Introduction

Fluides autour d'obstacles minces

Christophe Lacave

Université Claude Bernard Lyon I

Soutenance de thèse, Lyon, 8 décembre 2008

Plan de l'exposé

Introduction

- Equations des fluides
- Problèmes considérés
- 2 Loi de Biot-Savart
 - Dimension deux
 - Dimension trois
- 3 Euler en dimension deux
- Navier-Stokes en dimension deux
- 5 Navier-Stokes en dimension trois
- 6 Unicité pour le système mixte Euler point vortex

Outline

- 1 Introduction
 - Equations des fluides
 - Problèmes considérés
- 2 Loi de Biot-Savart
 - Dimension deux
 - Dimension trois
- 3 Euler en dimension deux
- Navier-Stokes en dimension deux
- 5 Navier-Stokes en dimension trois
- 6 Unicité pour le système mixte Euler point vortex

Equations de Navier-Stokes

$$\begin{cases} \partial_t u - \nu \Delta u + u \cdot \nabla u = -\nabla p(+g) & \text{dans } \Omega \times (0, \circ) \\ \text{div } u = 0 & \text{dans } \Omega \times [0, \circ) \\ u = 0 & \text{dans } \partial \Omega \times (0, \circ) \\ \lim_{|x| \to \infty} |u| = 0 & \text{pour } t \in [0, \circ) \\ u(x, 0) = u_0(x) & \text{dans } dans \end{cases}$$

4

Equations de Navier-Stokes

$$\begin{cases} \partial_t u - \nu \Delta u + u \cdot \nabla u = -\nabla p(+g) & \text{dans } \Omega \times (0, \infty) \\ \text{div } u = 0 & \text{dans } \Omega \times [0, \infty) \\ u = 0 & \text{dans } \partial \Omega \times (0, \infty) \\ \lim_{|x| \to \infty} |u| = 0 & \text{pour } t \in [0, \infty) \\ u(x, 0) = u_0(x) & \text{dans } \Omega \end{cases}$$

4

Equations de Navier-Stokes

$$\begin{cases} \partial_t u - \nu \Delta u + u \cdot \nabla u = -\nabla p(+g) & \text{dans } \Omega \times (0, \infty) \\ \text{div } u = 0 & \text{dans } \Omega \times [0, \infty) \\ u = 0 & \text{dans } \partial \Omega \times (0, \infty) \\ \lim_{|x| \to \infty} |u| = 0 & \text{pour } t \in [0, \infty) \\ u(x, 0) = u_0(x) & \text{dans } \Omega \end{cases}$$

4

Equations de Navier-Stokes

$$\begin{cases} \partial_t u - \nu \Delta u + u \cdot \nabla u = -\nabla p(+g) & \text{dans } \Omega \times (0, \infty) \\ \text{div } u = 0 & \text{dans } \Omega \times [0, \infty) \\ u = 0 & \text{dans } \partial \Omega \times (0, \infty) \\ \lim_{|x| \to \infty} |u| = 0 & \text{pour } t \in [0, \infty) \\ u(x, 0) = u_0(x) & \text{dans } \Omega \end{cases}$$

Equations de Navier-Stokes

$$\begin{cases} \partial_t u - \nu \Delta u + u \cdot \nabla u = -\nabla p(+g) & \text{dans } \Omega \times (0, \infty) \\ \text{div } u = 0 & \text{dans } \Omega \times [0, \infty) \\ u = 0 & \text{dans } \partial \Omega \times (0, \infty) \\ \lim_{|x| \to \infty} |u| = 0 & \text{pour } t \in [0, \infty) \\ u(x, 0) = u_0(x) & \text{dans } \Omega \end{cases}$$

Equations de Navier-Stokes

$$\begin{cases} \partial_t u - \nu \Delta u + u \cdot \nabla u = -\nabla p(+g) & \text{dans } \Omega \times (0, \infty) \\ \text{div } u = 0 & \text{dans } \Omega \times [0, \infty) \\ u = 0 & \text{dans } \partial \Omega \times (0, \infty) \\ \lim_{|x| \to \infty} |u| = 0 & \text{pour } t \in [0, \infty) \\ u(x, 0) = u_0(x) & \text{dans } \Omega \end{cases}$$

Equations d'Euler

Le mouvement d'un fluide idéal incompressible est régi par l'équation d'Euler :

$$\begin{cases} \partial_t u - u \cdot \nabla u = -\nabla p & \text{dans } \Omega \times (0, \infty) \\ \text{div } u = 0 & \text{dans } \Omega \times [0, \infty) \\ u \cdot n = 0 & \text{dans } \partial \Omega \times [0, \infty) \\ \lim_{|x| \to \infty} |u| = 0 & \text{pour } t \in [0, \infty) \\ u(x, 0) = u_0(x) & \text{dans } \Omega \end{cases}$$

Equations d'Euler

Le mouvement d'un fluide idéal incompressible est régi par l'équation d'Euler :

$$\begin{cases} \partial_t u - u \cdot \nabla u = -\nabla p & \text{dans } \Omega \times (0, \infty) \\ \text{div } u = 0 & \text{dans } \Omega \times [0, \infty) \\ u \cdot n = 0 & \text{dans } \partial \Omega \times [0, \infty) \\ \lim_{|x| \to \infty} |u| = 0 & \text{pour } t \in [0, \infty) \\ u(x, 0) = u_0(x) & \text{dans } \Omega \end{cases}$$

Equations d'Euler

Le mouvement d'un fluide idéal incompressible est régi par l'équation d'Euler :

$$\begin{cases} \partial_t u - u \cdot \nabla u = -\nabla p & \text{dans } \Omega \times (0, \infty) \\ \text{div } u = 0 & \text{dans } \Omega \times [0, \infty) \\ u \cdot n = 0 & \text{dans } \partial \Omega \times [0, \infty) \\ \lim_{|x| \to \infty} |u| = 0 & \text{pour } t \in [0, \infty) \\ u(x, 0) = u_0(x) & \text{dans } \Omega \end{cases}$$

Introduction

Etude en dimension trois

 Etude en dimension deux : une solution u = (u₁, u₂) de ces équations en dimension deux nous donne une solution en dimension trois de la forme

 $u = u(x_1, x_2, x_3, t) = (u_1(x_1, x_2, t), u_2(x_1, x_2, t), 0).$

Définition

Nous désignons par ω le tourbillon qui est le rotationnel du champ de vitesse défini de la manière suivante :

$$\omega = \partial_1 u_2 - \partial_2 u_1$$

si la dimension d'espace vaut 2 et

$$\omega = (\partial_2 u_3 - \partial_3 u_2, \partial_3 u_1 - \partial_1 u_3, \partial_1 u_2 - \partial_2 u_1)$$

si la dimension d'espace vaut 3.

Introduction

- Etude en dimension trois
- Etude en dimension deux : une solution u = (u₁, u₂) de ces équations en dimension deux nous donne une solution en dimension trois de la forme

$$u = u(x_1, x_2, x_3, t) = (u_1(x_1, x_2, t), u_2(x_1, x_2, t), 0).$$

Définition

Nous désignons par ω le tourbillon qui est le rotationnel du champ de vitesse défini de la manière suivante :

$$\omega = \partial_1 u_2 - \partial_2 u_1$$

si la dimension d'espace vaut 2 et

$$\omega = (\partial_2 u_3 - \partial_3 u_2, \partial_3 u_1 - \partial_1 u_3, \partial_1 u_2 - \partial_2 u_1)$$

si la dimension d'espace vaut 3.

Introduction)

- Etude en dimension trois
- Etude en dimension deux : une solution u = (u₁, u₂) de ces équations en dimension deux nous donne une solution en dimension trois de la forme

$$u = u(x_1, x_2, x_3, t) = (u_1(x_1, x_2, t), u_2(x_1, x_2, t), 0).$$

Définition

Nous désignons par ω le tourbillon qui est le rotationnel du champ de vitesse défini de la manière suivante :

$$\omega = \partial_1 u_2 - \partial_2 u_1$$

si la dimension d'espace vaut 2 et

$$\omega = (\partial_2 u_3 - \partial_3 u_2, \partial_3 u_1 - \partial_1 u_3, \partial_1 u_2 - \partial_2 u_1)$$

si la dimension d'espace vaut 3.

Introduction)

- Etude en dimension trois
- Etude en dimension deux : une solution u = (u₁, u₂) de ces équations en dimension deux nous donne une solution en dimension trois de la forme

$$u = u(x_1, x_2, x_3, t) = (u_1(x_1, x_2, t), u_2(x_1, x_2, t), 0).$$

Définition

Nous désignons par ω le tourbillon qui est le rotationnel du champ de vitesse défini de la manière suivante :

$$\omega = \partial_1 u_2 - \partial_2 u_1$$

si la dimension d'espace vaut 2 et

$$\omega = (\partial_2 u_3 - \partial_3 u_2, \partial_3 u_1 - \partial_1 u_3, \partial_1 u_2 - \partial_2 u_1)$$

si la dimension d'espace vaut 3.

Outline

- Introduction
 - Equations des fluides
 - Problèmes considérés
- 2 Loi de Biot-Savart
 - Dimension deux
 - Dimension trois
- 3 Euler en dimension deux
- Navier-Stokes en dimension deux
- 5 Navier-Stokes en dimension trois
- 6 Unicité pour le système mixte Euler point vortex

(Introduction)

(Introduction)

Π_ε

(ပ_င, ယ_င)

Question : quelle est la limite de $(u^{\varepsilon}, \omega^{\varepsilon})$ quand $\varepsilon \to 0$ (cad quand $\Omega_{\varepsilon} \to \Gamma$)???

Fluides autour d'obstacles minces

Question : quelle est la limite de $(u^{\varepsilon}, \omega^{\varepsilon})$ quand $\varepsilon \to 0$ (cad quand $\Omega_{\varepsilon} \to \Gamma$)???

Fluides autour d'obstacles minces

Autres travaux

- Cas d'un fluide idéal en dimension deux quand Ω_ε se contracte vers un point (Iftimie, Lopes Filho et Nussenzveig Lopes en 2003).
- Cas d'un fluide visqueux en dimension deux quand Ω_{ε} se contracte vers un point (Iftimie, Lopes Filho et Nussenzveig Lopes en 2006).
- Cas d'un fluide visqueux en dimension trois quand Ω_{ε} se contracte vers un point (Iftimie et Kelliher en 2008).

Autres travaux

- Cas d'un fluide idéal en dimension deux quand Ω_ε se contracte vers un point (Iftimie, Lopes Filho et Nussenzveig Lopes en 2003).
- Cas d'un fluide visqueux en dimension deux quand Ω_{ε} se contracte vers un point (Iftimie, Lopes Filho et Nussenzveig Lopes en 2006).
- Cas d'un fluide visqueux en dimension trois quand Ω_{ε} se contracte vers un point (Iftimie et Kelliher en 2008).

- Cas d'un fluide idéal en dimension deux quand Ω_ε se contracte vers un point (Iftimie, Lopes Filho et Nussenzveig Lopes en 2003).
- Cas d'un fluide visqueux en dimension deux quand Ω_ε se contracte vers un point (Iftimie, Lopes Filho et Nussenzveig Lopes en 2006).
- Cas d'un fluide visqueux en dimension trois quand Ω_{ε} se contracte vers un point (Iftimie et Kelliher en 2008).

- Cas d'un fluide idéal en dimension deux quand Ω_ε se contracte vers un point (Iftimie, Lopes Filho et Nussenzveig Lopes en 2003).
- Cas d'un fluide visqueux en dimension deux quand Ω_ε se contracte vers un point (Iftimie, Lopes Filho et Nussenzveig Lopes en 2006).
- Cas d'un fluide visqueux en dimension trois quand Ω_{ε} se contracte vers un point (Iftimie et Kelliher en 2008).

Existence : Marchioro et Pulvirenti en 1991-1993. Question : unicité ???

Existence : Marchioro et Pulvirenti en 1991-1993. Question : unicité ???

Existence : Marchioro et Pulvirenti en 1991-1993. Question : unicité ???

Plan de l'exposé

1 Introduction

- Equations des fluides
- Problèmes considérés

2 Loi de Biot-Savart

- Dimension deux
- Dimension trois
- 3 Euler en dimension deux
- Navier-Stokes en dimension deux
- 5 Navier-Stokes en dimension trois
- 6 Unicité pour le système mixte Euler point vortex

Introduction

Outline

Introduction

- Equations des fluides
- Problèmes considérés
- Loi de Biot-Savart
 Dimension deux
 - Dimension trois
- 3 Euler en dimension deux
- Navier-Stokes en dimension deux
- 5 Navier-Stokes en dimension trois
- 6 Unicité pour le système mixte Euler point vortex

La loi de Biot-Savart dans le plan entier correspond à

$$u = K * \omega$$
,

avec

$$K(x)=\frac{1}{2\pi}\frac{x^{\perp}}{|x|^2}.$$

La loi de Biot-Savart sur le domaine extérieur correspond à

$$u^{\varepsilon} = u^{\varepsilon}(x,t) = K^{\varepsilon}[\omega^{\varepsilon}(\cdot,t)](x) + \alpha H^{\varepsilon}(x),$$

Sur Π_{ε}

La loi de Biot-Savart sur le domaine extérieur correspond à

$$u^{\varepsilon} = u^{\varepsilon}(x,t) = K^{\varepsilon}[\omega^{\varepsilon}(\cdot,t)](x) + \alpha H^{\varepsilon}(x),$$

où l'opérateur intégral est :

$$\mathcal{K}^{\varepsilon}[\omega^{\varepsilon}(\cdot,t)] = \int_{\Pi_{\varepsilon}} \mathcal{K}^{\varepsilon}(x,y) \omega^{\varepsilon}(y,t) dy,$$

avec

$$\mathcal{K}^{\varepsilon}(x,y) = \frac{1}{2\pi} DT^{t}_{\varepsilon}(x) \Big(\frac{(T_{\varepsilon}(x) - T_{\varepsilon}(y))^{\perp}}{|T_{\varepsilon}(x) - T_{\varepsilon}(y)|^{2}} - \frac{(T_{\varepsilon}(x) - T_{\varepsilon}(y)^{*})^{\perp}}{|T_{\varepsilon}(x) - T_{\varepsilon}(y)^{*}|^{2}} \Big).$$

Introduction

Sur Π_{ε}

La loi de Biot-Savart sur le domaine extérieur correspond à

$$u^{\varepsilon} = u^{\varepsilon}(x,t) = K^{\varepsilon}[\omega^{\varepsilon}(\cdot,t)](x) + lpha H^{\varepsilon}(x),$$

où l'opérateur intégral est :

$$\mathcal{K}^{\varepsilon}[\omega^{\varepsilon}(\cdot,t)] = \int_{\Pi_{\varepsilon}} \mathcal{K}^{\varepsilon}(x,y) \omega^{\varepsilon}(y,t) dy,$$

avec

$$\mathcal{K}^{\varepsilon}(x,y) = \frac{1}{2\pi} DT^{t}_{\varepsilon}(x) \Big(\frac{(T_{\varepsilon}(x) - T_{\varepsilon}(y))^{\perp}}{|T_{\varepsilon}(x) - T_{\varepsilon}(y)|^{2}} - \frac{(T_{\varepsilon}(x) - T_{\varepsilon}(y)^{*})^{\perp}}{|T_{\varepsilon}(x) - T_{\varepsilon}(y)^{*}|^{2}} \Big).$$

On note le champ harmonique

$$H^{\varepsilon}(x) = \frac{1}{2\pi} \nabla^{\perp} \log |T_{\varepsilon}(x)| = \frac{1}{2\pi} DT^{t}_{\varepsilon}(x) \Big(\frac{(T_{\varepsilon}(x))^{\perp}}{|T_{\varepsilon}(x)|^{2}} \Big)$$

Sur Π_{ε}

La loi de Biot-Savart sur le domaine extérieur correspond à

$$u^{\varepsilon} = u^{\varepsilon}(x,t) = K^{\varepsilon}[\omega^{\varepsilon}(\cdot,t)](x) + \alpha H^{\varepsilon}(x),$$

où l'opérateur intégral est :

$$\mathcal{K}^{\varepsilon}[\omega^{\varepsilon}(\cdot,t)] = \int_{\Pi_{\varepsilon}} \mathcal{K}^{\varepsilon}(x,y) \omega^{\varepsilon}(y,t) dy,$$

avec

$$\mathcal{K}^{\varepsilon}(x,y) = \frac{1}{2\pi} D T^{t}_{\varepsilon}(x) \Big(\frac{(T_{\varepsilon}(x) - T_{\varepsilon}(y))^{\perp}}{|T_{\varepsilon}(x) - T_{\varepsilon}(y)|^{2}} - \frac{(T_{\varepsilon}(x) - T_{\varepsilon}(y)^{*})^{\perp}}{|T_{\varepsilon}(x) - T_{\varepsilon}(y)^{*}|^{2}} \Big).$$

On note le champ harmonique

$$H^arepsilon(x) = rac{1}{2\pi}
abla^ot \log |T_arepsilon(x)| = rac{1}{2\pi} DT^t_arepsilon(x) \Big(rac{(T_arepsilon(x))^ot}{|T_arepsilon(x)|^2}\Big)$$

et $\alpha(t) = \gamma + \int_{\Pi_{\varepsilon}} \omega^{\varepsilon}(\mathbf{x}, t) \, d\mathbf{x}$
Sur Π_{ε}

La loi de Biot-Savart sur le domaine extérieur correspond à

$$u^{\varepsilon} = u^{\varepsilon}(x,t) = K^{\varepsilon}[\omega^{\varepsilon}(\cdot,t)](x) + \alpha H^{\varepsilon}(x),$$

où l'opérateur intégral est :

$$\mathcal{K}^{\varepsilon}[\omega^{\varepsilon}(\cdot,t)] = \int_{\Pi_{\varepsilon}} \mathcal{K}^{\varepsilon}(x,y) \omega^{\varepsilon}(y,t) dy,$$

avec

$$\mathcal{K}^{\varepsilon}(x,y) = \frac{1}{2\pi} DT^{t}_{\varepsilon}(x) \Big(\frac{(T_{\varepsilon}(x) - T_{\varepsilon}(y))^{\perp}}{|T_{\varepsilon}(x) - T_{\varepsilon}(y)|^{2}} - \frac{(T_{\varepsilon}(x) - T_{\varepsilon}(y)^{*})^{\perp}}{|T_{\varepsilon}(x) - T_{\varepsilon}(y)^{*}|^{2}} \Big).$$

On note le champ harmonique

$$H^{\varepsilon}(x) = \frac{1}{2\pi} \nabla^{\perp} \log |T_{\varepsilon}(x)| = \frac{1}{2\pi} DT^{t}_{\varepsilon}(x) \Big(\frac{(T_{\varepsilon}(x))^{\perp}}{|T_{\varepsilon}(x)|^{2}} \Big)$$

et $\alpha(t) = \gamma + \int_{\Pi_{\varepsilon}} \omega^{\varepsilon}(x, t) dx$ \Rightarrow la circulation γ est une donnée initiale.

Proposition

Si Γ est un arc de Jordan C^2 , tel que l'intersection avec le segment [-1, 1] est un nombre fini de segments et de points, alors il existe un biholomorphisme $T : \Pi \rightarrow \text{int } D^c$ qui vérifie les propriétés suivantes :

- T^{-1} et DT^{-1} sont continus jusqu'au bord, et T^{-1} envoie S sur Γ ,
- DT⁻¹ est borné,
- T et DT sont continus jusqu'à Γ, avec des différentes valeurs de chaque côté de Γ, excepté aux extrémités de la courbe où T se comporte comme la racine carrée de la distance et DT se comporte comme l'inverse de la racine carrée de la distance,
- DT est borné à l'extérieur du disque B(0, R), avec R tel que Γ ⊂ B(0, R),
- *DT* est borné dans $L^p(\Pi \cap B(0, R))$ pour tout p < 4 et R > 0.

Proposition

Si Γ est un arc de Jordan C^2 , tel que l'intersection avec le segment [-1, 1] est un nombre fini de segments et de points, alors il existe un biholomorphisme $T : \Pi \rightarrow \text{int } D^c$ qui vérifie les propriétés suivantes :

- T^{-1} et DT^{-1} sont continus jusqu'au bord, et T^{-1} envoie S sur Γ ,
- DT⁻¹ est borné,

 T et DT sont continus jusqu'à Γ, avec des différentes valeurs de chaque côté de Γ, excepté aux extrémités de la courbe où T se comporte comme la racine carrée de la distance et DT se comporte comme l'inverse de la racine carrée de la distance,

- DT est borné à l'extérieur du disque B(0, R), avec R tel que Γ ⊂ B(0, R),
- *DT* est borné dans $L^p(\Pi \cap B(0, R))$ pour tout p < 4 et R > 0.

Proposition

Si Γ est un arc de Jordan C^2 , tel que l'intersection avec le segment [-1, 1] est un nombre fini de segments et de points, alors il existe un biholomorphisme $T : \Pi \rightarrow \text{int } D^c$ qui vérifie les propriétés suivantes :

- T^{-1} et DT^{-1} sont continus jusqu'au bord, et T^{-1} envoie S sur Γ ,
- DT⁻¹ est borné,
- T et DT sont continus jusqu'à Γ, avec des différentes valeurs de chaque côté de Γ, excepté aux extrémités de la courbe où T se comporte comme la racine carrée de la distance et DT se comporte comme l'inverse de la racine carrée de la distance,
- DT est borné à l'extérieur du disque B(0, R), avec R tel que Γ ⊂ B(0, R),
- *DT* est borné dans $L^p(\Pi \cap B(0, R))$ pour tout p < 4 et R > 0.

Proposition

Si Γ est un arc de Jordan C^2 , tel que l'intersection avec le segment [-1, 1] est un nombre fini de segments et de points, alors il existe un biholomorphisme $T : \Pi \rightarrow \text{int } D^c$ qui vérifie les propriétés suivantes :

- T^{-1} et DT^{-1} sont continus jusqu'au bord, et T^{-1} envoie S sur Γ ,
- DT⁻¹ est borné,
- T et DT sont continus jusqu'à Γ, avec des différentes valeurs de chaque côté de Γ, excepté aux extrémités de la courbe où T se comporte comme la racine carrée de la distance et DT se comporte comme l'inverse de la racine carrée de la distance,
- DT est borné à l'extérieur du disque B(0, R), avec R tel que Γ ⊂ B(0, R),
- DT est borné dans $L^p(\Pi \cap B(0, R))$ pour tout p < 4 et R > 0.

Proposition

Si Γ est un arc de Jordan C^2 , tel que l'intersection avec le segment [-1, 1] est un nombre fini de segments et de points, alors il existe un biholomorphisme $T : \Pi \rightarrow \text{int } D^c$ qui vérifie les propriétés suivantes :

- T^{-1} et DT^{-1} sont continus jusqu'au bord, et T^{-1} envoie S sur Γ ,
- DT⁻¹ est borné,
- T et DT sont continus jusqu'à Γ, avec des différentes valeurs de chaque côté de Γ, excepté aux extrémités de la courbe où T se comporte comme la racine carrée de la distance et DT se comporte comme l'inverse de la racine carrée de la distance,
- DT est borné à l'extérieur du disque B(0, R), avec R tel que $\Gamma \subset B(0, R)$,
- *DT* est borné dans $L^p(\Pi \cap B(0, R))$ pour tout p < 4 et R > 0.

Proposition

Si Γ est un arc de Jordan C^2 , tel que l'intersection avec le segment [-1, 1] est un nombre fini de segments et de points, alors il existe un biholomorphisme $T : \Pi \rightarrow \text{int } D^c$ qui vérifie les propriétés suivantes :

- T^{-1} et DT^{-1} sont continus jusqu'au bord, et T^{-1} envoie S sur Γ ,
- DT⁻¹ est borné,
- T et DT sont continus jusqu'à Γ, avec des différentes valeurs de chaque côté de Γ, excepté aux extrémités de la courbe où T se comporte comme la racine carrée de la distance et DT se comporte comme l'inverse de la racine carrée de la distance,
- DT est borné à l'extérieur du disque B(0, R), avec R tel que $\Gamma \subset B(0, R)$,
- DT est borné dans $L^p(\Pi \cap B(0, R))$ pour tout p < 4 et R > 0.

L'aplatissement de l'obstacle

Nous considérons une famille d'obstacles Ω_{ε} disjoints du support de ω_0 . Si nous notons T_{ε} le biholomorphisme entre $\Pi_{\varepsilon} \equiv \Omega_{\varepsilon}^c$ et D^c , nous supposerons que les propriétés suivantes sont vérifiées :

Hypothèse

La famille de biholomorphismes $\{T_{\varepsilon}\}$ vérifie

(i)
$$\|(T_{\varepsilon} - T)/|T|\|_{L^{\infty}(\Pi_{\varepsilon})} \to 0$$
 quand $\varepsilon \to 0$,

(ii) det(DT_{ε}^{-1}) est bornée sur Π_{ε} indépendamment de ε ,

(iii) pour tout R > 0, $\|DT_{\varepsilon} - DT\|_{L^{3}(B(0,R) \cap \Pi_{\varepsilon})} \to 0$ quand $\varepsilon \to 0$,

- (iv) pour R > 0 assez grand, il existe $C_R > 0$ tel que $|DT_{\varepsilon}(x)| \le C_R$ sur $B(0, R)^c$.
- (v) pour R > 0 assez grand, il existe $C_R > 0$ tel que $|D^2 T_{\varepsilon}(x)| \le \frac{C_R}{|x|}$ sur $B(0, R)^c$.

L'aplatissement de l'obstacle

Nous considérons une famille d'obstacles Ω_{ε} disjoints du support de ω_0 . Si nous notons T_{ε} le biholomorphisme entre $\Pi_{\varepsilon} \equiv \Omega_{\varepsilon}^c$ et D^c , nous supposerons que les propriétés suivantes sont vérifiées :

Hypothèse

La famille de biholomorphismes $\{T_{\varepsilon}\}$ vérifie

(i)
$$\|(T_{\varepsilon} - T)/|T|\|_{L^{\infty}(\Pi_{\varepsilon})} \to 0$$
 quand $\varepsilon \to 0$,

(ii) det(DT_{ε}^{-1}) est bornée sur Π_{ε} indépendamment de ε ,

- (iii) pour tout R > 0, $\|DT_{\varepsilon} DT\|_{L^{3}(B(0,R) \cap \Pi_{\varepsilon})} \rightarrow 0$ quand $\varepsilon \rightarrow 0$,
- (iv) pour R > 0 assez grand, il existe $C_R > 0$ tel que $|DT_{\varepsilon}(x)| \le C_R$ sur $B(0, R)^c$.
- (v) pour R > 0 assez grand, il existe $C_R > 0$ tel que $|D^2 T_{\varepsilon}(x)| \le \frac{C_R}{|x|}$ sur $B(0, R)^c$.

Introduction

Outline

Introduction

- Equations des fluides
- Problèmes considérés
- 2 Loi de Biot-Savart
 - Dimension deux
 - Dimension trois
- 3 Euler en dimension deux
- A Navier-Stokes en dimension deux
- 5 Navier-Stokes en dimension trois
- 6 Unicité pour le système mixte Euler point vortex

Introduction (Loi de Biot-Savart) Euler en 2D NS en 2D NS en 3D Euler/point-vortex

La loi de Biot-Savart dans l'espace entier correspond à

$$u_0(x) = -\int_{\mathbb{R}^3} rac{x-y}{4\pi |x-y|^3} imes \omega_0(y) \, dy.$$

Comme Π_{ε} est simplement connexe, nous savons qu'il existe un unique champ u_0^{ε} de carré intégrable, à divergence nulle et tangent au bord tel que rot $u_0^{\varepsilon} = \omega_0 |_{\Pi_{\varepsilon}}$. Introduction (Loi de Biot-Savart) Euler en 2D NS en 2D NS en 3D Euler/point-vortex

La loi de Biot-Savart dans l'espace entier correspond à

$$u_0(x) = -\int_{\mathbb{R}^3} rac{x-y}{4\pi |x-y|^3} imes \omega_0(y) \, dy.$$

Comme Π_{ε} est simplement connexe, nous savons qu'il existe un unique champ u_0^{ε} de carré intégrable, à divergence nulle et tangent au bord tel que rot $u_0^{\varepsilon} = \omega_0|_{\Pi_{\varepsilon}}$.

Plan de l'exposé

- Equations des fluides
- Problèmes considérés
- 2 Loi de Biot-Savart
 - Dimension deux
 - Dimension trois
- 3 Euler en dimension deux
- Navier-Stokes en dimension deux
- 5 Navier-Stokes en dimension trois
- 6 Unicité pour le système mixte Euler point vortex

Equation du tourbillon

La formulation avec le tourbillon est équivalente à la précédente :

$$\begin{cases} \partial_t \omega^{\varepsilon} + u^{\varepsilon} \cdot \nabla \omega^{\varepsilon} = 0 & \text{dans } \Pi_{\varepsilon} \times (0, \infty) \\ u^{\varepsilon} = K^{\varepsilon} [\omega^{\varepsilon}] + \alpha H^{\varepsilon} & \text{dans } \Pi_{\varepsilon} \times (0, \infty) \\ \omega^{\varepsilon} (x, 0) = \omega_0 (x) & \text{dans } \Pi_{\varepsilon} \end{cases}$$

avec K^{ε} et H^{ε} définis précédemment. D'après les travaux de Kikuchi, pour tout $\varepsilon > 0$, le système admet une unique solution globale ($u^{\varepsilon}, \omega^{\varepsilon}$).

Equation du tourbillon

La formulation avec le tourbillon est équivalente à la précédente :

$$\begin{cases} \partial_t \omega^{\varepsilon} + u^{\varepsilon} \cdot \nabla \omega^{\varepsilon} = 0 & \text{dans } \Pi_{\varepsilon} \times (0, \infty) \\ u^{\varepsilon} = K^{\varepsilon} [\omega^{\varepsilon}] + \alpha H^{\varepsilon} & \text{dans } \Pi_{\varepsilon} \times (0, \infty) \\ \omega^{\varepsilon} (x, 0) = \omega_0 (x) & \text{dans } \Pi_{\varepsilon} \end{cases}$$

avec K^{ε} et H^{ε} définis précédemment. D'après les travaux de Kikuchi, pour tout $\varepsilon > 0$, le système admet une unique solution globale ($u^{\varepsilon}, \omega^{\varepsilon}$).

Théorème

Il existe une sous-suite $\varepsilon = \varepsilon_k \rightarrow 0$ telle que

- (a) $\Phi^{\varepsilon} u^{\varepsilon} \to u$ fortement dans $L^2_{loc}(\mathbb{R}_+ \times \mathbb{R}^2)$;
- (b) $\Phi^{\varepsilon}\omega^{\varepsilon} \to \omega$ faible * dans $L^{\infty}(\mathbb{R}_+; L^4_{loc}(\mathbb{R}^2))$;
- (c) le couple limite (u, ω) vérifie au sens faible l'équation suivante :

$$\begin{cases} \partial_t \omega + u \cdot \nabla \omega = 0 & dans \, \mathbb{R}^2 \times (0, \infty) \\ \text{div} \, u = 0 & dans \, \mathbb{R}^2 \times (0, \infty) \\ \text{rot} \, u = \omega + \gamma \delta_0 & dans \, \mathbb{R}^2 \times (0, \infty) \\ \omega(x, 0) = \omega_0(x) & dans \, \mathbb{R}^2 \end{cases}$$

avec δ_0 la fonction Dirac en 0.

Iftimie, Lopes Filho et Nussenzveig Lopes en 2003.

Théorème

Il existe une sous-suite $\varepsilon = \varepsilon_k \rightarrow 0$ telle que

- (a) $\Phi^{\varepsilon}u^{\varepsilon} \to u$ fortement dans $L^2_{loc}(\mathbb{R}_+ \times \mathbb{R}^2)$;
- (b) $\Phi^{\varepsilon}\omega^{\varepsilon} \to \omega$ faible * dans $L^{\infty}(\mathbb{R}_+; L^4_{loc}(\mathbb{R}^2))$;
- (c) le couple limite (u, ω) vérifie au sens faible l'équation suivante :

$$\begin{cases} \partial_t \omega + u \cdot \nabla \omega = 0 & dans \, \mathbb{R}^2 \times (0, \infty) \\ \text{div} \, u = 0 & dans \, \mathbb{R}^2 \times (0, \infty) \\ \text{rot} \, u = \omega + \gamma \delta_0 & dans \, \mathbb{R}^2 \times (0, \infty) \\ \omega(x, 0) = \omega_0(x) & dans \, \mathbb{R}^2 \end{cases}$$

avec δ_0 la fonction Dirac en 0.

Iftimie, Lopes Filho et Nussenzveig Lopes en 2003.

Théorème

Il existe une sous-suite $\varepsilon = \varepsilon_k \rightarrow 0$ telle que

- (a) $\Phi^{\varepsilon} u^{\varepsilon} \to u$ fortement dans $L^2_{loc}(\mathbb{R}_+ \times \mathbb{R}^2)$;
- (b) $\Phi^{\varepsilon}\omega^{\varepsilon} \to \omega$ faible * dans $L^{\infty}(\mathbb{R}_+; L^4_{\text{loc}}(\mathbb{R}^2))$;

(c) le couple limite (u,ω) vérifie au sens faible l'équation suivante :

$$\begin{cases} \partial_t \omega + u \cdot \nabla \omega = 0 & dans \, \mathbb{R}^2 \times (0, \infty) \\ \text{div} \, u = 0 & dans \, \mathbb{R}^2 \times (0, \infty) \\ \text{rot} \, u = \omega + \gamma \delta_0 & dans \, \mathbb{R}^2 \times (0, \infty) \\ \omega(x, 0) = \omega_0(x) & dans \, \mathbb{R}^2 \end{cases}$$

avec δ_0 la fonction Dirac en 0.

Iftimie, Lopes Filho et Nussenzveig Lopes en 2003.

Théorème

Il existe une sous-suite $\varepsilon = \varepsilon_k \rightarrow 0$ telle que

- (a) $\Phi^{\varepsilon} u^{\varepsilon} \to u$ fortement dans $L^2_{loc}(\mathbb{R}_+ \times \mathbb{R}^2)$;
- (b) $\Phi^{\varepsilon}\omega^{\varepsilon} \to \omega$ faible * dans $L^{\infty}(\mathbb{R}_+; L^4_{loc}(\mathbb{R}^2))$;
- (c) le couple limite (u, ω) vérifie au sens faible l'équation suivante :

$$\begin{cases} \partial_t \omega + u \cdot \nabla \omega = 0 & dans \ \mathbb{R}^2 \times (0, \infty) \\ \operatorname{div} u = 0 & dans \ \mathbb{R}^2 \times (0, \infty) \\ \operatorname{rot} u = \omega + \gamma \delta_0 & dans \ \mathbb{R}^2 \times (0, \infty) \\ \omega(x, 0) = \omega_0(x) & dans \ \mathbb{R}^2 \end{cases}$$

avec δ_0 la fonction Dirac en 0.

Iftimie, Lopes Filho et Nussenzveig Lopes en 2003.

Théorème

Il existe une sous-suite $\varepsilon = \varepsilon_k \rightarrow 0$ telle que

- (a) $\Phi^{\varepsilon} u^{\varepsilon} \to u$ fortement dans $L^2_{loc}(\mathbb{R}_+ \times \mathbb{R}^2)$;
- (b) $\Phi^{\varepsilon}\omega^{\varepsilon} \to \omega$ faible * dans $L^{\infty}(\mathbb{R}_+; L^4_{loc}(\mathbb{R}^2))$;
- (c) $u s'exprime explicitement en fonction de <math>\omega$ (voir loi de Biot-Savart);

Théorème

Il existe une sous-suite $\varepsilon = \varepsilon_k \rightarrow 0$ telle que

- (a) $\Phi^{\varepsilon} u^{\varepsilon} \to u$ fortement dans $L^2_{loc}(\mathbb{R}_+ \times \mathbb{R}^2)$;
- (b) $\Phi^{\varepsilon}\omega^{\varepsilon} \to \omega$ faible * dans $L^{\infty}(\mathbb{R}_+; L^4_{loc}(\mathbb{R}^2))$;
- (c) $u s'exprime explicitement en fonction de <math>\omega$ (voir loi de Biot-Savart);

Théorème

Il existe une sous-suite $\varepsilon = \varepsilon_k \rightarrow 0$ telle que

- (a) $\Phi^{\varepsilon} u^{\varepsilon} \to u$ fortement dans $L^2_{loc}(\mathbb{R}_+ \times \mathbb{R}^2)$;
- (b) $\Phi^{\varepsilon}\omega^{\varepsilon} \to \omega$ faible * dans $L^{\infty}(\mathbb{R}_+; L^4_{loc}(\mathbb{R}^2))$;
- (c) $u s'exprime explicitement en fonction de <math>\omega$ (voir loi de Biot-Savart);

Théorème

Il existe une sous-suite $\varepsilon = \varepsilon_k \rightarrow 0$ telle que

- (a) $\Phi^{\varepsilon} u^{\varepsilon} \to u$ fortement dans $L^2_{loc}(\mathbb{R}_+ \times \mathbb{R}^2)$;
- (b) $\Phi^{\varepsilon}\omega^{\varepsilon} \to \omega$ faible * dans $L^{\infty}(\mathbb{R}_+; L^4_{loc}(\mathbb{R}^2))$;
- (c) $u s'exprime explicitement en fonction de <math>\omega$ (voir loi de Biot-Savart);

Théorème

Il existe une sous-suite $\varepsilon = \varepsilon_k \rightarrow 0$ telle que

- (a) $\Phi^{\varepsilon} u^{\varepsilon} \to u$ fortement dans $L^2_{loc}(\mathbb{R}_+ \times \mathbb{R}^2)$;
- (b) $\Phi^{\varepsilon}\omega^{\varepsilon} \to \omega$ faible * dans $L^{\infty}(\mathbb{R}_+; L^4_{loc}(\mathbb{R}^2))$;
- (c) u s'exprime explicitement en fonction de ω (voir loi de Biot-Savart);

Proposition

Pour t fixé, le champ de vitesse u

- i) est continu sur $\mathbb{R}^2 \setminus \Gamma$.
- ii) est continu jusqu'au bord Γ \ {-1;1}, avec des valeurs différentes de chaque côté de Γ.
- iii) explose aux extrémités de la courbe comme $C/\sqrt{|x-1||x+1|}$
- iv) est tangent à la courbe.
- v) est à divergence nulle.

Il existe une fonction g_{ω} qui dépend de Γ , γ et ω telle que

rot $u = \omega + g_{\omega}(s)\delta_{\Gamma}$.

De plus $g_{\omega} = (u_{down} - u_{up}) \cdot \overrightarrow{\tau}$.

Proposition

Pour t fixé, le champ de vitesse u

- i) est continu sur $\mathbb{R}^2 \setminus \Gamma$.
- ii) est continu jusqu'au bord Γ \ {-1;1}, avec des valeurs différentes de chaque côté de Γ.
- iii) explose aux extrémités de la courbe comme $C/\sqrt{|x-1||x+1|}$
- iv) est tangent à la courbe.
- v) est à divergence nulle.

Il existe une fonction g_{ω} qui dépend de Γ , γ et ω telle que

rot $u = \omega + g_{\omega}(s)\delta_{\Gamma}$.

De plus $g_{\omega} = (u_{down} - u_{up}) \cdot \overrightarrow{\tau}$.

Proposition

Pour t fixé, le champ de vitesse u

- i) est continu sur $\mathbb{R}^2 \setminus \Gamma$.
- ii) est continu jusqu'au bord Γ \ {-1;1}, avec des valeurs différentes de chaque côté de Γ.
- iii) explose aux extrémités de la courbe comme $C/\sqrt{|x-1||x+1|}$.
- iv) est tangent à la courbe.
- v) est à divergence nulle.

Il existe une fonction g_{ω} qui dépend de Γ , γ et ω telle que

rot $u = \omega + g_{\omega}(s)\delta_{\Gamma}$.

De plus $g_{\omega} = (u_{down} - u_{up}) \cdot \overrightarrow{\tau}$.

Proposition

Pour t fixé, le champ de vitesse u

- i) est continu sur $\mathbb{R}^2 \setminus \Gamma$.
- ii) est continu jusqu'au bord Γ \ {-1;1}, avec des valeurs différentes de chaque côté de Γ.
- iii) explose aux extrémités de la courbe comme $C/\sqrt{|x-1||x+1|}$.
- iv) est tangent à la courbe.
- v) est à divergence nulle.

Il existe une fonction $g_ω$ qui dépend de Γ, γ et ω telle que

rot $u = \omega + g_{\omega}(s)\delta_{\Gamma}$.

De plus $g_{\omega} = (u_{down} - u_{up}) \cdot \overrightarrow{\tau}$.

Proposition

Pour t fixé, le champ de vitesse u

- i) est continu sur $\mathbb{R}^2 \setminus \Gamma$.
- ii) est continu jusqu'au bord Γ \ {-1;1}, avec des valeurs différentes de chaque côté de Γ.
- iii) explose aux extrémités de la courbe comme $C/\sqrt{|x-1||x+1|}$.
- iv) est tangent à la courbe.
- v) est à divergence nulle.

Il existe une fonction $g_ω$ qui dépend de Γ, γ et ω telle que

rot $u = \omega + g_{\omega}(s)\delta_{\Gamma}$.

De plus $g_{\omega} = (u_{down} - u_{up}) \cdot \overrightarrow{\tau}$.

Proposition

Pour t fixé, le champ de vitesse u

- i) est continu sur $\mathbb{R}^2 \setminus \Gamma$.
- ii) est continu jusqu'au bord Γ \ {-1;1}, avec des valeurs différentes de chaque côté de Γ.
- iii) explose aux extrémités de la courbe comme $C/\sqrt{|x-1||x+1|}$.
- iv) est tangent à la courbe.
- v) est à divergence nulle.

Il existe une fonction g_{ω} qui dépend de Γ , γ et ω telle que

rot
$$\boldsymbol{u} = \omega + \boldsymbol{g}_{\omega}(\boldsymbol{s})\delta_{\Gamma}.$$

De plus $g_{\omega} = (u_{down} - u_{up}) \cdot \overrightarrow{\tau}$.

Proposition

Pour t fixé, le champ de vitesse u

- i) est continu sur $\mathbb{R}^2 \setminus \Gamma$.
- ii) est continu jusqu'au bord Γ \ {-1;1}, avec des valeurs différentes de chaque côté de Γ.
- iii) explose aux extrémités de la courbe comme $C/\sqrt{|x-1||x+1|}$.
- iv) est tangent à la courbe.
- v) est à divergence nulle.

Il existe une fonction g_{ω} qui dépend de Γ , γ et ω telle que

rot
$$\boldsymbol{u} = \omega + \boldsymbol{g}_{\omega}(\boldsymbol{s})\delta_{\Gamma}.$$

De plus $g_{\omega} = (u_{down} - u_{up}) \cdot \overrightarrow{\tau}$.

Equation à l'extérieur de la courbe

Nous avons u qui vérifie au sens des distributions l'équation d'Euler à l'extérieur de la courbe Γ :

$\int u_t + u \cdot \nabla u = -\nabla p,$	dans $\mathbb{R}^2 \setminus \Gamma imes (0,\infty)$
div $u = 0$	dans $\mathbb{R}^2 \setminus \Gamma imes [0,\infty)$
$\begin{cases} u \cdot \hat{n} = 0 \end{cases}$	sur $\Gamma imes [0,\infty)$
u ightarrow 0,	quand $ x \to \infty$
$u(x,0) = F(\omega_0,\gamma)$	dans $\mathbb{R}^2 \setminus \Gamma$

où *F* est la loi de Biot-Savart donnant explicitement la vitesse en fonction du tourbillon et de la circulation.

Plan de l'exposé

- 1 Introduction
 - Equations des fluides
 - Problèmes considérés
- 2 Loi de Biot-Savart
 - Dimension deux
 - Dimension trois
- 3 Euler en dimension deux
- 4 Navier-Stokes en dimension deux
- 5 Navier-Stokes en dimension trois
- 6 Unicité pour le système mixte Euler point vortex

Convergence de la donnée initiale

Lemme

Nous avons que $Eu_0^{\varepsilon} \to K[\omega_0] + \alpha H =: u_0$ fortement dans $L^2_{loc}(\mathbb{R}^2)$ quand $\varepsilon \to 0$.

Proposition

Le champ de vitesse u₀

- i) est continu sur $\mathbb{R}^2 \setminus \Gamma$.
- ii) est continu jusqu'au bord Γ \ {−1; 1}, avec des valeurs différentes de chaque côté de Γ.
- iii) explose aux extrémités de la courbe comme $C/\sqrt{|x-1||x+1|}$, ce qui appartient à L_{loc}^{p} pour p < 4.
- iv) est tangent à la courbe et de limite nulle à l'infini.
- v) est à divergence nulle et rot $u_0 = \omega_0 + g\delta_{\Gamma}$.

Convergence de la donnée initiale

Lemme

Nous avons que $Eu_0^{\varepsilon} \to K[\omega_0] + \alpha H =: u_0$ fortement dans $L^2_{loc}(\mathbb{R}^2)$ quand $\varepsilon \to 0$.

Proposition

Le champ de vitesse u₀

- i) est continu sur $\mathbb{R}^2 \setminus \Gamma$.
- ii) est continu jusqu'au bord Γ \ {-1;1}, avec des valeurs différentes de chaque côté de Γ.
- iii) explose aux extrémités de la courbe comme $C/\sqrt{|x-1||x+1|}$, ce qui appartient à L_{loc}^{p} pour p < 4.
- iv) est tangent à la courbe et de limite nulle à l'infini.
- v) est à divergence nulle et rot $u_0 = \omega_0 + g\delta_{\Gamma}$.

Estimations a priori

Nous utilisons le champ $W^{\varepsilon}(t, x) = u^{\varepsilon}(t, x) - v^{\varepsilon}(x)$ qui est initialement L^2 , alors

$$\|W^{\varepsilon}\|_{L^{2}}^{2} + \nu e^{2C_{1}t} \int_{0}^{t} e^{-2C_{1}s} \|\nabla W^{\varepsilon}(\cdot,s)\|_{L^{2}}^{2} ds \leq e^{2C_{1}t} (\frac{C_{2}}{C_{1}} + \|W^{\varepsilon}(\cdot,0)\|_{L^{2}}^{2})$$

Nous en déduisons alors le principal résultat de cette partie.

Théorème

Soit u^{ε} la solution de l'équation de Navier-Stokes sur Π_{ε} , nous avons alors que

- 1. *Ia famille* { $Eu^{\varepsilon} v^{\varepsilon}$ } *est bornée dans* $L^{\infty}_{loc}([0,\infty); L^{2}(\mathbb{R}^{2})) \cap L^{2}_{loc}([0,\infty); H^{1}(\mathbb{R}^{2}))$
- 2. Ia famille { ∇Eu^{ε} } est bornée dans $L^2_{loc}([0,\infty); L^2(\mathbb{R}^2))$.
- 3. *Ia famille* { Eu^{ε} } *est bornée dans* $L^{\infty}_{loc}([0,\infty); L^{2}_{loc}(\mathbb{R}^{2})) \cap L^{4}_{loc}([0,\infty); L^{4}(\mathbb{R}^{2})).$
Estimations a priori

Nous utilisons le champ $W^{\varepsilon}(t, x) = u^{\varepsilon}(t, x) - v^{\varepsilon}(x)$ qui est initialement L^2 , alors

$$\|W^{\varepsilon}\|_{L^{2}}^{2} + \nu e^{2C_{1}t} \int_{0}^{t} e^{-2C_{1}s} \|\nabla W^{\varepsilon}(\cdot, s)\|_{L^{2}}^{2} ds \leq e^{2C_{1}t} (\frac{C_{2}}{C_{1}} + \|W^{\varepsilon}(\cdot, 0)\|_{L^{2}}^{2})$$

Nous en déduisons alors le principal résultat de cette partie.

Théorème

Soit u^{ε} la solution de l'équation de Navier-Stokes sur Π_{ε} , nous avons alors que

- 1. *Ia famille* { $Eu^{\varepsilon} v^{\varepsilon}$ } *est bornée dans* $L^{\infty}_{loc}([0,\infty); L^{2}(\mathbb{R}^{2})) \cap L^{2}_{loc}([0,\infty); H^{1}(\mathbb{R}^{2})).$
- 2. Ia famille { ∇Eu^{ε} } est bornée dans $L^{2}_{loc}([0,\infty); L^{2}(\mathbb{R}^{2}))$.
- 3. *Ia famille* { Eu^{ε} } *est bornée dans* $L^{\infty}_{loc}([0,\infty); L^{2}_{loc}(\mathbb{R}^{2})) \cap L^{4}_{loc}([0,\infty); L^{4}(\mathbb{R}^{2})).$

Estimations a priori

Nous utilisons le champ $W^{\varepsilon}(t, x) = u^{\varepsilon}(t, x) - v^{\varepsilon}(x)$ qui est initialement L^2 , alors

$$\|W^{\varepsilon}\|_{L^{2}}^{2} + \nu e^{2C_{1}t} \int_{0}^{t} e^{-2C_{1}s} \|\nabla W^{\varepsilon}(\cdot, s)\|_{L^{2}}^{2} ds \leq e^{2C_{1}t} (\frac{C_{2}}{C_{1}} + \|W^{\varepsilon}(\cdot, 0)\|_{L^{2}}^{2})$$

Nous en déduisons alors le principal résultat de cette partie.

Théorème

Soit u^{ε} la solution de l'équation de Navier-Stokes sur Π_{ε} , nous avons alors que

- 1. *Ia famille* { $Eu^{\varepsilon} v^{\varepsilon}$ } *est bornée dans* $L^{\infty}_{loc}([0,\infty); L^{2}(\mathbb{R}^{2})) \cap L^{2}_{loc}([0,\infty); H^{1}(\mathbb{R}^{2})).$
- 2. Ia famille $\{\nabla Eu^{\varepsilon}\}$ est bornée dans $L^{2}_{loc}([0,\infty); L^{2}(\mathbb{R}^{2}))$.
- 3. *la famille* { Eu^{ε} } *est bornée dans* $L^{\infty}_{loc}([0,\infty); L^{2}_{loc}(\mathbb{R}^{2})) \cap L^{4}_{loc}([0,\infty); L^{4}(\mathbb{R}^{2})).$

Passage à la limite

Proposition

Soient T > 0 et O un ouvert régulier, relativement compact de $\mathbb{R}^2 \setminus \Gamma$. Alors, la suite $\{Eu^{\varepsilon}\}$ est précompact dans $L^{\infty}([0, T]; H^{-3}(O))$.

Lemme

Il existe une sous-suite telle que $\{Eu^{\varepsilon}\}$ converge fortement dans $L^2_{loc}([0,\infty) \times (\mathbb{R}^2 \setminus \Gamma))$.

Lemme

Si nous notons $v \equiv \alpha H \Phi^{0,\lambda}$, alors $v_{\varepsilon} \to v$ dans $L^2_{loc}(\mathbb{R}^2)$.

Passage à la limite

Proposition

Soient T > 0 et O un ouvert régulier, relativement compact de $\mathbb{R}^2 \setminus \Gamma$. Alors, la suite $\{Eu^{\varepsilon}\}$ est précompact dans $L^{\infty}([0, T]; H^{-3}(O))$.

Lemme

Il existe une sous-suite telle que $\{Eu^{\varepsilon}\}$ converge fortement dans $L^2_{loc}([0,\infty) \times (\mathbb{R}^2 \setminus \Gamma))$.

Lemme

Si nous notons $v \equiv \alpha H \Phi^{0,\lambda}$, alors $v_{\varepsilon} \to v$ dans $L^2_{loc}(\mathbb{R}^2)$.

Passage à la limite

Proposition

Soient T > 0 et O un ouvert régulier, relativement compact de $\mathbb{R}^2 \setminus \Gamma$. Alors, la suite $\{Eu^{\varepsilon}\}$ est précompact dans $L^{\infty}([0, T]; H^{-3}(O))$.

Lemme

Il existe une sous-suite telle que $\{Eu^{\varepsilon}\}$ converge fortement dans $L^2_{loc}([0,\infty) \times (\mathbb{R}^2 \setminus \Gamma))$.

Lemme

Si nous notons
$$v \equiv \alpha H \Phi^{0,\lambda}$$
, alors $v_{\varepsilon} \to v$ dans $L^2_{loc}(\mathbb{R}^2)$.

Théorème principal

Théorème

Il existe une limite forte u de { Eu^{ε} } dans $L^{2}_{loc}([0,\infty) \times (\mathbb{R}^{2} \setminus \Gamma))$ qui est une solution faible des équations de Navier-Stokes dans $\mathbb{R}^{2} \setminus \Gamma$, au sens donné par la définition précédente, avec une vitesse initiale $u_{0} = K[\omega_{0}] + \alpha H$.

Proposition

Il existe au plus une solution globale des équations de Navier-Stokes sur l'extérieur d'une courbe, au sens donné par la définition précédente, ayant pour vitesse initiale $u_0 = K[\omega_0] + \alpha H$.

Théorème principal

Théorème

Il existe une limite forte u de { Eu^{ε} } dans $L^2_{loc}([0,\infty) \times (\mathbb{R}^2 \setminus \Gamma))$ qui est une solution faible des équations de Navier-Stokes dans $\mathbb{R}^2 \setminus \Gamma$, au sens donné par la définition précédente, avec une vitesse initiale $u_0 = K[\omega_0] + \alpha H$.

Proposition

Il existe au plus une solution globale des équations de Navier-Stokes sur l'extérieur d'une courbe, au sens donné par la définition précédente, ayant pour vitesse initiale $u_0 = K[\omega_0] + \alpha H$.

Théorème principal

Théorème

Il existe une limite forte u de { Eu^{ε} } dans $L^2_{loc}([0,\infty) \times (\mathbb{R}^2 \setminus \Gamma))$ qui est une solution faible des équations de Navier-Stokes dans $\mathbb{R}^2 \setminus \Gamma$, au sens donné par la définition précédente, avec une vitesse initiale $u_0 = K[\omega_0] + \alpha H$.

Proposition

Il existe au plus une solution globale des équations de Navier-Stokes sur l'extérieur d'une courbe, au sens donné par la définition précédente, ayant pour vitesse initiale $u_0 = K[\omega_0] + \alpha H.$

Cas de la limite vers un point

A la limite, la vitesse vérifie l'équation de Navier-Stokes dans tout le plan, où la masse de Dirac apparaît uniquement dans la donnée initiale.

Iftimie, Lopes Filho et Nussenzveig Lopes en 2006.

Plan de l'exposé

1 Introduction

- Equations des fluides
- Problèmes considérés
- 2 Loi de Biot-Savart
 - Dimension deux
 - Dimension trois
- 3 Euler en dimension deux
- Avier-Stokes en dimension deux
- 5 Navier-Stokes en dimension trois
- 6 Unicité pour le système mixte Euler point vortex

(NS en 3D)

Convergence vers une surface

Proposition

Il existe un champ à divergence nulle $v_0 \in \mathcal{H}_S$ tel que $Eu_0^{\varepsilon} \to v_0$ fortement dans $L^2(\mathbb{R}^3 \setminus S)$ et que rot $v_0 = \omega_0$ (dans $\mathbb{R}^3 \setminus S$). De plus, $v_0 = \mathbb{P}_{\mathbb{R}^3 \setminus S}(u_0)$, avec u_0 défini sans obstacle et $\mathbb{P}_{\mathbb{R}^3 \setminus S}$ le projecteur de Leray dans $\mathbb{R}^3 \setminus S$.

Théorème

Soit u^{ε} une solution de Leray de l'équation de Navier-Stokes sur Π_{ε} telle que rot $u_0^{\varepsilon} = \omega_0$, alors il existe une sous-suite et un champ vectoriel u tels que $u^{\varepsilon} \to u$ fortement dans $L^2_{loc}(\mathbb{R}^+ \times \Pi)$ et tel que u soit une solution de Leray de l'équation de Navier-Stokes à l'extérieur de la surface S vérifiant $u(0, .) = v_0$ (v_0 donné dans la proposition précédente).

(NS en 3D)

Convergence vers une surface

Proposition

Il existe un champ à divergence nulle $v_0 \in \mathcal{H}_S$ tel que $Eu_0^{\varepsilon} \to v_0$ fortement dans $L^2(\mathbb{R}^3 \setminus S)$ et que rot $v_0 = \omega_0$ (dans $\mathbb{R}^3 \setminus S$). De plus, $v_0 = \mathbb{P}_{\mathbb{R}^3 \setminus S}(u_0)$, avec u_0 défini sans obstacle et $\mathbb{P}_{\mathbb{R}^3 \setminus S}$ le projecteur de Leray dans $\mathbb{R}^3 \setminus S$.

Théorème

Soit u^{ε} une solution de Leray de l'équation de Navier-Stokes sur Π_{ε} telle que rot $u_0^{\varepsilon} = \omega_0$, alors il existe une sous-suite et un champ vectoriel u tels que $u^{\varepsilon} \to u$ fortement dans $L^2_{loc}(\mathbb{R}^+ \times \Pi)$ et tel que u soit une solution de Leray de l'équation de Navier-Stokes à l'extérieur de la surface S vérifiant $u(0, .) = v_0$ (v_0 donné dans la proposition précédente).

NS en 2D

(NS en 3D)

Euler/point-vortex

Convergence vers une courbe

Proposition

Nous avons $Eu_0^{\varepsilon} \rightarrow u_0$ fortement dans $L^2(\mathbb{R}^3)$, où u_0 correspond au champ de vitesse sans obstacle.

Convergence vers un point

Nous retrouvons à la limite une vitesse satisfaisant l'équation de Navier-Stokes dans tout l'espace. La limite de la vitesse initiale est alors

$$u_0=-\int_{\mathbb{R}^3}rac{x-y}{4\pi|x-y|^3} imes\omega_0(y)\,dy.$$

Iftimie et Kelliher en 2008.

Plan de l'exposé

1 Introduction

- Equations des fluides
- Problèmes considérés
- 2 Loi de Biot-Savart
 - Dimension deux
 - Dimension trois
- 3 Euler en dimension deux
- Navier-Stokes en dimension deux
- 5 Navier-Stokes en dimension trois

6 Unicité pour le système mixte Euler point vortex

Formulation trajectoire

La loi de Biot-Savart dans le plan entier s'écrit $v = K * \omega$ avec $K(x) = \frac{1}{2\pi} \frac{x^{\perp}}{|x|^2}$.

Equation d'Euler

 $\begin{cases} \partial_t \omega + v \cdot \nabla \omega = \mathbf{0}, \\ \omega = \operatorname{rot} v, \ \operatorname{div} v = \mathbf{0}. \end{cases}$

Quand *v* est régulière, nous pouvons définir des trajectoires définies par

$$\begin{cases} \frac{d}{dt}\phi_t(x) = v(t,\phi_t(x))\\ \phi_0(x) = x \in \mathbb{R}^2. \end{cases}$$

Nous avons alors que $\frac{d}{dt}\omega(t,\phi_t(x))\equiv 0.$

Formulation trajectoire

La loi de Biot-Savart dans le plan entier s'écrit $v = K * \omega$ avec $K(x) = \frac{1}{2\pi} \frac{x^{\perp}}{|x|^2}$.

Equation d'Euler

$$\begin{cases} \partial_t \omega + \mathbf{v} \cdot \nabla \omega = \mathbf{0}, \\ \omega = \operatorname{rot} \mathbf{v}, \ \operatorname{div} \mathbf{v} = \mathbf{0}. \end{cases}$$

Quand *v* est régulière, nous pouvons définir des trajectoires définies par

$$\begin{cases} \frac{d}{dt}\phi_t(x) = v(t,\phi_t(x))\\ \phi_0(x) = x \in \mathbb{R}^2. \end{cases}$$

Nous avons alors que $\frac{d}{dt}\omega(t,\phi_t(x))\equiv 0.$

Formulation trajectoire

La loi de Biot-Savart dans le plan entier s'écrit $v = K * \omega$ avec $K(x) = \frac{1}{2\pi} \frac{x^{\perp}}{|x|^2}$.

Equation d'Euler

$$\begin{cases} \partial_t \omega + \mathbf{v} \cdot \nabla \omega = \mathbf{0}, \\ \omega = \operatorname{rot} \mathbf{v}, \ \operatorname{div} \mathbf{v} = \mathbf{0}. \end{cases}$$

Quand *v* est régulière, nous pouvons définir des trajectoires définies par

$$\begin{cases} \frac{d}{dt}\phi_t(x) = \mathbf{v}(t,\phi_t(x))\\ \phi_0(x) = x \in \mathbb{R}^2. \end{cases}$$

Nous avons alors que $\frac{d}{dt}\omega(t,\phi_t(x)) \equiv 0$.

Système mixte Euler point vortex

Solutions lagrangiennes

Le triplet (ω, z, ϕ) est une solution lagrangienne globale du système mixte Euler point vortex ssi

$$\begin{cases} \mathbf{v}(\cdot, t) = (\mathbf{K} * \omega)(\cdot, t), \\ \dot{\mathbf{z}}(t) = \mathbf{v}(t, \mathbf{z}(t)), \ \mathbf{z}(0) = \mathbf{z}_0, \\ \dot{\phi}_t(\mathbf{x}) = \mathbf{v}(t, \phi_t(\mathbf{x})) + \mathbf{K}(\phi_t(\mathbf{x}) - \mathbf{z}(t)), \\ \phi_0(\mathbf{x}) = \mathbf{x} \operatorname{si} \mathbf{x} \neq \mathbf{z}_0, \ \omega(\phi_t(\mathbf{x}), t) = \omega_0(\mathbf{x}). \end{cases}$$

Existence établie par Marchioro et Pulvirenti en 1991-1993. Unicité ??

Système mixte Euler point vortex

Solutions lagrangiennes

Le triplet (ω, z, ϕ) est une solution lagrangienne globale du système mixte Euler point vortex ssi

$$\begin{cases} \mathbf{v}(\cdot, t) = (\mathbf{K} * \omega)(\cdot, t), \\ \dot{\mathbf{z}}(t) = \mathbf{v}(t, \mathbf{z}(t)), \ \mathbf{z}(0) = \mathbf{z}_0, \\ \dot{\phi}_t(\mathbf{x}) = \mathbf{v}(t, \phi_t(\mathbf{x})) + \mathbf{K}(\phi_t(\mathbf{x}) - \mathbf{z}(t)), \\ \phi_0(\mathbf{x}) = \mathbf{x} \text{ si } \mathbf{x} \neq \mathbf{z}_0, \ \omega(\phi_t(\mathbf{x}), t) = \omega_0(\mathbf{x}). \end{cases}$$

Existence établie par Marchioro et Pulvirenti en 1991-1993. Unicité ??

Résultats

Théorème

Soient $\omega_0 \in L^1 \cap L^{\infty}(\mathbb{R}^2)$ et $z_0 \in \mathbb{R}^2$ tels qu'il existe $R_0 > 0$ et $\alpha \in \mathbb{R}$ tels que

 $\omega_0 \equiv \alpha \ sur \ B(z_0, R_0).$

Supposons de plus que ω_0 est à support compact. Il existe alors une unique solution du système mixte Euler point vortex vérifiant cette donnée initiale.

La bêtise consiste à vouloir conclure.

Flaubert (1850)

