-

ground, which can be found in [4]. IA is an arithmetic of in-

tervals such as x = [x, x], defined by two real bounds. One

interest of IA is its ability of bounding the range of a func-

tion. An inclusion function f of a function f over a mul-

tidimensional interval X = ([x1, x1], ..., [xn, xn]), called

a box, is an interval f = [f, f ] containing the range of f
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over X: f (X) ⊆ f (X). By good “inclusion functions”,

we mean those with tight bounds around the range of f .

IA-based Global Optimization is a global deterministic

guaranteed optimization method. From a general (nonlin-

ear, non convex) objective function f to be minimized and

from an initial box X0, it returns a box which encloses

the global minimum of f , if it exists. It consists of: (i)

A Branch and Bound algorithm to subdivide X0 into sub-

boxes Xi; (ii) An interval inclusion function f for any Xi;

(iii) Several tests to reject Xi if it does not contain the global

minimum. Taking into account constraints in the parameter

space is possible. Exhaustive examination of the whole so-

lution space is a NP-hard problem. Therefore, good inclu-

sion functions, allowing to reject boxes as early as possible

in the optimization process, are required to achieve accept-

able computational time. The latter varies from a few sec-

onds to several days depending on f .

Finding good inclusion functions is difficult. The dif-

ficulties arise from properties of IA such as: (i) Sub-

distributivity: If x,y, z are three intervals, then x × (y +
z) ⊆ x×y+x×z; (ii) Variable dependencies: x−x 6= 0.

If each variable appears only once in an inclusion function,

then the thighest bounds can be easily formulated. Unfortu-

nately, this case is unlikely to happen in real problems. (iii)

Wrapping: A box is always mapped into a box, introducing

pessimism on the bounds.

One possible inclusion function for a rational function

f is the so-called natural extension. This is obtained by

replacing the real variables by intervals in f . It is known

that this solution gives pessimistic bounds. A better solu-

tion consists in rewriting this natural extension by factor-

izing variables and by avoiding repetitions to improve the

bounds. Better inclusion functions can be computed using

decompositions such as Taylor expansion but the related im-

plementation is less straightforward.

Computational time may be reduced with several tricks.

One of them consists in reducing the size of the initial box

by propagating constraints, scaling the unknowns or using

analytical derivatives of the objective function. Two ma-

jor packages are freely available: GlobSol3 and ALIAS4.

GlobSol only needs a well rewritten natural extension and

automatically differentiates it whereas ALIAS requires an-

alytical bounds for the function and possibly for its deriva-

tives.

The use of IA-based Global Optimization in computer

vision is somewhat marginal. The self-calibration prob-

lem (five unknowns), based on the Kruppa equations, is

treated in [3]. Computational times over one hour for a

few images are reported. In [1], a guaranteed solution for

the plane-based self-calibration problem, using a simplified

camera model (three unknowns), is obtained in less than one

3http://interval.louisiana.edu/GlobSol
4http://www-sop.inria.fr/coprin/logiciels/ALIAS

minute.

The objective function we use is the sum of squares

of the residuals corresponding to equations (2). Four un-

knowns are involved, namely the focal length and the plane

at infinity. The initial box is set to a large domain (see sec-

tion 5). Note that we could reduce this initial box by prop-

agating cheirality constraints [6, chap. 21]. As an inclu-

sion function, we used the natural extension of the equa-

tions and applied automatic factorizations with the Maple

software. Experience has shown that factorization has to be

done first by the focal length, then by the other unknowns.

As an example, the factorized expression of the residual

α2ω∗j33 − ω∗j22 is:

α2(α2(−(Pj
32)

2 + p1(−(Pj
34)

2p1 + 2Pj
31P

j
34)+

p2(−(Pj
34)

2p2 + 2Pj
32P

j
34)− (Pj

31)
2) + ((Pj

22)
2+

p1((P
j
24)

2p1 − 2Pj
21P

j
24) + p2((P

j
24)

2p2 − 2Pj
22P

j
24)+

(Pj
21)

2 − (Pj
33)

2 + p3(−(Pj
34)

2p3 + 2Pj
33P

j
34)))+

(Pj
23)

2 + p3((P
j
24)

2p3 − 2Pj
23P

j
24),

(9)

where Π∞ = (p1, p2, p3, 1). To assess the benefit of the

rewriting, figure 1 shows the evaluation of two inclusion

functions of this residual: the matricial form α2ω∗j33 − ω∗j22

and the expression (9). In this figure, the inclusion func-

tions are evaluated on boxes which enclose exactly the true

plane at infinity on boxes which enclose exactly the true

plane at infinity and whose intervals for the focal length are

100 pixels wide. The bounds obtained from the factorized

inclusion function are significally tighter than the bounds

without rewriting. This effect is amplified when we con-

sider the square of the residuals and when the parameters of

the plane at infinity are also considered as variables in the

box. Our implementation uses the GlobSol package with

automatic differentiation.
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Figure 1. Examples of bounds of two inclusion functions of

a residual used in the objective function, without factorization

(empty boxes) and with factorization (hatched boxes).
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Figure 2. Mean relative error on the focal length (a), mean 3D error (b) and computation time (mean and standard deviation) (c) for varying

noise level and 10 images. (d), (e), (f): Same criteria for varying number of images and a 1 pixel noise level. Squares stand for Lin,

diamonds for QLin and circles for GNLin.

5. Results

Our approach has been validated on synthetic and real

data. A software implementation is available online5.

5.1. Synthetic Data

The experimental setup is composed of 100 points ran-

domly distributed in a 3D sphere of unit radius. The 3D

points are seen in n images with side length 256 pixels.

Cameras have a fixed focal length of 1000 pixels, square

pixels and principal point fixed at the image centre. They

are randomly placed at a mean distance of 2.5 ± 0.25
units from the scene origin. Each camera fixates a ran-

dom point located in a sphere of 0.1 unit radius centred

at the origin. Gaussian noise is added to the 2D projected

points. Projective bundle adjustment is used to compute

noise contaminated cameras. Cameras are standardized so

that the focal length is scaled around unity. We compared

the linear method (Lin), the quasi-linear method (QLin),

described in section 2, and our approach, the guaranteed

nonlinear method (GNLin). The initial search box is set to

[100, 10000] for the focal length and [−109, 109]3 for the

plane at infinity. We measure the mean relative error on

the focal length and the mean 3D error. The 3D error is

5http://www.irit.fr/˜Benoit.Bocquillon

the mean distance between the true 3D points and the re-

contructed 3D points, obtained from Euclidean rectification

and alignment. It is expressed as a percentage of the scene

size. All results are averages over 50 trials.

In the first experiment, n is fixed to 10 images and the

noise level is varied from 0 to 3 pixels. As expected, the

3D error and the error on the focal length (figures 2.a and

2.b) are lower for GNLin than for Lin and QLin. The reason

is that the rank and the positive semi-definiteness condition

are implicitly enforced in GNLin. For all methods, the error

increases linearly with the noise level. For clarity reasons,

error bars are not displayed on the figures. The standard

deviation on the focal length error, for a 3 pixel noise, are

5% for Lin, 2.5% for QLin and 0.3% for GNLin.

In the second experiment, the noise level is fixed to 1
pixel and n is varied from 4 to 20 images. Again, GNLin

has the lowest error (figures 2.d and 2.e). We can also see

that a few images are sufficient to obtain a good result. Al-

though the computation time (figures 2.c and 2.f) required

to find the global minimum is significantly larger than for

the other methods (less than a second), it is reasonable. It

increases linearly against the number of images while being

weakly dependent on noise.

In order to see what happens near artificial degeneracies

arising in Lin and GLin, we tested the following camera
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Figure 3. (a) and (b): Mean relative 3D error and standard devia-

tion for a motion near the “fixating cameras” singularity. (c) and

(d): Mean relative error on the focal length and standard deviation

for a motion near the “aligned optical axes” singularity. All the

distances are expressed as a percentage of the scene size. Squares

stand for Lin, diamonds for QLin and circles for GNLin.

motions.

Fixating cameras. Cameras are placed as previously de-

scribed except that all their optical centres lie on a plane.

Each camera fixates a random point in a sphere of radius

r centred at the origin. The singularity occurs at r = 0.

Figures 3.a and 3.b show that the 3D error is important for

r < 2% of the scene size. Our algorithm is not affected by

the singularity, finding the correct answer in all cases.

Aligned optical axes. All the optical centres are aligned

at different positions. All cameras look at the origin, ex-

cept for one camera whose orientation is arbitrary. To move

away from this singularity, cameras look in a sphere of ra-

dius r1 and the optical centres are located in a sphere of

radius r2 centred on the critical position. Due to lack of

space, we show results for r1 = r2 = r only. Mean relative

error on the focal length and standard deviation are reported

in figures 3.c and 3.d. The error for Lin and QLin are quite

important below 5% of the scene size. QLin is very unsta-

ble. GNLin is not affected by the singularity.

5.2. Real data

We took 4 images, shown on figure 4, by moving around

a building, so that the motion happens to be near the “fixat-

ing camera”, a critical motion for Lin and QLin. We semi-

automatically detected and matched 63 interest points lying

in the two dominant planes of the scene. To get the pro-

jective cameras, we used Sturm-Triggs projective factoriza-

tion [20], followed by projective bundle adjustment. Lin

and QLin failed in the sense that they gave meaningless so-

lutions. GNLin converged within 17 seconds on a 1.7GHz

Core Duo computer and found a 3604 pixels focal length.

From this focal length and the retrieved plane at infinity, a

Euclidean rectification was made on the 3D points obtained

from the projective reconstruction. Figure 4.e shows a top

view of the 3D point cloud. The ratio between the two wall

lengths was evaluated to 1.36, obtained from real measure-

ments, whereas our reconstruction has a ratio of 1.35. In the

same way, the angle between the two reconstructed planes

is equal to 91.7 degrees. We tried to add other images to

the sequence to get off the singularity: Lin and QLin have

remained very unstable, often failing or giving bad recon-

structions in terms of distance ratio and angle (see figure

4.e). Therefore, these methods cannot be used in practice

for this kind of motion. On the contrary, GNLin has always

given an acceptable solution.

6. Conclusion and Future Work

This paper has addressed two issues associated with met-

ric reconstruction in the case of all known intrinsic param-

eters except a constant focal length. First, we described

the critical motion sequences for that case. Second, we

proposed a self-calibration algorithm which does not intro-

duce artificial singularities. It is based on Interval Analysis

Global Optimization and is able to find the guaranteed so-

lution within few seconds. We also noticed that the linear

or quasi-linear methods are very unstable, even away from

singular cases. These results show that such methods are

sometimes difficult to use in practice.
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Abstract. The reconstruction of rigid scenes from multiple images is a
central topic in computer vision. Approaches merging partial 3D models
in a hierarchical manner have proven the most effective to deal with large
image sequences. One of the key building blocks of these hierarchical
approaches is the alignment of two partial 3D models, which requires
to express them in the same 3D coordinate frame by computing a 3D
transformation. This problem has been well-studied for the cases of 3D
models obtained with calibrated or uncalibrated pinhole cameras.

We tackle the problem of aligning 3D models – sets of 3D points – ob-
tained using uncalibrated affine cameras. This requires to estimate 3D
affine transformations between the models. We propose a factorization-
based algorithm estimating simultaneously the aligning transformations
and corrected points, exactly matching the estimated transformations,
such that the reprojection error over all cameras is minimized. In the
case of incomplete image data our algorithm uses an Expectation Max-
imization (EM) based scheme that alternates prediction of the missing
data and estimation of the affine transformation.

We experimentally compare our algorithm to other methods using sim-
ulated and real data.

1 Introduction

Threedimensional reconstruction from multiple images of a rigid scene, often
dubbed Structure-From-Motion (sfm), is one of the most studied problems in
computer vision. The difficulties come from the fact that, using only feature
correspondences, both the 3D structure of the scene and the cameras have to be
computed. Most approaches rely on an initialisation phase optionally followed by
self-calibration and bundle adjustment. Existing initialisation algorithms can be
divided into three families, namely batch, sequential and hierarchical processes.
Hierarchical processes [1] have proven the most successful for large image se-
quences. Indeed, batch processes such as the factorization algorithms [2] which
reconstruct all features and cameras in a single computation step, do not easily
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handle occlusions, while sequential processes such as [3] which reconstruct each
view on turn, may typically suffer from accumulation of the errors. Hierarchical
processes merge partial 3D models obtained from sub-sequences, which allows
to distribute the error over the sequence, and efficiently handle open and closed
sequences. A key step of hierarchical processes is the fusion or the alignment of
partial 3D models, which is done by computing 3D motion from 3D feature cor-
respondences. This problem has been extensively studied in the projective [4,1]
and the metric and Euclidean [5] cases.

second set of cameras

affine transformation

first reconstruction
second reconstruction

first set of cameras

Fig. 1. The problem tackled in this paper is the Maximum Likelihood Estimation of 3D
affine transformations between two affine reconstructions obtained from uncalibrated
affine cameras.

We focus on the affine camera model [6], which is a reasonable approxima-
tion to the perspective camera model when the depth of the observed scene is
small compared to the viewing distance. In this case, the partial 3D models ob-
tained from sub-sequences, i.e. multiple subsets of cameras, are related by 3D
affine transformations. We deal with the computation of such transformations
from point correspondences, as illustrated on Fig. 1. We propose a Maximum
Likelihood Estimator based on factorizing modified image point coordinates. We
compute a 3D affine transformation and a set of 3D point correspondences which
perfectly match, such that the reprojection error in all sets of cameras is mini-
mized. It is intended to fit in hierarchical affine sfm processes of which the basic
reconstruction block is, e.g. the affine factorization [2]. Our method does not
make any assumption about the cameras, besides the fact that a reconstruction
of each camera set using an affine camera model has been performed. The method
relies on the important new concept of orthonormal bases. In the occlusion-free
case, our algorithm needs one Singular Value Decomposition (svd). However, in
the case of incomplete measurement data, i.e. when some of the 3D points used
for the alignment are not visible in all views, the factorization algorithm must
be extended. We propose an Expectation-Maximization (EM) based scheme.
The Expectation step predicts the missing data while the Maximization step
maximizes the log likelihood.
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We proposed the Maximum Likelihood Estimator in the case of complete
data in [7]. The contribution of this paper with respect to the former one resides
in the handling of missing data. We have also completed the experiments.

This paper is organized as follows. We give our notation and preliminaries in
Sect. 2. In Sect. 3, we review the factorization approach to uncalibrated affine
Structure-From-Motion. Our alignment method is described in Sect. 4, while
other methods are summarized in Sect. 5. Experimental results are reported in
Sect. 6. Our conclusions are given in Sect. 7.

2 Notation and Preliminaries

Vectors are typeset using bold fonts, e.g. x, and matrices using sans-serif, cal-
ligraphic and greek fonts, e.g. A, Q and Λ. We do not use homogeneous co-
ordinates, i.e. image point coordinates are 2-vectors: xT = (x y), where T is
transposition. The different sets of cameras are indicated with primes, e.g. P1

and P′1 are the first cameras of the camera sets. Index i = 1 . . . n is used for the
cameras of a camera set and index j = 1 . . .m is used for the 3D points. The
mean vector of a set of vectors, say {Qj}, is denoted Q̄. The Moore-Penrose
pseudoinverse of matrix A is denoted A†.

Let Qj be a 3-vector and xij a 2-vector representing respectively a 3D and
an image point. The uncalibrated affine camera is modeled by a (2× 3) matrix
Pi and a (2× 1) translation vector ti, giving the projection equation

xij = PiQj + ti . (1)

Calligraphic fonts are used for the measurement matrices, e.g.

X(2n×m) =
(
Y1 · · · Ym

)
and Yj =

(
x1j

T · · · xnj
T
)T

,

where Yj contains all the measured image coordinates for the j-th point. The
(2n× 3) ‘joint projection’ and (3×m) ‘joint structure’ matrices are defined by

P =
(
P1

T · · · Pn
T
)T

and Q =
(
Q1 · · · Qm

)
.

We assume that the noise on the image point positions has a Gaussian centered
distribution and is i.i.d. Under these hypotheses, minimizing the reprojection
error yields Maximum Likelihood Estimates.

3 Structure-From-Motion Using Factorization

Given a set of point matches {xij}, the factorization algorithm is employed to
recover all cameras {P̂i, t̂i} and 3D points {Q̂j} at once [2]. Under the aforemen-
tioned hypotheses on the noise distribution, this algorithm computes Maximum
Likelihood Estimates [8] by minimizing the reprojection error

min
P̂,Q̂,{t̂i}

R2(P̂ , Q̂, {t̂i}) with R2(P,Q, {ti}) =
1
nm

n∑
i=1

m∑
j=1

d2(xij ,PiQj +ti) ,

(2)
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where d(x,y) = ‖x− y‖ is the Euclidean distance between x and y.

Step 1: Computing the translation. Given the uncalibrated affine projection (1),
the first step of the algorithm is to compute the translation t̂i of each camera in
order to cancel it out from the projection equation. This is achieved by nullifying
the partial derivatives of the reprojection error (2) with respect to t̂i: ∂R2

∂t̂i
= 0.

A short calculation shows that if we fix the arbitrary centroid of the 3D points
to the origin, then t̂i = x̄i. Each set of image points is therefore centered on its
centroid, i.e. xij ← xij − x̄i, to obtain centered coordinates: xij = PiQj .

Step 2: Factorizing. The problem is reformulated as

min
P̂,Q̂
R2(P̂, Q̂) with R2(P,Q) =

1
nm

n∑
i=1

m∑
j=1

d2(xij ,PiQj) .

The reprojection error can be rewritten by gathering the terms using the mea-
surement, the ‘joint projection’ and the ‘joint structure’ matrices as

R2(P,Q) ∝ ‖X − PQ‖2 ,

and the problem is solved by computing the Singular Value Decomposition [9]
of matrix X , X2n×m = U2n×mΣm×mVT

m×m. Let Σ = ΣuΣv be any decompo-
sition of matrix Σ. The motion and structure are obtained by ‘truncating’ the
decomposition or nullifying all but the 3 first singular values, which leads to

P = ψ(UΣu) and Q = ψT(VΣT
v ) ,

where ψ(W) returns the matrix formed with the 3 leading columns of matrix W.
Note that the solution P = ψ(U) and Q = ψT(VΣ) has the property PTP = I,
which is useful for our alignment method, see Sect. 4.

The 3D model is obtained up to a global affine transformation. Indeed, for
any (3× 3) invertible matrix B,

P̃ = P̂B and Q̃ = B−1Q̂ (3)

give the same reprojection error that P and Q since R2(P̃, Q̃) = ‖X − P̃Q̃‖ =
‖X − P̂BB−1Q̂‖2 = ‖X − PQ‖2 = R2(P,Q).

As presented above, the factorization algorithm do not handle occlusions.
Though some algorithms have been proposed, see e.g. [10], they are not appro-
priate for Structure-From-Motion from large image sequences.

4 Alignment of 3D Affine Reconstructions

We formally state the alignment problem in the two camera set case and present
our algorithm, dubbed ‘FactMLE-EM’.
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4.1 Problem Statement

Consider two sets of cameras {(Pi, ti)}ni=1 and {(P′i, t′i)}n
′

i=1 and associated struc-
tures {Qj ↔ Q′

j}mj=1 obtained by reconstructing a rigid scene using e.g. the
above-described factorization algorithm. Without loss of generality, we take
n = n′ and the reprojection error over two sets is given by

C2(Q,Q′) =
1

2nm
(
R2(P,Q, {ti}) +R′2(P ′,Q′, {t′i})

)
. (4)

Letting (Â, t̂) represent the aligning (3×3) affine transformation, the Maximum
Likelihood Estimator is formulated by

min
Q̂,Q̂′
C2(Q̂, Q̂′) s.t. Q̂′

j = ÂQ̂j + t̂ . (5)

4.2 A Factorization-Based Algorithm

Our method to solve problem (5) uses a three-step factorization strategy. We first
describe it in the occlusion-free case and then propose an iterative extension for
the missing data case.

Step 1: Orthonormalizing. We propose the important concept of orthonormal
bases. We define a reconstruction to be in an orthonormal basis if the joint
projection matrix is column-orthonormal. Given a joint projection matrix P,
one can find a 3D affine tranformation represented by the (3 × 3) matrix N,
which applies as B in (3), such that PN is column-orthonormal, i.e. such that
NTPTPN = I(3×3). We call the transformation N an orthonormalizing transfor-
mation. The set of orthonormalizing tranformations is 3-dimensional since for
any 3D rotation matrix U, NU still is an orthonormalizing transformation for
P. We use the qr decomposition P = QR, see e.g. [9], giving an upper trian-
gular orthonormalizing transformation N = R−1. Other choices are possible for
computing an N, e.g. if P = UΣVT is an svd of P, then N = VΣ−1 has the
required property. Henceforth, we assume that all 3D models are expressed in
orthonormal bases

{
P ← PN
P ′ ← P ′N′ and

{
Q ← N−1Q
Q′ ← N′−1Q′ .

An interesting property of orthonormal bases is that P† = PT. Hence, triangu-
lating points in these bases is simply done by Q = PTX .

Note that the matrix P computed by factorization, see Sect. 3, may already
satisfy PTP = I. However, if at least one of the cameras is not used for the
alignment, e.g. if none of the 3D point correspondences project in this camera,
or if the cameras come as the result of the alignment of partial 3D models, then
P will not satisfy PTP = I, thus requiring the orthonormalization step.
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Step 2: Eliminating the translation. The translation part of the sought-after
transformation can not be computed directly, but can be eliminated from the
equations. First, center the image points to eliminate the translation part of the
cameras: xij ← xij − ti and x′ij ← x′ij − t′i. Second, consider that the partial
derivatives of the reprojection error (4) with respect to t̂ must vanish: ∂C2

∂t̂
= 0.

By using the constraint Q̂′
j = ÂQ̂j + t̂ from (4) and expanding using (4), we get

n′∑
i=1

m∑
j=1

(
P′i

T
P′it̂− P′i

Tx′ij + P′i
T
P′iÂQ̂j

)
= 0

m∑
j=1

(
P ′TP ′t̂− P ′TY ′j + P ′TP ′ÂQ̂j

)
= 0

mP ′TP ′t̂−mP ′TȲ ′ +mP ′TP ′Â ¯̂Q = 0 ,

which leaves us with t̂ = (P ′TP ′)
−1

(P ′TȲ ′ − P ′TP ′Â ¯̂Q) that, thanks to the
orthonormal basis property P ′† = P ′T, further simplifies to

t̂ = P ′TȲ ′ − Â
¯̂Q . (6)

Note that if the same entire sets of reconstructed points are used for the align-
ment, then we directly obtain t̂ = 0 since Ȳ ′ = 0 and ¯̂Q = 0. This is rarely the
case in practice, especially if the alignment is used to merge partial 3D models.

Third, consider that the m partial derivatives of the reprojection error (4)
with respect to each Q̂j must vanish as well: ∂C2

∂Q̂j
= 0, and expand as above

n∑
i=1

(
PT

i PiQ̂j − PT
i xij

)
+

n′∑
i=1

(
ÂTP′i

T
P′iÂQ̂j − ÂTP′i

Tx′ij + ÂTP′i
T
P′it̂

)
= 0

PTPQ̂j − PTYj + ÂTP ′TP ′ÂQ̂j − ÂTP ′TY ′j + ÂTP ′TP ′t̂ = 0 .

The sum over j of all these derivatives also vanishes, giving

PTP ¯̂Q−PTȲ + ÂTP ′TP ′Â ¯̂Q− ÂTP ′TȲ ′ + ÂTP ′TP ′t̂ = 0 .

By replacing t̂ by its expression (6), and after some minor algebraic manipula-
tions, we obtain

PTP ¯̂Q−PTȲ = 0 =⇒ ¯̂Q = P†Ȳ (7)

and by substituting in (6) and using the orthonormal basis property, we get

t̂ = P ′TȲ ′ − ÂPTȲ . (8)

It is common in factorization methods to center the data with respect to their
centroid to cancel the translation part of the transformation. Equation (8) means
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that the data must be centered with respect to the reconstructed centroid of the
image points, not with respect to the actual 3D centroid.

Obviously, if the 3D models have been obtained by the factorization method
of Sect. 3, then the centroid of the 3D points corresponds to the reconstructed
centroid, i.e. Q̄ = PTȲ and Q̄′ = P ′TȲ ′, provided that the same sets of views
are used for reconstruction and alignment.

To summarize, we cancel the translation part out of the sought-after trans-
formation by translating the reconstructions and the image points as shown
below {

Qj ← Qj − PTȲ
Q′

j ← Q′
j − P ′

TȲ ′ and
{

xij ← xij − PiPTȲ
x′ij ← x′ij − P′iP ′

TȲ ′ .

The reprojection error (4) is rewritten

C2(Q,Q′) =
1

2nm
(
‖X − PQ‖2 + ‖X ′ − P ′Q′‖2

)
(9)

and problem (5) is reformulated as

min
Q̂,Q̂′
C2(Q̂, Q̂′) s.t. Q̂′

j = ÂQ̂j . (10)

Step 3: Factorizing. Thanks to the orthonormal basis property PTP = I, and
since for any column-orthonormal matrix A, ‖Ax‖ = ‖x‖, we can rewrite the
reprojection error for a single set of cameras as

R2(P,Q) ∝ ‖X − PQ‖2 = ‖PTX −Q‖2 .

This allows to rewrite the reprojection error (9) as

C2(Q̂, Q̂′) ∝ ‖PTX − Q̂‖2 + ‖P ′TX ′ − Q̂′‖2 = ‖
(
PTX
P ′TX ′

)
︸ ︷︷ ︸

Λ

−
(
Q̂
Q̂′

)
︸ ︷︷ ︸

∆

‖2 .

By introducing the constraint Q̂′ = ÂQ̂ from (10) and, as in Sect. 3, an unknown
global affine transformation B we can write

∆ =
(

I
Â

)
BB−1Q̂ =

(
B

ÂB

)
︸ ︷︷ ︸
M̃

B−1Q︸ ︷︷ ︸
Q̃

.

The problem is reformulated as

min
M̃,Q̃
‖Λ− M̃Q̃‖2 .

A solution is given by the svd of matrix Λ

Λ(6×m) = U(6×6)Σ(6×6)V
T
(6×m) .
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As in Sect. 3, let Σ = ΣuΣv be any decomposition of matrix Σ. We obtain

M̃ = ψ(UΣu) and Q̃ = ψT(VΣT
v ). Using the partitioning M̃ =

(
M̃

M̃′

)
, we get




B = M̃

Â = M̃′B−1

Q̂ = BQ̃
.

Obviously, one needs to undo the effect of the orthonormalizing transformations,
as follows {

Â← N′ÂN−1

Q̂ ← NQ̂ .

This algorithm runs with m ≥ 4 point correspondences.
Note that it is possible to solve the problem without using the orthonor-

malizing transformations. This solution requires however to compute the svd of
a (2(n + n′) ×m) matrix, made by stacking the measurement matrices X and
X ′, and is therefore much more computationally expensive than the algorithm
above, and may be intractable for large sets of cameras and points.

4.3 Dealing with missing data.

The missing data case arises when some of the 3D points used for the alignment
are not visible in all views. We propose an Expectation Maximization based
extension of the algorithm to handle this case.

The EM algorithm is an iterative method which estimates the model parame-
ters, given an incomplete set of measurement data. The main idea is to alternate
between predicting the missing data and estimating the model. Since the log
likelihood cannot be maximized using factorization, due to the missing data, it
is replaced by its conditional expectation given the observed data, using the cur-
rent estimate of the parameters. In the case where the log likelihood is a linear
function of the missing data, this simply consists in replacing the missing data
by their conditional expectations given the observed data at current parameter
values. This approximated log likelihood is then maximized so as to yield a new
estimate of the parameters. Monotone convergence to a local minimum of the
Maximum Likelihood residual error (4) is shown e.g. in [11].

Since the reconstruction of both camera sets using factorization needs a com-
plete data set, we are limited to the points visible in all views for the initial
reconstruction. This allows to reconstruct all cameras, but only part of the 3D
points. We then triangulate the missing points in order to complete the 3D point
cloud. This preliminary expectation step yields a completed set of 3D data, that
can be used in the alignement algorithm.

However, the reprojection error, i.e. the negative log likelihood, still cannot
be minimized because of the incomplete measurement matrix X . The expectation
step predicts the missing image points by reprojecting them from the completed
3D points, namely for the missing point xij , we set xij ← PiQ̂j + ti.
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Table 1. The proposed Maximum Likelihood alignment algorithm.

Objective

Given m ≥ 4 3D point correspondences {Qj ↔ Q′
j} obtained by affine reconstruction

and triangulation of the missing data from two sets of images, with respectively n
cameras {(Pi, ti)} and n′ cameras {(P′

i, t
′
i)}, as well as measured image points {xij}

and {x′ij} forming an incomplete data set, compute the affine transformation (Â, t̂) and

corrected point positions {Q̂j ↔ Q̂′
j} such that the reprojection error e is minimized.

Algorithm

1. Compute the orthonormalizing transformations:�
· · · Pi

T · · · � T qr
= PN−1 and � · · · P′

i
T · · · � T

qr
= P ′N′−1

.

2. Form the ‘joint projection’ and the measurement matrices:

X =

���� ...
· · · (xij − ti) · · ·

...

�	��
 and X ′ =

���� ...
· · · (x′ij − t′i) · · ·

...

�	��
 .

3. Expectation-Maximization:
(a) Expectation. Predict the missing point xij by setting xij ← PiQ̂j . Compute

the reconstructed centroids:

C =
PT

m

m�
j=1

���� ...
xij

...

�	��
 and C′ =
P ′T
m

m�
j=1

���� ...
x′ij
...

�	��
 .

Cancel the translations:

X =

���� ...
· · · (xij − PiC) · · ·

...

� ��
 and X ′ =

���� ...
· · · (x′ij − P′

iC
′) · · ·

...

� ��
 .

(b) Maximization. Factorize:�
PTX
P ′TX ′ 
 svd

= UΣVT and set

�
M̃

M̃′ 
 = ψ(U
√

Σ) and Q̃ = ψT(V
√

Σ) .

(c) Recover the corrected points. Set Q̂ = NM̃Q̃ and Q̂′ = N′M̃′Q̃.
(d) Transfer the points to the original coordinate frames. Extract the

corrected points Q̂j from Q̂. Translate them as Q̂j ← Q̂j + C.
(e) Compute the reprojection error:

Set e2 = 1
2nm

��� m
j=1 ��� n

i=1 d
2(xij − PiQ̂j) + � n′

i=1 d
2(x′ij − P′

iQ̂
′
j) ��� .

(f) Loop. If convergence is not reached (see Sect. 4.3), loop on step (a).
4. Recover the transformation: Set Â = N′M̃′M̃−1N−1 and t = C′ − ÂC.



190 Chapter 8. STRUCTURE-FROM-MOTION FOR RIGID SCENES

The maximization step consists in applying the algorithm described in the
complete data case. This yields an estimate of the sought-after transformation
(Â, t̂) as well as corrected point positions {Q̂j ↔ Q̂′

j}.
These two steps are alternated, thus forming an iterative procedure where

the corrected points are used in the expectation at the next iteration. In order to
decide whether convergence is reached, the change in reprojection error between
two iterations is measured. When the reprojection error stabilizes, the final result
is returned.

Table 1 gives a summary of the algorithm with its EM extension.

5 Other Algorithms

We briefly describe two other alignment algorithms. They do not yield Maxi-
mum Likelihood Estimates under the previously-mentioned hypotheses on the
noise distribution. They rely on 3D measurements and therefore naturally handle
missing image data.

5.1 Minimizing the Non-Symmetric Transfer Error

This algorithm, dubbed ‘TrError’, is specific to the two camera set case. It is
based on minimizing a non-symmetric 3D transfer error E(Â) as follows

min
Â,t̂
E2(Â, t̂) with E2(Â) =

1
m

m∑
j=1

‖Q′
j − ÂQj − t̂‖2 .

Differentiating E2 with respect to t̂ and nullifying the result allows to eliminate
the translation by centering each 3D point set on its centroid. By rewriting the
error function and applying standard linear least-squares, one obtains

Â = Q′Q† and t̂ = Q̂′ − ÂQ̂ .

5.2 Direct 3D Factorization

This algorithm, dubbed ‘Fact3D’, is based on directly factorizing the 3D recon-
structed points. It is not restricted to the two camera set case, but for simplicity,
we only describe this case. Generalization to multiple camera sets is trivial. The
algorithm computes the aligning transformation (Â, t̂) and perfectly correspond-
ing points {Q̂j ↔ Q̂′

j}. The reconstructed cameras are not taken into account
by this algorithm, which entirely relies on 3D measures on the reconstructed
points. Under certain conditions, this algorithm is equivalent to the proposed
FactMLE-EM.

The problem is stated as

min
Q̂,Q̂′
D2(Q̂, Q̂′) s.t. Q̂′

j = ÂQ̂j + t̂ ,
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where the 3D error function employed is defined by

D2(Q̂, Q̂′) =
1

2m

(
‖Q − Q̂‖2 + ‖Q′ − Q̂′‖2

)
.

Minimizing this error function means that if the noise on the 3D point coordi-
nates were Gaussian, centered and i.i.d., which is not the case with our actual
hypotheses, then this algorithm would yield the Maximum Likelihood Estimate.

Step 1: Eliminating the translation. By using the technique from Sect. 4.2, we
obtain t̂ = Q̄′−ÂQ̄. As in most factorization methods, cancelling the translation
part out according to the error function D is done by centering each set of 3D
points on its actual centroid: Q̂j ← Q̂j − Q̄ and Q̂′

j ← Q̂′
j − Q̄′. Henceforth, we

assume to work in centered coordinates. The problem is rewritten as

min
Q̂,Q̂′
D2(Q̂, Q̂′) s.t. Q̂′

j = ÂQ̂j .

Step 2: Factorizing. Following the approach in Sect. 4.2, we rewrite D as

D2(Q̂, Q̂′) ∝ ‖
(
Q
Q′

)
−

(
Q̂
Q̂′

)
‖2 = ‖

(
Q
Q′

)
︸ ︷︷ ︸

Λ

−
(

B
AB

)
︸ ︷︷ ︸
M̃

B−1Q̂︸ ︷︷ ︸
Q̃

‖2 .

Using svd of matrix Λ = UΣVT, we obtain M̃ = ψ(UΣu) and Q̃ = ψT(VΣT
v ).

By using the partitioning M̃ =
(
M̃M̃′)T

, we get

Â = M̃′M̃−1 and Q̂ = M̃Q̃ .

6 Experimental Evaluation

We evaluate our algorithm using simulated and real data. The implementation
of all three compared algorithms, i.e. FactMLE-EM, TrError and Fact3D,
as well as the generation of simulated data, have been done in C++.

6.1 Simulated Data

We generate m 3D points and two sets of n weak perspective cameras each. The
pose of a camera is defined by its three dimensional location, viewing direction
and roll angle (rotation angle around the optical axis). The corresponding affine
projection matrix is given by a (2 × 3), truncated, rotation matrix R̄i together
with a two-dimensional translation vector ti, both of which premultiplied by
an internal calibration matrix. More precisly, we use weak perspective cameras
Pi = AiR̄i and ti = AiT̄i, where Ai is the internal calibration matrix

Ai = ki

(
τi 0
0 1

)
.
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The scale factor ki models the average depth of the object and the focal length
of the camera, and τ models the aspect ratio that we choose very close to 1.
The 3D points are chosen from a uniform distribution inside a thin rectangular
parallelepiped with dimensions 1×1×(1−d), and the scale factors ki are chosen
so that the points are uniformly spread in 400× 400 pixel images.

We generate three point sets containing the point visibles (i) in the first
camera set, (ii) in the second one and (iii) in both camera sets. The third subset
contains mc points, whereas the two first subsets both contains m−mc points.
Hence, m points are used to perform sfm on each camera set, while mc points
are used for the alignment. The points are projected onto the images where they
are visible and gaussian noise with zero mean and standard deviation σ is added.

In order to assess the behaviour of the algorithms in the presence of non-
perfectly affine cameras, we introduce the factor 0 ≤ a ≤ 1. Let Zij be the depth
of the j-th 3D point with respect to camera i, we scale the projected points xij

by xij ← 1
ν xij with ν = a + (1 − a)Zij , meaning that for a = 1, the points

does not change and the projection is perfectly affine, and when a tends towards
0, the points undergo stronger and stronger perspective effects. The points are
further scaled so that their standard deviation remains invariant, in order to
keep them wellspread in the images.

So as to simulate the problem of incomplete data, e.g. due to occlusions, we
generate a list of missing image points. We introduce the probability ppoint that
any given 3D point is occluded in some images and the probability pimage that it
is occluded in one particular image. For simplicity, we take ppoint = pimage = p,
which gives a rate of missing data of p2.

A 3D model is reconstructed from each of the two camera sets using the
factorization algorithm described in Sect. 3. Once the camera matrices and 3D
points are estimated, only the mc points common to the two camera sets are
considered for the alignment. We define the overlap ratio of the two camera sets
to be θ = mc/m, i.e. for θ = 1 all points are seen in all views, while for θ = 0,
the two sets of cameras do not share corresponding points.

Each of the three alignment algorithms yields estimates for the 3D affine
transformation and corrected point clouds, except TrError which only gives
the transformation. The comparison of the algorithms being based on the re-
projection error, the point clouds used to compute it need to be re-estimated so
that this error is minimized, given an estimated transformation. This must be
done for TrError and Fact3D, but is useless for FactMLE-EM.

We use the following default setting for the simulations: n = 5 views, m =
250 points, θ = 0.2 (i.e. a 20% overlap and mc = 50 points common to the
two 3D models), σ = 3.0 pixels, d = 0.95 (flat 3D scene), a = 1 (perfectly
affine projections) and p = 0.3 (rate of missing data p2 = 0.09). We vary each
parameter at a time. Figures 2, 3 and 4 show the reprojection error averaged
over 500 simulations for the three algorithms for different parameter values.

In Fig. 2, we vary the number of common points mc (coupled with the total
number of points m, so as to keep the overlap constant) and the number of
cameras n, the former from 4 to 60, corresponding respectively to m = 20 and
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Fig. 2. Reprojection error against (a) the number of points mc and (b) the number of
cameras n.
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Fig. 3. Reprojection error against (a) the rate of missing data and (b) the extent of
overlap θ between the two sets of cameras. For θ = 1, all points are seen in all views.
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Fig. 4. Reprojection error against (a) the deviation a from the affine projection model
and (b) the scene flatness d. For a = 1, the projection is perfectly affine. For d = 1, all
3D points lie on a plane.



194 Chapter 8. STRUCTURE-FROM-MOTION FOR RIGID SCENES

m = 300, and the latter from 2 to 15. We see that for mc > 20, the number
of points has a much smaller influence on the errors. Whereas Fact3D and
TrError show similar behaviour, FactMLE-EM is distinguished by its lower
reprojection error. The difference between our method and the other two seems
to be more important in the cases where we have few points or few cameras.

In Fig. 3, the rate of missing data and the overlap ratio (coupled with the
number of common points mc, so as to keep the total number of points m
constant) are varied, the former from 0 to 0.5 and the latter from 0.1 to 1.0.
In order to emphasize the contribution of the EM scheme, in Fig. 3(a) we also
display the reprojection error of FactMLE-EM after the first iteration. When
the rate of missing data grows, the three methods show different tendencies.
Whereas FactMLE-EM handles missing data well, the other methods prove
to be unstable. However, considering only one iteration of FactMLE-EM, the
reprojection error increases just as for the other methods. The difference in
performance is thus provided by the EM iterations.

In Fig. 4 the deviation from the affine model a varies from 0 to 1, from
a perfectly affine projection, and the flatness of the simulated data d varies
from 0 to 1, i.e. from a cube to a plane. Despite the fact that the alignement
is affine, even completely projective cameras seem to be well modeled by the
three methods. In fact, the error induced by the affine approximation is small
compared to the added noise. The flatness of the scene does not change the
result, except for very flat scenes making the algorithms unstable, Fact3D and
TrError somewhat more than FactMLE-EM. This result was expected since
planar scenes are singular for the computation of a 3D affine transformation.

Simulations with varying σ reveal a quasi linear relationship between the
the noise level and the reprojection error. The slope is somewhat less steep in
the case of FactMLE-EM than for the other two methods, indicating that our
method is less sensitive to noise.

Although the three algorihtms have similar behaviour throughout the se-
quence of tests, except when varying the rate of missing data, FactMLE-EM

consistently outperforms the other ones.

6.2 Real Data

We applied the algorithms to real image sequences as follows. A number of
images of a scene were taken from different angles and grouped into two sets.
A certain number of point correspondences were defined within each one of the
image sets, as well as for all the images, thus forming the measurement matrices
X and X ′.

The camera used is an uncalibrated digital Nikon D100 with a lens of focal
length 80− 200 mm, giving an image size of 2240× 1488 pixels.

The ‘books’ sequence. We used a series of images of a rather flat scene, together
with a large set of point correspondences, given by a tracking algorithm, shown
in Fig. 5(a). So as to keep the experimental conditions close to the hypothesis of
affine cameras, the photos are taken far away from the object using a large zoom.
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(a) One image from the ‘books’ sequence
overlaid with the mc = 196 point cor-
respondences in white and reprojected
points in black.

(b) A detail from the image in (a) show-
ing the original points in black and repro-
jected points in white, from FactMLE-

EM (points), Fact3D (stars) and Tr-

Error (crosses).

Fig. 5. Results from the ‘books’ sequence.

This group of images consists of two sets of respectively n = 2 and n′ = 3 images,
together with the mc = 196 common point correspondences, and respectively
m = 628 and m′ = 634 correspondences for the two sets, giving an approximate
overlap of 80%. The reprojection errors we obtained are:

FactMLE-EM 1.90 pixels
Fact3D 1.97 pixels
TrError 2.17 pixels

A detail of an image with the reprojected points due to all three methods is
shown in Fig. 5(b). As predicted by the tests on simulated data, FactMLE-EM

performs better than Fact3D and TrError.

The ‘cylinder head’ sequence. This sequence was acquired under different condi-
tions than the previous one. The photos were taken with the same camera, using
a lens with a focal length of 12 mm, at a distance of 60 cm of the object, which
is 40 cm long. The points, shown in Fig. 6(b), were manually entered. Using
these settings, the affine camera model does not apply and the reconstruction
performed prior to the alignment is therefore less reliable. Nevertheless, the re-
sult of the alignment is rather good. This group of images consists of two sets
of respectively n = n′ = 2 images, together with the mc = 18 common point
correspondences, and respectively m = 22 and m′ = 23 correspondences for the
two sets, giving an approximate overlap of 31%. The reprojection errors are:

FactMLE-EM 3.03 pixels
Fact3D 3.04 pixels
TrError 3.05 pixels

The two sets of images are displayed in Fig. 6(a) and the given point matches
together with the FactMLE-EM reprojections are displayed in Fig. 6(b).
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(a) The two sets of images of the
‘cylinder head’ sequence.

(b) The original points in black together with
their FactMLE-EM reprojections in white.

Fig. 6. Results from the ‘cylinder head’ sequence.

The ‘building’ sequence. The point correspondences are once again given by a
tracking algorithm, but this time the data set is incomplete. We need at least
two views of a 3D point in order to use it for the reconstruction, so we keep
only those points that are present in two or more images. We then define a point
correspondence to be common to the two sets and thus used for the alignment of
the two reconstructions, as soon as it is present in (at least two images in each
one of) the two sets. This group of images consists of two sets of respectively
n = n′ = 5 images, together with the mc = 40 common point correspondences,
and respectively m = 94 and m′ = 133 correspondences for the two sets, giving
an overlap of 43% and 30% respectively. The rates of missing data are for the
first camera set 31% (13% for the common points) and for the second camera
set 22% (11% for the common points). We note that the missing points are
essentially not due to occlusions but to failure in the tracking algorithm or to
the points being out of range in the images. The reprojection errors we obtained
are:

FactMLE-EM 0.78 pixels
Fact3D 0.84 pixels
TrError 0.85 pixels

As predicted by the simulations with varying rate of missing data, the differ-
ence between the methods is more important when processing incomplete data.
Whereas Fact3D and TrError yield similar errors, FactMLE-EM distin-
guishes itself with a significantly lower error. The results are displayed in Fig. 7.

7 Conclusions

We presented a method to compute the Maximum Likelihood Estimate of 3D
affine transformations, under standard hypotheses on the noise distribution,
aligning sets of 3D points obtained from uncalibrated affine cameras. The method
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(a) (b)

Fig. 7. The original common points in white together with their FactMLE-EM re-
projections in black. The two images are the first ones in the respective camera sets.

computes all aligning transformations in a single computation step in the oc-
clusion-free case, by minimizing the reprojection error over all points and all im-
ages. An iterative extension is presented for the missing data case. Experimental
results on simulated and real data show that the proposed method consistently
performs better than other methods based on 3D measurements.

Future work could be devoted to the incorporation of other types of features.
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8.2.1 Paper (ECCV’04) – A Framework For Pencil-of-Points Structure-From-Motion

A Framework For Pencil-of-Points

Structure-From-Motion

Adrien Bartoli1,2, Mathieu Coquerelle2, and Peter Sturm2

1 Department of Engineering Science, University of Oxford, UK
2 équipe MOVI, INRIA Rhône-Alpes, France

Bartoli@robots.ox.ac.uk, Coquerel@inria.fr, Sturm@inria.fr

Abstract. Our goal is to match contour lines between images and to re-
cover structure and motion from those. The main difficulty is that pairs of
lines from two images do not induce direct geometric constraint on cam-
era motion. Previous work uses geometric attributes — orientation, length,
etc. — for single or groups of lines. Our approach is based on using Pencil-
of-Points (points on line) or pops for short. There are many advantages to
using pops for structure-from-motion. The most important one is that, con-
trarily to pairs of lines, pairs of pops may constrain camera motion. We give
a complete theoretical and practical framework for automatic structure-
from-motion using pops — detection, matching, robust motion estimation,
triangulation and bundle adjustment. For wide baseline matching, it has
been shown that cross-correlation scores computed on neighbouring patches
to the lines gives reliable results, given 2D homographic transformations
to compensate for the pose of the patches. When cameras are known, this
transformation has a 1-dimensional ambiguity. We show that when cameras
are unknown, using pops lead to a 3-dimensional ambiguity, from which
it is still possible to reliably compute cross-correlation. We propose linear
and non-linear algorithms for estimating the fundamental matrix and for
the multiple-view triangulation of pops. Experimental results are provided
for simulated and real data.

1 Introduction

Recovering structure and motion from images is one of the key goals in computer
vision. A common approach is to detect and match image features while recovering
camera motion. The goal of this paper is the automatic matching of lines and
recovery of structure and motion. This problem is difficult for the reason that a
pair of corresponding lines does not give direct geometric constraint on the camera
motion. Hence, one has to work on a three-view basis or assume that camera motion
is known a priori, e.g. [10].

In this paper, we attack directly the two view case by introducing a type of
image primitive that we call Pencil-of-Points or pop for short. A pop is made
of a supporting line and a set of supporting points lying on the supporting line.
Physically, a pop corresponds to a set of interest points on a contour line. pops can
be built on the top of most contour lines. Contrarily to pairs of corresponding lines,
pairs of corresponding pops may give geometric constraints on camera motion,
provided that what we call the local geometry, relating corresponding points along
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the supporting lines, has been computed. We exploit these geometric constraints
for matching pops and recovering structure and motion. Once camera motion has
been recovered using pops, it can be employed for a reliable guided-matching and
reconstruction of other types of features.

The closest work to ours is [10]. The main difference is that the authors con-
sider that the cameras are known and propose a wide-baseline guided-matching
algorithm for lines. They show that reliable results are obtained based on cross-
correlation scores, computed by warping the neighbouring textures of the lines
using the 2D homography H(μ) ∼ [l′]×F + μe′lT, where l ↔ l′ are correspond-
ing lines, F is the fundamental matrix and e′ the second epipole. The projective
parameter μ is computed by minimizing the cross-correlation score.

Before going into further details about our approach, we underline some of the
advantages of using pops for automatic structure and motion recovery. First, a pop

has fewer degrees of freedom than the supporting line and the individual supporting
points which implies that (i) its localization is often more accurate that those of
the individual features, (ii) finding pops in a set of interest points and contour
lines increase their individual repeatability rate and (iii) structure and motion
parameters estimated from pops are more accurate than that recovered from points
and/or lines. Second, matching or tracking pops through images is more reliable
than individual contour lines or interest points, since a pair of corresponding pops
defines a local geometry, used to score matching hypotheses based on geometric
or photometric criteria. Third, the robust estimation of camera motion based on
random sampling from putative correspondences, i.e. in a ransac-like manner [3],
is more efficient using pops than other standard features, since only three pairs of
pops define a fundamental matrix, versus seven pairs of points.

Contributions and paper organization. Using pops for structure-from-motion is a
new concept. We propose a comprehensive framework for multiple-view matching
and recovery of structure and motion. Our framework is based on the following
traditional steps, which also give the organization of this paper.

First, §2, we investigate the detection of pops in images and their matching.
We define and study the local geometry of a pair of pops. We propose methods for
its estimation, which allow to obtain putative pop correspondences, from which
the epipolar geometry can be robustly estimated.

Second, §3, we propose techniques for estimating the epipolar geometry from
pop correspondences. Minimal and redundent cases are studied.

Third, §4, we tackle the problem of triangulating pops from multiple images.
We derive and approximate the optimal (in the Maximum Likelihood sens) solu-
tion by an algorithm based on the triangulation of the supporting line, then the
supporting points.

Finally, bundle adjustment is described in §5. We provide experimental results
on simulated data and give our conclusions and further work in §§6 and 7 respec-
tively. Experimental results on real data are provided throughout the paper. The
following two paragraphs give our notation, some preliminaries and definitions.

Notation and preliminaries. We make no formal distinction between coordinate
vectors and physical entities. Equality up to a non-null scale factor is denoted
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by ∼. Vectors are typeset using bold font (q, Q), matrices using sans-serif fonts
(F, H) and scalars in italic (α). Transposition and transposed inverse are denoted
by T and −T. The (3 × 3) skew-symmetric cross-product matrix is written as in
[q]×x = q× x. Indices are used to indicate the size of a matrix or vector (F(3×3),
q(3×1)), to index a set of entities (qi) or to select coefficients of matrices or vectors
(q1, qi,1). Index i is used for the n images, j for the m features and k for the p
supporting points of a pop3. The supporting lines are written lij (the supporting
line of the j-th pop in image i) and supporting points as qijk (the k-th supporting
point of the j-th pop in image i). Indices are sometimes dropped for clarity. The
identity matrix is written I and the null-vector as 0. We use the Euclidean distance
between points, denoted de and an algebraic distance defined by:

d2
a(q,u) = ‖S[q]×u‖2 with S = ( 1 0 0

0 1 0 ) . (1)

Definitions. A pencil of points is a set of p supporting points lying on a supporting
line. If p ≥ 3, the pop is said to be complete, otherwise, it is said to be incomplete.
A complete correspondence is a correspondence of complete pops. As shown in the
next section, only complete correspondences may define a local geometry.

We distinguish two kinds of correspondences of pops: line-level and point-level
correspondences. A line-level correspondence means that only the supporting lines
are known to match. A point-level correspondence is stronger and means that a
point-to-point mapping along the supporting lines has been established.

2 Detecting and Matching Pencil-of-Points

2.1 Detecting
Detecting pops in images is the first step of the structure-from-motion process. One
of the most important properties of a detector is its ability to achieve repeatability
rates4 as high as possible, which reflects the fact that it can detect the same features
in different images. In order to ensure high repeatability rates, we formulate our
pop detector based on interest points and contour lines, for which there exist
detectors achieving high repeatability rates, see [9] for interest points and [2] for
contour lines.

In order to detect salient pops, we merge nearby contour lines. Algorithms
based on the Hough transform or ransac [3] can be used to detect pops within
a set of points and/or lines. We propose the following simple solution. First, an
empty pop is instanciated for each line (which gives the supporting line). Second,
each point is attached to the pops whose supporting line is at a distance lower
than a threshold, that we typically choose as a few pixels. Finally, incomplete
pops, i.e. those for which the number of supporting points is less than three, are
eliminated. Note that we use a loose threshold for interest point and contour line
detection, to get as many as possible pops. The less significant interest points and
contour lines are generally pruned as they are respectively not attached to any
pop or form incomplete pops. An example of pop detection is shown on figures 1
3 To simplify the notation, we assume without loss of generality that all pops have the

same number of supporting points.
4 The repeatability rate between two images is the number of corresponding features

over the mean number of detected points [9].
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(a) (b) (c) (d)

Fig. 1. (a) & (b) show the detected pops. The repeatability rate is 51% while for points
and lines it is lower, respectively 41% and 37%. (c) & (d) show the 9 putative matches
obtained with our algorithm. On this example, all of them are correct, which shows the
robustness of our local geometry based cross-correlation measure.

(a) & (b). It is observed that the repeatability rate of pops is higher than each of
the repeatability rates of points and lines.

2.2 Matching
Traditional structure-from-motion algorithms using interest points usually rely on
an initial matching, followed by the robust estimation of camera geometry and
a guided-matching step, see e.g. [6]. The initial matching step is often based on
similarity measures between points such as correlation or grey-value invariants.
Guided-matching uses the estimated camera geometry to constrain the search-
area. In the case of pops, the initial matching step is based on the local geometry
defined by a pair of pops. This step is described below followed by the robust
estimation of the epipolar geometry.

Matching Based on Local Geometry As mentioned above, the idea is to use
the local geometry defined by a pair of pops. We show that this local geometry
is modeled by a 1D homography and allows to establish dense correspondences
between the two supporting lines. Given a hypothesized line-level pop correspon-
dence, we upgrade it to point-level by computing its local geometry. Given a point-
level correspondence, a similarity score can be computed using cross-correlation,
in a manner similar to [10]. For each pop in one image, the score is computed for
all pops in the other image and a ‘winner takes all’ scheme is employed to extract
a set of putative pop matches. Putative matches obtained by our algorithm are
shown on figures 1 (c) & (d).

Defining and computing the local geometry. We study the local geometry induced
by a point-level correspondence, and propose an estimation method.

Proposition 1. Corresponding supporting points are linked by a 1D homography,
related to the epipolar transformation, relating corresponding epipolar lines.
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Proof: Corresponding supporting points lie on corresponding epipolar lines: there
is a trivial one-to-one correspondence between supporting points and epipolar lines
(provided the supporting lines do not contain the epipoles). The proof follows from
the fact that the epipolar pencils are related by a 1D homography [12]. �

First, we shall define a local P
1 parameterization of the supporting points, using

two Euclidean transformation matrices A and A′ acting such that the supporting
lines are rotated to be vertical and aligned with the y-axes of the images. The
transformed supporting points are xk ∼ Aqk ∼ (0 yk 1)T and x′k ∼ A′q′k ∼
(0 y′k 1)T. Second, we introduce a 1D homography g as:

(
y′k
1

)
∼ g

(
yk

1

)
with g ∼

(
g1 g2

g3 1

)
, (2)

which is equivalent to x′ ∼ G(µ)x with G(µ) ∼
( μ1 0 0

μ2 g1 g2
μ3 g3 1

)
, where the 3-vector

µT ∼ (μ1 μ2 μ3) represents projective parameters which are significant only when
G(µ) is applied to points off the supporting line. The 2D homography mapping
corresponding points along the supporting lines is H(µ) ∼ A′−1

G(µ)A.
The 1D homography g can be estimated from p ≥ 3 pairs of supporting points

using equation (2). This is the reason why complete pops are defined as those
which have at least 3 supporting points. Given g, H(µ) can be formed.

Computing H(µ). The above-described algorithm can not be applied directly since
at this stage, we only have line-level pop correspondence hypotheses. We have to
upgrade them to point-level to estimate H(µ) with the previously-given algorithm
and score them by computing cross-correlation. We propose the following algo-
rithm:

– for all valid pairs of triplets of supporting points5:
• compute the local geometry represented by H(µ).
• compute the cross-correlation score based on H(µ), see below.

– return the H(µ) corresponding to the highest cross-correlation score.

Computing cross-correlation. For a pair of pops, the matching score is obtained
by evaluating the cross-correlation using H(µ) to associate corresponding points.
The cross-correlation is evaluated within rectangular strips centered onto the sup-
porting lines. The length of the strips are given by the overlap of the supporting
lines in each image. The width of the strips must be sufficiently large for cross-
correlation to be discriminative. During our experiments, we found that a width of
3 to 7 pixels was appropriate. For pixels off the supporting lines, the µ parameters
are significant. The following solutions are possible: compute these parameters by
minimizing the cross-correlation score, as in [10], or use the median luminance and
chrominance of the regions adjacent to the supporting lines [1]. The first solution
is computationally too expensive to be used in our inner loop, since 3 parameters
have to be estimated, while the second solution is not discriminative enough. We
propose to map pixels along lines perpendicular to the supporting lines. Hence, the
method uses neighbouring texture while being independent of µ. In order to take
5 Valid triplets satisfy an ordering constraint, namely middle points have to match.
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into account a possible non-planarity surrounding the supporting lines, we weight
the contribution of each pixel to cross-correlation proportionally to the inverse of
its distance to the supporting line.

Robustly Computing the Epipolar Geometry At this stage, we are given a
set of putative pop correspondences. We employ a robust estimator, allowing to
estimate the epipolar geometry and to discriminate between inliers and outliers.
We use a scheme based on ransac [3], which maximizes the number of inliers. In
order to use ransac, one must provide a minimal estimator, i.e. an estimator which
computes the epipolar geometry from the minimum number of correspondences,
and a function to discriminate between inliers and outliers, given an hypothesized
epipolar geometry. The number of trials required to ensure a good probability of
success, say 0.99, depends on the minimal number of correspondences needed to
compute the epipolar geometry. Our minimal estimator described in §3 needs 3
pairs of pops. Applying a ransac procedure is therefore much more efficient with
pops than with points: with 50% of outliers, 35 trials are sufficient with pops,
while 588 trials are required for points (values taken from [6]).

Our inlier/outlier discriminating function is based on computing the cross-
correlation score using [10]. Inliers are selected by thresholding this score. We use
a threshold of few percents (2% — 5%) of the maximal grey value. Figures 2 (a-d)
show an example of epipolar geometry computation, and the set of corresponding
pops obtained after guided-matching based on the method of [10].

(a) (b) (c) (d)

Fig. 2. (a) & (b) show a representative set of corresponding epipolar lines while (c) & (d)
show the 11 matched lines obtained after guided-matching using the algorithm of [10].
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3 Computing the Epipolar Geometry

Proposition 2. The minimal number of pairs of pops in general position6 needed
to define a unique fundamental matrix is 3.

Proof: Due to lack of space, this proof is left for an extended version of the paper.

3.1 The ‘Eight Corrected Point’ Algorithm

This linear estimator is based on the constraints induced by the supporting points.
Pairs of supporting points qjk ↔ q′jk are obtained based on the previously esti-
mated local geometries H(µ). The first idea that comes to mind is to use the sup-
porting points as input to the eight point algorithm [7]. This algorithm minimizes
an algebraic distance between predicted epipolar lines and observed points. The
eight corrected point algorithm consists in correcting the position of the support-
ing points, i.e. to make them colinear, prior to applying the eight point algorithm.
Using this procedure reduces the noise on the points positions, as we shall verify
experimentally.

3.2 The ‘Three pop’ Algorithm

This linear algorithm compares observed points and predicted points. This algo-
rithm is more statistically meaningful than the eight point algorithm, in the case
of pops, in that observed and predicted features are directly compared.

We wish to predict the supporting point positions. We intersect the pre-
dicted epipolar lines, i.e. Fqjk in the second image, with the supporting lines
l′j : the predicted point is given by [l′j ]×Fqjk. Our cost function is given by sum-
ming the squared algebraic distances between observed and predicted points:∑

j d2
a(q′jk, [l′j ]×Fqjk). In order to obtain a symmetric criterion, we consider pre-

dicted and observed points in the first image also, which yields:

Ca =
∑

j

∑
k

(
d2

a(qjk, [lj ]×FTq′jk) + d2
a(q′jk , [l′j]×Fqjk)

)
. (3)

After introducing explicitly da from equation (1) and minor algebraic manip-
ulations, we obtain the matrix form Ca =

∑
j

∑
k(‖Bjkf‖2 + ‖B′jkf‖2) where

f = vect(F) is the row-wise vectorization of F and:

Bjk = S[qjk]×[lj ]×
(
q′jk,1I q′jk,2I q′jk,3I

)
, B′jk = S[q′jk]×[l′j ]×diag(qT

jk qT
jk qT

jk) .

The cost function becomes Ca = ‖Bf‖2 with BT ∼
(
BT

11 B′11
T

. . . BT
mp B′mp

T
)
.

The singular vector associated to the smallest singular value of B gives the f that
minimizes Ca. Similarly to the eight point algorithm, the obtained fundamental
matrix does not satisfy the rank-deficiency constraint in general, and has to be
corrected by nullifying its smallest singular value, see e.g. [6].

6 General position means that the supporting lines are not coplanar and do not lie on
an epipolar plane, i.e. the image lines do not contain the epipoles.
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3.3 Non-Linear ‘Reduced’ Estimation

The previously-described three pop estimator is statistically sound in the sense
that observed and predicted points are compared in the linear cost function (3).
However, the comparison is done using the algebraic distance da. This is the price
to pay to get a linear estimator. In this section, we consider a cost function with
a similar form, but using the Euclidean distance de to compare observed and
predicted points:

Ce =
∑

j

∑
k

(
d2

e(qjk , [lj]×FTq′jk) + d2
e(q

′
jk, [l′j ]×Fqjk)

)
. (4)

We use the Levenberg-Marquart algorithm, see e.g. [6], with a suitable parame-
terization of the fundamental matrix [12] to minimize this cost function, based on
the initial solution provided by the three pop algorithm.

4 Multiple-View Triangulation

We deal with the triangulation of pop seen in multiple views. Note that since the
triangulation of a line is independent from the others, we drop the index j in this
section.

4.1 Optimal Triangulation

The optimal 3D pop is the one which better explains the data, i.e. which minimizes
the sum of squared Euclidean distances between predicted and observed supporting
points. Assuming that 3D pops are represented by two points M and N for the
supporting line and p scalars αk for the supporting points Qk ∼ αkM+(1−αk)N,
the following non-linear problem is obtained:

min
M,N,...,αk,...

Cpop with Cpop =
n∑

i=1

p∑
k=1

d2
e(Pi(αkM + (1− αk)N),qik). (5)

We use the Levenberg-Marquart algorithm, e.g. [6]. We examine the difficult prob-
lem of finding a reliable initial solution in the next section.

4.2 Initialization

Finding an initial solution which is close to the optimal one is of primary impor-
tance. The initialization method must minimize a cost function as close as possible
to (5). We propose a two-step initialization algorithm consisting in triangulating
the supporting line, then each supporting point. Our motivations for these steps
are explained while reviewing line triangulation below.

Line Triangulation Line triangulation from multiple views is a standard
structure-from-motion problem and has been widely studied, see e.g. [5]. The
optimal line < M,N > is given by minimizing the sum of squared Euclidean
distances between the predicted lines (PiM)× (PiN) and the observed points qik

as minM,N

∑n
i=1

∑p
k=1 d2

e((PiM)× (PiN),qik). To make the relationship with the
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cost function (5) appear, we introduce a set of points Qik on the 3D line. Using
the fact that the Euclidean distance between a point and a line is equal to the
Euclidean distance between the point and the projection of this point on the line,
we rewrite the line triangulation problem as:

min
M,N,...,αik,...

Cline with Cline =
n∑

i=1

p∑
k=1

d2
e(Pi(αikM + (1 − αik)N),qik). (6)

Compare this cost function (5): the difference is that for line triangulation, the
points are not supposed to match between the different views. Hence, a 3D point
on the line is reconstructed for each image point, while in the pop triangulation
problem, a 3D point on the line is reconstructed for each image point correspon-
dence. Now, the interesting point is to determine if, in practice, cost functions (5)
and (6) yield close solutions for the reconstructed 3D line. Obviously, an experi-
mental study is necessary, and we refer to §6. However, we intuitively expect that
the results are close.

Point-on-Line Triangulation We study the problem of point-on-line optimal
triangulation: given a 3D line, represented by two 3D points M and N, a set of
corresponding image points . . . ,qik, . . . , find a 3D point Qk ∼ αkM+(1−αk)N on
the given 3D line, such that the squared Euclidean distances between the predicted
and the observed points is minimized.

For point-on-line triangulation, we formalise the problem as
minαk

∑n
i=1 d2

e(Pi(αkM + (1 − αk)N),qik) and by introducing bi = Pi(M −N)
and di = PiN, we obtain:

min
αk

Cpol with Cpol =
n∑

i=1

d2
e(αkbi + di,qik). (7)

Sub-optimal linear algorithm. We give a linear algorithm, based on approximat-
ing the optimal cost function (7) by replacing the Euclidean distance de by the
algebraic distance da. The algebraic cost function is

∑n
i=1 d2

a(αkbi + di,qik) =∑n
i=1 ‖αkS[qik]×bi + S[qi]×di‖2. A closed-form solution giving the best αk in the

least-squares sens is αk = −
Pn

i=1 bi
T[qik]× Ĩ[qik]×diP

n
i=1 bi

T[qik]× Ĩ[qik]×bi
with Ĩ ∼ STS ∼

(
1

1
0

)
.

Optimal polynomial algorithm. This algorithm consists in finding the roots of a
degree-(3n− 2) polynomial in the parameter αk, whose coefficients depend on the
bi, the di and the qik. Due to lack of space, details are left to an extended version
of the paper.

5 Bundle Adjustment

Bundle adjustment consists in minimizing the reprojection error over structure
and motion parameters:

min
P1,...,Pn,M1,N1,...,Mm,Nm,...,αjk,...

n∑
i=1

m∑
j=1

p∑
k=1

d2
e(Pi(αjkMj + (1− αjk)Nj),qijk),
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where we consider without loss of generality that all points are visible in all views.
We use the Levenberg-Marquardt algorithm to minimize this cost function, start-
ing from an initial solution obtained by matching pairs of images and computing
pair-wise fundamental matrices using the algorithms of §§2 and 3, from which the
multiple-view geometry is extracted as in [11]. Multiple-view matches are formed,
and the pops are triangulated using the optimal method described in §4.

6 Experimental Results

We simulate a set of 3D pops observed by two cameras, with focal length 1000 pix-
els. To simulate a realistic scenario, each pop is made of 5 supporting points. The
supporting points are projected onto the images, and a Gaussian centered noise
is added. The images of the supporting lines are determined as the best fit to the
noisy supporting points. These data are used to compare quasi-metric reconstruc-
tions of the scene, obtained using different algorithms. We mesure the reprojection
error and a 3D error, obtained as the minimum residual of minHu

∑
j d2(Q

j
, HuQj),

where Q
j

are the groung truth 3D points, Qj the reconstruction points and Hu

an aligning 3D homography.
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Fig. 3. Reprojection and 3D error when varying the added image noise variance to com-
pare structure and motion recovery methods.

Comparing triangulation algorithms. The two first methods are based on trian-
gulating the supporting line, then each supporting point using the linear solution
(method ‘Line Triangulation + Lin’) or using the optimal polynomial solution
(method ‘Line Triangulation + Poly’). The third method is Levenberg-Marquardt
minimization of the reprojection error, for pops (method ‘ML Pops’) or points
(method ‘ML Points’). We observe on figure 3 (a) that triangulating the support-
ing line followed by the supporting points on this line (methods ‘Line Triangula-
tion + *’) produce results close to the non-linear minimization of the reprojection
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error of the reprojection error of the pop (method ‘ML Pops’). Minimizing the
reprojection error individually for each point (method ‘ML Points’) produce lower
reprojection errors.

Concerning the 3D error, shown on figure 3 (b), we also observe that methods
‘Line Triangulation + *’ produce results close to method ‘ML Pop’. However, we
observe that method ‘ML Points’ gives results worse than all other methods. This
is due to the fact that this method does not benefit from the structural constraints
defining pops.

Comparing bundle adjustment algorithms. The two first methods are based on
computing the epipolar geometry using the eight point algorithm (method ‘Eight
Point Alg.’) or the three pop algorithm (method ‘Three Pop Alg.’), then triangu-
lating the pops using the optimal triangulation method. The two other methods
are bundle adjustment of pops and points respectively. We observe on figure 4 (a)
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Fig. 4. Reprojection and 3D error when varying the added image noise variance to com-
pare triangulation methods.

that the eight point algorithm yields the worse reprojection error, followed by the
three pop algorithm and the eight corrected point algorithm. Bundle adjustement
of pops gives reprojection error slightly higher than with points. However, figure
4 (b) shows that bundle adjustment of pops gives a better 3D structure than
point, due to the structural constraints. It also shows that the eight corrected
point algorithm yields good results.

7 Conclusions and Further Work

We addressed the problem of automatic structure and motion recovery from images
containing lines. We introduced a feature that we call pop, for Pencil-of-Points.
We demonstrated our matching algorithm on real images. This confirms that the
repeatability rate of pops is higher than the repeatability rates of the points and
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lines from which they are detected. This also shows that using pops, wide baseline
matching and the epipolar geometry can be successfully computed in an automatic
manner, using simple cross-correlation. Experimental results on simulated data
show that due to the strong structural constraints, pops yield structure and motion
estimates more accurate than with points.

Advantages for using pops are numerous. Briefly, localization, repeatability
rate and structure and motion estimate are better with pops than with points,
and robust estimation is very efficient since only three pairs of pops define an
epipolar geometry. For this reason, we believe that this new feature could become
standard for automatic structure-and-motion in man-made environment, i.e. based
on lines.

Further work will consist in investigating the determination of parameters µ
needed to compute undistorted cross-correlation, since we believe that it could
strongly improve the initial matching step, and studying methods for estimating
the trifocal tensor from triplets of pops.

Acknowledgements. The first author would like to thank Frederik Schaffalitzky
from the University of Oxford for fruitful discussions. This paper benefited from
suggestions from one of the anonymous reviewers. Images of the Valbonne church
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Abstract

Triangulation consists in finding a 3D point reprojecting the best as possible onto corresponding image points. It is classical to min-
imize the reprojection error, which, in the pinhole camera model case, is nonlinear in the 3D point coordinates. We study the triangu-
lation of points lying on a 3D line, which is a typical problem for Structure-From-Motion in man-made environments. We show that the
reprojection error can be minimized by finding the real roots of a polynomial in a single variable, which degree depends on the number of
images. We use a set of transformations in 3D and in the images to make the degree of this polynomial as low as possible, and derive a
practical reconstruction algorithm. Experimental comparisons with an algebraic approximation algorithm and minimization of the
reprojection error using Gauss–Newton are reported for simulated and real data. Our algorithm finds the optimal solution with high
accuracy in all cases, showing that the polynomial equation is very stable. It only computes the roots corresponding to feasible points,
and can thus deal with a very large number of views – triangulation from hundreds of views is performed in a few seconds. Reconstruc-
tion accuracy is shown to be greatly improved compared to standard triangulation methods that do not take the line constraint into
account.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Triangulation; Structure-From-Motion; Point; Line

1. Introduction

Triangulation is one of the main building blocks of
Structure-From-Motion algorithms. Given image feature
correspondences and camera matrices, it consists in finding
the position of the underlying 3D feature, by minimizing
some error criterion. This criterion is often chosen as the
reprojection error – the Maximum Likelihood criterion
for a Gaussian, centered and i.i.d. noise model on the
image point positions – though other criteria are possible
[5,9,10].

Traditionally, triangulation is carried out by some sub-
optimal procedure and is then refined by local optimiza-
tion, see e.g. [7]. A drawback of this is that convergence
to the optimal solution is not guaranteed. Optimal proce-
dures for triangulating points from two and three views
were proposed in [6,13].

We address the problem of triangulating points lying on
a line, that is, given image point correspondences, camera
matrices and a 3D line, finding the 3D point lying on the
3D line, such that the reprojection error is minimized.

Our main contribution is to show that the problem can
be solved by computing the real roots of a degree-(3n � 2)
polynomial, where n is the number of views. Extensive
experiments on simulated data show that the polynomial
is very well balanced since large number of views and large
level of noise are handled. The method is valid whatever
the calibration level of the cameras is – projective, affine,
metric or Euclidean.

One may argue that triangulating points on a line only
has a theoretical interest since in practice, triangulating a
line from multiple views is done by minimizing the repro-
jection error over its supporting points which 3D positions
are hence reconstructed along with the 3D line. Indeed,
most work consider the case where the supporting points
do not match across the images, see e.g. [3]. When one iden-
tifies correspondences of supporting points accross the
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images, it is fruitful to incorporate these constraints into
the bundle adjustment, as is demonstrated by our experi-
ments. This is typically the case in man-made environ-
ments, where one identifies, e.g. matching corners at the
meet of planar facades or around windows. Bartoli et al.
[2] dubbed Pencil-of-Points or ‘POP’ this type of features.
In order to find an initial 3D reconstruction, a natural
way is to compute the 3D line by some means (e.g. by
ignoring the matching constraints of the supporting points,
from 3D primitives such as the intersection of two planes,
or from a registered wireframe CAD model) and then to tri-
angulate the supporting point correspondences using point
on line triangulation. The result can then be plugged into a
bundle adjustment incorporating the constraints.

We review some related work in Section 2. Our triangu-
lation method is derived in Section 3. A linear least squares
method minimizing an algebraic distance is provided in
Section 4. Gauss–Newton refinement is summarized in
Section 5. Experimental results are reported in Section 6
and our conclusions in Section 7.

Notation. Vectors are written using bold fonts, e.g. q,
and matrices using sans-serif fonts, e.g. P. Almost every-
thing is homogeneous, i.e. defined up to scale. Equality
up to scale is denoted �. The inhomogenous part of a vec-
tor is denoted using a bar, e.g. qT � ð�qT 1Þ where T is trans-
position. Index i = 1, . . . ,n, and sometime j are used for the
images. The point in the ith image is qi. Its elements are
qT

i � ðqi;1 qi;2 1Þ. The 3D line joining points M and N is
denoted (M,N). The L2-norm of a vector is denoted as in
ixi2 = xTx. The Euclidean distance measure de is defined by

d2
eðx; yÞ ¼

x

x3

� y

y3

����
����

2

¼ x1

x3

� y1

y3

� �2

þ x2

x3

� y2

y3

� �2

: ð1Þ

2. Related work

Optimal procedures for triangulating points in 3D
space, and points lying on a plane were previously studied,
as summarized in Table 1. Hartley and Sturm [6] showed
that triangulating points in 3D space from two views, in
other words finding a pair of points satisfying the epipolar
geometry and lying as close as possible to the measured
points, can be solved by finding the real roots of a
degree-6 polynomial. The optimal solution is then selected
by straightforward evaluation of the reprojection error.
Stewénius et al. [13] extended the method to three views.
The optimal solution is one of the real roots of a system
of 3 degree-6 polynomials in the three coordinates of the
point. Chum et al. [4] show that triangulating points lying
on a plane, in other words finding a pair of points satisfy-
ing an homography and lying as close as possible to the
measured points, can be solved by finding the real roots
of a degree-8 polynomial.

Error functions different from the reprojection error
were considered in the literature. The directional error in
two views is proposed in [10], along with a triangulation

method for calibrated cameras. The L1-norm is considered
in [5,9], instead of the usual L2-norm. A triangulation
method for two views is given in [9], while it is shown in
[5] that the n-view case can be cast as a convex optimization
problem Table 2.

3. Minimizing the reprojection error

We derive our optimal triangulation algorithm for point
on line, dubbed ‘POLY’.

3.1. Problem statement and parameterization

We want to compute a 3D point Q, lying on a 3D line
(M,N), represented by two 3D points M and N. The
(3 · 4) perspective camera matrices are denoted Pi with
i = 1, . . . ,n the image index. The problem is to find the
point Q̂ such that

Q̂ � arg min
Q2ðM;NÞ

C2
nðQÞ;

where Cn is the n-view reprojection error

C2
nðQÞ ¼

Xn

i¼1

d2
eðqi;PiQÞ: ð2Þ

We parameterize the point Q 2 (M,N) using a single
parameter k 2 R as

Q � kMþ ð1� kÞN � kðM�NÞ þN: ð3Þ

Introducing this parameterization into the reprojection
error (2) yields

C2
nðkÞ ¼

Xn

i¼1

d2
eðqi;PiðkðM�NÞ þNÞÞ:

Defining bi = Pi(M � N) and di = PiN, we get

C2
nðkÞ ¼

Xn

i¼1

d2
eðqi; kbi þ diÞ: ð4Þ

Table 1
Different types of triangulation and methods minimizing the L2-norm
reprojection error

Type of
triangulation

Number of
views

Polynomial system Reference

Number Degree Variables

Point in 3D
space

2 1 6 1 [6]
3 3 6/6/6 3 [13]

Point on plane 2 1 8 1 [4]

Point on line 1 1 1 1 This
paper

2 1 4 1
3 1 7 1
4 1 10 1
n 1 3n � 2 1

The number of polynomials to be solved, their degrees and the number of
variables is given in the column ‘Polynomial system’.
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Note that a similar parameterization can be derived by
considering the inter-image homographies induced by the
3D line [12]. The main motivation to reducing the number
of parameters with parameterization (3) instead of using,
e.g. a Lagrange multiplier for the point on line constraint,
is that it allows us to find the global minimum of the repro-
jection error through a simple polynomial formulation.

3.2. Simplification

We simplify the expression (4) of the reprojection error
by changing the 3D coordinate frame and the image coordi-
nate frames. This is intended to lower the degree of the poly-
nomial equation that will ultimately have to be solved. Since
the reprojection error is based on Euclidean distances mea-
sured in the images, only rigid image transformations are
allowed to keep invariant the error function, while full pro-
jective homographies can be used in 3D. We thus setup a
standard canonical 3D coordinate frame, see e.g. [8], such
that the first camera matrix becomes P1 � (I 0). Note that
using a projective basis does not harm Euclidean triangula-
tion since the normalization is undone once the point is tri-
angulated. The canonical basis is setup by the following
simple operations:

H  
P1

0 0 0 1

� �
Pi PiH

�1 M HM N HN:

Within this coordinate frame, we can write MT = (• • 1 •)
and NT = (• • 1 •) without loss of generality, as pointed
out in [7, Section A6], from which we get

b1 ¼P1ðM�NÞ ¼ ðb1;1 b1;2 0ÞT;
d1 ¼P1N ¼ ðd1;1 d1;2 1ÞT:

We then apply a rigid transformation Ti in each image
defined such that Tibi lies on the y-axis and such that
Tidi = TiPiN lies at the origin. This requires that point N

does not project at infinity in any of the images. We ensure
this by constraining N to project as close as possible to one
of the image points,1 say q1. The reprojection error (4)
for the first view is C2

1ðkÞ ¼ d2
eðq1; kb1 þ d1Þ ¼

kk�b1 þ �d1 � �q1k2. We compute k as the solution of
oC2

1

ok ¼ 0,

which gives, after some minor calculations,
k ¼ ð�q1 � �d1ÞT�b1=k�b1k2. Substituting in Eq. (3) yields the
following operations:

N ðP1N� q1Þ
T
P1ðM�NÞ

kP1ðM�NÞk2
ðM�NÞ þN:

Obviously, the di = PiN must be recomputed. These simpli-
fications lead to

b1 ¼ ð0 b1;2 0ÞT;
d1 ¼ ð0 0 1ÞT;
bi>1 ¼ ð0 bi;2 bi;3ÞT;
di>1 ¼ ð0 0 di;3ÞT:

8>>>><
>>>>:
The rigid transformations Ti are quickly derived below.
For each image i, we look for Ti mapping di to the origin,

Table 2
The proposed point on line triangulation algorithm ‘POLY’

Objective

Given a point correspondence qi over n P 1 views (i = 1, . . . ,n), a 3D line (M,N) and camera matrices Pi, compute the 3D point Q̂ lying on (M,N) such
that the reprojection error e in all images is minimized.

Algorithm

• Canonical 3D coordinate frame. Express the 3D line and the cameras in a canonical 3D coordinate frame

H 
P1

0 0 0 1

� �
Pi  PiH

�1 M HM N HN:

Normalize the homogeneous coordinates: M ‹ M/M3 and N ‹ N/N3.
• Line reparameterization. Reparameterize the 3D line by shifting point N such that it projects to a finite point in every views

N ðP1N� q1Þ
T
P1ðM�NÞ

kP1ðM�NÞk2
ðM�NÞ þN:

Project the 3D line onto the images: bi ‹ Pi(M � N) and di ‹ PiN.
• Rigid image transformations. Align the projected line with the y-axis in each view such that point N projects to the origin:

ti  �di=di;3 ri  �bi � bi;3ti Ri  
ri;2 �ri;1

ri;1 ri;2

�� �
k�rik Ti  

Ri �Riti

0T 1

� �
di  Tidi bi  Tibi Pi  TiPi qi  Tiqi:

• Solving. See Section 3.3 for how to find the real roots kk of the polynomial ~DðkÞ given by Eq. (5). Select the root k̂ for which the reprojection error is
minimized: k̂ ¼ arg minkC

2
nðkkÞ.

• Finishing. Compute the mean reprojection error e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n C

2
nðk̂Þ

q
and recover the 3D point in the original coordinate frame: Q̂ � H�1ðk̂Mþ ð1� k̂ÞNÞ.

1 Note that this is equivalent to solving the single view triangulation
problem. Point N does not project at infinity in any of the views since both
point q1 and the supporting line have observable correspondences in all
images.
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and bi to a point on the y-axis. We decompose Ti as a rota-
tion around the origin and a translation

Ti ¼
Ri 0

0T 1

� �
I �ti

0T 1

� �
:

The translation is directly given from Tidi � (0 0 1)T as
ti ¼ �di=di;3. For the rotation, we consider Tibi � (0 • •)T,
from which, setting ri ¼ �bi � bi;3ti, we obtain

Ri ¼
ri;2 �ri;1

ri;1 ri;2

� �
=k�rik:

This leads to the following expression for the reprojection
error (4) where we separated the leading term:

C2
nðkÞ ¼ d2

eðq1; kb1 þ d1Þ þ
Xn

i¼2

d2
eðqi; kbi þ diÞ;

¼ q2
1;1 þ ðkb1;2 � q1;2Þ

2

þ
Xn

i¼2

q2
i;1 þ

kbi;2

kbi;3 � di;3
� qi;2

� �2
 !

:

The constant terms q2
1;1 and q2

i;1 represent the vertical coun-
terparts of the point to line distance in the images. This
means that only the errors along the lines are to be
minimized.

3.3. Solving the polynomial equation

Looking for the minima of the reprojection error C2
n is

equivalent to finding the roots of its derivative, i.e. solving
oC2

n
ok ¼ 0. Define Dn ¼ 1

2
oC2

ok :

DnðkÞ ¼ ðkb1;2 � q1;2Þb1;2

þ
Xn

i¼2

kbi;2

kbi;3 þ di;3
� qi;2

� �
bi;2di;3

ðkbi;3 þ di;3Þ2

 !
:

This is a nonlinear function. Directly solving DnðkÞ ¼ 0 is
therefore very difficult in general. We thus define
~DnðkÞ ¼ DnðkÞKnðkÞ, where we choose Kn in order to
cancel out the denominators including k in Dn. Finding
the zeros of ~Dn is thus equivalent to finding the zeros of
Dn. Inspecting the expression of Dn reveals that
KnðkÞ ¼

Qn
i¼2ðkbi;3 þ di;3Þ3 does the trick.

~DnðkÞ ¼ ðkb1;2 � q1;2Þb1;2

Yn

i¼2

ðkbi;3 þ di;3Þ3

þ
Xn

i¼2

�
bi;2di;3ðkbi;2 � qi;2ðkbi;3 þ di;3ÞÞ

�
Yn

j¼2;j 6¼i

ðkbj;3 þ dj;3Þ3
�
: ð5Þ

As expected, ~Dn is a polynomial function, whose degree de-
pends on the number of images n. We observe that cancel-
ling the denominator out for the contribution of each
(i > 1)-image requires to multiply Dn by a cubic, namely
(kbi,3 + di,3)3. Since the polynomial required for image

i = 1 is linear, the degree of the polynomial to solve is
3(n � 1) + 1 = 3n � 2.

Given the real roots kk of ~DnðkÞ, that we compute as
detailed below for different number of images, we simply
select the one for which the reprojection error is minimized,
i.e. k̂ ¼ arg minkC

2
nðkkÞ, substitute it in Eq. (3) and transfer

the recovered point back to the original coordinate frame

Q̂ � H�1ðk̂Mþ ð1� k̂ÞNÞ:
A single image. For n = 1 image, the point is triangulated
by projecting its image onto the image projection of the
line. The intersection of the associated viewing ray with
the 3D line gives the 3D point. In our framework, Eq. (5)
is indeed linear in k for n = 1

~D1ðkÞ ¼ ðkb1;2 � q1;2Þb1;2 ¼ b2
1;2k� q1;2b1;2:

A pair of images. For n = 2 images, Eq. (5) gives

~D2ðkÞ ¼ ðkb1;2 � q1;2Þb1;2ðkb2;3 þ d2;3Þ3 þ b2;2d2;3ðkb2;2

� q2;2ðkb2;3 þ d2;3ÞÞ;

which is a quartic in k that can be solved in closed-form
using Cardano’s formulas: ~D2ðkÞ �

P4
d¼1cdk

d , with:

c0 ¼ �q2;2d2
2;3b2;2 � b1;2q1;2d3

2;3;

c1 ¼ d2;3ðb2
2;2 � 3b1;2q1;2b2;3d2;3 þ b2

1;2d2
2;3 � q2;2b2;3b2;2Þ;

c2 ¼ 3b1;2b2;3d2;3ðb1;2d2;3 � q1;2b2;3Þ;
c3 ¼ b1;2b2

2;3ð3b1;2d2;3 � q1;2b2;3Þ;
c4 ¼ b2

1;2b3
2;3:

8>>>>>>><
>>>>>>>:
Multiple images. Solving the n P 3 view case is done in two
steps. The first step is to compute the coefficients cj,
j = 0, . . . , 3n � 2 of a polynomial. The second step is to
compute its real roots. Computing the coefficients in
closed-form from Eq. (5), as is done above for the single-
and the two-view cases, lead to very large, awkward formu-
las, which may lead to roundoff errors. We thus perform a
numerical computation, while reparameterizing the poly-
nomial, as described below.

A standard root-finding technique is to compute the
eigenvalues of the ((3n � 2) · (3n � 2)) companion matrix
of the polynomial, see e.g. [1]. Computing all the roots
ensures the optimal solution to be found. This can be done
if the number of images is not too large, i.e. lower than 100,
and if computation time is not an issue. However, for large
numbers of images, or if real-time computation must be
achieved, it is not possible to compute and try all roots.
In that case, we propose to compute only the roots corre-
sponding to feasible points.

Let k0 be an approximation of the sought-after root. For
example, one can take the result of the algebraic method of
Section 4, or even k0 = 0 since our parameterization takes
the sought-after root very close to 0. Obviously, we could
launch an iterative root-finding procedure such as New-
ton–Raphson from k0 but this would not guarantee that
the optimal solution is found.
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One solution to efficiently compute only the feasible
roots is to reparameterize the polynomial such that those
lie close to 0, and use an iterative algorithm for computing
the eigenvalues of the companion matrix on turn. For
example, Arnoldi or Lanczos’ methods, compute the eigen-
values with increasing magnitude starting from the smallest
one. Let kc be the last computed eigenvalue, and Q1 and Q2

the reconstructed points corresponding to kc and �kc. If
both Q1 and Q2 reproject outside the images, the computa-
tion is stopped. Indeed, the next root that would be com-
puted would have greater magnitude than kc, and would
obviously lead to a point reprojecting further away than
the previous one outside the images.

The reparameterization is done by computing a polyno-
mial PnðkÞ ¼ ~Dnðkþ k0Þ. A simple way to achieve this
reparameterization is to estimate the coefficients cj,
j = 1, . . . , 3n � 1, of Pn, as follows. We evaluate z P 3n � 1
values vk ¼ ~Dnðkk þ k0Þ from Eq. (5) for kk 2 [�d,d], and
solve the associated Vandermonde system

X3n�2

j¼0

cjk
j
k ¼ vk for k ¼ 1; . . . ; z:

We typically use z = 10(3n � 1). The parameter d 2 R�þ

reflects the size of the sampling interval around k0. We no-
ticed that this parameter does not influence the results,
and typically chose d = 1. Obviously, in theory, using
z = 3n � 1, i.e. the minimum number of samples, at
distinct points, is equivalent for finding the coefficients.
However we experimentally found that using extra sam-
ples evenly spread around the expected root k0 has the
benefit of ‘averaging’ the roundoff error, and stabilizes
the computation.

One could argue that with this method for estimating
the coefficients, the simplifying transformations of Section
3.2 are not necessary. A short calculation shows that this is
partly true since if the canonical 3D projective basis were
not used along with the normalization of the third entries
of M and N to unity, then the degree of the polynomial
would be 3n instead of 3n � 2. While this makes little dif-
ference for large n, this is important, e.g. for finding a
closed-form solution in the two-view case. Such low n cases
are likely to be embedded in RANSAC schemes, making
triangulation time critical.

4. An algebraic criterion

We give a linear algorithm, dubbed ‘ALGEBRAIC’, based
on approximating the reprojection error (2) by replacing
the Euclidean distance measure de by the algebraic distance
measure da defined by

d2
aðx; yÞ ¼ S½x��y with S ¼

1 0 0

0 1 0

� �
;

and

d2
aðx; yÞ ¼ S½x��y with Sð2�3Þ ¼

1 0 0

0 1 0

� �
;

where [x]· is the (3 · 3) skew-symmetric matrix associated
to cross-product, i.e. [x]·y = x · y. This gives an algebraic
error function

E2
nðkÞ ¼

Xn

i¼1

d2
aðkbi þ di; qiÞ ¼

Xn

i¼1

kkS½qi��bi þ S½qi��dik2
;

in matrix form

E2
nðkÞ ¼

� � �
S½qi��bi

� � �

0
B@

1
CA
ð2n�1Þ

kþ
� � �

S½qi��di

� � �

0
B@

1
CA
ð2n�1Þ

�������
�������

2

:

A closed-form solution is obtained, giving ka in the least
squares sense

ka ¼ �

Pn
i¼1

bT
i ½qi��~I½qi��di

Pn
i¼1

bT
i ½qi��~I½qi��bi

with ~I � STS �
1 0 0

0 1 0

0 0 0

0
B@

1
CA:

Algorithms based on algebraic distances are highly condi-
tioned by the image coordinate frame, see e.g. [7]. We
experimentally tried the classical normalization used in,
e.g. the eight-point algorithm in [7], and did not notice
any difference with the normalization proposed in Section
3.2 for the polynomial algorithm.

5. Gauss–Newton refinement

As is usual for triangulation and bundle adjustment [7],
we use the Gauss–Newton algorithm for refining an esti-
mate of k̂ by minimizing the nonlinear least squares
reprojection error (2). The algorithm, that we do not
derived in details, is dubbed ‘GAUSS–NEWTON’. We use the
best solution amongst POLY and ALGEBRAIC as the initial
solution.

6. Experimental results

6.1. Simulated data

We simulated a 3D line observed by n cameras Pi. In
order to simulate realistic data, we reconstructed the 3D
line as follows. We projected the line onto the images,
and regularly sampled points on it, that were offset orthog-
onally to the image line with a Gaussian centered noise
with variance rl. The 3D line was then reconstructed from
the noisy points using the Maximum Likelihood triangula-
tion method in [3], which provided2 M and N. Note that

2 The line triangulation method in [3] provides the Plücker coordinates
of the 3D line. Points M and N are extracted as the two singular vectors
associated to the two non-zero singular values of the rank-two Plücker
matrix using SVD. Note that the position of M and N along the line does
not change the result.
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any line triangulation method, see e.g. [14], can be used.
Finally, a point lying on the true 3D line was projected
onto the images, and corrupted with a Gaussian centered
noise with variance rp, which gave the qi. We varied some
parameters of this setup, namely n and rp, and the spatial
configuration of the cameras, in order to compare the algo-
rithms under different conditions. We compared two cases
for the cameras: a stable one, in which they were evenly
spread around the 3D line, and an unstable one, in which
they were very close to each other. The default parameters
of the setup are rl = 0.1 pixels, rp = 3 pixels, n = 10 views
and stable cameras.

We had two main goals in these experiments. First, we
wanted to determine what in practice is the maximum num-
ber of views and noise that the proposed triangulation
method can deal with, for stable and unstable camera con-
figurations. Second, we wanted to determine to which
extent the line constraint improves the accuracy of the
reconstructed 3D point, compared to standard uncon-
strained triangulation. We measured two kinds of error:
the reprojection error, quantifying the ability of the meth-
ods to fit the measurements, and a 3D error, quantifying
the accuracy of the reconstruction.

We compared the three algorithms, described in the
paper (POLY, Section 3; ALGEBRAIC, Section 4; GAUSS–NEW-

TON, Section 5) and 3DTRIANGULATION, which is a standard
Maximum Likelihood triangulation, ignoring the line con-
straint, e.g. [7].

Fig. 1 shows the results for varying noise level on the
image points (rp = 1, . . . , 10 pixels), and Fig. 2 for varying
number of views (n = 2, . . . , 200). Note the logarithmic
scaling on the abscissa. General comments can be made
about these results:

• 3DTRIANGULATION always gives the lowest reprojection
error.

• ALGEBRAIC always gives the highest reprojection error
and 3D error.

• POLY and GAUSS–NEWTON always give the lowest 3D error.

Small differences in the reprojection error may lead to
large discrepancies in the 3D error. For example, POLY

and GAUSS–NEWTON are undistinguisable on Figs. 1 (left)
and 2 (left), showing the reprojection error, while they can
clearly be distinguished in Figs. 1 (right) and 2 (right),
showing the 3D error. This is due to the fact that
GAUSS–NEWTON converges when some standard precision is
reached on the reprojection error. Increasing the precision
may improve the results, but would make convergence
slower.

For n = 10 views, Fig. 1 shows that the accuracy of the
3D reconstruction is clearly better for the optimal methods
POLY and GAUSS–NEWTON using the line constraint, com-
pared to 3DTRIANGULATION that does not use this constraint.
The difference in 3D accuracy is getting larger as the noise
level increases. For a rp = 1 pixel noise, which is what one
can expect in practice, the difference in accuracy is 1 cm,

corresponding to 1% of the simulated scene scale. This is
an important difference.

However, for rp = 3 pixels, beyond 20 views, Fig. 2 (left)
shows that the reprojection error for 3DTRIANGULATION and
POLY/GAUSS–NEWTON are hardly distinguishable, while we
expect from Fig. 2 (right) the difference in 3D error to be
negligible beyond 200 views.

The results presented above concern the stable camera
setup. For the unstable case, we obtained slightly lower
reprojection errors, which is due to the fact that the 3D
model is less constrained, making the observations easier
to ‘‘explain’’. However, as was expected, the 3D errors
are higher by a factor of around 2. The order of the differ-
ent methods remains the same as in the stable case. We
noticed that incorporating the line constraint improves
the accuracy compared to 3DTRIANGULATION to a much
higher extent than in the stable case.

6.2. Real data

We tested the four reconstruction algorithms on several
real data sets. For three of them, we show results. We used
a Canny detector to retrieve salient edgels in the images,
and adjusted segments using robust least squares. Finally,
we matched the segments by hand between the images,
except for the 387 frame ‘building’ sequence where auto-
matic tracking was used. The point on line correspon-
dences were manually given, again besides for the
‘building’ sequence for which correlation based tracking
was used. We reconstructed the 3D lines from the edgels
by the Maximum Likelihood method in [3].

The ‘office’ sequence. This data set consists of two
images of an indoor scene, shown overlaid with 5 input seg-
ments and 10 input points in Fig. 3. A standard nonlinear
least squares algorithm was used to recover the fundamen-
tal matrix, from which we extracted a pair of uncalibrated
projection matrices. Note that for two views, line triangu-
lation is an exact process. The end-points of matching seg-
ments correspond to the same physical point. We thus use
them as input to our algorithms. A calibration grid was
used to get the radial distortion parameters, that was
corrected.

This data set is interesting in particular for the reason
that one of the segments almost lies on the epipolar lines
associated to its end-points, which is one case where line
triangulation is singular. Indeed, any 3D line lying on the
epipolar plane reprojects to the same image lines. For this
segment, we used the fact that the end-points are corre-
sponding, and can thus be triangulated on their own using
standard unconstrained triangulation, to disambiguate the
3D line.

ALGEBRAIC and POLY/GAUSS–NEWTON gave, respectively, a
3.45 pixels and a 1.42 pixels reprojection error,3 while

3 These are RMS (Root Mean of Squares) errors over all images and all
points.
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3DTRIANGULATION achieved 0.98 pixels. A close up on the
reprojected points can be seen in Fig. 4.

The ‘Valbonne church’ sequence. We used 6 views from
the popular ‘Valbonne church’ image set. Some of them

are shown in Fig. 5, together with the 6 input segments
and 13 inputs points. The cameras were obtained by
Euclidean bundle adjustment over a set of points [11].
The RMS reprojection errors we obtained were

1 2 3 4 5 6 7 8 9 10
0

5

10

15

Noise level (pixels)

R
ep

ro
je

ct
io

n 
er

ro
r (

pi
xe

ls
) Algebraic

Gauss—Newton
Poly
3DTriangulation

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Noise level (pixels)

3D
 E

rro
r (

m
et

er
s)

Algebraic
3DTriangulation
Gauss—Newton
Poly

Fig. 1. Reprojection error (left) and 3D error (right) versus the level of noise.
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Fig. 2. Reprojection error (left) and 3D error (right) versus the number of views.

Fig. 3. The two original images of the ‘office’ sequence, overlaid with 5 matching segments, 10 corresponding end-points (in white), and their epipolar lines
(in gray).

Fig. 4. Close up on some reprojected features, around the two end-points for the segment in the left hand corner of Fig. 3 (left) and in the right most part
(right). The epipolar lines are shown in gray, and the segments in white, with their end-points plotted with squares. The diamonds are the points predicted
from method ALGEBRAIC, and the circles from methods POLY and GAUSS–NEWTON (they are undistinguishable).
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ALGEBRAIC POLY GAUSS–NEWTON 3DTRIANGULATION

1.37 pixels 0.77 pixels 0.77 pixels 0.56 pixels

Fig. 6a shows lines and points reprojected from the 3D
reconstruction. The reprojection errors we obtained for
the points shown in Fig. 6b were

Fig. 5. Three out of the 6 images taken from the ‘Valbonne church’ sequence, overlaid with 6 matching segments and 13 corresponding points.

Fig. 6. Reprojected 3D lines and 3D points. (a) Shows four different numbered points, for which (b) shows a close up for all the 6 images. The squares are
the original points, the diamonds are the points reconstructed by ALGEBRAIC, and the circles are the points reconstructed from POLY and GAUSS–NEWTON

(they are undistinguishable).
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Point ALGEBRAIC

(pixels)
POLY

(pixels)
GAUSS–

NEWTON

(pixels)

3DTRIANGULATION

(pixels)

1 4.03 2.14 2.14 1.83
2 6.97 1.95 1.95 1.52
3 2.84 2.21 2. 21 1.61
4 4.65 2.14 2.14 1.79

The reprojection error for 3DTRIANGULATION is slightly
lower than for POLY/GAUSS–NEWTON. This indicates that
the point on line constraint is feasible on these data.

The ‘Building’ sequence. This sequence is a continuous
video stream consisting of 387 frames, showing a building
imaged by a hand-held camera, see Fig. 7. We reconstructed
calibrated cameras by bundle adjustment from interest
points that were tracked using a correlation based tracker.

The segment we tracked is almost the only one that is
visible throughout the sequence, and thus allows to test
our triangulation methods for a very large number of
views, namely 387. For the seven points we selected, we
obtained a mean reprojection error of 4.57 pixels for ALGE-

BRAIC, of 3.45 pixels for POLY and GAUSS–NEWTON. Uncon-
strained triangulation gave a 2.90 pixels reprojection

error. These errors which are higher than for the two pre-
vious data sets, are explained by the fact that there is
non-negligible radial distortion in the images, as can be
seen in Fig. 7.

7. Conclusions

We proposed an algorithm for the optimal triangula-
tion, in the Maximum Likelihood sense, of a point lying
on a given 3D line. Several transformations of 3D space
and in the images lead to a degree-(3n � 2) polynomial
equation. An efficient algorithm computes the real roots
leading to feasible points only. Experimental evaluation
on simulated and real data show that the method can be
applied to large numbers of images, up to 387 in our exper-
iments. The experiments were done for many different real
data sets, indoor and outdoor, small, medium and large
number of images, calibrated and uncalibrated reconstruc-
tions. Comparison of triangulated points with ground truth
for the case of simulated data show that using the line con-
straint greatly improves the accuracy of the reconstruction.

Future work will be devoted to extending the method
to the triangulation of points lying on parameterized
curves.

Fig. 7. Three out of the 387 images of the ‘building’ sequence, overlaid with the matching segments and 7 corresponding points.
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Abstract

Recent work shows that recovering pose and velocity
from a single view of a moving rigid object is possible with
a rolling shutter camera, based on feature point correspon-
dences.

We extend this method to line correspondences. Owing
to the combined effect of rolling shutter and object motion,
straight lines are distorted to curves as they get imaged with
a rolling shutter camera. Lines thus capture more informa-
tion than points, which is not the case with standard projec-
tion models for which both points and lines give two con-
straints.

We extend the standard line reprojection error, and pro-
pose a nonlinear method for retrieving a solution to the pose
and velocity computation problem. A careful inspection of
the design matrix in the normal equations reveals that it is
highly sparse and patterned. We propose a blockwise solu-
tion procedure based on bundle-adjustment-like sparse in-
version. This makes nonlinear optimization fast and numer-
ically stable. The method is validated using real data.

1. Introduction

CMOS cameras offer several advantages: low cost, low
power demand, easy region of interest selection, on-chip
characteristics and high frame rate. This makes them a nat-
ural fit for wireless hand-held applications, visual servo-
ing and some in-vehicle uses. In the last years, the per-
formances of CMOS sensors in terms of signal-to-noise
ratio have been considerably improved, reaching the level
of CCD sensors. This has made CMOS cameras more
and more used by the vision community in applications for
which a high frame rate and accurate feature detection is
necessary (fast robot control and identification, road traffic,
balistic).

Standard and cheap CMOS cameras frequently use
rolling shutter sensors. This shuttering mode enables ad-
equate exposure time without reducing the frame rate by
overlapping exposure and readout. It reduces the number

Figure 1. An example of distortion of a rotating ventilator observed
with a rolling shutter camera: static object (left image) and moving
object (right image).

of in-pixel transistors, improving the fill factor (percentage
of the pixel array sensitive to light) and the signal-to-noise
ratio. The drawback of rolling shutter cameras is that they
distort images of moving objects because the pixels are not
all exposed simultaneously but row by row with a time de-
lay defined by the sensor technology (Fig.1). This distortion
may represent a major obstacle in tasks such as localization,
3D reconstruction or default detection (the system may see
an ellipse where in fact there is a circular hole). Therefore,
CMOS rolling shutter cameras could offer a good compro-
mise between cost and frame rate performances if the prob-
lem of deformations is taken into account.

The work done by Wilburn et al. [1] concerned the cor-
rection of image deformations due to rolling shutter by con-
structing a single image using several images from a dense
camera array. Knowing the time delay due to rolling shutter
and the chronograms of release of the cameras, one com-
plete image is constructed by combining lines exposed at
the same instant in each image from the different cam-
eras. In [2] Meingast describes an approximated projec-
tion model of rolling shutter cameras which, in the case of
fronto-parallel motion, is similar to a Crossed-Slits camera
model [3]. Ait-Aider et al. [4] present a general and ex-
act perspective projection model by removing the assump-
tion of small motion during image acquisition. A nonlinear
algorithm for simultaneous pose and velocity computation
using a single view is then developed. It extends bundle
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adjustment with point correspondences, to the case of mov-
ing objects observed with a rolling shutter camera. A linear
algorithm is proposed in the particular case of planar ob-
jects. It provides an initial estimate of the pose and velocity
parameters. To our knowledge, there is no other work in
the vision community literature on taking into account ef-
fects of rolling shutter in pose recovery algorithms nor on
exploiting them to compute the velocity parameters using a
single view. Indeed, traditional pose recovery methods (for
instance [5, 6, 7, 8, 9]) make the assumption that all image
sensor pixels are exposed simultaneously.

In this paper, we propose an extension of the pose and
velocity computation algorithm presented in [4] to line cor-
respondences. When observed with a rolling shutter cam-
era, a moving 3D line is projected to a curve on the im-
age. A typical example is the observation of a polyhedral
object. Straight edges are detected by segmenting image
into contours. Why is this extension worthwhile? First,
in the point-based algorithm of [4] the local distorsions in
the image point neighborhood are neglected so that inter-
est point detectors and descriptors such as Harris or SIFT
remain usable. When motion artefacts are too important,
this approximation may result in both false negatives in
correlation-based matching and bad point localization. Us-
ing curves, even local distortions are modelled with an ac-
curacy only bounded by image resolution. Second, for a
rolling shutter projection model, lines capture more infor-
mation about the motion than points. This is not the case
with standard projection models for which both points and
lines give two constraints. Finally, using all the pixels of a
contour provides redundant information which is exploited
against noise. Note that the pixels are here used directly
without high level image processing. Conversely, detecting
a straight line (with a classical camera) implies finding the
function which best fits aligned pixels.

The main difficulty is that one can not derive an algebraic
formulation of the curve corresponding to the projection of
a straight line for a general motion. It is also difficult to
find a metric which measures the distance between two such
curves. We write the error between an observed and a repro-
jected curve as the sum of distances between the observed
contour pixels and the reprojected 3D line. The point-to-
curve distance does not however have a closed-form solu-
tion in general. The error is thus computed in practice by
introducing, for each contour point, a corresponding point
moving along the 3D line, so as to minimize the distance.
This is done by introducing additional unknowns called nui-
sance variables in addition to the desired pose and velocity
parameters. This results in a large but sparse Jacobian ma-
trix. The latter property is taken into account in the res-
olution process. The optimization is achieved thanks to a
blockwise solution procedure based on bundle-adjustment-
like sparse inversion [10]. This ensures fast and numerically

Figure 2. Reset and reading chronograms in rolling shutter sensor
(Silicon Imaging documentation).

stable nonlinear optimization.
In section 2, we briefly recall the point projection model

of a rolling shutter camera. In section 3, we formulate the
pose and velocity computation problem under the form of a
cost function derived from a set of line-to-curve correspon-
dences. In section 4, we focus on improving efficiency and
numerical stability of the nonlinear optimization of the cost
function by exploiting the sparse structure of the Jacobian
matrix. Finally, experimental results obtained with real im-
ages illustrate the performances of the method.

2. Rolling Shutter Camera Projection Model

In a CMOS camera operating in rolling shutter mode, the
sensor pixels are exposed sequentially starting at the top and
proceeding row by row to the bottom. The readout process
proceeds in exactly the same fashion and the same speed
with a time delay after the reset (exposure time). The ben-
efit of rolling shutter mode is that exposure and readout are
overlapping, enabling full frame exposures without reduc-
ing the frame rate. Each row in the image has the same
amount of integration, however the starting and ending time
of integration are shifted in time as the image is scanned
(rolled) out of the sensor array, as shown in Fig.2. If an ob-
served object is moving during the integration time, some
artefacts may appear and its image is distorted. The faster
the object the larger the distortion. A simple case where the
object undergoes a pure translational motion is illustrated
on Fig.3.

Assume that an object of known geometry, modelled by a
set of n points Pi = [Xi, Yi, Zi, 1]T, undergoing a motion
with instantaneous angular velocity Ω around an instanta-
neous axis of unit vector a = [ax, ay, az ]

T, and instanta-
neous linear velocity V = [Vx, Vy, Vz, 1]T, is snapped with
a rolling shutter camera at time t0. Denoting R and T the
instantaneous object pose at t0, it was demonstrated in [4]
that the 2D projection mi = [ui, vi, 1]T of Pi can be ex-
pressed up to an arbitrary scale factor s as follows:

smi = K [RδRi T + δTi]Pi (1)

with:
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Figure 3. Perspective projection of a moving 3D object: due to the
time delay, points P0 and P1 are not projected under the same
pose

.

δRi = aaT (1− cos (τviΩ))+Icos (τviΩ)+ âsin (τviΩ)
(2)

and:

δTi = τviV (3)

where I is the 3×3 identity matrix, â is the antisymmet-
ric matrix associated to a, τ is the image scanning speed
(in raws per second) and K contains the classical intrinsic
parameters of a pinhole camera. Note that V is the sum
of two vectors VL and VR. The first component is due to
the pure translational motion and is thus expressed in the
camera frame. The second component is induced by the
rotation (tangential velocity) and must be expressed in the
object frame. Thus we have V = RVR + VL.

Equation (1) is the expression of the projection of a 3D
point from a moving solid object using a rolling shutter
camera with respect to object pose, object velocity and the
parameter τ . Note that it contains the unknown v i on its
two sides. This is due to the fact that coordinates of the pro-
jected point on the image depend on both the kinematics of
the object and the imager sensor scanning velocity.

3. Pose and Velocity Computation with Lines

If a moving polyhedral object is observed with a rolling
shutter camera, its straight edges are projected into the im-
age as curved contours. Assume that a set of N straight
edges, defined in the object frame by their direction vectors
Lk, are matched with a set of curved image contours lk.

Considering an arbitrary point Mk0 on Lk , any other point
Mki on the latter edge can be expressed in the object frame
as follows:

Mki = Mk0 + σkiLk (4)

Thus, for each pixel on the curve one can write the fol-
lowing projection equation:

smki = K [RδRi T + δTi] (Mki + σkiLk) (5)

This means that each pixel of the contour yields a pair of
contraints of the form:

uki = αu
R1i(Mki+σkiLk)+Txi

R3i(Mki+σkiLk)+Tzi
+ u0

vki = αu
R2i(Mki+σkiLk)+Tyi

R3i(Mki+σkiLk)+Tzi
+ v0

(6)

It is obvious that matching a 3D straight edge with an
image curve does not tell us for each contour pixel which is
the corresponding 3D edge point. In other words, the values
of σki are unknown. Thus, equation (6) can be expressed as
follows:

uki
Δ= ξuki (R,T, Ω, a,V,Σ)

vki
Δ= ξvki (R,T, Ω, a,V,Σ)

(7)

where Σ is the vector of all the parameters σki.
Considering the observation of m pixels [ûki, v̂ki] on

each one of the n image curves matched with a straight
edge, and comparing them with the theoretical projections
using (6) we obtain a n ×m equation system representing
the reprojection error:

εki =
[

ûki − ξuki (R,T, Ω,a,V,Σ)
v̂ki − ξvki (R,T, Ω,a,V,Σ)

]
(8)

From this, a cost function in the least square sense is
expressed with respect to pose and velocity parameters
R,T, Ω, a,V and also with respect to the so-called nui-
sance variables Σ:

ε =
∑n

k=1

∑m
i=1 [ûki − ξuki (R,T, Ω, a,V,Σ)]2

+ [v̂ki − ξvki (R,T, Ω,a,V,Σ)]2
(9)

This cost function is minimized using the Levenberg-
Marquardt algorithm [11].

4. Blockwise Nonlinear Minimization

Let y be the vector of image projections in the left hand
side of equation (7) and x the vector of pose, velocity and
nuisance parameters Π = [R,T, Ω,a,V,Σ]. The relation-
ship between these two vectors is denoted y = ξ (x). Given
a set of noisy observations ŷ, we want to converge toward
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Figure 4. Structure of the Jacobian matrix J.

the value x̂ so that the error ê in the relation ŷ = ξ (x̂) + ê
is minimal. The minimization starts from an initial guess
x0 and is updated iteratively by applying variations δ to x̂.
This is generally achieved by assuming local linearity of ξ
under which one can write ξ (x0 + δ) = ξ (x0)+Jδ with J
the Jacobian matrix of ξ (x). This implies to solve at each
iteration the so called normal equations:

JTJδ = JTe (10)

In our case, the Jacobian matrix is very sparse because
each image pixel mki on a matched contour depends on all
the pose and velocity parameters P = [R,T, Ω,a,V] but
only on its own nuisance variable σki. Thus ∂mki

∂σlj
�= 0 only

for k = l and i = j but is null elsewhere. This results for J
in the structure illustrated in Fig.4, which in turn produces
the JTJ pattern illustrated in Fig.5 with:

Up,q =
∑

k

∑
i

(
∂mki

∂Pp

) (
∂mki

∂Pq

)
(11)

Vp,q =
∑

k

∑
i

(
∂mki

∂Σp

) (
∂mki

∂Σq

)
(12)

Wp,q =
∑

k

∑
i

(
∂mki

∂Pp

) (
∂mki

∂Σq

)
(13)

A similar strucutre is exploited in bundle adjustment, for
instance in [10], to reduce the computational cost for solv-
ing the normal equations by rewriting it as follows:

[
U W

WT V

] [
δP
δΣ

]
=

[
EP

EΣ

]
(14)

where δP and δΣ contains the small variations of respec-
tively P and Σ. The blocks EP and EΣ form the vector
on the right hand side of the normal equation (10). Their
components are defined as follows:

Figure 5. Structure of JT J in the normal equations.

EPq =
∑

k

∑
i

(
∂mki

∂Πq

)
εki (15)

EΣq =
∑

k

∑
i

(
∂mki

∂Πq

)
εki (16)

Equation (14) can be rewritten as follows:

[
U−WV−1WT 0

WT V

] [
δP
δΣ

]
=

[
EP −WV−1EΣ

EΣ

]

(17)
which can be decomposed into two separate equation

systems:

(
U−WV−1WT

)
δP = EP −WV−1EΣ (18)

and

δΣ = V−1
(
EΣ −WTδP

)
(19)

Equation (18) can be solved very efficiently because V
is diagonal. Equation (19) is then solved by substituting the
solution of (18).

5. Experimental Evaluation

The pose and velocity computation algorithm was tested
on real image data. A reference 3D polyhedral object with
both point and line features was used. A Silicon Imaging
CMOS rolling shutter camera SI1280M-CL was first cal-
ibrated using the method described in [12] and then used
to capture image sequences of the reference polyhedral ob-
ject while undergoing rotational and translational motion at
a high velocity. Fig.6 shows samples of images from these
sequences.
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Table 1. Differences between results of point-based algorithm and
line-based algorithm (Mean value and standard deviation on the
basis of 20 test images)

Parameter R (deg) T (m) V (perc.) Omega (perc.)
mean value 1.4 0.015 1.55 2.60
stand. dev. 1.0 0.006 1.05 1.80

Acquisition was done with a resolution of 640×480
square pixels and at a rate of 30 frames per second so that
τ = 39.5× 10−6 s.

Point features served to generate groundtruth values for
pose and velocity parameters. Indeed, since the point based
algorithm was validated and evaluated in [4] using ground
truth values, it was used here as a reference, simultaneously
with the line-based algorithm and on the same image data.
Image point coordinates were accurately obtained to sub-
pixel accuracy estimation of the white spot centers and cor-
rected according to the lens distortion parameters.

Thin image curves were detected thanks to Canny’s cri-
terion and chained to obtain contour curves. No additional
processing was done on the contour pixels. The pixel coor-
dinates were used directly in the algorithm.

For the nonlinear optimization, all nuisance and veloc-
ity parameters were initialized to zero. The position was
initialized at [0, 0, 1]T (the object is in front of the camera)
with a random orientation.

Both point and line correspondences with the model
points and lines were established with a supervised method.
The pose and velocity parameters were computed for each
image using first our line-based algorithm, and compared
with results obtained using the point-based algorithm and
the classical pose recovery algorithm described in [12]. In
the latter, an initial estimate of the solution is first computed
using the algorithm of Dementhon [7] and then the pose pa-
rameters are refined thanks to a nonlinear method.

As shown in Fig.7, the trajectories and velocities com-
puted by the line and the point-based algorithms are very
close. The differences between the position, orientation,
and velocity computed by the two algorithms are given in
Table 1. Pose results obtained with a classical algorithm
(which does not take into account the rolling shutter effects)
show a shift proportional to the speed in the direction of the
motion.

Fig.8 shows an example of correcting the object image
by removing the velocity parameters in the projection equa-
tion. This corresponds to a global shutter image taken at t0

(the instant of exposure of the first line of the sensor).

5.1. Conclusion and Perspectives

We presented a method for simultaneously computing
the pose and instantaneous velocity (both translational and

Figure 6. Samples of rolling shutter images of the moving refer-
ence object.
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Figure 7. A comparison between two sets of trajectories and ve-
locities computed by the line-based (red curve and arrows) and the
point-based (green curve and arrows) algorithms respectively. The
’*’ symbols represent results obtained with a classical algorithm
which does not take into account rolling shutter distorsions

rotational) of rigid objects from a single rolling shutter im-
age of straight lines. It benefits of an inherent defect of
rolling shutter CMOS cameras consisting in exposing one
after the other the rows of the image, yielding optical dis-
tortions due to high object velocity. The approach extends
previous point-based methods to line correspondences. This
offers, in the case of rolling shutter projection, real ad-
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Figure 8. An example of reprojecting edge points using a rolling
shutter model (triangles). Image correction: lines represented by
square symbols are obtained by removing rolling shutter distor-
sions.

vantages (more information about motion, redundant in-
formation). An efficient optimization procedure was also
proposed to improve numerical stability and computational
cost of the approach.

The approach was validated on real data showing its rel-
evance and feasibility. Hence, the proposed method is as
accurate as similar classical algorithms in the case of static
objects, but also preserves the accuracy of pose estimation
when the object moves. In addition to pose estimation, the
proposed method gives the instantaneous velocity using a
single view. Thus, it avoids the use of finite differences
between successive images (and the associated constant ve-
locity assumption) to estimate a 3D object velocity.

Hence, carefully taking into account rolling shutter turns
a low cost imager into a powerful pose and velocity sen-
sor. Indeed, such a tool can be useful for many research
areas. For instance, instantaneous velocity information may
be used as evolution models in motion tracking to predict
the state of observed moving patterns. It may also have ap-
plications in robotics, either in visual servoing or dynamic
identification. In the latter domain our approach can make
the difference when image processing leaves little time to
other tasks (control, data fusion) by reducing drastically the
amount of data necessary for motion analysis by using a
single view instead of image sequences.

From a more theoretical point of view, several issues
open. First, the proposed method uses a rolling shutter cam-
era model based on instantaneous row exposure, but it could
be easily extended to more general models where each pixel
has a different exposure time. One could also imagine that
an uncalibrated version of this method could be derived for

applications where Euclidean information is not necessary
(virtual/augmented reality or qualitative motion reconstruc-
tion, for instance). This certainly will make this work rele-
vant to a broader range of scenes (where the identity of lines
is not known a-priori).
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8.3.1 Paper (SCIA’07) – Reconstruction of 3D Curves for Quality Control

Reconstruction of 3D Curves for Quality Control

H. Martinsson1, F. Gaspard1, A. Bartoli2, and J.-M. Lavest2

1 CEA, LIST, Bôıte Courrier 94, F-91 191 Gif sur Yvette, France;
hanna.martinsson@cea.fr

2 LASMEA (CNRS/UBP), 24 avenue des Landais, F-63 177 Aubière, France;
adrien.bartoli@gmail.fr

Abstract. In the area of quality control by vision, the reconstruction of
3D curves is a convenient tool to detect and quantify possible anomalies.
Whereas other methods exist that allow us to describe surface elements,
the contour approach will prove to be useful to reconstruct the object
close to discontinuities, such as holes or edges.
We present an algorithm for the reconstruction of 3D parametric curves,
based on a fixed complexity model, embedded in an iterative framework
of control point insertion. The successive increase of degrees of freedom
provides for a good precision while avoiding to over-parameterize the
model. The curve is reconstructed by adapting the projections of a 3D
NURBS snake to the observed curves in a multi-view setting.

1 Introduction

The use of optical sensors in metrology applications is a complicated task when
dealing with complex or irregular structures. More precisely, projection of struc-
tured light allows for an accurate reconstruction of surface points but does not
allow for a precise localization of the discontinuities of the object. This paper
deals with the problem of reconstruction of 3D curves, given the CAD model, for
the purpose of a control of conformity with respect to this model. We dispose of
a set of images with given perspective projection matrices. The reconstruction
will be accomplished by means of the observed contours and their matching,
both across the images and to the model.

Algorithms based on active contours [9] allows for a local adjustment of the
model and a precise reconstruction of primitives. More precisely, the method
allows for an evolution of the reprojected model curves toward the image edges,
thus to minimize the distance in the images between the predicted curves and
the observed edges.

The parameterization of the curves as well as the optimization algorithms
we use must yield an estimate that meets the requirements of accuracy and
robustness necessary to perform a control of conformity. We have chosen to use
NURBS curves [11], a powerful mathematical tool that is also widely used in
industrial applications.

In order to ensure stability, any method used ought to be robust to erroneous
data, namely the primitives extracted from the images, since images of metallic
objects incorporate numerous false edges due to reflections.
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Although initially defined for ordered point clouds, active contours have been
adapted to parametric curves. Cham and Cipolla propose a method based on
affine epipolar geometry [3] that reconstructs a parametric curve in a canon-
ical frame using stereo vision. The result is two coupled snakes, but without
directly expressing the 3D points. In [15], Xiao and Li deal with the problem of
reconstruction of 3D curves from two images. However, the NURBS curves are
approximated by B-splines, which makes the problem linear, at the expense of
loosing projective invariance. The reconstruction is based on a matching process
using epipolar geometry followed by triangulation. The estimation of the curves
is performed independently in the two images, that is, there is no interactivity
between the 2D observations and the 3D curve in the optimization. Kahl and
August introduce in [8] a coupling between matching and reconstruction, based
on an a priori distribution of the curves and on an image formation model. The
curves are expressed as B-splines and the optimization is done using gradient
descent.

Other problems related to the estimation of parametric structures have come
up in the area of surfaces. In [14], Siddiqui and Sclaroff present a method to recon-
struct rational B-spline surfaces. Point correspondences are supposed given. In a
first step, B-spline surface patches are estimated in each view, then the surface in
3D, together with the projection matrices, are computed using factorization. Fi-
nally, the surface and the projection matrices are refined iteratively by minimiz-
ing the 2D residual error. So as to avoid problems due to over-parameterization,
the number of control points is limited initially, to be increased later on in a
hierarchical process by control point insertion.

In the case of 2D curve estimation, other aspects of the problem are ad-
dressed. Cham and Cipolla adjust a spline curve to fit an image contour [4].
Control points are inserted iteratively using a new method called PERM (poten-
tial for energy-reduction maximization). An MDL (minimal description length
[7]) strategy is used to define a stopping criterion. In order to update the curve,
the actual curve is sampled and a line-search is performed in the image to localize
the target shape. The optimization is performed by gradient descent. Brigger et
al. present in [2] a B-spline snake method without internal energy, due to the in-
trinsic regularity of B-spline curves. The optimization is done on the knot points
rather than on the control points, which allows the formulation of a system of
equations that can be solved by digital filtering. So as to increase numerical
stability, the method is embedded in a multi-resolution framework. Meegama
and Rajapakse introduce in [10] an adaptive procedure for control point inser-
tion and deletion, based on the euclidean distance between consecutive control
points and on the curvature of the NURBS curve. Local control is ensured by
adjustment of the weights. The control points evolve in each iteration in a small
neighborhood (3 × 3 pixels). Yang et al. use a distance field computed a priori
with the fast marching method in order to adjust a B-spline snake [16]. Control
points are added in the segment presenting a large estimation error, due to a
degree of freedom insufficient for a good fit of the curve. The procedure is re-
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peated until the error is lower than a fixed threshold. Redundant control points
are then removed, as long as the error remains lower than the threshold.

2 Problem Formulation

Given a set of images of an object, together with its CAD model, our goal is to
reconstruct in 3D the curves observed in the images. In order to obtain a 3D curve
that meets our requirements regarding regularity, rather than reconstructing a
point cloud, we estimate a NURBS curve. The reconstruction is performed by
minimizing the quadratic approximation error. The minimization problem is
formulated for a set of M images and N sample points by

C(P) = arg min
P

M−1
∑

i=0

N−1
∑

j=0

(qij − Ti(C(P, tj)))
2, (1)

where qij is a contour point associated with the curve point of parameter tj , Ti

is the projective operator for image i and P is the set of control points.
Our choice to use NURBS curves is justified by several reasons. First, NURBS

curves have interesting geometrical properties, namely concerning regularity and
continuity. An important geometrical property that will be of particular interest
is the invariance under projective transformations.

3 Properties of NURBS curves

Let U = {u0, · · · , um} be an increasing vector, called the knot vector. A NURBS
curve is a vector valued, piecewise rational polynomial over U , defined by

C(t) =

n
∑

i=0

PiRi,k(t) with Ri,k(t) =
wiBi,k(t)

∑n

j=0 wjBj,k(t)
, (2)

where Pi are the control points, Bi,k(t) the B-spline basis functions defined over
U , wi the associated weights and k the degree.

It is a common choice to take k = 3, which has proved to be a good com-
promise between required smoothness and the problem of oscillation, inherent to
high degree polynomials. For our purposes, the parameterization of closed curves,
we consider periodic knot vectors, that is, verifying uj+m = uj . Given all these
parameters, the set of NURBS defined on U forms, together with the operations
of point-wise addition and multiplication with a scalar, a vector space.

For details on NURBS curves and their properties, refer to [11].

3.1 Projective Invariance

According to the pinhole camera model, the perspective projection T (·) that
transforms a world point into an image point is expressed in homogeneous coor-
dinates by means of the transformation matrix T3×4. Using weights associated
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with the control points, NURBS curves have the important property of being
invariant under projective transformations. Indeed, the projection of (2) remains
a NURBS, defined by its projected control points and their modified weights.
The curve is written

c(t) = T (C)(t) =

∑n

i=0 w′
i T (Pi)Bi,k(t)

∑n

i=0 w′
i Bi,k(t)

=
n
∑

i=0

T (Pi)R
′
i,k(t) (3)

The new weights are given by

w′
i = (T3,1Xi + T3,2Yi + T3,3Zi + T3,4)wi = n · (CO − Pi)wi, (4)

where n is a unit vector along the optical axis and CO the optical center of the
camera.

3.2 Control Point Insertion

One of the fundamental geometric algorithms available for NURBS is the control
point insertion. The key is the knot insertion, which is equivalent to adding one
dimension to the vector space, consequently adapting the basis. Since the original
vector space is included in the new one, there is a set of control points such that
the curve remains unchanged.

Let ū ∈ [uj , uj+1). We insert ū in U , forming the new knot vector Ū = {ū0 =
u0, · · · , ūj = uj , ūj+1 = ū, ūj+2 = uj+1, · · · , ūm+1 = um}. The new control
points P̄i are given by the linear system

n
∑

i=0

PiRi,k(t) =

n+1
∑

i=0

P̄iR̄i,k(t). (5)

We present the solution without proof. The new control points are written

P̄i = αi Pi + (1 − αi)Pi−1, (6)

with

αi =











1 i ≤ j − k
ū − ui

ui+k − ui

if j − k + 1 ≤ i ≤ j

0 i ≥ j + 1

. (7)

Note that only k new control points need to be computed, due to the local
influence of splines.

4 Curve Estimation

Using the NURBS formulation, the minimization problem (1) is written

min
{P̂l}

M−1
∑

i=0

N−1
∑

j=0

(

qij −

n
∑

l=0

Ti(P̂l)R
(i)
l,k(tj)

)2

, (8)
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where R
(i)
l,k are the basis functions for the projected NURBS curve in image i.

The problem has two parts. First, the search for candidate edge points qij in
the images, then the optimization of the 3D NURBS curve by optimization on
the control points. The search for candidate points is carried out independently
in the images using a method inspired by the one used by Drummond and Cipolla
in [6]. For the optimization problem, we use the non-linear Levenberg-Marquardt
minimization method. This optimization allows the control points to move in 3D,
but does not change their number. In order to obtain an optimal reconstruction
of the observed curve, we iteratively perform control point insertion.

4.1 Search for Image Contours

We sample the NURBS curve projected in the image, to use as starting points in
the search for matching contour points. A line-search is performed in order to find
the new position of the curve, ideally corresponding to an edge. Our approach
is based solely on the contours. Due to the aperture problem, the component of
motion of an edge, tangent to itself, is not detectable locally and we therefore
restrict the search for the new edge position to the edge normal at each sample
point. As we expect the motion to be small, we define a search range (typically
in the order of 20 pixels) so as to limit computational cost. In order to find the
new position of a sample point, for each point belonging to the normal within
the range, we evaluate the gradient and compute a weight based on the intensity
and the orientation of the gradient and the distance from the sample point. The
weight function vj for a sample point pj and the candidate point pξ will be of
the form

vj(pξ) = ϕ1(|∇Iξ|) · ϕ2

(

n̂j · ∇Iξ

|∇Iξ|

)

· ϕ3(|pj − pξ|),

where n̂j is the normal of the projected curve at sample point j, ∇Iξ is the
gradient at the candidate point and the ϕk are functions to define. The weight
function will be evaluated for each candidate pξ and the point p′j with the highest
weight, identified by its distance from the original point dj = |pj − p′j |, will be
retained as the candidate for the new position of the point.

The bounded search range and the weighting of the point based on their
distance from the curve yield a robust behavior, close to that of an M-estimator.

4.2 Optimization on the Control Points

The first step of the optimization consists in projecting the curve in the images.
Since the surface model is known, we can identify the visible parts of the curve
in each image and retain only the parts corresponding to knot intervals that
are completely visible. During the iterations, so as to keep the same cost func-
tion, the residual error must be evaluated in the same points in each iteration.
Supposing small displacements, we can consider that visible pieces will remain
visible throughout the optimization.

The optimization of (8) is done on the 3D control point coordinates, leaving
the remaining parameters of the NURBS curve constant. The weights associated
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with the control points are modified by the projection giving 2D weights varying
with the depth of each control point, according to the formula (4), but they are
not subject to the optimization.

In order to avoid over-parameterization for stability reasons, the first opti-
mization is carried out on a limited number of control points. Their number is
then increased by iterative insertion, so that the estimated 3D curve fits correctly
also high curvature regions. As mentioned earlier, the insertion of a control point
is done without influence on the curve and a second optimization is thus neces-
sary to estimate the curve. We finally need a criterion to decide when to stop
the control point insertion procedure.

Control Point Insertion Due to the use of NURBS, we have a method to
insert control points. What remains is to decide where to place them. Several
strategies have been used. Cham and Cipolla consider in [4] the dual problem
of knot insertion. They define an error energy reduction potential and propose
to place the knot point so as to maximize this potential. The control point is
placed using the method described earlier. In our algorithm, since every insertion
is followed by an optimization that locally adjusts the control points, we settle
for choosing the interval where to place the point. Since the exact location within
the interval is not critical, the point is placed at its midpoint. Dierckx suggests
in [5] to place the new point at the interval that presents the highest error. This
is consistent with an interpretation of the error as the result of a lack of degrees
of freedom that inhibits a good description of the curve. If, however, the error
derives from other sources, this solution is not always optimal. In our case, a
significant error could also indicate the presence of parasite edges or that of a
parallel structure close to the target curve. We have therefore chosen a heuristic
approach, that consists in considering all the intervals of the NURBS curve, in
order to retain the one that allows for the largest global error decrease.

Stopping Criterion One of the motives for introducing parametric curves
was to avoid treating all curve points, as only the control points are modified
during the optimization. If the number of control points is close to the number
of samples, the benefit is limited. Too many control points could also cause
numerical instabilities, due to an over-parameterization of the curve on the one
hand and the size of the non-linear minimization problem on the other hand.
It is thus necessary to define a criterion that decides when to stop the control
point insertion.

A strategy that aims to avoid the over-parameterization is the use of statis-
tical methods inspired by the information theory. Based in a Maximum Likeli-
hood environment, these methods combine a term equivalent, in the case of a
normal distributed errors, to the sum of squares of the residual errors with a
term penalizing the model complexity. Given two estimated models, in our case
differentiated by their number of control points, the one with the lowest criterion
will be retained. The first criterion of this type, called AIC (Akaike Information
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Criterion), was introduced by Akaike in [1] and is written

AIC = 2k + n ln
RSS

n
, (9)

where k is the number of control points, n is the number of observations and RSS

is the sum of the squared residual errors. Another criterion, based on a bayesian
formalism, is the BIC (Bayesian Information Criterion) presented by Schwarz
[13]. It stresses the number of data points n, so as to ensure an asymptotic
consistency and is written

BIC = 2k lnn + n ln
RSS

n
. (10)

Another family of methods uses the MDL [12] formulation, which consists
in associating a cost with the quantity of information necessary to describe the
curve. Different criteria follow, depending on the formulation of the estimation
problem. In the iterative control point insertion procedure of Cham et Cipolla
[4], the stopping criterion is defined by means of MDL. The criterion depends,
on the one hand on the number of control points and on the residual errors, on
the other hand on the number of samples and on the covariance.

Yet another way of choosing an appropriate model complexity is the classical
method of cross-validation. The models are evaluated based on their capacity
to describe the data. A subset of the data is used to define a fixed complexity
model, while the rest serve to validate it. The process is repeated and a model
is retained if its performance is considered good enough.

We have chosen to use the BIC for this first version of our algorithm. A more
thorough study of the influence of the stopping criterion in our setting will be
performed at a later stage.

4.3 Algorithm

The algorithm we implemented has two parts. The optimization of a curve using
a fixed complexity model is embedded in an iterative structure that aims to
increase the number of control points. The non-linear optimization of the 3D
curve is performed by the Levenberg-Marquardt algorithm, using a cost function
based on a search for contour points in the images.

5 Experimental Evaluation

5.1 Virtual Images

In order to validate our algorithms for image data extraction and for curve
reconstruction, we have performed a number of tests on virtual images. The
virtual setting also allows us to simulate deformations of the target object.

We construct a simplified model of an object, based on a single target curve.
We then apply our 3D reconstruction algorithm, starting at a modified “model
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Fig. 1. Left: The virtual images used for the reconstruction of the central curve. Right:

The distances from the sampled points from the reconstructed 3D curve to the model
curve. The reconstruction is based on 20 virtual images. The cloud of sample points
from the estimated curve is shown together with the target curve. The starting curve
is shown in black. The differences are represented by lines with length proportional to
the distance between the curve and the target, using a scale factor of 30.

curve”, on a set of virtual views, see Fig. 1. The image size is 1284× 1002 pixels.
The starting curve has 10 control points, to which 11 new points are added. The
sampling used for the computations is of 200 points. To fix the scale, note that
at the mean distance from the object curve, one pixel corresponds roughly to
0.22 mm. The evaluation of the results is done by measuring the distance from
a set of sampled points from the estimated curve to the target model curve. The
distances from the target curve are shown in Fig. 1. We obtain the following
results:

Mean error 0.0621 mm
Median error 0.0421 mm
Standard deviation 0.0528 mm

We note that the error corresponds to less than a pixel in the images, which
indicates a sub-pixel image precision.

5.2 Real Images

We also consider a set of real images, see Fig. 2, with the same target curve, using
the same starting “model curve” as in the virtual case. We now need to face the
problem of noisy image data, multiple parallel structures and imprecision in the
localization and the calibration of the views. The image size is 1392×1040 pixels.
The starting curve has 10 control points, to which 11 new points are added. The
sampling used for the computations is of 200 points. At the mean distance from
the object curve, one pixel corresponds roughly to 0.28 mm. The distances from
the target curve are shown in Fig. 2. We obtain the following results:
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Fig. 2. Left: Four of the 18 real images used for the reconstruction of the curve de-
scribing the central hole. Right: The distances from the sampled points from the recon-
structed 3D curve to the model curve. The reconstruction is based on 18 real images.
The differences are represented by lines with length proportional to the distance be-
tween the curve and the target, using a scale factor of 20.

Fig. 3. Problems related to specularities and to the search for candidate points. Starting
at the projection of the initial curve (in blue), some candidate points (in magenta)
belong to a parasite edge.

Mean error 0.157 mm
Median error 0.124 mm
Standard deviation 0.123 mm

Even if the errors are higher than in the case of virtual images, we note that
they still correspond to less than a pixel in the images. The difference is partly
explained by the noise and the parallel structures perturbing the edge tracking
algorithm. An example of candidate points located on a parallel image contour,
due to specularities, is given in Fig. 3.

6 Conclusions

We have presented an adaptive 3D reconstruction method using parametric
curves, limiting the degrees of freedom of the problem. An algorithm for 3D
reconstruction of curves using a fixed complexity model is embedded in an itera-
tive framework, allowing an enhanced approximation by control point insertion.
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An experimental evaluation of the method, using virtual as well as real images,
has let us validate its performance in some simple, nevertheless realistic, cases
with specular objects subject to occlusions and noise.

Future work will be devoted to the integration of knowledge of the CAD
model in the image based edge tracking. Considering the expected neighborhood
of a sample point, the problem of parasite contours should be controlled and has
limited impact on the obtained precision.

We also plan to do a deeper study around the stopping criterion used in the
control point insertion process, using cross-validation.

References

1. H. Akaike. A new look at the statistical model identification. IEEE Transactions

on Automated Control, 19(6):716–723, 1974.
2. P. Brigger, J. Hoeg, and M. Unser. B-spline snakes: A flexible tool for parametric

contour detection. IEEE Trans. on Image Processing, 9(9):1484–1496, July 2000.
3. T.-J. Cham and R. Cipolla. Stereo coupled active contours. In Proceedings of the

1997 Conference on Computer Vision and Pattern Recognition, pages 1094–1099.
IEEE Computer Society, 1997.

4. T.-J. Cham and R. Cipolla. Automated B-spline curve representation incorporating
MDL and error-minimizing control point insertion strategies. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 21(1):49–53, January 1999.
5. P. Dierckx. Curve and Surface Fitting with Splines. Oxford University Press, Inc.,

New York, NY, USA, 1993.
6. T. Drummond and R. Cipolla. Real-time visual tracking of complex structures.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 7:932–946, 2002.
7. M. H. Hansen and B. Yu. Model selection and the principle of minimum description

length. Journal of the American Statistical Association, 96(454):746–774, 2001.
8. F. Kahl and J. August. Multiview reconstruction of space curves. In 9th Interna-

tional Conference on Computer Vision, volume 2, pages 1017–1024, 2003.
9. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. Inter-

national Journal of Computer Vision, 4(1):321–331, 1987.
10. R.G.N. Meegama and J. C. Rajapakse. NURBS snakes. Image and Vision Com-

puting, 21:551–562, 2003.
11. L. Piegl and W. Tiller. The NURBS book. Monographs in visual communication.

Springer Verlag, 2nd edition, 1997.
12. J. Rissanen. Modeling by shortest data description. Automatica, 14:465–471, 1978.
13. G. Schwarz. Estimating the dimension of a model. Ann. of Stat., 6:461–464, 1978.
14. M. Siddiqui and S. Sclaroff. Surface reconstruction from multiple views using

rational B-splines and knot insertion. In First International Symposium on 3D

Data Processing Visualization and Transmission, pages 372–378, 2002.
15. Y.J. Xiao and Y.F. Li. Stereo vision based on perspective invariance of NURBS

curves. In IEEE International Conference on Mechatronics and Machine Vision

in Practice, volume 2, pages 51–56, 2001.
16. H. Yang, W. Wang, and J. Sun. Control point adjustment for B-spline curve

approximation. Computer-Aided Design, 36:639–652, 2004.



8.3. STRUCTURE-FROM-MOTION WITH CURVES APPLIED TO QUALITY CONTROL 241

8.3.2 Paper (EMMCVPR’07) – Energy-Based Reconstruction of 3D Curves for Quality Control

Energy-Based Reconstruction of 3D Curves for

Quality Control

H. Martinsson1, F. Gaspard1, A. Bartoli2, and J.-M. Lavest2
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Abstract. In the area of quality control by vision, the reconstruction of
3D curves is a convenient tool to detect and quantify possible anomalies.
Whereas other methods exist that allow us to describe surface elements,
the contour approach will prove to be useful to reconstruct the object
close to discontinuities, such as holes or edges.
We present an algorithm for the reconstruction of 3D parametric curves,
based on a fixed complexity model, embedded in an iterative framework
of control point insertion. The successive increase of degrees of freedom
provides for a good precision while avoiding to over-parameterize the
model. The curve is reconstructed by adapting the projections of a 3D
NURBS snake to the observed curves in a multi-view setting. The op-
timization of the curve is performed with respect to the control points
using an gradient-based energy minimization method, whereas the inser-
tion procedure relies on the computation of the distance from the curve
to the image edges.

1 Introduction

The use of optical sensors in metrology applications is a complicated task when
dealing with complex or irregular structures. More precisely, projection of struc-
tured light allows for an accurate reconstruction of surface points but does not
allow for a precise localization of the discontinuities of the object. This paper
deals with the problem of reconstruction of 3D curves, given the CAD model, for
the purpose of a control of conformity with respect to this model. We dispose of
a set of images with given perspective projection matrices. The reconstruction
will be accomplished by means of the observed contours and their matching,
both across the images and to the model. We proposed a previous version of
our algorithm, based on edge distances, in [12]. The contributions of this paper
with respect to the former one resides in the energy formulation, giving a new
structure to the problem. We have also completed the experimental evaluation.

Algorithms based on active contours [11] allows for a local adjustment of the
model and a precise reconstruction of primitives. More precisely, the method
allows for an evolution of the reprojected model curves toward the image edges,
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thus to minimize the distance in the images between the predicted curves and
the observed edges.

The parameterization of the curves as well as the optimization algorithms
we use must yield an estimate that meets the requirements of accuracy and
robustness necessary to perform a control of conformity. We have chosen to use
NURBS curves [14], a powerful mathematical tool that is also widely used in
industrial applications.

In order to ensure stability, any method used ought to be robust to erroneous
data, namely the primitives extracted from the images, since images of metallic
objects incorporate numerous false edges due to reflections.

Although initially defined for ordered point clouds, active contours have been
adapted to parametric curves. Cham and Cipolla propose a method based on
affine epipolar geometry [4] that reconstructs a parametric curve in a canon-
ical frame using stereo vision. The result is two coupled snakes, but without
directly expressing the 3D points. In [19], Xiao and Li deal with the problem of
reconstruction of 3D curves from two images. However, the NURBS curves are
approximated by B-splines, which makes the problem linear, at the expense of
loosing projective invariance. The reconstruction is based on a matching process
using epipolar geometry followed by triangulation. The estimation of the curves
is performed independently in the two images, that is, there is no interactiv-
ity between the 2D observations and the 3D curve in the optimization. Kahl
and August introduce in [10] a coupling between matching and reconstruction,
based on an a priori known distribution of the curves and on an image formation
model. The curves are expressed as B-splines and the optimization is done using
gradient descent.

Other problems related to the estimation of parametric structures have come
up in the area of surfaces. In [18], Siddiqui and Sclaroff present a method to recon-
struct rational B-spline surfaces. Point correspondences are supposed given. In a
first step, B-spline surface patches are estimated in each view, then the surface in
3D, together with the projection matrices, are computed using factorization. Fi-
nally, the surface and the projection matrices are refined iteratively by minimiz-
ing the 2D residual error. So as to avoid problems due to over-parameterization,
the number of control points is limited initially, to be increased later on in a
hierarchical process by control point insertion.

In the field of medical imaging, energy minimization methods have been
developed to reconstruct 3D curves in a stereo setting. Sbert and Solé reconstruct
in [16] a 3D curve using an energy based evolution method. The associated
PDE of the energy functional, derived by the Euler-Lagrange formulation, is
solved using a level-set approach. In [3], Canero et al. define in a force field by
reprojecting external image forces, given by the distance to the edges. A 3D
curve is then reconstructed via the evolution of an active contour, guided by the
force field.

In the case of 2D curve estimation, other aspects of the problem are ad-
dressed. Cham and Cipolla adjust a spline curve to fit an image contour [5].
Control points are inserted iteratively using a new method called PERM (poten-
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tial for energy-reduction maximization). An MDL (minimal description length
[9]) strategy is used to define a stopping criterion. In order to update the curve,
the actual curve is sampled and a line-search is performed in the image to localize
the target shape. The optimization is performed by gradient descent. Brigger et
al. present in [2] a B-spline snake method without internal energy, due to the in-
trinsic regularity of B-spline curves. The optimization is done on the knot points
rather than on the control points, which allows the formulation of a system
of equations that can be solved by digital filtering. So as to increase numeri-
cal stability, the method is embedded in a multi-resolution framework. In [8],
Figueiredo et al. address the problem from a statistical point of view, propos-
ing a completely automatic contour estimator, in the sense that no parameter
need to be adjusted by the user. Supposing a uniform distribution of the knot
points, the B-spline curve that approximates a given set of contour points at
best, in the least squares sense, is given by a linear system depending only on
the number of control points. This number is fixed in advance using an MDL
criterion. Meegama and Rajapakse introduce in [13] an adaptive procedure for
control point insertion and deletion, based on the euclidean distance between
consecutive control points and on the curvature of the NURBS curve. Local con-
trol is ensured by adjustment of the weights. The control points evolve in each
iteration in a small neighborhood (3 × 3 pixels). Yang et al. use a distance field
computed a priori with the fast marching method in order to adjust a B-spline
snake [20]. Control points are added in the segment presenting a large estima-
tion error, due to a degree of freedom insufficient for a good fit of the curve. The
procedure is repeated until the error is lower than a fixed threshold. Redundant
control points are then removed, as long as the error remains lower than the
threshold.

2 Problem Formulation

Given a set of images of an object, together with its CAD model, our goal is
to reconstruct in 3D the curves observed in the images. The reconstruction is
performed by minimizing an energy functional. In order to obtain a 3D curve
that meets our requirements regarding regularity, rather than reconstructing a
point cloud, we estimate a NURBS curve. Since the regularity aspects are thereby
taken care of, the energy functional is defined solely based on image data. The
minimization problem is formulated for a set of M images and N sample points
by

C(P) = arg min
P

M−1
∑

i=0

N−1
∑

j=0

E(Ti(C(P, tj))), (1)

where E is the external energy functional, Ti is the projective operator for image
i and P is the set of control points.

Our choice to use NURBS curves is justified by several reasons. First, NURBS
curves have interesting geometrical properties, namely concerning regularity and
continuity. An important geometrical property that will be of particular interest
is the invariance under projective transformations.
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3 Properties of NURBS curves

Let U = {u0, · · · , um} be an increasing vector, called the knot vector. A NURBS
curve is a vector valued, piecewise rational polynomial over U , defined by

C(t) =
n
∑

i=0

PiRi,k(t) with Ri,k(t) =
wiBi,k(t)

∑n

j=0 wjBj,k(t)
, (2)

where Pi are the control points, Bi,k(t) the B-spline basis functions defined over
U , wi the associated weights and k the degree.

It is a common choice to take k = 3, which has proved to be a good com-
promise between required smoothness and the problem of oscillation, inherent to
high degree polynomials. For our purposes, the parameterization of closed curves,
we consider periodic knot vectors, that is, verifying uj+m = uj . Given all these
parameters, the set of NURBS defined on U forms, together with the operations
of point-wise addition and multiplication with a scalar, a vector space.

For details on NURBS curves and their properties, refer to [14].

3.1 Projective Invariance

According to the pinhole camera model, the perspective projection T (·) that
transforms a world point into an image point is expressed in homogeneous coor-
dinates by means of the transformation matrix T3×4. Using weights associated
with the control points, NURBS curves have the important property of being
invariant under projective transformations. Indeed, the projection of (2) remains
a NURBS, defined by its projected control points and their modified weights.
The curve is written

c(t) = T (C)(t) =

∑n

i=0 w′
i T (Pi)Bi,k(t)

∑n

i=0 w′
i Bi,k(t)

=

n
∑

i=0

T (Pi)R
′
i,k(t), (3)

where the R′
i,k are the basis functions of the projected NURBS. The new weights,

w′
i, are given by

w′
i = (T3,1Xi + T3,2Yi + T3,3Zi + T3,4)wi = n · (CO − Pi)wi, (4)

where n is a unit vector along the optical axis and CO the optical center of the
camera.

3.2 Control Point Insertion

One of the fundamental geometric algorithms available for NURBS curves is
the control point insertion. The key is the knot insertion, which is equivalent
to adding one dimension to the vector space, consequently adapting the basis.
Since the original vector space is included in the new one, there is a set of control
points such that the curve remains unchanged.
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Let ū ∈ [uj , uj+1). We insert ū in U , forming the new knot vector Ū = {ū0 =
u0, · · · , ūj = uj , ūj+1 = ū, ūj+2 = uj+1, · · · , ūm+1 = um}. The new control
points P̄i are given by the linear system

n
∑

i=0

PiRi,k(t) =

n+1
∑

i=0

P̄iR̄i,k(t). (5)

We present the solution without proof. The new control points are written [14]

P̄i = αi Pi + (1 − αi)Pi−1, (6)

with

αi =











1 i ≤ j − k
ū − ui

ui+k − ui

if j − k + 1 ≤ i ≤ j

0 i ≥ j + 1

. (7)

Note that only k new control points need to be computed, due to the local
influence of splines.

4 Optimization

When treating NURBS curves, the regularity aspects are taken care of implicitly
by the parameterization and the energy functional can be reduced to its external
energy part. We will consider two forms of energy functionals, one based on the
distance from the curve to the image contours and another one based on the
gradient intensity. The optimization will in both cases operate on the control
points of the 3D NURBS curve.

4.1 Distance Minimization

Using a distance formulation and the properties of NURBS curves, the mini-
mization problem (1) is written

min
{P̂l}

M−1
∑

i=0

N−1
∑

j=0

(

qij −

n
∑

l=0

Ti(P̂l)R
(i)
l,k(tj)

)2

, (8)

where qij is a contour point associated with the curve point of parameter tj in
image i and Ti is the projective operator for image i. The search for candidate
contour points is carried out independently in the images using a method inspired
by the one used by Drummond and Cipolla in [7].

Search for Image Contours We sample the NURBS curve projected in the
image, to use as starting points in the search for matching contour points. A
line-search is performed in order to find the new position of the curve, ideally
corresponding to an edge. Our approach is based solely on the contours. Due
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to the aperture problem, the component of motion of an edge, tangent to itself,
is not detectable locally and we therefore restrict the search for the new edge
position to the edge normal at each sample point. As we expect the motion to be
small, we define a search range (typically in the order of 20 pixels) so as to limit
computational cost. In order to find the new position of a sample point, for each
point belonging to the normal within the range, we evaluate the gradient and
compute a weight based on the intensity and the orientation of the gradient and
the distance from the sample point. The weight function vj for a sample point
pj and the candidate point pξ will be of the form

vj(pξ) = ϕ1(|∇Iξ|) · ϕ2

(

n̂j · ∇Iξ

|∇Iξ|

)

· ϕ3(|pj − pξ|),

where n̂j is the normal of the projected curve at sample point j, ∇Iξ is the
gradient at the candidate point and the ϕk are functions to define. The weight
function will be evaluated for each candidate pξ and the point p′j with the highest
weight, identified by its distance from the original point dj = |pj − p′j |, will be
retained as the candidate for the new position of the point.

The bounded search range and the weighting of the point based on their
distance from the curve yield a robust behavior, close to that of an M-estimator.

4.2 Gradient Energy Minimization

Using the classical energy formulation and the properties of NURBS curves, the
minimization problem (1) is written

min
{P̂l}

M−1
∑

i=0

N−1
∑

j=0

E

(

n
∑

l=0

Ti(P̂l)R
(i)
l,k(tj)

)

, (9)

where R
(i)
l,k are the basis functions for the projected NURBS curve in image i. The

energy functional E can, as already mentioned, be restricted to its external part,
due to the use of NURBS. A common choice is to use the gradient intensity. We
will however include local information on the curve, namely its normal direction,
using the intensity of the gradient projected onto the curve normal.

4.3 Distance versus Gradient Energy

For comparison, we have implemented the two methods in the iterative setting
that will be introduced in the following section. Both methods yielded similar
results and converge after a number of iterations to an asymptotic lower limit.
The 3D error with respect to the true curve is however somewhat lower for the
gradient-based method. The results are given in Fig. 2. The difference is partly
explained by the noise and the parallel structures perturbing the edge tracking
algorithm. An example of candidate points located on a parallel image contour,
due to specularities, is given in Fig. 1. Although the gradient intensity method
outperforms the distance method, the distance-based cost function will prove to
be useful in the iterative framework that will embed the curve optimization.
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Fig. 1. Problems related to specularities and to the search for candidate points. Starting
at the projection of the initial curve (in blue), some candidate points (in magenta)
belong to a parasite edge.

0 10 20 30 40
0

0.05

0.1

0.15

0.2

Number of added control points

3D
 e

rr
or

 (
m

m
)

 

 

Distance
Gradient Energy

Fig. 2. The evolution of the error, with respect to the true 3D curve, for an optimization
using cost functions based on the distance to the image contours and on the gradient
intensity respectively. Whereas the distance method seems to yield good results in
the start, its asymptotic limit is somewhat higher than that of the gradient intensity
method.

5 Curve Estimation

The problem has two parts. First, the optimization of the 3D NURBS curve by
energy minimization on a fixed number of control points, then the control point
insertion procedure. For the fixed size optimization problem, we use the non-
linear Levenberg-Marquardt minimization method. This step allows the control
points to move in 3D, but does not change their number. In order to obtain
an optimal reconstruction of the observed curve, we iteratively perform control
point insertion. So as to avoid over-parameterization for stability reasons, the
first optimization is carried out on a limited number of control points. Their
number is then increased by iterative insertion, so that the estimated 3D curve
fits correctly also in high curvature regions. As mentioned earlier, the insertion of
a control point is done without influence on the curve and a second optimization
is thus necessary in order to take advantage from the increased number of degrees
of freedom.

5.1 Optimization on the Control Points

The first step of the optimization consists in projecting the curve in the images.
Since the surface model is known, we can identify the visible parts of the curve
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Fig. 3. Due to the use of 3D objects, auto-occlusions cause parts of the curve to be
invisible from some viewpoints.

in each image and retain only the sample points corresponding to visible parts.
During the iterations, to keep the same cost function, the residual error must be
evaluated in the same points in each iteration. Supposing small displacements, we
can consider that visible pieces will remain visible throughout the optimization.
See Fig. 3 for an example of occlusions due to the 3D structure of the objects.

The optimization of (9) is done on the 3D control point coordinates, leaving
the remaining parameters of the NURBS curve constant. The weights associated
with the control points are modified by the projection giving 2D weights varying
with the depth of each control point, according to the formula (4), but they are
not subject to the optimization.

5.2 Control Point Insertion

Due to the use of NURBS, we have a method to insert control points. What
remains is to decide where to place them. We also need a criterion to decide
when to stop the control point insertion procedure.

Position of the New Control Point Several strategies have been used. Cham
and Cipolla consider in [5] the dual problem of knot insertion. They define an
error energy reduction potential and propose to place the knot point so as to
maximize this potential. The control point is placed using the method described
earlier. In our algorithm, since every insertion is followed by an optimization
that adjusts the control points, we settle for choosing the interval where to place
the point. Since the exact location within the interval is not critical, the point
is placed at its midpoint. Dierckx suggests in [6] to place the new point at the
interval that presents the highest error. This is consistent with an interpretation
of the error as the result of a lack of degrees of freedom that inhibits a good
description of the curve. If, however, the error derives from other sources, this
solution is not always optimal.
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In our case, a significant mean error could also indicate the presence of par-
asite edges or that of a parallel structure close to the target curve. We will
therefore choose the interval with the highest median error, over all images. The
error is defined as the distance from a sample point to its corresponding contour
point in the image. The search for candidate contour points is carried out using
the method described in 4.1.

Stopping Criterion One of the motives for introducing parametric curves
was to avoid treating all curve points, as only the control points are modified
during the optimization. If the number of control points is close to the number
of samples, the benefit is limited. Too many control points could also cause
numerical instabilities, due to an over-parameterization of the curve on the one
hand and the size of the non-linear minimization problem on the other hand.
It is thus necessary to define a criterion that decides when to stop the control
point insertion.

A strategy that aims to avoid the over-parameterization is the use of statis-
tical methods inspired by the information theory. Based in a Maximum Likeli-
hood environment, these methods combine a term equivalent, in the case of a
normal distributed errors, to the sum of squares of the residual errors with a
term penalizing the model complexity. Given two estimated models, in our case
differentiated by their number of control points, the one with the lowest criterion
will be retained. The first criterion of this type, called AIC (Akaike Information
Criterion), was introduced by Akaike in [1] and is written, in the case of normally
distributed errors,

AIC = 2k + n ln
RSS

n
, (10)

where k is the number of control points, n is the number of observations and RSS

is the sum of the squared residual errors. Another criterion, based on a bayesian
formalism, is the BIC (Bayesian Information Criterion) presented by Schwarz
[17]. It stresses the number of data points n, so as to ensure an asymptotic
consistency and is written, also in the case of normally distributed errors,

BIC = 2k lnn + n ln
RSS

n
. (11)

Another family of methods uses the MDL [15] formulation, which consists
in associating a cost with the quantity of information necessary to describe the
curve. Different criteria follow, depending on the formulation of the estimation
problem. In the iterative control point insertion procedure of Cham et Cipolla
[5], the stopping criterion is defined by means of MDL. The criterion depends,
on the one hand on the number of control points and on the residual errors, on
the other hand on the number of samples and on the covariance.

Yet another way of choosing an appropriate model complexity is the classical
method of cross-validation. The models are evaluated based on their capacity
to describe the data. A subset of the data is used to define a fixed complexity
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model, while the rest serve to validate it. The process is repeated and a model
is retained if its performance is considered good enough.

We have chosen to use the BIC, computed using the contour points found
with the method presented in 4.1, for this first version of our algorithm. A more
thorough study of the influence of the stopping criterion in our setting will be
performed at a later stage.

5.3 Algorithm

The algorithm we implemented has two layers. The optimization of a curve
using a fixed complexity model is embedded in an iterative structure that aims
to increase the number of control points. The non-linear optimization of the 3D
curve is performed by the Levenberg-Marquardt algorithm, using a cost function
based on an energy formulation. The control point insertion procedure uses a
search for contour points in the images in order to compute the median as well as
the RSS error of the projected curve. The mechanism of our method is outlined
in Table 1.

6 Experimental Evaluation

6.1 Virtual Images

In order to validate our algorithms for image data extraction and for curve
reconstruction, we have performed a number of tests on virtual images. The
virtual setting also allows us to simulate deformations of the target object.

We construct a simplified model of an object, based on a single target curve.
We then apply our 3D reconstruction algorithm, starting at a modified “model
curve”, on a set of virtual views, see Fig. 4. The image size is 1284× 1002 pixels.
The starting curve has 10 control points, to which 45 new points are added. The
sampling used for the computations is of 200 points. To fix the scale, note that
at the mean distance from the object curve, one pixel corresponds roughly to
0.22 mm. The evaluation of the results is done by measuring the distance from
a set of sampled points from the estimated curve to the target model curve. The
distances from the target curve are shown in Fig. 4. We obtain the following
results:

Mean error 0.0336 mm
Median error 0.0228 mm
Standard deviation 0.0485 mm

We note that the error corresponds to less than a pixel in the images, which
indicates a sub-pixel image precision.

Using a series of virtual images of an object presenting a minor anomaly, we
have also tested the capacity of our system to detect nonconformities, see Fig. 5.
Based on 27 images and starting at the model curve, our algorithm manages to
reconstruct the curve and its anomaly with a mean error of 0.0765 mm. Although
the reconstruction is good, the error is concentrated around the anomaly, which
is somewhat smoothed out.
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Fig. 4. Left: Some of the 32 virtual images used for the reconstruction of the central
curve. Right: The distances from the sampled points from the reconstructed 3D curve
to the model curve. The cloud of sample points from the estimated curve is shown
together with the target curve. The starting curve is shown in black. The differences
are represented by lines with length proportional to the distance between the curve
and the target, using a scale factor of 20.

6.2 Real Images

We also consider a set of real images, see Fig. 6, with the same target curve, using
the same starting “model curve” as in the virtual case. We now need to face the
problem of noisy image data, multiple parallel structures and imprecision in the
localization and the calibration of the views. The image size is 1392×1040 pixels.
The starting curve has 10 control points, to which 48 new points are added. The
sampling used for the computations is of 200 points. At the mean distance from
the object curve, one pixel corresponds roughly to 0.28 mm. The distances from
the target curve are shown in Fig. 6. We obtain the following results:

Mean error 0.137 mm
Median error 0.125 mm
Standard deviation 0.074 mm

Even if the errors are higher than in the case of virtual images, we note that they
still correspond to less than a pixel in the images. The difference is explained
by the noise and to some extent by specularities, causing parallel structures
perturbing the minimization algorithm, see Fig. 7(b).

The evolution of the control points is demonstrated in Fig. 7(a), where the
set of initial control points is shown, together with the final curve and its control
points. As expected, the control points inserted are concentrated in the regions
of high curvature, such as the corners.
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(a) (b)

(c)

Fig. 5. Reconstruction of a nonconformity based on a series of virtual images of an
object with an anomaly. The object is shown in (a) with the anomaly marked in red,
with a close-up in (b). The result of the reconstruction around the anomaly is shown in
(c), with the original curve in green, the anomaly in red and the reconstructed points
in black.

7 Conclusions

We have presented an adaptive 3D reconstruction method using parametric
curves, limiting the degrees of freedom of the problem. An algorithm for 3D
reconstruction of curves using a fixed complexity model is embedded in an itera-
tive framework, allowing an enhanced approximation by control point insertion.
The optimization of the curve with respect to the control points is performed
by means of a minimization of an gradient-based energy functional, whereas the
insertion procedure is based on the distance from the curve to the observed im-
age contours. An experimental evaluation of the method, using virtual as well
as real images, has let us validate its performance in some simple, nevertheless
realistic, cases with specular objects subject to occlusions and noise.

Future work will be devoted to the integration of knowledge of the CAD
model in the image based edge tracking. Considering the expected neighborhood
of a sample point, the problem of parasite contours should be controlled and has
limited impact on the obtained precision.

We also plan to do a deeper study around the stopping criterion used in the
control point insertion process, using cross-validation.
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Fig. 6. Left: Some of the 36 real images used for the reconstruction of the curve de-
scribing the central hole. Right: The distances from the sampled points from the re-
constructed 3D curve to the model curve. The differences are represented by lines with
length proportional to the distance between the curve and the target, using a scale
factor of 20.
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Objective

Given a 3D NURBS curve extracted from the CAD model, (partially) seen in M images,
sampled in N points. We want to reconstruct the 3D curve observed in the images in
order to compare it to the model.

Algorithm

• Visibility Check Identification of the visible parts

χij =











1 if

n−1
∑

l=0

Ti(Pl)R
(i)
l,k(tj) visible

0 sinon

• Optimization on the control points

min
{P̂l}

M−1
∑

i=0

N−1
∑

j=0

χij E

(

n−1
∑

l=0

Ti(P̂l)R
(i)
l,k(tj)

)

• Line-search for contour points qij matching pij =

n−1
∑

l=0

Ti(Pl)R
(i)
l,k(tj)

qij = argpm
ij

max
−d≤m≤d

vj(p
m
ij , ) where p

m
ij = pij + m · n̂ij

• Computation of the BIC

BIC0 = k ln(N ·M)+N ·M ·ln





M−1
∑

i=0

N−1
∑

j=0

χij

(

qij −

n−1
∑

l=0

Ti(P
′
l)R

(i)
l,k(tj)

)2

/(N · M)





• do (control point insertion)
◦ Line-search for contour points qij

◦ Computation of the median error for each interval IK .

mK = med
EK

|qij −

n−1
∑

l=0

Ti(P
′
l)R

(i)
l,k(tj)|

where EK = {(i, j) | 0 ≤ i < M, tj ∈ IK , χij 6= 0}.
◦ Knot point insertion at the midpoint of interval I = arg min

K

mK .

◦ Visibility Check Identification of the visible parts
◦ Optimization on the control points
◦ Computation of the BICJ

• while (BICJ < BICJ−1)

Table 1. Reconstruction algorithm presented.
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9.1.1 Paper (BMVC’07) – Segmented AAMs Improve Person-Independent Face Fitting

Segmented AAMs Improve
Person-Independent Face Fitting

Julien Peyras1 Adrien Bartoli2 Hugo Mercier3 Patrice Dalle3

1 Dipartimento di Scienze dell’Informazione, Milano, Italy
2 LASMEA, Clermont-Ferrand, France

3 IRIT, Toulouse, France

{Peyras,Mercier,Dalle}@irit.fr Adrien.Bartoli@gmail.com

Abstract

An Active Appearance Model (AAM) is a variable shape and appearance
model built from annotated training images. It has been largely used to syn-
thesize or fit face images. Person-independent face AAM fitting is a chal-
lenging open issue. For standard AAMs, fitting a face image for an individual
which is not in the training set is often limited in accuracy,thereby restricting
the range of application.

As a first contribution, we show that the limitation mainly comes from the
inability of the AAM appearance counterpart to generalize,i.e. to accurately
generate previously unseen visual data. As a second contribution, we pro-
pose an efficient person-independent face fitting frameworkbased on what
we call multi-level segmented AAMs. Each segment encodes a physically
meaningful part of the face, such as an eye. A coarse-to-fine fitting strategy
with a gradually increasing number of segments is used in order to ensure a
large convergence basin.

Fitting accuracy is assessed by comparison with manual labelling statis-
tics constructed from multiple data annotations. Experimental results sup-
port the claim that standard AAMs are well-adapted to person-specific fit-
ting while segmented AAMs outperform the classical AAMs in aperson-
independent context in terms of accuracy, and ability to generate new faces.

1 Introduction

The Active Appearance Model (AAM) paradigm was introduced in 1998 by Cooteset
al. [3] and since then it has had a great success. An AAM learns theshape and the
appearance of a labelled set of images showing some class of objects. AAMs are widely
used for face fitting, seee.g. [3, 8] and face synthesis, seee.g. [4]. Most of the applications
– in the medical, psychological and linguistic fields, cognitive studies, expression transfer
on an avatar,etc. – require highly accurate fitting. In other words, the AAM parameters
must be recovered such that the synthesized image closely matches the input image.

Most of the previous work uses a single AAM modeling the face as a whole. Accurate
fitting is achieved in a person-specific context. For instance, [8] uses AAMs for facial
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deformation analysis. The standard AAM usually fails to achieve high accuracy for an
image of a previously unseen face,i.e. for an individual not in the training set. Person-
independent face fitting is however a very important problemsince a training image set
might not be available for an individual whose face needs to be accurately tracked in a
video.

The closest work to ours is probably by Grosset al. [7]. They tackle the problem
of constructing and fitting person-independent AAMs. They show that this is a diffi-
cult problem, even for frontal pose and neutral expression,and that the difficulties come
from the inability of standard AAMs to generate new faces. A solution based on training,
iteratively refitting the data with the AAM and re-training,is shown to improve the perfor-
mances compared to traditional single step AAM training. Cristinacceet al. [5] recently
proposed a paradigm called Constrained Local Model (CLM). It is shown to be effective
at fitting a local face model based on measuring the image response around vertices and
with a shape prior learnt from training images.

This paper tackles the important issue of person-independent face fitting with AAMs.
We bring several statements and technical contributions:

• First,§3, we propose a means to assess fitting accuracy: the SSE (Statistical Shape
Error). It is based on using several manual labellings of theinput images by differ-
ent users, from which gaussian statistics are computed for each label. The quality
of an AAM fit is assessed by using the Mahalanobis distance with manual labelling
statistics. This is an essential tool for the subsequent experimental analysis.

• Second,§4, we experimentally investigate the behavior of standard AAMs on un-
seen faces, and show that the lack of accuracy is mainly due tothe inability of the
appearance component to generate unseen faces. We state that standard AAMs are
accurate in a person-specific context but not in a person-independent one.

• Third, §5, we show that segmented AAMs outperform standard ones in the person-
independent context and achieve very accurate fitting, of the same order as the
accuracy reached with manual labelling statistics. Segmented AAMs consist of
several portions, each of which modeling a region of the facesuch as the mouth.
Directly fitting each segment would reduce the convergence basin compared to fit-
ting a standard AAM. As a remedy, we propose a coarse-to-fine fitting strategy
which gradually splits a standard AAM into pre-defined segments. Thismulti-level
segmented AAM we propose thus is able to generate new faces and can be effec-
tively fit to images. Experimental results show that this outperforms the refitting
solution of [7].

We give some background on AAMs below and our conclusions in§6.

2 Background on AAMs: Training and Fitting

An AAM combines two linear subspaces, one for the shape and one for the appearance,
which are learnt from a previously labelled set of training images [3].

Principal Component Analysis (PCA) is applied on shape training data to retrieve a
set of shape eigencomponentssi expressing the shape model variation, and their asso-
ciated eigenvalues proportional to the variance of the training data thesi enclose. Four
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extra componentss∗i are added to allow the 2D similarity transform, see [10]. LetBs =
[s1, · · · ,si, · · · ,s∗1, · · · ,s∗4] be the shape subspace basis. An instance of shape is defined asa
linear expression:s = Bs ps with ps the shape deformation parameters.

PCA is applied on the shape-corrected appearance data to retrieve a set of appearance
eigencomponentsAi, allowing variations on the model appearance, and their associated
eigenvalues proportional to the variance of the training data theAi enclose. Two extra
componentsA0 for gain andAI for bias are added, see [1]. LetBa = [A1, · · · ,Ai, · · · ,A0,AI ]
be the appearance subspace basis. An instance of appearanceis defined as a linear expres-
sion: A = Ba pa with pa the appearance variation parameters.

Fitting an AAM consists to find the shape and appearance parameters that make it
match the input image as best as possible. This is done by an iterative, nonlinear opti-
mization process. We use the inverse compositional optimization scheme presented by
Baker and Matthews in [10]. The Jacobian and Hessian matrices are derived analytically.
Two versions of this algorithm were proposed and compared in[7]. Our implementation
relies on the most accurate one called thesimultaneous inverse compositional algorithm,
originally described in [1].

We adapt this algorithm to our multi-level segmented AAM.

3 Assessing Fitting Accuracy

Fitting accuracy on unseen face images is generally assessed based on a single manual
annotation of each image, considered as the absolute shape reference. The assumption
behind this accuracy evaluation method is that the manual label is correct at the pixel
level.

This assumption is often violated in practice: a vertex on a face image gets signif-
icantly different manual annotations, even from the same user. It is also incorrect to
consider that one manual annotation is better than the others. It might also happen that a
well performing automatic process is more accurate than manual labellers.

To address this improper accuracy assessment problem, Mercier et al. [11] suggest to
annotate a face several times and build statistics for each vertex. It is then possible to set
up a fitting error measure that takes the imprecision of manual annotation into account.
The fitting accuracy score is given strong weight for those vertices that manual labellers
have localised accurately, and light weight for badly localised vertices.

We use the multiple label data available from [11] to define the ground truth shape and
the fitting error function. A set ofnI = 40 images were labellednL = 10 times each (labels
describe thenV = 68 vertices of the model mesh used in [10]). These frontal pose, neutral
expression, homogeneous illumination, face images are extracted from the AR database
[9]. Each image shows a different individual. A probabilitydistribution is computed for
each imagei and vertexv, as the meanµi,v over itsnL labelsxi,v,l and a(2×2) covariance
matrix Σi,v as:

µi,v =
1
nL

nL

∑
l=1

xi,v,l and Σi,v =
1

nL −1

nL

∑
l=1

(xi,v,l − µi,v)T (xi,v,l − µi,v).

These define what we dub ‘manual labelling statistics’. Figure 1 shows face images over-
laid with their manual labelling statistics, with each vertex represented by an ellipse show-
ing its mean position and uncertainty. This methodology is in contrast to [11] in which a
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single covariance matrix is computed for each vertex over all the nI images. We believe
that keeping a single covariance matrix for each vertex in each image makes sense since
the visibility conditions may substantially differ from one image to the others for the same
vertex. We want to preserve this information in the statitics.

Figure 1: Faces number 1, 3 and 6 from the 40 faces that were annotated 10 times. Co-
variance ellipses represent the distribution of the 10 labels around mean vertices.

We propose theStatistical Shape Error (SSE) for a shapes on an imagei that we
define by the average of the Mahalanobis distances:

SSEi(s) =
1

nV

nV

∑
v=1

√
(sv − µi,v)T Σ−1

i,v (sv − µi,v), (1)

wheresv is thev-th vertex of shapes. The lower the SSE, the better the fitting accuracy.
This error is strongly related to the negative log-likelihood of the parameters with respect
to gaussian noise contamined labels. It scores automatic fits and can also be used to score
manual fitting accuracy. In particular, we compute the SSE obtained by the 10 labellings
on each image. From the 10 error scores on each image we retainthe maximum and
minimum scores, and compute the average score. This allows us to compare automatic
fitting accuracy to manual fitting accuracy in§5.3, which gives a concrete idea of the
accuracy that is reached.

4 Issues in Fitting AAMs to Unseen Faces

In the literature, AAMs are usually built by retaining 95 to 98% of the total shape and ap-
pearance variance contained in the training data without justifying this choice. Few works
study the influence of the quantity of variance on the fitting performances. Grosset al. [7]
recently investigated the effect of shape and appearance variance on the convergence of a
fitting algorithm for unseen faces. They estimate the quantities of shape and appearance
variance that maximize the number of successful trials. However, they do not explain why
the convergence is limited for certain faces.

The experiment we report allows to highlight the fitting accuracy behavior for a range
of shape and appearance variances. We identify the combination that maximizes the over-
all fitting accuracy on all trials and explain why this accuracy is limited and the fitting
behaviour for various shape and appearance variance combinations. The experimental
setup has similarities with the one in [7].
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4.1 Fitting Seen Faces, i.e. Images in the Training Set

We use all the 40 images to train the AAM with different amounts of shape and appearance
variance. We fit it to the 40 face images on turn. Each fitting trial lasts a number of
iterations that allows to reach a clear final state, should itbe convergence or divergence.

As in [7], we initialize the fitting process as close as possible to the optimal parameter-
ization: we project the test face shape into the shape subspace to retrieve the initial shape
parameters, and its appearance into the appearance subspace to retrieve the appearance
parameters. In this way, we ensure that if the model diverges, it is not due to potential
local minima but to the model inability to fit the test image. Figure 2 (a) shows the aver-
age SSE on all the 40 face images. The bottom curve shows the model SSE in its initial
position, which is also the lowest error it can reach.
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(images in the training set) (individuals not in the training set)

Figure 2:Seen andunseen contexts analysis. The bottom curves represent the initialSSE
of equation (1) averaged over all the 40 images. The top curves show the average SSE
after the algorithm has ran. Various amounts of shape and appearance variances are tested.
The black dot in (b) represents the point of best average fitting accuracy on unseen faces
that stands for 60% of the shape variance and 100% of the appearance variance.

We observe that for full appearance (100% of the variance retained), the fit remains in
the best, initial position for any amount of shape variance retained. The characteristics of
the full appearance AAM is that, up to appearance sampling artefacts, the test image can
be completely reconstructed in appearance.

The second observation holds for any given fixed amount of shape variance: when
less than 100% of the appearance variance is retained, the fitting accuracy decreases. The
less the appearance variance, the worse the accuracy. For less than 100% of the training
data, the AAM appearance space cannot totally reproduce theface appearance of the
input image although this face is in the training set. This reluctant intensity discrepancy
between the test image and the model causes the drop in the fitting accuracy. This test
highlights the following property: the ability of the AAM appearance component to fully
generate the face appearance of the test image is a necessarycondition to obtain the best
possible fitting accuracy. A natural question to answer is whether this also holds when the
test image is not in the training set.
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4.2 Fitting Unseen Faces, i.e. Individuals Not in the Training Set

This test is different from the one in§4.1 in that it is done in a leave-one-out manner: we
train the AAM on 39 images and use the 40-th image as a test image of an unseen face.
The test is performed for all the 40 face pictures, and for variable amounts of shape and
appearance variance.

Figure 2 (b) shows the average SSE over the 40 face images. It is pretty similar to
figure 2 (a) but a main difference is however observed. There is no combination of shape
and appearance variances that makes the AAM remains into theinitial, best position.
Indeed, there is no junction between the SSE curves for the initial and fit curves. In
contrast with the test on seen faces, even for full appearance AAMs, the fitting process
shifts the AAM away from the initial solution. The AAM never remains on the best
possible accuracy position, which results in limited accuracy capabilities.

4.3 Discussion

As an observation on the test for seen faces in§4.1, we saw that when the model can fully
express the image in terms of appearance (the error in intensity between the model and the
image are due to the model misplacement and/or non-optimal appearance parameteriza-
tion). The fitting optimization process uses the error in intensity to iteratively update the
model to a position where this error is minimized, and ideally equals zero. It is assumed
that the model parameterization that minimizes the error inintensity correctly aligns the
model to the face image. In practice, this is what happens when the model explicitly learnt
the image it fits (and when the global minimum is reached). This explains the high fitting
accuracy obtained in this context.

When the model appearance cannot fully express the face on the test image, the error
in intensity due to this lack of expressivity is considered as being due to the model mis-
placement. The optimization process tunes the model parameters to minimize the residual
error though it does not come from a misplacement. In this case, the minimum error usu-
ally does not correspond to the best placement of the model vertices. Indeed, the process
bends the model in order to spread out the remaining error in intensity as much as it can
to minimize the global error. This makes the model drift awayfrom the sought after shape
used as its initial position,i.e. fitting accuracy is spoiled. The more deformable the model
the more the fitting process can bend it to further minimize error in intensity. For very
high deformability the model can even diverge. In the same way for a given deformability
(fixed amount of shape variance), the less the appearance variance, the less the model can
express the test image data and the worse the fitting accuracy. In the case of fitting on seen
faces, this happens when appearance variance is not fully retained (less than 100% of the
variance is retained). In the case of fitting on unseen faces,a new face always presents
visual aspects that are unknown from the model appearance component and the model al-
ways drifts away from the best possible position even when appearance is fully retained.
As seen on the curves of figure 2 (b), the best overall accuracyfor fitting on unseen faces
is obtained for full appearance and 60% shape variance, making the model rigid enough
not to bend too much, then minimizing the loss in fitting accuracy.
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5 Segmented AAMs and Unseen Individuals

5.1 Motivations for Using Segmented AAMs

The AAM appearance space is unable to completely generate the appearance information.
In other words, an unseen face added to the training set wouldbring new visual informa-
tion. We saw that the limited ability to generalize the appearance component limits the
fitting performance in terms of accuracy. One obvious solution to better generalize to any
new face appearance would be to train the AAM on thousands of training images. This
is difficult in practice for two reasons: first, this number oftraining data is hard to gather
up, and second, this implies to retain a very high number of appearance components to
explain as much of the variance as possible, which makes the optimization process com-
putationally heavy and increases the possibility of getting stuck into local minima.

The solution we propose is to reduce the appearance space dimensionality. This makes
more expressive the data coming from our reasonable size training set. To achieve a better
fitting accuracy we rely on local models defined over a smallerface area. This approach
is somehow similar to the concept ofsegmented morphable models briefly presented by
Blanz and Vetter in [2].

5.2 Multi-Level Segmented AAMs and Coarse-to-Fine Fitting

The ability of local models to generalize their shape and appearance is better than for
larger models. This makes them potentially more accurate for the same amount of training
data. However, their reduced dimension penalizes their robustness to bad initialization:
local models must be well initialized. To ensure this, we usea three stage coarse-to-fine
strategy, illustrated on figure 3, where a global AAM is used to initialize intermediary
AAMs, themselves used to initialize local AAMs.

Intermediary and local models represent a subgroup of the global model vertices.
Models concerned with eyebrows also describe some extra vertices on lower eyebrows.
A layer of supporting points is added to local and intermediary models in order to define
visual gradients at 360◦ around all vertices.

The model is automatically initialized. We use a face and eyecenter detector available
online1 [6]. The rigid global model is transformed with a 2D similarity and is placed on
the image such that its eye centers match the corresponding estimate given by the detector.
From this initial position the fitting is launched until it converges.

Global model position is used to initialize each intermediary model: we keep the
vertices the global model has in common with an intermediarymodel, and we find the
intermediary model instance that best matches those vertices, as follows.

Let Bsucc be the shape generating matrix of one intermediary model: the columns of
Bsucc are thenC long deformation vectorssi plus the four similarity transform vectors.
Vector scurr represents the vertex coordinates of the global model that are in common
with the intermediary model. To this vector we add extra nullcoordinates for intermedi-
ary model vertices that are not in common with global model.scurr thus becomesnC long.
We sort the coordinates inscurr in a way such that they correspond to vertex coordinates
defined in the vectorssi. The instance of intermediary model that best matches its com-
mon vertices to those of the global model is found by solving the following optimization

1http://kolmogorov.sourceforge.net
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Figure 3: Illustration of the models used to fit the face. A global model is initialized with
help of an eye center detector and is fitted on the image givinga first fitting result (left
column). From this initialization a set of intermediary models are launched to further
refine the fitting (center column). Eventually, the local models dedicated to each facial
feature are launched to fit these features more accurately (right column).

problem:

argmin
p

nC

∑
c=1

Q(c)(scurr(c)−Bc
succp)2 , (2)

whereBc
succ is thecth row of matrix Bsucc. Q is annC long vector of weights set to one

for the coordinates of vertices that are common between the models, and to zero for the
others. A closed form solution can be computed to find the optimal p† (details are omitted
due to lack of space):

p† = (KT K)−1KT BT
succdiag(Q)scurr, (3)

whereK = BT
succdiag(Q)Bsucc anddiag(Q) is a diagonal matrix, null everywhere excepted

on diagonal where theQ vector coefficients are represented. The resultp† of this mini-
mization can be used to instantiate the shape of the intermediary model:ssucc = Bsucc p†.
The process is applied to initialize all intermediary models that are then fitted to the image.
Following the same strategy, we use (converged) intermediary model vertices to initialize
local models that are in turn fitted to the image. Once each model is initialised in position,
its appearance component is initialised by projection of the area underlying on the image
onto the appearance subspace, in order to retrieve the initial appearance parameters.

5.3 Experimental Results

Fitting with intermediary and local models leads to improved fitting accuracy. On figure
4 (a), boxes of whiskers compare the SSE on 40 trials obtainedrespectively with global,
global refitted, intermediary, local models and mean manualerror as well as maximum
manual error (see§3). The global refitted model is obtained by training the global model
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onto refitted data: the used face data is learnt by an AAM retaining 99% variance of shape
and appearance, and is fitted again on the same faces in order to increase the vertices
correspondences among training data. Introduced in [7], this operation seems to improve
the fitting results on unseen faces with respect to the results obtained when training the
AAM on once-labelled data. Since we use multiply labelled data for training (the mean
of 10 labels to define each vertex), their semantical position on the face is high and should
naturally improve the correspondence among data.

A leave-one-out procedure is used to train and fit the global,global-refitted, interme-
diary and local models. Models are built with the shape and appearance variances that
maximize their overall accuracy on unseen faces (e.g. 60% shape and 100% appearance
for the global model). All intermediary models are gathered. The same is done for the
local models. The SSE is computed using equation (1) only on vertices that are com-
mon between the models. We see the accuracy improvement allowed by intermediary and
local models with respect to the global model, and we see thatthe accuracy is globally
comparable to manual label accuracy evaluated with the statistics. The relative improve-
ment obtained from global to local model fitting is 36% on average. The SSE obtained
for refitted data is higher than for the global model trained with multiply labelled data.
We believe that the higher semantical meaning obtained withlabel statistics is mainly
responsible for the improvement. Indeed, these labels havehigher semantical meaning
since human labellers attempted several times to accurately set them into a given position
on each face. The refitting process will displace once-labelled vertices to maximize their
cohesion, but it is improbable that these new positions are semantically the very desired
ones (although they might usually be improved). Multiply labelled data then constitute
a maximum bound to accuracy, which explains the improved results obtained when we
train an AAM with these data.
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(a) Comparison results (b) Example of fitting results

Figure 4: (a) Comparison between the 40 fitting scores obtained with a global model,
a refitted global model, intermediary models, local models,and manual labellings, both
maximum and average SSE. Local models often reach a SSE comparable to manual la-
bellings. (b) Example of fitting results on face number 6. Thecircles represent the ground
truth shape vertices (centers of the covariance ellipses),the triangles the vertices of the
fitted global model (the SSE equals 2.46), and the stars represent the vertices of the fitted
local models (the SSE equals 1.46).
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6 Conclusion and Future Work

The AAM paradigm is often used without precisely understanding the influence of the
quantity and nature of training data and of theretained quantity of shape and appearance
variance on fitting performances. As a step towards such an understanding this work stud-
ies fitting accuracy on unseen frontal and neutral face data through theStatistical Shape
Error we propose. We showed and explained the fitting accuracy limitations in this case.
We propose a solution based on local models, namely themulti-level segmented AAM, that
overcomes this limitation and reaches very high accuracy benchmarked by manual fitting
accuracy with a large convergence basin. To summarize, standard and segmented AAMs
are respectively well-adapted to person-specific and person independent face fitting.

We wish to extend these results to varying pose and expression: we will train one set
of global, intermediary and local models for each possible pose and expression and set up
a strategy to select the set that best suits for fitting the current face image.
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Abstract

This paper deals with shading and AAMs. Shading is

created by lighting change. It can be of two types: self-

shading and external shading. The effect of self-shading

can be explicitly learned and handled by AAMs. This is

not however possible for external shading, which is usually

dealt with by robustifying the cost function.

We take a different approach: we measure the fitting

cost in a so-called Light-Invariant space. This approach

naturally handles self-shading and external shading. The

framework is based on mild assumptions on the scene re-

flectance and the cameras. Some photometric camera re-

sponse parameters are required. We propose to estimate

these while fitting an existing color AAM in a photometric

‘self-calibration’ manner.

We report successful results with a face AAM with test

images taken indoor under simple lighting change.

1. Introduction

Active Appearance Models (AAMs) were introduced in

[4] and since then have been the topic of many studies such

as [2, 9]. They model the visual shape and appearance of

an object or an object class and have been particularly suc-

cessful to model faces. Face AAMs are used in this paper

without loss of generality.

One of the main weaknesses of the AAMs is that there

reliability generally degrades while the amount of variabil-

ity increases in the training data. Sources of variability in-

clude person identity, expression, pose and shading. An

AAM trained for several such sources will generally be

prone to fall into local minima.

On the other hand, an AAM which has not been specif-

ically trained to handle shading drifts away from the ex-

pected solution when the lighting changes. This makes

AAMs useless for most of the applications where lighting

conditions cannot be kept under control. Several recent pa-

pers consider this problem. Global illumination changes are

modeled thanks to an affine normalization in the appearance

basis [1]. Shaded areas are rejected as outliers thanks to a

robust cost function [12]. These solutions are not fully sat-

isfactory in an unconstrained lighting context.

Another approach is to build a rich training database in-

cluding a large amount of lighting variations [11]. However,

for many applications, we cannot reasonably pretend to be

able to collect sufficiently many such training data. In addi-

tion, it is useful not to overload the appearance statistics but

rather to separate the different sources of variability. Keep-

ing the model complexity as low as possible usually results

in improved fitting performances and better accuracy. A pa-

per which recently followed this direction is [6]. It uses

an Active Illumination Appearance (AIA) that models self-

shading by additively combining two appearance bases, one

for identity and one for self-shading.

We tackle the AAM fitting problem in the unconstrained

illumination context. We do not explicitly model the ap-

pearance variations due to shading. This is based on the

Light-Invariant transformation of [5]. From color training

data acquired under any canonical illumination condition

(which is also homogeneous in most cases) with a single

camera, the Light-Invariant AAM fitting procedure we pro-

pose fits faces taken under uncontrolled illumination condi-

tions. The only assumptions are a simplified model for the

scene BRDF (Bidirectional Reflectance Distribution Func-

tion) and the photometric camera response. This is partly

inspired by [10] in which direct Light-Invariant homogra-

phy computation is successfully demonstrated.

Combining the Light-Invariant theory with AAMs not

only allows us to efficiently fit AAMs to face images for

which the lighting conditions are uncontrolled, it further al-

lows synthesizing the canonical illumination appearance of

the face. Thereafter, we assume that the canonical illumi-

nation is homogeneous. It has been shown that shadow free

appearance reconstruction is in general an ill-posed prob-

lem [5]. We benefit from the strong prior knowledge that the

observed object is known. We show successful shadow free

face reconstruction. An overview of the proposed method

is presented in Figure 1.

The paper is organized as follows. In §2 we describe the
original AAM formulation and the Light-Invariant space.

We discuss the possibility of combining the AAM frame-
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Figure 1. Overview of the proposed method.

work with the Light-Invariant image theory in §3. Two al-
gorithms are introduced. The basic Light-Invariant AAM

(LI-AAM) fitting, with its mathematical development, are

given in §4. The photometric ‘self-calibration’ of a regu-
lar AAM is explained in §5. We consider the possibility to
handle different training and test cameras. This allows us

to reconstruct a shadow free RGB appearance, as described

in §6. In §7, we experimentally compare the fitting perfor-
mance obtained with classical fitting of a greylevel AAM,

a color AAM, and various LI-AAM fittings. We conclude

and give our perspectives in §8.

2. Background and General Points

2.1. Active Appearance Models

An AAM combines two linear subspaces, one for the

shape and one for the appearance. They are both learnt from

a labelled set of training images [4].

2.1.1 The Shape Counterpart

The shape of an AAM is defined by the N vertex coordi-
nates of a mesh s describing the object boundaries and de-
formations:

s =
(
u1, v1, u2, v2, · · · , uN , vN

)
, (1)

where ui, vi are the coordinates of vertex i. Principal Com-
ponent Analysis (PCA) is applied to training shapes, cen-

tered on the mean shape s0. A shape subspace Bs =
[s1, · · · sn] of n− 4 shape eigencomponents is obtained, re-
ducing the dimensionality of the training set. Four eigen-

vectors sn−3, · · · , sn are added to model 2D similarity

transformations [9].

An instance of shape s(p) is defined as a linear combina-
tion of shape eigenvectors with weights p = (p1, · · · , pn):

s(p) = s0 +
n∑

i=1

pisi. (2)

Using the generated set of meshes parameterized by p,
a warp function W (x; p) is defined as a piecewise affine
transformation from the base shape s0 to the transformed

mesh s(p):

x′ = W (x; p) x =
(

u
v

)
x′ =

(
u′

v′

)
, (3)

where (u′, v′)T is the warped coordinates.

2.1.2 The Appearance Counterpart

The training images are warped using W (x; p) to normal-
ize these in size. A photometric normalization is then ap-

plied to get the appearance training data. PCA is applied

on these data in order to build a linear appearance subspace

Ba = [A1, · · · , Am] ofm−2 image eigencomponents cen-
tered on the mean appearance image A0. To compensate

for bias and gain in the image intensity, the mean vector A0

and a constant image AI are added (corresponding to the

m− 1th and mth components). This is the same process

for color and greylevel images: the number of channels in

the appearance images matches that of the training images.

An instance of appearance is defined as a linear com-

bination of the Ai(x) weighted by a set of parameters
λ = (λ1, · · · , λm):

A(x) = A0(x) +
m∑

i=1

λiAi(x). (4)

2.1.3 Fitting

Fitting an AAM consists to find the shape and appearance

parameters that make it best match the input image. A cost

function is minimized with respect to the shape and appear-

ance parameters:

∑
x

[
A0(x) +

m∑
i=1

λiAi(x)− I(W (x; p))

]2

. (5)
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The cost function (5) evaluates the pixel value discrepancy

between the warped input image and an instance of appear-

ance of the model. An iterative Gauss-Newton minimiza-

tion process is used to retrieve parameters p and λ.

2.2. Light­Invariant Image Theory

The transformation for Light-Invariant image formation

is based on [5], which proposes a method for a single color

image. This method relies on a simplified photometric im-

age formation model where all surface materials follow

a lambertian model, the lights are modeled as planckian

sources and the camera sensor is narrowband. We consider

faces to be lambertian to some extent. This assumption suf-

fices for a range of lightings but might break down in cases

such as specularities.

A more complex model of the camera is proposed in

[8, 7], which takes into account nonlinearities in the im-

age formation process (i.e. vignetting and the radiometric

response function of the camera), and its usage for photo-

metric alignment of images. Such a model allows to com-

pensate for the camera response, which improves the appli-

cability of a simplified image formation in general purpose

cameras.
Given the three color components ρ = (ρ1, ρ2, ρ3), log

chromaticity ratios are formed:

X1 = log

„
ρ1

ρ3

«
, X2 = log

„
ρ2

ρ3

«
. (6)

An illumination invariant quantity L can be found by
projecting (X1,X2) along direction ē⊥ = (cos(θ), sin(θ))
parameterized by its angle θ from which:

L(ρ, θ) = X1(ρ) cos(θ) + X2(ρ) sin(θ). (7)

This projection equates two colors corresponding to point

viewed under different illuminations. It thus maps a color ρ
to its corresponding Light-Invariant representation.

Transforming the value of each pixel of the color image

S results in L(S, θ), a 1D shadow invariant image. This
image transformation is global in that it does not depend on

the pixel position q ∈ R
2, but only on its color value.

The only relevant parameter governing the transforma-

tion is the angle θ of the invariant line, which only depends
on the camera spectral properties. We elevate the RGB data

to a log, obtaining what we call the logRGB space. The
transformation opportunely becomes linear:

L(ρ, θ) = L(θ)


log(ρ1)

log(ρ2)
log(ρ3)


 , (8)

with L(θ) =
(
cos(θ), sin(θ)

) (
1 0 −1
0 1 −1

)
.

Several solutions to estimate the angle θ are proposed
in the literature. In [5] an off-line calibration step is pro-

posed. It uses a color pattern or a set of preregistered im-

ages showing illumination changes. A ‘self-calibration’ ap-

proach is also presented. The strategy consists to find the

angle for which the entropy of the invariant image is mini-

mum. The later method is proved to be capable of finding

the correct angle by using a single image where remarkable

shaded areas are present. Despite its effectiveness in some

cases, there are situations where it fails (e.g. in the presence

of global illumination changes or soft shadows).

3. Combining AAMs and Light-Invariance

There are several possible ways of combining the AAMs

with the Light-Invariant transformation L. The general idea
is to project the generated color image and the test color im-

age to the Light-Invariant space, and to match them within

that space:

∑
x

[
ALI

0 (x) +
m∑

i=1

λiA
LI
i (x)− ILI(W (x; p))

]2

, (9)

where ALI
0 , all ALI

i and ILI are Light-Invariant images,

pre-transformed from the 3D color space to the 1D Light-

Invariant space. We therefore get a classical 1D dataset, and

the problem resembles the one in (5) for greylevel images.

The main drawback of this approach, which limits the

system usability, is that we need to know in advance the

angle for the test data. As we explained above, there ex-

ist calibration methods but their applicability is restricted in

several practical cases. The best thing would be to set up an

approach which does not require a specific off-line calibra-

tion step.

Following the same philosophy as in [10], a more gen-

eral solution is proposed by embedding the angles within

the cost function. Under this approach, the angles can be

estimated together with the shape and appearance parame-

ters of the AAM.

To do so, the training of appearance is done in the lo-

gRGB space described in §2. It is linearly mapped to the
invariant space with (8) and, as described in §6, allows us to
reconstruct the appearance in RGB.

The resulting cost function is:

∑
x

[
L(θ1)

(
Ã0(x) +

m∑
i=1

λiÃi(x)

)

−L(θ2)(I (W (x; p))
]2

, (10)

where I represents the logRGB test image, Ãis are the

logRGB appearance components, θ1 and θ2 are the angle
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parameters for the training sequence and the test image re-

spectively. Using two different angles allows the system to

work with different cameras (or the same camera with dif-

ferent photometric adjustments) for training and testing.

We examine two scenarios:

Case 1: Photometric ‘self-calibration’ of the training

camera. The AAM can be ‘self-calibrated’ while fit-

ting. If the training and test images are taken with the

same camera θ1 = θ2. If two different cameras are

used, we generally have θ1 6= θ2. It is strictly nec-

essary in both cases that changes in illumination arise

between the training and the test images. If not, the an-

gle or angles cannot be obtained and move randomly

during optimization.

Case 2: Basic Light-Invariant AAM (LI-AAM) fitting.

We assume that θ1 is known (the AAM is photometri-

cally calibrated). In practice, θ2 is rarely known. We

estimate it while fitting the AAM in the Light-Invariant

space.

4. Basic Light-Invariant AAM fitting

The basic Light-Invariant AAM (LI-AAM) fitting in-

cludes the angle θ2, needed to convert the test images to

the invariant space. As we stated before the training is per-

formed in logRGB so a linear appearance basis is obtained

within that space.

The appearance basis is made of an average vector Ã0

and the set of m appearance vectors Ãi. The cost function

is (10). It is minimized over p, λ and θ2 using an addi-

tive Gauss-Newton algorithm. We refer the reader to [3] for

more details.

5. Photometric Calibration of a Regular AAM

There are two possible situations:

• The same camera took the testing and training images.
The cost function is minimized over p, λ and θ1 = θ2

• Different cameras took the testing and training images.
The cost function is minimized over p, λ, θ1 and θ2

6. Shadow-Free Appearance Reconstruction

Fitting the AAM in the Light-Invariant space not only al-

lows to handle uncontrolled illuminations but it also permits

to retrieve the face appearance under the canonical illumi-

nation (the one in the training set). We conveniently choose

to transform the RGB data to the logRGB since it makes the

transformation ‘more linear’. The second advantage of our

choice is that when the AAM correctly fits the face on the

input image, the synthesized logRGB appearance can easily

be back-converted to the original RGB space.

Assuming that the color components are strictly positive,

the logRGB space is invertible to RGB. Given the set of ap-

pearance parameters λ and the appearance basis in logRGB
Ãi, · · · , Ãm, the reconstructed RGB is:

A(x) = e(Ã0(x)+
Pm

i=0 λiÃi(x)) (11)

where e is the element-wise exponential.
Such an operation is usually ill-posed when no prior in-

formation is provided on the image content [5]. In our case

the AAM gives a unique solution.

Shadow-free appearance reconstruction can be useful for

face recognition systems usually, exhibiting better perfor-

mances under controlled illumination, and for image com-

pression applications, where it is useful to encode facial and

illumination data separately.

7. Experimental Results

To evaluate the performance of the above presented al-
gorithms, we tested their robustness to noise and their resis-
tance to initial geometric shape displacement. We measured
a geometric fitting error using manually labelled images and
the angle error to the ground-truth. So as to allow the reader
to compare with various existing methods, we study the re-
sults of RGB, greylevel, and different Light-Invariant (LI)
AAM fitting procedures:

• LI-AAM: Basic Light Invariant AAM fitting, proposed in
§4, where only the input image angle θ2 is unknown.

• LI-AAM(LIT): Basic Light Invariant AAM fitting, pro-
posed in §4, where only the input image angle θ2 is unknown

but performing the training in LI space.

• LI-AAM(PC): Photometric calibration of the AAM pro-
posed in §5. Both θ1 and θ2 are obtained.

• LI-AAM(PC): Photometric calibration of the AAM pro-
posed in §5, imposing the constraint θ1 = θ2.

• RGB-AAM: A regular AAM fitted in color space.
• Grey-AAM: A regular AAM fitted in greylevel space.

7.1. Simulated Perturbations

The whole set of algorithms are tested against image in-

tensity noise and initial geometric displacement.

A person-specific AAM is trained using 6 face images

taken under a mainly homogeneous illumination, and dif-

ferent poses.

The original images of the database are corrupted by

noise with variance σn over the range [0 − 255] and on
each color channel. One of the images used for training

is corrupted by noise and an artificial global change of il-

lumination is created. The shadow area modifies the RGB

color values of the image to simulate the response of a cam-

era with angle θ = 146 degrees perturbed by a light source
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with a given color temperature T (See Figure 2.a). The ini-
tial position of the model mesh is obtained by displacing its

points from the hand labelled solution by a random distance,

the variance of which denoted γ.

(a) (b)
Figure 2. (a) Artificial perturbation on an original RGB image. (b)

Extract of the homogeneously illuminated face images used for

training.

We compare the performance of all algorithms for a

range of perturbation parameters γ and σn. Figure 3.a

shows the geometric error measured after a sufficient num-

ber of iterations to let each AAM converge (we used 50 it-

erations). On Figure 3.b and Figure 3.c, the geometric error

and the angle error are tested against the noise (also mea-

sured after 50 iterations).

We observed that:

• LI-AAM and LI-AAM(LIT) perform exactly the same
in all tests, so the use of logRGB for training appear-

ance do as good as the direct use of the LI space.

• The image noise substantially affects all the proposed
Light-Invariant methods. However LI-AAM shows to

be the most robust.

• The initial geometric displacement substantially and
equivalently affects all the Light-Invariant methods.

7.2. Real Illumination Changes

We tested the proposed solution on two sets of real data.

Each set is composed of two sequences, both presenting one

character changing head pose under neutral expression and

finally smiles. On one sequence, the face is taken under

homogeneous illumination as shown on Figure 2.b.

The presented color images are used to train the various

AAMs. On the other sequence, the face is illuminated later-

ally as shown on Figure 4, and we compare the AAMs per-

formance on this sequence. Figure 5 shows the evolution of

the geometric error against the iteration number. As an ob-

servation, both LI-AAM and LI-AAM(LIT) present (equiv-

alently) better convergence characteristics than the other LI

methods. Also it clearly appears how the Grey-AAM and

RGB-AAM quickly diverge.
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Figure 5. Geometric Error versus iteration number for the test im-

age shown in Figure 4.a

8. Discussion

We tackled the difficult problem of Active Appearance

Model fitting in an unconstrained illumination context. An

AAM in its basic formulation is very sensitive to an un-

known illumination.

Instead of classically matching the model appearance

to the input image in the color space, we project the im-

ages, both from the synthesized and the input ones into a

Light-Invariant space where the effect of shading are can-

celed. This only requires to tune a camera dependent angle

θ, for the cameras used for shooting the training and the test
datasets. The calibration of these parameters, necessary to

the Light-Invariant transformation, is done jointly with the

appearance and shape parameters. This is what we called

the Light-Invariant AAM fitting.

Two different scenarios are proposed: in the first acts the

basic LI-AAM algorithm for which only the angle corre-

sponding to the input image is unknown, and in the second

is involved the photometric calibration of an existing AAM

(LI-AAM(PC)) for which the angles corresponding to both

the training and the test data (the cameras used to take them)

are sought after.

Our approach does not need that the camera is pre-

calibrated and makes the system useful to unsourced (color)

image databases. In addition, we show how training the

AAM in logRGB allows to reconstruct the RGB shadow-

free appearance of a face after the fitting is performed.

Experimental results show that our proposal outperforms

the regular AAM approaches (using RGB or greylevel val-

ues), when the input images present different illumination

conditions.
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Abstract
The prediction sum of squares is a useful statistic for comparing different models. As for linear least squares

problems, there is a simple well-known non-iterative formula to compute it without having to refit the model as
many times as the number of measurements. We extend this formula to cases where the problem has multiple
parameter or measurement sets.

We report experimental results on the fitting of a warp between two images, for which the number of deformation
centres is automatically selected, based on the non-iterative formula we derive.

1 Introduction

The prediction sum of squares (press) is a statistic based on the leave-one-out technique. It was proposed by Allen
in 1974 [1], and is typically used to compare different models. It is equivalent to the sum of studentized residuals,
and can be extended to select parameters such as the regularization weight in smoothing splines, as shown by Wahba
et al. [8] through leave-one-out cross-validation. For the case of regular linear least squares, it is well-known that
there is a simple non-iterative formula giving the press without having to solve as many problems as there are
measurements1 [4]. This has been derived for several variants of the basic linear least squares problem. For instance,
Tarpey [6] examines the case of restricted least squares.

We derive non-iterative press formulaes for those cases with multiple parameter or measurement sets. We report
experimental results showing how one of the proposed non-iterative press formulaes can be used to assess the fit of
an inter-image warp borrowed from [2], and to automatically select the number of deformation centres for this warp.

In general, we write vectors in bold fonts, e.g. x, matrices in sans-serif and calligraphic fonts, e.g. A, W, and
scalars in italics, e.g. m.

2 Background: Standard Linear Least Squares

Let x be the parameter vector, A the design matrix with m rows aj , j = 1, . . . ,m and b the m measurement vector.
Consider a regular linear least squares problem with the cost function:

E2
STD(x) def=

1
m

m∑
j=1

(
aT

j x− bj

)2
=

1
m
‖Ax− b‖22,

where ‖u‖2 is vector two-norm, i.e. ‖u‖2 =
√

uTu. The solution to this problem is:

x̄ def= A†b,

with A† the matrix pseudo-inverse. The press is defined by fitting the model without the j-th measurement, giving
the parameter vector x̄(j). This is used to predict the j-th measurement as aT

j x̄(j). This prediction is compared
against the actual measurement bj . This is averaged over the m measurements, giving:

P2
STD

def=
1
m

m∑
j=1

(
aT

j x̄(j) − bj

)2
.

1‘Non-iterative formula’ emphasizes the fact that explicitly training the model with all but one measurement and testing on this
measurement, is not required.
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Directly using this formula for estimating the press would be extremely inefficient since the model has to be fitted
m times to compute all the x̄(j). It is well-known that there is a non-iterative formula giving the press as:

P2
STD =

1
m

∥∥∥∥∥∥∆

 1

1−∆
(
Â

)
 (

Â− I
)
b

∥∥∥∥∥∥
2

2

, (1)

with 1 the (n× 1) ‘all-one’ vector, Â = AA† the hat matrix, I the identity matrix, and where ∆ is the diag operator,
similar as the one in Matlab (i.e. it both extracts a matrix diagonal and constructs a diagonal matrix from a vector).
Note that

(
Â− I

)
b = Ax̄− b, i.e. is the residual vector. Formula (1) is proved in e.g. [5].

3 Multiple Parameter or Measurement Sets

This section brings our main results in this paper. They are proved in section 4.

Multiple parameter and measurement sets. This kind of linear least squares problems has l sets of parameters
and measurements represented in matrix form: L is the parameter matrix and R is the measurement matrix with
rows rj . They both have n columns. Each of them is respectively a parameter and a measurement set, the former
linked to the latter through the design matrix A. The cost function is as follows:

E2
MPM(L) def=

1
m

m∑
j=1

∥∥∥aT
j L− rT

j

∥∥∥2

2
=

1
m
‖AL− R‖2F ,

where ‖U‖F is the matrix Frobenius norm, i.e. ‖U‖F
def=

√
tr(UTU). The solution to this problem is:

L̄
def= A†R.

The press writes:

P2
MPM

def=
1
m

m∑
j=1

∥∥∥aT
j L̄(j) − rT

j

∥∥∥2

2
,

and can be computed efficiently with the following non-iterative formula:

P2
MPM =

1
m

∥∥∥∥∥∥∆

 1

1−∆
(
Â

)
 (

Â− I
)

R

∥∥∥∥∥∥
2

F

, (2)

which is exactly as (1) for the standard linear least squares case, except that the vector two-norm is replaced by the
matrix Frobenius norm. This is demonstrated very easily by following the proof in [5], replacing the vector by the
matrix norm. The intuition is that each column of R is independent, in the sense that the corresponding parameters
lie in a different column in L, and that ‖U‖2F = ‖u1‖22 + ‖u2‖22 + . . . , where u1, u2, . . . , are the columns2 of matrix
U. The problem can thus be split into n standard linear least squares problems, and their press combined together
to give (2).

Multiple measurement sets. We investigate the case where there is a single parameter vector with multiple
measurement sets. In other words, each model prediction matches several measurements. This is modeled by the
following cost function:

E2
MM(x) def=

1
m
‖CL− R‖2F with L = x1T,

where C is the m row design matrix. This is a particular case of the multiple scaled measurement sets described
below. We can obviously not apply the standard press formula since n linked measurements must be removed jointly.
Holding out only one measurement at a time underestimates the press.

2This obviously also holds with the rows.
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The solution is obtained from (5) with ω = 1 as:

x̄ = C†R1.

The press is defined by:

P2
MM

def=
1
m

m∑
j=1

∥∥∥cT
j x̄(j)1

T − rT
j

∥∥∥2
,

with cj and rj the rows of C and R respectively. The non-iterative press formula we derive is:

P2
MM =

1
m

∥∥∥∥∥∥∆

 1

1−∆
(
Ĉ
)

 (
ĈR1− R + ∆

(
∆

(
Ĉ
))

R (I− 1)
)∥∥∥∥∥∥

2

F

, (3)

with 1 = 11T the ‘all-one’ (n× n) matrix. Specializing equation (7) with ω = 1 to get (3) is straightforward.

Multiple scaled measurement sets. This case generalizes the previous one by incorporating a different scale for
each of the measurement sets, i.e. for each column in R, through an (n× 1) scaling vector ω:

E2
MSM(x) def=

1
m
‖CL− R‖2F with L = xωT. (4)

The solution is:
x̄ = C†Rω. (5)

The press is defined by:

P2
MSM

def=
1
m

m∑
j=1

∥∥∥cT
j x̄(j)ω

T − rT
j

∥∥∥2
, (6)

and we demonstrate below that the non-iterative press formula is:

P2
MSM =

1
m

∥∥∥∥∥∥∆

 1

1−∆
(
Ĉ
)

 (
ĈRωωT − R + ∆

(
∆

(
Ĉ
))

R
(
I− ωωT

))∥∥∥∥∥∥
2

F

. (7)

This looks like the usual direct solution except that an extra term ∆
(
∆

(
Ĉ
))

R
(
I− ωωT

)
is added to the residual

matrix ĈRωωT − R.

4 Proofs for the Multiple Scaled Measurement Sets Case

The solution in equation (5). We start by deriving the solution x̄ in equation (5). This equation means that x̄
is the ω weighted sum of the solution for each set of measurements. It is derived by rewriting the cost function (4)
as:

E2
MSM(x) =

1
m
‖ω ⊗ Cx− r‖22,

where r = vect(R) is the column-wise vectorization of R, and ⊗ is the Kronecker product. From this rewriting, we
obtain:

x̄ = (ω ⊗ C)†r,

which rewrites as:
x̄ =

(
ωT ⊗ C†

)
r = C†Rω.
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The non-iterative press formula (7). The next step is to derive the non-iterative press formula (7). The proof
follows similar steps as the proof for the basic non-iterative press formula in [5]. We start from the press definition
(6). Defining ej as a zero vector with one at the j-th element and Dj

def= I−∆(ej), we have:

x̄(j)
def= arg min

x
‖DjCxωT − DjR‖2F .

Note that matrix Dj has the properties:

DjDj = Dj

DT
j = Dj

I− Dj = ∆(ej).

Similarly as for the solution (5), we get:
x̄(j) = (DjC)†DjRω. (8)

The lemma we demonstrate in the next paragraph states that:

x̄(j) = C†R̃jω, (9)

with R̃j the measurement matrix R with the j-th row replaced by its prediction Cx̄(j)ω
T with the model parameters

x̄(j) rescaled by 1
‖ω‖22

, i.e.:

R̃j
def= DjR +

1
‖ω‖22

(I− Dj)Cx̄(j)ω
T. (10)

We note that:
(I− Dj)Cx̄(j)ω

T = ∆(ej)Cx̄(j)ω
T = ejcT

j x̄(j)ω
T.

The prediction of the j-th data with the global model x̄ is cT
j x̄ωT. By substituting x̄ from equation (5), we get:

cT
j x̄ωT = cT

j C†RωωT = ĉT
j RωωT, (11)

where ĉj is the j-th row of the hat matrix Ĉ = CC†. Similarly, we rewrite the prediction of the j-th data with the
partial model x̄(j) from equation (9) as:

cT
j x̄(j)ω

T = ĉT
j R̃(j)ωωT. (12)

Taking the difference between the two predictions as rewritten in equations (11) and (12), and factorizing gives:

ĉT
j RωωT − ĉT

j R̃(j)ωωT = ĉT
j

(
R− R̃(j)

)
ωωT.

Using (10), we substitute R̃j = DjR + 1
‖ω‖22

ejcT
j x̄(j)ω

T which gives:

ĉT
j

(
R− DjR−

1
‖ω‖22

ejcT
j x̄(j)ω

T

)
ωωT,

which, simplifying R− DjR = ejrT
j and since ωTω = ‖ω‖22, transforms to:

ĉT
j

(
ejrT

j ω − ejcT
j x̄(j)

)
ωT = ĉj,j

(
rT
j ω − cT

j x̄(j)

)
ωT,

where ĉj,j is the j-th diagonal element of the hat matrix Ĉ. We thus have rewritten the original prediction difference
as follows:

cT
j x̄ωT − cT

j x̄(j)ω
T = ĉj,j

(
rT
j ω − cT

j x̄(j)

)
ωT.

Rearranging the terms gives:
cT

j x̄ωT = ĉj,jrT
j ωωT + (1− ĉj,j) cT

j x̄(j)ω
T.

Adding rT
j

(
ĉj,jI− I− ĉj,jωωT

)
on both sides gives:

cT
j x̄ωT + rT

j

(
ĉj,jI− I− ĉj,jωωT

)
= (1− ĉj,j)

(
cT

j x̄(j)ω
T − rT

j

)
,
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from which:
cT

j x̄(j)ω
T − rT

j =
1

1− ĉj,j

(
cT

j x̄ωT − rT
j + rT

j ĉj,j

(
I− ωωT

))
.

We observe that cT
j x̄ωT − rT

j is the residual vector for the j-th measurement. Replacing x̄ from equation (5) and
summing the squared norm over j, we get the non-iterative press formula:

P2
MSM =

1
m

∥∥∥∥∥∥∆

 1

1−∆
(
Ĉ
)

 (
ĈRωωT − R + ∆

(
∆

(
Ĉ
))

R
(
I− ωωT

))∥∥∥∥∥∥
2

F

.

The lemma. We want to show that x̄(j) as defined by equation (8) is given by equation (9). We start by expanding
the right-hand side of equation (9) by substituting R̃j from (10), giving:

C†R̃jω = C†DjRω +
1

‖ω‖22
C†(I− Dj)Cx̄(j)ω

Tω

= C†DjRω + C†Cx̄(j) − C†DjCx̄(j).

The second term reduces to x̄(j) since C†C = I. By replacing x̄(j) by its expression (8), the third term expands as:

C†DjCx̄(j) =
(
CTC

)−1
CTDjC

(
CTDjC

)−1
CTDjRω

= C†DjRω,

and the overall expression simplifies to:

C†R̃jω = x̄(j).

5 Application to Estimating Rigid Affine Thin-Plate Spline Warps

A warp is a geometric R2 → R2 transformation matching corresponding pixels between two images. Estimating a
warp from point correspondences in two images is one of the most important problems in fields such as computer
vision, medical image analysis, photogrammetry and augmented reality. The warp is often parameterized by some
smooth transformation driven by deformation centres. This section shows an application of the non-iterative press
formula for multiple scaled measurement sets to the problem of assessing the quality of an image warp called the Rigid
Affine Thin-Plate Spline Warp (RA-Warp) and originally proposed in [2]. We show that the number of deformation
centres can be selected by minimizing the press, which corresponds to maximizing the predictivity of the warp.

5.1 The RA-Warp and its press

A warp is an R2 to R2 function that models the deformation between two images. The RA-Warp is dedicated to the
case of two images of a rigid smooth surface, and models the cameras as affine, i.e. parallel, projections. An example
is shown on figure 1.

Let q ∈ R2 be the coordinates of a point in the first image. The RA-Warp depends on a parameter vector δ ∈ Rl

and writes as:
W(q; δ) def= Sq̃ + τ(q; δ)s with q̃T =

(
qT 1

)
,

where τ is an R2 to R Thin-Plate Spline as derived by Duchon [3], and (S; s) are camera parameters3 that we estimate
from image point correspondences as described in e.g. [7]. This warp guarantees that the points move along epipolar
lines.

The parameter vector δ of the Thin-Plate Spline τ contains the depth of some l deformation centres. The Thin-
Plate Spline writes τ(q; δ) = `T

qKδ, where K is a constant matrix depending on the deformation centres in the first
image, and `q is a nonlinear lifting function depending on point q.

3These are the parameters of the second camera projection matrix in the canonical basis of the 3D space for which the first camera
projection matrix is ( 1 0 0 0

0 1 0 0 ).



284 Chapter 9. OTHER WORKS

Figure 1: The two example images we use, overlaid with the m = 70 points correspondences and corresponding
epipolar lines. These two images show a bed sheet wraping a chair. They were taken while strongly zooming, making
the camera close to affine. The bed sheet remained still between the two snapshots and thus only the relative position
and orientation of the camera changed. The epipolar lines depend on this relative camera motion which is computed
from the point correspondences.

Given m point correspondences qj ↔ q′j , the camera parameters (S; s) and the centres in K, we estimate the
parameter vector δ by minimizing the following cost function, measuring the euclidean distance between the points
in the second image and those transferred by the warp from the first image:

E2
RA(δ) def=

m∑
j=1

‖W(qj , δ)− q′j‖22 =
m∑

j=1

‖Sq̃j + τ(qj ; δ)s− q′j‖22.

Substituting the expression of the Thin-Plate Spline τ , we get:

E2
RA(δ) =

m∑
j=1

∥∥∥Sq̃j +
(
`T
qj
Kδ

)
s− q′j

∥∥∥2

2
.

Transposing and gathering all the measurements in matrices Q̃ and Q′ which rows are q̃j and q′j respectively, and
the vectors `qj as the rows of M, gives:

E2
RA(δ) =

∥∥∥Q̃ST + (MKδ)sT −Q′
∥∥∥2

F
.

We identifie this as a multiple scaled measurement sets linear least squares problem, as given by equation (4). We
get gives the solution from equation (5) as:

δ̄ = (MK)†
(
Q′ − Q̃ST

)
s. (13)

Using the non-iterative press formula (7), we obtain the press statistic for the RA-Warp as:

P2
RA

def=
1
m

∥∥∥∥∥∥∆

 1

1−∆
(
M̂K

)
 (

M̂K
(
Q′ − Q̃ST

)
ssT −Q′ + Q̃ST + ∆

(
∆

(
M̂K

)) (
Q′ − Q̃ST

) (
I− ssT

))∥∥∥∥∥∥
2

F

. (14)



9.2. THE PREDICTION SUM OF SQUARES STATISTIC AND LEAVE-ONE-OUT CROSS-VALIDATION 285

5.2 Estimation Algorithm

In practice, we are given a set of point correspondences from which we can estimate the camera parameters in (S; s).
We do not however know how many deformation centres l are needed, and where to place them in the first image. A
sensible choice, though heuristic, is to choose as deformation centres the vertices of a regular, square grid located in
the vicinity of the data points.

Choosing the number of centres is more critical: underestimating l makes the warp too constrained to explain
the measurements, while overestimating l makes it too flexible, possibly ill-conditioned, with bad predictivity. We
propose to use the press statistic in order to choose the number of centres. We start with a coarse square control
grid of, say, lmin = 22 = 4 centres, and subdivide it while monitoring the press, until the maximum possible number
of centres lmax = b

√
mc2 is reached.

5.3 Experimental Results

For the example data shown in figure 1, we have m = 70 point correspondences. We thus try to fit the warp driven
by grids of lmin = 4, 9, 16, 25, 36, 49, 64 = lmax deformation centres. The fitting Root Mean Square Residual (rmsr)
and press as functions of the number of deformation centres are shown in figure 2.
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Figure 2: The fitting residual (rmsr, thin curve) and prediction sum of squares (press, thick curve) as functions
of the number of deformation centres. The vertical line shows the selected number of centres corresponding to the
minimum press. The two graphs are similar: the right one is a zoom on the left one.

We observe that the residual rmsr decreases as the number of deformation centres increases. This is to be expected
since the most parameters in the model the least the fitting error. The press decreases until 16 deformation centres
are reached, and then grows as the number of deformation centres increases beyond 16.

This is explained as follows: for less than 16 deformation centres, the warp is not flexible enough to model the
actual image deformations, while for more than 16 deformation centres, the warp is too flexible and is less and less
well constrained by the point correspondences. In both cases, it fails to accurately capture the deformation, and thus
does not interpolate well the data leading to a bad predictivity.

The so-called flow field is the set of displacement vectors at each pixel in one of the two images. The flow field
sub-sampled to 1

202 pixels is shown for different numbers of deformation centres in figure 3. Noticeable differences can
be seen, though it is difficult to visually figure out which solution is the best one. This is better seen by observing
the color discrepancy image, computed by warping the second image onto the first one and taking the absolute value
of their difference. This is shown on figure 4 over a region of interest defined as the area covered by the bed sheet
in the source image. The color discrepancy, computed as the Root Mean Square of the color discrepancy image, is
lower for 16 deformation centres than for 9 and 25. It also is visually seen that for 16 deformation centres, only the
area under the arm of the chair shows high discrepancy, while the rest of the bed sheet area is correctly registered,
which is not the case for 9 and 25 deformation centres.
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9 deformation centres 16 deformation centres 25 deformation centres

Figure 3: The estimated flow field for different numbers l of deformation centres. The solution minimizing the press
is with l = 16 deformation centres.

9 deformation centres 16 deformation centres 25 deformation centres
color discrepancy: 67.02 color discrepancy: 59.90 color discrepancy: 63.84

Figure 4: The color discrepancy images for different numbers l of deformation centres. Black indicates low discrepancy,
and white indicates high discrepancy. The solution minimizing the press is with l = 16 deformation centres.
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6 Conclusion

We derived non-iterative formulaes for the Prediction Sum of Squares (press) statistic for linear least squares with
multiple parameter or measurement sets. As an application, we showed that this can be used to assess the quality
of an image warp. It also allows selecting its complexity by varying the number of deformation centres and shows to
be consistent with the color discrepancy image.

There are some open research directions with the formulaes we propose. The first one is to extend to the case of
restricted least squares, as was done in [6] for standard linear least squares. The second one is to investigate how it
can be used to select a regularization parameter in damped least squares, by replacing the hat matrix by the influence
matrix, which is related to cross-validation methods.
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9.2.2 Paper (ROADEF’08) – Reconstruction de surface par validation croisée
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1 Introduction

Nous nous intéressons à la reconstruction d'une surface à partir d'un nuage de points. C'est un
problème ayant de nombreuses applications dans des domaines variés tels que l'étude de données
statistiques, l'analyse d'images médicales ou encore la CAO. Nous abordons ici plus particulière-
ment le choix du compromis entre l'attache aux données et la régularité de la surface. L'approche
considérée pour résoudre ce problème consiste à minimiser le score de validation croisée. Bien que
de nombreux travaux aient déjà été menés à ce sujet, les méthodes utilisées pour optimiser le cri-
tère de la validation croisée ne sont que rarement explicités. De plus les méthodes habituellement
décrites sont peu satisfaisantes.

2 La reconstruction de surface

SoitX =
{
(xi ↔ yi) | i ∈ {1, . . . , n}, xi ∈ R

N , yi ∈ R
M
}
un ensemble de données. En pratique,

nous considérons principalement le cas N = 2 et M = 1, c'est-à-dire le cas où yi représente une
élévation par rapport au plan contenant l'ensemble des points xi. Considérons le modèle de données
suivant :

y = f(x;p) + ε (1)

où x =
[
x1 . . . xn

]T
, y =

[
y1 . . . yn

]T
et p est un vecteur donnant les paramètres du modèle. Le

problème d'approximation surfacique consiste à trouver le vecteur p̂λ tel que :

p̂λ = arg minp E(p, λ) avec E(p, λ) = Ed(p) + λEr(p) (2)

où Ed est un terme donnant l'énergie d'attache aux données, Er quanti�e la régularité du modèle et
λ contrôle le compromis entre ces deux aspects. Nous ne considérons ici que les modèles linéaires
en p (où Aλ est une matrice dépendant de λ, de x et du modèle f et où ỹ contient y) :

Aλp = ỹ (3)

Les termes d'attache aux données et de régularisation sont souvent choisis comme étant respecti-
vement la moyenne des résidus au carré et l'énergie de torsion [2,5,7] :

Ed(p) = 1
n

∑n
i=1 (f(xi;p)− yi)2 et Er(p) =

∫∫
R2

∥∥∥∂f∂x (x;p)
∥∥∥2

dx (4)

Il a été montré [7] qu'en utilisant de telles énergies, le problème peut être écrit sous la forme de
l'équation (3) si l'on utilise comme modèle les Thin Plate Splines [1] :

f
(
x =

[
α β
]T ;p =

[
w1 . . . wn a b c

]T) = aα+ bβ + c+
∑n
i=1 wiρ(x, xi) (5)

où ρ(a,b) = ‖a− b‖2 log ‖a− b‖ (6)

Pour un paramètre λ �xé, la solution du problème est donnée par [6,7,3] :

p̂λ = arg minp ‖Aλp− y‖22 ⇔ p̂λ = A†λy (7)

Le paramètre λ ne peut évidemment pas être choisi en minimisant directement E(p, λ). En
e�et, cette approche conduirait systématiquement à la solution λ = 0. Nous sélectionnons λ avec
une autre technique : la validation croisée [8].
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3 La validation croisée et son optimisation

Soit p̂[i]
λ le paramètre minimisant l'énergie du modèle pour λ �xé en considérant le sous-ensemble

de données X [i] = X r {(xi ↔ yi)}. La fonction de validation croisée V est alors donnée par :

V (λ) = 1
n

∑n
i=1 ‖f(x; p̂[i]

λ )− yi‖2 (8)

La sélection automatique du compromis entre l'attache aux données et la régularisation consiste
alors à déterminer le paramètre λ̂ ∈ [0,∞[ minimisant la fonction V .

Bien qu'expérimentalement l'allure de la fonction V semble être adéquate (V n'est pas convexe
mais a un seul minimum, voir �gure 1), sa minimisation se heurte à plusieurs problèmes. L'utili-
sation directe de la formule (8) entrainerait le calcul de n ajustements de surfaces pour une seule
valeur de λ ce qui serait bien trop coûteux. Il est possible de montrer [7] que l'expression de V
peut être ramenée, demanière équivalente, à :

V (λ) = 1
n

∥∥∥diag
(

1

1−diag(AλA
†
λ)

)
(Ap̂λ − y)

∥∥∥2

(9)

La complexité de l'évaluation ponstuelle de V est alors équivalente à celle du calcul d'un seul ajus-
tement. Cependant, cette complexité reste trop élevée pour que le minimum puisse être déterminé
en échantillonant su�samment �nement la fonction V . De plus, la précision limitée des ordina-
teurs entraîne des erreurs de calcul lors de l'évaluation directe de la formule (9). Ces erreurs nous
empêchent de mettre en ÷uvre des approches simples basées, par exemple, sur une dichotomie (les
erreurs pouvant donner V comme décroissante pour des valeurs élevées de λ alors qu'elle devrait
être croissante). Nous nous intéressons donc à d'autres techniques d'optimisation pour résoudre
ce problème. De plus, nous souhaitons prendre en compte des énergies comportant plusieurs pa-
ramètres de régularisation. Plusieurs approches sont considérées : approximation de la fonction de
validation croisée, factorisation de la matrice Aλ, analyse par intervalles [4].
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Fig. 1. Fonction de Fig. 2. Ajustement de surface
validation croisée. sur le puy Pariou (Auvergne).
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